diff --git "a/23458/metadata.json" "b/23458/metadata.json" new file mode 100644--- /dev/null +++ "b/23458/metadata.json" @@ -0,0 +1,18262 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "23458", + "quality_score": 0.9373, + "per_segment_quality_scores": [ + { + "start": 64.25, + "end": 67.8, + "probability": 0.5625 + }, + { + "start": 68.74, + "end": 70.04, + "probability": 0.9382 + }, + { + "start": 70.14, + "end": 71.52, + "probability": 0.8151 + }, + { + "start": 71.66, + "end": 72.96, + "probability": 0.845 + }, + { + "start": 73.76, + "end": 75.74, + "probability": 0.9893 + }, + { + "start": 76.34, + "end": 80.0, + "probability": 0.8864 + }, + { + "start": 80.52, + "end": 82.44, + "probability": 0.3564 + }, + { + "start": 83.2, + "end": 85.22, + "probability": 0.9955 + }, + { + "start": 85.76, + "end": 88.34, + "probability": 0.9985 + }, + { + "start": 88.9, + "end": 91.7, + "probability": 0.6862 + }, + { + "start": 92.44, + "end": 95.0, + "probability": 0.9984 + }, + { + "start": 97.71, + "end": 102.34, + "probability": 0.958 + }, + { + "start": 103.0, + "end": 103.58, + "probability": 0.6687 + }, + { + "start": 104.0, + "end": 105.2, + "probability": 0.7482 + }, + { + "start": 105.36, + "end": 109.86, + "probability": 0.9919 + }, + { + "start": 110.48, + "end": 113.5, + "probability": 0.9995 + }, + { + "start": 114.3, + "end": 117.96, + "probability": 0.8455 + }, + { + "start": 118.76, + "end": 120.22, + "probability": 0.5903 + }, + { + "start": 120.26, + "end": 123.62, + "probability": 0.5671 + }, + { + "start": 123.68, + "end": 129.98, + "probability": 0.9724 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 135.32, + "end": 138.24, + "probability": 0.6694 + }, + { + "start": 138.7, + "end": 143.54, + "probability": 0.905 + }, + { + "start": 144.24, + "end": 144.74, + "probability": 0.7605 + }, + { + "start": 145.28, + "end": 147.9, + "probability": 0.764 + }, + { + "start": 150.1, + "end": 150.78, + "probability": 0.9399 + }, + { + "start": 151.52, + "end": 153.02, + "probability": 0.8198 + }, + { + "start": 154.86, + "end": 156.06, + "probability": 0.7047 + }, + { + "start": 157.58, + "end": 159.0, + "probability": 0.6487 + }, + { + "start": 161.36, + "end": 164.7, + "probability": 0.9528 + }, + { + "start": 166.32, + "end": 167.92, + "probability": 0.9609 + }, + { + "start": 169.76, + "end": 170.72, + "probability": 0.8981 + }, + { + "start": 171.46, + "end": 173.4, + "probability": 0.9618 + }, + { + "start": 173.98, + "end": 175.96, + "probability": 0.9945 + }, + { + "start": 178.58, + "end": 181.44, + "probability": 0.957 + }, + { + "start": 183.88, + "end": 187.04, + "probability": 0.9885 + }, + { + "start": 187.66, + "end": 188.62, + "probability": 0.692 + }, + { + "start": 190.02, + "end": 192.56, + "probability": 0.8766 + }, + { + "start": 193.22, + "end": 197.28, + "probability": 0.1005 + }, + { + "start": 197.28, + "end": 197.56, + "probability": 0.6252 + }, + { + "start": 198.44, + "end": 199.08, + "probability": 0.4188 + }, + { + "start": 200.58, + "end": 205.58, + "probability": 0.8641 + }, + { + "start": 208.44, + "end": 212.54, + "probability": 0.7277 + }, + { + "start": 216.1, + "end": 216.66, + "probability": 0.7133 + }, + { + "start": 218.1, + "end": 219.07, + "probability": 0.6918 + }, + { + "start": 219.78, + "end": 223.08, + "probability": 0.9356 + }, + { + "start": 224.1, + "end": 225.36, + "probability": 0.7491 + }, + { + "start": 226.0, + "end": 227.16, + "probability": 0.992 + }, + { + "start": 227.82, + "end": 228.98, + "probability": 0.6812 + }, + { + "start": 230.16, + "end": 234.26, + "probability": 0.9559 + }, + { + "start": 234.4, + "end": 235.3, + "probability": 0.6615 + }, + { + "start": 236.36, + "end": 237.0, + "probability": 0.5502 + }, + { + "start": 238.12, + "end": 243.06, + "probability": 0.8482 + }, + { + "start": 243.68, + "end": 246.92, + "probability": 0.8239 + }, + { + "start": 247.64, + "end": 248.28, + "probability": 0.8594 + }, + { + "start": 249.24, + "end": 250.12, + "probability": 0.913 + }, + { + "start": 250.22, + "end": 251.81, + "probability": 0.9863 + }, + { + "start": 252.14, + "end": 255.58, + "probability": 0.6746 + }, + { + "start": 256.24, + "end": 259.4, + "probability": 0.4513 + }, + { + "start": 262.66, + "end": 263.92, + "probability": 0.7059 + }, + { + "start": 264.56, + "end": 266.28, + "probability": 0.4443 + }, + { + "start": 266.62, + "end": 269.8, + "probability": 0.9673 + }, + { + "start": 270.68, + "end": 276.34, + "probability": 0.9482 + }, + { + "start": 277.52, + "end": 278.98, + "probability": 0.0924 + }, + { + "start": 281.38, + "end": 282.0, + "probability": 0.6084 + }, + { + "start": 282.12, + "end": 282.54, + "probability": 0.5038 + }, + { + "start": 282.76, + "end": 283.8, + "probability": 0.5989 + }, + { + "start": 284.18, + "end": 289.92, + "probability": 0.7485 + }, + { + "start": 289.98, + "end": 290.38, + "probability": 0.8919 + }, + { + "start": 290.5, + "end": 293.0, + "probability": 0.7491 + }, + { + "start": 294.04, + "end": 294.92, + "probability": 0.6771 + }, + { + "start": 295.84, + "end": 300.7, + "probability": 0.9967 + }, + { + "start": 301.3, + "end": 302.88, + "probability": 0.8044 + }, + { + "start": 304.14, + "end": 310.32, + "probability": 0.9258 + }, + { + "start": 310.42, + "end": 312.38, + "probability": 0.981 + }, + { + "start": 312.98, + "end": 317.08, + "probability": 0.9691 + }, + { + "start": 317.6, + "end": 319.08, + "probability": 0.9867 + }, + { + "start": 320.06, + "end": 324.8, + "probability": 0.9975 + }, + { + "start": 324.86, + "end": 325.78, + "probability": 0.5216 + }, + { + "start": 326.58, + "end": 328.0, + "probability": 0.9348 + }, + { + "start": 329.02, + "end": 333.18, + "probability": 0.9246 + }, + { + "start": 333.86, + "end": 335.48, + "probability": 0.98 + }, + { + "start": 336.26, + "end": 337.58, + "probability": 0.8936 + }, + { + "start": 338.2, + "end": 339.68, + "probability": 0.9297 + }, + { + "start": 340.16, + "end": 341.88, + "probability": 0.8072 + }, + { + "start": 342.28, + "end": 345.1, + "probability": 0.9639 + }, + { + "start": 345.48, + "end": 347.74, + "probability": 0.9669 + }, + { + "start": 348.36, + "end": 351.08, + "probability": 0.9919 + }, + { + "start": 351.44, + "end": 352.9, + "probability": 0.9482 + }, + { + "start": 353.36, + "end": 356.4, + "probability": 0.9991 + }, + { + "start": 357.26, + "end": 358.96, + "probability": 0.8394 + }, + { + "start": 359.54, + "end": 360.16, + "probability": 0.9609 + }, + { + "start": 360.92, + "end": 361.52, + "probability": 0.6078 + }, + { + "start": 361.92, + "end": 363.46, + "probability": 0.6389 + }, + { + "start": 364.05, + "end": 366.92, + "probability": 0.938 + }, + { + "start": 370.46, + "end": 370.94, + "probability": 0.7144 + }, + { + "start": 371.06, + "end": 372.06, + "probability": 0.6445 + }, + { + "start": 372.18, + "end": 376.04, + "probability": 0.5226 + }, + { + "start": 376.36, + "end": 379.66, + "probability": 0.9038 + }, + { + "start": 381.7, + "end": 390.0, + "probability": 0.8861 + }, + { + "start": 390.14, + "end": 392.88, + "probability": 0.9731 + }, + { + "start": 393.84, + "end": 394.58, + "probability": 0.7847 + }, + { + "start": 396.0, + "end": 397.92, + "probability": 0.2503 + }, + { + "start": 397.92, + "end": 399.96, + "probability": 0.555 + }, + { + "start": 400.04, + "end": 402.44, + "probability": 0.9871 + }, + { + "start": 403.36, + "end": 407.92, + "probability": 0.8639 + }, + { + "start": 408.7, + "end": 409.52, + "probability": 0.9891 + }, + { + "start": 409.72, + "end": 412.76, + "probability": 0.883 + }, + { + "start": 412.94, + "end": 414.78, + "probability": 0.7619 + }, + { + "start": 415.3, + "end": 419.04, + "probability": 0.5333 + }, + { + "start": 419.14, + "end": 420.87, + "probability": 0.9819 + }, + { + "start": 421.26, + "end": 425.8, + "probability": 0.9651 + }, + { + "start": 426.36, + "end": 427.1, + "probability": 0.9357 + }, + { + "start": 427.24, + "end": 430.04, + "probability": 0.7944 + }, + { + "start": 430.58, + "end": 432.88, + "probability": 0.9092 + }, + { + "start": 433.02, + "end": 433.54, + "probability": 0.8635 + }, + { + "start": 433.58, + "end": 435.64, + "probability": 0.9844 + }, + { + "start": 436.14, + "end": 436.38, + "probability": 0.7841 + }, + { + "start": 436.52, + "end": 440.1, + "probability": 0.9441 + }, + { + "start": 440.76, + "end": 442.04, + "probability": 0.9705 + }, + { + "start": 442.14, + "end": 443.62, + "probability": 0.8781 + }, + { + "start": 444.34, + "end": 449.3, + "probability": 0.806 + }, + { + "start": 449.7, + "end": 452.12, + "probability": 0.7497 + }, + { + "start": 452.24, + "end": 457.48, + "probability": 0.7497 + }, + { + "start": 458.02, + "end": 460.6, + "probability": 0.8238 + }, + { + "start": 461.52, + "end": 462.76, + "probability": 0.9215 + }, + { + "start": 463.08, + "end": 464.96, + "probability": 0.9663 + }, + { + "start": 465.62, + "end": 470.08, + "probability": 0.6909 + }, + { + "start": 471.3, + "end": 471.68, + "probability": 0.2837 + }, + { + "start": 471.72, + "end": 474.36, + "probability": 0.7166 + }, + { + "start": 474.88, + "end": 480.06, + "probability": 0.9907 + }, + { + "start": 480.06, + "end": 484.64, + "probability": 0.9963 + }, + { + "start": 485.34, + "end": 488.96, + "probability": 0.9963 + }, + { + "start": 490.24, + "end": 494.12, + "probability": 0.8395 + }, + { + "start": 495.32, + "end": 499.28, + "probability": 0.9904 + }, + { + "start": 499.3, + "end": 499.79, + "probability": 0.9633 + }, + { + "start": 500.66, + "end": 505.0, + "probability": 0.9671 + }, + { + "start": 505.44, + "end": 509.56, + "probability": 0.9849 + }, + { + "start": 510.34, + "end": 513.8, + "probability": 0.9968 + }, + { + "start": 514.3, + "end": 514.81, + "probability": 0.6398 + }, + { + "start": 515.42, + "end": 515.9, + "probability": 0.7642 + }, + { + "start": 516.06, + "end": 516.76, + "probability": 0.8372 + }, + { + "start": 516.88, + "end": 521.34, + "probability": 0.9596 + }, + { + "start": 521.6, + "end": 522.98, + "probability": 0.9604 + }, + { + "start": 523.78, + "end": 529.76, + "probability": 0.8558 + }, + { + "start": 531.44, + "end": 533.88, + "probability": 0.9602 + }, + { + "start": 535.34, + "end": 539.04, + "probability": 0.993 + }, + { + "start": 539.04, + "end": 542.54, + "probability": 0.9771 + }, + { + "start": 542.58, + "end": 546.54, + "probability": 0.9674 + }, + { + "start": 547.5, + "end": 549.7, + "probability": 0.8126 + }, + { + "start": 550.16, + "end": 555.24, + "probability": 0.9985 + }, + { + "start": 555.48, + "end": 555.76, + "probability": 0.7674 + }, + { + "start": 556.3, + "end": 558.3, + "probability": 0.9656 + }, + { + "start": 558.98, + "end": 560.28, + "probability": 0.5346 + }, + { + "start": 560.74, + "end": 561.44, + "probability": 0.9568 + }, + { + "start": 561.58, + "end": 565.54, + "probability": 0.8164 + }, + { + "start": 565.68, + "end": 566.28, + "probability": 0.8599 + }, + { + "start": 567.64, + "end": 569.62, + "probability": 0.8083 + }, + { + "start": 569.62, + "end": 571.44, + "probability": 0.6847 + }, + { + "start": 572.5, + "end": 574.64, + "probability": 0.803 + }, + { + "start": 575.24, + "end": 576.88, + "probability": 0.7203 + }, + { + "start": 577.66, + "end": 580.16, + "probability": 0.7061 + }, + { + "start": 581.18, + "end": 582.86, + "probability": 0.7941 + }, + { + "start": 583.02, + "end": 587.42, + "probability": 0.8605 + }, + { + "start": 588.28, + "end": 591.64, + "probability": 0.9092 + }, + { + "start": 592.42, + "end": 595.16, + "probability": 0.6901 + }, + { + "start": 596.14, + "end": 598.4, + "probability": 0.7483 + }, + { + "start": 598.66, + "end": 605.5, + "probability": 0.9814 + }, + { + "start": 606.24, + "end": 607.66, + "probability": 0.6075 + }, + { + "start": 607.78, + "end": 612.04, + "probability": 0.979 + }, + { + "start": 612.56, + "end": 616.9, + "probability": 0.7993 + }, + { + "start": 617.36, + "end": 619.89, + "probability": 0.9575 + }, + { + "start": 620.0, + "end": 621.64, + "probability": 0.9863 + }, + { + "start": 622.7, + "end": 626.42, + "probability": 0.9056 + }, + { + "start": 626.92, + "end": 627.38, + "probability": 0.7444 + }, + { + "start": 627.9, + "end": 628.48, + "probability": 0.5753 + }, + { + "start": 628.7, + "end": 631.02, + "probability": 0.923 + }, + { + "start": 631.5, + "end": 633.3, + "probability": 0.6004 + }, + { + "start": 635.16, + "end": 637.16, + "probability": 0.4775 + }, + { + "start": 637.82, + "end": 644.86, + "probability": 0.9942 + }, + { + "start": 644.96, + "end": 647.98, + "probability": 0.9941 + }, + { + "start": 648.64, + "end": 651.4, + "probability": 0.8289 + }, + { + "start": 651.54, + "end": 656.46, + "probability": 0.9827 + }, + { + "start": 656.96, + "end": 659.86, + "probability": 0.9651 + }, + { + "start": 659.86, + "end": 662.3, + "probability": 0.9805 + }, + { + "start": 662.44, + "end": 663.22, + "probability": 0.8451 + }, + { + "start": 663.28, + "end": 664.02, + "probability": 0.5868 + }, + { + "start": 664.46, + "end": 667.34, + "probability": 0.9897 + }, + { + "start": 668.26, + "end": 668.6, + "probability": 0.499 + }, + { + "start": 669.58, + "end": 673.36, + "probability": 0.9503 + }, + { + "start": 675.38, + "end": 677.0, + "probability": 0.7295 + }, + { + "start": 677.08, + "end": 678.39, + "probability": 0.894 + }, + { + "start": 679.38, + "end": 681.96, + "probability": 0.0987 + }, + { + "start": 682.1, + "end": 683.56, + "probability": 0.6816 + }, + { + "start": 684.56, + "end": 686.96, + "probability": 0.1076 + }, + { + "start": 687.08, + "end": 687.64, + "probability": 0.2134 + }, + { + "start": 687.72, + "end": 688.78, + "probability": 0.1443 + }, + { + "start": 689.08, + "end": 693.14, + "probability": 0.6385 + }, + { + "start": 693.58, + "end": 694.18, + "probability": 0.0138 + }, + { + "start": 694.18, + "end": 694.18, + "probability": 0.1028 + }, + { + "start": 694.18, + "end": 697.14, + "probability": 0.6622 + }, + { + "start": 697.3, + "end": 698.58, + "probability": 0.9341 + }, + { + "start": 698.66, + "end": 700.2, + "probability": 0.8147 + }, + { + "start": 700.32, + "end": 701.46, + "probability": 0.7649 + }, + { + "start": 701.78, + "end": 704.7, + "probability": 0.496 + }, + { + "start": 704.7, + "end": 706.04, + "probability": 0.7319 + }, + { + "start": 706.38, + "end": 709.4, + "probability": 0.9922 + }, + { + "start": 709.52, + "end": 709.62, + "probability": 0.6021 + }, + { + "start": 710.12, + "end": 715.98, + "probability": 0.978 + }, + { + "start": 716.06, + "end": 716.81, + "probability": 0.8804 + }, + { + "start": 717.92, + "end": 722.58, + "probability": 0.8994 + }, + { + "start": 723.0, + "end": 723.58, + "probability": 0.7517 + }, + { + "start": 723.72, + "end": 726.76, + "probability": 0.9563 + }, + { + "start": 726.76, + "end": 730.98, + "probability": 0.8765 + }, + { + "start": 731.1, + "end": 733.74, + "probability": 0.9698 + }, + { + "start": 734.18, + "end": 738.02, + "probability": 0.9914 + }, + { + "start": 738.02, + "end": 742.9, + "probability": 0.7968 + }, + { + "start": 743.1, + "end": 744.16, + "probability": 0.8307 + }, + { + "start": 744.34, + "end": 744.84, + "probability": 0.7785 + }, + { + "start": 744.96, + "end": 745.64, + "probability": 0.8781 + }, + { + "start": 745.84, + "end": 747.32, + "probability": 0.8961 + }, + { + "start": 747.58, + "end": 750.18, + "probability": 0.764 + }, + { + "start": 750.52, + "end": 754.62, + "probability": 0.9235 + }, + { + "start": 754.76, + "end": 756.06, + "probability": 0.8555 + }, + { + "start": 756.16, + "end": 756.4, + "probability": 0.887 + }, + { + "start": 757.04, + "end": 758.1, + "probability": 0.7932 + }, + { + "start": 758.54, + "end": 760.12, + "probability": 0.6699 + }, + { + "start": 760.62, + "end": 761.4, + "probability": 0.5789 + }, + { + "start": 761.6, + "end": 763.98, + "probability": 0.8081 + }, + { + "start": 764.26, + "end": 764.78, + "probability": 0.7163 + }, + { + "start": 765.26, + "end": 766.3, + "probability": 0.6644 + }, + { + "start": 767.2, + "end": 767.52, + "probability": 0.9081 + }, + { + "start": 769.32, + "end": 770.2, + "probability": 0.8422 + }, + { + "start": 770.36, + "end": 771.44, + "probability": 0.8931 + }, + { + "start": 771.5, + "end": 772.2, + "probability": 0.8831 + }, + { + "start": 772.48, + "end": 776.56, + "probability": 0.9865 + }, + { + "start": 776.6, + "end": 777.92, + "probability": 0.895 + }, + { + "start": 778.64, + "end": 780.6, + "probability": 0.9875 + }, + { + "start": 782.02, + "end": 783.7, + "probability": 0.8539 + }, + { + "start": 783.76, + "end": 784.04, + "probability": 0.7904 + }, + { + "start": 784.14, + "end": 786.3, + "probability": 0.7461 + }, + { + "start": 788.06, + "end": 791.86, + "probability": 0.9644 + }, + { + "start": 791.9, + "end": 793.9, + "probability": 0.9683 + }, + { + "start": 794.48, + "end": 796.18, + "probability": 0.8647 + }, + { + "start": 797.24, + "end": 799.5, + "probability": 0.9445 + }, + { + "start": 800.26, + "end": 802.54, + "probability": 0.9947 + }, + { + "start": 802.54, + "end": 806.78, + "probability": 0.888 + }, + { + "start": 807.46, + "end": 809.35, + "probability": 0.8354 + }, + { + "start": 810.14, + "end": 810.94, + "probability": 0.9347 + }, + { + "start": 811.66, + "end": 813.94, + "probability": 0.8819 + }, + { + "start": 814.1, + "end": 817.02, + "probability": 0.9829 + }, + { + "start": 817.8, + "end": 821.96, + "probability": 0.9912 + }, + { + "start": 822.72, + "end": 824.22, + "probability": 0.8439 + }, + { + "start": 824.72, + "end": 827.76, + "probability": 0.9885 + }, + { + "start": 828.06, + "end": 828.82, + "probability": 0.7476 + }, + { + "start": 828.98, + "end": 829.5, + "probability": 0.8837 + }, + { + "start": 830.2, + "end": 836.52, + "probability": 0.9749 + }, + { + "start": 836.52, + "end": 839.24, + "probability": 0.9885 + }, + { + "start": 840.14, + "end": 843.2, + "probability": 0.9565 + }, + { + "start": 843.88, + "end": 846.75, + "probability": 0.9975 + }, + { + "start": 847.62, + "end": 848.88, + "probability": 0.5948 + }, + { + "start": 849.6, + "end": 850.36, + "probability": 0.6865 + }, + { + "start": 850.86, + "end": 851.5, + "probability": 0.9066 + }, + { + "start": 851.56, + "end": 852.98, + "probability": 0.7788 + }, + { + "start": 853.16, + "end": 858.6, + "probability": 0.9804 + }, + { + "start": 859.78, + "end": 861.78, + "probability": 0.7479 + }, + { + "start": 862.26, + "end": 863.38, + "probability": 0.9902 + }, + { + "start": 863.46, + "end": 869.48, + "probability": 0.9912 + }, + { + "start": 869.56, + "end": 869.82, + "probability": 0.6056 + }, + { + "start": 870.42, + "end": 870.88, + "probability": 0.68 + }, + { + "start": 871.28, + "end": 872.46, + "probability": 0.8968 + }, + { + "start": 872.58, + "end": 873.16, + "probability": 0.69 + }, + { + "start": 873.64, + "end": 874.96, + "probability": 0.8948 + }, + { + "start": 875.28, + "end": 875.72, + "probability": 0.7062 + }, + { + "start": 876.46, + "end": 878.48, + "probability": 0.991 + }, + { + "start": 878.66, + "end": 880.92, + "probability": 0.5955 + }, + { + "start": 881.68, + "end": 882.52, + "probability": 0.5401 + }, + { + "start": 883.24, + "end": 884.68, + "probability": 0.6902 + }, + { + "start": 885.06, + "end": 885.34, + "probability": 0.3602 + }, + { + "start": 885.36, + "end": 886.34, + "probability": 0.6325 + }, + { + "start": 886.46, + "end": 891.6, + "probability": 0.9717 + }, + { + "start": 891.6, + "end": 899.08, + "probability": 0.8367 + }, + { + "start": 899.2, + "end": 901.74, + "probability": 0.8904 + }, + { + "start": 902.88, + "end": 905.22, + "probability": 0.7877 + }, + { + "start": 906.32, + "end": 908.64, + "probability": 0.9468 + }, + { + "start": 909.38, + "end": 910.84, + "probability": 0.8435 + }, + { + "start": 911.38, + "end": 913.7, + "probability": 0.975 + }, + { + "start": 914.18, + "end": 918.92, + "probability": 0.9884 + }, + { + "start": 919.36, + "end": 921.1, + "probability": 0.8737 + }, + { + "start": 922.2, + "end": 925.22, + "probability": 0.9551 + }, + { + "start": 925.4, + "end": 927.46, + "probability": 0.8021 + }, + { + "start": 927.98, + "end": 929.06, + "probability": 0.3105 + }, + { + "start": 929.34, + "end": 932.36, + "probability": 0.9977 + }, + { + "start": 932.36, + "end": 935.76, + "probability": 0.9945 + }, + { + "start": 935.88, + "end": 937.12, + "probability": 0.828 + }, + { + "start": 937.64, + "end": 939.08, + "probability": 0.9783 + }, + { + "start": 939.68, + "end": 939.8, + "probability": 0.1913 + }, + { + "start": 939.92, + "end": 942.94, + "probability": 0.9948 + }, + { + "start": 943.25, + "end": 947.42, + "probability": 0.9422 + }, + { + "start": 948.3, + "end": 949.76, + "probability": 0.4917 + }, + { + "start": 950.46, + "end": 951.46, + "probability": 0.9471 + }, + { + "start": 952.02, + "end": 955.94, + "probability": 0.9657 + }, + { + "start": 956.66, + "end": 957.58, + "probability": 0.9301 + }, + { + "start": 958.32, + "end": 959.14, + "probability": 0.9641 + }, + { + "start": 959.54, + "end": 960.58, + "probability": 0.9851 + }, + { + "start": 960.76, + "end": 964.62, + "probability": 0.9661 + }, + { + "start": 964.62, + "end": 967.28, + "probability": 0.9769 + }, + { + "start": 967.64, + "end": 969.44, + "probability": 0.8678 + }, + { + "start": 969.8, + "end": 974.5, + "probability": 0.9931 + }, + { + "start": 975.0, + "end": 976.92, + "probability": 0.8125 + }, + { + "start": 977.04, + "end": 978.42, + "probability": 0.8822 + }, + { + "start": 978.46, + "end": 982.74, + "probability": 0.7701 + }, + { + "start": 983.46, + "end": 984.68, + "probability": 0.9702 + }, + { + "start": 984.8, + "end": 986.56, + "probability": 0.9719 + }, + { + "start": 986.9, + "end": 989.68, + "probability": 0.9536 + }, + { + "start": 990.06, + "end": 994.46, + "probability": 0.202 + }, + { + "start": 995.56, + "end": 995.66, + "probability": 0.1436 + }, + { + "start": 995.66, + "end": 997.36, + "probability": 0.4464 + }, + { + "start": 997.84, + "end": 999.02, + "probability": 0.2231 + }, + { + "start": 999.02, + "end": 1000.98, + "probability": 0.7138 + }, + { + "start": 1000.98, + "end": 1002.46, + "probability": 0.8472 + }, + { + "start": 1002.52, + "end": 1007.44, + "probability": 0.9804 + }, + { + "start": 1007.76, + "end": 1009.16, + "probability": 0.9866 + }, + { + "start": 1010.12, + "end": 1014.3, + "probability": 0.6482 + }, + { + "start": 1015.54, + "end": 1016.64, + "probability": 0.9873 + }, + { + "start": 1016.78, + "end": 1017.5, + "probability": 0.7705 + }, + { + "start": 1017.82, + "end": 1019.48, + "probability": 0.6766 + }, + { + "start": 1019.6, + "end": 1026.98, + "probability": 0.9879 + }, + { + "start": 1029.6, + "end": 1031.38, + "probability": 0.9932 + }, + { + "start": 1031.88, + "end": 1035.7, + "probability": 0.7844 + }, + { + "start": 1035.86, + "end": 1036.62, + "probability": 0.9243 + }, + { + "start": 1037.22, + "end": 1039.64, + "probability": 0.9095 + }, + { + "start": 1040.88, + "end": 1043.44, + "probability": 0.7857 + }, + { + "start": 1044.44, + "end": 1053.02, + "probability": 0.9893 + }, + { + "start": 1053.16, + "end": 1057.02, + "probability": 0.8398 + }, + { + "start": 1058.34, + "end": 1063.66, + "probability": 0.9939 + }, + { + "start": 1063.66, + "end": 1068.26, + "probability": 0.992 + }, + { + "start": 1068.26, + "end": 1073.62, + "probability": 0.9933 + }, + { + "start": 1074.4, + "end": 1080.18, + "probability": 0.991 + }, + { + "start": 1080.6, + "end": 1081.84, + "probability": 0.8745 + }, + { + "start": 1082.02, + "end": 1083.82, + "probability": 0.856 + }, + { + "start": 1084.22, + "end": 1085.24, + "probability": 0.9937 + }, + { + "start": 1085.4, + "end": 1088.72, + "probability": 0.981 + }, + { + "start": 1088.72, + "end": 1093.82, + "probability": 0.9917 + }, + { + "start": 1094.82, + "end": 1097.8, + "probability": 0.9844 + }, + { + "start": 1097.8, + "end": 1098.42, + "probability": 0.5572 + }, + { + "start": 1098.48, + "end": 1099.14, + "probability": 0.5393 + }, + { + "start": 1099.9, + "end": 1103.74, + "probability": 0.9483 + }, + { + "start": 1104.16, + "end": 1105.34, + "probability": 0.7505 + }, + { + "start": 1105.46, + "end": 1109.76, + "probability": 0.9845 + }, + { + "start": 1110.1, + "end": 1111.7, + "probability": 0.9976 + }, + { + "start": 1111.92, + "end": 1112.72, + "probability": 0.9694 + }, + { + "start": 1112.88, + "end": 1115.08, + "probability": 0.9052 + }, + { + "start": 1115.24, + "end": 1116.04, + "probability": 0.8559 + }, + { + "start": 1116.48, + "end": 1117.74, + "probability": 0.9781 + }, + { + "start": 1117.82, + "end": 1121.06, + "probability": 0.9781 + }, + { + "start": 1121.32, + "end": 1123.04, + "probability": 0.7764 + }, + { + "start": 1123.38, + "end": 1123.68, + "probability": 0.498 + }, + { + "start": 1124.04, + "end": 1127.36, + "probability": 0.9329 + }, + { + "start": 1127.74, + "end": 1127.98, + "probability": 0.3474 + }, + { + "start": 1128.0, + "end": 1128.1, + "probability": 0.8498 + }, + { + "start": 1128.9, + "end": 1129.36, + "probability": 0.7116 + }, + { + "start": 1129.56, + "end": 1131.66, + "probability": 0.9147 + }, + { + "start": 1132.76, + "end": 1133.14, + "probability": 0.0295 + }, + { + "start": 1134.55, + "end": 1138.98, + "probability": 0.2604 + }, + { + "start": 1139.34, + "end": 1141.54, + "probability": 0.7051 + }, + { + "start": 1142.94, + "end": 1144.5, + "probability": 0.4202 + }, + { + "start": 1144.5, + "end": 1144.76, + "probability": 0.5554 + }, + { + "start": 1144.76, + "end": 1144.84, + "probability": 0.4209 + }, + { + "start": 1144.9, + "end": 1145.28, + "probability": 0.7427 + }, + { + "start": 1145.34, + "end": 1145.9, + "probability": 0.432 + }, + { + "start": 1146.46, + "end": 1148.56, + "probability": 0.4514 + }, + { + "start": 1148.6, + "end": 1149.6, + "probability": 0.6174 + }, + { + "start": 1150.08, + "end": 1153.68, + "probability": 0.8687 + }, + { + "start": 1154.02, + "end": 1154.5, + "probability": 0.8919 + }, + { + "start": 1154.88, + "end": 1158.3, + "probability": 0.8321 + }, + { + "start": 1158.84, + "end": 1160.88, + "probability": 0.9479 + }, + { + "start": 1161.44, + "end": 1162.8, + "probability": 0.8273 + }, + { + "start": 1165.64, + "end": 1169.4, + "probability": 0.7485 + }, + { + "start": 1170.4, + "end": 1175.86, + "probability": 0.9271 + }, + { + "start": 1176.04, + "end": 1177.2, + "probability": 0.9426 + }, + { + "start": 1177.74, + "end": 1183.38, + "probability": 0.7616 + }, + { + "start": 1183.84, + "end": 1184.68, + "probability": 0.9333 + }, + { + "start": 1185.16, + "end": 1187.14, + "probability": 0.6218 + }, + { + "start": 1187.56, + "end": 1191.48, + "probability": 0.8318 + }, + { + "start": 1191.5, + "end": 1195.64, + "probability": 0.9921 + }, + { + "start": 1195.9, + "end": 1198.98, + "probability": 0.972 + }, + { + "start": 1199.98, + "end": 1200.72, + "probability": 0.7778 + }, + { + "start": 1200.82, + "end": 1203.72, + "probability": 0.9924 + }, + { + "start": 1203.8, + "end": 1207.58, + "probability": 0.9862 + }, + { + "start": 1207.58, + "end": 1211.38, + "probability": 0.9953 + }, + { + "start": 1211.52, + "end": 1215.88, + "probability": 0.9893 + }, + { + "start": 1216.46, + "end": 1219.72, + "probability": 0.9548 + }, + { + "start": 1219.88, + "end": 1221.54, + "probability": 0.9093 + }, + { + "start": 1221.62, + "end": 1222.4, + "probability": 0.6688 + }, + { + "start": 1222.9, + "end": 1223.4, + "probability": 0.8459 + }, + { + "start": 1223.46, + "end": 1224.14, + "probability": 0.7834 + }, + { + "start": 1224.2, + "end": 1225.26, + "probability": 0.7652 + }, + { + "start": 1225.68, + "end": 1226.38, + "probability": 0.9304 + }, + { + "start": 1226.98, + "end": 1228.32, + "probability": 0.8634 + }, + { + "start": 1228.4, + "end": 1231.98, + "probability": 0.9756 + }, + { + "start": 1232.46, + "end": 1238.08, + "probability": 0.9003 + }, + { + "start": 1238.66, + "end": 1239.31, + "probability": 0.4991 + }, + { + "start": 1239.52, + "end": 1240.28, + "probability": 0.4922 + }, + { + "start": 1240.5, + "end": 1242.72, + "probability": 0.7562 + }, + { + "start": 1243.1, + "end": 1245.74, + "probability": 0.9937 + }, + { + "start": 1246.28, + "end": 1247.8, + "probability": 0.9697 + }, + { + "start": 1248.08, + "end": 1249.34, + "probability": 0.9741 + }, + { + "start": 1249.48, + "end": 1250.78, + "probability": 0.958 + }, + { + "start": 1251.06, + "end": 1251.06, + "probability": 0.6078 + }, + { + "start": 1251.2, + "end": 1253.04, + "probability": 0.916 + }, + { + "start": 1253.36, + "end": 1254.54, + "probability": 0.7088 + }, + { + "start": 1254.76, + "end": 1255.2, + "probability": 0.3993 + }, + { + "start": 1255.22, + "end": 1256.42, + "probability": 0.8223 + }, + { + "start": 1256.92, + "end": 1257.68, + "probability": 0.9332 + }, + { + "start": 1258.84, + "end": 1259.26, + "probability": 0.5416 + }, + { + "start": 1260.82, + "end": 1264.66, + "probability": 0.7918 + }, + { + "start": 1265.24, + "end": 1266.8, + "probability": 0.63 + }, + { + "start": 1267.22, + "end": 1271.06, + "probability": 0.9938 + }, + { + "start": 1271.06, + "end": 1274.82, + "probability": 0.9978 + }, + { + "start": 1275.06, + "end": 1275.6, + "probability": 0.9542 + }, + { + "start": 1275.66, + "end": 1276.14, + "probability": 0.9832 + }, + { + "start": 1276.24, + "end": 1276.9, + "probability": 0.7131 + }, + { + "start": 1278.2, + "end": 1282.88, + "probability": 0.9458 + }, + { + "start": 1283.26, + "end": 1284.96, + "probability": 0.9258 + }, + { + "start": 1285.34, + "end": 1285.96, + "probability": 0.948 + }, + { + "start": 1286.14, + "end": 1287.38, + "probability": 0.9006 + }, + { + "start": 1287.6, + "end": 1288.7, + "probability": 0.8808 + }, + { + "start": 1289.16, + "end": 1290.38, + "probability": 0.9692 + }, + { + "start": 1290.82, + "end": 1293.43, + "probability": 0.8663 + }, + { + "start": 1294.64, + "end": 1296.9, + "probability": 0.8753 + }, + { + "start": 1297.08, + "end": 1298.52, + "probability": 0.8314 + }, + { + "start": 1299.42, + "end": 1300.38, + "probability": 0.9358 + }, + { + "start": 1300.9, + "end": 1301.52, + "probability": 0.7281 + }, + { + "start": 1302.02, + "end": 1303.38, + "probability": 0.9983 + }, + { + "start": 1303.96, + "end": 1308.42, + "probability": 0.9584 + }, + { + "start": 1308.74, + "end": 1310.72, + "probability": 0.9924 + }, + { + "start": 1311.8, + "end": 1317.18, + "probability": 0.9953 + }, + { + "start": 1317.82, + "end": 1317.86, + "probability": 0.4965 + }, + { + "start": 1317.92, + "end": 1318.58, + "probability": 0.6487 + }, + { + "start": 1318.68, + "end": 1321.42, + "probability": 0.947 + }, + { + "start": 1321.54, + "end": 1323.28, + "probability": 0.9915 + }, + { + "start": 1323.88, + "end": 1325.84, + "probability": 0.9975 + }, + { + "start": 1326.36, + "end": 1327.92, + "probability": 0.8891 + }, + { + "start": 1328.6, + "end": 1331.18, + "probability": 0.8888 + }, + { + "start": 1331.3, + "end": 1332.24, + "probability": 0.8119 + }, + { + "start": 1333.26, + "end": 1336.58, + "probability": 0.9947 + }, + { + "start": 1336.7, + "end": 1339.54, + "probability": 0.9525 + }, + { + "start": 1339.88, + "end": 1343.16, + "probability": 0.9077 + }, + { + "start": 1343.36, + "end": 1345.74, + "probability": 0.8714 + }, + { + "start": 1346.56, + "end": 1350.36, + "probability": 0.9861 + }, + { + "start": 1350.92, + "end": 1351.76, + "probability": 0.8684 + }, + { + "start": 1351.92, + "end": 1353.44, + "probability": 0.8226 + }, + { + "start": 1353.78, + "end": 1356.66, + "probability": 0.6484 + }, + { + "start": 1356.7, + "end": 1357.06, + "probability": 0.7867 + }, + { + "start": 1359.36, + "end": 1360.74, + "probability": 0.7952 + }, + { + "start": 1361.8, + "end": 1364.44, + "probability": 0.9935 + }, + { + "start": 1364.92, + "end": 1365.66, + "probability": 0.3184 + }, + { + "start": 1366.02, + "end": 1366.8, + "probability": 0.9049 + }, + { + "start": 1367.02, + "end": 1367.46, + "probability": 0.886 + }, + { + "start": 1368.06, + "end": 1372.58, + "probability": 0.9847 + }, + { + "start": 1373.02, + "end": 1380.1, + "probability": 0.9121 + }, + { + "start": 1380.14, + "end": 1380.7, + "probability": 