diff --git "a/53494/metadata.json" "b/53494/metadata.json" new file mode 100644--- /dev/null +++ "b/53494/metadata.json" @@ -0,0 +1,48832 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "53494", + "quality_score": 0.8778, + "per_segment_quality_scores": [ + { + "start": 66.22, + "end": 66.85, + "probability": 0.647 + }, + { + "start": 68.22, + "end": 69.88, + "probability": 0.8799 + }, + { + "start": 71.48, + "end": 75.88, + "probability": 0.9969 + }, + { + "start": 75.88, + "end": 79.28, + "probability": 0.773 + }, + { + "start": 80.05, + "end": 82.44, + "probability": 0.4958 + }, + { + "start": 83.62, + "end": 87.0, + "probability": 0.8818 + }, + { + "start": 91.64, + "end": 93.86, + "probability": 0.735 + }, + { + "start": 94.84, + "end": 97.1, + "probability": 0.9243 + }, + { + "start": 98.04, + "end": 99.34, + "probability": 0.9823 + }, + { + "start": 100.22, + "end": 103.86, + "probability": 0.9513 + }, + { + "start": 104.8, + "end": 107.02, + "probability": 0.8088 + }, + { + "start": 107.12, + "end": 107.66, + "probability": 0.8328 + }, + { + "start": 108.02, + "end": 108.8, + "probability": 0.8859 + }, + { + "start": 108.86, + "end": 109.68, + "probability": 0.986 + }, + { + "start": 110.18, + "end": 110.86, + "probability": 0.8128 + }, + { + "start": 111.5, + "end": 115.52, + "probability": 0.9737 + }, + { + "start": 115.9, + "end": 120.7, + "probability": 0.9774 + }, + { + "start": 121.44, + "end": 121.8, + "probability": 0.7303 + }, + { + "start": 121.86, + "end": 121.98, + "probability": 0.1881 + }, + { + "start": 122.08, + "end": 122.36, + "probability": 0.6096 + }, + { + "start": 122.84, + "end": 123.88, + "probability": 0.7321 + }, + { + "start": 125.88, + "end": 127.6, + "probability": 0.7888 + }, + { + "start": 127.7, + "end": 128.32, + "probability": 0.9775 + }, + { + "start": 128.56, + "end": 130.1, + "probability": 0.7 + }, + { + "start": 130.7, + "end": 131.5, + "probability": 0.905 + }, + { + "start": 131.54, + "end": 131.62, + "probability": 0.2421 + }, + { + "start": 131.62, + "end": 132.42, + "probability": 0.492 + }, + { + "start": 134.66, + "end": 135.46, + "probability": 0.428 + }, + { + "start": 135.46, + "end": 135.46, + "probability": 0.3392 + }, + { + "start": 135.46, + "end": 136.8, + "probability": 0.4924 + }, + { + "start": 136.8, + "end": 137.84, + "probability": 0.8183 + }, + { + "start": 137.88, + "end": 139.26, + "probability": 0.664 + }, + { + "start": 141.58, + "end": 142.54, + "probability": 0.6855 + }, + { + "start": 143.92, + "end": 147.6, + "probability": 0.9889 + }, + { + "start": 147.6, + "end": 151.1, + "probability": 0.9921 + }, + { + "start": 151.1, + "end": 153.88, + "probability": 0.7799 + }, + { + "start": 157.02, + "end": 159.26, + "probability": 0.9875 + }, + { + "start": 159.8, + "end": 160.52, + "probability": 0.7021 + }, + { + "start": 160.94, + "end": 164.16, + "probability": 0.8722 + }, + { + "start": 164.78, + "end": 166.62, + "probability": 0.9425 + }, + { + "start": 167.82, + "end": 169.26, + "probability": 0.6692 + }, + { + "start": 170.12, + "end": 170.64, + "probability": 0.7666 + }, + { + "start": 171.22, + "end": 173.78, + "probability": 0.8855 + }, + { + "start": 174.74, + "end": 177.94, + "probability": 0.9494 + }, + { + "start": 177.94, + "end": 181.34, + "probability": 0.9862 + }, + { + "start": 182.98, + "end": 185.44, + "probability": 0.8585 + }, + { + "start": 185.62, + "end": 186.96, + "probability": 0.5754 + }, + { + "start": 188.72, + "end": 190.56, + "probability": 0.7615 + }, + { + "start": 190.74, + "end": 192.98, + "probability": 0.9741 + }, + { + "start": 192.98, + "end": 195.36, + "probability": 0.9325 + }, + { + "start": 196.18, + "end": 197.9, + "probability": 0.8973 + }, + { + "start": 198.98, + "end": 200.6, + "probability": 0.5236 + }, + { + "start": 201.36, + "end": 201.74, + "probability": 0.731 + }, + { + "start": 203.42, + "end": 204.36, + "probability": 0.8205 + }, + { + "start": 205.06, + "end": 206.56, + "probability": 0.8306 + }, + { + "start": 206.58, + "end": 208.64, + "probability": 0.8267 + }, + { + "start": 208.82, + "end": 212.42, + "probability": 0.6951 + }, + { + "start": 214.2, + "end": 217.48, + "probability": 0.8659 + }, + { + "start": 217.48, + "end": 220.64, + "probability": 0.9824 + }, + { + "start": 221.32, + "end": 224.18, + "probability": 0.8817 + }, + { + "start": 225.6, + "end": 228.88, + "probability": 0.9759 + }, + { + "start": 231.32, + "end": 235.08, + "probability": 0.9709 + }, + { + "start": 235.28, + "end": 236.2, + "probability": 0.7688 + }, + { + "start": 236.84, + "end": 237.02, + "probability": 0.462 + }, + { + "start": 237.92, + "end": 240.16, + "probability": 0.9304 + }, + { + "start": 244.12, + "end": 247.42, + "probability": 0.9759 + }, + { + "start": 247.56, + "end": 248.94, + "probability": 0.9938 + }, + { + "start": 249.54, + "end": 250.74, + "probability": 0.9933 + }, + { + "start": 251.1, + "end": 251.98, + "probability": 0.91 + }, + { + "start": 252.86, + "end": 254.56, + "probability": 0.6118 + }, + { + "start": 255.2, + "end": 255.5, + "probability": 0.9134 + }, + { + "start": 256.78, + "end": 258.64, + "probability": 0.9953 + }, + { + "start": 259.06, + "end": 260.12, + "probability": 0.958 + }, + { + "start": 260.58, + "end": 264.6, + "probability": 0.7351 + }, + { + "start": 265.18, + "end": 266.12, + "probability": 0.9918 + }, + { + "start": 266.8, + "end": 270.36, + "probability": 0.8921 + }, + { + "start": 270.36, + "end": 273.46, + "probability": 0.995 + }, + { + "start": 274.7, + "end": 275.74, + "probability": 0.9751 + }, + { + "start": 276.44, + "end": 278.0, + "probability": 0.9833 + }, + { + "start": 278.14, + "end": 281.16, + "probability": 0.9917 + }, + { + "start": 282.0, + "end": 285.92, + "probability": 0.9966 + }, + { + "start": 285.92, + "end": 289.16, + "probability": 0.9972 + }, + { + "start": 290.02, + "end": 294.96, + "probability": 0.967 + }, + { + "start": 295.16, + "end": 295.76, + "probability": 0.624 + }, + { + "start": 296.24, + "end": 297.56, + "probability": 0.6255 + }, + { + "start": 298.36, + "end": 300.56, + "probability": 0.8164 + }, + { + "start": 301.48, + "end": 302.8, + "probability": 0.926 + }, + { + "start": 304.68, + "end": 305.6, + "probability": 0.0334 + }, + { + "start": 305.6, + "end": 307.3, + "probability": 0.4659 + }, + { + "start": 307.88, + "end": 311.96, + "probability": 0.923 + }, + { + "start": 312.26, + "end": 316.08, + "probability": 0.9791 + }, + { + "start": 316.3, + "end": 319.84, + "probability": 0.9813 + }, + { + "start": 320.44, + "end": 323.9, + "probability": 0.9823 + }, + { + "start": 324.22, + "end": 325.86, + "probability": 0.9857 + }, + { + "start": 326.34, + "end": 326.7, + "probability": 0.7207 + }, + { + "start": 327.92, + "end": 328.04, + "probability": 0.1912 + }, + { + "start": 328.04, + "end": 329.32, + "probability": 0.5945 + }, + { + "start": 332.66, + "end": 333.68, + "probability": 0.8207 + }, + { + "start": 333.72, + "end": 336.32, + "probability": 0.6898 + }, + { + "start": 336.82, + "end": 338.16, + "probability": 0.7199 + }, + { + "start": 338.24, + "end": 339.14, + "probability": 0.7574 + }, + { + "start": 339.54, + "end": 344.44, + "probability": 0.9909 + }, + { + "start": 344.54, + "end": 346.88, + "probability": 0.9458 + }, + { + "start": 347.56, + "end": 348.8, + "probability": 0.7608 + }, + { + "start": 349.22, + "end": 353.04, + "probability": 0.9188 + }, + { + "start": 353.04, + "end": 356.98, + "probability": 0.9653 + }, + { + "start": 357.54, + "end": 358.6, + "probability": 0.7798 + }, + { + "start": 359.06, + "end": 360.52, + "probability": 0.8304 + }, + { + "start": 360.84, + "end": 363.18, + "probability": 0.7769 + }, + { + "start": 363.64, + "end": 365.02, + "probability": 0.9594 + }, + { + "start": 365.48, + "end": 366.52, + "probability": 0.5326 + }, + { + "start": 366.6, + "end": 370.44, + "probability": 0.5493 + }, + { + "start": 371.7, + "end": 375.82, + "probability": 0.9956 + }, + { + "start": 375.98, + "end": 377.94, + "probability": 0.8402 + }, + { + "start": 378.44, + "end": 379.66, + "probability": 0.671 + }, + { + "start": 380.16, + "end": 382.72, + "probability": 0.991 + }, + { + "start": 382.86, + "end": 385.8, + "probability": 0.8637 + }, + { + "start": 386.36, + "end": 387.98, + "probability": 0.5603 + }, + { + "start": 388.12, + "end": 390.64, + "probability": 0.3322 + }, + { + "start": 390.76, + "end": 391.92, + "probability": 0.8883 + }, + { + "start": 392.12, + "end": 397.2, + "probability": 0.9919 + }, + { + "start": 397.3, + "end": 400.98, + "probability": 0.9407 + }, + { + "start": 401.08, + "end": 401.82, + "probability": 0.8832 + }, + { + "start": 402.42, + "end": 404.06, + "probability": 0.4355 + }, + { + "start": 404.06, + "end": 404.46, + "probability": 0.6476 + }, + { + "start": 404.88, + "end": 407.92, + "probability": 0.9495 + }, + { + "start": 408.34, + "end": 410.3, + "probability": 0.9271 + }, + { + "start": 410.74, + "end": 413.18, + "probability": 0.9533 + }, + { + "start": 413.86, + "end": 415.46, + "probability": 0.9548 + }, + { + "start": 415.6, + "end": 417.04, + "probability": 0.8923 + }, + { + "start": 417.84, + "end": 419.12, + "probability": 0.374 + }, + { + "start": 419.16, + "end": 420.32, + "probability": 0.7526 + }, + { + "start": 420.4, + "end": 421.53, + "probability": 0.7175 + }, + { + "start": 422.7, + "end": 423.62, + "probability": 0.4705 + }, + { + "start": 423.9, + "end": 423.98, + "probability": 0.9192 + }, + { + "start": 424.08, + "end": 427.7, + "probability": 0.974 + }, + { + "start": 427.7, + "end": 430.88, + "probability": 0.9622 + }, + { + "start": 430.96, + "end": 431.72, + "probability": 0.597 + }, + { + "start": 432.44, + "end": 434.48, + "probability": 0.7846 + }, + { + "start": 435.3, + "end": 436.34, + "probability": 0.8638 + }, + { + "start": 437.28, + "end": 439.53, + "probability": 0.9116 + }, + { + "start": 440.72, + "end": 442.54, + "probability": 0.8867 + }, + { + "start": 442.76, + "end": 443.02, + "probability": 0.5265 + }, + { + "start": 443.88, + "end": 447.02, + "probability": 0.9792 + }, + { + "start": 447.24, + "end": 447.84, + "probability": 0.7028 + }, + { + "start": 447.92, + "end": 449.58, + "probability": 0.9781 + }, + { + "start": 449.94, + "end": 450.1, + "probability": 0.9736 + }, + { + "start": 450.58, + "end": 453.34, + "probability": 0.8632 + }, + { + "start": 454.92, + "end": 455.84, + "probability": 0.8003 + }, + { + "start": 456.68, + "end": 458.2, + "probability": 0.9382 + }, + { + "start": 458.44, + "end": 459.32, + "probability": 0.4812 + }, + { + "start": 461.47, + "end": 463.9, + "probability": 0.8973 + }, + { + "start": 464.0, + "end": 468.74, + "probability": 0.9652 + }, + { + "start": 469.42, + "end": 471.32, + "probability": 0.6752 + }, + { + "start": 471.72, + "end": 471.94, + "probability": 0.607 + }, + { + "start": 472.32, + "end": 472.58, + "probability": 0.2778 + }, + { + "start": 472.72, + "end": 474.92, + "probability": 0.8726 + }, + { + "start": 474.94, + "end": 479.28, + "probability": 0.8457 + }, + { + "start": 479.96, + "end": 483.62, + "probability": 0.8522 + }, + { + "start": 484.66, + "end": 486.1, + "probability": 0.7475 + }, + { + "start": 486.82, + "end": 488.88, + "probability": 0.9861 + }, + { + "start": 488.92, + "end": 490.55, + "probability": 0.9629 + }, + { + "start": 491.38, + "end": 494.34, + "probability": 0.9282 + }, + { + "start": 495.46, + "end": 496.6, + "probability": 0.6519 + }, + { + "start": 496.62, + "end": 497.42, + "probability": 0.847 + }, + { + "start": 498.0, + "end": 501.48, + "probability": 0.9835 + }, + { + "start": 501.48, + "end": 505.18, + "probability": 0.9971 + }, + { + "start": 505.78, + "end": 506.62, + "probability": 0.889 + }, + { + "start": 506.7, + "end": 507.62, + "probability": 0.8333 + }, + { + "start": 507.72, + "end": 508.42, + "probability": 0.9549 + }, + { + "start": 509.5, + "end": 511.6, + "probability": 0.6127 + }, + { + "start": 511.64, + "end": 514.32, + "probability": 0.9596 + }, + { + "start": 514.7, + "end": 514.98, + "probability": 0.772 + }, + { + "start": 514.98, + "end": 517.84, + "probability": 0.6547 + }, + { + "start": 517.96, + "end": 519.18, + "probability": 0.715 + }, + { + "start": 520.28, + "end": 523.16, + "probability": 0.8226 + }, + { + "start": 525.1, + "end": 527.22, + "probability": 0.7577 + }, + { + "start": 527.24, + "end": 529.5, + "probability": 0.9158 + }, + { + "start": 530.26, + "end": 532.84, + "probability": 0.8719 + }, + { + "start": 533.38, + "end": 535.08, + "probability": 0.7747 + }, + { + "start": 535.62, + "end": 536.7, + "probability": 0.7783 + }, + { + "start": 537.66, + "end": 540.28, + "probability": 0.9249 + }, + { + "start": 541.26, + "end": 543.12, + "probability": 0.9177 + }, + { + "start": 544.46, + "end": 546.44, + "probability": 0.759 + }, + { + "start": 546.96, + "end": 548.62, + "probability": 0.7497 + }, + { + "start": 549.64, + "end": 552.64, + "probability": 0.8248 + }, + { + "start": 552.86, + "end": 554.81, + "probability": 0.8126 + }, + { + "start": 556.22, + "end": 558.94, + "probability": 0.8937 + }, + { + "start": 558.94, + "end": 560.98, + "probability": 0.8718 + }, + { + "start": 562.06, + "end": 565.56, + "probability": 0.7813 + }, + { + "start": 566.42, + "end": 568.44, + "probability": 0.7358 + }, + { + "start": 569.68, + "end": 570.52, + "probability": 0.8071 + }, + { + "start": 571.06, + "end": 572.62, + "probability": 0.6451 + }, + { + "start": 572.98, + "end": 574.66, + "probability": 0.9425 + }, + { + "start": 575.0, + "end": 578.08, + "probability": 0.9146 + }, + { + "start": 579.18, + "end": 583.98, + "probability": 0.9481 + }, + { + "start": 584.7, + "end": 586.02, + "probability": 0.9058 + }, + { + "start": 587.4, + "end": 588.14, + "probability": 0.9971 + }, + { + "start": 590.36, + "end": 594.24, + "probability": 0.9476 + }, + { + "start": 594.48, + "end": 598.62, + "probability": 0.6897 + }, + { + "start": 599.58, + "end": 602.96, + "probability": 0.9784 + }, + { + "start": 603.04, + "end": 607.22, + "probability": 0.9343 + }, + { + "start": 608.5, + "end": 610.12, + "probability": 0.8569 + }, + { + "start": 610.26, + "end": 611.38, + "probability": 0.6417 + }, + { + "start": 611.4, + "end": 613.5, + "probability": 0.9839 + }, + { + "start": 614.36, + "end": 617.36, + "probability": 0.7401 + }, + { + "start": 617.36, + "end": 621.88, + "probability": 0.8208 + }, + { + "start": 623.06, + "end": 624.8, + "probability": 0.7893 + }, + { + "start": 624.8, + "end": 627.06, + "probability": 0.8434 + }, + { + "start": 627.36, + "end": 629.44, + "probability": 0.952 + }, + { + "start": 630.88, + "end": 633.2, + "probability": 0.9388 + }, + { + "start": 633.8, + "end": 636.46, + "probability": 0.9048 + }, + { + "start": 636.58, + "end": 640.3, + "probability": 0.7369 + }, + { + "start": 640.44, + "end": 643.84, + "probability": 0.6614 + }, + { + "start": 646.68, + "end": 649.7, + "probability": 0.8621 + }, + { + "start": 655.73, + "end": 658.56, + "probability": 0.0977 + }, + { + "start": 658.56, + "end": 658.56, + "probability": 0.1931 + }, + { + "start": 658.56, + "end": 659.28, + "probability": 0.1795 + }, + { + "start": 659.28, + "end": 659.6, + "probability": 0.2374 + }, + { + "start": 659.6, + "end": 660.08, + "probability": 0.4503 + }, + { + "start": 660.54, + "end": 661.46, + "probability": 0.5481 + }, + { + "start": 661.54, + "end": 661.74, + "probability": 0.6754 + }, + { + "start": 661.94, + "end": 664.38, + "probability": 0.5537 + }, + { + "start": 664.42, + "end": 665.32, + "probability": 0.0294 + }, + { + "start": 665.64, + "end": 669.8, + "probability": 0.3168 + }, + { + "start": 670.2, + "end": 672.4, + "probability": 0.9556 + }, + { + "start": 672.5, + "end": 674.6, + "probability": 0.9621 + }, + { + "start": 674.6, + "end": 675.8, + "probability": 0.8604 + }, + { + "start": 676.32, + "end": 677.38, + "probability": 0.7419 + }, + { + "start": 677.48, + "end": 680.06, + "probability": 0.7044 + }, + { + "start": 681.48, + "end": 682.82, + "probability": 0.8001 + }, + { + "start": 682.94, + "end": 684.1, + "probability": 0.3993 + }, + { + "start": 684.98, + "end": 686.14, + "probability": 0.8959 + }, + { + "start": 686.96, + "end": 689.94, + "probability": 0.9458 + }, + { + "start": 689.94, + "end": 693.12, + "probability": 0.9949 + }, + { + "start": 694.22, + "end": 696.3, + "probability": 0.7047 + }, + { + "start": 697.06, + "end": 699.64, + "probability": 0.7888 + }, + { + "start": 699.64, + "end": 702.78, + "probability": 0.6148 + }, + { + "start": 703.36, + "end": 705.0, + "probability": 0.7857 + }, + { + "start": 706.86, + "end": 708.1, + "probability": 0.7794 + }, + { + "start": 708.66, + "end": 711.9, + "probability": 0.6318 + }, + { + "start": 712.46, + "end": 713.96, + "probability": 0.9973 + }, + { + "start": 715.38, + "end": 717.66, + "probability": 0.9267 + }, + { + "start": 718.3, + "end": 719.52, + "probability": 0.8262 + }, + { + "start": 719.66, + "end": 721.32, + "probability": 0.9408 + }, + { + "start": 721.32, + "end": 723.7, + "probability": 0.5665 + }, + { + "start": 725.14, + "end": 726.02, + "probability": 0.7237 + }, + { + "start": 726.76, + "end": 728.7, + "probability": 0.626 + }, + { + "start": 728.7, + "end": 731.08, + "probability": 0.8299 + }, + { + "start": 731.92, + "end": 735.58, + "probability": 0.9827 + }, + { + "start": 737.48, + "end": 738.32, + "probability": 0.6378 + }, + { + "start": 738.42, + "end": 740.66, + "probability": 0.6595 + }, + { + "start": 740.66, + "end": 744.62, + "probability": 0.72 + }, + { + "start": 744.88, + "end": 746.83, + "probability": 0.8073 + }, + { + "start": 747.54, + "end": 750.8, + "probability": 0.7858 + }, + { + "start": 751.42, + "end": 754.86, + "probability": 0.8137 + }, + { + "start": 755.82, + "end": 756.94, + "probability": 0.8014 + }, + { + "start": 757.0, + "end": 760.59, + "probability": 0.7474 + }, + { + "start": 761.2, + "end": 762.18, + "probability": 0.4223 + }, + { + "start": 762.62, + "end": 763.02, + "probability": 0.3513 + }, + { + "start": 763.62, + "end": 766.08, + "probability": 0.6223 + }, + { + "start": 766.4, + "end": 767.32, + "probability": 0.684 + }, + { + "start": 768.04, + "end": 771.36, + "probability": 0.9226 + }, + { + "start": 771.6, + "end": 775.6, + "probability": 0.9547 + }, + { + "start": 776.38, + "end": 779.88, + "probability": 0.7891 + }, + { + "start": 780.18, + "end": 784.0, + "probability": 0.9598 + }, + { + "start": 784.7, + "end": 786.58, + "probability": 0.742 + }, + { + "start": 786.68, + "end": 787.86, + "probability": 0.9096 + }, + { + "start": 789.06, + "end": 790.06, + "probability": 0.773 + }, + { + "start": 790.18, + "end": 792.86, + "probability": 0.783 + }, + { + "start": 794.1, + "end": 794.54, + "probability": 0.32 + }, + { + "start": 795.12, + "end": 799.28, + "probability": 0.9024 + }, + { + "start": 799.34, + "end": 800.58, + "probability": 0.7288 + }, + { + "start": 800.98, + "end": 803.56, + "probability": 0.9605 + }, + { + "start": 803.56, + "end": 806.38, + "probability": 0.9586 + }, + { + "start": 806.88, + "end": 807.28, + "probability": 0.6931 + }, + { + "start": 808.9, + "end": 811.4, + "probability": 0.6015 + }, + { + "start": 811.52, + "end": 812.59, + "probability": 0.6947 + }, + { + "start": 813.6, + "end": 815.88, + "probability": 0.665 + }, + { + "start": 816.42, + "end": 818.84, + "probability": 0.6711 + }, + { + "start": 819.98, + "end": 820.78, + "probability": 0.802 + }, + { + "start": 821.62, + "end": 823.64, + "probability": 0.6763 + }, + { + "start": 823.68, + "end": 827.44, + "probability": 0.8645 + }, + { + "start": 827.62, + "end": 830.52, + "probability": 0.9329 + }, + { + "start": 831.92, + "end": 832.88, + "probability": 0.5949 + }, + { + "start": 832.92, + "end": 833.48, + "probability": 0.8823 + }, + { + "start": 833.6, + "end": 835.84, + "probability": 0.9299 + }, + { + "start": 835.92, + "end": 839.2, + "probability": 0.9917 + }, + { + "start": 839.2, + "end": 842.22, + "probability": 0.98 + }, + { + "start": 842.56, + "end": 844.14, + "probability": 0.971 + }, + { + "start": 844.84, + "end": 846.68, + "probability": 0.9966 + }, + { + "start": 847.06, + "end": 849.02, + "probability": 0.9647 + }, + { + "start": 849.12, + "end": 850.38, + "probability": 0.9929 + }, + { + "start": 850.58, + "end": 853.84, + "probability": 0.992 + }, + { + "start": 854.32, + "end": 857.14, + "probability": 0.8248 + }, + { + "start": 857.24, + "end": 857.66, + "probability": 0.8299 + }, + { + "start": 858.26, + "end": 860.56, + "probability": 0.9787 + }, + { + "start": 860.92, + "end": 862.92, + "probability": 0.9751 + }, + { + "start": 862.92, + "end": 865.7, + "probability": 0.994 + }, + { + "start": 866.02, + "end": 867.56, + "probability": 0.7585 + }, + { + "start": 867.58, + "end": 868.74, + "probability": 0.7974 + }, + { + "start": 869.14, + "end": 871.58, + "probability": 0.8057 + }, + { + "start": 871.62, + "end": 874.56, + "probability": 0.9729 + }, + { + "start": 874.56, + "end": 880.6, + "probability": 0.9697 + }, + { + "start": 880.74, + "end": 881.32, + "probability": 0.777 + }, + { + "start": 881.68, + "end": 883.76, + "probability": 0.9893 + }, + { + "start": 883.84, + "end": 884.52, + "probability": 0.7809 + }, + { + "start": 884.54, + "end": 887.8, + "probability": 0.9678 + }, + { + "start": 887.92, + "end": 888.86, + "probability": 0.9111 + }, + { + "start": 888.96, + "end": 892.2, + "probability": 0.9701 + }, + { + "start": 892.2, + "end": 895.6, + "probability": 0.9991 + }, + { + "start": 895.78, + "end": 896.1, + "probability": 0.7611 + }, + { + "start": 896.62, + "end": 897.24, + "probability": 0.4906 + }, + { + "start": 897.58, + "end": 899.34, + "probability": 0.8143 + }, + { + "start": 909.54, + "end": 912.1, + "probability": 0.9172 + }, + { + "start": 912.26, + "end": 915.74, + "probability": 0.8301 + }, + { + "start": 916.34, + "end": 918.44, + "probability": 0.9941 + }, + { + "start": 918.86, + "end": 921.56, + "probability": 0.9878 + }, + { + "start": 922.16, + "end": 923.82, + "probability": 0.9947 + }, + { + "start": 924.62, + "end": 930.2, + "probability": 0.9936 + }, + { + "start": 930.76, + "end": 934.04, + "probability": 0.9927 + }, + { + "start": 934.04, + "end": 937.16, + "probability": 0.9961 + }, + { + "start": 937.66, + "end": 941.64, + "probability": 0.9936 + }, + { + "start": 941.96, + "end": 943.48, + "probability": 0.8563 + }, + { + "start": 943.66, + "end": 946.3, + "probability": 0.9158 + }, + { + "start": 946.76, + "end": 948.0, + "probability": 0.9302 + }, + { + "start": 948.44, + "end": 950.18, + "probability": 0.9858 + }, + { + "start": 950.68, + "end": 953.14, + "probability": 0.9954 + }, + { + "start": 953.56, + "end": 958.24, + "probability": 0.9989 + }, + { + "start": 958.32, + "end": 958.76, + "probability": 0.6943 + }, + { + "start": 959.14, + "end": 959.92, + "probability": 0.7947 + }, + { + "start": 960.24, + "end": 960.96, + "probability": 0.9103 + }, + { + "start": 961.06, + "end": 963.3, + "probability": 0.951 + }, + { + "start": 963.36, + "end": 964.1, + "probability": 0.5021 + }, + { + "start": 964.5, + "end": 967.16, + "probability": 0.9422 + }, + { + "start": 967.2, + "end": 967.52, + "probability": 0.755 + }, + { + "start": 967.8, + "end": 969.42, + "probability": 0.7177 + }, + { + "start": 969.72, + "end": 970.92, + "probability": 0.9747 + }, + { + "start": 971.18, + "end": 971.54, + "probability": 0.8395 + }, + { + "start": 971.58, + "end": 971.84, + "probability": 0.8513 + }, + { + "start": 971.98, + "end": 974.38, + "probability": 0.9091 + }, + { + "start": 974.48, + "end": 975.71, + "probability": 0.7019 + }, + { + "start": 977.25, + "end": 978.16, + "probability": 0.718 + }, + { + "start": 979.72, + "end": 982.42, + "probability": 0.9917 + }, + { + "start": 982.94, + "end": 983.74, + "probability": 0.981 + }, + { + "start": 984.04, + "end": 986.95, + "probability": 0.7677 + }, + { + "start": 987.66, + "end": 989.34, + "probability": 0.7207 + }, + { + "start": 989.8, + "end": 992.26, + "probability": 0.9863 + }, + { + "start": 993.08, + "end": 995.6, + "probability": 0.8875 + }, + { + "start": 996.18, + "end": 996.96, + "probability": 0.857 + }, + { + "start": 997.46, + "end": 999.72, + "probability": 0.8053 + }, + { + "start": 1000.46, + "end": 1006.36, + "probability": 0.8992 + }, + { + "start": 1006.36, + "end": 1012.64, + "probability": 0.9887 + }, + { + "start": 1013.16, + "end": 1014.08, + "probability": 0.8726 + }, + { + "start": 1014.75, + "end": 1016.32, + "probability": 0.9741 + }, + { + "start": 1016.86, + "end": 1017.22, + "probability": 0.9268 + }, + { + "start": 1017.3, + "end": 1023.98, + "probability": 0.9169 + }, + { + "start": 1024.06, + "end": 1024.58, + "probability": 0.5055 + }, + { + "start": 1025.18, + "end": 1027.18, + "probability": 0.9877 + }, + { + "start": 1027.22, + "end": 1030.22, + "probability": 0.9884 + }, + { + "start": 1030.84, + "end": 1033.16, + "probability": 0.8585 + }, + { + "start": 1033.34, + "end": 1037.18, + "probability": 0.9954 + }, + { + "start": 1037.18, + "end": 1040.62, + "probability": 0.6928 + }, + { + "start": 1041.32, + "end": 1042.9, + "probability": 0.9023 + }, + { + "start": 1043.06, + "end": 1043.2, + "probability": 0.1393 + }, + { + "start": 1043.66, + "end": 1045.02, + "probability": 0.5398 + }, + { + "start": 1045.76, + "end": 1047.6, + "probability": 0.9845 + }, + { + "start": 1047.94, + "end": 1048.96, + "probability": 0.9348 + }, + { + "start": 1050.26, + "end": 1052.84, + "probability": 0.933 + }, + { + "start": 1052.92, + "end": 1058.42, + "probability": 0.907 + }, + { + "start": 1059.24, + "end": 1064.06, + "probability": 0.9331 + }, + { + "start": 1064.76, + "end": 1066.98, + "probability": 0.999 + }, + { + "start": 1067.7, + "end": 1068.82, + "probability": 0.9027 + }, + { + "start": 1069.36, + "end": 1071.34, + "probability": 0.949 + }, + { + "start": 1072.4, + "end": 1074.4, + "probability": 0.9008 + }, + { + "start": 1075.22, + "end": 1076.42, + "probability": 0.9592 + }, + { + "start": 1077.14, + "end": 1079.78, + "probability": 0.9573 + }, + { + "start": 1080.46, + "end": 1081.82, + "probability": 0.9145 + }, + { + "start": 1082.34, + "end": 1084.5, + "probability": 0.9976 + }, + { + "start": 1084.68, + "end": 1088.1, + "probability": 0.9737 + }, + { + "start": 1088.58, + "end": 1088.88, + "probability": 0.6363 + }, + { + "start": 1089.28, + "end": 1089.7, + "probability": 0.4313 + }, + { + "start": 1089.86, + "end": 1091.38, + "probability": 0.4291 + }, + { + "start": 1091.5, + "end": 1091.88, + "probability": 0.7625 + }, + { + "start": 1091.92, + "end": 1092.48, + "probability": 0.6253 + }, + { + "start": 1092.7, + "end": 1097.39, + "probability": 0.9733 + }, + { + "start": 1098.18, + "end": 1101.3, + "probability": 0.9895 + }, + { + "start": 1102.06, + "end": 1103.92, + "probability": 0.5224 + }, + { + "start": 1104.84, + "end": 1106.0, + "probability": 0.8201 + }, + { + "start": 1106.66, + "end": 1107.14, + "probability": 0.69 + }, + { + "start": 1108.46, + "end": 1109.81, + "probability": 0.8898 + }, + { + "start": 1111.26, + "end": 1114.7, + "probability": 0.6663 + }, + { + "start": 1114.7, + "end": 1114.82, + "probability": 0.1604 + }, + { + "start": 1115.2, + "end": 1116.1, + "probability": 0.0462 + }, + { + "start": 1118.18, + "end": 1120.94, + "probability": 0.2432 + }, + { + "start": 1121.4, + "end": 1122.86, + "probability": 0.3384 + }, + { + "start": 1123.08, + "end": 1124.5, + "probability": 0.6966 + }, + { + "start": 1124.6, + "end": 1125.3, + "probability": 0.0155 + }, + { + "start": 1125.5, + "end": 1126.11, + "probability": 0.3796 + }, + { + "start": 1126.46, + "end": 1129.3, + "probability": 0.7952 + }, + { + "start": 1130.1, + "end": 1130.86, + "probability": 0.0861 + }, + { + "start": 1131.06, + "end": 1131.42, + "probability": 0.4851 + }, + { + "start": 1131.42, + "end": 1131.5, + "probability": 0.2311 + }, + { + "start": 1131.5, + "end": 1132.73, + "probability": 0.3287 + }, + { + "start": 1133.34, + "end": 1136.56, + "probability": 0.6244 + }, + { + "start": 1136.62, + "end": 1139.6, + "probability": 0.3685 + }, + { + "start": 1139.74, + "end": 1140.06, + "probability": 0.4703 + }, + { + "start": 1140.78, + "end": 1141.88, + "probability": 0.6387 + }, + { + "start": 1141.92, + "end": 1143.8, + "probability": 0.4682 + }, + { + "start": 1143.94, + "end": 1146.84, + "probability": 0.7315 + }, + { + "start": 1147.86, + "end": 1149.5, + "probability": 0.3875 + }, + { + "start": 1149.64, + "end": 1152.28, + "probability": 0.9786 + }, + { + "start": 1153.02, + "end": 1157.24, + "probability": 0.9972 + }, + { + "start": 1157.32, + "end": 1158.82, + "probability": 0.317 + }, + { + "start": 1158.82, + "end": 1159.7, + "probability": 0.8809 + }, + { + "start": 1160.04, + "end": 1160.96, + "probability": 0.5021 + }, + { + "start": 1161.2, + "end": 1162.82, + "probability": 0.3707 + }, + { + "start": 1163.32, + "end": 1164.02, + "probability": 0.1265 + }, + { + "start": 1165.85, + "end": 1168.92, + "probability": 0.0386 + }, + { + "start": 1168.92, + "end": 1168.94, + "probability": 0.0224 + }, + { + "start": 1168.94, + "end": 1169.14, + "probability": 0.3319 + }, + { + "start": 1169.22, + "end": 1169.64, + "probability": 0.7093 + }, + { + "start": 1169.82, + "end": 1172.88, + "probability": 0.8298 + }, + { + "start": 1172.88, + "end": 1173.76, + "probability": 0.0415 + }, + { + "start": 1178.18, + "end": 1183.22, + "probability": 0.8639 + }, + { + "start": 1184.16, + "end": 1186.24, + "probability": 0.8223 + }, + { + "start": 1187.42, + "end": 1190.82, + "probability": 0.9552 + }, + { + "start": 1191.24, + "end": 1191.68, + "probability": 0.7473 + }, + { + "start": 1191.94, + "end": 1192.8, + "probability": 0.941 + }, + { + "start": 1192.84, + "end": 1194.16, + "probability": 0.946 + }, + { + "start": 1195.24, + "end": 1196.14, + "probability": 0.8518 + }, + { + "start": 1196.32, + "end": 1199.36, + "probability": 0.9682 + }, + { + "start": 1200.12, + "end": 1205.14, + "probability": 0.9933 + }, + { + "start": 1205.2, + "end": 1208.52, + "probability": 0.9985 + }, + { + "start": 1209.14, + "end": 1210.46, + "probability": 0.8804 + }, + { + "start": 1210.64, + "end": 1211.56, + "probability": 0.6983 + }, + { + "start": 1213.12, + "end": 1215.05, + "probability": 0.4305 + }, + { + "start": 1216.06, + "end": 1220.16, + "probability": 0.8701 + }, + { + "start": 1220.34, + "end": 1222.06, + "probability": 0.7349 + }, + { + "start": 1222.38, + "end": 1224.22, + "probability": 0.5279 + }, + { + "start": 1224.36, + "end": 1225.1, + "probability": 0.5643 + }, + { + "start": 1226.06, + "end": 1227.22, + "probability": 0.7985 + }, + { + "start": 1227.46, + "end": 1228.4, + "probability": 0.743 + }, + { + "start": 1228.76, + "end": 1230.14, + "probability": 0.7849 + }, + { + "start": 1231.24, + "end": 1234.9, + "probability": 0.9644 + }, + { + "start": 1235.62, + "end": 1239.78, + "probability": 0.7793 + }, + { + "start": 1241.26, + "end": 1242.2, + "probability": 0.6499 + }, + { + "start": 1242.5, + "end": 1246.28, + "probability": 0.9519 + }, + { + "start": 1246.5, + "end": 1251.56, + "probability": 0.7354 + }, + { + "start": 1252.14, + "end": 1256.26, + "probability": 0.7931 + }, + { + "start": 1257.04, + "end": 1260.02, + "probability": 0.8965 + }, + { + "start": 1260.56, + "end": 1264.34, + "probability": 0.8986 + }, + { + "start": 1264.34, + "end": 1268.92, + "probability": 0.9744 + }, + { + "start": 1269.44, + "end": 1274.38, + "probability": 0.8962 + }, + { + "start": 1275.56, + "end": 1280.4, + "probability": 0.989 + }, + { + "start": 1280.4, + "end": 1284.9, + "probability": 0.8288 + }, + { + "start": 1285.06, + "end": 1285.72, + "probability": 0.9286 + }, + { + "start": 1287.36, + "end": 1289.3, + "probability": 0.7051 + }, + { + "start": 1289.96, + "end": 1292.63, + "probability": 0.8855 + }, + { + "start": 1295.28, + "end": 1297.42, + "probability": 0.0361 + }, + { + "start": 1297.48, + "end": 1299.04, + "probability": 0.1464 + }, + { + "start": 1299.88, + "end": 1303.65, + "probability": 0.8976 + }, + { + "start": 1303.9, + "end": 1307.22, + "probability": 0.9783 + }, + { + "start": 1308.74, + "end": 1309.88, + "probability": 0.7979 + }, + { + "start": 1311.37, + "end": 1312.6, + "probability": 0.6583 + }, + { + "start": 1312.76, + "end": 1314.46, + "probability": 0.9456 + }, + { + "start": 1316.14, + "end": 1321.04, + "probability": 0.6089 + }, + { + "start": 1321.22, + "end": 1322.68, + "probability": 0.9466 + }, + { + "start": 1322.94, + "end": 1325.0, + "probability": 0.7898 + }, + { + "start": 1325.74, + "end": 1328.46, + "probability": 0.9839 + }, + { + "start": 1328.56, + "end": 1332.08, + "probability": 0.9874 + }, + { + "start": 1332.88, + "end": 1334.92, + "probability": 0.89 + }, + { + "start": 1335.3, + "end": 1335.72, + "probability": 0.6549 + }, + { + "start": 1335.9, + "end": 1340.16, + "probability": 0.8725 + }, + { + "start": 1341.06, + "end": 1343.0, + "probability": 0.9629 + }, + { + "start": 1343.96, + "end": 1347.08, + "probability": 0.6999 + }, + { + "start": 1347.08, + "end": 1350.1, + "probability": 0.659 + }, + { + "start": 1351.08, + "end": 1356.46, + "probability": 0.6782 + }, + { + "start": 1357.7, + "end": 1360.6, + "probability": 0.8692 + }, + { + "start": 1360.6, + "end": 1363.34, + "probability": 0.9877 + }, + { + "start": 1363.74, + "end": 1364.54, + "probability": 0.595 + }, + { + "start": 1365.06, + "end": 1365.58, + "probability": 0.6047 + }, + { + "start": 1365.94, + "end": 1369.78, + "probability": 0.8037 + }, + { + "start": 1369.8, + "end": 1372.16, + "probability": 0.9658 + }, + { + "start": 1372.62, + "end": 1373.24, + "probability": 0.8061 + }, + { + "start": 1373.82, + "end": 1376.46, + "probability": 0.9891 + }, + { + "start": 1377.88, + "end": 1378.82, + "probability": 0.7635 + }, + { + "start": 1379.42, + "end": 1381.9, + "probability": 0.8503 + }, + { + "start": 1383.78, + "end": 1384.54, + "probability": 0.6841 + }, + { + "start": 1384.68, + "end": 1386.58, + "probability": 0.9875 + }, + { + "start": 1386.66, + "end": 1390.96, + "probability": 0.9904 + }, + { + "start": 1392.32, + "end": 1393.0, + "probability": 0.8671 + }, + { + "start": 1393.74, + "end": 1395.64, + "probability": 0.9988 + }, + { + "start": 1395.82, + "end": 1396.77, + "probability": 0.9791 + }, + { + "start": 1396.9, + "end": 1399.74, + "probability": 0.9555 + }, + { + "start": 1399.82, + "end": 1401.88, + "probability": 0.984 + }, + { + "start": 1401.98, + "end": 1403.76, + "probability": 0.8346 + }, + { + "start": 1403.82, + "end": 1404.64, + "probability": 0.867 + }, + { + "start": 1404.76, + "end": 1407.44, + "probability": 0.9819 + }, + { + "start": 1407.44, + "end": 1410.78, + "probability": 0.9019 + }, + { + "start": 1410.86, + "end": 1413.01, + "probability": 0.9756 + }, + { + "start": 1413.54, + "end": 1417.64, + "probability": 0.9689 + }, + { + "start": 1417.94, + "end": 1419.92, + "probability": 0.9936 + }, + { + "start": 1420.04, + "end": 1422.02, + "probability": 0.813 + }, + { + "start": 1422.1, + "end": 1425.58, + "probability": 0.4583 + }, + { + "start": 1425.64, + "end": 1427.3, + "probability": 0.9946 + }, + { + "start": 1427.54, + "end": 1430.82, + "probability": 0.9004 + }, + { + "start": 1430.9, + "end": 1432.02, + "probability": 0.9991 + }, + { + "start": 1432.64, + "end": 1437.91, + "probability": 0.8984 + }, + { + "start": 1438.88, + "end": 1439.74, + "probability": 0.5889 + }, + { + "start": 1439.86, + "end": 1442.34, + "probability": 0.988 + }, + { + "start": 1442.48, + "end": 1443.76, + "probability": 0.9949 + }, + { + "start": 1445.48, + "end": 1449.28, + "probability": 0.9922 + }, + { + "start": 1449.92, + "end": 1451.56, + "probability": 0.8636 + }, + { + "start": 1451.74, + "end": 1454.96, + "probability": 0.9963 + }, + { + "start": 1455.14, + "end": 1456.44, + "probability": 0.9549 + }, + { + "start": 1457.1, + "end": 1459.0, + "probability": 0.9893 + }, + { + "start": 1459.14, + "end": 1462.72, + "probability": 0.9199 + }, + { + "start": 1463.04, + "end": 1464.6, + "probability": 0.8979 + }, + { + "start": 1464.72, + "end": 1467.46, + "probability": 0.8161 + }, + { + "start": 1467.7, + "end": 1470.68, + "probability": 0.9857 + }, + { + "start": 1471.04, + "end": 1472.1, + "probability": 0.8311 + }, + { + "start": 1472.4, + "end": 1474.44, + "probability": 0.8095 + }, + { + "start": 1474.7, + "end": 1474.9, + "probability": 0.5889 + }, + { + "start": 1475.32, + "end": 1476.6, + "probability": 0.3886 + }, + { + "start": 1476.68, + "end": 1478.96, + "probability": 0.794 + }, + { + "start": 1482.42, + "end": 1482.84, + "probability": 0.5964 + }, + { + "start": 1483.56, + "end": 1484.08, + "probability": 0.6332 + }, + { + "start": 1484.14, + "end": 1486.82, + "probability": 0.9746 + }, + { + "start": 1487.82, + "end": 1490.72, + "probability": 0.8223 + }, + { + "start": 1490.72, + "end": 1494.3, + "probability": 0.9818 + }, + { + "start": 1494.76, + "end": 1495.35, + "probability": 0.9653 + }, + { + "start": 1496.22, + "end": 1498.58, + "probability": 0.7875 + }, + { + "start": 1499.44, + "end": 1500.1, + "probability": 0.7154 + }, + { + "start": 1500.68, + "end": 1502.84, + "probability": 0.9521 + }, + { + "start": 1502.94, + "end": 1503.92, + "probability": 0.9292 + }, + { + "start": 1504.14, + "end": 1508.78, + "probability": 0.9832 + }, + { + "start": 1509.04, + "end": 1509.52, + "probability": 0.8882 + }, + { + "start": 1509.66, + "end": 1510.94, + "probability": 0.9238 + }, + { + "start": 1511.5, + "end": 1512.36, + "probability": 0.9846 + }, + { + "start": 1512.48, + "end": 1513.5, + "probability": 0.9062 + }, + { + "start": 1514.08, + "end": 1514.98, + "probability": 0.9992 + }, + { + "start": 1515.32, + "end": 1518.78, + "probability": 0.996 + }, + { + "start": 1518.78, + "end": 1524.24, + "probability": 0.9512 + }, + { + "start": 1525.26, + "end": 1527.02, + "probability": 0.7368 + }, + { + "start": 1527.68, + "end": 1529.34, + "probability": 0.4081 + }, + { + "start": 1529.44, + "end": 1530.26, + "probability": 0.7734 + }, + { + "start": 1530.96, + "end": 1533.32, + "probability": 0.9465 + }, + { + "start": 1533.82, + "end": 1534.58, + "probability": 0.1735 + }, + { + "start": 1535.86, + "end": 1540.3, + "probability": 0.8796 + }, + { + "start": 1540.79, + "end": 1543.64, + "probability": 0.9783 + }, + { + "start": 1544.3, + "end": 1544.9, + "probability": 0.9727 + }, + { + "start": 1545.52, + "end": 1546.14, + "probability": 0.2682 + }, + { + "start": 1547.06, + "end": 1550.0, + "probability": 0.8095 + }, + { + "start": 1550.8, + "end": 1551.44, + "probability": 0.9106 + }, + { + "start": 1551.7, + "end": 1553.5, + "probability": 0.7808 + }, + { + "start": 1554.24, + "end": 1555.12, + "probability": 0.9985 + }, + { + "start": 1555.72, + "end": 1556.52, + "probability": 0.6752 + }, + { + "start": 1556.68, + "end": 1557.66, + "probability": 0.9915 + }, + { + "start": 1558.4, + "end": 1559.53, + "probability": 0.9922 + }, + { + "start": 1561.32, + "end": 1565.44, + "probability": 0.9918 + }, + { + "start": 1567.4, + "end": 1568.22, + "probability": 0.9583 + }, + { + "start": 1568.38, + "end": 1568.56, + "probability": 0.5702 + }, + { + "start": 1569.02, + "end": 1570.08, + "probability": 0.5947 + }, + { + "start": 1570.24, + "end": 1571.7, + "probability": 0.8519 + }, + { + "start": 1576.38, + "end": 1577.1, + "probability": 0.6863 + }, + { + "start": 1577.18, + "end": 1577.94, + "probability": 0.667 + }, + { + "start": 1578.1, + "end": 1582.92, + "probability": 0.9755 + }, + { + "start": 1583.52, + "end": 1584.64, + "probability": 0.9311 + }, + { + "start": 1585.3, + "end": 1587.96, + "probability": 0.993 + }, + { + "start": 1588.5, + "end": 1594.1, + "probability": 0.9647 + }, + { + "start": 1595.0, + "end": 1596.9, + "probability": 0.6079 + }, + { + "start": 1596.94, + "end": 1598.76, + "probability": 0.9939 + }, + { + "start": 1599.34, + "end": 1601.52, + "probability": 0.7564 + }, + { + "start": 1601.64, + "end": 1603.54, + "probability": 0.9937 + }, + { + "start": 1604.14, + "end": 1604.42, + "probability": 0.3017 + }, + { + "start": 1604.46, + "end": 1606.32, + "probability": 0.9841 + }, + { + "start": 1607.6, + "end": 1612.1, + "probability": 0.9985 + }, + { + "start": 1612.92, + "end": 1618.1, + "probability": 0.9475 + }, + { + "start": 1618.52, + "end": 1623.68, + "probability": 0.5564 + }, + { + "start": 1624.78, + "end": 1628.86, + "probability": 0.9663 + }, + { + "start": 1628.86, + "end": 1633.4, + "probability": 0.9716 + }, + { + "start": 1634.24, + "end": 1639.58, + "probability": 0.992 + }, + { + "start": 1640.18, + "end": 1640.42, + "probability": 0.7065 + }, + { + "start": 1641.06, + "end": 1642.62, + "probability": 0.9052 + }, + { + "start": 1642.98, + "end": 1643.78, + "probability": 0.6633 + }, + { + "start": 1644.28, + "end": 1645.62, + "probability": 0.728 + }, + { + "start": 1645.68, + "end": 1646.58, + "probability": 0.9221 + }, + { + "start": 1647.0, + "end": 1649.12, + "probability": 0.744 + }, + { + "start": 1649.84, + "end": 1651.56, + "probability": 0.8524 + }, + { + "start": 1653.12, + "end": 1654.16, + "probability": 0.6298 + }, + { + "start": 1657.3, + "end": 1657.68, + "probability": 0.1947 + }, + { + "start": 1658.04, + "end": 1661.16, + "probability": 0.3031 + }, + { + "start": 1662.46, + "end": 1666.8, + "probability": 0.9037 + }, + { + "start": 1667.4, + "end": 1667.82, + "probability": 0.7319 + }, + { + "start": 1668.57, + "end": 1670.9, + "probability": 0.3588 + }, + { + "start": 1671.18, + "end": 1671.86, + "probability": 0.3679 + }, + { + "start": 1672.18, + "end": 1672.18, + "probability": 0.0115 + }, + { + "start": 1672.9, + "end": 1675.46, + "probability": 0.6477 + }, + { + "start": 1676.1, + "end": 1678.62, + "probability": 0.981 + }, + { + "start": 1678.78, + "end": 1679.66, + "probability": 0.994 + }, + { + "start": 1679.8, + "end": 1685.62, + "probability": 0.9569 + }, + { + "start": 1686.32, + "end": 1686.62, + "probability": 0.5082 + }, + { + "start": 1687.58, + "end": 1687.88, + "probability": 0.6853 + }, + { + "start": 1688.5, + "end": 1689.39, + "probability": 0.0283 + }, + { + "start": 1690.6, + "end": 1691.16, + "probability": 0.3675 + }, + { + "start": 1691.44, + "end": 1693.9, + "probability": 0.3912 + }, + { + "start": 1694.7, + "end": 1695.48, + "probability": 0.6061 + }, + { + "start": 1696.0, + "end": 1697.56, + "probability": 0.6382 + }, + { + "start": 1698.54, + "end": 1699.22, + "probability": 0.4638 + }, + { + "start": 1699.3, + "end": 1699.68, + "probability": 0.3954 + }, + { + "start": 1699.7, + "end": 1701.14, + "probability": 0.9839 + }, + { + "start": 1702.68, + "end": 1703.34, + "probability": 0.6344 + }, + { + "start": 1703.38, + "end": 1704.58, + "probability": 0.803 + }, + { + "start": 1704.84, + "end": 1706.36, + "probability": 0.7948 + }, + { + "start": 1706.48, + "end": 1706.94, + "probability": 0.83 + }, + { + "start": 1707.12, + "end": 1709.14, + "probability": 0.8238 + }, + { + "start": 1709.8, + "end": 1710.24, + "probability": 0.5981 + }, + { + "start": 1710.8, + "end": 1711.08, + "probability": 0.6559 + }, + { + "start": 1711.86, + "end": 1715.64, + "probability": 0.8398 + }, + { + "start": 1716.22, + "end": 1716.7, + "probability": 0.2194 + }, + { + "start": 1716.78, + "end": 1717.42, + "probability": 0.4751 + }, + { + "start": 1718.44, + "end": 1720.98, + "probability": 0.8152 + }, + { + "start": 1721.36, + "end": 1722.1, + "probability": 0.5055 + }, + { + "start": 1722.82, + "end": 1724.02, + "probability": 0.7115 + }, + { + "start": 1724.16, + "end": 1728.26, + "probability": 0.8522 + }, + { + "start": 1728.5, + "end": 1729.22, + "probability": 0.8733 + }, + { + "start": 1729.61, + "end": 1733.08, + "probability": 0.787 + }, + { + "start": 1735.76, + "end": 1736.14, + "probability": 0.0139 + }, + { + "start": 1736.14, + "end": 1738.48, + "probability": 0.4785 + }, + { + "start": 1739.22, + "end": 1740.1, + "probability": 0.2637 + }, + { + "start": 1740.18, + "end": 1740.66, + "probability": 0.1617 + }, + { + "start": 1741.48, + "end": 1743.5, + "probability": 0.3879 + }, + { + "start": 1744.38, + "end": 1745.78, + "probability": 0.2561 + }, + { + "start": 1745.96, + "end": 1746.6, + "probability": 0.5804 + }, + { + "start": 1746.84, + "end": 1749.9, + "probability": 0.8796 + }, + { + "start": 1750.42, + "end": 1751.82, + "probability": 0.9345 + }, + { + "start": 1753.04, + "end": 1754.18, + "probability": 0.8053 + }, + { + "start": 1754.44, + "end": 1757.88, + "probability": 0.9553 + }, + { + "start": 1758.16, + "end": 1759.86, + "probability": 0.9976 + }, + { + "start": 1760.58, + "end": 1761.46, + "probability": 0.8692 + }, + { + "start": 1763.34, + "end": 1764.58, + "probability": 0.941 + }, + { + "start": 1764.72, + "end": 1765.52, + "probability": 0.5547 + }, + { + "start": 1765.98, + "end": 1766.48, + "probability": 0.6314 + }, + { + "start": 1766.56, + "end": 1767.54, + "probability": 0.5076 + }, + { + "start": 1768.6, + "end": 1769.64, + "probability": 0.6868 + }, + { + "start": 1770.02, + "end": 1771.5, + "probability": 0.8992 + }, + { + "start": 1771.92, + "end": 1773.7, + "probability": 0.9965 + }, + { + "start": 1775.66, + "end": 1779.54, + "probability": 0.5199 + }, + { + "start": 1781.36, + "end": 1782.4, + "probability": 0.4122 + }, + { + "start": 1782.64, + "end": 1785.22, + "probability": 0.9697 + }, + { + "start": 1785.49, + "end": 1790.84, + "probability": 0.8099 + }, + { + "start": 1792.14, + "end": 1792.4, + "probability": 0.7408 + }, + { + "start": 1794.06, + "end": 1796.88, + "probability": 0.8547 + }, + { + "start": 1796.98, + "end": 1798.26, + "probability": 0.9751 + }, + { + "start": 1798.96, + "end": 1806.98, + "probability": 0.9845 + }, + { + "start": 1806.98, + "end": 1813.34, + "probability": 0.8113 + }, + { + "start": 1814.6, + "end": 1814.6, + "probability": 0.7047 + }, + { + "start": 1814.6, + "end": 1816.92, + "probability": 0.6582 + }, + { + "start": 1817.82, + "end": 1820.62, + "probability": 0.9702 + }, + { + "start": 1821.2, + "end": 1823.54, + "probability": 0.9506 + }, + { + "start": 1824.2, + "end": 1824.5, + "probability": 0.8823 + }, + { + "start": 1825.24, + "end": 1826.8, + "probability": 0.9903 + }, + { + "start": 1827.88, + "end": 1828.6, + "probability": 0.9859 + }, + { + "start": 1829.16, + "end": 1834.88, + "probability": 0.9559 + }, + { + "start": 1835.1, + "end": 1839.06, + "probability": 0.6652 + }, + { + "start": 1839.7, + "end": 1843.46, + "probability": 0.9207 + }, + { + "start": 1844.2, + "end": 1844.34, + "probability": 0.6112 + }, + { + "start": 1845.24, + "end": 1845.62, + "probability": 0.7021 + }, + { + "start": 1847.12, + "end": 1847.72, + "probability": 0.8408 + }, + { + "start": 1852.04, + "end": 1854.66, + "probability": 0.5338 + }, + { + "start": 1856.06, + "end": 1858.66, + "probability": 0.821 + }, + { + "start": 1859.86, + "end": 1860.86, + "probability": 0.5491 + }, + { + "start": 1861.84, + "end": 1862.26, + "probability": 0.9732 + }, + { + "start": 1862.32, + "end": 1865.34, + "probability": 0.8378 + }, + { + "start": 1865.84, + "end": 1867.54, + "probability": 0.7334 + }, + { + "start": 1868.34, + "end": 1868.9, + "probability": 0.6538 + }, + { + "start": 1870.02, + "end": 1871.06, + "probability": 0.7218 + }, + { + "start": 1874.72, + "end": 1879.29, + "probability": 0.8904 + }, + { + "start": 1879.66, + "end": 1880.8, + "probability": 0.8266 + }, + { + "start": 1881.82, + "end": 1887.26, + "probability": 0.9235 + }, + { + "start": 1888.66, + "end": 1891.74, + "probability": 0.8658 + }, + { + "start": 1893.13, + "end": 1894.6, + "probability": 0.7121 + }, + { + "start": 1895.58, + "end": 1896.06, + "probability": 0.5184 + }, + { + "start": 1898.5, + "end": 1900.02, + "probability": 0.3179 + }, + { + "start": 1902.02, + "end": 1902.42, + "probability": 0.7244 + }, + { + "start": 1902.68, + "end": 1903.34, + "probability": 0.5782 + }, + { + "start": 1904.0, + "end": 1907.74, + "probability": 0.7331 + }, + { + "start": 1909.14, + "end": 1910.98, + "probability": 0.811 + }, + { + "start": 1912.06, + "end": 1913.1, + "probability": 0.9895 + }, + { + "start": 1915.48, + "end": 1917.4, + "probability": 0.446 + }, + { + "start": 1918.46, + "end": 1918.82, + "probability": 0.3258 + }, + { + "start": 1921.48, + "end": 1922.76, + "probability": 0.6328 + }, + { + "start": 1925.58, + "end": 1928.94, + "probability": 0.6603 + }, + { + "start": 1929.18, + "end": 1929.9, + "probability": 0.905 + }, + { + "start": 1930.04, + "end": 1930.46, + "probability": 0.4966 + }, + { + "start": 1931.92, + "end": 1933.8, + "probability": 0.796 + }, + { + "start": 1935.52, + "end": 1938.12, + "probability": 0.7417 + }, + { + "start": 1938.78, + "end": 1941.58, + "probability": 0.9916 + }, + { + "start": 1942.9, + "end": 1944.42, + "probability": 0.9321 + }, + { + "start": 1945.56, + "end": 1947.14, + "probability": 0.7727 + }, + { + "start": 1947.26, + "end": 1949.54, + "probability": 0.9915 + }, + { + "start": 1952.4, + "end": 1953.98, + "probability": 0.3631 + }, + { + "start": 1954.54, + "end": 1957.46, + "probability": 0.8629 + }, + { + "start": 1959.0, + "end": 1961.94, + "probability": 0.5331 + }, + { + "start": 1963.26, + "end": 1965.26, + "probability": 0.5909 + }, + { + "start": 1967.16, + "end": 1971.06, + "probability": 0.6434 + }, + { + "start": 1971.9, + "end": 1974.72, + "probability": 0.6236 + }, + { + "start": 1974.82, + "end": 1975.58, + "probability": 0.76 + }, + { + "start": 1975.64, + "end": 1977.12, + "probability": 0.8969 + }, + { + "start": 1978.42, + "end": 1980.08, + "probability": 0.4901 + }, + { + "start": 1981.7, + "end": 1982.22, + "probability": 0.9453 + }, + { + "start": 1984.1, + "end": 1985.62, + "probability": 0.8292 + }, + { + "start": 1987.36, + "end": 1992.24, + "probability": 0.9742 + }, + { + "start": 1992.86, + "end": 1996.26, + "probability": 0.9026 + }, + { + "start": 1997.54, + "end": 1999.8, + "probability": 0.9336 + }, + { + "start": 2000.6, + "end": 2001.82, + "probability": 0.5114 + }, + { + "start": 2002.64, + "end": 2005.08, + "probability": 0.9095 + }, + { + "start": 2005.52, + "end": 2006.64, + "probability": 0.6627 + }, + { + "start": 2006.82, + "end": 2008.2, + "probability": 0.8886 + }, + { + "start": 2009.62, + "end": 2012.5, + "probability": 0.8636 + }, + { + "start": 2013.42, + "end": 2013.52, + "probability": 0.0641 + }, + { + "start": 2014.12, + "end": 2016.64, + "probability": 0.9944 + }, + { + "start": 2018.34, + "end": 2021.3, + "probability": 0.8065 + }, + { + "start": 2021.76, + "end": 2024.66, + "probability": 0.9148 + }, + { + "start": 2025.18, + "end": 2026.14, + "probability": 0.1529 + }, + { + "start": 2027.46, + "end": 2027.7, + "probability": 0.7307 + }, + { + "start": 2028.84, + "end": 2029.78, + "probability": 0.3065 + }, + { + "start": 2030.98, + "end": 2031.93, + "probability": 0.7854 + }, + { + "start": 2033.18, + "end": 2034.04, + "probability": 0.7268 + }, + { + "start": 2036.04, + "end": 2039.74, + "probability": 0.9634 + }, + { + "start": 2041.1, + "end": 2045.6, + "probability": 0.9086 + }, + { + "start": 2047.1, + "end": 2050.54, + "probability": 0.9819 + }, + { + "start": 2050.56, + "end": 2052.2, + "probability": 0.6357 + }, + { + "start": 2052.54, + "end": 2053.78, + "probability": 0.5806 + }, + { + "start": 2053.86, + "end": 2054.22, + "probability": 0.8644 + }, + { + "start": 2054.56, + "end": 2055.64, + "probability": 0.9956 + }, + { + "start": 2057.92, + "end": 2058.26, + "probability": 0.3713 + }, + { + "start": 2059.89, + "end": 2063.26, + "probability": 0.9656 + }, + { + "start": 2064.24, + "end": 2066.84, + "probability": 0.7061 + }, + { + "start": 2067.64, + "end": 2068.7, + "probability": 0.887 + }, + { + "start": 2070.2, + "end": 2071.1, + "probability": 0.7256 + }, + { + "start": 2072.32, + "end": 2077.4, + "probability": 0.7151 + }, + { + "start": 2078.36, + "end": 2080.38, + "probability": 0.3707 + }, + { + "start": 2080.44, + "end": 2082.72, + "probability": 0.2983 + }, + { + "start": 2087.06, + "end": 2088.0, + "probability": 0.7433 + }, + { + "start": 2090.24, + "end": 2092.4, + "probability": 0.7822 + }, + { + "start": 2093.08, + "end": 2095.1, + "probability": 0.8217 + }, + { + "start": 2095.92, + "end": 2097.7, + "probability": 0.9674 + }, + { + "start": 2097.84, + "end": 2101.08, + "probability": 0.9883 + }, + { + "start": 2101.44, + "end": 2104.03, + "probability": 0.9678 + }, + { + "start": 2104.72, + "end": 2108.02, + "probability": 0.6034 + }, + { + "start": 2108.18, + "end": 2111.56, + "probability": 0.3215 + }, + { + "start": 2112.06, + "end": 2113.88, + "probability": 0.7432 + }, + { + "start": 2114.16, + "end": 2114.56, + "probability": 0.871 + }, + { + "start": 2114.7, + "end": 2115.18, + "probability": 0.8988 + }, + { + "start": 2115.98, + "end": 2119.1, + "probability": 0.5604 + }, + { + "start": 2119.64, + "end": 2124.3, + "probability": 0.7734 + }, + { + "start": 2124.9, + "end": 2127.54, + "probability": 0.9204 + }, + { + "start": 2127.72, + "end": 2128.04, + "probability": 0.7067 + }, + { + "start": 2128.64, + "end": 2129.38, + "probability": 0.6544 + }, + { + "start": 2129.48, + "end": 2131.16, + "probability": 0.9592 + }, + { + "start": 2131.26, + "end": 2132.74, + "probability": 0.9945 + }, + { + "start": 2134.94, + "end": 2136.28, + "probability": 0.96 + }, + { + "start": 2137.24, + "end": 2137.64, + "probability": 0.8286 + }, + { + "start": 2137.72, + "end": 2138.4, + "probability": 0.8546 + }, + { + "start": 2138.5, + "end": 2142.65, + "probability": 0.5696 + }, + { + "start": 2142.82, + "end": 2146.16, + "probability": 0.6514 + }, + { + "start": 2146.22, + "end": 2151.52, + "probability": 0.6032 + }, + { + "start": 2151.9, + "end": 2153.26, + "probability": 0.789 + }, + { + "start": 2153.38, + "end": 2154.74, + "probability": 0.8104 + }, + { + "start": 2155.58, + "end": 2157.32, + "probability": 0.9468 + }, + { + "start": 2157.42, + "end": 2159.38, + "probability": 0.8872 + }, + { + "start": 2159.44, + "end": 2161.52, + "probability": 0.8594 + }, + { + "start": 2161.64, + "end": 2163.76, + "probability": 0.771 + }, + { + "start": 2163.92, + "end": 2167.28, + "probability": 0.7222 + }, + { + "start": 2167.82, + "end": 2173.79, + "probability": 0.8324 + }, + { + "start": 2173.96, + "end": 2174.7, + "probability": 0.5024 + }, + { + "start": 2175.22, + "end": 2176.64, + "probability": 0.9009 + }, + { + "start": 2176.74, + "end": 2185.2, + "probability": 0.9347 + }, + { + "start": 2185.7, + "end": 2185.96, + "probability": 0.5278 + }, + { + "start": 2186.02, + "end": 2188.74, + "probability": 0.7622 + }, + { + "start": 2189.34, + "end": 2191.72, + "probability": 0.6992 + }, + { + "start": 2191.74, + "end": 2192.2, + "probability": 0.7683 + }, + { + "start": 2192.96, + "end": 2193.86, + "probability": 0.9571 + }, + { + "start": 2193.94, + "end": 2196.44, + "probability": 0.9131 + }, + { + "start": 2196.7, + "end": 2197.86, + "probability": 0.9769 + }, + { + "start": 2198.92, + "end": 2200.06, + "probability": 0.4536 + }, + { + "start": 2200.08, + "end": 2201.86, + "probability": 0.9045 + }, + { + "start": 2207.62, + "end": 2209.14, + "probability": 0.4755 + }, + { + "start": 2209.78, + "end": 2211.08, + "probability": 0.986 + }, + { + "start": 2211.44, + "end": 2214.36, + "probability": 0.9098 + }, + { + "start": 2214.52, + "end": 2216.34, + "probability": 0.9751 + }, + { + "start": 2217.22, + "end": 2219.52, + "probability": 0.7667 + }, + { + "start": 2220.46, + "end": 2222.56, + "probability": 0.9663 + }, + { + "start": 2222.68, + "end": 2224.16, + "probability": 0.9973 + }, + { + "start": 2224.8, + "end": 2227.9, + "probability": 0.8753 + }, + { + "start": 2227.92, + "end": 2228.84, + "probability": 0.9423 + }, + { + "start": 2229.48, + "end": 2230.34, + "probability": 0.6549 + }, + { + "start": 2231.12, + "end": 2232.48, + "probability": 0.9213 + }, + { + "start": 2233.14, + "end": 2237.32, + "probability": 0.9744 + }, + { + "start": 2237.86, + "end": 2241.26, + "probability": 0.9924 + }, + { + "start": 2243.66, + "end": 2245.42, + "probability": 0.6853 + }, + { + "start": 2245.5, + "end": 2245.92, + "probability": 0.8657 + }, + { + "start": 2246.06, + "end": 2246.5, + "probability": 0.3097 + }, + { + "start": 2246.88, + "end": 2247.98, + "probability": 0.1358 + }, + { + "start": 2247.98, + "end": 2248.64, + "probability": 0.0466 + }, + { + "start": 2248.66, + "end": 2249.26, + "probability": 0.0272 + }, + { + "start": 2249.92, + "end": 2251.66, + "probability": 0.8306 + }, + { + "start": 2251.92, + "end": 2252.36, + "probability": 0.5723 + }, + { + "start": 2252.52, + "end": 2253.66, + "probability": 0.6634 + }, + { + "start": 2254.24, + "end": 2254.7, + "probability": 0.7743 + }, + { + "start": 2255.18, + "end": 2257.22, + "probability": 0.739 + }, + { + "start": 2257.92, + "end": 2259.14, + "probability": 0.9833 + }, + { + "start": 2260.02, + "end": 2261.94, + "probability": 0.1022 + }, + { + "start": 2261.94, + "end": 2263.72, + "probability": 0.6216 + }, + { + "start": 2264.74, + "end": 2267.54, + "probability": 0.6152 + }, + { + "start": 2267.54, + "end": 2267.9, + "probability": 0.5178 + }, + { + "start": 2267.9, + "end": 2268.98, + "probability": 0.6438 + }, + { + "start": 2269.08, + "end": 2270.54, + "probability": 0.7005 + }, + { + "start": 2270.76, + "end": 2270.86, + "probability": 0.2212 + }, + { + "start": 2270.86, + "end": 2272.36, + "probability": 0.8748 + }, + { + "start": 2272.4, + "end": 2275.04, + "probability": 0.9183 + }, + { + "start": 2275.04, + "end": 2275.82, + "probability": 0.6406 + }, + { + "start": 2275.82, + "end": 2276.42, + "probability": 0.8707 + }, + { + "start": 2277.12, + "end": 2278.06, + "probability": 0.9216 + }, + { + "start": 2279.1, + "end": 2282.26, + "probability": 0.9595 + }, + { + "start": 2282.58, + "end": 2293.18, + "probability": 0.8364 + }, + { + "start": 2293.92, + "end": 2294.22, + "probability": 0.6613 + }, + { + "start": 2295.44, + "end": 2298.42, + "probability": 0.6951 + }, + { + "start": 2299.08, + "end": 2302.92, + "probability": 0.9363 + }, + { + "start": 2303.1, + "end": 2307.05, + "probability": 0.8164 + }, + { + "start": 2307.88, + "end": 2308.46, + "probability": 0.4451 + }, + { + "start": 2308.72, + "end": 2309.16, + "probability": 0.7809 + }, + { + "start": 2309.46, + "end": 2311.72, + "probability": 0.7013 + }, + { + "start": 2312.24, + "end": 2312.96, + "probability": 0.8573 + }, + { + "start": 2313.06, + "end": 2313.68, + "probability": 0.9935 + }, + { + "start": 2313.9, + "end": 2314.76, + "probability": 0.932 + }, + { + "start": 2314.84, + "end": 2316.96, + "probability": 0.8203 + }, + { + "start": 2317.5, + "end": 2318.58, + "probability": 0.8147 + }, + { + "start": 2321.24, + "end": 2324.74, + "probability": 0.9204 + }, + { + "start": 2325.3, + "end": 2326.4, + "probability": 0.8249 + }, + { + "start": 2326.46, + "end": 2328.46, + "probability": 0.8535 + }, + { + "start": 2329.14, + "end": 2332.36, + "probability": 0.6494 + }, + { + "start": 2332.68, + "end": 2334.04, + "probability": 0.681 + }, + { + "start": 2335.32, + "end": 2337.44, + "probability": 0.8749 + }, + { + "start": 2337.62, + "end": 2340.32, + "probability": 0.8695 + }, + { + "start": 2340.56, + "end": 2340.7, + "probability": 0.6982 + }, + { + "start": 2341.54, + "end": 2343.54, + "probability": 0.8373 + }, + { + "start": 2343.8, + "end": 2345.34, + "probability": 0.6195 + }, + { + "start": 2345.92, + "end": 2348.5, + "probability": 0.6661 + }, + { + "start": 2348.98, + "end": 2350.33, + "probability": 0.861 + }, + { + "start": 2350.81, + "end": 2354.33, + "probability": 0.8986 + }, + { + "start": 2354.47, + "end": 2355.13, + "probability": 0.8796 + }, + { + "start": 2355.59, + "end": 2358.45, + "probability": 0.8506 + }, + { + "start": 2359.51, + "end": 2365.27, + "probability": 0.987 + }, + { + "start": 2365.97, + "end": 2367.31, + "probability": 0.647 + }, + { + "start": 2367.71, + "end": 2369.05, + "probability": 0.759 + }, + { + "start": 2369.21, + "end": 2370.87, + "probability": 0.9935 + }, + { + "start": 2371.49, + "end": 2372.71, + "probability": 0.953 + }, + { + "start": 2373.47, + "end": 2374.19, + "probability": 0.7681 + }, + { + "start": 2374.95, + "end": 2377.01, + "probability": 0.9043 + }, + { + "start": 2377.63, + "end": 2380.65, + "probability": 0.789 + }, + { + "start": 2381.67, + "end": 2384.13, + "probability": 0.7573 + }, + { + "start": 2384.89, + "end": 2386.19, + "probability": 0.5054 + }, + { + "start": 2386.19, + "end": 2387.07, + "probability": 0.7489 + }, + { + "start": 2387.55, + "end": 2389.31, + "probability": 0.8116 + }, + { + "start": 2389.31, + "end": 2390.91, + "probability": 0.7734 + }, + { + "start": 2392.23, + "end": 2394.51, + "probability": 0.6395 + }, + { + "start": 2394.65, + "end": 2396.19, + "probability": 0.496 + }, + { + "start": 2396.49, + "end": 2398.29, + "probability": 0.8419 + }, + { + "start": 2399.63, + "end": 2400.51, + "probability": 0.6833 + }, + { + "start": 2402.55, + "end": 2406.47, + "probability": 0.9111 + }, + { + "start": 2406.79, + "end": 2410.73, + "probability": 0.7823 + }, + { + "start": 2411.25, + "end": 2415.19, + "probability": 0.883 + }, + { + "start": 2415.95, + "end": 2417.49, + "probability": 0.7618 + }, + { + "start": 2418.49, + "end": 2420.27, + "probability": 0.9762 + }, + { + "start": 2420.87, + "end": 2422.53, + "probability": 0.6561 + }, + { + "start": 2422.71, + "end": 2425.25, + "probability": 0.8979 + }, + { + "start": 2425.43, + "end": 2427.59, + "probability": 0.3281 + }, + { + "start": 2427.69, + "end": 2428.49, + "probability": 0.8383 + }, + { + "start": 2428.57, + "end": 2432.29, + "probability": 0.7081 + }, + { + "start": 2435.93, + "end": 2439.95, + "probability": 0.8239 + }, + { + "start": 2441.69, + "end": 2443.93, + "probability": 0.0365 + }, + { + "start": 2444.59, + "end": 2447.57, + "probability": 0.5881 + }, + { + "start": 2448.35, + "end": 2451.07, + "probability": 0.7937 + }, + { + "start": 2451.39, + "end": 2454.49, + "probability": 0.8856 + }, + { + "start": 2457.47, + "end": 2460.65, + "probability": 0.9206 + }, + { + "start": 2460.95, + "end": 2461.93, + "probability": 0.7718 + }, + { + "start": 2462.11, + "end": 2467.73, + "probability": 0.9755 + }, + { + "start": 2468.05, + "end": 2471.35, + "probability": 0.9688 + }, + { + "start": 2471.93, + "end": 2474.61, + "probability": 0.3814 + }, + { + "start": 2474.61, + "end": 2474.97, + "probability": 0.056 + }, + { + "start": 2475.0, + "end": 2475.0, + "probability": 0.0 + }, + { + "start": 2475.0, + "end": 2475.0, + "probability": 0.0 + }, + { + "start": 2475.5, + "end": 2478.14, + "probability": 0.9884 + }, + { + "start": 2478.86, + "end": 2481.82, + "probability": 0.7471 + }, + { + "start": 2482.36, + "end": 2483.1, + "probability": 0.7959 + }, + { + "start": 2483.42, + "end": 2489.18, + "probability": 0.9567 + }, + { + "start": 2490.56, + "end": 2491.82, + "probability": 0.8795 + }, + { + "start": 2491.92, + "end": 2495.1, + "probability": 0.9905 + }, + { + "start": 2496.06, + "end": 2498.42, + "probability": 0.945 + }, + { + "start": 2498.8, + "end": 2501.76, + "probability": 0.5872 + }, + { + "start": 2502.48, + "end": 2503.76, + "probability": 0.9531 + }, + { + "start": 2503.88, + "end": 2504.7, + "probability": 0.6958 + }, + { + "start": 2505.18, + "end": 2511.68, + "probability": 0.845 + }, + { + "start": 2512.26, + "end": 2515.2, + "probability": 0.7304 + }, + { + "start": 2515.61, + "end": 2520.22, + "probability": 0.8595 + }, + { + "start": 2520.34, + "end": 2521.54, + "probability": 0.6772 + }, + { + "start": 2522.22, + "end": 2523.4, + "probability": 0.4916 + }, + { + "start": 2523.48, + "end": 2524.02, + "probability": 0.6652 + }, + { + "start": 2524.15, + "end": 2526.76, + "probability": 0.9647 + }, + { + "start": 2527.02, + "end": 2530.92, + "probability": 0.8995 + }, + { + "start": 2532.08, + "end": 2532.56, + "probability": 0.7101 + }, + { + "start": 2532.7, + "end": 2535.78, + "probability": 0.8683 + }, + { + "start": 2535.9, + "end": 2537.18, + "probability": 0.8735 + }, + { + "start": 2539.46, + "end": 2539.96, + "probability": 0.7816 + }, + { + "start": 2540.08, + "end": 2543.5, + "probability": 0.9756 + }, + { + "start": 2543.82, + "end": 2547.12, + "probability": 0.9917 + }, + { + "start": 2547.12, + "end": 2549.78, + "probability": 0.9955 + }, + { + "start": 2550.38, + "end": 2550.84, + "probability": 0.8137 + }, + { + "start": 2550.98, + "end": 2551.48, + "probability": 0.7951 + }, + { + "start": 2551.6, + "end": 2551.8, + "probability": 0.5909 + }, + { + "start": 2551.88, + "end": 2552.8, + "probability": 0.8586 + }, + { + "start": 2553.16, + "end": 2558.26, + "probability": 0.9622 + }, + { + "start": 2558.76, + "end": 2562.2, + "probability": 0.9838 + }, + { + "start": 2562.4, + "end": 2563.54, + "probability": 0.9048 + }, + { + "start": 2563.68, + "end": 2564.96, + "probability": 0.8794 + }, + { + "start": 2565.4, + "end": 2568.0, + "probability": 0.9831 + }, + { + "start": 2568.36, + "end": 2569.06, + "probability": 0.6025 + }, + { + "start": 2569.32, + "end": 2570.18, + "probability": 0.8716 + }, + { + "start": 2570.32, + "end": 2571.18, + "probability": 0.7015 + }, + { + "start": 2571.26, + "end": 2574.78, + "probability": 0.9755 + }, + { + "start": 2575.1, + "end": 2576.62, + "probability": 0.9935 + }, + { + "start": 2576.62, + "end": 2578.4, + "probability": 0.9726 + }, + { + "start": 2578.7, + "end": 2579.0, + "probability": 0.7646 + }, + { + "start": 2579.9, + "end": 2580.28, + "probability": 0.3877 + }, + { + "start": 2580.34, + "end": 2581.5, + "probability": 0.8462 + }, + { + "start": 2581.66, + "end": 2582.5, + "probability": 0.4648 + }, + { + "start": 2583.16, + "end": 2584.0, + "probability": 0.9436 + }, + { + "start": 2584.66, + "end": 2588.6, + "probability": 0.9482 + }, + { + "start": 2589.64, + "end": 2595.22, + "probability": 0.9575 + }, + { + "start": 2595.3, + "end": 2595.88, + "probability": 0.7937 + }, + { + "start": 2595.98, + "end": 2596.7, + "probability": 0.9655 + }, + { + "start": 2596.78, + "end": 2599.2, + "probability": 0.8565 + }, + { + "start": 2599.38, + "end": 2600.24, + "probability": 0.6335 + }, + { + "start": 2600.3, + "end": 2601.1, + "probability": 0.9453 + }, + { + "start": 2602.22, + "end": 2603.44, + "probability": 0.9272 + }, + { + "start": 2603.68, + "end": 2608.64, + "probability": 0.961 + }, + { + "start": 2609.28, + "end": 2611.58, + "probability": 0.9722 + }, + { + "start": 2611.88, + "end": 2612.06, + "probability": 0.6667 + }, + { + "start": 2612.6, + "end": 2615.54, + "probability": 0.9812 + }, + { + "start": 2615.84, + "end": 2619.54, + "probability": 0.9857 + }, + { + "start": 2623.94, + "end": 2628.38, + "probability": 0.7482 + }, + { + "start": 2628.6, + "end": 2631.4, + "probability": 0.8581 + }, + { + "start": 2631.92, + "end": 2632.94, + "probability": 0.9629 + }, + { + "start": 2634.08, + "end": 2638.16, + "probability": 0.936 + }, + { + "start": 2638.74, + "end": 2643.68, + "probability": 0.9771 + }, + { + "start": 2647.1, + "end": 2652.24, + "probability": 0.9858 + }, + { + "start": 2652.66, + "end": 2654.56, + "probability": 0.9961 + }, + { + "start": 2655.1, + "end": 2661.0, + "probability": 0.9893 + }, + { + "start": 2661.98, + "end": 2666.16, + "probability": 0.7935 + }, + { + "start": 2667.61, + "end": 2669.23, + "probability": 0.2209 + }, + { + "start": 2670.7, + "end": 2672.34, + "probability": 0.7386 + }, + { + "start": 2672.64, + "end": 2674.96, + "probability": 0.7464 + }, + { + "start": 2678.23, + "end": 2682.44, + "probability": 0.8205 + }, + { + "start": 2683.74, + "end": 2684.74, + "probability": 0.7218 + }, + { + "start": 2685.1, + "end": 2687.16, + "probability": 0.9644 + }, + { + "start": 2687.72, + "end": 2688.86, + "probability": 0.6984 + }, + { + "start": 2690.22, + "end": 2696.18, + "probability": 0.9583 + }, + { + "start": 2696.18, + "end": 2701.4, + "probability": 0.9989 + }, + { + "start": 2702.46, + "end": 2703.32, + "probability": 0.5812 + }, + { + "start": 2703.94, + "end": 2705.64, + "probability": 0.9893 + }, + { + "start": 2705.78, + "end": 2707.84, + "probability": 0.949 + }, + { + "start": 2708.46, + "end": 2712.98, + "probability": 0.9873 + }, + { + "start": 2712.98, + "end": 2716.52, + "probability": 0.9809 + }, + { + "start": 2717.08, + "end": 2723.64, + "probability": 0.992 + }, + { + "start": 2723.64, + "end": 2729.9, + "probability": 0.9989 + }, + { + "start": 2729.9, + "end": 2736.72, + "probability": 0.9895 + }, + { + "start": 2737.42, + "end": 2740.14, + "probability": 0.8895 + }, + { + "start": 2740.28, + "end": 2740.91, + "probability": 0.645 + }, + { + "start": 2741.0, + "end": 2741.42, + "probability": 0.9557 + }, + { + "start": 2741.54, + "end": 2747.3, + "probability": 0.9869 + }, + { + "start": 2747.88, + "end": 2753.63, + "probability": 0.9979 + }, + { + "start": 2755.1, + "end": 2755.69, + "probability": 0.9595 + }, + { + "start": 2756.66, + "end": 2759.18, + "probability": 0.909 + }, + { + "start": 2759.78, + "end": 2761.76, + "probability": 0.6584 + }, + { + "start": 2762.34, + "end": 2765.62, + "probability": 0.6804 + }, + { + "start": 2766.1, + "end": 2766.42, + "probability": 0.0686 + }, + { + "start": 2766.42, + "end": 2766.42, + "probability": 0.0444 + }, + { + "start": 2766.42, + "end": 2768.02, + "probability": 0.6121 + }, + { + "start": 2768.16, + "end": 2769.12, + "probability": 0.9541 + }, + { + "start": 2769.6, + "end": 2774.04, + "probability": 0.9893 + }, + { + "start": 2774.04, + "end": 2779.58, + "probability": 0.9778 + }, + { + "start": 2780.3, + "end": 2782.1, + "probability": 0.7598 + }, + { + "start": 2782.64, + "end": 2788.32, + "probability": 0.9601 + }, + { + "start": 2788.96, + "end": 2794.5, + "probability": 0.9702 + }, + { + "start": 2795.54, + "end": 2801.88, + "probability": 0.9598 + }, + { + "start": 2802.66, + "end": 2804.62, + "probability": 0.0186 + }, + { + "start": 2805.52, + "end": 2805.82, + "probability": 0.0518 + }, + { + "start": 2806.38, + "end": 2808.44, + "probability": 0.5388 + }, + { + "start": 2808.52, + "end": 2809.6, + "probability": 0.858 + }, + { + "start": 2810.08, + "end": 2810.92, + "probability": 0.2106 + }, + { + "start": 2811.16, + "end": 2813.09, + "probability": 0.6788 + }, + { + "start": 2813.54, + "end": 2815.42, + "probability": 0.641 + }, + { + "start": 2815.6, + "end": 2817.04, + "probability": 0.9044 + }, + { + "start": 2818.08, + "end": 2821.62, + "probability": 0.0063 + }, + { + "start": 2821.62, + "end": 2822.82, + "probability": 0.6921 + }, + { + "start": 2822.84, + "end": 2823.56, + "probability": 0.6007 + }, + { + "start": 2823.76, + "end": 2825.04, + "probability": 0.8551 + }, + { + "start": 2825.2, + "end": 2826.32, + "probability": 0.8521 + }, + { + "start": 2826.9, + "end": 2828.94, + "probability": 0.9816 + }, + { + "start": 2829.28, + "end": 2832.82, + "probability": 0.8677 + }, + { + "start": 2833.02, + "end": 2833.54, + "probability": 0.9177 + }, + { + "start": 2835.4, + "end": 2836.62, + "probability": 0.7456 + }, + { + "start": 2837.08, + "end": 2839.66, + "probability": 0.8269 + }, + { + "start": 2839.88, + "end": 2842.76, + "probability": 0.7541 + }, + { + "start": 2842.9, + "end": 2843.9, + "probability": 0.8621 + }, + { + "start": 2844.7, + "end": 2845.68, + "probability": 0.9912 + }, + { + "start": 2846.06, + "end": 2846.22, + "probability": 0.0856 + }, + { + "start": 2846.43, + "end": 2849.88, + "probability": 0.5674 + }, + { + "start": 2851.14, + "end": 2851.36, + "probability": 0.0441 + }, + { + "start": 2852.98, + "end": 2856.56, + "probability": 0.9915 + }, + { + "start": 2857.12, + "end": 2857.96, + "probability": 0.3606 + }, + { + "start": 2858.64, + "end": 2859.22, + "probability": 0.4692 + }, + { + "start": 2859.3, + "end": 2864.36, + "probability": 0.9099 + }, + { + "start": 2864.76, + "end": 2865.32, + "probability": 0.8188 + }, + { + "start": 2866.26, + "end": 2868.72, + "probability": 0.7388 + }, + { + "start": 2869.14, + "end": 2869.86, + "probability": 0.8264 + }, + { + "start": 2871.52, + "end": 2872.44, + "probability": 0.7373 + }, + { + "start": 2873.08, + "end": 2874.46, + "probability": 0.5946 + }, + { + "start": 2876.18, + "end": 2878.18, + "probability": 0.9087 + }, + { + "start": 2878.54, + "end": 2881.46, + "probability": 0.9143 + }, + { + "start": 2881.5, + "end": 2883.1, + "probability": 0.9966 + }, + { + "start": 2883.38, + "end": 2884.22, + "probability": 0.6009 + }, + { + "start": 2884.78, + "end": 2886.66, + "probability": 0.7787 + }, + { + "start": 2887.22, + "end": 2889.62, + "probability": 0.8256 + }, + { + "start": 2890.44, + "end": 2892.18, + "probability": 0.9414 + }, + { + "start": 2892.52, + "end": 2894.96, + "probability": 0.5332 + }, + { + "start": 2895.28, + "end": 2897.16, + "probability": 0.8832 + }, + { + "start": 2898.26, + "end": 2899.03, + "probability": 0.8606 + }, + { + "start": 2900.06, + "end": 2902.46, + "probability": 0.9683 + }, + { + "start": 2902.7, + "end": 2905.78, + "probability": 0.8364 + }, + { + "start": 2905.86, + "end": 2906.54, + "probability": 0.4659 + }, + { + "start": 2906.8, + "end": 2908.2, + "probability": 0.834 + }, + { + "start": 2908.28, + "end": 2909.5, + "probability": 0.9075 + }, + { + "start": 2910.42, + "end": 2910.68, + "probability": 0.7746 + }, + { + "start": 2911.22, + "end": 2913.26, + "probability": 0.713 + }, + { + "start": 2913.34, + "end": 2918.34, + "probability": 0.981 + }, + { + "start": 2920.04, + "end": 2924.24, + "probability": 0.6839 + }, + { + "start": 2927.04, + "end": 2928.16, + "probability": 0.7523 + }, + { + "start": 2928.36, + "end": 2929.54, + "probability": 0.5058 + }, + { + "start": 2929.64, + "end": 2931.78, + "probability": 0.8171 + }, + { + "start": 2931.98, + "end": 2933.52, + "probability": 0.9646 + }, + { + "start": 2934.08, + "end": 2937.0, + "probability": 0.9971 + }, + { + "start": 2937.24, + "end": 2938.4, + "probability": 0.4052 + }, + { + "start": 2938.96, + "end": 2941.16, + "probability": 0.568 + }, + { + "start": 2941.52, + "end": 2941.7, + "probability": 0.7812 + }, + { + "start": 2942.36, + "end": 2945.06, + "probability": 0.7266 + }, + { + "start": 2945.36, + "end": 2947.66, + "probability": 0.9106 + }, + { + "start": 2948.3, + "end": 2951.64, + "probability": 0.9273 + }, + { + "start": 2952.56, + "end": 2955.86, + "probability": 0.8953 + }, + { + "start": 2957.3, + "end": 2959.3, + "probability": 0.9671 + }, + { + "start": 2960.08, + "end": 2961.3, + "probability": 0.8491 + }, + { + "start": 2970.54, + "end": 2971.68, + "probability": 0.6459 + }, + { + "start": 2973.14, + "end": 2976.74, + "probability": 0.9497 + }, + { + "start": 2977.7, + "end": 2982.18, + "probability": 0.7316 + }, + { + "start": 2986.38, + "end": 2988.84, + "probability": 0.736 + }, + { + "start": 2990.04, + "end": 2993.26, + "probability": 0.9943 + }, + { + "start": 2993.26, + "end": 2996.76, + "probability": 0.6932 + }, + { + "start": 2997.4, + "end": 3000.62, + "probability": 0.8094 + }, + { + "start": 3001.78, + "end": 3005.56, + "probability": 0.9689 + }, + { + "start": 3006.06, + "end": 3008.4, + "probability": 0.9961 + }, + { + "start": 3009.72, + "end": 3011.74, + "probability": 0.5378 + }, + { + "start": 3012.92, + "end": 3014.14, + "probability": 0.9238 + }, + { + "start": 3015.28, + "end": 3016.34, + "probability": 0.8807 + }, + { + "start": 3017.24, + "end": 3020.76, + "probability": 0.9496 + }, + { + "start": 3021.46, + "end": 3023.76, + "probability": 0.9958 + }, + { + "start": 3024.84, + "end": 3031.18, + "probability": 0.9915 + }, + { + "start": 3031.52, + "end": 3034.24, + "probability": 0.9966 + }, + { + "start": 3034.98, + "end": 3037.72, + "probability": 0.9573 + }, + { + "start": 3038.06, + "end": 3040.02, + "probability": 0.9673 + }, + { + "start": 3040.32, + "end": 3041.14, + "probability": 0.9848 + }, + { + "start": 3041.42, + "end": 3043.2, + "probability": 0.9401 + }, + { + "start": 3044.02, + "end": 3049.18, + "probability": 0.9953 + }, + { + "start": 3049.28, + "end": 3051.34, + "probability": 0.9948 + }, + { + "start": 3051.44, + "end": 3052.56, + "probability": 0.9011 + }, + { + "start": 3052.72, + "end": 3054.04, + "probability": 0.9911 + }, + { + "start": 3055.16, + "end": 3056.24, + "probability": 0.9662 + }, + { + "start": 3056.42, + "end": 3056.88, + "probability": 0.9182 + }, + { + "start": 3056.9, + "end": 3060.06, + "probability": 0.9862 + }, + { + "start": 3060.84, + "end": 3065.18, + "probability": 0.9976 + }, + { + "start": 3066.16, + "end": 3066.98, + "probability": 0.6303 + }, + { + "start": 3066.98, + "end": 3067.86, + "probability": 0.7796 + }, + { + "start": 3067.94, + "end": 3070.74, + "probability": 0.9837 + }, + { + "start": 3071.36, + "end": 3077.08, + "probability": 0.9988 + }, + { + "start": 3077.08, + "end": 3082.02, + "probability": 0.9939 + }, + { + "start": 3082.3, + "end": 3083.5, + "probability": 0.7524 + }, + { + "start": 3083.92, + "end": 3086.01, + "probability": 0.9978 + }, + { + "start": 3086.1, + "end": 3091.47, + "probability": 0.9888 + }, + { + "start": 3091.74, + "end": 3092.5, + "probability": 0.7566 + }, + { + "start": 3093.14, + "end": 3098.2, + "probability": 0.9961 + }, + { + "start": 3099.3, + "end": 3099.98, + "probability": 0.9164 + }, + { + "start": 3100.06, + "end": 3100.9, + "probability": 0.8987 + }, + { + "start": 3101.02, + "end": 3103.66, + "probability": 0.7741 + }, + { + "start": 3104.04, + "end": 3108.24, + "probability": 0.9624 + }, + { + "start": 3108.72, + "end": 3112.54, + "probability": 0.9874 + }, + { + "start": 3113.1, + "end": 3115.44, + "probability": 0.9976 + }, + { + "start": 3115.84, + "end": 3120.12, + "probability": 0.9565 + }, + { + "start": 3120.52, + "end": 3123.9, + "probability": 0.999 + }, + { + "start": 3124.34, + "end": 3126.98, + "probability": 0.9574 + }, + { + "start": 3127.1, + "end": 3130.48, + "probability": 0.9846 + }, + { + "start": 3130.62, + "end": 3132.42, + "probability": 0.9893 + }, + { + "start": 3132.78, + "end": 3135.7, + "probability": 0.9964 + }, + { + "start": 3135.84, + "end": 3141.04, + "probability": 0.9886 + }, + { + "start": 3141.12, + "end": 3143.72, + "probability": 0.9666 + }, + { + "start": 3143.88, + "end": 3148.12, + "probability": 0.9809 + }, + { + "start": 3148.52, + "end": 3151.66, + "probability": 0.9789 + }, + { + "start": 3151.7, + "end": 3153.18, + "probability": 0.9918 + }, + { + "start": 3153.22, + "end": 3154.98, + "probability": 0.8286 + }, + { + "start": 3155.62, + "end": 3159.86, + "probability": 0.995 + }, + { + "start": 3160.4, + "end": 3163.74, + "probability": 0.8816 + }, + { + "start": 3164.3, + "end": 3165.26, + "probability": 0.958 + }, + { + "start": 3165.44, + "end": 3167.3, + "probability": 0.9902 + }, + { + "start": 3167.8, + "end": 3168.54, + "probability": 0.7586 + }, + { + "start": 3168.62, + "end": 3169.98, + "probability": 0.998 + }, + { + "start": 3170.58, + "end": 3171.2, + "probability": 0.0761 + }, + { + "start": 3171.76, + "end": 3172.04, + "probability": 0.8943 + }, + { + "start": 3172.74, + "end": 3176.14, + "probability": 0.7998 + }, + { + "start": 3176.28, + "end": 3178.48, + "probability": 0.8662 + }, + { + "start": 3178.68, + "end": 3182.58, + "probability": 0.9821 + }, + { + "start": 3183.06, + "end": 3183.86, + "probability": 0.6611 + }, + { + "start": 3184.56, + "end": 3186.0, + "probability": 0.6569 + }, + { + "start": 3186.22, + "end": 3188.02, + "probability": 0.9162 + }, + { + "start": 3188.12, + "end": 3189.22, + "probability": 0.7936 + }, + { + "start": 3190.2, + "end": 3190.64, + "probability": 0.9076 + }, + { + "start": 3191.32, + "end": 3192.56, + "probability": 0.9861 + }, + { + "start": 3192.8, + "end": 3194.1, + "probability": 0.3725 + }, + { + "start": 3194.68, + "end": 3196.36, + "probability": 0.9243 + }, + { + "start": 3197.04, + "end": 3198.12, + "probability": 0.9763 + }, + { + "start": 3198.52, + "end": 3199.44, + "probability": 0.7019 + }, + { + "start": 3199.62, + "end": 3200.76, + "probability": 0.917 + }, + { + "start": 3200.92, + "end": 3202.1, + "probability": 0.8666 + }, + { + "start": 3202.6, + "end": 3205.3, + "probability": 0.9559 + }, + { + "start": 3205.9, + "end": 3209.92, + "probability": 0.998 + }, + { + "start": 3209.92, + "end": 3213.5, + "probability": 0.98 + }, + { + "start": 3214.12, + "end": 3216.72, + "probability": 0.561 + }, + { + "start": 3217.12, + "end": 3218.06, + "probability": 0.7947 + }, + { + "start": 3218.08, + "end": 3218.72, + "probability": 0.9829 + }, + { + "start": 3219.18, + "end": 3220.02, + "probability": 0.9236 + }, + { + "start": 3220.42, + "end": 3222.04, + "probability": 0.929 + }, + { + "start": 3222.18, + "end": 3222.76, + "probability": 0.6555 + }, + { + "start": 3223.08, + "end": 3225.14, + "probability": 0.9863 + }, + { + "start": 3225.5, + "end": 3228.48, + "probability": 0.6805 + }, + { + "start": 3229.0, + "end": 3234.58, + "probability": 0.9863 + }, + { + "start": 3234.98, + "end": 3237.9, + "probability": 0.9896 + }, + { + "start": 3238.0, + "end": 3238.96, + "probability": 0.9006 + }, + { + "start": 3239.36, + "end": 3242.04, + "probability": 0.9971 + }, + { + "start": 3242.08, + "end": 3242.36, + "probability": 0.6939 + }, + { + "start": 3243.78, + "end": 3248.02, + "probability": 0.8761 + }, + { + "start": 3248.04, + "end": 3249.62, + "probability": 0.6531 + }, + { + "start": 3249.66, + "end": 3250.88, + "probability": 0.8753 + }, + { + "start": 3252.66, + "end": 3254.3, + "probability": 0.2296 + }, + { + "start": 3255.84, + "end": 3259.56, + "probability": 0.6367 + }, + { + "start": 3260.42, + "end": 3261.7, + "probability": 0.9945 + }, + { + "start": 3262.86, + "end": 3267.4, + "probability": 0.995 + }, + { + "start": 3268.08, + "end": 3268.68, + "probability": 0.8549 + }, + { + "start": 3269.04, + "end": 3270.38, + "probability": 0.9902 + }, + { + "start": 3270.68, + "end": 3271.78, + "probability": 0.9651 + }, + { + "start": 3272.18, + "end": 3273.96, + "probability": 0.9692 + }, + { + "start": 3274.44, + "end": 3279.22, + "probability": 0.9893 + }, + { + "start": 3279.7, + "end": 3282.32, + "probability": 0.9893 + }, + { + "start": 3282.96, + "end": 3284.76, + "probability": 0.9632 + }, + { + "start": 3284.88, + "end": 3287.86, + "probability": 0.9829 + }, + { + "start": 3287.92, + "end": 3289.86, + "probability": 0.9878 + }, + { + "start": 3290.04, + "end": 3290.94, + "probability": 0.9598 + }, + { + "start": 3291.3, + "end": 3292.92, + "probability": 0.9705 + }, + { + "start": 3293.36, + "end": 3294.54, + "probability": 0.8123 + }, + { + "start": 3295.0, + "end": 3299.28, + "probability": 0.5538 + }, + { + "start": 3299.58, + "end": 3300.22, + "probability": 0.7315 + }, + { + "start": 3300.82, + "end": 3301.58, + "probability": 0.808 + }, + { + "start": 3301.68, + "end": 3303.38, + "probability": 0.8968 + }, + { + "start": 3303.68, + "end": 3305.32, + "probability": 0.9976 + }, + { + "start": 3306.14, + "end": 3307.28, + "probability": 0.9532 + }, + { + "start": 3307.38, + "end": 3309.76, + "probability": 0.9207 + }, + { + "start": 3309.86, + "end": 3310.94, + "probability": 0.6823 + }, + { + "start": 3311.02, + "end": 3313.54, + "probability": 0.9544 + }, + { + "start": 3313.98, + "end": 3314.8, + "probability": 0.9526 + }, + { + "start": 3315.14, + "end": 3318.34, + "probability": 0.9766 + }, + { + "start": 3318.52, + "end": 3318.84, + "probability": 0.9145 + }, + { + "start": 3320.2, + "end": 3328.3, + "probability": 0.9937 + }, + { + "start": 3329.04, + "end": 3330.0, + "probability": 0.9766 + }, + { + "start": 3331.04, + "end": 3337.04, + "probability": 0.8983 + }, + { + "start": 3337.56, + "end": 3339.4, + "probability": 0.9691 + }, + { + "start": 3340.26, + "end": 3343.76, + "probability": 0.9245 + }, + { + "start": 3344.46, + "end": 3350.56, + "probability": 0.9724 + }, + { + "start": 3350.78, + "end": 3353.76, + "probability": 0.9318 + }, + { + "start": 3354.58, + "end": 3358.26, + "probability": 0.9681 + }, + { + "start": 3359.42, + "end": 3363.38, + "probability": 0.9946 + }, + { + "start": 3363.42, + "end": 3367.46, + "probability": 0.9995 + }, + { + "start": 3369.38, + "end": 3373.22, + "probability": 0.8943 + }, + { + "start": 3373.22, + "end": 3377.52, + "probability": 0.9396 + }, + { + "start": 3377.62, + "end": 3378.7, + "probability": 0.4002 + }, + { + "start": 3379.7, + "end": 3385.48, + "probability": 0.9953 + }, + { + "start": 3386.22, + "end": 3390.4, + "probability": 0.998 + }, + { + "start": 3390.9, + "end": 3393.12, + "probability": 0.969 + }, + { + "start": 3393.66, + "end": 3394.56, + "probability": 0.7367 + }, + { + "start": 3394.7, + "end": 3395.6, + "probability": 0.885 + }, + { + "start": 3395.74, + "end": 3396.3, + "probability": 0.4605 + }, + { + "start": 3396.38, + "end": 3397.94, + "probability": 0.6427 + }, + { + "start": 3398.42, + "end": 3399.18, + "probability": 0.7376 + }, + { + "start": 3399.6, + "end": 3405.92, + "probability": 0.9872 + }, + { + "start": 3406.18, + "end": 3406.78, + "probability": 0.9781 + }, + { + "start": 3407.04, + "end": 3407.34, + "probability": 0.3507 + }, + { + "start": 3407.94, + "end": 3411.0, + "probability": 0.8331 + }, + { + "start": 3411.58, + "end": 3413.18, + "probability": 0.8074 + }, + { + "start": 3413.56, + "end": 3414.62, + "probability": 0.9369 + }, + { + "start": 3415.12, + "end": 3417.18, + "probability": 0.8908 + }, + { + "start": 3417.68, + "end": 3420.68, + "probability": 0.8993 + }, + { + "start": 3420.92, + "end": 3421.91, + "probability": 0.9844 + }, + { + "start": 3422.68, + "end": 3425.02, + "probability": 0.7598 + }, + { + "start": 3425.14, + "end": 3426.64, + "probability": 0.9949 + }, + { + "start": 3427.62, + "end": 3429.08, + "probability": 0.8564 + }, + { + "start": 3430.54, + "end": 3433.14, + "probability": 0.6481 + }, + { + "start": 3433.86, + "end": 3437.98, + "probability": 0.6294 + }, + { + "start": 3438.7, + "end": 3442.34, + "probability": 0.939 + }, + { + "start": 3443.88, + "end": 3447.88, + "probability": 0.8059 + }, + { + "start": 3448.72, + "end": 3450.52, + "probability": 0.8165 + }, + { + "start": 3451.42, + "end": 3453.84, + "probability": 0.9731 + }, + { + "start": 3458.42, + "end": 3459.5, + "probability": 0.5706 + }, + { + "start": 3460.0, + "end": 3460.5, + "probability": 0.7843 + }, + { + "start": 3460.6, + "end": 3461.7, + "probability": 0.9739 + }, + { + "start": 3461.74, + "end": 3462.46, + "probability": 0.7769 + }, + { + "start": 3463.22, + "end": 3464.0, + "probability": 0.9245 + }, + { + "start": 3464.74, + "end": 3466.22, + "probability": 0.925 + }, + { + "start": 3467.68, + "end": 3468.94, + "probability": 0.9835 + }, + { + "start": 3469.04, + "end": 3469.22, + "probability": 0.6387 + }, + { + "start": 3469.32, + "end": 3472.02, + "probability": 0.9834 + }, + { + "start": 3472.02, + "end": 3473.26, + "probability": 0.8901 + }, + { + "start": 3473.38, + "end": 3474.74, + "probability": 0.9861 + }, + { + "start": 3475.32, + "end": 3477.6, + "probability": 0.9004 + }, + { + "start": 3478.08, + "end": 3479.82, + "probability": 0.7783 + }, + { + "start": 3479.86, + "end": 3482.26, + "probability": 0.9141 + }, + { + "start": 3482.3, + "end": 3484.42, + "probability": 0.8906 + }, + { + "start": 3485.62, + "end": 3487.16, + "probability": 0.9844 + }, + { + "start": 3487.4, + "end": 3488.84, + "probability": 0.9439 + }, + { + "start": 3490.34, + "end": 3493.75, + "probability": 0.9814 + }, + { + "start": 3494.94, + "end": 3498.04, + "probability": 0.9805 + }, + { + "start": 3498.1, + "end": 3499.82, + "probability": 0.9893 + }, + { + "start": 3500.4, + "end": 3502.98, + "probability": 0.9797 + }, + { + "start": 3503.1, + "end": 3504.16, + "probability": 0.996 + }, + { + "start": 3504.62, + "end": 3505.28, + "probability": 0.9449 + }, + { + "start": 3505.44, + "end": 3506.2, + "probability": 0.9763 + }, + { + "start": 3506.72, + "end": 3507.72, + "probability": 0.9868 + }, + { + "start": 3507.78, + "end": 3510.32, + "probability": 0.9336 + }, + { + "start": 3510.72, + "end": 3511.88, + "probability": 0.8602 + }, + { + "start": 3512.4, + "end": 3514.3, + "probability": 0.991 + }, + { + "start": 3514.64, + "end": 3516.26, + "probability": 0.9884 + }, + { + "start": 3516.8, + "end": 3518.9, + "probability": 0.845 + }, + { + "start": 3519.54, + "end": 3522.5, + "probability": 0.8775 + }, + { + "start": 3523.36, + "end": 3524.42, + "probability": 0.9278 + }, + { + "start": 3524.76, + "end": 3528.06, + "probability": 0.9933 + }, + { + "start": 3528.06, + "end": 3530.54, + "probability": 0.9988 + }, + { + "start": 3531.22, + "end": 3532.18, + "probability": 0.5683 + }, + { + "start": 3533.22, + "end": 3534.8, + "probability": 0.5614 + }, + { + "start": 3537.36, + "end": 3540.2, + "probability": 0.9419 + }, + { + "start": 3540.24, + "end": 3542.24, + "probability": 0.8672 + }, + { + "start": 3542.42, + "end": 3543.78, + "probability": 0.9589 + }, + { + "start": 3543.88, + "end": 3545.86, + "probability": 0.9924 + }, + { + "start": 3547.3, + "end": 3548.46, + "probability": 0.5997 + }, + { + "start": 3549.0, + "end": 3550.48, + "probability": 0.7501 + }, + { + "start": 3551.08, + "end": 3551.6, + "probability": 0.4857 + }, + { + "start": 3551.64, + "end": 3555.42, + "probability": 0.9854 + }, + { + "start": 3555.68, + "end": 3556.42, + "probability": 0.9263 + }, + { + "start": 3556.48, + "end": 3558.02, + "probability": 0.8413 + }, + { + "start": 3558.42, + "end": 3560.34, + "probability": 0.1726 + }, + { + "start": 3561.14, + "end": 3565.04, + "probability": 0.124 + }, + { + "start": 3565.26, + "end": 3565.28, + "probability": 0.3704 + }, + { + "start": 3565.42, + "end": 3565.6, + "probability": 0.1356 + }, + { + "start": 3565.6, + "end": 3565.6, + "probability": 0.087 + }, + { + "start": 3565.6, + "end": 3565.6, + "probability": 0.4266 + }, + { + "start": 3565.6, + "end": 3565.6, + "probability": 0.0755 + }, + { + "start": 3565.6, + "end": 3565.6, + "probability": 0.0697 + }, + { + "start": 3565.6, + "end": 3567.41, + "probability": 0.9019 + }, + { + "start": 3568.08, + "end": 3569.16, + "probability": 0.8327 + }, + { + "start": 3569.74, + "end": 3570.48, + "probability": 0.6254 + }, + { + "start": 3570.62, + "end": 3570.88, + "probability": 0.8205 + }, + { + "start": 3571.02, + "end": 3571.39, + "probability": 0.9861 + }, + { + "start": 3571.58, + "end": 3573.88, + "probability": 0.9248 + }, + { + "start": 3574.02, + "end": 3575.1, + "probability": 0.9745 + }, + { + "start": 3575.62, + "end": 3576.66, + "probability": 0.9786 + }, + { + "start": 3577.06, + "end": 3580.66, + "probability": 0.9655 + }, + { + "start": 3581.26, + "end": 3582.74, + "probability": 0.9983 + }, + { + "start": 3584.02, + "end": 3586.96, + "probability": 0.9959 + }, + { + "start": 3587.48, + "end": 3588.93, + "probability": 0.9897 + }, + { + "start": 3589.56, + "end": 3590.4, + "probability": 0.8628 + }, + { + "start": 3591.12, + "end": 3593.52, + "probability": 0.9924 + }, + { + "start": 3594.4, + "end": 3597.26, + "probability": 0.722 + }, + { + "start": 3597.9, + "end": 3600.64, + "probability": 0.9795 + }, + { + "start": 3600.86, + "end": 3604.86, + "probability": 0.9961 + }, + { + "start": 3605.38, + "end": 3608.12, + "probability": 0.9958 + }, + { + "start": 3608.84, + "end": 3609.7, + "probability": 0.9406 + }, + { + "start": 3611.12, + "end": 3611.9, + "probability": 0.9308 + }, + { + "start": 3612.78, + "end": 3614.48, + "probability": 0.9517 + }, + { + "start": 3615.02, + "end": 3616.5, + "probability": 0.9932 + }, + { + "start": 3617.12, + "end": 3618.38, + "probability": 0.7361 + }, + { + "start": 3619.16, + "end": 3623.1, + "probability": 0.8898 + }, + { + "start": 3624.66, + "end": 3627.44, + "probability": 0.9944 + }, + { + "start": 3627.92, + "end": 3628.41, + "probability": 0.9641 + }, + { + "start": 3629.52, + "end": 3631.18, + "probability": 0.9902 + }, + { + "start": 3631.6, + "end": 3633.15, + "probability": 0.958 + }, + { + "start": 3633.44, + "end": 3635.42, + "probability": 0.9968 + }, + { + "start": 3635.62, + "end": 3638.46, + "probability": 0.9381 + }, + { + "start": 3639.04, + "end": 3643.3, + "probability": 0.998 + }, + { + "start": 3643.64, + "end": 3645.0, + "probability": 0.9988 + }, + { + "start": 3645.44, + "end": 3648.58, + "probability": 0.973 + }, + { + "start": 3649.1, + "end": 3651.5, + "probability": 0.9842 + }, + { + "start": 3651.94, + "end": 3653.24, + "probability": 0.6196 + }, + { + "start": 3653.42, + "end": 3654.28, + "probability": 0.8112 + }, + { + "start": 3658.22, + "end": 3660.84, + "probability": 0.9766 + }, + { + "start": 3660.88, + "end": 3663.76, + "probability": 0.4724 + }, + { + "start": 3664.18, + "end": 3664.56, + "probability": 0.8214 + }, + { + "start": 3664.68, + "end": 3665.7, + "probability": 0.6682 + }, + { + "start": 3666.2, + "end": 3668.34, + "probability": 0.7781 + }, + { + "start": 3669.36, + "end": 3671.5, + "probability": 0.9619 + }, + { + "start": 3672.16, + "end": 3672.94, + "probability": 0.8625 + }, + { + "start": 3673.4, + "end": 3680.36, + "probability": 0.9827 + }, + { + "start": 3680.9, + "end": 3681.88, + "probability": 0.9423 + }, + { + "start": 3681.92, + "end": 3682.88, + "probability": 0.9871 + }, + { + "start": 3683.06, + "end": 3684.64, + "probability": 0.9695 + }, + { + "start": 3684.96, + "end": 3686.0, + "probability": 0.988 + }, + { + "start": 3686.44, + "end": 3686.94, + "probability": 0.6281 + }, + { + "start": 3687.02, + "end": 3690.0, + "probability": 0.8687 + }, + { + "start": 3690.52, + "end": 3692.68, + "probability": 0.9971 + }, + { + "start": 3693.08, + "end": 3694.26, + "probability": 0.7128 + }, + { + "start": 3694.34, + "end": 3694.96, + "probability": 0.8617 + }, + { + "start": 3695.02, + "end": 3698.9, + "probability": 0.5931 + }, + { + "start": 3699.64, + "end": 3703.16, + "probability": 0.9844 + }, + { + "start": 3703.16, + "end": 3707.16, + "probability": 0.9882 + }, + { + "start": 3707.26, + "end": 3707.76, + "probability": 0.7503 + }, + { + "start": 3708.16, + "end": 3710.56, + "probability": 0.8844 + }, + { + "start": 3710.9, + "end": 3712.02, + "probability": 0.8186 + }, + { + "start": 3712.78, + "end": 3715.22, + "probability": 0.8926 + }, + { + "start": 3715.28, + "end": 3718.96, + "probability": 0.7531 + }, + { + "start": 3749.04, + "end": 3750.84, + "probability": 0.5639 + }, + { + "start": 3751.18, + "end": 3753.52, + "probability": 0.7066 + }, + { + "start": 3754.72, + "end": 3756.38, + "probability": 0.8877 + }, + { + "start": 3757.44, + "end": 3758.02, + "probability": 0.6849 + }, + { + "start": 3758.64, + "end": 3759.59, + "probability": 0.7252 + }, + { + "start": 3760.68, + "end": 3762.72, + "probability": 0.7629 + }, + { + "start": 3763.86, + "end": 3766.88, + "probability": 0.7087 + }, + { + "start": 3769.12, + "end": 3773.74, + "probability": 0.988 + }, + { + "start": 3774.52, + "end": 3777.5, + "probability": 0.9909 + }, + { + "start": 3779.58, + "end": 3780.66, + "probability": 0.6753 + }, + { + "start": 3780.9, + "end": 3782.64, + "probability": 0.9362 + }, + { + "start": 3783.1, + "end": 3787.82, + "probability": 0.9763 + }, + { + "start": 3788.56, + "end": 3790.78, + "probability": 0.9028 + }, + { + "start": 3791.22, + "end": 3792.5, + "probability": 0.6501 + }, + { + "start": 3793.08, + "end": 3797.86, + "probability": 0.9868 + }, + { + "start": 3799.22, + "end": 3803.08, + "probability": 0.9935 + }, + { + "start": 3803.08, + "end": 3806.3, + "probability": 0.9467 + }, + { + "start": 3807.04, + "end": 3812.66, + "probability": 0.8681 + }, + { + "start": 3813.32, + "end": 3814.76, + "probability": 0.6576 + }, + { + "start": 3817.3, + "end": 3820.48, + "probability": 0.8281 + }, + { + "start": 3821.04, + "end": 3823.85, + "probability": 0.9668 + }, + { + "start": 3824.1, + "end": 3827.04, + "probability": 0.9971 + }, + { + "start": 3827.12, + "end": 3827.44, + "probability": 0.8008 + }, + { + "start": 3829.92, + "end": 3834.18, + "probability": 0.8644 + }, + { + "start": 3834.24, + "end": 3836.06, + "probability": 0.9106 + }, + { + "start": 3836.5, + "end": 3839.88, + "probability": 0.8606 + }, + { + "start": 3840.3, + "end": 3843.3, + "probability": 0.7629 + }, + { + "start": 3844.66, + "end": 3845.84, + "probability": 0.5433 + }, + { + "start": 3845.96, + "end": 3846.5, + "probability": 0.9305 + }, + { + "start": 3847.12, + "end": 3851.24, + "probability": 0.9321 + }, + { + "start": 3851.58, + "end": 3853.36, + "probability": 0.9706 + }, + { + "start": 3853.88, + "end": 3856.8, + "probability": 0.9764 + }, + { + "start": 3857.7, + "end": 3859.74, + "probability": 0.7346 + }, + { + "start": 3860.26, + "end": 3866.56, + "probability": 0.9742 + }, + { + "start": 3868.08, + "end": 3868.96, + "probability": 0.4189 + }, + { + "start": 3869.08, + "end": 3872.58, + "probability": 0.9808 + }, + { + "start": 3873.44, + "end": 3877.62, + "probability": 0.9909 + }, + { + "start": 3878.16, + "end": 3882.56, + "probability": 0.9942 + }, + { + "start": 3883.24, + "end": 3884.6, + "probability": 0.9966 + }, + { + "start": 3885.4, + "end": 3887.2, + "probability": 0.6433 + }, + { + "start": 3888.44, + "end": 3890.8, + "probability": 0.6744 + }, + { + "start": 3891.36, + "end": 3893.24, + "probability": 0.8894 + }, + { + "start": 3894.58, + "end": 3898.52, + "probability": 0.8108 + }, + { + "start": 3899.0, + "end": 3900.34, + "probability": 0.9295 + }, + { + "start": 3900.4, + "end": 3902.98, + "probability": 0.9618 + }, + { + "start": 3903.4, + "end": 3904.08, + "probability": 0.9349 + }, + { + "start": 3905.36, + "end": 3906.32, + "probability": 0.6693 + }, + { + "start": 3906.96, + "end": 3909.88, + "probability": 0.7869 + }, + { + "start": 3912.56, + "end": 3913.9, + "probability": 0.9394 + }, + { + "start": 3915.16, + "end": 3915.9, + "probability": 0.5976 + }, + { + "start": 3916.62, + "end": 3917.76, + "probability": 0.8477 + }, + { + "start": 3919.06, + "end": 3920.72, + "probability": 0.507 + }, + { + "start": 3923.2, + "end": 3924.0, + "probability": 0.8778 + }, + { + "start": 3929.38, + "end": 3930.72, + "probability": 0.5903 + }, + { + "start": 3931.78, + "end": 3931.9, + "probability": 0.0217 + }, + { + "start": 3944.28, + "end": 3944.48, + "probability": 0.0121 + }, + { + "start": 3944.48, + "end": 3945.45, + "probability": 0.7238 + }, + { + "start": 3947.36, + "end": 3949.36, + "probability": 0.9763 + }, + { + "start": 3949.46, + "end": 3953.2, + "probability": 0.8853 + }, + { + "start": 3953.4, + "end": 3955.26, + "probability": 0.7839 + }, + { + "start": 3955.38, + "end": 3961.64, + "probability": 0.7724 + }, + { + "start": 3963.8, + "end": 3965.52, + "probability": 0.8486 + }, + { + "start": 3966.28, + "end": 3968.44, + "probability": 0.9813 + }, + { + "start": 3969.32, + "end": 3970.74, + "probability": 0.8937 + }, + { + "start": 3972.18, + "end": 3973.68, + "probability": 0.871 + }, + { + "start": 3973.79, + "end": 3975.11, + "probability": 0.9976 + }, + { + "start": 3975.92, + "end": 3980.34, + "probability": 0.8109 + }, + { + "start": 3980.86, + "end": 3982.66, + "probability": 0.6039 + }, + { + "start": 3982.82, + "end": 3983.44, + "probability": 0.484 + }, + { + "start": 3985.94, + "end": 3991.58, + "probability": 0.925 + }, + { + "start": 3992.26, + "end": 3994.54, + "probability": 0.7723 + }, + { + "start": 3995.3, + "end": 3999.66, + "probability": 0.7178 + }, + { + "start": 4000.2, + "end": 4002.42, + "probability": 0.7797 + }, + { + "start": 4002.94, + "end": 4004.82, + "probability": 0.5773 + }, + { + "start": 4005.64, + "end": 4008.46, + "probability": 0.876 + }, + { + "start": 4008.98, + "end": 4011.74, + "probability": 0.9897 + }, + { + "start": 4011.86, + "end": 4013.38, + "probability": 0.6941 + }, + { + "start": 4013.48, + "end": 4016.1, + "probability": 0.8718 + }, + { + "start": 4017.06, + "end": 4019.48, + "probability": 0.9139 + }, + { + "start": 4019.88, + "end": 4022.2, + "probability": 0.962 + }, + { + "start": 4023.0, + "end": 4023.42, + "probability": 0.6688 + }, + { + "start": 4023.64, + "end": 4024.8, + "probability": 0.9723 + }, + { + "start": 4024.86, + "end": 4025.82, + "probability": 0.9437 + }, + { + "start": 4025.86, + "end": 4027.82, + "probability": 0.9589 + }, + { + "start": 4027.96, + "end": 4028.64, + "probability": 0.8469 + }, + { + "start": 4028.76, + "end": 4028.88, + "probability": 0.3692 + }, + { + "start": 4029.08, + "end": 4030.72, + "probability": 0.8285 + }, + { + "start": 4030.82, + "end": 4031.46, + "probability": 0.5522 + }, + { + "start": 4031.46, + "end": 4031.84, + "probability": 0.6756 + }, + { + "start": 4031.94, + "end": 4032.52, + "probability": 0.2528 + }, + { + "start": 4032.94, + "end": 4034.88, + "probability": 0.9181 + }, + { + "start": 4035.9, + "end": 4037.92, + "probability": 0.883 + }, + { + "start": 4038.86, + "end": 4039.74, + "probability": 0.5352 + }, + { + "start": 4045.08, + "end": 4046.52, + "probability": 0.686 + }, + { + "start": 4047.42, + "end": 4048.96, + "probability": 0.9515 + }, + { + "start": 4050.12, + "end": 4054.66, + "probability": 0.6036 + }, + { + "start": 4056.92, + "end": 4057.76, + "probability": 0.8493 + }, + { + "start": 4059.18, + "end": 4060.52, + "probability": 0.6513 + }, + { + "start": 4063.1, + "end": 4065.34, + "probability": 0.9567 + }, + { + "start": 4065.7, + "end": 4068.1, + "probability": 0.2561 + }, + { + "start": 4068.24, + "end": 4072.32, + "probability": 0.9042 + }, + { + "start": 4072.88, + "end": 4078.54, + "probability": 0.8921 + }, + { + "start": 4079.86, + "end": 4081.26, + "probability": 0.6467 + }, + { + "start": 4082.46, + "end": 4088.42, + "probability": 0.998 + }, + { + "start": 4088.56, + "end": 4090.06, + "probability": 0.8369 + }, + { + "start": 4090.46, + "end": 4092.2, + "probability": 0.9165 + }, + { + "start": 4092.56, + "end": 4093.74, + "probability": 0.5763 + }, + { + "start": 4094.46, + "end": 4094.7, + "probability": 0.7836 + }, + { + "start": 4094.8, + "end": 4096.1, + "probability": 0.9485 + }, + { + "start": 4096.3, + "end": 4097.18, + "probability": 0.8175 + }, + { + "start": 4097.8, + "end": 4098.54, + "probability": 0.7549 + }, + { + "start": 4098.74, + "end": 4102.1, + "probability": 0.8912 + }, + { + "start": 4102.76, + "end": 4103.98, + "probability": 0.9255 + }, + { + "start": 4104.18, + "end": 4107.12, + "probability": 0.7019 + }, + { + "start": 4107.66, + "end": 4110.26, + "probability": 0.8823 + }, + { + "start": 4111.0, + "end": 4113.56, + "probability": 0.7456 + }, + { + "start": 4115.14, + "end": 4116.36, + "probability": 0.2746 + }, + { + "start": 4116.38, + "end": 4118.51, + "probability": 0.9234 + }, + { + "start": 4118.62, + "end": 4121.84, + "probability": 0.3166 + }, + { + "start": 4122.5, + "end": 4124.44, + "probability": 0.9941 + }, + { + "start": 4125.58, + "end": 4127.38, + "probability": 0.9985 + }, + { + "start": 4127.88, + "end": 4129.58, + "probability": 0.8976 + }, + { + "start": 4130.16, + "end": 4134.81, + "probability": 0.6156 + }, + { + "start": 4135.84, + "end": 4136.84, + "probability": 0.8959 + }, + { + "start": 4136.96, + "end": 4137.86, + "probability": 0.9788 + }, + { + "start": 4138.0, + "end": 4138.79, + "probability": 0.9336 + }, + { + "start": 4139.16, + "end": 4141.74, + "probability": 0.9813 + }, + { + "start": 4143.06, + "end": 4145.7, + "probability": 0.9832 + }, + { + "start": 4146.54, + "end": 4148.4, + "probability": 0.4731 + }, + { + "start": 4148.44, + "end": 4149.68, + "probability": 0.9273 + }, + { + "start": 4151.04, + "end": 4151.84, + "probability": 0.8364 + }, + { + "start": 4151.9, + "end": 4153.46, + "probability": 0.5811 + }, + { + "start": 4153.6, + "end": 4155.0, + "probability": 0.4521 + }, + { + "start": 4155.0, + "end": 4158.82, + "probability": 0.9443 + }, + { + "start": 4159.04, + "end": 4160.34, + "probability": 0.9134 + }, + { + "start": 4161.42, + "end": 4162.8, + "probability": 0.5762 + }, + { + "start": 4162.86, + "end": 4163.52, + "probability": 0.8332 + }, + { + "start": 4164.84, + "end": 4165.06, + "probability": 0.7369 + }, + { + "start": 4165.82, + "end": 4167.06, + "probability": 0.6176 + }, + { + "start": 4167.42, + "end": 4171.08, + "probability": 0.8757 + }, + { + "start": 4171.52, + "end": 4173.42, + "probability": 0.9857 + }, + { + "start": 4173.72, + "end": 4174.0, + "probability": 0.4173 + }, + { + "start": 4175.18, + "end": 4175.18, + "probability": 0.0384 + }, + { + "start": 4175.18, + "end": 4175.56, + "probability": 0.2744 + }, + { + "start": 4176.0, + "end": 4176.32, + "probability": 0.7394 + }, + { + "start": 4178.48, + "end": 4182.54, + "probability": 0.8787 + }, + { + "start": 4183.1, + "end": 4186.29, + "probability": 0.57 + }, + { + "start": 4186.92, + "end": 4189.3, + "probability": 0.9893 + }, + { + "start": 4189.36, + "end": 4191.1, + "probability": 0.9299 + }, + { + "start": 4191.5, + "end": 4192.52, + "probability": 0.9763 + }, + { + "start": 4193.06, + "end": 4196.34, + "probability": 0.835 + }, + { + "start": 4196.68, + "end": 4197.2, + "probability": 0.4691 + }, + { + "start": 4197.24, + "end": 4199.42, + "probability": 0.7456 + }, + { + "start": 4199.88, + "end": 4200.74, + "probability": 0.4706 + }, + { + "start": 4200.78, + "end": 4201.64, + "probability": 0.7627 + }, + { + "start": 4202.28, + "end": 4204.32, + "probability": 0.6888 + }, + { + "start": 4205.3, + "end": 4209.26, + "probability": 0.9731 + }, + { + "start": 4210.04, + "end": 4212.3, + "probability": 0.9719 + }, + { + "start": 4215.59, + "end": 4220.08, + "probability": 0.9743 + }, + { + "start": 4220.8, + "end": 4222.12, + "probability": 0.372 + }, + { + "start": 4222.12, + "end": 4223.72, + "probability": 0.7816 + }, + { + "start": 4224.1, + "end": 4224.34, + "probability": 0.4603 + }, + { + "start": 4224.36, + "end": 4229.18, + "probability": 0.92 + }, + { + "start": 4229.18, + "end": 4233.94, + "probability": 0.6551 + }, + { + "start": 4234.58, + "end": 4236.0, + "probability": 0.3839 + }, + { + "start": 4236.8, + "end": 4239.74, + "probability": 0.8871 + }, + { + "start": 4243.98, + "end": 4244.82, + "probability": 0.4928 + }, + { + "start": 4245.86, + "end": 4252.04, + "probability": 0.8135 + }, + { + "start": 4252.48, + "end": 4253.06, + "probability": 0.5384 + }, + { + "start": 4253.44, + "end": 4254.62, + "probability": 0.7333 + }, + { + "start": 4255.0, + "end": 4255.86, + "probability": 0.8687 + }, + { + "start": 4256.2, + "end": 4257.22, + "probability": 0.8385 + }, + { + "start": 4258.46, + "end": 4263.38, + "probability": 0.9841 + }, + { + "start": 4263.7, + "end": 4264.42, + "probability": 0.653 + }, + { + "start": 4265.12, + "end": 4268.36, + "probability": 0.9637 + }, + { + "start": 4269.12, + "end": 4269.9, + "probability": 0.7932 + }, + { + "start": 4270.06, + "end": 4270.42, + "probability": 0.3856 + }, + { + "start": 4270.54, + "end": 4273.62, + "probability": 0.9647 + }, + { + "start": 4273.96, + "end": 4280.26, + "probability": 0.9897 + }, + { + "start": 4281.08, + "end": 4282.74, + "probability": 0.6471 + }, + { + "start": 4283.62, + "end": 4283.76, + "probability": 0.3225 + }, + { + "start": 4283.76, + "end": 4285.4, + "probability": 0.7423 + }, + { + "start": 4285.76, + "end": 4285.97, + "probability": 0.013 + }, + { + "start": 4287.46, + "end": 4288.72, + "probability": 0.8882 + }, + { + "start": 4289.74, + "end": 4291.42, + "probability": 0.8564 + }, + { + "start": 4291.54, + "end": 4294.38, + "probability": 0.8979 + }, + { + "start": 4294.48, + "end": 4296.72, + "probability": 0.44 + }, + { + "start": 4296.86, + "end": 4297.68, + "probability": 0.7584 + }, + { + "start": 4298.16, + "end": 4301.18, + "probability": 0.8848 + }, + { + "start": 4301.24, + "end": 4301.86, + "probability": 0.7196 + }, + { + "start": 4302.32, + "end": 4303.06, + "probability": 0.5867 + }, + { + "start": 4323.48, + "end": 4325.19, + "probability": 0.2775 + }, + { + "start": 4325.25, + "end": 4326.12, + "probability": 0.0627 + }, + { + "start": 4326.66, + "end": 4329.54, + "probability": 0.6517 + }, + { + "start": 4337.26, + "end": 4338.28, + "probability": 0.0295 + }, + { + "start": 4341.15, + "end": 4345.08, + "probability": 0.5008 + }, + { + "start": 4345.64, + "end": 4347.0, + "probability": 0.1572 + }, + { + "start": 4347.0, + "end": 4347.8, + "probability": 0.0767 + }, + { + "start": 4348.44, + "end": 4349.55, + "probability": 0.1189 + }, + { + "start": 4357.78, + "end": 4357.88, + "probability": 0.0008 + }, + { + "start": 4360.54, + "end": 4361.18, + "probability": 0.3533 + }, + { + "start": 4361.18, + "end": 4361.76, + "probability": 0.2483 + }, + { + "start": 4361.78, + "end": 4362.18, + "probability": 0.0593 + }, + { + "start": 4362.18, + "end": 4362.18, + "probability": 0.1403 + }, + { + "start": 4363.18, + "end": 4364.18, + "probability": 0.1572 + }, + { + "start": 4366.9, + "end": 4368.74, + "probability": 0.1583 + }, + { + "start": 4368.76, + "end": 4370.74, + "probability": 0.1003 + }, + { + "start": 4371.42, + "end": 4372.5, + "probability": 0.0282 + }, + { + "start": 4411.0, + "end": 4411.0, + "probability": 0.0 + }, + { + "start": 4411.0, + "end": 4411.0, + "probability": 0.0 + }, + { + "start": 4411.0, + "end": 4411.0, + "probability": 0.0 + }, + { + "start": 4411.0, + "end": 4411.0, + "probability": 0.0 + }, + { + "start": 4411.0, + "end": 4411.0, + "probability": 0.0 + }, + { + "start": 4411.0, + "end": 4411.0, + "probability": 0.0 + }, + { + "start": 4411.0, + "end": 4411.0, + "probability": 0.0 + }, + { + "start": 4411.0, + "end": 4411.0, + "probability": 0.0 + }, + { + "start": 4411.0, + "end": 4411.0, + "probability": 0.0 + }, + { + "start": 4411.0, + "end": 4411.0, + "probability": 0.0 + }, + { + "start": 4411.0, + "end": 4411.0, + "probability": 0.0 + }, + { + "start": 4411.0, + "end": 4411.0, + "probability": 0.0 + }, + { + "start": 4411.0, + "end": 4411.0, + "probability": 0.0 + }, + { + "start": 4411.0, + "end": 4411.0, + "probability": 0.0 + }, + { + "start": 4411.0, + "end": 4411.0, + "probability": 0.0 + }, + { + "start": 4411.0, + "end": 4411.0, + "probability": 0.0 + }, + { + "start": 4411.0, + "end": 4411.0, + "probability": 0.0 + }, + { + "start": 4411.0, + "end": 4411.0, + "probability": 0.0 + }, + { + "start": 4411.0, + "end": 4411.0, + "probability": 0.0 + }, + { + "start": 4411.0, + "end": 4411.0, + "probability": 0.0 + }, + { + "start": 4411.0, + "end": 4411.0, + "probability": 0.0 + }, + { + "start": 4411.0, + "end": 4411.0, + "probability": 0.0 + }, + { + "start": 4411.0, + "end": 4411.0, + "probability": 0.0 + }, + { + "start": 4411.0, + "end": 4411.0, + "probability": 0.0 + }, + { + "start": 4411.2, + "end": 4415.52, + "probability": 0.2806 + }, + { + "start": 4416.36, + "end": 4417.38, + "probability": 0.9269 + }, + { + "start": 4417.98, + "end": 4418.7, + "probability": 0.7024 + }, + { + "start": 4418.88, + "end": 4422.26, + "probability": 0.8669 + }, + { + "start": 4422.4, + "end": 4424.68, + "probability": 0.8894 + }, + { + "start": 4425.28, + "end": 4425.78, + "probability": 0.941 + }, + { + "start": 4426.16, + "end": 4432.5, + "probability": 0.6433 + }, + { + "start": 4432.66, + "end": 4432.94, + "probability": 0.5285 + }, + { + "start": 4433.62, + "end": 4434.88, + "probability": 0.8944 + }, + { + "start": 4440.52, + "end": 4441.77, + "probability": 0.8321 + }, + { + "start": 4443.0, + "end": 4444.44, + "probability": 0.7881 + }, + { + "start": 4444.66, + "end": 4448.88, + "probability": 0.9009 + }, + { + "start": 4449.72, + "end": 4450.78, + "probability": 0.908 + }, + { + "start": 4453.24, + "end": 4454.58, + "probability": 0.2324 + }, + { + "start": 4454.58, + "end": 4456.15, + "probability": 0.9546 + }, + { + "start": 4457.38, + "end": 4459.17, + "probability": 0.6444 + }, + { + "start": 4460.9, + "end": 4462.94, + "probability": 0.9077 + }, + { + "start": 4462.94, + "end": 4468.56, + "probability": 0.9758 + }, + { + "start": 4468.74, + "end": 4470.0, + "probability": 0.42 + }, + { + "start": 4470.9, + "end": 4472.14, + "probability": 0.9806 + }, + { + "start": 4472.68, + "end": 4475.26, + "probability": 0.8757 + }, + { + "start": 4476.5, + "end": 4477.86, + "probability": 0.6467 + }, + { + "start": 4478.0, + "end": 4478.8, + "probability": 0.7653 + }, + { + "start": 4479.32, + "end": 4481.22, + "probability": 0.9188 + }, + { + "start": 4482.46, + "end": 4483.3, + "probability": 0.5095 + }, + { + "start": 4483.84, + "end": 4487.65, + "probability": 0.8624 + }, + { + "start": 4492.98, + "end": 4496.4, + "probability": 0.7318 + }, + { + "start": 4498.26, + "end": 4503.26, + "probability": 0.938 + }, + { + "start": 4504.2, + "end": 4509.76, + "probability": 0.9874 + }, + { + "start": 4510.6, + "end": 4518.1, + "probability": 0.9952 + }, + { + "start": 4519.14, + "end": 4522.8, + "probability": 0.8757 + }, + { + "start": 4522.8, + "end": 4526.18, + "probability": 0.9971 + }, + { + "start": 4526.98, + "end": 4531.16, + "probability": 0.9946 + }, + { + "start": 4531.16, + "end": 4536.12, + "probability": 0.996 + }, + { + "start": 4537.5, + "end": 4542.12, + "probability": 0.993 + }, + { + "start": 4542.12, + "end": 4546.08, + "probability": 0.9995 + }, + { + "start": 4546.64, + "end": 4550.3, + "probability": 0.9974 + }, + { + "start": 4550.64, + "end": 4556.74, + "probability": 0.9982 + }, + { + "start": 4556.8, + "end": 4560.72, + "probability": 0.9975 + }, + { + "start": 4561.58, + "end": 4562.08, + "probability": 0.9699 + }, + { + "start": 4562.24, + "end": 4567.18, + "probability": 0.9958 + }, + { + "start": 4567.45, + "end": 4572.22, + "probability": 0.9973 + }, + { + "start": 4572.32, + "end": 4573.88, + "probability": 0.712 + }, + { + "start": 4573.94, + "end": 4574.88, + "probability": 0.8083 + }, + { + "start": 4575.02, + "end": 4580.08, + "probability": 0.984 + }, + { + "start": 4580.2, + "end": 4580.78, + "probability": 0.5546 + }, + { + "start": 4580.82, + "end": 4580.86, + "probability": 0.5839 + }, + { + "start": 4580.92, + "end": 4582.36, + "probability": 0.7128 + }, + { + "start": 4583.02, + "end": 4584.1, + "probability": 0.4299 + }, + { + "start": 4584.74, + "end": 4589.4, + "probability": 0.7057 + }, + { + "start": 4590.78, + "end": 4592.51, + "probability": 0.7863 + }, + { + "start": 4593.38, + "end": 4594.6, + "probability": 0.324 + }, + { + "start": 4594.6, + "end": 4594.66, + "probability": 0.2513 + }, + { + "start": 4600.24, + "end": 4600.24, + "probability": 0.1825 + }, + { + "start": 4600.24, + "end": 4602.62, + "probability": 0.6953 + }, + { + "start": 4603.22, + "end": 4605.54, + "probability": 0.9175 + }, + { + "start": 4606.6, + "end": 4607.28, + "probability": 0.7953 + }, + { + "start": 4607.34, + "end": 4607.7, + "probability": 0.9016 + }, + { + "start": 4607.76, + "end": 4608.04, + "probability": 0.8217 + }, + { + "start": 4608.08, + "end": 4609.44, + "probability": 0.9913 + }, + { + "start": 4610.2, + "end": 4610.59, + "probability": 0.4478 + }, + { + "start": 4616.62, + "end": 4621.62, + "probability": 0.8641 + }, + { + "start": 4631.28, + "end": 4632.56, + "probability": 0.6647 + }, + { + "start": 4633.1, + "end": 4634.1, + "probability": 0.8197 + }, + { + "start": 4637.24, + "end": 4638.56, + "probability": 0.9953 + }, + { + "start": 4639.94, + "end": 4642.44, + "probability": 0.9994 + }, + { + "start": 4644.24, + "end": 4648.14, + "probability": 0.9348 + }, + { + "start": 4648.88, + "end": 4652.92, + "probability": 0.9914 + }, + { + "start": 4653.96, + "end": 4658.66, + "probability": 0.9796 + }, + { + "start": 4659.66, + "end": 4662.2, + "probability": 0.8663 + }, + { + "start": 4662.78, + "end": 4667.54, + "probability": 0.9844 + }, + { + "start": 4667.54, + "end": 4673.36, + "probability": 0.8625 + }, + { + "start": 4674.7, + "end": 4675.73, + "probability": 0.645 + }, + { + "start": 4676.66, + "end": 4679.1, + "probability": 0.8108 + }, + { + "start": 4679.78, + "end": 4685.96, + "probability": 0.963 + }, + { + "start": 4687.12, + "end": 4691.36, + "probability": 0.8596 + }, + { + "start": 4696.44, + "end": 4699.42, + "probability": 0.8096 + }, + { + "start": 4702.46, + "end": 4706.28, + "probability": 0.9893 + }, + { + "start": 4706.28, + "end": 4711.5, + "probability": 0.9893 + }, + { + "start": 4713.02, + "end": 4717.83, + "probability": 0.9976 + }, + { + "start": 4719.08, + "end": 4722.46, + "probability": 0.9156 + }, + { + "start": 4722.46, + "end": 4727.9, + "probability": 0.9573 + }, + { + "start": 4729.0, + "end": 4731.62, + "probability": 0.8051 + }, + { + "start": 4732.58, + "end": 4733.73, + "probability": 0.9658 + }, + { + "start": 4735.5, + "end": 4740.26, + "probability": 0.9672 + }, + { + "start": 4741.6, + "end": 4742.86, + "probability": 0.9761 + }, + { + "start": 4745.08, + "end": 4748.5, + "probability": 0.9434 + }, + { + "start": 4751.28, + "end": 4752.56, + "probability": 0.9447 + }, + { + "start": 4753.98, + "end": 4756.04, + "probability": 0.9956 + }, + { + "start": 4757.54, + "end": 4757.94, + "probability": 0.4732 + }, + { + "start": 4758.98, + "end": 4759.98, + "probability": 0.9832 + }, + { + "start": 4761.96, + "end": 4763.74, + "probability": 0.9828 + }, + { + "start": 4765.08, + "end": 4777.96, + "probability": 0.9813 + }, + { + "start": 4778.22, + "end": 4778.28, + "probability": 0.1354 + }, + { + "start": 4780.54, + "end": 4782.66, + "probability": 0.7715 + }, + { + "start": 4784.14, + "end": 4784.88, + "probability": 0.8333 + }, + { + "start": 4786.04, + "end": 4791.88, + "probability": 0.9534 + }, + { + "start": 4795.42, + "end": 4799.92, + "probability": 0.9788 + }, + { + "start": 4800.82, + "end": 4806.76, + "probability": 0.9862 + }, + { + "start": 4807.64, + "end": 4809.26, + "probability": 0.6912 + }, + { + "start": 4810.84, + "end": 4816.96, + "probability": 0.9377 + }, + { + "start": 4818.02, + "end": 4821.18, + "probability": 0.7762 + }, + { + "start": 4822.86, + "end": 4826.26, + "probability": 0.9639 + }, + { + "start": 4827.22, + "end": 4829.24, + "probability": 0.5725 + }, + { + "start": 4830.06, + "end": 4831.26, + "probability": 0.6901 + }, + { + "start": 4832.82, + "end": 4834.86, + "probability": 0.6302 + }, + { + "start": 4835.22, + "end": 4836.02, + "probability": 0.732 + }, + { + "start": 4836.72, + "end": 4840.56, + "probability": 0.8101 + }, + { + "start": 4841.2, + "end": 4843.2, + "probability": 0.9692 + }, + { + "start": 4845.92, + "end": 4847.0, + "probability": 0.4546 + }, + { + "start": 4847.91, + "end": 4849.94, + "probability": 0.844 + }, + { + "start": 4853.8, + "end": 4858.06, + "probability": 0.6501 + }, + { + "start": 4858.48, + "end": 4859.82, + "probability": 0.8211 + }, + { + "start": 4859.82, + "end": 4861.06, + "probability": 0.9212 + }, + { + "start": 4866.9, + "end": 4869.54, + "probability": 0.7498 + }, + { + "start": 4871.08, + "end": 4872.76, + "probability": 0.9946 + }, + { + "start": 4873.54, + "end": 4880.56, + "probability": 0.9649 + }, + { + "start": 4881.56, + "end": 4882.4, + "probability": 0.6883 + }, + { + "start": 4883.64, + "end": 4885.48, + "probability": 0.9893 + }, + { + "start": 4888.92, + "end": 4889.02, + "probability": 0.3635 + }, + { + "start": 4889.64, + "end": 4891.68, + "probability": 0.7483 + }, + { + "start": 4892.6, + "end": 4893.04, + "probability": 0.2238 + }, + { + "start": 4893.28, + "end": 4893.84, + "probability": 0.7697 + }, + { + "start": 4893.98, + "end": 4894.88, + "probability": 0.9246 + }, + { + "start": 4896.74, + "end": 4897.56, + "probability": 0.9277 + }, + { + "start": 4897.62, + "end": 4898.52, + "probability": 0.645 + }, + { + "start": 4899.12, + "end": 4899.84, + "probability": 0.6129 + }, + { + "start": 4910.6, + "end": 4911.98, + "probability": 0.4619 + }, + { + "start": 4912.56, + "end": 4913.24, + "probability": 0.5909 + }, + { + "start": 4913.9, + "end": 4915.52, + "probability": 0.7502 + }, + { + "start": 4916.6, + "end": 4918.98, + "probability": 0.3528 + }, + { + "start": 4919.72, + "end": 4919.72, + "probability": 0.165 + }, + { + "start": 4919.78, + "end": 4920.6, + "probability": 0.938 + }, + { + "start": 4921.9, + "end": 4924.6, + "probability": 0.9478 + }, + { + "start": 4926.02, + "end": 4929.68, + "probability": 0.9883 + }, + { + "start": 4932.0, + "end": 4932.3, + "probability": 0.6176 + }, + { + "start": 4933.34, + "end": 4935.68, + "probability": 0.8711 + }, + { + "start": 4937.2, + "end": 4938.32, + "probability": 0.8983 + }, + { + "start": 4938.68, + "end": 4944.24, + "probability": 0.9548 + }, + { + "start": 4945.66, + "end": 4948.64, + "probability": 0.9896 + }, + { + "start": 4948.64, + "end": 4954.76, + "probability": 0.9431 + }, + { + "start": 4955.8, + "end": 4957.08, + "probability": 0.593 + }, + { + "start": 4958.92, + "end": 4960.94, + "probability": 0.9429 + }, + { + "start": 4963.14, + "end": 4969.1, + "probability": 0.7939 + }, + { + "start": 4969.84, + "end": 4971.18, + "probability": 0.9053 + }, + { + "start": 4972.34, + "end": 4973.98, + "probability": 0.7456 + }, + { + "start": 4975.34, + "end": 4978.48, + "probability": 0.9209 + }, + { + "start": 4979.16, + "end": 4981.28, + "probability": 0.9938 + }, + { + "start": 4981.42, + "end": 4982.02, + "probability": 0.8907 + }, + { + "start": 4982.16, + "end": 4985.98, + "probability": 0.9968 + }, + { + "start": 4986.8, + "end": 4988.0, + "probability": 0.7004 + }, + { + "start": 4988.88, + "end": 4991.38, + "probability": 0.9922 + }, + { + "start": 4991.42, + "end": 4993.78, + "probability": 0.5046 + }, + { + "start": 4993.94, + "end": 4996.72, + "probability": 0.994 + }, + { + "start": 4999.06, + "end": 4999.44, + "probability": 0.1628 + }, + { + "start": 4999.44, + "end": 5003.32, + "probability": 0.0419 + }, + { + "start": 5004.5, + "end": 5005.04, + "probability": 0.0079 + }, + { + "start": 5005.04, + "end": 5006.7, + "probability": 0.0186 + }, + { + "start": 5006.7, + "end": 5007.7, + "probability": 0.1237 + }, + { + "start": 5007.88, + "end": 5008.76, + "probability": 0.1308 + }, + { + "start": 5014.02, + "end": 5016.48, + "probability": 0.9137 + }, + { + "start": 5018.14, + "end": 5019.56, + "probability": 0.9469 + }, + { + "start": 5020.74, + "end": 5023.12, + "probability": 0.9312 + }, + { + "start": 5023.64, + "end": 5028.54, + "probability": 0.9858 + }, + { + "start": 5029.9, + "end": 5032.38, + "probability": 0.9885 + }, + { + "start": 5033.04, + "end": 5033.5, + "probability": 0.9016 + }, + { + "start": 5034.4, + "end": 5035.16, + "probability": 0.9816 + }, + { + "start": 5036.26, + "end": 5038.1, + "probability": 0.9871 + }, + { + "start": 5039.18, + "end": 5041.59, + "probability": 0.8795 + }, + { + "start": 5042.38, + "end": 5046.18, + "probability": 0.9765 + }, + { + "start": 5046.72, + "end": 5051.7, + "probability": 0.9945 + }, + { + "start": 5052.38, + "end": 5054.1, + "probability": 0.9258 + }, + { + "start": 5054.62, + "end": 5054.96, + "probability": 0.8469 + }, + { + "start": 5055.2, + "end": 5056.7, + "probability": 0.562 + }, + { + "start": 5057.98, + "end": 5059.26, + "probability": 0.6039 + }, + { + "start": 5059.38, + "end": 5063.5, + "probability": 0.9007 + }, + { + "start": 5067.38, + "end": 5069.46, + "probability": 0.6408 + }, + { + "start": 5077.1, + "end": 5077.22, + "probability": 0.3829 + }, + { + "start": 5077.28, + "end": 5081.54, + "probability": 0.9866 + }, + { + "start": 5082.72, + "end": 5085.38, + "probability": 0.9945 + }, + { + "start": 5086.16, + "end": 5088.67, + "probability": 0.9651 + }, + { + "start": 5089.44, + "end": 5089.92, + "probability": 0.8162 + }, + { + "start": 5090.0, + "end": 5090.74, + "probability": 0.9742 + }, + { + "start": 5090.86, + "end": 5094.3, + "probability": 0.9961 + }, + { + "start": 5094.3, + "end": 5097.56, + "probability": 0.9998 + }, + { + "start": 5098.08, + "end": 5100.84, + "probability": 0.9954 + }, + { + "start": 5100.94, + "end": 5101.76, + "probability": 0.4663 + }, + { + "start": 5101.76, + "end": 5104.24, + "probability": 0.7718 + }, + { + "start": 5104.32, + "end": 5105.62, + "probability": 0.9893 + }, + { + "start": 5106.58, + "end": 5107.92, + "probability": 0.9524 + }, + { + "start": 5112.24, + "end": 5117.5, + "probability": 0.8574 + }, + { + "start": 5117.5, + "end": 5121.5, + "probability": 0.9971 + }, + { + "start": 5121.92, + "end": 5124.86, + "probability": 0.9442 + }, + { + "start": 5125.06, + "end": 5126.14, + "probability": 0.9189 + }, + { + "start": 5126.22, + "end": 5127.84, + "probability": 0.869 + }, + { + "start": 5127.94, + "end": 5129.74, + "probability": 0.3006 + }, + { + "start": 5130.02, + "end": 5132.24, + "probability": 0.8972 + }, + { + "start": 5132.5, + "end": 5133.38, + "probability": 0.4789 + }, + { + "start": 5133.76, + "end": 5135.5, + "probability": 0.9479 + }, + { + "start": 5135.64, + "end": 5138.5, + "probability": 0.9694 + }, + { + "start": 5138.72, + "end": 5139.54, + "probability": 0.9082 + }, + { + "start": 5139.62, + "end": 5141.04, + "probability": 0.9819 + }, + { + "start": 5141.12, + "end": 5143.58, + "probability": 0.9819 + }, + { + "start": 5144.0, + "end": 5144.44, + "probability": 0.4121 + }, + { + "start": 5144.6, + "end": 5146.04, + "probability": 0.9028 + }, + { + "start": 5146.36, + "end": 5149.18, + "probability": 0.9824 + }, + { + "start": 5149.18, + "end": 5153.48, + "probability": 0.9963 + }, + { + "start": 5154.32, + "end": 5156.22, + "probability": 0.9385 + }, + { + "start": 5156.32, + "end": 5159.06, + "probability": 0.9894 + }, + { + "start": 5160.2, + "end": 5164.98, + "probability": 0.9152 + }, + { + "start": 5165.04, + "end": 5166.44, + "probability": 0.3752 + }, + { + "start": 5166.9, + "end": 5168.92, + "probability": 0.9819 + }, + { + "start": 5169.34, + "end": 5173.18, + "probability": 0.963 + }, + { + "start": 5173.4, + "end": 5176.58, + "probability": 0.9919 + }, + { + "start": 5176.96, + "end": 5178.28, + "probability": 0.8343 + }, + { + "start": 5178.6, + "end": 5179.52, + "probability": 0.8694 + }, + { + "start": 5179.68, + "end": 5180.66, + "probability": 0.9314 + }, + { + "start": 5180.8, + "end": 5184.8, + "probability": 0.9888 + }, + { + "start": 5185.08, + "end": 5189.14, + "probability": 0.8921 + }, + { + "start": 5189.68, + "end": 5191.76, + "probability": 0.9956 + }, + { + "start": 5192.06, + "end": 5195.98, + "probability": 0.9977 + }, + { + "start": 5196.16, + "end": 5198.76, + "probability": 0.9729 + }, + { + "start": 5198.98, + "end": 5201.08, + "probability": 0.9683 + }, + { + "start": 5201.46, + "end": 5204.56, + "probability": 0.9959 + }, + { + "start": 5204.74, + "end": 5206.28, + "probability": 0.998 + }, + { + "start": 5206.5, + "end": 5208.04, + "probability": 0.7701 + }, + { + "start": 5208.4, + "end": 5210.36, + "probability": 0.9916 + }, + { + "start": 5210.56, + "end": 5212.68, + "probability": 0.9886 + }, + { + "start": 5213.0, + "end": 5216.28, + "probability": 0.9293 + }, + { + "start": 5216.48, + "end": 5220.94, + "probability": 0.9888 + }, + { + "start": 5221.3, + "end": 5223.18, + "probability": 0.8272 + }, + { + "start": 5223.3, + "end": 5225.76, + "probability": 0.8908 + }, + { + "start": 5225.92, + "end": 5228.36, + "probability": 0.9956 + }, + { + "start": 5228.74, + "end": 5229.82, + "probability": 0.9217 + }, + { + "start": 5230.2, + "end": 5233.18, + "probability": 0.9722 + }, + { + "start": 5233.48, + "end": 5237.84, + "probability": 0.2555 + }, + { + "start": 5237.84, + "end": 5238.58, + "probability": 0.0113 + }, + { + "start": 5238.88, + "end": 5241.88, + "probability": 0.9621 + }, + { + "start": 5242.0, + "end": 5244.02, + "probability": 0.9865 + }, + { + "start": 5244.22, + "end": 5246.98, + "probability": 0.938 + }, + { + "start": 5247.32, + "end": 5249.64, + "probability": 0.9788 + }, + { + "start": 5249.64, + "end": 5253.04, + "probability": 0.9842 + }, + { + "start": 5253.38, + "end": 5253.94, + "probability": 0.7118 + }, + { + "start": 5254.18, + "end": 5255.42, + "probability": 0.7896 + }, + { + "start": 5255.78, + "end": 5258.32, + "probability": 0.9897 + }, + { + "start": 5258.58, + "end": 5260.46, + "probability": 0.9919 + }, + { + "start": 5260.72, + "end": 5263.98, + "probability": 0.9778 + }, + { + "start": 5264.32, + "end": 5265.24, + "probability": 0.7937 + }, + { + "start": 5265.4, + "end": 5268.08, + "probability": 0.996 + }, + { + "start": 5268.28, + "end": 5269.26, + "probability": 0.7379 + }, + { + "start": 5269.88, + "end": 5270.4, + "probability": 0.9019 + }, + { + "start": 5270.74, + "end": 5275.56, + "probability": 0.9709 + }, + { + "start": 5276.12, + "end": 5279.28, + "probability": 0.9498 + }, + { + "start": 5279.44, + "end": 5279.7, + "probability": 0.4434 + }, + { + "start": 5280.1, + "end": 5282.3, + "probability": 0.6977 + }, + { + "start": 5282.6, + "end": 5286.16, + "probability": 0.797 + }, + { + "start": 5287.28, + "end": 5288.6, + "probability": 0.8698 + }, + { + "start": 5288.8, + "end": 5291.26, + "probability": 0.9946 + }, + { + "start": 5292.0, + "end": 5292.78, + "probability": 0.9441 + }, + { + "start": 5307.76, + "end": 5308.4, + "probability": 0.5633 + }, + { + "start": 5308.48, + "end": 5309.36, + "probability": 0.5771 + }, + { + "start": 5328.92, + "end": 5329.8, + "probability": 0.6944 + }, + { + "start": 5333.66, + "end": 5334.72, + "probability": 0.5078 + }, + { + "start": 5339.78, + "end": 5341.84, + "probability": 0.6144 + }, + { + "start": 5343.32, + "end": 5344.48, + "probability": 0.7695 + }, + { + "start": 5344.8, + "end": 5347.86, + "probability": 0.9602 + }, + { + "start": 5348.2, + "end": 5349.0, + "probability": 0.3117 + }, + { + "start": 5350.12, + "end": 5352.04, + "probability": 0.8269 + }, + { + "start": 5352.26, + "end": 5353.47, + "probability": 0.9785 + }, + { + "start": 5354.18, + "end": 5356.28, + "probability": 0.893 + }, + { + "start": 5356.34, + "end": 5358.08, + "probability": 0.8881 + }, + { + "start": 5358.16, + "end": 5359.0, + "probability": 0.8543 + }, + { + "start": 5359.38, + "end": 5361.6, + "probability": 0.0497 + }, + { + "start": 5372.16, + "end": 5373.16, + "probability": 0.8046 + }, + { + "start": 5374.66, + "end": 5376.48, + "probability": 0.7528 + }, + { + "start": 5376.6, + "end": 5377.16, + "probability": 0.9377 + }, + { + "start": 5377.34, + "end": 5378.58, + "probability": 0.9715 + }, + { + "start": 5378.8, + "end": 5379.44, + "probability": 0.7421 + }, + { + "start": 5379.44, + "end": 5380.32, + "probability": 0.8391 + }, + { + "start": 5380.72, + "end": 5383.84, + "probability": 0.9345 + }, + { + "start": 5385.12, + "end": 5388.12, + "probability": 0.9838 + }, + { + "start": 5389.22, + "end": 5391.08, + "probability": 0.9129 + }, + { + "start": 5391.38, + "end": 5395.64, + "probability": 0.9473 + }, + { + "start": 5397.14, + "end": 5398.08, + "probability": 0.3032 + }, + { + "start": 5399.02, + "end": 5401.36, + "probability": 0.9815 + }, + { + "start": 5401.42, + "end": 5402.26, + "probability": 0.6703 + }, + { + "start": 5402.48, + "end": 5402.88, + "probability": 0.4646 + }, + { + "start": 5403.68, + "end": 5405.5, + "probability": 0.6397 + }, + { + "start": 5405.5, + "end": 5407.78, + "probability": 0.9329 + }, + { + "start": 5408.22, + "end": 5408.9, + "probability": 0.9801 + }, + { + "start": 5410.82, + "end": 5411.14, + "probability": 0.0036 + }, + { + "start": 5411.14, + "end": 5412.0, + "probability": 0.6857 + }, + { + "start": 5412.0, + "end": 5414.19, + "probability": 0.8882 + }, + { + "start": 5414.56, + "end": 5415.76, + "probability": 0.1535 + }, + { + "start": 5416.7, + "end": 5416.88, + "probability": 0.1123 + }, + { + "start": 5417.12, + "end": 5417.85, + "probability": 0.6382 + }, + { + "start": 5418.12, + "end": 5422.24, + "probability": 0.5972 + }, + { + "start": 5422.26, + "end": 5423.72, + "probability": 0.7857 + }, + { + "start": 5426.96, + "end": 5427.54, + "probability": 0.9331 + }, + { + "start": 5427.62, + "end": 5428.43, + "probability": 0.9144 + }, + { + "start": 5428.5, + "end": 5428.9, + "probability": 0.8707 + }, + { + "start": 5428.92, + "end": 5429.58, + "probability": 0.8385 + }, + { + "start": 5429.68, + "end": 5431.44, + "probability": 0.6676 + }, + { + "start": 5431.56, + "end": 5434.42, + "probability": 0.9102 + }, + { + "start": 5434.48, + "end": 5436.28, + "probability": 0.9785 + }, + { + "start": 5436.46, + "end": 5440.92, + "probability": 0.8429 + }, + { + "start": 5442.2, + "end": 5448.58, + "probability": 0.9625 + }, + { + "start": 5448.76, + "end": 5450.52, + "probability": 0.8032 + }, + { + "start": 5451.0, + "end": 5451.68, + "probability": 0.5745 + }, + { + "start": 5451.7, + "end": 5452.47, + "probability": 0.8257 + }, + { + "start": 5453.12, + "end": 5453.98, + "probability": 0.1941 + }, + { + "start": 5455.6, + "end": 5456.64, + "probability": 0.7798 + }, + { + "start": 5456.64, + "end": 5456.64, + "probability": 0.8032 + }, + { + "start": 5456.74, + "end": 5460.57, + "probability": 0.9817 + }, + { + "start": 5461.64, + "end": 5464.1, + "probability": 0.9946 + }, + { + "start": 5465.82, + "end": 5467.68, + "probability": 0.7984 + }, + { + "start": 5469.66, + "end": 5472.74, + "probability": 0.9402 + }, + { + "start": 5473.5, + "end": 5476.18, + "probability": 0.9968 + }, + { + "start": 5476.18, + "end": 5480.26, + "probability": 0.9937 + }, + { + "start": 5480.84, + "end": 5483.36, + "probability": 0.9368 + }, + { + "start": 5484.04, + "end": 5486.22, + "probability": 0.9404 + }, + { + "start": 5486.92, + "end": 5489.66, + "probability": 0.9939 + }, + { + "start": 5489.88, + "end": 5492.11, + "probability": 0.7586 + }, + { + "start": 5493.16, + "end": 5497.6, + "probability": 0.9972 + }, + { + "start": 5497.6, + "end": 5502.24, + "probability": 0.9965 + }, + { + "start": 5502.58, + "end": 5506.8, + "probability": 0.9876 + }, + { + "start": 5507.6, + "end": 5508.06, + "probability": 0.3823 + }, + { + "start": 5508.24, + "end": 5508.6, + "probability": 0.8734 + }, + { + "start": 5508.66, + "end": 5511.8, + "probability": 0.9963 + }, + { + "start": 5511.9, + "end": 5513.4, + "probability": 0.9167 + }, + { + "start": 5514.74, + "end": 5517.46, + "probability": 0.8738 + }, + { + "start": 5517.52, + "end": 5519.6, + "probability": 0.9766 + }, + { + "start": 5519.68, + "end": 5524.4, + "probability": 0.992 + }, + { + "start": 5525.08, + "end": 5530.56, + "probability": 0.9988 + }, + { + "start": 5531.44, + "end": 5535.62, + "probability": 0.9975 + }, + { + "start": 5535.82, + "end": 5536.32, + "probability": 0.8345 + }, + { + "start": 5536.36, + "end": 5537.02, + "probability": 0.8741 + }, + { + "start": 5537.66, + "end": 5539.06, + "probability": 0.6591 + }, + { + "start": 5539.12, + "end": 5545.62, + "probability": 0.9359 + }, + { + "start": 5545.62, + "end": 5549.5, + "probability": 0.9923 + }, + { + "start": 5550.0, + "end": 5555.02, + "probability": 0.9963 + }, + { + "start": 5555.02, + "end": 5563.66, + "probability": 0.9907 + }, + { + "start": 5563.84, + "end": 5569.22, + "probability": 0.9287 + }, + { + "start": 5569.36, + "end": 5577.04, + "probability": 0.9976 + }, + { + "start": 5577.64, + "end": 5581.64, + "probability": 0.988 + }, + { + "start": 5582.1, + "end": 5585.82, + "probability": 0.9985 + }, + { + "start": 5586.32, + "end": 5589.04, + "probability": 0.8638 + }, + { + "start": 5589.68, + "end": 5591.7, + "probability": 0.9523 + }, + { + "start": 5592.48, + "end": 5598.1, + "probability": 0.9832 + }, + { + "start": 5599.82, + "end": 5600.1, + "probability": 0.7729 + }, + { + "start": 5600.7, + "end": 5602.66, + "probability": 0.7796 + }, + { + "start": 5602.8, + "end": 5604.0, + "probability": 0.7903 + }, + { + "start": 5605.32, + "end": 5611.56, + "probability": 0.838 + }, + { + "start": 5611.6, + "end": 5616.42, + "probability": 0.9731 + }, + { + "start": 5617.3, + "end": 5621.24, + "probability": 0.8411 + }, + { + "start": 5622.6, + "end": 5624.74, + "probability": 0.6404 + }, + { + "start": 5624.8, + "end": 5625.48, + "probability": 0.7607 + }, + { + "start": 5648.98, + "end": 5650.26, + "probability": 0.1627 + }, + { + "start": 5650.26, + "end": 5655.42, + "probability": 0.0891 + }, + { + "start": 5656.88, + "end": 5657.56, + "probability": 0.029 + }, + { + "start": 5657.56, + "end": 5658.9, + "probability": 0.198 + }, + { + "start": 5664.0, + "end": 5666.7, + "probability": 0.0677 + }, + { + "start": 5666.7, + "end": 5666.98, + "probability": 0.2579 + }, + { + "start": 5668.34, + "end": 5671.3, + "probability": 0.0522 + }, + { + "start": 5672.28, + "end": 5674.02, + "probability": 0.1929 + }, + { + "start": 5674.02, + "end": 5674.82, + "probability": 0.2697 + }, + { + "start": 5674.82, + "end": 5680.06, + "probability": 0.0626 + }, + { + "start": 5689.1, + "end": 5690.94, + "probability": 0.1483 + }, + { + "start": 5693.08, + "end": 5695.3, + "probability": 0.0723 + }, + { + "start": 5695.3, + "end": 5695.42, + "probability": 0.0579 + }, + { + "start": 5695.42, + "end": 5695.96, + "probability": 0.0771 + }, + { + "start": 5697.04, + "end": 5697.4, + "probability": 0.5938 + }, + { + "start": 5742.0, + "end": 5742.0, + "probability": 0.0 + }, + { + "start": 5742.0, + "end": 5742.0, + "probability": 0.0 + }, + { + "start": 5742.0, + "end": 5742.0, + "probability": 0.0 + }, + { + "start": 5742.0, + "end": 5742.0, + "probability": 0.0 + }, + { + "start": 5742.0, + "end": 5742.0, + "probability": 0.0 + }, + { + "start": 5742.0, + "end": 5742.0, + "probability": 0.0 + }, + { + "start": 5742.0, + "end": 5742.0, + "probability": 0.0 + }, + { + "start": 5742.0, + "end": 5742.0, + "probability": 0.0 + }, + { + "start": 5742.0, + "end": 5742.0, + "probability": 0.0 + }, + { + "start": 5742.0, + "end": 5742.0, + "probability": 0.0 + }, + { + "start": 5742.0, + "end": 5742.0, + "probability": 0.0 + }, + { + "start": 5742.0, + "end": 5742.0, + "probability": 0.0 + }, + { + "start": 5742.0, + "end": 5742.0, + "probability": 0.0 + }, + { + "start": 5745.26, + "end": 5745.92, + "probability": 0.1478 + }, + { + "start": 5747.46, + "end": 5749.42, + "probability": 0.0691 + }, + { + "start": 5754.26, + "end": 5754.36, + "probability": 0.0248 + }, + { + "start": 5754.36, + "end": 5756.66, + "probability": 0.7151 + }, + { + "start": 5757.3, + "end": 5758.52, + "probability": 0.0854 + }, + { + "start": 5759.74, + "end": 5762.98, + "probability": 0.2944 + }, + { + "start": 5762.98, + "end": 5764.28, + "probability": 0.3278 + }, + { + "start": 5767.4, + "end": 5770.46, + "probability": 0.9299 + }, + { + "start": 5862.0, + "end": 5862.0, + "probability": 0.0 + }, + { + "start": 5862.0, + "end": 5862.0, + "probability": 0.0 + }, + { + "start": 5862.0, + "end": 5862.0, + "probability": 0.0 + }, + { + "start": 5862.0, + "end": 5862.0, + "probability": 0.0 + }, + { + "start": 5862.0, + "end": 5862.0, + "probability": 0.0 + }, + { + "start": 5862.0, + "end": 5862.0, + "probability": 0.0 + }, + { + "start": 5862.0, + "end": 5862.0, + "probability": 0.0 + }, + { + "start": 5862.0, + "end": 5862.0, + "probability": 0.0 + }, + { + "start": 5862.0, + "end": 5862.0, + "probability": 0.0 + }, + { + "start": 5862.0, + "end": 5862.0, + "probability": 0.0 + }, + { + "start": 5862.0, + "end": 5862.0, + "probability": 0.0 + }, + { + "start": 5862.0, + "end": 5862.0, + "probability": 0.0 + }, + { + "start": 5862.0, + "end": 5862.0, + "probability": 0.0 + }, + { + "start": 5862.0, + "end": 5862.0, + "probability": 0.0 + }, + { + "start": 5862.0, + "end": 5862.0, + "probability": 0.0 + }, + { + "start": 5862.0, + "end": 5862.0, + "probability": 0.0 + }, + { + "start": 5862.0, + "end": 5862.0, + "probability": 0.0 + }, + { + "start": 5862.0, + "end": 5862.0, + "probability": 0.0 + }, + { + "start": 5862.0, + "end": 5862.0, + "probability": 0.0 + }, + { + "start": 5862.0, + "end": 5862.0, + "probability": 0.0 + }, + { + "start": 5862.0, + "end": 5862.0, + "probability": 0.0 + }, + { + "start": 5862.0, + "end": 5862.0, + "probability": 0.0 + }, + { + "start": 5862.0, + "end": 5862.0, + "probability": 0.0 + }, + { + "start": 5862.0, + "end": 5862.0, + "probability": 0.0 + }, + { + "start": 5862.0, + "end": 5862.0, + "probability": 0.0 + }, + { + "start": 5862.0, + "end": 5862.0, + "probability": 0.0 + }, + { + "start": 5862.0, + "end": 5862.0, + "probability": 0.0 + }, + { + "start": 5862.0, + "end": 5862.0, + "probability": 0.0 + }, + { + "start": 5862.0, + "end": 5862.0, + "probability": 0.0 + }, + { + "start": 5862.0, + "end": 5862.0, + "probability": 0.0 + }, + { + "start": 5915.66, + "end": 5919.64, + "probability": 0.3966 + }, + { + "start": 5924.54, + "end": 5925.38, + "probability": 0.1004 + }, + { + "start": 5925.4, + "end": 5926.48, + "probability": 0.0364 + }, + { + "start": 5927.46, + "end": 5929.96, + "probability": 0.0377 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.0, + "end": 5997.0, + "probability": 0.0 + }, + { + "start": 5997.14, + "end": 5998.18, + "probability": 0.7791 + }, + { + "start": 5999.18, + "end": 6004.12, + "probability": 0.9963 + }, + { + "start": 6004.66, + "end": 6011.28, + "probability": 0.9977 + }, + { + "start": 6011.8, + "end": 6020.62, + "probability": 0.9894 + }, + { + "start": 6021.14, + "end": 6025.56, + "probability": 0.868 + }, + { + "start": 6025.78, + "end": 6027.02, + "probability": 0.2872 + }, + { + "start": 6028.04, + "end": 6029.52, + "probability": 0.1667 + }, + { + "start": 6030.14, + "end": 6034.46, + "probability": 0.541 + }, + { + "start": 6035.02, + "end": 6038.16, + "probability": 0.9867 + }, + { + "start": 6038.2, + "end": 6043.22, + "probability": 0.9972 + }, + { + "start": 6043.76, + "end": 6044.56, + "probability": 0.7492 + }, + { + "start": 6044.74, + "end": 6048.6, + "probability": 0.9546 + }, + { + "start": 6048.66, + "end": 6053.48, + "probability": 0.9641 + }, + { + "start": 6053.66, + "end": 6054.3, + "probability": 0.7477 + }, + { + "start": 6054.9, + "end": 6060.4, + "probability": 0.9979 + }, + { + "start": 6060.66, + "end": 6062.92, + "probability": 0.9888 + }, + { + "start": 6063.42, + "end": 6066.32, + "probability": 0.9969 + }, + { + "start": 6066.72, + "end": 6069.58, + "probability": 0.9893 + }, + { + "start": 6070.18, + "end": 6073.57, + "probability": 0.9817 + }, + { + "start": 6073.72, + "end": 6076.32, + "probability": 0.9965 + }, + { + "start": 6077.26, + "end": 6079.4, + "probability": 0.9895 + }, + { + "start": 6079.46, + "end": 6084.24, + "probability": 0.9203 + }, + { + "start": 6084.78, + "end": 6089.02, + "probability": 0.9918 + }, + { + "start": 6089.68, + "end": 6093.38, + "probability": 0.9694 + }, + { + "start": 6093.86, + "end": 6095.1, + "probability": 0.9079 + }, + { + "start": 6095.52, + "end": 6099.2, + "probability": 0.9961 + }, + { + "start": 6099.68, + "end": 6102.76, + "probability": 0.9862 + }, + { + "start": 6103.26, + "end": 6104.82, + "probability": 0.9897 + }, + { + "start": 6104.9, + "end": 6107.8, + "probability": 0.8948 + }, + { + "start": 6108.22, + "end": 6111.1, + "probability": 0.7597 + }, + { + "start": 6111.56, + "end": 6113.58, + "probability": 0.9945 + }, + { + "start": 6114.12, + "end": 6116.04, + "probability": 0.9866 + }, + { + "start": 6116.2, + "end": 6125.08, + "probability": 0.9263 + }, + { + "start": 6125.74, + "end": 6130.14, + "probability": 0.9032 + }, + { + "start": 6130.14, + "end": 6133.76, + "probability": 0.9948 + }, + { + "start": 6134.32, + "end": 6139.02, + "probability": 0.9512 + }, + { + "start": 6139.14, + "end": 6139.52, + "probability": 0.5336 + }, + { + "start": 6139.58, + "end": 6141.26, + "probability": 0.8314 + }, + { + "start": 6141.78, + "end": 6144.84, + "probability": 0.8238 + }, + { + "start": 6145.34, + "end": 6151.24, + "probability": 0.9624 + }, + { + "start": 6154.86, + "end": 6156.24, + "probability": 0.7432 + }, + { + "start": 6156.62, + "end": 6157.58, + "probability": 0.1424 + }, + { + "start": 6158.28, + "end": 6160.68, + "probability": 0.8206 + }, + { + "start": 6161.64, + "end": 6162.39, + "probability": 0.2734 + }, + { + "start": 6163.3, + "end": 6166.12, + "probability": 0.8473 + }, + { + "start": 6166.48, + "end": 6167.18, + "probability": 0.2203 + }, + { + "start": 6167.32, + "end": 6171.28, + "probability": 0.1549 + }, + { + "start": 6171.72, + "end": 6173.14, + "probability": 0.0253 + }, + { + "start": 6173.16, + "end": 6174.98, + "probability": 0.9539 + }, + { + "start": 6175.2, + "end": 6177.66, + "probability": 0.6765 + }, + { + "start": 6177.8, + "end": 6180.06, + "probability": 0.0598 + }, + { + "start": 6180.06, + "end": 6185.4, + "probability": 0.9688 + }, + { + "start": 6185.4, + "end": 6187.14, + "probability": 0.9594 + }, + { + "start": 6187.16, + "end": 6189.2, + "probability": 0.9792 + }, + { + "start": 6189.32, + "end": 6190.08, + "probability": 0.5548 + }, + { + "start": 6190.74, + "end": 6192.52, + "probability": 0.9769 + }, + { + "start": 6194.12, + "end": 6198.84, + "probability": 0.6144 + }, + { + "start": 6199.6, + "end": 6206.1, + "probability": 0.9953 + }, + { + "start": 6206.92, + "end": 6211.0, + "probability": 0.9978 + }, + { + "start": 6211.64, + "end": 6212.26, + "probability": 0.5696 + }, + { + "start": 6212.38, + "end": 6213.8, + "probability": 0.8093 + }, + { + "start": 6214.12, + "end": 6214.92, + "probability": 0.6327 + }, + { + "start": 6214.98, + "end": 6218.55, + "probability": 0.9351 + }, + { + "start": 6219.56, + "end": 6221.84, + "probability": 0.9308 + }, + { + "start": 6221.88, + "end": 6227.5, + "probability": 0.9086 + }, + { + "start": 6227.68, + "end": 6229.52, + "probability": 0.8273 + }, + { + "start": 6232.54, + "end": 6236.74, + "probability": 0.6574 + }, + { + "start": 6236.88, + "end": 6239.7, + "probability": 0.6273 + }, + { + "start": 6240.22, + "end": 6245.88, + "probability": 0.9583 + }, + { + "start": 6246.14, + "end": 6248.26, + "probability": 0.9976 + }, + { + "start": 6248.34, + "end": 6249.8, + "probability": 0.9959 + }, + { + "start": 6250.38, + "end": 6252.09, + "probability": 0.9941 + }, + { + "start": 6252.6, + "end": 6253.46, + "probability": 0.5444 + }, + { + "start": 6253.52, + "end": 6255.62, + "probability": 0.9616 + }, + { + "start": 6256.38, + "end": 6257.73, + "probability": 0.8284 + }, + { + "start": 6258.0, + "end": 6261.14, + "probability": 0.8539 + }, + { + "start": 6261.44, + "end": 6266.21, + "probability": 0.9899 + }, + { + "start": 6266.98, + "end": 6268.78, + "probability": 0.9959 + }, + { + "start": 6269.26, + "end": 6273.52, + "probability": 0.9137 + }, + { + "start": 6273.78, + "end": 6274.94, + "probability": 0.9398 + }, + { + "start": 6275.18, + "end": 6275.9, + "probability": 0.8026 + }, + { + "start": 6276.2, + "end": 6279.56, + "probability": 0.9834 + }, + { + "start": 6279.76, + "end": 6282.64, + "probability": 0.9256 + }, + { + "start": 6284.6, + "end": 6285.48, + "probability": 0.653 + }, + { + "start": 6285.58, + "end": 6288.54, + "probability": 0.9876 + }, + { + "start": 6289.28, + "end": 6291.7, + "probability": 0.8663 + }, + { + "start": 6291.82, + "end": 6293.6, + "probability": 0.7532 + }, + { + "start": 6293.62, + "end": 6298.68, + "probability": 0.4122 + }, + { + "start": 6300.16, + "end": 6301.04, + "probability": 0.618 + }, + { + "start": 6305.9, + "end": 6307.98, + "probability": 0.614 + }, + { + "start": 6308.1, + "end": 6309.36, + "probability": 0.6009 + }, + { + "start": 6309.92, + "end": 6312.92, + "probability": 0.7468 + }, + { + "start": 6336.74, + "end": 6337.4, + "probability": 0.5348 + }, + { + "start": 6337.78, + "end": 6340.08, + "probability": 0.6082 + }, + { + "start": 6341.36, + "end": 6345.46, + "probability": 0.8175 + }, + { + "start": 6345.46, + "end": 6348.26, + "probability": 0.9968 + }, + { + "start": 6349.16, + "end": 6352.8, + "probability": 0.9829 + }, + { + "start": 6352.8, + "end": 6355.92, + "probability": 0.9962 + }, + { + "start": 6356.5, + "end": 6360.8, + "probability": 0.9834 + }, + { + "start": 6361.24, + "end": 6364.08, + "probability": 0.9957 + }, + { + "start": 6364.46, + "end": 6367.88, + "probability": 0.9956 + }, + { + "start": 6368.18, + "end": 6373.64, + "probability": 0.9639 + }, + { + "start": 6373.64, + "end": 6378.5, + "probability": 0.9991 + }, + { + "start": 6379.32, + "end": 6379.42, + "probability": 0.4611 + }, + { + "start": 6380.04, + "end": 6382.6, + "probability": 0.9743 + }, + { + "start": 6383.14, + "end": 6386.1, + "probability": 0.9578 + }, + { + "start": 6387.16, + "end": 6389.26, + "probability": 0.9785 + }, + { + "start": 6389.82, + "end": 6391.96, + "probability": 0.9301 + }, + { + "start": 6392.44, + "end": 6395.26, + "probability": 0.9905 + }, + { + "start": 6395.66, + "end": 6396.48, + "probability": 0.887 + }, + { + "start": 6396.56, + "end": 6399.32, + "probability": 0.9782 + }, + { + "start": 6399.32, + "end": 6402.74, + "probability": 0.999 + }, + { + "start": 6403.54, + "end": 6407.36, + "probability": 0.9975 + }, + { + "start": 6407.8, + "end": 6408.46, + "probability": 0.8288 + }, + { + "start": 6408.58, + "end": 6410.7, + "probability": 0.9902 + }, + { + "start": 6411.12, + "end": 6412.4, + "probability": 0.9697 + }, + { + "start": 6413.42, + "end": 6414.64, + "probability": 0.8828 + }, + { + "start": 6415.14, + "end": 6418.06, + "probability": 0.9757 + }, + { + "start": 6418.5, + "end": 6419.66, + "probability": 0.9943 + }, + { + "start": 6420.3, + "end": 6421.18, + "probability": 0.5491 + }, + { + "start": 6421.58, + "end": 6429.22, + "probability": 0.9857 + }, + { + "start": 6429.6, + "end": 6433.98, + "probability": 0.9917 + }, + { + "start": 6433.98, + "end": 6438.34, + "probability": 0.9984 + }, + { + "start": 6443.2, + "end": 6444.53, + "probability": 0.9736 + }, + { + "start": 6444.68, + "end": 6447.04, + "probability": 0.6895 + }, + { + "start": 6448.68, + "end": 6451.08, + "probability": 0.9001 + }, + { + "start": 6454.9, + "end": 6455.3, + "probability": 0.4789 + }, + { + "start": 6455.38, + "end": 6456.58, + "probability": 0.8392 + }, + { + "start": 6456.68, + "end": 6460.26, + "probability": 0.9966 + }, + { + "start": 6461.2, + "end": 6463.42, + "probability": 0.9751 + }, + { + "start": 6464.2, + "end": 6466.94, + "probability": 0.6381 + }, + { + "start": 6467.9, + "end": 6473.54, + "probability": 0.884 + }, + { + "start": 6474.1, + "end": 6476.34, + "probability": 0.9497 + }, + { + "start": 6476.94, + "end": 6479.44, + "probability": 0.9932 + }, + { + "start": 6480.0, + "end": 6483.05, + "probability": 0.9886 + }, + { + "start": 6483.44, + "end": 6487.28, + "probability": 0.9518 + }, + { + "start": 6487.44, + "end": 6488.96, + "probability": 0.9335 + }, + { + "start": 6489.6, + "end": 6495.96, + "probability": 0.9948 + }, + { + "start": 6500.34, + "end": 6507.02, + "probability": 0.9728 + }, + { + "start": 6507.62, + "end": 6510.64, + "probability": 0.9966 + }, + { + "start": 6511.24, + "end": 6513.4, + "probability": 0.9367 + }, + { + "start": 6515.22, + "end": 6519.86, + "probability": 0.9736 + }, + { + "start": 6520.66, + "end": 6521.78, + "probability": 0.8362 + }, + { + "start": 6522.3, + "end": 6524.52, + "probability": 0.9885 + }, + { + "start": 6525.06, + "end": 6527.56, + "probability": 0.98 + }, + { + "start": 6528.4, + "end": 6531.66, + "probability": 0.9824 + }, + { + "start": 6531.66, + "end": 6535.24, + "probability": 0.9974 + }, + { + "start": 6536.12, + "end": 6536.58, + "probability": 0.7136 + }, + { + "start": 6536.68, + "end": 6537.84, + "probability": 0.5885 + }, + { + "start": 6538.3, + "end": 6544.04, + "probability": 0.9746 + }, + { + "start": 6544.78, + "end": 6549.3, + "probability": 0.9974 + }, + { + "start": 6550.0, + "end": 6552.14, + "probability": 0.9443 + }, + { + "start": 6552.6, + "end": 6554.66, + "probability": 0.9906 + }, + { + "start": 6555.0, + "end": 6557.24, + "probability": 0.9398 + }, + { + "start": 6558.78, + "end": 6561.32, + "probability": 0.9133 + }, + { + "start": 6564.04, + "end": 6567.3, + "probability": 0.9895 + }, + { + "start": 6567.3, + "end": 6570.96, + "probability": 0.9875 + }, + { + "start": 6570.96, + "end": 6571.56, + "probability": 0.6895 + }, + { + "start": 6571.86, + "end": 6572.66, + "probability": 0.4452 + }, + { + "start": 6572.66, + "end": 6572.66, + "probability": 0.2462 + }, + { + "start": 6572.66, + "end": 6573.7, + "probability": 0.8399 + }, + { + "start": 6573.74, + "end": 6577.18, + "probability": 0.8118 + }, + { + "start": 6578.52, + "end": 6581.84, + "probability": 0.9049 + }, + { + "start": 6585.12, + "end": 6589.6, + "probability": 0.9962 + }, + { + "start": 6589.7, + "end": 6596.4, + "probability": 0.9976 + }, + { + "start": 6596.86, + "end": 6599.28, + "probability": 0.9884 + }, + { + "start": 6600.02, + "end": 6603.0, + "probability": 0.9894 + }, + { + "start": 6603.48, + "end": 6608.24, + "probability": 0.9778 + }, + { + "start": 6608.76, + "end": 6615.06, + "probability": 0.7772 + }, + { + "start": 6615.06, + "end": 6620.5, + "probability": 0.968 + }, + { + "start": 6621.2, + "end": 6622.0, + "probability": 0.7808 + }, + { + "start": 6622.06, + "end": 6622.72, + "probability": 0.9058 + }, + { + "start": 6623.14, + "end": 6625.64, + "probability": 0.9827 + }, + { + "start": 6626.24, + "end": 6629.24, + "probability": 0.9951 + }, + { + "start": 6629.6, + "end": 6630.92, + "probability": 0.838 + }, + { + "start": 6631.32, + "end": 6636.88, + "probability": 0.9968 + }, + { + "start": 6637.46, + "end": 6643.4, + "probability": 0.9888 + }, + { + "start": 6644.04, + "end": 6647.3, + "probability": 0.9943 + }, + { + "start": 6647.74, + "end": 6652.1, + "probability": 0.9966 + }, + { + "start": 6652.1, + "end": 6656.56, + "probability": 0.9928 + }, + { + "start": 6657.0, + "end": 6658.92, + "probability": 0.9805 + }, + { + "start": 6659.42, + "end": 6661.18, + "probability": 0.9979 + }, + { + "start": 6661.86, + "end": 6663.58, + "probability": 0.9982 + }, + { + "start": 6664.14, + "end": 6668.4, + "probability": 0.9965 + }, + { + "start": 6668.92, + "end": 6669.98, + "probability": 0.8656 + }, + { + "start": 6670.86, + "end": 6673.8, + "probability": 0.9617 + }, + { + "start": 6673.88, + "end": 6675.05, + "probability": 0.8935 + }, + { + "start": 6675.56, + "end": 6680.04, + "probability": 0.8739 + }, + { + "start": 6680.62, + "end": 6683.06, + "probability": 0.9855 + }, + { + "start": 6683.18, + "end": 6683.96, + "probability": 0.7947 + }, + { + "start": 6684.34, + "end": 6685.06, + "probability": 0.9327 + }, + { + "start": 6685.68, + "end": 6687.06, + "probability": 0.8939 + }, + { + "start": 6687.58, + "end": 6692.16, + "probability": 0.9893 + }, + { + "start": 6692.58, + "end": 6697.22, + "probability": 0.9929 + }, + { + "start": 6697.78, + "end": 6699.24, + "probability": 0.7798 + }, + { + "start": 6699.64, + "end": 6703.22, + "probability": 0.9823 + }, + { + "start": 6703.66, + "end": 6705.74, + "probability": 0.8027 + }, + { + "start": 6706.3, + "end": 6707.84, + "probability": 0.8828 + }, + { + "start": 6708.22, + "end": 6712.76, + "probability": 0.9963 + }, + { + "start": 6713.16, + "end": 6714.04, + "probability": 0.87 + }, + { + "start": 6714.4, + "end": 6719.28, + "probability": 0.9917 + }, + { + "start": 6719.68, + "end": 6720.76, + "probability": 0.5381 + }, + { + "start": 6721.16, + "end": 6724.48, + "probability": 0.9575 + }, + { + "start": 6724.88, + "end": 6729.98, + "probability": 0.9954 + }, + { + "start": 6730.72, + "end": 6736.64, + "probability": 0.9653 + }, + { + "start": 6737.0, + "end": 6740.26, + "probability": 0.9963 + }, + { + "start": 6740.7, + "end": 6741.64, + "probability": 0.8576 + }, + { + "start": 6742.1, + "end": 6748.38, + "probability": 0.9961 + }, + { + "start": 6748.62, + "end": 6752.04, + "probability": 0.9503 + }, + { + "start": 6753.0, + "end": 6753.92, + "probability": 0.9867 + }, + { + "start": 6754.04, + "end": 6755.92, + "probability": 0.9349 + }, + { + "start": 6756.24, + "end": 6758.0, + "probability": 0.9974 + }, + { + "start": 6758.52, + "end": 6761.82, + "probability": 0.9686 + }, + { + "start": 6762.18, + "end": 6763.18, + "probability": 0.9722 + }, + { + "start": 6764.1, + "end": 6766.48, + "probability": 0.9766 + }, + { + "start": 6766.9, + "end": 6768.66, + "probability": 0.9965 + }, + { + "start": 6769.58, + "end": 6771.18, + "probability": 0.9665 + }, + { + "start": 6772.32, + "end": 6773.57, + "probability": 0.8601 + }, + { + "start": 6774.04, + "end": 6777.88, + "probability": 0.994 + }, + { + "start": 6777.88, + "end": 6782.22, + "probability": 0.9699 + }, + { + "start": 6782.7, + "end": 6785.7, + "probability": 0.9939 + }, + { + "start": 6786.36, + "end": 6790.46, + "probability": 0.9838 + }, + { + "start": 6790.58, + "end": 6791.53, + "probability": 0.9473 + }, + { + "start": 6791.96, + "end": 6793.14, + "probability": 0.9611 + }, + { + "start": 6793.86, + "end": 6795.64, + "probability": 0.7855 + }, + { + "start": 6795.96, + "end": 6798.58, + "probability": 0.9623 + }, + { + "start": 6798.72, + "end": 6800.28, + "probability": 0.8789 + }, + { + "start": 6800.38, + "end": 6803.36, + "probability": 0.1794 + }, + { + "start": 6803.42, + "end": 6803.42, + "probability": 0.0232 + }, + { + "start": 6804.14, + "end": 6804.14, + "probability": 0.6144 + }, + { + "start": 6804.14, + "end": 6807.27, + "probability": 0.4763 + }, + { + "start": 6807.64, + "end": 6810.66, + "probability": 0.7598 + }, + { + "start": 6813.9, + "end": 6816.08, + "probability": 0.7873 + }, + { + "start": 6828.02, + "end": 6831.04, + "probability": 0.7406 + }, + { + "start": 6832.26, + "end": 6833.5, + "probability": 0.828 + }, + { + "start": 6833.9, + "end": 6840.22, + "probability": 0.9842 + }, + { + "start": 6841.06, + "end": 6847.68, + "probability": 0.9951 + }, + { + "start": 6848.5, + "end": 6851.32, + "probability": 0.994 + }, + { + "start": 6852.08, + "end": 6853.24, + "probability": 0.662 + }, + { + "start": 6853.34, + "end": 6859.42, + "probability": 0.991 + }, + { + "start": 6860.12, + "end": 6861.32, + "probability": 0.9425 + }, + { + "start": 6862.44, + "end": 6865.0, + "probability": 0.8893 + }, + { + "start": 6865.78, + "end": 6868.52, + "probability": 0.8345 + }, + { + "start": 6869.18, + "end": 6872.42, + "probability": 0.9362 + }, + { + "start": 6873.74, + "end": 6875.54, + "probability": 0.9923 + }, + { + "start": 6875.9, + "end": 6878.62, + "probability": 0.973 + }, + { + "start": 6879.14, + "end": 6880.92, + "probability": 0.9189 + }, + { + "start": 6881.9, + "end": 6883.42, + "probability": 0.9604 + }, + { + "start": 6884.08, + "end": 6888.78, + "probability": 0.9653 + }, + { + "start": 6889.38, + "end": 6893.62, + "probability": 0.9409 + }, + { + "start": 6893.96, + "end": 6896.06, + "probability": 0.9849 + }, + { + "start": 6896.64, + "end": 6899.78, + "probability": 0.9943 + }, + { + "start": 6900.38, + "end": 6904.16, + "probability": 0.9939 + }, + { + "start": 6904.86, + "end": 6908.36, + "probability": 0.9902 + }, + { + "start": 6909.4, + "end": 6911.14, + "probability": 0.9345 + }, + { + "start": 6912.02, + "end": 6916.45, + "probability": 0.9724 + }, + { + "start": 6917.0, + "end": 6919.78, + "probability": 0.998 + }, + { + "start": 6921.26, + "end": 6926.68, + "probability": 0.9988 + }, + { + "start": 6927.56, + "end": 6930.24, + "probability": 0.9385 + }, + { + "start": 6931.12, + "end": 6935.02, + "probability": 0.9921 + }, + { + "start": 6936.24, + "end": 6939.78, + "probability": 0.9958 + }, + { + "start": 6940.7, + "end": 6942.12, + "probability": 0.9278 + }, + { + "start": 6942.72, + "end": 6947.26, + "probability": 0.9993 + }, + { + "start": 6947.72, + "end": 6948.94, + "probability": 0.8456 + }, + { + "start": 6949.34, + "end": 6950.7, + "probability": 0.9946 + }, + { + "start": 6951.36, + "end": 6955.5, + "probability": 0.9644 + }, + { + "start": 6955.78, + "end": 6956.14, + "probability": 0.6388 + }, + { + "start": 6956.18, + "end": 6957.2, + "probability": 0.7696 + }, + { + "start": 6957.32, + "end": 6960.6, + "probability": 0.9526 + }, + { + "start": 6960.68, + "end": 6963.38, + "probability": 0.4968 + }, + { + "start": 6963.52, + "end": 6965.86, + "probability": 0.908 + }, + { + "start": 6967.1, + "end": 6968.22, + "probability": 0.6569 + }, + { + "start": 6968.22, + "end": 6968.24, + "probability": 0.7484 + }, + { + "start": 6968.42, + "end": 6971.7, + "probability": 0.9329 + }, + { + "start": 6972.24, + "end": 6977.6, + "probability": 0.9839 + }, + { + "start": 6978.04, + "end": 6978.42, + "probability": 0.8266 + }, + { + "start": 6979.02, + "end": 6980.76, + "probability": 0.9413 + }, + { + "start": 6981.28, + "end": 6984.52, + "probability": 0.9315 + }, + { + "start": 6984.92, + "end": 6988.42, + "probability": 0.988 + }, + { + "start": 6988.74, + "end": 6989.52, + "probability": 0.7313 + }, + { + "start": 6989.66, + "end": 6990.64, + "probability": 0.7541 + }, + { + "start": 6990.78, + "end": 6991.66, + "probability": 0.9559 + }, + { + "start": 6992.36, + "end": 6996.48, + "probability": 0.992 + }, + { + "start": 6996.62, + "end": 7001.5, + "probability": 0.9812 + }, + { + "start": 7001.64, + "end": 7002.5, + "probability": 0.6832 + }, + { + "start": 7002.84, + "end": 7003.7, + "probability": 0.9586 + }, + { + "start": 7003.78, + "end": 7004.48, + "probability": 0.9596 + }, + { + "start": 7004.84, + "end": 7007.2, + "probability": 0.9451 + }, + { + "start": 7008.5, + "end": 7009.74, + "probability": 0.8663 + }, + { + "start": 7009.96, + "end": 7014.12, + "probability": 0.9879 + }, + { + "start": 7014.7, + "end": 7019.4, + "probability": 0.9574 + }, + { + "start": 7020.08, + "end": 7021.88, + "probability": 0.979 + }, + { + "start": 7022.36, + "end": 7027.2, + "probability": 0.9724 + }, + { + "start": 7027.42, + "end": 7028.4, + "probability": 0.8254 + }, + { + "start": 7028.88, + "end": 7034.52, + "probability": 0.9505 + }, + { + "start": 7035.24, + "end": 7039.02, + "probability": 0.9805 + }, + { + "start": 7039.68, + "end": 7042.46, + "probability": 0.9921 + }, + { + "start": 7043.28, + "end": 7049.22, + "probability": 0.9978 + }, + { + "start": 7049.6, + "end": 7052.04, + "probability": 0.9917 + }, + { + "start": 7052.46, + "end": 7053.96, + "probability": 0.9642 + }, + { + "start": 7054.4, + "end": 7056.88, + "probability": 0.8024 + }, + { + "start": 7057.72, + "end": 7060.88, + "probability": 0.9953 + }, + { + "start": 7061.08, + "end": 7062.97, + "probability": 0.999 + }, + { + "start": 7063.56, + "end": 7067.04, + "probability": 0.7974 + }, + { + "start": 7067.14, + "end": 7068.16, + "probability": 0.791 + }, + { + "start": 7068.68, + "end": 7070.32, + "probability": 0.9116 + }, + { + "start": 7070.4, + "end": 7071.78, + "probability": 0.9488 + }, + { + "start": 7072.16, + "end": 7072.86, + "probability": 0.826 + }, + { + "start": 7072.94, + "end": 7076.34, + "probability": 0.9414 + }, + { + "start": 7076.34, + "end": 7079.46, + "probability": 0.9468 + }, + { + "start": 7079.86, + "end": 7080.78, + "probability": 0.5312 + }, + { + "start": 7081.32, + "end": 7082.4, + "probability": 0.9563 + }, + { + "start": 7082.98, + "end": 7085.74, + "probability": 0.9958 + }, + { + "start": 7086.26, + "end": 7087.88, + "probability": 0.7973 + }, + { + "start": 7088.12, + "end": 7090.56, + "probability": 0.9906 + }, + { + "start": 7091.74, + "end": 7095.24, + "probability": 0.8645 + }, + { + "start": 7095.48, + "end": 7097.0, + "probability": 0.8358 + }, + { + "start": 7097.1, + "end": 7098.22, + "probability": 0.4012 + }, + { + "start": 7098.92, + "end": 7101.04, + "probability": 0.9492 + }, + { + "start": 7102.16, + "end": 7103.32, + "probability": 0.9011 + }, + { + "start": 7103.88, + "end": 7106.82, + "probability": 0.9238 + }, + { + "start": 7126.4, + "end": 7126.56, + "probability": 0.566 + }, + { + "start": 7126.56, + "end": 7126.56, + "probability": 0.0772 + }, + { + "start": 7126.56, + "end": 7126.64, + "probability": 0.0977 + }, + { + "start": 7126.64, + "end": 7127.26, + "probability": 0.291 + }, + { + "start": 7128.02, + "end": 7131.0, + "probability": 0.6888 + }, + { + "start": 7131.58, + "end": 7132.06, + "probability": 0.5162 + }, + { + "start": 7134.38, + "end": 7135.4, + "probability": 0.6651 + }, + { + "start": 7136.32, + "end": 7137.76, + "probability": 0.9939 + }, + { + "start": 7138.5, + "end": 7142.4, + "probability": 0.9868 + }, + { + "start": 7143.06, + "end": 7145.32, + "probability": 0.9414 + }, + { + "start": 7145.8, + "end": 7147.56, + "probability": 0.8667 + }, + { + "start": 7148.2, + "end": 7154.24, + "probability": 0.9942 + }, + { + "start": 7154.76, + "end": 7157.54, + "probability": 0.9963 + }, + { + "start": 7157.6, + "end": 7158.77, + "probability": 0.9258 + }, + { + "start": 7159.86, + "end": 7162.44, + "probability": 0.9967 + }, + { + "start": 7163.22, + "end": 7168.98, + "probability": 0.9794 + }, + { + "start": 7169.54, + "end": 7174.78, + "probability": 0.9962 + }, + { + "start": 7175.42, + "end": 7178.04, + "probability": 0.9995 + }, + { + "start": 7178.92, + "end": 7183.94, + "probability": 0.9763 + }, + { + "start": 7184.68, + "end": 7189.28, + "probability": 0.9789 + }, + { + "start": 7189.82, + "end": 7192.38, + "probability": 0.9373 + }, + { + "start": 7193.24, + "end": 7194.64, + "probability": 0.7036 + }, + { + "start": 7194.86, + "end": 7196.56, + "probability": 0.9933 + }, + { + "start": 7197.16, + "end": 7200.46, + "probability": 0.9937 + }, + { + "start": 7201.26, + "end": 7205.38, + "probability": 0.9943 + }, + { + "start": 7206.36, + "end": 7208.9, + "probability": 0.9962 + }, + { + "start": 7209.72, + "end": 7211.62, + "probability": 0.9983 + }, + { + "start": 7212.16, + "end": 7218.06, + "probability": 0.9986 + }, + { + "start": 7218.76, + "end": 7222.84, + "probability": 0.9399 + }, + { + "start": 7223.36, + "end": 7228.48, + "probability": 0.9888 + }, + { + "start": 7230.12, + "end": 7234.72, + "probability": 0.9939 + }, + { + "start": 7235.26, + "end": 7235.71, + "probability": 0.6479 + }, + { + "start": 7236.7, + "end": 7240.3, + "probability": 0.8667 + }, + { + "start": 7240.3, + "end": 7244.94, + "probability": 0.9891 + }, + { + "start": 7245.76, + "end": 7247.14, + "probability": 0.9751 + }, + { + "start": 7247.78, + "end": 7249.04, + "probability": 0.8621 + }, + { + "start": 7249.6, + "end": 7251.22, + "probability": 0.9741 + }, + { + "start": 7251.74, + "end": 7252.78, + "probability": 0.7727 + }, + { + "start": 7253.38, + "end": 7257.64, + "probability": 0.8896 + }, + { + "start": 7258.24, + "end": 7261.82, + "probability": 0.9976 + }, + { + "start": 7261.82, + "end": 7266.5, + "probability": 0.8269 + }, + { + "start": 7266.86, + "end": 7267.28, + "probability": 0.8164 + }, + { + "start": 7267.56, + "end": 7268.86, + "probability": 0.6612 + }, + { + "start": 7269.02, + "end": 7269.74, + "probability": 0.9125 + }, + { + "start": 7270.6, + "end": 7270.96, + "probability": 0.6565 + }, + { + "start": 7271.78, + "end": 7274.06, + "probability": 0.9631 + }, + { + "start": 7274.96, + "end": 7277.7, + "probability": 0.8462 + }, + { + "start": 7278.24, + "end": 7283.7, + "probability": 0.9945 + }, + { + "start": 7285.5, + "end": 7288.94, + "probability": 0.9971 + }, + { + "start": 7289.58, + "end": 7292.2, + "probability": 0.939 + }, + { + "start": 7292.78, + "end": 7293.36, + "probability": 0.9906 + }, + { + "start": 7293.94, + "end": 7294.62, + "probability": 0.9779 + }, + { + "start": 7296.22, + "end": 7297.42, + "probability": 0.9876 + }, + { + "start": 7298.44, + "end": 7300.36, + "probability": 0.9746 + }, + { + "start": 7300.6, + "end": 7302.38, + "probability": 0.9917 + }, + { + "start": 7302.78, + "end": 7304.98, + "probability": 0.9893 + }, + { + "start": 7306.5, + "end": 7309.09, + "probability": 0.9934 + }, + { + "start": 7309.52, + "end": 7310.76, + "probability": 0.9496 + }, + { + "start": 7310.86, + "end": 7314.92, + "probability": 0.764 + }, + { + "start": 7315.38, + "end": 7316.53, + "probability": 0.9414 + }, + { + "start": 7317.2, + "end": 7318.08, + "probability": 0.9559 + }, + { + "start": 7318.64, + "end": 7319.24, + "probability": 0.952 + }, + { + "start": 7319.86, + "end": 7325.26, + "probability": 0.9873 + }, + { + "start": 7325.34, + "end": 7326.06, + "probability": 0.7817 + }, + { + "start": 7326.2, + "end": 7328.08, + "probability": 0.96 + }, + { + "start": 7328.84, + "end": 7334.96, + "probability": 0.991 + }, + { + "start": 7335.56, + "end": 7336.52, + "probability": 0.9097 + }, + { + "start": 7337.36, + "end": 7342.46, + "probability": 0.9815 + }, + { + "start": 7343.29, + "end": 7346.46, + "probability": 0.8464 + }, + { + "start": 7346.6, + "end": 7347.02, + "probability": 0.6631 + }, + { + "start": 7348.2, + "end": 7350.8, + "probability": 0.9375 + }, + { + "start": 7351.38, + "end": 7356.02, + "probability": 0.9949 + }, + { + "start": 7356.58, + "end": 7361.42, + "probability": 0.9211 + }, + { + "start": 7362.0, + "end": 7363.78, + "probability": 0.9755 + }, + { + "start": 7364.54, + "end": 7366.9, + "probability": 0.6179 + }, + { + "start": 7367.36, + "end": 7369.62, + "probability": 0.9611 + }, + { + "start": 7370.56, + "end": 7372.12, + "probability": 0.866 + }, + { + "start": 7372.98, + "end": 7375.0, + "probability": 0.921 + }, + { + "start": 7375.2, + "end": 7376.6, + "probability": 0.8394 + }, + { + "start": 7377.06, + "end": 7378.86, + "probability": 0.9448 + }, + { + "start": 7379.36, + "end": 7381.26, + "probability": 0.9962 + }, + { + "start": 7381.46, + "end": 7383.94, + "probability": 0.9719 + }, + { + "start": 7384.36, + "end": 7385.64, + "probability": 0.9045 + }, + { + "start": 7385.64, + "end": 7387.32, + "probability": 0.9286 + }, + { + "start": 7388.66, + "end": 7391.26, + "probability": 0.0103 + }, + { + "start": 7393.14, + "end": 7394.18, + "probability": 0.691 + }, + { + "start": 7394.64, + "end": 7398.52, + "probability": 0.9548 + }, + { + "start": 7398.92, + "end": 7400.14, + "probability": 0.9932 + }, + { + "start": 7400.64, + "end": 7407.18, + "probability": 0.9948 + }, + { + "start": 7407.34, + "end": 7407.94, + "probability": 0.4568 + }, + { + "start": 7408.64, + "end": 7411.16, + "probability": 0.9884 + }, + { + "start": 7411.82, + "end": 7417.26, + "probability": 0.7562 + }, + { + "start": 7417.76, + "end": 7418.08, + "probability": 0.4152 + }, + { + "start": 7418.22, + "end": 7419.12, + "probability": 0.9834 + }, + { + "start": 7419.78, + "end": 7424.3, + "probability": 0.786 + }, + { + "start": 7424.74, + "end": 7427.16, + "probability": 0.8568 + }, + { + "start": 7427.7, + "end": 7430.8, + "probability": 0.7524 + }, + { + "start": 7430.88, + "end": 7431.72, + "probability": 0.8498 + }, + { + "start": 7432.16, + "end": 7433.68, + "probability": 0.9551 + }, + { + "start": 7434.44, + "end": 7438.02, + "probability": 0.9939 + }, + { + "start": 7438.76, + "end": 7443.54, + "probability": 0.9822 + }, + { + "start": 7443.94, + "end": 7445.56, + "probability": 0.9322 + }, + { + "start": 7446.18, + "end": 7452.22, + "probability": 0.9945 + }, + { + "start": 7452.96, + "end": 7455.96, + "probability": 0.8481 + }, + { + "start": 7456.72, + "end": 7460.26, + "probability": 0.8705 + }, + { + "start": 7460.76, + "end": 7463.48, + "probability": 0.9059 + }, + { + "start": 7463.48, + "end": 7467.8, + "probability": 0.9926 + }, + { + "start": 7468.6, + "end": 7469.78, + "probability": 0.7704 + }, + { + "start": 7470.16, + "end": 7473.4, + "probability": 0.9754 + }, + { + "start": 7474.4, + "end": 7476.51, + "probability": 0.6686 + }, + { + "start": 7477.26, + "end": 7479.78, + "probability": 0.8679 + }, + { + "start": 7480.7, + "end": 7481.74, + "probability": 0.8062 + }, + { + "start": 7483.06, + "end": 7483.3, + "probability": 0.197 + }, + { + "start": 7483.32, + "end": 7484.14, + "probability": 0.5628 + }, + { + "start": 7484.36, + "end": 7485.06, + "probability": 0.4019 + }, + { + "start": 7485.78, + "end": 7486.0, + "probability": 0.5722 + }, + { + "start": 7486.68, + "end": 7487.74, + "probability": 0.8023 + }, + { + "start": 7487.92, + "end": 7490.44, + "probability": 0.9597 + }, + { + "start": 7490.88, + "end": 7492.34, + "probability": 0.992 + }, + { + "start": 7492.82, + "end": 7494.36, + "probability": 0.9573 + }, + { + "start": 7495.12, + "end": 7496.34, + "probability": 0.6783 + }, + { + "start": 7497.2, + "end": 7500.58, + "probability": 0.874 + }, + { + "start": 7500.76, + "end": 7501.86, + "probability": 0.6997 + }, + { + "start": 7502.5, + "end": 7504.96, + "probability": 0.9729 + }, + { + "start": 7505.08, + "end": 7506.94, + "probability": 0.931 + }, + { + "start": 7507.46, + "end": 7509.72, + "probability": 0.9809 + }, + { + "start": 7510.46, + "end": 