diff --git "a/27320/metadata.json" "b/27320/metadata.json" new file mode 100644--- /dev/null +++ "b/27320/metadata.json" @@ -0,0 +1,34482 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "27320", + "quality_score": 0.8879, + "per_segment_quality_scores": [ + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 160.0, + "end": 160.0, + "probability": 0.0 + }, + { + "start": 181.82, + "end": 185.04, + "probability": 0.9942 + }, + { + "start": 185.1, + "end": 189.52, + "probability": 0.5496 + }, + { + "start": 190.2, + "end": 196.52, + "probability": 0.5197 + }, + { + "start": 201.24, + "end": 206.78, + "probability": 0.9972 + }, + { + "start": 206.92, + "end": 207.14, + "probability": 0.7215 + }, + { + "start": 208.94, + "end": 211.8, + "probability": 0.2803 + }, + { + "start": 211.8, + "end": 212.84, + "probability": 0.6646 + }, + { + "start": 214.32, + "end": 217.56, + "probability": 0.0207 + }, + { + "start": 232.94, + "end": 233.78, + "probability": 0.6051 + }, + { + "start": 246.02, + "end": 248.26, + "probability": 0.9534 + }, + { + "start": 249.7, + "end": 251.28, + "probability": 0.7463 + }, + { + "start": 251.42, + "end": 253.2, + "probability": 0.8317 + }, + { + "start": 253.4, + "end": 255.02, + "probability": 0.9641 + }, + { + "start": 255.18, + "end": 257.28, + "probability": 0.7247 + }, + { + "start": 258.22, + "end": 260.46, + "probability": 0.9105 + }, + { + "start": 260.56, + "end": 263.24, + "probability": 0.8616 + }, + { + "start": 263.7, + "end": 264.56, + "probability": 0.7235 + }, + { + "start": 265.02, + "end": 267.76, + "probability": 0.8447 + }, + { + "start": 268.0, + "end": 269.94, + "probability": 0.7842 + }, + { + "start": 270.08, + "end": 271.28, + "probability": 0.9188 + }, + { + "start": 272.02, + "end": 275.2, + "probability": 0.4179 + }, + { + "start": 275.72, + "end": 285.76, + "probability": 0.8608 + }, + { + "start": 287.72, + "end": 290.22, + "probability": 0.0248 + }, + { + "start": 291.21, + "end": 293.12, + "probability": 0.0573 + }, + { + "start": 293.6, + "end": 295.14, + "probability": 0.3573 + }, + { + "start": 295.78, + "end": 299.56, + "probability": 0.0766 + }, + { + "start": 301.06, + "end": 302.08, + "probability": 0.0768 + }, + { + "start": 327.88, + "end": 328.92, + "probability": 0.0938 + }, + { + "start": 329.5, + "end": 330.9, + "probability": 0.0332 + }, + { + "start": 332.64, + "end": 333.7, + "probability": 0.0858 + }, + { + "start": 334.42, + "end": 334.42, + "probability": 0.0824 + }, + { + "start": 334.66, + "end": 335.44, + "probability": 0.0159 + }, + { + "start": 335.9, + "end": 337.94, + "probability": 0.0278 + }, + { + "start": 338.42, + "end": 340.54, + "probability": 0.0197 + }, + { + "start": 340.62, + "end": 341.2, + "probability": 0.0287 + }, + { + "start": 351.38, + "end": 352.14, + "probability": 0.284 + }, + { + "start": 356.4, + "end": 358.06, + "probability": 0.0513 + }, + { + "start": 364.84, + "end": 367.8, + "probability": 0.0264 + }, + { + "start": 367.84, + "end": 368.54, + "probability": 0.0474 + }, + { + "start": 368.54, + "end": 368.54, + "probability": 0.076 + }, + { + "start": 368.54, + "end": 368.54, + "probability": 0.1508 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.0, + "end": 388.0, + "probability": 0.0 + }, + { + "start": 388.8, + "end": 391.86, + "probability": 0.5837 + }, + { + "start": 392.96, + "end": 398.58, + "probability": 0.9622 + }, + { + "start": 399.42, + "end": 401.16, + "probability": 0.9989 + }, + { + "start": 402.0, + "end": 404.9, + "probability": 0.9658 + }, + { + "start": 405.68, + "end": 408.5, + "probability": 0.9591 + }, + { + "start": 409.36, + "end": 411.2, + "probability": 0.9893 + }, + { + "start": 412.34, + "end": 414.96, + "probability": 0.8115 + }, + { + "start": 415.78, + "end": 416.9, + "probability": 0.9686 + }, + { + "start": 417.8, + "end": 418.7, + "probability": 0.9328 + }, + { + "start": 419.68, + "end": 421.56, + "probability": 0.7332 + }, + { + "start": 426.56, + "end": 433.96, + "probability": 0.7798 + }, + { + "start": 435.6, + "end": 436.28, + "probability": 0.988 + }, + { + "start": 437.36, + "end": 442.54, + "probability": 0.9935 + }, + { + "start": 478.12, + "end": 478.52, + "probability": 0.0302 + }, + { + "start": 482.2, + "end": 483.76, + "probability": 0.8774 + }, + { + "start": 485.34, + "end": 488.28, + "probability": 0.9756 + }, + { + "start": 488.28, + "end": 492.26, + "probability": 0.8814 + }, + { + "start": 494.64, + "end": 499.16, + "probability": 0.9478 + }, + { + "start": 499.16, + "end": 503.88, + "probability": 0.9977 + }, + { + "start": 505.0, + "end": 507.16, + "probability": 1.0 + }, + { + "start": 509.02, + "end": 513.28, + "probability": 0.9744 + }, + { + "start": 514.56, + "end": 520.0, + "probability": 0.9846 + }, + { + "start": 520.68, + "end": 524.6, + "probability": 0.9496 + }, + { + "start": 525.26, + "end": 528.9, + "probability": 0.9296 + }, + { + "start": 530.38, + "end": 537.5, + "probability": 0.9509 + }, + { + "start": 537.86, + "end": 539.0, + "probability": 0.8685 + }, + { + "start": 539.7, + "end": 542.28, + "probability": 0.9965 + }, + { + "start": 542.88, + "end": 545.56, + "probability": 0.9755 + }, + { + "start": 547.26, + "end": 550.62, + "probability": 0.8609 + }, + { + "start": 551.18, + "end": 552.16, + "probability": 0.9317 + }, + { + "start": 552.92, + "end": 559.82, + "probability": 0.9733 + }, + { + "start": 560.62, + "end": 561.8, + "probability": 0.8422 + }, + { + "start": 562.9, + "end": 566.34, + "probability": 0.9951 + }, + { + "start": 566.34, + "end": 571.12, + "probability": 0.9976 + }, + { + "start": 571.98, + "end": 574.16, + "probability": 0.9862 + }, + { + "start": 575.46, + "end": 577.4, + "probability": 0.9988 + }, + { + "start": 578.02, + "end": 580.94, + "probability": 0.9661 + }, + { + "start": 581.8, + "end": 582.9, + "probability": 0.5328 + }, + { + "start": 583.92, + "end": 586.76, + "probability": 0.6315 + }, + { + "start": 586.98, + "end": 588.52, + "probability": 0.9069 + }, + { + "start": 589.08, + "end": 594.14, + "probability": 0.8725 + }, + { + "start": 594.92, + "end": 599.18, + "probability": 0.9866 + }, + { + "start": 599.7, + "end": 604.04, + "probability": 0.932 + }, + { + "start": 604.58, + "end": 605.18, + "probability": 0.8281 + }, + { + "start": 606.02, + "end": 607.92, + "probability": 0.8966 + }, + { + "start": 608.92, + "end": 609.88, + "probability": 0.6286 + }, + { + "start": 610.56, + "end": 615.92, + "probability": 0.9595 + }, + { + "start": 616.42, + "end": 618.32, + "probability": 0.8211 + }, + { + "start": 628.88, + "end": 631.54, + "probability": 0.7274 + }, + { + "start": 633.26, + "end": 638.72, + "probability": 0.9956 + }, + { + "start": 638.98, + "end": 645.66, + "probability": 0.9943 + }, + { + "start": 646.72, + "end": 652.28, + "probability": 0.9905 + }, + { + "start": 653.38, + "end": 656.24, + "probability": 0.7881 + }, + { + "start": 656.98, + "end": 658.16, + "probability": 0.9431 + }, + { + "start": 658.84, + "end": 661.3, + "probability": 0.999 + }, + { + "start": 662.22, + "end": 664.76, + "probability": 0.981 + }, + { + "start": 665.94, + "end": 668.08, + "probability": 0.9912 + }, + { + "start": 669.14, + "end": 672.56, + "probability": 0.9141 + }, + { + "start": 673.12, + "end": 674.2, + "probability": 0.7485 + }, + { + "start": 675.3, + "end": 676.7, + "probability": 0.7899 + }, + { + "start": 676.92, + "end": 678.72, + "probability": 0.8289 + }, + { + "start": 680.34, + "end": 685.6, + "probability": 0.9781 + }, + { + "start": 687.62, + "end": 692.62, + "probability": 0.7009 + }, + { + "start": 692.98, + "end": 695.14, + "probability": 0.6626 + }, + { + "start": 695.34, + "end": 703.6, + "probability": 0.9863 + }, + { + "start": 703.76, + "end": 711.1, + "probability": 0.9349 + }, + { + "start": 711.74, + "end": 714.8, + "probability": 0.6452 + }, + { + "start": 715.42, + "end": 718.52, + "probability": 0.9355 + }, + { + "start": 719.26, + "end": 720.58, + "probability": 0.9527 + }, + { + "start": 720.76, + "end": 726.18, + "probability": 0.9902 + }, + { + "start": 726.66, + "end": 728.98, + "probability": 0.607 + }, + { + "start": 729.28, + "end": 730.72, + "probability": 0.4263 + }, + { + "start": 732.56, + "end": 735.1, + "probability": 0.9703 + }, + { + "start": 735.98, + "end": 737.56, + "probability": 0.6459 + }, + { + "start": 738.4, + "end": 742.72, + "probability": 0.955 + }, + { + "start": 743.38, + "end": 744.74, + "probability": 0.8078 + }, + { + "start": 745.34, + "end": 750.26, + "probability": 0.3107 + }, + { + "start": 750.94, + "end": 752.12, + "probability": 0.9683 + }, + { + "start": 752.72, + "end": 755.32, + "probability": 0.9004 + }, + { + "start": 755.94, + "end": 758.0, + "probability": 0.9464 + }, + { + "start": 758.7, + "end": 763.28, + "probability": 0.9777 + }, + { + "start": 768.04, + "end": 768.86, + "probability": 0.8158 + }, + { + "start": 770.24, + "end": 771.22, + "probability": 0.8222 + }, + { + "start": 774.94, + "end": 778.28, + "probability": 0.7179 + }, + { + "start": 779.16, + "end": 784.48, + "probability": 0.7692 + }, + { + "start": 785.9, + "end": 792.04, + "probability": 0.9888 + }, + { + "start": 795.1, + "end": 795.74, + "probability": 0.8657 + }, + { + "start": 812.94, + "end": 814.14, + "probability": 0.7529 + }, + { + "start": 814.32, + "end": 815.38, + "probability": 0.9299 + }, + { + "start": 815.68, + "end": 817.7, + "probability": 0.8668 + }, + { + "start": 818.12, + "end": 819.28, + "probability": 0.6105 + }, + { + "start": 819.4, + "end": 820.12, + "probability": 0.675 + }, + { + "start": 820.26, + "end": 823.94, + "probability": 0.8072 + }, + { + "start": 823.94, + "end": 826.3, + "probability": 0.9542 + }, + { + "start": 828.84, + "end": 829.88, + "probability": 0.5469 + }, + { + "start": 832.22, + "end": 837.46, + "probability": 0.9881 + }, + { + "start": 838.96, + "end": 843.46, + "probability": 0.7039 + }, + { + "start": 844.26, + "end": 844.88, + "probability": 0.589 + }, + { + "start": 845.2, + "end": 845.88, + "probability": 0.7979 + }, + { + "start": 846.2, + "end": 846.68, + "probability": 0.2831 + }, + { + "start": 850.42, + "end": 850.78, + "probability": 0.4987 + }, + { + "start": 856.4, + "end": 858.6, + "probability": 0.0754 + }, + { + "start": 875.7, + "end": 878.32, + "probability": 0.6198 + }, + { + "start": 879.34, + "end": 879.76, + "probability": 0.6997 + }, + { + "start": 880.76, + "end": 881.74, + "probability": 0.7115 + }, + { + "start": 882.48, + "end": 883.04, + "probability": 0.5099 + }, + { + "start": 883.96, + "end": 887.76, + "probability": 0.2138 + }, + { + "start": 888.38, + "end": 889.18, + "probability": 0.1742 + }, + { + "start": 889.72, + "end": 891.38, + "probability": 0.0541 + }, + { + "start": 891.82, + "end": 896.94, + "probability": 0.9644 + }, + { + "start": 897.78, + "end": 900.24, + "probability": 0.9976 + }, + { + "start": 905.06, + "end": 908.8, + "probability": 0.2605 + }, + { + "start": 909.5, + "end": 910.98, + "probability": 0.0438 + }, + { + "start": 912.25, + "end": 914.9, + "probability": 0.9806 + }, + { + "start": 917.4, + "end": 918.28, + "probability": 0.5912 + }, + { + "start": 931.06, + "end": 938.52, + "probability": 0.0866 + }, + { + "start": 941.22, + "end": 949.38, + "probability": 0.3074 + }, + { + "start": 950.8, + "end": 952.06, + "probability": 0.3673 + }, + { + "start": 954.06, + "end": 954.2, + "probability": 0.1233 + }, + { + "start": 955.78, + "end": 957.38, + "probability": 0.2822 + }, + { + "start": 958.1, + "end": 959.26, + "probability": 0.8494 + }, + { + "start": 959.96, + "end": 960.84, + "probability": 0.837 + }, + { + "start": 961.16, + "end": 967.36, + "probability": 0.9018 + }, + { + "start": 968.04, + "end": 969.08, + "probability": 0.9756 + }, + { + "start": 969.66, + "end": 971.62, + "probability": 0.9058 + }, + { + "start": 973.14, + "end": 973.7, + "probability": 0.7844 + }, + { + "start": 974.52, + "end": 976.24, + "probability": 0.4042 + }, + { + "start": 977.04, + "end": 978.74, + "probability": 0.7665 + }, + { + "start": 979.28, + "end": 980.54, + "probability": 0.7525 + }, + { + "start": 980.62, + "end": 984.36, + "probability": 0.87 + }, + { + "start": 984.88, + "end": 986.18, + "probability": 0.7656 + }, + { + "start": 986.88, + "end": 991.34, + "probability": 0.9991 + }, + { + "start": 991.66, + "end": 994.84, + "probability": 0.9917 + }, + { + "start": 995.32, + "end": 997.8, + "probability": 0.3456 + }, + { + "start": 998.02, + "end": 998.44, + "probability": 0.0249 + }, + { + "start": 1008.32, + "end": 1009.14, + "probability": 0.0705 + }, + { + "start": 1011.34, + "end": 1011.68, + "probability": 0.0857 + }, + { + "start": 1040.48, + "end": 1042.1, + "probability": 0.9214 + }, + { + "start": 1042.2, + "end": 1043.64, + "probability": 0.9814 + }, + { + "start": 1050.04, + "end": 1053.34, + "probability": 0.9528 + }, + { + "start": 1055.26, + "end": 1058.8, + "probability": 0.9657 + }, + { + "start": 1059.46, + "end": 1061.18, + "probability": 0.9677 + }, + { + "start": 1061.5, + "end": 1063.56, + "probability": 0.9313 + }, + { + "start": 1063.8, + "end": 1064.7, + "probability": 0.9583 + }, + { + "start": 1066.3, + "end": 1068.14, + "probability": 0.8086 + }, + { + "start": 1069.06, + "end": 1070.98, + "probability": 0.9547 + }, + { + "start": 1071.6, + "end": 1074.66, + "probability": 0.9965 + }, + { + "start": 1074.66, + "end": 1077.26, + "probability": 0.8718 + }, + { + "start": 1080.48, + "end": 1083.08, + "probability": 0.8202 + }, + { + "start": 1084.2, + "end": 1086.76, + "probability": 0.9868 + }, + { + "start": 1088.32, + "end": 1092.18, + "probability": 0.9944 + }, + { + "start": 1092.74, + "end": 1094.4, + "probability": 0.7853 + }, + { + "start": 1095.1, + "end": 1097.46, + "probability": 0.9792 + }, + { + "start": 1097.54, + "end": 1098.52, + "probability": 0.8657 + }, + { + "start": 1099.48, + "end": 1101.78, + "probability": 0.9142 + }, + { + "start": 1102.96, + "end": 1104.14, + "probability": 0.891 + }, + { + "start": 1104.42, + "end": 1107.02, + "probability": 0.8534 + }, + { + "start": 1107.6, + "end": 1107.94, + "probability": 0.8704 + }, + { + "start": 1107.98, + "end": 1108.68, + "probability": 0.9807 + }, + { + "start": 1108.72, + "end": 1109.48, + "probability": 0.9587 + }, + { + "start": 1109.5, + "end": 