diff --git "a/21428/metadata.json" "b/21428/metadata.json" new file mode 100644--- /dev/null +++ "b/21428/metadata.json" @@ -0,0 +1,10327 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "21428", + "quality_score": 0.9085, + "per_segment_quality_scores": [ + { + "start": 25.0, + "end": 25.0, + "probability": 0.0 + }, + { + "start": 25.0, + "end": 25.0, + "probability": 0.0 + }, + { + "start": 25.0, + "end": 25.0, + "probability": 0.0 + }, + { + "start": 25.0, + "end": 25.0, + "probability": 0.0 + }, + { + "start": 25.93, + "end": 28.92, + "probability": 0.1245 + }, + { + "start": 32.12, + "end": 33.68, + "probability": 0.1683 + }, + { + "start": 34.88, + "end": 35.82, + "probability": 0.2594 + }, + { + "start": 43.04, + "end": 43.68, + "probability": 0.083 + }, + { + "start": 45.56, + "end": 46.28, + "probability": 0.001 + }, + { + "start": 47.47, + "end": 49.08, + "probability": 0.1761 + }, + { + "start": 49.62, + "end": 49.96, + "probability": 0.0092 + }, + { + "start": 51.14, + "end": 51.88, + "probability": 0.0769 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 171.0, + "end": 173.85, + "probability": 0.9183 + }, + { + "start": 175.24, + "end": 179.98, + "probability": 0.7922 + }, + { + "start": 181.62, + "end": 184.78, + "probability": 0.9841 + }, + { + "start": 185.3, + "end": 186.92, + "probability": 0.9915 + }, + { + "start": 187.82, + "end": 190.62, + "probability": 0.9347 + }, + { + "start": 191.52, + "end": 195.23, + "probability": 0.9891 + }, + { + "start": 196.14, + "end": 200.28, + "probability": 0.9167 + }, + { + "start": 201.3, + "end": 202.5, + "probability": 0.9304 + }, + { + "start": 202.6, + "end": 204.5, + "probability": 0.8066 + }, + { + "start": 204.92, + "end": 206.6, + "probability": 0.867 + }, + { + "start": 206.74, + "end": 210.44, + "probability": 0.9716 + }, + { + "start": 210.94, + "end": 214.6, + "probability": 0.9933 + }, + { + "start": 215.4, + "end": 216.1, + "probability": 0.9794 + }, + { + "start": 219.34, + "end": 220.0, + "probability": 0.5393 + }, + { + "start": 220.54, + "end": 223.52, + "probability": 0.8508 + }, + { + "start": 224.24, + "end": 225.38, + "probability": 0.8705 + }, + { + "start": 225.5, + "end": 227.24, + "probability": 0.8919 + }, + { + "start": 227.98, + "end": 233.8, + "probability": 0.782 + }, + { + "start": 234.38, + "end": 235.26, + "probability": 0.9775 + }, + { + "start": 235.4, + "end": 236.12, + "probability": 0.6904 + }, + { + "start": 236.58, + "end": 240.92, + "probability": 0.9942 + }, + { + "start": 241.44, + "end": 244.03, + "probability": 0.9858 + }, + { + "start": 245.1, + "end": 251.84, + "probability": 0.8785 + }, + { + "start": 252.18, + "end": 257.16, + "probability": 0.998 + }, + { + "start": 257.58, + "end": 259.82, + "probability": 0.8449 + }, + { + "start": 260.22, + "end": 262.72, + "probability": 0.8691 + }, + { + "start": 263.46, + "end": 267.74, + "probability": 0.9918 + }, + { + "start": 268.18, + "end": 269.8, + "probability": 0.9777 + }, + { + "start": 270.16, + "end": 274.3, + "probability": 0.8955 + }, + { + "start": 274.8, + "end": 275.58, + "probability": 0.8688 + }, + { + "start": 275.72, + "end": 277.9, + "probability": 0.9715 + }, + { + "start": 278.52, + "end": 280.36, + "probability": 0.8972 + }, + { + "start": 281.04, + "end": 284.5, + "probability": 0.9634 + }, + { + "start": 285.02, + "end": 287.1, + "probability": 0.9217 + }, + { + "start": 287.64, + "end": 288.8, + "probability": 0.7343 + }, + { + "start": 291.36, + "end": 293.66, + "probability": 0.2541 + }, + { + "start": 294.8, + "end": 295.56, + "probability": 0.7969 + }, + { + "start": 295.84, + "end": 296.38, + "probability": 0.9537 + }, + { + "start": 296.52, + "end": 297.02, + "probability": 0.4444 + }, + { + "start": 297.08, + "end": 298.78, + "probability": 0.8873 + }, + { + "start": 299.22, + "end": 299.92, + "probability": 0.6258 + }, + { + "start": 300.56, + "end": 304.12, + "probability": 0.9691 + }, + { + "start": 305.42, + "end": 305.88, + "probability": 0.9175 + }, + { + "start": 305.98, + "end": 307.06, + "probability": 0.8345 + }, + { + "start": 307.24, + "end": 307.96, + "probability": 0.9333 + }, + { + "start": 308.44, + "end": 309.5, + "probability": 0.7971 + }, + { + "start": 311.26, + "end": 313.9, + "probability": 0.9897 + }, + { + "start": 313.9, + "end": 316.18, + "probability": 0.9985 + }, + { + "start": 316.92, + "end": 318.0, + "probability": 0.8422 + }, + { + "start": 318.08, + "end": 319.28, + "probability": 0.9246 + }, + { + "start": 319.64, + "end": 324.44, + "probability": 0.9949 + }, + { + "start": 325.44, + "end": 327.6, + "probability": 0.9666 + }, + { + "start": 328.1, + "end": 332.0, + "probability": 0.9946 + }, + { + "start": 333.32, + "end": 339.38, + "probability": 0.9888 + }, + { + "start": 340.74, + "end": 341.48, + "probability": 0.6133 + }, + { + "start": 342.22, + "end": 343.14, + "probability": 0.7978 + }, + { + "start": 344.9, + "end": 347.66, + "probability": 0.9759 + }, + { + "start": 348.86, + "end": 353.42, + "probability": 0.9673 + }, + { + "start": 353.62, + "end": 358.08, + "probability": 0.7956 + }, + { + "start": 359.2, + "end": 362.5, + "probability": 0.9494 + }, + { + "start": 362.96, + "end": 365.42, + "probability": 0.9906 + }, + { + "start": 365.96, + "end": 367.3, + "probability": 0.6927 + }, + { + "start": 367.48, + "end": 371.34, + "probability": 0.9739 + }, + { + "start": 372.22, + "end": 373.48, + "probability": 0.781 + }, + { + "start": 373.54, + "end": 374.06, + "probability": 0.7492 + }, + { + "start": 374.5, + "end": 379.86, + "probability": 0.9899 + }, + { + "start": 380.52, + "end": 384.46, + "probability": 0.9991 + }, + { + "start": 385.68, + "end": 386.48, + "probability": 0.7607 + }, + { + "start": 387.0, + "end": 396.9, + "probability": 0.9328 + }, + { + "start": 397.26, + "end": 398.28, + "probability": 0.4958 + }, + { + "start": 399.0, + "end": 406.4, + "probability": 0.9779 + }, + { + "start": 406.5, + "end": 410.89, + "probability": 0.9765 + }, + { + "start": 411.62, + "end": 415.68, + "probability": 0.9928 + }, + { + "start": 415.68, + "end": 420.56, + "probability": 0.9795 + }, + { + "start": 421.24, + "end": 427.74, + "probability": 0.9902 + }, + { + "start": 427.74, + "end": 433.64, + "probability": 0.9977 + }, + { + "start": 434.88, + "end": 437.53, + "probability": 0.9872 + }, + { + "start": 438.82, + "end": 441.3, + "probability": 0.9926 + }, + { + "start": 442.56, + "end": 445.98, + "probability": 0.8699 + }, + { + "start": 446.8, + "end": 447.64, + "probability": 0.963 + }, + { + "start": 448.06, + "end": 448.76, + "probability": 0.8755 + }, + { + "start": 451.16, + "end": 454.84, + "probability": 0.8916 + }, + { + "start": 455.3, + "end": 458.06, + "probability": 0.4893 + }, + { + "start": 458.16, + "end": 458.86, + "probability": 0.9424 + }, + { + "start": 459.14, + "end": 460.04, + "probability": 0.8988 + }, + { + "start": 460.3, + "end": 460.44, + "probability": 0.4013 + }, + { + "start": 460.92, + "end": 461.62, + "probability": 0.9753 + }, + { + "start": 462.26, + "end": 464.0, + "probability": 0.5128 + }, + { + "start": 464.44, + "end": 465.94, + "probability": 0.0673 + }, + { + "start": 467.22, + "end": 468.9, + "probability": 0.5496 + }, + { + "start": 468.98, + "end": 469.58, + "probability": 0.3219 + }, + { + "start": 469.58, + "end": 470.38, + "probability": 0.8305 + }, + { + "start": 470.72, + "end": 471.92, + "probability": 0.8451 + }, + { + "start": 472.02, + "end": 473.78, + "probability": 0.8114 + }, + { + "start": 474.24, + "end": 475.34, + "probability": 0.7651 + }, + { + "start": 475.44, + "end": 476.84, + "probability": 0.8287 + }, + { + "start": 477.26, + "end": 478.9, + "probability": 0.8049 + }, + { + "start": 479.22, + "end": 487.25, + "probability": 0.8598 + }, + { + "start": 487.34, + "end": 492.88, + "probability": 0.9777 + }, + { + "start": 493.5, + "end": 496.5, + "probability": 0.8596 + }, + { + "start": 497.04, + "end": 501.08, + "probability": 0.7823 + }, + { + "start": 502.3, + "end": 502.48, + "probability": 0.6893 + }, + { + "start": 503.58, + "end": 503.6, + "probability": 0.7852 + }, + { + "start": 505.14, + "end": 508.7, + "probability": 0.3732 + }, + { + "start": 509.06, + "end": 511.2, + "probability": 0.2849 + }, + { + "start": 511.48, + "end": 513.06, + "probability": 0.8037 + }, + { + "start": 513.5, + "end": 515.46, + "probability": 0.9893 + }, + { + "start": 515.98, + "end": 519.3, + "probability": 0.7075 + }, + { + "start": 520.0, + "end": 521.76, + "probability": 0.4767 + }, + { + "start": 522.22, + "end": 522.4, + "probability": 0.4118 + }, + { + "start": 522.4, + "end": 522.98, + "probability": 0.4298 + }, + { + "start": 522.98, + "end": 524.5, + "probability": 0.5023 + }, + { + "start": 525.52, + "end": 527.28, + "probability": 0.1346 + }, + { + "start": 527.78, + "end": 532.48, + "probability": 0.744 + }, + { + "start": 532.82, + "end": 533.3, + "probability": 0.8477 + }, + { + "start": 534.28, + "end": 537.12, + "probability": 0.9795 + }, + { + "start": 537.7, + "end": 541.78, + "probability": 0.8501 + }, + { + "start": 542.2, + "end": 543.94, + "probability": 0.6637 + }, + { + "start": 544.5, + "end": 548.84, + "probability": 0.8675 + }, + { + "start": 549.34, + "end": 551.8, + "probability": 0.5092 + }, + { + "start": 566.44, + "end": 569.52, + "probability": 0.2657 + }, + { + "start": 570.1, + "end": 571.74, + "probability": 0.6738 + }, + { + "start": 572.32, + "end": 574.4, + "probability": 0.986 + }, + { + "start": 574.88, + "end": 576.07, + "probability": 0.7318 + }, + { + "start": 576.6, + "end": 577.7, + "probability": 0.7114 + }, + { + "start": 577.92, + "end": 579.62, + "probability": 0.6262 + }, + { + "start": 579.62, + "end": 579.64, + "probability": 0.7252 + }, + { + "start": 579.64, + "end": 581.66, + "probability": 0.0966 + }, + { + "start": 583.74, + "end": 583.92, + "probability": 0.032 + }, + { + "start": 583.92, + "end": 583.92, + "probability": 0.0241 + }, + { + "start": 583.92, + "end": 585.14, + "probability": 0.0895 + }, + { + "start": 585.14, + "end": 586.14, + "probability": 0.0161 + }, + { + "start": 593.86, + "end": 594.82, + "probability": 0.0042 + }, + { + "start": 595.76, + "end": 597.04, + "probability": 0.0735 + }, + { + "start": 597.52, + "end": 599.28, + "probability": 0.4816 + }, + { + "start": 605.46, + "end": 607.32, + "probability": 0.4367 + }, + { + "start": 608.02, + "end": 612.14, + "probability": 0.1251 + }, + { + "start": 612.14, + "end": 613.96, + "probability": 0.0921 + }, + { + "start": 613.96, + "end": 617.32, + "probability": 0.4135 + }, + { + "start": 617.68, + "end": 618.32, + "probability": 0.1863 + }, + { + "start": 618.32, + "end": 620.64, + "probability": 0.0565 + }, + { + "start": 621.02, + "end": 621.86, + "probability": 0.0279 + }, + { + "start": 632.0, + "end": 632.0, + "probability": 0.0 + }, + { + "start": 632.0, + "end": 632.0, + "probability": 0.0 + }, + { + "start": 632.0, + "end": 632.0, + "probability": 0.0 + }, + { + "start": 632.0, + "end": 632.0, + "probability": 0.0 + }, + { + "start": 632.0, + "end": 632.0, + "probability": 0.0 + }, + { + "start": 632.0, + "end": 632.0, + "probability": 0.0 + }, + { + "start": 632.0, + "end": 632.0, + "probability": 0.0 + }, + { + "start": 632.0, + "end": 632.0, + "probability": 0.0 + }, + { + "start": 632.0, + "end": 632.0, + "probability": 0.0 + }, + { + "start": 632.0, + "end": 632.0, + "probability": 0.0 + }, + { + "start": 632.0, + "end": 632.0, + "probability": 0.0 + }, + { + "start": 632.0, + "end": 632.0, + "probability": 0.0 + }, + { + "start": 632.0, + "end": 632.0, + "probability": 0.0 + }, + { + "start": 632.0, + "end": 632.0, + "probability": 0.0 + }, + { + "start": 632.0, + "end": 632.0, + "probability": 0.0 + }, + { + "start": 632.0, + "end": 632.0, + "probability": 0.0 + }, + { + "start": 632.0, + "end": 632.0, + "probability": 0.0 + }, + { + "start": 632.0, + "end": 632.0, + "probability": 0.0 + }, + { + "start": 632.0, + "end": 632.0, + "probability": 0.0 + }, + { + "start": 633.89, + "end": 638.26, + "probability": 0.9048 + }, + { + "start": 638.68, + "end": 640.12, + "probability": 0.9937 + }, + { + "start": 640.7, + "end": 641.3, + "probability": 0.7733 + }, + { + "start": 641.32, + "end": 641.8, + "probability": 0.843 + }, + { + "start": 642.22, + "end": 645.6, + "probability": 0.98 + }, + { + "start": 645.6, + "end": 647.24, + "probability": 0.9356 + }, + { + "start": 647.94, + "end": 654.68, + "probability": 0.9744 + }, + { + "start": 654.8, + "end": 655.16, + "probability": 0.7099 + }, + { + "start": 655.3, + "end": 656.36, + "probability": 0.6227 + }, + { + "start": 656.8, + "end": 658.64, + "probability": 0.679 + }, + { + "start": 659.62, + "end": 661.34, + "probability": 0.6965 + }, + { + "start": 661.78, + "end": 662.7, + "probability": 0.7875 + }, + { + "start": 663.18, + "end": 664.46, + "probability": 0.9823 + }, + { + "start": 665.02, + "end": 666.06, + "probability": 0.9978 + }, + { + "start": 666.66, + "end": 671.02, + "probability": 0.9611 + }, + { + "start": 671.02, + "end": 675.28, + "probability": 0.9822 + }, + { + "start": 676.54, + "end": 677.2, + "probability": 0.6918 + }, + { + "start": 677.9, + "end": 681.34, + "probability": 0.9884 + }, + { + "start": 681.4, + "end": 682.7, + "probability": 0.6781 + }, + { + "start": 683.22, + "end": 685.16, + "probability": 0.7366 + }, + { + "start": 686.24, + "end": 689.12, + "probability": 0.8473 + }, + { + "start": 689.5, + "end": 692.12, + "probability": 0.983 + }, + { + "start": 692.12, + "end": 695.58, + "probability": 0.8632 + }, + { + "start": 695.58, + "end": 696.84, + "probability": 0.9829 + }, + { + "start": 696.98, + "end": 697.94, + "probability": 0.7625 + }, + { + "start": 698.48, + "end": 701.3, + "probability": 0.8731 + }, + { + "start": 701.58, + "end": 702.3, + "probability": 0.7061 + }, + { + "start": 703.12, + "end": 705.66, + "probability": 0.9526 + }, + { + "start": 705.82, + "end": 707.16, + "probability": 0.8855 + }, + { + "start": 707.6, + "end": 711.04, + "probability": 0.8686 + }, + { + "start": 711.5, + "end": 716.08, + "probability": 0.8089 + }, + { + "start": 717.0, + "end": 719.82, + "probability": 0.9615 + }, + { + "start": 720.04, + "end": 721.64, + "probability": 0.9401 + }, + { + "start": 721.96, + "end": 723.34, + "probability": 0.7128 + }, + { + "start": 723.5, + "end": 724.62, + "probability": 0.951 + }, + { + "start": 725.22, + "end": 728.44, + "probability": 0.9331 + }, + { + "start": 728.64, + "end": 729.16, + "probability": 0.68 + }, + { + "start": 729.38, + "end": 729.76, + "probability": 0.2702 + }, + { + "start": 729.98, + "end": 731.44, + "probability": 0.9419 + }, + { + "start": 733.68, + "end": 735.14, + "probability": 0.8005 + }, + { + "start": 735.32, + "end": 735.78, + "probability": 0.8594 + }, + { + "start": 736.08, + "end": 736.4, + "probability": 0.5015 + }, + { + "start": 736.44, + "end": 738.98, + "probability": 0.7539 + }, + { + "start": 739.36, + "end": 741.08, + "probability": 0.7981 + }, + { + "start": 741.4, + "end": 746.28, + "probability": 0.9341 + }, + { + "start": 746.46, + "end": 747.56, + "probability": 0.9399 + }, + { + "start": 748.12, + "end": 748.7, + "probability": 0.0833 + }, + { + "start": 749.22, + "end": 749.7, + "probability": 0.2897 + }, + { + "start": 749.86, + "end": 755.88, + "probability": 0.9832 + }, + { + "start": 756.36, + "end": 758.24, + "probability": 0.9957 + }, + { + "start": 758.86, + "end": 760.76, + "probability": 0.9836 + }, + { + "start": 761.52, + "end": 764.26, + "probability": 0.8276 + }, + { + "start": 764.76, + "end": 768.42, + "probability": 0.7469 + }, + { + "start": 768.48, + "end": 768.74, + "probability": 0.2429 + }, + { + "start": 769.14, + "end": 770.26, + "probability": 0.2333 + }, + { + "start": 770.36, + "end": 770.94, + "probability": 0.399 + }, + { + "start": 771.14, + "end": 772.22, + "probability": 0.0576 + }, + { + "start": 772.36, + "end": 773.22, + "probability": 0.2204 + }, + { + "start": 773.36, + "end": 774.54, + "probability": 0.1139 + }, + { + "start": 774.64, + "end": 777.36, + "probability": 0.1419 + }, + { + "start": 777.52, + "end": 779.84, + "probability": 0.9181 + }, + { + "start": 780.14, + "end": 782.26, + "probability": 0.8803 + }, + { + "start": 782.32, + "end": 785.03, + "probability": 0.9519 + }, + { + "start": 786.34, + "end": 786.48, + "probability": 0.5781 + }, + { + "start": 787.18, + "end": 789.32, + "probability": 0.6347 + }, + { + "start": 789.8, + "end": 790.32, + "probability": 0.5612 + }, + { + "start": 791.42, + "end": 792.36, + "probability": 0.0812 + }, + { + "start": 792.36, + "end": 792.36, + "probability": 0.0256 + }, + { + "start": 792.48, + "end": 794.82, + "probability": 0.5177 + }, + { + "start": 794.9, + "end": 795.4, + "probability": 0.6629 + }, + { + "start": 795.74, + "end": 797.62, + "probability": 0.6062 + }, + { + "start": 798.56, + "end": 799.88, + "probability": 0.7054 + }, + { + "start": 800.08, + "end": 800.08, + "probability": 0.5412 + }, + { + "start": 800.08, + "end": 801.26, + "probability": 0.7891 + }, + { + "start": 801.44, + "end": 804.58, + "probability": 0.9858 + }, + { + "start": 805.58, + "end": 808.1, + "probability": 0.9961 + }, + { + "start": 808.2, + "end": 809.98, + "probability": 0.9897 + }, + { + "start": 810.2, + "end": 812.94, + "probability": 0.6937 + }, + { + "start": 813.16, + "end": 816.4, + "probability": 0.9945 + }, + { + "start": 817.1, + "end": 818.68, + "probability": 0.8982 + }, + { + "start": 819.48, + "end": 822.14, + "probability": 0.9583 + }, + { + "start": 822.52, + "end": 823.48, + "probability": 0.9874 + }, + { + "start": 824.32, + "end": 827.34, + "probability": 0.9045 + }, + { + "start": 828.9, + "end": 834.04, + "probability": 0.9593 + }, + { + "start": 834.58, + "end": 836.68, + "probability": 0.8343 + }, + { + "start": 837.08, + "end": 838.8, + "probability": 0.8417 + }, + { + "start": 838.82, + "end": 840.66, + "probability": 0.86 + }, + { + "start": 840.7, + "end": 