7513.96, + "probability": 0.7029 + }, + { + "start": 7514.52, + "end": 7519.8, + "probability": 0.9867 + }, + { + "start": 7519.84, + "end": 7520.86, + "probability": 0.9263 + }, + { + "start": 7521.52, + "end": 7521.94, + "probability": 0.5803 + }, + { + "start": 7521.98, + "end": 7527.94, + "probability": 0.9924 + }, + { + "start": 7528.52, + "end": 7531.24, + "probability": 0.9438 + }, + { + "start": 7531.88, + "end": 7535.9, + "probability": 0.9904 + }, + { + "start": 7536.44, + "end": 7540.82, + "probability": 0.9639 + }, + { + "start": 7541.5, + "end": 7544.34, + "probability": 0.9915 + }, + { + "start": 7544.42, + "end": 7545.9, + "probability": 0.7941 + }, + { + "start": 7546.44, + "end": 7548.92, + "probability": 0.9558 + }, + { + "start": 7549.4, + "end": 7552.62, + "probability": 0.7308 + }, + { + "start": 7553.2, + "end": 7553.4, + "probability": 0.4605 + }, + { + "start": 7553.44, + "end": 7554.14, + "probability": 0.9296 + }, + { + "start": 7554.24, + "end": 7559.27, + "probability": 0.8895 + }, + { + "start": 7561.42, + "end": 7567.1, + "probability": 0.9799 + }, + { + "start": 7568.14, + "end": 7571.26, + "probability": 0.9913 + }, + { + "start": 7571.66, + "end": 7574.86, + "probability": 0.9671 + }, + { + "start": 7575.32, + "end": 7579.24, + "probability": 0.8442 + }, + { + "start": 7579.78, + "end": 7583.02, + "probability": 0.9968 + }, + { + "start": 7583.64, + "end": 7585.18, + "probability": 0.8838 + }, + { + "start": 7585.8, + "end": 7587.7, + "probability": 0.9921 + }, + { + "start": 7588.54, + "end": 7589.18, + "probability": 0.9182 + }, + { + "start": 7589.64, + "end": 7592.48, + "probability": 0.9705 + }, + { + "start": 7592.8, + "end": 7595.36, + "probability": 0.994 + }, + { + "start": 7596.0, + "end": 7596.66, + "probability": 0.8264 + }, + { + "start": 7597.34, + "end": 7598.2, + "probability": 0.6936 + }, + { + "start": 7598.86, + "end": 7603.22, + "probability": 0.9907 + }, + { + "start": 7603.52, + "end": 7604.1, + "probability": 0.3657 + }, + { + "start": 7605.46, + "end": 7606.54, + "probability": 0.8925 + }, + { + "start": 7607.94, + "end": 7609.62, + "probability": 0.833 + }, + { + "start": 7610.32, + "end": 7616.44, + "probability": 0.9971 + }, + { + "start": 7617.06, + "end": 7619.62, + "probability": 0.9807 + }, + { + "start": 7619.84, + "end": 7620.9, + "probability": 0.7423 + }, + { + "start": 7621.4, + "end": 7624.72, + "probability": 0.9986 + }, + { + "start": 7625.24, + "end": 7626.5, + "probability": 0.9857 + }, + { + "start": 7627.14, + "end": 7634.3, + "probability": 0.9957 + }, + { + "start": 7634.94, + "end": 7639.06, + "probability": 0.9102 + }, + { + "start": 7639.1, + "end": 7640.04, + "probability": 0.2662 + }, + { + "start": 7640.78, + "end": 7644.1, + "probability": 0.7959 + }, + { + "start": 7644.1, + "end": 7647.24, + "probability": 0.8979 + }, + { + "start": 7647.4, + "end": 7648.14, + "probability": 0.9141 + }, + { + "start": 7648.22, + "end": 7648.68, + "probability": 0.6602 + }, + { + "start": 7649.26, + "end": 7650.68, + "probability": 0.7475 + }, + { + "start": 7651.12, + "end": 7652.82, + "probability": 0.9982 + }, + { + "start": 7653.1, + "end": 7654.32, + "probability": 0.8155 + }, + { + "start": 7654.82, + "end": 7656.92, + "probability": 0.6982 + }, + { + "start": 7657.36, + "end": 7658.68, + "probability": 0.9797 + }, + { + "start": 7659.38, + "end": 7659.66, + "probability": 0.8451 + }, + { + "start": 7660.28, + "end": 7663.74, + "probability": 0.9915 + }, + { + "start": 7664.16, + "end": 7668.06, + "probability": 0.9871 + }, + { + "start": 7668.54, + "end": 7672.6, + "probability": 0.8772 + }, + { + "start": 7672.7, + "end": 7676.92, + "probability": 0.816 + }, + { + "start": 7677.82, + "end": 7678.52, + "probability": 0.5531 + }, + { + "start": 7678.86, + "end": 7681.84, + "probability": 0.8227 + }, + { + "start": 7682.22, + "end": 7685.7, + "probability": 0.9785 + }, + { + "start": 7686.08, + "end": 7688.06, + "probability": 0.8859 + }, + { + "start": 7688.94, + "end": 7692.76, + "probability": 0.8737 + }, + { + "start": 7693.36, + "end": 7695.4, + "probability": 0.8037 + }, + { + "start": 7696.24, + "end": 7696.74, + "probability": 0.8173 + }, + { + "start": 7697.22, + "end": 7699.16, + "probability": 0.9492 + }, + { + "start": 7699.52, + "end": 7699.6, + "probability": 0.3864 + }, + { + "start": 7699.68, + "end": 7699.96, + "probability": 0.5962 + }, + { + "start": 7700.06, + "end": 7700.4, + "probability": 0.7645 + }, + { + "start": 7700.5, + "end": 7701.62, + "probability": 0.6156 + }, + { + "start": 7701.62, + "end": 7703.06, + "probability": 0.6696 + }, + { + "start": 7703.4, + "end": 7704.04, + "probability": 0.5772 + }, + { + "start": 7704.08, + "end": 7705.28, + "probability": 0.9814 + }, + { + "start": 7705.4, + "end": 7708.08, + "probability": 0.9875 + }, + { + "start": 7708.26, + "end": 7709.34, + "probability": 0.9744 + }, + { + "start": 7709.8, + "end": 7710.84, + "probability": 0.6347 + }, + { + "start": 7710.88, + "end": 7713.04, + "probability": 0.965 + }, + { + "start": 7713.6, + "end": 7714.92, + "probability": 0.8838 + }, + { + "start": 7715.52, + "end": 7717.0, + "probability": 0.9717 + }, + { + "start": 7717.08, + "end": 7720.26, + "probability": 0.7791 + }, + { + "start": 7720.78, + "end": 7721.2, + "probability": 0.4912 + }, + { + "start": 7721.34, + "end": 7723.65, + "probability": 0.9959 + }, + { + "start": 7723.76, + "end": 7727.4, + "probability": 0.976 + }, + { + "start": 7727.96, + "end": 7731.08, + "probability": 0.9548 + }, + { + "start": 7731.76, + "end": 7732.98, + "probability": 0.9572 + }, + { + "start": 7733.7, + "end": 7738.08, + "probability": 0.981 + }, + { + "start": 7738.72, + "end": 7741.82, + "probability": 0.9651 + }, + { + "start": 7741.94, + "end": 7743.64, + "probability": 0.8835 + }, + { + "start": 7744.12, + "end": 7744.96, + "probability": 0.9519 + }, + { + "start": 7745.64, + "end": 7746.2, + "probability": 0.4995 + }, + { + "start": 7746.84, + "end": 7750.06, + "probability": 0.9281 + }, + { + "start": 7750.54, + "end": 7752.68, + "probability": 0.6193 + }, + { + "start": 7752.68, + "end": 7753.84, + "probability": 0.5071 + }, + { + "start": 7754.36, + "end": 7756.58, + "probability": 0.9885 + }, + { + "start": 7756.66, + "end": 7758.04, + "probability": 0.6361 + }, + { + "start": 7758.72, + "end": 7763.74, + "probability": 0.969 + }, + { + "start": 7764.5, + "end": 7766.24, + "probability": 0.454 + }, + { + "start": 7767.18, + "end": 7768.06, + "probability": 0.8851 + }, + { + "start": 7769.08, + "end": 7770.42, + "probability": 0.8164 + }, + { + "start": 7770.92, + "end": 7771.64, + "probability": 0.8871 + }, + { + "start": 7772.08, + "end": 7775.36, + "probability": 0.9937 + }, + { + "start": 7775.7, + "end": 7777.52, + "probability": 0.9856 + }, + { + "start": 7778.1, + "end": 7781.08, + "probability": 0.8836 + }, + { + "start": 7781.74, + "end": 7783.38, + "probability": 0.8322 + }, + { + "start": 7784.06, + "end": 7785.7, + "probability": 0.9785 + }, + { + "start": 7786.22, + "end": 7788.28, + "probability": 0.8461 + }, + { + "start": 7788.8, + "end": 7791.36, + "probability": 0.9116 + }, + { + "start": 7791.36, + "end": 7792.02, + "probability": 0.6685 + }, + { + "start": 7792.14, + "end": 7793.22, + "probability": 0.7115 + }, + { + "start": 7793.26, + "end": 7793.38, + "probability": 0.3432 + }, + { + "start": 7794.32, + "end": 7794.4, + "probability": 0.0495 + }, + { + "start": 7794.4, + "end": 7795.08, + "probability": 0.5404 + }, + { + "start": 7796.5, + "end": 7797.48, + "probability": 0.8943 + }, + { + "start": 7797.8, + "end": 7799.36, + "probability": 0.9646 + }, + { + "start": 7799.44, + "end": 7802.34, + "probability": 0.887 + }, + { + "start": 7802.34, + "end": 7805.66, + "probability": 0.9653 + }, + { + "start": 7806.42, + "end": 7810.28, + "probability": 0.6627 + }, + { + "start": 7810.94, + "end": 7815.22, + "probability": 0.9382 + }, + { + "start": 7815.66, + "end": 7816.26, + "probability": 0.6151 + }, + { + "start": 7816.44, + "end": 7817.5, + "probability": 0.9514 + }, + { + "start": 7817.86, + "end": 7821.98, + "probability": 0.9738 + }, + { + "start": 7822.22, + "end": 7822.58, + "probability": 0.3332 + }, + { + "start": 7822.58, + "end": 7822.58, + "probability": 0.1059 + }, + { + "start": 7822.58, + "end": 7823.04, + "probability": 0.474 + }, + { + "start": 7823.12, + "end": 7823.78, + "probability": 0.7017 + }, + { + "start": 7824.35, + "end": 7824.98, + "probability": 0.4152 + }, + { + "start": 7825.1, + "end": 7828.76, + "probability": 0.6507 + }, + { + "start": 7829.24, + "end": 7830.94, + "probability": 0.6405 + }, + { + "start": 7831.3, + "end": 7833.16, + "probability": 0.449 + }, + { + "start": 7833.24, + "end": 7839.34, + "probability": 0.9867 + }, + { + "start": 7840.06, + "end": 7840.38, + "probability": 0.6236 + }, + { + "start": 7840.44, + "end": 7844.5, + "probability": 0.9223 + }, + { + "start": 7844.56, + "end": 7845.08, + "probability": 0.7809 + }, + { + "start": 7845.24, + "end": 7847.82, + "probability": 0.819 + }, + { + "start": 7847.88, + "end": 7848.8, + "probability": 0.8604 + }, + { + "start": 7849.26, + "end": 7851.08, + "probability": 0.536 + }, + { + "start": 7851.18, + "end": 7851.68, + "probability": 0.8307 + }, + { + "start": 7852.32, + "end": 7855.34, + "probability": 0.8229 + }, + { + "start": 7856.02, + "end": 7857.14, + "probability": 0.7367 + }, + { + "start": 7857.92, + "end": 7860.14, + "probability": 0.8362 + }, + { + "start": 7860.28, + "end": 7861.58, + "probability": 0.9507 + }, + { + "start": 7862.46, + "end": 7864.68, + "probability": 0.3327 + }, + { + "start": 7876.64, + "end": 7876.82, + "probability": 0.0495 + }, + { + "start": 7876.82, + "end": 7877.92, + "probability": 0.3631 + }, + { + "start": 7878.1, + "end": 7878.16, + "probability": 0.4799 + }, + { + "start": 7878.16, + "end": 7878.52, + "probability": 0.4449 + }, + { + "start": 7878.56, + "end": 7879.84, + "probability": 0.6263 + }, + { + "start": 7880.94, + "end": 7886.04, + "probability": 0.9417 + }, + { + "start": 7886.14, + "end": 7889.26, + "probability": 0.9775 + }, + { + "start": 7889.46, + "end": 7890.38, + "probability": 0.6441 + }, + { + "start": 7890.38, + "end": 7893.26, + "probability": 0.9974 + }, + { + "start": 7894.64, + "end": 7896.42, + "probability": 0.9604 + }, + { + "start": 7896.88, + "end": 7897.24, + "probability": 0.4006 + }, + { + "start": 7897.32, + "end": 7899.72, + "probability": 0.9807 + }, + { + "start": 7900.32, + "end": 7904.16, + "probability": 0.999 + }, + { + "start": 7904.76, + "end": 7904.76, + "probability": 0.0602 + }, + { + "start": 7904.76, + "end": 7908.28, + "probability": 0.9026 + }, + { + "start": 7908.84, + "end": 7910.72, + "probability": 0.8082 + }, + { + "start": 7911.32, + "end": 7913.42, + "probability": 0.9668 + }, + { + "start": 7914.02, + "end": 7917.32, + "probability": 0.971 + }, + { + "start": 7917.32, + "end": 7921.78, + "probability": 0.9792 + }, + { + "start": 7923.1, + "end": 7928.7, + "probability": 0.9755 + }, + { + "start": 7929.28, + "end": 7931.06, + "probability": 0.9644 + }, + { + "start": 7931.22, + "end": 7932.14, + "probability": 0.9147 + }, + { + "start": 7932.2, + "end": 7937.78, + "probability": 0.9751 + }, + { + "start": 7938.42, + "end": 7939.9, + "probability": 0.6064 + }, + { + "start": 7940.12, + "end": 7942.32, + "probability": 0.962 + }, + { + "start": 7942.38, + "end": 7945.0, + "probability": 0.9924 + }, + { + "start": 7945.6, + "end": 7950.7, + "probability": 0.8767 + }, + { + "start": 7951.22, + "end": 7955.14, + "probability": 0.9664 + }, + { + "start": 7956.28, + "end": 7958.42, + "probability": 0.8109 + }, + { + "start": 7959.72, + "end": 7965.44, + "probability": 0.9802 + }, + { + "start": 7965.5, + "end": 7966.98, + "probability": 0.8306 + }, + { + "start": 7967.06, + "end": 7970.0, + "probability": 0.7568 + }, + { + "start": 7972.66, + "end": 7974.82, + "probability": 0.9726 + }, + { + "start": 7975.38, + "end": 7975.58, + "probability": 0.8414 + }, + { + "start": 7975.72, + "end": 7976.28, + "probability": 0.5775 + }, + { + "start": 7976.46, + "end": 7977.74, + "probability": 0.9601 + }, + { + "start": 7977.8, + "end": 7982.6, + "probability": 0.9172 + }, + { + "start": 7983.18, + "end": 7986.0, + "probability": 0.9772 + }, + { + "start": 7986.32, + "end": 7990.74, + "probability": 0.9959 + }, + { + "start": 7991.0, + "end": 7991.76, + "probability": 0.7484 + }, + { + "start": 7991.86, + "end": 7992.52, + "probability": 0.9177 + }, + { + "start": 7992.74, + "end": 7995.62, + "probability": 0.9449 + }, + { + "start": 7995.72, + "end": 7996.86, + "probability": 0.7097 + }, + { + "start": 7998.3, + "end": 8001.04, + "probability": 0.8176 + }, + { + "start": 8001.56, + "end": 8006.04, + "probability": 0.9962 + }, + { + "start": 8006.18, + "end": 8007.22, + "probability": 0.7849 + }, + { + "start": 8007.24, + "end": 8011.64, + "probability": 0.9283 + }, + { + "start": 8012.22, + "end": 8013.9, + "probability": 0.9883 + }, + { + "start": 8014.4, + "end": 8020.13, + "probability": 0.995 + }, + { + "start": 8021.53, + "end": 8024.1, + "probability": 0.9983 + }, + { + "start": 8024.32, + "end": 8025.26, + "probability": 0.9086 + }, + { + "start": 8026.56, + "end": 8031.58, + "probability": 0.9459 + }, + { + "start": 8031.68, + "end": 8038.74, + "probability": 0.9967 + }, + { + "start": 8039.6, + "end": 8039.8, + "probability": 0.5126 + }, + { + "start": 8039.92, + "end": 8040.82, + "probability": 0.9773 + }, + { + "start": 8040.92, + "end": 8042.41, + "probability": 0.9731 + }, + { + "start": 8042.54, + "end": 8042.84, + "probability": 0.8804 + }, + { + "start": 8043.06, + "end": 8043.48, + "probability": 0.9259 + }, + { + "start": 8043.98, + "end": 8047.76, + "probability": 0.9883 + }, + { + "start": 8047.94, + "end": 8052.88, + "probability": 0.9645 + }, + { + "start": 8054.78, + "end": 8059.04, + "probability": 0.9836 + }, + { + "start": 8059.14, + "end": 8062.02, + "probability": 0.9434 + }, + { + "start": 8062.76, + "end": 8064.74, + "probability": 0.9066 + }, + { + "start": 8064.74, + "end": 8067.5, + "probability": 0.9179 + }, + { + "start": 8067.76, + "end": 8071.32, + "probability": 0.9836 + }, + { + "start": 8072.02, + "end": 8074.1, + "probability": 0.9447 + }, + { + "start": 8074.1, + "end": 8075.78, + "probability": 0.6826 + }, + { + "start": 8075.86, + "end": 8077.24, + "probability": 0.9394 + }, + { + "start": 8077.42, + "end": 8078.5, + "probability": 0.6952 + }, + { + "start": 8080.5, + "end": 8082.4, + "probability": 0.9922 + }, + { + "start": 8082.4, + "end": 8085.0, + "probability": 0.9901 + }, + { + "start": 8085.06, + "end": 8086.18, + "probability": 0.9962 + }, + { + "start": 8086.92, + "end": 8089.15, + "probability": 0.7961 + }, + { + "start": 8090.26, + "end": 8092.9, + "probability": 0.9941 + }, + { + "start": 8092.94, + "end": 8094.94, + "probability": 0.9836 + }, + { + "start": 8095.48, + "end": 8096.88, + "probability": 0.8624 + }, + { + "start": 8096.94, + "end": 8098.64, + "probability": 0.9741 + }, + { + "start": 8098.82, + "end": 8100.96, + "probability": 0.873 + }, + { + "start": 8100.98, + "end": 8105.0, + "probability": 0.9656 + }, + { + "start": 8105.18, + "end": 8106.1, + "probability": 0.986 + }, + { + "start": 8106.1, + "end": 8106.94, + "probability": 0.897 + }, + { + "start": 8107.6, + "end": 8110.22, + "probability": 0.971 + }, + { + "start": 8111.16, + "end": 8114.9, + "probability": 0.6959 + }, + { + "start": 8116.2, + "end": 8119.0, + "probability": 0.9531 + }, + { + "start": 8119.08, + "end": 8122.06, + "probability": 0.9886 + }, + { + "start": 8122.18, + "end": 8123.6, + "probability": 0.8244 + }, + { + "start": 8124.16, + "end": 8127.58, + "probability": 0.9633 + }, + { + "start": 8127.9, + "end": 8129.51, + "probability": 0.9281 + }, + { + "start": 8129.86, + "end": 8133.12, + "probability": 0.8717 + }, + { + "start": 8133.82, + "end": 8135.9, + "probability": 0.7904 + }, + { + "start": 8136.39, + "end": 8136.86, + "probability": 0.1256 + }, + { + "start": 8136.86, + "end": 8139.82, + "probability": 0.8901 + }, + { + "start": 8139.82, + "end": 8144.02, + "probability": 0.8116 + }, + { + "start": 8144.54, + "end": 8146.42, + "probability": 0.9497 + }, + { + "start": 8147.37, + "end": 8151.26, + "probability": 0.9773 + }, + { + "start": 8151.26, + "end": 8154.44, + "probability": 0.973 + }, + { + "start": 8154.98, + "end": 8157.52, + "probability": 0.899 + }, + { + "start": 8159.32, + "end": 8160.5, + "probability": 0.7518 + }, + { + "start": 8160.58, + "end": 8161.14, + "probability": 0.6126 + }, + { + "start": 8161.26, + "end": 8162.38, + "probability": 0.799 + }, + { + "start": 8162.74, + "end": 8164.72, + "probability": 0.8184 + }, + { + "start": 8164.76, + "end": 8166.22, + "probability": 0.943 + }, + { + "start": 8166.22, + "end": 8167.9, + "probability": 0.7523 + }, + { + "start": 8167.94, + "end": 8168.68, + "probability": 0.7252 + }, + { + "start": 8169.52, + "end": 8172.06, + "probability": 0.8563 + }, + { + "start": 8172.5, + "end": 8177.04, + "probability": 0.9893 + }, + { + "start": 8177.04, + "end": 8180.14, + "probability": 0.9986 + }, + { + "start": 8180.26, + "end": 8180.5, + "probability": 0.6405 + }, + { + "start": 8182.59, + "end": 8185.98, + "probability": 0.5611 + }, + { + "start": 8186.1, + "end": 8187.14, + "probability": 0.4953 + }, + { + "start": 8187.78, + "end": 8188.36, + "probability": 0.998 + }, + { + "start": 8189.66, + "end": 8192.14, + "probability": 0.8083 + }, + { + "start": 8200.1, + "end": 8203.22, + "probability": 0.8879 + }, + { + "start": 8204.6, + "end": 8205.48, + "probability": 0.7008 + }, + { + "start": 8205.72, + "end": 8208.5, + "probability": 0.8011 + }, + { + "start": 8208.98, + "end": 8213.86, + "probability": 0.9881 + }, + { + "start": 8214.44, + "end": 8215.55, + "probability": 0.5585 + }, + { + "start": 8216.22, + "end": 8221.46, + "probability": 0.9914 + }, + { + "start": 8222.1, + "end": 8225.02, + "probability": 0.7143 + }, + { + "start": 8225.64, + "end": 8231.33, + "probability": 0.9946 + }, + { + "start": 8232.12, + "end": 8235.68, + "probability": 0.8405 + }, + { + "start": 8236.24, + "end": 8237.64, + "probability": 0.5724 + }, + { + "start": 8238.18, + "end": 8240.0, + "probability": 0.9903 + }, + { + "start": 8240.08, + "end": 8241.94, + "probability": 0.9316 + }, + { + "start": 8243.06, + "end": 8244.76, + "probability": 0.8893 + }, + { + "start": 8244.76, + "end": 8247.84, + "probability": 0.8795 + }, + { + "start": 8247.88, + "end": 8248.34, + "probability": 0.6617 + }, + { + "start": 8249.3, + "end": 8253.22, + "probability": 0.7432 + }, + { + "start": 8253.7, + "end": 8258.1, + "probability": 0.6045 + }, + { + "start": 8258.14, + "end": 8261.7, + "probability": 0.8012 + }, + { + "start": 8263.98, + "end": 8266.14, + "probability": 0.6147 + }, + { + "start": 8268.26, + "end": 8271.0, + "probability": 0.645 + }, + { + "start": 8271.42, + "end": 8274.26, + "probability": 0.6404 + }, + { + "start": 8275.1, + "end": 8277.3, + "probability": 0.9017 + }, + { + "start": 8277.66, + "end": 8279.92, + "probability": 0.9471 + }, + { + "start": 8280.32, + "end": 8286.34, + "probability": 0.9783 + }, + { + "start": 8287.4, + "end": 8288.06, + "probability": 0.3885 + }, + { + "start": 8288.72, + "end": 8289.5, + "probability": 0.8435 + }, + { + "start": 8289.5, + "end": 8290.46, + "probability": 0.8225 + }, + { + "start": 8291.82, + "end": 8291.92, + "probability": 0.7141 + }, + { + "start": 8293.48, + "end": 8297.34, + "probability": 0.6217 + }, + { + "start": 8298.72, + "end": 8300.22, + "probability": 0.6022 + }, + { + "start": 8300.32, + "end": 8300.68, + "probability": 0.5248 + }, + { + "start": 8300.76, + "end": 8303.82, + "probability": 0.981 + }, + { + "start": 8303.88, + "end": 8304.98, + "probability": 0.9822 + }, + { + "start": 8305.02, + "end": 8306.94, + "probability": 0.8798 + }, + { + "start": 8307.68, + "end": 8310.94, + "probability": 0.9905 + }, + { + "start": 8312.4, + "end": 8315.44, + "probability": 0.9631 + }, + { + "start": 8316.08, + "end": 8319.44, + "probability": 0.9885 + }, + { + "start": 8320.42, + "end": 8320.92, + "probability": 0.0451 + }, + { + "start": 8321.8, + "end": 8324.64, + "probability": 0.8821 + }, + { + "start": 8325.02, + "end": 8326.74, + "probability": 0.954 + }, + { + "start": 8327.5, + "end": 8328.2, + "probability": 0.8545 + }, + { + "start": 8329.26, + "end": 8331.48, + "probability": 0.9904 + }, + { + "start": 8331.7, + "end": 8332.16, + "probability": 0.1401 + }, + { + "start": 8332.16, + "end": 8333.92, + "probability": 0.5826 + }, + { + "start": 8335.66, + "end": 8336.98, + "probability": 0.802 + }, + { + "start": 8337.78, + "end": 8341.66, + "probability": 0.9966 + }, + { + "start": 8342.78, + "end": 8343.66, + "probability": 0.8297 + }, + { + "start": 8343.86, + "end": 8349.56, + "probability": 0.9888 + }, + { + "start": 8350.4, + "end": 8351.7, + "probability": 0.9854 + }, + { + "start": 8352.94, + "end": 8354.98, + "probability": 0.9619 + }, + { + "start": 8356.02, + "end": 8358.44, + "probability": 0.8855 + }, + { + "start": 8359.12, + "end": 8359.74, + "probability": 0.9125 + }, + { + "start": 8360.04, + "end": 8361.72, + "probability": 0.9539 + }, + { + "start": 8362.28, + "end": 8364.12, + "probability": 0.9604 + }, + { + "start": 8364.6, + "end": 8367.14, + "probability": 0.9067 + }, + { + "start": 8367.84, + "end": 8370.04, + "probability": 0.9253 + }, + { + "start": 8370.62, + "end": 8372.2, + "probability": 0.7116 + }, + { + "start": 8372.94, + "end": 8376.16, + "probability": 0.7831 + }, + { + "start": 8376.46, + "end": 8381.1, + "probability": 0.9427 + }, + { + "start": 8381.98, + "end": 8387.38, + "probability": 0.9432 + }, + { + "start": 8387.82, + "end": 8388.18, + "probability": 0.8892 + }, + { + "start": 8388.22, + "end": 8389.32, + "probability": 0.7354 + }, + { + "start": 8389.78, + "end": 8395.55, + "probability": 0.9836 + }, + { + "start": 8396.0, + "end": 8398.86, + "probability": 0.984 + }, + { + "start": 8399.1, + "end": 8401.74, + "probability": 0.9868 + }, + { + "start": 8402.22, + "end": 8403.96, + "probability": 0.7208 + }, + { + "start": 8404.54, + "end": 8408.0, + "probability": 0.9944 + }, + { + "start": 8408.66, + "end": 8412.42, + "probability": 0.7238 + }, + { + "start": 8413.08, + "end": 8414.66, + "probability": 0.635 + }, + { + "start": 8415.68, + "end": 8419.0, + "probability": 0.8428 + }, + { + "start": 8419.52, + "end": 8421.28, + "probability": 0.9115 + }, + { + "start": 8422.1, + "end": 8429.06, + "probability": 0.9797 + }, + { + "start": 8430.04, + "end": 8432.88, + "probability": 0.6861 + }, + { + "start": 8433.44, + "end": 8434.12, + "probability": 0.7522 + }, + { + "start": 8434.66, + "end": 8439.36, + "probability": 0.9487 + }, + { + "start": 8440.74, + "end": 8444.62, + "probability": 0.8205 + }, + { + "start": 8444.9, + "end": 8445.64, + "probability": 0.6343 + }, + { + "start": 8446.24, + "end": 8447.4, + "probability": 0.7351 + }, + { + "start": 8447.82, + "end": 8448.87, + "probability": 0.9189 + }, + { + "start": 8449.46, + "end": 8452.44, + "probability": 0.9683 + }, + { + "start": 8453.06, + "end": 8455.24, + "probability": 0.9773 + }, + { + "start": 8455.68, + "end": 8459.14, + "probability": 0.877 + }, + { + "start": 8459.4, + "end": 8460.36, + "probability": 0.9692 + }, + { + "start": 8461.32, + "end": 8463.18, + "probability": 0.9211 + }, + { + "start": 8464.2, + "end": 8467.06, + "probability": 0.8904 + }, + { + "start": 8467.36, + "end": 8468.82, + "probability": 0.8365 + }, + { + "start": 8469.26, + "end": 8470.42, + "probability": 0.9013 + }, + { + "start": 8470.92, + "end": 8480.4, + "probability": 0.9484 + }, + { + "start": 8480.6, + "end": 8481.08, + "probability": 0.3928 + }, + { + "start": 8481.18, + "end": 8481.54, + "probability": 0.8754 + }, + { + "start": 8481.74, + "end": 8483.32, + "probability": 0.8234 + }, + { + "start": 8483.66, + "end": 8488.28, + "probability": 0.8403 + }, + { + "start": 8488.34, + "end": 8490.62, + "probability": 0.8789 + }, + { + "start": 8491.46, + "end": 8494.36, + "probability": 0.8708 + }, + { + "start": 8495.76, + "end": 8497.08, + "probability": 0.4171 + }, + { + "start": 8498.61, + "end": 8501.5, + "probability": 0.5996 + }, + { + "start": 8503.26, + "end": 8504.2, + "probability": 0.7826 + }, + { + "start": 8504.24, + "end": 8504.58, + "probability": 0.858 + }, + { + "start": 8504.78, + "end": 8505.84, + "probability": 0.6912 + }, + { + "start": 8506.04, + "end": 8506.08, + "probability": 0.5394 + }, + { + "start": 8506.08, + "end": 8506.58, + "probability": 0.8033 + }, + { + "start": 8506.68, + "end": 8507.58, + "probability": 0.8602 + }, + { + "start": 8508.58, + "end": 8511.98, + "probability": 0.9438 + }, + { + "start": 8512.98, + "end": 8517.78, + "probability": 0.998 + }, + { + "start": 8517.86, + "end": 8520.34, + "probability": 0.9983 + }, + { + "start": 8521.02, + "end": 8523.08, + "probability": 0.7896 + }, + { + "start": 8523.18, + "end": 8525.56, + "probability": 0.98 + }, + { + "start": 8525.7, + "end": 8527.1, + "probability": 0.9946 + }, + { + "start": 8527.74, + "end": 8528.16, + "probability": 0.4762 + }, + { + "start": 8528.88, + "end": 8529.7, + "probability": 0.8315 + }, + { + "start": 8529.82, + "end": 8532.9, + "probability": 0.9877 + }, + { + "start": 8533.64, + "end": 8536.7, + "probability": 0.9873 + }, + { + "start": 8538.08, + "end": 8538.6, + "probability": 0.2325 + }, + { + "start": 8538.7, + "end": 8539.5, + "probability": 0.6652 + }, + { + "start": 8542.07, + "end": 8544.7, + "probability": 0.8588 + }, + { + "start": 8545.06, + "end": 8547.28, + "probability": 0.8707 + }, + { + "start": 8548.34, + "end": 8551.86, + "probability": 0.98 + }, + { + "start": 8551.94, + "end": 8557.36, + "probability": 0.9966 + }, + { + "start": 8557.82, + "end": 8561.64, + "probability": 0.9995 + }, + { + "start": 8562.44, + "end": 8566.08, + "probability": 0.8838 + }, + { + "start": 8566.26, + "end": 8566.56, + "probability": 0.3093 + }, + { + "start": 8566.7, + "end": 8567.02, + "probability": 0.7282 + }, + { + "start": 8567.1, + "end": 8568.24, + "probability": 0.454 + }, + { + "start": 8568.42, + "end": 8569.26, + "probability": 0.6949 + }, + { + "start": 8569.66, + "end": 8571.44, + "probability": 0.9865 + }, + { + "start": 8571.56, + "end": 8573.04, + "probability": 0.9937 + }, + { + "start": 8573.48, + "end": 8575.24, + "probability": 0.9062 + }, + { + "start": 8575.94, + "end": 8577.44, + "probability": 0.9033 + }, + { + "start": 8578.14, + "end": 8581.5, + "probability": 0.9954 + }, + { + "start": 8581.98, + "end": 8584.18, + "probability": 0.9671 + }, + { + "start": 8585.08, + "end": 8586.92, + "probability": 0.6626 + }, + { + "start": 8587.16, + "end": 8590.9, + "probability": 0.9948 + }, + { + "start": 8591.68, + "end": 8593.3, + "probability": 0.9824 + }, + { + "start": 8593.56, + "end": 8594.8, + "probability": 0.7668 + }, + { + "start": 8594.9, + "end": 8595.42, + "probability": 0.6474 + }, + { + "start": 8595.42, + "end": 8595.74, + "probability": 0.8803 + }, + { + "start": 8596.1, + "end": 8597.7, + "probability": 0.946 + }, + { + "start": 8597.78, + "end": 8599.14, + "probability": 0.5688 + }, + { + "start": 8600.68, + "end": 8603.14, + "probability": 0.894 + }, + { + "start": 8603.14, + "end": 8607.14, + "probability": 0.9326 + }, + { + "start": 8607.76, + "end": 8610.06, + "probability": 0.8946 + }, + { + "start": 8610.52, + "end": 8612.18, + "probability": 0.9995 + }, + { + "start": 8612.82, + "end": 8614.22, + "probability": 0.8359 + }, + { + "start": 8614.62, + "end": 8615.98, + "probability": 0.9541 + }, + { + "start": 8616.3, + "end": 8619.5, + "probability": 0.9694 + }, + { + "start": 8619.9, + "end": 8622.3, + "probability": 0.9437 + }, + { + "start": 8622.84, + "end": 8623.36, + "probability": 0.6615 + }, + { + "start": 8623.8, + "end": 8626.38, + "probability": 0.0133 + }, + { + "start": 8626.58, + "end": 8628.44, + "probability": 0.6959 + }, + { + "start": 8628.7, + "end": 8629.46, + "probability": 0.7432 + }, + { + "start": 8629.48, + "end": 8630.48, + "probability": 0.8661 + }, + { + "start": 8630.52, + "end": 8634.0, + "probability": 0.9957 + }, + { + "start": 8634.38, + "end": 8638.2, + "probability": 0.9839 + }, + { + "start": 8638.66, + "end": 8639.96, + "probability": 0.9773 + }, + { + "start": 8640.28, + "end": 8642.64, + "probability": 0.999 + }, + { + "start": 8642.84, + "end": 8643.96, + "probability": 0.7579 + }, + { + "start": 8644.06, + "end": 8644.72, + "probability": 0.5565 + }, + { + "start": 8645.04, + "end": 8647.28, + "probability": 0.9581 + }, + { + "start": 8647.44, + "end": 8650.5, + "probability": 0.9761 + }, + { + "start": 8650.58, + "end": 8651.74, + "probability": 0.9937 + }, + { + "start": 8652.14, + "end": 8654.94, + "probability": 0.8804 + }, + { + "start": 8655.06, + "end": 8657.94, + "probability": 0.9774 + }, + { + "start": 8657.94, + "end": 8660.78, + "probability": 0.9867 + }, + { + "start": 8661.0, + "end": 8665.32, + "probability": 0.9749 + }, + { + "start": 8665.48, + "end": 8668.6, + "probability": 0.995 + }, + { + "start": 8668.84, + "end": 8671.24, + "probability": 0.988 + }, + { + "start": 8671.38, + "end": 8672.36, + "probability": 0.7975 + }, + { + "start": 8672.44, + "end": 8673.38, + "probability": 0.8851 + }, + { + "start": 8673.46, + "end": 8674.86, + "probability": 0.9899 + }, + { + "start": 8674.94, + "end": 8675.86, + "probability": 0.9192 + }, + { + "start": 8676.9, + "end": 8677.18, + "probability": 0.1827 + }, + { + "start": 8678.52, + "end": 8682.84, + "probability": 0.7922 + }, + { + "start": 8682.92, + "end": 8683.7, + "probability": 0.1003 + }, + { + "start": 8683.7, + "end": 8684.66, + "probability": 0.7281 + }, + { + "start": 8684.74, + "end": 8685.88, + "probability": 0.4099 + }, + { + "start": 8686.02, + "end": 8688.02, + "probability": 0.9832 + }, + { + "start": 8688.4, + "end": 8689.34, + "probability": 0.7253 + }, + { + "start": 8689.34, + "end": 8690.86, + "probability": 0.334 + }, + { + "start": 8690.92, + "end": 8691.56, + "probability": 0.7045 + }, + { + "start": 8691.56, + "end": 8691.56, + "probability": 0.8079 + }, + { + "start": 8691.62, + "end": 8692.52, + "probability": 0.1198 + }, + { + "start": 8692.68, + "end": 8693.24, + "probability": 0.2549 + }, + { + "start": 8693.68, + "end": 8695.14, + "probability": 0.5919 + }, + { + "start": 8695.26, + "end": 8698.53, + "probability": 0.8109 + }, + { + "start": 8698.98, + "end": 8699.12, + "probability": 0.1459 + }, + { + "start": 8699.12, + "end": 8699.9, + "probability": 0.6259 + }, + { + "start": 8700.56, + "end": 8701.56, + "probability": 0.6448 + }, + { + "start": 8701.76, + "end": 8702.32, + "probability": 0.7331 + }, + { + "start": 8702.66, + "end": 8704.38, + "probability": 0.8203 + }, + { + "start": 8704.4, + "end": 8705.52, + "probability": 0.9612 + }, + { + "start": 8705.66, + "end": 8706.76, + "probability": 0.6954 + }, + { + "start": 8706.98, + "end": 8707.4, + "probability": 0.4775 + }, + { + "start": 8708.0, + "end": 8709.66, + "probability": 0.9471 + }, + { + "start": 8709.78, + "end": 8709.78, + "probability": 0.4273 + }, + { + "start": 8709.9, + "end": 8712.48, + "probability": 0.8218 + }, + { + "start": 8712.64, + "end": 8713.3, + "probability": 0.886 + }, + { + "start": 8713.58, + "end": 8715.0, + "probability": 0.9962 + }, + { + "start": 8716.1, + "end": 8716.1, + "probability": 0.0849 + }, + { + "start": 8716.1, + "end": 8718.98, + "probability": 0.4359 + }, + { + "start": 8718.98, + "end": 8721.9, + "probability": 0.9893 + }, + { + "start": 8722.2, + "end": 8724.24, + "probability": 0.8708 + }, + { + "start": 8724.48, + "end": 8725.86, + "probability": 0.9497 + }, + { + "start": 8725.98, + "end": 8726.3, + "probability": 0.4275 + }, + { + "start": 8726.72, + "end": 8727.86, + "probability": 0.5628 + }, + { + "start": 8728.08, + "end": 8731.38, + "probability": 0.9959 + }, + { + "start": 8731.88, + "end": 8735.32, + "probability": 0.9957 + }, + { + "start": 8735.32, + "end": 8738.76, + "probability": 0.9963 + }, + { + "start": 8739.04, + "end": 8739.76, + "probability": 0.7341 + }, + { + "start": 8739.82, + "end": 8740.92, + "probability": 0.8657 + }, + { + "start": 8740.92, + "end": 8741.72, + "probability": 0.5087 + }, + { + "start": 8742.22, + "end": 8745.06, + "probability": 0.7943 + }, + { + "start": 8745.68, + "end": 8747.76, + "probability": 0.9326 + }, + { + "start": 8748.54, + "end": 8751.5, + "probability": 0.7008 + }, + { + "start": 8752.14, + "end": 8754.6, + "probability": 0.7188 + }, + { + "start": 8755.14, + "end": 8756.28, + "probability": 0.9697 + }, + { + "start": 8759.58, + "end": 8762.32, + "probability": 0.4316 + }, + { + "start": 8762.52, + "end": 8763.18, + "probability": 0.8069 + }, + { + "start": 8763.76, + "end": 8764.66, + "probability": 0.6039 + }, + { + "start": 8765.94, + "end": 8773.92, + "probability": 0.9936 + }, + { + "start": 8775.92, + "end": 8779.3, + "probability": 0.999 + }, + { + "start": 8779.42, + "end": 8781.12, + "probability": 0.9924 + }, + { + "start": 8782.98, + "end": 8788.04, + "probability": 0.9787 + }, + { + "start": 8788.6, + "end": 8789.78, + "probability": 0.8832 + }, + { + "start": 8791.28, + "end": 8795.36, + "probability": 0.9409 + }, + { + "start": 8796.66, + "end": 8797.96, + "probability": 0.9858 + }, + { + "start": 8798.06, + "end": 8799.76, + "probability": 0.8718 + }, + { + "start": 8799.82, + "end": 8801.56, + "probability": 0.9883 + }, + { + "start": 8802.74, + "end": 8806.4, + "probability": 0.9989 + }, + { + "start": 8807.36, + "end": 8808.1, + "probability": 0.6791 + }, + { + "start": 8808.32, + "end": 8809.46, + "probability": 0.9954 + }, + { + "start": 8809.56, + "end": 8810.3, + "probability": 0.9596 + }, + { + "start": 8810.34, + "end": 8810.92, + "probability": 0.9113 + }, + { + "start": 8810.98, + "end": 8813.86, + "probability": 0.9951 + }, + { + "start": 8815.02, + "end": 8816.02, + "probability": 0.0102 + }, + { + "start": 8816.06, + "end": 8819.0, + "probability": 0.6602 + }, + { + "start": 8819.86, + "end": 8821.5, + "probability": 0.7518 + }, + { + "start": 8822.78, + "end": 8824.58, + "probability": 0.8704 + }, + { + "start": 8824.88, + "end": 8825.6, + "probability": 0.5843 + }, + { + "start": 8825.76, + "end": 8828.14, + "probability": 0.6652 + }, + { + "start": 8828.18, + "end": 8828.8, + "probability": 0.8342 + }, + { + "start": 8828.84, + "end": 8830.1, + "probability": 0.9883 + }, + { + "start": 8831.8, + "end": 8835.02, + "probability": 0.9946 + }, + { + "start": 8836.22, + "end": 8837.62, + "probability": 0.7829 + }, + { + "start": 8837.9, + "end": 8839.84, + "probability": 0.7746 + }, + { + "start": 8840.08, + "end": 8842.26, + "probability": 0.9762 + }, + { + "start": 8843.64, + "end": 8848.16, + "probability": 0.9868 + }, + { + "start": 8848.8, + "end": 8849.9, + "probability": 0.9933 + }, + { + "start": 8851.2, + "end": 8853.16, + "probability": 0.995 + }, + { + "start": 8853.64, + "end": 8855.48, + "probability": 0.4968 + }, + { + "start": 8855.52, + "end": 8857.32, + "probability": 0.7499 + }, + { + "start": 8857.36, + "end": 8857.79, + "probability": 0.9186 + }, + { + "start": 8858.78, + "end": 8860.0, + "probability": 0.8391 + }, + { + "start": 8860.52, + "end": 8861.74, + "probability": 0.8166 + }, + { + "start": 8863.3, + "end": 8865.5, + "probability": 0.9792 + }, + { + "start": 8865.5, + "end": 8868.1, + "probability": 0.9943 + }, + { + "start": 8870.38, + "end": 8871.78, + "probability": 0.9957 + }, + { + "start": 8872.16, + "end": 8872.16, + "probability": 0.0001 + }, + { + "start": 8874.34, + "end": 8874.34, + "probability": 0.0693 + }, + { + "start": 8874.34, + "end": 8876.72, + "probability": 0.7704 + }, + { + "start": 8877.7, + "end": 8882.8, + "probability": 0.9695 + }, + { + "start": 8882.96, + "end": 8883.48, + "probability": 0.9329 + }, + { + "start": 8883.5, + "end": 8884.46, + "probability": 0.9766 + }, + { + "start": 8885.04, + "end": 8887.72, + "probability": 0.9979 + }, + { + "start": 8890.22, + "end": 8893.03, + "probability": 0.1931 + }, + { + "start": 8893.52, + "end": 8893.52, + "probability": 0.1214 + }, + { + "start": 8893.52, + "end": 8893.98, + "probability": 0.3354 + }, + { + "start": 8894.04, + "end": 8895.32, + "probability": 0.9231 + }, + { + "start": 8895.44, + "end": 8896.62, + "probability": 0.8226 + }, + { + "start": 8898.24, + "end": 8899.34, + "probability": 0.5369 + }, + { + "start": 8899.46, + "end": 8902.26, + "probability": 0.7816 + }, + { + "start": 8902.42, + "end": 8907.18, + "probability": 0.957 + }, + { + "start": 8907.24, + "end": 8908.64, + "probability": 0.2279 + }, + { + "start": 8908.72, + "end": 8911.54, + "probability": 0.9816 + }, + { + "start": 8912.2, + "end": 8916.74, + "probability": 0.851 + }, + { + "start": 8917.52, + "end": 8922.64, + "probability": 0.9837 + }, + { + "start": 8922.86, + "end": 8923.46, + "probability": 0.849 + }, + { + "start": 8923.56, + "end": 8925.7, + "probability": 0.997 + }, + { + "start": 8926.28, + "end": 8933.8, + "probability": 0.9593 + }, + { + "start": 8934.7, + "end": 8938.72, + "probability": 0.9687 + }, + { + "start": 8939.7, + "end": 8941.1, + "probability": 0.8988 + }, + { + "start": 8941.66, + "end": 8943.86, + "probability": 0.9929 + }, + { + "start": 8943.92, + "end": 8944.36, + "probability": 0.8297 + }, + { + "start": 8945.05, + "end": 8948.14, + "probability": 0.8164 + }, + { + "start": 8948.16, + "end": 8950.38, + "probability": 0.7508 + }, + { + "start": 8952.74, + "end": 8954.12, + "probability": 0.91 + }, + { + "start": 8968.66, + "end": 8969.38, + "probability": 0.2748 + }, + { + "start": 8969.46, + "end": 8970.4, + "probability": 0.5998 + }, + { + "start": 8971.26, + "end": 8976.02, + "probability": 0.8767 + }, + { + "start": 8976.16, + "end": 8980.74, + "probability": 0.8911 + }, + { + "start": 8980.82, + "end": 8982.38, + "probability": 0.666 + }, + { + "start": 8983.18, + "end": 8986.28, + "probability": 0.8497 + }, + { + "start": 8986.88, + "end": 8989.52, + "probability": 0.799 + }, + { + "start": 8990.92, + "end": 8991.26, + "probability": 0.7782 + }, + { + "start": 8992.36, + "end": 8994.72, + "probability": 0.9408 + }, + { + "start": 8995.18, + "end": 8999.44, + "probability": 0.8972 + }, + { + "start": 9000.26, + "end": 9005.3, + "probability": 0.8879 + }, + { + "start": 9005.54, + "end": 9006.86, + "probability": 0.7602 + }, + { + "start": 9007.84, + "end": 9008.32, + "probability": 0.5014 + }, + { + "start": 9008.9, + "end": 9008.94, + "probability": 0.0347 + }, + { + "start": 9009.6, + "end": 9013.56, + "probability": 0.7696 + }, + { + "start": 9014.14, + "end": 9015.68, + "probability": 0.8804 + }, + { + "start": 9016.26, + "end": 9018.26, + "probability": 0.9824 + }, + { + "start": 9018.78, + "end": 9019.45, + "probability": 0.8032 + }, + { + "start": 9020.28, + "end": 9021.1, + "probability": 0.8197 + }, + { + "start": 9022.62, + "end": 9026.96, + "probability": 0.7599 + }, + { + "start": 9027.58, + "end": 9030.7, + "probability": 0.8229 + }, + { + "start": 9031.18, + "end": 9031.94, + "probability": 0.7991 + }, + { + "start": 9032.04, + "end": 9033.54, + "probability": 0.6445 + }, + { + "start": 9033.54, + "end": 9036.62, + "probability": 0.9739 + }, + { + "start": 9037.16, + "end": 9037.32, + "probability": 0.8521 + }, + { + "start": 9037.4, + "end": 9040.24, + "probability": 0.9365 + }, + { + "start": 9040.32, + "end": 9042.26, + "probability": 0.9884 + }, + { + "start": 9043.12, + "end": 9046.44, + "probability": 0.7515 + }, + { + "start": 9047.12, + "end": 9050.12, + "probability": 0.9858 + }, + { + "start": 9050.74, + "end": 9052.0, + "probability": 0.9292 + }, + { + "start": 9052.4, + "end": 9058.06, + "probability": 0.9553 + }, + { + "start": 9058.34, + "end": 9058.54, + "probability": 0.3843 + }, + { + "start": 9058.64, + "end": 9061.94, + "probability": 0.9578 + }, + { + "start": 9062.97, + "end": 9066.52, + "probability": 0.9565 + }, + { + "start": 9067.26, + "end": 9069.46, + "probability": 0.6531 + }, + { + "start": 9069.52, + "end": 9070.74, + "probability": 0.8793 + }, + { + "start": 9071.2, + "end": 9074.24, + "probability": 0.8952 + }, + { + "start": 9074.4, + "end": 9076.1, + "probability": 0.7986 + }, + { + "start": 9076.14, + "end": 9081.78, + "probability": 0.8859 + }, + { + "start": 9081.84, + "end": 9082.42, + "probability": 0.6701 + }, + { + "start": 9082.6, + "end": 9083.42, + "probability": 0.6356 + }, + { + "start": 9083.46, + "end": 9084.22, + "probability": 0.8103 + }, + { + "start": 9084.28, + "end": 9086.48, + "probability": 0.9313 + }, + { + "start": 9086.5, + "end": 9086.96, + "probability": 0.6364 + }, + { + "start": 9087.1, + "end": 9087.68, + "probability": 0.6294 + }, + { + "start": 9088.16, + "end": 9089.64, + "probability": 0.6003 + }, + { + "start": 9090.56, + "end": 9091.89, + "probability": 0.3964 + }, + { + "start": 9093.18, + "end": 9096.48, + "probability": 0.7817 + }, + { + "start": 9096.96, + "end": 9098.32, + "probability": 0.6943 + }, + { + "start": 9098.8, + "end": 9103.42, + "probability": 0.8813 + }, + { + "start": 9104.18, + "end": 9104.69, + "probability": 0.9297 + }, + { + "start": 9105.18, + "end": 9107.4, + "probability": 0.9929 + }, + { + "start": 9108.48, + "end": 9112.18, + "probability": 0.8845 + }, + { + "start": 9112.3, + "end": 9113.72, + "probability": 0.8512 + }, + { + "start": 9114.12, + "end": 9116.32, + "probability": 0.8938 + }, + { + "start": 9116.64, + "end": 9117.56, + "probability": 0.9285 + }, + { + "start": 9117.74, + "end": 9118.4, + "probability": 0.6007 + }, + { + "start": 9118.42, + "end": 9122.1, + "probability": 0.9004 + }, + { + "start": 9122.88, + "end": 9125.98, + "probability": 0.8044 + }, + { + "start": 9126.44, + "end": 9128.48, + "probability": 0.9574 + }, + { + "start": 9129.02, + "end": 9133.22, + "probability": 0.958 + }, + { + "start": 9133.42, + "end": 9134.06, + "probability": 0.6556 + }, + { + "start": 9134.12, + "end": 9137.34, + "probability": 0.9633 + }, + { + "start": 9137.62, + "end": 9138.64, + "probability": 0.9251 + }, + { + "start": 9138.84, + "end": 9139.38, + "probability": 0.66 + }, + { + "start": 9140.34, + "end": 9140.68, + "probability": 0.8492 + }, + { + "start": 9141.66, + "end": 9142.5, + "probability": 0.8696 + }, + { + "start": 9142.64, + "end": 9144.78, + "probability": 0.9648 + }, + { + "start": 9144.84, + "end": 9147.28, + "probability": 0.9959 + }, + { + "start": 9147.28, + "end": 9149.48, + "probability": 0.9063 + }, + { + "start": 9149.92, + "end": 9152.52, + "probability": 0.8758 + }, + { + "start": 9153.04, + "end": 9157.9, + "probability": 0.9268 + }, + { + "start": 9157.92, + "end": 9158.16, + "probability": 0.7822 + }, + { + "start": 9158.9, + "end": 9159.94, + "probability": 0.9275 + }, + { + "start": 9160.76, + "end": 9162.58, + "probability": 0.7319 + }, + { + "start": 9163.12, + "end": 9166.13, + "probability": 0.9422 + }, + { + "start": 9168.0, + "end": 9168.66, + "probability": 0.7475 + }, + { + "start": 9169.58, + "end": 9170.48, + "probability": 0.6913 + }, + { + "start": 9171.16, + "end": 9171.46, + "probability": 0.6537 + }, + { + "start": 9171.78, + "end": 9171.9, + "probability": 0.76 + }, + { + "start": 9172.96, + "end": 9174.06, + "probability": 0.6458 + }, + { + "start": 9174.16, + "end": 9175.78, + "probability": 0.951 + }, + { + "start": 9175.8, + "end": 9177.44, + "probability": 0.9472 + }, + { + "start": 9178.38, + "end": 9181.4, + "probability": 0.9954 + }, + { + "start": 9182.08, + "end": 9183.44, + "probability": 0.9159 + }, + { + "start": 9183.98, + "end": 9184.1, + "probability": 0.0048 + }, + { + "start": 9184.1, + "end": 9185.22, + "probability": 0.7037 + }, + { + "start": 9186.56, + "end": 9188.44, + "probability": 0.2656 + }, + { + "start": 9189.54, + "end": 9192.09, + "probability": 0.8767 + }, + { + "start": 9204.52, + "end": 9206.38, + "probability": 0.6113 + }, + { + "start": 9206.8, + "end": 9209.78, + "probability": 0.993 + }, + { + "start": 9210.32, + "end": 9211.1, + "probability": 0.7259 + }, + { + "start": 9211.48, + "end": 9214.62, + "probability": 0.8054 + }, + { + "start": 9215.04, + "end": 9218.04, + "probability": 0.9937 + }, + { + "start": 9218.58, + "end": 9220.68, + "probability": 0.9933 + }, + { + "start": 9221.14, + "end": 9224.68, + "probability": 0.9507 + }, + { + "start": 9225.1, + "end": 9227.28, + "probability": 0.9676 + }, + { + "start": 9227.8, + "end": 9230.1, + "probability": 0.7774 + }, + { + "start": 9230.64, + "end": 9232.08, + "probability": 0.9744 + }, + { + "start": 9232.5, + "end": 9235.4, + "probability": 0.985 + }, + { + "start": 9236.04, + "end": 9239.4, + "probability": 0.5895 + }, + { + "start": 9239.94, + "end": 9241.6, + "probability": 0.7983 + }, + { + "start": 9242.08, + "end": 9246.62, + "probability": 0.9868 + }, + { + "start": 9246.7, + "end": 9247.42, + "probability": 0.7588 + }, + { + "start": 9247.48, + "end": 9250.66, + "probability": 0.9507 + }, + { + "start": 9250.8, + "end": 9251.3, + "probability": 0.5137 + }, + { + "start": 9252.1, + "end": 9254.18, + "probability": 0.938 + }, + { + "start": 9254.72, + "end": 9258.1, + "probability": 0.9331 + }, + { + "start": 9258.76, + "end": 9264.54, + "probability": 0.8597 + }, + { + "start": 9265.36, + "end": 9266.86, + "probability": 0.3725 + }, + { + "start": 9268.06, + "end": 9269.12, + "probability": 0.9696 + }, + { + "start": 9269.64, + "end": 9270.28, + "probability": 0.6204 + }, + { + "start": 9279.2, + "end": 9279.96, + "probability": 0.6454 + }, + { + "start": 9280.3, + "end": 9280.82, + "probability": 0.8638 + }, + { + "start": 9286.16, + "end": 9287.96, + "probability": 0.2032 + }, + { + "start": 9297.54, + "end": 9297.82, + "probability": 0.0126 + }, + { + "start": 9301.84, + "end": 9304.92, + "probability": 0.1584 + }, + { + "start": 9304.92, + "end": 9305.12, + "probability": 0.0817 + }, + { + "start": 9305.28, + "end": 9306.96, + "probability": 0.4711 + }, + { + "start": 9308.28, + "end": 9309.12, + "probability": 0.8593 + }, + { + "start": 9313.94, + "end": 9314.82, + "probability": 0.0089 + }, + { + "start": 9319.6, + "end": 9322.34, + "probability": 0.2408 + }, + { + "start": 9324.44, + "end": 9324.96, + "probability": 0.0429 + }, + { + "start": 9326.98, + "end": 9329.8, + "probability": 0.0481 + }, + { + "start": 9385.0, + "end": 9385.0, + "probability": 0.0 + }, + { + "start": 9385.0, + "end": 9385.0, + "probability": 0.0 + }, + { + "start": 9385.0, + "end": 9385.0, + "probability": 0.0 + }, + { + "start": 9385.0, + "end": 9385.0, + "probability": 0.0 + }, + { + "start": 9385.0, + "end": 9385.0, + "probability": 0.0 + }, + { + "start": 9385.0, + "end": 9385.0, + "probability": 0.0 + }, + { + "start": 9385.0, + "end": 9385.0, + "probability": 0.0 + }, + { + "start": 9385.0, + "end": 9385.0, + "probability": 0.0 + }, + { + "start": 9385.0, + "end": 9385.0, + "probability": 0.0 + }, + { + "start": 9385.0, + "end": 9385.0, + "probability": 0.0 + }, + { + "start": 9385.0, + "end": 9385.0, + "probability": 0.0 + }, + { + "start": 9385.0, + "end": 9385.0, + "probability": 0.0 + }, + { + "start": 9385.0, + "end": 9385.0, + "probability": 0.0 + }, + { + "start": 9385.0, + "end": 9385.0, + "probability": 0.0 + }, + { + "start": 9385.0, + "end": 9385.0, + "probability": 0.0 + }, + { + "start": 9385.0, + "end": 9385.0, + "probability": 0.0 + }, + { + "start": 9385.0, + "end": 9385.0, + "probability": 0.0 + }, + { + "start": 9385.0, + "end": 9385.0, + "probability": 0.0 + }, + { + "start": 9385.0, + "end": 9385.0, + "probability": 0.0 + }, + { + "start": 9385.0, + "end": 9385.0, + "probability": 0.0 + }, + { + "start": 9385.0, + "end": 9385.0, + "probability": 0.0 + }, + { + "start": 9385.0, + "end": 9385.0, + "probability": 0.0 + }, + { + "start": 9385.0, + "end": 9385.0, + "probability": 0.0 + }, + { + "start": 9385.0, + "end": 9385.0, + "probability": 0.0 + }, + { + "start": 9385.0, + "end": 9385.0, + "probability": 0.0 + }, + { + "start": 9385.0, + "end": 9385.0, + "probability": 0.0 + }, + { + "start": 9385.0, + "end": 9385.0, + "probability": 0.0 + }, + { + "start": 9385.0, + "end": 9385.0, + "probability": 0.0 + }, + { + "start": 9385.0, + "end": 9385.0, + "probability": 0.0 + }, + { + "start": 9385.0, + "end": 9385.0, + "probability": 0.0 + }, + { + "start": 9385.0, + "end": 9385.0, + "probability": 0.0 + }, + { + "start": 9392.51, + "end": 9396.1, + "probability": 0.7276 + }, + { + "start": 9396.34, + "end": 9399.74, + "probability": 0.7505 + }, + { + "start": 9399.86, + "end": 9403.4, + "probability": 0.9356 + }, + { + "start": 9404.58, + "end": 9406.86, + "probability": 0.9808 + }, + { + "start": 9407.0, + "end": 9408.54, + "probability": 0.8634 + }, + { + "start": 9409.16, + "end": 9410.58, + "probability": 0.3791 + }, + { + "start": 9410.94, + "end": 9413.38, + "probability": 0.8699 + }, + { + "start": 9413.66, + "end": 9415.08, + "probability": 0.7738 + }, + { + "start": 9415.16, + "end": 9415.66, + "probability": 0.2703 + }, + { + "start": 9415.66, + "end": 9416.42, + "probability": 0.6155 + }, + { + "start": 9438.78, + "end": 9441.01, + "probability": 0.0777 + }, + { + "start": 9441.3, + "end": 9443.74, + "probability": 0.028 + }, + { + "start": 9444.99, + "end": 9446.52, + "probability": 0.0957 + }, + { + "start": 9447.3, + "end": 9450.68, + "probability": 0.0332 + }, + { + "start": 9451.72, + "end": 9452.2, + "probability": 0.1472 + }, + { + "start": 9455.32, + "end": 9461.26, + "probability": 0.1146 + }, + { + "start": 9461.26, + "end": 9463.92, + "probability": 0.1361 + }, + { + "start": 9464.7, + "end": 9466.2, + "probability": 0.3083 + }, + { + "start": 9467.98, + "end": 9468.82, + "probability": 0.0644 + }, + { + "start": 9469.54, + "end": 9470.42, + "probability": 0.0554 + }, + { + "start": 9472.06, + "end": 9474.08, + "probability": 0.0888 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.9, + "end": 9505.9, + "probability": 0.1229 + }, + { + "start": 9505.9, + "end": 9506.85, + "probability": 0.368 + }, + { + "start": 9507.32, + "end": 9509.08, + "probability": 0.0618 + }, + { + "start": 9509.89, + "end": 9512.36, + "probability": 0.832 + }, + { + "start": 9512.46, + "end": 9512.88, + "probability": 0.3956 + }, + { + "start": 9512.9, + "end": 9513.94, + "probability": 0.8929 + }, + { + "start": 9514.2, + "end": 9515.14, + "probability": 0.8447 + }, + { + "start": 9516.3, + "end": 9517.16, + "probability": 0.9741 + }, + { + "start": 9518.2, + "end": 9522.46, + "probability": 0.9874 + }, + { + "start": 9523.16, + "end": 9525.16, + "probability": 0.9985 + }, + { + "start": 9526.12, + "end": 9528.46, + "probability": 0.6248 + }, + { + "start": 9529.28, + "end": 9534.04, + "probability": 0.9838 + }, + { + "start": 9534.68, + "end": 9540.34, + "probability": 0.9933 + }, + { + "start": 9541.06, + "end": 9545.14, + "probability": 0.987 + }, + { + "start": 9545.82, + "end": 9549.2, + "probability": 0.9766 + }, + { + "start": 9549.76, + "end": 9553.7, + "probability": 0.9893 + }, + { + "start": 9554.24, + "end": 9561.0, + "probability": 0.9702 + }, + { + "start": 9561.44, + "end": 9566.27, + "probability": 0.9946 + }, + { + "start": 9566.58, + "end": 9568.82, + "probability": 0.605 + }, + { + "start": 9569.36, + "end": 9574.42, + "probability": 0.6602 + }, + { + "start": 9575.1, + "end": 9576.34, + "probability": 0.9529 + }, + { + "start": 9577.22, + "end": 9579.72, + "probability": 0.993 + }, + { + "start": 9579.98, + "end": 9581.56, + "probability": 0.4248 + }, + { + "start": 9581.84, + "end": 9582.33, + "probability": 0.9 + }, + { + "start": 9585.84, + "end": 9587.12, + "probability": 0.1308 + }, + { + "start": 9587.12, + "end": 9587.46, + "probability": 0.1069 + }, + { + "start": 9587.6, + "end": 9588.2, + "probability": 0.4397 + }, + { + "start": 9588.36, + "end": 9588.6, + "probability": 0.5082 + }, + { + "start": 9588.6, + "end": 9589.85, + "probability": 0.8761 + }, + { + "start": 9594.34, + "end": 9596.92, + "probability": 0.6978 + }, + { + "start": 9597.06, + "end": 9597.56, + "probability": 0.8488 + }, + { + "start": 9597.64, + "end": 9598.0, + "probability": 0.8192 + }, + { + "start": 9598.14, + "end": 9600.66, + "probability": 0.9569 + }, + { + "start": 9601.18, + "end": 9603.66, + "probability": 0.7858 + }, + { + "start": 9604.14, + "end": 9604.78, + "probability": 0.7959 + }, + { + "start": 9605.06, + "end": 9607.66, + "probability": 0.716 + }, + { + "start": 9608.12, + "end": 9613.6, + "probability": 0.935 + }, + { + "start": 9615.14, + "end": 9617.04, + "probability": 0.8094 + }, + { + "start": 9617.5, + "end": 9621.28, + "probability": 0.8493 + }, + { + "start": 9623.2, + "end": 9628.12, + "probability": 0.863 + }, + { + "start": 9628.76, + "end": 9629.8, + "probability": 0.9819 + }, + { + "start": 9637.58, + "end": 9638.74, + "probability": 0.6475 + }, + { + "start": 9638.86, + "end": 9638.86, + "probability": 0.3818 + }, + { + "start": 9638.92, + "end": 9639.42, + "probability": 0.826 + }, + { + "start": 9639.6, + "end": 9640.42, + "probability": 0.8076 + }, + { + "start": 9643.04, + "end": 9648.44, + "probability": 0.9424 + }, + { + "start": 9649.51, + "end": 9654.8, + "probability": 0.896 + }, + { + "start": 9660.12, + "end": 9667.56, + "probability": 0.9315 + }, + { + "start": 9669.06, + "end": 9672.84, + "probability": 0.7296 + }, + { + "start": 9673.14, + "end": 9674.98, + "probability": 0.1693 + }, + { + "start": 9676.14, + "end": 9680.08, + "probability": 0.8425 + }, + { + "start": 9680.74, + "end": 9683.5, + "probability": 0.9868 + }, + { + "start": 9684.26, + "end": 9686.9, + "probability": 0.7083 + }, + { + "start": 9686.9, + "end": 9690.6, + "probability": 0.9907 + }, + { + "start": 9691.26, + "end": 9695.12, + "probability": 0.9507 + }, + { + "start": 9695.12, + "end": 9700.46, + "probability": 0.9939 + }, + { + "start": 9702.24, + "end": 9703.28, + "probability": 0.8276 + }, + { + "start": 9703.9, + "end": 9706.44, + "probability": 0.9159 + }, + { + "start": 9706.44, + "end": 9710.42, + "probability": 0.8461 + }, + { + "start": 9711.28, + "end": 9712.02, + "probability": 0.2068 + }, + { + "start": 9715.02, + "end": 9715.3, + "probability": 0.1215 + }, + { + "start": 9715.98, + "end": 9721.0, + "probability": 0.9819 + }, + { + "start": 9721.0, + "end": 9728.1, + "probability": 0.8573 + }, + { + "start": 9729.16, + "end": 9732.24, + "probability": 0.8332 + }, + { + "start": 9733.25, + "end": 9736.22, + "probability": 0.8237 + }, + { + "start": 9736.34, + "end": 9741.44, + "probability": 0.9612 + }, + { + "start": 9742.04, + "end": 9744.96, + "probability": 0.9661 + }, + { + "start": 9745.58, + "end": 9749.58, + "probability": 0.982 + }, + { + "start": 9750.26, + "end": 9753.82, + "probability": 0.995 + }, + { + "start": 9755.2, + "end": 9759.08, + "probability": 0.9807 + }, + { + "start": 9759.66, + "end": 9761.3, + "probability": 0.9655 + }, + { + "start": 9762.72, + "end": 9766.82, + "probability": 0.9925 + }, + { + "start": 9766.88, + "end": 9768.24, + "probability": 0.9491 + }, + { + "start": 9768.36, + "end": 9769.2, + "probability": 0.8268 + }, + { + "start": 9769.64, + "end": 9770.46, + "probability": 0.8552 + }, + { + "start": 9770.5, + "end": 9771.24, + "probability": 0.5862 + }, + { + "start": 9771.3, + "end": 9772.04, + "probability": 0.5951 + }, + { + "start": 9772.1, + "end": 9774.34, + "probability": 0.9201 + }, + { + "start": 9774.56, + "end": 9777.16, + "probability": 0.9375 + }, + { + "start": 9778.06, + "end": 9780.72, + "probability": 0.9814 + }, + { + "start": 9780.74, + "end": 9783.64, + "probability": 0.9256 + }, + { + "start": 9784.32, + "end": 9787.98, + "probability": 0.9816 + }, + { + "start": 9787.98, + "end": 9792.22, + "probability": 0.9816 + }, + { + "start": 9794.14, + "end": 9796.8, + "probability": 0.7175 + }, + { + "start": 9796.98, + "end": 9802.58, + "probability": 0.934 + }, + { + "start": 9802.58, + "end": 9807.96, + "probability": 0.9951 + }, + { + "start": 9808.88, + "end": 9812.88, + "probability": 0.9896 + }, + { + "start": 9813.84, + "end": 9816.16, + "probability": 0.5267 + }, + { + "start": 9816.26, + "end": 9822.32, + "probability": 0.919 + }, + { + "start": 9822.34, + "end": 9829.14, + "probability": 0.9824 + }, + { + "start": 9830.82, + "end": 9831.84, + "probability": 0.4499 + }, + { + "start": 9831.92, + "end": 9832.5, + "probability": 0.8874 + }, + { + "start": 9832.6, + "end": 9835.48, + "probability": 0.7 + }, + { + "start": 9835.58, + "end": 9836.8, + "probability": 0.8965 + }, + { + "start": 9837.52, + "end": 9840.98, + "probability": 0.981 + }, + { + "start": 9840.98, + "end": 9843.96, + "probability": 0.996 + }, + { + "start": 9844.6, + "end": 9851.8, + "probability": 0.9748 + }, + { + "start": 9852.92, + "end": 9855.88, + "probability": 0.9782 + }, + { + "start": 9855.98, + "end": 9858.26, + "probability": 0.8822 + }, + { + "start": 9858.36, + "end": 9860.3, + "probability": 0.9526 + }, + { + "start": 9865.08, + "end": 9867.64, + "probability": 0.1671 + }, + { + "start": 9868.3, + "end": 9869.9, + "probability": 0.0826 + }, + { + "start": 9870.62, + "end": 9870.92, + "probability": 0.0307 + }, + { + "start": 9873.24, + "end": 9877.94, + "probability": 0.4196 + }, + { + "start": 9878.14, + "end": 9880.12, + "probability": 0.6441 + }, + { + "start": 9880.84, + "end": 9884.88, + "probability": 0.9823 + }, + { + "start": 9885.79, + "end": 9889.74, + "probability": 0.8881 + }, + { + "start": 9889.82, + "end": 9894.32, + "probability": 0.9743 + }, + { + "start": 9896.0, + "end": 9901.64, + "probability": 0.994 + }, + { + "start": 9901.72, + "end": 9903.2, + "probability": 0.7712 + }, + { + "start": 9903.76, + "end": 9907.64, + "probability": 0.868 + }, + { + "start": 9907.76, + "end": 9909.08, + "probability": 0.7397 + }, + { + "start": 9909.6, + "end": 9910.8, + "probability": 0.8727 + }, + { + "start": 9910.8, + "end": 9916.78, + "probability": 0.987 + }, + { + "start": 9917.5, + "end": 9920.42, + "probability": 0.9814 + }, + { + "start": 9920.52, + "end": 9923.5, + "probability": 0.9446 + }, + { + "start": 9924.12, + "end": 9926.44, + "probability": 0.9274 + }, + { + "start": 9926.62, + "end": 9928.74, + "probability": 0.932 + }, + { + "start": 9928.86, + "end": 9933.74, + "probability": 0.9945 + }, + { + "start": 9934.16, + "end": 9936.08, + "probability": 0.9884 + }, + { + "start": 9936.7, + "end": 9939.18, + "probability": 0.9782 + }, + { + "start": 9939.46, + "end": 9940.2, + "probability": 0.9403 + }, + { + "start": 9940.34, + "end": 9944.46, + "probability": 0.9559 + }, + { + "start": 9944.72, + "end": 9949.1, + "probability": 0.9913 + }, + { + "start": 9949.1, + "end": 9952.2, + "probability": 0.9964 + }, + { + "start": 9952.26, + "end": 9954.52, + "probability": 0.9696 + }, + { + "start": 9954.68, + "end": 9956.08, + "probability": 0.8968 + }, + { + "start": 9956.8, + "end": 9957.5, + "probability": 0.8276 + }, + { + "start": 9958.16, + "end": 9962.3, + "probability": 0.9954 + }, + { + "start": 9962.36, + "end": 9965.28, + "probability": 0.9992 + }, + { + "start": 9965.28, + "end": 9968.82, + "probability": 0.996 + }, + { + "start": 9969.44, + "end": 9972.7, + "probability": 0.9769 + }, + { + "start": 9972.74, + "end": 9974.32, + "probability": 0.924 + }, + { + "start": 9974.42, + "end": 9976.98, + "probability": 0.9736 + }, + { + "start": 9977.68, + "end": 9978.79, + "probability": 0.9855 + }, + { + "start": 9978.92, + "end": 9984.72, + "probability": 0.9475 + }, + { + "start": 9985.6, + "end": 9988.32, + "probability": 0.967 + }, + { + "start": 9988.32, + "end": 9994.58, + "probability": 0.7502 + }, + { + "start": 9998.26, + "end": 10000.38, + "probability": 0.8843 + }, + { + "start": 10001.22, + "end": 10007.1, + "probability": 0.8883 + }, + { + "start": 10007.22, + "end": 10007.5, + "probability": 0.393 + }, + { + "start": 10007.52, + "end": 10009.84, + "probability": 0.9105 + }, + { + "start": 10009.96, + "end": 10010.86, + "probability": 0.9494 + }, + { + "start": 10011.41, + "end": 10012.46, + "probability": 0.1974 + }, + { + "start": 10013.9, + "end": 10013.9, + "probability": 0.0361 + }, + { + "start": 10013.9, + "end": 10015.64, + "probability": 0.958 + }, + { + "start": 10018.26, + "end": 10019.3, + "probability": 0.6339 + }, + { + "start": 10019.62, + "end": 10020.58, + "probability": 0.9146 + }, + { + "start": 10020.74, + "end": 10026.05, + "probability": 0.9806 + }, + { + "start": 10026.86, + "end": 10027.58, + "probability": 0.5538 + }, + { + "start": 10028.04, + "end": 10029.18, + "probability": 0.9758 + }, + { + "start": 10029.34, + "end": 10030.8, + "probability": 0.8267 + }, + { + "start": 10030.92, + "end": 10032.52, + "probability": 0.9684 + }, + { + "start": 10032.74, + "end": 10033.16, + "probability": 0.451 + }, + { + "start": 10034.06, + "end": 10036.1, + "probability": 0.9498 + }, + { + "start": 10036.14, + "end": 10036.68, + "probability": 0.6412 + }, + { + "start": 10036.84, + "end": 10037.68, + "probability": 0.857 + }, + { + "start": 10037.8, + "end": 10038.8, + "probability": 0.8979 + }, + { + "start": 10038.98, + "end": 10044.57, + "probability": 0.9778 + }, + { + "start": 10045.36, + "end": 10048.04, + "probability": 0.9315 + }, + { + "start": 10050.62, + "end": 10051.52, + "probability": 0.7412 + }, + { + "start": 10051.72, + "end": 10052.14, + "probability": 0.6597 + }, + { + "start": 10052.22, + "end": 10054.82, + "probability": 0.8824 + }, + { + "start": 10054.93, + "end": 10060.92, + "probability": 0.9872 + }, + { + "start": 10060.92, + "end": 10064.6, + "probability": 0.9738 + }, + { + "start": 10065.38, + "end": 10068.08, + "probability": 0.9993 + }, + { + "start": 10068.18, + "end": 10071.18, + "probability": 0.9508 + }, + { + "start": 10071.18, + "end": 10076.16, + "probability": 0.9688 + }, + { + "start": 10077.0, + "end": 10079.88, + "probability": 0.7691 + }, + { + "start": 10080.0, + "end": 10084.86, + "probability": 0.9862 + }, + { + "start": 10085.02, + "end": 10094.94, + "probability": 0.9798 + }, + { + "start": 10095.96, + "end": 10102.0, + "probability": 0.9984 + }, + { + "start": 10102.7, + "end": 10104.58, + "probability": 0.9956 + }, + { + "start": 10104.86, + "end": 10111.4, + "probability": 0.9966 + }, + { + "start": 10111.54, + "end": 10112.14, + "probability": 0.7381 + }, + { + "start": 10112.22, + "end": 10112.68, + "probability": 0.6901 + }, + { + "start": 10112.74, + "end": 10118.45, + "probability": 0.9943 + }, + { + "start": 10119.12, + "end": 10119.52, + "probability": 0.4025 + }, + { + "start": 10119.64, + "end": 10120.28, + "probability": 0.7407 + }, + { + "start": 10120.42, + "end": 10128.82, + "probability": 0.9927 + }, + { + "start": 10128.98, + "end": 10129.84, + "probability": 0.3457 + }, + { + "start": 10130.3, + "end": 10136.82, + "probability": 0.9812 + }, + { + "start": 10136.82, + "end": 10144.54, + "probability": 0.9931 + }, + { + "start": 10145.04, + "end": 10146.64, + "probability": 0.7987 + }, + { + "start": 10147.3, + "end": 10149.42, + "probability": 0.8868 + }, + { + "start": 10150.04, + "end": 10156.84, + "probability": 0.9821 + }, + { + "start": 10158.08, + "end": 10160.46, + "probability": 0.9608 + }, + { + "start": 10160.7, + "end": 10161.24, + "probability": 0.8323 + }, + { + "start": 10161.26, + "end": 10162.36, + "probability": 0.8976 + }, + { + "start": 10162.6, + "end": 10165.64, + "probability": 0.9002 + }, + { + "start": 10166.56, + "end": 10167.96, + "probability": 0.7988 + }, + { + "start": 10168.42, + "end": 10173.1, + "probability": 0.9819 + }, + { + "start": 10173.4, + "end": 10175.58, + "probability": 0.9734 + }, + { + "start": 10175.64, + "end": 10175.92, + "probability": 0.8223 + }, + { + "start": 10176.86, + "end": 10179.57, + "probability": 0.7866 + }, + { + "start": 10179.94, + "end": 10183.84, + "probability": 0.8623 + }, + { + "start": 10184.64, + "end": 10186.78, + "probability": 0.8512 + }, + { + "start": 10188.32, + "end": 10190.44, + "probability": 0.9229 + }, + { + "start": 10190.56, + "end": 10191.16, + "probability": 0.8586 + }, + { + "start": 10191.24, + "end": 10192.08, + "probability": 0.6549 + }, + { + "start": 10192.56, + "end": 10193.6, + "probability": 0.8308 + }, + { + "start": 10193.72, + "end": 10196.24, + "probability": 0.9766 + }, + { + "start": 10196.98, + "end": 10199.26, + "probability": 0.9295 + }, + { + "start": 10199.7, + "end": 10202.98, + "probability": 0.9194 + }, + { + "start": 10203.76, + "end": 10206.54, + "probability": 0.7599 + }, + { + "start": 10207.28, + "end": 10209.74, + "probability": 0.9384 + }, + { + "start": 10209.88, + "end": 10212.82, + "probability": 0.8581 + }, + { + "start": 10213.66, + "end": 10217.52, + "probability": 0.9078 + }, + { + "start": 10217.78, + "end": 10218.82, + "probability": 0.9038 + }, + { + "start": 10219.68, + "end": 10221.78, + "probability": 0.9417 + }, + { + "start": 10221.78, + "end": 10222.78, + "probability": 0.892 + }, + { + "start": 10222.82, + "end": 10228.42, + "probability": 0.8674 + }, + { + "start": 10229.58, + "end": 10229.58, + "probability": 0.1011 + }, + { + "start": 10229.58, + "end": 10232.78, + "probability": 0.9669 + }, + { + "start": 10232.78, + "end": 10237.22, + "probability": 0.991 + }, + { + "start": 10237.34, + "end": 10238.66, + "probability": 0.9087 + }, + { + "start": 10239.04, + "end": 10239.52, + "probability": 0.892 + }, + { + "start": 10239.6, + "end": 10243.16, + "probability": 0.9624 + }, + { + "start": 10243.16, + "end": 10243.4, + "probability": 0.0301 + }, + { + "start": 10243.64, + "end": 10246.38, + "probability": 0.7334 + }, + { + "start": 10247.18, + "end": 10249.22, + "probability": 0.666 + }, + { + "start": 10249.76, + "end": 10251.1, + "probability": 0.7446 + }, + { + "start": 10251.48, + "end": 10253.5, + "probability": 0.5927 + }, + { + "start": 10253.54, + "end": 10254.32, + "probability": 0.1765 + }, + { + "start": 10254.65, + "end": 10256.3, + "probability": 0.1482 + }, + { + "start": 10256.66, + "end": 10257.14, + "probability": 0.0363 + }, + { + "start": 10257.2, + "end": 10257.24, + "probability": 0.0215 + }, + { + "start": 10257.24, + "end": 10257.24, + "probability": 0.0069 + }, + { + "start": 10257.24, + "end": 10257.24, + "probability": 0.0159 + }, + { + "start": 10257.24, + "end": 10258.52, + "probability": 0.7144 + }, + { + "start": 10258.54, + "end": 10258.74, + "probability": 0.2756 + }, + { + "start": 10258.76, + "end": 10259.74, + "probability": 0.4353 + }, + { + "start": 10259.74, + "end": 10261.12, + "probability": 0.4311 + }, + { + "start": 10261.38, + "end": 10261.96, + "probability": 0.6512 + }, + { + "start": 10262.08, + "end": 10262.22, + "probability": 0.0169 + }, + { + "start": 10262.22, + "end": 10262.22, + "probability": 0.3817 + }, + { + "start": 10262.22, + "end": 10262.22, + "probability": 0.0305 + }, + { + "start": 10262.22, + "end": 10262.88, + "probability": 0.6296 + }, + { + "start": 10263.28, + "end": 10266.63, + "probability": 0.5462 + }, + { + "start": 10267.1, + "end": 10273.08, + "probability": 0.7794 + }, + { + "start": 10273.66, + "end": 10275.62, + "probability": 0.7318 + }, + { + "start": 10275.62, + "end": 10275.8, + "probability": 0.1352 + }, + { + "start": 10275.8, + "end": 10276.16, + "probability": 0.0356 + }, + { + "start": 10276.7, + "end": 10279.48, + "probability": 0.6543 + }, + { + "start": 10279.52, + "end": 10280.3, + "probability": 0.3645 + }, + { + "start": 10281.56, + "end": 10283.74, + "probability": 0.9799 + }, + { + "start": 10284.1, + "end": 10285.42, + "probability": 0.8492 + }, + { + "start": 10285.96, + "end": 10287.66, + "probability": 0.8132 + }, + { + "start": 10287.74, + "end": 10289.15, + "probability": 0.9885 + }, + { + "start": 10289.42, + "end": 10290.62, + "probability": 0.701 + }, + { + "start": 10291.2, + "end": 10294.04, + "probability": 0.9876 + }, + { + "start": 10294.44, + "end": 10295.72, + "probability": 0.9419 + }, + { + "start": 10295.78, + "end": 10296.84, + "probability": 0.9822 + }, + { + "start": 10296.92, + "end": 10301.26, + "probability": 0.8271 + }, + { + "start": 10301.4, + "end": 10303.42, + "probability": 0.5485 + }, + { + "start": 10303.6, + "end": 10304.2, + "probability": 0.7341 + }, + { + "start": 10313.28, + "end": 10313.7, + "probability": 0.2875 + }, + { + "start": 10313.74, + "end": 10314.6, + "probability": 0.186 + }, + { + "start": 10314.8, + "end": 10314.9, + "probability": 0.1337 + }, + { + "start": 10314.9, + "end": 10314.9, + "probability": 0.0879 + }, + { + "start": 10328.24, + "end": 10330.84, + "probability": 0.6331 + }, + { + "start": 10331.44, + "end": 10335.64, + "probability": 0.9972 + }, + { + "start": 10336.46, + "end": 10342.14, + "probability": 0.9351 + }, + { + "start": 10343.12, + "end": 10346.94, + "probability": 0.9961 + }, + { + "start": 10347.46, + "end": 10350.86, + "probability": 0.9515 + }, + { + "start": 10351.22, + "end": 10353.64, + "probability": 0.7783 + }, + { + "start": 10354.18, + "end": 10357.64, + "probability": 0.9858 + }, + { + "start": 10358.42, + "end": 10359.68, + "probability": 0.9141 + }, + { + "start": 10361.17, + "end": 10364.14, + "probability": 0.9387 + }, + { + "start": 10364.84, + "end": 10367.08, + "probability": 0.9336 + }, + { + "start": 10367.16, + "end": 10371.42, + "probability": 0.7858 + }, + { + "start": 10371.58, + "end": 10372.82, + "probability": 0.7483 + }, + { + "start": 10372.86, + "end": 10377.58, + "probability": 0.9791 + }, + { + "start": 10378.0, + "end": 10378.77, + "probability": 0.9688 + }, + { + "start": 10379.18, + "end": 10383.18, + "probability": 0.9355 + }, + { + "start": 10383.74, + "end": 10383.86, + "probability": 0.4649 + }, + { + "start": 10385.16, + "end": 10387.24, + "probability": 0.9199 + }, + { + "start": 10387.92, + "end": 10389.02, + "probability": 0.8492 + }, + { + "start": 10389.56, + "end": 10392.46, + "probability": 0.8807 + }, + { + "start": 10393.06, + "end": 10396.8, + "probability": 0.9265 + }, + { + "start": 10397.48, + "end": 10401.22, + "probability": 0.9771 + }, + { + "start": 10401.82, + "end": 10405.84, + "probability": 0.9399 + }, + { + "start": 10407.2, + "end": 10409.74, + "probability": 0.1886 + }, + { + "start": 10410.46, + "end": 10415.7, + "probability": 0.6378 + }, + { + "start": 10416.16, + "end": 10419.42, + "probability": 0.9827 + }, + { + "start": 10420.16, + "end": 10424.2, + "probability": 0.8794 + }, + { + "start": 10424.72, + "end": 10426.54, + "probability": 0.9893 + }, + { + "start": 10428.09, + "end": 10429.68, + "probability": 0.2097 + }, + { + "start": 10429.68, + "end": 10429.68, + "probability": 0.0054 + }, + { + "start": 10429.68, + "end": 10430.73, + "probability": 0.5786 + }, + { + "start": 10431.66, + "end": 10433.12, + "probability": 0.4284 + }, + { + "start": 10433.28, + "end": 10435.44, + "probability": 0.6698 + }, + { + "start": 10435.68, + "end": 10437.34, + "probability": 0.658 + }, + { + "start": 10438.54, + "end": 10441.66, + "probability": 0.9334 + }, + { + "start": 10442.22, + "end": 10447.67, + "probability": 0.9623 + }, + { + "start": 10447.87, + "end": 10451.41, + "probability": 0.6949 + }, + { + "start": 10451.89, + "end": 10454.73, + "probability": 0.8645 + }, + { + "start": 10455.47, + "end": 10458.91, + "probability": 0.945 + }, + { + "start": 10459.41, + "end": 10459.71, + "probability": 0.3258 + }, + { + "start": 10459.77, + "end": 10460.51, + "probability": 0.791 + }, + { + "start": 10460.71, + "end": 10468.73, + "probability": 0.9865 + }, + { + "start": 10468.75, + "end": 10472.03, + "probability": 0.7953 + }, + { + "start": 10472.15, + "end": 10473.59, + "probability": 0.2912 + }, + { + "start": 10474.21, + "end": 10478.01, + "probability": 0.939 + }, + { + "start": 10478.55, + "end": 10479.23, + "probability": 0.7412 + }, + { + "start": 10479.79, + "end": 10480.69, + "probability": 0.7375 + }, + { + "start": 10491.35, + "end": 10495.73, + "probability": 0.1058 + }, + { + "start": 10497.43, + "end": 10498.53, + "probability": 0.0318 + }, + { + "start": 10498.53, + "end": 10498.53, + "probability": 0.0303 + }, + { + "start": 10498.53, + "end": 10498.53, + "probability": 0.0361 + }, + { + "start": 10498.53, + "end": 10498.53, + "probability": 0.0581 + }, + { + "start": 10498.53, + "end": 10499.37, + "probability": 0.3099 + }, + { + "start": 10500.29, + "end": 10501.43, + "probability": 0.1088 + }, + { + "start": 10506.49, + "end": 10506.67, + "probability": 0.04 + }, + { + "start": 10506.67, + "end": 10506.67, + "probability": 0.0918 + }, + { + "start": 10506.67, + "end": 10506.67, + "probability": 0.1111 + }, + { + "start": 10506.67, + "end": 10507.55, + "probability": 0.4506 + }, + { + "start": 10507.65, + "end": 10508.33, + "probability": 0.8492 + }, + { + "start": 10508.47, + "end": 10509.51, + "probability": 0.7964 + }, + { + "start": 10510.67, + "end": 10515.49, + "probability": 0.7974 + }, + { + "start": 10515.79, + "end": 10516.47, + "probability": 0.9932 + }, + { + "start": 10517.59, + "end": 10521.87, + "probability": 0.1304 + }, + { + "start": 10521.87, + "end": 10521.95, + "probability": 0.0407 + }, + { + "start": 10521.95, + "end": 10521.95, + "probability": 0.2782 + }, + { + "start": 10521.95, + "end": 10525.57, + "probability": 0.8112 + }, + { + "start": 10528.05, + "end": 10529.41, + "probability": 0.7058 + }, + { + "start": 10529.55, + "end": 10532.53, + "probability": 0.9872 + }, + { + "start": 10532.53, + "end": 10534.71, + "probability": 0.635 + }, + { + "start": 10534.87, + "end": 10536.21, + "probability": 0.3031 + }, + { + "start": 10536.87, + "end": 10538.25, + "probability": 0.9915 + }, + { + "start": 10538.99, + "end": 10540.51, + "probability": 0.5343 + }, + { + "start": 10541.43, + "end": 10543.61, + "probability": 0.7838 + }, + { + "start": 10544.49, + "end": 10546.37, + "probability": 0.9267 + }, + { + "start": 10546.95, + "end": 10547.83, + "probability": 0.3551 + }, + { + "start": 10547.85, + "end": 10549.03, + "probability": 0.501 + }, + { + "start": 10549.31, + "end": 10550.77, + "probability": 0.3962 + }, + { + "start": 10550.77, + "end": 10552.17, + "probability": 0.6532 + }, + { + "start": 10552.35, + "end": 10554.03, + "probability": 0.6061 + }, + { + "start": 10555.29, + "end": 10560.75, + "probability": 0.9835 + }, + { + "start": 10560.83, + "end": 10561.89, + "probability": 0.6189 + }, + { + "start": 10561.89, + "end": 10562.45, + "probability": 0.4495 + }, + { + "start": 10563.33, + "end": 10569.07, + "probability": 0.9782 + }, + { + "start": 10569.67, + "end": 10570.45, + "probability": 0.9946 + }, + { + "start": 10571.49, + "end": 10575.65, + "probability": 0.9919 + }, + { + "start": 10576.91, + "end": 10578.81, + "probability": 0.7222 + }, + { + "start": 10579.47, + "end": 10582.51, + "probability": 0.9956 + }, + { + "start": 10583.09, + "end": 10585.55, + "probability": 0.9385 + }, + { + "start": 10586.41, + "end": 10589.19, + "probability": 0.9888 + }, + { + "start": 10590.59, + "end": 10593.75, + "probability": 0.9819 + }, + { + "start": 10594.39, + "end": 10595.89, + "probability": 0.637 + }, + { + "start": 10596.51, + "end": 10597.47, + "probability": 0.9406 + }, + { + "start": 10598.65, + "end": 10602.07, + "probability": 0.8457 + }, + { + "start": 10603.61, + "end": 10609.77, + "probability": 0.9721 + }, + { + "start": 10610.57, + "end": 10611.65, + "probability": 0.8703 + }, + { + "start": 10612.29, + "end": 10614.81, + "probability": 0.9896 + }, + { + "start": 10615.55, + "end": 10618.11, + "probability": 0.9177 + }, + { + "start": 10619.21, + "end": 10625.97, + "probability": 0.97 + }, + { + "start": 10626.57, + "end": 10631.77, + "probability": 0.9981 + }, + { + "start": 10632.29, + "end": 10634.35, + "probability": 0.9216 + }, + { + "start": 10634.91, + "end": 10638.59, + "probability": 0.8524 + }, + { + "start": 10639.21, + "end": 10640.85, + "probability": 0.9886 + }, + { + "start": 10641.43, + "end": 10646.05, + "probability": 0.9905 + }, + { + "start": 10646.93, + "end": 10649.01, + "probability": 0.999 + }, + { + "start": 10649.63, + "end": 10653.85, + "probability": 0.8931 + }, + { + "start": 10654.79, + "end": 10657.13, + "probability": 0.8165 + }, + { + "start": 10657.87, + "end": 10659.25, + "probability": 0.9377 + }, + { + "start": 10659.97, + "end": 10665.09, + "probability": 0.7768 + }, + { + "start": 10665.95, + "end": 10668.23, + "probability": 0.6713 + }, + { + "start": 10668.81, + "end": 10669.85, + "probability": 0.8586 + }, + { + "start": 10670.07, + "end": 10670.35, + "probability": 0.5248 + }, + { + "start": 10670.35, + "end": 10672.69, + "probability": 0.5728 + }, + { + "start": 10672.93, + "end": 10677.13, + "probability": 0.804 + }, + { + "start": 10699.93, + "end": 10702.03, + "probability": 0.5781 + }, + { + "start": 10703.25, + "end": 10703.37, + "probability": 0.2126 + }, + { + "start": 10703.37, + "end": 10703.69, + "probability": 0.3181 + }, + { + "start": 10703.81, + "end": 10705.81, + "probability": 0.9803 + }, + { + "start": 10705.87, + "end": 10706.51, + "probability": 0.9401 + }, + { + "start": 10706.99, + "end": 10707.97, + "probability": 0.951 + }, + { + "start": 10708.11, + "end": 10709.85, + "probability": 0.2602 + }, + { + "start": 10711.19, + "end": 10711.55, + "probability": 0.7131 + }, + { + "start": 10712.95, + "end": 10715.25, + "probability": 0.7381 + }, + { + "start": 10721.69, + "end": 10725.65, + "probability": 0.9205 + }, + { + "start": 10725.65, + "end": 10729.77, + "probability": 0.9949 + }, + { + "start": 10730.35, + "end": 10733.31, + "probability": 0.8812 + }, + { + "start": 10733.57, + "end": 10734.29, + "probability": 0.7499 + }, + { + "start": 10735.21, + "end": 10736.81, + "probability": 0.7022 + }, + { + "start": 10737.01, + "end": 10741.99, + "probability": 0.9896 + }, + { + "start": 10741.99, + "end": 10746.27, + "probability": 0.9932 + }, + { + "start": 10746.73, + "end": 10750.27, + "probability": 0.9987 + }, + { + "start": 10750.27, + "end": 10752.93, + "probability": 0.9843 + }, + { + "start": 10754.85, + "end": 10755.75, + "probability": 0.4505 + }, + { + "start": 10755.89, + "end": 10759.19, + "probability": 0.9601 + }, + { + "start": 10759.93, + "end": 10761.23, + "probability": 0.7202 + }, + { + "start": 10761.33, + "end": 10762.53, + "probability": 0.9789 + }, + { + "start": 10762.97, + "end": 10764.67, + "probability": 0.9199 + }, + { + "start": 10765.15, + "end": 10768.63, + "probability": 0.8193 + }, + { + "start": 10768.63, + "end": 10772.59, + "probability": 0.9687 + }, + { + "start": 10773.81, + "end": 10779.23, + "probability": 0.9707 + }, + { + "start": 10779.23, + "end": 10785.45, + "probability": 0.9883 + }, + { + "start": 10785.45, + "end": 10789.15, + "probability": 0.9959 + }, + { + "start": 10789.57, + "end": 10791.57, + "probability": 0.8424 + }, + { + "start": 10792.21, + "end": 10797.25, + "probability": 0.9701 + }, + { + "start": 10797.63, + "end": 10798.11, + "probability": 0.9565 + }, + { + "start": 10801.31, + "end": 10806.23, + "probability": 0.9059 + }, + { + "start": 10806.77, + "end": 10808.19, + "probability": 0.9361 + }, + { + "start": 10809.01, + "end": 10811.55, + "probability": 0.9965 + }, + { + "start": 10812.91, + "end": 10816.57, + "probability": 0.9448 + }, + { + "start": 10816.99, + "end": 10819.51, + "probability": 0.7405 + }, + { + "start": 10819.91, + "end": 10822.33, + "probability": 0.8571 + }, + { + "start": 10822.89, + "end": 10826.29, + "probability": 0.8208 + }, + { + "start": 10826.29, + "end": 10829.39, + "probability": 0.9062 + }, + { + "start": 10830.03, + "end": 10831.07, + "probability": 0.218 + }, + { + "start": 10831.97, + "end": 10833.45, + "probability": 0.5621 + }, + { + "start": 10834.69, + "end": 10839.77, + "probability": 0.8751 + }, + { + "start": 10841.41, + "end": 10843.95, + "probability": 0.9045 + }, + { + "start": 10844.05, + "end": 10845.18, + "probability": 0.9918 + }, + { + "start": 10845.65, + "end": 10845.65, + "probability": 0.0013 + }, + { + "start": 10848.92, + "end": 10850.71, + "probability": 0.9878 + }, + { + "start": 10850.97, + "end": 10853.93, + "probability": 0.995 + }, + { + "start": 10854.11, + "end": 10854.89, + "probability": 0.8854 + }, + { + "start": 10855.31, + "end": 10856.45, + "probability": 0.8086 + }, + { + "start": 10856.71, + "end": 10859.75, + "probability": 0.9943 + }, + { + "start": 10860.11, + "end": 10860.41, + "probability": 0.3686 + }, + { + "start": 10860.77, + "end": 10866.87, + "probability": 0.6765 + }, + { + "start": 10866.93, + "end": 10868.51, + "probability": 0.6989 + }, + { + "start": 10868.69, + "end": 10869.72, + "probability": 0.8439 + }, + { + "start": 10870.77, + "end": 10873.73, + "probability": 0.9664 + }, + { + "start": 10873.73, + "end": 10875.49, + "probability": 0.6727 + }, + { + "start": 10875.69, + "end": 10877.03, + "probability": 0.2623 + }, + { + "start": 10877.09, + "end": 10877.97, + "probability": 0.6444 + }, + { + "start": 10878.49, + "end": 10879.19, + "probability": 0.6365 + }, + { + "start": 10879.55, + "end": 10880.07, + "probability": 0.6839 + }, + { + "start": 10899.15, + "end": 10899.87, + "probability": 0.3993 + }, + { + "start": 10901.47, + "end": 10902.13, + "probability": 0.089 + }, + { + "start": 10910.23, + "end": 10911.89, + "probability": 0.0267 + }, + { + "start": 10913.61, + "end": 10915.29, + "probability": 0.0228 + }, + { + "start": 10920.69, + "end": 10921.45, + "probability": 0.0351 + }, + { + "start": 10927.79, + "end": 10933.63, + "probability": 0.7502 + }, + { + "start": 10935.93, + "end": 10941.43, + "probability": 0.0818 + }, + { + "start": 10941.95, + "end": 10943.4, + "probability": 0.196 + }, + { + "start": 10944.75, + "end": 10950.17, + "probability": 0.0218 + }, + { + "start": 10951.07, + "end": 10953.33, + "probability": 0.2109 + }, + { + "start": 10956.07, + "end": 10957.91, + "probability": 0.0686 + }, + { + "start": 10983.15, + "end": 10985.83, + "probability": 0.0591 + }, + { + "start": 11072.0, + "end": 11072.0, + "probability": 0.0 + }, + { + "start": 11072.0, + "end": 11072.0, + "probability": 0.0 + }, + { + "start": 11072.0, + "end": 11072.0, + "probability": 0.0 + }, + { + "start": 11072.0, + "end": 11072.0, + "probability": 0.0 + }, + { + "start": 11072.0, + "end": 11072.0, + "probability": 0.0 + }, + { + "start": 11072.0, + "end": 11072.0, + "probability": 0.0 + }, + { + "start": 11072.0, + "end": 11072.0, + "probability": 0.0 + }, + { + "start": 11072.0, + "end": 11072.0, + "probability": 0.0 + }, + { + "start": 11072.0, + "end": 11072.0, + "probability": 0.0 + }, + { + "start": 11072.0, + "end": 11072.0, + "probability": 0.0 + }, + { + "start": 11072.0, + "end": 11072.0, + "probability": 0.0 + }, + { + "start": 11072.0, + "end": 11072.0, + "probability": 0.0 + }, + { + "start": 11072.0, + "end": 11072.0, + "probability": 0.0 + }, + { + "start": 11072.0, + "end": 11072.0, + "probability": 0.0 + }, + { + "start": 11072.0, + "end": 11072.0, + "probability": 0.0 + }, + { + "start": 11072.0, + "end": 11072.0, + "probability": 0.0 + }, + { + "start": 11072.0, + "end": 11072.0, + "probability": 0.0 + }, + { + "start": 11072.0, + "end": 11072.0, + "probability": 0.0 + }, + { + "start": 11072.0, + "end": 11072.0, + "probability": 0.0 + }, + { + "start": 11072.0, + "end": 11072.0, + "probability": 0.0 + }, + { + "start": 11072.0, + "end": 11072.0, + "probability": 0.0 + }, + { + "start": 11072.0, + "end": 11072.0, + "probability": 0.0 + }, + { + "start": 11072.0, + "end": 11072.0, + "probability": 0.0 + }, + { + "start": 11072.0, + "end": 11072.0, + "probability": 0.0 + }, + { + "start": 11072.0, + "end": 11072.0, + "probability": 0.0 + }, + { + "start": 11072.0, + "end": 11072.0, + "probability": 0.0 + }, + { + "start": 11072.0, + "end": 11072.0, + "probability": 0.0 + }, + { + "start": 11072.0, + "end": 11072.0, + "probability": 0.0 + }, + { + "start": 11072.0, + "end": 11072.0, + "probability": 0.0 + }, + { + "start": 11072.0, + "end": 11072.0, + "probability": 0.0 + }, + { + "start": 11072.14, + "end": 11072.14, + "probability": 0.0098 + }, + { + "start": 11072.14, + "end": 11072.92, + "probability": 0.0637 + }, + { + "start": 11072.92, + "end": 11074.26, + "probability": 0.2113 + }, + { + "start": 11074.52, + "end": 11080.64, + "probability": 0.9436 + }, + { + "start": 11081.76, + "end": 11086.6, + "probability": 0.999 + }, + { + "start": 11088.6, + "end": 11091.54, + "probability": 0.9609 + }, + { + "start": 11091.62, + "end": 11098.28, + "probability": 0.9929 + }, + { + "start": 11099.48, + "end": 11100.78, + "probability": 0.8551 + }, + { + "start": 11101.36, + "end": 11105.42, + "probability": 0.9502 + }, + { + "start": 11107.32, + "end": 11109.58, + "probability": 0.9463 + }, + { + "start": 11110.48, + "end": 11116.98, + "probability": 0.9891 + }, + { + "start": 11118.14, + "end": 11119.34, + "probability": 0.9987 + }, + { + "start": 11119.9, + "end": 11122.48, + "probability": 0.8704 + }, + { + "start": 11123.64, + "end": 11126.44, + "probability": 0.9825 + }, + { + "start": 11127.42, + "end": 11129.8, + "probability": 0.9979 + }, + { + "start": 11130.62, + "end": 11132.84, + "probability": 0.8914 + }, + { + "start": 11134.88, + "end": 11138.36, + "probability": 0.9941 + }, + { + "start": 11138.5, + "end": 11140.02, + "probability": 0.9102 + }, + { + "start": 11141.4, + "end": 11144.06, + "probability": 0.9302 + }, + { + "start": 11145.08, + "end": 11147.76, + "probability": 0.9331 + }, + { + "start": 11148.94, + "end": 11152.12, + "probability": 0.8101 + }, + { + "start": 11152.7, + "end": 11155.72, + "probability": 0.9927 + }, + { + "start": 11156.62, + "end": 11159.28, + "probability": 0.6657 + }, + { + "start": 11159.82, + "end": 11163.48, + "probability": 0.7952 + }, + { + "start": 11164.0, + "end": 11164.74, + "probability": 0.8458 + }, + { + "start": 11165.34, + "end": 11167.72, + "probability": 0.9978 + }, + { + "start": 11168.28, + "end": 11175.16, + "probability": 0.8296 + }, + { + "start": 11175.36, + "end": 11179.36, + "probability": 0.9397 + }, + { + "start": 11179.38, + "end": 11180.2, + "probability": 0.9761 + }, + { + "start": 