1110.26, + "probability": 0.9617 + }, + { + "start": 1110.32, + "end": 1111.1, + "probability": 0.9705 + }, + { + "start": 1112.04, + "end": 1114.4, + "probability": 0.9765 + }, + { + "start": 1114.4, + "end": 1118.16, + "probability": 0.9787 + }, + { + "start": 1118.52, + "end": 1119.64, + "probability": 0.7519 + }, + { + "start": 1120.18, + "end": 1121.18, + "probability": 0.6152 + }, + { + "start": 1121.36, + "end": 1124.22, + "probability": 0.9191 + }, + { + "start": 1124.66, + "end": 1129.0, + "probability": 0.993 + }, + { + "start": 1130.32, + "end": 1134.28, + "probability": 0.874 + }, + { + "start": 1136.3, + "end": 1138.54, + "probability": 0.9401 + }, + { + "start": 1138.64, + "end": 1140.24, + "probability": 0.9688 + }, + { + "start": 1140.48, + "end": 1142.88, + "probability": 0.9569 + }, + { + "start": 1142.96, + "end": 1144.62, + "probability": 0.8415 + }, + { + "start": 1144.96, + "end": 1146.72, + "probability": 0.9749 + }, + { + "start": 1147.72, + "end": 1151.92, + "probability": 0.8654 + }, + { + "start": 1152.82, + "end": 1155.44, + "probability": 0.6084 + }, + { + "start": 1156.68, + "end": 1157.8, + "probability": 0.8242 + }, + { + "start": 1159.2, + "end": 1160.02, + "probability": 0.7604 + }, + { + "start": 1162.35, + "end": 1164.06, + "probability": 0.9126 + }, + { + "start": 1164.08, + "end": 1166.56, + "probability": 0.9958 + }, + { + "start": 1168.84, + "end": 1169.46, + "probability": 0.7358 + }, + { + "start": 1170.18, + "end": 1172.8, + "probability": 0.9937 + }, + { + "start": 1172.98, + "end": 1176.2, + "probability": 0.9727 + }, + { + "start": 1178.06, + "end": 1179.29, + "probability": 0.9943 + }, + { + "start": 1180.48, + "end": 1180.84, + "probability": 0.1559 + }, + { + "start": 1181.52, + "end": 1183.24, + "probability": 0.9759 + }, + { + "start": 1184.78, + "end": 1185.02, + "probability": 0.1824 + }, + { + "start": 1185.74, + "end": 1189.72, + "probability": 0.9958 + }, + { + "start": 1189.72, + "end": 1195.1, + "probability": 0.9902 + }, + { + "start": 1195.44, + "end": 1197.86, + "probability": 0.9992 + }, + { + "start": 1198.28, + "end": 1203.28, + "probability": 0.9678 + }, + { + "start": 1204.68, + "end": 1205.12, + "probability": 0.7262 + }, + { + "start": 1206.5, + "end": 1209.14, + "probability": 0.9257 + }, + { + "start": 1210.66, + "end": 1212.8, + "probability": 0.9485 + }, + { + "start": 1213.08, + "end": 1216.06, + "probability": 0.931 + }, + { + "start": 1216.78, + "end": 1220.44, + "probability": 0.9509 + }, + { + "start": 1221.26, + "end": 1223.76, + "probability": 0.9953 + }, + { + "start": 1224.1, + "end": 1227.42, + "probability": 0.9872 + }, + { + "start": 1227.86, + "end": 1229.12, + "probability": 0.9263 + }, + { + "start": 1229.82, + "end": 1232.06, + "probability": 0.9607 + }, + { + "start": 1232.84, + "end": 1234.7, + "probability": 0.8718 + }, + { + "start": 1237.74, + "end": 1237.76, + "probability": 0.4075 + }, + { + "start": 1238.34, + "end": 1240.0, + "probability": 0.6547 + }, + { + "start": 1240.62, + "end": 1243.34, + "probability": 0.7539 + }, + { + "start": 1244.14, + "end": 1247.4, + "probability": 0.9913 + }, + { + "start": 1248.5, + "end": 1249.7, + "probability": 0.9888 + }, + { + "start": 1252.3, + "end": 1253.12, + "probability": 0.7159 + }, + { + "start": 1254.2, + "end": 1257.56, + "probability": 0.9606 + }, + { + "start": 1258.24, + "end": 1260.12, + "probability": 0.9946 + }, + { + "start": 1260.5, + "end": 1262.32, + "probability": 0.9857 + }, + { + "start": 1262.84, + "end": 1264.02, + "probability": 0.9657 + }, + { + "start": 1266.72, + "end": 1270.84, + "probability": 0.9883 + }, + { + "start": 1272.46, + "end": 1276.78, + "probability": 0.9932 + }, + { + "start": 1276.78, + "end": 1279.68, + "probability": 0.8817 + }, + { + "start": 1280.7, + "end": 1286.58, + "probability": 0.9352 + }, + { + "start": 1287.88, + "end": 1289.46, + "probability": 0.8996 + }, + { + "start": 1290.76, + "end": 1292.52, + "probability": 0.8808 + }, + { + "start": 1293.28, + "end": 1296.5, + "probability": 0.9924 + }, + { + "start": 1296.5, + "end": 1299.6, + "probability": 0.9792 + }, + { + "start": 1300.26, + "end": 1307.62, + "probability": 0.998 + }, + { + "start": 1309.64, + "end": 1310.42, + "probability": 0.7426 + }, + { + "start": 1311.18, + "end": 1313.2, + "probability": 0.998 + }, + { + "start": 1313.26, + "end": 1314.96, + "probability": 0.9902 + }, + { + "start": 1316.52, + "end": 1318.38, + "probability": 0.9731 + }, + { + "start": 1320.36, + "end": 1326.04, + "probability": 0.994 + }, + { + "start": 1327.62, + "end": 1330.56, + "probability": 0.9978 + }, + { + "start": 1330.84, + "end": 1332.08, + "probability": 0.9478 + }, + { + "start": 1333.12, + "end": 1337.0, + "probability": 0.9987 + }, + { + "start": 1337.68, + "end": 1339.6, + "probability": 0.6882 + }, + { + "start": 1344.08, + "end": 1345.52, + "probability": 0.5361 + }, + { + "start": 1347.88, + "end": 1350.92, + "probability": 0.9539 + }, + { + "start": 1353.22, + "end": 1358.7, + "probability": 0.906 + }, + { + "start": 1361.42, + "end": 1366.64, + "probability": 0.9756 + }, + { + "start": 1367.04, + "end": 1367.58, + "probability": 0.7844 + }, + { + "start": 1368.86, + "end": 1369.48, + "probability": 0.8482 + }, + { + "start": 1369.92, + "end": 1372.5, + "probability": 0.8887 + }, + { + "start": 1373.08, + "end": 1375.76, + "probability": 0.9807 + }, + { + "start": 1377.92, + "end": 1380.0, + "probability": 0.996 + }, + { + "start": 1380.02, + "end": 1381.2, + "probability": 0.9365 + }, + { + "start": 1383.4, + "end": 1384.46, + "probability": 0.9798 + }, + { + "start": 1384.76, + "end": 1386.44, + "probability": 0.8938 + }, + { + "start": 1386.5, + "end": 1389.26, + "probability": 0.9304 + }, + { + "start": 1389.42, + "end": 1389.74, + "probability": 0.724 + }, + { + "start": 1391.36, + "end": 1392.26, + "probability": 0.7587 + }, + { + "start": 1392.64, + "end": 1396.2, + "probability": 0.9793 + }, + { + "start": 1396.2, + "end": 1400.38, + "probability": 0.9859 + }, + { + "start": 1400.72, + "end": 1401.86, + "probability": 0.9542 + }, + { + "start": 1403.14, + "end": 1405.4, + "probability": 0.9754 + }, + { + "start": 1406.06, + "end": 1408.72, + "probability": 0.9666 + }, + { + "start": 1411.86, + "end": 1414.38, + "probability": 0.9902 + }, + { + "start": 1414.48, + "end": 1415.6, + "probability": 0.9302 + }, + { + "start": 1416.34, + "end": 1417.4, + "probability": 0.951 + }, + { + "start": 1418.08, + "end": 1421.38, + "probability": 0.9664 + }, + { + "start": 1422.18, + "end": 1423.22, + "probability": 0.8524 + }, + { + "start": 1425.0, + "end": 1426.28, + "probability": 0.9209 + }, + { + "start": 1426.9, + "end": 1428.26, + "probability": 0.8211 + }, + { + "start": 1429.46, + "end": 1432.08, + "probability": 0.9061 + }, + { + "start": 1433.32, + "end": 1436.48, + "probability": 0.9982 + }, + { + "start": 1437.88, + "end": 1440.0, + "probability": 0.9094 + }, + { + "start": 1441.76, + "end": 1442.2, + "probability": 0.9789 + }, + { + "start": 1443.94, + "end": 1445.72, + "probability": 0.9768 + }, + { + "start": 1447.66, + "end": 1450.62, + "probability": 0.8665 + }, + { + "start": 1450.9, + "end": 1452.48, + "probability": 0.8003 + }, + { + "start": 1453.74, + "end": 1457.6, + "probability": 0.9882 + }, + { + "start": 1458.65, + "end": 1460.14, + "probability": 0.6413 + }, + { + "start": 1461.48, + "end": 1464.8, + "probability": 0.5247 + }, + { + "start": 1464.88, + "end": 1465.71, + "probability": 0.9426 + }, + { + "start": 1466.6, + "end": 1467.46, + "probability": 0.945 + }, + { + "start": 1468.08, + "end": 1472.08, + "probability": 0.9829 + }, + { + "start": 1472.78, + "end": 1475.56, + "probability": 0.8003 + }, + { + "start": 1476.18, + "end": 1479.34, + "probability": 0.9528 + }, + { + "start": 1479.34, + "end": 1483.02, + "probability": 0.9969 + }, + { + "start": 1486.16, + "end": 1487.06, + "probability": 0.9803 + }, + { + "start": 1487.32, + "end": 1488.21, + "probability": 0.5156 + }, + { + "start": 1488.76, + "end": 1490.14, + "probability": 0.8802 + }, + { + "start": 1491.22, + "end": 1491.5, + "probability": 0.579 + }, + { + "start": 1491.5, + "end": 1492.22, + "probability": 0.2435 + }, + { + "start": 1492.46, + "end": 1495.36, + "probability": 0.9395 + }, + { + "start": 1495.64, + "end": 1497.62, + "probability": 0.8966 + }, + { + "start": 1497.98, + "end": 1501.26, + "probability": 0.9639 + }, + { + "start": 1503.36, + "end": 1505.46, + "probability": 0.9939 + }, + { + "start": 1505.76, + "end": 1506.96, + "probability": 0.5044 + }, + { + "start": 1508.7, + "end": 1510.16, + "probability": 0.9912 + }, + { + "start": 1512.78, + "end": 1518.52, + "probability": 0.9624 + }, + { + "start": 1519.82, + "end": 1520.8, + "probability": 0.9874 + }, + { + "start": 1522.94, + "end": 1527.22, + "probability": 0.8463 + }, + { + "start": 1527.64, + "end": 1529.72, + "probability": 0.9766 + }, + { + "start": 1532.42, + "end": 1533.52, + "probability": 0.6404 + }, + { + "start": 1534.22, + "end": 1537.64, + "probability": 0.8874 + }, + { + "start": 1538.46, + "end": 1541.23, + "probability": 0.9821 + }, + { + "start": 1541.44, + "end": 1545.56, + "probability": 0.8184 + }, + { + "start": 1546.44, + "end": 1550.58, + "probability": 0.9681 + }, + { + "start": 1550.58, + "end": 1555.02, + "probability": 0.9904 + }, + { + "start": 1556.3, + "end": 1558.74, + "probability": 0.9895 + }, + { + "start": 1559.98, + "end": 1561.42, + "probability": 0.9432 + }, + { + "start": 1562.28, + "end": 1562.58, + "probability": 0.7675 + }, + { + "start": 1562.72, + "end": 1565.08, + "probability": 0.9873 + }, + { + "start": 1565.08, + "end": 1568.32, + "probability": 0.7358 + }, + { + "start": 1569.12, + "end": 1571.5, + "probability": 0.979 + }, + { + "start": 1571.58, + "end": 1574.36, + "probability": 0.9519 + }, + { + "start": 1574.4, + "end": 1575.38, + "probability": 0.7178 + }, + { + "start": 1576.66, + "end": 1580.02, + "probability": 0.9651 + }, + { + "start": 1581.64, + "end": 1585.74, + "probability": 0.9645 + }, + { + "start": 1586.56, + "end": 1586.56, + "probability": 0.2439 + }, + { + "start": 1587.1, + "end": 1590.16, + "probability": 0.9 + }, + { + "start": 1590.66, + "end": 1590.76, + "probability": 0.4724 + }, + { + "start": 1590.8, + "end": 1591.64, + "probability": 0.8855 + }, + { + "start": 1591.72, + "end": 1594.86, + "probability": 0.9775 + }, + { + "start": 1595.6, + "end": 1599.12, + "probability": 0.8425 + }, + { + "start": 1599.7, + "end": 1603.07, + "probability": 0.9521 + }, + { + "start": 1605.28, + "end": 1605.82, + "probability": 0.9255 + }, + { + "start": 1608.4, + "end": 1608.9, + "probability": 0.5883 + }, + { + "start": 1609.34, + "end": 1611.3, + "probability": 0.8383 + }, + { + "start": 1611.74, + "end": 1614.58, + "probability": 0.8947 + }, + { + "start": 1614.58, + "end": 1615.2, + "probability": 0.7104 + }, + { + "start": 1615.98, + "end": 1619.4, + "probability": 0.9881 + }, + { + "start": 1620.22, + "end": 1620.6, + "probability": 0.9513 + }, + { + "start": 1621.54, + "end": 1623.56, + "probability": 0.988 + }, + { + "start": 1624.9, + "end": 1626.32, + "probability": 0.9211 + }, + { + "start": 1626.54, + "end": 1626.94, + "probability": 0.8351 + }, + { + "start": 1627.0, + "end": 1627.62, + "probability": 0.9152 + }, + { + "start": 1627.74, + "end": 1629.38, + "probability": 0.9553 + }, + { + "start": 1630.44, + "end": 1634.22, + "probability": 0.9877 + }, + { + "start": 1635.72, + "end": 1637.84, + "probability": 0.9839 + }, + { + "start": 1638.28, + "end": 1639.18, + "probability": 0.7641 + }, + { + "start": 1639.46, + "end": 1640.32, + "probability": 0.9713 + }, + { + "start": 1640.46, + "end": 1642.08, + "probability": 0.9313 + }, + { + "start": 1644.26, + "end": 1644.52, + "probability": 0.3459 + }, + { + "start": 1644.72, + "end": 1647.38, + "probability": 0.8863 + }, + { + "start": 1647.88, + "end": 1650.24, + "probability": 0.9874 + }, + { + "start": 1650.8, + "end": 1652.28, + "probability": 0.9619 + }, + { + "start": 1652.32, + "end": 1654.36, + "probability": 0.9739 + }, + { + "start": 1656.14, + "end": 1657.12, + "probability": 0.9452 + }, + { + "start": 1657.86, + "end": 1663.46, + "probability": 0.9911 + }, + { + "start": 1663.56, + "end": 1664.1, + "probability": 0.7268 + }, + { + "start": 1664.58, + "end": 1665.8, + "probability": 0.789 + }, + { + "start": 1665.88, + "end": 1666.16, + "probability": 0.917 + }, + { + "start": 1666.7, + "end": 1668.08, + "probability": 0.9681 + }, + { + "start": 1668.6, + "end": 1670.94, + "probability": 0.9515 + }, + { + "start": 1671.67, + "end": 1673.44, + "probability": 0.9937 + }, + { + "start": 1675.14, + "end": 1675.78, + "probability": 0.8019 + }, + { + "start": 1676.1, + "end": 1677.62, + "probability": 0.7669 + }, + { + "start": 1677.78, + "end": 1678.5, + "probability": 0.8754 + }, + { + "start": 1679.26, + "end": 1682.26, + "probability": 0.9711 + }, + { + "start": 1682.98, + "end": 1685.2, + "probability": 0.9944 + }, + { + "start": 1685.24, + "end": 1687.3, + "probability": 0.9218 + }, + { + "start": 1688.24, + "end": 1688.8, + "probability": 0.4551 + }, + { + "start": 1689.52, + "end": 1692.8, + "probability": 0.6432 + }, + { + "start": 1695.36, + "end": 1696.4, + "probability": 0.8485 + }, + { + "start": 1696.74, + "end": 1696.92, + "probability": 0.7168 + }, + { + "start": 1696.98, + "end": 1697.56, + "probability": 0.83 + }, + { + "start": 1697.92, + "end": 1700.12, + "probability": 0.8813 + }, + { + "start": 1700.68, + "end": 1701.8, + "probability": 0.9355 + }, + { + "start": 1701.88, + "end": 1704.06, + "probability": 0.9977 + }, + { + "start": 1705.36, + "end": 1706.72, + "probability": 0.9781 + }, + { + "start": 1707.86, + "end": 1709.9, + "probability": 0.9111 + }, + { + "start": 1710.16, + "end": 1712.98, + "probability": 0.9958 + }, + { + "start": 1713.6, + "end": 1716.42, + "probability": 0.9966 + }, + { + "start": 1716.56, + "end": 1720.06, + "probability": 0.9975 + }, + { + "start": 1720.06, + "end": 1724.06, + "probability": 0.9941 + }, + { + "start": 1728.02, + "end": 1733.78, + "probability": 0.9971 + }, + { + "start": 1733.86, + "end": 1735.6, + "probability": 0.9004 + }, + { + "start": 1736.72, + "end": 1740.46, + "probability": 0.9969 + }, + { + "start": 1740.76, + "end": 