0.3974 + }, + { + "start": 1380.8, + "end": 1381.24, + "probability": 0.9219 + }, + { + "start": 1382.42, + "end": 1386.74, + "probability": 0.9268 + }, + { + "start": 1386.86, + "end": 1387.82, + "probability": 0.8702 + }, + { + "start": 1388.52, + "end": 1391.2, + "probability": 0.949 + }, + { + "start": 1391.74, + "end": 1395.1, + "probability": 0.8276 + }, + { + "start": 1395.3, + "end": 1395.64, + "probability": 0.7281 + }, + { + "start": 1396.22, + "end": 1396.78, + "probability": 0.5667 + }, + { + "start": 1397.1, + "end": 1398.62, + "probability": 0.8361 + }, + { + "start": 1405.12, + "end": 1407.14, + "probability": 0.5743 + }, + { + "start": 1408.48, + "end": 1408.88, + "probability": 0.8615 + }, + { + "start": 1410.16, + "end": 1410.82, + "probability": 0.7307 + }, + { + "start": 1411.1, + "end": 1412.26, + "probability": 0.6003 + }, + { + "start": 1412.38, + "end": 1412.86, + "probability": 0.8585 + }, + { + "start": 1412.96, + "end": 1413.94, + "probability": 0.8572 + }, + { + "start": 1414.08, + "end": 1415.06, + "probability": 0.9568 + }, + { + "start": 1415.86, + "end": 1419.28, + "probability": 0.9941 + }, + { + "start": 1419.84, + "end": 1424.32, + "probability": 0.9948 + }, + { + "start": 1424.42, + "end": 1425.34, + "probability": 0.9658 + }, + { + "start": 1426.02, + "end": 1427.42, + "probability": 0.9386 + }, + { + "start": 1428.16, + "end": 1429.8, + "probability": 0.9601 + }, + { + "start": 1430.38, + "end": 1433.1, + "probability": 0.9956 + }, + { + "start": 1433.16, + "end": 1434.4, + "probability": 0.9134 + }, + { + "start": 1434.86, + "end": 1439.8, + "probability": 0.9951 + }, + { + "start": 1440.26, + "end": 1441.58, + "probability": 0.8715 + }, + { + "start": 1442.1, + "end": 1444.16, + "probability": 0.9393 + }, + { + "start": 1444.98, + "end": 1445.92, + "probability": 0.4916 + }, + { + "start": 1446.4, + "end": 1447.38, + "probability": 0.9785 + }, + { + "start": 1447.52, + "end": 1448.69, + "probability": 0.9827 + }, + { + "start": 1449.22, + "end": 1452.54, + "probability": 0.7747 + }, + { + "start": 1453.14, + "end": 1455.92, + "probability": 0.927 + }, + { + "start": 1456.78, + "end": 1458.4, + "probability": 0.783 + }, + { + "start": 1458.66, + "end": 1459.71, + "probability": 0.9142 + }, + { + "start": 1460.5, + "end": 1461.28, + "probability": 0.6441 + }, + { + "start": 1461.32, + "end": 1462.1, + "probability": 0.8296 + }, + { + "start": 1462.16, + "end": 1463.64, + "probability": 0.953 + }, + { + "start": 1463.76, + "end": 1465.36, + "probability": 0.941 + }, + { + "start": 1465.8, + "end": 1468.34, + "probability": 0.8206 + }, + { + "start": 1468.42, + "end": 1470.5, + "probability": 0.895 + }, + { + "start": 1471.02, + "end": 1472.92, + "probability": 0.8645 + }, + { + "start": 1473.68, + "end": 1477.66, + "probability": 0.8721 + }, + { + "start": 1478.4, + "end": 1482.44, + "probability": 0.6621 + }, + { + "start": 1482.86, + "end": 1484.74, + "probability": 0.9771 + }, + { + "start": 1484.94, + "end": 1485.78, + "probability": 0.7733 + }, + { + "start": 1486.12, + "end": 1487.7, + "probability": 0.9647 + }, + { + "start": 1488.1, + "end": 1492.3, + "probability": 0.561 + }, + { + "start": 1492.48, + "end": 1494.52, + "probability": 0.6878 + }, + { + "start": 1495.06, + "end": 1499.52, + "probability": 0.9009 + }, + { + "start": 1499.72, + "end": 1500.66, + "probability": 0.6404 + }, + { + "start": 1501.32, + "end": 1504.62, + "probability": 0.8484 + }, + { + "start": 1504.98, + "end": 1505.26, + "probability": 0.6725 + }, + { + "start": 1505.4, + "end": 1508.94, + "probability": 0.6094 + }, + { + "start": 1509.46, + "end": 1510.56, + "probability": 0.8208 + }, + { + "start": 1510.74, + "end": 1511.84, + "probability": 0.8256 + }, + { + "start": 1512.52, + "end": 1514.52, + "probability": 0.8102 + }, + { + "start": 1515.04, + "end": 1515.86, + "probability": 0.5609 + }, + { + "start": 1515.94, + "end": 1519.3, + "probability": 0.886 + }, + { + "start": 1519.34, + "end": 1519.6, + "probability": 0.3012 + }, + { + "start": 1519.6, + "end": 1520.04, + "probability": 0.5298 + }, + { + "start": 1520.26, + "end": 1521.6, + "probability": 0.9108 + }, + { + "start": 1522.2, + "end": 1523.52, + "probability": 0.7528 + }, + { + "start": 1523.8, + "end": 1525.34, + "probability": 0.6136 + }, + { + "start": 1526.08, + "end": 1529.9, + "probability": 0.848 + }, + { + "start": 1532.04, + "end": 1533.5, + "probability": 0.4599 + }, + { + "start": 1533.82, + "end": 1535.04, + "probability": 0.7096 + }, + { + "start": 1535.22, + "end": 1540.12, + "probability": 0.8121 + }, + { + "start": 1540.18, + "end": 1541.62, + "probability": 0.8902 + }, + { + "start": 1541.88, + "end": 1544.44, + "probability": 0.9754 + }, + { + "start": 1544.6, + "end": 1545.34, + "probability": 0.5879 + }, + { + "start": 1545.64, + "end": 1547.04, + "probability": 0.8553 + }, + { + "start": 1547.5, + "end": 1549.5, + "probability": 0.9845 + }, + { + "start": 1549.58, + "end": 1552.74, + "probability": 0.993 + }, + { + "start": 1552.74, + "end": 1557.7, + "probability": 0.9993 + }, + { + "start": 1558.14, + "end": 1559.38, + "probability": 0.8776 + }, + { + "start": 1559.46, + "end": 1564.34, + "probability": 0.972 + }, + { + "start": 1565.3, + "end": 1568.2, + "probability": 0.9946 + }, + { + "start": 1568.2, + "end": 1572.7, + "probability": 0.9988 + }, + { + "start": 1573.2, + "end": 1577.08, + "probability": 0.8533 + }, + { + "start": 1577.16, + "end": 1578.66, + "probability": 0.8601 + }, + { + "start": 1579.12, + "end": 1582.6, + "probability": 0.9891 + }, + { + "start": 1583.14, + "end": 1583.96, + "probability": 0.9805 + }, + { + "start": 1584.8, + "end": 1587.66, + "probability": 0.8887 + }, + { + "start": 1587.88, + "end": 1588.72, + "probability": 0.6752 + }, + { + "start": 1589.16, + "end": 1589.84, + "probability": 0.931 + }, + { + "start": 1589.98, + "end": 1592.7, + "probability": 0.9773 + }, + { + "start": 1592.7, + "end": 1596.0, + "probability": 0.9674 + }, + { + "start": 1596.28, + "end": 1600.32, + "probability": 0.9941 + }, + { + "start": 1601.14, + "end": 1606.18, + "probability": 0.9873 + }, + { + "start": 1606.72, + "end": 1607.84, + "probability": 0.9173 + }, + { + "start": 1608.46, + "end": 1610.2, + "probability": 0.9751 + }, + { + "start": 1610.4, + "end": 1611.46, + "probability": 0.7713 + }, + { + "start": 1612.04, + "end": 1613.74, + "probability": 0.939 + }, + { + "start": 1614.1, + "end": 1615.22, + "probability": 0.9712 + }, + { + "start": 1615.3, + "end": 1617.38, + "probability": 0.8653 + }, + { + "start": 1617.44, + "end": 1618.82, + "probability": 0.9673 + }, + { + "start": 1619.2, + "end": 1621.04, + "probability": 0.9971 + }, + { + "start": 1621.38, + "end": 1624.24, + "probability": 0.867 + }, + { + "start": 1624.26, + "end": 1626.37, + "probability": 0.5421 + }, + { + "start": 1627.26, + "end": 1628.42, + "probability": 0.6365 + }, + { + "start": 1628.62, + "end": 1631.16, + "probability": 0.6078 + }, + { + "start": 1632.22, + "end": 1632.66, + "probability": 0.4311 + }, + { + "start": 1632.8, + "end": 1633.96, + "probability": 0.8373 + }, + { + "start": 1634.34, + "end": 1637.18, + "probability": 0.893 + }, + { + "start": 1638.66, + "end": 1639.1, + "probability": 0.7842 + }, + { + "start": 1639.72, + "end": 1640.36, + "probability": 0.7948 + }, + { + "start": 1640.6, + "end": 1642.24, + "probability": 0.8745 + }, + { + "start": 1642.32, + "end": 1643.38, + "probability": 0.5304 + }, + { + "start": 1643.68, + "end": 1647.16, + "probability": 0.8208 + }, + { + "start": 1647.38, + "end": 1647.68, + "probability": 0.9169 + }, + { + "start": 1648.56, + "end": 1649.84, + "probability": 0.7845 + }, + { + "start": 1650.0, + "end": 1651.1, + "probability": 0.6563 + }, + { + "start": 1651.54, + "end": 1653.8, + "probability": 0.9871 + }, + { + "start": 1654.68, + "end": 1659.92, + "probability": 0.9316 + }, + { + "start": 1660.72, + "end": 1662.2, + "probability": 0.9308 + }, + { + "start": 1663.26, + "end": 1666.72, + "probability": 0.7606 + }, + { + "start": 1667.2, + "end": 1670.21, + "probability": 0.971 + }, + { + "start": 1671.62, + "end": 1674.18, + "probability": 0.4922 + }, + { + "start": 1677.62, + "end": 1680.26, + "probability": 0.7474 + }, + { + "start": 1680.36, + "end": 1684.06, + "probability": 0.9785 + }, + { + "start": 1684.7, + "end": 1686.22, + "probability": 0.8048 + }, + { + "start": 1686.58, + "end": 1691.1, + "probability": 0.9984 + }, + { + "start": 1691.18, + "end": 1693.6, + "probability": 0.8244 + }, + { + "start": 1694.18, + "end": 1696.64, + "probability": 0.9829 + }, + { + "start": 1697.24, + "end": 1699.02, + "probability": 0.681 + }, + { + "start": 1699.54, + "end": 1702.9, + "probability": 0.9421 + }, + { + "start": 1702.9, + "end": 1706.04, + "probability": 0.9415 + }, + { + "start": 1706.48, + "end": 1708.1, + "probability": 0.9953 + }, + { + "start": 1708.54, + "end": 1710.1, + "probability": 0.9985 + }, + { + "start": 1710.26, + "end": 1711.34, + "probability": 0.8806 + }, + { + "start": 1711.5, + "end": 1715.88, + "probability": 0.9902 + }, + { + "start": 1715.88, + "end": 1720.64, + "probability": 0.9691 + }, + { + "start": 1720.86, + "end": 1722.22, + "probability": 0.6647 + }, + { + "start": 1722.68, + "end": 1723.46, + "probability": 0.3972 + }, + { + "start": 1723.84, + "end": 1728.54, + "probability": 0.9805 + }, + { + "start": 1729.26, + "end": 1732.38, + "probability": 0.9368 + }, + { + "start": 1732.98, + "end": 1733.34, + "probability": 0.4814 + }, + { + "start": 1733.64, + "end": 1735.2, + "probability": 0.7267 + }, + { + "start": 1735.64, + "end": 1737.32, + "probability": 0.9305 + }, + { + "start": 1737.62, + "end": 1738.58, + "probability": 0.8062 + }, + { + "start": 1739.31, + "end": 1741.5, + "probability": 0.994 + }, + { + "start": 1741.86, + "end": 1742.16, + "probability": 0.9108 + }, + { + "start": 1743.1, + "end": 1743.94, + "probability": 0.7231 + }, + { + "start": 1744.08, + "end": 1745.14, + "probability": 0.6716 + }, + { + "start": 1745.42, + "end": 1751.16, + "probability": 0.9888 + }, + { + "start": 1751.22, + "end": 1752.48, + "probability": 0.9702 + }, + { + "start": 1753.28, + "end": 1753.7, + "probability": 0.7563 + }, + { + "start": 1754.36, + "end": 1756.64, + "probability": 0.9681 + }, + { + "start": 1757.34, + "end": 1757.82, + "probability": 0.8351 + }, + { + "start": 1759.36, + "end": 1761.58, + "probability": 0.9783 + }, + { + "start": 1762.12, + "end": 1763.8, + "probability": 0.6917 + }, + { + "start": 1764.48, + "end": 1764.92, + "probability": 0.485 + }, + { + "start": 1765.08, + "end": 1769.28, + "probability": 0.7198 + }, + { + "start": 1769.98, + "end": 1770.68, + "probability": 0.6926 + }, + { + "start": 1770.9, + "end": 1771.32, + "probability": 0.9147 + }, + { + "start": 1771.52, + "end": 1775.74, + "probability": 0.9438 + }, + { + "start": 1775.74, + "end": 1780.02, + "probability": 0.9724 + }, + { + "start": 1781.0, + "end": 1783.24, + "probability": 0.8298 + }, + { + "start": 1783.66, + "end": 1784.92, + "probability": 0.811 + }, + { + "start": 1784.98, + "end": 1786.4, + "probability": 0.5593 + }, + { + "start": 1787.0, + "end": 1790.12, + "probability": 0.9244 + }, + { + "start": 1790.74, + "end": 1792.96, + "probability": 0.9957 + }, + { + "start": 1793.68, + "end": 1796.0, + "probability": 0.9062 + }, + { + "start": 1796.12, + "end": 1798.4, + "probability": 0.8102 + }, + { + "start": 1799.2, + "end": 1800.4, + "probability": 0.7194 + }, + { + "start": 1801.0, + "end": 1802.9, + "probability": 0.9841 + }, + { + "start": 1803.52, + "end": 1806.28, + "probability": 0.9813 + }, + { + "start": 1806.64, + "end": 1807.88, + "probability": 0.9797 + }, + { + "start": 1808.08, + "end": 1808.6, + "probability": 0.7429 + }, + { + "start": 1809.04, + "end": 1813.4, + "probability": 0.9432 + }, + { + "start": 1814.04, + "end": 1819.5, + "probability": 0.9817 + }, + { + "start": 1819.8, + "end": 1820.86, + "probability": 0.4295 + }, + { + "start": 1821.02, + "end": 1823.56, + "probability": 0.9635 + }, + { + "start": 1825.12, + "end": 1825.62, + "probability": 0.7806 + }, + { + "start": 1825.74, + "end": 1828.86, + "probability": 0.8608 + }, + { + "start": 1829.58, + "end": 1831.12, + "probability": 0.9611 + }, + { + "start": 1832.06, + "end": 1835.22, + "probability": 0.6129 + }, + { + "start": 1836.3, + "end": 1837.42, + "probability": 0.1566 + }, + { + "start": 1837.42, + "end": 1837.42, + "probability": 0.1278 + }, + { + "start": 1837.42, + "end": 1841.32, + "probability": 0.9546 + }, + { + "start": 1842.02, + "end": 1846.7, + "probability": 0.7559 + }, + { + "start": 1847.32, + "end": 1849.02, + "probability": 0.9292 + }, + { + "start": 1849.94, + "end": 1857.74, + "probability": 0.9927 + }, + { + "start": 1858.42, + "end": 1859.04, + "probability": 0.8089 + }, + { + "start": 1859.28, + "end": 1860.16, + "probability": 0.8805 + }, + { + "start": 1860.62, + "end": 1863.32, + "probability": 0.9759 + }, + { + "start": 1864.36, + "end": 1869.58, + "probability": 0.8864 + }, + { + "start": 1870.1, + "end": 1872.04, + "probability": 0.7761 + }, + { + "start": 1872.56, + "end": 1873.46, + "probability": 0.7829 + }, + { + "start": 1874.56, + "end": 1876.16, + "probability": 0.813 + }, + { + "start": 1877.2, + "end": 1881.16, + "probability": 0.986 + }, + { + "start": 1881.7, + "end": 1884.4, + "probability": 0.9921 + }, + { + "start": 1884.8, + "end": 1886.86, + "probability": 0.7273 + }, + { + "start": 1887.28, + "end": 1888.22, + "probability": 0.5864 + }, + { + "start": 1891.98, + "end": 1892.7, + "probability": 0.2076 + }, + { + "start": 1892.7, + "end": 1896.42, + "probability": 0.9556 + }, + { + "start": 1896.8, + "end": 1897.9, + "probability": 0.7223 + }, + { + "start": 1898.58, + "end": 1903.26, + "probability": 0.7436 + }, + { + "start": 1904.72, + "end": 1906.14, + "probability": 0.8737 + }, + { + "start": 1906.44, + "end": 1906.84, + "probability": 0.6891 + }, + { + "start": 1907.16, + "end": 1908.94, + "probability": 0.7647 + }, + { + "start": 1909.58, + "end": 1912.36, + "probability": 0.8149 + }, + { + "start": 1913.12, + "end": 1913.19, + "probability": 0.5915 + }, + { + "start": 1914.04, + "end": 1915.76, + "probability": 0.7187 + }, + { + "start": 1915.98, + "end": 1917.29, + "probability": 0.8032 + }, + { + "start": 1918.14, + "end": 1919.96, + "probability": 0.3822 + }, + { + "start": 1919.96, + "end": 1920.06, + "probability": 0.3262 + }, + { + "start": 1920.9, + "end": 1921.54, + "probability": 0.6177 + }, + { + "start": 1922.4, + "end": 1923.7, + "probability": 0.5935 + }, + { + "start": 1923.8, + "end": 1925.0, + "probability": 0.8217 + }, + { + "start": 1926.54, + "end": 1928.94, + "probability": 0.9736 + }, + { + "start": 1929.0, + "end": 1931.6, + "probability": 0.972 + }, + { + "start": 1932.38, + "end": 1934.34, + "probability": 0.9679 + }, + { + "start": 1935.78, + "end": 1937.98, + "probability": 0.9961 + }, + { + "start": 1938.76, + "end": 1940.08, + "probability": 0.8677 + }, + { + "start": 1941.6, + "end": 1944.04, + "probability": 0.995 + }, + { + "start": 1944.08, + "end": 1945.6, + "probability": 0.9971 + }, + { + "start": 1946.56, + "end": 1948.28, + "probability": 0.9954 + }, + { + "start": 1948.96, + "end": 1950.94, + "probability": 0.8729 + }, + { + "start": 1951.76, + "end": 1956.88, + "probability": 0.9987 + }, + { + "start": 1956.98, + "end": 1958.48, + "probability": 0.9929 + }, + { + "start": 1958.64, + "end": 1958.8, + "probability": 0.2773 + }, + { + "start": 1958.96, + "end": 1962.88, + "probability": 0.9289 + }, + { + "start": 1963.02, + "end": 1966.58, + "probability": 0.8824 + }, + { + "start": 1966.8, + "end": 1967.46, + "probability": 0.3243 + }, + { + "start": 1968.3, + "end": 1969.92, + "probability": 0.499 + }, + { + "start": 1970.5, + "end": 1972.84, + "probability": 0.9501 + }, + { + "start": 1973.52, + "end": 1976.34, + "probability": 0.933 + }, + { + "start": 1977.14, + "end": 1978.54, + "probability": 0.9583 + }, + { + "start": 1978.82, + "end": 1979.52, + "probability": 0.9398 + }, + { + "start": 1980.06, + "end": 1982.96, + "probability": 0.8968 + }, + { + "start": 1983.24, + "end": 1984.3, + "probability": 0.9164 + }, + { + "start": 1984.88, + "end": 1985.86, + "probability": 0.498 + }, + { + "start": 1986.56, + "end": 1987.66, + "probability": 0.6992 + }, + { + "start": 1987.7, + "end": 1990.72, + "probability": 0.9154 + }, + { + "start": 1992.04, + "end": 1993.32, + "probability": 0.7459 + }, + { + "start": 1993.8, + "end": 1994.64, + "probability": 0.4292 + }, + { + "start": 1994.98, + "end": 1997.5, + "probability": 0.9824 + }, + { + "start": 1997.88, + "end": 1998.4, + "probability": 0.8563 + }, + { + "start": 1998.56, + "end": 1999.4, + "probability": 0.9956 + }, + { + "start": 2000.56, + "end": 2000.8, + "probability": 0.7247 + }, + { + "start": 2001.16, + "end": 2001.54, + "probability": 0.478 + }, + { + "start": 2001.6, + "end": 2002.52, + "probability": 0.6613 + }, + { + "start": 2013.84, + "end": 2014.52, + "probability": 0.6642 + }, + { + "start": 2014.6, + "end": 2014.88, + "probability": 0.8773 + }, + { + "start": 2015.36, + "end": 2016.72, + "probability": 0.8489 + }, + { + "start": 2017.02, + "end": 2021.34, + "probability": 0.9363 + }, + { + "start": 2021.34, + "end": 2027.38, + "probability": 0.9823 + }, + { + "start": 2029.04, + "end": 2035.88, + "probability": 0.9199 + }, + { + "start": 2036.3, + "end": 2036.4, + "probability": 0.3401 + }, + { + "start": 2036.5, + "end": 2037.34, + "probability": 0.5499 + }, + { + "start": 2037.5, + "end": 2042.72, + "probability": 0.9723 + }, + { + "start": 2042.8, + "end": 2045.18, + "probability": 0.9113 + }, + { + "start": 2045.7, + "end": 2047.22, + "probability": 0.9385 + }, + { + "start": 2047.84, + "end": 2049.06, + "probability": 0.874 + }, + { + "start": 2049.76, + "end": 2050.68, + "probability": 0.8725 + }, + { + "start": 2051.38, + "end": 2052.06, + "probability": 0.7518 + }, + { + "start": 2052.14, + "end": 2053.67, + "probability": 0.9941 + }, + { + "start": 2053.82, + "end": 2055.82, + "probability": 0.9956 + }, + { + "start": 2056.88, + "end": 2060.52, + "probability": 0.9626 + }, + { + "start": 2060.62, + "end": 2061.66, + "probability": 0.8592 + }, + { + "start": 2062.66, + "end": 2065.58, + "probability": 0.9709 + }, + { + "start": 2066.42, + "end": 2069.12, + "probability": 0.9807 + }, + { + "start": 2069.82, + "end": 2074.36, + "probability": 0.9335 + }, + { + "start": 2074.5, + "end": 2077.6, + "probability": 0.7789 + }, + { + "start": 2078.26, + "end": 2082.54, + "probability": 0.98 + }, + { + "start": 2082.86, + "end": 2083.04, + "probability": 0.7229 + }, + { + "start": 2083.18, + "end": 2083.68, + "probability": 0.5598 + }, + { + "start": 2083.84, + "end": 2085.37, + "probability": 0.852 + }, + { + "start": 2087.7, + "end": 2088.3, + "probability": 0.9102 + }, + { + "start": 2088.58, + "end": 2091.06, + "probability": 0.8549 + }, + { + "start": 2091.74, + "end": 2095.9, + "probability": 0.9819 + }, + { + "start": 2095.9, + "end": 2100.98, + "probability": 0.9992 + }, + { + "start": 2101.54, + "end": 2103.6, + "probability": 0.8865 + }, + { + "start": 2103.72, + "end": 2106.68, + "probability": 0.8282 + }, + { + "start": 2106.84, + "end": 2107.46, + "probability": 0.7264 + }, + { + "start": 2107.84, + "end": 2109.52, + "probability": 0.941 + }, + { + "start": 2109.78, + "end": 2112.86, + "probability": 0.9663 + }, + { + "start": 2113.48, + "end": 2114.48, + "probability": 0.5432 + }, + { + "start": 2114.54, + "end": 2115.25, + "probability": 0.9867 + }, + { + "start": 2115.32, + "end": 2116.84, + "probability": 0.7562 + }, + { + "start": 2117.34, + "end": 2121.98, + "probability": 0.9548 + }, + { + "start": 2122.94, + "end": 2127.08, + "probability": 0.8555 + }, + { + "start": 2127.9, + "end": 2131.18, + "probability": 0.9919 + }, + { + "start": 2131.66, + "end": 2133.72, + "probability": 0.7318 + }, + { + "start": 2133.98, + "end": 2134.54, + "probability": 0.5546 + }, + { + "start": 2134.96, + "end": 2136.98, + "probability": 0.9707 + }, + { + "start": 2137.74, + "end": 2141.32, + "probability": 0.9956 + }, + { + "start": 2141.98, + "end": 2142.36, + "probability": 0.4153 + }, + { + "start": 2142.4, + "end": 2143.0, + "probability": 0.8767 + }, + { + "start": 2143.08, + "end": 2146.34, + "probability": 0.909 + }, + { + "start": 2146.52, + "end": 2149.04, + "probability": 0.9952 + }, + { + "start": 2149.38, + "end": 2150.02, + "probability": 0.6766 + }, + { + "start": 2152.56, + "end": 2154.7, + "probability": 0.8834 + }, + { + "start": 2155.28, + "end": 2156.4, + "probability": 0.9583 + }, + { + "start": 2157.16, + "end": 2157.98, + "probability": 0.3929 + }, + { + "start": 2158.46, + "end": 2158.68, + "probability": 0.1177 + }, + { + "start": 2159.6, + "end": 2160.86, + "probability": 0.7219 + }, + { + "start": 2160.96, + "end": 2161.72, + "probability": 0.7988 + }, + { + "start": 2162.54, + "end": 2163.56, + "probability": 0.63 + }, + { + "start": 2165.14, + "end": 2167.54, + "probability": 0.7312 + }, + { + "start": 2168.2, + "end": 2171.12, + "probability": 0.0325 + }, + { + "start": 2172.06, + "end": 2172.08, + "probability": 0.068 + }, + { + "start": 2172.08, + "end": 2172.08, + "probability": 0.0969 + }, + { + "start": 2172.08, + "end": 2172.08, + "probability": 0.3946 + }, + { + "start": 2172.08, + "end": 2172.08, + "probability": 0.5219 + }, + { + "start": 2172.08, + "end": 2172.08, + "probability": 0.1901 + }, + { + "start": 2172.08, + "end": 2172.08, + "probability": 0.1546 + }, + { + "start": 2172.08, + "end": 2177.42, + "probability": 0.8524 + }, + { + "start": 2178.0, + "end": 2179.9, + "probability": 0.9238 + }, + { + "start": 2180.98, + "end": 2181.9, + "probability": 0.4815 + }, + { + "start": 2182.0, + "end": 2182.84, + "probability": 0.7638 + }, + { + "start": 2182.86, + "end": 2184.04, + "probability": 0.9137 + }, + { + "start": 2185.04, + "end": 2186.78, + "probability": 0.6736 + }, + { + "start": 2186.98, + "end": 2189.58, + "probability": 0.8398 + }, + { + "start": 2189.66, + "end": 2190.3, + "probability": 0.7659 + }, + { + "start": 2191.14, + "end": 2197.68, + "probability": 0.9773 + }, + { + "start": 2197.68, + "end": 2203.18, + "probability": 0.9972 + }, + { + "start": 2204.02, + "end": 2208.24, + "probability": 0.9967 + }, + { + "start": 2208.24, + "end": 2211.06, + "probability": 0.9953 + }, + { + "start": 2212.14, + "end": 2212.52, + "probability": 0.4458 + }, + { + "start": 2212.76, + "end": 2213.72, + "probability": 0.7656 + }, + { + "start": 2214.14, + "end": 2215.76, + "probability": 0.9891 + }, + { + "start": 2217.62, + "end": 2218.4, + "probability": 0.7032 + }, + { + "start": 2219.02, + "end": 2220.66, + "probability": 0.9547 + }, + { + "start": 2221.52, + "end": 2222.38, + "probability": 0.9092 + }, + { + "start": 2223.94, + "end": 2225.6, + "probability": 0.9516 + }, + { + "start": 2227.1, + "end": 2229.8, + "probability": 0.9768 + }, + { + "start": 2230.58, + "end": 2232.62, + "probability": 0.9722 + }, + { + "start": 2233.6, + "end": 2234.14, + "probability": 0.3772 + }, + { + "start": 2234.9, + "end": 2236.0, + "probability": 0.9214 + }, + { + "start": 2237.35, + "end": 2241.54, + "probability": 0.5268 + }, + { + "start": 2242.38, + "end": 2243.54, + "probability": 0.7246 + }, + { + "start": 2244.78, + "end": 2245.14, + "probability": 0.2824 + }, + { + "start": 2246.08, + "end": 2248.68, + "probability": 0.9961 + }, + { + "start": 2249.34, + "end": 2250.82, + "probability": 0.8501 + }, + { + "start": 2252.06, + "end": 2253.02, + "probability": 0.7484 + }, + { + "start": 2253.88, + "end": 2255.5, + "probability": 0.8687 + }, + { + "start": 2256.02, + "end": 2261.21, + "probability": 0.8516 + }, + { + "start": 2262.62, + "end": 2263.38, + "probability": 0.9712 + }, + { + "start": 2264.1, + "end": 2265.12, + "probability": 0.744 + }, + { + "start": 2265.6, + "end": 2274.02, + "probability": 0.9552 + }, + { + "start": 2274.62, + "end": 2275.32, + "probability": 0.8283 + }, + { + "start": 2276.8, + "end": 2278.52, + "probability": 0.8787 + }, + { + "start": 2280.14, + "end": 2281.5, + "probability": 0.7817 + }, + { + "start": 2282.56, + "end": 2284.78, + "probability": 0.985 + }, + { + "start": 2286.6, + "end": 2287.54, + "probability": 0.8845 + }, + { + "start": 2288.86, + "end": 2290.74, + "probability": 0.984 + }, + { + "start": 2291.46, + "end": 2293.94, + "probability": 0.7845 + }, + { + "start": 2295.36, + "end": 2296.5, + "probability": 0.999 + }, + { + "start": 2297.14, + "end": 2299.08, + "probability": 0.9938 + }, + { + "start": 2300.48, + "end": 2301.6, + "probability": 0.9544 + }, + { + "start": 2302.6, + "end": 2304.5, + "probability": 0.8469 + }, + { + "start": 2306.02, + "end": 2307.08, + "probability": 0.9006 + }, + { + "start": 2308.28, + "end": 2310.14, + "probability": 0.9152 + }, + { + "start": 2310.74, + "end": 2312.6, + "probability": 0.9851 + }, + { + "start": 2313.88, + "end": 2315.28, + "probability": 0.9928 + }, + { + "start": 2316.54, + "end": 2317.38, + "probability": 0.9686 + }, + { + "start": 2318.28, + "end": 2320.08, + "probability": 0.8668 + }, + { + "start": 2321.3, + "end": 2321.7, + "probability": 0.9694 + }, + { + "start": 2322.7, + "end": 2323.78, + "probability": 0.9429 + }, + { + "start": 2325.22, + "end": 2326.66, + "probability": 0.9306 + }, + { + "start": 2327.02, + "end": 2331.64, + "probability": 0.9423 + }, + { + "start": 2332.26, + "end": 2337.86, + "probability": 0.8423 + }, + { + "start": 2338.44, + "end": 2339.36, + "probability": 0.9249 + }, + { + "start": 2339.88, + "end": 2341.68, + "probability": 0.9876 + }, + { + "start": 2343.0, + "end": 2344.6, + "probability": 0.9924 + }, + { + "start": 2345.2, + "end": 2346.76, + "probability": 0.9861 + }, + { + "start": 2348.12, + "end": 2350.92, + "probability": 0.8914 + }, + { + "start": 2351.6, + "end": 2354.6, + "probability": 0.5293 + }, + { + "start": 2355.6, + "end": 2359.88, + "probability": 0.9941 + }, + { + "start": 2360.24, + "end": 2363.52, + "probability": 0.8696 + }, + { + "start": 2364.98, + "end": 2365.62, + "probability": 0.7674 + }, + { + "start": 2367.66, + "end": 2368.5, + "probability": 0.9352 + }, + { + "start": 2369.54, + "end": 2371.12, + "probability": 0.9978 + }, + { + "start": 2371.7, + "end": 2374.16, + "probability": 0.9955 + }, + { + "start": 2374.7, + "end": 2375.62, + "probability": 0.9902 + }, + { + "start": 2376.26, + "end": 2381.48, + "probability": 0.9902 + }, + { + "start": 2382.38, + "end": 2382.88, + "probability": 0.6504 + }, + { + "start": 2383.56, + "end": 2389.72, + "probability": 0.9852 + }, + { + "start": 2391.06, + "end": 2391.44, + "probability": 0.5315 + }, + { + "start": 2392.88, + "end": 2393.54, + "probability": 0.9569 + }, + { + "start": 2394.12, + "end": 2395.74, + "probability": 0.3354 + }, + { + "start": 2396.36, + "end": 2399.96, + "probability": 0.9681 + }, + { + "start": 2401.26, + "end": 2402.5, + "probability": 0.937 + }, + { + "start": 2403.52, + "end": 2407.7, + "probability": 0.9897 + }, + { + "start": 2408.06, + "end": 2410.9, + "probability": 0.9922 + }, + { + "start": 2411.38, + "end": 2412.94, + "probability": 0.9768 + }, + { + "start": 2414.02, + "end": 2418.06, + "probability": 0.9941 + }, + { + "start": 2418.64, + "end": 2424.12, + "probability": 0.9697 + }, + { + "start": 2424.58, + "end": 2426.24, + "probability": 0.7757 + }, + { + "start": 2426.56, + "end": 2429.74, + "probability": 0.9618 + }, + { + "start": 2431.08, + "end": 2431.52, + "probability": 0.9591 + }, + { + "start": 2432.18, + "end": 2438.18, + "probability": 0.9695 + }, + { + "start": 2438.82, + "end": 2443.18, + "probability": 0.9841 + }, + { + "start": 2443.56, + "end": 2448.38, + "probability": 0.9928 + }, + { + "start": 2450.22, + "end": 2453.84, + "probability": 0.9749 + }, + { + "start": 2454.82, + "end": 2461.46, + "probability": 0.9922 + }, + { + "start": 2462.68, + "end": 2467.54, + "probability": 0.9964 + }, + { + "start": 2468.26, + "end": 2471.5, + "probability": 0.9979 + }, + { + "start": 2472.46, + "end": 2474.88, + "probability": 0.9945 + }, + { + "start": 2475.72, + "end": 2478.7, + "probability": 0.9616 + }, + { + "start": 2479.78, + "end": 2482.96, + "probability": 0.8708 + }, + { + "start": 2483.62, + "end": 2484.42, + "probability": 0.521 + }, + { + "start": 2486.0, + "end": 2487.12, + "probability": 0.8453 + }, + { + "start": 2488.56, + "end": 2493.55, + "probability": 0.9211 + }, + { + "start": 2494.18, + "end": 2495.64, + "probability": 0.9296 + }, + { + "start": 2496.08, + "end": 2499.96, + "probability": 0.9426 + }, + { + "start": 2500.78, + "end": 2503.54, + "probability": 0.9816 + }, + { + "start": 2504.18, + "end": 2505.4, + "probability": 0.529 + }, + { + "start": 2506.98, + "end": 2510.08, + "probability": 0.9373 + }, + { + "start": 2511.0, + "end": 2512.56, + "probability": 0.4902 + }, + { + "start": 2513.26, + "end": 2514.74, + "probability": 0.9043 + }, + { + "start": 2515.2, + "end": 2520.84, + "probability": 0.9891 + }, + { + "start": 2521.48, + "end": 2525.42, + "probability": 0.9773 + }, + { + "start": 2525.42, + "end": 2529.26, + "probability": 0.922 + }, + { + "start": 2530.0, + "end": 2531.16, + "probability": 0.8794 + }, + { + "start": 2532.38, + "end": 2535.18, + "probability": 0.9495 + }, + { + "start": 2535.88, + "end": 2537.44, + "probability": 0.986 + }, + { + "start": 2537.88, + "end": 2539.86, + "probability": 0.8606 + }, + { + "start": 2540.44, + "end": 2541.24, + "probability": 0.4728 + }, + { + "start": 2545.98, + "end": 2547.16, + "probability": 0.9764 + }, + { + "start": 2551.5, + "end": 2554.14, + "probability": 0.7268 + }, + { + "start": 2555.32, + "end": 2555.56, + "probability": 0.5832 + }, + { + "start": 2555.72, + "end": 2556.76, + "probability": 0.9478 + }, + { + "start": 2556.92, + "end": 2557.46, + "probability": 0.8558 + }, + { + "start": 2557.58, + "end": 2561.82, + "probability": 0.9546 + }, + { + "start": 2561.82, + "end": 2565.84, + "probability": 0.995 + }, + { + "start": 2566.5, + "end": 2569.76, + "probability": 0.9866 + }, + { + "start": 2570.06, + "end": 2571.5, + "probability": 0.7998 + }, + { + "start": 2572.62, + "end": 2573.22, + "probability": 0.6463 + }, + { + "start": 2573.38, + "end": 2574.14, + "probability": 0.6906 + }, + { + "start": 2574.26, + "end": 2574.62, + "probability": 0.5607 + }, + { + "start": 2574.68, + "end": 2577.44, + "probability": 0.7665 + }, + { + "start": 2577.6, + "end": 2579.88, + "probability": 0.8092 + }, + { + "start": 2579.98, + "end": 2583.68, + "probability": 0.993 + }, + { + "start": 2584.48, + "end": 2590.82, + "probability": 0.9956 + }, + { + "start": 2590.92, + "end": 2595.26, + "probability": 0.9911 + }, + { + "start": 2595.72, + "end": 2597.82, + "probability": 0.6534 + }, + { + "start": 2598.4, + "end": 2602.78, + "probability": 0.9694 + }, + { + "start": 2603.42, + "end": 2606.36, + "probability": 0.8079 + }, + { + "start": 2606.92, + "end": 2610.88, + "probability": 0.983 + }, + { + "start": 2612.42, + "end": 2612.98, + "probability": 0.7289 + }, + { + "start": 2613.06, + "end": 2614.52, + "probability": 0.8255 + }, + { + "start": 2614.76, + "end": 2620.6, + "probability": 0.9871 + }, + { + "start": 2621.36, + "end": 2625.76, + "probability": 0.9966 + }, + { + "start": 2626.98, + "end": 2628.14, + "probability": 0.7667 + }, + { + "start": 2629.32, + "end": 2630.26, + "probability": 0.9667 + }, + { + "start": 2631.04, + "end": 2635.92, + "probability": 0.9718 + }, + { + "start": 2636.46, + "end": 2636.96, + "probability": 0.9482 + }, + { + "start": 2637.1, + "end": 2638.15, + "probability": 0.9932 + }, + { + "start": 2639.12, + "end": 2642.24, + "probability": 0.9875 + }, + { + "start": 2642.96, + "end": 2646.5, + "probability": 0.839 + }, + { + "start": 2647.38, + "end": 2650.96, + "probability": 0.9858 + }, + { + "start": 2651.44, + "end": 2652.72, + "probability": 0.8506 + }, + { + "start": 2652.74, + "end": 2654.02, + "probability": 0.9956 + }, + { + "start": 2654.56, + "end": 2657.48, + "probability": 0.9948 + }, + { + "start": 2657.48, + "end": 2662.62, + "probability": 0.9917 + }, + { + "start": 2663.24, + "end": 2665.84, + "probability": 