diff --git "a/124402/metadata.json" "b/124402/metadata.json" new file mode 100644--- /dev/null +++ "b/124402/metadata.json" @@ -0,0 +1,32602 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "124402", + "quality_score": 0.8951, + "per_segment_quality_scores": [ + { + "start": 88.16, + "end": 89.22, + "probability": 0.2078 + }, + { + "start": 90.88, + "end": 91.31, + "probability": 0.0376 + }, + { + "start": 91.54, + "end": 96.46, + "probability": 0.627 + }, + { + "start": 98.42, + "end": 98.94, + "probability": 0.0498 + }, + { + "start": 99.0, + "end": 99.3, + "probability": 0.2055 + }, + { + "start": 99.34, + "end": 100.86, + "probability": 0.0371 + }, + { + "start": 103.0, + "end": 109.16, + "probability": 0.7201 + }, + { + "start": 110.08, + "end": 111.27, + "probability": 0.0794 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.5, + "end": 122.62, + "probability": 0.2112 + }, + { + "start": 122.62, + "end": 123.74, + "probability": 0.2256 + }, + { + "start": 125.54, + "end": 128.2, + "probability": 0.9823 + }, + { + "start": 132.16, + "end": 133.66, + "probability": 0.7013 + }, + { + "start": 135.62, + "end": 136.84, + "probability": 0.2169 + }, + { + "start": 137.87, + "end": 140.48, + "probability": 0.9152 + }, + { + "start": 142.96, + "end": 143.42, + "probability": 0.4924 + }, + { + "start": 145.48, + "end": 148.58, + "probability": 0.9276 + }, + { + "start": 149.36, + "end": 154.8, + "probability": 0.9932 + }, + { + "start": 154.8, + "end": 159.78, + "probability": 0.9927 + }, + { + "start": 160.68, + "end": 165.62, + "probability": 0.9958 + }, + { + "start": 165.7, + "end": 166.52, + "probability": 0.7164 + }, + { + "start": 167.14, + "end": 170.2, + "probability": 0.9722 + }, + { + "start": 171.18, + "end": 176.12, + "probability": 0.7953 + }, + { + "start": 176.34, + "end": 178.2, + "probability": 0.96 + }, + { + "start": 178.58, + "end": 180.42, + "probability": 0.9674 + }, + { + "start": 180.56, + "end": 184.9, + "probability": 0.9032 + }, + { + "start": 185.84, + "end": 187.76, + "probability": 0.4917 + }, + { + "start": 187.76, + "end": 188.1, + "probability": 0.5109 + }, + { + "start": 188.2, + "end": 188.52, + "probability": 0.6909 + }, + { + "start": 188.56, + "end": 192.44, + "probability": 0.9587 + }, + { + "start": 193.48, + "end": 194.94, + "probability": 0.8542 + }, + { + "start": 195.92, + "end": 198.02, + "probability": 0.9797 + }, + { + "start": 198.94, + "end": 200.22, + "probability": 0.8704 + }, + { + "start": 201.02, + "end": 203.54, + "probability": 0.979 + }, + { + "start": 204.26, + "end": 206.98, + "probability": 0.9963 + }, + { + "start": 207.06, + "end": 208.5, + "probability": 0.7333 + }, + { + "start": 209.1, + "end": 212.7, + "probability": 0.9502 + }, + { + "start": 212.7, + "end": 216.14, + "probability": 0.9697 + }, + { + "start": 216.64, + "end": 219.58, + "probability": 0.6048 + }, + { + "start": 219.76, + "end": 221.36, + "probability": 0.6571 + }, + { + "start": 221.44, + "end": 224.82, + "probability": 0.9788 + }, + { + "start": 226.66, + "end": 229.58, + "probability": 0.9893 + }, + { + "start": 229.68, + "end": 230.56, + "probability": 0.759 + }, + { + "start": 230.64, + "end": 231.07, + "probability": 0.525 + }, + { + "start": 231.32, + "end": 233.22, + "probability": 0.7598 + }, + { + "start": 233.7, + "end": 235.42, + "probability": 0.9481 + }, + { + "start": 235.56, + "end": 236.38, + "probability": 0.9641 + }, + { + "start": 236.44, + "end": 237.5, + "probability": 0.9955 + }, + { + "start": 238.04, + "end": 240.48, + "probability": 0.994 + }, + { + "start": 241.16, + "end": 243.66, + "probability": 0.9962 + }, + { + "start": 244.36, + "end": 246.86, + "probability": 0.9992 + }, + { + "start": 247.8, + "end": 249.66, + "probability": 0.9007 + }, + { + "start": 250.38, + "end": 251.7, + "probability": 0.9828 + }, + { + "start": 252.16, + "end": 253.4, + "probability": 0.9199 + }, + { + "start": 253.88, + "end": 256.24, + "probability": 0.9189 + }, + { + "start": 256.42, + "end": 258.86, + "probability": 0.4995 + }, + { + "start": 259.02, + "end": 260.13, + "probability": 0.9351 + }, + { + "start": 260.5, + "end": 263.1, + "probability": 0.9507 + }, + { + "start": 263.1, + "end": 265.1, + "probability": 0.9969 + }, + { + "start": 265.18, + "end": 265.98, + "probability": 0.9309 + }, + { + "start": 266.08, + "end": 270.74, + "probability": 0.9911 + }, + { + "start": 271.58, + "end": 273.82, + "probability": 0.9775 + }, + { + "start": 273.98, + "end": 276.82, + "probability": 0.9968 + }, + { + "start": 277.46, + "end": 278.22, + "probability": 0.5613 + }, + { + "start": 278.8, + "end": 282.44, + "probability": 0.9954 + }, + { + "start": 282.44, + "end": 285.86, + "probability": 0.9989 + }, + { + "start": 286.34, + "end": 287.02, + "probability": 0.6205 + }, + { + "start": 287.64, + "end": 288.52, + "probability": 0.7806 + }, + { + "start": 289.04, + "end": 291.68, + "probability": 0.994 + }, + { + "start": 291.68, + "end": 294.42, + "probability": 0.9977 + }, + { + "start": 294.52, + "end": 297.22, + "probability": 0.8893 + }, + { + "start": 298.22, + "end": 301.7, + "probability": 0.7104 + }, + { + "start": 302.32, + "end": 303.04, + "probability": 0.6682 + }, + { + "start": 303.16, + "end": 306.02, + "probability": 0.9606 + }, + { + "start": 306.54, + "end": 308.26, + "probability": 0.9097 + }, + { + "start": 308.9, + "end": 310.92, + "probability": 0.9917 + }, + { + "start": 311.42, + "end": 313.34, + "probability": 0.9497 + }, + { + "start": 314.28, + "end": 314.46, + "probability": 0.2878 + }, + { + "start": 314.62, + "end": 315.04, + "probability": 0.7315 + }, + { + "start": 315.06, + "end": 315.4, + "probability": 0.8656 + }, + { + "start": 315.46, + "end": 318.0, + "probability": 0.9775 + }, + { + "start": 318.06, + "end": 318.66, + "probability": 0.762 + }, + { + "start": 318.74, + "end": 319.4, + "probability": 0.7852 + }, + { + "start": 320.46, + "end": 324.66, + "probability": 0.9102 + }, + { + "start": 324.84, + "end": 327.1, + "probability": 0.9897 + }, + { + "start": 327.32, + "end": 329.06, + "probability": 0.9927 + }, + { + "start": 329.46, + "end": 332.64, + "probability": 0.5054 + }, + { + "start": 333.66, + "end": 338.04, + "probability": 0.9939 + }, + { + "start": 338.06, + "end": 341.15, + "probability": 0.9335 + }, + { + "start": 342.62, + "end": 345.6, + "probability": 0.8743 + }, + { + "start": 345.74, + "end": 348.04, + "probability": 0.9819 + }, + { + "start": 348.36, + "end": 349.34, + "probability": 0.9758 + }, + { + "start": 349.4, + "end": 349.84, + "probability": 0.9014 + }, + { + "start": 350.1, + "end": 354.48, + "probability": 0.7473 + }, + { + "start": 354.62, + "end": 357.58, + "probability": 0.8691 + }, + { + "start": 358.24, + "end": 360.8, + "probability": 0.9979 + }, + { + "start": 360.84, + "end": 365.64, + "probability": 0.8955 + }, + { + "start": 365.78, + "end": 367.0, + "probability": 0.9707 + }, + { + "start": 367.46, + "end": 368.16, + "probability": 0.8477 + }, + { + "start": 369.08, + "end": 370.24, + "probability": 0.8994 + }, + { + "start": 370.74, + "end": 373.62, + "probability": 0.9856 + }, + { + "start": 374.66, + "end": 377.24, + "probability": 0.9884 + }, + { + "start": 377.82, + "end": 378.7, + "probability": 0.9362 + }, + { + "start": 378.96, + "end": 385.82, + "probability": 0.9886 + }, + { + "start": 386.78, + "end": 387.58, + "probability": 0.9542 + }, + { + "start": 388.28, + "end": 390.94, + "probability": 0.9044 + }, + { + "start": 391.02, + "end": 395.24, + "probability": 0.9241 + }, + { + "start": 395.88, + "end": 396.94, + "probability": 0.8826 + }, + { + "start": 397.12, + "end": 398.24, + "probability": 0.7433 + }, + { + "start": 399.22, + "end": 402.66, + "probability": 0.9517 + }, + { + "start": 403.42, + "end": 404.22, + "probability": 0.9318 + }, + { + "start": 404.64, + "end": 407.3, + "probability": 0.9871 + }, + { + "start": 408.44, + "end": 409.92, + "probability": 0.9795 + }, + { + "start": 410.64, + "end": 413.24, + "probability": 0.9717 + }, + { + "start": 414.82, + "end": 416.74, + "probability": 0.8116 + }, + { + "start": 416.86, + "end": 417.63, + "probability": 0.9618 + }, + { + "start": 417.78, + "end": 418.74, + "probability": 0.9641 + }, + { + "start": 418.84, + "end": 419.74, + "probability": 0.98 + }, + { + "start": 420.38, + "end": 425.66, + "probability": 0.8788 + }, + { + "start": 426.46, + "end": 429.08, + "probability": 0.8186 + }, + { + "start": 429.68, + "end": 431.58, + "probability": 0.9976 + }, + { + "start": 432.22, + "end": 434.1, + "probability": 0.9336 + }, + { + "start": 434.16, + "end": 438.5, + "probability": 0.9955 + }, + { + "start": 438.58, + "end": 439.94, + "probability": 0.9958 + }, + { + "start": 440.36, + "end": 441.38, + "probability": 0.9487 + }, + { + "start": 441.42, + "end": 442.82, + "probability": 0.9744 + }, + { + "start": 443.17, + "end": 444.8, + "probability": 0.5224 + }, + { + "start": 444.9, + "end": 446.18, + "probability": 0.9539 + }, + { + "start": 447.0, + "end": 448.7, + "probability": 0.7381 + }, + { + "start": 448.78, + "end": 451.1, + "probability": 0.9233 + }, + { + "start": 451.3, + "end": 453.84, + "probability": 0.9839 + }, + { + "start": 453.92, + "end": 454.26, + "probability": 0.6347 + }, + { + "start": 454.74, + "end": 455.9, + "probability": 0.9296 + }, + { + "start": 456.74, + "end": 458.0, + "probability": 0.8347 + }, + { + "start": 458.1, + "end": 459.06, + "probability": 0.8243 + }, + { + "start": 459.28, + "end": 459.9, + "probability": 0.6215 + }, + { + "start": 460.02, + "end": 460.5, + "probability": 0.6216 + }, + { + "start": 460.98, + "end": 463.08, + "probability": 0.4967 + }, + { + "start": 463.32, + "end": 464.94, + "probability": 0.9076 + }, + { + "start": 465.12, + "end": 468.52, + "probability": 0.8936 + }, + { + "start": 468.64, + "end": 469.26, + "probability": 0.3679 + }, + { + "start": 469.3, + "end": 470.76, + "probability": 0.9868 + }, + { + "start": 471.0, + "end": 471.1, + "probability": 0.3817 + }, + { + "start": 471.68, + "end": 475.1, + "probability": 0.9502 + }, + { + "start": 475.82, + "end": 476.6, + "probability": 0.9421 + }, + { + "start": 477.18, + "end": 478.24, + "probability": 0.9621 + }, + { + "start": 478.78, + "end": 481.8, + "probability": 0.7091 + }, + { + "start": 481.88, + "end": 482.22, + "probability": 0.7167 + }, + { + "start": 482.28, + "end": 483.99, + "probability": 0.8367 + }, + { + "start": 484.34, + "end": 486.82, + "probability": 0.8823 + }, + { + "start": 486.9, + "end": 489.2, + "probability": 0.9526 + }, + { + "start": 489.2, + "end": 491.44, + "probability": 0.9983 + }, + { + "start": 491.92, + "end": 493.16, + "probability": 0.94 + }, + { + "start": 493.39, + "end": 494.4, + "probability": 0.6631 + }, + { + "start": 494.6, + "end": 498.02, + "probability": 0.6158 + }, + { + "start": 498.44, + "end": 499.72, + "probability": 0.9939 + }, + { + "start": 500.1, + "end": 501.68, + "probability": 0.9844 + }, + { + "start": 501.74, + "end": 502.48, + "probability": 0.9985 + }, + { + "start": 502.98, + "end": 505.74, + "probability": 0.9844 + }, + { + "start": 505.86, + "end": 507.74, + "probability": 0.9868 + }, + { + "start": 507.84, + "end": 508.8, + "probability": 0.9878 + }, + { + "start": 509.82, + "end": 511.52, + "probability": 0.9807 + }, + { + "start": 511.56, + "end": 512.9, + "probability": 0.9915 + }, + { + "start": 513.0, + "end": 513.68, + "probability": 0.4496 + }, + { + "start": 515.32, + "end": 516.64, + "probability": 0.8333 + }, + { + "start": 516.96, + "end": 521.14, + "probability": 0.7952 + }, + { + "start": 522.06, + "end": 523.12, + "probability": 0.803 + }, + { + "start": 523.64, + "end": 526.86, + "probability": 0.9952 + }, + { + "start": 526.86, + "end": 530.01, + "probability": 0.764 + }, + { + "start": 530.88, + "end": 532.52, + "probability": 0.9683 + }, + { + "start": 533.02, + "end": 536.22, + "probability": 0.9957 + }, + { + "start": 536.22, + "end": 539.98, + "probability": 0.9962 + }, + { + "start": 540.46, + "end": 543.1, + "probability": 0.9982 + }, + { + "start": 543.7, + "end": 545.62, + "probability": 0.7783 + }, + { + "start": 545.98, + "end": 546.56, + "probability": 0.7088 + }, + { + "start": 546.74, + "end": 547.94, + "probability": 0.8252 + }, + { + "start": 548.04, + "end": 549.88, + "probability": 0.9484 + }, + { + "start": 549.94, + "end": 551.82, + "probability": 0.9548 + }, + { + "start": 552.38, + "end": 554.34, + "probability": 0.9927 + }, + { + "start": 555.04, + "end": 556.18, + "probability": 0.545 + }, + { + "start": 556.66, + "end": 557.78, + "probability": 0.7779 + }, + { + "start": 557.86, + "end": 559.12, + "probability": 0.9757 + }, + { + "start": 560.02, + "end": 561.88, + "probability": 0.9585 + }, + { + "start": 562.5, + "end": 563.6, + "probability": 0.4332 + }, + { + "start": 564.22, + "end": 564.78, + "probability": 0.7893 + }, + { + "start": 565.24, + "end": 569.06, + "probability": 0.9948 + }, + { + "start": 570.16, + "end": 571.32, + "probability": 0.5862 + }, + { + "start": 572.08, + "end": 572.74, + "probability": 0.9696 + }, + { + "start": 572.94, + "end": 574.14, + "probability": 0.9812 + }, + { + "start": 575.58, + "end": 576.58, + "probability": 0.9994 + }, + { + "start": 577.7, + "end": 578.88, + "probability": 0.9437 + }, + { + "start": 578.98, + "end": 579.62, + "probability": 0.8785 + }, + { + "start": 579.68, + "end": 580.96, + "probability": 0.7943 + }, + { + "start": 582.06, + "end": 583.46, + "probability": 0.8008 + }, + { + "start": 584.2, + "end": 586.5, + "probability": 0.994 + }, + { + "start": 587.6, + "end": 587.86, + "probability": 0.4913 + }, + { + "start": 588.0, + "end": 588.34, + "probability": 0.9089 + }, + { + "start": 588.42, + "end": 589.38, + "probability": 0.9976 + }, + { + "start": 589.42, + "end": 590.1, + "probability": 0.7837 + }, + { + "start": 591.5, + "end": 592.86, + "probability": 0.9873 + }, + { + "start": 592.96, + "end": 593.69, + "probability": 0.9847 + }, + { + "start": 593.78, + "end": 594.16, + "probability": 0.7294 + }, + { + "start": 594.56, + "end": 594.96, + "probability": 0.68 + }, + { + "start": 595.16, + "end": 596.68, + "probability": 0.8792 + }, + { + "start": 596.84, + "end": 601.04, + "probability": 0.9993 + }, + { + "start": 601.32, + "end": 602.76, + "probability": 0.8712 + }, + { + "start": 603.3, + "end": 603.56, + "probability": 0.6704 + }, + { + "start": 603.56, + "end": 605.06, + "probability": 0.8983 + }, + { + "start": 605.08, + "end": 606.36, + "probability": 0.9753 + }, + { + "start": 606.88, + "end": 609.48, + "probability": 0.979 + }, + { + "start": 610.06, + "end": 610.58, + "probability": 0.3948 + }, + { + "start": 610.78, + "end": 616.12, + "probability": 0.7769 + }, + { + "start": 616.68, + "end": 619.34, + "probability": 0.8055 + }, + { + "start": 619.46, + "end": 620.08, + "probability": 0.4478 + }, + { + "start": 620.18, + "end": 620.52, + "probability": 0.8449 + }, + { + "start": 620.62, + "end": 621.02, + "probability": 0.5854 + }, + { + "start": 621.1, + "end": 621.44, + "probability": 0.5129 + }, + { + "start": 621.52, + "end": 622.36, + "probability": 0.9364 + }, + { + "start": 622.88, + "end": 623.81, + "probability": 0.9391 + }, + { + "start": 624.7, + "end": 624.94, + "probability": 0.3859 + }, + { + "start": 625.4, + "end": 627.1, + "probability": 0.9725 + }, + { + "start": 627.2, + "end": 630.5, + "probability": 0.8879 + }, + { + "start": 633.38, + "end": 635.76, + "probability": 0.9786 + }, + { + "start": 636.18, + "end": 637.26, + "probability": 0.9644 + }, + { + "start": 637.7, + "end": 639.8, + "probability": 0.9871 + }, + { + "start": 640.26, + "end": 641.18, + "probability": 0.8792 + }, + { + "start": 641.3, + "end": 645.06, + "probability": 0.9894 + }, + { + "start": 645.06, + "end": 650.14, + "probability": 0.9966 + }, + { + "start": 650.24, + "end": 651.98, + "probability": 0.8481 + }, + { + "start": 652.16, + "end": 653.16, + "probability": 0.989 + }, + { + "start": 653.26, + "end": 654.42, + "probability": 0.7225 + }, + { + "start": 655.16, + "end": 658.82, + "probability": 0.9764 + }, + { + "start": 659.68, + "end": 662.84, + "probability": 0.966 + }, + { + "start": 663.56, + "end": 666.42, + "probability": 0.9137 + }, + { + "start": 666.52, + "end": 667.44, + "probability": 0.9327 + }, + { + "start": 667.52, + "end": 668.32, + "probability": 0.9457 + }, + { + "start": 669.34, + "end": 671.92, + "probability": 0.9873 + }, + { + "start": 672.46, + "end": 673.74, + "probability": 0.9871 + }, + { + "start": 674.04, + "end": 676.2, + "probability": 0.976 + }, + { + "start": 676.7, + "end": 677.98, + "probability": 0.9878 + }, + { + "start": 678.46, + "end": 679.9, + "probability": 0.9754 + }, + { + "start": 680.32, + "end": 681.0, + "probability": 0.8808 + }, + { + "start": 681.8, + "end": 682.42, + "probability": 0.9613 + }, + { + "start": 682.54, + "end": 683.33, + "probability": 0.98 + }, + { + "start": 683.56, + "end": 685.72, + "probability": 0.9969 + }, + { + "start": 686.97, + "end": 689.64, + "probability": 0.8802 + }, + { + "start": 689.68, + "end": 691.68, + "probability": 0.9861 + }, + { + "start": 692.56, + "end": 693.92, + "probability": 0.9303 + }, + { + "start": 694.4, + "end": 695.06, + "probability": 0.9104 + }, + { + "start": 695.18, + "end": 695.38, + "probability": 0.8751 + }, + { + "start": 695.4, + "end": 697.74, + "probability": 0.9427 + }, + { + "start": 697.82, + "end": 699.9, + "probability": 0.9971 + }, + { + "start": 700.66, + "end": 702.1, + "probability": 0.9634 + }, + { + "start": 702.7, + "end": 707.28, + "probability": 0.7738 + }, + { + "start": 707.46, + "end": 711.12, + "probability": 0.8973 + }, + { + "start": 711.98, + "end": 712.3, + "probability": 0.7558 + }, + { + "start": 712.36, + "end": 712.56, + "probability": 0.7247 + }, + { + "start": 712.64, + "end": 714.58, + "probability": 0.9695 + }, + { + "start": 716.04, + "end": 717.9, + "probability": 0.8063 + }, + { + "start": 717.98, + "end": 719.72, + "probability": 0.9102 + }, + { + "start": 719.86, + "end": 722.54, + "probability": 0.9698 + }, + { + "start": 723.36, + "end": 724.94, + "probability": 0.9515 + }, + { + "start": 725.18, + "end": 726.72, + "probability": 0.9482 + }, + { + "start": 727.16, + "end": 729.75, + "probability": 0.1821 + }, + { + "start": 730.36, + "end": 733.22, + "probability": 0.9971 + }, + { + "start": 733.28, + "end": 733.98, + "probability": 0.404 + }, + { + "start": 734.06, + "end": 735.8, + "probability": 0.8228 + }, + { + "start": 735.96, + "end": 737.74, + "probability": 0.9747 + }, + { + "start": 738.06, + "end": 740.74, + "probability": 0.4109 + }, + { + "start": 741.34, + "end": 741.68, + "probability": 0.9611 + }, + { + "start": 741.78, + "end": 743.64, + "probability": 0.9254 + }, + { + "start": 744.1, + "end": 745.84, + "probability": 0.9772 + }, + { + "start": 746.46, + "end": 748.08, + "probability": 0.9719 + }, + { + "start": 748.18, + "end": 748.46, + "probability": 0.9232 + }, + { + "start": 749.06, + "end": 750.04, + "probability": 0.254 + }, + { + "start": 750.04, + "end": 752.18, + "probability": 0.7277 + }, + { + "start": 752.86, + "end": 754.72, + "probability": 0.7019 + }, + { + "start": 754.76, + "end": 755.64, + "probability": 0.5615 + }, + { + "start": 755.76, + "end": 756.4, + "probability": 0.8748 + }, + { + "start": 757.24, + "end": 761.36, + "probability": 0.8651 + }, + { + "start": 761.44, + "end": 762.1, + "probability": 0.8928 + }, + { + "start": 763.12, + "end": 766.38, + "probability": 0.9603 + }, + { + "start": 766.9, + "end": 768.16, + "probability": 0.6731 + }, + { + "start": 768.44, + "end": 769.26, + "probability": 0.6843 + }, + { + "start": 769.7, + "end": 775.74, + "probability": 0.9369 + }, + { + "start": 776.62, + "end": 779.32, + "probability": 0.7326 + }, + { + "start": 779.42, + "end": 780.82, + "probability": 0.9055 + }, + { + "start": 780.92, + "end": 781.49, + "probability": 0.9319 + }, + { + "start": 781.8, + "end": 787.0, + "probability": 0.8472 + }, + { + "start": 787.0, + "end": 792.22, + "probability": 0.9873 + }, + { + "start": 792.98, + "end": 798.36, + "probability": 0.9941 + }, + { + "start": 798.76, + "end": 807.74, + "probability": 0.723 + }, + { + "start": 808.3, + "end": 809.54, + "probability": 0.9305 + }, + { + "start": 809.58, + "end": 811.93, + "probability": 0.9966 + }, + { + "start": 812.16, + "end": 816.92, + "probability": 0.9415 + }, + { + "start": 817.6, + "end": 819.98, + "probability": 0.5774 + }, + { + "start": 820.48, + "end": 822.08, + "probability": 0.9908 + }, + { + "start": 822.68, + "end": 828.48, + "probability": 0.9988 + }, + { + "start": 828.48, + "end": 829.64, + "probability": 0.6398 + }, + { + "start": 830.38, + "end": 830.64, + "probability": 0.4836 + }, + { + "start": 831.22, + "end": 832.48, + "probability": 0.81 + }, + { + "start": 833.1, + "end": 834.92, + "probability": 0.9627 + }, + { + "start": 835.04, + "end": 837.0, + "probability": 0.6278 + }, + { + "start": 838.34, + "end": 838.44, + "probability": 0.0031 + }, + { + "start": 842.1, + "end": 844.72, + "probability": 0.3125 + }, + { + "start": 845.64, + "end": 848.24, + "probability": 0.0825 + }, + { + "start": 848.86, + "end": 849.38, + "probability": 0.0211 + }, + { + "start": 849.5, + "end": 853.18, + "probability": 0.6644 + }, + { + "start": 855.0, + "end": 860.96, + "probability": 0.9224 + }, + { + "start": 861.98, + "end": 865.06, + "probability": 0.9798 + }, + { + "start": 865.56, + "end": 866.9, + "probability": 0.678 + }, + { + "start": 867.42, + "end": 869.92, + "probability": 0.9829 + }, + { + "start": 870.62, + "end": 876.38, + "probability": 0.9955 + }, + { + "start": 876.5, + "end": 877.36, + "probability": 0.6835 + }, + { + "start": 877.52, + "end": 878.32, + "probability": 0.8732 + }, + { + "start": 879.24, + "end": 881.12, + "probability": 0.9443 + }, + { + "start": 881.84, + "end": 884.14, + "probability": 0.9965 + }, + { + "start": 884.32, + "end": 885.93, + "probability": 0.9956 + }, + { + "start": 887.4, + "end": 889.88, + "probability": 0.9018 + }, + { + "start": 889.98, + "end": 891.7, + "probability": 0.8221 + }, + { + "start": 892.2, + "end": 894.5, + "probability": 0.6715 + }, + { + "start": 895.04, + "end": 896.46, + "probability": 0.9609 + }, + { + "start": 896.56, + "end": 898.11, + "probability": 0.9971 + }, + { + "start": 898.52, + "end": 899.96, + "probability": 0.9978 + }, + { + "start": 900.12, + "end": 903.1, + "probability": 0.7061 + }, + { + "start": 903.24, + "end": 903.66, + "probability": 0.8782 + }, + { + "start": 904.48, + "end": 906.78, + "probability": 0.9679 + }, + { + "start": 906.84, + "end": 909.2, + "probability": 0.8889 + }, + { + "start": 909.34, + "end": 910.92, + "probability": 0.826 + }, + { + "start": 911.0, + "end": 911.26, + "probability": 0.7401 + }, + { + "start": 912.14, + "end": 912.46, + "probability": 0.4334 + }, + { + "start": 912.52, + "end": 914.4, + "probability": 0.655 + }, + { + "start": 915.3, + "end": 917.28, + "probability": 0.0292 + }, + { + "start": 918.21, + "end": 920.28, + "probability": 0.5255 + }, + { + "start": 920.48, + "end": 920.8, + "probability": 0.5896 + }, + { + "start": 920.98, + "end": 921.22, + "probability": 0.2687 + }, + { + "start": 921.22, + "end": 921.6, + "probability": 0.4893 + }, + { + "start": 921.66, + "end": 921.78, + "probability": 0.4839 + }, + { + "start": 921.94, + "end": 923.64, + "probability": 0.7036 + }, + { + "start": 924.3, + "end": 924.72, + "probability": 0.8453 + }, + { + "start": 931.34, + "end": 932.66, + "probability": 0.8038 + }, + { + "start": 934.71, + "end": 937.86, + "probability": 0.9935 + }, + { + "start": 937.86, + "end": 941.32, + "probability": 0.9973 + }, + { + "start": 941.98, + "end": 945.04, + "probability": 0.9037 + }, + { + "start": 945.16, + "end": 950.42, + "probability": 0.7863 + }, + { + "start": 951.34, + "end": 956.36, + "probability": 0.9924 + }, + { + "start": 957.3, + "end": 962.34, + "probability": 0.6506 + }, + { + "start": 962.34, + "end": 965.34, + "probability": 0.9985 + }, + { + "start": 965.48, + "end": 966.0, + "probability": 0.319 + }, + { + "start": 966.0, + "end": 969.76, + "probability": 0.6409 + }, + { + "start": 969.94, + "end": 970.72, + "probability": 0.1031 + }, + { + "start": 971.42, + "end": 973.3, + "probability": 0.844 + }, + { + "start": 973.62, + "end": 975.25, + "probability": 0.9436 + }, + { + "start": 975.94, + "end": 978.48, + "probability": 0.9919 + }, + { + "start": 978.7, + "end": 981.66, + "probability": 0.9956 + }, + { + "start": 981.78, + "end": 984.58, + "probability": 0.6715 + }, + { + "start": 984.7, + "end": 985.24, + "probability": 0.9929 + }, + { + "start": 985.42, + "end": 989.26, + "probability": 0.9951 + }, + { + "start": 990.6, + "end": 996.58, + "probability": 0.7079 + }, + { + "start": 997.52, + "end": 997.82, + "probability": 0.856 + }, + { + "start": 998.34, + "end": 1000.9, + "probability": 0.962 + }, + { + "start": 1001.62, + "end": 1003.8, + "probability": 0.8217 + }, + { + "start": 1003.92, + "end": 1004.64, + "probability": 0.5 + }, + { + "start": 1005.14, + "end": 1006.12, + "probability": 0.8748 + }, + { + "start": 1006.76, + "end": 1009.82, + "probability": 0.9904 + }, + { + "start": 1010.06, + "end": 1013.78, + "probability": 0.9896 + }, + { + "start": 1013.78, + "end": 1014.6, + "probability": 0.7762 + }, + { + "start": 1014.6, + "end": 1016.1, + "probability": 0.5214 + }, + { + "start": 1016.92, + "end": 1020.48, + "probability": 0.9556 + }, + { + "start": 1021.12, + "end": 1021.68, + "probability": 0.8955 + }, + { + "start": 1021.94, + "end": 1024.08, + "probability": 0.9789 + }, + { + "start": 1024.88, + "end": 1025.08, + "probability": 0.452 + }, + { + "start": 1025.2, + "end": 1029.26, + "probability": 0.7002 + }, + { + "start": 1029.36, + "end": 1030.94, + "probability": 0.9886 + }, + { + "start": 1030.98, + "end": 1032.54, + "probability": 0.727 + }, + { + "start": 1033.38, + "end": 1037.44, + "probability": 0.9936 + }, + { + "start": 1038.24, + "end": 1042.62, + "probability": 0.8643 + }, + { + "start": 1043.06, + "end": 1043.84, + "probability": 0.9956 + }, + { + "start": 1044.72, + "end": 1046.62, + "probability": 0.9634 + }, + { + "start": 1047.4, + "end": 1051.04, + "probability": 0.9961 + }, + { + "start": 1051.9, + "end": 1054.42, + "probability": 0.8979 + }, + { + "start": 1054.78, + "end": 1056.06, + "probability": 0.9204 + }, + { + "start": 1056.2, + "end": 1056.58, + "probability": 0.9735 + }, + { + "start": 1058.38, + "end": 1059.02, + "probability": 0.831 + }, + { + "start": 1059.58, + "end": 1059.6, + "probability": 0.3422 + }, + { + "start": 1059.6, + "end": 1060.42, + "probability": 0.9711 + }, + { + "start": 1060.48, + "end": 1062.12, + "probability": 0.994 + }, + { + "start": 1062.2, + "end": 1063.98, + "probability": 0.7998 + }, + { + "start": 1064.3, + "end": 1067.8, + "probability": 0.9966 + }, + { + "start": 1067.8, + "end": 1070.64, + "probability": 0.9916 + }, + { + "start": 1070.74, + "end": 1071.26, + "probability": 0.4179 + }, + { + "start": 1071.72, + "end": 1075.56, + "probability": 0.8766 + }, + { + "start": 1075.62, + "end": 1075.88, + "probability": 0.8526 + }, + { + "start": 1076.0, + "end": 1077.38, + "probability": 0.9604 + }, + { + "start": 1078.52, + "end": 1082.64, + "probability": 0.8575 + }, + { + "start": 1082.98, + "end": 1083.72, + "probability": 0.4145 + }, + { + "start": 1083.92, + "end": 1085.04, + "probability": 0.7343 + }, + { + "start": 1085.56, + "end": 1086.06, + "probability": 0.8629 + }, + { + "start": 1087.02, + "end": 1088.96, + "probability": 0.0483 + }, + { + "start": 1088.96, + "end": 1093.72, + "probability": 0.8447 + }, + { + "start": 1094.3, + "end": 1096.04, + "probability": 0.9968 + }, + { + "start": 1097.38, + "end": 1097.86, + "probability": 0.1136 + }, + { + "start": 1097.86, + "end": 1103.46, + "probability": 0.6202 + }, + { + "start": 1103.8, + "end": 1104.08, + "probability": 0.0723 + }, + { + "start": 1104.08, + "end": 1104.08, + "probability": 0.0609 + }, + { + "start": 1104.08, + "end": 1107.18, + "probability": 0.9786 + }, + { + "start": 1107.2, + "end": 1107.88, + "probability": 0.8113 + }, + { + "start": 1108.2, + "end": 1111.16, + "probability": 0.9565 + }, + { + "start": 1111.91, + "end": 1115.46, + "probability": 0.9966 + }, + { + "start": 1116.0, + "end": 1116.7, + "probability": 0.6677 + }, + { + "start": 1117.28, + "end": 1119.58, + "probability": 0.9985 + }, + { + "start": 1119.76, + "end": 1120.9, + "probability": 0.9907 + }, + { + "start": 1121.44, + "end": 1122.94, + "probability": 0.9223 + }, + { + "start": 1123.28, + "end": 1126.46, + "probability": 0.8753 + }, + { + "start": 1126.6, + "end": 1127.56, + "probability": 0.7774 + }, + { + "start": 1128.06, + "end": 1133.38, + "probability": 0.9932 + }, + { + "start": 1133.76, + "end": 1135.65, + "probability": 0.9945 + }, + { + "start": 1136.18, + "end": 1139.3, + "probability": 0.9944 + }, + { + "start": 1139.7, + "end": 1141.44, + "probability": 0.9966 + }, + { + "start": 1141.96, + "end": 1144.7, + "probability": 0.9873 + }, + { + "start": 1145.24, + "end": 1147.8, + "probability": 0.9919 + }, + { + "start": 1147.88, + "end": 1148.32, + "probability": 0.8333 + }, + { + "start": 1148.4, + "end": 1149.18, + "probability": 0.8037 + }, + { + "start": 1149.26, + "end": 1151.38, + "probability": 0.8839 + }, + { + "start": 1151.54, + "end": 1154.78, + "probability": 0.6839 + }, + { + "start": 1155.76, + "end": 1156.86, + "probability": 0.5803 + }, + { + "start": 1158.26, + "end": 1161.62, + "probability": 0.984 + }, + { + "start": 1162.7, + "end": 1165.78, + "probability": 0.6265 + }, + { + "start": 1166.9, + "end": 1171.4, + "probability": 0.9966 + }, + { + "start": 1171.4, + "end": 1173.42, + "probability": 0.7242 + }, + { + "start": 1174.08, + "end": 1177.48, + "probability": 0.9765 + }, + { + "start": 1179.22, + "end": 1182.62, + "probability": 0.9689 + }, + { + "start": 1182.64, + "end": 1185.98, + "probability": 0.9737 + }, + { + "start": 1187.58, + "end": 1189.44, + "probability": 0.485 + }, + { + "start": 1189.44, + "end": 1192.32, + "probability": 0.991 + }, + { + "start": 1192.9, + "end": 1193.82, + "probability": 0.7728 + }, + { + "start": 1195.12, + "end": 1199.34, + "probability": 0.9971 + }, + { + "start": 1200.52, + "end": 1201.53, + "probability": 0.9019 + }, + { + "start": 1202.3, + "end": 1202.82, + "probability": 0.921 + }, + { + "start": 1203.2, + "end": 1203.68, + "probability": 0.7898 + }, + { + "start": 1203.76, + "end": 1205.2, + "probability": 0.5248 + }, + { + "start": 1205.42, + "end": 1207.9, + "probability": 0.7609 + }, + { + "start": 1208.42, + "end": 1211.32, + "probability": 0.7663 + }, + { + "start": 1211.72, + "end": 1213.72, + "probability": 0.9586 + }, + { + "start": 1214.92, + "end": 1218.5, + "probability": 0.9448 + }, + { + "start": 1218.56, + "end": 1218.94, + "probability": 0.8721 + }, + { + "start": 1219.04, + "end": 1222.48, + "probability": 0.9972 + }, + { + "start": 1223.0, + "end": 1225.94, + "probability": 0.8743 + }, + { + "start": 1226.28, + "end": 1228.94, + "probability": 0.9928 + }, + { + "start": 1229.32, + "end": 1231.34, + "probability": 0.9977 + }, + { + "start": 1231.34, + "end": 1235.8, + "probability": 0.6933 + }, + { + "start": 1235.98, + "end": 1239.36, + "probability": 0.9628 + }, + { + "start": 1239.66, + "end": 1241.12, + "probability": 0.665 + }, + { + "start": 1241.86, + "end": 1244.14, + "probability": 0.9985 + }, + { + "start": 1244.78, + "end": 1246.58, + "probability": 0.9776 + }, + { + "start": 1246.64, + "end": 1247.7, + "probability": 0.9537 + }, + { + "start": 1248.12, + "end": 1250.38, + "probability": 0.9976 + }, + { + "start": 1250.86, + "end": 1251.22, + "probability": 0.9188 + }, + { + "start": 1251.6, + "end": 1253.4, + "probability": 0.9979 + }, + { + "start": 1253.7, + "end": 1256.48, + "probability": 0.9989 + }, + { + "start": 1256.74, + "end": 1258.21, + "probability": 0.9985 + }, + { + "start": 1258.56, + "end": 1263.0, + "probability": 0.9981 + }, + { + "start": 1263.14, + "end": 1264.1, + "probability": 0.6634 + }, + { + "start": 1264.66, + "end": 1266.42, + "probability": 0.9273 + }, + { + "start": 1266.8, + "end": 1267.52, + "probability": 0.9348 + }, + { + "start": 1268.04, + "end": 1269.28, + "probability": 0.755 + }, + { + "start": 1269.4, + "end": 1271.5, + "probability": 0.9146 + }, + { + "start": 1271.78, + "end": 1274.44, + "probability": 0.9758 + }, + { + "start": 1274.9, + "end": 1279.52, + "probability": 0.9948 + }, + { + "start": 1279.88, + "end": 1283.68, + "probability": 0.9773 + }, + { + "start": 1283.8, + "end": 1285.56, + "probability": 0.9959 + }, + { + "start": 1285.86, + "end": 1286.28, + "probability": 0.7391 + }, + { + "start": 1286.36, + "end": 1288.12, + "probability": 0.6574 + }, + { + "start": 1288.84, + "end": 1289.96, + "probability": 0.6583 + }, + { + "start": 1290.02, + "end": 1290.64, + "probability": 0.6164 + }, + { + "start": 1290.8, + "end": 1292.9, + "probability": 0.8254 + }, + { + "start": 1293.96, + "end": 1294.7, + "probability": 0.776 + }, + { + "start": 1294.7, + "end": 1297.34, + "probability": 0.8916 + }, + { + "start": 1297.46, + "end": 1301.08, + "probability": 0.9565 + }, + { + "start": 1302.2, + "end": 1304.82, + "probability": 0.973 + }, + { + "start": 1305.44, + "end": 1306.46, + "probability": 0.8478 + }, + { + "start": 1306.86, + "end": 1308.44, + "probability": 0.9641 + }, + { + "start": 1308.46, + "end": 1310.7, + "probability": 0.9692 + }, + { + "start": 1311.1, + "end": 1315.26, + "probability": 0.9704 + }, + { + "start": 1315.64, + "end": 1318.94, + "probability": 0.9981 + }, + { + "start": 1319.04, + "end": 1319.32, + "probability": 0.7567 + }, + { + "start": 1320.44, + "end": 1323.0, + "probability": 0.8664 + }, + { + "start": 1323.78, + "end": 1327.5, + "probability": 0.9009 + }, + { + "start": 1327.98, + "end": 1330.32, + "probability": 0.5018 + }, + { + "start": 1332.44, + "end": 1334.56, + "probability": 0.9515 + }, + { + "start": 1334.94, + "end": 1338.46, + "probability": 0.9754 + }, + { + "start": 1338.96, + "end": 1342.84, + "probability": 0.9955 + }, + { + "start": 1342.94, + "end": 1343.38, + "probability": 0.9503 + }, + { + "start": 1344.06, + "end": 1344.32, + "probability": 0.7469 + }, + { + "start": 1344.4, + "end": 1344.96, + "probability": 0.6657 + }, + { + "start": 1346.65, + "end": 1348.16, + "probability": 0.904 + }, + { + "start": 1348.2, + "end": 1348.2, + "probability": 0.185 + }, + { + "start": 1348.2, + "end": 1348.52, + "probability": 0.4975 + }, + { + "start": 1354.34, + "end": 1354.8, + "probability": 0.7451 + }, + { + "start": 1354.94, + "end": 1356.76, + "probability": 0.775 + }, + { + "start": 1356.84, + "end": 1363.98, + "probability": 0.9437 + }, + { + "start": 1364.14, + "end": 1365.02, + "probability": 0.7996 + }, + { + "start": 1365.7, + "end": 1367.0, + "probability": 0.959 + }, + { + "start": 1367.08, + "end": 1368.3, + "probability": 0.9826 + }, + { + "start": 1368.42, + "end": 1369.94, + "probability": 0.7883 + }, + { + "start": 1370.14, + "end": 1371.14, + "probability": 0.7461 + }, + { + "start": 1371.74, + "end": 1376.78, + "probability": 0.7759 + }, + { + "start": 1377.04, + "end": 1381.0, + "probability": 0.9871 + }, + { + "start": 1381.82, + "end": 1383.1, + "probability": 0.6235 + }, + { + "start": 1383.4, + "end": 1385.06, + "probability": 0.9406 + }, + { + "start": 1385.48, + "end": 1390.04, + "probability": 0.998 + }, + { + "start": 1390.66, + "end": 1391.68, + "probability": 0.8028 + }, + { + "start": 1392.42, + "end": 1399.2, + "probability": 0.9884 + }, + { + "start": 1399.96, + "end": 1401.62, + "probability": 0.9229 + }, + { + "start": 1401.68, + "end": 1402.75, + "probability": 0.9663 + }, + { + "start": 1403.28, + "end": 1406.92, + "probability": 0.9864 + }, + { + "start": 1407.14, + "end": 1409.12, + "probability": 0.7497 + }, + { + "start": 1410.77, + "end": 1413.62, + "probability": 0.9956 + }, + { + "start": 1413.66, + "end": 1415.04, + "probability": 0.9951 + }, + { + "start": 1415.32, + "end": 1415.54, + "probability": 0.7045 + }, + { + "start": 1415.62, + "end": 1416.62, + "probability": 0.8069 + }, + { + "start": 1417.64, + "end": 1419.48, + "probability": 0.4983 + }, + { + "start": 1423.28, + "end": 1424.34, + "probability": 0.8338 + }, + { + "start": 1424.62, + "end": 1425.24, + "probability": 0.8325 + }, + { + "start": 1425.36, + "end": 1426.08, + "probability": 0.7208 + }, + { + "start": 1426.48, + "end": 1431.46, + "probability": 0.5377 + }, + { + "start": 1432.02, + "end": 1434.68, + "probability": 0.95 + }, + { + "start": 1435.06, + "end": 1438.5, + "probability": 0.9268 + }, + { + "start": 1439.1, + "end": 1441.6, + "probability": 0.7175 + }, + { + "start": 1442.24, + "end": 1444.12, + "probability": 0.9149 + }, + { + "start": 1444.2, + "end": 1445.02, + "probability": 0.9601 + }, + { + "start": 1445.16, + "end": 1445.92, + "probability": 0.6618 + }, + { + "start": 1446.68, + "end": 1451.64, + "probability": 0.8885 + }, + { + "start": 1451.72, + "end": 1452.7, + "probability": 0.8657 + }, + { + "start": 1452.8, + "end": 1455.46, + "probability": 0.9992 + }, + { + "start": 1455.82, + "end": 1457.04, + "probability": 0.9816 + }, + { + "start": 1457.24, + "end": 1457.68, + "probability": 0.7275 + }, + { + "start": 1457.8, + "end": 1459.14, + "probability": 0.9665 + }, + { + "start": 1459.74, + "end": 1462.38, + "probability": 0.9917 + }, + { + "start": 1462.48, + "end": 1464.84, + "probability": 0.8852 + }, + { + "start": 1464.94, + "end": 1465.96, + "probability": 0.8951 + }, + { + "start": 1466.72, + "end": 1467.0, + "probability": 0.7197 + }, + { + "start": 1467.22, + "end": 1468.18, + "probability": 0.9485 + }, + { + "start": 1469.18, + "end": 1474.06, + "probability": 0.8688 + }, + { + "start": 1475.98, + "end": 1479.5, + "probability": 0.9953 + }, + { + "start": 1479.62, + "end": 1480.52, + "probability": 0.9928 + }, + { + "start": 1480.94, + "end": 1482.02, + "probability": 0.9733 + }, + { + "start": 1482.84, + "end": 1483.67, + "probability": 0.9993 + }, + { + "start": 1484.42, + "end": 1486.98, + "probability": 0.9916 + }, + { + "start": 1487.68, + "end": 1489.78, + "probability": 0.7197 + }, + { + "start": 1490.2, + "end": 1492.54, + "probability": 0.9548 + }, + { + "start": 1492.62, + "end": 1493.2, + "probability": 0.8771 + }, + { + "start": 1494.32, + "end": 1496.28, + "probability": 0.5186 + }, + { + "start": 1496.4, + "end": 1501.32, + "probability": 0.9941 + }, + { + "start": 1502.08, + "end": 1506.68, + "probability": 0.933 + }, + { + "start": 1507.8, + "end": 1510.36, + "probability": 0.9753 + }, + { + "start": 1510.36, + "end": 1514.62, + "probability": 0.9976 + }, + { + "start": 1514.72, + "end": 1515.24, + "probability": 0.4896 + }, + { + "start": 1515.32, + "end": 1515.46, + "probability": 0.4635 + }, + { + "start": 1517.62, + "end": 1518.34, + "probability": 0.079 + }, + { + "start": 1520.42, + "end": 1521.98, + "probability": 0.9823 + }, + { + "start": 1522.12, + "end": 1523.23, + "probability": 0.9637 + }, + { + "start": 1523.78, + "end": 1525.64, + "probability": 0.9814 + }, + { + "start": 1525.82, + "end": 1530.48, + "probability": 0.904 + }, + { + "start": 1531.12, + "end": 1534.0, + "probability": 0.938 + }, + { + "start": 1534.38, + "end": 1535.4, + "probability": 0.998 + }, + { + "start": 1536.28, + "end": 1537.08, + "probability": 0.8531 + }, + { + "start": 1537.6, + "end": 1538.06, + "probability": 0.5648 + }, + { + "start": 1538.16, + "end": 1538.88, + "probability": 0.9423 + }, + { + "start": 1539.02, + "end": 1540.32, + "probability": 0.9127 + }, + { + "start": 1540.4, + "end": 1540.8, + "probability": 0.7538 + }, + { + "start": 1541.5, + "end": 1541.92, + "probability": 0.9138 + }, + { + "start": 1542.06, + "end": 1543.7, + "probability": 0.9517 + }, + { + "start": 1543.78, + "end": 1545.62, + "probability": 0.9922 + }, + { + "start": 1545.72, + "end": 1545.9, + "probability": 0.2794 + }, + { + "start": 1545.96, + "end": 1546.5, + "probability": 0.8178 + }, + { + "start": 1547.0, + "end": 1549.66, + "probability": 0.9704 + }, + { + "start": 1549.74, + "end": 1550.44, + "probability": 0.6511 + }, + { + "start": 1550.68, + "end": 1552.28, + "probability": 0.8992 + }, + { + "start": 1552.34, + "end": 1553.58, + "probability": 0.9684 + }, + { + "start": 1553.7, + "end": 1554.26, + "probability": 0.7419 + }, + { + "start": 1554.62, + "end": 1555.54, + "probability": 0.8757 + }, + { + "start": 1556.27, + "end": 1558.95, + "probability": 0.5044 + }, + { + "start": 1559.2, + "end": 1560.24, + "probability": 0.9108 + }, + { + "start": 1560.78, + "end": 1566.06, + "probability": 0.995 + }, + { + "start": 1567.02, + "end": 1569.44, + "probability": 0.6865 + }, + { + "start": 1570.2, + "end": 1571.24, + "probability": 0.8514 + }, + { + "start": 1571.58, + "end": 1573.48, + "probability": 0.8739 + }, + { + "start": 1573.52, + "end": 1574.0, + "probability": 0.5064 + }, + { + "start": 1574.02, + "end": 1575.18, + "probability": 0.7294 + }, + { + "start": 1575.54, + "end": 1576.92, + "probability": 0.0779 + }, + { + "start": 1578.26, + "end": 1578.82, + "probability": 0.1023 + }, + { + "start": 1579.52, + "end": 1582.46, + "probability": 0.9407 + }, + { + "start": 1582.68, + "end": 1583.98, + "probability": 0.9614 + }, + { + "start": 1584.04, + "end": 1585.06, + "probability": 0.5037 + }, + { + "start": 1585.72, + "end": 1588.78, + "probability": 0.9603 + }, + { + "start": 1589.0, + "end": 1590.54, + "probability": 0.9982 + }, + { + "start": 1591.06, + "end": 1592.84, + "probability": 0.9714 + }, + { + "start": 1593.26, + "end": 1598.2, + "probability": 0.8652 + }, + { + "start": 1598.78, + "end": 1599.2, + "probability": 0.9504 + }, + { + "start": 1600.18, + "end": 1602.94, + "probability": 0.979 + }, + { + "start": 1603.48, + "end": 1605.52, + "probability": 0.8697 + }, + { + "start": 1605.94, + "end": 1606.82, + "probability": 0.748 + }, + { + "start": 1607.02, + "end": 1609.9, + "probability": 0.97 + }, + { + "start": 1609.9, + "end": 1612.38, + "probability": 0.9874 + }, + { + "start": 1613.34, + "end": 1614.66, + "probability": 0.9225 + }, + { + "start": 1614.88, + "end": 1618.5, + "probability": 0.7821 + }, + { + "start": 1620.66, + "end": 1624.18, + "probability": 0.9869 + }, + { + "start": 1624.28, + "end": 1626.3, + "probability": 0.9945 + }, + { + "start": 1627.66, + "end": 1631.52, + "probability": 0.9998 + }, + { + "start": 1632.2, + "end": 1634.74, + "probability": 0.9822 + }, + { + "start": 1634.8, + "end": 1637.64, + "probability": 0.8718 + }, + { + "start": 1638.18, + "end": 1642.26, + "probability": 0.998 + }, + { + "start": 1642.5, + "end": 1647.06, + "probability": 0.9812 + }, + { + "start": 1647.84, + "end": 1651.18, + "probability": 0.7262 + }, + { + "start": 1651.78, + "end": 1652.78, + "probability": 0.7889 + }, + { + "start": 1653.22, + "end": 1654.8, + "probability": 0.9983 + }, + { + "start": 1654.88, + "end": 1655.7, + "probability": 0.6888 + }, + { + "start": 1655.84, + "end": 1660.6, + "probability": 0.9968 + }, + { + "start": 1661.18, + "end": 1662.46, + "probability": 0.9899 + }, + { + "start": 1662.58, + "end": 1663.24, + "probability": 0.7328 + }, + { + "start": 1663.72, + "end": 1665.56, + "probability": 0.9399 + }, + { + "start": 1666.2, + "end": 1669.1, + "probability": 0.7488 + }, + { + "start": 1669.44, + "end": 1672.52, + "probability": 0.9888 + }, + { + "start": 1672.98, + "end": 1673.47, + "probability": 0.8916 + }, + { + "start": 1674.04, + "end": 1676.68, + "probability": 0.999 + }, + { + "start": 1677.12, + "end": 1680.0, + "probability": 0.9935 + }, + { + "start": 1680.42, + "end": 1681.28, + "probability": 0.8591 + }, + { + "start": 1681.36, + "end": 1682.88, + "probability": 0.9709 + }, + { + "start": 1683.42, + "end": 1688.64, + "probability": 0.9921 + }, + { + "start": 1689.1, + "end": 1690.92, + "probability": 0.9215 + }, + { + "start": 1691.4, + "end": 1693.46, + "probability": 0.881 + }, + { + "start": 1693.94, + "end": 1696.56, + "probability": 0.9937 + }, + { + "start": 1696.82, + "end": 1698.18, + "probability": 0.9949 + }, + { + "start": 1698.24, + "end": 1698.84, + "probability": 0.9893 + }, + { + "start": 1699.18, + "end": 1702.26, + "probability": 0.9972 + }, + { + "start": 1702.26, + "end": 1705.1, + "probability": 0.9991 + }, + { + "start": 1705.2, + "end": 1706.18, + "probability": 0.8165 + }, + { + "start": 1706.84, + "end": 1712.68, + "probability": 0.9868 + }, + { + "start": 1712.9, + "end": 1713.46, + "probability": 0.9544 + }, + { + "start": 1713.56, + "end": 1713.96, + "probability": 0.7545 + }, + { + "start": 1714.16, + "end": 1717.14, + "probability": 0.9686 + }, + { + "start": 1717.82, + "end": 1718.88, + "probability": 0.0092 + }, + { + "start": 1718.96, + "end": 1720.22, + "probability": 0.1903 + }, + { + "start": 1721.71, + "end": 1722.34, + "probability": 0.114 + }, + { + "start": 1722.34, + "end": 1723.66, + "probability": 0.0729 + }, + { + "start": 1724.16, + "end": 1727.59, + "probability": 0.0283 + }, + { + "start": 1728.96, + "end": 1729.44, + "probability": 0.0859 + }, + { + "start": 1729.44, + "end": 1736.26, + "probability": 0.1588 + }, + { + "start": 1736.26, + "end": 1738.74, + "probability": 0.105 + }, + { + "start": 1739.36, + "end": 1740.22, + "probability": 0.0636 + }, + { + "start": 1757.96, + "end": 1760.8, + "probability": 0.0583 + }, + { + "start": 1760.8, + "end": 1761.98, + "probability": 0.0783 + }, + { + "start": 1762.06, + "end": 1762.58, + "probability": 0.0174 + }, + { + "start": 1762.58, + "end": 1765.8, + "probability": 0.0955 + }, + { + "start": 1765.8, + "end": 1765.8, + "probability": 0.0706 + }, + { + "start": 1765.8, + "end": 1765.8, + "probability": 0.1704 + }, + { + "start": 1765.8, + "end": 1765.8, + "probability": 0.093 + }, + { + "start": 1765.8, + "end": 1766.78, + "probability": 0.4277 + }, + { + "start": 1768.98, + "end": 1771.54, + "probability": 0.6699 + }, + { + "start": 1772.56, + "end": 1774.54, + "probability": 0.9877 + }, + { + "start": 1775.84, + "end": 1781.5, + "probability": 0.9862 + }, + { + "start": 1782.56, + "end": 1784.98, + "probability": 0.9971 + }, + { + "start": 1784.98, + "end": 1788.34, + "probability": 0.997 + }, + { + "start": 1789.1, + "end": 1794.74, + "probability": 0.9895 + }, + { + "start": 1795.32, + "end": 1796.78, + "probability": 0.9913 + }, + { + "start": 1797.42, + "end": 1798.76, + "probability": 0.9898 + }, + { + "start": 1799.16, + "end": 1800.18, + "probability": 0.9591 + }, + { + "start": 1800.26, + "end": 1802.3, + "probability": 0.9964 + }, + { + "start": 1802.86, + "end": 1805.4, + "probability": 0.9915 + }, + { + "start": 1805.4, + "end": 1809.44, + "probability": 0.9882 + }, + { + "start": 1810.06, + "end": 1812.5, + "probability": 0.979 + }, + { + "start": 1813.04, + "end": 1814.54, + "probability": 0.9958 + }, + { + "start": 1815.06, + "end": 1818.14, + "probability": 0.9351 + }, + { + "start": 1818.98, + "end": 1819.12, + "probability": 0.4854 + }, + { + "start": 1819.4, + "end": 1823.04, + "probability": 0.9846 + }, + { + "start": 1823.04, + "end": 1826.34, + "probability": 0.9985 + }, + { + "start": 1826.84, + "end": 1828.74, + "probability": 0.9187 + }, + { + "start": 1828.9, + "end": 1829.74, + "probability": 0.9247 + }, + { + "start": 1830.16, + "end": 1832.66, + "probability": 0.9807 + }, + { + "start": 1833.38, + "end": 1836.1, + "probability": 0.9714 + }, + { + "start": 1836.1, + "end": 1838.86, + "probability": 0.9926 + }, + { + "start": 1839.22, + "end": 1840.08, + "probability": 0.8885 + }, + { + "start": 1840.62, + "end": 1842.1, + "probability": 0.9561 + }, + { + "start": 1842.32, + "end": 1845.1, + "probability": 0.8753 + }, + { + "start": 1845.28, + "end": 1846.0, + "probability": 0.958 + }, + { + "start": 1846.68, + "end": 1850.74, + "probability": 0.9941 + }, + { + "start": 1851.22, + "end": 1852.4, + "probability": 0.7987 + }, + { + "start": 1852.5, + "end": 1857.5, + "probability": 0.968 + }, + { + "start": 1858.28, + "end": 1862.5, + "probability": 0.9987 + }, + { + "start": 1862.5, + "end": 1868.3, + "probability": 0.9714 + }, + { + "start": 1868.82, + "end": 1871.18, + "probability": 0.9919 + }, + { + "start": 1872.04, + "end": 1875.16, + "probability": 0.9959 + }, + { + "start": 1875.94, + "end": 1878.48, + "probability": 0.9481 + }, + { + "start": 1879.08, + "end": 1883.42, + "probability": 0.9836 + }, + { + "start": 1883.42, + "end": 1887.56, + "probability": 0.9883 + }, + { + "start": 1887.68, + "end": 1890.04, + "probability": 0.949 + }, + { + "start": 1890.66, + "end": 1891.26, + "probability": 0.6559 + }, + { + "start": 1891.34, + "end": 1895.08, + "probability": 0.9431 + }, + { + "start": 1895.08, + "end": 1898.08, + "probability": 0.9956 + }, + { + "start": 1898.22, + "end": 1900.7, + "probability": 0.9671 + }, + { + "start": 1901.16, + "end": 1901.98, + "probability": 0.8369 + }, + { + "start": 1902.86, + "end": 1903.4, + "probability": 0.9684 + }, + { + "start": 1904.5, + "end": 1905.3, + "probability": 0.9777 + }, + { + "start": 1905.78, + "end": 1906.38, + "probability": 0.8281 + }, + { + "start": 1906.72, + "end": 1908.82, + "probability": 0.9808 + }, + { + "start": 1908.82, + "end": 1912.1, + "probability": 0.9983 + }, + { + "start": 1912.74, + "end": 1917.22, + "probability": 0.9967 + }, + { + "start": 1917.42, + "end": 1920.48, + "probability": 0.9888 + }, + { + "start": 1920.94, + "end": 1923.6, + "probability": 0.9912 + }, + { + "start": 1923.96, + "end": 1928.32, + "probability": 0.9897 + }, + { + "start": 1928.84, + "end": 1929.54, + "probability": 0.7668 + }, + { + "start": 1929.74, + "end": 1930.42, + "probability": 0.7696 + }, + { + "start": 1930.44, + "end": 1934.96, + "probability": 0.8424 + }, + { + "start": 1935.14, + "end": 1936.84, + "probability": 0.9722 + }, + { + "start": 1937.14, + "end": 1939.58, + "probability": 0.9393 + }, + { + "start": 1939.58, + "end": 1943.14, + "probability": 0.9918 + }, + { + "start": 1943.82, + "end": 1947.24, + "probability": 0.9859 + }, + { + "start": 1947.58, + "end": 1951.1, + "probability": 0.9935 + }, + { + "start": 1951.74, + "end": 1954.7, + "probability": 0.9805 + }, + { + "start": 1954.7, + "end": 1957.7, + "probability": 0.9987 + }, + { + "start": 1958.08, + "end": 1961.28, + "probability": 0.9963 + }, + { + "start": 1961.76, + "end": 1964.14, + "probability": 0.9966 + }, + { + "start": 1964.14, + "end": 1967.08, + "probability": 0.949 + }, + { + "start": 1967.5, + "end": 1970.78, + "probability": 0.9972 + }, + { + "start": 1971.02, + "end": 1974.3, + "probability": 0.9789 + }, + { + "start": 1974.76, + "end": 1976.58, + "probability": 0.8196 + }, + { + "start": 1976.82, + "end": 1980.78, + "probability": 0.8373 + }, + { + "start": 1981.28, + "end": 1984.6, + "probability": 0.9736 + }, + { + "start": 1985.16, + "end": 1989.24, + "probability": 0.9982 + }, + { + "start": 1990.24, + "end": 1992.4, + "probability": 0.9672 + }, + { + "start": 1992.5, + "end": 1996.22, + "probability": 0.9394 + }, + { + "start": 1996.36, + "end": 1997.12, + "probability": 0.45 + }, + { + "start": 1997.26, + "end": 1999.88, + "probability": 0.9941 + }, + { + "start": 1999.88, + "end": 2003.2, + "probability": 0.705 + }, + { + "start": 2003.54, + "end": 2004.0, + "probability": 0.9688 + }, + { + "start": 2004.08, + "end": 2005.46, + "probability": 0.9914 + }, + { + "start": 2005.82, + "end": 2007.42, + "probability": 0.4909 + }, + { + "start": 2007.84, + "end": 2009.72, + "probability": 0.9087 + }, + { + "start": 2009.76, + "end": 2010.2, + "probability": 0.9686 + }, + { + "start": 2010.76, + "end": 2012.7, + "probability": 0.9382 + }, + { + "start": 2013.06, + "end": 2014.36, + "probability": 0.8977 + }, + { + "start": 2014.44, + "end": 2016.16, + "probability": 0.9902 + }, + { + "start": 2016.74, + "end": 2018.82, + "probability": 0.9925 + }, + { + "start": 2019.74, + "end": 2025.42, + "probability": 0.6599 + }, + { + "start": 2025.96, + "end": 2029.14, + "probability": 0.981 + }, + { + "start": 2029.74, + "end": 2030.36, + "probability": 0.4794 + }, + { + "start": 2030.62, + "end": 2033.44, + "probability": 0.7742 + }, + { + "start": 2033.44, + "end": 2038.38, + "probability": 0.9672 + }, + { + "start": 2038.4, + "end": 2038.86, + "probability": 0.57 + }, + { + "start": 2039.7, + "end": 2041.38, + "probability": 0.9662 + }, + { + "start": 2041.94, + "end": 2043.06, + "probability": 0.7183 + }, + { + "start": 2043.18, + "end": 2046.98, + "probability": 0.7839 + }, + { + "start": 2047.08, + "end": 2049.4, + "probability": 0.5213 + }, + { + "start": 2049.98, + "end": 2052.8, + "probability": 0.9677 + }, + { + "start": 2054.54, + "end": 2055.54, + "probability": 0.8288 + }, + { + "start": 2058.44, + "end": 2062.56, + "probability": 0.98 + }, + { + "start": 2075.2, + "end": 2077.32, + "probability": 0.586 + }, + { + "start": 2077.42, + "end": 2077.64, + "probability": 0.526 + }, + { + "start": 2077.72, + "end": 2079.36, + "probability": 0.791 + }, + { + "start": 2079.92, + "end": 2084.44, + "probability": 0.9857 + }, + { + "start": 2085.04, + "end": 2085.96, + "probability": 0.73 + }, + { + "start": 2086.06, + "end": 2088.06, + "probability": 0.9911 + }, + { + "start": 2088.34, + "end": 2089.42, + "probability": 0.9547 + }, + { + "start": 2090.48, + "end": 2091.7, + "probability": 0.9755 + }, + { + "start": 2092.42, + "end": 2097.4, + "probability": 0.9956 + }, + { + "start": 2098.34, + "end": 2098.98, + "probability": 0.9221 + }, + { + "start": 2099.06, + "end": 2099.9, + "probability": 0.9395 + }, + { + "start": 2100.0, + "end": 2106.26, + "probability": 0.9946 + }, + { + "start": 2107.84, + "end": 2108.26, + "probability": 0.392 + }, + { + "start": 2108.3, + "end": 2111.64, + "probability": 0.9785 + }, + { + "start": 2112.34, + "end": 2117.6, + "probability": 0.9978 + }, + { + "start": 2118.42, + "end": 2123.62, + "probability": 0.9968 + }, + { + "start": 2124.58, + "end": 2128.0, + "probability": 0.9962 + }, + { + "start": 2128.0, + "end": 2131.0, + "probability": 0.9984 + }, + { + "start": 2132.38, + "end": 2135.49, + "probability": 0.9526 + }, + { + "start": 2136.46, + "end": 2139.72, + "probability": 0.9961 + }, + { + "start": 2139.72, + "end": 2143.28, + "probability": 0.8634 + }, + { + "start": 2144.08, + "end": 2151.5, + "probability": 0.9446 + }, + { + "start": 2151.5, + "end": 2157.12, + "probability": 0.9771 + }, + { + "start": 2157.58, + "end": 2159.78, + "probability": 0.9956 + }, + { + "start": 2159.78, + "end": 2163.06, + "probability": 0.9993 + }, + { + "start": 2163.12, + "end": 2168.8, + "probability": 0.9973 + }, + { + "start": 2169.96, + "end": 2174.2, + "probability": 0.9388 + }, + { + "start": 2174.8, + "end": 2176.76, + "probability": 0.9757 + }, + { + "start": 2176.98, + "end": 2178.66, + "probability": 0.9554 + }, + { + "start": 2178.8, + "end": 2180.26, + "probability": 0.9631 + }, + { + "start": 2180.96, + "end": 2184.26, + "probability": 0.982 + }, + { + "start": 2184.56, + "end": 2187.8, + "probability": 0.8315 + }, + { + "start": 2187.8, + "end": 2191.54, + "probability": 0.8435 + }, + { + "start": 2193.02, + "end": 2193.68, + "probability": 0.8569 + }, + { + "start": 2193.84, + "end": 2197.5, + "probability": 0.9967 + }, + { + "start": 2197.52, + "end": 2202.74, + "probability": 0.9447 + }, + { + "start": 2202.84, + "end": 2203.18, + "probability": 0.8332 + }, + { + "start": 2203.36, + "end": 2203.58, + "probability": 0.9552 + }, + { + "start": 2203.7, + "end": 2207.46, + "probability": 0.996 + }, + { + "start": 2207.66, + "end": 2210.74, + "probability": 0.9971 + }, + { + "start": 2210.74, + "end": 2214.4, + "probability": 0.9971 + }, + { + "start": 2214.88, + "end": 2220.22, + "probability": 0.9571 + }, + { + "start": 2220.32, + "end": 2221.46, + "probability": 0.8088 + }, + { + "start": 2221.5, + "end": 2224.32, + "probability": 0.9964 + }, + { + "start": 2224.82, + "end": 2227.84, + "probability": 0.9969 + }, + { + "start": 2228.26, + "end": 2230.94, + "probability": 0.9979 + }, + { + "start": 2231.06, + "end": 2233.36, + "probability": 0.9709 + }, + { + "start": 2233.46, + "end": 2235.46, + "probability": 0.9928 + }, + { + "start": 2235.66, + "end": 2241.32, + "probability": 0.9849 + }, + { + "start": 2241.32, + "end": 2245.76, + "probability": 0.9957 + }, + { + "start": 2247.46, + "end": 