1741.48, + "probability": 0.8514 + }, + { + "start": 1780.58, + "end": 1781.72, + "probability": 0.7406 + }, + { + "start": 1782.24, + "end": 1783.5, + "probability": 0.8629 + }, + { + "start": 1783.58, + "end": 1785.22, + "probability": 0.7556 + }, + { + "start": 1785.22, + "end": 1785.78, + "probability": 0.7753 + }, + { + "start": 1786.34, + "end": 1787.06, + "probability": 0.9033 + }, + { + "start": 1788.16, + "end": 1789.52, + "probability": 0.9235 + }, + { + "start": 1792.28, + "end": 1795.12, + "probability": 0.7699 + }, + { + "start": 1795.7, + "end": 1796.7, + "probability": 0.0431 + }, + { + "start": 1798.06, + "end": 1798.64, + "probability": 0.3018 + }, + { + "start": 1798.64, + "end": 1798.64, + "probability": 0.1493 + }, + { + "start": 1798.64, + "end": 1800.28, + "probability": 0.1771 + }, + { + "start": 1802.72, + "end": 1804.22, + "probability": 0.326 + }, + { + "start": 1804.5, + "end": 1804.84, + "probability": 0.4127 + }, + { + "start": 1805.08, + "end": 1806.04, + "probability": 0.774 + }, + { + "start": 1806.12, + "end": 1806.5, + "probability": 0.5098 + }, + { + "start": 1806.5, + "end": 1806.52, + "probability": 0.0662 + }, + { + "start": 1806.52, + "end": 1807.54, + "probability": 0.9174 + }, + { + "start": 1807.58, + "end": 1809.5, + "probability": 0.7685 + }, + { + "start": 1810.26, + "end": 1811.81, + "probability": 0.9525 + }, + { + "start": 1811.98, + "end": 1813.58, + "probability": 0.8857 + }, + { + "start": 1814.72, + "end": 1816.24, + "probability": 0.8431 + }, + { + "start": 1816.88, + "end": 1821.72, + "probability": 0.994 + }, + { + "start": 1822.0, + "end": 1823.1, + "probability": 0.9733 + }, + { + "start": 1825.26, + "end": 1831.18, + "probability": 0.9792 + }, + { + "start": 1831.26, + "end": 1835.68, + "probability": 0.9944 + }, + { + "start": 1836.52, + "end": 1839.34, + "probability": 0.9969 + }, + { + "start": 1839.76, + "end": 1843.0, + "probability": 0.9788 + }, + { + "start": 1843.4, + "end": 1846.05, + "probability": 0.8037 + }, + { + "start": 1847.3, + "end": 1848.29, + "probability": 0.9536 + }, + { + "start": 1849.06, + "end": 1850.9, + "probability": 0.8707 + }, + { + "start": 1851.32, + "end": 1853.92, + "probability": 0.9827 + }, + { + "start": 1854.38, + "end": 1855.72, + "probability": 0.7508 + }, + { + "start": 1856.06, + "end": 1856.42, + "probability": 0.9668 + }, + { + "start": 1857.44, + "end": 1861.5, + "probability": 0.1213 + }, + { + "start": 1865.06, + "end": 1867.64, + "probability": 0.6267 + }, + { + "start": 1868.78, + "end": 1870.08, + "probability": 0.5092 + }, + { + "start": 1870.66, + "end": 1870.94, + "probability": 0.5103 + }, + { + "start": 1872.84, + "end": 1873.92, + "probability": 0.8498 + }, + { + "start": 1874.02, + "end": 1879.44, + "probability": 0.9954 + }, + { + "start": 1882.66, + "end": 1888.38, + "probability": 0.9525 + }, + { + "start": 1888.76, + "end": 1889.44, + "probability": 0.9181 + }, + { + "start": 1889.56, + "end": 1890.2, + "probability": 0.7783 + }, + { + "start": 1893.0, + "end": 1898.64, + "probability": 0.9904 + }, + { + "start": 1899.26, + "end": 1902.44, + "probability": 0.771 + }, + { + "start": 1903.32, + "end": 1906.96, + "probability": 0.9059 + }, + { + "start": 1908.58, + "end": 1910.03, + "probability": 0.8198 + }, + { + "start": 1911.4, + "end": 1915.3, + "probability": 0.7512 + }, + { + "start": 1915.46, + "end": 1917.48, + "probability": 0.9202 + }, + { + "start": 1919.04, + "end": 1921.54, + "probability": 0.9119 + }, + { + "start": 1922.84, + "end": 1923.7, + "probability": 0.7485 + }, + { + "start": 1925.1, + "end": 1930.92, + "probability": 0.9166 + }, + { + "start": 1932.26, + "end": 1933.96, + "probability": 0.7484 + }, + { + "start": 1936.9, + "end": 1937.6, + "probability": 0.817 + }, + { + "start": 1937.78, + "end": 1944.0, + "probability": 0.9881 + }, + { + "start": 1944.0, + "end": 1949.88, + "probability": 0.998 + }, + { + "start": 1952.24, + "end": 1953.3, + "probability": 0.9993 + }, + { + "start": 1955.42, + "end": 1961.56, + "probability": 0.9989 + }, + { + "start": 1964.24, + "end": 1967.18, + "probability": 0.9922 + }, + { + "start": 1969.78, + "end": 1974.24, + "probability": 0.9822 + }, + { + "start": 1976.12, + "end": 1976.4, + "probability": 0.4141 + }, + { + "start": 1976.52, + "end": 1977.84, + "probability": 0.7759 + }, + { + "start": 1977.96, + "end": 1978.8, + "probability": 0.8639 + }, + { + "start": 1979.16, + "end": 1981.86, + "probability": 0.9704 + }, + { + "start": 1982.02, + "end": 1982.76, + "probability": 0.8289 + }, + { + "start": 1982.84, + "end": 1983.4, + "probability": 0.8388 + }, + { + "start": 1984.76, + "end": 1987.76, + "probability": 0.9856 + }, + { + "start": 1989.52, + "end": 1990.48, + "probability": 0.9999 + }, + { + "start": 1993.12, + "end": 1994.44, + "probability": 0.9801 + }, + { + "start": 1995.82, + "end": 1996.66, + "probability": 0.9464 + }, + { + "start": 1997.96, + "end": 2000.52, + "probability": 0.9995 + }, + { + "start": 2003.68, + "end": 2004.48, + "probability": 0.8947 + }, + { + "start": 2006.04, + "end": 2009.5, + "probability": 0.9976 + }, + { + "start": 2010.68, + "end": 2013.4, + "probability": 0.9971 + }, + { + "start": 2014.88, + "end": 2017.36, + "probability": 0.997 + }, + { + "start": 2018.2, + "end": 2021.5, + "probability": 0.8988 + }, + { + "start": 2022.86, + "end": 2026.02, + "probability": 0.9969 + }, + { + "start": 2027.0, + "end": 2030.26, + "probability": 0.9995 + }, + { + "start": 2030.26, + "end": 2035.92, + "probability": 0.9406 + }, + { + "start": 2039.36, + "end": 2041.3, + "probability": 0.8963 + }, + { + "start": 2043.06, + "end": 2044.3, + "probability": 0.7358 + }, + { + "start": 2047.88, + "end": 2049.3, + "probability": 0.8298 + }, + { + "start": 2052.32, + "end": 2055.02, + "probability": 0.9385 + }, + { + "start": 2057.36, + "end": 2059.66, + "probability": 0.6708 + }, + { + "start": 2062.02, + "end": 2064.08, + "probability": 0.9841 + }, + { + "start": 2067.64, + "end": 2069.06, + "probability": 0.9443 + }, + { + "start": 2072.34, + "end": 2077.1, + "probability": 0.9756 + }, + { + "start": 2079.72, + "end": 2080.32, + "probability": 0.8843 + }, + { + "start": 2085.82, + "end": 2086.16, + "probability": 0.5208 + }, + { + "start": 2086.2, + "end": 2086.34, + "probability": 0.7639 + }, + { + "start": 2086.44, + "end": 2089.72, + "probability": 0.9906 + }, + { + "start": 2093.34, + "end": 2094.0, + "probability": 0.9281 + }, + { + "start": 2096.82, + "end": 2097.72, + "probability": 0.6919 + }, + { + "start": 2099.62, + "end": 2101.3, + "probability": 0.7261 + }, + { + "start": 2103.56, + "end": 2105.66, + "probability": 0.743 + }, + { + "start": 2108.2, + "end": 2109.48, + "probability": 0.8441 + }, + { + "start": 2112.04, + "end": 2113.42, + "probability": 0.9822 + }, + { + "start": 2114.8, + "end": 2116.52, + "probability": 0.495 + }, + { + "start": 2119.92, + "end": 2121.08, + "probability": 0.9716 + }, + { + "start": 2123.26, + "end": 2124.56, + "probability": 0.9981 + }, + { + "start": 2125.72, + "end": 2127.96, + "probability": 0.947 + }, + { + "start": 2130.36, + "end": 2133.8, + "probability": 0.9927 + }, + { + "start": 2135.6, + "end": 2140.34, + "probability": 0.9969 + }, + { + "start": 2142.22, + "end": 2144.48, + "probability": 0.7991 + }, + { + "start": 2146.68, + "end": 2146.96, + "probability": 0.4327 + }, + { + "start": 2146.96, + "end": 2148.04, + "probability": 0.8649 + }, + { + "start": 2148.14, + "end": 2150.74, + "probability": 0.8455 + }, + { + "start": 2150.9, + "end": 2156.7, + "probability": 0.8554 + }, + { + "start": 2157.98, + "end": 2159.84, + "probability": 0.988 + }, + { + "start": 2162.4, + "end": 2167.28, + "probability": 0.9976 + }, + { + "start": 2167.98, + "end": 2171.38, + "probability": 0.9872 + }, + { + "start": 2174.72, + "end": 2176.86, + "probability": 0.9951 + }, + { + "start": 2178.64, + "end": 2180.06, + "probability": 0.9602 + }, + { + "start": 2183.42, + "end": 2183.78, + "probability": 0.755 + }, + { + "start": 2183.8, + "end": 2187.02, + "probability": 0.9977 + }, + { + "start": 2188.7, + "end": 2193.22, + "probability": 0.991 + }, + { + "start": 2194.24, + "end": 2196.82, + "probability": 0.9943 + }, + { + "start": 2198.2, + "end": 2199.24, + "probability": 0.7639 + }, + { + "start": 2200.66, + "end": 2202.84, + "probability": 0.9975 + }, + { + "start": 2203.76, + "end": 2206.0, + "probability": 0.999 + }, + { + "start": 2208.34, + "end": 2210.74, + "probability": 0.8804 + }, + { + "start": 2212.52, + "end": 2213.4, + "probability": 0.7486 + }, + { + "start": 2214.46, + "end": 2215.44, + "probability": 0.9336 + }, + { + "start": 2216.16, + "end": 2217.9, + "probability": 0.9904 + }, + { + "start": 2219.42, + "end": 2221.64, + "probability": 0.9985 + }, + { + "start": 2221.64, + "end": 2224.58, + "probability": 0.9339 + }, + { + "start": 2226.6, + "end": 2228.12, + "probability": 0.9758 + }, + { + "start": 2229.84, + "end": 2232.22, + "probability": 0.9817 + }, + { + "start": 2233.8, + "end": 2237.04, + "probability": 0.9694 + }, + { + "start": 2237.76, + "end": 2241.62, + "probability": 0.9906 + }, + { + "start": 2243.54, + "end": 2247.9, + "probability": 0.992 + }, + { + "start": 2248.6, + "end": 2250.94, + "probability": 0.9814 + }, + { + "start": 2251.96, + "end": 2255.28, + "probability": 0.9883 + }, + { + "start": 2255.9, + "end": 2257.7, + "probability": 0.9947 + }, + { + "start": 2259.28, + "end": 2261.58, + "probability": 0.9885 + }, + { + "start": 2264.56, + "end": 2264.92, + "probability": 0.4556 + }, + { + "start": 2267.24, + "end": 2269.9, + "probability": 0.9978 + }, + { + "start": 2269.9, + "end": 2274.14, + "probability": 0.9949 + }, + { + "start": 2275.06, + "end": 2275.86, + "probability": 0.9029 + }, + { + "start": 2276.74, + "end": 2277.42, + "probability": 0.98 + }, + { + "start": 2278.84, + "end": 2280.7, + "probability": 0.9978 + }, + { + "start": 2281.42, + "end": 2285.16, + "probability": 0.9908 + }, + { + "start": 2285.44, + "end": 2285.98, + "probability": 0.5163 + }, + { + "start": 2286.12, + "end": 2286.61, + "probability": 0.8948 + }, + { + "start": 2287.92, + "end": 2290.02, + "probability": 0.9983 + }, + { + "start": 2291.38, + "end": 2293.42, + "probability": 0.6445 + }, + { + "start": 2295.44, + "end": 2297.66, + "probability": 0.9885 + }, + { + "start": 2298.64, + "end": 2304.14, + "probability": 0.9885 + }, + { + "start": 2306.4, + "end": 2312.08, + "probability": 0.9975 + }, + { + "start": 2313.18, + "end": 2314.84, + "probability": 0.9969 + }, + { + "start": 2316.42, + "end": 2318.26, + "probability": 0.9919 + }, + { + "start": 2319.9, + "end": 2320.48, + "probability": 0.7086 + }, + { + "start": 2322.16, + "end": 2322.94, + "probability": 0.8179 + }, + { + "start": 2323.6, + "end": 2324.4, + "probability": 0.8411 + }, + { + "start": 2326.08, + "end": 2332.08, + "probability": 0.9982 + }, + { + "start": 2333.04, + "end": 2334.1, + "probability": 0.8922 + }, + { + "start": 2334.24, + "end": 2335.72, + "probability": 0.9817 + }, + { + "start": 2336.66, + "end": 2341.14, + "probability": 0.9682 + }, + { + "start": 2342.28, + "end": 2343.9, + "probability": 0.9934 + }, + { + "start": 2345.86, + "end": 2346.72, + "probability": 0.9801 + }, + { + "start": 2348.06, + "end": 2350.4, + "probability": 0.9769 + }, + { + "start": 2352.62, + "end": 2353.44, + "probability": 0.9755 + }, + { + "start": 2356.84, + "end": 2359.44, + "probability": 0.9277 + }, + { + "start": 2360.02, + "end": 2361.28, + "probability": 0.0293 + }, + { + "start": 2362.78, + "end": 2368.74, + "probability": 0.9828 + }, + { + "start": 2368.74, + "end": 2368.74, + "probability": 0.3733 + }, + { + "start": 2372.1, + "end": 2377.14, + "probability": 0.967 + }, + { + "start": 2378.84, + "end": 2383.66, + "probability": 0.95 + }, + { + "start": 2384.58, + "end": 2386.08, + "probability": 0.9871 + }, + { + "start": 2386.12, + "end": 2390.44, + "probability": 0.9792 + }, + { + "start": 2392.04, + "end": 2394.86, + "probability": 0.9995 + }, + { + "start": 2396.22, + "end": 2399.18, + "probability": 0.711 + }, + { + "start": 2401.02, + "end": 2401.94, + "probability": 0.8081 + }, + { + "start": 2403.5, + "end": 2407.76, + "probability": 0.9967 + }, + { + "start": 2409.16, + "end": 2410.24, + "probability": 0.761 + }, + { + "start": 2410.88, + "end": 2413.16, + "probability": 0.9847 + }, + { + "start": 2414.96, + "end": 2416.21, + "probability": 0.9628 + }, + { + "start": 2417.92, + "end": 2421.24, + "probability": 0.9821 + }, + { + "start": 2423.02, + "end": 2426.98, + "probability": 0.9672 + }, + { + "start": 2427.72, + "end": 2431.98, + "probability": 0.9989 + }, + { + "start": 2432.1, + "end": 2432.58, + "probability": 0.8784 + }, + { + "start": 2434.16, + "end": 2435.2, + "probability": 0.9651 + }, + { + "start": 2436.42, + "end": 2438.28, + "probability": 0.8927 + }, + { + "start": 2439.6, + "end": 2440.72, + "probability": 0.5384 + }, + { + "start": 2441.88, + "end": 2443.4, + "probability": 0.999 + }, + { + "start": 2444.18, + "end": 2446.52, + "probability": 0.9842 + }, + { + "start": 2447.48, + "end": 2451.02, + "probability": 0.8462 + }, + { + "start": 2451.3, + "end": 2453.48, + "probability": 0.8071 + }, + { + "start": 2453.66, + "end": 2455.14, + "probability": 0.9189 + }, + { + "start": 2458.6, + "end": 2460.48, + "probability": 0.9976 + }, + { + "start": 2462.76, + "end": 2464.36, + "probability": 0.7085 + }, + { + "start": 2465.88, + "end": 2467.5, + "probability": 0.8474 + }, + { + "start": 2468.04, + "end": 2470.1, + "probability": 0.783 + }, + { + "start": 2471.02, + "end": 2478.02, + "probability": 0.9985 + }, + { + "start": 2478.86, + "end": 2481.54, + "probability": 0.9937 + }, + { + "start": 2483.32, + "end": 2484.3, + "probability": 0.9985 + }, + { + "start": 2487.1, + "end": 2488.32, + "probability": 0.9996 + }, + { + "start": 2489.66, + "end": 2490.36, + "probability": 0.9761 + }, + { + "start": 2493.08, + "end": 2494.92, + "probability": 0.7238 + }, + { + "start": 2494.98, + "end": 2495.82, + "probability": 0.9604 + }, + { + "start": 2496.1, + "end": 2501.04, + "probability": 0.9974 + }, + { + "start": 2501.94, + "end": 2504.2, + "probability": 0.7831 + }, + { + "start": 2505.9, + "end": 2509.54, + "probability": 0.9968 + }, + { + "start": 2511.24, + "end": 2514.58, + "probability": 