11180.9, + "end": 11184.38, + "probability": 0.753 + }, + { + "start": 11185.5, + "end": 11186.02, + "probability": 0.2682 + }, + { + "start": 11186.44, + "end": 11191.08, + "probability": 0.868 + }, + { + "start": 11192.14, + "end": 11194.74, + "probability": 0.999 + }, + { + "start": 11195.86, + "end": 11197.34, + "probability": 0.766 + }, + { + "start": 11198.02, + "end": 11200.4, + "probability": 0.994 + }, + { + "start": 11201.14, + "end": 11203.64, + "probability": 0.9862 + }, + { + "start": 11204.96, + "end": 11207.62, + "probability": 0.9985 + }, + { + "start": 11208.74, + "end": 11210.48, + "probability": 0.9316 + }, + { + "start": 11211.0, + "end": 11212.86, + "probability": 0.7482 + }, + { + "start": 11214.1, + "end": 11220.26, + "probability": 0.994 + }, + { + "start": 11220.94, + "end": 11225.32, + "probability": 0.9888 + }, + { + "start": 11226.38, + "end": 11228.5, + "probability": 0.9988 + }, + { + "start": 11229.16, + "end": 11230.36, + "probability": 0.8684 + }, + { + "start": 11231.1, + "end": 11233.06, + "probability": 0.7935 + }, + { + "start": 11234.06, + "end": 11237.74, + "probability": 0.9541 + }, + { + "start": 11238.94, + "end": 11239.46, + "probability": 0.203 + }, + { + "start": 11239.46, + "end": 11241.22, + "probability": 0.6513 + }, + { + "start": 11241.74, + "end": 11244.26, + "probability": 0.994 + }, + { + "start": 11245.1, + "end": 11248.68, + "probability": 0.7563 + }, + { + "start": 11248.86, + "end": 11251.56, + "probability": 0.2475 + }, + { + "start": 11251.56, + "end": 11253.82, + "probability": 0.1903 + }, + { + "start": 11253.98, + "end": 11256.88, + "probability": 0.8888 + }, + { + "start": 11256.98, + "end": 11259.76, + "probability": 0.8556 + }, + { + "start": 11260.26, + "end": 11261.96, + "probability": 0.9338 + }, + { + "start": 11262.78, + "end": 11264.88, + "probability": 0.9708 + }, + { + "start": 11266.64, + "end": 11272.22, + "probability": 0.3107 + }, + { + "start": 11273.22, + "end": 11273.22, + "probability": 0.0256 + }, + { + "start": 11273.22, + "end": 11278.42, + "probability": 0.9796 + }, + { + "start": 11278.9, + "end": 11280.49, + "probability": 0.449 + }, + { + "start": 11281.36, + "end": 11281.66, + "probability": 0.4779 + }, + { + "start": 11281.66, + "end": 11282.62, + "probability": 0.7871 + }, + { + "start": 11282.9, + "end": 11283.82, + "probability": 0.7332 + }, + { + "start": 11284.22, + "end": 11285.3, + "probability": 0.6791 + }, + { + "start": 11285.64, + "end": 11288.02, + "probability": 0.9065 + }, + { + "start": 11288.16, + "end": 11289.14, + "probability": 0.9868 + }, + { + "start": 11289.2, + "end": 11290.5, + "probability": 0.9905 + }, + { + "start": 11291.86, + "end": 11292.38, + "probability": 0.7819 + }, + { + "start": 11293.1, + "end": 11297.96, + "probability": 0.9929 + }, + { + "start": 11298.9, + "end": 11302.22, + "probability": 0.7908 + }, + { + "start": 11302.74, + "end": 11303.94, + "probability": 0.9917 + }, + { + "start": 11305.12, + "end": 11306.04, + "probability": 0.9905 + }, + { + "start": 11306.94, + "end": 11310.18, + "probability": 0.9426 + }, + { + "start": 11310.74, + "end": 11314.86, + "probability": 0.959 + }, + { + "start": 11315.78, + "end": 11319.44, + "probability": 0.8035 + }, + { + "start": 11320.04, + "end": 11322.34, + "probability": 0.8716 + }, + { + "start": 11322.74, + "end": 11325.12, + "probability": 0.8562 + }, + { + "start": 11325.68, + "end": 11328.02, + "probability": 0.9087 + }, + { + "start": 11328.82, + "end": 11333.16, + "probability": 0.9933 + }, + { + "start": 11334.86, + "end": 11336.94, + "probability": 0.9442 + }, + { + "start": 11337.0, + "end": 11341.58, + "probability": 0.9863 + }, + { + "start": 11342.02, + "end": 11342.44, + "probability": 0.1289 + }, + { + "start": 11343.08, + "end": 11348.06, + "probability": 0.9675 + }, + { + "start": 11348.5, + "end": 11350.48, + "probability": 0.9846 + }, + { + "start": 11350.56, + "end": 11353.66, + "probability": 0.9546 + }, + { + "start": 11354.72, + "end": 11357.34, + "probability": 0.7558 + }, + { + "start": 11361.44, + "end": 11363.5, + "probability": 0.9548 + }, + { + "start": 11363.68, + "end": 11366.12, + "probability": 0.9951 + }, + { + "start": 11366.88, + "end": 11369.62, + "probability": 0.9771 + }, + { + "start": 11370.44, + "end": 11371.94, + "probability": 0.9797 + }, + { + "start": 11372.4, + "end": 11373.48, + "probability": 0.9808 + }, + { + "start": 11373.88, + "end": 11374.64, + "probability": 0.9711 + }, + { + "start": 11374.98, + "end": 11376.3, + "probability": 0.7053 + }, + { + "start": 11376.94, + "end": 11378.3, + "probability": 0.6667 + }, + { + "start": 11378.68, + "end": 11384.92, + "probability": 0.8963 + }, + { + "start": 11385.34, + "end": 11386.96, + "probability": 0.9893 + }, + { + "start": 11387.12, + "end": 11389.54, + "probability": 0.9961 + }, + { + "start": 11390.36, + "end": 11391.24, + "probability": 0.9014 + }, + { + "start": 11392.22, + "end": 11395.0, + "probability": 0.9694 + }, + { + "start": 11395.7, + "end": 11397.98, + "probability": 0.9973 + }, + { + "start": 11398.48, + "end": 11403.06, + "probability": 0.9637 + }, + { + "start": 11403.84, + "end": 11407.16, + "probability": 0.9906 + }, + { + "start": 11407.16, + "end": 11410.42, + "probability": 0.9155 + }, + { + "start": 11411.42, + "end": 11414.94, + "probability": 0.9759 + }, + { + "start": 11415.2, + "end": 11416.08, + "probability": 0.792 + }, + { + "start": 11417.04, + "end": 11419.58, + "probability": 0.8999 + }, + { + "start": 11420.6, + "end": 11423.48, + "probability": 0.9971 + }, + { + "start": 11424.2, + "end": 11426.88, + "probability": 0.8917 + }, + { + "start": 11427.88, + "end": 11433.82, + "probability": 0.8221 + }, + { + "start": 11434.0, + "end": 11435.2, + "probability": 0.459 + }, + { + "start": 11436.18, + "end": 11439.84, + "probability": 0.9486 + }, + { + "start": 11440.36, + "end": 11441.58, + "probability": 0.7517 + }, + { + "start": 11442.56, + "end": 11446.26, + "probability": 0.9912 + }, + { + "start": 11448.16, + "end": 11451.58, + "probability": 0.9985 + }, + { + "start": 11451.58, + "end": 11452.66, + "probability": 0.8338 + }, + { + "start": 11453.6, + "end": 11454.4, + "probability": 0.9519 + }, + { + "start": 11455.58, + "end": 11458.24, + "probability": 0.983 + }, + { + "start": 11458.92, + "end": 11461.56, + "probability": 0.9789 + }, + { + "start": 11462.14, + "end": 11463.36, + "probability": 0.962 + }, + { + "start": 11463.94, + "end": 11464.2, + "probability": 0.4445 + }, + { + "start": 11465.22, + "end": 11466.14, + "probability": 0.5423 + }, + { + "start": 11466.96, + "end": 11471.18, + "probability": 0.9917 + }, + { + "start": 11471.98, + "end": 11474.7, + "probability": 0.9806 + }, + { + "start": 11475.34, + "end": 11478.22, + "probability": 0.749 + }, + { + "start": 11478.84, + "end": 11483.12, + "probability": 0.9098 + }, + { + "start": 11483.84, + "end": 11487.78, + "probability": 0.9939 + }, + { + "start": 11487.82, + "end": 11490.86, + "probability": 0.9973 + }, + { + "start": 11492.26, + "end": 11493.96, + "probability": 0.9436 + }, + { + "start": 11494.72, + "end": 11498.9, + "probability": 0.98 + }, + { + "start": 11499.68, + "end": 11502.84, + "probability": 0.7848 + }, + { + "start": 11503.72, + "end": 11508.86, + "probability": 0.9895 + }, + { + "start": 11509.58, + "end": 11510.26, + "probability": 0.8488 + }, + { + "start": 11510.78, + "end": 11511.74, + "probability": 0.8979 + }, + { + "start": 11512.4, + "end": 11513.92, + "probability": 0.9791 + }, + { + "start": 11514.5, + "end": 11515.42, + "probability": 0.8419 + }, + { + "start": 11516.18, + "end": 11516.79, + "probability": 0.7835 + }, + { + "start": 11517.42, + "end": 11519.68, + "probability": 0.9771 + }, + { + "start": 11520.6, + "end": 11525.24, + "probability": 0.9785 + }, + { + "start": 11525.24, + "end": 11529.04, + "probability": 0.9967 + }, + { + "start": 11530.16, + "end": 11531.8, + "probability": 0.9964 + }, + { + "start": 11533.04, + "end": 11535.44, + "probability": 0.7313 + }, + { + "start": 11536.48, + "end": 11539.06, + "probability": 0.9897 + }, + { + "start": 11539.88, + "end": 11540.94, + "probability": 0.804 + }, + { + "start": 11541.72, + "end": 11543.26, + "probability": 0.978 + }, + { + "start": 11544.1, + "end": 11548.9, + "probability": 0.9575 + }, + { + "start": 11550.5, + "end": 11553.66, + "probability": 0.6429 + }, + { + "start": 11554.18, + "end": 11556.44, + "probability": 0.9865 + }, + { + "start": 11557.56, + "end": 11560.32, + "probability": 0.5508 + }, + { + "start": 11560.94, + "end": 11562.56, + "probability": 0.948 + }, + { + "start": 11564.86, + "end": 11565.18, + "probability": 0.99 + }, + { + "start": 11566.14, + "end": 11568.66, + "probability": 0.9404 + }, + { + "start": 11569.3, + "end": 11570.76, + "probability": 0.9917 + }, + { + "start": 11571.4, + "end": 11575.08, + "probability": 0.9906 + }, + { + "start": 11575.8, + "end": 11578.3, + "probability": 0.5593 + }, + { + "start": 11580.2, + "end": 11581.04, + "probability": 0.8032 + }, + { + "start": 11582.0, + "end": 11583.38, + "probability": 0.973 + }, + { + "start": 11583.46, + "end": 11587.44, + "probability": 0.8734 + }, + { + "start": 11587.44, + "end": 11587.68, + "probability": 0.9413 + }, + { + "start": 11589.78, + "end": 11591.0, + "probability": 0.805 + }, + { + "start": 11591.3, + "end": 11591.9, + "probability": 0.5005 + }, + { + "start": 11591.98, + "end": 11592.92, + "probability": 0.703 + }, + { + "start": 11595.5, + "end": 11599.74, + "probability": 0.7511 + }, + { + "start": 11600.48, + "end": 11602.1, + "probability": 0.692 + }, + { + "start": 11602.7, + "end": 11605.4, + "probability": 0.7409 + }, + { + "start": 11606.02, + "end": 11609.76, + "probability": 0.9618 + }, + { + "start": 11610.12, + "end": 11613.18, + "probability": 0.9892 + }, + { + "start": 11613.78, + "end": 11615.58, + "probability": 0.9821 + }, + { + "start": 11616.14, + "end": 11616.24, + "probability": 0.9658 + }, + { + "start": 11617.4, + "end": 11619.3, + "probability": 0.8275 + }, + { + "start": 11619.82, + "end": 11622.2, + "probability": 0.9271 + }, + { + "start": 11622.4, + "end": 11624.44, + "probability": 0.7927 + }, + { + "start": 11625.24, + "end": 11628.86, + "probability": 0.9896 + }, + { + "start": 11629.44, + "end": 11633.78, + "probability": 0.9982 + }, + { + "start": 11633.78, + "end": 11638.54, + "probability": 0.9958 + }, + { + "start": 11638.84, + "end": 11639.28, + "probability": 0.6487 + }, + { + "start": 11639.38, + "end": 11639.9, + "probability": 0.7241 + }, + { + "start": 11640.7, + "end": 11643.9, + "probability": 0.833 + }, + { + "start": 11645.14, + "end": 11645.14, + "probability": 0.0 + }, + { + "start": 11663.14, + "end": 11663.48, + "probability": 0.0246 + }, + { + "start": 11663.48, + "end": 11664.46, + "probability": 0.5647 + }, + { + "start": 11664.68, + "end": 11665.5, + "probability": 0.7542 + }, + { + "start": 11665.92, + "end": 11666.82, + "probability": 0.9741 + }, + { + "start": 11667.6, + "end": 11670.22, + "probability": 0.7098 + }, + { + "start": 11671.38, + "end": 11671.4, + "probability": 0.7438 + }, + { + "start": 11671.4, + "end": 11671.4, + "probability": 0.0034 + }, + { + "start": 11672.92, + "end": 11674.54, + "probability": 0.9368 + }, + { + "start": 11676.44, + "end": 11677.24, + "probability": 0.6756 + }, + { + "start": 11677.32, + "end": 11678.02, + "probability": 0.8567 + }, + { + "start": 11678.22, + "end": 11682.88, + "probability": 0.7869 + }, + { + "start": 11684.84, + "end": 11686.52, + "probability": 0.7848 + }, + { + "start": 11688.54, + "end": 11689.69, + "probability": 0.8275 + }, + { + "start": 11689.74, + "end": 11694.38, + "probability": 0.243 + }, + { + "start": 11694.68, + "end": 11694.84, + "probability": 0.4674 + }, + { + "start": 11694.92, + "end": 11695.96, + "probability": 0.8337 + }, + { + "start": 11696.02, + "end": 11697.5, + "probability": 0.8545 + }, + { + "start": 11697.98, + "end": 11699.34, + "probability": 0.9074 + }, + { + "start": 11701.13, + "end": 11702.3, + "probability": 0.4551 + }, + { + "start": 11703.6, + "end": 11703.8, + "probability": 0.5575 + }, + { + "start": 11704.52, + "end": 11705.66, + "probability": 0.2127 + }, + { + "start": 11709.18, + "end": 11712.66, + "probability": 0.7271 + }, + { + "start": 11712.7, + "end": 11716.38, + "probability": 0.8585 + }, + { + "start": 11716.94, + "end": 11722.38, + "probability": 0.8511 + }, + { + "start": 11722.46, + "end": 11726.22, + "probability": 0.8318 + }, + { + "start": 11730.28, + "end": 11735.02, + "probability": 0.9034 + }, + { + "start": 11736.22, + "end": 11738.16, + "probability": 0.8297 + }, + { + "start": 11738.84, + "end": 11740.66, + "probability": 0.9448 + }, + { + "start": 11741.3, + "end": 11745.4, + "probability": 0.9603 + }, + { + "start": 11746.5, + "end": 11750.22, + "probability": 0.9228 + }, + { + "start": 11750.76, + "end": 11755.27, + "probability": 0.6639 + }, + { + "start": 11756.06, + "end": 11760.9, + "probability": 0.8742 + }, + { + "start": 11761.4, + "end": 11766.22, + "probability": 0.9611 + }, + { + "start": 11767.32, + "end": 11770.16, + "probability": 0.8198 + }, + { + "start": 11770.76, + "end": 11773.76, + "probability": 0.7904 + }, + { + "start": 11775.4, + "end": 11778.76, + "probability": 0.8505 + }, + { + "start": 11779.3, + "end": 11782.8, + "probability": 0.9652 + }, + { + "start": 11783.0, + "end": 11786.7, + "probability": 0.9274 + }, + { + "start": 11787.48, + "end": 11790.82, + "probability": 0.9588 + }, + { + "start": 11792.18, + "end": 11793.72, + "probability": 0.953 + }, + { + "start": 11794.58, + "end": 11798.5, + "probability": 0.907 + }, + { + "start": 11799.26, + "end": 11804.58, + "probability": 0.7923 + }, + { + "start": 11806.72, + "end": 11809.18, + "probability": 0.9792 + }, + { + "start": 11810.32, + "end": 11813.58, + "probability": 0.543 + }, + { + "start": 11813.66, + "end": 11814.18, + "probability": 0.5707 + }, + { + "start": 11814.42, + "end": 11819.08, + "probability": 0.8013 + }, + { + "start": 11819.8, + "end": 11820.5, + "probability": 0.955 + }, + { + "start": 11820.6, + "end": 11821.62, + "probability": 0.8743 + }, + { + "start": 11821.74, + "end": 11822.88, + "probability": 0.6282 + }, + { + "start": 11822.92, + "end": 11823.02, + "probability": 0.5527 + }, + { + "start": 11823.1, + "end": 11824.08, + "probability": 0.7074 + }, + { + "start": 11824.28, + "end": 11825.0, + "probability": 0.6624 + }, + { + "start": 11825.48, + "end": 11828.24, + "probability": 0.5716 + }, + { + "start": 11829.22, + "end": 11830.16, + "probability": 0.7108 + }, + { + "start": 11830.74, + "end": 11832.58, + "probability": 0.8143 + }, + { + "start": 11833.12, + "end": 11833.92, + "probability": 0.7848 + }, + { + "start": 11834.86, + "end": 11837.7, + "probability": 0.6597 + }, + { + "start": 11839.74, + "end": 11841.86, + "probability": 0.8637 + }, + { + "start": 11842.26, + "end": 11843.4, + "probability": 0.6173 + }, + { + "start": 11844.06, + "end": 11845.36, + "probability": 0.2466 + }, + { + "start": 11847.36, + "end": 11848.71, + "probability": 0.8976 + }, + { + "start": 11849.52, + "end": 11852.3, + "probability": 0.6392 + }, + { + "start": 11852.44, + "end": 11853.23, + "probability": 0.7705 + }, + { + "start": 11854.84, + "end": 11856.74, + "probability": 0.6982 + }, + { + "start": 11856.92, + "end": 11859.04, + "probability": 0.8167 + }, + { + "start": 11860.23, + "end": 11865.56, + "probability": 0.854 + }, + { + "start": 11865.7, + "end": 11866.96, + "probability": 0.7916 + }, + { + "start": 11867.14, + "end": 11870.82, + "probability": 0.7708 + }, + { + "start": 11871.14, + "end": 11873.66, + "probability": 0.5732 + }, + { + "start": 11874.4, + "end": 11876.18, + "probability": 0.8145 + }, + { + "start": 11876.46, + "end": 11879.58, + "probability": 0.0271 + }, + { + "start": 11879.76, + "end": 11881.32, + "probability": 0.5505 + }, + { + "start": 11881.5, + "end": 11883.66, + "probability": 0.5486 + }, + { + "start": 11883.72, + "end": 11885.17, + "probability": 0.9871 + }, + { + "start": 11887.2, + "end": 11888.64, + "probability": 0.7977 + }, + { + "start": 11889.4, + "end": 11891.55, + "probability": 0.5006 + }, + { + "start": 11892.26, + "end": 11896.34, + "probability": 0.2396 + }, + { + "start": 11896.7, + "end": 11900.86, + "probability": 0.2101 + }, + { + "start": 11901.04, + "end": 11901.72, + "probability": 0.7739 + }, + { + "start": 11902.46, + "end": 11904.7, + "probability": 0.6253 + }, + { + "start": 11914.26, + "end": 11915.3, + "probability": 0.6834 + }, + { + "start": 11916.84, + "end": 11917.32, + "probability": 0.4566 + }, + { + "start": 11917.86, + "end": 11918.78, + "probability": 0.9301 + }, + { + "start": 11920.3, + "end": 11921.26, + "probability": 0.7464 + }, + { + "start": 11922.14, + "end": 11928.1, + "probability": 0.4528 + }, + { + "start": 11930.06, + "end": 11934.32, + "probability": 0.7673 + }, + { + "start": 11935.5, + "end": 11938.48, + "probability": 0.8182 + }, + { + "start": 11939.34, + "end": 11941.46, + "probability": 0.6646 + }, + { + "start": 11942.52, + "end": 11945.42, + "probability": 0.8888 + }, + { + "start": 11946.72, + "end": 11947.48, + "probability": 0.7332 + }, + { + "start": 11949.79, + "end": 11951.88, + "probability": 0.5962 + }, + { + "start": 11953.0, + "end": 11954.64, + "probability": 0.8801 + }, + { + "start": 11954.88, + "end": 11956.78, + "probability": 0.6885 + }, + { + "start": 11957.36, + "end": 11959.6, + "probability": 0.9839 + }, + { + "start": 11960.24, + "end": 11961.8, + "probability": 0.8877 + }, + { + "start": 11962.52, + "end": 11963.68, + "probability": 0.7668 + }, + { + "start": 11963.86, + "end": 11964.36, + "probability": 0.5401 + }, + { + "start": 11964.5, + "end": 11966.13, + "probability": 0.9868 + }, + { + "start": 11967.0, + "end": 11970.26, + "probability": 0.6889 + }, + { + "start": 11972.52, + "end": 11975.68, + "probability": 0.3672 + }, + { + "start": 11976.66, + "end": 11980.76, + "probability": 0.6932 + }, + { + "start": 11981.82, + "end": 11985.12, + "probability": 0.9645 + }, + { + "start": 11987.28, + "end": 11988.64, + "probability": 0.4329 + }, + { + "start": 11990.28, + "end": 11998.0, + "probability": 0.8689 + }, + { + "start": 11999.12, + "end": 11999.64, + "probability": 0.6982 + }, + { + "start": 12000.06, + "end": 12003.82, + "probability": 0.9883 + }, + { + "start": 12005.68, + "end": 12007.82, + "probability": 0.1675 + }, + { + "start": 12008.65, + "end": 12013.14, + "probability": 0.4575 + }, + { + "start": 12013.36, + "end": 12014.04, + "probability": 0.3361 + }, + { + "start": 12014.84, + "end": 12017.32, + "probability": 0.6705 + }, + { + "start": 12018.22, + "end": 12019.62, + "probability": 0.5884 + }, + { + "start": 12021.71, + "end": 12022.79, + "probability": 0.9264 + }, + { + "start": 12024.84, + "end": 12026.78, + "probability": 0.9236 + }, + { + "start": 12027.84, + "end": 12031.56, + "probability": 0.1054 + }, + { + "start": 12032.26, + "end": 12034.54, + "probability": 0.8887 + }, + { + "start": 12034.72, + "end": 12035.6, + "probability": 0.9489 + }, + { + "start": 12037.76, + "end": 12040.6, + "probability": 0.9883 + }, + { + "start": 12041.1, + "end": 12045.64, + "probability": 0.0109 + }, + { + "start": 12047.24, + "end": 12047.48, + "probability": 0.2389 + }, + { + "start": 12047.48, + "end": 12049.54, + "probability": 0.3195 + }, + { + "start": 12049.88, + "end": 12051.52, + "probability": 0.7941 + }, + { + "start": 12051.62, + "end": 12052.28, + "probability": 0.9097 + }, + { + "start": 12053.0, + "end": 12054.21, + "probability": 0.8794 + }, + { + "start": 12054.9, + "end": 12058.88, + "probability": 0.929 + }, + { + "start": 12059.44, + "end": 12060.92, + "probability": 0.7916 + }, + { + "start": 12061.12, + "end": 12062.44, + "probability": 0.7707 + }, + { + "start": 12063.1, + "end": 12065.16, + "probability": 0.7811 + }, + { + "start": 12066.56, + "end": 12067.34, + "probability": 0.7103 + }, + { + "start": 12067.82, + "end": 12069.93, + "probability": 0.9111 + }, + { + "start": 12070.8, + "end": 12071.26, + "probability": 0.001 + }, + { + "start": 12071.98, + "end": 12072.86, + "probability": 0.0164 + }, + { + "start": 12073.02, + "end": 12074.02, + "probability": 0.1825 + }, + { + "start": 12074.02, + "end": 12076.62, + "probability": 0.5803 + }, + { + "start": 12077.32, + "end": 12079.74, + "probability": 0.8455 + }, + { + "start": 12082.5, + "end": 12092.0, + "probability": 0.9858 + }, + { + "start": 12092.12, + "end": 12095.7, + "probability": 0.8649 + }, + { + "start": 12096.6, + "end": 12099.08, + "probability": 0.8542 + }, + { + "start": 12099.08, + "end": 12105.68, + "probability": 0.5261 + }, + { + "start": 12106.54, + "end": 12110.12, + "probability": 0.9973 + }, + { + "start": 12110.64, + "end": 12111.64, + "probability": 0.7866 + }, + { + "start": 12114.04, + "end": 12115.64, + "probability": 0.5092 + }, + { + "start": 12116.32, + "end": 12117.12, + "probability": 0.5533 + }, + { + "start": 12117.46, + "end": 12118.7, + "probability": 0.7393 + }, + { + "start": 12119.24, + "end": 12121.06, + "probability": 0.5485 + }, + { + "start": 12121.32, + "end": 12124.92, + "probability": 0.0664 + }, + { + "start": 12126.94, + "end": 12128.6, + "probability": 0.1965 + }, + { + "start": 12130.1, + "end": 12131.34, + "probability": 0.8582 + }, + { + "start": 12133.22, + "end": 12135.24, + "probability": 0.0092 + }, + { + "start": 12138.52, + "end": 12140.98, + "probability": 0.5423 + }, + { + "start": 12142.5, + "end": 12146.5, + "probability": 0.9028 + }, + { + "start": 12147.14, + "end": 12150.24, + "probability": 0.9536 + }, + { + "start": 12151.49, + "end": 12152.92, + "probability": 0.6008 + }, + { + "start": 12153.0, + "end": 12157.26, + "probability": 0.9494 + }, + { + "start": 12158.16, + "end": 12159.78, + "probability": 0.9868 + }, + { + "start": 12160.56, + "end": 12161.52, + "probability": 0.9473 + }, + { + "start": 12161.64, + "end": 12162.4, + "probability": 0.9945 + }, + { + "start": 12162.46, + "end": 12163.56, + "probability": 0.9198 + }, + { + "start": 12164.78, + "end": 12166.46, + "probability": 0.9491 + }, + { + "start": 12168.62, + "end": 12169.26, + "probability": 0.5388 + }, + { + "start": 12172.33, + "end": 12173.41, + "probability": 0.2747 + }, + { + "start": 12174.82, + "end": 12177.12, + "probability": 0.115 + }, + { + "start": 12177.12, + "end": 12178.98, + "probability": 0.4214 + }, + { + "start": 12183.24, + "end": 12183.82, + "probability": 0.5024 + }, + { + "start": 12183.92, + "end": 12184.72, + "probability": 0.8732 + }, + { + "start": 12185.62, + "end": 12192.48, + "probability": 0.9683 + }, + { + "start": 12193.84, + "end": 12196.38, + "probability": 0.9491 + }, + { + "start": 12198.06, + "end": 12201.6, + "probability": 0.6929 + }, + { + "start": 12202.4, + "end": 12203.3, + "probability": 0.9826 + }, + { + "start": 12203.4, + "end": 12204.7, + "probability": 0.8772 + }, + { + "start": 12204.86, + "end": 12207.66, + "probability": 0.978 + }, + { + "start": 12208.56, + "end": 12210.08, + "probability": 0.6414 + }, + { + "start": 12210.34, + "end": 12211.3, + "probability": 0.9982 + }, + { + "start": 12212.0, + "end": 12212.88, + "probability": 0.8542 + }, + { + "start": 12213.34, + "end": 12219.76, + "probability": 0.7292 + }, + { + "start": 12219.76, + "end": 12222.07, + "probability": 0.2893 + }, + { + "start": 12223.5, + "end": 12226.38, + "probability": 0.8357 + }, + { + "start": 12226.96, + "end": 12230.88, + "probability": 0.9177 + }, + { + "start": 12231.56, + "end": 12234.32, + "probability": 0.9348 + }, + { + "start": 12236.66, + "end": 12237.62, + "probability": 0.1817 + }, + { + "start": 12240.52, + "end": 12241.84, + "probability": 0.3896 + }, + { + "start": 12242.06, + "end": 12247.22, + "probability": 0.9218 + }, + { + "start": 12247.62, + "end": 12249.48, + "probability": 0.7971 + }, + { + "start": 12250.44, + "end": 12252.42, + "probability": 0.816 + }, + { + "start": 12252.42, + "end": 12252.78, + "probability": 0.692 + }, + { + "start": 12256.3, + "end": 12257.2, + "probability": 0.1434 + }, + { + "start": 12257.54, + "end": 12259.58, + "probability": 0.9705 + }, + { + "start": 12274.66, + "end": 12274.66, + "probability": 0.1106 + }, + { + "start": 12274.66, + "end": 12274.66, + "probability": 0.2623 + }, + { + "start": 12274.66, + "end": 12275.62, + "probability": 0.7316 + }, + { + "start": 12276.6, + "end": 12278.0, + "probability": 0.6482 + }, + { + "start": 12278.46, + "end": 12279.72, + "probability": 0.9032 + }, + { + "start": 12279.84, + "end": 12280.74, + "probability": 0.9427 + }, + { + "start": 12280.94, + "end": 12285.34, + "probability": 0.9106 + }, + { + "start": 12285.96, + "end": 12288.84, + "probability": 0.9423 + }, + { + "start": 12288.84, + "end": 12292.4, + "probability": 0.9703 + }, + { + "start": 12292.94, + "end": 12293.2, + "probability": 0.1196 + }, + { + "start": 12294.24, + "end": 12299.64, + "probability": 0.9813 + }, + { + "start": 12299.88, + "end": 12301.98, + "probability": 0.9073 + }, + { + "start": 12302.2, + "end": 12303.22, + "probability": 0.9902 + }, + { + "start": 12303.32, + "end": 12304.85, + "probability": 0.9888 + }, + { + "start": 12305.1, + "end": 12306.38, + "probability": 0.9893 + }, + { + "start": 12306.5, + "end": 12311.26, + "probability": 0.9961 + }, + { + "start": 12312.44, + "end": 12313.7, + "probability": 0.9379 + }, + { + "start": 12314.84, + "end": 12316.94, + "probability": 0.5198 + }, + { + "start": 12318.5, + "end": 12320.84, + "probability": 0.9476 + }, + { + "start": 12322.08, + "end": 12323.36, + "probability": 0.5542 + }, + { + "start": 12323.68, + "end": 12325.4, + "probability": 0.7517 + }, + { + "start": 12327.12, + "end": 12328.52, + "probability": 0.607 + }, + { + "start": 12328.52, + "end": 12328.62, + "probability": 0.6456 + }, + { + "start": 12328.68, + "end": 12330.24, + "probability": 0.8626 + }, + { + "start": 12331.9, + "end": 12332.46, + "probability": 0.949 + }, + { + "start": 12333.7, + "end": 12334.54, + "probability": 0.3732 + }, + { + "start": 12334.92, + "end": 12338.0, + "probability": 0.9582 + }, + { + "start": 12338.2, + "end": 12343.1, + "probability": 0.8471 + }, + { + "start": 12343.18, + "end": 12347.71, + "probability": 0.9858 + }, + { + "start": 12348.16, + "end": 12349.54, + "probability": 0.912 + }, + { + "start": 12350.24, + "end": 12352.2, + "probability": 0.9583 + }, + { + "start": 12352.4, + "end": 12353.26, + "probability": 0.915 + }, + { + "start": 12354.02, + "end": 12355.66, + "probability": 0.9444 + }, + { + "start": 12355.84, + "end": 12358.16, + "probability": 0.8706 + }, + { + "start": 12358.98, + "end": 12363.18, + "probability": 0.9948 + }, + { + "start": 12364.28, + "end": 12369.26, + "probability": 0.9901 + }, + { + "start": 12369.26, + "end": 12374.34, + "probability": 0.7715 + }, + { + "start": 12375.24, + "end": 12376.94, + "probability": 0.9919 + }, + { + "start": 12377.82, + "end": 12379.46, + "probability": 0.847 + }, + { + "start": 12380.12, + "end": 12383.68, + "probability": 0.9781 + }, + { + "start": 12384.2, + "end": 12389.64, + "probability": 0.9848 + }, + { + "start": 12390.68, + "end": 12391.32, + "probability": 0.9535 + }, + { + "start": 12391.44, + "end": 12391.8, + "probability": 0.8086 + }, + { + "start": 12391.98, + "end": 12392.38, + "probability": 0.865 + }, + { + "start": 12392.48, + "end": 12395.76, + "probability": 0.8198 + }, + { + "start": 12395.96, + "end": 12396.7, + "probability": 0.7038 + }, + { + "start": 12396.98, + "end": 12397.66, + "probability": 0.5421 + }, + { + "start": 12398.54, + "end": 12399.4, + "probability": 0.9089 + }, + { + "start": 12399.46, + "end": 12400.4, + "probability": 0.8165 + }, + { + "start": 12400.62, + "end": 12405.82, + "probability": 0.9937 + }, + { + "start": 12407.34, + "end": 12411.28, + "probability": 0.6808 + }, + { + "start": 12411.54, + "end": 12416.58, + "probability": 0.9397 + }, + { + "start": 12417.04, + "end": 12419.46, + "probability": 0.9838 + }, + { + "start": 12419.74, + "end": 12425.12, + "probability": 0.9967 + }, + { + "start": 12425.7, + "end": 12429.42, + "probability": 0.9961 + }, + { + "start": 12430.6, + "end": 12432.68, + "probability": 0.9883 + }, + { + "start": 12433.1, + "end": 12438.88, + "probability": 0.9613 + }, + { + "start": 12439.28, + "end": 12441.74, + "probability": 0.8782 + }, + { + "start": 12442.28, + "end": 12445.46, + "probability": 0.9891 + }, + { + "start": 12445.54, + "end": 12445.82, + "probability": 0.8398 + }, + { + "start": 12446.78, + "end": 12447.52, + "probability": 0.8105 + }, + { + "start": 12447.74, + "end": 12449.66, + "probability": 0.6683 + }, + { + "start": 12451.68, + "end": 12454.58, + "probability": 0.8089 + }, + { + "start": 12454.58, + "end": 12459.88, + "probability": 0.6062 + }, + { + "start": 12459.88, + "end": 12463.28, + "probability": 0.7559 + }, + { + "start": 12463.28, + "end": 12466.1, + "probability": 0.9482 + }, + { + "start": 12466.18, + "end": 12469.82, + "probability": 0.3862 + }, + { + "start": 12474.42, + "end": 12481.18, + "probability": 0.0757 + }, + { + "start": 12484.32, + "end": 12485.66, + "probability": 0.0341 + }, + { + "start": 12486.48, + "end": 12486.98, + "probability": 0.0099 + }, + { + "start": 12487.68, + "end": 12487.76, + "probability": 0.1852 + }, + { + "start": 12487.76, + "end": 12487.76, + "probability": 0.0099 + }, + { + "start": 12487.76, + "end": 12487.76, + "probability": 0.0333 + }, + { + "start": 12487.76, + "end": 12487.8, + "probability": 0.0378 + }, + { + "start": 12487.8, + "end": 12487.8, + "probability": 0.0267 + }, + { + "start": 12487.8, + "end": 12487.8, + "probability": 0.2456 + }, + { + "start": 12487.8, + "end": 12488.04, + "probability": 0.4726 + }, + { + "start": 12488.05, + "end": 12492.06, + "probability": 0.7932 + }, + { + "start": 12492.72, + "end": 12493.96, + "probability": 0.8261 + }, + { + "start": 12495.2, + "end": 12497.44, + "probability": 0.7122 + }, + { + "start": 12497.44, + "end": 12499.3, + "probability": 0.7818 + }, + { + "start": 12499.42, + "end": 12501.26, + "probability": 0.2991 + }, + { + "start": 12501.82, + "end": 12504.64, + "probability": 0.9707 + }, + { + "start": 12505.06, + "end": 12505.38, + "probability": 0.83 + }, + { + "start": 12507.4, + "end": 12511.22, + "probability": 0.9349 + }, + { + "start": 12512.94, + "end": 12514.0, + "probability": 0.7519 + }, + { + "start": 12514.26, + "end": 12515.56, + "probability": 0.6796 + }, + { + "start": 12515.98, + "end": 12516.52, + "probability": 0.8396 + }, + { + "start": 12522.2, + "end": 12524.56, + "probability": 0.8756 + }, + { + "start": 12535.9, + "end": 12539.58, + "probability": 0.8154 + }, + { + "start": 12542.58, + "end": 12543.62, + "probability": 0.7157 + }, + { + "start": 12545.48, + "end": 12546.68, + "probability": 0.6038 + }, + { + "start": 12547.02, + "end": 12550.59, + "probability": 0.9588 + }, + { + "start": 12551.7, + "end": 12552.2, + "probability": 0.9345 + }, + { + "start": 12552.5, + "end": 12554.44, + "probability": 0.9922 + }, + { + "start": 12555.66, + "end": 12557.94, + "probability": 0.9907 + }, + { + "start": 12559.12, + "end": 12562.4, + "probability": 0.8932 + }, + { + "start": 12565.18, + "end": 12566.6, + "probability": 0.7653 + }, + { + "start": 12567.64, + "end": 12571.48, + "probability": 0.9972 + }, + { + "start": 12571.48, + "end": 12575.28, + "probability": 0.9415 + }, + { + "start": 12576.44, + "end": 12582.22, + "probability": 0.9857 + }, + { + "start": 12582.96, + "end": 12586.12, + "probability": 0.8617 + }, + { + "start": 12587.0, + "end": 12588.3, + "probability": 0.9852 + }, + { + "start": 12589.08, + "end": 12592.24, + "probability": 0.9919 + }, + { + "start": 12593.38, + "end": 12595.32, + "probability": 0.9412 + }, + { + "start": 12596.52, + "end": 12599.4, + "probability": 0.978 + }, + { + "start": 12600.1, + "end": 12603.52, + "probability": 0.9977 + }, + { + "start": 12604.9, + "end": 12606.1, + "probability": 0.952 + }, + { + "start": 12607.32, + "end": 12609.66, + "probability": 0.8513 + }, + { + "start": 12610.4, + "end": 12615.28, + "probability": 0.9511 + }, + { + "start": 12616.38, + "end": 12618.44, + "probability": 0.948 + }, + { + "start": 12619.54, + "end": 12622.42, + "probability": 0.9957 + }, + { + "start": 12622.94, + "end": 12624.22, + "probability": 0.9883 + }, + { + "start": 12625.06, + "end": 12626.64, + "probability": 0.9609 + }, + { + "start": 12627.2, + "end": 12631.72, + "probability": 0.9992 + }, + { + "start": 12632.64, + "end": 12634.46, + "probability": 0.9944 + }, + { + "start": 12635.58, + "end": 12636.72, + "probability": 0.8807 + }, + { + "start": 12637.9, + "end": 12642.56, + "probability": 0.9985 + }, + { + "start": 12643.08, + "end": 12650.4, + "probability": 0.9984 + }, + { + "start": 12651.3, + "end": 12654.96, + "probability": 0.9924 + }, + { + "start": 12655.34, + "end": 12659.68, + "probability": 0.9958 + }, + { + "start": 12660.54, + "end": 12667.0, + "probability": 0.9959 + }, + { + "start": 12667.52, + "end": 12671.88, + "probability": 0.9956 + }, + { + "start": 12672.86, + "end": 12675.62, + "probability": 0.8989 + }, + { + "start": 12676.46, + "end": 12677.68, + "probability": 0.946 + }, + { + "start": 12678.88, + "end": 12683.64, + "probability": 0.8971 + }, + { + "start": 12683.64, + "end": 12688.42, + "probability": 0.9972 + }, + { + "start": 12689.16, + "end": 12690.52, + "probability": 0.8883 + }, + { + "start": 12691.38, + "end": 12694.92, + "probability": 0.959 + }, + { + "start": 12695.06, + "end": 12699.0, + "probability": 0.996 + }, + { + "start": 12699.76, + "end": 12701.2, + "probability": 0.9497 + }, + { + "start": 12702.06, + "end": 12703.06, + "probability": 0.6565 + }, + { + "start": 12704.14, + "end": 12706.74, + "probability": 0.9847 + }, + { + "start": 12706.74, + "end": 12710.82, + "probability": 0.9959 + }, + { + "start": 12711.88, + "end": 12714.98, + "probability": 0.7805 + }, + { + "start": 12715.72, + "end": 12718.79, + "probability": 0.952 + }, + { + "start": 12719.6, + "end": 12720.3, + "probability": 0.5727 + }, + { + "start": 12721.08, + "end": 12723.84, + "probability": 0.8234 + }, + { + "start": 12724.54, + "end": 12725.44, + "probability": 0.6979 + }, + { + "start": 12726.96, + "end": 12729.34, + "probability": 0.9409 + }, + { + "start": 12729.96, + "end": 12732.42, + "probability": 0.9502 + }, + { + "start": 12733.32, + "end": 12736.4, + "probability": 0.9972 + }, + { + "start": 12737.54, + "end": 12742.76, + "probability": 0.9764 + }, + { + "start": 12744.1, + "end": 12747.4, + "probability": 0.9976 + }, + { + "start": 12748.52, + "end": 12752.42, + "probability": 0.9778 + }, + { + "start": 12754.5, + "end": 12758.24, + "probability": 0.9591 + }, + { + "start": 12758.84, + "end": 12760.46, + "probability": 0.881 + }, + { + "start": 12760.98, + "end": 12761.24, + "probability": 0.3222 + }, + { + "start": 12761.8, + "end": 12762.34, + "probability": 0.8718 + }, + { + "start": 12764.14, + "end": 12765.4, + "probability": 0.9211 + }, + { + "start": 12766.22, + "end": 12769.52, + "probability": 0.9877 + }, + { + "start": 12770.14, + "end": 12772.22, + "probability": 0.6151 + }, + { + "start": 12772.8, + "end": 12773.44, + "probability": 0.9414 + }, + { + "start": 12775.26, + "end": 12778.62, + "probability": 0.973 + }, + { + "start": 12779.2, + "end": 12783.98, + "probability": 0.9789 + }, + { + "start": 12784.62, + "end": 12785.34, + "probability": 0.9458 + }, + { + "start": 12785.58, + "end": 12789.48, + "probability": 0.9079 + }, + { + "start": 12789.92, + "end": 12791.96, + "probability": 0.9323 + }, + { + "start": 12792.84, + "end": 12794.9, + "probability": 0.8597 + }, + { + "start": 12795.54, + "end": 12798.02, + "probability": 0.9951 + }, + { + "start": 12799.2, + "end": 12801.28, + "probability": 0.9951 + }, + { + "start": 12801.9, + "end": 12804.16, + "probability": 0.9528 + }, + { + "start": 12805.18, + "end": 12806.44, + "probability": 0.993 + }, + { + "start": 12808.04, + "end": 12810.14, + "probability": 0.6677 + }, + { + "start": 12810.16, + "end": 12810.88, + "probability": 0.6424 + }, + { + "start": 12810.94, + "end": 12812.62, + "probability": 0.9934 + }, + { + "start": 12812.7, + "end": 12814.28, + "probability": 0.8848 + }, + { + "start": 12814.32, + "end": 12815.32, + "probability": 0.9049 + }, + { + "start": 12815.38, + "end": 12816.22, + "probability": 0.74 + }, + { + "start": 12817.36, + "end": 12822.82, + "probability": 0.9958 + }, + { + "start": 12823.5, + "end": 12829.36, + "probability": 0.9985 + }, + { + "start": 12829.36, + "end": 12836.14, + "probability": 0.9851 + }, + { + "start": 12837.16, + "end": 12841.22, + "probability": 0.951 + }, + { + "start": 12841.76, + "end": 12846.44, + "probability": 0.9987 + }, + { + "start": 12847.1, + "end": 12851.94, + "probability": 0.9778 + }, + { + "start": 12851.94, + "end": 12855.78, + "probability": 0.9779 + }, + { + "start": 12856.68, + "end": 12860.64, + "probability": 0.7108 + }, + { + "start": 12861.16, + "end": 12862.52, + "probability": 0.9984 + }, + { + "start": 12864.56, + "end": 12868.12, + "probability": 0.9987 + }, + { + "start": 12868.64, + "end": 12869.88, + "probability": 0.9316 + }, + { + "start": 12870.4, + "end": 12872.5, + "probability": 0.5436 + }, + { + "start": 12873.02, + "end": 12874.2, + "probability": 0.9803 + }, + { + "start": 12875.32, + "end": 12875.84, + "probability": 0.6588 + }, + { + "start": 12877.06, + "end": 12878.82, + "probability": 0.8824 + }, + { + "start": 12879.86, + "end": 12880.7, + "probability": 0.8522 + }, + { + "start": 12881.9, + "end": 12882.38, + "probability": 0.7604 + }, + { + "start": 12883.1, + "end": 12885.62, + "probability": 0.9933 + }, + { + "start": 12886.32, + "end": 12888.08, + "probability": 0.8721 + }, + { + "start": 12889.6, + "end": 12890.42, + "probability": 0.6343 + }, + { + "start": 12890.98, + "end": 12894.7, + "probability": 0.8357 + }, + { + "start": 12895.26, + "end": 12898.08, + "probability": 0.6793 + }, + { + "start": 12899.14, + "end": 12900.78, + "probability": 0.8452 + }, + { + "start": 12901.1, + "end": 12902.18, + "probability": 0.4885 + }, + { + "start": 12902.2, + "end": 12903.3, + "probability": 0.9026 + }, + { + "start": 12903.58, + "end": 12906.16, + "probability": 0.8665 + }, + { + "start": 12906.18, + "end": 12906.78, + "probability": 0.8417 + }, + { + "start": 12907.76, + "end": 12909.38, + "probability": 0.9769 + }, + { + "start": 12910.06, + "end": 12910.96, + "probability": 0.96 + }, + { + "start": 12911.7, + "end": 12914.36, + "probability": 0.9789 + }, + { + "start": 12915.46, + "end": 12917.56, + "probability": 0.996 + }, + { + "start": 12918.2, + "end": 12918.72, + "probability": 0.8337 + }, + { + "start": 12920.0, + "end": 12921.12, + "probability": 0.9299 + }, + { + "start": 12922.38, + "end": 12922.6, + "probability": 0.7368 + }, + { + "start": 12923.2, + "end": 12925.94, + "probability": 0.9661 + }, + { + "start": 12926.6, + "end": 12931.26, + "probability": 0.989 + }, + { + "start": 12932.02, + "end": 12933.7, + "probability": 0.9973 + }, + { + "start": 12934.44, + "end": 12938.78, + "probability": 0.9677 + }, + { + "start": 12938.86, + "end": 12939.62, + "probability": 0.7518 + }, + { + "start": 12940.8, + "end": 12943.58, + "probability": 0.9963 + }, + { + "start": 12943.58, + "end": 12946.84, + "probability": 0.9934 + }, + { + "start": 12946.84, + "end": 12951.48, + "probability": 0.9584 + }, + { + "start": 12951.86, + "end": 12954.98, + "probability": 0.9979 + }, + { + "start": 12956.28, + "end": 12959.8, + "probability": 0.9648 + }, + { + "start": 12961.28, + "end": 12961.96, + "probability": 0.7452 + }, + { + "start": 12962.08, + "end": 12962.86, + "probability": 0.9671 + }, + { + "start": 12962.96, + "end": 12968.14, + "probability": 0.9121 + }, + { + "start": 12968.38, + "end": 12969.26, + "probability": 0.9437 + }, + { + "start": 12969.34, + "end": 12971.26, + "probability": 0.978 + }, + { + "start": 12972.64, + "end": 12976.26, + "probability": 0.9844 + }, + { + "start": 12978.08, + "end": 12979.16, + "probability": 0.4957 + }, + { + "start": 12979.5, + "end": 12980.68, + "probability": 0.7462 + }, + { + "start": 12980.8, + "end": 12984.16, + "probability": 0.9599 + }, + { + "start": 12984.54, + "end": 12986.74, + "probability": 0.9874 + }, + { + "start": 12987.54, + "end": 12990.84, + "probability": 0.9836 + }, + { + "start": 12991.34, + "end": 12992.14, + "probability": 0.6493 + }, + { + "start": 12992.3, + "end": 12993.04, + "probability": 0.6517 + }, + { + "start": 12993.12, + "end": 12994.3, + "probability": 0.936 + }, + { + "start": 12994.76, + "end": 12994.96, + "probability": 0.4015 + }, + { + "start": 12995.28, + "end": 12995.88, + "probability": 0.7454 + }, + { + "start": 12996.9, + "end": 12998.42, + "probability": 0.9769 + }, + { + "start": 13000.72, + "end": 13001.94, + "probability": 0.9562 + }, + { + "start": 13002.78, + "end": 13003.22, + "probability": 0.9766 + }, + { + "start": 13003.98, + "end": 13006.08, + "probability": 0.8149 + }, + { + "start": 13006.88, + "end": 13008.38, + "probability": 0.9575 + }, + { + "start": 13009.14, + "end": 13014.04, + "probability": 0.7839 + }, + { + "start": 13015.08, + "end": 13021.18, + "probability": 0.7799 + }, + { + "start": 13021.3, + "end": 13022.68, + "probability": 0.953 + }, + { + "start": 13022.7, + "end": 13023.34, + "probability": 0.8373 + }, + { + "start": 13024.08, + "end": 13024.74, + "probability": 0.8369 + }, + { + "start": 13025.26, + "end": 13028.58, + "probability": 0.9528 + }, + { + "start": 13031.1, + "end": 13032.36, + "probability": 0.8474 + }, + { + "start": 13033.8, + "end": 13038.64, + "probability": 0.9703 + }, + { + "start": 13039.98, + "end": 13045.66, + "probability": 0.9888 + }, + { + "start": 13047.02, + "end": 13049.22, + "probability": 0.8503 + }, + { + "start": 13050.08, + "end": 13053.28, + "probability": 0.5752 + }, + { + "start": 13054.12, + "end": 13058.0, + "probability": 0.9856 + }, + { + "start": 13059.28, + "end": 13063.5, + "probability": 0.8828 + }, + { + "start": 13064.3, + "end": 13067.54, + "probability": 0.9963 + }, + { + "start": 13068.38, + "end": 13071.0, + "probability": 0.8363 + }, + { + "start": 13072.7, + "end": 13074.44, + "probability": 0.7512 + }, + { + "start": 13074.98, + "end": 13079.38, + "probability": 0.9258 + }, + { + "start": 13080.68, + "end": 13081.44, + "probability": 0.8884 + }, + { + "start": 13082.78, + "end": 13083.28, + "probability": 0.9253 + }, + { + "start": 13084.98, + "end": 13085.5, + "probability": 0.7353 + }, + { + "start": 13085.74, + "end": 13087.1, + "probability": 0.995 + }, + { + "start": 13087.5, + "end": 13092.6, + "probability": 0.9896 + }, + { + "start": 13093.24, + "end": 13094.42, + "probability": 0.8144 + }, + { + "start": 13095.5, + "end": 13097.18, + "probability": 0.9873 + }, + { + "start": 13098.4, + "end": 13099.62, + "probability": 0.8569 + }, + { + "start": 13100.34, + "end": 13102.42, + "probability": 0.8772 + }, + { + "start": 13103.5, + "end": 13104.78, + "probability": 0.9914 + }, + { + "start": 13105.28, + "end": 13106.12, + "probability": 0.9374 + }, + { + "start": 13106.68, + "end": 13109.08, + "probability": 0.9847 + }, + { + "start": 13110.02, + "end": 13113.0, + "probability": 0.976 + }, + { + "start": 13113.86, + "end": 13114.68, + "probability": 0.6314 + }, + { + "start": 13115.9, + "end": 13116.74, + "probability": 0.6951 + }, + { + "start": 13117.16, + "end": 13117.56, + "probability": 0.7124 + }, + { + "start": 13118.72, + "end": 13121.82, + "probability": 0.9585 + }, + { + "start": 13122.8, + "end": 13124.2, + "probability": 0.7422 + }, + { + "start": 13125.61, + "end": 13127.76, + "probability": 0.2659 + }, + { + "start": 13127.76, + "end": 13128.3, + "probability": 0.8198 + }, + { + "start": 13128.34, + "end": 13128.78, + "probability": 0.8676 + }, + { + "start": 13129.88, + "end": 13131.34, + "probability": 0.9895 + }, + { + "start": 13131.9, + "end": 13133.92, + "probability": 0.9806 + }, + { + "start": 13135.04, + "end": 13136.46, + "probability": 0.7072 + }, + { + "start": 13136.58, + "end": 13138.14, + "probability": 0.9299 + }, + { + "start": 13138.62, + "end": 13141.18, + "probability": 0.8691 + }, + { + "start": 13141.32, + "end": 13141.58, + "probability": 0.8663 + }, + { + "start": 13142.96, + "end": 13143.92, + "probability": 0.6071 + }, + { + "start": 13144.44, + "end": 13144.44, + "probability": 0.3466 + }, + { + "start": 13144.44, + "end": 13144.66, + "probability": 0.5499 + }, + { + "start": 13145.02, + "end": 13145.82, + "probability": 0.7852 + }, + { + "start": 13145.98, + "end": 13146.72, + "probability": 0.9054 + }, + { + "start": 13146.8, + "end": 13147.68, + "probability": 0.9966 + }, + { + "start": 13148.86, + "end": 13149.7, + "probability": 0.807 + }, + { + "start": 13151.06, + "end": 13152.9, + "probability": 0.089 + }, + { + "start": 13153.0, + "end": 13156.18, + "probability": 0.8876 + }, + { + "start": 13156.86, + "end": 13159.76, + "probability": 0.8804 + }, + { + "start": 13160.38, + "end": 13162.7, + "probability": 0.7064 + }, + { + "start": 13163.04, + "end": 13164.56, + "probability": 0.9884 + }, + { + "start": 13164.72, + "end": 13165.86, + "probability": 0.7646 + }, + { + "start": 13165.96, + "end": 13167.0, + "probability": 0.7402 + }, + { + "start": 13167.22, + "end": 13168.7, + "probability": 0.9771 + }, + { + "start": 13169.24, + "end": 13170.06, + "probability": 0.9116 + }, + { + "start": 13170.24, + "end": 13172.65, + "probability": 0.7177 + }, + { + "start": 13172.82, + "end": 13172.82, + "probability": 0.7336 + }, + { + "start": 13173.1, + "end": 13174.68, + "probability": 0.9937 + }, + { + "start": 13174.68, + "end": 13175.2, + "probability": 0.0462 + }, + { + "start": 13175.2, + "end": 13175.2, + "probability": 0.0496 + }, + { + "start": 13175.2, + "end": 13175.5, + "probability": 0.353 + }, + { + "start": 13175.52, + "end": 13176.8, + "probability": 0.2774 + }, + { + "start": 13176.88, + "end": 13180.28, + "probability": 0.6823 + }, + { + "start": 13180.36, + "end": 13180.82, + "probability": 0.7571 + }, + { + "start": 13181.26, + "end": 13184.88, + "probability": 0.9978 + }, + { + "start": 13184.88, + "end": 13187.76, + "probability": 0.9918 + }, + { + "start": 13188.12, + "end": 13190.21, + "probability": 0.8122 + }, + { + "start": 13191.46, + "end": 13193.48, + "probability": 0.497 + }, + { + "start": 13193.56, + "end": 13197.88, + "probability": 0.9123 + }, + { + "start": 13198.54, + "end": 13201.56, + "probability": 0.9889 + }, + { + "start": 13202.18, + "end": 13203.12, + "probability": 0.9076 + }, + { + "start": 13203.58, + "end": 13204.42, + "probability": 0.3454 + }, + { + "start": 13204.5, + "end": 13205.48, + "probability": 0.9683 + }, + { + "start": 13206.32, + "end": 13208.68, + "probability": 0.9762 + }, + { + "start": 13209.2, + "end": 13211.02, + "probability": 0.8366 + }, + { + "start": 13211.84, + "end": 13216.32, + "probability": 0.9875 + }, + { + "start": 13216.66, + "end": 13218.56, + "probability": 0.9883 + }, + { + "start": 13218.64, + "end": 13220.14, + "probability": 0.7156 + }, + { + "start": 13220.78, + "end": 13221.44, + "probability": 0.5064 + }, + { + "start": 13222.22, + "end": 13228.1, + "probability": 0.9781 + }, + { + "start": 13228.64, + "end": 13229.98, + "probability": 0.9023 + }, + { + "start": 13230.52, + "end": 13232.64, + "probability": 0.9976 + }, + { + "start": 13233.36, + "end": 13234.06, + "probability": 0.8657 + }, + { + "start": 13234.32, + "end": 13235.6, + "probability": 0.9814 + }, + { + "start": 13236.36, + "end": 13238.31, + "probability": 0.8772 + }, + { + "start": 13238.72, + "end": 13239.42, + "probability": 0.9484 + }, + { + "start": 13240.36, + "end": 13242.04, + "probability": 0.9336 + }, + { + "start": 13242.36, + "end": 13243.2, + "probability": 0.7246 + }, + { + "start": 13243.3, + "end": 13245.26, + "probability": 0.841 + }, + { + "start": 13246.06, + "end": 13246.06, + "probability": 0.1042 + }, + { + "start": 13246.06, + "end": 13247.62, + "probability": 0.9315 + }, + { + "start": 13248.78, + "end": 13250.96, + "probability": 0.9961 + }, + { + "start": 13251.16, + "end": 13253.2, + "probability": 0.9775 + }, + { + "start": 13254.5, + "end": 13256.28, + "probability": 0.9038 + }, + { + "start": 13257.08, + "end": 13257.6, + "probability": 0.8693 + }, + { + "start": 13257.72, + "end": 13260.55, + "probability": 0.9253 + }, + { + "start": 13261.42, + "end": 13264.5, + "probability": 0.9873 + }, + { + "start": 13267.14, + "end": 13270.28, + "probability": 0.9995 + }, + { + "start": 13270.28, + "end": 13274.96, + "probability": 0.9979 + }, + { + "start": 13275.36, + "end": 13277.82, + "probability": 0.8868 + }, + { + "start": 13278.38, + "end": 13284.96, + "probability": 0.9942 + }, + { + "start": 13284.98, + "end": 13285.52, + "probability": 0.5621 + }, + { + "start": 13286.9, + "end": 13289.32, + "probability": 0.9971 + }, + { + "start": 13289.62, + "end": 13291.04, + "probability": 0.8354 + }, + { + "start": 13292.44, + "end": 13294.68, + "probability": 0.9599 + }, + { + "start": 13296.56, + "end": 13299.86, + "probability": 0.8529 + }, + { + "start": 13299.9, + "end": 13302.78, + "probability": 0.9987 + }, + { + "start": 13303.44, + "end": 13306.68, + "probability": 0.9709 + }, + { + "start": 13306.68, + "end": 13309.72, + "probability": 0.9993 + }, + { + "start": 13310.32, + "end": 13313.7, + "probability": 0.9326 + }, + { + "start": 13313.88, + "end": 13315.76, + "probability": 0.9594 + }, + { + "start": 13315.92, + "end": 13316.14, + "probability": 0.308 + }, + { + "start": 13318.73, + "end": 13319.6, + "probability": 0.0212 + }, + { + "start": 13319.6, + "end": 13319.6, + "probability": 0.0258 + }, + { + "start": 13319.6, + "end": 13319.92, + "probability": 0.3084 + }, + { + "start": 13320.98, + "end": 13321.78, + "probability": 0.6378 + }, + { + "start": 13322.02, + "end": 13323.34, + "probability": 0.6991 + }, + { + "start": 13323.48, + "end": 13323.89, + "probability": 0.9638 + }, + { + "start": 13324.22, + "end": 13324.45, + "probability": 0.6836 + }, + { + "start": 13324.54, + "end": 13326.24, + "probability": 0.8553 + }, + { + "start": 13327.75, + "end": 13330.76, + "probability": 0.7537 + }, + { + "start": 13332.34, + "end": 13333.62, + "probability": 0.111 + }, + { + "start": 13335.8, + "end": 13336.54, + "probability": 0.7569 + }, + { + "start": 13340.2, + "end": 13341.76, + "probability": 0.667 + }, + { + "start": 13341.86, + "end": 13345.58, + "probability": 0.9977 + }, + { + "start": 13345.58, + "end": 13350.24, + "probability": 0.9852 + }, + { + "start": 13350.76, + "end": 13354.16, + "probability": 0.8766 + }, + { + "start": 13354.24, + "end": 13358.88, + "probability": 0.9201 + }, + { + "start": 13358.96, + "end": 13361.84, + "probability": 0.9808 + }, + { + "start": 13362.98, + "end": 13363.48, + "probability": 0.6584 + }, + { + "start": 13364.04, + "end": 13368.44, + "probability": 0.9607 + }, + { + "start": 13368.69, + "end": 13374.22, + "probability": 0.9964 + }, + { + "start": 13374.72, + "end": 13378.84, + "probability": 0.8943 + }, + { + "start": 13378.94, + "end": 13382.02, + "probability": 0.9928 + }, + { + "start": 13382.48, + "end": 13384.15, + "probability": 0.9966 + }, + { + "start": 13384.68, + "end": 13387.28, + "probability": 0.9676 + }, + { + "start": 13387.44, + "end": 13388.34, + "probability": 0.8366 + }, + { + "start": 13390.02, + "end": 13391.3, + "probability": 0.9094 + }, + { + "start": 13391.46, + "end": 13393.66, + "probability": 0.9905 + }, + { + "start": 13393.66, + "end": 13396.1, + "probability": 0.9961 + }, + { + "start": 13396.64, + "end": 13400.34, + "probability": 0.9906 + }, + { + "start": 13400.34, + "end": 13403.44, + "probability": 0.9956 + }, + { + "start": 13403.96, + "end": 13405.88, + "probability": 0.9831 + }, + { + "start": 13406.52, + "end": 13409.2, + "probability": 0.989 + }, + { + "start": 13409.2, + "end": 13412.32, + "probability": 0.9347 + }, + { + "start": 13412.84, + "end": 13418.68, + "probability": 0.9958 + }, + { + "start": 13418.82, + "end": 13421.7, + "probability": 0.9993 + }, + { + "start": 13422.6, + "end": 13423.3, + "probability": 0.9247 + }, + { + "start": 13424.06, + "end": 13429.56, + "probability": 0.9373 + }, + { + "start": 13430.32, + "end": 13431.4, + "probability": 0.939 + }, + { + "start": 13431.52, + "end": 13432.96, + "probability": 0.9717 + }, + { + "start": 13433.12, + "end": 13434.58, + "probability": 0.9623 + }, + { + "start": 13435.1, + "end": 13437.71, + "probability": 0.9985 + }, + { + "start": 13438.14, + "end": 13443.28, + "probability": 0.9976 + }, + { + "start": 13443.28, + "end": 13447.8, + "probability": 0.9824 + }, + { + "start": 13448.22, + "end": 13451.1, + "probability": 0.9739 + }, + { + "start": 13451.96, + "end": 13452.22, + "probability": 0.2954 + }, + { + "start": 13452.34, + "end": 13453.08, + "probability": 0.9245 + }, + { + "start": 13453.14, + "end": 13456.42, + "probability": 0.8156 + }, + { + "start": 13456.6, + "end": 13457.84, + "probability": 0.5152 + }, + { + "start": 13459.22, + "end": 13461.76, + "probability": 0.8889 + }, + { + "start": 13461.84, + "end": 13462.28, + "probability": 0.6462 + }, + { + "start": 13462.6, + "end": 13465.34, + "probability": 0.9912 + }, + { + "start": 13465.38, + "end": 13466.18, + "probability": 0.9097 + }, + { + "start": 13466.48, + "end": 13471.6, + "probability": 0.9949 + }, + { + "start": 13471.8, + "end": 13473.48, + "probability": 0.9418 + }, + { + "start": 13474.42, + "end": 13475.08, + "probability": 0.9318 + }, + { + "start": 13475.76, + "end": 13477.74, + "probability": 0.9898 + }, + { + "start": 13477.84, + "end": 13481.06, + "probability": 0.9024 + }, + { + "start": 13482.28, + "end": 13487.24, + "probability": 0.9895 + }, + { + "start": 13487.42, + "end": 13491.28, + "probability": 0.9408 + }, + { + "start": 13491.84, + "end": 13494.58, + "probability": 0.9214 + }, + { + "start": 13496.26, + "end": 13498.98, + "probability": 0.9299 + }, + { + "start": 13499.54, + "end": 13501.34, + "probability": 0.968 + }, + { + "start": 13502.9, + "end": 13504.8, + "probability": 0.8181 + }, + { + "start": 13507.26, + "end": 13510.52, + "probability": 0.9762 + }, + { + "start": 13510.6, + "end": 13512.22, + "probability": 0.9795 + }, + { + "start": 13512.3, + "end": 13514.72, + "probability": 0.9436 + }, + { + "start": 13515.82, + "end": 13517.36, + "probability": 0.98 + }, + { + "start": 13517.5, + "end": 13518.18, + "probability": 0.8501 + }, + { + "start": 13518.34, + "end": 13521.4, + "probability": 0.8575 + }, + { + "start": 13521.62, + "end": 13523.32, + "probability": 0.9977 + }, + { + "start": 13524.06, + "end": 13526.08, + "probability": 0.9205 + }, + { + "start": 13526.16, + "end": 13531.78, + "probability": 0.9097 + }, + { + "start": 13532.0, + "end": 13532.82, + "probability": 0.2877 + }, + { + "start": 13533.44, + "end": 13538.56, + "probability": 0.9674 + }, + { + "start": 13540.46, + "end": 13544.32, + "probability": 0.861 + }, + { + "start": 13544.94, + "end": 13548.36, + "probability": 0.9831 + }, + { + "start": 13548.52, + "end": 13551.12, + "probability": 0.9819 + }, + { + "start": 13551.18, + "end": 13554.5, + "probability": 0.9982 + }, + { + "start": 13554.58, + "end": 13561.12, + "probability": 0.9955 + }, + { + "start": 13561.12, + "end": 13565.1, + "probability": 0.9996 + }, + { + "start": 13566.22, + "end": 13567.56, + "probability": 0.7983 + }, + { + "start": 13567.62, + "end": 13567.74, + "probability": 0.8126 + }, + { + "start": 13567.9, + "end": 13570.54, + "probability": 0.9762 + }, + { + "start": 13570.96, + "end": 13575.0, + "probability": 0.9551 + }, + { + "start": 13575.0, + "end": 13577.1, + "probability": 0.9907 + }, + { + "start": 13578.4, + "end": 13581.18, + "probability": 0.9971 + }, + { + "start": 13581.84, + "end": 13585.86, + "probability": 0.9994 + }, + { + "start": 13585.86, + "end": 13588.88, + "probability": 0.9985 + }, + { + "start": 13589.06, + "end": 13592.02, + "probability": 0.9795 + }, + { + "start": 13592.5, + "end": 13599.46, + "probability": 0.9665 + }, + { + "start": 13599.96, + "end": 13604.38, + "probability": 0.9872 + }, + { + "start": 13604.58, + "end": 13606.74, + "probability": 0.9946 + }, + { + "start": 13607.42, + "end": 13610.68, + "probability": 0.9041 + }, + { + "start": 13610.78, + "end": 13612.24, + "probability": 0.7434 + }, + { + "start": 13612.42, + "end": 13614.62, + "probability": 0.9891 + }, + { + "start": 13614.72, + "end": 13614.98, + "probability": 0.6796 + }, + { + "start": 13615.94, + "end": 13616.52, + "probability": 0.7076 + }, + { + "start": 13616.74, + "end": 13618.86, + "probability": 0.8684 + }, + { + "start": 13620.38, + "end": 13622.36, + "probability": 0.8212 + }, + { + "start": 13628.12, + "end": 13629.86, + "probability": 0.6927 + }, + { + "start": 13630.82, + "end": 13631.44, + "probability": 0.8214 + }, + { + "start": 13631.68, + "end": 13637.54, + "probability": 0.9808 + }, + { + "start": 13637.54, + "end": 13645.52, + "probability": 0.9896 + }, + { + "start": 13646.52, + "end": 13649.16, + "probability": 0.9521 + }, + { + "start": 13650.6, + "end": 13655.66, + "probability": 0.9907 + }, + { + "start": 13657.42, + "end": 13658.34, + "probability": 0.7449 + }, + { + "start": 13659.92, + "end": 13663.12, + "probability": 0.998 + }, + { + "start": 13663.44, + "end": 13663.9, + "probability": 0.8998 + }, + { + "start": 13665.02, + "end": 13667.7, + "probability": 0.988 + }, + { + "start": 13668.66, + "end": 13672.84, + "probability": 0.8379 + }, + { + "start": 13674.12, + "end": 13677.54, + "probability": 0.0734 + }, + { + "start": 13677.54, + "end": 13680.4, + "probability": 0.9219 + }, + { + "start": 13680.98, + "end": 13686.36, + "probability": 0.997 + }, + { + "start": 13686.36, + "end": 13693.28, + "probability": 0.99 + }, + { + "start": 13694.18, + "end": 13696.74, + "probability": 0.9567 + }, + { + "start": 13697.76, + "end": 13700.6, + "probability": 0.8126 + }, + { + "start": 13701.42, + "end": 13706.2, + "probability": 0.9951 + }, + { + "start": 13707.16, + "end": 13708.02, + "probability": 0.7725 + }, + { + "start": 13709.02, + "end": 13710.64, + "probability": 0.9905 + }, + { + "start": 13710.78, + "end": 13711.74, + "probability": 0.9619 + }, + { + "start": 13712.12, + "end": 13713.1, + "probability": 0.9813 + }, + { + "start": 13713.6, + "end": 13714.36, + "probability": 0.9463 + }, + { + "start": 13715.22, + "end": 13716.41, + "probability": 0.0828 + }, + { + "start": 13719.21, + "end": 13720.42, + "probability": 0.164 + }, + { + "start": 13720.42, + "end": 13720.48, + "probability": 0.1793 + }, + { + "start": 13720.48, + "end": 13720.48, + "probability": 0.149 + }, + { + "start": 13720.48, + "end": 13722.8, + "probability": 0.2994 + }, + { + "start": 13725.34, + "end": 13727.84, + "probability": 0.7189 + }, + { + "start": 13729.85, + "end": 13731.14, + "probability": 0.3234 + }, + { + "start": 13731.14, + "end": 13732.81, + "probability": 0.5679 + }, + { + "start": 13734.02, + "end": 13735.19, + "probability": 0.1509 + }, + { + "start": 13735.86, + "end": 13737.44, + "probability": 0.9616 + }, + { + "start": 13737.96, + "end": 13738.64, + "probability": 0.5125 + }, + { + "start": 13738.78, + "end": 13740.6, + "probability": 0.2981 + }, + { + "start": 13740.78, + "end": 13744.66, + "probability": 0.7964 + }, + { + "start": 13745.42, + "end": 13748.24, + "probability": 0.7663 + }, + { + "start": 13748.26, + "end": 13753.0, + "probability": 0.5766 + }, + { + "start": 13753.78, + "end": 13754.02, + "probability": 0.1095 + }, + { + "start": 13754.02, + "end": 13757.06, + "probability": 0.7594 + }, + { + "start": 13757.34, + "end": 13758.78, + "probability": 0.9597 + }, + { + "start": 13758.78, + "end": 13759.78, + "probability": 0.2168 + }, + { + "start": 13759.98, + "end": 13765.08, + "probability": 0.9445 + }, + { + "start": 13765.14, + "end": 13768.36, + "probability": 0.6583 + }, + { + "start": 13768.38, + "end": 13769.83, + "probability": 0.1144 + }, + { + "start": 13771.89, + "end": 13775.22, + "probability": 0.6901 + }, + { + "start": 13775.32, + "end": 13777.18, + "probability": 0.7405 + }, + { + "start": 13778.69, + "end": 13780.3, + "probability": 0.3308 + }, + { + "start": 13780.96, + "end": 13781.44, + "probability": 0.0233 + }, + { + "start": 13781.44, + "end": 13781.48, + "probability": 0.3758 + }, + { + "start": 13781.48, + "end": 13781.48, + "probability": 0.0588 + }, + { + "start": 13781.48, + "end": 13781.48, + "probability": 0.051 + }, + { + "start": 13781.48, + "end": 13784.22, + "probability": 0.2997 + }, + { + "start": 13784.34, + "end": 13786.94, + "probability": 0.7669 + }, + { + "start": 13787.32, + "end": 13790.04, + "probability": 0.7692 + }, + { + "start": 13790.24, + "end": 13791.62, + "probability": 0.7643 + }, + { + "start": 13792.05, + "end": 13793.04, + "probability": 0.0118 + }, + { + "start": 13793.04, + "end": 13794.32, + "probability": 0.6372 + }, + { + "start": 13794.38, + "end": 13795.48, + "probability": 0.1949 + }, + { + "start": 13795.7, + "end": 13797.42, + "probability": 0.2828 + }, + { + "start": 13797.42, + "end": 13799.54, + "probability": 0.1801 + }, + { + "start": 13800.16, + "end": 13800.56, + "probability": 0.0618 + }, + { + "start": 13800.56, + "end": 13800.6, + "probability": 0.3087 + }, + { + "start": 13800.6, + "end": 13800.6, + "probability": 0.1744 + }, + { + "start": 13800.6, + "end": 13801.0, + "probability": 0.3563 + }, + { + "start": 13801.4, + "end": 13801.64, + "probability": 0.4585 + }, + { + "start": 13801.64, + "end": 13804.34, + "probability": 0.6676 + }, + { + "start": 13804.92, + "end": 13804.92, + "probability": 0.0217 + }, + { + "start": 13804.92, + "end": 13806.4, + "probability": 0.5522 + }, + { + "start": 13807.18, + "end": 13807.34, + "probability": 0.2465 + }, + { + "start": 13807.34, + "end": 13810.2, + "probability": 0.8989 + }, + { + "start": 13810.2, + "end": 13810.58, + "probability": 0.0249 + }, + { + "start": 13810.58, + "end": 13811.18, + "probability": 0.7486 + }, + { + "start": 13812.34, + "end": 13813.32, + "probability": 0.8916 + }, + { + "start": 13813.32, + "end": 13813.98, + "probability": 0.5866 + }, + { + "start": 13816.2, + "end": 13817.9, + "probability": 0.8701 + }, + { + "start": 13817.9, + "end": 13819.22, + "probability": 0.7127 + }, + { + "start": 13819.46, + "end": 13821.32, + "probability": 0.1398 + }, + { + "start": 13823.84, + "end": 13824.74, + "probability": 0.5866 + }, + { + "start": 13825.4, + "end": 13825.78, + "probability": 0.4204 + }, + { + "start": 13841.66, + "end": 13841.86, + "probability": 0.0125 + }, + { + "start": 13841.86, + "end": 13841.86, + "probability": 0.0393 + }, + { + "start": 13841.86, + "end": 13841.86, + "probability": 0.0299 + }, + { + "start": 13841.86, + "end": 13841.86, + "probability": 0.0401 + }, + { + "start": 13841.86, + "end": 13843.16, + "probability": 0.2248 + }, + { + "start": 13843.72, + "end": 13844.02, + "probability": 0.6691 + }, + { + "start": 13844.29, + "end": 13848.98, + "probability": 0.7522 + }, + { + "start": 13850.62, + "end": 13854.0, + "probability": 0.9805 + }, + { + "start": 13854.82, + "end": 13858.04, + "probability": 0.8976 + }, + { + "start": 13858.4, + "end": 13860.1, + "probability": 0.3038 + }, + { + "start": 13860.72, + "end": 13861.58, + "probability": 0.9963 + }, + { + "start": 13862.2, + "end": 13865.42, + "probability": 0.9459 + }, + { + "start": 13865.68, + "end": 13866.34, + "probability": 0.3949 + }, + { + "start": 13867.08, + "end": 13867.73, + "probability": 0.448 + }, + { + "start": 13868.68, + "end": 13869.74, + "probability": 0.448 + }, + { + "start": 13870.92, + "end": 13872.51, + "probability": 0.3715 + }, + { + "start": 13873.38, + "end": 13874.0, + "probability": 0.4028 + }, + { + "start": 13875.1, + "end": 13875.62, + "probability": 0.8864 + }, + { + "start": 13875.74, + "end": 13878.42, + "probability": 0.9872 + }, + { + "start": 13878.42, + "end": 13878.56, + "probability": 0.0183 + }, + { + "start": 13878.56, + "end": 13879.16, + "probability": 0.5224 + }, + { + "start": 13879.4, + "end": 13879.5, + "probability": 0.3053 + }, + { + "start": 13880.96, + "end": 13882.9, + "probability": 0.993 + }, + { + "start": 13883.72, + "end": 13885.18, + "probability": 0.9329 + }, + { + "start": 13885.3, + "end": 13885.78, + "probability": 0.8913 + }, + { + "start": 13887.16, + "end": 13887.46, + "probability": 0.471 + }, + { + "start": 13888.66, + "end": 13890.2, + "probability": 0.8509 + }, + { + "start": 13890.94, + "end": 13891.7, + "probability": 0.702 + }, + { + "start": 13893.12, + "end": 13899.44, + "probability": 0.9589 + }, + { + "start": 13899.46, + "end": 13900.7, + "probability": 0.9391 + }, + { + "start": 13901.82, + "end": 13905.72, + "probability": 0.9615 + }, + { + "start": 13905.76, + "end": 13908.32, + "probability": 0.9382 + }, + { + "start": 13909.56, + "end": 13911.66, + "probability": 0.7702 + }, + { + "start": 13913.08, + "end": 13916.44, + "probability": 0.9078 + }, + { + "start": 13918.16, + "end": 13920.32, + "probability": 0.9635 + }, + { + "start": 13921.26, + "end": 13925.98, + "probability": 0.9961 + }, + { + "start": 13926.26, + "end": 13927.12, + "probability": 0.9585 + }, + { + "start": 13928.38, + "end": 13929.56, + "probability": 0.7885 + }, + { + "start": 13930.88, + "end": 13935.3, + "probability": 0.6564 + }, + { + "start": 13936.14, + "end": 13938.96, + "probability": 0.912 + }, + { + "start": 13939.04, + "end": 13939.66, + "probability": 0.6627 + }, + { + "start": 13940.12, + "end": 13940.92, + "probability": 0.698 + }, + { + "start": 13942.18, + "end": 13944.29, + "probability": 0.9189 + }, + { + "start": 13945.2, + "end": 13947.58, + "probability": 0.9888 + }, + { + "start": 13947.68, + "end": 13949.86, + "probability": 0.9111 + }, + { + "start": 13949.92, + "end": 13952.76, + "probability": 0.9201 + }, + { + "start": 13953.88, + "end": 13956.78, + "probability": 0.7378 + }, + { + "start": 13957.68, + "end": 13962.18, + "probability": 0.8934 + }, + { + "start": 13962.66, + "end": 13965.8, + "probability": 0.9549 + }, + { + "start": 13965.84, + "end": 13968.8, + "probability": 0.7336 + }, + { + "start": 13968.82, + "end": 13969.2, + "probability": 0.4441 + }, + { + "start": 13969.42, + "end": 13970.24, + "probability": 0.83 + }, + { + "start": 13971.3, + "end": 13973.04, + "probability": 0.975 + }, + { + "start": 13973.24, + "end": 13973.44, + "probability": 0.2759 + }, + { + "start": 13973.62, + "end": 13978.74, + "probability": 0.9512 + }, + { + "start": 13979.36, + "end": 13982.48, + "probability": 0.9653 + }, + { + "start": 13982.9, + "end": 13983.48, + "probability": 0.4203 + }, + { + "start": 13984.04, + "end": 13986.14, + "probability": 0.9283 + }, + { + "start": 13986.28, + "end": 13987.38, + "probability": 0.7681 + }, + { + "start": 13987.66, + "end": 13989.2, + "probability": 0.9198 + }, + { + "start": 13989.74, + "end": 13990.26, + "probability": 0.8522 + }, + { + "start": 13992.02, + "end": 13993.29, + "probability": 0.9551 + }, + { + "start": 13993.7, + "end": 13995.6, + "probability": 0.9243 + }, + { + "start": 13995.6, + "end": 13999.1, + "probability": 0.8953 + }, + { + "start": 14000.16, + "end": 14002.34, + "probability": 0.7737 + }, + { + "start": 14003.3, + "end": 14005.49, + "probability": 0.4893 + }, + { + "start": 14006.3, + "end": 14010.62, + "probability": 0.9434 + }, + { + "start": 14011.0, + "end": 14012.84, + "probability": 0.7535 + }, + { + "start": 14013.5, + "end": 14016.1, + "probability": 0.8027 + }, + { + "start": 14016.1, + "end": 14018.0, + "probability": 0.9271 + }, + { + "start": 14019.06, + "end": 14020.94, + "probability": 0.8989 + }, + { + "start": 14021.86, + "end": 14022.54, + "probability": 0.9748 + }, + { + "start": 14022.7, + "end": 14023.22, + "probability": 0.616 + }, + { + "start": 14023.3, + "end": 14023.96, + "probability": 0.6358 + }, + { + "start": 14024.0, + "end": 14027.24, + "probability": 0.8112 + }, + { + "start": 14027.36, + "end": 14028.04, + "probability": 0.5225 + }, + { + "start": 14028.28, + "end": 14029.46, + "probability": 0.8524 + }, + { + "start": 14029.52, + "end": 14029.93, + "probability": 0.6809 + }, + { + "start": 14030.18, + "end": 14030.86, + "probability": 0.5391 + }, + { + "start": 14031.46, + "end": 14033.02, + "probability": 0.5384 + }, + { + "start": 14033.2, + "end": 14033.55, + "probability": 0.9473 + }, + { + "start": 14033.7, + "end": 14034.46, + "probability": 0.715 + }, + { + "start": 14035.46, + "end": 14037.5, + "probability": 0.9161 + }, + { + "start": 14037.68, + "end": 14038.66, + "probability": 0.7488 + }, + { + "start": 14038.72, + "end": 14039.6, + "probability": 0.6507 + }, + { + "start": 14039.72, + "end": 14040.3, + "probability": 0.7929 + }, + { + "start": 14040.38, + "end": 14042.7, + "probability": 0.797 + }, + { + "start": 14042.84, + "end": 14043.46, + "probability": 0.8394 + }, + { + "start": 14044.14, + "end": 14046.12, + "probability": 0.9556 + }, + { + "start": 14046.88, + "end": 14048.92, + "probability": 0.8438 + }, + { + "start": 14049.98, + "end": 14052.82, + "probability": 0.5997 + }, + { + "start": 14054.56, + "end": 14056.1, + "probability": 0.908 + }, + { + "start": 14056.84, + "end": 14060.02, + "probability": 0.9344 + }, + { + "start": 14060.14, + "end": 14060.94, + "probability": 0.7909 + }, + { + "start": 14061.16, + "end": 14062.94, + "probability": 0.7204 + }, + { + "start": 14064.3, + "end": 14066.26, + "probability": 0.8713 + }, + { + "start": 14066.3, + "end": 14067.08, + "probability": 0.8562 + }, + { + "start": 14067.14, + "end": 14069.74, + "probability": 0.8601 + }, + { + "start": 14069.86, + "end": 14070.96, + "probability": 0.56 + }, + { + "start": 14071.02, + "end": 14071.7, + "probability": 0.4968 + }, + { + "start": 14071.78, + "end": 14075.26, + "probability": 0.9613 + }, + { + "start": 14076.38, + "end": 14078.52, + "probability": 0.8125 + }, + { + "start": 14079.64, + "end": 14084.78, + "probability": 0.8641 + }, + { + "start": 14085.0, + "end": 14085.24, + "probability": 0.6813 + }, + { + "start": 14086.52, + "end": 14088.36, + "probability": 0.685 + }, + { + "start": 14088.52, + "end": 14094.3, + "probability": 0.96 + }, + { + "start": 14098.34, + "end": 14099.02, + "probability": 0.7399 + }, + { + "start": 14099.12, + "end": 14100.3, + "probability": 0.7901 + }, + { + "start": 14100.76, + "end": 14103.66, + "probability": 0.9679 + }, + { + "start": 14103.66, + "end": 14107.36, + "probability": 0.8573 + }, + { + "start": 14107.76, + "end": 14112.54, + "probability": 0.913 + }, + { + "start": 14112.94, + "end": 14114.12, + "probability": 0.8709 + }, + { + "start": 14114.56, + "end": 14114.94, + "probability": 0.3071 + }, + { + "start": 14115.04, + "end": 14116.78, + "probability": 0.9915 + }, + { + "start": 14117.48, + "end": 14117.72, + "probability": 0.8643 + }, + { + "start": 14118.54, + "end": 14119.66, + "probability": 0.471 + }, + { + "start": 14119.86, + "end": 14120.9, + "probability": 0.928 + }, + { + "start": 14139.1, + "end": 14140.58, + "probability": 0.4461 + }, + { + "start": 14141.66, + "end": 14142.74, + "probability": 0.4809 + }, + { + "start": 14147.24, + "end": 14151.82, + "probability": 0.091 + }, + { + "start": 14153.22, + "end": 14154.02, + "probability": 0.0259 + }, + { + "start": 14155.55, + "end": 14156.54, + "probability": 0.0163 + }, + { + "start": 14156.7, + "end": 14158.32, + "probability": 0.0398 + }, + { + "start": 14159.0, + "end": 14160.2, + "probability": 0.0676 + }, + { + "start": 14160.2, + "end": 14163.82, + "probability": 0.0784 + }, + { + "start": 14166.02, + "end": 14168.44, + "probability": 0.0356 + }, + { + "start": 14170.39, + "end": 14173.06, + "probability": 0.1002 + }, + { + "start": 14173.46, + "end": 14179.22, + "probability": 0.0614 + }, + { + "start": 14185.02, + "end": 14185.24, + "probability": 0.0002 + }, + { + "start": 14187.22, + "end": 14190.54, + "probability": 0.0353 + }, + { + "start": 14190.54, + "end": 14191.28, + "probability": 0.3376 + }, + { + "start": 14220.0, + "end": 14220.0, + "probability": 0.0 + }, + { + "start": 14220.0, + "end": 14220.0, + "probability": 0.0 + }, + { + "start": 14220.0, + "end": 14220.0, + "probability": 0.0 + }, + { + "start": 14220.0, + "end": 14220.0, + "probability": 0.0 + }, + { + "start": 14220.0, + "end": 14220.0, + "probability": 0.0 + }, + { + "start": 14220.0, + "end": 14220.0, + "probability": 0.0 + }, + { + "start": 14220.0, + "end": 14220.0, + "probability": 0.0 + }, + { + "start": 14220.0, + "end": 14220.0, + "probability": 0.0 + }, + { + "start": 14220.0, + "end": 14220.0, + "probability": 0.0 + }, + { + "start": 14220.0, + "end": 14220.0, + "probability": 0.0 + }, + { + "start": 14220.0, + "end": 14220.0, + "probability": 0.0 + }, + { + "start": 14220.0, + "end": 14220.0, + "probability": 0.0 + }, + { + "start": 14220.0, + "end": 14220.0, + "probability": 0.0 + }, + { + "start": 14220.0, + "end": 14220.0, + "probability": 0.0 + }, + { + "start": 14220.0, + "end": 14220.0, + "probability": 0.0 + }, + { + "start": 14220.0, + "end": 14220.0, + "probability": 0.0 + }, + { + "start": 14220.0, + "end": 14220.0, + "probability": 0.0 + }, + { + "start": 14220.0, + "end": 14220.0, + "probability": 0.0 + }, + { + "start": 14220.86, + "end": 14222.7, + "probability": 0.9807 + }, + { + "start": 14223.34, + "end": 14227.1, + "probability": 0.999 + }, + { + "start": 14227.7, + "end": 14230.28, + "probability": 0.9927 + }, + { + "start": 14230.76, + "end": 14233.0, + "probability": 0.8999 + }, + { + "start": 14233.28, + "end": 14233.66, + "probability": 0.7795 + }, + { + "start": 14233.7, + "end": 14236.26, + "probability": 0.9957 + }, + { + "start": 14236.96, + "end": 14237.52, + "probability": 0.6468 + }, + { + "start": 14238.02, + "end": 14241.7, + "probability": 0.9648 + }, + { + "start": 14242.16, + "end": 14244.66, + "probability": 0.697 + }, + { + "start": 14245.52, + "end": 14250.32, + "probability": 0.9801 + }, + { + "start": 14250.9, + "end": 14253.78, + "probability": 0.9924 + }, + { + "start": 14254.44, + "end": 14255.6, + "probability": 0.7576 + }, + { + "start": 14255.72, + "end": 14258.8, + "probability": 0.9899 + }, + { + "start": 14258.8, + "end": 14262.4, + "probability": 0.9893 + }, + { + "start": 14263.26, + "end": 14264.98, + "probability": 0.9915 + }, + { + "start": 14265.7, + "end": 14267.6, + "probability": 0.5001 + }, + { + "start": 14267.82, + "end": 14271.98, + "probability": 0.9295 + }, + { + "start": 14273.5, + "end": 14275.58, + "probability": 0.8689 + }, + { + "start": 14276.16, + "end": 14279.72, + "probability": 0.9778 + }, + { + "start": 14280.6, + "end": 14282.2, + "probability": 0.948 + }, + { + "start": 14282.9, + "end": 14284.84, + "probability": 0.9207 + }, + { + "start": 14285.7, + "end": 14288.36, + "probability": 0.9438 + }, + { + "start": 14289.42, + "end": 14291.92, + "probability": 0.9649 + }, + { + "start": 14293.58, + "end": 14295.74, + "probability": 0.9822 + }, + { + "start": 14296.5, + "end": 14298.64, + "probability": 0.9067 + }, + { + "start": 14299.26, + "end": 14302.28, + "probability": 0.9979 + }, + { + "start": 14303.14, + "end": 14307.14, + "probability": 0.9938 + }, + { + "start": 14307.9, + "end": 14309.56, + "probability": 0.9651 + }, + { + "start": 14310.44, + "end": 14313.38, + "probability": 0.9908 + }, + { + "start": 14314.56, + "end": 14319.02, + "probability": 0.999 + }, + { + "start": 14319.46, + "end": 14324.42, + "probability": 0.982 + }, + { + "start": 14326.3, + "end": 14327.51, + "probability": 0.9854 + }, + { + "start": 14328.1, + "end": 14331.38, + "probability": 0.9718 + }, + { + "start": 14331.58, + "end": 14332.68, + "probability": 0.5175 + }, + { + "start": 14332.78, + "end": 14333.56, + "probability": 0.9294 + }, + { + "start": 14334.46, + "end": 14335.3, + "probability": 0.8442 + }, + { + "start": 14335.86, + "end": 14340.68, + "probability": 0.9937 + }, + { + "start": 14341.36, + "end": 14349.2, + "probability": 0.97 + }, + { + "start": 14349.38, + "end": 14349.92, + "probability": 0.9746 + }, + { + "start": 14350.52, + "end": 14354.06, + "probability": 0.9702 + }, + { + "start": 14354.92, + "end": 14356.96, + "probability": 0.9897 + }, + { + "start": 14358.1, + "end": 14359.34, + "probability": 0.9149 + }, + { + "start": 14360.1, + "end": 14360.64, + "probability": 0.743 + }, + { + "start": 14360.84, + "end": 14365.28, + "probability": 0.9972 + }, + { + "start": 14365.9, + "end": 14367.52, + "probability": 0.9993 + }, + { + "start": 14368.44, + "end": 14369.1, + "probability": 0.6271 + }, + { + "start": 14369.9, + "end": 14372.14, + "probability": 0.9722 + }, + { + "start": 14372.88, + "end": 14378.64, + "probability": 0.9835 + }, + { + "start": 14379.24, + "end": 14381.88, + "probability": 0.9899 + }, + { + "start": 14382.5, + "end": 14383.6, + "probability": 0.853 + }, + { + "start": 14384.6, + "end": 14390.36, + "probability": 0.998 + }, + { + "start": 14390.94, + "end": 14394.98, + "probability": 0.999 + }, + { + "start": 14395.68, + "end": 14396.38, + "probability": 0.4028 + }, + { + "start": 14397.28, + "end": 14400.8, + "probability": 0.9537 + }, + { + "start": 14401.44, + "end": 14404.66, + "probability": 0.9477 + }, + { + "start": 14405.2, + "end": 14408.04, + "probability": 0.9561 + }, + { + "start": 14408.52, + "end": 14411.02, + "probability": 0.8198 + }, + { + "start": 14412.42, + "end": 14414.56, + "probability": 0.9943 + }, + { + "start": 14415.16, + "end": 14417.86, + "probability": 0.9962 + }, + { + "start": 14418.38, + "end": 14421.66, + "probability": 0.9181 + }, + { + "start": 14422.28, + "end": 14423.54, + "probability": 0.7036 + }, + { + "start": 14424.82, + "end": 14428.22, + "probability": 0.9837 + }, + { + "start": 14428.74, + "end": 14430.0, + "probability": 0.9155 + }, + { + "start": 14430.74, + "end": 14434.6, + "probability": 0.9987 + }, + { + "start": 14434.78, + "end": 14439.78, + "probability": 0.9881 + }, + { + "start": 14439.78, + "end": 14444.5, + "probability": 0.7163 + }, + { + "start": 14445.92, + "end": 14449.54, + "probability": 0.5324 + }, + { + "start": 14450.18, + "end": 14450.52, + "probability": 0.8548 + }, + { + "start": 14451.2, + "end": 14453.86, + "probability": 0.9935 + }, + { + "start": 14454.52, + "end": 14459.0, + "probability": 0.9955 + }, + { + "start": 14459.88, + "end": 14461.74, + "probability": 0.95 + }, + { + "start": 14462.44, + "end": 14467.22, + "probability": 0.9005 + }, + { + "start": 14469.42, + "end": 14473.56, + "probability": 0.9778 + }, + { + "start": 14473.94, + "end": 14474.86, + "probability": 0.9131 + }, + { + "start": 14475.2, + "end": 14478.56, + "probability": 0.9798 + }, + { + "start": 14479.54, + "end": 14482.84, + "probability": 0.9634 + }, + { + "start": 14483.16, + "end": 14484.18, + "probability": 0.9019 + }, + { + "start": 14484.88, + "end": 14485.22, + "probability": 0.9164 + }, + { + "start": 14486.4, + "end": 14488.1, + "probability": 0.8763 + }, + { + "start": 14488.18, + "end": 14492.49, + "probability": 0.9802 + }, + { + "start": 14493.16, + "end": 14493.58, + "probability": 0.8216 + }, + { + "start": 14493.7, + "end": 14496.34, + "probability": 0.9719 + }, + { + "start": 14497.22, + "end": 14498.56, + "probability": 0.7643 + }, + { + "start": 14498.9, + "end": 14501.38, + "probability": 0.9928 + }, + { + "start": 14501.9, + "end": 14504.2, + "probability": 0.797 + }, + { + "start": 14504.84, + "end": 14505.0, + "probability": 0.4529 + }, + { + "start": 14505.4, + "end": 14506.02, + "probability": 0.8772 + }, + { + "start": 14506.32, + "end": 14506.96, + "probability": 0.5847 + }, + { + "start": 14507.0, + "end": 14507.4, + "probability": 0.702 + }, + { + "start": 14507.62, + "end": 14513.72, + "probability": 0.9729 + }, + { + "start": 14514.72, + "end": 14518.26, + "probability": 0.967 + }, + { + "start": 14518.96, + "end": 14523.5, + "probability": 0.9936 + }, + { + "start": 14524.7, + "end": 14527.96, + "probability": 0.9907 + }, + { + "start": 14527.96, + "end": 14531.54, + "probability": 0.9907 + }, + { + "start": 14532.26, + "end": 14535.62, + "probability": 0.995 + }, + { + "start": 14535.78, + "end": 14536.12, + "probability": 0.7246 + }, + { + "start": 14536.22, + "end": 14537.4, + "probability": 0.9433 + }, + { + "start": 14538.5, + "end": 14540.26, + "probability": 0.9377 + }, + { + "start": 14540.92, + "end": 14541.34, + "probability": 0.873 + }, + { + "start": 14541.54, + "end": 14544.42, + "probability": 0.9412 + }, + { + "start": 14545.04, + "end": 14546.94, + "probability": 0.8776 + }, + { + "start": 14548.04, + "end": 14548.94, + "probability": 0.8208 + }, + { + "start": 14549.02, + "end": 14549.36, + "probability": 0.7183 + }, + { + "start": 14549.52, + "end": 14552.1, + "probability": 0.9894 + }, + { + "start": 14552.84, + "end": 14555.44, + "probability": 0.955 + }, + { + "start": 14556.3, + "end": 14560.22, + "probability": 0.9834 + }, + { + "start": 14560.86, + "end": 14563.64, + "probability": 0.8189 + }, + { + "start": 14564.9, + "end": 14566.88, + "probability": 0.9056 + }, + { + "start": 14567.46, + "end": 14569.22, + "probability": 0.7896 + }, + { + "start": 14569.68, + "end": 14571.98, + "probability": 0.9934 + }, + { + "start": 14573.16, + "end": 14576.2, + "probability": 0.9742 + }, + { + "start": 14576.86, + "end": 14578.86, + "probability": 0.9561 + }, + { + "start": 14580.04, + "end": 14581.54, + "probability": 0.6301 + }, + { + "start": 14582.38, + "end": 14583.92, + "probability": 0.9805 + }, + { + "start": 14584.16, + "end": 14588.84, + "probability": 0.941 + }, + { + "start": 14588.84, + "end": 14593.66, + "probability": 0.9806 + }, + { + "start": 14594.12, + "end": 14595.14, + "probability": 0.8783 + }, + { + "start": 14595.6, + "end": 14597.9, + "probability": 0.9506 + }, + { + "start": 14598.46, + "end": 14604.86, + "probability": 0.97 + }, + { + "start": 14605.64, + "end": 14606.2, + "probability": 0.9055 + }, + { + "start": 14606.72, + "end": 14608.46, + "probability": 0.6651 + }, + { + "start": 14609.72, + "end": 14613.38, + "probability": 0.818 + }, + { + "start": 14613.94, + "end": 14615.56, + "probability": 0.2758 + }, + { + "start": 14616.4, + "end": 14621.32, + "probability": 0.9855 + }, + { + "start": 14622.18, + "end": 14626.72, + "probability": 0.9229 + }, + { + "start": 14627.32, + "end": 14629.14, + "probability": 0.8561 + }, + { + "start": 14630.06, + "end": 14632.26, + "probability": 0.9899 + }, + { + "start": 14632.26, + "end": 14635.32, + "probability": 0.9583 + }, + { + "start": 14636.26, + "end": 14640.0, + "probability": 0.9277 + }, + { + "start": 14640.14, + "end": 14641.04, + "probability": 0.6364 + }, + { + "start": 14641.24, + "end": 14642.08, + "probability": 0.7633 + }, + { + "start": 14642.64, + "end": 14645.22, + "probability": 0.9576 + }, + { + "start": 14647.02, + "end": 14648.38, + "probability": 0.9038 + }, + { + "start": 14649.2, + "end": 14650.58, + "probability": 0.9916 + }, + { + "start": 14651.26, + "end": 14654.68, + "probability": 0.9855 + }, + { + "start": 14654.68, + "end": 14657.38, + "probability": 0.963 + }, + { + "start": 14657.9, + "end": 14661.88, + "probability": 0.9917 + }, + { + "start": 14661.88, + "end": 14666.56, + "probability": 0.9733 + }, + { + "start": 14667.86, + "end": 14669.56, + "probability": 0.9536 + }, + { + "start": 14670.18, + "end": 14672.86, + "probability": 0.9251 + }, + { + "start": 14673.46, + "end": 14675.6, + "probability": 0.9956 + }, + { + "start": 14676.24, + "end": 14678.53, + "probability": 0.9957 + }, + { + "start": 14679.3, + "end": 14682.68, + "probability": 0.9956 + }, + { + "start": 14682.72, + "end": 14685.28, + "probability": 0.7427 + }, + { + "start": 14686.6, + "end": 14688.96, + "probability": 0.9163 + }, + { + "start": 14688.96, + "end": 14693.08, + "probability": 0.9976 + }, + { + "start": 14693.18, + "end": 14695.96, + "probability": 0.9932 + }, + { + "start": 14697.1, + "end": 14698.78, + "probability": 0.98 + }, + { + "start": 14699.32, + "end": 14701.3, + "probability": 0.9954 + }, + { + "start": 14702.22, + "end": 14705.72, + "probability": 0.9825 + }, + { + "start": 14706.26, + "end": 14710.22, + "probability": 0.9794 + }, + { + "start": 14711.12, + "end": 14713.48, + "probability": 0.6204 + }, + { + "start": 14714.14, + "end": 14715.8, + "probability": 0.9866 + }, + { + "start": 14716.32, + "end": 14718.04, + "probability": 0.7462 + }, + { + "start": 14718.56, + "end": 14719.74, + "probability": 0.987 + }, + { + "start": 14722.18, + "end": 14724.24, + "probability": 0.9836 + }, + { + "start": 14724.86, + "end": 14726.94, + "probability": 0.9762 + }, + { + "start": 14727.68, + "end": 14729.58, + "probability": 0.8033 + }, + { + "start": 14730.12, + "end": 14731.0, + "probability": 0.8729 + }, + { + "start": 14731.62, + "end": 14733.82, + "probability": 0.9956 + }, + { + "start": 14734.26, + "end": 14736.7, + "probability": 0.965 + }, + { + "start": 14736.72, + "end": 14737.2, + "probability": 0.4722 + }, + { + "start": 14737.94, + "end": 14739.46, + "probability": 0.9374 + }, + { + "start": 14740.1, + "end": 14743.24, + "probability": 0.7937 + }, + { + "start": 14743.68, + "end": 14747.84, + "probability": 0.9399 + }, + { + "start": 14748.06, + "end": 14748.78, + "probability": 0.8604 + }, + { + "start": 14749.76, + "end": 14750.19, + "probability": 0.9941 + }, + { + "start": 14751.64, + "end": 14753.38, + "probability": 0.9637 + }, + { + "start": 14753.7, + "end": 14755.56, + "probability": 0.9756 + }, + { + "start": 14755.64, + "end": 14756.38, + "probability": 0.6377 + }, + { + "start": 14756.9, + "end": 14758.52, + "probability": 0.9434 + }, + { + "start": 14759.28, + "end": 14762.48, + "probability": 0.9211 + }, + { + "start": 14763.28, + "end": 14766.98, + "probability": 0.7686 + }, + { + "start": 14767.58, + "end": 14770.0, + "probability": 0.9767 + }, + { + "start": 14771.2, + "end": 14772.9, + "probability": 0.979 + }, + { + "start": 14773.42, + "end": 