0.7283 + }, + { + "start": 2666.46, + "end": 2669.28, + "probability": 0.9896 + }, + { + "start": 2669.58, + "end": 2671.72, + "probability": 0.9258 + }, + { + "start": 2672.5, + "end": 2675.04, + "probability": 0.9973 + }, + { + "start": 2675.14, + "end": 2677.3, + "probability": 0.986 + }, + { + "start": 2677.72, + "end": 2681.72, + "probability": 0.9748 + }, + { + "start": 2682.76, + "end": 2686.88, + "probability": 0.8662 + }, + { + "start": 2687.5, + "end": 2690.36, + "probability": 0.8953 + }, + { + "start": 2690.98, + "end": 2693.12, + "probability": 0.9881 + }, + { + "start": 2693.74, + "end": 2697.64, + "probability": 0.9717 + }, + { + "start": 2698.92, + "end": 2699.72, + "probability": 0.7092 + }, + { + "start": 2699.84, + "end": 2700.94, + "probability": 0.9941 + }, + { + "start": 2701.1, + "end": 2702.48, + "probability": 0.9763 + }, + { + "start": 2703.54, + "end": 2706.02, + "probability": 0.9914 + }, + { + "start": 2706.62, + "end": 2708.7, + "probability": 0.8272 + }, + { + "start": 2709.5, + "end": 2710.18, + "probability": 0.7083 + }, + { + "start": 2710.26, + "end": 2712.06, + "probability": 0.8921 + }, + { + "start": 2712.2, + "end": 2714.0, + "probability": 0.8761 + }, + { + "start": 2714.46, + "end": 2716.1, + "probability": 0.9782 + }, + { + "start": 2716.16, + "end": 2718.42, + "probability": 0.9498 + }, + { + "start": 2718.8, + "end": 2721.64, + "probability": 0.9922 + }, + { + "start": 2722.1, + "end": 2724.49, + "probability": 0.8226 + }, + { + "start": 2725.14, + "end": 2727.04, + "probability": 0.9565 + }, + { + "start": 2727.5, + "end": 2730.66, + "probability": 0.9927 + }, + { + "start": 2731.06, + "end": 2736.1, + "probability": 0.9924 + }, + { + "start": 2736.1, + "end": 2741.04, + "probability": 0.9176 + }, + { + "start": 2741.7, + "end": 2745.54, + "probability": 0.9133 + }, + { + "start": 2746.02, + "end": 2747.7, + "probability": 0.8115 + }, + { + "start": 2747.78, + "end": 2749.14, + "probability": 0.8867 + }, + { + "start": 2749.96, + "end": 2753.18, + "probability": 0.9866 + }, + { + "start": 2753.38, + "end": 2754.42, + "probability": 0.9022 + }, + { + "start": 2755.04, + "end": 2756.54, + "probability": 0.9779 + }, + { + "start": 2757.2, + "end": 2759.3, + "probability": 0.998 + }, + { + "start": 2759.84, + "end": 2764.22, + "probability": 0.9387 + }, + { + "start": 2764.38, + "end": 2765.64, + "probability": 0.9069 + }, + { + "start": 2766.38, + "end": 2769.3, + "probability": 0.9963 + }, + { + "start": 2769.74, + "end": 2772.48, + "probability": 0.8304 + }, + { + "start": 2772.88, + "end": 2774.48, + "probability": 0.7584 + }, + { + "start": 2774.56, + "end": 2775.24, + "probability": 0.5746 + }, + { + "start": 2775.8, + "end": 2778.0, + "probability": 0.7483 + }, + { + "start": 2778.44, + "end": 2780.52, + "probability": 0.9941 + }, + { + "start": 2781.1, + "end": 2784.7, + "probability": 0.9929 + }, + { + "start": 2785.62, + "end": 2789.3, + "probability": 0.9907 + }, + { + "start": 2789.3, + "end": 2792.4, + "probability": 0.9116 + }, + { + "start": 2793.0, + "end": 2796.7, + "probability": 0.9645 + }, + { + "start": 2796.98, + "end": 2797.52, + "probability": 0.7814 + }, + { + "start": 2797.78, + "end": 2801.6, + "probability": 0.9922 + }, + { + "start": 2802.16, + "end": 2806.0, + "probability": 0.955 + }, + { + "start": 2806.06, + "end": 2807.48, + "probability": 0.892 + }, + { + "start": 2807.58, + "end": 2811.26, + "probability": 0.962 + }, + { + "start": 2811.48, + "end": 2814.76, + "probability": 0.9307 + }, + { + "start": 2815.22, + "end": 2818.18, + "probability": 0.9784 + }, + { + "start": 2818.96, + "end": 2819.96, + "probability": 0.9398 + }, + { + "start": 2820.06, + "end": 2823.94, + "probability": 0.9879 + }, + { + "start": 2823.94, + "end": 2827.84, + "probability": 0.9972 + }, + { + "start": 2827.92, + "end": 2829.38, + "probability": 0.9998 + }, + { + "start": 2829.98, + "end": 2835.76, + "probability": 0.9976 + }, + { + "start": 2836.22, + "end": 2839.02, + "probability": 0.8833 + }, + { + "start": 2840.54, + "end": 2842.06, + "probability": 0.7944 + }, + { + "start": 2842.12, + "end": 2845.46, + "probability": 0.9941 + }, + { + "start": 2846.5, + "end": 2851.38, + "probability": 0.9976 + }, + { + "start": 2852.14, + "end": 2853.1, + "probability": 0.9649 + }, + { + "start": 2853.22, + "end": 2853.58, + "probability": 0.4571 + }, + { + "start": 2853.7, + "end": 2856.3, + "probability": 0.9904 + }, + { + "start": 2856.98, + "end": 2859.46, + "probability": 0.9928 + }, + { + "start": 2859.6, + "end": 2862.54, + "probability": 0.9834 + }, + { + "start": 2863.02, + "end": 2863.68, + "probability": 0.7225 + }, + { + "start": 2863.92, + "end": 2867.02, + "probability": 0.9893 + }, + { + "start": 2867.02, + "end": 2870.16, + "probability": 0.9932 + }, + { + "start": 2870.64, + "end": 2873.44, + "probability": 0.9209 + }, + { + "start": 2873.56, + "end": 2875.12, + "probability": 0.9397 + }, + { + "start": 2875.5, + "end": 2880.4, + "probability": 0.9932 + }, + { + "start": 2880.86, + "end": 2884.08, + "probability": 0.9961 + }, + { + "start": 2884.08, + "end": 2887.4, + "probability": 0.868 + }, + { + "start": 2887.54, + "end": 2892.04, + "probability": 0.9881 + }, + { + "start": 2892.18, + "end": 2893.38, + "probability": 0.8672 + }, + { + "start": 2893.74, + "end": 2897.72, + "probability": 0.9548 + }, + { + "start": 2898.84, + "end": 2901.2, + "probability": 0.9589 + }, + { + "start": 2903.12, + "end": 2904.76, + "probability": 0.8853 + }, + { + "start": 2905.3, + "end": 2911.34, + "probability": 0.8745 + }, + { + "start": 2911.48, + "end": 2914.88, + "probability": 0.9871 + }, + { + "start": 2915.64, + "end": 2918.2, + "probability": 0.9819 + }, + { + "start": 2918.26, + "end": 2919.9, + "probability": 0.9272 + }, + { + "start": 2920.28, + "end": 2923.26, + "probability": 0.971 + }, + { + "start": 2924.22, + "end": 2926.62, + "probability": 0.9846 + }, + { + "start": 2927.42, + "end": 2931.72, + "probability": 0.9319 + }, + { + "start": 2932.4, + "end": 2938.28, + "probability": 0.9872 + }, + { + "start": 2938.82, + "end": 2943.0, + "probability": 0.999 + }, + { + "start": 2943.0, + "end": 2946.56, + "probability": 0.9982 + }, + { + "start": 2947.62, + "end": 2950.52, + "probability": 0.8869 + }, + { + "start": 2950.7, + "end": 2952.6, + "probability": 0.9971 + }, + { + "start": 2952.6, + "end": 2956.0, + "probability": 0.9948 + }, + { + "start": 2956.12, + "end": 2958.6, + "probability": 0.9265 + }, + { + "start": 2959.36, + "end": 2963.18, + "probability": 0.9974 + }, + { + "start": 2963.18, + "end": 2966.98, + "probability": 0.9964 + }, + { + "start": 2967.42, + "end": 2971.0, + "probability": 0.9966 + }, + { + "start": 2971.92, + "end": 2973.14, + "probability": 0.9705 + }, + { + "start": 2974.02, + "end": 2977.22, + "probability": 0.9374 + }, + { + "start": 2977.6, + "end": 2980.48, + "probability": 0.9085 + }, + { + "start": 2980.54, + "end": 2984.94, + "probability": 0.9736 + }, + { + "start": 2985.56, + "end": 2990.06, + "probability": 0.9556 + }, + { + "start": 2990.16, + "end": 2991.44, + "probability": 0.9702 + }, + { + "start": 2992.32, + "end": 2993.6, + "probability": 0.9544 + }, + { + "start": 2994.46, + "end": 2996.15, + "probability": 0.9149 + }, + { + "start": 2996.84, + "end": 2998.92, + "probability": 0.8633 + }, + { + "start": 2999.4, + "end": 3000.5, + "probability": 0.954 + }, + { + "start": 3000.96, + "end": 3002.12, + "probability": 0.9509 + }, + { + "start": 3002.48, + "end": 3003.56, + "probability": 0.9863 + }, + { + "start": 3004.24, + "end": 3006.4, + "probability": 0.8038 + }, + { + "start": 3007.0, + "end": 3010.3, + "probability": 0.8421 + }, + { + "start": 3010.3, + "end": 3015.18, + "probability": 0.9721 + }, + { + "start": 3015.68, + "end": 3021.84, + "probability": 0.9876 + }, + { + "start": 3022.22, + "end": 3022.92, + "probability": 0.8907 + }, + { + "start": 3023.04, + "end": 3023.62, + "probability": 0.8696 + }, + { + "start": 3024.46, + "end": 3027.72, + "probability": 0.9629 + }, + { + "start": 3028.32, + "end": 3028.7, + "probability": 0.8056 + }, + { + "start": 3029.02, + "end": 3029.58, + "probability": 0.7141 + }, + { + "start": 3029.82, + "end": 3032.56, + "probability": 0.9934 + }, + { + "start": 3033.28, + "end": 3037.24, + "probability": 0.9904 + }, + { + "start": 3038.08, + "end": 3039.34, + "probability": 0.7763 + }, + { + "start": 3039.84, + "end": 3041.7, + "probability": 0.6727 + }, + { + "start": 3050.04, + "end": 3050.88, + "probability": 0.6245 + }, + { + "start": 3051.46, + "end": 3053.64, + "probability": 0.7505 + }, + { + "start": 3054.1, + "end": 3055.76, + "probability": 0.8365 + }, + { + "start": 3058.12, + "end": 3059.28, + "probability": 0.9403 + }, + { + "start": 3059.86, + "end": 3062.64, + "probability": 0.9845 + }, + { + "start": 3063.78, + "end": 3065.84, + "probability": 0.9186 + }, + { + "start": 3066.44, + "end": 3067.74, + "probability": 0.9899 + }, + { + "start": 3069.14, + "end": 3070.64, + "probability": 0.979 + }, + { + "start": 3072.56, + "end": 3073.06, + "probability": 0.5199 + }, + { + "start": 3073.96, + "end": 3077.5, + "probability": 0.8362 + }, + { + "start": 3078.74, + "end": 3082.2, + "probability": 0.967 + }, + { + "start": 3084.64, + "end": 3087.1, + "probability": 0.901 + }, + { + "start": 3087.34, + "end": 3089.18, + "probability": 0.9794 + }, + { + "start": 3090.08, + "end": 3093.16, + "probability": 0.9806 + }, + { + "start": 3093.16, + "end": 3096.6, + "probability": 0.9947 + }, + { + "start": 3097.62, + "end": 3100.5, + "probability": 0.992 + }, + { + "start": 3101.36, + "end": 3102.82, + "probability": 0.9726 + }, + { + "start": 3103.52, + "end": 3108.0, + "probability": 0.9718 + }, + { + "start": 3110.06, + "end": 3111.4, + "probability": 0.6536 + }, + { + "start": 3113.26, + "end": 3115.82, + "probability": 0.9989 + }, + { + "start": 3116.3, + "end": 3121.8, + "probability": 0.9864 + }, + { + "start": 3123.22, + "end": 3127.8, + "probability": 0.984 + }, + { + "start": 3127.92, + "end": 3137.4, + "probability": 0.8043 + }, + { + "start": 3138.0, + "end": 3140.6, + "probability": 0.999 + }, + { + "start": 3141.7, + "end": 3147.6, + "probability": 0.9077 + }, + { + "start": 3148.06, + "end": 3149.42, + "probability": 0.6664 + }, + { + "start": 3149.92, + "end": 3149.98, + "probability": 0.1468 + }, + { + "start": 3150.06, + "end": 3152.54, + "probability": 0.9728 + }, + { + "start": 3155.7, + "end": 3159.0, + "probability": 0.9938 + }, + { + "start": 3159.9, + "end": 3165.42, + "probability": 0.9897 + }, + { + "start": 3166.76, + "end": 3169.06, + "probability": 0.9727 + }, + { + "start": 3169.74, + "end": 3175.84, + "probability": 0.7771 + }, + { + "start": 3176.98, + "end": 3179.5, + "probability": 0.9912 + }, + { + "start": 3180.22, + "end": 3181.98, + "probability": 0.9274 + }, + { + "start": 3182.72, + "end": 3186.12, + "probability": 0.9584 + }, + { + "start": 3186.12, + "end": 3189.2, + "probability": 0.9948 + }, + { + "start": 3191.12, + "end": 3192.35, + "probability": 0.9943 + }, + { + "start": 3193.32, + "end": 3200.9, + "probability": 0.9903 + }, + { + "start": 3201.8, + "end": 3205.28, + "probability": 0.9811 + }, + { + "start": 3206.06, + "end": 3207.04, + "probability": 0.8386 + }, + { + "start": 3207.92, + "end": 3212.1, + "probability": 0.994 + }, + { + "start": 3213.1, + "end": 3215.76, + "probability": 0.9578 + }, + { + "start": 3216.7, + "end": 3222.04, + "probability": 0.9966 + }, + { + "start": 3223.24, + "end": 3226.7, + "probability": 0.9992 + }, + { + "start": 3227.48, + "end": 3232.0, + "probability": 0.9707 + }, + { + "start": 3232.78, + "end": 3235.1, + "probability": 0.998 + }, + { + "start": 3240.48, + "end": 3244.12, + "probability": 0.3178 + }, + { + "start": 3246.02, + "end": 3252.41, + "probability": 0.9941 + }, + { + "start": 3253.5, + "end": 3258.16, + "probability": 0.9834 + }, + { + "start": 3258.86, + "end": 3259.88, + "probability": 0.9897 + }, + { + "start": 3260.84, + "end": 3264.44, + "probability": 0.9948 + }, + { + "start": 3265.12, + "end": 3266.26, + "probability": 0.9557 + }, + { + "start": 3267.04, + "end": 3267.9, + "probability": 0.8325 + }, + { + "start": 3268.56, + "end": 3275.76, + "probability": 0.9916 + }, + { + "start": 3277.12, + "end": 3280.74, + "probability": 0.9961 + }, + { + "start": 3281.78, + "end": 3289.0, + "probability": 0.986 + }, + { + "start": 3289.5, + "end": 3294.76, + "probability": 0.9891 + }, + { + "start": 3296.62, + "end": 3300.22, + "probability": 0.9897 + }, + { + "start": 3301.0, + "end": 3302.36, + "probability": 0.7454 + }, + { + "start": 3302.46, + "end": 3305.04, + "probability": 0.9896 + }, + { + "start": 3305.42, + "end": 3307.0, + "probability": 0.9666 + }, + { + "start": 3307.52, + "end": 3309.14, + "probability": 0.9519 + }, + { + "start": 3310.16, + "end": 3312.92, + "probability": 0.7622 + }, + { + "start": 3313.5, + "end": 3315.28, + "probability": 0.7484 + }, + { + "start": 3315.9, + "end": 3320.78, + "probability": 0.898 + }, + { + "start": 3322.32, + "end": 3328.2, + "probability": 0.9631 + }, + { + "start": 3328.96, + "end": 3330.6, + "probability": 0.9908 + }, + { + "start": 3331.38, + "end": 3335.2, + "probability": 0.9187 + }, + { + "start": 3335.98, + "end": 3339.4, + "probability": 0.9929 + }, + { + "start": 3340.76, + "end": 3348.5, + "probability": 0.9923 + }, + { + "start": 3349.32, + "end": 3353.18, + "probability": 0.984 + }, + { + "start": 3353.18, + "end": 3356.92, + "probability": 0.9998 + }, + { + "start": 3357.64, + "end": 3361.1, + "probability": 0.9978 + }, + { + "start": 3361.68, + "end": 3363.66, + "probability": 0.7798 + }, + { + "start": 3364.54, + "end": 3366.3, + "probability": 0.9956 + }, + { + "start": 3368.64, + "end": 3373.0, + "probability": 0.9981 + }, + { + "start": 3373.0, + "end": 3377.7, + "probability": 0.9961 + }, + { + "start": 3379.38, + "end": 3381.7, + "probability": 0.9951 + }, + { + "start": 3381.88, + "end": 3385.3, + "probability": 0.9971 + }, + { + "start": 3385.8, + "end": 3386.68, + "probability": 0.862 + }, + { + "start": 3387.68, + "end": 3389.2, + "probability": 0.9884 + }, + { + "start": 3390.28, + "end": 3391.24, + "probability": 0.5439 + }, + { + "start": 3391.94, + "end": 3392.72, + "probability": 0.9068 + }, + { + "start": 3392.84, + "end": 3393.98, + "probability": 0.9143 + }, + { + "start": 3394.3, + "end": 3396.05, + "probability": 0.9452 + }, + { + "start": 3396.62, + "end": 3399.86, + "probability": 0.9401 + }, + { + "start": 3400.64, + "end": 3403.55, + "probability": 0.9272 + }, + { + "start": 3405.6, + "end": 3408.4, + "probability": 0.7441 + }, + { + "start": 3409.38, + "end": 3413.7, + "probability": 0.9946 + }, + { + "start": 3414.78, + "end": 3415.2, + "probability": 0.4239 + }, + { + "start": 3416.52, + "end": 3417.16, + "probability": 0.8599 + }, + { + "start": 3418.48, + "end": 3419.92, + "probability": 0.9476 + }, + { + "start": 3421.2, + "end": 3423.76, + "probability": 0.996 + }, + { + "start": 3424.4, + "end": 3425.58, + "probability": 0.8965 + }, + { + "start": 3426.56, + "end": 3428.94, + "probability": 0.9768 + }, + { + "start": 3430.74, + "end": 3431.5, + "probability": 0.7488 + }, + { + "start": 3432.16, + "end": 3434.16, + "probability": 0.9894 + }, + { + "start": 3435.54, + "end": 3438.52, + "probability": 0.9735 + }, + { + "start": 3438.52, + "end": 3441.72, + "probability": 0.8746 + }, + { + "start": 3442.86, + "end": 3445.46, + "probability": 0.9968 + }, + { + "start": 3446.12, + "end": 3446.74, + "probability": 0.5237 + }, + { + "start": 3447.32, + "end": 3448.42, + "probability": 0.6092 + }, + { + "start": 3449.72, + "end": 3451.62, + "probability": 0.9271 + }, + { + "start": 3452.56, + "end": 3453.52, + "probability": 0.998 + }, + { + "start": 3454.2, + "end": 3454.4, + "probability": 0.7422 + }, + { + "start": 3457.52, + "end": 3459.24, + "probability": 0.9802 + }, + { + "start": 3459.68, + "end": 3461.22, + "probability": 0.4586 + }, + { + "start": 3461.48, + "end": 3463.24, + "probability": 0.3372 + }, + { + "start": 3464.8, + "end": 3466.2, + "probability": 0.3596 + }, + { + "start": 3466.74, + "end": 3467.12, + "probability": 0.8837 + }, + { + "start": 3480.86, + "end": 3482.1, + "probability": 0.5888 + }, + { + "start": 3482.8, + "end": 3483.04, + "probability": 0.5042 + }, + { + "start": 3483.04, + "end": 3483.88, + "probability": 0.9539 + }, + { + "start": 3484.38, + "end": 3488.88, + "probability": 0.9829 + }, + { + "start": 3489.74, + "end": 3491.44, + "probability": 0.7335 + }, + { + "start": 3491.48, + "end": 3494.96, + "probability": 0.9833 + }, + { + "start": 3495.54, + "end": 3497.26, + "probability": 0.9467 + }, + { + "start": 3498.34, + "end": 3499.1, + "probability": 0.8284 + }, + { + "start": 3500.88, + "end": 3502.2, + "probability": 0.8776 + }, + { + "start": 3504.42, + "end": 3507.6, + "probability": 0.9827 + }, + { + "start": 3509.02, + "end": 3513.48, + "probability": 0.991 + }, + { + "start": 3515.26, + "end": 3517.2, + "probability": 0.9844 + }, + { + "start": 3517.32, + "end": 3518.02, + "probability": 0.6917 + }, + { + "start": 3518.12, + "end": 3522.46, + "probability": 0.9333 + }, + { + "start": 3523.44, + "end": 3527.58, + "probability": 0.9897 + }, + { + "start": 3528.28, + "end": 3528.96, + "probability": 0.9903 + }, + { + "start": 3529.72, + "end": 3530.44, + "probability": 0.8061 + }, + { + "start": 3531.52, + "end": 3533.76, + "probability": 0.9989 + }, + { + "start": 3534.7, + "end": 3535.94, + "probability": 0.9993 + }, + { + "start": 3536.62, + "end": 3538.8, + "probability": 0.9724 + }, + { + "start": 3540.3, + "end": 3542.85, + "probability": 0.9947 + }, + { + "start": 3543.7, + "end": 3547.88, + "probability": 0.9917 + }, + { + "start": 3549.22, + "end": 3550.86, + "probability": 0.9961 + }, + { + "start": 3552.72, + "end": 3553.72, + "probability": 0.8086 + }, + { + "start": 3554.3, + "end": 3556.08, + "probability": 0.9985 + }, + { + "start": 3556.8, + "end": 3559.78, + "probability": 0.9365 + }, + { + "start": 3560.68, + "end": 3563.92, + "probability": 0.9633 + }, + { + "start": 3565.1, + "end": 3566.54, + "probability": 0.8969 + }, + { + "start": 3566.92, + "end": 3568.32, + "probability": 0.9155 + }, + { + "start": 3569.76, + "end": 3574.6, + "probability": 0.974 + }, + { + "start": 3575.32, + "end": 3576.14, + "probability": 0.7884 + }, + { + "start": 3577.74, + "end": 3579.12, + "probability": 0.7208 + }, + { + "start": 3579.54, + "end": 3580.14, + "probability": 0.8555 + }, + { + "start": 3580.2, + "end": 3582.32, + "probability": 0.9969 + }, + { + "start": 3582.44, + "end": 3583.18, + "probability": 0.3998 + }, + { + "start": 3585.08, + "end": 3586.7, + "probability": 0.9739 + }, + { + "start": 3586.78, + "end": 3588.66, + "probability": 0.9966 + }, + { + "start": 3588.94, + "end": 3590.76, + "probability": 0.9402 + }, + { + "start": 3590.94, + "end": 3592.48, + "probability": 0.9966 + }, + { + "start": 3593.34, + "end": 3594.98, + "probability": 0.9829 + }, + { + "start": 3596.02, + "end": 3598.06, + "probability": 0.9995 + }, + { + "start": 3599.02, + "end": 3601.72, + "probability": 0.9617 + }, + { + "start": 3603.0, + "end": 3605.6, + "probability": 0.9608 + }, + { + "start": 3606.48, + "end": 3611.36, + "probability": 0.9971 + }, + { + "start": 3611.46, + "end": 3613.82, + "probability": 0.9949 + }, + { + "start": 3614.4, + "end": 3615.46, + "probability": 0.7439 + }, + { + "start": 3616.58, + "end": 3620.28, + "probability": 0.9953 + }, + { + "start": 3621.34, + "end": 3622.94, + "probability": 0.8533 + }, + { + "start": 3623.9, + "end": 3630.48, + "probability": 0.9565 + }, + { + "start": 3631.0, + "end": 3632.54, + "probability": 0.0759 + }, + { + "start": 3635.08, + "end": 3637.42, + "probability": 0.8223 + }, + { + "start": 3637.7, + "end": 3639.0, + "probability": 0.4057 + }, + { + "start": 3639.18, + "end": 3640.6, + "probability": 0.651 + }, + { + "start": 3640.7, + "end": 3641.46, + "probability": 0.8931 + }, + { + "start": 3641.46, + "end": 3643.44, + "probability": 0.6418 + }, + { + "start": 3643.6, + "end": 3646.0, + "probability": 0.7349 + }, + { + "start": 3646.48, + "end": 3647.48, + "probability": 0.8533 + }, + { + "start": 3647.52, + "end": 3650.6, + "probability": 0.9958 + }, + { + "start": 3651.38, + "end": 3654.02, + "probability": 0.9763 + }, + { + "start": 3654.8, + "end": 3659.32, + "probability": 0.7506 + }, + { + "start": 3660.62, + "end": 3664.74, + "probability": 0.9792 + }, + { + "start": 3665.04, + "end": 3667.42, + "probability": 0.9907 + }, + { + "start": 3667.96, + "end": 3669.92, + "probability": 0.9996 + }, + { + "start": 3670.4, + "end": 3674.54, + "probability": 0.9923 + }, + { + "start": 3675.22, + "end": 3676.7, + "probability": 0.9292 + }, + { + "start": 3677.2, + "end": 3678.92, + "probability": 0.563 + }, + { + "start": 3679.02, + "end": 3680.1, + "probability": 0.9805 + }, + { + "start": 3680.26, + "end": 3683.04, + "probability": 0.5581 + }, + { + "start": 3683.12, + "end": 3684.46, + "probability": 0.7836 + }, + { + "start": 3684.92, + "end": 3685.8, + "probability": 0.681 + }, + { + "start": 3686.24, + "end": 3687.54, + "probability": 0.653 + }, + { + "start": 3687.66, + "end": 3692.42, + "probability": 0.8741 + }, + { + "start": 3693.54, + "end": 3697.0, + "probability": 0.9799 + }, + { + "start": 3697.08, + "end": 3698.88, + "probability": 0.9834 + }, + { + "start": 3699.04, + "end": 3701.4, + "probability": 0.8307 + }, + { + "start": 3702.34, + "end": 3709.88, + "probability": 0.9845 + }, + { + "start": 3710.74, + "end": 3713.42, + "probability": 0.984 + }, + { + "start": 3714.68, + "end": 3720.12, + "probability": 0.9922 + }, + { + "start": 3720.96, + "end": 3721.62, + "probability": 0.8379 + }, + { + "start": 3721.8, + "end": 3724.88, + "probability": 0.9757 + }, + { + "start": 3725.48, + "end": 3729.76, + "probability": 0.9971 + }, + { + "start": 3730.4, + "end": 3731.18, + "probability": 0.7901 + }, + { + "start": 3733.56, + "end": 3738.2, + "probability": 0.9987 + }, + { + "start": 3739.3, + "end": 3742.68, + "probability": 0.9928 + }, + { + "start": 3743.32, + "end": 3744.58, + "probability": 0.784 + }, + { + "start": 3744.98, + "end": 3745.58, + "probability": 0.3702 + }, + { + "start": 3745.76, + "end": 3747.04, + "probability": 0.9418 + }, + { + "start": 3747.18, + "end": 3748.97, + "probability": 0.8397 + }, + { + "start": 3749.4, + "end": 3750.56, + "probability": 0.9971 + }, + { + "start": 3750.9, + "end": 3752.66, + "probability": 0.6552 + }, + { + "start": 3754.0, + "end": 3756.7, + "probability": 0.9108 + }, + { + "start": 3757.3, + "end": 3763.88, + "probability": 0.8371 + }, + { + "start": 3764.52, + "end": 3765.72, + "probability": 0.8942 + }, + { + "start": 3766.48, + "end": 3767.88, + "probability": 0.795 + }, + { + "start": 3768.04, + "end": 3771.04, + "probability": 0.9936 + }, + { + "start": 3771.12, + "end": 3774.84, + "probability": 0.8273 + }, + { + "start": 3774.98, + "end": 3776.34, + "probability": 0.8444 + }, + { + "start": 3776.94, + "end": 3781.0, + "probability": 0.9581 + }, + { + "start": 3781.9, + "end": 3786.08, + "probability": 0.9187 + }, + { + "start": 3786.94, + "end": 3793.04, + "probability": 0.8878 + }, + { + "start": 3794.26, + "end": 3797.36, + "probability": 0.9199 + }, + { + "start": 3797.5, + "end": 3800.3, + "probability": 0.9894 + }, + { + "start": 3800.54, + "end": 3801.3, + "probability": 0.6981 + }, + { + "start": 3802.24, + "end": 3805.14, + "probability": 0.8714 + }, + { + "start": 3805.86, + "end": 3807.94, + "probability": 0.9323 + }, + { + "start": 3809.36, + "end": 3812.18, + "probability": 0.8965 + }, + { + "start": 3812.58, + "end": 3817.08, + "probability": 0.9894 + }, + { + "start": 3818.98, + "end": 3822.96, + "probability": 0.9771 + }, + { + "start": 3823.02, + "end": 3823.54, + "probability": 0.7656 + }, + { + "start": 3823.6, + "end": 3824.8, + "probability": 0.7517 + }, + { + "start": 3825.18, + "end": 3826.5, + "probability": 0.9229 + }, + { + "start": 3827.1, + "end": 3829.6, + "probability": 0.988 + }, + { + "start": 3829.66, + "end": 3830.42, + "probability": 0.5717 + }, + { + "start": 3830.52, + "end": 3831.72, + "probability": 0.9135 + }, + { + "start": 3831.82, + "end": 3833.08, + "probability": 0.6528 + }, + { + "start": 3833.08, + "end": 3839.2, + "probability": 0.8707 + }, + { + "start": 3839.3, + "end": 3839.66, + "probability": 0.9202 + }, + { + "start": 3839.76, + "end": 3840.12, + "probability": 0.9817 + }, + { + "start": 3840.24, + "end": 3840.78, + "probability": 0.8539 + }, + { + "start": 3840.86, + "end": 3843.08, + "probability": 0.9743 + }, + { + "start": 3843.62, + "end": 3844.34, + "probability": 0.977 + }, + { + "start": 3846.2, + "end": 3850.0, + "probability": 0.7335 + }, + { + "start": 3851.36, + "end": 3857.06, + "probability": 0.9943 + }, + { + "start": 3857.06, + "end": 3862.86, + "probability": 0.9926 + }, + { + "start": 3863.22, + "end": 3865.84, + "probability": 0.9967 + }, + { + "start": 3865.9, + "end": 3867.63, + "probability": 0.7923 + }, + { + "start": 3868.3, + "end": 3868.52, + "probability": 0.0125 + }, + { + "start": 3868.52, + "end": 3868.52, + "probability": 0.395 + }, + { + "start": 3868.52, + "end": 3872.84, + "probability": 0.5117 + }, + { + "start": 3873.68, + "end": 3875.08, + "probability": 0.999 + }, + { + "start": 3875.6, + "end": 3878.3, + "probability": 0.9908 + }, + { + "start": 3879.42, + "end": 3882.2, + "probability": 0.6723 + }, + { + "start": 3883.5, + "end": 3886.38, + "probability": 0.9888 + }, + { + "start": 3887.22, + "end": 3888.66, + "probability": 0.8992 + }, + { + "start": 3890.38, + "end": 3894.24, + "probability": 0.9966 + }, + { + "start": 3895.82, + "end": 3901.16, + "probability": 0.9725 + }, + { + "start": 3902.22, + "end": 3904.02, + "probability": 0.8589 + }, + { + "start": 3904.52, + "end": 3905.28, + "probability": 0.5549 + }, + { + "start": 3905.32, + "end": 3905.88, + "probability": 0.9462 + }, + { + "start": 3905.92, + "end": 3906.72, + "probability": 0.8321 + }, + { + "start": 3908.72, + "end": 3912.48, + "probability": 0.9869 + }, + { + "start": 3912.54, + "end": 3915.28, + "probability": 0.9909 + }, + { + "start": 3915.72, + "end": 3916.76, + "probability": 0.9521 + }, + { + "start": 3917.42, + "end": 3922.02, + "probability": 0.9968 + }, + { + "start": 3922.68, + "end": 3923.36, + "probability": 0.7838 + }, + { + "start": 3926.14, + "end": 3926.2, + "probability": 0.3971 + }, + { + "start": 3926.2, + "end": 3927.72, + "probability": 0.7894 + }, + { + "start": 3928.34, + "end": 3928.86, + "probability": 0.8523 + }, + { + "start": 3930.6, + "end": 3931.82, + "probability": 0.8014 + }, + { + "start": 3932.22, + "end": 3934.8, + "probability": 0.9937 + }, + { + "start": 3935.18, + "end": 3935.94, + "probability": 0.6178 + }, + { + "start": 3936.26, + "end": 3938.7, + "probability": 0.9293 + }, + { + "start": 3939.9, + "end": 3940.76, + "probability": 0.9446 + }, + { + "start": 3941.64, + "end": 3942.56, + "probability": 0.9268 + }, + { + "start": 3943.66, + "end": 3945.04, + "probability": 0.9795 + }, + { + "start": 3945.88, + "end": 3946.62, + "probability": 0.8684 + }, + { + "start": 3947.16, + "end": 3947.74, + "probability": 0.7213 + }, + { + "start": 3948.46, + "end": 3949.08, + "probability": 0.9731 + }, + { + "start": 3951.08, + "end": 3951.9, + "probability": 0.7521 + }, + { + "start": 3951.96, + "end": 3955.6, + "probability": 0.7683 + }, + { + "start": 3956.42, + "end": 3958.02, + "probability": 0.9929 + }, + { + "start": 3959.52, + "end": 3963.32, + "probability": 0.7367 + }, + { + "start": 3964.24, + "end": 3969.66, + "probability": 0.9894 + }, + { + "start": 3971.32, + "end": 3973.86, + "probability": 0.9647 + }, + { + "start": 3975.06, + "end": 3980.1, + "probability": 0.8938 + }, + { + "start": 3980.92, + "end": 3982.38, + "probability": 0.6176 + }, + { + "start": 3983.78, + "end": 3987.78, + "probability": 0.922 + }, + { + "start": 3987.8, + "end": 3989.64, + "probability": 0.5656 + }, + { + "start": 3990.34, + "end": 3992.62, + "probability": 0.9873 + }, + { + "start": 3993.38, + "end": 3993.78, + "probability": 0.8923 + }, + { + "start": 3994.26, + "end": 3996.62, + "probability": 0.8329 + }, + { + "start": 3998.51, + "end": 4000.52, + "probability": 0.442 + }, + { + "start": 4000.52, + "end": 4001.0, + "probability": 0.4124 + }, + { + "start": 4001.58, + "end": 4003.36, + "probability": 0.6166 + }, + { + "start": 4003.88, + "end": 4005.52, + "probability": 0.8973 + }, + { + "start": 4010.02, + "end": 4010.5, + "probability": 0.4119 + }, + { + "start": 4011.04, + "end": 4016.12, + "probability": 0.7641 + }, + { + "start": 4016.76, + "end": 4017.64, + "probability": 0.8034 + }, + { + "start": 4018.32, + "end": 4019.14, + "probability": 0.5767 + }, + { + "start": 4020.64, + "end": 4022.12, + "probability": 0.9971 + }, + { + "start": 4022.92, + "end": 4026.54, + "probability": 0.9685 + }, + { + "start": 4030.82, + "end": 4032.84, + "probability": 0.6657 + }, + { + "start": 4034.5, + "end": 4038.26, + "probability": 0.9026 + }, + { + "start": 4039.28, + "end": 4039.94, + "probability": 0.5211 + }, + { + "start": 4041.56, + "end": 4044.6, + "probability": 0.9963 + }, + { + "start": 4044.78, + "end": 4046.14, + "probability": 0.6 + }, + { + "start": 4046.24, + "end": 4046.68, + "probability": 0.7648 + }, + { + "start": 4046.82, + "end": 4047.04, + "probability": 0.757 + }, + { + "start": 4047.44, + "end": 4048.42, + "probability": 0.9849 + }, + { + "start": 4049.82, + "end": 4050.76, + "probability": 0.5787 + }, + { + "start": 4051.72, + "end": 4054.06, + "probability": 0.9786 + }, + { + "start": 4054.72, + "end": 4056.32, + "probability": 0.847 + }, + { + "start": 4056.44, + "end": 4058.52, + "probability": 0.9824 + }, + { + "start": 4061.06, + "end": 4063.64, + "probability": 0.9642 + }, + { + "start": 4065.02, + "end": 4066.54, + "probability": 0.7326 + }, + { + "start": 4066.82, + "end": 4068.2, + "probability": 0.6351 + }, + { + "start": 4069.62, + "end": 4070.16, + "probability": 0.9426 + }, + { + "start": 4071.5, + "end": 4074.02, + "probability": 0.9636 + }, + { + "start": 4074.84, + "end": 4077.12, + "probability": 0.9374 + }, + { + "start": 4077.8, + "end": 4080.76, + "probability": 0.9349 + }, + { + "start": 4081.58, + "end": 4086.72, + "probability": 0.9727 + }, + { + "start": 4087.02, + "end": 4091.7, + "probability": 0.9634 + }, + { + "start": 4092.22, + "end": 4094.4, + "probability": 0.7798 + }, + { + "start": 4095.38, + "end": 4096.84, + "probability": 0.9885 + }, + { + "start": 4098.28, + "end": 4100.24, + "probability": 0.7107 + }, + { + "start": 4101.44, + "end": 4102.68, + "probability": 0.8743 + }, + { + "start": 4103.74, + "end": 4106.04, + "probability": 0.981 + }, + { + "start": 4106.96, + "end": 4108.3, + "probability": 0.8755 + }, + { + "start": 4108.86, + "end": 4110.16, + "probability": 0.9483 + }, + { + "start": 4110.92, + "end": 4113.86, + "probability": 0.8111 + }, + { + "start": 4114.93, + "end": 4117.02, + "probability": 0.652 + }, + { + "start": 4117.8, + "end": 4118.29, + "probability": 0.7817 + }, + { + "start": 4119.06, + "end": 4125.96, + "probability": 0.9871 + }, + { + "start": 4126.44, + "end": 4127.28, + "probability": 0.8359 + }, + { + "start": 4128.2, + "end": 4129.56, + "probability": 0.9428 + }, + { + "start": 4130.36, + "end": 4131.73, + "probability": 0.7358 + }, + { + "start": 4132.58, + "end": 4134.38, + "probability": 0.9946 + }, + { + "start": 4136.46, + "end": 4139.88, + "probability": 0.8093 + }, + { + "start": 4140.7, + "end": 4142.06, + "probability": 0.9785 + }, + { + "start": 4142.26, + "end": 4143.84, + "probability": 0.993 + }, + { + "start": 4144.94, + "end": 4145.84, + "probability": 0.9033 + }, + { + "start": 4146.54, + "end": 4147.28, + "probability": 0.6495 + }, + { + "start": 4148.9, + "end": 4149.34, + "probability": 0.6595 + }, + { + "start": 4151.96, + "end": 4153.44, + "probability": 0.2979 + }, + { + "start": 4154.66, + "end": 4155.6, + "probability": 0.4515 + }, + { + "start": 4157.06, + "end": 4159.16, + "probability": 0.9636 + }, + { + "start": 4159.76, + "end": 4160.6, + "probability": 