0.9838 + }, + { + "start": 2516.48, + "end": 2520.44, + "probability": 0.998 + }, + { + "start": 2521.52, + "end": 2527.17, + "probability": 0.9994 + }, + { + "start": 2531.26, + "end": 2534.36, + "probability": 0.7484 + }, + { + "start": 2534.46, + "end": 2536.02, + "probability": 0.9919 + }, + { + "start": 2539.26, + "end": 2540.32, + "probability": 0.95 + }, + { + "start": 2541.38, + "end": 2543.56, + "probability": 0.9697 + }, + { + "start": 2546.58, + "end": 2550.26, + "probability": 0.998 + }, + { + "start": 2551.62, + "end": 2552.4, + "probability": 0.9111 + }, + { + "start": 2553.1, + "end": 2555.8, + "probability": 0.9983 + }, + { + "start": 2557.54, + "end": 2560.32, + "probability": 0.9847 + }, + { + "start": 2560.46, + "end": 2563.56, + "probability": 0.9221 + }, + { + "start": 2565.04, + "end": 2567.08, + "probability": 0.6318 + }, + { + "start": 2568.22, + "end": 2570.78, + "probability": 0.9469 + }, + { + "start": 2572.28, + "end": 2576.22, + "probability": 0.9966 + }, + { + "start": 2578.18, + "end": 2579.72, + "probability": 0.9529 + }, + { + "start": 2581.04, + "end": 2585.44, + "probability": 0.9757 + }, + { + "start": 2587.46, + "end": 2589.42, + "probability": 0.9009 + }, + { + "start": 2590.82, + "end": 2592.12, + "probability": 0.9919 + }, + { + "start": 2593.04, + "end": 2594.12, + "probability": 0.8891 + }, + { + "start": 2596.36, + "end": 2600.0, + "probability": 0.9891 + }, + { + "start": 2600.0, + "end": 2603.3, + "probability": 0.9972 + }, + { + "start": 2606.08, + "end": 2608.36, + "probability": 0.8914 + }, + { + "start": 2610.48, + "end": 2612.1, + "probability": 0.7819 + }, + { + "start": 2613.64, + "end": 2617.82, + "probability": 0.9979 + }, + { + "start": 2619.4, + "end": 2620.56, + "probability": 0.7442 + }, + { + "start": 2621.52, + "end": 2624.46, + "probability": 0.9937 + }, + { + "start": 2625.34, + "end": 2631.06, + "probability": 0.9918 + }, + { + "start": 2632.52, + "end": 2633.52, + "probability": 0.6233 + }, + { + "start": 2635.74, + "end": 2639.18, + "probability": 0.9972 + }, + { + "start": 2640.68, + "end": 2643.0, + "probability": 0.9992 + }, + { + "start": 2644.9, + "end": 2648.84, + "probability": 0.9974 + }, + { + "start": 2650.26, + "end": 2656.16, + "probability": 0.9985 + }, + { + "start": 2657.18, + "end": 2658.9, + "probability": 0.9695 + }, + { + "start": 2660.9, + "end": 2664.54, + "probability": 0.9965 + }, + { + "start": 2665.92, + "end": 2668.62, + "probability": 0.9927 + }, + { + "start": 2669.58, + "end": 2672.88, + "probability": 0.9973 + }, + { + "start": 2675.68, + "end": 2676.32, + "probability": 0.846 + }, + { + "start": 2677.96, + "end": 2680.5, + "probability": 0.8098 + }, + { + "start": 2682.92, + "end": 2683.92, + "probability": 0.9988 + }, + { + "start": 2684.84, + "end": 2686.92, + "probability": 0.9728 + }, + { + "start": 2691.06, + "end": 2693.44, + "probability": 0.6673 + }, + { + "start": 2694.4, + "end": 2695.2, + "probability": 0.8202 + }, + { + "start": 2696.24, + "end": 2699.42, + "probability": 0.9891 + }, + { + "start": 2700.88, + "end": 2704.5, + "probability": 0.9962 + }, + { + "start": 2705.76, + "end": 2707.66, + "probability": 0.9011 + }, + { + "start": 2708.96, + "end": 2712.56, + "probability": 0.9761 + }, + { + "start": 2713.26, + "end": 2714.2, + "probability": 0.8789 + }, + { + "start": 2715.32, + "end": 2717.92, + "probability": 0.927 + }, + { + "start": 2720.24, + "end": 2723.91, + "probability": 0.9936 + }, + { + "start": 2724.08, + "end": 2726.36, + "probability": 0.999 + }, + { + "start": 2726.36, + "end": 2733.34, + "probability": 0.9393 + }, + { + "start": 2736.48, + "end": 2738.68, + "probability": 0.9404 + }, + { + "start": 2740.1, + "end": 2746.06, + "probability": 0.9817 + }, + { + "start": 2748.44, + "end": 2748.98, + "probability": 0.6721 + }, + { + "start": 2749.2, + "end": 2752.68, + "probability": 0.9952 + }, + { + "start": 2752.68, + "end": 2757.16, + "probability": 0.9827 + }, + { + "start": 2758.02, + "end": 2759.68, + "probability": 0.9977 + }, + { + "start": 2760.66, + "end": 2762.06, + "probability": 0.7196 + }, + { + "start": 2763.42, + "end": 2765.78, + "probability": 0.9052 + }, + { + "start": 2766.52, + "end": 2767.32, + "probability": 0.9808 + }, + { + "start": 2769.98, + "end": 2772.96, + "probability": 0.9709 + }, + { + "start": 2773.0, + "end": 2780.36, + "probability": 0.9956 + }, + { + "start": 2781.32, + "end": 2784.02, + "probability": 0.9707 + }, + { + "start": 2786.54, + "end": 2788.56, + "probability": 0.9876 + }, + { + "start": 2790.7, + "end": 2794.02, + "probability": 0.9924 + }, + { + "start": 2795.28, + "end": 2800.96, + "probability": 0.997 + }, + { + "start": 2802.62, + "end": 2805.74, + "probability": 0.9976 + }, + { + "start": 2809.24, + "end": 2812.72, + "probability": 0.9826 + }, + { + "start": 2813.06, + "end": 2813.76, + "probability": 0.8718 + }, + { + "start": 2815.94, + "end": 2818.34, + "probability": 0.9945 + }, + { + "start": 2820.02, + "end": 2825.46, + "probability": 0.9967 + }, + { + "start": 2826.46, + "end": 2834.87, + "probability": 0.999 + }, + { + "start": 2836.7, + "end": 2840.54, + "probability": 0.987 + }, + { + "start": 2842.4, + "end": 2851.34, + "probability": 0.9877 + }, + { + "start": 2853.28, + "end": 2855.86, + "probability": 0.9164 + }, + { + "start": 2857.36, + "end": 2864.08, + "probability": 0.9937 + }, + { + "start": 2871.02, + "end": 2873.38, + "probability": 0.969 + }, + { + "start": 2874.66, + "end": 2875.64, + "probability": 0.9982 + }, + { + "start": 2878.28, + "end": 2879.72, + "probability": 0.8708 + }, + { + "start": 2880.72, + "end": 2882.8, + "probability": 0.0681 + }, + { + "start": 2893.4, + "end": 2897.22, + "probability": 0.8343 + }, + { + "start": 2898.72, + "end": 2899.7, + "probability": 0.6929 + }, + { + "start": 2900.32, + "end": 2901.46, + "probability": 0.9788 + }, + { + "start": 2902.8, + "end": 2905.34, + "probability": 0.9934 + }, + { + "start": 2905.98, + "end": 2909.54, + "probability": 0.9859 + }, + { + "start": 2910.56, + "end": 2913.46, + "probability": 0.7043 + }, + { + "start": 2914.42, + "end": 2917.34, + "probability": 0.964 + }, + { + "start": 2918.36, + "end": 2919.34, + "probability": 0.4754 + }, + { + "start": 2919.4, + "end": 2919.62, + "probability": 0.6117 + }, + { + "start": 2919.62, + "end": 2922.7, + "probability": 0.6765 + }, + { + "start": 2923.22, + "end": 2924.44, + "probability": 0.627 + }, + { + "start": 2924.44, + "end": 2926.64, + "probability": 0.3683 + }, + { + "start": 2929.94, + "end": 2929.94, + "probability": 0.1278 + }, + { + "start": 2929.94, + "end": 2931.76, + "probability": 0.4387 + }, + { + "start": 2932.47, + "end": 2934.56, + "probability": 0.3025 + }, + { + "start": 2934.84, + "end": 2936.76, + "probability": 0.535 + }, + { + "start": 2937.38, + "end": 2939.46, + "probability": 0.9336 + }, + { + "start": 2939.98, + "end": 2943.82, + "probability": 0.9964 + }, + { + "start": 2944.82, + "end": 2945.44, + "probability": 0.6446 + }, + { + "start": 2945.56, + "end": 2946.42, + "probability": 0.853 + }, + { + "start": 2946.66, + "end": 2949.66, + "probability": 0.9068 + }, + { + "start": 2950.8, + "end": 2952.62, + "probability": 0.96 + }, + { + "start": 2953.58, + "end": 2954.66, + "probability": 0.946 + }, + { + "start": 2955.34, + "end": 2956.88, + "probability": 0.9968 + }, + { + "start": 2958.02, + "end": 2960.12, + "probability": 0.9739 + }, + { + "start": 2961.04, + "end": 2963.28, + "probability": 0.8719 + }, + { + "start": 2964.42, + "end": 2966.08, + "probability": 0.9699 + }, + { + "start": 2966.9, + "end": 2968.82, + "probability": 0.9677 + }, + { + "start": 2970.18, + "end": 2972.16, + "probability": 0.989 + }, + { + "start": 2972.68, + "end": 2973.38, + "probability": 0.9846 + }, + { + "start": 2974.2, + "end": 2975.45, + "probability": 0.996 + }, + { + "start": 2976.36, + "end": 2978.82, + "probability": 0.7815 + }, + { + "start": 2979.84, + "end": 2980.9, + "probability": 0.8446 + }, + { + "start": 2982.34, + "end": 2986.82, + "probability": 0.8287 + }, + { + "start": 2987.14, + "end": 2988.94, + "probability": 0.9564 + }, + { + "start": 2989.72, + "end": 2992.98, + "probability": 0.9824 + }, + { + "start": 2993.26, + "end": 2997.18, + "probability": 0.991 + }, + { + "start": 2997.94, + "end": 3001.26, + "probability": 0.962 + }, + { + "start": 3002.08, + "end": 3003.02, + "probability": 0.0245 + }, + { + "start": 3004.74, + "end": 3007.08, + "probability": 0.0532 + }, + { + "start": 3009.06, + "end": 3013.12, + "probability": 0.6763 + }, + { + "start": 3013.16, + "end": 3014.24, + "probability": 0.5762 + }, + { + "start": 3015.72, + "end": 3019.64, + "probability": 0.9313 + }, + { + "start": 3019.64, + "end": 3023.3, + "probability": 0.9144 + }, + { + "start": 3023.74, + "end": 3025.26, + "probability": 0.901 + }, + { + "start": 3025.42, + "end": 3026.22, + "probability": 0.4102 + }, + { + "start": 3028.22, + "end": 3028.22, + "probability": 0.0502 + }, + { + "start": 3045.92, + "end": 3046.98, + "probability": 0.3518 + }, + { + "start": 3046.98, + "end": 3047.2, + "probability": 0.1261 + }, + { + "start": 3048.32, + "end": 3048.32, + "probability": 0.1059 + }, + { + "start": 3049.18, + "end": 3051.5, + "probability": 0.0443 + }, + { + "start": 3051.5, + "end": 3054.2, + "probability": 0.3401 + }, + { + "start": 3054.2, + "end": 3055.74, + "probability": 0.0784 + }, + { + "start": 3055.74, + "end": 3056.48, + "probability": 0.1363 + }, + { + "start": 3056.48, + "end": 3060.66, + "probability": 0.1959 + }, + { + "start": 3068.62, + "end": 3069.4, + "probability": 0.023 + }, + { + "start": 3096.6, + "end": 3096.78, + "probability": 0.5836 + }, + { + "start": 3097.72, + "end": 3101.2, + "probability": 0.9511 + }, + { + "start": 3102.22, + "end": 3104.18, + "probability": 0.8263 + }, + { + "start": 3104.22, + "end": 3107.54, + "probability": 0.9831 + }, + { + "start": 3108.74, + "end": 3110.5, + "probability": 0.9964 + }, + { + "start": 3111.38, + "end": 3114.7, + "probability": 0.9956 + }, + { + "start": 3115.38, + "end": 3119.42, + "probability": 0.8738 + }, + { + "start": 3121.36, + "end": 3126.74, + "probability": 0.998 + }, + { + "start": 3127.46, + "end": 3132.2, + "probability": 0.9933 + }, + { + "start": 3132.2, + "end": 3136.64, + "probability": 0.922 + }, + { + "start": 3138.32, + "end": 3139.68, + "probability": 0.8117 + }, + { + "start": 3140.48, + "end": 3141.98, + "probability": 0.9573 + }, + { + "start": 3142.16, + "end": 3144.38, + "probability": 0.9385 + }, + { + "start": 3144.76, + "end": 3145.54, + "probability": 0.9188 + }, + { + "start": 3146.4, + "end": 3149.88, + "probability": 0.9331 + }, + { + "start": 3150.18, + "end": 3154.54, + "probability": 0.9321 + }, + { + "start": 3155.86, + "end": 3160.76, + "probability": 0.8861 + }, + { + "start": 3160.86, + "end": 3165.84, + "probability": 0.9434 + }, + { + "start": 3166.34, + "end": 3167.5, + "probability": 0.7585 + }, + { + "start": 3168.92, + "end": 3170.62, + "probability": 0.9387 + }, + { + "start": 3171.4, + "end": 3174.7, + "probability": 0.9956 + }, + { + "start": 3175.54, + "end": 3180.74, + "probability": 0.9402 + }, + { + "start": 3181.3, + "end": 3183.46, + "probability": 0.87 + }, + { + "start": 3183.92, + "end": 3186.74, + "probability": 0.9351 + }, + { + "start": 3186.98, + "end": 3188.14, + "probability": 0.8858 + }, + { + "start": 3188.64, + "end": 3191.58, + "probability": 0.8925 + }, + { + "start": 3192.78, + "end": 3193.66, + "probability": 0.9574 + }, + { + "start": 3195.02, + "end": 3196.97, + "probability": 0.9856 + }, + { + "start": 3197.92, + "end": 3200.62, + "probability": 0.9775 + }, + { + "start": 3201.42, + "end": 3204.28, + "probability": 0.9949 + }, + { + "start": 3205.52, + "end": 3208.66, + "probability": 0.9551 + }, + { + "start": 3210.34, + "end": 3216.54, + "probability": 0.9036 + }, + { + "start": 3217.72, + "end": 3222.04, + "probability": 0.9595 + }, + { + "start": 3222.56, + "end": 3228.52, + "probability": 0.9806 + }, + { + "start": 3229.26, + "end": 3231.1, + "probability": 0.9983 + }, + { + "start": 3231.9, + "end": 3233.24, + "probability": 0.7819 + }, + { + "start": 3234.56, + "end": 3238.19, + "probability": 0.938 + }, + { + "start": 3240.38, + "end": 3245.94, + "probability": 0.8794 + }, + { + "start": 3246.3, + "end": 3247.66, + "probability": 0.9229 + }, + { + "start": 3247.86, + "end": 3251.86, + "probability": 0.9913 + }, + { + "start": 3253.62, + "end": 3256.26, + "probability": 0.9968 + }, + { + "start": 3257.38, + "end": 3258.58, + "probability": 0.7853 + }, + { + "start": 3259.82, + "end": 3261.58, + "probability": 0.9978 + }, + { + "start": 3262.12, + "end": 3270.08, + "probability": 0.9967 + }, + { + "start": 3271.02, + "end": 3271.6, + "probability": 0.715 + }, + { + "start": 3272.12, + "end": 3276.04, + "probability": 0.9979 + }, + { + "start": 3277.46, + "end": 3279.94, + "probability": 0.88 + }, + { + "start": 3280.58, + "end": 3281.52, + "probability": 0.8957 + }, + { + "start": 3282.68, + "end": 3285.64, + "probability": 0.976 + }, + { + "start": 3286.38, + "end": 3290.64, + "probability": 0.9884 + }, + { + "start": 3291.12, + "end": 3292.12, + "probability": 0.8728 + }, + { + "start": 3292.9, + "end": 3294.9, + "probability": 0.9312 + }, + { + "start": 3295.7, + "end": 3296.36, + "probability": 0.9889 + }, + { + "start": 3297.1, + "end": 3297.76, + "probability": 0.8625 + }, + { + "start": 3298.68, + "end": 3299.6, + "probability": 0.8762 + }, + { + "start": 3300.34, + "end": 3301.98, + "probability": 0.8387 + }, + { + "start": 3302.84, + "end": 3304.58, + "probability": 0.9951 + }, + { + "start": 3305.44, + "end": 3306.9, + "probability": 0.9007 + }, + { + "start": 3307.1, + "end": 3308.54, + "probability": 0.9813 + }, + { + "start": 3310.14, + "end": 3313.78, + "probability": 0.9795 + }, + { + "start": 3314.5, + "end": 3315.58, + "probability": 0.8502 + }, + { + "start": 3315.6, + "end": 3316.96, + "probability": 0.804 + }, + { + "start": 3317.02, + "end": 3318.94, + "probability": 0.9449 + }, + { + "start": 3319.28, + "end": 3321.24, + "probability": 0.8997 + }, + { + "start": 3321.58, + "end": 3325.88, + "probability": 0.9552 + }, + { + "start": 3326.62, + "end": 3329.14, + "probability": 0.9917 + }, + { + "start": 3329.86, + "end": 3333.28, + "probability": 