14776.08, + "probability": 0.7589 + }, + { + "start": 14776.62, + "end": 14777.28, + "probability": 0.4032 + }, + { + "start": 14777.56, + "end": 14777.63, + "probability": 0.5616 + }, + { + "start": 14778.66, + "end": 14781.54, + "probability": 0.9897 + }, + { + "start": 14782.12, + "end": 14785.44, + "probability": 0.1221 + }, + { + "start": 14785.44, + "end": 14785.66, + "probability": 0.6913 + }, + { + "start": 14785.74, + "end": 14786.54, + "probability": 0.8598 + }, + { + "start": 14786.68, + "end": 14788.94, + "probability": 0.4758 + }, + { + "start": 14789.0, + "end": 14790.0, + "probability": 0.9282 + }, + { + "start": 14790.52, + "end": 14790.72, + "probability": 0.7775 + }, + { + "start": 14791.06, + "end": 14794.82, + "probability": 0.9909 + }, + { + "start": 14794.82, + "end": 14797.46, + "probability": 0.8131 + }, + { + "start": 14798.24, + "end": 14799.29, + "probability": 0.8845 + }, + { + "start": 14801.02, + "end": 14802.22, + "probability": 0.9819 + }, + { + "start": 14802.64, + "end": 14802.86, + "probability": 0.7209 + }, + { + "start": 14802.86, + "end": 14803.28, + "probability": 0.7844 + }, + { + "start": 14805.04, + "end": 14805.38, + "probability": 0.9324 + }, + { + "start": 14806.76, + "end": 14807.86, + "probability": 0.5311 + }, + { + "start": 14817.18, + "end": 14818.16, + "probability": 0.8155 + }, + { + "start": 14819.04, + "end": 14820.28, + "probability": 0.8441 + }, + { + "start": 14820.84, + "end": 14821.28, + "probability": 0.8619 + }, + { + "start": 14828.9, + "end": 14830.3, + "probability": 0.7763 + }, + { + "start": 14830.54, + "end": 14832.36, + "probability": 0.8589 + }, + { + "start": 14832.42, + "end": 14834.3, + "probability": 0.9477 + }, + { + "start": 14834.92, + "end": 14839.54, + "probability": 0.8057 + }, + { + "start": 14840.02, + "end": 14843.0, + "probability": 0.9932 + }, + { + "start": 14843.52, + "end": 14844.92, + "probability": 0.9757 + }, + { + "start": 14844.96, + "end": 14849.12, + "probability": 0.9744 + }, + { + "start": 14849.9, + "end": 14853.04, + "probability": 0.9966 + }, + { + "start": 14853.04, + "end": 14857.12, + "probability": 0.9983 + }, + { + "start": 14857.56, + "end": 14864.22, + "probability": 0.9868 + }, + { + "start": 14865.0, + "end": 14865.62, + "probability": 0.2856 + }, + { + "start": 14865.62, + "end": 14866.1, + "probability": 0.5461 + }, + { + "start": 14866.16, + "end": 14866.92, + "probability": 0.6452 + }, + { + "start": 14867.02, + "end": 14868.04, + "probability": 0.8829 + }, + { + "start": 14868.46, + "end": 14870.96, + "probability": 0.9319 + }, + { + "start": 14871.7, + "end": 14875.16, + "probability": 0.9982 + }, + { + "start": 14875.16, + "end": 14877.88, + "probability": 0.6053 + }, + { + "start": 14877.98, + "end": 14878.36, + "probability": 0.46 + }, + { + "start": 14879.16, + "end": 14880.6, + "probability": 0.855 + }, + { + "start": 14881.16, + "end": 14883.2, + "probability": 0.9896 + }, + { + "start": 14883.74, + "end": 14884.48, + "probability": 0.7307 + }, + { + "start": 14884.98, + "end": 14886.38, + "probability": 0.9086 + }, + { + "start": 14886.52, + "end": 14889.3, + "probability": 0.9794 + }, + { + "start": 14889.3, + "end": 14890.94, + "probability": 0.693 + }, + { + "start": 14890.98, + "end": 14891.76, + "probability": 0.783 + }, + { + "start": 14891.84, + "end": 14894.5, + "probability": 0.9938 + }, + { + "start": 14894.88, + "end": 14899.82, + "probability": 0.9963 + }, + { + "start": 14900.08, + "end": 14900.26, + "probability": 0.7803 + }, + { + "start": 14900.34, + "end": 14901.77, + "probability": 0.7506 + }, + { + "start": 14902.72, + "end": 14903.64, + "probability": 0.8519 + }, + { + "start": 14903.92, + "end": 14904.72, + "probability": 0.846 + }, + { + "start": 14904.74, + "end": 14906.0, + "probability": 0.6416 + }, + { + "start": 14906.0, + "end": 14907.64, + "probability": 0.8334 + }, + { + "start": 14907.76, + "end": 14908.72, + "probability": 0.6475 + }, + { + "start": 14909.42, + "end": 14910.22, + "probability": 0.8039 + }, + { + "start": 14914.07, + "end": 14916.24, + "probability": 0.0177 + }, + { + "start": 14927.72, + "end": 14928.62, + "probability": 0.0128 + }, + { + "start": 14928.62, + "end": 14930.58, + "probability": 0.2094 + }, + { + "start": 14930.94, + "end": 14933.54, + "probability": 0.0267 + }, + { + "start": 14933.58, + "end": 14936.5, + "probability": 0.3384 + }, + { + "start": 14943.6, + "end": 14943.82, + "probability": 0.0467 + }, + { + "start": 14943.82, + "end": 14943.82, + "probability": 0.0444 + }, + { + "start": 14943.82, + "end": 14944.12, + "probability": 0.0598 + }, + { + "start": 14944.12, + "end": 14944.12, + "probability": 0.2544 + }, + { + "start": 14944.12, + "end": 14944.48, + "probability": 0.4106 + }, + { + "start": 14945.42, + "end": 14948.08, + "probability": 0.459 + }, + { + "start": 14948.16, + "end": 14950.7, + "probability": 0.9959 + }, + { + "start": 14951.28, + "end": 14952.62, + "probability": 0.217 + }, + { + "start": 14953.6, + "end": 14954.86, + "probability": 0.9619 + }, + { + "start": 14955.58, + "end": 14956.12, + "probability": 0.916 + }, + { + "start": 14956.94, + "end": 14957.3, + "probability": 0.5592 + }, + { + "start": 14957.56, + "end": 14958.06, + "probability": 0.9102 + }, + { + "start": 14963.52, + "end": 14964.88, + "probability": 0.6567 + }, + { + "start": 14965.6, + "end": 14966.68, + "probability": 0.7968 + }, + { + "start": 14967.48, + "end": 14969.64, + "probability": 0.4783 + }, + { + "start": 14969.82, + "end": 14969.92, + "probability": 0.729 + }, + { + "start": 14970.78, + "end": 14971.84, + "probability": 0.9573 + }, + { + "start": 14972.56, + "end": 14973.86, + "probability": 0.9395 + }, + { + "start": 14974.58, + "end": 14977.16, + "probability": 0.8763 + }, + { + "start": 14981.64, + "end": 14984.76, + "probability": 0.9215 + }, + { + "start": 14985.64, + "end": 14987.32, + "probability": 0.9954 + }, + { + "start": 14987.7, + "end": 14988.86, + "probability": 0.9935 + }, + { + "start": 14990.3, + "end": 14990.74, + "probability": 0.8962 + }, + { + "start": 14990.84, + "end": 14994.17, + "probability": 0.9646 + }, + { + "start": 14994.64, + "end": 14994.74, + "probability": 0.3095 + }, + { + "start": 14996.2, + "end": 14997.7, + "probability": 0.7221 + }, + { + "start": 14998.26, + "end": 15000.58, + "probability": 0.8794 + }, + { + "start": 15000.58, + "end": 15002.46, + "probability": 0.8554 + }, + { + "start": 15002.56, + "end": 15008.18, + "probability": 0.6497 + }, + { + "start": 15008.92, + "end": 15009.96, + "probability": 0.8581 + }, + { + "start": 15013.24, + "end": 15013.24, + "probability": 0.0491 + }, + { + "start": 15013.24, + "end": 15013.24, + "probability": 0.0633 + }, + { + "start": 15013.24, + "end": 15013.24, + "probability": 0.1861 + }, + { + "start": 15013.24, + "end": 15013.24, + "probability": 0.0543 + }, + { + "start": 15013.24, + "end": 15013.8, + "probability": 0.3586 + }, + { + "start": 15014.54, + "end": 15015.44, + "probability": 0.5862 + }, + { + "start": 15015.86, + "end": 15016.88, + "probability": 0.6425 + }, + { + "start": 15016.98, + "end": 15017.52, + "probability": 0.6766 + }, + { + "start": 15017.64, + "end": 15018.22, + "probability": 0.9325 + }, + { + "start": 15018.36, + "end": 15019.12, + "probability": 0.8661 + }, + { + "start": 15019.68, + "end": 15020.36, + "probability": 0.7514 + }, + { + "start": 15020.46, + "end": 15020.94, + "probability": 0.867 + }, + { + "start": 15021.12, + "end": 15021.64, + "probability": 0.7887 + }, + { + "start": 15021.76, + "end": 15022.44, + "probability": 0.7421 + }, + { + "start": 15022.58, + "end": 15023.96, + "probability": 0.8622 + }, + { + "start": 15025.06, + "end": 15026.12, + "probability": 0.7432 + }, + { + "start": 15027.16, + "end": 15031.6, + "probability": 0.9199 + }, + { + "start": 15031.98, + "end": 15036.06, + "probability": 0.9871 + }, + { + "start": 15036.84, + "end": 15037.52, + "probability": 0.665 + }, + { + "start": 15038.34, + "end": 15040.78, + "probability": 0.8969 + }, + { + "start": 15040.86, + "end": 15042.02, + "probability": 0.9478 + }, + { + "start": 15042.14, + "end": 15042.86, + "probability": 0.6112 + }, + { + "start": 15042.88, + "end": 15043.7, + "probability": 0.5141 + }, + { + "start": 15044.03, + "end": 15046.4, + "probability": 0.1653 + }, + { + "start": 15046.48, + "end": 15050.24, + "probability": 0.9801 + }, + { + "start": 15050.24, + "end": 15052.88, + "probability": 0.9489 + }, + { + "start": 15053.5, + "end": 15055.56, + "probability": 0.6381 + }, + { + "start": 15055.56, + "end": 15058.04, + "probability": 0.9857 + }, + { + "start": 15058.2, + "end": 15061.46, + "probability": 0.8162 + }, + { + "start": 15062.24, + "end": 15063.54, + "probability": 0.745 + }, + { + "start": 15063.74, + "end": 15064.64, + "probability": 0.8333 + }, + { + "start": 15064.72, + "end": 15066.42, + "probability": 0.8285 + }, + { + "start": 15067.92, + "end": 15072.12, + "probability": 0.7209 + }, + { + "start": 15072.68, + "end": 15073.66, + "probability": 0.9517 + }, + { + "start": 15073.84, + "end": 15076.98, + "probability": 0.9517 + }, + { + "start": 15077.28, + "end": 15080.76, + "probability": 0.7096 + }, + { + "start": 15081.56, + "end": 15086.62, + "probability": 0.9829 + }, + { + "start": 15087.04, + "end": 15088.44, + "probability": 0.8029 + }, + { + "start": 15088.72, + "end": 15092.56, + "probability": 0.9748 + }, + { + "start": 15093.66, + "end": 15094.8, + "probability": 0.9384 + }, + { + "start": 15094.94, + "end": 15095.96, + "probability": 0.913 + }, + { + "start": 15096.4, + "end": 15097.58, + "probability": 0.8615 + }, + { + "start": 15097.94, + "end": 15098.8, + "probability": 0.8003 + }, + { + "start": 15098.86, + "end": 15100.36, + "probability": 0.9219 + }, + { + "start": 15100.92, + "end": 15102.72, + "probability": 0.9248 + }, + { + "start": 15103.6, + "end": 15104.46, + "probability": 0.5462 + }, + { + "start": 15104.9, + "end": 15105.76, + "probability": 0.7804 + }, + { + "start": 15106.2, + "end": 15111.44, + "probability": 0.9418 + }, + { + "start": 15111.84, + "end": 15115.0, + "probability": 0.9066 + }, + { + "start": 15115.64, + "end": 15122.84, + "probability": 0.9666 + }, + { + "start": 15123.56, + "end": 15124.36, + "probability": 0.9061 + }, + { + "start": 15125.7, + "end": 15128.94, + "probability": 0.8515 + }, + { + "start": 15131.42, + "end": 15132.68, + "probability": 0.6423 + }, + { + "start": 15133.18, + "end": 15134.86, + "probability": 0.6498 + }, + { + "start": 15136.04, + "end": 15138.48, + "probability": 0.9771 + }, + { + "start": 15138.66, + "end": 15139.7, + "probability": 0.8295 + }, + { + "start": 15141.46, + "end": 15148.98, + "probability": 0.9858 + }, + { + "start": 15151.36, + "end": 15153.68, + "probability": 0.9893 + }, + { + "start": 15154.22, + "end": 15155.8, + "probability": 0.8934 + }, + { + "start": 15156.8, + "end": 15157.32, + "probability": 0.9938 + }, + { + "start": 15158.62, + "end": 15159.96, + "probability": 0.9562 + }, + { + "start": 15162.24, + "end": 15162.76, + "probability": 0.9399 + }, + { + "start": 15163.1, + "end": 15168.14, + "probability": 0.988 + }, + { + "start": 15169.16, + "end": 15171.48, + "probability": 0.8569 + }, + { + "start": 15173.04, + "end": 15177.92, + "probability": 0.9976 + }, + { + "start": 15177.92, + "end": 15181.74, + "probability": 0.991 + }, + { + "start": 15182.4, + "end": 15185.58, + "probability": 0.5945 + }, + { + "start": 15185.82, + "end": 15188.12, + "probability": 0.6394 + }, + { + "start": 15188.52, + "end": 15190.48, + "probability": 0.0261 + }, + { + "start": 15195.32, + "end": 15197.88, + "probability": 0.962 + }, + { + "start": 15198.82, + "end": 15201.6, + "probability": 0.9937 + }, + { + "start": 15201.66, + "end": 15207.74, + "probability": 0.9779 + }, + { + "start": 15208.04, + "end": 15210.08, + "probability": 0.9836 + }, + { + "start": 15212.54, + "end": 15213.84, + "probability": 0.8679 + }, + { + "start": 15213.98, + "end": 15214.66, + "probability": 0.7247 + }, + { + "start": 15215.7, + "end": 15216.66, + "probability": 0.7856 + }, + { + "start": 15216.7, + "end": 15219.9, + "probability": 0.8348 + }, + { + "start": 15221.38, + "end": 15224.1, + "probability": 0.5382 + }, + { + "start": 15224.2, + "end": 15224.9, + "probability": 0.8568 + }, + { + "start": 15224.9, + "end": 15225.44, + "probability": 0.5945 + }, + { + "start": 15225.56, + "end": 15227.13, + "probability": 0.9795 + }, + { + "start": 15227.72, + "end": 15229.5, + "probability": 0.9954 + }, + { + "start": 15230.46, + "end": 15232.48, + "probability": 0.7255 + }, + { + "start": 15233.56, + "end": 15236.4, + "probability": 0.9329 + }, + { + "start": 15236.96, + "end": 15240.87, + "probability": 0.999 + }, + { + "start": 15241.84, + "end": 15242.58, + "probability": 0.0221 + }, + { + "start": 15243.34, + "end": 15249.08, + "probability": 0.6029 + }, + { + "start": 15249.62, + "end": 15251.58, + "probability": 0.5039 + }, + { + "start": 15252.5, + "end": 15257.22, + "probability": 0.8345 + }, + { + "start": 15257.8, + "end": 15259.74, + "probability": 0.6735 + }, + { + "start": 15260.18, + "end": 15264.46, + "probability": 0.9771 + }, + { + "start": 15264.92, + "end": 15268.04, + "probability": 0.9929 + }, + { + "start": 15270.68, + "end": 15272.26, + "probability": 0.4603 + }, + { + "start": 15273.14, + "end": 15274.18, + "probability": 0.9186 + }, + { + "start": 15275.4, + "end": 15281.12, + "probability": 0.7913 + }, + { + "start": 15281.74, + "end": 15286.42, + "probability": 0.9896 + }, + { + "start": 15286.42, + "end": 15290.64, + "probability": 0.9826 + }, + { + "start": 15291.12, + "end": 15292.5, + "probability": 0.8935 + }, + { + "start": 15292.58, + "end": 15293.5, + "probability": 0.7665 + }, + { + "start": 15293.98, + "end": 15295.68, + "probability": 0.7862 + }, + { + "start": 15296.62, + "end": 15301.36, + "probability": 0.8887 + }, + { + "start": 15302.04, + "end": 15305.32, + "probability": 0.9439 + }, + { + "start": 15306.62, + "end": 15312.98, + "probability": 0.7826 + }, + { + "start": 15313.68, + "end": 15318.06, + "probability": 0.9857 + }, + { + "start": 15318.9, + "end": 15323.7, + "probability": 0.9465 + }, + { + "start": 15324.26, + "end": 15326.38, + "probability": 0.5944 + }, + { + "start": 15326.84, + "end": 15328.04, + "probability": 0.9347 + }, + { + "start": 15328.16, + "end": 15329.77, + "probability": 0.8484 + }, + { + "start": 15330.74, + "end": 15332.12, + "probability": 0.9858 + }, + { + "start": 15332.96, + "end": 15334.66, + "probability": 0.781 + }, + { + "start": 15335.38, + "end": 15338.32, + "probability": 0.7477 + }, + { + "start": 15339.68, + "end": 15341.08, + "probability": 0.5703 + }, + { + "start": 15341.16, + "end": 15342.84, + "probability": 0.8124 + }, + { + "start": 15342.84, + "end": 15344.24, + "probability": 0.1382 + }, + { + "start": 15344.4, + "end": 15345.26, + "probability": 0.6881 + }, + { + "start": 15345.38, + "end": 15346.86, + "probability": 0.852 + }, + { + "start": 15346.92, + "end": 15348.34, + "probability": 0.6927 + }, + { + "start": 15348.38, + "end": 15350.56, + "probability": 0.8237 + }, + { + "start": 15350.86, + "end": 15354.82, + "probability": 0.9143 + }, + { + "start": 15355.24, + "end": 15359.92, + "probability": 0.9934 + }, + { + "start": 15360.64, + "end": 15365.52, + "probability": 0.4842 + }, + { + "start": 15365.56, + "end": 15365.9, + "probability": 0.777 + }, + { + "start": 15366.12, + "end": 15366.56, + "probability": 0.7549 + }, + { + "start": 15366.68, + "end": 15367.78, + "probability": 0.6193 + }, + { + "start": 15368.99, + "end": 15375.94, + "probability": 0.8152 + }, + { + "start": 15375.94, + "end": 15376.38, + "probability": 0.8353 + }, + { + "start": 15377.48, + "end": 15377.52, + "probability": 0.2788 + }, + { + "start": 15397.84, + "end": 15398.0, + "probability": 0.0577 + }, + { + "start": 15398.0, + "end": 15398.0, + "probability": 0.048 + }, + { + "start": 15398.0, + "end": 15398.0, + "probability": 0.0292 + }, + { + "start": 15398.0, + "end": 15398.04, + "probability": 0.0549 + }, + { + "start": 15398.04, + "end": 15398.12, + "probability": 0.0763 + }, + { + "start": 15398.12, + "end": 15398.16, + "probability": 0.0502 + }, + { + "start": 15398.16, + "end": 15398.16, + "probability": 0.048 + }, + { + "start": 15409.76, + "end": 15409.84, + "probability": 0.2633 + }, + { + "start": 15429.92, + "end": 15434.4, + "probability": 0.7377 + }, + { + "start": 15435.02, + "end": 15437.54, + "probability": 0.9842 + }, + { + "start": 15437.88, + "end": 15444.36, + "probability": 0.9811 + }, + { + "start": 15444.36, + "end": 15446.3, + "probability": 0.9883 + }, + { + "start": 15447.36, + "end": 15449.24, + "probability": 0.8207 + }, + { + "start": 15450.02, + "end": 15451.38, + "probability": 0.848 + }, + { + "start": 15451.44, + "end": 15456.0, + "probability": 0.978 + }, + { + "start": 15456.7, + "end": 15459.82, + "probability": 0.9977 + }, + { + "start": 15460.1, + "end": 15463.3, + "probability": 0.8835 + }, + { + "start": 15464.16, + "end": 15467.34, + "probability": 0.8806 + }, + { + "start": 15468.0, + "end": 15469.44, + "probability": 0.9315 + }, + { + "start": 15470.18, + "end": 15471.46, + "probability": 0.8091 + }, + { + "start": 15472.06, + "end": 15473.42, + "probability": 0.9209 + }, + { + "start": 15473.52, + "end": 15475.8, + "probability": 0.9878 + }, + { + "start": 15476.5, + "end": 15479.06, + "probability": 0.9303 + }, + { + "start": 15479.62, + "end": 15480.96, + "probability": 0.4997 + }, + { + "start": 15481.62, + "end": 15484.18, + "probability": 0.9883 + }, + { + "start": 15484.9, + "end": 15488.12, + "probability": 0.953 + }, + { + "start": 15488.3, + "end": 15489.12, + "probability": 0.8498 + }, + { + "start": 15490.78, + "end": 15493.08, + "probability": 0.8983 + }, + { + "start": 15493.88, + "end": 15494.95, + "probability": 0.9854 + }, + { + "start": 15495.96, + "end": 15497.66, + "probability": 0.9228 + }, + { + "start": 15498.52, + "end": 15500.46, + "probability": 0.9684 + }, + { + "start": 15501.16, + "end": 15504.68, + "probability": 0.8501 + }, + { + "start": 15505.06, + "end": 15508.54, + "probability": 0.9126 + }, + { + "start": 15509.16, + "end": 15510.16, + "probability": 0.8738 + }, + { + "start": 15510.94, + "end": 15513.58, + "probability": 0.9976 + }, + { + "start": 15514.26, + "end": 15516.86, + "probability": 0.9632 + }, + { + "start": 15517.72, + "end": 15518.6, + "probability": 0.7739 + }, + { + "start": 15518.68, + "end": 15520.52, + "probability": 0.9914 + }, + { + "start": 15521.5, + "end": 15522.98, + "probability": 0.9497 + }, + { + "start": 15523.12, + "end": 15523.98, + "probability": 0.9287 + }, + { + "start": 15524.44, + "end": 15525.68, + "probability": 0.9889 + }, + { + "start": 15525.94, + "end": 15527.92, + "probability": 0.9102 + }, + { + "start": 15528.56, + "end": 15530.54, + "probability": 0.9352 + }, + { + "start": 15530.74, + "end": 15530.98, + "probability": 0.6543 + }, + { + "start": 15531.94, + "end": 15532.4, + "probability": 0.5141 + }, + { + "start": 15532.44, + "end": 15533.44, + "probability": 0.4672 + }, + { + "start": 15533.66, + "end": 15534.65, + "probability": 0.8801 + }, + { + "start": 15536.28, + "end": 15537.22, + "probability": 0.8983 + }, + { + "start": 15538.74, + "end": 15542.76, + "probability": 0.8199 + }, + { + "start": 15542.86, + "end": 15544.72, + "probability": 0.0551 + }, + { + "start": 15545.12, + "end": 15547.9, + "probability": 0.7896 + }, + { + "start": 15548.36, + "end": 15555.58, + "probability": 0.1906 + }, + { + "start": 15565.0, + "end": 15565.92, + "probability": 0.021 + }, + { + "start": 15565.92, + "end": 15568.12, + "probability": 0.0855 + }, + { + "start": 15570.0, + "end": 15570.86, + "probability": 0.0502 + }, + { + "start": 15571.5, + "end": 15573.34, + "probability": 0.4414 + }, + { + "start": 15575.7, + "end": 15576.56, + "probability": 0.0815 + }, + { + "start": 15577.46, + "end": 15582.38, + "probability": 0.4187 + }, + { + "start": 15582.4, + "end": 15582.92, + "probability": 0.7844 + }, + { + "start": 15583.48, + "end": 15588.98, + "probability": 0.0332 + }, + { + "start": 15604.56, + "end": 15604.64, + "probability": 0.0255 + }, + { + "start": 15604.64, + "end": 15605.9, + "probability": 0.0534 + }, + { + "start": 15605.9, + "end": 15605.9, + "probability": 0.0229 + }, + { + "start": 15605.94, + "end": 15606.08, + "probability": 0.003 + }, + { + "start": 15613.0, + "end": 15613.08, + "probability": 0.1389 + }, + { + "start": 15613.08, + "end": 15613.08, + "probability": 0.0597 + }, + { + "start": 15613.08, + "end": 15615.52, + "probability": 0.5446 + }, + { + "start": 15616.38, + "end": 15618.2, + "probability": 0.7132 + }, + { + "start": 15618.78, + "end": 15624.86, + "probability": 0.877 + }, + { + "start": 15625.6, + "end": 15630.08, + "probability": 0.8055 + }, + { + "start": 15630.42, + "end": 15632.58, + "probability": 0.9806 + }, + { + "start": 15633.72, + "end": 15637.86, + "probability": 0.9913 + }, + { + "start": 15638.48, + "end": 15646.08, + "probability": 0.9709 + }, + { + "start": 15646.08, + "end": 15654.76, + "probability": 0.9978 + }, + { + "start": 15655.4, + "end": 15657.94, + "probability": 0.3992 + }, + { + "start": 15658.2, + "end": 15662.88, + "probability": 0.9938 + }, + { + "start": 15663.52, + "end": 15666.42, + "probability": 0.9979 + }, + { + "start": 15666.42, + "end": 15671.38, + "probability": 0.8801 + }, + { + "start": 15671.98, + "end": 15673.34, + "probability": 0.8669 + }, + { + "start": 15673.42, + "end": 15676.08, + "probability": 0.924 + }, + { + "start": 15676.42, + "end": 15680.34, + "probability": 0.9612 + }, + { + "start": 15680.54, + "end": 15683.06, + "probability": 0.9612 + }, + { + "start": 15683.42, + "end": 15686.66, + "probability": 0.9307 + }, + { + "start": 15686.8, + "end": 15690.04, + "probability": 0.957 + }, + { + "start": 15690.9, + "end": 15696.84, + "probability": 0.974 + }, + { + "start": 15697.48, + "end": 15700.94, + "probability": 0.9967 + }, + { + "start": 15700.94, + "end": 15704.74, + "probability": 0.9885 + }, + { + "start": 15705.42, + "end": 15708.52, + "probability": 0.9946 + }, + { + "start": 15708.6, + "end": 15710.2, + "probability": 0.7676 + }, + { + "start": 15710.7, + "end": 15715.24, + "probability": 0.991 + }, + { + "start": 15715.84, + "end": 15718.44, + "probability": 0.7344 + }, + { + "start": 15718.48, + "end": 15719.66, + "probability": 0.688 + }, + { + "start": 15720.16, + "end": 15723.46, + "probability": 0.9448 + }, + { + "start": 15724.22, + "end": 15727.78, + "probability": 0.9143 + }, + { + "start": 15727.96, + "end": 15728.31, + "probability": 0.4994 + }, + { + "start": 15730.15, + "end": 15736.46, + "probability": 0.9941 + }, + { + "start": 15737.3, + "end": 15741.86, + "probability": 0.8816 + }, + { + "start": 15742.18, + "end": 15744.78, + "probability": 0.951 + }, + { + "start": 15745.38, + "end": 15748.86, + "probability": 0.9899 + }, + { + "start": 15748.92, + "end": 15749.14, + "probability": 0.4289 + }, + { + "start": 15749.14, + "end": 15749.78, + "probability": 0.605 + }, + { + "start": 15749.92, + "end": 15754.18, + "probability": 0.6785 + }, + { + "start": 15754.38, + "end": 15755.6, + "probability": 0.7545 + }, + { + "start": 15757.46, + "end": 15761.04, + "probability": 0.9744 + }, + { + "start": 15761.76, + "end": 15765.14, + "probability": 0.9766 + }, + { + "start": 15765.8, + "end": 15770.2, + "probability": 0.9173 + }, + { + "start": 15770.2, + "end": 15776.06, + "probability": 0.9971 + }, + { + "start": 15776.82, + "end": 15777.38, + "probability": 0.4471 + }, + { + "start": 15777.38, + "end": 15778.64, + "probability": 0.747 + }, + { + "start": 15778.94, + "end": 15782.72, + "probability": 0.9259 + }, + { + "start": 15783.28, + "end": 15786.26, + "probability": 0.9869 + }, + { + "start": 15786.66, + "end": 15790.66, + "probability": 0.9094 + }, + { + "start": 15790.66, + "end": 15796.4, + "probability": 0.9553 + }, + { + "start": 15796.96, + "end": 15799.01, + "probability": 0.9189 + }, + { + "start": 15799.14, + "end": 15800.32, + "probability": 0.8301 + }, + { + "start": 15800.66, + "end": 15802.26, + "probability": 0.9746 + }, + { + "start": 15802.72, + "end": 15806.54, + "probability": 0.9594 + }, + { + "start": 15807.2, + "end": 15812.1, + "probability": 0.9766 + }, + { + "start": 15812.54, + "end": 15814.54, + "probability": 0.9256 + }, + { + "start": 15815.02, + "end": 15818.9, + "probability": 0.9315 + }, + { + "start": 15819.54, + "end": 15822.85, + "probability": 0.9929 + }, + { + "start": 15823.6, + "end": 15827.22, + "probability": 0.9974 + }, + { + "start": 15827.6, + "end": 15828.58, + "probability": 0.9159 + }, + { + "start": 15828.98, + "end": 15830.16, + "probability": 0.9913 + }, + { + "start": 15830.5, + "end": 15833.24, + "probability": 0.981 + }, + { + "start": 15833.46, + "end": 15836.5, + "probability": 0.9735 + }, + { + "start": 15837.06, + "end": 15839.2, + "probability": 0.8536 + }, + { + "start": 15839.72, + "end": 15841.64, + "probability": 0.9974 + }, + { + "start": 15842.06, + "end": 15846.24, + "probability": 0.8317 + }, + { + "start": 15846.62, + "end": 15847.14, + "probability": 0.7642 + }, + { + "start": 15847.74, + "end": 15848.82, + "probability": 0.7864 + }, + { + "start": 15848.94, + "end": 15851.2, + "probability": 0.9901 + }, + { + "start": 15851.24, + "end": 15851.92, + "probability": 0.8098 + }, + { + "start": 15852.82, + "end": 15853.96, + "probability": 0.827 + }, + { + "start": 15854.08, + "end": 15857.7, + "probability": 0.8994 + }, + { + "start": 15858.22, + "end": 15861.86, + "probability": 0.9948 + }, + { + "start": 15862.38, + "end": 15863.78, + "probability": 0.9767 + }, + { + "start": 15863.96, + "end": 15864.92, + "probability": 0.8698 + }, + { + "start": 15865.4, + "end": 15870.2, + "probability": 0.9852 + }, + { + "start": 15870.66, + "end": 15872.92, + "probability": 0.9718 + }, + { + "start": 15873.14, + "end": 15876.18, + "probability": 0.9977 + }, + { + "start": 15876.68, + "end": 15878.62, + "probability": 0.6802 + }, + { + "start": 15879.08, + "end": 15880.04, + "probability": 0.8399 + }, + { + "start": 15880.42, + "end": 15883.72, + "probability": 0.9805 + }, + { + "start": 15884.18, + "end": 15885.68, + "probability": 0.8883 + }, + { + "start": 15885.84, + "end": 15891.26, + "probability": 0.9959 + }, + { + "start": 15891.72, + "end": 15894.5, + "probability": 0.9918 + }, + { + "start": 15894.88, + "end": 15898.14, + "probability": 0.9659 + }, + { + "start": 15898.26, + "end": 15900.0, + "probability": 0.7108 + }, + { + "start": 15900.1, + "end": 15901.9, + "probability": 0.9569 + }, + { + "start": 15902.38, + "end": 15903.94, + "probability": 0.8486 + }, + { + "start": 15904.52, + "end": 15907.66, + "probability": 0.9884 + }, + { + "start": 15907.84, + "end": 15910.56, + "probability": 0.9779 + }, + { + "start": 15911.28, + "end": 15914.2, + "probability": 0.9948 + }, + { + "start": 15914.62, + "end": 15920.26, + "probability": 0.9751 + }, + { + "start": 15920.62, + "end": 15923.32, + "probability": 0.9972 + }, + { + "start": 15923.32, + "end": 15926.98, + "probability": 0.9834 + }, + { + "start": 15927.14, + "end": 15930.2, + "probability": 0.7739 + }, + { + "start": 15930.2, + "end": 15934.34, + "probability": 0.999 + }, + { + "start": 15934.96, + "end": 15935.58, + "probability": 0.3761 + }, + { + "start": 15935.84, + "end": 15939.9, + "probability": 0.9913 + }, + { + "start": 15940.04, + "end": 15940.7, + "probability": 0.6196 + }, + { + "start": 15940.94, + "end": 15941.52, + "probability": 0.7315 + }, + { + "start": 15941.94, + "end": 15946.0, + "probability": 0.9966 + }, + { + "start": 15946.1, + "end": 15947.8, + "probability": 0.7562 + }, + { + "start": 15947.92, + "end": 15948.9, + "probability": 0.6426 + }, + { + "start": 15949.4, + "end": 15951.22, + "probability": 0.858 + }, + { + "start": 15951.8, + "end": 15952.18, + "probability": 0.8953 + }, + { + "start": 15953.2, + "end": 15956.18, + "probability": 0.9428 + }, + { + "start": 15956.46, + "end": 15959.84, + "probability": 0.8242 + }, + { + "start": 15959.92, + "end": 15962.02, + "probability": 0.5675 + }, + { + "start": 15963.6, + "end": 15964.42, + "probability": 0.785 + }, + { + "start": 15964.96, + "end": 15966.76, + "probability": 0.9889 + }, + { + "start": 15967.16, + "end": 15967.72, + "probability": 0.8918 + }, + { + "start": 15967.8, + "end": 15969.2, + "probability": 0.7734 + }, + { + "start": 15971.2, + "end": 15971.34, + "probability": 0.0003 + }, + { + "start": 15971.34, + "end": 15971.54, + "probability": 0.6053 + }, + { + "start": 15972.04, + "end": 15975.44, + "probability": 0.9753 + }, + { + "start": 15975.44, + "end": 15979.02, + "probability": 0.9486 + }, + { + "start": 15979.1, + "end": 15980.04, + "probability": 0.991 + }, + { + "start": 15980.86, + "end": 15981.82, + "probability": 0.672 + }, + { + "start": 15982.54, + "end": 15986.34, + "probability": 0.9941 + }, + { + "start": 15986.84, + "end": 15986.98, + "probability": 0.4696 + }, + { + "start": 15987.08, + "end": 15987.44, + "probability": 0.8813 + }, + { + "start": 15987.46, + "end": 15990.96, + "probability": 0.9993 + }, + { + "start": 15990.96, + "end": 15994.72, + "probability": 0.8931 + }, + { + "start": 15994.72, + "end": 16000.56, + "probability": 0.9963 + }, + { + "start": 16000.92, + "end": 16002.52, + "probability": 0.8694 + }, + { + "start": 16003.2, + "end": 16006.14, + "probability": 0.9902 + }, + { + "start": 16006.32, + "end": 16007.34, + "probability": 0.9316 + }, + { + "start": 16007.6, + "end": 16008.18, + "probability": 0.6119 + }, + { + "start": 16008.28, + "end": 16010.38, + "probability": 0.9356 + }, + { + "start": 16010.42, + "end": 16011.88, + "probability": 0.8823 + }, + { + "start": 16012.22, + "end": 16013.68, + "probability": 0.9722 + }, + { + "start": 16014.06, + "end": 16018.58, + "probability": 0.9933 + }, + { + "start": 16019.52, + "end": 16022.08, + "probability": 0.9758 + }, + { + "start": 16022.48, + "end": 16026.32, + "probability": 0.9644 + }, + { + "start": 16027.68, + "end": 16031.06, + "probability": 0.9409 + }, + { + "start": 16031.28, + "end": 16035.78, + "probability": 0.9899 + }, + { + "start": 16036.3, + "end": 16040.42, + "probability": 0.9924 + }, + { + "start": 16040.42, + "end": 16045.02, + "probability": 0.9964 + }, + { + "start": 16045.48, + "end": 16047.84, + "probability": 0.981 + }, + { + "start": 16048.0, + "end": 16052.8, + "probability": 0.9813 + }, + { + "start": 16053.42, + "end": 16054.76, + "probability": 0.689 + }, + { + "start": 16054.86, + "end": 16057.32, + "probability": 0.7613 + }, + { + "start": 16057.76, + "end": 16059.8, + "probability": 0.9832 + }, + { + "start": 16060.26, + "end": 16063.6, + "probability": 0.769 + }, + { + "start": 16064.3, + "end": 16066.74, + "probability": 0.9616 + }, + { + "start": 16067.44, + "end": 16068.86, + "probability": 0.8625 + }, + { + "start": 16069.06, + "end": 16074.28, + "probability": 0.9587 + }, + { + "start": 16074.72, + "end": 16077.68, + "probability": 0.8384 + }, + { + "start": 16077.86, + "end": 16078.46, + "probability": 0.8437 + }, + { + "start": 16078.92, + "end": 16080.06, + "probability": 0.7782 + }, + { + "start": 16080.5, + "end": 16082.56, + "probability": 0.9572 + }, + { + "start": 16082.78, + "end": 16085.62, + "probability": 0.9135 + }, + { + "start": 16086.96, + "end": 16089.76, + "probability": 0.6713 + }, + { + "start": 16090.28, + "end": 16093.54, + "probability": 0.8467 + }, + { + "start": 16093.54, + "end": 16097.42, + "probability": 0.9919 + }, + { + "start": 16097.58, + "end": 16099.68, + "probability": 0.9177 + }, + { + "start": 16100.3, + "end": 16101.04, + "probability": 0.9414 + }, + { + "start": 16101.6, + "end": 16107.0, + "probability": 0.9895 + }, + { + "start": 16107.48, + "end": 16109.0, + "probability": 0.5411 + }, + { + "start": 16110.04, + "end": 16114.76, + "probability": 0.8832 + }, + { + "start": 16115.28, + "end": 16118.09, + "probability": 0.9937 + }, + { + "start": 16119.08, + "end": 16126.46, + "probability": 0.9512 + }, + { + "start": 16126.48, + "end": 16133.64, + "probability": 0.999 + }, + { + "start": 16134.6, + "end": 16138.92, + "probability": 0.9979 + }, + { + "start": 16138.92, + "end": 16143.9, + "probability": 0.9985 + }, + { + "start": 16143.96, + "end": 16144.86, + "probability": 0.8691 + }, + { + "start": 16145.98, + "end": 16149.62, + "probability": 0.9873 + }, + { + "start": 16150.42, + "end": 16154.84, + "probability": 0.9855 + }, + { + "start": 16154.84, + "end": 16160.18, + "probability": 0.9984 + }, + { + "start": 16160.82, + "end": 16162.08, + "probability": 0.7346 + }, + { + "start": 16162.3, + "end": 16164.88, + "probability": 0.4641 + }, + { + "start": 16164.9, + "end": 16165.78, + "probability": 0.225 + }, + { + "start": 16167.59, + "end": 16167.94, + "probability": 0.0887 + }, + { + "start": 16167.94, + "end": 16170.94, + "probability": 0.9838 + }, + { + "start": 16171.68, + "end": 16172.78, + "probability": 0.5979 + }, + { + "start": 16172.94, + "end": 16173.36, + "probability": 0.8672 + }, + { + "start": 16173.36, + "end": 16173.96, + "probability": 0.7629 + }, + { + "start": 16175.06, + "end": 16175.4, + "probability": 0.8123 + }, + { + "start": 16177.44, + "end": 16179.26, + "probability": 0.7942 + }, + { + "start": 16180.2, + "end": 16181.02, + "probability": 0.9055 + }, + { + "start": 16202.66, + "end": 16203.56, + "probability": 0.7529 + }, + { + "start": 16203.66, + "end": 16204.12, + "probability": 0.8041 + }, + { + "start": 16205.38, + "end": 16206.74, + "probability": 0.613 + }, + { + "start": 16206.82, + "end": 16206.82, + "probability": 0.2607 + }, + { + "start": 16206.82, + "end": 16207.56, + "probability": 0.8031 + }, + { + "start": 16207.6, + "end": 16209.38, + "probability": 0.8499 + }, + { + "start": 16209.82, + "end": 16214.54, + "probability": 0.9727 + }, + { + "start": 16214.54, + "end": 16217.68, + "probability": 0.9896 + }, + { + "start": 16217.76, + "end": 16220.42, + "probability": 0.8183 + }, + { + "start": 16221.0, + "end": 16224.32, + "probability": 0.9878 + }, + { + "start": 16224.32, + "end": 16228.98, + "probability": 0.9943 + }, + { + "start": 16229.14, + "end": 16231.38, + "probability": 0.938 + }, + { + "start": 16231.66, + "end": 16233.22, + "probability": 0.9934 + }, + { + "start": 16233.8, + "end": 16236.34, + "probability": 0.9929 + }, + { + "start": 16236.34, + "end": 16240.62, + "probability": 0.8918 + }, + { + "start": 16241.24, + "end": 16242.32, + "probability": 0.9924 + }, + { + "start": 16245.06, + "end": 16246.9, + "probability": 0.5846 + }, + { + "start": 16248.81, + "end": 16252.82, + "probability": 0.9915 + }, + { + "start": 16252.82, + "end": 16258.44, + "probability": 0.9413 + }, + { + "start": 16261.46, + "end": 16262.44, + "probability": 0.7744 + }, + { + "start": 16262.54, + "end": 16263.38, + "probability": 0.6545 + }, + { + "start": 16263.4, + "end": 16265.16, + "probability": 0.916 + }, + { + "start": 16266.0, + "end": 16270.4, + "probability": 0.9754 + }, + { + "start": 16271.42, + "end": 16272.42, + "probability": 0.9863 + }, + { + "start": 16272.68, + "end": 16273.5, + "probability": 0.9785 + }, + { + "start": 16273.64, + "end": 16274.9, + "probability": 0.947 + }, + { + "start": 16275.98, + "end": 16281.96, + "probability": 0.9807 + }, + { + "start": 16283.46, + "end": 16288.02, + "probability": 0.9707 + }, + { + "start": 16288.7, + "end": 16290.92, + "probability": 0.9984 + }, + { + "start": 16291.1, + "end": 16292.84, + "probability": 0.8944 + }, + { + "start": 16293.18, + "end": 16299.58, + "probability": 0.9813 + }, + { + "start": 16300.26, + "end": 16302.9, + "probability": 0.9566 + }, + { + "start": 16303.5, + "end": 16308.26, + "probability": 0.9511 + }, + { + "start": 16308.42, + "end": 16309.56, + "probability": 0.9868 + }, + { + "start": 16311.99, + "end": 16314.34, + "probability": 0.6917 + }, + { + "start": 16315.0, + "end": 16316.32, + "probability": 0.9883 + }, + { + "start": 16317.2, + "end": 16319.92, + "probability": 0.994 + }, + { + "start": 16320.74, + "end": 16323.32, + "probability": 0.9946 + }, + { + "start": 16324.04, + "end": 16325.12, + "probability": 0.9517 + }, + { + "start": 16325.86, + "end": 16329.48, + "probability": 0.9305 + }, + { + "start": 16330.14, + "end": 16335.06, + "probability": 0.9982 + }, + { + "start": 16335.84, + "end": 16341.48, + "probability": 0.9968 + }, + { + "start": 16342.56, + "end": 16346.44, + "probability": 0.9986 + }, + { + "start": 16346.44, + "end": 16349.56, + "probability": 0.9974 + }, + { + "start": 16350.38, + "end": 16353.2, + "probability": 0.9912 + }, + { + "start": 16353.86, + "end": 16356.04, + "probability": 0.8875 + }, + { + "start": 16357.56, + "end": 16364.2, + "probability": 0.9081 + }, + { + "start": 16364.44, + "end": 16365.58, + "probability": 0.907 + }, + { + "start": 16366.26, + "end": 16369.42, + "probability": 0.848 + }, + { + "start": 16369.48, + "end": 16374.42, + "probability": 0.9824 + }, + { + "start": 16375.16, + "end": 16377.66, + "probability": 0.9963 + }, + { + "start": 16377.84, + "end": 16378.76, + "probability": 0.7402 + }, + { + "start": 16378.84, + "end": 16380.02, + "probability": 0.9438 + }, + { + "start": 16381.1, + "end": 16383.76, + "probability": 0.8799 + }, + { + "start": 16384.66, + "end": 16393.0, + "probability": 0.7466 + }, + { + "start": 16394.32, + "end": 16396.48, + "probability": 0.9097 + }, + { + "start": 16397.1, + "end": 16399.72, + "probability": 0.814 + }, + { + "start": 16401.28, + "end": 16404.1, + "probability": 0.9895 + }, + { + "start": 16404.66, + "end": 16408.32, + "probability": 0.9779 + }, + { + "start": 16408.32, + "end": 16408.7, + "probability": 0.6559 + }, + { + "start": 16408.84, + "end": 16410.36, + "probability": 0.9668 + }, + { + "start": 16410.88, + "end": 16414.06, + "probability": 0.9726 + }, + { + "start": 16414.14, + "end": 16417.1, + "probability": 0.9345 + }, + { + "start": 16417.36, + "end": 16417.64, + "probability": 0.7787 + }, + { + "start": 16421.4, + "end": 16424.74, + "probability": 0.7807 + }, + { + "start": 16424.88, + "end": 16425.28, + "probability": 0.8053 + }, + { + "start": 16433.84, + "end": 16434.48, + "probability": 0.7364 + }, + { + "start": 16434.54, + "end": 16436.43, + "probability": 0.9842 + }, + { + "start": 16437.0, + "end": 16437.66, + "probability": 0.9106 + }, + { + "start": 16437.9, + "end": 16440.42, + "probability": 0.7871 + }, + { + "start": 16440.5, + "end": 16442.36, + "probability": 0.9745 + }, + { + "start": 16442.84, + "end": 16443.88, + "probability": 0.9751 + }, + { + "start": 16444.16, + "end": 16444.86, + "probability": 0.9038 + }, + { + "start": 16445.34, + "end": 16446.11, + "probability": 0.9876 + }, + { + "start": 16446.42, + "end": 16446.84, + "probability": 0.6986 + }, + { + "start": 16446.94, + "end": 16447.14, + "probability": 0.9683 + }, + { + "start": 16447.3, + "end": 16448.7, + "probability": 0.742 + }, + { + "start": 16448.82, + "end": 16449.54, + "probability": 0.8266 + }, + { + "start": 16449.64, + "end": 16450.74, + "probability": 0.687 + }, + { + "start": 16450.82, + "end": 16451.96, + "probability": 0.8913 + }, + { + "start": 16452.06, + "end": 16453.12, + "probability": 0.7875 + }, + { + "start": 16453.26, + "end": 16455.78, + "probability": 0.8652 + }, + { + "start": 16455.8, + "end": 16457.72, + "probability": 0.9761 + }, + { + "start": 16457.8, + "end": 16461.14, + "probability": 0.9919 + }, + { + "start": 16461.8, + "end": 16463.5, + "probability": 0.9543 + }, + { + "start": 16463.66, + "end": 16467.53, + "probability": 0.9902 + }, + { + "start": 16468.24, + "end": 16474.26, + "probability": 0.9285 + }, + { + "start": 16474.84, + "end": 16477.5, + "probability": 0.9232 + }, + { + "start": 16479.55, + "end": 16483.35, + "probability": 0.6409 + }, + { + "start": 16483.44, + "end": 16486.44, + "probability": 0.9931 + }, + { + "start": 16486.88, + "end": 16489.78, + "probability": 0.983 + }, + { + "start": 16490.04, + "end": 16493.44, + "probability": 0.8075 + }, + { + "start": 16493.54, + "end": 16494.44, + "probability": 0.9004 + }, + { + "start": 16495.02, + "end": 16496.04, + "probability": 0.7848 + }, + { + "start": 16496.16, + "end": 16497.12, + "probability": 0.9419 + }, + { + "start": 16497.54, + "end": 16499.14, + "probability": 0.9758 + }, + { + "start": 16499.3, + "end": 16499.87, + "probability": 0.8525 + }, + { + "start": 16504.24, + "end": 16505.89, + "probability": 0.0264 + }, + { + "start": 16506.38, + "end": 16506.54, + "probability": 0.3227 + }, + { + "start": 16506.66, + "end": 16508.48, + "probability": 0.348 + }, + { + "start": 16508.6, + "end": 16509.35, + "probability": 0.9083 + }, + { + "start": 16509.62, + "end": 16511.3, + "probability": 0.705 + }, + { + "start": 16511.32, + "end": 16511.84, + "probability": 0.201 + }, + { + "start": 16512.0, + "end": 16512.52, + "probability": 0.4572 + }, + { + "start": 16514.3, + "end": 16516.32, + "probability": 0.0877 + }, + { + "start": 16519.88, + "end": 16521.72, + "probability": 0.9997 + }, + { + "start": 16521.92, + "end": 16525.02, + "probability": 0.932 + }, + { + "start": 16525.16, + "end": 16526.58, + "probability": 0.7525 + }, + { + "start": 16527.02, + "end": 16527.9, + "probability": 0.7541 + }, + { + "start": 16528.2, + "end": 16530.66, + "probability": 0.8968 + }, + { + "start": 16531.1, + "end": 16533.74, + "probability": 0.9922 + }, + { + "start": 16534.9, + "end": 16536.78, + "probability": 0.9132 + }, + { + "start": 16536.92, + "end": 16538.82, + "probability": 0.7188 + }, + { + "start": 16539.22, + "end": 16541.02, + "probability": 0.9675 + }, + { + "start": 16541.78, + "end": 16542.62, + "probability": 0.9845 + }, + { + "start": 16544.02, + "end": 16544.48, + "probability": 0.6294 + }, + { + "start": 16544.56, + "end": 16546.17, + "probability": 0.6562 + }, + { + "start": 16547.56, + "end": 16548.58, + "probability": 0.8242 + }, + { + "start": 16549.32, + "end": 16551.08, + "probability": 0.5239 + }, + { + "start": 16551.18, + "end": 16555.64, + "probability": 0.8948 + }, + { + "start": 16555.82, + "end": 16561.1, + "probability": 0.2122 + }, + { + "start": 16580.32, + "end": 16582.82, + "probability": 0.1842 + }, + { + "start": 16583.36, + "end": 16587.26, + "probability": 0.2561 + }, + { + "start": 16591.48, + "end": 16591.5, + "probability": 0.0042 + }, + { + "start": 16591.5, + "end": 16595.92, + "probability": 0.0349 + }, + { + "start": 16599.2, + "end": 16600.02, + "probability": 0.0398 + }, + { + "start": 16612.57, + "end": 16616.12, + "probability": 0.1902 + }, + { + "start": 16623.8, + "end": 16630.4, + "probability": 0.0521 + }, + { + "start": 16664.0, + "end": 16664.0, + "probability": 0.0 + }, + { + "start": 16664.0, + "end": 16664.0, + "probability": 0.0 + }, + { + "start": 16664.0, + "end": 16664.0, + "probability": 0.0 + }, + { + "start": 16664.0, + "end": 16664.0, + "probability": 0.0 + }, + { + "start": 16664.0, + "end": 16664.0, + "probability": 0.0 + }, + { + "start": 16664.0, + "end": 16664.0, + "probability": 0.0 + }, + { + "start": 16664.0, + "end": 16664.0, + "probability": 0.0 + }, + { + "start": 16664.0, + "end": 16664.0, + "probability": 0.0 + }, + { + "start": 16664.0, + "end": 16664.0, + "probability": 0.0 + }, + { + "start": 16664.0, + "end": 16664.0, + "probability": 0.0 + }, + { + "start": 16664.0, + "end": 16664.0, + "probability": 0.0 + }, + { + "start": 16664.0, + "end": 16664.0, + "probability": 0.0 + }, + { + "start": 16664.0, + "end": 16664.0, + "probability": 0.0 + }, + { + "start": 16664.0, + "end": 16664.0, + "probability": 0.0 + }, + { + "start": 16664.0, + "end": 16664.0, + "probability": 0.0 + }, + { + "start": 16664.0, + "end": 16664.0, + "probability": 0.0 + }, + { + "start": 16664.0, + "end": 16664.0, + "probability": 0.0 + }, + { + "start": 16664.0, + "end": 16664.0, + "probability": 0.0 + }, + { + "start": 16664.0, + "end": 16664.0, + "probability": 0.0 + }, + { + "start": 16664.0, + "end": 16664.0, + "probability": 0.0 + }, + { + "start": 16664.0, + "end": 16664.0, + "probability": 0.0 + }, + { + "start": 16664.0, + "end": 16664.0, + "probability": 0.0 + }, + { + "start": 16664.0, + "end": 16664.0, + "probability": 0.0 + }, + { + "start": 16664.0, + "end": 16664.0, + "probability": 0.0 + }, + { + "start": 16664.0, + "end": 16664.0, + "probability": 0.0 + }, + { + "start": 16664.0, + "end": 16664.0, + "probability": 0.0 + }, + { + "start": 16668.44, + "end": 16669.22, + "probability": 0.2667 + }, + { + "start": 16669.32, + "end": 16669.52, + "probability": 0.1196 + }, + { + "start": 16669.66, + "end": 16675.5, + "probability": 0.9703 + }, + { + "start": 16675.7, + "end": 16681.0, + "probability": 0.7311 + }, + { + "start": 16681.12, + "end": 16685.78, + "probability": 0.6313 + }, + { + "start": 16685.78, + "end": 16685.78, + "probability": 0.758 + }, + { + "start": 16685.78, + "end": 16688.26, + "probability": 0.2101 + }, + { + "start": 16785.0, + "end": 16785.0, + "probability": 0.0 + }, + { + "start": 16785.0, + "end": 16785.0, + "probability": 0.0 + }, + { + "start": 16785.0, + "end": 16785.0, + "probability": 0.0 + }, + { + "start": 16785.0, + "end": 16785.0, + "probability": 0.0 + }, + { + "start": 16785.0, + "end": 16785.0, + "probability": 0.0 + }, + { + "start": 16785.0, + "end": 16785.0, + "probability": 0.0 + }, + { + "start": 16785.0, + "end": 16785.0, + "probability": 0.0 + }, + { + "start": 16785.0, + "end": 16785.0, + "probability": 0.0 + }, + { + "start": 16785.0, + "end": 16785.0, + "probability": 0.0 + }, + { + "start": 16785.0, + "end": 16785.0, + "probability": 0.0 + }, + { + "start": 16785.0, + "end": 16785.0, + "probability": 0.0 + }, + { + "start": 16785.0, + "end": 16785.0, + "probability": 0.0 + }, + { + "start": 16785.0, + "end": 16785.0, + "probability": 0.0 + }, + { + "start": 16785.0, + "end": 16785.0, + "probability": 0.0 + }, + { + "start": 16785.0, + "end": 16785.0, + "probability": 0.0 + }, + { + "start": 16785.0, + "end": 16785.0, + "probability": 0.0 + }, + { + "start": 16785.0, + "end": 16785.0, + "probability": 0.0 + }, + { + "start": 16785.0, + "end": 16785.0, + "probability": 0.0 + }, + { + "start": 16785.0, + "end": 16785.0, + "probability": 0.0 + }, + { + "start": 16785.0, + "end": 16785.0, + "probability": 0.0 + }, + { + "start": 16785.0, + "end": 16785.0, + "probability": 0.0 + }, + { + "start": 16785.0, + "end": 16785.0, + "probability": 0.0 + }, + { + "start": 16785.0, + "end": 16785.0, + "probability": 0.0 + }, + { + "start": 16785.0, + "end": 16785.0, + "probability": 0.0 + }, + { + "start": 16785.0, + "end": 16785.0, + "probability": 0.0 + }, + { + "start": 16785.0, + "end": 16785.0, + "probability": 0.0 + }, + { + "start": 16785.0, + "end": 16785.0, + "probability": 0.0 + }, + { + "start": 16785.0, + "end": 16785.0, + "probability": 0.0 + }, + { + "start": 16785.0, + "end": 16785.0, + "probability": 0.0 + }, + { + "start": 16785.0, + "end": 16785.0, + "probability": 0.0 + }, + { + "start": 16785.0, + "end": 16785.0, + "probability": 0.0 + }, + { + "start": 16785.08, + "end": 16785.94, + "probability": 0.7455 + }, + { + "start": 16786.9, + "end": 16789.08, + "probability": 0.9943 + }, + { + "start": 16789.16, + "end": 16793.03, + "probability": 0.996 + }, + { + "start": 16793.2, + "end": 16799.32, + "probability": 0.9879 + }, + { + "start": 16807.34, + "end": 16809.0, + "probability": 0.4393 + }, + { + "start": 16809.0, + "end": 16809.0, + "probability": 0.2333 + }, + { + "start": 16809.0, + "end": 16809.0, + "probability": 0.1077 + }, + { + "start": 16809.0, + "end": 16809.0, + "probability": 0.1647 + }, + { + "start": 16809.0, + "end": 16812.94, + "probability": 0.6143 + }, + { + "start": 16813.0, + "end": 16817.88, + "probability": 0.8275 + }, + { + "start": 16818.02, + "end": 16819.46, + "probability": 0.9897 + }, + { + "start": 16820.54, + "end": 16821.98, + "probability": 0.8364 + }, + { + "start": 16822.08, + "end": 16824.04, + "probability": 0.9685 + }, + { + "start": 16824.12, + "end": 16825.26, + "probability": 0.8503 + }, + { + "start": 16825.32, + "end": 16826.62, + "probability": 0.9541 + }, + { + "start": 16827.34, + "end": 16829.84, + "probability": 0.9976 + }, + { + "start": 16829.84, + "end": 16834.44, + "probability": 0.9961 + }, + { + "start": 16835.34, + "end": 16838.36, + "probability": 0.6812 + }, + { + "start": 16838.5, + "end": 16839.34, + "probability": 0.9258 + }, + { + "start": 16839.86, + "end": 16843.94, + "probability": 0.934 + }, + { + "start": 16844.4, + "end": 16845.98, + "probability": 0.8379 + }, + { + "start": 16846.38, + "end": 16849.14, + "probability": 0.9683 + }, + { + "start": 16849.14, + "end": 16852.16, + "probability": 0.9755 + }, + { + "start": 16852.6, + "end": 16854.43, + "probability": 0.8408 + }, + { + "start": 16854.98, + "end": 16858.56, + "probability": 0.9614 + }, + { + "start": 16858.94, + "end": 16861.86, + "probability": 0.9869 + }, + { + "start": 16862.02, + "end": 16863.34, + "probability": 0.8154 + }, + { + "start": 16863.96, + "end": 16865.0, + "probability": 0.8196 + }, + { + "start": 16865.12, + "end": 16869.14, + "probability": 0.991 + }, + { + "start": 16869.56, + "end": 16870.82, + "probability": 0.9917 + }, + { + "start": 16871.66, + "end": 16874.02, + "probability": 0.9732 + }, + { + "start": 16874.32, + "end": 16876.6, + "probability": 0.8953 + }, + { + "start": 16877.1, + "end": 16879.08, + "probability": 0.9921 + }, + { + "start": 16879.5, + "end": 16883.8, + "probability": 0.9611 + }, + { + "start": 16884.18, + "end": 16885.74, + "probability": 0.9905 + }, + { + "start": 16886.66, + "end": 16888.16, + "probability": 0.9097 + }, + { + "start": 16888.26, + "end": 16893.6, + "probability": 0.9985 + }, + { + "start": 16894.08, + "end": 16897.0, + "probability": 0.8003 + }, + { + "start": 16897.52, + "end": 16898.15, + "probability": 0.7689 + }, + { + "start": 16898.8, + "end": 16898.86, + "probability": 0.1507 + }, + { + "start": 16898.86, + "end": 16898.86, + "probability": 0.7313 + }, + { + "start": 16898.86, + "end": 16901.14, + "probability": 0.8263 + }, + { + "start": 16901.66, + "end": 16903.78, + "probability": 0.6844 + }, + { + "start": 16904.8, + "end": 16908.2, + "probability": 0.9668 + }, + { + "start": 16908.36, + "end": 16910.24, + "probability": 0.9879 + }, + { + "start": 16910.76, + "end": 16912.78, + "probability": 0.9938 + }, + { + "start": 16913.28, + "end": 16913.86, + "probability": 0.7057 + }, + { + "start": 16914.02, + "end": 16914.8, + "probability": 0.7905 + }, + { + "start": 16914.82, + "end": 16916.18, + "probability": 0.9335 + }, + { + "start": 16916.28, + "end": 16917.12, + "probability": 0.8286 + }, + { + "start": 16917.22, + "end": 16917.5, + "probability": 0.2599 + }, + { + "start": 16917.5, + "end": 16917.7, + "probability": 0.7301 + }, + { + "start": 16919.68, + "end": 16920.86, + "probability": 0.9216 + }, + { + "start": 16922.12, + "end": 16923.26, + "probability": 0.0889 + }, + { + "start": 16931.42, + "end": 16932.63, + "probability": 0.2741 + }, + { + "start": 16936.18, + "end": 16936.9, + "probability": 0.5086 + }, + { + "start": 16936.9, + "end": 16937.28, + "probability": 0.9016 + }, + { + "start": 16937.48, + "end": 16937.6, + "probability": 0.2526 + }, + { + "start": 16937.84, + "end": 16939.5, + "probability": 0.9255 + }, + { + "start": 16939.54, + "end": 16939.64, + "probability": 0.0254 + }, + { + "start": 16941.58, + "end": 16943.14, + "probability": 0.9983 + }, + { + "start": 16943.26, + "end": 16946.04, + "probability": 0.7493 + }, + { + "start": 16946.38, + "end": 16948.36, + "probability": 0.6754 + }, + { + "start": 16949.24, + "end": 16949.76, + "probability": 0.484 + }, + { + "start": 16950.16, + "end": 16950.58, + "probability": 0.7379 + }, + { + "start": 16950.58, + "end": 16951.96, + "probability": 0.6768 + }, + { + "start": 16952.02, + "end": 16953.14, + "probability": 0.6951 + }, + { + "start": 16953.68, + "end": 16955.42, + "probability": 0.9028 + }, + { + "start": 16955.48, + "end": 16955.88, + "probability": 0.8694 + }, + { + "start": 16957.64, + "end": 16961.32, + "probability": 0.4875 + }, + { + "start": 16961.6, + "end": 16962.6, + "probability": 0.5431 + }, + { + "start": 16963.04, + "end": 16964.14, + "probability": 0.4393 + }, + { + "start": 16964.24, + "end": 16964.66, + "probability": 0.5042 + }, + { + "start": 16964.82, + "end": 16965.32, + "probability": 0.808 + }, + { + "start": 16965.6, + "end": 16970.98, + "probability": 0.9484 + }, + { + "start": 16972.8, + "end": 16975.68, + "probability": 0.5815 + }, + { + "start": 16975.8, + "end": 16976.18, + "probability": 0.7817 + }, + { + "start": 16976.38, + "end": 16979.52, + "probability": 0.8526 + }, + { + "start": 16980.28, + "end": 16981.14, + "probability": 0.5983 + }, + { + "start": 16982.76, + "end": 16984.6, + "probability": 0.7061 + }, + { + "start": 16986.26, + "end": 16989.12, + "probability": 0.9596 + }, + { + "start": 16990.2, + "end": 16990.66, + "probability": 0.9983 + }, + { + "start": 16992.06, + "end": 16999.58, + "probability": 0.9932 + }, + { + "start": 17000.62, + "end": 17002.32, + "probability": 0.6213 + }, + { + "start": 17003.86, + "end": 17005.11, + "probability": 0.8398 + }, + { + "start": 17005.84, + "end": 17009.22, + "probability": 0.9819 + }, + { + "start": 17010.2, + "end": 17011.49, + "probability": 0.9983 + }, + { + "start": 17011.72, + "end": 17015.66, + "probability": 0.9744 + }, + { + "start": 17016.18, + "end": 17017.82, + "probability": 0.9802 + }, + { + "start": 17019.24, + "end": 17023.66, + "probability": 0.9259 + }, + { + "start": 17024.76, + "end": 17027.16, + "probability": 0.8538 + }, + { + "start": 17027.18, + "end": 17028.22, + "probability": 0.6253 + }, + { + "start": 17028.22, + "end": 17029.32, + "probability": 0.7763 + }, + { + "start": 17029.32, + "end": 17030.26, + "probability": 0.7027 + }, + { + "start": 17030.6, + "end": 17032.48, + "probability": 0.4531 + }, + { + "start": 17034.26, + "end": 17034.88, + "probability": 0.0517 + }, + { + "start": 17034.9, + "end": 17034.9, + "probability": 0.1551 + }, + { + "start": 17035.0, + "end": 17037.96, + "probability": 0.9824 + }, + { + "start": 17039.22, + "end": 17039.6, + "probability": 0.5907 + }, + { + "start": 17040.14, + "end": 17041.24, + "probability": 0.3979 + }, + { + "start": 17042.7, + "end": 17047.92, + "probability": 0.9965 + }, + { + "start": 17049.62, + "end": 17051.6, + "probability": 0.9832 + }, + { + "start": 17053.6, + "end": 17056.02, + "probability": 0.9993 + }, + { + "start": 17056.74, + "end": 17057.52, + "probability": 0.9434 + }, + { + "start": 17058.78, + "end": 17059.28, + "probability": 0.8171 + }, + { + "start": 17059.76, + "end": 17062.16, + "probability": 0.9619 + }, + { + "start": 17062.7, + "end": 17066.32, + "probability": 0.9983 + }, + { + "start": 17066.5, + "end": 17073.16, + "probability": 0.992 + }, + { + "start": 17073.46, + "end": 17074.2, + "probability": 0.3976 + }, + { + "start": 17075.14, + "end": 17075.7, + "probability": 0.301 + }, + { + "start": 17075.78, + "end": 17076.44, + "probability": 0.9889 + }, + { + "start": 17077.9, + "end": 17078.9, + "probability": 0.99 + }, + { + "start": 17079.06, + "end": 17080.32, + "probability": 0.7136 + }, + { + "start": 17080.86, + "end": 17082.63, + "probability": 0.97 + }, + { + "start": 17083.54, + "end": 17088.24, + "probability": 0.9904 + }, + { + "start": 17089.4, + "end": 17094.48, + "probability": 0.9977 + }, + { + "start": 17094.98, + "end": 17095.8, + "probability": 0.671 + }, + { + "start": 17096.22, + "end": 17097.24, + "probability": 0.892 + }, + { + "start": 17099.8, + "end": 17100.52, + "probability": 0.9018 + }, + { + "start": 17101.1, + "end": 17102.82, + "probability": 0.873 + }, + { + "start": 17103.66, + "end": 17106.7, + "probability": 0.9838 + }, + { + "start": 17107.72, + "end": 17110.5, + "probability": 0.9753 + }, + { + "start": 17111.12, + "end": 17111.96, + "probability": 0.9537 + }, + { + "start": 17112.76, + "end": 17113.42, + "probability": 0.7218 + }, + { + "start": 17113.56, + "end": 17117.14, + "probability": 0.9862 + }, + { + "start": 17118.16, + "end": 17118.68, + "probability": 0.8805 + }, + { + "start": 17118.78, + "end": 17120.85, + "probability": 0.9802 + }, + { + "start": 17121.38, + "end": 17123.88, + "probability": 0.9916 + }, + { + "start": 17124.64, + "end": 17127.56, + "probability": 0.2684 + }, + { + "start": 17127.8, + "end": 17130.24, + "probability": 0.9278 + }, + { + "start": 17130.34, + "end": 17130.98, + "probability": 0.9268 + }, + { + "start": 17131.06, + "end": 17131.52, + "probability": 0.9751 + }, + { + "start": 17131.92, + "end": 17134.5, + "probability": 0.9912 + }, + { + "start": 17134.5, + "end": 17136.98, + "probability": 0.8498 + }, + { + "start": 17137.08, + "end": 17137.64, + "probability": 0.9102 + }, + { + "start": 17138.18, + "end": 17141.64, + "probability": 0.887 + }, + { + "start": 17142.94, + "end": 17144.22, + "probability": 0.9453 + }, + { + "start": 17144.52, + "end": 17145.74, + "probability": 0.939 + }, + { + "start": 17146.44, + "end": 17148.54, + "probability": 0.9939 + }, + { + "start": 17149.54, + "end": 17155.54, + "probability": 0.9912 + }, + { + "start": 17155.9, + "end": 17156.58, + "probability": 0.5815 + }, + { + "start": 17156.9, + "end": 17157.36, + "probability": 0.7098 + }, + { + "start": 17157.6, + "end": 17158.1, + "probability": 0.5304 + }, + { + "start": 17158.48, + "end": 17162.6, + "probability": 0.9026 + }, + { + "start": 17164.72, + "end": 17167.18, + "probability": 0.9916 + }, + { + "start": 17167.4, + "end": 17168.46, + "probability": 0.8145 + }, + { + "start": 17169.2, + "end": 17171.7, + "probability": 0.9258 + }, + { + "start": 17172.48, + "end": 17176.06, + "probability": 0.9871 + }, + { + "start": 17176.74, + "end": 17177.08, + "probability": 0.698 + }, + { + "start": 17177.26, + "end": 17177.56, + "probability": 0.8017 + }, + { + "start": 17177.62, + "end": 17181.96, + "probability": 0.9739 + }, + { + "start": 17183.26, + "end": 17184.68, + "probability": 0.9079 + }, + { + "start": 17185.92, + "end": 17186.96, + "probability": 0.9968 + }, + { + "start": 17187.64, + "end": 17190.06, + "probability": 0.9837 + }, + { + "start": 17191.36, + "end": 17192.3, + "probability": 0.832 + }, + { + "start": 17193.44, + "end": 17194.86, + "probability": 0.9971 + }, + { + "start": 17195.86, + "end": 17196.54, + "probability": 0.9938 + }, + { + "start": 17196.64, + "end": 17197.34, + "probability": 0.4199 + }, + { + "start": 17197.48, + "end": 17198.13, + "probability": 0.4187 + }, + { + "start": 17198.78, + "end": 17199.82, + "probability": 0.96 + }, + { + "start": 17200.62, + "end": 17205.04, + "probability": 0.8898 + }, + { + "start": 17205.66, + "end": 17206.14, + "probability": 0.5432 + }, + { + "start": 17206.14, + "end": 17206.58, + "probability": 0.7432 + }, + { + "start": 17206.92, + "end": 17208.08, + "probability": 0.9594 + }, + { + "start": 17208.44, + "end": 17209.64, + "probability": 0.9095 + }, + { + "start": 17210.18, + "end": 17211.6, + "probability": 0.7439 + }, + { + "start": 17211.96, + "end": 17214.62, + "probability": 0.9864 + }, + { + "start": 17214.86, + "end": 17215.38, + "probability": 0.8172 + }, + { + "start": 17216.86, + "end": 17218.04, + "probability": 0.8636 + }, + { + "start": 17227.58, + "end": 17229.03, + "probability": 0.0688 + }, + { + "start": 17229.74, + "end": 17231.89, + "probability": 0.4275 + }, + { + "start": 17236.34, + "end": 17237.32, + "probability": 0.4645 + }, + { + "start": 17237.32, + "end": 17237.98, + "probability": 0.7832 + }, + { + "start": 17238.14, + "end": 17239.24, + "probability": 0.3534 + }, + { + "start": 17239.32, + "end": 17240.64, + "probability": 0.7502 + }, + { + "start": 17240.64, + "end": 17241.88, + "probability": 0.7886 + }, + { + "start": 17242.4, + "end": 17244.54, + "probability": 0.9808 + }, + { + "start": 17246.18, + "end": 17250.54, + "probability": 0.9937 + }, + { + "start": 17251.7, + "end": 17253.2, + "probability": 0.4035 + }, + { + "start": 17253.2, + "end": 17253.7, + "probability": 0.6272 + }, + { + "start": 17253.82, + "end": 17255.34, + "probability": 0.9963 + }, + { + "start": 17256.06, + "end": 17257.36, + "probability": 0.951 + }, + { + "start": 17259.02, + "end": 17259.12, + "probability": 0.0478 + }, + { + "start": 17259.12, + "end": 17259.58, + "probability": 0.0235 + }, + { + "start": 17260.66, + "end": 17262.26, + "probability": 0.666 + }, + { + "start": 17263.56, + "end": 17264.42, + "probability": 0.6821 + }, + { + "start": 17266.14, + "end": 17270.12, + "probability": 0.9304 + }, + { + "start": 17270.44, + "end": 17271.16, + "probability": 0.8516 + }, + { + "start": 17271.48, + "end": 17273.06, + "probability": 0.9227 + }, + { + "start": 17273.62, + "end": 17273.86, + "probability": 0.6519 + }, + { + "start": 17273.9, + "end": 17275.68, + "probability": 0.6244 + }, + { + "start": 17276.02, + "end": 17276.7, + "probability": 0.3353 + }, + { + "start": 17277.06, + "end": 17278.2, + "probability": 0.6195 + }, + { + "start": 17278.74, + "end": 17281.18, + "probability": 0.213 + }, + { + "start": 17281.32, + "end": 17282.6, + "probability": 0.5022 + }, + { + "start": 17283.28, + "end": 17286.54, + "probability": 0.6035 + }, + { + "start": 17286.6, + "end": 17286.6, + "probability": 0.5436 + }, + { + "start": 17286.6, + "end": 17288.8, + "probability": 0.509 + }, + { + "start": 17289.0, + "end": 17290.44, + "probability": 0.6069 + }, + { + "start": 17291.1, + "end": 17292.72, + "probability": 0.7849 + }, + { + "start": 17292.88, + "end": 17293.58, + "probability": 0.6203 + }, + { + "start": 17294.92, + "end": 17295.7, + "probability": 0.4772 + }, + { + "start": 17296.02, + "end": 17298.5, + "probability": 0.96 + }, + { + "start": 17298.54, + "end": 17300.56, + "probability": 0.6219 + }, + { + "start": 17301.2, + "end": 17301.94, + "probability": 0.7443 + }, + { + "start": 17302.04, + "end": 17302.12, + "probability": 0.4197 + }, + { + "start": 17302.28, + "end": 17305.04, + "probability": 0.9875 + }, + { + "start": 17305.4, + "end": 17306.86, + "probability": 0.1024 + }, + { + "start": 17307.3, + "end": 17307.38, + "probability": 0.3997 + }, + { + "start": 17307.42, + "end": 17311.28, + "probability": 0.7734 + }, + { + "start": 17311.44, + "end": 17313.22, + "probability": 0.7917 + }, + { + "start": 17313.88, + "end": 17316.7, + "probability": 0.3134 + }, + { + "start": 17316.7, + "end": 17321.22, + "probability": 0.753 + }, + { + "start": 17321.34, + "end": 17322.9, + "probability": 0.9301 + }, + { + "start": 17323.22, + "end": 17324.44, + "probability": 0.1937 + }, + { + "start": 17324.46, + "end": 17324.62, + "probability": 0.0141 + }, + { + "start": 17325.48, + "end": 17326.16, + "probability": 0.1067 + }, + { + "start": 17326.16, + "end": 17332.72, + "probability": 0.6477 + }, + { + "start": 17332.72, + "end": 17333.96, + "probability": 0.3831 + }, + { + "start": 17334.06, + "end": 17334.38, + "probability": 0.1811 + }, + { + "start": 17334.38, + "end": 17335.3, + "probability": 0.5087 + }, + { + "start": 17335.64, + "end": 17337.42, + "probability": 0.7549 + }, + { + "start": 17337.62, + "end": 17339.18, + "probability": 0.3033 + }, + { + "start": 17340.0, + "end": 17340.02, + "probability": 0.0799 + }, + { + "start": 17340.02, + "end": 17340.51, + "probability": 0.2444 + }, + { + "start": 17340.8, + "end": 17347.32, + "probability": 0.8467 + }, + { + "start": 17347.52, + "end": 17350.4, + "probability": 0.9386 + }, + { + "start": 17350.74, + "end": 17355.9, + "probability": 0.6618 + }, + { + "start": 17356.2, + "end": 17357.96, + "probability": 0.7063 + }, + { + "start": 17358.24, + "end": 17363.58, + "probability": 0.7452 + }, + { + "start": 17364.22, + "end": 17367.6, + "probability": 0.3975 + }, + { + "start": 17367.94, + "end": 17368.8, + "probability": 0.7196 + }, + { + "start": 17368.8, + "end": 17372.64, + "probability": 0.7786 + }, + { + "start": 17372.64, + "end": 17374.22, + "probability": 0.4423 + }, + { + "start": 17374.26, + "end": 17376.47, + "probability": 0.144 + }, + { + "start": 17378.12, + "end": 17379.18, + "probability": 0.0472 + }, + { + "start": 17379.26, + "end": 17379.64, + "probability": 0.0518 + }, + { + "start": 17379.9, + "end": 17381.56, + "probability": 0.7752 + }, + { + "start": 17381.86, + "end": 17382.48, + "probability": 0.3841 + }, + { + "start": 17382.56, + "end": 17382.94, + "probability": 0.673 + }, + { + "start": 17383.04, + "end": 17383.34, + "probability": 0.4241 + }, + { + "start": 17384.28, + "end": 17387.88, + "probability": 0.5862 + }, + { + "start": 17387.9, + "end": 17389.58, + "probability": 0.4432 + }, + { + "start": 17389.64, + "end": 17391.26, + "probability": 0.2839 + }, + { + "start": 17391.54, + "end": 17395.12, + "probability": 0.1628 + }, + { + "start": 17395.34, + "end": 17395.5, + "probability": 0.0557 + }, + { + "start": 17395.98, + "end": 17397.56, + "probability": 0.2556 + }, + { + "start": 17397.56, + "end": 17398.47, + "probability": 0.4045 + }, + { + "start": 17398.56, + "end": 17399.5, + "probability": 0.5535 + }, + { + "start": 17399.52, + "end": 17400.42, + "probability": 0.657 + }, + { + "start": 17400.76, + "end": 17402.28, + "probability": 0.1943 + }, + { + "start": 17402.28, + "end": 17403.22, + "probability": 0.0438 + }, + { + "start": 17403.22, + "end": 17403.22, + "probability": 0.0117 + }, + { + "start": 17403.22, + "end": 17405.4, + "probability": 0.1821 + }, + { + "start": 17405.46, + "end": 17407.5, + "probability": 0.3733 + }, + { + "start": 17407.86, + "end": 17410.3, + "probability": 0.8179 + }, + { + "start": 17410.3, + "end": 17412.3, + "probability": 0.3303 + }, + { + "start": 17412.46, + "end": 17413.02, + "probability": 0.036 + }, + { + "start": 17416.62, + "end": 17417.08, + "probability": 0.0728 + }, + { + "start": 17417.08, + "end": 17417.7, + "probability": 0.0271 + }, + { + "start": 17417.88, + "end": 17419.4, + "probability": 0.3405 + }, + { + "start": 17419.4, + "end": 17420.24, + "probability": 0.2052 + }, + { + "start": 17420.38, + "end": 17422.14, + "probability": 0.1318 + }, + { + "start": 17422.44, + "end": 17424.18, + "probability": 0.0756 + }, + { + "start": 17477.0, + "end": 17477.0, + "probability": 0.0 + }, + { + "start": 17477.0, + "end": 17477.0, + "probability": 0.0 + }, + { + "start": 17477.0, + "end": 17477.0, + "probability": 0.0 + }, + { + "start": 17477.0, + "end": 17477.0, + "probability": 0.0 + }, + { + "start": 17477.0, + "end": 17477.0, + "probability": 0.0 + }, + { + "start": 17477.0, + "end": 17477.0, + "probability": 0.0 + }, + { + "start": 17477.0, + "end": 17477.0, + "probability": 0.0 + }, + { + "start": 17477.0, + "end": 17477.0, + "probability": 0.0 + }, + { + "start": 17477.0, + "end": 17477.0, + "probability": 0.0 + }, + { + "start": 17477.0, + "end": 17477.0, + "probability": 0.0 + }, + { + "start": 17477.0, + "end": 17477.0, + "probability": 0.0 + }, + { + "start": 17477.0, + "end": 17477.0, + "probability": 0.0 + }, + { + "start": 17477.0, + "end": 17477.0, + "probability": 0.0 + }, + { + "start": 17477.0, + "end": 17477.0, + "probability": 0.0 + }, + { + "start": 17477.0, + "end": 17477.0, + "probability": 0.0 + }, + { + "start": 17477.0, + "end": 17477.0, + "probability": 0.0 + }, + { + "start": 17477.0, + "end": 17477.0, + "probability": 0.0 + }, + { + "start": 17477.0, + "end": 17477.0, + "probability": 0.0 + }, + { + "start": 17477.0, + "end": 17477.0, + "probability": 0.0 + }, + { + "start": 17477.0, + "end": 17477.0, + "probability": 0.0 + }, + { + "start": 17477.0, + "end": 17477.0, + "probability": 0.0 + }, + { + "start": 17477.0, + "end": 17477.0, + "probability": 0.0 + }, + { + "start": 17477.0, + "end": 17477.0, + "probability": 0.0 + }, + { + "start": 17477.0, + "end": 17477.0, + "probability": 0.0 + }, + { + "start": 17477.0, + "end": 17477.0, + "probability": 0.0 + }, + { + "start": 17477.0, + "end": 17477.0, + "probability": 0.0 + }, + { + "start": 17477.0, + "end": 17477.0, + "probability": 0.0 + }, + { + "start": 17477.0, + "end": 17477.0, + "probability": 0.0 + }, + { + "start": 17477.0, + "end": 17477.0, + "probability": 0.0 + }, + { + "start": 17477.0, + "end": 17477.0, + "probability": 0.0 + }, + { + "start": 17477.0, + "end": 17477.0, + "probability": 0.0 + }, + { + "start": 17477.0, + "end": 17477.0, + "probability": 0.0 + }, + { + "start": 17477.0, + "end": 17477.0, + "probability": 0.0 + }, + { + "start": 17477.0, + "end": 17477.0, + "probability": 0.0 + }, + { + "start": 17477.0, + "end": 17477.0, + "probability": 0.0 + }, + { + "start": 17477.0, + "end": 17477.0, + "probability": 0.0 + }, + { + "start": 17478.08, + "end": 17480.84, + "probability": 0.0266 + }, + { + "start": 17480.86, + "end": 17480.86, + "probability": 0.0764 + }, + { + "start": 17480.92, + "end": 17483.04, + "probability": 0.3883 + }, + { + "start": 17483.9, + "end": 17483.9, + "probability": 0.1681 + }, + { + "start": 17483.9, + "end": 17483.9, + "probability": 0.3948 + }, + { + "start": 17483.9, + "end": 17488.18, + "probability": 0.2513 + }, + { + "start": 17488.18, + "end": 17489.42, + "probability": 0.122 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.0, + "end": 17598.0, + "probability": 0.0 + }, + { + "start": 17598.46, + "end": 17600.61, + "probability": 0.1938 + }, + { + "start": 17600.82, + "end": 17603.98, + "probability": 0.1724 + }, + { + "start": 17603.98, + "end": 17604.28, + "probability": 0.2996 + }, + { + "start": 17604.36, + "end": 17604.36, + "probability": 0.4927 + }, + { + "start": 17604.36, + "end": 17609.86, + "probability": 0.3942 + }, + { + "start": 17610.96, + "end": 17615.02, + "probability": 0.2963 + }, + { + "start": 17616.12, + "end": 17618.2, + "probability": 0.8158 + }, + { + "start": 17720.0, + "end": 17720.0, + "probability": 0.0 + }, + { + "start": 17720.0, + "end": 17720.0, + "probability": 0.0 + }, + { + "start": 17720.0, + "end": 17720.0, + "probability": 0.0 + }, + { + "start": 17720.0, + "end": 17720.0, + "probability": 0.0 + }, + { + "start": 17720.0, + "end": 17720.0, + "probability": 0.0 + }, + { + "start": 17720.0, + "end": 17720.0, + "probability": 0.0 + }, + { + "start": 17720.0, + "end": 17720.0, + "probability": 0.0 + }, + { + "start": 17720.0, + "end": 17720.0, + "probability": 0.0 + }, + { + "start": 17720.0, + "end": 17720.0, + "probability": 0.0 + }, + { + "start": 17720.0, + "end": 17720.0, + "probability": 0.0 + }, + { + "start": 17720.0, + "end": 17720.0, + "probability": 0.0 + }, + { + "start": 17720.0, + "end": 17720.0, + "probability": 0.0 + }, + { + "start": 17720.0, + "end": 17720.0, + "probability": 0.0 + }, + { + "start": 17720.0, + "end": 17720.0, + "probability": 0.0 + }, + { + "start": 17720.0, + "end": 17720.0, + "probability": 0.0 + }, + { + "start": 17720.0, + "end": 17720.0, + "probability": 0.0 + }, + { + "start": 17720.0, + "end": 17720.0, + "probability": 0.0 + }, + { + "start": 17720.0, + "end": 17720.0, + "probability": 0.0 + }, + { + "start": 17720.0, + "end": 17720.0, + "probability": 0.0 + }, + { + "start": 17720.0, + "end": 17720.0, + "probability": 0.0 + }, + { + "start": 17720.0, + "end": 17720.0, + "probability": 0.0 + }, + { + "start": 17720.0, + "end": 17720.0, + "probability": 0.0 + }, + { + "start": 17720.0, + "end": 17720.0, + "probability": 0.0 + }, + { + "start": 17720.0, + "end": 17720.0, + "probability": 0.0 + }, + { + "start": 17720.0, + "end": 17720.0, + "probability": 0.0 + }, + { + "start": 17720.0, + "end": 17720.0, + "probability": 0.0 + }, + { + "start": 17720.0, + "end": 17720.0, + "probability": 0.0 + }, + { + "start": 17720.0, + "end": 17720.0, + "probability": 0.0 + }, + { + "start": 17720.0, + "end": 17720.0, + "probability": 0.0 + }, + { + "start": 17720.0, + "end": 17720.0, + "probability": 0.0 + }, + { + "start": 17720.0, + "end": 17720.0, + "probability": 0.0 + }, + { + "start": 17720.0, + "end": 17720.0, + "probability": 0.0 + }, + { + "start": 17720.0, + "end": 17720.0, + "probability": 0.0 + }, + { + "start": 17720.0, + "end": 17720.0, + "probability": 0.0 + }, + { + "start": 17720.0, + "end": 17720.0, + "probability": 0.0 + }, + { + "start": 17720.0, + "end": 17720.0, + "probability": 0.0 + }, + { + "start": 17720.0, + "end": 17720.0, + "probability": 0.0 + }, + { + "start": 17720.0, + "end": 17720.0, + "probability": 0.0 + }, + { + "start": 17720.0, + "end": 17720.0, + "probability": 0.0 + }, + { + "start": 17720.0, + "end": 17720.0, + "probability": 0.0 + }, + { + "start": 17720.0, + "end": 17720.0, + "probability": 0.0 + }, + { + "start": 17720.0, + "end": 17720.0, + "probability": 0.0 + }, + { + "start": 17720.0, + "end": 17720.0, + "probability": 0.0 + }, + { + "start": 17720.0, + "end": 17720.0, + "probability": 0.0 + }, + { + "start": 17720.0, + "end": 17720.0, + "probability": 0.0 + }, + { + "start": 17720.0, + "end": 17720.0, + "probability": 0.0 + }, + { + "start": 17720.0, + "end": 17720.0, + "probability": 0.0 + }, + { + "start": 17720.0, + "end": 17720.0, + "probability": 0.0 + }, + { + "start": 17720.0, + "end": 17720.0, + "probability": 0.0 + }, + { + "start": 17720.0, + "end": 17720.0, + "probability": 0.0 + }, + { + "start": 17720.0, + "end": 17720.0, + "probability": 0.0 + }, + { + "start": 17720.0, + "end": 17720.0, + "probability": 0.0 + }, + { + "start": 17720.0, + "end": 17720.0, + "probability": 0.0 + }, + { + "start": 17720.0, + "end": 17720.0, + "probability": 0.0 + }, + { + "start": 17720.0, + "end": 17720.0, + "probability": 0.0 + }, + { + "start": 17720.0, + "end": 17720.0, + "probability": 0.0 + }, + { + "start": 17720.0, + "end": 17720.0, + "probability": 0.0 + }, + { + "start": 17720.0, + "end": 17720.0, + "probability": 0.0 + }, + { + "start": 17720.0, + "end": 17720.0, + "probability": 0.0 + }, + { + "start": 17720.0, + "end": 17720.0, + "probability": 0.0 + }, + { + "start": 17720.0, + "end": 17720.0, + "probability": 0.0 + }, + { + "start": 17720.0, + "end": 17720.0, + "probability": 0.0 + }, + { + "start": 17720.0, + "end": 17720.0, + "probability": 0.0 + }, + { + "start": 17720.12, + "end": 17720.92, + "probability": 0.3779 + }, + { + "start": 17720.92, + "end": 17720.92, + "probability": 0.2996 + }, + { + "start": 17720.92, + "end": 17720.92, + "probability": 0.1768 + }, + { + "start": 17720.92, + "end": 17722.07, + "probability": 0.6172 + }, + { + "start": 17722.92, + "end": 17724.3, + "probability": 0.8372 + }, + { + "start": 17724.46, + "end": 17725.5, + "probability": 0.4373 + }, + { + "start": 17726.34, + "end": 17727.68, + "probability": 0.446 + }, + { + "start": 17727.82, + "end": 17728.62, + "probability": 0.2186 + }, + { + "start": 17729.42, + "end": 17730.63, + "probability": 0.0174 + }, + { + "start": 17731.4, + "end": 17732.78, + "probability": 0.0221 + }, + { + "start": 17732.78, + "end": 17732.78, + "probability": 0.0541 + }, + { + "start": 17732.92, + "end": 17735.58, + "probability": 0.0693 + }, + { + "start": 17736.08, + "end": 17737.22, + "probability": 0.2066 + }, + { + "start": 17737.92, + "end": 17739.5, + "probability": 0.4547 + }, + { + "start": 17739.84, + "end": 17741.34, + "probability": 0.0108 + }, + { + "start": 17840.0, + "end": 17840.0, + "probability": 0.0 + }, + { + "start": 17840.0, + "end": 17840.0, + "probability": 0.0 + }, + { + "start": 17840.0, + "end": 17840.0, + "probability": 0.0 + }, + { + "start": 17840.0, + "end": 17840.0, + "probability": 0.0 + }, + { + "start": 17840.0, + "end": 17840.0, + "probability": 0.0 + }, + { + "start": 17840.0, + "end": 17840.0, + "probability": 0.0 + }, + { + "start": 17840.0, + "end": 17840.0, + "probability": 0.0 + }, + { + "start": 17840.0, + "end": 17840.0, + "probability": 0.0 + }, + { + "start": 17840.0, + "end": 17840.0, + "probability": 0.0 + }, + { + "start": 17840.0, + "end": 17840.0, + "probability": 0.0 + }, + { + "start": 17840.0, + "end": 17840.0, + "probability": 0.0 + }, + { + "start": 17840.0, + "end": 17840.0, + "probability": 0.0 + }, + { + "start": 17840.0, + "end": 17840.0, + "probability": 0.0 + }, + { + "start": 17840.0, + "end": 17840.0, + "probability": 0.0 + }, + { + "start": 17840.0, + "end": 17840.0, + "probability": 0.0 + }, + { + "start": 17840.0, + "end": 17840.0, + "probability": 0.0 + }, + { + "start": 17840.0, + "end": 17840.0, + "probability": 0.0 + }, + { + "start": 17840.0, + "end": 17840.0, + "probability": 0.0 + }, + { + "start": 17840.0, + "end": 17840.0, + "probability": 0.0 + }, + { + "start": 17840.0, + "end": 17840.0, + "probability": 0.0 + }, + { + "start": 17840.0, + "end": 17840.0, + "probability": 0.0 + }, + { + "start": 17840.0, + "end": 17840.0, + "probability": 0.0 + }, + { + "start": 17840.0, + "end": 17840.0, + "probability": 0.0 + }, + { + "start": 17840.0, + "end": 17840.0, + "probability": 0.0 + }, + { + "start": 17840.0, + "end": 17840.0, + "probability": 0.0 + }, + { + "start": 17840.0, + "end": 17840.0, + "probability": 0.0 + }, + { + "start": 17840.0, + "end": 17840.0, + "probability": 0.0 + }, + { + "start": 17840.0, + "end": 17840.0, + "probability": 0.0 + }, + { + "start": 17840.0, + "end": 17840.0, + "probability": 0.0 + }, + { + "start": 17840.0, + "end": 17840.0, + "probability": 0.0 + }, + { + "start": 17840.0, + "end": 17840.0, + "probability": 0.0 + }, + { + "start": 17840.0, + "end": 17840.0, + "probability": 0.0 + }, + { + "start": 17840.0, + "end": 17840.0, + "probability": 0.0 + }, + { + "start": 17840.0, + "end": 17840.0, + "probability": 0.0 + }, + { + "start": 17840.0, + "end": 17840.0, + "probability": 0.0 + }, + { + "start": 17840.0, + "end": 17840.0, + "probability": 0.0 + }, + { + "start": 17840.0, + "end": 17840.0, + "probability": 0.0 + }, + { + "start": 17840.0, + "end": 17840.0, + "probability": 0.0 + }, + { + "start": 17840.0, + "end": 17840.0, + "probability": 0.0 + }, + { + "start": 17840.0, + "end": 17840.0, + "probability": 0.0 + }, + { + "start": 17840.0, + "end": 17840.0, + "probability": 0.0 + }, + { + "start": 17840.0, + "end": 17840.0, + "probability": 0.0 + }, + { + "start": 17840.0, + "end": 17840.0, + "probability": 0.0 + }, + { + "start": 17840.0, + "end": 17840.0, + "probability": 0.0 + }, + { + "start": 17840.0, + "end": 17840.0, + "probability": 0.0 + }, + { + "start": 17840.0, + "end": 17840.0, + "probability": 0.0 + }, + { + "start": 17840.0, + "end": 17840.0, + "probability": 0.0 + }, + { + "start": 17840.0, + "end": 17840.0, + "probability": 0.0 + }, + { + "start": 17840.0, + "end": 17840.0, + "probability": 0.0 + }, + { + "start": 17840.0, + "end": 17840.0, + "probability": 0.0 + }, + { + "start": 17840.0, + "end": 17840.0, + "probability": 0.0 + }, + { + "start": 17840.0, + "end": 17840.0, + "probability": 0.0 + }, + { + "start": 17840.0, + "end": 17840.0, + "probability": 0.0 + }, + { + "start": 17840.0, + "end": 17840.0, + "probability": 0.0 + }, + { + "start": 17840.0, + "end": 17840.0, + "probability": 0.0 + }, + { + "start": 17840.0, + "end": 17840.0, + "probability": 0.0 + }, + { + "start": 17840.9, + "end": 17842.08, + "probability": 0.1128 + }, + { + "start": 17842.68, + "end": 17843.24, + "probability": 0.1025 + }, + { + "start": 17844.26, + "end": 17845.7, + "probability": 0.2902 + }, + { + "start": 17845.8, + "end": 17847.12, + "probability": 0.0957 + }, + { + "start": 17849.12, + "end": 17850.24, + "probability": 0.0997 + }, + { + "start": 17851.18, + "end": 17854.78, + "probability": 0.4323 + }, + { + "start": 17856.8, + "end": 17856.8, + "probability": 0.5532 + }, + { + "start": 17856.8, + "end": 17858.0, + "probability": 0.7338 + }, + { + "start": 17973.0, + "end": 17973.0, + "probability": 0.0 + }, + { + "start": 17973.0, + "end": 17973.0, + "probability": 0.0 + }, + { + "start": 17973.0, + "end": 17973.0, + "probability": 0.0 + }, + { + "start": 17973.0, + "end": 17973.0, + "probability": 0.0 + }, + { + "start": 17973.0, + "end": 17973.0, + "probability": 0.0 + }, + { + "start": 17973.0, + "end": 17973.0, + "probability": 0.0 + }, + { + "start": 17973.0, + "end": 17973.0, + "probability": 0.0 + }, + { + "start": 17973.0, + "end": 17973.0, + "probability": 0.0 + }, + { + "start": 17973.0, + "end": 17973.0, + "probability": 0.0 + }, + { + "start": 17973.0, + "end": 17973.0, + "probability": 0.0 + }, + { + "start": 17973.0, + "end": 17973.0, + "probability": 0.0 + }, + { + "start": 17973.0, + "end": 17973.0, + "probability": 0.0 + }, + { + "start": 17973.0, + "end": 17973.0, + "probability": 0.0 + }, + { + "start": 17973.0, + "end": 17973.0, + "probability": 0.0 + }, + { + "start": 17973.0, + "end": 17973.0, + "probability": 0.0 + }, + { + "start": 17973.0, + "end": 17973.0, + "probability": 0.0 + }, + { + "start": 17973.0, + "end": 17973.0, + "probability": 0.0 + }, + { + "start": 17973.0, + "end": 17973.0, + "probability": 0.0 + }, + { + "start": 17973.0, + "end": 17973.0, + "probability": 0.0 + }, + { + "start": 17973.0, + "end": 17973.0, + "probability": 0.0 + }, + { + "start": 17973.0, + "end": 17973.0, + "probability": 0.0 + }, + { + "start": 17973.0, + "end": 17973.0, + "probability": 0.0 + }, + { + "start": 17973.0, + "end": 17973.0, + "probability": 0.0 + }, + { + "start": 17973.0, + "end": 17973.0, + "probability": 0.0 + }, + { + "start": 17973.0, + "end": 17973.0, + "probability": 0.0 + }, + { + "start": 17973.0, + "end": 17973.0, + "probability": 0.0 + }, + { + "start": 17973.0, + "end": 17973.0, + "probability": 0.0 + }, + { + "start": 17973.0, + "end": 17973.0, + "probability": 0.0 + }, + { + "start": 17973.0, + "end": 17973.0, + "probability": 0.0 + }, + { + "start": 17973.0, + "end": 17973.0, + "probability": 0.0 + }, + { + "start": 17973.0, + "end": 17973.0, + "probability": 0.0 + }, + { + "start": 17973.0, + "end": 17973.0, + "probability": 0.0 + }, + { + "start": 17973.0, + "end": 17973.0, + "probability": 0.0 + }, + { + "start": 17973.0, + "end": 17973.0, + "probability": 0.0 + }, + { + "start": 17973.0, + "end": 17973.0, + "probability": 0.0 + }, + { + "start": 17973.0, + "end": 17973.0, + "probability": 0.0 + }, + { + "start": 17973.0, + "end": 17973.0, + "probability": 0.0 + }, + { + "start": 17973.0, + "end": 17973.0, + "probability": 0.0 + }, + { + "start": 17973.0, + "end": 17973.0, + "probability": 0.0 + }, + { + "start": 17973.9, + "end": 17980.47, + "probability": 0.0249 + }, + { + "start": 17981.86, + "end": 17982.94, + "probability": 0.0262 + }, + { + "start": 17983.77, + "end": 17984.76, + "probability": 0.0085 + }, + { + "start": 17987.54, + "end": 17993.94, + "probability": 0.0984 + }, + { + "start": 17996.8, + "end": 17997.62, + "probability": 0.0474 + }, + { + "start": 17997.82, + "end": 17999.92, + "probability": 0.2857 + }, + { + "start": 18000.32, + "end": 18003.38, + "probability": 0.105 + }, + { + "start": 18003.64, + "end": 18004.68, + "probability": 0.0593 + }, + { + "start": 18094.0, + "end": 18094.0, + "probability": 0.0 + }, + { + "start": 18094.0, + "end": 18094.0, + "probability": 0.0 + }, + { + "start": 18094.0, + "end": 18094.0, + "probability": 0.0 + }, + { + "start": 18094.0, + "end": 18094.0, + "probability": 0.0 + }, + { + "start": 18094.0, + "end": 18094.0, + "probability": 0.0 + }, + { + "start": 18094.0, + "end": 18094.0, + "probability": 0.0 + }, + { + "start": 18094.0, + "end": 18094.0, + "probability": 0.0 + }, + { + "start": 18094.0, + "end": 18094.0, + "probability": 0.0 + }, + { + "start": 18094.0, + "end": 18094.0, + "probability": 0.0 + }, + { + "start": 18094.0, + "end": 18094.0, + "probability": 0.0 + }, + { + "start": 18094.0, + "end": 18094.0, + "probability": 0.0 + }, + { + "start": 18094.0, + "end": 18094.0, + "probability": 0.0 + }, + { + "start": 18094.0, + "end": 18094.0, + "probability": 0.0 + }, + { + "start": 18094.0, + "end": 18094.0, + "probability": 0.0 + }, + { + "start": 18094.0, + "end": 18094.0, + "probability": 0.0 + }, + { + "start": 18094.0, + "end": 18094.0, + "probability": 0.0 + }, + { + "start": 18094.0, + "end": 18094.0, + "probability": 0.0 + }, + { + "start": 18094.0, + "end": 18094.0, + "probability": 0.0 + }, + { + "start": 18094.0, + "end": 18094.0, + "probability": 0.0 + }, + { + "start": 18094.0, + "end": 18094.0, + "probability": 0.0 + }, + { + "start": 18094.0, + "end": 18094.0, + "probability": 0.0 + }, + { + "start": 18094.0, + "end": 18094.0, + "probability": 0.0 + }, + { + "start": 18094.0, + "end": 18094.0, + "probability": 0.0 + }, + { + "start": 18094.0, + "end": 18094.0, + "probability": 0.0 + }, + { + "start": 18094.0, + "end": 18094.0, + "probability": 0.0 + }, + { + "start": 18094.0, + "end": 18094.0, + "probability": 0.0 + }, + { + "start": 18094.0, + "end": 18094.0, + "probability": 0.0 + }, + { + "start": 18094.0, + "end": 18094.0, + "probability": 0.0 + }, + { + "start": 18094.0, + "end": 18094.0, + "probability": 0.0 + }, + { + "start": 18094.0, + "end": 18094.0, + "probability": 0.0 + }, + { + "start": 18094.0, + "end": 18094.0, + "probability": 0.0 + }, + { + "start": 18094.0, + "end": 18094.0, + "probability": 0.0 + }, + { + "start": 18094.0, + "end": 18094.0, + "probability": 0.0 + }, + { + "start": 18094.0, + "end": 18094.0, + "probability": 0.0 + }, + { + "start": 18094.0, + "end": 18094.0, + "probability": 0.0 + }, + { + "start": 18094.0, + "end": 18094.0, + "probability": 0.0 + }, + { + "start": 18094.0, + "end": 18094.0, + "probability": 0.0 + }, + { + "start": 18094.0, + "end": 18094.0, + "probability": 0.0 + }, + { + "start": 18094.0, + "end": 18094.0, + "probability": 0.0 + }, + { + "start": 18094.0, + "end": 18094.0, + "probability": 0.0 + }, + { + "start": 18094.0, + "end": 18094.0, + "probability": 0.0 + }, + { + "start": 18094.0, + "end": 18094.0, + "probability": 0.0 + }, + { + "start": 18094.0, + "end": 18094.0, + "probability": 0.0 + }, + { + "start": 18094.0, + "end": 18094.0, + "probability": 0.0 + }, + { + "start": 18094.0, + "end": 18094.0, + "probability": 0.0 + }, + { + "start": 18094.0, + "end": 18094.0, + "probability": 0.0 + }, + { + "start": 18094.0, + "end": 18094.0, + "probability": 0.0 + }, + { + "start": 18094.0, + "end": 18094.0, + "probability": 0.0 + }, + { + "start": 18094.0, + "end": 