0.7271 + }, + { + "start": 4161.28, + "end": 4163.66, + "probability": 0.9965 + }, + { + "start": 4164.5, + "end": 4166.1, + "probability": 0.6407 + }, + { + "start": 4166.68, + "end": 4167.42, + "probability": 0.734 + }, + { + "start": 4168.36, + "end": 4169.32, + "probability": 0.618 + }, + { + "start": 4169.84, + "end": 4170.74, + "probability": 0.9937 + }, + { + "start": 4172.3, + "end": 4173.02, + "probability": 0.5115 + }, + { + "start": 4173.06, + "end": 4174.64, + "probability": 0.8439 + }, + { + "start": 4174.74, + "end": 4178.56, + "probability": 0.9648 + }, + { + "start": 4178.98, + "end": 4179.5, + "probability": 0.8458 + }, + { + "start": 4179.64, + "end": 4180.5, + "probability": 0.5944 + }, + { + "start": 4181.36, + "end": 4182.08, + "probability": 0.5176 + }, + { + "start": 4183.74, + "end": 4186.28, + "probability": 0.7486 + }, + { + "start": 4187.92, + "end": 4190.6, + "probability": 0.8771 + }, + { + "start": 4191.68, + "end": 4196.44, + "probability": 0.9926 + }, + { + "start": 4196.82, + "end": 4198.18, + "probability": 0.7405 + }, + { + "start": 4198.62, + "end": 4201.63, + "probability": 0.8902 + }, + { + "start": 4202.38, + "end": 4208.28, + "probability": 0.9967 + }, + { + "start": 4208.48, + "end": 4213.04, + "probability": 0.9788 + }, + { + "start": 4213.4, + "end": 4214.98, + "probability": 0.7224 + }, + { + "start": 4216.06, + "end": 4217.44, + "probability": 0.9963 + }, + { + "start": 4218.72, + "end": 4219.52, + "probability": 0.8907 + }, + { + "start": 4220.98, + "end": 4222.1, + "probability": 0.8392 + }, + { + "start": 4224.69, + "end": 4227.0, + "probability": 0.8557 + }, + { + "start": 4228.02, + "end": 4229.9, + "probability": 0.9122 + }, + { + "start": 4231.0, + "end": 4233.82, + "probability": 0.5499 + }, + { + "start": 4235.86, + "end": 4236.38, + "probability": 0.692 + }, + { + "start": 4237.34, + "end": 4238.12, + "probability": 0.7545 + }, + { + "start": 4239.02, + "end": 4239.9, + "probability": 0.516 + }, + { + "start": 4240.8, + "end": 4245.02, + "probability": 0.9371 + }, + { + "start": 4245.82, + "end": 4246.72, + "probability": 0.8389 + }, + { + "start": 4246.72, + "end": 4247.28, + "probability": 0.3483 + }, + { + "start": 4247.62, + "end": 4253.14, + "probability": 0.9622 + }, + { + "start": 4253.74, + "end": 4254.52, + "probability": 0.7627 + }, + { + "start": 4254.62, + "end": 4256.76, + "probability": 0.9941 + }, + { + "start": 4257.34, + "end": 4261.48, + "probability": 0.911 + }, + { + "start": 4261.96, + "end": 4264.94, + "probability": 0.7979 + }, + { + "start": 4265.4, + "end": 4266.36, + "probability": 0.9031 + }, + { + "start": 4267.24, + "end": 4271.52, + "probability": 0.9888 + }, + { + "start": 4271.72, + "end": 4273.62, + "probability": 0.902 + }, + { + "start": 4274.36, + "end": 4280.06, + "probability": 0.9205 + }, + { + "start": 4280.14, + "end": 4280.72, + "probability": 0.8698 + }, + { + "start": 4280.72, + "end": 4280.86, + "probability": 0.7352 + }, + { + "start": 4280.96, + "end": 4281.93, + "probability": 0.779 + }, + { + "start": 4282.74, + "end": 4285.54, + "probability": 0.8406 + }, + { + "start": 4286.16, + "end": 4288.78, + "probability": 0.9644 + }, + { + "start": 4289.46, + "end": 4292.34, + "probability": 0.9975 + }, + { + "start": 4292.76, + "end": 4294.48, + "probability": 0.9474 + }, + { + "start": 4295.62, + "end": 4296.34, + "probability": 0.6399 + }, + { + "start": 4296.38, + "end": 4296.92, + "probability": 0.4859 + }, + { + "start": 4297.02, + "end": 4297.56, + "probability": 0.3647 + }, + { + "start": 4298.02, + "end": 4302.66, + "probability": 0.9605 + }, + { + "start": 4303.38, + "end": 4306.74, + "probability": 0.944 + }, + { + "start": 4307.7, + "end": 4309.02, + "probability": 0.8468 + }, + { + "start": 4309.68, + "end": 4310.58, + "probability": 0.8347 + }, + { + "start": 4311.24, + "end": 4312.37, + "probability": 0.6735 + }, + { + "start": 4313.44, + "end": 4314.64, + "probability": 0.9719 + }, + { + "start": 4314.82, + "end": 4317.76, + "probability": 0.9736 + }, + { + "start": 4317.88, + "end": 4319.28, + "probability": 0.0798 + }, + { + "start": 4319.58, + "end": 4319.82, + "probability": 0.5994 + }, + { + "start": 4320.0, + "end": 4320.36, + "probability": 0.8386 + }, + { + "start": 4320.94, + "end": 4321.96, + "probability": 0.6971 + }, + { + "start": 4322.28, + "end": 4324.52, + "probability": 0.6815 + }, + { + "start": 4325.74, + "end": 4329.9, + "probability": 0.2663 + }, + { + "start": 4329.98, + "end": 4331.64, + "probability": 0.9661 + }, + { + "start": 4332.38, + "end": 4334.36, + "probability": 0.991 + }, + { + "start": 4334.5, + "end": 4335.54, + "probability": 0.96 + }, + { + "start": 4336.08, + "end": 4339.1, + "probability": 0.8136 + }, + { + "start": 4339.66, + "end": 4341.58, + "probability": 0.8849 + }, + { + "start": 4343.08, + "end": 4343.6, + "probability": 0.0534 + }, + { + "start": 4343.64, + "end": 4343.66, + "probability": 0.1596 + }, + { + "start": 4343.66, + "end": 4344.18, + "probability": 0.5126 + }, + { + "start": 4344.48, + "end": 4349.54, + "probability": 0.7337 + }, + { + "start": 4349.68, + "end": 4351.32, + "probability": 0.5317 + }, + { + "start": 4351.8, + "end": 4352.98, + "probability": 0.9837 + }, + { + "start": 4353.42, + "end": 4354.84, + "probability": 0.6768 + }, + { + "start": 4355.36, + "end": 4357.03, + "probability": 0.8098 + }, + { + "start": 4357.62, + "end": 4358.46, + "probability": 0.9639 + }, + { + "start": 4358.74, + "end": 4359.62, + "probability": 0.7711 + }, + { + "start": 4359.94, + "end": 4362.62, + "probability": 0.9456 + }, + { + "start": 4363.88, + "end": 4365.76, + "probability": 0.9734 + }, + { + "start": 4366.34, + "end": 4367.44, + "probability": 0.9692 + }, + { + "start": 4368.04, + "end": 4369.34, + "probability": 0.8356 + }, + { + "start": 4369.36, + "end": 4369.46, + "probability": 0.3891 + }, + { + "start": 4369.52, + "end": 4370.64, + "probability": 0.8778 + }, + { + "start": 4370.8, + "end": 4373.52, + "probability": 0.8747 + }, + { + "start": 4374.18, + "end": 4374.48, + "probability": 0.3911 + }, + { + "start": 4374.62, + "end": 4378.56, + "probability": 0.9946 + }, + { + "start": 4378.56, + "end": 4383.02, + "probability": 0.8135 + }, + { + "start": 4383.28, + "end": 4383.98, + "probability": 0.8553 + }, + { + "start": 4385.12, + "end": 4387.64, + "probability": 0.7893 + }, + { + "start": 4387.9, + "end": 4389.54, + "probability": 0.9539 + }, + { + "start": 4390.62, + "end": 4393.24, + "probability": 0.9511 + }, + { + "start": 4393.4, + "end": 4394.42, + "probability": 0.9868 + }, + { + "start": 4394.98, + "end": 4395.59, + "probability": 0.9948 + }, + { + "start": 4396.16, + "end": 4397.8, + "probability": 0.9928 + }, + { + "start": 4398.6, + "end": 4400.44, + "probability": 0.6121 + }, + { + "start": 4401.3, + "end": 4402.98, + "probability": 0.9876 + }, + { + "start": 4403.5, + "end": 4405.24, + "probability": 0.99 + }, + { + "start": 4405.92, + "end": 4408.18, + "probability": 0.9937 + }, + { + "start": 4410.26, + "end": 4411.24, + "probability": 0.8164 + }, + { + "start": 4412.4, + "end": 4415.68, + "probability": 0.6668 + }, + { + "start": 4416.46, + "end": 4419.04, + "probability": 0.6659 + }, + { + "start": 4420.2, + "end": 4422.6, + "probability": 0.9492 + }, + { + "start": 4422.78, + "end": 4425.12, + "probability": 0.7883 + }, + { + "start": 4426.1, + "end": 4428.56, + "probability": 0.974 + }, + { + "start": 4429.24, + "end": 4429.78, + "probability": 0.959 + }, + { + "start": 4430.54, + "end": 4432.56, + "probability": 0.9805 + }, + { + "start": 4433.56, + "end": 4434.79, + "probability": 0.8521 + }, + { + "start": 4435.42, + "end": 4436.62, + "probability": 0.8833 + }, + { + "start": 4437.54, + "end": 4443.5, + "probability": 0.9792 + }, + { + "start": 4443.5, + "end": 4444.22, + "probability": 0.8143 + }, + { + "start": 4444.94, + "end": 4445.64, + "probability": 0.5389 + }, + { + "start": 4446.26, + "end": 4450.22, + "probability": 0.9832 + }, + { + "start": 4450.7, + "end": 4451.44, + "probability": 0.3468 + }, + { + "start": 4452.08, + "end": 4454.24, + "probability": 0.9219 + }, + { + "start": 4455.12, + "end": 4457.4, + "probability": 0.82 + }, + { + "start": 4457.96, + "end": 4461.7, + "probability": 0.9829 + }, + { + "start": 4464.22, + "end": 4464.74, + "probability": 0.7525 + }, + { + "start": 4465.92, + "end": 4467.18, + "probability": 0.999 + }, + { + "start": 4467.62, + "end": 4467.94, + "probability": 0.2859 + }, + { + "start": 4468.02, + "end": 4468.94, + "probability": 0.6597 + }, + { + "start": 4469.22, + "end": 4469.84, + "probability": 0.9408 + }, + { + "start": 4470.74, + "end": 4473.84, + "probability": 0.9566 + }, + { + "start": 4474.38, + "end": 4475.74, + "probability": 0.8449 + }, + { + "start": 4476.32, + "end": 4478.66, + "probability": 0.9794 + }, + { + "start": 4479.34, + "end": 4479.94, + "probability": 0.7465 + }, + { + "start": 4480.92, + "end": 4481.92, + "probability": 0.8019 + }, + { + "start": 4482.44, + "end": 4485.3, + "probability": 0.7389 + }, + { + "start": 4486.36, + "end": 4488.12, + "probability": 0.9897 + }, + { + "start": 4489.36, + "end": 4492.0, + "probability": 0.9379 + }, + { + "start": 4492.96, + "end": 4493.52, + "probability": 0.9066 + }, + { + "start": 4494.04, + "end": 4495.18, + "probability": 0.6899 + }, + { + "start": 4497.34, + "end": 4500.84, + "probability": 0.2348 + }, + { + "start": 4501.1, + "end": 4503.44, + "probability": 0.9695 + }, + { + "start": 4503.72, + "end": 4503.98, + "probability": 0.513 + }, + { + "start": 4504.06, + "end": 4504.9, + "probability": 0.8434 + }, + { + "start": 4505.52, + "end": 4506.64, + "probability": 0.7757 + }, + { + "start": 4507.3, + "end": 4508.2, + "probability": 0.5953 + }, + { + "start": 4508.76, + "end": 4510.54, + "probability": 0.9311 + }, + { + "start": 4512.36, + "end": 4513.1, + "probability": 0.7403 + }, + { + "start": 4513.74, + "end": 4514.8, + "probability": 0.7396 + }, + { + "start": 4515.26, + "end": 4517.2, + "probability": 0.5711 + }, + { + "start": 4517.44, + "end": 4519.46, + "probability": 0.8366 + }, + { + "start": 4519.54, + "end": 4520.0, + "probability": 0.7598 + }, + { + "start": 4520.48, + "end": 4520.88, + "probability": 0.8724 + }, + { + "start": 4521.26, + "end": 4521.81, + "probability": 0.9539 + }, + { + "start": 4522.36, + "end": 4523.08, + "probability": 0.976 + }, + { + "start": 4523.14, + "end": 4523.22, + "probability": 0.4736 + }, + { + "start": 4523.3, + "end": 4525.4, + "probability": 0.9694 + }, + { + "start": 4525.66, + "end": 4527.9, + "probability": 0.6202 + }, + { + "start": 4528.98, + "end": 4533.8, + "probability": 0.2696 + }, + { + "start": 4535.32, + "end": 4536.8, + "probability": 0.9023 + }, + { + "start": 4537.28, + "end": 4542.92, + "probability": 0.8207 + }, + { + "start": 4546.82, + "end": 4547.1, + "probability": 0.2324 + }, + { + "start": 4547.84, + "end": 4549.84, + "probability": 0.4848 + }, + { + "start": 4550.12, + "end": 4551.6, + "probability": 0.7266 + }, + { + "start": 4552.12, + "end": 4554.3, + "probability": 0.9253 + }, + { + "start": 4554.7, + "end": 4555.28, + "probability": 0.6858 + }, + { + "start": 4555.74, + "end": 4556.26, + "probability": 0.0738 + }, + { + "start": 4556.56, + "end": 4556.94, + "probability": 0.2846 + }, + { + "start": 4556.98, + "end": 4557.62, + "probability": 0.2882 + }, + { + "start": 4557.86, + "end": 4559.0, + "probability": 0.416 + }, + { + "start": 4559.94, + "end": 4562.26, + "probability": 0.8304 + }, + { + "start": 4562.5, + "end": 4563.6, + "probability": 0.6645 + }, + { + "start": 4565.34, + "end": 4566.76, + "probability": 0.5029 + }, + { + "start": 4567.66, + "end": 4569.94, + "probability": 0.6509 + }, + { + "start": 4570.52, + "end": 4573.32, + "probability": 0.5009 + }, + { + "start": 4574.54, + "end": 4576.32, + "probability": 0.8259 + }, + { + "start": 4576.44, + "end": 4577.16, + "probability": 0.9213 + }, + { + "start": 4577.26, + "end": 4579.3, + "probability": 0.9498 + }, + { + "start": 4579.84, + "end": 4581.18, + "probability": 0.8988 + }, + { + "start": 4581.92, + "end": 4585.58, + "probability": 0.9966 + }, + { + "start": 4586.12, + "end": 4588.82, + "probability": 0.4679 + }, + { + "start": 4589.56, + "end": 4592.8, + "probability": 0.7134 + }, + { + "start": 4593.26, + "end": 4594.72, + "probability": 0.5254 + }, + { + "start": 4594.84, + "end": 4597.42, + "probability": 0.7176 + }, + { + "start": 4598.38, + "end": 4600.14, + "probability": 0.4931 + }, + { + "start": 4600.66, + "end": 4603.42, + "probability": 0.9897 + }, + { + "start": 4604.02, + "end": 4612.46, + "probability": 0.9586 + }, + { + "start": 4612.98, + "end": 4615.52, + "probability": 0.9454 + }, + { + "start": 4617.54, + "end": 4622.98, + "probability": 0.8327 + }, + { + "start": 4624.14, + "end": 4628.82, + "probability": 0.9845 + }, + { + "start": 4630.58, + "end": 4634.82, + "probability": 0.9941 + }, + { + "start": 4635.84, + "end": 4639.06, + "probability": 0.9976 + }, + { + "start": 4639.86, + "end": 4641.94, + "probability": 0.999 + }, + { + "start": 4642.76, + "end": 4649.08, + "probability": 0.9972 + }, + { + "start": 4649.62, + "end": 4652.38, + "probability": 0.9536 + }, + { + "start": 4652.44, + "end": 4653.08, + "probability": 0.7561 + }, + { + "start": 4653.22, + "end": 4656.4, + "probability": 0.9297 + }, + { + "start": 4656.42, + "end": 4657.86, + "probability": 0.9939 + }, + { + "start": 4658.3, + "end": 4664.1, + "probability": 0.9233 + }, + { + "start": 4664.54, + "end": 4665.86, + "probability": 0.8893 + }, + { + "start": 4667.02, + "end": 4671.06, + "probability": 0.7529 + }, + { + "start": 4671.76, + "end": 4674.3, + "probability": 0.9888 + }, + { + "start": 4675.04, + "end": 4677.44, + "probability": 0.9893 + }, + { + "start": 4678.04, + "end": 4682.1, + "probability": 0.9951 + }, + { + "start": 4682.44, + "end": 4686.4, + "probability": 0.9656 + }, + { + "start": 4687.14, + "end": 4689.14, + "probability": 0.8003 + }, + { + "start": 4689.32, + "end": 4690.44, + "probability": 0.8144 + }, + { + "start": 4690.78, + "end": 4691.98, + "probability": 0.9941 + }, + { + "start": 4692.98, + "end": 4694.15, + "probability": 0.7393 + }, + { + "start": 4694.76, + "end": 4696.52, + "probability": 0.6096 + }, + { + "start": 4696.68, + "end": 4700.36, + "probability": 0.9918 + }, + { + "start": 4700.8, + "end": 4705.08, + "probability": 0.9637 + }, + { + "start": 4705.54, + "end": 4708.54, + "probability": 0.9816 + }, + { + "start": 4709.14, + "end": 4710.22, + "probability": 0.6074 + }, + { + "start": 4710.94, + "end": 4714.36, + "probability": 0.6674 + }, + { + "start": 4714.52, + "end": 4715.74, + "probability": 0.7726 + }, + { + "start": 4715.8, + "end": 4716.28, + "probability": 0.821 + }, + { + "start": 4716.84, + "end": 4718.34, + "probability": 0.9699 + }, + { + "start": 4719.4, + "end": 4721.87, + "probability": 0.9432 + }, + { + "start": 4722.72, + "end": 4726.2, + "probability": 0.9286 + }, + { + "start": 4726.44, + "end": 4729.3, + "probability": 0.9971 + }, + { + "start": 4729.3, + "end": 4731.56, + "probability": 0.9784 + }, + { + "start": 4732.46, + "end": 4736.84, + "probability": 0.9243 + }, + { + "start": 4737.88, + "end": 4738.48, + "probability": 0.7833 + }, + { + "start": 4739.04, + "end": 4743.1, + "probability": 0.8578 + }, + { + "start": 4743.68, + "end": 4746.76, + "probability": 0.9716 + }, + { + "start": 4748.1, + "end": 4753.8, + "probability": 0.9941 + }, + { + "start": 4754.28, + "end": 4759.34, + "probability": 0.9771 + }, + { + "start": 4760.59, + "end": 4762.88, + "probability": 0.8376 + }, + { + "start": 4763.1, + "end": 4763.81, + "probability": 0.8883 + }, + { + "start": 4764.32, + "end": 4768.8, + "probability": 0.9507 + }, + { + "start": 4769.12, + "end": 4771.02, + "probability": 0.7884 + }, + { + "start": 4771.74, + "end": 4772.54, + "probability": 0.7309 + }, + { + "start": 4773.24, + "end": 4774.1, + "probability": 0.9268 + }, + { + "start": 4774.68, + "end": 4775.56, + "probability": 0.9872 + }, + { + "start": 4775.8, + "end": 4779.52, + "probability": 0.9934 + }, + { + "start": 4779.52, + "end": 4784.5, + "probability": 0.9912 + }, + { + "start": 4784.54, + "end": 4785.48, + "probability": 0.601 + }, + { + "start": 4785.58, + "end": 4786.36, + "probability": 0.7719 + }, + { + "start": 4786.64, + "end": 4787.82, + "probability": 0.8194 + }, + { + "start": 4788.16, + "end": 4789.62, + "probability": 0.8819 + }, + { + "start": 4790.08, + "end": 4793.9, + "probability": 0.9637 + }, + { + "start": 4794.69, + "end": 4796.8, + "probability": 0.9934 + }, + { + "start": 4797.24, + "end": 4798.0, + "probability": 0.4782 + }, + { + "start": 4798.04, + "end": 4800.76, + "probability": 0.8428 + }, + { + "start": 4801.2, + "end": 4803.98, + "probability": 0.9937 + }, + { + "start": 4803.98, + "end": 4806.94, + "probability": 0.9971 + }, + { + "start": 4806.98, + "end": 4809.28, + "probability": 0.9633 + }, + { + "start": 4810.58, + "end": 4812.64, + "probability": 0.9939 + }, + { + "start": 4812.8, + "end": 4814.3, + "probability": 0.9654 + }, + { + "start": 4815.46, + "end": 4816.68, + "probability": 0.6207 + }, + { + "start": 4817.26, + "end": 4817.94, + "probability": 0.8816 + }, + { + "start": 4820.06, + "end": 4822.32, + "probability": 0.1618 + }, + { + "start": 4822.74, + "end": 4824.04, + "probability": 0.9795 + }, + { + "start": 4825.68, + "end": 4828.18, + "probability": 0.8193 + }, + { + "start": 4828.5, + "end": 4830.97, + "probability": 0.8482 + }, + { + "start": 4831.22, + "end": 4833.58, + "probability": 0.9829 + }, + { + "start": 4834.7, + "end": 4835.12, + "probability": 0.9331 + }, + { + "start": 4835.18, + "end": 4836.08, + "probability": 0.9597 + }, + { + "start": 4836.26, + "end": 4838.02, + "probability": 0.8794 + }, + { + "start": 4838.02, + "end": 4840.8, + "probability": 0.6527 + }, + { + "start": 4841.48, + "end": 4844.36, + "probability": 0.9101 + }, + { + "start": 4846.44, + "end": 4847.44, + "probability": 0.9565 + }, + { + "start": 4847.84, + "end": 4849.18, + "probability": 0.9331 + }, + { + "start": 4849.54, + "end": 4850.86, + "probability": 0.9634 + }, + { + "start": 4850.96, + "end": 4852.42, + "probability": 0.9912 + }, + { + "start": 4852.8, + "end": 4855.24, + "probability": 0.9395 + }, + { + "start": 4856.52, + "end": 4860.32, + "probability": 0.9377 + }, + { + "start": 4860.82, + "end": 4862.98, + "probability": 0.9838 + }, + { + "start": 4863.1, + "end": 4865.96, + "probability": 0.9904 + }, + { + "start": 4866.62, + "end": 4870.48, + "probability": 0.9526 + }, + { + "start": 4870.48, + "end": 4876.54, + "probability": 0.981 + }, + { + "start": 4876.84, + "end": 4878.0, + "probability": 0.9744 + }, + { + "start": 4878.46, + "end": 4881.52, + "probability": 0.9597 + }, + { + "start": 4882.56, + "end": 4886.28, + "probability": 0.9811 + }, + { + "start": 4887.3, + "end": 4889.0, + "probability": 0.6852 + }, + { + "start": 4889.62, + "end": 4890.72, + "probability": 0.7865 + }, + { + "start": 4890.98, + "end": 4892.62, + "probability": 0.9503 + }, + { + "start": 4892.62, + "end": 4896.58, + "probability": 0.916 + }, + { + "start": 4897.72, + "end": 4901.24, + "probability": 0.9463 + }, + { + "start": 4902.06, + "end": 4908.5, + "probability": 0.9933 + }, + { + "start": 4909.5, + "end": 4914.8, + "probability": 0.9971 + }, + { + "start": 4915.1, + "end": 4918.42, + "probability": 0.9984 + }, + { + "start": 4919.2, + "end": 4920.64, + "probability": 0.7121 + }, + { + "start": 4921.9, + "end": 4924.18, + "probability": 0.8726 + }, + { + "start": 4926.42, + "end": 4931.84, + "probability": 0.9944 + }, + { + "start": 4932.54, + "end": 4935.22, + "probability": 0.9617 + }, + { + "start": 4936.1, + "end": 4937.8, + "probability": 0.9976 + }, + { + "start": 4938.62, + "end": 4939.21, + "probability": 0.8275 + }, + { + "start": 4940.18, + "end": 4941.9, + "probability": 0.8008 + }, + { + "start": 4942.96, + "end": 4944.9, + "probability": 0.9787 + }, + { + "start": 4946.06, + "end": 4953.1, + "probability": 0.9788 + }, + { + "start": 4953.72, + "end": 4954.4, + "probability": 0.5912 + }, + { + "start": 4954.46, + "end": 4956.3, + "probability": 0.9808 + }, + { + "start": 4956.58, + "end": 4957.94, + "probability": 0.6535 + }, + { + "start": 4958.22, + "end": 4960.74, + "probability": 0.8193 + }, + { + "start": 4961.28, + "end": 4962.4, + "probability": 0.966 + }, + { + "start": 4969.44, + "end": 4971.28, + "probability": 0.9955 + }, + { + "start": 4972.08, + "end": 4975.5, + "probability": 0.7649 + }, + { + "start": 4977.38, + "end": 4979.2, + "probability": 0.7165 + }, + { + "start": 4980.28, + "end": 4984.1, + "probability": 0.9941 + }, + { + "start": 4985.12, + "end": 4986.24, + "probability": 0.9958 + }, + { + "start": 4986.38, + "end": 4987.6, + "probability": 0.9095 + }, + { + "start": 4988.7, + "end": 4991.3, + "probability": 0.5142 + }, + { + "start": 4992.06, + "end": 4993.66, + "probability": 0.8672 + }, + { + "start": 4994.14, + "end": 4994.88, + "probability": 0.948 + }, + { + "start": 4996.16, + "end": 4998.6, + "probability": 0.9648 + }, + { + "start": 4999.86, + "end": 5000.52, + "probability": 0.7322 + }, + { + "start": 5001.44, + "end": 5002.02, + "probability": 0.9727 + }, + { + "start": 5003.08, + "end": 5004.76, + "probability": 0.8386 + }, + { + "start": 5006.42, + "end": 5008.4, + "probability": 0.8897 + }, + { + "start": 5009.2, + "end": 5012.17, + "probability": 0.9788 + }, + { + "start": 5013.86, + "end": 5017.0, + "probability": 0.9061 + }, + { + "start": 5017.8, + "end": 5019.9, + "probability": 0.7671 + }, + { + "start": 5020.5, + "end": 5022.38, + "probability": 0.9332 + }, + { + "start": 5023.36, + "end": 5024.52, + "probability": 0.8962 + }, + { + "start": 5025.04, + "end": 5027.14, + "probability": 0.993 + }, + { + "start": 5027.74, + "end": 5027.74, + "probability": 0.0768 + }, + { + "start": 5027.74, + "end": 5027.74, + "probability": 0.2472 + }, + { + "start": 5027.74, + "end": 5028.98, + "probability": 0.3636 + }, + { + "start": 5029.58, + "end": 5035.2, + "probability": 0.8547 + }, + { + "start": 5036.42, + "end": 5040.58, + "probability": 0.9902 + }, + { + "start": 5041.48, + "end": 5045.06, + "probability": 0.9971 + }, + { + "start": 5046.4, + "end": 5050.18, + "probability": 0.9882 + }, + { + "start": 5050.7, + "end": 5054.1, + "probability": 0.8599 + }, + { + "start": 5055.54, + "end": 5056.64, + "probability": 0.9846 + }, + { + "start": 5057.16, + "end": 5058.8, + "probability": 0.5719 + }, + { + "start": 5058.94, + "end": 5060.52, + "probability": 0.9951 + }, + { + "start": 5060.64, + "end": 5063.94, + "probability": 0.1388 + }, + { + "start": 5064.08, + "end": 5064.36, + "probability": 0.0367 + }, + { + "start": 5064.36, + "end": 5065.82, + "probability": 0.7709 + }, + { + "start": 5066.76, + "end": 5066.98, + "probability": 0.7869 + }, + { + "start": 5067.5, + "end": 5071.92, + "probability": 0.9816 + }, + { + "start": 5073.78, + "end": 5077.4, + "probability": 0.8504 + }, + { + "start": 5078.06, + "end": 5080.52, + "probability": 0.9951 + }, + { + "start": 5081.38, + "end": 5081.82, + "probability": 0.4531 + }, + { + "start": 5081.82, + "end": 5083.82, + "probability": 0.7454 + }, + { + "start": 5084.34, + "end": 5086.72, + "probability": 0.9763 + }, + { + "start": 5087.44, + "end": 5089.44, + "probability": 0.911 + }, + { + "start": 5090.02, + "end": 5091.76, + "probability": 0.9383 + }, + { + "start": 5092.36, + "end": 5093.54, + "probability": 0.9668 + }, + { + "start": 5093.78, + "end": 5097.68, + "probability": 0.9937 + }, + { + "start": 5098.48, + "end": 5099.88, + "probability": 0.9566 + }, + { + "start": 5100.78, + "end": 5102.06, + "probability": 0.7445 + }, + { + "start": 5102.48, + "end": 5104.82, + "probability": 0.7524 + }, + { + "start": 5105.62, + "end": 5107.16, + "probability": 0.9031 + }, + { + "start": 5107.72, + "end": 5109.0, + "probability": 0.8203 + }, + { + "start": 5109.58, + "end": 5114.62, + "probability": 0.9945 + }, + { + "start": 5115.3, + "end": 5118.96, + "probability": 0.8946 + }, + { + "start": 5119.64, + "end": 5120.26, + "probability": 0.8274 + }, + { + "start": 5121.16, + "end": 5125.34, + "probability": 0.9579 + }, + { + "start": 5125.46, + "end": 5126.42, + "probability": 0.9178 + }, + { + "start": 5126.9, + "end": 5131.36, + "probability": 0.9403 + }, + { + "start": 5132.36, + "end": 5132.98, + "probability": 0.711 + }, + { + "start": 5133.14, + "end": 5136.04, + "probability": 0.9587 + }, + { + "start": 5136.04, + "end": 5139.86, + "probability": 0.9802 + }, + { + "start": 5141.32, + "end": 5144.0, + "probability": 0.8959 + }, + { + "start": 5144.88, + "end": 5147.14, + "probability": 0.8288 + }, + { + "start": 5147.7, + "end": 5148.92, + "probability": 0.9956 + }, + { + "start": 5149.8, + "end": 5151.3, + "probability": 0.8729 + }, + { + "start": 5151.9, + "end": 5153.24, + "probability": 0.9813 + }, + { + "start": 5153.96, + "end": 5156.08, + "probability": 0.8891 + }, + { + "start": 5156.78, + "end": 5159.02, + "probability": 0.9611 + }, + { + "start": 5159.62, + "end": 5164.18, + "probability": 0.9648 + }, + { + "start": 5164.88, + "end": 5165.54, + "probability": 0.9379 + }, + { + "start": 5166.26, + "end": 5168.34, + "probability": 0.9961 + }, + { + "start": 5169.34, + "end": 5170.14, + "probability": 0.3126 + }, + { + "start": 5170.22, + "end": 5173.42, + "probability": 0.7269 + }, + { + "start": 5174.04, + "end": 5180.18, + "probability": 0.9491 + }, + { + "start": 5180.84, + "end": 5184.72, + "probability": 0.8772 + }, + { + "start": 5184.86, + "end": 5187.86, + "probability": 0.9975 + }, + { + "start": 5188.0, + "end": 5191.18, + "probability": 0.9049 + }, + { + "start": 5192.04, + "end": 5196.7, + "probability": 0.9453 + }, + { + "start": 5196.7, + "end": 5200.54, + "probability": 0.9783 + }, + { + "start": 5201.44, + "end": 5203.74, + "probability": 0.9648 + }, + { + "start": 5204.42, + "end": 5207.72, + "probability": 0.9827 + }, + { + "start": 5208.52, + "end": 5211.3, + "probability": 0.9024 + }, + { + "start": 5211.88, + "end": 5213.96, + "probability": 0.8799 + }, + { + "start": 5214.84, + "end": 5216.3, + "probability": 0.7251 + }, + { + "start": 5216.34, + "end": 5219.34, + "probability": 0.8512 + }, + { + "start": 5219.42, + "end": 5220.02, + "probability": 0.6932 + }, + { + "start": 5220.64, + "end": 5222.62, + "probability": 0.9574 + }, + { + "start": 5223.3, + "end": 5224.64, + "probability": 0.8047 + }, + { + "start": 5225.66, + "end": 5229.26, + "probability": 0.8552 + }, + { + "start": 5229.9, + "end": 5234.24, + "probability": 0.8723 + }, + { + "start": 5234.8, + "end": 5239.26, + "probability": 0.8903 + }, + { + "start": 5239.8, + "end": 5243.72, + "probability": 0.9332 + }, + { + "start": 5243.82, + "end": 5244.5, + "probability": 0.9446 + }, + { + "start": 5245.16, + "end": 5247.16, + "probability": 0.9968 + }, + { + "start": 5247.76, + "end": 5249.46, + "probability": 0.5071 + }, + { + "start": 5250.26, + "end": 5250.84, + "probability": 0.7634 + }, + { + "start": 5251.76, + "end": 5254.02, + "probability": 0.7941 + }, + { + "start": 5254.86, + "end": 5256.44, + "probability": 0.8142 + }, + { + "start": 5256.96, + "end": 5261.92, + "probability": 0.9274 + }, + { + "start": 5262.06, + "end": 5262.78, + "probability": 0.7482 + }, + { + "start": 5263.46, + "end": 5267.66, + "probability": 0.9576 + }, + { + "start": 5268.48, + "end": 5272.86, + "probability": 0.8472 + }, + { + "start": 5273.76, + "end": 5280.28, + "probability": 0.9555 + }, + { + "start": 5280.3, + "end": 5283.0, + "probability": 0.9634 + }, + { + "start": 5283.84, + "end": 5284.68, + "probability": 0.9062 + }, + { + "start": 5285.38, + "end": 5286.18, + "probability": 0.9851 + }, + { + "start": 5286.82, + "end": 5289.26, + "probability": 0.8809 + }, + { + "start": 5289.88, + "end": 5295.32, + "probability": 0.8366 + }, + { + "start": 5295.52, + "end": 5296.24, + "probability": 0.6171 + }, + { + "start": 5297.3, + "end": 5299.74, + "probability": 0.8481 + }, + { + "start": 5300.18, + "end": 5304.09, + "probability": 0.9443 + }, + { + "start": 5305.36, + "end": 5310.0, + "probability": 0.9797 + }, + { + "start": 5310.72, + "end": 5315.96, + "probability": 0.9797 + }, + { + "start": 5316.04, + "end": 5318.16, + "probability": 0.9393 + }, + { + "start": 5318.76, + "end": 5322.6, + "probability": 0.9963 + }, + { + "start": 5322.6, + "end": 5326.76, + "probability": 0.8785 + }, + { + "start": 5327.42, + "end": 5328.6, + "probability": 0.5814 + }, + { + "start": 5328.72, + "end": 5333.88, + "probability": 0.6702 + }, + { + "start": 5334.84, + "end": 5337.24, + "probability": 0.9686 + }, + { + "start": 5337.78, + "end": 5342.34, + "probability": 0.9395 + }, + { + "start": 5342.92, + "end": 5346.32, + "probability": 0.927 + }, + { + "start": 5347.24, + "end": 5347.94, + "probability": 0.5213 + }, + { + "start": 5348.26, + "end": 5352.52, + "probability": 0.9775 + }, + { + "start": 5353.38, + "end": 5360.02, + "probability": 0.9985 + }, + { + "start": 5360.68, + "end": 5364.2, + "probability": 0.915 + }, + { + "start": 5365.02, + "end": 5369.18, + "probability": 0.8754 + }, + { + "start": 5369.72, + "end": 5372.62, + "probability": 0.8561 + }, + { + "start": 5373.68, + "end": 5376.02, + "probability": 0.7647 + }, + { + "start": 5377.87, + "end": 5382.16, + "probability": 0.857 + }, + { + "start": 5382.86, + "end": 5388.58, + "probability": 0.8975 + }, + { + "start": 5388.58, + "end": 5393.46, + "probability": 0.7304 + }, + { + "start": 5393.98, + "end": 5401.92, + "probability": 0.9371 + }, + { + "start": 5402.5, + "end": 5406.12, + "probability": 0.9468 + }, + { + "start": 5406.76, + "end": 5411.16, + "probability": 0.8204 + }, + { + "start": 5411.24, + "end": 5416.16, + "probability": 0.9797 + }, + { + "start": 5416.88, + "end": 5423.18, + "probability": 0.9695 + }, + { + "start": 5423.32, + "end": 5423.9, + "probability": 0.7567 + }, + { + "start": 5424.44, + "end": 5425.42, + "probability": 0.8407 + }, + { + "start": 5426.28, + "end": 5429.11, + "probability": 0.7375 + }, + { + "start": 5429.82, + "end": 5432.1, + "probability": 0.9903 + }, + { + "start": 5432.8, + "end": 5436.58, + "probability": 0.6915 + }, + { + "start": 5438.64, + "end": 5442.26, + "probability": 0.9036 + }, + { + "start": 5444.76, + "end": 5447.28, + "probability": 0.7127 + }, + { + "start": 5447.94, + "end": 5450.84, + "probability": 0.999 + }, + { + "start": 5450.84, + "end": 5454.4, + "probability": 0.8086 + }, + { + "start": 5455.06, + "end": 5456.3, + "probability": 0.9893 + }, + { + "start": 5457.18, + "end": 5461.38, + "probability": 0.9823 + }, + { + "start": 5461.98, + "end": 5462.76, + "probability": 0.9735 + }, + { + "start": 5462.88, + "end": 5463.92, + "probability": 0.6095 + }, + { + "start": 5464.34, + "end": 5467.14, + "probability": 0.9647 + }, + { + "start": 5468.38, + "end": 5472.72, + "probability": 0.9548 + }, + { + "start": 5474.04, + "end": 5478.34, + "probability": 0.9943 + }, + { + "start": 5478.94, + "end": 5482.6, + "probability": 0.8362 + }, + { + "start": 5483.46, + "end": 5485.06, + "probability": 0.9116 + }, + { + "start": 5486.12, + "end": 5488.42, + "probability": 0.9849 + }, + { + "start": 5489.26, + "end": 5491.26, + "probability": 0.8044 + }, + { + "start": 5493.12, + "end": 5495.22, + "probability": 0.2254 + }, + { + "start": 5495.6, + "end": 5501.54, + "probability": 0.9715 + }, + { + "start": 5501.82, + "end": 5502.5, + "probability": 0.632 + }, + { + "start": 5502.5, + "end": 5504.14, + "probability": 0.8177 + }, + { + "start": 5504.64, + "end": 5506.31, + "probability": 0.7489 + }, + { + "start": 5521.26, + "end": 5521.72, + "probability": 0.4965 + }, + { + "start": 5521.82, + "end": 5525.36, + "probability": 0.747 + }, + { + "start": 5526.22, + "end": 5527.72, + "probability": 0.5199 + }, + { + "start": 5527.88, + "end": 5530.38, + "probability": 0.9589 + }, + { + "start": 5530.44, + "end": 5531.42, + "probability": 0.8663 + }, + { + "start": 5531.58, + "end": 5536.96, + "probability": 0.9328 + }, + { + "start": 5537.52, + "end": 5538.8, + "probability": 0.9146 + }, + { + "start": 5539.82, + "end": 5540.8, + "probability": 0.4446 + }, + { + "start": 