diff --git "a/128664/metadata.json" "b/128664/metadata.json" new file mode 100644--- /dev/null +++ "b/128664/metadata.json" @@ -0,0 +1,53977 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "128664", + "quality_score": 0.8875, + "per_segment_quality_scores": [ + { + "start": 1.62, + "end": 1.76, + "probability": 0.086 + }, + { + "start": 1.76, + "end": 6.06, + "probability": 0.1301 + }, + { + "start": 7.32, + "end": 7.46, + "probability": 0.1171 + }, + { + "start": 11.06, + "end": 11.52, + "probability": 0.0012 + }, + { + "start": 57.16, + "end": 58.72, + "probability": 0.5271 + }, + { + "start": 59.06, + "end": 62.96, + "probability": 0.672 + }, + { + "start": 63.08, + "end": 63.9, + "probability": 0.3864 + }, + { + "start": 63.9, + "end": 64.58, + "probability": 0.6216 + }, + { + "start": 64.76, + "end": 66.53, + "probability": 0.8072 + }, + { + "start": 69.13, + "end": 75.4, + "probability": 0.9894 + }, + { + "start": 75.96, + "end": 76.94, + "probability": 0.6164 + }, + { + "start": 78.06, + "end": 79.78, + "probability": 0.9326 + }, + { + "start": 80.7, + "end": 84.72, + "probability": 0.9954 + }, + { + "start": 86.06, + "end": 87.54, + "probability": 0.9381 + }, + { + "start": 87.74, + "end": 89.16, + "probability": 0.9998 + }, + { + "start": 89.3, + "end": 91.26, + "probability": 0.8441 + }, + { + "start": 91.34, + "end": 93.06, + "probability": 0.9937 + }, + { + "start": 94.02, + "end": 96.7, + "probability": 0.9681 + }, + { + "start": 96.84, + "end": 99.34, + "probability": 0.9665 + }, + { + "start": 105.88, + "end": 107.64, + "probability": 0.5999 + }, + { + "start": 108.58, + "end": 109.66, + "probability": 0.7908 + }, + { + "start": 109.74, + "end": 113.32, + "probability": 0.997 + }, + { + "start": 113.68, + "end": 114.52, + "probability": 0.9968 + }, + { + "start": 115.22, + "end": 118.14, + "probability": 0.9942 + }, + { + "start": 118.28, + "end": 119.98, + "probability": 0.9233 + }, + { + "start": 120.52, + "end": 122.16, + "probability": 0.7518 + }, + { + "start": 122.72, + "end": 124.82, + "probability": 0.3717 + }, + { + "start": 125.36, + "end": 127.54, + "probability": 0.914 + }, + { + "start": 128.36, + "end": 129.3, + "probability": 0.7608 + }, + { + "start": 129.48, + "end": 131.88, + "probability": 0.7868 + }, + { + "start": 131.88, + "end": 136.56, + "probability": 0.9408 + }, + { + "start": 136.6, + "end": 137.8, + "probability": 0.995 + }, + { + "start": 138.46, + "end": 140.98, + "probability": 0.9932 + }, + { + "start": 141.5, + "end": 142.4, + "probability": 0.9511 + }, + { + "start": 221.9, + "end": 222.6, + "probability": 0.5183 + }, + { + "start": 245.9, + "end": 247.01, + "probability": 0.9835 + }, + { + "start": 248.44, + "end": 249.92, + "probability": 0.9912 + }, + { + "start": 250.26, + "end": 250.6, + "probability": 0.9283 + }, + { + "start": 251.3, + "end": 251.42, + "probability": 0.234 + }, + { + "start": 260.82, + "end": 261.5, + "probability": 0.0153 + }, + { + "start": 276.32, + "end": 277.12, + "probability": 0.2791 + }, + { + "start": 297.65, + "end": 302.98, + "probability": 0.9952 + }, + { + "start": 304.2, + "end": 307.48, + "probability": 0.9974 + }, + { + "start": 309.12, + "end": 313.02, + "probability": 0.8261 + }, + { + "start": 314.54, + "end": 316.16, + "probability": 0.9058 + }, + { + "start": 316.7, + "end": 317.4, + "probability": 0.7233 + }, + { + "start": 318.4, + "end": 320.26, + "probability": 0.4568 + }, + { + "start": 324.12, + "end": 324.74, + "probability": 0.4379 + }, + { + "start": 325.58, + "end": 327.64, + "probability": 0.6819 + }, + { + "start": 327.92, + "end": 329.1, + "probability": 0.9346 + }, + { + "start": 329.88, + "end": 334.92, + "probability": 0.9938 + }, + { + "start": 335.5, + "end": 336.5, + "probability": 0.7987 + }, + { + "start": 336.54, + "end": 339.0, + "probability": 0.9896 + }, + { + "start": 339.44, + "end": 343.32, + "probability": 0.9278 + }, + { + "start": 343.96, + "end": 346.26, + "probability": 0.7651 + }, + { + "start": 348.0, + "end": 349.8, + "probability": 0.6542 + }, + { + "start": 349.92, + "end": 350.98, + "probability": 0.911 + }, + { + "start": 351.1, + "end": 357.82, + "probability": 0.9883 + }, + { + "start": 358.2, + "end": 365.0, + "probability": 0.9903 + }, + { + "start": 365.24, + "end": 365.52, + "probability": 0.484 + }, + { + "start": 365.52, + "end": 366.24, + "probability": 0.5259 + }, + { + "start": 366.66, + "end": 368.32, + "probability": 0.8652 + }, + { + "start": 369.1, + "end": 372.62, + "probability": 0.7584 + }, + { + "start": 373.88, + "end": 376.58, + "probability": 0.9491 + }, + { + "start": 377.6, + "end": 382.22, + "probability": 0.8386 + }, + { + "start": 382.66, + "end": 389.34, + "probability": 0.9691 + }, + { + "start": 389.5, + "end": 394.48, + "probability": 0.9786 + }, + { + "start": 396.52, + "end": 403.4, + "probability": 0.9198 + }, + { + "start": 406.34, + "end": 406.88, + "probability": 0.8936 + }, + { + "start": 408.08, + "end": 411.6, + "probability": 0.971 + }, + { + "start": 412.76, + "end": 415.32, + "probability": 0.9849 + }, + { + "start": 416.52, + "end": 417.42, + "probability": 0.9341 + }, + { + "start": 418.3, + "end": 419.6, + "probability": 0.9626 + }, + { + "start": 422.48, + "end": 423.86, + "probability": 0.9143 + }, + { + "start": 424.64, + "end": 426.9, + "probability": 0.9002 + }, + { + "start": 430.04, + "end": 435.42, + "probability": 0.9688 + }, + { + "start": 435.46, + "end": 436.46, + "probability": 0.8837 + }, + { + "start": 437.26, + "end": 444.46, + "probability": 0.995 + }, + { + "start": 447.06, + "end": 449.38, + "probability": 0.9783 + }, + { + "start": 451.3, + "end": 456.98, + "probability": 0.9604 + }, + { + "start": 456.98, + "end": 464.36, + "probability": 0.9992 + }, + { + "start": 466.18, + "end": 471.58, + "probability": 0.903 + }, + { + "start": 471.58, + "end": 475.0, + "probability": 0.998 + }, + { + "start": 476.38, + "end": 478.52, + "probability": 0.9244 + }, + { + "start": 479.92, + "end": 483.78, + "probability": 0.5145 + }, + { + "start": 485.4, + "end": 489.72, + "probability": 0.9318 + }, + { + "start": 490.86, + "end": 492.78, + "probability": 0.9644 + }, + { + "start": 493.82, + "end": 494.62, + "probability": 0.7978 + }, + { + "start": 495.92, + "end": 496.6, + "probability": 0.602 + }, + { + "start": 497.52, + "end": 500.96, + "probability": 0.9355 + }, + { + "start": 501.8, + "end": 502.74, + "probability": 0.8841 + }, + { + "start": 504.0, + "end": 505.36, + "probability": 0.9971 + }, + { + "start": 506.22, + "end": 507.46, + "probability": 0.9976 + }, + { + "start": 508.62, + "end": 511.74, + "probability": 0.9971 + }, + { + "start": 512.44, + "end": 513.04, + "probability": 0.9005 + }, + { + "start": 513.2, + "end": 514.14, + "probability": 0.9948 + }, + { + "start": 515.18, + "end": 518.34, + "probability": 0.9847 + }, + { + "start": 519.1, + "end": 520.76, + "probability": 0.9767 + }, + { + "start": 521.84, + "end": 523.56, + "probability": 0.9012 + }, + { + "start": 524.48, + "end": 531.66, + "probability": 0.9907 + }, + { + "start": 533.62, + "end": 534.6, + "probability": 0.5879 + }, + { + "start": 536.38, + "end": 539.2, + "probability": 0.8697 + }, + { + "start": 540.38, + "end": 545.5, + "probability": 0.995 + }, + { + "start": 547.24, + "end": 550.8, + "probability": 0.956 + }, + { + "start": 552.6, + "end": 555.3, + "probability": 0.9947 + }, + { + "start": 557.34, + "end": 559.98, + "probability": 0.9408 + }, + { + "start": 560.7, + "end": 566.06, + "probability": 0.9984 + }, + { + "start": 566.98, + "end": 569.54, + "probability": 0.9941 + }, + { + "start": 570.14, + "end": 575.52, + "probability": 0.9283 + }, + { + "start": 576.88, + "end": 578.08, + "probability": 0.9049 + }, + { + "start": 579.4, + "end": 584.42, + "probability": 0.9991 + }, + { + "start": 585.46, + "end": 586.12, + "probability": 0.7344 + }, + { + "start": 586.82, + "end": 590.66, + "probability": 0.9576 + }, + { + "start": 591.24, + "end": 596.36, + "probability": 0.8141 + }, + { + "start": 597.02, + "end": 599.56, + "probability": 0.9711 + }, + { + "start": 600.22, + "end": 604.8, + "probability": 0.9629 + }, + { + "start": 605.9, + "end": 608.92, + "probability": 0.6861 + }, + { + "start": 609.66, + "end": 618.62, + "probability": 0.998 + }, + { + "start": 619.64, + "end": 622.08, + "probability": 0.9295 + }, + { + "start": 623.04, + "end": 624.04, + "probability": 0.8276 + }, + { + "start": 624.4, + "end": 628.12, + "probability": 0.9916 + }, + { + "start": 628.8, + "end": 631.68, + "probability": 0.998 + }, + { + "start": 632.3, + "end": 632.52, + "probability": 0.3736 + }, + { + "start": 632.62, + "end": 635.1, + "probability": 0.988 + }, + { + "start": 635.14, + "end": 637.18, + "probability": 0.8752 + }, + { + "start": 637.7, + "end": 640.34, + "probability": 0.9788 + }, + { + "start": 641.44, + "end": 642.52, + "probability": 0.8464 + }, + { + "start": 643.2, + "end": 643.84, + "probability": 0.6908 + }, + { + "start": 646.35, + "end": 648.56, + "probability": 0.8701 + }, + { + "start": 648.74, + "end": 651.56, + "probability": 0.9806 + }, + { + "start": 651.72, + "end": 656.5, + "probability": 0.8966 + }, + { + "start": 656.7, + "end": 657.28, + "probability": 0.5608 + }, + { + "start": 657.46, + "end": 658.07, + "probability": 0.6009 + }, + { + "start": 658.48, + "end": 659.66, + "probability": 0.9868 + }, + { + "start": 660.38, + "end": 662.66, + "probability": 0.9089 + }, + { + "start": 662.84, + "end": 663.44, + "probability": 0.8529 + }, + { + "start": 663.54, + "end": 663.8, + "probability": 0.5314 + }, + { + "start": 663.9, + "end": 665.06, + "probability": 0.9242 + }, + { + "start": 665.12, + "end": 670.2, + "probability": 0.9819 + }, + { + "start": 670.84, + "end": 671.82, + "probability": 0.9636 + }, + { + "start": 671.9, + "end": 674.54, + "probability": 0.7951 + }, + { + "start": 675.04, + "end": 676.48, + "probability": 0.9889 + }, + { + "start": 677.06, + "end": 677.84, + "probability": 0.9887 + }, + { + "start": 677.9, + "end": 678.98, + "probability": 0.9938 + }, + { + "start": 679.08, + "end": 680.24, + "probability": 0.9512 + }, + { + "start": 680.56, + "end": 682.06, + "probability": 0.9819 + }, + { + "start": 682.34, + "end": 683.81, + "probability": 0.8748 + }, + { + "start": 683.96, + "end": 684.48, + "probability": 0.9907 + }, + { + "start": 684.82, + "end": 687.06, + "probability": 0.9956 + }, + { + "start": 687.42, + "end": 689.0, + "probability": 0.9961 + }, + { + "start": 689.56, + "end": 692.02, + "probability": 0.9565 + }, + { + "start": 692.12, + "end": 693.42, + "probability": 0.9704 + }, + { + "start": 693.5, + "end": 694.79, + "probability": 0.9146 + }, + { + "start": 695.5, + "end": 695.88, + "probability": 0.5021 + }, + { + "start": 695.9, + "end": 699.12, + "probability": 0.9163 + }, + { + "start": 700.6, + "end": 702.74, + "probability": 0.6085 + }, + { + "start": 703.42, + "end": 706.72, + "probability": 0.9601 + }, + { + "start": 706.72, + "end": 708.62, + "probability": 0.82 + }, + { + "start": 708.66, + "end": 711.97, + "probability": 0.875 + }, + { + "start": 712.4, + "end": 714.62, + "probability": 0.9342 + }, + { + "start": 714.68, + "end": 716.3, + "probability": 0.7914 + }, + { + "start": 716.7, + "end": 718.26, + "probability": 0.9873 + }, + { + "start": 718.34, + "end": 719.08, + "probability": 0.7227 + }, + { + "start": 719.5, + "end": 723.99, + "probability": 0.9727 + }, + { + "start": 724.24, + "end": 724.74, + "probability": 0.9905 + }, + { + "start": 724.8, + "end": 725.54, + "probability": 0.728 + }, + { + "start": 725.92, + "end": 730.24, + "probability": 0.9981 + }, + { + "start": 730.32, + "end": 731.52, + "probability": 0.9426 + }, + { + "start": 731.98, + "end": 732.84, + "probability": 0.9469 + }, + { + "start": 733.18, + "end": 733.84, + "probability": 0.9559 + }, + { + "start": 733.96, + "end": 734.5, + "probability": 0.9388 + }, + { + "start": 734.56, + "end": 737.66, + "probability": 0.981 + }, + { + "start": 738.3, + "end": 741.96, + "probability": 0.9927 + }, + { + "start": 742.32, + "end": 745.41, + "probability": 0.9674 + }, + { + "start": 745.74, + "end": 749.27, + "probability": 0.9921 + }, + { + "start": 749.96, + "end": 750.76, + "probability": 0.8543 + }, + { + "start": 751.44, + "end": 751.92, + "probability": 0.6736 + }, + { + "start": 752.0, + "end": 752.82, + "probability": 0.9423 + }, + { + "start": 752.88, + "end": 756.68, + "probability": 0.8345 + }, + { + "start": 757.22, + "end": 757.88, + "probability": 0.6425 + }, + { + "start": 758.6, + "end": 761.36, + "probability": 0.9663 + }, + { + "start": 761.36, + "end": 765.36, + "probability": 0.9939 + }, + { + "start": 765.82, + "end": 768.14, + "probability": 0.853 + }, + { + "start": 768.26, + "end": 769.04, + "probability": 0.7895 + }, + { + "start": 769.12, + "end": 769.9, + "probability": 0.7615 + }, + { + "start": 770.2, + "end": 772.2, + "probability": 0.9265 + }, + { + "start": 772.44, + "end": 772.64, + "probability": 0.7607 + }, + { + "start": 773.0, + "end": 773.3, + "probability": 0.3178 + }, + { + "start": 773.3, + "end": 775.94, + "probability": 0.8828 + }, + { + "start": 776.08, + "end": 776.36, + "probability": 0.8555 + }, + { + "start": 778.4, + "end": 779.52, + "probability": 0.6149 + }, + { + "start": 783.44, + "end": 783.86, + "probability": 0.4847 + }, + { + "start": 783.94, + "end": 784.62, + "probability": 0.6776 + }, + { + "start": 784.8, + "end": 785.58, + "probability": 0.8227 + }, + { + "start": 785.68, + "end": 785.86, + "probability": 0.5583 + }, + { + "start": 785.96, + "end": 789.84, + "probability": 0.9463 + }, + { + "start": 790.24, + "end": 793.62, + "probability": 0.9782 + }, + { + "start": 794.93, + "end": 797.16, + "probability": 0.9771 + }, + { + "start": 797.34, + "end": 799.0, + "probability": 0.9541 + }, + { + "start": 799.28, + "end": 805.72, + "probability": 0.9946 + }, + { + "start": 806.58, + "end": 810.06, + "probability": 0.993 + }, + { + "start": 810.18, + "end": 811.36, + "probability": 0.9657 + }, + { + "start": 811.52, + "end": 813.66, + "probability": 0.918 + }, + { + "start": 813.66, + "end": 814.32, + "probability": 0.8375 + }, + { + "start": 815.0, + "end": 818.56, + "probability": 0.966 + }, + { + "start": 819.12, + "end": 820.34, + "probability": 0.8258 + }, + { + "start": 820.56, + "end": 823.4, + "probability": 0.9956 + }, + { + "start": 823.98, + "end": 826.3, + "probability": 0.9738 + }, + { + "start": 826.82, + "end": 829.56, + "probability": 0.9949 + }, + { + "start": 829.68, + "end": 831.36, + "probability": 0.9976 + }, + { + "start": 831.76, + "end": 833.32, + "probability": 0.9554 + }, + { + "start": 833.7, + "end": 836.34, + "probability": 0.9865 + }, + { + "start": 836.34, + "end": 840.04, + "probability": 0.9858 + }, + { + "start": 840.48, + "end": 843.2, + "probability": 0.8979 + }, + { + "start": 843.4, + "end": 844.08, + "probability": 0.6673 + }, + { + "start": 844.44, + "end": 846.2, + "probability": 0.877 + }, + { + "start": 846.56, + "end": 850.3, + "probability": 0.9123 + }, + { + "start": 851.34, + "end": 853.2, + "probability": 0.9424 + }, + { + "start": 853.5, + "end": 855.52, + "probability": 0.8946 + }, + { + "start": 856.44, + "end": 859.94, + "probability": 0.9958 + }, + { + "start": 860.5, + "end": 861.94, + "probability": 0.9745 + }, + { + "start": 862.5, + "end": 863.88, + "probability": 0.8481 + }, + { + "start": 863.94, + "end": 864.34, + "probability": 0.1481 + }, + { + "start": 864.52, + "end": 864.86, + "probability": 0.2836 + }, + { + "start": 864.86, + "end": 864.86, + "probability": 0.266 + }, + { + "start": 864.86, + "end": 866.4, + "probability": 0.9111 + }, + { + "start": 872.26, + "end": 872.64, + "probability": 0.5176 + }, + { + "start": 872.66, + "end": 873.12, + "probability": 0.4515 + }, + { + "start": 873.14, + "end": 873.88, + "probability": 0.6776 + }, + { + "start": 874.08, + "end": 877.98, + "probability": 0.9917 + }, + { + "start": 878.9, + "end": 883.16, + "probability": 0.9763 + }, + { + "start": 883.52, + "end": 888.6, + "probability": 0.9905 + }, + { + "start": 889.02, + "end": 890.04, + "probability": 0.6613 + }, + { + "start": 891.1, + "end": 893.46, + "probability": 0.9753 + }, + { + "start": 893.54, + "end": 895.14, + "probability": 0.7715 + }, + { + "start": 895.3, + "end": 896.94, + "probability": 0.9829 + }, + { + "start": 897.56, + "end": 899.38, + "probability": 0.8727 + }, + { + "start": 899.48, + "end": 903.26, + "probability": 0.9724 + }, + { + "start": 903.64, + "end": 904.9, + "probability": 0.9321 + }, + { + "start": 904.92, + "end": 908.5, + "probability": 0.9861 + }, + { + "start": 908.62, + "end": 909.29, + "probability": 0.6453 + }, + { + "start": 909.3, + "end": 909.66, + "probability": 0.7752 + }, + { + "start": 909.7, + "end": 911.14, + "probability": 0.9775 + }, + { + "start": 911.48, + "end": 916.5, + "probability": 0.9096 + }, + { + "start": 917.08, + "end": 918.08, + "probability": 0.8249 + }, + { + "start": 918.64, + "end": 918.8, + "probability": 0.1934 + }, + { + "start": 919.5, + "end": 920.38, + "probability": 0.9535 + }, + { + "start": 921.12, + "end": 922.6, + "probability": 0.907 + }, + { + "start": 922.74, + "end": 923.24, + "probability": 0.6405 + }, + { + "start": 923.28, + "end": 923.76, + "probability": 0.8417 + }, + { + "start": 923.82, + "end": 924.44, + "probability": 0.938 + }, + { + "start": 924.94, + "end": 925.72, + "probability": 0.9851 + }, + { + "start": 925.86, + "end": 926.22, + "probability": 0.9537 + }, + { + "start": 926.88, + "end": 929.32, + "probability": 0.9878 + }, + { + "start": 929.54, + "end": 930.98, + "probability": 0.8541 + }, + { + "start": 932.34, + "end": 934.36, + "probability": 0.9644 + }, + { + "start": 934.54, + "end": 935.42, + "probability": 0.9961 + }, + { + "start": 935.96, + "end": 939.14, + "probability": 0.9956 + }, + { + "start": 939.34, + "end": 939.7, + "probability": 0.6672 + }, + { + "start": 939.76, + "end": 940.42, + "probability": 0.6424 + }, + { + "start": 940.5, + "end": 941.56, + "probability": 0.9363 + }, + { + "start": 943.3, + "end": 946.62, + "probability": 0.9262 + }, + { + "start": 948.32, + "end": 953.32, + "probability": 0.9711 + }, + { + "start": 954.58, + "end": 956.0, + "probability": 0.9331 + }, + { + "start": 956.72, + "end": 958.24, + "probability": 0.7432 + }, + { + "start": 960.04, + "end": 965.02, + "probability": 0.9947 + }, + { + "start": 966.16, + "end": 970.22, + "probability": 0.9976 + }, + { + "start": 970.96, + "end": 973.2, + "probability": 0.945 + }, + { + "start": 973.84, + "end": 975.66, + "probability": 0.9843 + }, + { + "start": 977.14, + "end": 979.88, + "probability": 0.9038 + }, + { + "start": 981.32, + "end": 982.86, + "probability": 0.9754 + }, + { + "start": 983.48, + "end": 988.68, + "probability": 0.9755 + }, + { + "start": 989.78, + "end": 997.18, + "probability": 0.9915 + }, + { + "start": 997.9, + "end": 999.4, + "probability": 0.9735 + }, + { + "start": 1000.54, + "end": 1004.0, + "probability": 0.8659 + }, + { + "start": 1004.98, + "end": 1008.6, + "probability": 0.503 + }, + { + "start": 1009.42, + "end": 1012.14, + "probability": 0.904 + }, + { + "start": 1012.98, + "end": 1015.8, + "probability": 0.9688 + }, + { + "start": 1016.5, + "end": 1018.78, + "probability": 0.9259 + }, + { + "start": 1019.62, + "end": 1022.42, + "probability": 0.9055 + }, + { + "start": 1023.16, + "end": 1025.28, + "probability": 0.9572 + }, + { + "start": 1025.7, + "end": 1028.5, + "probability": 0.998 + }, + { + "start": 1028.68, + "end": 1029.52, + "probability": 0.9727 + }, + { + "start": 1030.42, + "end": 1032.88, + "probability": 0.9065 + }, + { + "start": 1034.0, + "end": 1038.22, + "probability": 0.9052 + }, + { + "start": 1038.86, + "end": 1040.0, + "probability": 0.7307 + }, + { + "start": 1040.0, + "end": 1041.1, + "probability": 0.6401 + }, + { + "start": 1041.18, + "end": 1043.86, + "probability": 0.9956 + }, + { + "start": 1045.1, + "end": 1049.6, + "probability": 0.951 + }, + { + "start": 1050.94, + "end": 1051.68, + "probability": 0.7901 + }, + { + "start": 1052.4, + "end": 1053.48, + "probability": 0.8484 + }, + { + "start": 1054.24, + "end": 1056.98, + "probability": 0.8902 + }, + { + "start": 1057.74, + "end": 1062.88, + "probability": 0.9312 + }, + { + "start": 1063.78, + "end": 1065.88, + "probability": 0.967 + }, + { + "start": 1066.44, + "end": 1070.58, + "probability": 0.9954 + }, + { + "start": 1070.58, + "end": 1075.16, + "probability": 0.9955 + }, + { + "start": 1075.88, + "end": 1078.98, + "probability": 0.9912 + }, + { + "start": 1079.6, + "end": 1079.92, + "probability": 0.8612 + }, + { + "start": 1082.56, + "end": 1085.06, + "probability": 0.9987 + }, + { + "start": 1086.08, + "end": 1088.44, + "probability": 0.8369 + }, + { + "start": 1088.5, + "end": 1093.12, + "probability": 0.9967 + }, + { + "start": 1093.72, + "end": 1095.34, + "probability": 0.9114 + }, + { + "start": 1095.8, + "end": 1098.92, + "probability": 0.9844 + }, + { + "start": 1101.02, + "end": 1108.88, + "probability": 0.9914 + }, + { + "start": 1109.62, + "end": 1114.1, + "probability": 0.943 + }, + { + "start": 1114.52, + "end": 1119.32, + "probability": 0.9987 + }, + { + "start": 1119.98, + "end": 1123.8, + "probability": 0.986 + }, + { + "start": 1124.66, + "end": 1127.02, + "probability": 0.9725 + }, + { + "start": 1127.2, + "end": 1128.85, + "probability": 0.5596 + }, + { + "start": 1129.74, + "end": 1130.32, + "probability": 0.1491 + }, + { + "start": 1130.44, + "end": 1130.72, + "probability": 0.8296 + }, + { + "start": 1133.46, + "end": 1134.56, + "probability": 0.9563 + }, + { + "start": 1135.44, + "end": 1136.94, + "probability": 0.8239 + }, + { + "start": 1137.08, + "end": 1139.32, + "probability": 0.9421 + }, + { + "start": 1139.4, + "end": 1140.08, + "probability": 0.9068 + }, + { + "start": 1140.2, + "end": 1141.68, + "probability": 0.9316 + }, + { + "start": 1142.66, + "end": 1152.04, + "probability": 0.9775 + }, + { + "start": 1153.54, + "end": 1158.02, + "probability": 0.999 + }, + { + "start": 1159.06, + "end": 1166.6, + "probability": 0.8346 + }, + { + "start": 1168.33, + "end": 1176.57, + "probability": 0.9951 + }, + { + "start": 1176.88, + "end": 1177.62, + "probability": 0.8145 + }, + { + "start": 1181.02, + "end": 1188.26, + "probability": 0.9946 + }, + { + "start": 1188.82, + "end": 1189.46, + "probability": 0.787 + }, + { + "start": 1190.12, + "end": 1191.06, + "probability": 0.7437 + }, + { + "start": 1191.74, + "end": 1196.14, + "probability": 0.9858 + }, + { + "start": 1198.27, + "end": 1203.64, + "probability": 0.9959 + }, + { + "start": 1206.1, + "end": 1206.56, + "probability": 0.9976 + }, + { + "start": 1208.08, + "end": 1208.76, + "probability": 0.7493 + }, + { + "start": 1210.06, + "end": 1212.66, + "probability": 0.9927 + }, + { + "start": 1213.94, + "end": 1217.8, + "probability": 0.9226 + }, + { + "start": 1219.64, + "end": 1223.9, + "probability": 0.9702 + }, + { + "start": 1224.52, + "end": 1226.32, + "probability": 0.9573 + }, + { + "start": 1226.92, + "end": 1228.7, + "probability": 0.995 + }, + { + "start": 1229.32, + "end": 1231.04, + "probability": 0.887 + }, + { + "start": 1231.7, + "end": 1235.68, + "probability": 0.937 + }, + { + "start": 1236.02, + "end": 1237.36, + "probability": 0.9963 + }, + { + "start": 1237.86, + "end": 1238.98, + "probability": 0.7576 + }, + { + "start": 1239.34, + "end": 1242.26, + "probability": 0.9283 + }, + { + "start": 1242.68, + "end": 1243.86, + "probability": 0.0937 + }, + { + "start": 1245.28, + "end": 1248.04, + "probability": 0.1942 + }, + { + "start": 1248.04, + "end": 1248.8, + "probability": 0.2982 + }, + { + "start": 1248.96, + "end": 1257.7, + "probability": 0.8716 + }, + { + "start": 1257.92, + "end": 1261.78, + "probability": 0.9404 + }, + { + "start": 1261.78, + "end": 1264.48, + "probability": 0.9985 + }, + { + "start": 1264.98, + "end": 1265.46, + "probability": 0.3263 + }, + { + "start": 1267.54, + "end": 1271.24, + "probability": 0.9568 + }, + { + "start": 1272.06, + "end": 1273.74, + "probability": 0.2053 + }, + { + "start": 1273.9, + "end": 1275.52, + "probability": 0.904 + }, + { + "start": 1275.64, + "end": 1276.78, + "probability": 0.8073 + }, + { + "start": 1276.96, + "end": 1279.9, + "probability": 0.9832 + }, + { + "start": 1279.9, + "end": 1280.38, + "probability": 0.8927 + }, + { + "start": 1280.92, + "end": 1283.92, + "probability": 0.876 + }, + { + "start": 1284.1, + "end": 1287.58, + "probability": 0.9878 + }, + { + "start": 1287.58, + "end": 1291.22, + "probability": 0.9758 + }, + { + "start": 1292.42, + "end": 1297.62, + "probability": 0.9948 + }, + { + "start": 1297.68, + "end": 1297.98, + "probability": 0.3569 + }, + { + "start": 1299.08, + "end": 1301.88, + "probability": 0.8439 + }, + { + "start": 1301.98, + "end": 1306.9, + "probability": 0.977 + }, + { + "start": 1307.42, + "end": 1309.62, + "probability": 0.9871 + }, + { + "start": 1310.0, + "end": 1310.52, + "probability": 0.7671 + }, + { + "start": 1310.58, + "end": 1311.38, + "probability": 0.8153 + }, + { + "start": 1315.24, + "end": 1317.82, + "probability": 0.978 + }, + { + "start": 1318.88, + "end": 1326.64, + "probability": 0.9408 + }, + { + "start": 1326.74, + "end": 1328.12, + "probability": 0.7496 + }, + { + "start": 1328.76, + "end": 1330.26, + "probability": 0.959 + }, + { + "start": 1331.24, + "end": 1335.44, + "probability": 0.8578 + }, + { + "start": 1335.76, + "end": 1337.58, + "probability": 0.8676 + }, + { + "start": 1337.8, + "end": 1339.62, + "probability": 0.8618 + }, + { + "start": 1340.4, + "end": 1346.08, + "probability": 0.9687 + }, + { + "start": 1348.86, + "end": 1349.7, + "probability": 0.2585 + }, + { + "start": 1349.7, + "end": 1350.04, + "probability": 0.897 + }, + { + "start": 1350.1, + "end": 1352.96, + "probability": 0.8973 + }, + { + "start": 1353.46, + "end": 1359.36, + "probability": 0.9958 + }, + { + "start": 1360.3, + "end": 1364.7, + "probability": 0.9968 + }, + { + "start": 1365.7, + "end": 1374.44, + "probability": 0.9686 + }, + { + "start": 1376.08, + "end": 1377.78, + "probability": 0.7161 + }, + { + "start": 1379.78, + "end": 1381.98, + "probability": 0.9676 + }, + { + "start": 1382.14, + "end": 1385.76, + "probability": 0.9963 + }, + { + "start": 1387.34, + "end": 1388.84, + "probability": 0.7536 + }, + { + "start": 1389.1, + "end": 1392.12, + "probability": 0.9466 + }, + { + "start": 1393.58, + "end": 1404.21, + "probability": 0.9598 + }, + { + "start": 1407.36, + "end": 1409.82, + "probability": 0.2496 + }, + { + "start": 1411.68, + "end": 1412.48, + "probability": 0.7133 + }, + { + "start": 1412.52, + "end": 1415.28, + "probability": 0.9799 + }, + { + "start": 1415.36, + "end": 1418.38, + "probability": 0.9858 + }, + { + "start": 1418.4, + "end": 1419.16, + "probability": 0.8131 + }, + { + "start": 1419.16, + "end": 1420.62, + "probability": 0.8298 + }, + { + "start": 1420.7, + "end": 1420.96, + "probability": 0.2522 + }, + { + "start": 1420.96, + "end": 1421.54, + "probability": 0.5235 + }, + { + "start": 1421.92, + "end": 1423.02, + "probability": 0.7325 + }, + { + "start": 1423.42, + "end": 1423.51, + "probability": 0.7505 + }, + { + "start": 1424.54, + "end": 1426.48, + "probability": 0.185 + }, + { + "start": 1427.23, + "end": 1430.26, + "probability": 0.2183 + }, + { + "start": 1430.34, + "end": 1433.1, + "probability": 0.6191 + }, + { + "start": 1433.46, + "end": 1437.32, + "probability": 0.9045 + }, + { + "start": 1437.78, + "end": 1440.1, + "probability": 0.9994 + }, + { + "start": 1441.34, + "end": 1447.96, + "probability": 0.8979 + }, + { + "start": 1449.04, + "end": 1454.76, + "probability": 0.9993 + }, + { + "start": 1455.78, + "end": 1461.18, + "probability": 0.8956 + }, + { + "start": 1461.52, + "end": 1462.16, + "probability": 0.5972 + }, + { + "start": 1462.3, + "end": 1462.66, + "probability": 0.2409 + }, + { + "start": 1463.44, + "end": 1464.42, + "probability": 0.3782 + }, + { + "start": 1465.8, + "end": 1469.12, + "probability": 0.9866 + }, + { + "start": 1469.98, + "end": 1471.42, + "probability": 0.8449 + }, + { + "start": 1472.52, + "end": 1477.78, + "probability": 0.9652 + }, + { + "start": 1477.92, + "end": 1479.4, + "probability": 0.7484 + }, + { + "start": 1480.14, + "end": 1484.96, + "probability": 0.9987 + }, + { + "start": 1485.96, + "end": 1486.94, + "probability": 0.4975 + }, + { + "start": 1487.68, + "end": 1488.44, + "probability": 0.8054 + }, + { + "start": 1489.0, + "end": 1490.98, + "probability": 0.984 + }, + { + "start": 1491.64, + "end": 1494.08, + "probability": 0.9663 + }, + { + "start": 1494.7, + "end": 1496.1, + "probability": 0.9807 + }, + { + "start": 1496.64, + "end": 1498.08, + "probability": 0.9818 + }, + { + "start": 1498.9, + "end": 1501.16, + "probability": 0.9812 + }, + { + "start": 1502.44, + "end": 1506.4, + "probability": 0.9951 + }, + { + "start": 1507.22, + "end": 1511.24, + "probability": 0.9795 + }, + { + "start": 1511.24, + "end": 1514.76, + "probability": 0.9984 + }, + { + "start": 1514.94, + "end": 1515.5, + "probability": 0.7569 + }, + { + "start": 1520.96, + "end": 1521.04, + "probability": 0.4843 + }, + { + "start": 1521.04, + "end": 1521.73, + "probability": 0.566 + }, + { + "start": 1522.5, + "end": 1525.92, + "probability": 0.9652 + }, + { + "start": 1526.06, + "end": 1527.0, + "probability": 0.7996 + }, + { + "start": 1527.64, + "end": 1533.76, + "probability": 0.9915 + }, + { + "start": 1534.46, + "end": 1537.32, + "probability": 0.5374 + }, + { + "start": 1537.38, + "end": 1540.72, + "probability": 0.8986 + }, + { + "start": 1541.28, + "end": 1541.54, + "probability": 0.3858 + }, + { + "start": 1541.58, + "end": 1542.52, + "probability": 0.5837 + }, + { + "start": 1542.64, + "end": 1545.74, + "probability": 0.9806 + }, + { + "start": 1545.9, + "end": 1546.38, + "probability": 0.8498 + }, + { + "start": 1547.5, + "end": 1549.04, + "probability": 0.3807 + }, + { + "start": 1555.76, + "end": 1558.36, + "probability": 0.8397 + }, + { + "start": 1558.5, + "end": 1561.56, + "probability": 0.9357 + }, + { + "start": 1562.24, + "end": 1567.26, + "probability": 0.9731 + }, + { + "start": 1567.36, + "end": 1571.16, + "probability": 0.6268 + }, + { + "start": 1572.4, + "end": 1576.2, + "probability": 0.9844 + }, + { + "start": 1577.28, + "end": 1582.98, + "probability": 0.9847 + }, + { + "start": 1583.28, + "end": 1588.82, + "probability": 0.9909 + }, + { + "start": 1588.94, + "end": 1591.08, + "probability": 0.8588 + }, + { + "start": 1591.5, + "end": 1594.48, + "probability": 0.9985 + }, + { + "start": 1594.86, + "end": 1600.38, + "probability": 0.9963 + }, + { + "start": 1600.46, + "end": 1600.96, + "probability": 0.469 + }, + { + "start": 1600.96, + "end": 1601.18, + "probability": 0.4758 + }, + { + "start": 1601.24, + "end": 1603.44, + "probability": 0.8065 + }, + { + "start": 1611.88, + "end": 1612.64, + "probability": 0.7672 + }, + { + "start": 1612.74, + "end": 1618.74, + "probability": 0.9963 + }, + { + "start": 1619.34, + "end": 1624.42, + "probability": 0.9865 + }, + { + "start": 1625.16, + "end": 1626.98, + "probability": 0.9238 + }, + { + "start": 1627.62, + "end": 1629.84, + "probability": 0.9953 + }, + { + "start": 1630.44, + "end": 1633.82, + "probability": 0.9998 + }, + { + "start": 1634.92, + "end": 1640.72, + "probability": 0.9833 + }, + { + "start": 1640.72, + "end": 1644.1, + "probability": 0.9994 + }, + { + "start": 1644.94, + "end": 1645.92, + "probability": 0.6317 + }, + { + "start": 1646.1, + "end": 1651.66, + "probability": 0.9978 + }, + { + "start": 1651.66, + "end": 1656.78, + "probability": 0.9967 + }, + { + "start": 1657.5, + "end": 1660.2, + "probability": 0.911 + }, + { + "start": 1660.7, + "end": 1664.5, + "probability": 0.9861 + }, + { + "start": 1665.08, + "end": 1666.32, + "probability": 0.9007 + }, + { + "start": 1667.04, + "end": 1671.46, + "probability": 0.8307 + }, + { + "start": 1672.1, + "end": 1676.2, + "probability": 0.9921 + }, + { + "start": 1676.2, + "end": 1680.02, + "probability": 0.9984 + }, + { + "start": 1680.46, + "end": 1685.07, + "probability": 0.9822 + }, + { + "start": 1686.49, + "end": 1692.16, + "probability": 0.9918 + }, + { + "start": 1692.48, + "end": 1693.04, + "probability": 0.5908 + }, + { + "start": 1693.16, + "end": 1694.8, + "probability": 0.9968 + }, + { + "start": 1695.26, + "end": 1701.48, + "probability": 0.9963 + }, + { + "start": 1702.02, + "end": 1703.2, + "probability": 0.5566 + }, + { + "start": 1703.9, + "end": 1705.38, + "probability": 0.8017 + }, + { + "start": 1705.58, + "end": 1707.52, + "probability": 0.7212 + }, + { + "start": 1707.98, + "end": 1708.86, + "probability": 0.6754 + }, + { + "start": 1708.92, + "end": 1712.5, + "probability": 0.9137 + }, + { + "start": 1712.72, + "end": 1714.28, + "probability": 0.9686 + }, + { + "start": 1714.94, + "end": 1715.4, + "probability": 0.6904 + }, + { + "start": 1715.48, + "end": 1716.38, + "probability": 0.8936 + }, + { + "start": 1716.92, + "end": 1717.48, + "probability": 0.3088 + }, + { + "start": 1718.56, + "end": 1720.12, + "probability": 0.7858 + }, + { + "start": 1721.26, + "end": 1724.23, + "probability": 0.9432 + }, + { + "start": 1725.14, + "end": 1729.0, + "probability": 0.9443 + }, + { + "start": 1729.82, + "end": 1734.12, + "probability": 0.9021 + }, + { + "start": 1734.62, + "end": 1739.82, + "probability": 0.7163 + }, + { + "start": 1740.7, + "end": 1744.48, + "probability": 0.9955 + }, + { + "start": 1745.26, + "end": 1747.8, + "probability": 0.998 + }, + { + "start": 1748.06, + "end": 1750.69, + "probability": 0.9583 + }, + { + "start": 1751.9, + "end": 1753.41, + "probability": 0.9814 + }, + { + "start": 1754.5, + "end": 1756.78, + "probability": 0.9634 + }, + { + "start": 1757.34, + "end": 1761.59, + "probability": 0.8644 + }, + { + "start": 1762.22, + "end": 1765.0, + "probability": 0.8943 + }, + { + "start": 1765.18, + "end": 1770.7, + "probability": 0.97 + }, + { + "start": 1770.7, + "end": 1773.98, + "probability": 0.983 + }, + { + "start": 1774.82, + "end": 1778.22, + "probability": 0.8312 + }, + { + "start": 1778.8, + "end": 1783.6, + "probability": 0.9644 + }, + { + "start": 1784.26, + "end": 1787.08, + "probability": 0.9413 + }, + { + "start": 1788.02, + "end": 1789.3, + "probability": 0.7604 + }, + { + "start": 1790.0, + "end": 1798.24, + "probability": 0.9751 + }, + { + "start": 1798.86, + "end": 1799.8, + "probability": 0.6297 + }, + { + "start": 1801.23, + "end": 1803.28, + "probability": 0.9976 + }, + { + "start": 1807.3, + "end": 1811.64, + "probability": 0.9957 + }, + { + "start": 1811.98, + "end": 1814.62, + "probability": 0.9922 + }, + { + "start": 1815.3, + "end": 1816.14, + "probability": 0.8787 + }, + { + "start": 1816.94, + "end": 1824.4, + "probability": 0.9939 + }, + { + "start": 1824.98, + "end": 1830.26, + "probability": 0.9896 + }, + { + "start": 1830.26, + "end": 1833.9, + "probability": 0.9992 + }, + { + "start": 1834.22, + "end": 1837.74, + "probability": 0.8899 + }, + { + "start": 1838.06, + "end": 1839.58, + "probability": 0.914 + }, + { + "start": 1839.68, + "end": 1842.58, + "probability": 0.9277 + }, + { + "start": 1848.76, + "end": 1849.22, + "probability": 0.0635 + }, + { + "start": 1852.44, + "end": 1853.36, + "probability": 0.874 + }, + { + "start": 1855.12, + "end": 1857.08, + "probability": 0.8531 + }, + { + "start": 1857.66, + "end": 1859.82, + "probability": 0.9456 + }, + { + "start": 1861.02, + "end": 1863.62, + "probability": 0.9926 + }, + { + "start": 1865.46, + "end": 1866.14, + "probability": 0.9653 + }, + { + "start": 1869.96, + "end": 1871.86, + "probability": 0.5069 + }, + { + "start": 1871.92, + "end": 1878.1, + "probability": 0.9934 + }, + { + "start": 1878.1, + "end": 1881.68, + "probability": 0.9499 + }, + { + "start": 1881.68, + "end": 1882.32, + "probability": 0.7165 + }, + { + "start": 1882.72, + "end": 1887.82, + "probability": 0.9878 + }, + { + "start": 1890.04, + "end": 1895.84, + "probability": 0.9983 + }, + { + "start": 1895.88, + "end": 1898.35, + "probability": 0.9152 + }, + { + "start": 1899.08, + "end": 1900.48, + "probability": 0.9915 + }, + { + "start": 1901.54, + "end": 1908.08, + "probability": 0.9214 + }, + { + "start": 1910.06, + "end": 1914.36, + "probability": 0.9922 + }, + { + "start": 1915.08, + "end": 1919.48, + "probability": 0.8693 + }, + { + "start": 1922.37, + "end": 1924.92, + "probability": 0.9945 + }, + { + "start": 1925.48, + "end": 1927.26, + "probability": 0.9715 + }, + { + "start": 1928.22, + "end": 1933.26, + "probability": 0.9624 + }, + { + "start": 1933.5, + "end": 1934.42, + "probability": 0.9341 + }, + { + "start": 1935.16, + "end": 1937.52, + "probability": 0.9736 + }, + { + "start": 1937.66, + "end": 1939.56, + "probability": 0.7004 + }, + { + "start": 1940.84, + "end": 1949.56, + "probability": 0.9961 + }, + { + "start": 1951.78, + "end": 1956.3, + "probability": 0.9982 + }, + { + "start": 1956.3, + "end": 1960.22, + "probability": 0.9996 + }, + { + "start": 1960.98, + "end": 1965.58, + "probability": 0.9818 + }, + { + "start": 1965.96, + "end": 1967.78, + "probability": 0.9481 + }, + { + "start": 1968.86, + "end": 1971.4, + "probability": 0.9987 + }, + { + "start": 1971.94, + "end": 1975.92, + "probability": 0.979 + }, + { + "start": 1976.5, + "end": 1977.18, + "probability": 0.8833 + }, + { + "start": 1978.04, + "end": 1979.3, + "probability": 0.9689 + }, + { + "start": 1979.88, + "end": 1984.77, + "probability": 0.9497 + }, + { + "start": 1984.9, + "end": 1990.72, + "probability": 0.9875 + }, + { + "start": 1994.54, + "end": 1995.96, + "probability": 0.7375 + }, + { + "start": 1997.16, + "end": 2006.46, + "probability": 0.9976 + }, + { + "start": 2006.46, + "end": 2009.94, + "probability": 0.994 + }, + { + "start": 2011.0, + "end": 2013.36, + "probability": 0.9343 + }, + { + "start": 2013.94, + "end": 2018.54, + "probability": 0.9658 + }, + { + "start": 2019.64, + "end": 2023.84, + "probability": 0.9595 + }, + { + "start": 2025.98, + "end": 2033.22, + "probability": 0.9979 + }, + { + "start": 2033.96, + "end": 2038.7, + "probability": 0.9331 + }, + { + "start": 2039.82, + "end": 2041.7, + "probability": 0.9976 + }, + { + "start": 2043.18, + "end": 2047.68, + "probability": 0.5272 + }, + { + "start": 2049.06, + "end": 2051.02, + "probability": 0.998 + }, + { + "start": 2051.32, + "end": 2052.28, + "probability": 0.5551 + }, + { + "start": 2052.78, + "end": 2053.8, + "probability": 0.8636 + }, + { + "start": 2054.54, + "end": 2060.0, + "probability": 0.8584 + }, + { + "start": 2060.0, + "end": 2064.18, + "probability": 0.9171 + }, + { + "start": 2064.3, + "end": 2065.52, + "probability": 0.9007 + }, + { + "start": 2066.28, + "end": 2068.0, + "probability": 0.7931 + }, + { + "start": 2070.24, + "end": 2072.62, + "probability": 0.8588 + }, + { + "start": 2072.78, + "end": 2074.26, + "probability": 0.7681 + }, + { + "start": 2074.78, + "end": 2075.02, + "probability": 0.9655 + }, + { + "start": 2075.1, + "end": 2079.74, + "probability": 0.9905 + }, + { + "start": 2080.5, + "end": 2084.56, + "probability": 0.9871 + }, + { + "start": 2085.12, + "end": 2092.06, + "probability": 0.6899 + }, + { + "start": 2092.06, + "end": 2092.74, + "probability": 0.4176 + }, + { + "start": 2093.16, + "end": 2095.66, + "probability": 0.9798 + }, + { + "start": 2096.58, + "end": 2097.06, + "probability": 0.7844 + }, + { + "start": 2097.6, + "end": 2099.28, + "probability": 0.7759 + }, + { + "start": 2099.78, + "end": 2100.34, + "probability": 0.6049 + }, + { + "start": 2100.34, + "end": 2102.98, + "probability": 0.7017 + }, + { + "start": 2103.92, + "end": 2107.26, + "probability": 0.9941 + }, + { + "start": 2107.66, + "end": 2110.9, + "probability": 0.9774 + }, + { + "start": 2111.94, + "end": 2113.38, + "probability": 0.9389 + }, + { + "start": 2113.46, + "end": 2114.36, + "probability": 0.958 + }, + { + "start": 2114.38, + "end": 2116.12, + "probability": 0.9964 + }, + { + "start": 2116.56, + "end": 2117.74, + "probability": 0.723 + }, + { + "start": 2117.86, + "end": 2119.84, + "probability": 0.7561 + }, + { + "start": 2120.22, + "end": 2122.56, + "probability": 0.9991 + }, + { + "start": 2122.58, + "end": 2124.66, + "probability": 0.9917 + }, + { + "start": 2124.78, + "end": 2125.42, + "probability": 0.7646 + }, + { + "start": 2128.12, + "end": 2130.36, + "probability": 0.9888 + }, + { + "start": 2131.28, + "end": 2135.14, + "probability": 0.8158 + }, + { + "start": 2135.72, + "end": 2140.24, + "probability": 0.9573 + }, + { + "start": 2140.76, + "end": 2141.24, + "probability": 0.6445 + }, + { + "start": 2141.32, + "end": 2147.48, + "probability": 0.9946 + }, + { + "start": 2148.06, + "end": 2153.1, + "probability": 0.9973 + }, + { + "start": 2153.36, + "end": 2155.26, + "probability": 0.9976 + }, + { + "start": 2155.96, + "end": 2159.45, + "probability": 0.9889 + }, + { + "start": 2161.72, + "end": 2168.72, + "probability": 0.998 + }, + { + "start": 2171.5, + "end": 2176.06, + "probability": 0.9893 + }, + { + "start": 2176.06, + "end": 2181.74, + "probability": 0.999 + }, + { + "start": 2182.02, + "end": 2184.96, + "probability": 0.9927 + }, + { + "start": 2185.06, + "end": 2190.06, + "probability": 0.98 + }, + { + "start": 2190.38, + "end": 2191.58, + "probability": 0.1256 + }, + { + "start": 2191.64, + "end": 2192.2, + "probability": 0.5599 + }, + { + "start": 2192.74, + "end": 2195.22, + "probability": 0.9741 + }, + { + "start": 2195.84, + "end": 2198.72, + "probability": 0.8972 + }, + { + "start": 2203.82, + "end": 2204.7, + "probability": 0.5747 + }, + { + "start": 2208.66, + "end": 2211.9, + "probability": 0.608 + }, + { + "start": 2212.04, + "end": 2217.14, + "probability": 0.83 + }, + { + "start": 2217.78, + "end": 2222.14, + "probability": 0.9035 + }, + { + "start": 2222.82, + "end": 2223.9, + "probability": 0.9751 + }, + { + "start": 2223.96, + "end": 2228.96, + "probability": 0.9878 + }, + { + "start": 2228.98, + "end": 2232.68, + "probability": 0.998 + }, + { + "start": 2232.74, + "end": 2232.92, + "probability": 0.7371 + }, + { + "start": 2234.08, + "end": 2235.08, + "probability": 0.6859 + }, + { + "start": 2235.5, + "end": 2240.2, + "probability": 0.981 + }, + { + "start": 2242.44, + "end": 2249.66, + "probability": 0.9962 + }, + { + "start": 2251.2, + "end": 2252.82, + "probability": 0.9998 + }, + { + "start": 2253.78, + "end": 2258.05, + "probability": 0.9821 + }, + { + "start": 2259.28, + "end": 2260.3, + "probability": 0.9667 + }, + { + "start": 2261.68, + "end": 2265.46, + "probability": 0.999 + }, + { + "start": 2266.02, + "end": 2266.7, + "probability": 0.5818 + }, + { + "start": 2267.66, + "end": 2268.58, + "probability": 0.7075 + }, + { + "start": 2268.68, + "end": 2271.92, + "probability": 0.9379 + }, + { + "start": 2272.14, + "end": 2273.08, + "probability": 0.9047 + }, + { + "start": 2273.2, + "end": 2276.5, + "probability": 0.9487 + }, + { + "start": 2277.4, + "end": 2280.38, + "probability": 0.9956 + }, + { + "start": 2281.08, + "end": 2285.06, + "probability": 0.8932 + }, + { + "start": 2286.48, + "end": 2290.46, + "probability": 0.871 + }, + { + "start": 2291.74, + "end": 2298.22, + "probability": 0.9802 + }, + { + "start": 2299.38, + "end": 2300.02, + "probability": 0.9972 + }, + { + "start": 2301.62, + "end": 2305.32, + "probability": 0.9806 + }, + { + "start": 2306.4, + "end": 2311.94, + "probability": 0.992 + }, + { + "start": 2312.28, + "end": 2317.4, + "probability": 0.9021 + }, + { + "start": 2318.52, + "end": 2322.54, + "probability": 0.993 + }, + { + "start": 2325.72, + "end": 2328.78, + "probability": 0.9123 + }, + { + "start": 2329.48, + "end": 2330.34, + "probability": 0.7991 + }, + { + "start": 2333.92, + "end": 2337.18, + "probability": 0.9436 + }, + { + "start": 2337.38, + "end": 2339.06, + "probability": 0.1703 + }, + { + "start": 2340.06, + "end": 2342.46, + "probability": 0.8444 + }, + { + "start": 2343.94, + "end": 2350.12, + "probability": 0.9951 + }, + { + "start": 2350.78, + "end": 2351.34, + "probability": 0.7913 + }, + { + "start": 2352.76, + "end": 2355.36, + "probability": 0.9971 + }, + { + "start": 2355.4, + "end": 2357.82, + "probability": 0.8321 + }, + { + "start": 2359.61, + "end": 2362.24, + "probability": 0.6765 + }, + { + "start": 2362.56, + "end": 2364.66, + "probability": 0.9388 + }, + { + "start": 2365.62, + "end": 2372.64, + "probability": 0.9688 + }, + { + "start": 2372.66, + "end": 2374.36, + "probability": 0.9878 + }, + { + "start": 2375.18, + "end": 2378.72, + "probability": 0.7885 + }, + { + "start": 2379.72, + "end": 2386.64, + "probability": 0.779 + }, + { + "start": 2386.84, + "end": 2392.2, + "probability": 0.9823 + }, + { + "start": 2393.6, + "end": 2396.86, + "probability": 0.9916 + }, + { + "start": 2398.78, + "end": 2402.98, + "probability": 0.7684 + }, + { + "start": 2403.1, + "end": 2404.34, + "probability": 0.9699 + }, + { + "start": 2404.78, + "end": 2406.6, + "probability": 0.915 + }, + { + "start": 2407.0, + "end": 2411.28, + "probability": 0.95 + }, + { + "start": 2412.34, + "end": 2417.02, + "probability": 0.9802 + }, + { + "start": 2418.36, + "end": 2420.56, + "probability": 0.7969 + }, + { + "start": 2420.76, + "end": 2423.3, + "probability": 0.8776 + }, + { + "start": 2424.62, + "end": 2428.18, + "probability": 0.9963 + }, + { + "start": 2428.18, + "end": 2433.0, + "probability": 0.9938 + }, + { + "start": 2433.1, + "end": 2433.98, + "probability": 0.8829 + }, + { + "start": 2434.54, + "end": 2438.31, + "probability": 0.9299 + }, + { + "start": 2438.66, + "end": 2439.4, + "probability": 0.6992 + }, + { + "start": 2439.48, + "end": 2441.0, + "probability": 0.8949 + }, + { + "start": 2441.56, + "end": 2443.18, + "probability": 0.8307 + }, + { + "start": 2443.28, + "end": 2445.7, + "probability": 0.9587 + }, + { + "start": 2445.8, + "end": 2448.96, + "probability": 0.9961 + }, + { + "start": 2449.38, + "end": 2450.48, + "probability": 0.9967 + }, + { + "start": 2450.94, + "end": 2451.72, + "probability": 0.7375 + }, + { + "start": 2451.9, + "end": 2454.7, + "probability": 0.8014 + }, + { + "start": 2455.3, + "end": 2460.14, + "probability": 0.9067 + }, + { + "start": 2460.56, + "end": 2463.68, + "probability": 0.9331 + }, + { + "start": 2464.1, + "end": 2464.6, + "probability": 0.928 + }, + { + "start": 2464.68, + "end": 2465.26, + "probability": 0.9226 + }, + { + "start": 2465.84, + "end": 2466.94, + "probability": 0.4251 + }, + { + "start": 2467.08, + "end": 2469.14, + "probability": 0.9214 + }, + { + "start": 2470.06, + "end": 2473.38, + "probability": 0.9279 + }, + { + "start": 2474.38, + "end": 2479.96, + "probability": 0.9904 + }, + { + "start": 2480.62, + "end": 2484.62, + "probability": 0.7591 + }, + { + "start": 2484.62, + "end": 2486.12, + "probability": 0.8581 + }, + { + "start": 2486.22, + "end": 2487.06, + "probability": 0.5671 + }, + { + "start": 2487.12, + "end": 2488.18, + "probability": 0.8494 + }, + { + "start": 2489.88, + "end": 2493.28, + "probability": 0.9966 + }, + { + "start": 2494.48, + "end": 2500.18, + "probability": 0.7712 + }, + { + "start": 2500.42, + "end": 2501.46, + "probability": 0.8521 + }, + { + "start": 2501.66, + "end": 2506.8, + "probability": 0.9771 + }, + { + "start": 2507.04, + "end": 2508.84, + "probability": 0.989 + }, + { + "start": 2509.0, + "end": 2510.52, + "probability": 0.9978 + }, + { + "start": 2510.96, + "end": 2512.26, + "probability": 0.8955 + }, + { + "start": 2513.96, + "end": 2516.6, + "probability": 0.999 + }, + { + "start": 2517.08, + "end": 2518.24, + "probability": 0.9896 + }, + { + "start": 2519.24, + "end": 2522.9, + "probability": 0.9974 + }, + { + "start": 2523.16, + "end": 2524.56, + "probability": 0.8541 + }, + { + "start": 2524.62, + "end": 2525.82, + "probability": 0.8593 + }, + { + "start": 2526.0, + "end": 2527.9, + "probability": 0.8716 + }, + { + "start": 2528.58, + "end": 2535.26, + "probability": 0.9768 + }, + { + "start": 2535.4, + "end": 2536.06, + "probability": 0.7747 + }, + { + "start": 2537.26, + "end": 2538.24, + "probability": 0.8552 + }, + { + "start": 2538.82, + "end": 2541.18, + "probability": 0.9851 + }, + { + "start": 2541.26, + "end": 2542.8, + "probability": 0.92 + }, + { + "start": 2543.8, + "end": 2544.88, + "probability": 0.4027 + }, + { + "start": 2545.04, + "end": 2547.76, + "probability": 0.9717 + }, + { + "start": 2548.38, + "end": 2551.02, + "probability": 0.9175 + }, + { + "start": 2551.38, + "end": 2552.48, + "probability": 0.9922 + }, + { + "start": 2553.28, + "end": 2555.2, + "probability": 0.6247 + }, + { + "start": 2556.1, + "end": 2561.04, + "probability": 0.9113 + }, + { + "start": 2562.22, + "end": 2565.54, + "probability": 0.9991 + }, + { + "start": 2566.24, + "end": 2572.6, + "probability": 0.9954 + }, + { + "start": 2572.72, + "end": 2574.08, + "probability": 0.7697 + }, + { + "start": 2574.16, + "end": 2577.18, + "probability": 0.968 + }, + { + "start": 2577.92, + "end": 2581.12, + "probability": 0.9128 + }, + { + "start": 2582.52, + "end": 2587.38, + "probability": 0.4142 + }, + { + "start": 2588.2, + "end": 2590.34, + "probability": 0.7816 + }, + { + "start": 2590.52, + "end": 2593.92, + "probability": 0.8116 + }, + { + "start": 2594.08, + "end": 2595.38, + "probability": 0.7396 + }, + { + "start": 2596.14, + "end": 2599.38, + "probability": 0.968 + }, + { + "start": 2599.38, + "end": 2602.22, + "probability": 0.9855 + }, + { + "start": 2602.94, + "end": 2603.56, + "probability": 0.6997 + }, + { + "start": 2603.68, + "end": 2607.26, + "probability": 0.9507 + }, + { + "start": 2607.9, + "end": 2609.38, + "probability": 0.9502 + }, + { + "start": 2610.02, + "end": 2611.26, + "probability": 0.988 + }, + { + "start": 2611.76, + "end": 2612.96, + "probability": 0.9945 + }, + { + "start": 2613.1, + "end": 2614.48, + "probability": 0.9806 + }, + { + "start": 2615.68, + "end": 2617.78, + "probability": 0.9953 + }, + { + "start": 2617.98, + "end": 2619.78, + "probability": 0.7168 + }, + { + "start": 2620.24, + "end": 2621.78, + "probability": 0.8126 + }, + { + "start": 2622.36, + "end": 2625.68, + "probability": 0.9538 + }, + { + "start": 2626.3, + "end": 2627.38, + "probability": 0.8953 + }, + { + "start": 2627.44, + "end": 2631.02, + "probability": 0.9695 + }, + { + "start": 2631.68, + "end": 2635.7, + "probability": 0.9653 + }, + { + "start": 2636.16, + "end": 2639.86, + "probability": 0.9674 + }, + { + "start": 2639.9, + "end": 2640.92, + "probability": 0.9261 + }, + { + "start": 2640.98, + "end": 2644.26, + "probability": 0.9558 + }, + { + "start": 2644.34, + "end": 2645.26, + "probability": 0.7119 + }, + { + "start": 2645.6, + "end": 2649.5, + "probability": 0.989 + }, + { + "start": 2649.74, + "end": 2650.36, + "probability": 0.8181 + }, + { + "start": 2650.46, + "end": 2651.2, + "probability": 0.9636 + }, + { + "start": 2651.2, + "end": 2651.86, + "probability": 0.9771 + }, + { + "start": 2651.92, + "end": 2652.56, + "probability": 0.9303 + }, + { + "start": 2652.66, + "end": 2653.74, + "probability": 0.8798 + }, + { + "start": 2654.66, + "end": 2659.28, + "probability": 0.0388 + }, + { + "start": 2659.28, + "end": 2665.2, + "probability": 0.9857 + }, + { + "start": 2665.2, + "end": 2671.18, + "probability": 0.9901 + }, + { + "start": 2671.38, + "end": 2677.24, + "probability": 0.9897 + }, + { + "start": 2677.98, + "end": 2682.26, + "probability": 0.8268 + }, + { + "start": 2682.26, + "end": 2686.3, + "probability": 0.4965 + }, + { + "start": 2686.7, + "end": 2690.98, + "probability": 0.695 + }, + { + "start": 2691.5, + "end": 2692.36, + "probability": 0.6476 + }, + { + "start": 2693.12, + "end": 2697.46, + "probability": 0.9852 + }, + { + "start": 2698.2, + "end": 2701.14, + "probability": 0.9299 + }, + { + "start": 2701.4, + "end": 2701.48, + "probability": 0.0358 + }, + { + "start": 2701.48, + "end": 2701.9, + "probability": 0.2265 + }, + { + "start": 2701.92, + "end": 2704.15, + "probability": 0.3947 + }, + { + "start": 2704.54, + "end": 2704.54, + "probability": 0.6518 + }, + { + "start": 2704.54, + "end": 2706.08, + "probability": 0.9033 + }, + { + "start": 2706.18, + "end": 2708.7, + "probability": 0.7081 + }, + { + "start": 2708.8, + "end": 2710.22, + "probability": 0.91 + }, + { + "start": 2710.32, + "end": 2710.86, + "probability": 0.426 + }, + { + "start": 2710.94, + "end": 2712.48, + "probability": 0.2434 + }, + { + "start": 2712.78, + "end": 2712.88, + "probability": 0.1088 + }, + { + "start": 2712.88, + "end": 2715.22, + "probability": 0.5942 + }, + { + "start": 2715.4, + "end": 2716.22, + "probability": 0.6579 + }, + { + "start": 2716.56, + "end": 2717.3, + "probability": 0.9681 + }, + { + "start": 2717.42, + "end": 2719.06, + "probability": 0.7787 + }, + { + "start": 2719.1, + "end": 2721.24, + "probability": 0.9946 + }, + { + "start": 2723.4, + "end": 2724.5, + "probability": 0.5751 + }, + { + "start": 2724.64, + "end": 2727.46, + "probability": 0.9332 + }, + { + "start": 2727.64, + "end": 2728.27, + "probability": 0.9963 + }, + { + "start": 2729.1, + "end": 2731.26, + "probability": 0.7263 + }, + { + "start": 2731.36, + "end": 2736.5, + "probability": 0.9952 + }, + { + "start": 2737.66, + "end": 2738.08, + "probability": 0.9287 + }, + { + "start": 2740.28, + "end": 2747.48, + "probability": 0.991 + }, + { + "start": 2748.08, + "end": 2751.9, + "probability": 0.9937 + }, + { + "start": 2752.86, + "end": 2759.42, + "probability": 0.998 + }, + { + "start": 2760.22, + "end": 2765.42, + "probability": 0.9796 + }, + { + "start": 2766.0, + "end": 2767.14, + "probability": 0.9794 + }, + { + "start": 2767.98, + "end": 2770.04, + "probability": 0.8091 + }, + { + "start": 2770.96, + "end": 2775.5, + "probability": 0.9861 + }, + { + "start": 2777.16, + "end": 2781.98, + "probability": 0.9977 + }, + { + "start": 2782.9, + "end": 2787.68, + "probability": 0.9915 + }, + { + "start": 2788.56, + "end": 2791.78, + "probability": 0.757 + }, + { + "start": 2792.58, + "end": 2801.1, + "probability": 0.9667 + }, + { + "start": 2803.9, + "end": 2805.78, + "probability": 0.9976 + }, + { + "start": 2807.42, + "end": 2808.93, + "probability": 0.998 + }, + { + "start": 2810.32, + "end": 2815.06, + "probability": 0.8991 + }, + { + "start": 2815.34, + "end": 2822.38, + "probability": 0.9814 + }, + { + "start": 2823.74, + "end": 2830.24, + "probability": 0.9952 + }, + { + "start": 2831.44, + "end": 2832.3, + "probability": 0.6082 + }, + { + "start": 2833.74, + "end": 2835.34, + "probability": 0.8587 + }, + { + "start": 2836.56, + "end": 2839.6, + "probability": 0.9831 + }, + { + "start": 2841.1, + "end": 2842.74, + "probability": 0.8643 + }, + { + "start": 2843.64, + "end": 2844.4, + "probability": 0.5245 + }, + { + "start": 2844.58, + "end": 2845.92, + "probability": 0.9608 + }, + { + "start": 2846.06, + "end": 2848.42, + "probability": 0.9128 + }, + { + "start": 2849.3, + "end": 2852.02, + "probability": 0.9073 + }, + { + "start": 2852.96, + "end": 2861.4, + "probability": 0.9941 + }, + { + "start": 2862.86, + "end": 2864.82, + "probability": 0.9745 + }, + { + "start": 2865.6, + "end": 2866.78, + "probability": 0.9428 + }, + { + "start": 2867.88, + "end": 2869.66, + "probability": 0.5417 + }, + { + "start": 2870.42, + "end": 2872.18, + "probability": 0.6884 + }, + { + "start": 2872.44, + "end": 2875.72, + "probability": 0.936 + }, + { + "start": 2876.3, + "end": 2884.6, + "probability": 0.9414 + }, + { + "start": 2885.92, + "end": 2888.16, + "probability": 0.7417 + }, + { + "start": 2888.5, + "end": 2890.44, + "probability": 0.9778 + }, + { + "start": 2890.88, + "end": 2891.76, + "probability": 0.816 + }, + { + "start": 2892.76, + "end": 2895.54, + "probability": 0.7469 + }, + { + "start": 2896.54, + "end": 2899.32, + "probability": 0.9614 + }, + { + "start": 2899.84, + "end": 2901.5, + "probability": 0.8347 + }, + { + "start": 2902.28, + "end": 2902.32, + "probability": 0.5874 + }, + { + "start": 2902.32, + "end": 2902.32, + "probability": 0.7803 + }, + { + "start": 2902.32, + "end": 2903.32, + "probability": 0.3087 + }, + { + "start": 2903.38, + "end": 2911.9, + "probability": 0.9017 + }, + { + "start": 2912.08, + "end": 2913.06, + "probability": 0.7 + }, + { + "start": 2913.18, + "end": 2917.06, + "probability": 0.9879 + }, + { + "start": 2917.32, + "end": 2918.91, + "probability": 0.9907 + }, + { + "start": 2920.56, + "end": 2924.42, + "probability": 0.5287 + }, + { + "start": 2925.38, + "end": 2932.02, + "probability": 0.8404 + }, + { + "start": 2932.86, + "end": 2938.24, + "probability": 0.9711 + }, + { + "start": 2939.1, + "end": 2941.62, + "probability": 0.0971 + }, + { + "start": 2941.62, + "end": 2942.18, + "probability": 0.9321 + }, + { + "start": 2942.3, + "end": 2943.54, + "probability": 0.9109 + }, + { + "start": 2943.8, + "end": 2948.24, + "probability": 0.9955 + }, + { + "start": 2948.64, + "end": 2949.86, + "probability": 0.6272 + }, + { + "start": 2950.06, + "end": 2951.31, + "probability": 0.925 + }, + { + "start": 2951.7, + "end": 2952.86, + "probability": 0.9321 + }, + { + "start": 2953.1, + "end": 2956.32, + "probability": 0.808 + }, + { + "start": 2956.92, + "end": 2959.88, + "probability": 0.7271 + }, + { + "start": 2960.0, + "end": 2962.26, + "probability": 0.7088 + }, + { + "start": 2962.72, + "end": 2964.14, + "probability": 0.9545 + }, + { + "start": 2965.12, + "end": 2965.72, + "probability": 0.7486 + }, + { + "start": 2965.72, + "end": 2970.5, + "probability": 0.9838 + }, + { + "start": 2970.5, + "end": 2973.56, + "probability": 0.8966 + }, + { + "start": 2973.72, + "end": 2974.88, + "probability": 0.5925 + }, + { + "start": 2974.98, + "end": 2976.16, + "probability": 0.493 + }, + { + "start": 2976.34, + "end": 2978.68, + "probability": 0.3651 + }, + { + "start": 2979.44, + "end": 2981.94, + "probability": 0.0353 + }, + { + "start": 2984.07, + "end": 2984.82, + "probability": 0.0245 + }, + { + "start": 2984.82, + "end": 2986.3, + "probability": 0.0566 + }, + { + "start": 2987.16, + "end": 2990.58, + "probability": 0.8768 + }, + { + "start": 2992.32, + "end": 2994.68, + "probability": 0.6504 + }, + { + "start": 2995.18, + "end": 2999.06, + "probability": 0.9888 + }, + { + "start": 2999.06, + "end": 3002.32, + "probability": 0.8875 + }, + { + "start": 3003.04, + "end": 3004.32, + "probability": 0.8512 + }, + { + "start": 3004.86, + "end": 3009.24, + "probability": 0.6778 + }, + { + "start": 3009.92, + "end": 3014.7, + "probability": 0.9724 + }, + { + "start": 3016.0, + "end": 3018.86, + "probability": 0.9883 + }, + { + "start": 3021.56, + "end": 3022.78, + "probability": 0.9241 + }, + { + "start": 3023.36, + "end": 3026.56, + "probability": 0.8221 + }, + { + "start": 3027.34, + "end": 3029.34, + "probability": 0.6309 + }, + { + "start": 3030.22, + "end": 3034.14, + "probability": 0.9916 + }, + { + "start": 3034.38, + "end": 3037.72, + "probability": 0.9954 + }, + { + "start": 3037.72, + "end": 3042.24, + "probability": 0.9214 + }, + { + "start": 3043.12, + "end": 3045.14, + "probability": 0.9648 + }, + { + "start": 3046.5, + "end": 3048.38, + "probability": 0.5936 + }, + { + "start": 3048.9, + "end": 3052.0, + "probability": 0.911 + }, + { + "start": 3053.04, + "end": 3053.36, + "probability": 0.4556 + }, + { + "start": 3055.84, + "end": 3057.14, + "probability": 0.7416 + }, + { + "start": 3057.9, + "end": 3058.68, + "probability": 0.842 + }, + { + "start": 3060.22, + "end": 3062.56, + "probability": 0.9714 + }, + { + "start": 3063.24, + "end": 3066.84, + "probability": 0.9965 + }, + { + "start": 3067.58, + "end": 3068.28, + "probability": 0.9821 + }, + { + "start": 3068.98, + "end": 3070.33, + "probability": 0.9956 + }, + { + "start": 3071.0, + "end": 3072.6, + "probability": 0.9956 + }, + { + "start": 3073.1, + "end": 3074.0, + "probability": 0.7966 + }, + { + "start": 3074.22, + "end": 3075.81, + "probability": 0.9823 + }, + { + "start": 3076.28, + "end": 3080.0, + "probability": 0.008 + }, + { + "start": 3080.0, + "end": 3081.24, + "probability": 0.1433 + }, + { + "start": 3081.26, + "end": 3085.74, + "probability": 0.7739 + }, + { + "start": 3086.38, + "end": 3088.8, + "probability": 0.8824 + }, + { + "start": 3090.1, + "end": 3093.46, + "probability": 0.6759 + }, + { + "start": 3093.66, + "end": 3095.42, + "probability": 0.998 + }, + { + "start": 3095.78, + "end": 3097.0, + "probability": 0.8153 + }, + { + "start": 3097.08, + "end": 3099.08, + "probability": 0.8519 + }, + { + "start": 3099.26, + "end": 3100.8, + "probability": 0.9908 + }, + { + "start": 3100.82, + "end": 3105.5, + "probability": 0.9334 + }, + { + "start": 3105.9, + "end": 3106.7, + "probability": 0.6142 + }, + { + "start": 3106.92, + "end": 3107.64, + "probability": 0.7061 + }, + { + "start": 3108.87, + "end": 3111.52, + "probability": 0.8434 + }, + { + "start": 3111.56, + "end": 3113.12, + "probability": 0.9922 + }, + { + "start": 3113.54, + "end": 3115.32, + "probability": 0.5933 + }, + { + "start": 3115.62, + "end": 3117.18, + "probability": 0.8971 + }, + { + "start": 3117.28, + "end": 3118.58, + "probability": 0.9415 + }, + { + "start": 3118.66, + "end": 3121.86, + "probability": 0.9397 + }, + { + "start": 3124.37, + "end": 3124.98, + "probability": 0.1386 + }, + { + "start": 3124.98, + "end": 3126.32, + "probability": 0.0477 + }, + { + "start": 3126.32, + "end": 3127.72, + "probability": 0.399 + }, + { + "start": 3127.84, + "end": 3129.5, + "probability": 0.3488 + }, + { + "start": 3129.5, + "end": 3129.5, + "probability": 0.1039 + }, + { + "start": 3129.5, + "end": 3129.9, + "probability": 0.9254 + }, + { + "start": 3131.14, + "end": 3133.8, + "probability": 0.8592 + }, + { + "start": 3135.36, + "end": 3139.5, + "probability": 0.9272 + }, + { + "start": 3139.68, + "end": 3143.6, + "probability": 0.8089 + }, + { + "start": 3144.06, + "end": 3144.72, + "probability": 0.8079 + }, + { + "start": 3145.08, + "end": 3149.08, + "probability": 0.9596 + }, + { + "start": 3149.12, + "end": 3150.34, + "probability": 0.9886 + }, + { + "start": 3150.98, + "end": 3152.74, + "probability": 0.9972 + }, + { + "start": 3152.82, + "end": 3153.64, + "probability": 0.8547 + }, + { + "start": 3153.92, + "end": 3158.8, + "probability": 0.9972 + }, + { + "start": 3159.38, + "end": 3162.2, + "probability": 0.7059 + }, + { + "start": 3162.58, + "end": 3162.58, + "probability": 0.4273 + }, + { + "start": 3162.58, + "end": 3163.7, + "probability": 0.9532 + }, + { + "start": 3164.32, + "end": 3166.0, + "probability": 0.4832 + }, + { + "start": 3168.83, + "end": 3171.48, + "probability": 0.4041 + }, + { + "start": 3172.66, + "end": 3174.34, + "probability": 0.1074 + }, + { + "start": 3174.38, + "end": 3175.6, + "probability": 0.1933 + }, + { + "start": 3178.73, + "end": 3181.72, + "probability": 0.9885 + }, + { + "start": 3182.12, + "end": 3185.58, + "probability": 0.9888 + }, + { + "start": 3185.58, + "end": 3189.12, + "probability": 0.9972 + }, + { + "start": 3189.98, + "end": 3196.08, + "probability": 0.8553 + }, + { + "start": 3197.23, + "end": 3199.44, + "probability": 0.9951 + }, + { + "start": 3200.98, + "end": 3208.22, + "probability": 0.9902 + }, + { + "start": 3209.0, + "end": 3214.51, + "probability": 0.9979 + }, + { + "start": 3214.66, + "end": 3217.54, + "probability": 0.9796 + }, + { + "start": 3218.34, + "end": 3218.96, + "probability": 0.939 + }, + { + "start": 3219.08, + "end": 3221.3, + "probability": 0.9906 + }, + { + "start": 3221.62, + "end": 3223.39, + "probability": 0.4944 + }, + { + "start": 3224.78, + "end": 3226.04, + "probability": 0.874 + }, + { + "start": 3226.74, + "end": 3231.18, + "probability": 0.9974 + }, + { + "start": 3231.78, + "end": 3232.48, + "probability": 0.7441 + }, + { + "start": 3233.42, + "end": 3235.78, + "probability": 0.9845 + }, + { + "start": 3236.38, + "end": 3238.02, + "probability": 0.9896 + }, + { + "start": 3238.36, + "end": 3239.66, + "probability": 0.9876 + }, + { + "start": 3239.82, + "end": 3240.48, + "probability": 0.6953 + }, + { + "start": 3240.62, + "end": 3241.38, + "probability": 0.6197 + }, + { + "start": 3241.98, + "end": 3245.04, + "probability": 0.9934 + }, + { + "start": 3245.8, + "end": 3253.72, + "probability": 0.9897 + }, + { + "start": 3253.78, + "end": 3254.6, + "probability": 0.9874 + }, + { + "start": 3255.5, + "end": 3256.8, + "probability": 0.9692 + }, + { + "start": 3259.08, + "end": 3259.92, + "probability": 0.1322 + }, + { + "start": 3259.92, + "end": 3261.9, + "probability": 0.6454 + }, + { + "start": 3262.42, + "end": 3263.92, + "probability": 0.917 + }, + { + "start": 3264.08, + "end": 3265.52, + "probability": 0.7669 + }, + { + "start": 3266.42, + "end": 3269.48, + "probability": 0.9935 + }, + { + "start": 3270.16, + "end": 3270.76, + "probability": 0.9224 + }, + { + "start": 3271.74, + "end": 3277.4, + "probability": 0.9909 + }, + { + "start": 3278.04, + "end": 3284.66, + "probability": 0.9785 + }, + { + "start": 3285.32, + "end": 3286.48, + "probability": 0.8429 + }, + { + "start": 3287.02, + "end": 3288.1, + "probability": 0.9336 + }, + { + "start": 3288.64, + "end": 3291.6, + "probability": 0.9942 + }, + { + "start": 3292.1, + "end": 3292.94, + "probability": 0.9534 + }, + { + "start": 3293.0, + "end": 3294.18, + "probability": 0.9862 + }, + { + "start": 3294.78, + "end": 3298.04, + "probability": 0.959 + }, + { + "start": 3298.6, + "end": 3303.07, + "probability": 0.9915 + }, + { + "start": 3303.34, + "end": 3305.42, + "probability": 0.9299 + }, + { + "start": 3305.92, + "end": 3308.6, + "probability": 0.998 + }, + { + "start": 3308.68, + "end": 3310.42, + "probability": 0.9419 + }, + { + "start": 3310.66, + "end": 3312.66, + "probability": 0.6402 + }, + { + "start": 3313.34, + "end": 3316.2, + "probability": 0.9721 + }, + { + "start": 3316.62, + "end": 3319.44, + "probability": 0.9839 + }, + { + "start": 3320.36, + "end": 3321.72, + "probability": 0.9294 + }, + { + "start": 3322.4, + "end": 3322.92, + "probability": 0.5845 + }, + { + "start": 3323.06, + "end": 3324.95, + "probability": 0.7489 + }, + { + "start": 3325.52, + "end": 3326.7, + "probability": 0.7755 + }, + { + "start": 3326.88, + "end": 3328.14, + "probability": 0.5812 + }, + { + "start": 3328.56, + "end": 3329.96, + "probability": 0.8108 + }, + { + "start": 3330.32, + "end": 3331.04, + "probability": 0.9493 + }, + { + "start": 3331.2, + "end": 3332.73, + "probability": 0.9434 + }, + { + "start": 3333.28, + "end": 3334.5, + "probability": 0.9918 + }, + { + "start": 3334.92, + "end": 3335.97, + "probability": 0.9819 + }, + { + "start": 3336.14, + "end": 3337.78, + "probability": 0.997 + }, + { + "start": 3339.68, + "end": 3341.84, + "probability": 0.8331 + }, + { + "start": 3341.9, + "end": 3343.31, + "probability": 0.9756 + }, + { + "start": 3345.78, + "end": 3347.64, + "probability": 0.9233 + }, + { + "start": 3348.26, + "end": 3350.36, + "probability": 0.9956 + }, + { + "start": 3351.42, + "end": 3355.58, + "probability": 0.9746 + }, + { + "start": 3356.26, + "end": 3364.74, + "probability": 0.9691 + }, + { + "start": 3365.1, + "end": 3365.4, + "probability": 0.5711 + }, + { + "start": 3366.16, + "end": 3367.74, + "probability": 0.9562 + }, + { + "start": 3367.92, + "end": 3368.12, + "probability": 0.4793 + }, + { + "start": 3368.22, + "end": 3370.74, + "probability": 0.9256 + }, + { + "start": 3370.74, + "end": 3374.08, + "probability": 0.8452 + }, + { + "start": 3374.46, + "end": 3377.96, + "probability": 0.9937 + }, + { + "start": 3378.08, + "end": 3381.24, + "probability": 0.7188 + }, + { + "start": 3381.6, + "end": 3382.44, + "probability": 0.9202 + }, + { + "start": 3382.54, + "end": 3383.58, + "probability": 0.24 + }, + { + "start": 3383.76, + "end": 3384.66, + "probability": 0.4019 + }, + { + "start": 3385.34, + "end": 3386.68, + "probability": 0.9038 + }, + { + "start": 3386.78, + "end": 3387.16, + "probability": 0.3949 + }, + { + "start": 3387.22, + "end": 3389.14, + "probability": 0.8018 + }, + { + "start": 3389.46, + "end": 3391.84, + "probability": 0.6831 + }, + { + "start": 3392.06, + "end": 3393.6, + "probability": 0.9053 + }, + { + "start": 3393.92, + "end": 3395.96, + "probability": 0.9834 + }, + { + "start": 3396.92, + "end": 3398.16, + "probability": 0.815 + }, + { + "start": 3398.38, + "end": 3401.72, + "probability": 0.7058 + }, + { + "start": 3401.92, + "end": 3405.78, + "probability": 0.4024 + }, + { + "start": 3405.9, + "end": 3405.92, + "probability": 0.0552 + }, + { + "start": 3405.92, + "end": 3407.56, + "probability": 0.8887 + }, + { + "start": 3408.08, + "end": 3411.84, + "probability": 0.7943 + }, + { + "start": 3412.48, + "end": 3413.58, + "probability": 0.6611 + }, + { + "start": 3413.64, + "end": 3417.19, + "probability": 0.9889 + }, + { + "start": 3418.96, + "end": 3419.62, + "probability": 0.825 + }, + { + "start": 3419.68, + "end": 3420.92, + "probability": 0.5472 + }, + { + "start": 3421.26, + "end": 3423.0, + "probability": 0.9564 + }, + { + "start": 3423.1, + "end": 3425.36, + "probability": 0.7676 + }, + { + "start": 3425.68, + "end": 3425.68, + "probability": 0.0432 + }, + { + "start": 3425.68, + "end": 3425.68, + "probability": 0.0659 + }, + { + "start": 3425.68, + "end": 3426.2, + "probability": 0.0482 + }, + { + "start": 3426.7, + "end": 3429.5, + "probability": 0.7661 + }, + { + "start": 3430.18, + "end": 3431.26, + "probability": 0.843 + }, + { + "start": 3431.76, + "end": 3434.32, + "probability": 0.9355 + }, + { + "start": 3435.05, + "end": 3438.09, + "probability": 0.748 + }, + { + "start": 3438.8, + "end": 3440.52, + "probability": 0.9748 + }, + { + "start": 3441.22, + "end": 3443.86, + "probability": 0.7696 + }, + { + "start": 3443.88, + "end": 3445.14, + "probability": 0.8613 + }, + { + "start": 3445.26, + "end": 3445.74, + "probability": 0.141 + }, + { + "start": 3445.74, + "end": 3446.46, + "probability": 0.385 + }, + { + "start": 3446.56, + "end": 3448.14, + "probability": 0.7815 + }, + { + "start": 3448.14, + "end": 3449.28, + "probability": 0.1595 + }, + { + "start": 3449.46, + "end": 3450.32, + "probability": 0.5865 + }, + { + "start": 3450.38, + "end": 3452.8, + "probability": 0.8689 + }, + { + "start": 3452.96, + "end": 3453.36, + "probability": 0.0643 + }, + { + "start": 3453.54, + "end": 3454.08, + "probability": 0.931 + }, + { + "start": 3454.28, + "end": 3455.08, + "probability": 0.6539 + }, + { + "start": 3455.14, + "end": 3455.5, + "probability": 0.5486 + }, + { + "start": 3455.51, + "end": 3457.3, + "probability": 0.5553 + }, + { + "start": 3457.3, + "end": 3457.3, + "probability": 0.0637 + }, + { + "start": 3457.3, + "end": 3458.96, + "probability": 0.9232 + }, + { + "start": 3459.28, + "end": 3459.58, + "probability": 0.9537 + }, + { + "start": 3459.76, + "end": 3460.24, + "probability": 0.9298 + }, + { + "start": 3460.96, + "end": 3463.92, + "probability": 0.994 + }, + { + "start": 3464.46, + "end": 3466.46, + "probability": 0.9155 + }, + { + "start": 3466.54, + "end": 3467.52, + "probability": 0.9585 + }, + { + "start": 3467.7, + "end": 3468.98, + "probability": 0.9566 + }, + { + "start": 3469.26, + "end": 3470.44, + "probability": 0.99 + }, + { + "start": 3470.48, + "end": 3471.32, + "probability": 0.6961 + }, + { + "start": 3471.78, + "end": 3472.44, + "probability": 0.9253 + }, + { + "start": 3472.46, + "end": 3473.46, + "probability": 0.8273 + }, + { + "start": 3473.8, + "end": 3474.7, + "probability": 0.8828 + }, + { + "start": 3475.04, + "end": 3475.28, + "probability": 0.9295 + }, + { + "start": 3475.34, + "end": 3476.22, + "probability": 0.9268 + }, + { + "start": 3476.68, + "end": 3479.26, + "probability": 0.8218 + }, + { + "start": 3479.7, + "end": 3481.9, + "probability": 0.8135 + }, + { + "start": 3482.44, + "end": 3482.92, + "probability": 0.731 + }, + { + "start": 3483.06, + "end": 3484.3, + "probability": 0.9387 + }, + { + "start": 3484.64, + "end": 3485.79, + "probability": 0.9611 + }, + { + "start": 3486.8, + "end": 3488.15, + "probability": 0.9497 + }, + { + "start": 3488.44, + "end": 3490.04, + "probability": 0.9961 + }, + { + "start": 3491.1, + "end": 3497.42, + "probability": 0.8096 + }, + { + "start": 3497.42, + "end": 3502.91, + "probability": 0.8325 + }, + { + "start": 3503.14, + "end": 3504.82, + "probability": 0.8976 + }, + { + "start": 3505.4, + "end": 3509.62, + "probability": 0.6177 + }, + { + "start": 3509.9, + "end": 3510.82, + "probability": 0.7761 + }, + { + "start": 3510.9, + "end": 3512.1, + "probability": 0.939 + }, + { + "start": 3512.52, + "end": 3517.66, + "probability": 0.9561 + }, + { + "start": 3517.74, + "end": 3520.38, + "probability": 0.9461 + }, + { + "start": 3520.38, + "end": 3520.48, + "probability": 0.1205 + }, + { + "start": 3521.22, + "end": 3522.14, + "probability": 0.3895 + }, + { + "start": 3522.14, + "end": 3524.9, + "probability": 0.019 + }, + { + "start": 3525.78, + "end": 3525.98, + "probability": 0.0684 + }, + { + "start": 3525.98, + "end": 3526.82, + "probability": 0.0176 + }, + { + "start": 3526.84, + "end": 3528.2, + "probability": 0.8878 + }, + { + "start": 3528.32, + "end": 3529.06, + "probability": 0.9046 + }, + { + "start": 3530.08, + "end": 3533.22, + "probability": 0.7384 + }, + { + "start": 3533.8, + "end": 3535.26, + "probability": 0.6063 + }, + { + "start": 3536.1, + "end": 3537.82, + "probability": 0.9766 + }, + { + "start": 3537.96, + "end": 3539.58, + "probability": 0.994 + }, + { + "start": 3539.96, + "end": 3540.96, + "probability": 0.9441 + }, + { + "start": 3541.02, + "end": 3541.68, + "probability": 0.9395 + }, + { + "start": 3541.8, + "end": 3542.32, + "probability": 0.9328 + }, + { + "start": 3542.44, + "end": 3543.98, + "probability": 0.9561 + }, + { + "start": 3544.58, + "end": 3547.92, + "probability": 0.9717 + }, + { + "start": 3549.18, + "end": 3549.9, + "probability": 0.9985 + }, + { + "start": 3550.5, + "end": 3552.44, + "probability": 0.6548 + }, + { + "start": 3553.76, + "end": 3555.6, + "probability": 0.9451 + }, + { + "start": 3555.9, + "end": 3557.06, + "probability": 0.8665 + }, + { + "start": 3557.38, + "end": 3558.39, + "probability": 0.9854 + }, + { + "start": 3558.82, + "end": 3560.6, + "probability": 0.8635 + }, + { + "start": 3561.1, + "end": 3563.4, + "probability": 0.9961 + }, + { + "start": 3563.48, + "end": 3564.18, + "probability": 0.4713 + }, + { + "start": 3564.28, + "end": 3564.88, + "probability": 0.7732 + }, + { + "start": 3565.18, + "end": 3565.74, + "probability": 0.3611 + }, + { + "start": 3565.82, + "end": 3566.16, + "probability": 0.3086 + }, + { + "start": 3566.16, + "end": 3566.32, + "probability": 0.3692 + }, + { + "start": 3566.42, + "end": 3567.4, + "probability": 0.9289 + }, + { + "start": 3567.46, + "end": 3569.64, + "probability": 0.9399 + }, + { + "start": 3569.68, + "end": 3571.0, + "probability": 0.6375 + }, + { + "start": 3571.12, + "end": 3571.6, + "probability": 0.9525 + }, + { + "start": 3572.86, + "end": 3576.18, + "probability": 0.9596 + }, + { + "start": 3576.9, + "end": 3579.66, + "probability": 0.9991 + }, + { + "start": 3580.96, + "end": 3581.26, + "probability": 0.3329 + }, + { + "start": 3581.38, + "end": 3581.92, + "probability": 0.6424 + }, + { + "start": 3582.08, + "end": 3584.48, + "probability": 0.7688 + }, + { + "start": 3584.48, + "end": 3589.24, + "probability": 0.9404 + }, + { + "start": 3589.46, + "end": 3590.78, + "probability": 0.2672 + }, + { + "start": 3590.96, + "end": 3591.88, + "probability": 0.7515 + }, + { + "start": 3592.0, + "end": 3592.44, + "probability": 0.7864 + }, + { + "start": 3592.88, + "end": 3593.64, + "probability": 0.8668 + }, + { + "start": 3594.04, + "end": 3600.14, + "probability": 0.9854 + }, + { + "start": 3600.48, + "end": 3603.28, + "probability": 0.9504 + }, + { + "start": 3603.86, + "end": 3607.68, + "probability": 0.981 + }, + { + "start": 3607.98, + "end": 3612.78, + "probability": 0.9902 + }, + { + "start": 3613.22, + "end": 3613.98, + "probability": 0.7743 + }, + { + "start": 3614.34, + "end": 3617.16, + "probability": 0.8962 + }, + { + "start": 3617.28, + "end": 3618.61, + "probability": 0.9915 + }, + { + "start": 3618.94, + "end": 3619.24, + "probability": 0.7523 + }, + { + "start": 3619.38, + "end": 3619.6, + "probability": 0.5594 + }, + { + "start": 3619.62, + "end": 3621.78, + "probability": 0.9326 + }, + { + "start": 3630.96, + "end": 3632.58, + "probability": 0.7998 + }, + { + "start": 3635.48, + "end": 3643.34, + "probability": 0.6112 + }, + { + "start": 3643.44, + "end": 3645.92, + "probability": 0.9928 + }, + { + "start": 3645.98, + "end": 3649.1, + "probability": 0.9881 + }, + { + "start": 3649.94, + "end": 3651.5, + "probability": 0.8794 + }, + { + "start": 3653.8, + "end": 3656.9, + "probability": 0.974 + }, + { + "start": 3657.02, + "end": 3657.98, + "probability": 0.7569 + }, + { + "start": 3658.22, + "end": 3659.55, + "probability": 0.9581 + }, + { + "start": 3660.16, + "end": 3665.16, + "probability": 0.9727 + }, + { + "start": 3665.76, + "end": 3666.62, + "probability": 0.9318 + }, + { + "start": 3667.69, + "end": 3671.9, + "probability": 0.9277 + }, + { + "start": 3672.64, + "end": 3673.56, + "probability": 0.9128 + }, + { + "start": 3674.14, + "end": 3676.36, + "probability": 0.9766 + }, + { + "start": 3676.44, + "end": 3676.58, + "probability": 0.1188 + }, + { + "start": 3677.1, + "end": 3678.82, + "probability": 0.9939 + }, + { + "start": 3679.58, + "end": 3680.98, + "probability": 0.8529 + }, + { + "start": 3681.14, + "end": 3683.62, + "probability": 0.9901 + }, + { + "start": 3683.62, + "end": 3687.1, + "probability": 0.816 + }, + { + "start": 3687.58, + "end": 3693.38, + "probability": 0.8713 + }, + { + "start": 3693.92, + "end": 3696.84, + "probability": 0.7955 + }, + { + "start": 3697.2, + "end": 3700.84, + "probability": 0.9956 + }, + { + "start": 3702.42, + "end": 3706.44, + "probability": 0.9863 + }, + { + "start": 3706.44, + "end": 3712.24, + "probability": 0.9645 + }, + { + "start": 3713.46, + "end": 3717.16, + "probability": 0.9445 + }, + { + "start": 3717.24, + "end": 3719.86, + "probability": 0.6094 + }, + { + "start": 3720.28, + "end": 3724.92, + "probability": 0.9865 + }, + { + "start": 3724.92, + "end": 3730.24, + "probability": 0.8969 + }, + { + "start": 3730.68, + "end": 3733.1, + "probability": 0.9836 + }, + { + "start": 3733.68, + "end": 3738.36, + "probability": 0.8964 + }, + { + "start": 3738.48, + "end": 3740.52, + "probability": 0.8034 + }, + { + "start": 3740.56, + "end": 3741.46, + "probability": 0.9908 + }, + { + "start": 3741.5, + "end": 3741.88, + "probability": 0.441 + }, + { + "start": 3742.02, + "end": 3742.42, + "probability": 0.6273 + }, + { + "start": 3742.48, + "end": 3743.18, + "probability": 0.7744 + }, + { + "start": 3751.78, + "end": 3752.68, + "probability": 0.7346 + }, + { + "start": 3753.68, + "end": 3757.56, + "probability": 0.8128 + }, + { + "start": 3759.68, + "end": 3761.44, + "probability": 0.981 + }, + { + "start": 3763.04, + "end": 3766.68, + "probability": 0.7827 + }, + { + "start": 3767.26, + "end": 3768.59, + "probability": 0.7812 + }, + { + "start": 3769.94, + "end": 3772.52, + "probability": 0.6676 + }, + { + "start": 3772.6, + "end": 3775.18, + "probability": 0.9923 + }, + { + "start": 3775.32, + "end": 3778.5, + "probability": 0.9907 + }, + { + "start": 3778.56, + "end": 3778.96, + "probability": 0.7735 + }, + { + "start": 3779.14, + "end": 3781.76, + "probability": 0.8366 + }, + { + "start": 3781.94, + "end": 3783.4, + "probability": 0.7585 + }, + { + "start": 3784.36, + "end": 3786.96, + "probability": 0.8749 + }, + { + "start": 3787.64, + "end": 3792.96, + "probability": 0.8577 + }, + { + "start": 3793.76, + "end": 3794.62, + "probability": 0.0743 + }, + { + "start": 3794.62, + "end": 3795.94, + "probability": 0.9525 + }, + { + "start": 3796.26, + "end": 3798.5, + "probability": 0.8668 + }, + { + "start": 3799.17, + "end": 3802.82, + "probability": 0.9912 + }, + { + "start": 3802.94, + "end": 3804.7, + "probability": 0.7267 + }, + { + "start": 3805.44, + "end": 3805.94, + "probability": 0.5388 + }, + { + "start": 3806.48, + "end": 3812.68, + "probability": 0.9679 + }, + { + "start": 3813.14, + "end": 3815.24, + "probability": 0.9985 + }, + { + "start": 3816.0, + "end": 3816.88, + "probability": 0.9685 + }, + { + "start": 3817.04, + "end": 3819.12, + "probability": 0.9821 + }, + { + "start": 3819.24, + "end": 3820.48, + "probability": 0.8587 + }, + { + "start": 3820.48, + "end": 3822.46, + "probability": 0.8061 + }, + { + "start": 3823.28, + "end": 3828.3, + "probability": 0.981 + }, + { + "start": 3828.5, + "end": 3832.38, + "probability": 0.8548 + }, + { + "start": 3832.68, + "end": 3832.82, + "probability": 0.4617 + }, + { + "start": 3833.04, + "end": 3834.38, + "probability": 0.9873 + }, + { + "start": 3834.62, + "end": 3835.58, + "probability": 0.6418 + }, + { + "start": 3835.76, + "end": 3836.72, + "probability": 0.9795 + }, + { + "start": 3836.78, + "end": 3837.4, + "probability": 0.9906 + }, + { + "start": 3837.54, + "end": 3837.74, + "probability": 0.9783 + }, + { + "start": 3838.06, + "end": 3838.54, + "probability": 0.6891 + }, + { + "start": 3838.64, + "end": 3842.16, + "probability": 0.9368 + }, + { + "start": 3842.26, + "end": 3844.27, + "probability": 0.987 + }, + { + "start": 3844.62, + "end": 3846.75, + "probability": 0.9927 + }, + { + "start": 3847.62, + "end": 3849.84, + "probability": 0.6671 + }, + { + "start": 3850.32, + "end": 3851.99, + "probability": 0.1924 + }, + { + "start": 3852.32, + "end": 3853.74, + "probability": 0.5565 + }, + { + "start": 3853.76, + "end": 3856.06, + "probability": 0.4032 + }, + { + "start": 3856.36, + "end": 3859.9, + "probability": 0.5412 + }, + { + "start": 3860.34, + "end": 3864.04, + "probability": 0.779 + }, + { + "start": 3864.58, + "end": 3867.37, + "probability": 0.9888 + }, + { + "start": 3868.5, + "end": 3869.16, + "probability": 0.1818 + }, + { + "start": 3869.36, + "end": 3870.24, + "probability": 0.5037 + }, + { + "start": 3870.84, + "end": 3871.66, + "probability": 0.7222 + }, + { + "start": 3873.12, + "end": 3878.74, + "probability": 0.9724 + }, + { + "start": 3878.82, + "end": 3880.86, + "probability": 0.7772 + }, + { + "start": 3880.98, + "end": 3882.98, + "probability": 0.6777 + }, + { + "start": 3883.2, + "end": 3885.78, + "probability": 0.9829 + }, + { + "start": 3885.78, + "end": 3886.27, + "probability": 0.7994 + }, + { + "start": 3887.0, + "end": 3888.36, + "probability": 0.9395 + }, + { + "start": 3888.98, + "end": 3891.78, + "probability": 0.969 + }, + { + "start": 3897.1, + "end": 3900.34, + "probability": 0.7422 + }, + { + "start": 3900.98, + "end": 3906.64, + "probability": 0.9788 + }, + { + "start": 3906.76, + "end": 3908.9, + "probability": 0.9698 + }, + { + "start": 3909.38, + "end": 3913.1, + "probability": 0.8577 + }, + { + "start": 3913.7, + "end": 3916.84, + "probability": 0.9623 + }, + { + "start": 3917.56, + "end": 3919.18, + "probability": 0.9885 + }, + { + "start": 3920.02, + "end": 3922.32, + "probability": 0.9707 + }, + { + "start": 3922.56, + "end": 3923.63, + "probability": 0.9753 + }, + { + "start": 3924.44, + "end": 3925.75, + "probability": 0.9932 + }, + { + "start": 3926.12, + "end": 3927.74, + "probability": 0.9785 + }, + { + "start": 3929.48, + "end": 3930.0, + "probability": 0.9652 + }, + { + "start": 3930.16, + "end": 3931.28, + "probability": 0.931 + }, + { + "start": 3931.46, + "end": 3934.68, + "probability": 0.9712 + }, + { + "start": 3935.28, + "end": 3940.0, + "probability": 0.9932 + }, + { + "start": 3940.7, + "end": 3942.6, + "probability": 0.9987 + }, + { + "start": 3943.48, + "end": 3946.7, + "probability": 0.916 + }, + { + "start": 3947.16, + "end": 3948.09, + "probability": 0.8735 + }, + { + "start": 3948.78, + "end": 3950.16, + "probability": 0.9849 + }, + { + "start": 3950.64, + "end": 3954.12, + "probability": 0.9977 + }, + { + "start": 3954.58, + "end": 3957.87, + "probability": 0.9405 + }, + { + "start": 3958.3, + "end": 3959.66, + "probability": 0.9912 + }, + { + "start": 3959.98, + "end": 3962.16, + "probability": 0.9921 + }, + { + "start": 3962.84, + "end": 3964.72, + "probability": 0.9694 + }, + { + "start": 3964.94, + "end": 3966.18, + "probability": 0.9907 + }, + { + "start": 3966.36, + "end": 3967.72, + "probability": 0.9538 + }, + { + "start": 3968.16, + "end": 3972.84, + "probability": 0.9887 + }, + { + "start": 3973.1, + "end": 3976.06, + "probability": 0.9063 + }, + { + "start": 3976.42, + "end": 3978.54, + "probability": 0.8871 + }, + { + "start": 3978.62, + "end": 3979.16, + "probability": 0.6158 + }, + { + "start": 3979.86, + "end": 3986.06, + "probability": 0.9935 + }, + { + "start": 3986.22, + "end": 3989.38, + "probability": 0.9711 + }, + { + "start": 3989.44, + "end": 3993.32, + "probability": 0.9922 + }, + { + "start": 3993.74, + "end": 3996.46, + "probability": 0.994 + }, + { + "start": 3996.6, + "end": 3999.66, + "probability": 0.5978 + }, + { + "start": 3999.78, + "end": 3999.96, + "probability": 0.77 + }, + { + "start": 4000.2, + "end": 4000.66, + "probability": 0.7938 + }, + { + "start": 4000.7, + "end": 4000.94, + "probability": 0.5406 + }, + { + "start": 4001.0, + "end": 4002.6, + "probability": 0.9588 + }, + { + "start": 4002.6, + "end": 4003.13, + "probability": 0.1958 + }, + { + "start": 4004.12, + "end": 4005.2, + "probability": 0.1511 + }, + { + "start": 4006.12, + "end": 4007.68, + "probability": 0.1896 + }, + { + "start": 4008.34, + "end": 4012.06, + "probability": 0.7886 + }, + { + "start": 4012.1, + "end": 4013.98, + "probability": 0.8496 + }, + { + "start": 4015.16, + "end": 4019.16, + "probability": 0.9891 + }, + { + "start": 4019.32, + "end": 4022.0, + "probability": 0.808 + }, + { + "start": 4025.06, + "end": 4025.82, + "probability": 0.7578 + }, + { + "start": 4026.78, + "end": 4027.5, + "probability": 0.6416 + }, + { + "start": 4029.8, + "end": 4032.84, + "probability": 0.9915 + }, + { + "start": 4033.92, + "end": 4037.44, + "probability": 0.8091 + }, + { + "start": 4039.22, + "end": 4046.78, + "probability": 0.9926 + }, + { + "start": 4047.04, + "end": 4047.85, + "probability": 0.9985 + }, + { + "start": 4049.22, + "end": 4052.06, + "probability": 0.7705 + }, + { + "start": 4052.76, + "end": 4053.28, + "probability": 0.7709 + }, + { + "start": 4054.22, + "end": 4058.36, + "probability": 0.9528 + }, + { + "start": 4059.26, + "end": 4060.7, + "probability": 0.9364 + }, + { + "start": 4061.1, + "end": 4062.46, + "probability": 0.7457 + }, + { + "start": 4062.58, + "end": 4064.34, + "probability": 0.9856 + }, + { + "start": 4064.4, + "end": 4065.5, + "probability": 0.9745 + }, + { + "start": 4065.98, + "end": 4069.3, + "probability": 0.999 + }, + { + "start": 4069.44, + "end": 4071.02, + "probability": 0.8915 + }, + { + "start": 4071.76, + "end": 4073.92, + "probability": 0.743 + }, + { + "start": 4074.5, + "end": 4075.58, + "probability": 0.9679 + }, + { + "start": 4075.8, + "end": 4077.42, + "probability": 0.9463 + }, + { + "start": 4077.66, + "end": 4079.68, + "probability": 0.7665 + }, + { + "start": 4080.14, + "end": 4080.56, + "probability": 0.9849 + }, + { + "start": 4080.66, + "end": 4081.32, + "probability": 0.3447 + }, + { + "start": 4081.76, + "end": 4086.9, + "probability": 0.9803 + }, + { + "start": 4087.28, + "end": 4088.08, + "probability": 0.9243 + }, + { + "start": 4088.28, + "end": 4089.02, + "probability": 0.9523 + }, + { + "start": 4089.14, + "end": 4091.64, + "probability": 0.9062 + }, + { + "start": 4091.98, + "end": 4093.7, + "probability": 0.9552 + }, + { + "start": 4094.56, + "end": 4095.42, + "probability": 0.9729 + }, + { + "start": 4095.9, + "end": 4100.08, + "probability": 0.9396 + }, + { + "start": 4100.58, + "end": 4101.49, + "probability": 0.5179 + }, + { + "start": 4101.58, + "end": 4105.4, + "probability": 0.8834 + }, + { + "start": 4105.7, + "end": 4106.94, + "probability": 0.9614 + }, + { + "start": 4107.1, + "end": 4107.64, + "probability": 0.8422 + }, + { + "start": 4107.74, + "end": 4109.42, + "probability": 0.9126 + }, + { + "start": 4109.46, + "end": 4111.54, + "probability": 0.857 + }, + { + "start": 4112.26, + "end": 4114.26, + "probability": 0.832 + }, + { + "start": 4114.84, + "end": 4116.12, + "probability": 0.8234 + }, + { + "start": 4118.0, + "end": 4119.56, + "probability": 0.842 + }, + { + "start": 4119.88, + "end": 4124.18, + "probability": 0.9888 + }, + { + "start": 4124.18, + "end": 4128.6, + "probability": 0.9705 + }, + { + "start": 4129.08, + "end": 4130.54, + "probability": 0.9041 + }, + { + "start": 4130.7, + "end": 4133.52, + "probability": 0.9893 + }, + { + "start": 4134.56, + "end": 4136.08, + "probability": 0.836 + }, + { + "start": 4136.52, + "end": 4138.88, + "probability": 0.8147 + }, + { + "start": 4139.1, + "end": 4142.78, + "probability": 0.9552 + }, + { + "start": 4144.64, + "end": 4153.02, + "probability": 0.8654 + }, + { + "start": 4153.12, + "end": 4153.3, + "probability": 0.5125 + }, + { + "start": 4153.42, + "end": 4154.71, + "probability": 0.9536 + }, + { + "start": 4155.9, + "end": 4157.98, + "probability": 0.4433 + }, + { + "start": 4158.32, + "end": 4160.68, + "probability": 0.2067 + }, + { + "start": 4160.72, + "end": 4160.86, + "probability": 0.2494 + }, + { + "start": 4160.86, + "end": 4162.96, + "probability": 0.9236 + }, + { + "start": 4177.58, + "end": 4180.68, + "probability": 0.7995 + }, + { + "start": 4181.9, + "end": 4184.72, + "probability": 0.5327 + }, + { + "start": 4186.04, + "end": 4194.5, + "probability": 0.9634 + }, + { + "start": 4195.6, + "end": 4197.86, + "probability": 0.96 + }, + { + "start": 4197.98, + "end": 4204.5, + "probability": 0.938 + }, + { + "start": 4205.32, + "end": 4206.66, + "probability": 0.802 + }, + { + "start": 4207.84, + "end": 4210.1, + "probability": 0.8999 + }, + { + "start": 4210.14, + "end": 4210.98, + "probability": 0.9057 + }, + { + "start": 4211.08, + "end": 4212.2, + "probability": 0.7476 + }, + { + "start": 4213.74, + "end": 4215.42, + "probability": 0.9504 + }, + { + "start": 4216.52, + "end": 4219.08, + "probability": 0.7717 + }, + { + "start": 4221.18, + "end": 4225.76, + "probability": 0.9681 + }, + { + "start": 4225.82, + "end": 4226.88, + "probability": 0.8514 + }, + { + "start": 4227.02, + "end": 4230.34, + "probability": 0.9938 + }, + { + "start": 4230.44, + "end": 4231.8, + "probability": 0.7422 + }, + { + "start": 4232.58, + "end": 4239.76, + "probability": 0.9862 + }, + { + "start": 4240.02, + "end": 4240.86, + "probability": 0.7782 + }, + { + "start": 4240.98, + "end": 4243.03, + "probability": 0.9834 + }, + { + "start": 4243.4, + "end": 4244.15, + "probability": 0.9534 + }, + { + "start": 4244.54, + "end": 4245.64, + "probability": 0.7162 + }, + { + "start": 4245.64, + "end": 4247.08, + "probability": 0.8448 + }, + { + "start": 4247.3, + "end": 4249.96, + "probability": 0.9977 + }, + { + "start": 4250.02, + "end": 4252.4, + "probability": 0.9963 + }, + { + "start": 4252.86, + "end": 4255.96, + "probability": 0.9922 + }, + { + "start": 4255.96, + "end": 4259.42, + "probability": 0.9476 + }, + { + "start": 4260.0, + "end": 4265.46, + "probability": 0.9986 + }, + { + "start": 4266.08, + "end": 4269.7, + "probability": 0.8765 + }, + { + "start": 4270.08, + "end": 4273.06, + "probability": 0.9985 + }, + { + "start": 4273.96, + "end": 4275.22, + "probability": 0.7762 + }, + { + "start": 4275.36, + "end": 4279.53, + "probability": 0.9873 + }, + { + "start": 4279.92, + "end": 4284.64, + "probability": 0.9814 + }, + { + "start": 4285.63, + "end": 4290.7, + "probability": 0.5204 + }, + { + "start": 4290.7, + "end": 4293.82, + "probability": 0.6721 + }, + { + "start": 4295.92, + "end": 4296.48, + "probability": 0.5333 + }, + { + "start": 4296.66, + "end": 4298.84, + "probability": 0.1823 + }, + { + "start": 4298.84, + "end": 4300.48, + "probability": 0.6646 + }, + { + "start": 4300.74, + "end": 4302.26, + "probability": 0.977 + }, + { + "start": 4302.34, + "end": 4305.74, + "probability": 0.9943 + }, + { + "start": 4305.92, + "end": 4307.08, + "probability": 0.839 + }, + { + "start": 4307.56, + "end": 4310.16, + "probability": 0.9003 + }, + { + "start": 4310.48, + "end": 4311.44, + "probability": 0.8865 + }, + { + "start": 4312.16, + "end": 4313.52, + "probability": 0.9958 + }, + { + "start": 4313.68, + "end": 4314.48, + "probability": 0.8671 + }, + { + "start": 4314.74, + "end": 4320.8, + "probability": 0.9966 + }, + { + "start": 4321.14, + "end": 4323.96, + "probability": 0.9896 + }, + { + "start": 4324.12, + "end": 4326.4, + "probability": 0.9977 + }, + { + "start": 4326.84, + "end": 4327.06, + "probability": 0.5439 + }, + { + "start": 4327.12, + "end": 4328.64, + "probability": 0.8145 + }, + { + "start": 4330.5, + "end": 4331.76, + "probability": 0.6446 + }, + { + "start": 4331.82, + "end": 4334.54, + "probability": 0.9873 + }, + { + "start": 4336.93, + "end": 4338.74, + "probability": 0.7731 + }, + { + "start": 4338.82, + "end": 4344.06, + "probability": 0.9909 + }, + { + "start": 4344.36, + "end": 4347.98, + "probability": 0.9922 + }, + { + "start": 4348.44, + "end": 4350.86, + "probability": 0.9824 + }, + { + "start": 4351.48, + "end": 4351.8, + "probability": 0.5162 + }, + { + "start": 4352.82, + "end": 4355.72, + "probability": 0.8591 + }, + { + "start": 4355.78, + "end": 4356.8, + "probability": 0.7563 + }, + { + "start": 4356.98, + "end": 4359.18, + "probability": 0.2276 + }, + { + "start": 4359.58, + "end": 4362.39, + "probability": 0.984 + }, + { + "start": 4363.9, + "end": 4364.62, + "probability": 0.9584 + }, + { + "start": 4364.68, + "end": 4367.84, + "probability": 0.9895 + }, + { + "start": 4367.84, + "end": 4371.46, + "probability": 0.9963 + }, + { + "start": 4371.58, + "end": 4371.76, + "probability": 0.3287 + }, + { + "start": 4371.86, + "end": 4374.98, + "probability": 0.9557 + }, + { + "start": 4375.3, + "end": 4376.22, + "probability": 0.6578 + }, + { + "start": 4376.32, + "end": 4377.54, + "probability": 0.673 + }, + { + "start": 4378.22, + "end": 4379.18, + "probability": 0.3712 + }, + { + "start": 4379.18, + "end": 4382.14, + "probability": 0.9901 + }, + { + "start": 4382.18, + "end": 4384.02, + "probability": 0.9683 + }, + { + "start": 4384.46, + "end": 4386.8, + "probability": 0.853 + }, + { + "start": 4387.64, + "end": 4388.84, + "probability": 0.6672 + }, + { + "start": 4388.84, + "end": 4391.52, + "probability": 0.9982 + }, + { + "start": 4391.94, + "end": 4394.34, + "probability": 0.9927 + }, + { + "start": 4398.1, + "end": 4399.22, + "probability": 0.6637 + }, + { + "start": 4399.32, + "end": 4402.16, + "probability": 0.9741 + }, + { + "start": 4402.16, + "end": 4402.52, + "probability": 0.5411 + }, + { + "start": 4402.96, + "end": 4403.91, + "probability": 0.7668 + }, + { + "start": 4404.08, + "end": 4407.44, + "probability": 0.9952 + }, + { + "start": 4407.44, + "end": 4411.56, + "probability": 0.9802 + }, + { + "start": 4412.1, + "end": 4412.62, + "probability": 0.7187 + }, + { + "start": 4412.62, + "end": 4416.82, + "probability": 0.8738 + }, + { + "start": 4417.12, + "end": 4417.94, + "probability": 0.7013 + }, + { + "start": 4418.68, + "end": 4423.04, + "probability": 0.9802 + }, + { + "start": 4423.66, + "end": 4426.08, + "probability": 0.9985 + }, + { + "start": 4427.2, + "end": 4427.42, + "probability": 0.5385 + }, + { + "start": 4427.52, + "end": 4428.14, + "probability": 0.5248 + }, + { + "start": 4428.18, + "end": 4432.2, + "probability": 0.7925 + }, + { + "start": 4432.34, + "end": 