2248.86, + "probability": 0.7549 + }, + { + "start": 2248.96, + "end": 2253.02, + "probability": 0.993 + }, + { + "start": 2254.52, + "end": 2260.86, + "probability": 0.9916 + }, + { + "start": 2260.9, + "end": 2266.92, + "probability": 0.9805 + }, + { + "start": 2267.16, + "end": 2270.66, + "probability": 0.9969 + }, + { + "start": 2270.74, + "end": 2277.82, + "probability": 0.9215 + }, + { + "start": 2277.92, + "end": 2279.58, + "probability": 0.9728 + }, + { + "start": 2280.66, + "end": 2283.28, + "probability": 0.9922 + }, + { + "start": 2283.92, + "end": 2291.22, + "probability": 0.9941 + }, + { + "start": 2291.94, + "end": 2293.74, + "probability": 0.9686 + }, + { + "start": 2293.84, + "end": 2294.84, + "probability": 0.9941 + }, + { + "start": 2294.96, + "end": 2296.26, + "probability": 0.9755 + }, + { + "start": 2297.22, + "end": 2298.44, + "probability": 0.4122 + }, + { + "start": 2298.62, + "end": 2304.14, + "probability": 0.984 + }, + { + "start": 2304.14, + "end": 2311.01, + "probability": 0.9928 + }, + { + "start": 2312.22, + "end": 2313.66, + "probability": 0.9859 + }, + { + "start": 2313.88, + "end": 2314.88, + "probability": 0.8839 + }, + { + "start": 2314.99, + "end": 2319.26, + "probability": 0.962 + }, + { + "start": 2319.84, + "end": 2324.26, + "probability": 0.9993 + }, + { + "start": 2324.26, + "end": 2329.21, + "probability": 0.9946 + }, + { + "start": 2330.14, + "end": 2332.11, + "probability": 0.5797 + }, + { + "start": 2332.3, + "end": 2336.5, + "probability": 0.9956 + }, + { + "start": 2336.58, + "end": 2337.1, + "probability": 0.7595 + }, + { + "start": 2337.22, + "end": 2338.7, + "probability": 0.6942 + }, + { + "start": 2339.28, + "end": 2342.16, + "probability": 0.9979 + }, + { + "start": 2342.32, + "end": 2347.36, + "probability": 0.9952 + }, + { + "start": 2347.66, + "end": 2348.14, + "probability": 0.9095 + }, + { + "start": 2348.54, + "end": 2349.62, + "probability": 0.7729 + }, + { + "start": 2349.64, + "end": 2352.88, + "probability": 0.8987 + }, + { + "start": 2369.14, + "end": 2370.45, + "probability": 0.7495 + }, + { + "start": 2371.36, + "end": 2372.42, + "probability": 0.649 + }, + { + "start": 2372.46, + "end": 2373.5, + "probability": 0.5988 + }, + { + "start": 2374.12, + "end": 2377.78, + "probability": 0.9808 + }, + { + "start": 2377.84, + "end": 2379.16, + "probability": 0.9894 + }, + { + "start": 2380.4, + "end": 2380.94, + "probability": 0.4485 + }, + { + "start": 2381.52, + "end": 2385.8, + "probability": 0.9976 + }, + { + "start": 2386.38, + "end": 2387.9, + "probability": 0.7201 + }, + { + "start": 2388.48, + "end": 2390.86, + "probability": 0.9956 + }, + { + "start": 2392.22, + "end": 2395.3, + "probability": 0.9675 + }, + { + "start": 2395.54, + "end": 2402.66, + "probability": 0.8944 + }, + { + "start": 2403.44, + "end": 2405.34, + "probability": 0.9614 + }, + { + "start": 2405.46, + "end": 2407.24, + "probability": 0.9878 + }, + { + "start": 2407.96, + "end": 2410.52, + "probability": 0.8667 + }, + { + "start": 2411.22, + "end": 2411.66, + "probability": 0.9165 + }, + { + "start": 2411.76, + "end": 2415.74, + "probability": 0.9905 + }, + { + "start": 2416.3, + "end": 2420.48, + "probability": 0.9839 + }, + { + "start": 2420.82, + "end": 2422.08, + "probability": 0.9733 + }, + { + "start": 2422.96, + "end": 2427.88, + "probability": 0.8954 + }, + { + "start": 2428.92, + "end": 2429.58, + "probability": 0.9121 + }, + { + "start": 2429.98, + "end": 2433.94, + "probability": 0.9951 + }, + { + "start": 2433.94, + "end": 2438.56, + "probability": 0.9477 + }, + { + "start": 2439.18, + "end": 2439.46, + "probability": 0.7552 + }, + { + "start": 2439.92, + "end": 2440.66, + "probability": 0.7701 + }, + { + "start": 2440.78, + "end": 2446.2, + "probability": 0.7964 + }, + { + "start": 2446.38, + "end": 2450.7, + "probability": 0.9824 + }, + { + "start": 2451.7, + "end": 2456.9, + "probability": 0.9838 + }, + { + "start": 2457.08, + "end": 2460.8, + "probability": 0.9766 + }, + { + "start": 2461.44, + "end": 2462.9, + "probability": 0.8153 + }, + { + "start": 2468.38, + "end": 2471.02, + "probability": 0.4979 + }, + { + "start": 2472.8, + "end": 2478.22, + "probability": 0.9927 + }, + { + "start": 2479.08, + "end": 2481.46, + "probability": 0.8477 + }, + { + "start": 2481.74, + "end": 2485.48, + "probability": 0.8634 + }, + { + "start": 2485.8, + "end": 2487.86, + "probability": 0.8961 + }, + { + "start": 2490.22, + "end": 2493.3, + "probability": 0.98 + }, + { + "start": 2493.66, + "end": 2498.25, + "probability": 0.9894 + }, + { + "start": 2499.98, + "end": 2502.58, + "probability": 0.8698 + }, + { + "start": 2502.96, + "end": 2505.52, + "probability": 0.9758 + }, + { + "start": 2506.14, + "end": 2509.02, + "probability": 0.9977 + }, + { + "start": 2509.8, + "end": 2513.5, + "probability": 0.9912 + }, + { + "start": 2513.58, + "end": 2515.62, + "probability": 0.9979 + }, + { + "start": 2515.68, + "end": 2516.72, + "probability": 0.915 + }, + { + "start": 2517.32, + "end": 2521.16, + "probability": 0.9963 + }, + { + "start": 2522.04, + "end": 2527.06, + "probability": 0.9731 + }, + { + "start": 2527.3, + "end": 2528.8, + "probability": 0.9697 + }, + { + "start": 2529.12, + "end": 2530.22, + "probability": 0.5199 + }, + { + "start": 2530.64, + "end": 2531.76, + "probability": 0.9171 + }, + { + "start": 2532.06, + "end": 2535.62, + "probability": 0.9834 + }, + { + "start": 2535.7, + "end": 2536.28, + "probability": 0.9256 + }, + { + "start": 2536.74, + "end": 2537.1, + "probability": 0.7521 + }, + { + "start": 2537.16, + "end": 2540.08, + "probability": 0.9373 + }, + { + "start": 2540.74, + "end": 2542.44, + "probability": 0.8281 + }, + { + "start": 2545.3, + "end": 2546.66, + "probability": 0.9927 + }, + { + "start": 2547.36, + "end": 2547.68, + "probability": 0.456 + }, + { + "start": 2547.82, + "end": 2549.36, + "probability": 0.9906 + }, + { + "start": 2549.54, + "end": 2555.5, + "probability": 0.8377 + }, + { + "start": 2574.13, + "end": 2575.84, + "probability": 0.2421 + }, + { + "start": 2575.86, + "end": 2577.27, + "probability": 0.854 + }, + { + "start": 2578.04, + "end": 2578.66, + "probability": 0.6961 + }, + { + "start": 2579.82, + "end": 2586.1, + "probability": 0.5921 + }, + { + "start": 2588.5, + "end": 2589.72, + "probability": 0.0605 + }, + { + "start": 2589.72, + "end": 2590.66, + "probability": 0.1539 + }, + { + "start": 2595.16, + "end": 2599.68, + "probability": 0.16 + }, + { + "start": 2600.62, + "end": 2602.22, + "probability": 0.0565 + }, + { + "start": 2602.9, + "end": 2605.16, + "probability": 0.0596 + }, + { + "start": 2630.4, + "end": 2631.58, + "probability": 0.077 + }, + { + "start": 2631.88, + "end": 2632.58, + "probability": 0.0308 + }, + { + "start": 2632.58, + "end": 2635.04, + "probability": 0.0152 + }, + { + "start": 2638.28, + "end": 2638.62, + "probability": 0.0788 + }, + { + "start": 2646.16, + "end": 2647.24, + "probability": 0.0131 + }, + { + "start": 2674.0, + "end": 2674.0, + "probability": 0.0 + }, + { + "start": 2674.0, + "end": 2674.0, + "probability": 0.0 + }, + { + "start": 2674.0, + "end": 2674.0, + "probability": 0.0 + }, + { + "start": 2674.0, + "end": 2674.0, + "probability": 0.0 + }, + { + "start": 2674.0, + "end": 2674.0, + "probability": 0.0 + }, + { + "start": 2674.0, + "end": 2674.0, + "probability": 0.0 + }, + { + "start": 2674.0, + "end": 2674.0, + "probability": 0.0 + }, + { + "start": 2674.0, + "end": 2674.0, + "probability": 0.0 + }, + { + "start": 2674.0, + "end": 2674.0, + "probability": 0.0 + }, + { + "start": 2674.0, + "end": 2674.0, + "probability": 0.0 + }, + { + "start": 2674.0, + "end": 2674.0, + "probability": 0.0 + }, + { + "start": 2674.0, + "end": 2674.0, + "probability": 0.0 + }, + { + "start": 2674.0, + "end": 2674.0, + "probability": 0.0 + }, + { + "start": 2674.0, + "end": 2674.0, + "probability": 0.0 + }, + { + "start": 2674.0, + "end": 2674.0, + "probability": 0.0 + }, + { + "start": 2674.22, + "end": 2678.3, + "probability": 0.2611 + }, + { + "start": 2678.52, + "end": 2685.0, + "probability": 0.9922 + }, + { + "start": 2686.04, + "end": 2693.04, + "probability": 0.9899 + }, + { + "start": 2693.98, + "end": 2702.56, + "probability": 0.9958 + }, + { + "start": 2703.32, + "end": 2710.98, + "probability": 0.9926 + }, + { + "start": 2712.48, + "end": 2713.4, + "probability": 0.8543 + }, + { + "start": 2713.88, + "end": 2720.46, + "probability": 0.9912 + }, + { + "start": 2721.12, + "end": 2729.16, + "probability": 0.9948 + }, + { + "start": 2729.72, + "end": 2734.86, + "probability": 0.9961 + }, + { + "start": 2735.24, + "end": 2740.68, + "probability": 0.9938 + }, + { + "start": 2741.36, + "end": 2742.1, + "probability": 0.7024 + }, + { + "start": 2742.82, + "end": 2748.44, + "probability": 0.9527 + }, + { + "start": 2748.92, + "end": 2752.86, + "probability": 0.9905 + }, + { + "start": 2753.42, + "end": 2756.4, + "probability": 0.9879 + }, + { + "start": 2757.1, + "end": 2757.68, + "probability": 0.9792 + }, + { + "start": 2758.38, + "end": 2767.1, + "probability": 0.9938 + }, + { + "start": 2767.98, + "end": 2769.46, + "probability": 0.74 + }, + { + "start": 2770.04, + "end": 2776.0, + "probability": 0.9979 + }, + { + "start": 2776.66, + "end": 2784.56, + "probability": 0.8743 + }, + { + "start": 2785.08, + "end": 2789.98, + "probability": 0.9957 + }, + { + "start": 2789.98, + "end": 2794.82, + "probability": 0.9972 + }, + { + "start": 2796.36, + "end": 2797.06, + "probability": 0.6756 + }, + { + "start": 2797.66, + "end": 2801.58, + "probability": 0.9753 + }, + { + "start": 2802.12, + "end": 2805.4, + "probability": 0.9988 + }, + { + "start": 2805.4, + "end": 2805.56, + "probability": 0.8069 + }, + { + "start": 2805.64, + "end": 2807.0, + "probability": 0.8863 + }, + { + "start": 2807.44, + "end": 2807.46, + "probability": 0.6742 + }, + { + "start": 2808.5, + "end": 2810.24, + "probability": 0.7205 + }, + { + "start": 2821.06, + "end": 2822.1, + "probability": 0.5391 + }, + { + "start": 2822.62, + "end": 2823.38, + "probability": 0.7492 + }, + { + "start": 2824.58, + "end": 2826.42, + "probability": 0.8738 + }, + { + "start": 2826.9, + "end": 2830.1, + "probability": 0.8171 + }, + { + "start": 2830.9, + "end": 2832.18, + "probability": 0.5321 + }, + { + "start": 2832.82, + "end": 2836.6, + "probability": 0.9613 + }, + { + "start": 2837.12, + "end": 2838.86, + "probability": 0.9884 + }, + { + "start": 2839.66, + "end": 2841.5, + "probability": 0.9763 + }, + { + "start": 2843.84, + "end": 2844.68, + "probability": 0.7084 + }, + { + "start": 2845.28, + "end": 2850.48, + "probability": 0.9946 + }, + { + "start": 2850.48, + "end": 2856.96, + "probability": 0.9946 + }, + { + "start": 2857.86, + "end": 2858.9, + "probability": 0.8497 + }, + { + "start": 2859.5, + "end": 2862.26, + "probability": 0.8406 + }, + { + "start": 2863.4, + "end": 2870.02, + "probability": 0.9868 + }, + { + "start": 2871.08, + "end": 2877.98, + "probability": 0.9201 + }, + { + "start": 2878.76, + "end": 2880.52, + "probability": 0.9922 + }, + { + "start": 2881.2, + "end": 2883.42, + "probability": 0.9925 + }, + { + "start": 2884.16, + "end": 2885.68, + "probability": 0.9985 + }, + { + "start": 2886.2, + "end": 2891.84, + "probability": 0.9863 + }, + { + "start": 2894.02, + "end": 2897.46, + "probability": 0.6692 + }, + { + "start": 2898.34, + "end": 2899.78, + "probability": 0.9723 + }, + { + "start": 2900.44, + "end": 2902.08, + "probability": 0.9548 + }, + { + "start": 2902.6, + "end": 2903.04, + "probability": 0.9026 + }, + { + "start": 2903.56, + "end": 2904.82, + "probability": 0.5071 + }, + { + "start": 2905.0, + "end": 2905.94, + "probability": 0.7346 + }, + { + "start": 2906.5, + "end": 2912.18, + "probability": 0.9948 + }, + { + "start": 2913.42, + "end": 2914.32, + "probability": 0.9201 + }, + { + "start": 2915.4, + "end": 2916.36, + "probability": 0.7295 + }, + { + "start": 2917.04, + "end": 2922.12, + "probability": 0.9897 + }, + { + "start": 2922.9, + "end": 2927.14, + "probability": 0.9966 + }, + { + "start": 2927.78, + "end": 2928.86, + "probability": 0.7473 + }, + { + "start": 2929.38, + "end": 2935.48, + "probability": 0.9767 + }, + { + "start": 2936.72, + "end": 2937.66, + "probability": 0.9702 + }, + { + "start": 2938.38, + "end": 2940.28, + "probability": 0.829 + }, + { + "start": 2941.34, + "end": 2944.84, + "probability": 0.9958 + }, + { + "start": 2945.66, + "end": 2947.76, + "probability": 0.9547 + }, + { + "start": 2948.28, + "end": 2950.0, + "probability": 0.9849 + }, + { + "start": 2950.78, + "end": 2952.52, + "probability": 0.9984 + }, + { + "start": 2953.94, + "end": 2957.88, + "probability": 0.9915 + }, + { + "start": 2959.4, + "end": 2960.52, + "probability": 0.8108 + }, + { + "start": 2961.46, + "end": 2965.7, + "probability": 0.9985 + }, + { + "start": 2966.22, + "end": 2968.04, + "probability": 0.9993 + }, + { + "start": 2968.64, + "end": 2969.74, + "probability": 0.9143 + }, + { + "start": 2970.3, + "end": 2975.68, + "probability": 0.9455 + }, + { + "start": 2977.16, + "end": 2982.32, + "probability": 0.9707 + }, + { + "start": 2982.86, + "end": 2984.04, + "probability": 0.9979 + }, + { + "start": 2984.86, + "end": 2989.54, + "probability": 0.998 + }, + { + "start": 2990.58, + "end": 2992.12, + "probability": 0.9686 + }, + { + "start": 2992.78, + "end": 2993.78, + "probability": 0.9993 + }, + { + "start": 2994.92, + "end": 2998.1, + "probability": 0.5187 + }, + { + "start": 2999.36, + "end": 3004.22, + "probability": 0.7581 + }, + { + "start": 3004.74, + "end": 3006.12, + "probability": 0.6756 + }, + { + "start": 3006.6, + "end": 3008.64, + "probability": 0.8718 + }, + { + "start": 3008.88, + "end": 3009.82, + "probability": 0.868 + }, + { + "start": 3010.66, + "end": 3012.28, + "probability": 0.9659 + }, + { + "start": 3012.8, + "end": 3014.9, + "probability": 0.9985 + }, + { + "start": 3016.52, + "end": 3019.46, + "probability": 0.924 + }, + { + "start": 3020.43, + "end": 3022.34, + "probability": 0.8182 + }, + { + "start": 3022.34, + "end": 3031.68, + "probability": 0.9602 + }, + { + "start": 3032.2, + "end": 3034.34, + "probability": 0.9946 + }, + { + "start": 3034.94, + "end": 3035.7, + "probability": 0.6638 + }, + { + "start": 3036.42, + "end": 3040.12, + "probability": 0.9395 + }, + { + "start": 3040.96, + "end": 3043.06, + "probability": 0.9374 + }, + { + "start": 3043.58, + "end": 3045.24, + "probability": 0.9956 + }, + { + "start": 3045.76, + "end": 3048.0, + "probability": 0.6896 + }, + { + "start": 3049.06, + "end": 3050.12, + "probability": 0.9448 + }, + { + "start": 3051.2, + "end": 3052.1, + "probability": 0.6002 + }, + { + "start": 3052.72, + "end": 3054.5, + "probability": 0.9845 + }, + { + "start": 3055.12, + "end": 3058.84, + "probability": 0.9658 + }, + { + "start": 3059.5, + "end": 3063.04, + "probability": 0.9744 + }, + { + "start": 3063.04, + "end": 3067.54, + "probability": 0.9951 + }, + { + "start": 3068.68, + "end": 3069.76, + "probability": 0.9996 + }, + { + "start": 3070.28, + "end": 3071.96, + "probability": 0.986 + }, + { + "start": 3072.68, + "end": 3077.12, + "probability": 0.9937 + }, + { + "start": 3077.26, + "end": 3081.58, + "probability": 0.9702 + }, + { + "start": 3082.02, + "end": 3083.04, + "probability": 0.9854 + }, + { + "start": 3085.5, + "end": 3088.12, + "probability": 0.6706 + }, + { + "start": 3088.56, + "end": 3091.0, + "probability": 0.8132 + }, + { + "start": 3091.86, + "end": 3095.84, + "probability": 0.9176 + }, + { + "start": 3096.34, + "end": 3099.44, + "probability": 0.998 + }, + { + "start": 3099.96, + "end": 3101.68, + "probability": 0.7192 + }, + { + "start": 3102.16, + "end": 3104.2, + "probability": 0.989 + }, + { + "start": 3104.34, + "end": 3107.06, + "probability": 0.7091 + }, + { + "start": 3107.12, + "end": 3109.66, + "probability": 0.9902 + }, + { + "start": 3109.74, + "end": 3111.48, + "probability": 0.9961 + }, + { + "start": 3112.3, + "end": 3114.38, + "probability": 0.9246 + }, + { + "start": 3122.84, + "end": 3125.72, + "probability": 0.9265 + }, + { + "start": 3125.72, + "end": 3129.2, + "probability": 0.7251 + }, + { + "start": 3129.62, + "end": 3130.3, + "probability": 0.8385 + }, + { + "start": 3130.4, + "end": 3131.4, + "probability": 0.5704 + }, + { + "start": 3131.95, + "end": 3136.04, + "probability": 0.9977 + }, + { + "start": 3136.04, + "end": 3140.04, + "probability": 0.6957 + }, + { + "start": 3140.5, + "end": 3141.3, + "probability": 0.5226 + }, + { + "start": 3142.18, + "end": 3144.64, + "probability": 0.7769 + }, + { + "start": 3145.08, + "end": 3150.22, + "probability": 0.9341 + }, + { + "start": 3151.24, + "end": 3154.5, + "probability": 0.9951 + }, + { + "start": 3155.0, + "end": 3155.84, + "probability": 0.9639 + }, + { + "start": 3156.0, + "end": 3158.78, + "probability": 0.958 + }, + { + "start": 3159.16, + "end": 3160.24, + "probability": 0.8396 + }, + { + "start": 3160.3, + "end": 3161.8, + "probability": 0.9928 + }, + { + "start": 3162.84, + "end": 3167.82, + "probability": 0.999 + }, + { + "start": 3169.24, + "end": 3174.3, + "probability": 0.7356 + }, + { + "start": 3175.48, + "end": 3178.22, + "probability": 0.8681 + }, + { + "start": 3179.06, + "end": 3182.36, + "probability": 0.9914 + }, + { + "start": 3182.56, + "end": 3184.04, + "probability": 0.998 + }, + { + "start": 3184.24, + "end": 3187.29, + "probability": 0.9001 + }, + { + "start": 3188.1, + "end": 3188.52, + "probability": 0.4581 + }, + { + "start": 3189.18, + "end": 3192.41, + "probability": 0.993 + }, + { + "start": 3194.22, + "end": 3197.46, + "probability": 0.6649 + }, + { + "start": 3197.64, + "end": 3201.16, + "probability": 0.7168 + }, + { + "start": 3201.16, + "end": 3203.16, + "probability": 0.925 + }, + { + "start": 3203.62, + "end": 3211.26, + "probability": 0.8169 + }, + { + "start": 3211.5, + "end": 3212.56, + "probability": 0.8253 + }, + { + "start": 3212.98, + "end": 3215.14, + "probability": 0.673 + }, + { + "start": 3215.52, + "end": 3216.44, + "probability": 0.4037 + }, + { + "start": 3217.02, + "end": 3217.5, + "probability": 0.9484 + }, + { + "start": 3217.58, + "end": 3222.14, + "probability": 0.9795 + }, + { + "start": 3222.96, + "end": 3226.46, + "probability": 0.9926 + }, + { + "start": 3227.1, + "end": 3229.08, + "probability": 0.9099 + }, + { + "start": 3229.9, + "end": 3233.18, + "probability": 0.913 + }, + { + "start": 3233.76, + "end": 3234.8, + "probability": 0.9688 + }, + { + "start": 3235.14, + "end": 3236.32, + "probability": 0.8477 + }, + { + "start": 3236.66, + "end": 3239.0, + "probability": 0.9893 + }, + { + "start": 3239.18, + "end": 3241.58, + "probability": 0.9932 + }, + { + "start": 3242.14, + "end": 3242.98, + "probability": 0.7692 + }, + { + "start": 3243.48, + "end": 3247.86, + "probability": 0.9811 + }, + { + "start": 3247.94, + "end": 3250.14, + "probability": 0.9878 + }, + { + "start": 3250.36, + "end": 3251.82, + "probability": 0.9095 + }, + { + "start": 3252.28, + "end": 3253.7, + "probability": 0.9569 + }, + { + "start": 3254.12, + "end": 3254.7, + "probability": 0.8168 + }, + { + "start": 3254.8, + "end": 3256.98, + "probability": 0.9974 + }, + { + "start": 3257.42, + "end": 3259.85, + "probability": 0.9928 + }, + { + "start": 3260.86, + "end": 3264.26, + "probability": 0.9818 + }, + { + "start": 3264.62, + "end": 3269.3, + "probability": 0.9109 + }, + { + "start": 3269.44, + "end": 3274.48, + "probability": 0.9075 + }, + { + "start": 3274.86, + "end": 3278.26, + "probability": 0.9941 + }, + { + "start": 3279.36, + "end": 3279.58, + "probability": 0.5235 + }, + { + "start": 3279.6, + "end": 3282.28, + "probability": 0.9641 + }, + { + "start": 3282.62, + "end": 3287.3, + "probability": 0.9917 + }, + { + "start": 3287.38, + "end": 3291.82, + "probability": 0.9883 + }, + { + "start": 3292.42, + "end": 3294.34, + "probability": 0.9716 + }, + { + "start": 3294.74, + "end": 3298.3, + "probability": 0.9776 + }, + { + "start": 3298.8, + "end": 3300.78, + "probability": 0.9773 + }, + { + "start": 3302.5, + "end": 3303.76, + "probability": 0.8542 + }, + { + "start": 3303.8, + "end": 3305.74, + "probability": 0.8982 + }, + { + "start": 3305.8, + "end": 3308.48, + "probability": 0.7541 + }, + { + "start": 3308.64, + "end": 3310.96, + "probability": 0.9862 + }, + { + "start": 3314.18, + "end": 3315.1, + "probability": 0.9624 + }, + { + "start": 3315.58, + "end": 3319.42, + "probability": 0.7688 + }, + { + "start": 3319.52, + "end": 3320.5, + "probability": 0.9166 + }, + { + "start": 3321.22, + "end": 3324.72, + "probability": 0.6262 + }, + { + "start": 3325.26, + "end": 3329.64, + "probability": 0.9921 + }, + { + "start": 3330.02, + "end": 3331.54, + "probability": 0.7544 + }, + { + "start": 3331.6, + "end": 3331.98, + "probability": 0.6795 + }, + { + "start": 3332.9, + "end": 3334.76, + "probability": 0.984 + }, + { + "start": 3334.88, + "end": 3337.22, + "probability": 0.9906 + }, + { + "start": 3337.22, + "end": 3341.42, + "probability": 0.9914 + }, + { + "start": 3343.1, + "end": 3343.66, + "probability": 0.9023 + }, + { + "start": 3350.56, + "end": 3351.62, + "probability": 0.7302 + }, + { + "start": 3356.08, + "end": 3356.72, + "probability": 0.6967 + }, + { + "start": 3357.3, + "end": 3358.18, + "probability": 0.5907 + }, + { + "start": 3358.18, + "end": 3359.42, + "probability": 0.5778 + }, + { + "start": 3360.12, + "end": 3364.26, + "probability": 0.9578 + }, + { + "start": 3364.26, + "end": 3369.6, + "probability": 0.9969 + }, + { + "start": 3370.86, + "end": 3375.34, + "probability": 0.9899 + }, + { + "start": 3375.34, + "end": 3378.1, + "probability": 0.9785 + }, + { + "start": 3379.1, + "end": 3382.04, + "probability": 0.3224 + }, + { + "start": 3382.4, + "end": 3385.34, + "probability": 0.9606 + }, + { + "start": 3385.42, + "end": 3388.4, + "probability": 0.9897 + }, + { + "start": 3389.06, + "end": 3393.56, + "probability": 0.9127 + }, + { + "start": 3394.14, + "end": 3397.5, + "probability": 0.9845 + }, + { + "start": 3399.04, + "end": 3404.34, + "probability": 0.9888 + }, + { + "start": 3404.34, + "end": 3407.16, + "probability": 0.9857 + }, + { + "start": 3407.3, + "end": 3408.94, + "probability": 0.7022 + }, + { + "start": 3409.48, + "end": 3412.0, + "probability": 0.971 + }, + { + "start": 3412.12, + "end": 3412.86, + "probability": 0.4525 + }, + { + "start": 3413.04, + "end": 3415.56, + "probability": 0.9913 + }, + { + "start": 3415.58, + "end": 3416.26, + "probability": 0.6943 + }, + { + "start": 3416.76, + "end": 3419.74, + "probability": 0.9894 + }, + { + "start": 3419.78, + "end": 3426.7, + "probability": 0.9574 + }, + { + "start": 3426.9, + "end": 3427.64, + "probability": 0.2863 + }, + { + "start": 3427.91, + "end": 3432.32, + "probability": 0.9985 + }, + { + "start": 3432.6, + "end": 3434.5, + "probability": 0.6646 + }, + { + "start": 3434.58, + "end": 3437.68, + "probability": 0.9642 + }, + { + "start": 3437.78, + "end": 3442.94, + "probability": 0.98 + }, + { + "start": 3443.9, + "end": 3449.28, + "probability": 0.9912 + }, + { + "start": 3451.6, + "end": 3456.72, + "probability": 0.9859 + }, + { + "start": 3456.78, + "end": 3460.44, + "probability": 0.59 + }, + { + "start": 3460.44, + "end": 3463.28, + "probability": 0.9768 + }, + { + "start": 3463.86, + "end": 3466.68, + "probability": 0.9252 + }, + { + "start": 3466.94, + "end": 3468.92, + "probability": 0.9927 + }, + { + "start": 3469.12, + "end": 3469.3, + "probability": 0.6619 + }, + { + "start": 3469.46, + "end": 3469.74, + "probability": 0.4892 + }, + { + "start": 3469.76, + "end": 3470.66, + "probability": 0.8292 + }, + { + "start": 3472.28, + "end": 3474.28, + "probability": 0.9846 + }, + { + "start": 3474.44, + "end": 3475.1, + "probability": 0.6145 + }, + { + "start": 3475.24, + "end": 3479.26, + "probability": 0.9874 + }, + { + "start": 3480.57, + "end": 3487.08, + "probability": 0.9878 + }, + { + "start": 3487.94, + "end": 3492.72, + "probability": 0.9921 + }, + { + "start": 3492.72, + "end": 3495.62, + "probability": 0.9976 + }, + { + "start": 3495.86, + "end": 3500.66, + "probability": 0.9976 + }, + { + "start": 3500.66, + "end": 3505.36, + "probability": 0.957 + }, + { + "start": 3505.98, + "end": 3507.04, + "probability": 0.7079 + }, + { + "start": 3507.32, + "end": 3512.46, + "probability": 0.9487 + }, + { + "start": 3515.06, + "end": 3516.8, + "probability": 0.9692 + }, + { + "start": 3517.68, + "end": 3520.74, + "probability": 0.9963 + }, + { + "start": 3521.54, + "end": 3524.98, + "probability": 0.9465 + }, + { + "start": 3525.18, + "end": 3526.02, + "probability": 0.5673 + }, + { + "start": 3526.24, + "end": 3533.1, + "probability": 0.7301 + }, + { + "start": 3534.06, + "end": 3535.7, + "probability": 0.4175 + }, + { + "start": 3536.0, + "end": 3538.68, + "probability": 0.9186 + }, + { + "start": 3538.74, + "end": 3541.28, + "probability": 0.8498 + }, + { + "start": 3541.44, + "end": 3543.3, + "probability": 0.9991 + }, + { + "start": 3543.86, + "end": 3549.5, + "probability": 0.9934 + }, + { + "start": 3549.5, + "end": 3553.66, + "probability": 0.9883 + }, + { + "start": 3553.86, + "end": 3558.04, + "probability": 0.9972 + }, + { + "start": 3560.51, + "end": 3560.86, + "probability": 0.6327 + }, + { + "start": 3560.98, + "end": 3563.88, + "probability": 0.9758 + }, + { + "start": 3564.36, + "end": 3567.22, + "probability": 0.9573 + }, + { + "start": 3567.26, + "end": 3567.58, + "probability": 0.7744 + }, + { + "start": 3568.18, + "end": 3571.68, + "probability": 0.9753 + }, + { + "start": 3571.8, + "end": 3574.32, + "probability": 0.9783 + }, + { + "start": 3575.12, + "end": 3576.38, + "probability": 0.7251 + }, + { + "start": 3576.46, + "end": 3577.64, + "probability": 0.7513 + }, + { + "start": 3579.56, + "end": 3584.4, + "probability": 0.9383 + }, + { + "start": 3584.82, + "end": 3586.46, + "probability": 0.8891 + }, + { + "start": 3586.64, + "end": 3588.4, + "probability": 0.3662 + }, + { + "start": 3589.3, + "end": 3591.14, + "probability": 0.9453 + }, + { + "start": 3591.92, + "end": 3592.76, + "probability": 0.8256 + }, + { + "start": 3595.86, + "end": 3598.08, + "probability": 0.2464 + }, + { + "start": 3608.3, + "end": 3612.18, + "probability": 0.6953 + }, + { + "start": 3612.28, + "end": 3613.58, + "probability": 0.7452 + }, + { + "start": 3613.8, + "end": 3614.26, + "probability": 0.5347 + }, + { + "start": 3616.04, + "end": 3622.62, + "probability": 0.0568 + }, + { + "start": 3622.62, + "end": 3622.78, + "probability": 0.0823 + }, + { + "start": 3625.28, + "end": 3631.02, + "probability": 0.2309 + }, + { + "start": 3631.74, + "end": 3634.23, + "probability": 0.0717 + }, + { + "start": 3651.14, + "end": 3652.82, + "probability": 0.4261 + }, + { + "start": 3652.84, + "end": 3654.44, + "probability": 0.2621 + }, + { + "start": 3654.8, + "end": 3656.28, + "probability": 0.6406 + }, + { + "start": 3656.78, + "end": 3658.84, + "probability": 0.1176 + }, + { + "start": 3659.44, + "end": 3659.75, + "probability": 0.1269 + }, + { + "start": 3660.56, + "end": 3666.12, + "probability": 0.0368 + }, + { + "start": 3669.08, + "end": 3670.08, + "probability": 0.0076 + }, + { + "start": 3675.06, + "end": 3679.78, + "probability": 0.3102 + }, + { + "start": 3679.9, + "end": 3680.16, + "probability": 0.3179 + }, + { + "start": 3680.4, + "end": 3682.8, + "probability": 0.2192 + }, + { + "start": 3682.8, + "end": 3682.96, + "probability": 0.3189 + }, + { + "start": 3714.0, + "end": 3714.0, + "probability": 0.0 + }, + { + "start": 3714.0, + "end": 3714.0, + "probability": 0.0 + }, + { + "start": 3714.0, + "end": 3714.0, + "probability": 0.0 + }, + { + "start": 3714.0, + "end": 3714.0, + "probability": 0.0 + }, + { + "start": 3714.0, + "end": 3714.0, + "probability": 0.0 + }, + { + "start": 3714.0, + "end": 3714.0, + "probability": 0.0 + }, + { + "start": 3714.0, + "end": 3714.0, + "probability": 0.0 + }, + { + "start": 3714.0, + "end": 3714.0, + "probability": 0.0 + }, + { + "start": 3714.0, + "end": 3714.0, + "probability": 0.0 + }, + { + "start": 3714.0, + "end": 3714.0, + "probability": 0.0 + }, + { + "start": 3714.0, + "end": 3714.0, + "probability": 0.0 + }, + { + "start": 3714.0, + "end": 3714.0, + "probability": 0.0 + }, + { + "start": 3714.0, + "end": 3714.0, + "probability": 0.0 + }, + { + "start": 3714.0, + "end": 3714.0, + "probability": 0.0 + }, + { + "start": 3714.0, + "end": 3714.0, + "probability": 0.0 + }, + { + "start": 3714.0, + "end": 3714.0, + "probability": 0.0 + }, + { + "start": 3714.0, + "end": 3714.0, + "probability": 0.0 + }, + { + "start": 3714.0, + "end": 3714.0, + "probability": 0.0 + }, + { + "start": 3714.0, + "end": 3714.0, + "probability": 0.0 + }, + { + "start": 3727.48, + "end": 3728.12, + "probability": 0.1958 + }, + { + "start": 3736.14, + "end": 3742.32, + "probability": 0.0311 + }, + { + "start": 3742.32, + "end": 3742.32, + "probability": 0.118 + }, + { + "start": 3745.2, + "end": 3749.76, + "probability": 0.0772 + }, + { + "start": 3835.0, + "end": 3835.0, + "probability": 0.0 + }, + { + "start": 3835.0, + "end": 3835.0, + "probability": 0.0 + }, + { + "start": 3835.0, + "end": 3835.0, + "probability": 0.0 + }, + { + "start": 3835.0, + "end": 3835.0, + "probability": 0.0 + }, + { + "start": 3835.0, + "end": 3835.0, + "probability": 0.0 + }, + { + "start": 3835.0, + "end": 3835.0, + "probability": 0.0 + }, + { + "start": 3835.0, + "end": 3835.0, + "probability": 0.0 + }, + { + "start": 3835.0, + "end": 3835.0, + "probability": 0.0 + }, + { + "start": 3835.0, + "end": 3835.0, + "probability": 0.0 + }, + { + "start": 3835.0, + "end": 3835.0, + "probability": 0.0 + }, + { + "start": 3835.0, + "end": 3835.0, + "probability": 0.0 + }, + { + "start": 3835.0, + "end": 3835.0, + "probability": 0.0 + }, + { + "start": 3835.0, + "end": 3835.0, + "probability": 0.0 + }, + { + "start": 3835.0, + "end": 3835.0, + "probability": 0.0 + }, + { + "start": 3835.0, + "end": 3835.0, + "probability": 0.0 + }, + { + "start": 3835.0, + "end": 3835.0, + "probability": 0.0 + }, + { + "start": 3835.0, + "end": 3835.0, + "probability": 0.0 + }, + { + "start": 3835.0, + "end": 3835.0, + "probability": 0.0 + }, + { + "start": 3835.0, + "end": 3835.0, + "probability": 0.0 + }, + { + "start": 3835.0, + "end": 3835.0, + "probability": 0.0 + }, + { + "start": 3835.0, + "end": 3835.0, + "probability": 0.0 + }, + { + "start": 3835.0, + "end": 3835.0, + "probability": 0.0 + }, + { + "start": 3835.0, + "end": 3835.0, + "probability": 0.0 + }, + { + "start": 3835.0, + "end": 3835.0, + "probability": 0.0 + }, + { + "start": 3835.0, + "end": 3835.0, + "probability": 0.0 + }, + { + "start": 3835.0, + "end": 3835.0, + "probability": 0.0 + }, + { + "start": 3835.94, + "end": 3835.94, + "probability": 0.0491 + }, + { + "start": 3835.94, + "end": 3836.78, + "probability": 0.7611 + }, + { + "start": 3837.98, + "end": 3839.64, + "probability": 0.8815 + }, + { + "start": 3840.56, + "end": 3843.72, + "probability": 0.7382 + }, + { + "start": 3845.26, + "end": 3850.76, + "probability": 0.969 + }, + { + "start": 3852.72, + "end": 3855.88, + "probability": 0.9517 + }, + { + "start": 3855.88, + "end": 3859.24, + "probability": 0.9309 + }, + { + "start": 3859.94, + "end": 3862.46, + "probability": 0.9377 + }, + { + "start": 3863.32, + "end": 3866.02, + "probability": 0.9741 + }, + { + "start": 3866.92, + "end": 3868.2, + "probability": 0.9361 + }, + { + "start": 3868.98, + "end": 3873.9, + "probability": 0.9988 + }, + { + "start": 3873.9, + "end": 3877.3, + "probability": 0.9991 + }, + { + "start": 3878.06, + "end": 3878.88, + "probability": 0.9685 + }, + { + "start": 3879.6, + "end": 3886.76, + "probability": 0.9961 + }, + { + "start": 3887.34, + "end": 3890.88, + "probability": 0.9982 + }, + { + "start": 3892.28, + "end": 3893.1, + "probability": 0.8461 + }, + { + "start": 3893.96, + "end": 3895.72, + "probability": 0.994 + }, + { + "start": 3896.42, + "end": 3899.02, + "probability": 0.9875 + }, + { + "start": 3900.14, + "end": 3900.84, + "probability": 0.9517 + }, + { + "start": 3901.8, + "end": 3902.78, + "probability": 0.9774 + }, + { + "start": 3903.4, + "end": 3908.12, + "probability": 0.9954 + }, + { + "start": 3909.16, + "end": 3913.3, + "probability": 0.9956 + }, + { + "start": 3915.38, + "end": 3921.68, + "probability": 0.9543 + }, + { + "start": 3921.68, + "end": 3926.5, + "probability": 0.9796 + }, + { + "start": 3927.58, + "end": 3930.96, + "probability": 0.924 + }, + { + "start": 3931.78, + "end": 3934.84, + "probability": 0.9948 + }, + { + "start": 3935.44, + "end": 3937.4, + "probability": 0.9781 + }, + { + "start": 3938.22, + "end": 3940.76, + "probability": 0.7724 + }, + { + "start": 3940.86, + "end": 3941.32, + "probability": 0.9005 + }, + { + "start": 3942.22, + "end": 3942.98, + "probability": 0.9604 + }, + { + "start": 3943.48, + "end": 3944.94, + "probability": 0.9812 + }, + { + "start": 3946.14, + "end": 3946.58, + "probability": 0.4941 + }, + { + "start": 3946.78, + "end": 3953.52, + "probability": 0.9921 + }, + { + "start": 3954.32, + "end": 3957.82, + "probability": 0.9919 + }, + { + "start": 3958.68, + "end": 3959.42, + "probability": 0.9218 + }, + { + "start": 3960.22, + "end": 3962.5, + "probability": 0.9973 + }, + { + "start": 3962.56, + "end": 3967.38, + "probability": 0.9946 + }, + { + "start": 3968.98, + "end": 3972.82, + "probability": 0.9629 + }, + { + "start": 3973.36, + "end": 3975.1, + "probability": 0.967 + }, + { + "start": 3976.36, + "end": 3981.68, + "probability": 0.9938 + }, + { + "start": 3983.48, + "end": 3987.1, + "probability": 0.8108 + }, + { + "start": 3987.32, + "end": 3988.1, + "probability": 0.3829 + }, + { + "start": 3988.18, + "end": 3990.9, + "probability": 0.9985 + }, + { + "start": 3991.38, + "end": 3997.82, + "probability": 0.966 + }, + { + "start": 3998.7, + "end": 4002.16, + "probability": 0.989 + }, + { + "start": 4002.36, + "end": 4006.04, + "probability": 0.96 + }, + { + "start": 4006.7, + "end": 4009.0, + "probability": 0.9277 + }, + { + "start": 4009.16, + "end": 4012.48, + "probability": 0.9982 + }, + { + "start": 4013.22, + "end": 4013.74, + "probability": 0.9587 + }, + { + "start": 4014.38, + "end": 4014.9, + "probability": 0.9022 + }, + { + "start": 4015.14, + "end": 4015.72, + "probability": 0.726 + }, + { + "start": 4015.8, + "end": 4020.22, + "probability": 0.9812 + }, + { + "start": 4021.28, + "end": 4023.5, + "probability": 0.9324 + }, + { + "start": 4023.68, + "end": 4025.84, + "probability": 0.9731 + }, + { + "start": 4035.18, + "end": 4037.54, + "probability": 0.0246 + }, + { + "start": 4041.22, + "end": 4041.38, + "probability": 0.0343 + }, + { + "start": 4041.38, + "end": 4041.38, + "probability": 0.2127 + }, + { + "start": 4041.38, + "end": 4042.3, + "probability": 0.5967 + }, + { + "start": 4043.42, + "end": 4043.72, + "probability": 0.9035 + }, + { + "start": 4044.52, + "end": 4046.94, + "probability": 0.9388 + }, + { + "start": 4048.18, + "end": 4049.82, + "probability": 0.9722 + }, + { + "start": 4051.16, + "end": 4056.66, + "probability": 0.9975 + }, + { + "start": 4056.7, + "end": 4061.6, + "probability": 0.9967 + }, + { + "start": 4062.34, + "end": 4066.48, + "probability": 0.9634 + }, + { + "start": 4067.16, + "end": 4073.38, + "probability": 0.9911 + }, + { + "start": 4075.3, + "end": 4077.68, + "probability": 0.9629 + }, + { + "start": 4078.48, + "end": 4079.76, + "probability": 0.7825 + }, + { + "start": 4081.1, + "end": 4084.02, + "probability": 0.9854 + }, + { + "start": 4085.08, + "end": 4088.6, + "probability": 0.9596 + }, + { + "start": 4088.86, + "end": 4090.08, + "probability": 0.9688 + }, + { + "start": 4090.82, + "end": 4091.96, + "probability": 0.7174 + }, + { + "start": 4092.9, + "end": 4096.66, + "probability": 0.9742 + }, + { + "start": 4097.92, + "end": 4099.14, + "probability": 0.999 + }, + { + "start": 4099.8, + "end": 4100.84, + "probability": 0.9904 + }, + { + "start": 4102.38, + "end": 4102.98, + "probability": 0.883 + }, + { + "start": 4103.66, + "end": 4108.26, + "probability": 0.9779 + }, + { + "start": 4109.52, + "end": 4112.3, + "probability": 0.9758 + }, + { + "start": 4114.22, + "end": 4114.68, + "probability": 0.3975 + }, + { + "start": 4114.8, + "end": 4118.42, + "probability": 0.9896 + }, + { + "start": 4119.22, + "end": 4122.2, + "probability": 0.9821 + }, + { + "start": 4123.04, + "end": 4124.92, + "probability": 0.9512 + }, + { + "start": 4125.0, + "end": 4125.68, + "probability": 0.7096 + }, + { + "start": 4125.7, + "end": 4126.34, + "probability": 0.9796 + }, + { + "start": 4127.66, + "end": 4128.26, + "probability": 0.9273 + }, + { + "start": 4128.88, + "end": 4132.94, + "probability": 0.9971 + }, + { + "start": 4133.46, + "end": 4134.84, + "probability": 0.7847 + }, + { + "start": 4135.64, + "end": 4138.68, + "probability": 0.9993 + }, + { + "start": 4140.58, + "end": 4141.4, + "probability": 0.7515 + }, + { + "start": 4142.16, + "end": 4144.82, + "probability": 0.9942 + }, + { + "start": 4144.92, + "end": 4145.78, + "probability": 0.8848 + }, + { + "start": 4146.52, + "end": 4147.3, + "probability": 0.6403 + }, + { + "start": 4148.02, + "end": 4151.66, + "probability": 0.9417 + }, + { + "start": 4152.28, + "end": 4154.92, + "probability": 0.9514 + }, + { + "start": 4155.84, + "end": 4156.92, + "probability": 0.7416 + }, + { + "start": 4157.68, + "end": 4158.24, + "probability": 0.8311 + }, + { + "start": 4158.92, + "end": 4161.7, + "probability": 0.9872 + }, + { + "start": 4161.7, + "end": 4166.68, + "probability": 0.9937 + }, + { + "start": 4168.36, + "end": 4168.56, + "probability": 0.3043 + }, + { + "start": 4169.34, + "end": 4172.14, + "probability": 0.9957 + }, + { + "start": 4173.02, + "end": 4173.6, + "probability": 0.9723 + }, + { + "start": 4175.36, + "end": 4176.12, + "probability": 0.5128 + }, + { + "start": 4176.84, + "end": 4180.6, + "probability": 0.991 + }, + { + "start": 4180.6, + "end": 4184.46, + "probability": 0.9973 + }, + { + "start": 4185.04, + "end": 4187.64, + "probability": 0.893 + }, + { + "start": 4188.7, + "end": 4192.04, + "probability": 0.9571 + }, + { + "start": 4192.04, + "end": 4195.64, + "probability": 0.9975 + }, + { + "start": 4197.12, + "end": 4197.28, + "probability": 0.2612 + }, + { + "start": 4197.3, + "end": 4202.34, + "probability": 0.9922 + }, + { + "start": 4202.86, + "end": 4205.94, + "probability": 0.7996 + }, + { + "start": 4208.28, + "end": 4211.76, + "probability": 0.9965 + }, + { + "start": 4212.36, + "end": 4214.54, + "probability": 0.999 + }, + { + "start": 4215.52, + "end": 4216.64, + "probability": 0.9278 + }, + { + "start": 4217.84, + "end": 4221.24, + "probability": 0.9911 + }, + { + "start": 4222.22, + "end": 4224.16, + "probability": 0.9984 + }, + { + "start": 4224.86, + "end": 4226.3, + "probability": 0.9914 + }, + { + "start": 4227.52, + "end": 4230.94, + "probability": 0.9853 + }, + { + "start": 4231.68, + "end": 4237.48, + "probability": 0.9836 + }, + { + "start": 4239.97, + "end": 4246.0, + "probability": 0.8479 + }, + { + "start": 4246.76, + "end": 4252.42, + "probability": 0.9926 + }, + { + "start": 4253.06, + "end": 4257.08, + "probability": 0.9974 + }, + { + "start": 4258.42, + "end": 4258.92, + "probability": 0.7086 + }, + { + "start": 4260.24, + "end": 4261.8, + "probability": 0.9981 + }, + { + "start": 4263.16, + "end": 4264.88, + "probability": 0.9932 + }, + { + "start": 4267.15, + "end": 4272.18, + "probability": 0.9954 + }, + { + "start": 4273.58, + "end": 4275.68, + "probability": 0.9988 + }, + { + "start": 4278.4, + "end": 4280.66, + "probability": 0.9984 + }, + { + "start": 4282.02, + "end": 4285.74, + "probability": 0.9807 + }, + { + "start": 4287.04, + "end": 4288.56, + "probability": 0.9652 + }, + { + "start": 4289.48, + "end": 4290.7, + "probability": 0.8238 + }, + { + "start": 4290.7, + "end": 4290.7, + "probability": 0.0818 + }, + { + "start": 4290.74, + "end": 4291.88, + "probability": 0.8526 + }, + { + "start": 4292.56, + "end": 4293.86, + "probability": 0.9456 + }, + { + "start": 4295.78, + "end": 4297.2, + "probability": 0.7629 + }, + { + "start": 4298.24, + "end": 4299.78, + "probability": 0.8226 + }, + { + "start": 4300.36, + "end": 4304.54, + "probability": 0.6439 + }, + { + "start": 4304.56, + "end": 4304.6, + "probability": 0.0141 + }, + { + "start": 4305.62, + "end": 4306.0, + "probability": 0.1222 + }, + { + "start": 4306.56, + "end": 4310.66, + "probability": 0.9048 + }, + { + "start": 4311.8, + "end": 4312.8, + "probability": 0.9722 + }, + { + "start": 4313.56, + "end": 4314.52, + "probability": 0.8114 + }, + { + "start": 4315.74, + "end": 4316.42, + "probability": 0.8762 + }, + { + "start": 4316.44, + "end": 4321.48, + "probability": 0.9656 + }, + { + "start": 4321.76, + "end": 4324.04, + "probability": 0.8075 + }, + { + "start": 4325.4, + "end": 4327.78, + "probability": 0.9944 + }, + { + "start": 4329.02, + "end": 4334.68, + "probability": 0.9899 + }, + { + "start": 4334.96, + "end": 4335.5, + "probability": 0.8983 + }, + { + "start": 4335.62, + "end": 4336.22, + "probability": 0.8948 + }, + { + "start": 4336.22, + "end": 4337.9, + "probability": 0.6366 + }, + { + "start": 4340.61, + "end": 4342.5, + "probability": 0.3298 + }, + { + "start": 4342.7, + "end": 4346.1, + "probability": 0.5784 + }, + { + "start": 4346.1, + "end": 4347.06, + "probability": 0.9208 + }, + { + "start": 4348.14, + "end": 4348.5, + "probability": 0.2414 + }, + { + "start": 4348.5, + "end": 4349.12, + "probability": 0.6244 + }, + { + "start": 4349.16, + "end": 4353.96, + "probability": 0.797 + }, + { + "start": 4354.92, + "end": 4355.04, + "probability": 0.0299 + }, + { + "start": 4355.04, + "end": 4357.12, + "probability": 0.3782 + }, + { + "start": 4360.34, + "end": 4364.56, + "probability": 0.9792 + }, + { + "start": 4364.72, + "end": 4365.36, + "probability": 0.9904 + }, + { + "start": 4366.58, + "end": 4368.74, + "probability": 0.6819 + }, + { + "start": 4369.12, + "end": 4373.04, + "probability": 0.9773 + }, + { + "start": 4373.3, + "end": 4380.3, + "probability": 0.5838 + }, + { + "start": 4380.34, + "end": 4382.14, + "probability": 0.6881 + }, + { + "start": 4383.18, + "end": 4385.14, + "probability": 0.7476 + }, + { + "start": 4386.14, + "end": 4389.74, + "probability": 0.9833 + }, + { + "start": 4389.96, + "end": 4391.38, + "probability": 0.9684 + }, + { + "start": 4391.86, + "end": 4396.76, + "probability": 0.9597 + }, + { + "start": 4397.3, + "end": 4400.24, + "probability": 0.9998 + }, + { + "start": 4400.92, + "end": 4405.48, + "probability": 0.999 + }, + { + "start": 4405.98, + "end": 4407.1, + "probability": 0.9976 + }, + { + "start": 4407.8, + "end": 4408.24, + "probability": 0.783 + }, + { + "start": 4408.74, + "end": 4409.16, + "probability": 0.5847 + }, + { + "start": 4409.32, + "end": 4415.9, + "probability": 0.8788 + }, + { + "start": 4417.45, + "end": 4419.7, + "probability": 0.874 + }, + { + "start": 4426.54, + "end": 4427.56, + "probability": 0.4859 + }, + { + "start": 4427.94, + "end": 4431.58, + "probability": 0.7796 + }, + { + "start": 4433.12, + "end": 4437.1, + "probability": 0.9229 + }, + { + "start": 4438.12, + "end": 4441.72, + "probability": 0.9965 + }, + { + "start": 4442.78, + "end": 4445.3, + "probability": 0.7789 + }, + { + "start": 4445.8, + "end": 4451.94, + "probability": 0.9839 + }, + { + "start": 4452.24, + "end": 4452.58, + "probability": 0.2312 + }, + { + "start": 4453.0, + "end": 4459.72, + "probability": 0.9092 + }, + { + "start": 4459.8, + "end": 4465.52, + "probability": 0.9754 + }, + { + "start": 4466.2, + "end": 4468.68, + "probability": 0.546 + }, + { + "start": 4469.22, + "end": 4473.72, + "probability": 0.4432 + }, + { + "start": 4474.32, + "end": 4479.76, + "probability": 0.9509 + }, + { + "start": 4479.92, + "end": 4483.16, + "probability": 0.9933 + }, + { + "start": 4484.02, + "end": 4485.76, + "probability": 0.8256 + }, + { + "start": 4486.3, + "end": 4489.47, + "probability": 0.9937 + }, + { + "start": 4490.16, + "end": 4494.06, + "probability": 0.9871 + }, + { + "start": 4494.62, + "end": 4496.18, + "probability": 0.984 + }, + { + "start": 4496.88, + "end": 4500.1, + "probability": 0.9845 + }, + { + "start": 4501.26, + "end": 4502.94, + "probability": 0.9212 + }, + { + "start": 4503.0, + "end": 4508.46, + "probability": 0.988 + }, + { + "start": 4508.92, + "end": 4513.16, + "probability": 0.988 + }, + { + "start": 4513.68, + "end": 4516.58, + "probability": 0.9722 + }, + { + "start": 4517.02, + "end": 4517.74, + "probability": 0.6936 + }, + { + "start": 4518.14, + "end": 4518.82, + "probability": 0.5276 + }, + { + "start": 4518.86, + "end": 4520.0, + "probability": 0.8108 + }, + { + "start": 4520.42, + "end": 4527.26, + "probability": 0.992 + }, + { + "start": 4527.26, + "end": 4529.7, + "probability": 0.8905 + }, + { + "start": 4530.3, + "end": 4534.02, + "probability": 0.7054 + }, + { + "start": 4534.89, + "end": 4542.98, + "probability": 0.2941 + }, + { + "start": 4545.96, + "end": 4547.46, + "probability": 0.7779 + }, + { + "start": 4548.36, + "end": 4548.36, + "probability": 0.246 + }, + { + "start": 4548.36, + "end": 4551.72, + "probability": 0.5634 + }, + { + "start": 4552.52, + "end": 4553.76, + "probability": 0.8822 + }, + { + "start": 4554.54, + "end": 4557.14, + "probability": 0.9902 + }, + { + "start": 4557.14, + "end": 4560.1, + "probability": 0.7862 + }, + { + "start": 4560.76, + "end": 4562.02, + "probability": 0.4855 + }, + { + "start": 4562.28, + "end": 4564.06, + "probability": 0.7631 + }, + { + "start": 4564.46, + "end": 4565.16, + "probability": 0.3984 + }, + { + "start": 4565.66, + "end": 4567.7, + "probability": 0.877 + }, + { + "start": 4568.24, + "end": 4569.24, + "probability": 0.8822 + }, + { + "start": 4569.38, + "end": 4575.12, + "probability": 0.808 + }, + { + "start": 4575.12, + "end": 4576.68, + "probability": 0.476 + }, + { + "start": 4576.96, + "end": 4578.86, + "probability": 0.4216 + }, + { + "start": 4579.06, + "end": 4582.76, + "probability": 0.9032 + }, + { + "start": 4583.44, + "end": 4587.42, + "probability": 0.9979 + }, + { + "start": 4587.52, + "end": 4591.22, + "probability": 0.9043 + }, + { + "start": 4624.88, + "end": 4627.0, + "probability": 0.731 + }, + { + "start": 4628.04, + "end": 4633.34, + "probability": 0.9948 + }, + { + "start": 4633.34, + "end": 4638.4, + "probability": 0.9932 + }, + { + "start": 4639.58, + "end": 4646.16, + "probability": 0.9864 + }, + { + "start": 4646.98, + "end": 4650.24, + "probability": 0.9876 + }, + { + "start": 4650.9, + "end": 4653.9, + "probability": 0.9152 + }, + { + "start": 4654.84, + "end": 4656.64, + "probability": 0.9827 + }, + { + "start": 4657.28, + "end": 4658.92, + "probability": 0.9804 + }, + { + "start": 4660.64, + "end": 4663.4, + "probability": 0.9741 + }, + { + "start": 4663.4, + "end": 4667.42, + "probability": 0.9909 + }, + { + "start": 4668.32, + "end": 4671.42, + "probability": 0.9701 + }, + { + "start": 4671.42, + "end": 4675.9, + "probability": 0.9786 + }, + { + "start": 4676.58, + "end": 4677.6, + "probability": 0.7416 + }, + { + "start": 4678.72, + "end": 4684.66, + "probability": 0.9594 + }, + { + "start": 4685.52, + "end": 4687.1, + "probability": 0.894 + }, + { + "start": 4687.88, + "end": 4690.48, + "probability": 0.8972 + }, + { + "start": 4691.7, + "end": 4693.32, + "probability": 0.9303 + }, + { + "start": 4694.2, + "end": 4696.56, + "probability": 0.79 + }, + { + "start": 4697.64, + "end": 4700.9, + "probability": 0.9072 + }, + { + "start": 4701.76, + "end": 4703.04, + "probability": 0.9 + }, + { + "start": 4703.78, + "end": 4705.8, + "probability": 0.9871 + }, + { + "start": 4706.98, + "end": 4708.8, + "probability": 0.7847 + }, + { + "start": 4709.76, + "end": 4712.56, + "probability": 0.8162 + }, + { + "start": 4713.42, + "end": 4719.34, + "probability": 0.9412 + }, + { + "start": 4720.12, + "end": 4723.2, + "probability": 0.9497 + }, + { + "start": 4723.82, + "end": 4726.66, + "probability": 0.9916 + }, + { + "start": 4727.36, + "end": 4730.88, + "probability": 0.9597 + }, + { + "start": 4732.04, + "end": 4735.38, + "probability": 0.7723 + }, + { + "start": 4735.9, + "end": 4739.44, + "probability": 0.9929 + }, + { + "start": 4740.5, + "end": 4740.56, + "probability": 0.0046 + }, + { + "start": 4741.82, + "end": 4743.08, + "probability": 0.0453 + }, + { + "start": 4760.94, + "end": 4761.58, + "probability": 0.8173 + }, + { + "start": 4762.28, + "end": 4767.36, + "probability": 0.9845 + }, + { + "start": 4767.44, + "end": 4774.54, + "probability": 0.9494 + }, + { + "start": 4775.14, + "end": 4776.12, + "probability": 0.8787 + }, + { + "start": 4776.7, + "end": 4781.9, + "probability": 0.9889 + }, + { + "start": 4783.48, + "end": 4790.18, + "probability": 0.9829 + }, + { + "start": 4790.18, + "end": 4798.7, + "probability": 0.9993 + }, + { + "start": 4799.76, + "end": 4802.58, + "probability": 0.9592 + }, + { + "start": 4803.28, + "end": 4805.36, + "probability": 0.7776 + }, + { + "start": 4808.27, + "end": 4812.56, + "probability": 0.9125 + }, + { + "start": 4812.56, + "end": 4816.72, + "probability": 0.9769 + }, + { + "start": 4817.22, + "end": 4819.9, + "probability": 0.6226 + }, + { + "start": 4822.62, + "end": 4828.04, + "probability": 0.9878 + }, + { + "start": 4828.04, + "end": 4833.34, + "probability": 0.7899 + }, + { + "start": 4835.16, + "end": 4839.36, + "probability": 0.8979 + }, + { + "start": 4840.12, + "end": 4841.42, + "probability": 0.8103 + }, + { + "start": 4842.68, + "end": 4847.5, + "probability": 0.9805 + }, + { + "start": 4848.14, + "end": 4851.72, + "probability": 0.9885 + }, + { + "start": 4852.94, + "end": 4856.7, + "probability": 0.9365 + }, + { + "start": 4857.26, + "end": 4859.44, + "probability": 0.9405 + }, + { + "start": 4860.3, + "end": 4868.42, + "probability": 0.983 + }, + { + "start": 4869.1, + "end": 4872.66, + "probability": 0.9763 + }, + { + "start": 4873.42, + "end": 4874.46, + "probability": 0.5242 + }, + { + "start": 4875.32, + "end": 4877.99, + "probability": 0.8996 + }, + { + "start": 4878.58, + "end": 4883.32, + "probability": 0.9007 + }, + { + "start": 4884.14, + "end": 4887.62, + "probability": 0.9879 + }, + { + "start": 4887.62, + "end": 4891.12, + "probability": 0.9987 + }, + { + "start": 4892.14, + "end": 4897.16, + "probability": 0.9685 + }, + { + "start": 4898.7, + "end": 4902.94, + "probability": 0.993 + }, + { + "start": 4903.34, + "end": 4909.98, + "probability": 0.9881 + }, + { + "start": 4909.98, + "end": 4917.24, + "probability": 0.9979 + }, + { + "start": 4917.82, + "end": 4923.04, + "probability": 0.9916 + }, + { + "start": 4924.02, + "end": 4929.04, + "probability": 0.8406 + }, + { + "start": 4930.84, + "end": 4933.92, + "probability": 0.9785 + }, + { + "start": 4933.92, + "end": 4937.76, + "probability": 0.9926 + }, + { + "start": 4938.76, + "end": 4945.26, + "probability": 0.9814 + }, + { + "start": 4946.12, + "end": 4951.86, + "probability": 0.9756 + }, + { + "start": 4952.14, + "end": 4958.1, + "probability": 0.9997 + }, + { + "start": 4958.1, + "end": 4962.9, + "probability": 0.9982 + }, + { + "start": 4963.86, + "end": 4965.24, + "probability": 0.6914 + }, + { + "start": 4965.92, + "end": 4968.2, + "probability": 0.8993 + }, + { + "start": 4969.0, + "end": 4972.5, + "probability": 0.9822 + }, + { + "start": 4973.32, + "end": 4976.68, + "probability": 0.8246 + }, + { + "start": 4977.28, + "end": 4979.0, + "probability": 0.9961 + }, + { + "start": 4982.54, + "end": 4987.02, + "probability": 0.9969 + }, + { + "start": 4988.04, + "end": 4989.06, + "probability": 0.8389 + }, + { + "start": 4989.62, + "end": 4994.18, + "probability": 0.9958 + }, + { + "start": 4994.7, + "end": 4999.0, + "probability": 0.9808 + }, + { + "start": 4999.62, + "end": 5003.56, + "probability": 0.9863 + }, + { + "start": 5004.68, + "end": 5012.86, + "probability": 0.9198 + }, + { + "start": 5013.44, + "end": 5015.9, + "probability": 0.9919 + }, + { + "start": 5016.86, + "end": 5022.02, + "probability": 0.9927 + }, + { + "start": 5023.16, + "end": 5030.08, + "probability": 0.9861 + }, + { + "start": 5030.08, + "end": 5036.5, + "probability": 0.8462 + }, + { + "start": 5036.9, + "end": 5037.72, + "probability": 0.8429 + }, + { + "start": 5038.34, + "end": 5041.88, + "probability": 0.974 + }, + { + "start": 5042.56, + "end": 5046.78, + "probability": 0.9814 + }, + { + "start": 5046.78, + "end": 5051.94, + "probability": 0.998 + }, + { + "start": 5052.5, + "end": 5053.96, + "probability": 0.9869 + }, + { + "start": 5055.26, + "end": 5056.68, + "probability": 0.7212 + }, + { + "start": 5057.52, + "end": 5062.26, + "probability": 0.9971 + }, + { + "start": 5062.86, + "end": 5068.0, + "probability": 0.996 + }, + { + "start": 5068.94, + "end": 5074.36, + "probability": 0.9925 + }, + { + "start": 5074.81, + "end": 5080.4, + "probability": 0.9959 + }, + { + "start": 5083.7, + "end": 5086.6, + "probability": 0.9941 + }, + { + "start": 5086.94, + "end": 5089.48, + "probability": 0.9122 + }, + { + "start": 5090.24, + "end": 5094.88, + "probability": 0.9859 + }, + { + "start": 5094.88, + "end": 5100.4, + "probability": 0.9757 + }, + { + "start": 5101.9, + "end": 5106.56, + "probability": 0.9996 + }, + { + "start": 5107.04, + "end": 5108.14, + "probability": 0.9768 + }, + { + "start": 5109.34, + "end": 5112.69, + "probability": 0.9895 + }, + { + "start": 5112.98, + "end": 5117.18, + "probability": 0.911 + }, + { + "start": 5117.88, + "end": 5120.22, + "probability": 0.8425 + }, + { + "start": 5121.26, + "end": 5125.8, + "probability": 0.9674 + }, + { + "start": 5125.8, + "end": 5130.0, + "probability": 0.9534 + }, + { + "start": 5131.46, + "end": 5137.28, + "probability": 0.9967 + }, + { + "start": 5137.86, + "end": 5140.34, + "probability": 0.9678 + }, + { + "start": 5141.12, + "end": 5146.33, + "probability": 0.9905 + }, + { + "start": 5146.9, + "end": 5153.46, + "probability": 0.9963 + }, + { + "start": 5154.5, + "end": 5158.2, + "probability": 0.9993 + }, + { + "start": 5159.02, + "end": 5162.7, + "probability": 0.9954 + }, + { + "start": 5163.72, + "end": 5167.56, + "probability": 0.7894 + }, + { + "start": 5167.7, + "end": 5169.8, + "probability": 0.9677 + }, + { + "start": 5170.53, + "end": 5173.64, + "probability": 0.869 + }, + { + "start": 5173.64, + "end": 5173.84, + "probability": 0.3125 + }, + { + "start": 5173.84, + "end": 5175.22, + "probability": 0.9797 + }, + { + "start": 5175.74, + "end": 5180.76, + "probability": 0.9584 + }, + { + "start": 5180.76, + "end": 5184.6, + "probability": 0.988 + }, + { + "start": 5185.5, + "end": 5186.36, + "probability": 0.7446 + }, + { + "start": 5186.9, + "end": 5188.9, + "probability": 0.8416 + }, + { + "start": 5190.7, + "end": 5196.34, + "probability": 0.9916 + }, + { + "start": 5196.94, + "end": 5200.32, + "probability": 0.9874 + }, + { + "start": 5200.32, + "end": 5204.0, + "probability": 0.9852 + }, + { + "start": 5205.28, + "end": 5207.8, + "probability": 0.9384 + }, + { + "start": 5208.8, + "end": 5209.82, + "probability": 0.8752 + }, + { + "start": 5210.44, + "end": 5213.34, + "probability": 0.9536 + }, + { + "start": 5213.86, + "end": 5220.14, + "probability": 0.9827 + }, + { + "start": 5220.7, + "end": 5221.24, + "probability": 0.874 + }, + { + "start": 5221.28, + "end": 5226.24, + "probability": 0.9019 + }, + { + "start": 5226.82, + "end": 5229.56, + "probability": 0.82 + }, + { + "start": 5229.6, + "end": 5232.56, + "probability": 0.8869 + }, + { + "start": 5233.22, + "end": 5235.74, + "probability": 0.9395 + }, + { + "start": 5236.28, + "end": 5237.14, + "probability": 0.9355 + }, + { + "start": 5237.76, + "end": 5240.84, + "probability": 0.8778 + }, + { + "start": 5241.54, + "end": 5242.04, + "probability": 0.441 + }, + { + "start": 5242.68, + "end": 5243.64, + "probability": 0.5375 + }, + { + "start": 5243.74, + "end": 5244.12, + "probability": 0.718 + }, + { + "start": 5244.56, + "end": 5245.08, + "probability": 0.71 + }, + { + "start": 5245.22, + "end": 5245.82, + "probability": 0.8879 + }, + { + "start": 5246.26, + "end": 5247.12, + "probability": 0.9323 + }, + { + "start": 5247.54, + "end": 5248.58, + "probability": 0.6789 + }, + { + "start": 5248.94, + "end": 5252.48, + "probability": 0.9884 + }, + { + "start": 5252.54, + "end": 5254.86, + "probability": 0.9106 + }, + { + "start": 5256.0, + "end": 5260.26, + "probability": 0.9301 + }, + { + "start": 5261.0, + "end": 5261.74, + "probability": 0.5117 + }, + { + "start": 