5541.2, + "end": 5545.78, + "probability": 0.8107 + }, + { + "start": 5545.84, + "end": 5549.64, + "probability": 0.9849 + }, + { + "start": 5549.72, + "end": 5552.86, + "probability": 0.9041 + }, + { + "start": 5553.7, + "end": 5554.56, + "probability": 0.6208 + }, + { + "start": 5554.72, + "end": 5558.12, + "probability": 0.8436 + }, + { + "start": 5558.12, + "end": 5562.46, + "probability": 0.9953 + }, + { + "start": 5562.72, + "end": 5565.4, + "probability": 0.9187 + }, + { + "start": 5566.0, + "end": 5569.22, + "probability": 0.9951 + }, + { + "start": 5569.36, + "end": 5572.12, + "probability": 0.9752 + }, + { + "start": 5572.58, + "end": 5576.04, + "probability": 0.9454 + }, + { + "start": 5576.56, + "end": 5577.4, + "probability": 0.6169 + }, + { + "start": 5577.52, + "end": 5577.96, + "probability": 0.5525 + }, + { + "start": 5578.06, + "end": 5584.04, + "probability": 0.8507 + }, + { + "start": 5584.16, + "end": 5585.28, + "probability": 0.8188 + }, + { + "start": 5585.64, + "end": 5589.82, + "probability": 0.9724 + }, + { + "start": 5590.46, + "end": 5595.68, + "probability": 0.9872 + }, + { + "start": 5596.34, + "end": 5597.18, + "probability": 0.5271 + }, + { + "start": 5597.36, + "end": 5598.04, + "probability": 0.9399 + }, + { + "start": 5598.16, + "end": 5603.14, + "probability": 0.6868 + }, + { + "start": 5603.58, + "end": 5605.62, + "probability": 0.9966 + }, + { + "start": 5606.2, + "end": 5609.2, + "probability": 0.9213 + }, + { + "start": 5609.76, + "end": 5611.42, + "probability": 0.5566 + }, + { + "start": 5611.44, + "end": 5614.54, + "probability": 0.9239 + }, + { + "start": 5614.66, + "end": 5615.08, + "probability": 0.5431 + }, + { + "start": 5615.1, + "end": 5615.7, + "probability": 0.9278 + }, + { + "start": 5616.02, + "end": 5621.5, + "probability": 0.99 + }, + { + "start": 5621.58, + "end": 5625.36, + "probability": 0.99 + }, + { + "start": 5625.46, + "end": 5627.1, + "probability": 0.9585 + }, + { + "start": 5627.5, + "end": 5632.0, + "probability": 0.8554 + }, + { + "start": 5632.76, + "end": 5633.66, + "probability": 0.6507 + }, + { + "start": 5633.82, + "end": 5635.3, + "probability": 0.8019 + }, + { + "start": 5635.54, + "end": 5638.64, + "probability": 0.9528 + }, + { + "start": 5638.92, + "end": 5640.26, + "probability": 0.7933 + }, + { + "start": 5641.0, + "end": 5641.76, + "probability": 0.9661 + }, + { + "start": 5641.96, + "end": 5643.56, + "probability": 0.998 + }, + { + "start": 5643.94, + "end": 5645.01, + "probability": 0.8527 + }, + { + "start": 5645.36, + "end": 5646.96, + "probability": 0.5067 + }, + { + "start": 5646.98, + "end": 5647.04, + "probability": 0.4525 + }, + { + "start": 5647.04, + "end": 5652.12, + "probability": 0.829 + }, + { + "start": 5652.12, + "end": 5658.66, + "probability": 0.9787 + }, + { + "start": 5658.8, + "end": 5659.08, + "probability": 0.7034 + }, + { + "start": 5659.16, + "end": 5662.84, + "probability": 0.9458 + }, + { + "start": 5662.98, + "end": 5666.18, + "probability": 0.9862 + }, + { + "start": 5666.36, + "end": 5667.28, + "probability": 0.7845 + }, + { + "start": 5667.32, + "end": 5668.12, + "probability": 0.5361 + }, + { + "start": 5668.22, + "end": 5671.96, + "probability": 0.918 + }, + { + "start": 5672.44, + "end": 5674.5, + "probability": 0.875 + }, + { + "start": 5674.64, + "end": 5678.44, + "probability": 0.9829 + }, + { + "start": 5678.54, + "end": 5679.29, + "probability": 0.9447 + }, + { + "start": 5679.72, + "end": 5681.26, + "probability": 0.9233 + }, + { + "start": 5681.32, + "end": 5683.46, + "probability": 0.9893 + }, + { + "start": 5684.3, + "end": 5687.22, + "probability": 0.9841 + }, + { + "start": 5687.76, + "end": 5689.94, + "probability": 0.9879 + }, + { + "start": 5690.3, + "end": 5692.68, + "probability": 0.9014 + }, + { + "start": 5693.16, + "end": 5695.62, + "probability": 0.9159 + }, + { + "start": 5695.68, + "end": 5698.4, + "probability": 0.9912 + }, + { + "start": 5698.6, + "end": 5702.22, + "probability": 0.8904 + }, + { + "start": 5702.32, + "end": 5703.22, + "probability": 0.8944 + }, + { + "start": 5703.34, + "end": 5708.98, + "probability": 0.9536 + }, + { + "start": 5709.38, + "end": 5711.5, + "probability": 0.9473 + }, + { + "start": 5712.08, + "end": 5716.5, + "probability": 0.9915 + }, + { + "start": 5716.7, + "end": 5720.69, + "probability": 0.9757 + }, + { + "start": 5721.28, + "end": 5723.12, + "probability": 0.9653 + }, + { + "start": 5723.32, + "end": 5728.7, + "probability": 0.9808 + }, + { + "start": 5728.94, + "end": 5734.4, + "probability": 0.9621 + }, + { + "start": 5737.52, + "end": 5741.4, + "probability": 0.7805 + }, + { + "start": 5741.44, + "end": 5742.46, + "probability": 0.8672 + }, + { + "start": 5742.62, + "end": 5743.14, + "probability": 0.9697 + }, + { + "start": 5743.68, + "end": 5746.63, + "probability": 0.9822 + }, + { + "start": 5747.34, + "end": 5749.18, + "probability": 0.9896 + }, + { + "start": 5752.18, + "end": 5753.64, + "probability": 0.5253 + }, + { + "start": 5753.78, + "end": 5757.72, + "probability": 0.9943 + }, + { + "start": 5757.8, + "end": 5758.66, + "probability": 0.7664 + }, + { + "start": 5759.2, + "end": 5762.09, + "probability": 0.9248 + }, + { + "start": 5762.22, + "end": 5763.0, + "probability": 0.7917 + }, + { + "start": 5763.5, + "end": 5767.98, + "probability": 0.996 + }, + { + "start": 5768.3, + "end": 5772.58, + "probability": 0.9361 + }, + { + "start": 5773.12, + "end": 5775.06, + "probability": 0.967 + }, + { + "start": 5776.07, + "end": 5779.44, + "probability": 0.9211 + }, + { + "start": 5779.72, + "end": 5782.68, + "probability": 0.5029 + }, + { + "start": 5783.12, + "end": 5784.78, + "probability": 0.8658 + }, + { + "start": 5785.58, + "end": 5789.0, + "probability": 0.9932 + }, + { + "start": 5789.52, + "end": 5792.42, + "probability": 0.9934 + }, + { + "start": 5792.6, + "end": 5794.56, + "probability": 0.9919 + }, + { + "start": 5795.1, + "end": 5799.12, + "probability": 0.9956 + }, + { + "start": 5799.48, + "end": 5804.04, + "probability": 0.9966 + }, + { + "start": 5804.46, + "end": 5805.18, + "probability": 0.6648 + }, + { + "start": 5805.54, + "end": 5807.16, + "probability": 0.9828 + }, + { + "start": 5807.4, + "end": 5808.56, + "probability": 0.8276 + }, + { + "start": 5809.16, + "end": 5814.68, + "probability": 0.9912 + }, + { + "start": 5814.72, + "end": 5816.72, + "probability": 0.8657 + }, + { + "start": 5817.42, + "end": 5820.14, + "probability": 0.8861 + }, + { + "start": 5820.6, + "end": 5824.66, + "probability": 0.9963 + }, + { + "start": 5824.66, + "end": 5828.76, + "probability": 0.9972 + }, + { + "start": 5829.5, + "end": 5830.84, + "probability": 0.8378 + }, + { + "start": 5831.14, + "end": 5834.26, + "probability": 0.9801 + }, + { + "start": 5834.26, + "end": 5837.08, + "probability": 0.988 + }, + { + "start": 5837.14, + "end": 5837.6, + "probability": 0.7849 + }, + { + "start": 5837.98, + "end": 5843.02, + "probability": 0.9501 + }, + { + "start": 5843.42, + "end": 5846.52, + "probability": 0.9944 + }, + { + "start": 5846.52, + "end": 5850.62, + "probability": 0.9968 + }, + { + "start": 5850.72, + "end": 5854.2, + "probability": 0.9242 + }, + { + "start": 5854.34, + "end": 5857.64, + "probability": 0.9943 + }, + { + "start": 5857.8, + "end": 5858.38, + "probability": 0.8945 + }, + { + "start": 5858.52, + "end": 5859.98, + "probability": 0.9086 + }, + { + "start": 5860.24, + "end": 5863.4, + "probability": 0.9634 + }, + { + "start": 5863.4, + "end": 5867.34, + "probability": 0.96 + }, + { + "start": 5867.74, + "end": 5868.37, + "probability": 0.8154 + }, + { + "start": 5869.46, + "end": 5870.29, + "probability": 0.9603 + }, + { + "start": 5870.92, + "end": 5871.96, + "probability": 0.8239 + }, + { + "start": 5872.36, + "end": 5876.42, + "probability": 0.9966 + }, + { + "start": 5876.68, + "end": 5878.38, + "probability": 0.564 + }, + { + "start": 5878.72, + "end": 5881.16, + "probability": 0.9601 + }, + { + "start": 5881.28, + "end": 5886.84, + "probability": 0.9696 + }, + { + "start": 5886.96, + "end": 5888.31, + "probability": 0.6486 + }, + { + "start": 5888.5, + "end": 5893.02, + "probability": 0.8887 + }, + { + "start": 5893.56, + "end": 5895.6, + "probability": 0.8575 + }, + { + "start": 5896.24, + "end": 5900.2, + "probability": 0.9793 + }, + { + "start": 5900.34, + "end": 5903.62, + "probability": 0.9905 + }, + { + "start": 5903.62, + "end": 5907.36, + "probability": 1.0 + }, + { + "start": 5907.5, + "end": 5910.72, + "probability": 0.99 + }, + { + "start": 5911.38, + "end": 5915.16, + "probability": 0.9979 + }, + { + "start": 5915.38, + "end": 5916.1, + "probability": 0.5855 + }, + { + "start": 5916.68, + "end": 5919.82, + "probability": 0.9966 + }, + { + "start": 5920.56, + "end": 5922.38, + "probability": 0.9951 + }, + { + "start": 5923.26, + "end": 5925.58, + "probability": 0.9965 + }, + { + "start": 5926.24, + "end": 5927.82, + "probability": 0.8738 + }, + { + "start": 5928.66, + "end": 5930.08, + "probability": 0.8308 + }, + { + "start": 5930.18, + "end": 5932.62, + "probability": 0.759 + }, + { + "start": 5933.42, + "end": 5940.4, + "probability": 0.9645 + }, + { + "start": 5940.58, + "end": 5941.94, + "probability": 0.999 + }, + { + "start": 5942.06, + "end": 5946.44, + "probability": 0.9844 + }, + { + "start": 5947.0, + "end": 5951.76, + "probability": 0.9851 + }, + { + "start": 5952.26, + "end": 5956.18, + "probability": 0.9651 + }, + { + "start": 5956.3, + "end": 5958.44, + "probability": 0.8252 + }, + { + "start": 5958.66, + "end": 5961.7, + "probability": 0.9026 + }, + { + "start": 5961.72, + "end": 5963.08, + "probability": 0.5788 + }, + { + "start": 5963.18, + "end": 5963.18, + "probability": 0.0223 + }, + { + "start": 5963.18, + "end": 5966.26, + "probability": 0.9808 + }, + { + "start": 5966.4, + "end": 5971.14, + "probability": 0.9912 + }, + { + "start": 5971.14, + "end": 5976.78, + "probability": 0.9971 + }, + { + "start": 5977.28, + "end": 5979.34, + "probability": 0.8794 + }, + { + "start": 5979.48, + "end": 5980.4, + "probability": 0.6255 + }, + { + "start": 5980.42, + "end": 5980.68, + "probability": 0.7907 + }, + { + "start": 5980.92, + "end": 5983.72, + "probability": 0.976 + }, + { + "start": 5984.4, + "end": 5986.4, + "probability": 0.0051 + }, + { + "start": 5986.78, + "end": 5991.08, + "probability": 0.8413 + }, + { + "start": 5992.14, + "end": 5993.16, + "probability": 0.6584 + }, + { + "start": 5993.32, + "end": 5993.86, + "probability": 0.6858 + }, + { + "start": 5994.48, + "end": 5994.64, + "probability": 0.8499 + }, + { + "start": 6002.76, + "end": 6005.42, + "probability": 0.2375 + }, + { + "start": 6005.46, + "end": 6006.28, + "probability": 0.7534 + }, + { + "start": 6006.42, + "end": 6007.68, + "probability": 0.7888 + }, + { + "start": 6007.96, + "end": 6011.38, + "probability": 0.9851 + }, + { + "start": 6011.38, + "end": 6016.13, + "probability": 0.9617 + }, + { + "start": 6016.46, + "end": 6023.0, + "probability": 0.9746 + }, + { + "start": 6023.1, + "end": 6026.37, + "probability": 0.755 + }, + { + "start": 6029.44, + "end": 6029.86, + "probability": 0.5725 + }, + { + "start": 6029.86, + "end": 6029.86, + "probability": 0.1944 + }, + { + "start": 6029.86, + "end": 6030.9, + "probability": 0.8649 + }, + { + "start": 6031.14, + "end": 6031.72, + "probability": 0.7008 + }, + { + "start": 6031.76, + "end": 6031.96, + "probability": 0.7184 + }, + { + "start": 6032.14, + "end": 6034.6, + "probability": 0.9556 + }, + { + "start": 6035.32, + "end": 6038.64, + "probability": 0.6474 + }, + { + "start": 6038.68, + "end": 6039.24, + "probability": 0.9274 + }, + { + "start": 6040.92, + "end": 6043.34, + "probability": 0.866 + }, + { + "start": 6043.74, + "end": 6044.72, + "probability": 0.8566 + }, + { + "start": 6046.02, + "end": 6048.17, + "probability": 0.9329 + }, + { + "start": 6048.76, + "end": 6053.26, + "probability": 0.7455 + }, + { + "start": 6054.48, + "end": 6061.42, + "probability": 0.9942 + }, + { + "start": 6061.42, + "end": 6066.22, + "probability": 0.9993 + }, + { + "start": 6066.22, + "end": 6067.2, + "probability": 0.612 + }, + { + "start": 6068.04, + "end": 6069.88, + "probability": 0.9846 + }, + { + "start": 6070.06, + "end": 6072.92, + "probability": 0.8785 + }, + { + "start": 6073.46, + "end": 6074.53, + "probability": 0.8135 + }, + { + "start": 6075.46, + "end": 6077.86, + "probability": 0.7165 + }, + { + "start": 6077.96, + "end": 6079.96, + "probability": 0.6704 + }, + { + "start": 6080.02, + "end": 6080.58, + "probability": 0.8418 + }, + { + "start": 6081.14, + "end": 6084.14, + "probability": 0.7043 + }, + { + "start": 6084.36, + "end": 6087.36, + "probability": 0.9626 + }, + { + "start": 6087.9, + "end": 6091.34, + "probability": 0.9932 + }, + { + "start": 6091.56, + "end": 6093.63, + "probability": 0.8096 + }, + { + "start": 6094.04, + "end": 6095.0, + "probability": 0.9729 + }, + { + "start": 6095.46, + "end": 6095.62, + "probability": 0.4578 + }, + { + "start": 6095.78, + "end": 6098.64, + "probability": 0.8676 + }, + { + "start": 6098.74, + "end": 6100.2, + "probability": 0.9942 + }, + { + "start": 6100.72, + "end": 6102.38, + "probability": 0.9646 + }, + { + "start": 6102.44, + "end": 6103.84, + "probability": 0.9183 + }, + { + "start": 6103.88, + "end": 6105.38, + "probability": 0.9742 + }, + { + "start": 6106.1, + "end": 6110.84, + "probability": 0.6872 + }, + { + "start": 6111.46, + "end": 6114.06, + "probability": 0.8976 + }, + { + "start": 6115.04, + "end": 6115.68, + "probability": 0.7521 + }, + { + "start": 6115.76, + "end": 6119.66, + "probability": 0.9912 + }, + { + "start": 6119.92, + "end": 6123.28, + "probability": 0.9476 + }, + { + "start": 6123.58, + "end": 6128.0, + "probability": 0.9536 + }, + { + "start": 6128.08, + "end": 6133.86, + "probability": 0.9735 + }, + { + "start": 6134.0, + "end": 6137.72, + "probability": 0.9803 + }, + { + "start": 6137.86, + "end": 6138.1, + "probability": 0.4038 + }, + { + "start": 6138.28, + "end": 6144.7, + "probability": 0.9956 + }, + { + "start": 6145.32, + "end": 6146.53, + "probability": 0.9886 + }, + { + "start": 6147.16, + "end": 6150.04, + "probability": 0.9265 + }, + { + "start": 6150.46, + "end": 6152.1, + "probability": 0.9807 + }, + { + "start": 6152.24, + "end": 6156.84, + "probability": 0.755 + }, + { + "start": 6157.4, + "end": 6163.22, + "probability": 0.9938 + }, + { + "start": 6164.06, + "end": 6168.06, + "probability": 0.8428 + }, + { + "start": 6168.16, + "end": 6169.24, + "probability": 0.8946 + }, + { + "start": 6169.92, + "end": 6175.62, + "probability": 0.9978 + }, + { + "start": 6175.62, + "end": 6181.86, + "probability": 0.9484 + }, + { + "start": 6182.0, + "end": 6184.32, + "probability": 0.9936 + }, + { + "start": 6185.06, + "end": 6186.56, + "probability": 0.9893 + }, + { + "start": 6186.58, + "end": 6188.98, + "probability": 0.9648 + }, + { + "start": 6189.62, + "end": 6194.08, + "probability": 0.9106 + }, + { + "start": 6194.44, + "end": 6195.4, + "probability": 0.8542 + }, + { + "start": 6196.08, + "end": 6205.38, + "probability": 0.4455 + }, + { + "start": 6205.84, + "end": 6209.66, + "probability": 0.9945 + }, + { + "start": 6210.12, + "end": 6210.26, + "probability": 0.0941 + }, + { + "start": 6210.26, + "end": 6212.02, + "probability": 0.9862 + }, + { + "start": 6212.64, + "end": 6212.7, + "probability": 0.161 + }, + { + "start": 6212.7, + "end": 6214.86, + "probability": 0.9621 + }, + { + "start": 6214.9, + "end": 6215.3, + "probability": 0.4116 + }, + { + "start": 6215.52, + "end": 6215.62, + "probability": 0.2324 + }, + { + "start": 6215.62, + "end": 6215.62, + "probability": 0.2681 + }, + { + "start": 6215.62, + "end": 6220.66, + "probability": 0.8405 + }, + { + "start": 6220.94, + "end": 6223.4, + "probability": 0.7898 + }, + { + "start": 6223.4, + "end": 6223.62, + "probability": 0.7428 + }, + { + "start": 6223.62, + "end": 6226.78, + "probability": 0.9115 + }, + { + "start": 6226.84, + "end": 6228.08, + "probability": 0.2409 + }, + { + "start": 6228.08, + "end": 6230.48, + "probability": 0.9104 + }, + { + "start": 6230.5, + "end": 6231.22, + "probability": 0.8333 + }, + { + "start": 6231.82, + "end": 6233.0, + "probability": 0.7842 + }, + { + "start": 6233.1, + "end": 6233.48, + "probability": 0.0322 + }, + { + "start": 6233.52, + "end": 6234.26, + "probability": 0.6617 + }, + { + "start": 6234.36, + "end": 6236.9, + "probability": 0.9935 + }, + { + "start": 6237.06, + "end": 6237.72, + "probability": 0.8769 + }, + { + "start": 6240.3, + "end": 6243.2, + "probability": 0.0086 + }, + { + "start": 6243.2, + "end": 6243.2, + "probability": 0.4184 + }, + { + "start": 6243.2, + "end": 6243.2, + "probability": 0.6887 + }, + { + "start": 6243.2, + "end": 6243.34, + "probability": 0.0746 + }, + { + "start": 6243.82, + "end": 6243.88, + "probability": 0.12 + }, + { + "start": 6243.88, + "end": 6246.06, + "probability": 0.8107 + }, + { + "start": 6247.1, + "end": 6247.1, + "probability": 0.231 + }, + { + "start": 6247.1, + "end": 6247.1, + "probability": 0.4882 + }, + { + "start": 6247.12, + "end": 6249.3, + "probability": 0.9683 + }, + { + "start": 6249.3, + "end": 6250.28, + "probability": 0.7764 + }, + { + "start": 6250.9, + "end": 6252.54, + "probability": 0.7765 + }, + { + "start": 6252.6, + "end": 6255.94, + "probability": 0.9663 + }, + { + "start": 6255.94, + "end": 6262.86, + "probability": 0.9779 + }, + { + "start": 6262.96, + "end": 6263.99, + "probability": 0.1317 + }, + { + "start": 6264.78, + "end": 6264.9, + "probability": 0.6696 + }, + { + "start": 6264.9, + "end": 6269.62, + "probability": 0.9508 + }, + { + "start": 6269.76, + "end": 6276.94, + "probability": 0.9886 + }, + { + "start": 6277.7, + "end": 6285.98, + "probability": 0.9926 + }, + { + "start": 6286.56, + "end": 6289.86, + "probability": 0.7103 + }, + { + "start": 6290.2, + "end": 6294.74, + "probability": 0.9953 + }, + { + "start": 6295.3, + "end": 6295.76, + "probability": 0.3885 + }, + { + "start": 6295.82, + "end": 6296.68, + "probability": 0.7333 + }, + { + "start": 6297.06, + "end": 6302.42, + "probability": 0.9985 + }, + { + "start": 6302.52, + "end": 6303.5, + "probability": 0.8279 + }, + { + "start": 6304.24, + "end": 6310.52, + "probability": 0.9952 + }, + { + "start": 6310.64, + "end": 6314.04, + "probability": 0.9977 + }, + { + "start": 6314.56, + "end": 6318.22, + "probability": 0.9819 + }, + { + "start": 6318.4, + "end": 6321.34, + "probability": 0.9148 + }, + { + "start": 6321.88, + "end": 6327.0, + "probability": 0.993 + }, + { + "start": 6327.0, + "end": 6331.48, + "probability": 0.9922 + }, + { + "start": 6331.68, + "end": 6336.64, + "probability": 0.9851 + }, + { + "start": 6336.64, + "end": 6340.94, + "probability": 0.9957 + }, + { + "start": 6341.14, + "end": 6345.42, + "probability": 0.5435 + }, + { + "start": 6345.7, + "end": 6348.54, + "probability": 0.998 + }, + { + "start": 6348.92, + "end": 6351.32, + "probability": 0.6713 + }, + { + "start": 6351.78, + "end": 6352.76, + "probability": 0.9386 + }, + { + "start": 6352.84, + "end": 6354.38, + "probability": 0.901 + }, + { + "start": 6354.96, + "end": 6358.6, + "probability": 0.9758 + }, + { + "start": 6358.6, + "end": 6362.2, + "probability": 0.9953 + }, + { + "start": 6362.24, + "end": 6362.76, + "probability": 0.4343 + }, + { + "start": 6363.66, + "end": 6364.04, + "probability": 0.7019 + }, + { + "start": 6364.14, + "end": 6367.2, + "probability": 0.9933 + }, + { + "start": 6367.82, + "end": 6372.4, + "probability": 0.9959 + }, + { + "start": 6372.44, + "end": 6376.34, + "probability": 0.9983 + }, + { + "start": 6376.88, + "end": 6380.86, + "probability": 0.9419 + }, + { + "start": 6381.44, + "end": 6387.72, + "probability": 0.9775 + }, + { + "start": 6387.76, + "end": 6391.54, + "probability": 0.9922 + }, + { + "start": 6392.8, + "end": 6397.86, + "probability": 0.9976 + }, + { + "start": 6398.08, + "end": 6398.9, + "probability": 0.8002 + }, + { + "start": 6399.56, + "end": 6403.56, + "probability": 0.9775 + }, + { + "start": 6404.1, + "end": 6407.28, + "probability": 0.995 + }, + { + "start": 6407.36, + "end": 6411.0, + "probability": 0.9966 + }, + { + "start": 6411.02, + "end": 6412.68, + "probability": 0.9297 + }, + { + "start": 6412.98, + "end": 6418.46, + "probability": 0.9604 + }, + { + "start": 6418.56, + "end": 6424.6, + "probability": 0.9906 + }, + { + "start": 6425.26, + "end": 6425.82, + "probability": 0.6891 + }, + { + "start": 6426.0, + "end": 6426.66, + "probability": 0.3667 + }, + { + "start": 6426.86, + "end": 6427.88, + "probability": 0.5711 + }, + { + "start": 6428.0, + "end": 6432.4, + "probability": 0.9646 + }, + { + "start": 6432.4, + "end": 6435.94, + "probability": 0.9312 + }, + { + "start": 6436.26, + "end": 6437.86, + "probability": 0.9275 + }, + { + "start": 6438.52, + "end": 6442.68, + "probability": 0.9901 + }, + { + "start": 6442.9, + "end": 6443.76, + "probability": 0.946 + }, + { + "start": 6444.22, + "end": 6450.66, + "probability": 0.989 + }, + { + "start": 6451.0, + "end": 6455.7, + "probability": 0.9938 + }, + { + "start": 6455.74, + "end": 6456.6, + "probability": 0.3939 + }, + { + "start": 6456.66, + "end": 6457.28, + "probability": 0.814 + }, + { + "start": 6457.58, + "end": 6458.3, + "probability": 0.7222 + }, + { + "start": 6459.0, + "end": 6462.1, + "probability": 0.769 + }, + { + "start": 6462.3, + "end": 6463.18, + "probability": 0.8177 + }, + { + "start": 6463.48, + "end": 6466.52, + "probability": 0.9902 + }, + { + "start": 6466.52, + "end": 6470.66, + "probability": 0.9941 + }, + { + "start": 6470.92, + "end": 6473.44, + "probability": 0.939 + }, + { + "start": 6473.54, + "end": 6479.54, + "probability": 0.9975 + }, + { + "start": 6480.0, + "end": 6482.18, + "probability": 0.9977 + }, + { + "start": 6482.22, + "end": 6486.98, + "probability": 0.9277 + }, + { + "start": 6487.12, + "end": 6493.22, + "probability": 0.9935 + }, + { + "start": 6493.46, + "end": 6493.64, + "probability": 0.6894 + }, + { + "start": 6494.38, + "end": 6494.88, + "probability": 0.6742 + }, + { + "start": 6495.0, + "end": 6498.14, + "probability": 0.8663 + }, + { + "start": 6498.48, + "end": 6501.0, + "probability": 0.881 + }, + { + "start": 6501.44, + "end": 6510.04, + "probability": 0.9788 + }, + { + "start": 6510.56, + "end": 6513.94, + "probability": 0.7517 + }, + { + "start": 6515.3, + "end": 6515.5, + "probability": 0.6986 + }, + { + "start": 6516.02, + "end": 6516.86, + "probability": 0.9404 + }, + { + "start": 6517.46, + "end": 6520.84, + "probability": 0.8479 + }, + { + "start": 6522.92, + "end": 6525.42, + "probability": 0.9924 + }, + { + "start": 6525.48, + "end": 6526.38, + "probability": 0.1464 + }, + { + "start": 6527.0, + "end": 6527.51, + "probability": 0.244 + }, + { + "start": 6527.78, + "end": 6529.82, + "probability": 0.3616 + }, + { + "start": 6529.98, + "end": 6531.82, + "probability": 0.9952 + }, + { + "start": 6534.25, + "end": 6536.18, + "probability": 0.9783 + }, + { + "start": 6536.68, + "end": 6537.72, + "probability": 0.7891 + }, + { + "start": 6538.24, + "end": 6541.94, + "probability": 0.6105 + }, + { + "start": 6542.02, + "end": 6547.5, + "probability": 0.9363 + }, + { + "start": 6547.55, + "end": 6552.14, + "probability": 0.9971 + }, + { + "start": 6552.9, + "end": 6556.62, + "probability": 0.7434 + }, + { + "start": 6558.4, + "end": 6560.64, + "probability": 0.7859 + }, + { + "start": 6560.66, + "end": 6561.64, + "probability": 0.7578 + }, + { + "start": 6562.46, + "end": 6563.82, + "probability": 0.8754 + }, + { + "start": 6564.86, + "end": 6567.74, + "probability": 0.5874 + }, + { + "start": 6568.38, + "end": 6569.56, + "probability": 0.5794 + }, + { + "start": 6570.62, + "end": 6572.3, + "probability": 0.5514 + }, + { + "start": 6572.9, + "end": 6575.18, + "probability": 0.7885 + }, + { + "start": 6577.4, + "end": 6580.32, + "probability": 0.7932 + }, + { + "start": 6581.06, + "end": 6590.0, + "probability": 0.9943 + }, + { + "start": 6590.0, + "end": 6595.5, + "probability": 0.9996 + }, + { + "start": 6597.22, + "end": 6602.34, + "probability": 0.9977 + }, + { + "start": 6602.68, + "end": 6604.52, + "probability": 0.9717 + }, + { + "start": 6604.84, + "end": 6605.69, + "probability": 0.5581 + }, + { + "start": 6606.3, + "end": 6609.44, + "probability": 0.7863 + }, + { + "start": 6610.22, + "end": 6614.18, + "probability": 0.973 + }, + { + "start": 6614.88, + "end": 6615.22, + "probability": 0.2572 + }, + { + "start": 6615.28, + "end": 6615.28, + "probability": 0.8012 + }, + { + "start": 6615.28, + "end": 6616.16, + "probability": 0.3947 + }, + { + "start": 6616.66, + "end": 6617.9, + "probability": 0.5163 + }, + { + "start": 6617.98, + "end": 6618.84, + "probability": 0.8808 + }, + { + "start": 6619.24, + "end": 6620.2, + "probability": 0.9634 + }, + { + "start": 6620.34, + "end": 6621.18, + "probability": 0.6804 + }, + { + "start": 6621.86, + "end": 6624.22, + "probability": 0.9868 + }, + { + "start": 6624.24, + "end": 6624.5, + "probability": 0.5624 + }, + { + "start": 6624.86, + "end": 6625.06, + "probability": 0.7737 + }, + { + "start": 6625.44, + "end": 6627.7, + "probability": 0.8066 + }, + { + "start": 6628.08, + "end": 6629.52, + "probability": 0.3619 + }, + { + "start": 6630.42, + "end": 6633.8, + "probability": 0.9102 + }, + { + "start": 6637.72, + "end": 6642.02, + "probability": 0.7648 + }, + { + "start": 6642.28, + "end": 6642.78, + "probability": 0.6869 + }, + { + "start": 6642.78, + "end": 6643.0, + "probability": 0.3452 + }, + { + "start": 6643.56, + "end": 6645.74, + "probability": 0.825 + }, + { + "start": 6646.3, + "end": 6648.58, + "probability": 0.9126 + }, + { + "start": 6648.66, + "end": 6649.76, + "probability": 0.9849 + }, + { + "start": 6650.14, + "end": 6651.52, + "probability": 0.9766 + }, + { + "start": 6652.26, + "end": 6653.58, + "probability": 0.2383 + }, + { + "start": 6654.26, + "end": 6654.62, + "probability": 0.4327 + }, + { + "start": 6655.26, + "end": 6656.8, + "probability": 0.5257 + }, + { + "start": 6656.8, + "end": 6657.18, + "probability": 0.6653 + }, + { + "start": 6657.18, + "end": 6657.34, + "probability": 0.4697 + }, + { + "start": 6658.38, + "end": 6661.76, + "probability": 0.951 + }, + { + "start": 6663.12, + "end": 6664.08, + "probability": 0.6171 + }, + { + "start": 6665.34, + "end": 6668.62, + "probability": 0.702 + }, + { + "start": 6671.02, + "end": 6674.28, + "probability": 0.9919 + }, + { + "start": 6677.9, + "end": 6682.24, + "probability": 0.9917 + }, + { + "start": 6683.0, + "end": 6687.26, + "probability": 0.984 + }, + { + "start": 6687.7, + "end": 6692.66, + "probability": 0.9742 + }, + { + "start": 6692.66, + "end": 6699.18, + "probability": 0.9242 + }, + { + "start": 6700.6, + "end": 6702.35, + "probability": 0.6863 + }, + { + "start": 6703.04, + "end": 6707.76, + "probability": 0.9731 + }, + { + "start": 6708.14, + "end": 6710.72, + "probability": 0.8085 + }, + { + "start": 6710.84, + "end": 6711.92, + "probability": 0.643 + }, + { + "start": 6712.6, + "end": 6717.16, + "probability": 0.886 + }, + { + "start": 6717.78, + "end": 6720.1, + "probability": 0.7534 + }, + { + "start": 6720.26, + "end": 6721.86, + "probability": 0.7685 + }, + { + "start": 6722.04, + "end": 6726.76, + "probability": 0.8749 + }, + { + "start": 6726.8, + "end": 6728.28, + "probability": 0.9749 + }, + { + "start": 6730.24, + "end": 6732.22, + "probability": 0.5783 + }, + { + "start": 6732.46, + "end": 6735.04, + "probability": 0.1213 + }, + { + "start": 6735.18, + "end": 6740.58, + "probability": 0.9774 + }, + { + "start": 6740.88, + "end": 6741.62, + "probability": 0.6036 + }, + { + "start": 6742.8, + "end": 6744.48, + "probability": 0.9512 + }, + { + "start": 6745.26, + "end": 6751.22, + "probability": 0.9788 + }, + { + "start": 6751.86, + "end": 6759.11, + "probability": 0.6481 + }, + { + "start": 6759.94, + "end": 6761.6, + "probability": 0.8637 + }, + { + "start": 6762.1, + "end": 6768.22, + "probability": 0.9574 + }, + { + "start": 6769.12, + "end": 6772.34, + "probability": 0.9367 + }, + { + "start": 6772.52, + "end": 6776.28, + "probability": 0.968 + }, + { + "start": 6777.86, + "end": 6779.36, + "probability": 0.886 + }, + { + "start": 6780.0, + "end": 6782.64, + "probability": 0.8521 + }, + { + "start": 6783.48, + "end": 6785.22, + "probability": 0.9011 + }, + { + "start": 6786.71, + "end": 6792.2, + "probability": 0.816 + }, + { + "start": 6792.98, + "end": 6796.54, + "probability": 0.9143 + }, + { + "start": 6797.36, + "end": 6805.0, + "probability": 0.7557 + }, + { + "start": 6805.42, + "end": 6810.84, + "probability": 0.9452 + }, + { + "start": 6811.4, + "end": 6813.84, + "probability": 0.6193 + }, + { + "start": 6814.94, + "end": 6819.42, + "probability": 0.6719 + }, + { + "start": 6819.64, + "end": 6822.9, + "probability": 0.9152 + }, + { + "start": 6823.0, + "end": 6830.72, + "probability": 0.9927 + }, + { + "start": 6830.92, + "end": 6831.74, + "probability": 0.78 + }, + { + "start": 6832.48, + "end": 6833.44, + "probability": 0.6455 + }, + { + "start": 6833.46, + "end": 6838.18, + "probability": 0.9211 + }, + { + "start": 6838.58, + "end": 6842.2, + "probability": 0.2313 + }, + { + "start": 6842.2, + "end": 6842.28, + "probability": 0.1141 + }, + { + "start": 6842.28, + "end": 6842.52, + "probability": 0.4182 + }, + { + "start": 6844.56, + "end": 6845.58, + "probability": 0.894 + }, + { + "start": 6846.66, + "end": 6849.66, + "probability": 0.8051 + }, + { + "start": 6849.66, + "end": 6849.66, + "probability": 0.0068 + }, + { + "start": 6853.36, + "end": 6855.32, + "probability": 0.6669 + }, + { + "start": 6855.42, + "end": 6856.9, + "probability": 0.3903 + }, + { + "start": 6858.16, + "end": 6861.73, + "probability": 0.9703 + }, + { + "start": 6861.82, + "end": 6866.02, + "probability": 0.9476 + }, + { + "start": 6866.62, + "end": 6867.12, + "probability": 0.3745 + }, + { + "start": 6867.54, + "end": 6868.38, + "probability": 0.9888 + }, + { + "start": 6868.88, + "end": 6869.62, + "probability": 0.9343 + }, + { + "start": 6870.32, + "end": 6873.16, + "probability": 0.9185 + }, + { + "start": 6873.76, + "end": 6877.06, + "probability": 0.9025 + }, + { + "start": 6877.74, + "end": 6878.48, + "probability": 0.6183 + }, + { + "start": 6879.04, + "end": 6879.94, + "probability": 0.9165 + }, + { + "start": 6880.56, + "end": 6881.14, + "probability": 0.9332 + }, + { + "start": 6882.4, + "end": 6884.32, + "probability": 0.991 + }, + { + "start": 6886.02, + "end": 6886.1, + "probability": 0.0906 + }, + { + "start": 6886.1, + "end": 6888.24, + "probability": 0.9538 + }, + { + "start": 6888.82, + "end": 6889.3, + "probability": 0.5093 + }, + { + "start": 6889.38, + "end": 6890.66, + "probability": 0.4199 + }, + { + "start": 6891.22, + "end": 6891.24, + "probability": 0.0828 + }, + { + "start": 6891.24, + "end": 6894.29, + "probability": 0.8506 + }, + { + "start": 6894.84, + "end": 6895.8, + "probability": 0.7609 + }, + { + "start": 6896.3, + "end": 6899.4, + "probability": 0.9506 + }, + { + "start": 6899.98, + "end": 6900.92, + "probability": 0.5785 + }, + { + "start": 6901.32, + "end": 6903.54, + "probability": 0.6574 + }, + { + "start": 6903.74, + "end": 6905.18, + "probability": 0.6611 + }, + { + "start": 6905.3, + "end": 6907.68, + "probability": 0.9871 + }, + { + "start": 6907.82, + "end": 6908.69, + "probability": 0.9561 + }, + { + "start": 6909.08, + "end": 6910.66, + "probability": 0.9165 + }, + { + "start": 6910.94, + "end": 6912.76, + "probability": 0.4923 + }, + { + "start": 6913.16, + "end": 6915.74, + "probability": 0.8459 + }, + { + "start": 6916.04, + "end": 6919.96, + "probability": 0.9538 + }, + { + "start": 6920.28, + "end": 6921.26, + "probability": 0.8813 + }, + { + "start": 6921.94, + "end": 6923.7, + "probability": 0.8491 + }, + { + "start": 6924.36, + "end": 6926.96, + "probability": 0.6538 + }, + { + "start": 6927.08, + "end": 6929.98, + "probability": 0.9316 + }, + { + "start": 6931.2, + "end": 6931.5, + "probability": 0.0004 + }, + { + "start": 6931.5, + "end": 6931.66, + "probability": 0.1899 + }, + { + "start": 6932.62, + "end": 6933.52, + "probability": 0.5813 + }, + { + "start": 6934.0, + "end": 6935.24, + "probability": 0.8966 + }, + { + "start": 