4435.88, + "probability": 0.781 + }, + { + "start": 4436.57, + "end": 4440.12, + "probability": 0.98 + }, + { + "start": 4440.7, + "end": 4443.84, + "probability": 0.9957 + }, + { + "start": 4443.88, + "end": 4448.92, + "probability": 0.9961 + }, + { + "start": 4449.48, + "end": 4454.0, + "probability": 0.9973 + }, + { + "start": 4454.88, + "end": 4455.64, + "probability": 0.9587 + }, + { + "start": 4455.72, + "end": 4458.12, + "probability": 0.9218 + }, + { + "start": 4458.18, + "end": 4459.1, + "probability": 0.8841 + }, + { + "start": 4459.36, + "end": 4460.8, + "probability": 0.8215 + }, + { + "start": 4461.4, + "end": 4468.66, + "probability": 0.9167 + }, + { + "start": 4469.72, + "end": 4475.13, + "probability": 0.9741 + }, + { + "start": 4476.76, + "end": 4482.02, + "probability": 0.9844 + }, + { + "start": 4482.02, + "end": 4484.7, + "probability": 0.899 + }, + { + "start": 4485.52, + "end": 4487.2, + "probability": 0.8743 + }, + { + "start": 4488.68, + "end": 4494.4, + "probability": 0.9899 + }, + { + "start": 4494.54, + "end": 4498.88, + "probability": 0.996 + }, + { + "start": 4498.98, + "end": 4501.94, + "probability": 0.9248 + }, + { + "start": 4502.74, + "end": 4504.74, + "probability": 0.9582 + }, + { + "start": 4505.3, + "end": 4505.7, + "probability": 0.6599 + }, + { + "start": 4506.52, + "end": 4508.6, + "probability": 0.9077 + }, + { + "start": 4508.64, + "end": 4512.58, + "probability": 0.6792 + }, + { + "start": 4513.36, + "end": 4516.34, + "probability": 0.8566 + }, + { + "start": 4517.24, + "end": 4522.86, + "probability": 0.9989 + }, + { + "start": 4523.04, + "end": 4527.08, + "probability": 0.976 + }, + { + "start": 4527.78, + "end": 4532.16, + "probability": 0.9619 + }, + { + "start": 4532.66, + "end": 4532.88, + "probability": 0.0 + }, + { + "start": 4535.44, + "end": 4538.04, + "probability": 0.8267 + }, + { + "start": 4538.88, + "end": 4539.44, + "probability": 0.7186 + }, + { + "start": 4539.56, + "end": 4544.22, + "probability": 0.9873 + }, + { + "start": 4545.78, + "end": 4548.48, + "probability": 0.9441 + }, + { + "start": 4549.5, + "end": 4553.94, + "probability": 0.4731 + }, + { + "start": 4554.56, + "end": 4555.08, + "probability": 0.8619 + }, + { + "start": 4556.1, + "end": 4561.78, + "probability": 0.9853 + }, + { + "start": 4562.34, + "end": 4564.23, + "probability": 0.9904 + }, + { + "start": 4564.76, + "end": 4569.22, + "probability": 0.9932 + }, + { + "start": 4569.22, + "end": 4572.66, + "probability": 0.9956 + }, + { + "start": 4573.14, + "end": 4573.92, + "probability": 0.896 + }, + { + "start": 4574.02, + "end": 4575.94, + "probability": 0.949 + }, + { + "start": 4577.18, + "end": 4582.78, + "probability": 0.9487 + }, + { + "start": 4583.6, + "end": 4586.2, + "probability": 0.9981 + }, + { + "start": 4586.64, + "end": 4588.3, + "probability": 0.9584 + }, + { + "start": 4588.74, + "end": 4589.34, + "probability": 0.7242 + }, + { + "start": 4590.14, + "end": 4593.84, + "probability": 0.9729 + }, + { + "start": 4594.38, + "end": 4597.94, + "probability": 0.9854 + }, + { + "start": 4598.98, + "end": 4599.68, + "probability": 0.5233 + }, + { + "start": 4599.74, + "end": 4602.08, + "probability": 0.9733 + }, + { + "start": 4602.42, + "end": 4603.14, + "probability": 0.9451 + }, + { + "start": 4604.56, + "end": 4607.76, + "probability": 0.9958 + }, + { + "start": 4608.7, + "end": 4612.08, + "probability": 0.7687 + }, + { + "start": 4613.0, + "end": 4614.16, + "probability": 0.7068 + }, + { + "start": 4614.24, + "end": 4617.56, + "probability": 0.9963 + }, + { + "start": 4618.28, + "end": 4619.5, + "probability": 0.7967 + }, + { + "start": 4620.16, + "end": 4622.74, + "probability": 0.9961 + }, + { + "start": 4623.18, + "end": 4625.05, + "probability": 0.9984 + }, + { + "start": 4626.1, + "end": 4629.4, + "probability": 0.9954 + }, + { + "start": 4629.48, + "end": 4631.7, + "probability": 0.8588 + }, + { + "start": 4632.92, + "end": 4634.74, + "probability": 0.9103 + }, + { + "start": 4635.14, + "end": 4636.2, + "probability": 0.6323 + }, + { + "start": 4636.32, + "end": 4638.56, + "probability": 0.993 + }, + { + "start": 4638.74, + "end": 4643.64, + "probability": 0.9854 + }, + { + "start": 4644.12, + "end": 4645.82, + "probability": 0.9758 + }, + { + "start": 4646.42, + "end": 4649.75, + "probability": 0.9695 + }, + { + "start": 4650.38, + "end": 4651.56, + "probability": 0.7614 + }, + { + "start": 4652.4, + "end": 4655.32, + "probability": 0.9186 + }, + { + "start": 4655.44, + "end": 4656.44, + "probability": 0.7028 + }, + { + "start": 4656.98, + "end": 4658.88, + "probability": 0.9849 + }, + { + "start": 4659.5, + "end": 4662.24, + "probability": 0.9388 + }, + { + "start": 4662.84, + "end": 4666.18, + "probability": 0.8828 + }, + { + "start": 4667.06, + "end": 4673.42, + "probability": 0.9895 + }, + { + "start": 4673.52, + "end": 4674.32, + "probability": 0.9955 + }, + { + "start": 4674.4, + "end": 4676.14, + "probability": 0.8494 + }, + { + "start": 4676.86, + "end": 4677.34, + "probability": 0.4951 + }, + { + "start": 4677.96, + "end": 4682.52, + "probability": 0.9937 + }, + { + "start": 4682.82, + "end": 4683.56, + "probability": 0.8406 + }, + { + "start": 4684.66, + "end": 4685.96, + "probability": 0.8773 + }, + { + "start": 4686.46, + "end": 4688.74, + "probability": 0.9546 + }, + { + "start": 4689.08, + "end": 4691.26, + "probability": 0.9558 + }, + { + "start": 4691.44, + "end": 4692.5, + "probability": 0.9554 + }, + { + "start": 4693.32, + "end": 4693.96, + "probability": 0.7445 + }, + { + "start": 4694.5, + "end": 4696.48, + "probability": 0.9927 + }, + { + "start": 4697.14, + "end": 4701.52, + "probability": 0.9581 + }, + { + "start": 4701.6, + "end": 4705.4, + "probability": 0.9767 + }, + { + "start": 4705.58, + "end": 4710.71, + "probability": 0.9969 + }, + { + "start": 4711.04, + "end": 4714.58, + "probability": 0.9995 + }, + { + "start": 4715.1, + "end": 4719.78, + "probability": 0.9552 + }, + { + "start": 4720.24, + "end": 4721.6, + "probability": 0.9934 + }, + { + "start": 4721.7, + "end": 4722.32, + "probability": 0.7579 + }, + { + "start": 4722.78, + "end": 4725.38, + "probability": 0.9965 + }, + { + "start": 4725.6, + "end": 4732.41, + "probability": 0.8943 + }, + { + "start": 4733.36, + "end": 4735.1, + "probability": 0.9971 + }, + { + "start": 4735.68, + "end": 4740.12, + "probability": 0.7092 + }, + { + "start": 4740.2, + "end": 4743.4, + "probability": 0.9813 + }, + { + "start": 4743.52, + "end": 4744.72, + "probability": 0.9642 + }, + { + "start": 4746.18, + "end": 4751.12, + "probability": 0.9907 + }, + { + "start": 4751.22, + "end": 4752.06, + "probability": 0.8995 + }, + { + "start": 4752.16, + "end": 4753.02, + "probability": 0.8662 + }, + { + "start": 4753.24, + "end": 4758.78, + "probability": 0.9839 + }, + { + "start": 4759.3, + "end": 4763.26, + "probability": 0.9934 + }, + { + "start": 4763.26, + "end": 4766.82, + "probability": 0.9944 + }, + { + "start": 4767.84, + "end": 4771.16, + "probability": 0.9989 + }, + { + "start": 4771.16, + "end": 4773.14, + "probability": 0.6843 + }, + { + "start": 4773.26, + "end": 4777.06, + "probability": 0.9905 + }, + { + "start": 4777.86, + "end": 4778.82, + "probability": 0.8514 + }, + { + "start": 4778.98, + "end": 4782.06, + "probability": 0.9433 + }, + { + "start": 4782.2, + "end": 4782.7, + "probability": 0.492 + }, + { + "start": 4782.78, + "end": 4786.66, + "probability": 0.9957 + }, + { + "start": 4787.34, + "end": 4790.58, + "probability": 0.9927 + }, + { + "start": 4791.4, + "end": 4792.58, + "probability": 0.7549 + }, + { + "start": 4792.86, + "end": 4795.88, + "probability": 0.9871 + }, + { + "start": 4796.48, + "end": 4799.64, + "probability": 0.9474 + }, + { + "start": 4800.18, + "end": 4803.5, + "probability": 0.8514 + }, + { + "start": 4803.7, + "end": 4804.32, + "probability": 0.9917 + }, + { + "start": 4804.54, + "end": 4805.14, + "probability": 0.7945 + }, + { + "start": 4805.48, + "end": 4806.36, + "probability": 0.8293 + }, + { + "start": 4806.74, + "end": 4810.86, + "probability": 0.9295 + }, + { + "start": 4811.5, + "end": 4814.98, + "probability": 0.9404 + }, + { + "start": 4815.86, + "end": 4817.4, + "probability": 0.9026 + }, + { + "start": 4817.94, + "end": 4819.88, + "probability": 0.9172 + }, + { + "start": 4820.68, + "end": 4823.36, + "probability": 0.9882 + }, + { + "start": 4824.12, + "end": 4835.62, + "probability": 0.9795 + }, + { + "start": 4837.08, + "end": 4839.96, + "probability": 0.994 + }, + { + "start": 4840.1, + "end": 4841.68, + "probability": 0.9956 + }, + { + "start": 4842.14, + "end": 4843.76, + "probability": 0.9241 + }, + { + "start": 4844.04, + "end": 4846.77, + "probability": 0.9988 + }, + { + "start": 4849.71, + "end": 4851.8, + "probability": 0.6661 + }, + { + "start": 4851.9, + "end": 4853.12, + "probability": 0.8742 + }, + { + "start": 4853.2, + "end": 4854.38, + "probability": 0.5392 + }, + { + "start": 4854.8, + "end": 4856.43, + "probability": 0.8882 + }, + { + "start": 4856.86, + "end": 4858.22, + "probability": 0.983 + }, + { + "start": 4858.38, + "end": 4859.36, + "probability": 0.914 + }, + { + "start": 4859.9, + "end": 4862.88, + "probability": 0.9746 + }, + { + "start": 4863.42, + "end": 4867.32, + "probability": 0.9639 + }, + { + "start": 4867.88, + "end": 4871.58, + "probability": 0.9967 + }, + { + "start": 4871.58, + "end": 4874.87, + "probability": 0.978 + }, + { + "start": 4875.9, + "end": 4880.15, + "probability": 0.9384 + }, + { + "start": 4880.32, + "end": 4881.1, + "probability": 0.6193 + }, + { + "start": 4882.3, + "end": 4886.6, + "probability": 0.9878 + }, + { + "start": 4887.22, + "end": 4892.06, + "probability": 0.9843 + }, + { + "start": 4892.58, + "end": 4895.7, + "probability": 0.8713 + }, + { + "start": 4895.8, + "end": 4896.46, + "probability": 0.9334 + }, + { + "start": 4896.58, + "end": 4898.1, + "probability": 0.5448 + }, + { + "start": 4898.2, + "end": 4899.78, + "probability": 0.7961 + }, + { + "start": 4899.96, + "end": 4900.84, + "probability": 0.9971 + }, + { + "start": 4901.16, + "end": 4905.14, + "probability": 0.8859 + }, + { + "start": 4906.44, + "end": 4910.3, + "probability": 0.9639 + }, + { + "start": 4910.98, + "end": 4912.74, + "probability": 0.9934 + }, + { + "start": 4912.96, + "end": 4920.32, + "probability": 0.9553 + }, + { + "start": 4920.54, + "end": 4922.98, + "probability": 0.6492 + }, + { + "start": 4923.02, + "end": 4923.64, + "probability": 0.9221 + }, + { + "start": 4923.68, + "end": 4926.24, + "probability": 0.7262 + }, + { + "start": 4926.42, + "end": 4926.84, + "probability": 0.3169 + }, + { + "start": 4926.92, + "end": 4927.44, + "probability": 0.9832 + }, + { + "start": 4928.12, + "end": 4928.32, + "probability": 0.5152 + }, + { + "start": 4928.4, + "end": 4930.1, + "probability": 0.9203 + }, + { + "start": 4930.12, + "end": 4933.28, + "probability": 0.9758 + }, + { + "start": 4933.38, + "end": 4936.84, + "probability": 0.9167 + }, + { + "start": 4937.06, + "end": 4942.06, + "probability": 0.9732 + }, + { + "start": 4942.48, + "end": 4943.9, + "probability": 0.9725 + }, + { + "start": 4944.36, + "end": 4947.17, + "probability": 0.9786 + }, + { + "start": 4947.4, + "end": 4948.86, + "probability": 0.9934 + }, + { + "start": 4949.22, + "end": 4951.08, + "probability": 0.9311 + }, + { + "start": 4951.5, + "end": 4952.87, + "probability": 0.9588 + }, + { + "start": 4953.62, + "end": 4958.3, + "probability": 0.8961 + }, + { + "start": 4958.44, + "end": 4959.62, + "probability": 0.936 + }, + { + "start": 4959.72, + "end": 4961.82, + "probability": 0.8626 + }, + { + "start": 4962.02, + "end": 4962.28, + "probability": 0.8595 + }, + { + "start": 4962.32, + "end": 4964.2, + "probability": 0.991 + }, + { + "start": 4964.28, + "end": 4966.02, + "probability": 0.979 + }, + { + "start": 4966.64, + "end": 4969.26, + "probability": 0.9988 + }, + { + "start": 4969.26, + "end": 4973.16, + "probability": 0.9979 + }, + { + "start": 4973.3, + "end": 4975.89, + "probability": 0.8725 + }, + { + "start": 4976.78, + "end": 4977.22, + "probability": 0.4712 + }, + { + "start": 4977.32, + "end": 4978.9, + "probability": 0.954 + }, + { + "start": 4979.08, + "end": 4979.82, + "probability": 0.8297 + }, + { + "start": 4980.08, + "end": 4981.44, + "probability": 0.982 + }, + { + "start": 4981.64, + "end": 4983.06, + "probability": 0.9881 + }, + { + "start": 4983.3, + "end": 4985.9, + "probability": 0.8745 + }, + { + "start": 4986.18, + "end": 4986.84, + "probability": 0.7991 + }, + { + "start": 4986.88, + "end": 4991.18, + "probability": 0.9338 + }, + { + "start": 4991.46, + "end": 4994.62, + "probability": 0.8772 + }, + { + "start": 4994.72, + "end": 4995.04, + "probability": 0.9051 + }, + { + "start": 4995.12, + "end": 4995.54, + "probability": 0.9156 + }, + { + "start": 4995.64, + "end": 4996.42, + "probability": 0.7516 + }, + { + "start": 4997.05, + "end": 4999.61, + "probability": 0.8745 + }, + { + "start": 5000.54, + "end": 5003.06, + "probability": 0.9619 + }, + { + "start": 5003.06, + "end": 5007.82, + "probability": 0.7963 + }, + { + "start": 5008.18, + "end": 5009.46, + "probability": 0.7367 + }, + { + "start": 5009.54, + "end": 5010.22, + "probability": 0.877 + }, + { + "start": 5010.3, + "end": 5010.96, + "probability": 0.7357 + }, + { + "start": 5011.12, + "end": 5014.62, + "probability": 0.9832 + }, + { + "start": 5014.88, + "end": 5015.56, + "probability": 0.9093 + }, + { + "start": 5015.84, + "end": 5016.42, + "probability": 0.7774 + }, + { + "start": 5016.84, + "end": 5019.22, + "probability": 0.9402 + }, + { + "start": 5019.86, + "end": 5024.36, + "probability": 0.9856 + }, + { + "start": 5024.46, + "end": 5025.02, + "probability": 0.7965 + }, + { + "start": 5025.06, + "end": 5027.84, + "probability": 0.942 + }, + { + "start": 5027.98, + "end": 5029.14, + "probability": 0.9147 + }, + { + "start": 5030.4, + "end": 5030.74, + "probability": 0.5969 + }, + { + "start": 5030.86, + "end": 5031.32, + "probability": 0.9021 + }, + { + "start": 5031.4, + "end": 5032.08, + "probability": 0.8555 + }, + { + "start": 5032.34, + "end": 5034.7, + "probability": 0.8875 + }, + { + "start": 5035.12, + "end": 5036.48, + "probability": 0.8857 + }, + { + "start": 5036.74, + "end": 5038.22, + "probability": 0.99 + }, + { + "start": 5038.3, + "end": 5039.72, + "probability": 0.8385 + }, + { + "start": 5039.76, + "end": 5042.33, + "probability": 0.8527 + }, + { + "start": 5043.06, + "end": 5045.28, + "probability": 0.9636 + }, + { + "start": 5045.48, + "end": 5048.34, + "probability": 0.9703 + }, + { + "start": 5048.58, + "end": 5049.68, + "probability": 0.9653 + }, + { + "start": 5049.84, + "end": 5050.58, + "probability": 0.5925 + }, + { + "start": 5050.86, + "end": 5051.62, + "probability": 0.6142 + }, + { + "start": 5051.66, + "end": 5052.4, + "probability": 0.9166 + }, + { + "start": 5052.54, + "end": 5056.54, + "probability": 0.9633 + }, + { + "start": 5056.7, + "end": 5058.3, + "probability": 0.98 + }, + { + "start": 5058.52, + "end": 5061.72, + "probability": 0.9956 + }, + { + "start": 5062.0, + "end": 5063.1, + "probability": 0.6864 + }, + { + "start": 5063.16, + "end": 5063.77, + "probability": 0.9372 + }, + { + "start": 5064.46, + "end": 5065.02, + "probability": 0.9882 + }, + { + "start": 5065.58, + "end": 5066.48, + "probability": 0.9526 + }, + { + "start": 5067.04, + "end": 5067.6, + "probability": 0.9902 + }, + { + "start": 5067.66, + "end": 5070.78, + "probability": 0.9557 + }, + { + "start": 5071.0, + "end": 5076.5, + "probability": 0.9177 + }, + { + "start": 5077.26, + "end": 5080.62, + "probability": 0.9305 + }, + { + "start": 5080.68, + "end": 5082.02, + "probability": 0.9404 + }, + { + "start": 5082.08, + "end": 5082.48, + "probability": 0.823 + }, + { + "start": 5082.56, + "end": 5082.92, + "probability": 0.7915 + }, + { + "start": 5083.02, + "end": 5084.68, + "probability": 0.9219 + }, + { + "start": 5087.98, + "end": 5088.9, + "probability": 0.6373 + }, + { + "start": 5089.0, + "end": 5089.7, + "probability": 0.8721 + }, + { + "start": 5089.72, + "end": 5093.18, + "probability": 0.995 + }, + { + "start": 5093.18, + "end": 5096.08, + "probability": 0.8699 + }, + { + "start": 5096.46, + "end": 5100.16, + "probability": 0.9657 + }, + { + "start": 5100.28, + "end": 5100.84, + "probability": 0.4658 + }, + { + "start": 5101.34, + "end": 5102.32, + "probability": 0.652 + }, + { + "start": 5102.96, + "end": 5107.4, + "probability": 0.9401 + }, + { + "start": 5107.56, + "end": 5108.28, + "probability": 0.9411 + }, + { + "start": 5108.44, + "end": 5109.0, + "probability": 0.5768 + }, + { + "start": 5109.24, + "end": 5112.24, + "probability": 0.9652 + }, + { + "start": 5112.44, + "end": 5113.22, + "probability": 0.8505 + }, + { + "start": 5113.42, + "end": 5114.76, + "probability": 0.9927 + }, + { + "start": 5114.92, + "end": 5116.48, + "probability": 0.8411 + }, + { + "start": 5116.84, + "end": 5119.26, + "probability": 0.9955 + }, + { + "start": 5119.42, + "end": 5120.7, + "probability": 0.9949 + }, + { + "start": 5121.26, + "end": 5122.22, + "probability": 0.8286 + }, + { + "start": 5122.48, + "end": 5125.12, + "probability": 0.9817 + }, + { + "start": 5125.16, + "end": 5125.88, + "probability": 0.9174 + }, + { + "start": 5126.48, + "end": 5128.01, + "probability": 0.9492 + }, + { + "start": 5128.44, + "end": 5132.04, + "probability": 0.5205 + }, + { + "start": 5132.08, + "end": 5133.44, + "probability": 0.9162 + }, + { + "start": 5133.76, + "end": 5134.14, + "probability": 0.8527 + }, + { + "start": 5134.5, + "end": 5135.88, + "probability": 0.979 + }, + { + "start": 5136.34, + "end": 5139.2, + "probability": 0.9915 + }, + { + "start": 5139.3, + "end": 5141.9, + "probability": 0.9458 + }, + { + "start": 5142.08, + "end": 5145.14, + "probability": 0.9741 + }, + { + "start": 5145.26, + "end": 5146.68, + "probability": 0.8805 + }, + { + "start": 5146.74, + "end": 5148.38, + "probability": 0.9422 + }, + { + "start": 5148.78, + "end": 5153.12, + "probability": 0.9927 + }, + { + "start": 5153.92, + "end": 5156.82, + "probability": 0.8147 + }, + { + "start": 5157.42, + "end": 5159.58, + "probability": 0.7524 + }, + { + "start": 5160.86, + "end": 5165.42, + "probability": 0.9976 + }, + { + "start": 5165.54, + "end": 5167.6, + "probability": 0.8091 + }, + { + "start": 5167.72, + "end": 5168.62, + "probability": 0.9519 + }, + { + "start": 5169.06, + "end": 5174.36, + "probability": 0.9875 + }, + { + "start": 5174.82, + "end": 5177.58, + "probability": 0.6966 + }, + { + "start": 5177.62, + "end": 5178.9, + "probability": 0.9034 + }, + { + "start": 5178.98, + "end": 5180.48, + "probability": 0.6624 + }, + { + "start": 5180.86, + "end": 5181.77, + "probability": 0.8682 + }, + { + "start": 5182.34, + "end": 5185.2, + "probability": 0.9878 + }, + { + "start": 5185.2, + "end": 5188.04, + "probability": 0.8815 + }, + { + "start": 5188.3, + "end": 5192.54, + "probability": 0.9931 + }, + { + "start": 5193.0, + "end": 5193.44, + "probability": 0.8245 + }, + { + "start": 5193.76, + "end": 5194.18, + "probability": 0.591 + }, + { + "start": 5194.2, + "end": 5195.92, + "probability": 0.9337 + }, + { + "start": 5197.32, + "end": 5198.84, + "probability": 0.6469 + }, + { + "start": 5199.18, + "end": 5200.15, + "probability": 0.8976 + }, + { + "start": 5200.26, + "end": 5203.36, + "probability": 0.9648 + }, + { + "start": 5203.38, + "end": 5204.18, + "probability": 0.8643 + }, + { + "start": 5204.36, + "end": 5205.46, + "probability": 0.88 + }, + { + "start": 5205.7, + "end": 5206.48, + "probability": 0.8955 + }, + { + "start": 5206.82, + "end": 5209.1, + "probability": 0.9926 + }, + { + "start": 5209.2, + "end": 5210.9, + "probability": 0.5422 + }, + { + "start": 5210.98, + "end": 5211.88, + "probability": 0.9822 + }, + { + "start": 5212.28, + "end": 5213.64, + "probability": 0.714 + }, + { + "start": 5213.7, + "end": 5214.28, + "probability": 0.8576 + }, + { + "start": 5214.64, + "end": 5219.72, + "probability": 0.8547 + }, + { + "start": 5222.52, + "end": 5222.74, + "probability": 0.0376 + }, + { + "start": 5222.74, + "end": 5223.36, + "probability": 0.1077 + }, + { + "start": 5223.48, + "end": 5223.72, + "probability": 0.4628 + }, + { + "start": 5223.88, + "end": 5227.58, + "probability": 0.9447 + }, + { + "start": 5227.6, + "end": 5229.54, + "probability": 0.8067 + }, + { + "start": 5229.72, + "end": 5232.42, + "probability": 0.9849 + }, + { + "start": 5232.72, + "end": 5232.82, + "probability": 0.0006 + }, + { + "start": 5232.82, + "end": 5237.6, + "probability": 0.9147 + }, + { + "start": 5237.6, + "end": 5240.78, + "probability": 0.988 + }, + { + "start": 5240.84, + "end": 5242.96, + "probability": 0.9473 + }, + { + "start": 5243.24, + "end": 5244.0, + "probability": 0.6044 + }, + { + "start": 5244.12, + "end": 5244.38, + "probability": 0.8271 + }, + { + "start": 5244.5, + "end": 5247.5, + "probability": 0.9899 + }, + { + "start": 5247.66, + "end": 5247.88, + "probability": 0.4771 + }, + { + "start": 5247.94, + "end": 5249.78, + "probability": 0.9739 + }, + { + "start": 5250.26, + "end": 5251.84, + "probability": 0.8423 + }, + { + "start": 5251.94, + "end": 5252.04, + "probability": 0.0035 + }, + { + "start": 5252.04, + "end": 5254.38, + "probability": 0.9872 + }, + { + "start": 5254.38, + "end": 5256.92, + "probability": 0.9871 + }, + { + "start": 5257.02, + "end": 5257.59, + "probability": 0.9751 + }, + { + "start": 5258.06, + "end": 5259.1, + "probability": 0.894 + }, + { + "start": 5259.22, + "end": 5262.48, + "probability": 0.9345 + }, + { + "start": 5262.66, + "end": 5262.96, + "probability": 0.4613 + }, + { + "start": 5263.12, + "end": 5263.84, + "probability": 0.9705 + }, + { + "start": 5263.94, + "end": 5264.56, + "probability": 0.8148 + }, + { + "start": 5264.94, + "end": 5266.6, + "probability": 0.9937 + }, + { + "start": 5266.72, + "end": 5269.76, + "probability": 0.8166 + }, + { + "start": 5270.2, + "end": 5272.86, + "probability": 0.9694 + }, + { + "start": 5272.86, + "end": 5277.54, + "probability": 0.9381 + }, + { + "start": 5278.02, + "end": 5281.03, + "probability": 0.9321 + }, + { + "start": 5281.38, + "end": 5285.76, + "probability": 0.9933 + }, + { + "start": 5285.86, + "end": 5286.38, + "probability": 0.8513 + }, + { + "start": 5286.52, + "end": 5287.54, + "probability": 0.9635 + }, + { + "start": 5287.7, + "end": 5293.48, + "probability": 0.9966 + }, + { + "start": 5293.6, + "end": 5293.72, + "probability": 0.0034 + }, + { + "start": 5293.74, + "end": 5294.06, + "probability": 0.5992 + }, + { + "start": 5294.38, + "end": 5298.2, + "probability": 0.9896 + }, + { + "start": 5298.36, + "end": 5300.58, + "probability": 0.9944 + }, + { + "start": 5300.66, + "end": 5302.8, + "probability": 0.9146 + }, + { + "start": 5303.08, + "end": 5305.56, + "probability": 0.9945 + }, + { + "start": 5305.78, + "end": 5309.72, + "probability": 0.9328 + }, + { + "start": 5309.92, + "end": 5312.74, + "probability": 0.9929 + }, + { + "start": 5313.04, + "end": 5314.68, + "probability": 0.9619 + }, + { + "start": 5314.92, + "end": 5315.1, + "probability": 0.8551 + }, + { + "start": 5315.16, + "end": 5319.46, + "probability": 0.9958 + }, + { + "start": 5319.86, + "end": 5320.96, + "probability": 0.9125 + }, + { + "start": 5321.0, + "end": 5321.5, + "probability": 0.8373 + }, + { + "start": 5321.82, + "end": 5322.2, + "probability": 0.5666 + }, + { + "start": 5322.28, + "end": 5324.12, + "probability": 0.7279 + }, + { + "start": 5326.55, + "end": 5329.4, + "probability": 0.9382 + }, + { + "start": 5329.66, + "end": 5333.78, + "probability": 0.8314 + }, + { + "start": 5333.78, + "end": 5336.8, + "probability": 0.947 + }, + { + "start": 5337.98, + "end": 5339.0, + "probability": 0.8863 + }, + { + "start": 5339.1, + "end": 5339.72, + "probability": 0.9059 + }, + { + "start": 5339.82, + "end": 5341.84, + "probability": 0.9904 + }, + { + "start": 5341.84, + "end": 5345.56, + "probability": 0.9652 + }, + { + "start": 5345.72, + "end": 5348.13, + "probability": 0.9053 + }, + { + "start": 5348.78, + "end": 5350.66, + "probability": 0.6362 + }, + { + "start": 5350.96, + "end": 5352.78, + "probability": 0.7203 + }, + { + "start": 5352.82, + "end": 5356.22, + "probability": 0.9987 + }, + { + "start": 5356.7, + "end": 5358.28, + "probability": 0.825 + }, + { + "start": 5358.44, + "end": 5362.54, + "probability": 0.9963 + }, + { + "start": 5363.12, + "end": 5365.34, + "probability": 0.9753 + }, + { + "start": 5365.34, + "end": 5368.02, + "probability": 0.9979 + }, + { + "start": 5368.48, + "end": 5370.6, + "probability": 0.9973 + }, + { + "start": 5370.76, + "end": 5377.1, + "probability": 0.9637 + }, + { + "start": 5377.5, + "end": 5377.64, + "probability": 0.6905 + }, + { + "start": 5377.7, + "end": 5377.96, + "probability": 0.8519 + }, + { + "start": 5378.0, + "end": 5379.52, + "probability": 0.9908 + }, + { + "start": 5379.7, + "end": 5382.64, + "probability": 0.8724 + }, + { + "start": 5382.8, + "end": 5384.76, + "probability": 0.684 + }, + { + "start": 5384.84, + "end": 5385.28, + "probability": 0.6735 + }, + { + "start": 5385.32, + "end": 5385.8, + "probability": 0.8521 + }, + { + "start": 5386.16, + "end": 5386.28, + "probability": 0.6665 + }, + { + "start": 5386.44, + "end": 5390.4, + "probability": 0.9619 + }, + { + "start": 5390.9, + "end": 5391.42, + "probability": 0.8342 + }, + { + "start": 5391.64, + "end": 5393.52, + "probability": 0.9814 + }, + { + "start": 5393.58, + "end": 5393.88, + "probability": 0.0546 + }, + { + "start": 5393.88, + "end": 5393.88, + "probability": 0.0179 + }, + { + "start": 5394.62, + "end": 5394.98, + "probability": 0.5584 + }, + { + "start": 5394.98, + "end": 5395.82, + "probability": 0.6821 + }, + { + "start": 5395.92, + "end": 5397.24, + "probability": 0.9814 + }, + { + "start": 5397.44, + "end": 5398.4, + "probability": 0.3025 + }, + { + "start": 5398.78, + "end": 5399.02, + "probability": 0.4816 + }, + { + "start": 5399.02, + "end": 5399.14, + "probability": 0.3779 + }, + { + "start": 5399.14, + "end": 5400.06, + "probability": 0.8405 + }, + { + "start": 5405.74, + "end": 5406.06, + "probability": 0.7258 + }, + { + "start": 5406.42, + "end": 5411.58, + "probability": 0.8876 + }, + { + "start": 5411.76, + "end": 5413.14, + "probability": 0.6812 + }, + { + "start": 5413.88, + "end": 5415.14, + "probability": 0.6646 + }, + { + "start": 5416.87, + "end": 5421.33, + "probability": 0.7533 + }, + { + "start": 5422.32, + "end": 5424.06, + "probability": 0.9139 + }, + { + "start": 5424.76, + "end": 5427.86, + "probability": 0.9827 + }, + { + "start": 5429.88, + "end": 5430.92, + "probability": 0.866 + }, + { + "start": 5435.12, + "end": 5442.19, + "probability": 0.998 + }, + { + "start": 5442.92, + "end": 5446.22, + "probability": 0.98 + }, + { + "start": 5446.3, + "end": 5447.4, + "probability": 0.8714 + }, + { + "start": 5447.46, + "end": 5449.42, + "probability": 0.9551 + }, + { + "start": 5449.46, + "end": 5450.06, + "probability": 0.6867 + }, + { + "start": 5450.66, + "end": 5453.52, + "probability": 0.9923 + }, + { + "start": 5453.94, + "end": 5460.92, + "probability": 0.8151 + }, + { + "start": 5462.0, + "end": 5466.82, + "probability": 0.99 + }, + { + "start": 5467.84, + "end": 5474.5, + "probability": 0.972 + }, + { + "start": 5475.14, + "end": 5478.02, + "probability": 0.1577 + }, + { + "start": 5478.34, + "end": 5480.78, + "probability": 0.1963 + }, + { + "start": 5480.82, + "end": 5481.5, + "probability": 0.0963 + }, + { + "start": 5481.5, + "end": 5483.28, + "probability": 0.0637 + }, + { + "start": 5483.72, + "end": 5485.88, + "probability": 0.3914 + }, + { + "start": 5485.94, + "end": 5486.98, + "probability": 0.9032 + }, + { + "start": 5596.0, + "end": 5596.0, + "probability": 0.0 + }, + { + "start": 5596.0, + "end": 5596.0, + "probability": 0.0 + }, + { + "start": 5596.0, + "end": 5596.0, + "probability": 0.0 + }, + { + "start": 5596.0, + "end": 5596.0, + "probability": 0.0 + }, + { + "start": 5596.0, + "end": 5596.0, + "probability": 0.0 + }, + { + "start": 5596.0, + "end": 5596.0, + "probability": 0.0 + }, + { + "start": 5596.0, + "end": 5596.0, + "probability": 0.0 + }, + { + "start": 5596.0, + "end": 5596.0, + "probability": 0.0 + }, + { + "start": 5596.0, + "end": 5596.0, + "probability": 0.0 + }, + { + "start": 5596.0, + "end": 5596.0, + "probability": 0.0 + }, + { + "start": 5596.0, + "end": 5596.0, + "probability": 0.0 + }, + { + "start": 5596.0, + "end": 5596.0, + "probability": 0.0 + }, + { + "start": 5596.0, + "end": 5596.0, + "probability": 0.0 + }, + { + "start": 5596.0, + "end": 5596.0, + "probability": 0.0 + }, + { + "start": 5596.0, + "end": 5596.0, + "probability": 0.0 + }, + { + "start": 5596.0, + "end": 5596.0, + "probability": 0.0 + }, + { + "start": 5596.0, + "end": 5596.0, + "probability": 0.0 + }, + { + "start": 5596.0, + "end": 5596.0, + "probability": 0.0 + }, + { + "start": 5596.0, + "end": 5596.0, + "probability": 0.0 + }, + { + "start": 5596.0, + "end": 5596.0, + "probability": 0.0 + }, + { + "start": 5596.0, + "end": 5596.0, + "probability": 0.0 + }, + { + "start": 5596.0, + "end": 5596.0, + "probability": 0.0 + }, + { + "start": 5596.0, + "end": 5596.0, + "probability": 0.0 + }, + { + "start": 5596.0, + "end": 5596.0, + "probability": 0.0 + }, + { + "start": 5596.0, + "end": 5596.0, + "probability": 0.0 + }, + { + "start": 5596.0, + "end": 5596.0, + "probability": 0.0 + }, + { + "start": 5596.0, + "end": 5596.0, + "probability": 0.0 + }, + { + "start": 5596.0, + "end": 5596.0, + "probability": 0.0 + }, + { + "start": 5596.0, + "end": 5596.0, + "probability": 0.0 + }, + { + "start": 5596.0, + "end": 5596.0, + "probability": 0.0 + }, + { + "start": 5596.0, + "end": 5596.0, + "probability": 0.0 + }, + { + "start": 5596.0, + "end": 5596.0, + "probability": 0.0 + }, + { + "start": 5596.0, + "end": 5596.0, + "probability": 0.0 + }, + { + "start": 5596.0, + "end": 5596.0, + "probability": 0.0 + }, + { + "start": 5596.0, + "end": 5596.0, + "probability": 0.0 + }, + { + "start": 5596.0, + "end": 5596.0, + "probability": 0.0 + }, + { + "start": 5596.0, + "end": 5596.0, + "probability": 0.0 + }, + { + "start": 5596.0, + "end": 5596.0, + "probability": 0.0 + }, + { + "start": 5596.0, + "end": 5596.0, + "probability": 0.0 + }, + { + "start": 5596.0, + "end": 5596.0, + "probability": 0.0 + }, + { + "start": 5596.0, + "end": 5596.0, + "probability": 0.0 + }, + { + "start": 5596.0, + "end": 5596.0, + "probability": 0.0 + }, + { + "start": 5596.0, + "end": 5596.0, + "probability": 0.0 + }, + { + "start": 5596.0, + "end": 5596.0, + "probability": 0.0 + }, + { + "start": 5596.0, + "end": 5596.0, + "probability": 0.0 + }, + { + "start": 5596.0, + "end": 5596.0, + "probability": 0.0 + }, + { + "start": 5596.0, + "end": 5596.0, + "probability": 0.0 + }, + { + "start": 5596.0, + "end": 5596.0, + "probability": 0.0 + }, + { + "start": 5596.0, + "end": 5596.0, + "probability": 0.0 + }, + { + "start": 5596.0, + "end": 5596.0, + "probability": 0.0 + }, + { + "start": 5596.18, + "end": 5596.34, + "probability": 0.5238 + }, + { + "start": 5596.34, + "end": 5596.34, + "probability": 0.2396 + }, + { + "start": 5596.34, + "end": 5596.34, + "probability": 0.1559 + }, + { + "start": 5596.34, + "end": 5597.47, + "probability": 0.2755 + }, + { + "start": 5598.16, + "end": 5599.82, + "probability": 0.0868 + }, + { + "start": 5599.82, + "end": 5602.58, + "probability": 0.0841 + }, + { + "start": 5602.64, + "end": 5603.24, + "probability": 0.2366 + }, + { + "start": 5605.3, + "end": 5607.1, + "probability": 0.0155 + }, + { + "start": 5607.1, + "end": 5608.58, + "probability": 0.0043 + }, + { + "start": 5611.9, + "end": 5611.9, + "probability": 0.068 + }, + { + "start": 5611.9, + "end": 5613.25, + "probability": 0.3088 + }, + { + "start": 5614.46, + "end": 5614.56, + "probability": 0.049 + }, + { + "start": 5614.6, + "end": 5618.44, + "probability": 0.0753 + }, + { + "start": 5718.0, + "end": 5718.0, + "probability": 0.0 + }, + { + "start": 5718.0, + "end": 5718.0, + "probability": 0.0 + }, + { + "start": 5718.0, + "end": 5718.0, + "probability": 0.0 + }, + { + "start": 5718.0, + "end": 5718.0, + "probability": 0.0 + }, + { + "start": 5718.0, + "end": 5718.0, + "probability": 0.0 + }, + { + "start": 5718.0, + "end": 5718.0, + "probability": 0.0 + }, + { + "start": 5718.0, + "end": 5718.0, + "probability": 0.0 + }, + { + "start": 5718.0, + "end": 5718.0, + "probability": 0.0 + }, + { + "start": 5718.0, + "end": 5718.0, + "probability": 0.0 + }, + { + "start": 5718.0, + "end": 5718.0, + "probability": 0.0 + }, + { + "start": 5718.0, + "end": 5718.0, + "probability": 0.0 + }, + { + "start": 5718.0, + "end": 5718.0, + "probability": 0.0 + }, + { + "start": 5718.0, + "end": 5718.0, + "probability": 0.0 + }, + { + "start": 5718.0, + "end": 5718.0, + "probability": 0.0 + }, + { + "start": 5718.0, + "end": 5718.0, + "probability": 0.0 + }, + { + "start": 5718.0, + "end": 5718.0, + "probability": 0.0 + }, + { + "start": 5718.0, + "end": 5718.0, + "probability": 0.0 + }, + { + "start": 5718.0, + "end": 5718.0, + "probability": 0.0 + }, + { + "start": 5718.0, + "end": 5718.0, + "probability": 0.0 + }, + { + "start": 5718.0, + "end": 5718.0, + "probability": 0.0 + }, + { + "start": 5718.0, + "end": 5718.0, + "probability": 0.0 + }, + { + "start": 5718.0, + "end": 5718.0, + "probability": 0.0 + }, + { + "start": 5718.0, + "end": 5718.0, + "probability": 0.0 + }, + { + "start": 5718.0, + "end": 5718.0, + "probability": 0.0 + }, + { + "start": 5718.0, + "end": 5718.0, + "probability": 0.0 + }, + { + "start": 5718.0, + "end": 5718.0, + "probability": 0.0 + }, + { + "start": 5718.0, + "end": 5718.0, + "probability": 0.0 + }, + { + "start": 5718.0, + "end": 5718.0, + "probability": 0.0 + }, + { + "start": 5718.0, + "end": 5718.0, + "probability": 0.0 + }, + { + "start": 5718.0, + "end": 5718.0, + "probability": 0.0 + }, + { + "start": 5718.0, + "end": 5718.0, + "probability": 0.0 + }, + { + "start": 5718.0, + "end": 5718.0, + "probability": 0.0 + }, + { + "start": 5718.0, + "end": 5718.0, + "probability": 0.0 + }, + { + "start": 5718.0, + "end": 5718.0, + "probability": 0.0 + }, + { + "start": 5718.0, + "end": 5718.0, + "probability": 0.0 + }, + { + "start": 5718.0, + "end": 5718.0, + "probability": 0.0 + }, + { + "start": 5718.0, + "end": 5718.0, + "probability": 0.0 + }, + { + "start": 5718.0, + "end": 5718.0, + "probability": 0.0 + }, + { + "start": 5718.0, + "end": 5718.0, + "probability": 0.0 + }, + { + "start": 5718.0, + "end": 5718.0, + "probability": 0.0 + }, + { + "start": 5718.0, + "end": 5718.0, + "probability": 0.0 + }, + { + "start": 5718.0, + "end": 5718.0, + "probability": 0.0 + }, + { + "start": 5718.0, + "end": 5718.0, + "probability": 0.0 + }, + { + "start": 5718.0, + "end": 5718.0, + "probability": 0.0 + }, + { + "start": 5718.0, + "end": 5718.0, + "probability": 0.0 + }, + { + "start": 5718.0, + "end": 5718.0, + "probability": 0.0 + }, + { + "start": 5718.0, + "end": 5718.0, + "probability": 0.0 + }, + { + "start": 5718.0, + "end": 5718.0, + "probability": 0.0 + }, + { + "start": 5718.0, + "end": 5718.0, + "probability": 0.0 + }, + { + "start": 5718.0, + "end": 5718.0, + "probability": 0.0 + }, + { + "start": 5718.2, + "end": 5719.86, + "probability": 0.1491 + }, + { + "start": 5721.96, + "end": 5723.34, + "probability": 0.1798 + }, + { + "start": 5723.44, + "end": 5725.14, + "probability": 0.5901 + }, + { + "start": 5725.16, + "end": 5725.66, + "probability": 0.9235 + }, + { + "start": 5726.12, + "end": 5728.5, + "probability": 0.9092 + }, + { + "start": 5729.36, + "end": 5733.04, + "probability": 0.9883 + }, + { + "start": 5733.36, + "end": 5736.1, + "probability": 0.9968 + }, + { + "start": 5737.56, + "end": 5742.08, + "probability": 0.9982 + }, + { + "start": 5742.8, + "end": 5744.98, + "probability": 0.9973 + }, + { + "start": 5745.27, + "end": 5749.28, + "probability": 0.9941 + }, + { + "start": 5750.02, + "end": 5753.42, + "probability": 0.9901 + }, + { + "start": 5753.8, + "end": 5756.0, + "probability": 0.991 + }, + { + "start": 5756.58, + "end": 5758.24, + "probability": 0.9417 + }, + { + "start": 5758.82, + "end": 5761.54, + "probability": 0.9971 + }, + { + "start": 5761.7, + "end": 5762.8, + "probability": 0.3464 + }, + { + "start": 5772.9, + "end": 5780.2, + "probability": 0.0678 + }, + { + "start": 5781.24, + "end": 5782.94, + "probability": 0.0803 + }, + { + "start": 5782.94, + "end": 5783.42, + "probability": 0.2082 + }, + { + "start": 5786.72, + "end": 5788.32, + "probability": 0.3262 + }, + { + "start": 5789.0, + "end": 5789.46, + "probability": 0.2099 + }, + { + "start": 5789.62, + "end": 5790.7, + "probability": 0.0152 + }, + { + "start": 5790.7, + "end": 5791.66, + "probability": 0.022 + }, + { + "start": 5792.28, + "end": 5795.52, + "probability": 0.065 + }, + { + "start": 5796.18, + "end": 5798.62, + "probability": 0.0289 + }, + { + "start": 5798.82, + "end": 5802.04, + "probability": 0.105 + }, + { + "start": 5802.04, + "end": 5803.27, + "probability": 0.0217 + }, + { + "start": 5804.08, + "end": 5805.88, + "probability": 0.0087 + }, + { + "start": 5805.88, + "end": 5811.58, + "probability": 0.2047 + }, + { + "start": 5838.0, + "end": 5838.0, + "probability": 0.0 + }, + { + "start": 5838.0, + "end": 5838.0, + "probability": 0.0 + }, + { + "start": 5838.0, + "end": 5838.0, + "probability": 0.0 + }, + { + "start": 5838.0, + "end": 5838.0, + "probability": 0.0 + }, + { + "start": 5838.0, + "end": 5838.0, + "probability": 0.0 + }, + { + "start": 5838.0, + "end": 5838.0, + "probability": 0.0 + }, + { + "start": 5838.0, + "end": 5838.0, + "probability": 0.0 + }, + { + "start": 5838.0, + "end": 5838.0, + "probability": 0.0 + }, + { + "start": 5838.0, + "end": 5838.0, + "probability": 0.0 + }, + { + "start": 5838.0, + "end": 5838.0, + "probability": 0.0 + }, + { + "start": 5838.0, + "end": 5838.0, + "probability": 0.0 + }, + { + "start": 5838.0, + "end": 5838.0, + "probability": 0.0 + }, + { + "start": 5838.0, + "end": 5838.0, + "probability": 0.0 + }, + { + "start": 5838.0, + "end": 5838.0, + "probability": 0.0 + }, + { + "start": 5838.0, + "end": 5838.0, + "probability": 0.0 + }, + { + "start": 5838.0, + "end": 5838.0, + "probability": 0.0 + }, + { + "start": 5838.0, + "end": 5838.0, + "probability": 0.0 + }, + { + "start": 5838.0, + "end": 5838.0, + "probability": 0.0 + }, + { + "start": 5838.0, + "end": 5838.0, + "probability": 0.0 + }, + { + "start": 5838.0, + "end": 5838.0, + "probability": 0.0 + }, + { + "start": 5838.0, + "end": 5838.0, + "probability": 0.0 + }, + { + "start": 5838.0, + "end": 5838.0, + "probability": 0.0 + }, + { + "start": 5838.0, + "end": 5838.0, + "probability": 0.0 + }, + { + "start": 5838.0, + "end": 5838.0, + "probability": 0.0 + }, + { + "start": 5838.0, + "end": 5838.0, + "probability": 0.0 + }, + { + "start": 5838.0, + "end": 5838.0, + "probability": 0.0 + }, + { + "start": 5838.0, + "end": 5838.0, + "probability": 0.0 + }, + { + "start": 5838.0, + "end": 5838.0, + "probability": 0.0 + }, + { + "start": 5838.0, + "end": 5838.0, + "probability": 0.0 + }, + { + "start": 5838.0, + "end": 5838.0, + "probability": 0.0 + }, + { + "start": 5838.0, + "end": 5838.0, + "probability": 0.0 + }, + { + "start": 5838.0, + "end": 5838.0, + "probability": 0.0 + }, + { + "start": 5838.0, + "end": 5838.0, + "probability": 0.0 + }, + { + "start": 5838.0, + "end": 5838.0, + "probability": 0.0 + }, + { + "start": 5838.0, + "end": 5838.0, + "probability": 0.0 + }, + { + "start": 5843.16, + "end": 5846.26, + "probability": 0.2917 + }, + { + "start": 5846.36, + "end": 5847.64, + "probability": 0.6474 + }, + { + "start": 5848.02, + "end": 5849.12, + "probability": 0.0493 + }, + { + "start": 5849.26, + "end": 5851.12, + "probability": 0.756 + }, + { + "start": 5851.16, + "end": 5851.7, + "probability": 0.7059 + }, + { + "start": 5855.42, + "end": 5860.28, + "probability": 0.8824 + }, + { + "start": 5860.34, + "end": 5862.98, + "probability": 0.6365 + }, + { + "start": 5862.98, + "end": 5864.68, + "probability": 0.6416 + }, + { + "start": 5866.53, + "end": 5870.58, + "probability": 0.986 + }, + { + "start": 5871.48, + "end": 5872.78, + "probability": 0.9899 + }, + { + "start": 5873.38, + "end": 5875.94, + "probability": 0.985 + }, + { + "start": 5876.98, + "end": 5878.62, + "probability": 0.9912 + }, + { + "start": 5879.56, + "end": 5882.52, + "probability": 0.9333 + }, + { + "start": 5882.76, + "end": 5884.98, + "probability": 0.3482 + }, + { + "start": 5885.46, + "end": 5888.46, + "probability": 0.851 + }, + { + "start": 5888.54, + "end": 5889.3, + "probability": 0.9715 + }, + { + "start": 5889.36, + "end": 5890.26, + "probability": 0.7511 + }, + { + "start": 5890.72, + "end": 5892.3, + "probability": 0.9962 + }, + { + "start": 5892.58, + "end": 5895.74, + "probability": 0.9829 + }, + { + "start": 5896.84, + "end": 5899.4, + "probability": 0.7516 + }, + { + "start": 5899.44, + "end": 5904.58, + "probability": 0.9576 + }, + { + "start": 5905.24, + "end": 5909.16, + "probability": 0.9871 + }, + { + "start": 5909.16, + "end": 5915.0, + "probability": 0.994 + }, + { + "start": 5915.08, + "end": 5915.94, + "probability": 0.7308 + }, + { + "start": 5916.38, + "end": 5917.8, + "probability": 0.8513 + }, + { + "start": 5917.9, + "end": 5920.67, + "probability": 0.8911 + }, + { + "start": 5922.5, + "end": 5925.78, + "probability": 0.5718 + }, + { + "start": 5925.78, + "end": 5927.16, + "probability": 0.5834 + }, + { + "start": 5927.16, + "end": 5927.9, + "probability": 0.5398 + }, + { + "start": 5928.78, + "end": 5930.66, + "probability": 0.8347 + }, + { + "start": 5930.72, + "end": 5932.5, + "probability": 0.8294 + }, + { + "start": 5933.0, + "end": 5940.82, + "probability": 0.9688 + }, + { + "start": 5942.1, + "end": 5950.0, + "probability": 0.9979 + }, + { + "start": 5951.82, + "end": 5957.8, + "probability": 0.6712 + }, + { + "start": 5957.94, + "end": 5958.38, + "probability": 0.7421 + }, + { + "start": 5958.48, + "end": 5958.84, + "probability": 0.8723 + }, + { + "start": 5958.94, + "end": 5959.44, + "probability": 0.7822 + }, + { + "start": 5959.52, + "end": 5960.36, + "probability": 0.7623 + }, + { + "start": 5960.4, + "end": 5964.78, + "probability": 0.96 + }, + { + "start": 5967.17, + "end": 5969.35, + "probability": 0.999 + }, + { + "start": 5971.18, + "end": 5974.48, + "probability": 0.957 + }, + { + "start": 5977.42, + "end": 5982.16, + "probability": 0.971 + }, + { + "start": 5983.3, + "end": 5988.16, + "probability": 0.9233 + }, + { + "start": 5988.72, + "end": 5992.9, + "probability": 0.9926 + }, + { + "start": 5992.96, + "end": 5994.98, + "probability": 0.9694 + }, + { + "start": 5995.2, + "end": 5996.58, + "probability": 0.7582 + }, + { + "start": 5997.2, + "end": 6003.7, + "probability": 0.9807 + }, + { + "start": 6003.84, + "end": 6005.88, + "probability": 0.5546 + }, + { + "start": 6006.22, + "end": 6008.76, + "probability": 0.9761 + }, + { + "start": 6009.5, + "end": 6012.62, + "probability": 0.989 + }, + { + "start": 6013.24, + "end": 6016.5, + "probability": 0.9437 + }, + { + "start": 6016.66, + "end": 6018.84, + "probability": 0.9657 + }, + { + "start": 6019.28, + "end": 6019.76, + "probability": 0.75 + }, + { + "start": 6020.18, + "end": 6021.3, + "probability": 0.7577 + }, + { + "start": 6021.42, + "end": 6021.88, + "probability": 0.9494 + }, + { + "start": 6022.0, + "end": 6022.56, + "probability": 0.8408 + }, + { + "start": 6022.68, + "end": 6024.94, + "probability": 0.9772 + }, + { + "start": 6025.14, + "end": 6027.75, + "probability": 0.9174 + }, + { + "start": 6030.34, + "end": 6033.96, + "probability": 0.9446 + }, + { + "start": 6034.32, + "end": 6036.96, + "probability": 0.9055 + }, + { + "start": 6037.72, + "end": 6038.16, + "probability": 0.8864 + }, + { + "start": 6038.2, + "end": 6039.56, + "probability": 0.8665 + }, + { + "start": 6039.64, + "end": 6045.44, + "probability": 0.9885 + }, + { + "start": 6045.82, + "end": 6046.86, + "probability": 0.9185 + }, + { + "start": 6047.36, + "end": 6048.56, + "probability": 0.9594 + }, + { + "start": 6049.4, + "end": 6056.86, + "probability": 0.9913 + }, + { + "start": 6057.56, + "end": 6060.32, + "probability": 0.9856 + }, + { + "start": 6061.7, + "end": 6064.34, + "probability": 0.9921 + }, + { + "start": 6065.02, + "end": 6065.86, + "probability": 0.9889 + }, + { + "start": 6067.26, + "end": 6069.14, + "probability": 0.8066 + }, + { + "start": 6070.34, + "end": 6073.02, + "probability": 0.9567 + }, + { + "start": 6073.62, + "end": 6075.8, + "probability": 0.7672 + }, + { + "start": 6076.86, + "end": 6085.06, + "probability": 0.9886 + }, + { + "start": 6085.72, + "end": 6092.84, + "probability": 0.9609 + }, + { + "start": 6093.62, + "end": 6095.14, + "probability": 0.9577 + }, + { + "start": 6095.98, + "end": 6101.78, + "probability": 0.9913 + }, + { + "start": 6103.28, + "end": 6106.8, + "probability": 0.9757 + }, + { + "start": 6107.5, + "end": 6109.82, + "probability": 0.9966 + }, + { + "start": 6110.38, + "end": 6112.28, + "probability": 0.9827 + }, + { + "start": 6113.08, + "end": 6114.71, + "probability": 0.8789 + }, + { + "start": 6115.68, + "end": 6117.84, + "probability": 0.9962 + }, + { + "start": 6118.58, + "end": 6123.7, + "probability": 0.9939 + }, + { + "start": 6124.72, + "end": 6127.36, + "probability": 0.9784 + }, + { + "start": 6128.04, + "end": 6131.78, + "probability": 0.9987 + }, + { + "start": 6131.9, + "end": 6135.52, + "probability": 0.9946 + }, + { + "start": 6136.22, + "end": 6138.2, + "probability": 0.8433 + }, + { + "start": 6139.2, + "end": 6140.22, + "probability": 0.925 + }, + { + "start": 6141.1, + "end": 6142.04, + "probability": 0.9119 + }, + { + "start": 6142.7, + "end": 6148.2, + "probability": 0.9521 + }, + { + "start": 6148.84, + "end": 6149.58, + "probability": 0.8156 + }, + { + "start": 6150.44, + "end": 6157.18, + "probability": 0.9922 + }, + { + "start": 6158.58, + "end": 6163.3, + "probability": 0.9896 + }, + { + "start": 6163.86, + "end": 6166.72, + "probability": 0.9603 + }, + { + "start": 6167.88, + "end": 6169.36, + "probability": 0.9263 + }, + { + "start": 6169.44, + "end": 6172.44, + "probability": 0.9655 + }, + { + "start": 6173.12, + "end": 6178.86, + "probability": 0.9938 + }, + { + "start": 6180.22, + "end": 6184.44, + "probability": 0.9395 + }, + { + "start": 6185.04, + "end": 6187.06, + "probability": 0.9391 + }, + { + "start": 6187.76, + "end": 6190.2, + "probability": 0.8086 + }, + { + "start": 6190.92, + "end": 6191.54, + "probability": 0.8524 + }, + { + "start": 6192.84, + "end": 6195.1, + "probability": 0.7847 + }, + { + "start": 6195.8, + "end": 6198.26, + "probability": 0.9966 + }, + { + "start": 6198.26, + "end": 6202.46, + "probability": 0.9751 + }, + { + "start": 6203.56, + "end": 6204.76, + "probability": 0.7289 + }, + { + "start": 6205.54, + "end": 6208.28, + "probability": 0.9908 + }, + { + "start": 6208.28, + "end": 6211.4, + "probability": 0.9854 + }, + { + "start": 6212.52, + "end": 6213.44, + "probability": 0.8558 + }, + { + "start": 6214.18, + "end": 6216.94, + "probability": 0.9857 + }, + { + "start": 6217.46, + "end": 6219.32, + "probability": 0.9624 + }, + { + "start": 6220.0, + "end": 6222.06, + "probability": 0.8753 + }, + { + "start": 6222.72, + "end": 6227.2, + "probability": 0.9464 + }, + { + "start": 6228.24, + "end": 6232.08, + "probability": 0.9872 + }, + { + "start": 6232.44, + "end": 6235.78, + "probability": 0.925 + }, + { + "start": 6236.64, + "end": 6239.32, + "probability": 0.9715 + }, + { + "start": 6239.96, + "end": 6241.72, + "probability": 0.7862 + }, + { + "start": 6242.5, + "end": 6244.16, + "probability": 0.8778 + }, + { + "start": 6244.92, + "end": 6247.04, + "probability": 0.971 + }, + { + "start": 6247.78, + "end": 6251.9, + "probability": 0.9648 + }, + { + "start": 6252.94, + "end": 6259.94, + "probability": 0.9727 + }, + { + "start": 6260.48, + "end": 6266.2, + "probability": 0.9889 + }, + { + "start": 6267.24, + "end": 6268.98, + "probability": 0.8269 + }, + { + "start": 6270.18, + "end": 6274.14, + "probability": 0.9956 + }, + { + "start": 6274.14, + "end": 6277.76, + "probability": 0.9939 + }, + { + "start": 6278.54, + "end": 6284.5, + "probability": 0.9834 + }, + { + "start": 6285.16, + "end": 6291.02, + "probability": 0.9979 + }, + { + "start": 6291.8, + "end": 6293.5, + "probability": 0.9758 + }, + { + "start": 6294.0, + "end": 6297.62, + "probability": 0.7885 + }, + { + "start": 6298.96, + "end": 6299.5, + "probability": 0.897 + }, + { + "start": 6300.76, + "end": 6303.5, + "probability": 0.8177 + }, + { + "start": 6304.76, + "end": 6308.66, + "probability": 0.9983 + }, + { + "start": 6308.66, + "end": 6313.8, + "probability": 0.9819 + }, + { + "start": 6314.54, + "end": 6316.76, + "probability": 0.9985 + }, + { + "start": 6317.52, + "end": 6323.7, + "probability": 0.9931 + }, + { + "start": 6324.3, + "end": 6329.86, + "probability": 0.9982 + }, + { + "start": 6330.34, + "end": 6336.14, + "probability": 0.9975 + }, + { + "start": 6336.54, + "end": 6337.32, + "probability": 0.6899 + }, + { + "start": 6338.08, + "end": 6342.02, + "probability": 0.9969 + }, + { + "start": 6342.88, + "end": 6347.3, + "probability": 0.995 + }, + { + "start": 6347.9, + "end": 6352.14, + "probability": 0.976 + }, + { + "start": 6353.48, + "end": 6356.22, + "probability": 0.9705 + }, + { + "start": 6356.98, + "end": 6359.02, + "probability": 0.9963 + }, + { + "start": 6360.14, + "end": 6362.22, + "probability": 0.8387 + }, + { + "start": 6362.78, + "end": 6366.62, + "probability": 0.9692 + }, + { + "start": 6367.2, + "end": 6372.7, + "probability": 0.9849 + }, + { + "start": 6372.76, + "end": 6373.04, + "probability": 0.2724 + }, + { + "start": 6373.06, + "end": 6374.18, + "probability": 0.3354 + }, + { + "start": 6374.34, + "end": 6380.58, + "probability": 0.9958 + }, + { + "start": 6381.26, + "end": 6382.4, + "probability": 0.9949 + }, + { + "start": 6382.44, + "end": 6383.2, + "probability": 0.8077 + }, + { + "start": 6383.54, + "end": 6387.48, + "probability": 0.9929 + }, + { + "start": 6388.1, + "end": 6394.86, + "probability": 0.9687 + }, + { + "start": 6395.36, + "end": 6400.3, + "probability": 0.9921 + }, + { + "start": 6400.3, + "end": 6404.8, + "probability": 0.9905 + }, + { + "start": 6405.4, + "end": 6406.24, + "probability": 0.8219 + }, + { + "start": 6407.34, + "end": 6410.44, + "probability": 0.9932 + }, + { + "start": 6410.44, + "end": 6412.68, + "probability": 0.9954 + }, + { + "start": 6413.22, + "end": 6418.52, + "probability": 0.9945 + }, + { + "start": 6419.06, + "end": 6423.26, + "probability": 0.9992 + }, + { + "start": 6423.26, + "end": 6428.68, + "probability": 0.9962 + }, + { + "start": 6429.96, + "end": 6433.18, + "probability": 0.9985 + }, + { + "start": 6433.18, + "end": 6437.76, + "probability": 0.9976 + }, + { + "start": 6438.12, + "end": 6439.08, + "probability": 0.6088 + }, + { + "start": 6439.7, + "end": 6440.8, + "probability": 0.8606 + }, + { + "start": 6441.2, + "end": 6445.92, + "probability": 0.9393 + }, + { + "start": 6446.44, + "end": 6450.6, + "probability": 0.9785 + }, + { + "start": 6451.46, + "end": 6454.76, + "probability": 0.8989 + }, + { + "start": 6455.44, + "end": 6459.16, + "probability": 0.9946 + }, + { + "start": 6459.7, + "end": 6461.42, + "probability": 0.9649 + }, + { + "start": 6462.42, + "end": 6463.32, + "probability": 0.5326 + }, + { + "start": 6463.84, + "end": 6465.7, + "probability": 0.9824 + }, + { + "start": 6467.76, + "end": 6468.58, + "probability": 0.2508 + }, + { + "start": 6487.38, + "end": 6487.73, + "probability": 0.4043 + }, + { + "start": 6492.34, + "end": 6494.14, + "probability": 0.8666 + }, + { + "start": 6517.82, + "end": 6518.76, + "probability": 0.6489 + }, + { + "start": 6518.92, + "end": 6519.58, + "probability": 0.8205 + }, + { + "start": 6519.68, + "end": 6523.14, + "probability": 0.8937 + }, + { + "start": 6523.66, + "end": 6524.83, + "probability": 0.9259 + }, + { + "start": 6526.04, + "end": 6528.4, + "probability": 0.9378 + }, + { + "start": 6529.38, + "end": 6529.84, + "probability": 0.497 + }, + { + "start": 6530.94, + "end": 6534.54, + "probability": 0.8666 + }, + { + "start": 6534.68, + "end": 6535.58, + "probability": 0.6309 + }, + { + "start": 6535.98, + "end": 6536.41, + "probability": 0.6657 + }, + { + "start": 6536.76, + "end": 6537.78, + "probability": 0.8349 + }, + { + "start": 6538.58, + "end": 6544.6, + "probability": 0.3088 + }, + { + "start": 6544.6, + "end": 6546.36, + "probability": 0.8179 + }, + { + "start": 6546.6, + "end": 6552.36, + "probability": 0.9977 + }, + { + "start": 6554.06, + "end": 6558.56, + "probability": 0.9971 + }, + { + "start": 6560.1, + "end": 6565.32, + "probability": 0.9706 + }, + { + "start": 6565.32, + "end": 6570.96, + "probability": 0.9917 + }, + { + "start": 6572.04, + "end": 6572.88, + "probability": 0.7945 + }, + { + "start": 6573.38, + "end": 6574.5, + "probability": 0.9135 + }, + { + "start": 6574.6, + "end": 6575.66, + "probability": 0.9655 + }, + { + "start": 6576.36, + "end": 6578.32, + "probability": 0.995 + }, + { + "start": 6579.14, + "end": 6579.72, + "probability": 0.7236 + }, + { + "start": 6580.38, + "end": 6582.38, + "probability": 0.9706 + }, + { + "start": 6583.76, + "end": 6585.86, + "probability": 0.9744 + }, + { + "start": 6585.88, + "end": 6587.94, + "probability": 0.9761 + }, + { + "start": 6587.94, + "end": 6591.64, + "probability": 0.9973 + }, + { + "start": 6592.66, + "end": 6592.92, + "probability": 0.6015 + }, + { + "start": 6593.0, + "end": 6593.5, + "probability": 0.743 + }, + { + "start": 6593.62, + "end": 6594.34, + "probability": 0.8615 + }, + { + "start": 6594.36, + "end": 6595.02, + "probability": 0.8206 + }, + { + "start": 6596.2, + "end": 6596.42, + "probability": 0.8321 + }, + { + "start": 6596.8, + "end": 6597.6, + "probability": 0.8943 + }, + { + "start": 6597.82, + "end": 6599.54, + "probability": 0.804 + }, + { + "start": 6599.62, + "end": 6599.96, + "probability": 0.8205 + }, + { + "start": 6600.06, + "end": 6601.54, + "probability": 0.1623 + }, + { + "start": 6601.66, + "end": 6603.46, + "probability": 0.4036 + }, + { + "start": 6603.7, + "end": 6604.82, + "probability": 0.9197 + }, + { + "start": 6605.44, + "end": 6607.3, + "probability": 0.9558 + }, + { + "start": 6607.42, + "end": 6609.46, + "probability": 0.9893 + }, + { + "start": 6609.98, + "end": 6610.5, + "probability": 0.4886 + }, + { + "start": 6610.6, + "end": 6610.8, + "probability": 0.6029 + }, + { + "start": 6611.1, + "end": 6611.58, + "probability": 0.7839 + }, + { + "start": 6611.98, + "end": 6612.64, + "probability": 0.633 + }, + { + "start": 6612.72, + "end": 6615.54, + "probability": 0.4588 + }, + { + "start": 6615.6, + "end": 6617.1, + "probability": 0.873 + }, + { + "start": 6617.9, + "end": 6618.86, + "probability": 0.9869 + }, + { + "start": 6618.88, + "end": 6622.82, + "probability": 0.9127 + }, + { + "start": 6623.82, + "end": 6624.08, + "probability": 0.5432 + }, + { + "start": 6625.04, + "end": 6626.64, + "probability": 0.9118 + }, + { + "start": 6626.7, + "end": 6628.26, + "probability": 0.9721 + }, + { + "start": 6628.36, + "end": 6629.01, + "probability": 0.8696 + }, + { + "start": 6630.54, + "end": 6631.2, + "probability": 0.9814 + }, + { + "start": 6631.96, + "end": 6634.08, + "probability": 0.9881 + }, + { + "start": 6634.78, + "end": 6635.92, + "probability": 0.8858 + }, + { + "start": 6636.5, + "end": 6639.76, + "probability": 0.9955 + }, + { + "start": 6640.44, + "end": 6640.68, + "probability": 0.9437 + }, + { + "start": 6641.26, + "end": 6641.96, + "probability": 0.9167 + }, + { + "start": 6643.54, + "end": 6645.3, + "probability": 0.7559 + }, + { + "start": 6645.36, + "end": 6647.26, + "probability": 0.9785 + }, + { + "start": 6647.34, + "end": 6648.08, + "probability": 0.9622 + }, + { + "start": 6648.5, + "end": 6651.22, + "probability": 0.8592 + }, + { + "start": 6651.74, + "end": 6652.46, + "probability": 0.8986 + }, + { + "start": 6653.44, + "end": 6655.46, + "probability": 0.864 + }, + { + "start": 6655.7, + "end": 6656.26, + "probability": 0.9273 + }, + { + "start": 6656.34, + "end": 6657.4, + "probability": 0.8091 + }, + { + "start": 6658.12, + "end": 6661.3, + "probability": 0.6143 + }, + { + "start": 6662.18, + "end": 6662.42, + "probability": 0.5084 + }, + { + "start": 6662.42, + "end": 6663.34, + "probability": 0.6756 + }, + { + "start": 6664.24, + "end": 6665.5, + "probability": 0.9808 + }, + { + "start": 6666.8, + "end": 6669.33, + "probability": 0.5614 + }, + { + "start": 6671.42, + "end": 6674.28, + "probability": 0.9969 + }, + { + "start": 6674.56, + "end": 6677.0, + "probability": 0.9891 + }, + { + "start": 6677.9, + "end": 6679.82, + "probability": 0.9277 + }, + { + "start": 6679.86, + "end": 6680.44, + "probability": 0.5132 + }, + { + "start": 6680.5, + "end": 6683.74, + "probability": 0.9992 + }, + { + "start": 6684.18, + "end": 6686.98, + "probability": 0.9829 + }, + { + "start": 6687.46, + "end": 6688.72, + "probability": 0.8123 + }, + { + "start": 6689.52, + "end": 6691.56, + "probability": 0.9918 + }, + { + "start": 6691.56, + "end": 6694.38, + "probability": 0.9982 + }, + { + "start": 6694.9, + "end": 6695.54, + "probability": 0.8084 + }, + { + "start": 6696.12, + "end": 6700.32, + "probability": 0.998 + }, + { + "start": 6700.88, + "end": 6704.14, + "probability": 0.9626 + }, + { + "start": 6704.98, + "end": 6705.32, + "probability": 0.4399 + }, + { + "start": 6705.86, + "end": 6707.34, + "probability": 0.7654 + }, + { + "start": 6707.9, + "end": 6709.34, + "probability": 0.9606 + }, + { + "start": 6710.22, + "end": 6713.1, + "probability": 0.8108 + }, + { + "start": 6713.1, + "end": 6716.98, + "probability": 0.9805 + }, + { + "start": 6717.7, + "end": 6718.6, + "probability": 0.9673 + }, + { + "start": 6718.66, + "end": 6721.6, + "probability": 0.9946 + }, + { + "start": 6721.72, + "end": 6722.23, + "probability": 0.8901 + }, + { + "start": 6722.44, + "end": 6722.84, + "probability": 0.8941 + }, + { + "start": 6723.0, + "end": 6724.11, + "probability": 0.8013 + }, + { + "start": 6724.52, + "end": 6728.22, + "probability": 0.9861 + }, + { + "start": 6729.12, + "end": 6732.64, + "probability": 0.9756 + }, + { + "start": 6732.78, + "end": 6735.44, + "probability": 0.9948 + }, + { + "start": 6736.4, + "end": 6739.08, + "probability": 0.9819 + }, + { + "start": 6741.82, + "end": 6742.84, + "probability": 0.3275 + }, + { + "start": 6743.64, + "end": 6745.2, + "probability": 0.9322 + }, + { + "start": 6745.74, + "end": 6746.64, + "probability": 0.702 + }, + { + "start": 6747.52, + "end": 6747.76, + "probability": 0.7789 + }, + { + "start": 6747.84, + "end": 6748.68, + "probability": 0.9752 + }, + { + "start": 6748.76, + "end": 6750.66, + "probability": 0.9219 + }, + { + "start": 6751.26, + "end": 6752.12, + "probability": 0.8536 + }, + { + "start": 6752.7, + "end": 6753.56, + "probability": 0.9266 + }, + { + "start": 6753.66, + "end": 6756.02, + "probability": 0.9834 + }, + { + "start": 6756.3, + "end": 6756.78, + "probability": 0.9262 + }, + { + "start": 6757.6, + "end": 6760.1, + "probability": 0.9385 + }, + { + "start": 6761.26, + "end": 6762.9, + "probability": 0.9229 + }, + { + "start": 6762.94, + "end": 6766.2, + "probability": 0.997 + }, + { + "start": 6766.98, + "end": 6770.0, + "probability": 0.7864 + }, + { + "start": 6770.68, + "end": 6771.18, + "probability": 0.7686 + }, + { + "start": 6771.28, + "end": 6772.9, + "probability": 0.743 + }, + { + "start": 6773.4, + "end": 6776.8, + "probability": 0.9866 + }, + { + "start": 6777.18, + "end": 6779.46, + "probability": 0.972 + }, + { + "start": 6780.36, + "end": 6782.46, + "probability": 0.9944 + }, + { + "start": 6782.92, + "end": 6783.98, + "probability": 0.9247 + }, + { + "start": 6784.68, + "end": 6786.72, + "probability": 0.9422 + }, + { + "start": 6787.3, + "end": 6790.04, + "probability": 0.9955 + }, + { + "start": 6790.54, + "end": 6790.9, + "probability": 0.872 + }, + { + "start": 6791.32, + "end": 6795.58, + "probability": 0.9883 + }, + { + "start": 6797.46, + "end": 6800.06, + "probability": 0.8776 + }, + { + "start": 6800.82, + "end": 6804.38, + "probability": 0.7948 + }, + { + "start": 6805.02, + "end": 6805.84, + "probability": 0.9676 + }, + { + "start": 6806.82, + "end": 6809.0, + "probability": 0.9075 + }, + { + "start": 6809.74, + "end": 6812.9, + "probability": 0.8549 + }, + { + "start": 6813.5, + "end": 6815.62, + "probability": 0.988 + }, + { + "start": 6816.1, + "end": 6819.8, + "probability": 0.9775 + }, + { + "start": 6820.54, + "end": 6821.56, + "probability": 0.7678 + }, + { + "start": 6821.62, + "end": 6823.72, + "probability": 0.9595 + }, + { + "start": 6824.76, + "end": 6826.64, + "probability": 0.9194 + }, + { + "start": 6827.7, + "end": 6830.8, + "probability": 0.9863 + }, + { + "start": 6831.52, + "end": 6831.92, + "probability": 0.9229 + }, + { + "start": 6831.94, + "end": 6832.14, + "probability": 0.5573 + }, + { + "start": 6832.22, + "end": 6832.76, + "probability": 0.9543 + }, + { + "start": 6832.84, + "end": 6833.58, + "probability": 0.6698 + }, + { + "start": 6833.94, + "end": 6835.42, + "probability": 0.992 + }, + { + "start": 6836.34, + "end": 6841.02, + "probability": 0.984 + }, + { + "start": 6841.84, + "end": 6844.74, + "probability": 0.9297 + }, + { + "start": 6845.4, + "end": 6847.52, + "probability": 0.9769 + }, + { + "start": 6847.58, + "end": 6850.52, + "probability": 0.9766 + }, + { + "start": 6850.96, + "end": 6851.84, + "probability": 0.9104 + }, + { + "start": 6852.54, + "end": 6852.66, + "probability": 0.4373 + }, + { + "start": 6852.8, + "end": 6855.06, + "probability": 0.8993 + }, + { + "start": 6855.06, + "end": 6858.38, + "probability": 0.7996 + }, + { + "start": 6859.08, + "end": 6860.5, + "probability": 0.9689 + }, + { + "start": 6861.3, + "end": 6862.9, + "probability": 0.9086 + }, + { + "start": 6863.68, + "end": 6866.84, + "probability": 0.9941 + }, + { + "start": 6868.41, + "end": 6872.34, + "probability": 0.8172 + }, + { + "start": 6873.22, + "end": 6875.12, + "probability": 0.9382 + }, + { + "start": 6875.3, + "end": 6877.4, + "probability": 0.936 + }, + { + "start": 6878.02, + "end": 6879.94, + "probability": 0.9995 + }, + { + "start": 6880.54, + "end": 6882.42, + "probability": 0.9918 + }, + { + "start": 6883.3, + "end": 6885.38, + "probability": 0.9479 + }, + { + "start": 6885.94, + "end": 6888.14, + "probability": 0.995 + }, + { + "start": 6888.14, + "end": 6890.46, + "probability": 0.9841 + }, + { + "start": 6890.88, + "end": 6892.98, + "probability": 0.9781 + }, + { + "start": 6893.86, + "end": 6896.26, + "probability": 0.7095 + }, + { + "start": 6896.76, + "end": 6898.86, + "probability": 0.9933 + }, + { + "start": 6899.96, + "end": 6902.6, + "probability": 0.9792 + }, + { + "start": 6903.06, + "end": 6903.96, + "probability": 0.9872 + }, + { + "start": 6904.72, + "end": 6906.33, + "probability": 0.9955 + }, + { + "start": 6907.0, + "end": 6909.54, + "probability": 0.8682 + }, + { + "start": 6910.6, + "end": 6911.98, + "probability": 0.9358 + }, + { + "start": 6912.44, + "end": 6913.92, + "probability": 0.9544 + }, + { + "start": 6914.72, + "end": 6915.5, + "probability": 0.9767 + }, + { + "start": 6916.36, + "end": 6917.64, + "probability": 0.511 + }, + { + "start": 6918.42, + "end": 6921.14, + "probability": 0.9631 + }, + { + "start": 6921.9, + "end": 6925.78, + "probability": 0.9397 + }, + { + "start": 6926.8, + "end": 6927.62, + "probability": 0.8651 + }, + { + "start": 6927.62, + "end": 6928.38, + "probability": 0.7822 + }, + { + "start": 6928.92, + "end": 6929.52, + "probability": 0.6615 + }, + { + "start": 6930.32, + "end": 6932.38, + "probability": 0.7702 + }, + { + "start": 6936.6, + "end": 6937.68, + "probability": 0.5626 + }, + { + "start": 6937.72, + "end": 6940.68, + "probability": 0.6164 + }, + { + "start": 6940.94, + "end": 6942.44, + "probability": 0.7561 + }, + { + "start": 6943.02, + "end": 6944.42, + "probability": 0.9042 + }, + { + "start": 6945.92, + "end": 6947.1, + "probability": 0.8128 + }, + { + "start": 6947.8, + "end": 6948.6, + "probability": 0.9822 + }, + { + "start": 6949.14, + "end": 6950.1, + "probability": 0.9626 + }, + { + "start": 6950.66, + "end": 6951.34, + "probability": 0.5817 + }, + { + "start": 6952.04, + "end": 6954.56, + "probability": 0.9753 + }, + { + "start": 6955.28, + "end": 6959.06, + "probability": 0.9864 + }, + { + "start": 6959.84, + "end": 6962.16, + "probability": 0.9534 + }, + { + "start": 6963.04, + "end": 6963.72, + "probability": 0.2957 + }, + { + "start": 6963.92, + "end": 6965.62, + "probability": 0.0893 + }, + { + "start": 6966.12, + "end": 6970.02, + "probability": 0.9944 + }, + { + "start": 6970.06, + "end": 6970.62, + "probability": 0.8171 + }, + { + "start": 6971.2, + "end": 6973.14, + "probability": 0.9844 + }, + { + "start": 6973.44, + "end": 6975.88, + "probability": 0.9933 + }, + { + "start": 6976.5, + "end": 6977.32, + "probability": 0.905 + }, + { + "start": 6986.18, + "end": 6987.44, + "probability": 0.745 + }, + { + "start": 6987.44, + "end": 6989.98, + "probability": 0.9611 + }, + { + "start": 6990.16, + "end": 6990.72, + "probability": 0.9713 + }, + { + "start": 6992.28, + "end": 6993.38, + "probability": 0.9795 + }, + { + "start": 6993.7, + "end": 6994.16, + "probability": 0.9889 + }, + { + "start": 6994.22, + "end": 6994.72, + "probability": 0.9461 + }, + { + "start": 6995.02, + "end": 6999.12, + "probability": 0.8529 + }, + { + "start": 6999.22, + "end": 7001.1, + "probability": 0.9989 + }, + { + "start": 7002.1, + "end": 7002.12, + "probability": 0.5771 + }, + { + "start": 7002.12, + "end": 7005.12, + "probability": 0.9328 + }, + { + "start": 7005.12, + "end": 7011.38, + "probability": 0.9967 + }, + { + "start": 7011.82, + "end": 7015.04, + "probability": 0.9982 + }, + { + "start": 7015.84, + "end": 7018.78, + "probability": 0.9985 + }, + { + "start": 7018.78, + "end": 7022.48, + "probability": 0.9907 + }, + { + "start": 7023.7, + "end": 7025.18, + "probability": 0.8707 + }, + { + "start": 7025.44, + "end": 7027.72, + "probability": 0.9383 + }, + { + "start": 7027.78, + "end": 7034.38, + "probability": 0.8956 + }, + { + "start": 7035.24, + "end": 7039.28, + "probability": 0.9324 + }, + { + "start": 7039.7, + "end": 7040.64, + "probability": 0.8071 + }, + { + "start": 7040.88, + "end": 7041.76, + "probability": 0.9472 + }, + { + "start": 7042.48, + "end": 7044.64, + "probability": 0.9973 + }, + { + "start": 7046.18, + "end": 7050.54, + "probability": 0.9902 + }, + { + "start": 7051.72, + "end": 7058.48, + "probability": 0.9945 + }, + { + "start": 7059.22, + "end": 7059.68, + "probability": 0.1184 + }, + { + "start": 7060.68, + "end": 7061.48, + "probability": 0.7876 + }, + { + "start": 7063.46, + "end": 7066.1, + "probability": 0.9925 + }, + { + "start": 7067.62, + "end": 7070.32, + "probability": 0.9128 + }, + { + "start": 7070.36, + "end": 7076.08, + "probability": 0.7162 + }, + { + "start": 7076.64, + "end": 7078.1, + "probability": 0.7548 + }, + { + "start": 7078.76, + "end": 7080.18, + "probability": 0.7929 + }, + { + "start": 7080.72, + "end": 7082.12, + "probability": 0.8791 + }, + { + "start": 7083.56, + "end": 7086.5, + "probability": 0.9177 + }, + { + "start": 7088.12, + "end": 7094.9, + "probability": 0.9917 + }, + { + "start": 7095.94, + "end": 7104.32, + "probability": 0.9911 + }, + { + "start": 7105.78, + "end": 7106.64, + "probability": 0.8781 + }, + { + "start": 7106.8, + "end": 7107.42, + "probability": 0.8089 + }, + { + "start": 7107.66, + "end": 7112.24, + "probability": 0.9949 + }, + { + "start": 7113.44, + "end": 7115.92, + "probability": 0.9217 + }, + { + "start": 7116.78, + "end": 7119.38, + "probability": 0.9962 + }, + { + "start": 7119.8, + "end": 7120.2, + "probability": 0.6903 + }, + { + "start": 7120.28, + "end": 7120.82, + "probability": 0.7579 + }, + { + "start": 7122.0, + "end": 7127.18, + "probability": 0.9286 + }, + { + "start": 7128.86, + "end": 7129.96, + "probability": 0.9995 + }, + { + "start": 7131.6, + "end": 7133.4, + "probability": 0.8423 + }, + { + "start": 7134.4, + "end": 7135.0, + "probability": 0.781 + }, + { + "start": 7136.2, + "end": 7138.26, + "probability": 0.9949 + }, + { + "start": 7139.3, + "end": 7140.64, + "probability": 0.9663 + }, + { + "start": 7140.7, + "end": 7142.74, + "probability": 0.9966 + }, + { + "start": 7143.82, + "end": 7147.66, + "probability": 0.9924 + }, + { + "start": 7148.96, + "end": 7150.84, + "probability": 0.8897 + }, + { + "start": 7151.14, + "end": 7153.18, + "probability": 0.7305 + }, + { + "start": 7153.18, + "end": 7154.62, + "probability": 0.7084 + }, + { + "start": 7154.94, + "end": 7155.82, + "probability": 0.9778 + }, + { + "start": 7157.32, + "end": 7158.74, + "probability": 0.8909 + }, + { + "start": 7160.24, + "end": 7163.82, + "probability": 0.9611 + }, + { + "start": 7165.36, + "end": 7166.62, + "probability": 0.7727 + }, + { + "start": 7168.46, + "end": 7173.66, + "probability": 0.9977 + }, + { + "start": 7175.92, + "end": 7177.96, + "probability": 0.9247 + }, + { + "start": 7181.18, + "end": 7188.44, + "probability": 0.991 + }, + { + "start": 7190.88, + "end": 7195.42, + "probability": 0.9889 + }, + { + "start": 7197.54, + "end": 7199.54, + "probability": 0.6513 + }, + { + "start": 7200.64, + "end": 7202.04, + "probability": 0.9967 + }, + { + "start": 7204.78, + "end": 7207.58, + "probability": 0.8719 + }, + { + "start": 7209.02, + "end": 7212.36, + "probability": 0.9565 + }, + { + "start": 7213.04, + "end": 7217.26, + "probability": 0.9936 + }, + { + "start": 7218.36, + "end": 7220.14, + "probability": 0.9687 + }, + { + "start": 7220.98, + "end": 7221.72, + "probability": 0.9884 + }, + { + "start": 7222.5, + "end": 7223.26, + "probability": 0.9321 + }, + { + "start": 7224.72, + "end": 7228.88, + "probability": 0.9701 + }, + { + "start": 7229.7, + "end": 7232.06, + "probability": 0.8831 + }, + { + "start": 7233.4, + "end": 7234.88, + "probability": 0.9048 + }, + { + "start": 7235.48, + "end": 7237.04, + "probability": 0.8708 + }, + { + "start": 7238.14, + "end": 7239.22, + "probability": 0.9821 + }, + { + "start": 7240.24, + "end": 7245.62, + "probability": 0.9792 + }, + { + "start": 7246.86, + "end": 7247.84, + "probability": 0.9928 + }, + { + "start": 7250.78, + "end": 7255.86, + "probability": 0.9822 + }, + { + "start": 7255.86, + "end": 7262.06, + "probability": 0.9308 + }, + { + "start": 7262.48, + "end": 7263.56, + "probability": 0.884 + }, + { + "start": 7263.8, + "end": 7264.58, + "probability": 0.8908 + }, + { + "start": 7267.56, + "end": 7270.54, + "probability": 0.8506 + }, + { + "start": 7270.62, + "end": 7274.3, + "probability": 0.962 + }, + { + "start": 7276.84, + "end": 7280.84, + "probability": 0.9749 + }, + { + "start": 7282.76, + "end": 7285.14, + "probability": 0.9595 + }, + { + "start": 7286.4, + "end": 7288.14, + "probability": 0.5023 + }, + { + "start": 7288.98, + "end": 7291.72, + "probability": 0.9732 + }, + { + "start": 7293.22, + "end": 7295.26, + "probability": 0.8525 + }, + { + "start": 7296.4, + "end": 7297.2, + "probability": 0.9757 + }, + { + "start": 7298.36, + "end": 7299.82, + "probability": 0.8995 + }, + { + "start": 7300.7, + "end": 7303.16, + "probability": 0.9896 + }, + { + "start": 7304.24, + "end": 7305.72, + "probability": 0.8918 + }, + { + "start": 7306.3, + "end": 7308.66, + "probability": 0.9213 + }, + { + "start": 7309.74, + "end": 7313.84, + "probability": 0.9954 + }, + { + "start": 7314.84, + "end": 7317.26, + "probability": 0.9147 + }, + { + "start": 7317.96, + "end": 7319.74, + "probability": 0.8431 + }, + { + "start": 7320.78, + "end": 7323.82, + "probability": 0.8583 + }, + { + "start": 7324.38, + "end": 7327.54, + "probability": 0.8671 + }, + { + "start": 7328.0, + "end": 7328.84, + "probability": 0.8251 + }, + { + "start": 7328.88, + "end": 7330.02, + "probability": 0.6672 + }, + { + "start": 7330.44, + "end": 7332.18, + "probability": 0.8518 + }, + { + "start": 7332.8, + "end": 7335.36, + "probability": 0.9326 + }, + { + "start": 7337.16, + "end": 7338.58, + "probability": 0.9177 + }, + { + "start": 7338.72, + "end": 7339.78, + "probability": 0.9727 + }, + { + "start": 7339.98, + "end": 7341.71, + "probability": 0.6522 + }, + { + "start": 7342.74, + "end": 7343.0, + "probability": 0.1762 + }, + { + "start": 7343.0, + "end": 7344.02, + "probability": 0.121 + }, + { + "start": 7344.04, + "end": 7345.14, + "probability": 0.9722 + }, + { + "start": 7349.06, + "end": 7353.16, + "probability": 0.6439 + }, + { + "start": 7353.64, + "end": 7355.92, + "probability": 0.633 + }, + { + "start": 7356.92, + "end": 7357.66, + "probability": 0.9216 + }, + { + "start": 7361.36, + "end": 7363.48, + "probability": 0.6598 + }, + { + "start": 7363.54, + "end": 7364.28, + "probability": 0.7686 + }, + { + "start": 7364.3, + "end": 7366.56, + "probability": 0.9771 + }, + { + "start": 7366.94, + "end": 7368.82, + "probability": 0.7121 + }, + { + "start": 7369.34, + "end": 7370.1, + "probability": 0.4505 + }, + { + "start": 7371.36, + "end": 7372.32, + "probability": 0.9396 + }, + { + "start": 7373.72, + "end": 7374.76, + "probability": 0.9652 + }, + { + "start": 7375.34, + "end": 7377.12, + "probability": 0.6853 + }, + { + "start": 7377.99, + "end": 7381.96, + "probability": 0.9928 + }, + { + "start": 7381.96, + "end": 7386.08, + "probability": 0.9902 + }, + { + "start": 7386.16, + "end": 7386.34, + "probability": 0.6401 + }, + { + "start": 7386.36, + "end": 7389.82, + "probability": 0.7646 + }, + { + "start": 7390.26, + "end": 7393.18, + "probability": 0.8509 + }, + { + "start": 7393.18, + "end": 7394.02, + "probability": 0.7184 + }, + { + "start": 7394.04, + "end": 7396.86, + "probability": 0.8677 + }, + { + "start": 7397.08, + "end": 7398.03, + "probability": 0.8611 + }, + { + "start": 7399.62, + "end": 7402.38, + "probability": 0.814 + }, + { + "start": 7403.42, + "end": 7405.34, + "probability": 0.9683 + }, + { + "start": 7408.5, + "end": 7409.84, + "probability": 0.7234 + }, + { + "start": 7409.9, + "end": 7411.1, + "probability": 0.9944 + }, + { + "start": 7413.46, + "end": 7418.98, + "probability": 0.9541 + }, + { + "start": 7420.52, + "end": 7424.04, + "probability": 0.9874 + }, + { + "start": 7426.6, + "end": 7428.05, + "probability": 0.989 + }, + { + "start": 7429.22, + "end": 7429.71, + "probability": 0.6579 + }, + { + "start": 7431.38, + "end": 7432.52, + "probability": 0.856 + }, + { + "start": 7433.1, + "end": 7434.64, + "probability": 0.9309 + }, + { + "start": 7435.08, + "end": 7439.62, + "probability": 0.9766 + }, + { + "start": 7440.88, + "end": 7442.8, + "probability": 0.9651 + }, + { + "start": 7442.92, + "end": 7443.22, + "probability": 0.9825 + }, + { + "start": 7443.92, + "end": 7445.4, + "probability": 0.9889 + }, + { + "start": 7445.98, + "end": 7449.82, + "probability": 0.8207 + }, + { + "start": 7449.82, + "end": 7452.0, + "probability": 0.8981 + }, + { + "start": 7452.66, + "end": 7456.8, + "probability": 0.9937 + }, + { + "start": 7457.26, + "end": 7460.36, + "probability": 0.8754 + }, + { + "start": 7462.54, + "end": 7464.2, + "probability": 0.9976 + }, + { + "start": 7465.0, + "end": 7467.52, + "probability": 0.9749 + }, + { + "start": 7470.7, + "end": 7474.5, + "probability": 0.9486 + }, + { + "start": 7476.32, + "end": 7481.66, + "probability": 0.9679 + }, + { + "start": 7482.5, + "end": 7483.84, + "probability": 0.9786 + }, + { + "start": 7484.04, + "end": 7489.92, + "probability": 0.986 + }, + { + "start": 7490.8, + "end": 7491.69, + "probability": 0.9971 + }, + { + "start": 7495.26, + "end": 7497.22, + "probability": 0.5054 + }, + { + "start": 7498.38, + "end": 7504.66, + "probability": 0.9795 + }, + { + "start": 7506.46, + "end": 7509.5, + "probability": 0.9915 + }, + { + "start": 7511.6, + "end": 7513.62, + "probability": 0.9735 + }, + { + "start": 7514.8, + "end": 7515.91, + "probability": 0.9972 + }, + { + "start": 7516.96, + "end": 7518.16, + "probability": 0.873 + }, + { + "start": 7518.26, + "end": 7523.06, + "probability": 0.9646 + }, + { + "start": 7525.6, + "end": 7528.7, + "probability": 0.7971 + }, + { + "start": 7531.46, + "end": 7532.74, + "probability": 0.8948 + }, + { + "start": 7532.92, + "end": 7534.18, + "probability": 0.6823 + }, + { + "start": 7534.46, + "end": 7535.76, + "probability": 0.7443 + }, + { + "start": 7535.8, + "end": 7536.24, + "probability": 0.5258 + }, + { + "start": 7536.46, + "end": 7537.0, + "probability": 0.9757 + }, + { + "start": 7537.94, + "end": 7543.0, + "probability": 0.9836 + }, + { + "start": 7544.8, + "end": 7546.92, + "probability": 0.8268 + }, + { + "start": 7548.0, + "end": 7551.68, + "probability": 0.5813 + }, + { + "start": 7551.9, + "end": 7555.54, + "probability": 0.9702 + }, + { + "start": 7557.58, + "end": 7559.18, + "probability": 0.8667 + }, + { + "start": 7560.92, + "end": 7567.92, + "probability": 0.9749 + }, + { + "start": 7568.78, + "end": 7570.08, + "probability": 0.9484 + }, + { + "start": 7571.84, + "end": 7573.5, + "probability": 0.8804 + }, + { + "start": 7575.56, + "end": 7579.58, + "probability": 0.9941 + }, + { + "start": 7579.66, + "end": 7580.28, + "probability": 0.9411 + }, + { + "start": 7581.74, + "end": 7584.74, + "probability": 0.9657 + }, + { + "start": 7585.52, + "end": 7586.96, + "probability": 0.9951 + }, + { + "start": 7587.54, + "end": 7589.99, + "probability": 0.7405 + }, + { + "start": 7590.9, + "end": 7595.26, + "probability": 0.9958 + }, + { + "start": 7595.7, + "end": 7596.5, + "probability": 0.8276 + }, + { + "start": 7596.7, + "end": 7598.54, + "probability": 0.83 + }, + { + "start": 7599.22, + "end": 7601.54, + "probability": 0.712 + }, + { + "start": 7602.14, + "end": 7603.28, + "probability": 0.9523 + }, + { + "start": 7603.64, + "end": 7604.54, + "probability": 0.9237 + }, + { + "start": 7604.86, + "end": 7605.54, + "probability": 0.8674 + }, + { + "start": 7605.96, + "end": 7606.7, + "probability": 0.8947 + }, + { + "start": 7607.34, + "end": 7611.74, + "probability": 0.9951 + }, + { + "start": 7611.74, + "end": 7615.0, + "probability": 0.99 + }, + { + "start": 7615.22, + "end": 7616.3, + "probability": 0.9465 + }, + { + "start": 7616.78, + "end": 7620.6, + "probability": 0.9032 + }, + { + "start": 7624.74, + "end": 7624.74, + "probability": 0.0611 + }, + { + "start": 7624.74, + "end": 7625.34, + "probability": 0.7469 + }, + { + "start": 7625.44, + "end": 7627.21, + "probability": 0.9093 + }, + { + "start": 7627.9, + "end": 7629.76, + "probability": 0.9559 + }, + { + "start": 7630.24, + "end": 7633.44, + "probability": 0.9852 + }, + { + "start": 7633.64, + "end": 7638.44, + "probability": 0.9653 + }, + { + "start": 7639.04, + "end": 7641.6, + "probability": 0.3083 + }, + { + "start": 7642.18, + "end": 7645.46, + "probability": 0.9881 + }, + { + "start": 7646.02, + "end": 7648.18, + "probability": 0.9923 + }, + { + "start": 7648.8, + "end": 7650.78, + "probability": 0.9266 + }, + { + "start": 7650.8, + "end": 7651.72, + "probability": 0.5755 + }, + { + "start": 7666.76, + "end": 7667.76, + "probability": 0.6425 + }, + { + "start": 7668.3, + "end": 7670.64, + "probability": 0.9676 + }, + { + "start": 7672.28, + "end": 7673.0, + "probability": 0.9556 + }, + { + "start": 7674.1, + "end": 7674.56, + "probability": 0.8619 + }, + { + "start": 7675.86, + "end": 7676.32, + "probability": 0.9836 + }, + { + "start": 7676.98, + "end": 7677.4, + "probability": 0.6917 + }, + { + "start": 7678.92, + "end": 7682.38, + "probability": 0.9987 + }, + { + "start": 7682.38, + "end": 7685.98, + "probability": 0.9994 + }, + { + "start": 7686.64, + "end": 7690.7, + "probability": 0.9941 + }, + { + "start": 7691.76, + "end": 7693.94, + "probability": 0.8615 + }, + { + "start": 7694.6, + "end": 7697.92, + "probability": 0.998 + }, + { + "start": 7698.58, + "end": 7700.5, + "probability": 0.7667 + }, + { + "start": 7701.56, + "end": 7703.48, + "probability": 0.7153 + }, + { + "start": 7704.08, + "end": 7706.34, + "probability": 0.9198 + }, + { + "start": 7706.72, + "end": 7708.54, + "probability": 0.9314 + }, + { + "start": 7708.98, + "end": 7711.16, + "probability": 0.99 + }, + { + "start": 7712.42, + "end": 7713.88, + "probability": 0.998 + }, + { + "start": 7714.6, + "end": 7716.12, + "probability": 0.9951 + }, + { + "start": 7716.82, + "end": 7717.78, + "probability": 0.9927 + }, + { + "start": 7719.34, + "end": 7722.7, + "probability": 0.8457 + }, + { + "start": 7722.7, + "end": 7726.74, + "probability": 0.9968 + }, + { + "start": 7727.38, + "end": 7728.04, + "probability": 0.9921 + }, + { + "start": 7728.94, + "end": 7729.36, + "probability": 0.8298 + }, + { + "start": 7730.12, + "end": 7731.04, + "probability": 0.9807 + }, + { + "start": 7731.86, + "end": 7734.68, + "probability": 0.9208 + }, + { + "start": 7735.38, + "end": 7740.62, + "probability": 0.9743 + }, + { + "start": 7740.62, + "end": 7744.84, + "probability": 0.7587 + }, + { + "start": 7745.88, + "end": 7747.96, + "probability": 0.9147 + }, + { + "start": 7748.76, + "end": 7754.04, + "probability": 0.9919 + }, + { + "start": 7755.04, + "end": 7757.4, + "probability": 0.9927 + }, + { + "start": 7757.94, + "end": 7759.44, + "probability": 0.8541 + }, + { + "start": 7760.26, + "end": 7763.84, + "probability": 0.9483 + }, + { + "start": 7765.1, + "end": 7767.64, + "probability": 0.7434 + }, + { + "start": 7769.32, + "end": 7773.52, + "probability": 0.9046 + }, + { + "start": 7774.0, + "end": 7776.72, + "probability": 0.9907 + }, + { + "start": 7777.12, + "end": 7777.76, + "probability": 0.7876 + }, + { + "start": 7777.82, + "end": 7778.48, + "probability": 0.8003 + }, + { + "start": 7779.34, + "end": 7779.84, + "probability": 0.6694 + }, + { + "start": 7780.48, + "end": 7781.38, + "probability": 0.8862 + }, + { + "start": 7782.68, + "end": 7784.08, + "probability": 0.9857 + }, + { + "start": 7784.6, + "end": 7788.32, + "probability": 0.9649 + }, + { + "start": 7788.74, + "end": 7792.32, + "probability": 0.9903 + }, + { + "start": 7792.44, + "end": 7795.16, + "probability": 0.9453 + }, + { + "start": 7796.9, + "end": 7798.18, + "probability": 0.9639 + }, + { + "start": 7800.58, + "end": 7801.82, + "probability": 0.9201 + }, + { + "start": 7802.08, + "end": 7802.42, + "probability": 0.405 + }, + { + "start": 7802.44, + "end": 7803.57, + "probability": 0.9358 + }, + { + "start": 7805.26, + "end": 7809.12, + "probability": 0.9876 + }, + { + "start": 7809.86, + "end": 7815.04, + "probability": 0.9797 + }, + { + "start": 7815.6, + "end": 7816.92, + "probability": 0.9636 + }, + { + "start": 7817.6, + "end": 7818.48, + "probability": 0.9785 + }, + { + "start": 7818.92, + "end": 7821.75, + "probability": 0.9398 + }, + { + "start": 7821.86, + "end": 7823.91, + "probability": 0.9194 + }, + { + "start": 7824.76, + "end": 7826.68, + "probability": 0.958 + }, + { + "start": 7828.28, + "end": 7830.04, + "probability": 0.9465 + }, + { + "start": 7831.88, + "end": 7833.36, + "probability": 0.9758 + }, + { + "start": 7834.54, + "end": 7839.4, + "probability": 0.9746 + }, + { + "start": 7840.14, + "end": 7841.74, + "probability": 0.8202 + }, + { + "start": 7841.9, + "end": 7843.2, + "probability": 0.7158 + }, + { + "start": 7843.34, + "end": 7843.68, + "probability": 0.4727 + }, + { + "start": 7843.78, + "end": 7845.32, + "probability": 0.8357 + }, + { + "start": 7845.56, + "end": 7846.36, + "probability": 0.9183 + }, + { + "start": 7846.4, + "end": 7847.1, + "probability": 0.6208 + }, + { + "start": 7847.22, + "end": 7848.32, + "probability": 0.5774 + }, + { + "start": 7848.78, + "end": 7849.66, + "probability": 0.9011 + }, + { + "start": 7850.02, + "end": 7852.3, + "probability": 0.9765 + }, + { + "start": 7852.76, + "end": 7853.0, + "probability": 0.9672 + }, + { + "start": 7853.06, + "end": 7856.8, + "probability": 0.9308 + }, + { + "start": 7857.54, + "end": 7860.36, + "probability": 0.8013 + }, + { + "start": 7860.72, + "end": 7861.34, + "probability": 0.7967 + }, + { + "start": 7861.44, + "end": 7861.68, + "probability": 0.8033 + }, + { + "start": 7861.7, + "end": 7862.86, + "probability": 0.8375 + }, + { + "start": 7862.94, + "end": 7863.62, + "probability": 0.8609 + }, + { + "start": 7864.62, + "end": 7867.92, + "probability": 0.9744 + }, + { + "start": 7869.08, + "end": 7871.88, + "probability": 0.9839 + }, + { + "start": 7873.82, + "end": 7879.08, + "probability": 0.9573 + }, + { + "start": 7879.12, + "end": 7879.22, + "probability": 0.6124 + }, + { + "start": 7879.36, + "end": 7880.18, + "probability": 0.7167 + }, + { + "start": 7880.84, + "end": 7884.82, + "probability": 0.9084 + }, + { + "start": 7884.86, + "end": 7885.74, + "probability": 0.8868 + }, + { + "start": 7885.84, + "end": 7886.76, + "probability": 0.908 + }, + { + "start": 7886.76, + "end": 7887.18, + "probability": 0.1864 + }, + { + "start": 7887.26, + "end": 7887.42, + "probability": 0.3525 + }, + { + "start": 7887.42, + "end": 7887.86, + "probability": 0.4054 + }, + { + "start": 7887.86, + "end": 7888.94, + "probability": 0.9468 + }, + { + "start": 7889.0, + "end": 7889.76, + "probability": 0.0202 + }, + { + "start": 7890.14, + "end": 7890.98, + "probability": 0.0226 + }, + { + "start": 7891.02, + "end": 7891.7, + "probability": 0.7536 + }, + { + "start": 7891.8, + "end": 7892.34, + "probability": 0.8551 + }, + { + "start": 7892.54, + "end": 7894.0, + "probability": 0.769 + }, + { + "start": 7894.06, + "end": 7894.7, + "probability": 0.9363 + }, + { + "start": 7894.9, + "end": 7895.18, + "probability": 0.9139 + }, + { + "start": 7895.8, + "end": 7896.76, + "probability": 0.886 + }, + { + "start": 7897.44, + "end": 7898.76, + "probability": 0.9414 + }, + { + "start": 7899.24, + "end": 7899.8, + "probability": 0.8615 + }, + { + "start": 7899.88, + "end": 7900.46, + "probability": 0.9698 + }, + { + "start": 7900.7, + "end": 7901.28, + "probability": 0.7202 + }, + { + "start": 7901.74, + "end": 7904.72, + "probability": 0.8962 + }, + { + "start": 7904.84, + "end": 7905.66, + "probability": 0.8279 + }, + { + "start": 7906.48, + "end": 7907.56, + "probability": 0.9966 + }, + { + "start": 7907.68, + "end": 7908.8, + "probability": 0.6522 + }, + { + "start": 7908.86, + "end": 7909.62, + "probability": 0.8477 + }, + { + "start": 7910.84, + "end": 7912.44, + "probability": 0.8058 + }, + { + "start": 7913.28, + "end": 7915.1, + "probability": 0.9962 + }, + { + "start": 7915.88, + "end": 7917.15, + "probability": 0.9403 + }, + { + "start": 7918.56, + "end": 7919.64, + "probability": 0.8398 + }, + { + "start": 7920.18, + "end": 7922.05, + "probability": 0.9922 + }, + { + "start": 7922.62, + "end": 7923.82, + "probability": 0.9452 + }, + { + "start": 7923.9, + "end": 7924.8, + "probability": 0.9824 + }, + { + "start": 7925.34, + "end": 7928.56, + "probability": 0.9617 + }, + { + "start": 7929.2, + "end": 7930.34, + "probability": 0.9501 + }, + { + "start": 7931.2, + "end": 7933.19, + "probability": 0.7404 + }, + { + "start": 7934.28, + "end": 7936.0, + "probability": 0.9673 + }, + { + "start": 7936.42, + "end": 7938.78, + "probability": 0.915 + }, + { + "start": 7939.1, + "end": 7939.96, + "probability": 0.9862 + }, + { + "start": 7940.02, + "end": 7940.37, + "probability": 0.9296 + }, + { + "start": 7941.18, + "end": 7946.28, + "probability": 0.9715 + }, + { + "start": 7946.62, + "end": 7947.28, + "probability": 0.6915 + }, + { + "start": 7947.6, + "end": 7948.25, + "probability": 0.9033 + }, + { + "start": 7948.43, + "end": 7949.96, + "probability": 0.9737 + }, + { + "start": 7950.3, + "end": 7952.26, + "probability": 0.9102 + }, + { + "start": 7952.82, + "end": 7954.56, + "probability": 0.9945 + }, + { + "start": 7955.12, + "end": 7957.64, + "probability": 0.802 + }, + { + "start": 7958.46, + "end": 7962.26, + "probability": 0.9971 + }, + { + "start": 7962.66, + "end": 7965.76, + "probability": 0.9578 + }, + { + "start": 7966.56, + "end": 7968.64, + "probability": 0.9719 + }, + { + "start": 7970.3, + "end": 7973.04, + "probability": 0.9824 + }, + { + "start": 7974.14, + "end": 7974.74, + "probability": 0.004 + }, + { + "start": 7974.74, + "end": 7976.6, + "probability": 0.7656 + }, + { + "start": 7976.62, + "end": 7977.76, + "probability": 0.7969 + }, + { + "start": 7977.88, + "end": 7981.39, + "probability": 0.9855 + }, + { + "start": 7982.52, + "end": 7983.0, + "probability": 0.7807 + }, + { + "start": 7984.09, + "end": 7987.12, + "probability": 0.9956 + }, + { + "start": 7988.48, + "end": 7991.24, + "probability": 0.9429 + }, + { + "start": 7991.34, + "end": 7993.48, + "probability": 0.8833 + }, + { + "start": 7994.0, + "end": 7995.14, + "probability": 0.8463 + }, + { + "start": 7995.68, + "end": 7997.38, + "probability": 0.9747 + }, + { + "start": 7997.74, + "end": 7999.46, + "probability": 0.6113 + }, + { + "start": 7999.54, + "end": 8002.04, + "probability": 0.9815 + }, + { + "start": 8002.76, + "end": 8004.28, + "probability": 0.6421 + }, + { + "start": 8004.7, + "end": 8006.68, + "probability": 0.6767 + }, + { + "start": 8007.02, + "end": 8007.54, + "probability": 0.9231 + }, + { + "start": 8008.1, + "end": 8009.28, + "probability": 0.9581 + }, + { + "start": 8010.02, + "end": 8015.56, + "probability": 0.9707 + }, + { + "start": 8016.2, + "end": 8019.62, + "probability": 0.9841 + }, + { + "start": 8020.18, + "end": 8021.38, + "probability": 0.8818 + }, + { + "start": 8021.52, + "end": 8022.42, + "probability": 0.9454 + }, + { + "start": 8022.78, + "end": 8024.94, + "probability": 0.9956 + }, + { + "start": 8025.62, + "end": 8029.76, + "probability": 0.9938 + }, + { + "start": 8030.34, + "end": 8030.98, + "probability": 0.7182 + }, + { + "start": 8031.28, + "end": 8031.5, + "probability": 0.8394 + }, + { + "start": 8031.56, + "end": 8034.62, + "probability": 0.9448 + }, + { + "start": 8035.06, + "end": 8037.97, + "probability": 0.9988 + }, + { + "start": 8039.08, + "end": 8039.54, + "probability": 0.7547 + }, + { + "start": 8040.12, + "end": 8041.14, + "probability": 0.6523 + }, + { + "start": 8041.2, + "end": 8043.76, + "probability": 0.7654 + }, + { + "start": 8043.76, + "end": 8046.62, + "probability": 0.9967 + }, + { + "start": 8046.64, + "end": 8049.24, + "probability": 0.8105 + }, + { + "start": 8050.0, + "end": 8053.48, + "probability": 0.9831 + }, + { + "start": 8053.62, + "end": 8058.42, + "probability": 0.4868 + }, + { + "start": 8058.42, + "end": 8058.98, + "probability": 0.0631 + }, + { + "start": 8059.4, + "end": 8061.4, + "probability": 0.6574 + }, + { + "start": 8061.98, + "end": 8065.23, + "probability": 0.8441 + }, + { + "start": 8076.96, + "end": 8077.44, + "probability": 0.3731 + }, + { + "start": 8077.6, + "end": 8078.64, + "probability": 0.628 + }, + { + "start": 8081.38, + "end": 8084.6, + "probability": 0.893 + }, + { + "start": 8085.48, + "end": 8088.9, + "probability": 0.9348 + }, + { + "start": 8089.86, + "end": 8094.06, + "probability": 0.9619 + }, + { + "start": 8095.8, + "end": 8102.9, + "probability": 0.9925 + }, + { + "start": 8103.52, + "end": 8109.38, + "probability": 0.9849 + }, + { + "start": 8109.38, + "end": 8114.3, + "probability": 0.9993 + }, + { + "start": 8115.42, + "end": 8117.58, + "probability": 0.9807 + }, + { + "start": 8118.49, + "end": 8121.78, + "probability": 0.8741 + }, + { + "start": 8121.84, + "end": 8123.54, + "probability": 0.9453 + }, + { + "start": 8123.88, + "end": 8126.76, + "probability": 0.9803 + }, + { + "start": 8127.72, + "end": 8133.22, + "probability": 0.9206 + }, + { + "start": 8133.22, + "end": 8140.02, + "probability": 0.9988 + }, + { + "start": 8140.76, + "end": 8145.08, + "probability": 0.9893 + }, + { + "start": 8146.34, + "end": 8147.1, + "probability": 0.8232 + }, + { + "start": 8147.56, + "end": 8149.75, + "probability": 0.9408 + }, + { + "start": 8149.96, + "end": 8152.94, + "probability": 0.7841 + }, + { + "start": 8153.14, + "end": 8156.22, + "probability": 0.9114 + }, + { + "start": 8156.54, + "end": 8163.64, + "probability": 0.9879 + }, + { + "start": 8163.96, + "end": 8164.41, + "probability": 0.9825 + }, + { + "start": 8164.84, + "end": 8165.55, + "probability": 0.9324 + }, + { + "start": 8165.96, + "end": 8166.3, + "probability": 0.733 + }, + { + "start": 8166.46, + "end": 8173.28, + "probability": 0.9851 + }, + { + "start": 8174.72, + "end": 8184.04, + "probability": 0.9169 + }, + { + "start": 8184.7, + "end": 8185.74, + "probability": 0.9735 + }, + { + "start": 8186.38, + "end": 8191.22, + "probability": 0.7776 + }, + { + "start": 8192.08, + "end": 8200.22, + "probability": 0.9955 + }, + { + "start": 8201.0, + "end": 8202.16, + "probability": 0.7675 + }, + { + "start": 8203.14, + "end": 8205.82, + "probability": 0.9817 + }, + { + "start": 8206.66, + "end": 8210.0, + "probability": 0.926 + }, + { + "start": 8210.12, + "end": 8211.78, + "probability": 0.9318 + }, + { + "start": 8211.78, + "end": 8213.36, + "probability": 0.9283 + }, + { + "start": 8215.02, + "end": 8217.34, + "probability": 0.6141 + }, + { + "start": 8217.96, + "end": 8220.92, + "probability": 0.9356 + }, + { + "start": 8221.26, + "end": 8225.56, + "probability": 0.9884 + }, + { + "start": 8226.12, + "end": 8231.64, + "probability": 0.9673 + }, + { + "start": 8232.22, + "end": 8236.68, + "probability": 0.7456 + }, + { + "start": 8237.38, + "end": 8244.46, + "probability": 0.9878 + }, + { + "start": 8244.46, + "end": 8251.5, + "probability": 0.9821 + }, + { + "start": 8251.96, + "end": 8256.12, + "probability": 0.9603 + }, + { + "start": 8256.9, + "end": 8261.76, + "probability": 0.879 + }, + { + "start": 8261.88, + "end": 8265.68, + "probability": 0.9782 + }, + { + "start": 8265.82, + "end": 8266.12, + "probability": 0.7312 + }, + { + "start": 8266.58, + "end": 8267.52, + "probability": 0.599 + }, + { + "start": 8267.84, + "end": 8268.3, + "probability": 0.4727 + }, + { + "start": 8268.44, + "end": 8271.52, + "probability": 0.8621 + }, + { + "start": 8272.38, + "end": 8275.1, + "probability": 0.5991 + }, + { + "start": 8275.6, + "end": 8277.28, + "probability": 0.3318 + }, + { + "start": 8277.38, + "end": 8278.98, + "probability": 0.5535 + }, + { + "start": 8279.72, + "end": 8282.62, + "probability": 0.9723 + }, + { + "start": 8294.7, + "end": 8296.72, + "probability": 0.7495 + }, + { + "start": 8296.84, + "end": 8298.83, + "probability": 0.6044 + }, + { + "start": 8299.8, + "end": 8300.06, + "probability": 0.5063 + }, + { + "start": 8300.18, + "end": 8304.18, + "probability": 0.9919 + }, + { + "start": 8304.26, + "end": 8308.14, + "probability": 0.7794 + }, + { + "start": 8308.92, + "end": 8311.02, + "probability": 0.942 + }, + { + "start": 8311.92, + "end": 8316.1, + "probability": 0.9943 + }, + { + "start": 8316.1, + "end": 8322.8, + "probability": 0.9941 + }, + { + "start": 8323.92, + "end": 8327.88, + "probability": 0.9836 + }, + { + "start": 8328.44, + "end": 8332.5, + "probability": 0.9807 + }, + { + "start": 8332.56, + "end": 8339.12, + "probability": 0.9829 + }, + { + "start": 8339.12, + "end": 8341.38, + "probability": 0.816 + }, + { + "start": 8341.56, + "end": 8346.54, + "probability": 0.8444 + }, + { + "start": 8347.04, + "end": 8350.62, + "probability": 0.8965 + }, + { + "start": 8350.62, + "end": 8355.1, + "probability": 0.9748 + }, + { + "start": 8355.14, + "end": 8357.2, + "probability": 0.9983 + }, + { + "start": 8357.92, + "end": 8363.8, + "probability": 0.9642 + }, + { + "start": 8364.5, + "end": 8366.12, + "probability": 