5262.14, + "end": 5267.94, + "probability": 0.9915 + }, + { + "start": 5268.04, + "end": 5268.42, + "probability": 0.3057 + }, + { + "start": 5268.44, + "end": 5268.76, + "probability": 0.5805 + }, + { + "start": 5270.74, + "end": 5276.3, + "probability": 0.9884 + }, + { + "start": 5277.82, + "end": 5280.6, + "probability": 0.9143 + }, + { + "start": 5281.28, + "end": 5283.2, + "probability": 0.9529 + }, + { + "start": 5298.22, + "end": 5299.12, + "probability": 0.7048 + }, + { + "start": 5299.9, + "end": 5301.7, + "probability": 0.9211 + }, + { + "start": 5302.42, + "end": 5303.06, + "probability": 0.8231 + }, + { + "start": 5304.46, + "end": 5308.38, + "probability": 0.9958 + }, + { + "start": 5309.36, + "end": 5311.1, + "probability": 0.932 + }, + { + "start": 5311.82, + "end": 5315.58, + "probability": 0.9724 + }, + { + "start": 5316.36, + "end": 5319.62, + "probability": 0.9685 + }, + { + "start": 5320.4, + "end": 5322.5, + "probability": 0.9476 + }, + { + "start": 5323.96, + "end": 5326.32, + "probability": 0.8596 + }, + { + "start": 5326.92, + "end": 5329.18, + "probability": 0.9663 + }, + { + "start": 5329.54, + "end": 5330.86, + "probability": 0.9346 + }, + { + "start": 5331.54, + "end": 5333.26, + "probability": 0.9946 + }, + { + "start": 5334.14, + "end": 5335.34, + "probability": 0.998 + }, + { + "start": 5336.84, + "end": 5342.42, + "probability": 0.9989 + }, + { + "start": 5343.72, + "end": 5345.2, + "probability": 0.9992 + }, + { + "start": 5345.9, + "end": 5347.72, + "probability": 0.9956 + }, + { + "start": 5348.72, + "end": 5351.74, + "probability": 0.9956 + }, + { + "start": 5351.74, + "end": 5357.02, + "probability": 0.9973 + }, + { + "start": 5358.24, + "end": 5363.08, + "probability": 0.9974 + }, + { + "start": 5363.74, + "end": 5369.8, + "probability": 0.9771 + }, + { + "start": 5369.88, + "end": 5371.04, + "probability": 0.8431 + }, + { + "start": 5371.78, + "end": 5374.58, + "probability": 0.8727 + }, + { + "start": 5375.88, + "end": 5378.53, + "probability": 0.9954 + }, + { + "start": 5380.9, + "end": 5383.28, + "probability": 0.9838 + }, + { + "start": 5383.36, + "end": 5385.34, + "probability": 0.9539 + }, + { + "start": 5385.62, + "end": 5386.82, + "probability": 0.6216 + }, + { + "start": 5386.98, + "end": 5387.46, + "probability": 0.5364 + }, + { + "start": 5387.5, + "end": 5388.98, + "probability": 0.5052 + }, + { + "start": 5389.08, + "end": 5394.28, + "probability": 0.98 + }, + { + "start": 5394.9, + "end": 5395.48, + "probability": 0.96 + }, + { + "start": 5396.08, + "end": 5397.64, + "probability": 0.9865 + }, + { + "start": 5398.22, + "end": 5398.92, + "probability": 0.8456 + }, + { + "start": 5399.48, + "end": 5403.48, + "probability": 0.9711 + }, + { + "start": 5403.5, + "end": 5408.2, + "probability": 0.6458 + }, + { + "start": 5408.74, + "end": 5411.06, + "probability": 0.9494 + }, + { + "start": 5412.68, + "end": 5414.94, + "probability": 0.9829 + }, + { + "start": 5415.56, + "end": 5416.93, + "probability": 0.978 + }, + { + "start": 5417.76, + "end": 5422.76, + "probability": 0.9982 + }, + { + "start": 5423.22, + "end": 5426.02, + "probability": 0.9985 + }, + { + "start": 5426.88, + "end": 5429.28, + "probability": 0.9766 + }, + { + "start": 5430.06, + "end": 5433.54, + "probability": 0.9941 + }, + { + "start": 5433.54, + "end": 5436.42, + "probability": 0.9966 + }, + { + "start": 5436.52, + "end": 5437.44, + "probability": 0.8197 + }, + { + "start": 5438.06, + "end": 5438.92, + "probability": 0.8316 + }, + { + "start": 5440.08, + "end": 5443.32, + "probability": 0.975 + }, + { + "start": 5444.52, + "end": 5446.5, + "probability": 0.9906 + }, + { + "start": 5447.84, + "end": 5450.2, + "probability": 0.6183 + }, + { + "start": 5450.88, + "end": 5451.58, + "probability": 0.7675 + }, + { + "start": 5452.1, + "end": 5458.36, + "probability": 0.7498 + }, + { + "start": 5458.92, + "end": 5462.32, + "probability": 0.9857 + }, + { + "start": 5462.42, + "end": 5463.58, + "probability": 0.8972 + }, + { + "start": 5464.1, + "end": 5466.76, + "probability": 0.9908 + }, + { + "start": 5467.4, + "end": 5469.98, + "probability": 0.9915 + }, + { + "start": 5470.82, + "end": 5473.28, + "probability": 0.9957 + }, + { + "start": 5473.94, + "end": 5476.34, + "probability": 0.8096 + }, + { + "start": 5476.44, + "end": 5479.28, + "probability": 0.9931 + }, + { + "start": 5479.8, + "end": 5480.46, + "probability": 0.9843 + }, + { + "start": 5481.2, + "end": 5482.44, + "probability": 0.9384 + }, + { + "start": 5484.4, + "end": 5487.34, + "probability": 0.9932 + }, + { + "start": 5487.86, + "end": 5490.42, + "probability": 0.9128 + }, + { + "start": 5492.0, + "end": 5492.56, + "probability": 0.7251 + }, + { + "start": 5492.76, + "end": 5498.36, + "probability": 0.9881 + }, + { + "start": 5499.04, + "end": 5500.12, + "probability": 0.6524 + }, + { + "start": 5500.92, + "end": 5503.56, + "probability": 0.8743 + }, + { + "start": 5504.22, + "end": 5507.5, + "probability": 0.9949 + }, + { + "start": 5507.78, + "end": 5511.36, + "probability": 0.9953 + }, + { + "start": 5512.16, + "end": 5513.2, + "probability": 0.8575 + }, + { + "start": 5514.02, + "end": 5516.34, + "probability": 0.9559 + }, + { + "start": 5516.94, + "end": 5520.02, + "probability": 0.9898 + }, + { + "start": 5520.08, + "end": 5520.9, + "probability": 0.9644 + }, + { + "start": 5521.02, + "end": 5524.6, + "probability": 0.9777 + }, + { + "start": 5525.48, + "end": 5528.7, + "probability": 0.9944 + }, + { + "start": 5529.92, + "end": 5531.96, + "probability": 0.9884 + }, + { + "start": 5532.64, + "end": 5534.16, + "probability": 0.6562 + }, + { + "start": 5534.9, + "end": 5540.82, + "probability": 0.9891 + }, + { + "start": 5540.82, + "end": 5544.34, + "probability": 0.9972 + }, + { + "start": 5544.84, + "end": 5546.18, + "probability": 0.9644 + }, + { + "start": 5547.14, + "end": 5547.82, + "probability": 0.8867 + }, + { + "start": 5548.48, + "end": 5550.44, + "probability": 0.8167 + }, + { + "start": 5551.12, + "end": 5554.32, + "probability": 0.9902 + }, + { + "start": 5554.4, + "end": 5555.6, + "probability": 0.9036 + }, + { + "start": 5556.38, + "end": 5561.1, + "probability": 0.9904 + }, + { + "start": 5561.45, + "end": 5563.18, + "probability": 0.9077 + }, + { + "start": 5563.9, + "end": 5564.88, + "probability": 0.7575 + }, + { + "start": 5565.52, + "end": 5567.02, + "probability": 0.9204 + }, + { + "start": 5567.54, + "end": 5572.38, + "probability": 0.885 + }, + { + "start": 5573.08, + "end": 5578.5, + "probability": 0.7024 + }, + { + "start": 5579.04, + "end": 5580.84, + "probability": 0.8233 + }, + { + "start": 5581.58, + "end": 5584.02, + "probability": 0.9856 + }, + { + "start": 5584.66, + "end": 5585.18, + "probability": 0.9787 + }, + { + "start": 5585.9, + "end": 5588.8, + "probability": 0.944 + }, + { + "start": 5589.46, + "end": 5593.38, + "probability": 0.9248 + }, + { + "start": 5594.08, + "end": 5596.76, + "probability": 0.9901 + }, + { + "start": 5597.54, + "end": 5598.18, + "probability": 0.6452 + }, + { + "start": 5599.04, + "end": 5603.48, + "probability": 0.9972 + }, + { + "start": 5604.66, + "end": 5606.06, + "probability": 0.8501 + }, + { + "start": 5607.08, + "end": 5609.08, + "probability": 0.9928 + }, + { + "start": 5609.62, + "end": 5612.2, + "probability": 0.9929 + }, + { + "start": 5612.76, + "end": 5619.56, + "probability": 0.9984 + }, + { + "start": 5620.16, + "end": 5620.6, + "probability": 0.6476 + }, + { + "start": 5621.24, + "end": 5623.36, + "probability": 0.9942 + }, + { + "start": 5624.66, + "end": 5628.06, + "probability": 0.998 + }, + { + "start": 5628.68, + "end": 5629.86, + "probability": 0.9632 + }, + { + "start": 5630.4, + "end": 5635.98, + "probability": 0.8843 + }, + { + "start": 5636.42, + "end": 5637.17, + "probability": 0.9817 + }, + { + "start": 5638.19, + "end": 5639.31, + "probability": 0.5292 + }, + { + "start": 5641.05, + "end": 5645.05, + "probability": 0.915 + }, + { + "start": 5645.35, + "end": 5647.57, + "probability": 0.7931 + }, + { + "start": 5662.47, + "end": 5665.87, + "probability": 0.5593 + }, + { + "start": 5666.81, + "end": 5669.47, + "probability": 0.9792 + }, + { + "start": 5670.15, + "end": 5673.37, + "probability": 0.9443 + }, + { + "start": 5674.25, + "end": 5677.39, + "probability": 0.9088 + }, + { + "start": 5677.91, + "end": 5683.14, + "probability": 0.9725 + }, + { + "start": 5684.41, + "end": 5690.61, + "probability": 0.985 + }, + { + "start": 5690.85, + "end": 5691.87, + "probability": 0.6042 + }, + { + "start": 5692.03, + "end": 5696.33, + "probability": 0.6608 + }, + { + "start": 5696.43, + "end": 5697.07, + "probability": 0.5141 + }, + { + "start": 5698.07, + "end": 5700.25, + "probability": 0.6766 + }, + { + "start": 5700.29, + "end": 5701.17, + "probability": 0.3424 + }, + { + "start": 5705.04, + "end": 5708.05, + "probability": 0.5968 + }, + { + "start": 5712.19, + "end": 5712.75, + "probability": 0.9299 + }, + { + "start": 5715.21, + "end": 5717.57, + "probability": 0.8293 + }, + { + "start": 5718.05, + "end": 5722.37, + "probability": 0.7501 + }, + { + "start": 5723.05, + "end": 5724.85, + "probability": 0.6886 + }, + { + "start": 5725.09, + "end": 5728.07, + "probability": 0.9956 + }, + { + "start": 5728.07, + "end": 5734.67, + "probability": 0.7318 + }, + { + "start": 5735.07, + "end": 5735.98, + "probability": 0.6796 + }, + { + "start": 5737.69, + "end": 5738.29, + "probability": 0.1712 + }, + { + "start": 5738.29, + "end": 5740.15, + "probability": 0.0419 + }, + { + "start": 5742.73, + "end": 5743.75, + "probability": 0.0709 + }, + { + "start": 5751.58, + "end": 5751.84, + "probability": 0.0023 + }, + { + "start": 5751.84, + "end": 5755.52, + "probability": 0.082 + }, + { + "start": 5757.21, + "end": 5762.08, + "probability": 0.0499 + }, + { + "start": 5763.4, + "end": 5768.42, + "probability": 0.0191 + }, + { + "start": 5769.04, + "end": 5772.24, + "probability": 0.0322 + }, + { + "start": 5772.31, + "end": 5773.75, + "probability": 0.0601 + }, + { + "start": 5774.54, + "end": 5775.66, + "probability": 0.0912 + }, + { + "start": 5807.0, + "end": 5807.0, + "probability": 0.0 + }, + { + "start": 5807.0, + "end": 5807.0, + "probability": 0.0 + }, + { + "start": 5807.0, + "end": 5807.0, + "probability": 0.0 + }, + { + "start": 5807.0, + "end": 5807.0, + "probability": 0.0 + }, + { + "start": 5807.0, + "end": 5807.0, + "probability": 0.0 + }, + { + "start": 5807.0, + "end": 5807.0, + "probability": 0.0 + }, + { + "start": 5807.0, + "end": 5807.0, + "probability": 0.0 + }, + { + "start": 5807.0, + "end": 5807.0, + "probability": 0.0 + }, + { + "start": 5807.0, + "end": 5807.0, + "probability": 0.0 + }, + { + "start": 5807.14, + "end": 5808.7, + "probability": 0.0747 + }, + { + "start": 5808.72, + "end": 5815.03, + "probability": 0.9904 + }, + { + "start": 5816.68, + "end": 5821.52, + "probability": 0.7797 + }, + { + "start": 5825.2, + "end": 5828.32, + "probability": 0.6472 + }, + { + "start": 5828.34, + "end": 5830.56, + "probability": 0.8479 + }, + { + "start": 5831.12, + "end": 5832.32, + "probability": 0.5994 + }, + { + "start": 5832.98, + "end": 5835.26, + "probability": 0.9915 + }, + { + "start": 5835.66, + "end": 5838.44, + "probability": 0.9837 + }, + { + "start": 5839.26, + "end": 5840.82, + "probability": 0.8912 + }, + { + "start": 5842.86, + "end": 5843.88, + "probability": 0.761 + }, + { + "start": 5844.02, + "end": 5846.14, + "probability": 0.9556 + }, + { + "start": 5846.36, + "end": 5848.89, + "probability": 0.7549 + }, + { + "start": 5849.0, + "end": 5851.36, + "probability": 0.8396 + }, + { + "start": 5852.68, + "end": 5856.52, + "probability": 0.9948 + }, + { + "start": 5857.64, + "end": 5862.26, + "probability": 0.7916 + }, + { + "start": 5862.26, + "end": 5864.98, + "probability": 0.8251 + }, + { + "start": 5866.54, + "end": 5870.16, + "probability": 0.9987 + }, + { + "start": 5870.16, + "end": 5876.58, + "probability": 0.9873 + }, + { + "start": 5878.42, + "end": 5879.48, + "probability": 0.7747 + }, + { + "start": 5880.52, + "end": 5884.5, + "probability": 0.9881 + }, + { + "start": 5885.54, + "end": 5891.28, + "probability": 0.9907 + }, + { + "start": 5892.42, + "end": 5893.04, + "probability": 0.8668 + }, + { + "start": 5893.12, + "end": 5893.6, + "probability": 0.9261 + }, + { + "start": 5893.78, + "end": 5901.65, + "probability": 0.9891 + }, + { + "start": 5903.28, + "end": 5906.38, + "probability": 0.9417 + }, + { + "start": 5907.38, + "end": 5910.8, + "probability": 0.985 + }, + { + "start": 5912.46, + "end": 5914.32, + "probability": 0.9629 + }, + { + "start": 5914.78, + "end": 5915.18, + "probability": 0.5053 + }, + { + "start": 5916.9, + "end": 5921.32, + "probability": 0.9785 + }, + { + "start": 5922.2, + "end": 5923.12, + "probability": 0.7836 + }, + { + "start": 5924.7, + "end": 5932.54, + "probability": 0.9836 + }, + { + "start": 5933.46, + "end": 5934.18, + "probability": 0.9683 + }, + { + "start": 5935.42, + "end": 5940.96, + "probability": 0.8214 + }, + { + "start": 5941.52, + "end": 5942.5, + "probability": 0.922 + }, + { + "start": 5943.48, + "end": 5945.96, + "probability": 0.9196 + }, + { + "start": 5946.72, + "end": 5949.2, + "probability": 0.9941 + }, + { + "start": 5950.98, + "end": 5955.12, + "probability": 0.7909 + }, + { + "start": 5956.3, + "end": 5958.52, + "probability": 0.9985 + }, + { + "start": 5959.72, + "end": 5961.04, + "probability": 0.9094 + }, + { + "start": 5963.9, + "end": 5967.1, + "probability": 0.9918 + }, + { + "start": 5969.8, + "end": 5972.0, + "probability": 0.9873 + }, + { + "start": 5974.24, + "end": 5974.9, + "probability": 0.9602 + }, + { + "start": 5975.82, + "end": 5977.58, + "probability": 0.9166 + }, + { + "start": 5978.22, + "end": 5981.82, + "probability": 0.9968 + }, + { + "start": 5981.88, + "end": 5982.7, + "probability": 0.9076 + }, + { + "start": 5983.18, + "end": 5983.6, + "probability": 0.84 + }, + { + "start": 5986.96, + "end": 5987.5, + "probability": 0.5572 + }, + { + "start": 5988.66, + "end": 5989.86, + "probability": 0.9511 + }, + { + "start": 5990.18, + "end": 5991.24, + "probability": 0.9443 + }, + { + "start": 5991.38, + "end": 5992.3, + "probability": 0.9927 + }, + { + "start": 5992.68, + "end": 5994.04, + "probability": 0.9842 + }, + { + "start": 5995.66, + "end": 5996.88, + "probability": 0.8076 + }, + { + "start": 5998.48, + "end": 5999.26, + "probability": 0.7553 + }, + { + "start": 6001.4, + "end": 6003.5, + "probability": 0.8501 + }, + { + "start": 6004.94, + "end": 6009.86, + "probability": 0.986 + }, + { + "start": 6011.44, + "end": 6012.82, + "probability": 0.9943 + }, + { + "start": 6013.54, + "end": 6016.68, + "probability": 0.9956 + }, + { + "start": 6017.26, + "end": 6019.32, + "probability": 0.8889 + }, + { + "start": 6019.82, + "end": 6020.12, + "probability": 0.0197 + }, + { + "start": 6020.92, + "end": 6023.3, + "probability": 0.3417 + }, + { + "start": 6023.5, + "end": 6024.83, + "probability": 0.2365 + }, + { + "start": 6025.53, + "end": 6028.68, + "probability": 0.3202 + }, + { + "start": 6028.98, + "end": 6029.84, + "probability": 0.4951 + }, + { + "start": 6029.96, + "end": 6029.96, + "probability": 0.0029 + }, + { + "start": 6031.58, + "end": 6031.58, + "probability": 0.1441 + }, + { + "start": 6031.58, + "end": 6033.48, + "probability": 0.338 + }, + { + "start": 6035.82, + "end": 6039.9, + "probability": 0.2572 + }, + { + "start": 6041.26, + "end": 6044.36, + "probability": 0.9285 + }, + { + "start": 6044.5, + "end": 6045.62, + "probability": 0.0985 + }, + { + "start": 6046.38, + "end": 6046.8, + "probability": 0.04 + }, + { + "start": 6047.74, + "end": 6048.84, + "probability": 0.5284 + }, + { + "start": 6050.9, + "end": 6051.52, + "probability": 0.542 + }, + { + "start": 6052.58, + "end": 6053.94, + "probability": 0.5081 + }, + { + "start": 6054.24, + "end": 6055.08, + "probability": 0.0684 + }, + { + "start": 6055.78, + "end": 6059.64, + "probability": 0.5546 + }, + { + "start": 6059.66, + "end": 6059.98, + "probability": 0.8807 + }, + { + "start": 6060.06, + "end": 6060.5, + "probability": 0.369 + }, + { + "start": 6060.5, + "end": 6065.14, + "probability": 0.9409 + }, + { + "start": 6065.26, + "end": 6067.56, + "probability": 0.8819 + }, + { + "start": 6067.66, + "end": 6068.5, + "probability": 0.7078 + }, + { + "start": 6068.58, + "end": 6070.0, + "probability": 0.99 + }, + { + "start": 6070.22, + "end": 6072.92, + "probability": 0.9341 + }, + { + "start": 6073.18, + "end": 6074.5, + "probability": 0.9911 + }, + { + "start": 6074.58, + "end": 6075.5, + "probability": 0.932 + }, + { + "start": 6075.88, + "end": 6076.62, + "probability": 0.7671 + }, + { + "start": 6076.66, + "end": 6076.88, + "probability": 0.8237 + }, + { + "start": 6077.02, + "end": 6077.7, + "probability": 0.6533 + }, + { + "start": 6077.76, + "end": 6078.74, + "probability": 0.6138 + }, + { + "start": 6078.8, + "end": 6081.36, + "probability": 0.9557 + }, + { + "start": 6082.06, + "end": 6083.2, + "probability": 0.9944 + }, + { + "start": 6084.02, + "end": 6088.94, + "probability": 0.7944 + }, + { + "start": 6089.48, + "end": 6091.96, + "probability": 0.9717 + }, + { + "start": 6092.5, + "end": 6093.34, + "probability": 0.6935 + }, + { + "start": 6093.4, + "end": 6094.0, + "probability": 0.652 + }, + { + "start": 6094.12, + "end": 6095.94, + "probability": 0.9747 + }, + { + "start": 6096.82, + "end": 6097.66, + "probability": 0.9902 + }, + { + "start": 6098.58, + "end": 6100.38, + "probability": 0.9384 + }, + { + "start": 6100.8, + "end": 6104.42, + "probability": 0.8984 + }, + { + "start": 6104.84, + "end": 6105.16, + "probability": 0.4981 + }, + { + "start": 6105.24, + "end": 6105.8, + "probability": 0.8303 + }, + { + "start": 6106.58, + "end": 6108.54, + "probability": 0.6372 + }, + { + "start": 6109.36, + "end": 6109.44, + "probability": 0.394 + }, + { + "start": 6109.44, + "end": 6109.44, + "probability": 0.0227 + }, + { + "start": 6109.44, + "end": 6110.66, + "probability": 0.5152 + }, + { + "start": 6110.68, + "end": 6111.26, + "probability": 0.2988 + }, + { + "start": 6112.02, + "end": 6112.98, + "probability": 0.9576 + }, + { + "start": 6113.04, + "end": 6120.06, + "probability": 0.7558 + }, + { + "start": 6120.58, + "end": 6123.06, + "probability": 0.8938 + }, + { + "start": 6124.2, + "end": 6128.92, + "probability": 0.9475 + }, + { + "start": 6129.0, + "end": 6130.0, + "probability": 0.6102 + }, + { + "start": 6130.93, + "end": 6134.76, + "probability": 0.5459 + }, + { + "start": 6136.04, + "end": 6139.7, + "probability": 0.9773 + }, + { + "start": 6140.62, + "end": 6143.3, + "probability": 0.7251 + }, + { + "start": 6144.62, + "end": 6145.12, + "probability": 0.8359 + }, + { + "start": 6145.82, + "end": 6146.7, + "probability": 0.9198 + }, + { + "start": 6147.26, + "end": 6149.54, + "probability": 0.8649 + }, + { + "start": 6151.14, + "end": 6154.18, + "probability": 0.9323 + }, + { + "start": 6155.36, + "end": 6155.86, + "probability": 0.9631 + }, + { + "start": 6156.06, + "end": 6158.18, + "probability": 0.8613 + }, + { + "start": 6158.4, + "end": 6159.08, + "probability": 0.6939 + }, + { + "start": 6160.1, + "end": 6165.6, + "probability": 0.9302 + }, + { + "start": 6166.2, + "end": 6166.9, + "probability": 0.5573 + }, + { + "start": 6167.28, + "end": 6168.38, + "probability": 0.5959 + }, + { + "start": 6169.24, + "end": 6172.98, + "probability": 0.7997 + }, + { + "start": 6173.68, + "end": 6175.46, + "probability": 0.9316 + }, + { + "start": 6175.5, + "end": 6176.98, + "probability": 0.9019 + }, + { + "start": 6176.98, + "end": 6178.38, + "probability": 0.8483 + }, + { + "start": 6178.72, + "end": 6179.52, + "probability": 0.6558 + }, + { + "start": 6179.94, + "end": 6181.5, + "probability": 0.8859 + }, + { + "start": 6182.16, + "end": 6185.67, + "probability": 0.9711 + }, + { + "start": 6186.48, + "end": 6188.96, + "probability": 0.9813 + }, + { + "start": 6189.62, + "end": 6191.14, + "probability": 0.8496 + }, + { + "start": 6191.68, + "end": 6192.36, + "probability": 0.8746 + }, + { + "start": 6192.84, + "end": 6194.72, + "probability": 0.9898 + }, + { + "start": 6196.16, + "end": 6198.1, + "probability": 0.1516 + }, + { + "start": 6198.14, + "end": 6199.54, + "probability": 0.9493 + }, + { + "start": 6200.36, + "end": 6201.7, + "probability": 0.9312 + }, + { + "start": 6202.0, + "end": 6203.08, + "probability": 0.7717 + }, + { + "start": 6204.0, + "end": 6204.3, + "probability": 0.4785 + }, + { + "start": 6204.48, + "end": 6205.32, + "probability": 0.6251 + }, + { + "start": 6205.38, + "end": 6206.3, + "probability": 0.8746 + }, + { + "start": 6206.56, + "end": 6207.04, + "probability": 0.6927 + }, + { + "start": 6207.08, + "end": 6208.5, + "probability": 0.6149 + }, + { + "start": 6210.8, + "end": 6213.65, + "probability": 0.028 + }, + { + "start": 6214.86, + "end": 6215.08, + "probability": 0.0404 + }, + { + "start": 6215.52, + "end": 6217.91, + "probability": 0.0837 + }, + { + "start": 6219.84, + "end": 6222.0, + "probability": 0.0913 + }, + { + "start": 6222.4, + "end": 6222.5, + "probability": 0.075 + }, + { + "start": 6223.68, + "end": 6225.04, + "probability": 0.315 + }, + { + "start": 6226.1, + "end": 6226.62, + "probability": 0.0508 + }, + { + "start": 6226.62, + "end": 6226.64, + "probability": 0.1959 + }, + { + "start": 6226.64, + "end": 6231.5, + "probability": 0.0713 + }, + { + "start": 6231.5, + "end": 6231.78, + "probability": 0.323 + }, + { + "start": 6232.1, + "end": 6234.04, + "probability": 0.0521 + }, + { + "start": 6236.0, + "end": 6237.34, + "probability": 0.0578 + }, + { + "start": 6238.42, + "end": 6239.66, + "probability": 0.0548 + }, + { + "start": 6241.5, + "end": 6242.24, + "probability": 0.1047 + }, + { + "start": 6242.32, + "end": 6244.03, + "probability": 0.0394 + }, + { + "start": 6245.12, + "end": 6245.22, + "probability": 0.1697 + }, + { + "start": 6245.24, + "end": 6245.56, + "probability": 0.1188 + }, + { + "start": 6246.28, + "end": 6249.96, + "probability": 0.0113 + }, + { + "start": 6256.2, + "end": 6257.2, + "probability": 0.064 + }, + { + "start": 6261.02, + "end": 6263.02, + "probability": 0.1123 + }, + { + "start": 6263.08, + "end": 6265.2, + "probability": 0.1127 + }, + { + "start": 6265.44, + "end": 6266.47, + "probability": 0.1489 + }, + { + "start": 6266.68, + "end": 6266.68, + "probability": 0.0381 + }, + { + "start": 6266.88, + "end": 6267.38, + "probability": 0.1484 + }, + { + "start": 6268.1, + "end": 6268.74, + "probability": 0.1027 + }, + { + "start": 6269.74, + "end": 6273.08, + "probability": 0.0237 + }, + { + "start": 6275.32, + "end": 6275.76, + "probability": 0.0146 + }, + { + "start": 6285.0, + "end": 6285.0, + "probability": 0.0 + }, + { + "start": 6285.0, + "end": 6285.0, + "probability": 0.0 + }, + { + "start": 6285.0, + "end": 6285.0, + "probability": 0.0 + }, + { + "start": 6285.0, + "end": 6285.0, + "probability": 0.0 + }, + { + "start": 6285.0, + "end": 6285.0, + "probability": 0.0 + }, + { + "start": 6285.0, + "end": 6285.0, + "probability": 0.0 + }, + { + "start": 6285.0, + "end": 6285.0, + "probability": 0.0 + }, + { + "start": 6285.0, + "end": 6285.0, + "probability": 0.0 + }, + { + "start": 6285.0, + "end": 6285.0, + "probability": 0.0 + }, + { + "start": 6285.0, + "end": 6285.0, + "probability": 0.0 + }, + { + "start": 6285.0, + "end": 6285.0, + "probability": 0.0 + }, + { + "start": 6285.0, + "end": 6285.0, + "probability": 0.0 + }, + { + "start": 6285.56, + "end": 6285.99, + "probability": 0.0586 + }, + { + "start": 6286.76, + "end": 6287.08, + "probability": 0.2235 + }, + { + "start": 6289.09, + "end": 6290.44, + "probability": 0.0238 + }, + { + "start": 6290.44, + "end": 6290.48, + "probability": 0.0985 + }, + { + "start": 6291.0, + "end": 6294.02, + "probability": 0.0384 + }, + { + "start": 6294.02, + "end": 6298.46, + "probability": 0.0257 + }, + { + "start": 6298.46, + "end": 6298.46, + "probability": 0.0453 + }, + { + "start": 6405.0, + "end": 6405.0, + "probability": 0.0 + }, + { + "start": 6405.0, + "end": 6405.0, + "probability": 0.0 + }, + { + "start": 6405.0, + "end": 6405.0, + "probability": 0.0 + }, + { + "start": 6405.0, + "end": 6405.0, + "probability": 0.0 + }, + { + "start": 6405.0, + "end": 6405.0, + "probability": 0.0 + }, + { + "start": 6405.0, + "end": 6405.0, + "probability": 0.0 + }, + { + "start": 6405.0, + "end": 6405.0, + "probability": 0.0 + }, + { + "start": 6405.0, + "end": 6405.0, + "probability": 0.0 + }, + { + "start": 6405.0, + "end": 6405.0, + "probability": 0.0 + }, + { + "start": 6405.0, + "end": 6405.0, + "probability": 0.0 + }, + { + "start": 6405.0, + "end": 6405.0, + "probability": 0.0 + }, + { + "start": 6405.0, + "end": 6405.0, + "probability": 0.0 + }, + { + "start": 6405.0, + "end": 6405.0, + "probability": 0.0 + }, + { + "start": 6405.0, + "end": 6405.0, + "probability": 0.0 + }, + { + "start": 6405.0, + "end": 6405.0, + "probability": 0.0 + }, + { + "start": 6405.0, + "end": 6405.0, + "probability": 0.0 + }, + { + "start": 6405.0, + "end": 6405.0, + "probability": 0.0 + }, + { + "start": 6405.0, + "end": 6405.0, + "probability": 0.0 + }, + { + "start": 6405.0, + "end": 6405.0, + "probability": 0.0 + }, + { + "start": 6405.0, + "end": 6405.0, + "probability": 0.0 + }, + { + "start": 6405.0, + "end": 6405.0, + "probability": 0.0 + }, + { + "start": 6405.0, + "end": 6405.0, + "probability": 0.0 + }, + { + "start": 6405.0, + "end": 6405.0, + "probability": 0.0 + }, + { + "start": 6405.0, + "end": 6405.0, + "probability": 0.0 + }, + { + "start": 6405.0, + "end": 6405.0, + "probability": 0.0 + }, + { + "start": 6405.0, + "end": 6405.0, + "probability": 0.0 + }, + { + "start": 6405.0, + "end": 6405.0, + "probability": 0.0 + }, + { + "start": 6405.0, + "end": 6405.0, + "probability": 0.0 + }, + { + "start": 6405.0, + "end": 6405.0, + "probability": 0.0 + }, + { + "start": 6405.0, + "end": 6405.0, + "probability": 0.0 + }, + { + "start": 6405.0, + "end": 6405.0, + "probability": 0.0 + }, + { + "start": 6405.0, + "end": 6405.0, + "probability": 0.0 + }, + { + "start": 6405.0, + "end": 6405.0, + "probability": 0.0 + }, + { + "start": 6405.0, + "end": 6405.0, + "probability": 0.0 + }, + { + "start": 6405.72, + "end": 6410.02, + "probability": 0.0285 + }, + { + "start": 6411.48, + "end": 6414.92, + "probability": 0.1122 + }, + { + "start": 6414.92, + "end": 6414.92, + "probability": 0.0329 + }, + { + "start": 6415.84, + "end": 6420.38, + "probability": 0.3457 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.2, + "end": 6531.99, + "probability": 0.5956 + }, + { + "start": 6532.76, + "end": 6533.22, + "probability": 0.623 + }, + { + "start": 6533.24, + "end": 6533.62, + "probability": 0.9413 + }, + { + "start": 6533.66, + "end": 6537.18, + "probability": 0.9447 + }, + { + "start": 6537.18, + "end": 6539.84, + "probability": 0.8701 + }, + { + "start": 6540.36, + "end": 6542.94, + "probability": 0.85 + }, + { + "start": 6543.64, + "end": 6544.56, + "probability": 0.4662 + }, + { + "start": 6546.56, + "end": 6549.48, + "probability": 0.902 + }, + { + "start": 6553.35, + "end": 6558.54, + "probability": 0.994 + }, + { + "start": 6559.08, + "end": 6559.5, + "probability": 0.7201 + }, + { + "start": 6560.04, + "end": 6561.8, + "probability": 0.9021 + }, + { + "start": 6562.26, + "end": 6565.32, + "probability": 0.9969 + }, + { + "start": 6565.78, + "end": 6566.78, + "probability": 0.7264 + }, + { + "start": 6566.98, + "end": 6570.6, + "probability": 0.9839 + }, + { + "start": 6571.43, + "end": 6573.49, + "probability": 0.6663 + }, + { + "start": 6573.98, + "end": 6575.28, + "probability": 0.998 + }, + { + "start": 6575.54, + "end": 6575.82, + "probability": 0.0169 + }, + { + "start": 6576.28, + "end": 6577.36, + "probability": 0.9618 + }, + { + "start": 6577.46, + "end": 6578.95, + "probability": 0.9055 + }, + { + "start": 6579.26, + "end": 6581.7, + "probability": 0.9209 + }, + { + "start": 6582.68, + "end": 6583.66, + "probability": 0.8687 + }, + { + "start": 6584.18, + "end": 6585.62, + "probability": 0.9727 + }, + { + "start": 6586.2, + "end": 6587.16, + "probability": 0.832 + }, + { + "start": 6588.56, + "end": 6591.02, + "probability": 0.998 + }, + { + "start": 6591.12, + "end": 6593.64, + "probability": 0.8608 + }, + { + "start": 6595.57, + "end": 6596.29, + "probability": 0.7147 + }, + { + "start": 6596.84, + "end": 6599.32, + "probability": 0.9951 + }, + { + "start": 6600.32, + "end": 6603.98, + "probability": 0.994 + }, + { + "start": 6604.38, + "end": 6605.14, + "probability": 0.7065 + }, + { + "start": 6606.34, + "end": 6608.76, + "probability": 0.998 + }, + { + "start": 6608.76, + "end": 6611.64, + "probability": 0.9998 + }, + { + "start": 6612.14, + "end": 6614.2, + "probability": 0.6893 + }, + { + "start": 6614.34, + "end": 6617.28, + "probability": 0.7521 + }, + { + "start": 6617.94, + "end": 6619.08, + "probability": 0.6634 + }, + { + "start": 6619.26, + "end": 6619.94, + "probability": 0.5585 + }, + { + "start": 6619.96, + "end": 6620.82, + "probability": 0.9939 + }, + { + "start": 6620.9, + "end": 6623.48, + "probability": 0.9937 + }, + { + "start": 6623.54, + "end": 6624.64, + "probability": 0.5866 + }, + { + "start": 6625.52, + "end": 6626.66, + "probability": 0.8824 + }, + { + "start": 6628.14, + "end": 6629.45, + "probability": 0.9244 + }, + { + "start": 6629.74, + "end": 6633.92, + "probability": 0.9961 + }, + { + "start": 6634.14, + "end": 6638.74, + "probability": 0.9714 + }, + { + "start": 6639.24, + "end": 6642.16, + "probability": 0.9964 + }, + { + "start": 6642.3, + "end": 6642.86, + "probability": 0.9534 + }, + { + "start": 6642.96, + "end": 6647.8, + "probability": 0.9052 + }, + { + "start": 6647.8, + "end": 6648.32, + "probability": 0.3796 + }, + { + "start": 6648.68, + "end": 6652.42, + "probability": 0.9897 + }, + { + "start": 6652.92, + "end": 6653.4, + "probability": 0.7126 + }, + { + "start": 6653.78, + "end": 6654.9, + "probability": 0.7983 + }, + { + "start": 6655.56, + "end": 6657.52, + "probability": 0.9819 + }, + { + "start": 6657.58, + "end": 6658.36, + "probability": 0.9703 + }, + { + "start": 6658.82, + "end": 6660.44, + "probability": 0.9492 + }, + { + "start": 6660.82, + "end": 6664.92, + "probability": 0.9036 + }, + { + "start": 6665.8, + "end": 6667.3, + "probability": 0.979 + }, + { + "start": 6667.72, + "end": 6668.88, + "probability": 0.9936 + }, + { + "start": 6669.98, + "end": 6670.44, + "probability": 0.9301 + }, + { + "start": 6670.9, + "end": 6672.96, + "probability": 0.996 + }, + { + "start": 6673.12, + "end": 6674.82, + "probability": 0.9446 + }, + { + "start": 6675.58, + "end": 6678.16, + "probability": 0.9396 + }, + { + "start": 6678.64, + "end": 6681.48, + "probability": 0.9469 + }, + { + "start": 6681.58, + "end": 6685.08, + "probability": 0.888 + }, + { + "start": 6685.4, + "end": 6688.46, + "probability": 0.9893 + }, + { + "start": 6688.46, + "end": 6693.94, + "probability": 0.8938 + }, + { + "start": 6694.56, + "end": 6697.74, + "probability": 0.9089 + }, + { + "start": 6697.88, + "end": 6699.96, + "probability": 0.8618 + }, + { + "start": 6699.96, + "end": 6702.08, + "probability": 0.9501 + }, + { + "start": 6702.24, + "end": 6704.02, + "probability": 0.6213 + }, + { + "start": 6704.7, + "end": 6707.16, + "probability": 0.9102 + }, + { + "start": 6707.26, + "end": 6708.36, + "probability": 0.9989 + }, + { + "start": 6708.52, + "end": 6711.24, + "probability": 0.9889 + }, + { + "start": 6711.62, + "end": 6712.62, + "probability": 0.9778 + }, + { + "start": 6712.8, + "end": 6717.04, + "probability": 0.9956 + }, + { + "start": 6717.74, + "end": 6719.92, + "probability": 0.863 + }, + { + "start": 6722.25, + "end": 6726.34, + "probability": 0.6757 + }, + { + "start": 6726.4, + "end": 6727.58, + "probability": 0.8136 + }, + { + "start": 6728.04, + "end": 6729.64, + "probability": 0.6916 + }, + { + "start": 6730.16, + "end": 6733.34, + "probability": 0.7691 + }, + { + "start": 6733.44, + "end": 6734.14, + "probability": 0.7643 + }, + { + "start": 6734.24, + "end": 6734.76, + "probability": 0.7859 + }, + { + "start": 6735.24, + "end": 6737.96, + "probability": 0.9951 + }, + { + "start": 6738.44, + "end": 6742.34, + "probability": 0.9 + }, + { + "start": 6742.72, + "end": 6745.0, + "probability": 0.9945 + }, + { + "start": 6746.74, + "end": 6750.48, + "probability": 0.9599 + }, + { + "start": 6751.02, + "end": 6753.26, + "probability": 0.981 + }, + { + "start": 6753.98, + "end": 6757.28, + "probability": 0.9853 + }, + { + "start": 6757.62, + "end": 6758.9, + "probability": 0.9946 + }, + { + "start": 6759.14, + "end": 6759.88, + "probability": 0.9993 + }, + { + "start": 6760.04, + "end": 6763.32, + "probability": 0.9956 + }, + { + "start": 6763.32, + "end": 6765.9, + "probability": 0.9558 + }, + { + "start": 6766.26, + "end": 6767.56, + "probability": 0.8192 + }, + { + "start": 6767.58, + "end": 6768.54, + "probability": 0.5016 + }, + { + "start": 6768.98, + "end": 6769.62, + "probability": 0.9855 + }, + { + "start": 6769.72, + "end": 6770.54, + "probability": 0.9935 + }, + { + "start": 6770.6, + "end": 6771.54, + "probability": 0.9908 + }, + { + "start": 6772.0, + "end": 6773.0, + "probability": 0.9738 + }, + { + "start": 6773.16, + "end": 6776.86, + "probability": 0.9987 + }, + { + "start": 6777.22, + "end": 6777.72, + "probability": 0.7432 + }, + { + "start": 6778.2, + "end": 6779.3, + "probability": 0.9891 + }, + { + "start": 6779.86, + "end": 6781.74, + "probability": 0.9617 + }, + { + "start": 6782.16, + "end": 6783.02, + "probability": 0.7615 + }, + { + "start": 6783.92, + "end": 6785.72, + "probability": 0.9897 + }, + { + "start": 6786.62, + "end": 6787.44, + "probability": 0.8769 + }, + { + "start": 6788.0, + "end": 6792.22, + "probability": 0.9619 + }, + { + "start": 6792.68, + "end": 6796.44, + "probability": 0.9972 + }, + { + "start": 6796.52, + "end": 6798.58, + "probability": 0.9055 + }, + { + "start": 6810.98, + "end": 6811.92, + "probability": 0.641 + }, + { + "start": 6812.06, + "end": 6813.3, + "probability": 0.8107 + }, + { + "start": 6813.38, + "end": 6814.6, + "probability": 0.7688 + }, + { + "start": 6815.4, + "end": 6821.92, + "probability": 0.8171 + }, + { + "start": 6822.34, + "end": 6828.98, + "probability": 0.9494 + }, + { + "start": 6829.38, + "end": 6831.54, + "probability": 0.9409 + }, + { + "start": 6832.2, + "end": 6832.82, + "probability": 0.8684 + }, + { + "start": 6833.44, + "end": 6839.28, + "probability": 0.977 + }, + { + "start": 6840.06, + "end": 6840.8, + "probability": 0.9027 + }, + { + "start": 6841.38, + "end": 6842.5, + "probability": 0.9842 + }, + { + "start": 6843.5, + "end": 6849.74, + "probability": 0.9829 + }, + { + "start": 6850.58, + "end": 6852.32, + "probability": 0.9928 + }, + { + "start": 6852.48, + "end": 6855.64, + "probability": 0.9878 + }, + { + "start": 6857.06, + "end": 6859.08, + "probability": 0.9974 + }, + { + "start": 6860.02, + "end": 6860.56, + "probability": 0.8303 + }, + { + "start": 6860.82, + "end": 6861.9, + "probability": 0.9836 + }, + { + "start": 6861.98, + "end": 6863.26, + "probability": 0.9875 + }, + { + "start": 6876.5, + "end": 6877.92, + "probability": 0.0871 + }, + { + "start": 6877.92, + "end": 6877.92, + "probability": 0.0555 + }, + { + "start": 6877.92, + "end": 6878.48, + "probability": 0.1005 + }, + { + "start": 6879.34, + "end": 6882.88, + "probability": 0.6354 + }, + { + "start": 6883.92, + "end": 6885.5, + "probability": 0.5748 + }, + { + "start": 6886.86, + "end": 6890.6, + "probability": 0.1601 + }, + { + "start": 6890.6, + "end": 6895.06, + "probability": 0.8624 + }, + { + "start": 6895.06, + "end": 6898.88, + "probability": 0.9966 + }, + { + "start": 6900.4, + "end": 6904.46, + "probability": 0.8516 + }, + { + "start": 6905.38, + "end": 6907.2, + "probability": 0.9081 + }, + { + "start": 6908.48, + "end": 6911.74, + "probability": 0.9181 + }, + { + "start": 6912.9, + "end": 6918.54, + "probability": 0.8489 + }, + { + "start": 6919.3, + "end": 6921.12, + "probability": 0.9817 + }, + { + "start": 6923.34, + "end": 6927.76, + "probability": 0.9643 + }, + { + "start": 6928.42, + "end": 6930.88, + "probability": 0.9825 + }, + { + "start": 6933.56, + "end": 6934.68, + "probability": 0.9223 + }, + { + "start": 6935.9, + "end": 6936.94, + "probability": 0.8377 + }, + { + "start": 6937.94, + "end": 6939.1, + "probability": 0.9611 + }, + { + "start": 6939.86, + "end": 6942.98, + "probability": 0.8817 + }, + { + "start": 6943.56, + "end": 6946.96, + "probability": 0.9949 + }, + { + "start": 6946.96, + "end": 6950.96, + "probability": 0.9933 + }, + { + "start": 6951.54, + "end": 6951.74, + "probability": 0.6063 + }, + { + "start": 6952.26, + "end": 6953.88, + "probability": 0.9877 + }, + { + "start": 6954.46, + "end": 6957.02, + "probability": 0.9827 + }, + { + "start": 6957.62, + "end": 6958.94, + "probability": 0.9746 + }, + { + "start": 6959.38, + "end": 6961.7, + "probability": 0.9941 + }, + { + "start": 6962.38, + "end": 6965.04, + "probability": 0.9812 + }, + { + "start": 6965.04, + "end": 6967.84, + "probability": 0.987 + }, + { + "start": 6967.9, + "end": 6968.76, + "probability": 0.9817 + }, + { + "start": 6969.6, + "end": 6972.42, + "probability": 0.7894 + }, + { + "start": 6973.14, + "end": 6975.22, + "probability": 0.9872 + }, + { + "start": 6975.58, + "end": 6978.92, + "probability": 0.9781 + }, + { + "start": 6979.42, + "end": 6982.04, + "probability": 0.9967 + }, + { + "start": 6982.12, + "end": 6982.82, + "probability": 0.6455 + }, + { + "start": 6982.88, + "end": 6984.86, + "probability": 0.7065 + }, + { + "start": 6984.98, + "end": 6989.54, + "probability": 0.9644 + }, + { + "start": 6989.64, + "end": 6990.78, + "probability": 0.5902 + }, + { + "start": 6991.34, + "end": 6992.36, + "probability": 0.7909 + }, + { + "start": 6992.4, + "end": 6992.92, + "probability": 0.5034 + }, + { + "start": 6993.76, + "end": 6994.42, + "probability": 0.5552 + }, + { + "start": 7039.68, + "end": 7042.3, + "probability": 0.6304 + }, + { + "start": 7042.68, + "end": 7044.34, + "probability": 0.9259 + }, + { + "start": 7045.2, + "end": 7049.86, + "probability": 0.9601 + }, + { + "start": 7050.94, + "end": 7056.18, + "probability": 0.9873 + }, + { + "start": 7057.24, + "end": 7060.3, + "probability": 0.8223 + }, + { + "start": 7063.12, + "end": 7066.06, + "probability": 0.7686 + }, + { + "start": 7066.2, + "end": 7067.6, + "probability": 0.7371 + }, + { + "start": 7068.06, + "end": 7069.1, + "probability": 0.9449 + }, + { + "start": 7069.62, + "end": 7071.58, + "probability": 0.5384 + }, + { + "start": 7080.44, + "end": 7081.88, + "probability": 0.7639 + }, + { + "start": 7082.8, + "end": 7083.8, + "probability": 0.3587 + }, + { + "start": 7084.88, + "end": 7087.02, + "probability": 0.7065 + }, + { + "start": 7087.12, + "end": 7087.86, + "probability": 0.7251 + }, + { + "start": 7087.96, + "end": 7090.28, + "probability": 0.9153 + }, + { + "start": 7090.68, + "end": 7096.36, + "probability": 0.998 + }, + { + "start": 7097.1, + "end": 7098.02, + "probability": 0.9784 + }, + { + "start": 7099.02, + "end": 7104.12, + "probability": 0.766 + }, + { + "start": 7106.74, + "end": 7109.58, + "probability": 0.8307 + }, + { + "start": 7109.76, + "end": 7109.86, + "probability": 0.0719 + }, + { + "start": 7110.22, + "end": 7111.3, + "probability": 0.7992 + }, + { + "start": 7111.52, + "end": 7112.32, + "probability": 0.6271 + }, + { + "start": 7112.62, + "end": 7115.34, + "probability": 0.7092 + }, + { + "start": 7116.56, + "end": 7118.5, + "probability": 0.6566 + }, + { + "start": 7118.66, + "end": 7120.3, + "probability": 0.9608 + }, + { + "start": 7120.3, + "end": 7121.56, + "probability": 0.7759 + }, + { + "start": 7123.34, + "end": 7127.46, + "probability": 0.7781 + }, + { + "start": 7128.13, + "end": 7130.56, + "probability": 0.9424 + }, + { + "start": 7130.78, + "end": 7133.34, + "probability": 0.959 + }, + { + "start": 7133.46, + "end": 7134.24, + "probability": 0.7195 + }, + { + "start": 7134.26, + "end": 7135.28, + "probability": 0.7926 + }, + { + "start": 7135.92, + "end": 7140.6, + "probability": 0.9877 + }, + { + "start": 7140.68, + "end": 7143.74, + "probability": 0.9898 + }, + { + "start": 7144.38, + "end": 7146.12, + "probability": 0.9971 + }, + { + "start": 7146.7, + "end": 7149.06, + "probability": 0.988 + }, + { + "start": 7149.06, + "end": 7149.26, + "probability": 0.8666 + }, + { + "start": 7149.32, + "end": 7151.19, + "probability": 0.9705 + }, + { + "start": 7151.24, + "end": 7154.02, + "probability": 0.9864 + }, + { + "start": 7155.21, + "end": 7158.68, + "probability": 0.9874 + }, + { + "start": 7158.9, + "end": 7161.18, + "probability": 0.9888 + }, + { + "start": 7162.4, + "end": 7165.32, + "probability": 0.9817 + }, + { + "start": 7166.44, + "end": 7169.46, + "probability": 0.9751 + }, + { + "start": 7170.38, + "end": 7173.98, + "probability": 0.9781 + }, + { + "start": 7174.82, + "end": 7175.62, + "probability": 0.9677 + }, + { + "start": 7175.84, + "end": 7176.5, + "probability": 0.7041 + }, + { + "start": 7176.66, + "end": 7179.76, + "probability": 0.9792 + }, + { + "start": 7180.64, + "end": 7182.8, + "probability": 0.9936 + }, + { + "start": 7183.04, + "end": 7185.38, + "probability": 0.7411 + }, + { + "start": 7187.22, + "end": 7189.1, + "probability": 0.051 + }, + { + "start": 7189.1, + "end": 7190.84, + "probability": 0.3601 + }, + { + "start": 7191.18, + "end": 7191.28, + "probability": 0.7727 + }, + { + "start": 7191.38, + "end": 7191.58, + "probability": 0.5797 + }, + { + "start": 7191.72, + "end": 7192.66, + "probability": 0.9731 + }, + { + "start": 7192.82, + "end": 7195.36, + "probability": 0.9308 + }, + { + "start": 7195.42, + "end": 7195.64, + "probability": 0.7549 + }, + { + "start": 7195.72, + "end": 7196.64, + "probability": 0.948 + }, + { + "start": 7197.18, + "end": 7198.22, + "probability": 0.5998 + }, + { + "start": 7198.26, + "end": 7200.06, + "probability": 0.9553 + }, + { + "start": 7200.16, + "end": 7202.48, + "probability": 0.1978 + }, + { + "start": 7202.7, + "end": 7202.7, + "probability": 0.1245 + }, + { + "start": 7202.7, + "end": 7204.9, + "probability": 0.344 + }, + { + "start": 7205.12, + "end": 7208.52, + "probability": 0.1288 + }, + { + "start": 7208.52, + "end": 7208.52, + "probability": 0.2698 + }, + { + "start": 7208.52, + "end": 7208.52, + "probability": 0.0485 + }, + { + "start": 7208.52, + "end": 7213.6, + "probability": 0.7414 + }, + { + "start": 7213.8, + "end": 7218.16, + "probability": 0.9781 + }, + { + "start": 7218.28, + "end": 7219.9, + "probability": 0.814 + }, + { + "start": 7220.0, + "end": 7220.96, + "probability": 0.6845 + }, + { + "start": 7221.0, + "end": 7222.4, + "probability": 0.8086 + }, + { + "start": 7222.4, + "end": 7223.52, + "probability": 0.7863 + }, + { + "start": 7223.54, + "end": 7224.66, + "probability": 0.4697 + }, + { + "start": 7224.66, + "end": 7226.5, + "probability": 0.2717 + }, + { + "start": 7227.64, + "end": 7227.66, + "probability": 0.0082 + }, + { + "start": 7227.66, + "end": 7227.66, + "probability": 0.1624 + }, + { + "start": 7227.96, + "end": 7230.3, + "probability": 0.6697 + }, + { + "start": 7230.52, + "end": 7231.88, + "probability": 0.7517 + }, + { + "start": 7232.89, + "end": 7234.18, + "probability": 0.0532 + }, + { + "start": 7234.18, + "end": 7234.72, + "probability": 0.0297 + }, + { + "start": 7234.8, + "end": 7235.2, + "probability": 0.3156 + }, + { + "start": 7235.66, + "end": 7239.82, + "probability": 0.991 + }, + { + "start": 7239.84, + "end": 7240.28, + "probability": 0.9587 + }, + { + "start": 7240.5, + "end": 7242.38, + "probability": 0.9724 + }, + { + "start": 7242.62, + "end": 7244.12, + "probability": 0.3272 + }, + { + "start": 7244.2, + "end": 7247.64, + "probability": 0.8633 + }, + { + "start": 7247.94, + "end": 7249.78, + "probability": 0.5713 + }, + { + "start": 7250.14, + "end": 7254.32, + "probability": 0.1174 + }, + { + "start": 7254.74, + "end": 7257.94, + "probability": 0.9912 + }, + { + "start": 7258.1, + "end": 7259.56, + "probability": 0.9966 + }, + { + "start": 7259.76, + "end": 7262.74, + "probability": 0.734 + }, + { + "start": 7263.32, + "end": 7263.88, + "probability": 0.7861 + }, + { + "start": 7264.0, + "end": 7269.03, + "probability": 0.9792 + }, + { + "start": 7269.9, + "end": 7273.12, + "probability": 0.9866 + }, + { + "start": 7273.18, + "end": 7275.24, + "probability": 0.2166 + }, + { + "start": 7275.24, + "end": 7276.1, + "probability": 0.4825 + }, + { + "start": 7276.34, + "end": 7276.36, + "probability": 0.0477 + }, + { + "start": 7276.36, + "end": 7276.82, + "probability": 0.3477 + }, + { + "start": 7277.04, + "end": 7278.24, + "probability": 0.7791 + }, + { + "start": 7278.34, + "end": 7279.14, + "probability": 0.8715 + }, + { + "start": 7279.54, + "end": 7280.2, + "probability": 0.9045 + }, + { + "start": 7280.24, + "end": 7281.6, + "probability": 0.3995 + }, + { + "start": 7283.12, + "end": 7283.3, + "probability": 0.1197 + }, + { + "start": 7283.9, + "end": 7284.16, + "probability": 0.0841 + }, + { + "start": 7284.16, + "end": 7284.34, + "probability": 0.0435 + }, + { + "start": 7284.34, + "end": 7286.43, + "probability": 0.9893 + }, + { + "start": 7287.22, + "end": 7287.56, + "probability": 0.0345 + }, + { + "start": 7287.56, + "end": 7287.56, + "probability": 0.0357 + }, + { + "start": 7287.56, + "end": 7297.02, + "probability": 0.8049 + }, + { + "start": 7298.38, + "end": 7301.6, + "probability": 0.9365 + }, + { + "start": 7302.22, + "end": 7302.7, + "probability": 0.7072 + }, + { + "start": 7302.88, + "end": 7304.54, + "probability": 0.9546 + }, + { + "start": 7304.56, + "end": 7306.84, + "probability": 0.9644 + }, + { + "start": 7306.92, + "end": 7308.84, + "probability": 0.8491 + }, + { + "start": 7309.62, + "end": 7311.44, + "probability": 0.9963 + }, + { + "start": 7312.3, + "end": 7316.3, + "probability": 0.9629 + }, + { + "start": 7316.44, + "end": 7318.74, + "probability": 0.8786 + }, + { + "start": 7318.88, + "end": 7321.9, + "probability": 0.9541 + }, + { + "start": 7322.52, + "end": 7325.42, + "probability": 0.9117 + }, + { + "start": 7325.88, + "end": 7327.46, + "probability": 0.978 + }, + { + "start": 7327.56, + "end": 7329.06, + "probability": 0.9985 + }, + { + "start": 7330.18, + "end": 7333.1, + "probability": 0.9956 + }, + { + "start": 7333.24, + "end": 7334.52, + "probability": 0.8162 + }, + { + "start": 7334.74, + "end": 7335.12, + "probability": 0.8739 + }, + { + "start": 7335.18, + "end": 7336.12, + "probability": 0.5372 + }, + { + "start": 7336.36, + "end": 7337.3, + "probability": 0.415 + }, + { + "start": 7337.36, + "end": 7337.36, + "probability": 0.5215 + }, + { + "start": 7337.58, + "end": 7340.68, + "probability": 0.9878 + }, + { + "start": 7342.0, + "end": 7342.26, + "probability": 0.4978 + }, + { + "start": 7342.38, + "end": 7342.6, + "probability": 0.9198 + }, + { + "start": 7342.68, + "end": 7347.72, + "probability": 0.9641 + }, + { + "start": 7347.8, + "end": 7351.46, + "probability": 0.9977 + }, + { + "start": 7351.68, + "end": 7356.62, + "probability": 0.8848 + }, + { + "start": 7357.08, + "end": 7358.78, + "probability": 0.9975 + }, + { + "start": 7358.96, + "end": 7360.44, + "probability": 0.9932 + }, + { + "start": 7360.48, + "end": 7362.14, + "probability": 0.9019 + }, + { + "start": 7362.14, + "end": 7365.66, + "probability": 0.9916 + }, + { + "start": 7366.3, + "end": 7368.0, + "probability": 0.9954 + }, + { + "start": 7368.06, + "end": 7369.36, + "probability": 0.9395 + }, + { + "start": 7369.82, + "end": 7372.88, + "probability": 0.736 + }, + { + "start": 7373.38, + "end": 7376.1, + "probability": 0.9937 + }, + { + "start": 7376.22, + "end": 7378.39, + "probability": 0.9832 + }, + { + "start": 7379.16, + "end": 7385.13, + "probability": 0.9871 + }, + { + "start": 7385.9, + "end": 7389.98, + "probability": 0.94 + }, + { + "start": 7390.8, + "end": 7396.72, + "probability": 0.9952 + }, + { + "start": 7397.24, + "end": 7399.28, + "probability": 0.9528 + }, + { + "start": 7399.5, + "end": 7402.26, + "probability": 0.9584 + }, + { + "start": 7403.04, + "end": 7407.72, + "probability": 0.9943 + }, + { + "start": 7408.38, + "end": 7411.48, + "probability": 0.9908 + }, + { + "start": 7412.32, + "end": 7414.96, + "probability": 0.9985 + }, + { + "start": 7415.44, + "end": 7417.8, + "probability": 0.9962 + }, + { + "start": 7417.82, + "end": 7423.04, + "probability": 0.9964 + }, + { + "start": 7423.12, + "end": 7425.6, + "probability": 0.9889 + }, + { + "start": 7425.9, + "end": 7426.24, + "probability": 0.8619 + }, + { + "start": 7426.36, + "end": 7427.7, + "probability": 0.9757 + }, + { + "start": 7429.64, + "end": 7433.56, + "probability": 0.9905 + }, + { + "start": 7433.56, + "end": 7437.78, + "probability": 0.9952 + }, + { + "start": 7438.98, + "end": 7443.8, + "probability": 0.9988 + }, + { + "start": 7443.96, + "end": 7448.52, + "probability": 0.9956 + }, + { + "start": 7450.18, + "end": 7455.06, + "probability": 0.9378 + }, + { + "start": 7455.18, + "end": 7456.94, + "probability": 0.903 + }, + { + "start": 7457.6, + "end": 7460.96, + "probability": 0.9272 + }, + { + "start": 7460.96, + "end": 7465.68, + "probability": 0.9917 + }, + { + "start": 7465.68, + "end": 7469.97, + "probability": 0.9355 + }, + { + "start": 7471.38, + "end": 7477.1, + "probability": 0.9972 + }, + { + "start": 7477.94, + "end": 7479.96, + "probability": 0.8918 + }, + { + "start": 7480.0, + "end": 7483.04, + "probability": 0.9972 + }, + { + "start": 7483.84, + "end": 7484.66, + "probability": 0.8706 + }, + { + "start": 7485.3, + "end": 7489.82, + "probability": 0.9989 + }, + { + "start": 7490.56, + "end": 7491.66, + "probability": 0.5178 + }, + { + "start": 7491.9, + "end": 7492.58, + "probability": 0.8375 + }, + { + "start": 7492.78, + "end": 7494.23, + "probability": 0.978 + }, + { + "start": 7494.48, + "end": 7496.2, + "probability": 0.8667 + }, + { + "start": 7496.3, + "end": 7497.84, + "probability": 0.9475 + }, + { + "start": 7498.81, + "end": 7501.66, + "probability": 0.9833 + }, + { + "start": 7501.8, + "end": 7505.02, + "probability": 0.9805 + }, + { + "start": 7505.74, + "end": 7507.82, + "probability": 0.7938 + }, + { + "start": 7507.92, + "end": 7508.46, + "probability": 0.8708 + }, + { + "start": 7508.62, + "end": 7509.5, + "probability": 0.6772 + }, + { + "start": 7509.78, + "end": 7511.36, + "probability": 0.9883 + }, + { + "start": 7511.5, + "end": 7511.7, + "probability": 0.9233 + }, + { + "start": 7511.78, + "end": 7513.14, + "probability": 0.9243 + }, + { + "start": 7513.22, + "end": 7514.72, + "probability": 0.9263 + }, + { + "start": 7516.28, + "end": 7523.26, + "probability": 0.9351 + }, + { + "start": 7524.02, + "end": 7526.66, + "probability": 0.9746 + }, + { + "start": 7526.66, + "end": 7530.52, + "probability": 0.9912 + }, + { + "start": 7531.76, + "end": 7537.04, + "probability": 0.9981 + }, + { + "start": 7537.04, + "end": 7541.0, + "probability": 0.9975 + }, + { + "start": 7541.28, + "end": 7547.3, + "probability": 0.9991 + }, + { + "start": 7547.84, + "end": 7551.28, + "probability": 0.979 + }, + { + "start": 7551.32, + "end": 7552.16, + "probability": 0.7038 + }, + { + "start": 7552.26, + "end": 7553.26, + "probability": 0.6936 + }, + { + "start": 7553.46, + "end": 7553.94, + "probability": 0.72 + }, + { + "start": 7554.06, + "end": 7555.96, + "probability": 0.9092 + }, + { + "start": 7555.96, + "end": 7557.45, + "probability": 0.9282 + }, + { + "start": 7557.94, + "end": 7558.32, + "probability": 0.3115 + }, + { + "start": 7558.44, + "end": 7558.72, + "probability": 0.5459 + }, + { + "start": 7558.78, + "end": 7559.96, + "probability": 0.7127 + }, + { + "start": 7560.02, + "end": 7561.48, + "probability": 0.7208 + }, + { + "start": 7562.22, + "end": 7564.22, + "probability": 0.8191 + }, + { + "start": 7568.8, + "end": 7572.22, + "probability": 0.9949 + }, + { + "start": 7572.8, + "end": 7577.42, + "probability": 0.9143 + }, + { + "start": 7577.46, + "end": 7578.8, + "probability": 0.7805 + }, + { + "start": 7579.36, + "end": 7581.44, + "probability": 0.7836 + }, + { + "start": 7582.22, + "end": 7584.08, + "probability": 0.9979 + }, + { + "start": 7584.2, + "end": 7588.25, + "probability": 0.677 + }, + { + "start": 7588.9, + "end": 7592.6, + "probability": 0.5102 + }, + { + "start": 7592.78, + "end": 7595.88, + "probability": 0.9802 + }, + { + "start": 7596.52, + "end": 7599.68, + "probability": 0.9874 + }, + { + "start": 7600.2, + "end": 7602.4, + "probability": 0.7286 + }, + { + "start": 7602.48, + "end": 7603.34, + "probability": 0.5993 + }, + { + "start": 7603.48, + "end": 7604.46, + "probability": 0.7185 + }, + { + "start": 7604.58, + "end": 7607.06, + "probability": 0.9525 + }, + { + "start": 7607.16, + "end": 7608.16, + "probability": 0.9116 + }, + { + "start": 7608.72, + "end": 7613.58, + "probability": 0.9684 + }, + { + "start": 7613.68, + "end": 7614.22, + "probability": 0.7642 + }, + { + "start": 7614.3, + "end": 7617.28, + "probability": 0.9977 + }, + { + "start": 7617.92, + "end": 7622.84, + "probability": 0.9975 + }, + { + "start": 7622.98, + "end": 7623.1, + "probability": 0.5191 + }, + { + "start": 7623.2, + "end": 7624.6, + "probability": 0.974 + }, + { + "start": 7625.16, + "end": 7627.86, + "probability": 0.9675 + }, + { + "start": 7628.1, + "end": 7630.14, + "probability": 0.9243 + }, + { + "start": 7630.5, + "end": 7631.8, + "probability": 0.0524 + }, + { + "start": 7633.34, + "end": 7633.42, + "probability": 0.3955 + }, + { + "start": 7634.22, + "end": 7634.58, + "probability": 0.1153 + }, + { + "start": 7635.02, + "end": 7635.6, + "probability": 0.2354 + }, + { + "start": 7635.88, + "end": 7639.66, + "probability": 0.8968 + }, + { + "start": 7642.11, + "end": 7645.48, + "probability": 0.021 + }, + { + "start": 7645.48, + "end": 7646.64, + "probability": 0.0303 + }, + { + "start": 7647.28, + "end": 7648.16, + "probability": 0.6521 + }, + { + "start": 7648.6, + "end": 7649.4, + "probability": 0.8063 + }, + { + "start": 7649.64, + "end": 7655.36, + "probability": 0.9956 + }, + { + "start": 7655.36, + "end": 7661.8, + "probability": 0.9956 + }, + { + "start": 7662.06, + "end": 7665.04, + "probability": 0.9883 + }, + { + "start": 7665.94, + "end": 7671.94, + "probability": 0.998 + }, + { + "start": 7672.3, + "end": 7673.82, + "probability": 0.9974 + }, + { + "start": 7673.96, + "end": 7674.66, + "probability": 0.677 + }, + { + "start": 7675.42, + "end": 7680.0, + "probability": 0.9946 + }, + { + "start": 7681.08, + "end": 7684.24, + "probability": 0.8301 + }, + { + "start": 7685.08, + "end": 7689.16, + "probability": 0.9969 + }, + { + "start": 7689.64, + "end": 7693.8, + "probability": 0.8309 + }, + { + "start": 7694.76, + "end": 7696.68, + "probability": 0.9824 + }, + { + "start": 7697.24, + "end": 7701.1, + "probability": 0.709 + }, + { + "start": 7702.0, + "end": 7702.0, + "probability": 0.0729 + }, + { + "start": 7702.0, + "end": 7702.0, + "probability": 0.2246 + }, + { + "start": 7702.0, + "end": 7704.74, + "probability": 0.9344 + }, + { + "start": 7705.7, + "end": 7707.18, + "probability": 0.7885 + }, + { + "start": 7707.56, + "end": 7710.62, + "probability": 0.9985 + }, + { + "start": 7711.12, + "end": 7711.92, + "probability": 0.5641 + }, + { + "start": 7712.74, + "end": 7714.2, + "probability": 0.9722 + }, + { + "start": 7714.36, + "end": 7715.39, + "probability": 0.843 + }, + { + "start": 7715.96, + "end": 7719.48, + "probability": 0.9488 + }, + { + "start": 7719.48, + "end": 7723.6, + "probability": 0.8257 + }, + { + "start": 7723.8, + "end": 7725.14, + "probability": 0.7703 + }, + { + "start": 7725.66, + "end": 7725.66, + "probability": 0.0691 + }, + { + "start": 7725.66, + "end": 7725.66, + "probability": 0.1613 + }, + { + "start": 7725.66, + "end": 7727.94, + "probability": 0.804 + }, + { + "start": 7728.74, + "end": 7729.84, + "probability": 0.4921 + }, + { + "start": 7729.98, + "end": 7732.24, + "probability": 0.9911 + }, + { + "start": 7732.48, + "end": 7734.62, + "probability": 0.9103 + }, + { + "start": 7735.28, + "end": 7736.2, + "probability": 0.9531 + }, + { + "start": 7736.48, + "end": 7736.97, + "probability": 0.8506 + }, + { + "start": 7737.86, + "end": 7739.44, + "probability": 0.9814 + }, + { + "start": 7740.06, + "end": 7740.72, + "probability": 0.271 + }, + { + "start": 7741.16, + "end": 7744.88, + "probability": 0.9619 + }, + { + "start": 