0.9899 + }, + { + "start": 3333.28, + "end": 3337.9, + "probability": 0.9062 + }, + { + "start": 3338.74, + "end": 3342.24, + "probability": 0.9805 + }, + { + "start": 3342.24, + "end": 3346.54, + "probability": 0.9961 + }, + { + "start": 3347.02, + "end": 3347.64, + "probability": 0.6901 + }, + { + "start": 3348.16, + "end": 3350.54, + "probability": 0.9523 + }, + { + "start": 3352.48, + "end": 3357.1, + "probability": 0.9824 + }, + { + "start": 3357.16, + "end": 3357.66, + "probability": 0.7613 + }, + { + "start": 3359.98, + "end": 3364.9, + "probability": 0.9656 + }, + { + "start": 3365.6, + "end": 3367.42, + "probability": 0.9059 + }, + { + "start": 3368.26, + "end": 3369.14, + "probability": 0.8599 + }, + { + "start": 3370.44, + "end": 3374.56, + "probability": 0.9829 + }, + { + "start": 3374.74, + "end": 3376.12, + "probability": 0.8603 + }, + { + "start": 3376.58, + "end": 3376.9, + "probability": 0.832 + }, + { + "start": 3377.02, + "end": 3380.94, + "probability": 0.9596 + }, + { + "start": 3381.48, + "end": 3385.8, + "probability": 0.9847 + }, + { + "start": 3386.62, + "end": 3388.34, + "probability": 0.8264 + }, + { + "start": 3389.36, + "end": 3391.7, + "probability": 0.7837 + }, + { + "start": 3393.16, + "end": 3400.52, + "probability": 0.9782 + }, + { + "start": 3401.64, + "end": 3404.66, + "probability": 0.7805 + }, + { + "start": 3405.36, + "end": 3407.68, + "probability": 0.7015 + }, + { + "start": 3408.42, + "end": 3410.9, + "probability": 0.846 + }, + { + "start": 3410.98, + "end": 3414.02, + "probability": 0.8838 + }, + { + "start": 3414.32, + "end": 3414.88, + "probability": 0.8477 + }, + { + "start": 3415.12, + "end": 3420.53, + "probability": 0.9565 + }, + { + "start": 3420.62, + "end": 3426.26, + "probability": 0.899 + }, + { + "start": 3426.82, + "end": 3429.96, + "probability": 0.9207 + }, + { + "start": 3430.4, + "end": 3431.38, + "probability": 0.756 + }, + { + "start": 3431.58, + "end": 3433.17, + "probability": 0.9924 + }, + { + "start": 3433.94, + "end": 3437.9, + "probability": 0.9896 + }, + { + "start": 3437.9, + "end": 3444.08, + "probability": 0.9871 + }, + { + "start": 3444.72, + "end": 3448.14, + "probability": 0.9963 + }, + { + "start": 3448.38, + "end": 3449.88, + "probability": 0.6263 + }, + { + "start": 3450.36, + "end": 3451.2, + "probability": 0.9561 + }, + { + "start": 3451.9, + "end": 3455.38, + "probability": 0.9651 + }, + { + "start": 3455.94, + "end": 3457.12, + "probability": 0.6256 + }, + { + "start": 3458.06, + "end": 3464.98, + "probability": 0.9771 + }, + { + "start": 3465.38, + "end": 3466.18, + "probability": 0.8966 + }, + { + "start": 3466.58, + "end": 3467.48, + "probability": 0.9653 + }, + { + "start": 3468.04, + "end": 3469.38, + "probability": 0.9097 + }, + { + "start": 3469.9, + "end": 3470.96, + "probability": 0.8526 + }, + { + "start": 3471.62, + "end": 3472.92, + "probability": 0.8914 + }, + { + "start": 3474.16, + "end": 3476.56, + "probability": 0.9623 + }, + { + "start": 3477.26, + "end": 3479.98, + "probability": 0.8814 + }, + { + "start": 3480.38, + "end": 3481.86, + "probability": 0.985 + }, + { + "start": 3482.12, + "end": 3484.5, + "probability": 0.9707 + }, + { + "start": 3485.34, + "end": 3491.7, + "probability": 0.9863 + }, + { + "start": 3491.88, + "end": 3492.4, + "probability": 0.6556 + }, + { + "start": 3493.3, + "end": 3501.92, + "probability": 0.993 + }, + { + "start": 3502.72, + "end": 3505.16, + "probability": 0.998 + }, + { + "start": 3505.74, + "end": 3507.38, + "probability": 0.7433 + }, + { + "start": 3512.6, + "end": 3513.12, + "probability": 0.5981 + }, + { + "start": 3515.0, + "end": 3518.92, + "probability": 0.984 + }, + { + "start": 3519.06, + "end": 3519.6, + "probability": 0.8624 + }, + { + "start": 3519.94, + "end": 3521.3, + "probability": 0.9604 + }, + { + "start": 3522.32, + "end": 3523.88, + "probability": 0.9496 + }, + { + "start": 3524.5, + "end": 3525.46, + "probability": 0.9951 + }, + { + "start": 3527.22, + "end": 3528.7, + "probability": 0.9776 + }, + { + "start": 3530.24, + "end": 3532.5, + "probability": 0.9967 + }, + { + "start": 3533.32, + "end": 3533.91, + "probability": 0.8011 + }, + { + "start": 3534.98, + "end": 3535.9, + "probability": 0.9434 + }, + { + "start": 3536.9, + "end": 3537.84, + "probability": 0.9692 + }, + { + "start": 3539.02, + "end": 3543.52, + "probability": 0.9307 + }, + { + "start": 3544.02, + "end": 3547.32, + "probability": 0.9873 + }, + { + "start": 3547.48, + "end": 3548.64, + "probability": 0.761 + }, + { + "start": 3548.74, + "end": 3550.06, + "probability": 0.7757 + }, + { + "start": 3550.08, + "end": 3551.89, + "probability": 0.6738 + }, + { + "start": 3553.28, + "end": 3557.72, + "probability": 0.9995 + }, + { + "start": 3557.82, + "end": 3558.54, + "probability": 0.4945 + }, + { + "start": 3559.12, + "end": 3559.84, + "probability": 0.7257 + }, + { + "start": 3560.96, + "end": 3562.28, + "probability": 0.9973 + }, + { + "start": 3562.94, + "end": 3565.0, + "probability": 0.9858 + }, + { + "start": 3566.96, + "end": 3572.06, + "probability": 0.9932 + }, + { + "start": 3573.5, + "end": 3577.98, + "probability": 0.8729 + }, + { + "start": 3578.72, + "end": 3582.26, + "probability": 0.9464 + }, + { + "start": 3583.42, + "end": 3586.08, + "probability": 0.738 + }, + { + "start": 3587.16, + "end": 3588.62, + "probability": 0.7993 + }, + { + "start": 3590.64, + "end": 3592.26, + "probability": 0.9739 + }, + { + "start": 3593.26, + "end": 3596.22, + "probability": 0.9435 + }, + { + "start": 3597.14, + "end": 3601.4, + "probability": 0.9815 + }, + { + "start": 3602.58, + "end": 3607.4, + "probability": 0.9919 + }, + { + "start": 3607.4, + "end": 3612.82, + "probability": 0.8713 + }, + { + "start": 3613.46, + "end": 3616.5, + "probability": 0.95 + }, + { + "start": 3617.2, + "end": 3623.76, + "probability": 0.8282 + }, + { + "start": 3625.04, + "end": 3629.58, + "probability": 0.9902 + }, + { + "start": 3630.96, + "end": 3632.34, + "probability": 0.5582 + }, + { + "start": 3633.58, + "end": 3636.44, + "probability": 0.7766 + }, + { + "start": 3637.66, + "end": 3642.28, + "probability": 0.9972 + }, + { + "start": 3642.28, + "end": 3648.02, + "probability": 0.9392 + }, + { + "start": 3648.02, + "end": 3651.34, + "probability": 0.6891 + }, + { + "start": 3652.14, + "end": 3654.12, + "probability": 0.7874 + }, + { + "start": 3654.68, + "end": 3655.82, + "probability": 0.8284 + }, + { + "start": 3656.94, + "end": 3658.76, + "probability": 0.8864 + }, + { + "start": 3659.18, + "end": 3661.73, + "probability": 0.991 + }, + { + "start": 3661.98, + "end": 3663.44, + "probability": 0.6992 + }, + { + "start": 3663.86, + "end": 3665.96, + "probability": 0.8792 + }, + { + "start": 3666.4, + "end": 3668.82, + "probability": 0.9395 + }, + { + "start": 3670.1, + "end": 3675.28, + "probability": 0.9876 + }, + { + "start": 3675.46, + "end": 3676.7, + "probability": 0.5909 + }, + { + "start": 3677.24, + "end": 3678.82, + "probability": 0.8866 + }, + { + "start": 3679.86, + "end": 3684.54, + "probability": 0.8885 + }, + { + "start": 3684.76, + "end": 3685.44, + "probability": 0.3025 + }, + { + "start": 3685.66, + "end": 3687.07, + "probability": 0.9897 + }, + { + "start": 3687.78, + "end": 3688.34, + "probability": 0.9672 + }, + { + "start": 3689.46, + "end": 3690.96, + "probability": 0.9842 + }, + { + "start": 3691.38, + "end": 3694.46, + "probability": 0.9948 + }, + { + "start": 3695.68, + "end": 3697.9, + "probability": 0.9953 + }, + { + "start": 3698.08, + "end": 3700.52, + "probability": 0.9576 + }, + { + "start": 3701.12, + "end": 3705.06, + "probability": 0.9963 + }, + { + "start": 3705.82, + "end": 3707.32, + "probability": 0.9973 + }, + { + "start": 3707.5, + "end": 3708.36, + "probability": 0.7927 + }, + { + "start": 3708.76, + "end": 3709.48, + "probability": 0.9036 + }, + { + "start": 3709.62, + "end": 3710.62, + "probability": 0.7761 + }, + { + "start": 3711.08, + "end": 3713.48, + "probability": 0.8363 + }, + { + "start": 3713.5, + "end": 3719.96, + "probability": 0.9795 + }, + { + "start": 3720.24, + "end": 3722.52, + "probability": 0.937 + }, + { + "start": 3722.56, + "end": 3724.56, + "probability": 0.8979 + }, + { + "start": 3725.02, + "end": 3728.9, + "probability": 0.9164 + }, + { + "start": 3730.06, + "end": 3731.2, + "probability": 0.9354 + }, + { + "start": 3731.74, + "end": 3733.56, + "probability": 0.9639 + }, + { + "start": 3733.96, + "end": 3737.04, + "probability": 0.9915 + }, + { + "start": 3737.38, + "end": 3737.86, + "probability": 0.8214 + }, + { + "start": 3739.02, + "end": 3741.44, + "probability": 0.8007 + }, + { + "start": 3742.1, + "end": 3742.72, + "probability": 0.8219 + }, + { + "start": 3743.0, + "end": 3744.08, + "probability": 0.7063 + }, + { + "start": 3744.3, + "end": 3749.74, + "probability": 0.9919 + }, + { + "start": 3749.86, + "end": 3750.36, + "probability": 0.8962 + }, + { + "start": 3750.7, + "end": 3751.8, + "probability": 0.8418 + }, + { + "start": 3751.86, + "end": 3754.8, + "probability": 0.9694 + }, + { + "start": 3755.28, + "end": 3755.94, + "probability": 0.4343 + }, + { + "start": 3756.3, + "end": 3756.86, + "probability": 0.9048 + }, + { + "start": 3758.3, + "end": 3763.42, + "probability": 0.9965 + }, + { + "start": 3764.02, + "end": 3767.68, + "probability": 0.9865 + }, + { + "start": 3768.38, + "end": 3774.6, + "probability": 0.9974 + }, + { + "start": 3774.72, + "end": 3775.2, + "probability": 0.8167 + }, + { + "start": 3775.5, + "end": 3776.66, + "probability": 0.6573 + }, + { + "start": 3776.72, + "end": 3778.28, + "probability": 0.9025 + }, + { + "start": 3778.42, + "end": 3780.16, + "probability": 0.8723 + }, + { + "start": 3781.58, + "end": 3785.94, + "probability": 0.9966 + }, + { + "start": 3785.94, + "end": 3789.7, + "probability": 0.9938 + }, + { + "start": 3790.98, + "end": 3792.74, + "probability": 0.979 + }, + { + "start": 3794.22, + "end": 3795.78, + "probability": 0.9891 + }, + { + "start": 3796.82, + "end": 3801.94, + "probability": 0.9976 + }, + { + "start": 3803.38, + "end": 3808.86, + "probability": 0.9905 + }, + { + "start": 3809.4, + "end": 3810.88, + "probability": 0.9195 + }, + { + "start": 3812.56, + "end": 3814.3, + "probability": 0.9648 + }, + { + "start": 3815.66, + "end": 3817.94, + "probability": 0.995 + }, + { + "start": 3818.0, + "end": 3819.38, + "probability": 0.7882 + }, + { + "start": 3819.72, + "end": 3821.36, + "probability": 0.9259 + }, + { + "start": 3822.52, + "end": 3824.94, + "probability": 0.9386 + }, + { + "start": 3825.54, + "end": 3830.18, + "probability": 0.9867 + }, + { + "start": 3831.52, + "end": 3834.16, + "probability": 0.939 + }, + { + "start": 3834.98, + "end": 3839.28, + "probability": 0.9943 + }, + { + "start": 3840.18, + "end": 3843.42, + "probability": 0.8035 + }, + { + "start": 3843.94, + "end": 3847.08, + "probability": 0.9774 + }, + { + "start": 3847.56, + "end": 3849.96, + "probability": 0.9982 + }, + { + "start": 3851.02, + "end": 3852.46, + "probability": 0.7487 + }, + { + "start": 3853.02, + "end": 3857.62, + "probability": 0.9346 + }, + { + "start": 3858.62, + "end": 3862.72, + "probability": 0.9826 + }, + { + "start": 3864.28, + "end": 3865.66, + "probability": 0.9683 + }, + { + "start": 3867.34, + "end": 3869.12, + "probability": 0.9855 + }, + { + "start": 3869.74, + "end": 3871.88, + "probability": 0.8995 + }, + { + "start": 3872.32, + "end": 3873.84, + "probability": 0.9693 + }, + { + "start": 3875.78, + "end": 3879.48, + "probability": 0.9717 + }, + { + "start": 3881.0, + "end": 3882.2, + "probability": 0.9602 + }, + { + "start": 3883.34, + "end": 3884.58, + "probability": 0.9838 + }, + { + "start": 3885.74, + "end": 3887.52, + "probability": 0.9888 + }, + { + "start": 3888.78, + "end": 3890.74, + "probability": 0.9971 + }, + { + "start": 3891.62, + "end": 3894.34, + "probability": 0.9902 + }, + { + "start": 3895.2, + "end": 3896.32, + "probability": 0.987 + }, + { + "start": 3897.32, + "end": 3899.44, + "probability": 0.7762 + }, + { + "start": 3899.96, + "end": 3901.22, + "probability": 0.9714 + }, + { + "start": 3901.36, + "end": 3901.64, + "probability": 0.8668 + }, + { + "start": 3901.9, + "end": 3902.24, + "probability": 0.9385 + }, + { + "start": 3902.74, + "end": 3904.04, + "probability": 0.9765 + }, + { + "start": 3904.18, + "end": 3905.14, + "probability": 0.8649 + }, + { + "start": 3905.4, + "end": 3906.34, + "probability": 0.8409 + }, + { + "start": 3906.46, + "end": 3907.92, + "probability": 0.8982 + }, + { + "start": 3908.04, + "end": 3909.18, + "probability": 0.6954 + }, + { + "start": 3910.5, + "end": 3912.49, + "probability": 0.9943 + }, + { + "start": 3913.04, + "end": 3914.59, + "probability": 0.9932 + }, + { + "start": 3915.22, + "end": 3916.94, + "probability": 0.9344 + }, + { + "start": 3917.3, + "end": 3918.32, + "probability": 0.9867 + }, + { + "start": 3918.86, + "end": 3920.72, + "probability": 0.9971 + }, + { + "start": 3921.62, + "end": 3925.08, + "probability": 0.9899 + }, + { + "start": 3925.7, + "end": 3928.04, + "probability": 0.9915 + }, + { + "start": 3931.2, + "end": 3932.7, + "probability": 0.9537 + }, + { + "start": 3934.38, + "end": 3937.64, + "probability": 0.8942 + }, + { + "start": 3940.48, + "end": 3942.34, + "probability": 0.9766 + }, + { + "start": 3943.34, + "end": 3944.24, + "probability": 0.8383 + }, + { + "start": 3945.52, + "end": 3950.38, + "probability": 0.9584 + }, + { + "start": 3951.18, + "end": 3959.64, + "probability": 0.9623 + }, + { + "start": 3960.54, + "end": 3964.52, + "probability": 0.9989 + }, + { + "start": 3964.62, + "end": 3968.38, + "probability": 0.9985 + }, + { + "start": 3968.72, + "end": 3973.78, + "probability": 0.9935 + }, + { + "start": 3974.24, + "end": 3975.68, + "probability": 0.8239 + }, + { + "start": 3976.02, + "end": 3978.04, + "probability": 0.9912 + }, + { + "start": 3978.4, + "end": 3982.14, + "probability": 0.994 + }, + { + "start": 3982.3, + "end": 3986.84, + "probability": 0.994 + }, + { + "start": 3987.48, + "end": 3995.34, + "probability": 0.994 + }, + { + "start": 3995.82, + "end": 3996.18, + "probability": 0.3534 + }, + { + "start": 3996.24, + "end": 3997.82, + "probability": 0.943 + }, + { + "start": 3998.4, + "end": 4003.04, + "probability": 0.9574 + }, + { + "start": 4003.46, + "end": 4006.74, + "probability": 