842.46, + "probability": 0.7988 + }, + { + "start": 843.0, + "end": 843.54, + "probability": 0.7046 + }, + { + "start": 843.74, + "end": 845.05, + "probability": 0.8956 + }, + { + "start": 845.5, + "end": 849.56, + "probability": 0.9507 + }, + { + "start": 850.12, + "end": 850.85, + "probability": 0.9216 + }, + { + "start": 851.2, + "end": 854.42, + "probability": 0.942 + }, + { + "start": 854.76, + "end": 856.2, + "probability": 0.9585 + }, + { + "start": 856.38, + "end": 856.78, + "probability": 0.8734 + }, + { + "start": 857.82, + "end": 859.52, + "probability": 0.6775 + }, + { + "start": 859.52, + "end": 862.22, + "probability": 0.6738 + }, + { + "start": 865.74, + "end": 866.06, + "probability": 0.4567 + }, + { + "start": 866.12, + "end": 866.76, + "probability": 0.7005 + }, + { + "start": 866.88, + "end": 867.46, + "probability": 0.795 + }, + { + "start": 867.62, + "end": 870.64, + "probability": 0.872 + }, + { + "start": 870.76, + "end": 871.88, + "probability": 0.9181 + }, + { + "start": 872.52, + "end": 872.88, + "probability": 0.8724 + }, + { + "start": 872.94, + "end": 873.54, + "probability": 0.9283 + }, + { + "start": 873.66, + "end": 877.66, + "probability": 0.912 + }, + { + "start": 878.32, + "end": 881.68, + "probability": 0.8005 + }, + { + "start": 882.36, + "end": 884.84, + "probability": 0.7342 + }, + { + "start": 885.46, + "end": 887.9, + "probability": 0.8068 + }, + { + "start": 888.62, + "end": 889.54, + "probability": 0.9209 + }, + { + "start": 890.0, + "end": 891.07, + "probability": 0.9571 + }, + { + "start": 891.46, + "end": 892.55, + "probability": 0.9824 + }, + { + "start": 893.42, + "end": 896.36, + "probability": 0.8195 + }, + { + "start": 896.88, + "end": 899.48, + "probability": 0.9646 + }, + { + "start": 900.14, + "end": 901.92, + "probability": 0.9548 + }, + { + "start": 902.52, + "end": 903.64, + "probability": 0.6328 + }, + { + "start": 904.12, + "end": 904.6, + "probability": 0.5878 + }, + { + "start": 904.68, + "end": 905.06, + "probability": 0.8846 + }, + { + "start": 905.14, + "end": 905.46, + "probability": 0.7181 + }, + { + "start": 905.54, + "end": 905.68, + "probability": 0.6498 + }, + { + "start": 906.14, + "end": 907.18, + "probability": 0.9897 + }, + { + "start": 907.72, + "end": 908.92, + "probability": 0.8958 + }, + { + "start": 909.56, + "end": 910.98, + "probability": 0.9764 + }, + { + "start": 912.22, + "end": 912.92, + "probability": 0.5315 + }, + { + "start": 913.2, + "end": 914.78, + "probability": 0.7688 + }, + { + "start": 915.54, + "end": 916.88, + "probability": 0.642 + }, + { + "start": 923.58, + "end": 924.38, + "probability": 0.4487 + }, + { + "start": 924.56, + "end": 925.48, + "probability": 0.6657 + }, + { + "start": 925.98, + "end": 927.86, + "probability": 0.8047 + }, + { + "start": 929.02, + "end": 929.98, + "probability": 0.7776 + }, + { + "start": 930.3, + "end": 932.78, + "probability": 0.9186 + }, + { + "start": 933.44, + "end": 935.17, + "probability": 0.981 + }, + { + "start": 935.34, + "end": 937.06, + "probability": 0.6314 + }, + { + "start": 937.7, + "end": 941.22, + "probability": 0.7493 + }, + { + "start": 941.68, + "end": 943.92, + "probability": 0.9407 + }, + { + "start": 943.98, + "end": 945.91, + "probability": 0.9854 + }, + { + "start": 946.64, + "end": 948.5, + "probability": 0.9519 + }, + { + "start": 949.06, + "end": 951.64, + "probability": 0.7366 + }, + { + "start": 952.9, + "end": 958.04, + "probability": 0.9963 + }, + { + "start": 958.26, + "end": 958.96, + "probability": 0.9434 + }, + { + "start": 959.14, + "end": 960.48, + "probability": 0.9658 + }, + { + "start": 960.9, + "end": 963.24, + "probability": 0.9987 + }, + { + "start": 963.72, + "end": 964.54, + "probability": 0.8659 + }, + { + "start": 965.0, + "end": 966.42, + "probability": 0.9729 + }, + { + "start": 966.68, + "end": 967.06, + "probability": 0.6522 + }, + { + "start": 967.26, + "end": 970.9, + "probability": 0.7572 + }, + { + "start": 971.64, + "end": 974.34, + "probability": 0.9673 + }, + { + "start": 974.8, + "end": 977.44, + "probability": 0.9859 + }, + { + "start": 977.94, + "end": 978.74, + "probability": 0.9371 + }, + { + "start": 979.16, + "end": 979.94, + "probability": 0.9853 + }, + { + "start": 980.36, + "end": 981.16, + "probability": 0.9597 + }, + { + "start": 981.48, + "end": 982.4, + "probability": 0.9621 + }, + { + "start": 982.8, + "end": 983.94, + "probability": 0.4291 + }, + { + "start": 984.4, + "end": 987.64, + "probability": 0.9795 + }, + { + "start": 987.72, + "end": 990.76, + "probability": 0.9617 + }, + { + "start": 991.2, + "end": 993.08, + "probability": 0.8449 + }, + { + "start": 993.56, + "end": 994.58, + "probability": 0.8126 + }, + { + "start": 995.04, + "end": 998.92, + "probability": 0.9771 + }, + { + "start": 999.2, + "end": 1000.71, + "probability": 0.9529 + }, + { + "start": 1000.96, + "end": 1004.72, + "probability": 0.901 + }, + { + "start": 1005.08, + "end": 1008.1, + "probability": 0.9744 + }, + { + "start": 1008.22, + "end": 1008.7, + "probability": 0.8433 + }, + { + "start": 1008.84, + "end": 1009.14, + "probability": 0.777 + }, + { + "start": 1009.44, + "end": 1010.92, + "probability": 0.6627 + }, + { + "start": 1011.62, + "end": 1013.56, + "probability": 0.9417 + }, + { + "start": 1014.02, + "end": 1014.52, + "probability": 0.3775 + }, + { + "start": 1014.52, + "end": 1015.6, + "probability": 0.8949 + }, + { + "start": 1016.0, + "end": 1016.78, + "probability": 0.5816 + }, + { + "start": 1016.82, + "end": 1017.14, + "probability": 0.7434 + }, + { + "start": 1018.34, + "end": 1020.32, + "probability": 0.8298 + }, + { + "start": 1020.98, + "end": 1025.56, + "probability": 0.9182 + }, + { + "start": 1026.36, + "end": 1030.88, + "probability": 0.8054 + }, + { + "start": 1031.42, + "end": 1036.86, + "probability": 0.9933 + }, + { + "start": 1037.46, + "end": 1040.22, + "probability": 0.8608 + }, + { + "start": 1040.3, + "end": 1042.0, + "probability": 0.7749 + }, + { + "start": 1042.64, + "end": 1046.04, + "probability": 0.8115 + }, + { + "start": 1046.52, + "end": 1048.44, + "probability": 0.9875 + }, + { + "start": 1048.52, + "end": 1051.66, + "probability": 0.9946 + }, + { + "start": 1052.16, + "end": 1054.68, + "probability": 0.9948 + }, + { + "start": 1054.76, + "end": 1055.42, + "probability": 0.8762 + }, + { + "start": 1056.02, + "end": 1057.72, + "probability": 0.9956 + }, + { + "start": 1057.9, + "end": 1058.0, + "probability": 0.2729 + }, + { + "start": 1058.08, + "end": 1063.52, + "probability": 0.9203 + }, + { + "start": 1063.68, + "end": 1065.54, + "probability": 0.957 + }, + { + "start": 1065.9, + "end": 1067.66, + "probability": 0.7931 + }, + { + "start": 1068.2, + "end": 1069.06, + "probability": 0.9844 + }, + { + "start": 1069.12, + "end": 1072.78, + "probability": 0.9966 + }, + { + "start": 1072.78, + "end": 1075.36, + "probability": 0.9965 + }, + { + "start": 1075.78, + "end": 1077.74, + "probability": 0.8002 + }, + { + "start": 1078.36, + "end": 1080.24, + "probability": 0.907 + }, + { + "start": 1081.02, + "end": 1082.48, + "probability": 0.7627 + }, + { + "start": 1083.06, + "end": 1084.76, + "probability": 0.9897 + }, + { + "start": 1085.46, + "end": 1088.58, + "probability": 0.9559 + }, + { + "start": 1089.04, + "end": 1089.48, + "probability": 0.8081 + }, + { + "start": 1090.04, + "end": 1092.32, + "probability": 0.9758 + }, + { + "start": 1093.26, + "end": 1095.1, + "probability": 0.7023 + }, + { + "start": 1097.38, + "end": 1098.32, + "probability": 0.881 + }, + { + "start": 1098.64, + "end": 1098.84, + "probability": 0.5584 + }, + { + "start": 1099.12, + "end": 1100.09, + "probability": 0.8433 + }, + { + "start": 1100.62, + "end": 1102.1, + "probability": 0.4243 + }, + { + "start": 1102.16, + "end": 1103.07, + "probability": 0.8013 + }, + { + "start": 1104.96, + "end": 1105.2, + "probability": 0.0156 + }, + { + "start": 1105.2, + "end": 1106.01, + "probability": 0.5089 + }, + { + "start": 1108.42, + "end": 1108.6, + "probability": 0.3956 + }, + { + "start": 1108.62, + "end": 1109.64, + "probability": 0.8108 + }, + { + "start": 1110.04, + "end": 1112.0, + "probability": 0.8662 + }, + { + "start": 1112.16, + "end": 1112.66, + "probability": 0.9208 + }, + { + "start": 1113.3, + "end": 1114.56, + "probability": 0.8366 + }, + { + "start": 1114.86, + "end": 1115.86, + "probability": 0.6323 + }, + { + "start": 1116.08, + "end": 1120.38, + "probability": 0.9628 + }, + { + "start": 1121.04, + "end": 1125.4, + "probability": 0.9909 + }, + { + "start": 1125.8, + "end": 1127.88, + "probability": 0.9805 + }, + { + "start": 1127.88, + "end": 1130.68, + "probability": 0.9801 + }, + { + "start": 1131.22, + "end": 1135.06, + "probability": 0.9813 + }, + { + "start": 1135.12, + "end": 1135.86, + "probability": 0.6836 + }, + { + "start": 1136.72, + "end": 1139.22, + "probability": 0.8994 + }, + { + "start": 1140.04, + "end": 1142.2, + "probability": 0.9105 + }, + { + "start": 1143.4, + "end": 1144.64, + "probability": 0.9968 + }, + { + "start": 1145.5, + "end": 1146.98, + "probability": 0.6998 + }, + { + "start": 1147.02, + "end": 1148.0, + "probability": 0.9382 + }, + { + "start": 1148.46, + "end": 1151.0, + "probability": 0.9617 + }, + { + "start": 1151.4, + "end": 1154.56, + "probability": 0.9928 + }, + { + "start": 1155.36, + "end": 1158.0, + "probability": 0.9243 + }, + { + "start": 1158.5, + "end": 1162.26, + "probability": 0.9923 + }, + { + "start": 1162.78, + "end": 1166.4, + "probability": 0.7972 + }, + { + "start": 1166.88, + "end": 1169.34, + "probability": 0.7805 + }, + { + "start": 1169.76, + "end": 1171.48, + "probability": 0.8892 + }, + { + "start": 1171.82, + "end": 1174.84, + "probability": 0.7888 + }, + { + "start": 1174.84, + "end": 1177.48, + "probability": 0.8686 + }, + { + "start": 1177.92, + "end": 1178.78, + "probability": 0.5053 + }, + { + "start": 1179.04, + "end": 1180.56, + "probability": 0.8937 + }, + { + "start": 1180.92, + "end": 1185.2, + "probability": 0.9027 + }, + { + "start": 1185.36, + "end": 1185.86, + "probability": 0.9305 + }, + { + "start": 1186.22, + "end": 1186.7, + "probability": 0.6752 + }, + { + "start": 1190.98, + "end": 1191.78, + "probability": 0.2227 + }, + { + "start": 1191.78, + "end": 1192.62, + "probability": 0.4371 + }, + { + "start": 1194.7, + "end": 1198.56, + "probability": 0.7325 + }, + { + "start": 1199.26, + "end": 1201.0, + "probability": 0.5143 + }, + { + "start": 1201.04, + "end": 1203.32, + "probability": 0.9966 + }, + { + "start": 1203.88, + "end": 1208.46, + "probability": 0.9354 + }, + { + "start": 1209.1, + "end": 1214.62, + "probability": 0.9985 + }, + { + "start": 1214.88, + "end": 1217.86, + "probability": 0.9906 + }, + { + "start": 1218.02, + "end": 1219.12, + "probability": 0.8667 + }, + { + "start": 1219.62, + "end": 1221.0, + "probability": 0.9914 + }, + { + "start": 1221.14, + "end": 1224.24, + "probability": 0.9877 + }, + { + "start": 1224.94, + "end": 1229.18, + "probability": 0.9929 + }, + { + "start": 1229.18, + "end": 1234.82, + "probability": 0.9989 + }, + { + "start": 1235.32, + "end": 1239.44, + "probability": 0.9966 + }, + { + "start": 1240.02, + "end": 1245.26, + "probability": 0.9934 + }, + { + "start": 1245.8, + "end": 1248.72, + "probability": 0.9983 + }, + { + "start": 1249.44, + "end": 1252.56, + "probability": 0.8292 + }, + { + "start": 1253.48, + "end": 1254.4, + "probability": 0.7609 + }, + { + "start": 1254.58, + "end": 1256.04, + "probability": 0.8123 + }, + { + "start": 1256.08, + "end": 1258.72, + "probability": 0.9566 + }, + { + "start": 1259.36, + "end": 1262.38, + "probability": 0.979 + }, + { + "start": 1262.38, + "end": 1266.32, + "probability": 0.9738 + }, + { + "start": 1266.42, + "end": 1267.93, + "probability": 0.5041 + }, + { + "start": 1268.42, + "end": 1269.06, + "probability": 0.5999 + }, + { + "start": 1269.76, + "end": 1274.26, + "probability": 0.7684 + }, + { + "start": 1274.82, + "end": 1279.64, + "probability": 0.8784 + }, + { + "start": 1280.02, + "end": 1282.38, + "probability": 0.802 + }, + { + "start": 1282.92, + "end": 1284.16, + "probability": 0.4646 + }, + { + "start": 1284.16, + "end": 1287.52, + "probability": 0.8029 + }, + { + "start": 1287.7, + "end": 1289.6, + "probability": 0.8842 + }, + { + "start": 1290.34, + "end": 1291.3, + "probability": 0.8423 + }, + { + "start": 1291.4, + "end": 1298.08, + "probability": 0.9859 + }, + { + "start": 1298.64, + "end": 1301.8, + "probability": 0.9429 + }, + { + "start": 1302.28, + "end": 1307.12, + "probability": 0.9917 + }, + { + "start": 1307.12, + "end": 1311.48, + "probability": 0.9783 + }, + { + "start": 1312.08, + "end": 1314.0, + "probability": 0.99 + }, + { + "start": 1314.0, + "end": 1314.52, + "probability": 0.5844 + }, + { + "start": 1314.6, + "end": 1315.58, + "probability": 0.8224 + }, + { + "start": 1316.98, + "end": 1317.07, + "probability": 0.3759 + }, + { + "start": 1321.92, + "end": 1322.26, + "probability": 0.3706 + }, + { + "start": 1324.2, + "end": 1328.64, + "probability": 0.8932 + }, + { + "start": 1329.56, + "end": 1332.88, + "probability": 0.9275 + }, + { + "start": 1334.02, + "end": 1335.52, + "probability": 0.9807 + }, + { + "start": 1336.76, + "end": 1341.04, + "probability": 0.6269 + }, + { + "start": 1341.7, + "end": 1342.62, + "probability": 0.8964 + }, + { + "start": 1343.0, + "end": 1343.82, + "probability": 0.1713 + }, + { + "start": 1344.06, + "end": 1345.02, + "probability": 0.666 + }, + { + "start": 1345.58, + "end": 1345.68, + "probability": 0.6328 + }, + { + "start": 1348.4, + "end": 1350.78, + "probability": 0.5962 + }, + { + "start": 1351.48, + "end": 1354.94, + "probability": 0.024 + }, + { + "start": 1356.22, + "end": 1359.64, + "probability": 0.9938 + }, + { + "start": 1360.6, + "end": 1362.12, + "probability": 0.7944 + }, + { + "start": 1362.56, + "end": 1363.58, + "probability": 0.9983 + }, + { + "start": 1364.36, + "end": 1366.94, + "probability": 0.8045 + }, + { + "start": 1368.12, + "end": 1369.46, + "probability": 0.5015 + }, + { + "start": 1369.58, + "end": 1370.42, + "probability": 0.8267 + }, + { + "start": 1370.62, + "end": 1372.48, + "probability": 0.8002 + }, + { + "start": 1372.72, + "end": 1379.18, + "probability": 0.991 + }, + { + "start": 1379.84, + "end": 1386.82, + "probability": 0.9978 + }, + { + "start": 1386.82, + "end": 1392.12, + "probability": 0.9982 + }, + { + "start": 1392.8, + "end": 1396.6, + "probability": 0.9907 + }, + { + "start": 1397.34, + "end": 1402.98, + "probability": 0.9373 + }, + { + "start": 1403.08, + "end": 1404.18, + "probability": 0.8998 + }, + { + "start": 1404.7, + "end": 1407.52, + "probability": 0.9946 + }, + { + "start": 1408.84, + "end": 1410.52, + "probability": 0.7748 + }, + { + "start": 1410.72, + "end": 1414.34, + "probability": 0.968 + }, + { + "start": 1415.32, + "end": 1418.82, + "probability": 0.7846 + }, + { + "start": 1419.42, + "end": 1423.6, + "probability": 0.9978 + }, + { + "start": 1424.06, + "end": 1425.4, + "probability": 0.9102 + }, + { + "start": 1426.18, + "end": 1429.86, + "probability": 0.9769 + }, + { + "start": 1430.42, + "end": 1432.36, + "probability": 0.9735 + }, + { + "start": 1432.74, + "end": 1434.64, + "probability": 0.9299 + }, + { + "start": 1435.46, + "end": 1439.18, + "probability": 0.9982 + }, + { + "start": 1439.26, + "end": 1441.14, + "probability": 0.9908 + }, + { + "start": 1441.72, + "end": 1445.02, + "probability": 0.9985 + }, + { + "start": 1445.64, + "end": 1448.4, + "probability": 0.9977 + }, + { + "start": 1449.02, + "end": 1451.82, + "probability": 0.9956 + }, + { + "start": 1452.36, + "end": 1453.66, + "probability": 0.9287 + }, + { + "start": 1454.28, + "end": 1456.4, + "probability": 0.9986 + }, + { + "start": 1456.5, + "end": 1461.18, + "probability": 0.9862 + }, + { + "start": 1461.68, + "end": 1461.82, + "probability": 0.3737 + }, + { + "start": 1461.88, + "end": 1463.52, + "probability": 0.823 + }, + { + "start": 1463.98, + "end": 1465.6, + "probability": 0.9725 + }, + { + "start": 1466.16, + "end": 1467.78, + "probability": 0.3841 + }, + { + "start": 1470.94, + "end": 1473.28, + "probability": 0.8069 + }, + { + "start": 1474.46, + "end": 1478.9, + "probability": 0.8882 + }, + { + "start": 1479.12, + "end": 1481.56, + "probability": 0.8808 + }, + { + "start": 1482.56, + "end": 1483.32, + "probability": 0.7345 + }, + { + "start": 1483.46, + "end": 1484.24, + "probability": 0.8754 + }, + { + "start": 1484.44, + "end": 1484.96, + "probability": 0.7845 + }, + { + "start": 1485.2, + "end": 1487.5, + "probability": 0.9953 + }, + { + "start": 1487.6, + "end": 1490.24, + "probability": 0.863 + }, + { + "start": 1490.72, + "end": 1492.59, + "probability": 0.9878 + }, + { + "start": 1493.12, + "end": 1495.34, + "probability": 0.9729 + }, + { + "start": 1495.92, + "end": 1496.28, + "probability": 0.8655 + }, + { + "start": 1496.46, + "end": 1500.12, + "probability": 0.9726 + }, + { + "start": 1500.12, + "end": 1504.02, + "probability": 0.9835 + }, + { + "start": 1504.18, + "end": 1508.68, + "probability": 0.9937 + }, + { + "start": 1509.22, + "end": 1510.9, + "probability": 0.8879 + }, + { + "start": 1511.18, + "end": 1514.06, + "probability": 0.9389 + }, + { + "start": 1514.14, + "end": 1515.4, + "probability": 0.9084 + }, + { + "start": 1516.14, + "end": 1520.32, + "probability": 0.9902 + }, + { + "start": 1521.26, + "end": 1522.32, + "probability": 0.9379 + }, + { + "start": 1522.68, + "end": 1523.6, + "probability": 0.6486 + }, + { + "start": 1524.14, + "end": 1526.9, + "probability": 0.9911 + }, + { + "start": 1526.9, + "end": 1529.44, + "probability": 0.9974 + }, + { + "start": 1530.04, + "end": 1535.02, + "probability": 0.8807 + }, + { + "start": 1535.02, + "end": 1538.34, + "probability": 0.9948 + }, + { + "start": 1538.7, + "end": 1539.82, + "probability": 0.9502 + }, + { + "start": 1539.9, + "end": 1541.34, + "probability": 0.7734 + }, + { + "start": 1542.06, + "end": 1544.82, + "probability": 0.8375 + }, + { + "start": 1545.38, + "end": 1548.16, + "probability": 