0.8839 + }, + { + "start": 8366.24, + "end": 8367.1, + "probability": 0.8467 + }, + { + "start": 8367.78, + "end": 8370.96, + "probability": 0.8207 + }, + { + "start": 8371.52, + "end": 8374.34, + "probability": 0.9785 + }, + { + "start": 8375.18, + "end": 8376.46, + "probability": 0.9703 + }, + { + "start": 8376.54, + "end": 8379.68, + "probability": 0.9309 + }, + { + "start": 8379.68, + "end": 8381.78, + "probability": 0.4873 + }, + { + "start": 8382.0, + "end": 8383.06, + "probability": 0.8872 + }, + { + "start": 8383.82, + "end": 8386.22, + "probability": 0.8994 + }, + { + "start": 8386.54, + "end": 8387.94, + "probability": 0.8561 + }, + { + "start": 8388.88, + "end": 8392.04, + "probability": 0.9021 + }, + { + "start": 8392.64, + "end": 8397.1, + "probability": 0.946 + }, + { + "start": 8398.28, + "end": 8399.1, + "probability": 0.9153 + }, + { + "start": 8399.14, + "end": 8405.48, + "probability": 0.8601 + }, + { + "start": 8405.6, + "end": 8407.2, + "probability": 0.6153 + }, + { + "start": 8407.68, + "end": 8407.92, + "probability": 0.2614 + }, + { + "start": 8407.98, + "end": 8410.32, + "probability": 0.9343 + }, + { + "start": 8410.58, + "end": 8412.54, + "probability": 0.9433 + }, + { + "start": 8412.7, + "end": 8419.0, + "probability": 0.8723 + }, + { + "start": 8419.18, + "end": 8421.09, + "probability": 0.6161 + }, + { + "start": 8423.28, + "end": 8423.58, + "probability": 0.3546 + }, + { + "start": 8423.64, + "end": 8426.7, + "probability": 0.6275 + }, + { + "start": 8427.52, + "end": 8428.6, + "probability": 0.7418 + }, + { + "start": 8429.96, + "end": 8434.46, + "probability": 0.0935 + }, + { + "start": 8436.54, + "end": 8437.9, + "probability": 0.0019 + }, + { + "start": 8438.6, + "end": 8439.18, + "probability": 0.0039 + }, + { + "start": 8440.64, + "end": 8442.6, + "probability": 0.0521 + }, + { + "start": 8445.12, + "end": 8447.78, + "probability": 0.0435 + }, + { + "start": 8447.78, + "end": 8450.16, + "probability": 0.0652 + }, + { + "start": 8451.86, + "end": 8457.3, + "probability": 0.0601 + }, + { + "start": 8457.62, + "end": 8460.6, + "probability": 0.0358 + }, + { + "start": 8460.78, + "end": 8461.62, + "probability": 0.0211 + }, + { + "start": 8461.96, + "end": 8468.5, + "probability": 0.0795 + }, + { + "start": 8468.5, + "end": 8470.58, + "probability": 0.1425 + }, + { + "start": 8473.69, + "end": 8476.8, + "probability": 0.0867 + }, + { + "start": 8476.8, + "end": 8482.8, + "probability": 0.1534 + }, + { + "start": 8483.08, + "end": 8484.6, + "probability": 0.1884 + }, + { + "start": 8484.9, + "end": 8490.98, + "probability": 0.1346 + }, + { + "start": 8491.0, + "end": 8491.0, + "probability": 0.0 + }, + { + "start": 8491.0, + "end": 8491.0, + "probability": 0.0 + }, + { + "start": 8491.0, + "end": 8491.0, + "probability": 0.0 + }, + { + "start": 8491.0, + "end": 8491.0, + "probability": 0.0 + }, + { + "start": 8491.0, + "end": 8491.0, + "probability": 0.0 + }, + { + "start": 8491.0, + "end": 8495.46, + "probability": 0.5674 + }, + { + "start": 8506.38, + "end": 8508.81, + "probability": 0.6472 + }, + { + "start": 8513.9, + "end": 8515.74, + "probability": 0.6955 + }, + { + "start": 8515.94, + "end": 8516.92, + "probability": 0.7574 + }, + { + "start": 8517.14, + "end": 8518.61, + "probability": 0.8462 + }, + { + "start": 8519.96, + "end": 8520.84, + "probability": 0.8856 + }, + { + "start": 8521.62, + "end": 8525.83, + "probability": 0.9692 + }, + { + "start": 8526.24, + "end": 8531.22, + "probability": 0.999 + }, + { + "start": 8532.08, + "end": 8534.8, + "probability": 0.9298 + }, + { + "start": 8536.27, + "end": 8538.82, + "probability": 0.6445 + }, + { + "start": 8540.48, + "end": 8545.09, + "probability": 0.671 + }, + { + "start": 8546.0, + "end": 8547.4, + "probability": 0.8536 + }, + { + "start": 8549.12, + "end": 8549.76, + "probability": 0.7944 + }, + { + "start": 8550.46, + "end": 8551.04, + "probability": 0.9331 + }, + { + "start": 8551.12, + "end": 8554.08, + "probability": 0.6344 + }, + { + "start": 8554.2, + "end": 8555.88, + "probability": 0.9283 + }, + { + "start": 8556.02, + "end": 8560.48, + "probability": 0.6796 + }, + { + "start": 8561.32, + "end": 8561.84, + "probability": 0.7919 + }, + { + "start": 8561.92, + "end": 8562.9, + "probability": 0.7463 + }, + { + "start": 8563.06, + "end": 8567.64, + "probability": 0.9432 + }, + { + "start": 8567.8, + "end": 8568.9, + "probability": 0.8767 + }, + { + "start": 8569.8, + "end": 8570.84, + "probability": 0.9353 + }, + { + "start": 8572.16, + "end": 8577.38, + "probability": 0.9969 + }, + { + "start": 8578.5, + "end": 8579.84, + "probability": 0.8962 + }, + { + "start": 8580.98, + "end": 8583.14, + "probability": 0.8133 + }, + { + "start": 8583.26, + "end": 8586.38, + "probability": 0.7757 + }, + { + "start": 8587.26, + "end": 8588.94, + "probability": 0.9626 + }, + { + "start": 8589.06, + "end": 8590.78, + "probability": 0.7984 + }, + { + "start": 8591.5, + "end": 8596.0, + "probability": 0.5939 + }, + { + "start": 8597.24, + "end": 8598.84, + "probability": 0.4979 + }, + { + "start": 8599.36, + "end": 8606.08, + "probability": 0.9704 + }, + { + "start": 8607.1, + "end": 8610.64, + "probability": 0.779 + }, + { + "start": 8611.46, + "end": 8612.68, + "probability": 0.6464 + }, + { + "start": 8613.62, + "end": 8613.86, + "probability": 0.6678 + }, + { + "start": 8613.94, + "end": 8619.56, + "probability": 0.9521 + }, + { + "start": 8619.72, + "end": 8621.52, + "probability": 0.7412 + }, + { + "start": 8621.62, + "end": 8622.58, + "probability": 0.8723 + }, + { + "start": 8622.84, + "end": 8625.02, + "probability": 0.9287 + }, + { + "start": 8625.08, + "end": 8628.04, + "probability": 0.7196 + }, + { + "start": 8628.6, + "end": 8630.8, + "probability": 0.9827 + }, + { + "start": 8631.24, + "end": 8633.72, + "probability": 0.9473 + }, + { + "start": 8633.94, + "end": 8635.8, + "probability": 0.9049 + }, + { + "start": 8637.28, + "end": 8638.96, + "probability": 0.915 + }, + { + "start": 8639.26, + "end": 8641.12, + "probability": 0.084 + }, + { + "start": 8642.06, + "end": 8642.12, + "probability": 0.0106 + }, + { + "start": 8642.12, + "end": 8642.88, + "probability": 0.339 + }, + { + "start": 8643.38, + "end": 8644.08, + "probability": 0.6569 + }, + { + "start": 8647.24, + "end": 8652.84, + "probability": 0.9736 + }, + { + "start": 8653.16, + "end": 8655.08, + "probability": 0.941 + }, + { + "start": 8656.08, + "end": 8658.42, + "probability": 0.9235 + }, + { + "start": 8658.88, + "end": 8659.74, + "probability": 0.8752 + }, + { + "start": 8659.84, + "end": 8661.08, + "probability": 0.9538 + }, + { + "start": 8661.28, + "end": 8666.42, + "probability": 0.9828 + }, + { + "start": 8667.16, + "end": 8669.48, + "probability": 0.9445 + }, + { + "start": 8670.22, + "end": 8676.5, + "probability": 0.95 + }, + { + "start": 8678.37, + "end": 8681.98, + "probability": 0.6735 + }, + { + "start": 8682.2, + "end": 8683.72, + "probability": 0.9142 + }, + { + "start": 8684.0, + "end": 8686.84, + "probability": 0.8907 + }, + { + "start": 8687.26, + "end": 8689.98, + "probability": 0.8678 + }, + { + "start": 8691.5, + "end": 8693.24, + "probability": 0.7369 + }, + { + "start": 8693.34, + "end": 8695.77, + "probability": 0.8121 + }, + { + "start": 8696.8, + "end": 8697.94, + "probability": 0.8175 + }, + { + "start": 8698.04, + "end": 8698.92, + "probability": 0.9266 + }, + { + "start": 8699.08, + "end": 8699.74, + "probability": 0.9562 + }, + { + "start": 8699.94, + "end": 8701.12, + "probability": 0.7463 + }, + { + "start": 8701.24, + "end": 8704.52, + "probability": 0.9739 + }, + { + "start": 8704.66, + "end": 8705.72, + "probability": 0.8896 + }, + { + "start": 8705.94, + "end": 8708.56, + "probability": 0.9976 + }, + { + "start": 8708.7, + "end": 8709.78, + "probability": 0.8892 + }, + { + "start": 8710.14, + "end": 8711.58, + "probability": 0.904 + }, + { + "start": 8712.04, + "end": 8715.68, + "probability": 0.9849 + }, + { + "start": 8715.86, + "end": 8718.58, + "probability": 0.8654 + }, + { + "start": 8718.58, + "end": 8720.72, + "probability": 0.964 + }, + { + "start": 8721.0, + "end": 8721.63, + "probability": 0.6947 + }, + { + "start": 8722.16, + "end": 8723.1, + "probability": 0.9868 + }, + { + "start": 8723.28, + "end": 8724.5, + "probability": 0.9702 + }, + { + "start": 8724.68, + "end": 8727.33, + "probability": 0.9912 + }, + { + "start": 8727.64, + "end": 8728.52, + "probability": 0.9234 + }, + { + "start": 8728.64, + "end": 8732.2, + "probability": 0.789 + }, + { + "start": 8732.34, + "end": 8732.6, + "probability": 0.5016 + }, + { + "start": 8733.24, + "end": 8734.46, + "probability": 0.8458 + }, + { + "start": 8734.5, + "end": 8736.04, + "probability": 0.7857 + }, + { + "start": 8736.82, + "end": 8740.44, + "probability": 0.8797 + }, + { + "start": 8740.68, + "end": 8743.63, + "probability": 0.9959 + }, + { + "start": 8744.28, + "end": 8745.16, + "probability": 0.3919 + }, + { + "start": 8745.32, + "end": 8745.98, + "probability": 0.5204 + }, + { + "start": 8746.99, + "end": 8751.3, + "probability": 0.6138 + }, + { + "start": 8751.48, + "end": 8753.88, + "probability": 0.712 + }, + { + "start": 8754.24, + "end": 8757.94, + "probability": 0.9711 + }, + { + "start": 8758.3, + "end": 8760.94, + "probability": 0.5839 + }, + { + "start": 8761.34, + "end": 8765.98, + "probability": 0.9804 + }, + { + "start": 8767.28, + "end": 8770.6, + "probability": 0.6782 + }, + { + "start": 8770.6, + "end": 8773.34, + "probability": 0.8984 + }, + { + "start": 8773.64, + "end": 8775.54, + "probability": 0.9957 + }, + { + "start": 8775.54, + "end": 8779.34, + "probability": 0.9854 + }, + { + "start": 8779.66, + "end": 8781.36, + "probability": 0.9707 + }, + { + "start": 8782.0, + "end": 8782.34, + "probability": 0.7926 + }, + { + "start": 8782.44, + "end": 8786.02, + "probability": 0.9164 + }, + { + "start": 8786.02, + "end": 8789.62, + "probability": 0.9873 + }, + { + "start": 8790.66, + "end": 8794.14, + "probability": 0.9962 + }, + { + "start": 8794.2, + "end": 8794.82, + "probability": 0.9002 + }, + { + "start": 8795.14, + "end": 8798.56, + "probability": 0.9469 + }, + { + "start": 8798.56, + "end": 8801.06, + "probability": 0.9983 + }, + { + "start": 8801.66, + "end": 8804.1, + "probability": 0.7801 + }, + { + "start": 8804.36, + "end": 8808.14, + "probability": 0.7255 + }, + { + "start": 8808.42, + "end": 8811.44, + "probability": 0.9922 + }, + { + "start": 8812.04, + "end": 8815.72, + "probability": 0.9928 + }, + { + "start": 8815.72, + "end": 8819.68, + "probability": 0.9818 + }, + { + "start": 8820.16, + "end": 8823.44, + "probability": 0.8748 + }, + { + "start": 8823.86, + "end": 8824.4, + "probability": 0.6284 + }, + { + "start": 8824.98, + "end": 8825.4, + "probability": 0.9454 + }, + { + "start": 8825.44, + "end": 8828.14, + "probability": 0.9935 + }, + { + "start": 8828.14, + "end": 8831.12, + "probability": 0.967 + }, + { + "start": 8831.34, + "end": 8832.88, + "probability": 0.7614 + }, + { + "start": 8833.7, + "end": 8834.22, + "probability": 0.3961 + }, + { + "start": 8834.4, + "end": 8836.34, + "probability": 0.7966 + }, + { + "start": 8836.34, + "end": 8840.08, + "probability": 0.9256 + }, + { + "start": 8840.26, + "end": 8843.74, + "probability": 0.8732 + }, + { + "start": 8844.12, + "end": 8845.68, + "probability": 0.626 + }, + { + "start": 8846.22, + "end": 8848.08, + "probability": 0.8088 + }, + { + "start": 8848.3, + "end": 8852.28, + "probability": 0.9578 + }, + { + "start": 8852.68, + "end": 8855.76, + "probability": 0.9775 + }, + { + "start": 8855.79, + "end": 8858.34, + "probability": 0.9071 + }, + { + "start": 8858.36, + "end": 8861.56, + "probability": 0.7015 + }, + { + "start": 8861.66, + "end": 8864.88, + "probability": 0.9714 + }, + { + "start": 8865.24, + "end": 8868.8, + "probability": 0.9816 + }, + { + "start": 8868.8, + "end": 8871.02, + "probability": 0.6975 + }, + { + "start": 8871.12, + "end": 8874.96, + "probability": 0.9758 + }, + { + "start": 8875.46, + "end": 8875.94, + "probability": 0.7469 + }, + { + "start": 8876.06, + "end": 8879.08, + "probability": 0.6691 + }, + { + "start": 8879.42, + "end": 8880.32, + "probability": 0.7483 + }, + { + "start": 8880.42, + "end": 8882.16, + "probability": 0.8856 + }, + { + "start": 8882.24, + "end": 8884.8, + "probability": 0.9268 + }, + { + "start": 8885.26, + "end": 8885.97, + "probability": 0.9368 + }, + { + "start": 8886.08, + "end": 8889.5, + "probability": 0.9614 + }, + { + "start": 8889.9, + "end": 8890.44, + "probability": 0.6687 + }, + { + "start": 8890.58, + "end": 8892.52, + "probability": 0.8764 + }, + { + "start": 8892.52, + "end": 8895.22, + "probability": 0.9688 + }, + { + "start": 8895.38, + "end": 8898.1, + "probability": 0.9834 + }, + { + "start": 8898.1, + "end": 8903.24, + "probability": 0.9142 + }, + { + "start": 8903.28, + "end": 8906.21, + "probability": 0.9749 + }, + { + "start": 8907.34, + "end": 8908.04, + "probability": 0.9211 + }, + { + "start": 8908.16, + "end": 8909.4, + "probability": 0.7294 + }, + { + "start": 8909.78, + "end": 8913.52, + "probability": 0.8927 + }, + { + "start": 8914.66, + "end": 8914.78, + "probability": 0.3112 + }, + { + "start": 8915.88, + "end": 8920.24, + "probability": 0.9448 + }, + { + "start": 8920.34, + "end": 8923.02, + "probability": 0.7949 + }, + { + "start": 8923.52, + "end": 8925.86, + "probability": 0.9343 + }, + { + "start": 8926.66, + "end": 8928.11, + "probability": 0.7589 + }, + { + "start": 8928.96, + "end": 8930.68, + "probability": 0.7256 + }, + { + "start": 8930.92, + "end": 8932.14, + "probability": 0.8441 + }, + { + "start": 8933.08, + "end": 8934.66, + "probability": 0.6648 + }, + { + "start": 8934.7, + "end": 8936.94, + "probability": 0.8289 + }, + { + "start": 8937.48, + "end": 8938.26, + "probability": 0.5444 + }, + { + "start": 8938.38, + "end": 8938.94, + "probability": 0.6836 + }, + { + "start": 8939.06, + "end": 8939.38, + "probability": 0.58 + }, + { + "start": 8939.5, + "end": 8940.48, + "probability": 0.9752 + }, + { + "start": 8940.9, + "end": 8942.8, + "probability": 0.8625 + }, + { + "start": 8943.2, + "end": 8947.04, + "probability": 0.9775 + }, + { + "start": 8947.16, + "end": 8947.97, + "probability": 0.6712 + }, + { + "start": 8948.36, + "end": 8950.54, + "probability": 0.8359 + }, + { + "start": 8951.24, + "end": 8952.12, + "probability": 0.5328 + }, + { + "start": 8952.24, + "end": 8953.66, + "probability": 0.7101 + }, + { + "start": 8954.1, + "end": 8955.82, + "probability": 0.9766 + }, + { + "start": 8955.98, + "end": 8959.42, + "probability": 0.8054 + }, + { + "start": 8959.88, + "end": 8960.79, + "probability": 0.7491 + }, + { + "start": 8961.7, + "end": 8963.96, + "probability": 0.9982 + }, + { + "start": 8963.96, + "end": 8967.56, + "probability": 0.9707 + }, + { + "start": 8970.82, + "end": 8970.88, + "probability": 0.0562 + }, + { + "start": 8970.88, + "end": 8971.37, + "probability": 0.3464 + }, + { + "start": 8971.82, + "end": 8972.6, + "probability": 0.6324 + }, + { + "start": 8972.64, + "end": 8973.04, + "probability": 0.8986 + }, + { + "start": 8974.0, + "end": 8975.86, + "probability": 0.6515 + }, + { + "start": 8975.98, + "end": 8978.42, + "probability": 0.7862 + }, + { + "start": 8978.48, + "end": 8981.9, + "probability": 0.4941 + }, + { + "start": 8982.42, + "end": 8984.46, + "probability": 0.2727 + }, + { + "start": 8984.68, + "end": 8985.46, + "probability": 0.533 + }, + { + "start": 8985.68, + "end": 8986.52, + "probability": 0.5215 + }, + { + "start": 8986.7, + "end": 8989.76, + "probability": 0.4509 + }, + { + "start": 8989.8, + "end": 8991.42, + "probability": 0.0296 + }, + { + "start": 8991.46, + "end": 8991.64, + "probability": 0.1578 + }, + { + "start": 8991.64, + "end": 8991.99, + "probability": 0.8155 + }, + { + "start": 8992.85, + "end": 8994.76, + "probability": 0.3796 + }, + { + "start": 8994.76, + "end": 8997.52, + "probability": 0.7588 + }, + { + "start": 8997.87, + "end": 9000.95, + "probability": 0.9937 + }, + { + "start": 9000.98, + "end": 9001.44, + "probability": 0.4521 + }, + { + "start": 9001.52, + "end": 9002.04, + "probability": 0.689 + }, + { + "start": 9002.18, + "end": 9002.6, + "probability": 0.062 + }, + { + "start": 9002.6, + "end": 9002.82, + "probability": 0.3216 + }, + { + "start": 9002.86, + "end": 9003.04, + "probability": 0.4132 + }, + { + "start": 9003.16, + "end": 9005.18, + "probability": 0.8955 + }, + { + "start": 9005.32, + "end": 9006.62, + "probability": 0.2563 + }, + { + "start": 9006.62, + "end": 9007.78, + "probability": 0.3783 + }, + { + "start": 9008.38, + "end": 9008.68, + "probability": 0.3296 + }, + { + "start": 9009.68, + "end": 9010.52, + "probability": 0.5201 + }, + { + "start": 9014.2, + "end": 9015.06, + "probability": 0.2356 + }, + { + "start": 9015.16, + "end": 9017.68, + "probability": 0.4397 + }, + { + "start": 9017.68, + "end": 9017.68, + "probability": 0.1534 + }, + { + "start": 9017.68, + "end": 9017.96, + "probability": 0.5667 + }, + { + "start": 9018.02, + "end": 9018.86, + "probability": 0.7858 + }, + { + "start": 9018.9, + "end": 9022.2, + "probability": 0.6432 + }, + { + "start": 9023.2, + "end": 9023.3, + "probability": 0.1435 + }, + { + "start": 9023.3, + "end": 9023.3, + "probability": 0.044 + }, + { + "start": 9023.3, + "end": 9024.74, + "probability": 0.7161 + }, + { + "start": 9024.88, + "end": 9025.22, + "probability": 0.1061 + }, + { + "start": 9025.22, + "end": 9025.3, + "probability": 0.8204 + }, + { + "start": 9025.32, + "end": 9027.82, + "probability": 0.8601 + }, + { + "start": 9028.74, + "end": 9029.76, + "probability": 0.4034 + }, + { + "start": 9032.11, + "end": 9035.18, + "probability": 0.3182 + }, + { + "start": 9035.2, + "end": 9040.18, + "probability": 0.0571 + }, + { + "start": 9040.26, + "end": 9043.66, + "probability": 0.4163 + }, + { + "start": 9044.34, + "end": 9046.88, + "probability": 0.2338 + }, + { + "start": 9046.88, + "end": 9046.88, + "probability": 0.1193 + }, + { + "start": 9046.88, + "end": 9047.65, + "probability": 0.0473 + }, + { + "start": 9049.3, + "end": 9052.8, + "probability": 0.1163 + }, + { + "start": 9061.32, + "end": 9064.08, + "probability": 0.0816 + }, + { + "start": 9066.74, + "end": 9067.24, + "probability": 0.0354 + }, + { + "start": 9067.37, + "end": 9067.98, + "probability": 0.112 + }, + { + "start": 9069.22, + "end": 9069.41, + "probability": 0.0233 + }, + { + "start": 9069.92, + "end": 9070.04, + "probability": 0.0203 + }, + { + "start": 9070.8, + "end": 9071.24, + "probability": 0.2602 + }, + { + "start": 9071.24, + "end": 9071.72, + "probability": 0.2028 + }, + { + "start": 9071.72, + "end": 9073.26, + "probability": 0.0521 + }, + { + "start": 9073.96, + "end": 9076.02, + "probability": 0.1416 + }, + { + "start": 9076.02, + "end": 9079.04, + "probability": 0.2773 + }, + { + "start": 9079.52, + "end": 9082.68, + "probability": 0.0726 + }, + { + "start": 9082.9, + "end": 9083.38, + "probability": 0.098 + }, + { + "start": 9087.0, + "end": 9087.0, + "probability": 0.0 + }, + { + "start": 9087.0, + "end": 9087.0, + "probability": 0.0 + }, + { + "start": 9087.0, + "end": 9087.0, + "probability": 0.0 + }, + { + "start": 9087.0, + "end": 9087.0, + "probability": 0.0 + }, + { + "start": 9087.0, + "end": 9087.0, + "probability": 0.0 + }, + { + "start": 9087.0, + "end": 9087.0, + "probability": 0.0 + }, + { + "start": 9087.0, + "end": 9087.0, + "probability": 0.0 + }, + { + "start": 9087.0, + "end": 9087.0, + "probability": 0.0 + }, + { + "start": 9087.0, + "end": 9087.0, + "probability": 0.0 + }, + { + "start": 9087.0, + "end": 9087.0, + "probability": 0.0 + }, + { + "start": 9087.0, + "end": 9087.0, + "probability": 0.0 + }, + { + "start": 9087.0, + "end": 9087.0, + "probability": 0.0 + }, + { + "start": 9087.0, + "end": 9087.0, + "probability": 0.0 + }, + { + "start": 9087.0, + "end": 9087.0, + "probability": 0.0 + }, + { + "start": 9087.0, + "end": 9087.0, + "probability": 0.0 + }, + { + "start": 9087.0, + "end": 9087.0, + "probability": 0.0 + }, + { + "start": 9087.0, + "end": 9087.0, + "probability": 0.0 + }, + { + "start": 9087.0, + "end": 9087.0, + "probability": 0.0 + }, + { + "start": 9087.0, + "end": 9087.0, + "probability": 0.0 + }, + { + "start": 9087.0, + "end": 9087.0, + "probability": 0.0 + }, + { + "start": 9087.0, + "end": 9087.0, + "probability": 0.0 + }, + { + "start": 9087.0, + "end": 9087.0, + "probability": 0.0 + }, + { + "start": 9092.56, + "end": 9093.16, + "probability": 0.038 + }, + { + "start": 9093.16, + "end": 9093.38, + "probability": 0.0306 + }, + { + "start": 9093.38, + "end": 9098.58, + "probability": 0.1102 + }, + { + "start": 9101.14, + "end": 9108.22, + "probability": 0.1166 + }, + { + "start": 9108.78, + "end": 9109.72, + "probability": 0.0661 + }, + { + "start": 9207.0, + "end": 9207.0, + "probability": 0.0 + }, + { + "start": 9207.0, + "end": 9207.0, + "probability": 0.0 + }, + { + "start": 9207.0, + "end": 9207.0, + "probability": 0.0 + }, + { + "start": 9207.0, + "end": 9207.0, + "probability": 0.0 + }, + { + "start": 9207.0, + "end": 9207.0, + "probability": 0.0 + }, + { + "start": 9207.0, + "end": 9207.0, + "probability": 0.0 + }, + { + "start": 9207.0, + "end": 9207.0, + "probability": 0.0 + }, + { + "start": 9207.0, + "end": 9207.0, + "probability": 0.0 + }, + { + "start": 9207.0, + "end": 9207.0, + "probability": 0.0 + }, + { + "start": 9207.0, + "end": 9207.0, + "probability": 0.0 + }, + { + "start": 9207.0, + "end": 9207.0, + "probability": 0.0 + }, + { + "start": 9207.0, + "end": 9207.0, + "probability": 0.0 + }, + { + "start": 9207.0, + "end": 9207.0, + "probability": 0.0 + }, + { + "start": 9207.0, + "end": 9207.0, + "probability": 0.0 + }, + { + "start": 9207.0, + "end": 9207.0, + "probability": 0.0 + }, + { + "start": 9207.0, + "end": 9207.0, + "probability": 0.0 + }, + { + "start": 9207.0, + "end": 9207.0, + "probability": 0.0 + }, + { + "start": 9207.0, + "end": 9207.0, + "probability": 0.0 + }, + { + "start": 9207.0, + "end": 9207.0, + "probability": 0.0 + }, + { + "start": 9207.0, + "end": 9207.0, + "probability": 0.0 + }, + { + "start": 9207.0, + "end": 9207.0, + "probability": 0.0 + }, + { + "start": 9207.0, + "end": 9207.0, + "probability": 0.0 + }, + { + "start": 9207.0, + "end": 9207.0, + "probability": 0.0 + }, + { + "start": 9207.0, + "end": 9207.0, + "probability": 0.0 + }, + { + "start": 9207.0, + "end": 9207.0, + "probability": 0.0 + }, + { + "start": 9207.0, + "end": 9207.0, + "probability": 0.0 + }, + { + "start": 9207.0, + "end": 9207.0, + "probability": 0.0 + }, + { + "start": 9207.0, + "end": 9207.0, + "probability": 0.0 + }, + { + "start": 9207.0, + "end": 9207.0, + "probability": 0.0 + }, + { + "start": 9207.0, + "end": 9207.0, + "probability": 0.0 + }, + { + "start": 9207.0, + "end": 9207.0, + "probability": 0.0 + }, + { + "start": 9207.0, + "end": 9207.0, + "probability": 0.0 + }, + { + "start": 9207.0, + "end": 9207.0, + "probability": 0.0 + }, + { + "start": 9207.0, + "end": 9207.0, + "probability": 0.0 + }, + { + "start": 9207.0, + "end": 9207.0, + "probability": 0.0 + }, + { + "start": 9207.0, + "end": 9207.0, + "probability": 0.0 + }, + { + "start": 9207.0, + "end": 9207.0, + "probability": 0.0 + }, + { + "start": 9207.0, + "end": 9207.0, + "probability": 0.0 + }, + { + "start": 9207.0, + "end": 9207.0, + "probability": 0.0 + }, + { + "start": 9207.0, + "end": 9207.0, + "probability": 0.0 + }, + { + "start": 9207.0, + "end": 9207.0, + "probability": 0.0 + }, + { + "start": 9207.0, + "end": 9207.0, + "probability": 0.0 + }, + { + "start": 9207.0, + "end": 9207.0, + "probability": 0.0 + }, + { + "start": 9207.0, + "end": 9207.0, + "probability": 0.0 + }, + { + "start": 9207.0, + "end": 9207.0, + "probability": 0.0 + }, + { + "start": 9207.22, + "end": 9208.22, + "probability": 0.038 + }, + { + "start": 9209.9, + "end": 9211.1, + "probability": 0.5863 + }, + { + "start": 9211.2, + "end": 9214.08, + "probability": 0.6733 + }, + { + "start": 9214.08, + "end": 9214.48, + "probability": 0.0886 + }, + { + "start": 9215.7, + "end": 9216.4, + "probability": 0.3046 + }, + { + "start": 9221.46, + "end": 9222.74, + "probability": 0.0239 + }, + { + "start": 9222.74, + "end": 9223.4, + "probability": 0.1313 + }, + { + "start": 9223.6, + "end": 9224.54, + "probability": 0.0877 + }, + { + "start": 9225.48, + "end": 9226.8, + "probability": 0.087 + }, + { + "start": 9328.0, + "end": 9328.0, + "probability": 0.0 + }, + { + "start": 9328.0, + "end": 9328.0, + "probability": 0.0 + }, + { + "start": 9328.0, + "end": 9328.0, + "probability": 0.0 + }, + { + "start": 9328.0, + "end": 9328.0, + "probability": 0.0 + }, + { + "start": 9328.0, + "end": 9328.0, + "probability": 0.0 + }, + { + "start": 9328.0, + "end": 9328.0, + "probability": 0.0 + }, + { + "start": 9328.0, + "end": 9328.0, + "probability": 0.0 + }, + { + "start": 9328.0, + "end": 9328.0, + "probability": 0.0 + }, + { + "start": 9328.0, + "end": 9328.0, + "probability": 0.0 + }, + { + "start": 9328.0, + "end": 9328.0, + "probability": 0.0 + }, + { + "start": 9328.0, + "end": 9328.0, + "probability": 0.0 + }, + { + "start": 9328.0, + "end": 9328.0, + "probability": 0.0 + }, + { + "start": 9328.0, + "end": 9328.0, + "probability": 0.0 + }, + { + "start": 9328.0, + "end": 9328.0, + "probability": 0.0 + }, + { + "start": 9328.0, + "end": 9328.0, + "probability": 0.0 + }, + { + "start": 9328.0, + "end": 9328.0, + "probability": 0.0 + }, + { + "start": 9328.0, + "end": 9328.0, + "probability": 0.0 + }, + { + "start": 9328.0, + "end": 9328.0, + "probability": 0.0 + }, + { + "start": 9328.32, + "end": 9328.54, + "probability": 0.0072 + }, + { + "start": 9329.02, + "end": 9330.5, + "probability": 0.2201 + }, + { + "start": 9330.62, + "end": 9330.77, + "probability": 0.0557 + }, + { + "start": 9330.78, + "end": 9331.1, + "probability": 0.2343 + }, + { + "start": 9331.55, + "end": 9333.04, + "probability": 0.049 + }, + { + "start": 9333.26, + "end": 9338.54, + "probability": 0.9446 + }, + { + "start": 9338.6, + "end": 9339.38, + "probability": 0.5919 + }, + { + "start": 9339.4, + "end": 9342.32, + "probability": 0.6439 + }, + { + "start": 9342.38, + "end": 9347.76, + "probability": 0.6483 + }, + { + "start": 9347.96, + "end": 9349.96, + "probability": 0.9456 + }, + { + "start": 9350.14, + "end": 9351.23, + "probability": 0.9902 + }, + { + "start": 9351.62, + "end": 9352.28, + "probability": 0.7525 + }, + { + "start": 9352.62, + "end": 9353.5, + "probability": 0.7579 + }, + { + "start": 9353.6, + "end": 9356.0, + "probability": 0.9253 + }, + { + "start": 9356.78, + "end": 9358.08, + "probability": 0.9151 + }, + { + "start": 9358.3, + "end": 9361.02, + "probability": 0.9656 + }, + { + "start": 9361.56, + "end": 9364.3, + "probability": 0.437 + }, + { + "start": 9364.6, + "end": 9364.72, + "probability": 0.5458 + }, + { + "start": 9364.84, + "end": 9366.36, + "probability": 0.6597 + }, + { + "start": 9366.36, + "end": 9366.96, + "probability": 0.0417 + }, + { + "start": 9366.96, + "end": 9367.64, + "probability": 0.4834 + }, + { + "start": 9367.84, + "end": 9371.68, + "probability": 0.8796 + }, + { + "start": 9371.9, + "end": 9373.56, + "probability": 0.989 + }, + { + "start": 9373.58, + "end": 9373.76, + "probability": 0.1153 + }, + { + "start": 9373.9, + "end": 9377.08, + "probability": 0.9829 + }, + { + "start": 9379.4, + "end": 9379.42, + "probability": 0.1735 + }, + { + "start": 9379.44, + "end": 9379.44, + "probability": 0.0827 + }, + { + "start": 9379.44, + "end": 9382.28, + "probability": 0.7067 + }, + { + "start": 9383.06, + "end": 9387.28, + "probability": 0.6911 + }, + { + "start": 9387.46, + "end": 9388.66, + "probability": 0.9556 + }, + { + "start": 9388.82, + "end": 9392.3, + "probability": 0.8333 + }, + { + "start": 9392.6, + "end": 9395.58, + "probability": 0.9825 + }, + { + "start": 9395.94, + "end": 9401.98, + "probability": 0.8099 + }, + { + "start": 9402.32, + "end": 9403.7, + "probability": 0.9582 + }, + { + "start": 9403.78, + "end": 9404.8, + "probability": 0.9186 + }, + { + "start": 9405.42, + "end": 9406.8, + "probability": 0.8472 + }, + { + "start": 9406.88, + "end": 9407.5, + "probability": 0.9932 + }, + { + "start": 9407.88, + "end": 9408.37, + "probability": 0.8678 + }, + { + "start": 9409.1, + "end": 9409.64, + "probability": 0.5396 + }, + { + "start": 9410.16, + "end": 9412.23, + "probability": 0.8776 + }, + { + "start": 9412.64, + "end": 9413.0, + "probability": 0.7484 + }, + { + "start": 9413.08, + "end": 9413.62, + "probability": 0.8241 + }, + { + "start": 9414.0, + "end": 9415.88, + "probability": 0.959 + }, + { + "start": 9416.4, + "end": 9420.3, + "probability": 0.7833 + }, + { + "start": 9420.74, + "end": 9421.12, + "probability": 0.9591 + }, + { + "start": 9421.34, + "end": 9423.66, + "probability": 0.9858 + }, + { + "start": 9423.74, + "end": 9424.9, + "probability": 0.827 + }, + { + "start": 9424.9, + "end": 9427.68, + "probability": 0.9226 + }, + { + "start": 9428.02, + "end": 9429.28, + "probability": 0.8389 + }, + { + "start": 9429.52, + "end": 9431.76, + "probability": 0.9358 + }, + { + "start": 9432.32, + "end": 9434.62, + "probability": 0.9396 + }, + { + "start": 9435.4, + "end": 9437.56, + "probability": 0.9849 + }, + { + "start": 9437.88, + "end": 9442.78, + "probability": 0.85 + }, + { + "start": 9443.34, + "end": 9444.58, + "probability": 0.7559 + }, + { + "start": 9445.1, + "end": 9446.54, + "probability": 0.4783 + }, + { + "start": 9446.94, + "end": 9447.04, + "probability": 0.5852 + }, + { + "start": 9447.38, + "end": 9449.62, + "probability": 0.9458 + }, + { + "start": 9450.44, + "end": 9454.77, + "probability": 0.6869 + }, + { + "start": 9455.9, + "end": 9456.2, + "probability": 0.6836 + }, + { + "start": 9456.26, + "end": 9456.4, + "probability": 0.0347 + }, + { + "start": 9456.4, + "end": 9456.4, + "probability": 0.0461 + }, + { + "start": 9456.4, + "end": 9456.75, + "probability": 0.5424 + }, + { + "start": 9457.46, + "end": 9457.52, + "probability": 0.6757 + }, + { + "start": 9457.52, + "end": 9458.39, + "probability": 0.8767 + }, + { + "start": 9459.44, + "end": 9460.56, + "probability": 0.8875 + }, + { + "start": 9460.82, + "end": 9462.76, + "probability": 0.3145 + }, + { + "start": 9463.0, + "end": 9463.64, + "probability": 0.5422 + }, + { + "start": 9464.38, + "end": 9464.92, + "probability": 0.9607 + }, + { + "start": 9482.94, + "end": 9483.6, + "probability": 0.2018 + }, + { + "start": 9485.45, + "end": 9490.36, + "probability": 0.8672 + }, + { + "start": 9494.56, + "end": 9496.96, + "probability": 0.6636 + }, + { + "start": 9497.06, + "end": 9499.68, + "probability": 0.9949 + }, + { + "start": 9500.14, + "end": 9502.84, + "probability": 0.9902 + }, + { + "start": 9502.88, + "end": 9505.8, + "probability": 0.9254 + }, + { + "start": 9507.22, + "end": 9507.94, + "probability": 0.7719 + }, + { + "start": 9508.1, + "end": 9510.58, + "probability": 0.5735 + }, + { + "start": 9511.64, + "end": 9511.7, + "probability": 0.7558 + }, + { + "start": 9511.7, + "end": 9514.64, + "probability": 0.7907 + }, + { + "start": 9514.7, + "end": 9517.35, + "probability": 0.9668 + }, + { + "start": 9518.0, + "end": 9519.28, + "probability": 0.8185 + }, + { + "start": 9519.44, + "end": 9521.76, + "probability": 0.4929 + }, + { + "start": 9522.28, + "end": 9524.36, + "probability": 0.9856 + }, + { + "start": 9524.42, + "end": 9525.0, + "probability": 0.9172 + }, + { + "start": 9525.1, + "end": 9525.9, + "probability": 0.9849 + }, + { + "start": 9525.96, + "end": 9528.74, + "probability": 0.9945 + }, + { + "start": 9529.64, + "end": 9531.48, + "probability": 0.7884 + }, + { + "start": 9531.48, + "end": 9531.64, + "probability": 0.8328 + }, + { + "start": 9531.74, + "end": 9535.22, + "probability": 0.9878 + }, + { + "start": 9535.34, + "end": 9535.68, + "probability": 0.7625 + }, + { + "start": 9536.36, + "end": 9537.16, + "probability": 0.9812 + }, + { + "start": 9537.78, + "end": 9539.84, + "probability": 0.9445 + }, + { + "start": 9540.44, + "end": 9542.02, + "probability": 0.1638 + }, + { + "start": 9542.76, + "end": 9544.58, + "probability": 0.6831 + }, + { + "start": 9544.86, + "end": 9552.32, + "probability": 0.7881 + }, + { + "start": 9553.4, + "end": 9557.56, + "probability": 0.9476 + }, + { + "start": 9558.26, + "end": 9562.25, + "probability": 0.994 + }, + { + "start": 9562.42, + "end": 9564.96, + "probability": 0.8741 + }, + { + "start": 9566.04, + "end": 9567.58, + "probability": 0.9984 + }, + { + "start": 9568.16, + "end": 9571.48, + "probability": 0.9965 + }, + { + "start": 9572.44, + "end": 9572.78, + "probability": 0.6074 + }, + { + "start": 9574.0, + "end": 9575.18, + "probability": 0.9283 + }, + { + "start": 9575.26, + "end": 9579.38, + "probability": 0.9474 + }, + { + "start": 9579.5, + "end": 9580.04, + "probability": 0.967 + }, + { + "start": 9580.12, + "end": 9580.62, + "probability": 0.9147 + }, + { + "start": 9581.4, + "end": 9583.52, + "probability": 0.9723 + }, + { + "start": 9584.12, + "end": 9585.74, + "probability": 0.9985 + }, + { + "start": 9586.42, + "end": 9589.28, + "probability": 0.9873 + }, + { + "start": 9589.92, + "end": 9590.42, + "probability": 0.5134 + }, + { + "start": 9591.22, + "end": 9595.04, + "probability": 0.943 + }, + { + "start": 9595.84, + "end": 9596.84, + "probability": 0.9343 + }, + { + "start": 9597.58, + "end": 9601.28, + "probability": 0.9961 + }, + { + "start": 9601.36, + "end": 9602.06, + "probability": 0.7333 + }, + { + "start": 9602.8, + "end": 9604.0, + "probability": 0.719 + }, + { + "start": 9604.16, + "end": 9604.98, + "probability": 0.9443 + }, + { + "start": 9605.04, + "end": 9606.46, + "probability": 0.6544 + }, + { + "start": 9606.7, + "end": 9607.7, + "probability": 0.944 + }, + { + "start": 9608.06, + "end": 9609.06, + "probability": 0.9242 + }, + { + "start": 9609.4, + "end": 9609.9, + "probability": 0.5088 + }, + { + "start": 9609.96, + "end": 9610.52, + "probability": 0.6303 + }, + { + "start": 9610.9, + "end": 9612.06, + "probability": 0.9767 + }, + { + "start": 9612.58, + "end": 9615.6, + "probability": 0.7616 + }, + { + "start": 9616.18, + "end": 9617.62, + "probability": 0.8923 + }, + { + "start": 9618.02, + "end": 9620.48, + "probability": 0.2154 + }, + { + "start": 9620.7, + "end": 9621.91, + "probability": 0.236 + }, + { + "start": 9622.2, + "end": 9622.62, + "probability": 0.0148 + }, + { + "start": 9622.62, + "end": 9622.62, + "probability": 0.2269 + }, + { + "start": 9622.62, + "end": 9624.68, + "probability": 0.8035 + }, + { + "start": 9625.0, + "end": 9628.74, + "probability": 0.9846 + }, + { + "start": 9629.14, + "end": 9630.54, + "probability": 0.9765 + }, + { + "start": 9630.62, + "end": 9631.82, + "probability": 0.7518 + }, + { + "start": 9631.86, + "end": 9638.4, + "probability": 0.9716 + }, + { + "start": 9638.6, + "end": 9640.04, + "probability": 0.2628 + }, + { + "start": 9640.04, + "end": 9642.82, + "probability": 0.5176 + }, + { + "start": 9642.88, + "end": 9643.04, + "probability": 0.5136 + }, + { + "start": 9643.16, + "end": 9643.7, + "probability": 0.9136 + }, + { + "start": 9644.14, + "end": 9646.64, + "probability": 0.0435 + }, + { + "start": 9647.08, + "end": 9647.94, + "probability": 0.805 + }, + { + "start": 9648.0, + "end": 9648.44, + "probability": 0.0755 + }, + { + "start": 9649.24, + "end": 9649.96, + "probability": 0.8352 + }, + { + "start": 9650.04, + "end": 9653.66, + "probability": 0.4906 + }, + { + "start": 9653.66, + "end": 9654.08, + "probability": 0.0858 + }, + { + "start": 9654.14, + "end": 9656.5, + "probability": 0.9106 + }, + { + "start": 9656.74, + "end": 9658.28, + "probability": 0.7267 + }, + { + "start": 9658.44, + "end": 9659.06, + "probability": 0.5556 + }, + { + "start": 9659.2, + "end": 9661.12, + "probability": 0.9111 + }, + { + "start": 9661.12, + "end": 9664.0, + "probability": 0.9371 + }, + { + "start": 9664.02, + "end": 9666.46, + "probability": 0.9609 + }, + { + "start": 9666.78, + "end": 9668.6, + "probability": 0.5156 + }, + { + "start": 9668.7, + "end": 9668.96, + "probability": 0.0798 + }, + { + "start": 9669.48, + "end": 9669.76, + "probability": 0.4716 + }, + { + "start": 9670.5, + "end": 9671.52, + "probability": 0.3145 + }, + { + "start": 9671.56, + "end": 9671.56, + "probability": 0.1473 + }, + { + "start": 9671.6, + "end": 9671.6, + "probability": 0.3019 + }, + { + "start": 9671.64, + "end": 9673.2, + "probability": 0.8364 + }, + { + "start": 9673.2, + "end": 9678.22, + "probability": 0.8448 + }, + { + "start": 9678.3, + "end": 9678.78, + "probability": 0.4565 + }, + { + "start": 9678.8, + "end": 9679.42, + "probability": 0.5649 + }, + { + "start": 9679.72, + "end": 9681.3, + "probability": 0.8442 + }, + { + "start": 9681.58, + "end": 9688.26, + "probability": 0.9028 + }, + { + "start": 9688.38, + "end": 9689.26, + "probability": 0.9581 + }, + { + "start": 9689.62, + "end": 9691.44, + "probability": 0.9165 + }, + { + "start": 9691.46, + "end": 9691.96, + "probability": 0.8577 + }, + { + "start": 9692.02, + "end": 9692.82, + "probability": 0.7898 + }, + { + "start": 9693.28, + "end": 9695.12, + "probability": 0.9152 + }, + { + "start": 9695.2, + "end": 9695.84, + "probability": 0.7226 + }, + { + "start": 9696.02, + "end": 9696.76, + "probability": 0.6479 + }, + { + "start": 9697.02, + "end": 9697.9, + "probability": 0.497 + }, + { + "start": 9699.92, + "end": 9701.82, + "probability": 0.6953 + }, + { + "start": 9702.4, + "end": 9703.04, + "probability": 0.901 + }, + { + "start": 9705.8, + "end": 9708.8, + "probability": 0.7873 + }, + { + "start": 9709.18, + "end": 9710.52, + "probability": 0.5736 + }, + { + "start": 9711.42, + "end": 9716.4, + "probability": 0.6328 + }, + { + "start": 9716.5, + "end": 9717.26, + "probability": 0.77 + }, + { + "start": 9717.54, + "end": 9718.17, + "probability": 0.6808 + }, + { + "start": 9718.32, + "end": 9721.6, + "probability": 0.8077 + }, + { + "start": 9721.64, + "end": 9722.56, + "probability": 0.853 + }, + { + "start": 9722.58, + "end": 9724.54, + "probability": 0.9904 + }, + { + "start": 9725.14, + "end": 9726.46, + "probability": 0.9766 + }, + { + "start": 9728.9, + "end": 9731.6, + "probability": 0.9053 + }, + { + "start": 9732.78, + "end": 9732.9, + "probability": 0.4114 + }, + { + "start": 9732.9, + "end": 9735.12, + "probability": 0.9497 + }, + { + "start": 9735.62, + "end": 9738.18, + "probability": 0.9836 + }, + { + "start": 9739.04, + "end": 9742.74, + "probability": 0.9875 + }, + { + "start": 9744.58, + "end": 9750.7, + "probability": 0.9963 + }, + { + "start": 9751.68, + "end": 9752.45, + "probability": 0.9902 + }, + { + "start": 9752.78, + "end": 9753.78, + "probability": 0.8955 + }, + { + "start": 9753.86, + "end": 9754.46, + "probability": 0.7068 + }, + { + "start": 9755.24, + "end": 9756.52, + "probability": 0.9981 + }, + { + "start": 9757.46, + "end": 9761.54, + "probability": 0.9241 + }, + { + "start": 9761.94, + "end": 9764.98, + "probability": 0.9915 + }, + { + "start": 9765.04, + "end": 9765.82, + "probability": 0.9766 + }, + { + "start": 9766.62, + "end": 9768.92, + "probability": 0.991 + }, + { + "start": 9769.28, + "end": 9769.82, + "probability": 0.6422 + }, + { + "start": 9770.2, + "end": 9771.1, + "probability": 0.3985 + }, + { + "start": 9771.1, + "end": 9772.02, + "probability": 0.7337 + }, + { + "start": 9772.02, + "end": 9772.94, + "probability": 0.8192 + }, + { + "start": 9774.76, + "end": 9776.4, + "probability": 0.9425 + }, + { + "start": 9777.38, + "end": 9778.71, + "probability": 0.9634 + }, + { + "start": 9779.36, + "end": 9781.22, + "probability": 0.9457 + }, + { + "start": 9781.84, + "end": 9782.66, + "probability": 0.7616 + }, + { + "start": 9783.44, + "end": 9790.7, + "probability": 0.9985 + }, + { + "start": 9791.72, + "end": 9793.36, + "probability": 0.9857 + }, + { + "start": 9793.84, + "end": 9796.64, + "probability": 0.9248 + }, + { + "start": 9797.54, + "end": 9800.86, + "probability": 0.9958 + }, + { + "start": 9800.98, + "end": 9801.6, + "probability": 0.2225 + }, + { + "start": 9802.2, + "end": 9802.84, + "probability": 0.809 + }, + { + "start": 9802.88, + "end": 9804.66, + "probability": 0.55 + }, + { + "start": 9804.94, + "end": 9806.02, + "probability": 0.7402 + }, + { + "start": 9807.1, + "end": 9808.84, + "probability": 0.9946 + }, + { + "start": 9809.2, + "end": 9813.8, + "probability": 0.9563 + }, + { + "start": 9813.8, + "end": 9814.6, + "probability": 0.094 + }, + { + "start": 9814.6, + "end": 9815.58, + "probability": 0.5349 + }, + { + "start": 9815.78, + "end": 9818.9, + "probability": 0.9335 + }, + { + "start": 9818.9, + "end": 9819.44, + "probability": 0.0526 + }, + { + "start": 9819.62, + "end": 9819.66, + "probability": 0.2683 + }, + { + "start": 9819.96, + "end": 9820.26, + "probability": 0.1668 + }, + { + "start": 9820.26, + "end": 9820.82, + "probability": 0.1937 + }, + { + "start": 9820.86, + "end": 9820.86, + "probability": 0.2378 + }, + { + "start": 9820.86, + "end": 9823.84, + "probability": 0.7891 + }, + { + "start": 9823.94, + "end": 9824.06, + "probability": 0.2775 + }, + { + "start": 9824.12, + "end": 9824.52, + "probability": 0.9269 + }, + { + "start": 9824.58, + "end": 9828.44, + "probability": 0.6926 + }, + { + "start": 9828.44, + "end": 9828.44, + "probability": 0.0338 + }, + { + "start": 9828.44, + "end": 9828.64, + "probability": 0.0049 + }, + { + "start": 9828.66, + "end": 9828.92, + "probability": 0.1357 + }, + { + "start": 9828.92, + "end": 9828.92, + "probability": 0.1658 + }, + { + "start": 9828.92, + "end": 9833.56, + "probability": 0.7416 + }, + { + "start": 9833.68, + "end": 9835.71, + "probability": 0.7787 + }, + { + "start": 9836.4, + "end": 9838.66, + "probability": 0.4935 + }, + { + "start": 9838.72, + "end": 9839.8, + "probability": 0.6743 + }, + { + "start": 9839.88, + "end": 9847.76, + "probability": 0.9691 + }, + { + "start": 9849.66, + "end": 9851.02, + "probability": 0.6137 + }, + { + "start": 9854.0, + "end": 9857.54, + "probability": 0.9613 + }, + { + "start": 9858.43, + "end": 9858.8, + "probability": 0.224 + }, + { + "start": 9858.8, + "end": 9860.32, + "probability": 0.747 + }, + { + "start": 9860.6, + "end": 9861.14, + "probability": 0.7373 + }, + { + "start": 9861.14, + "end": 9863.58, + "probability": 0.9144 + }, + { + "start": 9863.72, + "end": 9865.92, + "probability": 0.9961 + }, + { + "start": 9866.58, + "end": 9868.27, + "probability": 0.8844 + }, + { + "start": 9868.46, + "end": 9871.72, + "probability": 0.9764 + }, + { + "start": 9871.74, + "end": 9873.2, + "probability": 0.723 + }, + { + "start": 9873.36, + "end": 9875.02, + "probability": 0.8687 + }, + { + "start": 9875.14, + "end": 9876.13, + "probability": 0.9768 + }, + { + "start": 9876.78, + "end": 9878.04, + "probability": 0.9757 + }, + { + "start": 9878.24, + "end": 9878.66, + "probability": 0.8975 + }, + { + "start": 9879.32, + "end": 9879.98, + "probability": 0.7857 + }, + { + "start": 9880.44, + "end": 9881.12, + "probability": 0.6353 + }, + { + "start": 9881.7, + "end": 9885.14, + "probability": 0.9729 + }, + { + "start": 9885.5, + "end": 9889.48, + "probability": 0.9769 + }, + { + "start": 9889.6, + "end": 9891.72, + "probability": 0.9121 + }, + { + "start": 9892.5, + "end": 9895.22, + "probability": 0.9016 + }, + { + "start": 9896.36, + "end": 9899.66, + "probability": 0.9167 + }, + { + "start": 9900.5, + "end": 9903.86, + "probability": 0.6674 + }, + { + "start": 9903.86, + "end": 9910.18, + "probability": 0.9424 + }, + { + "start": 9910.54, + "end": 9911.56, + "probability": 0.6736 + }, + { + "start": 9911.76, + "end": 9912.96, + "probability": 0.3411 + }, + { + "start": 9913.24, + "end": 9913.32, + "probability": 0.2634 + }, + { + "start": 9913.32, + "end": 9914.64, + "probability": 0.8398 + }, + { + "start": 9914.64, + "end": 9917.68, + "probability": 0.9839 + }, + { + "start": 9917.8, + "end": 9920.0, + "probability": 0.0171 + }, + { + "start": 9920.22, + "end": 9921.02, + "probability": 0.0698 + }, + { + "start": 9921.02, + "end": 9921.02, + "probability": 0.3163 + }, + { + "start": 9921.02, + "end": 9922.88, + "probability": 0.8501 + }, + { + "start": 9922.88, + "end": 9923.9, + "probability": 0.9634 + }, + { + "start": 9924.2, + "end": 9926.86, + "probability": 0.7665 + }, + { + "start": 9927.1, + "end": 9928.14, + "probability": 0.0875 + }, + { + "start": 9928.34, + "end": 9929.66, + "probability": 0.2268 + }, + { + "start": 9929.7, + "end": 9931.7, + "probability": 0.3074 + }, + { + "start": 9932.42, + "end": 9932.66, + "probability": 0.0411 + }, + { + "start": 9932.66, + "end": 9932.66, + "probability": 0.1158 + }, + { + "start": 9932.66, + "end": 9935.64, + "probability": 0.8589 + }, + { + "start": 9935.92, + "end": 9938.18, + "probability": 0.5898 + }, + { + "start": 9938.8, + "end": 9944.2, + "probability": 0.8167 + }, + { + "start": 9944.36, + "end": 9947.16, + "probability": 0.0103 + }, + { + "start": 9947.16, + "end": 9947.34, + "probability": 0.1319 + }, + { + "start": 9947.34, + "end": 9949.04, + "probability": 0.6281 + }, + { + "start": 9949.4, + "end": 9949.5, + "probability": 0.0277 + }, + { + "start": 9949.5, + "end": 9950.1, + "probability": 0.0277 + }, + { + "start": 9950.64, + "end": 9953.52, + "probability": 0.6917 + }, + { + "start": 9953.68, + "end": 9955.82, + "probability": 0.7858 + }, + { + "start": 9958.04, + "end": 9958.42, + "probability": 0.8311 + }, + { + "start": 9958.85, + "end": 9959.26, + "probability": 0.1447 + }, + { + "start": 9959.26, + "end": 9961.72, + "probability": 0.9008 + }, + { + "start": 9961.82, + "end": 9965.76, + "probability": 0.7898 + }, + { + "start": 9965.76, + "end": 9966.36, + "probability": 0.6432 + }, + { + "start": 9966.36, + "end": 9966.52, + "probability": 0.1412 + }, + { + "start": 9966.52, + "end": 9972.78, + "probability": 0.1418 + }, + { + "start": 9974.5, + "end": 9974.88, + "probability": 0.0263 + }, + { + "start": 9974.96, + "end": 9975.42, + "probability": 0.1171 + }, + { + "start": 9975.42, + "end": 9975.88, + "probability": 0.5169 + }, + { + "start": 9975.88, + "end": 9977.56, + "probability": 0.0739 + }, + { + "start": 9977.62, + "end": 9978.56, + "probability": 0.0358 + }, + { + "start": 9978.8, + "end": 9979.08, + "probability": 0.4086 + }, + { + "start": 9980.7, + "end": 9980.94, + "probability": 0.0526 + }, + { + "start": 9980.94, + "end": 9980.94, + "probability": 0.0406 + }, + { + "start": 9980.94, + "end": 9982.12, + "probability": 0.1337 + }, + { + "start": 9982.18, + "end": 9983.26, + "probability": 0.6322 + }, + { + "start": 9984.1, + "end": 9985.17, + "probability": 0.7886 + }, + { + "start": 9985.46, + "end": 9987.08, + "probability": 0.9924 + }, + { + "start": 9988.86, + "end": 9989.46, + "probability": 0.9318 + }, + { + "start": 9991.04, + "end": 9998.86, + "probability": 0.5854 + }, + { + "start": 9998.86, + "end": 9999.46, + "probability": 0.656 + }, + { + "start": 10001.58, + "end": 10002.28, + "probability": 0.6503 + }, + { + "start": 10002.96, + "end": 10007.12, + "probability": 0.7854 + }, + { + "start": 10008.02, + "end": 10010.29, + "probability": 0.8616 + }, + { + "start": 10010.9, + "end": 10016.84, + "probability": 0.8959 + }, + { + "start": 10016.92, + "end": 10019.9, + "probability": 0.2086 + }, + { + "start": 10021.0, + "end": 10021.52, + "probability": 0.1306 + }, + { + "start": 10021.54, + "end": 10021.54, + "probability": 0.3233 + }, + { + "start": 10021.54, + "end": 10023.84, + "probability": 0.7168 + }, + { + "start": 10024.06, + "end": 10024.29, + "probability": 0.3406 + }, + { + "start": 10024.6, + "end": 10025.46, + "probability": 0.7952 + }, + { + "start": 10025.58, + "end": 10025.86, + "probability": 0.6738 + }, + { + "start": 10026.26, + "end": 10027.08, + "probability": 0.8638 + }, + { + "start": 10027.7, + "end": 10028.92, + "probability": 0.955 + }, + { + "start": 10029.06, + "end": 10031.6, + "probability": 0.1837 + }, + { + "start": 10031.6, + "end": 10031.8, + "probability": 0.0507 + }, + { + "start": 10031.8, + "end": 10033.12, + "probability": 0.4151 + }, + { + "start": 10033.2, + "end": 10034.52, + "probability": 0.2118 + }, + { + "start": 10034.84, + "end": 10035.82, + "probability": 0.6636 + }, + { + "start": 10038.16, + "end": 10038.86, + "probability": 0.3242 + }, + { + "start": 10038.94, + "end": 10039.34, + "probability": 0.0278 + }, + { + "start": 10042.88, + "end": 10046.9, + "probability": 0.7136 + }, + { + "start": 10047.84, + "end": 10051.58, + "probability": 0.9011 + }, + { + "start": 10051.68, + "end": 10056.54, + "probability": 0.0302 + }, + { + "start": 10056.54, + "end": 10058.12, + "probability": 0.1567 + }, + { + "start": 10058.12, + "end": 10058.22, + "probability": 0.0797 + }, + { + "start": 10058.24, + "end": 10058.24, + "probability": 0.3501 + }, + { + "start": 10058.76, + "end": 10059.27, + "probability": 0.0145 + }, + { + "start": 10060.17, + "end": 10063.2, + "probability": 0.0831 + }, + { + "start": 10063.2, + "end": 10063.2, + "probability": 0.2653 + }, + { + "start": 10149.0, + "end": 10149.0, + "probability": 0.0 + }, + { + "start": 10149.0, + "end": 10149.0, + "probability": 0.0 + }, + { + "start": 10149.0, + "end": 10149.0, + "probability": 0.0 + }, + { + "start": 10149.0, + "end": 10149.0, + "probability": 0.0 + }, + { + "start": 10149.0, + "end": 10149.0, + "probability": 0.0 + }, + { + "start": 10149.0, + "end": 10149.0, + "probability": 0.0 + }, + { + "start": 10149.0, + "end": 10149.0, + "probability": 0.0 + }, + { + "start": 10149.0, + "end": 10149.0, + "probability": 0.0 + }, + { + "start": 10149.0, + "end": 10149.0, + "probability": 0.0 + }, + { + "start": 10149.0, + "end": 10149.0, + "probability": 0.0 + }, + { + "start": 10149.0, + "end": 10149.0, + "probability": 0.0 + }, + { + "start": 10149.0, + "end": 10149.0, + "probability": 0.0 + }, + { + "start": 10149.0, + "end": 10149.0, + "probability": 0.0 + }, + { + "start": 10149.0, + "end": 10149.0, + "probability": 0.0 + }, + { + "start": 10149.0, + "end": 10149.0, + "probability": 0.0 + }, + { + "start": 10149.0, + "end": 10149.0, + "probability": 0.0 + }, + { + "start": 10149.0, + "end": 10149.0, + "probability": 0.0 + }, + { + "start": 10149.0, + "end": 10149.0, + "probability": 0.0 + }, + { + "start": 10149.0, + "end": 10149.0, + "probability": 0.0 + }, + { + "start": 10149.0, + "end": 10149.0, + "probability": 0.0 + }, + { + "start": 10149.0, + "end": 10149.0, + "probability": 0.0 + }, + { + "start": 10149.0, + "end": 10149.0, + "probability": 0.0 + }, + { + "start": 10149.0, + "end": 10149.0, + "probability": 0.0 + }, + { + "start": 10149.0, + "end": 10149.0, + "probability": 0.0 + }, + { + "start": 10149.0, + "end": 10149.0, + "probability": 0.0 + }, + { + "start": 10149.0, + "end": 10149.0, + "probability": 0.0 + }, + { + "start": 10149.0, + "end": 10149.0, + "probability": 0.0 + }, + { + "start": 10149.0, + "end": 10149.0, + "probability": 0.0 + }, + { + "start": 10149.0, + "end": 10149.0, + "probability": 0.0 + }, + { + "start": 10149.0, + "end": 10149.0, + "probability": 0.0 + }, + { + "start": 10149.0, + "end": 10149.0, + "probability": 0.0 + }, + { + "start": 10149.0, + "end": 10149.0, + "probability": 0.0 + }, + { + "start": 10149.0, + "end": 10149.0, + "probability": 0.0 + }, + { + "start": 10149.0, + "end": 10149.0, + "probability": 0.0 + }, + { + "start": 10149.0, + "end": 10149.0, + "probability": 0.0 + }, + { + "start": 10149.0, + "end": 10149.0, + "probability": 0.0 + }, + { + "start": 10158.86, + "end": 10158.96, + "probability": 0.0696 + }, + { + "start": 10158.96, + "end": 10160.62, + "probability": 0.5259 + }, + { + "start": 10160.68, + "end": 10164.12, + "probability": 0.933 + }, + { + "start": 10164.24, + "end": 10166.72, + "probability": 0.4949 + }, + { + "start": 10166.9, + "end": 10167.52, + "probability": 0.2883 + }, + { + "start": 10169.3, + "end": 10169.54, + "probability": 0.0243 + }, + { + "start": 10169.54, + "end": 10171.26, + "probability": 0.7349 + }, + { + "start": 10171.74, + "end": 10172.84, + "probability": 0.6 + }, + { + "start": 10172.94, + "end": 10176.52, + "probability": 0.819 + }, + { + "start": 10177.32, + "end": 10179.24, + "probability": 0.7217 + }, + { + "start": 10179.52, + "end": 10182.58, + "probability": 0.6615 + }, + { + "start": 10183.42, + "end": 10184.1, + "probability": 0.2497 + }, + { + "start": 10187.28, + "end": 10188.0, + "probability": 0.0371 + }, + { + "start": 10191.3, + "end": 10195.0, + "probability": 0.6052 + }, + { + "start": 10195.12, + "end": 10197.28, + "probability": 0.302 + }, + { + "start": 10197.42, + "end": 10199.56, + "probability": 0.6932 + }, + { + "start": 10200.22, + "end": 10200.88, + "probability": 0.4536 + }, + { + "start": 10201.56, + "end": 10203.82, + "probability": 0.1512 + }, + { + "start": 10219.42, + "end": 10222.38, + "probability": 0.3588 + }, + { + "start": 10222.44, + "end": 10225.72, + "probability": 0.5328 + }, + { + "start": 10225.88, + "end": 10227.16, + "probability": 0.1343 + }, + { + "start": 10229.2, + "end": 10229.42, + "probability": 0.068 + }, + { + "start": 10231.0, + "end": 10233.52, + "probability": 0.2526 + }, + { + "start": 10233.72, + "end": 10234.2, + "probability": 0.0147 + }, + { + "start": 10235.92, + "end": 10238.86, + "probability": 0.0889 + }, + { + "start": 10239.56, + "end": 10244.12, + "probability": 0.0325 + }, + { + "start": 10244.12, + "end": 10244.16, + "probability": 0.0686 + }, + { + "start": 10275.0, + "end": 10275.0, + "probability": 0.0 + }, + { + "start": 10275.0, + "end": 10275.0, + "probability": 0.0 + }, + { + "start": 10275.0, + "end": 10275.0, + "probability": 0.0 + }, + { + "start": 10275.0, + "end": 10275.0, + "probability": 0.0 + }, + { + "start": 10275.0, + "end": 10275.0, + "probability": 0.0 + }, + { + "start": 10275.0, + "end": 10275.0, + "probability": 0.0 + }, + { + "start": 10275.0, + "end": 10275.0, + "probability": 0.0 + }, + { + "start": 10275.0, + "end": 10275.0, + "probability": 0.0 + }, + { + "start": 10275.0, + "end": 10275.0, + "probability": 0.0 + }, + { + "start": 10275.0, + "end": 10275.0, + "probability": 0.0 + }, + { + "start": 10275.0, + "end": 10275.0, + "probability": 0.0 + }, + { + "start": 10275.0, + "end": 10275.0, + "probability": 0.0 + }, + { + "start": 10275.0, + "end": 10275.0, + "probability": 0.0 + }, + { + "start": 10275.0, + "end": 10275.0, + "probability": 0.0 + }, + { + "start": 10275.0, + "end": 10275.0, + "probability": 0.0 + }, + { + "start": 10275.0, + "end": 10275.0, + "probability": 0.0 + }, + { + "start": 10275.0, + "end": 10275.0, + "probability": 0.0 + }, + { + "start": 10275.0, + "end": 10275.0, + "probability": 0.0 + }, + { + "start": 10275.0, + "end": 10275.0, + "probability": 0.0 + }, + { + "start": 10275.0, + "end": 10275.0, + "probability": 0.0 + }, + { + "start": 10275.0, + "end": 10275.0, + "probability": 0.0 + }, + { + "start": 10275.0, + "end": 10275.0, + "probability": 0.0 + }, + { + "start": 10275.24, + "end": 10275.32, + "probability": 0.0152 + }, + { + "start": 10275.32, + "end": 10275.32, + "probability": 0.1852 + }, + { + "start": 10275.32, + "end": 10275.32, + "probability": 0.0955 + }, + { + "start": 10275.32, + "end": 10275.48, + "probability": 0.3225 + }, + { + "start": 10275.56, + "end": 10276.84, + "probability": 0.2415 + }, + { + "start": 10277.08, + "end": 10277.64, + "probability": 0.6639 + }, + { + "start": 10277.64, + "end": 10278.66, + "probability": 0.6433 + }, + { + "start": 10278.78, + "end": 10280.18, + "probability": 0.901 + }, + { + "start": 10280.22, + "end": 10280.94, + "probability": 0.9534 + }, + { + "start": 10281.28, + "end": 10281.74, + "probability": 0.0308 + }, + { + "start": 10281.74, + "end": 10281.74, + "probability": 0.1568 + }, + { + "start": 10281.74, + "end": 10282.18, + "probability": 0.0888 + }, + { + "start": 10282.34, + "end": 10284.08, + "probability": 0.8398 + }, + { + "start": 10284.62, + "end": 10286.22, + "probability": 0.9926 + }, + { + "start": 10287.28, + "end": 10292.36, + "probability": 0.8752 + }, + { + "start": 10293.06, + "end": 10293.44, + "probability": 0.4531 + }, + { + "start": 10293.6, + "end": 10294.42, + "probability": 0.9695 + }, + { + "start": 10294.7, + "end": 10297.04, + "probability": 0.988 + }, + { + "start": 10297.08, + "end": 10298.28, + "probability": 0.9713 + }, + { + "start": 10298.92, + "end": 10299.99, + "probability": 0.9932 + }, + { + "start": 10301.36, + "end": 10306.06, + "probability": 0.9475 + }, + { + "start": 10306.26, + "end": 10306.72, + "probability": 0.3969 + }, + { + "start": 10306.76, + "end": 10307.06, + "probability": 0.5083 + }, + { + "start": 10307.08, + "end": 10307.74, + "probability": 0.9085 + }, + { + "start": 10307.78, + "end": 10309.5, + "probability": 0.6196 + }, + { + "start": 10309.54, + "end": 10309.97, + "probability": 0.7805 + }, + { + "start": 10311.14, + "end": 10312.56, + "probability": 0.9245 + }, + { + "start": 10313.4, + "end": 10314.46, + "probability": 0.8968 + }, + { + "start": 10314.56, + "end": 10315.44, + "probability": 0.8086 + }, + { + "start": 10315.58, + "end": 10319.62, + "probability": 0.9929 + }, + { + "start": 10320.18, + "end": 10323.72, + "probability": 0.9828 + }, + { + "start": 10324.48, + "end": 10330.38, + "probability": 0.9409 + }, + { + "start": 10330.98, + "end": 10333.34, + "probability": 0.9334 + }, + { + "start": 10333.68, + "end": 10334.76, + "probability": 0.6302 + }, + { + "start": 10334.8, + "end": 10335.85, + "probability": 0.9514 + }, + { + "start": 10336.34, + "end": 10337.52, + "probability": 0.981 + }, + { + "start": 10338.84, + "end": 10344.22, + "probability": 0.9913 + }, + { + "start": 10344.28, + "end": 10345.0, + "probability": 0.9462 + }, + { + "start": 10345.02, + "end": 10346.11, + "probability": 0.9297 + }, + { + "start": 10346.72, + "end": 10347.72, + "probability": 0.7352 + }, + { + "start": 10348.38, + "end": 10349.9, + "probability": 0.8814 + }, + { + "start": 10351.04, + "end": 10354.56, + "probability": 0.2586 + }, + { + "start": 10354.56, + "end": 10354.62, + "probability": 0.0834 + }, + { + "start": 10354.66, + "end": 10358.8, + "probability": 0.9185 + }, + { + "start": 10359.4, + "end": 10360.24, + "probability": 0.7333 + }, + { + "start": 10360.76, + "end": 10366.96, + "probability": 0.8212 + }, + { + "start": 10367.18, + "end": 10370.72, + "probability": 0.9635 + }, + { + "start": 10370.98, + "end": 10372.62, + "probability": 0.9865 + }, + { + "start": 10373.12, + "end": 10377.64, + "probability": 0.8494 + }, + { + "start": 10378.34, + "end": 10379.74, + "probability": 0.9518 + }, + { + "start": 10380.1, + "end": 10385.92, + "probability": 0.9258 + }, + { + "start": 10386.02, + "end": 10389.32, + "probability": 0.9362 + }, + { + "start": 10389.32, + "end": 10390.36, + "probability": 0.8157 + }, + { + "start": 10390.36, + "end": 10391.42, + "probability": 0.708 + }, + { + "start": 10391.46, + "end": 10392.48, + "probability": 0.4789 + }, + { + "start": 10392.48, + "end": 10394.18, + "probability": 0.7244 + }, + { + "start": 10394.2, + "end": 10396.18, + "probability": 0.7229 + }, + { + "start": 10396.44, + "end": 10399.46, + "probability": 0.6254 + }, + { + "start": 10399.5, + "end": 10399.5, + "probability": 0.3172 + }, + { + "start": 10399.52, + "end": 10400.3, + "probability": 0.5181 + }, + { + "start": 10400.5, + "end": 10401.52, + "probability": 0.6271 + }, + { + "start": 10402.14, + "end": 10403.24, + "probability": 0.687 + }, + { + "start": 10403.42, + "end": 10404.96, + "probability": 0.9967 + }, + { + "start": 10405.22, + "end": 10407.22, + "probability": 0.938 + }, + { + "start": 10407.54, + "end": 10409.78, + "probability": 0.9854 + }, + { + "start": 10410.06, + "end": 10412.47, + "probability": 0.5443 + }, + { + "start": 10412.7, + "end": 10413.94, + "probability": 0.4227 + }, + { + "start": 10414.1, + "end": 10415.48, + "probability": 0.6425 + }, + { + "start": 10415.48, + "end": 10416.04, + "probability": 0.3237 + }, + { + "start": 10417.0, + "end": 10418.26, + "probability": 0.87 + }, + { + "start": 10418.54, + "end": 10420.24, + "probability": 0.832 + }, + { + "start": 10420.42, + "end": 10422.36, + "probability": 0.7226 + }, + { + "start": 10423.16, + "end": 10425.38, + "probability": 0.7657 + }, + { + "start": 10425.5, + "end": 10430.48, + "probability": 0.7907 + }, + { + "start": 10431.12, + "end": 10433.6, + "probability": 0.9375 + }, + { + "start": 10434.32, + "end": 10436.12, + "probability": 0.9679 + }, + { + "start": 10436.34, + "end": 10439.19, + "probability": 0.7559 + }, + { + "start": 10439.42, + "end": 10440.0, + "probability": 0.8726 + }, + { + "start": 10440.97, + "end": 10441.94, + "probability": 0.5542 + }, + { + "start": 10459.0, + "end": 10461.44, + "probability": 0.8163 + }, + { + "start": 10468.76, + "end": 10470.9, + "probability": 0.7497 + }, + { + "start": 10475.34, + "end": 10478.9, + "probability": 0.9957 + }, + { + "start": 10479.68, + "end": 10482.22, + "probability": 0.9723 + }, + { + "start": 10483.76, + "end": 10490.0, + "probability": 0.9433 + }, + { + "start": 10491.36, + "end": 10491.92, + "probability": 0.921 + }, + { + "start": 10492.02, + "end": 10492.98, + "probability": 0.7884 + }, + { + "start": 10493.12, + "end": 10497.84, + "probability": 0.8864 + }, + { + "start": 10498.7, + "end": 10501.06, + "probability": 0.9922 + }, + { + "start": 10502.04, + "end": 10506.1, + "probability": 0.8659 + }, + { + "start": 10508.08, + "end": 10508.08, + "probability": 0.2474 + }, + { + "start": 10511.72, + "end": 10513.18, + "probability": 0.8743 + }, + { + "start": 10516.76, + "end": 10518.22, + "probability": 0.8449 + }, + { + "start": 10519.02, + "end": 10522.9, + "probability": 0.998 + }, + { + "start": 10524.5, + "end": 10526.6, + "probability": 0.981 + }, + { + "start": 10527.72, + "end": 10528.8, + "probability": 0.9967 + }, + { + "start": 10530.12, + "end": 10536.52, + "probability": 0.9902 + }, + { + "start": 10538.36, + "end": 10539.54, + "probability": 0.8706 + }, + { + "start": 10540.72, + "end": 10543.64, + "probability": 0.6919 + }, + { + "start": 10544.88, + "end": 10545.94, + "probability": 0.6871 + }, + { + "start": 10549.52, + "end": 10550.62, + "probability": 0.8062 + }, + { + "start": 10551.44, + "end": 10562.22, + "probability": 0.9823 + }, + { + "start": 10564.1, + "end": 10566.98, + "probability": 0.9446 + }, + { + "start": 10568.06, + "end": 10569.44, + "probability": 0.9976 + }, + { + "start": 10571.56, + "end": 10576.04, + "probability": 0.9952 + }, + { + "start": 10576.96, + "end": 10582.52, + "probability": 0.998 + }, + { + "start": 10583.98, + "end": 10588.45, + "probability": 0.9932 + }, + { + "start": 10589.48, + "end": 10590.92, + "probability": 0.6042 + }, + { + "start": 10591.72, + "end": 10592.35, + "probability": 0.7098 + }, + { + "start": 10593.7, + "end": 10597.52, + "probability": 0.9937 + }, + { + "start": 10597.52, + "end": 10601.26, + "probability": 0.9964 + }, + { + "start": 10601.48, + "end": 10602.76, + "probability": 0.7986 + }, + { + "start": 10603.3, + "end": 10606.06, + "probability": 0.991 + }, + { + "start": 10606.7, + "end": 10612.38, + "probability": 0.9185 + }, + { + "start": 10613.26, + "end": 10617.56, + "probability": 0.9912 + }, + { + "start": 10618.22, + "end": 10622.64, + "probability": 0.9968 + }, + { + "start": 10623.42, + "end": 10627.26, + "probability": 0.9985 + }, + { + "start": 10627.52, + "end": 10628.5, + "probability": 0.9717 + }, + { + "start": 10629.58, + "end": 10633.22, + "probability": 0.9755 + }, + { + "start": 10634.06, + "end": 10637.68, + "probability": 0.9906 + }, + { + "start": 10638.52, + "end": 10641.76, + "probability": 0.9282 + }, + { + "start": 10642.83, + "end": 10645.04, + "probability": 0.9993 + }, + { + "start": 10646.1, + "end": 10649.54, + "probability": 0.967 + }, + { + "start": 10650.12, + "end": 10651.18, + "probability": 0.7746 + }, + { + "start": 10651.96, + "end": 10653.94, + "probability": 0.9993 + }, + { + "start": 10654.78, + "end": 10660.42, + "probability": 0.9771 + }, + { + "start": 10661.52, + "end": 10665.08, + "probability": 0.9986 + }, + { + "start": 10666.62, + "end": 10668.4, + "probability": 0.999 + }, + { + "start": 10669.84, + "end": 10672.46, + "probability": 0.9989 + }, + { + "start": 10673.86, + "end": 10675.84, + "probability": 0.8145 + }, + { + "start": 10676.58, + "end": 10678.12, + "probability": 0.9872 + }, + { + "start": 10679.22, + "end": 10681.32, + "probability": 0.9073 + }, + { + "start": 10682.68, + "end": 10686.06, + "probability": 0.9987 + }, + { + "start": 10687.04, + "end": 10689.32, + "probability": 0.9774 + }, + { + "start": 10689.92, + "end": 10693.34, + "probability": 0.9383 + }, + { + "start": 10694.14, + "end": 10696.52, + "probability": 0.6143 + }, + { + "start": 10697.16, + "end": 10701.26, + "probability": 0.9927 + }, + { + "start": 10702.48, + "end": 10704.76, + "probability": 0.6217 + }, + { + "start": 10705.52, + "end": 10706.38, + "probability": 0.9124 + }, + { + "start": 10707.34, + "end": 10709.36, + "probability": 0.9456 + }, + { + "start": 10710.66, + "end": 10713.62, + "probability": 0.9426 + }, + { + "start": 10714.54, + "end": 10717.42, + "probability": 0.895 + }, + { + "start": 10718.2, + "end": 10720.9, + "probability": 0.9921 + }, + { + "start": 10721.56, + "end": 10724.34, + "probability": 0.8879 + }, + { + "start": 10725.82, + "end": 10728.26, + "probability": 0.9765 + }, + { + "start": 10729.28, + "end": 10730.48, + "probability": 0.9237 + }, + { + "start": 10731.6, + "end": 10733.42, + "probability": 0.9424 + }, + { + "start": 10734.54, + "end": 10736.98, + "probability": 0.8369 + }, + { + "start": 10739.12, + "end": 10740.0, + "probability": 0.6363 + }, + { + "start": 10741.22, + "end": 10743.7, + "probability": 0.7743 + }, + { + "start": 10744.34, + "end": 10747.46, + "probability": 0.9946 + }, + { + "start": 10749.32, + "end": 10753.25, + "probability": 0.8463 + }, + { + "start": 10754.48, + "end": 10760.06, + "probability": 0.9899 + }, + { + "start": 10760.24, + "end": 10764.02, + "probability": 0.984 + }, + { + "start": 10764.58, + "end": 10766.56, + "probability": 0.8842 + }, + { + "start": 10767.38, + "end": 10768.54, + "probability": 0.9252 + }, + { + "start": 10768.7, + "end": 10772.74, + "probability": 0.8329 + }, + { + "start": 10772.8, + "end": 10774.62, + "probability": 0.9863 + }, + { + "start": 10775.64, + "end": 10776.54, + "probability": 0.9041 + }, + { + "start": 10777.24, + "end": 10778.48, + "probability": 0.8503 + }, + { + "start": 10779.06, + "end": 10782.44, + "probability": 0.8266 + }, + { + "start": 10783.44, + "end": 10787.84, + "probability": 0.7166 + }, + { + "start": 10789.0, + "end": 10790.8, + "probability": 0.95 + }, + { + "start": 10791.44, + "end": 10797.94, + "probability": 0.9984 + }, + { + "start": 10800.04, + "end": 10800.38, + "probability": 0.4877 + }, + { + "start": 10803.04, + "end": 10805.3, + "probability": 0.7627 + }, + { + "start": 10805.44, + "end": 10806.52, + "probability": 0.5511 + }, + { + "start": 10807.48, + "end": 10808.37, + "probability": 0.7042 + }, + { + "start": 10809.24, + "end": 10811.53, + "probability": 0.8813 + }, + { + "start": 10811.76, + "end": 10812.74, + "probability": 0.7883 + }, + { + "start": 10813.14, + "end": 10816.4, + "probability": 0.9922 + }, + { + "start": 10817.42, + "end": 10820.58, + "probability": 0.6316 + }, + { + "start": 10821.32, + "end": 10822.86, + "probability": 0.9528 + }, + { + "start": 10824.46, + "end": 10828.38, + "probability": 0.9304 + }, + { + "start": 10829.02, + "end": 10829.52, + "probability": 0.9177 + }, + { + "start": 10829.92, + "end": 10831.68, + "probability": 0.9548 + }, + { + "start": 10832.44, + "end": 10833.4, + "probability": 0.9827 + }, + { + "start": 10833.48, + "end": 10833.9, + "probability": 0.8533 + }, + { + "start": 10834.28, + "end": 10835.38, + "probability": 0.3704 + }, + { + "start": 10835.46, + "end": 10838.36, + "probability": 0.7899 + }, + { + "start": 10838.7, + "end": 10842.1, + "probability": 0.8608 + }, + { + "start": 10842.86, + "end": 10844.8, + "probability": 0.4449 + }, + { + "start": 10845.14, + "end": 10848.82, + "probability": 0.7941 + }, + { + "start": 10849.82, + "end": 10853.42, + "probability": 0.9795 + }, + { + "start": 10870.46, + "end": 10872.3, + "probability": 0.6893 + }, + { + "start": 10876.62, + "end": 10880.34, + "probability": 0.7014 + }, + { + "start": 10881.58, + "end": 10889.44, + "probability": 0.8969 + }, + { + "start": 10890.14, + "end": 10895.3, + "probability": 0.8656 + }, + { + "start": 10897.06, + "end": 10902.08, + "probability": 0.9966 + }, + { + "start": 10902.96, + "end": 10908.26, + "probability": 0.9889 + }, + { + "start": 10908.28, + "end": 10913.28, + "probability": 0.936 + }, + { + "start": 10914.64, + "end": 10916.08, + "probability": 0.8966 + }, + { + "start": 10916.12, + "end": 10925.08, + "probability": 0.9618 + }, + { + "start": 10926.3, + "end": 10928.96, + "probability": 0.8929 + }, + { + "start": 10930.76, + "end": 10935.52, + "probability": 0.566 + }, + { + "start": 10936.32, + "end": 10941.12, + "probability": 0.9326 + }, + { + "start": 10941.9, + "end": 10947.22, + "probability": 0.9728 + }, + { + "start": 10947.98, + "end": 10950.72, + "probability": 0.7993 + }, + { + "start": 10951.5, + "end": 10956.76, + "probability": 0.9119 + }, + { + "start": 10957.5, + "end": 10964.5, + "probability": 0.9847 + }, + { + "start": 10965.4, + "end": 10967.88, + "probability": 0.9594 + }, + { + "start": 10968.94, + "end": 10972.96, + "probability": 0.9918 + }, + { + "start": 10974.54, + "end": 10975.74, + "probability": 0.6655 + }, + { + "start": 10976.46, + "end": 10977.64, + "probability": 0.5919 + }, + { + "start": 10979.08, + "end": 10983.16, + "probability": 0.4697 + }, + { + "start": 10983.36, + "end": 10985.58, + "probability": 0.7998 + }, + { + "start": 10986.64, + "end": 10991.8, + "probability": 0.8359 + }, + { + "start": 10992.34, + "end": 11003.0, + "probability": 0.9797 + }, + { + "start": 11003.9, + "end": 11004.1, + "probability": 0.3301 + }, + { + "start": 11004.28, + "end": 11004.94, + "probability": 0.7473 + }, + { + "start": 11005.4, + "end": 11014.78, + "probability": 0.9956 + }, + { + "start": 11015.88, + "end": 11023.1, + "probability": 0.9795 + }, + { + "start": 11023.9, + "end": 11029.78, + "probability": 0.9774 + }, + { + "start": 11029.78, + "end": 11035.3, + "probability": 0.9865 + }, + { + "start": 11035.92, + "end": 11036.89, + "probability": 0.9915 + }, + { + "start": 11037.9, + "end": 11038.9, + "probability": 0.6104 + }, + { + "start": 11039.12, + "end": 11042.82, + "probability": 0.781 + }, + { + "start": 11043.5, + "end": 11048.76, + "probability": 0.9785 + }, + { + "start": 11049.2, + "end": 11050.64, + "probability": 0.9333 + }, + { + "start": 11051.08, + "end": 11054.67, + "probability": 0.9717 + }, + { + "start": 11054.92, + "end": 11060.8, + "probability": 0.9147 + }, + { + "start": 11061.14, + "end": 11068.46, + "probability": 0.9034 + }, + { + "start": 11068.96, + "end": 11075.04, + "probability": 0.5187 + }, + { + "start": 11075.44, + "end": 11076.52, + "probability": 0.7063 + }, + { + "start": 11076.72, + "end": 11077.18, + "probability": 0.5892 + }, + { + "start": 11077.26, + "end": 11080.38, + "probability": 0.6317 + }, + { + "start": 11080.38, + "end": 11083.22, + "probability": 0.7803 + }, + { + "start": 11083.92, + "end": 11088.16, + "probability": 0.7292 + }, + { + "start": 11089.12, + "end": 11091.94, + "probability": 0.7627 + }, + { + "start": 11103.06, + "end": 11104.26, + "probability": 0.4264 + }, + { + "start": 11104.36, + "end": 11106.8, + "probability": 0.5872 + }, + { + "start": 11107.8, + "end": 11114.68, + "probability": 0.9551 + }, + { + "start": 11114.82, + "end": 11115.72, + "probability": 0.8263 + }, + { + "start": 11115.86, + "end": 11116.82, + "probability": 0.6729 + }, + { + "start": 11117.5, + "end": 11118.5, + "probability": 0.8884 + }, + { + "start": 11120.0, + "end": 11122.5, + "probability": 0.7508 + }, + { + "start": 11122.5, + "end": 11122.5, + "probability": 0.0233 + }, + { + "start": 11122.5, + "end": 11123.08, + "probability": 0.1195 + }, + { + "start": 11123.56, + "end": 11126.36, + "probability": 0.615 + }, + { + "start": 11126.98, + "end": 11134.38, + "probability": 0.9465 + }, + { + "start": 11135.24, + "end": 11136.4, + "probability": 0.9835 + }, + { + "start": 11136.94, + "end": 11141.54, + "probability": 0.7496 + }, + { + "start": 11142.26, + "end": 11146.72, + "probability": 0.9182 + }, + { + "start": 11147.44, + "end": 11150.86, + "probability": 0.9599 + }, + { + "start": 11151.28, + "end": 11156.68, + "probability": 0.97 + }, + { + "start": 11156.84, + "end": 11161.16, + "probability": 0.8523 + }, + { + "start": 11161.5, + "end": 11168.38, + "probability": 0.9623 + }, + { + "start": 11168.88, + "end": 11172.82, + "probability": 0.9962 + }, + { + "start": 11172.82, + "end": 11176.78, + "probability": 0.6667 + }, + { + "start": 11177.3, + "end": 11180.58, + "probability": 0.9053 + }, + { + "start": 11180.92, + "end": 11181.86, + "probability": 0.8197 + }, + { + "start": 11182.06, + "end": 11184.16, + "probability": 0.8679 + }, + { + "start": 11185.44, + "end": 11187.92, + "probability": 0.6659 + }, + { + "start": 11188.8, + "end": 11189.38, + "probability": 0.3246 + }, + { + "start": 11189.5, + "end": 11194.14, + "probability": 0.4998 + }, + { + "start": 11194.2, + "end": 11197.82, + "probability": 0.9369 + }, + { + "start": 11198.26, + "end": 11202.76, + "probability": 0.9521 + }, + { + "start": 11203.06, + "end": 11204.56, + "probability": 0.9133 + }, + { + "start": 11204.7, + "end": 11205.18, + "probability": 0.8818 + }, + { + "start": 11205.44, + "end": 11206.78, + "probability": 0.8403 + }, + { + "start": 11206.84, + "end": 11208.76, + "probability": 0.9187 + }, + { + "start": 11209.12, + "end": 11212.96, + "probability": 0.9437 + }, + { + "start": 11213.04, + "end": 11216.74, + "probability": 0.7339 + }, + { + "start": 11217.12, + "end": 11220.24, + "probability": 0.7742 + }, + { + "start": 11220.94, + "end": 11226.52, + "probability": 0.9442 + }, + { + "start": 11226.52, + "end": 11230.32, + "probability": 0.7852 + }, + { + "start": 11230.5, + "end": 11232.26, + "probability": 0.9868 + }, + { + "start": 11232.68, + "end": 11233.28, + "probability": 0.9412 + }, + { + "start": 11233.44, + "end": 11235.38, + "probability": 0.8015 + }, + { + "start": 11235.94, + "end": 11239.48, + "probability": 0.6058 + }, + { + "start": 11239.8, + "end": 11242.18, + "probability": 0.969 + }, + { + "start": 11242.46, + "end": 11242.72, + "probability": 0.269 + }, + { + "start": 11242.78, + "end": 11247.78, + "probability": 0.9806 + }, + { + "start": 11247.92, + "end": 11248.34, + "probability": 0.7499 + }, + { + "start": 11249.02, + "end": 11250.02, + "probability": 0.6189 + }, + { + "start": 11250.2, + "end": 11254.44, + "probability": 0.9656 + }, + { + "start": 11255.06, + "end": 11256.58, + "probability": 0.9315 + }, + { + "start": 11267.16, + "end": 11267.8, + "probability": 0.7539 + }, + { + "start": 11267.82, + "end": 11267.82, + "probability": 0.0338 + }, + { + "start": 11267.94, + "end": 11270.9, + "probability": 0.7424 + }, + { + "start": 11271.9, + "end": 11273.62, + "probability": 0.8555 + }, + { + "start": 11274.32, + "end": 11276.54, + "probability": 0.9725 + }, + { + "start": 11278.54, + "end": 11280.66, + "probability": 0.7642 + }, + { + "start": 11281.46, + "end": 11285.46, + "probability": 0.9962 + }, + { + "start": 11285.94, + "end": 11290.66, + "probability": 0.969 + }, + { + "start": 11291.5, + "end": 11295.0, + "probability": 0.9907 + }, + { + "start": 11295.94, + "end": 11296.36, + "probability": 0.7075 + }, + { + "start": 11297.02, + "end": 11299.59, + "probability": 0.9605 + }, + { + "start": 11300.0, + "end": 11302.34, + "probability": 0.9362 + }, + { + "start": 11302.9, + "end": 11308.36, + "probability": 0.9746 + }, + { + "start": 11308.46, + "end": 11310.82, + "probability": 0.9924 + }, + { + "start": 11316.88, + "end": 11317.36, + "probability": 0.7767 + }, + { + "start": 11318.08, + "end": 11318.96, + "probability": 0.7846 + }, + { + "start": 11319.08, + "end": 11319.38, + "probability": 0.865 + }, + { + "start": 11326.14, + "end": 11328.4, + "probability": 0.8117 + }, + { + "start": 11328.44, + "end": 11328.92, + "probability": 0.9058 + }, + { + "start": 11332.36, + "end": 11334.62, + "probability": 0.9975 + }, + { + "start": 11335.62, + "end": 11336.9, + "probability": 0.8088 + }, + { + "start": 11337.02, + "end": 11337.98, + "probability": 0.9635 + }, + { + "start": 11338.48, + "end": 11341.18, + "probability": 0.9175 + }, + { + "start": 11343.74, + "end": 11347.38, + "probability": 0.8519 + }, + { + "start": 11347.96, + "end": 11352.68, + "probability": 0.9976 + }, + { + "start": 11353.04, + "end": 11355.88, + "probability": 0.9657 + }, + { + "start": 11356.48, + "end": 11358.58, + "probability": 0.9945 + }, + { + "start": 11359.38, + "end": 11364.12, + "probability": 0.9755 + }, + { + "start": 11364.12, + "end": 11367.94, + "probability": 0.9841 + }, + { + "start": 11368.58, + "end": 11371.56, + "probability": 0.9678 + }, + { + "start": 11372.38, + "end": 11374.86, + "probability": 0.9957 + }, + { + "start": 11375.52, + "end": 11380.0, + "probability": 0.9965 + }, + { + "start": 11380.76, + "end": 11383.22, + "probability": 0.8588 + }, + { + "start": 11383.84, + "end": 11388.62, + "probability": 0.9018 + }, + { + "start": 11391.28, + "end": 11394.74, + "probability": 0.6123 + }, + { + "start": 11394.88, + "end": 11397.32, + "probability": 0.9785 + }, + { + "start": 11400.02, + "end": 11400.86, + "probability": 0.0055 + }, + { + "start": 11400.86, + "end": 11403.23, + "probability": 0.6223 + }, + { + "start": 11403.88, + "end": 11407.0, + "probability": 0.9816 + }, + { + "start": 11409.36, + "end": 11413.32, + "probability": 0.9974 + }, + { + "start": 11414.1, + "end": 11417.68, + "probability": 0.9956 + }, + { + "start": 11417.8, + "end": 11420.94, + "probability": 0.9968 + }, + { + "start": 11421.68, + "end": 11425.1, + "probability": 0.9299 + }, + { + "start": 11426.38, + "end": 11431.12, + "probability": 0.9718 + }, + { + "start": 11431.12, + "end": 11434.14, + "probability": 0.9885 + }, + { + "start": 11434.76, + "end": 11435.36, + "probability": 0.8085 + }, + { + "start": 11435.96, + "end": 11439.4, + "probability": 0.9866 + }, + { + "start": 11440.22, + "end": 11441.08, + "probability": 0.8257 + }, + { + "start": 11441.66, + "end": 11443.28, + "probability": 0.9958 + }, + { + "start": 11444.02, + "end": 11447.64, + "probability": 0.7935 + }, + { + "start": 11448.12, + "end": 11452.42, + "probability": 0.994 + }, + { + "start": 11452.64, + "end": 11453.18, + "probability": 0.7752 + }, + { + "start": 11453.54, + "end": 11454.48, + "probability": 0.5819 + }, + { + "start": 11454.7, + "end": 11455.62, + "probability": 0.9477 + }, + { + "start": 11455.64, + "end": 11457.78, + "probability": 0.9633 + }, + { + "start": 11458.4, + "end": 11458.7, + "probability": 0.0612 + }, + { + "start": 11458.78, + "end": 11461.6, + "probability": 0.5483 + }, + { + "start": 11461.66, + "end": 11464.0, + "probability": 0.3398 + }, + { + "start": 11464.1, + "end": 11466.6, + "probability": 0.9653 + }, + { + "start": 11467.4, + "end": 11468.22, + "probability": 0.3651 + }, + { + "start": 11482.24, + "end": 11486.9, + "probability": 0.106 + }, + { + "start": 11487.08, + "end": 11491.28, + "probability": 0.7852 + }, + { + "start": 11491.7, + "end": 11493.66, + "probability": 0.3125 + }, + { + "start": 11493.9, + "end": 11502.8, + "probability": 0.2409 + }, + { + "start": 11503.66, + "end": 11504.72, + "probability": 0.121 + }, + { + "start": 11504.72, + "end": 11506.34, + "probability": 0.0245 + }, + { + "start": 11506.78, + "end": 11509.48, + "probability": 0.6757 + }, + { + "start": 11509.68, + "end": 11511.1, + "probability": 0.2582 + }, + { + "start": 11511.86, + "end": 11512.5, + "probability": 0.7285 + }, + { + "start": 11513.92, + "end": 11514.81, + "probability": 0.1487 + }, + { + "start": 11541.56, + "end": 11542.62, + "probability": 0.0147 + }, + { + "start": 11545.65, + "end": 11550.98, + "probability": 0.6136 + }, + { + "start": 11551.0, + "end": 11551.0, + "probability": 0.0 + }, + { + "start": 11551.0, + "end": 11551.0, + "probability": 0.0 + }, + { + "start": 11551.0, + "end": 11551.0, + "probability": 0.0 + }, + { + "start": 11551.0, + "end": 11551.0, + "probability": 0.0 + }, + { + "start": 11551.0, + "end": 11551.0, + "probability": 0.0 + }, + { + "start": 11551.0, + "end": 11551.0, + "probability": 0.0 + }, + { + "start": 11551.0, + "end": 11551.0, + "probability": 0.0 + }, + { + "start": 11551.0, + "end": 11551.0, + "probability": 0.0 + }, + { + "start": 11551.0, + "end": 11551.0, + "probability": 0.0 + }, + { + "start": 11551.0, + "end": 11551.0, + "probability": 0.0 + }, + { + "start": 11551.0, + "end": 11551.0, + "probability": 0.0 + }, + { + "start": 11551.0, + "end": 11551.0, + "probability": 0.0 + }, + { + "start": 11551.0, + "end": 11551.0, + "probability": 0.0 + }, + { + "start": 11551.0, + "end": 11551.0, + "probability": 0.0 + }, + { + "start": 11551.0, + "end": 11551.0, + "probability": 0.0 + }, + { + "start": 11551.0, + "end": 11551.0, + "probability": 0.0 + }, + { + "start": 11551.0, + "end": 11551.0, + "probability": 0.0 + }, + { + "start": 11551.16, + "end": 11552.82, + "probability": 0.1607 + }, + { + "start": 11552.82, + "end": 11552.88, + "probability": 0.2135 + }, + { + "start": 11553.08, + "end": 11554.98, + "probability": 0.7393 + }, + { + "start": 11555.52, + "end": 11557.75, + "probability": 0.5735 + }, + { + "start": 11558.38, + "end": 11562.0, + "probability": 0.72 + }, + { + "start": 11562.86, + "end": 11567.18, + "probability": 0.6002 + }, + { + "start": 11567.62, + "end": 11568.26, + "probability": 0.6946 + }, + { + "start": 11571.56, + "end": 11572.64, + "probability": 0.072 + }, + { + "start": 11587.5, + "end": 11590.04, + "probability": 0.0677 + }, + { + "start": 11590.2, + "end": 11593.04, + "probability": 0.6143 + }, + { + "start": 11593.7, + "end": 11594.92, + "probability": 0.1417 + }, + { + "start": 11673.0, + "end": 11673.0, + "probability": 0.0 + }, + { + "start": 11673.0, + "end": 11673.0, + "probability": 0.0 + }, + { + "start": 11673.0, + "end": 11673.0, + "probability": 0.0 + }, + { + "start": 11673.0, + "end": 11673.0, + "probability": 0.0 + }, + { + "start": 11673.0, + "end": 11673.0, + "probability": 0.0 + }, + { + "start": 11673.0, + "end": 11673.0, + "probability": 0.0 + }, + { + "start": 11673.0, + "end": 11673.0, + "probability": 0.0 + }, + { + "start": 11673.0, + "end": 11673.0, + "probability": 0.0 + }, + { + "start": 11673.0, + "end": 11673.0, + "probability": 0.0 + }, + { + "start": 11673.0, + "end": 11673.0, + "probability": 0.0 + }, + { + "start": 11673.0, + "end": 11673.0, + "probability": 0.0 + }, + { + "start": 11673.0, + "end": 11673.0, + "probability": 0.0 + }, + { + "start": 11673.0, + "end": 11673.0, + "probability": 0.0 + }, + { + "start": 11673.0, + "end": 11673.0, + "probability": 0.0 + }, + { + "start": 11673.0, + "end": 11673.0, + "probability": 0.0 + }, + { + "start": 11673.0, + "end": 11673.0, + "probability": 0.0 + }, + { + "start": 11673.0, + "end": 11673.0, + "probability": 0.0 + }, + { + "start": 11673.0, + "end": 11673.0, + "probability": 0.0 + }, + { + "start": 11673.0, + "end": 11673.0, + "probability": 0.0 + }, + { + "start": 11673.0, + "end": 11673.0, + "probability": 0.0 + }, + { + "start": 11673.0, + "end": 11673.0, + "probability": 0.0 + }, + { + "start": 11673.0, + "end": 11673.0, + "probability": 0.0 + }, + { + "start": 11673.0, + "end": 11673.0, + "probability": 0.0 + }, + { + "start": 11673.22, + "end": 11673.3, + "probability": 0.0295 + }, + { + "start": 11673.3, + "end": 11673.3, + "probability": 0.0126 + }, + { + "start": 11673.3, + "end": 11674.88, + "probability": 0.0539 + }, + { + "start": 11674.88, + "end": 11677.96, + "probability": 0.9105 + }, + { + "start": 11678.66, + "end": 11679.22, + "probability": 0.5359 + }, + { + "start": 11679.66, + "end": 11682.38, + "probability": 0.7397 + }, + { + "start": 11682.64, + "end": 11687.16, + "probability": 0.9976 + }, + { + "start": 11688.2, + "end": 11695.18, + "probability": 0.9668 + }, + { + "start": 11695.84, + "end": 11700.5, + "probability": 0.9443 + }, + { + "start": 11701.08, + "end": 11703.94, + "probability": 0.7756 + }, + { + "start": 11704.66, + "end": 11708.56, + "probability": 0.9857 + }, + { + "start": 11709.24, + "end": 11710.72, + "probability": 0.9093 + }, + { + "start": 11710.78, + "end": 11713.88, + "probability": 0.9515 + }, + { + "start": 11714.06, + "end": 11714.62, + "probability": 0.9205 + }, + { + "start": 11715.84, + "end": 11717.46, + "probability": 0.8431 + }, + { + "start": 11721.22, + "end": 11722.04, + "probability": 0.5545 + }, + { + "start": 11725.02, + "end": 11725.72, + "probability": 0.8147 + }, + { + "start": 11726.28, + "end": 11728.32, + "probability": 0.9021 + }, + { + "start": 11729.9, + "end": 11730.0, + "probability": 0.4332 + }, + { + "start": 11730.24, + "end": 11730.54, + "probability": 0.3046 + }, + { + "start": 11730.8, + "end": 11732.1, + "probability": 0.8877 + }, + { + "start": 11732.22, + "end": 11734.88, + "probability": 0.9878 + }, + { + "start": 11735.0, + "end": 11737.64, + "probability": 0.6215 + }, + { + "start": 11737.86, + "end": 11739.74, + "probability": 0.5193 + }, + { + "start": 11739.84, + "end": 11743.2, + "probability": 0.9478 + }, + { + "start": 11744.04, + "end": 11745.82, + "probability": 0.7218 + }, + { + "start": 11746.26, + "end": 11747.64, + "probability": 0.1527 + }, + { + "start": 11749.9, + "end": 11751.54, + "probability": 0.6136 + }, + { + "start": 11762.18, + "end": 11762.88, + "probability": 0.0099 + }, + { + "start": 11762.88, + "end": 11762.92, + "probability": 0.2967 + }, + { + "start": 11762.92, + "end": 11762.92, + "probability": 0.221 + }, + { + "start": 11762.92, + "end": 11762.92, + "probability": 0.393 + }, + { + "start": 11762.92, + "end": 11766.02, + "probability": 0.4941 + }, + { + "start": 11766.88, + "end": 11769.16, + "probability": 0.7501 + }, + { + "start": 11769.16, + "end": 11771.04, + "probability": 0.7307 + }, + { + "start": 11771.28, + "end": 11773.02, + "probability": 0.371 + }, + { + "start": 11773.12, + "end": 11774.82, + "probability": 0.8846 + }, + { + "start": 11775.0, + "end": 11777.7, + "probability": 0.8484 + }, + { + "start": 11777.7, + "end": 11781.86, + "probability": 0.9263 + }, + { + "start": 11782.14, + "end": 11782.82, + "probability": 0.7965 + }, + { + "start": 11782.94, + "end": 11784.52, + "probability": 0.7641 + }, + { + "start": 11785.34, + "end": 11787.8, + "probability": 0.9784 + }, + { + "start": 11787.86, + "end": 11789.94, + "probability": 0.7891 + }, + { + "start": 11790.22, + "end": 11791.7, + "probability": 0.1893 + }, + { + "start": 11791.78, + "end": 11795.3, + "probability": 0.866 + }, + { + "start": 11795.48, + "end": 11796.7, + "probability": 0.9875 + }, + { + "start": 11797.46, + "end": 11800.52, + "probability": 0.6123 + }, + { + "start": 11818.96, + "end": 11820.6, + "probability": 0.7457 + }, + { + "start": 11820.6, + "end": 11822.72, + "probability": 0.3156 + }, + { + "start": 11822.74, + "end": 11823.32, + "probability": 0.8913 + }, + { + "start": 11823.66, + "end": 11825.08, + "probability": 0.7219 + }, + { + "start": 11825.22, + "end": 11828.1, + "probability": 0.7998 + }, + { + "start": 11831.28, + "end": 11832.4, + "probability": 0.7446 + }, + { + "start": 11834.3, + "end": 11838.78, + "probability": 0.9946 + }, + { + "start": 11839.48, + "end": 11845.74, + "probability": 0.9944 + }, + { + "start": 11847.52, + "end": 11850.84, + "probability": 0.999 + }, + { + "start": 11850.96, + "end": 11856.14, + "probability": 0.9087 + }, + { + "start": 11857.28, + "end": 11858.22, + "probability": 0.9178 + }, + { + "start": 11858.8, + "end": 11862.22, + "probability": 0.9927 + }, + { + "start": 11863.06, + "end": 11867.94, + "probability": 0.9909 + }, + { + "start": 11867.94, + "end": 11872.4, + "probability": 0.9944 + }, + { + "start": 11872.92, + "end": 11876.46, + "probability": 0.9065 + }, + { + "start": 11877.08, + "end": 11878.96, + "probability": 0.9777 + }, + { + "start": 11879.18, + "end": 11880.28, + "probability": 0.6961 + }, + { + "start": 11880.72, + "end": 11885.76, + "probability": 0.9881 + }, + { + "start": 11886.4, + "end": 11891.04, + "probability": 0.9926 + }, + { + "start": 11891.16, + "end": 11891.66, + "probability": 0.8923 + }, + { + "start": 11891.82, + "end": 11893.4, + "probability": 0.9526 + }, + { + "start": 11894.06, + "end": 11899.76, + "probability": 0.7562 + }, + { + "start": 11900.5, + "end": 11905.08, + "probability": 0.991 + }, + { + "start": 11905.9, + "end": 11906.46, + "probability": 0.5525 + }, + { + "start": 11907.42, + "end": 11915.5, + "probability": 0.8352 + }, + { + "start": 11915.86, + "end": 11918.22, + "probability": 0.8254 + }, + { + "start": 11919.26, + "end": 11923.44, + "probability": 0.9995 + }, + { + "start": 11924.4, + "end": 11930.18, + "probability": 0.9954 + }, + { + "start": 11931.76, + "end": 11933.34, + "probability": 0.994 + }, + { + "start": 11938.06, + "end": 11941.42, + "probability": 0.9753 + }, + { + "start": 11941.82, + "end": 11943.6, + "probability": 0.998 + }, + { + "start": 11943.74, + "end": 11944.9, + "probability": 0.9439 + }, + { + "start": 11945.06, + "end": 11945.76, + "probability": 0.9469 + }, + { + "start": 11946.1, + "end": 11947.42, + "probability": 0.8687 + }, + { + "start": 11947.74, + "end": 11952.92, + "probability": 0.8971 + }, + { + "start": 11953.0, + "end": 11954.33, + "probability": 0.9878 + }, + { + "start": 11955.02, + "end": 11956.78, + "probability": 0.9895 + }, + { + "start": 11957.56, + "end": 11960.44, + "probability": 0.87 + }, + { + "start": 11961.26, + "end": 11965.14, + "probability": 0.9915 + }, + { + "start": 11965.8, + "end": 11970.4, + "probability": 0.9833 + }, + { + "start": 11971.16, + "end": 11974.72, + "probability": 0.987 + }, + { + "start": 11975.06, + "end": 11978.54, + "probability": 0.967 + }, + { + "start": 11978.54, + "end": 11980.14, + "probability": 0.996 + }, + { + "start": 11980.18, + "end": 11982.5, + "probability": 0.7374 + }, + { + "start": 11982.72, + "end": 11985.32, + "probability": 0.8628 + }, + { + "start": 11985.94, + "end": 11989.82, + "probability": 0.9639 + }, + { + "start": 11990.94, + "end": 11994.32, + "probability": 0.9667 + }, + { + "start": 11995.16, + "end": 12000.64, + "probability": 0.9959 + }, + { + "start": 12000.76, + "end": 12004.38, + "probability": 0.998 + }, + { + "start": 12004.96, + "end": 12009.6, + "probability": 0.988 + }, + { + "start": 12010.12, + "end": 12012.2, + "probability": 0.9976 + }, + { + "start": 12012.44, + "end": 12014.24, + "probability": 0.9501 + }, + { + "start": 12014.76, + "end": 12016.18, + "probability": 0.9462 + }, + { + "start": 12017.14, + "end": 12021.22, + "probability": 0.9976 + }, + { + "start": 12021.8, + "end": 12028.4, + "probability": 0.9597 + }, + { + "start": 12028.82, + "end": 12036.23, + "probability": 0.988 + }, + { + "start": 12037.14, + "end": 12039.48, + "probability": 0.9943 + }, + { + "start": 12039.6, + "end": 12040.34, + "probability": 0.7203 + }, + { + "start": 12040.72, + "end": 12042.86, + "probability": 0.9385 + }, + { + "start": 12042.96, + "end": 12043.56, + "probability": 0.9651 + }, + { + "start": 12044.12, + "end": 12045.0, + "probability": 0.876 + }, + { + "start": 12045.44, + "end": 12047.2, + "probability": 0.9514 + }, + { + "start": 12047.7, + "end": 12055.68, + "probability": 0.8687 + }, + { + "start": 12055.68, + "end": 12061.31, + "probability": 0.9907 + }, + { + "start": 12061.98, + "end": 12062.72, + "probability": 0.7242 + }, + { + "start": 12062.9, + "end": 12065.78, + "probability": 0.9946 + }, + { + "start": 12065.78, + "end": 12069.02, + "probability": 0.9974 + }, + { + "start": 12069.08, + "end": 12072.76, + "probability": 0.998 + }, + { + "start": 12073.84, + "end": 12074.2, + "probability": 0.8682 + }, + { + "start": 12074.38, + "end": 12076.7, + "probability": 0.9486 + }, + { + "start": 12076.78, + "end": 12081.5, + "probability": 0.9968 + }, + { + "start": 12082.66, + "end": 12083.8, + "probability": 0.6591 + }, + { + "start": 12084.04, + "end": 12085.3, + "probability": 0.9663 + }, + { + "start": 12085.48, + "end": 12086.74, + "probability": 0.9584 + }, + { + "start": 12086.8, + "end": 12089.54, + "probability": 0.9643 + }, + { + "start": 12090.12, + "end": 12091.7, + "probability": 0.9521 + }, + { + "start": 12093.12, + "end": 12094.72, + "probability": 0.9859 + }, + { + "start": 12094.74, + "end": 12096.35, + "probability": 0.907 + }, + { + "start": 12096.76, + "end": 12098.22, + "probability": 0.9915 + }, + { + "start": 12098.64, + "end": 12100.32, + "probability": 0.989 + }, + { + "start": 12100.48, + "end": 12104.86, + "probability": 0.9889 + }, + { + "start": 12105.78, + "end": 12109.52, + "probability": 0.866 + }, + { + "start": 12110.22, + "end": 12110.36, + "probability": 0.2851 + }, + { + "start": 12110.48, + "end": 12115.38, + "probability": 0.9964 + }, + { + "start": 12115.38, + "end": 12119.96, + "probability": 0.9889 + }, + { + "start": 12120.54, + "end": 12125.48, + "probability": 0.9966 + }, + { + "start": 12125.98, + "end": 12129.76, + "probability": 0.9718 + }, + { + "start": 12130.4, + "end": 12134.74, + "probability": 0.9594 + }, + { + "start": 12135.28, + "end": 12137.94, + "probability": 0.991 + }, + { + "start": 12139.14, + "end": 12140.14, + "probability": 0.7929 + }, + { + "start": 12140.74, + "end": 12143.74, + "probability": 0.9492 + }, + { + "start": 12144.06, + "end": 12145.06, + "probability": 0.756 + }, + { + "start": 12145.2, + "end": 12148.18, + "probability": 0.9918 + }, + { + "start": 12148.4, + "end": 12155.52, + "probability": 0.9971 + }, + { + "start": 12156.6, + "end": 12159.2, + "probability": 0.9153 + }, + { + "start": 12159.46, + "end": 12166.14, + "probability": 0.9974 + }, + { + "start": 12166.24, + "end": 12171.12, + "probability": 0.9279 + }, + { + "start": 12172.12, + "end": 12175.38, + "probability": 0.9751 + }, + { + "start": 12175.42, + "end": 12181.64, + "probability": 0.9925 + }, + { + "start": 12181.8, + "end": 12184.08, + "probability": 0.9816 + }, + { + "start": 12184.66, + "end": 12186.98, + "probability": 0.9104 + }, + { + "start": 12187.5, + "end": 12190.0, + "probability": 0.7588 + }, + { + "start": 12190.44, + "end": 12192.98, + "probability": 0.8344 + }, + { + "start": 12194.0, + "end": 12195.82, + "probability": 0.9886 + }, + { + "start": 12195.98, + "end": 12199.38, + "probability": 0.9947 + }, + { + "start": 12199.82, + "end": 12201.28, + "probability": 0.6542 + }, + { + "start": 12202.48, + "end": 12206.74, + "probability": 0.9892 + }, + { + "start": 12207.6, + "end": 12209.66, + "probability": 0.9915 + }, + { + "start": 12209.76, + "end": 12210.6, + "probability": 0.9316 + }, + { + "start": 12210.94, + "end": 12213.2, + "probability": 0.9741 + }, + { + "start": 12214.0, + "end": 12216.46, + "probability": 0.9977 + }, + { + "start": 12216.46, + "end": 12220.24, + "probability": 0.9943 + }, + { + "start": 12220.82, + "end": 12225.26, + "probability": 0.9804 + }, + { + "start": 12225.38, + "end": 12227.6, + "probability": 0.9967 + }, + { + "start": 12228.0, + "end": 12232.14, + "probability": 0.9959 + }, + { + "start": 12232.76, + "end": 