0.9956 + }, + { + "start": 4007.42, + "end": 4008.68, + "probability": 0.8679 + }, + { + "start": 4009.3, + "end": 4010.28, + "probability": 0.7407 + }, + { + "start": 4010.64, + "end": 4016.64, + "probability": 0.9885 + }, + { + "start": 4016.64, + "end": 4022.22, + "probability": 0.999 + }, + { + "start": 4024.02, + "end": 4025.06, + "probability": 0.735 + }, + { + "start": 4025.18, + "end": 4027.06, + "probability": 0.9985 + }, + { + "start": 4027.36, + "end": 4029.74, + "probability": 0.9834 + }, + { + "start": 4031.68, + "end": 4034.1, + "probability": 0.9636 + }, + { + "start": 4034.44, + "end": 4038.56, + "probability": 0.9549 + }, + { + "start": 4038.78, + "end": 4041.52, + "probability": 0.6277 + }, + { + "start": 4041.52, + "end": 4042.14, + "probability": 0.5374 + }, + { + "start": 4042.54, + "end": 4045.28, + "probability": 0.9524 + }, + { + "start": 4046.58, + "end": 4048.04, + "probability": 0.9081 + }, + { + "start": 4049.88, + "end": 4054.82, + "probability": 0.9912 + }, + { + "start": 4054.88, + "end": 4056.25, + "probability": 0.9956 + }, + { + "start": 4057.22, + "end": 4060.2, + "probability": 0.9652 + }, + { + "start": 4060.98, + "end": 4061.84, + "probability": 0.8273 + }, + { + "start": 4062.46, + "end": 4063.4, + "probability": 0.9092 + }, + { + "start": 4064.52, + "end": 4065.92, + "probability": 0.9683 + }, + { + "start": 4071.28, + "end": 4076.04, + "probability": 0.9976 + }, + { + "start": 4077.4, + "end": 4082.32, + "probability": 0.9989 + }, + { + "start": 4082.56, + "end": 4082.92, + "probability": 0.6958 + }, + { + "start": 4083.02, + "end": 4083.4, + "probability": 0.949 + }, + { + "start": 4083.54, + "end": 4084.06, + "probability": 0.85 + }, + { + "start": 4084.5, + "end": 4086.7, + "probability": 0.8907 + }, + { + "start": 4087.12, + "end": 4088.84, + "probability": 0.7851 + }, + { + "start": 4089.54, + "end": 4093.48, + "probability": 0.9844 + }, + { + "start": 4094.4, + "end": 4096.46, + "probability": 0.7358 + }, + { + "start": 4096.72, + "end": 4099.84, + "probability": 0.8906 + }, + { + "start": 4100.46, + "end": 4102.23, + "probability": 0.9629 + }, + { + "start": 4102.84, + "end": 4104.96, + "probability": 0.9043 + }, + { + "start": 4105.62, + "end": 4107.28, + "probability": 0.9818 + }, + { + "start": 4108.4, + "end": 4110.68, + "probability": 0.9741 + }, + { + "start": 4111.68, + "end": 4115.32, + "probability": 0.8482 + }, + { + "start": 4116.54, + "end": 4119.8, + "probability": 0.988 + }, + { + "start": 4120.34, + "end": 4121.28, + "probability": 0.9434 + }, + { + "start": 4121.38, + "end": 4122.54, + "probability": 0.9592 + }, + { + "start": 4123.82, + "end": 4125.74, + "probability": 0.9951 + }, + { + "start": 4126.16, + "end": 4131.32, + "probability": 0.9937 + }, + { + "start": 4133.22, + "end": 4138.24, + "probability": 0.9967 + }, + { + "start": 4138.8, + "end": 4141.28, + "probability": 0.9629 + }, + { + "start": 4141.8, + "end": 4143.18, + "probability": 0.6987 + }, + { + "start": 4144.04, + "end": 4149.46, + "probability": 0.9812 + }, + { + "start": 4150.4, + "end": 4151.9, + "probability": 0.9131 + }, + { + "start": 4152.42, + "end": 4153.49, + "probability": 0.767 + }, + { + "start": 4154.12, + "end": 4158.06, + "probability": 0.9304 + }, + { + "start": 4158.5, + "end": 4159.64, + "probability": 0.9956 + }, + { + "start": 4160.74, + "end": 4161.18, + "probability": 0.8779 + }, + { + "start": 4161.24, + "end": 4162.06, + "probability": 0.8636 + }, + { + "start": 4162.92, + "end": 4163.98, + "probability": 0.9036 + }, + { + "start": 4164.54, + "end": 4167.58, + "probability": 0.9915 + }, + { + "start": 4171.58, + "end": 4172.56, + "probability": 0.8644 + }, + { + "start": 4172.78, + "end": 4173.64, + "probability": 0.679 + }, + { + "start": 4173.76, + "end": 4175.74, + "probability": 0.7955 + }, + { + "start": 4176.76, + "end": 4177.6, + "probability": 0.6936 + }, + { + "start": 4179.98, + "end": 4181.03, + "probability": 0.6797 + }, + { + "start": 4182.2, + "end": 4185.35, + "probability": 0.986 + }, + { + "start": 4186.42, + "end": 4187.94, + "probability": 0.9894 + }, + { + "start": 4189.36, + "end": 4190.34, + "probability": 0.7107 + }, + { + "start": 4191.52, + "end": 4191.76, + "probability": 0.6959 + }, + { + "start": 4192.32, + "end": 4192.48, + "probability": 0.3666 + }, + { + "start": 4194.12, + "end": 4195.78, + "probability": 0.6281 + }, + { + "start": 4196.58, + "end": 4202.34, + "probability": 0.8849 + }, + { + "start": 4203.38, + "end": 4203.76, + "probability": 0.7218 + }, + { + "start": 4204.88, + "end": 4209.24, + "probability": 0.9839 + }, + { + "start": 4210.34, + "end": 4211.88, + "probability": 0.998 + }, + { + "start": 4211.96, + "end": 4216.58, + "probability": 0.996 + }, + { + "start": 4216.98, + "end": 4219.98, + "probability": 0.9752 + }, + { + "start": 4220.6, + "end": 4221.84, + "probability": 0.9543 + }, + { + "start": 4222.02, + "end": 4222.94, + "probability": 0.9753 + }, + { + "start": 4223.26, + "end": 4227.34, + "probability": 0.8726 + }, + { + "start": 4227.78, + "end": 4228.16, + "probability": 0.6287 + }, + { + "start": 4228.86, + "end": 4231.72, + "probability": 0.9975 + }, + { + "start": 4232.38, + "end": 4233.94, + "probability": 0.9727 + }, + { + "start": 4234.96, + "end": 4236.32, + "probability": 0.9655 + }, + { + "start": 4236.9, + "end": 4238.28, + "probability": 0.9989 + }, + { + "start": 4239.04, + "end": 4242.18, + "probability": 0.991 + }, + { + "start": 4242.86, + "end": 4244.12, + "probability": 0.9887 + }, + { + "start": 4244.2, + "end": 4245.22, + "probability": 0.9348 + }, + { + "start": 4245.82, + "end": 4247.18, + "probability": 0.8243 + }, + { + "start": 4248.7, + "end": 4253.88, + "probability": 0.988 + }, + { + "start": 4254.66, + "end": 4255.7, + "probability": 0.9368 + }, + { + "start": 4256.26, + "end": 4260.58, + "probability": 0.9738 + }, + { + "start": 4261.4, + "end": 4263.54, + "probability": 0.8154 + }, + { + "start": 4265.46, + "end": 4265.76, + "probability": 0.6445 + }, + { + "start": 4267.34, + "end": 4270.3, + "probability": 0.9355 + }, + { + "start": 4271.12, + "end": 4272.14, + "probability": 0.8418 + }, + { + "start": 4274.34, + "end": 4276.4, + "probability": 0.9125 + }, + { + "start": 4277.56, + "end": 4278.04, + "probability": 0.8239 + }, + { + "start": 4279.42, + "end": 4282.12, + "probability": 0.9985 + }, + { + "start": 4283.08, + "end": 4286.0, + "probability": 0.9958 + }, + { + "start": 4287.66, + "end": 4293.28, + "probability": 0.9941 + }, + { + "start": 4293.32, + "end": 4296.18, + "probability": 0.9788 + }, + { + "start": 4297.62, + "end": 4300.28, + "probability": 0.9124 + }, + { + "start": 4301.08, + "end": 4304.32, + "probability": 0.9551 + }, + { + "start": 4304.86, + "end": 4306.74, + "probability": 0.524 + }, + { + "start": 4308.68, + "end": 4310.98, + "probability": 0.9908 + }, + { + "start": 4313.1, + "end": 4315.78, + "probability": 0.9218 + }, + { + "start": 4316.34, + "end": 4318.34, + "probability": 0.7168 + }, + { + "start": 4318.8, + "end": 4323.24, + "probability": 0.887 + }, + { + "start": 4324.22, + "end": 4327.12, + "probability": 0.9648 + }, + { + "start": 4327.66, + "end": 4331.64, + "probability": 0.9495 + }, + { + "start": 4331.72, + "end": 4333.54, + "probability": 0.8972 + }, + { + "start": 4334.3, + "end": 4338.16, + "probability": 0.8973 + }, + { + "start": 4338.16, + "end": 4343.68, + "probability": 0.9468 + }, + { + "start": 4345.48, + "end": 4346.04, + "probability": 0.5978 + }, + { + "start": 4346.14, + "end": 4349.74, + "probability": 0.9782 + }, + { + "start": 4350.46, + "end": 4352.1, + "probability": 0.895 + }, + { + "start": 4353.12, + "end": 4355.54, + "probability": 0.9971 + }, + { + "start": 4356.46, + "end": 4360.48, + "probability": 0.9666 + }, + { + "start": 4361.62, + "end": 4363.2, + "probability": 0.9878 + }, + { + "start": 4363.26, + "end": 4363.92, + "probability": 0.803 + }, + { + "start": 4364.02, + "end": 4365.72, + "probability": 0.966 + }, + { + "start": 4366.64, + "end": 4371.28, + "probability": 0.8829 + }, + { + "start": 4371.42, + "end": 4373.18, + "probability": 0.9932 + }, + { + "start": 4373.3, + "end": 4373.66, + "probability": 0.8357 + }, + { + "start": 4374.18, + "end": 4374.72, + "probability": 0.9194 + }, + { + "start": 4377.54, + "end": 4381.38, + "probability": 0.9476 + }, + { + "start": 4383.06, + "end": 4385.52, + "probability": 0.8051 + }, + { + "start": 4387.18, + "end": 4391.26, + "probability": 0.9985 + }, + { + "start": 4391.62, + "end": 4393.98, + "probability": 0.9967 + }, + { + "start": 4394.6, + "end": 4398.32, + "probability": 0.8689 + }, + { + "start": 4398.92, + "end": 4403.88, + "probability": 0.9923 + }, + { + "start": 4404.02, + "end": 4404.64, + "probability": 0.5113 + }, + { + "start": 4405.34, + "end": 4409.18, + "probability": 0.9371 + }, + { + "start": 4409.78, + "end": 4410.42, + "probability": 0.8648 + }, + { + "start": 4411.72, + "end": 4412.9, + "probability": 0.7278 + }, + { + "start": 4413.1, + "end": 4415.8, + "probability": 0.9873 + }, + { + "start": 4416.52, + "end": 4416.96, + "probability": 0.8818 + }, + { + "start": 4417.16, + "end": 4417.66, + "probability": 0.936 + }, + { + "start": 4417.8, + "end": 4418.3, + "probability": 0.95 + }, + { + "start": 4418.42, + "end": 4418.86, + "probability": 0.8376 + }, + { + "start": 4419.2, + "end": 4420.68, + "probability": 0.9684 + }, + { + "start": 4422.76, + "end": 4423.98, + "probability": 0.9119 + }, + { + "start": 4425.32, + "end": 4428.16, + "probability": 0.9869 + }, + { + "start": 4428.54, + "end": 4429.32, + "probability": 0.8413 + }, + { + "start": 4429.46, + "end": 4431.72, + "probability": 0.9858 + }, + { + "start": 4431.76, + "end": 4432.34, + "probability": 0.7757 + }, + { + "start": 4432.48, + "end": 4433.18, + "probability": 0.7509 + }, + { + "start": 4433.26, + "end": 4434.2, + "probability": 0.7554 + }, + { + "start": 4434.5, + "end": 4435.4, + "probability": 0.897 + }, + { + "start": 4435.58, + "end": 4437.98, + "probability": 0.9928 + }, + { + "start": 4437.98, + "end": 4441.5, + "probability": 0.9976 + }, + { + "start": 4441.76, + "end": 4443.52, + "probability": 0.9959 + }, + { + "start": 4443.68, + "end": 4447.2, + "probability": 0.9295 + }, + { + "start": 4447.58, + "end": 4448.22, + "probability": 0.4253 + }, + { + "start": 4448.98, + "end": 4454.0, + "probability": 0.9807 + }, + { + "start": 4454.8, + "end": 4457.22, + "probability": 0.6958 + }, + { + "start": 4458.2, + "end": 4460.62, + "probability": 0.6779 + }, + { + "start": 4460.72, + "end": 4463.86, + "probability": 0.965 + }, + { + "start": 4464.82, + "end": 4466.24, + "probability": 0.4677 + }, + { + "start": 4467.68, + "end": 4469.32, + "probability": 0.784 + }, + { + "start": 4469.88, + "end": 4473.5, + "probability": 0.9576 + }, + { + "start": 4474.28, + "end": 4475.5, + "probability": 0.7607 + }, + { + "start": 4475.64, + "end": 4476.24, + "probability": 0.898 + }, + { + "start": 4476.9, + "end": 4480.7, + "probability": 0.9958 + }, + { + "start": 4481.16, + "end": 4484.0, + "probability": 0.8066 + }, + { + "start": 4484.14, + "end": 4485.98, + "probability": 0.8554 + }, + { + "start": 4486.86, + "end": 4489.7, + "probability": 0.8358 + }, + { + "start": 4490.66, + "end": 4492.0, + "probability": 0.9812 + }, + { + "start": 4492.92, + "end": 4496.64, + "probability": 0.997 + }, + { + "start": 4496.64, + "end": 4501.18, + "probability": 0.9965 + }, + { + "start": 4502.06, + "end": 4504.86, + "probability": 0.5704 + }, + { + "start": 4505.38, + "end": 4506.76, + "probability": 0.9052 + }, + { + "start": 4507.74, + "end": 4510.14, + "probability": 0.8576 + }, + { + "start": 4510.9, + "end": 4514.52, + "probability": 0.9658 + }, + { + "start": 4514.52, + "end": 4520.6, + "probability": 0.981 + }, + { + "start": 4521.5, + "end": 4524.68, + "probability": 0.9519 + }, + { + "start": 4525.66, + "end": 4527.5, + "probability": 0.677 + }, + { + "start": 4528.42, + "end": 4533.64, + "probability": 0.9337 + }, + { + "start": 4534.2, + "end": 4538.44, + "probability": 0.8386 + }, + { + "start": 4539.34, + "end": 4543.08, + "probability": 0.9932 + }, + { + "start": 4543.5, + "end": 4545.38, + "probability": 0.8656 + }, + { + "start": 4546.44, + "end": 4549.06, + "probability": 0.9932 + }, + { + "start": 4549.62, + "end": 4550.08, + "probability": 0.9112 + }, + { + "start": 4551.24, + "end": 4553.74, + "probability": 0.9902 + }, + { + "start": 4553.96, + "end": 4555.92, + "probability": 0.7495 + }, + { + "start": 4556.8, + "end": 4557.74, + "probability": 0.877 + }, + { + "start": 4559.66, + "end": 4563.68, + "probability": 0.9956 + }, + { + "start": 4565.48, + "end": 4566.48, + "probability": 0.6021 + }, + { + "start": 4567.4, + "end": 4567.4, + "probability": 0.0891 + }, + { + "start": 4568.12, + "end": 4569.18, + "probability": 0.0003 + }, + { + "start": 4580.04, + "end": 4581.16, + "probability": 0.1211 + }, + { + "start": 4582.28, + "end": 4582.72, + "probability": 0.3593 + }, + { + "start": 4585.52, + "end": 4586.88, + "probability": 0.6388 + }, + { + "start": 4587.06, + "end": 4589.22, + "probability": 0.8192 + }, + { + "start": 4590.78, + "end": 4593.24, + "probability": 0.884 + }, + { + "start": 4594.4, + "end": 4596.62, + "probability": 0.9823 + }, + { + "start": 4599.04, + "end": 4601.5, + "probability": 0.9833 + }, + { + "start": 4602.92, + "end": 4605.8, + "probability": 0.9713 + }, + { + "start": 4607.6, + "end": 4609.24, + "probability": 0.764 + }, + { + "start": 4609.86, + "end": 4610.8, + "probability": 0.6587 + }, + { + "start": 4610.86, + "end": 4612.04, + "probability": 0.9263 + }, + { + "start": 4622.78, + "end": 4625.96, + "probability": 0.7491 + }, + { + "start": 4635.94, + "end": 4637.52, + "probability": 0.4809 + }, + { + "start": 4637.58, + "end": 4638.46, + "probability": 0.7315 + }, + { + "start": 4638.8, + "end": 4640.83, + "probability": 0.9071 + }, + { + "start": 4641.0, + "end": 4641.52, + "probability": 0.4289 + }, + { + "start": 4642.06, + "end": 4642.88, + "probability": 0.6252 + }, + { + "start": 4642.98, + "end": 4644.2, + "probability": 0.9761 + }, + { + "start": 4644.72, + "end": 4647.98, + "probability": 0.8313 + }, + { + "start": 4649.52, + "end": 4650.98, + "probability": 0.7692 + }, + { + "start": 4651.16, + "end": 4651.48, + "probability": 