6935.8, + "end": 6940.32, + "probability": 0.9505 + }, + { + "start": 6941.42, + "end": 6943.8, + "probability": 0.9072 + }, + { + "start": 6944.84, + "end": 6945.58, + "probability": 0.8979 + }, + { + "start": 6946.54, + "end": 6946.8, + "probability": 0.0005 + }, + { + "start": 6947.44, + "end": 6949.68, + "probability": 0.6726 + }, + { + "start": 6950.72, + "end": 6951.98, + "probability": 0.8594 + }, + { + "start": 6952.06, + "end": 6956.06, + "probability": 0.9551 + }, + { + "start": 6956.6, + "end": 6959.3, + "probability": 0.9758 + }, + { + "start": 6960.06, + "end": 6962.22, + "probability": 0.8933 + }, + { + "start": 6963.06, + "end": 6967.34, + "probability": 0.8556 + }, + { + "start": 6970.2, + "end": 6971.12, + "probability": 0.6172 + }, + { + "start": 6971.72, + "end": 6973.56, + "probability": 0.9831 + }, + { + "start": 6974.34, + "end": 6975.0, + "probability": 0.8588 + }, + { + "start": 6975.56, + "end": 6976.76, + "probability": 0.3037 + }, + { + "start": 6976.82, + "end": 6977.66, + "probability": 0.5328 + }, + { + "start": 6978.0, + "end": 6979.96, + "probability": 0.8008 + }, + { + "start": 6979.96, + "end": 6980.16, + "probability": 0.3853 + }, + { + "start": 6980.24, + "end": 6981.64, + "probability": 0.4998 + }, + { + "start": 6981.7, + "end": 6982.92, + "probability": 0.0384 + }, + { + "start": 6982.92, + "end": 6983.72, + "probability": 0.3334 + }, + { + "start": 6983.84, + "end": 6987.66, + "probability": 0.7729 + }, + { + "start": 6987.9, + "end": 6989.34, + "probability": 0.9064 + }, + { + "start": 6989.74, + "end": 6990.92, + "probability": 0.9336 + }, + { + "start": 6991.3, + "end": 6993.23, + "probability": 0.9736 + }, + { + "start": 6993.98, + "end": 6995.7, + "probability": 0.4333 + }, + { + "start": 6995.74, + "end": 6996.26, + "probability": 0.3098 + }, + { + "start": 6996.28, + "end": 6998.1, + "probability": 0.409 + }, + { + "start": 6998.12, + "end": 6999.1, + "probability": 0.7661 + }, + { + "start": 6999.12, + "end": 6999.92, + "probability": 0.7848 + }, + { + "start": 7000.76, + "end": 7001.38, + "probability": 0.7724 + }, + { + "start": 7001.94, + "end": 7007.14, + "probability": 0.9538 + }, + { + "start": 7007.26, + "end": 7009.28, + "probability": 0.9952 + }, + { + "start": 7009.96, + "end": 7012.38, + "probability": 0.9946 + }, + { + "start": 7013.6, + "end": 7016.12, + "probability": 0.9895 + }, + { + "start": 7016.78, + "end": 7022.64, + "probability": 0.9694 + }, + { + "start": 7023.8, + "end": 7026.3, + "probability": 0.9984 + }, + { + "start": 7027.46, + "end": 7031.0, + "probability": 0.9541 + }, + { + "start": 7031.92, + "end": 7033.52, + "probability": 0.9971 + }, + { + "start": 7034.12, + "end": 7040.8, + "probability": 0.969 + }, + { + "start": 7041.04, + "end": 7041.04, + "probability": 0.2478 + }, + { + "start": 7041.04, + "end": 7041.04, + "probability": 0.2657 + }, + { + "start": 7041.04, + "end": 7041.04, + "probability": 0.7765 + }, + { + "start": 7041.04, + "end": 7043.06, + "probability": 0.9902 + }, + { + "start": 7043.22, + "end": 7043.46, + "probability": 0.6527 + }, + { + "start": 7044.16, + "end": 7044.3, + "probability": 0.9662 + }, + { + "start": 7045.0, + "end": 7046.06, + "probability": 0.622 + }, + { + "start": 7046.26, + "end": 7049.0, + "probability": 0.9937 + }, + { + "start": 7049.1, + "end": 7049.2, + "probability": 0.4214 + }, + { + "start": 7049.52, + "end": 7050.48, + "probability": 0.7693 + }, + { + "start": 7051.1, + "end": 7052.6, + "probability": 0.7672 + }, + { + "start": 7052.82, + "end": 7053.32, + "probability": 0.8378 + }, + { + "start": 7053.5, + "end": 7056.36, + "probability": 0.9644 + }, + { + "start": 7056.36, + "end": 7058.86, + "probability": 0.8578 + }, + { + "start": 7059.34, + "end": 7059.72, + "probability": 0.7408 + }, + { + "start": 7060.18, + "end": 7061.74, + "probability": 0.4876 + }, + { + "start": 7062.16, + "end": 7067.72, + "probability": 0.9814 + }, + { + "start": 7067.82, + "end": 7068.88, + "probability": 0.737 + }, + { + "start": 7069.22, + "end": 7069.76, + "probability": 0.8166 + }, + { + "start": 7070.36, + "end": 7070.86, + "probability": 0.876 + }, + { + "start": 7071.5, + "end": 7071.8, + "probability": 0.9435 + }, + { + "start": 7072.32, + "end": 7078.42, + "probability": 0.9716 + }, + { + "start": 7078.84, + "end": 7080.02, + "probability": 0.3543 + }, + { + "start": 7080.42, + "end": 7081.34, + "probability": 0.5282 + }, + { + "start": 7081.8, + "end": 7081.8, + "probability": 0.1328 + }, + { + "start": 7081.8, + "end": 7082.26, + "probability": 0.1714 + }, + { + "start": 7082.26, + "end": 7083.1, + "probability": 0.8383 + }, + { + "start": 7083.7, + "end": 7084.44, + "probability": 0.9299 + }, + { + "start": 7084.98, + "end": 7085.38, + "probability": 0.6475 + }, + { + "start": 7085.5, + "end": 7089.8, + "probability": 0.9026 + }, + { + "start": 7090.08, + "end": 7091.58, + "probability": 0.7893 + }, + { + "start": 7091.66, + "end": 7092.48, + "probability": 0.7739 + }, + { + "start": 7093.22, + "end": 7095.12, + "probability": 0.9706 + }, + { + "start": 7095.8, + "end": 7097.12, + "probability": 0.0574 + }, + { + "start": 7097.12, + "end": 7097.98, + "probability": 0.6743 + }, + { + "start": 7098.12, + "end": 7098.42, + "probability": 0.4886 + }, + { + "start": 7098.84, + "end": 7099.84, + "probability": 0.6738 + }, + { + "start": 7099.86, + "end": 7100.6, + "probability": 0.4946 + }, + { + "start": 7100.76, + "end": 7102.56, + "probability": 0.937 + }, + { + "start": 7104.28, + "end": 7104.28, + "probability": 0.1735 + }, + { + "start": 7104.28, + "end": 7104.28, + "probability": 0.497 + }, + { + "start": 7104.32, + "end": 7105.0, + "probability": 0.761 + }, + { + "start": 7105.3, + "end": 7108.24, + "probability": 0.4617 + }, + { + "start": 7108.46, + "end": 7109.82, + "probability": 0.3069 + }, + { + "start": 7110.2, + "end": 7110.64, + "probability": 0.1689 + }, + { + "start": 7110.84, + "end": 7117.46, + "probability": 0.9653 + }, + { + "start": 7118.3, + "end": 7118.82, + "probability": 0.7785 + }, + { + "start": 7119.7, + "end": 7124.66, + "probability": 0.9951 + }, + { + "start": 7125.04, + "end": 7128.46, + "probability": 0.9978 + }, + { + "start": 7128.46, + "end": 7130.22, + "probability": 0.5295 + }, + { + "start": 7130.6, + "end": 7133.72, + "probability": 0.7928 + }, + { + "start": 7134.14, + "end": 7137.46, + "probability": 0.9922 + }, + { + "start": 7137.54, + "end": 7141.74, + "probability": 0.9852 + }, + { + "start": 7142.26, + "end": 7143.9, + "probability": 0.9842 + }, + { + "start": 7144.42, + "end": 7147.4, + "probability": 0.9956 + }, + { + "start": 7147.8, + "end": 7152.72, + "probability": 0.8724 + }, + { + "start": 7153.28, + "end": 7158.66, + "probability": 0.9966 + }, + { + "start": 7158.9, + "end": 7161.82, + "probability": 0.9971 + }, + { + "start": 7162.5, + "end": 7164.24, + "probability": 0.8221 + }, + { + "start": 7164.78, + "end": 7167.62, + "probability": 0.9844 + }, + { + "start": 7169.57, + "end": 7170.7, + "probability": 0.9995 + }, + { + "start": 7170.88, + "end": 7173.36, + "probability": 0.9603 + }, + { + "start": 7173.4, + "end": 7173.78, + "probability": 0.4936 + }, + { + "start": 7173.78, + "end": 7174.36, + "probability": 0.677 + }, + { + "start": 7174.96, + "end": 7178.3, + "probability": 0.9398 + }, + { + "start": 7179.32, + "end": 7180.26, + "probability": 0.7636 + }, + { + "start": 7180.3, + "end": 7183.38, + "probability": 0.828 + }, + { + "start": 7183.38, + "end": 7186.8, + "probability": 0.7329 + }, + { + "start": 7187.82, + "end": 7190.32, + "probability": 0.9338 + }, + { + "start": 7190.8, + "end": 7193.56, + "probability": 0.929 + }, + { + "start": 7194.14, + "end": 7198.5, + "probability": 0.9668 + }, + { + "start": 7198.98, + "end": 7200.62, + "probability": 0.9862 + }, + { + "start": 7201.18, + "end": 7205.08, + "probability": 0.9867 + }, + { + "start": 7205.84, + "end": 7211.08, + "probability": 0.9609 + }, + { + "start": 7211.6, + "end": 7213.56, + "probability": 0.9362 + }, + { + "start": 7213.58, + "end": 7216.18, + "probability": 0.99 + }, + { + "start": 7216.58, + "end": 7217.84, + "probability": 0.6391 + }, + { + "start": 7217.92, + "end": 7220.32, + "probability": 0.721 + }, + { + "start": 7220.8, + "end": 7224.58, + "probability": 0.9534 + }, + { + "start": 7224.96, + "end": 7226.86, + "probability": 0.9987 + }, + { + "start": 7227.32, + "end": 7228.51, + "probability": 0.5933 + }, + { + "start": 7229.06, + "end": 7232.27, + "probability": 0.9856 + }, + { + "start": 7233.12, + "end": 7237.86, + "probability": 0.9454 + }, + { + "start": 7237.86, + "end": 7241.56, + "probability": 0.9948 + }, + { + "start": 7242.06, + "end": 7249.32, + "probability": 0.985 + }, + { + "start": 7249.86, + "end": 7253.46, + "probability": 0.9182 + }, + { + "start": 7253.86, + "end": 7255.32, + "probability": 0.9756 + }, + { + "start": 7255.32, + "end": 7258.0, + "probability": 0.9993 + }, + { + "start": 7258.38, + "end": 7259.36, + "probability": 0.6743 + }, + { + "start": 7259.96, + "end": 7264.6, + "probability": 0.998 + }, + { + "start": 7264.6, + "end": 7269.4, + "probability": 0.965 + }, + { + "start": 7269.88, + "end": 7270.14, + "probability": 0.0437 + }, + { + "start": 7270.14, + "end": 7270.14, + "probability": 0.2295 + }, + { + "start": 7270.14, + "end": 7270.14, + "probability": 0.3642 + }, + { + "start": 7270.14, + "end": 7270.14, + "probability": 0.4461 + }, + { + "start": 7270.14, + "end": 7270.14, + "probability": 0.5778 + }, + { + "start": 7270.14, + "end": 7270.14, + "probability": 0.5007 + }, + { + "start": 7270.14, + "end": 7270.14, + "probability": 0.1698 + }, + { + "start": 7270.14, + "end": 7275.36, + "probability": 0.9236 + }, + { + "start": 7275.58, + "end": 7278.14, + "probability": 0.7499 + }, + { + "start": 7278.8, + "end": 7279.04, + "probability": 0.5721 + }, + { + "start": 7295.56, + "end": 7296.48, + "probability": 0.5371 + }, + { + "start": 7296.54, + "end": 7297.28, + "probability": 0.721 + }, + { + "start": 7312.48, + "end": 7314.38, + "probability": 0.6035 + }, + { + "start": 7319.82, + "end": 7322.62, + "probability": 0.8934 + }, + { + "start": 7326.95, + "end": 7329.82, + "probability": 0.6455 + }, + { + "start": 7333.72, + "end": 7333.84, + "probability": 0.1989 + }, + { + "start": 7334.58, + "end": 7341.54, + "probability": 0.9203 + }, + { + "start": 7341.72, + "end": 7342.78, + "probability": 0.862 + }, + { + "start": 7344.24, + "end": 7346.12, + "probability": 0.8658 + }, + { + "start": 7348.56, + "end": 7353.84, + "probability": 0.9568 + }, + { + "start": 7353.84, + "end": 7355.56, + "probability": 0.9805 + }, + { + "start": 7356.2, + "end": 7357.26, + "probability": 0.86 + }, + { + "start": 7358.46, + "end": 7360.72, + "probability": 0.9551 + }, + { + "start": 7360.8, + "end": 7361.32, + "probability": 0.8064 + }, + { + "start": 7361.58, + "end": 7362.88, + "probability": 0.9395 + }, + { + "start": 7363.88, + "end": 7365.56, + "probability": 0.8994 + }, + { + "start": 7366.86, + "end": 7369.42, + "probability": 0.9877 + }, + { + "start": 7370.92, + "end": 7373.14, + "probability": 0.989 + }, + { + "start": 7376.86, + "end": 7381.44, + "probability": 0.9958 + }, + { + "start": 7382.78, + "end": 7384.42, + "probability": 0.8608 + }, + { + "start": 7385.32, + "end": 7388.7, + "probability": 0.8506 + }, + { + "start": 7389.34, + "end": 7391.38, + "probability": 0.903 + }, + { + "start": 7392.78, + "end": 7398.66, + "probability": 0.9922 + }, + { + "start": 7399.44, + "end": 7400.28, + "probability": 0.8111 + }, + { + "start": 7401.52, + "end": 7405.92, + "probability": 0.9559 + }, + { + "start": 7406.96, + "end": 7409.6, + "probability": 0.9791 + }, + { + "start": 7410.08, + "end": 7417.46, + "probability": 0.9356 + }, + { + "start": 7417.58, + "end": 7421.02, + "probability": 0.9666 + }, + { + "start": 7421.42, + "end": 7424.84, + "probability": 0.9135 + }, + { + "start": 7427.48, + "end": 7429.26, + "probability": 0.9438 + }, + { + "start": 7430.34, + "end": 7434.96, + "probability": 0.9951 + }, + { + "start": 7436.66, + "end": 7441.22, + "probability": 0.9755 + }, + { + "start": 7442.32, + "end": 7445.48, + "probability": 0.9661 + }, + { + "start": 7445.48, + "end": 7447.76, + "probability": 0.9819 + }, + { + "start": 7449.6, + "end": 7454.53, + "probability": 0.9679 + }, + { + "start": 7455.31, + "end": 7457.66, + "probability": 0.9578 + }, + { + "start": 7457.66, + "end": 7461.5, + "probability": 0.9968 + }, + { + "start": 7461.56, + "end": 7461.92, + "probability": 0.798 + }, + { + "start": 7462.54, + "end": 7464.7, + "probability": 0.9401 + }, + { + "start": 7466.5, + "end": 7469.26, + "probability": 0.9993 + }, + { + "start": 7470.66, + "end": 7471.68, + "probability": 0.8677 + }, + { + "start": 7472.46, + "end": 7476.06, + "probability": 0.9937 + }, + { + "start": 7477.24, + "end": 7479.74, + "probability": 0.8858 + }, + { + "start": 7480.26, + "end": 7481.18, + "probability": 0.5041 + }, + { + "start": 7481.28, + "end": 7482.36, + "probability": 0.8211 + }, + { + "start": 7482.46, + "end": 7483.44, + "probability": 0.9386 + }, + { + "start": 7484.92, + "end": 7488.35, + "probability": 0.8791 + }, + { + "start": 7489.96, + "end": 7491.52, + "probability": 0.9704 + }, + { + "start": 7494.22, + "end": 7496.28, + "probability": 0.6979 + }, + { + "start": 7498.12, + "end": 7500.2, + "probability": 0.8175 + }, + { + "start": 7501.1, + "end": 7502.06, + "probability": 0.6821 + }, + { + "start": 7502.96, + "end": 7506.42, + "probability": 0.985 + }, + { + "start": 7507.86, + "end": 7508.66, + "probability": 0.8153 + }, + { + "start": 7508.88, + "end": 7509.6, + "probability": 0.9727 + }, + { + "start": 7510.28, + "end": 7511.55, + "probability": 0.0613 + }, + { + "start": 7511.94, + "end": 7512.26, + "probability": 0.3125 + }, + { + "start": 7512.3, + "end": 7514.14, + "probability": 0.5934 + }, + { + "start": 7514.18, + "end": 7514.7, + "probability": 0.6999 + }, + { + "start": 7515.26, + "end": 7515.82, + "probability": 0.8003 + }, + { + "start": 7516.96, + "end": 7520.3, + "probability": 0.9985 + }, + { + "start": 7521.58, + "end": 7524.72, + "probability": 0.9179 + }, + { + "start": 7525.56, + "end": 7527.82, + "probability": 0.8455 + }, + { + "start": 7527.98, + "end": 7529.06, + "probability": 0.5851 + }, + { + "start": 7529.38, + "end": 7533.14, + "probability": 0.9869 + }, + { + "start": 7534.98, + "end": 7535.64, + "probability": 0.8294 + }, + { + "start": 7535.64, + "end": 7537.85, + "probability": 0.9874 + }, + { + "start": 7538.46, + "end": 7539.62, + "probability": 0.9292 + }, + { + "start": 7541.58, + "end": 7542.08, + "probability": 0.944 + }, + { + "start": 7542.76, + "end": 7545.6, + "probability": 0.983 + }, + { + "start": 7546.14, + "end": 7547.28, + "probability": 0.8872 + }, + { + "start": 7547.94, + "end": 7554.8, + "probability": 0.9453 + }, + { + "start": 7555.9, + "end": 7559.78, + "probability": 0.9409 + }, + { + "start": 7560.46, + "end": 7562.46, + "probability": 0.9978 + }, + { + "start": 7563.4, + "end": 7564.02, + "probability": 0.9648 + }, + { + "start": 7564.68, + "end": 7565.54, + "probability": 0.8972 + }, + { + "start": 7567.39, + "end": 7569.3, + "probability": 0.9677 + }, + { + "start": 7570.16, + "end": 7570.68, + "probability": 0.9961 + }, + { + "start": 7571.2, + "end": 7571.48, + "probability": 0.9944 + }, + { + "start": 7572.8, + "end": 7573.48, + "probability": 0.8212 + }, + { + "start": 7574.34, + "end": 7575.14, + "probability": 0.9409 + }, + { + "start": 7576.48, + "end": 7577.36, + "probability": 0.9784 + }, + { + "start": 7578.74, + "end": 7579.76, + "probability": 0.9146 + }, + { + "start": 7582.24, + "end": 7582.72, + "probability": 0.0669 + }, + { + "start": 7582.72, + "end": 7585.54, + "probability": 0.8132 + }, + { + "start": 7586.22, + "end": 7589.6, + "probability": 0.2571 + }, + { + "start": 7589.6, + "end": 7589.6, + "probability": 0.4775 + }, + { + "start": 7589.6, + "end": 7589.6, + "probability": 0.5117 + }, + { + "start": 7589.6, + "end": 7590.52, + "probability": 0.562 + }, + { + "start": 7592.06, + "end": 7595.56, + "probability": 0.2444 + }, + { + "start": 7595.56, + "end": 7596.04, + "probability": 0.017 + }, + { + "start": 7596.8, + "end": 7597.0, + "probability": 0.2059 + }, + { + "start": 7597.0, + "end": 7597.0, + "probability": 0.374 + }, + { + "start": 7597.0, + "end": 7597.96, + "probability": 0.2275 + }, + { + "start": 7598.5, + "end": 7599.46, + "probability": 0.394 + }, + { + "start": 7599.78, + "end": 7600.48, + "probability": 0.2547 + }, + { + "start": 7600.6, + "end": 7601.84, + "probability": 0.311 + }, + { + "start": 7602.08, + "end": 7603.68, + "probability": 0.1524 + }, + { + "start": 7603.98, + "end": 7605.02, + "probability": 0.1313 + }, + { + "start": 7606.38, + "end": 7607.98, + "probability": 0.2159 + }, + { + "start": 7608.56, + "end": 7609.74, + "probability": 0.1209 + }, + { + "start": 7611.4, + "end": 7612.33, + "probability": 0.0806 + }, + { + "start": 7614.98, + "end": 7616.3, + "probability": 0.9721 + }, + { + "start": 7618.28, + "end": 7618.8, + "probability": 0.7245 + }, + { + "start": 7619.06, + "end": 7620.48, + "probability": 0.9835 + }, + { + "start": 7620.86, + "end": 7623.58, + "probability": 0.9468 + }, + { + "start": 7625.16, + "end": 7627.46, + "probability": 0.5354 + }, + { + "start": 7627.58, + "end": 7628.18, + "probability": 0.6694 + }, + { + "start": 7628.32, + "end": 7629.04, + "probability": 0.7411 + }, + { + "start": 7629.3, + "end": 7632.48, + "probability": 0.9534 + }, + { + "start": 7633.12, + "end": 7636.38, + "probability": 0.9731 + }, + { + "start": 7637.04, + "end": 7638.74, + "probability": 0.9771 + }, + { + "start": 7638.82, + "end": 7639.9, + "probability": 0.9785 + }, + { + "start": 7640.18, + "end": 7640.78, + "probability": 0.658 + }, + { + "start": 7641.7, + "end": 7643.26, + "probability": 0.9086 + }, + { + "start": 7643.4, + "end": 7646.26, + "probability": 0.9719 + }, + { + "start": 7647.1, + "end": 7649.38, + "probability": 0.8914 + }, + { + "start": 7650.26, + "end": 7655.14, + "probability": 0.986 + }, + { + "start": 7656.38, + "end": 7656.94, + "probability": 0.9963 + }, + { + "start": 7657.48, + "end": 7658.34, + "probability": 0.8268 + }, + { + "start": 7658.94, + "end": 7662.58, + "probability": 0.9559 + }, + { + "start": 7663.08, + "end": 7663.52, + "probability": 0.7059 + }, + { + "start": 7665.2, + "end": 7666.36, + "probability": 0.8084 + }, + { + "start": 7669.08, + "end": 7669.5, + "probability": 0.946 + }, + { + "start": 7669.56, + "end": 7670.9, + "probability": 0.7122 + }, + { + "start": 7671.26, + "end": 7674.89, + "probability": 0.8804 + }, + { + "start": 7676.04, + "end": 7680.22, + "probability": 0.8892 + }, + { + "start": 7684.51, + "end": 7687.44, + "probability": 0.9094 + }, + { + "start": 7688.52, + "end": 7690.64, + "probability": 0.7836 + }, + { + "start": 7691.56, + "end": 7691.98, + "probability": 0.7649 + }, + { + "start": 7692.04, + "end": 7692.62, + "probability": 0.7896 + }, + { + "start": 7692.72, + "end": 7695.48, + "probability": 0.9863 + }, + { + "start": 7696.62, + "end": 7698.48, + "probability": 0.9725 + }, + { + "start": 7698.84, + "end": 7702.86, + "probability": 0.9226 + }, + { + "start": 7703.58, + "end": 7707.17, + "probability": 0.9709 + }, + { + "start": 7708.44, + "end": 7712.62, + "probability": 0.9897 + }, + { + "start": 7713.12, + "end": 7713.98, + "probability": 0.8237 + }, + { + "start": 7715.04, + "end": 7718.6, + "probability": 0.2204 + }, + { + "start": 7719.06, + "end": 7719.08, + "probability": 0.1386 + }, + { + "start": 7719.08, + "end": 7719.08, + "probability": 0.0539 + }, + { + "start": 7719.08, + "end": 7721.66, + "probability": 0.7828 + }, + { + "start": 7722.48, + "end": 7724.92, + "probability": 0.8715 + }, + { + "start": 7725.56, + "end": 7727.44, + "probability": 0.8391 + }, + { + "start": 7728.1, + "end": 7730.46, + "probability": 0.991 + }, + { + "start": 7730.96, + "end": 7731.7, + "probability": 0.6928 + }, + { + "start": 7731.76, + "end": 7732.46, + "probability": 0.8344 + }, + { + "start": 7732.6, + "end": 7735.32, + "probability": 0.7767 + }, + { + "start": 7735.6, + "end": 7736.66, + "probability": 0.9187 + }, + { + "start": 7736.72, + "end": 7740.82, + "probability": 0.9087 + }, + { + "start": 7741.02, + "end": 7743.02, + "probability": 0.8228 + }, + { + "start": 7743.58, + "end": 7745.78, + "probability": 0.5914 + }, + { + "start": 7745.92, + "end": 7748.86, + "probability": 0.8889 + }, + { + "start": 7749.44, + "end": 7752.02, + "probability": 0.9352 + }, + { + "start": 7752.9, + "end": 7757.04, + "probability": 0.9585 + }, + { + "start": 7757.3, + "end": 7757.64, + "probability": 0.5443 + }, + { + "start": 7758.34, + "end": 7761.08, + "probability": 0.9546 + }, + { + "start": 7762.8, + "end": 7764.5, + "probability": 0.6292 + }, + { + "start": 7764.88, + "end": 7764.92, + "probability": 0.1985 + }, + { + "start": 7765.5, + "end": 7767.96, + "probability": 0.9832 + }, + { + "start": 7768.08, + "end": 7769.14, + "probability": 0.981 + }, + { + "start": 7769.96, + "end": 7770.81, + "probability": 0.9844 + }, + { + "start": 7771.54, + "end": 7776.02, + "probability": 0.9532 + }, + { + "start": 7776.6, + "end": 7777.4, + "probability": 0.4374 + }, + { + "start": 7778.16, + "end": 7781.12, + "probability": 0.8909 + }, + { + "start": 7781.28, + "end": 7782.1, + "probability": 0.8454 + }, + { + "start": 7782.54, + "end": 7783.56, + "probability": 0.2549 + }, + { + "start": 7783.72, + "end": 7784.28, + "probability": 0.8248 + }, + { + "start": 7784.86, + "end": 7788.58, + "probability": 0.9503 + }, + { + "start": 7789.16, + "end": 7791.84, + "probability": 0.9515 + }, + { + "start": 7791.98, + "end": 7793.94, + "probability": 0.9248 + }, + { + "start": 7794.68, + "end": 7795.88, + "probability": 0.9632 + }, + { + "start": 7796.24, + "end": 7796.86, + "probability": 0.88 + }, + { + "start": 7797.42, + "end": 7803.54, + "probability": 0.9666 + }, + { + "start": 7803.62, + "end": 7807.74, + "probability": 0.9751 + }, + { + "start": 7807.78, + "end": 7808.62, + "probability": 0.9082 + }, + { + "start": 7809.24, + "end": 7813.16, + "probability": 0.9512 + }, + { + "start": 7813.26, + "end": 7815.28, + "probability": 0.9056 + }, + { + "start": 7816.16, + "end": 7817.53, + "probability": 0.8801 + }, + { + "start": 7818.4, + "end": 7819.7, + "probability": 0.9927 + }, + { + "start": 7820.34, + "end": 7824.9, + "probability": 0.9825 + }, + { + "start": 7825.16, + "end": 7825.62, + "probability": 0.7127 + }, + { + "start": 7825.82, + "end": 7829.24, + "probability": 0.9595 + }, + { + "start": 7830.08, + "end": 7833.62, + "probability": 0.8037 + }, + { + "start": 7834.36, + "end": 7835.44, + "probability": 0.876 + }, + { + "start": 7836.0, + "end": 7839.94, + "probability": 0.9785 + }, + { + "start": 7840.68, + "end": 7841.96, + "probability": 0.606 + }, + { + "start": 7843.08, + "end": 7845.96, + "probability": 0.9781 + }, + { + "start": 7845.96, + "end": 7849.64, + "probability": 0.9629 + }, + { + "start": 7850.68, + "end": 7854.04, + "probability": 0.9609 + }, + { + "start": 7854.5, + "end": 7856.38, + "probability": 0.9534 + }, + { + "start": 7856.8, + "end": 7860.44, + "probability": 0.9949 + }, + { + "start": 7860.9, + "end": 7861.82, + "probability": 0.5288 + }, + { + "start": 7862.0, + "end": 7863.14, + "probability": 0.9568 + }, + { + "start": 7863.48, + "end": 7864.59, + "probability": 0.9919 + }, + { + "start": 7865.34, + "end": 7867.74, + "probability": 0.9443 + }, + { + "start": 7868.46, + "end": 7868.68, + "probability": 0.5035 + }, + { + "start": 7868.78, + "end": 7869.28, + "probability": 0.9692 + }, + { + "start": 7869.5, + "end": 7869.72, + "probability": 0.7631 + }, + { + "start": 7869.88, + "end": 7873.48, + "probability": 0.6457 + }, + { + "start": 7873.58, + "end": 7874.83, + "probability": 0.9927 + }, + { + "start": 7875.64, + "end": 7877.16, + "probability": 0.5078 + }, + { + "start": 7877.66, + "end": 7880.6, + "probability": 0.9798 + }, + { + "start": 7880.64, + "end": 7880.94, + "probability": 0.8904 + }, + { + "start": 7881.26, + "end": 7882.76, + "probability": 0.8642 + }, + { + "start": 7883.1, + "end": 7886.15, + "probability": 0.8308 + }, + { + "start": 7886.68, + "end": 7888.24, + "probability": 0.8768 + }, + { + "start": 7888.8, + "end": 7888.84, + "probability": 0.0254 + }, + { + "start": 7888.84, + "end": 7888.84, + "probability": 0.2632 + }, + { + "start": 7888.84, + "end": 7891.78, + "probability": 0.8338 + }, + { + "start": 7892.72, + "end": 7894.18, + "probability": 0.8171 + }, + { + "start": 7894.84, + "end": 7897.56, + "probability": 0.9285 + }, + { + "start": 7898.2, + "end": 7900.66, + "probability": 0.9878 + }, + { + "start": 7901.04, + "end": 7902.56, + "probability": 0.65 + }, + { + "start": 7902.98, + "end": 7904.88, + "probability": 0.5259 + }, + { + "start": 7905.46, + "end": 7905.68, + "probability": 0.6291 + }, + { + "start": 7905.7, + "end": 7909.54, + "probability": 0.9221 + }, + { + "start": 7909.54, + "end": 7913.14, + "probability": 0.9248 + }, + { + "start": 7913.24, + "end": 7916.28, + "probability": 0.9971 + }, + { + "start": 7916.34, + "end": 7916.78, + "probability": 0.6368 + }, + { + "start": 7918.56, + "end": 7920.82, + "probability": 0.5059 + }, + { + "start": 7920.82, + "end": 7920.82, + "probability": 0.1129 + }, + { + "start": 7920.82, + "end": 7921.32, + "probability": 0.3074 + }, + { + "start": 7928.82, + "end": 7933.88, + "probability": 0.8185 + }, + { + "start": 7938.04, + "end": 7941.04, + "probability": 0.7074 + }, + { + "start": 7943.18, + "end": 7945.28, + "probability": 0.8734 + }, + { + "start": 7946.88, + "end": 7948.9, + "probability": 0.9768 + }, + { + "start": 7950.9, + "end": 7951.36, + "probability": 0.8979 + }, + { + "start": 7953.3, + "end": 7955.28, + "probability": 0.9539 + }, + { + "start": 7957.18, + "end": 7958.96, + "probability": 0.8291 + }, + { + "start": 7960.08, + "end": 7962.8, + "probability": 0.9465 + }, + { + "start": 7964.76, + "end": 7967.54, + "probability": 0.9197 + }, + { + "start": 7968.8, + "end": 7971.52, + "probability": 0.9086 + }, + { + "start": 7974.44, + "end": 7983.02, + "probability": 0.9738 + }, + { + "start": 7984.38, + "end": 7987.34, + "probability": 0.9014 + }, + { + "start": 7987.54, + "end": 7988.66, + "probability": 0.8196 + }, + { + "start": 7990.56, + "end": 7991.34, + "probability": 0.7596 + }, + { + "start": 7991.44, + "end": 7996.52, + "probability": 0.9971 + }, + { + "start": 7997.68, + "end": 8002.0, + "probability": 0.8765 + }, + { + "start": 8004.7, + "end": 8006.14, + "probability": 0.9458 + }, + { + "start": 8006.22, + "end": 8007.12, + "probability": 0.871 + }, + { + "start": 8007.24, + "end": 8007.82, + "probability": 0.8481 + }, + { + "start": 8008.0, + "end": 8008.62, + "probability": 0.7889 + }, + { + "start": 8009.22, + "end": 8010.62, + "probability": 0.9282 + }, + { + "start": 8013.42, + "end": 8018.62, + "probability": 0.999 + }, + { + "start": 8018.62, + "end": 8024.38, + "probability": 0.9979 + }, + { + "start": 8025.82, + "end": 8026.34, + "probability": 0.6792 + }, + { + "start": 8027.0, + "end": 8030.4, + "probability": 0.9786 + }, + { + "start": 8031.08, + "end": 8038.08, + "probability": 0.998 + }, + { + "start": 8038.08, + "end": 8044.02, + "probability": 0.9704 + }, + { + "start": 8045.32, + "end": 8048.34, + "probability": 0.9456 + }, + { + "start": 8049.96, + "end": 8053.74, + "probability": 0.9451 + }, + { + "start": 8055.02, + "end": 8058.93, + "probability": 0.9631 + }, + { + "start": 8059.86, + "end": 8063.08, + "probability": 0.9705 + }, + { + "start": 8064.68, + "end": 8070.52, + "probability": 0.9744 + }, + { + "start": 8070.7, + "end": 8073.2, + "probability": 0.9385 + }, + { + "start": 8074.7, + "end": 8082.34, + "probability": 0.993 + }, + { + "start": 8083.62, + "end": 8085.62, + "probability": 0.9634 + }, + { + "start": 8086.84, + "end": 8091.84, + "probability": 0.8934 + }, + { + "start": 8093.32, + "end": 8097.02, + "probability": 0.91 + }, + { + "start": 8098.02, + "end": 8101.26, + "probability": 0.6672 + }, + { + "start": 8103.46, + "end": 8106.06, + "probability": 0.9983 + }, + { + "start": 8107.62, + "end": 8112.4, + "probability": 0.9899 + }, + { + "start": 8113.74, + "end": 8120.16, + "probability": 0.9961 + }, + { + "start": 8121.52, + "end": 8125.14, + "probability": 0.912 + }, + { + "start": 8125.52, + "end": 8126.88, + "probability": 0.6462 + }, + { + "start": 8128.32, + "end": 8130.54, + "probability": 0.9663 + }, + { + "start": 8131.2, + "end": 8136.88, + "probability": 0.9119 + }, + { + "start": 8138.62, + "end": 8140.44, + "probability": 0.9684 + }, + { + "start": 8141.86, + "end": 8143.7, + "probability": 0.9037 + }, + { + "start": 8144.54, + "end": 8145.56, + "probability": 0.8212 + }, + { + "start": 8146.64, + "end": 8147.94, + "probability": 0.7032 + }, + { + "start": 8149.1, + "end": 8152.7, + "probability": 0.8832 + }, + { + "start": 8152.8, + "end": 8154.1, + "probability": 0.8711 + }, + { + "start": 8154.78, + "end": 8157.54, + "probability": 0.9897 + }, + { + "start": 8158.0, + "end": 8160.76, + "probability": 0.9292 + }, + { + "start": 8161.1, + "end": 8163.1, + "probability": 0.97 + }, + { + "start": 8163.6, + "end": 8164.62, + "probability": 0.5952 + }, + { + "start": 8165.06, + "end": 8166.3, + "probability": 0.8718 + }, + { + "start": 8166.34, + "end": 8169.82, + "probability": 0.9751 + }, + { + "start": 8170.96, + "end": 8171.38, + "probability": 0.7437 + }, + { + "start": 8171.58, + "end": 8173.42, + "probability": 0.6868 + }, + { + "start": 8173.58, + "end": 8177.76, + "probability": 0.9634 + }, + { + "start": 8178.34, + "end": 8179.62, + "probability": 0.9548 + }, + { + "start": 8179.76, + "end": 8186.26, + "probability": 0.9956 + }, + { + "start": 8186.6, + "end": 8186.8, + "probability": 0.6539 + }, + { + "start": 8187.22, + "end": 8187.7, + "probability": 0.5167 + }, + { + "start": 8187.72, + "end": 8189.4, + "probability": 0.4862 + }, + { + "start": 8189.92, + "end": 8190.46, + "probability": 0.5386 + }, + { + "start": 8190.48, + "end": 8192.12, + "probability": 0.7487 + }, + { + "start": 8204.96, + "end": 8206.22, + "probability": 0.8045 + }, + { + "start": 8210.14, + "end": 8210.88, + "probability": 0.7329 + }, + { + "start": 8210.96, + "end": 8210.96, + "probability": 0.435 + }, + { + "start": 8211.0, + "end": 8212.02, + "probability": 0.7395 + }, + { + "start": 8212.32, + "end": 8218.68, + "probability": 0.9939 + }, + { + "start": 8219.08, + "end": 8222.98, + "probability": 0.9949 + }, + { + "start": 8223.92, + "end": 8226.44, + "probability": 0.8011 + }, + { + "start": 8226.56, + "end": 8230.58, + "probability": 0.9796 + }, + { + "start": 8230.64, + "end": 8234.58, + "probability": 0.931 + }, + { + "start": 8235.82, + "end": 8239.82, + "probability": 0.998 + }, + { + "start": 8239.86, + "end": 8242.4, + "probability": 0.9618 + }, + { + "start": 8243.1, + "end": 8247.66, + "probability": 0.9736 + }, + { + "start": 8248.36, + "end": 8254.56, + "probability": 0.9963 + }, + { + "start": 8254.9, + "end": 8259.54, + "probability": 0.9982 + }, + { + "start": 8260.44, + "end": 8263.96, + "probability": 0.8776 + }, + { + "start": 8264.22, + "end": 8268.16, + "probability": 0.9972 + }, + { + "start": 8268.16, + "end": 8274.0, + "probability": 0.9839 + }, + { + "start": 8274.56, + "end": 8276.58, + "probability": 0.9119 + }, + { + "start": 8276.7, + "end": 8277.92, + "probability": 0.9294 + }, + { + "start": 8278.36, + "end": 8283.18, + "probability": 0.9972 + }, + { + "start": 8283.18, + "end": 8287.22, + "probability": 0.9941 + }, + { + "start": 8288.04, + "end": 8292.46, + "probability": 0.9991 + }, + { + "start": 8292.54, + "end": 8294.2, + "probability": 0.9847 + }, + { + "start": 8294.28, + "end": 8296.08, + "probability": 0.8959 + }, + { + "start": 8296.74, + "end": 8300.62, + "probability": 0.9959 + }, + { + "start": 8301.24, + "end": 8302.7, + "probability": 0.9053 + }, + { + "start": 8302.96, + "end": 8303.8, + "probability": 0.6245 + }, + { + "start": 8303.9, + "end": 8304.2, + "probability": 0.6514 + }, + { + "start": 8304.3, + "end": 8306.04, + "probability": 