0.8293 + }, + { + "start": 1548.88, + "end": 1549.62, + "probability": 0.5928 + }, + { + "start": 1550.04, + "end": 1553.66, + "probability": 0.9662 + }, + { + "start": 1554.06, + "end": 1556.26, + "probability": 0.9893 + }, + { + "start": 1556.26, + "end": 1559.78, + "probability": 0.9902 + }, + { + "start": 1559.9, + "end": 1562.94, + "probability": 0.9876 + }, + { + "start": 1563.42, + "end": 1568.02, + "probability": 0.9972 + }, + { + "start": 1568.68, + "end": 1570.09, + "probability": 0.999 + }, + { + "start": 1570.36, + "end": 1571.86, + "probability": 0.7458 + }, + { + "start": 1572.46, + "end": 1573.0, + "probability": 0.8662 + }, + { + "start": 1573.04, + "end": 1576.26, + "probability": 0.8892 + }, + { + "start": 1576.26, + "end": 1582.04, + "probability": 0.8946 + }, + { + "start": 1582.1, + "end": 1586.38, + "probability": 0.8608 + }, + { + "start": 1586.46, + "end": 1587.92, + "probability": 0.97 + }, + { + "start": 1588.52, + "end": 1590.1, + "probability": 0.9097 + }, + { + "start": 1590.7, + "end": 1593.24, + "probability": 0.907 + }, + { + "start": 1593.34, + "end": 1596.82, + "probability": 0.99 + }, + { + "start": 1597.36, + "end": 1598.54, + "probability": 0.8801 + }, + { + "start": 1599.42, + "end": 1602.0, + "probability": 0.9756 + }, + { + "start": 1602.84, + "end": 1602.86, + "probability": 0.7788 + }, + { + "start": 1604.2, + "end": 1608.78, + "probability": 0.984 + }, + { + "start": 1609.6, + "end": 1610.56, + "probability": 0.8687 + }, + { + "start": 1613.52, + "end": 1613.6, + "probability": 0.1806 + }, + { + "start": 1613.6, + "end": 1613.8, + "probability": 0.3354 + }, + { + "start": 1613.92, + "end": 1614.64, + "probability": 0.239 + }, + { + "start": 1614.82, + "end": 1616.82, + "probability": 0.8935 + }, + { + "start": 1617.02, + "end": 1619.52, + "probability": 0.9924 + }, + { + "start": 1619.52, + "end": 1622.32, + "probability": 0.9993 + }, + { + "start": 1623.32, + "end": 1624.54, + "probability": 0.5489 + }, + { + "start": 1624.68, + "end": 1626.6, + "probability": 0.7435 + }, + { + "start": 1626.98, + "end": 1629.66, + "probability": 0.9383 + }, + { + "start": 1630.1, + "end": 1630.56, + "probability": 0.9229 + }, + { + "start": 1630.68, + "end": 1631.18, + "probability": 0.9558 + }, + { + "start": 1631.28, + "end": 1631.8, + "probability": 0.776 + }, + { + "start": 1632.06, + "end": 1632.84, + "probability": 0.9216 + }, + { + "start": 1633.56, + "end": 1636.82, + "probability": 0.9858 + }, + { + "start": 1637.74, + "end": 1638.72, + "probability": 0.7878 + }, + { + "start": 1638.96, + "end": 1639.68, + "probability": 0.3586 + }, + { + "start": 1640.18, + "end": 1643.32, + "probability": 0.7845 + }, + { + "start": 1643.78, + "end": 1644.88, + "probability": 0.981 + }, + { + "start": 1645.5, + "end": 1649.98, + "probability": 0.9927 + }, + { + "start": 1649.98, + "end": 1655.36, + "probability": 0.972 + }, + { + "start": 1655.58, + "end": 1656.72, + "probability": 0.3703 + }, + { + "start": 1657.16, + "end": 1658.64, + "probability": 0.8787 + }, + { + "start": 1659.02, + "end": 1662.36, + "probability": 0.9908 + }, + { + "start": 1663.3, + "end": 1667.08, + "probability": 0.506 + }, + { + "start": 1669.64, + "end": 1670.72, + "probability": 0.8532 + }, + { + "start": 1671.22, + "end": 1671.78, + "probability": 0.727 + }, + { + "start": 1674.37, + "end": 1675.68, + "probability": 0.9304 + }, + { + "start": 1675.68, + "end": 1675.68, + "probability": 0.2035 + }, + { + "start": 1675.68, + "end": 1675.68, + "probability": 0.4011 + }, + { + "start": 1675.68, + "end": 1676.1, + "probability": 0.6267 + }, + { + "start": 1676.84, + "end": 1678.54, + "probability": 0.757 + }, + { + "start": 1679.24, + "end": 1681.48, + "probability": 0.3859 + }, + { + "start": 1682.82, + "end": 1685.78, + "probability": 0.6031 + }, + { + "start": 1686.2, + "end": 1687.14, + "probability": 0.647 + }, + { + "start": 1687.24, + "end": 1688.34, + "probability": 0.6804 + }, + { + "start": 1688.44, + "end": 1691.98, + "probability": 0.8914 + }, + { + "start": 1693.36, + "end": 1697.8, + "probability": 0.9746 + }, + { + "start": 1701.26, + "end": 1701.78, + "probability": 0.6629 + }, + { + "start": 1701.84, + "end": 1707.32, + "probability": 0.8799 + }, + { + "start": 1707.52, + "end": 1709.44, + "probability": 0.9032 + }, + { + "start": 1710.42, + "end": 1716.2, + "probability": 0.9657 + }, + { + "start": 1717.28, + "end": 1720.06, + "probability": 0.5364 + }, + { + "start": 1720.62, + "end": 1722.68, + "probability": 0.4566 + }, + { + "start": 1723.5, + "end": 1725.18, + "probability": 0.8728 + }, + { + "start": 1726.12, + "end": 1728.14, + "probability": 0.8466 + }, + { + "start": 1729.1, + "end": 1729.58, + "probability": 0.8906 + }, + { + "start": 1729.68, + "end": 1732.78, + "probability": 0.9956 + }, + { + "start": 1733.44, + "end": 1734.72, + "probability": 0.7451 + }, + { + "start": 1734.74, + "end": 1740.3, + "probability": 0.9867 + }, + { + "start": 1741.38, + "end": 1743.52, + "probability": 0.7487 + }, + { + "start": 1743.68, + "end": 1745.3, + "probability": 0.9824 + }, + { + "start": 1745.52, + "end": 1747.4, + "probability": 0.8026 + }, + { + "start": 1747.46, + "end": 1749.0, + "probability": 0.9624 + }, + { + "start": 1749.74, + "end": 1751.78, + "probability": 0.479 + }, + { + "start": 1752.38, + "end": 1756.88, + "probability": 0.9604 + }, + { + "start": 1757.7, + "end": 1761.36, + "probability": 0.9884 + }, + { + "start": 1761.4, + "end": 1763.78, + "probability": 0.9854 + }, + { + "start": 1764.24, + "end": 1765.36, + "probability": 0.7888 + }, + { + "start": 1765.46, + "end": 1767.76, + "probability": 0.8053 + }, + { + "start": 1768.18, + "end": 1771.42, + "probability": 0.9786 + }, + { + "start": 1771.58, + "end": 1775.0, + "probability": 0.8317 + }, + { + "start": 1775.66, + "end": 1779.36, + "probability": 0.9868 + }, + { + "start": 1779.48, + "end": 1782.18, + "probability": 0.8792 + }, + { + "start": 1782.74, + "end": 1787.54, + "probability": 0.8897 + }, + { + "start": 1788.14, + "end": 1790.74, + "probability": 0.9571 + }, + { + "start": 1790.74, + "end": 1793.56, + "probability": 0.9783 + }, + { + "start": 1793.76, + "end": 1794.02, + "probability": 0.7668 + }, + { + "start": 1794.58, + "end": 1795.56, + "probability": 0.1053 + }, + { + "start": 1796.58, + "end": 1799.28, + "probability": 0.6433 + }, + { + "start": 1800.24, + "end": 1803.28, + "probability": 0.986 + }, + { + "start": 1803.96, + "end": 1804.4, + "probability": 0.5556 + }, + { + "start": 1804.72, + "end": 1807.02, + "probability": 0.9178 + }, + { + "start": 1807.44, + "end": 1809.34, + "probability": 0.9701 + }, + { + "start": 1809.86, + "end": 1811.68, + "probability": 0.8921 + }, + { + "start": 1814.36, + "end": 1817.64, + "probability": 0.77 + }, + { + "start": 1818.2, + "end": 1820.4, + "probability": 0.9283 + }, + { + "start": 1820.54, + "end": 1821.74, + "probability": 0.7805 + }, + { + "start": 1821.84, + "end": 1822.3, + "probability": 0.8682 + }, + { + "start": 1822.48, + "end": 1824.08, + "probability": 0.9531 + }, + { + "start": 1824.2, + "end": 1824.68, + "probability": 0.9069 + }, + { + "start": 1827.58, + "end": 1828.14, + "probability": 0.25 + }, + { + "start": 1828.14, + "end": 1828.6, + "probability": 0.2756 + }, + { + "start": 1829.04, + "end": 1830.28, + "probability": 0.8306 + }, + { + "start": 1830.38, + "end": 1834.7, + "probability": 0.8923 + }, + { + "start": 1834.88, + "end": 1837.06, + "probability": 0.9869 + }, + { + "start": 1838.62, + "end": 1839.39, + "probability": 0.3284 + }, + { + "start": 1840.94, + "end": 1842.86, + "probability": 0.4621 + }, + { + "start": 1842.86, + "end": 1842.86, + "probability": 0.0773 + }, + { + "start": 1842.86, + "end": 1843.14, + "probability": 0.4701 + }, + { + "start": 1843.32, + "end": 1844.12, + "probability": 0.515 + }, + { + "start": 1845.7, + "end": 1855.86, + "probability": 0.9767 + }, + { + "start": 1855.86, + "end": 1865.34, + "probability": 0.9974 + }, + { + "start": 1866.18, + "end": 1868.68, + "probability": 0.9932 + }, + { + "start": 1869.34, + "end": 1871.64, + "probability": 0.6004 + }, + { + "start": 1871.72, + "end": 1873.06, + "probability": 0.9863 + }, + { + "start": 1873.8, + "end": 1876.2, + "probability": 0.6364 + }, + { + "start": 1876.62, + "end": 1882.02, + "probability": 0.9768 + }, + { + "start": 1882.46, + "end": 1883.34, + "probability": 0.5221 + }, + { + "start": 1883.74, + "end": 1887.14, + "probability": 0.908 + }, + { + "start": 1887.2, + "end": 1888.26, + "probability": 0.958 + }, + { + "start": 1889.24, + "end": 1891.62, + "probability": 0.6334 + }, + { + "start": 1892.14, + "end": 1899.04, + "probability": 0.9138 + }, + { + "start": 1899.12, + "end": 1901.24, + "probability": 0.8914 + }, + { + "start": 1902.2, + "end": 1905.9, + "probability": 0.9834 + }, + { + "start": 1906.56, + "end": 1908.86, + "probability": 0.9935 + }, + { + "start": 1909.0, + "end": 1910.18, + "probability": 0.7995 + }, + { + "start": 1910.62, + "end": 1911.44, + "probability": 0.508 + }, + { + "start": 1911.58, + "end": 1912.3, + "probability": 0.9041 + }, + { + "start": 1912.74, + "end": 1914.24, + "probability": 0.9037 + }, + { + "start": 1914.5, + "end": 1915.8, + "probability": 0.9751 + }, + { + "start": 1916.84, + "end": 1920.22, + "probability": 0.807 + }, + { + "start": 1920.74, + "end": 1922.86, + "probability": 0.9555 + }, + { + "start": 1923.44, + "end": 1924.76, + "probability": 0.5728 + }, + { + "start": 1925.5, + "end": 1931.62, + "probability": 0.9316 + }, + { + "start": 1931.74, + "end": 1933.1, + "probability": 0.6249 + }, + { + "start": 1933.5, + "end": 1935.2, + "probability": 0.9969 + }, + { + "start": 1935.76, + "end": 1938.22, + "probability": 0.9972 + }, + { + "start": 1938.68, + "end": 1940.48, + "probability": 0.6545 + }, + { + "start": 1940.64, + "end": 1945.06, + "probability": 0.8513 + }, + { + "start": 1946.18, + "end": 1947.14, + "probability": 0.552 + }, + { + "start": 1948.06, + "end": 1951.72, + "probability": 0.7006 + }, + { + "start": 1952.2, + "end": 1952.94, + "probability": 0.8558 + }, + { + "start": 1952.98, + "end": 1956.42, + "probability": 0.9431 + }, + { + "start": 1956.76, + "end": 1957.98, + "probability": 0.5633 + }, + { + "start": 1958.48, + "end": 1959.58, + "probability": 0.7219 + }, + { + "start": 1960.14, + "end": 1960.9, + "probability": 0.8137 + }, + { + "start": 1961.12, + "end": 1961.5, + "probability": 0.249 + }, + { + "start": 1961.58, + "end": 1962.58, + "probability": 0.6615 + }, + { + "start": 1962.8, + "end": 1964.42, + "probability": 0.9335 + }, + { + "start": 1964.54, + "end": 1966.04, + "probability": 0.7476 + }, + { + "start": 1966.62, + "end": 1969.24, + "probability": 0.9787 + }, + { + "start": 1969.48, + "end": 1971.36, + "probability": 0.7158 + }, + { + "start": 1972.34, + "end": 1973.26, + "probability": 0.7016 + }, + { + "start": 1973.32, + "end": 1973.96, + "probability": 0.8875 + }, + { + "start": 1974.06, + "end": 1976.05, + "probability": 0.9268 + }, + { + "start": 1977.52, + "end": 1978.49, + "probability": 0.9844 + }, + { + "start": 1979.12, + "end": 1980.12, + "probability": 0.8066 + }, + { + "start": 1980.18, + "end": 1982.56, + "probability": 0.969 + }, + { + "start": 1982.6, + "end": 1983.98, + "probability": 0.9235 + }, + { + "start": 1984.3, + "end": 1985.82, + "probability": 0.9951 + }, + { + "start": 1986.24, + "end": 1988.58, + "probability": 0.8904 + }, + { + "start": 1989.0, + "end": 1991.02, + "probability": 0.987 + }, + { + "start": 1991.48, + "end": 1994.6, + "probability": 0.9431 + }, + { + "start": 1994.7, + "end": 1999.44, + "probability": 0.9906 + }, + { + "start": 1999.84, + "end": 2000.42, + "probability": 0.7102 + }, + { + "start": 2000.9, + "end": 2002.6, + "probability": 0.7724 + }, + { + "start": 2002.76, + "end": 2004.34, + "probability": 0.98 + }, + { + "start": 2004.46, + "end": 2006.44, + "probability": 0.9958 + }, + { + "start": 2006.54, + "end": 2007.36, + "probability": 0.7471 + }, + { + "start": 2007.7, + "end": 2008.86, + "probability": 0.9765 + }, + { + "start": 2009.24, + "end": 2010.58, + "probability": 0.9939 + }, + { + "start": 2010.66, + "end": 2011.74, + "probability": 0.9818 + }, + { + "start": 2012.02, + "end": 2012.2, + "probability": 0.8369 + }, + { + "start": 2012.8, + "end": 2016.93, + "probability": 0.9532 + }, + { + "start": 2017.9, + "end": 2022.22, + "probability": 0.9967 + }, + { + "start": 2022.34, + "end": 2024.2, + "probability": 0.9811 + }, + { + "start": 2024.6, + "end": 2028.02, + "probability": 0.8878 + }, + { + "start": 2028.2, + "end": 2030.56, + "probability": 0.8762 + }, + { + "start": 2030.76, + "end": 2032.54, + "probability": 0.7869 + }, + { + "start": 2032.58, + "end": 2033.02, + "probability": 0.8543 + }, + { + "start": 2033.86, + "end": 2036.82, + "probability": 0.68 + }, + { + "start": 2037.18, + "end": 2039.12, + "probability": 0.8276 + }, + { + "start": 2042.84, + "end": 2044.56, + "probability": 0.6318 + }, + { + "start": 2045.0, + "end": 2050.08, + "probability": 0.8203 + }, + { + "start": 2050.28, + "end": 2051.1, + "probability": 0.2222 + }, + { + "start": 2051.2, + "end": 2052.7, + "probability": 0.7517 + }, + { + "start": 2054.4, + "end": 2058.58, + "probability": 0.9901 + }, + { + "start": 2058.74, + "end": 2060.92, + "probability": 0.9192 + }, + { + "start": 2061.38, + "end": 2064.34, + "probability": 0.9929 + }, + { + "start": 2064.98, + "end": 2067.18, + "probability": 0.9788 + }, + { + "start": 2067.72, + "end": 2068.34, + "probability": 0.5465 + }, + { + "start": 2068.44, + "end": 2071.34, + "probability": 0.9948 + }, + { + "start": 2071.62, + "end": 2073.86, + "probability": 0.8601 + }, + { + "start": 2074.1, + "end": 2076.71, + "probability": 0.9818 + }, + { + "start": 2076.86, + "end": 2077.76, + "probability": 0.9894 + }, + { + "start": 2078.96, + "end": 2079.88, + "probability": 0.3053 + }, + { + "start": 2080.2, + "end": 2086.64, + "probability": 0.8647 + }, + { + "start": 2087.58, + "end": 2089.74, + "probability": 0.9692 + }, + { + "start": 2090.22, + "end": 2091.34, + "probability": 0.9657 + }, + { + "start": 2091.4, + "end": 2095.62, + "probability": 0.967 + }, + { + "start": 2096.0, + "end": 2099.94, + "probability": 0.7637 + }, + { + "start": 2100.3, + "end": 2101.26, + "probability": 0.9404 + }, + { + "start": 2102.3, + "end": 2105.26, + "probability": 0.6907 + }, + { + "start": 2105.62, + "end": 2105.82, + "probability": 0.7444 + }, + { + "start": 2106.62, + "end": 2108.34, + "probability": 0.5362 + }, + { + "start": 2108.84, + "end": 2110.5, + "probability": 0.8955 + }, + { + "start": 2117.62, + "end": 2118.28, + "probability": 0.2927 + }, + { + "start": 2118.3, + "end": 2118.76, + "probability": 0.5144 + }, + { + "start": 2118.78, + "end": 2118.82, + "probability": 0.1773 + }, + { + "start": 2118.82, + "end": 2119.72, + "probability": 0.7513 + }, + { + "start": 2119.82, + "end": 2122.02, + "probability": 0.9849 + }, + { + "start": 2122.94, + "end": 2127.9, + "probability": 0.8505 + }, + { + "start": 2128.04, + "end": 2129.98, + "probability": 0.9736 + }, + { + "start": 2130.7, + "end": 2135.26, + "probability": 0.9694 + }, + { + "start": 2135.98, + "end": 2139.42, + "probability": 0.8556 + }, + { + "start": 2140.04, + "end": 2144.84, + "probability": 0.9609 + }, + { + "start": 2145.52, + "end": 2148.68, + "probability": 0.9474 + }, + { + "start": 2149.1, + "end": 2149.98, + "probability": 0.8304 + }, + { + "start": 2150.08, + "end": 2151.5, + "probability": 0.8981 + }, + { + "start": 2153.3, + "end": 2156.98, + "probability": 0.9909 + }, + { + "start": 2157.68, + "end": 2159.94, + "probability": 0.9534 + }, + { + "start": 2160.12, + "end": 2160.62, + "probability": 0.8601 + }, + { + "start": 2160.68, + "end": 2164.6, + "probability": 0.9797 + }, + { + "start": 2165.1, + "end": 2168.78, + "probability": 0.9985 + }, + { + "start": 2169.3, + "end": 2172.78, + "probability": 0.9965 + }, + { + "start": 2173.12, + "end": 2173.86, + "probability": 0.7106 + }, + { + "start": 2174.38, + "end": 2179.74, + "probability": 0.9789 + }, + { + "start": 2179.84, + "end": 2180.62, + "probability": 0.7251 + }, + { + "start": 2180.72, + "end": 2182.92, + "probability": 0.9701 + }, + { + "start": 2183.24, + "end": 2184.18, + "probability": 0.9276 + }, + { + "start": 2184.26, + "end": 2186.66, + "probability": 0.9703 + }, + { + "start": 2186.66, + "end": 2188.6, + "probability": 0.9585 + }, + { + "start": 2188.82, + "end": 2189.04, + "probability": 0.8296 + }, + { + "start": 2189.44, + "end": 2194.06, + "probability": 0.8318 + }, + { + "start": 2194.06, + "end": 2194.5, + "probability": 0.3114 + }, + { + "start": 2200.46, + "end": 2201.52, + "probability": 0.6818 + }, + { + "start": 2201.72, + "end": 2207.7, + "probability": 0.9727 + }, + { + "start": 2208.58, + "end": 2211.62, + "probability": 0.5729 + }, + { + "start": 2212.9, + "end": 2214.34, + "probability": 0.9966 + }, + { + "start": 2215.04, + "end": 2217.14, + "probability": 0.9441 + }, + { + "start": 2218.48, + "end": 2221.26, + "probability": 0.9668 + }, + { + "start": 2222.12, + "end": 2224.76, + "probability": 0.9972 + }, + { + "start": 2224.76, + "end": 2228.44, + "probability": 0.8858 + }, + { + "start": 2229.36, + "end": 2234.6, + "probability": 0.958 + }, + { + "start": 2235.26, + "end": 2237.92, + "probability": 0.7232 + }, + { + "start": 2239.88, + "end": 2240.34, + "probability": 0.7189 + }, + { + "start": 2240.62, + "end": 2241.24, + "probability": 0.9433 + }, + { + "start": 2241.46, + "end": 2242.72, + "probability": 0.981 + }, + { + "start": 2242.86, + "end": 2244.86, + "probability": 0.9302 + }, + { + "start": 2246.04, + "end": 2247.57, + "probability": 0.5925 + }, + { + "start": 2247.88, + "end": 2252.76, + "probability": 0.9665 + }, + { + "start": 2253.54, + "end": 2258.26, + "probability": 0.9891 + }, + { + "start": 2258.26, + "end": 2265.68, + "probability": 0.7875 + }, + { + "start": 2266.64, + "end": 2267.86, + "probability": 0.9389 + }, + { + "start": 2268.0, + "end": 