7744.88, + "end": 7748.15, + "probability": 0.9922 + }, + { + "start": 7748.66, + "end": 7753.78, + "probability": 0.984 + }, + { + "start": 7753.78, + "end": 7758.4, + "probability": 0.8833 + }, + { + "start": 7758.58, + "end": 7760.06, + "probability": 0.8974 + }, + { + "start": 7760.4, + "end": 7762.3, + "probability": 0.783 + }, + { + "start": 7762.66, + "end": 7765.4, + "probability": 0.985 + }, + { + "start": 7765.4, + "end": 7768.8, + "probability": 0.8983 + }, + { + "start": 7768.92, + "end": 7770.6, + "probability": 0.9897 + }, + { + "start": 7772.1, + "end": 7774.5, + "probability": 0.9341 + }, + { + "start": 7775.48, + "end": 7776.76, + "probability": 0.9824 + }, + { + "start": 7778.01, + "end": 7781.02, + "probability": 0.95 + }, + { + "start": 7781.66, + "end": 7783.09, + "probability": 0.9727 + }, + { + "start": 7783.32, + "end": 7783.74, + "probability": 0.8205 + }, + { + "start": 7784.02, + "end": 7788.1, + "probability": 0.8794 + }, + { + "start": 7788.26, + "end": 7788.92, + "probability": 0.5125 + }, + { + "start": 7788.94, + "end": 7789.6, + "probability": 0.7451 + }, + { + "start": 7789.7, + "end": 7791.6, + "probability": 0.8477 + }, + { + "start": 7792.1, + "end": 7793.65, + "probability": 0.9526 + }, + { + "start": 7794.16, + "end": 7795.56, + "probability": 0.9897 + }, + { + "start": 7795.72, + "end": 7796.07, + "probability": 0.8146 + }, + { + "start": 7796.9, + "end": 7800.9, + "probability": 0.8716 + }, + { + "start": 7801.46, + "end": 7802.74, + "probability": 0.7497 + }, + { + "start": 7802.92, + "end": 7802.92, + "probability": 0.0361 + }, + { + "start": 7803.32, + "end": 7809.72, + "probability": 0.906 + }, + { + "start": 7809.82, + "end": 7812.0, + "probability": 0.9925 + }, + { + "start": 7812.32, + "end": 7813.5, + "probability": 0.9512 + }, + { + "start": 7813.86, + "end": 7815.96, + "probability": 0.9882 + }, + { + "start": 7816.54, + "end": 7818.88, + "probability": 0.9062 + }, + { + "start": 7819.34, + "end": 7820.3, + "probability": 0.9946 + }, + { + "start": 7820.98, + "end": 7824.68, + "probability": 0.6942 + }, + { + "start": 7824.98, + "end": 7826.18, + "probability": 0.965 + }, + { + "start": 7826.52, + "end": 7827.56, + "probability": 0.9814 + }, + { + "start": 7827.58, + "end": 7828.26, + "probability": 0.6949 + }, + { + "start": 7828.92, + "end": 7830.7, + "probability": 0.9683 + }, + { + "start": 7831.56, + "end": 7832.12, + "probability": 0.8589 + }, + { + "start": 7832.26, + "end": 7837.94, + "probability": 0.9764 + }, + { + "start": 7838.56, + "end": 7841.52, + "probability": 0.6581 + }, + { + "start": 7841.68, + "end": 7841.72, + "probability": 0.6951 + }, + { + "start": 7841.72, + "end": 7841.96, + "probability": 0.7336 + }, + { + "start": 7842.22, + "end": 7844.49, + "probability": 0.9067 + }, + { + "start": 7845.44, + "end": 7846.58, + "probability": 0.9893 + }, + { + "start": 7846.66, + "end": 7850.06, + "probability": 0.8375 + }, + { + "start": 7850.4, + "end": 7851.92, + "probability": 0.8721 + }, + { + "start": 7852.5, + "end": 7855.7, + "probability": 0.9746 + }, + { + "start": 7856.52, + "end": 7861.12, + "probability": 0.7898 + }, + { + "start": 7861.38, + "end": 7866.02, + "probability": 0.9222 + }, + { + "start": 7866.04, + "end": 7866.6, + "probability": 0.4085 + }, + { + "start": 7866.88, + "end": 7870.22, + "probability": 0.8164 + }, + { + "start": 7870.22, + "end": 7871.96, + "probability": 0.7393 + }, + { + "start": 7871.96, + "end": 7874.44, + "probability": 0.9856 + }, + { + "start": 7874.7, + "end": 7875.98, + "probability": 0.9374 + }, + { + "start": 7876.24, + "end": 7877.08, + "probability": 0.783 + }, + { + "start": 7877.08, + "end": 7878.18, + "probability": 0.488 + }, + { + "start": 7878.46, + "end": 7879.28, + "probability": 0.5138 + }, + { + "start": 7880.48, + "end": 7880.5, + "probability": 0.0686 + }, + { + "start": 7880.5, + "end": 7882.56, + "probability": 0.5219 + }, + { + "start": 7882.66, + "end": 7883.78, + "probability": 0.6605 + }, + { + "start": 7883.86, + "end": 7884.48, + "probability": 0.7682 + }, + { + "start": 7885.0, + "end": 7886.68, + "probability": 0.98 + }, + { + "start": 7886.74, + "end": 7889.4, + "probability": 0.4439 + }, + { + "start": 7889.48, + "end": 7890.7, + "probability": 0.9896 + }, + { + "start": 7901.86, + "end": 7904.46, + "probability": 0.7867 + }, + { + "start": 7905.0, + "end": 7907.28, + "probability": 0.956 + }, + { + "start": 7907.92, + "end": 7908.35, + "probability": 0.9283 + }, + { + "start": 7909.42, + "end": 7912.18, + "probability": 0.746 + }, + { + "start": 7915.09, + "end": 7917.68, + "probability": 0.5244 + }, + { + "start": 7918.46, + "end": 7920.23, + "probability": 0.9454 + }, + { + "start": 7920.78, + "end": 7921.66, + "probability": 0.8546 + }, + { + "start": 7921.72, + "end": 7922.3, + "probability": 0.8951 + }, + { + "start": 7922.36, + "end": 7924.87, + "probability": 0.7953 + }, + { + "start": 7925.66, + "end": 7929.32, + "probability": 0.9738 + }, + { + "start": 7930.06, + "end": 7931.34, + "probability": 0.9431 + }, + { + "start": 7932.34, + "end": 7932.34, + "probability": 0.372 + }, + { + "start": 7932.34, + "end": 7933.44, + "probability": 0.9953 + }, + { + "start": 7933.5, + "end": 7934.34, + "probability": 0.8961 + }, + { + "start": 7934.64, + "end": 7936.18, + "probability": 0.887 + }, + { + "start": 7937.06, + "end": 7940.2, + "probability": 0.9817 + }, + { + "start": 7940.72, + "end": 7945.07, + "probability": 0.6657 + }, + { + "start": 7945.62, + "end": 7948.32, + "probability": 0.9819 + }, + { + "start": 7948.58, + "end": 7950.44, + "probability": 0.924 + }, + { + "start": 7950.54, + "end": 7952.68, + "probability": 0.6527 + }, + { + "start": 7952.7, + "end": 7953.7, + "probability": 0.9436 + }, + { + "start": 7954.2, + "end": 7955.33, + "probability": 0.9966 + }, + { + "start": 7955.66, + "end": 7956.5, + "probability": 0.2161 + }, + { + "start": 7956.94, + "end": 7960.7, + "probability": 0.8686 + }, + { + "start": 7961.24, + "end": 7962.78, + "probability": 0.1978 + }, + { + "start": 7965.07, + "end": 7969.88, + "probability": 0.6927 + }, + { + "start": 7970.6, + "end": 7970.68, + "probability": 0.7411 + }, + { + "start": 7970.68, + "end": 7970.68, + "probability": 0.9562 + }, + { + "start": 7970.68, + "end": 7971.42, + "probability": 0.87 + }, + { + "start": 7971.54, + "end": 7972.1, + "probability": 0.7182 + }, + { + "start": 7972.48, + "end": 7974.0, + "probability": 0.9968 + }, + { + "start": 7974.2, + "end": 7977.9, + "probability": 0.9141 + }, + { + "start": 7978.2, + "end": 7978.62, + "probability": 0.9229 + }, + { + "start": 7978.7, + "end": 7981.72, + "probability": 0.6812 + }, + { + "start": 7981.8, + "end": 7982.64, + "probability": 0.6321 + }, + { + "start": 7982.66, + "end": 7983.48, + "probability": 0.5771 + }, + { + "start": 7983.94, + "end": 7984.24, + "probability": 0.8389 + }, + { + "start": 7984.3, + "end": 7984.99, + "probability": 0.9316 + }, + { + "start": 7985.16, + "end": 7987.0, + "probability": 0.9416 + }, + { + "start": 7987.24, + "end": 7988.18, + "probability": 0.8532 + }, + { + "start": 7988.74, + "end": 7988.98, + "probability": 0.0741 + }, + { + "start": 7989.04, + "end": 7989.5, + "probability": 0.2413 + }, + { + "start": 7989.58, + "end": 7989.7, + "probability": 0.4799 + }, + { + "start": 7989.76, + "end": 7992.38, + "probability": 0.9114 + }, + { + "start": 7992.44, + "end": 7994.74, + "probability": 0.9497 + }, + { + "start": 7995.22, + "end": 7996.8, + "probability": 0.9865 + }, + { + "start": 7996.94, + "end": 7998.14, + "probability": 0.962 + }, + { + "start": 7998.28, + "end": 8001.3, + "probability": 0.9948 + }, + { + "start": 8001.46, + "end": 8003.38, + "probability": 0.9854 + }, + { + "start": 8003.46, + "end": 8006.41, + "probability": 0.9157 + }, + { + "start": 8006.88, + "end": 8010.1, + "probability": 0.9086 + }, + { + "start": 8010.46, + "end": 8012.98, + "probability": 0.9893 + }, + { + "start": 8013.1, + "end": 8014.98, + "probability": 0.9974 + }, + { + "start": 8015.14, + "end": 8016.18, + "probability": 0.7356 + }, + { + "start": 8016.32, + "end": 8017.9, + "probability": 0.9742 + }, + { + "start": 8018.14, + "end": 8019.72, + "probability": 0.9935 + }, + { + "start": 8020.02, + "end": 8021.34, + "probability": 0.9874 + }, + { + "start": 8021.5, + "end": 8022.86, + "probability": 0.7234 + }, + { + "start": 8023.14, + "end": 8027.64, + "probability": 0.9968 + }, + { + "start": 8027.76, + "end": 8028.44, + "probability": 0.6786 + }, + { + "start": 8028.66, + "end": 8030.44, + "probability": 0.7125 + }, + { + "start": 8030.92, + "end": 8032.74, + "probability": 0.9946 + }, + { + "start": 8032.9, + "end": 8034.72, + "probability": 0.9795 + }, + { + "start": 8034.8, + "end": 8035.84, + "probability": 0.9784 + }, + { + "start": 8035.92, + "end": 8036.26, + "probability": 0.7979 + }, + { + "start": 8036.5, + "end": 8036.92, + "probability": 0.6839 + }, + { + "start": 8036.94, + "end": 8039.02, + "probability": 0.9691 + }, + { + "start": 8039.6, + "end": 8043.92, + "probability": 0.9086 + }, + { + "start": 8044.54, + "end": 8048.8, + "probability": 0.869 + }, + { + "start": 8048.92, + "end": 8051.08, + "probability": 0.9582 + }, + { + "start": 8051.98, + "end": 8054.76, + "probability": 0.9907 + }, + { + "start": 8054.86, + "end": 8056.58, + "probability": 0.9387 + }, + { + "start": 8057.02, + "end": 8058.71, + "probability": 0.9567 + }, + { + "start": 8059.02, + "end": 8060.78, + "probability": 0.9983 + }, + { + "start": 8060.96, + "end": 8062.51, + "probability": 0.991 + }, + { + "start": 8062.86, + "end": 8063.88, + "probability": 0.8906 + }, + { + "start": 8064.18, + "end": 8066.62, + "probability": 0.9857 + }, + { + "start": 8066.9, + "end": 8066.92, + "probability": 0.0371 + }, + { + "start": 8067.06, + "end": 8067.82, + "probability": 0.6528 + }, + { + "start": 8068.06, + "end": 8074.88, + "probability": 0.9421 + }, + { + "start": 8074.9, + "end": 8076.48, + "probability": 0.9363 + }, + { + "start": 8076.6, + "end": 8078.1, + "probability": 0.8701 + }, + { + "start": 8078.24, + "end": 8079.8, + "probability": 0.8351 + }, + { + "start": 8080.32, + "end": 8082.2, + "probability": 0.9803 + }, + { + "start": 8082.58, + "end": 8084.81, + "probability": 0.9963 + }, + { + "start": 8085.44, + "end": 8087.02, + "probability": 0.9971 + }, + { + "start": 8087.56, + "end": 8090.02, + "probability": 0.9985 + }, + { + "start": 8090.28, + "end": 8091.92, + "probability": 0.7579 + }, + { + "start": 8092.58, + "end": 8094.38, + "probability": 0.5269 + }, + { + "start": 8094.96, + "end": 8096.32, + "probability": 0.6644 + }, + { + "start": 8096.7, + "end": 8099.86, + "probability": 0.8507 + }, + { + "start": 8099.92, + "end": 8101.58, + "probability": 0.8495 + }, + { + "start": 8101.88, + "end": 8103.24, + "probability": 0.9487 + }, + { + "start": 8103.7, + "end": 8106.2, + "probability": 0.8611 + }, + { + "start": 8106.3, + "end": 8106.81, + "probability": 0.9407 + }, + { + "start": 8107.36, + "end": 8109.48, + "probability": 0.9946 + }, + { + "start": 8109.84, + "end": 8109.98, + "probability": 0.6339 + }, + { + "start": 8110.06, + "end": 8110.06, + "probability": 0.4129 + }, + { + "start": 8110.06, + "end": 8111.14, + "probability": 0.9587 + }, + { + "start": 8112.06, + "end": 8113.36, + "probability": 0.9696 + }, + { + "start": 8113.46, + "end": 8116.3, + "probability": 0.5654 + }, + { + "start": 8116.36, + "end": 8119.64, + "probability": 0.9901 + }, + { + "start": 8119.84, + "end": 8121.44, + "probability": 0.5438 + }, + { + "start": 8121.62, + "end": 8123.42, + "probability": 0.8525 + }, + { + "start": 8123.74, + "end": 8124.74, + "probability": 0.5001 + }, + { + "start": 8125.66, + "end": 8126.86, + "probability": 0.5365 + }, + { + "start": 8126.98, + "end": 8128.24, + "probability": 0.6598 + }, + { + "start": 8128.34, + "end": 8128.7, + "probability": 0.2932 + }, + { + "start": 8129.5, + "end": 8129.54, + "probability": 0.3586 + }, + { + "start": 8129.66, + "end": 8129.98, + "probability": 0.8884 + }, + { + "start": 8131.38, + "end": 8131.8, + "probability": 0.6091 + }, + { + "start": 8132.08, + "end": 8133.58, + "probability": 0.2054 + }, + { + "start": 8133.78, + "end": 8134.1, + "probability": 0.2145 + }, + { + "start": 8134.3, + "end": 8134.42, + "probability": 0.4681 + }, + { + "start": 8134.78, + "end": 8139.8, + "probability": 0.0348 + }, + { + "start": 8140.16, + "end": 8140.9, + "probability": 0.102 + }, + { + "start": 8140.9, + "end": 8141.26, + "probability": 0.4185 + }, + { + "start": 8142.1, + "end": 8143.2, + "probability": 0.6995 + }, + { + "start": 8145.4, + "end": 8146.32, + "probability": 0.6269 + }, + { + "start": 8164.1, + "end": 8164.6, + "probability": 0.596 + }, + { + "start": 8164.7, + "end": 8165.82, + "probability": 0.8729 + }, + { + "start": 8165.92, + "end": 8172.44, + "probability": 0.9541 + }, + { + "start": 8173.08, + "end": 8177.92, + "probability": 0.9989 + }, + { + "start": 8178.06, + "end": 8182.44, + "probability": 0.9977 + }, + { + "start": 8182.92, + "end": 8184.86, + "probability": 0.9992 + }, + { + "start": 8184.86, + "end": 8187.84, + "probability": 0.948 + }, + { + "start": 8188.22, + "end": 8192.78, + "probability": 0.8451 + }, + { + "start": 8193.16, + "end": 8193.94, + "probability": 0.3795 + }, + { + "start": 8194.44, + "end": 8195.86, + "probability": 0.9398 + }, + { + "start": 8196.02, + "end": 8198.16, + "probability": 0.8617 + }, + { + "start": 8198.58, + "end": 8199.28, + "probability": 0.0442 + }, + { + "start": 8199.42, + "end": 8200.24, + "probability": 0.107 + }, + { + "start": 8200.44, + "end": 8202.48, + "probability": 0.3363 + }, + { + "start": 8203.28, + "end": 8205.5, + "probability": 0.1117 + }, + { + "start": 8206.02, + "end": 8208.12, + "probability": 0.0104 + }, + { + "start": 8208.84, + "end": 8209.16, + "probability": 0.0773 + }, + { + "start": 8209.2, + "end": 8212.64, + "probability": 0.0426 + }, + { + "start": 8215.8, + "end": 8217.18, + "probability": 0.5298 + }, + { + "start": 8217.92, + "end": 8219.34, + "probability": 0.091 + }, + { + "start": 8219.34, + "end": 8220.1, + "probability": 0.0285 + }, + { + "start": 8222.38, + "end": 8224.44, + "probability": 0.4436 + }, + { + "start": 8224.44, + "end": 8224.88, + "probability": 0.3454 + }, + { + "start": 8224.88, + "end": 8225.96, + "probability": 0.1394 + }, + { + "start": 8226.52, + "end": 8227.12, + "probability": 0.1908 + }, + { + "start": 8227.76, + "end": 8227.76, + "probability": 0.0328 + }, + { + "start": 8230.44, + "end": 8230.64, + "probability": 0.0694 + }, + { + "start": 8305.0, + "end": 8305.0, + "probability": 0.0 + }, + { + "start": 8305.0, + "end": 8305.0, + "probability": 0.0 + }, + { + "start": 8305.0, + "end": 8305.0, + "probability": 0.0 + }, + { + "start": 8305.0, + "end": 8305.0, + "probability": 0.0 + }, + { + "start": 8305.0, + "end": 8305.0, + "probability": 0.0 + }, + { + "start": 8305.0, + "end": 8305.0, + "probability": 0.0 + }, + { + "start": 8305.0, + "end": 8305.0, + "probability": 0.0 + }, + { + "start": 8305.0, + "end": 8305.0, + "probability": 0.0 + }, + { + "start": 8305.0, + "end": 8305.0, + "probability": 0.0 + }, + { + "start": 8305.0, + "end": 8305.0, + "probability": 0.0 + }, + { + "start": 8305.0, + "end": 8305.0, + "probability": 0.0 + }, + { + "start": 8305.0, + "end": 8305.0, + "probability": 0.0 + }, + { + "start": 8305.0, + "end": 8305.0, + "probability": 0.0 + }, + { + "start": 8305.0, + "end": 8305.0, + "probability": 0.0 + }, + { + "start": 8305.0, + "end": 8305.0, + "probability": 0.0 + }, + { + "start": 8305.0, + "end": 8305.0, + "probability": 0.0 + }, + { + "start": 8305.0, + "end": 8305.0, + "probability": 0.0 + }, + { + "start": 8305.0, + "end": 8305.0, + "probability": 0.0 + }, + { + "start": 8305.0, + "end": 8305.0, + "probability": 0.0 + }, + { + "start": 8305.0, + "end": 8305.0, + "probability": 0.0 + }, + { + "start": 8305.0, + "end": 8305.0, + "probability": 0.0 + }, + { + "start": 8305.0, + "end": 8305.0, + "probability": 0.0 + }, + { + "start": 8305.0, + "end": 8305.0, + "probability": 0.0 + }, + { + "start": 8305.0, + "end": 8305.0, + "probability": 0.0 + }, + { + "start": 8305.0, + "end": 8305.0, + "probability": 0.0 + }, + { + "start": 8305.0, + "end": 8305.0, + "probability": 0.0 + }, + { + "start": 8305.0, + "end": 8305.0, + "probability": 0.0 + }, + { + "start": 8305.0, + "end": 8305.0, + "probability": 0.0 + }, + { + "start": 8305.0, + "end": 8305.0, + "probability": 0.0 + }, + { + "start": 8305.0, + "end": 8305.0, + "probability": 0.0 + }, + { + "start": 8305.0, + "end": 8305.0, + "probability": 0.0 + }, + { + "start": 8305.0, + "end": 8305.0, + "probability": 0.0 + }, + { + "start": 8305.0, + "end": 8305.0, + "probability": 0.0 + }, + { + "start": 8305.0, + "end": 8305.0, + "probability": 0.0 + }, + { + "start": 8305.0, + "end": 8305.0, + "probability": 0.0 + }, + { + "start": 8305.0, + "end": 8305.0, + "probability": 0.0 + }, + { + "start": 8305.0, + "end": 8305.0, + "probability": 0.0 + }, + { + "start": 8305.0, + "end": 8305.0, + "probability": 0.0 + }, + { + "start": 8305.0, + "end": 8305.0, + "probability": 0.0 + }, + { + "start": 8305.0, + "end": 8305.0, + "probability": 0.0 + }, + { + "start": 8305.0, + "end": 8305.0, + "probability": 0.0 + }, + { + "start": 8305.18, + "end": 8305.24, + "probability": 0.0035 + }, + { + "start": 8305.24, + "end": 8305.24, + "probability": 0.0086 + }, + { + "start": 8305.24, + "end": 8305.24, + "probability": 0.124 + }, + { + "start": 8305.24, + "end": 8306.12, + "probability": 0.1694 + }, + { + "start": 8306.2, + "end": 8309.4, + "probability": 0.7419 + }, + { + "start": 8309.76, + "end": 8310.6, + "probability": 0.9633 + }, + { + "start": 8310.72, + "end": 8311.42, + "probability": 0.7788 + }, + { + "start": 8311.98, + "end": 8315.52, + "probability": 0.9984 + }, + { + "start": 8315.82, + "end": 8316.28, + "probability": 0.5035 + }, + { + "start": 8316.38, + "end": 8317.24, + "probability": 0.7247 + }, + { + "start": 8317.28, + "end": 8321.12, + "probability": 0.8714 + }, + { + "start": 8321.58, + "end": 8323.5, + "probability": 0.9297 + }, + { + "start": 8323.76, + "end": 8328.03, + "probability": 0.9753 + }, + { + "start": 8328.68, + "end": 8330.52, + "probability": 0.7268 + }, + { + "start": 8330.84, + "end": 8331.64, + "probability": 0.9243 + }, + { + "start": 8332.06, + "end": 8335.22, + "probability": 0.9957 + }, + { + "start": 8335.32, + "end": 8338.26, + "probability": 0.998 + }, + { + "start": 8338.72, + "end": 8339.12, + "probability": 0.8673 + }, + { + "start": 8339.5, + "end": 8340.02, + "probability": 0.5649 + }, + { + "start": 8340.1, + "end": 8341.98, + "probability": 0.9266 + }, + { + "start": 8343.75, + "end": 8346.58, + "probability": 0.9609 + }, + { + "start": 8347.02, + "end": 8348.3, + "probability": 0.9686 + }, + { + "start": 8358.34, + "end": 8359.24, + "probability": 0.6977 + }, + { + "start": 8359.32, + "end": 8360.4, + "probability": 0.9284 + }, + { + "start": 8360.48, + "end": 8362.93, + "probability": 0.9311 + }, + { + "start": 8363.34, + "end": 8367.08, + "probability": 0.4243 + }, + { + "start": 8367.38, + "end": 8368.22, + "probability": 0.9868 + }, + { + "start": 8368.92, + "end": 8370.12, + "probability": 0.7889 + }, + { + "start": 8371.84, + "end": 8373.22, + "probability": 0.9664 + }, + { + "start": 8373.3, + "end": 8374.45, + "probability": 0.9905 + }, + { + "start": 8374.8, + "end": 8376.72, + "probability": 0.7677 + }, + { + "start": 8377.7, + "end": 8378.16, + "probability": 0.8243 + }, + { + "start": 8379.52, + "end": 8382.08, + "probability": 0.8064 + }, + { + "start": 8383.08, + "end": 8384.32, + "probability": 0.9067 + }, + { + "start": 8385.56, + "end": 8387.66, + "probability": 0.962 + }, + { + "start": 8388.82, + "end": 8393.8, + "probability": 0.8704 + }, + { + "start": 8394.34, + "end": 8396.18, + "probability": 0.8305 + }, + { + "start": 8397.44, + "end": 8398.96, + "probability": 0.9985 + }, + { + "start": 8399.5, + "end": 8403.28, + "probability": 0.98 + }, + { + "start": 8404.46, + "end": 8405.28, + "probability": 0.7671 + }, + { + "start": 8406.66, + "end": 8407.78, + "probability": 0.97 + }, + { + "start": 8409.22, + "end": 8411.8, + "probability": 0.9937 + }, + { + "start": 8413.36, + "end": 8418.58, + "probability": 0.9709 + }, + { + "start": 8419.08, + "end": 8425.42, + "probability": 0.9261 + }, + { + "start": 8426.8, + "end": 8429.2, + "probability": 0.8153 + }, + { + "start": 8429.24, + "end": 8432.78, + "probability": 0.9722 + }, + { + "start": 8438.34, + "end": 8439.98, + "probability": 0.8794 + }, + { + "start": 8440.52, + "end": 8443.66, + "probability": 0.999 + }, + { + "start": 8445.0, + "end": 8446.56, + "probability": 0.8753 + }, + { + "start": 8447.6, + "end": 8449.14, + "probability": 0.8542 + }, + { + "start": 8450.54, + "end": 8451.94, + "probability": 0.9973 + }, + { + "start": 8452.54, + "end": 8453.84, + "probability": 0.9069 + }, + { + "start": 8454.92, + "end": 8457.04, + "probability": 0.9954 + }, + { + "start": 8458.2, + "end": 8459.24, + "probability": 0.928 + }, + { + "start": 8459.84, + "end": 8460.84, + "probability": 0.7198 + }, + { + "start": 8462.7, + "end": 8463.48, + "probability": 0.972 + }, + { + "start": 8464.5, + "end": 8465.48, + "probability": 0.7681 + }, + { + "start": 8466.16, + "end": 8469.02, + "probability": 0.8943 + }, + { + "start": 8469.1, + "end": 8471.98, + "probability": 0.6695 + }, + { + "start": 8472.3, + "end": 8473.45, + "probability": 0.9633 + }, + { + "start": 8474.12, + "end": 8474.38, + "probability": 0.4745 + }, + { + "start": 8474.58, + "end": 8475.66, + "probability": 0.9646 + }, + { + "start": 8475.98, + "end": 8477.56, + "probability": 0.8913 + }, + { + "start": 8477.64, + "end": 8478.1, + "probability": 0.3912 + }, + { + "start": 8478.34, + "end": 8480.5, + "probability": 0.7597 + }, + { + "start": 8480.66, + "end": 8480.66, + "probability": 0.1874 + }, + { + "start": 8480.66, + "end": 8481.1, + "probability": 0.3973 + }, + { + "start": 8481.1, + "end": 8482.1, + "probability": 0.7204 + }, + { + "start": 8482.36, + "end": 8483.0, + "probability": 0.7241 + }, + { + "start": 8483.0, + "end": 8483.64, + "probability": 0.8697 + }, + { + "start": 8483.72, + "end": 8483.84, + "probability": 0.171 + }, + { + "start": 8483.84, + "end": 8483.84, + "probability": 0.1737 + }, + { + "start": 8483.86, + "end": 8484.22, + "probability": 0.1827 + }, + { + "start": 8484.32, + "end": 8484.82, + "probability": 0.92 + }, + { + "start": 8484.94, + "end": 8487.52, + "probability": 0.9238 + }, + { + "start": 8487.6, + "end": 8489.14, + "probability": 0.0229 + }, + { + "start": 8489.14, + "end": 8491.46, + "probability": 0.7603 + }, + { + "start": 8491.56, + "end": 8494.6, + "probability": 0.6313 + }, + { + "start": 8495.04, + "end": 8496.1, + "probability": 0.9446 + }, + { + "start": 8496.3, + "end": 8496.68, + "probability": 0.09 + }, + { + "start": 8496.68, + "end": 8498.4, + "probability": 0.2212 + }, + { + "start": 8498.66, + "end": 8500.3, + "probability": 0.1297 + }, + { + "start": 8500.52, + "end": 8501.3, + "probability": 0.005 + }, + { + "start": 8501.36, + "end": 8502.3, + "probability": 0.0729 + }, + { + "start": 8502.3, + "end": 8502.51, + "probability": 0.4807 + }, + { + "start": 8502.96, + "end": 8505.52, + "probability": 0.6644 + }, + { + "start": 8505.64, + "end": 8506.92, + "probability": 0.8854 + }, + { + "start": 8506.92, + "end": 8508.92, + "probability": 0.3363 + }, + { + "start": 8508.92, + "end": 8511.9, + "probability": 0.0253 + }, + { + "start": 8512.18, + "end": 8513.48, + "probability": 0.0976 + }, + { + "start": 8513.48, + "end": 8514.72, + "probability": 0.4957 + }, + { + "start": 8515.16, + "end": 8515.16, + "probability": 0.0356 + }, + { + "start": 8515.16, + "end": 8515.16, + "probability": 0.0408 + }, + { + "start": 8515.16, + "end": 8518.0, + "probability": 0.9823 + }, + { + "start": 8518.52, + "end": 8519.56, + "probability": 0.9377 + }, + { + "start": 8519.9, + "end": 8520.26, + "probability": 0.4945 + }, + { + "start": 8520.38, + "end": 8522.7, + "probability": 0.8087 + }, + { + "start": 8522.82, + "end": 8523.84, + "probability": 0.7185 + }, + { + "start": 8524.06, + "end": 8527.88, + "probability": 0.817 + }, + { + "start": 8527.96, + "end": 8528.7, + "probability": 0.6276 + }, + { + "start": 8528.72, + "end": 8528.72, + "probability": 0.682 + }, + { + "start": 8528.82, + "end": 8528.88, + "probability": 0.3586 + }, + { + "start": 8528.88, + "end": 8530.72, + "probability": 0.699 + }, + { + "start": 8531.24, + "end": 8536.6, + "probability": 0.4307 + }, + { + "start": 8536.6, + "end": 8541.58, + "probability": 0.5905 + }, + { + "start": 8541.66, + "end": 8545.3, + "probability": 0.2343 + }, + { + "start": 8545.82, + "end": 8546.48, + "probability": 0.1867 + }, + { + "start": 8546.58, + "end": 8547.68, + "probability": 0.5268 + }, + { + "start": 8547.74, + "end": 8548.94, + "probability": 0.5372 + }, + { + "start": 8549.3, + "end": 8550.9, + "probability": 0.4323 + }, + { + "start": 8551.16, + "end": 8551.94, + "probability": 0.365 + }, + { + "start": 8552.8, + "end": 8553.18, + "probability": 0.0258 + }, + { + "start": 8553.52, + "end": 8561.76, + "probability": 0.02 + }, + { + "start": 8561.76, + "end": 8563.96, + "probability": 0.0221 + }, + { + "start": 8563.96, + "end": 8564.74, + "probability": 0.1044 + }, + { + "start": 8565.0, + "end": 8566.34, + "probability": 0.2035 + }, + { + "start": 8566.34, + "end": 8566.76, + "probability": 0.1387 + }, + { + "start": 8567.5, + "end": 8567.7, + "probability": 0.051 + }, + { + "start": 8567.7, + "end": 8567.7, + "probability": 0.2964 + }, + { + "start": 8567.7, + "end": 8567.7, + "probability": 0.0789 + }, + { + "start": 8567.7, + "end": 8568.66, + "probability": 0.1707 + }, + { + "start": 8571.08, + "end": 8571.26, + "probability": 0.2842 + }, + { + "start": 8584.0, + "end": 8584.0, + "probability": 0.0 + }, + { + "start": 8584.0, + "end": 8584.0, + "probability": 0.0 + }, + { + "start": 8584.0, + "end": 8584.0, + "probability": 0.0 + }, + { + "start": 8584.0, + "end": 8584.0, + "probability": 0.0 + }, + { + "start": 8584.0, + "end": 8584.0, + "probability": 0.0 + }, + { + "start": 8584.0, + "end": 8584.0, + "probability": 0.0 + }, + { + "start": 8584.0, + "end": 8584.0, + "probability": 0.0 + }, + { + "start": 8584.0, + "end": 8584.0, + "probability": 0.0 + }, + { + "start": 8584.0, + "end": 8584.0, + "probability": 0.0 + }, + { + "start": 8584.0, + "end": 8584.0, + "probability": 0.0 + }, + { + "start": 8584.0, + "end": 8584.0, + "probability": 0.0 + }, + { + "start": 8584.39, + "end": 8586.44, + "probability": 0.7993 + }, + { + "start": 8586.88, + "end": 8586.9, + "probability": 0.2345 + }, + { + "start": 8586.9, + "end": 8586.9, + "probability": 0.6057 + }, + { + "start": 8586.9, + "end": 8587.96, + "probability": 0.7996 + }, + { + "start": 8588.36, + "end": 8589.86, + "probability": 0.7547 + }, + { + "start": 8589.86, + "end": 8592.92, + "probability": 0.9391 + }, + { + "start": 8592.98, + "end": 8596.82, + "probability": 0.9819 + }, + { + "start": 8597.46, + "end": 8599.6, + "probability": 0.7976 + }, + { + "start": 8599.8, + "end": 8600.54, + "probability": 0.9918 + }, + { + "start": 8600.64, + "end": 8600.86, + "probability": 0.731 + }, + { + "start": 8600.86, + "end": 8601.04, + "probability": 0.4268 + }, + { + "start": 8601.7, + "end": 8603.62, + "probability": 0.9349 + }, + { + "start": 8603.88, + "end": 8607.74, + "probability": 0.9887 + }, + { + "start": 8607.74, + "end": 8609.36, + "probability": 0.7225 + }, + { + "start": 8610.02, + "end": 8615.7, + "probability": 0.9029 + }, + { + "start": 8615.86, + "end": 8616.58, + "probability": 0.6853 + }, + { + "start": 8617.18, + "end": 8617.82, + "probability": 0.2485 + }, + { + "start": 8618.36, + "end": 8621.05, + "probability": 0.1109 + }, + { + "start": 8622.84, + "end": 8625.18, + "probability": 0.2893 + }, + { + "start": 8625.6, + "end": 8627.44, + "probability": 0.064 + }, + { + "start": 8627.44, + "end": 8628.96, + "probability": 0.0712 + }, + { + "start": 8630.56, + "end": 8634.64, + "probability": 0.2338 + }, + { + "start": 8634.86, + "end": 8637.14, + "probability": 0.52 + }, + { + "start": 8637.28, + "end": 8639.14, + "probability": 0.2775 + }, + { + "start": 8639.4, + "end": 8640.7, + "probability": 0.3051 + }, + { + "start": 8641.34, + "end": 8643.04, + "probability": 0.5048 + }, + { + "start": 8643.22, + "end": 8644.4, + "probability": 0.5533 + }, + { + "start": 8644.52, + "end": 8646.64, + "probability": 0.9677 + }, + { + "start": 8647.0, + "end": 8649.22, + "probability": 0.7817 + }, + { + "start": 8651.68, + "end": 8652.26, + "probability": 0.1932 + }, + { + "start": 8652.26, + "end": 8652.26, + "probability": 0.1164 + }, + { + "start": 8652.26, + "end": 8658.24, + "probability": 0.9602 + }, + { + "start": 8658.76, + "end": 8660.06, + "probability": 0.8528 + }, + { + "start": 8660.64, + "end": 8663.5, + "probability": 0.9744 + }, + { + "start": 8663.88, + "end": 8664.36, + "probability": 0.8689 + }, + { + "start": 8664.56, + "end": 8667.44, + "probability": 0.9756 + }, + { + "start": 8667.98, + "end": 8669.32, + "probability": 0.7637 + }, + { + "start": 8669.84, + "end": 8670.98, + "probability": 0.6225 + }, + { + "start": 8671.62, + "end": 8674.14, + "probability": 0.8579 + }, + { + "start": 8674.74, + "end": 8675.44, + "probability": 0.5734 + }, + { + "start": 8677.78, + "end": 8678.28, + "probability": 0.3162 + }, + { + "start": 8688.12, + "end": 8693.03, + "probability": 0.0944 + }, + { + "start": 8693.36, + "end": 8693.9, + "probability": 0.5819 + }, + { + "start": 8693.9, + "end": 8693.9, + "probability": 0.507 + }, + { + "start": 8694.0, + "end": 8694.92, + "probability": 0.095 + }, + { + "start": 8695.6, + "end": 8699.74, + "probability": 0.6681 + }, + { + "start": 8700.16, + "end": 8702.14, + "probability": 0.9729 + }, + { + "start": 8702.14, + "end": 8703.82, + "probability": 0.7359 + }, + { + "start": 8704.4, + "end": 8705.56, + "probability": 0.5533 + }, + { + "start": 8705.78, + "end": 8708.14, + "probability": 0.9277 + }, + { + "start": 8708.32, + "end": 8713.96, + "probability": 0.9806 + }, + { + "start": 8714.7, + "end": 8717.85, + "probability": 0.8543 + }, + { + "start": 8718.4, + "end": 8720.52, + "probability": 0.9469 + }, + { + "start": 8720.64, + "end": 8722.96, + "probability": 0.8016 + }, + { + "start": 8723.14, + "end": 8724.2, + "probability": 0.6347 + }, + { + "start": 8725.1, + "end": 8727.98, + "probability": 0.9829 + }, + { + "start": 8728.26, + "end": 8731.98, + "probability": 0.9819 + }, + { + "start": 8732.36, + "end": 8734.38, + "probability": 0.9006 + }, + { + "start": 8737.79, + "end": 8739.22, + "probability": 0.8617 + }, + { + "start": 8740.36, + "end": 8741.18, + "probability": 0.9346 + }, + { + "start": 8743.72, + "end": 8745.82, + "probability": 0.7049 + }, + { + "start": 8745.94, + "end": 8748.64, + "probability": 0.9973 + }, + { + "start": 8748.78, + "end": 8749.38, + "probability": 0.8891 + }, + { + "start": 8750.38, + "end": 8755.65, + "probability": 0.7969 + }, + { + "start": 8756.68, + "end": 8762.34, + "probability": 0.9814 + }, + { + "start": 8762.34, + "end": 8768.16, + "probability": 0.9592 + }, + { + "start": 8768.44, + "end": 8770.54, + "probability": 0.8366 + }, + { + "start": 8771.28, + "end": 8773.08, + "probability": 0.0669 + }, + { + "start": 8773.08, + "end": 8773.98, + "probability": 0.2153 + }, + { + "start": 8775.16, + "end": 8779.58, + "probability": 0.9847 + }, + { + "start": 8779.74, + "end": 8785.28, + "probability": 0.9873 + }, + { + "start": 8785.28, + "end": 8788.76, + "probability": 0.9873 + }, + { + "start": 8789.44, + "end": 8792.84, + "probability": 0.9684 + }, + { + "start": 8793.36, + "end": 8794.51, + "probability": 0.8291 + }, + { + "start": 8794.6, + "end": 8795.6, + "probability": 0.9348 + }, + { + "start": 8795.78, + "end": 8797.64, + "probability": 0.9008 + }, + { + "start": 8797.98, + "end": 8800.38, + "probability": 0.9897 + }, + { + "start": 8800.42, + "end": 8801.52, + "probability": 0.8878 + }, + { + "start": 8801.98, + "end": 8804.0, + "probability": 0.974 + }, + { + "start": 8804.04, + "end": 8805.94, + "probability": 0.9963 + }, + { + "start": 8806.96, + "end": 8811.94, + "probability": 0.9413 + }, + { + "start": 8812.4, + "end": 8818.08, + "probability": 0.9854 + }, + { + "start": 8818.24, + "end": 8820.0, + "probability": 0.844 + }, + { + "start": 8820.12, + "end": 8822.32, + "probability": 0.7687 + }, + { + "start": 8822.86, + "end": 8826.72, + "probability": 0.9346 + }, + { + "start": 8827.34, + "end": 8828.68, + "probability": 0.739 + }, + { + "start": 8828.88, + "end": 8831.86, + "probability": 0.9786 + }, + { + "start": 8831.96, + "end": 8834.94, + "probability": 0.9955 + }, + { + "start": 8834.94, + "end": 8838.54, + "probability": 0.9959 + }, + { + "start": 8838.62, + "end": 8839.08, + "probability": 0.8663 + }, + { + "start": 8839.58, + "end": 8843.66, + "probability": 0.9484 + }, + { + "start": 8843.88, + "end": 8846.94, + "probability": 0.9504 + }, + { + "start": 8847.64, + "end": 8848.48, + "probability": 0.0874 + }, + { + "start": 8848.48, + "end": 8850.24, + "probability": 0.7371 + }, + { + "start": 8851.4, + "end": 8852.64, + "probability": 0.5344 + }, + { + "start": 8852.8, + "end": 8857.22, + "probability": 0.9706 + }, + { + "start": 8857.22, + "end": 8861.06, + "probability": 0.9711 + }, + { + "start": 8861.22, + "end": 8863.68, + "probability": 0.9124 + }, + { + "start": 8864.26, + "end": 8865.26, + "probability": 0.9823 + }, + { + "start": 8865.46, + "end": 8870.32, + "probability": 0.9693 + }, + { + "start": 8870.46, + "end": 8871.7, + "probability": 0.8199 + }, + { + "start": 8871.78, + "end": 8872.28, + "probability": 0.7073 + }, + { + "start": 8872.78, + "end": 8874.84, + "probability": 0.8081 + }, + { + "start": 8875.36, + "end": 8876.92, + "probability": 0.7495 + }, + { + "start": 8877.14, + "end": 8879.46, + "probability": 0.9834 + }, + { + "start": 8879.58, + "end": 8881.74, + "probability": 0.998 + }, + { + "start": 8881.84, + "end": 8883.27, + "probability": 0.9893 + }, + { + "start": 8884.15, + "end": 8888.36, + "probability": 0.8513 + }, + { + "start": 8888.84, + "end": 8892.36, + "probability": 0.9956 + }, + { + "start": 8893.14, + "end": 8894.12, + "probability": 0.6379 + }, + { + "start": 8894.74, + "end": 8896.44, + "probability": 0.9971 + }, + { + "start": 8896.6, + "end": 8900.74, + "probability": 0.9902 + }, + { + "start": 8900.78, + "end": 8904.75, + "probability": 0.8871 + }, + { + "start": 8905.58, + "end": 8906.11, + "probability": 0.9864 + }, + { + "start": 8907.12, + "end": 8908.24, + "probability": 0.7404 + }, + { + "start": 8908.3, + "end": 8909.5, + "probability": 0.9153 + }, + { + "start": 8909.9, + "end": 8913.03, + "probability": 0.9814 + }, + { + "start": 8913.74, + "end": 8915.04, + "probability": 0.9099 + }, + { + "start": 8915.24, + "end": 8916.65, + "probability": 0.9741 + }, + { + "start": 8916.7, + "end": 8918.36, + "probability": 0.6198 + }, + { + "start": 8919.02, + "end": 8923.0, + "probability": 0.9602 + }, + { + "start": 8923.04, + "end": 8923.64, + "probability": 0.8514 + }, + { + "start": 8923.72, + "end": 8926.62, + "probability": 0.992 + }, + { + "start": 8926.64, + "end": 8929.76, + "probability": 0.8887 + }, + { + "start": 8930.36, + "end": 8931.04, + "probability": 0.5117 + }, + { + "start": 8931.22, + "end": 8932.9, + "probability": 0.9111 + }, + { + "start": 8932.98, + "end": 8938.44, + "probability": 0.9487 + }, + { + "start": 8938.74, + "end": 8940.08, + "probability": 0.8853 + }, + { + "start": 8940.2, + "end": 8942.88, + "probability": 0.987 + }, + { + "start": 8943.02, + "end": 8943.8, + "probability": 0.9362 + }, + { + "start": 8943.88, + "end": 8944.98, + "probability": 0.8811 + }, + { + "start": 8945.04, + "end": 8948.14, + "probability": 0.9688 + }, + { + "start": 8948.3, + "end": 8949.78, + "probability": 0.9939 + }, + { + "start": 8949.92, + "end": 8951.02, + "probability": 0.9675 + }, + { + "start": 8951.36, + "end": 8951.98, + "probability": 0.931 + }, + { + "start": 8952.78, + "end": 8956.66, + "probability": 0.9328 + }, + { + "start": 8956.82, + "end": 8957.68, + "probability": 0.826 + }, + { + "start": 8958.28, + "end": 8961.48, + "probability": 0.998 + }, + { + "start": 8961.68, + "end": 8962.76, + "probability": 0.9946 + }, + { + "start": 8963.18, + "end": 8964.72, + "probability": 0.9742 + }, + { + "start": 8964.92, + "end": 8966.32, + "probability": 0.8511 + }, + { + "start": 8967.4, + "end": 8970.3, + "probability": 0.9385 + }, + { + "start": 8970.42, + "end": 8973.26, + "probability": 0.9656 + }, + { + "start": 8973.54, + "end": 8975.84, + "probability": 0.8632 + }, + { + "start": 8976.02, + "end": 8978.38, + "probability": 0.9694 + }, + { + "start": 8978.76, + "end": 8981.0, + "probability": 0.9363 + }, + { + "start": 8981.2, + "end": 8984.46, + "probability": 0.982 + }, + { + "start": 8984.66, + "end": 8989.88, + "probability": 0.9713 + }, + { + "start": 8990.18, + "end": 8990.4, + "probability": 0.9916 + }, + { + "start": 8990.48, + "end": 8993.02, + "probability": 0.8628 + }, + { + "start": 8993.22, + "end": 8994.46, + "probability": 0.9941 + }, + { + "start": 8994.78, + "end": 8996.62, + "probability": 0.9414 + }, + { + "start": 8997.14, + "end": 8998.36, + "probability": 0.6627 + }, + { + "start": 8998.64, + "end": 9000.82, + "probability": 0.801 + }, + { + "start": 9001.38, + "end": 9004.2, + "probability": 0.7642 + }, + { + "start": 9006.01, + "end": 9011.26, + "probability": 0.9877 + }, + { + "start": 9011.26, + "end": 9015.78, + "probability": 0.9926 + }, + { + "start": 9015.78, + "end": 9020.54, + "probability": 0.9919 + }, + { + "start": 9020.58, + "end": 9024.64, + "probability": 0.9574 + }, + { + "start": 9025.36, + "end": 9030.04, + "probability": 0.9946 + }, + { + "start": 9030.04, + "end": 9033.76, + "probability": 0.999 + }, + { + "start": 9034.38, + "end": 9034.86, + "probability": 0.6992 + }, + { + "start": 9035.0, + "end": 9037.58, + "probability": 0.9316 + }, + { + "start": 9037.7, + "end": 9040.74, + "probability": 0.9931 + }, + { + "start": 9040.92, + "end": 9041.54, + "probability": 0.9183 + }, + { + "start": 9041.96, + "end": 9046.28, + "probability": 0.9866 + }, + { + "start": 9048.7, + "end": 9049.74, + "probability": 0.3494 + }, + { + "start": 9050.38, + "end": 9052.48, + "probability": 0.7701 + }, + { + "start": 9052.58, + "end": 9054.3, + "probability": 0.4988 + }, + { + "start": 9054.6, + "end": 9056.4, + "probability": 0.7913 + }, + { + "start": 9056.82, + "end": 9058.58, + "probability": 0.9657 + }, + { + "start": 9058.66, + "end": 9059.64, + "probability": 0.957 + }, + { + "start": 9060.06, + "end": 9062.94, + "probability": 0.7056 + }, + { + "start": 9062.98, + "end": 9064.36, + "probability": 0.8947 + }, + { + "start": 9064.48, + "end": 9065.1, + "probability": 0.9772 + }, + { + "start": 9066.12, + "end": 9066.58, + "probability": 0.3781 + }, + { + "start": 9066.9, + "end": 9067.66, + "probability": 0.9651 + }, + { + "start": 9068.24, + "end": 9070.42, + "probability": 0.9308 + }, + { + "start": 9071.3, + "end": 9075.32, + "probability": 0.9401 + }, + { + "start": 9075.32, + "end": 9077.78, + "probability": 0.9939 + }, + { + "start": 9077.86, + "end": 9079.58, + "probability": 0.9788 + }, + { + "start": 9080.96, + "end": 9081.5, + "probability": 0.3488 + }, + { + "start": 9082.24, + "end": 9086.96, + "probability": 0.7737 + }, + { + "start": 9087.66, + "end": 9087.66, + "probability": 0.4942 + }, + { + "start": 9087.66, + "end": 9091.24, + "probability": 0.9631 + }, + { + "start": 9091.34, + "end": 9094.9, + "probability": 0.9917 + }, + { + "start": 9095.84, + "end": 9097.54, + "probability": 0.9888 + }, + { + "start": 9097.8, + "end": 9102.02, + "probability": 0.9263 + }, + { + "start": 9102.2, + "end": 9104.08, + "probability": 0.9959 + }, + { + "start": 9104.08, + "end": 9107.2, + "probability": 0.9939 + }, + { + "start": 9107.64, + "end": 9110.54, + "probability": 0.9834 + }, + { + "start": 9110.72, + "end": 9112.94, + "probability": 0.8006 + }, + { + "start": 9113.06, + "end": 9114.4, + "probability": 0.8378 + }, + { + "start": 9114.94, + "end": 9115.34, + "probability": 0.895 + }, + { + "start": 9115.68, + "end": 9117.31, + "probability": 0.9922 + }, + { + "start": 9117.46, + "end": 9119.38, + "probability": 0.9795 + }, + { + "start": 9119.44, + "end": 9121.54, + "probability": 0.9153 + }, + { + "start": 9122.66, + "end": 9124.46, + "probability": 0.8595 + }, + { + "start": 9124.74, + "end": 9127.86, + "probability": 0.9491 + }, + { + "start": 9127.86, + "end": 9130.82, + "probability": 0.995 + }, + { + "start": 9131.28, + "end": 9135.8, + "probability": 0.9956 + }, + { + "start": 9136.22, + "end": 9138.7, + "probability": 0.9987 + }, + { + "start": 9139.14, + "end": 9141.2, + "probability": 0.7921 + }, + { + "start": 9141.34, + "end": 9141.72, + "probability": 0.594 + }, + { + "start": 9141.86, + "end": 9144.02, + "probability": 0.9875 + }, + { + "start": 9144.5, + "end": 9149.71, + "probability": 0.9694 + }, + { + "start": 9150.02, + "end": 9153.62, + "probability": 0.9953 + }, + { + "start": 9153.64, + "end": 9157.18, + "probability": 0.986 + }, + { + "start": 9157.46, + "end": 9161.92, + "probability": 0.9985 + }, + { + "start": 9161.92, + "end": 9166.42, + "probability": 0.9377 + }, + { + "start": 9166.62, + "end": 9169.42, + "probability": 0.8783 + }, + { + "start": 9169.78, + "end": 9173.2, + "probability": 0.8916 + }, + { + "start": 9174.12, + "end": 9174.48, + "probability": 0.6255 + }, + { + "start": 9174.56, + "end": 9176.6, + "probability": 0.6552 + }, + { + "start": 9176.68, + "end": 9179.08, + "probability": 0.9888 + }, + { + "start": 9179.16, + "end": 9184.24, + "probability": 0.9902 + }, + { + "start": 9184.46, + "end": 9186.2, + "probability": 0.9944 + }, + { + "start": 9186.66, + "end": 9189.1, + "probability": 0.9707 + }, + { + "start": 9189.24, + "end": 9193.78, + "probability": 0.9938 + }, + { + "start": 9194.2, + "end": 9196.48, + "probability": 0.9888 + }, + { + "start": 9197.12, + "end": 9201.42, + "probability": 0.9468 + }, + { + "start": 9201.42, + "end": 9206.1, + "probability": 0.9123 + }, + { + "start": 9206.86, + "end": 9209.14, + "probability": 0.7573 + }, + { + "start": 9209.8, + "end": 9212.76, + "probability": 0.7006 + }, + { + "start": 9212.8, + "end": 9215.26, + "probability": 0.9829 + }, + { + "start": 9215.42, + "end": 9219.38, + "probability": 0.9681 + }, + { + "start": 9219.52, + "end": 9220.46, + "probability": 0.9805 + }, + { + "start": 9220.56, + "end": 9223.92, + "probability": 0.9902 + }, + { + "start": 9224.12, + "end": 9225.64, + "probability": 0.491 + }, + { + "start": 9225.76, + "end": 9228.3, + "probability": 0.7739 + }, + { + "start": 9228.46, + "end": 9228.76, + "probability": 0.557 + }, + { + "start": 9228.92, + "end": 9229.9, + "probability": 0.656 + }, + { + "start": 9229.98, + "end": 9232.66, + "probability": 0.9517 + }, + { + "start": 9233.02, + "end": 9238.9, + "probability": 0.8407 + }, + { + "start": 9239.46, + "end": 9244.36, + "probability": 0.9883 + }, + { + "start": 9244.98, + "end": 9250.16, + "probability": 0.9748 + }, + { + "start": 9250.16, + "end": 9255.22, + "probability": 0.9982 + }, + { + "start": 9255.22, + "end": 9260.84, + "probability": 0.9993 + }, + { + "start": 9261.22, + "end": 9264.94, + "probability": 0.9265 + }, + { + "start": 9264.94, + "end": 9268.38, + "probability": 0.999 + }, + { + "start": 9269.22, + "end": 9271.16, + "probability": 0.7645 + }, + { + "start": 9271.96, + "end": 9275.52, + "probability": 0.469 + }, + { + "start": 9275.62, + "end": 9276.12, + "probability": 0.6424 + }, + { + "start": 9276.28, + "end": 9277.18, + "probability": 0.8978 + }, + { + "start": 9277.7, + "end": 9279.5, + "probability": 0.9821 + }, + { + "start": 9279.52, + "end": 9282.18, + "probability": 0.9938 + }, + { + "start": 9283.02, + "end": 9284.08, + "probability": 0.9383 + }, + { + "start": 9284.26, + "end": 9285.74, + "probability": 0.7394 + }, + { + "start": 9287.4, + "end": 9291.86, + "probability": 0.9626 + }, + { + "start": 9291.86, + "end": 9296.0, + "probability": 0.9818 + }, + { + "start": 9296.06, + "end": 9298.9, + "probability": 0.8406 + }, + { + "start": 9299.02, + "end": 9300.38, + "probability": 0.974 + }, + { + "start": 9302.2, + "end": 9305.76, + "probability": 0.9823 + }, + { + "start": 9305.76, + "end": 9308.7, + "probability": 0.9944 + }, + { + "start": 9309.2, + "end": 9310.3, + "probability": 0.5188 + }, + { + "start": 9310.46, + "end": 9310.74, + "probability": 0.4375 + }, + { + "start": 9310.82, + "end": 9313.39, + "probability": 0.9775 + }, + { + "start": 9313.78, + "end": 9316.98, + "probability": 0.9915 + }, + { + "start": 9317.28, + "end": 9319.34, + "probability": 0.9735 + }, + { + "start": 9319.6, + "end": 9320.16, + "probability": 0.6491 + }, + { + "start": 9320.2, + "end": 9320.78, + "probability": 0.8351 + }, + { + "start": 9320.8, + "end": 9323.08, + "probability": 0.9818 + }, + { + "start": 9323.52, + "end": 9325.44, + "probability": 0.8276 + }, + { + "start": 9325.74, + "end": 9330.64, + "probability": 0.7921 + }, + { + "start": 9330.7, + "end": 9335.8, + "probability": 0.9211 + }, + { + "start": 9335.98, + "end": 9338.34, + "probability": 0.6367 + }, + { + "start": 9338.96, + "end": 9341.18, + "probability": 0.9761 + }, + { + "start": 9341.18, + "end": 9345.62, + "probability": 0.995 + }, + { + "start": 9345.86, + "end": 9351.0, + "probability": 0.9892 + }, + { + "start": 9351.16, + "end": 9351.48, + "probability": 0.2629 + }, + { + "start": 9351.48, + "end": 9352.2, + "probability": 0.7475 + }, + { + "start": 9353.04, + "end": 9358.06, + "probability": 0.8748 + }, + { + "start": 9358.7, + "end": 9361.08, + "probability": 0.7986 + }, + { + "start": 9379.78, + "end": 9381.2, + "probability": 0.508 + }, + { + "start": 9381.56, + "end": 9382.3, + "probability": 0.6262 + }, + { + "start": 9382.32, + "end": 9384.04, + "probability": 0.5816 + }, + { + "start": 9384.28, + "end": 9386.72, + "probability": 0.9692 + }, + { + "start": 9386.76, + "end": 9387.72, + "probability": 0.8201 + }, + { + "start": 9387.78, + "end": 9389.28, + "probability": 0.9905 + }, + { + "start": 9389.32, + "end": 9390.0, + "probability": 0.9861 + }, + { + "start": 9390.54, + "end": 9397.22, + "probability": 0.9691 + }, + { + "start": 9397.58, + "end": 9398.98, + "probability": 0.7623 + }, + { + "start": 9399.84, + "end": 9401.28, + "probability": 0.4757 + }, + { + "start": 9401.94, + "end": 9404.02, + "probability": 0.982 + }, + { + "start": 9404.1, + "end": 9405.14, + "probability": 0.8117 + }, + { + "start": 9405.4, + "end": 9410.18, + "probability": 0.9043 + }, + { + "start": 9410.3, + "end": 9414.2, + "probability": 0.9847 + }, + { + "start": 9414.44, + "end": 9416.2, + "probability": 0.9974 + }, + { + "start": 9416.78, + "end": 9420.54, + "probability": 0.9976 + }, + { + "start": 9421.2, + "end": 9425.76, + "probability": 0.9806 + }, + { + "start": 9426.54, + "end": 9432.72, + "probability": 0.9946 + }, + { + "start": 9433.46, + "end": 9440.82, + "probability": 0.9022 + }, + { + "start": 9441.6, + "end": 9443.82, + "probability": 0.9538 + }, + { + "start": 9444.5, + "end": 9447.64, + "probability": 0.8803 + }, + { + "start": 9448.44, + "end": 9449.64, + "probability": 0.9463 + }, + { + "start": 9449.76, + "end": 9450.78, + "probability": 0.9773 + }, + { + "start": 9451.08, + "end": 9452.74, + "probability": 0.999 + }, + { + "start": 9453.46, + "end": 9459.68, + "probability": 0.9909 + }, + { + "start": 9459.84, + "end": 9462.26, + "probability": 0.9929 + }, + { + "start": 9462.32, + "end": 9463.1, + "probability": 0.9468 + }, + { + "start": 9463.22, + "end": 9465.48, + "probability": 0.9985 + }, + { + "start": 9466.58, + "end": 9468.98, + "probability": 0.8508 + }, + { + "start": 9469.16, + "end": 9471.06, + "probability": 0.9956 + }, + { + "start": 9471.1, + "end": 9472.28, + "probability": 0.7922 + }, + { + "start": 9473.04, + "end": 9474.46, + "probability": 0.9789 + }, + { + "start": 9475.2, + "end": 9476.62, + "probability": 0.9075 + }, + { + "start": 9477.18, + "end": 9480.16, + "probability": 0.9902 + }, + { + "start": 9480.28, + "end": 9480.96, + "probability": 0.9691 + }, + { + "start": 9481.06, + "end": 9481.68, + "probability": 0.9527 + }, + { + "start": 9482.3, + "end": 9484.06, + "probability": 0.8995 + }, + { + "start": 9484.16, + "end": 9486.58, + "probability": 0.993 + }, + { + "start": 9486.78, + "end": 9490.16, + "probability": 0.9824 + }, + { + "start": 9491.66, + "end": 9496.66, + "probability": 0.9971 + }, + { + "start": 9497.22, + "end": 9499.92, + "probability": 0.9446 + }, + { + "start": 9500.94, + "end": 9502.28, + "probability": 0.9631 + }, + { + "start": 9503.28, + "end": 9505.64, + "probability": 0.9589 + }, + { + "start": 9506.04, + "end": 9507.48, + "probability": 0.9942 + }, + { + "start": 9507.74, + "end": 9510.08, + "probability": 0.8919 + }, + { + "start": 9510.6, + "end": 9514.98, + "probability": 0.9952 + }, + { + "start": 9515.82, + "end": 9518.3, + "probability": 0.8252 + }, + { + "start": 9519.3, + "end": 9523.52, + "probability": 0.9929 + }, + { + "start": 9523.58, + "end": 9524.12, + "probability": 0.3957 + }, + { + "start": 9524.18, + "end": 9525.42, + "probability": 0.8608 + }, + { + "start": 9525.62, + "end": 9526.84, + "probability": 0.6904 + }, + { + "start": 9527.46, + "end": 9529.74, + "probability": 0.9214 + }, + { + "start": 9529.78, + "end": 9530.42, + "probability": 0.8765 + }, + { + "start": 9530.46, + "end": 9532.16, + "probability": 0.9586 + }, + { + "start": 9533.16, + "end": 9535.5, + "probability": 0.6718 + }, + { + "start": 9536.3, + "end": 9538.9, + "probability": 0.6185 + }, + { + "start": 9540.08, + "end": 9543.28, + "probability": 0.8825 + }, + { + "start": 9544.16, + "end": 9548.66, + "probability": 0.9922 + }, + { + "start": 9548.66, + "end": 9557.0, + "probability": 0.9954 + }, + { + "start": 9557.52, + "end": 9562.18, + "probability": 0.995 + }, + { + "start": 9562.82, + "end": 9566.98, + "probability": 0.9799 + }, + { + "start": 9567.04, + "end": 9568.42, + "probability": 0.8881 + }, + { + "start": 9568.96, + "end": 9571.34, + "probability": 0.9352 + }, + { + "start": 9571.44, + "end": 9575.96, + "probability": 0.9469 + }, + { + "start": 9576.92, + "end": 9582.5, + "probability": 0.8227 + }, + { + "start": 9583.24, + "end": 9584.36, + "probability": 0.7593 + }, + { + "start": 9585.14, + "end": 9588.3, + "probability": 0.9897 + }, + { + "start": 9588.34, + "end": 9592.66, + "probability": 0.9883 + }, + { + "start": 9592.78, + "end": 9593.36, + "probability": 0.8026 + }, + { + "start": 9594.4, + "end": 9595.16, + "probability": 0.7165 + }, + { + "start": 9595.72, + "end": 9599.22, + "probability": 0.0506 + }, + { + "start": 9599.22, + "end": 9602.9, + "probability": 0.9318 + }, + { + "start": 9603.04, + "end": 9604.6, + "probability": 0.8269 + }, + { + "start": 9605.02, + "end": 9608.06, + "probability": 0.6815 + }, + { + "start": 9608.06, + "end": 9609.42, + "probability": 0.8145 + }, + { + "start": 9610.08, + "end": 9614.58, + "probability": 0.9707 + }, + { + "start": 9614.58, + "end": 9620.54, + "probability": 0.9922 + }, + { + "start": 9621.66, + "end": 9625.38, + "probability": 0.7335 + }, + { + "start": 9625.62, + "end": 9626.66, + "probability": 0.7113 + }, + { + "start": 9627.26, + "end": 9630.44, + "probability": 0.7113 + }, + { + "start": 9631.14, + "end": 9634.96, + "probability": 0.9958 + }, + { + "start": 9634.96, + "end": 9637.62, + "probability": 0.999 + }, + { + "start": 9639.0, + "end": 9639.4, + "probability": 0.8613 + }, + { + "start": 9639.64, + "end": 9644.14, + "probability": 0.9813 + }, + { + "start": 9644.44, + "end": 9647.14, + "probability": 0.9581 + }, + { + "start": 9647.88, + "end": 9649.34, + "probability": 0.9935 + }, + { + "start": 9649.48, + "end": 9652.18, + "probability": 0.9863 + }, + { + "start": 9652.18, + "end": 9653.36, + "probability": 0.5937 + }, + { + "start": 9653.66, + "end": 9657.6, + "probability": 0.8687 + }, + { + "start": 9658.38, + "end": 9660.0, + "probability": 0.9868 + }, + { + "start": 9660.54, + "end": 9661.38, + "probability": 0.6842 + }, + { + "start": 9661.9, + "end": 9666.76, + "probability": 0.999 + }, + { + "start": 9667.28, + "end": 9670.14, + "probability": 0.995 + }, + { + "start": 9670.18, + "end": 9676.46, + "probability": 0.9805 + }, + { + "start": 9678.31, + "end": 9682.37, + "probability": 0.9978 + }, + { + "start": 9682.48, + "end": 9685.12, + "probability": 0.958 + }, + { + "start": 9685.66, + "end": 9686.64, + "probability": 0.9015 + }, + { + "start": 9686.82, + "end": 9690.3, + "probability": 0.9812 + }, + { + "start": 9690.76, + "end": 9693.88, + "probability": 0.9885 + }, + { + "start": 9693.88, + "end": 9697.76, + "probability": 0.7467 + }, + { + "start": 9699.42, + "end": 9703.9, + "probability": 0.9397 + }, + { + "start": 9704.56, + "end": 9706.96, + "probability": 0.9911 + }, + { + "start": 9706.96, + "end": 9709.24, + "probability": 0.9913 + }, + { + "start": 9709.72, + "end": 9712.74, + "probability": 0.9976 + }, + { + "start": 9713.48, + "end": 9719.42, + "probability": 0.7729 + }, + { + "start": 9719.54, + "end": 9720.12, + "probability": 0.6015 + }, + { + "start": 9720.2, + "end": 9720.88, + "probability": 0.6087 + }, + { + "start": 9721.54, + "end": 9724.24, + "probability": 0.9711 + }, + { + "start": 9725.24, + "end": 9728.98, + "probability": 0.9803 + }, + { + "start": 9730.3, + "end": 9732.06, + "probability": 0.7575 + }, + { + "start": 9732.26, + "end": 9735.57, + "probability": 0.9922 + }, + { + "start": 9737.68, + "end": 9743.5, + "probability": 0.996 + }, + { + "start": 9744.24, + "end": 9745.46, + "probability": 0.5197 + }, + { + "start": 9745.56, + "end": 9747.93, + "probability": 0.9902 + }, + { + "start": 9749.58, + "end": 9755.58, + "probability": 0.9918 + }, + { + "start": 9755.58, + "end": 9762.9, + "probability": 0.9718 + }, + { + "start": 9762.98, + "end": 9765.8, + "probability": 0.9956 + }, + { + "start": 9765.98, + "end": 9768.72, + "probability": 0.5386 + }, + { + "start": 9769.1, + "end": 9771.58, + "probability": 0.8203 + }, + { + "start": 9771.82, + "end": 9772.36, + "probability": 0.6591 + }, + { + "start": 9772.76, + "end": 9773.34, + "probability": 0.599 + }, + { + "start": 9773.34, + "end": 9775.86, + "probability": 0.9966 + }, + { + "start": 9775.98, + "end": 9778.84, + "probability": 0.0111 + }, + { + "start": 9778.84, + "end": 9779.48, + "probability": 0.0999 + }, + { + "start": 9779.89, + "end": 9780.7, + "probability": 0.0757 + }, + { + "start": 9780.7, + "end": 9780.7, + "probability": 0.0746 + }, + { + "start": 9780.7, + "end": 9780.7, + "probability": 0.1005 + }, + { + "start": 9780.7, + "end": 9780.78, + "probability": 0.2681 + }, + { + "start": 9781.62, + "end": 9782.48, + "probability": 0.6856 + }, + { + "start": 9782.84, + "end": 9786.66, + "probability": 0.9327 + }, + { + "start": 9787.64, + "end": 9790.4, + "probability": 0.9978 + }, + { + "start": 9790.98, + "end": 9792.9, + "probability": 0.9912 + }, + { + "start": 9792.96, + "end": 9794.94, + "probability": 0.92 + }, + { + "start": 9795.68, + "end": 9798.34, + "probability": 0.851 + }, + { + "start": 9798.34, + "end": 9798.79, + "probability": 0.8258 + }, + { + "start": 9799.28, + "end": 9800.54, + "probability": 0.627 + }, + { + "start": 9800.62, + "end": 9803.28, + "probability": 0.9872 + }, + { + "start": 9803.36, + "end": 9806.68, + "probability": 0.9958 + }, + { + "start": 9806.86, + "end": 9811.14, + "probability": 0.9251 + }, + { + "start": 9811.8, + "end": 9813.68, + "probability": 0.6423 + }, + { + "start": 9813.96, + "end": 9816.0, + "probability": 0.9203 + }, + { + "start": 9816.62, + "end": 9822.32, + "probability": 0.9939 + }, + { + "start": 9822.32, + "end": 9827.86, + "probability": 0.9989 + }, + { + "start": 9828.34, + "end": 9834.62, + "probability": 0.3483 + }, + { + "start": 9835.36, + "end": 9835.36, + "probability": 0.4997 + }, + { + "start": 9835.36, + "end": 9836.92, + "probability": 0.0243 + }, + { + "start": 9836.92, + "end": 9838.84, + "probability": 0.0767 + }, + { + "start": 9838.84, + "end": 9839.52, + "probability": 0.0021 + }, + { + "start": 9839.54, + "end": 9839.54, + "probability": 0.1514 + }, + { + "start": 9839.78, + "end": 