18094.0, + "probability": 0.0 + }, + { + "start": 18094.0, + "end": 18094.0, + "probability": 0.0 + }, + { + "start": 18094.0, + "end": 18094.0, + "probability": 0.0 + }, + { + "start": 18094.0, + "end": 18094.0, + "probability": 0.0 + }, + { + "start": 18094.0, + "end": 18094.0, + "probability": 0.0 + }, + { + "start": 18094.0, + "end": 18094.0, + "probability": 0.0 + }, + { + "start": 18094.0, + "end": 18094.0, + "probability": 0.0 + }, + { + "start": 18094.0, + "end": 18094.0, + "probability": 0.0 + }, + { + "start": 18094.0, + "end": 18094.0, + "probability": 0.0 + }, + { + "start": 18094.0, + "end": 18094.0, + "probability": 0.0 + }, + { + "start": 18094.6, + "end": 18095.6, + "probability": 0.1654 + }, + { + "start": 18095.72, + "end": 18096.96, + "probability": 0.0122 + }, + { + "start": 18097.28, + "end": 18097.96, + "probability": 0.087 + }, + { + "start": 18099.08, + "end": 18100.12, + "probability": 0.6935 + }, + { + "start": 18102.15, + "end": 18103.91, + "probability": 0.1322 + }, + { + "start": 18104.4, + "end": 18106.12, + "probability": 0.3723 + }, + { + "start": 18106.84, + "end": 18110.96, + "probability": 0.5674 + }, + { + "start": 18112.54, + "end": 18112.58, + "probability": 0.1065 + }, + { + "start": 18112.74, + "end": 18112.74, + "probability": 0.3205 + }, + { + "start": 18112.74, + "end": 18112.74, + "probability": 0.0984 + }, + { + "start": 18112.74, + "end": 18114.28, + "probability": 0.0989 + }, + { + "start": 18115.58, + "end": 18117.62, + "probability": 0.1256 + }, + { + "start": 18221.0, + "end": 18221.0, + "probability": 0.0 + }, + { + "start": 18221.0, + "end": 18221.0, + "probability": 0.0 + }, + { + "start": 18221.0, + "end": 18221.0, + "probability": 0.0 + }, + { + "start": 18221.0, + "end": 18221.0, + "probability": 0.0 + }, + { + "start": 18221.0, + "end": 18221.0, + "probability": 0.0 + }, + { + "start": 18221.0, + "end": 18221.0, + "probability": 0.0 + }, + { + "start": 18221.0, + "end": 18221.0, + "probability": 0.0 + }, + { + "start": 18221.0, + "end": 18221.0, + "probability": 0.0 + }, + { + "start": 18221.0, + "end": 18221.0, + "probability": 0.0 + }, + { + "start": 18221.0, + "end": 18221.0, + "probability": 0.0 + }, + { + "start": 18221.0, + "end": 18221.0, + "probability": 0.0 + }, + { + "start": 18221.0, + "end": 18221.0, + "probability": 0.0 + }, + { + "start": 18221.0, + "end": 18221.0, + "probability": 0.0 + }, + { + "start": 18221.0, + "end": 18221.0, + "probability": 0.0 + }, + { + "start": 18221.0, + "end": 18221.0, + "probability": 0.0 + }, + { + "start": 18221.0, + "end": 18221.0, + "probability": 0.0 + }, + { + "start": 18221.0, + "end": 18221.0, + "probability": 0.0 + }, + { + "start": 18221.0, + "end": 18221.0, + "probability": 0.0 + }, + { + "start": 18221.0, + "end": 18221.0, + "probability": 0.0 + }, + { + "start": 18221.0, + "end": 18221.0, + "probability": 0.0 + }, + { + "start": 18221.0, + "end": 18221.0, + "probability": 0.0 + }, + { + "start": 18221.0, + "end": 18221.0, + "probability": 0.0 + }, + { + "start": 18221.0, + "end": 18221.0, + "probability": 0.0 + }, + { + "start": 18221.0, + "end": 18221.0, + "probability": 0.0 + }, + { + "start": 18221.0, + "end": 18221.0, + "probability": 0.0 + }, + { + "start": 18221.0, + "end": 18221.0, + "probability": 0.0 + }, + { + "start": 18221.0, + "end": 18221.0, + "probability": 0.0 + }, + { + "start": 18221.0, + "end": 18221.0, + "probability": 0.0 + }, + { + "start": 18221.0, + "end": 18221.0, + "probability": 0.0 + }, + { + "start": 18221.0, + "end": 18221.0, + "probability": 0.0 + }, + { + "start": 18221.0, + "end": 18221.0, + "probability": 0.0 + }, + { + "start": 18221.0, + "end": 18221.0, + "probability": 0.0 + }, + { + "start": 18221.0, + "end": 18221.0, + "probability": 0.0 + }, + { + "start": 18221.0, + "end": 18221.0, + "probability": 0.0 + }, + { + "start": 18221.0, + "end": 18221.0, + "probability": 0.0 + }, + { + "start": 18221.0, + "end": 18221.0, + "probability": 0.0 + }, + { + "start": 18221.0, + "end": 18221.0, + "probability": 0.0 + }, + { + "start": 18221.0, + "end": 18221.0, + "probability": 0.0 + }, + { + "start": 18221.0, + "end": 18221.0, + "probability": 0.0 + }, + { + "start": 18221.0, + "end": 18221.0, + "probability": 0.0 + }, + { + "start": 18221.0, + "end": 18221.0, + "probability": 0.0 + }, + { + "start": 18221.0, + "end": 18221.0, + "probability": 0.0 + }, + { + "start": 18221.0, + "end": 18221.0, + "probability": 0.0 + }, + { + "start": 18221.0, + "end": 18221.0, + "probability": 0.0 + }, + { + "start": 18221.0, + "end": 18221.0, + "probability": 0.0 + }, + { + "start": 18221.0, + "end": 18221.0, + "probability": 0.0 + }, + { + "start": 18221.0, + "end": 18221.0, + "probability": 0.0 + }, + { + "start": 18221.0, + "end": 18221.0, + "probability": 0.0 + }, + { + "start": 18221.0, + "end": 18221.0, + "probability": 0.0 + }, + { + "start": 18221.0, + "end": 18221.0, + "probability": 0.0 + }, + { + "start": 18221.0, + "end": 18221.0, + "probability": 0.0 + }, + { + "start": 18221.0, + "end": 18221.0, + "probability": 0.0 + }, + { + "start": 18221.0, + "end": 18221.0, + "probability": 0.0 + }, + { + "start": 18221.0, + "end": 18221.0, + "probability": 0.0 + }, + { + "start": 18221.0, + "end": 18221.0, + "probability": 0.0 + }, + { + "start": 18221.0, + "end": 18221.0, + "probability": 0.0 + }, + { + "start": 18221.0, + "end": 18221.0, + "probability": 0.0 + }, + { + "start": 18221.0, + "end": 18221.0, + "probability": 0.0 + }, + { + "start": 18221.0, + "end": 18221.0, + "probability": 0.0 + }, + { + "start": 18221.0, + "end": 18221.0, + "probability": 0.0 + }, + { + "start": 18221.0, + "end": 18221.0, + "probability": 0.0 + }, + { + "start": 18221.0, + "end": 18221.0, + "probability": 0.0 + }, + { + "start": 18221.0, + "end": 18221.0, + "probability": 0.0 + }, + { + "start": 18221.76, + "end": 18221.86, + "probability": 0.0247 + }, + { + "start": 18221.86, + "end": 18221.86, + "probability": 0.1089 + }, + { + "start": 18221.86, + "end": 18221.86, + "probability": 0.0351 + }, + { + "start": 18221.86, + "end": 18221.86, + "probability": 0.0298 + }, + { + "start": 18221.86, + "end": 18224.33, + "probability": 0.5627 + }, + { + "start": 18224.52, + "end": 18227.94, + "probability": 0.6449 + }, + { + "start": 18228.44, + "end": 18230.92, + "probability": 0.7535 + }, + { + "start": 18231.36, + "end": 18233.56, + "probability": 0.9954 + }, + { + "start": 18233.84, + "end": 18235.3, + "probability": 0.9434 + }, + { + "start": 18236.58, + "end": 18236.84, + "probability": 0.1379 + }, + { + "start": 18236.86, + "end": 18237.91, + "probability": 0.5352 + }, + { + "start": 18243.18, + "end": 18247.1, + "probability": 0.1245 + }, + { + "start": 18247.86, + "end": 18250.24, + "probability": 0.6503 + }, + { + "start": 18250.38, + "end": 18251.54, + "probability": 0.5082 + }, + { + "start": 18251.68, + "end": 18252.42, + "probability": 0.7398 + }, + { + "start": 18252.42, + "end": 18253.7, + "probability": 0.8075 + }, + { + "start": 18253.7, + "end": 18254.98, + "probability": 0.8084 + }, + { + "start": 18255.1, + "end": 18258.96, + "probability": 0.9954 + }, + { + "start": 18260.74, + "end": 18263.34, + "probability": 0.3835 + }, + { + "start": 18263.58, + "end": 18265.34, + "probability": 0.3786 + }, + { + "start": 18265.54, + "end": 18267.3, + "probability": 0.8306 + }, + { + "start": 18268.42, + "end": 18271.36, + "probability": 0.2059 + }, + { + "start": 18271.9, + "end": 18273.04, + "probability": 0.6581 + }, + { + "start": 18273.72, + "end": 18276.5, + "probability": 0.1868 + }, + { + "start": 18277.1, + "end": 18278.4, + "probability": 0.7503 + }, + { + "start": 18278.4, + "end": 18281.66, + "probability": 0.0861 + }, + { + "start": 18281.96, + "end": 18282.88, + "probability": 0.8191 + }, + { + "start": 18283.18, + "end": 18284.28, + "probability": 0.9621 + }, + { + "start": 18287.9, + "end": 18290.16, + "probability": 0.4137 + }, + { + "start": 18290.64, + "end": 18292.66, + "probability": 0.6896 + }, + { + "start": 18301.1, + "end": 18302.92, + "probability": 0.8772 + }, + { + "start": 18303.1, + "end": 18304.46, + "probability": 0.9946 + }, + { + "start": 18304.58, + "end": 18305.92, + "probability": 0.7511 + }, + { + "start": 18306.52, + "end": 18307.76, + "probability": 0.8877 + }, + { + "start": 18311.64, + "end": 18311.9, + "probability": 0.6314 + }, + { + "start": 18312.42, + "end": 18314.32, + "probability": 0.5964 + }, + { + "start": 18315.12, + "end": 18318.74, + "probability": 0.9888 + }, + { + "start": 18319.28, + "end": 18321.5, + "probability": 0.9131 + }, + { + "start": 18321.98, + "end": 18323.54, + "probability": 0.992 + }, + { + "start": 18324.38, + "end": 18325.8, + "probability": 0.9399 + }, + { + "start": 18326.42, + "end": 18327.06, + "probability": 0.7815 + }, + { + "start": 18327.62, + "end": 18327.86, + "probability": 0.1829 + }, + { + "start": 18327.86, + "end": 18328.72, + "probability": 0.4577 + }, + { + "start": 18328.72, + "end": 18329.68, + "probability": 0.6033 + }, + { + "start": 18329.76, + "end": 18329.96, + "probability": 0.2175 + }, + { + "start": 18329.96, + "end": 18331.84, + "probability": 0.824 + }, + { + "start": 18332.08, + "end": 18335.62, + "probability": 0.9708 + }, + { + "start": 18335.78, + "end": 18337.08, + "probability": 0.8567 + }, + { + "start": 18337.68, + "end": 18342.12, + "probability": 0.9666 + }, + { + "start": 18342.3, + "end": 18345.78, + "probability": 0.6093 + }, + { + "start": 18345.84, + "end": 18347.2, + "probability": 0.8456 + }, + { + "start": 18347.76, + "end": 18349.26, + "probability": 0.845 + }, + { + "start": 18349.54, + "end": 18351.48, + "probability": 0.8586 + }, + { + "start": 18351.78, + "end": 18355.48, + "probability": 0.9858 + }, + { + "start": 18355.7, + "end": 18360.84, + "probability": 0.9464 + }, + { + "start": 18361.26, + "end": 18361.42, + "probability": 0.6522 + }, + { + "start": 18363.16, + "end": 18363.92, + "probability": 0.0762 + }, + { + "start": 18363.96, + "end": 18365.76, + "probability": 0.8831 + }, + { + "start": 18366.16, + "end": 18368.52, + "probability": 0.915 + }, + { + "start": 18368.56, + "end": 18370.88, + "probability": 0.8366 + }, + { + "start": 18371.36, + "end": 18373.21, + "probability": 0.8048 + }, + { + "start": 18373.78, + "end": 18377.32, + "probability": 0.9946 + }, + { + "start": 18377.48, + "end": 18381.16, + "probability": 0.9978 + }, + { + "start": 18381.38, + "end": 18384.14, + "probability": 0.9951 + }, + { + "start": 18384.52, + "end": 18384.9, + "probability": 0.7739 + }, + { + "start": 18385.46, + "end": 18389.98, + "probability": 0.9892 + }, + { + "start": 18390.02, + "end": 18390.56, + "probability": 0.1942 + }, + { + "start": 18390.56, + "end": 18391.42, + "probability": 0.9927 + }, + { + "start": 18391.96, + "end": 18394.94, + "probability": 0.9963 + }, + { + "start": 18395.48, + "end": 18398.82, + "probability": 0.8445 + }, + { + "start": 18399.34, + "end": 18400.76, + "probability": 0.9208 + }, + { + "start": 18401.46, + "end": 18402.52, + "probability": 0.9278 + }, + { + "start": 18403.3, + "end": 18410.78, + "probability": 0.9863 + }, + { + "start": 18410.88, + "end": 18412.44, + "probability": 0.974 + }, + { + "start": 18412.64, + "end": 18413.52, + "probability": 0.952 + }, + { + "start": 18413.7, + "end": 18415.12, + "probability": 0.9229 + }, + { + "start": 18415.56, + "end": 18415.8, + "probability": 0.0764 + }, + { + "start": 18415.82, + "end": 18418.3, + "probability": 0.6343 + }, + { + "start": 18420.72, + "end": 18420.72, + "probability": 0.2573 + }, + { + "start": 18420.72, + "end": 18421.0, + "probability": 0.1758 + }, + { + "start": 18421.0, + "end": 18421.0, + "probability": 0.0893 + }, + { + "start": 18421.0, + "end": 18421.0, + "probability": 0.0922 + }, + { + "start": 18421.0, + "end": 18422.24, + "probability": 0.201 + }, + { + "start": 18423.04, + "end": 18424.36, + "probability": 0.7318 + }, + { + "start": 18424.58, + "end": 18425.38, + "probability": 0.9154 + }, + { + "start": 18426.78, + "end": 18427.82, + "probability": 0.5489 + }, + { + "start": 18428.64, + "end": 18433.5, + "probability": 0.9709 + }, + { + "start": 18433.5, + "end": 18437.24, + "probability": 0.821 + }, + { + "start": 18438.1, + "end": 18440.02, + "probability": 0.9957 + }, + { + "start": 18440.32, + "end": 18443.42, + "probability": 0.5239 + }, + { + "start": 18443.84, + "end": 18444.97, + "probability": 0.0248 + }, + { + "start": 18445.38, + "end": 18447.02, + "probability": 0.3473 + }, + { + "start": 18447.2, + "end": 18447.34, + "probability": 0.2753 + }, + { + "start": 18447.5, + "end": 18448.56, + "probability": 0.3069 + }, + { + "start": 18448.76, + "end": 18448.96, + "probability": 0.0972 + }, + { + "start": 18448.96, + "end": 18451.48, + "probability": 0.2865 + }, + { + "start": 18451.7, + "end": 18454.92, + "probability": 0.1277 + }, + { + "start": 18456.04, + "end": 18458.96, + "probability": 0.032 + }, + { + "start": 18458.96, + "end": 18461.8, + "probability": 0.0584 + }, + { + "start": 18463.02, + "end": 18463.68, + "probability": 0.4855 + }, + { + "start": 18464.3, + "end": 18466.12, + "probability": 0.3092 + }, + { + "start": 18466.12, + "end": 18466.12, + "probability": 0.2154 + }, + { + "start": 18466.12, + "end": 18466.12, + "probability": 0.2974 + }, + { + "start": 18466.12, + "end": 18467.9, + "probability": 0.0775 + }, + { + "start": 18468.8, + "end": 18469.75, + "probability": 0.0162 + }, + { + "start": 18470.6, + "end": 18471.61, + "probability": 0.1448 + }, + { + "start": 18471.94, + "end": 18473.38, + "probability": 0.1292 + }, + { + "start": 18476.24, + "end": 18477.02, + "probability": 0.0987 + }, + { + "start": 18477.02, + "end": 18477.74, + "probability": 0.4426 + }, + { + "start": 18477.74, + "end": 18477.96, + "probability": 0.0965 + }, + { + "start": 18478.0, + "end": 18480.02, + "probability": 0.037 + }, + { + "start": 18480.16, + "end": 18480.74, + "probability": 0.164 + }, + { + "start": 18480.8, + "end": 18481.9, + "probability": 0.0823 + }, + { + "start": 18481.94, + "end": 18484.3, + "probability": 0.0351 + }, + { + "start": 18484.46, + "end": 18485.7, + "probability": 0.4748 + }, + { + "start": 18489.78, + "end": 18491.74, + "probability": 0.2777 + }, + { + "start": 18496.48, + "end": 18497.22, + "probability": 0.1935 + }, + { + "start": 18498.42, + "end": 18501.66, + "probability": 0.0622 + }, + { + "start": 18503.13, + "end": 18504.04, + "probability": 0.0437 + }, + { + "start": 18504.04, + "end": 18504.04, + "probability": 0.1045 + }, + { + "start": 18504.04, + "end": 18504.78, + "probability": 0.1621 + }, + { + "start": 18504.78, + "end": 18504.78, + "probability": 0.485 + }, + { + "start": 18504.78, + "end": 18504.88, + "probability": 0.1573 + }, + { + "start": 18504.96, + "end": 18504.98, + "probability": 0.4609 + }, + { + "start": 18505.0, + "end": 18505.0, + "probability": 0.0 + }, + { + "start": 18505.0, + "end": 18505.0, + "probability": 0.0 + }, + { + "start": 18505.0, + "end": 18505.0, + "probability": 0.0 + }, + { + "start": 18505.0, + "end": 18505.0, + "probability": 0.0 + }, + { + "start": 18505.0, + "end": 18505.0, + "probability": 0.0 + }, + { + "start": 18505.0, + "end": 18505.0, + "probability": 0.0 + }, + { + "start": 18505.0, + "end": 18505.0, + "probability": 0.0 + }, + { + "start": 18505.0, + "end": 18505.0, + "probability": 0.0 + }, + { + "start": 18505.0, + "end": 18505.0, + "probability": 0.0 + }, + { + "start": 18509.1, + "end": 18509.7, + "probability": 0.5119 + }, + { + "start": 18509.87, + "end": 18512.72, + "probability": 0.8112 + }, + { + "start": 18513.3, + "end": 18514.32, + "probability": 0.6517 + }, + { + "start": 18514.32, + "end": 18516.56, + "probability": 0.9355 + }, + { + "start": 18517.32, + "end": 18522.58, + "probability": 0.9338 + }, + { + "start": 18523.4, + "end": 18527.18, + "probability": 0.9825 + }, + { + "start": 18527.5, + "end": 18528.0, + "probability": 0.5793 + }, + { + "start": 18528.78, + "end": 18532.48, + "probability": 0.8881 + }, + { + "start": 18533.04, + "end": 18534.52, + "probability": 0.8301 + }, + { + "start": 18535.48, + "end": 18539.56, + "probability": 0.9834 + }, + { + "start": 18539.68, + "end": 18543.78, + "probability": 0.7866 + }, + { + "start": 18544.44, + "end": 18545.34, + "probability": 0.8918 + }, + { + "start": 18545.52, + "end": 18547.22, + "probability": 0.9551 + }, + { + "start": 18547.34, + "end": 18549.86, + "probability": 0.9025 + }, + { + "start": 18550.34, + "end": 18552.24, + "probability": 0.946 + }, + { + "start": 18553.14, + "end": 18554.76, + "probability": 0.9707 + }, + { + "start": 18554.86, + "end": 18560.16, + "probability": 0.9425 + }, + { + "start": 18560.8, + "end": 18561.92, + "probability": 0.9956 + }, + { + "start": 18563.4, + "end": 18566.84, + "probability": 0.7792 + }, + { + "start": 18568.02, + "end": 18568.2, + "probability": 0.326 + }, + { + "start": 18568.98, + "end": 18569.9, + "probability": 0.9795 + }, + { + "start": 18571.24, + "end": 18577.86, + "probability": 0.9263 + }, + { + "start": 18578.08, + "end": 18580.74, + "probability": 0.8881 + }, + { + "start": 18580.84, + "end": 18583.1, + "probability": 0.8499 + }, + { + "start": 18583.68, + "end": 18584.2, + "probability": 0.1213 + }, + { + "start": 18584.2, + "end": 18584.2, + "probability": 0.2248 + }, + { + "start": 18584.2, + "end": 18585.26, + "probability": 0.5536 + }, + { + "start": 18585.5, + "end": 18588.06, + "probability": 0.5783 + }, + { + "start": 18588.18, + "end": 18589.66, + "probability": 0.1491 + }, + { + "start": 18589.8, + "end": 18592.96, + "probability": 0.5039 + }, + { + "start": 18593.22, + "end": 18595.2, + "probability": 0.5994 + }, + { + "start": 18595.74, + "end": 18597.06, + "probability": 0.148 + }, + { + "start": 18597.06, + "end": 18597.9, + "probability": 0.7581 + }, + { + "start": 18598.0, + "end": 18599.74, + "probability": 0.7818 + }, + { + "start": 18600.32, + "end": 18601.66, + "probability": 0.1729 + }, + { + "start": 18601.74, + "end": 18602.08, + "probability": 0.0598 + }, + { + "start": 18602.08, + "end": 18605.44, + "probability": 0.3469 + }, + { + "start": 18606.96, + "end": 18607.42, + "probability": 0.0175 + }, + { + "start": 18607.5, + "end": 18608.34, + "probability": 0.5583 + }, + { + "start": 18608.78, + "end": 18610.44, + "probability": 0.4622 + }, + { + "start": 18610.62, + "end": 18612.34, + "probability": 0.791 + }, + { + "start": 18612.5, + "end": 18613.8, + "probability": 0.1524 + }, + { + "start": 18613.9, + "end": 18615.04, + "probability": 0.4701 + }, + { + "start": 18615.06, + "end": 18617.7, + "probability": 0.1632 + }, + { + "start": 18618.02, + "end": 18618.99, + "probability": 0.6371 + }, + { + "start": 18619.32, + "end": 18619.4, + "probability": 0.0133 + }, + { + "start": 18619.4, + "end": 18620.93, + "probability": 0.5152 + }, + { + "start": 18621.08, + "end": 18622.42, + "probability": 0.7108 + }, + { + "start": 18622.72, + "end": 18623.96, + "probability": 0.6403 + }, + { + "start": 18624.0, + "end": 18624.98, + "probability": 0.0742 + }, + { + "start": 18624.98, + "end": 18626.12, + "probability": 0.8175 + }, + { + "start": 18626.16, + "end": 18626.76, + "probability": 0.7617 + }, + { + "start": 18627.34, + "end": 18627.62, + "probability": 0.7418 + }, + { + "start": 18627.72, + "end": 18629.38, + "probability": 0.137 + }, + { + "start": 18629.38, + "end": 18630.94, + "probability": 0.0247 + }, + { + "start": 18630.94, + "end": 18632.9, + "probability": 0.4582 + }, + { + "start": 18633.18, + "end": 18634.58, + "probability": 0.5918 + }, + { + "start": 18634.82, + "end": 18634.84, + "probability": 0.2724 + }, + { + "start": 18634.84, + "end": 18635.78, + "probability": 0.7798 + }, + { + "start": 18635.88, + "end": 18637.4, + "probability": 0.1721 + }, + { + "start": 18638.18, + "end": 18640.96, + "probability": 0.1037 + }, + { + "start": 18641.62, + "end": 18641.64, + "probability": 0.0065 + }, + { + "start": 18641.68, + "end": 18641.68, + "probability": 0.3389 + }, + { + "start": 18641.72, + "end": 18642.32, + "probability": 0.4532 + }, + { + "start": 18642.32, + "end": 18644.36, + "probability": 0.163 + }, + { + "start": 18646.38, + "end": 18648.2, + "probability": 0.0122 + }, + { + "start": 18648.2, + "end": 18648.2, + "probability": 0.1472 + }, + { + "start": 18648.2, + "end": 18648.24, + "probability": 0.1958 + }, + { + "start": 18648.24, + "end": 18649.44, + "probability": 0.1218 + }, + { + "start": 18649.62, + "end": 18650.26, + "probability": 0.3017 + }, + { + "start": 18650.4, + "end": 18651.84, + "probability": 0.2802 + }, + { + "start": 18653.26, + "end": 18653.92, + "probability": 0.7136 + }, + { + "start": 18653.94, + "end": 18653.96, + "probability": 0.1913 + }, + { + "start": 18654.32, + "end": 18655.58, + "probability": 0.0414 + }, + { + "start": 18655.62, + "end": 18656.44, + "probability": 0.3119 + }, + { + "start": 18656.44, + "end": 18658.02, + "probability": 0.1483 + }, + { + "start": 18658.42, + "end": 18663.26, + "probability": 0.8433 + }, + { + "start": 18663.44, + "end": 18665.41, + "probability": 0.8453 + }, + { + "start": 18665.72, + "end": 18668.63, + "probability": 0.7241 + }, + { + "start": 18669.5, + "end": 18674.02, + "probability": 0.9893 + }, + { + "start": 18674.76, + "end": 18677.8, + "probability": 0.7971 + }, + { + "start": 18677.8, + "end": 18683.31, + "probability": 0.8931 + }, + { + "start": 18683.6, + "end": 18685.72, + "probability": 0.8301 + }, + { + "start": 18685.98, + "end": 18689.8, + "probability": 0.9423 + }, + { + "start": 18690.66, + "end": 18692.98, + "probability": 0.8376 + }, + { + "start": 18693.04, + "end": 18695.3, + "probability": 0.9868 + }, + { + "start": 18695.3, + "end": 18698.82, + "probability": 0.9895 + }, + { + "start": 18699.98, + "end": 18706.06, + "probability": 0.9758 + }, + { + "start": 18707.16, + "end": 18709.4, + "probability": 0.6882 + }, + { + "start": 18709.54, + "end": 18710.06, + "probability": 0.4826 + }, + { + "start": 18711.26, + "end": 18712.88, + "probability": 0.9873 + }, + { + "start": 18713.08, + "end": 18717.0, + "probability": 0.9624 + }, + { + "start": 18717.38, + "end": 18721.12, + "probability": 0.7052 + }, + { + "start": 18721.84, + "end": 18723.46, + "probability": 0.8871 + }, + { + "start": 18723.64, + "end": 18725.48, + "probability": 0.9358 + }, + { + "start": 18725.96, + "end": 18728.86, + "probability": 0.9604 + }, + { + "start": 18729.14, + "end": 18730.4, + "probability": 0.8758 + }, + { + "start": 18730.82, + "end": 18733.16, + "probability": 0.8368 + }, + { + "start": 18733.54, + "end": 18737.72, + "probability": 0.7168 + }, + { + "start": 18737.85, + "end": 18740.29, + "probability": 0.5257 + }, + { + "start": 18740.98, + "end": 18745.76, + "probability": 0.8967 + }, + { + "start": 18746.38, + "end": 18750.04, + "probability": 0.9302 + }, + { + "start": 18750.56, + "end": 18753.94, + "probability": 0.8 + }, + { + "start": 18754.62, + "end": 18756.22, + "probability": 0.9315 + }, + { + "start": 18756.42, + "end": 18758.68, + "probability": 0.4451 + }, + { + "start": 18758.68, + "end": 18759.28, + "probability": 0.1509 + }, + { + "start": 18759.28, + "end": 18759.5, + "probability": 0.6045 + }, + { + "start": 18759.58, + "end": 18760.48, + "probability": 0.4477 + }, + { + "start": 18761.04, + "end": 18763.56, + "probability": 0.8649 + }, + { + "start": 18764.02, + "end": 18767.18, + "probability": 0.6871 + }, + { + "start": 18767.18, + "end": 18770.56, + "probability": 0.9548 + }, + { + "start": 18770.86, + "end": 18772.18, + "probability": 0.7644 + }, + { + "start": 18772.66, + "end": 18773.27, + "probability": 0.7604 + }, + { + "start": 18773.64, + "end": 18776.38, + "probability": 0.8375 + }, + { + "start": 18776.54, + "end": 18776.78, + "probability": 0.7312 + }, + { + "start": 18778.12, + "end": 18778.64, + "probability": 0.5366 + }, + { + "start": 18778.74, + "end": 18781.57, + "probability": 0.9365 + }, + { + "start": 18783.27, + "end": 18786.44, + "probability": 0.4061 + }, + { + "start": 18788.14, + "end": 18790.5, + "probability": 0.8334 + }, + { + "start": 18790.56, + "end": 18791.08, + "probability": 0.7601 + }, + { + "start": 18792.24, + "end": 18793.84, + "probability": 0.1232 + }, + { + "start": 18794.16, + "end": 18794.52, + "probability": 0.2499 + }, + { + "start": 18794.52, + "end": 18795.92, + "probability": 0.861 + }, + { + "start": 18796.12, + "end": 18797.12, + "probability": 0.0435 + }, + { + "start": 18800.02, + "end": 18801.14, + "probability": 0.1296 + }, + { + "start": 18803.22, + "end": 18805.06, + "probability": 0.8202 + }, + { + "start": 18812.38, + "end": 18814.98, + "probability": 0.996 + }, + { + "start": 18816.78, + "end": 18818.56, + "probability": 0.8596 + }, + { + "start": 18819.4, + "end": 18824.02, + "probability": 0.9663 + }, + { + "start": 18824.66, + "end": 18826.78, + "probability": 0.9824 + }, + { + "start": 18827.88, + "end": 18832.72, + "probability": 0.7822 + }, + { + "start": 18832.8, + "end": 18835.08, + "probability": 0.9201 + }, + { + "start": 18835.32, + "end": 18838.16, + "probability": 0.9954 + }, + { + "start": 18838.88, + "end": 18841.02, + "probability": 0.7885 + }, + { + "start": 18841.14, + "end": 18843.02, + "probability": 0.1204 + }, + { + "start": 18843.02, + "end": 18846.22, + "probability": 0.492 + }, + { + "start": 18846.98, + "end": 18847.0, + "probability": 0.0183 + }, + { + "start": 18847.0, + "end": 18848.19, + "probability": 0.2403 + }, + { + "start": 18849.82, + "end": 18851.28, + "probability": 0.7939 + }, + { + "start": 18851.38, + "end": 18854.44, + "probability": 0.9314 + }, + { + "start": 18854.56, + "end": 18856.68, + "probability": 0.9877 + }, + { + "start": 18857.16, + "end": 18858.7, + "probability": 0.9254 + }, + { + "start": 18859.06, + "end": 18860.98, + "probability": 0.9456 + }, + { + "start": 18861.52, + "end": 18865.64, + "probability": 0.924 + }, + { + "start": 18865.72, + "end": 18866.74, + "probability": 0.9319 + }, + { + "start": 18867.32, + "end": 18871.5, + "probability": 0.9535 + }, + { + "start": 18873.2, + "end": 18876.76, + "probability": 0.8954 + }, + { + "start": 18877.1, + "end": 18878.46, + "probability": 0.9465 + }, + { + "start": 18879.2, + "end": 18882.94, + "probability": 0.9275 + }, + { + "start": 18884.34, + "end": 18885.94, + "probability": 0.9678 + }, + { + "start": 18886.64, + "end": 18888.28, + "probability": 0.8933 + }, + { + "start": 18888.32, + "end": 18889.81, + "probability": 0.9648 + }, + { + "start": 18890.2, + "end": 18891.18, + "probability": 0.6984 + }, + { + "start": 18891.96, + "end": 18892.3, + "probability": 0.6811 + }, + { + "start": 18893.6, + "end": 18894.06, + "probability": 0.6869 + }, + { + "start": 18895.34, + "end": 18896.78, + "probability": 0.9916 + }, + { + "start": 18897.78, + "end": 18899.52, + "probability": 0.871 + }, + { + "start": 18900.12, + "end": 18901.14, + "probability": 0.8077 + }, + { + "start": 18901.48, + "end": 18902.92, + "probability": 0.9261 + }, + { + "start": 18903.42, + "end": 18904.68, + "probability": 0.8128 + }, + { + "start": 18905.64, + "end": 18906.48, + "probability": 0.998 + }, + { + "start": 18907.18, + "end": 18910.08, + "probability": 0.9814 + }, + { + "start": 18911.18, + "end": 18912.32, + "probability": 0.9344 + }, + { + "start": 18912.9, + "end": 18915.42, + "probability": 0.9822 + }, + { + "start": 18916.4, + "end": 18918.66, + "probability": 0.9974 + }, + { + "start": 18919.26, + "end": 18920.92, + "probability": 0.8623 + }, + { + "start": 18921.54, + "end": 18922.93, + "probability": 0.8208 + }, + { + "start": 18923.6, + "end": 18925.96, + "probability": 0.9756 + }, + { + "start": 18926.24, + "end": 18929.2, + "probability": 0.9809 + }, + { + "start": 18929.86, + "end": 18933.3, + "probability": 0.8091 + }, + { + "start": 18933.74, + "end": 18937.56, + "probability": 0.9473 + }, + { + "start": 18939.2, + "end": 18940.96, + "probability": 0.5364 + }, + { + "start": 18941.1, + "end": 18942.7, + "probability": 0.9572 + }, + { + "start": 18942.76, + "end": 18945.01, + "probability": 0.9219 + }, + { + "start": 18946.24, + "end": 18951.18, + "probability": 0.9749 + }, + { + "start": 18952.3, + "end": 18953.62, + "probability": 0.6948 + }, + { + "start": 18953.78, + "end": 18954.32, + "probability": 0.4804 + }, + { + "start": 18954.64, + "end": 18956.4, + "probability": 0.9102 + }, + { + "start": 18957.28, + "end": 18957.5, + "probability": 0.214 + }, + { + "start": 18957.5, + "end": 18957.5, + "probability": 0.0674 + }, + { + "start": 18957.5, + "end": 18958.12, + "probability": 0.3187 + }, + { + "start": 18958.84, + "end": 18961.76, + "probability": 0.8157 + }, + { + "start": 18962.42, + "end": 18962.52, + "probability": 0.129 + }, + { + "start": 18963.24, + "end": 18964.56, + "probability": 0.2785 + }, + { + "start": 18966.12, + "end": 18966.26, + "probability": 0.1145 + }, + { + "start": 18966.26, + "end": 18966.26, + "probability": 0.1262 + }, + { + "start": 18966.26, + "end": 18966.68, + "probability": 0.3452 + }, + { + "start": 18967.62, + "end": 18967.9, + "probability": 0.1012 + }, + { + "start": 18968.54, + "end": 18970.94, + "probability": 0.1097 + }, + { + "start": 18973.34, + "end": 18975.0, + "probability": 0.2656 + }, + { + "start": 18975.24, + "end": 18975.72, + "probability": 0.0031 + }, + { + "start": 18977.52, + "end": 18979.7, + "probability": 0.2013 + }, + { + "start": 18980.36, + "end": 18981.36, + "probability": 0.0731 + }, + { + "start": 18981.54, + "end": 18982.74, + "probability": 0.404 + }, + { + "start": 18983.0, + "end": 18983.9, + "probability": 0.0413 + }, + { + "start": 18983.9, + "end": 18984.67, + "probability": 0.4466 + }, + { + "start": 18985.66, + "end": 18988.94, + "probability": 0.3083 + }, + { + "start": 18992.18, + "end": 18992.84, + "probability": 0.0302 + }, + { + "start": 18992.84, + "end": 18992.92, + "probability": 0.0833 + }, + { + "start": 18992.92, + "end": 18993.57, + "probability": 0.2656 + }, + { + "start": 18995.26, + "end": 18997.28, + "probability": 0.5854 + }, + { + "start": 18998.26, + "end": 18998.84, + "probability": 0.1239 + }, + { + "start": 18999.04, + "end": 19000.04, + "probability": 0.2675 + }, + { + "start": 19000.9, + "end": 19002.78, + "probability": 0.66 + }, + { + "start": 19003.08, + "end": 19005.54, + "probability": 0.7055 + }, + { + "start": 19005.76, + "end": 19006.24, + "probability": 0.9009 + }, + { + "start": 19006.66, + "end": 19007.66, + "probability": 0.494 + }, + { + "start": 19008.6, + "end": 19009.84, + "probability": 0.1432 + }, + { + "start": 19012.78, + "end": 19016.18, + "probability": 0.7362 + }, + { + "start": 19020.0, + "end": 19021.64, + "probability": 0.8003 + }, + { + "start": 19022.5, + "end": 19023.48, + "probability": 0.8885 + }, + { + "start": 19024.72, + "end": 19027.36, + "probability": 0.991 + }, + { + "start": 19028.28, + "end": 19031.3, + "probability": 0.9938 + }, + { + "start": 19034.34, + "end": 19035.64, + "probability": 0.5646 + }, + { + "start": 19035.64, + "end": 19036.88, + "probability": 0.7612 + }, + { + "start": 19037.04, + "end": 19038.1, + "probability": 0.891 + }, + { + "start": 19038.24, + "end": 19039.0, + "probability": 0.3157 + }, + { + "start": 19039.04, + "end": 19041.3, + "probability": 0.8374 + }, + { + "start": 19041.46, + "end": 19046.96, + "probability": 0.8007 + }, + { + "start": 19048.04, + "end": 19049.8, + "probability": 0.9594 + }, + { + "start": 19050.48, + "end": 19057.42, + "probability": 0.9956 + }, + { + "start": 19058.6, + "end": 19060.88, + "probability": 0.8572 + }, + { + "start": 19060.92, + "end": 19062.86, + "probability": 0.8973 + }, + { + "start": 19063.24, + "end": 19064.8, + "probability": 0.9972 + }, + { + "start": 19065.7, + "end": 19066.56, + "probability": 0.5306 + }, + { + "start": 19067.84, + "end": 19069.5, + "probability": 0.3723 + }, + { + "start": 19070.56, + "end": 19072.04, + "probability": 0.6573 + }, + { + "start": 19072.76, + "end": 19072.86, + "probability": 0.4498 + }, + { + "start": 19072.86, + "end": 19074.8, + "probability": 0.9493 + }, + { + "start": 19076.78, + "end": 19082.24, + "probability": 0.8652 + }, + { + "start": 19083.14, + "end": 19084.72, + "probability": 0.8532 + }, + { + "start": 19086.34, + "end": 19090.04, + "probability": 0.9963 + }, + { + "start": 19092.6, + "end": 19094.18, + "probability": 0.9497 + }, + { + "start": 19095.14, + "end": 19097.84, + "probability": 0.9731 + }, + { + "start": 19098.78, + "end": 19100.02, + "probability": 0.9993 + }, + { + "start": 19100.66, + "end": 19102.18, + "probability": 0.9913 + }, + { + "start": 19102.78, + "end": 19104.44, + "probability": 0.7432 + }, + { + "start": 19105.12, + "end": 19106.68, + "probability": 0.9878 + }, + { + "start": 19106.76, + "end": 19107.86, + "probability": 0.9304 + }, + { + "start": 19108.2, + "end": 19109.16, + "probability": 0.8764 + }, + { + "start": 19109.96, + "end": 19113.66, + "probability": 0.9895 + }, + { + "start": 19114.42, + "end": 19115.68, + "probability": 0.9468 + }, + { + "start": 19115.8, + "end": 19117.62, + "probability": 0.9285 + }, + { + "start": 19117.64, + "end": 19120.14, + "probability": 0.8683 + }, + { + "start": 19122.34, + "end": 19124.6, + "probability": 0.6639 + }, + { + "start": 19125.8, + "end": 19131.9, + "probability": 0.9873 + }, + { + "start": 19133.52, + "end": 19138.44, + "probability": 0.9927 + }, + { + "start": 19138.8, + "end": 19142.92, + "probability": 0.59 + }, + { + "start": 19144.48, + "end": 19145.42, + "probability": 0.7877 + }, + { + "start": 19147.2, + "end": 19150.56, + "probability": 0.9776 + }, + { + "start": 19151.06, + "end": 19152.22, + "probability": 0.9532 + }, + { + "start": 19152.34, + "end": 19153.65, + "probability": 0.7258 + }, + { + "start": 19154.38, + "end": 19157.64, + "probability": 0.6825 + }, + { + "start": 19158.7, + "end": 19160.81, + "probability": 0.924 + }, + { + "start": 19161.62, + "end": 19162.48, + "probability": 0.9252 + }, + { + "start": 19163.02, + "end": 19166.82, + "probability": 0.952 + }, + { + "start": 19168.38, + "end": 19169.7, + "probability": 0.9707 + }, + { + "start": 19170.34, + "end": 19171.84, + "probability": 0.9561 + }, + { + "start": 19172.76, + "end": 19175.96, + "probability": 0.9956 + }, + { + "start": 19176.3, + "end": 19177.15, + "probability": 0.9702 + }, + { + "start": 19178.04, + "end": 19181.26, + "probability": 0.7145 + }, + { + "start": 19181.64, + "end": 19183.24, + "probability": 0.4726 + }, + { + "start": 19183.74, + "end": 19186.46, + "probability": 0.8558 + }, + { + "start": 19187.1, + "end": 19190.24, + "probability": 0.8813 + }, + { + "start": 19191.28, + "end": 19195.08, + "probability": 0.8808 + }, + { + "start": 19195.68, + "end": 19199.3, + "probability": 0.8735 + }, + { + "start": 19199.84, + "end": 19200.88, + "probability": 0.8979 + }, + { + "start": 19201.5, + "end": 19202.44, + "probability": 0.8019 + }, + { + "start": 19204.0, + "end": 19204.78, + "probability": 0.8146 + }, + { + "start": 19206.16, + "end": 19213.14, + "probability": 0.9232 + }, + { + "start": 19213.9, + "end": 19214.3, + "probability": 0.4658 + }, + { + "start": 19214.36, + "end": 19216.44, + "probability": 0.9907 + }, + { + "start": 19216.82, + "end": 19218.9, + "probability": 0.9164 + }, + { + "start": 19220.12, + "end": 19222.32, + "probability": 0.6016 + }, + { + "start": 19222.94, + "end": 19227.06, + "probability": 0.8989 + }, + { + "start": 19227.32, + "end": 19228.96, + "probability": 0.7263 + }, + { + "start": 19229.26, + "end": 19230.08, + "probability": 0.8939 + }, + { + "start": 19230.68, + "end": 19231.46, + "probability": 0.9189 + }, + { + "start": 19231.52, + "end": 19232.52, + "probability": 0.9431 + }, + { + "start": 19232.86, + "end": 19233.8, + "probability": 0.7106 + }, + { + "start": 19234.02, + "end": 19234.7, + "probability": 0.7749 + }, + { + "start": 19235.46, + "end": 19236.74, + "probability": 0.9553 + }, + { + "start": 19237.58, + "end": 19239.24, + "probability": 0.9162 + }, + { + "start": 19240.36, + "end": 19242.96, + "probability": 0.9695 + }, + { + "start": 19243.16, + "end": 19243.52, + "probability": 0.5551 + }, + { + "start": 19243.92, + "end": 19245.24, + "probability": 0.9776 + }, + { + "start": 19245.38, + "end": 19246.16, + "probability": 0.7401 + }, + { + "start": 19246.52, + "end": 19247.98, + "probability": 0.899 + }, + { + "start": 19248.06, + "end": 19249.08, + "probability": 0.9184 + }, + { + "start": 19249.18, + "end": 19249.76, + "probability": 0.8854 + }, + { + "start": 19250.12, + "end": 19250.76, + "probability": 0.8628 + }, + { + "start": 19252.14, + "end": 19257.94, + "probability": 0.9922 + }, + { + "start": 19258.98, + "end": 19262.84, + "probability": 0.9648 + }, + { + "start": 19263.44, + "end": 19265.9, + "probability": 0.9603 + }, + { + "start": 19266.58, + "end": 19268.1, + "probability": 0.4428 + }, + { + "start": 19268.58, + "end": 19269.78, + "probability": 0.8833 + }, + { + "start": 19270.26, + "end": 19274.68, + "probability": 0.7382 + }, + { + "start": 19275.7, + "end": 19277.4, + "probability": 0.2168 + }, + { + "start": 19278.38, + "end": 19278.38, + "probability": 0.0424 + }, + { + "start": 19278.38, + "end": 19278.38, + "probability": 0.1613 + }, + { + "start": 19278.38, + "end": 19279.46, + "probability": 0.0404 + }, + { + "start": 19283.92, + "end": 19285.84, + "probability": 0.7049 + }, + { + "start": 19286.26, + "end": 19289.72, + "probability": 0.955 + }, + { + "start": 19289.84, + "end": 19292.03, + "probability": 0.8856 + }, + { + "start": 19293.1, + "end": 19293.8, + "probability": 0.9839 + }, + { + "start": 19295.06, + "end": 19298.18, + "probability": 0.9988 + }, + { + "start": 19298.76, + "end": 19300.56, + "probability": 0.999 + }, + { + "start": 19302.0, + "end": 19302.0, + "probability": 0.1092 + }, + { + "start": 19302.0, + "end": 19303.68, + "probability": 0.9964 + }, + { + "start": 19304.54, + "end": 19305.92, + "probability": 0.6368 + }, + { + "start": 19306.24, + "end": 19309.8, + "probability": 0.978 + }, + { + "start": 19310.12, + "end": 19310.34, + "probability": 0.1267 + }, + { + "start": 19310.34, + "end": 19316.02, + "probability": 0.9536 + }, + { + "start": 19317.16, + "end": 19318.5, + "probability": 0.7439 + }, + { + "start": 19318.52, + "end": 19319.44, + "probability": 0.6617 + }, + { + "start": 19319.54, + "end": 19320.55, + "probability": 0.9956 + }, + { + "start": 19321.74, + "end": 19322.08, + "probability": 0.7093 + }, + { + "start": 19322.7, + "end": 19325.1, + "probability": 0.8633 + }, + { + "start": 19325.34, + "end": 19325.76, + "probability": 0.9419 + }, + { + "start": 19325.82, + "end": 19329.02, + "probability": 0.9759 + }, + { + "start": 19329.58, + "end": 19331.94, + "probability": 0.939 + }, + { + "start": 19332.28, + "end": 19336.9, + "probability": 0.934 + }, + { + "start": 19337.28, + "end": 19338.02, + "probability": 0.6699 + }, + { + "start": 19338.28, + "end": 19341.86, + "probability": 0.9539 + }, + { + "start": 19342.22, + "end": 19344.26, + "probability": 0.8738 + }, + { + "start": 19344.8, + "end": 19347.74, + "probability": 0.9736 + }, + { + "start": 19348.12, + "end": 19348.34, + "probability": 0.0271 + }, + { + "start": 19348.38, + "end": 19351.66, + "probability": 0.9067 + }, + { + "start": 19352.08, + "end": 19355.16, + "probability": 0.5717 + }, + { + "start": 19355.62, + "end": 19357.54, + "probability": 0.4014 + }, + { + "start": 19357.9, + "end": 19358.96, + "probability": 0.0167 + }, + { + "start": 19358.96, + "end": 19361.12, + "probability": 0.3499 + }, + { + "start": 19361.7, + "end": 19365.14, + "probability": 0.849 + }, + { + "start": 19365.44, + "end": 19368.96, + "probability": 0.5883 + }, + { + "start": 19369.32, + "end": 19370.7, + "probability": 0.4015 + }, + { + "start": 19370.72, + "end": 19372.36, + "probability": 0.9452 + }, + { + "start": 19372.8, + "end": 19373.36, + "probability": 0.472 + }, + { + "start": 19374.08, + "end": 19377.64, + "probability": 0.9497 + }, + { + "start": 19378.2, + "end": 19379.9, + "probability": 0.9172 + }, + { + "start": 19380.46, + "end": 19382.74, + "probability": 0.957 + }, + { + "start": 19382.8, + "end": 19387.72, + "probability": 0.8712 + }, + { + "start": 19389.2, + "end": 19391.26, + "probability": 0.9429 + }, + { + "start": 19391.54, + "end": 19392.3, + "probability": 0.7594 + }, + { + "start": 19392.66, + "end": 19396.24, + "probability": 0.8906 + }, + { + "start": 19396.24, + "end": 19399.36, + "probability": 0.9911 + }, + { + "start": 19399.64, + "end": 19404.46, + "probability": 0.9741 + }, + { + "start": 19405.18, + "end": 19406.12, + "probability": 0.7805 + }, + { + "start": 19407.38, + "end": 19409.04, + "probability": 0.9556 + }, + { + "start": 19409.2, + "end": 19411.6, + "probability": 0.6785 + }, + { + "start": 19412.28, + "end": 19414.88, + "probability": 0.7222 + }, + { + "start": 19416.14, + "end": 19418.54, + "probability": 0.618 + }, + { + "start": 19419.54, + "end": 19422.96, + "probability": 0.999 + }, + { + "start": 19422.96, + "end": 19426.7, + "probability": 0.8733 + }, + { + "start": 19427.14, + "end": 19427.7, + "probability": 0.1727 + }, + { + "start": 19427.7, + "end": 19430.02, + "probability": 0.8003 + }, + { + "start": 19430.12, + "end": 19433.54, + "probability": 0.8539 + }, + { + "start": 19433.66, + "end": 19435.02, + "probability": 0.9296 + }, + { + "start": 19435.1, + "end": 19438.0, + "probability": 0.545 + }, + { + "start": 19438.06, + "end": 19438.9, + "probability": 0.6636 + }, + { + "start": 19439.24, + "end": 19441.9, + "probability": 0.3712 + }, + { + "start": 19442.94, + "end": 19443.3, + "probability": 0.106 + }, + { + "start": 19443.44, + "end": 19446.1, + "probability": 0.0333 + }, + { + "start": 19446.9, + "end": 19448.5, + "probability": 0.7093 + }, + { + "start": 19455.02, + "end": 19457.81, + "probability": 0.6108 + }, + { + "start": 19472.02, + "end": 19474.62, + "probability": 0.7227 + }, + { + "start": 19474.62, + "end": 19475.33, + "probability": 0.6861 + }, + { + "start": 19475.98, + "end": 19481.24, + "probability": 0.9377 + }, + { + "start": 19482.94, + "end": 19484.1, + "probability": 0.6715 + }, + { + "start": 19484.82, + "end": 19487.48, + "probability": 0.9455 + }, + { + "start": 19487.96, + "end": 19490.32, + "probability": 0.5693 + }, + { + "start": 19490.74, + "end": 19494.54, + "probability": 0.9356 + }, + { + "start": 19494.62, + "end": 19495.9, + "probability": 0.5576 + }, + { + "start": 19495.92, + "end": 19496.02, + "probability": 0.7628 + }, + { + "start": 19497.34, + "end": 19500.04, + "probability": 0.9972 + }, + { + "start": 19500.84, + "end": 19504.06, + "probability": 0.9995 + }, + { + "start": 19504.92, + "end": 19506.1, + "probability": 0.9759 + }, + { + "start": 19507.18, + "end": 19511.84, + "probability": 0.9946 + }, + { + "start": 19512.68, + "end": 19515.32, + "probability": 0.9938 + }, + { + "start": 19515.88, + "end": 19519.0, + "probability": 0.995 + }, + { + "start": 19519.86, + "end": 19520.16, + "probability": 0.7156 + }, + { + "start": 19520.28, + "end": 19521.06, + "probability": 0.7876 + }, + { + "start": 19521.14, + "end": 19523.9, + "probability": 0.9924 + }, + { + "start": 19525.44, + "end": 19527.58, + "probability": 0.762 + }, + { + "start": 19528.24, + "end": 19534.44, + "probability": 0.9203 + }, + { + "start": 19534.62, + "end": 19534.96, + "probability": 0.9225 + }, + { + "start": 19535.06, + "end": 19537.76, + "probability": 0.9305 + }, + { + "start": 19539.32, + "end": 19542.94, + "probability": 0.9176 + }, + { + "start": 19543.72, + "end": 19544.74, + "probability": 0.8585 + }, + { + "start": 19545.98, + "end": 19546.68, + "probability": 0.7367 + }, + { + "start": 19547.84, + "end": 19550.32, + "probability": 0.9099 + }, + { + "start": 19551.52, + "end": 19556.9, + "probability": 0.9644 + }, + { + "start": 19558.1, + "end": 19562.92, + "probability": 0.9801 + }, + { + "start": 19564.08, + "end": 19565.22, + "probability": 0.9871 + }, + { + "start": 19566.12, + "end": 19568.5, + "probability": 0.8267 + }, + { + "start": 19569.36, + "end": 19571.38, + "probability": 0.956 + }, + { + "start": 19571.96, + "end": 19573.76, + "probability": 0.703 + }, + { + "start": 19574.68, + "end": 19574.82, + "probability": 0.0386 + }, + { + "start": 19574.82, + "end": 19576.48, + "probability": 0.9498 + }, + { + "start": 19576.58, + "end": 19579.44, + "probability": 0.9889 + }, + { + "start": 19580.52, + "end": 19586.26, + "probability": 0.8864 + }, + { + "start": 19586.26, + "end": 19589.7, + "probability": 0.9829 + }, + { + "start": 19590.98, + "end": 19591.42, + "probability": 0.7903 + }, + { + "start": 19592.64, + "end": 19594.56, + "probability": 0.9926 + }, + { + "start": 19595.08, + "end": 19599.0, + "probability": 0.9954 + }, + { + "start": 19599.22, + "end": 19599.48, + "probability": 0.1499 + }, + { + "start": 19600.06, + "end": 19600.72, + "probability": 0.8266 + }, + { + "start": 19601.96, + "end": 19603.56, + "probability": 0.7598 + }, + { + "start": 19604.9, + "end": 19604.9, + "probability": 0.318 + }, + { + "start": 19604.9, + "end": 19605.46, + "probability": 0.5503 + }, + { + "start": 19610.15, + "end": 19610.83, + "probability": 0.1533 + }, + { + "start": 19612.88, + "end": 19613.62, + "probability": 0.5841 + }, + { + "start": 19613.62, + "end": 19614.18, + "probability": 0.7067 + }, + { + "start": 19614.28, + "end": 19614.5, + "probability": 0.8031 + }, + { + "start": 19614.56, + "end": 19616.8, + "probability": 0.8141 + }, + { + "start": 19617.04, + "end": 19619.37, + "probability": 0.9838 + }, + { + "start": 19619.72, + "end": 19623.22, + "probability": 0.9893 + }, + { + "start": 19623.78, + "end": 19626.06, + "probability": 0.9901 + }, + { + "start": 19627.1, + "end": 19628.06, + "probability": 0.8754 + }, + { + "start": 19628.18, + "end": 19631.72, + "probability": 0.9878 + }, + { + "start": 19633.38, + "end": 19634.62, + "probability": 0.5008 + }, + { + "start": 19634.76, + "end": 19635.78, + "probability": 0.8213 + }, + { + "start": 19635.88, + "end": 19636.42, + "probability": 0.5638 + }, + { + "start": 19637.24, + "end": 19639.5, + "probability": 0.8877 + }, + { + "start": 19639.82, + "end": 19642.34, + "probability": 0.9425 + }, + { + "start": 19642.52, + "end": 19643.8, + "probability": 0.9926 + }, + { + "start": 19644.2, + "end": 19645.28, + "probability": 0.9821 + }, + { + "start": 19646.52, + "end": 19647.7, + "probability": 0.916 + }, + { + "start": 19648.12, + "end": 19650.12, + "probability": 0.9973 + }, + { + "start": 19650.42, + "end": 19652.92, + "probability": 0.9766 + }, + { + "start": 19654.23, + "end": 19656.94, + "probability": 0.5721 + }, + { + "start": 19657.58, + "end": 19659.66, + "probability": 0.949 + }, + { + "start": 19660.3, + "end": 19662.0, + "probability": 0.9299 + }, + { + "start": 19662.8, + "end": 19665.7, + "probability": 0.9508 + }, + { + "start": 19666.36, + "end": 19668.42, + "probability": 0.9731 + }, + { + "start": 19668.54, + "end": 19669.31, + "probability": 0.9202 + }, + { + "start": 19669.68, + "end": 19674.68, + "probability": 0.9538 + }, + { + "start": 19674.78, + "end": 19675.9, + "probability": 0.8545 + }, + { + "start": 19676.54, + "end": 19678.32, + "probability": 0.9881 + }, + { + "start": 19678.36, + "end": 19680.16, + "probability": 0.9348 + }, + { + "start": 19680.48, + "end": 19681.56, + "probability": 0.7714 + }, + { + "start": 19682.1, + "end": 19685.1, + "probability": 0.9922 + }, + { + "start": 19685.22, + "end": 19686.15, + "probability": 0.9785 + }, + { + "start": 19687.02, + "end": 19689.34, + "probability": 0.9951 + }, + { + "start": 19689.4, + "end": 19690.38, + "probability": 0.9087 + }, + { + "start": 19690.46, + "end": 19695.36, + "probability": 0.9111 + }, + { + "start": 19695.7, + "end": 19696.86, + "probability": 0.9764 + }, + { + "start": 19697.26, + "end": 19700.12, + "probability": 0.994 + }, + { + "start": 19700.34, + "end": 19702.24, + "probability": 0.6215 + }, + { + "start": 19702.36, + "end": 19705.5, + "probability": 0.8191 + }, + { + "start": 19705.92, + "end": 19707.78, + "probability": 0.7939 + }, + { + "start": 19708.02, + "end": 19711.59, + "probability": 0.8106 + }, + { + "start": 19712.16, + "end": 19713.16, + "probability": 0.8956 + }, + { + "start": 19714.37, + "end": 19715.64, + "probability": 0.0114 + }, + { + "start": 19716.4, + "end": 19718.12, + "probability": 0.4547 + }, + { + "start": 19718.48, + "end": 19720.24, + "probability": 0.1931 + }, + { + "start": 19726.32, + "end": 19727.7, + "probability": 0.8018 + }, + { + "start": 19730.6, + "end": 19731.36, + "probability": 0.6607 + }, + { + "start": 19731.44, + "end": 19736.4, + "probability": 0.9945 + }, + { + "start": 19737.44, + "end": 19741.38, + "probability": 0.9842 + }, + { + "start": 19742.2, + "end": 19745.36, + "probability": 0.9631 + }, + { + "start": 19745.44, + "end": 19748.36, + "probability": 0.9675 + }, + { + "start": 19748.52, + "end": 19749.14, + "probability": 0.8893 + }, + { + "start": 19749.56, + "end": 19751.84, + "probability": 0.999 + }, + { + "start": 19752.14, + "end": 19754.4, + "probability": 0.8438 + }, + { + "start": 19755.22, + "end": 19756.97, + "probability": 0.5893 + }, + { + "start": 19757.32, + "end": 19762.5, + "probability": 0.9495 + }, + { + "start": 19763.46, + "end": 19768.37, + "probability": 0.9922 + }, + { + "start": 19768.92, + "end": 19770.36, + "probability": 0.979 + }, + { + "start": 19770.5, + "end": 19771.36, + "probability": 0.9395 + }, + { + "start": 19771.96, + "end": 19774.84, + "probability": 0.9783 + }, + { + "start": 19775.4, + "end": 19781.3, + "probability": 0.9978 + }, + { + "start": 19781.3, + "end": 19785.96, + "probability": 0.999 + }, + { + "start": 19786.06, + "end": 19786.68, + "probability": 0.71 + }, + { + "start": 19787.22, + "end": 19789.56, + "probability": 0.9602 + }, + { + "start": 19789.66, + "end": 19790.76, + "probability": 0.8769 + }, + { + "start": 19791.1, + "end": 19792.26, + "probability": 0.877 + }, + { + "start": 19792.62, + "end": 19795.38, + "probability": 0.9426 + }, + { + "start": 19795.44, + "end": 19800.74, + "probability": 0.9982 + }, + { + "start": 19800.9, + "end": 19805.04, + "probability": 0.9863 + }, + { + "start": 19805.32, + "end": 19807.84, + "probability": 0.9866 + }, + { + "start": 19808.36, + "end": 19810.54, + "probability": 0.9769 + }, + { + "start": 19811.1, + "end": 19813.58, + "probability": 0.9976 + }, + { + "start": 19814.08, + "end": 19814.34, + "probability": 0.7778 + }, + { + "start": 19814.38, + "end": 19815.44, + "probability": 0.9988 + }, + { + "start": 19816.22, + "end": 19816.76, + "probability": 0.7187 + }, + { + "start": 19817.56, + "end": 19818.78, + "probability": 0.9461 + }, + { + "start": 19818.88, + "end": 19819.56, + "probability": 0.936 + }, + { + "start": 19819.62, + "end": 19820.78, + "probability": 0.9234 + }, + { + "start": 19826.12, + "end": 19828.64, + "probability": 0.3965 + }, + { + "start": 19857.12, + "end": 19858.08, + "probability": 0.5262 + }, + { + "start": 19858.76, + "end": 19867.3, + "probability": 0.9681 + }, + { + "start": 19867.3, + "end": 19868.2, + "probability": 0.8583 + }, + { + "start": 19869.22, + "end": 19873.86, + "probability": 0.8848 + }, + { + "start": 19879.06, + "end": 19879.1, + "probability": 0.1503 + }, + { + "start": 19881.1, + "end": 19882.24, + "probability": 0.7382 + }, + { + "start": 19884.98, + "end": 19887.58, + "probability": 0.1628 + }, + { + "start": 19889.86, + "end": 19891.34, + "probability": 0.6438 + }, + { + "start": 19895.7, + "end": 19897.9, + "probability": 0.587 + }, + { + "start": 19898.7, + "end": 19900.76, + "probability": 0.5372 + }, + { + "start": 19901.28, + "end": 19902.02, + "probability": 0.918 + }, + { + "start": 19902.06, + "end": 19902.64, + "probability": 0.8317 + }, + { + "start": 19903.14, + "end": 19903.68, + "probability": 0.5948 + }, + { + "start": 19903.7, + "end": 19904.96, + "probability": 0.5995 + }, + { + "start": 19905.34, + "end": 19910.44, + "probability": 0.9345 + }, + { + "start": 19910.86, + "end": 19915.22, + "probability": 0.9901 + }, + { + "start": 19915.4, + "end": 19916.22, + "probability": 0.8356 + }, + { + "start": 19916.7, + "end": 19917.82, + "probability": 0.9189 + }, + { + "start": 19918.28, + "end": 19918.7, + "probability": 0.5776 + }, + { + "start": 19918.74, + "end": 19919.66, + "probability": 0.911 + }, + { + "start": 19919.78, + "end": 19921.18, + "probability": 0.9784 + }, + { + "start": 19921.2, + "end": 19923.72, + "probability": 0.9565 + }, + { + "start": 19924.08, + "end": 19925.96, + "probability": 0.998 + }, + { + "start": 19926.04, + "end": 19927.8, + "probability": 0.9866 + }, + { + "start": 19928.04, + "end": 19932.6, + "probability": 0.8923 + }, + { + "start": 19933.02, + "end": 19935.1, + "probability": 0.8419 + }, + { + "start": 19935.68, + "end": 19940.44, + "probability": 0.9678 + }, + { + "start": 19940.92, + "end": 19945.76, + "probability": 0.8505 + }, + { + "start": 19946.66, + "end": 19948.54, + "probability": 0.2215 + }, + { + "start": 19948.54, + "end": 19948.54, + "probability": 0.2231 + }, + { + "start": 19948.54, + "end": 19950.26, + "probability": 0.5411 + }, + { + "start": 19950.86, + "end": 19952.78, + "probability": 0.4323 + }, + { + "start": 19953.04, + "end": 19954.96, + "probability": 0.3819 + }, + { + "start": 19955.16, + "end": 19958.67, + "probability": 0.5865 + }, + { + "start": 19958.76, + "end": 19962.18, + "probability": 0.1608 + }, + { + "start": 19963.0, + "end": 19963.58, + "probability": 0.0458 + }, + { + "start": 19963.58, + "end": 19965.0, + "probability": 0.0302 + }, + { + "start": 19965.22, + "end": 19967.72, + "probability": 0.4188 + }, + { + "start": 19967.86, + "end": 19971.24, + "probability": 0.4078 + }, + { + "start": 19972.42, + "end": 19975.88, + "probability": 0.3066 + }, + { + "start": 19980.32, + "end": 19982.48, + "probability": 0.515 + }, + { + "start": 19983.46, + "end": 19983.94, + "probability": 0.0377 + }, + { + "start": 19986.64, + "end": 19990.74, + "probability": 0.1781 + }, + { + "start": 19990.8, + "end": 19990.8, + "probability": 0.0132 + }, + { + "start": 19990.84, + "end": 19990.84, + "probability": 0.3442 + }, + { + "start": 19990.84, + "end": 19990.92, + "probability": 0.0551 + }, + { + "start": 19990.92, + "end": 19994.54, + "probability": 0.904 + }, + { + "start": 19995.46, + "end": 19999.9, + "probability": 0.9569 + }, + { + "start": 20000.54, + "end": 20003.68, + "probability": 0.9429 + }, + { + "start": 20005.34, + "end": 20007.96, + "probability": 0.9707 + }, + { + "start": 20009.0, + "end": 20012.15, + "probability": 0.7412 + }, + { + "start": 20015.95, + "end": 20021.58, + "probability": 0.6743 + }, + { + "start": 20024.68, + "end": 20025.28, + "probability": 0.5411 + }, + { + "start": 20025.4, + "end": 20025.5, + "probability": 0.7788 + }, + { + "start": 20028.38, + "end": 20029.92, + "probability": 0.348 + }, + { + "start": 20031.12, + "end": 20032.78, + "probability": 0.9479 + }, + { + "start": 20032.78, + "end": 20033.28, + "probability": 0.7909 + }, + { + "start": 20033.32, + "end": 20034.14, + "probability": 0.7969 + }, + { + "start": 20034.28, + "end": 20036.0, + "probability": 0.9028 + }, + { + "start": 20036.18, + "end": 20040.42, + "probability": 0.986 + }, + { + "start": 20040.88, + "end": 20042.18, + "probability": 0.7335 + }, + { + "start": 20042.22, + "end": 20044.14, + "probability": 0.9985 + }, + { + "start": 20044.54, + "end": 20045.74, + "probability": 0.9521 + }, + { + "start": 20045.88, + "end": 20046.92, + "probability": 0.9033 + }, + { + "start": 20047.24, + "end": 20049.56, + "probability": 0.9942 + }, + { + "start": 20049.8, + "end": 20051.44, + "probability": 0.9901 + }, + { + "start": 20051.76, + "end": 20052.68, + "probability": 0.6962 + }, + { + "start": 20053.26, + "end": 20057.56, + "probability": 0.9851 + }, + { + "start": 20057.98, + "end": 20058.76, + "probability": 0.9769 + }, + { + "start": 20059.12, + "end": 20060.16, + "probability": 0.9814 + }, + { + "start": 20060.16, + "end": 20062.54, + "probability": 0.9592 + }, + { + "start": 20062.76, + "end": 20063.84, + "probability": 0.0748 + }, + { + "start": 20063.96, + "end": 20066.54, + "probability": 0.1145 + }, + { + "start": 20066.9, + "end": 20067.36, + "probability": 0.166 + }, + { + "start": 20067.36, + "end": 20067.36, + "probability": 0.0801 + }, + { + "start": 20067.36, + "end": 20068.02, + "probability": 0.5327 + }, + { + "start": 20068.8, + "end": 20069.94, + "probability": 0.3715 + }, + { + "start": 20069.94, + "end": 20070.78, + "probability": 0.4734 + }, + { + "start": 20070.92, + "end": 20072.28, + "probability": 0.6124 + }, + { + "start": 20072.56, + "end": 20073.28, + "probability": 0.053 + }, + { + "start": 20073.72, + "end": 20074.54, + "probability": 0.6901 + }, + { + "start": 20074.62, + "end": 20075.74, + "probability": 0.7178 + }, + { + "start": 20076.0, + "end": 20077.54, + "probability": 0.6757 + }, + { + "start": 20077.54, + "end": 20078.98, + "probability": 0.9478 + }, + { + "start": 20079.32, + "end": 20080.34, + "probability": 0.9619 + }, + { + "start": 20081.02, + "end": 20081.82, + "probability": 0.4307 + }, + { + "start": 20081.84, + "end": 20085.96, + "probability": 0.8184 + }, + { + "start": 20086.06, + "end": 20086.72, + "probability": 0.6672 + }, + { + "start": 20086.78, + "end": 20087.6, + "probability": 0.6183 + }, + { + "start": 20087.72, + "end": 20090.37, + "probability": 0.0276 + }, + { + "start": 20093.78, + "end": 20094.54, + "probability": 0.7438 + }, + { + "start": 20095.16, + "end": 20095.34, + "probability": 0.0722 + }, + { + "start": 20095.34, + "end": 20095.34, + "probability": 0.0504 + }, + { + "start": 20095.34, + "end": 20095.46, + "probability": 0.1489 + }, + { + "start": 20095.46, + "end": 20099.24, + "probability": 0.8689 + }, + { + "start": 20099.24, + "end": 20102.18, + "probability": 0.9556 + }, + { + "start": 20105.16, + "end": 20107.98, + "probability": 0.8503 + }, + { + "start": 20108.52, + "end": 20110.68, + "probability": 0.8825 + }, + { + "start": 20110.76, + "end": 20111.46, + "probability": 0.8478 + }, + { + "start": 20111.6, + "end": 20114.86, + "probability": 0.9971 + }, + { + "start": 20115.14, + "end": 20116.9, + "probability": 0.8913 + }, + { + "start": 20117.34, + "end": 20118.54, + "probability": 0.9672 + }, + { + "start": 20119.16, + "end": 20119.56, + "probability": 0.7296 + }, + { + "start": 20119.58, + "end": 20120.16, + "probability": 0.7428 + }, + { + "start": 20120.66, + "end": 20122.36, + "probability": 0.6724 + }, + { + "start": 20125.28, + "end": 20126.58, + "probability": 0.8398 + }, + { + "start": 20127.82, + "end": 20130.6, + "probability": 0.9902 + }, + { + "start": 20131.36, + "end": 20132.0, + "probability": 0.7419 + }, + { + "start": 20133.24, + "end": 20139.0, + "probability": 0.9648 + }, + { + "start": 20139.16, + "end": 20140.42, + "probability": 0.9771 + }, + { + "start": 20140.84, + "end": 20145.18, + "probability": 0.9949 + }, + { + "start": 20145.42, + "end": 20148.48, + "probability": 0.9857 + }, + { + "start": 20149.06, + "end": 20150.96, + "probability": 0.9633 + }, + { + "start": 20151.26, + "end": 20152.26, + "probability": 0.7957 + }, + { + "start": 20152.5, + "end": 20153.56, + "probability": 0.9641 + }, + { + "start": 20153.94, + "end": 20157.0, + "probability": 0.9316 + }, + { + "start": 20157.24, + "end": 20162.24, + "probability": 0.9841 + }, + { + "start": 20162.34, + "end": 20166.78, + "probability": 0.9983 + }, + { + "start": 20167.08, + "end": 20169.84, + "probability": 0.9965 + }, + { + "start": 20169.98, + "end": 20174.22, + "probability": 0.9987 + }, + { + "start": 20174.42, + "end": 20177.8, + "probability": 0.9814 + }, + { + "start": 20178.12, + "end": 20181.5, + "probability": 0.9927 + }, + { + "start": 20181.5, + "end": 20184.68, + "probability": 0.9857 + }, + { + "start": 20185.0, + "end": 20186.72, + "probability": 0.8506 + }, + { + "start": 20187.2, + "end": 20187.76, + "probability": 0.7458 + }, + { + "start": 20187.9, + "end": 20188.88, + "probability": 0.4909 + }, + { + "start": 20189.42, + "end": 20194.18, + "probability": 0.9724 + }, + { + "start": 20194.18, + "end": 20197.64, + "probability": 0.9951 + }, + { + "start": 20197.68, + "end": 20198.5, + "probability": 0.4069 + }, + { + "start": 20198.74, + "end": 20200.2, + "probability": 0.4167 + }, + { + "start": 20200.32, + "end": 20201.54, + "probability": 0.9749 + }, + { + "start": 20201.88, + "end": 20202.72, + "probability": 0.9504 + }, + { + "start": 20202.84, + "end": 20204.54, + "probability": 0.9333 + }, + { + "start": 20204.94, + "end": 20209.96, + "probability": 0.9925 + }, + { + "start": 20210.18, + "end": 20212.64, + "probability": 0.9868 + }, + { + "start": 20212.78, + "end": 20213.52, + "probability": 0.7764 + }, + { + "start": 20214.58, + "end": 20215.8, + "probability": 0.7153 + }, + { + "start": 20219.06, + "end": 20219.94, + "probability": 0.1127 + }, + { + "start": 20222.06, + "end": 20224.44, + "probability": 0.7389 + }, + { + "start": 20225.4, + "end": 20226.76, + "probability": 0.3615 + }, + { + "start": 20228.26, + "end": 20231.62, + "probability": 0.7001 + }, + { + "start": 20232.24, + "end": 20235.14, + "probability": 0.998 + }, + { + "start": 20235.5, + "end": 20236.8, + "probability": 0.97 + }, + { + "start": 20237.54, + "end": 20239.4, + "probability": 0.9667 + }, + { + "start": 20239.44, + "end": 20245.92, + "probability": 0.9624 + }, + { + "start": 20246.46, + "end": 20248.41, + "probability": 0.7425 + }, + { + "start": 20249.52, + "end": 20250.21, + "probability": 0.5329 + }, + { + "start": 20250.52, + "end": 20251.04, + "probability": 0.9075 + }, + { + "start": 20251.4, + "end": 20255.2, + "probability": 0.8215 + }, + { + "start": 20255.78, + "end": 20256.8, + "probability": 0.8986 + }, + { + "start": 20257.38, + "end": 20261.86, + "probability": 0.9932 + }, + { + "start": 20262.34, + "end": 20266.86, + "probability": 0.9708 + }, + { + "start": 20267.68, + "end": 20268.27, + "probability": 0.7623 + }, + { + "start": 20268.64, + "end": 20273.3, + "probability": 0.9946 + }, + { + "start": 20273.62, + "end": 20275.98, + "probability": 0.9839 + }, + { + "start": 20276.58, + "end": 20280.63, + "probability": 0.9943 + }, + { + "start": 20282.3, + "end": 20283.22, + "probability": 0.5012 + }, + { + "start": 20283.22, + "end": 20284.7, + "probability": 0.9731 + }, + { + "start": 20284.74, + "end": 20285.22, + "probability": 0.3787 + }, + { + "start": 20285.26, + "end": 20287.96, + "probability": 0.9275 + }, + { + "start": 20288.86, + "end": 20292.56, + "probability": 0.7368 + }, + { + "start": 20292.84, + "end": 20295.36, + "probability": 0.9887 + }, + { + "start": 20296.54, + "end": 20300.38, + "probability": 0.9593 + }, + { + "start": 20300.68, + "end": 20302.98, + "probability": 0.9329 + }, + { + "start": 20303.3, + "end": 20304.16, + "probability": 0.7734 + }, + { + "start": 20304.96, + "end": 20308.12, + "probability": 0.8752 + }, + { + "start": 20308.38, + "end": 20309.4, + "probability": 0.7459 + }, + { + "start": 20309.5, + "end": 20310.04, + "probability": 0.4262 + }, + { + "start": 20310.06, + "end": 20312.08, + "probability": 0.6366 + }, + { + "start": 20312.28, + "end": 20313.76, + "probability": 0.6385 + }, + { + "start": 20313.84, + "end": 20316.44, + "probability": 0.511 + }, + { + "start": 20316.52, + "end": 20318.36, + "probability": 0.6476 + }, + { + "start": 20318.44, + "end": 20321.38, + "probability": 0.8733 + }, + { + "start": 20321.5, + "end": 20324.26, + "probability": 0.9433 + }, + { + "start": 20324.94, + "end": 20324.94, + "probability": 0.0078 + }, + { + "start": 20326.82, + "end": 20327.64, + "probability": 0.3141 + }, + { + "start": 20331.24, + "end": 20331.7, + "probability": 0.5267 + }, + { + "start": 20331.78, + "end": 20332.16, + "probability": 0.3748 + }, + { + "start": 20332.78, + "end": 20332.78, + "probability": 0.0876 + }, + { + "start": 20332.78, + "end": 20333.88, + "probability": 0.2866 + }, + { + "start": 20335.06, + "end": 20336.36, + "probability": 0.5795 + }, + { + "start": 20336.52, + "end": 20337.44, + "probability": 0.6724 + }, + { + "start": 20337.66, + "end": 20339.52, + "probability": 0.9426 + }, + { + "start": 20339.7, + "end": 20340.9, + "probability": 0.9443 + }, + { + "start": 20341.36, + "end": 20343.77, + "probability": 0.7954 + }, + { + "start": 20344.44, + "end": 20346.56, + "probability": 0.7045 + }, + { + "start": 20347.12, + "end": 20347.87, + "probability": 0.8793 + }, + { + "start": 20348.56, + "end": 20349.24, + "probability": 0.7049 + }, + { + "start": 20349.48, + "end": 20351.44, + "probability": 0.9966 + }, + { + "start": 20351.7, + "end": 20353.2, + "probability": 0.8965 + }, + { + "start": 20353.5, + "end": 20356.32, + "probability": 0.9921 + }, + { + "start": 20356.58, + "end": 20356.92, + "probability": 0.5 + }, + { + "start": 20357.1, + "end": 20357.66, + "probability": 0.4697 + }, + { + "start": 20357.88, + "end": 20359.42, + "probability": 0.8553 + }, + { + "start": 20359.5, + "end": 20360.0, + "probability": 0.8369 + }, + { + "start": 20360.02, + "end": 20361.26, + "probability": 0.94 + }, + { + "start": 20361.54, + "end": 20363.46, + "probability": 0.8711 + }, + { + "start": 20363.94, + "end": 20364.38, + "probability": 0.2824 + }, + { + "start": 20364.42, + "end": 20364.8, + "probability": 0.851 + }, + { + "start": 20364.92, + "end": 20368.52, + "probability": 0.9441 + }, + { + "start": 20368.78, + "end": 20370.28, + "probability": 0.9928 + }, + { + "start": 20370.38, + "end": 20371.12, + "probability": 0.5019 + }, + { + "start": 20371.44, + "end": 20373.64, + "probability": 0.8877 + }, + { + "start": 20373.92, + "end": 20374.7, + "probability": 0.902 + }, + { + "start": 20374.7, + "end": 20375.26, + "probability": 0.701 + }, + { + "start": 20375.3, + "end": 20376.96, + "probability": 0.9487 + }, + { + "start": 20377.28, + "end": 20378.5, + "probability": 0.9937 + }, + { + "start": 20378.68, + "end": 20381.22, + "probability": 0.9531 + }, + { + "start": 20381.28, + "end": 20383.44, + "probability": 0.8516 + }, + { + "start": 20383.82, + "end": 20385.32, + "probability": 0.9766 + }, + { + "start": 20385.5, + "end": 20387.78, + "probability": 0.9797 + }, + { + "start": 20389.32, + "end": 20390.52, + "probability": 0.6953 + }, + { + "start": 20393.34, + "end": 20396.12, + "probability": 0.723 + }, + { + "start": 20398.94, + "end": 20401.72, + "probability": 0.5147 + }, + { + "start": 20402.3, + "end": 20403.3, + "probability": 0.007 + }, + { + "start": 20404.82, + "end": 20407.36, + "probability": 0.9851 + }, + { + "start": 20407.46, + "end": 20409.38, + "probability": 0.7913 + }, + { + "start": 20409.42, + "end": 20410.98, + "probability": 0.7686 + }, + { + "start": 20411.48, + "end": 20412.94, + "probability": 0.7256 + }, + { + "start": 20416.4, + "end": 20416.64, + "probability": 0.9033 + }, + { + "start": 20419.5, + "end": 20420.6, + "probability": 0.7162 + }, + { + "start": 20420.66, + "end": 20422.76, + "probability": 0.9302 + }, + { + "start": 20422.82, + "end": 20424.72, + "probability": 0.8955 + }, + { + "start": 20424.78, + "end": 20425.52, + "probability": 0.6486 + }, + { + "start": 20426.08, + "end": 20426.24, + "probability": 0.036 + }, + { + "start": 20426.24, + "end": 20426.8, + "probability": 0.0223 + }, + { + "start": 20427.3, + "end": 20427.76, + "probability": 0.7022 + }, + { + "start": 20428.45, + "end": 20431.68, + "probability": 0.9359 + }, + { + "start": 20431.76, + "end": 20432.82, + "probability": 0.9525 + }, + { + "start": 20433.38, + "end": 20438.92, + "probability": 0.9873 + }, + { + "start": 20439.82, + "end": 20442.32, + "probability": 0.9561 + }, + { + "start": 20442.86, + "end": 20447.4, + "probability": 0.981 + }, + { + "start": 20448.16, + "end": 20450.66, + "probability": 0.9829 + }, + { + "start": 20450.66, + "end": 20452.74, + "probability": 0.9969 + }, + { + "start": 20453.5, + "end": 20456.04, + "probability": 0.9803 + }, + { + "start": 20456.68, + "end": 20461.16, + "probability": 0.939 + }, + { + "start": 20461.66, + "end": 20464.78, + "probability": 0.977 + }, + { + "start": 20464.82, + "end": 20470.26, + "probability": 0.9662 + }, + { + "start": 20470.62, + "end": 20473.04, + "probability": 0.9982 + }, + { + "start": 20473.08, + "end": 20476.76, + "probability": 0.9416 + }, + { + "start": 20477.54, + "end": 20478.96, + "probability": 0.8537 + }, + { + "start": 20479.56, + "end": 20482.18, + "probability": 0.9197 + }, + { + "start": 20482.72, + "end": 20483.02, + "probability": 0.1775 + }, + { + "start": 20483.56, + "end": 20484.62, + "probability": 0.8679 + }, + { + "start": 20485.6, + "end": 20488.56, + "probability": 0.8416 + }, + { + "start": 20488.56, + "end": 20491.86, + "probability": 0.9763 + }, + { + "start": 20492.22, + "end": 20494.94, + "probability": 0.7599 + }, + { + "start": 20495.02, + "end": 20495.5, + "probability": 0.8716 + }, + { + "start": 20495.56, + "end": 20496.6, + "probability": 0.7928 + }, + { + "start": 20496.92, + "end": 20498.0, + "probability": 0.972 + }, + { + "start": 20498.38, + "end": 20500.06, + "probability": 0.9851 + }, + { + "start": 20500.48, + "end": 20504.6, + "probability": 0.9643 + }, + { + "start": 20504.72, + "end": 20504.96, + "probability": 0.6344 + }, + { + "start": 20508.76, + "end": 20508.76, + "probability": 0.4926 + }, + { + "start": 20508.78, + "end": 20510.58, + "probability": 0.7582 + }, + { + "start": 20511.02, + "end": 20512.74, + "probability": 0.6682 + }, + { + "start": 20514.36, + "end": 20518.4, + "probability": 0.7461 + }, + { + "start": 20518.6, + "end": 20520.14, + "probability": 0.6637 + }, + { + "start": 20520.44, + "end": 20520.76, + "probability": 0.7249 + }, + { + "start": 20525.94, + "end": 20527.4, + "probability": 0.5158 + }, + { + "start": 20527.4, + "end": 20528.36, + "probability": 0.4225 + }, + { + "start": 20528.36, + "end": 20529.82, + "probability": 0.5529 + }, + { + "start": 20530.28, + "end": 20533.22, + "probability": 0.0725 + }, + { + "start": 20533.42, + "end": 20536.08, + "probability": 0.3655 + }, + { + "start": 20536.08, + "end": 20538.76, + "probability": 0.1296 + }, + { + "start": 20538.92, + "end": 20539.88, + "probability": 0.8544 + }, + { + "start": 20540.36, + "end": 20541.16, + "probability": 0.3655 + }, + { + "start": 20541.38, + "end": 20544.54, + "probability": 0.3376 + }, + { + "start": 20544.54, + "end": 20545.62, + "probability": 0.1497 + }, + { + "start": 20545.84, + "end": 20547.14, + "probability": 0.1693 + }, + { + "start": 20547.14, + "end": 20550.86, + "probability": 0.0822 + }, + { + "start": 20551.06, + "end": 20552.46, + "probability": 0.1562 + }, + { + "start": 20552.96, + "end": 20553.6, + "probability": 0.53 + }, + { + "start": 20553.76, + "end": 20557.48, + "probability": 0.1992 + }, + { + "start": 20558.34, + "end": 20558.78, + "probability": 0.1144 + }, + { + "start": 20558.88, + "end": 20560.56, + "probability": 0.567 + }, + { + "start": 20560.62, + "end": 20561.64, + "probability": 0.6292 + }, + { + "start": 20561.88, + "end": 20561.88, + "probability": 0.0179 + }, + { + "start": 20563.38, + "end": 20564.32, + "probability": 0.0894 + }, + { + "start": 20565.86, + "end": 20566.94, + "probability": 0.0641 + }, + { + "start": 20567.42, + "end": 20567.84, + "probability": 0.4826 + }, + { + "start": 20575.1, + "end": 20579.54, + "probability": 0.119 + }, + { + "start": 20580.04, + "end": 20581.26, + "probability": 0.3547 + }, + { + "start": 20581.44, + "end": 20582.68, + "probability": 0.0398 + }, + { + "start": 20582.68, + "end": 20583.4, + "probability": 0.0303 + }, + { + "start": 20629.0, + "end": 20629.0, + "probability": 0.0 + }, + { + "start": 20629.0, + "end": 20629.0, + "probability": 0.0 + }, + { + "start": 20629.0, + "end": 20629.0, + "probability": 0.0 + }, + { + "start": 20629.0, + "end": 20629.0, + "probability": 0.0 + }, + { + "start": 20629.0, + "end": 20629.0, + "probability": 0.0 + }, + { + "start": 20629.0, + "end": 20629.0, + "probability": 0.0 + }, + { + "start": 20629.0, + "end": 20629.0, + "probability": 0.0 + }, + { + "start": 20629.0, + "end": 20629.0, + "probability": 0.0 + }, + { + "start": 20629.0, + "end": 20629.0, + "probability": 0.0 + }, + { + "start": 20629.0, + "end": 20629.0, + "probability": 0.0 + }, + { + "start": 20629.0, + "end": 20629.0, + "probability": 0.0 + }, + { + "start": 20629.0, + "end": 20629.0, + "probability": 0.0 + }, + { + "start": 20629.0, + "end": 20629.0, + "probability": 0.0 + }, + { + "start": 20629.0, + "end": 20629.0, + "probability": 0.0 + }, + { + "start": 20629.0, + "end": 20629.0, + "probability": 0.0 + }, + { + "start": 20629.0, + "end": 20629.0, + "probability": 0.0 + }, + { + "start": 20629.0, + "end": 20629.0, + "probability": 0.0 + }, + { + "start": 20630.38, + "end": 20633.26, + "probability": 0.0209 + }, + { + "start": 20633.36, + "end": 20633.66, + "probability": 0.0632 + }, + { + "start": 20634.54, + "end": 20638.34, + "probability": 0.0954 + }, + { + "start": 20641.88, + "end": 20644.64, + "probability": 0.0173 + }, + { + "start": 20647.08, + "end": 20648.36, + "probability": 0.0342 + }, + { + "start": 20651.62, + "end": 20653.76, + "probability": 0.1029 + }, + { + "start": 20653.94, + "end": 20655.16, + "probability": 0.1596 + }, + { + "start": 20656.04, + "end": 20657.28, + "probability": 0.5959 + }, + { + "start": 20657.78, + "end": 20660.52, + "probability": 0.0839 + }, + { + "start": 20660.66, + "end": 20661.74, + "probability": 0.0854 + }, + { + "start": 20662.14, + "end": 20662.14, + "probability": 0.1651 + }, + { + "start": 20662.14, + "end": 20663.5, + "probability": 0.2449 + }, + { + "start": 20665.54, + "end": 20667.26, + "probability": 0.3078 + }, + { + "start": 20667.26, + "end": 20668.44, + "probability": 0.3487 + }, + { + "start": 20760.0, + "end": 20760.0, + "probability": 0.0 + }, + { + "start": 20760.0, + "end": 20760.0, + "probability": 0.0 + }, + { + "start": 20760.0, + "end": 20760.0, + "probability": 0.0 + }, + { + "start": 20760.0, + "end": 20760.0, + "probability": 0.0 + }, + { + "start": 20760.0, + "end": 20760.0, + "probability": 0.0 + }, + { + "start": 20760.0, + "end": 20760.0, + "probability": 0.0 + }, + { + "start": 20760.0, + "end": 20760.0, + "probability": 0.0 + }, + { + "start": 20760.0, + "end": 20760.0, + "probability": 0.0 + }, + { + "start": 20760.0, + "end": 20760.0, + "probability": 0.0 + }, + { + "start": 20760.0, + "end": 20760.0, + "probability": 0.0 + }, + { + "start": 20760.0, + "end": 20760.0, + "probability": 0.0 + }, + { + "start": 20760.0, + "end": 20760.0, + "probability": 0.0 + }, + { + "start": 20760.0, + "end": 20760.0, + "probability": 0.0 + }, + { + "start": 20760.0, + "end": 20760.0, + "probability": 0.0 + }, + { + "start": 20760.0, + "end": 20760.0, + "probability": 0.0 + }, + { + "start": 20760.0, + "end": 20760.0, + "probability": 0.0 + }, + { + "start": 20760.0, + "end": 20760.0, + "probability": 0.0 + }, + { + "start": 20760.0, + "end": 20760.0, + "probability": 0.0 + }, + { + "start": 20760.0, + "end": 20760.0, + "probability": 0.0 + }, + { + "start": 20760.0, + "end": 20760.0, + "probability": 0.0 + }, + { + "start": 20760.0, + "end": 20760.0, + "probability": 0.0 + }, + { + "start": 20760.0, + "end": 20760.0, + "probability": 0.0 + }, + { + "start": 20760.0, + "end": 20760.0, + "probability": 0.0 + }, + { + "start": 20760.0, + "end": 20760.0, + "probability": 0.0 + }, + { + "start": 20760.0, + "end": 20760.0, + "probability": 0.0 + }, + { + "start": 20760.0, + "end": 20760.0, + "probability": 0.0 + }, + { + "start": 20760.0, + "end": 20760.0, + "probability": 0.0 + }, + { + "start": 20760.0, + "end": 20760.0, + "probability": 0.0 + }, + { + "start": 20760.0, + "end": 20760.0, + "probability": 0.0 + }, + { + "start": 20760.0, + "end": 20760.0, + "probability": 0.0 + }, + { + "start": 20760.0, + "end": 20760.0, + "probability": 0.0 + }, + { + "start": 20760.0, + "end": 20760.0, + "probability": 0.0 + }, + { + "start": 20760.0, + "end": 20760.0, + "probability": 0.0 + }, + { + "start": 20760.0, + "end": 20760.0, + "probability": 0.0 + }, + { + "start": 20760.0, + "end": 20760.0, + "probability": 0.0 + }, + { + "start": 20760.0, + "end": 20760.0, + "probability": 0.0 + }, + { + "start": 20760.0, + "end": 20760.0, + "probability": 0.0 + }, + { + "start": 20760.0, + "end": 20760.0, + "probability": 0.0 + }, + { + "start": 20760.0, + "end": 20760.0, + "probability": 0.0 + }, + { + "start": 20760.0, + "end": 20760.0, + "probability": 0.0 + }, + { + "start": 20760.44, + "end": 20765.76, + "probability": 0.9893 + }, + { + "start": 20766.56, + "end": 20768.24, + "probability": 0.9983 + }, + { + "start": 20768.84, + "end": 20772.5, + "probability": 0.9927 + }, + { + "start": 20773.88, + "end": 20775.76, + "probability": 0.999 + }, + { + "start": 20775.94, + "end": 20779.96, + "probability": 0.9919 + }, + { + "start": 20780.08, + "end": 20780.86, + "probability": 0.8646 + }, + { + "start": 20781.34, + "end": 20783.26, + "probability": 0.8095 + }, + { + "start": 20783.3, + "end": 20783.9, + "probability": 0.6228 + }, + { + "start": 20784.92, + "end": 20785.82, + "probability": 0.6571 + }, + { + "start": 20786.5, + "end": 20787.32, + "probability": 0.9414 + }, + { + "start": 20788.82, + "end": 20789.86, + "probability": 0.7245 + }, + { + "start": 20798.48, + "end": 20803.18, + "probability": 0.563 + }, + { + "start": 20803.58, + "end": 20807.2, + "probability": 0.3245 + }, + { + "start": 20807.5, + "end": 20810.86, + "probability": 0.1863 + }, + { + "start": 20811.42, + "end": 20816.24, + "probability": 0.2554 + }, + { + "start": 20816.28, + "end": 20817.9, + "probability": 0.3614 + }, + { + "start": 20818.04, + "end": 20819.58, + "probability": 0.8236 + }, + { + "start": 20819.7, + "end": 20819.98, + "probability": 0.2455 + }, + { + "start": 20819.98, + "end": 20820.56, + "probability": 0.6384 + }, + { + "start": 20828.72, + "end": 20831.86, + "probability": 0.7113 + }, + { + "start": 20832.04, + "end": 20833.13, + "probability": 0.7264 + }, + { + "start": 20833.34, + "end": 20833.64, + "probability": 0.2508 + }, + { + "start": 20833.64, + "end": 20833.78, + "probability": 0.4546 + }, + { + "start": 20833.78, + "end": 20834.08, + "probability": 0.1809 + }, + { + "start": 20834.16, + "end": 20835.15, + "probability": 0.8394 + }, + { + "start": 20836.36, + "end": 20839.96, + "probability": 0.062 + }, + { + "start": 20840.12, + "end": 20840.58, + "probability": 0.7562 + }, + { + "start": 20840.74, + "end": 20841.78, + "probability": 0.0861 + }, + { + "start": 20842.1, + "end": 20846.14, + "probability": 0.1408 + }, + { + "start": 20846.58, + "end": 20849.96, + "probability": 0.2698 + }, + { + "start": 20850.58, + "end": 20853.72, + "probability": 0.1226 + }, + { + "start": 20853.92, + "end": 20854.89, + "probability": 0.2862 + }, + { + "start": 20855.58, + "end": 20855.58, + "probability": 0.1004 + }, + { + "start": 20858.26, + "end": 20859.66, + "probability": 0.1494 + }, + { + "start": 20865.1, + "end": 20867.18, + "probability": 0.1913 + }, + { + "start": 20867.54, + "end": 20873.08, + "probability": 0.7452 + }, + { + "start": 20873.66, + "end": 20877.16, + "probability": 0.9121 + }, + { + "start": 20877.36, + "end": 20880.5, + "probability": 0.925 + }, + { + "start": 20888.04, + "end": 20891.6, + "probability": 0.5264 + }, + { + "start": 20893.19, + "end": 20895.78, + "probability": 0.6013 + }, + { + "start": 20896.06, + "end": 20898.2, + "probability": 0.981 + }, + { + "start": 20898.66, + "end": 20900.34, + "probability": 0.7228 + }, + { + "start": 20900.94, + "end": 20904.88, + "probability": 0.8178 + }, + { + "start": 20905.24, + "end": 20906.14, + "probability": 0.5203 + }, + { + "start": 20906.14, + "end": 20907.04, + "probability": 0.4851 + }, + { + "start": 20908.18, + "end": 20909.58, + "probability": 0.7389 + }, + { + "start": 20910.12, + "end": 20911.72, + "probability": 0.7561 + }, + { + "start": 20913.08, + "end": 20915.2, + "probability": 0.3157 + }, + { + "start": 20915.7, + "end": 20917.82, + "probability": 0.8109 + }, + { + "start": 20919.5, + "end": 20920.44, + "probability": 0.0568 + }, + { + "start": 20921.36, + "end": 20923.12, + "probability": 0.1327 + }, + { + "start": 20925.22, + "end": 20927.08, + "probability": 0.8635 + }, + { + "start": 20927.52, + "end": 20928.46, + "probability": 0.9899 + }, + { + "start": 20929.08, + "end": 20930.38, + "probability": 0.4943 + }, + { + "start": 20930.42, + "end": 20932.94, + "probability": 0.7637 + }, + { + "start": 20933.08, + "end": 20935.86, + "probability": 0.7311 + }, + { + "start": 20940.83, + "end": 20943.0, + "probability": 0.1359 + }, + { + "start": 20943.0, + "end": 20947.0, + "probability": 0.2754 + }, + { + "start": 20947.12, + "end": 20947.9, + "probability": 0.3253 + }, + { + "start": 20948.28, + "end": 20948.76, + "probability": 0.0125 + }, + { + "start": 20952.68, + "end": 20952.72, + "probability": 0.2602 + }, + { + "start": 20953.64, + "end": 20953.98, + "probability": 0.3708 + }, + { + "start": 20954.28, + "end": 20958.01, + "probability": 0.735 + }, + { + "start": 20958.32, + "end": 20959.58, + "probability": 0.3537 + }, + { + "start": 20959.68, + "end": 20963.06, + "probability": 0.6904 + }, + { + "start": 20963.72, + "end": 20966.82, + "probability": 0.1878 + }, + { + "start": 20968.4, + "end": 20969.78, + "probability": 0.6767 + }, + { + "start": 20970.16, + "end": 20970.94, + "probability": 0.9051 + }, + { + "start": 20971.38, + "end": 20972.8, + "probability": 0.6468 + }, + { + "start": 20973.24, + "end": 20975.38, + "probability": 0.0671 + }, + { + "start": 20976.38, + "end": 20977.8, + "probability": 0.1564 + }, + { + "start": 20978.38, + "end": 20978.84, + "probability": 0.2341 + }, + { + "start": 20979.22, + "end": 20983.3, + "probability": 0.2575 + }, + { + "start": 20983.78, + "end": 20983.78, + "probability": 0.084 + }, + { + "start": 20986.66, + "end": 20990.28, + "probability": 0.9577 + }, + { + "start": 20990.34, + "end": 20990.96, + "probability": 0.2165 + }, + { + "start": 20991.8, + "end": 20992.36, + "probability": 0.1837 + }, + { + "start": 20993.54, + "end": 20994.4, + "probability": 0.5337 + }, + { + "start": 20995.79, + "end": 20997.66, + "probability": 0.6076 + }, + { + "start": 20998.14, + "end": 21001.5, + "probability": 0.8607 + }, + { + "start": 21001.8, + "end": 21003.48, + "probability": 0.4771 + }, + { + "start": 21004.0, + "end": 21005.42, + "probability": 0.4968 + }, + { + "start": 21005.56, + "end": 21007.64, + "probability": 0.4105 + }, + { + "start": 21007.9, + "end": 21009.86, + "probability": 0.6011 + }, + { + "start": 21010.78, + "end": 21011.54, + "probability": 0.7541 + }, + { + "start": 21012.88, + "end": 21013.76, + "probability": 0.7939 + }, + { + "start": 21014.38, + "end": 21015.14, + "probability": 0.9208 + }, + { + "start": 21016.91, + "end": 21019.1, + "probability": 0.6187 + }, + { + "start": 21019.74, + "end": 21020.98, + "probability": 0.73 + }, + { + "start": 21021.04, + "end": 21024.2, + "probability": 0.8022 + }, + { + "start": 21024.4, + "end": 21026.54, + "probability": 0.5156 + }, + { + "start": 21026.78, + "end": 21028.16, + "probability": 0.8979 + }, + { + "start": 21028.26, + "end": 21029.5, + "probability": 0.7962 + }, + { + "start": 21031.76, + "end": 21034.2, + "probability": 0.0435 + }, + { + "start": 21034.2, + "end": 21037.06, + "probability": 0.9566 + }, + { + "start": 21037.28, + "end": 21038.06, + "probability": 0.6697 + }, + { + "start": 21038.4, + "end": 21040.26, + "probability": 0.7171 + }, + { + "start": 21040.34, + "end": 21041.82, + "probability": 0.937 + }, + { + "start": 21042.18, + "end": 21043.02, + "probability": 0.8151 + }, + { + "start": 21043.46, + "end": 21044.36, + "probability": 0.2342 + }, + { + "start": 21044.82, + "end": 21046.38, + "probability": 0.6957 + }, + { + "start": 21047.82, + "end": 21048.3, + "probability": 0.06 + }, + { + "start": 21048.3, + "end": 21049.36, + "probability": 0.1874 + }, + { + "start": 21049.4, + "end": 21050.24, + "probability": 0.5016 + }, + { + "start": 21051.52, + "end": 21052.7, + "probability": 0.2952 + }, + { + "start": 21053.02, + "end": 21053.6, + "probability": 0.8169 + }, + { + "start": 21054.02, + "end": 21055.1, + "probability": 0.7115 + }, + { + "start": 21055.76, + "end": 21056.38, + "probability": 0.5375 + }, + { + "start": 21056.44, + "end": 21056.92, + "probability": 0.7829 + }, + { + "start": 21057.06, + "end": 21058.14, + "probability": 0.8779 + }, + { + "start": 21058.72, + "end": 21067.8, + "probability": 0.2808 + }, + { + "start": 21068.68, + "end": 21068.68, + "probability": 0.1164 + }, + { + "start": 21068.68, + "end": 21069.16, + "probability": 0.2682 + }, + { + "start": 21069.56, + "end": 21072.86, + "probability": 0.3644 + }, + { + "start": 21072.96, + "end": 21077.28, + "probability": 0.9512 + }, + { + "start": 21077.82, + "end": 21078.94, + "probability": 0.7009 + }, + { + "start": 21078.94, + "end": 21081.16, + "probability": 0.0471 + }, + { + "start": 21082.36, + "end": 21083.0, + "probability": 0.0705 + }, + { + "start": 21083.36, + "end": 21086.0, + "probability": 0.0327 + }, + { + "start": 21086.68, + "end": 21088.0, + "probability": 0.0191 + }, + { + "start": 21090.0, + "end": 21091.6, + "probability": 0.2085 + }, + { + "start": 21091.6, + "end": 21092.38, + "probability": 0.3988 + }, + { + "start": 21092.38, + "end": 21092.38, + "probability": 0.0467 + }, + { + "start": 21092.38, + "end": 21092.59, + "probability": 0.2933 + }, + { + "start": 21100.94, + "end": 21101.74, + "probability": 0.2815 + }, + { + "start": 21103.22, + "end": 21105.42, + "probability": 0.7636 + }, + { + "start": 21105.5, + "end": 21106.22, + "probability": 0.3889 + }, + { + "start": 21106.52, + "end": 21109.26, + "probability": 0.4889 + }, + { + "start": 21109.76, + "end": 21110.34, + "probability": 0.6475 + }, + { + "start": 21110.44, + "end": 21111.04, + "probability": 0.4542 + }, + { + "start": 21111.14, + "end": 21116.66, + "probability": 0.1119 + }, + { + "start": 21116.66, + "end": 21119.28, + "probability": 0.6511 + }, + { + "start": 21119.52, + "end": 21122.44, + "probability": 