2273.16, + "probability": 0.8637 + }, + { + "start": 2274.26, + "end": 2275.51, + "probability": 0.7551 + }, + { + "start": 2276.92, + "end": 2280.02, + "probability": 0.8031 + }, + { + "start": 2280.72, + "end": 2284.74, + "probability": 0.6525 + }, + { + "start": 2285.44, + "end": 2289.48, + "probability": 0.972 + }, + { + "start": 2290.24, + "end": 2292.49, + "probability": 0.5934 + }, + { + "start": 2293.2, + "end": 2294.8, + "probability": 0.8197 + }, + { + "start": 2295.52, + "end": 2296.92, + "probability": 0.9789 + }, + { + "start": 2297.78, + "end": 2298.74, + "probability": 0.609 + }, + { + "start": 2299.4, + "end": 2301.44, + "probability": 0.9622 + }, + { + "start": 2302.06, + "end": 2302.84, + "probability": 0.9392 + }, + { + "start": 2303.74, + "end": 2305.48, + "probability": 0.7827 + }, + { + "start": 2306.18, + "end": 2308.18, + "probability": 0.9883 + }, + { + "start": 2308.82, + "end": 2313.66, + "probability": 0.9437 + }, + { + "start": 2314.94, + "end": 2318.28, + "probability": 0.9189 + }, + { + "start": 2318.58, + "end": 2319.32, + "probability": 0.8479 + }, + { + "start": 2320.3, + "end": 2321.56, + "probability": 0.9697 + }, + { + "start": 2322.62, + "end": 2328.78, + "probability": 0.9862 + }, + { + "start": 2329.28, + "end": 2330.33, + "probability": 0.9976 + }, + { + "start": 2331.16, + "end": 2331.7, + "probability": 0.8976 + }, + { + "start": 2333.62, + "end": 2335.32, + "probability": 0.9966 + }, + { + "start": 2336.26, + "end": 2339.78, + "probability": 0.9982 + }, + { + "start": 2339.78, + "end": 2344.12, + "probability": 0.8813 + }, + { + "start": 2344.18, + "end": 2344.74, + "probability": 0.5066 + }, + { + "start": 2344.88, + "end": 2347.48, + "probability": 0.8998 + }, + { + "start": 2347.9, + "end": 2351.32, + "probability": 0.9869 + }, + { + "start": 2353.48, + "end": 2355.13, + "probability": 0.5489 + }, + { + "start": 2355.84, + "end": 2363.72, + "probability": 0.9092 + }, + { + "start": 2364.3, + "end": 2366.28, + "probability": 0.9788 + }, + { + "start": 2366.42, + "end": 2368.14, + "probability": 0.9946 + }, + { + "start": 2369.14, + "end": 2369.92, + "probability": 0.7716 + }, + { + "start": 2370.12, + "end": 2370.58, + "probability": 0.7526 + }, + { + "start": 2370.88, + "end": 2373.18, + "probability": 0.9663 + }, + { + "start": 2373.48, + "end": 2374.0, + "probability": 0.9464 + }, + { + "start": 2374.92, + "end": 2376.94, + "probability": 0.3267 + }, + { + "start": 2379.6, + "end": 2381.25, + "probability": 0.9673 + }, + { + "start": 2381.78, + "end": 2383.08, + "probability": 0.7682 + }, + { + "start": 2383.14, + "end": 2385.28, + "probability": 0.4413 + }, + { + "start": 2385.82, + "end": 2387.34, + "probability": 0.3608 + }, + { + "start": 2388.08, + "end": 2389.3, + "probability": 0.6069 + }, + { + "start": 2389.84, + "end": 2390.92, + "probability": 0.0251 + }, + { + "start": 2391.54, + "end": 2391.72, + "probability": 0.1798 + }, + { + "start": 2391.72, + "end": 2391.8, + "probability": 0.2701 + }, + { + "start": 2391.98, + "end": 2392.26, + "probability": 0.0442 + }, + { + "start": 2392.8, + "end": 2394.64, + "probability": 0.2981 + }, + { + "start": 2394.82, + "end": 2397.24, + "probability": 0.7743 + }, + { + "start": 2397.54, + "end": 2398.42, + "probability": 0.2784 + }, + { + "start": 2398.42, + "end": 2399.8, + "probability": 0.6236 + }, + { + "start": 2399.86, + "end": 2400.28, + "probability": 0.3991 + }, + { + "start": 2400.38, + "end": 2403.38, + "probability": 0.7017 + }, + { + "start": 2403.5, + "end": 2405.04, + "probability": 0.9224 + }, + { + "start": 2405.53, + "end": 2406.28, + "probability": 0.3364 + }, + { + "start": 2406.3, + "end": 2406.62, + "probability": 0.4633 + }, + { + "start": 2406.98, + "end": 2408.62, + "probability": 0.0505 + }, + { + "start": 2408.62, + "end": 2411.48, + "probability": 0.5752 + }, + { + "start": 2411.78, + "end": 2413.13, + "probability": 0.7152 + }, + { + "start": 2414.44, + "end": 2417.26, + "probability": 0.9264 + }, + { + "start": 2418.22, + "end": 2420.26, + "probability": 0.7768 + }, + { + "start": 2423.12, + "end": 2424.08, + "probability": 0.4406 + }, + { + "start": 2424.14, + "end": 2428.48, + "probability": 0.7091 + }, + { + "start": 2428.9, + "end": 2430.34, + "probability": 0.9026 + }, + { + "start": 2431.18, + "end": 2434.62, + "probability": 0.4176 + }, + { + "start": 2435.58, + "end": 2438.08, + "probability": 0.8255 + }, + { + "start": 2438.68, + "end": 2439.4, + "probability": 0.2545 + }, + { + "start": 2439.6, + "end": 2440.58, + "probability": 0.8585 + }, + { + "start": 2440.62, + "end": 2441.74, + "probability": 0.6973 + }, + { + "start": 2442.54, + "end": 2445.66, + "probability": 0.9761 + }, + { + "start": 2446.22, + "end": 2449.34, + "probability": 0.7636 + }, + { + "start": 2449.76, + "end": 2451.04, + "probability": 0.9092 + }, + { + "start": 2451.36, + "end": 2456.5, + "probability": 0.9768 + }, + { + "start": 2457.56, + "end": 2459.5, + "probability": 0.9818 + }, + { + "start": 2461.04, + "end": 2461.92, + "probability": 0.6292 + }, + { + "start": 2461.94, + "end": 2462.58, + "probability": 0.8847 + }, + { + "start": 2462.76, + "end": 2466.38, + "probability": 0.8592 + }, + { + "start": 2467.42, + "end": 2469.0, + "probability": 0.6688 + }, + { + "start": 2469.2, + "end": 2469.86, + "probability": 0.3814 + }, + { + "start": 2470.24, + "end": 2470.78, + "probability": 0.3464 + }, + { + "start": 2470.9, + "end": 2472.2, + "probability": 0.409 + }, + { + "start": 2472.82, + "end": 2475.08, + "probability": 0.9404 + }, + { + "start": 2476.5, + "end": 2476.92, + "probability": 0.0364 + }, + { + "start": 2476.92, + "end": 2479.36, + "probability": 0.6533 + }, + { + "start": 2479.58, + "end": 2480.0, + "probability": 0.411 + }, + { + "start": 2480.06, + "end": 2481.11, + "probability": 0.2439 + }, + { + "start": 2481.46, + "end": 2482.14, + "probability": 0.2247 + }, + { + "start": 2482.38, + "end": 2483.38, + "probability": 0.6442 + }, + { + "start": 2483.38, + "end": 2485.36, + "probability": 0.4965 + }, + { + "start": 2485.9, + "end": 2487.06, + "probability": 0.6553 + }, + { + "start": 2487.82, + "end": 2489.36, + "probability": 0.9906 + }, + { + "start": 2489.44, + "end": 2490.16, + "probability": 0.5042 + }, + { + "start": 2490.3, + "end": 2492.92, + "probability": 0.8072 + }, + { + "start": 2493.28, + "end": 2496.48, + "probability": 0.9261 + }, + { + "start": 2496.62, + "end": 2496.69, + "probability": 0.0281 + }, + { + "start": 2497.36, + "end": 2501.29, + "probability": 0.9615 + }, + { + "start": 2503.08, + "end": 2503.6, + "probability": 0.2993 + }, + { + "start": 2503.74, + "end": 2505.46, + "probability": 0.5095 + }, + { + "start": 2505.67, + "end": 2509.14, + "probability": 0.9882 + }, + { + "start": 2509.62, + "end": 2509.78, + "probability": 0.3979 + }, + { + "start": 2510.1, + "end": 2511.42, + "probability": 0.9364 + }, + { + "start": 2511.5, + "end": 2514.5, + "probability": 0.9486 + }, + { + "start": 2514.52, + "end": 2515.42, + "probability": 0.6727 + }, + { + "start": 2515.9, + "end": 2519.12, + "probability": 0.8931 + }, + { + "start": 2519.8, + "end": 2521.4, + "probability": 0.9917 + }, + { + "start": 2521.56, + "end": 2521.82, + "probability": 0.0253 + }, + { + "start": 2521.86, + "end": 2526.78, + "probability": 0.9936 + }, + { + "start": 2528.36, + "end": 2529.16, + "probability": 0.2733 + }, + { + "start": 2529.96, + "end": 2531.88, + "probability": 0.6683 + }, + { + "start": 2531.98, + "end": 2532.48, + "probability": 0.3554 + }, + { + "start": 2532.56, + "end": 2536.06, + "probability": 0.7863 + }, + { + "start": 2536.18, + "end": 2537.66, + "probability": 0.0422 + }, + { + "start": 2538.42, + "end": 2539.14, + "probability": 0.141 + }, + { + "start": 2539.32, + "end": 2540.96, + "probability": 0.9062 + }, + { + "start": 2541.06, + "end": 2541.76, + "probability": 0.5927 + }, + { + "start": 2541.88, + "end": 2543.14, + "probability": 0.6366 + }, + { + "start": 2543.44, + "end": 2545.98, + "probability": 0.5465 + }, + { + "start": 2546.06, + "end": 2548.86, + "probability": 0.9656 + }, + { + "start": 2549.62, + "end": 2553.27, + "probability": 0.9344 + }, + { + "start": 2554.06, + "end": 2559.44, + "probability": 0.6076 + }, + { + "start": 2559.88, + "end": 2560.46, + "probability": 0.591 + }, + { + "start": 2560.56, + "end": 2566.48, + "probability": 0.9237 + }, + { + "start": 2566.96, + "end": 2569.93, + "probability": 0.9797 + }, + { + "start": 2570.54, + "end": 2573.6, + "probability": 0.9816 + }, + { + "start": 2573.6, + "end": 2577.8, + "probability": 0.6915 + }, + { + "start": 2578.12, + "end": 2607.8, + "probability": 0.7446 + }, + { + "start": 2608.52, + "end": 2611.62, + "probability": 0.7767 + }, + { + "start": 2612.28, + "end": 2616.02, + "probability": 0.8665 + }, + { + "start": 2616.24, + "end": 2620.42, + "probability": 0.8835 + }, + { + "start": 2621.44, + "end": 2621.86, + "probability": 0.5703 + }, + { + "start": 2622.32, + "end": 2623.58, + "probability": 0.8267 + }, + { + "start": 2624.1, + "end": 2628.02, + "probability": 0.8004 + }, + { + "start": 2628.82, + "end": 2629.28, + "probability": 0.7949 + }, + { + "start": 2629.48, + "end": 2630.58, + "probability": 0.939 + }, + { + "start": 2631.1, + "end": 2635.16, + "probability": 0.7236 + }, + { + "start": 2636.34, + "end": 2638.54, + "probability": 0.8701 + }, + { + "start": 2640.74, + "end": 2642.34, + "probability": 0.998 + }, + { + "start": 2642.5, + "end": 2643.87, + "probability": 0.9976 + }, + { + "start": 2644.98, + "end": 2648.86, + "probability": 0.9962 + }, + { + "start": 2649.78, + "end": 2652.45, + "probability": 0.9963 + }, + { + "start": 2653.02, + "end": 2654.6, + "probability": 0.5736 + }, + { + "start": 2656.0, + "end": 2657.22, + "probability": 0.6796 + }, + { + "start": 2657.4, + "end": 2658.0, + "probability": 0.8076 + }, + { + "start": 2659.38, + "end": 2661.4, + "probability": 0.9958 + }, + { + "start": 2663.28, + "end": 2666.86, + "probability": 0.6926 + }, + { + "start": 2668.1, + "end": 2669.2, + "probability": 0.9541 + }, + { + "start": 2669.44, + "end": 2675.52, + "probability": 0.886 + }, + { + "start": 2676.96, + "end": 2678.34, + "probability": 0.9958 + }, + { + "start": 2678.92, + "end": 2679.46, + "probability": 0.9862 + }, + { + "start": 2680.76, + "end": 2682.1, + "probability": 0.985 + }, + { + "start": 2682.42, + "end": 2684.02, + "probability": 0.679 + }, + { + "start": 2684.08, + "end": 2686.92, + "probability": 0.8256 + }, + { + "start": 2687.46, + "end": 2692.28, + "probability": 0.9356 + }, + { + "start": 2692.28, + "end": 2696.96, + "probability": 0.9938 + }, + { + "start": 2697.68, + "end": 2698.22, + "probability": 0.9927 + }, + { + "start": 2698.98, + "end": 2700.78, + "probability": 0.8715 + }, + { + "start": 2700.92, + "end": 2702.98, + "probability": 0.9132 + }, + { + "start": 2703.12, + "end": 2706.46, + "probability": 0.9932 + }, + { + "start": 2707.26, + "end": 2708.26, + "probability": 0.95 + }, + { + "start": 2708.42, + "end": 2709.86, + "probability": 0.9964 + }, + { + "start": 2710.78, + "end": 2711.88, + "probability": 0.9912 + }, + { + "start": 2712.44, + "end": 2714.86, + "probability": 0.7522 + }, + { + "start": 2715.4, + "end": 2717.26, + "probability": 0.9814 + }, + { + "start": 2717.86, + "end": 2720.74, + "probability": 0.9822 + }, + { + "start": 2721.86, + "end": 2724.18, + "probability": 0.9985 + }, + { + "start": 2725.06, + "end": 2726.74, + "probability": 0.6777 + }, + { + "start": 2727.54, + "end": 2727.9, + "probability": 0.9956 + }, + { + "start": 2728.52, + "end": 2730.06, + "probability": 0.9493 + }, + { + "start": 2730.78, + "end": 2734.2, + "probability": 0.9976 + }, + { + "start": 2735.36, + "end": 2736.88, + "probability": 0.9976 + }, + { + "start": 2737.9, + "end": 2740.88, + "probability": 0.9989 + }, + { + "start": 2741.6, + "end": 2743.58, + "probability": 0.9992 + }, + { + "start": 2744.98, + "end": 2747.44, + "probability": 0.916 + }, + { + "start": 2747.52, + "end": 2750.44, + "probability": 0.9987 + }, + { + "start": 2751.86, + "end": 2752.6, + "probability": 0.887 + }, + { + "start": 2753.3, + "end": 2754.04, + "probability": 0.9424 + }, + { + "start": 2755.02, + "end": 2759.86, + "probability": 0.9436 + }, + { + "start": 2760.52, + "end": 2761.2, + "probability": 0.7584 + }, + { + "start": 2762.12, + "end": 2765.26, + "probability": 0.9341 + }, + { + "start": 2766.96, + "end": 2769.76, + "probability": 0.9457 + }, + { + "start": 2770.06, + "end": 2776.18, + "probability": 0.9777 + }, + { + "start": 2776.28, + "end": 2777.18, + "probability": 0.7961 + }, + { + "start": 2777.42, + "end": 2780.89, + "probability": 0.7026 + }, + { + "start": 2781.7, + "end": 2784.38, + "probability": 0.9353 + }, + { + "start": 2784.38, + "end": 2788.76, + "probability": 0.9654 + }, + { + "start": 2788.92, + "end": 2790.15, + "probability": 0.8002 + }, + { + "start": 2790.94, + "end": 2792.82, + "probability": 0.6994 + }, + { + "start": 2793.58, + "end": 2795.0, + "probability": 0.9263 + }, + { + "start": 2795.4, + "end": 2799.38, + "probability": 0.8652 + }, + { + "start": 2800.3, + "end": 2804.12, + "probability": 0.9423 + }, + { + "start": 2805.66, + "end": 2808.12, + "probability": 0.9108 + }, + { + "start": 2809.12, + "end": 2812.82, + "probability": 0.6683 + }, + { + "start": 2813.5, + "end": 2816.7, + "probability": 0.9917 + }, + { + "start": 2818.32, + "end": 2823.14, + "probability": 0.8151 + }, + { + "start": 2825.07, + "end": 2829.48, + "probability": 0.5758 + }, + { + "start": 2830.14, + "end": 2832.31, + "probability": 0.8918 + }, + { + "start": 2833.08, + "end": 2836.56, + "probability": 0.9288 + }, + { + "start": 2837.5, + "end": 2838.68, + "probability": 0.999 + }, + { + "start": 2839.32, + "end": 2846.2, + "probability": 0.8927 + }, + { + "start": 2847.04, + "end": 2849.38, + "probability": 0.8487 + }, + { + "start": 2849.38, + "end": 2852.88, + "probability": 0.9751 + }, + { + "start": 2854.16, + "end": 2855.24, + "probability": 0.7704 + }, + { + "start": 2856.44, + "end": 2857.16, + "probability": 0.2351 + }, + { + "start": 2857.26, + "end": 2860.32, + "probability": 0.5529 + }, + { + "start": 2860.32, + "end": 2860.34, + "probability": 0.4834 + }, + { + "start": 2860.34, + "end": 2863.8, + "probability": 0.9771 + }, + { + "start": 2863.96, + "end": 2864.28, + "probability": 0.5518 + }, + { + "start": 2865.04, + "end": 2866.04, + "probability": 0.9127 + }, + { + "start": 2866.46, + "end": 2871.36, + "probability": 0.863 + }, + { + "start": 2872.9, + "end": 2874.34, + "probability": 0.9471 + }, + { + "start": 2874.46, + "end": 2876.18, + "probability": 0.9928 + }, + { + "start": 2878.26, + "end": 2879.06, + "probability": 0.8611 + }, + { + "start": 2879.32, + "end": 2880.62, + "probability": 0.6188 + }, + { + "start": 2881.24, + "end": 2881.72, + "probability": 0.0413 + }, + { + "start": 2882.58, + "end": 2888.36, + "probability": 0.7653 + }, + { + "start": 2888.84, + "end": 2890.38, + "probability": 0.9985 + }, + { + "start": 2891.24, + "end": 2891.7, + "probability": 0.6102 + }, + { + "start": 2891.82, + "end": 2894.34, + "probability": 0.8462 + }, + { + "start": 2894.52, + "end": 2895.76, + "probability": 0.936 + }, + { + "start": 2896.24, + "end": 2901.76, + "probability": 0.6797 + }, + { + "start": 2902.36, + "end": 2903.78, + "probability": 0.9176 + }, + { + "start": 2903.9, + "end": 2906.96, + "probability": 0.9697 + }, + { + "start": 2906.96, + "end": 2907.64, + "probability": 0.4522 + }, + { + "start": 2907.72, + "end": 2908.92, + "probability": 0.7664 + }, + { + "start": 2909.12, + "end": 2911.04, + "probability": 0.7299 + }, + { + "start": 2912.08, + "end": 2912.82, + "probability": 0.2536 + }, + { + "start": 2913.24, + "end": 2913.86, + "probability": 0.9712 + }, + { + "start": 2914.08, + "end": 2914.57, + "probability": 0.9093 + }, + { + "start": 2914.92, + "end": 2916.04, + "probability": 0.9245 + }, + { + "start": 2916.6, + "end": 2919.62, + "probability": 0.9132 + }, + { + "start": 2920.1, + "end": 2922.14, + "probability": 0.6132 + }, + { + "start": 2922.9, + "end": 2924.42, + "probability": 0.731 + }, + { + "start": 2924.8, + "end": 2927.72, + "probability": 0.6951 + }, + { + "start": 2928.12, + "end": 2929.38, + "probability": 0.6699 + }, + { + "start": 2929.98, + "end": 2931.74, + "probability": 0.7746 + }, + { + "start": 2931.92, + "end": 2933.7, + "probability": 0.9647 + }, + { + "start": 2934.44, + "end": 2935.46, + "probability": 0.6047 + }, + { + "start": 2935.46, + "end": 2937.36, + "probability": 0.9673 + }, + { + "start": 2937.78, + "end": 2940.02, + "probability": 0.8821 + }, + { + "start": 2940.82, + "end": 2942.1, + "probability": 0.6499 + }, + { + "start": 2942.18, + "end": 2944.12, + "probability": 0.5909 + }, + { + "start": 2944.2, + "end": 2944.58, + "probability": 0.5371 + }, + { + "start": 2944.72, + "end": 2946.4, + "probability": 0.7985 + }, + { + "start": 2946.56, + "end": 2947.17, + "probability": 0.936 + }, + { + "start": 2947.66, + "end": 2951.67, + "probability": 0.9909 + }, + { + "start": 2951.94, + "end": 2956.14, + "probability": 0.9219 + }, + { + "start": 2957.04, + "end": 2958.5, + "probability": 0.8121 + }, + { + "start": 2958.58, + "end": 2960.38, + "probability": 0.8279 + }, + { + "start": 2960.58, + "end": 2966.56, + "probability": 0.98 + }, + { + "start": 2966.62, + "end": 2967.22, + "probability": 0.8138 + }, + { + "start": 2967.84, + "end": 2968.54, + "probability": 0.8672 + }, + { + "start": 2969.14, + "end": 2970.08, + "probability": 0.8312 + }, + { + "start": 2970.1, + "end": 2971.15, + "probability": 0.9767 + }, + { + "start": 2971.28, + "end": 2972.06, + "probability": 0.9471 + }, + { + "start": 2972.68, + "end": 2973.54, + "probability": 0.9076 + }, + { + "start": 2973.64, + "end": 2975.62, + "probability": 0.8862 + }, + { + "start": 2975.76, + "end": 2977.88, + "probability": 0.9844 + }, + { + "start": 2978.52, + "end": 2979.78, + "probability": 0.6645 + }, + { + "start": 2980.08, + "end": 