12235.96, + "probability": 0.9977 + }, + { + "start": 12236.36, + "end": 12240.44, + "probability": 0.9729 + }, + { + "start": 12240.72, + "end": 12242.32, + "probability": 0.974 + }, + { + "start": 12242.8, + "end": 12245.66, + "probability": 0.6729 + }, + { + "start": 12246.1, + "end": 12249.5, + "probability": 0.9924 + }, + { + "start": 12250.18, + "end": 12253.8, + "probability": 0.9961 + }, + { + "start": 12254.64, + "end": 12257.94, + "probability": 0.9967 + }, + { + "start": 12258.42, + "end": 12263.06, + "probability": 0.9974 + }, + { + "start": 12263.62, + "end": 12265.92, + "probability": 0.9794 + }, + { + "start": 12266.72, + "end": 12268.6, + "probability": 0.8673 + }, + { + "start": 12269.36, + "end": 12270.2, + "probability": 0.8286 + }, + { + "start": 12270.4, + "end": 12271.34, + "probability": 0.9365 + }, + { + "start": 12271.48, + "end": 12276.81, + "probability": 0.8228 + }, + { + "start": 12276.86, + "end": 12283.0, + "probability": 0.9966 + }, + { + "start": 12283.0, + "end": 12288.6, + "probability": 0.9984 + }, + { + "start": 12289.06, + "end": 12290.33, + "probability": 0.998 + }, + { + "start": 12291.38, + "end": 12294.3, + "probability": 0.9143 + }, + { + "start": 12294.64, + "end": 12299.32, + "probability": 0.8906 + }, + { + "start": 12299.98, + "end": 12301.66, + "probability": 0.9567 + }, + { + "start": 12302.02, + "end": 12302.52, + "probability": 0.8834 + }, + { + "start": 12302.6, + "end": 12303.66, + "probability": 0.9053 + }, + { + "start": 12303.76, + "end": 12305.01, + "probability": 0.9858 + }, + { + "start": 12305.4, + "end": 12306.86, + "probability": 0.9713 + }, + { + "start": 12307.4, + "end": 12309.88, + "probability": 0.9234 + }, + { + "start": 12310.4, + "end": 12315.94, + "probability": 0.954 + }, + { + "start": 12316.1, + "end": 12316.92, + "probability": 0.6328 + }, + { + "start": 12317.4, + "end": 12318.0, + "probability": 0.969 + }, + { + "start": 12318.08, + "end": 12320.86, + "probability": 0.9286 + }, + { + "start": 12321.66, + "end": 12325.4, + "probability": 0.8914 + }, + { + "start": 12325.98, + "end": 12328.06, + "probability": 0.9897 + }, + { + "start": 12328.96, + "end": 12331.58, + "probability": 0.9816 + }, + { + "start": 12332.08, + "end": 12332.73, + "probability": 0.9565 + }, + { + "start": 12333.44, + "end": 12333.74, + "probability": 0.6001 + }, + { + "start": 12334.2, + "end": 12338.32, + "probability": 0.9639 + }, + { + "start": 12338.38, + "end": 12340.84, + "probability": 0.9976 + }, + { + "start": 12341.82, + "end": 12342.9, + "probability": 0.9028 + }, + { + "start": 12343.46, + "end": 12349.36, + "probability": 0.9766 + }, + { + "start": 12349.44, + "end": 12349.46, + "probability": 0.0845 + }, + { + "start": 12349.46, + "end": 12349.5, + "probability": 0.0503 + }, + { + "start": 12349.5, + "end": 12350.46, + "probability": 0.3341 + }, + { + "start": 12350.56, + "end": 12352.86, + "probability": 0.9217 + }, + { + "start": 12352.96, + "end": 12354.58, + "probability": 0.7761 + }, + { + "start": 12355.44, + "end": 12357.2, + "probability": 0.9692 + }, + { + "start": 12357.82, + "end": 12361.58, + "probability": 0.9945 + }, + { + "start": 12362.88, + "end": 12363.9, + "probability": 0.5203 + }, + { + "start": 12364.3, + "end": 12366.23, + "probability": 0.9941 + }, + { + "start": 12366.8, + "end": 12369.4, + "probability": 0.9629 + }, + { + "start": 12369.72, + "end": 12373.06, + "probability": 0.9676 + }, + { + "start": 12373.48, + "end": 12374.14, + "probability": 0.8399 + }, + { + "start": 12374.52, + "end": 12376.24, + "probability": 0.7225 + }, + { + "start": 12376.44, + "end": 12383.74, + "probability": 0.9808 + }, + { + "start": 12383.76, + "end": 12384.02, + "probability": 0.7163 + }, + { + "start": 12400.48, + "end": 12402.86, + "probability": 0.651 + }, + { + "start": 12403.46, + "end": 12404.54, + "probability": 0.5633 + }, + { + "start": 12404.64, + "end": 12405.58, + "probability": 0.7854 + }, + { + "start": 12405.88, + "end": 12409.24, + "probability": 0.9339 + }, + { + "start": 12409.26, + "end": 12412.74, + "probability": 0.9794 + }, + { + "start": 12412.88, + "end": 12416.14, + "probability": 0.978 + }, + { + "start": 12416.6, + "end": 12418.02, + "probability": 0.8593 + }, + { + "start": 12418.1, + "end": 12422.12, + "probability": 0.9626 + }, + { + "start": 12422.9, + "end": 12425.1, + "probability": 0.9982 + }, + { + "start": 12425.62, + "end": 12431.0, + "probability": 0.9963 + }, + { + "start": 12431.86, + "end": 12435.74, + "probability": 0.9964 + }, + { + "start": 12436.24, + "end": 12438.01, + "probability": 0.9956 + }, + { + "start": 12439.16, + "end": 12443.48, + "probability": 0.9917 + }, + { + "start": 12444.2, + "end": 12445.58, + "probability": 0.7924 + }, + { + "start": 12445.88, + "end": 12447.8, + "probability": 0.9787 + }, + { + "start": 12447.94, + "end": 12451.42, + "probability": 0.9843 + }, + { + "start": 12451.42, + "end": 12455.18, + "probability": 0.5099 + }, + { + "start": 12455.96, + "end": 12456.3, + "probability": 0.2065 + }, + { + "start": 12456.3, + "end": 12457.52, + "probability": 0.0378 + }, + { + "start": 12457.56, + "end": 12458.08, + "probability": 0.7407 + }, + { + "start": 12458.14, + "end": 12458.77, + "probability": 0.4001 + }, + { + "start": 12460.36, + "end": 12460.86, + "probability": 0.6566 + }, + { + "start": 12461.6, + "end": 12463.64, + "probability": 0.6742 + }, + { + "start": 12464.64, + "end": 12466.78, + "probability": 0.6048 + }, + { + "start": 12466.88, + "end": 12467.24, + "probability": 0.8542 + }, + { + "start": 12467.56, + "end": 12468.28, + "probability": 0.8683 + }, + { + "start": 12468.28, + "end": 12471.26, + "probability": 0.931 + }, + { + "start": 12471.54, + "end": 12473.62, + "probability": 0.7553 + }, + { + "start": 12473.86, + "end": 12475.54, + "probability": 0.2306 + }, + { + "start": 12475.84, + "end": 12478.64, + "probability": 0.8707 + }, + { + "start": 12478.98, + "end": 12482.32, + "probability": 0.767 + }, + { + "start": 12482.76, + "end": 12483.4, + "probability": 0.2303 + }, + { + "start": 12494.64, + "end": 12495.0, + "probability": 0.1064 + }, + { + "start": 12495.6, + "end": 12495.64, + "probability": 0.002 + }, + { + "start": 12500.0, + "end": 12504.42, + "probability": 0.7852 + }, + { + "start": 12505.64, + "end": 12507.44, + "probability": 0.6057 + }, + { + "start": 12508.42, + "end": 12509.02, + "probability": 0.063 + }, + { + "start": 12510.34, + "end": 12517.5, + "probability": 0.3013 + }, + { + "start": 12518.96, + "end": 12522.52, + "probability": 0.0579 + }, + { + "start": 12524.82, + "end": 12528.58, + "probability": 0.0122 + }, + { + "start": 12531.14, + "end": 12532.76, + "probability": 0.048 + }, + { + "start": 12533.22, + "end": 12538.08, + "probability": 0.0454 + }, + { + "start": 12538.5, + "end": 12540.34, + "probability": 0.0542 + }, + { + "start": 12540.46, + "end": 12541.28, + "probability": 0.3377 + }, + { + "start": 12542.34, + "end": 12542.74, + "probability": 0.0216 + }, + { + "start": 12542.74, + "end": 12543.2, + "probability": 0.0836 + }, + { + "start": 12543.2, + "end": 12543.48, + "probability": 0.0426 + }, + { + "start": 12556.0, + "end": 12556.0, + "probability": 0.0 + }, + { + "start": 12556.0, + "end": 12556.0, + "probability": 0.0 + }, + { + "start": 12556.0, + "end": 12556.0, + "probability": 0.0 + }, + { + "start": 12556.0, + "end": 12556.0, + "probability": 0.0 + }, + { + "start": 12556.0, + "end": 12556.0, + "probability": 0.0 + }, + { + "start": 12556.0, + "end": 12556.0, + "probability": 0.0 + }, + { + "start": 12556.0, + "end": 12556.0, + "probability": 0.0 + }, + { + "start": 12556.0, + "end": 12556.0, + "probability": 0.0 + }, + { + "start": 12556.0, + "end": 12556.0, + "probability": 0.0 + }, + { + "start": 12556.0, + "end": 12556.0, + "probability": 0.0 + }, + { + "start": 12556.0, + "end": 12556.0, + "probability": 0.0 + }, + { + "start": 12556.0, + "end": 12556.0, + "probability": 0.0 + }, + { + "start": 12556.0, + "end": 12556.0, + "probability": 0.0 + }, + { + "start": 12556.0, + "end": 12556.0, + "probability": 0.0 + }, + { + "start": 12556.0, + "end": 12556.0, + "probability": 0.0 + }, + { + "start": 12556.0, + "end": 12556.0, + "probability": 0.0 + }, + { + "start": 12556.0, + "end": 12556.0, + "probability": 0.0 + }, + { + "start": 12556.0, + "end": 12557.36, + "probability": 0.2159 + }, + { + "start": 12557.56, + "end": 12558.94, + "probability": 0.5796 + }, + { + "start": 12559.06, + "end": 12559.7, + "probability": 0.5125 + }, + { + "start": 12559.98, + "end": 12560.64, + "probability": 0.8004 + }, + { + "start": 12560.78, + "end": 12561.38, + "probability": 0.9234 + }, + { + "start": 12561.52, + "end": 12562.88, + "probability": 0.834 + }, + { + "start": 12563.48, + "end": 12567.72, + "probability": 0.9932 + }, + { + "start": 12569.02, + "end": 12569.02, + "probability": 0.1337 + }, + { + "start": 12569.02, + "end": 12569.7, + "probability": 0.835 + }, + { + "start": 12569.76, + "end": 12571.28, + "probability": 0.9347 + }, + { + "start": 12571.76, + "end": 12574.12, + "probability": 0.9385 + }, + { + "start": 12574.52, + "end": 12575.55, + "probability": 0.8188 + }, + { + "start": 12575.92, + "end": 12578.28, + "probability": 0.9911 + }, + { + "start": 12578.84, + "end": 12580.94, + "probability": 0.9071 + }, + { + "start": 12582.24, + "end": 12582.48, + "probability": 0.9335 + }, + { + "start": 12582.54, + "end": 12582.98, + "probability": 0.872 + }, + { + "start": 12583.06, + "end": 12583.62, + "probability": 0.7819 + }, + { + "start": 12583.74, + "end": 12584.4, + "probability": 0.9288 + }, + { + "start": 12584.64, + "end": 12585.44, + "probability": 0.9801 + }, + { + "start": 12585.44, + "end": 12586.88, + "probability": 0.8793 + }, + { + "start": 12586.92, + "end": 12587.74, + "probability": 0.8975 + }, + { + "start": 12587.76, + "end": 12588.46, + "probability": 0.9486 + }, + { + "start": 12588.74, + "end": 12589.76, + "probability": 0.8754 + }, + { + "start": 12589.84, + "end": 12591.1, + "probability": 0.9801 + }, + { + "start": 12591.62, + "end": 12594.31, + "probability": 0.9984 + }, + { + "start": 12594.7, + "end": 12595.94, + "probability": 0.9948 + }, + { + "start": 12598.04, + "end": 12598.76, + "probability": 0.9933 + }, + { + "start": 12600.66, + "end": 12603.36, + "probability": 0.999 + }, + { + "start": 12603.36, + "end": 12606.58, + "probability": 0.9984 + }, + { + "start": 12606.64, + "end": 12611.68, + "probability": 0.9936 + }, + { + "start": 12611.94, + "end": 12614.66, + "probability": 0.9282 + }, + { + "start": 12614.86, + "end": 12618.2, + "probability": 0.991 + }, + { + "start": 12619.1, + "end": 12622.22, + "probability": 0.9861 + }, + { + "start": 12622.44, + "end": 12623.92, + "probability": 0.9839 + }, + { + "start": 12624.02, + "end": 12625.68, + "probability": 0.9803 + }, + { + "start": 12625.7, + "end": 12626.44, + "probability": 0.6213 + }, + { + "start": 12626.52, + "end": 12627.2, + "probability": 0.9833 + }, + { + "start": 12628.46, + "end": 12630.26, + "probability": 0.9436 + }, + { + "start": 12630.34, + "end": 12631.61, + "probability": 0.971 + }, + { + "start": 12632.4, + "end": 12635.86, + "probability": 0.9025 + }, + { + "start": 12635.92, + "end": 12636.34, + "probability": 0.4384 + }, + { + "start": 12637.02, + "end": 12637.64, + "probability": 0.9565 + }, + { + "start": 12638.6, + "end": 12639.76, + "probability": 0.9375 + }, + { + "start": 12640.74, + "end": 12642.06, + "probability": 0.1162 + }, + { + "start": 12642.14, + "end": 12643.52, + "probability": 0.6534 + }, + { + "start": 12644.33, + "end": 12646.67, + "probability": 0.6986 + }, + { + "start": 12647.02, + "end": 12651.03, + "probability": 0.3179 + }, + { + "start": 12651.62, + "end": 12652.7, + "probability": 0.0103 + }, + { + "start": 12655.91, + "end": 12658.02, + "probability": 0.6947 + }, + { + "start": 12658.3, + "end": 12662.04, + "probability": 0.9437 + }, + { + "start": 12662.12, + "end": 12663.02, + "probability": 0.7045 + }, + { + "start": 12664.04, + "end": 12665.32, + "probability": 0.0241 + }, + { + "start": 12665.32, + "end": 12666.4, + "probability": 0.7427 + }, + { + "start": 12666.52, + "end": 12667.24, + "probability": 0.6396 + }, + { + "start": 12667.26, + "end": 12669.32, + "probability": 0.6793 + }, + { + "start": 12669.6, + "end": 12670.4, + "probability": 0.9165 + }, + { + "start": 12671.16, + "end": 12672.26, + "probability": 0.8109 + }, + { + "start": 12673.02, + "end": 12673.6, + "probability": 0.9708 + }, + { + "start": 12674.64, + "end": 12675.64, + "probability": 0.8172 + }, + { + "start": 12675.74, + "end": 12680.2, + "probability": 0.7709 + }, + { + "start": 12680.64, + "end": 12683.36, + "probability": 0.7056 + }, + { + "start": 12684.22, + "end": 12687.54, + "probability": 0.9709 + }, + { + "start": 12687.54, + "end": 12690.92, + "probability": 0.8124 + }, + { + "start": 12691.6, + "end": 12694.38, + "probability": 0.7959 + }, + { + "start": 12695.12, + "end": 12696.42, + "probability": 0.8935 + }, + { + "start": 12696.6, + "end": 12698.72, + "probability": 0.9363 + }, + { + "start": 12698.9, + "end": 12700.5, + "probability": 0.929 + }, + { + "start": 12700.64, + "end": 12702.18, + "probability": 0.8167 + }, + { + "start": 12703.08, + "end": 12704.68, + "probability": 0.4303 + }, + { + "start": 12704.74, + "end": 12705.06, + "probability": 0.6558 + }, + { + "start": 12705.38, + "end": 12706.06, + "probability": 0.025 + }, + { + "start": 12706.14, + "end": 12707.92, + "probability": 0.8704 + }, + { + "start": 12707.98, + "end": 12710.3, + "probability": 0.9722 + }, + { + "start": 12712.12, + "end": 12715.78, + "probability": 0.7096 + }, + { + "start": 12715.78, + "end": 12717.42, + "probability": 0.2086 + }, + { + "start": 12717.66, + "end": 12717.94, + "probability": 0.6107 + }, + { + "start": 12718.0, + "end": 12721.28, + "probability": 0.7302 + }, + { + "start": 12722.24, + "end": 12727.18, + "probability": 0.3346 + }, + { + "start": 12727.66, + "end": 12729.46, + "probability": 0.7433 + }, + { + "start": 12729.52, + "end": 12730.7, + "probability": 0.8546 + }, + { + "start": 12734.13, + "end": 12740.78, + "probability": 0.9684 + }, + { + "start": 12740.78, + "end": 12744.24, + "probability": 0.9901 + }, + { + "start": 12744.5, + "end": 12744.84, + "probability": 0.8254 + }, + { + "start": 12745.04, + "end": 12747.28, + "probability": 0.4397 + }, + { + "start": 12747.54, + "end": 12750.64, + "probability": 0.2093 + }, + { + "start": 12751.9, + "end": 12751.9, + "probability": 0.2052 + }, + { + "start": 12753.62, + "end": 12754.84, + "probability": 0.7611 + }, + { + "start": 12754.96, + "end": 12755.74, + "probability": 0.5276 + }, + { + "start": 12756.68, + "end": 12757.9, + "probability": 0.1671 + }, + { + "start": 12758.04, + "end": 12759.92, + "probability": 0.7134 + }, + { + "start": 12759.98, + "end": 12761.78, + "probability": 0.5417 + }, + { + "start": 12761.78, + "end": 12763.42, + "probability": 0.7859 + }, + { + "start": 12763.52, + "end": 12764.38, + "probability": 0.8895 + }, + { + "start": 12764.48, + "end": 12766.18, + "probability": 0.9897 + }, + { + "start": 12766.28, + "end": 12767.38, + "probability": 0.7222 + }, + { + "start": 12767.41, + "end": 12767.52, + "probability": 0.9873 + }, + { + "start": 12767.52, + "end": 12768.3, + "probability": 0.4608 + }, + { + "start": 12769.34, + "end": 12771.36, + "probability": 0.9952 + }, + { + "start": 12771.48, + "end": 12771.98, + "probability": 0.4952 + }, + { + "start": 12779.04, + "end": 12781.6, + "probability": 0.4561 + }, + { + "start": 12781.62, + "end": 12784.16, + "probability": 0.9965 + }, + { + "start": 12784.22, + "end": 12786.0, + "probability": 0.7747 + }, + { + "start": 12786.48, + "end": 12787.0, + "probability": 0.9648 + }, + { + "start": 12787.74, + "end": 12789.36, + "probability": 0.9957 + }, + { + "start": 12789.68, + "end": 12790.92, + "probability": 0.8387 + }, + { + "start": 12791.34, + "end": 12792.58, + "probability": 0.3781 + }, + { + "start": 12792.68, + "end": 12792.68, + "probability": 0.4216 + }, + { + "start": 12792.68, + "end": 12795.2, + "probability": 0.9081 + }, + { + "start": 12795.32, + "end": 12796.22, + "probability": 0.6464 + }, + { + "start": 12796.44, + "end": 12798.74, + "probability": 0.9846 + }, + { + "start": 12798.74, + "end": 12801.16, + "probability": 0.9943 + }, + { + "start": 12801.62, + "end": 12804.16, + "probability": 0.7952 + }, + { + "start": 12804.16, + "end": 12807.94, + "probability": 0.8459 + }, + { + "start": 12807.98, + "end": 12808.98, + "probability": 0.7491 + }, + { + "start": 12809.2, + "end": 12811.28, + "probability": 0.8525 + }, + { + "start": 12811.64, + "end": 12813.54, + "probability": 0.9961 + }, + { + "start": 12813.8, + "end": 12819.04, + "probability": 0.9709 + }, + { + "start": 12819.34, + "end": 12820.7, + "probability": 0.3745 + }, + { + "start": 12820.7, + "end": 12822.24, + "probability": 0.7397 + }, + { + "start": 12822.34, + "end": 12822.68, + "probability": 0.7211 + }, + { + "start": 12822.7, + "end": 12825.66, + "probability": 0.7986 + }, + { + "start": 12826.22, + "end": 12826.8, + "probability": 0.4713 + }, + { + "start": 12826.8, + "end": 12831.52, + "probability": 0.6553 + }, + { + "start": 12831.76, + "end": 12835.38, + "probability": 0.9639 + }, + { + "start": 12835.78, + "end": 12837.84, + "probability": 0.5246 + }, + { + "start": 12838.34, + "end": 12839.86, + "probability": 0.5874 + }, + { + "start": 12840.1, + "end": 12845.96, + "probability": 0.9132 + }, + { + "start": 12846.22, + "end": 12846.88, + "probability": 0.7385 + }, + { + "start": 12846.92, + "end": 12847.52, + "probability": 0.5255 + }, + { + "start": 12848.38, + "end": 12848.74, + "probability": 0.0166 + }, + { + "start": 12849.18, + "end": 12850.08, + "probability": 0.1382 + }, + { + "start": 12851.26, + "end": 12852.54, + "probability": 0.2214 + }, + { + "start": 12854.62, + "end": 12857.06, + "probability": 0.8228 + }, + { + "start": 12857.22, + "end": 12858.52, + "probability": 0.9814 + }, + { + "start": 12858.52, + "end": 12860.96, + "probability": 0.9775 + }, + { + "start": 12863.91, + "end": 12866.54, + "probability": 0.5354 + }, + { + "start": 12868.9, + "end": 12869.58, + "probability": 0.2333 + }, + { + "start": 12869.58, + "end": 12870.89, + "probability": 0.5538 + }, + { + "start": 12871.62, + "end": 12871.62, + "probability": 0.2342 + }, + { + "start": 12872.46, + "end": 12874.1, + "probability": 0.9225 + }, + { + "start": 12874.18, + "end": 12875.06, + "probability": 0.7428 + }, + { + "start": 12875.1, + "end": 12877.8, + "probability": 0.9282 + }, + { + "start": 12878.85, + "end": 12881.29, + "probability": 0.8402 + }, + { + "start": 12881.62, + "end": 12884.68, + "probability": 0.6099 + }, + { + "start": 12884.88, + "end": 12886.28, + "probability": 0.9287 + }, + { + "start": 12886.9, + "end": 12890.78, + "probability": 0.9618 + }, + { + "start": 12891.12, + "end": 12894.68, + "probability": 0.9966 + }, + { + "start": 12895.88, + "end": 12898.03, + "probability": 0.9965 + }, + { + "start": 12901.13, + "end": 12904.7, + "probability": 0.9974 + }, + { + "start": 12905.04, + "end": 12908.15, + "probability": 0.95 + }, + { + "start": 12908.77, + "end": 12914.04, + "probability": 0.998 + }, + { + "start": 12914.42, + "end": 12915.46, + "probability": 0.9971 + }, + { + "start": 12915.8, + "end": 12916.58, + "probability": 0.8249 + }, + { + "start": 12917.08, + "end": 12918.1, + "probability": 0.9052 + }, + { + "start": 12918.56, + "end": 12921.47, + "probability": 0.999 + }, + { + "start": 12922.1, + "end": 12923.6, + "probability": 0.9635 + }, + { + "start": 12924.2, + "end": 12925.66, + "probability": 0.9365 + }, + { + "start": 12926.2, + "end": 12928.06, + "probability": 0.9956 + }, + { + "start": 12928.44, + "end": 12929.44, + "probability": 0.9082 + }, + { + "start": 12929.48, + "end": 12931.04, + "probability": 0.4337 + }, + { + "start": 12931.04, + "end": 12933.02, + "probability": 0.908 + }, + { + "start": 12935.81, + "end": 12938.74, + "probability": 0.9395 + }, + { + "start": 12939.24, + "end": 12941.58, + "probability": 0.9153 + }, + { + "start": 12942.08, + "end": 12943.92, + "probability": 0.7513 + }, + { + "start": 12944.02, + "end": 12948.1, + "probability": 0.9966 + }, + { + "start": 12948.12, + "end": 12950.62, + "probability": 0.356 + }, + { + "start": 12950.8, + "end": 12952.7, + "probability": 0.9403 + }, + { + "start": 12952.76, + "end": 12956.24, + "probability": 0.9427 + }, + { + "start": 12956.48, + "end": 12958.62, + "probability": 0.939 + }, + { + "start": 12959.18, + "end": 12962.04, + "probability": 0.6174 + }, + { + "start": 12962.04, + "end": 12962.16, + "probability": 0.1093 + }, + { + "start": 12962.24, + "end": 12963.2, + "probability": 0.6487 + }, + { + "start": 12963.26, + "end": 12964.28, + "probability": 0.5991 + }, + { + "start": 12964.46, + "end": 12964.78, + "probability": 0.0707 + }, + { + "start": 12964.78, + "end": 12968.22, + "probability": 0.9844 + }, + { + "start": 12969.38, + "end": 12969.82, + "probability": 0.37 + }, + { + "start": 12969.82, + "end": 12969.82, + "probability": 0.0921 + }, + { + "start": 12969.82, + "end": 12971.4, + "probability": 0.2925 + }, + { + "start": 12971.78, + "end": 12975.96, + "probability": 0.9677 + }, + { + "start": 12976.04, + "end": 12978.62, + "probability": 0.2205 + }, + { + "start": 12979.08, + "end": 12982.52, + "probability": 0.9785 + }, + { + "start": 12982.58, + "end": 12984.66, + "probability": 0.996 + }, + { + "start": 12984.66, + "end": 12987.24, + "probability": 0.9126 + }, + { + "start": 12987.62, + "end": 12991.0, + "probability": 0.7728 + }, + { + "start": 12991.36, + "end": 12992.96, + "probability": 0.2003 + }, + { + "start": 12992.96, + "end": 12993.32, + "probability": 0.0987 + }, + { + "start": 12993.38, + "end": 12997.08, + "probability": 0.1664 + }, + { + "start": 12997.3, + "end": 12999.03, + "probability": 0.7084 + }, + { + "start": 12999.58, + "end": 13007.3, + "probability": 0.6407 + }, + { + "start": 13009.8, + "end": 13010.24, + "probability": 0.3183 + }, + { + "start": 13010.24, + "end": 13010.24, + "probability": 0.092 + }, + { + "start": 13010.24, + "end": 13011.98, + "probability": 0.5253 + }, + { + "start": 13011.98, + "end": 13012.14, + "probability": 0.891 + }, + { + "start": 13012.54, + "end": 13013.46, + "probability": 0.9344 + }, + { + "start": 13013.94, + "end": 13017.49, + "probability": 0.0276 + }, + { + "start": 13018.34, + "end": 13019.44, + "probability": 0.4995 + }, + { + "start": 13019.5, + "end": 13021.0, + "probability": 0.5298 + }, + { + "start": 13021.14, + "end": 13022.12, + "probability": 0.7156 + }, + { + "start": 13022.2, + "end": 13025.28, + "probability": 0.9727 + }, + { + "start": 13025.64, + "end": 13027.88, + "probability": 0.9952 + }, + { + "start": 13027.88, + "end": 13030.46, + "probability": 0.9912 + }, + { + "start": 13030.62, + "end": 13033.54, + "probability": 0.6385 + }, + { + "start": 13033.8, + "end": 13034.56, + "probability": 0.0213 + }, + { + "start": 13035.08, + "end": 13035.08, + "probability": 0.2177 + }, + { + "start": 13035.08, + "end": 13036.24, + "probability": 0.6133 + }, + { + "start": 13038.58, + "end": 13039.04, + "probability": 0.5368 + }, + { + "start": 13040.0, + "end": 13045.62, + "probability": 0.8763 + }, + { + "start": 13045.72, + "end": 13045.96, + "probability": 0.4982 + }, + { + "start": 13046.24, + "end": 13048.86, + "probability": 0.9899 + }, + { + "start": 13049.5, + "end": 13051.04, + "probability": 0.7948 + }, + { + "start": 13051.32, + "end": 13052.86, + "probability": 0.9701 + }, + { + "start": 13052.92, + "end": 13053.56, + "probability": 0.7886 + }, + { + "start": 13054.02, + "end": 13054.82, + "probability": 0.6075 + }, + { + "start": 13055.0, + "end": 13056.33, + "probability": 0.9976 + }, + { + "start": 13057.52, + "end": 13059.26, + "probability": 0.9575 + }, + { + "start": 13059.42, + "end": 13060.78, + "probability": 0.9263 + }, + { + "start": 13060.86, + "end": 13066.06, + "probability": 0.9255 + }, + { + "start": 13066.44, + "end": 13066.84, + "probability": 0.3963 + }, + { + "start": 13067.08, + "end": 13068.24, + "probability": 0.9304 + }, + { + "start": 13068.4, + "end": 13069.74, + "probability": 0.714 + }, + { + "start": 13070.92, + "end": 13074.94, + "probability": 0.9757 + }, + { + "start": 13076.08, + "end": 13077.04, + "probability": 0.9185 + }, + { + "start": 13077.37, + "end": 13079.8, + "probability": 0.7344 + }, + { + "start": 13080.16, + "end": 13081.16, + "probability": 0.995 + }, + { + "start": 13083.04, + "end": 13084.96, + "probability": 0.5167 + }, + { + "start": 13085.04, + "end": 13085.96, + "probability": 0.8976 + }, + { + "start": 13087.35, + "end": 13090.12, + "probability": 0.435 + }, + { + "start": 13090.28, + "end": 13091.82, + "probability": 0.8162 + }, + { + "start": 13091.98, + "end": 13095.38, + "probability": 0.957 + }, + { + "start": 13095.82, + "end": 13096.52, + "probability": 0.0916 + }, + { + "start": 13098.25, + "end": 13099.98, + "probability": 0.7682 + }, + { + "start": 13100.02, + "end": 13100.98, + "probability": 0.7756 + }, + { + "start": 13101.08, + "end": 13103.58, + "probability": 0.9449 + }, + { + "start": 13103.72, + "end": 13104.92, + "probability": 0.8737 + }, + { + "start": 13105.84, + "end": 13107.52, + "probability": 0.9322 + }, + { + "start": 13107.6, + "end": 13109.34, + "probability": 0.85 + }, + { + "start": 13109.48, + "end": 13113.3, + "probability": 0.8596 + }, + { + "start": 13113.76, + "end": 13115.39, + "probability": 0.9897 + }, + { + "start": 13115.9, + "end": 13118.52, + "probability": 0.9523 + }, + { + "start": 13121.14, + "end": 13122.94, + "probability": 0.7928 + }, + { + "start": 13123.04, + "end": 13124.14, + "probability": 0.9429 + }, + { + "start": 13124.22, + "end": 13126.08, + "probability": 0.8771 + }, + { + "start": 13126.16, + "end": 13126.8, + "probability": 0.8107 + }, + { + "start": 13127.22, + "end": 13129.54, + "probability": 0.5077 + }, + { + "start": 13131.22, + "end": 13133.1, + "probability": 0.7443 + }, + { + "start": 13133.54, + "end": 13138.06, + "probability": 0.9868 + }, + { + "start": 13138.14, + "end": 13139.96, + "probability": 0.9735 + }, + { + "start": 13140.48, + "end": 13142.9, + "probability": 0.9873 + }, + { + "start": 13144.36, + "end": 13147.64, + "probability": 0.9817 + }, + { + "start": 13147.74, + "end": 13149.22, + "probability": 0.8131 + }, + { + "start": 13150.74, + "end": 13158.96, + "probability": 0.322 + }, + { + "start": 13159.5, + "end": 13165.58, + "probability": 0.9549 + }, + { + "start": 13165.58, + "end": 13169.2, + "probability": 0.9493 + }, + { + "start": 13169.2, + "end": 13169.54, + "probability": 0.9401 + }, + { + "start": 13169.94, + "end": 13170.92, + "probability": 0.9995 + }, + { + "start": 13171.34, + "end": 13174.14, + "probability": 0.9968 + }, + { + "start": 13174.46, + "end": 13175.15, + "probability": 0.9885 + }, + { + "start": 13176.42, + "end": 13177.26, + "probability": 0.9695 + }, + { + "start": 13177.64, + "end": 13179.54, + "probability": 0.6296 + }, + { + "start": 13179.58, + "end": 13180.92, + "probability": 0.2152 + }, + { + "start": 13180.94, + "end": 13187.52, + "probability": 0.6562 + }, + { + "start": 13188.08, + "end": 13188.58, + "probability": 0.1699 + }, + { + "start": 13189.06, + "end": 13189.86, + "probability": 0.1265 + }, + { + "start": 13189.86, + "end": 13192.28, + "probability": 0.9567 + }, + { + "start": 13192.74, + "end": 13195.44, + "probability": 0.9495 + }, + { + "start": 13195.6, + "end": 13196.82, + "probability": 0.1304 + }, + { + "start": 13197.0, + "end": 13199.04, + "probability": 0.1058 + }, + { + "start": 13202.04, + "end": 13202.54, + "probability": 0.2743 + }, + { + "start": 13205.26, + "end": 13208.3, + "probability": 0.1722 + }, + { + "start": 13208.3, + "end": 13209.46, + "probability": 0.6535 + }, + { + "start": 13209.5, + "end": 13210.95, + "probability": 0.9839 + }, + { + "start": 13211.92, + "end": 13212.92, + "probability": 0.9714 + }, + { + "start": 13212.98, + "end": 13215.02, + "probability": 0.8346 + }, + { + "start": 13215.1, + "end": 13216.7, + "probability": 0.8683 + }, + { + "start": 13216.96, + "end": 13218.7, + "probability": 0.9993 + }, + { + "start": 13218.94, + "end": 13222.74, + "probability": 0.9855 + }, + { + "start": 13223.08, + "end": 13224.84, + "probability": 0.9928 + }, + { + "start": 13225.06, + "end": 13225.88, + "probability": 0.6183 + }, + { + "start": 13226.1, + "end": 13227.6, + "probability": 0.8447 + }, + { + "start": 13228.32, + "end": 13231.06, + "probability": 0.9797 + }, + { + "start": 13231.1, + "end": 13231.84, + "probability": 0.8815 + }, + { + "start": 13232.28, + "end": 13233.3, + "probability": 0.8273 + }, + { + "start": 13235.2, + "end": 13241.48, + "probability": 0.9814 + }, + { + "start": 13256.76, + "end": 13259.26, + "probability": 0.8082 + }, + { + "start": 13259.54, + "end": 13261.28, + "probability": 0.697 + }, + { + "start": 13261.9, + "end": 13267.7, + "probability": 0.9862 + }, + { + "start": 13268.88, + "end": 13273.24, + "probability": 0.985 + }, + { + "start": 13273.36, + "end": 13274.6, + "probability": 0.8758 + }, + { + "start": 13275.14, + "end": 13278.38, + "probability": 0.9968 + }, + { + "start": 13278.82, + "end": 13279.84, + "probability": 0.8826 + }, + { + "start": 13280.24, + "end": 13285.0, + "probability": 0.995 + }, + { + "start": 13285.0, + "end": 13285.32, + "probability": 0.4107 + }, + { + "start": 13285.42, + "end": 13286.98, + "probability": 0.7597 + }, + { + "start": 13287.08, + "end": 13287.46, + "probability": 0.8559 + }, + { + "start": 13287.52, + "end": 13291.46, + "probability": 0.9878 + }, + { + "start": 13291.86, + "end": 13294.58, + "probability": 0.9967 + }, + { + "start": 13295.1, + "end": 13301.76, + "probability": 0.9937 + }, + { + "start": 13302.34, + "end": 13305.58, + "probability": 0.9544 + }, + { + "start": 13306.34, + "end": 13307.42, + "probability": 0.9226 + }, + { + "start": 13307.58, + "end": 13311.5, + "probability": 0.9983 + }, + { + "start": 13311.98, + "end": 13313.5, + "probability": 0.9835 + }, + { + "start": 13313.8, + "end": 13318.19, + "probability": 0.9985 + }, + { + "start": 13319.66, + "end": 13321.82, + "probability": 0.9985 + }, + { + "start": 13322.3, + "end": 13324.3, + "probability": 0.9987 + }, + { + "start": 13325.3, + "end": 13326.46, + "probability": 0.0781 + }, + { + "start": 13326.48, + "end": 13327.68, + "probability": 0.9261 + }, + { + "start": 13328.54, + "end": 13328.54, + "probability": 0.2159 + }, + { + "start": 13328.54, + "end": 13328.7, + "probability": 0.195 + }, + { + "start": 13328.78, + "end": 13329.96, + "probability": 0.7441 + }, + { + "start": 13330.0, + "end": 13330.82, + "probability": 0.5707 + }, + { + "start": 13330.96, + "end": 13331.56, + "probability": 0.5366 + }, + { + "start": 13331.92, + "end": 13332.26, + "probability": 0.6882 + }, + { + "start": 13332.52, + "end": 13332.88, + "probability": 0.8485 + }, + { + "start": 13332.94, + "end": 13334.5, + "probability": 0.9766 + }, + { + "start": 13334.56, + "end": 13334.96, + "probability": 0.7746 + }, + { + "start": 13334.98, + "end": 13335.78, + "probability": 0.9536 + }, + { + "start": 13335.84, + "end": 13339.62, + "probability": 0.953 + }, + { + "start": 13339.84, + "end": 13341.42, + "probability": 0.0305 + }, + { + "start": 13341.62, + "end": 13342.04, + "probability": 0.6822 + }, + { + "start": 13342.04, + "end": 13342.82, + "probability": 0.0325 + }, + { + "start": 13342.88, + "end": 13345.42, + "probability": 0.9973 + }, + { + "start": 13345.42, + "end": 13347.76, + "probability": 0.9919 + }, + { + "start": 13347.82, + "end": 13349.17, + "probability": 0.8635 + }, + { + "start": 13349.4, + "end": 13350.06, + "probability": 0.2859 + }, + { + "start": 13350.12, + "end": 13351.48, + "probability": 0.2604 + }, + { + "start": 13351.48, + "end": 13353.34, + "probability": 0.7964 + }, + { + "start": 13355.86, + "end": 13356.6, + "probability": 0.9198 + }, + { + "start": 13356.9, + "end": 13359.04, + "probability": 0.8661 + }, + { + "start": 13359.16, + "end": 13361.3, + "probability": 0.9813 + }, + { + "start": 13361.36, + "end": 13361.9, + "probability": 0.8177 + }, + { + "start": 13362.06, + "end": 13363.73, + "probability": 0.6896 + }, + { + "start": 13364.36, + "end": 13364.86, + "probability": 0.0154 + }, + { + "start": 13365.56, + "end": 13366.58, + "probability": 0.075 + }, + { + "start": 13377.78, + "end": 13379.32, + "probability": 0.5405 + }, + { + "start": 13379.8, + "end": 13383.08, + "probability": 0.0774 + }, + { + "start": 13383.08, + "end": 13384.15, + "probability": 0.0141 + }, + { + "start": 13389.18, + "end": 13391.1, + "probability": 0.1221 + }, + { + "start": 13393.04, + "end": 13393.04, + "probability": 0.0391 + }, + { + "start": 13393.36, + "end": 13393.36, + "probability": 0.014 + }, + { + "start": 13394.18, + "end": 13394.7, + "probability": 0.017 + }, + { + "start": 13395.55, + "end": 13396.84, + "probability": 0.0271 + }, + { + "start": 13396.84, + "end": 13397.54, + "probability": 0.2058 + }, + { + "start": 13397.54, + "end": 13399.18, + "probability": 0.2481 + }, + { + "start": 13400.02, + "end": 13401.18, + "probability": 0.0297 + }, + { + "start": 13401.35, + "end": 13401.59, + "probability": 0.1533 + }, + { + "start": 13402.64, + "end": 13405.46, + "probability": 0.053 + }, + { + "start": 13407.54, + "end": 13408.4, + "probability": 0.0904 + }, + { + "start": 13409.6, + "end": 13411.02, + "probability": 0.2312 + }, + { + "start": 13454.0, + "end": 13454.0, + "probability": 0.0 + }, + { + "start": 13454.0, + "end": 13454.0, + "probability": 0.0 + }, + { + "start": 13454.0, + "end": 13454.0, + "probability": 0.0 + }, + { + "start": 13454.0, + "end": 13454.0, + "probability": 0.0 + }, + { + "start": 13454.0, + "end": 13454.0, + "probability": 0.0 + }, + { + "start": 13454.0, + "end": 13454.0, + "probability": 0.0 + }, + { + "start": 13454.0, + "end": 13454.0, + "probability": 0.0 + }, + { + "start": 13454.0, + "end": 13454.0, + "probability": 0.0 + }, + { + "start": 13454.0, + "end": 13454.0, + "probability": 0.0 + }, + { + "start": 13455.95, + "end": 13456.58, + "probability": 0.0883 + }, + { + "start": 13456.58, + "end": 13458.4, + "probability": 0.0477 + }, + { + "start": 13459.54, + "end": 13459.72, + "probability": 0.0995 + }, + { + "start": 13460.14, + "end": 13462.94, + "probability": 0.1949 + }, + { + "start": 13465.96, + "end": 13466.72, + "probability": 0.0508 + }, + { + "start": 13466.92, + "end": 13469.4, + "probability": 0.0723 + }, + { + "start": 13469.42, + "end": 13471.24, + "probability": 0.1216 + }, + { + "start": 13471.24, + "end": 13471.24, + "probability": 0.3453 + }, + { + "start": 13472.0, + "end": 13472.2, + "probability": 0.1104 + }, + { + "start": 13574.0, + "end": 13574.0, + "probability": 0.0 + }, + { + "start": 13574.0, + "end": 13574.0, + "probability": 0.0 + }, + { + "start": 13574.0, + "end": 13574.0, + "probability": 0.0 + }, + { + "start": 13574.0, + "end": 13574.0, + "probability": 0.0 + }, + { + "start": 13574.0, + "end": 13574.0, + "probability": 0.0 + }, + { + "start": 13574.0, + "end": 13574.0, + "probability": 0.0 + }, + { + "start": 13574.0, + "end": 13574.0, + "probability": 0.0 + }, + { + "start": 13574.0, + "end": 13574.0, + "probability": 0.0 + }, + { + "start": 13574.0, + "end": 13574.0, + "probability": 0.0 + }, + { + "start": 13574.0, + "end": 13574.0, + "probability": 0.0 + }, + { + "start": 13574.0, + "end": 13574.0, + "probability": 0.0 + }, + { + "start": 13574.0, + "end": 13574.0, + "probability": 0.0 + }, + { + "start": 13574.0, + "end": 13574.0, + "probability": 0.0 + }, + { + "start": 13574.0, + "end": 13574.0, + "probability": 0.0 + }, + { + "start": 13574.0, + "end": 13574.0, + "probability": 0.0 + }, + { + "start": 13574.0, + "end": 13574.0, + "probability": 0.0 + }, + { + "start": 13574.0, + "end": 13574.0, + "probability": 0.0 + }, + { + "start": 13574.0, + "end": 13574.0, + "probability": 0.0 + }, + { + "start": 13574.0, + "end": 13574.0, + "probability": 0.0 + }, + { + "start": 13574.0, + "end": 13574.0, + "probability": 0.0 + }, + { + "start": 13574.0, + "end": 13574.0, + "probability": 0.0 + }, + { + "start": 13574.0, + "end": 13574.0, + "probability": 0.0 + }, + { + "start": 13574.0, + "end": 13574.0, + "probability": 0.0 + }, + { + "start": 13574.0, + "end": 13574.0, + "probability": 0.0 + }, + { + "start": 13574.0, + "end": 13574.0, + "probability": 0.0 + }, + { + "start": 13574.0, + "end": 13574.0, + "probability": 0.0 + }, + { + "start": 13574.0, + "end": 13574.0, + "probability": 0.0 + }, + { + "start": 13574.0, + "end": 13574.0, + "probability": 0.0 + }, + { + "start": 13574.0, + "end": 13574.0, + "probability": 0.0 + }, + { + "start": 13574.0, + "end": 13574.0, + "probability": 0.0 + }, + { + "start": 13574.0, + "end": 13574.0, + "probability": 0.0 + }, + { + "start": 13574.0, + "end": 13574.0, + "probability": 0.0 + }, + { + "start": 13574.0, + "end": 13574.0, + "probability": 0.0 + }, + { + "start": 13574.0, + "end": 13574.0, + "probability": 0.0 + }, + { + "start": 13574.0, + "end": 13574.0, + "probability": 0.0 + }, + { + "start": 13574.0, + "end": 13574.0, + "probability": 0.0 + }, + { + "start": 13574.0, + "end": 13574.0, + "probability": 0.0 + }, + { + "start": 13574.18, + "end": 13574.18, + "probability": 0.0274 + }, + { + "start": 13574.18, + "end": 13575.54, + "probability": 0.4601 + }, + { + "start": 13576.08, + "end": 13577.92, + "probability": 0.5511 + }, + { + "start": 13579.18, + "end": 13584.56, + "probability": 0.9558 + }, + { + "start": 13584.56, + "end": 13588.64, + "probability": 0.9927 + }, + { + "start": 13589.5, + "end": 13590.4, + "probability": 0.9985 + }, + { + "start": 13590.94, + "end": 13597.92, + "probability": 0.9995 + }, + { + "start": 13598.94, + "end": 13604.26, + "probability": 0.9741 + }, + { + "start": 13604.98, + "end": 13606.08, + "probability": 0.9894 + }, + { + "start": 13606.86, + "end": 13610.36, + "probability": 0.9922 + }, + { + "start": 13610.36, + "end": 13615.36, + "probability": 0.9458 + }, + { + "start": 13616.06, + "end": 13619.02, + "probability": 0.9976 + }, + { + "start": 13619.16, + "end": 13620.62, + "probability": 0.9395 + }, + { + "start": 13620.74, + "end": 13626.0, + "probability": 0.9929 + }, + { + "start": 13627.02, + "end": 13628.39, + "probability": 0.9937 + }, + { + "start": 13630.14, + "end": 13630.5, + "probability": 0.1975 + }, + { + "start": 13630.54, + "end": 13633.58, + "probability": 0.9567 + }, + { + "start": 13634.04, + "end": 13634.54, + "probability": 0.7793 + }, + { + "start": 13634.66, + "end": 13638.36, + "probability": 0.8014 + }, + { + "start": 13638.46, + "end": 13639.72, + "probability": 0.7476 + }, + { + "start": 13639.84, + "end": 13640.56, + "probability": 0.7916 + }, + { + "start": 13640.56, + "end": 13642.72, + "probability": 0.0636 + }, + { + "start": 13642.8, + "end": 13642.98, + "probability": 0.0166 + }, + { + "start": 13642.98, + "end": 13643.71, + "probability": 0.1287 + }, + { + "start": 13644.04, + "end": 13648.4, + "probability": 0.9795 + }, + { + "start": 13648.54, + "end": 13649.82, + "probability": 0.1987 + }, + { + "start": 13649.86, + "end": 13650.64, + "probability": 0.4573 + }, + { + "start": 13650.64, + "end": 13654.82, + "probability": 0.9569 + }, + { + "start": 13655.12, + "end": 13657.46, + "probability": 0.4274 + }, + { + "start": 13657.58, + "end": 13658.98, + "probability": 0.7354 + }, + { + "start": 13659.3, + "end": 13659.3, + "probability": 0.0876 + }, + { + "start": 13659.3, + "end": 13662.84, + "probability": 0.9686 + }, + { + "start": 13662.9, + "end": 13664.22, + "probability": 0.8281 + }, + { + "start": 13664.24, + "end": 13665.06, + "probability": 0.9346 + }, + { + "start": 13667.28, + "end": 13667.98, + "probability": 0.1456 + }, + { + "start": 13667.98, + "end": 13667.98, + "probability": 0.0427 + }, + { + "start": 13667.98, + "end": 13667.98, + "probability": 0.1131 + }, + { + "start": 13667.98, + "end": 13668.08, + "probability": 0.1532 + }, + { + "start": 13668.48, + "end": 13673.76, + "probability": 0.9772 + }, + { + "start": 13674.52, + "end": 13676.04, + "probability": 0.5766 + }, + { + "start": 13676.06, + "end": 13678.06, + "probability": 0.9829 + }, + { + "start": 13678.24, + "end": 13678.78, + "probability": 0.3863 + }, + { + "start": 13679.16, + "end": 13679.24, + "probability": 0.0856 + }, + { + "start": 13679.24, + "end": 13680.46, + "probability": 0.7689 + }, + { + "start": 13683.91, + "end": 13688.14, + "probability": 0.8035 + }, + { + "start": 13688.54, + "end": 13689.66, + "probability": 0.9113 + }, + { + "start": 13690.1, + "end": 13690.16, + "probability": 0.1296 + }, + { + "start": 13690.16, + "end": 13691.86, + "probability": 0.174 + }, + { + "start": 13692.86, + "end": 13693.62, + "probability": 0.0635 + }, + { + "start": 13696.36, + "end": 13696.76, + "probability": 0.0773 + }, + { + "start": 13696.76, + "end": 13696.76, + "probability": 0.0203 + }, + { + "start": 13696.76, + "end": 13698.3, + "probability": 0.6159 + }, + { + "start": 13698.34, + "end": 13698.52, + "probability": 0.0773 + }, + { + "start": 13698.64, + "end": 13699.72, + "probability": 0.4075 + }, + { + "start": 13699.78, + "end": 13703.18, + "probability": 0.9403 + }, + { + "start": 13703.22, + "end": 13704.1, + "probability": 0.8899 + }, + { + "start": 13704.34, + "end": 13704.54, + "probability": 0.5812 + }, + { + "start": 13704.54, + "end": 13706.36, + "probability": 0.5221 + }, + { + "start": 13706.46, + "end": 13706.46, + "probability": 0.038 + }, + { + "start": 13706.46, + "end": 13709.16, + "probability": 0.831 + }, + { + "start": 13709.34, + "end": 13711.6, + "probability": 0.9978 + }, + { + "start": 13711.62, + "end": 13713.12, + "probability": 0.0581 + }, + { + "start": 13713.12, + "end": 13713.12, + "probability": 0.0416 + }, + { + "start": 13713.12, + "end": 13713.12, + "probability": 0.138 + }, + { + "start": 13713.12, + "end": 13713.12, + "probability": 0.1177 + }, + { + "start": 13713.12, + "end": 13714.28, + "probability": 0.3228 + }, + { + "start": 13715.1, + "end": 13715.94, + "probability": 0.8836 + }, + { + "start": 13716.08, + "end": 13719.3, + "probability": 0.7846 + }, + { + "start": 13719.4, + "end": 13722.4, + "probability": 0.7392 + }, + { + "start": 13722.5, + "end": 13724.58, + "probability": 0.0189 + }, + { + "start": 13724.8, + "end": 13724.82, + "probability": 0.1348 + }, + { + "start": 13725.69, + "end": 13728.56, + "probability": 0.544 + }, + { + "start": 13729.26, + "end": 13731.4, + "probability": 0.6743 + }, + { + "start": 13731.98, + "end": 13731.98, + "probability": 0.0822 + }, + { + "start": 13731.98, + "end": 13733.76, + "probability": 0.7803 + }, + { + "start": 13733.96, + "end": 13735.08, + "probability": 0.6791 + }, + { + "start": 13735.92, + "end": 13739.84, + "probability": 0.9019 + }, + { + "start": 13740.75, + "end": 13746.38, + "probability": 0.7889 + }, + { + "start": 13747.36, + "end": 13750.9, + "probability": 0.9948 + }, + { + "start": 13750.9, + "end": 13757.8, + "probability": 0.9198 + }, + { + "start": 13758.52, + "end": 13759.56, + "probability": 0.9258 + }, + { + "start": 13760.0, + "end": 13763.06, + "probability": 0.9373 + }, + { + "start": 13763.42, + "end": 13767.62, + "probability": 0.9909 + }, + { + "start": 13767.82, + "end": 13769.18, + "probability": 0.9961 + }, + { + "start": 13769.22, + "end": 13769.7, + "probability": 0.8329 + }, + { + "start": 13770.02, + "end": 13771.2, + "probability": 0.5403 + }, + { + "start": 13771.48, + "end": 13775.98, + "probability": 0.559 + }, + { + "start": 13776.91, + "end": 13781.68, + "probability": 0.5494 + }, + { + "start": 13782.0, + "end": 13785.6, + "probability": 0.84 + }, + { + "start": 13790.19, + "end": 13793.14, + "probability": 0.7645 + }, + { + "start": 13793.42, + "end": 13795.76, + "probability": 0.4459 + }, + { + "start": 13795.76, + "end": 13798.64, + "probability": 0.66 + }, + { + "start": 13798.76, + "end": 13804.9, + "probability": 0.9746 + }, + { + "start": 13805.02, + "end": 13807.56, + "probability": 0.8824 + }, + { + "start": 13807.78, + "end": 13810.16, + "probability": 0.7382 + }, + { + "start": 13810.26, + "end": 13811.92, + "probability": 0.9504 + }, + { + "start": 13811.92, + "end": 13815.12, + "probability": 0.753 + }, + { + "start": 13815.22, + "end": 13815.94, + "probability": 0.2201 + }, + { + "start": 13816.18, + "end": 13816.28, + "probability": 0.2459 + }, + { + "start": 13816.28, + "end": 13820.06, + "probability": 0.7569 + }, + { + "start": 13820.6, + "end": 13823.26, + "probability": 0.9832 + }, + { + "start": 13823.4, + "end": 13826.3, + "probability": 0.9646 + }, + { + "start": 13826.42, + "end": 13830.26, + "probability": 0.9607 + }, + { + "start": 13830.72, + "end": 13832.1, + "probability": 0.9961 + }, + { + "start": 13832.64, + "end": 13833.82, + "probability": 0.7869 + }, + { + "start": 13834.18, + "end": 13835.48, + "probability": 0.9728 + }, + { + "start": 13836.02, + "end": 13837.36, + "probability": 0.7036 + }, + { + "start": 13837.38, + "end": 13840.76, + "probability": 0.4871 + }, + { + "start": 13841.0, + "end": 13844.88, + "probability": 0.9956 + }, + { + "start": 13845.42, + "end": 13846.82, + "probability": 0.6534 + }, + { + "start": 13846.82, + "end": 13847.92, + "probability": 0.9043 + }, + { + "start": 13848.02, + "end": 13848.86, + "probability": 0.891 + }, + { + "start": 13848.92, + "end": 13853.54, + "probability": 0.9414 + }, + { + "start": 13853.54, + "end": 13856.24, + "probability": 0.9985 + }, + { + "start": 13856.67, + "end": 13859.92, + "probability": 0.9942 + }, + { + "start": 13860.04, + "end": 13860.68, + "probability": 0.0331 + }, + { + "start": 13861.68, + "end": 13862.26, + "probability": 0.8063 + }, + { + "start": 13862.32, + "end": 13866.62, + "probability": 0.9937 + }, + { + "start": 13866.64, + "end": 13871.16, + "probability": 0.9824 + }, + { + "start": 13871.18, + "end": 13872.21, + "probability": 0.978 + }, + { + "start": 13872.66, + "end": 13874.82, + "probability": 0.8596 + }, + { + "start": 13875.76, + "end": 13880.74, + "probability": 0.9943 + }, + { + "start": 13880.9, + "end": 13882.76, + "probability": 0.6736 + }, + { + "start": 13883.3, + "end": 13885.68, + "probability": 0.9092 + }, + { + "start": 13886.02, + "end": 13887.26, + "probability": 0.8292 + }, + { + "start": 13887.38, + "end": 13892.24, + "probability": 0.9956 + }, + { + "start": 13892.24, + "end": 13898.32, + "probability": 0.9953 + }, + { + "start": 13898.38, + "end": 13903.6, + "probability": 0.646 + }, + { + "start": 13903.76, + "end": 13904.9, + "probability": 0.0674 + }, + { + "start": 13906.16, + "end": 13909.26, + "probability": 0.0629 + }, + { + "start": 13909.26, + "end": 13909.26, + "probability": 0.1294 + }, + { + "start": 13909.26, + "end": 13909.26, + "probability": 0.1446 + }, + { + "start": 13909.26, + "end": 13910.3, + "probability": 0.2068 + }, + { + "start": 13910.62, + "end": 13911.86, + "probability": 0.4968 + }, + { + "start": 13912.34, + "end": 13913.56, + "probability": 0.9899 + }, + { + "start": 13913.74, + "end": 13917.78, + "probability": 0.9612 + }, + { + "start": 13917.78, + "end": 13920.82, + "probability": 0.9923 + }, + { + "start": 13920.96, + "end": 13924.96, + "probability": 0.9977 + }, + { + "start": 13924.96, + "end": 13927.48, + "probability": 0.9995 + }, + { + "start": 13927.96, + "end": 13933.56, + "probability": 0.999 + }, + { + "start": 13933.56, + "end": 13938.74, + "probability": 0.9551 + }, + { + "start": 13939.44, + "end": 13942.48, + "probability": 0.9827 + }, + { + "start": 13942.62, + "end": 13944.86, + "probability": 0.9553 + }, + { + "start": 13945.26, + "end": 13946.3, + "probability": 0.8075 + }, + { + "start": 13946.62, + "end": 13947.98, + "probability": 0.9395 + }, + { + "start": 13948.02, + "end": 13949.38, + "probability": 0.9689 + }, + { + "start": 13949.42, + "end": 13952.05, + "probability": 0.9913 + }, + { + "start": 13954.15, + "end": 13958.6, + "probability": 0.9937 + }, + { + "start": 13958.76, + "end": 13962.15, + "probability": 0.7553 + }, + { + "start": 13962.58, + "end": 13965.18, + "probability": 0.9902 + }, + { + "start": 13965.82, + "end": 13966.25, + "probability": 0.0753 + }, + { + "start": 13967.5, + "end": 13967.5, + "probability": 0.0179 + }, + { + "start": 13967.5, + "end": 13968.58, + "probability": 0.0639 + }, + { + "start": 13969.06, + "end": 13971.96, + "probability": 0.8716 + }, + { + "start": 13972.0, + "end": 13972.9, + "probability": 0.7494 + }, + { + "start": 13973.06, + "end": 13975.38, + "probability": 0.981 + }, + { + "start": 13975.42, + "end": 13978.12, + "probability": 0.8524 + }, + { + "start": 13978.4, + "end": 13978.84, + "probability": 0.6985 + }, + { + "start": 13978.92, + "end": 13982.18, + "probability": 0.9022 + }, + { + "start": 13982.18, + "end": 13984.76, + "probability": 0.8938 + }, + { + "start": 13984.92, + "end": 13988.88, + "probability": 0.8839 + }, + { + "start": 13989.32, + "end": 13992.42, + "probability": 0.9424 + }, + { + "start": 13992.44, + "end": 13995.44, + "probability": 0.3657 + }, + { + "start": 13995.44, + "end": 13998.88, + "probability": 0.0863 + }, + { + "start": 13999.26, + "end": 13999.26, + "probability": 0.098 + }, + { + "start": 13999.26, + "end": 14002.04, + "probability": 0.5551 + }, + { + "start": 14002.8, + "end": 14006.66, + "probability": 0.9989 + }, + { + "start": 14006.66, + "end": 14011.86, + "probability": 0.9971 + }, + { + "start": 14012.08, + "end": 14014.44, + "probability": 0.9783 + }, + { + "start": 14014.48, + "end": 14016.1, + "probability": 0.7767 + }, + { + "start": 14016.64, + "end": 14017.7, + "probability": 0.3264 + }, + { + "start": 14020.7, + "end": 14022.24, + "probability": 0.3855 + }, + { + "start": 14022.88, + "end": 14027.68, + "probability": 0.7581 + }, + { + "start": 14027.68, + "end": 14033.82, + "probability": 0.715 + }, + { + "start": 14034.08, + "end": 14035.46, + "probability": 0.0845 + }, + { + "start": 14035.54, + "end": 14037.33, + "probability": 0.5054 + }, + { + "start": 14039.26, + "end": 14042.56, + "probability": 0.7551 + }, + { + "start": 14042.8, + "end": 14044.24, + "probability": 0.9625 + }, + { + "start": 14044.42, + "end": 14046.32, + "probability": 0.948 + }, + { + "start": 14047.08, + "end": 14050.86, + "probability": 0.3069 + }, + { + "start": 14051.38, + "end": 14051.8, + "probability": 0.7686 + }, + { + "start": 14052.0, + "end": 14052.62, + "probability": 0.1459 + }, + { + "start": 14053.16, + "end": 14055.93, + "probability": 0.6834 + }, + { + "start": 14056.1, + "end": 14058.26, + "probability": 0.9257 + }, + { + "start": 14058.36, + "end": 14059.36, + "probability": 0.7308 + }, + { + "start": 14059.8, + "end": 14062.74, + "probability": 0.79 + }, + { + "start": 14063.1, + "end": 14063.86, + "probability": 0.1993 + }, + { + "start": 14064.5, + "end": 14066.04, + "probability": 0.6085 + }, + { + "start": 14066.16, + "end": 14066.94, + "probability": 0.628 + }, + { + "start": 14067.7, + "end": 14068.14, + "probability": 0.6744 + }, + { + "start": 14069.17, + "end": 14070.68, + "probability": 0.0928 + }, + { + "start": 14070.68, + "end": 14077.04, + "probability": 0.7027 + }, + { + "start": 14077.36, + "end": 14080.08, + "probability": 0.4397 + }, + { + "start": 14080.4, + "end": 14082.56, + "probability": 0.7651 + }, + { + "start": 14082.64, + "end": 14083.24, + "probability": 0.8447 + }, + { + "start": 14083.36, + "end": 14084.82, + "probability": 0.7355 + }, + { + "start": 14085.58, + "end": 14089.52, + "probability": 0.8145 + }, + { + "start": 14089.86, + "end": 14093.44, + "probability": 0.975 + }, + { + "start": 14094.0, + "end": 14096.28, + "probability": 0.8077 + }, + { + "start": 14102.08, + "end": 14102.96, + "probability": 0.8151 + }, + { + "start": 14102.96, + "end": 14105.4, + "probability": 0.9915 + }, + { + "start": 14105.5, + "end": 14109.6, + "probability": 0.9447 + }, + { + "start": 14110.35, + "end": 14113.7, + "probability": 0.9133 + }, + { + "start": 14113.7, + "end": 14115.55, + "probability": 0.8501 + }, + { + "start": 14116.3, + "end": 14117.9, + "probability": 0.783 + }, + { + "start": 14118.02, + "end": 14120.0, + "probability": 0.7859 + }, + { + "start": 14120.52, + "end": 14120.88, + "probability": 0.462 + }, + { + "start": 14120.98, + "end": 14122.44, + "probability": 0.7108 + }, + { + "start": 14122.56, + "end": 14122.82, + "probability": 0.9107 + }, + { + "start": 14122.96, + "end": 14126.64, + "probability": 0.8734 + }, + { + "start": 14126.98, + "end": 14132.92, + "probability": 0.9765 + }, + { + "start": 14133.54, + "end": 14137.54, + "probability": 0.9644 + }, + { + "start": 14137.74, + "end": 14142.18, + "probability": 0.9985 + }, + { + "start": 14143.54, + "end": 14145.36, + "probability": 0.4565 + }, + { + "start": 14145.36, + "end": 14145.84, + "probability": 0.0313 + }, + { + "start": 14146.82, + "end": 14150.1, + "probability": 0.0646 + }, + { + "start": 14150.1, + "end": 14151.96, + "probability": 0.12 + }, + { + "start": 14152.06, + "end": 14152.14, + "probability": 0.4664 + }, + { + "start": 14152.14, + "end": 14153.98, + "probability": 0.0484 + }, + { + "start": 14154.12, + "end": 14154.12, + "probability": 0.2052 + }, + { + "start": 14155.1, + "end": 14159.06, + "probability": 0.1932 + }, + { + "start": 14159.06, + "end": 14159.58, + "probability": 0.1386 + }, + { + "start": 14159.97, + "end": 14160.88, + "probability": 0.4208 + }, + { + "start": 14160.88, + "end": 14161.9, + "probability": 0.242 + }, + { + "start": 14162.08, + "end": 14163.32, + "probability": 0.0143 + }, + { + "start": 14166.17, + "end": 14168.22, + "probability": 0.0764 + }, + { + "start": 14168.22, + "end": 14169.72, + "probability": 0.0508 + }, + { + "start": 14169.72, + "end": 14170.44, + "probability": 0.1703 + }, + { + "start": 14170.44, + "end": 14173.04, + "probability": 0.0424 + }, + { + "start": 14174.42, + "end": 14174.8, + "probability": 0.1741 + }, + { + "start": 14176.22, + "end": 14180.74, + "probability": 0.1109 + }, + { + "start": 14182.2, + "end": 14182.82, + "probability": 0.0015 + }, + { + "start": 14182.98, + "end": 14187.56, + "probability": 0.135 + }, + { + "start": 14189.06, + "end": 14190.5, + "probability": 0.1096 + }, + { + "start": 14190.52, + "end": 14193.24, + "probability": 0.0594 + }, + { + "start": 14209.0, + "end": 14209.0, + "probability": 0.0 + }, + { + "start": 14209.0, + "end": 14209.0, + "probability": 0.0 + }, + { + "start": 14209.0, + "end": 14209.0, + "probability": 0.0 + }, + { + "start": 14209.0, + "end": 14209.0, + "probability": 0.0 + }, + { + "start": 14209.0, + "end": 14209.0, + "probability": 0.0 + }, + { + "start": 14209.0, + "end": 14209.0, + "probability": 0.0 + }, + { + "start": 14209.0, + "end": 14209.0, + "probability": 0.0 + }, + { + "start": 14209.0, + "end": 14209.0, + "probability": 0.0 + }, + { + "start": 14209.0, + "end": 14209.0, + "probability": 0.0 + }, + { + "start": 14209.0, + "end": 14209.0, + "probability": 0.0 + }, + { + "start": 14209.0, + "end": 14209.0, + "probability": 0.0 + }, + { + "start": 14209.0, + "end": 14209.0, + "probability": 0.0 + }, + { + "start": 14209.0, + "end": 14209.0, + "probability": 0.0 + }, + { + "start": 14209.0, + "end": 14209.0, + "probability": 0.0 + }, + { + "start": 14209.0, + "end": 14209.0, + "probability": 0.0 + }, + { + "start": 14209.0, + "end": 14209.0, + "probability": 0.0 + }, + { + "start": 14209.0, + "end": 14209.0, + "probability": 0.0 + }, + { + "start": 14209.0, + "end": 14209.0, + "probability": 0.0 + }, + { + "start": 14209.0, + "end": 14209.0, + "probability": 0.0 + }, + { + "start": 14209.0, + "end": 14209.0, + "probability": 0.0 + }, + { + "start": 14209.0, + "end": 14209.0, + "probability": 0.0 + }, + { + "start": 14209.0, + "end": 14209.0, + "probability": 0.0 + }, + { + "start": 14209.0, + "end": 14209.0, + "probability": 0.0 + }, + { + "start": 14209.0, + "end": 14209.0, + "probability": 0.0 + }, + { + "start": 14209.0, + "end": 14209.0, + "probability": 0.0 + }, + { + "start": 14209.0, + "end": 14209.0, + "probability": 0.0 + }, + { + "start": 14209.0, + "end": 14209.0, + "probability": 0.0 + }, + { + "start": 14209.0, + "end": 14209.0, + "probability": 0.0 + }, + { + "start": 14209.0, + "end": 14209.0, + "probability": 0.0 + }, + { + "start": 14209.0, + "end": 14209.0, + "probability": 0.0 + }, + { + "start": 14209.0, + "end": 14209.0, + "probability": 0.0 + }, + { + "start": 14209.0, + "end": 14209.0, + "probability": 0.0 + }, + { + "start": 14209.0, + "end": 14209.0, + "probability": 0.0 + }, + { + "start": 14209.0, + "end": 14209.0, + "probability": 0.0 + }, + { + "start": 14209.0, + "end": 14209.0, + "probability": 0.0 + }, + { + "start": 14209.0, + "end": 14209.0, + "probability": 0.0 + }, + { + "start": 14209.0, + "end": 14209.0, + "probability": 0.0 + }, + { + "start": 14209.2, + "end": 14209.66, + "probability": 0.3281 + }, + { + "start": 14209.66, + "end": 14214.1, + "probability": 0.8395 + }, + { + "start": 14214.56, + "end": 14218.54, + "probability": 0.867 + }, + { + "start": 14219.06, + "end": 14224.88, + "probability": 0.973 + }, + { + "start": 14224.98, + "end": 14227.58, + "probability": 0.0628 + }, + { + "start": 14230.24, + "end": 14230.4, + "probability": 0.0431 + }, + { + "start": 14230.4, + "end": 14231.02, + "probability": 0.1939 + }, + { + "start": 14231.32, + "end": 14236.62, + "probability": 0.7869 + }, + { + "start": 14236.72, + "end": 14239.54, + "probability": 0.9959 + }, + { + "start": 14239.96, + "end": 14242.92, + "probability": 0.8023 + }, + { + "start": 14243.04, + "end": 14244.22, + "probability": 0.9366 + }, + { + "start": 14244.5, + "end": 14246.1, + "probability": 0.8927 + }, + { + "start": 14246.86, + "end": 14249.6, + "probability": 0.9506 + }, + { + "start": 14250.22, + "end": 14253.08, + "probability": 0.9052 + }, + { + "start": 14253.24, + "end": 14257.48, + "probability": 0.2785 + }, + { + "start": 14257.48, + "end": 14257.48, + "probability": 0.0966 + }, + { + "start": 14257.48, + "end": 14259.44, + "probability": 0.1419 + }, + { + "start": 14259.44, + "end": 14259.44, + "probability": 0.0693 + }, + { + "start": 14259.44, + "end": 14261.74, + "probability": 0.0886 + }, + { + "start": 14261.92, + "end": 14262.9, + "probability": 0.2922 + }, + { + "start": 14264.06, + "end": 14266.12, + "probability": 0.09 + }, + { + "start": 14266.74, + "end": 14269.1, + "probability": 0.5491 + }, + { + "start": 14273.32, + "end": 14277.66, + "probability": 0.1855 + }, + { + "start": 14277.74, + "end": 14277.74, + "probability": 0.0134 + }, + { + "start": 14282.4, + "end": 14284.16, + "probability": 0.0002 + }, + { + "start": 14298.0, + "end": 14298.78, + "probability": 0.2106 + }, + { + "start": 14299.0, + "end": 14302.8, + "probability": 0.1321 + }, + { + "start": 14303.0, + "end": 14304.16, + "probability": 0.1811 + }, + { + "start": 14304.82, + "end": 14307.58, + "probability": 0.2848 + }, + { + "start": 14338.0, + "end": 14338.0, + "probability": 0.0 + }, + { + "start": 14338.0, + "end": 14338.0, + "probability": 0.0 + }, + { + "start": 14338.0, + "end": 14338.0, + "probability": 0.0 + }, + { + "start": 14338.0, + "end": 14338.0, + "probability": 0.0 + }, + { + "start": 14338.0, + "end": 14338.0, + "probability": 0.0 + }, + { + "start": 14338.0, + "end": 14338.0, + "probability": 0.0 + }, + { + "start": 14338.0, + "end": 14338.0, + "probability": 0.0 + }, + { + "start": 14338.0, + "end": 14338.0, + "probability": 0.0 + }, + { + "start": 14338.0, + "end": 14338.0, + "probability": 0.0 + }, + { + "start": 14338.0, + "end": 14338.0, + "probability": 0.0 + }, + { + "start": 14338.0, + "end": 14338.0, + "probability": 0.0 + }, + { + "start": 14338.0, + "end": 14338.0, + "probability": 0.0 + }, + { + "start": 14338.0, + "end": 14338.0, + "probability": 0.0 + }, + { + "start": 14338.0, + "end": 14338.0, + "probability": 0.0 + }, + { + "start": 14338.0, + "end": 14338.0, + "probability": 0.0 + }, + { + "start": 14338.0, + "end": 14338.0, + "probability": 0.0 + }, + { + "start": 14338.0, + "end": 14338.0, + "probability": 0.0 + }, + { + "start": 14338.0, + "end": 14338.0, + "probability": 0.0 + }, + { + "start": 14338.0, + "end": 14338.0, + "probability": 0.0 + }, + { + "start": 14338.46, + "end": 14340.26, + "probability": 0.0078 + }, + { + "start": 14340.38, + "end": 14341.44, + "probability": 0.1478 + }, + { + "start": 14342.63, + "end": 14345.2, + "probability": 0.1235 + }, + { + "start": 14345.72, + "end": 14346.98, + "probability": 0.5317 + }, + { + "start": 14351.68, + "end": 14356.72, + "probability": 0.0799 + }, + { + "start": 14359.62, + "end": 14361.58, + "probability": 0.012 + }, + { + "start": 14486.0, + "end": 14486.0, + "probability": 0.0 + }, + { + "start": 14486.0, + "end": 14486.0, + "probability": 0.0 + }, + { + "start": 14486.0, + "end": 14486.0, + "probability": 0.0 + }, + { + "start": 14486.0, + "end": 14486.0, + "probability": 0.0 + }, + { + "start": 14486.0, + "end": 14486.0, + "probability": 0.0 + }, + { + "start": 14486.0, + "end": 14486.0, + "probability": 0.0 + }, + { + "start": 14486.0, + "end": 14486.0, + "probability": 0.0 + }, + { + "start": 14486.0, + "end": 14486.0, + "probability": 0.0 + }, + { + "start": 14486.0, + "end": 14486.0, + "probability": 0.0 + }, + { + "start": 14486.0, + "end": 14486.0, + "probability": 0.0 + }, + { + "start": 14486.0, + "end": 14486.0, + "probability": 0.0 + }, + { + "start": 14486.0, + "end": 14486.0, + "probability": 0.0 + }, + { + "start": 14486.0, + "end": 14486.0, + "probability": 0.0 + }, + { + "start": 14486.0, + "end": 14486.0, + "probability": 0.0 + }, + { + "start": 14486.0, + "end": 14486.0, + "probability": 0.0 + }, + { + "start": 14486.0, + "end": 14486.0, + "probability": 0.0 + }, + { + "start": 14486.0, + "end": 14486.0, + "probability": 0.0 + }, + { + "start": 14486.0, + "end": 14486.0, + "probability": 0.0 + }, + { + "start": 14486.0, + "end": 14486.0, + "probability": 0.0 + }, + { + "start": 14486.0, + "end": 14486.0, + "probability": 0.0 + }, + { + "start": 14486.0, + "end": 14486.0, + "probability": 0.0 + }, + { + "start": 14486.0, + "end": 14486.0, + "probability": 0.0 + }, + { + "start": 14486.0, + "end": 14486.0, + "probability": 0.0 + }, + { + "start": 14486.0, + "end": 14486.0, + "probability": 0.0 + }, + { + "start": 14486.0, + "end": 14486.0, + "probability": 0.0 + }, + { + "start": 14486.0, + "end": 14486.0, + "probability": 0.0 + }, + { + "start": 14486.0, + "end": 14486.0, + "probability": 0.0 + }, + { + "start": 14486.0, + "end": 14486.0, + "probability": 0.0 + }, + { + "start": 14486.0, + "end": 14486.0, + "probability": 0.0 + }, + { + "start": 14486.0, + "end": 14486.0, + "probability": 0.0 + }, + { + "start": 14486.0, + "end": 14486.0, + "probability": 0.0 + }, + { + "start": 14486.0, + "end": 14486.0, + "probability": 0.0 + }, + { + "start": 14486.0, + "end": 14486.0, + "probability": 0.0 + }, + { + "start": 14486.0, + "end": 14486.0, + "probability": 0.0 + }, + { + "start": 14486.0, + "end": 14486.0, + "probability": 0.0 + }, + { + "start": 14486.0, + "end": 14486.0, + "probability": 0.0 + }, + { + "start": 14486.0, + "end": 14486.0, + "probability": 0.0 + }, + { + "start": 14486.0, + "end": 14486.0, + "probability": 0.0 + }, + { + "start": 14486.0, + "end": 14486.0, + "probability": 0.0 + }, + { + "start": 14486.0, + "end": 14486.0, + "probability": 0.0 + }, + { + "start": 14486.0, + "end": 14486.0, + "probability": 0.0 + }, + { + "start": 14486.0, + "end": 14486.0, + "probability": 0.0 + }, + { + "start": 14486.0, + "end": 14486.0, + "probability": 0.0 + }, + { + "start": 14486.0, + "end": 14486.0, + "probability": 0.0 + }, + { + "start": 14486.0, + "end": 14486.0, + "probability": 0.0 + }, + { + "start": 14486.0, + "end": 14486.0, + "probability": 0.0 + }, + { + "start": 14486.0, + "end": 14486.0, + "probability": 0.0 + }, + { + "start": 14486.0, + "end": 14486.0, + "probability": 0.0 + }, + { + "start": 14486.0, + "end": 14486.0, + "probability": 0.0 + }, + { + "start": 14486.0, + "end": 14486.0, + "probability": 0.0 + }, + { + "start": 14486.0, + "end": 14486.0, + "probability": 0.0 + }, + { + "start": 14486.0, + "end": 14486.0, + "probability": 0.0 + }, + { + "start": 14486.0, + "end": 14486.0, + "probability": 0.0 + }, + { + "start": 14486.0, + "end": 14486.0, + "probability": 0.0 + }, + { + "start": 14486.0, + "end": 14486.0, + "probability": 0.0 + }, + { + "start": 14489.1, + "end": 14490.08, + "probability": 0.7636 + }, + { + "start": 14492.09, + "end": 14493.92, + "probability": 0.0807 + }, + { + "start": 14494.36, + "end": 14494.36, + "probability": 0.0653 + }, + { + "start": 14494.36, + "end": 14496.34, + "probability": 0.0286 + }, + { + "start": 14496.68, + "end": 14499.2, + "probability": 0.3883 + }, + { + "start": 14500.68, + "end": 14501.28, + "probability": 0.9351 + }, + { + "start": 14616.0, + "end": 14616.0, + "probability": 0.0 + }, + { + "start": 14616.0, + "end": 14616.0, + "probability": 0.0 + }, + { + "start": 14616.0, + "end": 14616.0, + "probability": 0.0 + }, + { + "start": 14616.0, + "end": 14616.0, + "probability": 0.0 + }, + { + "start": 14616.0, + "end": 14616.0, + "probability": 0.0 + }, + { + "start": 14616.0, + "end": 14616.0, + "probability": 0.0 + }, + { + "start": 14616.0, + "end": 14616.0, + "probability": 0.0 + }, + { + "start": 14616.0, + "end": 14616.0, + "probability": 0.0 + }, + { + "start": 14616.0, + "end": 14616.0, + "probability": 0.0 + }, + { + "start": 14616.0, + "end": 14616.0, + "probability": 0.0 + }, + { + "start": 14616.0, + "end": 14616.0, + "probability": 0.0 + }, + { + "start": 14616.0, + "end": 14616.0, + "probability": 0.0 + }, + { + "start": 14616.0, + "end": 14616.0, + "probability": 0.0 + }, + { + "start": 14616.0, + "end": 14616.0, + "probability": 0.0 + }, + { + "start": 14616.0, + "end": 14616.0, + "probability": 0.0 + }, + { + "start": 14616.0, + "end": 14616.0, + "probability": 0.0 + }, + { + "start": 14616.0, + "end": 14616.0, + "probability": 0.0 + }, + { + "start": 14616.0, + "end": 14616.0, + "probability": 0.0 + }, + { + "start": 14616.0, + "end": 14616.0, + "probability": 0.0 + }, + { + "start": 14616.0, + "end": 14616.0, + "probability": 0.0 + }, + { + "start": 14616.0, + "end": 14616.0, + "probability": 0.0 + }, + { + "start": 14616.0, + "end": 14616.0, + "probability": 0.0 + }, + { + "start": 14616.0, + "end": 14616.0, + "probability": 0.0 + }, + { + "start": 14616.0, + "end": 14616.0, + "probability": 0.0 + }, + { + "start": 14616.0, + "end": 14616.0, + "probability": 0.0 + }, + { + "start": 14616.38, + "end": 14619.77, + "probability": 0.9578 + }, + { + "start": 14621.97, + "end": 14623.8, + "probability": 0.6711 + }, + { + "start": 14623.9, + "end": 14624.5, + "probability": 0.4476 + }, + { + "start": 14624.96, + "end": 14629.54, + "probability": 0.5067 + }, + { + "start": 14630.61, + "end": 14631.34, + "probability": 0.1501 + }, + { + "start": 14631.6, + "end": 14631.9, + "probability": 0.7848 + }, + { + "start": 14633.3, + "end": 14638.18, + "probability": 0.8836 + }, + { + "start": 14638.6, + "end": 14642.92, + "probability": 0.9043 + }, + { + "start": 14643.44, + "end": 14646.6, + "probability": 0.9429 + }, + { + "start": 14647.32, + "end": 14651.3, + "probability": 0.8027 + }, + { + "start": 14651.64, + "end": 14654.42, + "probability": 0.5513 + }, + { + "start": 14654.5, + "end": 14655.54, + "probability": 0.845 + }, + { + "start": 14655.56, + "end": 14657.91, + "probability": 0.9954 + }, + { + "start": 14658.3, + "end": 14662.66, + "probability": 0.9802 + }, + { + "start": 14662.8, + "end": 14664.12, + "probability": 0.8508 + }, + { + "start": 14664.24, + "end": 14666.32, + "probability": 0.674 + }, + { + "start": 14666.44, + "end": 14667.1, + "probability": 0.8337 + }, + { + "start": 14667.34, + "end": 14668.0, + "probability": 0.7303 + }, + { + "start": 14668.08, + "end": 14671.54, + "probability": 0.9487 + }, + { + "start": 14671.54, + "end": 14675.58, + "probability": 0.9634 + }, + { + "start": 14675.82, + "end": 14676.54, + "probability": 0.2813 + }, + { + "start": 14676.54, + "end": 14678.64, + "probability": 0.9473 + }, + { + "start": 14685.54, + "end": 14686.88, + "probability": 0.5746 + }, + { + "start": 14686.96, + "end": 14691.02, + "probability": 0.6171 + }, + { + "start": 14691.9, + "end": 14696.02, + "probability": 0.9767 + }, + { + "start": 14697.16, + "end": 14697.64, + "probability": 0.2587 + }, + { + "start": 14698.48, + "end": 14700.08, + "probability": 0.2531 + }, + { + "start": 14715.66, + "end": 14716.64, + "probability": 0.0911 + }, + { + "start": 14716.66, + "end": 14717.44, + "probability": 0.4321 + }, + { + "start": 14717.52, + "end": 14718.52, + "probability": 0.539 + }, + { + "start": 14718.72, + "end": 14724.48, + "probability": 0.9482 + }, + { + "start": 14727.14, + "end": 14729.58, + "probability": 0.8142 + }, + { + "start": 14730.42, + "end": 14732.55, + "probability": 0.9565 + }, + { + "start": 14733.96, + "end": 14736.68, + "probability": 0.9771 + }, + { + "start": 14737.26, + "end": 14740.56, + "probability": 0.7308 + }, + { + "start": 14740.88, + "end": 14743.28, + "probability": 0.9338 + }, + { + "start": 14743.42, + "end": 14744.62, + "probability": 0.9598 + }, + { + "start": 14745.12, + "end": 14746.98, + "probability": 0.9048 + }, + { + "start": 14747.06, + "end": 14750.02, + "probability": 0.9992 + }, + { + "start": 14750.24, + "end": 14753.52, + "probability": 0.9815 + }, + { + "start": 14753.9, + "end": 14755.14, + "probability": 0.9883 + }, + { + "start": 14755.28, + "end": 14755.82, + "probability": 0.885 + }, + { + "start": 14755.92, + "end": 14757.6, + "probability": 0.7919 + }, + { + "start": 14758.1, + "end": 14760.78, + "probability": 0.6227 + }, + { + "start": 14761.38, + "end": 14762.8, + "probability": 0.8788 + }, + { + "start": 14763.72, + "end": 14767.7, + "probability": 0.9843 + }, + { + "start": 14767.7, + "end": 14770.52, + "probability": 0.9418 + }, + { + "start": 14770.54, + "end": 14772.06, + "probability": 0.1982 + }, + { + "start": 14772.2, + "end": 14774.88, + "probability": 0.6289 + }, + { + "start": 14776.34, + "end": 14777.22, + "probability": 0.7071 + }, + { + "start": 14778.4, + "end": 14780.28, + "probability": 0.1699 + }, + { + "start": 14792.46, + "end": 14792.56, + "probability": 0.0008 + }, + { + "start": 14797.24, + "end": 14802.14, + "probability": 0.9858 + }, + { + "start": 14802.32, + "end": 14802.8, + "probability": 0.597 + }, + { + "start": 14808.3, + "end": 14814.64, + "probability": 0.5185 + }, + { + "start": 14814.64, + "end": 14819.28, + "probability": 0.0484 + }, + { + "start": 14822.32, + "end": 14824.0, + "probability": 0.1619 + }, + { + "start": 14824.56, + "end": 14824.7, + "probability": 0.9927 + }, + { + "start": 14826.9, + "end": 14832.77, + "probability": 0.1032 + }, + { + "start": 14832.77, + "end": 14835.67, + "probability": 0.1055 + }, + { + "start": 14836.07, + "end": 14837.05, + "probability": 0.0227 + }, + { + "start": 14841.17, + "end": 14842.45, + "probability": 0.2179 + }, + { + "start": 14845.93, + "end": 14846.29, + "probability": 0.1283 + }, + { + "start": 14848.11, + "end": 14849.85, + "probability": 0.0745 + }, + { + "start": 14850.11, + "end": 14856.85, + "probability": 0.0858 + }, + { + "start": 14856.91, + "end": 14858.57, + "probability": 0.1294 + }, + { + "start": 14858.57, + "end": 14860.79, + "probability": 0.1443 + }, + { + "start": 14861.43, + "end": 14863.61, + "probability": 0.1952 + }, + { + "start": 14863.61, + "end": 14863.97, + "probability": 0.0089 + }, + { + "start": 14864.0, + "end": 14864.0, + "probability": 0.0 + }, + { + "start": 14864.0, + "end": 14864.0, + "probability": 0.0 + }, + { + "start": 14864.0, + "end": 14864.0, + "probability": 0.0 + }, + { + "start": 14864.0, + "end": 14864.0, + "probability": 0.0 + }, + { + "start": 14864.0, + "end": 14864.0, + "probability": 0.0 + }, + { + "start": 14864.0, + "end": 14864.0, + "probability": 0.0 + }, + { + "start": 14864.0, + "end": 14864.0, + "probability": 0.0 + }, + { + "start": 14864.0, + "end": 14864.0, + "probability": 0.0 + }, + { + "start": 14864.0, + "end": 14864.0, + "probability": 0.0 + }, + { + "start": 14864.0, + "end": 14864.0, + "probability": 0.0 + }, + { + "start": 14864.0, + "end": 14864.0, + "probability": 0.0 + }, + { + "start": 14864.0, + "end": 14864.0, + "probability": 0.0 + }, + { + "start": 14864.0, + "end": 14864.0, + "probability": 0.0 + }, + { + "start": 14864.0, + "end": 14864.0, + "probability": 0.0 + }, + { + "start": 14864.0, + "end": 14864.0, + "probability": 0.0 + }, + { + "start": 14864.0, + "end": 14864.0, + "probability": 0.0 + }, + { + "start": 14864.0, + "end": 14864.0, + "probability": 0.0 + }, + { + "start": 14864.0, + "end": 14864.0, + "probability": 0.0 + }, + { + "start": 14864.1, + "end": 14864.59, + "probability": 0.4988 + }, + { + "start": 14869.54, + "end": 14873.24, + "probability": 0.9599 + }, + { + "start": 14873.24, + "end": 14875.2, + "probability": 0.9672 + }, + { + "start": 14880.4, + "end": 14883.62, + "probability": 0.2156 + }, + { + "start": 14883.74, + "end": 14884.52, + "probability": 0.683 + }, + { + "start": 14884.64, + "end": 14887.16, + "probability": 0.7429 + }, + { + "start": 14888.64, + "end": 14888.64, + "probability": 0.0392 + }, + { + "start": 14888.64, + "end": 14888.64, + "probability": 0.0178 + }, + { + "start": 14888.64, + "end": 14888.76, + "probability": 0.0475 + }, + { + "start": 14888.76, + "end": 14889.67, + "probability": 0.4989 + }, + { + "start": 14891.02, + "end": 14891.62, + "probability": 0.3892 + }, + { + "start": 14891.74, + "end": 14896.0, + "probability": 0.7171 + }, + { + "start": 14896.5, + "end": 14898.7, + "probability": 0.7502 + }, + { + "start": 14899.28, + "end": 14899.7, + "probability": 0.6754 + }, + { + "start": 14900.22, + "end": 14902.5, + "probability": 0.2754 + }, + { + "start": 14902.6, + "end": 14907.46, + "probability": 0.8631 + }, + { + "start": 14909.4, + "end": 14911.13, + "probability": 0.9526 + }, + { + "start": 14912.02, + "end": 14915.74, + "probability": 0.9041 + }, + { + "start": 14916.7, + "end": 14917.12, + "probability": 0.7751 + }, + { + "start": 14925.47, + "end": 14930.02, + "probability": 0.8857 + }, + { + "start": 14934.68, + "end": 14938.06, + "probability": 0.7194 + }, + { + "start": 14939.06, + "end": 14945.66, + "probability": 0.9882 + }, + { + "start": 14947.06, + "end": 14948.16, + "probability": 0.9611 + }, + { + "start": 14948.5, + "end": 14949.26, + "probability": 0.8069 + }, + { + "start": 14949.44, + "end": 14953.74, + "probability": 0.9852 + }, + { + "start": 14954.08, + "end": 14954.72, + "probability": 0.7362 + }, + { + "start": 14956.06, + "end": 14956.36, + "probability": 0.782 + }, + { + "start": 14958.44, + "end": 14961.72, + "probability": 0.9688 + }, + { + "start": 14961.9, + "end": 14963.24, + "probability": 0.9187 + }, + { + "start": 14963.64, + "end": 14973.38, + "probability": 0.9871 + }, + { + "start": 14973.38, + "end": 14978.62, + "probability": 0.9154 + }, + { + "start": 14979.76, + "end": 14984.68, + "probability": 0.9983 + }, + { + "start": 14984.68, + "end": 14992.72, + "probability": 0.9982 + }, + { + "start": 14992.98, + "end": 14993.72, + "probability": 0.5421 + }, + { + "start": 14994.42, + "end": 14999.24, + "probability": 0.9449 + }, + { + "start": 14999.84, + "end": 15003.36, + "probability": 0.9925 + }, + { + "start": 15004.1, + "end": 15008.68, + "probability": 0.9467 + }, + { + "start": 15009.28, + "end": 15014.68, + "probability": 0.915 + }, + { + "start": 15015.26, + "end": 15021.3, + "probability": 0.9612 + }, + { + "start": 15021.92, + "end": 15022.7, + "probability": 0.6958 + }, + { + "start": 15023.44, + "end": 15028.08, + "probability": 0.9373 + }, + { + "start": 15028.72, + "end": 15032.68, + "probability": 0.7433 + }, + { + "start": 15032.92, + "end": 15035.52, + "probability": 0.9154 + }, + { + "start": 15036.04, + "end": 15038.66, + "probability": 0.9784 + }, + { + "start": 15039.2, + "end": 15044.54, + "probability": 0.8713 + }, + { + "start": 15044.92, + "end": 15045.86, + "probability": 0.8856 + }, + { + "start": 15046.06, + "end": 15046.56, + "probability": 0.8961 + }, + { + "start": 15047.64, + "end": 15050.84, + "probability": 0.9891 + }, + { + "start": 15050.94, + "end": 15052.0, + "probability": 0.9938 + }, + { + "start": 15052.06, + "end": 15053.02, + "probability": 0.8496 + }, + { + "start": 15053.38, + "end": 15054.38, + "probability": 0.6923 + }, + { + "start": 15056.3, + "end": 15058.54, + "probability": 0.8231 + }, + { + "start": 15059.06, + "end": 15060.46, + "probability": 0.4273 + }, + { + "start": 15061.16, + "end": 15069.0, + "probability": 0.9578 + }, + { + "start": 15069.44, + "end": 15070.34, + "probability": 0.7722 + }, + { + "start": 15071.12, + "end": 15075.9, + "probability": 0.961 + }, + { + "start": 15076.48, + "end": 15077.32, + "probability": 0.8653 + }, + { + "start": 15078.18, + "end": 15084.52, + "probability": 0.9844 + }, + { + "start": 15084.52, + "end": 15091.04, + "probability": 0.9954 + }, + { + "start": 15091.64, + "end": 15094.94, + "probability": 0.9937 + }, + { + "start": 15095.62, + "end": 15097.96, + "probability": 0.9677 + }, + { + "start": 15099.08, + "end": 15101.02, + "probability": 0.6807 + }, + { + "start": 15103.42, + "end": 15107.38, + "probability": 0.2756 + }, + { + "start": 15107.86, + "end": 15112.14, + "probability": 0.9558 + }, + { + "start": 15113.56, + "end": 15114.48, + "probability": 0.4344 + }, + { + "start": 15115.26, + "end": 15117.6, + "probability": 0.8931 + }, + { + "start": 15118.14, + "end": 15120.88, + "probability": 0.9758 + }, + { + "start": 15121.12, + "end": 15129.06, + "probability": 0.877 + }, + { + "start": 15129.06, + "end": 15138.16, + "probability": 0.8143 + }, + { + "start": 15139.3, + "end": 15140.64, + "probability": 0.4926 + }, + { + "start": 15141.32, + "end": 15146.52, + "probability": 0.9654 + }, + { + "start": 15146.88, + "end": 15149.34, + "probability": 0.7224 + }, + { + "start": 15150.0, + "end": 15151.2, + "probability": 0.7145 + }, + { + "start": 15151.78, + "end": 15154.42, + "probability": 0.9434 + }, + { + "start": 15154.84, + "end": 15156.62, + "probability": 0.9438 + }, + { + "start": 15157.48, + "end": 15159.52, + "probability": 0.9873 + }, + { + "start": 15160.3, + "end": 15163.14, + "probability": 0.9749 + }, + { + "start": 15163.76, + "end": 15171.88, + "probability": 0.9875 + }, + { + "start": 15172.96, + "end": 15177.48, + "probability": 0.7554 + }, + { + "start": 15177.82, + "end": 15182.2, + "probability": 0.8126 + }, + { + "start": 15182.64, + "end": 15184.7, + "probability": 0.9215 + }, + { + "start": 15185.14, + "end": 15189.16, + "probability": 0.8605 + }, + { + "start": 15190.08, + "end": 15192.06, + "probability": 0.9784 + }, + { + "start": 15192.94, + "end": 15196.28, + "probability": 0.9768 + }, + { + "start": 15196.88, + "end": 15201.04, + "probability": 0.8826 + }, + { + "start": 15201.72, + "end": 15204.4, + "probability": 0.8916 + }, + { + "start": 15205.04, + "end": 15212.62, + "probability": 0.9906 + }, + { + "start": 15213.1, + "end": 15215.38, + "probability": 0.9598 + }, + { + "start": 15215.48, + "end": 15220.24, + "probability": 0.9688 + }, + { + "start": 15220.72, + "end": 15223.3, + "probability": 0.9874 + }, + { + "start": 15224.04, + "end": 15226.06, + "probability": 0.8344 + }, + { + "start": 15226.36, + "end": 15231.34, + "probability": 0.9632 + }, + { + "start": 15231.86, + "end": 15234.58, + "probability": 0.9723 + }, + { + "start": 15235.06, + "end": 15238.86, + "probability": 0.9868 + }, + { + "start": 15238.9, + "end": 15244.12, + "probability": 0.9827 + }, + { + "start": 15244.64, + "end": 15248.56, + "probability": 0.7194 + }, + { + "start": 15248.94, + "end": 15254.96, + "probability": 0.9672 + }, + { + "start": 15254.96, + "end": 15260.22, + "probability": 0.8946 + }, + { + "start": 15260.44, + "end": 15260.72, + "probability": 0.7693 + }, + { + "start": 15262.12, + "end": 15262.9, + "probability": 0.6895 + }, + { + "start": 15263.74, + "end": 15266.54, + "probability": 0.3169 + }, + { + "start": 15267.28, + "end": 15269.1, + "probability": 0.6972 + }, + { + "start": 15270.2, + "end": 15273.04, + "probability": 0.9961 + }, + { + "start": 15278.9, + "end": 15278.9, + "probability": 0.1769 + }, + { + "start": 15278.9, + "end": 15278.94, + "probability": 0.1286 + }, + { + "start": 15278.94, + "end": 15278.94, + "probability": 0.0459 + }, + { + "start": 15278.94, + "end": 15278.94, + "probability": 0.1276 + }, + { + "start": 15278.94, + "end": 15278.94, + "probability": 0.0096 + }, + { + "start": 15278.94, + "end": 15278.98, + "probability": 0.0619 + }, + { + "start": 15302.36, + "end": 15306.82, + "probability": 0.9976 + }, + { + "start": 15306.82, + "end": 15309.86, + "probability": 0.9581 + }, + { + "start": 15310.76, + "end": 15313.64, + "probability": 0.8041 + }, + { + "start": 15314.08, + "end": 15314.4, + "probability": 0.227 + }, + { + "start": 15314.42, + "end": 15318.52, + "probability": 0.9282 + }, + { + "start": 15318.52, + "end": 15322.26, + "probability": 0.9979 + }, + { + "start": 15322.74, + "end": 15326.6, + "probability": 0.975 + }, + { + "start": 15326.74, + "end": 15330.24, + "probability": 0.9936 + }, + { + "start": 15330.24, + "end": 15333.94, + "probability": 0.9978 + }, + { + "start": 15334.5, + "end": 15337.16, + "probability": 0.9981 + }, + { + "start": 15337.48, + "end": 15340.98, + "probability": 0.9982 + }, + { + "start": 15341.42, + "end": 15344.34, + "probability": 0.9645 + }, + { + "start": 15344.8, + "end": 15346.24, + "probability": 0.7473 + }, + { + "start": 15347.56, + "end": 15348.16, + "probability": 0.9002 + }, + { + "start": 15348.34, + "end": 15350.86, + "probability": 0.9891 + }, + { + "start": 15350.86, + "end": 15354.12, + "probability": 0.9956 + }, + { + "start": 15354.6, + "end": 15357.28, + "probability": 0.9866 + }, + { + "start": 15357.96, + "end": 15362.26, + "probability": 0.9865 + }, + { + "start": 15362.6, + "end": 15365.56, + "probability": 0.999 + }, + { + "start": 15366.04, + "end": 15366.86, + "probability": 0.7369 + }, + { + "start": 15367.02, + "end": 15368.34, + "probability": 0.8953 + }, + { + "start": 15368.72, + "end": 15373.98, + "probability": 0.9936 + }, + { + "start": 15375.08, + "end": 15376.92, + "probability": 0.2713 + }, + { + "start": 15377.48, + "end": 15377.54, + "probability": 0.1007 + }, + { + "start": 15377.54, + "end": 15382.3, + "probability": 0.2808 + }, + { + "start": 15382.44, + "end": 15384.46, + "probability": 0.89 + }, + { + "start": 15385.38, + "end": 15390.34, + "probability": 0.9961 + }, + { + "start": 15390.72, + "end": 15394.84, + "probability": 0.9922 + }, + { + "start": 15394.9, + "end": 15394.9, + "probability": 0.0755 + }, + { + "start": 15394.9, + "end": 15400.66, + "probability": 0.5158 + }, + { + "start": 15401.32, + "end": 15401.9, + "probability": 0.8617 + }, + { + "start": 15401.98, + "end": 15402.76, + "probability": 0.711 + }, + { + "start": 15402.86, + "end": 15405.06, + "probability": 0.7944 + }, + { + "start": 15406.16, + "end": 15407.54, + "probability": 0.3127 + }, + { + "start": 15407.7, + "end": 15407.88, + "probability": 0.0594 + }, + { + "start": 15407.92, + "end": 15408.68, + "probability": 0.3727 + }, + { + "start": 15408.78, + "end": 15409.24, + "probability": 0.61 + }, + { + "start": 15409.26, + "end": 15411.2, + "probability": 0.1341 + }, + { + "start": 15411.82, + "end": 15414.1, + "probability": 0.7301 + }, + { + "start": 15414.1, + "end": 15414.44, + "probability": 0.3338 + }, + { + "start": 15414.46, + "end": 15420.6, + "probability": 0.9473 + }, + { + "start": 15422.04, + "end": 15425.68, + "probability": 0.8104 + }, + { + "start": 15425.68, + "end": 15426.8, + "probability": 0.9705 + }, + { + "start": 15426.92, + "end": 15428.54, + "probability": 0.9743 + }, + { + "start": 15429.5, + "end": 15432.5, + "probability": 0.9871 + }, + { + "start": 15432.66, + "end": 15434.11, + "probability": 0.9785 + }, + { + "start": 15434.48, + "end": 15436.1, + "probability": 0.5599 + }, + { + "start": 15436.2, + "end": 15438.21, + "probability": 0.9781 + }, + { + "start": 15438.46, + "end": 15441.14, + "probability": 0.1288 + }, + { + "start": 15442.46, + "end": 15442.82, + "probability": 0.1011 + }, + { + "start": 15442.82, + "end": 15446.36, + "probability": 0.2061 + }, + { + "start": 15446.86, + "end": 15450.06, + "probability": 0.1718 + }, + { + "start": 15451.5, + "end": 15451.6, + "probability": 0.0044 + }, + { + "start": 15453.09, + "end": 15454.4, + "probability": 0.1206 + }, + { + "start": 15454.56, + "end": 15457.42, + "probability": 0.1552 + }, + { + "start": 15457.42, + "end": 15459.78, + "probability": 0.269 + }, + { + "start": 15462.12, + "end": 15464.8, + "probability": 0.2954 + }, + { + "start": 15464.8, + "end": 15464.8, + "probability": 0.1346 + }, + { + "start": 15464.8, + "end": 15464.8, + "probability": 0.089 + }, + { + "start": 15464.8, + "end": 15464.8, + "probability": 0.0354 + }, + { + "start": 15464.8, + "end": 15465.6, + "probability": 0.1417 + }, + { + "start": 15466.88, + "end": 15468.62, + "probability": 0.0298 + }, + { + "start": 15468.62, + "end": 15469.24, + "probability": 0.2494 + }, + { + "start": 15469.28, + "end": 15469.56, + "probability": 0.1668 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.18, + "end": 15546.5, + "probability": 0.325 + }, + { + "start": 15546.5, + "end": 15547.92, + "probability": 0.3042 + }, + { + "start": 15547.92, + "end": 15550.3, + "probability": 0.9064 + }, + { + "start": 15550.76, + "end": 15551.1, + "probability": 0.508 + }, + { + "start": 15551.1, + "end": 15552.48, + "probability": 0.6106 + }, + { + "start": 15552.48, + "end": 15554.5, + "probability": 0.9706 + }, + { + "start": 15554.66, + "end": 15556.62, + "probability": 0.9878 + }, + { + "start": 15556.82, + "end": 15557.74, + "probability": 0.8787 + }, + { + "start": 15557.76, + "end": 15558.98, + "probability": 0.388 + }, + { + "start": 15559.03, + "end": 15561.1, + "probability": 0.3158 + }, + { + "start": 15561.62, + "end": 15566.22, + "probability": 0.9024 + }, + { + "start": 15566.64, + "end": 15569.46, + "probability": 0.9764 + }, + { + "start": 15569.72, + "end": 15571.24, + "probability": 0.9121 + }, + { + "start": 15571.4, + "end": 15573.08, + "probability": 0.9431 + }, + { + "start": 15573.14, + "end": 15576.28, + "probability": 0.9863 + }, + { + "start": 15576.62, + "end": 15579.16, + "probability": 0.751 + }, + { + "start": 15579.42, + "end": 15581.02, + "probability": 0.997 + }, + { + "start": 15581.2, + "end": 15582.84, + "probability": 0.8957 + }, + { + "start": 15583.14, + "end": 15586.6, + "probability": 0.939 + }, + { + "start": 15587.16, + "end": 15589.08, + "probability": 0.5438 + }, + { + "start": 15589.26, + "end": 15596.5, + "probability": 0.8683 + }, + { + "start": 15596.82, + "end": 15599.21, + "probability": 0.9919 + }, + { + "start": 15599.66, + "end": 15606.5, + "probability": 0.987 + }, + { + "start": 15606.5, + "end": 15612.46, + "probability": 0.9327 + }, + { + "start": 15612.86, + "end": 15617.36, + "probability": 0.993 + }, + { + "start": 15618.08, + "end": 15621.58, + "probability": 0.9957 + }, + { + "start": 15621.74, + "end": 15626.46, + "probability": 0.9698 + }, + { + "start": 15626.74, + "end": 15629.84, + "probability": 0.9889 + }, + { + "start": 15629.84, + "end": 15633.0, + "probability": 0.9971 + }, + { + "start": 15633.72, + "end": 15639.28, + "probability": 0.9905 + }, + { + "start": 15639.6, + "end": 15639.86, + "probability": 0.4064 + }, + { + "start": 15639.92, + "end": 15644.2, + "probability": 0.9958 + }, + { + "start": 15644.34, + "end": 15647.64, + "probability": 0.9941 + }, + { + "start": 15648.1, + "end": 15652.58, + "probability": 0.9933 + }, + { + "start": 15652.9, + "end": 15654.84, + "probability": 0.9128 + }, + { + "start": 15655.28, + "end": 15660.5, + "probability": 0.9919 + }, + { + "start": 15660.7, + "end": 15663.56, + "probability": 0.9925 + }, + { + "start": 15663.9, + "end": 15664.94, + "probability": 0.8753 + }, + { + "start": 15665.57, + "end": 15668.28, + "probability": 0.9359 + }, + { + "start": 15668.94, + "end": 15678.6, + "probability": 0.9742 + }, + { + "start": 15679.1, + "end": 15681.18, + "probability": 0.8378 + }, + { + "start": 15682.1, + "end": 15682.62, + "probability": 0.6851 + }, + { + "start": 15683.2, + "end": 15685.26, + "probability": 0.9329 + }, + { + "start": 15685.34, + "end": 15686.86, + "probability": 0.9712 + }, + { + "start": 15687.14, + "end": 15688.28, + "probability": 0.9888 + }, + { + "start": 15688.5, + "end": 15689.72, + "probability": 0.7703 + }, + { + "start": 15690.08, + "end": 15691.36, + "probability": 0.8944 + }, + { + "start": 15691.52, + "end": 15693.02, + "probability": 0.8717 + }, + { + "start": 15693.32, + "end": 15694.36, + "probability": 0.9512 + }, + { + "start": 15695.04, + "end": 15696.32, + "probability": 0.9709 + }, + { + "start": 15696.74, + "end": 15701.4, + "probability": 0.9892 + }, + { + "start": 15701.86, + "end": 15705.46, + "probability": 0.999 + }, + { + "start": 15705.98, + "end": 15710.18, + "probability": 0.9989 + }, + { + "start": 15710.48, + "end": 15713.12, + "probability": 0.9719 + }, + { + "start": 15713.56, + "end": 15717.42, + "probability": 0.9781 + }, + { + "start": 15717.42, + "end": 15722.02, + "probability": 0.9989 + }, + { + "start": 15723.06, + "end": 15725.3, + "probability": 0.6902 + }, + { + "start": 15725.62, + "end": 15727.38, + "probability": 0.9906 + }, + { + "start": 15727.68, + "end": 15731.1, + "probability": 0.9959 + }, + { + "start": 15731.46, + "end": 15737.46, + "probability": 0.9884 + }, + { + "start": 15737.6, + "end": 15738.98, + "probability": 0.6884 + }, + { + "start": 15739.4, + "end": 15740.18, + "probability": 0.7018 + }, + { + "start": 15740.24, + "end": 15742.44, + "probability": 0.9967 + }, + { + "start": 15742.78, + "end": 15745.44, + "probability": 0.9928 + }, + { + "start": 15745.96, + "end": 15747.0, + "probability": 0.5153 + }, + { + "start": 15747.32, + "end": 15751.64, + "probability": 0.7445 + }, + { + "start": 15751.92, + "end": 15753.02, + "probability": 0.8958 + }, + { + "start": 15753.12, + "end": 15754.16, + "probability": 0.9591 + }, + { + "start": 15754.68, + "end": 15757.24, + "probability": 0.9844 + }, + { + "start": 15758.12, + "end": 15759.16, + "probability": 0.9807 + }, + { + "start": 15759.82, + "end": 15763.24, + "probability": 0.9961 + }, + { + "start": 15763.4, + "end": 15764.2, + "probability": 0.938 + }, + { + "start": 15764.62, + "end": 15765.88, + "probability": 0.7941 + }, + { + "start": 15765.96, + "end": 15767.76, + "probability": 0.9902 + }, + { + "start": 15768.46, + "end": 15773.28, + "probability": 0.9918 + }, + { + "start": 15773.92, + "end": 15778.92, + "probability": 0.9907 + }, + { + "start": 15779.44, + "end": 15779.74, + "probability": 0.569 + }, + { + "start": 15780.22, + "end": 15781.52, + "probability": 0.9867 + }, + { + "start": 15781.84, + "end": 15783.12, + "probability": 0.908 + }, + { + "start": 15783.52, + "end": 15785.82, + "probability": 0.9868 + }, + { + "start": 15786.0, + "end": 15788.54, + "probability": 0.8743 + }, + { + "start": 15789.02, + "end": 15791.74, + "probability": 0.9822 + }, + { + "start": 15792.22, + "end": 15793.76, + "probability": 0.9674 + }, + { + "start": 15794.22, + "end": 15796.08, + "probability": 0.8041 + }, + { + "start": 15796.4, + "end": 15798.46, + "probability": 0.9937 + }, + { + "start": 15799.42, + "end": 15801.58, + "probability": 0.805 + }, + { + "start": 15802.12, + "end": 15803.62, + "probability": 0.8029 + }, + { + "start": 15804.48, + "end": 15811.14, + "probability": 0.9365 + }, + { + "start": 15811.58, + "end": 15813.36, + "probability": 0.999 + }, + { + "start": 15813.66, + "end": 15817.0, + "probability": 0.9966 + }, + { + "start": 15817.4, + "end": 15821.7, + "probability": 0.9902 + }, + { + "start": 15822.22, + "end": 15825.06, + "probability": 0.9847 + }, + { + "start": 15825.36, + "end": 15828.78, + "probability": 0.9575 + }, + { + "start": 15829.12, + "end": 15832.84, + "probability": 0.988 + }, + { + "start": 15834.08, + "end": 15837.66, + "probability": 0.9995 + }, + { + "start": 15838.04, + "end": 15842.04, + "probability": 0.9748 + }, + { + "start": 15842.18, + "end": 15846.14, + "probability": 0.9994 + }, + { + "start": 15846.14, + "end": 15850.86, + "probability": 0.9928 + }, + { + "start": 15851.16, + "end": 15852.92, + "probability": 0.9424 + }, + { + "start": 15853.0, + "end": 15854.31, + "probability": 0.9966 + }, + { + "start": 15854.8, + "end": 15856.54, + "probability": 0.9638 + }, + { + "start": 15857.0, + "end": 15860.16, + "probability": 0.8364 + }, + { + "start": 15860.54, + "end": 15864.64, + "probability": 0.9846 + }, + { + "start": 15864.96, + "end": 15868.28, + "probability": 0.9927 + }, + { + "start": 15868.72, + "end": 15872.74, + "probability": 0.9995 + }, + { + "start": 15873.26, + "end": 15878.26, + "probability": 0.9612 + }, + { + "start": 15879.0, + "end": 15887.18, + "probability": 0.9684 + }, + { + "start": 15887.56, + "end": 15889.66, + "probability": 0.9666 + }, + { + "start": 15889.68, + "end": 15890.6, + "probability": 0.7064 + }, + { + "start": 15890.66, + "end": 15894.52, + "probability": 0.9078 + }, + { + "start": 15894.7, + "end": 15896.48, + "probability": 0.9863 + }, + { + "start": 15896.76, + "end": 15897.2, + "probability": 0.7511 + }, + { + "start": 15899.04, + "end": 15900.18, + "probability": 0.6516 + }, + { + "start": 15900.26, + "end": 15901.84, + "probability": 0.7384 + }, + { + "start": 15901.98, + "end": 15904.34, + "probability": 0.9463 + }, + { + "start": 15905.18, + "end": 15905.78, + "probability": 0.3762 + }, + { + "start": 15905.78, + "end": 15905.82, + "probability": 0.5686 + }, + { + "start": 15905.82, + "end": 15907.34, + "probability": 0.8087 + }, + { + "start": 15907.9, + "end": 15909.14, + "probability": 0.6898 + }, + { + "start": 15913.04, + "end": 15917.62, + "probability": 0.8311 + }, + { + "start": 15917.98, + "end": 15919.54, + "probability": 0.8868 + }, + { + "start": 15919.76, + "end": 15920.22, + "probability": 0.4155 + }, + { + "start": 15920.8, + "end": 15921.0, + "probability": 0.2651 + }, + { + "start": 15921.0, + "end": 15921.9, + "probability": 0.3363 + }, + { + "start": 15922.74, + "end": 15930.0, + "probability": 0.8316 + }, + { + "start": 15930.78, + "end": 15932.18, + "probability": 0.7743 + }, + { + "start": 15933.02, + "end": 15934.1, + "probability": 0.6069 + }, + { + "start": 15943.92, + "end": 15944.78, + "probability": 0.1875 + }, + { + "start": 15945.4, + "end": 15948.8, + "probability": 0.7507 + }, + { + "start": 15952.06, + "end": 15954.28, + "probability": 0.8527 + }, + { + "start": 15954.3, + "end": 15961.42, + "probability": 0.9478 + }, + { + "start": 15962.58, + "end": 15970.04, + "probability": 0.8851 + }, + { + "start": 15970.96, + "end": 15973.18, + "probability": 0.9869 + }, + { + "start": 15973.84, + "end": 15980.36, + "probability": 0.9773 + }, + { + "start": 15980.88, + "end": 15985.26, + "probability": 0.9146 + }, + { + "start": 15985.66, + "end": 15995.0, + "probability": 0.9751 + }, + { + "start": 15995.64, + "end": 16001.56, + "probability": 0.9281 + }, + { + "start": 16001.76, + "end": 