0.9934 + }, + { + "start": 8306.12, + "end": 8309.78, + "probability": 0.8734 + }, + { + "start": 8309.88, + "end": 8311.12, + "probability": 0.7372 + }, + { + "start": 8311.2, + "end": 8312.52, + "probability": 0.8943 + }, + { + "start": 8312.84, + "end": 8317.74, + "probability": 0.9954 + }, + { + "start": 8317.74, + "end": 8320.98, + "probability": 0.9919 + }, + { + "start": 8321.8, + "end": 8323.38, + "probability": 0.6485 + }, + { + "start": 8323.52, + "end": 8327.24, + "probability": 0.955 + }, + { + "start": 8327.7, + "end": 8329.54, + "probability": 0.9951 + }, + { + "start": 8330.02, + "end": 8331.5, + "probability": 0.998 + }, + { + "start": 8332.2, + "end": 8333.72, + "probability": 0.9754 + }, + { + "start": 8334.06, + "end": 8334.92, + "probability": 0.9626 + }, + { + "start": 8335.5, + "end": 8338.34, + "probability": 0.9726 + }, + { + "start": 8339.02, + "end": 8340.22, + "probability": 0.9015 + }, + { + "start": 8340.88, + "end": 8344.46, + "probability": 0.968 + }, + { + "start": 8344.58, + "end": 8344.86, + "probability": 0.8914 + }, + { + "start": 8345.58, + "end": 8346.34, + "probability": 0.4352 + }, + { + "start": 8346.54, + "end": 8347.72, + "probability": 0.9377 + }, + { + "start": 8348.72, + "end": 8350.48, + "probability": 0.9811 + }, + { + "start": 8350.58, + "end": 8352.08, + "probability": 0.9629 + }, + { + "start": 8352.2, + "end": 8355.38, + "probability": 0.989 + }, + { + "start": 8356.36, + "end": 8359.46, + "probability": 0.9919 + }, + { + "start": 8359.64, + "end": 8361.16, + "probability": 0.8665 + }, + { + "start": 8361.74, + "end": 8366.62, + "probability": 0.9692 + }, + { + "start": 8367.58, + "end": 8372.14, + "probability": 0.9953 + }, + { + "start": 8372.82, + "end": 8377.64, + "probability": 0.9961 + }, + { + "start": 8378.36, + "end": 8385.42, + "probability": 0.9895 + }, + { + "start": 8385.94, + "end": 8388.64, + "probability": 0.999 + }, + { + "start": 8388.64, + "end": 8393.2, + "probability": 0.9975 + }, + { + "start": 8393.28, + "end": 8394.08, + "probability": 0.8973 + }, + { + "start": 8394.64, + "end": 8397.04, + "probability": 0.9307 + }, + { + "start": 8397.14, + "end": 8400.54, + "probability": 0.9951 + }, + { + "start": 8400.54, + "end": 8403.4, + "probability": 0.9863 + }, + { + "start": 8404.08, + "end": 8406.38, + "probability": 0.9801 + }, + { + "start": 8406.6, + "end": 8410.72, + "probability": 0.8258 + }, + { + "start": 8411.18, + "end": 8413.48, + "probability": 0.9959 + }, + { + "start": 8413.82, + "end": 8417.84, + "probability": 0.9941 + }, + { + "start": 8418.12, + "end": 8420.02, + "probability": 0.9756 + }, + { + "start": 8420.52, + "end": 8421.64, + "probability": 0.818 + }, + { + "start": 8422.28, + "end": 8423.68, + "probability": 0.9162 + }, + { + "start": 8423.84, + "end": 8425.34, + "probability": 0.969 + }, + { + "start": 8425.42, + "end": 8426.28, + "probability": 0.78 + }, + { + "start": 8426.6, + "end": 8427.36, + "probability": 0.456 + }, + { + "start": 8427.42, + "end": 8427.66, + "probability": 0.5226 + }, + { + "start": 8427.78, + "end": 8428.16, + "probability": 0.7654 + }, + { + "start": 8428.34, + "end": 8429.0, + "probability": 0.9155 + }, + { + "start": 8429.06, + "end": 8430.08, + "probability": 0.9351 + }, + { + "start": 8430.88, + "end": 8431.6, + "probability": 0.588 + }, + { + "start": 8431.7, + "end": 8432.7, + "probability": 0.9458 + }, + { + "start": 8432.74, + "end": 8434.1, + "probability": 0.7282 + }, + { + "start": 8434.2, + "end": 8434.42, + "probability": 0.9111 + }, + { + "start": 8434.48, + "end": 8435.16, + "probability": 0.8094 + }, + { + "start": 8435.74, + "end": 8439.16, + "probability": 0.9934 + }, + { + "start": 8439.26, + "end": 8440.12, + "probability": 0.7541 + }, + { + "start": 8440.76, + "end": 8442.78, + "probability": 0.9869 + }, + { + "start": 8443.22, + "end": 8445.82, + "probability": 0.9762 + }, + { + "start": 8446.56, + "end": 8450.98, + "probability": 0.9918 + }, + { + "start": 8451.16, + "end": 8452.68, + "probability": 0.9488 + }, + { + "start": 8452.76, + "end": 8454.98, + "probability": 0.9974 + }, + { + "start": 8455.92, + "end": 8457.78, + "probability": 0.8362 + }, + { + "start": 8458.14, + "end": 8462.54, + "probability": 0.9974 + }, + { + "start": 8462.54, + "end": 8466.97, + "probability": 0.939 + }, + { + "start": 8467.54, + "end": 8469.96, + "probability": 0.9989 + }, + { + "start": 8470.64, + "end": 8473.6, + "probability": 0.998 + }, + { + "start": 8473.86, + "end": 8479.26, + "probability": 0.9934 + }, + { + "start": 8479.48, + "end": 8480.22, + "probability": 0.404 + }, + { + "start": 8480.22, + "end": 8481.8, + "probability": 0.854 + }, + { + "start": 8481.8, + "end": 8482.22, + "probability": 0.5015 + }, + { + "start": 8482.26, + "end": 8483.24, + "probability": 0.9193 + }, + { + "start": 8487.56, + "end": 8488.08, + "probability": 0.809 + }, + { + "start": 8491.18, + "end": 8492.7, + "probability": 0.8249 + }, + { + "start": 8494.1, + "end": 8498.32, + "probability": 0.7466 + }, + { + "start": 8498.46, + "end": 8501.54, + "probability": 0.9689 + }, + { + "start": 8501.98, + "end": 8506.01, + "probability": 0.9912 + }, + { + "start": 8507.98, + "end": 8510.86, + "probability": 0.7146 + }, + { + "start": 8512.32, + "end": 8515.28, + "probability": 0.9947 + }, + { + "start": 8517.56, + "end": 8520.84, + "probability": 0.8186 + }, + { + "start": 8521.08, + "end": 8523.64, + "probability": 0.988 + }, + { + "start": 8524.42, + "end": 8525.42, + "probability": 0.9924 + }, + { + "start": 8525.62, + "end": 8527.04, + "probability": 0.7767 + }, + { + "start": 8527.06, + "end": 8531.24, + "probability": 0.9938 + }, + { + "start": 8532.46, + "end": 8533.94, + "probability": 0.8719 + }, + { + "start": 8535.5, + "end": 8538.88, + "probability": 0.7537 + }, + { + "start": 8539.62, + "end": 8540.56, + "probability": 0.9893 + }, + { + "start": 8541.08, + "end": 8543.78, + "probability": 0.9612 + }, + { + "start": 8545.16, + "end": 8547.04, + "probability": 0.8295 + }, + { + "start": 8549.92, + "end": 8553.24, + "probability": 0.9744 + }, + { + "start": 8553.24, + "end": 8557.36, + "probability": 0.9893 + }, + { + "start": 8557.5, + "end": 8558.02, + "probability": 0.8992 + }, + { + "start": 8559.1, + "end": 8560.2, + "probability": 0.1039 + }, + { + "start": 8561.0, + "end": 8562.18, + "probability": 0.1252 + }, + { + "start": 8562.84, + "end": 8564.8, + "probability": 0.5147 + }, + { + "start": 8565.02, + "end": 8569.74, + "probability": 0.9939 + }, + { + "start": 8569.8, + "end": 8571.7, + "probability": 0.4541 + }, + { + "start": 8572.08, + "end": 8572.68, + "probability": 0.6316 + }, + { + "start": 8574.02, + "end": 8576.12, + "probability": 0.7253 + }, + { + "start": 8576.52, + "end": 8577.56, + "probability": 0.8225 + }, + { + "start": 8578.08, + "end": 8579.18, + "probability": 0.9797 + }, + { + "start": 8580.88, + "end": 8582.14, + "probability": 0.8755 + }, + { + "start": 8582.42, + "end": 8585.3, + "probability": 0.9678 + }, + { + "start": 8586.04, + "end": 8587.74, + "probability": 0.9916 + }, + { + "start": 8588.32, + "end": 8590.92, + "probability": 0.9817 + }, + { + "start": 8591.82, + "end": 8595.88, + "probability": 0.6222 + }, + { + "start": 8597.46, + "end": 8601.36, + "probability": 0.9886 + }, + { + "start": 8602.62, + "end": 8603.42, + "probability": 0.8832 + }, + { + "start": 8603.72, + "end": 8605.11, + "probability": 0.9772 + }, + { + "start": 8605.76, + "end": 8609.32, + "probability": 0.9832 + }, + { + "start": 8609.72, + "end": 8610.42, + "probability": 0.7893 + }, + { + "start": 8611.38, + "end": 8614.16, + "probability": 0.9159 + }, + { + "start": 8614.54, + "end": 8615.9, + "probability": 0.5826 + }, + { + "start": 8616.8, + "end": 8620.54, + "probability": 0.9961 + }, + { + "start": 8621.12, + "end": 8624.3, + "probability": 0.993 + }, + { + "start": 8625.22, + "end": 8625.67, + "probability": 0.8396 + }, + { + "start": 8626.66, + "end": 8629.4, + "probability": 0.8633 + }, + { + "start": 8630.54, + "end": 8633.2, + "probability": 0.9363 + }, + { + "start": 8633.58, + "end": 8633.6, + "probability": 0.0787 + }, + { + "start": 8633.6, + "end": 8634.62, + "probability": 0.756 + }, + { + "start": 8634.92, + "end": 8636.02, + "probability": 0.8677 + }, + { + "start": 8636.66, + "end": 8641.96, + "probability": 0.9907 + }, + { + "start": 8642.86, + "end": 8645.6, + "probability": 0.9398 + }, + { + "start": 8648.0, + "end": 8649.54, + "probability": 0.9346 + }, + { + "start": 8650.26, + "end": 8653.82, + "probability": 0.9052 + }, + { + "start": 8654.78, + "end": 8656.98, + "probability": 0.9653 + }, + { + "start": 8657.62, + "end": 8659.2, + "probability": 0.998 + }, + { + "start": 8659.36, + "end": 8659.88, + "probability": 0.7177 + }, + { + "start": 8660.24, + "end": 8664.06, + "probability": 0.9812 + }, + { + "start": 8665.14, + "end": 8666.34, + "probability": 0.8346 + }, + { + "start": 8667.18, + "end": 8668.34, + "probability": 0.9062 + }, + { + "start": 8669.38, + "end": 8671.7, + "probability": 0.9836 + }, + { + "start": 8671.72, + "end": 8672.16, + "probability": 0.6103 + }, + { + "start": 8672.24, + "end": 8672.82, + "probability": 0.886 + }, + { + "start": 8673.26, + "end": 8673.8, + "probability": 0.7063 + }, + { + "start": 8674.14, + "end": 8678.02, + "probability": 0.6724 + }, + { + "start": 8678.24, + "end": 8679.02, + "probability": 0.7177 + }, + { + "start": 8685.44, + "end": 8686.41, + "probability": 0.7094 + }, + { + "start": 8687.54, + "end": 8691.12, + "probability": 0.8944 + }, + { + "start": 8691.2, + "end": 8692.12, + "probability": 0.9584 + }, + { + "start": 8693.06, + "end": 8697.76, + "probability": 0.9587 + }, + { + "start": 8698.52, + "end": 8698.98, + "probability": 0.7926 + }, + { + "start": 8700.44, + "end": 8703.24, + "probability": 0.873 + }, + { + "start": 8704.34, + "end": 8707.4, + "probability": 0.7303 + }, + { + "start": 8707.84, + "end": 8708.22, + "probability": 0.5694 + }, + { + "start": 8709.03, + "end": 8710.33, + "probability": 0.7177 + }, + { + "start": 8710.38, + "end": 8713.26, + "probability": 0.9414 + }, + { + "start": 8714.32, + "end": 8718.36, + "probability": 0.8487 + }, + { + "start": 8718.92, + "end": 8718.92, + "probability": 0.059 + }, + { + "start": 8718.92, + "end": 8721.74, + "probability": 0.4001 + }, + { + "start": 8722.46, + "end": 8723.93, + "probability": 0.5397 + }, + { + "start": 8724.56, + "end": 8727.0, + "probability": 0.8887 + }, + { + "start": 8727.34, + "end": 8727.74, + "probability": 0.5975 + }, + { + "start": 8728.46, + "end": 8730.9, + "probability": 0.9895 + }, + { + "start": 8731.66, + "end": 8735.6, + "probability": 0.9192 + }, + { + "start": 8736.44, + "end": 8738.24, + "probability": 0.8427 + }, + { + "start": 8738.7, + "end": 8744.44, + "probability": 0.9683 + }, + { + "start": 8745.99, + "end": 8746.62, + "probability": 0.2212 + }, + { + "start": 8746.96, + "end": 8747.44, + "probability": 0.0242 + }, + { + "start": 8747.44, + "end": 8747.44, + "probability": 0.4669 + }, + { + "start": 8747.48, + "end": 8751.4, + "probability": 0.369 + }, + { + "start": 8751.54, + "end": 8752.68, + "probability": 0.6839 + }, + { + "start": 8753.18, + "end": 8753.32, + "probability": 0.3597 + }, + { + "start": 8754.08, + "end": 8756.36, + "probability": 0.8591 + }, + { + "start": 8757.6, + "end": 8758.64, + "probability": 0.6073 + }, + { + "start": 8759.08, + "end": 8760.8, + "probability": 0.6851 + }, + { + "start": 8761.42, + "end": 8762.56, + "probability": 0.7186 + }, + { + "start": 8762.64, + "end": 8763.14, + "probability": 0.5827 + }, + { + "start": 8763.3, + "end": 8764.54, + "probability": 0.9301 + }, + { + "start": 8769.54, + "end": 8770.5, + "probability": 0.6146 + }, + { + "start": 8770.64, + "end": 8770.64, + "probability": 0.5985 + }, + { + "start": 8770.64, + "end": 8771.1, + "probability": 0.833 + }, + { + "start": 8771.26, + "end": 8772.42, + "probability": 0.8576 + }, + { + "start": 8773.41, + "end": 8777.82, + "probability": 0.6629 + }, + { + "start": 8778.72, + "end": 8787.26, + "probability": 0.9727 + }, + { + "start": 8787.34, + "end": 8792.12, + "probability": 0.9672 + }, + { + "start": 8793.94, + "end": 8794.62, + "probability": 0.4602 + }, + { + "start": 8794.72, + "end": 8799.6, + "probability": 0.9348 + }, + { + "start": 8800.52, + "end": 8803.18, + "probability": 0.9419 + }, + { + "start": 8803.44, + "end": 8805.42, + "probability": 0.6377 + }, + { + "start": 8805.82, + "end": 8806.76, + "probability": 0.6187 + }, + { + "start": 8808.64, + "end": 8813.1, + "probability": 0.9724 + }, + { + "start": 8813.26, + "end": 8821.8, + "probability": 0.9248 + }, + { + "start": 8821.8, + "end": 8828.7, + "probability": 0.9935 + }, + { + "start": 8829.5, + "end": 8833.1, + "probability": 0.5078 + }, + { + "start": 8834.14, + "end": 8835.32, + "probability": 0.8507 + }, + { + "start": 8836.64, + "end": 8841.46, + "probability": 0.9974 + }, + { + "start": 8847.16, + "end": 8850.99, + "probability": 0.9958 + }, + { + "start": 8851.96, + "end": 8854.2, + "probability": 0.9722 + }, + { + "start": 8855.36, + "end": 8857.42, + "probability": 0.9692 + }, + { + "start": 8858.88, + "end": 8864.7, + "probability": 0.956 + }, + { + "start": 8867.34, + "end": 8868.66, + "probability": 0.9125 + }, + { + "start": 8870.2, + "end": 8874.3, + "probability": 0.9849 + }, + { + "start": 8875.12, + "end": 8876.22, + "probability": 0.985 + }, + { + "start": 8877.34, + "end": 8879.74, + "probability": 0.9866 + }, + { + "start": 8879.8, + "end": 8886.22, + "probability": 0.9759 + }, + { + "start": 8886.98, + "end": 8887.54, + "probability": 0.6158 + }, + { + "start": 8889.94, + "end": 8892.8, + "probability": 0.98 + }, + { + "start": 8894.48, + "end": 8895.92, + "probability": 0.6086 + }, + { + "start": 8896.92, + "end": 8905.98, + "probability": 0.9911 + }, + { + "start": 8908.3, + "end": 8909.0, + "probability": 0.7385 + }, + { + "start": 8909.76, + "end": 8912.58, + "probability": 0.6641 + }, + { + "start": 8913.84, + "end": 8914.68, + "probability": 0.7837 + }, + { + "start": 8916.22, + "end": 8916.44, + "probability": 0.0099 + }, + { + "start": 8917.46, + "end": 8921.34, + "probability": 0.9985 + }, + { + "start": 8921.78, + "end": 8924.34, + "probability": 0.9951 + }, + { + "start": 8924.34, + "end": 8930.16, + "probability": 0.9781 + }, + { + "start": 8930.32, + "end": 8933.0, + "probability": 0.3318 + }, + { + "start": 8933.04, + "end": 8933.74, + "probability": 0.6831 + }, + { + "start": 8933.8, + "end": 8935.06, + "probability": 0.6541 + }, + { + "start": 8936.38, + "end": 8939.7, + "probability": 0.9398 + }, + { + "start": 8939.7, + "end": 8942.88, + "probability": 0.9673 + }, + { + "start": 8943.08, + "end": 8945.62, + "probability": 0.5522 + }, + { + "start": 8946.56, + "end": 8948.72, + "probability": 0.9637 + }, + { + "start": 8952.02, + "end": 8957.14, + "probability": 0.7598 + }, + { + "start": 8958.71, + "end": 8964.18, + "probability": 0.989 + }, + { + "start": 8964.18, + "end": 8973.36, + "probability": 0.995 + }, + { + "start": 8973.54, + "end": 8973.9, + "probability": 0.3748 + }, + { + "start": 8974.28, + "end": 8976.95, + "probability": 0.5454 + }, + { + "start": 8977.68, + "end": 8979.98, + "probability": 0.9987 + }, + { + "start": 8979.98, + "end": 8984.6, + "probability": 0.8114 + }, + { + "start": 8985.16, + "end": 8989.46, + "probability": 0.7731 + }, + { + "start": 8989.46, + "end": 8993.96, + "probability": 0.9862 + }, + { + "start": 8994.0, + "end": 8994.94, + "probability": 0.7369 + }, + { + "start": 8996.06, + "end": 8996.44, + "probability": 0.4188 + }, + { + "start": 8996.44, + "end": 8996.79, + "probability": 0.5269 + }, + { + "start": 8997.12, + "end": 8997.54, + "probability": 0.5069 + }, + { + "start": 8997.56, + "end": 8998.72, + "probability": 0.6552 + }, + { + "start": 9000.0, + "end": 9000.8, + "probability": 0.6437 + }, + { + "start": 9010.44, + "end": 9010.82, + "probability": 0.2514 + }, + { + "start": 9010.82, + "end": 9013.6, + "probability": 0.8018 + }, + { + "start": 9014.12, + "end": 9015.78, + "probability": 0.9412 + }, + { + "start": 9017.3, + "end": 9020.62, + "probability": 0.9617 + }, + { + "start": 9022.36, + "end": 9025.69, + "probability": 0.9826 + }, + { + "start": 9026.6, + "end": 9027.66, + "probability": 0.7795 + }, + { + "start": 9028.2, + "end": 9029.36, + "probability": 0.8829 + }, + { + "start": 9031.34, + "end": 9032.32, + "probability": 0.2992 + }, + { + "start": 9033.72, + "end": 9035.96, + "probability": 0.9204 + }, + { + "start": 9037.22, + "end": 9039.12, + "probability": 0.979 + }, + { + "start": 9040.78, + "end": 9043.01, + "probability": 0.9966 + }, + { + "start": 9044.16, + "end": 9044.82, + "probability": 0.8894 + }, + { + "start": 9044.88, + "end": 9050.14, + "probability": 0.9298 + }, + { + "start": 9050.32, + "end": 9052.1, + "probability": 0.2745 + }, + { + "start": 9052.84, + "end": 9055.46, + "probability": 0.4823 + }, + { + "start": 9056.14, + "end": 9058.58, + "probability": 0.7014 + }, + { + "start": 9058.66, + "end": 9059.52, + "probability": 0.5404 + }, + { + "start": 9059.64, + "end": 9061.28, + "probability": 0.9852 + }, + { + "start": 9062.38, + "end": 9064.11, + "probability": 0.9868 + }, + { + "start": 9064.54, + "end": 9068.04, + "probability": 0.9707 + }, + { + "start": 9069.02, + "end": 9073.27, + "probability": 0.9735 + }, + { + "start": 9073.72, + "end": 9074.64, + "probability": 0.7356 + }, + { + "start": 9075.22, + "end": 9078.1, + "probability": 0.968 + }, + { + "start": 9078.7, + "end": 9080.8, + "probability": 0.9852 + }, + { + "start": 9080.98, + "end": 9081.98, + "probability": 0.691 + }, + { + "start": 9082.34, + "end": 9085.13, + "probability": 0.9513 + }, + { + "start": 9085.6, + "end": 9086.58, + "probability": 0.8186 + }, + { + "start": 9087.4, + "end": 9089.16, + "probability": 0.7646 + }, + { + "start": 9090.06, + "end": 9090.96, + "probability": 0.5494 + }, + { + "start": 9091.62, + "end": 9092.52, + "probability": 0.9292 + }, + { + "start": 9093.12, + "end": 9094.82, + "probability": 0.9005 + }, + { + "start": 9094.92, + "end": 9095.58, + "probability": 0.84 + }, + { + "start": 9095.68, + "end": 9096.5, + "probability": 0.7793 + }, + { + "start": 9096.62, + "end": 9099.08, + "probability": 0.6002 + }, + { + "start": 9099.42, + "end": 9102.98, + "probability": 0.8538 + }, + { + "start": 9104.36, + "end": 9106.16, + "probability": 0.6914 + }, + { + "start": 9106.28, + "end": 9108.0, + "probability": 0.9041 + }, + { + "start": 9108.32, + "end": 9110.54, + "probability": 0.6742 + }, + { + "start": 9111.68, + "end": 9115.76, + "probability": 0.9852 + }, + { + "start": 9116.28, + "end": 9119.42, + "probability": 0.9953 + }, + { + "start": 9119.88, + "end": 9121.4, + "probability": 0.9725 + }, + { + "start": 9121.8, + "end": 9122.68, + "probability": 0.7559 + }, + { + "start": 9122.8, + "end": 9123.34, + "probability": 0.9441 + }, + { + "start": 9123.4, + "end": 9127.26, + "probability": 0.917 + }, + { + "start": 9127.68, + "end": 9130.27, + "probability": 0.6159 + }, + { + "start": 9131.52, + "end": 9138.26, + "probability": 0.9978 + }, + { + "start": 9138.26, + "end": 9143.42, + "probability": 0.9959 + }, + { + "start": 9143.96, + "end": 9145.04, + "probability": 0.8013 + }, + { + "start": 9145.76, + "end": 9152.24, + "probability": 0.9632 + }, + { + "start": 9154.12, + "end": 9156.84, + "probability": 0.9774 + }, + { + "start": 9158.08, + "end": 9162.26, + "probability": 0.9956 + }, + { + "start": 9163.92, + "end": 9166.2, + "probability": 0.9318 + }, + { + "start": 9166.74, + "end": 9167.98, + "probability": 0.9141 + }, + { + "start": 9169.14, + "end": 9169.94, + "probability": 0.7755 + }, + { + "start": 9171.92, + "end": 9172.74, + "probability": 0.1947 + }, + { + "start": 9173.12, + "end": 9173.84, + "probability": 0.5229 + }, + { + "start": 9173.88, + "end": 9175.2, + "probability": 0.9217 + }, + { + "start": 9175.4, + "end": 9179.34, + "probability": 0.9561 + }, + { + "start": 9180.12, + "end": 9180.24, + "probability": 0.9553 + }, + { + "start": 9180.76, + "end": 9181.4, + "probability": 0.9486 + }, + { + "start": 9181.5, + "end": 9186.26, + "probability": 0.6666 + }, + { + "start": 9186.8, + "end": 9193.76, + "probability": 0.9244 + }, + { + "start": 9194.36, + "end": 9195.0, + "probability": 0.4616 + }, + { + "start": 9195.68, + "end": 9196.78, + "probability": 0.7407 + }, + { + "start": 9196.92, + "end": 9198.3, + "probability": 0.8285 + }, + { + "start": 9198.54, + "end": 9200.3, + "probability": 0.6836 + }, + { + "start": 9201.58, + "end": 9206.96, + "probability": 0.9659 + }, + { + "start": 9207.06, + "end": 9208.06, + "probability": 0.6586 + }, + { + "start": 9208.14, + "end": 9209.68, + "probability": 0.8866 + }, + { + "start": 9210.06, + "end": 9210.74, + "probability": 0.6757 + }, + { + "start": 9210.92, + "end": 9211.56, + "probability": 0.8141 + }, + { + "start": 9211.72, + "end": 9212.22, + "probability": 0.8652 + }, + { + "start": 9212.42, + "end": 9214.28, + "probability": 0.9388 + }, + { + "start": 9214.44, + "end": 9216.72, + "probability": 0.9535 + }, + { + "start": 9217.16, + "end": 9217.68, + "probability": 0.7904 + }, + { + "start": 9218.22, + "end": 9223.7, + "probability": 0.8077 + }, + { + "start": 9223.7, + "end": 9226.6, + "probability": 0.9985 + }, + { + "start": 9227.42, + "end": 9230.32, + "probability": 0.8916 + }, + { + "start": 9230.94, + "end": 9233.78, + "probability": 0.8346 + }, + { + "start": 9234.42, + "end": 9235.64, + "probability": 0.8345 + }, + { + "start": 9236.0, + "end": 9237.62, + "probability": 0.8792 + }, + { + "start": 9238.14, + "end": 9238.94, + "probability": 0.9183 + }, + { + "start": 9239.02, + "end": 9240.0, + "probability": 0.7395 + }, + { + "start": 9240.78, + "end": 9242.54, + "probability": 0.8242 + }, + { + "start": 9243.04, + "end": 9246.38, + "probability": 0.9225 + }, + { + "start": 9247.88, + "end": 9251.14, + "probability": 0.8559 + }, + { + "start": 9256.9, + "end": 9257.82, + "probability": 0.774 + }, + { + "start": 9257.96, + "end": 9258.4, + "probability": 0.3335 + }, + { + "start": 9258.5, + "end": 9259.5, + "probability": 0.6951 + }, + { + "start": 9259.92, + "end": 9261.6, + "probability": 0.8773 + }, + { + "start": 9263.02, + "end": 9264.26, + "probability": 0.7961 + }, + { + "start": 9265.04, + "end": 9265.82, + "probability": 0.9077 + }, + { + "start": 9265.9, + "end": 9267.32, + "probability": 0.9749 + }, + { + "start": 9267.72, + "end": 9270.58, + "probability": 0.8765 + }, + { + "start": 9271.1, + "end": 9274.24, + "probability": 0.936 + }, + { + "start": 9274.82, + "end": 9277.88, + "probability": 0.937 + }, + { + "start": 9278.33, + "end": 9280.52, + "probability": 0.8944 + }, + { + "start": 9280.64, + "end": 9281.0, + "probability": 0.7343 + }, + { + "start": 9281.06, + "end": 9281.54, + "probability": 0.5899 + }, + { + "start": 9281.62, + "end": 9283.1, + "probability": 0.9186 + }, + { + "start": 9283.76, + "end": 9284.86, + "probability": 0.8334 + }, + { + "start": 9285.58, + "end": 9286.56, + "probability": 0.713 + }, + { + "start": 9287.14, + "end": 9289.47, + "probability": 0.8223 + }, + { + "start": 9290.22, + "end": 9296.1, + "probability": 0.9492 + }, + { + "start": 9296.1, + "end": 9302.24, + "probability": 0.9679 + }, + { + "start": 9302.36, + "end": 9303.08, + "probability": 0.488 + }, + { + "start": 9303.6, + "end": 9304.54, + "probability": 0.9639 + }, + { + "start": 9304.88, + "end": 9305.86, + "probability": 0.1307 + }, + { + "start": 9306.34, + "end": 9307.25, + "probability": 0.5585 + }, + { + "start": 9307.72, + "end": 9309.04, + "probability": 0.8228 + }, + { + "start": 9310.06, + "end": 9311.66, + "probability": 0.7506 + }, + { + "start": 9311.74, + "end": 9312.4, + "probability": 0.7429 + }, + { + "start": 9312.54, + "end": 9313.14, + "probability": 0.874 + }, + { + "start": 9313.44, + "end": 9316.98, + "probability": 0.9441 + }, + { + "start": 9317.92, + "end": 9319.12, + "probability": 0.9327 + }, + { + "start": 9319.28, + "end": 9322.43, + "probability": 0.991 + }, + { + "start": 9323.16, + "end": 9326.14, + "probability": 0.7217 + }, + { + "start": 9326.34, + "end": 9330.8, + "probability": 0.9512 + }, + { + "start": 9331.3, + "end": 9332.16, + "probability": 0.6937 + }, + { + "start": 9332.58, + "end": 9338.64, + "probability": 0.984 + }, + { + "start": 9339.0, + "end": 9345.24, + "probability": 0.9449 + }, + { + "start": 9345.92, + "end": 9350.6, + "probability": 0.8568 + }, + { + "start": 9351.16, + "end": 9352.82, + "probability": 0.6875 + }, + { + "start": 9353.14, + "end": 9356.7, + "probability": 0.9655 + }, + { + "start": 9357.22, + "end": 9361.68, + "probability": 0.9152 + }, + { + "start": 9362.48, + "end": 9364.26, + "probability": 0.6671 + }, + { + "start": 9364.6, + "end": 9365.48, + "probability": 0.9536 + }, + { + "start": 9365.92, + "end": 9368.64, + "probability": 0.9251 + }, + { + "start": 9368.9, + "end": 9370.18, + "probability": 0.6893 + }, + { + "start": 9370.3, + "end": 9374.24, + "probability": 0.9174 + }, + { + "start": 9374.68, + "end": 9376.04, + "probability": 0.8884 + }, + { + "start": 9376.58, + "end": 9378.6, + "probability": 0.913 + }, + { + "start": 9379.34, + "end": 9381.3, + "probability": 0.9181 + }, + { + "start": 9381.74, + "end": 9385.3, + "probability": 0.9268 + }, + { + "start": 9385.7, + "end": 9391.2, + "probability": 0.9556 + }, + { + "start": 9391.2, + "end": 9397.72, + "probability": 0.9703 + }, + { + "start": 9398.16, + "end": 9398.7, + "probability": 0.4635 + }, + { + "start": 9399.12, + "end": 9400.0, + "probability": 0.6468 + }, + { + "start": 9400.58, + "end": 9403.78, + "probability": 0.7439 + }, + { + "start": 9406.04, + "end": 9409.32, + "probability": 0.9208 + }, + { + "start": 9418.46, + "end": 9422.02, + "probability": 0.7611 + }, + { + "start": 9422.66, + "end": 9423.4, + "probability": 0.8087 + }, + { + "start": 9423.64, + "end": 9426.58, + "probability": 0.9958 + }, + { + "start": 9426.62, + "end": 9430.14, + "probability": 0.9947 + }, + { + "start": 9430.7, + "end": 9432.06, + "probability": 0.8153 + }, + { + "start": 9432.36, + "end": 9434.52, + "probability": 0.8037 + }, + { + "start": 9434.74, + "end": 9436.5, + "probability": 0.7396 + }, + { + "start": 9436.6, + "end": 9438.38, + "probability": 0.7694 + }, + { + "start": 9439.26, + "end": 9443.56, + "probability": 0.8617 + }, + { + "start": 9444.16, + "end": 9449.0, + "probability": 0.8766 + }, + { + "start": 9449.62, + "end": 9453.0, + "probability": 0.9492 + }, + { + "start": 9453.7, + "end": 9458.48, + "probability": 0.9878 + }, + { + "start": 9458.58, + "end": 9462.88, + "probability": 0.9966 + }, + { + "start": 9462.88, + "end": 9467.0, + "probability": 0.8791 + }, + { + "start": 9467.14, + "end": 9469.38, + "probability": 0.9949 + }, + { + "start": 9470.36, + "end": 9471.32, + "probability": 0.6776 + }, + { + "start": 9472.26, + "end": 9472.5, + "probability": 0.5462 + }, + { + "start": 9472.56, + "end": 9475.64, + "probability": 0.9769 + }, + { + "start": 9476.0, + "end": 9481.24, + "probability": 0.9858 + }, + { + "start": 9481.56, + "end": 9486.26, + "probability": 0.9806 + }, + { + "start": 9487.52, + "end": 9488.5, + "probability": 0.8106 + }, + { + "start": 9489.16, + "end": 9490.2, + "probability": 0.9394 + }, + { + "start": 9490.74, + "end": 9491.64, + "probability": 0.7901 + }, + { + "start": 9492.1, + "end": 9495.8, + "probability": 0.691 + }, + { + "start": 9496.0, + "end": 9497.7, + "probability": 0.7528 + }, + { + "start": 9497.82, + "end": 9500.78, + "probability": 0.965 + }, + { + "start": 9500.98, + "end": 9501.56, + "probability": 0.8852 + }, + { + "start": 9501.62, + "end": 9502.18, + "probability": 0.7192 + }, + { + "start": 9503.34, + "end": 9507.02, + "probability": 0.9877 + }, + { + "start": 9507.42, + "end": 9512.08, + "probability": 0.7562 + }, + { + "start": 9512.48, + "end": 9514.06, + "probability": 0.9098 + }, + { + "start": 9514.26, + "end": 9518.84, + "probability": 0.9746 + }, + { + "start": 9518.96, + "end": 9519.96, + "probability": 0.5251 + }, + { + "start": 9520.16, + "end": 9521.64, + "probability": 0.8706 + }, + { + "start": 9522.38, + "end": 9525.16, + "probability": 0.9653 + }, + { + "start": 9525.54, + "end": 9530.02, + "probability": 0.7346 + }, + { + "start": 9530.12, + "end": 9531.08, + "probability": 0.9562 + }, + { + "start": 9531.38, + "end": 9533.62, + "probability": 0.9888 + }, + { + "start": 9533.62, + "end": 9536.82, + "probability": 0.9937 + }, + { + "start": 9537.1, + "end": 9538.28, + "probability": 0.8636 + }, + { + "start": 9538.46, + "end": 9539.02, + "probability": 0.2693 + }, + { + "start": 9540.38, + "end": 9542.32, + "probability": 0.9114 + }, + { + "start": 9542.74, + "end": 9545.54, + "probability": 0.8344 + }, + { + "start": 9545.66, + "end": 9546.52, + "probability": 0.6921 + }, + { + "start": 9546.72, + "end": 9549.72, + "probability": 0.9953 + }, + { + "start": 9549.72, + "end": 9553.88, + "probability": 0.9967 + }, + { + "start": 9555.18, + "end": 9557.72, + "probability": 0.9851 + }, + { + "start": 9557.76, + "end": 9559.82, + "probability": 0.9958 + }, + { + "start": 9559.98, + "end": 9566.42, + "probability": 0.9875 + }, + { + "start": 9566.42, + "end": 9570.62, + "probability": 0.9966 + }, + { + "start": 9571.06, + "end": 9572.74, + "probability": 0.9304 + }, + { + "start": 9573.22, + "end": 9577.74, + "probability": 0.997 + }, + { + "start": 9577.9, + "end": 9580.56, + "probability": 0.8063 + }, + { + "start": 9580.74, + "end": 9581.06, + "probability": 0.6224 + }, + { + "start": 9581.1, + "end": 9582.64, + "probability": 0.7067 + }, + { + "start": 9582.74, + "end": 9588.8, + "probability": 0.8826 + }, + { + "start": 9588.86, + "end": 9589.38, + "probability": 0.5378 + }, + { + "start": 9589.42, + "end": 9593.97, + "probability": 0.9656 + }, + { + "start": 9594.82, + "end": 9596.78, + "probability": 0.9269 + }, + { + "start": 9596.98, + "end": 9599.58, + "probability": 0.9937 + }, + { + "start": 9600.38, + "end": 9603.3, + "probability": 0.9001 + }, + { + "start": 9603.66, + "end": 9605.78, + "probability": 0.9419 + }, + { + "start": 9606.28, + "end": 9608.4, + "probability": 0.9984 + }, + { + "start": 9608.44, + "end": 9609.16, + "probability": 0.7529 + }, + { + "start": 9609.6, + "end": 9614.82, + "probability": 0.9742 + }, + { + "start": 9615.16, + "end": 9615.51, + "probability": 0.7075 + }, + { + "start": 9616.18, + "end": 9617.85, + "probability": 0.9946 + }, + { + "start": 9618.46, + "end": 9620.48, + "probability": 0.985 + }, + { + "start": 9620.88, + "end": 9622.7, + "probability": 0.9338 + }, + { + "start": 9623.02, + "end": 9627.04, + "probability": 0.8453 + }, + { + "start": 9627.62, + "end": 9629.22, + "probability": 0.8258 + }, + { + "start": 9629.28, + "end": 9631.08, + "probability": 0.9415 + }, + { + "start": 9631.4, + "end": 9632.54, + "probability": 0.9932 + }, + { + "start": 9632.68, + "end": 9637.12, + "probability": 0.9146 + }, + { + "start": 9637.5, + "end": 9638.66, + "probability": 0.8861 + }, + { + "start": 9638.76, + "end": 9638.86, + "probability": 0.3829 + }, + { + "start": 9639.08, + "end": 9641.98, + "probability": 0.7609 + }, + { + "start": 9642.34, + "end": 9642.9, + "probability": 0.8813 + }, + { + "start": 9643.58, + "end": 9648.94, + "probability": 0.995 + }, + { + "start": 9648.94, + "end": 9654.04, + "probability": 0.9972 + }, + { + "start": 9654.48, + "end": 9656.92, + "probability": 0.9914 + }, + { + "start": 9657.66, + "end": 9660.24, + "probability": 0.8942 + }, + { + "start": 9661.14, + "end": 9665.18, + "probability": 0.9684 + }, + { + "start": 9665.9, + "end": 9667.34, + "probability": 0.9162 + }, + { + "start": 9667.72, + "end": 9669.22, + "probability": 0.9792 + }, + { + "start": 9669.42, + "end": 9671.77, + "probability": 0.9915 + }, + { + "start": 9672.3, + "end": 9673.58, + "probability": 0.929 + }, + { + "start": 9673.86, + "end": 9679.42, + "probability": 0.9762 + }, + { + "start": 9681.42, + "end": 9681.7, + "probability": 0.1107 + }, + { + "start": 9681.7, + "end": 9681.7, + "probability": 0.0759 + }, + { + "start": 9681.7, + "end": 9686.56, + "probability": 0.995 + }, + { + "start": 9686.72, + "end": 