2980.48, + "probability": 0.4841 + }, + { + "start": 2980.52, + "end": 2981.08, + "probability": 0.6849 + }, + { + "start": 2981.34, + "end": 2981.92, + "probability": 0.398 + }, + { + "start": 2982.08, + "end": 2982.5, + "probability": 0.7227 + }, + { + "start": 2982.78, + "end": 2983.38, + "probability": 0.7443 + }, + { + "start": 2983.86, + "end": 2984.58, + "probability": 0.979 + }, + { + "start": 2984.66, + "end": 2986.31, + "probability": 0.9739 + }, + { + "start": 2986.74, + "end": 2987.18, + "probability": 0.756 + }, + { + "start": 2987.24, + "end": 2990.28, + "probability": 0.9751 + }, + { + "start": 2991.02, + "end": 2993.54, + "probability": 0.836 + }, + { + "start": 2994.14, + "end": 2994.24, + "probability": 0.5039 + }, + { + "start": 2994.8, + "end": 2996.82, + "probability": 0.945 + }, + { + "start": 2997.52, + "end": 2998.66, + "probability": 0.7167 + }, + { + "start": 2998.86, + "end": 2999.94, + "probability": 0.9222 + }, + { + "start": 3000.02, + "end": 3003.86, + "probability": 0.892 + }, + { + "start": 3003.96, + "end": 3007.24, + "probability": 0.4294 + }, + { + "start": 3007.8, + "end": 3011.12, + "probability": 0.9449 + }, + { + "start": 3011.18, + "end": 3011.9, + "probability": 0.8098 + }, + { + "start": 3012.3, + "end": 3014.14, + "probability": 0.9126 + }, + { + "start": 3014.44, + "end": 3014.86, + "probability": 0.7934 + }, + { + "start": 3015.08, + "end": 3015.9, + "probability": 0.6638 + }, + { + "start": 3016.12, + "end": 3018.2, + "probability": 0.8318 + }, + { + "start": 3018.26, + "end": 3018.28, + "probability": 0.032 + }, + { + "start": 3018.46, + "end": 3019.34, + "probability": 0.4859 + }, + { + "start": 3019.4, + "end": 3019.52, + "probability": 0.1529 + }, + { + "start": 3019.68, + "end": 3019.7, + "probability": 0.0011 + }, + { + "start": 3019.7, + "end": 3020.18, + "probability": 0.4612 + }, + { + "start": 3020.64, + "end": 3023.27, + "probability": 0.944 + }, + { + "start": 3023.9, + "end": 3026.38, + "probability": 0.9766 + }, + { + "start": 3026.6, + "end": 3028.0, + "probability": 0.671 + }, + { + "start": 3028.62, + "end": 3030.62, + "probability": 0.9229 + }, + { + "start": 3030.76, + "end": 3031.42, + "probability": 0.5226 + }, + { + "start": 3031.54, + "end": 3032.68, + "probability": 0.2588 + }, + { + "start": 3032.7, + "end": 3032.8, + "probability": 0.0773 + }, + { + "start": 3032.8, + "end": 3035.9, + "probability": 0.2537 + }, + { + "start": 3035.9, + "end": 3036.72, + "probability": 0.2997 + }, + { + "start": 3036.94, + "end": 3036.96, + "probability": 0.6236 + }, + { + "start": 3037.0, + "end": 3040.62, + "probability": 0.703 + }, + { + "start": 3040.62, + "end": 3044.14, + "probability": 0.9636 + }, + { + "start": 3044.68, + "end": 3047.28, + "probability": 0.8343 + }, + { + "start": 3047.7, + "end": 3051.3, + "probability": 0.8752 + }, + { + "start": 3051.74, + "end": 3053.4, + "probability": 0.5547 + }, + { + "start": 3053.4, + "end": 3056.14, + "probability": 0.9774 + }, + { + "start": 3056.2, + "end": 3057.0, + "probability": 0.5403 + }, + { + "start": 3057.1, + "end": 3058.78, + "probability": 0.6626 + }, + { + "start": 3059.06, + "end": 3062.92, + "probability": 0.6663 + }, + { + "start": 3063.5, + "end": 3065.56, + "probability": 0.6593 + }, + { + "start": 3065.7, + "end": 3068.94, + "probability": 0.9871 + }, + { + "start": 3069.8, + "end": 3072.02, + "probability": 0.8735 + }, + { + "start": 3072.24, + "end": 3073.7, + "probability": 0.8833 + }, + { + "start": 3074.06, + "end": 3074.6, + "probability": 0.9019 + }, + { + "start": 3075.0, + "end": 3075.52, + "probability": 0.6304 + }, + { + "start": 3075.52, + "end": 3076.48, + "probability": 0.5504 + }, + { + "start": 3077.12, + "end": 3078.3, + "probability": 0.8279 + }, + { + "start": 3079.08, + "end": 3082.68, + "probability": 0.6833 + }, + { + "start": 3082.98, + "end": 3083.96, + "probability": 0.4722 + }, + { + "start": 3084.02, + "end": 3084.95, + "probability": 0.9087 + }, + { + "start": 3085.32, + "end": 3086.56, + "probability": 0.2287 + }, + { + "start": 3086.56, + "end": 3086.6, + "probability": 0.3118 + }, + { + "start": 3086.9, + "end": 3087.34, + "probability": 0.805 + }, + { + "start": 3087.36, + "end": 3088.38, + "probability": 0.2776 + }, + { + "start": 3088.56, + "end": 3092.08, + "probability": 0.8426 + }, + { + "start": 3092.22, + "end": 3092.58, + "probability": 0.6639 + }, + { + "start": 3093.44, + "end": 3093.62, + "probability": 0.2097 + }, + { + "start": 3095.12, + "end": 3095.64, + "probability": 0.3088 + }, + { + "start": 3095.76, + "end": 3097.88, + "probability": 0.8139 + }, + { + "start": 3099.1, + "end": 3100.98, + "probability": 0.6786 + }, + { + "start": 3101.62, + "end": 3105.38, + "probability": 0.4845 + }, + { + "start": 3105.52, + "end": 3106.06, + "probability": 0.4861 + }, + { + "start": 3107.48, + "end": 3108.12, + "probability": 0.6525 + }, + { + "start": 3110.28, + "end": 3112.4, + "probability": 0.7925 + }, + { + "start": 3112.84, + "end": 3113.1, + "probability": 0.3613 + }, + { + "start": 3113.16, + "end": 3113.64, + "probability": 0.7529 + }, + { + "start": 3113.68, + "end": 3114.3, + "probability": 0.9745 + }, + { + "start": 3114.78, + "end": 3116.1, + "probability": 0.7012 + }, + { + "start": 3116.3, + "end": 3116.32, + "probability": 0.5272 + }, + { + "start": 3116.32, + "end": 3116.9, + "probability": 0.6846 + }, + { + "start": 3116.96, + "end": 3118.1, + "probability": 0.6642 + }, + { + "start": 3119.02, + "end": 3120.02, + "probability": 0.4784 + }, + { + "start": 3120.06, + "end": 3120.22, + "probability": 0.2153 + }, + { + "start": 3120.22, + "end": 3120.54, + "probability": 0.6102 + }, + { + "start": 3120.6, + "end": 3123.58, + "probability": 0.9359 + }, + { + "start": 3123.58, + "end": 3126.94, + "probability": 0.9811 + }, + { + "start": 3127.02, + "end": 3127.74, + "probability": 0.7988 + }, + { + "start": 3127.98, + "end": 3129.0, + "probability": 0.941 + }, + { + "start": 3129.54, + "end": 3132.58, + "probability": 0.939 + }, + { + "start": 3133.38, + "end": 3135.58, + "probability": 0.9524 + }, + { + "start": 3136.24, + "end": 3139.84, + "probability": 0.9973 + }, + { + "start": 3140.84, + "end": 3143.87, + "probability": 0.9907 + }, + { + "start": 3144.2, + "end": 3149.1, + "probability": 0.9408 + }, + { + "start": 3149.7, + "end": 3150.94, + "probability": 0.8234 + }, + { + "start": 3151.72, + "end": 3153.24, + "probability": 0.9873 + }, + { + "start": 3154.3, + "end": 3158.36, + "probability": 0.9573 + }, + { + "start": 3159.56, + "end": 3164.42, + "probability": 0.9321 + }, + { + "start": 3165.02, + "end": 3166.8, + "probability": 0.9282 + }, + { + "start": 3167.58, + "end": 3170.84, + "probability": 0.7096 + }, + { + "start": 3171.84, + "end": 3175.28, + "probability": 0.8045 + }, + { + "start": 3175.28, + "end": 3179.24, + "probability": 0.9223 + }, + { + "start": 3179.92, + "end": 3182.26, + "probability": 0.9921 + }, + { + "start": 3182.38, + "end": 3183.46, + "probability": 0.9081 + }, + { + "start": 3183.96, + "end": 3185.52, + "probability": 0.7447 + }, + { + "start": 3185.8, + "end": 3186.44, + "probability": 0.8301 + }, + { + "start": 3186.9, + "end": 3188.11, + "probability": 0.5401 + }, + { + "start": 3188.7, + "end": 3189.48, + "probability": 0.9667 + }, + { + "start": 3189.66, + "end": 3191.95, + "probability": 0.8621 + }, + { + "start": 3192.82, + "end": 3194.32, + "probability": 0.9651 + }, + { + "start": 3195.68, + "end": 3199.04, + "probability": 0.9935 + }, + { + "start": 3199.04, + "end": 3201.44, + "probability": 0.8696 + }, + { + "start": 3202.18, + "end": 3203.72, + "probability": 0.9875 + }, + { + "start": 3203.88, + "end": 3204.68, + "probability": 0.8962 + }, + { + "start": 3204.68, + "end": 3205.73, + "probability": 0.9805 + }, + { + "start": 3206.66, + "end": 3207.68, + "probability": 0.8381 + }, + { + "start": 3207.8, + "end": 3211.38, + "probability": 0.9538 + }, + { + "start": 3211.44, + "end": 3211.86, + "probability": 0.7464 + }, + { + "start": 3211.96, + "end": 3213.54, + "probability": 0.957 + }, + { + "start": 3214.1, + "end": 3215.84, + "probability": 0.8165 + }, + { + "start": 3216.38, + "end": 3219.46, + "probability": 0.9909 + }, + { + "start": 3219.94, + "end": 3221.16, + "probability": 0.8989 + }, + { + "start": 3221.8, + "end": 3222.78, + "probability": 0.7596 + }, + { + "start": 3223.26, + "end": 3226.92, + "probability": 0.9749 + }, + { + "start": 3226.92, + "end": 3231.23, + "probability": 0.9695 + }, + { + "start": 3232.74, + "end": 3233.48, + "probability": 0.8983 + }, + { + "start": 3233.58, + "end": 3234.26, + "probability": 0.7627 + }, + { + "start": 3234.6, + "end": 3236.98, + "probability": 0.9769 + }, + { + "start": 3237.3, + "end": 3240.3, + "probability": 0.8981 + }, + { + "start": 3240.34, + "end": 3242.4, + "probability": 0.9199 + }, + { + "start": 3242.68, + "end": 3245.26, + "probability": 0.9911 + }, + { + "start": 3246.4, + "end": 3248.64, + "probability": 0.6802 + }, + { + "start": 3248.7, + "end": 3250.78, + "probability": 0.9845 + }, + { + "start": 3251.24, + "end": 3252.8, + "probability": 0.9969 + }, + { + "start": 3253.44, + "end": 3255.44, + "probability": 0.6609 + }, + { + "start": 3255.6, + "end": 3256.12, + "probability": 0.7455 + }, + { + "start": 3256.22, + "end": 3259.44, + "probability": 0.6866 + }, + { + "start": 3259.78, + "end": 3259.96, + "probability": 0.7238 + }, + { + "start": 3260.22, + "end": 3261.94, + "probability": 0.648 + }, + { + "start": 3262.3, + "end": 3265.24, + "probability": 0.8492 + }, + { + "start": 3266.92, + "end": 3267.74, + "probability": 0.6828 + }, + { + "start": 3268.72, + "end": 3270.18, + "probability": 0.6904 + }, + { + "start": 3270.65, + "end": 3272.43, + "probability": 0.994 + }, + { + "start": 3273.04, + "end": 3275.64, + "probability": 0.992 + }, + { + "start": 3275.64, + "end": 3278.5, + "probability": 0.9938 + }, + { + "start": 3279.38, + "end": 3280.86, + "probability": 0.9111 + }, + { + "start": 3281.2, + "end": 3282.68, + "probability": 0.9324 + }, + { + "start": 3283.02, + "end": 3284.56, + "probability": 0.8984 + }, + { + "start": 3284.56, + "end": 3288.14, + "probability": 0.9738 + }, + { + "start": 3288.26, + "end": 3289.0, + "probability": 0.3794 + }, + { + "start": 3289.06, + "end": 3289.74, + "probability": 0.9272 + }, + { + "start": 3290.28, + "end": 3291.44, + "probability": 0.9688 + }, + { + "start": 3291.6, + "end": 3292.94, + "probability": 0.9707 + }, + { + "start": 3293.78, + "end": 3294.96, + "probability": 0.9556 + }, + { + "start": 3295.2, + "end": 3295.64, + "probability": 0.746 + }, + { + "start": 3295.84, + "end": 3297.8, + "probability": 0.9552 + }, + { + "start": 3298.24, + "end": 3300.74, + "probability": 0.9668 + }, + { + "start": 3300.82, + "end": 3301.82, + "probability": 0.9736 + }, + { + "start": 3302.66, + "end": 3304.7, + "probability": 0.7793 + }, + { + "start": 3304.88, + "end": 3305.6, + "probability": 0.8056 + }, + { + "start": 3305.68, + "end": 3307.36, + "probability": 0.9935 + }, + { + "start": 3308.0, + "end": 3311.22, + "probability": 0.9133 + }, + { + "start": 3311.22, + "end": 3313.08, + "probability": 0.9518 + }, + { + "start": 3313.66, + "end": 3316.56, + "probability": 0.9924 + }, + { + "start": 3317.04, + "end": 3318.06, + "probability": 0.9357 + }, + { + "start": 3318.2, + "end": 3320.48, + "probability": 0.8406 + }, + { + "start": 3320.88, + "end": 3321.54, + "probability": 0.9783 + }, + { + "start": 3321.62, + "end": 3322.76, + "probability": 0.9943 + }, + { + "start": 3323.3, + "end": 3325.14, + "probability": 0.8572 + }, + { + "start": 3325.88, + "end": 3330.22, + "probability": 0.9285 + }, + { + "start": 3332.56, + "end": 3333.6, + "probability": 0.2649 + }, + { + "start": 3333.84, + "end": 3334.84, + "probability": 0.7437 + }, + { + "start": 3335.6, + "end": 3336.12, + "probability": 0.7942 + }, + { + "start": 3336.22, + "end": 3338.5, + "probability": 0.9472 + }, + { + "start": 3338.5, + "end": 3340.78, + "probability": 0.8884 + }, + { + "start": 3341.44, + "end": 3344.08, + "probability": 0.9956 + }, + { + "start": 3344.76, + "end": 3345.48, + "probability": 0.5188 + }, + { + "start": 3345.58, + "end": 3346.08, + "probability": 0.6161 + }, + { + "start": 3346.3, + "end": 3348.06, + "probability": 0.8896 + }, + { + "start": 3348.36, + "end": 3352.98, + "probability": 0.9697 + }, + { + "start": 3353.1, + "end": 3354.94, + "probability": 0.9956 + }, + { + "start": 3355.36, + "end": 3356.38, + "probability": 0.9663 + }, + { + "start": 3356.82, + "end": 3358.3, + "probability": 0.9912 + }, + { + "start": 3358.34, + "end": 3360.12, + "probability": 0.9959 + }, + { + "start": 3360.2, + "end": 3363.72, + "probability": 0.9582 + }, + { + "start": 3364.24, + "end": 3370.2, + "probability": 0.9938 + }, + { + "start": 3370.26, + "end": 3373.82, + "probability": 0.8295 + }, + { + "start": 3373.98, + "end": 3374.19, + "probability": 0.4975 + }, + { + "start": 3376.16, + "end": 3376.66, + "probability": 0.446 + }, + { + "start": 3376.66, + "end": 3376.68, + "probability": 0.4115 + }, + { + "start": 3376.72, + "end": 3379.06, + "probability": 0.6271 + }, + { + "start": 3379.1, + "end": 3379.91, + "probability": 0.7113 + }, + { + "start": 3380.24, + "end": 3381.24, + "probability": 0.9885 + }, + { + "start": 3381.64, + "end": 3382.44, + "probability": 0.9889 + }, + { + "start": 3382.84, + "end": 3383.64, + "probability": 0.9854 + }, + { + "start": 3383.92, + "end": 3384.08, + "probability": 0.5645 + }, + { + "start": 3384.18, + "end": 3385.44, + "probability": 0.6861 + }, + { + "start": 3386.02, + "end": 3387.62, + "probability": 0.9629 + }, + { + "start": 3387.98, + "end": 3389.86, + "probability": 0.8072 + }, + { + "start": 3390.42, + "end": 3391.68, + "probability": 0.9075 + }, + { + "start": 3391.74, + "end": 3393.28, + "probability": 0.9681 + }, + { + "start": 3393.64, + "end": 3396.42, + "probability": 0.9889 + }, + { + "start": 3397.4, + "end": 3398.9, + "probability": 0.9618 + }, + { + "start": 3399.3, + "end": 3400.22, + "probability": 0.8614 + }, + { + "start": 3400.48, + "end": 3401.12, + "probability": 0.9312 + }, + { + "start": 3401.84, + "end": 3402.04, + "probability": 0.847 + }, + { + "start": 3402.4, + "end": 3403.66, + "probability": 0.9267 + }, + { + "start": 3404.04, + "end": 3405.48, + "probability": 0.8119 + }, + { + "start": 3405.64, + "end": 3407.04, + "probability": 0.9844 + }, + { + "start": 3407.32, + "end": 3409.88, + "probability": 0.7935 + }, + { + "start": 3410.22, + "end": 3413.74, + "probability": 0.993 + }, + { + "start": 3413.92, + "end": 3414.64, + "probability": 0.9574 + }, + { + "start": 3414.7, + "end": 3415.34, + "probability": 0.787 + }, + { + "start": 3415.76, + "end": 3416.7, + "probability": 0.7655 + }, + { + "start": 3416.74, + "end": 3417.14, + "probability": 0.88 + }, + { + "start": 3417.74, + "end": 3420.45, + "probability": 0.9661 + }, + { + "start": 3420.78, + "end": 3423.56, + "probability": 0.9994 + }, + { + "start": 3423.64, + "end": 3424.1, + "probability": 0.7704 + }, + { + "start": 3424.1, + "end": 3424.18, + "probability": 0.4385 + }, + { + "start": 3424.28, + "end": 3425.56, + "probability": 0.9607 + }, + { + "start": 3426.64, + "end": 3431.98, + "probability": 0.9142 + }, + { + "start": 3432.74, + "end": 3433.98, + "probability": 0.8021 + }, + { + "start": 3434.62, + "end": 3437.68, + "probability": 0.9065 + }, + { + "start": 3438.62, + "end": 3441.28, + "probability": 0.9568 + }, + { + "start": 3441.9, + "end": 3442.58, + "probability": 0.9525 + }, + { + "start": 3443.0, + "end": 3445.36, + "probability": 0.8973 + }, + { + "start": 3447.24, + "end": 3449.92, + "probability": 0.9755 + }, + { + "start": 3451.14, + "end": 3452.72, + "probability": 0.9916 + }, + { + "start": 3454.88, + "end": 3457.05, + "probability": 0.9441 + }, + { + "start": 3458.62, + "end": 3458.62, + "probability": 0.0602 + }, + { + "start": 3458.94, + "end": 3459.0, + "probability": 0.3342 + }, + { + "start": 3459.0, + "end": 3459.36, + "probability": 0.8287 + }, + { + "start": 3459.4, + "end": 3461.3, + "probability": 0.6703 + }, + { + "start": 3461.76, + "end": 3463.12, + "probability": 0.7206 + }, + { + "start": 3463.84, + "end": 3463.84, + "probability": 0.0161 + }, + { + "start": 3466.12, + "end": 3467.0, + "probability": 0.5332 + }, + { + "start": 3467.96, + "end": 3468.94, + "probability": 0.8416 + }, + { + "start": 3469.82, + "end": 3470.88, + "probability": 0.7912 + }, + { + "start": 3472.34, + "end": 3472.92, + "probability": 0.8387 + }, + { + "start": 3473.12, + "end": 3475.1, + "probability": 0.8227 + }, + { + "start": 3475.76, + "end": 3479.12, + "probability": 0.9917 + }, + { + "start": 3480.48, + "end": 3482.8, + "probability": 0.7097 + }, + { + "start": 3483.36, + "end": 3485.54, + "probability": 0.7542 + }, + { + "start": 3485.98, + "end": 3487.5, + "probability": 0.9653 + }, + { + "start": 3487.9, + "end": 3489.36, + "probability": 0.9214 + }, + { + "start": 3489.74, + "end": 3490.47, + "probability": 0.9883 + }, + { + "start": 3491.3, + "end": 3494.84, + "probability": 0.9817 + }, + { + "start": 3494.84, + "end": 3495.38, + "probability": 0.207 + }, + { + "start": 3495.4, + "end": 3495.78, + "probability": 0.5235 + }, + { + "start": 3496.46, + "end": 3498.96, + "probability": 0.9595 + }, + { + "start": 3499.12, + "end": 3499.56, + "probability": 0.6116 + }, + { + "start": 3500.44, + "end": 3500.6, + "probability": 0.4127 + }, + { + "start": 3500.86, + "end": 3501.36, + "probability": 0.4843 + }, + { + "start": 3501.7, + "end": 3502.6, + "probability": 0.7156 + }, + { + "start": 3502.78, + "end": 3504.14, + "probability": 0.7175 + }, + { + "start": 3504.22, + "end": 3504.64, + "probability": 0.494 + }, + { + "start": 3505.36, + "end": 3505.86, + "probability": 0.6974 + }, + { + "start": 3506.16, + "end": 3506.7, + "probability": 0.9274 + }, + { + "start": 3507.26, + "end": 3509.0, + "probability": 0.8415 + }, + { + "start": 3509.12, + "end": 3510.82, + "probability": 0.8834 + }, + { + "start": 