9839.78, + "probability": 0.1118 + }, + { + "start": 9839.78, + "end": 9839.78, + "probability": 0.3611 + }, + { + "start": 9839.78, + "end": 9840.56, + "probability": 0.4769 + }, + { + "start": 9841.48, + "end": 9842.38, + "probability": 0.4198 + }, + { + "start": 9842.68, + "end": 9847.1, + "probability": 0.9807 + }, + { + "start": 9847.34, + "end": 9848.46, + "probability": 0.9812 + }, + { + "start": 9849.82, + "end": 9852.88, + "probability": 0.922 + }, + { + "start": 9852.88, + "end": 9859.12, + "probability": 0.9862 + }, + { + "start": 9859.54, + "end": 9861.16, + "probability": 0.9161 + }, + { + "start": 9861.4, + "end": 9864.26, + "probability": 0.9687 + }, + { + "start": 9864.86, + "end": 9865.06, + "probability": 0.8107 + }, + { + "start": 9865.16, + "end": 9865.6, + "probability": 0.5716 + }, + { + "start": 9865.68, + "end": 9868.0, + "probability": 0.9956 + }, + { + "start": 9868.04, + "end": 9868.76, + "probability": 0.8873 + }, + { + "start": 9868.84, + "end": 9869.68, + "probability": 0.8039 + }, + { + "start": 9870.22, + "end": 9871.4, + "probability": 0.799 + }, + { + "start": 9872.4, + "end": 9875.46, + "probability": 0.9927 + }, + { + "start": 9875.69, + "end": 9882.37, + "probability": 0.953 + }, + { + "start": 9884.3, + "end": 9887.92, + "probability": 0.9971 + }, + { + "start": 9888.08, + "end": 9889.66, + "probability": 0.9839 + }, + { + "start": 9890.32, + "end": 9891.5, + "probability": 0.9918 + }, + { + "start": 9891.92, + "end": 9898.02, + "probability": 0.9934 + }, + { + "start": 9898.78, + "end": 9899.08, + "probability": 0.9108 + }, + { + "start": 9899.22, + "end": 9902.34, + "probability": 0.999 + }, + { + "start": 9902.34, + "end": 9905.36, + "probability": 0.9963 + }, + { + "start": 9905.92, + "end": 9909.26, + "probability": 0.998 + }, + { + "start": 9909.96, + "end": 9916.14, + "probability": 0.9891 + }, + { + "start": 9916.88, + "end": 9917.76, + "probability": 0.7531 + }, + { + "start": 9917.94, + "end": 9918.4, + "probability": 0.6258 + }, + { + "start": 9918.42, + "end": 9919.22, + "probability": 0.4287 + }, + { + "start": 9919.26, + "end": 9919.26, + "probability": 0.5653 + }, + { + "start": 9919.26, + "end": 9919.34, + "probability": 0.5534 + }, + { + "start": 9919.46, + "end": 9920.13, + "probability": 0.8989 + }, + { + "start": 9920.74, + "end": 9921.06, + "probability": 0.8131 + }, + { + "start": 9921.12, + "end": 9924.56, + "probability": 0.9858 + }, + { + "start": 9924.7, + "end": 9925.56, + "probability": 0.918 + }, + { + "start": 9925.62, + "end": 9928.44, + "probability": 0.9506 + }, + { + "start": 9929.18, + "end": 9932.94, + "probability": 0.9958 + }, + { + "start": 9933.86, + "end": 9936.72, + "probability": 0.9597 + }, + { + "start": 9936.94, + "end": 9937.32, + "probability": 0.3861 + }, + { + "start": 9937.38, + "end": 9937.98, + "probability": 0.4302 + }, + { + "start": 9938.22, + "end": 9938.8, + "probability": 0.2093 + }, + { + "start": 9941.4, + "end": 9944.6, + "probability": 0.5549 + }, + { + "start": 9947.02, + "end": 9954.0, + "probability": 0.9044 + }, + { + "start": 9954.0, + "end": 9955.64, + "probability": 0.9945 + }, + { + "start": 9955.88, + "end": 9956.96, + "probability": 0.2869 + }, + { + "start": 9957.16, + "end": 9958.22, + "probability": 0.3898 + }, + { + "start": 9958.22, + "end": 9960.9, + "probability": 0.9624 + }, + { + "start": 9961.81, + "end": 9965.16, + "probability": 0.9723 + }, + { + "start": 9965.48, + "end": 9968.14, + "probability": 0.9651 + }, + { + "start": 9968.22, + "end": 9974.86, + "probability": 0.9844 + }, + { + "start": 9975.56, + "end": 9977.24, + "probability": 0.9098 + }, + { + "start": 9977.34, + "end": 9980.82, + "probability": 0.9665 + }, + { + "start": 9981.36, + "end": 9983.46, + "probability": 0.9912 + }, + { + "start": 9983.56, + "end": 9985.96, + "probability": 0.9952 + }, + { + "start": 9986.02, + "end": 9989.04, + "probability": 0.9509 + }, + { + "start": 9990.7, + "end": 9996.58, + "probability": 0.9976 + }, + { + "start": 9996.58, + "end": 9999.72, + "probability": 0.9978 + }, + { + "start": 10000.26, + "end": 10002.22, + "probability": 0.9119 + }, + { + "start": 10002.72, + "end": 10003.62, + "probability": 0.809 + }, + { + "start": 10003.76, + "end": 10010.54, + "probability": 0.9754 + }, + { + "start": 10012.62, + "end": 10014.78, + "probability": 0.207 + }, + { + "start": 10015.38, + "end": 10017.92, + "probability": 0.0676 + }, + { + "start": 10018.26, + "end": 10020.38, + "probability": 0.489 + }, + { + "start": 10020.88, + "end": 10025.52, + "probability": 0.9893 + }, + { + "start": 10025.74, + "end": 10027.0, + "probability": 0.4273 + }, + { + "start": 10027.7, + "end": 10031.31, + "probability": 0.9744 + }, + { + "start": 10032.68, + "end": 10034.2, + "probability": 0.782 + }, + { + "start": 10034.36, + "end": 10038.06, + "probability": 0.9827 + }, + { + "start": 10038.82, + "end": 10039.84, + "probability": 0.4792 + }, + { + "start": 10040.0, + "end": 10043.74, + "probability": 0.8824 + }, + { + "start": 10043.88, + "end": 10046.84, + "probability": 0.8452 + }, + { + "start": 10046.84, + "end": 10049.08, + "probability": 0.988 + }, + { + "start": 10049.36, + "end": 10051.32, + "probability": 0.8735 + }, + { + "start": 10051.84, + "end": 10052.91, + "probability": 0.9413 + }, + { + "start": 10053.18, + "end": 10054.1, + "probability": 0.6258 + }, + { + "start": 10054.16, + "end": 10056.32, + "probability": 0.9941 + }, + { + "start": 10056.72, + "end": 10058.14, + "probability": 0.9898 + }, + { + "start": 10058.24, + "end": 10058.74, + "probability": 0.8759 + }, + { + "start": 10058.86, + "end": 10062.26, + "probability": 0.9602 + }, + { + "start": 10062.8, + "end": 10066.02, + "probability": 0.9624 + }, + { + "start": 10066.74, + "end": 10070.98, + "probability": 0.9979 + }, + { + "start": 10071.08, + "end": 10072.24, + "probability": 0.9825 + }, + { + "start": 10074.48, + "end": 10076.46, + "probability": 0.2401 + }, + { + "start": 10081.54, + "end": 10085.04, + "probability": 0.6959 + }, + { + "start": 10085.9, + "end": 10086.64, + "probability": 0.96 + }, + { + "start": 10087.34, + "end": 10089.0, + "probability": 0.8647 + }, + { + "start": 10089.68, + "end": 10091.39, + "probability": 0.905 + }, + { + "start": 10092.68, + "end": 10095.18, + "probability": 0.9984 + }, + { + "start": 10095.9, + "end": 10098.16, + "probability": 0.755 + }, + { + "start": 10098.72, + "end": 10100.06, + "probability": 0.9528 + }, + { + "start": 10100.66, + "end": 10102.94, + "probability": 0.9517 + }, + { + "start": 10103.94, + "end": 10105.0, + "probability": 0.8687 + }, + { + "start": 10105.48, + "end": 10105.48, + "probability": 0.0344 + }, + { + "start": 10105.48, + "end": 10105.64, + "probability": 0.3998 + }, + { + "start": 10105.64, + "end": 10107.39, + "probability": 0.8965 + }, + { + "start": 10107.92, + "end": 10112.74, + "probability": 0.8735 + }, + { + "start": 10113.12, + "end": 10115.09, + "probability": 0.8562 + }, + { + "start": 10116.2, + "end": 10119.98, + "probability": 0.9971 + }, + { + "start": 10121.04, + "end": 10124.44, + "probability": 0.9726 + }, + { + "start": 10124.92, + "end": 10128.9, + "probability": 0.9126 + }, + { + "start": 10129.02, + "end": 10129.98, + "probability": 0.673 + }, + { + "start": 10131.16, + "end": 10132.64, + "probability": 0.9131 + }, + { + "start": 10133.2, + "end": 10134.06, + "probability": 0.7737 + }, + { + "start": 10134.9, + "end": 10137.74, + "probability": 0.8451 + }, + { + "start": 10138.06, + "end": 10139.84, + "probability": 0.8176 + }, + { + "start": 10140.34, + "end": 10141.32, + "probability": 0.9922 + }, + { + "start": 10141.86, + "end": 10143.02, + "probability": 0.9826 + }, + { + "start": 10143.76, + "end": 10145.8, + "probability": 0.965 + }, + { + "start": 10146.32, + "end": 10147.21, + "probability": 0.9233 + }, + { + "start": 10147.6, + "end": 10148.34, + "probability": 0.9014 + }, + { + "start": 10148.8, + "end": 10152.52, + "probability": 0.994 + }, + { + "start": 10152.96, + "end": 10153.84, + "probability": 0.9819 + }, + { + "start": 10154.36, + "end": 10155.77, + "probability": 0.9355 + }, + { + "start": 10157.6, + "end": 10159.58, + "probability": 0.985 + }, + { + "start": 10160.42, + "end": 10161.22, + "probability": 0.9944 + }, + { + "start": 10161.92, + "end": 10165.44, + "probability": 0.9862 + }, + { + "start": 10165.52, + "end": 10166.24, + "probability": 0.676 + }, + { + "start": 10166.81, + "end": 10169.43, + "probability": 0.6663 + }, + { + "start": 10170.18, + "end": 10173.29, + "probability": 0.9158 + }, + { + "start": 10174.24, + "end": 10174.76, + "probability": 0.9188 + }, + { + "start": 10175.64, + "end": 10177.06, + "probability": 0.9544 + }, + { + "start": 10177.6, + "end": 10181.5, + "probability": 0.6651 + }, + { + "start": 10182.48, + "end": 10185.54, + "probability": 0.9476 + }, + { + "start": 10186.18, + "end": 10188.76, + "probability": 0.9758 + }, + { + "start": 10189.84, + "end": 10190.88, + "probability": 0.7762 + }, + { + "start": 10190.98, + "end": 10192.8, + "probability": 0.8455 + }, + { + "start": 10192.88, + "end": 10197.2, + "probability": 0.992 + }, + { + "start": 10197.2, + "end": 10202.06, + "probability": 0.9927 + }, + { + "start": 10202.3, + "end": 10204.08, + "probability": 0.7427 + }, + { + "start": 10204.48, + "end": 10208.88, + "probability": 0.9776 + }, + { + "start": 10210.42, + "end": 10211.36, + "probability": 0.9706 + }, + { + "start": 10212.26, + "end": 10213.68, + "probability": 0.9932 + }, + { + "start": 10214.34, + "end": 10219.96, + "probability": 0.9925 + }, + { + "start": 10220.68, + "end": 10223.24, + "probability": 0.9943 + }, + { + "start": 10223.24, + "end": 10226.42, + "probability": 0.908 + }, + { + "start": 10227.78, + "end": 10228.74, + "probability": 0.8108 + }, + { + "start": 10229.3, + "end": 10230.24, + "probability": 0.9071 + }, + { + "start": 10231.06, + "end": 10236.08, + "probability": 0.9218 + }, + { + "start": 10236.18, + "end": 10236.92, + "probability": 0.7577 + }, + { + "start": 10237.26, + "end": 10239.78, + "probability": 0.998 + }, + { + "start": 10240.4, + "end": 10241.3, + "probability": 0.9761 + }, + { + "start": 10242.04, + "end": 10245.38, + "probability": 0.9506 + }, + { + "start": 10245.52, + "end": 10247.26, + "probability": 0.952 + }, + { + "start": 10248.02, + "end": 10250.22, + "probability": 0.814 + }, + { + "start": 10250.76, + "end": 10251.3, + "probability": 0.8995 + }, + { + "start": 10252.06, + "end": 10254.12, + "probability": 0.9727 + }, + { + "start": 10254.86, + "end": 10255.72, + "probability": 0.949 + }, + { + "start": 10256.3, + "end": 10258.76, + "probability": 0.9548 + }, + { + "start": 10259.3, + "end": 10261.24, + "probability": 0.9259 + }, + { + "start": 10261.9, + "end": 10264.04, + "probability": 0.6602 + }, + { + "start": 10265.0, + "end": 10267.38, + "probability": 0.8373 + }, + { + "start": 10267.46, + "end": 10268.0, + "probability": 0.7731 + }, + { + "start": 10268.0, + "end": 10268.1, + "probability": 0.7103 + }, + { + "start": 10268.4, + "end": 10271.32, + "probability": 0.9396 + }, + { + "start": 10271.6, + "end": 10272.28, + "probability": 0.7285 + }, + { + "start": 10274.96, + "end": 10276.06, + "probability": 0.9268 + }, + { + "start": 10276.26, + "end": 10280.32, + "probability": 0.9906 + }, + { + "start": 10280.42, + "end": 10282.36, + "probability": 0.87 + }, + { + "start": 10283.16, + "end": 10287.18, + "probability": 0.5892 + }, + { + "start": 10287.54, + "end": 10289.34, + "probability": 0.3325 + }, + { + "start": 10305.3, + "end": 10308.38, + "probability": 0.6478 + }, + { + "start": 10308.46, + "end": 10310.04, + "probability": 0.8971 + }, + { + "start": 10310.72, + "end": 10312.52, + "probability": 0.3736 + }, + { + "start": 10313.06, + "end": 10315.78, + "probability": 0.7169 + }, + { + "start": 10316.58, + "end": 10318.98, + "probability": 0.8025 + }, + { + "start": 10321.7, + "end": 10322.6, + "probability": 0.1303 + }, + { + "start": 10328.1, + "end": 10329.24, + "probability": 0.0991 + }, + { + "start": 10329.24, + "end": 10330.86, + "probability": 0.055 + }, + { + "start": 10331.1, + "end": 10331.18, + "probability": 0.1661 + }, + { + "start": 10335.82, + "end": 10337.78, + "probability": 0.0518 + }, + { + "start": 10337.94, + "end": 10339.44, + "probability": 0.5606 + }, + { + "start": 10339.88, + "end": 10340.52, + "probability": 0.0322 + }, + { + "start": 10341.26, + "end": 10341.8, + "probability": 0.0959 + }, + { + "start": 10342.18, + "end": 10342.74, + "probability": 0.0409 + }, + { + "start": 10342.76, + "end": 10349.1, + "probability": 0.0801 + }, + { + "start": 10353.0, + "end": 10356.44, + "probability": 0.8636 + }, + { + "start": 10356.86, + "end": 10360.2, + "probability": 0.0958 + }, + { + "start": 10360.2, + "end": 10364.64, + "probability": 0.7079 + }, + { + "start": 10366.32, + "end": 10366.66, + "probability": 0.0032 + }, + { + "start": 10366.84, + "end": 10367.28, + "probability": 0.0102 + }, + { + "start": 10367.28, + "end": 10368.72, + "probability": 0.032 + }, + { + "start": 10370.01, + "end": 10370.36, + "probability": 0.0254 + }, + { + "start": 10370.36, + "end": 10370.94, + "probability": 0.0961 + }, + { + "start": 10371.0, + "end": 10371.0, + "probability": 0.0 + }, + { + "start": 10371.0, + "end": 10371.0, + "probability": 0.0 + }, + { + "start": 10371.0, + "end": 10371.0, + "probability": 0.0 + }, + { + "start": 10379.78, + "end": 10379.94, + "probability": 0.1757 + }, + { + "start": 10422.0, + "end": 10423.14, + "probability": 0.2387 + }, + { + "start": 10425.6, + "end": 10426.74, + "probability": 0.8706 + }, + { + "start": 10426.96, + "end": 10431.92, + "probability": 0.1822 + }, + { + "start": 10432.64, + "end": 10434.94, + "probability": 0.0962 + }, + { + "start": 10435.34, + "end": 10436.66, + "probability": 0.0198 + }, + { + "start": 10436.66, + "end": 10437.74, + "probability": 0.2623 + }, + { + "start": 10438.02, + "end": 10440.0, + "probability": 0.0711 + }, + { + "start": 10502.0, + "end": 10502.0, + "probability": 0.0 + }, + { + "start": 10502.0, + "end": 10502.0, + "probability": 0.0 + }, + { + "start": 10502.0, + "end": 10502.0, + "probability": 0.0 + }, + { + "start": 10502.0, + "end": 10502.0, + "probability": 0.0 + }, + { + "start": 10502.0, + "end": 10502.0, + "probability": 0.0 + }, + { + "start": 10502.0, + "end": 10502.0, + "probability": 0.0 + }, + { + "start": 10502.0, + "end": 10502.0, + "probability": 0.0 + }, + { + "start": 10502.0, + "end": 10502.0, + "probability": 0.0 + }, + { + "start": 10502.0, + "end": 10502.0, + "probability": 0.0 + }, + { + "start": 10502.0, + "end": 10502.0, + "probability": 0.0 + }, + { + "start": 10502.0, + "end": 10502.0, + "probability": 0.0 + }, + { + "start": 10502.0, + "end": 10502.0, + "probability": 0.0 + }, + { + "start": 10502.0, + "end": 10502.0, + "probability": 0.0 + }, + { + "start": 10502.0, + "end": 10502.0, + "probability": 0.0 + }, + { + "start": 10502.0, + "end": 10502.0, + "probability": 0.0 + }, + { + "start": 10502.0, + "end": 10502.0, + "probability": 0.0 + }, + { + "start": 10502.0, + "end": 10502.0, + "probability": 0.0 + }, + { + "start": 10502.0, + "end": 10502.0, + "probability": 0.0 + }, + { + "start": 10502.0, + "end": 10502.0, + "probability": 0.0 + }, + { + "start": 10502.0, + "end": 10502.0, + "probability": 0.0 + }, + { + "start": 10502.0, + "end": 10502.0, + "probability": 0.0 + }, + { + "start": 10502.0, + "end": 10502.0, + "probability": 0.0 + }, + { + "start": 10502.0, + "end": 10502.0, + "probability": 0.0 + }, + { + "start": 10502.0, + "end": 10502.0, + "probability": 0.0 + }, + { + "start": 10502.0, + "end": 10502.0, + "probability": 0.0 + }, + { + "start": 10502.0, + "end": 10502.0, + "probability": 0.0 + }, + { + "start": 10502.0, + "end": 10502.0, + "probability": 0.0 + }, + { + "start": 10502.0, + "end": 10502.0, + "probability": 0.0 + }, + { + "start": 10502.0, + "end": 10502.0, + "probability": 0.0 + }, + { + "start": 10502.0, + "end": 10502.0, + "probability": 0.0 + }, + { + "start": 10502.0, + "end": 10502.0, + "probability": 0.0 + }, + { + "start": 10502.0, + "end": 10502.0, + "probability": 0.0 + }, + { + "start": 10502.0, + "end": 10502.0, + "probability": 0.0 + }, + { + "start": 10502.0, + "end": 10502.0, + "probability": 0.0 + }, + { + "start": 10502.0, + "end": 10502.0, + "probability": 0.0 + }, + { + "start": 10502.0, + "end": 10502.0, + "probability": 0.0 + }, + { + "start": 10502.0, + "end": 10502.0, + "probability": 0.0 + }, + { + "start": 10502.76, + "end": 10504.49, + "probability": 0.1458 + }, + { + "start": 10505.0, + "end": 10514.18, + "probability": 0.744 + }, + { + "start": 10515.26, + "end": 10517.66, + "probability": 0.978 + }, + { + "start": 10519.58, + "end": 10522.26, + "probability": 0.9701 + }, + { + "start": 10523.18, + "end": 10530.9, + "probability": 0.9807 + }, + { + "start": 10530.9, + "end": 10540.0, + "probability": 0.8718 + }, + { + "start": 10540.82, + "end": 10543.6, + "probability": 0.9893 + }, + { + "start": 10544.38, + "end": 10548.13, + "probability": 0.9871 + }, + { + "start": 10548.2, + "end": 10551.76, + "probability": 0.9932 + }, + { + "start": 10552.36, + "end": 10555.54, + "probability": 0.9906 + }, + { + "start": 10555.54, + "end": 10559.9, + "probability": 0.9991 + }, + { + "start": 10560.52, + "end": 10560.94, + "probability": 0.3611 + }, + { + "start": 10561.02, + "end": 10565.14, + "probability": 0.9707 + }, + { + "start": 10565.14, + "end": 10572.62, + "probability": 0.9635 + }, + { + "start": 10572.82, + "end": 10574.84, + "probability": 0.6945 + }, + { + "start": 10575.54, + "end": 10580.64, + "probability": 0.9873 + }, + { + "start": 10581.14, + "end": 10582.42, + "probability": 0.9562 + }, + { + "start": 10584.0, + "end": 10584.62, + "probability": 0.4841 + }, + { + "start": 10584.7, + "end": 10585.46, + "probability": 0.6482 + }, + { + "start": 10585.58, + "end": 10589.54, + "probability": 0.9926 + }, + { + "start": 10589.56, + "end": 10593.74, + "probability": 0.9985 + }, + { + "start": 10593.98, + "end": 10600.8, + "probability": 0.9489 + }, + { + "start": 10602.2, + "end": 10604.04, + "probability": 0.9902 + }, + { + "start": 10604.76, + "end": 10605.34, + "probability": 0.9013 + }, + { + "start": 10605.62, + "end": 10609.24, + "probability": 0.9197 + }, + { + "start": 10609.24, + "end": 10612.42, + "probability": 0.9744 + }, + { + "start": 10615.78, + "end": 10619.48, + "probability": 0.8252 + }, + { + "start": 10619.66, + "end": 10624.62, + "probability": 0.9871 + }, + { + "start": 10625.28, + "end": 10627.42, + "probability": 0.9734 + }, + { + "start": 10628.38, + "end": 10630.3, + "probability": 0.9357 + }, + { + "start": 10630.86, + "end": 10634.6, + "probability": 0.9668 + }, + { + "start": 10634.6, + "end": 10639.82, + "probability": 0.8894 + }, + { + "start": 10640.62, + "end": 10645.02, + "probability": 0.9954 + }, + { + "start": 10645.7, + "end": 10650.16, + "probability": 0.9928 + }, + { + "start": 10650.66, + "end": 10650.92, + "probability": 0.6982 + }, + { + "start": 10651.12, + "end": 10653.87, + "probability": 0.9885 + }, + { + "start": 10654.0, + "end": 10655.26, + "probability": 0.9812 + }, + { + "start": 10656.42, + "end": 10657.04, + "probability": 0.7089 + }, + { + "start": 10657.18, + "end": 10660.72, + "probability": 0.9209 + }, + { + "start": 10660.72, + "end": 10665.16, + "probability": 0.9131 + }, + { + "start": 10665.78, + "end": 10666.0, + "probability": 0.6993 + }, + { + "start": 10666.16, + "end": 10666.5, + "probability": 0.9959 + }, + { + "start": 10666.58, + "end": 10670.72, + "probability": 0.9928 + }, + { + "start": 10671.2, + "end": 10674.14, + "probability": 0.9964 + }, + { + "start": 10674.84, + "end": 10681.12, + "probability": 0.9491 + }, + { + "start": 10682.66, + "end": 10684.12, + "probability": 0.8261 + }, + { + "start": 10684.24, + "end": 10685.02, + "probability": 0.7167 + }, + { + "start": 10685.12, + "end": 10686.22, + "probability": 0.9162 + }, + { + "start": 10686.82, + "end": 10688.86, + "probability": 0.9614 + }, + { + "start": 10689.36, + "end": 10694.98, + "probability": 0.991 + }, + { + "start": 10695.56, + "end": 10701.84, + "probability": 0.9914 + }, + { + "start": 10702.38, + "end": 10703.56, + "probability": 0.5696 + }, + { + "start": 10703.7, + "end": 10706.48, + "probability": 0.9905 + }, + { + "start": 10707.32, + "end": 10708.44, + "probability": 0.9404 + }, + { + "start": 10708.6, + "end": 10710.32, + "probability": 0.9954 + }, + { + "start": 10711.62, + "end": 10712.14, + "probability": 0.856 + }, + { + "start": 10712.32, + "end": 10715.08, + "probability": 0.9701 + }, + { + "start": 10715.3, + "end": 10717.78, + "probability": 0.9635 + }, + { + "start": 10718.34, + "end": 10721.46, + "probability": 0.9973 + }, + { + "start": 10722.16, + "end": 10725.14, + "probability": 0.9668 + }, + { + "start": 10725.14, + "end": 10729.0, + "probability": 0.9852 + }, + { + "start": 10730.3, + "end": 10732.2, + "probability": 0.7148 + }, + { + "start": 10733.04, + "end": 10736.7, + "probability": 0.9792 + }, + { + "start": 10736.8, + "end": 10740.68, + "probability": 0.9714 + }, + { + "start": 10740.68, + "end": 10744.02, + "probability": 0.9719 + }, + { + "start": 10744.7, + "end": 10745.42, + "probability": 0.8332 + }, + { + "start": 10746.0, + "end": 10748.08, + "probability": 0.4821 + }, + { + "start": 10752.94, + "end": 10760.64, + "probability": 0.6648 + }, + { + "start": 10761.34, + "end": 10764.76, + "probability": 0.6659 + }, + { + "start": 10765.54, + "end": 10769.64, + "probability": 0.9871 + }, + { + "start": 10770.2, + "end": 10775.0, + "probability": 0.9935 + }, + { + "start": 10775.58, + "end": 10779.98, + "probability": 0.9754 + }, + { + "start": 10780.6, + "end": 10780.86, + "probability": 0.3085 + }, + { + "start": 10780.98, + "end": 10789.26, + "probability": 0.958 + }, + { + "start": 10789.6, + "end": 10790.14, + "probability": 0.8619 + }, + { + "start": 10790.54, + "end": 10792.06, + "probability": 0.7185 + }, + { + "start": 10792.52, + "end": 10793.86, + "probability": 0.7361 + }, + { + "start": 10796.82, + "end": 10796.82, + "probability": 0.1061 + }, + { + "start": 10796.82, + "end": 10796.82, + "probability": 0.0944 + }, + { + "start": 10796.82, + "end": 10800.84, + "probability": 0.9565 + }, + { + "start": 10800.84, + "end": 10804.84, + "probability": 0.9845 + }, + { + "start": 10805.2, + "end": 10806.36, + "probability": 0.9662 + }, + { + "start": 10807.94, + "end": 10808.92, + "probability": 0.6931 + }, + { + "start": 10808.94, + "end": 10809.5, + "probability": 0.6773 + }, + { + "start": 10809.66, + "end": 10810.52, + "probability": 0.7229 + }, + { + "start": 10810.62, + "end": 10811.62, + "probability": 0.6966 + }, + { + "start": 10811.72, + "end": 10812.12, + "probability": 0.7087 + }, + { + "start": 10813.02, + "end": 10816.4, + "probability": 0.9936 + }, + { + "start": 10817.28, + "end": 10820.08, + "probability": 0.9926 + }, + { + "start": 10820.08, + "end": 10823.7, + "probability": 0.9492 + }, + { + "start": 10824.3, + "end": 10828.78, + "probability": 0.9111 + }, + { + "start": 10829.44, + "end": 10834.6, + "probability": 0.9941 + }, + { + "start": 10835.14, + "end": 10837.38, + "probability": 0.9985 + }, + { + "start": 10838.52, + "end": 10838.88, + "probability": 0.8243 + }, + { + "start": 10839.8, + "end": 10842.32, + "probability": 0.6548 + }, + { + "start": 10842.84, + "end": 10846.08, + "probability": 0.7203 + }, + { + "start": 10846.86, + "end": 10847.36, + "probability": 0.814 + }, + { + "start": 10848.34, + "end": 10848.96, + "probability": 0.7584 + }, + { + "start": 10849.42, + "end": 10852.29, + "probability": 0.6641 + }, + { + "start": 10852.92, + "end": 10854.74, + "probability": 0.9823 + }, + { + "start": 10854.84, + "end": 10855.26, + "probability": 0.8362 + }, + { + "start": 10868.76, + "end": 10869.02, + "probability": 0.3595 + }, + { + "start": 10869.02, + "end": 10869.78, + "probability": 0.5706 + }, + { + "start": 10870.02, + "end": 10871.86, + "probability": 0.9081 + }, + { + "start": 10872.26, + "end": 10876.98, + "probability": 0.9858 + }, + { + "start": 10876.98, + "end": 10879.02, + "probability": 0.955 + }, + { + "start": 10879.12, + "end": 10880.26, + "probability": 0.6437 + }, + { + "start": 10880.42, + "end": 10883.28, + "probability": 0.7589 + }, + { + "start": 10883.56, + "end": 10886.92, + "probability": 0.6582 + }, + { + "start": 10887.02, + "end": 10888.72, + "probability": 0.7008 + }, + { + "start": 10888.72, + "end": 10891.38, + "probability": 0.9946 + }, + { + "start": 10891.42, + "end": 10891.58, + "probability": 0.2579 + }, + { + "start": 10891.6, + "end": 10894.46, + "probability": 0.9835 + }, + { + "start": 10894.46, + "end": 10894.62, + "probability": 0.0152 + }, + { + "start": 10894.72, + "end": 10895.26, + "probability": 0.6845 + }, + { + "start": 10895.32, + "end": 10897.38, + "probability": 0.9222 + }, + { + "start": 10897.48, + "end": 10898.88, + "probability": 0.704 + }, + { + "start": 10899.34, + "end": 10901.18, + "probability": 0.9171 + }, + { + "start": 10901.28, + "end": 10903.22, + "probability": 0.9749 + }, + { + "start": 10903.24, + "end": 10903.52, + "probability": 0.568 + }, + { + "start": 10903.52, + "end": 10905.68, + "probability": 0.8745 + }, + { + "start": 10906.14, + "end": 10908.48, + "probability": 0.9868 + }, + { + "start": 10908.54, + "end": 10909.54, + "probability": 0.9789 + }, + { + "start": 10909.62, + "end": 10909.82, + "probability": 0.6848 + }, + { + "start": 10909.84, + "end": 10911.14, + "probability": 0.7675 + }, + { + "start": 10911.66, + "end": 10913.96, + "probability": 0.9974 + }, + { + "start": 10914.1, + "end": 10914.28, + "probability": 0.7065 + }, + { + "start": 10914.32, + "end": 10916.26, + "probability": 0.9813 + }, + { + "start": 10916.72, + "end": 10918.04, + "probability": 0.8103 + }, + { + "start": 10918.08, + "end": 10920.44, + "probability": 0.8914 + }, + { + "start": 10920.44, + "end": 10923.56, + "probability": 0.8817 + }, + { + "start": 10924.72, + "end": 10925.52, + "probability": 0.9491 + }, + { + "start": 10926.12, + "end": 10927.38, + "probability": 0.8209 + }, + { + "start": 10927.44, + "end": 10928.56, + "probability": 0.9839 + }, + { + "start": 10928.9, + "end": 10929.93, + "probability": 0.9805 + }, + { + "start": 10930.4, + "end": 10931.13, + "probability": 0.9937 + }, + { + "start": 10931.3, + "end": 10932.11, + "probability": 0.8889 + }, + { + "start": 10932.72, + "end": 10933.12, + "probability": 0.9577 + }, + { + "start": 10933.28, + "end": 10934.58, + "probability": 0.8979 + }, + { + "start": 10934.62, + "end": 10938.04, + "probability": 0.8672 + }, + { + "start": 10938.14, + "end": 10938.22, + "probability": 0.012 + }, + { + "start": 10938.22, + "end": 10938.22, + "probability": 0.0323 + }, + { + "start": 10938.22, + "end": 10939.24, + "probability": 0.8847 + }, + { + "start": 10939.54, + "end": 10942.2, + "probability": 0.4556 + }, + { + "start": 10942.38, + "end": 10942.78, + "probability": 0.4152 + }, + { + "start": 10942.82, + "end": 10945.14, + "probability": 0.9889 + }, + { + "start": 10945.66, + "end": 10947.26, + "probability": 0.9246 + }, + { + "start": 10947.32, + "end": 10947.38, + "probability": 0.0518 + }, + { + "start": 10947.38, + "end": 10949.4, + "probability": 0.764 + }, + { + "start": 10950.52, + "end": 10953.6, + "probability": 0.6363 + }, + { + "start": 10954.08, + "end": 10955.32, + "probability": 0.5908 + }, + { + "start": 10955.62, + "end": 10957.7, + "probability": 0.0709 + }, + { + "start": 10957.7, + "end": 10958.6, + "probability": 0.124 + }, + { + "start": 10958.66, + "end": 10961.0, + "probability": 0.0297 + }, + { + "start": 10961.6, + "end": 10962.76, + "probability": 0.0791 + }, + { + "start": 10962.76, + "end": 10964.19, + "probability": 0.1851 + }, + { + "start": 10964.62, + "end": 10966.14, + "probability": 0.2153 + }, + { + "start": 10966.14, + "end": 10967.05, + "probability": 0.2185 + }, + { + "start": 10968.02, + "end": 10968.84, + "probability": 0.0387 + }, + { + "start": 10969.24, + "end": 10969.34, + "probability": 0.3989 + }, + { + "start": 10969.34, + "end": 10970.68, + "probability": 0.3079 + }, + { + "start": 10971.3, + "end": 10973.78, + "probability": 0.1742 + }, + { + "start": 10974.5, + "end": 10975.44, + "probability": 0.0303 + }, + { + "start": 10975.44, + "end": 10976.02, + "probability": 0.0519 + }, + { + "start": 10976.42, + "end": 10976.42, + "probability": 0.02 + }, + { + "start": 10976.42, + "end": 10979.42, + "probability": 0.8823 + }, + { + "start": 10979.42, + "end": 10982.44, + "probability": 0.9685 + }, + { + "start": 10982.52, + "end": 10982.6, + "probability": 0.4389 + }, + { + "start": 10982.68, + "end": 10982.94, + "probability": 0.8681 + }, + { + "start": 10982.98, + "end": 10984.3, + "probability": 0.614 + }, + { + "start": 10984.66, + "end": 10984.98, + "probability": 0.2136 + }, + { + "start": 10985.62, + "end": 10986.02, + "probability": 0.0045 + }, + { + "start": 10986.27, + "end": 10986.48, + "probability": 0.1184 + }, + { + "start": 10986.48, + "end": 10986.48, + "probability": 0.0425 + }, + { + "start": 10986.48, + "end": 10986.48, + "probability": 0.0068 + }, + { + "start": 10986.48, + "end": 10986.64, + "probability": 0.1847 + }, + { + "start": 10986.78, + "end": 10989.78, + "probability": 0.8944 + }, + { + "start": 10990.46, + "end": 10991.5, + "probability": 0.1353 + }, + { + "start": 10991.74, + "end": 10991.9, + "probability": 0.0185 + }, + { + "start": 10991.9, + "end": 10992.0, + "probability": 0.0227 + }, + { + "start": 10992.0, + "end": 10993.66, + "probability": 0.8027 + }, + { + "start": 10993.66, + "end": 10995.52, + "probability": 0.7359 + }, + { + "start": 10996.08, + "end": 10997.32, + "probability": 0.6713 + }, + { + "start": 10997.52, + "end": 10999.6, + "probability": 0.4357 + }, + { + "start": 10999.6, + "end": 11001.22, + "probability": 0.4917 + }, + { + "start": 11001.36, + "end": 11001.38, + "probability": 0.405 + }, + { + "start": 11001.38, + "end": 11001.38, + "probability": 0.0298 + }, + { + "start": 11001.38, + "end": 11001.38, + "probability": 0.1356 + }, + { + "start": 11001.38, + "end": 11003.76, + "probability": 0.7997 + }, + { + "start": 11004.18, + "end": 11007.48, + "probability": 0.1037 + }, + { + "start": 11008.4, + "end": 11010.36, + "probability": 0.0615 + }, + { + "start": 11017.48, + "end": 11018.82, + "probability": 0.2146 + }, + { + "start": 11020.58, + "end": 11024.88, + "probability": 0.1766 + }, + { + "start": 11024.88, + "end": 11028.08, + "probability": 0.0348 + }, + { + "start": 11029.6, + "end": 11030.02, + "probability": 0.0144 + }, + { + "start": 11032.82, + "end": 11033.14, + "probability": 0.0365 + }, + { + "start": 11033.14, + "end": 11034.3, + "probability": 0.0908 + }, + { + "start": 11035.16, + "end": 11036.48, + "probability": 0.0706 + }, + { + "start": 11036.64, + "end": 11041.3, + "probability": 0.0526 + }, + { + "start": 11041.52, + "end": 11041.52, + "probability": 0.0527 + }, + { + "start": 11042.74, + "end": 11042.84, + "probability": 0.0372 + }, + { + "start": 11043.0, + "end": 11043.0, + "probability": 0.0 + }, + { + "start": 11043.0, + "end": 11043.0, + "probability": 0.0 + }, + { + "start": 11043.0, + "end": 11043.0, + "probability": 0.0 + }, + { + "start": 11043.0, + "end": 11043.0, + "probability": 0.0 + }, + { + "start": 11043.0, + "end": 11043.0, + "probability": 0.0 + }, + { + "start": 11043.0, + "end": 11043.0, + "probability": 0.0 + }, + { + "start": 11043.0, + "end": 11043.0, + "probability": 0.0 + }, + { + "start": 11043.0, + "end": 11043.0, + "probability": 0.0 + }, + { + "start": 11043.0, + "end": 11043.0, + "probability": 0.0 + }, + { + "start": 11043.0, + "end": 11043.0, + "probability": 0.0 + }, + { + "start": 11043.0, + "end": 11043.0, + "probability": 0.0 + }, + { + "start": 11043.0, + "end": 11043.0, + "probability": 0.0 + }, + { + "start": 11043.0, + "end": 11043.0, + "probability": 0.0 + }, + { + "start": 11043.0, + "end": 11043.0, + "probability": 0.0 + }, + { + "start": 11043.0, + "end": 11043.0, + "probability": 0.0 + }, + { + "start": 11043.0, + "end": 11043.0, + "probability": 0.0 + }, + { + "start": 11043.0, + "end": 11043.0, + "probability": 0.0 + }, + { + "start": 11043.12, + "end": 11043.54, + "probability": 0.0021 + }, + { + "start": 11043.56, + "end": 11045.04, + "probability": 0.7199 + }, + { + "start": 11045.4, + "end": 11046.96, + "probability": 0.9812 + }, + { + "start": 11046.98, + "end": 11047.26, + "probability": 0.2232 + }, + { + "start": 11047.32, + "end": 11047.96, + "probability": 0.5776 + }, + { + "start": 11048.24, + "end": 11051.12, + "probability": 0.9866 + }, + { + "start": 11051.48, + "end": 11054.4, + "probability": 0.6854 + }, + { + "start": 11054.54, + "end": 11055.38, + "probability": 0.8491 + }, + { + "start": 11055.44, + "end": 11056.18, + "probability": 0.7488 + }, + { + "start": 11056.26, + "end": 11057.14, + "probability": 0.564 + }, + { + "start": 11057.94, + "end": 11058.06, + "probability": 0.3292 + }, + { + "start": 11058.16, + "end": 11060.26, + "probability": 0.9518 + }, + { + "start": 11060.26, + "end": 11062.0, + "probability": 0.9823 + }, + { + "start": 11062.34, + "end": 11062.44, + "probability": 0.0268 + }, + { + "start": 11062.58, + "end": 11064.32, + "probability": 0.7232 + }, + { + "start": 11064.36, + "end": 11066.74, + "probability": 0.9878 + }, + { + "start": 11066.74, + "end": 11068.46, + "probability": 0.8404 + }, + { + "start": 11068.82, + "end": 11068.94, + "probability": 0.0287 + }, + { + "start": 11069.04, + "end": 11070.8, + "probability": 0.8486 + }, + { + "start": 11070.82, + "end": 11072.5, + "probability": 0.7281 + }, + { + "start": 11072.5, + "end": 11075.28, + "probability": 0.9036 + }, + { + "start": 11075.68, + "end": 11077.24, + "probability": 0.6256 + }, + { + "start": 11077.24, + "end": 11079.44, + "probability": 0.9647 + }, + { + "start": 11079.98, + "end": 11080.1, + "probability": 0.0103 + }, + { + "start": 11080.22, + "end": 11082.08, + "probability": 0.8651 + }, + { + "start": 11082.08, + "end": 11084.0, + "probability": 0.7994 + }, + { + "start": 11084.24, + "end": 11084.48, + "probability": 0.141 + }, + { + "start": 11084.56, + "end": 11087.62, + "probability": 0.6313 + }, + { + "start": 11087.62, + "end": 11089.12, + "probability": 0.7445 + }, + { + "start": 11089.54, + "end": 11089.68, + "probability": 0.3757 + }, + { + "start": 11089.8, + "end": 11093.1, + "probability": 0.582 + }, + { + "start": 11093.42, + "end": 11094.92, + "probability": 0.8457 + }, + { + "start": 11095.0, + "end": 11095.8, + "probability": 0.4272 + }, + { + "start": 11095.88, + "end": 11097.08, + "probability": 0.814 + }, + { + "start": 11097.08, + "end": 11098.52, + "probability": 0.9331 + }, + { + "start": 11098.52, + "end": 11101.36, + "probability": 0.9638 + }, + { + "start": 11102.22, + "end": 11104.76, + "probability": 0.2666 + }, + { + "start": 11104.76, + "end": 11107.64, + "probability": 0.9857 + }, + { + "start": 11108.12, + "end": 11108.46, + "probability": 0.3863 + }, + { + "start": 11108.48, + "end": 11110.36, + "probability": 0.7402 + }, + { + "start": 11110.36, + "end": 11113.05, + "probability": 0.875 + }, + { + "start": 11113.84, + "end": 11115.62, + "probability": 0.7441 + }, + { + "start": 11116.08, + "end": 11118.6, + "probability": 0.9606 + }, + { + "start": 11118.7, + "end": 11121.74, + "probability": 0.9451 + }, + { + "start": 11126.25, + "end": 11128.58, + "probability": 0.5629 + }, + { + "start": 11128.64, + "end": 11129.54, + "probability": 0.7192 + }, + { + "start": 11130.12, + "end": 11130.88, + "probability": 0.9646 + }, + { + "start": 11131.02, + "end": 11132.66, + "probability": 0.8428 + }, + { + "start": 11133.76, + "end": 11137.22, + "probability": 0.9424 + }, + { + "start": 11139.84, + "end": 11140.9, + "probability": 0.9941 + }, + { + "start": 11141.86, + "end": 11142.58, + "probability": 0.8946 + }, + { + "start": 11143.84, + "end": 11148.18, + "probability": 0.9963 + }, + { + "start": 11148.44, + "end": 11149.44, + "probability": 0.9097 + }, + { + "start": 11150.32, + "end": 11154.74, + "probability": 0.9835 + }, + { + "start": 11154.74, + "end": 11156.14, + "probability": 0.8586 + }, + { + "start": 11156.3, + "end": 11157.55, + "probability": 0.9115 + }, + { + "start": 11158.04, + "end": 11160.78, + "probability": 0.8908 + }, + { + "start": 11161.48, + "end": 11164.22, + "probability": 0.7801 + }, + { + "start": 11164.3, + "end": 11165.28, + "probability": 0.2973 + }, + { + "start": 11165.36, + "end": 11168.5, + "probability": 0.9626 + }, + { + "start": 11169.26, + "end": 11170.74, + "probability": 0.9713 + }, + { + "start": 11170.74, + "end": 11172.0, + "probability": 0.2917 + }, + { + "start": 11172.3, + "end": 11174.67, + "probability": 0.7522 + }, + { + "start": 11175.56, + "end": 11176.5, + "probability": 0.8757 + }, + { + "start": 11176.76, + "end": 11178.38, + "probability": 0.1718 + }, + { + "start": 11178.72, + "end": 11179.36, + "probability": 0.7087 + }, + { + "start": 11180.14, + "end": 11183.74, + "probability": 0.9711 + }, + { + "start": 11184.58, + "end": 11185.64, + "probability": 0.9933 + }, + { + "start": 11187.36, + "end": 11191.2, + "probability": 0.9917 + }, + { + "start": 11193.64, + "end": 11197.7, + "probability": 0.9972 + }, + { + "start": 11197.94, + "end": 11199.14, + "probability": 0.7898 + }, + { + "start": 11199.68, + "end": 11201.34, + "probability": 0.7984 + }, + { + "start": 11202.04, + "end": 11204.48, + "probability": 0.8288 + }, + { + "start": 11207.28, + "end": 11207.92, + "probability": 0.9263 + }, + { + "start": 11208.9, + "end": 11210.9, + "probability": 0.9993 + }, + { + "start": 11212.66, + "end": 11213.24, + "probability": 0.9932 + }, + { + "start": 11214.1, + "end": 11215.12, + "probability": 0.9937 + }, + { + "start": 11215.62, + "end": 11216.46, + "probability": 0.0885 + }, + { + "start": 11216.48, + "end": 11219.98, + "probability": 0.999 + }, + { + "start": 11220.1, + "end": 11221.1, + "probability": 0.991 + }, + { + "start": 11221.1, + "end": 11221.94, + "probability": 0.3363 + }, + { + "start": 11222.0, + "end": 11225.58, + "probability": 0.9931 + }, + { + "start": 11225.58, + "end": 11230.0, + "probability": 0.9978 + }, + { + "start": 11230.2, + "end": 11231.0, + "probability": 0.4712 + }, + { + "start": 11231.14, + "end": 11231.46, + "probability": 0.5603 + }, + { + "start": 11231.5, + "end": 11231.74, + "probability": 0.4705 + }, + { + "start": 11231.74, + "end": 11235.98, + "probability": 0.9269 + }, + { + "start": 11235.98, + "end": 11236.22, + "probability": 0.2976 + }, + { + "start": 11236.38, + "end": 11237.18, + "probability": 0.8581 + }, + { + "start": 11237.46, + "end": 11241.28, + "probability": 0.9891 + }, + { + "start": 11241.28, + "end": 11241.7, + "probability": 0.5453 + }, + { + "start": 11242.52, + "end": 11244.26, + "probability": 0.5971 + }, + { + "start": 11244.26, + "end": 11245.1, + "probability": 0.5481 + }, + { + "start": 11245.14, + "end": 11247.26, + "probability": 0.7288 + }, + { + "start": 11247.6, + "end": 11249.36, + "probability": 0.5557 + }, + { + "start": 11249.38, + "end": 11251.96, + "probability": 0.9967 + }, + { + "start": 11251.96, + "end": 11254.18, + "probability": 0.9993 + }, + { + "start": 11254.42, + "end": 11255.8, + "probability": 0.8053 + }, + { + "start": 11255.94, + "end": 11256.16, + "probability": 0.8021 + }, + { + "start": 11256.26, + "end": 11258.14, + "probability": 0.8718 + }, + { + "start": 11258.26, + "end": 11258.32, + "probability": 0.4553 + }, + { + "start": 11258.46, + "end": 11259.64, + "probability": 0.8938 + }, + { + "start": 11259.74, + "end": 11264.29, + "probability": 0.7579 + }, + { + "start": 11264.42, + "end": 11265.56, + "probability": 0.0281 + }, + { + "start": 11265.56, + "end": 11265.84, + "probability": 0.0168 + }, + { + "start": 11265.84, + "end": 11268.72, + "probability": 0.1293 + }, + { + "start": 11271.5, + "end": 11275.8, + "probability": 0.0395 + }, + { + "start": 11276.3, + "end": 11277.38, + "probability": 0.0234 + }, + { + "start": 11278.1, + "end": 11278.1, + "probability": 0.0131 + }, + { + "start": 11278.26, + "end": 11280.4, + "probability": 0.1578 + }, + { + "start": 11280.4, + "end": 11281.18, + "probability": 0.186 + }, + { + "start": 11281.42, + "end": 11283.26, + "probability": 0.2713 + }, + { + "start": 11284.06, + "end": 11284.8, + "probability": 0.08 + }, + { + "start": 11358.0, + "end": 11358.0, + "probability": 0.0 + }, + { + "start": 11358.0, + "end": 11358.0, + "probability": 0.0 + }, + { + "start": 11358.0, + "end": 11358.0, + "probability": 0.0 + }, + { + "start": 11358.0, + "end": 11358.0, + "probability": 0.0 + }, + { + "start": 11358.0, + "end": 11358.0, + "probability": 0.0 + }, + { + "start": 11358.0, + "end": 11358.0, + "probability": 0.0 + }, + { + "start": 11358.0, + "end": 11358.0, + "probability": 0.0 + }, + { + "start": 11358.0, + "end": 11358.0, + "probability": 0.0 + }, + { + "start": 11358.0, + "end": 11358.0, + "probability": 0.0 + }, + { + "start": 11358.0, + "end": 11358.0, + "probability": 0.0 + }, + { + "start": 11358.0, + "end": 11358.0, + "probability": 0.0 + }, + { + "start": 11358.0, + "end": 11358.0, + "probability": 0.0 + }, + { + "start": 11358.0, + "end": 11358.0, + "probability": 0.0 + }, + { + "start": 11358.0, + "end": 11358.0, + "probability": 0.0 + }, + { + "start": 11358.0, + "end": 11358.0, + "probability": 0.0 + }, + { + "start": 11358.0, + "end": 11358.0, + "probability": 0.0 + }, + { + "start": 11358.0, + "end": 11358.0, + "probability": 0.0 + }, + { + "start": 11358.0, + "end": 11358.0, + "probability": 0.0 + }, + { + "start": 11358.0, + "end": 11358.0, + "probability": 0.0 + }, + { + "start": 11358.0, + "end": 11358.0, + "probability": 0.0 + }, + { + "start": 11358.0, + "end": 11358.0, + "probability": 0.0 + }, + { + "start": 11358.0, + "end": 11358.0, + "probability": 0.0 + }, + { + "start": 11358.0, + "end": 11358.0, + "probability": 0.0 + }, + { + "start": 11358.0, + "end": 11358.0, + "probability": 0.0 + }, + { + "start": 11358.0, + "end": 11358.0, + "probability": 0.0 + }, + { + "start": 11358.0, + "end": 11358.0, + "probability": 0.0 + }, + { + "start": 11358.0, + "end": 11358.0, + "probability": 0.0 + }, + { + "start": 11358.0, + "end": 11358.0, + "probability": 0.0 + }, + { + "start": 11358.0, + "end": 11358.0, + "probability": 0.0 + }, + { + "start": 11358.0, + "end": 11358.0, + "probability": 0.0 + }, + { + "start": 11358.0, + "end": 11358.0, + "probability": 0.0 + }, + { + "start": 11358.0, + "end": 11358.0, + "probability": 0.0 + }, + { + "start": 11358.0, + "end": 11358.0, + "probability": 0.0 + }, + { + "start": 11358.0, + "end": 11358.0, + "probability": 0.0 + }, + { + "start": 11358.0, + "end": 11358.0, + "probability": 0.0 + }, + { + "start": 11358.0, + "end": 11358.0, + "probability": 0.0 + }, + { + "start": 11358.0, + "end": 11358.0, + "probability": 0.0 + }, + { + "start": 11358.0, + "end": 11358.0, + "probability": 0.0 + }, + { + "start": 11358.0, + "end": 11358.0, + "probability": 0.0 + }, + { + "start": 11358.0, + "end": 11358.0, + "probability": 0.0 + }, + { + "start": 11358.0, + "end": 11358.0, + "probability": 0.0 + }, + { + "start": 11358.0, + "end": 11358.0, + "probability": 0.0 + }, + { + "start": 11358.0, + "end": 11358.0, + "probability": 0.0 + }, + { + "start": 11358.0, + "end": 11358.0, + "probability": 0.0 + }, + { + "start": 11358.0, + "end": 11358.0, + "probability": 0.0 + }, + { + "start": 11358.0, + "end": 11358.0, + "probability": 0.0 + }, + { + "start": 11358.28, + "end": 11362.52, + "probability": 0.6114 + }, + { + "start": 11362.92, + "end": 11363.82, + "probability": 0.4476 + }, + { + "start": 11363.82, + "end": 11366.88, + "probability": 0.2928 + }, + { + "start": 11366.88, + "end": 11369.38, + "probability": 0.7755 + }, + { + "start": 11369.9, + "end": 11371.18, + "probability": 0.5143 + }, + { + "start": 11371.58, + "end": 11373.5, + "probability": 0.3251 + }, + { + "start": 11373.62, + "end": 11373.62, + "probability": 0.1432 + }, + { + "start": 11373.62, + "end": 11373.62, + "probability": 0.7466 + }, + { + "start": 11373.62, + "end": 11374.78, + "probability": 0.3833 + }, + { + "start": 11374.78, + "end": 11377.26, + "probability": 0.4077 + }, + { + "start": 11377.44, + "end": 11379.58, + "probability": 0.708 + }, + { + "start": 11379.6, + "end": 11382.03, + "probability": 0.2005 + }, + { + "start": 11382.86, + "end": 11383.14, + "probability": 0.0356 + }, + { + "start": 11480.0, + "end": 11480.0, + "probability": 0.0 + }, + { + "start": 11480.0, + "end": 11480.0, + "probability": 0.0 + }, + { + "start": 11480.0, + "end": 11480.0, + "probability": 0.0 + }, + { + "start": 11480.0, + "end": 11480.0, + "probability": 0.0 + }, + { + "start": 11480.0, + "end": 11480.0, + "probability": 0.0 + }, + { + "start": 11480.0, + "end": 11480.0, + "probability": 0.0 + }, + { + "start": 11480.0, + "end": 11480.0, + "probability": 0.0 + }, + { + "start": 11480.0, + "end": 11480.0, + "probability": 0.0 + }, + { + "start": 11480.0, + "end": 11480.0, + "probability": 0.0 + }, + { + "start": 11480.0, + "end": 11480.0, + "probability": 0.0 + }, + { + "start": 11480.0, + "end": 11480.0, + "probability": 0.0 + }, + { + "start": 11480.0, + "end": 11480.0, + "probability": 0.0 + }, + { + "start": 11480.0, + "end": 11480.0, + "probability": 0.0 + }, + { + "start": 11480.0, + "end": 11480.0, + "probability": 0.0 + }, + { + "start": 11480.0, + "end": 11480.0, + "probability": 0.0 + }, + { + "start": 11480.0, + "end": 11480.0, + "probability": 0.0 + }, + { + "start": 11480.0, + "end": 11480.0, + "probability": 0.0 + }, + { + "start": 11480.0, + "end": 11480.0, + "probability": 0.0 + }, + { + "start": 11480.0, + "end": 11480.0, + "probability": 0.0 + }, + { + "start": 11480.0, + "end": 11480.0, + "probability": 0.0 + }, + { + "start": 11480.0, + "end": 11480.0, + "probability": 0.0 + }, + { + "start": 11480.0, + "end": 11480.0, + "probability": 0.0 + }, + { + "start": 11480.0, + "end": 11480.0, + "probability": 0.0 + }, + { + "start": 11480.0, + "end": 11480.0, + "probability": 0.0 + }, + { + "start": 11480.0, + "end": 11480.0, + "probability": 0.0 + }, + { + "start": 11480.0, + "end": 11480.0, + "probability": 0.0 + }, + { + "start": 11480.0, + "end": 11480.0, + "probability": 0.0 + }, + { + "start": 11480.0, + "end": 11480.0, + "probability": 0.0 + }, + { + "start": 11480.0, + "end": 11480.0, + "probability": 0.0 + }, + { + "start": 11480.0, + "end": 11480.0, + "probability": 0.0 + }, + { + "start": 11480.0, + "end": 11480.0, + "probability": 0.0 + }, + { + "start": 11480.0, + "end": 11480.0, + "probability": 0.0 + }, + { + "start": 11480.0, + "end": 11480.0, + "probability": 0.0 + }, + { + "start": 11480.0, + "end": 11480.0, + "probability": 0.0 + }, + { + "start": 11480.0, + "end": 11480.0, + "probability": 0.0 + }, + { + "start": 11480.0, + "end": 11480.0, + "probability": 0.0 + }, + { + "start": 11480.0, + "end": 11480.0, + "probability": 0.0 + }, + { + "start": 11480.0, + "end": 11480.0, + "probability": 0.0 + }, + { + "start": 11480.0, + "end": 11480.0, + "probability": 0.0 + }, + { + "start": 11480.0, + "end": 11480.0, + "probability": 0.0 + }, + { + "start": 11480.0, + "end": 11480.0, + "probability": 0.0 + }, + { + "start": 11480.0, + "end": 11480.0, + "probability": 0.0 + }, + { + "start": 11480.0, + "end": 11480.0, + "probability": 0.0 + }, + { + "start": 11480.0, + "end": 11480.0, + "probability": 0.0 + }, + { + "start": 11480.0, + "end": 11480.0, + "probability": 0.0 + }, + { + "start": 11480.0, + "end": 11480.0, + "probability": 0.0 + }, + { + "start": 11480.0, + "end": 11480.0, + "probability": 0.0 + }, + { + "start": 11480.0, + "end": 11480.0, + "probability": 0.0 + }, + { + "start": 11480.0, + "end": 11480.0, + "probability": 0.0 + }, + { + "start": 11480.0, + "end": 11480.0, + "probability": 0.0 + }, + { + "start": 11480.0, + "end": 11480.0, + "probability": 0.0 + }, + { + "start": 11480.0, + "end": 11480.0, + "probability": 0.0 + }, + { + "start": 11480.0, + "end": 11480.0, + "probability": 0.0 + }, + { + "start": 11480.0, + "end": 11480.0, + "probability": 0.0 + }, + { + "start": 11480.0, + "end": 11480.0, + "probability": 0.0 + }, + { + "start": 11480.0, + "end": 11480.0, + "probability": 0.0 + }, + { + "start": 11480.0, + "end": 11480.0, + "probability": 0.0 + }, + { + "start": 11480.0, + "end": 11480.0, + "probability": 0.0 + }, + { + "start": 11480.0, + "end": 11480.0, + "probability": 0.0 + }, + { + "start": 11480.0, + "end": 11480.0, + "probability": 0.0 + }, + { + "start": 11480.0, + "end": 11480.0, + "probability": 0.0 + }, + { + "start": 11480.0, + "end": 11480.0, + "probability": 0.0 + }, + { + "start": 11480.54, + "end": 11483.92, + "probability": 0.7398 + }, + { + "start": 11485.0, + "end": 11487.24, + "probability": 0.961 + }, + { + "start": 11490.92, + "end": 11498.36, + "probability": 0.9958 + }, + { + "start": 11498.98, + "end": 11501.1, + "probability": 0.664 + }, + { + "start": 11501.88, + "end": 11506.18, + "probability": 0.9429 + }, + { + "start": 11506.46, + "end": 11507.32, + "probability": 0.8158 + }, + { + "start": 11507.4, + "end": 11512.82, + "probability": 0.9726 + }, + { + "start": 11513.34, + "end": 11517.1, + "probability": 0.9858 + }, + { + "start": 11517.44, + "end": 11521.24, + "probability": 0.8725 + }, + { + "start": 11521.34, + "end": 11522.32, + "probability": 0.5773 + }, + { + "start": 11522.32, + "end": 11525.18, + "probability": 0.741 + }, + { + "start": 11526.14, + "end": 11529.68, + "probability": 0.7525 + }, + { + "start": 11530.26, + "end": 11532.04, + "probability": 0.993 + }, + { + "start": 11532.98, + "end": 11533.78, + "probability": 0.8432 + }, + { + "start": 11533.84, + "end": 11534.32, + "probability": 0.7684 + }, + { + "start": 11534.38, + "end": 11536.86, + "probability": 0.9983 + }, + { + "start": 11536.86, + "end": 11540.32, + "probability": 0.9868 + }, + { + "start": 11541.2, + "end": 11542.44, + "probability": 0.6644 + }, + { + "start": 11542.5, + "end": 11545.42, + "probability": 0.9092 + }, + { + "start": 11546.28, + "end": 11548.18, + "probability": 0.7885 + }, + { + "start": 11548.88, + "end": 11550.92, + "probability": 0.6107 + }, + { + "start": 11551.5, + "end": 11555.68, + "probability": 0.8663 + }, + { + "start": 11557.47, + "end": 11561.36, + "probability": 0.8341 + }, + { + "start": 11562.56, + "end": 11563.96, + "probability": 0.7137 + }, + { + "start": 11564.14, + "end": 11566.86, + "probability": 0.897 + }, + { + "start": 11566.86, + "end": 11570.7, + "probability": 0.9952 + }, + { + "start": 11570.98, + "end": 11571.26, + "probability": 0.5435 + }, + { + "start": 11572.5, + "end": 11575.14, + "probability": 0.8907 + }, + { + "start": 11576.02, + "end": 11577.96, + "probability": 0.9727 + }, + { + "start": 11578.1, + "end": 11580.04, + "probability": 0.9674 + }, + { + "start": 11581.0, + "end": 11581.72, + "probability": 0.6436 + }, + { + "start": 11582.3, + "end": 11584.74, + "probability": 0.9392 + }, + { + "start": 11585.38, + "end": 11586.29, + "probability": 0.9905 + }, + { + "start": 11586.56, + "end": 11587.77, + "probability": 0.8581 + }, + { + "start": 11587.82, + "end": 11592.34, + "probability": 0.9945 + }, + { + "start": 11592.46, + "end": 11594.4, + "probability": 0.8655 + }, + { + "start": 11594.64, + "end": 11596.4, + "probability": 0.712 + }, + { + "start": 11596.86, + "end": 11597.92, + "probability": 0.8219 + }, + { + "start": 11598.02, + "end": 11600.28, + "probability": 0.8969 + }, + { + "start": 11600.42, + "end": 11602.63, + "probability": 0.9023 + }, + { + "start": 11602.78, + "end": 11604.44, + "probability": 0.8182 + }, + { + "start": 11605.16, + "end": 11606.39, + "probability": 0.7939 + }, + { + "start": 11607.12, + "end": 11612.14, + "probability": 0.926 + }, + { + "start": 11613.24, + "end": 11614.26, + "probability": 0.5751 + }, + { + "start": 11614.26, + "end": 11615.3, + "probability": 0.7606 + }, + { + "start": 11615.32, + "end": 11616.06, + "probability": 0.7161 + }, + { + "start": 11616.14, + "end": 11616.96, + "probability": 0.6276 + }, + { + "start": 11617.02, + "end": 11621.32, + "probability": 0.8312 + }, + { + "start": 11621.56, + "end": 11623.36, + "probability": 0.9508 + }, + { + "start": 11625.5, + "end": 11626.84, + "probability": 0.9784 + }, + { + "start": 11626.94, + "end": 11628.76, + "probability": 0.9425 + }, + { + "start": 11629.36, + "end": 11630.76, + "probability": 0.9515 + }, + { + "start": 11631.04, + "end": 11632.94, + "probability": 0.995 + }, + { + "start": 11633.46, + "end": 11634.54, + "probability": 0.7361 + }, + { + "start": 11634.96, + "end": 11638.44, + "probability": 0.9805 + }, + { + "start": 11638.48, + "end": 11639.0, + "probability": 0.9904 + }, + { + "start": 11639.2, + "end": 11639.76, + "probability": 0.6991 + }, + { + "start": 11640.9, + "end": 11643.7, + "probability": 0.8828 + }, + { + "start": 11644.3, + "end": 11645.36, + "probability": 0.6406 + }, + { + "start": 11645.98, + "end": 11647.12, + "probability": 0.6965 + }, + { + "start": 11647.18, + "end": 11649.98, + "probability": 0.9705 + }, + { + "start": 11650.44, + "end": 11652.2, + "probability": 0.6046 + }, + { + "start": 11652.3, + "end": 11653.92, + "probability": 0.4851 + }, + { + "start": 11654.34, + "end": 11659.56, + "probability": 0.9404 + }, + { + "start": 11659.56, + "end": 11662.4, + "probability": 0.979 + }, + { + "start": 11662.54, + "end": 11665.4, + "probability": 0.639 + }, + { + "start": 11665.86, + "end": 11669.14, + "probability": 0.9897 + }, + { + "start": 11669.14, + "end": 11672.68, + "probability": 0.9596 + }, + { + "start": 11672.8, + "end": 11673.64, + "probability": 0.7719 + }, + { + "start": 11673.78, + "end": 11675.52, + "probability": 0.7675 + }, + { + "start": 11676.1, + "end": 11676.84, + "probability": 0.7163 + }, + { + "start": 11676.94, + "end": 11677.38, + "probability": 0.4561 + }, + { + "start": 11677.46, + "end": 11677.76, + "probability": 0.8024 + }, + { + "start": 11677.8, + "end": 11678.62, + "probability": 0.7189 + }, + { + "start": 11679.42, + "end": 11681.82, + "probability": 0.7331 + }, + { + "start": 11681.9, + "end": 11684.22, + "probability": 0.8522 + }, + { + "start": 11684.52, + "end": 11685.24, + "probability": 0.8932 + }, + { + "start": 11685.42, + "end": 11687.0, + "probability": 0.9563 + }, + { + "start": 11687.32, + "end": 11688.84, + "probability": 0.9829 + }, + { + "start": 11688.84, + "end": 11689.58, + "probability": 0.7606 + }, + { + "start": 11690.16, + "end": 11691.66, + "probability": 0.9136 + }, + { + "start": 11691.68, + "end": 11692.12, + "probability": 0.9397 + }, + { + "start": 11692.4, + "end": 11693.56, + "probability": 0.6791 + }, + { + "start": 11693.62, + "end": 11694.32, + "probability": 0.9303 + }, + { + "start": 11694.38, + "end": 11696.42, + "probability": 0.9749 + }, + { + "start": 11697.1, + "end": 11697.4, + "probability": 0.8625 + }, + { + "start": 11697.46, + "end": 11697.8, + "probability": 0.8664 + }, + { + "start": 11697.84, + "end": 11701.68, + "probability": 0.9963 + }, + { + "start": 11701.92, + "end": 11704.9, + "probability": 0.8211 + }, + { + "start": 11705.02, + "end": 11709.1, + "probability": 0.8579 + }, + { + "start": 11709.8, + "end": 11713.68, + "probability": 0.5993 + }, + { + "start": 11713.76, + "end": 11714.57, + "probability": 0.757 + }, + { + "start": 11716.92, + "end": 11725.4, + "probability": 0.1195 + }, + { + "start": 11740.22, + "end": 11741.28, + "probability": 0.0118 + }, + { + "start": 11741.28, + "end": 11743.36, + "probability": 0.8894 + }, + { + "start": 11743.4, + "end": 11744.56, + "probability": 0.6557 + }, + { + "start": 11745.1, + "end": 11747.64, + "probability": 0.8245 + }, + { + "start": 11748.88, + "end": 11752.98, + "probability": 0.8315 + }, + { + "start": 11756.5, + "end": 11763.98, + "probability": 0.1866 + }, + { + "start": 11764.76, + "end": 11766.2, + "probability": 0.1116 + }, + { + "start": 11766.2, + "end": 11766.82, + "probability": 0.0117 + }, + { + "start": 11768.1, + "end": 11768.44, + "probability": 0.0465 + }, + { + "start": 11770.97, + "end": 11773.74, + "probability": 0.0099 + }, + { + "start": 11773.74, + "end": 11773.74, + "probability": 0.0263 + }, + { + "start": 11775.28, + "end": 11776.62, + "probability": 0.077 + }, + { + "start": 11779.54, + "end": 11780.98, + "probability": 