16007.92, + "probability": 0.9685 + }, + { + "start": 16007.92, + "end": 16013.82, + "probability": 0.9922 + }, + { + "start": 16014.38, + "end": 16018.66, + "probability": 0.9893 + }, + { + "start": 16019.06, + "end": 16020.6, + "probability": 0.7082 + }, + { + "start": 16021.1, + "end": 16023.98, + "probability": 0.6343 + }, + { + "start": 16024.34, + "end": 16027.34, + "probability": 0.7264 + }, + { + "start": 16027.78, + "end": 16032.48, + "probability": 0.8213 + }, + { + "start": 16032.74, + "end": 16034.14, + "probability": 0.8535 + }, + { + "start": 16034.58, + "end": 16039.46, + "probability": 0.9328 + }, + { + "start": 16039.58, + "end": 16040.12, + "probability": 0.6243 + }, + { + "start": 16040.18, + "end": 16041.16, + "probability": 0.6102 + }, + { + "start": 16041.36, + "end": 16044.06, + "probability": 0.8897 + }, + { + "start": 16044.8, + "end": 16046.22, + "probability": 0.2918 + }, + { + "start": 16047.32, + "end": 16052.62, + "probability": 0.9602 + }, + { + "start": 16053.12, + "end": 16053.86, + "probability": 0.7201 + }, + { + "start": 16054.44, + "end": 16059.24, + "probability": 0.5654 + }, + { + "start": 16059.24, + "end": 16061.9, + "probability": 0.5761 + }, + { + "start": 16062.06, + "end": 16063.3, + "probability": 0.767 + }, + { + "start": 16063.64, + "end": 16065.1, + "probability": 0.1662 + }, + { + "start": 16065.1, + "end": 16071.26, + "probability": 0.9414 + }, + { + "start": 16071.58, + "end": 16074.82, + "probability": 0.6145 + }, + { + "start": 16075.0, + "end": 16079.42, + "probability": 0.9827 + }, + { + "start": 16079.78, + "end": 16085.8, + "probability": 0.9723 + }, + { + "start": 16086.02, + "end": 16086.48, + "probability": 0.2968 + }, + { + "start": 16086.5, + "end": 16097.66, + "probability": 0.9649 + }, + { + "start": 16097.88, + "end": 16100.2, + "probability": 0.6089 + }, + { + "start": 16100.46, + "end": 16103.98, + "probability": 0.9759 + }, + { + "start": 16104.24, + "end": 16104.81, + "probability": 0.7563 + }, + { + "start": 16105.56, + "end": 16106.09, + "probability": 0.9409 + }, + { + "start": 16106.52, + "end": 16114.58, + "probability": 0.9738 + }, + { + "start": 16114.8, + "end": 16118.38, + "probability": 0.7154 + }, + { + "start": 16118.64, + "end": 16121.98, + "probability": 0.6836 + }, + { + "start": 16122.0, + "end": 16122.72, + "probability": 0.6134 + }, + { + "start": 16122.84, + "end": 16123.94, + "probability": 0.7093 + }, + { + "start": 16124.14, + "end": 16128.36, + "probability": 0.7455 + }, + { + "start": 16128.5, + "end": 16128.5, + "probability": 0.5317 + }, + { + "start": 16128.54, + "end": 16133.0, + "probability": 0.4987 + }, + { + "start": 16133.4, + "end": 16134.92, + "probability": 0.6999 + }, + { + "start": 16134.92, + "end": 16135.06, + "probability": 0.4688 + }, + { + "start": 16135.18, + "end": 16136.9, + "probability": 0.6853 + }, + { + "start": 16137.32, + "end": 16139.66, + "probability": 0.5855 + }, + { + "start": 16140.08, + "end": 16140.3, + "probability": 0.5096 + }, + { + "start": 16140.3, + "end": 16143.36, + "probability": 0.666 + }, + { + "start": 16143.46, + "end": 16143.94, + "probability": 0.7623 + }, + { + "start": 16144.88, + "end": 16145.64, + "probability": 0.8882 + }, + { + "start": 16145.72, + "end": 16150.17, + "probability": 0.8496 + }, + { + "start": 16151.26, + "end": 16154.16, + "probability": 0.5079 + }, + { + "start": 16154.36, + "end": 16154.88, + "probability": 0.2401 + }, + { + "start": 16155.48, + "end": 16157.06, + "probability": 0.4136 + }, + { + "start": 16157.12, + "end": 16158.42, + "probability": 0.5265 + }, + { + "start": 16158.82, + "end": 16160.36, + "probability": 0.1184 + }, + { + "start": 16160.76, + "end": 16163.98, + "probability": 0.8221 + }, + { + "start": 16164.92, + "end": 16170.6, + "probability": 0.8156 + }, + { + "start": 16172.36, + "end": 16174.02, + "probability": 0.5961 + }, + { + "start": 16177.38, + "end": 16178.58, + "probability": 0.2714 + }, + { + "start": 16179.64, + "end": 16183.21, + "probability": 0.1393 + }, + { + "start": 16186.75, + "end": 16187.1, + "probability": 0.2672 + }, + { + "start": 16187.78, + "end": 16188.74, + "probability": 0.0417 + }, + { + "start": 16188.74, + "end": 16190.44, + "probability": 0.2306 + }, + { + "start": 16191.26, + "end": 16193.54, + "probability": 0.4113 + }, + { + "start": 16194.58, + "end": 16198.06, + "probability": 0.97 + }, + { + "start": 16198.22, + "end": 16199.34, + "probability": 0.4931 + }, + { + "start": 16199.56, + "end": 16200.08, + "probability": 0.1342 + }, + { + "start": 16200.42, + "end": 16205.22, + "probability": 0.69 + }, + { + "start": 16205.32, + "end": 16205.94, + "probability": 0.2892 + }, + { + "start": 16205.96, + "end": 16207.76, + "probability": 0.6708 + }, + { + "start": 16208.2, + "end": 16208.8, + "probability": 0.8394 + }, + { + "start": 16208.88, + "end": 16210.22, + "probability": 0.6827 + }, + { + "start": 16210.34, + "end": 16212.06, + "probability": 0.8124 + }, + { + "start": 16212.14, + "end": 16217.02, + "probability": 0.517 + }, + { + "start": 16217.66, + "end": 16223.32, + "probability": 0.6744 + }, + { + "start": 16223.66, + "end": 16226.4, + "probability": 0.8849 + }, + { + "start": 16226.96, + "end": 16227.66, + "probability": 0.8461 + }, + { + "start": 16229.38, + "end": 16232.0, + "probability": 0.8784 + }, + { + "start": 16232.88, + "end": 16234.8, + "probability": 0.495 + }, + { + "start": 16234.8, + "end": 16239.33, + "probability": 0.6055 + }, + { + "start": 16240.8, + "end": 16244.78, + "probability": 0.9812 + }, + { + "start": 16245.98, + "end": 16248.4, + "probability": 0.6038 + }, + { + "start": 16249.46, + "end": 16250.86, + "probability": 0.9048 + }, + { + "start": 16251.0, + "end": 16254.24, + "probability": 0.7112 + }, + { + "start": 16254.24, + "end": 16256.76, + "probability": 0.901 + }, + { + "start": 16256.76, + "end": 16257.82, + "probability": 0.1492 + }, + { + "start": 16257.82, + "end": 16257.82, + "probability": 0.0759 + }, + { + "start": 16257.82, + "end": 16260.66, + "probability": 0.5146 + }, + { + "start": 16263.02, + "end": 16263.72, + "probability": 0.0542 + }, + { + "start": 16263.72, + "end": 16266.34, + "probability": 0.8136 + }, + { + "start": 16267.24, + "end": 16271.42, + "probability": 0.937 + }, + { + "start": 16272.12, + "end": 16272.46, + "probability": 0.5289 + }, + { + "start": 16273.3, + "end": 16279.74, + "probability": 0.8971 + }, + { + "start": 16280.84, + "end": 16284.66, + "probability": 0.9744 + }, + { + "start": 16285.1, + "end": 16290.68, + "probability": 0.0424 + }, + { + "start": 16290.84, + "end": 16290.84, + "probability": 0.0235 + }, + { + "start": 16290.84, + "end": 16290.84, + "probability": 0.0321 + }, + { + "start": 16290.84, + "end": 16290.84, + "probability": 0.034 + }, + { + "start": 16290.84, + "end": 16292.92, + "probability": 0.7258 + }, + { + "start": 16294.06, + "end": 16295.32, + "probability": 0.4596 + }, + { + "start": 16295.48, + "end": 16296.28, + "probability": 0.1089 + }, + { + "start": 16296.86, + "end": 16297.42, + "probability": 0.0963 + }, + { + "start": 16297.42, + "end": 16298.9, + "probability": 0.7232 + }, + { + "start": 16299.18, + "end": 16301.46, + "probability": 0.1871 + }, + { + "start": 16301.76, + "end": 16303.72, + "probability": 0.2967 + }, + { + "start": 16303.94, + "end": 16305.56, + "probability": 0.5247 + }, + { + "start": 16305.56, + "end": 16310.28, + "probability": 0.3438 + }, + { + "start": 16310.38, + "end": 16313.14, + "probability": 0.388 + }, + { + "start": 16314.28, + "end": 16315.64, + "probability": 0.2474 + }, + { + "start": 16315.74, + "end": 16316.04, + "probability": 0.4744 + }, + { + "start": 16316.04, + "end": 16318.86, + "probability": 0.0814 + }, + { + "start": 16319.82, + "end": 16320.74, + "probability": 0.0797 + }, + { + "start": 16323.24, + "end": 16325.66, + "probability": 0.0072 + }, + { + "start": 16325.66, + "end": 16329.72, + "probability": 0.0498 + }, + { + "start": 16330.68, + "end": 16334.12, + "probability": 0.0424 + }, + { + "start": 16334.96, + "end": 16336.22, + "probability": 0.0792 + }, + { + "start": 16336.22, + "end": 16337.78, + "probability": 0.1882 + }, + { + "start": 16337.78, + "end": 16338.58, + "probability": 0.1584 + }, + { + "start": 16338.78, + "end": 16339.7, + "probability": 0.219 + }, + { + "start": 16339.7, + "end": 16342.4, + "probability": 0.2145 + }, + { + "start": 16346.76, + "end": 16348.32, + "probability": 0.1731 + }, + { + "start": 16348.44, + "end": 16349.9, + "probability": 0.0301 + }, + { + "start": 16349.9, + "end": 16351.6, + "probability": 0.0258 + }, + { + "start": 16371.0, + "end": 16371.0, + "probability": 0.0 + }, + { + "start": 16371.0, + "end": 16371.0, + "probability": 0.0 + }, + { + "start": 16371.0, + "end": 16371.0, + "probability": 0.0 + }, + { + "start": 16371.0, + "end": 16371.0, + "probability": 0.0 + }, + { + "start": 16371.0, + "end": 16371.0, + "probability": 0.0 + }, + { + "start": 16371.0, + "end": 16371.0, + "probability": 0.0 + }, + { + "start": 16371.0, + "end": 16371.0, + "probability": 0.0 + }, + { + "start": 16371.0, + "end": 16371.0, + "probability": 0.0 + }, + { + "start": 16371.0, + "end": 16371.0, + "probability": 0.0 + }, + { + "start": 16373.92, + "end": 16374.02, + "probability": 0.0093 + }, + { + "start": 16374.66, + "end": 16374.78, + "probability": 0.0894 + }, + { + "start": 16377.1, + "end": 16382.34, + "probability": 0.2689 + }, + { + "start": 16382.82, + "end": 16386.56, + "probability": 0.1487 + }, + { + "start": 16386.92, + "end": 16389.94, + "probability": 0.2086 + }, + { + "start": 16390.6, + "end": 16394.6, + "probability": 0.1326 + }, + { + "start": 16395.57, + "end": 16397.36, + "probability": 0.0766 + }, + { + "start": 16397.36, + "end": 16399.24, + "probability": 0.3283 + }, + { + "start": 16502.0, + "end": 16502.0, + "probability": 0.0 + }, + { + "start": 16502.0, + "end": 16502.0, + "probability": 0.0 + }, + { + "start": 16502.0, + "end": 16502.0, + "probability": 0.0 + }, + { + "start": 16502.0, + "end": 16502.0, + "probability": 0.0 + }, + { + "start": 16502.0, + "end": 16502.0, + "probability": 0.0 + }, + { + "start": 16502.0, + "end": 16502.0, + "probability": 0.0 + }, + { + "start": 16502.0, + "end": 16502.0, + "probability": 0.0 + }, + { + "start": 16502.0, + "end": 16502.0, + "probability": 0.0 + }, + { + "start": 16502.0, + "end": 16502.0, + "probability": 0.0 + }, + { + "start": 16502.0, + "end": 16502.0, + "probability": 0.0 + }, + { + "start": 16502.0, + "end": 16502.0, + "probability": 0.0 + }, + { + "start": 16502.0, + "end": 16502.0, + "probability": 0.0 + }, + { + "start": 16502.0, + "end": 16502.0, + "probability": 0.0 + }, + { + "start": 16502.0, + "end": 16502.0, + "probability": 0.0 + }, + { + "start": 16502.0, + "end": 16502.0, + "probability": 0.0 + }, + { + "start": 16502.0, + "end": 16502.0, + "probability": 0.0 + }, + { + "start": 16502.0, + "end": 16502.0, + "probability": 0.0 + }, + { + "start": 16502.0, + "end": 16502.0, + "probability": 0.0 + }, + { + "start": 16502.0, + "end": 16502.0, + "probability": 0.0 + }, + { + "start": 16502.0, + "end": 16502.0, + "probability": 0.0 + }, + { + "start": 16502.0, + "end": 16502.0, + "probability": 0.0 + }, + { + "start": 16502.0, + "end": 16502.0, + "probability": 0.0 + }, + { + "start": 16502.0, + "end": 16502.0, + "probability": 0.0 + }, + { + "start": 16502.0, + "end": 16502.0, + "probability": 0.0 + }, + { + "start": 16502.0, + "end": 16502.0, + "probability": 0.0 + }, + { + "start": 16502.0, + "end": 16502.0, + "probability": 0.0 + }, + { + "start": 16502.0, + "end": 16502.0, + "probability": 0.0 + }, + { + "start": 16502.0, + "end": 16502.0, + "probability": 0.0 + }, + { + "start": 16502.0, + "end": 16502.0, + "probability": 0.0 + }, + { + "start": 16502.0, + "end": 16502.0, + "probability": 0.0 + }, + { + "start": 16502.0, + "end": 16502.0, + "probability": 0.0 + }, + { + "start": 16502.0, + "end": 16502.0, + "probability": 0.0 + }, + { + "start": 16502.0, + "end": 16502.0, + "probability": 0.0 + }, + { + "start": 16502.08, + "end": 16504.38, + "probability": 0.797 + }, + { + "start": 16506.16, + "end": 16511.14, + "probability": 0.0435 + }, + { + "start": 16511.14, + "end": 16512.0, + "probability": 0.1404 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16808.98, + "end": 16814.58, + "probability": 0.6779 + }, + { + "start": 16815.16, + "end": 16818.02, + "probability": 0.9452 + }, + { + "start": 16818.92, + "end": 16821.48, + "probability": 0.9708 + }, + { + "start": 16823.04, + "end": 16824.82, + "probability": 0.9858 + }, + { + "start": 16825.14, + "end": 16827.06, + "probability": 0.9529 + }, + { + "start": 16827.5, + "end": 16829.2, + "probability": 0.9594 + }, + { + "start": 16829.92, + "end": 16835.04, + "probability": 0.7931 + }, + { + "start": 16836.76, + "end": 16838.78, + "probability": 0.9638 + }, + { + "start": 16839.34, + "end": 16841.18, + "probability": 0.9623 + }, + { + "start": 16845.8, + "end": 16852.4, + "probability": 0.8924 + }, + { + "start": 16853.2, + "end": 16858.1, + "probability": 0.7585 + }, + { + "start": 16859.64, + "end": 16866.48, + "probability": 0.6676 + }, + { + "start": 16867.12, + "end": 16868.82, + "probability": 0.9067 + }, + { + "start": 16869.48, + "end": 16871.18, + "probability": 0.9682 + }, + { + "start": 16871.2, + "end": 16878.66, + "probability": 0.8026 + }, + { + "start": 16879.66, + "end": 16884.8, + "probability": 0.8326 + }, + { + "start": 16885.52, + "end": 16891.44, + "probability": 0.9606 + }, + { + "start": 16894.12, + "end": 16903.44, + "probability": 0.9648 + }, + { + "start": 16905.46, + "end": 16905.96, + "probability": 0.4773 + }, + { + "start": 16908.9, + "end": 16910.0, + "probability": 0.6415 + }, + { + "start": 16910.64, + "end": 16912.86, + "probability": 0.8897 + }, + { + "start": 16915.3, + "end": 16920.3, + "probability": 0.7954 + }, + { + "start": 16921.34, + "end": 16922.98, + "probability": 0.8871 + }, + { + "start": 16926.96, + "end": 16930.12, + "probability": 0.5586 + }, + { + "start": 16930.94, + "end": 16933.32, + "probability": 0.9323 + }, + { + "start": 16934.11, + "end": 16936.6, + "probability": 0.9456 + }, + { + "start": 16939.62, + "end": 16941.2, + "probability": 0.8012 + }, + { + "start": 16942.12, + "end": 16948.58, + "probability": 0.9706 + }, + { + "start": 16950.44, + "end": 16954.08, + "probability": 0.2459 + }, + { + "start": 16954.28, + "end": 16957.22, + "probability": 0.7624 + }, + { + "start": 16957.36, + "end": 16959.6, + "probability": 0.8105 + }, + { + "start": 16963.56, + "end": 16967.16, + "probability": 0.5062 + }, + { + "start": 16968.18, + "end": 16970.88, + "probability": 0.9359 + }, + { + "start": 16972.56, + "end": 16974.7, + "probability": 0.9724 + }, + { + "start": 16977.24, + "end": 16980.54, + "probability": 0.2117 + }, + { + "start": 16981.26, + "end": 16981.72, + "probability": 0.9805 + }, + { + "start": 16982.68, + "end": 16983.56, + "probability": 0.8932 + }, + { + "start": 16984.52, + "end": 16988.98, + "probability": 0.9227 + }, + { + "start": 16990.58, + "end": 16996.28, + "probability": 0.9676 + }, + { + "start": 16997.44, + "end": 16999.22, + "probability": 0.9401 + }, + { + "start": 17003.5, + "end": 17011.26, + "probability": 0.8455 + }, + { + "start": 17011.82, + "end": 17014.2, + "probability": 0.8492 + }, + { + "start": 17015.7, + "end": 17019.2, + "probability": 0.9659 + }, + { + "start": 17022.96, + "end": 17023.5, + "probability": 0.7974 + }, + { + "start": 17024.5, + "end": 17026.1, + "probability": 0.6517 + }, + { + "start": 17027.38, + "end": 17028.2, + "probability": 0.9211 + }, + { + "start": 17029.12, + "end": 17030.12, + "probability": 0.6196 + }, + { + "start": 17031.74, + "end": 17032.48, + "probability": 0.6876 + }, + { + "start": 17034.44, + "end": 17037.88, + "probability": 0.7958 + }, + { + "start": 17038.12, + "end": 17043.28, + "probability": 0.7076 + }, + { + "start": 17043.74, + "end": 17044.38, + "probability": 0.5299 + }, + { + "start": 17045.24, + "end": 17048.36, + "probability": 0.8708 + }, + { + "start": 17048.56, + "end": 17051.42, + "probability": 0.5516 + }, + { + "start": 17059.14, + "end": 17064.48, + "probability": 0.6088 + }, + { + "start": 17065.24, + "end": 17067.08, + "probability": 0.6368 + }, + { + "start": 17068.2, + "end": 17070.68, + "probability": 0.9323 + }, + { + "start": 17071.22, + "end": 17074.3, + "probability": 0.6246 + }, + { + "start": 17076.44, + "end": 17082.92, + "probability": 0.6874 + }, + { + "start": 17084.15, + "end": 17086.92, + "probability": 0.7484 + }, + { + "start": 17089.8, + "end": 17093.52, + "probability": 0.6769 + }, + { + "start": 17095.52, + "end": 17097.06, + "probability": 0.9635 + }, + { + "start": 17098.04, + "end": 17100.04, + "probability": 0.7261 + }, + { + "start": 17101.02, + "end": 17103.12, + "probability": 0.9238 + }, + { + "start": 17104.66, + "end": 17106.5, + "probability": 0.9749 + }, + { + "start": 17107.1, + "end": 17113.36, + "probability": 0.9592 + }, + { + "start": 17114.48, + "end": 17117.64, + "probability": 0.9048 + }, + { + "start": 17118.68, + "end": 17120.16, + "probability": 0.9281 + }, + { + "start": 17125.8, + "end": 17125.96, + "probability": 0.7185 + }, + { + "start": 17126.95, + "end": 17128.68, + "probability": 0.3277 + }, + { + "start": 17136.78, + "end": 17136.88, + "probability": 0.0466 + }, + { + "start": 17139.0, + "end": 17139.82, + "probability": 0.4521 + }, + { + "start": 17143.44, + "end": 17144.88, + "probability": 0.5691 + }, + { + "start": 17145.92, + "end": 17148.02, + "probability": 0.4199 + }, + { + "start": 17148.78, + "end": 17149.2, + "probability": 0.9076 + }, + { + "start": 17150.94, + "end": 17152.12, + "probability": 0.6094 + }, + { + "start": 17153.12, + "end": 17153.46, + "probability": 0.8562 + }, + { + "start": 17155.2, + "end": 17158.2, + "probability": 0.6994 + }, + { + "start": 17159.22, + "end": 17162.28, + "probability": 0.8694 + }, + { + "start": 17162.92, + "end": 17166.26, + "probability": 0.5371 + }, + { + "start": 17167.14, + "end": 17170.92, + "probability": 0.9076 + }, + { + "start": 17172.58, + "end": 17174.46, + "probability": 0.9442 + }, + { + "start": 17174.81, + "end": 17177.2, + "probability": 0.9749 + }, + { + "start": 17177.4, + "end": 17178.9, + "probability": 0.9387 + }, + { + "start": 17180.68, + "end": 17183.86, + "probability": 0.9521 + }, + { + "start": 17185.2, + "end": 17187.14, + "probability": 0.8131 + }, + { + "start": 17188.94, + "end": 17192.84, + "probability": 0.9818 + }, + { + "start": 17193.4, + "end": 17197.46, + "probability": 0.9685 + }, + { + "start": 17197.98, + "end": 17200.16, + "probability": 0.7681 + }, + { + "start": 17202.22, + "end": 17203.28, + "probability": 0.0495 + }, + { + "start": 17203.28, + "end": 17203.91, + "probability": 0.6312 + }, + { + "start": 17204.88, + "end": 17207.56, + "probability": 0.8086 + }, + { + "start": 17207.92, + "end": 17211.38, + "probability": 0.8358 + }, + { + "start": 17211.54, + "end": 17213.52, + "probability": 0.824 + }, + { + "start": 17213.9, + "end": 17216.32, + "probability": 0.8673 + }, + { + "start": 17216.38, + "end": 17217.06, + "probability": 0.8418 + }, + { + "start": 17219.22, + "end": 17220.2, + "probability": 0.6426 + }, + { + "start": 17221.64, + "end": 17223.2, + "probability": 0.7681 + }, + { + "start": 17224.08, + "end": 17228.78, + "probability": 0.7945 + }, + { + "start": 17229.88, + "end": 17231.36, + "probability": 0.9286 + }, + { + "start": 17231.92, + "end": 17233.68, + "probability": 0.8999 + }, + { + "start": 17237.78, + "end": 17239.92, + "probability": 0.5839 + }, + { + "start": 17240.54, + "end": 17243.24, + "probability": 0.637 + }, + { + "start": 17244.5, + "end": 17250.26, + "probability": 0.6826 + }, + { + "start": 17250.72, + "end": 17252.6, + "probability": 0.7416 + }, + { + "start": 17252.68, + "end": 17253.46, + "probability": 0.9505 + }, + { + "start": 17255.04, + "end": 17258.16, + "probability": 0.7794 + }, + { + "start": 17259.42, + "end": 17261.32, + "probability": 0.7055 + }, + { + "start": 17266.08, + "end": 17269.72, + "probability": 0.7365 + }, + { + "start": 17272.48, + "end": 17274.46, + "probability": 0.9703 + }, + { + "start": 17276.18, + "end": 17278.14, + "probability": 0.8157 + }, + { + "start": 17278.24, + "end": 17279.9, + "probability": 0.9314 + }, + { + "start": 17280.08, + "end": 17282.34, + "probability": 0.858 + }, + { + "start": 17284.48, + "end": 17286.42, + "probability": 0.7998 + }, + { + "start": 17289.7, + "end": 17297.54, + "probability": 0.8958 + }, + { + "start": 17300.2, + "end": 17301.84, + "probability": 0.4599 + }, + { + "start": 17302.46, + "end": 17304.56, + "probability": 0.7571 + }, + { + "start": 17309.94, + "end": 17311.48, + "probability": 0.0344 + }, + { + "start": 17350.76, + "end": 17352.7, + "probability": 0.1059 + }, + { + "start": 17369.38, + "end": 17371.44, + "probability": 0.1663 + }, + { + "start": 17470.9, + "end": 17472.1, + "probability": 0.0 + }, + { + "start": 17474.5, + "end": 17478.2, + "probability": 0.6236 + }, + { + "start": 17478.75, + "end": 17481.88, + "probability": 0.7896 + }, + { + "start": 17481.94, + "end": 17483.38, + "probability": 0.6392 + }, + { + "start": 17483.44, + "end": 17485.42, + "probability": 0.6946 + }, + { + "start": 17494.14, + "end": 17498.6, + "probability": 0.0409 + }, + { + "start": 17498.7, + "end": 17503.58, + "probability": 0.7229 + }, + { + "start": 17503.68, + "end": 17504.3, + "probability": 0.7712 + }, + { + "start": 17504.32, + "end": 17507.35, + "probability": 0.8831 + }, + { + "start": 17508.72, + "end": 17509.28, + "probability": 0.4624 + }, + { + "start": 17509.38, + "end": 17510.71, + "probability": 0.813 + }, + { + "start": 17511.04, + "end": 17518.42, + "probability": 0.5776 + }, + { + "start": 17525.42, + "end": 17527.08, + "probability": 0.7621 + }, + { + "start": 17529.26, + "end": 17531.54, + "probability": 0.6295 + }, + { + "start": 17531.54, + "end": 17533.68, + "probability": 0.8205 + }, + { + "start": 17534.28, + "end": 17538.16, + "probability": 0.8508 + }, + { + "start": 17538.66, + "end": 17540.36, + "probability": 0.97 + }, + { + "start": 17540.68, + "end": 17542.38, + "probability": 0.9753 + }, + { + "start": 17543.02, + "end": 17543.78, + "probability": 0.7448 + }, + { + "start": 17543.84, + "end": 17547.16, + "probability": 0.9647 + }, + { + "start": 17547.16, + "end": 17551.38, + "probability": 0.9859 + }, + { + "start": 17551.5, + "end": 17552.48, + "probability": 0.9102 + }, + { + "start": 17552.84, + "end": 17555.94, + "probability": 0.9853 + }, + { + "start": 17556.34, + "end": 17557.82, + "probability": 0.7482 + }, + { + "start": 17557.94, + "end": 17559.16, + "probability": 0.9966 + }, + { + "start": 17559.48, + "end": 17566.42, + "probability": 0.9364 + }, + { + "start": 17566.42, + "end": 17570.8, + "probability": 0.9799 + }, + { + "start": 17570.88, + "end": 17576.28, + "probability": 0.6906 + }, + { + "start": 17576.46, + "end": 17578.28, + "probability": 0.9741 + }, + { + "start": 17578.86, + "end": 17581.38, + "probability": 0.9624 + }, + { + "start": 17581.82, + "end": 17586.18, + "probability": 0.9246 + }, + { + "start": 17586.18, + "end": 17591.14, + "probability": 0.9915 + }, + { + "start": 17591.6, + "end": 17594.6, + "probability": 0.8316 + }, + { + "start": 17594.68, + "end": 17595.88, + "probability": 0.965 + }, + { + "start": 17596.16, + "end": 17597.18, + "probability": 0.6909 + }, + { + "start": 17597.32, + "end": 17599.4, + "probability": 0.5399 + }, + { + "start": 17599.72, + "end": 17600.32, + "probability": 0.0558 + }, + { + "start": 17600.38, + "end": 17604.1, + "probability": 0.8759 + }, + { + "start": 17604.1, + "end": 17605.82, + "probability": 0.9698 + }, + { + "start": 17605.96, + "end": 17606.73, + "probability": 0.8486 + }, + { + "start": 17607.42, + "end": 17610.94, + "probability": 0.9932 + }, + { + "start": 17611.36, + "end": 17612.9, + "probability": 0.6403 + }, + { + "start": 17612.96, + "end": 17613.84, + "probability": 0.4983 + }, + { + "start": 17613.84, + "end": 17614.74, + "probability": 0.6762 + }, + { + "start": 17617.12, + "end": 17623.06, + "probability": 0.9883 + }, + { + "start": 17623.36, + "end": 17625.5, + "probability": 0.893 + }, + { + "start": 17625.8, + "end": 17628.18, + "probability": 0.9036 + }, + { + "start": 17628.36, + "end": 17629.36, + "probability": 0.6822 + }, + { + "start": 17629.44, + "end": 17629.8, + "probability": 0.8804 + }, + { + "start": 17629.86, + "end": 17631.46, + "probability": 0.9943 + }, + { + "start": 17631.66, + "end": 17634.98, + "probability": 0.7081 + }, + { + "start": 17635.06, + "end": 17639.56, + "probability": 0.8536 + }, + { + "start": 17639.96, + "end": 17642.82, + "probability": 0.0228 + }, + { + "start": 17647.16, + "end": 17653.64, + "probability": 0.1267 + }, + { + "start": 17654.14, + "end": 17655.94, + "probability": 0.5303 + }, + { + "start": 17656.62, + "end": 17657.9, + "probability": 0.1324 + }, + { + "start": 17658.06, + "end": 17661.59, + "probability": 0.0852 + }, + { + "start": 17662.58, + "end": 17664.46, + "probability": 0.0115 + }, + { + "start": 17664.46, + "end": 17671.9, + "probability": 0.0786 + }, + { + "start": 17672.02, + "end": 17674.08, + "probability": 0.2045 + }, + { + "start": 17674.34, + "end": 17675.26, + "probability": 0.0979 + }, + { + "start": 17675.48, + "end": 17676.28, + "probability": 0.4496 + }, + { + "start": 17676.46, + "end": 17679.16, + "probability": 0.0597 + }, + { + "start": 17681.8, + "end": 17683.06, + "probability": 0.0695 + }, + { + "start": 17686.07, + "end": 17686.94, + "probability": 0.1128 + }, + { + "start": 17686.94, + "end": 17687.92, + "probability": 0.0304 + }, + { + "start": 17687.92, + "end": 17689.8, + "probability": 0.0236 + }, + { + "start": 17689.8, + "end": 17689.8, + "probability": 0.3181 + }, + { + "start": 17717.0, + "end": 17717.0, + "probability": 0.0 + }, + { + "start": 17717.0, + "end": 17717.0, + "probability": 0.0 + }, + { + "start": 17717.0, + "end": 17717.0, + "probability": 0.0 + }, + { + "start": 17717.0, + "end": 17717.0, + "probability": 0.0 + }, + { + "start": 17717.0, + "end": 17717.0, + "probability": 0.0 + }, + { + "start": 17717.0, + "end": 17717.0, + "probability": 0.0 + }, + { + "start": 17717.0, + "end": 17717.0, + "probability": 0.0 + }, + { + "start": 17717.0, + "end": 17717.0, + "probability": 0.0 + }, + { + "start": 17717.0, + "end": 17717.0, + "probability": 0.0 + }, + { + "start": 17717.0, + "end": 17717.0, + "probability": 0.0 + }, + { + "start": 17717.0, + "end": 17717.0, + "probability": 0.0 + }, + { + "start": 17717.0, + "end": 17717.0, + "probability": 0.0 + }, + { + "start": 17717.0, + "end": 17717.0, + "probability": 0.0 + }, + { + "start": 17717.0, + "end": 17717.0, + "probability": 0.0 + }, + { + "start": 17717.0, + "end": 17717.0, + "probability": 0.0 + }, + { + "start": 17717.0, + "end": 17717.0, + "probability": 0.0 + }, + { + "start": 17717.0, + "end": 17717.0, + "probability": 0.0 + }, + { + "start": 17717.0, + "end": 17717.0, + "probability": 0.0 + }, + { + "start": 17717.0, + "end": 17717.0, + "probability": 0.0 + }, + { + "start": 17717.0, + "end": 17717.0, + "probability": 0.0 + }, + { + "start": 17717.0, + "end": 17717.0, + "probability": 0.0 + }, + { + "start": 17717.0, + "end": 17717.0, + "probability": 0.0 + }, + { + "start": 17717.0, + "end": 17717.0, + "probability": 0.0 + }, + { + "start": 17717.0, + "end": 17717.0, + "probability": 0.0 + }, + { + "start": 17717.64, + "end": 17718.38, + "probability": 0.1261 + }, + { + "start": 17718.38, + "end": 17720.25, + "probability": 0.6274 + }, + { + "start": 17720.68, + "end": 17723.92, + "probability": 0.8895 + }, + { + "start": 17724.12, + "end": 17728.58, + "probability": 0.8956 + }, + { + "start": 17729.44, + "end": 17731.84, + "probability": 0.0216 + }, + { + "start": 17731.84, + "end": 17731.84, + "probability": 0.0721 + }, + { + "start": 17731.84, + "end": 17731.84, + "probability": 0.0382 + }, + { + "start": 17731.84, + "end": 17735.94, + "probability": 0.9854 + }, + { + "start": 17736.54, + "end": 17737.78, + "probability": 0.7264 + }, + { + "start": 17737.9, + "end": 17740.84, + "probability": 0.6003 + }, + { + "start": 17741.1, + "end": 17742.96, + "probability": 0.4988 + }, + { + "start": 17743.0, + "end": 17745.06, + "probability": 0.5769 + }, + { + "start": 17745.08, + "end": 17747.91, + "probability": 0.9768 + }, + { + "start": 17748.12, + "end": 17749.84, + "probability": 0.3027 + }, + { + "start": 17750.52, + "end": 17752.18, + "probability": 0.4001 + }, + { + "start": 17752.46, + "end": 17752.52, + "probability": 0.6104 + }, + { + "start": 17755.88, + "end": 17756.2, + "probability": 0.0031 + }, + { + "start": 17756.31, + "end": 17757.32, + "probability": 0.1841 + }, + { + "start": 17757.32, + "end": 17759.08, + "probability": 0.3216 + }, + { + "start": 17759.08, + "end": 17759.3, + "probability": 0.1789 + }, + { + "start": 17759.3, + "end": 17761.66, + "probability": 0.0821 + }, + { + "start": 17761.8, + "end": 17764.25, + "probability": 0.1327 + }, + { + "start": 17765.5, + "end": 17767.3, + "probability": 0.1981 + }, + { + "start": 17767.46, + "end": 17769.09, + "probability": 0.4272 + }, + { + "start": 17774.78, + "end": 17776.0, + "probability": 0.0229 + }, + { + "start": 17776.0, + "end": 17776.54, + "probability": 0.0406 + }, + { + "start": 17776.64, + "end": 17777.48, + "probability": 0.0133 + }, + { + "start": 17777.72, + "end": 17777.98, + "probability": 0.0416 + }, + { + "start": 17777.98, + "end": 17779.22, + "probability": 0.0531 + }, + { + "start": 17779.66, + "end": 17780.42, + "probability": 0.1206 + }, + { + "start": 17781.9, + "end": 17783.42, + "probability": 0.2176 + }, + { + "start": 17843.0, + "end": 17843.0, + "probability": 0.0 + }, + { + "start": 17843.0, + "end": 17843.0, + "probability": 0.0 + }, + { + "start": 17843.0, + "end": 17843.0, + "probability": 0.0 + }, + { + "start": 17843.0, + "end": 17843.0, + "probability": 0.0 + }, + { + "start": 17843.0, + "end": 17843.0, + "probability": 0.0 + }, + { + "start": 17843.0, + "end": 17843.0, + "probability": 0.0 + }, + { + "start": 17843.0, + "end": 17843.0, + "probability": 0.0 + }, + { + "start": 17843.0, + "end": 17843.0, + "probability": 0.0 + }, + { + "start": 17843.0, + "end": 17843.0, + "probability": 0.0 + }, + { + "start": 17843.0, + "end": 17843.0, + "probability": 0.0 + }, + { + "start": 17843.0, + "end": 17843.0, + "probability": 0.0 + }, + { + "start": 17843.0, + "end": 17843.0, + "probability": 0.0 + }, + { + "start": 17843.0, + "end": 17843.0, + "probability": 0.0 + }, + { + "start": 17843.0, + "end": 17843.0, + "probability": 0.0 + }, + { + "start": 17843.0, + "end": 17843.0, + "probability": 0.0 + }, + { + "start": 17843.0, + "end": 17843.0, + "probability": 0.0 + }, + { + "start": 17843.0, + "end": 17843.0, + "probability": 0.0 + }, + { + "start": 17843.0, + "end": 17843.0, + "probability": 0.0 + }, + { + "start": 17843.0, + "end": 17843.0, + "probability": 0.0 + }, + { + "start": 17843.0, + "end": 17843.0, + "probability": 0.0 + }, + { + "start": 17843.0, + "end": 17843.0, + "probability": 0.0 + }, + { + "start": 17843.0, + "end": 17843.0, + "probability": 0.0 + }, + { + "start": 17843.0, + "end": 17843.0, + "probability": 0.0 + }, + { + "start": 17843.0, + "end": 17843.0, + "probability": 0.0 + }, + { + "start": 17843.0, + "end": 17843.0, + "probability": 0.0 + }, + { + "start": 17843.0, + "end": 17843.0, + "probability": 0.0 + }, + { + "start": 17843.0, + "end": 17843.0, + "probability": 0.0 + }, + { + "start": 17843.0, + "end": 17843.0, + "probability": 0.0 + }, + { + "start": 17843.0, + "end": 17843.0, + "probability": 0.0 + }, + { + "start": 17843.0, + "end": 17843.0, + "probability": 0.0 + }, + { + "start": 17843.0, + "end": 17843.0, + "probability": 0.0 + }, + { + "start": 17843.0, + "end": 17843.0, + "probability": 0.0 + }, + { + "start": 17843.0, + "end": 17843.0, + "probability": 0.0 + }, + { + "start": 17843.0, + "end": 17843.0, + "probability": 0.0 + }, + { + "start": 17843.0, + "end": 17843.0, + "probability": 0.0 + }, + { + "start": 17843.0, + "end": 17843.0, + "probability": 0.0 + }, + { + "start": 17843.0, + "end": 17843.0, + "probability": 0.0 + }, + { + "start": 17843.0, + "end": 17843.0, + "probability": 0.0 + }, + { + "start": 17843.0, + "end": 17843.0, + "probability": 0.0 + }, + { + "start": 17843.12, + "end": 17846.8, + "probability": 0.8496 + }, + { + "start": 17848.19, + "end": 17851.96, + "probability": 0.8609 + }, + { + "start": 17858.1, + "end": 17861.62, + "probability": 0.7594 + }, + { + "start": 17865.24, + "end": 17873.64, + "probability": 0.9843 + }, + { + "start": 17875.48, + "end": 17880.6, + "probability": 0.9604 + }, + { + "start": 17880.6, + "end": 17885.08, + "probability": 0.9963 + }, + { + "start": 17887.3, + "end": 17895.5, + "probability": 0.9995 + }, + { + "start": 17895.52, + "end": 17895.98, + "probability": 0.771 + }, + { + "start": 17896.76, + "end": 17898.14, + "probability": 0.786 + }, + { + "start": 17898.7, + "end": 17901.8, + "probability": 0.9884 + }, + { + "start": 17903.03, + "end": 17906.92, + "probability": 0.9964 + }, + { + "start": 17908.08, + "end": 17911.0, + "probability": 0.9805 + }, + { + "start": 17912.32, + "end": 17916.28, + "probability": 0.989 + }, + { + "start": 17916.36, + "end": 17917.74, + "probability": 0.8337 + }, + { + "start": 17919.04, + "end": 17920.42, + "probability": 0.986 + }, + { + "start": 17921.6, + "end": 17922.68, + "probability": 0.872 + }, + { + "start": 17924.36, + "end": 17929.06, + "probability": 0.9941 + }, + { + "start": 17929.06, + "end": 17931.5, + "probability": 0.8451 + }, + { + "start": 17932.66, + "end": 17933.68, + "probability": 0.7515 + }, + { + "start": 17934.02, + "end": 17935.08, + "probability": 0.8966 + }, + { + "start": 17935.16, + "end": 17939.58, + "probability": 0.9463 + }, + { + "start": 17940.06, + "end": 17943.26, + "probability": 0.5272 + }, + { + "start": 17943.26, + "end": 17945.48, + "probability": 0.9836 + }, + { + "start": 17946.98, + "end": 17948.78, + "probability": 0.986 + }, + { + "start": 17949.76, + "end": 17952.84, + "probability": 0.9961 + }, + { + "start": 17953.34, + "end": 17954.6, + "probability": 0.7174 + }, + { + "start": 17954.88, + "end": 17955.64, + "probability": 0.9682 + }, + { + "start": 17955.74, + "end": 17956.6, + "probability": 0.6064 + }, + { + "start": 17956.92, + "end": 17958.6, + "probability": 0.612 + }, + { + "start": 17958.98, + "end": 17959.68, + "probability": 0.7209 + }, + { + "start": 17959.68, + "end": 17960.34, + "probability": 0.9178 + }, + { + "start": 17961.64, + "end": 17964.68, + "probability": 0.979 + }, + { + "start": 17965.54, + "end": 17968.38, + "probability": 0.9974 + }, + { + "start": 17968.38, + "end": 17973.08, + "probability": 0.9664 + }, + { + "start": 17973.88, + "end": 17978.52, + "probability": 0.9581 + }, + { + "start": 17979.71, + "end": 17981.37, + "probability": 0.7466 + }, + { + "start": 17981.8, + "end": 17985.42, + "probability": 0.8754 + }, + { + "start": 17986.24, + "end": 17987.42, + "probability": 0.7866 + }, + { + "start": 17990.86, + "end": 17992.64, + "probability": 0.9694 + }, + { + "start": 17993.9, + "end": 17995.0, + "probability": 0.4907 + }, + { + "start": 17995.16, + "end": 17996.66, + "probability": 0.152 + }, + { + "start": 17996.66, + "end": 17998.34, + "probability": 0.3747 + }, + { + "start": 17998.8, + "end": 17999.98, + "probability": 0.8178 + }, + { + "start": 18000.74, + "end": 18003.22, + "probability": 0.9553 + }, + { + "start": 18005.0, + "end": 18006.68, + "probability": 0.8105 + }, + { + "start": 18007.54, + "end": 18008.88, + "probability": 0.9673 + }, + { + "start": 18010.64, + "end": 18011.8, + "probability": 0.6467 + }, + { + "start": 18012.04, + "end": 18013.6, + "probability": 0.9668 + }, + { + "start": 18014.82, + "end": 18015.8, + "probability": 0.6519 + }, + { + "start": 18016.58, + "end": 18018.92, + "probability": 0.9851 + }, + { + "start": 18019.02, + "end": 18020.84, + "probability": 0.7226 + }, + { + "start": 18020.92, + "end": 18022.46, + "probability": 0.9231 + }, + { + "start": 18023.54, + "end": 18029.16, + "probability": 0.9751 + }, + { + "start": 18030.4, + "end": 18031.06, + "probability": 0.9175 + }, + { + "start": 18031.52, + "end": 18032.4, + "probability": 0.9556 + }, + { + "start": 18034.44, + "end": 18038.1, + "probability": 0.9889 + }, + { + "start": 18039.54, + "end": 18044.14, + "probability": 0.9968 + }, + { + "start": 18045.28, + "end": 18047.69, + "probability": 0.9946 + }, + { + "start": 18048.62, + "end": 18051.84, + "probability": 0.9976 + }, + { + "start": 18052.76, + "end": 18054.34, + "probability": 0.7491 + }, + { + "start": 18055.48, + "end": 18058.86, + "probability": 0.8914 + }, + { + "start": 18059.82, + "end": 18060.24, + "probability": 0.6021 + }, + { + "start": 18061.18, + "end": 18064.38, + "probability": 0.9033 + }, + { + "start": 18065.22, + "end": 18070.1, + "probability": 0.9731 + }, + { + "start": 18072.66, + "end": 18074.52, + "probability": 0.9872 + }, + { + "start": 18075.76, + "end": 18075.92, + "probability": 0.8767 + }, + { + "start": 18076.6, + "end": 18077.78, + "probability": 0.9878 + }, + { + "start": 18078.28, + "end": 18079.28, + "probability": 0.9878 + }, + { + "start": 18079.74, + "end": 18081.2, + "probability": 0.9937 + }, + { + "start": 18081.24, + "end": 18083.1, + "probability": 0.8542 + }, + { + "start": 18083.36, + "end": 18084.66, + "probability": 0.8098 + }, + { + "start": 18085.62, + "end": 18086.14, + "probability": 0.9254 + }, + { + "start": 18086.24, + "end": 18087.9, + "probability": 0.9059 + }, + { + "start": 18088.18, + "end": 18089.22, + "probability": 0.9708 + }, + { + "start": 18089.26, + "end": 18090.46, + "probability": 0.9845 + }, + { + "start": 18090.78, + "end": 18093.32, + "probability": 0.989 + }, + { + "start": 18095.78, + "end": 18096.56, + "probability": 0.9856 + }, + { + "start": 18100.06, + "end": 18100.9, + "probability": 0.6351 + }, + { + "start": 18102.66, + "end": 18105.48, + "probability": 0.9617 + }, + { + "start": 18106.68, + "end": 18107.86, + "probability": 0.8691 + }, + { + "start": 18108.6, + "end": 18109.98, + "probability": 0.9826 + }, + { + "start": 18110.34, + "end": 18112.0, + "probability": 0.9668 + }, + { + "start": 18114.16, + "end": 18118.0, + "probability": 0.9572 + }, + { + "start": 18118.88, + "end": 18119.4, + "probability": 0.3873 + }, + { + "start": 18120.42, + "end": 18121.38, + "probability": 0.6093 + }, + { + "start": 18121.84, + "end": 18125.92, + "probability": 0.9825 + }, + { + "start": 18126.26, + "end": 18128.87, + "probability": 0.9976 + }, + { + "start": 18130.14, + "end": 18133.6, + "probability": 0.9844 + }, + { + "start": 18134.0, + "end": 18139.34, + "probability": 0.9995 + }, + { + "start": 18139.88, + "end": 18142.18, + "probability": 0.948 + }, + { + "start": 18142.18, + "end": 18146.36, + "probability": 0.9716 + }, + { + "start": 18146.4, + "end": 18150.34, + "probability": 0.9914 + }, + { + "start": 18150.72, + "end": 18151.8, + "probability": 0.5565 + }, + { + "start": 18152.98, + "end": 18154.44, + "probability": 0.8857 + }, + { + "start": 18155.42, + "end": 18157.1, + "probability": 0.7956 + }, + { + "start": 18158.22, + "end": 18161.34, + "probability": 0.8864 + }, + { + "start": 18161.96, + "end": 18163.32, + "probability": 0.9883 + }, + { + "start": 18164.5, + "end": 18169.28, + "probability": 0.995 + }, + { + "start": 18169.59, + "end": 18171.96, + "probability": 0.1009 + }, + { + "start": 18171.96, + "end": 18172.84, + "probability": 0.9102 + }, + { + "start": 18172.94, + "end": 18173.76, + "probability": 0.8674 + }, + { + "start": 18173.84, + "end": 18174.74, + "probability": 0.8841 + }, + { + "start": 18175.46, + "end": 18177.1, + "probability": 0.9935 + }, + { + "start": 18177.82, + "end": 18181.08, + "probability": 0.9554 + }, + { + "start": 18181.16, + "end": 18183.94, + "probability": 0.8636 + }, + { + "start": 18185.1, + "end": 18186.67, + "probability": 0.9155 + }, + { + "start": 18187.1, + "end": 18190.08, + "probability": 0.8093 + }, + { + "start": 18190.18, + "end": 18192.08, + "probability": 0.9814 + }, + { + "start": 18192.08, + "end": 18194.88, + "probability": 0.9702 + }, + { + "start": 18195.18, + "end": 18196.66, + "probability": 0.672 + }, + { + "start": 18197.16, + "end": 18200.22, + "probability": 0.9917 + }, + { + "start": 18200.52, + "end": 18202.02, + "probability": 0.9709 + }, + { + "start": 18202.48, + "end": 18206.78, + "probability": 0.8245 + }, + { + "start": 18207.44, + "end": 18211.54, + "probability": 0.8284 + }, + { + "start": 18211.8, + "end": 18212.88, + "probability": 0.948 + }, + { + "start": 18213.28, + "end": 18216.16, + "probability": 0.9772 + }, + { + "start": 18217.18, + "end": 18218.66, + "probability": 0.9612 + }, + { + "start": 18218.74, + "end": 18220.1, + "probability": 0.9982 + }, + { + "start": 18222.36, + "end": 18224.1, + "probability": 0.9746 + }, + { + "start": 18225.42, + "end": 18227.56, + "probability": 0.9944 + }, + { + "start": 18228.38, + "end": 18230.46, + "probability": 0.9891 + }, + { + "start": 18230.74, + "end": 18231.58, + "probability": 0.8547 + }, + { + "start": 18232.0, + "end": 18232.94, + "probability": 0.998 + }, + { + "start": 18234.68, + "end": 18235.64, + "probability": 0.9922 + }, + { + "start": 18235.86, + "end": 18236.66, + "probability": 0.1221 + }, + { + "start": 18238.5, + "end": 18239.98, + "probability": 0.9702 + }, + { + "start": 18240.6, + "end": 18241.58, + "probability": 0.9207 + }, + { + "start": 18241.76, + "end": 18244.3, + "probability": 0.8233 + }, + { + "start": 18244.9, + "end": 18247.68, + "probability": 0.9661 + }, + { + "start": 18248.42, + "end": 18249.16, + "probability": 0.749 + }, + { + "start": 18249.3, + "end": 18250.76, + "probability": 0.8137 + }, + { + "start": 18251.16, + "end": 18252.46, + "probability": 0.957 + }, + { + "start": 18252.52, + "end": 18253.94, + "probability": 0.9826 + }, + { + "start": 18254.04, + "end": 18256.06, + "probability": 0.9072 + }, + { + "start": 18256.3, + "end": 18257.76, + "probability": 0.8209 + }, + { + "start": 18259.18, + "end": 18260.14, + "probability": 0.5579 + }, + { + "start": 18261.36, + "end": 18262.02, + "probability": 0.6596 + }, + { + "start": 18262.1, + "end": 18263.38, + "probability": 0.9102 + }, + { + "start": 18263.5, + "end": 18264.94, + "probability": 0.689 + }, + { + "start": 18266.64, + "end": 18268.02, + "probability": 0.9961 + }, + { + "start": 18268.14, + "end": 18269.54, + "probability": 0.9989 + }, + { + "start": 18270.9, + "end": 18272.98, + "probability": 0.9949 + }, + { + "start": 18273.26, + "end": 18274.38, + "probability": 0.907 + }, + { + "start": 18275.04, + "end": 18275.54, + "probability": 0.8845 + }, + { + "start": 18275.88, + "end": 18279.12, + "probability": 0.9175 + }, + { + "start": 18279.16, + "end": 18280.02, + "probability": 0.9941 + }, + { + "start": 18280.48, + "end": 18281.78, + "probability": 0.8924 + }, + { + "start": 18281.96, + "end": 18284.68, + "probability": 0.9875 + }, + { + "start": 18284.78, + "end": 18286.38, + "probability": 0.7856 + }, + { + "start": 18286.94, + "end": 18288.36, + "probability": 0.7517 + }, + { + "start": 18288.56, + "end": 18290.28, + "probability": 0.8482 + }, + { + "start": 18290.64, + "end": 18292.62, + "probability": 0.9341 + }, + { + "start": 18293.16, + "end": 18294.63, + "probability": 0.8999 + }, + { + "start": 18295.98, + "end": 18298.64, + "probability": 0.9936 + }, + { + "start": 18299.68, + "end": 18300.76, + "probability": 0.9666 + }, + { + "start": 18300.86, + "end": 18301.61, + "probability": 0.999 + }, + { + "start": 18302.14, + "end": 18303.82, + "probability": 0.9043 + }, + { + "start": 18304.12, + "end": 18307.04, + "probability": 0.9609 + }, + { + "start": 18307.4, + "end": 18308.88, + "probability": 0.9454 + }, + { + "start": 18309.28, + "end": 18311.82, + "probability": 0.9941 + }, + { + "start": 18312.06, + "end": 18312.52, + "probability": 0.3144 + }, + { + "start": 18313.0, + "end": 18314.52, + "probability": 0.3661 + }, + { + "start": 18314.66, + "end": 18315.82, + "probability": 0.5399 + }, + { + "start": 18315.82, + "end": 18316.18, + "probability": 0.0139 + }, + { + "start": 18316.94, + "end": 18319.84, + "probability": 0.7493 + }, + { + "start": 18320.32, + "end": 18320.5, + "probability": 0.1055 + }, + { + "start": 18320.5, + "end": 18321.64, + "probability": 0.5604 + }, + { + "start": 18322.1, + "end": 18323.96, + "probability": 0.9774 + }, + { + "start": 18324.44, + "end": 18326.08, + "probability": 0.824 + }, + { + "start": 18326.84, + "end": 18329.0, + "probability": 0.024 + }, + { + "start": 18329.24, + "end": 18331.28, + "probability": 0.0379 + }, + { + "start": 18332.92, + "end": 18333.28, + "probability": 0.1064 + }, + { + "start": 18333.28, + "end": 18333.28, + "probability": 0.0409 + }, + { + "start": 18333.28, + "end": 18333.28, + "probability": 0.0629 + }, + { + "start": 18333.28, + "end": 18335.5, + "probability": 0.907 + }, + { + "start": 18335.58, + "end": 18337.82, + "probability": 0.9926 + }, + { + "start": 18451.0, + "end": 18451.0, + "probability": 0.0 + }, + { + "start": 18451.0, + "end": 18451.0, + "probability": 0.0 + }, + { + "start": 18451.0, + "end": 18451.0, + "probability": 0.0 + }, + { + "start": 18451.0, + "end": 18451.0, + "probability": 0.0 + }, + { + "start": 18451.0, + "end": 18451.0, + "probability": 0.0 + }, + { + "start": 18451.0, + "end": 18451.0, + "probability": 0.0 + }, + { + "start": 18451.0, + "end": 18451.0, + "probability": 0.0 + }, + { + "start": 18451.0, + "end": 18451.0, + "probability": 0.0 + }, + { + "start": 18451.0, + "end": 18451.0, + "probability": 0.0 + }, + { + "start": 18451.0, + "end": 18451.0, + "probability": 0.0 + }, + { + "start": 18451.0, + "end": 18451.0, + "probability": 0.0 + }, + { + "start": 18451.0, + "end": 18451.0, + "probability": 0.0 + }, + { + "start": 18451.0, + "end": 18451.0, + "probability": 0.0 + }, + { + "start": 18451.0, + "end": 18451.0, + "probability": 0.0 + }, + { + "start": 18451.0, + "end": 18451.0, + "probability": 0.0 + }, + { + "start": 18451.0, + "end": 18451.0, + "probability": 0.0 + }, + { + "start": 18451.0, + "end": 18451.0, + "probability": 0.0 + }, + { + "start": 18451.0, + "end": 18451.0, + "probability": 0.0 + }, + { + "start": 18451.0, + "end": 18451.0, + "probability": 0.0 + }, + { + "start": 18451.0, + "end": 18451.0, + "probability": 0.0 + }, + { + "start": 18451.0, + "end": 18451.0, + "probability": 0.0 + }, + { + "start": 18451.0, + "end": 18451.0, + "probability": 0.0 + }, + { + "start": 18451.0, + "end": 18451.0, + "probability": 0.0 + }, + { + "start": 18451.0, + "end": 18451.0, + "probability": 0.0 + }, + { + "start": 18451.0, + "end": 18451.0, + "probability": 0.0 + }, + { + "start": 18451.0, + "end": 18451.0, + "probability": 0.0 + }, + { + "start": 18451.0, + "end": 18451.0, + "probability": 0.0 + }, + { + "start": 18451.0, + "end": 18451.0, + "probability": 0.0 + }, + { + "start": 18451.0, + "end": 18451.0, + "probability": 0.0 + }, + { + "start": 18451.0, + "end": 18451.0, + "probability": 0.0 + }, + { + "start": 18451.0, + "end": 18451.0, + "probability": 0.0 + }, + { + "start": 18451.0, + "end": 18451.0, + "probability": 0.0 + }, + { + "start": 18451.0, + "end": 18451.0, + "probability": 0.0 + }, + { + "start": 18451.0, + "end": 18451.0, + "probability": 0.0 + }, + { + "start": 18451.0, + "end": 18451.0, + "probability": 0.0 + }, + { + "start": 18451.0, + "end": 18451.0, + "probability": 0.0 + }, + { + "start": 18451.0, + "end": 18451.0, + "probability": 0.0 + }, + { + "start": 18451.0, + "end": 18451.0, + "probability": 0.0 + }, + { + "start": 18451.0, + "end": 18451.0, + "probability": 0.0 + }, + { + "start": 18451.0, + "end": 18451.0, + "probability": 0.0 + }, + { + "start": 18451.0, + "end": 18451.0, + "probability": 0.0 + }, + { + "start": 18451.0, + "end": 18451.0, + "probability": 0.0 + }, + { + "start": 18451.0, + "end": 18451.0, + "probability": 0.0 + }, + { + "start": 18451.0, + "end": 18451.0, + "probability": 0.0 + }, + { + "start": 18451.0, + "end": 18451.0, + "probability": 0.0 + }, + { + "start": 18451.0, + "end": 18451.0, + "probability": 0.0 + }, + { + "start": 18451.0, + "end": 18451.0, + "probability": 0.0 + }, + { + "start": 18451.0, + "end": 18451.0, + "probability": 0.0 + }, + { + "start": 18451.0, + "end": 18451.0, + "probability": 0.0 + }, + { + "start": 18451.0, + "end": 18451.0, + "probability": 0.0 + }, + { + "start": 18451.0, + "end": 18451.0, + "probability": 0.0 + }, + { + "start": 18451.0, + "end": 18451.0, + "probability": 0.0 + }, + { + "start": 18451.0, + "end": 18451.0, + "probability": 0.0 + }, + { + "start": 18451.0, + "end": 18451.0, + "probability": 0.0 + }, + { + "start": 18451.12, + "end": 18451.12, + "probability": 0.0297 + }, + { + "start": 18451.12, + "end": 18451.12, + "probability": 0.1223 + }, + { + "start": 18451.12, + "end": 18451.12, + "probability": 0.0667 + }, + { + "start": 18451.12, + "end": 18451.12, + "probability": 0.0401 + }, + { + "start": 18451.12, + "end": 18451.12, + "probability": 0.0311 + }, + { + "start": 18451.12, + "end": 18451.48, + "probability": 0.2137 + }, + { + "start": 18452.78, + "end": 18453.68, + "probability": 0.3965 + }, + { + "start": 18454.56, + "end": 18460.05, + "probability": 0.5876 + }, + { + "start": 18466.4, + "end": 18466.68, + "probability": 0.0036 + }, + { + "start": 18467.2, + "end": 18467.22, + "probability": 0.0431 + }, + { + "start": 18467.22, + "end": 18467.22, + "probability": 0.0106 + }, + { + "start": 18467.22, + "end": 18469.36, + "probability": 0.2278 + }, + { + "start": 18470.54, + "end": 18473.54, + "probability": 0.4302 + }, + { + "start": 18474.34, + "end": 18475.6, + "probability": 0.3856 + }, + { + "start": 18476.38, + "end": 18478.9, + "probability": 0.2325 + }, + { + "start": 18574.0, + "end": 18574.0, + "probability": 0.0 + }, + { + "start": 18574.0, + "end": 18574.0, + "probability": 0.0 + }, + { + "start": 18574.0, + "end": 18574.0, + "probability": 0.0 + }, + { + "start": 18574.0, + "end": 18574.0, + "probability": 0.0 + }, + { + "start": 18574.0, + "end": 18574.0, + "probability": 0.0 + }, + { + "start": 18574.0, + "end": 18574.0, + "probability": 0.0 + }, + { + "start": 18574.0, + "end": 18574.0, + "probability": 0.0 + }, + { + "start": 18574.0, + "end": 18574.0, + "probability": 0.0 + }, + { + "start": 18574.0, + "end": 18574.0, + "probability": 0.0 + }, + { + "start": 18574.0, + "end": 18574.0, + "probability": 0.0 + }, + { + "start": 18574.0, + "end": 18574.0, + "probability": 0.0 + }, + { + "start": 18574.0, + "end": 18574.0, + "probability": 0.0 + }, + { + "start": 18574.0, + "end": 18574.0, + "probability": 0.0 + }, + { + "start": 18574.0, + "end": 18574.0, + "probability": 0.0 + }, + { + "start": 18574.0, + "end": 18574.0, + "probability": 0.0 + }, + { + "start": 18574.0, + "end": 18574.0, + "probability": 0.0 + }, + { + "start": 18574.0, + "end": 18574.0, + "probability": 0.0 + }, + { + "start": 18574.0, + "end": 18574.0, + "probability": 0.0 + }, + { + "start": 18574.0, + "end": 18574.0, + "probability": 0.0 + }, + { + "start": 18574.0, + "end": 18574.0, + "probability": 0.0 + }, + { + "start": 18574.0, + "end": 18574.0, + "probability": 0.0 + }, + { + "start": 18574.0, + "end": 18574.0, + "probability": 0.0 + }, + { + "start": 18574.0, + "end": 18574.0, + "probability": 0.0 + }, + { + "start": 18574.0, + "end": 18574.0, + "probability": 0.0 + }, + { + "start": 18574.0, + "end": 18574.0, + "probability": 0.0 + }, + { + "start": 18574.0, + "end": 18574.0, + "probability": 0.0 + }, + { + "start": 18574.14, + "end": 18575.22, + "probability": 0.0674 + }, + { + "start": 18576.26, + "end": 18581.8, + "probability": 0.9686 + }, + { + "start": 18582.0, + "end": 18584.26, + "probability": 0.7228 + }, + { + "start": 18584.88, + "end": 18586.85, + "probability": 0.9431 + }, + { + "start": 18587.26, + "end": 18590.44, + "probability": 0.9805 + }, + { + "start": 18592.1, + "end": 18594.22, + "probability": 0.6779 + }, + { + "start": 18594.76, + "end": 18595.04, + "probability": 0.15 + }, + { + "start": 18595.04, + "end": 18598.1, + "probability": 0.8811 + }, + { + "start": 18598.76, + "end": 18601.08, + "probability": 0.8372 + }, + { + "start": 18602.14, + "end": 18602.14, + "probability": 0.1315 + }, + { + "start": 18602.14, + "end": 18605.06, + "probability": 0.1915 + }, + { + "start": 18605.42, + "end": 18605.8, + "probability": 0.3249 + }, + { + "start": 18605.8, + "end": 18608.52, + "probability": 0.9602 + }, + { + "start": 18608.6, + "end": 18610.4, + "probability": 0.9577 + }, + { + "start": 18610.4, + "end": 18611.0, + "probability": 0.7396 + }, + { + "start": 18611.04, + "end": 18611.5, + "probability": 0.2915 + }, + { + "start": 18612.19, + "end": 18612.55, + "probability": 0.0879 + }, + { + "start": 18613.0, + "end": 18614.06, + "probability": 0.6733 + }, + { + "start": 18614.52, + "end": 18617.4, + "probability": 0.6888 + }, + { + "start": 18617.4, + "end": 18617.86, + "probability": 0.3467 + }, + { + "start": 18618.02, + "end": 18621.26, + "probability": 0.9812 + }, + { + "start": 18621.58, + "end": 18622.46, + "probability": 0.8545 + }, + { + "start": 18622.82, + "end": 18624.12, + "probability": 0.6918 + }, + { + "start": 18624.22, + "end": 18625.64, + "probability": 0.9574 + }, + { + "start": 18625.74, + "end": 18628.14, + "probability": 0.7175 + }, + { + "start": 18628.22, + "end": 18630.41, + "probability": 0.9968 + }, + { + "start": 18630.42, + "end": 18632.62, + "probability": 0.9827 + }, + { + "start": 18632.84, + "end": 18633.54, + "probability": 0.9248 + }, + { + "start": 18633.76, + "end": 18634.54, + "probability": 0.0749 + }, + { + "start": 18634.54, + "end": 18635.4, + "probability": 0.3596 + }, + { + "start": 18636.0, + "end": 18637.44, + "probability": 0.8899 + }, + { + "start": 18637.66, + "end": 18637.98, + "probability": 0.7957 + }, + { + "start": 18638.14, + "end": 18640.7, + "probability": 0.6177 + }, + { + "start": 18641.36, + "end": 18644.08, + "probability": 0.2682 + }, + { + "start": 18644.2, + "end": 18644.48, + "probability": 0.4494 + }, + { + "start": 18644.58, + "end": 18646.22, + "probability": 0.8635 + }, + { + "start": 18646.26, + "end": 18648.44, + "probability": 0.937 + }, + { + "start": 18648.48, + "end": 18649.18, + "probability": 0.1334 + }, + { + "start": 18649.44, + "end": 18651.66, + "probability": 0.8039 + }, + { + "start": 18653.34, + "end": 18657.5, + "probability": 0.9417 + }, + { + "start": 18658.04, + "end": 18664.14, + "probability": 0.9972 + }, + { + "start": 18664.82, + "end": 18666.72, + "probability": 0.9656 + }, + { + "start": 18667.78, + "end": 18673.7, + "probability": 0.9977 + }, + { + "start": 18674.24, + "end": 18677.66, + "probability": 0.7691 + }, + { + "start": 18677.96, + "end": 18680.56, + "probability": 0.8756 + }, + { + "start": 18681.44, + "end": 18683.48, + "probability": 0.8879 + }, + { + "start": 18684.28, + "end": 18685.58, + "probability": 0.7891 + }, + { + "start": 18686.5, + "end": 18691.98, + "probability": 0.9972 + }, + { + "start": 18691.98, + "end": 18696.76, + "probability": 0.9973 + }, + { + "start": 18697.16, + "end": 18701.61, + "probability": 0.938 + }, + { + "start": 18702.18, + "end": 18703.22, + "probability": 0.8884 + }, + { + "start": 18703.26, + "end": 18703.8, + "probability": 0.5897 + }, + { + "start": 18704.52, + "end": 18708.16, + "probability": 0.9211 + }, + { + "start": 18708.34, + "end": 18710.32, + "probability": 0.9136 + }, + { + "start": 18711.86, + "end": 18712.82, + "probability": 0.8165 + }, + { + "start": 18714.76, + "end": 18716.58, + "probability": 0.9608 + }, + { + "start": 18717.16, + "end": 18721.7, + "probability": 0.9838 + }, + { + "start": 18722.34, + "end": 18729.3, + "probability": 0.9646 + }, + { + "start": 18729.56, + "end": 18730.05, + "probability": 0.8792 + }, + { + "start": 18730.44, + "end": 18731.16, + "probability": 0.932 + }, + { + "start": 18731.66, + "end": 18733.0, + "probability": 0.9948 + }, + { + "start": 18733.14, + "end": 18733.86, + "probability": 0.4192 + }, + { + "start": 18734.96, + "end": 18737.7, + "probability": 0.9482 + }, + { + "start": 18739.14, + "end": 18741.88, + "probability": 0.9736 + }, + { + "start": 18743.18, + "end": 18743.76, + "probability": 0.3826 + }, + { + "start": 18745.72, + "end": 18749.6, + "probability": 0.9872 + }, + { + "start": 18749.84, + "end": 18751.12, + "probability": 0.9713 + }, + { + "start": 18751.2, + "end": 18752.0, + "probability": 0.9351 + }, + { + "start": 18752.1, + "end": 18752.24, + "probability": 0.3224 + }, + { + "start": 18752.32, + "end": 18752.82, + "probability": 0.3232 + }, + { + "start": 18752.86, + "end": 18753.26, + "probability": 0.6524 + }, + { + "start": 18754.4, + "end": 18761.38, + "probability": 0.9845 + }, + { + "start": 18761.6, + "end": 18768.72, + "probability": 0.999 + }, + { + "start": 18769.12, + "end": 18770.84, + "probability": 0.9132 + }, + { + "start": 18770.98, + "end": 18772.02, + "probability": 0.8517 + }, + { + "start": 18772.52, + "end": 18773.5, + "probability": 0.6583 + }, + { + "start": 18773.5, + "end": 18776.48, + "probability": 0.9646 + }, + { + "start": 18776.6, + "end": 18777.34, + "probability": 0.6785 + }, + { + "start": 18777.38, + "end": 18779.98, + "probability": 0.6938 + }, + { + "start": 18780.34, + "end": 18781.34, + "probability": 0.871 + }, + { + "start": 18781.4, + "end": 18781.82, + "probability": 0.4083 + }, + { + "start": 18781.86, + "end": 18787.16, + "probability": 0.9757 + }, + { + "start": 18787.16, + "end": 18791.68, + "probability": 0.9959 + }, + { + "start": 18791.76, + "end": 18792.78, + "probability": 0.9728 + }, + { + "start": 18793.1, + "end": 18795.14, + "probability": 0.9697 + }, + { + "start": 18795.7, + "end": 18797.8, + "probability": 0.9905 + }, + { + "start": 18798.46, + "end": 18801.2, + "probability": 0.9883 + }, + { + "start": 18801.8, + "end": 18803.94, + "probability": 0.9198 + }, + { + "start": 18804.8, + "end": 18806.9, + "probability": 0.7176 + }, + { + "start": 18808.2, + "end": 18811.3, + "probability": 0.9491 + }, + { + "start": 18812.68, + "end": 18813.0, + "probability": 0.1555 + }, + { + "start": 18815.26, + "end": 18815.56, + "probability": 0.0133 + }, + { + "start": 18815.64, + "end": 18816.72, + "probability": 0.3372 + }, + { + "start": 18817.0, + "end": 18817.74, + "probability": 0.229 + }, + { + "start": 18817.98, + "end": 18819.98, + "probability": 0.9143 + }, + { + "start": 18820.56, + "end": 18821.98, + "probability": 0.7366 + }, + { + "start": 18822.94, + "end": 18824.09, + "probability": 0.9305 + }, + { + "start": 18824.92, + "end": 18826.24, + "probability": 0.2728 + }, + { + "start": 18827.44, + "end": 18828.14, + "probability": 0.3087 + }, + { + "start": 18829.34, + "end": 18830.49, + "probability": 0.3016 + }, + { + "start": 18830.72, + "end": 18831.74, + "probability": 0.9678 + }, + { + "start": 18831.94, + "end": 18832.34, + "probability": 0.1795 + }, + { + "start": 18832.38, + "end": 18833.48, + "probability": 0.8838 + }, + { + "start": 18834.16, + "end": 18835.46, + "probability": 0.5653 + }, + { + "start": 18835.52, + "end": 18838.49, + "probability": 0.9136 + }, + { + "start": 18840.26, + "end": 18840.32, + "probability": 0.5459 + }, + { + "start": 18842.88, + "end": 18844.96, + "probability": 0.3908 + }, + { + "start": 18845.6, + "end": 18848.07, + "probability": 0.8066 + }, + { + "start": 18849.26, + "end": 18852.76, + "probability": 0.9582 + }, + { + "start": 18852.86, + "end": 18854.66, + "probability": 0.4998 + }, + { + "start": 18855.78, + "end": 18860.78, + "probability": 0.6386 + }, + { + "start": 18861.04, + "end": 18861.78, + "probability": 0.5548 + }, + { + "start": 18861.84, + "end": 18862.58, + "probability": 0.7512 + }, + { + "start": 18862.62, + "end": 18863.76, + "probability": 0.7542 + }, + { + "start": 18865.96, + "end": 18867.48, + "probability": 0.5962 + }, + { + "start": 18868.76, + "end": 18872.16, + "probability": 0.9971 + }, + { + "start": 18872.56, + "end": 18874.4, + "probability": 0.9342 + }, + { + "start": 18874.4, + "end": 18878.76, + "probability": 0.9833 + }, + { + "start": 18880.08, + "end": 18881.33, + "probability": 0.965 + }, + { + "start": 18881.56, + "end": 18885.46, + "probability": 0.9972 + }, + { + "start": 18886.2, + "end": 18887.68, + "probability": 0.9974 + }, + { + "start": 18888.84, + "end": 18891.98, + "probability": 0.9705 + }, + { + "start": 18893.26, + "end": 18894.23, + "probability": 0.5828 + }, + { + "start": 18894.6, + "end": 18896.44, + "probability": 0.4999 + }, + { + "start": 18896.52, + "end": 18896.74, + "probability": 0.8798 + }, + { + "start": 18896.8, + "end": 18899.56, + "probability": 0.9771 + }, + { + "start": 18899.66, + "end": 18900.52, + "probability": 0.8793 + }, + { + "start": 18900.8, + "end": 18903.84, + "probability": 0.9937 + }, + { + "start": 18904.8, + "end": 18910.8, + "probability": 0.9869 + }, + { + "start": 18911.04, + "end": 18911.04, + "probability": 0.5777 + }, + { + "start": 18911.08, + "end": 18912.93, + "probability": 0.9096 + }, + { + "start": 18915.14, + "end": 18918.8, + "probability": 0.6782 + }, + { + "start": 18919.06, + "end": 18919.72, + "probability": 0.807 + }, + { + "start": 18920.22, + "end": 18924.44, + "probability": 0.8449 + }, + { + "start": 18925.84, + "end": 18930.38, + "probability": 0.9921 + }, + { + "start": 18931.28, + "end": 18935.6, + "probability": 0.9736 + }, + { + "start": 18937.38, + "end": 18941.2, + "probability": 0.9497 + }, + { + "start": 18941.72, + "end": 18944.5, + "probability": 0.9939 + }, + { + "start": 18945.3, + "end": 18948.5, + "probability": 0.7103 + }, + { + "start": 18948.68, + "end": 18950.29, + "probability": 0.9814 + }, + { + "start": 18950.54, + "end": 18951.96, + "probability": 0.9851 + }, + { + "start": 18952.12, + "end": 18955.38, + "probability": 0.9918 + }, + { + "start": 18955.38, + "end": 18957.8, + "probability": 0.8545 + }, + { + "start": 18958.02, + "end": 18958.8, + "probability": 0.8608 + }, + { + "start": 18958.82, + "end": 18959.74, + "probability": 0.8252 + }, + { + "start": 18965.94, + "end": 18969.76, + "probability": 0.7682 + }, + { + "start": 18969.82, + "end": 18971.03, + "probability": 0.9258 + }, + { + "start": 18972.0, + "end": 18972.88, + "probability": 0.6578 + }, + { + "start": 18973.08, + "end": 18973.32, + "probability": 0.9864 + }, + { + "start": 18973.48, + "end": 18974.72, + "probability": 0.9757 + }, + { + "start": 18974.78, + "end": 18978.66, + "probability": 0.9701 + }, + { + "start": 18979.76, + "end": 18981.82, + "probability": 0.9561 + }, + { + "start": 18982.54, + "end": 18983.36, + "probability": 0.5677 + }, + { + "start": 18983.48, + "end": 18985.54, + "probability": 0.7069 + }, + { + "start": 18985.7, + "end": 18989.02, + "probability": 0.9837 + }, + { + "start": 18989.28, + "end": 18990.44, + "probability": 0.9528 + }, + { + "start": 18991.63, + "end": 18995.02, + "probability": 0.9904 + }, + { + "start": 18995.86, + "end": 18996.72, + "probability": 0.9546 + }, + { + "start": 18997.6, + "end": 19000.78, + "probability": 0.9865 + }, + { + "start": 19001.34, + "end": 19005.86, + "probability": 0.512 + }, + { + "start": 19007.24, + "end": 19008.69, + "probability": 0.5156 + }, + { + "start": 19008.78, + "end": 19010.42, + "probability": 0.9356 + }, + { + "start": 19011.52, + "end": 19013.88, + "probability": 0.7974 + }, + { + "start": 19014.02, + "end": 19015.58, + "probability": 0.3996 + }, + { + "start": 19015.66, + "end": 19018.6, + "probability": 0.9891 + }, + { + "start": 19018.66, + "end": 19019.08, + "probability": 0.7329 + }, + { + "start": 19019.52, + "end": 19021.44, + "probability": 0.9574 + }, + { + "start": 19022.24, + "end": 19030.24, + "probability": 0.9988 + }, + { + "start": 19030.88, + "end": 19034.86, + "probability": 0.9748 + }, + { + "start": 19035.96, + "end": 19039.68, + "probability": 0.6193 + }, + { + "start": 19041.32, + "end": 19042.28, + "probability": 0.8737 + }, + { + "start": 19042.34, + "end": 19045.58, + "probability": 0.9944 + }, + { + "start": 19046.3, + "end": 19047.38, + "probability": 0.9437 + }, + { + "start": 19047.64, + "end": 19048.64, + "probability": 0.9395 + }, + { + "start": 19048.92, + "end": 19049.98, + "probability": 0.9797 + }, + { + "start": 19050.86, + "end": 19052.3, + "probability": 0.9883 + }, + { + "start": 19052.92, + "end": 19055.72, + "probability": 0.9963 + }, + { + "start": 19056.76, + "end": 19062.04, + "probability": 0.991 + }, + { + "start": 19063.36, + "end": 19068.1, + "probability": 0.9543 + }, + { + "start": 19068.24, + "end": 19069.46, + "probability": 0.9399 + }, + { + "start": 19069.54, + "end": 19071.12, + "probability": 0.9973 + }, + { + "start": 19071.6, + "end": 19073.3, + "probability": 0.9541 + }, + { + "start": 19074.0, + "end": 19076.56, + "probability": 0.9236 + }, + { + "start": 19076.72, + "end": 19079.36, + "probability": 0.9931 + }, + { + "start": 19080.12, + "end": 19083.5, + "probability": 0.9591 + }, + { + "start": 19084.7, + "end": 19085.94, + "probability": 0.8634 + }, + { + "start": 19086.34, + "end": 19090.24, + "probability": 0.6266 + }, + { + "start": 19092.0, + "end": 19094.48, + "probability": 0.7515 + }, + { + "start": 19096.12, + "end": 19096.48, + "probability": 0.6802 + }, + { + "start": 19097.18, + "end": 19098.16, + "probability": 0.0662 + }, + { + "start": 19098.6, + "end": 19099.38, + "probability": 0.0584 + }, + { + "start": 19116.64, + "end": 19119.64, + "probability": 0.9321 + }, + { + "start": 19119.72, + "end": 19121.1, + "probability": 0.7235 + }, + { + "start": 19122.42, + "end": 19123.0, + "probability": 0.948 + }, + { + "start": 19123.42, + "end": 19125.06, + "probability": 0.964 + }, + { + "start": 19125.44, + "end": 19129.98, + "probability": 0.9159 + }, + { + "start": 19131.38, + "end": 19133.44, + "probability": 0.7728 + }, + { + "start": 19134.44, + "end": 19135.7, + "probability": 0.9586 + }, + { + "start": 19136.92, + "end": 19138.62, + "probability": 0.9935 + }, + { + "start": 19138.9, + "end": 19140.74, + "probability": 0.9837 + }, + { + "start": 19141.1, + "end": 19142.54, + "probability": 0.9826 + }, + { + "start": 19142.94, + "end": 19144.34, + "probability": 0.9769 + }, + { + "start": 19144.68, + "end": 19145.88, + "probability": 0.9884 + }, + { + "start": 19145.96, + "end": 19146.9, + "probability": 0.7824 + }, + { + "start": 19146.94, + "end": 19148.18, + "probability": 0.9715 + }, + { + "start": 19149.04, + "end": 19149.58, + "probability": 0.9604 + }, + { + "start": 19150.28, + "end": 19151.3, + "probability": 0.9403 + }, + { + "start": 19151.7, + "end": 19153.82, + "probability": 0.9316 + }, + { + "start": 19154.7, + "end": 19156.01, + "probability": 0.8597 + }, + { + "start": 19156.82, + "end": 19158.08, + "probability": 0.8403 + }, + { + "start": 19158.16, + "end": 19158.73, + "probability": 0.9924 + }, + { + "start": 19159.7, + "end": 19160.92, + "probability": 0.8966 + }, + { + "start": 19161.12, + "end": 19162.32, + "probability": 0.9185 + }, + { + "start": 19162.42, + "end": 19163.92, + "probability": 0.9368 + }, + { + "start": 19163.92, + "end": 19164.28, + "probability": 0.5643 + }, + { + "start": 19164.72, + "end": 19168.44, + "probability": 0.9159 + }, + { + "start": 19168.9, + "end": 19171.1, + "probability": 0.9899 + }, + { + "start": 19171.48, + "end": 19172.74, + "probability": 0.9196 + }, + { + "start": 19173.22, + "end": 19174.08, + "probability": 0.9836 + }, + { + "start": 19174.16, + "end": 19174.91, + "probability": 0.9951 + }, + { + "start": 19175.52, + "end": 19177.3, + "probability": 0.9705 + }, + { + "start": 19177.9, + "end": 19179.22, + "probability": 0.9837 + }, + { + "start": 19179.84, + "end": 19180.58, + "probability": 0.9804 + }, + { + "start": 19180.84, + "end": 19184.36, + "probability": 0.9824 + }, + { + "start": 19184.84, + "end": 19185.16, + "probability": 0.7649 + }, + { + "start": 19185.4, + "end": 19186.44, + "probability": 0.9932 + }, + { + "start": 19187.36, + "end": 19189.44, + "probability": 0.943 + }, + { + "start": 19189.52, + "end": 19190.82, + "probability": 0.9139 + }, + { + "start": 19191.4, + "end": 19192.8, + "probability": 0.9817 + }, + { + "start": 19193.04, + "end": 19193.98, + "probability": 0.9355 + }, + { + "start": 19194.4, + "end": 19198.5, + "probability": 0.9992 + }, + { + "start": 19199.14, + "end": 19202.04, + "probability": 0.9775 + }, + { + "start": 19202.32, + "end": 19203.38, + "probability": 0.7516 + }, + { + "start": 19203.8, + "end": 19206.82, + "probability": 0.9924 + }, + { + "start": 19206.9, + "end": 19208.86, + "probability": 0.8981 + }, + { + "start": 19209.4, + "end": 19211.83, + "probability": 0.9953 + }, + { + "start": 19212.38, + "end": 19213.78, + "probability": 0.9256 + }, + { + "start": 19213.82, + "end": 19215.92, + "probability": 0.9166 + }, + { + "start": 19216.12, + "end": 19217.56, + "probability": 0.9851 + }, + { + "start": 19218.1, + "end": 19218.84, + "probability": 0.9976 + }, + { + "start": 19219.82, + "end": 19220.1, + "probability": 0.3083 + }, + { + "start": 19220.16, + "end": 19222.44, + "probability": 0.9913 + }, + { + "start": 19222.5, + "end": 19224.88, + "probability": 0.9707 + }, + { + "start": 19225.44, + "end": 19226.98, + "probability": 0.9902 + }, + { + "start": 19227.66, + "end": 19229.08, + "probability": 0.9883 + }, + { + "start": 19229.34, + "end": 19230.92, + "probability": 0.9653 + }, + { + "start": 19231.16, + "end": 19231.52, + "probability": 0.6029 + }, + { + "start": 19231.98, + "end": 19232.86, + "probability": 0.5975 + }, + { + "start": 19233.0, + "end": 19236.11, + "probability": 0.7654 + }, + { + "start": 19236.52, + "end": 19239.01, + "probability": 0.6469 + }, + { + "start": 19244.12, + "end": 19245.74, + "probability": 0.6779 + }, + { + "start": 19246.54, + "end": 19247.06, + "probability": 0.9063 + }, + { + "start": 19247.86, + "end": 19250.16, + "probability": 0.9788 + }, + { + "start": 19250.26, + "end": 19251.14, + "probability": 0.7295 + }, + { + "start": 19252.57, + "end": 19255.24, + "probability": 0.6837 + }, + { + "start": 19255.4, + "end": 19258.72, + "probability": 0.7732 + }, + { + "start": 19258.84, + "end": 19262.42, + "probability": 0.9525 + }, + { + "start": 19263.18, + "end": 19265.96, + "probability": 0.9259 + }, + { + "start": 19266.1, + "end": 19267.96, + "probability": 0.9724 + }, + { + "start": 19268.02, + "end": 19268.72, + "probability": 0.7275 + }, + { + "start": 19269.14, + "end": 19270.08, + "probability": 0.9441 + }, + { + "start": 19287.82, + "end": 19289.02, + "probability": 0.6738 + }, + { + "start": 19290.02, + "end": 19291.44, + "probability": 0.8319 + }, + { + "start": 19291.56, + "end": 19293.78, + "probability": 0.6369 + }, + { + "start": 19293.84, + "end": 19295.18, + "probability": 0.8887 + }, + { + "start": 19296.14, + "end": 19299.36, + "probability": 0.8781 + }, + { + "start": 19300.46, + "end": 19304.54, + "probability": 0.9987 + }, + { + "start": 19305.78, + "end": 19309.98, + "probability": 0.994 + }, + { + "start": 19309.98, + "end": 19315.32, + "probability": 0.9986 + }, + { + "start": 19315.52, + "end": 19316.82, + "probability": 0.696 + }, + { + "start": 19317.4, + "end": 19319.14, + "probability": 0.7876 + }, + { + "start": 19319.66, + "end": 19322.34, + "probability": 0.9793 + }, + { + "start": 19322.34, + "end": 19326.46, + "probability": 0.9873 + }, + { + "start": 19327.52, + "end": 19330.62, + "probability": 0.9985 + }, + { + "start": 19330.62, + "end": 19334.48, + "probability": 0.9989 + }, + { + "start": 19334.82, + "end": 19336.04, + "probability": 0.8802 + }, + { + "start": 19336.62, + "end": 19341.54, + "probability": 0.9966 + }, + { + "start": 19341.84, + "end": 19344.52, + "probability": 0.8721 + }, + { + "start": 19345.0, + "end": 19348.76, + "probability": 0.9963 + }, + { + "start": 19349.6, + "end": 19351.46, + "probability": 0.7756 + }, + { + "start": 19351.46, + "end": 19352.6, + "probability": 0.7564 + }, + { + "start": 19353.06, + "end": 19358.32, + "probability": 0.9888 + }, + { + "start": 19359.02, + "end": 19367.22, + "probability": 0.9863 + }, + { + "start": 19368.28, + "end": 19370.45, + "probability": 0.997 + }, + { + "start": 19371.44, + "end": 19374.58, + "probability": 0.9947 + }, + { + "start": 19375.12, + "end": 19380.61, + "probability": 0.9941 + }, + { + "start": 19381.14, + "end": 19382.38, + "probability": 0.7799 + }, + { + "start": 19383.2, + "end": 19386.61, + "probability": 0.1109 + }, + { + "start": 19387.96, + "end": 19389.04, + "probability": 0.0884 + }, + { + "start": 19389.04, + "end": 19390.74, + "probability": 0.9077 + }, + { + "start": 19390.86, + "end": 19396.52, + "probability": 0.9844 + }, + { + "start": 19397.1, + "end": 19400.1, + "probability": 0.9938 + }, + { + "start": 19401.04, + "end": 19407.06, + "probability": 0.9741 + }, + { + "start": 19407.68, + "end": 19410.06, + "probability": 0.992 + }, + { + "start": 19410.62, + "end": 19414.66, + "probability": 0.919 + }, + { + "start": 19415.38, + "end": 19419.18, + "probability": 0.998 + }, + { + "start": 19419.18, + "end": 19423.54, + "probability": 0.998 + }, + { + "start": 19424.16, + "end": 19425.28, + "probability": 0.8848 + }, + { + "start": 19425.92, + "end": 19429.42, + "probability": 0.9979 + }, + { + "start": 19429.42, + "end": 19433.48, + "probability": 0.9982 + }, + { + "start": 19434.3, + "end": 19434.5, + "probability": 0.4693 + }, + { + "start": 19434.62, + "end": 19436.5, + "probability": 0.9664 + }, + { + "start": 19436.92, + "end": 19437.42, + "probability": 0.3347 + }, + { + "start": 19437.54, + "end": 19438.68, + "probability": 0.8138 + }, + { + "start": 19438.92, + "end": 19440.2, + "probability": 0.8495 + }, + { + "start": 19440.6, + "end": 19444.22, + "probability": 0.9954 + }, + { + "start": 19444.22, + "end": 19448.86, + "probability": 0.9797 + }, + { + "start": 19449.18, + "end": 19452.76, + "probability": 0.9866 + }, + { + "start": 19454.02, + "end": 19456.0, + "probability": 0.8105 + }, + { + "start": 19456.5, + "end": 19458.95, + "probability": 0.8894 + }, + { + "start": 19459.36, + "end": 19462.8, + "probability": 0.9546 + }, + { + "start": 19463.4, + "end": 19466.22, + "probability": 0.9436 + }, + { + "start": 19466.94, + "end": 19471.28, + "probability": 0.9907 + }, + { + "start": 19471.74, + "end": 19474.8, + "probability": 0.9904 + }, + { + "start": 19475.86, + "end": 19479.96, + "probability": 0.9522 + }, + { + "start": 19481.44, + "end": 19483.74, + "probability": 0.9943 + }, + { + "start": 19483.9, + "end": 19484.36, + "probability": 0.7882 + }, + { + "start": 19484.5, + "end": 19486.4, + "probability": 0.8576 + }, + { + "start": 19487.06, + "end": 19488.44, + "probability": 0.9108 + }, + { + "start": 19488.96, + "end": 19490.38, + "probability": 0.941 + }, + { + "start": 19490.82, + "end": 19492.78, + "probability": 0.9773 + }, + { + "start": 19493.18, + "end": 19496.62, + "probability": 0.998 + }, + { + "start": 19497.26, + "end": 19499.76, + "probability": 0.9767 + }, + { + "start": 19500.46, + "end": 19503.66, + "probability": 0.8631 + }, + { + "start": 19504.58, + "end": 19507.78, + "probability": 0.9979 + }, + { + "start": 19508.34, + "end": 19510.01, + "probability": 0.9953 + }, + { + "start": 19510.6, + "end": 19515.42, + "probability": 0.9658 + }, + { + "start": 19516.34, + "end": 19517.64, + "probability": 0.9227 + }, + { + "start": 19517.92, + "end": 19519.25, + "probability": 0.8914 + }, + { + "start": 19520.92, + "end": 19523.16, + "probability": 0.979 + }, + { + "start": 19524.0, + "end": 19529.96, + "probability": 0.9978 + }, + { + "start": 19530.68, + "end": 19531.3, + "probability": 0.959 + }, + { + "start": 19533.82, + "end": 19538.14, + "probability": 0.8186 + }, + { + "start": 19538.66, + "end": 19541.26, + "probability": 0.8896 + }, + { + "start": 19541.66, + "end": 19542.88, + "probability": 0.9518 + }, + { + "start": 19543.36, + "end": 19545.7, + "probability": 0.9932 + }, + { + "start": 19546.08, + "end": 19547.58, + "probability": 0.9194 + }, + { + "start": 19548.22, + "end": 19550.82, + "probability": 0.9575 + }, + { + "start": 19551.54, + "end": 19558.42, + "probability": 0.9703 + }, + { + "start": 19559.1, + "end": 19561.66, + "probability": 0.9401 + }, + { + "start": 19563.26, + "end": 19565.8, + "probability": 0.9706 + }, + { + "start": 19566.6, + "end": 19567.46, + "probability": 0.7124 + }, + { + "start": 19567.76, + "end": 19571.1, + "probability": 0.8174 + }, + { + "start": 19573.11, + "end": 19579.22, + "probability": 0.9 + }, + { + "start": 19580.74, + "end": 19581.32, + "probability": 0.45 + }, + { + "start": 19581.32, + "end": 19582.24, + "probability": 0.4255 + }, + { + "start": 19582.4, + "end": 19584.67, + "probability": 0.9291 + }, + { + "start": 19585.44, + "end": 19586.96, + "probability": 0.7506 + }, + { + "start": 19587.16, + "end": 19591.2, + "probability": 0.9905 + }, + { + "start": 19591.32, + "end": 19592.68, + "probability": 0.8916 + }, + { + "start": 19593.96, + "end": 19598.3, + "probability": 0.7902 + }, + { + "start": 19598.4, + "end": 19599.1, + "probability": 0.5418 + }, + { + "start": 19599.14, + "end": 19601.74, + "probability": 0.9915 + }, + { + "start": 19602.4, + "end": 19607.38, + "probability": 0.9928 + }, + { + "start": 19607.86, + "end": 19610.14, + "probability": 0.996 + }, + { + "start": 19610.96, + "end": 19612.5, + "probability": 0.9709 + }, + { + "start": 19612.76, + "end": 19617.96, + "probability": 0.9824 + }, + { + "start": 19618.94, + "end": 19621.8, + "probability": 0.9983 + }, + { + "start": 19622.6, + "end": 19625.28, + "probability": 0.861 + }, + { + "start": 19626.16, + "end": 19630.78, + "probability": 0.9927 + }, + { + "start": 19630.78, + "end": 19635.32, + "probability": 0.998 + }, + { + "start": 19636.04, + "end": 19641.0, + "probability": 0.9784 + }, + { + "start": 19641.72, + "end": 19643.68, + "probability": 0.8374 + }, + { + "start": 19644.3, + "end": 19645.96, + "probability": 0.9869 + }, + { + "start": 19646.1, + "end": 19646.89, + "probability": 0.9893 + }, + { + "start": 19647.32, + "end": 19649.3, + "probability": 0.9992 + }, + { + "start": 19650.06, + "end": 19652.62, + "probability": 0.998 + }, + { + "start": 19653.22, + "end": 19655.94, + "probability": 0.5308 + }, + { + "start": 19656.56, + "end": 19663.48, + "probability": 0.9832 + }, + { + "start": 19664.14, + "end": 19672.56, + "probability": 0.9934 + }, + { + "start": 19672.56, + "end": 19676.86, + "probability": 0.9937 + }, + { + "start": 19677.92, + "end": 19683.46, + "probability": 0.9757 + }, + { + "start": 19683.46, + "end": 19687.96, + "probability": 0.999 + }, + { + "start": 19688.34, + "end": 19689.08, + "probability": 0.655 + }, + { + "start": 19689.62, + "end": 19692.2, + "probability": 0.9761 + }, + { + "start": 19692.98, + "end": 19700.14, + "probability": 0.9964 + }, + { + "start": 19700.14, + "end": 19709.12, + "probability": 0.9995 + }, + { + "start": 19709.36, + "end": 19710.96, + "probability": 0.5265 + }, + { + "start": 19711.06, + "end": 19714.02, + "probability": 0.8803 + }, + { + "start": 19714.52, + "end": 19723.96, + "probability": 0.9941 + }, + { + "start": 19724.08, + "end": 19731.38, + "probability": 0.999 + }, + { + "start": 19731.58, + "end": 19734.78, + "probability": 0.988 + }, + { + "start": 19734.78, + "end": 19738.88, + "probability": 0.9985 + }, + { + "start": 19738.98, + "end": 19740.46, + "probability": 0.645 + }, + { + "start": 19740.62, + "end": 19742.92, + "probability": 0.7763 + }, + { + "start": 19743.72, + "end": 19746.02, + "probability": 0.8922 + }, + { + "start": 19746.76, + "end": 19749.72, + "probability": 0.9595 + }, + { + "start": 19750.42, + "end": 19751.12, + "probability": 0.9886 + }, + { + "start": 19751.82, + "end": 19754.42, + "probability": 0.9941 + }, + { + "start": 19754.72, + "end": 19756.9, + "probability": 0.8125 + }, + { + "start": 19757.38, + "end": 19761.06, + "probability": 0.9168 + }, + { + "start": 19761.06, + "end": 19764.0, + "probability": 0.9919 + }, + { + "start": 19764.36, + "end": 19766.0, + "probability": 0.8106 + }, + { + "start": 19766.22, + "end": 19767.02, + "probability": 0.8597 + }, + { + "start": 19767.1, + "end": 19767.74, + "probability": 0.8293 + }, + { + "start": 19768.64, + "end": 19771.04, + "probability": 0.9893 + }, + { + "start": 19771.86, + "end": 19773.13, + "probability": 0.8315 + }, + { + "start": 19773.58, + "end": 19774.88, + "probability": 0.9817 + }, + { + "start": 19774.98, + "end": 19776.14, + "probability": 0.8243 + }, + { + "start": 19776.38, + "end": 19776.8, + "probability": 0.9844 + }, + { + "start": 19780.4, + "end": 19783.7, + "probability": 0.2157 + }, + { + "start": 19783.9, + "end": 19787.74, + "probability": 0.5277 + }, + { + "start": 19788.14, + "end": 19788.14, + "probability": 0.0424 + }, + { + "start": 19788.14, + "end": 19789.7, + "probability": 0.6423 + }, + { + "start": 19792.16, + "end": 19793.52, + "probability": 0.3392 + }, + { + "start": 19793.52, + "end": 19796.16, + "probability": 0.1678 + }, + { + "start": 19796.16, + "end": 19798.28, + "probability": 0.5584 + }, + { + "start": 19798.32, + "end": 19800.22, + "probability": 0.7619 + }, + { + "start": 19800.74, + "end": 19802.06, + "probability": 0.6129 + }, + { + "start": 19802.12, + "end": 19802.9, + "probability": 0.8937 + }, + { + "start": 19803.36, + "end": 19808.64, + "probability": 0.9971 + }, + { + "start": 19809.16, + "end": 19811.56, + "probability": 0.4847 + }, + { + "start": 19811.7, + "end": 19814.62, + "probability": 0.901 + }, + { + "start": 19815.42, + "end": 19819.92, + "probability": 0.9937 + }, + { + "start": 19820.34, + "end": 19822.84, + "probability": 0.9373 + }, + { + "start": 19823.34, + "end": 19827.38, + "probability": 0.9922 + }, + { + "start": 19828.16, + "end": 19830.18, + "probability": 0.9762 + }, + { + "start": 19831.03, + "end": 19840.98, + "probability": 0.9625 + }, + { + "start": 19840.98, + "end": 19848.44, + "probability": 0.9955 + }, + { + "start": 19849.14, + "end": 19852.78, + "probability": 0.8719 + }, + { + "start": 19853.42, + "end": 19856.28, + "probability": 0.8679 + }, + { + "start": 19856.52, + "end": 19859.78, + "probability": 0.9941 + }, + { + "start": 19860.22, + "end": 19861.24, + "probability": 0.8102 + }, + { + "start": 19862.0, + "end": 19866.62, + "probability": 0.988 + }, + { + "start": 19866.8, + "end": 19871.78, + "probability": 0.9851 + }, + { + "start": 19871.78, + "end": 19877.0, + "probability": 0.9483 + }, + { + "start": 19877.04, + "end": 19879.12, + "probability": 0.4883 + }, + { + "start": 19880.14, + "end": 19881.36, + "probability": 0.8024 + }, + { + "start": 19882.56, + "end": 19884.8, + "probability": 0.8903 + }, + { + "start": 19885.86, + "end": 19887.4, + "probability": 0.9272 + }, + { + "start": 19889.26, + "end": 19893.54, + "probability": 0.9658 + }, + { + "start": 19894.4, + "end": 19895.04, + "probability": 0.6689 + }, + { + "start": 19895.14, + "end": 19897.62, + "probability": 0.8813 + }, + { + "start": 19897.66, + "end": 19900.22, + "probability": 0.9878 + }, + { + "start": 19901.24, + "end": 19907.2, + "probability": 0.9786 + }, + { + "start": 19907.2, + "end": 19913.5, + "probability": 0.9896 + }, + { + "start": 19913.58, + "end": 19914.16, + "probability": 0.382 + }, + { + "start": 19914.18, + "end": 19916.7, + "probability": 0.9086 + }, + { + "start": 19916.84, + "end": 19918.05, + "probability": 0.7935 + }, + { + "start": 19918.66, + "end": 19923.06, + "probability": 0.9867 + }, + { + "start": 19923.6, + "end": 19924.12, + "probability": 0.9578 + }, + { + "start": 19924.58, + "end": 19925.92, + "probability": 0.949 + }, + { + "start": 19926.0, + "end": 19928.56, + "probability": 0.6932 + }, + { + "start": 19928.6, + "end": 19929.34, + "probability": 0.5 + }, + { + "start": 19929.48, + "end": 19930.44, + "probability": 0.6743 + }, + { + "start": 19930.52, + "end": 19931.8, + "probability": 0.1991 + }, + { + "start": 19932.3, + "end": 19935.74, + "probability": 0.9924 + }, + { + "start": 19935.74, + "end": 19940.88, + "probability": 0.8103 + }, + { + "start": 19940.94, + "end": 19941.34, + "probability": 0.6998 + }, + { + "start": 19942.36, + "end": 19942.36, + "probability": 0.446 + }, + { + "start": 19942.36, + "end": 19944.5, + "probability": 0.7919 + }, + { + "start": 19945.72, + "end": 19946.14, + "probability": 0.946 + }, + { + "start": 19946.34, + "end": 19950.34, + "probability": 0.8491 + }, + { + "start": 19950.46, + "end": 19952.0, + "probability": 0.9327 + }, + { + "start": 19953.2, + "end": 19954.42, + "probability": 0.6603 + }, + { + "start": 19954.8, + "end": 19956.48, + "probability": 0.3664 + }, + { + "start": 19957.02, + "end": 19957.86, + "probability": 0.4149 + }, + { + "start": 19959.72, + "end": 19963.32, + "probability": 0.6963 + }, + { + "start": 19963.9, + "end": 19965.3, + "probability": 0.6492 + }, + { + "start": 19965.3, + "end": 19966.6, + "probability": 0.8911 + }, + { + "start": 19967.34, + "end": 19969.02, + "probability": 0.8841 + }, + { + "start": 19969.76, + "end": 19971.3, + "probability": 0.8809 + }, + { + "start": 19971.32, + "end": 19973.06, + "probability": 0.5394 + }, + { + "start": 19973.56, + "end": 19976.44, + "probability": 0.6661 + }, + { + "start": 19976.48, + "end": 19977.24, + "probability": 0.7081 + }, + { + "start": 19978.32, + "end": 19979.44, + "probability": 0.6138 + }, + { + "start": 19979.64, + "end": 19980.24, + "probability": 0.9549 + }, + { + "start": 19980.34, + "end": 19982.58, + "probability": 0.7703 + }, + { + "start": 19982.98, + "end": 19988.98, + "probability": 0.9678 + }, + { + "start": 19988.98, + "end": 19993.96, + "probability": 0.993 + }, + { + "start": 19994.86, + "end": 19998.74, + "probability": 0.9952 + }, + { + "start": 19999.34, + "end": 20003.7, + "probability": 0.9358 + }, + { + "start": 20004.22, + "end": 20006.7, + "probability": 0.8936 + }, + { + "start": 20007.16, + "end": 20008.51, + "probability": 0.9586 + }, + { + "start": 20009.26, + "end": 20014.64, + "probability": 0.9917 + }, + { + "start": 20014.84, + "end": 20020.0, + "probability": 0.9989 + }, + { + "start": 20020.82, + "end": 20023.92, + "probability": 0.8811 + }, + { + "start": 20023.98, + "end": 20027.1, + "probability": 0.9386 + }, + { + "start": 20027.9, + "end": 20029.72, + "probability": 0.9423 + }, + { + "start": 20030.94, + "end": 20032.06, + "probability": 0.9304 + }, + { + "start": 20032.72, + "end": 20035.14, + "probability": 0.9971 + }, + { + "start": 20036.52, + "end": 20041.0, + "probability": 0.9749 + }, + { + "start": 20041.94, + "end": 20044.98, + "probability": 0.9934 + }, + { + "start": 20045.7, + "end": 20047.76, + "probability": 0.8838 + }, + { + "start": 20049.1, + "end": 20054.54, + "probability": 0.8119 + }, + { + "start": 20055.02, + "end": 20057.94, + "probability": 0.8207 + }, + { + "start": 20058.76, + "end": 20066.04, + "probability": 0.9769 + }, + { + "start": 20067.3, + "end": 20070.26, + "probability": 0.939 + }, + { + "start": 20071.44, + "end": 20078.46, + "probability": 0.993 + }, + { + "start": 20079.74, + "end": 20080.74, + "probability": 0.9937 + }, + { + "start": 20081.58, + "end": 20083.16, + "probability": 0.9692 + }, + { + "start": 20083.92, + "end": 20086.08, + "probability": 0.9937 + }, + { + "start": 20086.96, + "end": 20092.42, + "probability": 0.9621 + }, + { + "start": 20093.08, + "end": 20096.02, + "probability": 0.9749 + }, + { + "start": 20096.02, + "end": 20098.86, + "probability": 0.991 + }, + { + "start": 20099.26, + "end": 20101.84, + "probability": 0.9585 + }, + { + "start": 20102.88, + "end": 20105.72, + "probability": 0.8735 + }, + { + "start": 20105.96, + "end": 20107.64, + "probability": 0.9993 + }, + { + "start": 20108.52, + "end": 20110.5, + "probability": 0.9331 + }, + { + "start": 20110.68, + "end": 20114.44, + "probability": 0.939 + }, + { + "start": 20115.36, + "end": 20119.48, + "probability": 0.9964 + }, + { + "start": 20121.34, + "end": 20127.58, + "probability": 0.9387 + }, + { + "start": 20127.58, + "end": 20131.04, + "probability": 0.9994 + }, + { + "start": 20132.08, + "end": 20133.62, + "probability": 0.7933 + }, + { + "start": 20135.02, + "end": 20138.14, + "probability": 0.8649 + }, + { + "start": 20139.16, + "end": 20142.18, + "probability": 0.9815 + }, + { + "start": 20143.06, + "end": 20146.92, + "probability": 0.9912 + }, + { + "start": 20148.17, + "end": 20152.08, + "probability": 0.9861 + }, + { + "start": 20152.08, + "end": 20154.66, + "probability": 0.9851 + }, + { + "start": 20155.7, + "end": 20157.16, + "probability": 0.8169 + }, + { + "start": 20158.56, + "end": 20162.92, + "probability": 0.9832 + }, + { + "start": 20163.38, + "end": 20164.8, + "probability": 0.6585 + }, + { + "start": 20165.64, + "end": 20169.36, + "probability": 0.9963 + }, + { + "start": 20169.62, + "end": 20170.38, + "probability": 0.985 + }, + { + "start": 20171.0, + "end": 20177.5, + "probability": 0.9901 + }, + { + "start": 20178.24, + "end": 20180.6, + "probability": 0.76 + }, + { + "start": 20181.3, + "end": 20182.42, + "probability": 0.9202 + }, + { + "start": 20183.14, + "end": 20184.42, + "probability": 0.5972 + }, + { + "start": 20184.9, + "end": 20186.26, + "probability": 0.9907 + }, + { + "start": 20186.94, + "end": 20188.0, + "probability": 0.7314 + }, + { + "start": 20188.94, + "end": 20190.26, + "probability": 0.882 + }, + { + "start": 20191.82, + "end": 20196.86, + "probability": 0.9967 + }, + { + "start": 20197.9, + "end": 20199.97, + "probability": 0.9869 + }, + { + "start": 20201.32, + "end": 20205.48, + "probability": 0.9429 + }, + { + "start": 20206.06, + "end": 20210.7, + "probability": 0.9848 + }, + { + "start": 20211.3, + "end": 20213.84, + "probability": 0.9761 + }, + { + "start": 20213.88, + "end": 20214.76, + "probability": 0.8464 + }, + { + "start": 20214.76, + "end": 20216.44, + "probability": 0.9867 + }, + { + "start": 20217.5, + "end": 20220.52, + "probability": 0.5615 + }, + { + "start": 20221.12, + "end": 20223.72, + "probability": 0.8041 + }, + { + "start": 20224.46, + "end": 20224.96, + "probability": 0.8829 + }, + { + "start": 20225.02, + "end": 20226.3, + "probability": 0.9011 + }, + { + "start": 20226.94, + "end": 20231.3, + "probability": 0.9349 + }, + { + "start": 20232.12, + "end": 20235.36, + "probability": 0.9592 + }, + { + "start": 20235.4, + "end": 20236.64, + "probability": 0.9843 + }, + { + "start": 20237.22, + "end": 20238.18, + "probability": 0.7806 + }, + { + "start": 20238.2, + "end": 20238.9, + "probability": 0.8772 + }, + { + "start": 20239.0, + "end": 20241.92, + "probability": 0.9464 + }, + { + "start": 20242.66, + "end": 20247.3, + "probability": 0.9816 + }, + { + "start": 20248.0, + "end": 20249.46, + "probability": 0.811 + }, + { + "start": 20249.58, + "end": 20254.72, + "probability": 0.9951 + }, + { + "start": 20254.72, + "end": 20259.86, + "probability": 0.9987 + }, + { + "start": 20259.94, + "end": 20261.58, + "probability": 0.9971 + }, + { + "start": 20262.5, + "end": 20267.12, + "probability": 0.9895 + }, + { + "start": 20267.14, + "end": 20270.62, + "probability": 0.9569 + }, + { + "start": 20271.08, + "end": 20272.78, + "probability": 0.7948 + }, + { + "start": 20273.14, + "end": 20277.36, + "probability": 0.9864 + }, + { + "start": 20277.64, + "end": 20278.28, + "probability": 0.0714 + }, + { + "start": 20278.28, + "end": 20279.17, + "probability": 0.8145 + }, + { + "start": 20279.66, + "end": 20282.74, + "probability": 0.994 + }, + { + "start": 20283.5, + "end": 20286.08, + "probability": 0.9534 + }, + { + "start": 20286.62, + "end": 20289.64, + "probability": 0.9971 + }, + { + "start": 20289.98, + "end": 20292.04, + "probability": 0.9834 + }, + { + "start": 20292.4, + "end": 20294.96, + "probability": 0.7846 + }, + { + "start": 20295.1, + "end": 20297.59, + "probability": 0.9936 + }, + { + "start": 20298.76, + "end": 20298.96, + "probability": 0.0648 + }, + { + "start": 20298.96, + "end": 20303.5, + "probability": 0.7053 + }, + { + "start": 20303.5, + "end": 20307.96, + "probability": 0.9982 + }, + { + "start": 20308.48, + "end": 20313.2, + "probability": 0.995 + }, + { + "start": 20313.2, + "end": 20314.82, + "probability": 0.0484 + }, + { + "start": 20314.82, + "end": 20316.02, + "probability": 0.3259 + }, + { + "start": 20316.24, + "end": 20316.62, + "probability": 0.2335 + }, + { + "start": 20316.7, + "end": 20317.22, + "probability": 0.8846 + }, + { + "start": 20317.7, + "end": 20319.22, + "probability": 0.8662 + }, + { + "start": 20319.66, + "end": 20326.42, + "probability": 0.9873 + }, + { + "start": 20326.96, + "end": 20329.22, + "probability": 0.7519 + }, + { + "start": 20329.38, + "end": 20330.78, + "probability": 0.9956 + }, + { + "start": 20331.22, + "end": 20332.89, + "probability": 0.9653 + }, + { + "start": 20333.06, + "end": 20333.58, + "probability": 0.9398 + }, + { + "start": 20333.62, + "end": 20335.0, + "probability": 0.788 + }, + { + "start": 20335.12, + "end": 20338.8, + "probability": 0.9832 + }, + { + "start": 20339.48, + "end": 20341.25, + "probability": 0.9927 + }, + { + "start": 20341.96, + "end": 20349.48, + "probability": 0.9871 + }, + { + "start": 20350.1, + "end": 20353.96, + "probability": 0.9184 + }, + { + "start": 20355.37, + "end": 20356.42, + "probability": 0.0309 + }, + { + "start": 20356.46, + "end": 20356.46, + "probability": 0.118 + }, + { + "start": 20356.74, + "end": 20363.54, + "probability": 0.9681 + }, + { + "start": 20364.72, + "end": 20366.26, + "probability": 0.6827 + }, + { + "start": 20366.9, + "end": 20369.36, + "probability": 0.5335 + }, + { + "start": 20369.42, + "end": 20373.34, + "probability": 0.9556 + }, + { + "start": 20374.44, + "end": 20376.48, + "probability": 0.9105 + }, + { + "start": 20376.84, + "end": 20377.9, + "probability": 0.9803 + }, + { + "start": 20378.12, + "end": 20379.72, + "probability": 0.9985 + }, + { + "start": 20380.4, + "end": 20381.74, + "probability": 0.9961 + }, + { + "start": 20382.26, + "end": 20384.3, + "probability": 0.9968 + }, + { + "start": 20384.48, + "end": 20388.8, + "probability": 0.9935 + }, + { + "start": 20389.68, + "end": 20391.8, + "probability": 0.9883 + }, + { + "start": 20392.72, + "end": 20393.81, + "probability": 0.8153 + }, + { + "start": 20394.54, + "end": 20396.54, + "probability": 0.8827 + }, + { + "start": 20397.18, + "end": 20397.94, + "probability": 0.9058 + }, + { + "start": 20398.08, + "end": 20398.98, + "probability": 0.9819 + }, + { + "start": 20399.28, + "end": 20400.9, + "probability": 0.9926 + }, + { + "start": 20401.3, + "end": 20405.5, + "probability": 0.9735 + }, + { + "start": 20405.7, + "end": 20411.66, + "probability": 0.9932 + }, + { + "start": 20411.74, + "end": 20412.2, + "probability": 0.7073 + }, + { + "start": 20413.5, + "end": 20413.94, + "probability": 0.4506 + }, + { + "start": 20413.94, + "end": 20415.1, + "probability": 0.9084 + }, + { + "start": 20416.54, + "end": 20419.84, + "probability": 0.9377 + }, + { + "start": 20421.68, + "end": 20422.5, + "probability": 0.7592 + }, + { + "start": 20439.3, + "end": 20441.68, + "probability": 0.771 + }, + { + "start": 20442.04, + "end": 20444.64, + "probability": 0.8827 + }, + { + "start": 20445.66, + "end": 20454.68, + "probability": 0.9927 + }, + { + "start": 20455.22, + "end": 