9691.08, + "probability": 0.9905 + }, + { + "start": 9691.08, + "end": 9694.12, + "probability": 0.9976 + }, + { + "start": 9695.08, + "end": 9698.2, + "probability": 0.9792 + }, + { + "start": 9699.0, + "end": 9699.82, + "probability": 0.7216 + }, + { + "start": 9700.28, + "end": 9702.7, + "probability": 0.971 + }, + { + "start": 9702.78, + "end": 9703.42, + "probability": 0.7926 + }, + { + "start": 9703.48, + "end": 9704.78, + "probability": 0.7595 + }, + { + "start": 9705.18, + "end": 9705.78, + "probability": 0.8558 + }, + { + "start": 9705.92, + "end": 9707.32, + "probability": 0.9568 + }, + { + "start": 9707.84, + "end": 9709.97, + "probability": 0.4561 + }, + { + "start": 9710.18, + "end": 9711.58, + "probability": 0.9246 + }, + { + "start": 9712.06, + "end": 9714.84, + "probability": 0.7604 + }, + { + "start": 9714.92, + "end": 9716.5, + "probability": 0.8258 + }, + { + "start": 9716.62, + "end": 9717.44, + "probability": 0.5815 + }, + { + "start": 9717.48, + "end": 9721.86, + "probability": 0.8822 + }, + { + "start": 9723.08, + "end": 9724.48, + "probability": 0.8325 + }, + { + "start": 9724.56, + "end": 9726.34, + "probability": 0.5589 + }, + { + "start": 9726.36, + "end": 9730.3, + "probability": 0.6066 + }, + { + "start": 9730.32, + "end": 9731.24, + "probability": 0.1275 + }, + { + "start": 9731.26, + "end": 9732.38, + "probability": 0.7907 + }, + { + "start": 9732.5, + "end": 9733.2, + "probability": 0.1988 + }, + { + "start": 9734.6, + "end": 9738.3, + "probability": 0.9827 + }, + { + "start": 9738.3, + "end": 9741.34, + "probability": 0.9894 + }, + { + "start": 9741.46, + "end": 9743.14, + "probability": 0.8072 + }, + { + "start": 9743.64, + "end": 9744.8, + "probability": 0.8145 + }, + { + "start": 9744.92, + "end": 9747.14, + "probability": 0.998 + }, + { + "start": 9747.48, + "end": 9747.48, + "probability": 0.0342 + }, + { + "start": 9747.48, + "end": 9747.48, + "probability": 0.2752 + }, + { + "start": 9747.48, + "end": 9752.1, + "probability": 0.7144 + }, + { + "start": 9752.34, + "end": 9755.38, + "probability": 0.9956 + }, + { + "start": 9755.38, + "end": 9758.62, + "probability": 0.9956 + }, + { + "start": 9758.8, + "end": 9762.26, + "probability": 0.9794 + }, + { + "start": 9762.54, + "end": 9768.38, + "probability": 0.9961 + }, + { + "start": 9769.2, + "end": 9771.46, + "probability": 0.9901 + }, + { + "start": 9771.68, + "end": 9774.28, + "probability": 0.8963 + }, + { + "start": 9774.44, + "end": 9775.82, + "probability": 0.7313 + }, + { + "start": 9776.08, + "end": 9776.62, + "probability": 0.7532 + }, + { + "start": 9776.84, + "end": 9777.42, + "probability": 0.7874 + }, + { + "start": 9777.7, + "end": 9779.08, + "probability": 0.9307 + }, + { + "start": 9779.2, + "end": 9780.34, + "probability": 0.8237 + }, + { + "start": 9780.64, + "end": 9781.48, + "probability": 0.9834 + }, + { + "start": 9781.64, + "end": 9783.2, + "probability": 0.9664 + }, + { + "start": 9783.68, + "end": 9790.46, + "probability": 0.9917 + }, + { + "start": 9790.98, + "end": 9792.86, + "probability": 0.7552 + }, + { + "start": 9793.38, + "end": 9798.16, + "probability": 0.9374 + }, + { + "start": 9798.57, + "end": 9803.82, + "probability": 0.9897 + }, + { + "start": 9804.16, + "end": 9805.71, + "probability": 0.9301 + }, + { + "start": 9807.24, + "end": 9808.48, + "probability": 0.3079 + }, + { + "start": 9808.48, + "end": 9811.06, + "probability": 0.3153 + }, + { + "start": 9811.22, + "end": 9812.02, + "probability": 0.6012 + }, + { + "start": 9812.02, + "end": 9813.05, + "probability": 0.5385 + }, + { + "start": 9813.7, + "end": 9814.89, + "probability": 0.2581 + }, + { + "start": 9815.22, + "end": 9815.62, + "probability": 0.1814 + }, + { + "start": 9815.62, + "end": 9816.46, + "probability": 0.3029 + }, + { + "start": 9816.56, + "end": 9817.43, + "probability": 0.4709 + }, + { + "start": 9819.26, + "end": 9819.68, + "probability": 0.0307 + }, + { + "start": 9819.68, + "end": 9826.36, + "probability": 0.7546 + }, + { + "start": 9826.54, + "end": 9832.36, + "probability": 0.7928 + }, + { + "start": 9833.74, + "end": 9836.34, + "probability": 0.9937 + }, + { + "start": 9836.71, + "end": 9838.42, + "probability": 0.8838 + }, + { + "start": 9838.48, + "end": 9842.94, + "probability": 0.9672 + }, + { + "start": 9842.94, + "end": 9847.36, + "probability": 0.9938 + }, + { + "start": 9848.08, + "end": 9852.0, + "probability": 0.9304 + }, + { + "start": 9852.34, + "end": 9856.8, + "probability": 0.9805 + }, + { + "start": 9856.8, + "end": 9857.64, + "probability": 0.6788 + }, + { + "start": 9858.6, + "end": 9859.7, + "probability": 0.7408 + }, + { + "start": 9859.8, + "end": 9860.0, + "probability": 0.5976 + }, + { + "start": 9860.04, + "end": 9860.4, + "probability": 0.5128 + }, + { + "start": 9860.42, + "end": 9860.79, + "probability": 0.7484 + }, + { + "start": 9861.08, + "end": 9864.88, + "probability": 0.9246 + }, + { + "start": 9864.98, + "end": 9865.96, + "probability": 0.8994 + }, + { + "start": 9866.46, + "end": 9868.86, + "probability": 0.9569 + }, + { + "start": 9868.94, + "end": 9870.48, + "probability": 0.9792 + }, + { + "start": 9871.2, + "end": 9878.12, + "probability": 0.9182 + }, + { + "start": 9878.68, + "end": 9879.82, + "probability": 0.7702 + }, + { + "start": 9879.92, + "end": 9880.5, + "probability": 0.8911 + }, + { + "start": 9880.62, + "end": 9882.26, + "probability": 0.9075 + }, + { + "start": 9882.32, + "end": 9886.46, + "probability": 0.9694 + }, + { + "start": 9887.1, + "end": 9887.94, + "probability": 0.9125 + }, + { + "start": 9888.06, + "end": 9889.52, + "probability": 0.9804 + }, + { + "start": 9889.96, + "end": 9891.06, + "probability": 0.9678 + }, + { + "start": 9891.83, + "end": 9895.22, + "probability": 0.9016 + }, + { + "start": 9895.76, + "end": 9901.6, + "probability": 0.9819 + }, + { + "start": 9902.2, + "end": 9903.54, + "probability": 0.9597 + }, + { + "start": 9904.38, + "end": 9907.88, + "probability": 0.97 + }, + { + "start": 9908.3, + "end": 9914.72, + "probability": 0.9819 + }, + { + "start": 9914.76, + "end": 9915.48, + "probability": 0.7922 + }, + { + "start": 9916.1, + "end": 9923.96, + "probability": 0.9779 + }, + { + "start": 9924.08, + "end": 9929.02, + "probability": 0.9981 + }, + { + "start": 9929.42, + "end": 9931.22, + "probability": 0.9033 + }, + { + "start": 9931.42, + "end": 9936.67, + "probability": 0.9846 + }, + { + "start": 9937.36, + "end": 9941.18, + "probability": 0.9971 + }, + { + "start": 9941.4, + "end": 9943.48, + "probability": 0.7987 + }, + { + "start": 9943.56, + "end": 9944.78, + "probability": 0.8139 + }, + { + "start": 9945.16, + "end": 9946.6, + "probability": 0.9682 + }, + { + "start": 9947.04, + "end": 9948.54, + "probability": 0.8787 + }, + { + "start": 9948.92, + "end": 9952.22, + "probability": 0.9897 + }, + { + "start": 9952.34, + "end": 9954.42, + "probability": 0.948 + }, + { + "start": 9954.8, + "end": 9961.52, + "probability": 0.9913 + }, + { + "start": 9962.0, + "end": 9963.46, + "probability": 0.9858 + }, + { + "start": 9964.38, + "end": 9967.56, + "probability": 0.861 + }, + { + "start": 9968.28, + "end": 9970.31, + "probability": 0.9938 + }, + { + "start": 9971.08, + "end": 9975.84, + "probability": 0.9818 + }, + { + "start": 9976.42, + "end": 9981.9, + "probability": 0.8957 + }, + { + "start": 9982.64, + "end": 9985.54, + "probability": 0.9891 + }, + { + "start": 9985.62, + "end": 9987.44, + "probability": 0.905 + }, + { + "start": 9987.44, + "end": 9991.66, + "probability": 0.9789 + }, + { + "start": 9991.82, + "end": 9993.6, + "probability": 0.8942 + }, + { + "start": 9994.14, + "end": 9997.26, + "probability": 0.9618 + }, + { + "start": 9997.76, + "end": 9998.94, + "probability": 0.969 + }, + { + "start": 9999.24, + "end": 10001.55, + "probability": 0.9888 + }, + { + "start": 10002.42, + "end": 10006.26, + "probability": 0.9073 + }, + { + "start": 10006.28, + "end": 10009.26, + "probability": 0.9186 + }, + { + "start": 10009.46, + "end": 10009.6, + "probability": 0.3334 + }, + { + "start": 10009.66, + "end": 10010.46, + "probability": 0.9558 + }, + { + "start": 10011.12, + "end": 10014.36, + "probability": 0.8184 + }, + { + "start": 10014.44, + "end": 10016.5, + "probability": 0.9704 + }, + { + "start": 10017.02, + "end": 10017.54, + "probability": 0.7584 + }, + { + "start": 10019.4, + "end": 10019.96, + "probability": 0.9567 + }, + { + "start": 10024.02, + "end": 10024.48, + "probability": 0.9185 + }, + { + "start": 10024.6, + "end": 10025.28, + "probability": 0.766 + }, + { + "start": 10025.38, + "end": 10025.76, + "probability": 0.8104 + }, + { + "start": 10025.82, + "end": 10026.66, + "probability": 0.7926 + }, + { + "start": 10026.82, + "end": 10029.28, + "probability": 0.9733 + }, + { + "start": 10030.04, + "end": 10031.82, + "probability": 0.9988 + }, + { + "start": 10031.98, + "end": 10033.9, + "probability": 0.9792 + }, + { + "start": 10033.9, + "end": 10034.14, + "probability": 0.2068 + }, + { + "start": 10034.16, + "end": 10036.34, + "probability": 0.8172 + }, + { + "start": 10037.2, + "end": 10037.24, + "probability": 0.6328 + }, + { + "start": 10037.32, + "end": 10038.88, + "probability": 0.7376 + }, + { + "start": 10039.06, + "end": 10043.52, + "probability": 0.7817 + }, + { + "start": 10043.6, + "end": 10046.52, + "probability": 0.9801 + }, + { + "start": 10046.6, + "end": 10049.4, + "probability": 0.9688 + }, + { + "start": 10049.4, + "end": 10051.48, + "probability": 0.9966 + }, + { + "start": 10051.58, + "end": 10052.14, + "probability": 0.6358 + }, + { + "start": 10052.2, + "end": 10052.94, + "probability": 0.9756 + }, + { + "start": 10053.92, + "end": 10054.76, + "probability": 0.8962 + }, + { + "start": 10055.34, + "end": 10057.04, + "probability": 0.6017 + }, + { + "start": 10058.08, + "end": 10061.46, + "probability": 0.9774 + }, + { + "start": 10061.58, + "end": 10063.92, + "probability": 0.9946 + }, + { + "start": 10064.22, + "end": 10065.26, + "probability": 0.9966 + }, + { + "start": 10065.64, + "end": 10067.94, + "probability": 0.8223 + }, + { + "start": 10068.3, + "end": 10070.66, + "probability": 0.9673 + }, + { + "start": 10070.68, + "end": 10071.48, + "probability": 0.7996 + }, + { + "start": 10071.9, + "end": 10072.92, + "probability": 0.9785 + }, + { + "start": 10072.98, + "end": 10075.3, + "probability": 0.9399 + }, + { + "start": 10075.94, + "end": 10077.76, + "probability": 0.9941 + }, + { + "start": 10078.22, + "end": 10079.1, + "probability": 0.9067 + }, + { + "start": 10079.16, + "end": 10079.64, + "probability": 0.9236 + }, + { + "start": 10079.74, + "end": 10080.26, + "probability": 0.6889 + }, + { + "start": 10080.38, + "end": 10080.72, + "probability": 0.6104 + }, + { + "start": 10081.34, + "end": 10082.54, + "probability": 0.834 + }, + { + "start": 10082.68, + "end": 10085.26, + "probability": 0.2599 + }, + { + "start": 10085.28, + "end": 10086.94, + "probability": 0.7147 + }, + { + "start": 10086.94, + "end": 10086.94, + "probability": 0.4699 + }, + { + "start": 10086.94, + "end": 10086.98, + "probability": 0.702 + }, + { + "start": 10087.08, + "end": 10087.82, + "probability": 0.6128 + }, + { + "start": 10088.16, + "end": 10092.7, + "probability": 0.9408 + }, + { + "start": 10097.76, + "end": 10099.08, + "probability": 0.8062 + }, + { + "start": 10101.26, + "end": 10101.86, + "probability": 0.9044 + }, + { + "start": 10103.16, + "end": 10104.28, + "probability": 0.0183 + }, + { + "start": 10116.58, + "end": 10118.1, + "probability": 0.165 + }, + { + "start": 10119.76, + "end": 10122.38, + "probability": 0.2967 + }, + { + "start": 10122.64, + "end": 10123.56, + "probability": 0.528 + }, + { + "start": 10124.0, + "end": 10125.12, + "probability": 0.833 + }, + { + "start": 10125.18, + "end": 10128.02, + "probability": 0.199 + }, + { + "start": 10128.1, + "end": 10128.62, + "probability": 0.03 + }, + { + "start": 10128.74, + "end": 10128.84, + "probability": 0.154 + }, + { + "start": 10129.12, + "end": 10129.74, + "probability": 0.7531 + }, + { + "start": 10130.4, + "end": 10131.04, + "probability": 0.8452 + }, + { + "start": 10131.64, + "end": 10133.34, + "probability": 0.64 + }, + { + "start": 10133.75, + "end": 10136.7, + "probability": 0.885 + }, + { + "start": 10140.94, + "end": 10141.56, + "probability": 0.4966 + }, + { + "start": 10141.78, + "end": 10143.12, + "probability": 0.525 + }, + { + "start": 10145.2, + "end": 10146.48, + "probability": 0.1789 + }, + { + "start": 10147.12, + "end": 10148.24, + "probability": 0.0465 + }, + { + "start": 10148.4, + "end": 10149.58, + "probability": 0.7243 + }, + { + "start": 10151.14, + "end": 10151.68, + "probability": 0.6838 + }, + { + "start": 10151.7, + "end": 10153.42, + "probability": 0.0373 + }, + { + "start": 10153.6, + "end": 10154.52, + "probability": 0.7437 + }, + { + "start": 10155.42, + "end": 10157.48, + "probability": 0.9724 + }, + { + "start": 10161.24, + "end": 10161.82, + "probability": 0.6485 + }, + { + "start": 10161.92, + "end": 10166.38, + "probability": 0.9816 + }, + { + "start": 10168.04, + "end": 10169.54, + "probability": 0.8901 + }, + { + "start": 10170.24, + "end": 10171.98, + "probability": 0.9608 + }, + { + "start": 10173.5, + "end": 10174.52, + "probability": 0.8971 + }, + { + "start": 10175.78, + "end": 10179.1, + "probability": 0.987 + }, + { + "start": 10180.0, + "end": 10181.74, + "probability": 0.7645 + }, + { + "start": 10184.02, + "end": 10186.66, + "probability": 0.9495 + }, + { + "start": 10187.26, + "end": 10189.5, + "probability": 0.865 + }, + { + "start": 10190.7, + "end": 10192.12, + "probability": 0.999 + }, + { + "start": 10192.18, + "end": 10195.42, + "probability": 0.9978 + }, + { + "start": 10196.76, + "end": 10198.54, + "probability": 0.9583 + }, + { + "start": 10200.14, + "end": 10202.94, + "probability": 0.6875 + }, + { + "start": 10204.8, + "end": 10206.58, + "probability": 0.8209 + }, + { + "start": 10208.0, + "end": 10211.36, + "probability": 0.5756 + }, + { + "start": 10211.46, + "end": 10212.68, + "probability": 0.9595 + }, + { + "start": 10213.34, + "end": 10214.52, + "probability": 0.868 + }, + { + "start": 10216.66, + "end": 10219.14, + "probability": 0.9845 + }, + { + "start": 10219.2, + "end": 10220.08, + "probability": 0.5462 + }, + { + "start": 10220.16, + "end": 10221.1, + "probability": 0.7975 + }, + { + "start": 10221.74, + "end": 10222.26, + "probability": 0.7353 + }, + { + "start": 10223.08, + "end": 10223.99, + "probability": 0.9302 + }, + { + "start": 10225.1, + "end": 10228.96, + "probability": 0.9805 + }, + { + "start": 10229.82, + "end": 10231.18, + "probability": 0.9984 + }, + { + "start": 10231.32, + "end": 10231.88, + "probability": 0.4985 + }, + { + "start": 10231.94, + "end": 10232.86, + "probability": 0.8442 + }, + { + "start": 10234.08, + "end": 10236.3, + "probability": 0.8129 + }, + { + "start": 10236.94, + "end": 10238.0, + "probability": 0.9772 + }, + { + "start": 10239.14, + "end": 10241.92, + "probability": 0.7215 + }, + { + "start": 10244.52, + "end": 10245.88, + "probability": 0.9418 + }, + { + "start": 10247.88, + "end": 10248.6, + "probability": 0.7426 + }, + { + "start": 10250.4, + "end": 10252.16, + "probability": 0.1633 + }, + { + "start": 10252.98, + "end": 10254.17, + "probability": 0.881 + }, + { + "start": 10254.92, + "end": 10255.28, + "probability": 0.4522 + }, + { + "start": 10256.1, + "end": 10256.77, + "probability": 0.9959 + }, + { + "start": 10257.92, + "end": 10259.82, + "probability": 0.9927 + }, + { + "start": 10261.32, + "end": 10267.5, + "probability": 0.9969 + }, + { + "start": 10267.58, + "end": 10269.72, + "probability": 0.6774 + }, + { + "start": 10270.44, + "end": 10271.6, + "probability": 0.9759 + }, + { + "start": 10272.56, + "end": 10273.68, + "probability": 0.9214 + }, + { + "start": 10274.76, + "end": 10278.18, + "probability": 0.9877 + }, + { + "start": 10278.94, + "end": 10281.22, + "probability": 0.9355 + }, + { + "start": 10282.2, + "end": 10284.44, + "probability": 0.9377 + }, + { + "start": 10285.96, + "end": 10289.86, + "probability": 0.9943 + }, + { + "start": 10291.58, + "end": 10293.22, + "probability": 0.9957 + }, + { + "start": 10295.96, + "end": 10296.9, + "probability": 0.8759 + }, + { + "start": 10298.24, + "end": 10300.98, + "probability": 0.983 + }, + { + "start": 10302.04, + "end": 10304.32, + "probability": 0.9691 + }, + { + "start": 10305.66, + "end": 10309.5, + "probability": 0.8765 + }, + { + "start": 10310.82, + "end": 10312.4, + "probability": 0.9512 + }, + { + "start": 10312.96, + "end": 10313.92, + "probability": 0.8802 + }, + { + "start": 10315.6, + "end": 10317.56, + "probability": 0.9935 + }, + { + "start": 10318.56, + "end": 10320.68, + "probability": 0.9548 + }, + { + "start": 10320.9, + "end": 10322.76, + "probability": 0.6429 + }, + { + "start": 10324.46, + "end": 10325.42, + "probability": 0.9089 + }, + { + "start": 10325.74, + "end": 10326.52, + "probability": 0.9481 + }, + { + "start": 10326.98, + "end": 10328.48, + "probability": 0.921 + }, + { + "start": 10328.62, + "end": 10329.68, + "probability": 0.9833 + }, + { + "start": 10330.44, + "end": 10333.62, + "probability": 0.9976 + }, + { + "start": 10334.14, + "end": 10338.96, + "probability": 0.9862 + }, + { + "start": 10339.04, + "end": 10341.04, + "probability": 0.9967 + }, + { + "start": 10341.14, + "end": 10342.32, + "probability": 0.7539 + }, + { + "start": 10343.2, + "end": 10344.68, + "probability": 0.8592 + }, + { + "start": 10345.52, + "end": 10346.64, + "probability": 0.7874 + }, + { + "start": 10347.28, + "end": 10349.8, + "probability": 0.9747 + }, + { + "start": 10350.8, + "end": 10351.57, + "probability": 0.6061 + }, + { + "start": 10352.04, + "end": 10353.6, + "probability": 0.814 + }, + { + "start": 10355.58, + "end": 10356.36, + "probability": 0.6192 + }, + { + "start": 10356.4, + "end": 10357.03, + "probability": 0.9814 + }, + { + "start": 10357.42, + "end": 10358.2, + "probability": 0.6753 + }, + { + "start": 10358.5, + "end": 10360.3, + "probability": 0.9245 + }, + { + "start": 10361.06, + "end": 10362.2, + "probability": 0.7401 + }, + { + "start": 10362.6, + "end": 10365.26, + "probability": 0.8858 + }, + { + "start": 10365.42, + "end": 10365.86, + "probability": 0.9685 + }, + { + "start": 10366.8, + "end": 10368.8, + "probability": 0.7383 + }, + { + "start": 10369.5, + "end": 10370.5, + "probability": 0.3987 + }, + { + "start": 10370.5, + "end": 10371.34, + "probability": 0.9156 + }, + { + "start": 10371.76, + "end": 10372.94, + "probability": 0.8545 + }, + { + "start": 10372.94, + "end": 10373.64, + "probability": 0.551 + }, + { + "start": 10373.72, + "end": 10374.24, + "probability": 0.3961 + }, + { + "start": 10375.1, + "end": 10376.28, + "probability": 0.9105 + }, + { + "start": 10376.38, + "end": 10376.94, + "probability": 0.636 + }, + { + "start": 10377.2, + "end": 10378.22, + "probability": 0.974 + }, + { + "start": 10378.96, + "end": 10379.46, + "probability": 0.9216 + }, + { + "start": 10380.44, + "end": 10381.03, + "probability": 0.6461 + }, + { + "start": 10381.64, + "end": 10383.02, + "probability": 0.9545 + }, + { + "start": 10383.66, + "end": 10387.44, + "probability": 0.3757 + }, + { + "start": 10388.04, + "end": 10391.8, + "probability": 0.9045 + }, + { + "start": 10392.38, + "end": 10396.26, + "probability": 0.6335 + }, + { + "start": 10398.42, + "end": 10399.34, + "probability": 0.8911 + }, + { + "start": 10399.36, + "end": 10400.66, + "probability": 0.8779 + }, + { + "start": 10400.7, + "end": 10400.94, + "probability": 0.3907 + }, + { + "start": 10400.96, + "end": 10401.44, + "probability": 0.7925 + }, + { + "start": 10401.58, + "end": 10403.02, + "probability": 0.8822 + }, + { + "start": 10403.08, + "end": 10404.2, + "probability": 0.9214 + }, + { + "start": 10404.68, + "end": 10409.38, + "probability": 0.9924 + }, + { + "start": 10409.52, + "end": 10410.41, + "probability": 0.8262 + }, + { + "start": 10410.8, + "end": 10412.38, + "probability": 0.9647 + }, + { + "start": 10413.14, + "end": 10419.56, + "probability": 0.9908 + }, + { + "start": 10420.6, + "end": 10423.67, + "probability": 0.9955 + }, + { + "start": 10425.3, + "end": 10428.56, + "probability": 0.999 + }, + { + "start": 10428.68, + "end": 10431.34, + "probability": 0.8384 + }, + { + "start": 10431.38, + "end": 10434.96, + "probability": 0.964 + }, + { + "start": 10435.14, + "end": 10438.02, + "probability": 0.9702 + }, + { + "start": 10438.12, + "end": 10438.86, + "probability": 0.8177 + }, + { + "start": 10438.92, + "end": 10440.56, + "probability": 0.7847 + }, + { + "start": 10440.64, + "end": 10441.48, + "probability": 0.8875 + }, + { + "start": 10441.88, + "end": 10443.3, + "probability": 0.9539 + }, + { + "start": 10443.74, + "end": 10444.88, + "probability": 0.7206 + }, + { + "start": 10445.28, + "end": 10445.6, + "probability": 0.9222 + }, + { + "start": 10445.6, + "end": 10449.4, + "probability": 0.9529 + }, + { + "start": 10449.56, + "end": 10451.22, + "probability": 0.6271 + }, + { + "start": 10451.8, + "end": 10452.98, + "probability": 0.1731 + }, + { + "start": 10452.98, + "end": 10454.1, + "probability": 0.206 + }, + { + "start": 10454.2, + "end": 10455.3, + "probability": 0.7621 + }, + { + "start": 10455.3, + "end": 10455.38, + "probability": 0.6129 + }, + { + "start": 10455.6, + "end": 10457.56, + "probability": 0.8555 + }, + { + "start": 10468.91, + "end": 10469.03, + "probability": 0.0584 + }, + { + "start": 10469.03, + "end": 10469.81, + "probability": 0.6112 + }, + { + "start": 10470.01, + "end": 10475.19, + "probability": 0.9558 + }, + { + "start": 10475.24, + "end": 10483.23, + "probability": 0.9861 + }, + { + "start": 10484.57, + "end": 10486.75, + "probability": 0.9944 + }, + { + "start": 10486.97, + "end": 10492.03, + "probability": 0.9152 + }, + { + "start": 10492.03, + "end": 10494.73, + "probability": 0.8888 + }, + { + "start": 10494.89, + "end": 10496.45, + "probability": 0.6622 + }, + { + "start": 10496.59, + "end": 10498.43, + "probability": 0.9453 + }, + { + "start": 10499.69, + "end": 10506.55, + "probability": 0.9969 + }, + { + "start": 10507.17, + "end": 10511.61, + "probability": 0.9994 + }, + { + "start": 10511.63, + "end": 10515.65, + "probability": 0.8232 + }, + { + "start": 10516.49, + "end": 10520.03, + "probability": 0.9933 + }, + { + "start": 10521.39, + "end": 10522.07, + "probability": 0.8098 + }, + { + "start": 10522.39, + "end": 10523.23, + "probability": 0.3395 + }, + { + "start": 10523.61, + "end": 10526.61, + "probability": 0.9923 + }, + { + "start": 10526.77, + "end": 10528.11, + "probability": 0.5366 + }, + { + "start": 10529.11, + "end": 10530.43, + "probability": 0.5669 + }, + { + "start": 10531.37, + "end": 10535.26, + "probability": 0.9707 + }, + { + "start": 10535.71, + "end": 10539.41, + "probability": 0.9988 + }, + { + "start": 10539.95, + "end": 10544.27, + "probability": 0.9516 + }, + { + "start": 10544.39, + "end": 10547.69, + "probability": 0.8732 + }, + { + "start": 10548.53, + "end": 10553.97, + "probability": 0.9978 + }, + { + "start": 10553.97, + "end": 10560.19, + "probability": 0.9905 + }, + { + "start": 10560.41, + "end": 10561.51, + "probability": 0.9769 + }, + { + "start": 10561.61, + "end": 10562.93, + "probability": 0.6452 + }, + { + "start": 10563.11, + "end": 10563.29, + "probability": 0.567 + }, + { + "start": 10563.29, + "end": 10565.19, + "probability": 0.9158 + }, + { + "start": 10565.55, + "end": 10566.59, + "probability": 0.9564 + }, + { + "start": 10566.81, + "end": 10573.49, + "probability": 0.9723 + }, + { + "start": 10575.93, + "end": 10575.95, + "probability": 0.3596 + }, + { + "start": 10575.95, + "end": 10577.11, + "probability": 0.8555 + }, + { + "start": 10577.21, + "end": 10577.59, + "probability": 0.6711 + }, + { + "start": 10577.69, + "end": 10578.79, + "probability": 0.994 + }, + { + "start": 10578.93, + "end": 10579.63, + "probability": 0.5173 + }, + { + "start": 10580.03, + "end": 10580.59, + "probability": 0.2435 + }, + { + "start": 10580.79, + "end": 10584.89, + "probability": 0.5371 + }, + { + "start": 10585.31, + "end": 10586.1, + "probability": 0.6942 + }, + { + "start": 10586.67, + "end": 10587.31, + "probability": 0.7425 + }, + { + "start": 10587.65, + "end": 10587.75, + "probability": 0.4104 + }, + { + "start": 10587.89, + "end": 10588.39, + "probability": 0.6986 + }, + { + "start": 10588.65, + "end": 10590.33, + "probability": 0.9624 + }, + { + "start": 10590.47, + "end": 10593.15, + "probability": 0.8997 + }, + { + "start": 10594.05, + "end": 10596.09, + "probability": 0.0616 + }, + { + "start": 10596.17, + "end": 10597.11, + "probability": 0.3977 + }, + { + "start": 10597.21, + "end": 10600.81, + "probability": 0.9912 + }, + { + "start": 10601.39, + "end": 10602.39, + "probability": 0.4833 + }, + { + "start": 10602.41, + "end": 10603.91, + "probability": 0.7489 + }, + { + "start": 10604.49, + "end": 10604.75, + "probability": 0.7307 + }, + { + "start": 10605.11, + "end": 10607.31, + "probability": 0.9925 + }, + { + "start": 10607.35, + "end": 10609.45, + "probability": 0.826 + }, + { + "start": 10609.79, + "end": 10610.33, + "probability": 0.3822 + }, + { + "start": 10610.35, + "end": 10610.75, + "probability": 0.5248 + }, + { + "start": 10610.85, + "end": 10613.45, + "probability": 0.9945 + }, + { + "start": 10613.71, + "end": 10617.31, + "probability": 0.9156 + }, + { + "start": 10617.83, + "end": 10620.47, + "probability": 0.9962 + }, + { + "start": 10620.53, + "end": 10623.75, + "probability": 0.5092 + }, + { + "start": 10623.89, + "end": 10624.11, + "probability": 0.3054 + }, + { + "start": 10624.43, + "end": 10629.97, + "probability": 0.995 + }, + { + "start": 10629.97, + "end": 10634.93, + "probability": 0.9998 + }, + { + "start": 10635.41, + "end": 10636.77, + "probability": 0.7061 + }, + { + "start": 10636.85, + "end": 10643.1, + "probability": 0.9977 + }, + { + "start": 10643.53, + "end": 10648.93, + "probability": 0.9952 + }, + { + "start": 10649.45, + "end": 10653.03, + "probability": 0.9941 + }, + { + "start": 10653.61, + "end": 10654.97, + "probability": 0.8104 + }, + { + "start": 10655.13, + "end": 10658.63, + "probability": 0.7798 + }, + { + "start": 10658.75, + "end": 10667.17, + "probability": 0.9814 + }, + { + "start": 10667.67, + "end": 10668.89, + "probability": 0.8056 + }, + { + "start": 10669.13, + "end": 10669.79, + "probability": 0.3819 + }, + { + "start": 10669.93, + "end": 10672.93, + "probability": 0.8302 + }, + { + "start": 10673.59, + "end": 10674.79, + "probability": 0.8018 + }, + { + "start": 10674.87, + "end": 10676.59, + "probability": 0.8851 + }, + { + "start": 10676.65, + "end": 10679.23, + "probability": 0.96 + }, + { + "start": 10679.75, + "end": 10683.07, + "probability": 0.7253 + }, + { + "start": 10684.63, + "end": 10685.53, + "probability": 0.9727 + }, + { + "start": 10685.53, + "end": 10686.27, + "probability": 0.7511 + }, + { + "start": 10686.29, + "end": 10688.73, + "probability": 0.888 + }, + { + "start": 10689.27, + "end": 10689.87, + "probability": 0.9888 + }, + { + "start": 10690.03, + "end": 10692.71, + "probability": 0.9751 + }, + { + "start": 10692.91, + "end": 10693.55, + "probability": 0.4432 + }, + { + "start": 10693.63, + "end": 10694.45, + "probability": 0.7803 + }, + { + "start": 10694.51, + "end": 10694.59, + "probability": 0.169 + }, + { + "start": 10694.59, + "end": 10696.33, + "probability": 0.1835 + }, + { + "start": 10696.55, + "end": 10701.53, + "probability": 0.0436 + }, + { + "start": 10701.55, + "end": 10705.07, + "probability": 0.6619 + }, + { + "start": 10705.59, + "end": 10711.77, + "probability": 0.9907 + }, + { + "start": 10711.77, + "end": 10715.11, + "probability": 0.975 + }, + { + "start": 10715.71, + "end": 10719.31, + "probability": 0.9893 + }, + { + "start": 10719.79, + "end": 10725.09, + "probability": 0.9897 + }, + { + "start": 10725.71, + "end": 10727.52, + "probability": 0.9858 + }, + { + "start": 10728.09, + "end": 10728.67, + "probability": 0.4605 + }, + { + "start": 10729.42, + "end": 10732.82, + "probability": 0.9974 + }, + { + "start": 10733.47, + "end": 10736.81, + "probability": 0.9732 + }, + { + "start": 10737.03, + "end": 10738.63, + "probability": 0.0035 + }, + { + "start": 10739.23, + "end": 10740.21, + "probability": 0.8943 + }, + { + "start": 10740.23, + "end": 10740.65, + "probability": 0.1041 + }, + { + "start": 10740.93, + "end": 10745.79, + "probability": 0.9229 + }, + { + "start": 10745.83, + "end": 10752.02, + "probability": 0.9973 + }, + { + "start": 10752.47, + "end": 10756.01, + "probability": 0.9252 + }, + { + "start": 10756.07, + "end": 10756.53, + "probability": 0.6988 + }, + { + "start": 10756.67, + "end": 10759.93, + "probability": 0.9907 + }, + { + "start": 10760.41, + "end": 10765.31, + "probability": 0.9976 + }, + { + "start": 10765.37, + "end": 10766.67, + "probability": 0.9699 + }, + { + "start": 10767.13, + "end": 10773.99, + "probability": 0.9964 + }, + { + "start": 10774.09, + "end": 10777.85, + "probability": 0.9285 + }, + { + "start": 10777.85, + "end": 10780.93, + "probability": 0.9719 + }, + { + "start": 10781.09, + "end": 10781.43, + "probability": 0.597 + }, + { + "start": 10781.99, + "end": 10784.72, + "probability": 0.7951 + }, + { + "start": 10785.33, + "end": 10785.85, + "probability": 0.7473 + }, + { + "start": 10788.49, + "end": 10788.55, + "probability": 0.0604 + }, + { + "start": 10788.55, + "end": 10789.25, + "probability": 0.0669 + }, + { + "start": 10789.51, + "end": 10792.93, + "probability": 0.9377 + }, + { + "start": 10792.99, + "end": 10794.33, + "probability": 0.3412 + }, + { + "start": 10794.45, + "end": 10796.79, + "probability": 0.9415 + }, + { + "start": 10796.99, + "end": 10800.55, + "probability": 0.9104 + }, + { + "start": 10800.55, + "end": 10802.53, + "probability": 0.9575 + }, + { + "start": 10802.79, + "end": 10806.59, + "probability": 0.7094 + }, + { + "start": 10806.73, + "end": 10807.96, + "probability": 0.9116 + }, + { + "start": 10808.11, + "end": 10811.77, + "probability": 0.8706 + }, + { + "start": 10812.51, + "end": 10814.95, + "probability": 0.6315 + }, + { + "start": 10814.99, + "end": 10817.19, + "probability": 0.7412 + }, + { + "start": 10817.43, + "end": 10817.91, + "probability": 0.7602 + }, + { + "start": 10818.83, + "end": 10820.13, + "probability": 0.4102 + }, + { + "start": 10820.27, + "end": 10822.27, + "probability": 0.9793 + }, + { + "start": 10823.11, + "end": 10825.17, + "probability": 0.7339 + }, + { + "start": 10825.17, + "end": 10827.35, + "probability": 0.8462 + }, + { + "start": 10828.55, + "end": 10834.39, + "probability": 0.9896 + }, + { + "start": 10834.65, + "end": 10838.87, + "probability": 0.8535 + }, + { + "start": 10839.33, + "end": 10840.45, + "probability": 0.6852 + }, + { + "start": 10840.55, + "end": 10841.31, + "probability": 0.5045 + }, + { + "start": 10841.39, + "end": 10844.09, + "probability": 0.6303 + }, + { + "start": 10844.17, + "end": 10849.28, + "probability": 0.9279 + }, + { + "start": 10849.29, + "end": 10853.97, + "probability": 0.9918 + }, + { + "start": 10854.11, + "end": 10855.39, + "probability": 0.8606 + }, + { + "start": 10855.83, + "end": 10856.75, + "probability": 0.8255 + }, + { + "start": 10856.85, + "end": 10858.75, + "probability": 0.4885 + }, + { + "start": 10858.77, + "end": 10858.87, + "probability": 0.8665 + }, + { + "start": 10859.93, + "end": 10860.79, + "probability": 0.8129 + }, + { + "start": 10861.69, + "end": 10862.79, + "probability": 0.6426 + }, + { + "start": 10863.31, + "end": 10864.99, + "probability": 0.9732 + }, + { + "start": 10865.11, + "end": 10865.81, + "probability": 0.9097 + }, + { + "start": 10866.31, + "end": 10869.05, + "probability": 0.2586 + }, + { + "start": 10869.61, + "end": 10875.17, + "probability": 0.6075 + }, + { + "start": 10875.27, + "end": 10875.85, + "probability": 0.8722 + }, + { + "start": 10877.05, + "end": 10877.09, + "probability": 0.0074 + } + ], + "segments_count": 3649, + "words_count": 18394, + "avg_words_per_segment": 5.0408, + "avg_segment_duration": 2.315, + "avg_words_per_minute": 101.2322, + "plenum_id": "23458", + "duration": 10902.07, + "title": null, + "plenum_date": "2012-06-12" +} \ No newline at end of file