0.0151 + }, + { + "start": 11783.2, + "end": 11786.3, + "probability": 0.074 + }, + { + "start": 11786.3, + "end": 11787.14, + "probability": 0.1927 + }, + { + "start": 11787.16, + "end": 11792.08, + "probability": 0.0351 + }, + { + "start": 11792.16, + "end": 11793.66, + "probability": 0.0121 + }, + { + "start": 11793.66, + "end": 11793.66, + "probability": 0.0215 + }, + { + "start": 11794.0, + "end": 11794.0, + "probability": 0.0 + }, + { + "start": 11794.0, + "end": 11794.0, + "probability": 0.0 + }, + { + "start": 11794.0, + "end": 11794.0, + "probability": 0.0 + }, + { + "start": 11794.0, + "end": 11794.0, + "probability": 0.0 + }, + { + "start": 11794.0, + "end": 11794.0, + "probability": 0.0 + }, + { + "start": 11794.0, + "end": 11794.0, + "probability": 0.0 + }, + { + "start": 11794.0, + "end": 11794.0, + "probability": 0.0 + }, + { + "start": 11794.0, + "end": 11794.0, + "probability": 0.0 + }, + { + "start": 11794.0, + "end": 11794.0, + "probability": 0.0 + }, + { + "start": 11794.0, + "end": 11794.0, + "probability": 0.0 + }, + { + "start": 11794.0, + "end": 11794.0, + "probability": 0.0 + }, + { + "start": 11794.0, + "end": 11794.0, + "probability": 0.0 + }, + { + "start": 11794.74, + "end": 11794.74, + "probability": 0.0283 + }, + { + "start": 11794.74, + "end": 11794.74, + "probability": 0.1161 + }, + { + "start": 11794.74, + "end": 11794.74, + "probability": 0.024 + }, + { + "start": 11794.74, + "end": 11794.74, + "probability": 0.0435 + }, + { + "start": 11794.74, + "end": 11799.94, + "probability": 0.8126 + }, + { + "start": 11800.7, + "end": 11803.19, + "probability": 0.9448 + }, + { + "start": 11804.54, + "end": 11809.04, + "probability": 0.9844 + }, + { + "start": 11809.72, + "end": 11812.52, + "probability": 0.9941 + }, + { + "start": 11813.3, + "end": 11817.98, + "probability": 0.4875 + }, + { + "start": 11818.52, + "end": 11822.56, + "probability": 0.9858 + }, + { + "start": 11823.32, + "end": 11825.04, + "probability": 0.9979 + }, + { + "start": 11825.1, + "end": 11830.42, + "probability": 0.9583 + }, + { + "start": 11830.5, + "end": 11831.54, + "probability": 0.7894 + }, + { + "start": 11832.14, + "end": 11833.68, + "probability": 0.8728 + }, + { + "start": 11833.84, + "end": 11836.22, + "probability": 0.9712 + }, + { + "start": 11837.68, + "end": 11842.04, + "probability": 0.9906 + }, + { + "start": 11842.16, + "end": 11842.96, + "probability": 0.9819 + }, + { + "start": 11843.6, + "end": 11846.12, + "probability": 0.9979 + }, + { + "start": 11847.06, + "end": 11847.56, + "probability": 0.845 + }, + { + "start": 11859.62, + "end": 11859.92, + "probability": 0.3558 + }, + { + "start": 11859.98, + "end": 11860.28, + "probability": 0.4564 + }, + { + "start": 11860.4, + "end": 11861.2, + "probability": 0.7707 + }, + { + "start": 11861.32, + "end": 11865.14, + "probability": 0.9862 + }, + { + "start": 11865.24, + "end": 11869.68, + "probability": 0.9907 + }, + { + "start": 11870.42, + "end": 11873.08, + "probability": 0.9861 + }, + { + "start": 11873.86, + "end": 11876.38, + "probability": 0.5978 + }, + { + "start": 11877.62, + "end": 11881.06, + "probability": 0.994 + }, + { + "start": 11881.9, + "end": 11885.0, + "probability": 0.9751 + }, + { + "start": 11885.24, + "end": 11887.04, + "probability": 0.9648 + }, + { + "start": 11887.16, + "end": 11890.4, + "probability": 0.9653 + }, + { + "start": 11891.58, + "end": 11896.88, + "probability": 0.9609 + }, + { + "start": 11897.02, + "end": 11902.3, + "probability": 0.9694 + }, + { + "start": 11902.44, + "end": 11903.08, + "probability": 0.9035 + }, + { + "start": 11903.5, + "end": 11904.28, + "probability": 0.8154 + }, + { + "start": 11905.46, + "end": 11906.5, + "probability": 0.9199 + }, + { + "start": 11907.4, + "end": 11909.3, + "probability": 0.9922 + }, + { + "start": 11909.52, + "end": 11913.88, + "probability": 0.9984 + }, + { + "start": 11914.72, + "end": 11916.06, + "probability": 0.9358 + }, + { + "start": 11917.02, + "end": 11919.96, + "probability": 0.9941 + }, + { + "start": 11920.62, + "end": 11920.9, + "probability": 0.2883 + }, + { + "start": 11920.9, + "end": 11923.26, + "probability": 0.9434 + }, + { + "start": 11923.92, + "end": 11924.81, + "probability": 0.9937 + }, + { + "start": 11925.82, + "end": 11926.96, + "probability": 0.6599 + }, + { + "start": 11927.9, + "end": 11928.88, + "probability": 0.8328 + }, + { + "start": 11929.82, + "end": 11932.02, + "probability": 0.9285 + }, + { + "start": 11932.7, + "end": 11934.16, + "probability": 0.9841 + }, + { + "start": 11934.52, + "end": 11935.87, + "probability": 0.9963 + }, + { + "start": 11936.26, + "end": 11937.12, + "probability": 0.9078 + }, + { + "start": 11938.0, + "end": 11938.65, + "probability": 0.9819 + }, + { + "start": 11939.96, + "end": 11941.34, + "probability": 0.8883 + }, + { + "start": 11942.16, + "end": 11944.28, + "probability": 0.9445 + }, + { + "start": 11944.5, + "end": 11945.86, + "probability": 0.9468 + }, + { + "start": 11946.26, + "end": 11948.82, + "probability": 0.9819 + }, + { + "start": 11948.86, + "end": 11950.73, + "probability": 0.9584 + }, + { + "start": 11951.12, + "end": 11956.7, + "probability": 0.9988 + }, + { + "start": 11956.78, + "end": 11959.58, + "probability": 0.9028 + }, + { + "start": 11961.36, + "end": 11962.28, + "probability": 0.9812 + }, + { + "start": 11962.42, + "end": 11963.96, + "probability": 0.9177 + }, + { + "start": 11964.1, + "end": 11965.63, + "probability": 0.9902 + }, + { + "start": 11966.64, + "end": 11970.76, + "probability": 0.9946 + }, + { + "start": 11972.64, + "end": 11975.74, + "probability": 0.9097 + }, + { + "start": 11977.88, + "end": 11980.56, + "probability": 0.9956 + }, + { + "start": 11980.66, + "end": 11983.64, + "probability": 0.9607 + }, + { + "start": 11984.88, + "end": 11987.7, + "probability": 0.999 + }, + { + "start": 11987.94, + "end": 11989.1, + "probability": 0.9749 + }, + { + "start": 11990.86, + "end": 11991.62, + "probability": 0.7463 + }, + { + "start": 11991.76, + "end": 11995.78, + "probability": 0.9781 + }, + { + "start": 11996.54, + "end": 11999.54, + "probability": 0.9939 + }, + { + "start": 12000.76, + "end": 12003.1, + "probability": 0.9531 + }, + { + "start": 12004.02, + "end": 12006.26, + "probability": 0.9766 + }, + { + "start": 12007.02, + "end": 12011.76, + "probability": 0.9832 + }, + { + "start": 12012.46, + "end": 12015.46, + "probability": 0.9726 + }, + { + "start": 12015.64, + "end": 12018.12, + "probability": 0.9685 + }, + { + "start": 12018.94, + "end": 12021.36, + "probability": 0.8362 + }, + { + "start": 12022.34, + "end": 12026.32, + "probability": 0.9932 + }, + { + "start": 12027.48, + "end": 12031.34, + "probability": 0.9289 + }, + { + "start": 12032.56, + "end": 12036.22, + "probability": 0.9993 + }, + { + "start": 12036.22, + "end": 12039.46, + "probability": 0.9871 + }, + { + "start": 12040.22, + "end": 12040.82, + "probability": 0.7832 + }, + { + "start": 12041.92, + "end": 12042.72, + "probability": 0.671 + }, + { + "start": 12043.26, + "end": 12043.82, + "probability": 0.9796 + }, + { + "start": 12044.48, + "end": 12044.88, + "probability": 0.8116 + }, + { + "start": 12045.58, + "end": 12047.76, + "probability": 0.9785 + }, + { + "start": 12047.86, + "end": 12049.22, + "probability": 0.7578 + }, + { + "start": 12049.36, + "end": 12050.96, + "probability": 0.7979 + }, + { + "start": 12061.16, + "end": 12063.0, + "probability": 0.9139 + }, + { + "start": 12064.2, + "end": 12067.38, + "probability": 0.6529 + }, + { + "start": 12068.42, + "end": 12069.38, + "probability": 0.9553 + }, + { + "start": 12069.46, + "end": 12070.16, + "probability": 0.9738 + }, + { + "start": 12070.26, + "end": 12074.52, + "probability": 0.9815 + }, + { + "start": 12075.3, + "end": 12077.18, + "probability": 0.9863 + }, + { + "start": 12077.3, + "end": 12080.2, + "probability": 0.9902 + }, + { + "start": 12081.16, + "end": 12089.46, + "probability": 0.9878 + }, + { + "start": 12090.26, + "end": 12090.66, + "probability": 0.4323 + }, + { + "start": 12091.66, + "end": 12095.94, + "probability": 0.983 + }, + { + "start": 12096.88, + "end": 12097.76, + "probability": 0.8951 + }, + { + "start": 12098.28, + "end": 12100.22, + "probability": 0.9277 + }, + { + "start": 12101.06, + "end": 12104.64, + "probability": 0.9848 + }, + { + "start": 12104.64, + "end": 12108.14, + "probability": 0.9969 + }, + { + "start": 12109.38, + "end": 12112.46, + "probability": 0.9993 + }, + { + "start": 12112.98, + "end": 12114.54, + "probability": 0.8726 + }, + { + "start": 12115.06, + "end": 12116.74, + "probability": 0.6704 + }, + { + "start": 12117.3, + "end": 12123.9, + "probability": 0.9983 + }, + { + "start": 12124.76, + "end": 12127.86, + "probability": 0.9988 + }, + { + "start": 12127.9, + "end": 12131.3, + "probability": 0.9951 + }, + { + "start": 12131.92, + "end": 12133.46, + "probability": 0.984 + }, + { + "start": 12134.04, + "end": 12140.3, + "probability": 0.9922 + }, + { + "start": 12141.54, + "end": 12142.0, + "probability": 0.6439 + }, + { + "start": 12142.08, + "end": 12145.36, + "probability": 0.7304 + }, + { + "start": 12160.68, + "end": 12162.96, + "probability": 0.7869 + }, + { + "start": 12166.12, + "end": 12167.34, + "probability": 0.578 + }, + { + "start": 12169.04, + "end": 12174.12, + "probability": 0.9825 + }, + { + "start": 12174.12, + "end": 12180.94, + "probability": 0.9953 + }, + { + "start": 12183.44, + "end": 12185.76, + "probability": 0.9639 + }, + { + "start": 12186.48, + "end": 12191.36, + "probability": 0.9982 + }, + { + "start": 12192.7, + "end": 12193.3, + "probability": 0.4847 + }, + { + "start": 12195.86, + "end": 12198.3, + "probability": 0.5232 + }, + { + "start": 12198.44, + "end": 12201.4, + "probability": 0.9665 + }, + { + "start": 12201.44, + "end": 12202.1, + "probability": 0.8209 + }, + { + "start": 12202.8, + "end": 12203.08, + "probability": 0.4286 + }, + { + "start": 12203.08, + "end": 12205.28, + "probability": 0.9932 + }, + { + "start": 12206.1, + "end": 12207.84, + "probability": 0.9932 + }, + { + "start": 12208.68, + "end": 12210.72, + "probability": 0.4756 + }, + { + "start": 12212.22, + "end": 12219.22, + "probability": 0.9447 + }, + { + "start": 12219.92, + "end": 12222.26, + "probability": 0.9727 + }, + { + "start": 12223.04, + "end": 12224.64, + "probability": 0.9712 + }, + { + "start": 12225.58, + "end": 12227.73, + "probability": 0.9984 + }, + { + "start": 12228.7, + "end": 12230.14, + "probability": 0.9985 + }, + { + "start": 12230.76, + "end": 12231.4, + "probability": 0.9518 + }, + { + "start": 12231.92, + "end": 12236.72, + "probability": 0.9968 + }, + { + "start": 12237.9, + "end": 12239.46, + "probability": 0.7321 + }, + { + "start": 12239.66, + "end": 12241.46, + "probability": 0.1303 + }, + { + "start": 12241.46, + "end": 12241.68, + "probability": 0.0053 + }, + { + "start": 12241.76, + "end": 12242.02, + "probability": 0.1785 + }, + { + "start": 12242.02, + "end": 12242.98, + "probability": 0.1073 + }, + { + "start": 12242.98, + "end": 12242.98, + "probability": 0.0369 + }, + { + "start": 12244.52, + "end": 12244.62, + "probability": 0.0228 + }, + { + "start": 12244.62, + "end": 12244.72, + "probability": 0.0171 + }, + { + "start": 12244.72, + "end": 12246.12, + "probability": 0.255 + }, + { + "start": 12246.86, + "end": 12253.34, + "probability": 0.8833 + }, + { + "start": 12254.06, + "end": 12259.82, + "probability": 0.9412 + }, + { + "start": 12260.4, + "end": 12261.68, + "probability": 0.8225 + }, + { + "start": 12262.32, + "end": 12262.52, + "probability": 0.2798 + }, + { + "start": 12262.52, + "end": 12262.52, + "probability": 0.1237 + }, + { + "start": 12262.52, + "end": 12263.43, + "probability": 0.678 + }, + { + "start": 12264.14, + "end": 12265.7, + "probability": 0.8005 + }, + { + "start": 12266.52, + "end": 12269.32, + "probability": 0.5259 + }, + { + "start": 12269.36, + "end": 12271.78, + "probability": 0.7466 + }, + { + "start": 12272.04, + "end": 12276.64, + "probability": 0.778 + }, + { + "start": 12277.9, + "end": 12280.28, + "probability": 0.0155 + }, + { + "start": 12280.28, + "end": 12280.28, + "probability": 0.0283 + }, + { + "start": 12280.28, + "end": 12280.28, + "probability": 0.0325 + }, + { + "start": 12280.28, + "end": 12280.28, + "probability": 0.1714 + }, + { + "start": 12280.28, + "end": 12280.28, + "probability": 0.2541 + }, + { + "start": 12280.28, + "end": 12282.52, + "probability": 0.8755 + }, + { + "start": 12283.62, + "end": 12286.44, + "probability": 0.6751 + }, + { + "start": 12286.54, + "end": 12290.82, + "probability": 0.5096 + }, + { + "start": 12291.28, + "end": 12294.88, + "probability": 0.8131 + }, + { + "start": 12295.54, + "end": 12296.76, + "probability": 0.4312 + }, + { + "start": 12297.52, + "end": 12299.74, + "probability": 0.6959 + }, + { + "start": 12299.9, + "end": 12303.04, + "probability": 0.9479 + }, + { + "start": 12303.44, + "end": 12311.04, + "probability": 0.8862 + }, + { + "start": 12311.26, + "end": 12311.8, + "probability": 0.0693 + }, + { + "start": 12311.8, + "end": 12313.68, + "probability": 0.8491 + }, + { + "start": 12314.42, + "end": 12319.12, + "probability": 0.5857 + }, + { + "start": 12319.28, + "end": 12320.32, + "probability": 0.0552 + }, + { + "start": 12320.32, + "end": 12320.32, + "probability": 0.1341 + }, + { + "start": 12320.32, + "end": 12320.32, + "probability": 0.1944 + }, + { + "start": 12320.96, + "end": 12321.96, + "probability": 0.1557 + }, + { + "start": 12322.88, + "end": 12324.22, + "probability": 0.1991 + }, + { + "start": 12325.16, + "end": 12326.5, + "probability": 0.5551 + }, + { + "start": 12327.28, + "end": 12327.62, + "probability": 0.2044 + }, + { + "start": 12327.62, + "end": 12327.62, + "probability": 0.2279 + }, + { + "start": 12327.62, + "end": 12329.3, + "probability": 0.8354 + }, + { + "start": 12330.2, + "end": 12331.6, + "probability": 0.5807 + }, + { + "start": 12331.6, + "end": 12333.44, + "probability": 0.8201 + }, + { + "start": 12333.58, + "end": 12334.64, + "probability": 0.8219 + }, + { + "start": 12336.68, + "end": 12337.78, + "probability": 0.8701 + }, + { + "start": 12337.78, + "end": 12342.68, + "probability": 0.1479 + }, + { + "start": 12342.68, + "end": 12345.0, + "probability": 0.2385 + }, + { + "start": 12349.64, + "end": 12352.58, + "probability": 0.5159 + }, + { + "start": 12352.72, + "end": 12355.0, + "probability": 0.6637 + }, + { + "start": 12355.06, + "end": 12363.14, + "probability": 0.9945 + }, + { + "start": 12364.9, + "end": 12368.3, + "probability": 0.9984 + }, + { + "start": 12369.3, + "end": 12375.18, + "probability": 0.9548 + }, + { + "start": 12375.9, + "end": 12376.66, + "probability": 0.1204 + }, + { + "start": 12377.38, + "end": 12379.48, + "probability": 0.8987 + }, + { + "start": 12380.04, + "end": 12384.04, + "probability": 0.875 + }, + { + "start": 12384.24, + "end": 12385.36, + "probability": 0.6164 + }, + { + "start": 12386.28, + "end": 12388.96, + "probability": 0.9436 + }, + { + "start": 12389.0, + "end": 12390.96, + "probability": 0.0096 + }, + { + "start": 12391.58, + "end": 12391.86, + "probability": 0.105 + }, + { + "start": 12391.86, + "end": 12391.86, + "probability": 0.0911 + }, + { + "start": 12391.86, + "end": 12394.54, + "probability": 0.6934 + }, + { + "start": 12394.84, + "end": 12396.44, + "probability": 0.6412 + }, + { + "start": 12397.56, + "end": 12400.18, + "probability": 0.7778 + }, + { + "start": 12400.26, + "end": 12400.78, + "probability": 0.4765 + }, + { + "start": 12400.94, + "end": 12400.94, + "probability": 0.3677 + }, + { + "start": 12400.94, + "end": 12400.94, + "probability": 0.634 + }, + { + "start": 12400.94, + "end": 12400.94, + "probability": 0.3485 + }, + { + "start": 12400.94, + "end": 12402.4, + "probability": 0.4215 + }, + { + "start": 12403.54, + "end": 12408.2, + "probability": 0.9329 + }, + { + "start": 12408.88, + "end": 12410.04, + "probability": 0.8615 + }, + { + "start": 12410.2, + "end": 12410.62, + "probability": 0.1895 + }, + { + "start": 12410.66, + "end": 12415.06, + "probability": 0.9222 + }, + { + "start": 12415.6, + "end": 12417.2, + "probability": 0.9271 + }, + { + "start": 12417.6, + "end": 12419.26, + "probability": 0.5359 + }, + { + "start": 12419.26, + "end": 12420.38, + "probability": 0.732 + }, + { + "start": 12420.82, + "end": 12422.1, + "probability": 0.9267 + }, + { + "start": 12422.42, + "end": 12423.68, + "probability": 0.9115 + }, + { + "start": 12424.48, + "end": 12427.32, + "probability": 0.6179 + }, + { + "start": 12427.92, + "end": 12431.82, + "probability": 0.8699 + }, + { + "start": 12432.36, + "end": 12433.14, + "probability": 0.5866 + }, + { + "start": 12433.78, + "end": 12433.96, + "probability": 0.0262 + }, + { + "start": 12433.96, + "end": 12433.96, + "probability": 0.3586 + }, + { + "start": 12433.96, + "end": 12438.28, + "probability": 0.7141 + }, + { + "start": 12438.66, + "end": 12440.6, + "probability": 0.9255 + }, + { + "start": 12441.96, + "end": 12448.44, + "probability": 0.8871 + }, + { + "start": 12448.52, + "end": 12450.52, + "probability": 0.8721 + }, + { + "start": 12451.1, + "end": 12456.08, + "probability": 0.9099 + }, + { + "start": 12456.18, + "end": 12457.48, + "probability": 0.9389 + }, + { + "start": 12458.22, + "end": 12461.6, + "probability": 0.9457 + }, + { + "start": 12462.18, + "end": 12465.26, + "probability": 0.9546 + }, + { + "start": 12465.38, + "end": 12467.0, + "probability": 0.7759 + }, + { + "start": 12467.1, + "end": 12469.34, + "probability": 0.9197 + }, + { + "start": 12469.84, + "end": 12470.94, + "probability": 0.7846 + }, + { + "start": 12471.6, + "end": 12474.26, + "probability": 0.8282 + }, + { + "start": 12475.08, + "end": 12479.14, + "probability": 0.995 + }, + { + "start": 12479.7, + "end": 12481.32, + "probability": 0.6949 + }, + { + "start": 12481.84, + "end": 12484.1, + "probability": 0.8674 + }, + { + "start": 12484.16, + "end": 12484.74, + "probability": 0.7203 + }, + { + "start": 12485.1, + "end": 12486.88, + "probability": 0.8255 + }, + { + "start": 12487.16, + "end": 12487.36, + "probability": 0.6005 + }, + { + "start": 12487.42, + "end": 12488.32, + "probability": 0.8417 + }, + { + "start": 12488.7, + "end": 12493.8, + "probability": 0.9358 + }, + { + "start": 12494.54, + "end": 12496.84, + "probability": 0.4307 + }, + { + "start": 12496.84, + "end": 12496.84, + "probability": 0.3039 + }, + { + "start": 12496.84, + "end": 12496.84, + "probability": 0.0211 + }, + { + "start": 12496.84, + "end": 12501.12, + "probability": 0.4349 + }, + { + "start": 12501.78, + "end": 12503.6, + "probability": 0.2711 + }, + { + "start": 12504.12, + "end": 12506.22, + "probability": 0.9213 + }, + { + "start": 12506.92, + "end": 12507.1, + "probability": 0.0747 + }, + { + "start": 12507.1, + "end": 12510.38, + "probability": 0.7232 + }, + { + "start": 12511.02, + "end": 12511.08, + "probability": 0.1956 + }, + { + "start": 12511.08, + "end": 12515.68, + "probability": 0.3347 + }, + { + "start": 12515.88, + "end": 12521.38, + "probability": 0.6896 + }, + { + "start": 12521.96, + "end": 12523.8, + "probability": 0.5998 + }, + { + "start": 12523.94, + "end": 12528.82, + "probability": 0.8366 + }, + { + "start": 12529.32, + "end": 12533.12, + "probability": 0.7083 + }, + { + "start": 12533.82, + "end": 12534.74, + "probability": 0.049 + }, + { + "start": 12534.74, + "end": 12536.36, + "probability": 0.6854 + }, + { + "start": 12536.98, + "end": 12539.58, + "probability": 0.9443 + }, + { + "start": 12540.14, + "end": 12543.08, + "probability": 0.938 + }, + { + "start": 12543.47, + "end": 12546.16, + "probability": 0.9536 + }, + { + "start": 12546.72, + "end": 12546.72, + "probability": 0.5004 + }, + { + "start": 12546.72, + "end": 12547.62, + "probability": 0.855 + }, + { + "start": 12547.76, + "end": 12547.76, + "probability": 0.1711 + }, + { + "start": 12547.86, + "end": 12549.8, + "probability": 0.5484 + }, + { + "start": 12549.8, + "end": 12551.41, + "probability": 0.0824 + }, + { + "start": 12552.12, + "end": 12555.04, + "probability": 0.4302 + }, + { + "start": 12555.38, + "end": 12557.08, + "probability": 0.6625 + }, + { + "start": 12561.56, + "end": 12564.12, + "probability": 0.5684 + }, + { + "start": 12564.34, + "end": 12565.48, + "probability": 0.4404 + }, + { + "start": 12565.48, + "end": 12565.48, + "probability": 0.2012 + }, + { + "start": 12565.48, + "end": 12566.14, + "probability": 0.1042 + }, + { + "start": 12566.16, + "end": 12566.95, + "probability": 0.012 + }, + { + "start": 12567.36, + "end": 12569.58, + "probability": 0.0034 + }, + { + "start": 12569.78, + "end": 12569.78, + "probability": 0.3183 + }, + { + "start": 12569.78, + "end": 12571.78, + "probability": 0.73 + }, + { + "start": 12572.14, + "end": 12573.42, + "probability": 0.6059 + }, + { + "start": 12574.22, + "end": 12574.71, + "probability": 0.5016 + }, + { + "start": 12575.44, + "end": 12577.56, + "probability": 0.7865 + }, + { + "start": 12577.58, + "end": 12579.4, + "probability": 0.4914 + }, + { + "start": 12579.76, + "end": 12580.42, + "probability": 0.4688 + }, + { + "start": 12580.52, + "end": 12581.56, + "probability": 0.4896 + }, + { + "start": 12581.7, + "end": 12583.04, + "probability": 0.6104 + }, + { + "start": 12583.26, + "end": 12584.67, + "probability": 0.4107 + }, + { + "start": 12586.26, + "end": 12587.38, + "probability": 0.1081 + }, + { + "start": 12590.64, + "end": 12592.82, + "probability": 0.7473 + }, + { + "start": 12593.04, + "end": 12594.01, + "probability": 0.9897 + }, + { + "start": 12595.24, + "end": 12596.14, + "probability": 0.9693 + }, + { + "start": 12596.28, + "end": 12597.54, + "probability": 0.9907 + }, + { + "start": 12597.66, + "end": 12598.0, + "probability": 0.6587 + }, + { + "start": 12599.12, + "end": 12602.68, + "probability": 0.9983 + }, + { + "start": 12603.2, + "end": 12605.14, + "probability": 0.7708 + }, + { + "start": 12605.94, + "end": 12607.62, + "probability": 0.7668 + }, + { + "start": 12607.7, + "end": 12608.88, + "probability": 0.8445 + }, + { + "start": 12609.42, + "end": 12614.1, + "probability": 0.9575 + }, + { + "start": 12615.36, + "end": 12617.6, + "probability": 0.9941 + }, + { + "start": 12618.36, + "end": 12619.64, + "probability": 0.8057 + }, + { + "start": 12620.04, + "end": 12620.9, + "probability": 0.5513 + }, + { + "start": 12621.0, + "end": 12623.98, + "probability": 0.6887 + }, + { + "start": 12624.92, + "end": 12626.54, + "probability": 0.6654 + }, + { + "start": 12627.2, + "end": 12629.7, + "probability": 0.8607 + }, + { + "start": 12630.01, + "end": 12630.64, + "probability": 0.6097 + }, + { + "start": 12630.64, + "end": 12634.0, + "probability": 0.9181 + }, + { + "start": 12634.5, + "end": 12637.52, + "probability": 0.998 + }, + { + "start": 12637.52, + "end": 12641.24, + "probability": 0.9977 + }, + { + "start": 12641.74, + "end": 12644.68, + "probability": 0.8117 + }, + { + "start": 12645.08, + "end": 12646.24, + "probability": 0.7809 + }, + { + "start": 12646.6, + "end": 12647.82, + "probability": 0.9805 + }, + { + "start": 12648.52, + "end": 12651.94, + "probability": 0.8626 + }, + { + "start": 12651.98, + "end": 12653.1, + "probability": 0.8351 + }, + { + "start": 12653.22, + "end": 12655.62, + "probability": 0.9943 + }, + { + "start": 12655.72, + "end": 12661.14, + "probability": 0.9443 + }, + { + "start": 12661.6, + "end": 12665.08, + "probability": 0.9907 + }, + { + "start": 12665.88, + "end": 12670.6, + "probability": 0.9917 + }, + { + "start": 12670.6, + "end": 12675.58, + "probability": 0.9976 + }, + { + "start": 12675.64, + "end": 12676.94, + "probability": 0.819 + }, + { + "start": 12677.76, + "end": 12679.34, + "probability": 0.8952 + }, + { + "start": 12680.08, + "end": 12683.84, + "probability": 0.9837 + }, + { + "start": 12685.12, + "end": 12687.62, + "probability": 0.9331 + }, + { + "start": 12688.32, + "end": 12689.88, + "probability": 0.8936 + }, + { + "start": 12690.32, + "end": 12693.62, + "probability": 0.9976 + }, + { + "start": 12694.34, + "end": 12695.84, + "probability": 0.7698 + }, + { + "start": 12695.98, + "end": 12697.16, + "probability": 0.8495 + }, + { + "start": 12697.26, + "end": 12700.32, + "probability": 0.9829 + }, + { + "start": 12700.78, + "end": 12705.74, + "probability": 0.9376 + }, + { + "start": 12705.74, + "end": 12709.8, + "probability": 0.9964 + }, + { + "start": 12710.3, + "end": 12711.41, + "probability": 0.8765 + }, + { + "start": 12712.4, + "end": 12713.68, + "probability": 0.1038 + }, + { + "start": 12714.2, + "end": 12716.1, + "probability": 0.9337 + }, + { + "start": 12716.5, + "end": 12717.72, + "probability": 0.9518 + }, + { + "start": 12718.12, + "end": 12722.88, + "probability": 0.9922 + }, + { + "start": 12723.58, + "end": 12725.58, + "probability": 0.9978 + }, + { + "start": 12726.1, + "end": 12727.76, + "probability": 0.9722 + }, + { + "start": 12728.38, + "end": 12731.6, + "probability": 0.9951 + }, + { + "start": 12732.12, + "end": 12733.04, + "probability": 0.9882 + }, + { + "start": 12733.86, + "end": 12737.78, + "probability": 0.9684 + }, + { + "start": 12738.38, + "end": 12741.48, + "probability": 0.9563 + }, + { + "start": 12743.1, + "end": 12744.5, + "probability": 0.8289 + }, + { + "start": 12745.18, + "end": 12747.78, + "probability": 0.9591 + }, + { + "start": 12748.34, + "end": 12752.48, + "probability": 0.9678 + }, + { + "start": 12753.02, + "end": 12754.14, + "probability": 0.9515 + }, + { + "start": 12754.82, + "end": 12759.74, + "probability": 0.9918 + }, + { + "start": 12760.22, + "end": 12761.8, + "probability": 0.9961 + }, + { + "start": 12762.7, + "end": 12765.2, + "probability": 0.8813 + }, + { + "start": 12765.68, + "end": 12770.3, + "probability": 0.9986 + }, + { + "start": 12770.92, + "end": 12774.86, + "probability": 0.9556 + }, + { + "start": 12775.2, + "end": 12777.0, + "probability": 0.7946 + }, + { + "start": 12777.6, + "end": 12779.58, + "probability": 0.9751 + }, + { + "start": 12780.3, + "end": 12780.66, + "probability": 0.9561 + }, + { + "start": 12781.2, + "end": 12784.64, + "probability": 0.9925 + }, + { + "start": 12785.3, + "end": 12789.82, + "probability": 0.9895 + }, + { + "start": 12790.36, + "end": 12791.86, + "probability": 0.9438 + }, + { + "start": 12792.32, + "end": 12795.7, + "probability": 0.9933 + }, + { + "start": 12796.26, + "end": 12800.92, + "probability": 0.9961 + }, + { + "start": 12801.46, + "end": 12803.94, + "probability": 0.8788 + }, + { + "start": 12804.48, + "end": 12806.72, + "probability": 0.9104 + }, + { + "start": 12807.14, + "end": 12808.8, + "probability": 0.5084 + }, + { + "start": 12809.44, + "end": 12809.66, + "probability": 0.8213 + }, + { + "start": 12810.0, + "end": 12811.36, + "probability": 0.9892 + }, + { + "start": 12811.54, + "end": 12812.74, + "probability": 0.967 + }, + { + "start": 12813.22, + "end": 12815.72, + "probability": 0.991 + }, + { + "start": 12816.32, + "end": 12818.58, + "probability": 0.9866 + }, + { + "start": 12818.94, + "end": 12820.9, + "probability": 0.9961 + }, + { + "start": 12821.76, + "end": 12829.8, + "probability": 0.9925 + }, + { + "start": 12830.0, + "end": 12831.5, + "probability": 0.5789 + }, + { + "start": 12831.64, + "end": 12832.44, + "probability": 0.825 + }, + { + "start": 12833.18, + "end": 12834.67, + "probability": 0.9863 + }, + { + "start": 12835.58, + "end": 12836.5, + "probability": 0.8115 + }, + { + "start": 12836.64, + "end": 12837.1, + "probability": 0.7913 + }, + { + "start": 12837.86, + "end": 12842.06, + "probability": 0.9891 + }, + { + "start": 12842.9, + "end": 12846.7, + "probability": 0.9736 + }, + { + "start": 12847.2, + "end": 12851.4, + "probability": 0.9831 + }, + { + "start": 12851.98, + "end": 12854.02, + "probability": 0.9627 + }, + { + "start": 12854.5, + "end": 12858.0, + "probability": 0.9995 + }, + { + "start": 12858.0, + "end": 12861.52, + "probability": 0.9795 + }, + { + "start": 12862.98, + "end": 12864.16, + "probability": 0.7961 + }, + { + "start": 12864.82, + "end": 12865.7, + "probability": 0.4749 + }, + { + "start": 12866.54, + "end": 12871.42, + "probability": 0.9675 + }, + { + "start": 12872.26, + "end": 12875.44, + "probability": 0.9976 + }, + { + "start": 12876.2, + "end": 12879.26, + "probability": 0.9816 + }, + { + "start": 12879.84, + "end": 12884.98, + "probability": 0.9833 + }, + { + "start": 12885.74, + "end": 12887.42, + "probability": 0.8843 + }, + { + "start": 12888.08, + "end": 12891.98, + "probability": 0.9722 + }, + { + "start": 12892.52, + "end": 12894.86, + "probability": 0.9633 + }, + { + "start": 12895.48, + "end": 12900.68, + "probability": 0.9911 + }, + { + "start": 12901.24, + "end": 12902.54, + "probability": 0.9599 + }, + { + "start": 12902.92, + "end": 12908.32, + "probability": 0.9692 + }, + { + "start": 12908.96, + "end": 12913.72, + "probability": 0.9888 + }, + { + "start": 12914.12, + "end": 12916.82, + "probability": 0.9878 + }, + { + "start": 12917.46, + "end": 12918.22, + "probability": 0.6241 + }, + { + "start": 12918.58, + "end": 12922.62, + "probability": 0.9477 + }, + { + "start": 12923.12, + "end": 12926.26, + "probability": 0.5395 + }, + { + "start": 12926.94, + "end": 12930.28, + "probability": 0.9919 + }, + { + "start": 12930.94, + "end": 12939.44, + "probability": 0.9736 + }, + { + "start": 12939.88, + "end": 12942.44, + "probability": 0.876 + }, + { + "start": 12942.98, + "end": 12946.82, + "probability": 0.9955 + }, + { + "start": 12947.34, + "end": 12949.68, + "probability": 0.9673 + }, + { + "start": 12950.16, + "end": 12951.6, + "probability": 0.9121 + }, + { + "start": 12952.08, + "end": 12953.48, + "probability": 0.9066 + }, + { + "start": 12953.9, + "end": 12956.64, + "probability": 0.9697 + }, + { + "start": 12957.2, + "end": 12958.08, + "probability": 0.6885 + }, + { + "start": 12958.52, + "end": 12963.08, + "probability": 0.9219 + }, + { + "start": 12963.58, + "end": 12964.82, + "probability": 0.9963 + }, + { + "start": 12965.3, + "end": 12969.24, + "probability": 0.9698 + }, + { + "start": 12969.66, + "end": 12973.76, + "probability": 0.6629 + }, + { + "start": 12974.14, + "end": 12976.44, + "probability": 0.842 + }, + { + "start": 12977.0, + "end": 12978.12, + "probability": 0.9014 + }, + { + "start": 12978.76, + "end": 12979.5, + "probability": 0.6545 + }, + { + "start": 12979.56, + "end": 12983.46, + "probability": 0.9547 + }, + { + "start": 12984.06, + "end": 12987.2, + "probability": 0.8116 + }, + { + "start": 12988.89, + "end": 12994.0, + "probability": 0.9061 + }, + { + "start": 12995.82, + "end": 12997.06, + "probability": 0.6142 + }, + { + "start": 12997.26, + "end": 13000.5, + "probability": 0.7777 + }, + { + "start": 13000.72, + "end": 13001.06, + "probability": 0.9805 + }, + { + "start": 13002.84, + "end": 13004.4, + "probability": 0.6637 + }, + { + "start": 13004.96, + "end": 13006.64, + "probability": 0.7214 + }, + { + "start": 13008.18, + "end": 13009.4, + "probability": 0.8947 + }, + { + "start": 13011.15, + "end": 13013.54, + "probability": 0.9888 + }, + { + "start": 13014.46, + "end": 13017.4, + "probability": 0.71 + }, + { + "start": 13018.88, + "end": 13021.72, + "probability": 0.8052 + }, + { + "start": 13024.64, + "end": 13025.62, + "probability": 0.5373 + }, + { + "start": 13026.36, + "end": 13026.58, + "probability": 0.8096 + }, + { + "start": 13027.14, + "end": 13029.24, + "probability": 0.6121 + }, + { + "start": 13031.7, + "end": 13032.26, + "probability": 0.9451 + }, + { + "start": 13032.9, + "end": 13034.96, + "probability": 0.9157 + }, + { + "start": 13036.15, + "end": 13038.34, + "probability": 0.9561 + }, + { + "start": 13039.12, + "end": 13041.26, + "probability": 0.9937 + }, + { + "start": 13042.52, + "end": 13044.5, + "probability": 0.9937 + }, + { + "start": 13046.29, + "end": 13048.42, + "probability": 0.994 + }, + { + "start": 13049.36, + "end": 13052.46, + "probability": 0.9857 + }, + { + "start": 13054.4, + "end": 13056.94, + "probability": 0.7211 + }, + { + "start": 13058.92, + "end": 13060.98, + "probability": 0.8782 + }, + { + "start": 13061.92, + "end": 13062.64, + "probability": 0.9668 + }, + { + "start": 13063.26, + "end": 13065.04, + "probability": 0.9479 + }, + { + "start": 13068.66, + "end": 13072.36, + "probability": 0.9887 + }, + { + "start": 13073.18, + "end": 13074.46, + "probability": 0.9712 + }, + { + "start": 13075.45, + "end": 13077.56, + "probability": 0.9771 + }, + { + "start": 13079.18, + "end": 13081.78, + "probability": 0.9924 + }, + { + "start": 13082.76, + "end": 13082.98, + "probability": 0.5129 + }, + { + "start": 13083.96, + "end": 13085.52, + "probability": 0.8223 + }, + { + "start": 13086.18, + "end": 13088.4, + "probability": 0.9607 + }, + { + "start": 13089.42, + "end": 13091.24, + "probability": 0.9661 + }, + { + "start": 13092.12, + "end": 13094.3, + "probability": 0.5435 + }, + { + "start": 13095.2, + "end": 13097.82, + "probability": 0.9912 + }, + { + "start": 13098.38, + "end": 13101.58, + "probability": 0.9159 + }, + { + "start": 13102.42, + "end": 13105.08, + "probability": 0.9915 + }, + { + "start": 13105.64, + "end": 13106.82, + "probability": 0.9739 + }, + { + "start": 13107.48, + "end": 13109.24, + "probability": 0.9893 + }, + { + "start": 13110.36, + "end": 13110.64, + "probability": 0.9963 + }, + { + "start": 13111.52, + "end": 13112.32, + "probability": 0.8034 + }, + { + "start": 13113.04, + "end": 13114.96, + "probability": 0.9485 + }, + { + "start": 13115.5, + "end": 13120.82, + "probability": 0.9863 + }, + { + "start": 13122.32, + "end": 13125.22, + "probability": 0.7616 + }, + { + "start": 13125.9, + "end": 13127.56, + "probability": 0.8668 + }, + { + "start": 13128.78, + "end": 13130.08, + "probability": 0.9968 + }, + { + "start": 13130.62, + "end": 13131.38, + "probability": 0.9779 + }, + { + "start": 13132.37, + "end": 13134.78, + "probability": 0.9949 + }, + { + "start": 13136.98, + "end": 13138.48, + "probability": 0.8943 + }, + { + "start": 13139.06, + "end": 13143.08, + "probability": 0.5992 + }, + { + "start": 13144.1, + "end": 13146.18, + "probability": 0.9603 + }, + { + "start": 13147.0, + "end": 13149.12, + "probability": 0.9245 + }, + { + "start": 13150.18, + "end": 13152.28, + "probability": 0.994 + }, + { + "start": 13152.9, + "end": 13153.7, + "probability": 0.9912 + }, + { + "start": 13154.66, + "end": 13155.84, + "probability": 0.9538 + }, + { + "start": 13156.6, + "end": 13158.52, + "probability": 0.9537 + }, + { + "start": 13160.24, + "end": 13164.4, + "probability": 0.8387 + }, + { + "start": 13165.46, + "end": 13165.8, + "probability": 0.9914 + }, + { + "start": 13167.0, + "end": 13172.62, + "probability": 0.6092 + }, + { + "start": 13174.0, + "end": 13177.16, + "probability": 0.8096 + }, + { + "start": 13178.13, + "end": 13180.0, + "probability": 0.9861 + }, + { + "start": 13181.16, + "end": 13181.88, + "probability": 0.9832 + }, + { + "start": 13182.58, + "end": 13183.9, + "probability": 0.9543 + }, + { + "start": 13184.52, + "end": 13190.56, + "probability": 0.9778 + }, + { + "start": 13191.26, + "end": 13191.72, + "probability": 0.9927 + }, + { + "start": 13192.36, + "end": 13194.1, + "probability": 0.9328 + }, + { + "start": 13194.96, + "end": 13195.46, + "probability": 0.9939 + }, + { + "start": 13197.1, + "end": 13198.08, + "probability": 0.8795 + }, + { + "start": 13198.76, + "end": 13201.16, + "probability": 0.6755 + }, + { + "start": 13202.28, + "end": 13204.04, + "probability": 0.9763 + }, + { + "start": 13205.35, + "end": 13207.78, + "probability": 0.9869 + }, + { + "start": 13209.88, + "end": 13210.88, + "probability": 0.98 + }, + { + "start": 13212.32, + "end": 13221.12, + "probability": 0.992 + }, + { + "start": 13222.14, + "end": 13224.58, + "probability": 0.6675 + }, + { + "start": 13225.48, + "end": 13228.46, + "probability": 0.5575 + }, + { + "start": 13229.96, + "end": 13233.14, + "probability": 0.8369 + }, + { + "start": 13234.16, + "end": 13236.02, + "probability": 0.9717 + }, + { + "start": 13237.61, + "end": 13240.14, + "probability": 0.946 + }, + { + "start": 13244.74, + "end": 13249.84, + "probability": 0.9103 + }, + { + "start": 13253.62, + "end": 13255.4, + "probability": 0.6497 + }, + { + "start": 13256.22, + "end": 13259.08, + "probability": 0.8997 + }, + { + "start": 13259.9, + "end": 13263.22, + "probability": 0.986 + }, + { + "start": 13264.6, + "end": 13267.48, + "probability": 0.5901 + }, + { + "start": 13270.94, + "end": 13274.46, + "probability": 0.8442 + }, + { + "start": 13275.74, + "end": 13279.52, + "probability": 0.956 + }, + { + "start": 13280.2, + "end": 13283.34, + "probability": 0.8123 + }, + { + "start": 13284.98, + "end": 13286.88, + "probability": 0.7709 + }, + { + "start": 13288.28, + "end": 13291.08, + "probability": 0.9707 + }, + { + "start": 13291.64, + "end": 13292.96, + "probability": 0.9922 + }, + { + "start": 13293.48, + "end": 13294.58, + "probability": 0.9476 + }, + { + "start": 13295.34, + "end": 13297.64, + "probability": 0.8267 + }, + { + "start": 13298.36, + "end": 13300.0, + "probability": 0.9722 + }, + { + "start": 13301.24, + "end": 13302.92, + "probability": 0.9966 + }, + { + "start": 13304.16, + "end": 13306.2, + "probability": 0.9956 + }, + { + "start": 13308.06, + "end": 13309.28, + "probability": 0.986 + }, + { + "start": 13313.78, + "end": 13316.9, + "probability": 0.6912 + }, + { + "start": 13317.46, + "end": 13317.74, + "probability": 0.6558 + }, + { + "start": 13318.48, + "end": 13319.58, + "probability": 0.956 + }, + { + "start": 13321.32, + "end": 13322.54, + "probability": 0.9059 + }, + { + "start": 13324.57, + "end": 13326.54, + "probability": 0.8529 + }, + { + "start": 13327.36, + "end": 13329.2, + "probability": 0.9927 + }, + { + "start": 13330.26, + "end": 13330.92, + "probability": 0.9941 + }, + { + "start": 13332.16, + "end": 13333.34, + "probability": 0.9931 + }, + { + "start": 13334.78, + "end": 13335.24, + "probability": 0.9875 + }, + { + "start": 13336.68, + "end": 13339.92, + "probability": 0.9915 + }, + { + "start": 13340.88, + "end": 13341.26, + "probability": 0.9968 + }, + { + "start": 13342.08, + "end": 13342.54, + "probability": 0.9924 + }, + { + "start": 13345.22, + "end": 13346.28, + "probability": 0.3164 + }, + { + "start": 13347.4, + "end": 13348.22, + "probability": 0.8463 + }, + { + "start": 13348.86, + "end": 13349.62, + "probability": 0.8528 + }, + { + "start": 13353.92, + "end": 13356.18, + "probability": 0.4924 + }, + { + "start": 13357.76, + "end": 13359.04, + "probability": 0.9671 + }, + { + "start": 13360.16, + "end": 13361.28, + "probability": 0.5385 + }, + { + "start": 13361.96, + "end": 13362.42, + "probability": 0.8242 + }, + { + "start": 13363.46, + "end": 13364.28, + "probability": 0.8581 + }, + { + "start": 13365.0, + "end": 13367.18, + "probability": 0.9897 + }, + { + "start": 13367.84, + "end": 13368.74, + "probability": 0.9919 + }, + { + "start": 13369.5, + "end": 13370.94, + "probability": 0.9836 + }, + { + "start": 13371.56, + "end": 13375.04, + "probability": 0.9918 + }, + { + "start": 13375.64, + "end": 13376.62, + "probability": 0.9531 + }, + { + "start": 13377.44, + "end": 13377.9, + "probability": 0.9937 + }, + { + "start": 13378.62, + "end": 13379.82, + "probability": 0.9105 + }, + { + "start": 13381.1, + "end": 13382.08, + "probability": 0.8157 + }, + { + "start": 13385.48, + "end": 13387.28, + "probability": 0.7287 + }, + { + "start": 13388.34, + "end": 13388.6, + "probability": 0.5164 + }, + { + "start": 13389.56, + "end": 13391.3, + "probability": 0.8776 + }, + { + "start": 13391.98, + "end": 13394.54, + "probability": 0.9919 + }, + { + "start": 13395.58, + "end": 13397.54, + "probability": 0.9846 + }, + { + "start": 13398.74, + "end": 13400.66, + "probability": 0.9796 + }, + { + "start": 13403.14, + "end": 13406.94, + "probability": 0.8751 + }, + { + "start": 13408.28, + "end": 13410.36, + "probability": 0.9758 + }, + { + "start": 13411.16, + "end": 13411.72, + "probability": 0.9907 + }, + { + "start": 13412.64, + "end": 13412.88, + "probability": 0.035 + }, + { + "start": 13416.04, + "end": 13417.22, + "probability": 0.6595 + }, + { + "start": 13418.22, + "end": 13421.3, + "probability": 0.9509 + }, + { + "start": 13422.74, + "end": 13424.62, + "probability": 0.9136 + }, + { + "start": 13427.6, + "end": 13430.24, + "probability": 0.7756 + }, + { + "start": 13431.0, + "end": 13431.32, + "probability": 0.9927 + }, + { + "start": 13431.88, + "end": 13432.82, + "probability": 0.9461 + }, + { + "start": 13434.4, + "end": 13441.2, + "probability": 0.9915 + }, + { + "start": 13441.98, + "end": 13445.58, + "probability": 0.8173 + }, + { + "start": 13447.6, + "end": 13448.68, + "probability": 0.3863 + }, + { + "start": 13451.84, + "end": 13455.9, + "probability": 0.8097 + }, + { + "start": 13456.98, + "end": 13459.88, + "probability": 0.8309 + }, + { + "start": 13460.64, + "end": 13463.4, + "probability": 0.704 + }, + { + "start": 13464.13, + "end": 13467.66, + "probability": 0.7909 + }, + { + "start": 13468.66, + "end": 13469.9, + "probability": 0.6192 + }, + { + "start": 13470.84, + "end": 13473.12, + "probability": 0.9808 + }, + { + "start": 13476.52, + "end": 13476.86, + "probability": 0.6674 + }, + { + "start": 13479.55, + "end": 13480.98, + "probability": 0.6723 + }, + { + "start": 13482.06, + "end": 13484.98, + "probability": 0.8579 + }, + { + "start": 13485.9, + "end": 13489.7, + "probability": 0.4041 + }, + { + "start": 13490.74, + "end": 13492.78, + "probability": 0.8677 + }, + { + "start": 13493.44, + "end": 13497.08, + "probability": 0.5105 + }, + { + "start": 13498.72, + "end": 13501.02, + "probability": 0.8742 + }, + { + "start": 13501.82, + "end": 13505.9, + "probability": 0.6776 + }, + { + "start": 13508.46, + "end": 13512.96, + "probability": 0.6829 + }, + { + "start": 13514.56, + "end": 13517.5, + "probability": 0.9463 + }, + { + "start": 13519.06, + "end": 13523.02, + "probability": 0.9277 + }, + { + "start": 13525.4, + "end": 13527.98, + "probability": 0.9808 + }, + { + "start": 13528.86, + "end": 13529.14, + "probability": 0.8149 + }, + { + "start": 13530.36, + "end": 13534.34, + "probability": 0.9906 + }, + { + "start": 13537.2, + "end": 13537.38, + "probability": 0.2289 + }, + { + "start": 13537.44, + "end": 13538.63, + "probability": 0.5113 + }, + { + "start": 13539.66, + "end": 13540.96, + "probability": 0.9797 + }, + { + "start": 13544.32, + "end": 13545.4, + "probability": 0.0135 + }, + { + "start": 13682.7, + "end": 13687.2, + "probability": 0.6303 + }, + { + "start": 13687.3, + "end": 13690.17, + "probability": 0.924 + }, + { + "start": 13690.68, + "end": 13693.96, + "probability": 0.9724 + }, + { + "start": 13703.04, + "end": 13703.96, + "probability": 0.6003 + }, + { + "start": 13703.96, + "end": 13706.48, + "probability": 0.9904 + }, + { + "start": 13706.54, + "end": 13707.14, + "probability": 0.9311 + }, + { + "start": 13716.26, + "end": 13717.84, + "probability": 0.6626 + }, + { + "start": 13719.64, + "end": 13724.86, + "probability": 0.6887 + }, + { + "start": 13737.74, + "end": 13740.96, + "probability": 0.9887 + }, + { + "start": 13742.48, + "end": 13744.26, + "probability": 0.9892 + }, + { + "start": 13745.62, + "end": 13753.5, + "probability": 0.9722 + }, + { + "start": 13754.72, + "end": 13757.19, + "probability": 0.0591 + }, + { + "start": 13757.8, + "end": 13760.38, + "probability": 0.6674 + }, + { + "start": 13760.54, + "end": 13761.58, + "probability": 0.5154 + }, + { + "start": 13762.56, + "end": 13762.56, + "probability": 0.946 + }, + { + "start": 13762.56, + "end": 13764.04, + "probability": 0.0266 + }, + { + "start": 13767.86, + "end": 13770.1, + "probability": 0.7907 + }, + { + "start": 13770.16, + "end": 13770.98, + "probability": 0.5908 + }, + { + "start": 13771.66, + "end": 13775.0, + "probability": 0.2877 + }, + { + "start": 13779.8, + "end": 13782.9, + "probability": 0.372 + }, + { + "start": 13784.62, + "end": 13785.28, + "probability": 0.0125 + }, + { + "start": 13787.64, + "end": 13790.78, + "probability": 0.6127 + }, + { + "start": 13792.64, + "end": 13793.67, + "probability": 0.0723 + }, + { + "start": 13796.1, + "end": 13798.2, + "probability": 0.6188 + }, + { + "start": 13798.22, + "end": 13798.88, + "probability": 0.7421 + }, + { + "start": 13800.46, + "end": 13802.58, + "probability": 0.7771 + }, + { + "start": 13803.55, + "end": 13806.3, + "probability": 0.5889 + }, + { + "start": 13809.58, + "end": 13810.42, + "probability": 0.8401 + }, + { + "start": 13811.9, + "end": 13812.78, + "probability": 0.6866 + }, + { + "start": 13813.98, + "end": 13816.9, + "probability": 0.911 + }, + { + "start": 13817.06, + "end": 13818.4, + "probability": 0.8613 + }, + { + "start": 13818.98, + "end": 13820.12, + "probability": 0.6147 + }, + { + "start": 13820.92, + "end": 13823.52, + "probability": 0.96 + }, + { + "start": 13824.26, + "end": 13829.18, + "probability": 0.9966 + }, + { + "start": 13831.23, + "end": 13834.1, + "probability": 0.9939 + }, + { + "start": 13834.6, + "end": 13836.14, + "probability": 0.9803 + }, + { + "start": 13836.48, + "end": 13837.96, + "probability": 0.9675 + }, + { + "start": 13838.3, + "end": 13840.82, + "probability": 0.9332 + }, + { + "start": 13841.58, + "end": 13845.6, + "probability": 0.9943 + }, + { + "start": 13846.92, + "end": 13847.5, + "probability": 0.8243 + }, + { + "start": 13848.28, + "end": 13851.2, + "probability": 0.8096 + }, + { + "start": 13851.88, + "end": 13853.46, + "probability": 0.8701 + }, + { + "start": 13853.68, + "end": 13856.26, + "probability": 0.9009 + }, + { + "start": 13856.26, + "end": 13858.13, + "probability": 0.6194 + }, + { + "start": 13858.73, + "end": 13861.0, + "probability": 0.9084 + }, + { + "start": 13861.28, + "end": 13865.28, + "probability": 0.9946 + }, + { + "start": 13865.32, + "end": 13865.54, + "probability": 0.8061 + }, + { + "start": 13865.54, + "end": 13869.2, + "probability": 0.1997 + }, + { + "start": 13869.38, + "end": 13870.46, + "probability": 0.4802 + }, + { + "start": 13872.44, + "end": 13874.82, + "probability": 0.9634 + }, + { + "start": 13874.82, + "end": 13878.76, + "probability": 0.9561 + }, + { + "start": 13879.36, + "end": 13882.24, + "probability": 0.9116 + }, + { + "start": 13882.24, + "end": 13885.98, + "probability": 0.7795 + }, + { + "start": 13886.86, + "end": 13889.64, + "probability": 0.8704 + }, + { + "start": 13889.64, + "end": 13892.12, + "probability": 0.9497 + }, + { + "start": 13892.98, + "end": 13896.56, + "probability": 0.958 + }, + { + "start": 13896.56, + "end": 13900.24, + "probability": 0.866 + }, + { + "start": 13900.72, + "end": 13903.2, + "probability": 0.8264 + }, + { + "start": 13903.48, + "end": 13903.9, + "probability": 0.7431 + }, + { + "start": 13904.4, + "end": 13905.46, + "probability": 0.728 + }, + { + "start": 13905.56, + "end": 13907.7, + "probability": 0.8158 + }, + { + "start": 13908.7, + "end": 13912.94, + "probability": 0.8911 + }, + { + "start": 13917.42, + "end": 13919.7, + "probability": 0.9405 + }, + { + "start": 13920.34, + "end": 13923.54, + "probability": 0.9812 + }, + { + "start": 13924.62, + "end": 13926.48, + "probability": 0.9952 + }, + { + "start": 13927.48, + "end": 13928.54, + "probability": 0.978 + }, + { + "start": 13930.12, + "end": 13931.58, + "probability": 0.9336 + }, + { + "start": 13931.66, + "end": 13934.4, + "probability": 0.9451 + }, + { + "start": 13936.18, + "end": 13937.46, + "probability": 0.0557 + }, + { + "start": 13937.46, + "end": 13938.23, + "probability": 0.7433 + }, + { + "start": 13938.68, + "end": 13939.3, + "probability": 0.6309 + }, + { + "start": 13940.22, + "end": 13940.82, + "probability": 0.5624 + }, + { + "start": 13942.18, + "end": 13944.28, + "probability": 0.9024 + }, + { + "start": 13944.58, + "end": 13945.6, + "probability": 0.6589 + }, + { + "start": 13945.6, + "end": 13946.41, + "probability": 0.9414 + }, + { + "start": 13947.1, + "end": 13953.2, + "probability": 0.9868 + }, + { + "start": 13953.3, + "end": 13957.54, + "probability": 0.8768 + }, + { + "start": 13958.08, + "end": 13960.46, + "probability": 0.6546 + }, + { + "start": 13960.74, + "end": 13961.94, + "probability": 0.9832 + }, + { + "start": 13962.06, + "end": 13963.58, + "probability": 0.9795 + }, + { + "start": 13963.82, + "end": 13966.28, + "probability": 0.8157 + }, + { + "start": 13966.42, + "end": 13968.9, + "probability": 0.9973 + }, + { + "start": 13969.92, + "end": 13970.56, + "probability": 0.6371 + }, + { + "start": 13971.48, + "end": 13977.82, + "probability": 0.9941 + }, + { + "start": 13978.16, + "end": 13981.1, + "probability": 0.9536 + }, + { + "start": 13981.3, + "end": 13982.06, + "probability": 0.7906 + }, + { + "start": 13982.38, + "end": 13984.78, + "probability": 0.9956 + }, + { + "start": 13985.0, + "end": 13985.98, + "probability": 0.9678 + }, + { + "start": 13986.62, + "end": 13989.3, + "probability": 0.7886 + }, + { + "start": 13989.4, + "end": 13992.16, + "probability": 0.9976 + }, + { + "start": 13992.24, + "end": 13994.4, + "probability": 0.9979 + }, + { + "start": 13994.74, + "end": 13999.62, + "probability": 0.9759 + }, + { + "start": 13999.9, + "end": 14002.94, + "probability": 0.9952 + }, + { + "start": 14002.94, + "end": 14006.25, + "probability": 0.9988 + }, + { + "start": 14006.56, + "end": 14008.04, + "probability": 0.9893 + }, + { + "start": 14008.3, + "end": 14009.26, + "probability": 0.5076 + }, + { + "start": 14009.58, + "end": 14013.54, + "probability": 0.9764 + }, + { + "start": 14013.54, + "end": 14016.32, + "probability": 0.9873 + }, + { + "start": 14016.9, + "end": 14021.32, + "probability": 0.9274 + }, + { + "start": 14021.82, + "end": 14022.48, + "probability": 0.7237 + }, + { + "start": 14022.92, + "end": 14025.05, + "probability": 0.9376 + }, + { + "start": 14025.24, + "end": 14025.98, + "probability": 0.9214 + }, + { + "start": 14026.74, + "end": 14029.58, + "probability": 0.1018 + }, + { + "start": 14030.9, + "end": 14032.02, + "probability": 0.5737 + }, + { + "start": 14033.36, + "end": 14034.8, + "probability": 0.7677 + }, + { + "start": 14035.0, + "end": 14036.3, + "probability": 0.8854 + }, + { + "start": 14036.96, + "end": 14039.78, + "probability": 0.9259 + }, + { + "start": 14040.8, + "end": 14044.2, + "probability": 0.9808 + }, + { + "start": 14044.36, + "end": 14044.96, + "probability": 0.7421 + }, + { + "start": 14045.1, + "end": 14045.74, + "probability": 0.8933 + }, + { + "start": 14046.32, + "end": 14050.52, + "probability": 0.9117 + }, + { + "start": 14050.6, + "end": 14051.8, + "probability": 0.7763 + }, + { + "start": 14052.5, + "end": 14054.42, + "probability": 0.9626 + }, + { + "start": 14054.48, + "end": 14055.0, + "probability": 0.488 + }, + { + "start": 14057.58, + "end": 14061.02, + "probability": 0.0095 + }, + { + "start": 14068.58, + "end": 14069.94, + "probability": 0.4505 + }, + { + "start": 14077.8, + "end": 14078.98, + "probability": 0.6601 + }, + { + "start": 14080.84, + "end": 14085.58, + "probability": 0.6545 + }, + { + "start": 14086.16, + "end": 14087.0, + "probability": 0.7121 + }, + { + "start": 14087.72, + "end": 14090.2, + "probability": 0.8434 + }, + { + "start": 14091.04, + "end": 14092.9, + "probability": 0.9722 + }, + { + "start": 14093.9, + "end": 14094.96, + "probability": 0.8628 + }, + { + "start": 14095.8, + "end": 14097.62, + "probability": 0.9039 + }, + { + "start": 14099.14, + "end": 14101.5, + "probability": 0.9883 + }, + { + "start": 14103.68, + "end": 14106.44, + "probability": 0.5938 + }, + { + "start": 14106.6, + "end": 14106.9, + "probability": 0.9604 + }, + { + "start": 14107.18, + "end": 14111.32, + "probability": 0.8934 + }, + { + "start": 14111.36, + "end": 14111.96, + "probability": 0.8977 + }, + { + "start": 14112.04, + "end": 14112.66, + "probability": 0.7473 + }, + { + "start": 14114.96, + "end": 14119.92, + "probability": 0.9288 + }, + { + "start": 14121.12, + "end": 14125.12, + "probability": 0.8016 + }, + { + "start": 14125.98, + "end": 14127.98, + "probability": 0.9014 + }, + { + "start": 14128.96, + "end": 14130.8, + "probability": 0.7091 + }, + { + "start": 14132.58, + "end": 14133.82, + "probability": 0.9877 + }, + { + "start": 14133.92, + "end": 14136.16, + "probability": 0.979 + }, + { + "start": 14137.24, + "end": 14142.04, + "probability": 0.8892 + }, + { + "start": 14143.4, + "end": 14144.22, + "probability": 0.8752 + }, + { + "start": 14145.34, + "end": 14147.48, + "probability": 0.916 + }, + { + "start": 14148.6, + "end": 14150.91, + "probability": 0.9598 + }, + { + "start": 14152.72, + "end": 14154.52, + "probability": 0.9969 + }, + { + "start": 14155.84, + "end": 14158.66, + "probability": 0.7161 + }, + { + "start": 14159.72, + "end": 14164.28, + "probability": 0.8805 + }, + { + "start": 14165.63, + "end": 14168.1, + "probability": 0.7895 + }, + { + "start": 14168.18, + "end": 14169.17, + "probability": 0.9967 + }, + { + "start": 14169.32, + "end": 14169.78, + "probability": 0.9247 + }, + { + "start": 14170.76, + "end": 14173.28, + "probability": 0.9349 + }, + { + "start": 14174.0, + "end": 14175.54, + "probability": 0.991 + }, + { + "start": 14176.84, + "end": 14177.44, + "probability": 0.9352 + }, + { + "start": 14178.14, + "end": 14180.79, + "probability": 0.9937 + }, + { + "start": 14181.3, + "end": 14185.8, + "probability": 0.9642 + }, + { + "start": 14186.34, + "end": 14187.14, + "probability": 0.6381 + }, + { + "start": 14188.24, + "end": 14189.24, + "probability": 0.9478 + }, + { + "start": 14191.52, + "end": 14192.38, + "probability": 0.772 + }, + { + "start": 14193.02, + "end": 14193.8, + "probability": 0.9014 + }, + { + "start": 14193.96, + "end": 14196.92, + "probability": 0.9912 + }, + { + "start": 14198.38, + "end": 14199.94, + "probability": 0.9136 + }, + { + "start": 14200.28, + "end": 14202.0, + "probability": 0.6369 + }, + { + "start": 14207.28, + "end": 14211.8, + "probability": 0.9856 + }, + { + "start": 14212.96, + "end": 14215.2, + "probability": 0.9017 + }, + { + "start": 14217.14, + "end": 14218.6, + "probability": 0.9574 + }, + { + "start": 14220.34, + "end": 14222.66, + "probability": 0.9206 + }, + { + "start": 14223.3, + "end": 14228.76, + "probability": 0.9983 + }, + { + "start": 14229.8, + "end": 14232.94, + "probability": 0.9039 + }, + { + "start": 14232.94, + "end": 14236.3, + "probability": 0.9988 + }, + { + "start": 14237.16, + "end": 14240.7, + "probability": 0.9238 + }, + { + "start": 14241.78, + "end": 14243.54, + "probability": 0.8252 + }, + { + "start": 14243.7, + "end": 14243.96, + "probability": 0.4361 + }, + { + "start": 14244.02, + "end": 14249.82, + "probability": 0.8283 + }, + { + "start": 14250.52, + "end": 14251.88, + "probability": 0.9333 + }, + { + "start": 14252.84, + "end": 14254.46, + "probability": 0.9678 + }, + { + "start": 14255.2, + "end": 14255.96, + "probability": 0.7532 + }, + { + "start": 14256.66, + "end": 14257.84, + "probability": 0.932 + }, + { + "start": 14257.98, + "end": 14258.84, + "probability": 0.8908 + }, + { + "start": 14259.16, + "end": 14259.72, + "probability": 0.7706 + }, + { + "start": 14260.1, + "end": 14262.34, + "probability": 0.7044 + }, + { + "start": 14262.88, + "end": 14263.22, + "probability": 0.9707 + }, + { + "start": 14263.82, + "end": 14266.79, + "probability": 0.9962 + }, + { + "start": 14266.9, + "end": 14267.74, + "probability": 0.7598 + }, + { + "start": 14267.94, + "end": 14271.76, + "probability": 0.2948 + }, + { + "start": 14271.96, + "end": 14272.52, + "probability": 0.9697 + }, + { + "start": 14272.58, + "end": 14275.74, + "probability": 0.9299 + }, + { + "start": 14276.36, + "end": 14277.02, + "probability": 0.8472 + }, + { + "start": 14277.12, + "end": 14278.24, + "probability": 0.8989 + }, + { + "start": 14278.24, + "end": 14282.3, + "probability": 0.936 + }, + { + "start": 14282.52, + "end": 14283.74, + "probability": 0.8412 + }, + { + "start": 14284.06, + "end": 14286.22, + "probability": 0.8606 + }, + { + "start": 14286.52, + "end": 14287.72, + "probability": 0.2956 + }, + { + "start": 14287.78, + "end": 14288.28, + "probability": 0.6058 + }, + { + "start": 14288.7, + "end": 14290.08, + "probability": 0.9112 + }, + { + "start": 14290.18, + "end": 14291.22, + "probability": 0.9777 + }, + { + "start": 14291.28, + "end": 14293.5, + "probability": 0.9849 + }, + { + "start": 14294.0, + "end": 14298.36, + "probability": 0.9797 + }, + { + "start": 14298.36, + "end": 14302.14, + "probability": 0.9783 + }, + { + "start": 