20459.62, + "probability": 0.9985 + }, + { + "start": 20460.9, + "end": 20465.3, + "probability": 0.9888 + }, + { + "start": 20465.7, + "end": 20469.4, + "probability": 0.9811 + }, + { + "start": 20469.86, + "end": 20471.22, + "probability": 0.9254 + }, + { + "start": 20471.74, + "end": 20473.64, + "probability": 0.9823 + }, + { + "start": 20474.18, + "end": 20475.76, + "probability": 0.5762 + }, + { + "start": 20476.1, + "end": 20481.2, + "probability": 0.9845 + }, + { + "start": 20481.46, + "end": 20487.78, + "probability": 0.9984 + }, + { + "start": 20487.78, + "end": 20493.9, + "probability": 0.9991 + }, + { + "start": 20494.64, + "end": 20497.28, + "probability": 0.5256 + }, + { + "start": 20498.14, + "end": 20503.42, + "probability": 0.9832 + }, + { + "start": 20504.12, + "end": 20509.06, + "probability": 0.9602 + }, + { + "start": 20509.72, + "end": 20511.18, + "probability": 0.6922 + }, + { + "start": 20512.04, + "end": 20516.44, + "probability": 0.9375 + }, + { + "start": 20517.16, + "end": 20524.9, + "probability": 0.9938 + }, + { + "start": 20525.74, + "end": 20529.96, + "probability": 0.9229 + }, + { + "start": 20530.4, + "end": 20532.92, + "probability": 0.9881 + }, + { + "start": 20533.22, + "end": 20534.6, + "probability": 0.8528 + }, + { + "start": 20535.26, + "end": 20542.06, + "probability": 0.975 + }, + { + "start": 20542.06, + "end": 20549.5, + "probability": 0.9823 + }, + { + "start": 20550.08, + "end": 20553.84, + "probability": 0.9987 + }, + { + "start": 20553.84, + "end": 20556.48, + "probability": 0.9995 + }, + { + "start": 20556.98, + "end": 20561.32, + "probability": 0.8678 + }, + { + "start": 20561.32, + "end": 20564.56, + "probability": 0.8948 + }, + { + "start": 20565.22, + "end": 20570.32, + "probability": 0.9985 + }, + { + "start": 20570.32, + "end": 20574.42, + "probability": 0.9764 + }, + { + "start": 20574.78, + "end": 20579.42, + "probability": 0.9993 + }, + { + "start": 20579.42, + "end": 20584.6, + "probability": 0.9868 + }, + { + "start": 20585.08, + "end": 20589.14, + "probability": 0.9551 + }, + { + "start": 20589.6, + "end": 20593.52, + "probability": 0.8625 + }, + { + "start": 20593.74, + "end": 20594.7, + "probability": 0.881 + }, + { + "start": 20595.2, + "end": 20597.2, + "probability": 0.9742 + }, + { + "start": 20597.4, + "end": 20600.7, + "probability": 0.9092 + }, + { + "start": 20600.7, + "end": 20603.5, + "probability": 0.976 + }, + { + "start": 20603.78, + "end": 20607.7, + "probability": 0.9882 + }, + { + "start": 20608.1, + "end": 20608.86, + "probability": 0.7961 + }, + { + "start": 20609.28, + "end": 20610.08, + "probability": 0.7276 + }, + { + "start": 20610.28, + "end": 20610.98, + "probability": 0.8688 + }, + { + "start": 20611.58, + "end": 20614.06, + "probability": 0.9572 + }, + { + "start": 20614.2, + "end": 20615.53, + "probability": 0.9856 + }, + { + "start": 20615.97, + "end": 20616.53, + "probability": 0.84 + }, + { + "start": 20617.05, + "end": 20619.23, + "probability": 0.9469 + }, + { + "start": 20619.83, + "end": 20622.93, + "probability": 0.9614 + }, + { + "start": 20623.65, + "end": 20624.55, + "probability": 0.7326 + }, + { + "start": 20624.57, + "end": 20629.35, + "probability": 0.9854 + }, + { + "start": 20629.45, + "end": 20634.99, + "probability": 0.8491 + }, + { + "start": 20635.03, + "end": 20635.47, + "probability": 0.127 + }, + { + "start": 20635.87, + "end": 20637.99, + "probability": 0.8326 + }, + { + "start": 20638.11, + "end": 20638.11, + "probability": 0.6418 + }, + { + "start": 20638.19, + "end": 20640.77, + "probability": 0.9415 + }, + { + "start": 20641.11, + "end": 20643.85, + "probability": 0.9884 + }, + { + "start": 20643.85, + "end": 20647.93, + "probability": 0.85 + }, + { + "start": 20647.93, + "end": 20648.11, + "probability": 0.5818 + }, + { + "start": 20648.11, + "end": 20648.11, + "probability": 0.5087 + }, + { + "start": 20648.11, + "end": 20650.47, + "probability": 0.7505 + }, + { + "start": 20650.55, + "end": 20650.69, + "probability": 0.7139 + }, + { + "start": 20650.79, + "end": 20652.83, + "probability": 0.9554 + }, + { + "start": 20652.97, + "end": 20653.41, + "probability": 0.9579 + }, + { + "start": 20654.29, + "end": 20657.71, + "probability": 0.8916 + }, + { + "start": 20657.85, + "end": 20659.05, + "probability": 0.8853 + }, + { + "start": 20659.69, + "end": 20662.53, + "probability": 0.622 + }, + { + "start": 20662.55, + "end": 20664.57, + "probability": 0.9368 + }, + { + "start": 20664.67, + "end": 20668.09, + "probability": 0.8776 + }, + { + "start": 20668.67, + "end": 20671.89, + "probability": 0.8653 + }, + { + "start": 20671.95, + "end": 20672.77, + "probability": 0.6517 + }, + { + "start": 20673.25, + "end": 20673.75, + "probability": 0.1239 + }, + { + "start": 20674.37, + "end": 20677.65, + "probability": 0.1106 + }, + { + "start": 20683.09, + "end": 20686.35, + "probability": 0.7206 + }, + { + "start": 20686.35, + "end": 20689.33, + "probability": 0.0936 + }, + { + "start": 20689.71, + "end": 20689.77, + "probability": 0.0561 + }, + { + "start": 20689.77, + "end": 20692.89, + "probability": 0.7204 + }, + { + "start": 20695.63, + "end": 20699.49, + "probability": 0.7529 + }, + { + "start": 20700.19, + "end": 20704.01, + "probability": 0.7792 + }, + { + "start": 20711.74, + "end": 20715.86, + "probability": 0.8417 + }, + { + "start": 20717.81, + "end": 20721.23, + "probability": 0.5855 + }, + { + "start": 20724.29, + "end": 20727.01, + "probability": 0.934 + }, + { + "start": 20727.15, + "end": 20728.97, + "probability": 0.3826 + }, + { + "start": 20729.07, + "end": 20731.55, + "probability": 0.7969 + }, + { + "start": 20731.99, + "end": 20733.03, + "probability": 0.8408 + }, + { + "start": 20733.13, + "end": 20733.63, + "probability": 0.8888 + }, + { + "start": 20733.67, + "end": 20733.93, + "probability": 0.8291 + }, + { + "start": 20734.07, + "end": 20735.39, + "probability": 0.7647 + }, + { + "start": 20742.53, + "end": 20743.55, + "probability": 0.6678 + }, + { + "start": 20743.63, + "end": 20744.81, + "probability": 0.5882 + }, + { + "start": 20744.97, + "end": 20746.99, + "probability": 0.9248 + }, + { + "start": 20747.65, + "end": 20748.57, + "probability": 0.9583 + }, + { + "start": 20749.23, + "end": 20749.73, + "probability": 0.9625 + }, + { + "start": 20749.79, + "end": 20750.21, + "probability": 0.949 + }, + { + "start": 20750.27, + "end": 20753.27, + "probability": 0.9873 + }, + { + "start": 20753.27, + "end": 20756.27, + "probability": 0.9906 + }, + { + "start": 20758.21, + "end": 20760.47, + "probability": 0.8171 + }, + { + "start": 20762.07, + "end": 20763.24, + "probability": 0.6948 + }, + { + "start": 20763.95, + "end": 20764.13, + "probability": 0.9346 + }, + { + "start": 20764.95, + "end": 20767.01, + "probability": 0.9974 + }, + { + "start": 20768.81, + "end": 20769.71, + "probability": 0.9734 + }, + { + "start": 20769.95, + "end": 20774.01, + "probability": 0.9487 + }, + { + "start": 20774.55, + "end": 20775.79, + "probability": 0.5969 + }, + { + "start": 20777.01, + "end": 20777.95, + "probability": 0.8703 + }, + { + "start": 20779.47, + "end": 20780.69, + "probability": 0.8735 + }, + { + "start": 20781.73, + "end": 20782.65, + "probability": 0.9901 + }, + { + "start": 20783.69, + "end": 20784.65, + "probability": 0.9731 + }, + { + "start": 20785.13, + "end": 20786.39, + "probability": 0.9972 + }, + { + "start": 20788.09, + "end": 20788.95, + "probability": 0.9296 + }, + { + "start": 20789.29, + "end": 20790.19, + "probability": 0.9573 + }, + { + "start": 20790.49, + "end": 20793.85, + "probability": 0.9761 + }, + { + "start": 20794.69, + "end": 20797.41, + "probability": 0.9868 + }, + { + "start": 20799.01, + "end": 20800.11, + "probability": 0.9045 + }, + { + "start": 20801.39, + "end": 20803.05, + "probability": 0.981 + }, + { + "start": 20803.87, + "end": 20805.33, + "probability": 0.9966 + }, + { + "start": 20805.43, + "end": 20806.41, + "probability": 0.9819 + }, + { + "start": 20806.89, + "end": 20808.45, + "probability": 0.9678 + }, + { + "start": 20809.49, + "end": 20812.39, + "probability": 0.9786 + }, + { + "start": 20812.97, + "end": 20813.71, + "probability": 0.9497 + }, + { + "start": 20814.43, + "end": 20815.33, + "probability": 0.9498 + }, + { + "start": 20817.13, + "end": 20819.03, + "probability": 0.9907 + }, + { + "start": 20820.83, + "end": 20822.77, + "probability": 0.9961 + }, + { + "start": 20824.09, + "end": 20824.62, + "probability": 0.9794 + }, + { + "start": 20825.91, + "end": 20827.73, + "probability": 0.8729 + }, + { + "start": 20828.97, + "end": 20831.07, + "probability": 0.9154 + }, + { + "start": 20831.77, + "end": 20834.33, + "probability": 0.8467 + }, + { + "start": 20835.61, + "end": 20836.93, + "probability": 0.9737 + }, + { + "start": 20838.09, + "end": 20838.95, + "probability": 0.9827 + }, + { + "start": 20839.93, + "end": 20841.15, + "probability": 0.9713 + }, + { + "start": 20842.23, + "end": 20843.95, + "probability": 0.9973 + }, + { + "start": 20845.43, + "end": 20846.33, + "probability": 0.9631 + }, + { + "start": 20846.51, + "end": 20848.23, + "probability": 0.8036 + }, + { + "start": 20848.33, + "end": 20849.57, + "probability": 0.8048 + }, + { + "start": 20849.75, + "end": 20852.71, + "probability": 0.9954 + }, + { + "start": 20854.03, + "end": 20855.91, + "probability": 0.9054 + }, + { + "start": 20856.49, + "end": 20860.31, + "probability": 0.8503 + }, + { + "start": 20861.17, + "end": 20863.45, + "probability": 0.9671 + }, + { + "start": 20864.37, + "end": 20867.73, + "probability": 0.7761 + }, + { + "start": 20869.27, + "end": 20871.01, + "probability": 0.9963 + }, + { + "start": 20871.15, + "end": 20877.33, + "probability": 0.9966 + }, + { + "start": 20877.87, + "end": 20878.87, + "probability": 0.8729 + }, + { + "start": 20879.59, + "end": 20882.01, + "probability": 0.9852 + }, + { + "start": 20883.07, + "end": 20883.11, + "probability": 0.0537 + }, + { + "start": 20883.11, + "end": 20884.05, + "probability": 0.8985 + }, + { + "start": 20885.23, + "end": 20890.45, + "probability": 0.9927 + }, + { + "start": 20891.13, + "end": 20894.87, + "probability": 0.9714 + }, + { + "start": 20896.37, + "end": 20900.83, + "probability": 0.845 + }, + { + "start": 20900.91, + "end": 20901.95, + "probability": 0.7853 + }, + { + "start": 20902.03, + "end": 20902.41, + "probability": 0.8845 + }, + { + "start": 20902.51, + "end": 20903.17, + "probability": 0.8113 + }, + { + "start": 20903.33, + "end": 20905.93, + "probability": 0.8944 + }, + { + "start": 20906.01, + "end": 20907.41, + "probability": 0.7096 + }, + { + "start": 20907.53, + "end": 20908.49, + "probability": 0.468 + }, + { + "start": 20908.79, + "end": 20910.63, + "probability": 0.5905 + }, + { + "start": 20911.43, + "end": 20916.03, + "probability": 0.8946 + }, + { + "start": 20916.61, + "end": 20918.41, + "probability": 0.9909 + }, + { + "start": 20919.09, + "end": 20921.35, + "probability": 0.9841 + }, + { + "start": 20921.57, + "end": 20922.69, + "probability": 0.8301 + }, + { + "start": 20923.07, + "end": 20924.53, + "probability": 0.7874 + }, + { + "start": 20925.15, + "end": 20928.93, + "probability": 0.995 + }, + { + "start": 20929.25, + "end": 20932.43, + "probability": 0.9964 + }, + { + "start": 20932.81, + "end": 20934.51, + "probability": 0.7914 + }, + { + "start": 20934.87, + "end": 20935.75, + "probability": 0.9877 + }, + { + "start": 20936.11, + "end": 20938.77, + "probability": 0.9724 + }, + { + "start": 20939.15, + "end": 20939.97, + "probability": 0.9547 + }, + { + "start": 20941.71, + "end": 20942.21, + "probability": 0.8447 + }, + { + "start": 20943.75, + "end": 20944.68, + "probability": 0.5543 + }, + { + "start": 20945.49, + "end": 20947.09, + "probability": 0.8027 + }, + { + "start": 20947.77, + "end": 20948.69, + "probability": 0.6934 + }, + { + "start": 20949.43, + "end": 20951.87, + "probability": 0.9426 + }, + { + "start": 20952.79, + "end": 20959.39, + "probability": 0.8131 + }, + { + "start": 20960.31, + "end": 20962.59, + "probability": 0.9338 + }, + { + "start": 20963.43, + "end": 20967.19, + "probability": 0.9891 + }, + { + "start": 20968.13, + "end": 20968.21, + "probability": 0.0762 + }, + { + "start": 20968.21, + "end": 20969.39, + "probability": 0.8878 + }, + { + "start": 20969.95, + "end": 20973.75, + "probability": 0.9988 + }, + { + "start": 20974.91, + "end": 20977.35, + "probability": 0.757 + }, + { + "start": 20978.79, + "end": 20980.49, + "probability": 0.6292 + }, + { + "start": 20981.11, + "end": 20983.96, + "probability": 0.9178 + }, + { + "start": 20986.33, + "end": 20988.49, + "probability": 0.8279 + }, + { + "start": 20989.17, + "end": 20990.67, + "probability": 0.9951 + }, + { + "start": 20991.19, + "end": 20993.23, + "probability": 0.8424 + }, + { + "start": 20993.59, + "end": 20994.69, + "probability": 0.9951 + }, + { + "start": 20994.89, + "end": 20998.47, + "probability": 0.9645 + }, + { + "start": 20999.55, + "end": 21000.79, + "probability": 0.3601 + }, + { + "start": 21000.83, + "end": 21001.87, + "probability": 0.9966 + }, + { + "start": 21001.99, + "end": 21003.03, + "probability": 0.7867 + }, + { + "start": 21003.27, + "end": 21005.13, + "probability": 0.7583 + }, + { + "start": 21005.27, + "end": 21005.59, + "probability": 0.5114 + }, + { + "start": 21006.03, + "end": 21008.31, + "probability": 0.8484 + }, + { + "start": 21008.39, + "end": 21009.39, + "probability": 0.9374 + }, + { + "start": 21009.47, + "end": 21010.43, + "probability": 0.9433 + }, + { + "start": 21011.33, + "end": 21011.67, + "probability": 0.8733 + }, + { + "start": 21013.21, + "end": 21014.07, + "probability": 0.9658 + }, + { + "start": 21015.92, + "end": 21018.21, + "probability": 0.8735 + }, + { + "start": 21020.73, + "end": 21022.33, + "probability": 0.9818 + }, + { + "start": 21023.11, + "end": 21023.85, + "probability": 0.7888 + }, + { + "start": 21023.85, + "end": 21025.58, + "probability": 0.9888 + }, + { + "start": 21025.95, + "end": 21027.39, + "probability": 0.9786 + }, + { + "start": 21027.45, + "end": 21028.81, + "probability": 0.998 + }, + { + "start": 21030.63, + "end": 21032.95, + "probability": 0.9186 + }, + { + "start": 21033.83, + "end": 21037.25, + "probability": 0.9852 + }, + { + "start": 21037.25, + "end": 21040.67, + "probability": 0.986 + }, + { + "start": 21041.35, + "end": 21041.79, + "probability": 0.485 + }, + { + "start": 21043.19, + "end": 21045.48, + "probability": 0.9916 + }, + { + "start": 21045.65, + "end": 21047.17, + "probability": 0.6222 + }, + { + "start": 21048.17, + "end": 21050.61, + "probability": 0.859 + }, + { + "start": 21051.27, + "end": 21054.37, + "probability": 0.9531 + }, + { + "start": 21055.15, + "end": 21057.95, + "probability": 0.9819 + }, + { + "start": 21058.27, + "end": 21058.7, + "probability": 0.8552 + }, + { + "start": 21059.55, + "end": 21060.37, + "probability": 0.9743 + }, + { + "start": 21060.45, + "end": 21062.85, + "probability": 0.7685 + }, + { + "start": 21063.37, + "end": 21065.21, + "probability": 0.8904 + }, + { + "start": 21065.27, + "end": 21068.31, + "probability": 0.9876 + }, + { + "start": 21068.85, + "end": 21070.79, + "probability": 0.7849 + }, + { + "start": 21071.57, + "end": 21074.31, + "probability": 0.918 + }, + { + "start": 21075.81, + "end": 21076.57, + "probability": 0.4177 + }, + { + "start": 21076.65, + "end": 21076.65, + "probability": 0.6659 + }, + { + "start": 21076.65, + "end": 21077.87, + "probability": 0.6205 + }, + { + "start": 21077.93, + "end": 21078.51, + "probability": 0.9677 + }, + { + "start": 21079.33, + "end": 21081.77, + "probability": 0.9769 + }, + { + "start": 21083.09, + "end": 21086.21, + "probability": 0.9917 + }, + { + "start": 21086.27, + "end": 21086.39, + "probability": 0.5856 + }, + { + "start": 21086.41, + "end": 21091.53, + "probability": 0.897 + }, + { + "start": 21092.43, + "end": 21094.57, + "probability": 0.9681 + }, + { + "start": 21094.69, + "end": 21095.79, + "probability": 0.9607 + }, + { + "start": 21096.55, + "end": 21098.01, + "probability": 0.9561 + }, + { + "start": 21098.05, + "end": 21098.75, + "probability": 0.9834 + }, + { + "start": 21098.81, + "end": 21099.85, + "probability": 0.989 + }, + { + "start": 21100.45, + "end": 21101.75, + "probability": 0.9873 + }, + { + "start": 21101.97, + "end": 21104.99, + "probability": 0.9883 + }, + { + "start": 21105.83, + "end": 21108.47, + "probability": 0.9883 + }, + { + "start": 21109.09, + "end": 21112.09, + "probability": 0.9955 + }, + { + "start": 21113.17, + "end": 21114.29, + "probability": 0.3381 + }, + { + "start": 21114.57, + "end": 21116.67, + "probability": 0.9606 + }, + { + "start": 21116.97, + "end": 21117.53, + "probability": 0.5003 + }, + { + "start": 21117.75, + "end": 21119.07, + "probability": 0.9684 + }, + { + "start": 21119.37, + "end": 21119.77, + "probability": 0.7021 + }, + { + "start": 21120.79, + "end": 21123.51, + "probability": 0.9809 + }, + { + "start": 21124.09, + "end": 21124.93, + "probability": 0.9729 + }, + { + "start": 21126.41, + "end": 21128.35, + "probability": 0.9559 + }, + { + "start": 21129.01, + "end": 21129.63, + "probability": 0.5713 + }, + { + "start": 21130.07, + "end": 21133.87, + "probability": 0.9819 + }, + { + "start": 21134.35, + "end": 21137.01, + "probability": 0.9915 + }, + { + "start": 21137.33, + "end": 21138.17, + "probability": 0.9005 + }, + { + "start": 21138.27, + "end": 21139.12, + "probability": 0.9063 + }, + { + "start": 21139.97, + "end": 21142.17, + "probability": 0.9935 + }, + { + "start": 21142.57, + "end": 21143.19, + "probability": 0.8682 + }, + { + "start": 21143.79, + "end": 21146.99, + "probability": 0.9536 + }, + { + "start": 21147.49, + "end": 21149.75, + "probability": 0.993 + }, + { + "start": 21150.29, + "end": 21151.91, + "probability": 0.8223 + }, + { + "start": 21152.33, + "end": 21154.89, + "probability": 0.9509 + }, + { + "start": 21155.23, + "end": 21157.05, + "probability": 0.9722 + }, + { + "start": 21157.83, + "end": 21159.51, + "probability": 0.9077 + }, + { + "start": 21159.65, + "end": 21160.45, + "probability": 0.8861 + }, + { + "start": 21161.13, + "end": 21161.86, + "probability": 0.8656 + }, + { + "start": 21163.45, + "end": 21164.64, + "probability": 0.9272 + }, + { + "start": 21165.71, + "end": 21166.49, + "probability": 0.7923 + }, + { + "start": 21166.65, + "end": 21167.21, + "probability": 0.9198 + }, + { + "start": 21168.25, + "end": 21169.77, + "probability": 0.9746 + }, + { + "start": 21170.49, + "end": 21173.47, + "probability": 0.9838 + }, + { + "start": 21173.79, + "end": 21175.67, + "probability": 0.9965 + }, + { + "start": 21176.29, + "end": 21178.47, + "probability": 0.9884 + }, + { + "start": 21178.63, + "end": 21179.49, + "probability": 0.9392 + }, + { + "start": 21179.71, + "end": 21181.19, + "probability": 0.8016 + }, + { + "start": 21181.51, + "end": 21183.01, + "probability": 0.8019 + }, + { + "start": 21183.75, + "end": 21184.71, + "probability": 0.9553 + }, + { + "start": 21184.95, + "end": 21186.79, + "probability": 0.7211 + }, + { + "start": 21187.75, + "end": 21188.59, + "probability": 0.988 + }, + { + "start": 21189.47, + "end": 21189.79, + "probability": 0.9514 + }, + { + "start": 21190.63, + "end": 21193.29, + "probability": 0.9606 + }, + { + "start": 21193.67, + "end": 21195.51, + "probability": 0.9988 + }, + { + "start": 21196.11, + "end": 21196.93, + "probability": 0.7005 + }, + { + "start": 21197.65, + "end": 21199.89, + "probability": 0.9963 + }, + { + "start": 21200.27, + "end": 21200.57, + "probability": 0.6864 + }, + { + "start": 21200.69, + "end": 21200.93, + "probability": 0.9407 + }, + { + "start": 21201.85, + "end": 21202.69, + "probability": 0.7372 + }, + { + "start": 21202.89, + "end": 21205.43, + "probability": 0.8209 + }, + { + "start": 21207.07, + "end": 21208.63, + "probability": 0.6336 + }, + { + "start": 21209.79, + "end": 21210.05, + "probability": 0.0467 + }, + { + "start": 21210.59, + "end": 21212.15, + "probability": 0.308 + }, + { + "start": 21212.37, + "end": 21215.36, + "probability": 0.1354 + }, + { + "start": 21220.89, + "end": 21221.49, + "probability": 0.4067 + }, + { + "start": 21223.45, + "end": 21227.27, + "probability": 0.4759 + }, + { + "start": 21228.05, + "end": 21229.11, + "probability": 0.6946 + }, + { + "start": 21238.55, + "end": 21238.77, + "probability": 0.3283 + }, + { + "start": 21239.01, + "end": 21242.15, + "probability": 0.1834 + }, + { + "start": 21242.89, + "end": 21245.93, + "probability": 0.0107 + }, + { + "start": 21247.01, + "end": 21247.63, + "probability": 0.1355 + }, + { + "start": 21248.35, + "end": 21249.49, + "probability": 0.3723 + }, + { + "start": 21249.77, + "end": 21250.33, + "probability": 0.8815 + }, + { + "start": 21251.23, + "end": 21252.75, + "probability": 0.835 + }, + { + "start": 21252.91, + "end": 21254.32, + "probability": 0.8516 + }, + { + "start": 21254.65, + "end": 21256.93, + "probability": 0.967 + }, + { + "start": 21257.95, + "end": 21261.81, + "probability": 0.9302 + }, + { + "start": 21262.05, + "end": 21265.95, + "probability": 0.9326 + }, + { + "start": 21266.21, + "end": 21266.65, + "probability": 0.9017 + }, + { + "start": 21268.31, + "end": 21271.21, + "probability": 0.7959 + }, + { + "start": 21271.21, + "end": 21275.95, + "probability": 0.9767 + }, + { + "start": 21277.09, + "end": 21277.31, + "probability": 0.1099 + }, + { + "start": 21277.35, + "end": 21279.68, + "probability": 0.8986 + }, + { + "start": 21281.44, + "end": 21283.33, + "probability": 0.9891 + }, + { + "start": 21283.91, + "end": 21284.27, + "probability": 0.8335 + }, + { + "start": 21284.83, + "end": 21285.15, + "probability": 0.3875 + }, + { + "start": 21285.17, + "end": 21286.07, + "probability": 0.6074 + }, + { + "start": 21286.41, + "end": 21290.19, + "probability": 0.9355 + }, + { + "start": 21290.47, + "end": 21294.27, + "probability": 0.9945 + }, + { + "start": 21294.95, + "end": 21296.13, + "probability": 0.4805 + }, + { + "start": 21296.75, + "end": 21301.05, + "probability": 0.9909 + }, + { + "start": 21301.57, + "end": 21302.47, + "probability": 0.8629 + }, + { + "start": 21302.63, + "end": 21306.01, + "probability": 0.976 + }, + { + "start": 21306.89, + "end": 21313.75, + "probability": 0.9888 + }, + { + "start": 21313.97, + "end": 21315.05, + "probability": 0.9245 + }, + { + "start": 21315.23, + "end": 21317.69, + "probability": 0.9248 + }, + { + "start": 21318.37, + "end": 21322.51, + "probability": 0.984 + }, + { + "start": 21324.01, + "end": 21326.99, + "probability": 0.9928 + }, + { + "start": 21326.99, + "end": 21329.99, + "probability": 0.9991 + }, + { + "start": 21330.95, + "end": 21333.25, + "probability": 0.78 + }, + { + "start": 21333.75, + "end": 21337.93, + "probability": 0.9904 + }, + { + "start": 21338.47, + "end": 21345.83, + "probability": 0.9932 + }, + { + "start": 21345.83, + "end": 21354.75, + "probability": 0.8562 + }, + { + "start": 21355.37, + "end": 21359.09, + "probability": 0.8772 + }, + { + "start": 21360.17, + "end": 21361.35, + "probability": 0.751 + }, + { + "start": 21361.75, + "end": 21365.55, + "probability": 0.9973 + }, + { + "start": 21365.55, + "end": 21371.99, + "probability": 0.9993 + }, + { + "start": 21372.59, + "end": 21377.41, + "probability": 0.9835 + }, + { + "start": 21377.41, + "end": 21381.91, + "probability": 0.9969 + }, + { + "start": 21382.63, + "end": 21391.95, + "probability": 0.9924 + }, + { + "start": 21392.41, + "end": 21393.55, + "probability": 0.907 + }, + { + "start": 21396.63, + "end": 21403.35, + "probability": 0.9893 + }, + { + "start": 21403.35, + "end": 21411.37, + "probability": 0.9917 + }, + { + "start": 21413.01, + "end": 21418.53, + "probability": 0.9709 + }, + { + "start": 21418.53, + "end": 21422.15, + "probability": 0.9995 + }, + { + "start": 21422.97, + "end": 21427.67, + "probability": 0.9936 + }, + { + "start": 21427.97, + "end": 21428.87, + "probability": 0.5839 + }, + { + "start": 21429.07, + "end": 21434.97, + "probability": 0.9899 + }, + { + "start": 21435.99, + "end": 21437.61, + "probability": 0.8096 + }, + { + "start": 21437.89, + "end": 21440.07, + "probability": 0.57 + }, + { + "start": 21440.27, + "end": 21444.09, + "probability": 0.9976 + }, + { + "start": 21444.09, + "end": 21450.09, + "probability": 0.9946 + }, + { + "start": 21450.19, + "end": 21459.09, + "probability": 0.9978 + }, + { + "start": 21459.09, + "end": 21465.33, + "probability": 0.9951 + }, + { + "start": 21466.37, + "end": 21472.95, + "probability": 0.9948 + }, + { + "start": 21474.01, + "end": 21476.63, + "probability": 0.901 + }, + { + "start": 21477.53, + "end": 21480.55, + "probability": 0.9985 + }, + { + "start": 21482.11, + "end": 21487.23, + "probability": 0.9908 + }, + { + "start": 21487.23, + "end": 21491.17, + "probability": 0.9967 + }, + { + "start": 21491.99, + "end": 21494.29, + "probability": 0.9943 + }, + { + "start": 21494.29, + "end": 21497.47, + "probability": 0.9956 + }, + { + "start": 21497.65, + "end": 21498.59, + "probability": 0.7902 + }, + { + "start": 21498.67, + "end": 21498.75, + "probability": 0.5746 + }, + { + "start": 21498.89, + "end": 21501.0, + "probability": 0.6292 + }, + { + "start": 21501.57, + "end": 21502.85, + "probability": 0.6257 + }, + { + "start": 21502.87, + "end": 21503.27, + "probability": 0.9063 + }, + { + "start": 21503.31, + "end": 21503.83, + "probability": 0.5026 + }, + { + "start": 21504.11, + "end": 21505.85, + "probability": 0.8599 + }, + { + "start": 21505.97, + "end": 21508.33, + "probability": 0.6167 + }, + { + "start": 21509.49, + "end": 21512.41, + "probability": 0.6662 + }, + { + "start": 21512.61, + "end": 21513.83, + "probability": 0.8604 + }, + { + "start": 21514.23, + "end": 21522.23, + "probability": 0.9839 + }, + { + "start": 21523.2, + "end": 21526.71, + "probability": 0.0591 + }, + { + "start": 21526.85, + "end": 21527.33, + "probability": 0.6695 + }, + { + "start": 21527.49, + "end": 21528.59, + "probability": 0.4143 + }, + { + "start": 21528.77, + "end": 21530.19, + "probability": 0.5978 + }, + { + "start": 21530.19, + "end": 21531.57, + "probability": 0.9087 + }, + { + "start": 21532.41, + "end": 21533.01, + "probability": 0.1973 + }, + { + "start": 21533.01, + "end": 21534.93, + "probability": 0.9928 + }, + { + "start": 21539.39, + "end": 21542.05, + "probability": 0.7631 + }, + { + "start": 21542.85, + "end": 21545.47, + "probability": 0.4698 + }, + { + "start": 21545.67, + "end": 21546.16, + "probability": 0.9878 + }, + { + "start": 21546.35, + "end": 21547.69, + "probability": 0.999 + }, + { + "start": 21548.97, + "end": 21551.53, + "probability": 0.9963 + }, + { + "start": 21551.75, + "end": 21553.37, + "probability": 0.9186 + }, + { + "start": 21553.45, + "end": 21554.63, + "probability": 0.9855 + }, + { + "start": 21554.81, + "end": 21557.27, + "probability": 0.9253 + }, + { + "start": 21557.73, + "end": 21559.73, + "probability": 0.0065 + }, + { + "start": 21559.93, + "end": 21562.67, + "probability": 0.489 + }, + { + "start": 21564.09, + "end": 21564.63, + "probability": 0.7666 + }, + { + "start": 21565.33, + "end": 21569.47, + "probability": 0.9897 + }, + { + "start": 21569.61, + "end": 21570.97, + "probability": 0.9911 + }, + { + "start": 21571.03, + "end": 21571.87, + "probability": 0.9132 + }, + { + "start": 21572.07, + "end": 21574.18, + "probability": 0.8655 + }, + { + "start": 21574.55, + "end": 21577.23, + "probability": 0.9593 + }, + { + "start": 21577.29, + "end": 21577.89, + "probability": 0.8056 + }, + { + "start": 21578.09, + "end": 21578.85, + "probability": 0.9627 + }, + { + "start": 21578.91, + "end": 21581.93, + "probability": 0.9647 + }, + { + "start": 21582.05, + "end": 21584.07, + "probability": 0.957 + }, + { + "start": 21584.47, + "end": 21587.83, + "probability": 0.9084 + }, + { + "start": 21590.45, + "end": 21592.41, + "probability": 0.9681 + }, + { + "start": 21594.63, + "end": 21599.69, + "probability": 0.858 + }, + { + "start": 21599.73, + "end": 21601.81, + "probability": 0.7793 + }, + { + "start": 21601.81, + "end": 21603.3, + "probability": 0.8643 + }, + { + "start": 21604.55, + "end": 21606.09, + "probability": 0.4102 + }, + { + "start": 21606.69, + "end": 21609.99, + "probability": 0.6799 + }, + { + "start": 21609.99, + "end": 21612.13, + "probability": 0.7003 + }, + { + "start": 21612.65, + "end": 21613.41, + "probability": 0.1796 + }, + { + "start": 21613.57, + "end": 21614.19, + "probability": 0.8128 + }, + { + "start": 21614.23, + "end": 21615.69, + "probability": 0.3904 + }, + { + "start": 21616.15, + "end": 21620.17, + "probability": 0.7983 + }, + { + "start": 21624.75, + "end": 21626.71, + "probability": 0.8083 + }, + { + "start": 21627.27, + "end": 21629.49, + "probability": 0.6845 + }, + { + "start": 21629.63, + "end": 21630.91, + "probability": 0.4985 + }, + { + "start": 21630.99, + "end": 21632.79, + "probability": 0.9732 + }, + { + "start": 21632.93, + "end": 21633.55, + "probability": 0.7413 + }, + { + "start": 21633.71, + "end": 21634.73, + "probability": 0.6499 + }, + { + "start": 21635.53, + "end": 21637.03, + "probability": 0.9204 + }, + { + "start": 21637.49, + "end": 21642.29, + "probability": 0.6881 + }, + { + "start": 21642.57, + "end": 21643.89, + "probability": 0.6752 + }, + { + "start": 21644.99, + "end": 21648.24, + "probability": 0.9892 + }, + { + "start": 21648.62, + "end": 21652.02, + "probability": 0.9753 + }, + { + "start": 21652.16, + "end": 21652.24, + "probability": 0.4985 + }, + { + "start": 21652.8, + "end": 21655.53, + "probability": 0.6239 + }, + { + "start": 21656.06, + "end": 21657.52, + "probability": 0.6434 + }, + { + "start": 21657.8, + "end": 21659.56, + "probability": 0.936 + }, + { + "start": 21659.78, + "end": 21660.82, + "probability": 0.8505 + }, + { + "start": 21661.66, + "end": 21664.9, + "probability": 0.9987 + }, + { + "start": 21665.55, + "end": 21669.86, + "probability": 0.6786 + }, + { + "start": 21670.32, + "end": 21671.72, + "probability": 0.5365 + }, + { + "start": 21671.98, + "end": 21674.02, + "probability": 0.9938 + }, + { + "start": 21674.44, + "end": 21677.34, + "probability": 0.9568 + }, + { + "start": 21677.54, + "end": 21683.2, + "probability": 0.8737 + }, + { + "start": 21685.88, + "end": 21687.72, + "probability": 0.9649 + }, + { + "start": 21687.82, + "end": 21689.22, + "probability": 0.769 + }, + { + "start": 21689.22, + "end": 21690.92, + "probability": 0.9657 + }, + { + "start": 21691.0, + "end": 21692.98, + "probability": 0.9736 + }, + { + "start": 21693.52, + "end": 21693.52, + "probability": 0.1397 + }, + { + "start": 21693.52, + "end": 21693.94, + "probability": 0.3159 + }, + { + "start": 21694.06, + "end": 21698.42, + "probability": 0.9661 + }, + { + "start": 21700.76, + "end": 21702.24, + "probability": 0.1386 + }, + { + "start": 21708.0, + "end": 21709.62, + "probability": 0.7664 + }, + { + "start": 21709.68, + "end": 21710.36, + "probability": 0.5394 + }, + { + "start": 21710.46, + "end": 21711.1, + "probability": 0.4815 + }, + { + "start": 21711.16, + "end": 21711.98, + "probability": 0.7687 + }, + { + "start": 21712.38, + "end": 21712.88, + "probability": 0.6219 + }, + { + "start": 21712.94, + "end": 21714.68, + "probability": 0.9336 + }, + { + "start": 21721.65, + "end": 21725.0, + "probability": 0.1105 + }, + { + "start": 21725.04, + "end": 21730.22, + "probability": 0.0437 + }, + { + "start": 21733.12, + "end": 21734.0, + "probability": 0.0917 + }, + { + "start": 21751.08, + "end": 21755.16, + "probability": 0.0909 + }, + { + "start": 21756.86, + "end": 21761.92, + "probability": 0.0928 + }, + { + "start": 21763.04, + "end": 21764.14, + "probability": 0.0249 + }, + { + "start": 21764.14, + "end": 21765.26, + "probability": 0.0406 + }, + { + "start": 21765.74, + "end": 21768.06, + "probability": 0.1271 + }, + { + "start": 21772.02, + "end": 21772.44, + "probability": 0.0012 + }, + { + "start": 21810.0, + "end": 21810.0, + "probability": 0.0 + }, + { + "start": 21810.0, + "end": 21810.0, + "probability": 0.0 + }, + { + "start": 21810.0, + "end": 21810.0, + "probability": 0.0 + }, + { + "start": 21810.0, + "end": 21810.0, + "probability": 0.0 + }, + { + "start": 21810.0, + "end": 21810.0, + "probability": 0.0 + }, + { + "start": 21810.0, + "end": 21810.0, + "probability": 0.0 + }, + { + "start": 21810.0, + "end": 21810.0, + "probability": 0.0 + }, + { + "start": 21810.0, + "end": 21810.0, + "probability": 0.0 + }, + { + "start": 21810.0, + "end": 21810.0, + "probability": 0.0 + }, + { + "start": 21810.0, + "end": 21810.0, + "probability": 0.0 + }, + { + "start": 21810.0, + "end": 21810.0, + "probability": 0.0 + }, + { + "start": 21810.0, + "end": 21810.0, + "probability": 0.0 + }, + { + "start": 21810.0, + "end": 21810.0, + "probability": 0.0 + }, + { + "start": 21810.0, + "end": 21810.0, + "probability": 0.0 + }, + { + "start": 21810.76, + "end": 21813.16, + "probability": 0.0345 + }, + { + "start": 21813.84, + "end": 21814.42, + "probability": 0.0248 + }, + { + "start": 21814.54, + "end": 21816.32, + "probability": 0.5265 + }, + { + "start": 21816.32, + "end": 21816.54, + "probability": 0.5447 + }, + { + "start": 21816.76, + "end": 21817.08, + "probability": 0.1387 + }, + { + "start": 21817.42, + "end": 21818.44, + "probability": 0.7339 + }, + { + "start": 21818.44, + "end": 21821.46, + "probability": 0.903 + }, + { + "start": 21932.0, + "end": 21932.0, + "probability": 0.0 + }, + { + "start": 21932.0, + "end": 21932.0, + "probability": 0.0 + }, + { + "start": 21932.0, + "end": 21932.0, + "probability": 0.0 + }, + { + "start": 21932.0, + "end": 21932.0, + "probability": 0.0 + }, + { + "start": 21932.0, + "end": 21932.0, + "probability": 0.0 + }, + { + "start": 21932.0, + "end": 21932.0, + "probability": 0.0 + }, + { + "start": 21932.0, + "end": 21932.0, + "probability": 0.0 + }, + { + "start": 21932.0, + "end": 21932.0, + "probability": 0.0 + }, + { + "start": 21932.0, + "end": 21932.0, + "probability": 0.0 + }, + { + "start": 21932.0, + "end": 21932.0, + "probability": 0.0 + }, + { + "start": 21932.0, + "end": 21932.0, + "probability": 0.0 + }, + { + "start": 21932.0, + "end": 21932.0, + "probability": 0.0 + }, + { + "start": 21932.0, + "end": 21932.0, + "probability": 0.0 + }, + { + "start": 21932.0, + "end": 21932.0, + "probability": 0.0 + }, + { + "start": 21932.0, + "end": 21932.0, + "probability": 0.0 + }, + { + "start": 21932.18, + "end": 21936.34, + "probability": 0.5556 + }, + { + "start": 21937.2, + "end": 21940.48, + "probability": 0.9968 + }, + { + "start": 21941.58, + "end": 21945.3, + "probability": 0.8772 + }, + { + "start": 21947.8, + "end": 21948.0, + "probability": 0.6668 + }, + { + "start": 21948.0, + "end": 21948.66, + "probability": 0.6249 + }, + { + "start": 21948.82, + "end": 21950.23, + "probability": 0.9447 + }, + { + "start": 21952.2, + "end": 21955.66, + "probability": 0.9845 + }, + { + "start": 21955.88, + "end": 21961.28, + "probability": 0.9194 + }, + { + "start": 21962.16, + "end": 21965.32, + "probability": 0.9984 + }, + { + "start": 21965.32, + "end": 21969.5, + "probability": 0.9963 + }, + { + "start": 21970.98, + "end": 21973.78, + "probability": 0.8583 + }, + { + "start": 21974.66, + "end": 21982.06, + "probability": 0.9907 + }, + { + "start": 21982.06, + "end": 21989.4, + "probability": 0.9745 + }, + { + "start": 21990.5, + "end": 21992.2, + "probability": 0.6665 + }, + { + "start": 21993.2, + "end": 21996.76, + "probability": 0.7452 + }, + { + "start": 21997.7, + "end": 21999.18, + "probability": 0.8869 + }, + { + "start": 22000.12, + "end": 22003.18, + "probability": 0.6951 + }, + { + "start": 22004.2, + "end": 22006.72, + "probability": 0.926 + }, + { + "start": 22008.22, + "end": 22014.5, + "probability": 0.7939 + }, + { + "start": 22014.5, + "end": 22019.3, + "probability": 0.9917 + }, + { + "start": 22020.88, + "end": 22026.58, + "probability": 0.8301 + }, + { + "start": 22028.12, + "end": 22035.88, + "probability": 0.8685 + }, + { + "start": 22037.88, + "end": 22041.08, + "probability": 0.9368 + }, + { + "start": 22041.16, + "end": 22043.22, + "probability": 0.9038 + }, + { + "start": 22044.18, + "end": 22047.78, + "probability": 0.9587 + }, + { + "start": 22049.04, + "end": 22051.9, + "probability": 0.8716 + }, + { + "start": 22053.12, + "end": 22055.24, + "probability": 0.9614 + }, + { + "start": 22056.18, + "end": 22063.16, + "probability": 0.8397 + }, + { + "start": 22063.84, + "end": 22069.12, + "probability": 0.9222 + }, + { + "start": 22070.66, + "end": 22072.84, + "probability": 0.8435 + }, + { + "start": 22073.38, + "end": 22079.64, + "probability": 0.9987 + }, + { + "start": 22080.74, + "end": 22083.44, + "probability": 0.9899 + }, + { + "start": 22084.76, + "end": 22087.78, + "probability": 0.9324 + }, + { + "start": 22088.26, + "end": 22091.82, + "probability": 0.9541 + }, + { + "start": 22092.6, + "end": 22094.28, + "probability": 0.9906 + }, + { + "start": 22095.36, + "end": 22095.98, + "probability": 0.2859 + }, + { + "start": 22096.78, + "end": 22103.02, + "probability": 0.9899 + }, + { + "start": 22103.28, + "end": 22107.68, + "probability": 0.9978 + }, + { + "start": 22107.68, + "end": 22111.46, + "probability": 0.047 + }, + { + "start": 22111.98, + "end": 22112.66, + "probability": 0.2581 + }, + { + "start": 22112.74, + "end": 22114.04, + "probability": 0.6005 + }, + { + "start": 22114.24, + "end": 22118.2, + "probability": 0.1384 + }, + { + "start": 22118.2, + "end": 22122.65, + "probability": 0.5278 + }, + { + "start": 22124.5, + "end": 22125.68, + "probability": 0.5707 + }, + { + "start": 22125.72, + "end": 22126.34, + "probability": 0.5388 + }, + { + "start": 22126.34, + "end": 22128.54, + "probability": 0.5538 + }, + { + "start": 22129.18, + "end": 22131.64, + "probability": 0.7864 + }, + { + "start": 22133.3, + "end": 22141.9, + "probability": 0.9928 + }, + { + "start": 22142.1, + "end": 22145.22, + "probability": 0.9189 + }, + { + "start": 22145.82, + "end": 22148.84, + "probability": 0.9735 + }, + { + "start": 22149.24, + "end": 22150.94, + "probability": 0.7488 + }, + { + "start": 22151.16, + "end": 22153.8, + "probability": 0.9019 + }, + { + "start": 22153.86, + "end": 22156.98, + "probability": 0.9565 + }, + { + "start": 22157.8, + "end": 22160.98, + "probability": 0.9973 + }, + { + "start": 22161.36, + "end": 22163.42, + "probability": 0.8882 + }, + { + "start": 22163.48, + "end": 22167.24, + "probability": 0.9985 + }, + { + "start": 22167.48, + "end": 22172.3, + "probability": 0.982 + }, + { + "start": 22173.08, + "end": 22178.94, + "probability": 0.8794 + }, + { + "start": 22179.16, + "end": 22179.32, + "probability": 0.5367 + }, + { + "start": 22179.32, + "end": 22179.32, + "probability": 0.307 + }, + { + "start": 22179.32, + "end": 22179.32, + "probability": 0.5341 + }, + { + "start": 22179.32, + "end": 22179.91, + "probability": 0.4332 + }, + { + "start": 22180.62, + "end": 22182.5, + "probability": 0.814 + }, + { + "start": 22183.5, + "end": 22185.62, + "probability": 0.938 + }, + { + "start": 22189.88, + "end": 22191.22, + "probability": 0.6455 + }, + { + "start": 22192.04, + "end": 22192.46, + "probability": 0.1559 + }, + { + "start": 22193.42, + "end": 22196.52, + "probability": 0.5729 + }, + { + "start": 22197.26, + "end": 22198.64, + "probability": 0.793 + }, + { + "start": 22198.86, + "end": 22203.62, + "probability": 0.9547 + }, + { + "start": 22203.9, + "end": 22206.53, + "probability": 0.965 + }, + { + "start": 22206.7, + "end": 22209.32, + "probability": 0.9895 + }, + { + "start": 22209.32, + "end": 22212.9, + "probability": 0.7786 + }, + { + "start": 22213.9, + "end": 22214.24, + "probability": 0.0068 + }, + { + "start": 22356.4, + "end": 22357.06, + "probability": 0.1135 + }, + { + "start": 22357.3, + "end": 22357.3, + "probability": 0.0981 + }, + { + "start": 22357.3, + "end": 22358.01, + "probability": 0.2815 + }, + { + "start": 22358.92, + "end": 22361.0, + "probability": 0.7901 + }, + { + "start": 22361.26, + "end": 22364.44, + "probability": 0.6232 + }, + { + "start": 22364.44, + "end": 22367.32, + "probability": 0.3888 + }, + { + "start": 22476.0, + "end": 22476.0, + "probability": 0.0 + }, + { + "start": 22476.0, + "end": 22476.0, + "probability": 0.0 + }, + { + "start": 22476.0, + "end": 22476.0, + "probability": 0.0 + }, + { + "start": 22476.0, + "end": 22476.0, + "probability": 0.0 + }, + { + "start": 22476.0, + "end": 22476.0, + "probability": 0.0 + }, + { + "start": 22476.0, + "end": 22476.0, + "probability": 0.0 + }, + { + "start": 22476.0, + "end": 22476.0, + "probability": 0.0 + }, + { + "start": 22476.0, + "end": 22476.0, + "probability": 0.0 + }, + { + "start": 22476.0, + "end": 22476.0, + "probability": 0.0 + }, + { + "start": 22476.0, + "end": 22476.0, + "probability": 0.0 + }, + { + "start": 22476.0, + "end": 22476.0, + "probability": 0.0 + }, + { + "start": 22476.0, + "end": 22476.0, + "probability": 0.0 + }, + { + "start": 22476.0, + "end": 22476.0, + "probability": 0.0 + }, + { + "start": 22476.0, + "end": 22476.0, + "probability": 0.0 + }, + { + "start": 22476.0, + "end": 22476.0, + "probability": 0.0 + }, + { + "start": 22476.0, + "end": 22476.0, + "probability": 0.0 + }, + { + "start": 22476.0, + "end": 22476.0, + "probability": 0.0 + }, + { + "start": 22476.0, + "end": 22476.0, + "probability": 0.0 + }, + { + "start": 22476.0, + "end": 22476.0, + "probability": 0.0 + }, + { + "start": 22476.0, + "end": 22476.0, + "probability": 0.0 + }, + { + "start": 22476.0, + "end": 22476.0, + "probability": 0.0 + }, + { + "start": 22476.0, + "end": 22476.0, + "probability": 0.0 + }, + { + "start": 22476.0, + "end": 22476.0, + "probability": 0.0 + }, + { + "start": 22476.0, + "end": 22476.0, + "probability": 0.0 + }, + { + "start": 22476.0, + "end": 22476.0, + "probability": 0.0 + }, + { + "start": 22476.0, + "end": 22476.0, + "probability": 0.0 + }, + { + "start": 22476.0, + "end": 22476.0, + "probability": 0.0 + }, + { + "start": 22476.0, + "end": 22476.0, + "probability": 0.0 + }, + { + "start": 22476.0, + "end": 22476.0, + "probability": 0.0 + }, + { + "start": 22476.0, + "end": 22476.0, + "probability": 0.0 + }, + { + "start": 22476.0, + "end": 22476.0, + "probability": 0.0 + }, + { + "start": 22476.0, + "end": 22476.0, + "probability": 0.0 + }, + { + "start": 22476.0, + "end": 22476.0, + "probability": 0.0 + }, + { + "start": 22476.0, + "end": 22476.0, + "probability": 0.0 + }, + { + "start": 22476.0, + "end": 22476.0, + "probability": 0.0 + }, + { + "start": 22476.0, + "end": 22476.0, + "probability": 0.0 + }, + { + "start": 22476.0, + "end": 22476.0, + "probability": 0.0 + }, + { + "start": 22476.0, + "end": 22476.0, + "probability": 0.0 + }, + { + "start": 22476.0, + "end": 22476.0, + "probability": 0.0 + }, + { + "start": 22476.0, + "end": 22476.0, + "probability": 0.0 + }, + { + "start": 22476.0, + "end": 22476.0, + "probability": 0.0 + }, + { + "start": 22476.0, + "end": 22476.0, + "probability": 0.0 + }, + { + "start": 22476.0, + "end": 22476.0, + "probability": 0.0 + }, + { + "start": 22476.0, + "end": 22476.0, + "probability": 0.0 + }, + { + "start": 22477.02, + "end": 22478.8, + "probability": 0.2044 + }, + { + "start": 22480.52, + "end": 22482.0, + "probability": 0.7341 + }, + { + "start": 22482.12, + "end": 22483.4, + "probability": 0.8847 + }, + { + "start": 22483.64, + "end": 22485.71, + "probability": 0.9988 + }, + { + "start": 22486.88, + "end": 22487.14, + "probability": 0.4946 + }, + { + "start": 22487.2, + "end": 22490.12, + "probability": 0.9888 + }, + { + "start": 22490.56, + "end": 22491.16, + "probability": 0.8002 + }, + { + "start": 22491.2, + "end": 22492.42, + "probability": 0.9934 + }, + { + "start": 22492.9, + "end": 22494.89, + "probability": 0.9948 + }, + { + "start": 22496.22, + "end": 22498.16, + "probability": 0.9258 + }, + { + "start": 22498.78, + "end": 22499.26, + "probability": 0.7453 + }, + { + "start": 22499.7, + "end": 22504.3, + "probability": 0.9834 + }, + { + "start": 22504.92, + "end": 22507.42, + "probability": 0.6908 + }, + { + "start": 22508.06, + "end": 22509.04, + "probability": 0.9607 + }, + { + "start": 22510.22, + "end": 22516.08, + "probability": 0.9624 + }, + { + "start": 22516.46, + "end": 22517.86, + "probability": 0.9911 + }, + { + "start": 22518.98, + "end": 22522.32, + "probability": 0.9978 + }, + { + "start": 22523.0, + "end": 22526.2, + "probability": 0.9979 + }, + { + "start": 22527.94, + "end": 22535.34, + "probability": 0.999 + }, + { + "start": 22536.12, + "end": 22537.32, + "probability": 0.9886 + }, + { + "start": 22537.94, + "end": 22538.54, + "probability": 0.4971 + }, + { + "start": 22538.82, + "end": 22539.83, + "probability": 0.8985 + }, + { + "start": 22540.54, + "end": 22543.12, + "probability": 0.9673 + }, + { + "start": 22544.04, + "end": 22544.72, + "probability": 0.5952 + }, + { + "start": 22544.96, + "end": 22546.36, + "probability": 0.999 + }, + { + "start": 22546.72, + "end": 22547.47, + "probability": 0.9891 + }, + { + "start": 22547.98, + "end": 22548.79, + "probability": 0.9685 + }, + { + "start": 22549.84, + "end": 22554.48, + "probability": 0.9956 + }, + { + "start": 22554.86, + "end": 22558.56, + "probability": 0.7849 + }, + { + "start": 22559.74, + "end": 22563.34, + "probability": 0.8844 + }, + { + "start": 22563.4, + "end": 22565.4, + "probability": 0.957 + }, + { + "start": 22565.74, + "end": 22567.56, + "probability": 0.9105 + }, + { + "start": 22568.0, + "end": 22570.84, + "probability": 0.9661 + }, + { + "start": 22570.88, + "end": 22573.2, + "probability": 0.9995 + }, + { + "start": 22573.86, + "end": 22577.86, + "probability": 0.9943 + }, + { + "start": 22578.46, + "end": 22580.36, + "probability": 0.9844 + }, + { + "start": 22580.76, + "end": 22582.32, + "probability": 0.998 + }, + { + "start": 22582.92, + "end": 22584.36, + "probability": 0.8109 + }, + { + "start": 22585.4, + "end": 22589.6, + "probability": 0.712 + }, + { + "start": 22589.68, + "end": 22596.06, + "probability": 0.9805 + }, + { + "start": 22596.7, + "end": 22598.66, + "probability": 0.6377 + }, + { + "start": 22599.66, + "end": 22602.22, + "probability": 0.9489 + }, + { + "start": 22603.44, + "end": 22604.14, + "probability": 0.6231 + }, + { + "start": 22604.48, + "end": 22604.62, + "probability": 0.0517 + }, + { + "start": 22604.64, + "end": 22605.28, + "probability": 0.8182 + }, + { + "start": 22605.48, + "end": 22608.7, + "probability": 0.9735 + }, + { + "start": 22608.9, + "end": 22613.98, + "probability": 0.9242 + }, + { + "start": 22614.36, + "end": 22617.1, + "probability": 0.7953 + }, + { + "start": 22617.32, + "end": 22622.18, + "probability": 0.8823 + }, + { + "start": 22622.74, + "end": 22627.18, + "probability": 0.9406 + }, + { + "start": 22628.04, + "end": 22633.34, + "probability": 0.9886 + }, + { + "start": 22633.88, + "end": 22636.44, + "probability": 0.9964 + }, + { + "start": 22636.64, + "end": 22637.4, + "probability": 0.9281 + }, + { + "start": 22637.58, + "end": 22638.74, + "probability": 0.8848 + }, + { + "start": 22639.06, + "end": 22640.6, + "probability": 0.9504 + }, + { + "start": 22642.84, + "end": 22644.76, + "probability": 0.7593 + }, + { + "start": 22644.92, + "end": 22646.12, + "probability": 0.8738 + }, + { + "start": 22646.56, + "end": 22649.96, + "probability": 0.992 + }, + { + "start": 22650.84, + "end": 22650.9, + "probability": 0.0719 + }, + { + "start": 22650.9, + "end": 22651.02, + "probability": 0.1586 + }, + { + "start": 22651.1, + "end": 22651.54, + "probability": 0.4749 + }, + { + "start": 22651.62, + "end": 22652.06, + "probability": 0.5012 + }, + { + "start": 22652.8, + "end": 22654.84, + "probability": 0.7178 + }, + { + "start": 22654.88, + "end": 22656.02, + "probability": 0.9644 + }, + { + "start": 22656.7, + "end": 22658.98, + "probability": 0.9693 + }, + { + "start": 22659.44, + "end": 22661.12, + "probability": 0.9958 + }, + { + "start": 22661.64, + "end": 22662.9, + "probability": 0.7484 + }, + { + "start": 22664.78, + "end": 22667.22, + "probability": 0.908 + }, + { + "start": 22667.3, + "end": 22667.58, + "probability": 0.7906 + }, + { + "start": 22667.76, + "end": 22670.12, + "probability": 0.9922 + }, + { + "start": 22670.16, + "end": 22672.45, + "probability": 0.9731 + }, + { + "start": 22673.32, + "end": 22674.36, + "probability": 0.9002 + }, + { + "start": 22674.98, + "end": 22677.34, + "probability": 0.9899 + }, + { + "start": 22677.8, + "end": 22681.38, + "probability": 0.9199 + }, + { + "start": 22681.78, + "end": 22683.76, + "probability": 0.999 + }, + { + "start": 22684.72, + "end": 22686.18, + "probability": 0.9902 + }, + { + "start": 22686.3, + "end": 22690.32, + "probability": 0.9473 + }, + { + "start": 22690.96, + "end": 22693.0, + "probability": 0.9911 + }, + { + "start": 22693.48, + "end": 22694.5, + "probability": 0.963 + }, + { + "start": 22694.88, + "end": 22695.57, + "probability": 0.9873 + }, + { + "start": 22696.4, + "end": 22697.34, + "probability": 0.7486 + }, + { + "start": 22697.6, + "end": 22699.38, + "probability": 0.8479 + }, + { + "start": 22699.78, + "end": 22701.02, + "probability": 0.8945 + }, + { + "start": 22701.52, + "end": 22704.88, + "probability": 0.891 + }, + { + "start": 22705.0, + "end": 22705.6, + "probability": 0.6879 + }, + { + "start": 22706.08, + "end": 22708.7, + "probability": 0.9319 + }, + { + "start": 22709.26, + "end": 22710.12, + "probability": 0.9177 + }, + { + "start": 22710.38, + "end": 22715.5, + "probability": 0.9807 + }, + { + "start": 22715.86, + "end": 22717.2, + "probability": 0.998 + }, + { + "start": 22717.6, + "end": 22718.22, + "probability": 0.7303 + }, + { + "start": 22719.2, + "end": 22722.18, + "probability": 0.9921 + }, + { + "start": 22722.5, + "end": 22725.24, + "probability": 0.9937 + }, + { + "start": 22726.54, + "end": 22727.66, + "probability": 0.0008 + }, + { + "start": 22728.64, + "end": 22732.82, + "probability": 0.9825 + }, + { + "start": 22733.44, + "end": 22734.6, + "probability": 0.9375 + }, + { + "start": 22735.6, + "end": 22737.94, + "probability": 0.9152 + }, + { + "start": 22738.72, + "end": 22743.86, + "probability": 0.9946 + }, + { + "start": 22744.3, + "end": 22745.68, + "probability": 0.9972 + }, + { + "start": 22746.14, + "end": 22748.44, + "probability": 0.9805 + }, + { + "start": 22749.38, + "end": 22749.6, + "probability": 0.4956 + }, + { + "start": 22751.06, + "end": 22754.84, + "probability": 0.9989 + }, + { + "start": 22754.84, + "end": 22758.9, + "probability": 0.9984 + }, + { + "start": 22759.36, + "end": 22760.2, + "probability": 0.9492 + }, + { + "start": 22760.96, + "end": 22761.66, + "probability": 0.5275 + }, + { + "start": 22761.96, + "end": 22762.2, + "probability": 0.3713 + }, + { + "start": 22762.2, + "end": 22763.02, + "probability": 0.0132 + }, + { + "start": 22763.24, + "end": 22768.78, + "probability": 0.9865 + }, + { + "start": 22769.14, + "end": 22772.2, + "probability": 0.9426 + }, + { + "start": 22772.76, + "end": 22775.14, + "probability": 0.8851 + }, + { + "start": 22775.76, + "end": 22778.72, + "probability": 0.9539 + }, + { + "start": 22779.28, + "end": 22779.92, + "probability": 0.817 + }, + { + "start": 22781.38, + "end": 22783.86, + "probability": 0.9108 + }, + { + "start": 22784.56, + "end": 22785.78, + "probability": 0.8987 + }, + { + "start": 22786.8, + "end": 22788.46, + "probability": 0.8591 + }, + { + "start": 22789.08, + "end": 22790.16, + "probability": 0.8936 + }, + { + "start": 22790.72, + "end": 22791.52, + "probability": 0.9514 + }, + { + "start": 22792.06, + "end": 22793.84, + "probability": 0.9124 + }, + { + "start": 22794.8, + "end": 22794.82, + "probability": 0.2512 + }, + { + "start": 22794.82, + "end": 22796.28, + "probability": 0.8279 + }, + { + "start": 22796.66, + "end": 22797.0, + "probability": 0.5066 + }, + { + "start": 22797.0, + "end": 22798.05, + "probability": 0.5289 + }, + { + "start": 22799.22, + "end": 22801.33, + "probability": 0.9576 + }, + { + "start": 22805.26, + "end": 22806.54, + "probability": 0.4557 + }, + { + "start": 22806.54, + "end": 22806.54, + "probability": 0.2827 + }, + { + "start": 22806.54, + "end": 22809.72, + "probability": 0.6338 + }, + { + "start": 22809.78, + "end": 22810.36, + "probability": 0.5836 + }, + { + "start": 22810.52, + "end": 22815.0, + "probability": 0.9632 + }, + { + "start": 22815.62, + "end": 22819.04, + "probability": 0.9858 + }, + { + "start": 22819.56, + "end": 22821.38, + "probability": 0.9153 + }, + { + "start": 22822.64, + "end": 22825.1, + "probability": 0.9062 + }, + { + "start": 22827.54, + "end": 22829.54, + "probability": 0.9043 + }, + { + "start": 22829.58, + "end": 22830.78, + "probability": 0.8396 + }, + { + "start": 22831.18, + "end": 22832.26, + "probability": 0.8452 + }, + { + "start": 22832.78, + "end": 22834.4, + "probability": 0.9598 + }, + { + "start": 22834.4, + "end": 22836.18, + "probability": 0.9407 + }, + { + "start": 22836.74, + "end": 22839.0, + "probability": 0.9834 + }, + { + "start": 22839.68, + "end": 22841.16, + "probability": 0.9414 + }, + { + "start": 22841.84, + "end": 22844.38, + "probability": 0.867 + }, + { + "start": 22845.04, + "end": 22847.86, + "probability": 0.9177 + }, + { + "start": 22848.92, + "end": 22850.67, + "probability": 0.9868 + }, + { + "start": 22851.5, + "end": 22855.1, + "probability": 0.9719 + }, + { + "start": 22855.62, + "end": 22856.36, + "probability": 0.9291 + }, + { + "start": 22857.04, + "end": 22857.38, + "probability": 0.9319 + }, + { + "start": 22858.84, + "end": 22859.94, + "probability": 0.4301 + }, + { + "start": 22860.04, + "end": 22860.96, + "probability": 0.4801 + }, + { + "start": 22860.96, + "end": 22864.54, + "probability": 0.8055 + }, + { + "start": 22864.9, + "end": 22868.52, + "probability": 0.9954 + }, + { + "start": 22868.92, + "end": 22870.38, + "probability": 0.3844 + }, + { + "start": 22871.02, + "end": 22871.12, + "probability": 0.533 + }, + { + "start": 22872.86, + "end": 22874.0, + "probability": 0.0851 + }, + { + "start": 22879.72, + "end": 22879.72, + "probability": 0.0224 + }, + { + "start": 22880.12, + "end": 22881.84, + "probability": 0.1287 + }, + { + "start": 22885.28, + "end": 22885.44, + "probability": 0.1112 + }, + { + "start": 22901.26, + "end": 22907.06, + "probability": 0.8812 + }, + { + "start": 22908.12, + "end": 22910.2, + "probability": 0.8843 + }, + { + "start": 22913.24, + "end": 22917.68, + "probability": 0.9958 + }, + { + "start": 22918.58, + "end": 22921.36, + "probability": 0.9959 + }, + { + "start": 22922.06, + "end": 22922.8, + "probability": 0.4327 + }, + { + "start": 22922.96, + "end": 22923.88, + "probability": 0.9919 + }, + { + "start": 22925.2, + "end": 22927.08, + "probability": 0.7571 + }, + { + "start": 22929.78, + "end": 22930.68, + "probability": 0.1504 + }, + { + "start": 22931.06, + "end": 22931.32, + "probability": 0.031 + }, + { + "start": 22931.82, + "end": 22936.22, + "probability": 0.9629 + }, + { + "start": 22936.78, + "end": 22938.78, + "probability": 0.995 + }, + { + "start": 22939.32, + "end": 22941.9, + "probability": 0.1743 + }, + { + "start": 22942.14, + "end": 22945.06, + "probability": 0.913 + }, + { + "start": 22945.18, + "end": 22948.98, + "probability": 0.6472 + }, + { + "start": 22949.48, + "end": 22952.66, + "probability": 0.909 + }, + { + "start": 22953.1, + "end": 22958.36, + "probability": 0.9951 + }, + { + "start": 22959.4, + "end": 22962.34, + "probability": 0.9896 + }, + { + "start": 22962.94, + "end": 22964.8, + "probability": 0.9325 + }, + { + "start": 22964.9, + "end": 22969.86, + "probability": 0.9952 + }, + { + "start": 22971.06, + "end": 22973.46, + "probability": 0.9788 + }, + { + "start": 22974.02, + "end": 22975.72, + "probability": 0.992 + }, + { + "start": 22976.12, + "end": 22977.24, + "probability": 0.8752 + }, + { + "start": 22977.64, + "end": 22980.02, + "probability": 0.9053 + }, + { + "start": 22980.1, + "end": 22981.12, + "probability": 0.548 + }, + { + "start": 22981.72, + "end": 22982.98, + "probability": 0.6884 + }, + { + "start": 22984.28, + "end": 22985.46, + "probability": 0.5208 + }, + { + "start": 22986.38, + "end": 22988.16, + "probability": 0.9814 + }, + { + "start": 22988.78, + "end": 22993.96, + "probability": 0.9922 + }, + { + "start": 22993.96, + "end": 22999.86, + "probability": 0.994 + }, + { + "start": 23000.74, + "end": 23002.52, + "probability": 0.7645 + }, + { + "start": 23002.66, + "end": 23007.44, + "probability": 0.9536 + }, + { + "start": 23007.64, + "end": 23009.58, + "probability": 0.969 + }, + { + "start": 23009.66, + "end": 23009.88, + "probability": 0.7749 + }, + { + "start": 23010.46, + "end": 23013.06, + "probability": 0.96 + }, + { + "start": 23013.06, + "end": 23016.92, + "probability": 0.992 + }, + { + "start": 23017.28, + "end": 23018.98, + "probability": 0.9983 + }, + { + "start": 23018.98, + "end": 23021.6, + "probability": 0.9937 + }, + { + "start": 23021.9, + "end": 23024.88, + "probability": 0.3469 + }, + { + "start": 23025.22, + "end": 23025.28, + "probability": 0.0688 + }, + { + "start": 23025.28, + "end": 23027.48, + "probability": 0.9716 + }, + { + "start": 23028.02, + "end": 23029.76, + "probability": 0.2374 + }, + { + "start": 23029.76, + "end": 23031.94, + "probability": 0.7851 + }, + { + "start": 23032.3, + "end": 23034.48, + "probability": 0.9962 + }, + { + "start": 23034.98, + "end": 23037.58, + "probability": 0.3192 + }, + { + "start": 23037.74, + "end": 23040.9, + "probability": 0.4535 + }, + { + "start": 23042.5, + "end": 23047.18, + "probability": 0.9926 + }, + { + "start": 23047.58, + "end": 23048.14, + "probability": 0.0665 + }, + { + "start": 23048.62, + "end": 23049.16, + "probability": 0.0959 + }, + { + "start": 23049.24, + "end": 23050.24, + "probability": 0.0401 + }, + { + "start": 23050.24, + "end": 23054.26, + "probability": 0.8526 + }, + { + "start": 23054.36, + "end": 23055.16, + "probability": 0.2389 + }, + { + "start": 23055.16, + "end": 23055.16, + "probability": 0.6504 + }, + { + "start": 23055.16, + "end": 23056.46, + "probability": 0.8271 + }, + { + "start": 23056.78, + "end": 23060.64, + "probability": 0.9993 + }, + { + "start": 23060.64, + "end": 23065.3, + "probability": 0.9956 + }, + { + "start": 23065.5, + "end": 23067.72, + "probability": 0.7023 + }, + { + "start": 23067.88, + "end": 23068.3, + "probability": 0.9644 + }, + { + "start": 23068.4, + "end": 23068.7, + "probability": 0.4662 + }, + { + "start": 23068.88, + "end": 23069.3, + "probability": 0.8794 + }, + { + "start": 23069.36, + "end": 23071.7, + "probability": 0.9878 + }, + { + "start": 23072.18, + "end": 23077.56, + "probability": 0.9965 + }, + { + "start": 23077.56, + "end": 23079.9, + "probability": 0.0404 + }, + { + "start": 23079.9, + "end": 23080.67, + "probability": 0.4393 + }, + { + "start": 23081.06, + "end": 23082.43, + "probability": 0.9888 + }, + { + "start": 23083.74, + "end": 23084.08, + "probability": 0.3932 + }, + { + "start": 23084.72, + "end": 23085.34, + "probability": 0.2796 + }, + { + "start": 23085.42, + "end": 23085.56, + "probability": 0.3911 + }, + { + "start": 23085.56, + "end": 23087.96, + "probability": 0.6049 + }, + { + "start": 23088.26, + "end": 23090.44, + "probability": 0.8853 + }, + { + "start": 23091.3, + "end": 23094.6, + "probability": 0.8354 + }, + { + "start": 23095.26, + "end": 23101.1, + "probability": 0.9956 + }, + { + "start": 23101.22, + "end": 23103.9, + "probability": 0.9562 + }, + { + "start": 23104.12, + "end": 23108.12, + "probability": 0.9784 + }, + { + "start": 23108.18, + "end": 23110.76, + "probability": 0.6735 + }, + { + "start": 23110.88, + "end": 23114.64, + "probability": 0.9314 + }, + { + "start": 23115.24, + "end": 23117.68, + "probability": 0.9617 + }, + { + "start": 23117.96, + "end": 23119.9, + "probability": 0.9954 + }, + { + "start": 23120.46, + "end": 23124.96, + "probability": 0.9873 + }, + { + "start": 23124.96, + "end": 23127.1, + "probability": 0.9954 + }, + { + "start": 23127.34, + "end": 23127.72, + "probability": 0.6196 + }, + { + "start": 23127.72, + "end": 23128.86, + "probability": 0.8949 + }, + { + "start": 23129.1, + "end": 23132.1, + "probability": 0.9015 + }, + { + "start": 23132.56, + "end": 23133.44, + "probability": 0.7291 + }, + { + "start": 23133.58, + "end": 23134.42, + "probability": 0.8817 + }, + { + "start": 23134.42, + "end": 23134.88, + "probability": 0.9614 + }, + { + "start": 23134.96, + "end": 23137.88, + "probability": 0.9664 + }, + { + "start": 23138.38, + "end": 23139.42, + "probability": 0.9062 + }, + { + "start": 23140.18, + "end": 23143.68, + "probability": 0.9681 + }, + { + "start": 23143.98, + "end": 23144.34, + "probability": 0.8597 + }, + { + "start": 23146.04, + "end": 23148.62, + "probability": 0.8376 + }, + { + "start": 23150.32, + "end": 23151.56, + "probability": 0.5279 + }, + { + "start": 23151.96, + "end": 23153.98, + "probability": 0.908 + }, + { + "start": 23154.82, + "end": 23156.16, + "probability": 0.8179 + }, + { + "start": 23156.16, + "end": 23157.56, + "probability": 0.7703 + }, + { + "start": 23158.02, + "end": 23160.68, + "probability": 0.6972 + }, + { + "start": 23161.16, + "end": 23163.96, + "probability": 0.8081 + }, + { + "start": 23164.2, + "end": 23165.58, + "probability": 0.7783 + }, + { + "start": 23166.4, + "end": 23166.8, + "probability": 0.426 + }, + { + "start": 23166.86, + "end": 23167.86, + "probability": 0.8372 + }, + { + "start": 23167.86, + "end": 23170.06, + "probability": 0.9587 + }, + { + "start": 23170.2, + "end": 23170.88, + "probability": 0.8496 + }, + { + "start": 23171.04, + "end": 23172.1, + "probability": 0.5416 + }, + { + "start": 23172.54, + "end": 23175.16, + "probability": 0.9485 + }, + { + "start": 23175.9, + "end": 23177.5, + "probability": 0.7939 + }, + { + "start": 23178.28, + "end": 23180.14, + "probability": 0.9531 + }, + { + "start": 23180.16, + "end": 23181.3, + "probability": 0.7212 + }, + { + "start": 23183.08, + "end": 23185.46, + "probability": 0.6352 + }, + { + "start": 23186.12, + "end": 23186.74, + "probability": 0.8623 + }, + { + "start": 23187.36, + "end": 23187.68, + "probability": 0.9652 + }, + { + "start": 23188.08, + "end": 23189.1, + "probability": 0.9419 + }, + { + "start": 23190.73, + "end": 23193.64, + "probability": 0.6648 + }, + { + "start": 23193.86, + "end": 23194.9, + "probability": 0.8944 + }, + { + "start": 23195.48, + "end": 23196.16, + "probability": 0.9012 + }, + { + "start": 23196.28, + "end": 23197.21, + "probability": 0.99 + }, + { + "start": 23197.48, + "end": 23198.24, + "probability": 0.9615 + }, + { + "start": 23198.3, + "end": 23199.8, + "probability": 0.7894 + }, + { + "start": 23199.98, + "end": 23200.35, + "probability": 0.9546 + }, + { + "start": 23201.66, + "end": 23201.82, + "probability": 0.0813 + }, + { + "start": 23201.82, + "end": 23204.02, + "probability": 0.7417 + }, + { + "start": 23204.94, + "end": 23205.5, + "probability": 0.3521 + }, + { + "start": 23206.2, + "end": 23207.66, + "probability": 0.8416 + }, + { + "start": 23208.48, + "end": 23208.7, + "probability": 0.1921 + }, + { + "start": 23209.46, + "end": 23211.86, + "probability": 0.8447 + }, + { + "start": 23212.32, + "end": 23216.08, + "probability": 0.9287 + }, + { + "start": 23216.5, + "end": 23217.36, + "probability": 0.9132 + }, + { + "start": 23217.5, + "end": 23218.37, + "probability": 0.9391 + }, + { + "start": 23218.72, + "end": 23219.64, + "probability": 0.6776 + }, + { + "start": 23220.42, + "end": 23223.74, + "probability": 0.7378 + }, + { + "start": 23224.06, + "end": 23225.1, + "probability": 0.9916 + }, + { + "start": 23225.4, + "end": 23228.86, + "probability": 0.7859 + }, + { + "start": 23229.34, + "end": 23231.12, + "probability": 0.9365 + }, + { + "start": 23231.24, + "end": 23231.7, + "probability": 0.2882 + }, + { + "start": 23231.8, + "end": 23234.16, + "probability": 0.9092 + }, + { + "start": 23235.04, + "end": 23240.14, + "probability": 0.9913 + }, + { + "start": 23240.43, + "end": 23240.88, + "probability": 0.7021 + }, + { + "start": 23240.92, + "end": 23244.74, + "probability": 0.9023 + }, + { + "start": 23245.5, + "end": 23246.52, + "probability": 0.9326 + }, + { + "start": 23246.76, + "end": 23247.0, + "probability": 0.6031 + }, + { + "start": 23247.04, + "end": 23248.35, + "probability": 0.9487 + }, + { + "start": 23249.2, + "end": 23250.9, + "probability": 0.7805 + }, + { + "start": 23251.04, + "end": 23251.72, + "probability": 0.7256 + }, + { + "start": 23251.78, + "end": 23255.46, + "probability": 0.7777 + }, + { + "start": 23256.14, + "end": 23256.62, + "probability": 0.7595 + }, + { + "start": 23256.62, + "end": 23258.5, + "probability": 0.9916 + }, + { + "start": 23258.68, + "end": 23259.16, + "probability": 0.774 + }, + { + "start": 23259.68, + "end": 23261.74, + "probability": 0.8293 + }, + { + "start": 23261.86, + "end": 23262.44, + "probability": 0.9029 + }, + { + "start": 23262.7, + "end": 23263.08, + "probability": 0.9494 + }, + { + "start": 23263.12, + "end": 23265.52, + "probability": 0.9394 + }, + { + "start": 23265.7, + "end": 23267.94, + "probability": 0.9537 + }, + { + "start": 23268.32, + "end": 23269.0, + "probability": 0.9775 + }, + { + "start": 23269.18, + "end": 23271.18, + "probability": 0.972 + }, + { + "start": 23271.26, + "end": 23272.24, + "probability": 0.8376 + }, + { + "start": 23272.38, + "end": 23273.6, + "probability": 0.6873 + }, + { + "start": 23273.64, + "end": 23274.56, + "probability": 0.0353 + }, + { + "start": 23274.56, + "end": 23276.62, + "probability": 0.9621 + }, + { + "start": 23277.22, + "end": 23279.43, + "probability": 0.9614 + }, + { + "start": 23280.38, + "end": 23282.34, + "probability": 0.9316 + }, + { + "start": 23283.32, + "end": 23288.12, + "probability": 0.8867 + }, + { + "start": 23289.58, + "end": 23291.78, + "probability": 0.2122 + }, + { + "start": 23291.82, + "end": 23296.24, + "probability": 0.6205 + }, + { + "start": 23296.34, + "end": 23297.84, + "probability": 0.0665 + }, + { + "start": 23297.86, + "end": 23300.9, + "probability": 0.7228 + }, + { + "start": 23301.28, + "end": 23303.1, + "probability": 0.2889 + }, + { + "start": 23303.18, + "end": 23303.68, + "probability": 0.4556 + }, + { + "start": 23303.96, + "end": 23306.02, + "probability": 0.4627 + }, + { + "start": 23306.18, + "end": 23309.14, + "probability": 0.6314 + }, + { + "start": 23309.24, + "end": 23310.95, + "probability": 0.1567 + }, + { + "start": 23311.96, + "end": 23313.94, + "probability": 0.084 + }, + { + "start": 23314.46, + "end": 23315.51, + "probability": 0.1019 + }, + { + "start": 23319.92, + "end": 23323.56, + "probability": 0.002 + }, + { + "start": 23324.2, + "end": 23326.74, + "probability": 0.0923 + }, + { + "start": 23326.74, + "end": 23326.94, + "probability": 0.0189 + }, + { + "start": 23329.22, + "end": 23332.58, + "probability": 0.1544 + }, + { + "start": 23332.6, + "end": 23333.48, + "probability": 0.3515 + }, + { + "start": 23333.66, + "end": 23334.74, + "probability": 0.5085 + }, + { + "start": 23334.86, + "end": 23337.7, + "probability": 0.0628 + }, + { + "start": 23337.76, + "end": 23337.76, + "probability": 0.0518 + }, + { + "start": 23337.8, + "end": 23337.9, + "probability": 0.0336 + }, + { + "start": 23337.9, + "end": 23340.0, + "probability": 0.3107 + }, + { + "start": 23340.06, + "end": 23340.78, + "probability": 0.0908 + }, + { + "start": 23343.62, + "end": 23343.76, + "probability": 0.0259 + }, + { + "start": 23344.44, + "end": 23345.0, + "probability": 0.162 + }, + { + "start": 23345.0, + "end": 23345.82, + "probability": 0.3026 + }, + { + "start": 23345.82, + "end": 23345.96, + "probability": 0.023 + }, + { + "start": 23345.96, + "end": 23347.28, + "probability": 0.304 + }, + { + "start": 23347.28, + "end": 23348.82, + "probability": 0.0278 + }, + { + "start": 23348.94, + "end": 23352.46, + "probability": 0.0716 + }, + { + "start": 23352.86, + "end": 23353.39, + "probability": 0.0223 + }, + { + "start": 23353.88, + "end": 23357.02, + "probability": 0.1803 + }, + { + "start": 23357.02, + "end": 23357.38, + "probability": 0.2601 + }, + { + "start": 23357.38, + "end": 23359.08, + "probability": 0.2799 + }, + { + "start": 23359.08, + "end": 23359.08, + "probability": 0.2204 + }, + { + "start": 23359.08, + "end": 23360.52, + "probability": 0.0828 + }, + { + "start": 23360.52, + "end": 23362.98, + "probability": 0.0753 + }, + { + "start": 23363.0, + "end": 23363.0, + "probability": 0.0 + }, + { + "start": 23363.0, + "end": 23363.0, + "probability": 0.0 + }, + { + "start": 23363.0, + "end": 23363.0, + "probability": 0.0 + }, + { + "start": 23363.0, + "end": 23363.0, + "probability": 0.0 + }, + { + "start": 23363.0, + "end": 23363.0, + "probability": 0.0 + }, + { + "start": 23363.0, + "end": 23363.0, + "probability": 0.0 + }, + { + "start": 23363.0, + "end": 23363.0, + "probability": 0.0 + }, + { + "start": 23363.0, + "end": 23363.0, + "probability": 0.0 + }, + { + "start": 23363.0, + "end": 23363.0, + "probability": 0.0 + }, + { + "start": 23363.0, + "end": 23363.0, + "probability": 0.0 + }, + { + "start": 23363.0, + "end": 23363.0, + "probability": 0.0 + }, + { + "start": 23363.0, + "end": 23363.0, + "probability": 0.0 + }, + { + "start": 23363.0, + "end": 23363.0, + "probability": 0.0 + }, + { + "start": 23363.0, + "end": 23363.0, + "probability": 0.0 + }, + { + "start": 23363.0, + "end": 23363.0, + "probability": 0.0 + }, + { + "start": 23363.0, + "end": 23363.0, + "probability": 0.0 + }, + { + "start": 23363.0, + "end": 23363.0, + "probability": 0.0 + }, + { + "start": 23363.0, + "end": 23363.0, + "probability": 0.0 + }, + { + "start": 23363.0, + "end": 23363.0, + "probability": 0.0 + }, + { + "start": 23363.2, + "end": 23364.32, + "probability": 0.1622 + }, + { + "start": 23364.4, + "end": 23365.36, + "probability": 0.4219 + }, + { + "start": 23365.36, + "end": 23366.04, + "probability": 0.4839 + }, + { + "start": 23367.04, + "end": 23368.71, + "probability": 0.5934 + }, + { + "start": 23369.1, + "end": 23370.22, + "probability": 0.6249 + }, + { + "start": 23370.5, + "end": 23375.16, + "probability": 0.8939 + }, + { + "start": 23375.16, + "end": 23380.52, + "probability": 0.978 + }, + { + "start": 23381.16, + "end": 23383.46, + "probability": 0.882 + }, + { + "start": 23384.02, + "end": 23387.66, + "probability": 0.5951 + }, + { + "start": 23402.88, + "end": 23403.99, + "probability": 0.5349 + }, + { + "start": 23410.56, + "end": 23412.66, + "probability": 0.9717 + }, + { + "start": 23412.66, + "end": 23415.46, + "probability": 0.9142 + }, + { + "start": 23415.5, + "end": 23416.96, + "probability": 0.9655 + }, + { + "start": 23417.34, + "end": 23419.0, + "probability": 0.9749 + }, + { + "start": 23419.12, + "end": 23419.24, + "probability": 0.4315 + }, + { + "start": 23419.78, + "end": 23420.34, + "probability": 0.5304 + }, + { + "start": 23427.82, + "end": 23431.42, + "probability": 0.7732 + }, + { + "start": 23433.58, + "end": 23434.96, + "probability": 0.6152 + }, + { + "start": 23435.08, + "end": 23437.57, + "probability": 0.9565 + }, + { + "start": 23437.92, + "end": 23440.08, + "probability": 0.7556 + }, + { + "start": 23440.48, + "end": 23440.82, + "probability": 0.6827 + }, + { + "start": 23441.48, + "end": 23443.62, + "probability": 0.7365 + }, + { + "start": 23446.56, + "end": 23446.66, + "probability": 0.3599 + }, + { + "start": 23447.96, + "end": 23449.32, + "probability": 0.9003 + }, + { + "start": 23456.2, + "end": 23457.58, + "probability": 0.6589 + }, + { + "start": 23457.76, + "end": 23459.24, + "probability": 0.7388 + }, + { + "start": 23459.32, + "end": 23461.22, + "probability": 0.9714 + }, + { + "start": 23461.34, + "end": 23462.34, + "probability": 0.2233 + }, + { + "start": 23462.88, + "end": 23464.66, + "probability": 0.9001 + }, + { + "start": 23464.88, + "end": 23466.6, + "probability": 0.5829 + }, + { + "start": 23489.76, + "end": 23491.46, + "probability": 0.7449 + }, + { + "start": 23492.42, + "end": 23493.54, + "probability": 0.858 + }, + { + "start": 23495.02, + "end": 23496.9, + "probability": 0.9303 + }, + { + "start": 23496.98, + "end": 23497.72, + "probability": 0.6931 + }, + { + "start": 23497.84, + "end": 23506.0, + "probability": 0.995 + }, + { + "start": 23506.0, + "end": 23513.62, + "probability": 0.8872 + }, + { + "start": 23514.24, + "end": 23517.96, + "probability": 0.9382 + }, + { + "start": 23518.64, + "end": 23519.58, + "probability": 0.7749 + }, + { + "start": 23519.66, + "end": 23521.86, + "probability": 0.9813 + }, + { + "start": 23521.94, + "end": 23523.88, + "probability": 0.7095 + }, + { + "start": 23523.96, + "end": 23527.2, + "probability": 0.8853 + }, + { + "start": 23527.7, + "end": 23528.42, + "probability": 0.8831 + }, + { + "start": 23528.48, + "end": 23529.06, + "probability": 0.9212 + }, + { + "start": 23529.16, + "end": 23530.32, + "probability": 0.7628 + }, + { + "start": 23530.48, + "end": 23531.08, + "probability": 0.7966 + }, + { + "start": 23531.64, + "end": 23532.84, + "probability": 0.6426 + }, + { + "start": 23533.7, + "end": 23535.44, + "probability": 0.8335 + }, + { + "start": 23536.04, + "end": 23538.92, + "probability": 0.8893 + }, + { + "start": 23539.72, + "end": 23541.16, + "probability": 0.9854 + }, + { + "start": 23541.62, + "end": 23546.48, + "probability": 0.9856 + }, + { + "start": 23547.06, + "end": 23549.5, + "probability": 0.842 + }, + { + "start": 23549.52, + "end": 23551.98, + "probability": 0.9746 + }, + { + "start": 23552.64, + "end": 23555.32, + "probability": 0.7439 + }, + { + "start": 23555.74, + "end": 23558.5, + "probability": 0.9394 + }, + { + "start": 23559.2, + "end": 23561.3, + "probability": 0.9967 + }, + { + "start": 23561.3, + "end": 23563.5, + "probability": 0.9991 + }, + { + "start": 23564.54, + "end": 23570.04, + "probability": 0.9925 + }, + { + "start": 23570.38, + "end": 23571.42, + "probability": 0.991 + }, + { + "start": 23571.52, + "end": 23572.02, + "probability": 0.9728 + }, + { + "start": 23572.1, + "end": 23572.66, + "probability": 0.9686 + }, + { + "start": 23572.76, + "end": 23574.48, + "probability": 0.6734 + }, + { + "start": 23575.36, + "end": 23577.88, + "probability": 0.8745 + }, + { + "start": 23578.5, + "end": 23582.64, + "probability": 0.9697 + }, + { + "start": 23582.88, + "end": 23583.48, + "probability": 0.4689 + }, + { + "start": 23583.84, + "end": 23586.0, + "probability": 0.9986 + }, + { + "start": 23586.68, + "end": 23589.14, + "probability": 0.9966 + }, + { + "start": 23589.42, + "end": 23590.24, + "probability": 0.9694 + }, + { + "start": 23590.36, + "end": 23591.5, + "probability": 0.9518 + }, + { + "start": 23591.62, + "end": 23593.36, + "probability": 0.9639 + }, + { + "start": 23593.8, + "end": 23595.32, + "probability": 0.9623 + }, + { + "start": 23595.4, + "end": 23597.4, + "probability": 0.9901 + }, + { + "start": 23597.4, + "end": 23601.0, + "probability": 0.963 + }, + { + "start": 23601.26, + "end": 23604.43, + "probability": 0.9865 + }, + { + "start": 23605.4, + "end": 23608.58, + "probability": 0.9946 + }, + { + "start": 23608.72, + "end": 23614.34, + "probability": 0.948 + }, + { + "start": 23614.98, + "end": 23617.67, + "probability": 0.9264 + }, + { + "start": 23619.22, + "end": 23622.82, + "probability": 0.9655 + }, + { + "start": 23622.82, + "end": 23624.96, + "probability": 0.979 + }, + { + "start": 23626.46, + "end": 23628.92, + "probability": 0.996 + }, + { + "start": 23629.76, + "end": 23634.1, + "probability": 0.8174 + }, + { + "start": 23634.6, + "end": 23635.98, + "probability": 0.6743 + }, + { + "start": 23636.54, + "end": 23638.0, + "probability": 0.7441 + }, + { + "start": 23638.1, + "end": 23642.78, + "probability": 0.9914 + }, + { + "start": 23642.78, + "end": 23647.72, + "probability": 0.6832 + }, + { + "start": 23648.08, + "end": 23650.22, + "probability": 0.6722 + }, + { + "start": 23650.76, + "end": 23655.22, + "probability": 0.918 + }, + { + "start": 23655.22, + "end": 23659.82, + "probability": 0.9644 + }, + { + "start": 23660.54, + "end": 23662.43, + "probability": 0.9937 + }, + { + "start": 23662.56, + "end": 23665.42, + "probability": 0.991 + }, + { + "start": 23666.06, + "end": 23670.04, + "probability": 0.9912 + }, + { + "start": 23671.34, + "end": 23671.6, + "probability": 0.4158 + }, + { + "start": 23671.6, + "end": 23673.04, + "probability": 0.8001 + }, + { + "start": 23673.22, + "end": 23678.1, + "probability": 0.8052 + }, + { + "start": 23678.1, + "end": 23681.76, + "probability": 0.9391 + }, + { + "start": 23681.88, + "end": 23687.4, + "probability": 0.9536 + }, + { + "start": 23688.2, + "end": 23688.98, + "probability": 0.7484 + }, + { + "start": 23689.58, + "end": 23694.38, + "probability": 0.9974 + }, + { + "start": 23694.84, + "end": 23696.32, + "probability": 0.9808 + }, + { + "start": 23696.68, + "end": 23697.26, + "probability": 0.2185 + }, + { + "start": 23697.98, + "end": 23698.68, + "probability": 0.9154 + }, + { + "start": 23698.72, + "end": 23701.8, + "probability": 0.8477 + }, + { + "start": 23702.54, + "end": 23706.2, + "probability": 0.9705 + }, + { + "start": 23706.8, + "end": 23707.6, + "probability": 0.8742 + }, + { + "start": 23708.44, + "end": 23712.68, + "probability": 0.9971 + }, + { + "start": 23713.08, + "end": 23714.84, + "probability": 0.9933 + }, + { + "start": 23715.4, + "end": 23718.96, + "probability": 0.9841 + }, + { + "start": 23719.74, + "end": 23721.52, + "probability": 0.9905 + }, + { + "start": 23722.22, + "end": 23724.64, + "probability": 0.9981 + }, + { + "start": 23724.64, + "end": 23728.89, + "probability": 0.9944 + }, + { + "start": 23729.7, + "end": 23730.46, + "probability": 0.5977 + }, + { + "start": 23730.9, + "end": 23731.46, + "probability": 0.9489 + }, + { + "start": 23731.86, + "end": 23733.05, + "probability": 0.9903 + }, + { + "start": 23733.9, + "end": 23734.98, + "probability": 0.6308 + }, + { + "start": 23735.68, + "end": 23736.54, + "probability": 0.929 + }, + { + "start": 23737.34, + "end": 23738.14, + "probability": 0.8789 + }, + { + "start": 23738.61, + "end": 23743.06, + "probability": 0.9907 + }, + { + "start": 23743.72, + "end": 23749.08, + "probability": 0.91 + }, + { + "start": 23749.2, + "end": 23750.88, + "probability": 0.4304 + }, + { + "start": 23751.18, + "end": 23752.34, + "probability": 0.8865 + }, + { + "start": 23752.42, + "end": 23755.66, + "probability": 0.9624 + }, + { + "start": 23755.66, + "end": 23757.6, + "probability": 0.9954 + }, + { + "start": 23758.2, + "end": 23760.62, + "probability": 0.9927 + }, + { + "start": 23760.62, + "end": 23764.22, + "probability": 0.9924 + }, + { + "start": 23765.52, + "end": 23770.16, + "probability": 0.9395 + }, + { + "start": 23770.98, + "end": 23772.88, + "probability": 0.9579 + }, + { + "start": 23773.28, + "end": 23774.68, + "probability": 0.9032 + }, + { + "start": 23775.3, + "end": 23777.92, + "probability": 0.9382 + }, + { + "start": 23777.92, + "end": 23780.06, + "probability": 0.9897 + }, + { + "start": 23780.56, + "end": 23782.56, + "probability": 0.9888 + }, + { + "start": 23783.42, + "end": 23784.26, + "probability": 0.689 + }, + { + "start": 23784.4, + "end": 23788.18, + "probability": 0.9941 + }, + { + "start": 23788.86, + "end": 23792.48, + "probability": 0.9897 + }, + { + "start": 23792.48, + "end": 23797.52, + "probability": 0.9973 + }, + { + "start": 23798.04, + "end": 23800.06, + "probability": 0.9817 + }, + { + "start": 23800.34, + "end": 23800.68, + "probability": 0.4497 + }, + { + "start": 23801.28, + "end": 23802.22, + "probability": 0.7043 + }, + { + "start": 23802.56, + "end": 23805.24, + "probability": 0.997 + }, + { + "start": 23805.24, + "end": 23807.94, + "probability": 0.9056 + }, + { + "start": 23808.48, + "end": 23813.12, + "probability": 0.9635 + }, + { + "start": 23814.0, + "end": 23817.78, + "probability": 0.9259 + }, + { + "start": 23817.88, + "end": 23822.42, + "probability": 0.792 + }, + { + "start": 23822.42, + "end": 23828.0, + "probability": 0.9224 + }, + { + "start": 23828.04, + "end": 23828.56, + "probability": 0.5709 + }, + { + "start": 23828.86, + "end": 23830.38, + "probability": 0.8527 + }, + { + "start": 23830.5, + "end": 23831.82, + "probability": 0.963 + }, + { + "start": 23832.2, + "end": 23835.12, + "probability": 0.9202 + }, + { + "start": 23835.12, + "end": 23837.92, + "probability": 0.9792 + }, + { + "start": 23839.74, + "end": 23845.24, + "probability": 0.9897 + }, + { + "start": 23845.92, + "end": 23849.86, + "probability": 0.9754 + }, + { + "start": 23850.32, + "end": 23851.7, + "probability": 0.8482 + }, + { + "start": 23852.18, + "end": 23852.7, + "probability": 0.7275 + }, + { + "start": 23852.76, + "end": 23853.6, + "probability": 0.9058 + }, + { + "start": 23853.64, + "end": 23855.3, + "probability": 0.8756 + }, + { + "start": 23855.58, + "end": 23857.08, + "probability": 0.9424 + }, + { + "start": 23857.8, + "end": 23863.24, + "probability": 0.9978 + }, + { + "start": 23863.7, + "end": 23864.98, + "probability": 0.8878 + }, + { + "start": 23865.78, + "end": 23867.52, + "probability": 0.988 + }, + { + "start": 23867.64, + "end": 23871.54, + "probability": 0.9693 + }, + { + "start": 23872.24, + "end": 23872.8, + "probability": 0.5739 + }, + { + "start": 23874.62, + "end": 23876.76, + "probability": 0.7921 + }, + { + "start": 23877.3, + "end": 23879.1, + "probability": 0.9409 + }, + { + "start": 23879.5, + "end": 23881.78, + "probability": 0.9355 + }, + { + "start": 23881.78, + "end": 23884.02, + "probability": 0.9292 + }, + { + "start": 23884.7, + "end": 23886.24, + "probability": 0.8928 + }, + { + "start": 23888.24, + "end": 23889.36, + "probability": 0.9781 + }, + { + "start": 23890.16, + "end": 23891.1, + "probability": 0.981 + }, + { + "start": 23891.18, + "end": 23892.88, + "probability": 0.8803 + }, + { + "start": 23893.34, + "end": 23897.18, + "probability": 0.7355 + }, + { + "start": 23897.2, + "end": 23898.82, + "probability": 0.2651 + }, + { + "start": 23899.0, + "end": 23900.46, + "probability": 0.6183 + }, + { + "start": 23901.1, + "end": 23902.7, + "probability": 0.7442 + }, + { + "start": 23902.92, + "end": 23905.7, + "probability": 0.6283 + }, + { + "start": 23905.86, + "end": 23908.64, + "probability": 0.8364 + }, + { + "start": 23908.84, + "end": 23910.44, + "probability": 0.7968 + }, + { + "start": 23910.56, + "end": 23912.7, + "probability": 0.849 + }, + { + "start": 23912.74, + "end": 23913.88, + "probability": 0.8262 + }, + { + "start": 23913.98, + "end": 23914.59, + "probability": 0.9679 + }, + { + "start": 23915.0, + "end": 23917.76, + "probability": 0.9886 + }, + { + "start": 23917.82, + "end": 23918.5, + "probability": 0.6392 + }, + { + "start": 23918.5, + "end": 23919.83, + "probability": 0.803 + }, + { + "start": 23921.02, + "end": 23921.22, + "probability": 0.1657 + }, + { + "start": 23922.68, + "end": 23922.9, + "probability": 0.007 + }, + { + "start": 23922.9, + "end": 23922.9, + "probability": 0.0497 + }, + { + "start": 23922.9, + "end": 23922.9, + "probability": 0.1688 + }, + { + "start": 23922.9, + "end": 23924.42, + "probability": 0.435 + }, + { + "start": 23924.92, + "end": 23925.3, + "probability": 0.2822 + }, + { + "start": 23926.0, + "end": 23929.94, + "probability": 0.9666 + }, + { + "start": 23930.18, + "end": 23931.16, + "probability": 0.9213 + }, + { + "start": 23931.26, + "end": 23931.68, + "probability": 0.3219 + }, + { + "start": 23932.04, + "end": 23932.18, + "probability": 0.5024 + }, + { + "start": 23932.36, + "end": 23935.32, + "probability": 0.9979 + }, + { + "start": 23935.4, + "end": 23938.64, + "probability": 0.997 + }, + { + "start": 23938.7, + "end": 23941.28, + "probability": 0.6768 + }, + { + "start": 23942.77, + "end": 23945.68, + "probability": 0.7861 + }, + { + "start": 23946.2, + "end": 23947.4, + "probability": 0.9844 + }, + { + "start": 23947.5, + "end": 23950.6, + "probability": 0.699 + }, + { + "start": 23950.98, + "end": 23956.66, + "probability": 0.9896 + }, + { + "start": 23957.22, + "end": 23961.66, + "probability": 0.9864 + }, + { + "start": 23963.0, + "end": 23965.28, + "probability": 0.9717 + }, + { + "start": 23965.44, + "end": 23966.28, + "probability": 0.7878 + }, + { + "start": 23966.4, + "end": 23970.56, + "probability": 0.9546 + }, + { + "start": 23970.84, + "end": 23972.12, + "probability": 0.9967 + }, + { + "start": 23972.42, + "end": 23974.06, + "probability": 0.8706 + }, + { + "start": 23974.14, + "end": 23975.92, + "probability": 0.9869 + }, + { + "start": 23976.62, + "end": 23978.62, + "probability": 0.9595 + }, + { + "start": 23978.98, + "end": 23982.06, + "probability": 0.9819 + }, + { + "start": 23982.54, + "end": 23985.16, + "probability": 0.9671 + }, + { + "start": 23985.3, + "end": 23987.54, + "probability": 0.7768 + }, + { + "start": 23987.58, + "end": 23988.36, + "probability": 0.96 + }, + { + "start": 23988.42, + "end": 23990.66, + "probability": 0.6505 + }, + { + "start": 23991.08, + "end": 23992.06, + "probability": 0.6663 + }, + { + "start": 23992.74, + "end": 23993.86, + "probability": 0.9677 + }, + { + "start": 23994.0, + "end": 23995.82, + "probability": 0.7079 + }, + { + "start": 23996.42, + "end": 23998.12, + "probability": 0.8315 + }, + { + "start": 23998.22, + "end": 23999.31, + "probability": 0.77 + }, + { + "start": 23999.48, + "end": 24003.36, + "probability": 0.9729 + }, + { + "start": 24003.4, + "end": 24006.1, + "probability": 0.9937 + }, + { + "start": 24006.22, + "end": 24006.32, + "probability": 0.798 + }, + { + "start": 24007.68, + "end": 24011.14, + "probability": 0.9614 + }, + { + "start": 24011.22, + "end": 24011.92, + "probability": 0.8186 + }, + { + "start": 24012.0, + "end": 24012.14, + "probability": 0.8311 + }, + { + "start": 24012.22, + "end": 24012.72, + "probability": 0.9634 + }, + { + "start": 24012.94, + "end": 24016.1, + "probability": 0.9905 + }, + { + "start": 24016.48, + "end": 24019.94, + "probability": 0.9712 + }, + { + "start": 24019.94, + "end": 24023.32, + "probability": 0.998 + }, + { + "start": 24024.3, + "end": 24025.32, + "probability": 0.5381 + }, + { + "start": 24025.64, + "end": 24026.92, + "probability": 0.8577 + }, + { + "start": 24026.94, + "end": 24028.97, + "probability": 0.995 + }, + { + "start": 24030.12, + "end": 24031.28, + "probability": 0.9984 + }, + { + "start": 24031.42, + "end": 24032.4, + "probability": 0.7623 + }, + { + "start": 24032.6, + "end": 24033.85, + "probability": 0.8266 + }, + { + "start": 24034.56, + "end": 24035.86, + "probability": 0.6983 + }, + { + "start": 24035.96, + "end": 24037.2, + "probability": 0.8325 + }, + { + "start": 24037.62, + "end": 24038.74, + "probability": 0.7167 + }, + { + "start": 24039.2, + "end": 24042.04, + "probability": 0.8164 + }, + { + "start": 24042.68, + "end": 24043.82, + "probability": 0.5614 + }, + { + "start": 24043.94, + "end": 24044.68, + "probability": 0.8584 + }, + { + "start": 24045.0, + "end": 24049.56, + "probability": 0.774 + }, + { + "start": 24049.76, + "end": 24050.96, + "probability": 0.9282 + }, + { + "start": 24051.04, + "end": 24054.96, + "probability": 0.9331 + }, + { + "start": 24055.68, + "end": 24056.58, + "probability": 0.9752 + }, + { + "start": 24056.78, + "end": 24057.92, + "probability": 0.4283 + }, + { + "start": 24058.1, + "end": 24061.94, + "probability": 0.9738 + }, + { + "start": 24062.0, + "end": 24063.04, + "probability": 0.9891 + }, + { + "start": 24063.74, + "end": 24065.15, + "probability": 0.9009 + }, + { + "start": 24065.36, + "end": 24068.28, + "probability": 0.7069 + }, + { + "start": 24068.74, + "end": 24069.78, + "probability": 0.8885 + }, + { + "start": 24069.86, + "end": 24070.73, + "probability": 0.9724 + }, + { + "start": 24071.16, + "end": 24073.62, + "probability": 0.9337 + }, + { + "start": 24073.92, + "end": 24074.18, + "probability": 0.806 + }, + { + "start": 24074.24, + "end": 24074.58, + "probability": 0.8741 + }, + { + "start": 24074.7, + "end": 24076.6, + "probability": 0.8652 + }, + { + "start": 24076.7, + "end": 24077.38, + "probability": 0.9775 + }, + { + "start": 24077.48, + "end": 24078.0, + "probability": 0.98 + }, + { + "start": 24078.04, + "end": 24078.68, + "probability": 0.821 + }, + { + "start": 24079.22, + "end": 24080.56, + "probability": 0.6829 + }, + { + "start": 24081.04, + "end": 24081.84, + "probability": 0.8502 + }, + { + "start": 24081.92, + "end": 24083.52, + "probability": 0.9647 + }, + { + "start": 24083.96, + "end": 24086.28, + "probability": 0.8826 + }, + { + "start": 24086.42, + "end": 24089.0, + "probability": 0.8208 + }, + { + "start": 24089.38, + "end": 24091.08, + "probability": 0.8864 + }, + { + "start": 24091.16, + "end": 24092.34, + "probability": 0.9683 + }, + { + "start": 24092.6, + "end": 24094.36, + "probability": 0.9321 + }, + { + "start": 24094.98, + "end": 24097.01, + "probability": 0.5092 + }, + { + "start": 24097.52, + "end": 24099.12, + "probability": 0.9878 + }, + { + "start": 24099.42, + "end": 24101.2, + "probability": 0.9414 + }, + { + "start": 24101.9, + "end": 24102.42, + "probability": 0.6183 + }, + { + "start": 24102.74, + "end": 24107.06, + "probability": 0.9315 + }, + { + "start": 24107.06, + "end": 24109.5, + "probability": 0.9946 + }, + { + "start": 24109.78, + "end": 24114.28, + "probability": 0.9739 + }, + { + "start": 24114.56, + "end": 24115.36, + "probability": 0.968 + }, + { + "start": 24115.6, + "end": 24120.3, + "probability": 0.9473 + }, + { + "start": 24120.8, + "end": 24123.26, + "probability": 0.4097 + }, + { + "start": 24123.9, + "end": 24126.04, + "probability": 0.9979 + }, + { + "start": 24126.1, + "end": 24126.92, + "probability": 0.5602 + }, + { + "start": 24126.92, + "end": 24128.2, + "probability": 0.9775 + }, + { + "start": 24128.42, + "end": 24129.8, + "probability": 0.9785 + }, + { + "start": 24131.17, + "end": 24132.68, + "probability": 0.0353 + }, + { + "start": 24133.1, + "end": 24133.34, + "probability": 0.0397 + }, + { + "start": 24134.18, + "end": 24135.52, + "probability": 0.4912 + }, + { + "start": 24135.94, + "end": 24137.66, + "probability": 0.7432 + }, + { + "start": 24137.72, + "end": 24137.94, + "probability": 0.8727 + }, + { + "start": 24137.98, + "end": 24138.72, + "probability": 0.5459 + }, + { + "start": 24138.76, + "end": 24140.08, + "probability": 0.9542 + }, + { + "start": 24140.12, + "end": 24141.17, + "probability": 0.8777 + }, + { + "start": 24142.46, + "end": 24143.38, + "probability": 0.1941 + }, + { + "start": 24143.38, + "end": 24144.45, + "probability": 0.5535 + }, + { + "start": 24144.9, + "end": 24145.86, + "probability": 0.9508 + }, + { + "start": 24145.94, + "end": 24147.84, + "probability": 0.7122 + }, + { + "start": 24147.84, + "end": 24148.82, + "probability": 0.0393 + }, + { + "start": 24150.06, + "end": 24151.4, + "probability": 0.0466 + }, + { + "start": 24151.64, + "end": 24153.22, + "probability": 0.9712 + }, + { + "start": 24154.06, + "end": 24158.26, + "probability": 0.8608 + }, + { + "start": 24158.4, + "end": 24158.42, + "probability": 0.4466 + }, + { + "start": 24158.42, + "end": 24158.92, + "probability": 0.4929 + }, + { + "start": 24159.3, + "end": 24161.12, + "probability": 0.9373 + }, + { + "start": 24161.34, + "end": 24162.28, + "probability": 0.85 + }, + { + "start": 24162.36, + "end": 24163.44, + "probability": 0.9243 + }, + { + "start": 24163.52, + "end": 24163.66, + "probability": 0.7928 + }, + { + "start": 24163.74, + "end": 24164.9, + "probability": 0.5284 + }, + { + "start": 24165.4, + "end": 24165.46, + "probability": 0.0016 + }, + { + "start": 24169.34, + "end": 24170.48, + "probability": 0.2 + }, + { + "start": 24170.48, + "end": 24170.48, + "probability": 0.1259 + }, + { + "start": 24170.48, + "end": 24170.5, + "probability": 0.0322 + }, + { + "start": 24170.5, + "end": 24170.96, + "probability": 0.3682 + }, + { + "start": 24170.96, + "end": 24174.2, + "probability": 0.078 + }, + { + "start": 24174.2, + "end": 24174.2, + "probability": 0.0544 + }, + { + "start": 24174.36, + "end": 24178.66, + "probability": 0.6004 + }, + { + "start": 24179.22, + "end": 24182.3, + "probability": 0.242 + }, + { + "start": 24182.44, + "end": 24186.72, + "probability": 0.3149 + }, + { + "start": 24186.72, + "end": 24186.72, + "probability": 0.5354 + }, + { + "start": 24186.72, + "end": 24188.0, + "probability": 0.0595 + }, + { + "start": 24188.54, + "end": 24194.94, + "probability": 0.0177 + }, + { + "start": 24197.04, + "end": 24197.48, + "probability": 0.0051 + }, + { + "start": 24197.48, + "end": 24197.5, + "probability": 0.1216 + }, + { + "start": 24197.5, + "end": 24198.68, + "probability": 0.1009 + }, + { + "start": 24199.78, + "end": 24201.28, + "probability": 0.1185 + }, + { + "start": 24201.4, + "end": 24202.0, + "probability": 0.0417 + }, + { + "start": 24202.0, + "end": 24202.0, + "probability": 0.0944 + }, + { + "start": 24202.0, + "end": 24202.0, + "probability": 0.0649 + }, + { + "start": 24202.0, + "end": 24202.78, + "probability": 0.3524 + }, + { + "start": 24204.14, + "end": 24205.3, + "probability": 0.2008 + }, + { + "start": 24208.26, + "end": 24208.7, + "probability": 0.0008 + }, + { + "start": 24209.92, + "end": 24209.92, + "probability": 0.015 + }, + { + "start": 24210.73, + "end": 24212.8, + "probability": 0.0791 + }, + { + "start": 24212.8, + "end": 24213.3, + "probability": 0.0909 + }, + { + "start": 24213.88, + "end": 24214.26, + "probability": 0.3344 + }, + { + "start": 24214.26, + "end": 24216.44, + "probability": 0.0941 + }, + { + "start": 24216.44, + "end": 24218.44, + "probability": 0.0545 + }, + { + "start": 24218.66, + "end": 24218.68, + "probability": 0.004 + }, + { + "start": 24218.68, + "end": 24219.66, + "probability": 0.054 + }, + { + "start": 24221.0, + "end": 24221.0, + "probability": 0.0 + }, + { + "start": 24221.0, + "end": 24221.0, + "probability": 0.0 + }, + { + "start": 24221.0, + "end": 24221.0, + "probability": 0.0 + }, + { + "start": 24221.0, + "end": 24221.0, + "probability": 0.0 + }, + { + "start": 24221.0, + "end": 24221.0, + "probability": 0.0 + }, + { + "start": 24221.0, + "end": 24221.0, + "probability": 0.0 + }, + { + "start": 24221.08, + "end": 24221.67, + "probability": 0.7504 + }, + { + "start": 24222.27, + "end": 24223.55, + "probability": 0.5443 + }, + { + "start": 24224.03, + "end": 24224.45, + "probability": 0.8354 + }, + { + "start": 24224.55, + "end": 24225.31, + "probability": 0.98 + }, + { + "start": 24225.47, + "end": 24229.07, + "probability": 0.9824 + }, + { + "start": 24229.21, + "end": 24230.81, + "probability": 0.6782 + }, + { + "start": 24232.05, + "end": 24233.06, + "probability": 0.8447 + }, + { + "start": 24233.61, + "end": 24234.84, + "probability": 0.8652 + }, + { + "start": 24236.03, + "end": 24237.03, + "probability": 0.7656 + }, + { + "start": 24237.21, + "end": 24238.23, + "probability": 0.978 + }, + { + "start": 24239.19, + "end": 24240.51, + "probability": 0.8006 + }, + { + "start": 24240.69, + "end": 24242.34, + "probability": 0.8458 + }, + { + "start": 24243.17, + "end": 24245.11, + "probability": 0.9982 + }, + { + "start": 24245.59, + "end": 24249.21, + "probability": 0.9777 + }, + { + "start": 24249.59, + "end": 24250.83, + "probability": 0.9688 + }, + { + "start": 24250.93, + "end": 24252.03, + "probability": 0.8341 + }, + { + "start": 24252.41, + "end": 24255.67, + "probability": 0.6592 + }, + { + "start": 24256.27, + "end": 24257.71, + "probability": 0.9187 + }, + { + "start": 24257.71, + "end": 24257.73, + "probability": 0.324 + }, + { + "start": 24257.73, + "end": 