3510.92, + "end": 3512.91, + "probability": 0.9644 + }, + { + "start": 3513.32, + "end": 3514.24, + "probability": 0.8799 + }, + { + "start": 3514.82, + "end": 3516.54, + "probability": 0.9167 + }, + { + "start": 3517.32, + "end": 3517.84, + "probability": 0.7362 + }, + { + "start": 3519.3, + "end": 3519.46, + "probability": 0.4648 + }, + { + "start": 3520.12, + "end": 3523.46, + "probability": 0.0109 + }, + { + "start": 3524.5, + "end": 3524.78, + "probability": 0.0281 + }, + { + "start": 3524.78, + "end": 3524.98, + "probability": 0.1971 + }, + { + "start": 3525.6, + "end": 3525.6, + "probability": 0.2979 + }, + { + "start": 3525.6, + "end": 3525.6, + "probability": 0.2309 + }, + { + "start": 3525.6, + "end": 3529.54, + "probability": 0.4925 + }, + { + "start": 3529.54, + "end": 3531.38, + "probability": 0.7327 + }, + { + "start": 3532.08, + "end": 3536.28, + "probability": 0.9924 + }, + { + "start": 3537.18, + "end": 3538.58, + "probability": 0.7979 + }, + { + "start": 3538.88, + "end": 3541.76, + "probability": 0.9841 + }, + { + "start": 3542.3, + "end": 3542.9, + "probability": 0.6993 + }, + { + "start": 3543.36, + "end": 3546.94, + "probability": 0.9868 + }, + { + "start": 3546.94, + "end": 3549.66, + "probability": 0.9927 + }, + { + "start": 3549.84, + "end": 3550.33, + "probability": 0.4497 + }, + { + "start": 3551.08, + "end": 3552.66, + "probability": 0.8289 + }, + { + "start": 3553.6, + "end": 3561.88, + "probability": 0.9653 + }, + { + "start": 3562.56, + "end": 3564.08, + "probability": 0.6743 + }, + { + "start": 3564.18, + "end": 3565.04, + "probability": 0.8764 + }, + { + "start": 3566.08, + "end": 3569.38, + "probability": 0.8911 + }, + { + "start": 3569.72, + "end": 3570.72, + "probability": 0.9889 + }, + { + "start": 3571.02, + "end": 3571.52, + "probability": 0.5904 + }, + { + "start": 3572.38, + "end": 3573.04, + "probability": 0.9167 + }, + { + "start": 3574.36, + "end": 3574.46, + "probability": 0.2484 + }, + { + "start": 3574.6, + "end": 3575.06, + "probability": 0.5514 + }, + { + "start": 3575.42, + "end": 3576.97, + "probability": 0.8164 + }, + { + "start": 3577.94, + "end": 3579.85, + "probability": 0.9588 + }, + { + "start": 3580.02, + "end": 3583.28, + "probability": 0.9973 + }, + { + "start": 3583.4, + "end": 3584.38, + "probability": 0.8771 + }, + { + "start": 3584.94, + "end": 3586.78, + "probability": 0.9678 + }, + { + "start": 3586.94, + "end": 3588.56, + "probability": 0.896 + }, + { + "start": 3590.56, + "end": 3591.04, + "probability": 0.2999 + }, + { + "start": 3591.04, + "end": 3594.0, + "probability": 0.9373 + }, + { + "start": 3594.06, + "end": 3596.08, + "probability": 0.8336 + }, + { + "start": 3596.22, + "end": 3599.42, + "probability": 0.9576 + }, + { + "start": 3599.62, + "end": 3599.62, + "probability": 0.5137 + }, + { + "start": 3600.46, + "end": 3601.98, + "probability": 0.9496 + }, + { + "start": 3603.16, + "end": 3606.1, + "probability": 0.8028 + }, + { + "start": 3606.7, + "end": 3607.64, + "probability": 0.8452 + }, + { + "start": 3608.3, + "end": 3611.3, + "probability": 0.9251 + }, + { + "start": 3611.36, + "end": 3612.32, + "probability": 0.7236 + }, + { + "start": 3612.46, + "end": 3615.79, + "probability": 0.8589 + }, + { + "start": 3616.12, + "end": 3616.33, + "probability": 0.0412 + }, + { + "start": 3616.76, + "end": 3616.76, + "probability": 0.2103 + }, + { + "start": 3616.92, + "end": 3617.06, + "probability": 0.4039 + }, + { + "start": 3617.12, + "end": 3620.0, + "probability": 0.9974 + }, + { + "start": 3620.0, + "end": 3622.88, + "probability": 0.9964 + }, + { + "start": 3622.9, + "end": 3624.2, + "probability": 0.9003 + }, + { + "start": 3624.42, + "end": 3626.5, + "probability": 0.7093 + }, + { + "start": 3626.84, + "end": 3627.86, + "probability": 0.7078 + }, + { + "start": 3628.34, + "end": 3631.74, + "probability": 0.9871 + }, + { + "start": 3632.62, + "end": 3634.3, + "probability": 0.8502 + }, + { + "start": 3634.88, + "end": 3635.56, + "probability": 0.8586 + }, + { + "start": 3635.66, + "end": 3637.64, + "probability": 0.9326 + }, + { + "start": 3638.14, + "end": 3641.44, + "probability": 0.96 + }, + { + "start": 3641.87, + "end": 3644.68, + "probability": 0.7769 + }, + { + "start": 3645.34, + "end": 3646.6, + "probability": 0.9474 + }, + { + "start": 3646.66, + "end": 3648.72, + "probability": 0.9731 + }, + { + "start": 3648.74, + "end": 3649.66, + "probability": 0.8969 + }, + { + "start": 3650.22, + "end": 3652.08, + "probability": 0.9231 + }, + { + "start": 3652.78, + "end": 3654.04, + "probability": 0.5486 + }, + { + "start": 3654.32, + "end": 3654.66, + "probability": 0.4858 + }, + { + "start": 3654.82, + "end": 3655.3, + "probability": 0.7697 + }, + { + "start": 3655.54, + "end": 3655.74, + "probability": 0.0556 + }, + { + "start": 3656.04, + "end": 3658.41, + "probability": 0.9338 + }, + { + "start": 3658.46, + "end": 3658.86, + "probability": 0.559 + }, + { + "start": 3659.56, + "end": 3660.04, + "probability": 0.8122 + }, + { + "start": 3660.14, + "end": 3665.24, + "probability": 0.9458 + }, + { + "start": 3665.86, + "end": 3669.36, + "probability": 0.9605 + }, + { + "start": 3669.36, + "end": 3672.64, + "probability": 0.9977 + }, + { + "start": 3673.12, + "end": 3673.24, + "probability": 0.3457 + }, + { + "start": 3673.3, + "end": 3676.46, + "probability": 0.9666 + }, + { + "start": 3676.46, + "end": 3679.2, + "probability": 0.9825 + }, + { + "start": 3680.02, + "end": 3683.44, + "probability": 0.9644 + }, + { + "start": 3683.96, + "end": 3687.36, + "probability": 0.9871 + }, + { + "start": 3688.02, + "end": 3691.08, + "probability": 0.9431 + }, + { + "start": 3691.56, + "end": 3693.35, + "probability": 0.9883 + }, + { + "start": 3695.52, + "end": 3698.32, + "probability": 0.9683 + }, + { + "start": 3698.58, + "end": 3700.38, + "probability": 0.9754 + }, + { + "start": 3700.5, + "end": 3701.02, + "probability": 0.4779 + }, + { + "start": 3701.06, + "end": 3704.62, + "probability": 0.9882 + }, + { + "start": 3705.2, + "end": 3707.9, + "probability": 0.8185 + }, + { + "start": 3708.1, + "end": 3709.69, + "probability": 0.8463 + }, + { + "start": 3710.26, + "end": 3711.08, + "probability": 0.9217 + }, + { + "start": 3711.38, + "end": 3711.87, + "probability": 0.6506 + }, + { + "start": 3712.86, + "end": 3717.06, + "probability": 0.8951 + }, + { + "start": 3717.06, + "end": 3717.28, + "probability": 0.5223 + }, + { + "start": 3717.28, + "end": 3717.42, + "probability": 0.6601 + }, + { + "start": 3717.54, + "end": 3720.2, + "probability": 0.8224 + }, + { + "start": 3720.44, + "end": 3722.12, + "probability": 0.7824 + }, + { + "start": 3723.22, + "end": 3724.36, + "probability": 0.9863 + }, + { + "start": 3724.46, + "end": 3727.18, + "probability": 0.9596 + }, + { + "start": 3728.0, + "end": 3732.7, + "probability": 0.8969 + }, + { + "start": 3733.74, + "end": 3736.58, + "probability": 0.8934 + }, + { + "start": 3736.68, + "end": 3737.8, + "probability": 0.6932 + }, + { + "start": 3738.32, + "end": 3740.24, + "probability": 0.6907 + }, + { + "start": 3740.24, + "end": 3742.06, + "probability": 0.9478 + }, + { + "start": 3742.56, + "end": 3745.26, + "probability": 0.9548 + }, + { + "start": 3746.14, + "end": 3746.88, + "probability": 0.9382 + }, + { + "start": 3747.9, + "end": 3748.44, + "probability": 0.5156 + }, + { + "start": 3748.56, + "end": 3749.5, + "probability": 0.9893 + }, + { + "start": 3750.14, + "end": 3755.24, + "probability": 0.9937 + }, + { + "start": 3755.24, + "end": 3761.06, + "probability": 0.9402 + }, + { + "start": 3761.92, + "end": 3765.54, + "probability": 0.9696 + }, + { + "start": 3765.54, + "end": 3770.4, + "probability": 0.8124 + }, + { + "start": 3770.98, + "end": 3774.38, + "probability": 0.7253 + }, + { + "start": 3774.38, + "end": 3777.38, + "probability": 0.8228 + }, + { + "start": 3777.56, + "end": 3782.6, + "probability": 0.9819 + }, + { + "start": 3782.78, + "end": 3786.74, + "probability": 0.9304 + }, + { + "start": 3786.88, + "end": 3788.04, + "probability": 0.9241 + }, + { + "start": 3788.44, + "end": 3788.82, + "probability": 0.9504 + }, + { + "start": 3789.66, + "end": 3793.04, + "probability": 0.7732 + }, + { + "start": 3793.7, + "end": 3796.3, + "probability": 0.9784 + }, + { + "start": 3796.3, + "end": 3799.74, + "probability": 0.9052 + }, + { + "start": 3800.06, + "end": 3804.86, + "probability": 0.9597 + }, + { + "start": 3804.86, + "end": 3806.78, + "probability": 0.9312 + }, + { + "start": 3807.22, + "end": 3808.86, + "probability": 0.8787 + }, + { + "start": 3809.14, + "end": 3811.4, + "probability": 0.9704 + }, + { + "start": 3811.92, + "end": 3813.8, + "probability": 0.2548 + }, + { + "start": 3813.82, + "end": 3818.62, + "probability": 0.9684 + }, + { + "start": 3819.02, + "end": 3822.7, + "probability": 0.7793 + }, + { + "start": 3823.32, + "end": 3825.44, + "probability": 0.8221 + }, + { + "start": 3826.08, + "end": 3829.46, + "probability": 0.9782 + }, + { + "start": 3829.88, + "end": 3833.42, + "probability": 0.9971 + }, + { + "start": 3834.04, + "end": 3835.0, + "probability": 0.998 + }, + { + "start": 3835.54, + "end": 3839.5, + "probability": 0.9868 + }, + { + "start": 3840.26, + "end": 3845.02, + "probability": 0.8652 + }, + { + "start": 3845.92, + "end": 3849.52, + "probability": 0.9918 + }, + { + "start": 3850.16, + "end": 3851.8, + "probability": 0.7878 + }, + { + "start": 3851.92, + "end": 3853.54, + "probability": 0.7015 + }, + { + "start": 3854.14, + "end": 3854.46, + "probability": 0.8844 + }, + { + "start": 3854.54, + "end": 3855.72, + "probability": 0.9443 + }, + { + "start": 3856.36, + "end": 3859.14, + "probability": 0.9598 + }, + { + "start": 3859.34, + "end": 3860.9, + "probability": 0.7827 + }, + { + "start": 3861.5, + "end": 3863.18, + "probability": 0.9218 + }, + { + "start": 3864.18, + "end": 3865.34, + "probability": 0.7418 + }, + { + "start": 3865.42, + "end": 3865.7, + "probability": 0.5314 + }, + { + "start": 3865.78, + "end": 3867.22, + "probability": 0.9797 + }, + { + "start": 3867.78, + "end": 3871.98, + "probability": 0.967 + }, + { + "start": 3872.08, + "end": 3873.49, + "probability": 0.9376 + }, + { + "start": 3874.0, + "end": 3876.98, + "probability": 0.9779 + }, + { + "start": 3877.44, + "end": 3879.4, + "probability": 0.694 + }, + { + "start": 3879.94, + "end": 3885.72, + "probability": 0.9611 + }, + { + "start": 3885.72, + "end": 3889.94, + "probability": 0.9673 + }, + { + "start": 3890.32, + "end": 3891.92, + "probability": 0.6321 + }, + { + "start": 3892.0, + "end": 3892.28, + "probability": 0.3409 + }, + { + "start": 3892.72, + "end": 3894.3, + "probability": 0.9511 + }, + { + "start": 3894.6, + "end": 3896.34, + "probability": 0.9491 + }, + { + "start": 3897.0, + "end": 3901.66, + "probability": 0.9922 + }, + { + "start": 3902.4, + "end": 3904.32, + "probability": 0.8875 + }, + { + "start": 3904.38, + "end": 3905.04, + "probability": 0.666 + }, + { + "start": 3905.14, + "end": 3905.72, + "probability": 0.9354 + }, + { + "start": 3905.78, + "end": 3907.32, + "probability": 0.8445 + }, + { + "start": 3907.34, + "end": 3907.74, + "probability": 0.4421 + }, + { + "start": 3908.26, + "end": 3911.4, + "probability": 0.9842 + }, + { + "start": 3911.98, + "end": 3914.38, + "probability": 0.9844 + }, + { + "start": 3914.42, + "end": 3914.84, + "probability": 0.9586 + }, + { + "start": 3915.2, + "end": 3918.96, + "probability": 0.9808 + }, + { + "start": 3920.86, + "end": 3921.04, + "probability": 0.6844 + }, + { + "start": 3921.2, + "end": 3924.7, + "probability": 0.9733 + }, + { + "start": 3925.6, + "end": 3927.92, + "probability": 0.9897 + }, + { + "start": 3927.92, + "end": 3931.2, + "probability": 0.7994 + }, + { + "start": 3931.8, + "end": 3934.88, + "probability": 0.603 + }, + { + "start": 3935.78, + "end": 3942.08, + "probability": 0.7905 + }, + { + "start": 3942.92, + "end": 3946.94, + "probability": 0.9945 + }, + { + "start": 3947.02, + "end": 3948.76, + "probability": 0.9648 + }, + { + "start": 3949.4, + "end": 3952.0, + "probability": 0.6448 + }, + { + "start": 3953.12, + "end": 3955.3, + "probability": 0.8726 + }, + { + "start": 3955.92, + "end": 3957.2, + "probability": 0.9888 + }, + { + "start": 3957.64, + "end": 3959.98, + "probability": 0.9438 + }, + { + "start": 3960.34, + "end": 3962.2, + "probability": 0.9955 + }, + { + "start": 3963.28, + "end": 3967.04, + "probability": 0.8201 + }, + { + "start": 3968.28, + "end": 3970.72, + "probability": 0.8158 + }, + { + "start": 3970.74, + "end": 3971.18, + "probability": 0.5004 + }, + { + "start": 3971.52, + "end": 3975.5, + "probability": 0.9844 + }, + { + "start": 3975.6, + "end": 3977.82, + "probability": 0.6671 + }, + { + "start": 3977.84, + "end": 3978.26, + "probability": 0.5441 + }, + { + "start": 3979.0, + "end": 3979.68, + "probability": 0.999 + }, + { + "start": 3980.26, + "end": 3981.62, + "probability": 0.5561 + }, + { + "start": 3982.14, + "end": 3983.54, + "probability": 0.9049 + }, + { + "start": 3984.1, + "end": 3985.68, + "probability": 0.9862 + }, + { + "start": 3986.6, + "end": 3988.02, + "probability": 0.7481 + }, + { + "start": 3988.2, + "end": 3991.18, + "probability": 0.9929 + }, + { + "start": 3992.9, + "end": 3994.94, + "probability": 0.9828 + }, + { + "start": 3995.32, + "end": 3997.44, + "probability": 0.9883 + }, + { + "start": 3997.58, + "end": 4002.24, + "probability": 0.7712 + }, + { + "start": 4002.36, + "end": 4004.2, + "probability": 0.9675 + }, + { + "start": 4004.38, + "end": 4005.31, + "probability": 0.7958 + }, + { + "start": 4005.86, + "end": 4007.77, + "probability": 0.959 + }, + { + "start": 4008.16, + "end": 4009.1, + "probability": 0.7031 + }, + { + "start": 4009.26, + "end": 4010.76, + "probability": 0.9138 + }, + { + "start": 4011.34, + "end": 4014.14, + "probability": 0.9932 + }, + { + "start": 4015.14, + "end": 4018.12, + "probability": 0.9849 + }, + { + "start": 4018.12, + "end": 4022.82, + "probability": 0.995 + }, + { + "start": 4023.18, + "end": 4024.14, + "probability": 0.9812 + }, + { + "start": 4024.22, + "end": 4028.96, + "probability": 0.9746 + }, + { + "start": 4029.46, + "end": 4031.66, + "probability": 0.8926 + }, + { + "start": 4031.66, + "end": 4034.28, + "probability": 0.8569 + }, + { + "start": 4034.78, + "end": 4036.82, + "probability": 0.7922 + }, + { + "start": 4037.34, + "end": 4038.1, + "probability": 0.8435 + }, + { + "start": 4038.42, + "end": 4040.3, + "probability": 0.879 + }, + { + "start": 4040.3, + "end": 4040.4, + "probability": 0.1268 + }, + { + "start": 4040.92, + "end": 4041.92, + "probability": 0.7047 + }, + { + "start": 4042.58, + "end": 4044.68, + "probability": 0.9944 + }, + { + "start": 4045.4, + "end": 4045.9, + "probability": 0.9082 + }, + { + "start": 4046.5, + "end": 4051.02, + "probability": 0.9618 + }, + { + "start": 4051.6, + "end": 4055.28, + "probability": 0.9937 + }, + { + "start": 4055.28, + "end": 4058.14, + "probability": 0.9983 + }, + { + "start": 4058.24, + "end": 4059.78, + "probability": 0.9537 + }, + { + "start": 4059.78, + "end": 4059.9, + "probability": 0.6299 + }, + { + "start": 4059.96, + "end": 4061.5, + "probability": 0.8079 + }, + { + "start": 4061.56, + "end": 4062.68, + "probability": 0.5252 + }, + { + "start": 4063.8, + "end": 4065.74, + "probability": 0.7372 + }, + { + "start": 4067.86, + "end": 4069.82, + "probability": 0.5509 + }, + { + "start": 4090.76, + "end": 4092.34, + "probability": 0.5643 + }, + { + "start": 4093.68, + "end": 4095.24, + "probability": 0.9375 + }, + { + "start": 4097.04, + "end": 4099.24, + "probability": 0.9714 + }, + { + "start": 4100.26, + "end": 4102.3, + "probability": 0.9824 + }, + { + "start": 4102.32, + "end": 4102.9, + "probability": 0.573 + }, + { + "start": 4104.5, + "end": 4105.87, + "probability": 0.9917 + }, + { + "start": 4108.4, + "end": 4110.5, + "probability": 0.7422 + }, + { + "start": 4111.76, + "end": 4113.06, + "probability": 0.909 + }, + { + "start": 4114.14, + "end": 4121.5, + "probability": 0.9893 + }, + { + "start": 4122.76, + "end": 4123.2, + "probability": 0.882 + }, + { + "start": 4124.62, + "end": 4125.92, + "probability": 0.8105 + }, + { + "start": 4126.12, + "end": 4127.04, + "probability": 0.7399 + }, + { + "start": 4127.14, + "end": 4129.72, + "probability": 0.7859 + }, + { + "start": 4131.38, + "end": 4134.34, + "probability": 0.8338 + }, + { + "start": 4135.64, + "end": 4138.52, + "probability": 0.9948 + }, + { + "start": 4139.5, + "end": 4140.6, + "probability": 0.9049 + }, + { + "start": 4141.02, + "end": 4144.54, + "probability": 0.994 + }, + { + "start": 4145.32, + "end": 4146.2, + "probability": 0.6419 + }, + { + "start": 4147.86, + "end": 4149.1, + "probability": 0.9802 + }, + { + "start": 4149.98, + "end": 4153.14, + "probability": 0.8928 + }, + { + "start": 4153.14, + "end": 4158.1, + "probability": 0.9727 + }, + { + "start": 4159.14, + "end": 4163.08, + "probability": 0.9878 + }, + { + "start": 4163.7, + "end": 4164.48, + "probability": 0.6902 + }, + { + "start": 4165.18, + "end": 4169.02, + "probability": 0.7846 + }, + { + "start": 4169.72, + "end": 4171.18, + "probability": 0.9899 + }, + { + "start": 4171.94, + "end": 4173.12, + "probability": 0.8039 + }, + { + "start": 4174.06, + "end": 4177.66, + "probability": 0.9875 + }, + { + "start": 4178.28, + "end": 4181.88, + "probability": 0.9548 + }, + { + "start": 4182.42, + "end": 4183.24, + "probability": 0.9677 + }, + { + "start": 4185.14, + "end": 4186.96, + "probability": 0.9902 + }, + { + "start": 4187.08, + "end": 4187.56, + "probability": 0.9549 + }, + { + "start": 4187.8, + "end": 4188.7, + "probability": 0.9503 + }, + { + "start": 4191.3, + "end": 4197.24, + "probability": 0.975 + }, + { + "start": 4198.04, + "end": 4199.74, + "probability": 0.8503 + }, + { + "start": 4200.44, + "end": 4202.56, + "probability": 0.9719 + }, + { + "start": 4203.18, + "end": 4205.32, + "probability": 0.9152 + }, + { + "start": 4205.88, + "end": 4208.58, + "probability": 0.9776 + }, + { + "start": 4210.78, + "end": 