0.0438 + }, + { + "start": 21122.44, + "end": 21123.58, + "probability": 0.2267 + }, + { + "start": 21123.58, + "end": 21124.82, + "probability": 0.0358 + }, + { + "start": 21126.33, + "end": 21128.7, + "probability": 0.5414 + }, + { + "start": 21128.7, + "end": 21129.32, + "probability": 0.5635 + }, + { + "start": 21129.4, + "end": 21130.02, + "probability": 0.4643 + }, + { + "start": 21130.02, + "end": 21130.98, + "probability": 0.6335 + }, + { + "start": 21131.06, + "end": 21132.16, + "probability": 0.0408 + }, + { + "start": 21143.0, + "end": 21143.0, + "probability": 0.0 + }, + { + "start": 21143.0, + "end": 21143.0, + "probability": 0.0 + }, + { + "start": 21143.0, + "end": 21143.0, + "probability": 0.0 + }, + { + "start": 21143.0, + "end": 21143.0, + "probability": 0.0 + }, + { + "start": 21143.0, + "end": 21143.0, + "probability": 0.0 + }, + { + "start": 21143.0, + "end": 21143.0, + "probability": 0.0 + }, + { + "start": 21143.0, + "end": 21143.0, + "probability": 0.0 + }, + { + "start": 21143.14, + "end": 21143.26, + "probability": 0.1412 + }, + { + "start": 21143.26, + "end": 21144.86, + "probability": 0.7097 + }, + { + "start": 21145.98, + "end": 21147.72, + "probability": 0.9758 + }, + { + "start": 21149.18, + "end": 21152.96, + "probability": 0.9818 + }, + { + "start": 21152.96, + "end": 21156.2, + "probability": 0.9567 + }, + { + "start": 21156.78, + "end": 21160.38, + "probability": 0.8525 + }, + { + "start": 21160.46, + "end": 21161.4, + "probability": 0.8719 + }, + { + "start": 21161.76, + "end": 21164.2, + "probability": 0.8609 + }, + { + "start": 21164.28, + "end": 21165.54, + "probability": 0.8854 + }, + { + "start": 21166.08, + "end": 21169.0, + "probability": 0.9963 + }, + { + "start": 21169.46, + "end": 21171.57, + "probability": 0.9858 + }, + { + "start": 21171.82, + "end": 21175.24, + "probability": 0.841 + }, + { + "start": 21176.28, + "end": 21181.94, + "probability": 0.7592 + }, + { + "start": 21183.86, + "end": 21188.48, + "probability": 0.9956 + }, + { + "start": 21189.04, + "end": 21191.42, + "probability": 0.9521 + }, + { + "start": 21191.9, + "end": 21192.74, + "probability": 0.8702 + }, + { + "start": 21192.86, + "end": 21194.44, + "probability": 0.7084 + }, + { + "start": 21194.56, + "end": 21195.56, + "probability": 0.7079 + }, + { + "start": 21196.6, + "end": 21197.24, + "probability": 0.6465 + }, + { + "start": 21197.74, + "end": 21200.54, + "probability": 0.813 + }, + { + "start": 21200.58, + "end": 21202.44, + "probability": 0.9129 + }, + { + "start": 21202.94, + "end": 21203.42, + "probability": 0.8931 + }, + { + "start": 21203.6, + "end": 21203.88, + "probability": 0.179 + }, + { + "start": 21204.46, + "end": 21205.08, + "probability": 0.065 + }, + { + "start": 21205.08, + "end": 21205.88, + "probability": 0.7989 + }, + { + "start": 21205.96, + "end": 21208.86, + "probability": 0.6728 + }, + { + "start": 21209.72, + "end": 21214.54, + "probability": 0.9937 + }, + { + "start": 21215.12, + "end": 21217.28, + "probability": 0.9369 + }, + { + "start": 21217.46, + "end": 21218.18, + "probability": 0.5558 + }, + { + "start": 21218.38, + "end": 21220.3, + "probability": 0.6608 + }, + { + "start": 21220.82, + "end": 21221.98, + "probability": 0.7357 + }, + { + "start": 21222.66, + "end": 21226.34, + "probability": 0.9955 + }, + { + "start": 21227.46, + "end": 21232.28, + "probability": 0.9756 + }, + { + "start": 21233.34, + "end": 21237.74, + "probability": 0.9905 + }, + { + "start": 21238.34, + "end": 21242.86, + "probability": 0.9879 + }, + { + "start": 21243.14, + "end": 21246.26, + "probability": 0.9802 + }, + { + "start": 21246.96, + "end": 21251.08, + "probability": 0.9927 + }, + { + "start": 21251.62, + "end": 21252.88, + "probability": 0.827 + }, + { + "start": 21252.96, + "end": 21258.54, + "probability": 0.997 + }, + { + "start": 21259.24, + "end": 21260.54, + "probability": 0.7463 + }, + { + "start": 21261.48, + "end": 21267.42, + "probability": 0.979 + }, + { + "start": 21268.64, + "end": 21272.28, + "probability": 0.9912 + }, + { + "start": 21272.98, + "end": 21277.5, + "probability": 0.9949 + }, + { + "start": 21278.56, + "end": 21282.04, + "probability": 0.9946 + }, + { + "start": 21282.04, + "end": 21287.02, + "probability": 0.9966 + }, + { + "start": 21288.28, + "end": 21289.88, + "probability": 0.9958 + }, + { + "start": 21290.68, + "end": 21292.06, + "probability": 0.8085 + }, + { + "start": 21292.12, + "end": 21296.6, + "probability": 0.9504 + }, + { + "start": 21297.26, + "end": 21298.98, + "probability": 0.9392 + }, + { + "start": 21299.68, + "end": 21305.54, + "probability": 0.9761 + }, + { + "start": 21306.24, + "end": 21310.16, + "probability": 0.9151 + }, + { + "start": 21311.54, + "end": 21312.9, + "probability": 0.9736 + }, + { + "start": 21313.16, + "end": 21317.16, + "probability": 0.9717 + }, + { + "start": 21317.7, + "end": 21321.52, + "probability": 0.9869 + }, + { + "start": 21321.58, + "end": 21323.68, + "probability": 0.9888 + }, + { + "start": 21326.58, + "end": 21331.18, + "probability": 0.9969 + }, + { + "start": 21331.18, + "end": 21335.88, + "probability": 0.9979 + }, + { + "start": 21336.64, + "end": 21337.5, + "probability": 0.8148 + }, + { + "start": 21338.12, + "end": 21338.76, + "probability": 0.8691 + }, + { + "start": 21339.62, + "end": 21344.32, + "probability": 0.8843 + }, + { + "start": 21344.9, + "end": 21346.28, + "probability": 0.9468 + }, + { + "start": 21347.58, + "end": 21351.02, + "probability": 0.9941 + }, + { + "start": 21351.56, + "end": 21354.64, + "probability": 0.9978 + }, + { + "start": 21355.58, + "end": 21357.98, + "probability": 0.9836 + }, + { + "start": 21358.42, + "end": 21360.06, + "probability": 0.9989 + }, + { + "start": 21360.96, + "end": 21366.72, + "probability": 0.9899 + }, + { + "start": 21366.72, + "end": 21372.2, + "probability": 0.9995 + }, + { + "start": 21372.84, + "end": 21375.76, + "probability": 0.8912 + }, + { + "start": 21376.54, + "end": 21380.62, + "probability": 0.9964 + }, + { + "start": 21380.62, + "end": 21386.36, + "probability": 0.9917 + }, + { + "start": 21386.46, + "end": 21388.4, + "probability": 0.9848 + }, + { + "start": 21389.58, + "end": 21392.78, + "probability": 0.9409 + }, + { + "start": 21393.22, + "end": 21395.12, + "probability": 0.9862 + }, + { + "start": 21395.28, + "end": 21400.2, + "probability": 0.9893 + }, + { + "start": 21400.8, + "end": 21406.04, + "probability": 0.982 + }, + { + "start": 21406.04, + "end": 21412.09, + "probability": 0.9995 + }, + { + "start": 21412.84, + "end": 21416.34, + "probability": 0.9979 + }, + { + "start": 21416.74, + "end": 21420.36, + "probability": 0.9961 + }, + { + "start": 21421.4, + "end": 21424.14, + "probability": 0.6249 + }, + { + "start": 21424.68, + "end": 21426.46, + "probability": 0.9974 + }, + { + "start": 21427.86, + "end": 21430.14, + "probability": 0.9816 + }, + { + "start": 21430.76, + "end": 21431.42, + "probability": 0.7367 + }, + { + "start": 21432.14, + "end": 21435.54, + "probability": 0.9749 + }, + { + "start": 21435.76, + "end": 21437.09, + "probability": 0.9135 + }, + { + "start": 21437.78, + "end": 21441.32, + "probability": 0.9946 + }, + { + "start": 21441.32, + "end": 21441.34, + "probability": 0.296 + }, + { + "start": 21441.34, + "end": 21443.66, + "probability": 0.9585 + }, + { + "start": 21443.84, + "end": 21445.5, + "probability": 0.7311 + }, + { + "start": 21445.5, + "end": 21445.78, + "probability": 0.6714 + }, + { + "start": 21445.88, + "end": 21446.18, + "probability": 0.8156 + }, + { + "start": 21446.62, + "end": 21450.28, + "probability": 0.9984 + }, + { + "start": 21450.7, + "end": 21453.02, + "probability": 0.9728 + }, + { + "start": 21453.02, + "end": 21456.82, + "probability": 0.9851 + }, + { + "start": 21457.5, + "end": 21457.86, + "probability": 0.5214 + }, + { + "start": 21457.88, + "end": 21460.58, + "probability": 0.9344 + }, + { + "start": 21460.58, + "end": 21463.3, + "probability": 0.9953 + }, + { + "start": 21463.84, + "end": 21468.3, + "probability": 0.9951 + }, + { + "start": 21468.86, + "end": 21471.5, + "probability": 0.9973 + }, + { + "start": 21472.14, + "end": 21475.02, + "probability": 0.9424 + }, + { + "start": 21475.44, + "end": 21480.0, + "probability": 0.9701 + }, + { + "start": 21480.84, + "end": 21485.6, + "probability": 0.9696 + }, + { + "start": 21486.14, + "end": 21490.66, + "probability": 0.9717 + }, + { + "start": 21491.26, + "end": 21495.36, + "probability": 0.9531 + }, + { + "start": 21496.04, + "end": 21498.0, + "probability": 0.894 + }, + { + "start": 21498.52, + "end": 21500.7, + "probability": 0.9917 + }, + { + "start": 21500.76, + "end": 21502.94, + "probability": 0.9716 + }, + { + "start": 21503.12, + "end": 21503.4, + "probability": 0.614 + }, + { + "start": 21504.2, + "end": 21509.84, + "probability": 0.9668 + }, + { + "start": 21510.26, + "end": 21513.86, + "probability": 0.9765 + }, + { + "start": 21513.86, + "end": 21517.94, + "probability": 0.9919 + }, + { + "start": 21518.4, + "end": 21521.86, + "probability": 0.9739 + }, + { + "start": 21521.98, + "end": 21522.34, + "probability": 0.3983 + }, + { + "start": 21522.98, + "end": 21523.66, + "probability": 0.3739 + }, + { + "start": 21523.74, + "end": 21525.34, + "probability": 0.8708 + }, + { + "start": 21533.44, + "end": 21534.46, + "probability": 0.3757 + }, + { + "start": 21534.8, + "end": 21536.22, + "probability": 0.5352 + }, + { + "start": 21541.34, + "end": 21543.78, + "probability": 0.5788 + }, + { + "start": 21544.7, + "end": 21545.82, + "probability": 0.7654 + }, + { + "start": 21546.28, + "end": 21546.86, + "probability": 0.888 + }, + { + "start": 21548.1, + "end": 21549.74, + "probability": 0.8582 + }, + { + "start": 21550.8, + "end": 21552.94, + "probability": 0.8325 + }, + { + "start": 21553.28, + "end": 21554.3, + "probability": 0.8369 + }, + { + "start": 21555.14, + "end": 21556.54, + "probability": 0.6048 + }, + { + "start": 21557.04, + "end": 21557.3, + "probability": 0.7536 + }, + { + "start": 21557.76, + "end": 21559.34, + "probability": 0.7002 + }, + { + "start": 21560.06, + "end": 21561.08, + "probability": 0.9843 + }, + { + "start": 21561.7, + "end": 21565.72, + "probability": 0.9861 + }, + { + "start": 21567.44, + "end": 21569.54, + "probability": 0.7413 + }, + { + "start": 21570.14, + "end": 21570.98, + "probability": 0.9873 + }, + { + "start": 21571.84, + "end": 21574.14, + "probability": 0.9744 + }, + { + "start": 21574.32, + "end": 21575.26, + "probability": 0.7487 + }, + { + "start": 21576.54, + "end": 21580.08, + "probability": 0.9858 + }, + { + "start": 21580.18, + "end": 21582.32, + "probability": 0.9933 + }, + { + "start": 21583.82, + "end": 21586.22, + "probability": 0.9693 + }, + { + "start": 21586.82, + "end": 21590.78, + "probability": 0.9165 + }, + { + "start": 21591.6, + "end": 21594.46, + "probability": 0.9412 + }, + { + "start": 21595.26, + "end": 21596.3, + "probability": 0.9716 + }, + { + "start": 21597.16, + "end": 21600.03, + "probability": 0.9112 + }, + { + "start": 21601.22, + "end": 21603.58, + "probability": 0.9753 + }, + { + "start": 21603.68, + "end": 21605.52, + "probability": 0.9958 + }, + { + "start": 21606.78, + "end": 21607.92, + "probability": 0.9977 + }, + { + "start": 21608.48, + "end": 21612.92, + "probability": 0.9954 + }, + { + "start": 21613.88, + "end": 21617.06, + "probability": 0.6872 + }, + { + "start": 21618.12, + "end": 21619.8, + "probability": 0.9846 + }, + { + "start": 21621.28, + "end": 21621.58, + "probability": 0.6676 + }, + { + "start": 21621.94, + "end": 21623.06, + "probability": 0.9163 + }, + { + "start": 21623.18, + "end": 21625.58, + "probability": 0.9563 + }, + { + "start": 21626.52, + "end": 21630.28, + "probability": 0.9071 + }, + { + "start": 21631.0, + "end": 21632.64, + "probability": 0.9264 + }, + { + "start": 21633.32, + "end": 21635.74, + "probability": 0.9436 + }, + { + "start": 21637.34, + "end": 21641.86, + "probability": 0.9976 + }, + { + "start": 21643.12, + "end": 21644.04, + "probability": 0.9993 + }, + { + "start": 21644.88, + "end": 21648.9, + "probability": 0.9802 + }, + { + "start": 21650.14, + "end": 21651.54, + "probability": 0.9149 + }, + { + "start": 21652.74, + "end": 21659.06, + "probability": 0.9925 + }, + { + "start": 21660.32, + "end": 21663.64, + "probability": 0.7799 + }, + { + "start": 21664.2, + "end": 21668.64, + "probability": 0.9852 + }, + { + "start": 21669.68, + "end": 21671.8, + "probability": 0.9759 + }, + { + "start": 21672.8, + "end": 21674.4, + "probability": 0.9971 + }, + { + "start": 21676.16, + "end": 21680.14, + "probability": 0.9882 + }, + { + "start": 21680.2, + "end": 21681.24, + "probability": 0.5618 + }, + { + "start": 21681.46, + "end": 21682.58, + "probability": 0.8581 + }, + { + "start": 21683.08, + "end": 21683.78, + "probability": 0.8941 + }, + { + "start": 21684.48, + "end": 21687.94, + "probability": 0.9318 + }, + { + "start": 21688.76, + "end": 21689.5, + "probability": 0.8108 + }, + { + "start": 21690.36, + "end": 21691.48, + "probability": 0.9535 + }, + { + "start": 21691.68, + "end": 21694.76, + "probability": 0.9444 + }, + { + "start": 21695.24, + "end": 21696.38, + "probability": 0.8574 + }, + { + "start": 21696.68, + "end": 21697.56, + "probability": 0.8114 + }, + { + "start": 21697.96, + "end": 21702.38, + "probability": 0.998 + }, + { + "start": 21702.92, + "end": 21703.1, + "probability": 0.0595 + }, + { + "start": 21703.1, + "end": 21708.64, + "probability": 0.9604 + }, + { + "start": 21710.06, + "end": 21712.24, + "probability": 0.6757 + }, + { + "start": 21713.12, + "end": 21718.08, + "probability": 0.9972 + }, + { + "start": 21718.82, + "end": 21721.68, + "probability": 0.9954 + }, + { + "start": 21723.08, + "end": 21724.28, + "probability": 0.7058 + }, + { + "start": 21724.8, + "end": 21730.5, + "probability": 0.9915 + }, + { + "start": 21732.18, + "end": 21733.4, + "probability": 0.8066 + }, + { + "start": 21734.28, + "end": 21736.2, + "probability": 0.7295 + }, + { + "start": 21736.88, + "end": 21739.96, + "probability": 0.9742 + }, + { + "start": 21740.52, + "end": 21741.2, + "probability": 0.7669 + }, + { + "start": 21741.3, + "end": 21746.2, + "probability": 0.9963 + }, + { + "start": 21746.2, + "end": 21751.1, + "probability": 0.9854 + }, + { + "start": 21751.94, + "end": 21756.1, + "probability": 0.927 + }, + { + "start": 21757.22, + "end": 21760.82, + "probability": 0.9807 + }, + { + "start": 21760.82, + "end": 21763.06, + "probability": 0.9735 + }, + { + "start": 21763.06, + "end": 21764.48, + "probability": 0.4783 + }, + { + "start": 21765.0, + "end": 21765.04, + "probability": 0.0007 + }, + { + "start": 21765.04, + "end": 21765.04, + "probability": 0.5798 + }, + { + "start": 21765.04, + "end": 21765.72, + "probability": 0.5116 + }, + { + "start": 21766.78, + "end": 21769.32, + "probability": 0.7817 + }, + { + "start": 21769.8, + "end": 21771.1, + "probability": 0.7782 + }, + { + "start": 21771.5, + "end": 21775.4, + "probability": 0.9424 + }, + { + "start": 21775.78, + "end": 21777.0, + "probability": 0.9738 + }, + { + "start": 21777.84, + "end": 21778.5, + "probability": 0.8236 + }, + { + "start": 21778.58, + "end": 21779.7, + "probability": 0.8476 + }, + { + "start": 21779.8, + "end": 21781.66, + "probability": 0.9932 + }, + { + "start": 21782.28, + "end": 21783.98, + "probability": 0.9395 + }, + { + "start": 21783.98, + "end": 21785.44, + "probability": 0.6767 + }, + { + "start": 21786.54, + "end": 21788.28, + "probability": 0.8652 + }, + { + "start": 21790.94, + "end": 21793.38, + "probability": 0.9611 + }, + { + "start": 21818.2, + "end": 21818.42, + "probability": 0.6322 + }, + { + "start": 21818.5, + "end": 21820.24, + "probability": 0.6625 + }, + { + "start": 21820.28, + "end": 21823.82, + "probability": 0.9851 + }, + { + "start": 21825.08, + "end": 21827.98, + "probability": 0.9862 + }, + { + "start": 21828.28, + "end": 21830.74, + "probability": 0.9432 + }, + { + "start": 21831.12, + "end": 21834.02, + "probability": 0.9985 + }, + { + "start": 21834.8, + "end": 21838.38, + "probability": 0.9808 + }, + { + "start": 21839.48, + "end": 21845.38, + "probability": 0.89 + }, + { + "start": 21845.76, + "end": 21851.46, + "probability": 0.8432 + }, + { + "start": 21852.16, + "end": 21855.08, + "probability": 0.9316 + }, + { + "start": 21855.08, + "end": 21859.12, + "probability": 0.938 + }, + { + "start": 21859.52, + "end": 21861.56, + "probability": 0.7524 + }, + { + "start": 21862.4, + "end": 21868.1, + "probability": 0.9785 + }, + { + "start": 21868.22, + "end": 21871.66, + "probability": 0.8597 + }, + { + "start": 21872.46, + "end": 21879.52, + "probability": 0.9795 + }, + { + "start": 21880.49, + "end": 21885.7, + "probability": 0.9889 + }, + { + "start": 21886.68, + "end": 21890.24, + "probability": 0.9333 + }, + { + "start": 21890.54, + "end": 21894.79, + "probability": 0.9966 + }, + { + "start": 21895.54, + "end": 21897.92, + "probability": 0.9319 + }, + { + "start": 21897.92, + "end": 21901.22, + "probability": 0.8585 + }, + { + "start": 21901.5, + "end": 21903.68, + "probability": 0.7784 + }, + { + "start": 21903.94, + "end": 21904.16, + "probability": 0.4114 + }, + { + "start": 21904.26, + "end": 21904.96, + "probability": 0.9839 + }, + { + "start": 21905.12, + "end": 21906.72, + "probability": 0.8077 + }, + { + "start": 21906.78, + "end": 21909.72, + "probability": 0.9605 + }, + { + "start": 21910.2, + "end": 21913.28, + "probability": 0.9914 + }, + { + "start": 21913.28, + "end": 21917.68, + "probability": 0.8283 + }, + { + "start": 21918.4, + "end": 21920.82, + "probability": 0.8848 + }, + { + "start": 21921.44, + "end": 21925.14, + "probability": 0.8456 + }, + { + "start": 21925.14, + "end": 21928.12, + "probability": 0.9712 + }, + { + "start": 21928.18, + "end": 21928.42, + "probability": 0.4372 + }, + { + "start": 21928.58, + "end": 21928.9, + "probability": 0.5278 + }, + { + "start": 21929.02, + "end": 21930.92, + "probability": 0.9854 + }, + { + "start": 21931.28, + "end": 21932.56, + "probability": 0.6649 + }, + { + "start": 21932.68, + "end": 21934.27, + "probability": 0.9644 + }, + { + "start": 21934.74, + "end": 21935.54, + "probability": 0.4798 + }, + { + "start": 21936.14, + "end": 21941.3, + "probability": 0.3884 + }, + { + "start": 21941.38, + "end": 21943.08, + "probability": 0.946 + }, + { + "start": 21943.2, + "end": 21945.44, + "probability": 0.9884 + }, + { + "start": 21945.7, + "end": 21950.8, + "probability": 0.9805 + }, + { + "start": 21950.96, + "end": 21954.38, + "probability": 0.7206 + }, + { + "start": 21954.52, + "end": 21956.81, + "probability": 0.9897 + }, + { + "start": 21957.36, + "end": 21961.78, + "probability": 0.9823 + }, + { + "start": 21961.82, + "end": 21962.54, + "probability": 0.7694 + }, + { + "start": 21962.66, + "end": 21963.02, + "probability": 0.9696 + }, + { + "start": 21963.26, + "end": 21964.02, + "probability": 0.8435 + }, + { + "start": 21964.34, + "end": 21965.6, + "probability": 0.9831 + }, + { + "start": 21965.74, + "end": 21966.8, + "probability": 0.9582 + }, + { + "start": 21967.1, + "end": 21968.2, + "probability": 0.8077 + }, + { + "start": 21968.24, + "end": 21971.06, + "probability": 0.9814 + }, + { + "start": 21971.82, + "end": 21974.7, + "probability": 0.942 + }, + { + "start": 21974.7, + "end": 21978.34, + "probability": 0.9645 + }, + { + "start": 21978.46, + "end": 21979.28, + "probability": 0.475 + }, + { + "start": 21979.76, + "end": 21983.54, + "probability": 0.7709 + }, + { + "start": 21983.8, + "end": 21987.94, + "probability": 0.8706 + }, + { + "start": 21987.94, + "end": 21992.56, + "probability": 0.9851 + }, + { + "start": 21992.88, + "end": 21996.2, + "probability": 0.5318 + }, + { + "start": 21996.74, + "end": 22000.9, + "probability": 0.9941 + }, + { + "start": 22001.26, + "end": 22003.64, + "probability": 0.939 + }, + { + "start": 22003.64, + "end": 22006.5, + "probability": 0.9763 + }, + { + "start": 22006.66, + "end": 22007.1, + "probability": 0.8305 + }, + { + "start": 22007.58, + "end": 22008.12, + "probability": 0.8809 + }, + { + "start": 22008.38, + "end": 22010.56, + "probability": 0.9912 + }, + { + "start": 22010.96, + "end": 22014.94, + "probability": 0.9765 + }, + { + "start": 22015.32, + "end": 22019.92, + "probability": 0.9922 + }, + { + "start": 22020.32, + "end": 22023.46, + "probability": 0.9229 + }, + { + "start": 22023.84, + "end": 22025.14, + "probability": 0.8305 + }, + { + "start": 22025.54, + "end": 22027.24, + "probability": 0.9966 + }, + { + "start": 22027.74, + "end": 22029.6, + "probability": 0.8264 + }, + { + "start": 22030.32, + "end": 22033.84, + "probability": 0.968 + }, + { + "start": 22034.78, + "end": 22034.84, + "probability": 0.3893 + }, + { + "start": 22034.96, + "end": 22038.24, + "probability": 0.8777 + }, + { + "start": 22038.3, + "end": 22040.36, + "probability": 0.8192 + }, + { + "start": 22040.42, + "end": 22043.8, + "probability": 0.9321 + }, + { + "start": 22044.16, + "end": 22045.34, + "probability": 0.6485 + }, + { + "start": 22045.5, + "end": 22050.48, + "probability": 0.9711 + }, + { + "start": 22051.14, + "end": 22054.94, + "probability": 0.9931 + }, + { + "start": 22054.94, + "end": 22058.58, + "probability": 0.9985 + }, + { + "start": 22058.62, + "end": 22064.22, + "probability": 0.7937 + }, + { + "start": 22064.38, + "end": 22064.38, + "probability": 0.0865 + }, + { + "start": 22064.38, + "end": 22064.58, + "probability": 0.1987 + }, + { + "start": 22064.74, + "end": 22065.32, + "probability": 0.7484 + }, + { + "start": 22065.38, + "end": 22069.44, + "probability": 0.9663 + }, + { + "start": 22069.44, + "end": 22073.7, + "probability": 0.9884 + }, + { + "start": 22074.18, + "end": 22074.62, + "probability": 0.8373 + }, + { + "start": 22074.62, + "end": 22078.54, + "probability": 0.9896 + }, + { + "start": 22078.68, + "end": 22079.76, + "probability": 0.5162 + }, + { + "start": 22079.8, + "end": 22084.58, + "probability": 0.9419 + }, + { + "start": 22085.1, + "end": 22086.78, + "probability": 0.8734 + }, + { + "start": 22086.82, + "end": 22087.26, + "probability": 0.4998 + }, + { + "start": 22087.26, + "end": 22087.4, + "probability": 0.378 + }, + { + "start": 22087.72, + "end": 22089.62, + "probability": 0.726 + }, + { + "start": 22089.8, + "end": 22090.68, + "probability": 0.7759 + }, + { + "start": 22090.78, + "end": 22091.06, + "probability": 0.827 + }, + { + "start": 22091.1, + "end": 22092.76, + "probability": 0.9321 + }, + { + "start": 22092.82, + "end": 22097.52, + "probability": 0.9466 + }, + { + "start": 22097.94, + "end": 22097.94, + "probability": 0.4716 + }, + { + "start": 22097.94, + "end": 22099.32, + "probability": 0.9428 + }, + { + "start": 22099.64, + "end": 22099.98, + "probability": 0.424 + }, + { + "start": 22102.38, + "end": 22103.36, + "probability": 0.1921 + }, + { + "start": 22105.26, + "end": 22106.18, + "probability": 0.3719 + }, + { + "start": 22106.58, + "end": 22107.02, + "probability": 0.6106 + }, + { + "start": 22119.04, + "end": 22119.04, + "probability": 0.1839 + }, + { + "start": 22119.04, + "end": 22119.74, + "probability": 0.208 + }, + { + "start": 22119.78, + "end": 22123.18, + "probability": 0.972 + }, + { + "start": 22123.46, + "end": 22124.89, + "probability": 0.8671 + }, + { + "start": 22125.22, + "end": 22125.32, + "probability": 0.2636 + }, + { + "start": 22128.62, + "end": 22131.44, + "probability": 0.6022 + }, + { + "start": 22132.3, + "end": 22133.5, + "probability": 0.9712 + }, + { + "start": 22134.0, + "end": 22136.22, + "probability": 0.43 + }, + { + "start": 22136.42, + "end": 22137.26, + "probability": 0.7166 + }, + { + "start": 22137.56, + "end": 22137.78, + "probability": 0.7303 + }, + { + "start": 22138.46, + "end": 22139.14, + "probability": 0.6555 + }, + { + "start": 22139.74, + "end": 22142.46, + "probability": 0.7804 + }, + { + "start": 22143.2, + "end": 22145.3, + "probability": 0.7179 + }, + { + "start": 22146.42, + "end": 22146.84, + "probability": 0.7549 + }, + { + "start": 22148.64, + "end": 22150.22, + "probability": 0.9944 + }, + { + "start": 22150.88, + "end": 22152.82, + "probability": 0.6783 + }, + { + "start": 22153.5, + "end": 22153.88, + "probability": 0.6921 + }, + { + "start": 22154.48, + "end": 22156.32, + "probability": 0.9367 + }, + { + "start": 22156.96, + "end": 22159.08, + "probability": 0.992 + }, + { + "start": 22159.8, + "end": 22160.62, + "probability": 0.8092 + }, + { + "start": 22162.14, + "end": 22163.82, + "probability": 0.8092 + }, + { + "start": 22164.86, + "end": 22166.34, + "probability": 0.9928 + }, + { + "start": 22167.12, + "end": 22171.34, + "probability": 0.9981 + }, + { + "start": 22172.98, + "end": 22173.5, + "probability": 0.8876 + }, + { + "start": 22174.18, + "end": 22177.72, + "probability": 0.9557 + }, + { + "start": 22179.24, + "end": 22180.0, + "probability": 0.9826 + }, + { + "start": 22180.96, + "end": 22183.35, + "probability": 0.9289 + }, + { + "start": 22184.52, + "end": 22189.02, + "probability": 0.9847 + }, + { + "start": 22189.9, + "end": 22193.16, + "probability": 0.9963 + }, + { + "start": 22194.12, + "end": 22196.86, + "probability": 0.9803 + }, + { + "start": 22198.06, + "end": 22202.5, + "probability": 0.7742 + }, + { + "start": 22203.28, + "end": 22206.2, + "probability": 0.9792 + }, + { + "start": 22208.16, + "end": 22209.74, + "probability": 0.7145 + }, + { + "start": 22210.88, + "end": 22215.52, + "probability": 0.8438 + }, + { + "start": 22216.26, + "end": 22217.22, + "probability": 0.6683 + }, + { + "start": 22217.5, + "end": 22221.98, + "probability": 0.9976 + }, + { + "start": 22222.52, + "end": 22222.8, + "probability": 0.7456 + }, + { + "start": 22224.98, + "end": 22225.89, + "probability": 0.9019 + }, + { + "start": 22227.54, + "end": 22231.78, + "probability": 0.9653 + }, + { + "start": 22232.16, + "end": 22233.96, + "probability": 0.9365 + }, + { + "start": 22235.46, + "end": 22237.9, + "probability": 0.9351 + }, + { + "start": 22238.04, + "end": 22241.44, + "probability": 0.9968 + }, + { + "start": 22241.44, + "end": 22244.28, + "probability": 0.9917 + }, + { + "start": 22245.94, + "end": 22247.55, + "probability": 0.9608 + }, + { + "start": 22248.58, + "end": 22249.28, + "probability": 0.7492 + }, + { + "start": 22249.52, + "end": 22252.58, + "probability": 0.957 + }, + { + "start": 22252.96, + "end": 22254.34, + "probability": 0.9512 + }, + { + "start": 22254.44, + "end": 22256.88, + "probability": 0.9893 + }, + { + "start": 22257.24, + "end": 22259.14, + "probability": 0.9413 + }, + { + "start": 22259.46, + "end": 22261.7, + "probability": 0.9932 + }, + { + "start": 22261.76, + "end": 22263.18, + "probability": 0.9834 + }, + { + "start": 22264.16, + "end": 22267.34, + "probability": 0.9747 + }, + { + "start": 22267.4, + "end": 22270.14, + "probability": 0.8707 + }, + { + "start": 22270.72, + "end": 22272.82, + "probability": 0.7754 + }, + { + "start": 22273.36, + "end": 22277.42, + "probability": 0.8643 + }, + { + "start": 22277.62, + "end": 22280.08, + "probability": 0.7299 + }, + { + "start": 22280.64, + "end": 22282.82, + "probability": 0.9388 + }, + { + "start": 22283.0, + "end": 22285.26, + "probability": 0.6324 + }, + { + "start": 22285.92, + "end": 22286.16, + "probability": 0.5905 + }, + { + "start": 22286.22, + "end": 22287.36, + "probability": 0.9561 + }, + { + "start": 22287.68, + "end": 22287.82, + "probability": 0.8538 + }, + { + "start": 22287.96, + "end": 22291.64, + "probability": 0.9521 + }, + { + "start": 22291.94, + "end": 22297.02, + "probability": 0.9109 + }, + { + "start": 22297.08, + "end": 22300.81, + "probability": 0.9923 + }, + { + "start": 22301.64, + "end": 22302.62, + "probability": 0.8708 + }, + { + "start": 22303.24, + "end": 22304.98, + "probability": 0.9097 + }, + { + "start": 22305.9, + "end": 22306.36, + "probability": 0.8151 + }, + { + "start": 22307.66, + "end": 22309.22, + "probability": 0.8522 + }, + { + "start": 22310.3, + "end": 22311.54, + "probability": 0.6846 + }, + { + "start": 22311.94, + "end": 22316.52, + "probability": 0.9943 + }, + { + "start": 22317.02, + "end": 22318.64, + "probability": 0.9958 + }, + { + "start": 22319.28, + "end": 22321.92, + "probability": 0.9673 + }, + { + "start": 22324.38, + "end": 22325.9, + "probability": 0.8696 + }, + { + "start": 22326.98, + "end": 22330.37, + "probability": 0.9297 + }, + { + "start": 22331.06, + "end": 22331.56, + "probability": 0.6285 + }, + { + "start": 22331.66, + "end": 22331.8, + "probability": 0.4483 + }, + { + "start": 22332.2, + "end": 22333.38, + "probability": 0.469 + }, + { + "start": 22334.72, + "end": 22339.34, + "probability": 0.989 + }, + { + "start": 22339.34, + "end": 22343.16, + "probability": 0.9821 + }, + { + "start": 22343.16, + "end": 22346.68, + "probability": 0.974 + }, + { + "start": 22346.7, + "end": 22347.16, + "probability": 0.7338 + }, + { + "start": 22347.82, + "end": 22348.68, + "probability": 0.6254 + }, + { + "start": 22348.82, + "end": 22350.31, + "probability": 0.8168 + }, + { + "start": 22353.74, + "end": 22358.82, + "probability": 0.9683 + }, + { + "start": 22359.82, + "end": 22361.6, + "probability": 0.9272 + }, + { + "start": 22364.1, + "end": 22365.04, + "probability": 0.4789 + }, + { + "start": 22367.38, + "end": 22367.48, + "probability": 0.3249 + }, + { + "start": 22367.48, + "end": 22367.8, + "probability": 0.5739 + }, + { + "start": 22368.46, + "end": 22368.64, + "probability": 0.8225 + }, + { + "start": 22373.38, + "end": 22376.06, + "probability": 0.4167 + }, + { + "start": 22376.32, + "end": 22377.26, + "probability": 0.9392 + }, + { + "start": 22377.26, + "end": 22379.53, + "probability": 0.9395 + }, + { + "start": 22379.7, + "end": 22381.3, + "probability": 0.901 + }, + { + "start": 22381.3, + "end": 22383.2, + "probability": 0.102 + }, + { + "start": 22383.74, + "end": 22384.56, + "probability": 0.3458 + }, + { + "start": 22384.68, + "end": 22384.94, + "probability": 0.2811 + }, + { + "start": 22385.02, + "end": 22385.36, + "probability": 0.4089 + }, + { + "start": 22385.58, + "end": 22386.0, + "probability": 0.5498 + }, + { + "start": 22386.32, + "end": 22390.64, + "probability": 0.8372 + }, + { + "start": 22391.6, + "end": 22393.46, + "probability": 0.9224 + }, + { + "start": 22393.54, + "end": 22396.66, + "probability": 0.9814 + }, + { + "start": 22397.7, + "end": 22402.86, + "probability": 0.9001 + }, + { + "start": 22403.0, + "end": 22404.06, + "probability": 0.6216 + }, + { + "start": 22404.56, + "end": 22404.78, + "probability": 0.6692 + }, + { + "start": 22404.92, + "end": 22409.26, + "probability": 0.875 + }, + { + "start": 22409.26, + "end": 22411.74, + "probability": 0.9878 + }, + { + "start": 22411.9, + "end": 22413.46, + "probability": 0.9519 + }, + { + "start": 22413.82, + "end": 22414.58, + "probability": 0.6564 + }, + { + "start": 22415.1, + "end": 22416.32, + "probability": 0.7708 + }, + { + "start": 22416.94, + "end": 22417.88, + "probability": 0.6728 + }, + { + "start": 22418.38, + "end": 22424.18, + "probability": 0.9219 + }, + { + "start": 22424.36, + "end": 22426.86, + "probability": 0.6655 + }, + { + "start": 22426.86, + "end": 22432.88, + "probability": 0.792 + }, + { + "start": 22433.34, + "end": 22435.38, + "probability": 0.9181 + }, + { + "start": 22435.78, + "end": 22437.1, + "probability": 0.9966 + }, + { + "start": 22437.66, + "end": 22439.74, + "probability": 0.7248 + }, + { + "start": 22439.8, + "end": 22441.34, + "probability": 0.6966 + }, + { + "start": 22441.62, + "end": 22445.04, + "probability": 0.8892 + }, + { + "start": 22445.8, + "end": 22447.88, + "probability": 0.9962 + }, + { + "start": 22447.88, + "end": 22450.16, + "probability": 0.9956 + }, + { + "start": 22450.2, + "end": 22451.2, + "probability": 0.9948 + }, + { + "start": 22451.78, + "end": 22452.38, + "probability": 0.8755 + }, + { + "start": 22452.68, + "end": 22454.66, + "probability": 0.7114 + }, + { + "start": 22454.82, + "end": 22458.84, + "probability": 0.9771 + }, + { + "start": 22459.06, + "end": 22460.88, + "probability": 0.847 + }, + { + "start": 22461.06, + "end": 22461.9, + "probability": 0.7274 + }, + { + "start": 22462.02, + "end": 22462.72, + "probability": 0.7244 + }, + { + "start": 22463.0, + "end": 22466.76, + "probability": 0.9437 + }, + { + "start": 22467.02, + "end": 22468.52, + "probability": 0.8474 + }, + { + "start": 22468.56, + "end": 22471.38, + "probability": 0.7623 + }, + { + "start": 22473.47, + "end": 22474.36, + "probability": 0.2366 + }, + { + "start": 22474.36, + "end": 22475.85, + "probability": 0.4673 + }, + { + "start": 22476.04, + "end": 22477.76, + "probability": 0.9894 + }, + { + "start": 22478.4, + "end": 22479.24, + "probability": 0.8052 + }, + { + "start": 22479.46, + "end": 22480.22, + "probability": 0.9189 + }, + { + "start": 22480.64, + "end": 22483.4, + "probability": 0.9966 + }, + { + "start": 22483.42, + "end": 22485.02, + "probability": 0.6677 + }, + { + "start": 22485.36, + "end": 22487.94, + "probability": 0.9912 + }, + { + "start": 22487.94, + "end": 22490.5, + "probability": 0.9356 + }, + { + "start": 22491.16, + "end": 22492.23, + "probability": 0.7332 + }, + { + "start": 22492.98, + "end": 22493.8, + "probability": 0.8331 + }, + { + "start": 22494.24, + "end": 22496.84, + "probability": 0.8562 + }, + { + "start": 22496.94, + "end": 22502.64, + "probability": 0.9297 + }, + { + "start": 22502.64, + "end": 22505.44, + "probability": 0.5468 + }, + { + "start": 22505.5, + "end": 22506.74, + "probability": 0.8766 + }, + { + "start": 22506.88, + "end": 22509.53, + "probability": 0.9075 + }, + { + "start": 22510.04, + "end": 22510.74, + "probability": 0.5495 + }, + { + "start": 22510.78, + "end": 22511.12, + "probability": 0.8839 + }, + { + "start": 22511.24, + "end": 22514.1, + "probability": 0.933 + }, + { + "start": 22514.28, + "end": 22517.74, + "probability": 0.9028 + }, + { + "start": 22517.89, + "end": 22518.85, + "probability": 0.2399 + }, + { + "start": 22520.45, + "end": 22524.4, + "probability": 0.7992 + }, + { + "start": 22524.48, + "end": 22525.36, + "probability": 0.7907 + }, + { + "start": 22525.5, + "end": 22532.49, + "probability": 0.7517 + }, + { + "start": 22533.3, + "end": 22534.56, + "probability": 0.6955 + }, + { + "start": 22534.64, + "end": 22535.24, + "probability": 0.6224 + }, + { + "start": 22535.62, + "end": 22536.46, + "probability": 0.4962 + }, + { + "start": 22536.7, + "end": 22542.56, + "probability": 0.8894 + }, + { + "start": 22542.78, + "end": 22545.38, + "probability": 0.769 + }, + { + "start": 22545.88, + "end": 22546.68, + "probability": 0.8717 + }, + { + "start": 22547.4, + "end": 22548.56, + "probability": 0.7765 + }, + { + "start": 22548.74, + "end": 22552.42, + "probability": 0.9961 + }, + { + "start": 22553.04, + "end": 22554.6, + "probability": 0.7037 + }, + { + "start": 22555.22, + "end": 22559.14, + "probability": 0.9751 + }, + { + "start": 22559.56, + "end": 22560.4, + "probability": 0.6814 + }, + { + "start": 22560.44, + "end": 22563.4, + "probability": 0.897 + }, + { + "start": 22563.5, + "end": 22564.8, + "probability": 0.9032 + }, + { + "start": 22565.72, + "end": 22568.26, + "probability": 0.8817 + }, + { + "start": 22568.68, + "end": 22570.54, + "probability": 0.7204 + }, + { + "start": 22570.64, + "end": 22572.06, + "probability": 0.9878 + }, + { + "start": 22572.12, + "end": 22572.94, + "probability": 0.9819 + }, + { + "start": 22573.62, + "end": 22575.34, + "probability": 0.8188 + }, + { + "start": 22575.78, + "end": 22579.06, + "probability": 0.6291 + }, + { + "start": 22579.44, + "end": 22581.82, + "probability": 0.8499 + }, + { + "start": 22581.92, + "end": 22582.24, + "probability": 0.3292 + }, + { + "start": 22582.34, + "end": 22585.82, + "probability": 0.8004 + }, + { + "start": 22585.82, + "end": 22588.18, + "probability": 0.9863 + }, + { + "start": 22588.52, + "end": 22589.86, + "probability": 0.9954 + }, + { + "start": 22590.0, + "end": 22590.6, + "probability": 0.9473 + }, + { + "start": 22591.18, + "end": 22593.26, + "probability": 0.7988 + }, + { + "start": 22593.34, + "end": 22596.06, + "probability": 0.9866 + }, + { + "start": 22596.12, + "end": 22597.1, + "probability": 0.8604 + }, + { + "start": 22597.22, + "end": 22597.78, + "probability": 0.5962 + }, + { + "start": 22597.86, + "end": 22598.24, + "probability": 0.6206 + }, + { + "start": 22598.24, + "end": 22598.24, + "probability": 0.5795 + }, + { + "start": 22598.32, + "end": 22601.12, + "probability": 0.809 + }, + { + "start": 22601.28, + "end": 22601.68, + "probability": 0.7235 + }, + { + "start": 22602.04, + "end": 22602.98, + "probability": 0.7764 + }, + { + "start": 22603.62, + "end": 22606.3, + "probability": 0.3452 + }, + { + "start": 22606.82, + "end": 22607.04, + "probability": 0.3874 + }, + { + "start": 22607.04, + "end": 22607.89, + "probability": 0.7315 + }, + { + "start": 22608.26, + "end": 22610.16, + "probability": 0.9364 + }, + { + "start": 22610.92, + "end": 22611.22, + "probability": 0.0012 + }, + { + "start": 22614.85, + "end": 22617.38, + "probability": 0.9188 + }, + { + "start": 22618.525, + "end": 22620.36, + "probability": 0.8423 + }, + { + "start": 22622.04, + "end": 22623.29, + "probability": 0.8774 + }, + { + "start": 22624.33, + "end": 22626.86, + "probability": 0.2024 + }, + { + "start": 22627.79, + "end": 22630.34, + "probability": 0.6552 + }, + { + "start": 22632.19, + "end": 22632.95, + "probability": 0.9751 + }, + { + "start": 22633.21, + "end": 22634.35, + "probability": 0.8736 + }, + { + "start": 22634.35, + "end": 22635.15, + "probability": 0.387 + }, + { + "start": 22635.71, + "end": 22636.09, + "probability": 0.4671 + }, + { + "start": 22637.67, + "end": 22638.31, + "probability": 0.583 + }, + { + "start": 22638.93, + "end": 22642.09, + "probability": 0.5223 + }, + { + "start": 22642.09, + "end": 22644.13, + "probability": 0.7124 + }, + { + "start": 22644.35, + "end": 22646.33, + "probability": 0.9882 + }, + { + "start": 22649.01, + "end": 22651.55, + "probability": 0.9494 + }, + { + "start": 22653.05, + "end": 22655.49, + "probability": 0.8945 + }, + { + "start": 22655.65, + "end": 22655.79, + "probability": 0.128 + }, + { + "start": 22656.51, + "end": 22656.55, + "probability": 0.7001 + }, + { + "start": 22656.69, + "end": 22657.15, + "probability": 0.467 + }, + { + "start": 22657.25, + "end": 22657.89, + "probability": 0.6117 + }, + { + "start": 22658.21, + "end": 22658.79, + "probability": 0.8811 + }, + { + "start": 22658.85, + "end": 22660.55, + "probability": 0.674 + }, + { + "start": 22661.07, + "end": 22661.39, + "probability": 0.7612 + }, + { + "start": 22662.13, + "end": 22665.17, + "probability": 0.4704 + }, + { + "start": 22666.43, + "end": 22667.03, + "probability": 0.7986 + }, + { + "start": 22667.57, + "end": 22668.15, + "probability": 0.7947 + }, + { + "start": 22682.31, + "end": 22682.89, + "probability": 0.4035 + }, + { + "start": 22682.89, + "end": 22684.72, + "probability": 0.3031 + }, + { + "start": 22685.53, + "end": 22688.03, + "probability": 0.505 + }, + { + "start": 22688.61, + "end": 22689.81, + "probability": 0.8989 + }, + { + "start": 22690.23, + "end": 22691.03, + "probability": 0.0459 + }, + { + "start": 22692.86, + "end": 22697.73, + "probability": 0.5694 + }, + { + "start": 22699.45, + "end": 22699.79, + "probability": 0.2303 + }, + { + "start": 22711.91, + "end": 22711.91, + "probability": 0.0475 + }, + { + "start": 22711.91, + "end": 22711.91, + "probability": 0.1125 + }, + { + "start": 22711.91, + "end": 22714.15, + "probability": 0.7206 + }, + { + "start": 22717.65, + "end": 22718.31, + "probability": 0.5868 + }, + { + "start": 22718.89, + "end": 22722.19, + "probability": 0.898 + }, + { + "start": 22723.07, + "end": 22726.49, + "probability": 0.9597 + }, + { + "start": 22727.01, + "end": 22728.35, + "probability": 0.9112 + }, + { + "start": 22730.25, + "end": 22733.03, + "probability": 0.2639 + }, + { + "start": 22733.57, + "end": 22733.71, + "probability": 0.6803 + }, + { + "start": 22734.43, + "end": 22735.51, + "probability": 0.949 + }, + { + "start": 22736.43, + "end": 22738.17, + "probability": 0.9966 + }, + { + "start": 22738.91, + "end": 22740.37, + "probability": 0.995 + }, + { + "start": 22741.45, + "end": 22742.23, + "probability": 0.7716 + }, + { + "start": 22743.31, + "end": 22747.4, + "probability": 0.9897 + }, + { + "start": 22747.97, + "end": 22748.89, + "probability": 0.7842 + }, + { + "start": 22749.73, + "end": 22751.43, + "probability": 0.8379 + }, + { + "start": 22752.49, + "end": 22753.45, + "probability": 0.9047 + }, + { + "start": 22754.13, + "end": 22760.75, + "probability": 0.8838 + }, + { + "start": 22761.47, + "end": 22762.97, + "probability": 0.8738 + }, + { + "start": 22764.33, + "end": 22765.85, + "probability": 0.9912 + }, + { + "start": 22766.95, + "end": 22769.93, + "probability": 0.702 + }, + { + "start": 22770.63, + "end": 22773.11, + "probability": 0.9922 + }, + { + "start": 22773.63, + "end": 22775.95, + "probability": 0.6118 + }, + { + "start": 22776.55, + "end": 22777.51, + "probability": 0.8479 + }, + { + "start": 22777.63, + "end": 22778.33, + "probability": 0.7532 + }, + { + "start": 22778.65, + "end": 22781.61, + "probability": 0.8782 + }, + { + "start": 22782.01, + "end": 22787.07, + "probability": 0.9728 + }, + { + "start": 22787.67, + "end": 22791.09, + "probability": 0.823 + }, + { + "start": 22791.97, + "end": 22793.93, + "probability": 0.8217 + }, + { + "start": 22794.77, + "end": 22797.79, + "probability": 0.9949 + }, + { + "start": 22798.37, + "end": 22799.51, + "probability": 0.8882 + }, + { + "start": 22800.07, + "end": 22801.61, + "probability": 0.8205 + }, + { + "start": 22802.21, + "end": 22803.45, + "probability": 0.9863 + }, + { + "start": 22804.03, + "end": 22807.15, + "probability": 0.9937 + }, + { + "start": 22808.43, + "end": 22808.81, + "probability": 0.7524 + }, + { + "start": 22808.93, + "end": 22810.11, + "probability": 0.7269 + }, + { + "start": 22810.15, + "end": 22813.13, + "probability": 0.9632 + }, + { + "start": 22813.73, + "end": 22816.13, + "probability": 0.9712 + }, + { + "start": 22816.15, + "end": 22816.17, + "probability": 0.8479 + }, + { + "start": 22816.29, + "end": 22816.77, + "probability": 0.7311 + }, + { + "start": 22816.85, + "end": 22818.25, + "probability": 0.9946 + }, + { + "start": 22818.35, + "end": 22818.35, + "probability": 0.234 + }, + { + "start": 22818.35, + "end": 22821.89, + "probability": 0.6902 + }, + { + "start": 22824.33, + "end": 22825.11, + "probability": 0.61 + }, + { + "start": 22826.51, + "end": 22828.77, + "probability": 0.9648 + }, + { + "start": 22829.61, + "end": 22834.47, + "probability": 0.9729 + }, + { + "start": 22835.35, + "end": 22841.71, + "probability": 0.9587 + }, + { + "start": 22842.57, + "end": 22846.77, + "probability": 0.7365 + }, + { + "start": 22847.67, + "end": 22852.47, + "probability": 0.9317 + }, + { + "start": 22852.53, + "end": 22853.77, + "probability": 0.9026 + }, + { + "start": 22854.21, + "end": 22854.97, + "probability": 0.7303 + }, + { + "start": 22856.59, + "end": 22859.3, + "probability": 0.9263 + }, + { + "start": 22860.23, + "end": 22861.65, + "probability": 0.5759 + }, + { + "start": 22862.39, + "end": 22862.57, + "probability": 0.4036 + }, + { + "start": 22862.65, + "end": 22865.13, + "probability": 0.9545 + }, + { + "start": 22865.25, + "end": 22865.77, + "probability": 0.938 + }, + { + "start": 22866.15, + "end": 22866.65, + "probability": 0.9812 + }, + { + "start": 22866.73, + "end": 22867.17, + "probability": 0.8267 + }, + { + "start": 22867.31, + "end": 22867.79, + "probability": 0.8011 + }, + { + "start": 22867.85, + "end": 22870.81, + "probability": 0.9246 + }, + { + "start": 22872.59, + "end": 22873.73, + "probability": 0.8691 + }, + { + "start": 22873.99, + "end": 22877.39, + "probability": 0.9926 + }, + { + "start": 22878.39, + "end": 22880.31, + "probability": 0.8501 + }, + { + "start": 22880.35, + "end": 22881.49, + "probability": 0.8892 + }, + { + "start": 22881.57, + "end": 22883.44, + "probability": 0.9489 + }, + { + "start": 22885.23, + "end": 22885.99, + "probability": 0.7484 + }, + { + "start": 22886.85, + "end": 22889.29, + "probability": 0.9945 + }, + { + "start": 22890.03, + "end": 22895.15, + "probability": 0.9974 + }, + { + "start": 22895.67, + "end": 22899.11, + "probability": 0.7746 + }, + { + "start": 22899.89, + "end": 22903.73, + "probability": 0.9786 + }, + { + "start": 22904.05, + "end": 22904.91, + "probability": 0.9701 + }, + { + "start": 22905.17, + "end": 22905.85, + "probability": 0.744 + }, + { + "start": 22905.89, + "end": 22910.17, + "probability": 0.9522 + }, + { + "start": 22910.65, + "end": 22914.09, + "probability": 0.9939 + }, + { + "start": 22914.09, + "end": 22918.51, + "probability": 0.9974 + }, + { + "start": 22918.89, + "end": 22919.49, + "probability": 0.8259 + }, + { + "start": 22919.71, + "end": 22920.57, + "probability": 0.608 + }, + { + "start": 22920.69, + "end": 22921.13, + "probability": 0.7463 + }, + { + "start": 22922.97, + "end": 22925.31, + "probability": 0.8296 + }, + { + "start": 22929.87, + "end": 22932.11, + "probability": 0.8035 + }, + { + "start": 22932.85, + "end": 22934.03, + "probability": 0.953 + }, + { + "start": 22936.11, + "end": 22937.29, + "probability": 0.8796 + }, + { + "start": 22942.11, + "end": 22943.97, + "probability": 0.8138 + }, + { + "start": 22945.31, + "end": 22947.27, + "probability": 0.9986 + }, + { + "start": 22948.57, + "end": 22949.39, + "probability": 0.8943 + }, + { + "start": 22950.09, + "end": 22952.91, + "probability": 0.9793 + }, + { + "start": 22953.71, + "end": 22955.53, + "probability": 0.8812 + }, + { + "start": 22957.01, + "end": 22958.75, + "probability": 0.9052 + }, + { + "start": 22959.51, + "end": 22963.23, + "probability": 0.9577 + }, + { + "start": 22963.81, + "end": 22964.61, + "probability": 0.9267 + }, + { + "start": 22966.27, + "end": 22968.51, + "probability": 0.9827 + }, + { + "start": 22969.63, + "end": 22971.95, + "probability": 0.9909 + }, + { + "start": 22972.65, + "end": 22973.37, + "probability": 0.8908 + }, + { + "start": 22974.55, + "end": 22975.19, + "probability": 0.8655 + }, + { + "start": 22975.95, + "end": 22976.59, + "probability": 0.9566 + }, + { + "start": 22977.29, + "end": 22978.51, + "probability": 0.6916 + }, + { + "start": 22979.19, + "end": 22979.71, + "probability": 0.9004 + }, + { + "start": 22980.41, + "end": 22983.81, + "probability": 0.9962 + }, + { + "start": 22984.97, + "end": 22986.69, + "probability": 0.7751 + }, + { + "start": 22987.79, + "end": 22988.65, + "probability": 0.795 + }, + { + "start": 22990.51, + "end": 22991.95, + "probability": 0.9897 + }, + { + "start": 22992.47, + "end": 22993.25, + "probability": 0.991 + }, + { + "start": 22994.21, + "end": 22995.75, + "probability": 0.9536 + }, + { + "start": 22997.17, + "end": 22998.95, + "probability": 0.9844 + }, + { + "start": 23000.03, + "end": 23001.35, + "probability": 0.9985 + }, + { + "start": 23002.07, + "end": 23005.33, + "probability": 0.9915 + }, + { + "start": 23006.25, + "end": 23008.55, + "probability": 0.8987 + }, + { + "start": 23009.35, + "end": 23010.49, + "probability": 0.9564 + }, + { + "start": 23011.25, + "end": 23013.09, + "probability": 0.9471 + }, + { + "start": 23013.81, + "end": 23014.35, + "probability": 0.9012 + }, + { + "start": 23015.93, + "end": 23016.77, + "probability": 0.8826 + }, + { + "start": 23017.73, + "end": 23019.33, + "probability": 0.9057 + }, + { + "start": 23019.73, + "end": 23021.89, + "probability": 0.9886 + }, + { + "start": 23022.51, + "end": 23024.41, + "probability": 0.9607 + }, + { + "start": 23024.99, + "end": 23027.17, + "probability": 0.9814 + }, + { + "start": 23028.23, + "end": 23030.97, + "probability": 0.7839 + }, + { + "start": 23031.59, + "end": 23032.53, + "probability": 0.7502 + }, + { + "start": 23033.57, + "end": 23034.55, + "probability": 0.6728 + }, + { + "start": 23035.05, + "end": 23038.45, + "probability": 0.9943 + }, + { + "start": 23039.35, + "end": 23043.59, + "probability": 0.9301 + }, + { + "start": 23044.83, + "end": 23045.17, + "probability": 0.6485 + }, + { + "start": 23046.41, + "end": 23050.47, + "probability": 0.9268 + }, + { + "start": 23051.17, + "end": 23053.01, + "probability": 0.8247 + }, + { + "start": 23053.67, + "end": 23054.23, + "probability": 0.5915 + }, + { + "start": 23056.01, + "end": 23059.47, + "probability": 0.9963 + }, + { + "start": 23059.53, + "end": 23060.21, + "probability": 0.5987 + }, + { + "start": 23060.31, + "end": 23061.31, + "probability": 0.7363 + }, + { + "start": 23061.47, + "end": 23062.79, + "probability": 0.7534 + }, + { + "start": 23063.09, + "end": 23063.49, + "probability": 0.964 + }, + { + "start": 23064.95, + "end": 23066.26, + "probability": 0.9946 + }, + { + "start": 23067.25, + "end": 23074.05, + "probability": 0.994 + }, + { + "start": 23074.61, + "end": 23077.35, + "probability": 0.8941 + }, + { + "start": 23077.63, + "end": 23079.97, + "probability": 0.5904 + }, + { + "start": 23080.83, + "end": 23082.65, + "probability": 0.9971 + }, + { + "start": 23083.59, + "end": 23086.79, + "probability": 0.9549 + }, + { + "start": 23087.31, + "end": 23089.83, + "probability": 0.3113 + }, + { + "start": 23090.21, + "end": 23092.29, + "probability": 0.9436 + }, + { + "start": 23093.19, + "end": 23096.15, + "probability": 0.9174 + }, + { + "start": 23096.57, + "end": 23097.35, + "probability": 0.8853 + }, + { + "start": 23097.45, + "end": 23098.79, + "probability": 0.9195 + }, + { + "start": 23099.13, + "end": 23103.25, + "probability": 0.9828 + }, + { + "start": 23104.19, + "end": 23108.25, + "probability": 0.9987 + }, + { + "start": 23109.33, + "end": 23110.47, + "probability": 0.9966 + }, + { + "start": 23111.35, + "end": 23112.57, + "probability": 0.9816 + }, + { + "start": 23113.09, + "end": 23113.89, + "probability": 0.853 + }, + { + "start": 23114.05, + "end": 23115.25, + "probability": 0.6953 + }, + { + "start": 23115.33, + "end": 23119.59, + "probability": 0.9912 + }, + { + "start": 23119.59, + "end": 23122.15, + "probability": 0.9889 + }, + { + "start": 23122.97, + "end": 23123.59, + "probability": 0.9714 + }, + { + "start": 23124.23, + "end": 23125.11, + "probability": 0.7402 + }, + { + "start": 23125.73, + "end": 23127.39, + "probability": 0.9935 + }, + { + "start": 23128.63, + "end": 23129.69, + "probability": 0.9628 + }, + { + "start": 23130.09, + "end": 23133.59, + "probability": 0.9844 + }, + { + "start": 23134.11, + "end": 23135.49, + "probability": 0.9824 + }, + { + "start": 23135.61, + "end": 23136.27, + "probability": 0.5499 + }, + { + "start": 23136.59, + "end": 23137.26, + "probability": 0.7082 + }, + { + "start": 23139.13, + "end": 23141.11, + "probability": 0.8519 + }, + { + "start": 23141.79, + "end": 23142.79, + "probability": 0.9092 + }, + { + "start": 23163.27, + "end": 23165.53, + "probability": 0.7118 + }, + { + "start": 23166.95, + "end": 23170.77, + "probability": 0.9904 + }, + { + "start": 23171.25, + "end": 23172.59, + "probability": 0.9316 + }, + { + "start": 23173.73, + "end": 23175.87, + "probability": 0.9457 + }, + { + "start": 23176.91, + "end": 23180.43, + "probability": 0.9587 + }, + { + "start": 23181.41, + "end": 23183.93, + "probability": 0.9012 + }, + { + "start": 23185.99, + "end": 23187.49, + "probability": 0.7687 + }, + { + "start": 23188.17, + "end": 23189.25, + "probability": 0.9922 + }, + { + "start": 23190.09, + "end": 23191.47, + "probability": 0.8242 + }, + { + "start": 23192.93, + "end": 23195.91, + "probability": 0.7465 + }, + { + "start": 23197.85, + "end": 23198.63, + "probability": 0.9321 + }, + { + "start": 23199.17, + "end": 23202.15, + "probability": 0.9757 + }, + { + "start": 23203.83, + "end": 23207.59, + "probability": 0.9921 + }, + { + "start": 23207.95, + "end": 23211.19, + "probability": 0.8232 + }, + { + "start": 23212.43, + "end": 23214.55, + "probability": 0.6591 + }, + { + "start": 23216.35, + "end": 23219.21, + "probability": 0.8937 + }, + { + "start": 23220.13, + "end": 23221.15, + "probability": 0.8177 + }, + { + "start": 23221.69, + "end": 23224.15, + "probability": 0.9971 + }, + { + "start": 23224.77, + "end": 23227.03, + "probability": 0.9822 + }, + { + "start": 23227.63, + "end": 23228.25, + "probability": 0.6824 + }, + { + "start": 23228.91, + "end": 23230.31, + "probability": 0.5087 + }, + { + "start": 23230.47, + "end": 23232.51, + "probability": 0.8943 + }, + { + "start": 23233.75, + "end": 23234.67, + "probability": 0.6087 + }, + { + "start": 23235.15, + "end": 23237.01, + "probability": 0.8992 + }, + { + "start": 23237.43, + "end": 23238.75, + "probability": 0.9462 + }, + { + "start": 23239.39, + "end": 23240.31, + "probability": 0.9415 + }, + { + "start": 23241.51, + "end": 23243.73, + "probability": 0.9958 + }, + { + "start": 23244.57, + "end": 23245.59, + "probability": 0.959 + }, + { + "start": 23246.21, + "end": 23248.75, + "probability": 0.962 + }, + { + "start": 23248.91, + "end": 23252.09, + "probability": 0.9704 + }, + { + "start": 23252.93, + "end": 23254.49, + "probability": 0.9626 + }, + { + "start": 23254.93, + "end": 23257.55, + "probability": 0.9852 + }, + { + "start": 23258.67, + "end": 23263.55, + "probability": 0.4954 + }, + { + "start": 23263.67, + "end": 23264.91, + "probability": 0.8865 + }, + { + "start": 23276.85, + "end": 23278.35, + "probability": 0.0588 + }, + { + "start": 23278.35, + "end": 23278.35, + "probability": 0.0914 + }, + { + "start": 23278.35, + "end": 23278.35, + "probability": 0.0237 + }, + { + "start": 23278.35, + "end": 23278.39, + "probability": 0.0437 + }, + { + "start": 23278.39, + "end": 23279.23, + "probability": 0.1282 + }, + { + "start": 23280.21, + "end": 23283.75, + "probability": 0.8125 + }, + { + "start": 23284.85, + "end": 23285.99, + "probability": 0.8508 + }, + { + "start": 23286.59, + "end": 23287.87, + "probability": 0.8929 + }, + { + "start": 23288.45, + "end": 23290.73, + "probability": 0.8571 + }, + { + "start": 23291.57, + "end": 23294.81, + "probability": 0.82 + }, + { + "start": 23296.29, + "end": 23300.25, + "probability": 0.8563 + }, + { + "start": 23302.03, + "end": 23302.33, + "probability": 0.9891 + }, + { + "start": 23304.13, + "end": 23308.83, + "probability": 0.9839 + }, + { + "start": 23309.35, + "end": 23313.51, + "probability": 0.9671 + }, + { + "start": 23314.97, + "end": 23318.45, + "probability": 0.8725 + }, + { + "start": 23319.05, + "end": 23320.55, + "probability": 0.9056 + }, + { + "start": 23322.35, + "end": 23332.83, + "probability": 0.6987 + }, + { + "start": 23333.67, + "end": 23336.05, + "probability": 0.8077 + }, + { + "start": 23337.07, + "end": 23341.59, + "probability": 0.9746 + }, + { + "start": 23343.17, + "end": 23346.35, + "probability": 0.9119 + }, + { + "start": 23347.27, + "end": 23348.61, + "probability": 0.6306 + }, + { + "start": 23349.35, + "end": 23350.07, + "probability": 0.9586 + }, + { + "start": 23351.51, + "end": 23353.11, + "probability": 0.8447 + }, + { + "start": 23354.35, + "end": 23356.33, + "probability": 0.6118 + }, + { + "start": 23356.79, + "end": 23359.85, + "probability": 0.7065 + }, + { + "start": 23360.33, + "end": 23360.51, + "probability": 0.4025 + }, + { + "start": 23360.67, + "end": 23361.29, + "probability": 0.9579 + }, + { + "start": 23361.49, + "end": 23361.89, + "probability": 0.7887 + }, + { + "start": 23361.93, + "end": 23363.45, + "probability": 0.9305 + }, + { + "start": 23365.29, + "end": 23369.23, + "probability": 0.8048 + }, + { + "start": 23369.93, + "end": 23371.93, + "probability": 0.9271 + }, + { + "start": 23379.03, + "end": 23381.11, + "probability": 0.8221 + }, + { + "start": 23381.61, + "end": 23383.72, + "probability": 0.998 + }, + { + "start": 23384.17, + "end": 23386.11, + "probability": 0.9307 + }, + { + "start": 23389.11, + "end": 23394.57, + "probability": 0.8554 + }, + { + "start": 23396.33, + "end": 23400.95, + "probability": 0.9592 + }, + { + "start": 23401.07, + "end": 23403.49, + "probability": 0.7883 + }, + { + "start": 23404.09, + "end": 23405.33, + "probability": 0.5932 + }, + { + "start": 23406.15, + "end": 23409.39, + "probability": 0.924 + }, + { + "start": 23409.99, + "end": 23412.91, + "probability": 0.8546 + }, + { + "start": 23413.91, + "end": 23417.97, + "probability": 0.8 + }, + { + "start": 23418.15, + "end": 23418.15, + "probability": 0.6817 + }, + { + "start": 23418.43, + "end": 23420.32, + "probability": 0.7816 + }, + { + "start": 23421.05, + "end": 23423.46, + "probability": 0.837 + }, + { + "start": 23425.01, + "end": 23425.97, + "probability": 0.9142 + }, + { + "start": 23426.15, + "end": 23427.13, + "probability": 0.7655 + }, + { + "start": 23427.93, + "end": 23428.47, + "probability": 0.5389 + }, + { + "start": 23429.11, + "end": 23429.61, + "probability": 0.8015 + }, + { + "start": 23430.19, + "end": 23430.91, + "probability": 0.7271 + }, + { + "start": 23431.25, + "end": 23431.73, + "probability": 0.8065 + }, + { + "start": 23432.21, + "end": 23432.99, + "probability": 0.6444 + }, + { + "start": 23433.09, + "end": 23434.69, + "probability": 0.5177 + }, + { + "start": 23435.21, + "end": 23436.11, + "probability": 0.9 + }, + { + "start": 23440.03, + "end": 23444.29, + "probability": 0.8187 + }, + { + "start": 23445.33, + "end": 23451.27, + "probability": 0.8923 + }, + { + "start": 23451.35, + "end": 23452.05, + "probability": 0.6327 + }, + { + "start": 23452.05, + "end": 23452.35, + "probability": 0.9771 + }, + { + "start": 23459.07, + "end": 23460.81, + "probability": 0.7181 + }, + { + "start": 23462.05, + "end": 23462.37, + "probability": 0.6617 + }, + { + "start": 23462.47, + "end": 23467.61, + "probability": 0.9874 + }, + { + "start": 23469.31, + "end": 23471.87, + "probability": 0.9037 + }, + { + "start": 23472.85, + "end": 23473.07, + "probability": 0.4622 + }, + { + "start": 23474.13, + "end": 23477.83, + "probability": 0.1343 + }, + { + "start": 23478.31, + "end": 23480.37, + "probability": 0.2557 + }, + { + "start": 23481.41, + "end": 23482.69, + "probability": 0.9351 + }, + { + "start": 23482.77, + "end": 23485.31, + "probability": 0.9688 + }, + { + "start": 23487.13, + "end": 23490.17, + "probability": 0.0062 + }, + { + "start": 23490.79, + "end": 23492.31, + "probability": 0.0647 + }, + { + "start": 23493.62, + "end": 23497.37, + "probability": 0.0394 + }, + { + "start": 23498.19, + "end": 23498.93, + "probability": 0.2154 + }, + { + "start": 23500.73, + "end": 23504.39, + "probability": 0.6764 + }, + { + "start": 23504.39, + "end": 23507.69, + "probability": 0.9478 + }, + { + "start": 23509.51, + "end": 23512.77, + "probability": 0.5495 + }, + { + "start": 23513.39, + "end": 23514.89, + "probability": 0.7384 + }, + { + "start": 23515.29, + "end": 23520.03, + "probability": 0.9626 + }, + { + "start": 23520.75, + "end": 23521.69, + "probability": 0.992 + }, + { + "start": 23523.71, + "end": 23526.13, + "probability": 0.7698 + }, + { + "start": 23527.39, + "end": 23529.71, + "probability": 0.9971 + }, + { + "start": 23531.17, + "end": 23532.37, + "probability": 0.9319 + }, + { + "start": 23532.89, + "end": 23534.85, + "probability": 0.7443 + }, + { + "start": 23535.85, + "end": 23538.49, + "probability": 0.6994 + }, + { + "start": 23539.35, + "end": 23545.38, + "probability": 0.9414 + }, + { + "start": 23545.73, + "end": 23546.22, + "probability": 0.6675 + }, + { + "start": 23546.47, + "end": 23547.11, + "probability": 0.5306 + }, + { + "start": 23548.69, + "end": 23551.85, + "probability": 0.7702 + }, + { + "start": 23560.15, + "end": 23563.41, + "probability": 0.802 + }, + { + "start": 23565.95, + "end": 23568.23, + "probability": 0.7982 + }, + { + "start": 23569.05, + "end": 23572.09, + "probability": 0.991 + }, + { + "start": 23572.41, + "end": 23575.67, + "probability": 0.6547 + }, + { + "start": 23575.81, + "end": 23577.45, + "probability": 0.9134 + }, + { + "start": 23577.81, + "end": 23578.39, + "probability": 0.9898 + }, + { + "start": 23579.13, + "end": 23580.41, + "probability": 0.8209 + }, + { + "start": 23581.93, + "end": 23588.63, + "probability": 0.9915 + }, + { + "start": 23589.01, + "end": 23593.49, + "probability": 0.7792 + }, + { + "start": 23594.51, + "end": 23598.51, + "probability": 0.9679 + }, + { + "start": 23598.97, + "end": 23599.83, + "probability": 0.7887 + }, + { + "start": 23600.03, + "end": 23600.99, + "probability": 0.5796 + }, + { + "start": 23601.03, + "end": 23601.73, + "probability": 0.7318 + }, + { + "start": 23602.11, + "end": 23602.81, + "probability": 0.3398 + }, + { + "start": 23603.19, + "end": 23605.47, + "probability": 0.6928 + }, + { + "start": 23606.17, + "end": 23610.57, + "probability": 0.5027 + }, + { + "start": 23611.73, + "end": 23612.55, + "probability": 0.6359 + }, + { + "start": 23613.25, + "end": 23614.75, + "probability": 0.8952 + }, + { + "start": 23615.51, + "end": 23618.81, + "probability": 0.9821 + }, + { + "start": 23619.35, + "end": 23621.37, + "probability": 0.956 + }, + { + "start": 23622.27, + "end": 23623.13, + "probability": 0.6144 + }, + { + "start": 23623.35, + "end": 23628.21, + "probability": 0.9888 + }, + { + "start": 23630.95, + "end": 23632.23, + "probability": 0.5019 + }, + { + "start": 23633.18, + "end": 23640.75, + "probability": 0.8266 + }, + { + "start": 23641.33, + "end": 23642.03, + "probability": 0.8455 + }, + { + "start": 23643.29, + "end": 23647.77, + "probability": 0.9576 + }, + { + "start": 23647.77, + "end": 23650.31, + "probability": 0.9917 + }, + { + "start": 23651.09, + "end": 23652.05, + "probability": 0.7545 + }, + { + "start": 23652.13, + "end": 23656.13, + "probability": 0.9854 + }, + { + "start": 23657.51, + "end": 23658.59, + "probability": 0.9186 + }, + { + "start": 23659.25, + "end": 23661.97, + "probability": 0.9956 + }, + { + "start": 23663.33, + "end": 23664.99, + "probability": 0.9867 + }, + { + "start": 23666.19, + "end": 23671.93, + "probability": 0.9806 + }, + { + "start": 23673.35, + "end": 23673.79, + "probability": 0.9075 + }, + { + "start": 23674.67, + "end": 23678.47, + "probability": 0.8135 + }, + { + "start": 23679.76, + "end": 23683.81, + "probability": 0.8531 + }, + { + "start": 23685.19, + "end": 23686.15, + "probability": 0.9527 + }, + { + "start": 23686.87, + "end": 23689.87, + "probability": 0.984 + }, + { + "start": 23690.39, + "end": 23692.45, + "probability": 0.9804 + }, + { + "start": 23693.29, + "end": 23697.19, + "probability": 0.9834 + }, + { + "start": 23698.23, + "end": 23701.63, + "probability": 0.9951 + }, + { + "start": 23701.63, + "end": 23705.15, + "probability": 0.887 + }, + { + "start": 23705.75, + "end": 23708.11, + "probability": 0.8632 + }, + { + "start": 23708.77, + "end": 23712.21, + "probability": 0.8984 + }, + { + "start": 23712.63, + "end": 23719.15, + "probability": 0.9805 + }, + { + "start": 23719.85, + "end": 23723.43, + "probability": 0.993 + }, + { + "start": 23723.69, + "end": 23725.37, + "probability": 0.9983 + }, + { + "start": 23725.79, + "end": 23726.01, + "probability": 0.4225 + }, + { + "start": 23726.19, + "end": 23728.97, + "probability": 0.9375 + }, + { + "start": 23729.05, + "end": 23730.01, + "probability": 0.8698 + }, + { + "start": 23730.15, + "end": 23730.45, + "probability": 0.6761 + }, + { + "start": 23737.99, + "end": 23738.09, + "probability": 0.1345 + }, + { + "start": 23752.07, + "end": 23752.39, + "probability": 0.6603 + }, + { + "start": 23753.27, + "end": 23754.45, + "probability": 0.3048 + }, + { + "start": 23760.77, + "end": 23761.99, + "probability": 0.0168 + }, + { + "start": 23761.99, + "end": 23761.99, + "probability": 0.1549 + }, + { + "start": 23791.29, + "end": 23795.55, + "probability": 0.7328 + }, + { + "start": 23796.21, + "end": 23798.53, + "probability": 0.8793 + }, + { + "start": 23799.37, + "end": 23799.9, + "probability": 0.9255 + }, + { + "start": 23800.11, + "end": 23802.3, + "probability": 0.9309 + }, + { + "start": 23803.19, + "end": 23804.59, + "probability": 0.7972 + }, + { + "start": 23804.89, + "end": 23806.11, + "probability": 0.9596 + }, + { + "start": 23806.69, + "end": 23808.45, + "probability": 0.9924 + }, + { + "start": 23808.85, + "end": 23810.94, + "probability": 0.9779 + }, + { + "start": 23811.11, + "end": 23812.93, + "probability": 0.9888 + }, + { + "start": 23813.45, + "end": 23816.69, + "probability": 0.9884 + }, + { + "start": 23817.25, + "end": 23822.49, + "probability": 0.9863 + }, + { + "start": 23824.48, + "end": 23827.47, + "probability": 0.7749 + }, + { + "start": 23828.17, + "end": 23830.49, + "probability": 0.9663 + }, + { + "start": 23831.63, + "end": 23836.97, + "probability": 0.8994 + }, + { + "start": 23837.59, + "end": 23841.31, + "probability": 0.9782 + }, + { + "start": 23841.39, + "end": 23842.15, + "probability": 0.8302 + }, + { + "start": 23842.23, + "end": 23843.19, + "probability": 0.843 + }, + { + "start": 23845.09, + "end": 23846.35, + "probability": 0.7764 + }, + { + "start": 23846.85, + "end": 23847.76, + "probability": 0.6553 + }, + { + "start": 23848.01, + "end": 23850.83, + "probability": 0.8239 + }, + { + "start": 23851.49, + "end": 23853.59, + "probability": 0.7138 + }, + { + "start": 23854.19, + "end": 23857.03, + "probability": 0.9873 + }, + { + "start": 23857.07, + "end": 23860.45, + "probability": 0.9546 + }, + { + "start": 23860.45, + "end": 23862.49, + "probability": 0.6755 + }, + { + "start": 23862.94, + "end": 23864.03, + "probability": 0.9724 + }, + { + "start": 23864.13, + "end": 23864.62, + "probability": 0.8682 + }, + { + "start": 23865.45, + "end": 23866.23, + "probability": 0.5385 + }, + { + "start": 23867.27, + "end": 23868.49, + "probability": 0.7386 + }, + { + "start": 23868.57, + "end": 23872.93, + "probability": 0.9705 + }, + { + "start": 23873.01, + "end": 23873.37, + "probability": 0.6678 + }, + { + "start": 23874.05, + "end": 23875.01, + "probability": 0.9155 + }, + { + "start": 23875.03, + "end": 23875.35, + "probability": 0.9832 + }, + { + "start": 23876.41, + "end": 23877.11, + "probability": 0.7392 + }, + { + "start": 23877.35, + "end": 23879.39, + "probability": 0.9924 + }, + { + "start": 23879.49, + "end": 23880.57, + "probability": 0.9691 + }, + { + "start": 23881.27, + "end": 23885.07, + "probability": 0.9771 + }, + { + "start": 23885.41, + "end": 23886.51, + "probability": 0.9595 + }, + { + "start": 23886.99, + "end": 23890.35, + "probability": 0.9794 + }, + { + "start": 23890.77, + "end": 23891.51, + "probability": 0.6545 + }, + { + "start": 23891.71, + "end": 23892.35, + "probability": 0.9752 + }, + { + "start": 23892.65, + "end": 23893.29, + "probability": 0.973 + }, + { + "start": 23893.59, + "end": 23894.56, + "probability": 0.9979 + }, + { + "start": 23894.71, + "end": 23896.79, + "probability": 0.9669 + }, + { + "start": 23897.41, + "end": 23899.73, + "probability": 0.9932 + }, + { + "start": 23900.51, + "end": 23901.15, + "probability": 0.4293 + }, + { + "start": 23901.17, + "end": 23901.25, + "probability": 0.4342 + }, + { + "start": 23901.29, + "end": 23905.01, + "probability": 0.8901 + }, + { + "start": 23905.05, + "end": 23905.23, + "probability": 0.7004 + }, + { + "start": 23905.91, + "end": 23906.09, + "probability": 0.6704 + }, + { + "start": 23911.55, + "end": 23913.49, + "probability": 0.9573 + }, + { + "start": 23913.89, + "end": 23914.59, + "probability": 0.8143 + }, + { + "start": 23914.69, + "end": 23916.89, + "probability": 0.994 + }, + { + "start": 23917.03, + "end": 23921.05, + "probability": 0.876 + }, + { + "start": 23921.43, + "end": 23922.93, + "probability": 0.93 + }, + { + "start": 23923.05, + "end": 23924.93, + "probability": 0.6688 + }, + { + "start": 23925.05, + "end": 23926.19, + "probability": 0.9635 + }, + { + "start": 23926.27, + "end": 23926.37, + "probability": 0.7204 + }, + { + "start": 23926.79, + "end": 23927.15, + "probability": 0.7126 + }, + { + "start": 23928.33, + "end": 23931.31, + "probability": 0.9822 + }, + { + "start": 23931.37, + "end": 23933.75, + "probability": 0.841 + }, + { + "start": 23934.15, + "end": 23938.45, + "probability": 0.8602 + }, + { + "start": 23938.65, + "end": 23942.39, + "probability": 0.9961 + }, + { + "start": 23942.87, + "end": 23942.99, + "probability": 0.4563 + }, + { + "start": 23943.03, + "end": 23944.43, + "probability": 0.8998 + }, + { + "start": 23944.71, + "end": 23945.17, + "probability": 0.499 + }, + { + "start": 23945.33, + "end": 23946.21, + "probability": 0.4975 + }, + { + "start": 23946.47, + "end": 23948.89, + "probability": 0.8996 + }, + { + "start": 23949.31, + "end": 23950.14, + "probability": 0.8325 + }, + { + "start": 23950.55, + "end": 23951.09, + "probability": 0.9832 + }, + { + "start": 23952.69, + "end": 23955.17, + "probability": 0.9807 + }, + { + "start": 23955.21, + "end": 23955.97, + "probability": 0.8872 + }, + { + "start": 23956.13, + "end": 23957.29, + "probability": 0.8833 + }, + { + "start": 23958.09, + "end": 23961.43, + "probability": 0.9496 + }, + { + "start": 23962.07, + "end": 23963.81, + "probability": 0.9929 + }, + { + "start": 23964.63, + "end": 23968.91, + "probability": 0.9879 + }, + { + "start": 23969.61, + "end": 23971.27, + "probability": 0.9956 + }, + { + "start": 23971.67, + "end": 23973.99, + "probability": 0.8465 + }, + { + "start": 23974.13, + "end": 23974.43, + "probability": 0.4356 + }, + { + "start": 23974.61, + "end": 23976.03, + "probability": 0.9465 + }, + { + "start": 23976.91, + "end": 23980.75, + "probability": 0.9147 + }, + { + "start": 23980.81, + "end": 23981.37, + "probability": 0.8623 + }, + { + "start": 23981.47, + "end": 23983.73, + "probability": 0.9924 + }, + { + "start": 23984.09, + "end": 23985.65, + "probability": 0.859 + }, + { + "start": 23985.93, + "end": 23989.36, + "probability": 0.7569 + }, + { + "start": 23990.31, + "end": 23992.75, + "probability": 0.9316 + }, + { + "start": 23993.23, + "end": 23997.31, + "probability": 0.9811 + }, + { + "start": 23997.91, + "end": 24001.11, + "probability": 0.9922 + }, + { + "start": 24001.45, + "end": 24001.93, + "probability": 0.6697 + }, + { + "start": 24002.29, + "end": 24004.31, + "probability": 0.9694 + }, + { + "start": 24004.39, + "end": 24007.95, + "probability": 0.9325 + }, + { + "start": 24008.39, + "end": 24010.21, + "probability": 0.8434 + }, + { + "start": 24010.43, + "end": 24011.33, + "probability": 0.8867 + }, + { + "start": 24011.59, + "end": 24012.61, + "probability": 0.7564 + }, + { + "start": 24012.63, + "end": 24013.89, + "probability": 0.4941 + }, + { + "start": 24013.89, + "end": 24014.98, + "probability": 0.5465 + }, + { + "start": 24015.51, + "end": 24016.27, + "probability": 0.8901 + }, + { + "start": 24018.15, + "end": 24018.81, + "probability": 0.7585 + }, + { + "start": 24020.15, + "end": 24021.27, + "probability": 0.9489 + }, + { + "start": 24021.81, + "end": 24022.65, + "probability": 0.9568 + }, + { + "start": 24023.61, + "end": 24023.73, + "probability": 0.6879 + }, + { + "start": 24026.58, + "end": 24027.13, + "probability": 0.6204 + }, + { + "start": 24030.75, + "end": 24031.17, + "probability": 0.7226 + }, + { + "start": 24031.49, + "end": 24032.21, + "probability": 0.601 + }, + { + "start": 24032.35, + "end": 24032.59, + "probability": 0.7356 + }, + { + "start": 24032.79, + "end": 24033.43, + "probability": 0.902 + }, + { + "start": 24033.59, + "end": 24036.43, + "probability": 0.9037 + }, + { + "start": 24039.25, + "end": 24043.69, + "probability": 0.9973 + }, + { + "start": 24044.63, + "end": 24047.45, + "probability": 0.8764 + }, + { + "start": 24047.95, + "end": 24049.09, + "probability": 0.8806 + }, + { + "start": 24049.35, + "end": 24050.07, + "probability": 0.8465 + }, + { + "start": 24050.49, + "end": 24051.19, + "probability": 0.7827 + }, + { + "start": 24051.97, + "end": 24056.69, + "probability": 0.9803 + }, + { + "start": 24056.85, + "end": 24058.91, + "probability": 0.9179 + }, + { + "start": 24059.79, + "end": 24062.41, + "probability": 0.9969 + }, + { + "start": 24062.83, + "end": 24064.73, + "probability": 0.9967 + }, + { + "start": 24064.73, + "end": 24067.77, + "probability": 0.9961 + }, + { + "start": 24067.97, + "end": 24068.73, + "probability": 0.8783 + }, + { + "start": 24068.79, + "end": 24074.21, + "probability": 0.968 + }, + { + "start": 24074.31, + "end": 24075.15, + "probability": 0.9824 + }, + { + "start": 24075.53, + "end": 24078.27, + "probability": 0.988 + }, + { + "start": 24078.61, + "end": 24079.99, + "probability": 0.9987 + }, + { + "start": 24080.03, + "end": 24081.07, + "probability": 0.8194 + }, + { + "start": 24081.55, + "end": 24082.69, + "probability": 0.877 + }, + { + "start": 24082.75, + "end": 24083.77, + "probability": 0.7352 + }, + { + "start": 24083.93, + "end": 24085.67, + "probability": 0.7341 + }, + { + "start": 24086.37, + "end": 24086.59, + "probability": 0.6047 + }, + { + "start": 24086.99, + "end": 24088.77, + "probability": 0.9963 + }, + { + "start": 24088.83, + "end": 24091.11, + "probability": 0.998 + }, + { + "start": 24091.43, + "end": 24093.67, + "probability": 0.9748 + }, + { + "start": 24094.11, + "end": 24096.65, + "probability": 0.998 + }, + { + "start": 24097.21, + "end": 24097.75, + "probability": 0.5481 + }, + { + "start": 24098.03, + "end": 24100.59, + "probability": 0.9865 + }, + { + "start": 24100.65, + "end": 24104.85, + "probability": 0.9939 + }, + { + "start": 24104.89, + "end": 24106.99, + "probability": 0.926 + }, + { + "start": 24107.45, + "end": 24107.85, + "probability": 0.8523 + }, + { + "start": 24108.15, + "end": 24108.57, + "probability": 0.7689 + }, + { + "start": 24108.87, + "end": 24112.5, + "probability": 0.9952 + }, + { + "start": 24113.19, + "end": 24117.35, + "probability": 0.8306 + }, + { + "start": 24117.83, + "end": 24120.39, + "probability": 0.9654 + }, + { + "start": 24121.29, + "end": 24123.91, + "probability": 0.7522 + }, + { + "start": 24124.43, + "end": 24126.97, + "probability": 0.841 + }, + { + "start": 24127.77, + "end": 24129.67, + "probability": 0.0198 + }, + { + "start": 24129.71, + "end": 24129.93, + "probability": 0.1951 + }, + { + "start": 24129.93, + "end": 24131.35, + "probability": 0.6295 + }, + { + "start": 24131.45, + "end": 24136.81, + "probability": 0.2697 + }, + { + "start": 24136.81, + "end": 24136.91, + "probability": 0.4611 + }, + { + "start": 24137.87, + "end": 24138.17, + "probability": 0.7696 + }, + { + "start": 24138.37, + "end": 24139.69, + "probability": 0.8133 + }, + { + "start": 24140.57, + "end": 24150.63, + "probability": 0.9845 + }, + { + "start": 24152.01, + "end": 24153.57, + "probability": 0.8185 + }, + { + "start": 24153.63, + "end": 24158.49, + "probability": 0.8943 + }, + { + "start": 24159.99, + "end": 24162.59, + "probability": 0.9806 + }, + { + "start": 24163.53, + "end": 24166.63, + "probability": 0.9952 + }, + { + "start": 24168.09, + "end": 24169.33, + "probability": 0.5275 + }, + { + "start": 24170.37, + "end": 24171.31, + "probability": 0.0407 + }, + { + "start": 24172.59, + "end": 24180.75, + "probability": 0.3885 + }, + { + "start": 24180.75, + "end": 24181.43, + "probability": 0.5999 + }, + { + "start": 24182.21, + "end": 24184.13, + "probability": 0.0365 + }, + { + "start": 24184.23, + "end": 24185.65, + "probability": 0.5712 + }, + { + "start": 24186.27, + "end": 24187.13, + "probability": 0.0144 + }, + { + "start": 24187.73, + "end": 24190.03, + "probability": 0.9756 + }, + { + "start": 24190.71, + "end": 24192.03, + "probability": 0.8984 + }, + { + "start": 24192.59, + "end": 24193.03, + "probability": 0.4745 + }, + { + "start": 24193.49, + "end": 24194.47, + "probability": 0.6461 + }, + { + "start": 24194.57, + "end": 24200.83, + "probability": 0.8861 + }, + { + "start": 24201.57, + "end": 24205.01, + "probability": 0.594 + }, + { + "start": 24205.59, + "end": 24207.43, + "probability": 0.9758 + }, + { + "start": 24208.93, + "end": 24213.27, + "probability": 0.985 + }, + { + "start": 24213.43, + "end": 24213.85, + "probability": 0.5884 + }, + { + "start": 24214.55, + "end": 24216.77, + "probability": 0.8618 + }, + { + "start": 24217.05, + "end": 24217.41, + "probability": 0.8221 + }, + { + "start": 24217.61, + "end": 24224.77, + "probability": 0.9921 + }, + { + "start": 24225.87, + "end": 24230.15, + "probability": 0.5099 + }, + { + "start": 24230.29, + "end": 24234.07, + "probability": 0.9198 + }, + { + "start": 24234.69, + "end": 24237.25, + "probability": 0.9972 + }, + { + "start": 24237.25, + "end": 24240.27, + "probability": 0.9829 + }, + { + "start": 24240.65, + "end": 24241.17, + "probability": 0.519 + }, + { + "start": 24241.17, + "end": 24241.47, + "probability": 0.3707 + }, + { + "start": 24241.79, + "end": 24242.01, + "probability": 0.7431 + }, + { + "start": 24242.99, + "end": 24245.89, + "probability": 0.5236 + }, + { + "start": 24246.35, + "end": 24247.71, + "probability": 0.8711 + }, + { + "start": 24248.35, + "end": 24251.53, + "probability": 0.6768 + }, + { + "start": 24251.85, + "end": 24252.19, + "probability": 0.7668 + }, + { + "start": 24253.01, + "end": 24253.41, + "probability": 0.6726 + }, + { + "start": 24255.11, + "end": 24257.19, + "probability": 0.861 + }, + { + "start": 24258.37, + "end": 24258.89, + "probability": 0.4084 + }, + { + "start": 24259.87, + "end": 24261.23, + "probability": 0.5002 + }, + { + "start": 24261.71, + "end": 24263.17, + "probability": 0.9853 + }, + { + "start": 24264.17, + "end": 24266.39, + "probability": 0.955 + }, + { + "start": 24268.23, + "end": 24269.31, + "probability": 0.9375 + }, + { + "start": 24269.37, + "end": 24273.43, + "probability": 0.9367 + }, + { + "start": 24274.41, + "end": 24274.73, + "probability": 0.361 + }, + { + "start": 24276.32, + "end": 24276.97, + "probability": 0.4232 + }, + { + "start": 24276.97, + "end": 24276.97, + "probability": 0.0234 + }, + { + "start": 24276.97, + "end": 24278.71, + "probability": 0.7812 + }, + { + "start": 24278.99, + "end": 24280.71, + "probability": 0.6032 + }, + { + "start": 24282.07, + "end": 24284.65, + "probability": 0.0835 + }, + { + "start": 24286.27, + "end": 24288.57, + "probability": 0.998 + }, + { + "start": 24289.35, + "end": 24292.21, + "probability": 0.9512 + }, + { + "start": 24292.77, + "end": 24294.09, + "probability": 0.1473 + }, + { + "start": 24294.09, + "end": 24294.65, + "probability": 0.1101 + }, + { + "start": 24297.43, + "end": 24300.21, + "probability": 0.3926 + }, + { + "start": 24301.01, + "end": 24301.93, + "probability": 0.6075 + }, + { + "start": 24312.45, + "end": 24313.89, + "probability": 0.0388 + }, + { + "start": 24313.91, + "end": 24314.01, + "probability": 0.0077 + }, + { + "start": 24314.01, + "end": 24314.01, + "probability": 0.0889 + }, + { + "start": 24314.01, + "end": 24319.13, + "probability": 0.25 + }, + { + "start": 24319.23, + "end": 24320.03, + "probability": 0.464 + }, + { + "start": 24320.95, + "end": 24325.49, + "probability": 0.7325 + }, + { + "start": 24326.31, + "end": 24327.93, + "probability": 0.9623 + }, + { + "start": 24328.81, + "end": 24333.73, + "probability": 0.9175 + }, + { + "start": 24334.59, + "end": 24336.22, + "probability": 0.9426 + }, + { + "start": 24337.59, + "end": 24341.05, + "probability": 0.9857 + }, + { + "start": 24341.69, + "end": 24345.91, + "probability": 0.9503 + }, + { + "start": 24346.61, + "end": 24347.39, + "probability": 0.7729 + }, + { + "start": 24349.19, + "end": 24349.89, + "probability": 0.726 + }, + { + "start": 24352.05, + "end": 24358.35, + "probability": 0.9477 + }, + { + "start": 24358.93, + "end": 24360.69, + "probability": 0.9988 + }, + { + "start": 24361.25, + "end": 24363.05, + "probability": 0.8889 + }, + { + "start": 24363.87, + "end": 24365.69, + "probability": 0.9797 + }, + { + "start": 24370.19, + "end": 24374.83, + "probability": 0.8567 + }, + { + "start": 24375.43, + "end": 24378.65, + "probability": 0.9951 + }, + { + "start": 24379.01, + "end": 24385.13, + "probability": 0.9868 + }, + { + "start": 24385.99, + "end": 24387.49, + "probability": 0.9304 + }, + { + "start": 24388.39, + "end": 24391.03, + "probability": 0.8971 + }, + { + "start": 24391.35, + "end": 24392.73, + "probability": 0.7434 + }, + { + "start": 24393.23, + "end": 24396.01, + "probability": 0.9424 + }, + { + "start": 24396.49, + "end": 24397.35, + "probability": 0.8483 + }, + { + "start": 24398.31, + "end": 24400.03, + "probability": 0.9496 + }, + { + "start": 24400.71, + "end": 24405.47, + "probability": 0.9725 + }, + { + "start": 24406.03, + "end": 24406.51, + "probability": 0.7021 + }, + { + "start": 24407.11, + "end": 24410.15, + "probability": 0.9884 + }, + { + "start": 24410.19, + "end": 24411.11, + "probability": 0.9351 + }, + { + "start": 24411.45, + "end": 24416.31, + "probability": 0.9657 + }, + { + "start": 24417.51, + "end": 24418.35, + "probability": 0.8478 + }, + { + "start": 24419.01, + "end": 24421.39, + "probability": 0.7223 + }, + { + "start": 24421.79, + "end": 24423.05, + "probability": 0.9927 + }, + { + "start": 24423.15, + "end": 24424.45, + "probability": 0.9215 + }, + { + "start": 24424.57, + "end": 24427.07, + "probability": 0.9908 + }, + { + "start": 24430.33, + "end": 24433.03, + "probability": 0.7456 + }, + { + "start": 24433.37, + "end": 24435.82, + "probability": 0.8454 + }, + { + "start": 24436.87, + "end": 24440.25, + "probability": 0.6196 + }, + { + "start": 24440.49, + "end": 24441.55, + "probability": 0.7814 + }, + { + "start": 24441.61, + "end": 24443.05, + "probability": 0.7667 + }, + { + "start": 24443.07, + "end": 24446.13, + "probability": 0.6045 + }, + { + "start": 24446.59, + "end": 24448.49, + "probability": 0.9136 + }, + { + "start": 24448.59, + "end": 24451.25, + "probability": 0.9192 + }, + { + "start": 24451.77, + "end": 24453.23, + "probability": 0.9916 + }, + { + "start": 24453.85, + "end": 24454.49, + "probability": 0.7953 + }, + { + "start": 24454.51, + "end": 24458.53, + "probability": 0.9849 + }, + { + "start": 24459.01, + "end": 24460.37, + "probability": 0.9884 + }, + { + "start": 24460.49, + "end": 24461.35, + "probability": 0.6663 + }, + { + "start": 24461.75, + "end": 24463.65, + "probability": 0.8009 + }, + { + "start": 24464.13, + "end": 24464.57, + "probability": 0.8285 + }, + { + "start": 24465.05, + "end": 24466.55, + "probability": 0.8939 + }, + { + "start": 24467.69, + "end": 24468.77, + "probability": 0.9473 + }, + { + "start": 24469.77, + "end": 24471.45, + "probability": 0.7213 + }, + { + "start": 24472.15, + "end": 24473.83, + "probability": 0.9224 + }, + { + "start": 24474.47, + "end": 24475.83, + "probability": 0.9915 + }, + { + "start": 24478.39, + "end": 24479.41, + "probability": 0.9572 + }, + { + "start": 24479.93, + "end": 24480.97, + "probability": 0.8264 + }, + { + "start": 24481.59, + "end": 24483.19, + "probability": 0.5477 + }, + { + "start": 24484.03, + "end": 24486.67, + "probability": 0.8766 + }, + { + "start": 24486.91, + "end": 24489.51, + "probability": 0.9253 + }, + { + "start": 24490.65, + "end": 24495.61, + "probability": 0.9939 + }, + { + "start": 24496.07, + "end": 24496.63, + "probability": 0.7906 + }, + { + "start": 24496.81, + "end": 24498.19, + "probability": 0.9195 + }, + { + "start": 24498.53, + "end": 24500.05, + "probability": 0.9307 + }, + { + "start": 24500.43, + "end": 24501.99, + "probability": 0.9978 + }, + { + "start": 24502.61, + "end": 24503.01, + "probability": 0.4221 + }, + { + "start": 24503.17, + "end": 24504.63, + "probability": 0.5442 + }, + { + "start": 24504.93, + "end": 24506.79, + "probability": 0.9794 + }, + { + "start": 24507.21, + "end": 24507.99, + "probability": 0.744 + }, + { + "start": 24508.31, + "end": 24510.27, + "probability": 0.9945 + }, + { + "start": 24510.47, + "end": 24514.35, + "probability": 0.9782 + }, + { + "start": 24514.71, + "end": 24519.87, + "probability": 0.999 + }, + { + "start": 24520.85, + "end": 24521.57, + "probability": 0.6856 + }, + { + "start": 24522.15, + "end": 24523.3, + "probability": 0.9822 + }, + { + "start": 24524.03, + "end": 24525.57, + "probability": 0.9763 + }, + { + "start": 24526.31, + "end": 24531.63, + "probability": 0.9761 + }, + { + "start": 24532.65, + "end": 24533.45, + "probability": 0.5972 + }, + { + "start": 24533.85, + "end": 24535.61, + "probability": 0.8345 + }, + { + "start": 24535.65, + "end": 24541.23, + "probability": 0.8795 + }, + { + "start": 24542.17, + "end": 24545.99, + "probability": 0.9594 + }, + { + "start": 24546.43, + "end": 24547.57, + "probability": 0.7604 + }, + { + "start": 24548.41, + "end": 24549.59, + "probability": 0.9123 + }, + { + "start": 24551.62, + "end": 24554.03, + "probability": 0.0738 + }, + { + "start": 24554.03, + "end": 24555.39, + "probability": 0.3635 + }, + { + "start": 24555.41, + "end": 24557.63, + "probability": 0.498 + }, + { + "start": 24558.27, + "end": 24559.61, + "probability": 0.6006 + }, + { + "start": 24562.15, + "end": 24563.17, + "probability": 0.4775 + }, + { + "start": 24564.09, + "end": 24565.55, + "probability": 0.508 + }, + { + "start": 24575.98, + "end": 24580.01, + "probability": 0.1843 + }, + { + "start": 24602.23, + "end": 24605.71, + "probability": 0.8335 + }, + { + "start": 24605.77, + "end": 24606.89, + "probability": 0.6149 + }, + { + "start": 24607.97, + "end": 24613.99, + "probability": 0.8263 + }, + { + "start": 24614.93, + "end": 24619.93, + "probability": 0.9513 + }, + { + "start": 24620.03, + "end": 24621.01, + "probability": 0.7202 + }, + { + "start": 24621.97, + "end": 24622.41, + "probability": 0.5879 + }, + { + "start": 24624.35, + "end": 24626.43, + "probability": 0.9804 + }, + { + "start": 24627.89, + "end": 24629.93, + "probability": 0.9345 + }, + { + "start": 24630.47, + "end": 24633.45, + "probability": 0.9846 + }, + { + "start": 24634.25, + "end": 24635.69, + "probability": 0.9925 + }, + { + "start": 24636.39, + "end": 24639.79, + "probability": 0.8666 + }, + { + "start": 24641.01, + "end": 24644.19, + "probability": 0.9202 + }, + { + "start": 24644.43, + "end": 24646.21, + "probability": 0.9308 + }, + { + "start": 24646.97, + "end": 24648.95, + "probability": 0.889 + }, + { + "start": 24649.75, + "end": 24654.85, + "probability": 0.7979 + }, + { + "start": 24655.35, + "end": 24656.77, + "probability": 0.828 + }, + { + "start": 24657.33, + "end": 24658.13, + "probability": 0.809 + }, + { + "start": 24658.67, + "end": 24661.03, + "probability": 0.9902 + }, + { + "start": 24662.63, + "end": 24667.33, + "probability": 0.9731 + }, + { + "start": 24667.49, + "end": 24668.11, + "probability": 0.5408 + }, + { + "start": 24668.25, + "end": 24668.69, + "probability": 0.7107 + }, + { + "start": 24669.63, + "end": 24670.61, + "probability": 0.4052 + }, + { + "start": 24671.33, + "end": 24674.83, + "probability": 0.962 + }, + { + "start": 24675.33, + "end": 24676.43, + "probability": 0.8896 + }, + { + "start": 24677.83, + "end": 24679.19, + "probability": 0.9457 + }, + { + "start": 24679.89, + "end": 24683.03, + "probability": 0.9767 + }, + { + "start": 24684.19, + "end": 24687.19, + "probability": 0.5831 + }, + { + "start": 24687.71, + "end": 24688.65, + "probability": 0.8837 + }, + { + "start": 24688.99, + "end": 24691.51, + "probability": 0.9908 + }, + { + "start": 24692.17, + "end": 24692.81, + "probability": 0.5771 + }, + { + "start": 24693.91, + "end": 24697.53, + "probability": 0.924 + }, + { + "start": 24698.73, + "end": 24700.23, + "probability": 0.998 + }, + { + "start": 24701.39, + "end": 24702.27, + "probability": 0.9929 + }, + { + "start": 24702.89, + "end": 24705.47, + "probability": 0.9949 + }, + { + "start": 24707.01, + "end": 24710.17, + "probability": 0.988 + }, + { + "start": 24711.01, + "end": 24714.03, + "probability": 0.9917 + }, + { + "start": 24714.69, + "end": 24716.55, + "probability": 0.98 + }, + { + "start": 24716.65, + "end": 24719.13, + "probability": 0.8438 + }, + { + "start": 24719.21, + "end": 24724.01, + "probability": 0.9923 + }, + { + "start": 24726.51, + "end": 24727.37, + "probability": 0.8823 + }, + { + "start": 24728.95, + "end": 24730.45, + "probability": 0.63 + }, + { + "start": 24731.03, + "end": 24731.59, + "probability": 0.5549 + }, + { + "start": 24732.43, + "end": 24733.17, + "probability": 0.6815 + }, + { + "start": 24733.73, + "end": 24734.89, + "probability": 0.9437 + }, + { + "start": 24736.31, + "end": 24737.77, + "probability": 0.6967 + }, + { + "start": 24738.61, + "end": 24742.69, + "probability": 0.9953 + }, + { + "start": 24743.49, + "end": 24744.37, + "probability": 0.6489 + }, + { + "start": 24744.53, + "end": 24748.21, + "probability": 0.978 + }, + { + "start": 24749.09, + "end": 24752.87, + "probability": 0.5138 + }, + { + "start": 24753.43, + "end": 24757.05, + "probability": 0.9965 + }, + { + "start": 24757.05, + "end": 24762.11, + "probability": 0.9839 + }, + { + "start": 24762.17, + "end": 24762.55, + "probability": 0.7629 + }, + { + "start": 24763.91, + "end": 24764.69, + "probability": 0.7 + }, + { + "start": 24765.57, + "end": 24767.19, + "probability": 0.8901 + }, + { + "start": 24767.89, + "end": 24769.03, + "probability": 0.7448 + }, + { + "start": 24776.67, + "end": 24778.09, + "probability": 0.9282 + }, + { + "start": 24778.61, + "end": 24779.43, + "probability": 0.9629 + }, + { + "start": 24780.81, + "end": 24781.47, + "probability": 0.0535 + }, + { + "start": 24781.49, + "end": 24783.11, + "probability": 0.6773 + }, + { + "start": 24783.15, + "end": 24785.07, + "probability": 0.9124 + }, + { + "start": 24785.37, + "end": 24786.25, + "probability": 0.9399 + }, + { + "start": 24799.87, + "end": 24800.25, + "probability": 0.7751 + }, + { + "start": 24801.57, + "end": 24802.45, + "probability": 0.6164 + }, + { + "start": 24802.61, + "end": 24804.93, + "probability": 0.8551 + }, + { + "start": 24804.99, + "end": 24807.11, + "probability": 0.9822 + }, + { + "start": 24811.09, + "end": 24812.99, + "probability": 0.8457 + }, + { + "start": 24816.47, + "end": 24817.13, + "probability": 0.5063 + }, + { + "start": 24817.83, + "end": 24818.33, + "probability": 0.7762 + }, + { + "start": 24819.37, + "end": 24821.19, + "probability": 0.8537 + }, + { + "start": 24822.61, + "end": 24825.05, + "probability": 0.8822 + }, + { + "start": 24825.77, + "end": 24826.97, + "probability": 0.7168 + }, + { + "start": 24827.15, + "end": 24828.15, + "probability": 0.9619 + }, + { + "start": 24828.83, + "end": 24829.57, + "probability": 0.7488 + }, + { + "start": 24830.97, + "end": 24835.45, + "probability": 0.9771 + }, + { + "start": 24836.37, + "end": 24839.17, + "probability": 0.8793 + }, + { + "start": 24840.21, + "end": 24842.67, + "probability": 0.9243 + }, + { + "start": 24843.31, + "end": 24845.27, + "probability": 0.9891 + }, + { + "start": 24845.59, + "end": 24847.47, + "probability": 0.9866 + }, + { + "start": 24849.29, + "end": 24853.25, + "probability": 0.9805 + }, + { + "start": 24854.79, + "end": 24856.17, + "probability": 0.9586 + }, + { + "start": 24857.15, + "end": 24858.29, + "probability": 0.9976 + }, + { + "start": 24859.97, + "end": 24862.17, + "probability": 0.9943 + }, + { + "start": 24865.47, + "end": 24870.25, + "probability": 0.9544 + }, + { + "start": 24871.11, + "end": 24872.61, + "probability": 0.5483 + }, + { + "start": 24874.39, + "end": 24876.93, + "probability": 0.8467 + }, + { + "start": 24878.25, + "end": 24880.13, + "probability": 0.8414 + }, + { + "start": 24880.77, + "end": 24884.15, + "probability": 0.9409 + }, + { + "start": 24884.21, + "end": 24885.11, + "probability": 0.9946 + }, + { + "start": 24886.77, + "end": 24887.43, + "probability": 0.7822 + }, + { + "start": 24889.75, + "end": 24892.63, + "probability": 0.9386 + }, + { + "start": 24894.27, + "end": 24896.47, + "probability": 0.9946 + }, + { + "start": 24898.13, + "end": 24901.15, + "probability": 0.856 + }, + { + "start": 24902.41, + "end": 24905.11, + "probability": 0.9671 + }, + { + "start": 24906.95, + "end": 24909.03, + "probability": 0.8162 + }, + { + "start": 24909.11, + "end": 24909.63, + "probability": 0.5235 + }, + { + "start": 24909.79, + "end": 24911.11, + "probability": 0.9299 + }, + { + "start": 24911.21, + "end": 24912.55, + "probability": 0.8921 + }, + { + "start": 24914.19, + "end": 24915.89, + "probability": 0.9167 + }, + { + "start": 24916.99, + "end": 24919.17, + "probability": 0.8596 + }, + { + "start": 24920.95, + "end": 24922.46, + "probability": 0.9775 + }, + { + "start": 24924.91, + "end": 24930.51, + "probability": 0.9301 + }, + { + "start": 24932.35, + "end": 24934.05, + "probability": 0.6325 + }, + { + "start": 24935.29, + "end": 24939.55, + "probability": 0.8577 + }, + { + "start": 24940.39, + "end": 24942.65, + "probability": 0.9366 + }, + { + "start": 24943.43, + "end": 24947.73, + "probability": 0.7936 + }, + { + "start": 24947.85, + "end": 24949.81, + "probability": 0.9686 + }, + { + "start": 24950.75, + "end": 24951.59, + "probability": 0.9461 + }, + { + "start": 24952.15, + "end": 24953.81, + "probability": 0.8733 + }, + { + "start": 24955.13, + "end": 24959.09, + "probability": 0.6527 + }, + { + "start": 24959.55, + "end": 24959.69, + "probability": 0.1395 + }, + { + "start": 24959.69, + "end": 24959.69, + "probability": 0.0723 + }, + { + "start": 24959.69, + "end": 24960.49, + "probability": 0.3664 + }, + { + "start": 24960.71, + "end": 24961.25, + "probability": 0.3607 + }, + { + "start": 24961.72, + "end": 24963.45, + "probability": 0.1753 + }, + { + "start": 24963.49, + "end": 24967.25, + "probability": 0.0393 + }, + { + "start": 24970.25, + "end": 24972.19, + "probability": 0.0156 + }, + { + "start": 24972.65, + "end": 24972.91, + "probability": 0.0784 + }, + { + "start": 24972.91, + "end": 24974.29, + "probability": 0.0527 + }, + { + "start": 24974.29, + "end": 24974.29, + "probability": 0.1285 + }, + { + "start": 24974.29, + "end": 24974.29, + "probability": 0.1212 + }, + { + "start": 24974.29, + "end": 24974.29, + "probability": 0.0803 + }, + { + "start": 24974.29, + "end": 24976.23, + "probability": 0.4375 + }, + { + "start": 24977.87, + "end": 24983.05, + "probability": 0.7955 + }, + { + "start": 24984.39, + "end": 24986.59, + "probability": 0.7373 + }, + { + "start": 24987.05, + "end": 24987.73, + "probability": 0.8022 + }, + { + "start": 24987.85, + "end": 24989.31, + "probability": 0.6848 + }, + { + "start": 24989.67, + "end": 24990.33, + "probability": 0.2444 + }, + { + "start": 24990.43, + "end": 24992.05, + "probability": 0.7045 + }, + { + "start": 24992.31, + "end": 24993.97, + "probability": 0.5881 + }, + { + "start": 24994.47, + "end": 24994.47, + "probability": 0.306 + }, + { + "start": 24994.83, + "end": 24997.91, + "probability": 0.1782 + }, + { + "start": 24998.89, + "end": 25003.99, + "probability": 0.3664 + }, + { + "start": 25004.43, + "end": 25007.37, + "probability": 0.2077 + }, + { + "start": 25007.37, + "end": 25008.89, + "probability": 0.0681 + }, + { + "start": 25009.09, + "end": 25011.11, + "probability": 0.5266 + }, + { + "start": 25011.53, + "end": 25013.23, + "probability": 0.4596 + }, + { + "start": 25013.55, + "end": 25014.41, + "probability": 0.2201 + }, + { + "start": 25014.41, + "end": 25015.93, + "probability": 0.3129 + }, + { + "start": 25015.93, + "end": 25017.53, + "probability": 0.312 + }, + { + "start": 25017.53, + "end": 25020.31, + "probability": 0.5455 + }, + { + "start": 25020.41, + "end": 25021.15, + "probability": 0.2094 + }, + { + "start": 25021.23, + "end": 25022.67, + "probability": 0.6968 + }, + { + "start": 25022.95, + "end": 25024.05, + "probability": 0.1649 + }, + { + "start": 25024.41, + "end": 25026.45, + "probability": 0.447 + }, + { + "start": 25026.71, + "end": 25031.11, + "probability": 0.5094 + }, + { + "start": 25031.67, + "end": 25031.67, + "probability": 0.0314 + }, + { + "start": 25031.67, + "end": 25033.13, + "probability": 0.2359 + }, + { + "start": 25035.29, + "end": 25035.33, + "probability": 0.2847 + }, + { + "start": 25036.01, + "end": 25041.81, + "probability": 0.9487 + }, + { + "start": 25041.89, + "end": 25043.31, + "probability": 0.7934 + }, + { + "start": 25044.35, + "end": 25047.03, + "probability": 0.9927 + }, + { + "start": 25047.25, + "end": 25048.09, + "probability": 0.8322 + }, + { + "start": 25048.21, + "end": 25049.15, + "probability": 0.7909 + }, + { + "start": 25049.25, + "end": 25050.71, + "probability": 0.8576 + }, + { + "start": 25051.07, + "end": 25052.01, + "probability": 0.8291 + }, + { + "start": 25052.69, + "end": 25055.37, + "probability": 0.9824 + }, + { + "start": 25055.55, + "end": 25056.07, + "probability": 0.6984 + }, + { + "start": 25056.47, + "end": 25060.35, + "probability": 0.9847 + }, + { + "start": 25060.35, + "end": 25063.63, + "probability": 0.978 + }, + { + "start": 25063.71, + "end": 25064.35, + "probability": 0.6243 + }, + { + "start": 25064.35, + "end": 25068.35, + "probability": 0.9984 + }, + { + "start": 25069.33, + "end": 25072.89, + "probability": 0.9099 + }, + { + "start": 25073.43, + "end": 25075.95, + "probability": 0.4588 + }, + { + "start": 25076.43, + "end": 25078.35, + "probability": 0.2089 + }, + { + "start": 25079.19, + "end": 25082.21, + "probability": 0.7829 + }, + { + "start": 25084.87, + "end": 25084.87, + "probability": 0.7241 + }, + { + "start": 25084.87, + "end": 25084.87, + "probability": 0.0418 + }, + { + "start": 25084.87, + "end": 25085.69, + "probability": 0.225 + }, + { + "start": 25085.69, + "end": 25087.75, + "probability": 0.3541 + }, + { + "start": 25087.99, + "end": 25088.11, + "probability": 0.2959 + }, + { + "start": 25088.11, + "end": 25090.79, + "probability": 0.9313 + }, + { + "start": 25091.15, + "end": 25093.27, + "probability": 0.7431 + }, + { + "start": 25101.31, + "end": 25101.31, + "probability": 0.4985 + }, + { + "start": 25101.31, + "end": 25101.31, + "probability": 0.1891 + }, + { + "start": 25101.31, + "end": 25101.31, + "probability": 0.0145 + }, + { + "start": 25101.31, + "end": 25101.51, + "probability": 0.0741 + }, + { + "start": 25101.51, + "end": 25101.93, + "probability": 0.0708 + }, + { + "start": 25115.73, + "end": 25116.95, + "probability": 0.3348 + }, + { + "start": 25118.53, + "end": 25120.73, + "probability": 0.663 + }, + { + "start": 25121.73, + "end": 25123.13, + "probability": 0.8786 + }, + { + "start": 25123.97, + "end": 25125.31, + "probability": 0.9375 + }, + { + "start": 25125.35, + "end": 25127.93, + "probability": 0.9567 + }, + { + "start": 25128.67, + "end": 25129.51, + "probability": 0.8904 + }, + { + "start": 25129.59, + "end": 25130.49, + "probability": 0.4983 + }, + { + "start": 25131.03, + "end": 25131.93, + "probability": 0.4924 + }, + { + "start": 25132.11, + "end": 25133.59, + "probability": 0.5718 + }, + { + "start": 25133.69, + "end": 25135.4, + "probability": 0.8443 + }, + { + "start": 25135.73, + "end": 25137.17, + "probability": 0.9123 + }, + { + "start": 25137.81, + "end": 25139.43, + "probability": 0.9751 + }, + { + "start": 25140.29, + "end": 25141.6, + "probability": 0.9424 + }, + { + "start": 25142.81, + "end": 25143.53, + "probability": 0.8917 + }, + { + "start": 25144.05, + "end": 25144.55, + "probability": 0.2657 + }, + { + "start": 25145.35, + "end": 25147.99, + "probability": 0.5966 + }, + { + "start": 25148.89, + "end": 25151.12, + "probability": 0.8323 + }, + { + "start": 25151.93, + "end": 25154.11, + "probability": 0.9008 + }, + { + "start": 25155.05, + "end": 25158.59, + "probability": 0.9724 + }, + { + "start": 25159.81, + "end": 25160.67, + "probability": 0.9521 + }, + { + "start": 25161.37, + "end": 25162.13, + "probability": 0.4784 + }, + { + "start": 25162.37, + "end": 25166.71, + "probability": 0.8665 + }, + { + "start": 25167.97, + "end": 25169.35, + "probability": 0.8703 + }, + { + "start": 25169.47, + "end": 25171.79, + "probability": 0.9243 + }, + { + "start": 25171.87, + "end": 25173.77, + "probability": 0.8653 + }, + { + "start": 25174.49, + "end": 25177.25, + "probability": 0.9769 + }, + { + "start": 25177.25, + "end": 25181.31, + "probability": 0.98 + }, + { + "start": 25181.43, + "end": 25182.73, + "probability": 0.6299 + }, + { + "start": 25182.81, + "end": 25183.73, + "probability": 0.6725 + }, + { + "start": 25184.21, + "end": 25185.83, + "probability": 0.9636 + }, + { + "start": 25186.67, + "end": 25188.28, + "probability": 0.8618 + }, + { + "start": 25188.57, + "end": 25195.33, + "probability": 0.7568 + }, + { + "start": 25196.47, + "end": 25198.03, + "probability": 0.6423 + }, + { + "start": 25198.11, + "end": 25198.49, + "probability": 0.453 + }, + { + "start": 25198.53, + "end": 25198.85, + "probability": 0.8742 + }, + { + "start": 25199.43, + "end": 25199.75, + "probability": 0.8979 + }, + { + "start": 25200.27, + "end": 25200.89, + "probability": 0.756 + }, + { + "start": 25201.03, + "end": 25201.87, + "probability": 0.9487 + }, + { + "start": 25202.41, + "end": 25207.13, + "probability": 0.9917 + }, + { + "start": 25208.03, + "end": 25211.25, + "probability": 0.8008 + }, + { + "start": 25211.33, + "end": 25212.65, + "probability": 0.6653 + }, + { + "start": 25213.63, + "end": 25215.47, + "probability": 0.8822 + }, + { + "start": 25215.57, + "end": 25216.61, + "probability": 0.8811 + }, + { + "start": 25216.67, + "end": 25220.85, + "probability": 0.8992 + }, + { + "start": 25221.41, + "end": 25224.47, + "probability": 0.9908 + }, + { + "start": 25224.85, + "end": 25226.95, + "probability": 0.5682 + }, + { + "start": 25227.65, + "end": 25230.97, + "probability": 0.9238 + }, + { + "start": 25231.15, + "end": 25232.35, + "probability": 0.9394 + }, + { + "start": 25233.19, + "end": 25234.29, + "probability": 0.8713 + }, + { + "start": 25234.37, + "end": 25234.77, + "probability": 0.5795 + }, + { + "start": 25234.85, + "end": 25236.85, + "probability": 0.9911 + }, + { + "start": 25237.23, + "end": 25239.51, + "probability": 0.9855 + }, + { + "start": 25239.99, + "end": 25244.41, + "probability": 0.9966 + }, + { + "start": 25244.41, + "end": 25247.73, + "probability": 0.9832 + }, + { + "start": 25247.81, + "end": 25250.51, + "probability": 0.9893 + }, + { + "start": 25251.15, + "end": 25252.06, + "probability": 0.8231 + }, + { + "start": 25252.85, + "end": 25255.65, + "probability": 0.9855 + }, + { + "start": 25256.73, + "end": 25258.23, + "probability": 0.7084 + }, + { + "start": 25258.61, + "end": 25260.31, + "probability": 0.9038 + }, + { + "start": 25260.77, + "end": 25263.99, + "probability": 0.9495 + }, + { + "start": 25264.31, + "end": 25264.77, + "probability": 0.7944 + }, + { + "start": 25264.89, + "end": 25265.87, + "probability": 0.8198 + }, + { + "start": 25266.35, + "end": 25267.31, + "probability": 0.856 + }, + { + "start": 25267.49, + "end": 25268.57, + "probability": 0.7603 + }, + { + "start": 25269.11, + "end": 25272.61, + "probability": 0.9604 + }, + { + "start": 25272.75, + "end": 25273.55, + "probability": 0.5151 + }, + { + "start": 25274.29, + "end": 25275.89, + "probability": 0.9974 + }, + { + "start": 25276.43, + "end": 25280.37, + "probability": 0.9945 + }, + { + "start": 25280.37, + "end": 25283.51, + "probability": 0.9141 + }, + { + "start": 25284.33, + "end": 25287.75, + "probability": 0.7397 + }, + { + "start": 25287.79, + "end": 25288.25, + "probability": 0.7872 + }, + { + "start": 25288.77, + "end": 25289.19, + "probability": 0.7545 + }, + { + "start": 25289.45, + "end": 25290.25, + "probability": 0.7669 + }, + { + "start": 25291.55, + "end": 25293.05, + "probability": 0.8122 + }, + { + "start": 25314.49, + "end": 25315.47, + "probability": 0.6237 + }, + { + "start": 25315.55, + "end": 25317.39, + "probability": 0.6972 + }, + { + "start": 25317.83, + "end": 25317.83, + "probability": 0.6965 + }, + { + "start": 25317.95, + "end": 25320.57, + "probability": 0.8882 + }, + { + "start": 25321.13, + "end": 25321.88, + "probability": 0.9919 + }, + { + "start": 25323.01, + "end": 25324.33, + "probability": 0.1738 + }, + { + "start": 25326.03, + "end": 25326.29, + "probability": 0.2206 + }, + { + "start": 25326.29, + "end": 25326.29, + "probability": 0.1674 + }, + { + "start": 25326.29, + "end": 25327.31, + "probability": 0.905 + }, + { + "start": 25327.51, + "end": 25330.66, + "probability": 0.9958 + }, + { + "start": 25332.01, + "end": 25332.91, + "probability": 0.9055 + }, + { + "start": 25334.83, + "end": 25336.09, + "probability": 0.9426 + }, + { + "start": 25338.05, + "end": 25339.41, + "probability": 0.9439 + }, + { + "start": 25342.03, + "end": 25343.97, + "probability": 0.7939 + }, + { + "start": 25345.23, + "end": 25347.36, + "probability": 0.5101 + }, + { + "start": 25349.33, + "end": 25350.13, + "probability": 0.7567 + }, + { + "start": 25350.37, + "end": 25350.95, + "probability": 0.8948 + }, + { + "start": 25351.35, + "end": 25352.01, + "probability": 0.8996 + }, + { + "start": 25352.53, + "end": 25352.75, + "probability": 0.0653 + }, + { + "start": 25352.85, + "end": 25355.33, + "probability": 0.8709 + }, + { + "start": 25357.83, + "end": 25359.13, + "probability": 0.6368 + }, + { + "start": 25360.15, + "end": 25360.74, + "probability": 0.9824 + }, + { + "start": 25362.09, + "end": 25363.03, + "probability": 0.9434 + }, + { + "start": 25364.97, + "end": 25366.63, + "probability": 0.9037 + }, + { + "start": 25367.25, + "end": 25368.91, + "probability": 0.9917 + }, + { + "start": 25368.91, + "end": 25372.19, + "probability": 0.8241 + }, + { + "start": 25373.29, + "end": 25374.67, + "probability": 0.9691 + }, + { + "start": 25376.29, + "end": 25378.87, + "probability": 0.895 + }, + { + "start": 25379.49, + "end": 25380.83, + "probability": 0.999 + }, + { + "start": 25382.99, + "end": 25383.85, + "probability": 0.9993 + }, + { + "start": 25384.79, + "end": 25385.81, + "probability": 0.5818 + }, + { + "start": 25386.93, + "end": 25389.45, + "probability": 0.5618 + }, + { + "start": 25390.75, + "end": 25394.15, + "probability": 0.9856 + }, + { + "start": 25395.21, + "end": 25397.29, + "probability": 0.7883 + }, + { + "start": 25397.43, + "end": 25398.03, + "probability": 0.4507 + }, + { + "start": 25398.43, + "end": 25399.23, + "probability": 0.9194 + }, + { + "start": 25400.77, + "end": 25404.24, + "probability": 0.9985 + }, + { + "start": 25404.75, + "end": 25409.35, + "probability": 0.8148 + }, + { + "start": 25409.61, + "end": 25411.09, + "probability": 0.9885 + }, + { + "start": 25411.83, + "end": 25414.25, + "probability": 0.9221 + }, + { + "start": 25416.39, + "end": 25417.83, + "probability": 0.9978 + }, + { + "start": 25420.65, + "end": 25421.85, + "probability": 0.8632 + }, + { + "start": 25422.85, + "end": 25424.77, + "probability": 0.9935 + }, + { + "start": 25425.55, + "end": 25427.87, + "probability": 0.9131 + }, + { + "start": 25428.27, + "end": 25430.07, + "probability": 0.9658 + }, + { + "start": 25430.99, + "end": 25431.79, + "probability": 0.9346 + }, + { + "start": 25433.39, + "end": 25433.97, + "probability": 0.5155 + }, + { + "start": 25434.59, + "end": 25435.55, + "probability": 0.6806 + }, + { + "start": 25437.01, + "end": 25439.81, + "probability": 0.965 + }, + { + "start": 25441.25, + "end": 25443.06, + "probability": 0.6572 + }, + { + "start": 25444.65, + "end": 25445.59, + "probability": 0.8108 + }, + { + "start": 25445.95, + "end": 25447.31, + "probability": 0.9482 + }, + { + "start": 25447.43, + "end": 25447.79, + "probability": 0.3521 + }, + { + "start": 25448.39, + "end": 25451.01, + "probability": 0.9499 + }, + { + "start": 25451.05, + "end": 25452.33, + "probability": 0.7842 + }, + { + "start": 25452.75, + "end": 25454.11, + "probability": 0.8298 + }, + { + "start": 25454.65, + "end": 25456.71, + "probability": 0.756 + }, + { + "start": 25457.35, + "end": 25458.27, + "probability": 0.7394 + }, + { + "start": 25459.47, + "end": 25460.43, + "probability": 0.8154 + }, + { + "start": 25461.57, + "end": 25462.43, + "probability": 0.9946 + }, + { + "start": 25463.03, + "end": 25464.23, + "probability": 0.9766 + }, + { + "start": 25464.81, + "end": 25465.64, + "probability": 0.7043 + }, + { + "start": 25467.69, + "end": 25470.19, + "probability": 0.9902 + }, + { + "start": 25470.99, + "end": 25471.77, + "probability": 0.9971 + }, + { + "start": 25473.39, + "end": 25474.73, + "probability": 0.6223 + }, + { + "start": 25475.33, + "end": 25476.19, + "probability": 0.9064 + }, + { + "start": 25477.25, + "end": 25479.17, + "probability": 0.9136 + }, + { + "start": 25479.43, + "end": 25480.19, + "probability": 0.9428 + }, + { + "start": 25480.27, + "end": 25481.09, + "probability": 0.9689 + }, + { + "start": 25482.45, + "end": 25486.65, + "probability": 0.8131 + }, + { + "start": 25488.57, + "end": 25491.83, + "probability": 0.9467 + }, + { + "start": 25493.47, + "end": 25495.03, + "probability": 0.9312 + }, + { + "start": 25495.29, + "end": 25496.59, + "probability": 0.9951 + }, + { + "start": 25498.49, + "end": 25499.17, + "probability": 0.9712 + }, + { + "start": 25499.71, + "end": 25502.37, + "probability": 0.988 + }, + { + "start": 25503.83, + "end": 25505.35, + "probability": 0.934 + }, + { + "start": 25506.09, + "end": 25508.53, + "probability": 0.9268 + }, + { + "start": 25508.65, + "end": 25509.45, + "probability": 0.5835 + }, + { + "start": 25509.47, + "end": 25510.63, + "probability": 0.9381 + }, + { + "start": 25510.75, + "end": 25511.21, + "probability": 0.8575 + }, + { + "start": 25511.69, + "end": 25515.05, + "probability": 0.9851 + }, + { + "start": 25515.27, + "end": 25516.27, + "probability": 0.9969 + }, + { + "start": 25517.09, + "end": 25518.27, + "probability": 0.9675 + }, + { + "start": 25518.97, + "end": 25523.63, + "probability": 0.9744 + }, + { + "start": 25524.45, + "end": 25526.19, + "probability": 0.9946 + }, + { + "start": 25526.53, + "end": 25528.43, + "probability": 0.5812 + }, + { + "start": 25528.91, + "end": 25529.91, + "probability": 0.9726 + }, + { + "start": 25530.25, + "end": 25530.61, + "probability": 0.6517 + }, + { + "start": 25531.85, + "end": 25534.23, + "probability": 0.9163 + }, + { + "start": 25534.93, + "end": 25536.65, + "probability": 0.9516 + }, + { + "start": 25548.91, + "end": 25549.45, + "probability": 0.6032 + }, + { + "start": 25553.13, + "end": 25558.13, + "probability": 0.6886 + }, + { + "start": 25559.21, + "end": 25559.89, + "probability": 0.6182 + }, + { + "start": 25560.57, + "end": 25561.33, + "probability": 0.9286 + }, + { + "start": 25564.03, + "end": 25565.73, + "probability": 0.9211 + }, + { + "start": 25566.87, + "end": 25568.43, + "probability": 0.7979 + }, + { + "start": 25570.29, + "end": 25575.17, + "probability": 0.9863 + }, + { + "start": 25575.51, + "end": 25577.29, + "probability": 0.802 + }, + { + "start": 25577.81, + "end": 25578.87, + "probability": 0.915 + }, + { + "start": 25580.31, + "end": 25580.91, + "probability": 0.5435 + }, + { + "start": 25582.85, + "end": 25585.81, + "probability": 0.9058 + }, + { + "start": 25585.99, + "end": 25587.58, + "probability": 0.8156 + }, + { + "start": 25587.83, + "end": 25588.75, + "probability": 0.9795 + }, + { + "start": 25588.89, + "end": 25592.33, + "probability": 0.964 + }, + { + "start": 25593.73, + "end": 25595.36, + "probability": 0.897 + }, + { + "start": 25595.73, + "end": 25598.53, + "probability": 0.8833 + }, + { + "start": 25598.81, + "end": 25601.75, + "probability": 0.9434 + }, + { + "start": 25603.43, + "end": 25607.49, + "probability": 0.9478 + }, + { + "start": 25609.71, + "end": 25609.81, + "probability": 0.6331 + }, + { + "start": 25609.93, + "end": 25610.65, + "probability": 0.9526 + }, + { + "start": 25610.65, + "end": 25612.97, + "probability": 0.9434 + }, + { + "start": 25613.03, + "end": 25614.15, + "probability": 0.9995 + }, + { + "start": 25614.81, + "end": 25616.05, + "probability": 0.9992 + }, + { + "start": 25616.59, + "end": 25618.55, + "probability": 0.9181 + }, + { + "start": 25619.81, + "end": 25621.23, + "probability": 0.9159 + }, + { + "start": 25622.53, + "end": 25625.21, + "probability": 0.9326 + }, + { + "start": 25626.31, + "end": 25628.15, + "probability": 0.9845 + }, + { + "start": 25628.65, + "end": 25629.79, + "probability": 0.8307 + }, + { + "start": 25629.97, + "end": 25630.59, + "probability": 0.7341 + }, + { + "start": 25631.05, + "end": 25634.63, + "probability": 0.9788 + }, + { + "start": 25635.69, + "end": 25638.53, + "probability": 0.943 + }, + { + "start": 25638.79, + "end": 25640.91, + "probability": 0.9832 + }, + { + "start": 25641.71, + "end": 25644.03, + "probability": 0.9707 + }, + { + "start": 25644.87, + "end": 25646.45, + "probability": 0.9009 + }, + { + "start": 25647.91, + "end": 25654.81, + "probability": 0.9011 + }, + { + "start": 25656.01, + "end": 25656.7, + "probability": 0.7264 + }, + { + "start": 25658.05, + "end": 25658.97, + "probability": 0.9213 + }, + { + "start": 25659.45, + "end": 25660.95, + "probability": 0.9893 + }, + { + "start": 25661.25, + "end": 25662.05, + "probability": 0.7856 + }, + { + "start": 25662.21, + "end": 25667.39, + "probability": 0.6241 + }, + { + "start": 25667.39, + "end": 25673.45, + "probability": 0.9904 + }, + { + "start": 25674.15, + "end": 25678.23, + "probability": 0.8943 + }, + { + "start": 25679.43, + "end": 25680.47, + "probability": 0.8621 + }, + { + "start": 25681.01, + "end": 25683.05, + "probability": 0.8963 + }, + { + "start": 25683.15, + "end": 25684.55, + "probability": 0.7089 + }, + { + "start": 25685.05, + "end": 25685.68, + "probability": 0.9014 + }, + { + "start": 25686.57, + "end": 25688.97, + "probability": 0.9894 + }, + { + "start": 25689.69, + "end": 25693.07, + "probability": 0.8447 + }, + { + "start": 25693.39, + "end": 25695.37, + "probability": 0.888 + }, + { + "start": 25697.57, + "end": 25701.07, + "probability": 0.5858 + }, + { + "start": 25701.17, + "end": 25701.55, + "probability": 0.6527 + }, + { + "start": 25701.59, + "end": 25705.27, + "probability": 0.954 + }, + { + "start": 25705.27, + "end": 25706.69, + "probability": 0.8651 + }, + { + "start": 25707.89, + "end": 25711.07, + "probability": 0.9916 + }, + { + "start": 25713.79, + "end": 25714.41, + "probability": 0.6452 + }, + { + "start": 25715.21, + "end": 25717.91, + "probability": 0.9963 + }, + { + "start": 25717.91, + "end": 25721.13, + "probability": 0.968 + }, + { + "start": 25721.87, + "end": 25725.49, + "probability": 0.9688 + }, + { + "start": 25725.95, + "end": 25726.35, + "probability": 0.8286 + }, + { + "start": 25726.47, + "end": 25729.23, + "probability": 0.981 + }, + { + "start": 25729.35, + "end": 25729.71, + "probability": 0.5455 + }, + { + "start": 25730.47, + "end": 25732.99, + "probability": 0.9256 + }, + { + "start": 25733.55, + "end": 25735.05, + "probability": 0.9876 + }, + { + "start": 25735.63, + "end": 25737.59, + "probability": 0.7886 + }, + { + "start": 25738.27, + "end": 25740.37, + "probability": 0.9833 + }, + { + "start": 25740.53, + "end": 25741.67, + "probability": 0.6919 + }, + { + "start": 25742.71, + "end": 25745.81, + "probability": 0.8407 + }, + { + "start": 25746.23, + "end": 25746.75, + "probability": 0.9803 + }, + { + "start": 25746.85, + "end": 25747.56, + "probability": 0.9897 + }, + { + "start": 25749.35, + "end": 25749.65, + "probability": 0.4763 + }, + { + "start": 25749.67, + "end": 25752.85, + "probability": 0.7089 + }, + { + "start": 25753.51, + "end": 25754.65, + "probability": 0.9247 + }, + { + "start": 25754.85, + "end": 25757.0, + "probability": 0.9927 + }, + { + "start": 25757.55, + "end": 25758.77, + "probability": 0.9956 + }, + { + "start": 25760.55, + "end": 25761.65, + "probability": 0.9212 + }, + { + "start": 25762.39, + "end": 25764.89, + "probability": 0.948 + }, + { + "start": 25764.99, + "end": 25765.61, + "probability": 0.6904 + }, + { + "start": 25766.23, + "end": 25768.73, + "probability": 0.9621 + }, + { + "start": 25769.41, + "end": 25771.29, + "probability": 0.9532 + }, + { + "start": 25771.91, + "end": 25772.83, + "probability": 0.4957 + }, + { + "start": 25772.83, + "end": 25774.73, + "probability": 0.9661 + }, + { + "start": 25774.85, + "end": 25775.89, + "probability": 0.8808 + }, + { + "start": 25775.97, + "end": 25776.77, + "probability": 0.9192 + }, + { + "start": 25776.77, + "end": 25777.19, + "probability": 0.3199 + }, + { + "start": 25777.25, + "end": 25778.69, + "probability": 0.9559 + }, + { + "start": 25779.09, + "end": 25780.24, + "probability": 0.9824 + }, + { + "start": 25780.77, + "end": 25785.17, + "probability": 0.7858 + }, + { + "start": 25785.27, + "end": 25785.47, + "probability": 0.4611 + }, + { + "start": 25786.13, + "end": 25786.87, + "probability": 0.7961 + }, + { + "start": 25787.55, + "end": 25790.61, + "probability": 0.8891 + }, + { + "start": 25796.19, + "end": 25797.39, + "probability": 0.6183 + }, + { + "start": 25798.85, + "end": 25799.67, + "probability": 0.8412 + }, + { + "start": 25799.99, + "end": 25800.07, + "probability": 0.3219 + }, + { + "start": 25800.19, + "end": 25802.21, + "probability": 0.975 + }, + { + "start": 25802.29, + "end": 25803.24, + "probability": 0.7593 + }, + { + "start": 25803.99, + "end": 25804.83, + "probability": 0.609 + }, + { + "start": 25805.49, + "end": 25806.51, + "probability": 0.42 + }, + { + "start": 25807.13, + "end": 25809.95, + "probability": 0.8506 + }, + { + "start": 25809.95, + "end": 25812.51, + "probability": 0.5908 + }, + { + "start": 25816.99, + "end": 25819.12, + "probability": 0.0734 + }, + { + "start": 25819.87, + "end": 25821.25, + "probability": 0.8831 + }, + { + "start": 25823.89, + "end": 25825.61, + "probability": 0.9616 + }, + { + "start": 25826.73, + "end": 25827.62, + "probability": 0.9526 + }, + { + "start": 25827.99, + "end": 25828.86, + "probability": 0.9797 + }, + { + "start": 25830.41, + "end": 25832.71, + "probability": 0.8387 + }, + { + "start": 25833.53, + "end": 25834.91, + "probability": 0.9277 + }, + { + "start": 25835.05, + "end": 25835.33, + "probability": 0.9209 + }, + { + "start": 25835.79, + "end": 25836.18, + "probability": 0.9842 + }, + { + "start": 25836.45, + "end": 25837.25, + "probability": 0.9107 + }, + { + "start": 25837.29, + "end": 25838.97, + "probability": 0.967 + }, + { + "start": 25839.49, + "end": 25840.11, + "probability": 0.9834 + }, + { + "start": 25840.77, + "end": 25841.83, + "probability": 0.7464 + }, + { + "start": 25841.91, + "end": 25842.31, + "probability": 0.7051 + }, + { + "start": 25842.39, + "end": 25845.29, + "probability": 0.968 + }, + { + "start": 25845.51, + "end": 25847.23, + "probability": 0.9588 + }, + { + "start": 25847.35, + "end": 25850.11, + "probability": 0.6826 + }, + { + "start": 25850.15, + "end": 25851.27, + "probability": 0.5069 + }, + { + "start": 25852.47, + "end": 25852.63, + "probability": 0.5288 + }, + { + "start": 25852.73, + "end": 25853.03, + "probability": 0.9354 + }, + { + "start": 25853.17, + "end": 25857.51, + "probability": 0.9716 + }, + { + "start": 25858.11, + "end": 25859.31, + "probability": 0.9968 + }, + { + "start": 25860.01, + "end": 25864.27, + "probability": 0.9785 + }, + { + "start": 25864.59, + "end": 25865.91, + "probability": 0.9544 + }, + { + "start": 25866.51, + "end": 25869.55, + "probability": 0.8181 + }, + { + "start": 25870.05, + "end": 25872.59, + "probability": 0.9893 + }, + { + "start": 25873.01, + "end": 25874.01, + "probability": 0.8801 + }, + { + "start": 25875.73, + "end": 25878.09, + "probability": 0.901 + }, + { + "start": 25878.51, + "end": 25879.11, + "probability": 0.8728 + }, + { + "start": 25879.29, + "end": 25880.29, + "probability": 0.9557 + }, + { + "start": 25880.37, + "end": 25882.79, + "probability": 0.9715 + }, + { + "start": 25882.89, + "end": 25884.93, + "probability": 0.8115 + }, + { + "start": 25885.07, + "end": 25885.35, + "probability": 0.8184 + }, + { + "start": 25885.51, + "end": 25885.91, + "probability": 0.6688 + }, + { + "start": 25886.43, + "end": 25886.87, + "probability": 0.6943 + }, + { + "start": 25886.97, + "end": 25889.35, + "probability": 0.9935 + }, + { + "start": 25889.53, + "end": 25890.93, + "probability": 0.8351 + }, + { + "start": 25891.05, + "end": 25893.33, + "probability": 0.9968 + }, + { + "start": 25893.87, + "end": 25895.65, + "probability": 0.9591 + }, + { + "start": 25896.07, + "end": 25900.37, + "probability": 0.978 + }, + { + "start": 25900.53, + "end": 25901.85, + "probability": 0.925 + }, + { + "start": 25902.33, + "end": 25903.05, + "probability": 0.8931 + }, + { + "start": 25903.17, + "end": 25907.65, + "probability": 0.7563 + }, + { + "start": 25907.75, + "end": 25911.89, + "probability": 0.8992 + }, + { + "start": 25912.31, + "end": 25913.67, + "probability": 0.8887 + }, + { + "start": 25913.87, + "end": 25915.15, + "probability": 0.7583 + }, + { + "start": 25915.73, + "end": 25916.83, + "probability": 0.998 + }, + { + "start": 25916.91, + "end": 25920.53, + "probability": 0.9667 + }, + { + "start": 25920.65, + "end": 25923.29, + "probability": 0.9902 + }, + { + "start": 25923.61, + "end": 25926.13, + "probability": 0.7179 + }, + { + "start": 25926.69, + "end": 25927.09, + "probability": 0.8752 + }, + { + "start": 25927.47, + "end": 25928.09, + "probability": 0.9595 + }, + { + "start": 25928.47, + "end": 25929.21, + "probability": 0.85 + }, + { + "start": 25929.53, + "end": 25931.99, + "probability": 0.9509 + }, + { + "start": 25932.27, + "end": 25932.77, + "probability": 0.793 + }, + { + "start": 25932.85, + "end": 25933.63, + "probability": 0.9734 + }, + { + "start": 25933.75, + "end": 25934.15, + "probability": 0.897 + }, + { + "start": 25934.89, + "end": 25935.71, + "probability": 0.8889 + }, + { + "start": 25935.95, + "end": 25939.01, + "probability": 0.9867 + }, + { + "start": 25940.27, + "end": 25941.31, + "probability": 0.9956 + }, + { + "start": 25952.49, + "end": 25953.83, + "probability": 0.686 + }, + { + "start": 25954.03, + "end": 25957.29, + "probability": 0.9019 + }, + { + "start": 25957.29, + "end": 25962.29, + "probability": 0.9104 + }, + { + "start": 25963.69, + "end": 25965.17, + "probability": 0.3744 + }, + { + "start": 25965.17, + "end": 25966.47, + "probability": 0.805 + }, + { + "start": 25967.65, + "end": 25969.31, + "probability": 0.7634 + }, + { + "start": 25970.51, + "end": 25971.83, + "probability": 0.2707 + }, + { + "start": 25972.19, + "end": 25972.61, + "probability": 0.7491 + }, + { + "start": 25977.43, + "end": 25978.34, + "probability": 0.6593 + }, + { + "start": 25985.11, + "end": 25985.11, + "probability": 0.6329 + }, + { + "start": 25985.13, + "end": 25987.21, + "probability": 0.2953 + }, + { + "start": 25987.29, + "end": 25989.65, + "probability": 0.1998 + }, + { + "start": 25991.39, + "end": 25995.39, + "probability": 0.5108 + }, + { + "start": 25995.43, + "end": 25995.43, + "probability": 0.0222 + }, + { + "start": 25996.23, + "end": 25996.87, + "probability": 0.1223 + }, + { + "start": 25998.6, + "end": 25999.35, + "probability": 0.1795 + }, + { + "start": 26000.19, + "end": 26003.17, + "probability": 0.0402 + }, + { + "start": 26004.07, + "end": 26005.77, + "probability": 0.0441 + }, + { + "start": 26006.57, + "end": 26006.81, + "probability": 0.0244 + }, + { + "start": 26006.81, + "end": 26008.01, + "probability": 0.153 + }, + { + "start": 26011.4, + "end": 26012.59, + "probability": 0.0677 + }, + { + "start": 26012.59, + "end": 26013.51, + "probability": 0.1096 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.14, + "end": 26047.14, + "probability": 0.3858 + }, + { + "start": 26047.14, + "end": 26047.24, + "probability": 0.6613 + }, + { + "start": 26048.36, + "end": 26048.96, + "probability": 0.7493 + }, + { + "start": 26049.02, + "end": 26050.74, + "probability": 0.9082 + }, + { + "start": 26051.48, + "end": 26052.64, + "probability": 0.3582 + }, + { + "start": 26052.72, + "end": 26053.62, + "probability": 0.4875 + }, + { + "start": 26054.76, + "end": 26056.76, + "probability": 0.5318 + }, + { + "start": 26056.92, + "end": 26057.18, + "probability": 0.5394 + }, + { + "start": 26057.24, + "end": 26059.58, + "probability": 0.871 + }, + { + "start": 26059.68, + "end": 26063.72, + "probability": 0.9932 + }, + { + "start": 26064.32, + "end": 26064.88, + "probability": 0.3015 + }, + { + "start": 26064.88, + "end": 26065.99, + "probability": 0.8467 + }, + { + "start": 26066.82, + "end": 26067.86, + "probability": 0.8395 + }, + { + "start": 26068.06, + "end": 26070.08, + "probability": 0.9983 + }, + { + "start": 26071.0, + "end": 26074.46, + "probability": 0.9815 + }, + { + "start": 26074.46, + "end": 26077.0, + "probability": 0.9946 + }, + { + "start": 26077.08, + "end": 26077.3, + "probability": 0.8361 + }, + { + "start": 26077.38, + "end": 26077.78, + "probability": 0.8682 + }, + { + "start": 26077.84, + "end": 26078.48, + "probability": 0.7866 + }, + { + "start": 26079.02, + "end": 26081.26, + "probability": 0.9823 + }, + { + "start": 26081.84, + "end": 26085.36, + "probability": 0.783 + }, + { + "start": 26085.42, + "end": 26087.52, + "probability": 0.999 + }, + { + "start": 26088.14, + "end": 26091.14, + "probability": 0.9954 + }, + { + "start": 26092.12, + "end": 26093.64, + "probability": 0.862 + }, + { + "start": 26093.78, + "end": 26095.5, + "probability": 0.9793 + }, + { + "start": 26097.07, + "end": 26100.86, + "probability": 0.9946 + }, + { + "start": 26101.36, + "end": 26103.06, + "probability": 0.995 + }, + { + "start": 26103.48, + "end": 26105.22, + "probability": 0.8446 + }, + { + "start": 26105.3, + "end": 26107.12, + "probability": 0.972 + }, + { + "start": 26107.62, + "end": 26108.49, + "probability": 0.9487 + }, + { + "start": 26109.16, + "end": 26110.92, + "probability": 0.998 + }, + { + "start": 26111.12, + "end": 26113.1, + "probability": 0.9971 + }, + { + "start": 26113.62, + "end": 26114.56, + "probability": 0.7841 + }, + { + "start": 26114.72, + "end": 26119.68, + "probability": 0.9912 + }, + { + "start": 26119.92, + "end": 26120.62, + "probability": 0.9122 + }, + { + "start": 26121.08, + "end": 26123.52, + "probability": 0.9951 + }, + { + "start": 26124.6, + "end": 26125.0, + "probability": 0.667 + }, + { + "start": 26125.0, + "end": 26130.3, + "probability": 0.8176 + }, + { + "start": 26130.3, + "end": 26133.96, + "probability": 0.9548 + }, + { + "start": 26134.1, + "end": 26136.14, + "probability": 0.9963 + }, + { + "start": 26136.66, + "end": 26139.16, + "probability": 0.967 + }, + { + "start": 26139.24, + "end": 26142.04, + "probability": 0.9993 + }, + { + "start": 26142.04, + "end": 26144.34, + "probability": 0.9937 + }, + { + "start": 26144.52, + "end": 26146.9, + "probability": 0.8995 + }, + { + "start": 26147.4, + "end": 26148.38, + "probability": 0.6884 + }, + { + "start": 26148.52, + "end": 26152.38, + "probability": 0.9933 + }, + { + "start": 26152.88, + "end": 26154.5, + "probability": 0.8608 + }, + { + "start": 26155.6, + "end": 26157.56, + "probability": 0.9897 + }, + { + "start": 26157.7, + "end": 26161.54, + "probability": 0.9781 + }, + { + "start": 26162.04, + "end": 26163.88, + "probability": 0.9481 + }, + { + "start": 26164.52, + "end": 26165.84, + "probability": 0.9922 + }, + { + "start": 26166.68, + "end": 26167.62, + "probability": 0.8595 + }, + { + "start": 26167.72, + "end": 26167.82, + "probability": 0.8856 + }, + { + "start": 26168.6, + "end": 26170.68, + "probability": 0.9458 + }, + { + "start": 26171.58, + "end": 26178.62, + "probability": 0.9933 + }, + { + "start": 26178.66, + "end": 26181.74, + "probability": 0.983 + }, + { + "start": 26182.5, + "end": 26184.54, + "probability": 0.9578 + }, + { + "start": 26184.66, + "end": 26186.96, + "probability": 0.9973 + }, + { + "start": 26187.38, + "end": 26196.36, + "probability": 0.944 + }, + { + "start": 26197.04, + "end": 26200.24, + "probability": 0.5152 + }, + { + "start": 26200.24, + "end": 26200.4, + "probability": 0.5161 + }, + { + "start": 26200.48, + "end": 26201.26, + "probability": 0.7812 + }, + { + "start": 26202.16, + "end": 26203.08, + "probability": 0.5699 + }, + { + "start": 26203.74, + "end": 26204.8, + "probability": 0.8733 + }, + { + "start": 26205.5, + "end": 26206.64, + "probability": 0.9763 + }, + { + "start": 26207.38, + "end": 26209.76, + "probability": 0.9261 + }, + { + "start": 26209.86, + "end": 26210.22, + "probability": 0.8792 + }, + { + "start": 26210.26, + "end": 26216.46, + "probability": 0.9874 + }, + { + "start": 26216.58, + "end": 26217.6, + "probability": 0.8567 + }, + { + "start": 26217.7, + "end": 26219.22, + "probability": 0.9615 + }, + { + "start": 26219.28, + "end": 26220.04, + "probability": 0.7227 + }, + { + "start": 26224.72, + "end": 26225.28, + "probability": 0.0891 + }, + { + "start": 26226.34, + "end": 26229.06, + "probability": 0.7496 + }, + { + "start": 26229.62, + "end": 26232.16, + "probability": 0.9965 + }, + { + "start": 26232.62, + "end": 26234.52, + "probability": 0.9577 + }, + { + "start": 26235.54, + "end": 26236.16, + "probability": 0.8457 + }, + { + "start": 26236.22, + "end": 26236.9, + "probability": 0.8743 + }, + { + "start": 26236.98, + "end": 26241.64, + "probability": 0.9944 + }, + { + "start": 26241.92, + "end": 26242.14, + "probability": 0.6183 + }, + { + "start": 26242.22, + "end": 26244.24, + "probability": 0.9931 + }, + { + "start": 26244.58, + "end": 26246.75, + "probability": 0.9824 + }, + { + "start": 26248.02, + "end": 26249.56, + "probability": 0.9769 + }, + { + "start": 26249.74, + "end": 26252.6, + "probability": 0.9908 + }, + { + "start": 26253.4, + "end": 26254.44, + "probability": 0.8271 + }, + { + "start": 26254.72, + "end": 26255.04, + "probability": 0.8171 + }, + { + "start": 26255.36, + "end": 26257.58, + "probability": 0.8452 + }, + { + "start": 26258.54, + "end": 26260.84, + "probability": 0.9965 + }, + { + "start": 26262.74, + "end": 26263.52, + "probability": 0.8697 + }, + { + "start": 26265.2, + "end": 26267.16, + "probability": 0.499 + }, + { + "start": 26268.08, + "end": 26272.0, + "probability": 0.71 + }, + { + "start": 26273.66, + "end": 26274.04, + "probability": 0.6566 + }, + { + "start": 26274.04, + "end": 26275.52, + "probability": 0.8184 + }, + { + "start": 26278.08, + "end": 26280.28, + "probability": 0.8818 + }, + { + "start": 26284.62, + "end": 26285.12, + "probability": 0.2888 + }, + { + "start": 26305.02, + "end": 26307.68, + "probability": 0.514 + }, + { + "start": 26308.92, + "end": 26309.68, + "probability": 0.31 + }, + { + "start": 26310.5, + "end": 26311.38, + "probability": 0.5988 + }, + { + "start": 26313.58, + "end": 26315.3, + "probability": 0.9727 + }, + { + "start": 26317.4, + "end": 26318.58, + "probability": 0.9178 + }, + { + "start": 26319.72, + "end": 26320.3, + "probability": 0.9127 + }, + { + "start": 26323.46, + "end": 26326.7, + "probability": 0.9645 + }, + { + "start": 26328.04, + "end": 26329.22, + "probability": 0.4424 + }, + { + "start": 26331.68, + "end": 26333.7, + "probability": 0.9866 + }, + { + "start": 26334.74, + "end": 26339.9, + "probability": 0.962 + }, + { + "start": 26340.18, + "end": 26343.52, + "probability": 0.7728 + }, + { + "start": 26344.44, + "end": 26345.68, + "probability": 0.9873 + }, + { + "start": 26347.76, + "end": 26349.52, + "probability": 0.9647 + }, + { + "start": 26350.14, + "end": 26352.7, + "probability": 0.9893 + }, + { + "start": 26353.42, + "end": 26354.54, + "probability": 0.8476 + }, + { + "start": 26356.22, + "end": 26359.24, + "probability": 0.9943 + }, + { + "start": 26361.02, + "end": 26364.92, + "probability": 0.9946 + }, + { + "start": 26366.52, + "end": 26370.36, + "probability": 0.9716 + }, + { + "start": 26372.4, + "end": 26375.26, + "probability": 0.9944 + }, + { + "start": 26378.06, + "end": 26383.0, + "probability": 0.9154 + }, + { + "start": 26385.04, + "end": 26388.86, + "probability": 0.9899 + }, + { + "start": 26390.2, + "end": 26392.42, + "probability": 0.9946 + }, + { + "start": 26393.64, + "end": 26394.98, + "probability": 0.9546 + }, + { + "start": 26396.8, + "end": 26399.54, + "probability": 0.8843 + }, + { + "start": 26400.66, + "end": 26404.44, + "probability": 0.6072 + }, + { + "start": 26406.6, + "end": 26408.12, + "probability": 0.9804 + }, + { + "start": 26409.58, + "end": 26413.46, + "probability": 0.7751 + }, + { + "start": 26414.62, + "end": 26417.68, + "probability": 0.9927 + }, + { + "start": 26420.46, + "end": 26423.68, + "probability": 0.8582 + }, + { + "start": 26423.96, + "end": 26427.18, + "probability": 0.9985 + }, + { + "start": 26427.76, + "end": 26429.1, + "probability": 0.9958 + }, + { + "start": 26430.3, + "end": 26432.92, + "probability": 0.8944 + }, + { + "start": 26433.74, + "end": 26434.44, + "probability": 0.9717 + }, + { + "start": 26435.46, + "end": 26439.36, + "probability": 0.9734 + }, + { + "start": 26440.8, + "end": 26442.0, + "probability": 0.7696 + }, + { + "start": 26442.94, + "end": 26446.56, + "probability": 0.9717 + }, + { + "start": 26446.56, + "end": 26450.44, + "probability": 0.9843 + }, + { + "start": 26451.16, + "end": 26451.72, + "probability": 0.9746 + }, + { + "start": 26453.2, + "end": 26454.14, + "probability": 0.9522 + }, + { + "start": 26455.08, + "end": 26456.56, + "probability": 0.9875 + }, + { + "start": 26457.08, + "end": 26457.93, + "probability": 0.989 + }, + { + "start": 26460.0, + "end": 26462.38, + "probability": 0.0939 + }, + { + "start": 26462.65, + "end": 26463.0, + "probability": 0.3383 + }, + { + "start": 26463.92, + "end": 26467.4, + "probability": 0.9761 + }, + { + "start": 26467.94, + "end": 26468.46, + "probability": 0.8236 + }, + { + "start": 26468.74, + "end": 26469.66, + "probability": 0.8926 + }, + { + "start": 26469.94, + "end": 26472.74, + "probability": 0.8893 + }, + { + "start": 26473.26, + "end": 26478.52, + "probability": 0.866 + }, + { + "start": 26478.62, + "end": 26479.66, + "probability": 0.5698 + }, + { + "start": 26481.26, + "end": 26483.6, + "probability": 0.9852 + }, + { + "start": 26484.5, + "end": 26488.62, + "probability": 0.915 + }, + { + "start": 26488.76, + "end": 26489.9, + "probability": 0.9171 + }, + { + "start": 26490.24, + "end": 26490.82, + "probability": 0.5396 + }, + { + "start": 26491.58, + "end": 26494.34, + "probability": 0.9913 + }, + { + "start": 26494.68, + "end": 26497.22, + "probability": 0.9707 + }, + { + "start": 26497.96, + "end": 26499.8, + "probability": 0.8706 + }, + { + "start": 26500.42, + "end": 26502.4, + "probability": 0.8634 + }, + { + "start": 26502.52, + "end": 26504.42, + "probability": 0.8838 + }, + { + "start": 26504.8, + "end": 26505.63, + "probability": 0.8691 + }, + { + "start": 26506.18, + "end": 26508.1, + "probability": 0.9897 + }, + { + "start": 26510.73, + "end": 26511.85, + "probability": 0.1333 + }, + { + "start": 26513.26, + "end": 26515.86, + "probability": 0.2467 + }, + { + "start": 26516.36, + "end": 26521.52, + "probability": 0.3081 + }, + { + "start": 26521.54, + "end": 26525.05, + "probability": 0.4476 + }, + { + "start": 26525.86, + "end": 26527.68, + "probability": 0.3025 + }, + { + "start": 26528.86, + "end": 26529.64, + "probability": 0.81 + }, + { + "start": 26529.78, + "end": 26531.22, + "probability": 0.397 + }, + { + "start": 26531.4, + "end": 26531.82, + "probability": 0.3482 + }, + { + "start": 26532.0, + "end": 26532.67, + "probability": 0.3854 + }, + { + "start": 26533.24, + "end": 26536.66, + "probability": 0.7793 + }, + { + "start": 26537.42, + "end": 26538.54, + "probability": 0.1485 + }, + { + "start": 26540.28, + "end": 26542.24, + "probability": 0.1512 + }, + { + "start": 26542.26, + "end": 26544.14, + "probability": 0.6477 + }, + { + "start": 26545.3, + "end": 26546.92, + "probability": 0.9243 + }, + { + "start": 26547.48, + "end": 26550.26, + "probability": 0.9854 + }, + { + "start": 26550.48, + "end": 26552.12, + "probability": 0.9686 + }, + { + "start": 26552.74, + "end": 26553.74, + "probability": 0.9908 + }, + { + "start": 26554.76, + "end": 26556.66, + "probability": 0.9761 + }, + { + "start": 26557.58, + "end": 26559.72, + "probability": 0.9896 + }, + { + "start": 26560.5, + "end": 26562.12, + "probability": 0.9953 + }, + { + "start": 26562.82, + "end": 26562.92, + "probability": 0.7837 + }, + { + "start": 26564.68, + "end": 26566.52, + "probability": 0.8801 + }, + { + "start": 26567.42, + "end": 26567.72, + "probability": 0.2062 + }, + { + "start": 26568.28, + "end": 26568.7, + "probability": 0.4088 + }, + { + "start": 26568.7, + "end": 26570.14, + "probability": 0.6068 + }, + { + "start": 26570.7, + "end": 26572.36, + "probability": 0.965 + }, + { + "start": 26573.04, + "end": 26575.2, + "probability": 0.2264 + }, + { + "start": 26575.2, + "end": 26575.2, + "probability": 0.167 + }, + { + "start": 26575.2, + "end": 26575.36, + "probability": 0.5075 + }, + { + "start": 26576.14, + "end": 26579.52, + "probability": 0.6749 + }, + { + "start": 26579.52, + "end": 26582.58, + "probability": 0.9976 + }, + { + "start": 26587.58, + "end": 26589.38, + "probability": 0.9342 + }, + { + "start": 26603.72, + "end": 26603.72, + "probability": 0.2081 + }, + { + "start": 26603.72, + "end": 26605.68, + "probability": 0.3957 + }, + { + "start": 26606.6, + "end": 26607.5, + "probability": 0.673 + }, + { + "start": 26618.34, + "end": 26622.36, + "probability": 0.9886 + }, + { + "start": 26622.88, + "end": 26624.62, + "probability": 0.8978 + }, + { + "start": 26624.62, + "end": 26628.56, + "probability": 0.6777 + }, + { + "start": 26631.14, + "end": 26631.84, + "probability": 0.3379 + }, + { + "start": 26631.88, + "end": 26632.28, + "probability": 0.7916 + }, + { + "start": 26634.1, + "end": 26635.82, + "probability": 0.6471 + }, + { + "start": 26636.58, + "end": 26636.9, + "probability": 0.7098 + }, + { + "start": 26636.9, + "end": 26638.7, + "probability": 0.8586 + }, + { + "start": 26639.4, + "end": 26641.08, + "probability": 0.9673 + }, + { + "start": 26641.6, + "end": 26642.48, + "probability": 0.9197 + }, + { + "start": 26643.38, + "end": 26645.0, + "probability": 0.9821 + }, + { + "start": 26645.34, + "end": 26645.92, + "probability": 0.5874 + }, + { + "start": 26646.0, + "end": 26646.38, + "probability": 0.6111 + }, + { + "start": 26646.58, + "end": 26647.36, + "probability": 0.9613 + }, + { + "start": 26648.84, + "end": 26649.92, + "probability": 0.7677 + }, + { + "start": 26651.34, + "end": 26651.84, + "probability": 0.8529 + }, + { + "start": 26653.5, + "end": 26654.54, + "probability": 0.9359 + }, + { + "start": 26655.06, + "end": 26657.6, + "probability": 0.8967 + }, + { + "start": 26658.68, + "end": 26660.06, + "probability": 0.9894 + }, + { + "start": 26660.44, + "end": 26663.38, + "probability": 0.9442 + }, + { + "start": 26664.98, + "end": 26669.28, + "probability": 0.9354 + }, + { + "start": 26669.36, + "end": 26672.52, + "probability": 0.9946 + }, + { + "start": 26673.18, + "end": 26674.44, + "probability": 0.9298 + }, + { + "start": 26675.38, + "end": 26679.38, + "probability": 0.9475 + }, + { + "start": 26680.02, + "end": 26683.04, + "probability": 0.9879 + }, + { + "start": 26683.04, + "end": 26685.28, + "probability": 0.729 + }, + { + "start": 26686.34, + "end": 26691.32, + "probability": 0.9934 + }, + { + "start": 26692.0, + "end": 26694.34, + "probability": 0.8887 + }, + { + "start": 26695.64, + "end": 26696.42, + "probability": 0.4478 + }, + { + "start": 26697.12, + "end": 26699.64, + "probability": 0.8457 + }, + { + "start": 26699.64, + "end": 26702.8, + "probability": 0.9205 + }, + { + "start": 26703.38, + "end": 26708.28, + "probability": 0.9697 + }, + { + "start": 26709.24, + "end": 26709.86, + "probability": 0.1856 + }, + { + "start": 26710.68, + "end": 26713.18, + "probability": 0.6219 + }, + { + "start": 26713.92, + "end": 26717.02, + "probability": 0.968 + }, + { + "start": 26718.06, + "end": 26719.5, + "probability": 0.9988 + }, + { + "start": 26720.06, + "end": 26724.86, + "probability": 0.9844 + }, + { + "start": 26726.0, + "end": 26728.9, + "probability": 0.8513 + }, + { + "start": 26729.6, + "end": 26731.86, + "probability": 0.9812 + }, + { + "start": 26732.74, + "end": 26736.02, + "probability": 0.9897 + }, + { + "start": 26736.66, + "end": 26737.26, + "probability": 0.6437 + }, + { + "start": 26738.34, + "end": 26741.6, + "probability": 0.9938 + }, + { + "start": 26741.6, + "end": 26744.24, + "probability": 0.9917 + }, + { + "start": 26745.62, + "end": 26747.08, + "probability": 0.9877 + }, + { + "start": 26747.8, + "end": 26753.74, + "probability": 0.9895 + }, + { + "start": 26754.32, + "end": 26757.16, + "probability": 0.6556 + }, + { + "start": 26758.5, + "end": 26762.04, + "probability": 0.9994 + }, + { + "start": 26762.04, + "end": 26765.34, + "probability": 0.9964 + }, + { + "start": 26766.46, + "end": 26768.84, + "probability": 0.8475 + }, + { + "start": 26769.0, + "end": 26770.8, + "probability": 0.9675 + }, + { + "start": 26771.52, + "end": 26775.1, + "probability": 0.9893 + }, + { + "start": 26775.58, + "end": 26778.44, + "probability": 0.9321 + }, + { + "start": 26778.6, + "end": 26779.82, + "probability": 0.9888 + }, + { + "start": 26780.34, + "end": 26782.42, + "probability": 0.8741 + }, + { + "start": 26783.32, + "end": 26786.86, + "probability": 0.671 + }, + { + "start": 26787.94, + "end": 26790.62, + "probability": 0.9961 + }, + { + "start": 26790.62, + "end": 26793.36, + "probability": 0.9976 + }, + { + "start": 26794.06, + "end": 26795.1, + "probability": 0.9041 + }, + { + "start": 26796.84, + "end": 26802.24, + "probability": 0.8907 + }, + { + "start": 26803.16, + "end": 26806.16, + "probability": 0.8718 + }, + { + "start": 26806.18, + "end": 26808.64, + "probability": 0.8802 + }, + { + "start": 26809.6, + "end": 26812.18, + "probability": 0.8729 + }, + { + "start": 26813.2, + "end": 26816.42, + "probability": 0.8268 + }, + { + "start": 26817.12, + "end": 26819.86, + "probability": 0.7395 + }, + { + "start": 26820.32, + "end": 26823.78, + "probability": 0.9907 + }, + { + "start": 26824.48, + "end": 26825.26, + "probability": 0.5751 + }, + { + "start": 26825.86, + "end": 26828.82, + "probability": 0.8416 + }, + { + "start": 26828.9, + "end": 26831.62, + "probability": 0.9364 + }, + { + "start": 26832.06, + "end": 26834.6, + "probability": 0.995 + }, + { + "start": 26835.24, + "end": 26837.04, + "probability": 0.9958 + }, + { + "start": 26837.62, + "end": 26840.8, + "probability": 0.6755 + }, + { + "start": 26841.8, + "end": 26845.72, + "probability": 0.9889 + }, + { + "start": 26846.68, + "end": 26850.22, + "probability": 0.7792 + }, + { + "start": 26850.5, + "end": 26854.16, + "probability": 0.9707 + }, + { + "start": 26855.14, + "end": 26858.02, + "probability": 0.8993 + }, + { + "start": 26858.6, + "end": 26859.78, + "probability": 0.9116 + }, + { + "start": 26860.02, + "end": 26863.36, + "probability": 0.9844 + }, + { + "start": 26864.16, + "end": 26867.82, + "probability": 0.9573 + }, + { + "start": 26868.5, + "end": 26869.48, + "probability": 0.7611 + }, + { + "start": 26870.02, + "end": 26871.94, + "probability": 0.9088 + }, + { + "start": 26872.02, + "end": 26874.66, + "probability": 0.6605 + }, + { + "start": 26874.76, + "end": 26877.84, + "probability": 0.8319 + }, + { + "start": 26879.34, + "end": 26880.32, + "probability": 0.9761 + }, + { + "start": 26880.94, + "end": 26882.62, + "probability": 0.85 + }, + { + "start": 26882.7, + "end": 26887.84, + "probability": 0.9836 + }, + { + "start": 26888.74, + "end": 26889.1, + "probability": 0.7642 + }, + { + "start": 26889.72, + "end": 26890.7, + "probability": 0.9691 + }, + { + "start": 26891.72, + "end": 26894.44, + "probability": 0.7489 + }, + { + "start": 26894.98, + "end": 26900.28, + "probability": 0.9936 + }, + { + "start": 26902.08, + "end": 26905.92, + "probability": 0.881 + }, + { + "start": 26906.56, + "end": 26911.4, + "probability": 0.9082 + }, + { + "start": 26912.56, + "end": 26914.28, + "probability": 0.9963 + }, + { + "start": 26914.72, + "end": 26916.84, + "probability": 0.8923 + }, + { + "start": 26917.48, + "end": 26920.66, + "probability": 0.9227 + }, + { + "start": 26921.3, + "end": 26927.18, + "probability": 0.9993 + }, + { + "start": 26928.18, + "end": 26929.78, + "probability": 0.9478 + }, + { + "start": 26930.52, + "end": 26936.28, + "probability": 0.9468 + }, + { + "start": 26936.74, + "end": 26937.62, + "probability": 0.8256 + }, + { + "start": 26938.42, + "end": 26938.62, + "probability": 0.5148 + }, + { + "start": 26938.8, + "end": 26942.76, + "probability": 0.9977 + }, + { + "start": 26944.04, + "end": 26944.94, + "probability": 0.6585 + }, + { + "start": 26945.1, + "end": 26947.26, + "probability": 0.9933 + }, + { + "start": 26947.9, + "end": 26949.78, + "probability": 0.9794 + }, + { + "start": 26950.7, + "end": 26953.02, + "probability": 0.9964 + }, + { + "start": 26953.76, + "end": 26956.12, + "probability": 0.9811 + }, + { + "start": 26956.12, + "end": 26959.36, + "probability": 0.9371 + }, + { + "start": 26960.68, + "end": 26962.6, + "probability": 0.9198 + }, + { + "start": 26963.5, + "end": 26964.38, + "probability": 0.6956 + }, + { + "start": 26965.1, + "end": 26965.6, + "probability": 0.9833 + }, + { + "start": 26966.3, + "end": 26968.96, + "probability": 0.9189 + }, + { + "start": 26969.5, + "end": 26969.78, + "probability": 0.7518 + }, + { + "start": 26970.7, + "end": 26971.38, + "probability": 0.7287 + }, + { + "start": 26971.6, + "end": 26973.72, + "probability": 0.7681 + }, + { + "start": 26995.16, + "end": 26996.12, + "probability": 0.4771 + }, + { + "start": 26996.36, + "end": 26997.34, + "probability": 0.0348 + }, + { + "start": 26997.68, + "end": 26998.42, + "probability": 0.1163 + }, + { + "start": 26998.64, + "end": 26998.64, + "probability": 0.1431 + }, + { + "start": 26998.64, + "end": 26998.64, + "probability": 0.0463 + }, + { + "start": 26998.64, + "end": 26998.64, + "probability": 0.155 + }, + { + "start": 26999.72, + "end": 27000.28, + "probability": 0.3904 + }, + { + "start": 27000.28, + "end": 27000.82, + "probability": 0.2608 + }, + { + "start": 27022.42, + "end": 27023.34, + "probability": 0.1494 + }, + { + "start": 27023.34, + "end": 27024.46, + "probability": 0.2765 + }, + { + "start": 27035.41, + "end": 27038.52, + "probability": 0.9925 + }, + { + "start": 27040.2, + "end": 27040.64, + "probability": 0.8309 + }, + { + "start": 27042.28, + "end": 27043.48, + "probability": 0.8255 + }, + { + "start": 27043.58, + "end": 27047.74, + "probability": 0.9203 + }, + { + "start": 27048.38, + "end": 27056.04, + "probability": 0.9924 + }, + { + "start": 27056.64, + "end": 27060.8, + "probability": 0.9083 + }, + { + "start": 27062.89, + "end": 27065.98, + "probability": 0.7788 + }, + { + "start": 27066.96, + "end": 27070.4, + "probability": 0.9091 + }, + { + "start": 27070.52, + "end": 27071.74, + "probability": 0.8595 + }, + { + "start": 27072.3, + "end": 27073.44, + "probability": 0.8342 + }, + { + "start": 27074.58, + "end": 27078.8, + "probability": 0.6339 + }, + { + "start": 27080.58, + "end": 27084.58, + "probability": 0.4242 + }, + { + "start": 27085.98, + "end": 27092.14, + "probability": 0.628 + }, + { + "start": 27095.12, + "end": 27095.86, + "probability": 0.6728 + }, + { + "start": 27098.66, + "end": 27103.08, + "probability": 0.8894 + }, + { + "start": 27103.08, + "end": 27106.42, + "probability": 0.8471 + }, + { + "start": 27107.6, + "end": 27110.95, + "probability": 0.867 + }, + { + "start": 27113.22, + "end": 27113.76, + "probability": 0.8793 + }, + { + "start": 27115.66, + "end": 27118.88, + "probability": 0.9849 + }, + { + "start": 27118.88, + "end": 27122.58, + "probability": 0.9919 + }, + { + "start": 27122.7, + "end": 27123.62, + "probability": 0.9271 + }, + { + "start": 27124.72, + "end": 27126.52, + "probability": 0.837 + }, + { + "start": 27127.76, + "end": 27129.9, + "probability": 0.8657 + }, + { + "start": 27130.02, + "end": 27131.96, + "probability": 0.6888 + }, + { + "start": 27132.1, + "end": 27133.72, + "probability": 0.9735 + }, + { + "start": 27134.36, + "end": 27135.22, + "probability": 0.7476 + }, + { + "start": 27135.5, + "end": 27139.42, + "probability": 0.6602 + }, + { + "start": 27140.12, + "end": 27142.36, + "probability": 0.8579 + }, + { + "start": 27143.0, + "end": 27144.4, + "probability": 0.9933 + }, + { + "start": 27145.98, + "end": 27149.82, + "probability": 0.9243 + }, + { + "start": 27149.88, + "end": 27152.86, + "probability": 0.959 + }, + { + "start": 27153.86, + "end": 27159.04, + "probability": 0.7494 + }, + { + "start": 27159.26, + "end": 27159.88, + "probability": 0.8081 + }, + { + "start": 27161.88, + "end": 27163.94, + "probability": 0.9229 + }, + { + "start": 27164.6, + "end": 27164.98, + "probability": 0.5212 + }, + { + "start": 27165.18, + "end": 27168.0, + "probability": 0.8104 + }, + { + "start": 27168.48, + "end": 27170.64, + "probability": 0.8162 + }, + { + "start": 27171.24, + "end": 27173.23, + "probability": 0.9483 + }, + { + "start": 27176.66, + "end": 27178.48, + "probability": 0.9536 + }, + { + "start": 27178.58, + "end": 27178.98, + "probability": 0.807 + }, + { + "start": 27179.32, + "end": 27182.06, + "probability": 0.9637 + }, + { + "start": 27182.24, + "end": 27182.48, + "probability": 0.4544 + }, + { + "start": 27183.46, + "end": 27187.68, + "probability": 0.9871 + }, + { + "start": 27188.24, + "end": 27190.92, + "probability": 0.9365 + }, + { + "start": 27191.7, + "end": 27192.72, + "probability": 0.7078 + }, + { + "start": 27192.82, + "end": 27193.7, + "probability": 0.7421 + }, + { + "start": 27193.86, + "end": 27196.02, + "probability": 0.7979 + }, + { + "start": 27196.9, + "end": 27198.82, + "probability": 0.9209 + }, + { + "start": 27198.84, + "end": 27200.54, + "probability": 0.8733 + }, + { + "start": 27201.34, + "end": 27203.84, + "probability": 0.8196 + }, + { + "start": 27204.18, + "end": 27205.14, + "probability": 0.8074 + }, + { + "start": 27205.64, + "end": 27210.9, + "probability": 0.9653 + }, + { + "start": 27211.04, + "end": 27211.54, + "probability": 0.4968 + }, + { + "start": 27212.34, + "end": 27217.24, + "probability": 0.8411 + }, + { + "start": 27217.28, + "end": 27218.94, + "probability": 0.6788 + }, + { + "start": 27219.68, + "end": 27222.92, + "probability": 0.9328 + }, + { + "start": 27224.22, + "end": 27224.92, + "probability": 0.9058 + }, + { + "start": 27226.4, + "end": 27228.12, + "probability": 0.8999 + }, + { + "start": 27228.78, + "end": 27229.14, + "probability": 0.7838 + }, + { + "start": 27229.18, + "end": 27229.28, + "probability": 0.5743 + }, + { + "start": 27229.28, + "end": 27232.58, + "probability": 0.9888 + }, + { + "start": 27232.68, + "end": 27234.02, + "probability": 0.6703 + }, + { + "start": 27234.08, + "end": 27235.96, + "probability": 0.9879 + }, + { + "start": 27236.92, + "end": 27238.92, + "probability": 0.8569 + }, + { + "start": 27239.44, + "end": 27242.06, + "probability": 0.9912 + }, + { + "start": 27243.16, + "end": 27244.9, + "probability": 0.8405 + }, + { + "start": 27245.96, + "end": 27247.12, + "probability": 0.8797 + }, + { + "start": 27247.2, + "end": 27247.92, + "probability": 0.9163 + }, + { + "start": 27248.22, + "end": 27248.84, + "probability": 0.5146 + }, + { + "start": 27248.88, + "end": 27250.4, + "probability": 0.7523 + }, + { + "start": 27251.08, + "end": 27253.98, + "probability": 0.6459 + }, + { + "start": 27254.8, + "end": 27257.86, + "probability": 0.8359 + }, + { + "start": 27259.18, + "end": 27260.72, + "probability": 0.6542 + }, + { + "start": 27261.52, + "end": 27265.06, + "probability": 0.7792 + }, + { + "start": 27265.5, + "end": 27267.1, + "probability": 0.6946 + }, + { + "start": 27267.24, + "end": 27270.52, + "probability": 0.991 + }, + { + "start": 27271.48, + "end": 27274.34, + "probability": 0.9885 + }, + { + "start": 27277.02, + "end": 27277.74, + "probability": 0.6398 + }, + { + "start": 27277.84, + "end": 27283.6, + "probability": 0.7132 + }, + { + "start": 27283.68, + "end": 27285.65, + "probability": 0.7997 + }, + { + "start": 27286.26, + "end": 27287.8, + "probability": 0.7136 + }, + { + "start": 27287.98, + "end": 27290.56, + "probability": 0.7794 + }, + { + "start": 27290.6, + "end": 27292.56, + "probability": 0.5117 + }, + { + "start": 27293.0, + "end": 27296.66, + "probability": 0.9282 + }, + { + "start": 27296.76, + "end": 27298.32, + "probability": 0.9712 + }, + { + "start": 27298.84, + "end": 27300.6, + "probability": 0.8138 + }, + { + "start": 27300.6, + "end": 27305.34, + "probability": 0.9883 + }, + { + "start": 27305.46, + "end": 27306.32, + "probability": 0.8322 + }, + { + "start": 27306.86, + "end": 27309.42, + "probability": 0.8154 + }, + { + "start": 27309.64, + "end": 27312.44, + "probability": 0.6842 + }, + { + "start": 27312.66, + "end": 27313.72, + "probability": 0.7843 + }, + { + "start": 27314.12, + "end": 27314.9, + "probability": 0.9349 + }, + { + "start": 27314.92, + "end": 27318.76, + "probability": 0.9731 + }, + { + "start": 27318.76, + "end": 27322.0, + "probability": 0.9961 + }, + { + "start": 27322.58, + "end": 27323.7, + "probability": 0.7468 + }, + { + "start": 27324.4, + "end": 27324.8, + "probability": 0.9721 + }, + { + "start": 27326.7, + "end": 27330.22, + "probability": 0.8978 + }, + { + "start": 27330.34, + "end": 27333.02, + "probability": 0.9932 + }, + { + "start": 27334.18, + "end": 27334.18, + "probability": 0.9497 + }, + { + "start": 27334.74, + "end": 27335.62, + "probability": 0.9395 + }, + { + "start": 27336.92, + "end": 27337.42, + "probability": 0.9523 + }, + { + "start": 27338.02, + "end": 27342.14, + "probability": 0.979 + }, + { + "start": 27342.24, + "end": 27344.56, + "probability": 0.8607 + }, + { + "start": 27346.46, + "end": 27349.2, + "probability": 0.9794 + }, + { + "start": 27350.54, + "end": 27351.03, + "probability": 0.9768 + }, + { + "start": 27351.14, + "end": 27352.2, + "probability": 0.9733 + }, + { + "start": 27352.32, + "end": 27355.96, + "probability": 0.9443 + }, + { + "start": 27356.1, + "end": 27357.64, + "probability": 0.9761 + }, + { + "start": 27358.68, + "end": 27363.54, + "probability": 0.9828 + }, + { + "start": 27364.02, + "end": 27366.38, + "probability": 0.7939 + }, + { + "start": 27367.48, + "end": 27369.84, + "probability": 0.9961 + }, + { + "start": 27371.1, + "end": 27373.62, + "probability": 0.9654 + }, + { + "start": 27374.26, + "end": 27375.62, + "probability": 0.6705 + }, + { + "start": 27376.3, + "end": 27378.93, + "probability": 0.9926 + }, + { + "start": 27379.04, + "end": 27381.14, + "probability": 0.8328 + }, + { + "start": 27381.22, + "end": 27382.18, + "probability": 0.9517 + }, + { + "start": 27383.12, + "end": 27386.86, + "probability": 0.8158 + }, + { + "start": 27387.0, + "end": 27389.48, + "probability": 0.9935 + }, + { + "start": 27389.86, + "end": 27392.1, + "probability": 0.9438 + }, + { + "start": 27392.28, + "end": 27394.58, + "probability": 0.7706 + }, + { + "start": 27395.56, + "end": 27397.22, + "probability": 0.6828 + }, + { + "start": 27397.42, + "end": 27401.0, + "probability": 0.7718 + }, + { + "start": 27401.46, + "end": 27404.6, + "probability": 0.9705 + }, + { + "start": 27404.9, + "end": 27406.25, + "probability": 0.4559 + }, + { + "start": 27406.88, + "end": 27408.18, + "probability": 0.22 + }, + { + "start": 27408.56, + "end": 27408.78, + "probability": 0.8024 + }, + { + "start": 27410.6, + "end": 27411.94, + "probability": 0.824 + }, + { + "start": 27412.36, + "end": 27417.26, + "probability": 0.9757 + }, + { + "start": 27417.66, + "end": 27420.04, + "probability": 0.9478 + }, + { + "start": 27421.0, + "end": 27421.22, + "probability": 0.9712 + }, + { + "start": 27421.74, + "end": 27424.08, + "probability": 0.6825 + }, + { + "start": 27425.78, + "end": 27425.78, + "probability": 0.0918 + }, + { + "start": 27426.58, + "end": 27428.82, + "probability": 0.7437 + }, + { + "start": 27428.9, + "end": 27431.05, + "probability": 0.5506 + }, + { + "start": 27432.14, + "end": 27433.18, + "probability": 0.9768 + }, + { + "start": 27433.26, + "end": 27434.0, + "probability": 0.9413 + }, + { + "start": 27435.66, + "end": 27436.52, + "probability": 0.4619 + }, + { + "start": 27437.12, + "end": 27437.28, + "probability": 0.393 + }, + { + "start": 27438.76, + "end": 27442.12, + "probability": 0.9169 + }, + { + "start": 27442.62, + "end": 27443.7, + "probability": 0.4698 + }, + { + "start": 27444.2, + "end": 27444.2, + "probability": 0.1612 + }, + { + "start": 27444.2, + "end": 27445.53, + "probability": 0.7806 + }, + { + "start": 27446.24, + "end": 27446.86, + "probability": 0.5794 + }, + { + "start": 27447.02, + "end": 27447.9, + "probability": 0.7762 + }, + { + "start": 27448.1, + "end": 27448.52, + "probability": 0.5019 + }, + { + "start": 27448.8, + "end": 27449.26, + "probability": 0.8279 + }, + { + "start": 27449.38, + "end": 27450.04, + "probability": 0.9089 + }, + { + "start": 27450.44, + "end": 27450.95, + "probability": 0.7463 + }, + { + "start": 27451.16, + "end": 27452.99, + "probability": 0.863 + }, + { + "start": 27457.9, + "end": 27462.85, + "probability": 0.8489 + }, + { + "start": 27467.68, + "end": 27469.3, + "probability": 0.7461 + }, + { + "start": 27470.02, + "end": 27470.48, + "probability": 0.5866 + }, + { + "start": 27470.54, + "end": 27471.28, + "probability": 0.4093 + }, + { + "start": 27475.48, + "end": 27476.56, + "probability": 0.8949 + }, + { + "start": 27477.5, + "end": 27478.88, + "probability": 0.0688 + }, + { + "start": 27482.0, + "end": 27482.0, + "probability": 0.3129 + }, + { + "start": 27482.0, + "end": 27482.0, + "probability": 0.453 + }, + { + "start": 27482.0, + "end": 27484.28, + "probability": 0.6832 + }, + { + "start": 27484.68, + "end": 27485.9, + "probability": 0.525 + }, + { + "start": 27489.34, + "end": 27493.28, + "probability": 0.3667 + }, + { + "start": 27494.22, + "end": 27497.57, + "probability": 0.9678 + }, + { + "start": 27499.98, + "end": 27501.36, + "probability": 0.7449 + }, + { + "start": 27508.42, + "end": 27514.72, + "probability": 0.5779 + }, + { + "start": 27517.68, + "end": 27518.62, + "probability": 0.7489 + }, + { + "start": 27520.14, + "end": 27522.5, + "probability": 0.7534 + }, + { + "start": 27524.52, + "end": 27525.36, + "probability": 0.9312 + }, + { + "start": 27527.0, + "end": 27528.52, + "probability": 0.9804 + }, + { + "start": 27532.26, + "end": 27534.06, + "probability": 0.4152 + }, + { + "start": 27534.98, + "end": 27538.56, + "probability": 0.9524 + }, + { + "start": 27539.28, + "end": 27541.3, + "probability": 0.951 + }, + { + "start": 27544.72, + "end": 27545.8, + "probability": 0.4472 + }, + { + "start": 27547.74, + "end": 27550.7, + "probability": 0.847 + }, + { + "start": 27552.24, + "end": 27555.7, + "probability": 0.9526 + }, + { + "start": 27556.04, + "end": 27559.7, + "probability": 0.6791 + }, + { + "start": 27562.16, + "end": 27563.82, + "probability": 0.6427 + }, + { + "start": 27564.58, + "end": 27568.28, + "probability": 0.8934 + }, + { + "start": 27568.86, + "end": 27571.78, + "probability": 0.9191 + }, + { + "start": 27572.06, + "end": 27574.42, + "probability": 0.9883 + }, + { + "start": 27578.02, + "end": 27579.4, + "probability": 0.5202 + }, + { + "start": 27580.28, + "end": 27581.8, + "probability": 0.8335 + }, + { + "start": 27582.58, + "end": 27583.4, + "probability": 0.9471 + }, + { + "start": 27584.52, + "end": 27587.52, + "probability": 0.9745 + }, + { + "start": 27590.46, + "end": 27592.5, + "probability": 0.6745 + }, + { + "start": 27593.08, + "end": 27595.16, + "probability": 0.9784 + }, + { + "start": 27596.92, + "end": 27597.97, + "probability": 0.9214 + }, + { + "start": 27600.9, + "end": 27604.76, + "probability": 0.9222 + }, + { + "start": 27605.82, + "end": 27611.8, + "probability": 0.825 + }, + { + "start": 27612.84, + "end": 27613.47, + "probability": 0.8618 + }, + { + "start": 27613.98, + "end": 27615.38, + "probability": 0.4685 + }, + { + "start": 27615.86, + "end": 27617.94, + "probability": 0.9952 + }, + { + "start": 27618.82, + "end": 27619.6, + "probability": 0.9602 + }, + { + "start": 27620.54, + "end": 27621.86, + "probability": 0.9902 + }, + { + "start": 27622.76, + "end": 27624.38, + "probability": 0.9941 + }, + { + "start": 27625.12, + "end": 27628.12, + "probability": 0.8718 + }, + { + "start": 27630.7, + "end": 27631.82, + "probability": 0.8659 + }, + { + "start": 27632.18, + "end": 27633.44, + "probability": 0.9259 + }, + { + "start": 27634.1, + "end": 27638.24, + "probability": 0.9959 + }, + { + "start": 27638.86, + "end": 27639.8, + "probability": 0.8215 + }, + { + "start": 27640.56, + "end": 27642.86, + "probability": 0.9768 + }, + { + "start": 27643.74, + "end": 27645.04, + "probability": 0.9844 + }, + { + "start": 27645.94, + "end": 27647.26, + "probability": 0.6845 + }, + { + "start": 27648.38, + "end": 27654.94, + "probability": 0.9666 + }, + { + "start": 27656.52, + "end": 27657.74, + "probability": 0.9888 + }, + { + "start": 27658.62, + "end": 27659.74, + "probability": 0.8792 + }, + { + "start": 27660.26, + "end": 27663.68, + "probability": 0.9622 + }, + { + "start": 27665.96, + "end": 27666.56, + "probability": 0.9442 + }, + { + "start": 27667.76, + "end": 27669.24, + "probability": 0.9086 + }, + { + "start": 27669.94, + "end": 27671.0, + "probability": 0.7453 + }, + { + "start": 27671.8, + "end": 27675.28, + "probability": 0.9969 + }, + { + "start": 27675.28, + "end": 27678.6, + "probability": 0.9925 + }, + { + "start": 27678.82, + "end": 27685.38, + "probability": 0.9508 + }, + { + "start": 27685.8, + "end": 27689.73, + "probability": 0.839 + }, + { + "start": 27691.1, + "end": 27695.38, + "probability": 0.9944 + }, + { + "start": 27695.38, + "end": 27701.76, + "probability": 0.5612 + }, + { + "start": 27702.2, + "end": 27703.88, + "probability": 0.9829 + }, + { + "start": 27705.94, + "end": 27707.46, + "probability": 0.7531 + }, + { + "start": 27711.98, + "end": 27715.94, + "probability": 0.6535 + }, + { + "start": 27716.6, + "end": 27718.66, + "probability": 0.8106 + }, + { + "start": 27719.32, + "end": 27725.06, + "probability": 0.9952 + }, + { + "start": 27725.06, + "end": 27729.48, + "probability": 0.9845 + }, + { + "start": 27730.3, + "end": 27731.46, + "probability": 0.7791 + }, + { + "start": 27732.06, + "end": 27737.8, + "probability": 0.9739 + }, + { + "start": 27738.4, + "end": 27741.8, + "probability": 0.7965 + }, + { + "start": 27742.46, + "end": 27748.04, + "probability": 0.8768 + }, + { + "start": 27748.06, + "end": 27753.44, + "probability": 0.9462 + }, + { + "start": 27753.44, + "end": 27758.08, + "probability": 0.9779 + }, + { + "start": 27759.76, + "end": 27764.5, + "probability": 0.8733 + }, + { + "start": 27765.06, + "end": 27769.66, + "probability": 0.9847 + }, + { + "start": 27769.66, + "end": 27775.22, + "probability": 0.9899 + }, + { + "start": 27777.14, + "end": 27778.66, + "probability": 0.998 + }, + { + "start": 27779.48, + "end": 27780.24, + "probability": 0.8977 + }, + { + "start": 27780.94, + "end": 27783.72, + "probability": 0.9945 + }, + { + "start": 27784.4, + "end": 27789.24, + "probability": 0.978 + }, + { + "start": 27789.24, + "end": 27793.84, + "probability": 0.9944 + }, + { + "start": 27794.66, + "end": 27797.78, + "probability": 0.9818 + }, + { + "start": 27798.88, + "end": 27799.66, + "probability": 0.834 + }, + { + "start": 27800.68, + "end": 27804.22, + "probability": 0.9964 + }, + { + "start": 27804.8, + "end": 27808.58, + "probability": 0.9952 + }, + { + "start": 27810.6, + "end": 27816.38, + "probability": 0.9924 + }, + { + "start": 27819.55, + "end": 27825.18, + "probability": 0.9277 + }, + { + "start": 27826.46, + "end": 27829.72, + "probability": 0.974 + }, + { + "start": 27829.72, + "end": 27832.78, + "probability": 0.8433 + }, + { + "start": 27833.64, + "end": 27841.98, + "probability": 0.9923 + }, + { + "start": 27842.46, + "end": 27845.36, + "probability": 0.7345 + }, + { + "start": 27847.22, + "end": 27851.96, + "probability": 0.9805 + }, + { + "start": 27853.18, + "end": 27857.12, + "probability": 0.9822 + }, + { + "start": 27857.92, + "end": 27858.46, + "probability": 0.7738 + }, + { + "start": 27860.26, + "end": 27864.88, + "probability": 0.9957 + }, + { + "start": 27865.4, + "end": 27867.1, + "probability": 0.9993 + }, + { + "start": 27868.48, + "end": 27873.66, + "probability": 0.7761 + }, + { + "start": 27874.28, + "end": 27878.54, + "probability": 0.9986 + }, + { + "start": 27879.04, + "end": 27881.0, + "probability": 0.821 + }, + { + "start": 27881.18, + "end": 27882.46, + "probability": 0.9824 + }, + { + "start": 27883.04, + "end": 27886.48, + "probability": 0.9845 + }, + { + "start": 27888.02, + "end": 27888.26, + "probability": 0.714 + }, + { + "start": 27889.82, + "end": 27890.4, + "probability": 0.7399 + }, + { + "start": 27890.5, + "end": 27892.68, + "probability": 0.9133 + }, + { + "start": 27898.8, + "end": 27900.36, + "probability": 0.7566 + }, + { + "start": 27900.36, + "end": 27901.85, + "probability": 0.9312 + }, + { + "start": 27902.94, + "end": 27906.88, + "probability": 0.806 + }, + { + "start": 27906.94, + "end": 27908.4, + "probability": 0.641 + }, + { + "start": 27910.38, + "end": 27912.14, + "probability": 0.9308 + }, + { + "start": 27913.4, + "end": 27917.02, + "probability": 0.8662 + }, + { + "start": 27918.02, + "end": 27922.76, + "probability": 0.9688 + }, + { + "start": 27923.6, + "end": 27924.12, + "probability": 0.5598 + }, + { + "start": 27925.28, + "end": 27926.18, + "probability": 0.9772 + }, + { + "start": 27926.94, + "end": 27929.38, + "probability": 0.9614 + }, + { + "start": 27929.6, + "end": 27931.94, + "probability": 0.6526 + }, + { + "start": 27932.02, + "end": 27935.86, + "probability": 0.991 + }, + { + "start": 27935.86, + "end": 27940.76, + "probability": 0.9972 + }, + { + "start": 27941.58, + "end": 27945.4, + "probability": 0.7703 + }, + { + "start": 27945.52, + "end": 27946.74, + "probability": 0.9797 + }, + { + "start": 27946.8, + "end": 27947.36, + "probability": 0.7923 + }, + { + "start": 27947.46, + "end": 27948.56, + "probability": 0.9986 + }, + { + "start": 27949.12, + "end": 27950.5, + "probability": 0.9878 + }, + { + "start": 27951.0, + "end": 27951.82, + "probability": 0.7467 + }, + { + "start": 27952.6, + "end": 27958.8, + "probability": 0.9932 + }, + { + "start": 27958.92, + "end": 27964.24, + "probability": 0.9979 + }, + { + "start": 27965.36, + "end": 27966.98, + "probability": 0.9907 + }, + { + "start": 27967.2, + "end": 27968.04, + "probability": 0.9907 + }, + { + "start": 27968.48, + "end": 27971.76, + "probability": 0.9944 + }, + { + "start": 27972.48, + "end": 27974.72, + "probability": 0.9712 + }, + { + "start": 27975.54, + "end": 27977.66, + "probability": 0.9868 + }, + { + "start": 27978.48, + "end": 27979.7, + "probability": 0.7368 + }, + { + "start": 27980.3, + "end": 27984.5, + "probability": 0.9783 + }, + { + "start": 27984.82, + "end": 27986.07, + "probability": 0.8701 + }, + { + "start": 27988.31, + "end": 27992.52, + "probability": 0.9888 + }, + { + "start": 27993.22, + "end": 27996.12, + "probability": 0.9963 + }, + { + "start": 27997.14, + "end": 28000.1, + "probability": 0.7204 + }, + { + "start": 28001.5, + "end": 28001.72, + "probability": 0.7862 + }, + { + "start": 28002.52, + "end": 28003.16, + "probability": 0.0695 + }, + { + "start": 28003.16, + "end": 28006.52, + "probability": 0.3005 + }, + { + "start": 28007.68, + "end": 28009.78, + "probability": 0.7343 + }, + { + "start": 28013.9, + "end": 28015.24, + "probability": 0.4897 + }, + { + "start": 28015.98, + "end": 28018.38, + "probability": 0.9858 + }, + { + "start": 28019.8, + "end": 28020.44, + "probability": 0.7126 + }, + { + "start": 28021.6, + "end": 28022.68, + "probability": 0.8956 + }, + { + "start": 28024.56, + "end": 28027.1, + "probability": 0.9149 + }, + { + "start": 28027.18, + "end": 28029.06, + "probability": 0.8086 + }, + { + "start": 28029.14, + "end": 28029.21, + "probability": 0.5067 + }, + { + "start": 28030.66, + "end": 28030.86, + "probability": 0.2807 + }, + { + "start": 28032.92, + "end": 28033.62, + "probability": 0.7079 + }, + { + "start": 28034.4, + "end": 28034.96, + "probability": 0.4401 + }, + { + "start": 28035.9, + "end": 28038.16, + "probability": 0.9587 + }, + { + "start": 28038.26, + "end": 28039.06, + "probability": 0.8627 + }, + { + "start": 28039.14, + "end": 28040.44, + "probability": 0.8644 + }, + { + "start": 28041.74, + "end": 28043.48, + "probability": 0.7091 + }, + { + "start": 28046.26, + "end": 28046.38, + "probability": 0.0278 + }, + { + "start": 28046.38, + "end": 28048.5, + "probability": 0.6386 + }, + { + "start": 28049.78, + "end": 28050.5, + "probability": 0.6578 + }, + { + "start": 28051.36, + "end": 28053.9, + "probability": 0.7113 + }, + { + "start": 28059.1, + "end": 28061.18, + "probability": 0.0638 + }, + { + "start": 28061.2, + "end": 28067.2, + "probability": 0.7855 + }, + { + "start": 28068.62, + "end": 28070.6, + "probability": 0.5092 + }, + { + "start": 28071.5, + "end": 28073.5, + "probability": 0.9265 + }, + { + "start": 28074.14, + "end": 28078.08, + "probability": 0.9565 + }, + { + "start": 28079.0, + "end": 28082.68, + "probability": 0.9893 + }, + { + "start": 28082.68, + "end": 28085.52, + "probability": 0.9959 + }, + { + "start": 28087.38, + "end": 28091.86, + "probability": 0.9932 + }, + { + "start": 28093.18, + "end": 28099.98, + "probability": 0.9804 + }, + { + "start": 28101.06, + "end": 28105.24, + "probability": 0.9825 + }, + { + "start": 28106.28, + "end": 28112.92, + "probability": 0.8931 + }, + { + "start": 28113.8, + "end": 28118.78, + "probability": 0.9946 + }, + { + "start": 28119.74, + "end": 28123.6, + "probability": 0.9296 + }, + { + "start": 28123.98, + "end": 28126.96, + "probability": 0.9594 + }, + { + "start": 28126.96, + "end": 28130.56, + "probability": 0.9236 + }, + { + "start": 28131.9, + "end": 28132.3, + "probability": 0.5818 + }, + { + "start": 28133.44, + "end": 28134.22, + "probability": 0.7657 + }, + { + "start": 28134.4, + "end": 28136.08, + "probability": 0.9221 + }, + { + "start": 28141.68, + "end": 28145.44, + "probability": 0.9107 + }, + { + "start": 28145.52, + "end": 28147.1, + "probability": 0.9961 + }, + { + "start": 28147.22, + "end": 28149.06, + "probability": 0.9072 + }, + { + "start": 28149.22, + "end": 28150.18, + "probability": 0.7691 + }, + { + "start": 28150.56, + "end": 28151.49, + "probability": 0.8984 + }, + { + "start": 28153.3, + "end": 28158.3, + "probability": 0.6642 + }, + { + "start": 28158.84, + "end": 28159.12, + "probability": 0.8431 + }, + { + "start": 28159.2, + "end": 28162.2, + "probability": 0.9883 + }, + { + "start": 28162.94, + "end": 28168.86, + "probability": 0.9626 + }, + { + "start": 28169.06, + "end": 28170.48, + "probability": 0.8413 + }, + { + "start": 28171.52, + "end": 28174.5, + "probability": 0.9095 + }, + { + "start": 28174.68, + "end": 28181.38, + "probability": 0.972 + }, + { + "start": 28184.24, + "end": 28189.22, + "probability": 0.7861 + }, + { + "start": 28191.9, + "end": 28196.9, + "probability": 0.8535 + }, + { + "start": 28197.04, + "end": 28197.74, + "probability": 0.3832 + }, + { + "start": 28198.6, + "end": 28202.62, + "probability": 0.8856 + }, + { + "start": 28203.54, + "end": 28204.68, + "probability": 0.7218 + }, + { + "start": 28207.5, + "end": 28210.94, + "probability": 0.8064 + }, + { + "start": 28211.8, + "end": 28212.43, + "probability": 0.98 + }, + { + "start": 28212.96, + "end": 28213.63, + "probability": 0.9824 + }, + { + "start": 28214.26, + "end": 28215.05, + "probability": 0.9561 + }, + { + "start": 28217.02, + "end": 28218.38, + "probability": 0.7386 + }, + { + "start": 28219.46, + "end": 28220.26, + "probability": 0.5839 + }, + { + "start": 28220.86, + "end": 28223.12, + "probability": 0.9971 + }, + { + "start": 28223.22, + "end": 28225.28, + "probability": 0.8892 + }, + { + "start": 28225.32, + "end": 28226.98, + "probability": 0.8783 + }, + { + "start": 28227.62, + "end": 28229.78, + "probability": 0.8612 + }, + { + "start": 28229.92, + "end": 28230.66, + "probability": 0.7368 + }, + { + "start": 28230.86, + "end": 28235.36, + "probability": 0.8977 + }, + { + "start": 28237.26, + "end": 28238.4, + "probability": 0.6379 + }, + { + "start": 28239.74, + "end": 28242.36, + "probability": 0.6472 + }, + { + "start": 28243.3, + "end": 28244.1, + "probability": 0.2464 + } + ], + "segments_count": 9763, + "words_count": 48229, + "avg_words_per_segment": 4.94, + "avg_segment_duration": 2.0021, + "avg_words_per_minute": 101.9358, + "plenum_id": "53494", + "duration": 28387.88, + "title": null, + "plenum_date": "2016-06-29" +} \ No newline at end of file