24258.91, + "probability": 0.8152 + }, + { + "start": 24259.03, + "end": 24261.45, + "probability": 0.7469 + }, + { + "start": 24263.53, + "end": 24263.87, + "probability": 0.0514 + }, + { + "start": 24263.87, + "end": 24263.87, + "probability": 0.2728 + }, + { + "start": 24263.87, + "end": 24265.27, + "probability": 0.748 + }, + { + "start": 24265.53, + "end": 24266.53, + "probability": 0.8637 + }, + { + "start": 24266.79, + "end": 24267.55, + "probability": 0.1811 + }, + { + "start": 24267.93, + "end": 24267.95, + "probability": 0.0995 + }, + { + "start": 24268.71, + "end": 24271.75, + "probability": 0.111 + }, + { + "start": 24271.77, + "end": 24272.12, + "probability": 0.033 + }, + { + "start": 24272.23, + "end": 24273.61, + "probability": 0.0641 + }, + { + "start": 24274.21, + "end": 24274.31, + "probability": 0.0891 + }, + { + "start": 24274.39, + "end": 24275.51, + "probability": 0.0778 + }, + { + "start": 24275.57, + "end": 24275.91, + "probability": 0.1136 + }, + { + "start": 24277.09, + "end": 24277.11, + "probability": 0.3118 + }, + { + "start": 24277.11, + "end": 24277.11, + "probability": 0.0832 + }, + { + "start": 24277.11, + "end": 24277.35, + "probability": 0.2579 + }, + { + "start": 24279.57, + "end": 24281.77, + "probability": 0.1143 + }, + { + "start": 24282.91, + "end": 24284.15, + "probability": 0.0974 + }, + { + "start": 24285.49, + "end": 24288.29, + "probability": 0.059 + }, + { + "start": 24288.29, + "end": 24288.45, + "probability": 0.1407 + }, + { + "start": 24288.45, + "end": 24288.49, + "probability": 0.122 + }, + { + "start": 24288.49, + "end": 24290.49, + "probability": 0.0555 + }, + { + "start": 24291.31, + "end": 24293.25, + "probability": 0.1308 + }, + { + "start": 24294.05, + "end": 24295.27, + "probability": 0.4916 + }, + { + "start": 24297.17, + "end": 24298.93, + "probability": 0.087 + }, + { + "start": 24299.81, + "end": 24300.17, + "probability": 0.1528 + }, + { + "start": 24301.27, + "end": 24302.23, + "probability": 0.0623 + }, + { + "start": 24303.15, + "end": 24306.59, + "probability": 0.0475 + }, + { + "start": 24343.0, + "end": 24343.0, + "probability": 0.0 + }, + { + "start": 24343.0, + "end": 24343.0, + "probability": 0.0 + }, + { + "start": 24343.0, + "end": 24343.0, + "probability": 0.0 + }, + { + "start": 24343.0, + "end": 24343.0, + "probability": 0.0 + }, + { + "start": 24343.0, + "end": 24343.0, + "probability": 0.0 + }, + { + "start": 24343.0, + "end": 24343.0, + "probability": 0.0 + }, + { + "start": 24343.0, + "end": 24343.0, + "probability": 0.0 + }, + { + "start": 24343.0, + "end": 24343.0, + "probability": 0.0 + }, + { + "start": 24343.0, + "end": 24343.0, + "probability": 0.0 + }, + { + "start": 24343.0, + "end": 24343.0, + "probability": 0.0 + }, + { + "start": 24343.0, + "end": 24343.0, + "probability": 0.0 + }, + { + "start": 24343.0, + "end": 24343.0, + "probability": 0.0 + }, + { + "start": 24343.0, + "end": 24343.0, + "probability": 0.0 + }, + { + "start": 24343.0, + "end": 24344.32, + "probability": 0.6635 + }, + { + "start": 24344.74, + "end": 24348.76, + "probability": 0.8493 + }, + { + "start": 24350.28, + "end": 24354.5, + "probability": 0.9835 + }, + { + "start": 24356.48, + "end": 24358.42, + "probability": 0.99 + }, + { + "start": 24358.56, + "end": 24360.04, + "probability": 0.8718 + }, + { + "start": 24360.1, + "end": 24361.06, + "probability": 0.8431 + }, + { + "start": 24361.78, + "end": 24365.78, + "probability": 0.9897 + }, + { + "start": 24367.34, + "end": 24370.64, + "probability": 0.7988 + }, + { + "start": 24371.86, + "end": 24377.04, + "probability": 0.9502 + }, + { + "start": 24378.38, + "end": 24380.44, + "probability": 0.8536 + }, + { + "start": 24381.9, + "end": 24387.28, + "probability": 0.9962 + }, + { + "start": 24387.28, + "end": 24390.62, + "probability": 0.9993 + }, + { + "start": 24391.96, + "end": 24392.84, + "probability": 0.4512 + }, + { + "start": 24392.9, + "end": 24397.36, + "probability": 0.998 + }, + { + "start": 24398.12, + "end": 24399.4, + "probability": 0.9199 + }, + { + "start": 24399.88, + "end": 24401.26, + "probability": 0.7486 + }, + { + "start": 24401.38, + "end": 24402.96, + "probability": 0.9798 + }, + { + "start": 24403.62, + "end": 24404.38, + "probability": 0.9802 + }, + { + "start": 24405.14, + "end": 24408.56, + "probability": 0.9883 + }, + { + "start": 24410.78, + "end": 24417.3, + "probability": 0.9945 + }, + { + "start": 24418.94, + "end": 24423.02, + "probability": 0.9956 + }, + { + "start": 24423.06, + "end": 24426.94, + "probability": 0.9825 + }, + { + "start": 24428.12, + "end": 24429.4, + "probability": 0.9951 + }, + { + "start": 24430.34, + "end": 24432.54, + "probability": 0.9595 + }, + { + "start": 24434.36, + "end": 24436.2, + "probability": 0.9506 + }, + { + "start": 24437.24, + "end": 24439.92, + "probability": 0.9771 + }, + { + "start": 24441.0, + "end": 24446.64, + "probability": 0.995 + }, + { + "start": 24446.64, + "end": 24450.58, + "probability": 0.9991 + }, + { + "start": 24452.08, + "end": 24455.24, + "probability": 0.9928 + }, + { + "start": 24456.36, + "end": 24457.74, + "probability": 0.9461 + }, + { + "start": 24458.88, + "end": 24463.62, + "probability": 0.8904 + }, + { + "start": 24464.42, + "end": 24468.64, + "probability": 0.9778 + }, + { + "start": 24469.24, + "end": 24475.18, + "probability": 0.9951 + }, + { + "start": 24475.96, + "end": 24477.8, + "probability": 0.9164 + }, + { + "start": 24479.0, + "end": 24482.06, + "probability": 0.9943 + }, + { + "start": 24482.06, + "end": 24485.7, + "probability": 0.9886 + }, + { + "start": 24488.26, + "end": 24494.46, + "probability": 0.9966 + }, + { + "start": 24495.14, + "end": 24499.98, + "probability": 0.5067 + }, + { + "start": 24500.48, + "end": 24502.02, + "probability": 0.8601 + }, + { + "start": 24503.02, + "end": 24507.62, + "probability": 0.9897 + }, + { + "start": 24507.62, + "end": 24512.76, + "probability": 0.9997 + }, + { + "start": 24512.88, + "end": 24514.24, + "probability": 0.998 + }, + { + "start": 24515.24, + "end": 24517.68, + "probability": 0.9736 + }, + { + "start": 24518.54, + "end": 24519.86, + "probability": 0.927 + }, + { + "start": 24520.66, + "end": 24523.66, + "probability": 0.981 + }, + { + "start": 24524.14, + "end": 24527.42, + "probability": 0.8088 + }, + { + "start": 24527.92, + "end": 24529.28, + "probability": 0.9113 + }, + { + "start": 24530.5, + "end": 24536.14, + "probability": 0.9753 + }, + { + "start": 24536.7, + "end": 24538.8, + "probability": 0.9951 + }, + { + "start": 24540.08, + "end": 24543.36, + "probability": 0.0325 + }, + { + "start": 24543.36, + "end": 24544.82, + "probability": 0.0115 + }, + { + "start": 24544.92, + "end": 24547.12, + "probability": 0.0693 + }, + { + "start": 24547.7, + "end": 24547.7, + "probability": 0.0784 + }, + { + "start": 24547.7, + "end": 24548.76, + "probability": 0.0279 + }, + { + "start": 24549.3, + "end": 24552.18, + "probability": 0.9637 + }, + { + "start": 24553.58, + "end": 24555.84, + "probability": 0.9673 + }, + { + "start": 24556.7, + "end": 24560.76, + "probability": 0.9985 + }, + { + "start": 24561.22, + "end": 24562.6, + "probability": 0.6829 + }, + { + "start": 24563.1, + "end": 24564.76, + "probability": 0.9447 + }, + { + "start": 24565.62, + "end": 24567.74, + "probability": 0.9459 + }, + { + "start": 24567.74, + "end": 24571.16, + "probability": 0.928 + }, + { + "start": 24572.1, + "end": 24573.38, + "probability": 0.8484 + }, + { + "start": 24574.1, + "end": 24579.48, + "probability": 0.98 + }, + { + "start": 24579.66, + "end": 24584.0, + "probability": 0.9334 + }, + { + "start": 24584.68, + "end": 24591.72, + "probability": 0.9851 + }, + { + "start": 24592.8, + "end": 24595.06, + "probability": 0.2542 + }, + { + "start": 24595.06, + "end": 24595.06, + "probability": 0.3458 + }, + { + "start": 24595.06, + "end": 24595.06, + "probability": 0.0522 + }, + { + "start": 24595.06, + "end": 24596.02, + "probability": 0.5077 + }, + { + "start": 24596.9, + "end": 24603.98, + "probability": 0.9279 + }, + { + "start": 24604.44, + "end": 24608.96, + "probability": 0.0282 + }, + { + "start": 24609.34, + "end": 24609.62, + "probability": 0.2417 + }, + { + "start": 24611.76, + "end": 24613.34, + "probability": 0.052 + }, + { + "start": 24613.74, + "end": 24613.74, + "probability": 0.0238 + }, + { + "start": 24613.74, + "end": 24613.74, + "probability": 0.1295 + }, + { + "start": 24613.74, + "end": 24613.74, + "probability": 0.0501 + }, + { + "start": 24613.74, + "end": 24613.74, + "probability": 0.1158 + }, + { + "start": 24613.74, + "end": 24613.74, + "probability": 0.0677 + }, + { + "start": 24613.74, + "end": 24616.34, + "probability": 0.0784 + }, + { + "start": 24616.34, + "end": 24620.92, + "probability": 0.7823 + }, + { + "start": 24621.6, + "end": 24622.54, + "probability": 0.5022 + }, + { + "start": 24622.72, + "end": 24623.54, + "probability": 0.4957 + }, + { + "start": 24623.72, + "end": 24625.05, + "probability": 0.6903 + }, + { + "start": 24625.62, + "end": 24626.06, + "probability": 0.6593 + }, + { + "start": 24626.92, + "end": 24628.98, + "probability": 0.7622 + }, + { + "start": 24629.2, + "end": 24631.28, + "probability": 0.9873 + }, + { + "start": 24631.48, + "end": 24636.92, + "probability": 0.7903 + }, + { + "start": 24637.52, + "end": 24641.1, + "probability": 0.9774 + }, + { + "start": 24641.96, + "end": 24645.64, + "probability": 0.9897 + }, + { + "start": 24647.02, + "end": 24650.92, + "probability": 0.9835 + }, + { + "start": 24651.28, + "end": 24654.66, + "probability": 0.9194 + }, + { + "start": 24655.22, + "end": 24659.06, + "probability": 0.9361 + }, + { + "start": 24659.98, + "end": 24665.96, + "probability": 0.9982 + }, + { + "start": 24666.58, + "end": 24669.72, + "probability": 0.9883 + }, + { + "start": 24670.36, + "end": 24670.96, + "probability": 0.0423 + }, + { + "start": 24671.24, + "end": 24671.26, + "probability": 0.0215 + }, + { + "start": 24671.26, + "end": 24671.26, + "probability": 0.1685 + }, + { + "start": 24671.26, + "end": 24672.74, + "probability": 0.0124 + }, + { + "start": 24673.0, + "end": 24674.0, + "probability": 0.0746 + }, + { + "start": 24674.0, + "end": 24675.9, + "probability": 0.5615 + }, + { + "start": 24676.54, + "end": 24683.3, + "probability": 0.7929 + }, + { + "start": 24684.62, + "end": 24688.06, + "probability": 0.933 + }, + { + "start": 24688.24, + "end": 24692.88, + "probability": 0.9656 + }, + { + "start": 24692.94, + "end": 24693.5, + "probability": 0.8052 + }, + { + "start": 24694.68, + "end": 24695.48, + "probability": 0.72 + }, + { + "start": 24695.72, + "end": 24696.46, + "probability": 0.8007 + }, + { + "start": 24697.04, + "end": 24698.78, + "probability": 0.4184 + }, + { + "start": 24702.97, + "end": 24707.3, + "probability": 0.9011 + }, + { + "start": 24707.68, + "end": 24709.12, + "probability": 0.9561 + }, + { + "start": 24710.86, + "end": 24713.75, + "probability": 0.8632 + }, + { + "start": 24715.62, + "end": 24716.7, + "probability": 0.0581 + }, + { + "start": 24718.9, + "end": 24720.18, + "probability": 0.7026 + }, + { + "start": 24720.7, + "end": 24724.98, + "probability": 0.3615 + }, + { + "start": 24727.64, + "end": 24729.02, + "probability": 0.8868 + }, + { + "start": 24735.34, + "end": 24735.34, + "probability": 0.7565 + }, + { + "start": 24735.7, + "end": 24736.16, + "probability": 0.4506 + }, + { + "start": 24736.16, + "end": 24736.8, + "probability": 0.6856 + }, + { + "start": 24736.88, + "end": 24738.16, + "probability": 0.8488 + }, + { + "start": 24738.18, + "end": 24740.88, + "probability": 0.9834 + }, + { + "start": 24741.12, + "end": 24744.68, + "probability": 0.4604 + }, + { + "start": 24747.15, + "end": 24749.58, + "probability": 0.9154 + }, + { + "start": 24749.98, + "end": 24750.54, + "probability": 0.2007 + }, + { + "start": 24751.3, + "end": 24751.64, + "probability": 0.7677 + }, + { + "start": 24751.74, + "end": 24756.92, + "probability": 0.9386 + }, + { + "start": 24758.08, + "end": 24759.38, + "probability": 0.9248 + }, + { + "start": 24759.5, + "end": 24761.9, + "probability": 0.9233 + }, + { + "start": 24761.94, + "end": 24763.1, + "probability": 0.9705 + }, + { + "start": 24763.32, + "end": 24768.04, + "probability": 0.9839 + }, + { + "start": 24768.68, + "end": 24769.36, + "probability": 0.5859 + }, + { + "start": 24770.47, + "end": 24772.02, + "probability": 0.9941 + }, + { + "start": 24772.2, + "end": 24775.62, + "probability": 0.998 + }, + { + "start": 24775.68, + "end": 24777.54, + "probability": 0.9231 + }, + { + "start": 24777.98, + "end": 24780.16, + "probability": 0.829 + }, + { + "start": 24780.5, + "end": 24781.18, + "probability": 0.4927 + }, + { + "start": 24781.44, + "end": 24783.18, + "probability": 0.7651 + }, + { + "start": 24783.48, + "end": 24785.98, + "probability": 0.8947 + }, + { + "start": 24786.02, + "end": 24787.1, + "probability": 0.9861 + }, + { + "start": 24787.1, + "end": 24787.48, + "probability": 0.7501 + }, + { + "start": 24788.38, + "end": 24789.0, + "probability": 0.0031 + }, + { + "start": 24790.02, + "end": 24791.44, + "probability": 0.0129 + }, + { + "start": 24793.66, + "end": 24796.12, + "probability": 0.826 + }, + { + "start": 24807.1, + "end": 24809.8, + "probability": 0.9243 + }, + { + "start": 24809.92, + "end": 24815.02, + "probability": 0.99 + }, + { + "start": 24815.02, + "end": 24819.3, + "probability": 0.999 + }, + { + "start": 24819.88, + "end": 24821.5, + "probability": 0.9985 + }, + { + "start": 24821.5, + "end": 24825.7, + "probability": 0.9459 + }, + { + "start": 24826.08, + "end": 24826.18, + "probability": 0.0404 + }, + { + "start": 24826.18, + "end": 24829.58, + "probability": 0.9922 + }, + { + "start": 24829.62, + "end": 24833.84, + "probability": 0.9286 + }, + { + "start": 24834.1, + "end": 24837.36, + "probability": 0.9732 + }, + { + "start": 24837.7, + "end": 24839.3, + "probability": 0.9067 + }, + { + "start": 24839.4, + "end": 24839.76, + "probability": 0.862 + }, + { + "start": 24840.84, + "end": 24846.0, + "probability": 0.9434 + }, + { + "start": 24846.14, + "end": 24847.84, + "probability": 0.9565 + }, + { + "start": 24847.86, + "end": 24849.0, + "probability": 0.9327 + }, + { + "start": 24849.24, + "end": 24852.92, + "probability": 0.9523 + }, + { + "start": 24852.92, + "end": 24853.46, + "probability": 0.8068 + }, + { + "start": 24853.56, + "end": 24854.12, + "probability": 0.6442 + }, + { + "start": 24854.26, + "end": 24854.92, + "probability": 0.6241 + }, + { + "start": 24855.28, + "end": 24856.14, + "probability": 0.891 + }, + { + "start": 24856.16, + "end": 24859.14, + "probability": 0.8378 + }, + { + "start": 24859.54, + "end": 24863.62, + "probability": 0.9639 + }, + { + "start": 24863.82, + "end": 24864.82, + "probability": 0.968 + }, + { + "start": 24865.18, + "end": 24865.18, + "probability": 0.0498 + }, + { + "start": 24865.18, + "end": 24866.44, + "probability": 0.8729 + }, + { + "start": 24867.0, + "end": 24868.8, + "probability": 0.9788 + }, + { + "start": 24869.14, + "end": 24869.34, + "probability": 0.1243 + }, + { + "start": 24869.34, + "end": 24871.0, + "probability": 0.7663 + }, + { + "start": 24871.36, + "end": 24874.04, + "probability": 0.7669 + }, + { + "start": 24874.3, + "end": 24875.77, + "probability": 0.9404 + }, + { + "start": 24876.16, + "end": 24876.96, + "probability": 0.9139 + }, + { + "start": 24876.96, + "end": 24878.46, + "probability": 0.9642 + }, + { + "start": 24878.92, + "end": 24880.04, + "probability": 0.9666 + }, + { + "start": 24880.36, + "end": 24882.89, + "probability": 0.78 + }, + { + "start": 24883.18, + "end": 24885.4, + "probability": 0.7508 + }, + { + "start": 24885.56, + "end": 24887.38, + "probability": 0.7871 + }, + { + "start": 24887.66, + "end": 24888.1, + "probability": 0.5693 + }, + { + "start": 24888.34, + "end": 24889.0, + "probability": 0.8329 + }, + { + "start": 24889.36, + "end": 24891.5, + "probability": 0.8747 + }, + { + "start": 24891.98, + "end": 24892.44, + "probability": 0.314 + }, + { + "start": 24892.62, + "end": 24894.9, + "probability": 0.9737 + }, + { + "start": 24895.74, + "end": 24896.22, + "probability": 0.3135 + }, + { + "start": 24896.48, + "end": 24898.38, + "probability": 0.7325 + }, + { + "start": 24898.5, + "end": 24901.2, + "probability": 0.6408 + }, + { + "start": 24902.4, + "end": 24905.78, + "probability": 0.7586 + }, + { + "start": 24906.06, + "end": 24908.26, + "probability": 0.9883 + }, + { + "start": 24908.58, + "end": 24910.68, + "probability": 0.9604 + }, + { + "start": 24911.06, + "end": 24911.46, + "probability": 0.9348 + }, + { + "start": 24911.74, + "end": 24913.3, + "probability": 0.9336 + }, + { + "start": 24913.7, + "end": 24916.42, + "probability": 0.723 + }, + { + "start": 24916.86, + "end": 24918.68, + "probability": 0.8566 + }, + { + "start": 24919.22, + "end": 24922.42, + "probability": 0.9068 + }, + { + "start": 24922.62, + "end": 24924.06, + "probability": 0.6852 + }, + { + "start": 24924.42, + "end": 24925.86, + "probability": 0.7688 + }, + { + "start": 24926.12, + "end": 24927.27, + "probability": 0.9344 + }, + { + "start": 24927.98, + "end": 24929.7, + "probability": 0.757 + }, + { + "start": 24929.7, + "end": 24933.16, + "probability": 0.9895 + }, + { + "start": 24933.52, + "end": 24935.26, + "probability": 0.7178 + }, + { + "start": 24935.36, + "end": 24938.1, + "probability": 0.8809 + }, + { + "start": 24938.3, + "end": 24940.1, + "probability": 0.8735 + }, + { + "start": 24940.46, + "end": 24943.72, + "probability": 0.9789 + }, + { + "start": 24944.08, + "end": 24944.96, + "probability": 0.7799 + }, + { + "start": 24945.14, + "end": 24945.96, + "probability": 0.5381 + }, + { + "start": 24946.54, + "end": 24946.96, + "probability": 0.0004 + }, + { + "start": 24947.56, + "end": 24948.9, + "probability": 0.1065 + }, + { + "start": 24949.18, + "end": 24950.3, + "probability": 0.4426 + }, + { + "start": 24951.66, + "end": 24952.72, + "probability": 0.0325 + }, + { + "start": 24952.72, + "end": 24952.72, + "probability": 0.1061 + }, + { + "start": 24952.72, + "end": 24953.2, + "probability": 0.1641 + }, + { + "start": 24953.2, + "end": 24953.68, + "probability": 0.5517 + }, + { + "start": 24953.94, + "end": 24954.26, + "probability": 0.0085 + }, + { + "start": 24956.56, + "end": 24957.24, + "probability": 0.2473 + }, + { + "start": 24957.28, + "end": 24958.26, + "probability": 0.0315 + }, + { + "start": 24959.88, + "end": 24962.22, + "probability": 0.0097 + }, + { + "start": 24962.72, + "end": 24964.76, + "probability": 0.3696 + }, + { + "start": 24964.76, + "end": 24964.94, + "probability": 0.1143 + }, + { + "start": 24964.94, + "end": 24964.94, + "probability": 0.6129 + }, + { + "start": 24965.3, + "end": 24965.64, + "probability": 0.0358 + }, + { + "start": 24967.2, + "end": 24967.86, + "probability": 0.6342 + }, + { + "start": 24968.28, + "end": 24968.48, + "probability": 0.2433 + }, + { + "start": 24968.78, + "end": 24970.34, + "probability": 0.1549 + }, + { + "start": 24970.58, + "end": 24974.5, + "probability": 0.6188 + }, + { + "start": 24974.9, + "end": 24975.88, + "probability": 0.5214 + }, + { + "start": 24977.72, + "end": 24978.16, + "probability": 0.0418 + }, + { + "start": 24980.89, + "end": 24980.98, + "probability": 0.39 + }, + { + "start": 24981.1, + "end": 24983.62, + "probability": 0.123 + }, + { + "start": 24983.81, + "end": 24984.02, + "probability": 0.5392 + }, + { + "start": 24984.02, + "end": 24985.6, + "probability": 0.5689 + }, + { + "start": 24985.72, + "end": 24986.3, + "probability": 0.4224 + }, + { + "start": 24988.04, + "end": 24990.02, + "probability": 0.5321 + }, + { + "start": 24991.26, + "end": 24994.0, + "probability": 0.4283 + }, + { + "start": 24999.66, + "end": 25002.38, + "probability": 0.1639 + }, + { + "start": 25002.56, + "end": 25004.77, + "probability": 0.0386 + }, + { + "start": 25005.73, + "end": 25006.14, + "probability": 0.3441 + }, + { + "start": 25007.09, + "end": 25007.44, + "probability": 0.0885 + }, + { + "start": 25007.44, + "end": 25009.56, + "probability": 0.0594 + }, + { + "start": 25010.2, + "end": 25011.78, + "probability": 0.1982 + }, + { + "start": 25012.26, + "end": 25013.64, + "probability": 0.2585 + }, + { + "start": 25014.02, + "end": 25014.3, + "probability": 0.3264 + }, + { + "start": 25014.3, + "end": 25014.72, + "probability": 0.0152 + }, + { + "start": 25014.9, + "end": 25015.39, + "probability": 0.4568 + }, + { + "start": 25015.68, + "end": 25015.98, + "probability": 0.5277 + }, + { + "start": 25016.0, + "end": 25016.0, + "probability": 0.0 + }, + { + "start": 25016.0, + "end": 25016.0, + "probability": 0.0 + }, + { + "start": 25016.0, + "end": 25016.0, + "probability": 0.0 + }, + { + "start": 25016.0, + "end": 25016.0, + "probability": 0.0 + }, + { + "start": 25016.0, + "end": 25016.0, + "probability": 0.0 + }, + { + "start": 25016.0, + "end": 25016.0, + "probability": 0.0 + }, + { + "start": 25016.0, + "end": 25016.0, + "probability": 0.0 + }, + { + "start": 25016.0, + "end": 25016.0, + "probability": 0.0 + }, + { + "start": 25016.0, + "end": 25016.0, + "probability": 0.0 + }, + { + "start": 25016.0, + "end": 25016.0, + "probability": 0.0 + }, + { + "start": 25016.0, + "end": 25016.0, + "probability": 0.0 + }, + { + "start": 25016.0, + "end": 25016.0, + "probability": 0.0 + }, + { + "start": 25016.0, + "end": 25016.0, + "probability": 0.0 + }, + { + "start": 25016.0, + "end": 25016.0, + "probability": 0.0 + }, + { + "start": 25016.0, + "end": 25016.0, + "probability": 0.0 + }, + { + "start": 25016.0, + "end": 25016.0, + "probability": 0.0 + }, + { + "start": 25016.0, + "end": 25016.0, + "probability": 0.0 + }, + { + "start": 25016.0, + "end": 25016.0, + "probability": 0.0 + }, + { + "start": 25016.0, + "end": 25016.0, + "probability": 0.0 + }, + { + "start": 25016.0, + "end": 25016.0, + "probability": 0.0 + }, + { + "start": 25016.0, + "end": 25016.0, + "probability": 0.0 + }, + { + "start": 25016.0, + "end": 25016.0, + "probability": 0.0 + }, + { + "start": 25016.0, + "end": 25016.0, + "probability": 0.0 + }, + { + "start": 25016.58, + "end": 25020.56, + "probability": 0.6205 + }, + { + "start": 25020.86, + "end": 25022.06, + "probability": 0.9711 + }, + { + "start": 25022.23, + "end": 25025.46, + "probability": 0.9757 + }, + { + "start": 25034.24, + "end": 25034.54, + "probability": 0.2608 + }, + { + "start": 25034.62, + "end": 25036.0, + "probability": 0.8964 + }, + { + "start": 25036.94, + "end": 25039.04, + "probability": 0.6887 + }, + { + "start": 25039.33, + "end": 25041.08, + "probability": 0.9937 + }, + { + "start": 25041.3, + "end": 25043.16, + "probability": 0.7759 + }, + { + "start": 25043.24, + "end": 25047.18, + "probability": 0.8655 + }, + { + "start": 25047.18, + "end": 25047.78, + "probability": 0.8291 + }, + { + "start": 25048.64, + "end": 25051.26, + "probability": 0.9712 + }, + { + "start": 25051.3, + "end": 25054.88, + "probability": 0.9888 + }, + { + "start": 25054.96, + "end": 25056.8, + "probability": 0.9541 + }, + { + "start": 25056.9, + "end": 25057.08, + "probability": 0.387 + }, + { + "start": 25057.14, + "end": 25058.72, + "probability": 0.7807 + }, + { + "start": 25058.9, + "end": 25061.0, + "probability": 0.9005 + }, + { + "start": 25061.76, + "end": 25062.34, + "probability": 0.4226 + }, + { + "start": 25062.48, + "end": 25063.36, + "probability": 0.8782 + }, + { + "start": 25063.46, + "end": 25064.44, + "probability": 0.9691 + }, + { + "start": 25064.92, + "end": 25066.76, + "probability": 0.9762 + }, + { + "start": 25066.9, + "end": 25067.64, + "probability": 0.8574 + }, + { + "start": 25067.7, + "end": 25069.1, + "probability": 0.9761 + }, + { + "start": 25069.66, + "end": 25070.38, + "probability": 0.964 + }, + { + "start": 25070.48, + "end": 25072.08, + "probability": 0.3697 + }, + { + "start": 25072.36, + "end": 25073.8, + "probability": 0.5997 + }, + { + "start": 25073.8, + "end": 25074.02, + "probability": 0.6368 + }, + { + "start": 25074.18, + "end": 25074.98, + "probability": 0.9014 + }, + { + "start": 25075.0, + "end": 25075.52, + "probability": 0.7032 + }, + { + "start": 25075.56, + "end": 25076.46, + "probability": 0.4183 + }, + { + "start": 25076.58, + "end": 25077.48, + "probability": 0.7192 + }, + { + "start": 25077.64, + "end": 25077.82, + "probability": 0.569 + }, + { + "start": 25077.9, + "end": 25082.18, + "probability": 0.9722 + }, + { + "start": 25082.38, + "end": 25084.26, + "probability": 0.6676 + }, + { + "start": 25084.3, + "end": 25085.98, + "probability": 0.6122 + }, + { + "start": 25085.98, + "end": 25087.34, + "probability": 0.7887 + }, + { + "start": 25087.44, + "end": 25087.9, + "probability": 0.8637 + }, + { + "start": 25088.12, + "end": 25094.26, + "probability": 0.8801 + }, + { + "start": 25094.3, + "end": 25096.74, + "probability": 0.9627 + }, + { + "start": 25096.88, + "end": 25097.16, + "probability": 0.6276 + }, + { + "start": 25097.24, + "end": 25100.32, + "probability": 0.7773 + }, + { + "start": 25100.84, + "end": 25101.56, + "probability": 0.769 + }, + { + "start": 25102.36, + "end": 25103.74, + "probability": 0.9811 + }, + { + "start": 25103.86, + "end": 25104.69, + "probability": 0.9937 + }, + { + "start": 25104.8, + "end": 25106.66, + "probability": 0.994 + }, + { + "start": 25106.76, + "end": 25107.64, + "probability": 0.6104 + }, + { + "start": 25107.9, + "end": 25110.8, + "probability": 0.7734 + }, + { + "start": 25110.84, + "end": 25112.22, + "probability": 0.8009 + }, + { + "start": 25112.3, + "end": 25112.86, + "probability": 0.4525 + }, + { + "start": 25112.96, + "end": 25115.04, + "probability": 0.9785 + }, + { + "start": 25115.5, + "end": 25116.8, + "probability": 0.8748 + }, + { + "start": 25116.9, + "end": 25118.52, + "probability": 0.9825 + }, + { + "start": 25118.56, + "end": 25119.5, + "probability": 0.8617 + }, + { + "start": 25120.04, + "end": 25121.46, + "probability": 0.4348 + }, + { + "start": 25121.6, + "end": 25127.62, + "probability": 0.8965 + }, + { + "start": 25128.14, + "end": 25130.02, + "probability": 0.9804 + }, + { + "start": 25130.84, + "end": 25131.52, + "probability": 0.9181 + }, + { + "start": 25131.58, + "end": 25133.72, + "probability": 0.9791 + }, + { + "start": 25133.78, + "end": 25137.54, + "probability": 0.7292 + }, + { + "start": 25137.62, + "end": 25138.44, + "probability": 0.5364 + }, + { + "start": 25138.58, + "end": 25139.04, + "probability": 0.5696 + }, + { + "start": 25139.36, + "end": 25139.5, + "probability": 0.4129 + }, + { + "start": 25140.18, + "end": 25140.64, + "probability": 0.2575 + }, + { + "start": 25140.64, + "end": 25143.24, + "probability": 0.6578 + }, + { + "start": 25143.46, + "end": 25144.24, + "probability": 0.8207 + }, + { + "start": 25144.28, + "end": 25149.08, + "probability": 0.7285 + }, + { + "start": 25149.08, + "end": 25149.08, + "probability": 0.0098 + }, + { + "start": 25149.08, + "end": 25149.08, + "probability": 0.1814 + }, + { + "start": 25149.08, + "end": 25149.08, + "probability": 0.1331 + }, + { + "start": 25149.08, + "end": 25150.55, + "probability": 0.409 + }, + { + "start": 25151.58, + "end": 25153.0, + "probability": 0.0616 + }, + { + "start": 25154.25, + "end": 25155.58, + "probability": 0.5792 + }, + { + "start": 25155.78, + "end": 25157.14, + "probability": 0.749 + }, + { + "start": 25157.6, + "end": 25158.78, + "probability": 0.8224 + }, + { + "start": 25158.86, + "end": 25162.48, + "probability": 0.9674 + }, + { + "start": 25163.42, + "end": 25166.4, + "probability": 0.9146 + }, + { + "start": 25166.79, + "end": 25168.96, + "probability": 0.0083 + }, + { + "start": 25169.56, + "end": 25175.64, + "probability": 0.0226 + }, + { + "start": 25176.04, + "end": 25176.86, + "probability": 0.0536 + }, + { + "start": 25177.02, + "end": 25179.2, + "probability": 0.0509 + }, + { + "start": 25180.1, + "end": 25183.42, + "probability": 0.1441 + }, + { + "start": 25183.56, + "end": 25188.7, + "probability": 0.0598 + }, + { + "start": 25190.86, + "end": 25191.94, + "probability": 0.0382 + }, + { + "start": 25191.94, + "end": 25192.92, + "probability": 0.0486 + }, + { + "start": 25193.12, + "end": 25193.38, + "probability": 0.08 + }, + { + "start": 25193.52, + "end": 25194.38, + "probability": 0.0378 + }, + { + "start": 25194.38, + "end": 25195.28, + "probability": 0.1106 + }, + { + "start": 25195.74, + "end": 25196.94, + "probability": 0.0427 + }, + { + "start": 25199.15, + "end": 25199.92, + "probability": 0.103 + }, + { + "start": 25208.64, + "end": 25209.92, + "probability": 0.1606 + }, + { + "start": 25210.16, + "end": 25210.16, + "probability": 0.171 + }, + { + "start": 25210.16, + "end": 25210.16, + "probability": 0.0059 + }, + { + "start": 25210.27, + "end": 25210.74, + "probability": 0.0388 + }, + { + "start": 25210.82, + "end": 25211.53, + "probability": 0.1246 + }, + { + "start": 25212.08, + "end": 25212.96, + "probability": 0.1817 + }, + { + "start": 25213.74, + "end": 25214.3, + "probability": 0.0651 + }, + { + "start": 25214.3, + "end": 25215.56, + "probability": 0.1547 + }, + { + "start": 25215.56, + "end": 25219.36, + "probability": 0.0889 + }, + { + "start": 25219.36, + "end": 25219.36, + "probability": 0.0943 + }, + { + "start": 25219.5, + "end": 25219.7, + "probability": 0.0196 + }, + { + "start": 25219.7, + "end": 25219.86, + "probability": 0.068 + }, + { + "start": 25219.86, + "end": 25219.86, + "probability": 0.0234 + }, + { + "start": 25219.86, + "end": 25219.9, + "probability": 0.0844 + }, + { + "start": 25219.9, + "end": 25219.9, + "probability": 0.0834 + }, + { + "start": 25219.9, + "end": 25219.9, + "probability": 0.0343 + }, + { + "start": 25220.0, + "end": 25220.0, + "probability": 0.0 + }, + { + "start": 25220.0, + "end": 25220.0, + "probability": 0.0 + }, + { + "start": 25220.0, + "end": 25220.0, + "probability": 0.0 + }, + { + "start": 25220.0, + "end": 25220.0, + "probability": 0.0 + }, + { + "start": 25220.0, + "end": 25220.0, + "probability": 0.0 + }, + { + "start": 25220.0, + "end": 25220.0, + "probability": 0.0 + }, + { + "start": 25220.0, + "end": 25220.0, + "probability": 0.0 + }, + { + "start": 25220.0, + "end": 25220.0, + "probability": 0.0 + }, + { + "start": 25220.0, + "end": 25220.0, + "probability": 0.0 + }, + { + "start": 25220.4, + "end": 25220.88, + "probability": 0.5464 + }, + { + "start": 25221.0, + "end": 25221.86, + "probability": 0.8726 + }, + { + "start": 25222.69, + "end": 25225.08, + "probability": 0.8101 + }, + { + "start": 25225.28, + "end": 25226.48, + "probability": 0.6968 + }, + { + "start": 25227.84, + "end": 25232.76, + "probability": 0.9891 + }, + { + "start": 25232.76, + "end": 25234.5, + "probability": 0.9372 + }, + { + "start": 25234.54, + "end": 25235.62, + "probability": 0.2907 + }, + { + "start": 25235.76, + "end": 25237.52, + "probability": 0.9297 + }, + { + "start": 25238.14, + "end": 25240.12, + "probability": 0.8768 + }, + { + "start": 25241.66, + "end": 25245.88, + "probability": 0.0496 + }, + { + "start": 25245.88, + "end": 25246.32, + "probability": 0.1452 + }, + { + "start": 25246.32, + "end": 25247.04, + "probability": 0.047 + }, + { + "start": 25247.04, + "end": 25248.22, + "probability": 0.1287 + }, + { + "start": 25248.38, + "end": 25251.42, + "probability": 0.1865 + }, + { + "start": 25253.76, + "end": 25255.44, + "probability": 0.3338 + }, + { + "start": 25346.0, + "end": 25346.0, + "probability": 0.0 + }, + { + "start": 25346.0, + "end": 25346.0, + "probability": 0.0 + }, + { + "start": 25346.0, + "end": 25346.0, + "probability": 0.0 + }, + { + "start": 25346.0, + "end": 25346.0, + "probability": 0.0 + }, + { + "start": 25346.0, + "end": 25346.0, + "probability": 0.0 + }, + { + "start": 25346.0, + "end": 25346.0, + "probability": 0.0 + }, + { + "start": 25346.0, + "end": 25346.0, + "probability": 0.0 + }, + { + "start": 25346.0, + "end": 25346.0, + "probability": 0.0 + }, + { + "start": 25346.0, + "end": 25346.0, + "probability": 0.0 + }, + { + "start": 25346.0, + "end": 25346.0, + "probability": 0.0 + }, + { + "start": 25346.0, + "end": 25346.0, + "probability": 0.0 + }, + { + "start": 25346.0, + "end": 25346.0, + "probability": 0.0 + }, + { + "start": 25346.0, + "end": 25346.0, + "probability": 0.0 + }, + { + "start": 25346.0, + "end": 25346.0, + "probability": 0.0 + }, + { + "start": 25346.0, + "end": 25346.0, + "probability": 0.0 + }, + { + "start": 25346.0, + "end": 25346.0, + "probability": 0.0 + }, + { + "start": 25346.0, + "end": 25346.0, + "probability": 0.0 + }, + { + "start": 25346.0, + "end": 25346.0, + "probability": 0.0 + }, + { + "start": 25346.0, + "end": 25346.0, + "probability": 0.0 + }, + { + "start": 25346.0, + "end": 25346.0, + "probability": 0.0 + }, + { + "start": 25346.0, + "end": 25346.0, + "probability": 0.0 + }, + { + "start": 25346.0, + "end": 25346.0, + "probability": 0.0 + }, + { + "start": 25346.0, + "end": 25346.0, + "probability": 0.0 + }, + { + "start": 25346.0, + "end": 25346.0, + "probability": 0.0 + }, + { + "start": 25346.0, + "end": 25346.0, + "probability": 0.0 + }, + { + "start": 25346.0, + "end": 25346.0, + "probability": 0.0 + }, + { + "start": 25346.0, + "end": 25346.0, + "probability": 0.0 + }, + { + "start": 25346.0, + "end": 25346.0, + "probability": 0.0 + }, + { + "start": 25346.0, + "end": 25346.0, + "probability": 0.0 + }, + { + "start": 25346.0, + "end": 25346.0, + "probability": 0.0 + }, + { + "start": 25346.0, + "end": 25346.0, + "probability": 0.0 + }, + { + "start": 25346.0, + "end": 25346.0, + "probability": 0.0 + }, + { + "start": 25347.96, + "end": 25349.4, + "probability": 0.1486 + }, + { + "start": 25349.4, + "end": 25349.82, + "probability": 0.097 + }, + { + "start": 25349.82, + "end": 25350.4, + "probability": 0.8286 + }, + { + "start": 25351.46, + "end": 25354.67, + "probability": 0.6748 + }, + { + "start": 25355.28, + "end": 25355.9, + "probability": 0.8511 + }, + { + "start": 25356.02, + "end": 25356.84, + "probability": 0.9534 + }, + { + "start": 25356.94, + "end": 25358.66, + "probability": 0.802 + }, + { + "start": 25359.66, + "end": 25360.78, + "probability": 0.9402 + }, + { + "start": 25360.88, + "end": 25362.32, + "probability": 0.7914 + }, + { + "start": 25362.34, + "end": 25363.82, + "probability": 0.9073 + }, + { + "start": 25364.94, + "end": 25369.74, + "probability": 0.9966 + }, + { + "start": 25369.96, + "end": 25371.42, + "probability": 0.8543 + }, + { + "start": 25371.9, + "end": 25373.34, + "probability": 0.7744 + }, + { + "start": 25373.44, + "end": 25376.04, + "probability": 0.993 + }, + { + "start": 25376.58, + "end": 25380.73, + "probability": 0.9674 + }, + { + "start": 25381.44, + "end": 25383.2, + "probability": 0.9663 + }, + { + "start": 25384.64, + "end": 25385.0, + "probability": 0.4608 + }, + { + "start": 25385.14, + "end": 25386.1, + "probability": 0.7618 + }, + { + "start": 25386.28, + "end": 25388.94, + "probability": 0.9893 + }, + { + "start": 25389.62, + "end": 25393.68, + "probability": 0.9917 + }, + { + "start": 25394.22, + "end": 25395.18, + "probability": 0.8633 + }, + { + "start": 25395.5, + "end": 25399.12, + "probability": 0.9844 + }, + { + "start": 25399.76, + "end": 25403.22, + "probability": 0.9955 + }, + { + "start": 25404.04, + "end": 25406.78, + "probability": 0.9963 + }, + { + "start": 25406.78, + "end": 25412.06, + "probability": 0.9984 + }, + { + "start": 25413.4, + "end": 25415.94, + "probability": 0.9441 + }, + { + "start": 25416.12, + "end": 25417.58, + "probability": 0.9417 + }, + { + "start": 25418.52, + "end": 25420.94, + "probability": 0.8701 + }, + { + "start": 25421.04, + "end": 25422.61, + "probability": 0.8701 + }, + { + "start": 25423.86, + "end": 25425.64, + "probability": 0.9089 + }, + { + "start": 25425.94, + "end": 25426.62, + "probability": 0.7456 + }, + { + "start": 25426.64, + "end": 25428.2, + "probability": 0.9263 + }, + { + "start": 25429.68, + "end": 25433.14, + "probability": 0.9985 + }, + { + "start": 25434.14, + "end": 25438.66, + "probability": 0.9875 + }, + { + "start": 25439.56, + "end": 25443.22, + "probability": 0.7952 + }, + { + "start": 25444.1, + "end": 25448.84, + "probability": 0.9672 + }, + { + "start": 25449.44, + "end": 25453.5, + "probability": 0.9809 + }, + { + "start": 25453.5, + "end": 25458.32, + "probability": 0.9688 + }, + { + "start": 25459.06, + "end": 25461.58, + "probability": 0.999 + }, + { + "start": 25462.26, + "end": 25466.22, + "probability": 0.9939 + }, + { + "start": 25467.02, + "end": 25468.6, + "probability": 0.9789 + }, + { + "start": 25468.74, + "end": 25469.96, + "probability": 0.8875 + }, + { + "start": 25470.18, + "end": 25471.74, + "probability": 0.874 + }, + { + "start": 25471.82, + "end": 25473.58, + "probability": 0.9979 + }, + { + "start": 25474.22, + "end": 25476.46, + "probability": 0.987 + }, + { + "start": 25477.64, + "end": 25481.64, + "probability": 0.9438 + }, + { + "start": 25481.64, + "end": 25486.2, + "probability": 0.9154 + }, + { + "start": 25486.78, + "end": 25490.78, + "probability": 0.9512 + }, + { + "start": 25491.22, + "end": 25494.42, + "probability": 0.6661 + }, + { + "start": 25494.42, + "end": 25494.98, + "probability": 0.4325 + }, + { + "start": 25495.08, + "end": 25496.4, + "probability": 0.564 + }, + { + "start": 25496.8, + "end": 25497.96, + "probability": 0.8738 + }, + { + "start": 25498.0, + "end": 25501.14, + "probability": 0.9468 + }, + { + "start": 25501.68, + "end": 25504.18, + "probability": 0.9694 + }, + { + "start": 25504.2, + "end": 25508.46, + "probability": 0.9955 + }, + { + "start": 25509.24, + "end": 25510.16, + "probability": 0.6881 + }, + { + "start": 25510.3, + "end": 25515.12, + "probability": 0.996 + }, + { + "start": 25515.12, + "end": 25518.96, + "probability": 0.9963 + }, + { + "start": 25519.38, + "end": 25520.42, + "probability": 0.9829 + }, + { + "start": 25521.68, + "end": 25522.77, + "probability": 0.8696 + }, + { + "start": 25523.38, + "end": 25524.08, + "probability": 0.8928 + }, + { + "start": 25525.84, + "end": 25529.38, + "probability": 0.9618 + }, + { + "start": 25530.36, + "end": 25530.94, + "probability": 0.9789 + }, + { + "start": 25532.6, + "end": 25535.9, + "probability": 0.9984 + }, + { + "start": 25537.02, + "end": 25537.6, + "probability": 0.9137 + }, + { + "start": 25538.44, + "end": 25539.02, + "probability": 0.995 + }, + { + "start": 25540.78, + "end": 25541.58, + "probability": 0.9906 + }, + { + "start": 25542.26, + "end": 25543.1, + "probability": 0.9966 + }, + { + "start": 25546.06, + "end": 25548.62, + "probability": 0.9929 + }, + { + "start": 25548.7, + "end": 25549.3, + "probability": 0.8409 + }, + { + "start": 25550.46, + "end": 25554.9, + "probability": 0.9956 + }, + { + "start": 25556.24, + "end": 25557.54, + "probability": 0.9722 + }, + { + "start": 25558.74, + "end": 25560.22, + "probability": 0.7933 + }, + { + "start": 25560.8, + "end": 25562.14, + "probability": 0.9321 + }, + { + "start": 25562.9, + "end": 25563.88, + "probability": 0.9115 + }, + { + "start": 25564.58, + "end": 25564.76, + "probability": 0.9358 + }, + { + "start": 25565.48, + "end": 25569.38, + "probability": 0.9375 + }, + { + "start": 25570.24, + "end": 25572.02, + "probability": 0.9932 + }, + { + "start": 25572.34, + "end": 25577.12, + "probability": 0.9888 + }, + { + "start": 25577.16, + "end": 25578.66, + "probability": 0.7232 + }, + { + "start": 25580.06, + "end": 25581.1, + "probability": 0.8741 + }, + { + "start": 25581.24, + "end": 25582.7, + "probability": 0.9593 + }, + { + "start": 25582.8, + "end": 25585.38, + "probability": 0.9712 + }, + { + "start": 25586.04, + "end": 25589.5, + "probability": 0.9698 + }, + { + "start": 25590.42, + "end": 25593.52, + "probability": 0.9861 + }, + { + "start": 25594.04, + "end": 25596.24, + "probability": 0.8477 + }, + { + "start": 25596.3, + "end": 25599.39, + "probability": 0.9567 + }, + { + "start": 25600.24, + "end": 25603.36, + "probability": 0.9938 + }, + { + "start": 25604.74, + "end": 25605.86, + "probability": 0.9111 + }, + { + "start": 25605.86, + "end": 25608.06, + "probability": 0.9429 + }, + { + "start": 25608.44, + "end": 25611.46, + "probability": 0.9624 + }, + { + "start": 25612.52, + "end": 25614.44, + "probability": 0.9987 + }, + { + "start": 25614.44, + "end": 25617.18, + "probability": 0.98 + }, + { + "start": 25617.4, + "end": 25619.98, + "probability": 0.9976 + }, + { + "start": 25620.64, + "end": 25622.0, + "probability": 0.9945 + }, + { + "start": 25622.16, + "end": 25624.32, + "probability": 0.9951 + }, + { + "start": 25624.64, + "end": 25626.18, + "probability": 0.9956 + }, + { + "start": 25626.5, + "end": 25628.36, + "probability": 0.9962 + }, + { + "start": 25629.84, + "end": 25633.14, + "probability": 0.9971 + }, + { + "start": 25633.24, + "end": 25634.14, + "probability": 0.853 + }, + { + "start": 25634.22, + "end": 25636.52, + "probability": 0.4585 + }, + { + "start": 25636.58, + "end": 25638.82, + "probability": 0.8457 + }, + { + "start": 25639.4, + "end": 25640.42, + "probability": 0.5919 + }, + { + "start": 25640.56, + "end": 25641.7, + "probability": 0.7914 + }, + { + "start": 25642.28, + "end": 25642.87, + "probability": 0.8667 + }, + { + "start": 25644.02, + "end": 25645.26, + "probability": 0.8467 + }, + { + "start": 25645.44, + "end": 25647.58, + "probability": 0.8818 + }, + { + "start": 25648.16, + "end": 25650.3, + "probability": 0.8793 + }, + { + "start": 25651.44, + "end": 25653.04, + "probability": 0.5428 + }, + { + "start": 25654.52, + "end": 25655.56, + "probability": 0.8652 + }, + { + "start": 25655.56, + "end": 25655.7, + "probability": 0.8965 + }, + { + "start": 25655.94, + "end": 25657.2, + "probability": 0.9963 + }, + { + "start": 25657.8, + "end": 25659.0, + "probability": 0.9968 + }, + { + "start": 25659.48, + "end": 25662.88, + "probability": 0.9143 + }, + { + "start": 25663.32, + "end": 25665.94, + "probability": 0.9844 + }, + { + "start": 25666.8, + "end": 25668.06, + "probability": 0.8144 + }, + { + "start": 25668.4, + "end": 25669.54, + "probability": 0.485 + }, + { + "start": 25669.7, + "end": 25671.64, + "probability": 0.9689 + }, + { + "start": 25671.7, + "end": 25672.62, + "probability": 0.8665 + }, + { + "start": 25673.62, + "end": 25679.54, + "probability": 0.9964 + }, + { + "start": 25679.82, + "end": 25682.16, + "probability": 0.7898 + }, + { + "start": 25682.24, + "end": 25682.68, + "probability": 0.4543 + }, + { + "start": 25682.8, + "end": 25684.02, + "probability": 0.7675 + }, + { + "start": 25684.14, + "end": 25684.56, + "probability": 0.4516 + }, + { + "start": 25684.94, + "end": 25686.18, + "probability": 0.9962 + }, + { + "start": 25686.24, + "end": 25688.66, + "probability": 0.9097 + }, + { + "start": 25689.36, + "end": 25693.0, + "probability": 0.6074 + }, + { + "start": 25693.78, + "end": 25695.76, + "probability": 0.7662 + }, + { + "start": 25696.18, + "end": 25696.96, + "probability": 0.7286 + }, + { + "start": 25697.12, + "end": 25700.12, + "probability": 0.9688 + }, + { + "start": 25700.12, + "end": 25701.52, + "probability": 0.9653 + }, + { + "start": 25701.98, + "end": 25704.72, + "probability": 0.7015 + }, + { + "start": 25704.78, + "end": 25705.72, + "probability": 0.6882 + }, + { + "start": 25706.06, + "end": 25707.84, + "probability": 0.999 + }, + { + "start": 25708.78, + "end": 25710.82, + "probability": 0.9915 + }, + { + "start": 25712.02, + "end": 25714.4, + "probability": 0.9671 + }, + { + "start": 25715.98, + "end": 25718.76, + "probability": 0.981 + }, + { + "start": 25718.84, + "end": 25720.82, + "probability": 0.999 + }, + { + "start": 25721.12, + "end": 25722.12, + "probability": 0.8548 + }, + { + "start": 25723.42, + "end": 25726.26, + "probability": 0.9106 + }, + { + "start": 25727.62, + "end": 25729.84, + "probability": 0.7821 + }, + { + "start": 25730.24, + "end": 25730.94, + "probability": 0.5254 + }, + { + "start": 25731.06, + "end": 25732.32, + "probability": 0.8783 + }, + { + "start": 25732.54, + "end": 25732.74, + "probability": 0.8714 + }, + { + "start": 25732.82, + "end": 25733.58, + "probability": 0.9141 + }, + { + "start": 25733.78, + "end": 25734.82, + "probability": 0.9968 + }, + { + "start": 25734.94, + "end": 25735.68, + "probability": 0.5748 + }, + { + "start": 25736.02, + "end": 25737.48, + "probability": 0.9089 + }, + { + "start": 25740.86, + "end": 25746.9, + "probability": 0.77 + }, + { + "start": 25747.32, + "end": 25749.48, + "probability": 0.9168 + }, + { + "start": 25750.12, + "end": 25753.06, + "probability": 0.8123 + }, + { + "start": 25753.06, + "end": 25754.82, + "probability": 0.9865 + }, + { + "start": 25755.56, + "end": 25759.62, + "probability": 0.9017 + }, + { + "start": 25760.32, + "end": 25760.84, + "probability": 0.6809 + }, + { + "start": 25761.66, + "end": 25763.89, + "probability": 0.9536 + }, + { + "start": 25765.08, + "end": 25766.14, + "probability": 0.9688 + }, + { + "start": 25766.16, + "end": 25767.74, + "probability": 0.9937 + }, + { + "start": 25768.34, + "end": 25769.84, + "probability": 0.8789 + }, + { + "start": 25769.94, + "end": 25770.9, + "probability": 0.9651 + }, + { + "start": 25771.76, + "end": 25772.64, + "probability": 0.9897 + }, + { + "start": 25772.74, + "end": 25774.37, + "probability": 0.7734 + }, + { + "start": 25775.64, + "end": 25779.58, + "probability": 0.9922 + }, + { + "start": 25780.16, + "end": 25781.46, + "probability": 0.9697 + }, + { + "start": 25785.18, + "end": 25788.34, + "probability": 0.7166 + }, + { + "start": 25788.46, + "end": 25791.18, + "probability": 0.9946 + }, + { + "start": 25791.26, + "end": 25791.85, + "probability": 0.9976 + }, + { + "start": 25792.44, + "end": 25793.34, + "probability": 0.9509 + }, + { + "start": 25793.76, + "end": 25794.16, + "probability": 0.5885 + }, + { + "start": 25794.24, + "end": 25795.28, + "probability": 0.8809 + }, + { + "start": 25796.38, + "end": 25797.76, + "probability": 0.9503 + }, + { + "start": 25798.54, + "end": 25800.5, + "probability": 0.884 + }, + { + "start": 25801.9, + "end": 25802.58, + "probability": 0.9675 + }, + { + "start": 25803.5, + "end": 25804.54, + "probability": 0.768 + }, + { + "start": 25804.66, + "end": 25805.94, + "probability": 0.7953 + }, + { + "start": 25806.26, + "end": 25806.62, + "probability": 0.7651 + }, + { + "start": 25806.66, + "end": 25808.96, + "probability": 0.9263 + }, + { + "start": 25809.98, + "end": 25811.62, + "probability": 0.937 + }, + { + "start": 25811.66, + "end": 25812.64, + "probability": 0.9828 + }, + { + "start": 25813.18, + "end": 25814.64, + "probability": 0.9726 + }, + { + "start": 25815.32, + "end": 25816.72, + "probability": 0.9195 + }, + { + "start": 25817.76, + "end": 25818.56, + "probability": 0.7079 + }, + { + "start": 25818.62, + "end": 25820.68, + "probability": 0.9932 + }, + { + "start": 25820.68, + "end": 25823.32, + "probability": 0.949 + }, + { + "start": 25824.1, + "end": 25825.74, + "probability": 0.9809 + }, + { + "start": 25826.14, + "end": 25829.18, + "probability": 0.9976 + }, + { + "start": 25829.24, + "end": 25830.46, + "probability": 0.9979 + }, + { + "start": 25831.32, + "end": 25832.46, + "probability": 0.9978 + }, + { + "start": 25833.98, + "end": 25836.2, + "probability": 0.8429 + }, + { + "start": 25837.02, + "end": 25839.44, + "probability": 0.8109 + }, + { + "start": 25840.52, + "end": 25843.66, + "probability": 0.8811 + }, + { + "start": 25844.6, + "end": 25846.26, + "probability": 0.7946 + }, + { + "start": 25846.66, + "end": 25849.8, + "probability": 0.9873 + }, + { + "start": 25850.68, + "end": 25852.08, + "probability": 0.9765 + }, + { + "start": 25852.8, + "end": 25855.5, + "probability": 0.5893 + }, + { + "start": 25857.32, + "end": 25861.5, + "probability": 0.9984 + }, + { + "start": 25861.6, + "end": 25862.36, + "probability": 0.4713 + }, + { + "start": 25863.24, + "end": 25866.74, + "probability": 0.9308 + }, + { + "start": 25867.36, + "end": 25869.06, + "probability": 0.8587 + }, + { + "start": 25869.14, + "end": 25869.94, + "probability": 0.9257 + }, + { + "start": 25870.26, + "end": 25871.74, + "probability": 0.9972 + }, + { + "start": 25871.88, + "end": 25872.83, + "probability": 0.9821 + }, + { + "start": 25874.0, + "end": 25876.64, + "probability": 0.6809 + }, + { + "start": 25877.04, + "end": 25878.56, + "probability": 0.9794 + }, + { + "start": 25879.62, + "end": 25881.36, + "probability": 0.9713 + }, + { + "start": 25881.5, + "end": 25884.18, + "probability": 0.9555 + }, + { + "start": 25884.82, + "end": 25885.86, + "probability": 0.9911 + }, + { + "start": 25886.1, + "end": 25886.42, + "probability": 0.6742 + }, + { + "start": 25886.48, + "end": 25886.74, + "probability": 0.8584 + }, + { + "start": 25886.96, + "end": 25888.1, + "probability": 0.895 + }, + { + "start": 25888.46, + "end": 25892.14, + "probability": 0.8378 + }, + { + "start": 25892.96, + "end": 25894.74, + "probability": 0.8232 + }, + { + "start": 25894.82, + "end": 25895.27, + "probability": 0.5497 + }, + { + "start": 25896.08, + "end": 25898.12, + "probability": 0.858 + }, + { + "start": 25898.64, + "end": 25899.4, + "probability": 0.8137 + }, + { + "start": 25899.54, + "end": 25900.3, + "probability": 0.9341 + }, + { + "start": 25900.78, + "end": 25904.48, + "probability": 0.9493 + }, + { + "start": 25904.82, + "end": 25906.06, + "probability": 0.9988 + }, + { + "start": 25907.58, + "end": 25909.58, + "probability": 0.9471 + }, + { + "start": 25910.88, + "end": 25913.06, + "probability": 0.9966 + }, + { + "start": 25913.16, + "end": 25913.96, + "probability": 0.8787 + }, + { + "start": 25914.32, + "end": 25916.04, + "probability": 0.5872 + }, + { + "start": 25916.14, + "end": 25918.17, + "probability": 0.9876 + }, + { + "start": 25918.9, + "end": 25920.52, + "probability": 0.9956 + }, + { + "start": 25921.42, + "end": 25925.0, + "probability": 0.988 + }, + { + "start": 25925.02, + "end": 25925.3, + "probability": 0.5515 + }, + { + "start": 25926.24, + "end": 25927.68, + "probability": 0.2927 + }, + { + "start": 25927.76, + "end": 25929.24, + "probability": 0.8911 + }, + { + "start": 25929.8, + "end": 25931.26, + "probability": 0.5399 + }, + { + "start": 25932.32, + "end": 25934.8, + "probability": 0.9958 + }, + { + "start": 25934.8, + "end": 25937.44, + "probability": 0.9977 + }, + { + "start": 25958.32, + "end": 25960.23, + "probability": 0.4524 + }, + { + "start": 25960.9, + "end": 25962.93, + "probability": 0.8986 + }, + { + "start": 25963.58, + "end": 25966.98, + "probability": 0.9741 + }, + { + "start": 25966.98, + "end": 25970.38, + "probability": 0.9937 + }, + { + "start": 25971.2, + "end": 25975.14, + "probability": 0.9855 + }, + { + "start": 25976.26, + "end": 25979.66, + "probability": 0.969 + }, + { + "start": 25980.26, + "end": 25984.16, + "probability": 0.9909 + }, + { + "start": 25985.56, + "end": 25987.98, + "probability": 0.9977 + }, + { + "start": 25987.98, + "end": 25990.76, + "probability": 0.9219 + }, + { + "start": 25990.76, + "end": 25995.56, + "probability": 0.9848 + }, + { + "start": 25995.6, + "end": 25996.54, + "probability": 0.8154 + }, + { + "start": 25996.68, + "end": 25997.38, + "probability": 0.9172 + }, + { + "start": 25997.48, + "end": 26000.6, + "probability": 0.9667 + }, + { + "start": 26001.24, + "end": 26005.06, + "probability": 0.9827 + }, + { + "start": 26005.22, + "end": 26005.82, + "probability": 0.9531 + }, + { + "start": 26006.12, + "end": 26009.48, + "probability": 0.9977 + }, + { + "start": 26010.88, + "end": 26012.0, + "probability": 0.8489 + }, + { + "start": 26012.46, + "end": 26019.68, + "probability": 0.9956 + }, + { + "start": 26022.2, + "end": 26026.32, + "probability": 0.9971 + }, + { + "start": 26027.42, + "end": 26030.86, + "probability": 0.9954 + }, + { + "start": 26031.08, + "end": 26031.78, + "probability": 0.6461 + }, + { + "start": 26033.04, + "end": 26035.3, + "probability": 0.8087 + }, + { + "start": 26035.62, + "end": 26036.74, + "probability": 0.9295 + }, + { + "start": 26036.9, + "end": 26041.32, + "probability": 0.9942 + }, + { + "start": 26042.18, + "end": 26044.6, + "probability": 0.7946 + }, + { + "start": 26044.84, + "end": 26046.76, + "probability": 0.9706 + }, + { + "start": 26047.62, + "end": 26048.7, + "probability": 0.4907 + }, + { + "start": 26049.6, + "end": 26051.1, + "probability": 0.542 + }, + { + "start": 26052.52, + "end": 26055.94, + "probability": 0.9956 + }, + { + "start": 26055.94, + "end": 26059.9, + "probability": 0.7944 + }, + { + "start": 26060.12, + "end": 26063.06, + "probability": 0.9961 + }, + { + "start": 26063.78, + "end": 26067.22, + "probability": 0.9582 + }, + { + "start": 26069.02, + "end": 26073.76, + "probability": 0.9826 + }, + { + "start": 26073.9, + "end": 26077.26, + "probability": 0.9889 + }, + { + "start": 26077.48, + "end": 26079.46, + "probability": 0.8604 + }, + { + "start": 26080.04, + "end": 26084.9, + "probability": 0.9924 + }, + { + "start": 26084.9, + "end": 26088.02, + "probability": 0.9972 + }, + { + "start": 26088.1, + "end": 26089.4, + "probability": 0.7996 + }, + { + "start": 26089.98, + "end": 26096.14, + "probability": 0.9943 + }, + { + "start": 26096.37, + "end": 26100.16, + "probability": 0.9798 + }, + { + "start": 26100.34, + "end": 26102.42, + "probability": 0.9866 + }, + { + "start": 26103.48, + "end": 26104.94, + "probability": 0.9946 + }, + { + "start": 26105.56, + "end": 26110.44, + "probability": 0.9975 + }, + { + "start": 26110.7, + "end": 26112.8, + "probability": 0.8778 + }, + { + "start": 26113.02, + "end": 26115.16, + "probability": 0.9712 + }, + { + "start": 26116.12, + "end": 26117.8, + "probability": 0.9068 + }, + { + "start": 26117.84, + "end": 26118.74, + "probability": 0.9575 + }, + { + "start": 26119.3, + "end": 26120.48, + "probability": 0.1206 + }, + { + "start": 26120.58, + "end": 26121.42, + "probability": 0.3496 + }, + { + "start": 26121.6, + "end": 26122.6, + "probability": 0.6115 + }, + { + "start": 26122.64, + "end": 26123.0, + "probability": 0.7113 + }, + { + "start": 26123.08, + "end": 26126.74, + "probability": 0.6983 + }, + { + "start": 26126.78, + "end": 26129.98, + "probability": 0.856 + }, + { + "start": 26130.28, + "end": 26131.08, + "probability": 0.1185 + }, + { + "start": 26132.0, + "end": 26132.28, + "probability": 0.4142 + }, + { + "start": 26132.92, + "end": 26134.32, + "probability": 0.9325 + }, + { + "start": 26134.38, + "end": 26136.98, + "probability": 0.974 + }, + { + "start": 26137.08, + "end": 26144.32, + "probability": 0.9371 + }, + { + "start": 26144.46, + "end": 26145.96, + "probability": 0.5767 + }, + { + "start": 26146.1, + "end": 26147.62, + "probability": 0.789 + }, + { + "start": 26148.24, + "end": 26148.8, + "probability": 0.3988 + }, + { + "start": 26148.86, + "end": 26151.65, + "probability": 0.9854 + }, + { + "start": 26151.8, + "end": 26153.44, + "probability": 0.3623 + }, + { + "start": 26153.6, + "end": 26156.78, + "probability": 0.7621 + }, + { + "start": 26156.86, + "end": 26157.38, + "probability": 0.4563 + }, + { + "start": 26157.58, + "end": 26158.84, + "probability": 0.9745 + }, + { + "start": 26159.08, + "end": 26161.38, + "probability": 0.483 + }, + { + "start": 26161.48, + "end": 26161.94, + "probability": 0.7583 + }, + { + "start": 26161.94, + "end": 26166.54, + "probability": 0.8152 + }, + { + "start": 26166.64, + "end": 26168.3, + "probability": 0.9197 + }, + { + "start": 26168.42, + "end": 26171.01, + "probability": 0.8853 + }, + { + "start": 26172.12, + "end": 26172.34, + "probability": 0.6318 + }, + { + "start": 26172.4, + "end": 26174.36, + "probability": 0.9534 + }, + { + "start": 26174.5, + "end": 26175.66, + "probability": 0.809 + }, + { + "start": 26175.8, + "end": 26177.2, + "probability": 0.7705 + }, + { + "start": 26177.36, + "end": 26181.45, + "probability": 0.9821 + }, + { + "start": 26182.0, + "end": 26184.72, + "probability": 0.9918 + }, + { + "start": 26184.88, + "end": 26186.06, + "probability": 0.9213 + }, + { + "start": 26186.2, + "end": 26186.74, + "probability": 0.4528 + }, + { + "start": 26186.88, + "end": 26187.33, + "probability": 0.8757 + }, + { + "start": 26188.73, + "end": 26193.2, + "probability": 0.2848 + }, + { + "start": 26194.18, + "end": 26195.43, + "probability": 0.8928 + }, + { + "start": 26195.9, + "end": 26198.76, + "probability": 0.989 + }, + { + "start": 26199.3, + "end": 26200.96, + "probability": 0.8837 + }, + { + "start": 26201.1, + "end": 26206.66, + "probability": 0.998 + }, + { + "start": 26206.66, + "end": 26210.74, + "probability": 0.9976 + }, + { + "start": 26211.02, + "end": 26213.3, + "probability": 0.9927 + }, + { + "start": 26213.34, + "end": 26213.88, + "probability": 0.8318 + }, + { + "start": 26214.16, + "end": 26214.32, + "probability": 0.4275 + }, + { + "start": 26214.5, + "end": 26215.22, + "probability": 0.9829 + }, + { + "start": 26215.26, + "end": 26216.62, + "probability": 0.981 + }, + { + "start": 26217.22, + "end": 26218.06, + "probability": 0.6532 + }, + { + "start": 26218.72, + "end": 26221.62, + "probability": 0.9638 + }, + { + "start": 26221.7, + "end": 26224.7, + "probability": 0.9884 + }, + { + "start": 26224.74, + "end": 26226.8, + "probability": 0.9966 + }, + { + "start": 26226.88, + "end": 26229.74, + "probability": 0.9976 + }, + { + "start": 26229.9, + "end": 26232.78, + "probability": 0.9888 + }, + { + "start": 26232.96, + "end": 26235.9, + "probability": 0.999 + }, + { + "start": 26236.26, + "end": 26237.06, + "probability": 0.8757 + }, + { + "start": 26237.28, + "end": 26238.34, + "probability": 0.7204 + }, + { + "start": 26238.36, + "end": 26239.6, + "probability": 0.927 + }, + { + "start": 26239.62, + "end": 26242.54, + "probability": 0.9813 + }, + { + "start": 26242.68, + "end": 26243.62, + "probability": 0.8333 + }, + { + "start": 26244.2, + "end": 26245.28, + "probability": 0.7229 + }, + { + "start": 26245.38, + "end": 26248.18, + "probability": 0.9966 + }, + { + "start": 26248.54, + "end": 26250.56, + "probability": 0.9481 + }, + { + "start": 26250.64, + "end": 26252.38, + "probability": 0.9888 + }, + { + "start": 26252.54, + "end": 26257.04, + "probability": 0.9851 + }, + { + "start": 26257.2, + "end": 26259.28, + "probability": 0.9785 + }, + { + "start": 26259.34, + "end": 26264.32, + "probability": 0.9984 + }, + { + "start": 26264.94, + "end": 26268.97, + "probability": 0.9955 + }, + { + "start": 26269.08, + "end": 26270.6, + "probability": 0.943 + }, + { + "start": 26270.68, + "end": 26271.24, + "probability": 0.069 + }, + { + "start": 26271.34, + "end": 26273.96, + "probability": 0.9914 + }, + { + "start": 26273.96, + "end": 26277.3, + "probability": 0.9975 + }, + { + "start": 26277.4, + "end": 26279.42, + "probability": 0.991 + }, + { + "start": 26280.46, + "end": 26282.2, + "probability": 0.9038 + }, + { + "start": 26282.34, + "end": 26284.26, + "probability": 0.7431 + }, + { + "start": 26284.26, + "end": 26287.36, + "probability": 0.9978 + }, + { + "start": 26288.36, + "end": 26290.22, + "probability": 0.4985 + }, + { + "start": 26290.58, + "end": 26296.28, + "probability": 0.9985 + }, + { + "start": 26296.78, + "end": 26300.26, + "probability": 0.9943 + }, + { + "start": 26300.9, + "end": 26303.16, + "probability": 0.9956 + }, + { + "start": 26303.44, + "end": 26303.7, + "probability": 0.8386 + }, + { + "start": 26304.54, + "end": 26305.98, + "probability": 0.8223 + }, + { + "start": 26307.88, + "end": 26308.72, + "probability": 0.6423 + }, + { + "start": 26309.58, + "end": 26311.14, + "probability": 0.474 + }, + { + "start": 26314.24, + "end": 26316.02, + "probability": 0.9471 + }, + { + "start": 26317.84, + "end": 26318.82, + "probability": 0.878 + }, + { + "start": 26318.94, + "end": 26323.36, + "probability": 0.9855 + }, + { + "start": 26323.42, + "end": 26325.26, + "probability": 0.5119 + }, + { + "start": 26325.44, + "end": 26327.54, + "probability": 0.8573 + }, + { + "start": 26327.74, + "end": 26329.8, + "probability": 0.6318 + }, + { + "start": 26330.02, + "end": 26333.66, + "probability": 0.9666 + }, + { + "start": 26335.68, + "end": 26337.76, + "probability": 0.6522 + }, + { + "start": 26338.63, + "end": 26340.58, + "probability": 0.0872 + }, + { + "start": 26340.58, + "end": 26342.26, + "probability": 0.1141 + }, + { + "start": 26343.14, + "end": 26343.84, + "probability": 0.017 + }, + { + "start": 26347.58, + "end": 26349.85, + "probability": 0.1242 + }, + { + "start": 26352.34, + "end": 26352.9, + "probability": 0.0128 + }, + { + "start": 26353.04, + "end": 26356.48, + "probability": 0.7413 + }, + { + "start": 26360.36, + "end": 26362.58, + "probability": 0.1196 + }, + { + "start": 26362.58, + "end": 26362.92, + "probability": 0.1344 + }, + { + "start": 26365.84, + "end": 26366.7, + "probability": 0.044 + }, + { + "start": 26371.34, + "end": 26373.5, + "probability": 0.4808 + }, + { + "start": 26374.3, + "end": 26379.96, + "probability": 0.9602 + }, + { + "start": 26382.7, + "end": 26384.2, + "probability": 0.9592 + }, + { + "start": 26390.3, + "end": 26393.62, + "probability": 0.9316 + }, + { + "start": 26393.62, + "end": 26396.22, + "probability": 0.9519 + }, + { + "start": 26398.08, + "end": 26398.96, + "probability": 0.629 + }, + { + "start": 26400.02, + "end": 26404.32, + "probability": 0.85 + }, + { + "start": 26404.74, + "end": 26409.32, + "probability": 0.9911 + }, + { + "start": 26409.94, + "end": 26411.62, + "probability": 0.8689 + }, + { + "start": 26425.24, + "end": 26427.58, + "probability": 0.663 + }, + { + "start": 26429.16, + "end": 26436.12, + "probability": 0.9182 + }, + { + "start": 26437.58, + "end": 26439.54, + "probability": 0.7238 + }, + { + "start": 26440.36, + "end": 26445.74, + "probability": 0.9917 + }, + { + "start": 26447.36, + "end": 26448.68, + "probability": 0.6383 + }, + { + "start": 26448.92, + "end": 26449.82, + "probability": 0.3755 + }, + { + "start": 26449.94, + "end": 26451.0, + "probability": 0.981 + }, + { + "start": 26452.84, + "end": 26456.38, + "probability": 0.9902 + }, + { + "start": 26457.24, + "end": 26457.44, + "probability": 0.4679 + }, + { + "start": 26457.52, + "end": 26459.56, + "probability": 0.9954 + }, + { + "start": 26459.92, + "end": 26460.82, + "probability": 0.5741 + }, + { + "start": 26460.92, + "end": 26461.62, + "probability": 0.7548 + }, + { + "start": 26461.68, + "end": 26463.86, + "probability": 0.9858 + }, + { + "start": 26465.88, + "end": 26468.9, + "probability": 0.9668 + }, + { + "start": 26468.9, + "end": 26471.82, + "probability": 0.9963 + }, + { + "start": 26473.12, + "end": 26476.56, + "probability": 0.9649 + }, + { + "start": 26476.56, + "end": 26480.99, + "probability": 0.995 + }, + { + "start": 26483.01, + "end": 26485.14, + "probability": 0.9995 + }, + { + "start": 26486.28, + "end": 26487.22, + "probability": 0.9378 + }, + { + "start": 26487.78, + "end": 26491.04, + "probability": 0.906 + }, + { + "start": 26491.54, + "end": 26494.56, + "probability": 0.7915 + }, + { + "start": 26495.26, + "end": 26497.8, + "probability": 0.9471 + }, + { + "start": 26499.14, + "end": 26499.52, + "probability": 0.9242 + }, + { + "start": 26500.78, + "end": 26505.02, + "probability": 0.6709 + }, + { + "start": 26509.42, + "end": 26510.08, + "probability": 0.8141 + }, + { + "start": 26510.16, + "end": 26513.34, + "probability": 0.9957 + }, + { + "start": 26513.42, + "end": 26516.58, + "probability": 0.9671 + }, + { + "start": 26516.62, + "end": 26517.82, + "probability": 0.75 + }, + { + "start": 26518.58, + "end": 26522.58, + "probability": 0.9508 + }, + { + "start": 26523.98, + "end": 26528.06, + "probability": 0.9871 + }, + { + "start": 26529.76, + "end": 26530.22, + "probability": 0.4824 + }, + { + "start": 26530.92, + "end": 26532.7, + "probability": 0.9626 + }, + { + "start": 26534.06, + "end": 26535.08, + "probability": 0.652 + }, + { + "start": 26535.1, + "end": 26535.74, + "probability": 0.7292 + }, + { + "start": 26535.96, + "end": 26537.2, + "probability": 0.7542 + }, + { + "start": 26538.04, + "end": 26541.7, + "probability": 0.9607 + }, + { + "start": 26541.7, + "end": 26544.56, + "probability": 0.997 + }, + { + "start": 26545.24, + "end": 26548.64, + "probability": 0.9723 + }, + { + "start": 26549.44, + "end": 26552.24, + "probability": 0.9893 + }, + { + "start": 26553.96, + "end": 26556.1, + "probability": 0.7982 + }, + { + "start": 26556.26, + "end": 26557.78, + "probability": 0.9875 + }, + { + "start": 26558.82, + "end": 26562.46, + "probability": 0.9956 + }, + { + "start": 26563.18, + "end": 26566.76, + "probability": 0.9784 + }, + { + "start": 26568.12, + "end": 26569.02, + "probability": 0.8337 + }, + { + "start": 26570.22, + "end": 26572.64, + "probability": 0.9971 + }, + { + "start": 26572.64, + "end": 26575.36, + "probability": 0.9986 + }, + { + "start": 26576.9, + "end": 26577.32, + "probability": 0.8813 + }, + { + "start": 26577.4, + "end": 26578.22, + "probability": 0.7495 + }, + { + "start": 26578.28, + "end": 26581.48, + "probability": 0.9854 + }, + { + "start": 26582.74, + "end": 26589.16, + "probability": 0.9899 + }, + { + "start": 26592.2, + "end": 26594.8, + "probability": 0.7162 + }, + { + "start": 26594.8, + "end": 26598.98, + "probability": 0.981 + }, + { + "start": 26599.36, + "end": 26600.94, + "probability": 0.9106 + }, + { + "start": 26603.26, + "end": 26604.96, + "probability": 0.8529 + }, + { + "start": 26605.56, + "end": 26607.94, + "probability": 0.9696 + }, + { + "start": 26609.12, + "end": 26609.9, + "probability": 0.7811 + }, + { + "start": 26610.46, + "end": 26612.42, + "probability": 0.8753 + }, + { + "start": 26614.2, + "end": 26615.18, + "probability": 0.8936 + }, + { + "start": 26618.02, + "end": 26620.64, + "probability": 0.9981 + }, + { + "start": 26621.14, + "end": 26624.52, + "probability": 0.9565 + }, + { + "start": 26625.42, + "end": 26625.68, + "probability": 0.579 + }, + { + "start": 26625.74, + "end": 26626.02, + "probability": 0.8778 + }, + { + "start": 26626.16, + "end": 26629.92, + "probability": 0.9889 + }, + { + "start": 26629.92, + "end": 26633.84, + "probability": 0.9419 + }, + { + "start": 26634.12, + "end": 26638.98, + "probability": 0.9985 + }, + { + "start": 26639.74, + "end": 26641.66, + "probability": 0.893 + }, + { + "start": 26642.92, + "end": 26643.3, + "probability": 0.4265 + }, + { + "start": 26643.38, + "end": 26646.44, + "probability": 0.9966 + }, + { + "start": 26646.66, + "end": 26649.6, + "probability": 0.9549 + }, + { + "start": 26650.4, + "end": 26651.08, + "probability": 0.9628 + }, + { + "start": 26652.3, + "end": 26652.86, + "probability": 0.3616 + }, + { + "start": 26652.96, + "end": 26653.64, + "probability": 0.8753 + }, + { + "start": 26653.7, + "end": 26656.24, + "probability": 0.9917 + }, + { + "start": 26656.24, + "end": 26659.72, + "probability": 0.9987 + }, + { + "start": 26660.16, + "end": 26661.44, + "probability": 0.7451 + }, + { + "start": 26669.62, + "end": 26671.96, + "probability": 0.7158 + }, + { + "start": 26673.16, + "end": 26675.98, + "probability": 0.9883 + }, + { + "start": 26675.98, + "end": 26680.68, + "probability": 0.9937 + }, + { + "start": 26680.96, + "end": 26683.34, + "probability": 0.9714 + }, + { + "start": 26683.96, + "end": 26689.24, + "probability": 0.9761 + }, + { + "start": 26689.24, + "end": 26693.8, + "probability": 0.998 + }, + { + "start": 26694.14, + "end": 26696.84, + "probability": 0.9561 + }, + { + "start": 26697.06, + "end": 26699.58, + "probability": 0.7972 + }, + { + "start": 26699.78, + "end": 26702.56, + "probability": 0.9889 + }, + { + "start": 26703.58, + "end": 26706.28, + "probability": 0.9895 + }, + { + "start": 26706.4, + "end": 26707.8, + "probability": 0.998 + }, + { + "start": 26708.7, + "end": 26711.02, + "probability": 0.9945 + }, + { + "start": 26711.16, + "end": 26714.0, + "probability": 0.9302 + }, + { + "start": 26715.04, + "end": 26718.9, + "probability": 0.989 + }, + { + "start": 26719.76, + "end": 26725.64, + "probability": 0.9854 + }, + { + "start": 26727.02, + "end": 26727.82, + "probability": 0.8325 + }, + { + "start": 26728.02, + "end": 26729.22, + "probability": 0.8444 + }, + { + "start": 26729.32, + "end": 26732.42, + "probability": 0.9679 + }, + { + "start": 26733.04, + "end": 26736.58, + "probability": 0.9828 + }, + { + "start": 26737.72, + "end": 26742.38, + "probability": 0.9982 + }, + { + "start": 26742.38, + "end": 26747.9, + "probability": 0.9976 + }, + { + "start": 26748.48, + "end": 26750.6, + "probability": 0.9821 + }, + { + "start": 26751.38, + "end": 26753.71, + "probability": 0.9812 + }, + { + "start": 26754.78, + "end": 26756.86, + "probability": 0.9951 + }, + { + "start": 26757.36, + "end": 26759.58, + "probability": 0.785 + }, + { + "start": 26760.64, + "end": 26762.22, + "probability": 0.9705 + }, + { + "start": 26762.64, + "end": 26764.74, + "probability": 0.9985 + }, + { + "start": 26765.78, + "end": 26766.78, + "probability": 0.9961 + }, + { + "start": 26766.94, + "end": 26768.44, + "probability": 0.9961 + }, + { + "start": 26769.16, + "end": 26771.36, + "probability": 0.9693 + }, + { + "start": 26771.94, + "end": 26774.47, + "probability": 0.9058 + }, + { + "start": 26775.08, + "end": 26775.87, + "probability": 0.984 + }, + { + "start": 26776.0, + "end": 26777.0, + "probability": 0.8533 + }, + { + "start": 26777.12, + "end": 26780.08, + "probability": 0.9641 + }, + { + "start": 26780.2, + "end": 26780.46, + "probability": 0.5233 + }, + { + "start": 26780.52, + "end": 26781.32, + "probability": 0.7346 + }, + { + "start": 26781.74, + "end": 26783.3, + "probability": 0.7148 + }, + { + "start": 26783.98, + "end": 26786.14, + "probability": 0.9694 + }, + { + "start": 26786.64, + "end": 26789.9, + "probability": 0.9951 + }, + { + "start": 26789.92, + "end": 26794.32, + "probability": 0.9814 + }, + { + "start": 26794.56, + "end": 26795.08, + "probability": 0.8058 + }, + { + "start": 26795.56, + "end": 26796.06, + "probability": 0.4587 + }, + { + "start": 26796.26, + "end": 26797.1, + "probability": 0.8994 + }, + { + "start": 26797.7, + "end": 26798.92, + "probability": 0.8237 + }, + { + "start": 26799.02, + "end": 26801.28, + "probability": 0.9957 + }, + { + "start": 26801.28, + "end": 26804.12, + "probability": 0.9351 + }, + { + "start": 26804.6, + "end": 26805.5, + "probability": 0.553 + }, + { + "start": 26806.7, + "end": 26810.48, + "probability": 0.7568 + }, + { + "start": 26813.84, + "end": 26814.7, + "probability": 0.6638 + }, + { + "start": 26830.66, + "end": 26832.0, + "probability": 0.2163 + }, + { + "start": 26837.82, + "end": 26844.18, + "probability": 0.9125 + }, + { + "start": 26844.68, + "end": 26845.98, + "probability": 0.5958 + }, + { + "start": 26846.76, + "end": 26851.64, + "probability": 0.2288 + }, + { + "start": 26853.44, + "end": 26855.06, + "probability": 0.3507 + }, + { + "start": 26861.54, + "end": 26862.54, + "probability": 0.0796 + }, + { + "start": 26862.54, + "end": 26864.74, + "probability": 0.1734 + }, + { + "start": 26866.76, + "end": 26872.04, + "probability": 0.1372 + }, + { + "start": 26873.9, + "end": 26877.76, + "probability": 0.4455 + }, + { + "start": 26881.87, + "end": 26882.9, + "probability": 0.0348 + }, + { + "start": 26883.38, + "end": 26886.34, + "probability": 0.0659 + }, + { + "start": 26886.34, + "end": 26887.42, + "probability": 0.1018 + }, + { + "start": 26888.34, + "end": 26889.9, + "probability": 0.2603 + }, + { + "start": 26890.62, + "end": 26891.84, + "probability": 0.1021 + }, + { + "start": 26891.84, + "end": 26891.9, + "probability": 0.0925 + }, + { + "start": 26892.0, + "end": 26892.0, + "probability": 0.0 + }, + { + "start": 26892.0, + "end": 26892.0, + "probability": 0.0 + }, + { + "start": 26892.0, + "end": 26892.0, + "probability": 0.0 + }, + { + "start": 26892.0, + "end": 26892.0, + "probability": 0.0 + }, + { + "start": 26892.0, + "end": 26892.0, + "probability": 0.0 + }, + { + "start": 26892.0, + "end": 26892.0, + "probability": 0.0 + }, + { + "start": 26892.0, + "end": 26892.0, + "probability": 0.0 + }, + { + "start": 26892.0, + "end": 26892.0, + "probability": 0.0 + }, + { + "start": 26892.0, + "end": 26892.0, + "probability": 0.0 + }, + { + "start": 26892.0, + "end": 26892.0, + "probability": 0.0 + }, + { + "start": 26892.0, + "end": 26892.0, + "probability": 0.0 + }, + { + "start": 26892.0, + "end": 26892.0, + "probability": 0.0 + }, + { + "start": 26892.0, + "end": 26892.0, + "probability": 0.0 + }, + { + "start": 26892.0, + "end": 26892.0, + "probability": 0.0 + }, + { + "start": 26892.0, + "end": 26892.0, + "probability": 0.0 + }, + { + "start": 26892.0, + "end": 26892.0, + "probability": 0.0 + }, + { + "start": 26892.0, + "end": 26892.0, + "probability": 0.0 + }, + { + "start": 26892.0, + "end": 26892.0, + "probability": 0.0 + }, + { + "start": 26892.24, + "end": 26892.7, + "probability": 0.4234 + }, + { + "start": 26893.72, + "end": 26897.52, + "probability": 0.9933 + }, + { + "start": 26897.56, + "end": 26899.24, + "probability": 0.8295 + }, + { + "start": 26917.2, + "end": 26919.8, + "probability": 0.6594 + }, + { + "start": 26920.36, + "end": 26921.42, + "probability": 0.9142 + }, + { + "start": 26922.18, + "end": 26925.22, + "probability": 0.9919 + }, + { + "start": 26925.22, + "end": 26928.12, + "probability": 0.9965 + }, + { + "start": 26929.56, + "end": 26934.12, + "probability": 0.9866 + }, + { + "start": 26934.16, + "end": 26935.8, + "probability": 0.9862 + }, + { + "start": 26936.6, + "end": 26938.82, + "probability": 0.8224 + }, + { + "start": 26939.34, + "end": 26945.28, + "probability": 0.9646 + }, + { + "start": 26945.88, + "end": 26949.26, + "probability": 0.9329 + }, + { + "start": 26949.62, + "end": 26952.46, + "probability": 0.9963 + }, + { + "start": 26952.92, + "end": 26955.22, + "probability": 0.9824 + }, + { + "start": 26955.68, + "end": 26957.4, + "probability": 0.9932 + }, + { + "start": 26958.02, + "end": 26960.64, + "probability": 0.9294 + }, + { + "start": 26960.86, + "end": 26965.34, + "probability": 0.9978 + }, + { + "start": 26965.9, + "end": 26969.3, + "probability": 0.998 + }, + { + "start": 26969.3, + "end": 26973.5, + "probability": 0.9978 + }, + { + "start": 26974.26, + "end": 26976.58, + "probability": 0.9081 + }, + { + "start": 26976.74, + "end": 26977.81, + "probability": 0.9631 + }, + { + "start": 26978.32, + "end": 26980.68, + "probability": 0.9855 + }, + { + "start": 26981.26, + "end": 26983.32, + "probability": 0.9871 + }, + { + "start": 26983.48, + "end": 26989.34, + "probability": 0.9724 + }, + { + "start": 26990.3, + "end": 26991.9, + "probability": 0.9976 + }, + { + "start": 26992.08, + "end": 26996.32, + "probability": 0.9951 + }, + { + "start": 26996.38, + "end": 26997.84, + "probability": 0.9871 + }, + { + "start": 26998.44, + "end": 27001.5, + "probability": 0.9917 + }, + { + "start": 27001.5, + "end": 27004.9, + "probability": 0.9839 + }, + { + "start": 27005.3, + "end": 27008.34, + "probability": 0.9466 + }, + { + "start": 27008.76, + "end": 27012.2, + "probability": 0.9818 + }, + { + "start": 27013.14, + "end": 27016.9, + "probability": 0.9931 + }, + { + "start": 27017.28, + "end": 27021.4, + "probability": 0.9982 + }, + { + "start": 27021.92, + "end": 27023.52, + "probability": 0.8665 + }, + { + "start": 27023.6, + "end": 27025.06, + "probability": 0.8005 + }, + { + "start": 27025.26, + "end": 27026.98, + "probability": 0.9814 + }, + { + "start": 27027.18, + "end": 27028.96, + "probability": 0.7533 + }, + { + "start": 27029.52, + "end": 27031.86, + "probability": 0.97 + }, + { + "start": 27032.1, + "end": 27033.5, + "probability": 0.9787 + }, + { + "start": 27033.78, + "end": 27037.12, + "probability": 0.8344 + }, + { + "start": 27037.54, + "end": 27043.08, + "probability": 0.9741 + }, + { + "start": 27043.58, + "end": 27047.46, + "probability": 0.9971 + }, + { + "start": 27047.8, + "end": 27050.4, + "probability": 0.9804 + }, + { + "start": 27050.4, + "end": 27054.72, + "probability": 0.9958 + }, + { + "start": 27055.34, + "end": 27059.7, + "probability": 0.9823 + }, + { + "start": 27059.9, + "end": 27060.74, + "probability": 0.8623 + }, + { + "start": 27060.9, + "end": 27063.1, + "probability": 0.9541 + }, + { + "start": 27063.58, + "end": 27064.78, + "probability": 0.9957 + }, + { + "start": 27065.0, + "end": 27068.46, + "probability": 0.9978 + }, + { + "start": 27068.92, + "end": 27071.34, + "probability": 0.9175 + }, + { + "start": 27071.66, + "end": 27073.24, + "probability": 0.9194 + }, + { + "start": 27073.82, + "end": 27077.0, + "probability": 0.9946 + }, + { + "start": 27077.52, + "end": 27079.84, + "probability": 0.9897 + }, + { + "start": 27080.7, + "end": 27083.74, + "probability": 0.9825 + }, + { + "start": 27083.74, + "end": 27087.42, + "probability": 0.9987 + }, + { + "start": 27087.76, + "end": 27091.86, + "probability": 0.9971 + }, + { + "start": 27092.46, + "end": 27096.72, + "probability": 0.9983 + }, + { + "start": 27096.72, + "end": 27101.88, + "probability": 0.9995 + }, + { + "start": 27102.4, + "end": 27105.86, + "probability": 0.9986 + }, + { + "start": 27106.22, + "end": 27109.32, + "probability": 0.9899 + }, + { + "start": 27109.32, + "end": 27113.08, + "probability": 0.999 + }, + { + "start": 27113.66, + "end": 27116.6, + "probability": 0.9851 + }, + { + "start": 27116.6, + "end": 27120.08, + "probability": 0.9666 + }, + { + "start": 27120.72, + "end": 27121.49, + "probability": 0.4738 + }, + { + "start": 27122.7, + "end": 27124.58, + "probability": 0.5245 + }, + { + "start": 27124.86, + "end": 27128.92, + "probability": 0.6194 + }, + { + "start": 27130.0, + "end": 27132.64, + "probability": 0.6855 + }, + { + "start": 27133.18, + "end": 27135.48, + "probability": 0.9963 + }, + { + "start": 27135.48, + "end": 27138.04, + "probability": 0.9969 + }, + { + "start": 27138.56, + "end": 27142.06, + "probability": 0.9413 + }, + { + "start": 27142.06, + "end": 27149.94, + "probability": 0.9865 + }, + { + "start": 27150.44, + "end": 27153.34, + "probability": 0.991 + }, + { + "start": 27154.26, + "end": 27154.48, + "probability": 0.9751 + }, + { + "start": 27158.32, + "end": 27161.64, + "probability": 0.998 + }, + { + "start": 27161.8, + "end": 27162.8, + "probability": 0.8549 + }, + { + "start": 27163.46, + "end": 27165.26, + "probability": 0.7905 + }, + { + "start": 27165.46, + "end": 27168.14, + "probability": 0.9517 + }, + { + "start": 27168.18, + "end": 27170.66, + "probability": 0.9981 + }, + { + "start": 27170.94, + "end": 27175.38, + "probability": 0.9763 + }, + { + "start": 27175.42, + "end": 27176.46, + "probability": 0.6667 + }, + { + "start": 27176.84, + "end": 27180.68, + "probability": 0.9944 + }, + { + "start": 27181.26, + "end": 27183.24, + "probability": 0.9929 + }, + { + "start": 27183.4, + "end": 27184.04, + "probability": 0.7966 + }, + { + "start": 27184.22, + "end": 27185.12, + "probability": 0.8736 + }, + { + "start": 27185.34, + "end": 27188.38, + "probability": 0.9793 + }, + { + "start": 27188.86, + "end": 27193.22, + "probability": 0.9912 + }, + { + "start": 27193.68, + "end": 27196.86, + "probability": 0.9894 + }, + { + "start": 27196.9, + "end": 27198.02, + "probability": 0.9147 + }, + { + "start": 27198.48, + "end": 27204.3, + "probability": 0.9896 + }, + { + "start": 27204.34, + "end": 27205.7, + "probability": 0.9899 + }, + { + "start": 27205.9, + "end": 27207.5, + "probability": 0.8969 + }, + { + "start": 27207.64, + "end": 27208.76, + "probability": 0.9757 + }, + { + "start": 27209.22, + "end": 27212.46, + "probability": 0.6483 + }, + { + "start": 27212.88, + "end": 27213.28, + "probability": 0.8064 + }, + { + "start": 27213.38, + "end": 27215.04, + "probability": 0.91 + }, + { + "start": 27215.5, + "end": 27216.98, + "probability": 0.7799 + }, + { + "start": 27217.24, + "end": 27220.42, + "probability": 0.9927 + }, + { + "start": 27220.42, + "end": 27225.46, + "probability": 0.9723 + }, + { + "start": 27225.82, + "end": 27228.14, + "probability": 0.7213 + }, + { + "start": 27228.64, + "end": 27230.28, + "probability": 0.9906 + }, + { + "start": 27230.36, + "end": 27234.34, + "probability": 0.9917 + }, + { + "start": 27235.28, + "end": 27238.04, + "probability": 0.8064 + }, + { + "start": 27238.68, + "end": 27241.36, + "probability": 0.9957 + }, + { + "start": 27241.36, + "end": 27244.72, + "probability": 0.9917 + }, + { + "start": 27245.28, + "end": 27247.6, + "probability": 0.9961 + }, + { + "start": 27247.6, + "end": 27251.94, + "probability": 0.9994 + }, + { + "start": 27252.06, + "end": 27255.6, + "probability": 0.9987 + }, + { + "start": 27256.2, + "end": 27256.58, + "probability": 0.7176 + }, + { + "start": 27256.72, + "end": 27259.6, + "probability": 0.9914 + }, + { + "start": 27260.22, + "end": 27263.92, + "probability": 0.9652 + }, + { + "start": 27264.06, + "end": 27265.72, + "probability": 0.9277 + }, + { + "start": 27266.18, + "end": 27270.52, + "probability": 0.9292 + }, + { + "start": 27270.68, + "end": 27272.4, + "probability": 0.9465 + }, + { + "start": 27272.66, + "end": 27273.1, + "probability": 0.7458 + }, + { + "start": 27273.12, + "end": 27276.64, + "probability": 0.8644 + }, + { + "start": 27276.7, + "end": 27279.22, + "probability": 0.9926 + }, + { + "start": 27279.36, + "end": 27282.04, + "probability": 0.9719 + }, + { + "start": 27282.32, + "end": 27284.94, + "probability": 0.9982 + }, + { + "start": 27285.4, + "end": 27287.4, + "probability": 0.9961 + }, + { + "start": 27287.4, + "end": 27289.72, + "probability": 0.9734 + }, + { + "start": 27290.58, + "end": 27291.2, + "probability": 0.8352 + }, + { + "start": 27291.32, + "end": 27294.84, + "probability": 0.9814 + }, + { + "start": 27295.3, + "end": 27298.12, + "probability": 0.9467 + }, + { + "start": 27298.18, + "end": 27298.84, + "probability": 0.8359 + }, + { + "start": 27298.96, + "end": 27299.34, + "probability": 0.9306 + }, + { + "start": 27299.48, + "end": 27300.28, + "probability": 0.7646 + }, + { + "start": 27300.38, + "end": 27301.2, + "probability": 0.89 + }, + { + "start": 27301.72, + "end": 27306.58, + "probability": 0.9899 + }, + { + "start": 27306.94, + "end": 27310.62, + "probability": 0.9952 + }, + { + "start": 27311.18, + "end": 27311.72, + "probability": 0.4944 + }, + { + "start": 27312.22, + "end": 27315.4, + "probability": 0.9739 + }, + { + "start": 27315.9, + "end": 27318.32, + "probability": 0.9158 + }, + { + "start": 27318.32, + "end": 27322.08, + "probability": 0.9928 + }, + { + "start": 27322.52, + "end": 27326.04, + "probability": 0.9901 + }, + { + "start": 27326.1, + "end": 27329.48, + "probability": 0.991 + }, + { + "start": 27330.06, + "end": 27332.24, + "probability": 0.9865 + }, + { + "start": 27332.24, + "end": 27334.62, + "probability": 0.9995 + }, + { + "start": 27335.04, + "end": 27337.98, + "probability": 0.9965 + }, + { + "start": 27337.98, + "end": 27342.68, + "probability": 0.9868 + }, + { + "start": 27343.4, + "end": 27344.78, + "probability": 0.9011 + }, + { + "start": 27344.8, + "end": 27346.04, + "probability": 0.9959 + }, + { + "start": 27346.16, + "end": 27348.86, + "probability": 0.9962 + }, + { + "start": 27349.36, + "end": 27351.92, + "probability": 0.9843 + }, + { + "start": 27352.34, + "end": 27353.64, + "probability": 0.9733 + }, + { + "start": 27353.84, + "end": 27356.1, + "probability": 0.9565 + }, + { + "start": 27356.66, + "end": 27360.68, + "probability": 0.9879 + }, + { + "start": 27360.8, + "end": 27361.8, + "probability": 0.9824 + }, + { + "start": 27361.96, + "end": 27364.12, + "probability": 0.9476 + }, + { + "start": 27364.62, + "end": 27366.7, + "probability": 0.998 + }, + { + "start": 27367.02, + "end": 27370.66, + "probability": 0.9894 + }, + { + "start": 27371.2, + "end": 27373.04, + "probability": 0.996 + }, + { + "start": 27373.26, + "end": 27374.24, + "probability": 0.8736 + }, + { + "start": 27374.48, + "end": 27376.26, + "probability": 0.9454 + }, + { + "start": 27376.42, + "end": 27380.56, + "probability": 0.9934 + }, + { + "start": 27380.9, + "end": 27381.87, + "probability": 0.9655 + }, + { + "start": 27382.2, + "end": 27382.68, + "probability": 0.9804 + }, + { + "start": 27382.74, + "end": 27383.56, + "probability": 0.7367 + }, + { + "start": 27383.82, + "end": 27386.44, + "probability": 0.9807 + }, + { + "start": 27387.02, + "end": 27387.24, + "probability": 0.9163 + }, + { + "start": 27387.62, + "end": 27389.66, + "probability": 0.854 + }, + { + "start": 27390.0, + "end": 27391.06, + "probability": 0.9738 + }, + { + "start": 27391.14, + "end": 27392.04, + "probability": 0.9862 + }, + { + "start": 27392.68, + "end": 27395.55, + "probability": 0.9991 + }, + { + "start": 27395.94, + "end": 27400.4, + "probability": 0.9873 + }, + { + "start": 27400.92, + "end": 27404.52, + "probability": 0.9712 + }, + { + "start": 27404.52, + "end": 27408.46, + "probability": 0.999 + }, + { + "start": 27408.48, + "end": 27411.04, + "probability": 0.7579 + }, + { + "start": 27411.44, + "end": 27416.48, + "probability": 0.9941 + }, + { + "start": 27417.1, + "end": 27417.98, + "probability": 0.7751 + }, + { + "start": 27418.6, + "end": 27419.48, + "probability": 0.9828 + }, + { + "start": 27419.7, + "end": 27423.62, + "probability": 0.9817 + }, + { + "start": 27423.72, + "end": 27424.6, + "probability": 0.7181 + }, + { + "start": 27425.1, + "end": 27425.86, + "probability": 0.7559 + }, + { + "start": 27426.15, + "end": 27427.14, + "probability": 0.1089 + }, + { + "start": 27427.3, + "end": 27427.44, + "probability": 0.2088 + }, + { + "start": 27427.62, + "end": 27429.18, + "probability": 0.5276 + }, + { + "start": 27429.53, + "end": 27430.2, + "probability": 0.0502 + }, + { + "start": 27430.94, + "end": 27431.1, + "probability": 0.092 + }, + { + "start": 27431.1, + "end": 27432.38, + "probability": 0.5143 + }, + { + "start": 27432.58, + "end": 27435.96, + "probability": 0.7838 + }, + { + "start": 27436.2, + "end": 27437.26, + "probability": 0.0486 + }, + { + "start": 27437.62, + "end": 27438.34, + "probability": 0.2949 + }, + { + "start": 27438.54, + "end": 27439.5, + "probability": 0.4932 + }, + { + "start": 27439.68, + "end": 27439.78, + "probability": 0.2842 + }, + { + "start": 27439.78, + "end": 27443.64, + "probability": 0.863 + }, + { + "start": 27443.82, + "end": 27443.96, + "probability": 0.3792 + }, + { + "start": 27444.22, + "end": 27446.66, + "probability": 0.4938 + }, + { + "start": 27446.78, + "end": 27447.74, + "probability": 0.2573 + }, + { + "start": 27448.0, + "end": 27452.96, + "probability": 0.7461 + }, + { + "start": 27453.5, + "end": 27456.16, + "probability": 0.9985 + }, + { + "start": 27456.16, + "end": 27459.92, + "probability": 0.9955 + }, + { + "start": 27460.02, + "end": 27460.72, + "probability": 0.7542 + }, + { + "start": 27473.98, + "end": 27479.68, + "probability": 0.3755 + }, + { + "start": 27479.72, + "end": 27484.9, + "probability": 0.7518 + }, + { + "start": 27485.64, + "end": 27485.88, + "probability": 0.6627 + }, + { + "start": 27486.02, + "end": 27489.2, + "probability": 0.9692 + }, + { + "start": 27489.26, + "end": 27495.8, + "probability": 0.9575 + }, + { + "start": 27496.0, + "end": 27498.7, + "probability": 0.7989 + }, + { + "start": 27498.84, + "end": 27500.78, + "probability": 0.9482 + }, + { + "start": 27500.86, + "end": 27502.44, + "probability": 0.9495 + }, + { + "start": 27502.58, + "end": 27505.22, + "probability": 0.9908 + }, + { + "start": 27505.6, + "end": 27508.2, + "probability": 0.6279 + }, + { + "start": 27508.36, + "end": 27508.68, + "probability": 0.7443 + }, + { + "start": 27508.82, + "end": 27514.14, + "probability": 0.8445 + }, + { + "start": 27516.61, + "end": 27519.4, + "probability": 0.8506 + }, + { + "start": 27519.54, + "end": 27521.86, + "probability": 0.9897 + }, + { + "start": 27522.23, + "end": 27523.7, + "probability": 0.0325 + }, + { + "start": 27523.84, + "end": 27524.42, + "probability": 0.2055 + }, + { + "start": 27524.56, + "end": 27525.9, + "probability": 0.9968 + }, + { + "start": 27526.14, + "end": 27529.18, + "probability": 0.9773 + }, + { + "start": 27530.68, + "end": 27530.68, + "probability": 0.1466 + }, + { + "start": 27530.68, + "end": 27532.51, + "probability": 0.9285 + }, + { + "start": 27532.92, + "end": 27533.08, + "probability": 0.5412 + }, + { + "start": 27533.16, + "end": 27535.56, + "probability": 0.946 + }, + { + "start": 27535.56, + "end": 27540.74, + "probability": 0.9888 + }, + { + "start": 27540.74, + "end": 27542.36, + "probability": 0.0238 + }, + { + "start": 27542.42, + "end": 27546.94, + "probability": 0.7682 + }, + { + "start": 27547.32, + "end": 27548.1, + "probability": 0.8285 + }, + { + "start": 27548.14, + "end": 27549.38, + "probability": 0.7354 + }, + { + "start": 27549.52, + "end": 27549.68, + "probability": 0.3401 + }, + { + "start": 27549.68, + "end": 27550.86, + "probability": 0.797 + }, + { + "start": 27551.04, + "end": 27551.52, + "probability": 0.8282 + }, + { + "start": 27552.3, + "end": 27553.44, + "probability": 0.7802 + }, + { + "start": 27553.66, + "end": 27554.26, + "probability": 0.0725 + }, + { + "start": 27554.26, + "end": 27555.38, + "probability": 0.8729 + }, + { + "start": 27555.56, + "end": 27559.78, + "probability": 0.9725 + }, + { + "start": 27559.78, + "end": 27563.14, + "probability": 0.981 + }, + { + "start": 27563.18, + "end": 27565.34, + "probability": 0.9902 + }, + { + "start": 27565.4, + "end": 27566.8, + "probability": 0.9494 + }, + { + "start": 27567.64, + "end": 27571.82, + "probability": 0.9626 + }, + { + "start": 27571.94, + "end": 27573.6, + "probability": 0.93 + }, + { + "start": 27573.86, + "end": 27575.44, + "probability": 0.9506 + }, + { + "start": 27575.54, + "end": 27575.98, + "probability": 0.3895 + }, + { + "start": 27576.08, + "end": 27576.29, + "probability": 0.5065 + }, + { + "start": 27577.88, + "end": 27579.06, + "probability": 0.7826 + }, + { + "start": 27579.14, + "end": 27581.68, + "probability": 0.8726 + }, + { + "start": 27581.68, + "end": 27581.74, + "probability": 0.5568 + }, + { + "start": 27581.76, + "end": 27587.94, + "probability": 0.8771 + }, + { + "start": 27588.04, + "end": 27590.88, + "probability": 0.9625 + }, + { + "start": 27591.55, + "end": 27594.14, + "probability": 0.4534 + }, + { + "start": 27595.14, + "end": 27599.32, + "probability": 0.9541 + }, + { + "start": 27599.36, + "end": 27600.53, + "probability": 0.9985 + }, + { + "start": 27601.16, + "end": 27602.68, + "probability": 0.6261 + }, + { + "start": 27602.98, + "end": 27603.62, + "probability": 0.9024 + }, + { + "start": 27603.68, + "end": 27604.06, + "probability": 0.9621 + }, + { + "start": 27604.26, + "end": 27607.5, + "probability": 0.938 + }, + { + "start": 27607.5, + "end": 27612.62, + "probability": 0.9882 + }, + { + "start": 27612.8, + "end": 27613.46, + "probability": 0.9749 + }, + { + "start": 27613.58, + "end": 27614.14, + "probability": 0.6064 + }, + { + "start": 27614.2, + "end": 27617.72, + "probability": 0.9062 + }, + { + "start": 27619.64, + "end": 27620.08, + "probability": 0.928 + }, + { + "start": 27620.24, + "end": 27627.14, + "probability": 0.9976 + }, + { + "start": 27627.22, + "end": 27628.72, + "probability": 0.9592 + }, + { + "start": 27629.42, + "end": 27631.2, + "probability": 0.9926 + }, + { + "start": 27635.84, + "end": 27639.54, + "probability": 0.9712 + }, + { + "start": 27639.6, + "end": 27642.14, + "probability": 0.8808 + }, + { + "start": 27642.14, + "end": 27644.36, + "probability": 0.9683 + }, + { + "start": 27644.5, + "end": 27647.86, + "probability": 0.9897 + }, + { + "start": 27647.86, + "end": 27651.82, + "probability": 0.9908 + }, + { + "start": 27651.84, + "end": 27653.3, + "probability": 0.5853 + }, + { + "start": 27653.76, + "end": 27654.18, + "probability": 0.788 + }, + { + "start": 27654.36, + "end": 27656.0, + "probability": 0.8359 + }, + { + "start": 27656.16, + "end": 27658.14, + "probability": 0.9979 + }, + { + "start": 27658.14, + "end": 27665.7, + "probability": 0.9878 + }, + { + "start": 27666.1, + "end": 27669.52, + "probability": 0.9834 + }, + { + "start": 27669.52, + "end": 27672.54, + "probability": 0.8281 + }, + { + "start": 27672.54, + "end": 27677.9, + "probability": 0.9688 + }, + { + "start": 27678.06, + "end": 27679.62, + "probability": 0.4069 + }, + { + "start": 27679.7, + "end": 27681.84, + "probability": 0.9976 + }, + { + "start": 27682.56, + "end": 27686.44, + "probability": 0.986 + }, + { + "start": 27686.44, + "end": 27690.48, + "probability": 0.9994 + }, + { + "start": 27690.68, + "end": 27691.62, + "probability": 0.9612 + }, + { + "start": 27691.76, + "end": 27694.18, + "probability": 0.9989 + }, + { + "start": 27695.34, + "end": 27703.46, + "probability": 0.9949 + }, + { + "start": 27703.46, + "end": 27709.8, + "probability": 0.9957 + }, + { + "start": 27712.4, + "end": 27713.62, + "probability": 0.3962 + }, + { + "start": 27713.64, + "end": 27713.92, + "probability": 0.3302 + }, + { + "start": 27714.06, + "end": 27714.18, + "probability": 0.0312 + }, + { + "start": 27714.18, + "end": 27715.44, + "probability": 0.846 + }, + { + "start": 27715.44, + "end": 27716.12, + "probability": 0.3254 + }, + { + "start": 27717.5, + "end": 27717.66, + "probability": 0.1376 + }, + { + "start": 27717.72, + "end": 27718.24, + "probability": 0.1895 + }, + { + "start": 27718.26, + "end": 27718.44, + "probability": 0.1831 + }, + { + "start": 27718.52, + "end": 27719.28, + "probability": 0.6189 + }, + { + "start": 27719.38, + "end": 27721.22, + "probability": 0.3215 + }, + { + "start": 27721.22, + "end": 27722.32, + "probability": 0.4244 + }, + { + "start": 27722.48, + "end": 27722.94, + "probability": 0.611 + }, + { + "start": 27723.92, + "end": 27723.96, + "probability": 0.0796 + }, + { + "start": 27723.96, + "end": 27729.84, + "probability": 0.7497 + }, + { + "start": 27729.9, + "end": 27732.52, + "probability": 0.7346 + }, + { + "start": 27733.15, + "end": 27735.12, + "probability": 0.707 + }, + { + "start": 27735.24, + "end": 27735.92, + "probability": 0.8895 + }, + { + "start": 27736.16, + "end": 27737.73, + "probability": 0.6787 + }, + { + "start": 27737.98, + "end": 27741.33, + "probability": 0.9885 + }, + { + "start": 27742.12, + "end": 27744.1, + "probability": 0.993 + }, + { + "start": 27744.46, + "end": 27746.48, + "probability": 0.8854 + }, + { + "start": 27746.56, + "end": 27748.44, + "probability": 0.7133 + }, + { + "start": 27749.36, + "end": 27751.7, + "probability": 0.0924 + }, + { + "start": 27751.7, + "end": 27753.37, + "probability": 0.8101 + }, + { + "start": 27753.5, + "end": 27754.14, + "probability": 0.8019 + }, + { + "start": 27754.24, + "end": 27755.62, + "probability": 0.7312 + }, + { + "start": 27755.7, + "end": 27757.4, + "probability": 0.9707 + }, + { + "start": 27757.52, + "end": 27759.58, + "probability": 0.5586 + }, + { + "start": 27759.68, + "end": 27760.48, + "probability": 0.1369 + }, + { + "start": 27760.48, + "end": 27760.72, + "probability": 0.0021 + }, + { + "start": 27760.72, + "end": 27761.38, + "probability": 0.6412 + }, + { + "start": 27761.52, + "end": 27765.96, + "probability": 0.6155 + }, + { + "start": 27765.96, + "end": 27769.22, + "probability": 0.9958 + }, + { + "start": 27769.42, + "end": 27774.46, + "probability": 0.998 + }, + { + "start": 27774.9, + "end": 27775.92, + "probability": 0.8007 + }, + { + "start": 27775.94, + "end": 27777.54, + "probability": 0.7339 + }, + { + "start": 27778.0, + "end": 27782.22, + "probability": 0.9956 + }, + { + "start": 27782.32, + "end": 27784.8, + "probability": 0.996 + }, + { + "start": 27784.86, + "end": 27787.74, + "probability": 0.9927 + }, + { + "start": 27787.74, + "end": 27791.7, + "probability": 