14302.26, + "end": 14304.68, + "probability": 0.7896 + }, + { + "start": 14304.96, + "end": 14305.88, + "probability": 0.7321 + }, + { + "start": 14307.36, + "end": 14307.36, + "probability": 0.3579 + }, + { + "start": 14307.36, + "end": 14308.74, + "probability": 0.8066 + }, + { + "start": 14326.74, + "end": 14328.64, + "probability": 0.671 + }, + { + "start": 14330.4, + "end": 14331.56, + "probability": 0.6037 + }, + { + "start": 14332.52, + "end": 14336.14, + "probability": 0.9766 + }, + { + "start": 14337.34, + "end": 14341.16, + "probability": 0.9315 + }, + { + "start": 14343.64, + "end": 14351.0, + "probability": 0.9422 + }, + { + "start": 14352.3, + "end": 14355.36, + "probability": 0.8125 + }, + { + "start": 14356.3, + "end": 14358.98, + "probability": 0.9502 + }, + { + "start": 14359.7, + "end": 14360.94, + "probability": 0.6103 + }, + { + "start": 14361.78, + "end": 14363.48, + "probability": 0.9204 + }, + { + "start": 14364.36, + "end": 14366.82, + "probability": 0.9777 + }, + { + "start": 14367.34, + "end": 14370.46, + "probability": 0.95 + }, + { + "start": 14371.14, + "end": 14372.0, + "probability": 0.9015 + }, + { + "start": 14372.76, + "end": 14374.1, + "probability": 0.9332 + }, + { + "start": 14374.7, + "end": 14375.38, + "probability": 0.8839 + }, + { + "start": 14376.22, + "end": 14378.46, + "probability": 0.9867 + }, + { + "start": 14379.64, + "end": 14381.66, + "probability": 0.8901 + }, + { + "start": 14382.18, + "end": 14384.24, + "probability": 0.9961 + }, + { + "start": 14385.82, + "end": 14387.92, + "probability": 0.8396 + }, + { + "start": 14388.88, + "end": 14394.54, + "probability": 0.9906 + }, + { + "start": 14394.54, + "end": 14403.02, + "probability": 0.985 + }, + { + "start": 14404.42, + "end": 14405.5, + "probability": 0.7234 + }, + { + "start": 14406.08, + "end": 14412.04, + "probability": 0.9144 + }, + { + "start": 14412.14, + "end": 14412.6, + "probability": 0.7453 + }, + { + "start": 14412.76, + "end": 14413.16, + "probability": 0.7805 + }, + { + "start": 14414.2, + "end": 14415.32, + "probability": 0.666 + }, + { + "start": 14415.94, + "end": 14417.94, + "probability": 0.9507 + }, + { + "start": 14418.66, + "end": 14419.4, + "probability": 0.8408 + }, + { + "start": 14419.96, + "end": 14421.0, + "probability": 0.8325 + }, + { + "start": 14421.82, + "end": 14427.46, + "probability": 0.8285 + }, + { + "start": 14428.46, + "end": 14434.5, + "probability": 0.6763 + }, + { + "start": 14435.5, + "end": 14436.28, + "probability": 0.5346 + }, + { + "start": 14436.96, + "end": 14444.3, + "probability": 0.9768 + }, + { + "start": 14445.6, + "end": 14452.86, + "probability": 0.9819 + }, + { + "start": 14454.14, + "end": 14457.66, + "probability": 0.9682 + }, + { + "start": 14458.36, + "end": 14463.8, + "probability": 0.9958 + }, + { + "start": 14464.32, + "end": 14467.06, + "probability": 0.9653 + }, + { + "start": 14468.0, + "end": 14472.48, + "probability": 0.9896 + }, + { + "start": 14472.48, + "end": 14476.18, + "probability": 0.9893 + }, + { + "start": 14477.24, + "end": 14477.88, + "probability": 0.5935 + }, + { + "start": 14478.48, + "end": 14480.18, + "probability": 0.9641 + }, + { + "start": 14480.94, + "end": 14484.78, + "probability": 0.9512 + }, + { + "start": 14485.66, + "end": 14486.48, + "probability": 0.9688 + }, + { + "start": 14487.14, + "end": 14489.66, + "probability": 0.8907 + }, + { + "start": 14490.5, + "end": 14493.46, + "probability": 0.9683 + }, + { + "start": 14494.32, + "end": 14495.38, + "probability": 0.831 + }, + { + "start": 14496.16, + "end": 14501.42, + "probability": 0.5987 + }, + { + "start": 14502.36, + "end": 14509.1, + "probability": 0.996 + }, + { + "start": 14509.52, + "end": 14510.46, + "probability": 0.7453 + }, + { + "start": 14510.96, + "end": 14513.7, + "probability": 0.7287 + }, + { + "start": 14514.26, + "end": 14515.04, + "probability": 0.9761 + }, + { + "start": 14515.6, + "end": 14518.1, + "probability": 0.9952 + }, + { + "start": 14518.9, + "end": 14524.12, + "probability": 0.9923 + }, + { + "start": 14524.12, + "end": 14529.6, + "probability": 0.9956 + }, + { + "start": 14530.16, + "end": 14539.02, + "probability": 0.9663 + }, + { + "start": 14539.02, + "end": 14546.06, + "probability": 0.9961 + }, + { + "start": 14546.32, + "end": 14546.88, + "probability": 0.1537 + }, + { + "start": 14547.02, + "end": 14550.22, + "probability": 0.9878 + }, + { + "start": 14550.22, + "end": 14554.76, + "probability": 0.9976 + }, + { + "start": 14555.62, + "end": 14556.84, + "probability": 0.9206 + }, + { + "start": 14557.8, + "end": 14563.98, + "probability": 0.8931 + }, + { + "start": 14564.64, + "end": 14565.96, + "probability": 0.9421 + }, + { + "start": 14566.76, + "end": 14566.76, + "probability": 0.5457 + }, + { + "start": 14566.82, + "end": 14567.94, + "probability": 0.7581 + }, + { + "start": 14569.24, + "end": 14573.32, + "probability": 0.886 + }, + { + "start": 14573.38, + "end": 14574.06, + "probability": 0.9274 + }, + { + "start": 14574.8, + "end": 14576.9, + "probability": 0.8602 + }, + { + "start": 14576.94, + "end": 14578.1, + "probability": 0.9677 + }, + { + "start": 14580.48, + "end": 14581.4, + "probability": 0.659 + }, + { + "start": 14582.08, + "end": 14582.24, + "probability": 0.0623 + }, + { + "start": 14591.74, + "end": 14594.58, + "probability": 0.4251 + }, + { + "start": 14597.5, + "end": 14601.6, + "probability": 0.991 + }, + { + "start": 14602.48, + "end": 14607.74, + "probability": 0.9865 + }, + { + "start": 14608.62, + "end": 14612.12, + "probability": 0.999 + }, + { + "start": 14613.16, + "end": 14619.0, + "probability": 0.9918 + }, + { + "start": 14621.16, + "end": 14626.38, + "probability": 0.9845 + }, + { + "start": 14626.38, + "end": 14629.76, + "probability": 0.9963 + }, + { + "start": 14630.64, + "end": 14632.18, + "probability": 0.9653 + }, + { + "start": 14632.32, + "end": 14635.44, + "probability": 0.9706 + }, + { + "start": 14636.02, + "end": 14637.34, + "probability": 0.9324 + }, + { + "start": 14638.6, + "end": 14640.04, + "probability": 0.9509 + }, + { + "start": 14641.12, + "end": 14642.3, + "probability": 0.977 + }, + { + "start": 14642.4, + "end": 14647.58, + "probability": 0.9834 + }, + { + "start": 14648.08, + "end": 14652.74, + "probability": 0.9709 + }, + { + "start": 14654.0, + "end": 14654.22, + "probability": 0.6462 + }, + { + "start": 14654.42, + "end": 14655.83, + "probability": 0.8433 + }, + { + "start": 14656.04, + "end": 14657.18, + "probability": 0.5949 + }, + { + "start": 14657.42, + "end": 14658.4, + "probability": 0.6695 + }, + { + "start": 14659.68, + "end": 14662.04, + "probability": 0.9341 + }, + { + "start": 14663.12, + "end": 14663.58, + "probability": 0.6446 + }, + { + "start": 14664.48, + "end": 14666.8, + "probability": 0.9946 + }, + { + "start": 14667.22, + "end": 14668.4, + "probability": 0.9573 + }, + { + "start": 14668.6, + "end": 14670.18, + "probability": 0.5288 + }, + { + "start": 14670.32, + "end": 14671.68, + "probability": 0.4998 + }, + { + "start": 14683.56, + "end": 14684.2, + "probability": 0.0336 + }, + { + "start": 14684.2, + "end": 14684.2, + "probability": 0.0459 + }, + { + "start": 14684.2, + "end": 14684.2, + "probability": 0.0263 + }, + { + "start": 14684.2, + "end": 14684.78, + "probability": 0.4887 + }, + { + "start": 14686.7, + "end": 14687.88, + "probability": 0.6032 + }, + { + "start": 14688.72, + "end": 14691.44, + "probability": 0.95 + }, + { + "start": 14692.12, + "end": 14692.58, + "probability": 0.3761 + }, + { + "start": 14693.73, + "end": 14694.48, + "probability": 0.6184 + }, + { + "start": 14695.04, + "end": 14699.32, + "probability": 0.4111 + }, + { + "start": 14700.16, + "end": 14703.08, + "probability": 0.7612 + }, + { + "start": 14703.22, + "end": 14704.22, + "probability": 0.9629 + }, + { + "start": 14704.72, + "end": 14707.3, + "probability": 0.7536 + }, + { + "start": 14707.9, + "end": 14712.6, + "probability": 0.951 + }, + { + "start": 14713.46, + "end": 14714.82, + "probability": 0.8385 + }, + { + "start": 14715.32, + "end": 14716.86, + "probability": 0.9379 + }, + { + "start": 14717.16, + "end": 14719.38, + "probability": 0.9932 + }, + { + "start": 14719.82, + "end": 14721.22, + "probability": 0.896 + }, + { + "start": 14722.02, + "end": 14723.47, + "probability": 0.9358 + }, + { + "start": 14724.02, + "end": 14727.18, + "probability": 0.9899 + }, + { + "start": 14727.5, + "end": 14729.22, + "probability": 0.9354 + }, + { + "start": 14729.62, + "end": 14731.34, + "probability": 0.9763 + }, + { + "start": 14731.76, + "end": 14734.82, + "probability": 0.9896 + }, + { + "start": 14735.36, + "end": 14738.5, + "probability": 0.5675 + }, + { + "start": 14738.68, + "end": 14740.3, + "probability": 0.6595 + }, + { + "start": 14740.84, + "end": 14743.74, + "probability": 0.9354 + }, + { + "start": 14744.06, + "end": 14744.66, + "probability": 0.8048 + }, + { + "start": 14744.84, + "end": 14747.56, + "probability": 0.9806 + }, + { + "start": 14749.08, + "end": 14749.78, + "probability": 0.7517 + }, + { + "start": 14749.9, + "end": 14750.72, + "probability": 0.7991 + }, + { + "start": 14750.78, + "end": 14754.74, + "probability": 0.7994 + }, + { + "start": 14754.74, + "end": 14757.88, + "probability": 0.9759 + }, + { + "start": 14758.06, + "end": 14759.1, + "probability": 0.8468 + }, + { + "start": 14759.96, + "end": 14761.02, + "probability": 0.6892 + }, + { + "start": 14761.36, + "end": 14767.14, + "probability": 0.9834 + }, + { + "start": 14767.56, + "end": 14772.28, + "probability": 0.7618 + }, + { + "start": 14772.28, + "end": 14775.34, + "probability": 0.7055 + }, + { + "start": 14775.88, + "end": 14779.26, + "probability": 0.7678 + }, + { + "start": 14779.28, + "end": 14779.68, + "probability": 0.6791 + }, + { + "start": 14779.84, + "end": 14780.76, + "probability": 0.6734 + }, + { + "start": 14780.9, + "end": 14782.32, + "probability": 0.807 + }, + { + "start": 14782.34, + "end": 14783.84, + "probability": 0.7666 + }, + { + "start": 14784.38, + "end": 14786.04, + "probability": 0.929 + }, + { + "start": 14786.06, + "end": 14786.94, + "probability": 0.8101 + }, + { + "start": 14787.24, + "end": 14787.96, + "probability": 0.7236 + }, + { + "start": 14787.98, + "end": 14790.98, + "probability": 0.1676 + }, + { + "start": 14791.08, + "end": 14792.3, + "probability": 0.4636 + }, + { + "start": 14792.64, + "end": 14792.64, + "probability": 0.654 + }, + { + "start": 14792.64, + "end": 14793.0, + "probability": 0.6265 + }, + { + "start": 14793.0, + "end": 14797.0, + "probability": 0.6079 + }, + { + "start": 14797.04, + "end": 14797.04, + "probability": 0.5055 + }, + { + "start": 14797.04, + "end": 14798.36, + "probability": 0.8755 + }, + { + "start": 14798.56, + "end": 14799.06, + "probability": 0.5151 + }, + { + "start": 14799.06, + "end": 14800.04, + "probability": 0.6875 + }, + { + "start": 14800.48, + "end": 14801.46, + "probability": 0.7907 + }, + { + "start": 14801.78, + "end": 14802.34, + "probability": 0.717 + }, + { + "start": 14802.34, + "end": 14802.8, + "probability": 0.394 + }, + { + "start": 14802.84, + "end": 14806.88, + "probability": 0.9946 + }, + { + "start": 14806.88, + "end": 14809.02, + "probability": 0.8688 + }, + { + "start": 14809.02, + "end": 14809.32, + "probability": 0.7151 + }, + { + "start": 14809.32, + "end": 14810.26, + "probability": 0.9392 + }, + { + "start": 14810.95, + "end": 14811.4, + "probability": 0.7032 + }, + { + "start": 14812.26, + "end": 14814.28, + "probability": 0.9535 + }, + { + "start": 14814.4, + "end": 14814.42, + "probability": 0.6604 + }, + { + "start": 14814.72, + "end": 14815.04, + "probability": 0.3531 + }, + { + "start": 14815.04, + "end": 14816.36, + "probability": 0.5834 + }, + { + "start": 14816.36, + "end": 14816.96, + "probability": 0.924 + }, + { + "start": 14817.6, + "end": 14819.0, + "probability": 0.9243 + }, + { + "start": 14819.78, + "end": 14822.26, + "probability": 0.8381 + }, + { + "start": 14822.8, + "end": 14823.4, + "probability": 0.8525 + }, + { + "start": 14823.96, + "end": 14827.72, + "probability": 0.915 + }, + { + "start": 14827.94, + "end": 14828.96, + "probability": 0.7836 + }, + { + "start": 14828.98, + "end": 14829.62, + "probability": 0.5074 + }, + { + "start": 14829.64, + "end": 14832.2, + "probability": 0.8967 + }, + { + "start": 14833.64, + "end": 14833.74, + "probability": 0.2393 + }, + { + "start": 14835.14, + "end": 14835.7, + "probability": 0.0928 + }, + { + "start": 14836.48, + "end": 14837.1, + "probability": 0.1101 + }, + { + "start": 14837.1, + "end": 14837.24, + "probability": 0.1143 + }, + { + "start": 14838.14, + "end": 14841.44, + "probability": 0.8123 + }, + { + "start": 14841.66, + "end": 14843.02, + "probability": 0.7088 + }, + { + "start": 14843.44, + "end": 14845.52, + "probability": 0.7981 + }, + { + "start": 14845.52, + "end": 14847.06, + "probability": 0.8189 + }, + { + "start": 14847.18, + "end": 14847.68, + "probability": 0.9012 + }, + { + "start": 14847.76, + "end": 14848.32, + "probability": 0.6379 + }, + { + "start": 14848.48, + "end": 14849.24, + "probability": 0.4114 + }, + { + "start": 14849.24, + "end": 14850.78, + "probability": 0.9154 + }, + { + "start": 14850.96, + "end": 14851.62, + "probability": 0.3688 + }, + { + "start": 14851.72, + "end": 14852.87, + "probability": 0.6531 + }, + { + "start": 14853.4, + "end": 14854.71, + "probability": 0.9243 + }, + { + "start": 14856.26, + "end": 14857.28, + "probability": 0.793 + }, + { + "start": 14859.65, + "end": 14861.4, + "probability": 0.8871 + }, + { + "start": 14861.46, + "end": 14862.32, + "probability": 0.3129 + }, + { + "start": 14862.94, + "end": 14863.86, + "probability": 0.3323 + }, + { + "start": 14864.04, + "end": 14864.48, + "probability": 0.1511 + }, + { + "start": 14864.64, + "end": 14866.36, + "probability": 0.4289 + }, + { + "start": 14866.66, + "end": 14868.18, + "probability": 0.1551 + }, + { + "start": 14868.2, + "end": 14869.76, + "probability": 0.1988 + }, + { + "start": 14870.0, + "end": 14871.12, + "probability": 0.1824 + }, + { + "start": 14871.42, + "end": 14871.94, + "probability": 0.11 + }, + { + "start": 14871.94, + "end": 14872.22, + "probability": 0.1802 + }, + { + "start": 14872.22, + "end": 14874.7, + "probability": 0.3388 + }, + { + "start": 14874.72, + "end": 14876.12, + "probability": 0.3909 + }, + { + "start": 14876.2, + "end": 14878.21, + "probability": 0.2237 + }, + { + "start": 14880.4, + "end": 14882.48, + "probability": 0.0223 + }, + { + "start": 14883.04, + "end": 14883.14, + "probability": 0.0449 + }, + { + "start": 14883.14, + "end": 14883.14, + "probability": 0.0818 + }, + { + "start": 14883.14, + "end": 14883.14, + "probability": 0.4594 + }, + { + "start": 14883.14, + "end": 14884.15, + "probability": 0.3576 + }, + { + "start": 14884.54, + "end": 14886.18, + "probability": 0.4792 + }, + { + "start": 14886.4, + "end": 14887.6, + "probability": 0.2114 + }, + { + "start": 14888.64, + "end": 14890.64, + "probability": 0.5394 + }, + { + "start": 14890.64, + "end": 14890.86, + "probability": 0.3864 + }, + { + "start": 14891.46, + "end": 14892.84, + "probability": 0.8989 + }, + { + "start": 14894.96, + "end": 14895.3, + "probability": 0.6098 + }, + { + "start": 14898.55, + "end": 14901.2, + "probability": 0.923 + }, + { + "start": 14901.72, + "end": 14905.2, + "probability": 0.9946 + }, + { + "start": 14905.88, + "end": 14906.82, + "probability": 0.7175 + }, + { + "start": 14907.22, + "end": 14910.06, + "probability": 0.4043 + }, + { + "start": 14910.2, + "end": 14911.21, + "probability": 0.6006 + }, + { + "start": 14911.26, + "end": 14912.34, + "probability": 0.17 + }, + { + "start": 14912.84, + "end": 14914.18, + "probability": 0.9835 + }, + { + "start": 14914.18, + "end": 14915.84, + "probability": 0.7353 + }, + { + "start": 14915.98, + "end": 14916.36, + "probability": 0.5811 + }, + { + "start": 14916.5, + "end": 14917.52, + "probability": 0.4974 + }, + { + "start": 14917.66, + "end": 14920.06, + "probability": 0.6868 + }, + { + "start": 14920.26, + "end": 14921.0, + "probability": 0.0943 + }, + { + "start": 14921.12, + "end": 14925.28, + "probability": 0.7737 + }, + { + "start": 14926.18, + "end": 14929.5, + "probability": 0.5894 + }, + { + "start": 14929.88, + "end": 14930.64, + "probability": 0.8669 + }, + { + "start": 14931.6, + "end": 14932.8, + "probability": 0.7313 + }, + { + "start": 14932.92, + "end": 14934.48, + "probability": 0.8502 + }, + { + "start": 14934.74, + "end": 14936.18, + "probability": 0.998 + }, + { + "start": 14937.0, + "end": 14939.58, + "probability": 0.9471 + }, + { + "start": 14940.18, + "end": 14942.3, + "probability": 0.9515 + }, + { + "start": 14943.74, + "end": 14945.52, + "probability": 0.9163 + }, + { + "start": 14946.28, + "end": 14949.44, + "probability": 0.965 + }, + { + "start": 14949.44, + "end": 14954.0, + "probability": 0.9702 + }, + { + "start": 14954.76, + "end": 14955.62, + "probability": 0.9895 + }, + { + "start": 14955.82, + "end": 14959.08, + "probability": 0.8108 + }, + { + "start": 14959.08, + "end": 14959.94, + "probability": 0.0522 + }, + { + "start": 14960.14, + "end": 14960.32, + "probability": 0.4909 + }, + { + "start": 14961.5, + "end": 14964.86, + "probability": 0.9815 + }, + { + "start": 14965.4, + "end": 14968.72, + "probability": 0.8942 + }, + { + "start": 14968.86, + "end": 14971.24, + "probability": 0.853 + }, + { + "start": 14971.6, + "end": 14972.4, + "probability": 0.7398 + }, + { + "start": 14973.06, + "end": 14975.36, + "probability": 0.969 + }, + { + "start": 14976.72, + "end": 14979.04, + "probability": 0.764 + }, + { + "start": 14979.14, + "end": 14980.47, + "probability": 0.6868 + }, + { + "start": 14981.42, + "end": 14983.06, + "probability": 0.9293 + }, + { + "start": 14983.2, + "end": 14983.78, + "probability": 0.9756 + }, + { + "start": 14983.86, + "end": 14984.8, + "probability": 0.6522 + }, + { + "start": 14985.46, + "end": 14987.24, + "probability": 0.9915 + }, + { + "start": 14987.38, + "end": 14989.45, + "probability": 0.9868 + }, + { + "start": 14991.14, + "end": 14992.36, + "probability": 0.9239 + }, + { + "start": 14993.2, + "end": 14993.84, + "probability": 0.7465 + }, + { + "start": 14994.44, + "end": 14995.94, + "probability": 0.9791 + }, + { + "start": 14997.0, + "end": 15002.7, + "probability": 0.95 + }, + { + "start": 15003.02, + "end": 15005.32, + "probability": 0.7665 + }, + { + "start": 15005.76, + "end": 15007.1, + "probability": 0.9625 + }, + { + "start": 15007.7, + "end": 15009.4, + "probability": 0.7155 + }, + { + "start": 15009.5, + "end": 15011.0, + "probability": 0.9517 + }, + { + "start": 15011.04, + "end": 15013.2, + "probability": 0.9935 + }, + { + "start": 15013.62, + "end": 15015.26, + "probability": 0.7875 + }, + { + "start": 15015.76, + "end": 15019.52, + "probability": 0.9658 + }, + { + "start": 15019.7, + "end": 15020.49, + "probability": 0.8073 + }, + { + "start": 15020.68, + "end": 15021.18, + "probability": 0.642 + }, + { + "start": 15021.54, + "end": 15023.58, + "probability": 0.8811 + }, + { + "start": 15023.88, + "end": 15024.94, + "probability": 0.8616 + }, + { + "start": 15024.96, + "end": 15025.52, + "probability": 0.9702 + }, + { + "start": 15025.78, + "end": 15026.4, + "probability": 0.8323 + }, + { + "start": 15026.52, + "end": 15027.54, + "probability": 0.9731 + }, + { + "start": 15027.58, + "end": 15028.72, + "probability": 0.9055 + }, + { + "start": 15029.2, + "end": 15032.16, + "probability": 0.9651 + }, + { + "start": 15032.38, + "end": 15037.12, + "probability": 0.9276 + }, + { + "start": 15037.36, + "end": 15040.46, + "probability": 0.9908 + }, + { + "start": 15041.04, + "end": 15045.34, + "probability": 0.9893 + }, + { + "start": 15045.34, + "end": 15050.8, + "probability": 0.9601 + }, + { + "start": 15051.5, + "end": 15052.32, + "probability": 0.9636 + }, + { + "start": 15052.8, + "end": 15052.88, + "probability": 0.4144 + }, + { + "start": 15053.04, + "end": 15054.02, + "probability": 0.3873 + }, + { + "start": 15054.02, + "end": 15054.72, + "probability": 0.759 + }, + { + "start": 15055.12, + "end": 15055.98, + "probability": 0.8387 + }, + { + "start": 15056.76, + "end": 15061.6, + "probability": 0.8857 + }, + { + "start": 15062.1, + "end": 15065.36, + "probability": 0.574 + }, + { + "start": 15065.88, + "end": 15068.02, + "probability": 0.8524 + }, + { + "start": 15068.08, + "end": 15069.38, + "probability": 0.8263 + }, + { + "start": 15069.66, + "end": 15071.85, + "probability": 0.9359 + }, + { + "start": 15072.5, + "end": 15073.74, + "probability": 0.8562 + }, + { + "start": 15073.86, + "end": 15076.82, + "probability": 0.9969 + }, + { + "start": 15077.22, + "end": 15078.9, + "probability": 0.3625 + }, + { + "start": 15079.3, + "end": 15079.86, + "probability": 0.5034 + }, + { + "start": 15080.2, + "end": 15082.38, + "probability": 0.8699 + }, + { + "start": 15082.82, + "end": 15085.5, + "probability": 0.6522 + }, + { + "start": 15085.54, + "end": 15089.0, + "probability": 0.9708 + }, + { + "start": 15089.36, + "end": 15091.26, + "probability": 0.9883 + }, + { + "start": 15091.34, + "end": 15091.7, + "probability": 0.8953 + }, + { + "start": 15091.74, + "end": 15092.68, + "probability": 0.9102 + }, + { + "start": 15092.96, + "end": 15094.28, + "probability": 0.7997 + }, + { + "start": 15094.84, + "end": 15096.94, + "probability": 0.8136 + }, + { + "start": 15097.3, + "end": 15099.93, + "probability": 0.6703 + }, + { + "start": 15100.8, + "end": 15102.08, + "probability": 0.857 + }, + { + "start": 15102.3, + "end": 15104.84, + "probability": 0.9808 + }, + { + "start": 15105.32, + "end": 15105.82, + "probability": 0.8774 + }, + { + "start": 15106.36, + "end": 15110.58, + "probability": 0.9628 + }, + { + "start": 15111.14, + "end": 15113.64, + "probability": 0.9808 + }, + { + "start": 15114.1, + "end": 15115.7, + "probability": 0.6537 + }, + { + "start": 15116.2, + "end": 15118.24, + "probability": 0.9859 + }, + { + "start": 15118.52, + "end": 15118.8, + "probability": 0.3832 + }, + { + "start": 15118.8, + "end": 15119.22, + "probability": 0.5128 + }, + { + "start": 15119.78, + "end": 15121.4, + "probability": 0.7807 + }, + { + "start": 15131.36, + "end": 15132.4, + "probability": 0.7536 + }, + { + "start": 15152.1, + "end": 15152.3, + "probability": 0.1674 + }, + { + "start": 15152.3, + "end": 15152.3, + "probability": 0.1724 + }, + { + "start": 15172.74, + "end": 15175.9, + "probability": 0.9121 + }, + { + "start": 15176.74, + "end": 15178.82, + "probability": 0.7302 + }, + { + "start": 15180.32, + "end": 15182.8, + "probability": 0.9004 + }, + { + "start": 15184.7, + "end": 15189.6, + "probability": 0.9515 + }, + { + "start": 15190.72, + "end": 15193.98, + "probability": 0.8312 + }, + { + "start": 15195.36, + "end": 15195.72, + "probability": 0.6154 + }, + { + "start": 15196.84, + "end": 15199.5, + "probability": 0.6792 + }, + { + "start": 15200.08, + "end": 15201.72, + "probability": 0.8436 + }, + { + "start": 15202.62, + "end": 15203.22, + "probability": 0.8796 + }, + { + "start": 15203.82, + "end": 15205.0, + "probability": 0.999 + }, + { + "start": 15205.8, + "end": 15208.18, + "probability": 0.9819 + }, + { + "start": 15209.12, + "end": 15212.24, + "probability": 0.9264 + }, + { + "start": 15213.14, + "end": 15214.0, + "probability": 0.9917 + }, + { + "start": 15214.6, + "end": 15215.54, + "probability": 0.5758 + }, + { + "start": 15216.44, + "end": 15219.08, + "probability": 0.9902 + }, + { + "start": 15220.1, + "end": 15224.78, + "probability": 0.9963 + }, + { + "start": 15225.54, + "end": 15225.74, + "probability": 0.9855 + }, + { + "start": 15226.32, + "end": 15229.28, + "probability": 0.7675 + }, + { + "start": 15229.94, + "end": 15234.22, + "probability": 0.9986 + }, + { + "start": 15234.92, + "end": 15235.58, + "probability": 0.7775 + }, + { + "start": 15236.14, + "end": 15239.62, + "probability": 0.9546 + }, + { + "start": 15240.28, + "end": 15244.26, + "probability": 0.9915 + }, + { + "start": 15244.38, + "end": 15246.76, + "probability": 0.9195 + }, + { + "start": 15247.5, + "end": 15248.78, + "probability": 0.9235 + }, + { + "start": 15249.24, + "end": 15252.22, + "probability": 0.8521 + }, + { + "start": 15252.3, + "end": 15256.12, + "probability": 0.9976 + }, + { + "start": 15257.28, + "end": 15259.4, + "probability": 0.9951 + }, + { + "start": 15259.9, + "end": 15263.88, + "probability": 0.9693 + }, + { + "start": 15264.5, + "end": 15264.94, + "probability": 0.2187 + }, + { + "start": 15265.32, + "end": 15270.84, + "probability": 0.801 + }, + { + "start": 15271.42, + "end": 15275.38, + "probability": 0.9861 + }, + { + "start": 15275.4, + "end": 15276.14, + "probability": 0.6609 + }, + { + "start": 15276.3, + "end": 15278.94, + "probability": 0.7869 + }, + { + "start": 15280.18, + "end": 15283.96, + "probability": 0.9529 + }, + { + "start": 15283.96, + "end": 15287.62, + "probability": 0.9599 + }, + { + "start": 15288.26, + "end": 15288.96, + "probability": 0.7364 + }, + { + "start": 15289.12, + "end": 15290.3, + "probability": 0.9397 + }, + { + "start": 15290.38, + "end": 15292.08, + "probability": 0.8237 + }, + { + "start": 15292.22, + "end": 15294.26, + "probability": 0.762 + }, + { + "start": 15295.82, + "end": 15296.34, + "probability": 0.9915 + }, + { + "start": 15297.06, + "end": 15298.69, + "probability": 0.7862 + }, + { + "start": 15298.78, + "end": 15299.02, + "probability": 0.8047 + }, + { + "start": 15299.26, + "end": 15300.94, + "probability": 0.9116 + }, + { + "start": 15301.68, + "end": 15304.62, + "probability": 0.9854 + }, + { + "start": 15304.76, + "end": 15305.76, + "probability": 0.9442 + }, + { + "start": 15306.56, + "end": 15307.3, + "probability": 0.7248 + }, + { + "start": 15308.04, + "end": 15309.34, + "probability": 0.9834 + }, + { + "start": 15310.22, + "end": 15311.28, + "probability": 0.9202 + }, + { + "start": 15312.12, + "end": 15316.3, + "probability": 0.9676 + }, + { + "start": 15316.4, + "end": 15317.56, + "probability": 0.9912 + }, + { + "start": 15318.7, + "end": 15321.5, + "probability": 0.9105 + }, + { + "start": 15321.98, + "end": 15324.46, + "probability": 0.999 + }, + { + "start": 15324.98, + "end": 15326.6, + "probability": 0.9882 + }, + { + "start": 15327.34, + "end": 15330.08, + "probability": 0.96 + }, + { + "start": 15330.16, + "end": 15332.9, + "probability": 0.9845 + }, + { + "start": 15333.58, + "end": 15335.06, + "probability": 0.9725 + }, + { + "start": 15336.2, + "end": 15340.14, + "probability": 0.9522 + }, + { + "start": 15340.54, + "end": 15341.12, + "probability": 0.9654 + }, + { + "start": 15341.58, + "end": 15342.62, + "probability": 0.9595 + }, + { + "start": 15342.84, + "end": 15346.3, + "probability": 0.9966 + }, + { + "start": 15347.1, + "end": 15347.62, + "probability": 0.9409 + }, + { + "start": 15348.2, + "end": 15350.4, + "probability": 0.8945 + }, + { + "start": 15351.08, + "end": 15352.22, + "probability": 0.7986 + }, + { + "start": 15352.62, + "end": 15358.62, + "probability": 0.9857 + }, + { + "start": 15359.6, + "end": 15359.8, + "probability": 0.7302 + }, + { + "start": 15359.92, + "end": 15362.8, + "probability": 0.7236 + }, + { + "start": 15362.92, + "end": 15364.78, + "probability": 0.6027 + }, + { + "start": 15364.78, + "end": 15367.42, + "probability": 0.717 + }, + { + "start": 15367.48, + "end": 15367.82, + "probability": 0.7536 + }, + { + "start": 15367.82, + "end": 15368.3, + "probability": 0.7451 + }, + { + "start": 15368.56, + "end": 15370.0, + "probability": 0.7527 + }, + { + "start": 15370.78, + "end": 15372.78, + "probability": 0.8909 + }, + { + "start": 15373.36, + "end": 15374.04, + "probability": 0.9334 + }, + { + "start": 15390.77, + "end": 15393.44, + "probability": 0.6379 + }, + { + "start": 15395.64, + "end": 15396.68, + "probability": 0.8243 + }, + { + "start": 15398.9, + "end": 15401.0, + "probability": 0.7589 + }, + { + "start": 15402.2, + "end": 15403.09, + "probability": 0.9315 + }, + { + "start": 15404.22, + "end": 15404.76, + "probability": 0.8955 + }, + { + "start": 15406.0, + "end": 15406.32, + "probability": 0.9531 + }, + { + "start": 15406.84, + "end": 15407.3, + "probability": 0.9968 + }, + { + "start": 15408.66, + "end": 15410.5, + "probability": 0.7361 + }, + { + "start": 15411.84, + "end": 15414.02, + "probability": 0.9961 + }, + { + "start": 15414.84, + "end": 15415.86, + "probability": 0.2322 + }, + { + "start": 15416.66, + "end": 15417.74, + "probability": 0.0074 + }, + { + "start": 15418.36, + "end": 15419.28, + "probability": 0.8259 + }, + { + "start": 15423.02, + "end": 15424.46, + "probability": 0.9409 + }, + { + "start": 15425.96, + "end": 15427.46, + "probability": 0.9471 + }, + { + "start": 15428.82, + "end": 15430.9, + "probability": 0.8953 + }, + { + "start": 15431.88, + "end": 15433.24, + "probability": 0.8882 + }, + { + "start": 15433.94, + "end": 15437.14, + "probability": 0.8083 + }, + { + "start": 15438.08, + "end": 15440.44, + "probability": 0.8216 + }, + { + "start": 15441.24, + "end": 15442.08, + "probability": 0.9026 + }, + { + "start": 15443.14, + "end": 15445.68, + "probability": 0.8436 + }, + { + "start": 15445.72, + "end": 15446.74, + "probability": 0.8953 + }, + { + "start": 15446.84, + "end": 15447.96, + "probability": 0.9927 + }, + { + "start": 15449.38, + "end": 15450.24, + "probability": 0.9782 + }, + { + "start": 15450.58, + "end": 15451.14, + "probability": 0.7881 + }, + { + "start": 15452.26, + "end": 15453.46, + "probability": 0.933 + }, + { + "start": 15454.16, + "end": 15455.04, + "probability": 0.5903 + }, + { + "start": 15455.86, + "end": 15457.74, + "probability": 0.9963 + }, + { + "start": 15460.08, + "end": 15463.84, + "probability": 0.9558 + }, + { + "start": 15464.64, + "end": 15465.68, + "probability": 0.998 + }, + { + "start": 15466.4, + "end": 15472.3, + "probability": 0.8896 + }, + { + "start": 15473.42, + "end": 15477.12, + "probability": 0.8814 + }, + { + "start": 15478.7, + "end": 15483.42, + "probability": 0.9902 + }, + { + "start": 15484.32, + "end": 15485.74, + "probability": 0.7844 + }, + { + "start": 15488.22, + "end": 15490.88, + "probability": 0.9976 + }, + { + "start": 15492.08, + "end": 15496.58, + "probability": 0.9674 + }, + { + "start": 15497.7, + "end": 15499.06, + "probability": 0.9653 + }, + { + "start": 15500.54, + "end": 15503.94, + "probability": 0.9911 + }, + { + "start": 15504.64, + "end": 15505.28, + "probability": 0.9628 + }, + { + "start": 15506.18, + "end": 15507.66, + "probability": 0.9955 + }, + { + "start": 15508.22, + "end": 15508.84, + "probability": 0.5094 + }, + { + "start": 15509.68, + "end": 15512.34, + "probability": 0.9846 + }, + { + "start": 15513.48, + "end": 15515.66, + "probability": 0.9709 + }, + { + "start": 15516.34, + "end": 15519.02, + "probability": 0.6626 + }, + { + "start": 15520.16, + "end": 15521.1, + "probability": 0.9907 + }, + { + "start": 15522.3, + "end": 15524.06, + "probability": 0.6561 + }, + { + "start": 15525.6, + "end": 15528.62, + "probability": 0.7935 + }, + { + "start": 15529.08, + "end": 15530.84, + "probability": 0.8406 + }, + { + "start": 15531.86, + "end": 15533.0, + "probability": 0.8824 + }, + { + "start": 15533.98, + "end": 15535.08, + "probability": 0.9833 + }, + { + "start": 15536.34, + "end": 15536.68, + "probability": 0.6348 + }, + { + "start": 15537.84, + "end": 15539.06, + "probability": 0.8423 + }, + { + "start": 15541.56, + "end": 15544.86, + "probability": 0.8215 + }, + { + "start": 15544.92, + "end": 15545.22, + "probability": 0.8058 + }, + { + "start": 15545.92, + "end": 15549.84, + "probability": 0.825 + }, + { + "start": 15553.69, + "end": 15557.38, + "probability": 0.7355 + }, + { + "start": 15557.96, + "end": 15563.46, + "probability": 0.8814 + }, + { + "start": 15564.86, + "end": 15565.8, + "probability": 0.7958 + }, + { + "start": 15566.68, + "end": 15567.74, + "probability": 0.7742 + }, + { + "start": 15568.32, + "end": 15569.02, + "probability": 0.9923 + }, + { + "start": 15569.62, + "end": 15570.98, + "probability": 0.8398 + }, + { + "start": 15571.66, + "end": 15577.24, + "probability": 0.9658 + }, + { + "start": 15577.42, + "end": 15577.82, + "probability": 0.7408 + }, + { + "start": 15577.92, + "end": 15578.42, + "probability": 0.7438 + }, + { + "start": 15579.4, + "end": 15581.42, + "probability": 0.9143 + }, + { + "start": 15582.5, + "end": 15583.08, + "probability": 0.6523 + }, + { + "start": 15584.24, + "end": 15586.72, + "probability": 0.9857 + }, + { + "start": 15587.94, + "end": 15590.74, + "probability": 0.9385 + }, + { + "start": 15591.68, + "end": 15592.32, + "probability": 0.7686 + }, + { + "start": 15592.88, + "end": 15596.52, + "probability": 0.9692 + }, + { + "start": 15596.58, + "end": 15597.98, + "probability": 0.9381 + }, + { + "start": 15598.48, + "end": 15602.12, + "probability": 0.9972 + }, + { + "start": 15604.42, + "end": 15607.52, + "probability": 0.6199 + }, + { + "start": 15608.56, + "end": 15610.4, + "probability": 0.8658 + }, + { + "start": 15611.38, + "end": 15613.33, + "probability": 0.9908 + }, + { + "start": 15614.4, + "end": 15615.0, + "probability": 0.9976 + }, + { + "start": 15616.24, + "end": 15618.08, + "probability": 0.9844 + }, + { + "start": 15618.34, + "end": 15623.64, + "probability": 0.9698 + }, + { + "start": 15623.72, + "end": 15625.36, + "probability": 0.8408 + }, + { + "start": 15625.78, + "end": 15629.22, + "probability": 0.9751 + }, + { + "start": 15629.78, + "end": 15632.64, + "probability": 0.7206 + }, + { + "start": 15633.52, + "end": 15638.76, + "probability": 0.9956 + }, + { + "start": 15640.0, + "end": 15644.64, + "probability": 0.8839 + }, + { + "start": 15644.72, + "end": 15645.77, + "probability": 0.8927 + }, + { + "start": 15646.84, + "end": 15648.06, + "probability": 0.8485 + }, + { + "start": 15648.76, + "end": 15649.68, + "probability": 0.5143 + }, + { + "start": 15649.9, + "end": 15651.04, + "probability": 0.96 + }, + { + "start": 15651.22, + "end": 15651.68, + "probability": 0.6715 + }, + { + "start": 15651.72, + "end": 15652.62, + "probability": 0.6975 + }, + { + "start": 15654.65, + "end": 15658.24, + "probability": 0.8547 + }, + { + "start": 15659.02, + "end": 15660.86, + "probability": 0.8236 + }, + { + "start": 15660.92, + "end": 15663.2, + "probability": 0.909 + }, + { + "start": 15663.48, + "end": 15667.56, + "probability": 0.9876 + }, + { + "start": 15668.14, + "end": 15668.36, + "probability": 0.0028 + }, + { + "start": 15669.02, + "end": 15670.16, + "probability": 0.2817 + }, + { + "start": 15670.52, + "end": 15671.46, + "probability": 0.9622 + }, + { + "start": 15672.78, + "end": 15675.06, + "probability": 0.9917 + }, + { + "start": 15675.36, + "end": 15676.32, + "probability": 0.9856 + }, + { + "start": 15676.52, + "end": 15683.42, + "probability": 0.9761 + }, + { + "start": 15684.74, + "end": 15686.14, + "probability": 0.9574 + }, + { + "start": 15686.18, + "end": 15689.62, + "probability": 0.8454 + }, + { + "start": 15690.7, + "end": 15692.02, + "probability": 0.8103 + }, + { + "start": 15693.22, + "end": 15695.3, + "probability": 0.9234 + }, + { + "start": 15696.58, + "end": 15698.04, + "probability": 0.8867 + }, + { + "start": 15698.7, + "end": 15700.96, + "probability": 0.8128 + }, + { + "start": 15701.5, + "end": 15704.82, + "probability": 0.9004 + }, + { + "start": 15706.06, + "end": 15707.38, + "probability": 0.9177 + }, + { + "start": 15708.18, + "end": 15711.58, + "probability": 0.5089 + }, + { + "start": 15711.58, + "end": 15713.18, + "probability": 0.0291 + }, + { + "start": 15713.56, + "end": 15719.1, + "probability": 0.7423 + }, + { + "start": 15719.52, + "end": 15720.32, + "probability": 0.632 + }, + { + "start": 15720.32, + "end": 15721.86, + "probability": 0.9621 + }, + { + "start": 15721.94, + "end": 15725.42, + "probability": 0.9214 + }, + { + "start": 15725.52, + "end": 15728.08, + "probability": 0.9397 + }, + { + "start": 15729.26, + "end": 15730.52, + "probability": 0.8364 + }, + { + "start": 15731.32, + "end": 15732.38, + "probability": 0.95 + }, + { + "start": 15732.74, + "end": 15733.9, + "probability": 0.9548 + }, + { + "start": 15734.68, + "end": 15735.7, + "probability": 0.8226 + }, + { + "start": 15735.8, + "end": 15739.0, + "probability": 0.7192 + }, + { + "start": 15739.18, + "end": 15741.19, + "probability": 0.9407 + }, + { + "start": 15742.62, + "end": 15744.56, + "probability": 0.8639 + }, + { + "start": 15744.8, + "end": 15749.3, + "probability": 0.99 + }, + { + "start": 15749.82, + "end": 15753.28, + "probability": 0.9769 + }, + { + "start": 15753.88, + "end": 15758.26, + "probability": 0.9269 + }, + { + "start": 15758.8, + "end": 15759.56, + "probability": 0.6295 + }, + { + "start": 15760.64, + "end": 15761.7, + "probability": 0.9731 + }, + { + "start": 15762.69, + "end": 15765.42, + "probability": 0.8357 + }, + { + "start": 15766.0, + "end": 15766.77, + "probability": 0.455 + }, + { + "start": 15767.52, + "end": 15771.1, + "probability": 0.6624 + }, + { + "start": 15772.46, + "end": 15776.42, + "probability": 0.9398 + }, + { + "start": 15776.42, + "end": 15779.7, + "probability": 0.9958 + }, + { + "start": 15779.84, + "end": 15780.86, + "probability": 0.9316 + }, + { + "start": 15781.0, + "end": 15782.5, + "probability": 0.8088 + }, + { + "start": 15782.74, + "end": 15783.8, + "probability": 0.9918 + }, + { + "start": 15783.88, + "end": 15784.3, + "probability": 0.9532 + }, + { + "start": 15784.32, + "end": 15786.12, + "probability": 0.806 + }, + { + "start": 15786.3, + "end": 15788.63, + "probability": 0.9292 + }, + { + "start": 15790.46, + "end": 15796.42, + "probability": 0.8986 + }, + { + "start": 15798.94, + "end": 15801.48, + "probability": 0.3774 + }, + { + "start": 15801.5, + "end": 15801.9, + "probability": 0.3057 + }, + { + "start": 15802.64, + "end": 15803.72, + "probability": 0.7644 + }, + { + "start": 15804.12, + "end": 15806.38, + "probability": 0.9731 + }, + { + "start": 15808.02, + "end": 15809.26, + "probability": 0.9204 + }, + { + "start": 15809.74, + "end": 15810.68, + "probability": 0.7002 + }, + { + "start": 15810.78, + "end": 15811.54, + "probability": 0.6651 + }, + { + "start": 15812.02, + "end": 15814.32, + "probability": 0.989 + }, + { + "start": 15814.46, + "end": 15815.8, + "probability": 0.947 + }, + { + "start": 15816.42, + "end": 15818.6, + "probability": 0.9342 + }, + { + "start": 15819.64, + "end": 15820.78, + "probability": 0.7474 + }, + { + "start": 15821.86, + "end": 15825.56, + "probability": 0.9541 + }, + { + "start": 15825.72, + "end": 15826.38, + "probability": 0.4036 + }, + { + "start": 15826.48, + "end": 15826.66, + "probability": 0.3426 + }, + { + "start": 15827.28, + "end": 15829.22, + "probability": 0.9157 + }, + { + "start": 15830.18, + "end": 15831.0, + "probability": 0.9315 + }, + { + "start": 15832.04, + "end": 15833.06, + "probability": 0.731 + }, + { + "start": 15833.78, + "end": 15835.56, + "probability": 0.9683 + }, + { + "start": 15835.72, + "end": 15837.1, + "probability": 0.9562 + }, + { + "start": 15837.8, + "end": 15838.86, + "probability": 0.9909 + }, + { + "start": 15841.97, + "end": 15843.64, + "probability": 0.739 + }, + { + "start": 15844.24, + "end": 15846.52, + "probability": 0.2399 + }, + { + "start": 15846.54, + "end": 15847.94, + "probability": 0.7343 + }, + { + "start": 15848.3, + "end": 15850.36, + "probability": 0.6888 + }, + { + "start": 15850.84, + "end": 15854.12, + "probability": 0.923 + }, + { + "start": 15854.22, + "end": 15855.12, + "probability": 0.901 + }, + { + "start": 15855.58, + "end": 15856.36, + "probability": 0.7883 + }, + { + "start": 15856.4, + "end": 15857.47, + "probability": 0.9805 + }, + { + "start": 15858.92, + "end": 15860.86, + "probability": 0.4122 + }, + { + "start": 15861.68, + "end": 15864.38, + "probability": 0.8408 + }, + { + "start": 15865.56, + "end": 15868.9, + "probability": 0.9936 + }, + { + "start": 15869.26, + "end": 15870.07, + "probability": 0.9636 + }, + { + "start": 15870.4, + "end": 15870.96, + "probability": 0.837 + }, + { + "start": 15871.36, + "end": 15873.2, + "probability": 0.6383 + }, + { + "start": 15873.54, + "end": 15873.62, + "probability": 0.0491 + }, + { + "start": 15873.62, + "end": 15875.16, + "probability": 0.3269 + }, + { + "start": 15878.54, + "end": 15881.2, + "probability": 0.2864 + }, + { + "start": 15881.96, + "end": 15882.36, + "probability": 0.0164 + }, + { + "start": 15884.44, + "end": 15886.4, + "probability": 0.3834 + }, + { + "start": 15888.56, + "end": 15890.62, + "probability": 0.5402 + }, + { + "start": 15890.72, + "end": 15893.09, + "probability": 0.4111 + }, + { + "start": 15893.5, + "end": 15894.69, + "probability": 0.7065 + }, + { + "start": 15894.88, + "end": 15896.1, + "probability": 0.8103 + }, + { + "start": 15896.3, + "end": 15897.49, + "probability": 0.7856 + }, + { + "start": 15898.0, + "end": 15899.2, + "probability": 0.9792 + }, + { + "start": 15899.38, + "end": 15900.66, + "probability": 0.8461 + }, + { + "start": 15900.74, + "end": 15903.58, + "probability": 0.9876 + }, + { + "start": 15903.92, + "end": 15905.7, + "probability": 0.9307 + }, + { + "start": 15906.08, + "end": 15908.34, + "probability": 0.8151 + }, + { + "start": 15908.54, + "end": 15909.58, + "probability": 0.9323 + }, + { + "start": 15910.44, + "end": 15915.82, + "probability": 0.9702 + }, + { + "start": 15915.86, + "end": 15916.98, + "probability": 0.9381 + }, + { + "start": 15917.32, + "end": 15922.18, + "probability": 0.9049 + }, + { + "start": 15922.42, + "end": 15928.4, + "probability": 0.6699 + }, + { + "start": 15928.42, + "end": 15933.78, + "probability": 0.8821 + }, + { + "start": 15934.36, + "end": 15934.46, + "probability": 0.0946 + }, + { + "start": 15934.46, + "end": 15934.52, + "probability": 0.0424 + }, + { + "start": 15934.52, + "end": 15936.23, + "probability": 0.3276 + }, + { + "start": 15936.74, + "end": 15941.2, + "probability": 0.8655 + }, + { + "start": 15941.5, + "end": 15941.71, + "probability": 0.3558 + }, + { + "start": 15942.88, + "end": 15944.48, + "probability": 0.0358 + }, + { + "start": 15946.22, + "end": 15950.12, + "probability": 0.6999 + }, + { + "start": 15950.38, + "end": 15951.06, + "probability": 0.0003 + }, + { + "start": 15952.52, + "end": 15954.74, + "probability": 0.5767 + }, + { + "start": 15954.76, + "end": 15957.14, + "probability": 0.9862 + }, + { + "start": 15957.5, + "end": 15961.06, + "probability": 0.776 + }, + { + "start": 15961.06, + "end": 15962.5, + "probability": 0.9759 + }, + { + "start": 15962.62, + "end": 15963.25, + "probability": 0.9165 + }, + { + "start": 15963.36, + "end": 15965.3, + "probability": 0.7291 + }, + { + "start": 15965.6, + "end": 15969.08, + "probability": 0.9492 + }, + { + "start": 15969.1, + "end": 15969.66, + "probability": 0.2153 + }, + { + "start": 15969.92, + "end": 15971.92, + "probability": 0.1575 + }, + { + "start": 15971.92, + "end": 15972.13, + "probability": 0.3988 + }, + { + "start": 15972.52, + "end": 15973.52, + "probability": 0.5011 + }, + { + "start": 15974.96, + "end": 15977.1, + "probability": 0.8112 + }, + { + "start": 15977.22, + "end": 15978.08, + "probability": 0.6999 + }, + { + "start": 15978.2, + "end": 15982.34, + "probability": 0.8943 + }, + { + "start": 15982.34, + "end": 15983.09, + "probability": 0.7859 + }, + { + "start": 15983.88, + "end": 15986.44, + "probability": 0.8305 + }, + { + "start": 15986.84, + "end": 15988.2, + "probability": 0.7936 + }, + { + "start": 15988.28, + "end": 15989.48, + "probability": 0.9568 + }, + { + "start": 15989.62, + "end": 15992.84, + "probability": 0.9693 + }, + { + "start": 15992.88, + "end": 15993.86, + "probability": 0.9545 + }, + { + "start": 15993.98, + "end": 15994.82, + "probability": 0.5709 + }, + { + "start": 15995.56, + "end": 15998.94, + "probability": 0.7645 + }, + { + "start": 15999.36, + "end": 16002.48, + "probability": 0.9437 + }, + { + "start": 16002.48, + "end": 16006.8, + "probability": 0.9785 + }, + { + "start": 16007.12, + "end": 16010.38, + "probability": 0.9941 + }, + { + "start": 16010.6, + "end": 16011.28, + "probability": 0.9072 + }, + { + "start": 16011.86, + "end": 16014.3, + "probability": 0.9589 + }, + { + "start": 16015.08, + "end": 16016.72, + "probability": 0.3904 + }, + { + "start": 16017.78, + "end": 16018.12, + "probability": 0.3233 + }, + { + "start": 16019.26, + "end": 16021.42, + "probability": 0.9429 + }, + { + "start": 16021.42, + "end": 16022.32, + "probability": 0.8151 + }, + { + "start": 16022.4, + "end": 16025.94, + "probability": 0.9536 + }, + { + "start": 16027.46, + "end": 16029.12, + "probability": 0.6673 + }, + { + "start": 16029.94, + "end": 16032.08, + "probability": 0.7647 + }, + { + "start": 16033.1, + "end": 16033.92, + "probability": 0.8725 + }, + { + "start": 16034.48, + "end": 16035.9, + "probability": 0.9572 + }, + { + "start": 16036.48, + "end": 16039.2, + "probability": 0.9855 + }, + { + "start": 16039.92, + "end": 16040.42, + "probability": 0.7496 + }, + { + "start": 16040.9, + "end": 16044.94, + "probability": 0.9653 + }, + { + "start": 16045.8, + "end": 16046.3, + "probability": 0.3938 + }, + { + "start": 16046.82, + "end": 16047.52, + "probability": 0.4718 + }, + { + "start": 16047.68, + "end": 16047.72, + "probability": 0.0336 + }, + { + "start": 16047.72, + "end": 16047.76, + "probability": 0.0911 + }, + { + "start": 16047.9, + "end": 16048.36, + "probability": 0.6549 + }, + { + "start": 16048.68, + "end": 16050.36, + "probability": 0.794 + }, + { + "start": 16050.58, + "end": 16052.18, + "probability": 0.9518 + }, + { + "start": 16052.32, + "end": 16053.34, + "probability": 0.7247 + }, + { + "start": 16053.4, + "end": 16054.72, + "probability": 0.8579 + }, + { + "start": 16055.14, + "end": 16058.38, + "probability": 0.8799 + }, + { + "start": 16058.86, + "end": 16060.88, + "probability": 0.4783 + }, + { + "start": 16061.76, + "end": 16062.78, + "probability": 0.1656 + }, + { + "start": 16062.78, + "end": 16063.46, + "probability": 0.828 + }, + { + "start": 16065.9, + "end": 16068.7, + "probability": 0.6308 + }, + { + "start": 16069.5, + "end": 16070.36, + "probability": 0.9034 + }, + { + "start": 16070.72, + "end": 16072.78, + "probability": 0.8627 + }, + { + "start": 16073.46, + "end": 16075.38, + "probability": 0.6512 + }, + { + "start": 16075.56, + "end": 16079.21, + "probability": 0.9949 + }, + { + "start": 16079.62, + "end": 16079.78, + "probability": 0.0155 + }, + { + "start": 16079.78, + "end": 16082.44, + "probability": 0.9233 + }, + { + "start": 16082.54, + "end": 16084.98, + "probability": 0.2834 + }, + { + "start": 16085.02, + "end": 16085.72, + "probability": 0.5534 + }, + { + "start": 16085.94, + "end": 16087.76, + "probability": 0.9823 + }, + { + "start": 16088.08, + "end": 16089.74, + "probability": 0.5916 + }, + { + "start": 16089.74, + "end": 16090.85, + "probability": 0.5894 + }, + { + "start": 16091.32, + "end": 16093.08, + "probability": 0.5319 + }, + { + "start": 16093.76, + "end": 16094.6, + "probability": 0.0427 + }, + { + "start": 16096.14, + "end": 16099.08, + "probability": 0.8063 + }, + { + "start": 16099.28, + "end": 16099.9, + "probability": 0.4954 + }, + { + "start": 16100.18, + "end": 16100.8, + "probability": 0.42 + }, + { + "start": 16100.84, + "end": 16102.96, + "probability": 0.8865 + }, + { + "start": 16103.04, + "end": 16103.52, + "probability": 0.8327 + }, + { + "start": 16103.92, + "end": 16106.6, + "probability": 0.9526 + }, + { + "start": 16107.62, + "end": 16109.52, + "probability": 0.8267 + }, + { + "start": 16110.1, + "end": 16110.86, + "probability": 0.9685 + }, + { + "start": 16110.98, + "end": 16111.5, + "probability": 0.563 + }, + { + "start": 16111.7, + "end": 16116.78, + "probability": 0.9817 + }, + { + "start": 16117.66, + "end": 16119.12, + "probability": 0.9527 + }, + { + "start": 16119.2, + "end": 16120.2, + "probability": 0.9238 + }, + { + "start": 16120.24, + "end": 16121.16, + "probability": 0.8875 + }, + { + "start": 16121.18, + "end": 16122.8, + "probability": 0.7964 + }, + { + "start": 16123.36, + "end": 16124.27, + "probability": 0.999 + }, + { + "start": 16124.82, + "end": 16126.92, + "probability": 0.9962 + }, + { + "start": 16127.5, + "end": 16129.98, + "probability": 0.7484 + }, + { + "start": 16130.78, + "end": 16133.12, + "probability": 0.1073 + }, + { + "start": 16133.3, + "end": 16134.38, + "probability": 0.2866 + }, + { + "start": 16134.38, + "end": 16134.5, + "probability": 0.0765 + }, + { + "start": 16134.94, + "end": 16136.62, + "probability": 0.6117 + }, + { + "start": 16137.06, + "end": 16138.52, + "probability": 0.5637 + }, + { + "start": 16139.36, + "end": 16142.84, + "probability": 0.6711 + }, + { + "start": 16143.0, + "end": 16144.74, + "probability": 0.782 + }, + { + "start": 16145.16, + "end": 16148.96, + "probability": 0.975 + }, + { + "start": 16152.06, + "end": 16153.24, + "probability": 0.0724 + }, + { + "start": 16153.24, + "end": 16154.0, + "probability": 0.0694 + }, + { + "start": 16154.46, + "end": 16155.83, + "probability": 0.0372 + }, + { + "start": 16157.85, + "end": 16162.6, + "probability": 0.9461 + }, + { + "start": 16162.84, + "end": 16163.2, + "probability": 0.8578 + }, + { + "start": 16164.02, + "end": 16164.9, + "probability": 0.0333 + }, + { + "start": 16165.7, + "end": 16165.72, + "probability": 0.0001 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.0, + "end": 16271.0, + "probability": 0.0 + }, + { + "start": 16271.4, + "end": 16271.92, + "probability": 0.0327 + }, + { + "start": 16271.92, + "end": 16271.92, + "probability": 0.153 + }, + { + "start": 16271.92, + "end": 16273.12, + "probability": 0.7616 + }, + { + "start": 16273.3, + "end": 16275.84, + "probability": 0.937 + }, + { + "start": 16275.96, + "end": 16277.18, + "probability": 0.9935 + }, + { + "start": 16277.78, + "end": 16279.8, + "probability": 0.5746 + }, + { + "start": 16280.73, + "end": 16281.36, + "probability": 0.0299 + }, + { + "start": 16281.46, + "end": 16281.7, + "probability": 0.176 + }, + { + "start": 16281.7, + "end": 16281.7, + "probability": 0.0205 + }, + { + "start": 16281.7, + "end": 16281.72, + "probability": 0.0207 + }, + { + "start": 16281.72, + "end": 16288.48, + "probability": 0.1692 + }, + { + "start": 16288.48, + "end": 16290.6, + "probability": 0.1381 + }, + { + "start": 16290.98, + "end": 16293.18, + "probability": 0.2499 + }, + { + "start": 16395.0, + "end": 16395.0, + "probability": 0.0 + }, + { + "start": 16395.0, + "end": 16395.0, + "probability": 0.0 + }, + { + "start": 16395.0, + "end": 16395.0, + "probability": 0.0 + }, + { + "start": 16395.0, + "end": 16395.0, + "probability": 0.0 + }, + { + "start": 16395.0, + "end": 16395.0, + "probability": 0.0 + }, + { + "start": 16395.0, + "end": 16395.0, + "probability": 0.0 + }, + { + "start": 16395.0, + "end": 16395.0, + "probability": 0.0 + }, + { + "start": 16395.0, + "end": 16395.0, + "probability": 0.0 + }, + { + "start": 16395.0, + "end": 16395.0, + "probability": 0.0 + }, + { + "start": 16395.0, + "end": 16395.0, + "probability": 0.0 + }, + { + "start": 16395.0, + "end": 16395.0, + "probability": 0.0 + }, + { + "start": 16395.0, + "end": 16395.0, + "probability": 0.0 + }, + { + "start": 16395.0, + "end": 16395.0, + "probability": 0.0 + }, + { + "start": 16395.0, + "end": 16395.0, + "probability": 0.0 + }, + { + "start": 16395.0, + "end": 16395.0, + "probability": 0.0 + }, + { + "start": 16395.0, + "end": 16395.0, + "probability": 0.0 + }, + { + "start": 16395.0, + "end": 16395.0, + "probability": 0.0 + }, + { + "start": 16395.0, + "end": 16395.0, + "probability": 0.0 + }, + { + "start": 16395.0, + "end": 16395.0, + "probability": 0.0 + }, + { + "start": 16395.0, + "end": 16395.0, + "probability": 0.0 + }, + { + "start": 16395.0, + "end": 16395.0, + "probability": 0.0 + }, + { + "start": 16395.0, + "end": 16395.0, + "probability": 0.0 + }, + { + "start": 16395.0, + "end": 16395.0, + "probability": 0.0 + }, + { + "start": 16395.0, + "end": 16395.0, + "probability": 0.0 + }, + { + "start": 16395.0, + "end": 16395.0, + "probability": 0.0 + }, + { + "start": 16395.0, + "end": 16395.0, + "probability": 0.0 + }, + { + "start": 16395.0, + "end": 16395.0, + "probability": 0.0 + }, + { + "start": 16395.0, + "end": 16395.0, + "probability": 0.0 + }, + { + "start": 16395.0, + "end": 16395.0, + "probability": 0.0 + }, + { + "start": 16395.0, + "end": 16395.0, + "probability": 0.0 + }, + { + "start": 16395.0, + "end": 16395.0, + "probability": 0.0 + }, + { + "start": 16396.32, + "end": 16396.4, + "probability": 0.1064 + }, + { + "start": 16396.4, + "end": 16397.4, + "probability": 0.0492 + }, + { + "start": 16397.4, + "end": 16398.38, + "probability": 0.2876 + }, + { + "start": 16399.04, + "end": 16404.22, + "probability": 0.9891 + }, + { + "start": 16404.68, + "end": 16406.28, + "probability": 0.9469 + }, + { + "start": 16406.6, + "end": 16407.37, + "probability": 0.6082 + }, + { + "start": 16407.8, + "end": 16408.5, + "probability": 0.9843 + }, + { + "start": 16408.94, + "end": 16409.7, + "probability": 0.8584 + }, + { + "start": 16410.28, + "end": 16412.54, + "probability": 0.7936 + }, + { + "start": 16412.94, + "end": 16414.08, + "probability": 0.9722 + }, + { + "start": 16414.3, + "end": 16415.18, + "probability": 0.9155 + }, + { + "start": 16415.28, + "end": 16417.92, + "probability": 0.9543 + }, + { + "start": 16418.36, + "end": 16420.78, + "probability": 0.9937 + }, + { + "start": 16421.1, + "end": 16423.01, + "probability": 0.814 + }, + { + "start": 16423.74, + "end": 16424.54, + "probability": 0.7484 + }, + { + "start": 16425.2, + "end": 16432.26, + "probability": 0.9892 + }, + { + "start": 16432.5, + "end": 16434.84, + "probability": 0.9834 + }, + { + "start": 16435.34, + "end": 16436.36, + "probability": 0.722 + }, + { + "start": 16436.44, + "end": 16440.1, + "probability": 0.9742 + }, + { + "start": 16440.56, + "end": 16442.54, + "probability": 0.3381 + }, + { + "start": 16444.42, + "end": 16446.16, + "probability": 0.4411 + }, + { + "start": 16446.44, + "end": 16447.5, + "probability": 0.7951 + }, + { + "start": 16450.7, + "end": 16451.74, + "probability": 0.4406 + }, + { + "start": 16452.24, + "end": 16456.22, + "probability": 0.8829 + }, + { + "start": 16456.78, + "end": 16459.8, + "probability": 0.9932 + }, + { + "start": 16460.38, + "end": 16462.82, + "probability": 0.9917 + }, + { + "start": 16464.0, + "end": 16467.88, + "probability": 0.9753 + }, + { + "start": 16467.96, + "end": 16468.7, + "probability": 0.856 + }, + { + "start": 16469.24, + "end": 16472.54, + "probability": 0.9932 + }, + { + "start": 16473.26, + "end": 16474.2, + "probability": 0.998 + }, + { + "start": 16474.4, + "end": 16476.24, + "probability": 0.9705 + }, + { + "start": 16476.74, + "end": 16477.37, + "probability": 0.9487 + }, + { + "start": 16477.72, + "end": 16479.86, + "probability": 0.9741 + }, + { + "start": 16480.36, + "end": 16481.3, + "probability": 0.8578 + }, + { + "start": 16481.36, + "end": 16483.26, + "probability": 0.8817 + }, + { + "start": 16484.24, + "end": 16486.18, + "probability": 0.8042 + }, + { + "start": 16487.04, + "end": 16488.12, + "probability": 0.2424 + }, + { + "start": 16488.2, + "end": 16488.2, + "probability": 0.1352 + }, + { + "start": 16488.4, + "end": 16489.0, + "probability": 0.7619 + }, + { + "start": 16490.66, + "end": 16494.08, + "probability": 0.2958 + }, + { + "start": 16494.64, + "end": 16496.36, + "probability": 0.2595 + }, + { + "start": 16497.04, + "end": 16498.38, + "probability": 0.1054 + }, + { + "start": 16498.88, + "end": 16501.84, + "probability": 0.5678 + }, + { + "start": 16502.36, + "end": 16507.02, + "probability": 0.0334 + }, + { + "start": 16509.54, + "end": 16509.54, + "probability": 0.0528 + }, + { + "start": 16509.54, + "end": 16510.98, + "probability": 0.1663 + }, + { + "start": 16513.38, + "end": 16517.34, + "probability": 0.7667 + }, + { + "start": 16520.14, + "end": 16520.58, + "probability": 0.2936 + }, + { + "start": 16521.56, + "end": 16522.28, + "probability": 0.3895 + }, + { + "start": 16522.86, + "end": 16523.87, + "probability": 0.7753 + }, + { + "start": 16524.3, + "end": 16525.89, + "probability": 0.9191 + }, + { + "start": 16532.96, + "end": 16534.62, + "probability": 0.2213 + }, + { + "start": 16535.8, + "end": 16536.54, + "probability": 0.4588 + }, + { + "start": 16537.02, + "end": 16539.39, + "probability": 0.8417 + }, + { + "start": 16540.32, + "end": 16541.47, + "probability": 