4214.46, + "probability": 0.9924 + }, + { + "start": 4215.24, + "end": 4216.54, + "probability": 0.7351 + }, + { + "start": 4217.87, + "end": 4220.06, + "probability": 0.6268 + }, + { + "start": 4220.38, + "end": 4226.1, + "probability": 0.9946 + }, + { + "start": 4227.3, + "end": 4228.04, + "probability": 0.3868 + }, + { + "start": 4228.76, + "end": 4231.04, + "probability": 0.25 + }, + { + "start": 4231.68, + "end": 4234.66, + "probability": 0.6713 + }, + { + "start": 4235.28, + "end": 4235.98, + "probability": 0.8646 + }, + { + "start": 4236.04, + "end": 4240.24, + "probability": 0.7423 + }, + { + "start": 4241.08, + "end": 4244.07, + "probability": 0.4146 + }, + { + "start": 4245.52, + "end": 4252.58, + "probability": 0.9487 + }, + { + "start": 4253.74, + "end": 4254.38, + "probability": 0.4229 + }, + { + "start": 4255.08, + "end": 4260.22, + "probability": 0.4663 + }, + { + "start": 4261.2, + "end": 4261.88, + "probability": 0.1969 + }, + { + "start": 4262.92, + "end": 4263.3, + "probability": 0.9027 + }, + { + "start": 4263.46, + "end": 4263.94, + "probability": 0.6492 + }, + { + "start": 4264.1, + "end": 4265.25, + "probability": 0.9285 + }, + { + "start": 4266.2, + "end": 4267.42, + "probability": 0.9863 + }, + { + "start": 4268.58, + "end": 4270.16, + "probability": 0.6185 + }, + { + "start": 4271.92, + "end": 4273.74, + "probability": 0.8246 + }, + { + "start": 4274.56, + "end": 4276.76, + "probability": 0.9937 + }, + { + "start": 4278.26, + "end": 4281.72, + "probability": 0.8502 + }, + { + "start": 4282.0, + "end": 4284.2, + "probability": 0.7185 + }, + { + "start": 4285.02, + "end": 4285.96, + "probability": 0.58 + }, + { + "start": 4287.18, + "end": 4288.84, + "probability": 0.7033 + }, + { + "start": 4289.86, + "end": 4291.18, + "probability": 0.8722 + }, + { + "start": 4291.3, + "end": 4297.62, + "probability": 0.9661 + }, + { + "start": 4298.12, + "end": 4298.68, + "probability": 0.7676 + }, + { + "start": 4300.34, + "end": 4301.98, + "probability": 0.9692 + }, + { + "start": 4303.04, + "end": 4304.14, + "probability": 0.1159 + }, + { + "start": 4304.6, + "end": 4307.14, + "probability": 0.4906 + }, + { + "start": 4307.68, + "end": 4309.36, + "probability": 0.8442 + }, + { + "start": 4310.0, + "end": 4312.56, + "probability": 0.9933 + }, + { + "start": 4312.64, + "end": 4313.08, + "probability": 0.5711 + }, + { + "start": 4313.5, + "end": 4316.58, + "probability": 0.7605 + }, + { + "start": 4316.62, + "end": 4317.02, + "probability": 0.664 + }, + { + "start": 4317.3, + "end": 4318.32, + "probability": 0.6646 + }, + { + "start": 4318.32, + "end": 4321.46, + "probability": 0.9477 + }, + { + "start": 4321.6, + "end": 4322.18, + "probability": 0.7765 + }, + { + "start": 4322.38, + "end": 4323.26, + "probability": 0.8735 + }, + { + "start": 4323.86, + "end": 4324.84, + "probability": 0.7581 + }, + { + "start": 4324.96, + "end": 4326.52, + "probability": 0.9426 + }, + { + "start": 4326.92, + "end": 4331.09, + "probability": 0.9874 + }, + { + "start": 4331.38, + "end": 4332.88, + "probability": 0.4654 + }, + { + "start": 4332.96, + "end": 4332.98, + "probability": 0.6963 + }, + { + "start": 4332.98, + "end": 4333.7, + "probability": 0.9001 + }, + { + "start": 4334.66, + "end": 4335.2, + "probability": 0.0236 + }, + { + "start": 4335.8, + "end": 4337.14, + "probability": 0.938 + }, + { + "start": 4337.42, + "end": 4340.66, + "probability": 0.9956 + }, + { + "start": 4341.0, + "end": 4341.3, + "probability": 0.7945 + }, + { + "start": 4341.9, + "end": 4343.98, + "probability": 0.71 + }, + { + "start": 4344.14, + "end": 4346.4, + "probability": 0.8442 + }, + { + "start": 4347.6, + "end": 4347.6, + "probability": 0.3117 + }, + { + "start": 4347.6, + "end": 4351.68, + "probability": 0.9733 + }, + { + "start": 4352.14, + "end": 4353.24, + "probability": 0.9418 + }, + { + "start": 4354.64, + "end": 4355.98, + "probability": 0.8108 + }, + { + "start": 4357.06, + "end": 4362.92, + "probability": 0.7111 + }, + { + "start": 4363.54, + "end": 4365.24, + "probability": 0.7598 + }, + { + "start": 4365.8, + "end": 4368.24, + "probability": 0.9398 + }, + { + "start": 4368.74, + "end": 4370.28, + "probability": 0.9846 + }, + { + "start": 4371.16, + "end": 4372.44, + "probability": 0.8151 + }, + { + "start": 4372.56, + "end": 4374.42, + "probability": 0.8765 + }, + { + "start": 4375.48, + "end": 4376.14, + "probability": 0.5708 + }, + { + "start": 4376.78, + "end": 4377.72, + "probability": 0.7109 + }, + { + "start": 4378.82, + "end": 4379.74, + "probability": 0.8607 + }, + { + "start": 4381.78, + "end": 4383.38, + "probability": 0.7931 + }, + { + "start": 4403.7, + "end": 4403.94, + "probability": 0.4355 + }, + { + "start": 4403.94, + "end": 4404.52, + "probability": 0.8158 + }, + { + "start": 4404.64, + "end": 4406.16, + "probability": 0.7484 + }, + { + "start": 4406.3, + "end": 4407.62, + "probability": 0.6185 + }, + { + "start": 4407.74, + "end": 4409.96, + "probability": 0.9609 + }, + { + "start": 4410.34, + "end": 4412.0, + "probability": 0.9268 + }, + { + "start": 4413.12, + "end": 4414.18, + "probability": 0.9633 + }, + { + "start": 4415.02, + "end": 4416.22, + "probability": 0.999 + }, + { + "start": 4431.02, + "end": 4432.34, + "probability": 0.08 + }, + { + "start": 4432.34, + "end": 4432.34, + "probability": 0.0971 + }, + { + "start": 4432.34, + "end": 4432.34, + "probability": 0.0508 + }, + { + "start": 4432.34, + "end": 4433.4, + "probability": 0.4807 + }, + { + "start": 4434.26, + "end": 4440.72, + "probability": 0.9513 + }, + { + "start": 4441.32, + "end": 4442.62, + "probability": 0.8114 + }, + { + "start": 4442.76, + "end": 4447.1, + "probability": 0.9353 + }, + { + "start": 4447.1, + "end": 4451.64, + "probability": 0.9743 + }, + { + "start": 4452.12, + "end": 4453.32, + "probability": 0.508 + }, + { + "start": 4453.5, + "end": 4456.38, + "probability": 0.9766 + }, + { + "start": 4456.72, + "end": 4460.54, + "probability": 0.7137 + }, + { + "start": 4461.54, + "end": 4466.14, + "probability": 0.7488 + }, + { + "start": 4466.22, + "end": 4470.36, + "probability": 0.9678 + }, + { + "start": 4471.1, + "end": 4472.36, + "probability": 0.8268 + }, + { + "start": 4472.94, + "end": 4476.4, + "probability": 0.9954 + }, + { + "start": 4476.4, + "end": 4480.14, + "probability": 0.9598 + }, + { + "start": 4480.94, + "end": 4482.04, + "probability": 0.9377 + }, + { + "start": 4482.24, + "end": 4483.92, + "probability": 0.9971 + }, + { + "start": 4484.04, + "end": 4485.36, + "probability": 0.9304 + }, + { + "start": 4485.86, + "end": 4492.1, + "probability": 0.9391 + }, + { + "start": 4492.78, + "end": 4495.89, + "probability": 0.6914 + }, + { + "start": 4496.42, + "end": 4497.76, + "probability": 0.9676 + }, + { + "start": 4497.84, + "end": 4499.86, + "probability": 0.9873 + }, + { + "start": 4500.9, + "end": 4503.56, + "probability": 0.9453 + }, + { + "start": 4505.04, + "end": 4508.54, + "probability": 0.9925 + }, + { + "start": 4509.36, + "end": 4514.7, + "probability": 0.8553 + }, + { + "start": 4515.28, + "end": 4520.18, + "probability": 0.6664 + }, + { + "start": 4520.18, + "end": 4524.1, + "probability": 0.9134 + }, + { + "start": 4524.28, + "end": 4525.5, + "probability": 0.8942 + }, + { + "start": 4526.64, + "end": 4534.38, + "probability": 0.9724 + }, + { + "start": 4535.7, + "end": 4537.14, + "probability": 0.9675 + }, + { + "start": 4537.52, + "end": 4540.16, + "probability": 0.9736 + }, + { + "start": 4540.16, + "end": 4544.88, + "probability": 0.9858 + }, + { + "start": 4545.0, + "end": 4547.99, + "probability": 0.8678 + }, + { + "start": 4548.2, + "end": 4550.92, + "probability": 0.9529 + }, + { + "start": 4552.46, + "end": 4554.62, + "probability": 0.9756 + }, + { + "start": 4554.62, + "end": 4555.64, + "probability": 0.737 + }, + { + "start": 4555.7, + "end": 4557.22, + "probability": 0.8492 + }, + { + "start": 4557.26, + "end": 4557.64, + "probability": 0.6087 + }, + { + "start": 4557.7, + "end": 4558.39, + "probability": 0.3708 + }, + { + "start": 4559.58, + "end": 4561.26, + "probability": 0.6652 + }, + { + "start": 4561.34, + "end": 4562.86, + "probability": 0.8889 + }, + { + "start": 4562.88, + "end": 4565.08, + "probability": 0.8558 + }, + { + "start": 4565.14, + "end": 4567.68, + "probability": 0.4011 + }, + { + "start": 4568.94, + "end": 4570.98, + "probability": 0.553 + }, + { + "start": 4571.62, + "end": 4574.44, + "probability": 0.9727 + }, + { + "start": 4575.16, + "end": 4580.04, + "probability": 0.9678 + }, + { + "start": 4581.1, + "end": 4590.74, + "probability": 0.9724 + }, + { + "start": 4591.31, + "end": 4596.0, + "probability": 0.9962 + }, + { + "start": 4596.6, + "end": 4597.86, + "probability": 0.8979 + }, + { + "start": 4599.88, + "end": 4600.8, + "probability": 0.3905 + }, + { + "start": 4601.94, + "end": 4605.88, + "probability": 0.9868 + }, + { + "start": 4606.32, + "end": 4611.82, + "probability": 0.9872 + }, + { + "start": 4612.86, + "end": 4613.56, + "probability": 0.9404 + }, + { + "start": 4613.8, + "end": 4615.92, + "probability": 0.9606 + }, + { + "start": 4616.28, + "end": 4617.92, + "probability": 0.8398 + }, + { + "start": 4618.44, + "end": 4622.2, + "probability": 0.7721 + }, + { + "start": 4623.12, + "end": 4624.34, + "probability": 0.9337 + }, + { + "start": 4627.04, + "end": 4627.96, + "probability": 0.7485 + }, + { + "start": 4628.6, + "end": 4634.86, + "probability": 0.9229 + }, + { + "start": 4635.02, + "end": 4635.44, + "probability": 0.9404 + }, + { + "start": 4636.4, + "end": 4637.13, + "probability": 0.9507 + }, + { + "start": 4638.1, + "end": 4638.9, + "probability": 0.759 + }, + { + "start": 4639.58, + "end": 4642.02, + "probability": 0.9945 + }, + { + "start": 4642.56, + "end": 4643.5, + "probability": 0.8633 + }, + { + "start": 4643.56, + "end": 4644.96, + "probability": 0.7145 + }, + { + "start": 4645.1, + "end": 4646.52, + "probability": 0.991 + }, + { + "start": 4647.38, + "end": 4655.22, + "probability": 0.886 + }, + { + "start": 4655.26, + "end": 4657.14, + "probability": 0.748 + }, + { + "start": 4658.58, + "end": 4660.22, + "probability": 0.8758 + }, + { + "start": 4660.8, + "end": 4663.99, + "probability": 0.8198 + }, + { + "start": 4664.92, + "end": 4666.54, + "probability": 0.6923 + }, + { + "start": 4666.74, + "end": 4667.36, + "probability": 0.818 + }, + { + "start": 4667.9, + "end": 4673.0, + "probability": 0.9079 + }, + { + "start": 4673.14, + "end": 4673.74, + "probability": 0.5003 + }, + { + "start": 4674.4, + "end": 4676.1, + "probability": 0.9639 + }, + { + "start": 4676.32, + "end": 4677.06, + "probability": 0.7692 + }, + { + "start": 4677.26, + "end": 4678.22, + "probability": 0.9707 + }, + { + "start": 4678.82, + "end": 4680.4, + "probability": 0.9724 + }, + { + "start": 4680.41, + "end": 4682.83, + "probability": 0.9858 + }, + { + "start": 4683.46, + "end": 4686.46, + "probability": 0.9976 + }, + { + "start": 4687.08, + "end": 4689.66, + "probability": 0.8892 + }, + { + "start": 4689.74, + "end": 4690.14, + "probability": 0.7473 + }, + { + "start": 4690.52, + "end": 4692.69, + "probability": 0.7376 + }, + { + "start": 4693.58, + "end": 4694.28, + "probability": 0.4597 + }, + { + "start": 4694.82, + "end": 4696.77, + "probability": 0.6977 + }, + { + "start": 4697.27, + "end": 4698.96, + "probability": 0.1876 + }, + { + "start": 4699.74, + "end": 4700.7, + "probability": 0.6831 + }, + { + "start": 4701.54, + "end": 4702.68, + "probability": 0.7471 + }, + { + "start": 4702.78, + "end": 4703.86, + "probability": 0.5379 + }, + { + "start": 4703.94, + "end": 4705.7, + "probability": 0.7476 + }, + { + "start": 4705.92, + "end": 4707.2, + "probability": 0.9028 + }, + { + "start": 4707.72, + "end": 4711.74, + "probability": 0.8077 + }, + { + "start": 4711.96, + "end": 4713.84, + "probability": 0.1992 + }, + { + "start": 4714.4, + "end": 4716.24, + "probability": 0.6568 + }, + { + "start": 4716.24, + "end": 4716.58, + "probability": 0.6306 + }, + { + "start": 4718.16, + "end": 4718.16, + "probability": 0.7118 + }, + { + "start": 4718.22, + "end": 4719.22, + "probability": 0.6283 + }, + { + "start": 4719.28, + "end": 4720.68, + "probability": 0.5943 + }, + { + "start": 4720.82, + "end": 4720.96, + "probability": 0.1475 + }, + { + "start": 4720.96, + "end": 4722.8, + "probability": 0.8127 + }, + { + "start": 4722.94, + "end": 4723.6, + "probability": 0.6318 + }, + { + "start": 4723.82, + "end": 4725.24, + "probability": 0.9827 + }, + { + "start": 4725.88, + "end": 4731.26, + "probability": 0.9519 + }, + { + "start": 4732.22, + "end": 4733.86, + "probability": 0.9896 + }, + { + "start": 4734.02, + "end": 4735.98, + "probability": 0.9953 + }, + { + "start": 4735.98, + "end": 4737.86, + "probability": 0.9985 + }, + { + "start": 4739.14, + "end": 4743.34, + "probability": 0.7697 + }, + { + "start": 4743.46, + "end": 4743.46, + "probability": 0.0455 + }, + { + "start": 4743.56, + "end": 4743.98, + "probability": 0.9082 + }, + { + "start": 4744.58, + "end": 4745.48, + "probability": 0.8348 + }, + { + "start": 4746.02, + "end": 4748.28, + "probability": 0.8945 + }, + { + "start": 4749.58, + "end": 4751.5, + "probability": 0.8011 + }, + { + "start": 4751.7, + "end": 4752.64, + "probability": 0.8877 + }, + { + "start": 4752.92, + "end": 4755.38, + "probability": 0.9347 + }, + { + "start": 4755.94, + "end": 4759.3, + "probability": 0.9423 + }, + { + "start": 4759.86, + "end": 4761.72, + "probability": 0.9735 + }, + { + "start": 4762.62, + "end": 4766.02, + "probability": 0.9698 + }, + { + "start": 4766.48, + "end": 4767.6, + "probability": 0.955 + }, + { + "start": 4768.23, + "end": 4770.56, + "probability": 0.9954 + }, + { + "start": 4771.94, + "end": 4773.66, + "probability": 0.9954 + }, + { + "start": 4774.8, + "end": 4777.32, + "probability": 0.959 + }, + { + "start": 4777.96, + "end": 4779.08, + "probability": 0.9668 + }, + { + "start": 4779.58, + "end": 4784.66, + "probability": 0.979 + }, + { + "start": 4785.42, + "end": 4788.98, + "probability": 0.9893 + }, + { + "start": 4789.4, + "end": 4792.8, + "probability": 0.9254 + }, + { + "start": 4793.38, + "end": 4795.72, + "probability": 0.97 + }, + { + "start": 4795.72, + "end": 4798.3, + "probability": 0.865 + }, + { + "start": 4798.76, + "end": 4800.06, + "probability": 0.9343 + }, + { + "start": 4800.14, + "end": 4803.24, + "probability": 0.941 + }, + { + "start": 4803.76, + "end": 4805.34, + "probability": 0.9985 + }, + { + "start": 4806.12, + "end": 4809.9, + "probability": 0.9871 + }, + { + "start": 4811.52, + "end": 4815.48, + "probability": 0.9697 + }, + { + "start": 4816.04, + "end": 4820.64, + "probability": 0.9979 + }, + { + "start": 4821.24, + "end": 4824.38, + "probability": 0.9969 + }, + { + "start": 4825.24, + "end": 4827.18, + "probability": 0.9979 + }, + { + "start": 4827.74, + "end": 4828.06, + "probability": 0.7354 + }, + { + "start": 4828.26, + "end": 4830.98, + "probability": 0.9783 + }, + { + "start": 4830.98, + "end": 4834.16, + "probability": 0.9448 + }, + { + "start": 4834.46, + "end": 4836.56, + "probability": 0.9648 + }, + { + "start": 4837.04, + "end": 4840.78, + "probability": 0.9977 + }, + { + "start": 4841.6, + "end": 4845.8, + "probability": 0.9569 + }, + { + "start": 4845.92, + "end": 4846.66, + "probability": 0.8051 + }, + { + "start": 4847.12, + "end": 4849.66, + "probability": 0.9902 + }, + { + "start": 4849.66, + "end": 4852.84, + "probability": 0.9909 + }, + { + "start": 4853.2, + "end": 4854.84, + "probability": 0.9966 + }, + { + "start": 4855.88, + "end": 4857.8, + "probability": 0.9924 + }, + { + "start": 4858.68, + "end": 4859.7, + "probability": 0.3778 + }, + { + "start": 4860.08, + "end": 4865.24, + "probability": 0.995 + }, + { + "start": 4865.24, + "end": 4871.84, + "probability": 0.9886 + }, + { + "start": 4872.56, + "end": 4875.16, + "probability": 0.9922 + }, + { + "start": 4875.68, + "end": 4878.0, + "probability": 0.8533 + }, + { + "start": 4878.0, + "end": 4882.08, + "probability": 0.9954 + }, + { + "start": 4882.16, + "end": 4884.82, + "probability": 0.9946 + }, + { + "start": 4886.1, + "end": 4886.78, + "probability": 0.8949 + }, + { + "start": 4887.4, + "end": 4890.36, + "probability": 0.9591 + }, + { + "start": 4890.82, + "end": 4891.94, + "probability": 0.8307 + }, + { + "start": 4892.58, + "end": 4896.4, + "probability": 0.9817 + }, + { + "start": 4897.12, + "end": 4898.0, + "probability": 0.7044 + }, + { + "start": 4898.38, + "end": 4899.88, + "probability": 0.9 + }, + { + "start": 4900.24, + "end": 4901.94, + "probability": 0.9329 + }, + { + "start": 4901.94, + "end": 4903.14, + "probability": 0.8656 + }, + { + "start": 4903.54, + "end": 4904.5, + "probability": 0.9505 + }, + { + "start": 4905.14, + "end": 4905.94, + "probability": 0.7959 + }, + { + "start": 4906.44, + "end": 4909.63, + "probability": 0.9532 + }, + { + "start": 4909.8, + "end": 4912.92, + "probability": 0.9379 + }, + { + "start": 4913.76, + "end": 4915.16, + "probability": 0.1739 + }, + { + "start": 4915.28, + "end": 4918.0, + "probability": 0.9452 + }, + { + "start": 4918.18, + "end": 4919.54, + "probability": 0.9941 + }, + { + "start": 4920.22, + "end": 4924.38, + "probability": 0.9303 + }, + { + "start": 4925.4, + "end": 4926.22, + "probability": 0.5847 + }, + { + "start": 4926.78, + "end": 4931.32, + "probability": 0.8462 + }, + { + "start": 4931.46, + "end": 4932.46, + "probability": 0.8848 + }, + { + "start": 4932.58, + "end": 4935.08, + "probability": 0.9587 + }, + { + "start": 4935.56, + "end": 4938.68, + "probability": 0.9855 + }, + { + "start": 4938.86, + "end": 4941.6, + "probability": 0.8349 + }, + { + "start": 4942.58, + "end": 4945.06, + "probability": 0.7616 + }, + { + "start": 4945.28, + "end": 4945.94, + "probability": 0.8041 + }, + { + "start": 4946.44, + "end": 4950.06, + "probability": 0.9904 + }, + { + "start": 4950.92, + "end": 4955.52, + "probability": 0.9873 + }, + { + "start": 4955.68, + "end": 4957.04, + "probability": 0.9707 + }, + { + "start": 4957.92, + "end": 4962.28, + "probability": 0.9865 + }, + { + "start": 4963.06, + "end": 4966.92, + "probability": 0.998 + }, + { + "start": 4967.68, + "end": 4968.34, + "probability": 0.8998 + }, + { + "start": 4968.72, + "end": 4972.4, + "probability": 0.9932 + }, + { + "start": 4973.2, + "end": 4978.38, + "probability": 0.9964 + }, + { + "start": 4978.56, + "end": 4983.4, + "probability": 0.9979 + }, + { + "start": 4983.94, + "end": 4984.6, + "probability": 0.7611 + }, + { + "start": 4985.32, + "end": 4988.94, + "probability": 0.8788 + }, + { + "start": 4989.86, + "end": 4995.58, + "probability": 0.9937 + }, + { + "start": 4996.2, + "end": 4998.04, + "probability": 0.9984 + }, + { + "start": 4998.54, + "end": 5000.84, + "probability": 0.9795 + }, + { + "start": 5000.92, + "end": 5002.42, + "probability": 0.9535 + }, + { + "start": 5003.14, + "end": 5006.6, + "probability": 0.9932 + }, + { + "start": 5007.06, + "end": 5009.82, + "probability": 0.9513 + }, + { + "start": 5010.48, + "end": 5013.08, + "probability": 0.9949 + }, + { + "start": 5013.64, + "end": 5014.76, + "probability": 0.9249 + }, + { + "start": 5015.86, + "end": 5019.04, + "probability": 0.8646 + }, + { + "start": 5019.26, + "end": 5020.3, + "probability": 0.892 + }, + { + "start": 5020.4, + "end": 5021.36, + "probability": 0.9125 + }, + { + "start": 5022.12, + "end": 5024.32, + "probability": 0.9609 + }, + { + "start": 5024.96, + "end": 5025.9, + "probability": 0.9312 + }, + { + "start": 5025.98, + "end": 5026.78, + "probability": 0.9677 + }, + { + "start": 5026.84, + "end": 5029.14, + "probability": 0.9979 + }, + { + "start": 5029.66, + "end": 5030.63, + "probability": 0.8123 + }, + { + "start": 5031.56, + "end": 5035.56, + "probability": 0.9714 + }, + { + "start": 5036.04, + "end": 5040.28, + "probability": 0.9979 + }, + { + "start": 5040.6, + "end": 5041.95, + "probability": 0.7711 + }, + { + "start": 5042.96, + "end": 5045.23, + "probability": 0.9856 + }, + { + "start": 5045.5, + "end": 5049.12, + "probability": 0.969 + }, + { + "start": 5049.62, + "end": 5053.48, + "probability": 0.8126 + }, + { + "start": 5053.66, + "end": 5056.92, + "probability": 0.9915 + }, + { + "start": 5057.28, + "end": 5060.08, + "probability": 0.9007 + }, + { + "start": 5060.26, + "end": 5063.92, + "probability": 0.9895 + }, + { + "start": 5064.58, + "end": 5064.84, + "probability": 0.7517 + }, + { + "start": 5065.16, + "end": 5065.58, + "probability": 0.4576 + }, + { + "start": 5065.7, + "end": 5065.8, + "probability": 0.77 + }, + { + "start": 5065.9, + "end": 5066.1, + "probability": 0.4002 + }, + { + "start": 5066.14, + "end": 5066.5, + "probability": 0.7394 + }, + { + "start": 5066.6, + "end": 5067.15, + "probability": 0.9192 + }, + { + "start": 5067.44, + "end": 5069.02, + "probability": 0.7574 + }, + { + "start": 5069.06, + "end": 5070.36, + "probability": 0.3921 + }, + { + "start": 5070.52, + "end": 5070.56, + "probability": 0.0104 + }, + { + "start": 5070.72, + "end": 5071.08, + "probability": 0.4607 + }, + { + "start": 5071.4, + "end": 5071.56, + "probability": 0.7529 + }, + { + "start": 5071.56, + "end": 5073.52, + "probability": 0.9373 + }, + { + "start": 5073.68, + "end": 5074.94, + "probability": 0.8896 + }, + { + "start": 5075.44, + "end": 5075.56, + "probability": 0.0753 + }, + { + "start": 5075.56, + "end": 5077.12, + "probability": 0.9248 + }, + { + "start": 5077.22, + "end": 5079.0, + "probability": 0.5201 + }, + { + "start": 5079.02, + "end": 5079.2, + "probability": 0.8066 + }, + { + "start": 5079.32, + "end": 5082.53, + "probability": 0.9583 + }, + { + "start": 5082.6, + "end": 5086.34, + "probability": 0.5886 + }, + { + "start": 5086.36, + "end": 5086.36, + "probability": 0.5584 + }, + { + "start": 5086.42, + "end": 5088.58, + "probability": 0.9209 + }, + { + "start": 5089.44, + "end": 5091.98, + "probability": 0.9954 + }, + { + "start": 5091.98, + "end": 5092.86, + "probability": 0.4964 + }, + { + "start": 5093.04, + "end": 5093.58, + "probability": 0.7505 + }, + { + "start": 5093.58, + "end": 5095.98, + "probability": 0.8068 + }, + { + "start": 5096.84, + "end": 5097.22, + "probability": 0.1572 + }, + { + "start": 5097.22, + "end": 5097.44, + "probability": 0.3159 + }, + { + "start": 5097.78, + "end": 5100.48, + "probability": 0.9368 + }, + { + "start": 5101.02, + "end": 5101.3, + "probability": 0.913 + }, + { + "start": 5101.32, + "end": 5105.42, + "probability": 0.9472 + }, + { + "start": 5105.84, + "end": 5108.84, + "probability": 0.951 + }, + { + "start": 5111.46, + "end": 5113.28, + "probability": 0.7827 + }, + { + "start": 5113.9, + "end": 5116.88, + "probability": 0.9016 + }, + { + "start": 5116.88, + "end": 5120.68, + "probability": 0.9971 + }, + { + "start": 5120.76, + "end": 5121.56, + "probability": 0.9597 + }, + { + "start": 5121.92, + "end": 5123.76, + "probability": 0.9983 + }, + { + "start": 5124.04, + "end": 5126.22, + "probability": 0.9977 + }, + { + "start": 5126.22, + "end": 5129.2, + "probability": 0.9887 + }, + { + "start": 5129.7, + "end": 5132.26, + "probability": 0.9819 + }, + { + "start": 5132.86, + "end": 5136.56, + "probability": 0.9987 + }, + { + "start": 5137.4, + "end": 5142.46, + "probability": 0.9991 + }, + { + "start": 5142.84, + "end": 5143.66, + "probability": 0.7346 + }, + { + "start": 5143.72, + "end": 5148.52, + "probability": 0.9964 + }, + { + "start": 5148.66, + "end": 5150.3, + "probability": 0.8747 + }, + { + "start": 5150.62, + "end": 5154.42, + "probability": 0.9714 + }, + { + "start": 5155.44, + "end": 5158.3, + "probability": 0.9973 + }, + { + "start": 5158.3, + "end": 5163.92, + "probability": 0.9063 + }, + { + "start": 5163.92, + "end": 5167.56, + "probability": 0.9893 + }, + { + "start": 5168.12, + "end": 5171.26, + "probability": 0.7277 + }, + { + "start": 5171.76, + "end": 5176.4, + "probability": 0.9925 + }, + { + "start": 5176.82, + "end": 5178.63, + "probability": 0.9956 + }, + { + "start": 5179.28, + "end": 5179.76, + "probability": 0.5159 + }, + { + "start": 5179.98, + "end": 5181.5, + "probability": 0.9265 + }, + { + "start": 5182.24, + "end": 5184.02, + "probability": 0.8389 + }, + { + "start": 5184.1, + "end": 5186.84, + "probability": 0.9533 + }, + { + "start": 5187.34, + "end": 5187.34, + "probability": 0.2726 + }, + { + "start": 5187.4, + "end": 5189.26, + "probability": 0.9033 + }, + { + "start": 5189.58, + "end": 5192.36, + "probability": 0.7563 + }, + { + "start": 5192.64, + "end": 5194.88, + "probability": 0.9883 + }, + { + "start": 5195.06, + "end": 5196.22, + "probability": 0.9603 + }, + { + "start": 5196.88, + "end": 5197.04, + "probability": 0.77 + }, + { + "start": 5197.54, + "end": 5198.54, + "probability": 0.8887 + }, + { + "start": 5198.84, + "end": 5200.46, + "probability": 0.996 + }, + { + "start": 5201.06, + "end": 5203.08, + "probability": 0.9318 + }, + { + "start": 5203.6, + "end": 5208.56, + "probability": 0.9955 + }, + { + "start": 5208.56, + "end": 5214.04, + "probability": 0.9626 + }, + { + "start": 5214.38, + "end": 5214.68, + "probability": 0.331 + }, + { + "start": 5214.8, + "end": 5215.1, + "probability": 0.4032 + }, + { + "start": 5215.48, + "end": 5215.86, + "probability": 0.4028 + }, + { + "start": 5215.9, + "end": 5217.14, + "probability": 0.8217 + }, + { + "start": 5218.33, + "end": 5218.82, + "probability": 0.1417 + }, + { + "start": 5218.82, + "end": 5218.9, + "probability": 0.1625 + }, + { + "start": 5219.04, + "end": 5219.72, + "probability": 0.6395 + }, + { + "start": 5219.72, + "end": 5221.14, + "probability": 0.1364 + }, + { + "start": 5221.68, + "end": 5222.14, + "probability": 0.074 + }, + { + "start": 5222.98, + "end": 5224.48, + "probability": 0.0984 + }, + { + "start": 5225.32, + "end": 5225.6, + "probability": 0.6104 + }, + { + "start": 5231.84, + "end": 5231.92, + "probability": 0.0423 + }, + { + "start": 5231.92, + "end": 5231.92, + "probability": 0.0533 + }, + { + "start": 5231.92, + "end": 5232.56, + "probability": 0.4318 + }, + { + "start": 5232.98, + "end": 5234.22, + "probability": 0.689 + }, + { + "start": 5234.34, + "end": 5234.86, + "probability": 0.804 + }, + { + "start": 5235.98, + "end": 5242.42, + "probability": 0.7175 + }, + { + "start": 5243.4, + "end": 5245.24, + "probability": 0.9841 + }, + { + "start": 5246.18, + "end": 5249.96, + "probability": 0.9909 + }, + { + "start": 5250.76, + "end": 5252.92, + "probability": 0.9791 + }, + { + "start": 5253.92, + "end": 5257.56, + "probability": 0.981 + }, + { + "start": 5258.52, + "end": 5259.3, + "probability": 0.9984 + }, + { + "start": 5260.7, + "end": 5261.7, + "probability": 0.8345 + }, + { + "start": 5261.86, + "end": 5263.04, + "probability": 0.953 + }, + { + "start": 5263.1, + "end": 5265.9, + "probability": 0.4488 + }, + { + "start": 5265.98, + "end": 5268.02, + "probability": 0.9804 + }, + { + "start": 5268.18, + "end": 5268.7, + "probability": 0.3969 + }, + { + "start": 5269.5, + "end": 5273.62, + "probability": 0.7411 + }, + { + "start": 5274.72, + "end": 5275.5, + "probability": 0.9744 + }, + { + "start": 5277.24, + "end": 5282.94, + "probability": 0.9939 + }, + { + "start": 5285.26, + "end": 5288.74, + "probability": 0.7308 + }, + { + "start": 5288.98, + "end": 5293.5, + "probability": 0.955 + }, + { + "start": 5293.76, + "end": 5295.82, + "probability": 0.9707 + }, + { + "start": 5297.12, + "end": 5299.04, + "probability": 0.9736 + }, + { + "start": 5299.78, + "end": 5302.1, + "probability": 0.9609 + }, + { + "start": 5303.6, + "end": 5304.52, + "probability": 0.965 + }, + { + "start": 5304.8, + "end": 5307.38, + "probability": 0.9589 + }, + { + "start": 5308.1, + "end": 5314.08, + "probability": 0.9937 + }, + { + "start": 5314.08, + "end": 5318.58, + "probability": 0.9873 + }, + { + "start": 5319.32, + "end": 5320.64, + "probability": 0.9987 + }, + { + "start": 5320.74, + "end": 5320.98, + "probability": 0.7137 + }, + { + "start": 5321.16, + "end": 5324.4, + "probability": 0.9495 + }, + { + "start": 5324.88, + "end": 5327.9, + "probability": 0.9996 + }, + { + "start": 5328.5, + "end": 5330.46, + "probability": 0.8744 + }, + { + "start": 5331.4, + "end": 5335.88, + "probability": 0.9652 + }, + { + "start": 5336.28, + "end": 5337.96, + "probability": 0.7358 + }, + { + "start": 5338.22, + "end": 5339.78, + "probability": 0.9013 + }, + { + "start": 5340.7, + "end": 5342.86, + "probability": 0.611 + }, + { + "start": 5343.46, + "end": 5345.34, + "probability": 0.7554 + }, + { + "start": 5345.5, + "end": 5346.7, + "probability": 0.6618 + }, + { + "start": 5346.78, + "end": 5348.14, + "probability": 0.7879 + }, + { + "start": 5348.6, + "end": 5349.46, + "probability": 0.3338 + }, + { + "start": 5349.46, + "end": 5351.24, + "probability": 0.7121 + }, + { + "start": 5351.26, + "end": 5352.24, + "probability": 0.8831 + }, + { + "start": 5353.04, + "end": 5355.08, + "probability": 0.8427 + }, + { + "start": 5355.1, + "end": 5356.3, + "probability": 0.5309 + }, + { + "start": 5356.86, + "end": 5358.56, + "probability": 0.7319 + }, + { + "start": 5358.64, + "end": 5359.06, + "probability": 0.4314 + }, + { + "start": 5359.28, + "end": 5363.28, + "probability": 0.8066 + }, + { + "start": 5363.36, + "end": 5364.04, + "probability": 0.7895 + }, + { + "start": 5365.32, + "end": 5368.52, + "probability": 0.8381 + }, + { + "start": 5369.06, + "end": 5370.98, + "probability": 0.9034 + }, + { + "start": 5371.78, + "end": 5375.78, + "probability": 0.9946 + }, + { + "start": 5376.6, + "end": 5377.96, + "probability": 0.7133 + }, + { + "start": 5378.06, + "end": 5379.88, + "probability": 0.9614 + }, + { + "start": 5380.4, + "end": 5381.26, + "probability": 0.9238 + }, + { + "start": 5383.44, + "end": 5384.3, + "probability": 0.9786 + }, + { + "start": 5384.46, + "end": 5385.0, + "probability": 0.9406 + }, + { + "start": 5385.02, + "end": 5387.43, + "probability": 0.9746 + }, + { + "start": 5388.78, + "end": 5390.24, + "probability": 0.9335 + }, + { + "start": 5391.32, + "end": 5393.61, + "probability": 0.7218 + }, + { + "start": 5394.42, + "end": 5394.96, + "probability": 0.8611 + }, + { + "start": 5395.76, + "end": 5400.7, + "probability": 0.9951 + }, + { + "start": 5401.66, + "end": 5405.66, + "probability": 0.9744 + }, + { + "start": 5406.26, + "end": 5407.82, + "probability": 0.9674 + }, + { + "start": 5407.98, + "end": 5410.12, + "probability": 0.9624 + }, + { + "start": 5410.78, + "end": 5411.96, + "probability": 0.979 + }, + { + "start": 5412.08, + "end": 5412.98, + "probability": 0.9788 + }, + { + "start": 5414.26, + "end": 5414.48, + "probability": 0.3687 + }, + { + "start": 5414.64, + "end": 5416.84, + "probability": 0.9855 + }, + { + "start": 5416.94, + "end": 5417.84, + "probability": 0.9555 + }, + { + "start": 5418.38, + "end": 5421.86, + "probability": 0.9538 + }, + { + "start": 5422.66, + "end": 5424.42, + "probability": 0.7489 + }, + { + "start": 5424.64, + "end": 5425.18, + "probability": 0.8636 + }, + { + "start": 5425.26, + "end": 5426.82, + "probability": 0.9483 + }, + { + "start": 5426.96, + "end": 5431.42, + "probability": 0.9594 + }, + { + "start": 5432.1, + "end": 5432.8, + "probability": 0.8838 + }, + { + "start": 5433.56, + "end": 5433.82, + "probability": 0.5061 + }, + { + "start": 5433.9, + "end": 5437.3, + "probability": 0.9806 + }, + { + "start": 5437.36, + "end": 5441.12, + "probability": 0.9896 + }, + { + "start": 5441.26, + "end": 5441.98, + "probability": 0.9441 + }, + { + "start": 5442.5, + "end": 5444.08, + "probability": 0.8918 + }, + { + "start": 5444.64, + "end": 5445.36, + "probability": 0.8294 + }, + { + "start": 5445.44, + "end": 5446.1, + "probability": 0.9345 + }, + { + "start": 5446.18, + "end": 5446.86, + "probability": 0.9162 + }, + { + "start": 5446.94, + "end": 5447.64, + "probability": 0.8547 + }, + { + "start": 5448.3, + "end": 5453.96, + "probability": 0.9968 + }, + { + "start": 5454.76, + "end": 5456.18, + "probability": 0.8942 + }, + { + "start": 5456.86, + "end": 5462.44, + "probability": 0.9958 + }, + { + "start": 5463.72, + "end": 5470.74, + "probability": 0.9922 + }, + { + "start": 5472.12, + "end": 5473.4, + "probability": 0.9717 + }, + { + "start": 5473.54, + "end": 5477.16, + "probability": 0.973 + }, + { + "start": 5477.36, + "end": 5478.28, + "probability": 0.8177 + }, + { + "start": 5479.14, + "end": 5482.1, + "probability": 0.9174 + }, + { + "start": 5482.64, + "end": 5483.52, + "probability": 0.9634 + }, + { + "start": 5483.64, + "end": 5485.2, + "probability": 0.9132 + }, + { + "start": 5485.34, + "end": 5486.22, + "probability": 0.95 + }, + { + "start": 5487.0, + "end": 5489.19, + "probability": 0.9625 + }, + { + "start": 5490.12, + "end": 5491.92, + "probability": 0.7429 + }, + { + "start": 5492.6, + "end": 5493.76, + "probability": 0.8054 + }, + { + "start": 5493.84, + "end": 5495.67, + "probability": 0.9698 + }, + { + "start": 5497.02, + "end": 5497.9, + "probability": 0.9153 + }, + { + "start": 5498.04, + "end": 5498.75, + "probability": 0.755 + }, + { + "start": 5499.7, + "end": 5502.24, + "probability": 0.99 + }, + { + "start": 5503.16, + "end": 5504.88, + "probability": 0.9554 + }, + { + "start": 5505.56, + "end": 5507.42, + "probability": 0.6828 + }, + { + "start": 5507.56, + "end": 5508.92, + "probability": 0.739 + }, + { + "start": 5509.08, + "end": 5510.3, + "probability": 0.7534 + }, + { + "start": 5511.38, + "end": 5511.56, + "probability": 0.4927 + }, + { + "start": 5511.72, + "end": 5514.22, + "probability": 0.989 + }, + { + "start": 5514.46, + "end": 5517.34, + "probability": 0.6084 + }, + { + "start": 5517.4, + "end": 5522.46, + "probability": 0.9372 + }, + { + "start": 5522.78, + "end": 5523.06, + "probability": 0.7565 + }, + { + "start": 5523.82, + "end": 5527.46, + "probability": 0.7319 + }, + { + "start": 5527.46, + "end": 5531.64, + "probability": 0.8179 + }, + { + "start": 5531.72, + "end": 5533.84, + "probability": 0.5429 + }, + { + "start": 5534.56, + "end": 5536.5, + "probability": 0.768 + }, + { + "start": 5536.5, + "end": 5538.91, + "probability": 0.5756 + }, + { + "start": 5540.12, + "end": 5540.72, + "probability": 0.2141 + }, + { + "start": 5541.94, + "end": 5542.71, + "probability": 0.4924 + }, + { + "start": 5543.58, + "end": 5544.12, + "probability": 0.5573 + }, + { + "start": 5544.24, + "end": 5544.42, + "probability": 0.6714 + }, + { + "start": 5544.82, + "end": 5545.5, + "probability": 0.857 + }, + { + "start": 5564.54, + "end": 5567.28, + "probability": 0.2323 + }, + { + "start": 5567.59, + "end": 5569.8, + "probability": 0.013 + }, + { + "start": 5569.8, + "end": 5570.02, + "probability": 0.0358 + }, + { + "start": 5570.02, + "end": 5570.74, + "probability": 0.6275 + }, + { + "start": 5570.9, + "end": 5571.78, + "probability": 0.1207 + }, + { + "start": 5571.78, + "end": 5572.0, + "probability": 0.0892 + }, + { + "start": 5573.08, + "end": 5574.78, + "probability": 0.106 + }, + { + "start": 5574.78, + "end": 5575.3, + "probability": 0.144 + }, + { + "start": 5575.48, + "end": 5580.32, + "probability": 0.0106 + }, + { + "start": 5608.44, + "end": 5611.08, + "probability": 0.074 + }, + { + "start": 5612.08, + "end": 5612.08, + "probability": 0.0 + }, + { + "start": 5612.08, + "end": 5612.08, + "probability": 0.0 + }, + { + "start": 5612.08, + "end": 5612.08, + "probability": 0.0 + }, + { + "start": 5612.08, + "end": 5612.08, + "probability": 0.0 + }, + { + "start": 5612.08, + "end": 5612.08, + "probability": 0.0 + }, + { + "start": 5612.08, + "end": 5612.08, + "probability": 0.0 + }, + { + "start": 5612.08, + "end": 5612.08, + "probability": 0.0 + }, + { + "start": 5612.08, + "end": 5612.08, + "probability": 0.0 + }, + { + "start": 5612.08, + "end": 5612.08, + "probability": 0.0 + }, + { + "start": 5612.08, + "end": 5612.08, + "probability": 0.0 + }, + { + "start": 5612.08, + "end": 5612.08, + "probability": 0.0 + } + ], + "segments_count": 2062, + "words_count": 10447, + "avg_words_per_segment": 5.0664, + "avg_segment_duration": 2.0575, + "avg_words_per_minute": 111.6912, + "plenum_id": "21428", + "duration": 5612.08, + "title": null, + "plenum_date": "2012-05-01" +} \ No newline at end of file