0.9946 + }, + { + "start": 27791.74, + "end": 27792.18, + "probability": 0.6111 + }, + { + "start": 27792.5, + "end": 27793.64, + "probability": 0.7574 + }, + { + "start": 27793.76, + "end": 27797.26, + "probability": 0.9574 + }, + { + "start": 27797.3, + "end": 27799.54, + "probability": 0.9732 + }, + { + "start": 27800.28, + "end": 27802.06, + "probability": 0.8214 + }, + { + "start": 27802.28, + "end": 27807.34, + "probability": 0.9706 + }, + { + "start": 27807.5, + "end": 27812.08, + "probability": 0.713 + }, + { + "start": 27812.44, + "end": 27814.78, + "probability": 0.9658 + }, + { + "start": 27815.3, + "end": 27815.76, + "probability": 0.8231 + }, + { + "start": 27815.82, + "end": 27816.66, + "probability": 0.7875 + }, + { + "start": 27816.8, + "end": 27818.52, + "probability": 0.958 + }, + { + "start": 27818.82, + "end": 27822.2, + "probability": 0.9608 + }, + { + "start": 27822.2, + "end": 27824.72, + "probability": 0.8687 + }, + { + "start": 27824.8, + "end": 27829.2, + "probability": 0.9929 + }, + { + "start": 27829.36, + "end": 27830.4, + "probability": 0.955 + }, + { + "start": 27830.4, + "end": 27835.34, + "probability": 0.8323 + }, + { + "start": 27835.34, + "end": 27838.4, + "probability": 0.9995 + }, + { + "start": 27838.7, + "end": 27842.38, + "probability": 0.9964 + }, + { + "start": 27842.38, + "end": 27847.36, + "probability": 0.9708 + }, + { + "start": 27847.76, + "end": 27848.22, + "probability": 0.44 + }, + { + "start": 27848.26, + "end": 27849.04, + "probability": 0.7791 + }, + { + "start": 27849.6, + "end": 27850.26, + "probability": 0.0631 + }, + { + "start": 27850.48, + "end": 27857.78, + "probability": 0.2476 + }, + { + "start": 27857.9, + "end": 27859.56, + "probability": 0.628 + }, + { + "start": 27859.56, + "end": 27860.82, + "probability": 0.9895 + }, + { + "start": 27861.0, + "end": 27861.58, + "probability": 0.4609 + }, + { + "start": 27861.58, + "end": 27862.62, + "probability": 0.9462 + }, + { + "start": 27863.64, + "end": 27867.38, + "probability": 0.7933 + }, + { + "start": 27867.84, + "end": 27870.62, + "probability": 0.6241 + }, + { + "start": 27870.86, + "end": 27873.3, + "probability": 0.9023 + }, + { + "start": 27873.38, + "end": 27873.98, + "probability": 0.4078 + }, + { + "start": 27873.98, + "end": 27874.66, + "probability": 0.7182 + }, + { + "start": 27874.86, + "end": 27877.62, + "probability": 0.9282 + }, + { + "start": 27877.96, + "end": 27883.32, + "probability": 0.9953 + }, + { + "start": 27883.38, + "end": 27884.42, + "probability": 0.5949 + }, + { + "start": 27885.2, + "end": 27888.28, + "probability": 0.9304 + }, + { + "start": 27888.44, + "end": 27889.28, + "probability": 0.9486 + }, + { + "start": 27889.38, + "end": 27890.18, + "probability": 0.7891 + }, + { + "start": 27890.44, + "end": 27892.12, + "probability": 0.8995 + }, + { + "start": 27892.88, + "end": 27897.54, + "probability": 0.8911 + }, + { + "start": 27898.41, + "end": 27901.48, + "probability": 0.9712 + }, + { + "start": 27901.72, + "end": 27905.44, + "probability": 0.8406 + }, + { + "start": 27905.72, + "end": 27909.34, + "probability": 0.7817 + }, + { + "start": 27909.34, + "end": 27915.18, + "probability": 0.9375 + }, + { + "start": 27915.62, + "end": 27917.6, + "probability": 0.7485 + }, + { + "start": 27917.9, + "end": 27919.4, + "probability": 0.908 + }, + { + "start": 27919.48, + "end": 27920.11, + "probability": 0.8969 + }, + { + "start": 27920.62, + "end": 27922.68, + "probability": 0.9907 + }, + { + "start": 27922.88, + "end": 27924.44, + "probability": 0.9504 + }, + { + "start": 27925.42, + "end": 27930.96, + "probability": 0.721 + }, + { + "start": 27931.64, + "end": 27934.6, + "probability": 0.998 + }, + { + "start": 27935.22, + "end": 27936.12, + "probability": 0.432 + }, + { + "start": 27936.38, + "end": 27938.44, + "probability": 0.9579 + }, + { + "start": 27938.92, + "end": 27941.6, + "probability": 0.9227 + }, + { + "start": 27942.32, + "end": 27945.74, + "probability": 0.9644 + }, + { + "start": 27945.84, + "end": 27949.18, + "probability": 0.8529 + }, + { + "start": 27949.18, + "end": 27952.38, + "probability": 0.9849 + }, + { + "start": 27952.38, + "end": 27955.18, + "probability": 0.9921 + }, + { + "start": 27955.38, + "end": 27956.36, + "probability": 0.9721 + }, + { + "start": 27956.54, + "end": 27957.46, + "probability": 0.4612 + }, + { + "start": 27958.08, + "end": 27960.58, + "probability": 0.9958 + }, + { + "start": 27960.77, + "end": 27962.94, + "probability": 0.8592 + }, + { + "start": 27963.04, + "end": 27965.86, + "probability": 0.8457 + }, + { + "start": 27965.94, + "end": 27969.66, + "probability": 0.7206 + }, + { + "start": 27969.66, + "end": 27969.73, + "probability": 0.0376 + }, + { + "start": 27970.14, + "end": 27971.64, + "probability": 0.2463 + }, + { + "start": 27971.82, + "end": 27974.5, + "probability": 0.9944 + }, + { + "start": 27974.5, + "end": 27977.02, + "probability": 0.9903 + }, + { + "start": 27977.36, + "end": 27978.22, + "probability": 0.7761 + }, + { + "start": 27978.26, + "end": 27979.22, + "probability": 0.6624 + }, + { + "start": 27979.38, + "end": 27982.24, + "probability": 0.9739 + }, + { + "start": 27982.48, + "end": 27983.26, + "probability": 0.5347 + }, + { + "start": 27983.36, + "end": 27986.16, + "probability": 0.9903 + }, + { + "start": 27986.16, + "end": 27986.44, + "probability": 0.5461 + }, + { + "start": 27986.44, + "end": 27989.16, + "probability": 0.0788 + }, + { + "start": 27989.16, + "end": 27989.16, + "probability": 0.0462 + }, + { + "start": 27989.16, + "end": 27991.51, + "probability": 0.5448 + }, + { + "start": 27992.62, + "end": 27997.66, + "probability": 0.947 + }, + { + "start": 27998.22, + "end": 27999.42, + "probability": 0.2698 + }, + { + "start": 27999.86, + "end": 28001.78, + "probability": 0.9852 + }, + { + "start": 28002.38, + "end": 28005.92, + "probability": 0.9933 + }, + { + "start": 28006.36, + "end": 28009.32, + "probability": 0.813 + }, + { + "start": 28010.08, + "end": 28011.54, + "probability": 0.9474 + }, + { + "start": 28011.64, + "end": 28012.98, + "probability": 0.8395 + }, + { + "start": 28013.06, + "end": 28017.64, + "probability": 0.9817 + }, + { + "start": 28017.74, + "end": 28018.32, + "probability": 0.7928 + }, + { + "start": 28018.38, + "end": 28019.58, + "probability": 0.7165 + }, + { + "start": 28019.94, + "end": 28023.82, + "probability": 0.9938 + }, + { + "start": 28023.96, + "end": 28025.74, + "probability": 0.6447 + }, + { + "start": 28026.8, + "end": 28028.28, + "probability": 0.7106 + }, + { + "start": 28028.38, + "end": 28028.84, + "probability": 0.7385 + }, + { + "start": 28028.9, + "end": 28031.36, + "probability": 0.9946 + }, + { + "start": 28031.36, + "end": 28034.78, + "probability": 0.9932 + }, + { + "start": 28034.98, + "end": 28034.98, + "probability": 0.3557 + }, + { + "start": 28035.18, + "end": 28035.76, + "probability": 0.7201 + }, + { + "start": 28035.86, + "end": 28038.84, + "probability": 0.6718 + }, + { + "start": 28039.42, + "end": 28041.24, + "probability": 0.3109 + }, + { + "start": 28041.86, + "end": 28046.0, + "probability": 0.9844 + }, + { + "start": 28046.36, + "end": 28046.72, + "probability": 0.6139 + }, + { + "start": 28046.72, + "end": 28051.36, + "probability": 0.8549 + }, + { + "start": 28051.8, + "end": 28053.3, + "probability": 0.9608 + }, + { + "start": 28053.68, + "end": 28055.46, + "probability": 0.9055 + }, + { + "start": 28055.56, + "end": 28056.28, + "probability": 0.3933 + }, + { + "start": 28056.82, + "end": 28056.96, + "probability": 0.0028 + }, + { + "start": 28058.08, + "end": 28058.22, + "probability": 0.7458 + }, + { + "start": 28058.54, + "end": 28059.06, + "probability": 0.51 + }, + { + "start": 28059.14, + "end": 28062.66, + "probability": 0.926 + }, + { + "start": 28063.1, + "end": 28066.04, + "probability": 0.9946 + }, + { + "start": 28066.04, + "end": 28069.0, + "probability": 0.7852 + }, + { + "start": 28069.18, + "end": 28070.94, + "probability": 0.7488 + }, + { + "start": 28071.12, + "end": 28072.88, + "probability": 0.8097 + }, + { + "start": 28073.06, + "end": 28074.26, + "probability": 0.6268 + }, + { + "start": 28074.28, + "end": 28075.92, + "probability": 0.644 + }, + { + "start": 28076.06, + "end": 28077.72, + "probability": 0.579 + }, + { + "start": 28077.9, + "end": 28080.17, + "probability": 0.9805 + }, + { + "start": 28080.37, + "end": 28081.32, + "probability": 0.675 + }, + { + "start": 28081.47, + "end": 28084.63, + "probability": 0.9949 + }, + { + "start": 28085.5, + "end": 28087.65, + "probability": 0.6759 + }, + { + "start": 28087.77, + "end": 28088.51, + "probability": 0.7093 + }, + { + "start": 28088.55, + "end": 28088.71, + "probability": 0.5575 + }, + { + "start": 28089.19, + "end": 28092.03, + "probability": 0.9755 + }, + { + "start": 28092.17, + "end": 28092.41, + "probability": 0.8179 + }, + { + "start": 28093.13, + "end": 28094.41, + "probability": 0.4856 + }, + { + "start": 28096.21, + "end": 28100.61, + "probability": 0.4545 + }, + { + "start": 28103.01, + "end": 28106.59, + "probability": 0.2049 + }, + { + "start": 28106.75, + "end": 28107.65, + "probability": 0.3779 + }, + { + "start": 28107.81, + "end": 28108.53, + "probability": 0.1234 + }, + { + "start": 28108.67, + "end": 28112.91, + "probability": 0.1387 + }, + { + "start": 28113.11, + "end": 28115.71, + "probability": 0.9962 + }, + { + "start": 28115.71, + "end": 28118.99, + "probability": 0.9094 + }, + { + "start": 28119.07, + "end": 28121.91, + "probability": 0.9902 + }, + { + "start": 28122.11, + "end": 28123.37, + "probability": 0.6458 + }, + { + "start": 28124.29, + "end": 28126.65, + "probability": 0.7817 + }, + { + "start": 28127.11, + "end": 28128.97, + "probability": 0.3858 + }, + { + "start": 28131.03, + "end": 28136.03, + "probability": 0.049 + }, + { + "start": 28232.0, + "end": 28232.0, + "probability": 0.0 + }, + { + "start": 28232.0, + "end": 28232.0, + "probability": 0.0 + }, + { + "start": 28232.0, + "end": 28232.0, + "probability": 0.0 + }, + { + "start": 28232.0, + "end": 28232.0, + "probability": 0.0 + }, + { + "start": 28232.0, + "end": 28232.0, + "probability": 0.0 + }, + { + "start": 28232.0, + "end": 28232.0, + "probability": 0.0 + }, + { + "start": 28232.0, + "end": 28232.0, + "probability": 0.0 + }, + { + "start": 28232.0, + "end": 28232.0, + "probability": 0.0 + }, + { + "start": 28232.0, + "end": 28232.0, + "probability": 0.0 + }, + { + "start": 28232.0, + "end": 28232.0, + "probability": 0.0 + }, + { + "start": 28232.0, + "end": 28232.0, + "probability": 0.0 + }, + { + "start": 28232.0, + "end": 28232.0, + "probability": 0.0 + }, + { + "start": 28232.0, + "end": 28232.0, + "probability": 0.0 + }, + { + "start": 28232.0, + "end": 28232.0, + "probability": 0.0 + }, + { + "start": 28232.0, + "end": 28232.0, + "probability": 0.0 + }, + { + "start": 28232.0, + "end": 28232.0, + "probability": 0.0 + }, + { + "start": 28232.0, + "end": 28232.0, + "probability": 0.0 + }, + { + "start": 28232.0, + "end": 28232.0, + "probability": 0.0 + }, + { + "start": 28232.0, + "end": 28232.0, + "probability": 0.0 + }, + { + "start": 28232.0, + "end": 28232.0, + "probability": 0.0 + }, + { + "start": 28232.0, + "end": 28232.0, + "probability": 0.0 + }, + { + "start": 28232.0, + "end": 28232.0, + "probability": 0.0 + }, + { + "start": 28232.0, + "end": 28232.0, + "probability": 0.0 + }, + { + "start": 28232.0, + "end": 28232.0, + "probability": 0.0 + }, + { + "start": 28232.0, + "end": 28232.0, + "probability": 0.0 + }, + { + "start": 28232.12, + "end": 28232.62, + "probability": 0.4065 + }, + { + "start": 28233.22, + "end": 28235.98, + "probability": 0.9926 + }, + { + "start": 28235.98, + "end": 28239.52, + "probability": 0.9948 + }, + { + "start": 28240.22, + "end": 28243.04, + "probability": 0.9546 + }, + { + "start": 28243.84, + "end": 28247.02, + "probability": 0.9869 + }, + { + "start": 28247.96, + "end": 28252.42, + "probability": 0.4822 + }, + { + "start": 28252.72, + "end": 28254.56, + "probability": 0.9339 + }, + { + "start": 28255.94, + "end": 28259.66, + "probability": 0.8632 + }, + { + "start": 28260.58, + "end": 28261.9, + "probability": 0.9688 + }, + { + "start": 28262.36, + "end": 28262.44, + "probability": 0.6196 + }, + { + "start": 28262.44, + "end": 28265.06, + "probability": 0.9917 + }, + { + "start": 28265.72, + "end": 28267.06, + "probability": 0.998 + }, + { + "start": 28267.7, + "end": 28269.09, + "probability": 0.9329 + }, + { + "start": 28269.46, + "end": 28270.52, + "probability": 0.657 + }, + { + "start": 28270.96, + "end": 28275.22, + "probability": 0.9716 + }, + { + "start": 28276.0, + "end": 28277.22, + "probability": 0.9723 + }, + { + "start": 28277.22, + "end": 28279.58, + "probability": 0.8213 + }, + { + "start": 28280.03, + "end": 28285.48, + "probability": 0.7004 + }, + { + "start": 28285.48, + "end": 28289.04, + "probability": 0.9997 + }, + { + "start": 28289.84, + "end": 28291.26, + "probability": 0.9558 + }, + { + "start": 28291.94, + "end": 28295.0, + "probability": 0.9129 + }, + { + "start": 28295.56, + "end": 28297.56, + "probability": 0.9766 + }, + { + "start": 28298.28, + "end": 28303.66, + "probability": 0.9958 + }, + { + "start": 28304.36, + "end": 28306.33, + "probability": 0.9861 + }, + { + "start": 28307.36, + "end": 28311.04, + "probability": 0.9806 + }, + { + "start": 28311.4, + "end": 28312.52, + "probability": 0.8322 + }, + { + "start": 28313.38, + "end": 28313.78, + "probability": 0.6739 + }, + { + "start": 28314.4, + "end": 28315.96, + "probability": 0.9707 + }, + { + "start": 28316.56, + "end": 28318.5, + "probability": 0.9741 + }, + { + "start": 28319.06, + "end": 28321.4, + "probability": 0.762 + }, + { + "start": 28321.72, + "end": 28322.26, + "probability": 0.9487 + }, + { + "start": 28323.12, + "end": 28324.82, + "probability": 0.9075 + }, + { + "start": 28325.44, + "end": 28326.34, + "probability": 0.9499 + }, + { + "start": 28326.68, + "end": 28328.0, + "probability": 0.9745 + }, + { + "start": 28328.5, + "end": 28330.08, + "probability": 0.8891 + }, + { + "start": 28330.56, + "end": 28332.84, + "probability": 0.9984 + }, + { + "start": 28333.6, + "end": 28338.62, + "probability": 0.998 + }, + { + "start": 28338.62, + "end": 28340.3, + "probability": 0.9255 + }, + { + "start": 28340.98, + "end": 28340.98, + "probability": 0.0752 + }, + { + "start": 28341.02, + "end": 28345.78, + "probability": 0.833 + }, + { + "start": 28345.78, + "end": 28348.3, + "probability": 0.9945 + }, + { + "start": 28348.76, + "end": 28353.06, + "probability": 0.992 + }, + { + "start": 28353.64, + "end": 28354.72, + "probability": 0.9434 + }, + { + "start": 28355.26, + "end": 28356.3, + "probability": 0.9739 + }, + { + "start": 28356.42, + "end": 28357.02, + "probability": 0.7995 + }, + { + "start": 28357.44, + "end": 28359.82, + "probability": 0.8939 + }, + { + "start": 28359.82, + "end": 28363.24, + "probability": 0.8729 + }, + { + "start": 28363.46, + "end": 28366.72, + "probability": 0.9946 + }, + { + "start": 28367.28, + "end": 28370.04, + "probability": 0.6896 + }, + { + "start": 28370.88, + "end": 28372.47, + "probability": 0.6316 + }, + { + "start": 28372.9, + "end": 28374.8, + "probability": 0.9942 + }, + { + "start": 28375.18, + "end": 28375.6, + "probability": 0.5791 + }, + { + "start": 28376.8, + "end": 28377.76, + "probability": 0.9941 + }, + { + "start": 28379.86, + "end": 28380.92, + "probability": 0.0424 + }, + { + "start": 28380.92, + "end": 28381.14, + "probability": 0.1483 + }, + { + "start": 28381.34, + "end": 28382.56, + "probability": 0.3121 + }, + { + "start": 28382.72, + "end": 28383.49, + "probability": 0.1533 + }, + { + "start": 28383.88, + "end": 28386.04, + "probability": 0.9831 + }, + { + "start": 28386.12, + "end": 28389.04, + "probability": 0.5629 + }, + { + "start": 28389.12, + "end": 28391.06, + "probability": 0.8713 + }, + { + "start": 28391.06, + "end": 28394.08, + "probability": 0.5024 + }, + { + "start": 28394.24, + "end": 28397.08, + "probability": 0.8439 + }, + { + "start": 28397.28, + "end": 28400.29, + "probability": 0.7507 + }, + { + "start": 28400.48, + "end": 28401.7, + "probability": 0.5336 + }, + { + "start": 28402.46, + "end": 28405.12, + "probability": 0.6796 + }, + { + "start": 28405.12, + "end": 28405.19, + "probability": 0.0864 + }, + { + "start": 28405.42, + "end": 28405.7, + "probability": 0.2442 + }, + { + "start": 28405.7, + "end": 28408.14, + "probability": 0.8398 + }, + { + "start": 28410.18, + "end": 28411.42, + "probability": 0.965 + }, + { + "start": 28411.54, + "end": 28413.48, + "probability": 0.9862 + }, + { + "start": 28414.0, + "end": 28414.34, + "probability": 0.388 + }, + { + "start": 28414.62, + "end": 28416.66, + "probability": 0.9905 + }, + { + "start": 28417.02, + "end": 28418.16, + "probability": 0.7622 + }, + { + "start": 28418.7, + "end": 28419.3, + "probability": 0.8857 + }, + { + "start": 28419.46, + "end": 28421.44, + "probability": 0.83 + }, + { + "start": 28421.52, + "end": 28422.98, + "probability": 0.8916 + }, + { + "start": 28423.48, + "end": 28423.99, + "probability": 0.9956 + }, + { + "start": 28424.5, + "end": 28427.64, + "probability": 0.986 + }, + { + "start": 28428.08, + "end": 28429.56, + "probability": 0.9993 + }, + { + "start": 28429.94, + "end": 28430.92, + "probability": 0.9786 + }, + { + "start": 28431.08, + "end": 28432.64, + "probability": 0.9626 + }, + { + "start": 28432.98, + "end": 28435.96, + "probability": 0.9909 + }, + { + "start": 28436.48, + "end": 28437.64, + "probability": 0.9048 + }, + { + "start": 28438.24, + "end": 28438.86, + "probability": 0.9448 + }, + { + "start": 28439.56, + "end": 28442.0, + "probability": 0.993 + }, + { + "start": 28442.3, + "end": 28445.3, + "probability": 0.0502 + }, + { + "start": 28445.3, + "end": 28447.12, + "probability": 0.0253 + }, + { + "start": 28448.16, + "end": 28448.66, + "probability": 0.0323 + }, + { + "start": 28448.66, + "end": 28448.66, + "probability": 0.1271 + }, + { + "start": 28448.66, + "end": 28448.66, + "probability": 0.1345 + }, + { + "start": 28448.66, + "end": 28451.08, + "probability": 0.7871 + }, + { + "start": 28451.54, + "end": 28453.4, + "probability": 0.7776 + }, + { + "start": 28453.92, + "end": 28456.84, + "probability": 0.994 + }, + { + "start": 28456.98, + "end": 28461.48, + "probability": 0.9639 + }, + { + "start": 28461.78, + "end": 28461.8, + "probability": 0.0451 + }, + { + "start": 28461.8, + "end": 28461.8, + "probability": 0.4039 + }, + { + "start": 28461.8, + "end": 28463.31, + "probability": 0.868 + }, + { + "start": 28464.02, + "end": 28468.38, + "probability": 0.998 + }, + { + "start": 28468.38, + "end": 28471.6, + "probability": 0.998 + }, + { + "start": 28472.18, + "end": 28473.96, + "probability": 0.6219 + }, + { + "start": 28474.4, + "end": 28475.84, + "probability": 0.7237 + }, + { + "start": 28476.38, + "end": 28478.38, + "probability": 0.9893 + }, + { + "start": 28479.0, + "end": 28479.84, + "probability": 0.9897 + }, + { + "start": 28480.54, + "end": 28483.31, + "probability": 0.9807 + }, + { + "start": 28483.7, + "end": 28485.26, + "probability": 0.7913 + }, + { + "start": 28486.16, + "end": 28488.42, + "probability": 0.8672 + }, + { + "start": 28488.8, + "end": 28494.28, + "probability": 0.9807 + }, + { + "start": 28494.77, + "end": 28495.84, + "probability": 0.022 + }, + { + "start": 28495.84, + "end": 28495.94, + "probability": 0.1769 + }, + { + "start": 28496.06, + "end": 28497.54, + "probability": 0.0725 + }, + { + "start": 28498.26, + "end": 28499.14, + "probability": 0.286 + }, + { + "start": 28499.14, + "end": 28500.4, + "probability": 0.4546 + }, + { + "start": 28500.4, + "end": 28502.08, + "probability": 0.3258 + }, + { + "start": 28502.08, + "end": 28502.08, + "probability": 0.6443 + }, + { + "start": 28502.08, + "end": 28503.74, + "probability": 0.8281 + }, + { + "start": 28503.82, + "end": 28504.48, + "probability": 0.509 + }, + { + "start": 28504.8, + "end": 28506.6, + "probability": 0.7529 + }, + { + "start": 28508.18, + "end": 28510.46, + "probability": 0.7158 + }, + { + "start": 28510.5, + "end": 28512.36, + "probability": 0.9777 + }, + { + "start": 28512.78, + "end": 28514.13, + "probability": 0.9976 + }, + { + "start": 28514.28, + "end": 28515.51, + "probability": 0.6944 + }, + { + "start": 28515.6, + "end": 28520.04, + "probability": 0.728 + }, + { + "start": 28520.68, + "end": 28524.32, + "probability": 0.9807 + }, + { + "start": 28524.96, + "end": 28525.72, + "probability": 0.8774 + }, + { + "start": 28526.62, + "end": 28527.24, + "probability": 0.9735 + }, + { + "start": 28528.18, + "end": 28531.84, + "probability": 0.9648 + }, + { + "start": 28532.16, + "end": 28533.1, + "probability": 0.0013 + }, + { + "start": 28533.28, + "end": 28535.06, + "probability": 0.2856 + }, + { + "start": 28535.12, + "end": 28537.02, + "probability": 0.3906 + }, + { + "start": 28537.3, + "end": 28539.2, + "probability": 0.8965 + }, + { + "start": 28539.72, + "end": 28540.64, + "probability": 0.9234 + }, + { + "start": 28541.66, + "end": 28544.4, + "probability": 0.9957 + }, + { + "start": 28544.84, + "end": 28547.76, + "probability": 0.9951 + }, + { + "start": 28548.44, + "end": 28552.98, + "probability": 0.8255 + }, + { + "start": 28553.04, + "end": 28553.8, + "probability": 0.7726 + }, + { + "start": 28554.64, + "end": 28555.54, + "probability": 0.9298 + }, + { + "start": 28556.2, + "end": 28556.9, + "probability": 0.8467 + }, + { + "start": 28557.32, + "end": 28558.14, + "probability": 0.9454 + }, + { + "start": 28558.6, + "end": 28560.86, + "probability": 0.9478 + }, + { + "start": 28561.26, + "end": 28564.88, + "probability": 0.6133 + }, + { + "start": 28564.92, + "end": 28569.16, + "probability": 0.5167 + }, + { + "start": 28569.38, + "end": 28571.64, + "probability": 0.6393 + }, + { + "start": 28571.76, + "end": 28572.12, + "probability": 0.3608 + }, + { + "start": 28572.18, + "end": 28574.64, + "probability": 0.9951 + }, + { + "start": 28574.64, + "end": 28576.58, + "probability": 0.9196 + }, + { + "start": 28576.7, + "end": 28578.68, + "probability": 0.5347 + }, + { + "start": 28578.76, + "end": 28579.22, + "probability": 0.8133 + }, + { + "start": 28579.36, + "end": 28580.86, + "probability": 0.8382 + }, + { + "start": 28581.86, + "end": 28583.15, + "probability": 0.9749 + }, + { + "start": 28583.98, + "end": 28585.12, + "probability": 0.9373 + }, + { + "start": 28585.9, + "end": 28589.56, + "probability": 0.8211 + }, + { + "start": 28590.12, + "end": 28591.45, + "probability": 0.9559 + }, + { + "start": 28591.76, + "end": 28593.56, + "probability": 0.9972 + }, + { + "start": 28594.08, + "end": 28597.7, + "probability": 0.9993 + }, + { + "start": 28598.2, + "end": 28599.74, + "probability": 0.883 + }, + { + "start": 28600.26, + "end": 28602.86, + "probability": 0.9968 + }, + { + "start": 28602.86, + "end": 28607.14, + "probability": 0.9928 + }, + { + "start": 28607.64, + "end": 28611.48, + "probability": 0.9986 + }, + { + "start": 28611.89, + "end": 28614.68, + "probability": 0.9031 + }, + { + "start": 28614.8, + "end": 28616.7, + "probability": 0.9978 + }, + { + "start": 28616.74, + "end": 28620.4, + "probability": 0.9426 + }, + { + "start": 28620.8, + "end": 28624.58, + "probability": 0.9853 + }, + { + "start": 28624.78, + "end": 28625.38, + "probability": 0.627 + }, + { + "start": 28626.0, + "end": 28627.32, + "probability": 0.9946 + }, + { + "start": 28628.1, + "end": 28629.04, + "probability": 0.9883 + }, + { + "start": 28629.9, + "end": 28632.04, + "probability": 0.9905 + }, + { + "start": 28632.32, + "end": 28633.19, + "probability": 0.9756 + }, + { + "start": 28633.66, + "end": 28636.54, + "probability": 0.9349 + }, + { + "start": 28637.16, + "end": 28640.0, + "probability": 0.994 + }, + { + "start": 28640.44, + "end": 28642.02, + "probability": 0.8774 + }, + { + "start": 28642.38, + "end": 28643.48, + "probability": 0.7259 + }, + { + "start": 28643.8, + "end": 28645.7, + "probability": 0.9669 + }, + { + "start": 28646.58, + "end": 28647.36, + "probability": 0.5929 + }, + { + "start": 28647.36, + "end": 28653.14, + "probability": 0.6938 + }, + { + "start": 28653.36, + "end": 28655.34, + "probability": 0.9338 + }, + { + "start": 28656.54, + "end": 28659.04, + "probability": 0.9275 + }, + { + "start": 28659.04, + "end": 28661.3, + "probability": 0.9767 + }, + { + "start": 28661.44, + "end": 28662.76, + "probability": 0.9689 + }, + { + "start": 28663.3, + "end": 28665.38, + "probability": 0.919 + }, + { + "start": 28665.88, + "end": 28668.04, + "probability": 0.8346 + }, + { + "start": 28668.7, + "end": 28670.62, + "probability": 0.9636 + }, + { + "start": 28671.32, + "end": 28674.5, + "probability": 0.9979 + }, + { + "start": 28674.5, + "end": 28676.58, + "probability": 0.9976 + }, + { + "start": 28677.12, + "end": 28677.82, + "probability": 0.8448 + }, + { + "start": 28677.88, + "end": 28678.6, + "probability": 0.9019 + }, + { + "start": 28678.68, + "end": 28681.64, + "probability": 0.9976 + }, + { + "start": 28681.86, + "end": 28684.22, + "probability": 0.998 + }, + { + "start": 28684.42, + "end": 28687.5, + "probability": 0.9981 + }, + { + "start": 28687.5, + "end": 28691.58, + "probability": 0.9985 + }, + { + "start": 28691.68, + "end": 28692.86, + "probability": 0.5023 + }, + { + "start": 28693.24, + "end": 28694.64, + "probability": 0.7905 + }, + { + "start": 28695.62, + "end": 28696.66, + "probability": 0.4266 + }, + { + "start": 28697.1, + "end": 28697.84, + "probability": 0.6487 + }, + { + "start": 28698.4, + "end": 28701.36, + "probability": 0.9962 + }, + { + "start": 28701.66, + "end": 28704.1, + "probability": 0.9527 + }, + { + "start": 28704.88, + "end": 28705.32, + "probability": 0.8104 + }, + { + "start": 28705.94, + "end": 28708.26, + "probability": 0.8685 + }, + { + "start": 28708.74, + "end": 28713.42, + "probability": 0.9791 + }, + { + "start": 28713.52, + "end": 28714.78, + "probability": 0.9516 + }, + { + "start": 28715.3, + "end": 28716.62, + "probability": 0.9111 + }, + { + "start": 28716.92, + "end": 28721.4, + "probability": 0.9751 + }, + { + "start": 28721.96, + "end": 28723.7, + "probability": 0.9989 + }, + { + "start": 28724.62, + "end": 28726.62, + "probability": 0.9928 + }, + { + "start": 28727.24, + "end": 28728.8, + "probability": 0.9979 + }, + { + "start": 28729.38, + "end": 28731.14, + "probability": 0.9978 + }, + { + "start": 28731.9, + "end": 28733.9, + "probability": 0.9689 + }, + { + "start": 28733.94, + "end": 28735.72, + "probability": 0.6147 + }, + { + "start": 28736.9, + "end": 28742.06, + "probability": 0.9562 + }, + { + "start": 28742.2, + "end": 28743.06, + "probability": 0.7764 + }, + { + "start": 28743.7, + "end": 28746.96, + "probability": 0.8752 + }, + { + "start": 28751.08, + "end": 28754.28, + "probability": 0.7692 + }, + { + "start": 28773.74, + "end": 28775.44, + "probability": 0.682 + }, + { + "start": 28781.4, + "end": 28785.32, + "probability": 0.6158 + }, + { + "start": 28786.22, + "end": 28793.28, + "probability": 0.9902 + }, + { + "start": 28794.16, + "end": 28799.56, + "probability": 0.9869 + }, + { + "start": 28799.62, + "end": 28801.38, + "probability": 0.8571 + }, + { + "start": 28801.98, + "end": 28804.58, + "probability": 0.9409 + }, + { + "start": 28805.28, + "end": 28808.24, + "probability": 0.9873 + }, + { + "start": 28811.96, + "end": 28813.26, + "probability": 0.869 + }, + { + "start": 28814.06, + "end": 28817.68, + "probability": 0.8552 + }, + { + "start": 28818.28, + "end": 28820.78, + "probability": 0.9466 + }, + { + "start": 28824.04, + "end": 28828.44, + "probability": 0.9678 + }, + { + "start": 28829.56, + "end": 28830.86, + "probability": 0.8006 + }, + { + "start": 28831.7, + "end": 28837.18, + "probability": 0.9867 + }, + { + "start": 28838.72, + "end": 28842.88, + "probability": 0.9995 + }, + { + "start": 28842.88, + "end": 28848.02, + "probability": 0.9849 + }, + { + "start": 28848.68, + "end": 28853.4, + "probability": 0.9963 + }, + { + "start": 28854.6, + "end": 28858.42, + "probability": 0.9564 + }, + { + "start": 28863.36, + "end": 28863.9, + "probability": 0.4022 + }, + { + "start": 28863.98, + "end": 28866.58, + "probability": 0.673 + }, + { + "start": 28867.16, + "end": 28869.36, + "probability": 0.7441 + }, + { + "start": 28869.46, + "end": 28874.2, + "probability": 0.9828 + }, + { + "start": 28874.84, + "end": 28879.32, + "probability": 0.9493 + }, + { + "start": 28879.46, + "end": 28879.86, + "probability": 0.5795 + }, + { + "start": 28881.3, + "end": 28884.8, + "probability": 0.2469 + }, + { + "start": 28886.18, + "end": 28886.84, + "probability": 0.0898 + }, + { + "start": 28886.9, + "end": 28887.6, + "probability": 0.8278 + }, + { + "start": 28888.1, + "end": 28891.68, + "probability": 0.9375 + }, + { + "start": 28892.02, + "end": 28895.06, + "probability": 0.8464 + }, + { + "start": 28896.42, + "end": 28896.64, + "probability": 0.1036 + }, + { + "start": 28896.64, + "end": 28897.5, + "probability": 0.8055 + }, + { + "start": 28899.93, + "end": 28902.87, + "probability": 0.1273 + }, + { + "start": 28904.3, + "end": 28905.38, + "probability": 0.9332 + }, + { + "start": 28905.66, + "end": 28910.82, + "probability": 0.9188 + }, + { + "start": 28911.34, + "end": 28912.92, + "probability": 0.9701 + }, + { + "start": 28913.06, + "end": 28915.04, + "probability": 0.9937 + }, + { + "start": 28915.16, + "end": 28915.88, + "probability": 0.8568 + }, + { + "start": 28915.98, + "end": 28916.06, + "probability": 0.71 + }, + { + "start": 28916.06, + "end": 28918.8, + "probability": 0.8589 + }, + { + "start": 28919.56, + "end": 28919.7, + "probability": 0.554 + }, + { + "start": 28919.7, + "end": 28920.38, + "probability": 0.5636 + }, + { + "start": 28920.88, + "end": 28924.34, + "probability": 0.9966 + }, + { + "start": 28924.34, + "end": 28927.52, + "probability": 0.966 + }, + { + "start": 28928.14, + "end": 28933.04, + "probability": 0.9949 + }, + { + "start": 28933.88, + "end": 28939.02, + "probability": 0.9609 + }, + { + "start": 28940.02, + "end": 28941.98, + "probability": 0.5026 + }, + { + "start": 28942.6, + "end": 28946.4, + "probability": 0.9948 + }, + { + "start": 28946.44, + "end": 28947.04, + "probability": 0.3594 + }, + { + "start": 28947.82, + "end": 28951.1, + "probability": 0.8925 + }, + { + "start": 28951.72, + "end": 28952.36, + "probability": 0.6629 + }, + { + "start": 28952.88, + "end": 28955.76, + "probability": 0.8805 + }, + { + "start": 28956.3, + "end": 28957.26, + "probability": 0.8408 + }, + { + "start": 28957.8, + "end": 28963.84, + "probability": 0.9924 + }, + { + "start": 28964.48, + "end": 28967.6, + "probability": 0.9899 + }, + { + "start": 28968.28, + "end": 28972.68, + "probability": 0.9831 + }, + { + "start": 28973.12, + "end": 28975.18, + "probability": 0.9939 + }, + { + "start": 28975.28, + "end": 28977.88, + "probability": 0.9859 + }, + { + "start": 28977.88, + "end": 28981.8, + "probability": 0.9881 + }, + { + "start": 28982.34, + "end": 28986.52, + "probability": 0.8813 + }, + { + "start": 28987.12, + "end": 28987.76, + "probability": 0.4849 + }, + { + "start": 28987.8, + "end": 28988.2, + "probability": 0.819 + }, + { + "start": 28988.34, + "end": 28990.64, + "probability": 0.9827 + }, + { + "start": 28991.3, + "end": 28992.94, + "probability": 0.9853 + }, + { + "start": 28993.0, + "end": 28996.88, + "probability": 0.8638 + }, + { + "start": 28997.52, + "end": 28999.66, + "probability": 0.9483 + }, + { + "start": 29000.44, + "end": 29004.8, + "probability": 0.9134 + }, + { + "start": 29004.8, + "end": 29007.84, + "probability": 0.9352 + }, + { + "start": 29008.3, + "end": 29009.32, + "probability": 0.9394 + }, + { + "start": 29009.84, + "end": 29010.48, + "probability": 0.6665 + }, + { + "start": 29011.2, + "end": 29016.46, + "probability": 0.965 + }, + { + "start": 29016.92, + "end": 29017.9, + "probability": 0.7272 + }, + { + "start": 29018.06, + "end": 29018.64, + "probability": 0.9414 + }, + { + "start": 29019.32, + "end": 29024.46, + "probability": 0.9978 + }, + { + "start": 29024.46, + "end": 29028.56, + "probability": 0.998 + }, + { + "start": 29029.06, + "end": 29029.52, + "probability": 0.7352 + }, + { + "start": 29030.16, + "end": 29034.46, + "probability": 0.9945 + }, + { + "start": 29034.82, + "end": 29036.7, + "probability": 0.9501 + }, + { + "start": 29036.78, + "end": 29037.28, + "probability": 0.8004 + }, + { + "start": 29040.0, + "end": 29042.3, + "probability": 0.7439 + }, + { + "start": 29043.22, + "end": 29044.12, + "probability": 0.8552 + }, + { + "start": 29044.28, + "end": 29049.12, + "probability": 0.9768 + }, + { + "start": 29049.26, + "end": 29053.22, + "probability": 0.9862 + }, + { + "start": 29053.6, + "end": 29055.86, + "probability": 0.9911 + }, + { + "start": 29057.71, + "end": 29062.46, + "probability": 0.2223 + }, + { + "start": 29077.1, + "end": 29078.26, + "probability": 0.061 + }, + { + "start": 29079.26, + "end": 29082.84, + "probability": 0.8054 + }, + { + "start": 29082.98, + "end": 29086.08, + "probability": 0.9624 + }, + { + "start": 29086.08, + "end": 29090.28, + "probability": 0.971 + }, + { + "start": 29092.6, + "end": 29095.12, + "probability": 0.6367 + }, + { + "start": 29096.3, + "end": 29099.26, + "probability": 0.8687 + }, + { + "start": 29099.26, + "end": 29102.92, + "probability": 0.9811 + }, + { + "start": 29103.62, + "end": 29106.2, + "probability": 0.9972 + }, + { + "start": 29106.3, + "end": 29107.04, + "probability": 0.6827 + }, + { + "start": 29107.14, + "end": 29108.21, + "probability": 0.588 + }, + { + "start": 29108.74, + "end": 29109.58, + "probability": 0.781 + }, + { + "start": 29109.66, + "end": 29110.3, + "probability": 0.9056 + }, + { + "start": 29110.4, + "end": 29112.12, + "probability": 0.6906 + }, + { + "start": 29112.32, + "end": 29112.6, + "probability": 0.9587 + }, + { + "start": 29122.46, + "end": 29126.32, + "probability": 0.7931 + }, + { + "start": 29126.92, + "end": 29128.79, + "probability": 0.9268 + }, + { + "start": 29130.0, + "end": 29132.82, + "probability": 0.0128 + }, + { + "start": 29132.82, + "end": 29132.82, + "probability": 0.1066 + }, + { + "start": 29132.82, + "end": 29132.82, + "probability": 0.2457 + }, + { + "start": 29132.82, + "end": 29133.72, + "probability": 0.1565 + }, + { + "start": 29134.58, + "end": 29136.24, + "probability": 0.0295 + }, + { + "start": 29156.0, + "end": 29159.08, + "probability": 0.7971 + }, + { + "start": 29159.96, + "end": 29166.22, + "probability": 0.9919 + }, + { + "start": 29166.46, + "end": 29169.04, + "probability": 0.7491 + }, + { + "start": 29169.68, + "end": 29170.86, + "probability": 0.7227 + }, + { + "start": 29171.1, + "end": 29172.3, + "probability": 0.745 + }, + { + "start": 29172.44, + "end": 29173.5, + "probability": 0.9585 + }, + { + "start": 29174.14, + "end": 29176.58, + "probability": 0.989 + }, + { + "start": 29176.66, + "end": 29177.48, + "probability": 0.9572 + }, + { + "start": 29177.7, + "end": 29178.66, + "probability": 0.8174 + }, + { + "start": 29178.94, + "end": 29180.12, + "probability": 0.9883 + }, + { + "start": 29180.16, + "end": 29180.64, + "probability": 0.8506 + }, + { + "start": 29180.64, + "end": 29181.12, + "probability": 0.6226 + }, + { + "start": 29181.16, + "end": 29182.08, + "probability": 0.8495 + }, + { + "start": 29182.36, + "end": 29183.02, + "probability": 0.7538 + }, + { + "start": 29183.72, + "end": 29184.38, + "probability": 0.6481 + }, + { + "start": 29185.06, + "end": 29187.56, + "probability": 0.9907 + }, + { + "start": 29187.56, + "end": 29192.12, + "probability": 0.9653 + }, + { + "start": 29192.68, + "end": 29195.46, + "probability": 0.9887 + }, + { + "start": 29196.46, + "end": 29198.94, + "probability": 0.9322 + }, + { + "start": 29199.52, + "end": 29203.1, + "probability": 0.9539 + }, + { + "start": 29203.26, + "end": 29203.66, + "probability": 0.6379 + }, + { + "start": 29203.74, + "end": 29204.3, + "probability": 0.9608 + }, + { + "start": 29205.78, + "end": 29207.52, + "probability": 0.7755 + }, + { + "start": 29208.1, + "end": 29211.58, + "probability": 0.9806 + }, + { + "start": 29211.76, + "end": 29214.06, + "probability": 0.998 + }, + { + "start": 29214.4, + "end": 29216.1, + "probability": 0.8706 + }, + { + "start": 29216.54, + "end": 29218.95, + "probability": 0.9884 + }, + { + "start": 29219.5, + "end": 29220.92, + "probability": 0.9714 + }, + { + "start": 29221.12, + "end": 29221.9, + "probability": 0.641 + }, + { + "start": 29222.8, + "end": 29224.72, + "probability": 0.9797 + }, + { + "start": 29224.9, + "end": 29227.32, + "probability": 0.6502 + }, + { + "start": 29227.42, + "end": 29229.64, + "probability": 0.9883 + }, + { + "start": 29230.16, + "end": 29232.28, + "probability": 0.9709 + }, + { + "start": 29232.82, + "end": 29234.1, + "probability": 0.8619 + }, + { + "start": 29234.28, + "end": 29235.54, + "probability": 0.9508 + }, + { + "start": 29235.98, + "end": 29239.32, + "probability": 0.9848 + }, + { + "start": 29239.56, + "end": 29240.84, + "probability": 0.982 + }, + { + "start": 29240.96, + "end": 29241.52, + "probability": 0.7713 + }, + { + "start": 29241.66, + "end": 29244.74, + "probability": 0.888 + }, + { + "start": 29245.28, + "end": 29247.53, + "probability": 0.9022 + }, + { + "start": 29247.88, + "end": 29248.54, + "probability": 0.8594 + }, + { + "start": 29248.66, + "end": 29250.62, + "probability": 0.9962 + }, + { + "start": 29250.74, + "end": 29252.54, + "probability": 0.8956 + }, + { + "start": 29252.68, + "end": 29254.52, + "probability": 0.4549 + }, + { + "start": 29254.68, + "end": 29256.28, + "probability": 0.8304 + }, + { + "start": 29256.4, + "end": 29260.66, + "probability": 0.9982 + }, + { + "start": 29260.76, + "end": 29261.82, + "probability": 0.904 + }, + { + "start": 29261.96, + "end": 29268.24, + "probability": 0.9636 + }, + { + "start": 29268.64, + "end": 29272.3, + "probability": 0.9894 + }, + { + "start": 29273.96, + "end": 29276.62, + "probability": 0.8408 + }, + { + "start": 29276.7, + "end": 29279.86, + "probability": 0.9886 + }, + { + "start": 29280.0, + "end": 29281.58, + "probability": 0.8164 + }, + { + "start": 29281.96, + "end": 29282.64, + "probability": 0.9692 + }, + { + "start": 29283.4, + "end": 29283.5, + "probability": 0.421 + }, + { + "start": 29283.62, + "end": 29288.74, + "probability": 0.9605 + }, + { + "start": 29289.46, + "end": 29290.5, + "probability": 0.9272 + }, + { + "start": 29290.56, + "end": 29291.26, + "probability": 0.7409 + }, + { + "start": 29291.48, + "end": 29294.53, + "probability": 0.8999 + }, + { + "start": 29295.66, + "end": 29300.24, + "probability": 0.9685 + }, + { + "start": 29300.76, + "end": 29303.38, + "probability": 0.9967 + }, + { + "start": 29303.88, + "end": 29304.78, + "probability": 0.8933 + }, + { + "start": 29305.38, + "end": 29308.16, + "probability": 0.9843 + }, + { + "start": 29308.52, + "end": 29308.66, + "probability": 0.9159 + }, + { + "start": 29308.76, + "end": 29309.58, + "probability": 0.8779 + }, + { + "start": 29309.76, + "end": 29310.26, + "probability": 0.9307 + }, + { + "start": 29310.26, + "end": 29310.68, + "probability": 0.6054 + }, + { + "start": 29311.04, + "end": 29311.98, + "probability": 0.7529 + }, + { + "start": 29312.58, + "end": 29315.54, + "probability": 0.8582 + }, + { + "start": 29315.76, + "end": 29318.1, + "probability": 0.9568 + }, + { + "start": 29318.2, + "end": 29319.64, + "probability": 0.8617 + }, + { + "start": 29319.94, + "end": 29321.52, + "probability": 0.8485 + }, + { + "start": 29322.02, + "end": 29323.52, + "probability": 0.7701 + }, + { + "start": 29324.2, + "end": 29325.98, + "probability": 0.9985 + }, + { + "start": 29326.22, + "end": 29327.78, + "probability": 0.9536 + }, + { + "start": 29327.84, + "end": 29328.82, + "probability": 0.7535 + }, + { + "start": 29328.9, + "end": 29328.98, + "probability": 0.8176 + }, + { + "start": 29329.08, + "end": 29330.34, + "probability": 0.8479 + }, + { + "start": 29330.74, + "end": 29333.82, + "probability": 0.8645 + }, + { + "start": 29335.06, + "end": 29338.14, + "probability": 0.72 + }, + { + "start": 29338.28, + "end": 29338.28, + "probability": 0.099 + }, + { + "start": 29338.28, + "end": 29338.3, + "probability": 0.0414 + }, + { + "start": 29338.3, + "end": 29338.3, + "probability": 0.0339 + }, + { + "start": 29338.3, + "end": 29338.85, + "probability": 0.5625 + }, + { + "start": 29339.14, + "end": 29341.52, + "probability": 0.751 + }, + { + "start": 29341.72, + "end": 29345.12, + "probability": 0.9539 + }, + { + "start": 29345.24, + "end": 29346.02, + "probability": 0.8151 + }, + { + "start": 29346.6, + "end": 29347.23, + "probability": 0.4497 + }, + { + "start": 29348.84, + "end": 29350.54, + "probability": 0.9854 + }, + { + "start": 29350.64, + "end": 29352.08, + "probability": 0.8089 + }, + { + "start": 29352.26, + "end": 29355.28, + "probability": 0.9793 + }, + { + "start": 29356.33, + "end": 29358.96, + "probability": 0.8807 + }, + { + "start": 29359.62, + "end": 29361.3, + "probability": 0.889 + }, + { + "start": 29361.9, + "end": 29362.58, + "probability": 0.5067 + }, + { + "start": 29362.66, + "end": 29366.16, + "probability": 0.8724 + }, + { + "start": 29366.56, + "end": 29369.62, + "probability": 0.9821 + }, + { + "start": 29369.7, + "end": 29371.17, + "probability": 0.9912 + }, + { + "start": 29371.76, + "end": 29372.28, + "probability": 0.6121 + }, + { + "start": 29372.52, + "end": 29374.84, + "probability": 0.9428 + }, + { + "start": 29375.0, + "end": 29376.28, + "probability": 0.2414 + }, + { + "start": 29376.28, + "end": 29378.12, + "probability": 0.9709 + }, + { + "start": 29378.34, + "end": 29379.74, + "probability": 0.7735 + }, + { + "start": 29379.9, + "end": 29380.4, + "probability": 0.505 + }, + { + "start": 29380.46, + "end": 29381.26, + "probability": 0.8556 + }, + { + "start": 29381.36, + "end": 29382.38, + "probability": 0.9104 + }, + { + "start": 29382.76, + "end": 29384.62, + "probability": 0.979 + }, + { + "start": 29385.06, + "end": 29385.58, + "probability": 0.5969 + }, + { + "start": 29386.14, + "end": 29388.06, + "probability": 0.9171 + }, + { + "start": 29388.36, + "end": 29389.2, + "probability": 0.907 + }, + { + "start": 29389.23, + "end": 29392.42, + "probability": 0.9842 + }, + { + "start": 29392.86, + "end": 29393.58, + "probability": 0.8872 + }, + { + "start": 29394.1, + "end": 29395.73, + "probability": 0.8661 + }, + { + "start": 29396.28, + "end": 29401.14, + "probability": 0.9642 + }, + { + "start": 29401.6, + "end": 29403.12, + "probability": 0.9954 + }, + { + "start": 29403.38, + "end": 29403.76, + "probability": 0.285 + }, + { + "start": 29403.82, + "end": 29404.42, + "probability": 0.7118 + }, + { + "start": 29404.42, + "end": 29406.96, + "probability": 0.8457 + }, + { + "start": 29407.14, + "end": 29409.8, + "probability": 0.9645 + }, + { + "start": 29410.1, + "end": 29411.18, + "probability": 0.97 + }, + { + "start": 29411.38, + "end": 29412.26, + "probability": 0.9701 + }, + { + "start": 29412.3, + "end": 29413.54, + "probability": 0.6892 + }, + { + "start": 29413.62, + "end": 29416.92, + "probability": 0.9787 + }, + { + "start": 29417.0, + "end": 29417.62, + "probability": 0.8912 + }, + { + "start": 29418.1, + "end": 29420.45, + "probability": 0.8811 + }, + { + "start": 29420.98, + "end": 29423.46, + "probability": 0.9595 + }, + { + "start": 29423.5, + "end": 29428.08, + "probability": 0.9185 + }, + { + "start": 29428.08, + "end": 29430.23, + "probability": 0.9939 + }, + { + "start": 29430.8, + "end": 29432.74, + "probability": 0.2802 + }, + { + "start": 29433.58, + "end": 29437.22, + "probability": 0.1275 + }, + { + "start": 29438.62, + "end": 29440.38, + "probability": 0.0065 + }, + { + "start": 29442.98, + "end": 29443.08, + "probability": 0.0267 + }, + { + "start": 29443.08, + "end": 29443.12, + "probability": 0.3569 + }, + { + "start": 29443.12, + "end": 29443.12, + "probability": 0.0408 + }, + { + "start": 29443.12, + "end": 29443.66, + "probability": 0.236 + }, + { + "start": 29444.64, + "end": 29444.99, + "probability": 0.0231 + }, + { + "start": 29453.68, + "end": 29454.36, + "probability": 0.5057 + }, + { + "start": 29457.72, + "end": 29461.64, + "probability": 0.0319 + }, + { + "start": 29465.58, + "end": 29466.58, + "probability": 0.0705 + }, + { + "start": 29467.28, + "end": 29469.5, + "probability": 0.0209 + }, + { + "start": 29470.04, + "end": 29471.94, + "probability": 0.0131 + }, + { + "start": 29472.44, + "end": 29476.26, + "probability": 0.9196 + }, + { + "start": 29478.54, + "end": 29478.74, + "probability": 0.9257 + }, + { + "start": 29478.8, + "end": 29478.94, + "probability": 0.9709 + }, + { + "start": 29478.98, + "end": 29479.18, + "probability": 0.7093 + }, + { + "start": 29479.22, + "end": 29480.18, + "probability": 0.9473 + }, + { + "start": 29480.42, + "end": 29485.58, + "probability": 0.9507 + }, + { + "start": 29486.4, + "end": 29490.66, + "probability": 0.9963 + }, + { + "start": 29490.98, + "end": 29492.26, + "probability": 0.9791 + }, + { + "start": 29493.08, + "end": 29496.42, + "probability": 0.8084 + }, + { + "start": 29497.02, + "end": 29499.34, + "probability": 0.9489 + }, + { + "start": 29499.48, + "end": 29502.78, + "probability": 0.9215 + }, + { + "start": 29502.86, + "end": 29503.7, + "probability": 0.984 + }, + { + "start": 29503.86, + "end": 29504.74, + "probability": 0.9738 + }, + { + "start": 29505.18, + "end": 29505.78, + "probability": 0.8364 + }, + { + "start": 29505.86, + "end": 29506.44, + "probability": 0.8785 + }, + { + "start": 29506.5, + "end": 29507.58, + "probability": 0.9369 + }, + { + "start": 29507.64, + "end": 29509.04, + "probability": 0.908 + }, + { + "start": 29509.46, + "end": 29514.06, + "probability": 0.9128 + }, + { + "start": 29514.32, + "end": 29519.5, + "probability": 0.9053 + }, + { + "start": 29519.58, + "end": 29523.12, + "probability": 0.998 + }, + { + "start": 29523.8, + "end": 29528.3, + "probability": 0.999 + }, + { + "start": 29528.96, + "end": 29533.28, + "probability": 0.9525 + }, + { + "start": 29533.7, + "end": 29538.36, + "probability": 0.8364 + }, + { + "start": 29538.68, + "end": 29539.96, + "probability": 0.9426 + }, + { + "start": 29540.32, + "end": 29542.02, + "probability": 0.946 + }, + { + "start": 29542.52, + "end": 29546.34, + "probability": 0.9688 + }, + { + "start": 29548.54, + "end": 29551.2, + "probability": 0.9657 + }, + { + "start": 29551.4, + "end": 29554.6, + "probability": 0.9444 + }, + { + "start": 29555.0, + "end": 29556.38, + "probability": 0.9596 + }, + { + "start": 29556.52, + "end": 29557.14, + "probability": 0.6925 + }, + { + "start": 29557.22, + "end": 29560.14, + "probability": 0.9514 + }, + { + "start": 29560.56, + "end": 29563.85, + "probability": 0.9753 + }, + { + "start": 29564.36, + "end": 29566.02, + "probability": 0.8131 + }, + { + "start": 29566.14, + "end": 29567.34, + "probability": 0.8608 + }, + { + "start": 29567.56, + "end": 29569.28, + "probability": 0.9603 + }, + { + "start": 29569.7, + "end": 29571.28, + "probability": 0.9735 + }, + { + "start": 29571.48, + "end": 29574.24, + "probability": 0.9982 + }, + { + "start": 29574.62, + "end": 29577.98, + "probability": 0.9559 + }, + { + "start": 29578.16, + "end": 29580.5, + "probability": 0.9806 + }, + { + "start": 29580.76, + "end": 29585.32, + "probability": 0.9951 + }, + { + "start": 29586.0, + "end": 29587.64, + "probability": 0.918 + }, + { + "start": 29588.1, + "end": 29592.66, + "probability": 0.9802 + }, + { + "start": 29592.66, + "end": 29595.8, + "probability": 0.9956 + }, + { + "start": 29596.18, + "end": 29600.82, + "probability": 0.9935 + }, + { + "start": 29601.92, + "end": 29604.6, + "probability": 0.8903 + }, + { + "start": 29605.34, + "end": 29607.26, + "probability": 0.8334 + }, + { + "start": 29607.36, + "end": 29610.94, + "probability": 0.9219 + }, + { + "start": 29611.5, + "end": 29616.28, + "probability": 0.9889 + }, + { + "start": 29616.78, + "end": 29621.78, + "probability": 0.963 + }, + { + "start": 29622.26, + "end": 29625.18, + "probability": 0.9948 + }, + { + "start": 29626.56, + "end": 29629.76, + "probability": 0.9944 + }, + { + "start": 29630.16, + "end": 29632.42, + "probability": 0.998 + }, + { + "start": 29632.52, + "end": 29634.96, + "probability": 0.8425 + }, + { + "start": 29635.28, + "end": 29640.18, + "probability": 0.9946 + }, + { + "start": 29640.46, + "end": 29645.14, + "probability": 0.9891 + }, + { + "start": 29645.26, + "end": 29649.2, + "probability": 0.9481 + }, + { + "start": 29649.64, + "end": 29651.16, + "probability": 0.6763 + }, + { + "start": 29651.44, + "end": 29653.62, + "probability": 0.9977 + }, + { + "start": 29653.68, + "end": 29654.61, + "probability": 0.9723 + }, + { + "start": 29654.96, + "end": 29658.26, + "probability": 0.9934 + }, + { + "start": 29658.82, + "end": 29661.66, + "probability": 0.9803 + }, + { + "start": 29661.76, + "end": 29664.7, + "probability": 0.9958 + }, + { + "start": 29664.84, + "end": 29665.4, + "probability": 0.9695 + }, + { + "start": 29665.6, + "end": 29667.22, + "probability": 0.9326 + }, + { + "start": 29667.58, + "end": 29673.44, + "probability": 0.949 + }, + { + "start": 29673.48, + "end": 29674.38, + "probability": 0.594 + }, + { + "start": 29675.12, + "end": 29678.5, + "probability": 0.8459 + }, + { + "start": 29681.54, + "end": 29681.92, + "probability": 0.0271 + }, + { + "start": 29693.78, + "end": 29696.56, + "probability": 0.058 + }, + { + "start": 29700.46, + "end": 29703.44, + "probability": 0.8474 + }, + { + "start": 29704.56, + "end": 29710.88, + "probability": 0.994 + }, + { + "start": 29711.2, + "end": 29714.02, + "probability": 0.9089 + }, + { + "start": 29714.96, + "end": 29716.72, + "probability": 0.7566 + }, + { + "start": 29716.8, + "end": 29717.78, + "probability": 0.649 + }, + { + "start": 29718.18, + "end": 29722.56, + "probability": 0.9932 + }, + { + "start": 29723.44, + "end": 29725.3, + "probability": 0.77 + }, + { + "start": 29726.36, + "end": 29729.14, + "probability": 0.9237 + }, + { + "start": 29729.78, + "end": 29733.42, + "probability": 0.9989 + }, + { + "start": 29733.52, + "end": 29734.3, + "probability": 0.9591 + }, + { + "start": 29734.42, + "end": 29735.24, + "probability": 0.9003 + }, + { + "start": 29735.44, + "end": 29736.16, + "probability": 0.963 + }, + { + "start": 29736.48, + "end": 29737.46, + "probability": 0.9661 + }, + { + "start": 29738.14, + "end": 29741.92, + "probability": 0.9483 + }, + { + "start": 29743.14, + "end": 29745.14, + "probability": 0.8462 + }, + { + "start": 29745.24, + "end": 29751.1, + "probability": 0.9781 + }, + { + "start": 29751.44, + "end": 29755.24, + "probability": 0.9913 + }, + { + "start": 29755.36, + "end": 29755.68, + "probability": 0.7398 + }, + { + "start": 29757.08, + "end": 29760.68, + "probability": 0.8896 + }, + { + "start": 29760.9, + "end": 29764.14, + "probability": 0.9872 + }, + { + "start": 29764.94, + "end": 29771.96, + "probability": 0.9944 + }, + { + "start": 29772.3, + "end": 29773.28, + "probability": 0.7768 + }, + { + "start": 29774.06, + "end": 29775.64, + "probability": 0.9819 + }, + { + "start": 29775.88, + "end": 29777.52, + "probability": 0.9908 + }, + { + "start": 29777.68, + "end": 29781.62, + "probability": 0.9915 + }, + { + "start": 29782.1, + "end": 29783.84, + "probability": 0.98 + }, + { + "start": 29784.52, + "end": 29789.55, + "probability": 0.9907 + }, + { + "start": 29790.34, + "end": 29795.96, + "probability": 0.9827 + }, + { + "start": 29795.96, + "end": 29799.62, + "probability": 0.9968 + }, + { + "start": 29799.7, + "end": 29801.01, + "probability": 0.9811 + }, + { + "start": 29802.06, + "end": 29803.06, + "probability": 0.5464 + }, + { + "start": 29805.99, + "end": 29809.5, + "probability": 0.9356 + }, + { + "start": 29809.5, + "end": 29811.9, + "probability": 0.9946 + }, + { + "start": 29812.68, + "end": 29817.8, + "probability": 0.9884 + }, + { + "start": 29817.9, + "end": 29821.62, + "probability": 0.8838 + }, + { + "start": 29822.02, + "end": 29823.7, + "probability": 0.7679 + }, + { + "start": 29823.7, + "end": 29823.76, + "probability": 0.1535 + }, + { + "start": 29823.76, + "end": 29825.01, + "probability": 0.1498 + }, + { + "start": 29828.36, + "end": 29830.16, + "probability": 0.8833 + }, + { + "start": 29830.38, + "end": 29836.84, + "probability": 0.9976 + }, + { + "start": 29836.84, + "end": 29841.02, + "probability": 0.9991 + }, + { + "start": 29841.44, + "end": 29843.28, + "probability": 0.9501 + }, + { + "start": 29843.9, + "end": 29846.14, + "probability": 0.9608 + }, + { + "start": 29846.5, + "end": 29851.14, + "probability": 0.9814 + }, + { + "start": 29851.8, + "end": 29855.86, + "probability": 0.9672 + }, + { + "start": 29856.1, + "end": 29858.02, + "probability": 0.9956 + }, + { + "start": 29858.3, + "end": 29859.58, + "probability": 0.9302 + }, + { + "start": 29859.94, + "end": 29867.72, + "probability": 0.9928 + }, + { + "start": 29868.46, + "end": 29875.18, + "probability": 0.9269 + }, + { + "start": 29875.7, + "end": 29878.44, + "probability": 0.9979 + }, + { + "start": 29879.24, + "end": 29881.3, + "probability": 0.9989 + }, + { + "start": 29881.44, + "end": 29882.9, + "probability": 0.9014 + }, + { + "start": 29883.16, + "end": 29886.16, + "probability": 0.9951 + }, + { + "start": 29886.46, + "end": 29888.35, + "probability": 0.9565 + }, + { + "start": 29888.78, + "end": 29889.6, + "probability": 0.4153 + }, + { + "start": 29900.22, + "end": 29903.12, + "probability": 0.3286 + }, + { + "start": 29904.16, + "end": 29904.3, + "probability": 0.0071 + }, + { + "start": 29912.28, + "end": 29912.94, + "probability": 0.022 + }, + { + "start": 29913.45, + "end": 29913.59, + "probability": 0.3178 + }, + { + "start": 29913.66, + "end": 29914.8, + "probability": 0.6865 + }, + { + "start": 29914.8, + "end": 29916.56, + "probability": 0.5814 + }, + { + "start": 29917.56, + "end": 29920.76, + "probability": 0.9556 + }, + { + "start": 29921.84, + "end": 29924.2, + "probability": 0.8454 + }, + { + "start": 29925.36, + "end": 29929.6, + "probability": 0.988 + }, + { + "start": 29930.84, + "end": 29934.02, + "probability": 0.8204 + }, + { + "start": 29934.12, + "end": 29935.36, + "probability": 0.9761 + }, + { + "start": 29935.72, + "end": 29938.38, + "probability": 0.9904 + }, + { + "start": 29939.0, + "end": 29942.2, + "probability": 0.9907 + }, + { + "start": 29943.3, + "end": 29945.29, + "probability": 0.9059 + }, + { + "start": 29945.64, + "end": 29947.4, + "probability": 0.7986 + }, + { + "start": 29947.86, + "end": 29949.84, + "probability": 0.9258 + }, + { + "start": 29950.38, + "end": 29951.7, + "probability": 0.98 + }, + { + "start": 29952.34, + "end": 29953.74, + "probability": 0.9832 + }, + { + "start": 29954.36, + "end": 29956.5, + "probability": 0.7683 + }, + { + "start": 29957.26, + "end": 29962.92, + "probability": 0.987 + }, + { + "start": 29963.78, + "end": 29966.38, + "probability": 0.816 + }, + { + "start": 29966.58, + "end": 29967.34, + "probability": 0.8854 + }, + { + "start": 29969.56, + "end": 29971.91, + "probability": 0.8556 + }, + { + "start": 29973.18, + "end": 29975.74, + "probability": 0.9808 + }, + { + "start": 29977.36, + "end": 29979.34, + "probability": 0.9602 + }, + { + "start": 29979.82, + "end": 29981.57, + "probability": 0.9937 + }, + { + "start": 29982.3, + "end": 29987.14, + "probability": 0.951 + }, + { + "start": 29987.64, + "end": 29991.12, + "probability": 0.9941 + }, + { + "start": 29991.3, + "end": 29992.48, + "probability": 0.7963 + }, + { + "start": 29993.12, + "end": 29994.84, + "probability": 0.9897 + }, + { + "start": 29995.56, + "end": 29996.74, + "probability": 0.8791 + }, + { + "start": 29997.46, + "end": 29999.96, + "probability": 0.9474 + }, + { + "start": 30000.96, + "end": 30004.4, + "probability": 0.9932 + }, + { + "start": 30005.6, + "end": 30010.28, + "probability": 0.8864 + }, + { + "start": 30011.42, + "end": 30013.42, + "probability": 0.837 + }, + { + "start": 30013.96, + "end": 30021.5, + "probability": 0.9586 + }, + { + "start": 30022.52, + "end": 30025.81, + "probability": 0.9995 + }, + { + "start": 30026.4, + "end": 30029.72, + "probability": 0.9989 + }, + { + "start": 30030.98, + "end": 30034.28, + "probability": 0.9893 + }, + { + "start": 30036.58, + "end": 30038.64, + "probability": 0.9607 + }, + { + "start": 30039.3, + "end": 30043.58, + "probability": 0.9992 + }, + { + "start": 30043.58, + "end": 30046.08, + "probability": 0.9988 + }, + { + "start": 30046.52, + "end": 30049.14, + "probability": 0.9989 + }, + { + "start": 30049.14, + "end": 30053.46, + "probability": 0.9214 + }, + { + "start": 30054.2, + "end": 30055.57, + "probability": 0.9995 + }, + { + "start": 30057.3, + "end": 30057.88, + "probability": 0.7577 + }, + { + "start": 30058.82, + "end": 30060.68, + "probability": 0.9957 + }, + { + "start": 30061.22, + "end": 30062.48, + "probability": 0.7266 + }, + { + "start": 30062.82, + "end": 30064.56, + "probability": 0.992 + }, + { + "start": 30065.52, + "end": 30068.96, + "probability": 0.708 + }, + { + "start": 30069.64, + "end": 30072.6, + "probability": 0.9806 + }, + { + "start": 30074.32, + "end": 30075.18, + "probability": 0.9819 + }, + { + "start": 30076.26, + "end": 30077.5, + "probability": 0.9883 + }, + { + "start": 30078.04, + "end": 30082.42, + "probability": 0.9971 + }, + { + "start": 30083.88, + "end": 30087.28, + "probability": 0.911 + }, + { + "start": 30088.28, + "end": 30091.86, + "probability": 0.9752 + }, + { + "start": 30092.7, + "end": 30094.82, + "probability": 0.9381 + }, + { + "start": 30094.94, + "end": 30095.74, + "probability": 0.9859 + }, + { + "start": 30095.84, + "end": 30097.24, + "probability": 0.6005 + }, + { + "start": 30097.24, + "end": 30101.06, + "probability": 0.9314 + }, + { + "start": 30101.9, + "end": 30101.9, + "probability": 0.506 + }, + { + "start": 30101.98, + "end": 30104.62, + "probability": 0.9894 + }, + { + "start": 30104.76, + "end": 30106.08, + "probability": 0.6901 + }, + { + "start": 30106.26, + "end": 30108.34, + "probability": 0.9873 + }, + { + "start": 30108.58, + "end": 30110.08, + "probability": 0.6782 + }, + { + "start": 30110.1, + "end": 30113.8, + "probability": 0.9871 + }, + { + "start": 30113.9, + "end": 30114.68, + "probability": 0.6089 + }, + { + "start": 30114.7, + "end": 30114.7, + "probability": 0.5211 + }, + { + "start": 30114.7, + "end": 30117.18, + "probability": 0.731 + }, + { + "start": 30133.88, + "end": 30136.04, + "probability": 0.6415 + }, + { + "start": 30136.56, + "end": 30137.02, + "probability": 0.6985 + }, + { + "start": 30137.1, + "end": 30137.96, + "probability": 0.7633 + }, + { + "start": 30138.06, + "end": 30141.94, + "probability": 0.8945 + }, + { + "start": 30142.01, + "end": 30147.36, + "probability": 0.8085 + }, + { + "start": 30148.6, + "end": 30150.46, + "probability": 0.8436 + }, + { + "start": 30151.34, + "end": 30155.0, + "probability": 0.7207 + }, + { + "start": 30155.46, + "end": 30157.4, + "probability": 0.8008 + }, + { + "start": 30157.5, + "end": 30158.18, + "probability": 0.4577 + }, + { + "start": 30158.52, + "end": 30160.28, + "probability": 0.8284 + }, + { + "start": 30160.94, + "end": 30164.0, + "probability": 0.8991 + }, + { + "start": 30164.66, + "end": 30166.72, + "probability": 0.5366 + }, + { + "start": 30167.54, + "end": 30172.66, + "probability": 0.8979 + }, + { + "start": 30174.88, + "end": 30175.84, + "probability": 0.6324 + }, + { + "start": 30177.48, + "end": 30179.96, + "probability": 0.9041 + }, + { + "start": 30180.24, + "end": 30180.74, + "probability": 0.9341 + }, + { + "start": 30181.4, + "end": 30182.96, + "probability": 0.7257 + }, + { + "start": 30184.98, + "end": 30186.84, + "probability": 0.9606 + }, + { + "start": 30187.0, + "end": 30188.4, + "probability": 0.577 + }, + { + "start": 30189.76, + "end": 30194.34, + "probability": 0.9789 + }, + { + "start": 30195.66, + "end": 30196.92, + "probability": 0.9804 + }, + { + "start": 30196.96, + "end": 30198.54, + "probability": 0.6718 + }, + { + "start": 30198.68, + "end": 30198.96, + "probability": 0.8349 + }, + { + "start": 30199.02, + "end": 30199.78, + "probability": 0.9866 + }, + { + "start": 30199.98, + "end": 30200.96, + "probability": 0.9272 + }, + { + "start": 30201.1, + "end": 30201.69, + "probability": 0.9922 + }, + { + "start": 30204.15, + "end": 30206.66, + "probability": 0.579 + }, + { + "start": 30208.46, + "end": 30209.74, + "probability": 0.9552 + }, + { + "start": 30210.1, + "end": 30212.46, + "probability": 0.8259 + }, + { + "start": 30213.2, + "end": 30215.01, + "probability": 0.2769 + }, + { + "start": 30217.28, + "end": 30218.76, + "probability": 0.4269 + }, + { + "start": 30218.98, + "end": 30218.98, + "probability": 0.0825 + }, + { + "start": 30218.98, + "end": 30220.02, + "probability": 0.1624 + }, + { + "start": 30220.1, + "end": 30220.86, + "probability": 0.4432 + }, + { + "start": 30221.96, + "end": 30223.66, + "probability": 0.7904 + }, + { + "start": 30224.1, + "end": 30226.06, + "probability": 0.8418 + }, + { + "start": 30226.78, + "end": 30227.16, + "probability": 0.7431 + }, + { + "start": 30227.34, + "end": 30228.42, + "probability": 0.586 + }, + { + "start": 30228.58, + "end": 30230.14, + "probability": 0.9019 + }, + { + "start": 30230.22, + "end": 30234.09, + "probability": 0.9984 + }, + { + "start": 30235.26, + "end": 30237.16, + "probability": 0.8913 + }, + { + "start": 30237.92, + "end": 30238.58, + "probability": 0.9038 + }, + { + "start": 30238.68, + "end": 30241.24, + "probability": 0.7079 + }, + { + "start": 30241.32, + "end": 30242.44, + "probability": 0.7535 + }, + { + "start": 30243.7, + "end": 30245.46, + "probability": 0.7664 + }, + { + "start": 30246.46, + "end": 30247.46, + "probability": 0.3943 + }, + { + "start": 30247.56, + "end": 30248.18, + "probability": 0.7391 + }, + { + "start": 30248.3, + "end": 30250.1, + "probability": 0.8431 + }, + { + "start": 30250.2, + "end": 30251.26, + "probability": 0.9603 + }, + { + "start": 30251.98, + "end": 30254.24, + "probability": 0.9561 + }, + { + "start": 30254.3, + "end": 30255.84, + "probability": 0.8929 + }, + { + "start": 30256.54, + "end": 30258.4, + "probability": 0.9417 + }, + { + "start": 30258.98, + "end": 30259.8, + "probability": 0.724 + }, + { + "start": 30260.56, + "end": 30261.6, + "probability": 0.8872 + }, + { + "start": 30262.08, + "end": 30263.14, + "probability": 0.9705 + }, + { + "start": 30264.16, + "end": 30267.78, + "probability": 0.5145 + }, + { + "start": 30267.96, + "end": 30268.94, + "probability": 0.5239 + }, + { + "start": 30268.94, + "end": 30271.58, + "probability": 0.9523 + }, + { + "start": 30271.64, + "end": 30273.28, + "probability": 0.7857 + }, + { + "start": 30273.86, + "end": 30275.34, + "probability": 0.8174 + }, + { + "start": 30275.54, + "end": 30277.6, + "probability": 0.8307 + }, + { + "start": 30277.74, + "end": 30278.36, + "probability": 0.5309 + }, + { + "start": 30278.72, + "end": 30280.24, + "probability": 0.7015 + }, + { + "start": 30281.12, + "end": 30282.66, + "probability": 0.5888 + }, + { + "start": 30283.18, + "end": 30285.66, + "probability": 0.983 + }, + { + "start": 30285.72, + "end": 30286.36, + "probability": 0.7135 + }, + { + "start": 30286.46, + "end": 30289.8, + "probability": 0.8428 + }, + { + "start": 30290.5, + "end": 30291.88, + "probability": 0.9546 + }, + { + "start": 30293.1, + "end": 30294.92, + "probability": 0.9895 + }, + { + "start": 30294.92, + "end": 30297.34, + "probability": 0.9939 + }, + { + "start": 30298.66, + "end": 30299.54, + "probability": 0.8801 + }, + { + "start": 30299.68, + "end": 30301.7, + "probability": 0.5449 + }, + { + "start": 30302.48, + "end": 30303.88, + "probability": 0.9871 + }, + { + "start": 30304.5, + "end": 30305.82, + "probability": 0.7783 + }, + { + "start": 30305.9, + "end": 30307.86, + "probability": 0.8892 + }, + { + "start": 30308.66, + "end": 30310.46, + "probability": 0.9815 + }, + { + "start": 30310.94, + "end": 30316.08, + "probability": 0.9687 + }, + { + "start": 30316.84, + "end": 30318.26, + "probability": 0.6677 + }, + { + "start": 30318.28, + "end": 30319.76, + "probability": 0.73 + }, + { + "start": 30320.0, + "end": 30321.44, + "probability": 0.9948 + }, + { + "start": 30321.5, + "end": 30321.78, + "probability": 0.6533 + }, + { + "start": 30321.84, + "end": 30323.04, + "probability": 0.6921 + }, + { + "start": 30324.24, + "end": 30326.96, + "probability": 0.9306 + }, + { + "start": 30327.08, + "end": 30327.9, + "probability": 0.7899 + }, + { + "start": 30329.1, + "end": 30332.68, + "probability": 0.9941 + }, + { + "start": 30333.26, + "end": 30333.58, + "probability": 0.7093 + }, + { + "start": 30333.6, + "end": 30335.58, + "probability": 0.9921 + }, + { + "start": 30335.58, + "end": 30338.76, + "probability": 0.998 + }, + { + "start": 30338.84, + "end": 30340.0, + "probability": 0.8627 + }, + { + "start": 30340.48, + "end": 30340.94, + "probability": 0.86 + }, + { + "start": 30341.18, + "end": 30344.16, + "probability": 0.8079 + }, + { + "start": 30344.72, + "end": 30346.82, + "probability": 0.8827 + }, + { + "start": 30347.44, + "end": 30350.78, + "probability": 0.9482 + }, + { + "start": 30351.36, + "end": 30352.0, + "probability": 0.9294 + }, + { + "start": 30353.18, + "end": 30354.54, + "probability": 0.4969 + }, + { + "start": 30369.82, + "end": 30371.12, + "probability": 0.3927 + }, + { + "start": 30371.14, + "end": 30372.38, + "probability": 0.5431 + }, + { + "start": 30372.6, + "end": 30373.14, + "probability": 0.6666 + }, + { + "start": 30373.56, + "end": 30380.3, + "probability": 0.9671 + }, + { + "start": 30380.3, + "end": 30387.02, + "probability": 0.9125 + }, + { + "start": 30387.3, + "end": 30389.2, + "probability": 0.9953 + }, + { + "start": 30389.98, + "end": 30392.42, + "probability": 0.9902 + }, + { + "start": 30392.9, + "end": 30397.22, + "probability": 0.9889 + }, + { + "start": 30398.16, + "end": 30399.82, + "probability": 0.8277 + }, + { + "start": 30400.08, + "end": 30405.56, + "probability": 0.9795 + }, + { + "start": 30407.48, + "end": 30414.5, + "probability": 0.9941 + }, + { + "start": 30414.54, + "end": 30416.92, + "probability": 0.7928 + }, + { + "start": 30417.5, + "end": 30421.0, + "probability": 0.9889 + }, + { + "start": 30421.12, + "end": 30423.26, + "probability": 0.6856 + }, + { + "start": 30424.67, + "end": 30426.34, + "probability": 0.9292 + }, + { + "start": 30426.5, + "end": 30426.7, + "probability": 0.7367 + }, + { + "start": 30426.86, + "end": 30430.76, + "probability": 0.963 + }, + { + "start": 30430.86, + "end": 30439.2, + "probability": 0.9962 + }, + { + "start": 30439.88, + "end": 30440.94, + "probability": 0.7837 + }, + { + "start": 30440.98, + "end": 30443.76, + "probability": 0.9985 + }, + { + "start": 30443.76, + "end": 30447.26, + "probability": 0.9983 + }, + { + "start": 30449.56, + "end": 30452.91, + "probability": 0.9365 + }, + { + "start": 30453.44, + "end": 30456.28, + "probability": 0.8984 + }, + { + "start": 30456.9, + "end": 30459.14, + "probability": 0.7681 + }, + { + "start": 30459.38, + "end": 30460.96, + "probability": 0.8104 + }, + { + "start": 30461.02, + "end": 30462.16, + "probability": 0.847 + }, + { + "start": 30462.26, + "end": 30463.44, + "probability": 0.9875 + }, + { + "start": 30464.16, + "end": 30468.76, + "probability": 0.9827 + }, + { + "start": 30468.82, + "end": 30470.3, + "probability": 0.748 + }, + { + "start": 30470.58, + "end": 30470.8, + "probability": 0.2608 + }, + { + "start": 30470.96, + "end": 30476.06, + "probability": 0.9844 + }, + { + "start": 30476.94, + "end": 30484.34, + "probability": 0.9958 + }, + { + "start": 30484.42, + "end": 30486.28, + "probability": 0.978 + }, + { + "start": 30486.32, + "end": 30490.94, + "probability": 0.9932 + }, + { + "start": 30491.5, + "end": 30493.2, + "probability": 0.9836 + }, + { + "start": 30493.28, + "end": 30497.34, + "probability": 0.981 + }, + { + "start": 30497.72, + "end": 30500.06, + "probability": 0.9722 + }, + { + "start": 30501.12, + "end": 30502.72, + "probability": 0.693 + }, + { + "start": 30503.54, + "end": 30506.92, + "probability": 0.9705 + }, + { + "start": 30506.92, + "end": 30509.86, + "probability": 0.9334 + }, + { + "start": 30510.58, + "end": 30514.82, + "probability": 0.9715 + }, + { + "start": 30514.96, + "end": 30517.57, + "probability": 0.8799 + }, + { + "start": 30518.82, + "end": 30522.76, + "probability": 0.9966 + }, + { + "start": 30522.94, + "end": 30523.6, + "probability": 0.9148 + }, + { + "start": 30526.36, + "end": 30531.46, + "probability": 0.9966 + }, + { + "start": 30531.62, + "end": 30535.42, + "probability": 0.9757 + }, + { + "start": 30535.56, + "end": 30540.2, + "probability": 0.9932 + }, + { + "start": 30540.2, + "end": 30543.66, + "probability": 0.9984 + }, + { + "start": 30544.42, + "end": 30547.16, + "probability": 0.9972 + }, + { + "start": 30547.34, + "end": 30548.26, + "probability": 0.7087 + }, + { + "start": 30548.34, + "end": 30549.6, + "probability": 0.9112 + }, + { + "start": 30549.76, + "end": 30552.48, + "probability": 0.7356 + }, + { + "start": 30552.52, + "end": 30553.1, + "probability": 0.922 + }, + { + "start": 30553.2, + "end": 30554.82, + "probability": 0.9825 + }, + { + "start": 30554.88, + "end": 30561.0, + "probability": 0.9649 + }, + { + "start": 30561.08, + "end": 30564.58, + "probability": 0.8919 + }, + { + "start": 30565.36, + "end": 30567.2, + "probability": 0.9188 + }, + { + "start": 30567.54, + "end": 30568.62, + "probability": 0.6688 + }, + { + "start": 30568.7, + "end": 30570.56, + "probability": 0.8711 + }, + { + "start": 30570.6, + "end": 30572.08, + "probability": 0.6762 + }, + { + "start": 30573.44, + "end": 30573.98, + "probability": 0.7484 + }, + { + "start": 30574.1, + "end": 30578.54, + "probability": 0.9866 + }, + { + "start": 30578.54, + "end": 30581.56, + "probability": 0.999 + }, + { + "start": 30581.74, + "end": 30586.18, + "probability": 0.9956 + }, + { + "start": 30587.63, + "end": 30591.87, + "probability": 0.9418 + }, + { + "start": 30592.9, + "end": 30593.78, + "probability": 0.867 + }, + { + "start": 30594.28, + "end": 30595.52, + "probability": 0.9684 + }, + { + "start": 30595.68, + "end": 30596.36, + "probability": 0.7512 + }, + { + "start": 30596.5, + "end": 30598.86, + "probability": 0.8398 + }, + { + "start": 30598.98, + "end": 30602.64, + "probability": 0.9896 + }, + { + "start": 30603.56, + "end": 30611.01, + "probability": 0.9766 + }, + { + "start": 30612.0, + "end": 30617.98, + "probability": 0.9993 + }, + { + "start": 30618.98, + "end": 30627.78, + "probability": 0.9969 + }, + { + "start": 30630.14, + "end": 30633.6, + "probability": 0.8397 + }, + { + "start": 30634.86, + "end": 30637.78, + "probability": 0.989 + }, + { + "start": 30637.94, + "end": 30640.6, + "probability": 0.9876 + }, + { + "start": 30640.68, + "end": 30643.5, + "probability": 0.952 + }, + { + "start": 30645.18, + "end": 30648.5, + "probability": 0.9335 + }, + { + "start": 30649.8, + "end": 30653.22, + "probability": 0.9929 + }, + { + "start": 30653.22, + "end": 30656.0, + "probability": 0.9974 + }, + { + "start": 30656.68, + "end": 30659.34, + "probability": 0.9882 + }, + { + "start": 30659.82, + "end": 30666.0, + "probability": 0.9842 + }, + { + "start": 30666.06, + "end": 30673.04, + "probability": 0.9576 + }, + { + "start": 30673.22, + "end": 30676.16, + "probability": 0.9957 + }, + { + "start": 30676.92, + "end": 30680.74, + "probability": 0.9987 + }, + { + "start": 30680.84, + "end": 30685.72, + "probability": 0.8884 + }, + { + "start": 30685.72, + "end": 30690.92, + "probability": 0.9915 + }, + { + "start": 30691.3, + "end": 30693.24, + "probability": 0.9358 + }, + { + "start": 30694.5, + "end": 30697.4, + "probability": 0.8865 + }, + { + "start": 30697.4, + "end": 30701.04, + "probability": 0.9971 + }, + { + "start": 30702.74, + "end": 30703.88, + "probability": 0.749 + }, + { + "start": 30705.26, + "end": 30709.12, + "probability": 0.9905 + }, + { + "start": 30709.18, + "end": 30711.92, + "probability": 0.9719 + }, + { + "start": 30712.5, + "end": 30713.54, + "probability": 0.9023 + }, + { + "start": 30716.32, + "end": 30717.34, + "probability": 0.0947 + }, + { + "start": 30717.54, + "end": 30724.24, + "probability": 0.9757 + }, + { + "start": 30724.3, + "end": 30725.18, + "probability": 0.7921 + }, + { + "start": 30725.18, + "end": 30725.66, + "probability": 0.6922 + }, + { + "start": 30725.74, + "end": 30726.68, + "probability": 0.9093 + }, + { + "start": 30726.86, + "end": 30727.28, + "probability": 0.7429 + }, + { + "start": 30727.3, + "end": 30730.74, + "probability": 0.9335 + }, + { + "start": 30731.39, + "end": 30736.96, + "probability": 0.964 + }, + { + "start": 30737.22, + "end": 30738.32, + "probability": 0.6406 + }, + { + "start": 30738.32, + "end": 30738.92, + "probability": 0.678 + }, + { + "start": 30740.15, + "end": 30745.5, + "probability": 0.7122 + }, + { + "start": 30745.5, + "end": 30748.66, + "probability": 0.9968 + }, + { + "start": 30748.78, + "end": 30753.54, + "probability": 0.9385 + }, + { + "start": 30753.64, + "end": 30759.44, + "probability": 0.6895 + }, + { + "start": 30759.44, + "end": 30761.2, + "probability": 0.5507 + }, + { + "start": 30761.92, + "end": 30764.26, + "probability": 0.9971 + }, + { + "start": 30765.29, + "end": 30767.84, + "probability": 0.8363 + }, + { + "start": 30767.92, + "end": 30769.2, + "probability": 0.8794 + }, + { + "start": 30769.36, + "end": 30773.86, + "probability": 0.9779 + }, + { + "start": 30774.88, + "end": 30776.96, + "probability": 0.9138 + }, + { + "start": 30777.26, + "end": 30778.57, + "probability": 0.9083 + }, + { + "start": 30779.2, + "end": 30780.66, + "probability": 0.9813 + }, + { + "start": 30781.0, + "end": 30782.6, + "probability": 0.8056 + }, + { + "start": 30782.78, + "end": 30784.78, + "probability": 0.985 + }, + { + "start": 30785.67, + "end": 30787.24, + "probability": 0.9915 + }, + { + "start": 30787.44, + "end": 30788.12, + "probability": 0.83 + }, + { + "start": 30789.18, + "end": 30789.92, + "probability": 0.9351 + }, + { + "start": 30790.02, + "end": 30791.82, + "probability": 0.993 + }, + { + "start": 30791.88, + "end": 30792.66, + "probability": 0.929 + }, + { + "start": 30792.78, + "end": 30793.48, + "probability": 0.7288 + }, + { + "start": 30793.58, + "end": 30794.28, + "probability": 0.7917 + }, + { + "start": 30794.34, + "end": 30799.2, + "probability": 0.9915 + }, + { + "start": 30799.26, + "end": 30804.08, + "probability": 0.9951 + }, + { + "start": 30804.68, + "end": 30806.6, + "probability": 0.8105 + }, + { + "start": 30806.64, + "end": 30808.56, + "probability": 0.9989 + }, + { + "start": 30809.04, + "end": 30810.38, + "probability": 0.9702 + }, + { + "start": 30810.52, + "end": 30815.9, + "probability": 0.9941 + }, + { + "start": 30816.76, + "end": 30820.5, + "probability": 0.9983 + }, + { + "start": 30820.64, + "end": 30824.0, + "probability": 0.9893 + }, + { + "start": 30824.54, + "end": 30827.26, + "probability": 0.958 + }, + { + "start": 30827.42, + "end": 30829.09, + "probability": 0.9976 + }, + { + "start": 30830.3, + "end": 30836.18, + "probability": 0.9965 + }, + { + "start": 30836.18, + "end": 30840.44, + "probability": 0.9918 + }, + { + "start": 30841.64, + "end": 30842.2, + "probability": 0.5148 + }, + { + "start": 30842.26, + "end": 30847.08, + "probability": 0.9978 + }, + { + "start": 30847.32, + "end": 30848.12, + "probability": 0.9633 + }, + { + "start": 30848.26, + "end": 30849.64, + "probability": 0.9347 + }, + { + "start": 30849.92, + "end": 30852.84, + "probability": 0.9896 + }, + { + "start": 30853.18, + "end": 30857.14, + "probability": 0.9801 + }, + { + "start": 30857.14, + "end": 30860.72, + "probability": 0.9989 + }, + { + "start": 30861.36, + "end": 30864.68, + "probability": 0.8971 + }, + { + "start": 30864.9, + "end": 30866.4, + "probability": 0.6932 + }, + { + "start": 30866.54, + "end": 30872.04, + "probability": 0.9933 + }, + { + "start": 30874.74, + "end": 30879.48, + "probability": 0.9979 + }, + { + "start": 30879.6, + "end": 30880.42, + "probability": 0.6254 + }, + { + "start": 30880.54, + "end": 30883.14, + "probability": 0.9973 + }, + { + "start": 30885.8, + "end": 30894.76, + "probability": 0.9878 + }, + { + "start": 30895.44, + "end": 30902.46, + "probability": 0.9541 + }, + { + "start": 30902.46, + "end": 30905.6, + "probability": 0.9962 + }, + { + "start": 30906.68, + "end": 30910.26, + "probability": 0.9944 + }, + { + "start": 30910.3, + "end": 30912.9, + "probability": 0.9381 + }, + { + "start": 30913.0, + "end": 30918.78, + "probability": 0.9921 + }, + { + "start": 30919.1, + "end": 30920.2, + "probability": 0.9146 + }, + { + "start": 30920.66, + "end": 30922.1, + "probability": 0.8885 + }, + { + "start": 30922.28, + "end": 30927.14, + "probability": 0.9688 + }, + { + "start": 30927.7, + "end": 30930.7, + "probability": 0.9327 + }, + { + "start": 30931.42, + "end": 30933.74, + "probability": 0.9399 + }, + { + "start": 30934.22, + "end": 30936.76, + "probability": 0.9969 + }, + { + "start": 30936.96, + "end": 30943.12, + "probability": 0.9974 + }, + { + "start": 30943.28, + "end": 30946.36, + "probability": 0.999 + }, + { + "start": 30946.36, + "end": 30949.58, + "probability": 0.9888 + }, + { + "start": 30950.26, + "end": 30954.44, + "probability": 0.9895 + }, + { + "start": 30954.62, + "end": 30964.24, + "probability": 0.9875 + }, + { + "start": 30965.0, + "end": 30967.98, + "probability": 0.9971 + }, + { + "start": 30968.2, + "end": 30968.58, + "probability": 0.6238 + }, + { + "start": 30968.68, + "end": 30969.16, + "probability": 0.7263 + }, + { + "start": 30969.3, + "end": 30972.7, + "probability": 0.9901 + }, + { + "start": 30973.34, + "end": 30975.28, + "probability": 0.9027 + }, + { + "start": 30975.48, + "end": 30981.54, + "probability": 0.9842 + }, + { + "start": 30981.8, + "end": 30984.94, + "probability": 0.8423 + }, + { + "start": 30986.08, + "end": 30990.68, + "probability": 0.9022 + }, + { + "start": 30990.8, + "end": 30997.56, + "probability": 0.9692 + }, + { + "start": 30998.2, + "end": 31000.88, + "probability": 0.991 + }, + { + "start": 31001.44, + "end": 31005.14, + "probability": 0.9587 + }, + { + "start": 31005.8, + "end": 31007.62, + "probability": 0.9634 + }, + { + "start": 31007.74, + "end": 31010.58, + "probability": 0.9341 + }, + { + "start": 31010.66, + "end": 31013.46, + "probability": 0.9928 + }, + { + "start": 31013.96, + "end": 31015.5, + "probability": 0.7001 + }, + { + "start": 31015.58, + "end": 31017.02, + "probability": 0.9882 + }, + { + "start": 31017.26, + "end": 31022.9, + "probability": 0.9639 + }, + { + "start": 31023.66, + "end": 31030.52, + "probability": 0.994 + }, + { + "start": 31031.16, + "end": 31031.82, + "probability": 0.6857 + }, + { + "start": 31037.42, + "end": 31038.86, + "probability": 0.7931 + }, + { + "start": 31039.02, + "end": 31040.06, + "probability": 0.4276 + }, + { + "start": 31040.06, + "end": 31040.18, + "probability": 0.7897 + }, + { + "start": 31040.24, + "end": 31041.52, + "probability": 0.9738 + }, + { + "start": 31041.72, + "end": 31043.56, + "probability": 0.9941 + }, + { + "start": 31043.96, + "end": 31046.66, + "probability": 0.987 + }, + { + "start": 31046.7, + "end": 31048.56, + "probability": 0.8911 + }, + { + "start": 31049.39, + "end": 31057.7, + "probability": 0.9927 + }, + { + "start": 31057.7, + "end": 31063.04, + "probability": 0.9841 + }, + { + "start": 31063.12, + "end": 31063.68, + "probability": 0.8777 + }, + { + "start": 31063.78, + "end": 31065.52, + "probability": 0.9154 + }, + { + "start": 31066.27, + "end": 31070.74, + "probability": 0.9914 + }, + { + "start": 31070.98, + "end": 31071.46, + "probability": 0.4495 + }, + { + "start": 31071.52, + "end": 31074.12, + "probability": 0.9907 + }, + { + "start": 31074.72, + "end": 31077.18, + "probability": 0.9966 + }, + { + "start": 31077.26, + "end": 31080.26, + "probability": 0.9985 + }, + { + "start": 31081.09, + "end": 31083.68, + "probability": 0.9993 + }, + { + "start": 31084.68, + "end": 31087.56, + "probability": 0.9727 + }, + { + "start": 31087.6, + "end": 31091.84, + "probability": 0.9896 + }, + { + "start": 31092.22, + "end": 31094.66, + "probability": 0.9538 + }, + { + "start": 31094.82, + "end": 31096.7, + "probability": 0.9945 + }, + { + "start": 31097.24, + "end": 31100.62, + "probability": 0.8475 + }, + { + "start": 31100.96, + "end": 31105.44, + "probability": 0.8713 + }, + { + "start": 31105.44, + "end": 31110.08, + "probability": 0.9964 + }, + { + "start": 31110.18, + "end": 31111.84, + "probability": 0.8586 + }, + { + "start": 31112.08, + "end": 31119.82, + "probability": 0.9784 + }, + { + "start": 31119.96, + "end": 31125.54, + "probability": 0.9932 + }, + { + "start": 31126.44, + "end": 31130.18, + "probability": 0.9432 + }, + { + "start": 31131.0, + "end": 31136.24, + "probability": 0.7654 + }, + { + "start": 31136.92, + "end": 31138.74, + "probability": 0.9945 + }, + { + "start": 31139.08, + "end": 31139.6, + "probability": 0.6555 + }, + { + "start": 31139.72, + "end": 31140.18, + "probability": 0.3163 + }, + { + "start": 31140.24, + "end": 31141.32, + "probability": 0.7065 + }, + { + "start": 31142.0, + "end": 31147.7, + "probability": 0.9895 + }, + { + "start": 31149.0, + "end": 31155.64, + "probability": 0.9703 + }, + { + "start": 31158.1, + "end": 31161.52, + "probability": 0.7429 + }, + { + "start": 31161.52, + "end": 31164.72, + "probability": 0.9822 + }, + { + "start": 31165.46, + "end": 31167.14, + "probability": 0.9813 + }, + { + "start": 31182.36, + "end": 31183.06, + "probability": 0.149 + }, + { + "start": 31183.06, + "end": 31183.06, + "probability": 0.273 + }, + { + "start": 31183.06, + "end": 31183.06, + "probability": 0.0227 + }, + { + "start": 31183.06, + "end": 31185.02, + "probability": 0.6533 + }, + { + "start": 31185.18, + "end": 31186.95, + "probability": 0.9849 + }, + { + "start": 31193.76, + "end": 31196.16, + "probability": 0.9966 + }, + { + "start": 31196.16, + "end": 31200.24, + "probability": 0.9697 + }, + { + "start": 31201.14, + "end": 31203.1, + "probability": 0.9978 + }, + { + "start": 31206.36, + "end": 31210.74, + "probability": 0.8275 + }, + { + "start": 31211.28, + "end": 31214.2, + "probability": 0.9943 + }, + { + "start": 31214.32, + "end": 31216.22, + "probability": 0.8303 + }, + { + "start": 31216.9, + "end": 31218.22, + "probability": 0.876 + }, + { + "start": 31218.9, + "end": 31222.14, + "probability": 0.842 + }, + { + "start": 31222.82, + "end": 31223.54, + "probability": 0.7385 + }, + { + "start": 31235.6, + "end": 31238.6, + "probability": 0.7602 + }, + { + "start": 31239.72, + "end": 31242.0, + "probability": 0.5237 + }, + { + "start": 31242.84, + "end": 31247.48, + "probability": 0.9926 + }, + { + "start": 31247.48, + "end": 31255.2, + "probability": 0.8661 + }, + { + "start": 31257.21, + "end": 31261.42, + "probability": 0.9898 + }, + { + "start": 31263.04, + "end": 31265.3, + "probability": 0.9644 + }, + { + "start": 31266.64, + "end": 31270.12, + "probability": 0.978 + }, + { + "start": 31271.28, + "end": 31274.0, + "probability": 0.9797 + }, + { + "start": 31275.38, + "end": 31278.5, + "probability": 0.9978 + }, + { + "start": 31278.5, + "end": 31284.44, + "probability": 0.9783 + }, + { + "start": 31285.34, + "end": 31288.69, + "probability": 0.9776 + }, + { + "start": 31289.54, + "end": 31293.24, + "probability": 0.9912 + }, + { + "start": 31294.22, + "end": 31296.34, + "probability": 0.987 + }, + { + "start": 31297.72, + "end": 31299.86, + "probability": 0.9439 + }, + { + "start": 31299.92, + "end": 31306.78, + "probability": 0.963 + }, + { + "start": 31307.38, + "end": 31312.52, + "probability": 0.9841 + }, + { + "start": 31313.86, + "end": 31315.88, + "probability": 0.9674 + }, + { + "start": 31316.86, + "end": 31319.54, + "probability": 0.8963 + }, + { + "start": 31320.32, + "end": 31325.56, + "probability": 0.9726 + }, + { + "start": 31326.56, + "end": 31327.8, + "probability": 0.8765 + }, + { + "start": 31331.54, + "end": 31334.7, + "probability": 0.886 + }, + { + "start": 31335.58, + "end": 31338.8, + "probability": 0.9243 + }, + { + "start": 31339.74, + "end": 31341.38, + "probability": 0.8704 + }, + { + "start": 31342.52, + "end": 31342.86, + "probability": 0.3362 + }, + { + "start": 31343.22, + "end": 31343.64, + "probability": 0.4323 + }, + { + "start": 31344.42, + "end": 31346.42, + "probability": 0.3361 + }, + { + "start": 31346.42, + "end": 31349.24, + "probability": 0.9326 + }, + { + "start": 31349.32, + "end": 31350.18, + "probability": 0.3941 + }, + { + "start": 31350.48, + "end": 31352.62, + "probability": 0.9469 + }, + { + "start": 31352.66, + "end": 31353.5, + "probability": 0.9777 + }, + { + "start": 31354.76, + "end": 31356.0, + "probability": 0.9247 + }, + { + "start": 31356.12, + "end": 31358.42, + "probability": 0.9944 + }, + { + "start": 31359.66, + "end": 31360.52, + "probability": 0.7576 + }, + { + "start": 31362.44, + "end": 31364.12, + "probability": 0.9714 + }, + { + "start": 31364.2, + "end": 31365.74, + "probability": 0.5122 + }, + { + "start": 31366.18, + "end": 31367.11, + "probability": 0.9926 + }, + { + "start": 31368.5, + "end": 31369.7, + "probability": 0.9744 + }, + { + "start": 31369.74, + "end": 31370.44, + "probability": 0.9771 + }, + { + "start": 31370.78, + "end": 31374.92, + "probability": 0.9414 + }, + { + "start": 31375.0, + "end": 31377.18, + "probability": 0.9827 + }, + { + "start": 31377.28, + "end": 31377.64, + "probability": 0.9922 + }, + { + "start": 31378.82, + "end": 31380.22, + "probability": 0.4712 + }, + { + "start": 31381.92, + "end": 31383.52, + "probability": 0.7862 + }, + { + "start": 31385.3, + "end": 31386.34, + "probability": 0.7258 + }, + { + "start": 31388.12, + "end": 31390.34, + "probability": 0.8111 + }, + { + "start": 31391.0, + "end": 31395.76, + "probability": 0.9937 + }, + { + "start": 31395.82, + "end": 31397.3, + "probability": 0.9793 + }, + { + "start": 31397.4, + "end": 31397.98, + "probability": 0.8213 + }, + { + "start": 31399.02, + "end": 31403.46, + "probability": 0.7817 + }, + { + "start": 31403.46, + "end": 31406.16, + "probability": 0.9993 + }, + { + "start": 31406.4, + "end": 31408.22, + "probability": 0.7966 + }, + { + "start": 31409.24, + "end": 31410.76, + "probability": 0.962 + }, + { + "start": 31411.48, + "end": 31414.84, + "probability": 0.6372 + }, + { + "start": 31415.52, + "end": 31417.46, + "probability": 0.571 + }, + { + "start": 31417.54, + "end": 31417.96, + "probability": 0.8901 + }, + { + "start": 31418.2, + "end": 31422.4, + "probability": 0.9782 + }, + { + "start": 31422.54, + "end": 31424.14, + "probability": 0.4365 + }, + { + "start": 31424.36, + "end": 31425.5, + "probability": 0.7416 + }, + { + "start": 31425.66, + "end": 31426.22, + "probability": 0.9543 + }, + { + "start": 31427.88, + "end": 31430.4, + "probability": 0.8899 + }, + { + "start": 31430.58, + "end": 31433.12, + "probability": 0.9061 + }, + { + "start": 31433.72, + "end": 31435.9, + "probability": 0.9131 + }, + { + "start": 31436.34, + "end": 31438.96, + "probability": 0.9819 + }, + { + "start": 31439.2, + "end": 31442.4, + "probability": 0.9754 + }, + { + "start": 31442.88, + "end": 31449.28, + "probability": 0.9834 + }, + { + "start": 31449.86, + "end": 31453.02, + "probability": 0.9696 + }, + { + "start": 31454.02, + "end": 31457.02, + "probability": 0.8106 + }, + { + "start": 31457.6, + "end": 31460.32, + "probability": 0.9969 + }, + { + "start": 31460.94, + "end": 31465.04, + "probability": 0.9825 + }, + { + "start": 31465.72, + "end": 31468.06, + "probability": 0.9946 + }, + { + "start": 31468.6, + "end": 31472.4, + "probability": 0.9906 + }, + { + "start": 31473.04, + "end": 31476.14, + "probability": 0.9118 + }, + { + "start": 31476.66, + "end": 31479.92, + "probability": 0.96 + }, + { + "start": 31480.14, + "end": 31482.82, + "probability": 0.9937 + }, + { + "start": 31483.18, + "end": 31484.72, + "probability": 0.987 + }, + { + "start": 31485.22, + "end": 31487.54, + "probability": 0.9871 + }, + { + "start": 31488.3, + "end": 31490.98, + "probability": 0.983 + }, + { + "start": 31491.1, + "end": 31494.52, + "probability": 0.7406 + }, + { + "start": 31494.68, + "end": 31499.26, + "probability": 0.9803 + }, + { + "start": 31500.0, + "end": 31503.08, + "probability": 0.8824 + }, + { + "start": 31503.6, + "end": 31507.18, + "probability": 0.9444 + }, + { + "start": 31508.1, + "end": 31511.08, + "probability": 0.9754 + }, + { + "start": 31511.52, + "end": 31514.9, + "probability": 0.998 + }, + { + "start": 31515.44, + "end": 31519.16, + "probability": 0.9666 + }, + { + "start": 31519.16, + "end": 31522.02, + "probability": 0.9664 + }, + { + "start": 31522.54, + "end": 31525.62, + "probability": 0.993 + }, + { + "start": 31525.78, + "end": 31528.32, + "probability": 0.9316 + }, + { + "start": 31529.66, + "end": 31531.76, + "probability": 0.9491 + }, + { + "start": 31532.3, + "end": 31533.14, + "probability": 0.5308 + }, + { + "start": 31533.58, + "end": 31534.04, + "probability": 0.4513 + }, + { + "start": 31535.28, + "end": 31536.32, + "probability": 0.9056 + }, + { + "start": 31536.34, + "end": 31538.82, + "probability": 0.9927 + }, + { + "start": 31538.98, + "end": 31539.44, + "probability": 0.1364 + }, + { + "start": 31539.94, + "end": 31540.98, + "probability": 0.837 + }, + { + "start": 31541.34, + "end": 31541.88, + "probability": 0.8926 + }, + { + "start": 31542.04, + "end": 31547.16, + "probability": 0.9971 + }, + { + "start": 31547.78, + "end": 31549.36, + "probability": 0.4713 + }, + { + "start": 31549.6, + "end": 31551.6, + "probability": 0.8779 + }, + { + "start": 31551.94, + "end": 31553.36, + "probability": 0.8304 + }, + { + "start": 31553.4, + "end": 31554.56, + "probability": 0.6626 + }, + { + "start": 31554.72, + "end": 31554.84, + "probability": 0.2829 + }, + { + "start": 31554.84, + "end": 31554.96, + "probability": 0.6643 + }, + { + "start": 31554.98, + "end": 31556.5, + "probability": 0.9141 + }, + { + "start": 31557.08, + "end": 31559.6, + "probability": 0.9394 + }, + { + "start": 31560.02, + "end": 31562.92, + "probability": 0.9888 + }, + { + "start": 31563.0, + "end": 31563.54, + "probability": 0.7204 + }, + { + "start": 31563.58, + "end": 31563.74, + "probability": 0.3671 + }, + { + "start": 31563.74, + "end": 31565.36, + "probability": 0.627 + }, + { + "start": 31565.44, + "end": 31566.66, + "probability": 0.9911 + }, + { + "start": 31566.78, + "end": 31567.3, + "probability": 0.517 + }, + { + "start": 31567.4, + "end": 31568.88, + "probability": 0.9573 + }, + { + "start": 31568.9, + "end": 31569.8, + "probability": 0.6904 + }, + { + "start": 31570.94, + "end": 31573.2, + "probability": 0.6104 + }, + { + "start": 31575.58, + "end": 31576.48, + "probability": 0.4862 + }, + { + "start": 31576.48, + "end": 31577.18, + "probability": 0.8367 + }, + { + "start": 31577.18, + "end": 31577.18, + "probability": 0.0119 + }, + { + "start": 31577.22, + "end": 31578.55, + "probability": 0.4368 + }, + { + "start": 31580.08, + "end": 31582.3, + "probability": 0.8699 + }, + { + "start": 31594.92, + "end": 31596.6, + "probability": 0.8407 + }, + { + "start": 31599.54, + "end": 31602.2, + "probability": 0.7693 + }, + { + "start": 31602.92, + "end": 31606.34, + "probability": 0.9186 + }, + { + "start": 31607.08, + "end": 31609.62, + "probability": 0.8035 + }, + { + "start": 31610.22, + "end": 31615.24, + "probability": 0.96 + }, + { + "start": 31615.92, + "end": 31618.12, + "probability": 0.98 + }, + { + "start": 31623.05, + "end": 31627.94, + "probability": 0.9873 + }, + { + "start": 31627.94, + "end": 31632.82, + "probability": 0.9821 + }, + { + "start": 31632.82, + "end": 31639.88, + "probability": 0.98 + }, + { + "start": 31639.88, + "end": 31645.32, + "probability": 0.9397 + }, + { + "start": 31645.74, + "end": 31646.72, + "probability": 0.9619 + }, + { + "start": 31647.38, + "end": 31651.96, + "probability": 0.9481 + }, + { + "start": 31652.64, + "end": 31655.43, + "probability": 0.9983 + }, + { + "start": 31656.18, + "end": 31660.66, + "probability": 0.9531 + }, + { + "start": 31661.18, + "end": 31663.48, + "probability": 0.9875 + }, + { + "start": 31664.24, + "end": 31667.26, + "probability": 0.9744 + }, + { + "start": 31668.0, + "end": 31671.22, + "probability": 0.922 + }, + { + "start": 31671.22, + "end": 31674.62, + "probability": 0.9827 + }, + { + "start": 31675.16, + "end": 31677.58, + "probability": 0.6711 + }, + { + "start": 31678.26, + "end": 31679.54, + "probability": 0.9949 + }, + { + "start": 31680.04, + "end": 31682.64, + "probability": 0.9922 + }, + { + "start": 31683.42, + "end": 31686.76, + "probability": 0.9734 + }, + { + "start": 31686.9, + "end": 31689.48, + "probability": 0.9451 + }, + { + "start": 31690.04, + "end": 31690.88, + "probability": 0.8403 + }, + { + "start": 31691.26, + "end": 31696.04, + "probability": 0.9882 + }, + { + "start": 31696.52, + "end": 31699.2, + "probability": 0.994 + }, + { + "start": 31700.0, + "end": 31704.46, + "probability": 0.9908 + }, + { + "start": 31705.08, + "end": 31706.42, + "probability": 0.9177 + }, + { + "start": 31706.52, + "end": 31708.28, + "probability": 0.9538 + }, + { + "start": 31708.4, + "end": 31709.94, + "probability": 0.9652 + }, + { + "start": 31710.56, + "end": 31711.87, + "probability": 0.6834 + }, + { + "start": 31712.06, + "end": 31712.54, + "probability": 0.7696 + }, + { + "start": 31712.58, + "end": 31713.28, + "probability": 0.829 + }, + { + "start": 31713.54, + "end": 31714.6, + "probability": 0.5631 + }, + { + "start": 31715.0, + "end": 31717.82, + "probability": 0.9937 + }, + { + "start": 31718.1, + "end": 31719.7, + "probability": 0.2726 + }, + { + "start": 31719.94, + "end": 31722.66, + "probability": 0.2253 + }, + { + "start": 31722.94, + "end": 31727.42, + "probability": 0.6992 + }, + { + "start": 31727.46, + "end": 31727.94, + "probability": 0.684 + }, + { + "start": 31728.12, + "end": 31729.9, + "probability": 0.6802 + }, + { + "start": 31730.02, + "end": 31731.24, + "probability": 0.6923 + }, + { + "start": 31731.3, + "end": 31732.72, + "probability": 0.5921 + }, + { + "start": 31732.74, + "end": 31735.68, + "probability": 0.9036 + }, + { + "start": 31736.68, + "end": 31738.94, + "probability": 0.9983 + }, + { + "start": 31741.26, + "end": 31746.76, + "probability": 0.5489 + }, + { + "start": 31746.9, + "end": 31751.06, + "probability": 0.9595 + }, + { + "start": 31751.06, + "end": 31756.97, + "probability": 0.9918 + }, + { + "start": 31758.58, + "end": 31759.16, + "probability": 0.7215 + }, + { + "start": 31762.16, + "end": 31765.92, + "probability": 0.3201 + }, + { + "start": 31771.94, + "end": 31772.38, + "probability": 0.1114 + }, + { + "start": 31772.88, + "end": 31776.12, + "probability": 0.891 + }, + { + "start": 31776.34, + "end": 31778.98, + "probability": 0.8024 + }, + { + "start": 31778.98, + "end": 31784.08, + "probability": 0.9672 + }, + { + "start": 31793.86, + "end": 31796.52, + "probability": 0.3413 + }, + { + "start": 31796.66, + "end": 31799.64, + "probability": 0.9897 + } + ], + "segments_count": 10792, + "words_count": 54960, + "avg_words_per_segment": 5.0927, + "avg_segment_duration": 2.0725, + "avg_words_per_minute": 103.2495, + "plenum_id": "128664", + "duration": 31938.18, + "title": null, + "plenum_date": "2024-07-10" +} \ No newline at end of file