0.5806 + }, + { + "start": 16541.8, + "end": 16542.86, + "probability": 0.1237 + }, + { + "start": 16542.86, + "end": 16544.48, + "probability": 0.4165 + }, + { + "start": 16544.48, + "end": 16544.48, + "probability": 0.0506 + }, + { + "start": 16544.48, + "end": 16545.6, + "probability": 0.1625 + }, + { + "start": 16546.02, + "end": 16548.16, + "probability": 0.4977 + }, + { + "start": 16549.08, + "end": 16550.71, + "probability": 0.6577 + }, + { + "start": 16554.9, + "end": 16560.24, + "probability": 0.5151 + }, + { + "start": 16561.7, + "end": 16564.42, + "probability": 0.576 + }, + { + "start": 16564.62, + "end": 16566.8, + "probability": 0.8358 + }, + { + "start": 16567.06, + "end": 16570.6, + "probability": 0.1425 + }, + { + "start": 16570.8, + "end": 16570.8, + "probability": 0.035 + }, + { + "start": 16570.92, + "end": 16573.86, + "probability": 0.7104 + }, + { + "start": 16573.86, + "end": 16574.24, + "probability": 0.4443 + }, + { + "start": 16574.28, + "end": 16575.34, + "probability": 0.7704 + }, + { + "start": 16575.58, + "end": 16577.6, + "probability": 0.0 + }, + { + "start": 16580.41, + "end": 16581.87, + "probability": 0.2653 + }, + { + "start": 16583.7, + "end": 16583.9, + "probability": 0.0692 + }, + { + "start": 16586.54, + "end": 16589.96, + "probability": 0.5334 + }, + { + "start": 16592.48, + "end": 16593.68, + "probability": 0.5099 + }, + { + "start": 16594.06, + "end": 16595.32, + "probability": 0.3542 + }, + { + "start": 16595.32, + "end": 16596.3, + "probability": 0.1703 + }, + { + "start": 16597.5, + "end": 16600.22, + "probability": 0.696 + }, + { + "start": 16602.24, + "end": 16608.06, + "probability": 0.7576 + }, + { + "start": 16608.86, + "end": 16611.52, + "probability": 0.8023 + }, + { + "start": 16612.5, + "end": 16613.44, + "probability": 0.7413 + }, + { + "start": 16613.8, + "end": 16616.78, + "probability": 0.8746 + }, + { + "start": 16616.78, + "end": 16619.48, + "probability": 0.8698 + }, + { + "start": 16619.62, + "end": 16622.6, + "probability": 0.9049 + }, + { + "start": 16623.14, + "end": 16625.12, + "probability": 0.9086 + }, + { + "start": 16626.48, + "end": 16629.72, + "probability": 0.7363 + }, + { + "start": 16629.82, + "end": 16632.1, + "probability": 0.0954 + }, + { + "start": 16633.02, + "end": 16636.18, + "probability": 0.7375 + }, + { + "start": 16636.18, + "end": 16636.38, + "probability": 0.7952 + }, + { + "start": 16636.7, + "end": 16637.64, + "probability": 0.6837 + }, + { + "start": 16637.66, + "end": 16638.9, + "probability": 0.5307 + }, + { + "start": 16639.38, + "end": 16642.62, + "probability": 0.9717 + }, + { + "start": 16642.62, + "end": 16646.22, + "probability": 0.9947 + }, + { + "start": 16646.32, + "end": 16647.34, + "probability": 0.4075 + }, + { + "start": 16648.38, + "end": 16649.96, + "probability": 0.2097 + }, + { + "start": 16650.24, + "end": 16652.3, + "probability": 0.9036 + }, + { + "start": 16652.3, + "end": 16656.23, + "probability": 0.971 + }, + { + "start": 16660.6, + "end": 16661.9, + "probability": 0.8971 + }, + { + "start": 16662.0, + "end": 16662.44, + "probability": 0.1251 + }, + { + "start": 16662.58, + "end": 16663.14, + "probability": 0.7375 + }, + { + "start": 16663.32, + "end": 16664.84, + "probability": 0.7307 + }, + { + "start": 16665.84, + "end": 16667.7, + "probability": 0.0495 + }, + { + "start": 16673.94, + "end": 16674.3, + "probability": 0.0198 + }, + { + "start": 16674.3, + "end": 16674.3, + "probability": 0.2557 + }, + { + "start": 16674.3, + "end": 16674.3, + "probability": 0.3577 + }, + { + "start": 16674.3, + "end": 16675.36, + "probability": 0.3015 + }, + { + "start": 16676.86, + "end": 16678.14, + "probability": 0.62 + }, + { + "start": 16679.96, + "end": 16682.92, + "probability": 0.6888 + }, + { + "start": 16683.08, + "end": 16684.36, + "probability": 0.7254 + }, + { + "start": 16685.16, + "end": 16688.96, + "probability": 0.9172 + }, + { + "start": 16689.14, + "end": 16689.88, + "probability": 0.6779 + }, + { + "start": 16690.02, + "end": 16691.02, + "probability": 0.901 + }, + { + "start": 16691.46, + "end": 16692.55, + "probability": 0.6863 + }, + { + "start": 16693.58, + "end": 16695.51, + "probability": 0.9683 + }, + { + "start": 16696.22, + "end": 16700.82, + "probability": 0.6294 + }, + { + "start": 16701.32, + "end": 16706.06, + "probability": 0.9968 + }, + { + "start": 16706.8, + "end": 16708.27, + "probability": 0.9855 + }, + { + "start": 16708.82, + "end": 16710.84, + "probability": 0.9968 + }, + { + "start": 16711.82, + "end": 16718.96, + "probability": 0.8348 + }, + { + "start": 16719.5, + "end": 16722.88, + "probability": 0.9166 + }, + { + "start": 16723.22, + "end": 16724.74, + "probability": 0.9341 + }, + { + "start": 16726.22, + "end": 16728.14, + "probability": 0.6708 + }, + { + "start": 16728.64, + "end": 16733.21, + "probability": 0.9802 + }, + { + "start": 16734.36, + "end": 16737.14, + "probability": 0.8087 + }, + { + "start": 16737.14, + "end": 16740.92, + "probability": 0.5761 + }, + { + "start": 16741.56, + "end": 16744.23, + "probability": 0.933 + }, + { + "start": 16744.64, + "end": 16746.14, + "probability": 0.5187 + }, + { + "start": 16746.8, + "end": 16748.78, + "probability": 0.9946 + }, + { + "start": 16748.86, + "end": 16752.1, + "probability": 0.6566 + }, + { + "start": 16752.88, + "end": 16757.1, + "probability": 0.9894 + }, + { + "start": 16758.56, + "end": 16760.48, + "probability": 0.9966 + }, + { + "start": 16760.7, + "end": 16762.64, + "probability": 0.97 + }, + { + "start": 16762.76, + "end": 16765.84, + "probability": 0.9977 + }, + { + "start": 16765.9, + "end": 16768.4, + "probability": 0.9824 + }, + { + "start": 16768.92, + "end": 16771.36, + "probability": 0.9107 + }, + { + "start": 16771.88, + "end": 16777.12, + "probability": 0.9393 + }, + { + "start": 16777.74, + "end": 16778.56, + "probability": 0.9785 + }, + { + "start": 16779.84, + "end": 16784.58, + "probability": 0.9918 + }, + { + "start": 16785.12, + "end": 16790.24, + "probability": 0.9917 + }, + { + "start": 16790.48, + "end": 16791.2, + "probability": 0.6591 + }, + { + "start": 16791.42, + "end": 16792.82, + "probability": 0.9091 + }, + { + "start": 16793.48, + "end": 16797.72, + "probability": 0.9962 + }, + { + "start": 16798.2, + "end": 16804.98, + "probability": 0.9955 + }, + { + "start": 16806.98, + "end": 16812.56, + "probability": 0.9942 + }, + { + "start": 16813.04, + "end": 16816.2, + "probability": 0.9837 + }, + { + "start": 16817.12, + "end": 16819.58, + "probability": 0.9961 + }, + { + "start": 16819.64, + "end": 16820.32, + "probability": 0.9131 + }, + { + "start": 16820.78, + "end": 16825.22, + "probability": 0.9946 + }, + { + "start": 16825.76, + "end": 16827.8, + "probability": 0.925 + }, + { + "start": 16828.36, + "end": 16832.24, + "probability": 0.7996 + }, + { + "start": 16832.74, + "end": 16836.54, + "probability": 0.6726 + }, + { + "start": 16837.08, + "end": 16841.1, + "probability": 0.9834 + }, + { + "start": 16841.42, + "end": 16844.38, + "probability": 0.9996 + }, + { + "start": 16844.76, + "end": 16846.86, + "probability": 0.8975 + }, + { + "start": 16846.98, + "end": 16849.24, + "probability": 0.9371 + }, + { + "start": 16849.66, + "end": 16852.78, + "probability": 0.6597 + }, + { + "start": 16853.48, + "end": 16854.42, + "probability": 0.695 + }, + { + "start": 16854.42, + "end": 16855.68, + "probability": 0.9482 + }, + { + "start": 16855.88, + "end": 16855.98, + "probability": 0.696 + }, + { + "start": 16858.2, + "end": 16861.34, + "probability": 0.9768 + }, + { + "start": 16862.46, + "end": 16867.8, + "probability": 0.995 + }, + { + "start": 16867.9, + "end": 16870.02, + "probability": 0.7916 + }, + { + "start": 16871.14, + "end": 16872.44, + "probability": 0.9971 + }, + { + "start": 16872.56, + "end": 16874.36, + "probability": 0.9729 + }, + { + "start": 16874.84, + "end": 16875.44, + "probability": 0.2648 + }, + { + "start": 16875.48, + "end": 16878.5, + "probability": 0.7706 + }, + { + "start": 16878.68, + "end": 16879.56, + "probability": 0.8768 + }, + { + "start": 16880.22, + "end": 16881.04, + "probability": 0.8677 + }, + { + "start": 16881.16, + "end": 16881.68, + "probability": 0.8685 + }, + { + "start": 16881.8, + "end": 16884.44, + "probability": 0.9768 + }, + { + "start": 16884.44, + "end": 16886.68, + "probability": 0.9902 + }, + { + "start": 16886.98, + "end": 16888.76, + "probability": 0.9548 + }, + { + "start": 16888.88, + "end": 16892.74, + "probability": 0.9818 + }, + { + "start": 16893.34, + "end": 16896.1, + "probability": 0.9937 + }, + { + "start": 16896.2, + "end": 16896.48, + "probability": 0.7052 + }, + { + "start": 16896.68, + "end": 16897.14, + "probability": 0.8156 + }, + { + "start": 16897.6, + "end": 16899.74, + "probability": 0.8375 + }, + { + "start": 16915.85, + "end": 16916.88, + "probability": 0.8474 + }, + { + "start": 16919.82, + "end": 16921.62, + "probability": 0.7659 + }, + { + "start": 16923.84, + "end": 16927.6, + "probability": 0.7898 + }, + { + "start": 16928.18, + "end": 16929.0, + "probability": 0.7439 + }, + { + "start": 16932.36, + "end": 16933.2, + "probability": 0.5456 + }, + { + "start": 16934.3, + "end": 16937.3, + "probability": 0.9545 + }, + { + "start": 16938.44, + "end": 16941.78, + "probability": 0.9286 + }, + { + "start": 16942.62, + "end": 16946.34, + "probability": 0.8429 + }, + { + "start": 16946.4, + "end": 16949.46, + "probability": 0.9812 + }, + { + "start": 16950.08, + "end": 16951.1, + "probability": 0.9945 + }, + { + "start": 16951.64, + "end": 16953.96, + "probability": 0.9928 + }, + { + "start": 16955.32, + "end": 16957.26, + "probability": 0.98 + }, + { + "start": 16958.22, + "end": 16963.44, + "probability": 0.8747 + }, + { + "start": 16964.4, + "end": 16965.56, + "probability": 0.497 + }, + { + "start": 16966.12, + "end": 16973.2, + "probability": 0.9744 + }, + { + "start": 16974.42, + "end": 16978.46, + "probability": 0.9216 + }, + { + "start": 16979.3, + "end": 16982.24, + "probability": 0.9961 + }, + { + "start": 16982.76, + "end": 16984.82, + "probability": 0.8532 + }, + { + "start": 16985.4, + "end": 16985.92, + "probability": 0.6029 + }, + { + "start": 16986.08, + "end": 16987.4, + "probability": 0.8093 + }, + { + "start": 16987.86, + "end": 16994.76, + "probability": 0.901 + }, + { + "start": 16995.18, + "end": 17001.8, + "probability": 0.8374 + }, + { + "start": 17002.5, + "end": 17006.12, + "probability": 0.9733 + }, + { + "start": 17006.2, + "end": 17008.5, + "probability": 0.9043 + }, + { + "start": 17009.12, + "end": 17010.18, + "probability": 0.4778 + }, + { + "start": 17010.66, + "end": 17012.78, + "probability": 0.9262 + }, + { + "start": 17013.1, + "end": 17018.58, + "probability": 0.9425 + }, + { + "start": 17019.02, + "end": 17021.38, + "probability": 0.6453 + }, + { + "start": 17021.86, + "end": 17024.26, + "probability": 0.8082 + }, + { + "start": 17024.84, + "end": 17029.92, + "probability": 0.7769 + }, + { + "start": 17030.52, + "end": 17034.78, + "probability": 0.8428 + }, + { + "start": 17035.56, + "end": 17041.72, + "probability": 0.7043 + }, + { + "start": 17042.42, + "end": 17044.7, + "probability": 0.9506 + }, + { + "start": 17045.8, + "end": 17049.9, + "probability": 0.9198 + }, + { + "start": 17050.44, + "end": 17055.68, + "probability": 0.9956 + }, + { + "start": 17056.36, + "end": 17057.98, + "probability": 0.8447 + }, + { + "start": 17058.4, + "end": 17061.26, + "probability": 0.8707 + }, + { + "start": 17061.38, + "end": 17064.46, + "probability": 0.9488 + }, + { + "start": 17065.06, + "end": 17069.26, + "probability": 0.8183 + }, + { + "start": 17069.84, + "end": 17075.06, + "probability": 0.9761 + }, + { + "start": 17075.52, + "end": 17077.37, + "probability": 0.9065 + }, + { + "start": 17077.96, + "end": 17082.22, + "probability": 0.859 + }, + { + "start": 17082.78, + "end": 17084.3, + "probability": 0.7358 + }, + { + "start": 17084.78, + "end": 17087.68, + "probability": 0.9828 + }, + { + "start": 17088.2, + "end": 17089.9, + "probability": 0.5675 + }, + { + "start": 17090.14, + "end": 17095.32, + "probability": 0.9231 + }, + { + "start": 17096.06, + "end": 17098.38, + "probability": 0.9954 + }, + { + "start": 17098.74, + "end": 17105.12, + "probability": 0.5423 + }, + { + "start": 17105.56, + "end": 17105.56, + "probability": 0.1995 + }, + { + "start": 17105.56, + "end": 17108.54, + "probability": 0.7348 + }, + { + "start": 17108.94, + "end": 17111.56, + "probability": 0.8022 + }, + { + "start": 17111.98, + "end": 17112.9, + "probability": 0.9573 + }, + { + "start": 17113.14, + "end": 17114.06, + "probability": 0.7053 + }, + { + "start": 17114.48, + "end": 17123.62, + "probability": 0.9794 + }, + { + "start": 17124.02, + "end": 17127.5, + "probability": 0.6223 + }, + { + "start": 17127.86, + "end": 17131.62, + "probability": 0.9241 + }, + { + "start": 17131.88, + "end": 17135.98, + "probability": 0.883 + }, + { + "start": 17136.52, + "end": 17138.38, + "probability": 0.9159 + }, + { + "start": 17138.86, + "end": 17143.1, + "probability": 0.9446 + }, + { + "start": 17143.1, + "end": 17143.34, + "probability": 0.6311 + }, + { + "start": 17143.52, + "end": 17145.62, + "probability": 0.8211 + }, + { + "start": 17146.0, + "end": 17148.3, + "probability": 0.8572 + }, + { + "start": 17148.48, + "end": 17148.8, + "probability": 0.8248 + }, + { + "start": 17148.8, + "end": 17148.98, + "probability": 0.4871 + }, + { + "start": 17149.16, + "end": 17149.66, + "probability": 0.8795 + }, + { + "start": 17149.92, + "end": 17151.54, + "probability": 0.7725 + }, + { + "start": 17167.54, + "end": 17168.7, + "probability": 0.7669 + }, + { + "start": 17169.02, + "end": 17170.44, + "probability": 0.8418 + }, + { + "start": 17171.18, + "end": 17176.52, + "probability": 0.8484 + }, + { + "start": 17176.52, + "end": 17182.64, + "probability": 0.9797 + }, + { + "start": 17183.48, + "end": 17185.79, + "probability": 0.8843 + }, + { + "start": 17186.04, + "end": 17187.86, + "probability": 0.8434 + }, + { + "start": 17188.5, + "end": 17189.52, + "probability": 0.8158 + }, + { + "start": 17189.56, + "end": 17192.78, + "probability": 0.9641 + }, + { + "start": 17192.78, + "end": 17195.96, + "probability": 0.9978 + }, + { + "start": 17196.46, + "end": 17197.48, + "probability": 0.9961 + }, + { + "start": 17198.04, + "end": 17199.08, + "probability": 0.8568 + }, + { + "start": 17199.16, + "end": 17199.78, + "probability": 0.9765 + }, + { + "start": 17199.9, + "end": 17200.58, + "probability": 0.9771 + }, + { + "start": 17201.3, + "end": 17205.76, + "probability": 0.9357 + }, + { + "start": 17206.98, + "end": 17210.0, + "probability": 0.9927 + }, + { + "start": 17210.02, + "end": 17214.88, + "probability": 0.9169 + }, + { + "start": 17215.94, + "end": 17217.38, + "probability": 0.8876 + }, + { + "start": 17217.62, + "end": 17222.22, + "probability": 0.9696 + }, + { + "start": 17222.7, + "end": 17227.16, + "probability": 0.9512 + }, + { + "start": 17227.9, + "end": 17230.2, + "probability": 0.9638 + }, + { + "start": 17230.2, + "end": 17233.48, + "probability": 0.9486 + }, + { + "start": 17233.76, + "end": 17234.7, + "probability": 0.7862 + }, + { + "start": 17234.84, + "end": 17238.54, + "probability": 0.9805 + }, + { + "start": 17239.62, + "end": 17244.26, + "probability": 0.9822 + }, + { + "start": 17244.78, + "end": 17248.06, + "probability": 0.8648 + }, + { + "start": 17249.08, + "end": 17249.8, + "probability": 0.7426 + }, + { + "start": 17250.34, + "end": 17256.92, + "probability": 0.7913 + }, + { + "start": 17256.98, + "end": 17261.86, + "probability": 0.9097 + }, + { + "start": 17262.12, + "end": 17264.68, + "probability": 0.984 + }, + { + "start": 17265.86, + "end": 17268.66, + "probability": 0.902 + }, + { + "start": 17268.92, + "end": 17273.94, + "probability": 0.8716 + }, + { + "start": 17274.02, + "end": 17274.54, + "probability": 0.1823 + }, + { + "start": 17274.54, + "end": 17274.78, + "probability": 0.3969 + }, + { + "start": 17275.16, + "end": 17280.54, + "probability": 0.9308 + }, + { + "start": 17280.96, + "end": 17282.04, + "probability": 0.853 + }, + { + "start": 17282.46, + "end": 17283.56, + "probability": 0.9711 + }, + { + "start": 17283.82, + "end": 17284.42, + "probability": 0.3981 + }, + { + "start": 17284.9, + "end": 17285.38, + "probability": 0.873 + }, + { + "start": 17286.02, + "end": 17286.9, + "probability": 0.794 + }, + { + "start": 17287.68, + "end": 17290.14, + "probability": 0.9871 + }, + { + "start": 17290.84, + "end": 17292.2, + "probability": 0.7333 + }, + { + "start": 17293.04, + "end": 17294.5, + "probability": 0.9929 + }, + { + "start": 17295.22, + "end": 17299.1, + "probability": 0.9891 + }, + { + "start": 17299.22, + "end": 17300.64, + "probability": 0.6885 + }, + { + "start": 17300.72, + "end": 17301.34, + "probability": 0.5729 + }, + { + "start": 17302.08, + "end": 17304.96, + "probability": 0.9806 + }, + { + "start": 17305.52, + "end": 17309.94, + "probability": 0.9663 + }, + { + "start": 17312.02, + "end": 17312.79, + "probability": 0.5937 + }, + { + "start": 17313.46, + "end": 17317.28, + "probability": 0.9838 + }, + { + "start": 17317.54, + "end": 17322.86, + "probability": 0.9863 + }, + { + "start": 17323.0, + "end": 17323.88, + "probability": 0.8959 + }, + { + "start": 17324.34, + "end": 17325.12, + "probability": 0.8229 + }, + { + "start": 17325.56, + "end": 17328.36, + "probability": 0.9914 + }, + { + "start": 17328.7, + "end": 17331.24, + "probability": 0.971 + }, + { + "start": 17331.74, + "end": 17334.04, + "probability": 0.9989 + }, + { + "start": 17334.32, + "end": 17339.24, + "probability": 0.8717 + }, + { + "start": 17339.52, + "end": 17341.52, + "probability": 0.8256 + }, + { + "start": 17341.94, + "end": 17343.26, + "probability": 0.944 + }, + { + "start": 17344.24, + "end": 17344.6, + "probability": 0.9227 + }, + { + "start": 17344.66, + "end": 17345.74, + "probability": 0.9248 + }, + { + "start": 17345.78, + "end": 17346.12, + "probability": 0.6495 + }, + { + "start": 17346.2, + "end": 17347.3, + "probability": 0.9608 + }, + { + "start": 17347.34, + "end": 17348.16, + "probability": 0.9595 + }, + { + "start": 17348.42, + "end": 17349.54, + "probability": 0.9579 + }, + { + "start": 17349.72, + "end": 17350.16, + "probability": 0.7389 + }, + { + "start": 17350.24, + "end": 17351.9, + "probability": 0.455 + }, + { + "start": 17352.6, + "end": 17354.14, + "probability": 0.973 + }, + { + "start": 17354.22, + "end": 17357.12, + "probability": 0.9719 + }, + { + "start": 17357.32, + "end": 17359.14, + "probability": 0.9234 + }, + { + "start": 17359.54, + "end": 17362.42, + "probability": 0.8565 + }, + { + "start": 17362.72, + "end": 17363.82, + "probability": 0.7554 + }, + { + "start": 17364.44, + "end": 17368.06, + "probability": 0.8331 + }, + { + "start": 17368.68, + "end": 17373.6, + "probability": 0.9663 + }, + { + "start": 17374.22, + "end": 17376.54, + "probability": 0.8821 + }, + { + "start": 17376.64, + "end": 17378.74, + "probability": 0.9936 + }, + { + "start": 17379.24, + "end": 17381.58, + "probability": 0.9977 + }, + { + "start": 17381.62, + "end": 17383.04, + "probability": 0.9432 + }, + { + "start": 17383.48, + "end": 17387.4, + "probability": 0.9184 + }, + { + "start": 17387.96, + "end": 17391.96, + "probability": 0.9913 + }, + { + "start": 17391.98, + "end": 17391.98, + "probability": 0.5892 + }, + { + "start": 17392.0, + "end": 17395.74, + "probability": 0.8951 + }, + { + "start": 17396.04, + "end": 17396.9, + "probability": 0.7184 + }, + { + "start": 17397.44, + "end": 17401.6, + "probability": 0.6947 + }, + { + "start": 17402.3, + "end": 17402.92, + "probability": 0.9309 + }, + { + "start": 17414.2, + "end": 17416.42, + "probability": 0.8692 + }, + { + "start": 17417.02, + "end": 17421.46, + "probability": 0.979 + }, + { + "start": 17422.16, + "end": 17425.57, + "probability": 0.9789 + }, + { + "start": 17425.66, + "end": 17428.88, + "probability": 0.9951 + }, + { + "start": 17429.56, + "end": 17434.88, + "probability": 0.9918 + }, + { + "start": 17435.58, + "end": 17438.46, + "probability": 0.9939 + }, + { + "start": 17439.34, + "end": 17443.62, + "probability": 0.7518 + }, + { + "start": 17443.74, + "end": 17447.74, + "probability": 0.931 + }, + { + "start": 17447.78, + "end": 17452.08, + "probability": 0.9882 + }, + { + "start": 17452.96, + "end": 17456.02, + "probability": 0.9553 + }, + { + "start": 17456.18, + "end": 17459.58, + "probability": 0.8519 + }, + { + "start": 17460.4, + "end": 17462.94, + "probability": 0.9718 + }, + { + "start": 17462.94, + "end": 17467.24, + "probability": 0.9732 + }, + { + "start": 17467.7, + "end": 17470.02, + "probability": 0.9958 + }, + { + "start": 17470.3, + "end": 17472.12, + "probability": 0.9104 + }, + { + "start": 17472.6, + "end": 17474.94, + "probability": 0.7332 + }, + { + "start": 17475.0, + "end": 17475.78, + "probability": 0.6718 + }, + { + "start": 17475.9, + "end": 17476.74, + "probability": 0.9368 + }, + { + "start": 17477.28, + "end": 17479.12, + "probability": 0.9879 + }, + { + "start": 17481.6, + "end": 17484.74, + "probability": 0.9769 + }, + { + "start": 17484.8, + "end": 17487.52, + "probability": 0.9135 + }, + { + "start": 17488.18, + "end": 17491.4, + "probability": 0.9873 + }, + { + "start": 17491.54, + "end": 17494.3, + "probability": 0.9949 + }, + { + "start": 17494.86, + "end": 17497.18, + "probability": 0.9886 + }, + { + "start": 17497.9, + "end": 17498.74, + "probability": 0.7978 + }, + { + "start": 17498.8, + "end": 17501.48, + "probability": 0.8998 + }, + { + "start": 17501.6, + "end": 17504.18, + "probability": 0.9874 + }, + { + "start": 17504.24, + "end": 17507.38, + "probability": 0.7776 + }, + { + "start": 17508.04, + "end": 17509.44, + "probability": 0.8685 + }, + { + "start": 17509.48, + "end": 17509.98, + "probability": 0.3731 + }, + { + "start": 17510.04, + "end": 17512.14, + "probability": 0.9307 + }, + { + "start": 17512.22, + "end": 17516.26, + "probability": 0.936 + }, + { + "start": 17516.44, + "end": 17520.42, + "probability": 0.9951 + }, + { + "start": 17520.98, + "end": 17523.48, + "probability": 0.9533 + }, + { + "start": 17523.88, + "end": 17524.68, + "probability": 0.8232 + }, + { + "start": 17525.0, + "end": 17527.14, + "probability": 0.9882 + }, + { + "start": 17527.22, + "end": 17527.6, + "probability": 0.93 + }, + { + "start": 17528.44, + "end": 17534.48, + "probability": 0.9266 + }, + { + "start": 17535.24, + "end": 17535.78, + "probability": 0.6467 + }, + { + "start": 17535.82, + "end": 17537.59, + "probability": 0.6056 + }, + { + "start": 17538.18, + "end": 17542.04, + "probability": 0.9338 + }, + { + "start": 17542.34, + "end": 17544.98, + "probability": 0.9852 + }, + { + "start": 17545.04, + "end": 17545.82, + "probability": 0.895 + }, + { + "start": 17545.94, + "end": 17547.66, + "probability": 0.7434 + }, + { + "start": 17548.28, + "end": 17548.36, + "probability": 0.2672 + }, + { + "start": 17548.44, + "end": 17552.22, + "probability": 0.9958 + }, + { + "start": 17553.48, + "end": 17556.74, + "probability": 0.7758 + }, + { + "start": 17556.74, + "end": 17559.24, + "probability": 0.9958 + }, + { + "start": 17560.06, + "end": 17563.42, + "probability": 0.9712 + }, + { + "start": 17563.42, + "end": 17566.76, + "probability": 0.9883 + }, + { + "start": 17566.9, + "end": 17568.62, + "probability": 0.9991 + }, + { + "start": 17569.16, + "end": 17570.84, + "probability": 0.9326 + }, + { + "start": 17571.4, + "end": 17574.8, + "probability": 0.9616 + }, + { + "start": 17575.28, + "end": 17576.72, + "probability": 0.8895 + }, + { + "start": 17577.54, + "end": 17580.26, + "probability": 0.8836 + }, + { + "start": 17580.46, + "end": 17581.06, + "probability": 0.7604 + }, + { + "start": 17581.66, + "end": 17583.78, + "probability": 0.9954 + }, + { + "start": 17583.86, + "end": 17586.9, + "probability": 0.9076 + }, + { + "start": 17587.44, + "end": 17589.38, + "probability": 0.8444 + }, + { + "start": 17589.42, + "end": 17593.84, + "probability": 0.9792 + }, + { + "start": 17594.48, + "end": 17596.56, + "probability": 0.9562 + }, + { + "start": 17596.68, + "end": 17598.84, + "probability": 0.9954 + }, + { + "start": 17598.84, + "end": 17602.22, + "probability": 0.9913 + }, + { + "start": 17602.82, + "end": 17606.2, + "probability": 0.9772 + }, + { + "start": 17606.76, + "end": 17609.4, + "probability": 0.8303 + }, + { + "start": 17610.06, + "end": 17611.38, + "probability": 0.9358 + }, + { + "start": 17611.54, + "end": 17612.3, + "probability": 0.8761 + }, + { + "start": 17612.36, + "end": 17616.34, + "probability": 0.9901 + }, + { + "start": 17617.6, + "end": 17618.46, + "probability": 0.9796 + }, + { + "start": 17619.02, + "end": 17620.66, + "probability": 0.9761 + }, + { + "start": 17621.16, + "end": 17623.14, + "probability": 0.9961 + }, + { + "start": 17623.14, + "end": 17626.48, + "probability": 0.9926 + }, + { + "start": 17627.32, + "end": 17628.12, + "probability": 0.9782 + }, + { + "start": 17628.42, + "end": 17629.34, + "probability": 0.8865 + }, + { + "start": 17629.98, + "end": 17632.76, + "probability": 0.9956 + }, + { + "start": 17633.48, + "end": 17634.98, + "probability": 0.9891 + }, + { + "start": 17635.62, + "end": 17640.36, + "probability": 0.9835 + }, + { + "start": 17640.78, + "end": 17644.42, + "probability": 0.9518 + }, + { + "start": 17645.04, + "end": 17650.02, + "probability": 0.9669 + }, + { + "start": 17650.72, + "end": 17656.16, + "probability": 0.9921 + }, + { + "start": 17657.18, + "end": 17661.02, + "probability": 0.9811 + }, + { + "start": 17661.1, + "end": 17666.94, + "probability": 0.95 + }, + { + "start": 17667.44, + "end": 17671.98, + "probability": 0.9977 + }, + { + "start": 17672.18, + "end": 17672.52, + "probability": 0.8293 + }, + { + "start": 17672.64, + "end": 17673.76, + "probability": 0.854 + }, + { + "start": 17674.24, + "end": 17678.74, + "probability": 0.9734 + }, + { + "start": 17679.3, + "end": 17682.68, + "probability": 0.9967 + }, + { + "start": 17683.2, + "end": 17685.12, + "probability": 0.9985 + }, + { + "start": 17685.94, + "end": 17690.98, + "probability": 0.9817 + }, + { + "start": 17691.42, + "end": 17694.48, + "probability": 0.9788 + }, + { + "start": 17694.88, + "end": 17697.46, + "probability": 0.9424 + }, + { + "start": 17697.9, + "end": 17700.1, + "probability": 0.9764 + }, + { + "start": 17700.1, + "end": 17702.46, + "probability": 0.9684 + }, + { + "start": 17703.16, + "end": 17706.45, + "probability": 0.9914 + }, + { + "start": 17706.72, + "end": 17711.16, + "probability": 0.9564 + }, + { + "start": 17711.56, + "end": 17714.16, + "probability": 0.9362 + }, + { + "start": 17714.56, + "end": 17718.5, + "probability": 0.9937 + }, + { + "start": 17719.14, + "end": 17721.84, + "probability": 0.9954 + }, + { + "start": 17722.4, + "end": 17724.06, + "probability": 0.9945 + }, + { + "start": 17725.02, + "end": 17725.08, + "probability": 0.491 + }, + { + "start": 17725.2, + "end": 17726.16, + "probability": 0.9938 + }, + { + "start": 17726.26, + "end": 17729.82, + "probability": 0.8928 + }, + { + "start": 17729.82, + "end": 17732.48, + "probability": 0.9994 + }, + { + "start": 17733.12, + "end": 17735.42, + "probability": 0.8661 + }, + { + "start": 17735.44, + "end": 17736.34, + "probability": 0.8692 + }, + { + "start": 17736.36, + "end": 17736.98, + "probability": 0.9173 + }, + { + "start": 17737.46, + "end": 17739.38, + "probability": 0.8467 + }, + { + "start": 17739.96, + "end": 17744.42, + "probability": 0.9877 + }, + { + "start": 17744.88, + "end": 17747.24, + "probability": 0.1547 + }, + { + "start": 17747.24, + "end": 17747.24, + "probability": 0.1429 + }, + { + "start": 17747.24, + "end": 17750.06, + "probability": 0.6094 + }, + { + "start": 17750.3, + "end": 17750.84, + "probability": 0.6879 + }, + { + "start": 17750.86, + "end": 17751.5, + "probability": 0.9204 + }, + { + "start": 17751.88, + "end": 17753.36, + "probability": 0.9604 + }, + { + "start": 17753.9, + "end": 17760.02, + "probability": 0.8675 + }, + { + "start": 17760.18, + "end": 17765.76, + "probability": 0.7636 + }, + { + "start": 17765.76, + "end": 17765.76, + "probability": 0.5355 + }, + { + "start": 17765.88, + "end": 17767.92, + "probability": 0.998 + }, + { + "start": 17767.92, + "end": 17772.02, + "probability": 0.9929 + }, + { + "start": 17772.6, + "end": 17777.2, + "probability": 0.9826 + }, + { + "start": 17777.96, + "end": 17781.04, + "probability": 0.9251 + }, + { + "start": 17781.76, + "end": 17785.28, + "probability": 0.9538 + }, + { + "start": 17786.12, + "end": 17788.9, + "probability": 0.9887 + }, + { + "start": 17789.56, + "end": 17793.92, + "probability": 0.993 + }, + { + "start": 17794.7, + "end": 17798.24, + "probability": 0.8288 + }, + { + "start": 17798.36, + "end": 17799.78, + "probability": 0.9627 + }, + { + "start": 17800.2, + "end": 17801.74, + "probability": 0.9376 + }, + { + "start": 17802.28, + "end": 17804.72, + "probability": 0.9897 + }, + { + "start": 17804.76, + "end": 17807.4, + "probability": 0.9988 + }, + { + "start": 17808.78, + "end": 17811.38, + "probability": 0.9962 + }, + { + "start": 17811.42, + "end": 17812.3, + "probability": 0.9661 + }, + { + "start": 17812.62, + "end": 17814.08, + "probability": 0.9956 + }, + { + "start": 17815.08, + "end": 17816.52, + "probability": 0.9976 + }, + { + "start": 17816.52, + "end": 17817.44, + "probability": 0.9117 + }, + { + "start": 17817.72, + "end": 17819.98, + "probability": 0.6996 + }, + { + "start": 17820.0, + "end": 17823.66, + "probability": 0.9931 + }, + { + "start": 17823.88, + "end": 17826.04, + "probability": 0.9976 + }, + { + "start": 17826.84, + "end": 17831.3, + "probability": 0.9878 + }, + { + "start": 17831.78, + "end": 17832.14, + "probability": 0.9504 + }, + { + "start": 17832.5, + "end": 17833.34, + "probability": 0.9537 + }, + { + "start": 17833.38, + "end": 17834.48, + "probability": 0.9697 + }, + { + "start": 17834.62, + "end": 17836.08, + "probability": 0.5599 + }, + { + "start": 17836.12, + "end": 17840.36, + "probability": 0.9947 + }, + { + "start": 17840.96, + "end": 17843.5, + "probability": 0.988 + }, + { + "start": 17844.18, + "end": 17844.32, + "probability": 0.0466 + }, + { + "start": 17844.32, + "end": 17846.7, + "probability": 0.1848 + }, + { + "start": 17847.28, + "end": 17849.34, + "probability": 0.3974 + }, + { + "start": 17849.6, + "end": 17851.35, + "probability": 0.9085 + }, + { + "start": 17851.71, + "end": 17855.52, + "probability": 0.6709 + }, + { + "start": 17855.68, + "end": 17856.5, + "probability": 0.8235 + }, + { + "start": 17856.68, + "end": 17859.46, + "probability": 0.8704 + }, + { + "start": 17859.56, + "end": 17862.72, + "probability": 0.9165 + }, + { + "start": 17862.76, + "end": 17865.48, + "probability": 0.886 + }, + { + "start": 17866.0, + "end": 17866.66, + "probability": 0.9901 + }, + { + "start": 17868.08, + "end": 17873.06, + "probability": 0.95 + }, + { + "start": 17873.12, + "end": 17873.8, + "probability": 0.7636 + }, + { + "start": 17873.86, + "end": 17874.74, + "probability": 0.9425 + }, + { + "start": 17875.38, + "end": 17876.04, + "probability": 0.7461 + }, + { + "start": 17876.46, + "end": 17877.74, + "probability": 0.6734 + }, + { + "start": 17878.04, + "end": 17881.96, + "probability": 0.9578 + }, + { + "start": 17882.06, + "end": 17882.8, + "probability": 0.867 + }, + { + "start": 17883.18, + "end": 17887.22, + "probability": 0.9604 + }, + { + "start": 17887.34, + "end": 17891.32, + "probability": 0.9829 + }, + { + "start": 17891.84, + "end": 17894.8, + "probability": 0.9958 + }, + { + "start": 17895.3, + "end": 17896.16, + "probability": 0.939 + }, + { + "start": 17896.36, + "end": 17898.96, + "probability": 0.9906 + }, + { + "start": 17899.28, + "end": 17901.1, + "probability": 0.8647 + }, + { + "start": 17901.42, + "end": 17902.82, + "probability": 0.866 + }, + { + "start": 17902.9, + "end": 17907.5, + "probability": 0.8901 + }, + { + "start": 17907.5, + "end": 17911.42, + "probability": 0.9976 + }, + { + "start": 17911.7, + "end": 17911.7, + "probability": 0.6344 + }, + { + "start": 17911.82, + "end": 17913.4, + "probability": 0.803 + }, + { + "start": 17913.92, + "end": 17914.18, + "probability": 0.4178 + }, + { + "start": 17914.98, + "end": 17916.22, + "probability": 0.5699 + }, + { + "start": 17916.46, + "end": 17925.68, + "probability": 0.7486 + }, + { + "start": 17929.14, + "end": 17929.34, + "probability": 0.3013 + }, + { + "start": 17930.28, + "end": 17930.62, + "probability": 0.5705 + }, + { + "start": 17931.34, + "end": 17933.64, + "probability": 0.7394 + }, + { + "start": 17933.74, + "end": 17935.58, + "probability": 0.7569 + }, + { + "start": 17937.18, + "end": 17940.06, + "probability": 0.9048 + }, + { + "start": 17941.2, + "end": 17942.32, + "probability": 0.1009 + }, + { + "start": 17942.64, + "end": 17946.9, + "probability": 0.1272 + }, + { + "start": 17947.28, + "end": 17948.6, + "probability": 0.604 + }, + { + "start": 17949.12, + "end": 17949.82, + "probability": 0.2167 + }, + { + "start": 17950.26, + "end": 17951.92, + "probability": 0.6022 + }, + { + "start": 17951.92, + "end": 17955.94, + "probability": 0.6801 + }, + { + "start": 17956.14, + "end": 17956.82, + "probability": 0.178 + }, + { + "start": 17956.9, + "end": 17958.42, + "probability": 0.8513 + }, + { + "start": 17958.58, + "end": 17962.04, + "probability": 0.9446 + }, + { + "start": 17963.02, + "end": 17964.02, + "probability": 0.856 + }, + { + "start": 17964.84, + "end": 17971.4, + "probability": 0.8476 + }, + { + "start": 17972.18, + "end": 17973.2, + "probability": 0.5286 + }, + { + "start": 17973.2, + "end": 17977.28, + "probability": 0.7769 + }, + { + "start": 17979.12, + "end": 17984.32, + "probability": 0.9614 + }, + { + "start": 17986.04, + "end": 17987.56, + "probability": 0.2651 + }, + { + "start": 17988.66, + "end": 17989.36, + "probability": 0.6643 + }, + { + "start": 17989.46, + "end": 17992.34, + "probability": 0.9849 + }, + { + "start": 17992.54, + "end": 17993.32, + "probability": 0.9585 + }, + { + "start": 17993.64, + "end": 17995.7, + "probability": 0.3706 + }, + { + "start": 17995.9, + "end": 17996.48, + "probability": 0.4609 + }, + { + "start": 17997.1, + "end": 17999.7, + "probability": 0.9586 + }, + { + "start": 18008.34, + "end": 18009.56, + "probability": 0.7691 + }, + { + "start": 18013.22, + "end": 18015.88, + "probability": 0.6959 + }, + { + "start": 18016.1, + "end": 18019.58, + "probability": 0.9275 + }, + { + "start": 18020.04, + "end": 18021.28, + "probability": 0.8203 + }, + { + "start": 18021.74, + "end": 18023.5, + "probability": 0.9766 + }, + { + "start": 18024.46, + "end": 18025.67, + "probability": 0.8043 + }, + { + "start": 18027.04, + "end": 18029.92, + "probability": 0.9285 + }, + { + "start": 18029.92, + "end": 18033.48, + "probability": 0.4757 + }, + { + "start": 18033.68, + "end": 18035.56, + "probability": 0.3193 + }, + { + "start": 18036.1, + "end": 18038.68, + "probability": 0.9696 + }, + { + "start": 18039.58, + "end": 18044.16, + "probability": 0.8181 + }, + { + "start": 18044.32, + "end": 18045.83, + "probability": 0.8582 + }, + { + "start": 18046.86, + "end": 18048.28, + "probability": 0.9395 + }, + { + "start": 18050.0, + "end": 18057.22, + "probability": 0.981 + }, + { + "start": 18057.7, + "end": 18058.14, + "probability": 0.6924 + }, + { + "start": 18063.78, + "end": 18065.44, + "probability": 0.9792 + }, + { + "start": 18065.7, + "end": 18067.02, + "probability": 0.7144 + }, + { + "start": 18068.52, + "end": 18071.78, + "probability": 0.88 + }, + { + "start": 18072.96, + "end": 18074.46, + "probability": 0.9813 + }, + { + "start": 18075.12, + "end": 18075.94, + "probability": 0.9611 + }, + { + "start": 18077.06, + "end": 18080.28, + "probability": 0.9888 + }, + { + "start": 18080.86, + "end": 18083.9, + "probability": 0.9956 + }, + { + "start": 18083.9, + "end": 18086.68, + "probability": 0.7924 + }, + { + "start": 18087.38, + "end": 18094.38, + "probability": 0.9818 + }, + { + "start": 18094.38, + "end": 18099.5, + "probability": 0.967 + }, + { + "start": 18099.94, + "end": 18100.7, + "probability": 0.5953 + }, + { + "start": 18101.46, + "end": 18103.24, + "probability": 0.981 + }, + { + "start": 18103.74, + "end": 18106.52, + "probability": 0.7827 + }, + { + "start": 18106.52, + "end": 18111.32, + "probability": 0.835 + }, + { + "start": 18113.12, + "end": 18114.8, + "probability": 0.7535 + }, + { + "start": 18116.05, + "end": 18120.55, + "probability": 0.9925 + }, + { + "start": 18120.62, + "end": 18124.46, + "probability": 0.9003 + }, + { + "start": 18125.2, + "end": 18126.16, + "probability": 0.8567 + }, + { + "start": 18126.84, + "end": 18128.94, + "probability": 0.9857 + }, + { + "start": 18129.7, + "end": 18132.1, + "probability": 0.8433 + }, + { + "start": 18132.84, + "end": 18136.12, + "probability": 0.9631 + }, + { + "start": 18136.68, + "end": 18137.04, + "probability": 0.5396 + }, + { + "start": 18137.6, + "end": 18138.4, + "probability": 0.7483 + }, + { + "start": 18139.74, + "end": 18141.18, + "probability": 0.9849 + }, + { + "start": 18142.14, + "end": 18143.18, + "probability": 0.9396 + }, + { + "start": 18144.62, + "end": 18145.56, + "probability": 0.9366 + }, + { + "start": 18146.12, + "end": 18148.24, + "probability": 0.9697 + }, + { + "start": 18148.78, + "end": 18152.04, + "probability": 0.9398 + }, + { + "start": 18153.24, + "end": 18153.6, + "probability": 0.6193 + }, + { + "start": 18154.46, + "end": 18156.26, + "probability": 0.8171 + }, + { + "start": 18156.9, + "end": 18157.52, + "probability": 0.7888 + }, + { + "start": 18158.28, + "end": 18159.28, + "probability": 0.9577 + }, + { + "start": 18160.02, + "end": 18162.28, + "probability": 0.9676 + }, + { + "start": 18163.08, + "end": 18167.78, + "probability": 0.9938 + }, + { + "start": 18168.86, + "end": 18173.46, + "probability": 0.9694 + }, + { + "start": 18174.24, + "end": 18176.92, + "probability": 0.9785 + }, + { + "start": 18177.96, + "end": 18178.62, + "probability": 0.4824 + }, + { + "start": 18179.12, + "end": 18182.54, + "probability": 0.9644 + }, + { + "start": 18183.92, + "end": 18185.96, + "probability": 0.9735 + }, + { + "start": 18187.56, + "end": 18189.6, + "probability": 0.9575 + }, + { + "start": 18190.62, + "end": 18192.57, + "probability": 0.9114 + }, + { + "start": 18193.62, + "end": 18193.9, + "probability": 0.2117 + }, + { + "start": 18193.94, + "end": 18196.02, + "probability": 0.9568 + }, + { + "start": 18197.24, + "end": 18197.34, + "probability": 0.5107 + }, + { + "start": 18198.74, + "end": 18202.58, + "probability": 0.9685 + }, + { + "start": 18202.62, + "end": 18207.18, + "probability": 0.9956 + }, + { + "start": 18208.02, + "end": 18213.22, + "probability": 0.9588 + }, + { + "start": 18214.04, + "end": 18219.86, + "probability": 0.9977 + }, + { + "start": 18221.1, + "end": 18225.1, + "probability": 0.8888 + }, + { + "start": 18225.1, + "end": 18229.54, + "probability": 0.9941 + }, + { + "start": 18230.5, + "end": 18230.8, + "probability": 0.7306 + }, + { + "start": 18231.48, + "end": 18232.89, + "probability": 0.9596 + }, + { + "start": 18234.08, + "end": 18234.8, + "probability": 0.7115 + }, + { + "start": 18235.16, + "end": 18238.76, + "probability": 0.9842 + }, + { + "start": 18238.76, + "end": 18242.46, + "probability": 0.9835 + }, + { + "start": 18243.34, + "end": 18243.58, + "probability": 0.6964 + }, + { + "start": 18244.38, + "end": 18246.22, + "probability": 0.9865 + }, + { + "start": 18246.78, + "end": 18251.8, + "probability": 0.9987 + }, + { + "start": 18252.48, + "end": 18254.16, + "probability": 0.7834 + }, + { + "start": 18254.66, + "end": 18256.94, + "probability": 0.9895 + }, + { + "start": 18257.86, + "end": 18260.36, + "probability": 0.714 + }, + { + "start": 18260.72, + "end": 18265.78, + "probability": 0.7217 + }, + { + "start": 18266.7, + "end": 18269.2, + "probability": 0.9801 + }, + { + "start": 18269.2, + "end": 18272.86, + "probability": 0.9678 + }, + { + "start": 18275.78, + "end": 18279.06, + "probability": 0.9963 + }, + { + "start": 18279.56, + "end": 18283.24, + "probability": 0.999 + }, + { + "start": 18283.6, + "end": 18284.24, + "probability": 0.9007 + }, + { + "start": 18284.34, + "end": 18285.7, + "probability": 0.9909 + }, + { + "start": 18286.48, + "end": 18290.98, + "probability": 0.9963 + }, + { + "start": 18290.98, + "end": 18295.6, + "probability": 0.9971 + }, + { + "start": 18296.6, + "end": 18298.6, + "probability": 0.659 + }, + { + "start": 18299.42, + "end": 18301.84, + "probability": 0.9066 + }, + { + "start": 18301.87, + "end": 18306.16, + "probability": 0.9937 + }, + { + "start": 18306.94, + "end": 18308.8, + "probability": 0.998 + }, + { + "start": 18308.8, + "end": 18313.24, + "probability": 0.9862 + }, + { + "start": 18314.0, + "end": 18315.14, + "probability": 0.923 + }, + { + "start": 18316.42, + "end": 18320.56, + "probability": 0.9097 + }, + { + "start": 18321.9, + "end": 18323.88, + "probability": 0.8369 + }, + { + "start": 18324.78, + "end": 18325.56, + "probability": 0.8571 + }, + { + "start": 18325.66, + "end": 18327.9, + "probability": 0.8628 + }, + { + "start": 18328.52, + "end": 18331.82, + "probability": 0.839 + }, + { + "start": 18331.82, + "end": 18334.76, + "probability": 0.9443 + }, + { + "start": 18336.22, + "end": 18337.68, + "probability": 0.8938 + }, + { + "start": 18338.38, + "end": 18341.78, + "probability": 0.9368 + }, + { + "start": 18342.76, + "end": 18344.7, + "probability": 0.9939 + }, + { + "start": 18345.34, + "end": 18348.58, + "probability": 0.9647 + }, + { + "start": 18349.14, + "end": 18349.66, + "probability": 0.7936 + }, + { + "start": 18349.94, + "end": 18355.1, + "probability": 0.979 + }, + { + "start": 18355.76, + "end": 18361.04, + "probability": 0.9871 + }, + { + "start": 18362.06, + "end": 18362.68, + "probability": 0.275 + }, + { + "start": 18363.02, + "end": 18363.64, + "probability": 0.8112 + }, + { + "start": 18364.56, + "end": 18367.38, + "probability": 0.7573 + }, + { + "start": 18368.73, + "end": 18371.42, + "probability": 0.7841 + }, + { + "start": 18372.1, + "end": 18374.26, + "probability": 0.6665 + }, + { + "start": 18374.44, + "end": 18375.32, + "probability": 0.775 + }, + { + "start": 18375.88, + "end": 18378.56, + "probability": 0.9083 + }, + { + "start": 18395.08, + "end": 18396.4, + "probability": 0.6439 + }, + { + "start": 18397.4, + "end": 18400.58, + "probability": 0.7976 + }, + { + "start": 18401.68, + "end": 18402.76, + "probability": 0.7811 + }, + { + "start": 18403.86, + "end": 18404.84, + "probability": 0.7481 + }, + { + "start": 18405.7, + "end": 18407.19, + "probability": 0.9683 + }, + { + "start": 18408.1, + "end": 18413.42, + "probability": 0.9208 + }, + { + "start": 18414.54, + "end": 18416.06, + "probability": 0.7432 + }, + { + "start": 18416.4, + "end": 18416.9, + "probability": 0.74 + }, + { + "start": 18416.94, + "end": 18417.9, + "probability": 0.8028 + }, + { + "start": 18418.0, + "end": 18424.42, + "probability": 0.998 + }, + { + "start": 18425.46, + "end": 18426.32, + "probability": 0.8563 + }, + { + "start": 18426.9, + "end": 18428.3, + "probability": 0.9697 + }, + { + "start": 18428.58, + "end": 18434.22, + "probability": 0.7419 + }, + { + "start": 18434.78, + "end": 18439.8, + "probability": 0.5833 + }, + { + "start": 18440.76, + "end": 18445.88, + "probability": 0.9323 + }, + { + "start": 18446.54, + "end": 18452.52, + "probability": 0.9093 + }, + { + "start": 18453.52, + "end": 18454.6, + "probability": 0.5935 + }, + { + "start": 18454.9, + "end": 18459.34, + "probability": 0.9949 + }, + { + "start": 18459.9, + "end": 18460.9, + "probability": 0.9924 + }, + { + "start": 18461.08, + "end": 18467.92, + "probability": 0.9989 + }, + { + "start": 18467.92, + "end": 18475.4, + "probability": 0.9974 + }, + { + "start": 18475.72, + "end": 18475.96, + "probability": 0.4809 + }, + { + "start": 18476.0, + "end": 18477.02, + "probability": 0.6819 + }, + { + "start": 18477.48, + "end": 18481.5, + "probability": 0.9857 + }, + { + "start": 18481.54, + "end": 18483.42, + "probability": 0.9214 + }, + { + "start": 18484.1, + "end": 18488.28, + "probability": 0.9832 + }, + { + "start": 18489.93, + "end": 18490.72, + "probability": 0.489 + }, + { + "start": 18491.34, + "end": 18492.88, + "probability": 0.6708 + }, + { + "start": 18493.9, + "end": 18498.86, + "probability": 0.9867 + }, + { + "start": 18500.34, + "end": 18501.36, + "probability": 0.9402 + }, + { + "start": 18502.12, + "end": 18502.98, + "probability": 0.6786 + }, + { + "start": 18503.96, + "end": 18505.82, + "probability": 0.8149 + }, + { + "start": 18506.7, + "end": 18509.8, + "probability": 0.9934 + }, + { + "start": 18510.84, + "end": 18514.0, + "probability": 0.9907 + }, + { + "start": 18515.44, + "end": 18520.08, + "probability": 0.9972 + }, + { + "start": 18520.52, + "end": 18521.77, + "probability": 0.9908 + }, + { + "start": 18522.78, + "end": 18524.16, + "probability": 0.9778 + }, + { + "start": 18525.14, + "end": 18526.58, + "probability": 0.9351 + }, + { + "start": 18526.66, + "end": 18528.28, + "probability": 0.9634 + }, + { + "start": 18529.0, + "end": 18532.1, + "probability": 0.9941 + }, + { + "start": 18533.42, + "end": 18536.44, + "probability": 0.9866 + }, + { + "start": 18537.42, + "end": 18538.68, + "probability": 0.8271 + }, + { + "start": 18539.62, + "end": 18540.08, + "probability": 0.6291 + }, + { + "start": 18540.78, + "end": 18544.2, + "probability": 0.9326 + }, + { + "start": 18546.34, + "end": 18547.7, + "probability": 0.9963 + }, + { + "start": 18548.94, + "end": 18552.24, + "probability": 0.6524 + }, + { + "start": 18552.86, + "end": 18556.28, + "probability": 0.9844 + }, + { + "start": 18558.28, + "end": 18562.22, + "probability": 0.9978 + }, + { + "start": 18563.02, + "end": 18565.53, + "probability": 0.7594 + }, + { + "start": 18566.5, + "end": 18569.58, + "probability": 0.8861 + }, + { + "start": 18570.12, + "end": 18572.18, + "probability": 0.5957 + }, + { + "start": 18572.32, + "end": 18576.06, + "probability": 0.9689 + }, + { + "start": 18576.92, + "end": 18580.03, + "probability": 0.9416 + }, + { + "start": 18581.68, + "end": 18583.36, + "probability": 0.8676 + }, + { + "start": 18583.42, + "end": 18586.24, + "probability": 0.9195 + }, + { + "start": 18586.86, + "end": 18592.68, + "probability": 0.9699 + }, + { + "start": 18594.04, + "end": 18596.76, + "probability": 0.939 + }, + { + "start": 18597.34, + "end": 18599.96, + "probability": 0.9956 + }, + { + "start": 18600.62, + "end": 18605.4, + "probability": 0.9995 + }, + { + "start": 18606.22, + "end": 18610.76, + "probability": 0.9891 + }, + { + "start": 18610.78, + "end": 18611.4, + "probability": 0.7125 + }, + { + "start": 18611.46, + "end": 18613.32, + "probability": 0.8524 + }, + { + "start": 18613.72, + "end": 18615.6, + "probability": 0.9339 + }, + { + "start": 18615.7, + "end": 18618.36, + "probability": 0.6608 + }, + { + "start": 18618.46, + "end": 18619.84, + "probability": 0.9214 + }, + { + "start": 18620.62, + "end": 18621.42, + "probability": 0.6547 + }, + { + "start": 18623.4, + "end": 18626.02, + "probability": 0.9178 + }, + { + "start": 18626.18, + "end": 18629.42, + "probability": 0.9321 + }, + { + "start": 18630.42, + "end": 18632.24, + "probability": 0.9341 + }, + { + "start": 18632.44, + "end": 18636.58, + "probability": 0.9932 + }, + { + "start": 18636.8, + "end": 18639.12, + "probability": 0.9877 + }, + { + "start": 18639.72, + "end": 18640.22, + "probability": 0.9184 + }, + { + "start": 18640.32, + "end": 18643.74, + "probability": 0.997 + }, + { + "start": 18644.24, + "end": 18646.32, + "probability": 0.8589 + }, + { + "start": 18647.9, + "end": 18649.54, + "probability": 0.9976 + }, + { + "start": 18649.6, + "end": 18650.28, + "probability": 0.8351 + }, + { + "start": 18650.82, + "end": 18657.14, + "probability": 0.9517 + }, + { + "start": 18658.24, + "end": 18662.32, + "probability": 0.996 + }, + { + "start": 18662.78, + "end": 18665.8, + "probability": 0.9531 + }, + { + "start": 18665.86, + "end": 18666.88, + "probability": 0.9446 + }, + { + "start": 18668.02, + "end": 18670.38, + "probability": 0.9952 + }, + { + "start": 18670.82, + "end": 18674.06, + "probability": 0.9731 + }, + { + "start": 18674.48, + "end": 18678.3, + "probability": 0.9785 + }, + { + "start": 18679.54, + "end": 18680.14, + "probability": 0.8008 + }, + { + "start": 18680.78, + "end": 18681.48, + "probability": 0.8762 + }, + { + "start": 18681.54, + "end": 18683.64, + "probability": 0.965 + }, + { + "start": 18683.68, + "end": 18685.66, + "probability": 0.6735 + }, + { + "start": 18687.3, + "end": 18688.52, + "probability": 0.9645 + }, + { + "start": 18688.96, + "end": 18692.42, + "probability": 0.9858 + }, + { + "start": 18692.56, + "end": 18695.46, + "probability": 0.9928 + }, + { + "start": 18696.16, + "end": 18697.24, + "probability": 0.8304 + }, + { + "start": 18697.72, + "end": 18698.58, + "probability": 0.7422 + }, + { + "start": 18699.38, + "end": 18700.78, + "probability": 0.9081 + }, + { + "start": 18700.92, + "end": 18701.72, + "probability": 0.9451 + }, + { + "start": 18701.86, + "end": 18705.47, + "probability": 0.975 + }, + { + "start": 18706.18, + "end": 18706.94, + "probability": 0.9302 + }, + { + "start": 18707.82, + "end": 18712.34, + "probability": 0.9977 + }, + { + "start": 18712.98, + "end": 18715.14, + "probability": 0.9966 + }, + { + "start": 18715.2, + "end": 18718.8, + "probability": 0.718 + }, + { + "start": 18719.4, + "end": 18722.14, + "probability": 0.8782 + }, + { + "start": 18722.14, + "end": 18725.32, + "probability": 0.9824 + }, + { + "start": 18725.38, + "end": 18726.86, + "probability": 0.7196 + }, + { + "start": 18727.18, + "end": 18729.72, + "probability": 0.882 + }, + { + "start": 18730.32, + "end": 18732.42, + "probability": 0.8514 + }, + { + "start": 18732.94, + "end": 18735.82, + "probability": 0.9557 + }, + { + "start": 18735.96, + "end": 18737.2, + "probability": 0.9653 + }, + { + "start": 18737.64, + "end": 18739.76, + "probability": 0.9424 + }, + { + "start": 18739.94, + "end": 18741.59, + "probability": 0.9655 + }, + { + "start": 18742.2, + "end": 18744.94, + "probability": 0.9874 + }, + { + "start": 18745.58, + "end": 18747.92, + "probability": 0.9719 + }, + { + "start": 18747.96, + "end": 18749.37, + "probability": 0.9966 + }, + { + "start": 18749.9, + "end": 18754.2, + "probability": 0.9881 + }, + { + "start": 18754.32, + "end": 18754.74, + "probability": 0.085 + }, + { + "start": 18754.76, + "end": 18756.05, + "probability": 0.9124 + }, + { + "start": 18757.28, + "end": 18761.22, + "probability": 0.8443 + }, + { + "start": 18761.62, + "end": 18762.1, + "probability": 0.8647 + }, + { + "start": 18762.56, + "end": 18763.14, + "probability": 0.8888 + }, + { + "start": 18764.34, + "end": 18764.74, + "probability": 0.6652 + }, + { + "start": 18765.26, + "end": 18766.52, + "probability": 0.6733 + }, + { + "start": 18767.12, + "end": 18770.5, + "probability": 0.9451 + }, + { + "start": 18770.62, + "end": 18772.44, + "probability": 0.5378 + }, + { + "start": 18773.2, + "end": 18774.76, + "probability": 0.7962 + }, + { + "start": 18774.92, + "end": 18776.64, + "probability": 0.8574 + }, + { + "start": 18776.96, + "end": 18779.46, + "probability": 0.9276 + }, + { + "start": 18779.46, + "end": 18779.58, + "probability": 0.7095 + }, + { + "start": 18779.62, + "end": 18782.02, + "probability": 0.8477 + }, + { + "start": 18782.28, + "end": 18782.86, + "probability": 0.2613 + }, + { + "start": 18782.98, + "end": 18783.6, + "probability": 0.4789 + }, + { + "start": 18783.95, + "end": 18790.9, + "probability": 0.7609 + }, + { + "start": 18791.0, + "end": 18793.04, + "probability": 0.7812 + }, + { + "start": 18793.2, + "end": 18795.06, + "probability": 0.9875 + }, + { + "start": 18795.08, + "end": 18796.9, + "probability": 0.6063 + }, + { + "start": 18797.0, + "end": 18797.22, + "probability": 0.2791 + }, + { + "start": 18798.24, + "end": 18799.24, + "probability": 0.5844 + }, + { + "start": 18799.42, + "end": 18801.84, + "probability": 0.9673 + }, + { + "start": 18802.32, + "end": 18805.42, + "probability": 0.8341 + }, + { + "start": 18806.1, + "end": 18810.3, + "probability": 0.9919 + }, + { + "start": 18810.46, + "end": 18810.46, + "probability": 0.3268 + }, + { + "start": 18810.46, + "end": 18810.46, + "probability": 0.2753 + }, + { + "start": 18810.46, + "end": 18812.72, + "probability": 0.7451 + }, + { + "start": 18812.76, + "end": 18813.98, + "probability": 0.9406 + }, + { + "start": 18814.1, + "end": 18814.72, + "probability": 0.2985 + }, + { + "start": 18814.76, + "end": 18821.84, + "probability": 0.6325 + }, + { + "start": 18823.22, + "end": 18823.88, + "probability": 0.5807 + }, + { + "start": 18823.98, + "end": 18826.08, + "probability": 0.9144 + }, + { + "start": 18826.14, + "end": 18829.94, + "probability": 0.9398 + }, + { + "start": 18829.94, + "end": 18832.82, + "probability": 0.6858 + }, + { + "start": 18833.5, + "end": 18838.7, + "probability": 0.1399 + }, + { + "start": 18840.02, + "end": 18841.6, + "probability": 0.3733 + }, + { + "start": 18841.7, + "end": 18842.26, + "probability": 0.7408 + }, + { + "start": 18842.92, + "end": 18847.4, + "probability": 0.6682 + }, + { + "start": 18848.64, + "end": 18849.8, + "probability": 0.8963 + }, + { + "start": 18852.08, + "end": 18853.5, + "probability": 0.9408 + }, + { + "start": 18854.58, + "end": 18855.3, + "probability": 0.5859 + }, + { + "start": 18866.86, + "end": 18869.46, + "probability": 0.0018 + }, + { + "start": 18872.7, + "end": 18876.62, + "probability": 0.5857 + }, + { + "start": 18877.74, + "end": 18881.12, + "probability": 0.8966 + }, + { + "start": 18882.62, + "end": 18883.24, + "probability": 0.6769 + }, + { + "start": 18883.26, + "end": 18886.14, + "probability": 0.9641 + }, + { + "start": 18886.14, + "end": 18888.96, + "probability": 0.7652 + }, + { + "start": 18889.48, + "end": 18894.24, + "probability": 0.0789 + }, + { + "start": 18910.4, + "end": 18915.48, + "probability": 0.3784 + }, + { + "start": 18915.62, + "end": 18917.36, + "probability": 0.2694 + }, + { + "start": 18917.74, + "end": 18918.22, + "probability": 0.2718 + }, + { + "start": 18918.46, + "end": 18918.76, + "probability": 0.0841 + }, + { + "start": 18919.42, + "end": 18921.68, + "probability": 0.3883 + }, + { + "start": 18923.62, + "end": 18926.88, + "probability": 0.615 + }, + { + "start": 18926.88, + "end": 18928.3, + "probability": 0.0194 + }, + { + "start": 18928.3, + "end": 18928.78, + "probability": 0.076 + }, + { + "start": 18928.78, + "end": 18930.76, + "probability": 0.0543 + }, + { + "start": 18930.76, + "end": 18931.1, + "probability": 0.1039 + }, + { + "start": 18931.66, + "end": 18932.78, + "probability": 0.1319 + }, + { + "start": 18933.4, + "end": 18934.06, + "probability": 0.1855 + }, + { + "start": 18934.62, + "end": 18936.2, + "probability": 0.5165 + }, + { + "start": 18936.2, + "end": 18936.82, + "probability": 0.0837 + }, + { + "start": 18936.82, + "end": 18936.94, + "probability": 0.1505 + }, + { + "start": 18936.94, + "end": 18936.94, + "probability": 0.0863 + }, + { + "start": 18936.94, + "end": 18936.94, + "probability": 0.0377 + }, + { + "start": 18936.94, + "end": 18936.94, + "probability": 0.0239 + }, + { + "start": 18936.94, + "end": 18936.98, + "probability": 0.1206 + }, + { + "start": 18937.0, + "end": 18937.0, + "probability": 0.0 + }, + { + "start": 18937.0, + "end": 18937.0, + "probability": 0.0 + }, + { + "start": 18937.0, + "end": 18937.0, + "probability": 0.0 + }, + { + "start": 18937.44, + "end": 18938.92, + "probability": 0.7727 + }, + { + "start": 18941.8, + "end": 18943.94, + "probability": 0.1386 + }, + { + "start": 18944.94, + "end": 18945.5, + "probability": 0.5505 + }, + { + "start": 18947.22, + "end": 18949.82, + "probability": 0.8551 + }, + { + "start": 18950.66, + "end": 18952.1, + "probability": 0.944 + }, + { + "start": 18952.8, + "end": 18957.38, + "probability": 0.6937 + }, + { + "start": 18957.9, + "end": 18960.48, + "probability": 0.8701 + }, + { + "start": 18961.37, + "end": 18967.8, + "probability": 0.8647 + } + ], + "segments_count": 6517, + "words_count": 33132, + "avg_words_per_segment": 5.0839, + "avg_segment_duration": 2.0736, + "avg_words_per_minute": 104.5291, + "plenum_id": "124402", + "duration": 19017.86, + "title": null, + "plenum_date": "2024-02-21" +} \ No newline at end of file