0.8342 + }, + { + "start": 4652.8, + "end": 4653.88, + "probability": 0.9836 + }, + { + "start": 4654.0, + "end": 4655.54, + "probability": 0.939 + }, + { + "start": 4656.04, + "end": 4657.6, + "probability": 0.9961 + }, + { + "start": 4658.42, + "end": 4664.12, + "probability": 0.9749 + }, + { + "start": 4664.78, + "end": 4668.06, + "probability": 0.6949 + }, + { + "start": 4669.26, + "end": 4671.92, + "probability": 0.6802 + }, + { + "start": 4673.12, + "end": 4675.72, + "probability": 0.9949 + }, + { + "start": 4676.44, + "end": 4681.1, + "probability": 0.9175 + }, + { + "start": 4681.86, + "end": 4684.22, + "probability": 0.9503 + }, + { + "start": 4684.32, + "end": 4688.82, + "probability": 0.9943 + }, + { + "start": 4688.98, + "end": 4690.1, + "probability": 0.8064 + }, + { + "start": 4690.2, + "end": 4691.12, + "probability": 0.8528 + }, + { + "start": 4691.88, + "end": 4694.36, + "probability": 0.9985 + }, + { + "start": 4695.52, + "end": 4697.5, + "probability": 0.9972 + }, + { + "start": 4698.12, + "end": 4699.96, + "probability": 0.9992 + }, + { + "start": 4700.6, + "end": 4703.02, + "probability": 0.9976 + }, + { + "start": 4703.82, + "end": 4709.18, + "probability": 0.9921 + }, + { + "start": 4710.56, + "end": 4717.24, + "probability": 0.9741 + }, + { + "start": 4717.3, + "end": 4718.92, + "probability": 0.936 + }, + { + "start": 4718.92, + "end": 4720.9, + "probability": 0.7583 + }, + { + "start": 4721.18, + "end": 4724.34, + "probability": 0.9875 + }, + { + "start": 4724.66, + "end": 4726.08, + "probability": 0.9144 + }, + { + "start": 4726.62, + "end": 4727.3, + "probability": 0.8199 + }, + { + "start": 4728.72, + "end": 4730.62, + "probability": 0.9836 + }, + { + "start": 4730.72, + "end": 4731.4, + "probability": 0.6995 + }, + { + "start": 4731.62, + "end": 4734.96, + "probability": 0.6174 + }, + { + "start": 4737.0, + "end": 4740.84, + "probability": 0.9976 + }, + { + "start": 4741.88, + "end": 4746.36, + "probability": 0.8379 + }, + { + "start": 4746.36, + "end": 4750.82, + "probability": 0.9984 + }, + { + "start": 4750.82, + "end": 4756.48, + "probability": 0.9919 + }, + { + "start": 4757.02, + "end": 4760.12, + "probability": 0.9628 + }, + { + "start": 4761.0, + "end": 4765.04, + "probability": 0.9949 + }, + { + "start": 4765.04, + "end": 4770.94, + "probability": 0.9992 + }, + { + "start": 4771.74, + "end": 4775.46, + "probability": 0.9969 + }, + { + "start": 4776.36, + "end": 4778.34, + "probability": 0.9981 + }, + { + "start": 4779.4, + "end": 4782.64, + "probability": 0.9722 + }, + { + "start": 4783.46, + "end": 4784.92, + "probability": 0.8662 + }, + { + "start": 4785.28, + "end": 4786.56, + "probability": 0.9973 + }, + { + "start": 4787.18, + "end": 4788.61, + "probability": 0.9995 + }, + { + "start": 4788.8, + "end": 4792.02, + "probability": 0.6778 + }, + { + "start": 4792.26, + "end": 4793.28, + "probability": 0.7228 + }, + { + "start": 4793.28, + "end": 4793.28, + "probability": 0.8133 + }, + { + "start": 4793.38, + "end": 4795.02, + "probability": 0.906 + }, + { + "start": 4795.14, + "end": 4795.14, + "probability": 0.1394 + }, + { + "start": 4795.14, + "end": 4796.44, + "probability": 0.9916 + }, + { + "start": 4797.1, + "end": 4798.32, + "probability": 0.9941 + }, + { + "start": 4800.44, + "end": 4802.48, + "probability": 0.9946 + }, + { + "start": 4803.44, + "end": 4805.3, + "probability": 0.9955 + }, + { + "start": 4805.4, + "end": 4807.38, + "probability": 0.9976 + }, + { + "start": 4808.6, + "end": 4811.94, + "probability": 0.9691 + }, + { + "start": 4812.08, + "end": 4814.22, + "probability": 0.9946 + }, + { + "start": 4814.9, + "end": 4820.06, + "probability": 0.9885 + }, + { + "start": 4820.12, + "end": 4821.78, + "probability": 0.7577 + }, + { + "start": 4821.92, + "end": 4822.98, + "probability": 0.9056 + }, + { + "start": 4823.32, + "end": 4824.86, + "probability": 0.9101 + }, + { + "start": 4825.22, + "end": 4827.97, + "probability": 0.9858 + }, + { + "start": 4828.52, + "end": 4830.72, + "probability": 0.973 + }, + { + "start": 4831.52, + "end": 4834.8, + "probability": 0.9976 + }, + { + "start": 4834.92, + "end": 4838.62, + "probability": 0.9858 + }, + { + "start": 4839.02, + "end": 4842.3, + "probability": 0.995 + }, + { + "start": 4843.04, + "end": 4846.78, + "probability": 0.9903 + }, + { + "start": 4847.44, + "end": 4850.16, + "probability": 0.9935 + }, + { + "start": 4850.88, + "end": 4852.47, + "probability": 0.9955 + }, + { + "start": 4853.18, + "end": 4855.36, + "probability": 0.992 + }, + { + "start": 4855.84, + "end": 4860.46, + "probability": 0.9963 + }, + { + "start": 4860.98, + "end": 4864.82, + "probability": 0.9993 + }, + { + "start": 4865.54, + "end": 4867.42, + "probability": 0.8608 + }, + { + "start": 4868.0, + "end": 4871.16, + "probability": 0.7507 + }, + { + "start": 4871.72, + "end": 4873.88, + "probability": 0.9901 + }, + { + "start": 4874.32, + "end": 4875.98, + "probability": 0.9983 + }, + { + "start": 4876.06, + "end": 4879.04, + "probability": 0.971 + }, + { + "start": 4879.04, + "end": 4881.9, + "probability": 0.9972 + }, + { + "start": 4882.4, + "end": 4883.68, + "probability": 0.7991 + }, + { + "start": 4884.28, + "end": 4887.44, + "probability": 0.9956 + }, + { + "start": 4888.46, + "end": 4892.68, + "probability": 0.9907 + }, + { + "start": 4892.98, + "end": 4893.8, + "probability": 0.6412 + }, + { + "start": 4894.02, + "end": 4896.72, + "probability": 0.8807 + }, + { + "start": 4896.78, + "end": 4898.46, + "probability": 0.9756 + }, + { + "start": 4899.46, + "end": 4900.42, + "probability": 0.7636 + }, + { + "start": 4903.6, + "end": 4903.62, + "probability": 0.1019 + }, + { + "start": 4903.62, + "end": 4903.62, + "probability": 0.0812 + }, + { + "start": 4903.62, + "end": 4905.84, + "probability": 0.8307 + }, + { + "start": 4909.42, + "end": 4910.66, + "probability": 0.3142 + }, + { + "start": 4910.92, + "end": 4911.72, + "probability": 0.7868 + }, + { + "start": 4912.52, + "end": 4916.32, + "probability": 0.9461 + }, + { + "start": 4917.16, + "end": 4917.84, + "probability": 0.9827 + }, + { + "start": 4917.92, + "end": 4918.44, + "probability": 0.8715 + }, + { + "start": 4918.5, + "end": 4920.46, + "probability": 0.9919 + }, + { + "start": 4920.58, + "end": 4923.04, + "probability": 0.9122 + }, + { + "start": 4923.88, + "end": 4927.28, + "probability": 0.8862 + }, + { + "start": 4928.04, + "end": 4930.8, + "probability": 0.9721 + }, + { + "start": 4930.92, + "end": 4933.7, + "probability": 0.9814 + }, + { + "start": 4934.46, + "end": 4935.78, + "probability": 0.7458 + }, + { + "start": 4936.9, + "end": 4937.18, + "probability": 0.3441 + }, + { + "start": 4937.24, + "end": 4938.28, + "probability": 0.5605 + }, + { + "start": 4939.1, + "end": 4941.6, + "probability": 0.9818 + }, + { + "start": 4942.86, + "end": 4946.54, + "probability": 0.9275 + }, + { + "start": 4947.46, + "end": 4953.26, + "probability": 0.9983 + }, + { + "start": 4954.9, + "end": 4961.64, + "probability": 0.9925 + }, + { + "start": 4962.66, + "end": 4963.46, + "probability": 0.8871 + }, + { + "start": 4964.2, + "end": 4965.96, + "probability": 0.8394 + }, + { + "start": 4966.78, + "end": 4974.72, + "probability": 0.9806 + }, + { + "start": 4975.74, + "end": 4980.14, + "probability": 0.9809 + }, + { + "start": 4981.5, + "end": 4983.36, + "probability": 0.9978 + }, + { + "start": 4984.38, + "end": 4985.66, + "probability": 0.9813 + }, + { + "start": 4986.22, + "end": 4990.78, + "probability": 0.9954 + }, + { + "start": 4990.84, + "end": 4991.54, + "probability": 0.66 + }, + { + "start": 4992.22, + "end": 4993.56, + "probability": 0.9343 + }, + { + "start": 4994.22, + "end": 4997.12, + "probability": 0.9875 + }, + { + "start": 4998.5, + "end": 5000.66, + "probability": 0.9694 + }, + { + "start": 5001.62, + "end": 5007.28, + "probability": 0.9887 + }, + { + "start": 5008.72, + "end": 5010.54, + "probability": 0.8653 + }, + { + "start": 5011.14, + "end": 5018.08, + "probability": 0.9719 + }, + { + "start": 5019.54, + "end": 5021.28, + "probability": 0.977 + }, + { + "start": 5022.58, + "end": 5027.24, + "probability": 0.974 + }, + { + "start": 5028.18, + "end": 5033.48, + "probability": 0.9985 + }, + { + "start": 5034.24, + "end": 5038.36, + "probability": 0.9958 + }, + { + "start": 5039.0, + "end": 5040.4, + "probability": 0.99 + }, + { + "start": 5041.04, + "end": 5044.76, + "probability": 0.9948 + }, + { + "start": 5045.38, + "end": 5049.54, + "probability": 0.9704 + }, + { + "start": 5050.4, + "end": 5055.16, + "probability": 0.9826 + }, + { + "start": 5055.16, + "end": 5059.1, + "probability": 0.9849 + }, + { + "start": 5060.48, + "end": 5061.5, + "probability": 0.7956 + }, + { + "start": 5061.64, + "end": 5062.12, + "probability": 0.5258 + }, + { + "start": 5062.18, + "end": 5066.08, + "probability": 0.9761 + }, + { + "start": 5066.5, + "end": 5068.36, + "probability": 0.887 + }, + { + "start": 5068.9, + "end": 5070.12, + "probability": 0.7377 + }, + { + "start": 5071.06, + "end": 5072.74, + "probability": 0.9676 + }, + { + "start": 5073.44, + "end": 5075.79, + "probability": 0.8864 + }, + { + "start": 5076.72, + "end": 5078.88, + "probability": 0.8419 + }, + { + "start": 5079.4, + "end": 5080.9, + "probability": 0.8562 + }, + { + "start": 5081.6, + "end": 5085.98, + "probability": 0.9685 + }, + { + "start": 5087.6, + "end": 5092.29, + "probability": 0.9985 + }, + { + "start": 5093.34, + "end": 5097.06, + "probability": 0.9377 + }, + { + "start": 5097.1, + "end": 5098.32, + "probability": 0.968 + }, + { + "start": 5099.06, + "end": 5100.26, + "probability": 0.9329 + }, + { + "start": 5101.08, + "end": 5103.88, + "probability": 0.9792 + }, + { + "start": 5105.08, + "end": 5108.26, + "probability": 0.6955 + }, + { + "start": 5108.3, + "end": 5109.9, + "probability": 0.793 + }, + { + "start": 5110.2, + "end": 5111.76, + "probability": 0.6585 + }, + { + "start": 5112.0, + "end": 5115.66, + "probability": 0.685 + }, + { + "start": 5115.98, + "end": 5116.7, + "probability": 0.7374 + }, + { + "start": 5116.92, + "end": 5121.12, + "probability": 0.9952 + }, + { + "start": 5121.28, + "end": 5121.5, + "probability": 0.0259 + }, + { + "start": 5121.5, + "end": 5123.0, + "probability": 0.1894 + }, + { + "start": 5123.32, + "end": 5126.02, + "probability": 0.762 + }, + { + "start": 5126.08, + "end": 5127.56, + "probability": 0.9398 + }, + { + "start": 5127.82, + "end": 5129.5, + "probability": 0.6387 + }, + { + "start": 5129.5, + "end": 5130.17, + "probability": 0.5084 + }, + { + "start": 5131.04, + "end": 5131.12, + "probability": 0.541 + }, + { + "start": 5131.12, + "end": 5135.34, + "probability": 0.6205 + }, + { + "start": 5135.36, + "end": 5136.1, + "probability": 0.0237 + }, + { + "start": 5136.4, + "end": 5139.7, + "probability": 0.5433 + }, + { + "start": 5141.54, + "end": 5147.58, + "probability": 0.9982 + }, + { + "start": 5147.76, + "end": 5152.76, + "probability": 0.9724 + }, + { + "start": 5153.8, + "end": 5155.92, + "probability": 0.5846 + }, + { + "start": 5156.62, + "end": 5157.84, + "probability": 0.9896 + }, + { + "start": 5158.58, + "end": 5162.0, + "probability": 0.8796 + }, + { + "start": 5162.34, + "end": 5163.1, + "probability": 0.7102 + }, + { + "start": 5163.68, + "end": 5165.58, + "probability": 0.6852 + }, + { + "start": 5166.1, + "end": 5169.22, + "probability": 0.9917 + }, + { + "start": 5170.14, + "end": 5171.4, + "probability": 0.7217 + }, + { + "start": 5171.56, + "end": 5175.8, + "probability": 0.9945 + }, + { + "start": 5176.62, + "end": 5179.78, + "probability": 0.9624 + }, + { + "start": 5180.36, + "end": 5181.62, + "probability": 0.5165 + }, + { + "start": 5182.6, + "end": 5186.26, + "probability": 0.9983 + }, + { + "start": 5187.06, + "end": 5189.3, + "probability": 0.9982 + }, + { + "start": 5189.3, + "end": 5193.86, + "probability": 0.9994 + }, + { + "start": 5194.5, + "end": 5198.92, + "probability": 0.9964 + }, + { + "start": 5199.86, + "end": 5201.61, + "probability": 0.877 + }, + { + "start": 5202.32, + "end": 5203.4, + "probability": 0.849 + }, + { + "start": 5203.94, + "end": 5208.16, + "probability": 0.981 + }, + { + "start": 5208.36, + "end": 5209.4, + "probability": 0.9102 + }, + { + "start": 5210.24, + "end": 5211.48, + "probability": 0.979 + }, + { + "start": 5212.08, + "end": 5212.7, + "probability": 0.7431 + }, + { + "start": 5213.24, + "end": 5213.94, + "probability": 0.9735 + }, + { + "start": 5214.76, + "end": 5218.0, + "probability": 0.9961 + }, + { + "start": 5218.62, + "end": 5220.86, + "probability": 0.9874 + }, + { + "start": 5222.08, + "end": 5223.24, + "probability": 0.7235 + }, + { + "start": 5223.98, + "end": 5228.24, + "probability": 0.9741 + }, + { + "start": 5229.14, + "end": 5234.14, + "probability": 0.9939 + }, + { + "start": 5235.08, + "end": 5237.14, + "probability": 0.8956 + }, + { + "start": 5238.04, + "end": 5240.24, + "probability": 0.8251 + }, + { + "start": 5240.82, + "end": 5242.24, + "probability": 0.9734 + }, + { + "start": 5242.88, + "end": 5246.56, + "probability": 0.8459 + }, + { + "start": 5247.2, + "end": 5251.2, + "probability": 0.9663 + }, + { + "start": 5252.9, + "end": 5253.54, + "probability": 0.7536 + }, + { + "start": 5253.64, + "end": 5257.78, + "probability": 0.9973 + }, + { + "start": 5258.32, + "end": 5262.42, + "probability": 0.9623 + }, + { + "start": 5262.44, + "end": 5266.86, + "probability": 0.9945 + }, + { + "start": 5267.58, + "end": 5268.84, + "probability": 0.9438 + }, + { + "start": 5269.02, + "end": 5273.64, + "probability": 0.9907 + }, + { + "start": 5274.38, + "end": 5276.34, + "probability": 0.9943 + }, + { + "start": 5276.44, + "end": 5281.3, + "probability": 0.8936 + }, + { + "start": 5281.96, + "end": 5283.7, + "probability": 0.9388 + }, + { + "start": 5284.48, + "end": 5287.98, + "probability": 0.9979 + }, + { + "start": 5288.82, + "end": 5289.76, + "probability": 0.503 + }, + { + "start": 5290.46, + "end": 5294.74, + "probability": 0.8786 + }, + { + "start": 5295.28, + "end": 5298.9, + "probability": 0.9953 + }, + { + "start": 5298.9, + "end": 5303.68, + "probability": 0.9972 + }, + { + "start": 5304.84, + "end": 5305.44, + "probability": 0.6345 + }, + { + "start": 5305.6, + "end": 5306.42, + "probability": 0.735 + }, + { + "start": 5306.62, + "end": 5310.1, + "probability": 0.7705 + }, + { + "start": 5310.28, + "end": 5313.76, + "probability": 0.8969 + }, + { + "start": 5314.66, + "end": 5318.92, + "probability": 0.9888 + }, + { + "start": 5321.54, + "end": 5324.06, + "probability": 0.8099 + }, + { + "start": 5324.6, + "end": 5326.28, + "probability": 0.8608 + }, + { + "start": 5326.98, + "end": 5333.47, + "probability": 0.9988 + }, + { + "start": 5334.0, + "end": 5336.7, + "probability": 0.7278 + }, + { + "start": 5337.94, + "end": 5341.5, + "probability": 0.9878 + }, + { + "start": 5342.12, + "end": 5344.4, + "probability": 0.9933 + }, + { + "start": 5345.34, + "end": 5347.64, + "probability": 0.782 + }, + { + "start": 5348.5, + "end": 5348.86, + "probability": 0.7307 + }, + { + "start": 5348.96, + "end": 5351.68, + "probability": 0.9835 + }, + { + "start": 5351.68, + "end": 5355.42, + "probability": 0.9973 + }, + { + "start": 5356.0, + "end": 5361.76, + "probability": 0.9973 + }, + { + "start": 5361.76, + "end": 5367.12, + "probability": 0.994 + }, + { + "start": 5367.88, + "end": 5369.62, + "probability": 0.8691 + }, + { + "start": 5369.92, + "end": 5371.02, + "probability": 0.7929 + }, + { + "start": 5371.02, + "end": 5374.42, + "probability": 0.9525 + }, + { + "start": 5374.58, + "end": 5375.1, + "probability": 0.8749 + }, + { + "start": 5375.26, + "end": 5376.88, + "probability": 0.9709 + }, + { + "start": 5377.48, + "end": 5378.46, + "probability": 0.7445 + }, + { + "start": 5378.72, + "end": 5380.84, + "probability": 0.7643 + }, + { + "start": 5382.08, + "end": 5384.48, + "probability": 0.9015 + }, + { + "start": 5395.0, + "end": 5396.28, + "probability": 0.6332 + }, + { + "start": 5396.98, + "end": 5398.64, + "probability": 0.8498 + }, + { + "start": 5402.24, + "end": 5404.44, + "probability": 0.7986 + }, + { + "start": 5406.16, + "end": 5407.44, + "probability": 0.9312 + }, + { + "start": 5408.96, + "end": 5411.92, + "probability": 0.1657 + }, + { + "start": 5412.08, + "end": 5412.92, + "probability": 0.6635 + }, + { + "start": 5413.08, + "end": 5414.62, + "probability": 0.5253 + }, + { + "start": 5414.7, + "end": 5417.24, + "probability": 0.52 + }, + { + "start": 5418.04, + "end": 5419.8, + "probability": 0.9928 + }, + { + "start": 5420.68, + "end": 5423.26, + "probability": 0.9792 + }, + { + "start": 5423.3, + "end": 5425.32, + "probability": 0.8598 + }, + { + "start": 5425.5, + "end": 5427.6, + "probability": 0.8901 + }, + { + "start": 5428.4, + "end": 5430.62, + "probability": 0.9541 + }, + { + "start": 5431.42, + "end": 5432.02, + "probability": 0.7013 + }, + { + "start": 5432.58, + "end": 5433.74, + "probability": 0.222 + }, + { + "start": 5436.48, + "end": 5439.8, + "probability": 0.8514 + }, + { + "start": 5440.4, + "end": 5442.12, + "probability": 0.5375 + }, + { + "start": 5443.46, + "end": 5444.6, + "probability": 0.4535 + }, + { + "start": 5444.82, + "end": 5450.96, + "probability": 0.9893 + }, + { + "start": 5451.38, + "end": 5452.42, + "probability": 0.9147 + }, + { + "start": 5453.02, + "end": 5453.72, + "probability": 0.6435 + }, + { + "start": 5455.0, + "end": 5457.14, + "probability": 0.8853 + }, + { + "start": 5458.9, + "end": 5463.76, + "probability": 0.939 + }, + { + "start": 5463.84, + "end": 5465.2, + "probability": 0.981 + }, + { + "start": 5465.7, + "end": 5467.2, + "probability": 0.9922 + }, + { + "start": 5467.38, + "end": 5468.66, + "probability": 0.8237 + }, + { + "start": 5468.94, + "end": 5470.58, + "probability": 0.9929 + }, + { + "start": 5471.8, + "end": 5472.84, + "probability": 0.9987 + }, + { + "start": 5474.72, + "end": 5477.62, + "probability": 0.999 + }, + { + "start": 5479.84, + "end": 5481.26, + "probability": 0.7594 + }, + { + "start": 5481.48, + "end": 5483.95, + "probability": 0.7951 + }, + { + "start": 5485.38, + "end": 5486.24, + "probability": 0.9141 + }, + { + "start": 5487.38, + "end": 5489.5, + "probability": 0.9963 + }, + { + "start": 5489.64, + "end": 5491.14, + "probability": 0.9788 + }, + { + "start": 5491.66, + "end": 5494.28, + "probability": 0.9875 + }, + { + "start": 5495.9, + "end": 5498.82, + "probability": 0.9888 + }, + { + "start": 5499.14, + "end": 5500.96, + "probability": 0.923 + }, + { + "start": 5501.08, + "end": 5504.0, + "probability": 0.9799 + }, + { + "start": 5506.44, + "end": 5508.98, + "probability": 0.9395 + }, + { + "start": 5510.42, + "end": 5510.86, + "probability": 0.1938 + }, + { + "start": 5510.86, + "end": 5511.36, + "probability": 0.2583 + }, + { + "start": 5511.42, + "end": 5512.4, + "probability": 0.2801 + }, + { + "start": 5513.56, + "end": 5514.8, + "probability": 0.5424 + }, + { + "start": 5515.84, + "end": 5516.58, + "probability": 0.8524 + }, + { + "start": 5516.76, + "end": 5517.3, + "probability": 0.8508 + }, + { + "start": 5517.78, + "end": 5520.74, + "probability": 0.9152 + }, + { + "start": 5523.7, + "end": 5525.38, + "probability": 0.9768 + }, + { + "start": 5525.68, + "end": 5526.59, + "probability": 0.9937 + }, + { + "start": 5528.48, + "end": 5530.32, + "probability": 0.9211 + }, + { + "start": 5531.38, + "end": 5532.8, + "probability": 0.6645 + }, + { + "start": 5533.42, + "end": 5533.98, + "probability": 0.8864 + }, + { + "start": 5535.14, + "end": 5538.04, + "probability": 0.9819 + }, + { + "start": 5540.22, + "end": 5541.24, + "probability": 0.9832 + }, + { + "start": 5542.24, + "end": 5543.67, + "probability": 0.9582 + }, + { + "start": 5544.72, + "end": 5545.84, + "probability": 0.7558 + }, + { + "start": 5545.94, + "end": 5546.78, + "probability": 0.7778 + }, + { + "start": 5546.92, + "end": 5547.9, + "probability": 0.935 + }, + { + "start": 5547.92, + "end": 5549.44, + "probability": 0.9849 + }, + { + "start": 5550.04, + "end": 5551.96, + "probability": 0.8139 + }, + { + "start": 5553.02, + "end": 5554.54, + "probability": 0.7465 + }, + { + "start": 5556.56, + "end": 5563.42, + "probability": 0.9976 + }, + { + "start": 5563.88, + "end": 5564.4, + "probability": 0.9392 + }, + { + "start": 5564.74, + "end": 5565.56, + "probability": 0.6865 + }, + { + "start": 5567.82, + "end": 5572.22, + "probability": 0.7381 + }, + { + "start": 5574.54, + "end": 5578.38, + "probability": 0.9583 + }, + { + "start": 5579.42, + "end": 5582.28, + "probability": 0.9893 + }, + { + "start": 5582.28, + "end": 5585.9, + "probability": 0.9878 + }, + { + "start": 5587.18, + "end": 5588.24, + "probability": 0.9785 + }, + { + "start": 5589.36, + "end": 5591.58, + "probability": 0.9897 + }, + { + "start": 5593.14, + "end": 5593.9, + "probability": 0.5362 + }, + { + "start": 5595.02, + "end": 5599.5, + "probability": 0.8316 + }, + { + "start": 5600.34, + "end": 5602.8, + "probability": 0.8619 + }, + { + "start": 5604.74, + "end": 5605.6, + "probability": 0.9421 + }, + { + "start": 5607.48, + "end": 5609.2, + "probability": 0.9697 + }, + { + "start": 5611.08, + "end": 5612.74, + "probability": 0.0609 + }, + { + "start": 5612.98, + "end": 5613.7, + "probability": 0.8491 + }, + { + "start": 5613.8, + "end": 5613.92, + "probability": 0.9011 + }, + { + "start": 5614.1, + "end": 5615.42, + "probability": 0.9875 + }, + { + "start": 5615.42, + "end": 5616.74, + "probability": 0.9889 + }, + { + "start": 5616.76, + "end": 5616.98, + "probability": 0.4056 + }, + { + "start": 5619.88, + "end": 5621.0, + "probability": 0.9065 + }, + { + "start": 5622.2, + "end": 5623.9, + "probability": 0.9431 + }, + { + "start": 5625.4, + "end": 5626.54, + "probability": 0.9575 + }, + { + "start": 5627.12, + "end": 5630.8, + "probability": 0.9962 + }, + { + "start": 5634.06, + "end": 5634.06, + "probability": 0.5173 + }, + { + "start": 5634.06, + "end": 5638.18, + "probability": 0.4528 + }, + { + "start": 5642.4, + "end": 5643.88, + "probability": 0.8992 + }, + { + "start": 5645.76, + "end": 5646.34, + "probability": 0.4943 + }, + { + "start": 5647.36, + "end": 5650.64, + "probability": 0.9768 + }, + { + "start": 5652.38, + "end": 5656.42, + "probability": 0.9827 + }, + { + "start": 5656.44, + "end": 5657.16, + "probability": 0.9146 + }, + { + "start": 5657.9, + "end": 5663.14, + "probability": 0.9937 + }, + { + "start": 5663.7, + "end": 5665.36, + "probability": 0.5257 + }, + { + "start": 5667.12, + "end": 5668.34, + "probability": 0.7446 + }, + { + "start": 5669.22, + "end": 5671.04, + "probability": 0.9703 + }, + { + "start": 5671.7, + "end": 5672.84, + "probability": 0.8689 + }, + { + "start": 5673.76, + "end": 5678.32, + "probability": 0.9918 + }, + { + "start": 5679.0, + "end": 5680.16, + "probability": 0.6128 + }, + { + "start": 5680.24, + "end": 5682.06, + "probability": 0.8398 + }, + { + "start": 5682.14, + "end": 5683.22, + "probability": 0.6271 + }, + { + "start": 5683.22, + "end": 5684.02, + "probability": 0.5105 + }, + { + "start": 5685.12, + "end": 5685.68, + "probability": 0.8774 + }, + { + "start": 5685.78, + "end": 5686.16, + "probability": 0.6743 + }, + { + "start": 5686.44, + "end": 5686.92, + "probability": 0.8709 + }, + { + "start": 5687.04, + "end": 5687.18, + "probability": 0.3814 + }, + { + "start": 5687.18, + "end": 5688.78, + "probability": 0.8696 + }, + { + "start": 5689.8, + "end": 5690.25, + "probability": 0.9844 + }, + { + "start": 5690.62, + "end": 5695.8, + "probability": 0.2148 + }, + { + "start": 5695.94, + "end": 5696.28, + "probability": 0.1794 + }, + { + "start": 5696.32, + "end": 5697.32, + "probability": 0.4437 + }, + { + "start": 5697.84, + "end": 5699.36, + "probability": 0.6322 + }, + { + "start": 5700.02, + "end": 5700.64, + "probability": 0.4324 + }, + { + "start": 5701.26, + "end": 5702.42, + "probability": 0.0104 + }, + { + "start": 5702.62, + "end": 5706.93, + "probability": 0.7141 + }, + { + "start": 5708.42, + "end": 5710.44, + "probability": 0.5659 + }, + { + "start": 5710.44, + "end": 5710.92, + "probability": 0.4403 + }, + { + "start": 5711.58, + "end": 5713.92, + "probability": 0.3222 + }, + { + "start": 5717.76, + "end": 5718.52, + "probability": 0.5473 + }, + { + "start": 5719.64, + "end": 5720.86, + "probability": 0.7188 + }, + { + "start": 5721.3, + "end": 5723.12, + "probability": 0.8585 + }, + { + "start": 5723.26, + "end": 5726.06, + "probability": 0.9927 + }, + { + "start": 5727.34, + "end": 5729.32, + "probability": 0.9744 + }, + { + "start": 5730.12, + "end": 5730.84, + "probability": 0.9049 + }, + { + "start": 5731.48, + "end": 5732.22, + "probability": 0.9961 + }, + { + "start": 5732.82, + "end": 5734.66, + "probability": 0.8842 + }, + { + "start": 5735.56, + "end": 5737.54, + "probability": 0.8575 + }, + { + "start": 5738.42, + "end": 5741.5, + "probability": 0.9921 + }, + { + "start": 5742.98, + "end": 5743.74, + "probability": 0.97 + }, + { + "start": 5744.52, + "end": 5749.18, + "probability": 0.9966 + }, + { + "start": 5751.32, + "end": 5754.82, + "probability": 0.998 + }, + { + "start": 5754.88, + "end": 5755.16, + "probability": 0.8217 + }, + { + "start": 5755.74, + "end": 5757.32, + "probability": 0.7095 + }, + { + "start": 5758.12, + "end": 5758.98, + "probability": 0.5425 + }, + { + "start": 5760.42, + "end": 5762.08, + "probability": 0.9183 + }, + { + "start": 5762.18, + "end": 5763.54, + "probability": 0.776 + }, + { + "start": 5763.84, + "end": 5765.56, + "probability": 0.936 + }, + { + "start": 5765.6, + "end": 5766.5, + "probability": 0.7444 + }, + { + "start": 5768.88, + "end": 5770.58, + "probability": 0.9756 + }, + { + "start": 5771.08, + "end": 5771.84, + "probability": 0.4133 + }, + { + "start": 5771.86, + "end": 5773.46, + "probability": 0.9359 + }, + { + "start": 5779.34, + "end": 5780.14, + "probability": 0.8194 + }, + { + "start": 5780.72, + "end": 5781.44, + "probability": 0.9518 + }, + { + "start": 5787.64, + "end": 5789.64, + "probability": 0.9268 + }, + { + "start": 5792.42, + "end": 5794.24, + "probability": 0.9933 + }, + { + "start": 5795.8, + "end": 5798.94, + "probability": 0.9692 + }, + { + "start": 5800.42, + "end": 5802.04, + "probability": 0.9546 + }, + { + "start": 5803.08, + "end": 5805.56, + "probability": 0.9784 + }, + { + "start": 5805.96, + "end": 5807.84, + "probability": 0.0963 + }, + { + "start": 5807.88, + "end": 5810.02, + "probability": 0.5437 + }, + { + "start": 5810.38, + "end": 5813.12, + "probability": 0.9147 + }, + { + "start": 5815.16, + "end": 5816.9, + "probability": 0.9943 + }, + { + "start": 5819.12, + "end": 5820.68, + "probability": 0.9146 + }, + { + "start": 5821.2, + "end": 5824.14, + "probability": 0.9871 + }, + { + "start": 5824.92, + "end": 5828.3, + "probability": 0.8073 + }, + { + "start": 5828.3, + "end": 5831.64, + "probability": 0.9964 + }, + { + "start": 5832.86, + "end": 5833.98, + "probability": 0.9374 + }, + { + "start": 5835.1, + "end": 5835.7, + "probability": 0.3646 + }, + { + "start": 5835.76, + "end": 5836.39, + "probability": 0.2316 + }, + { + "start": 5837.12, + "end": 5840.94, + "probability": 0.9384 + }, + { + "start": 5841.26, + "end": 5844.18, + "probability": 0.9814 + }, + { + "start": 5844.22, + "end": 5845.36, + "probability": 0.2062 + }, + { + "start": 5846.23, + "end": 5848.68, + "probability": 0.6193 + }, + { + "start": 5851.02, + "end": 5853.6, + "probability": 0.999 + }, + { + "start": 5853.64, + "end": 5855.76, + "probability": 0.999 + }, + { + "start": 5856.22, + "end": 5857.56, + "probability": 0.9354 + }, + { + "start": 5858.08, + "end": 5860.18, + "probability": 0.8347 + }, + { + "start": 5861.24, + "end": 5864.44, + "probability": 0.881 + }, + { + "start": 5865.84, + "end": 5870.95, + "probability": 0.968 + }, + { + "start": 5872.94, + "end": 5878.52, + "probability": 0.9158 + }, + { + "start": 5878.52, + "end": 5883.32, + "probability": 0.9889 + }, + { + "start": 5883.46, + "end": 5887.42, + "probability": 0.984 + }, + { + "start": 5887.42, + "end": 5889.34, + "probability": 0.9916 + }, + { + "start": 5890.18, + "end": 5892.52, + "probability": 0.9954 + }, + { + "start": 5893.02, + "end": 5893.16, + "probability": 0.4608 + }, + { + "start": 5893.26, + "end": 5896.04, + "probability": 0.9924 + }, + { + "start": 5896.68, + "end": 5899.4, + "probability": 0.9431 + }, + { + "start": 5900.22, + "end": 5902.98, + "probability": 0.9455 + }, + { + "start": 5904.28, + "end": 5906.16, + "probability": 0.9921 + }, + { + "start": 5906.66, + "end": 5907.67, + "probability": 0.8452 + }, + { + "start": 5908.12, + "end": 5908.28, + "probability": 0.5115 + }, + { + "start": 5908.32, + "end": 5910.38, + "probability": 0.8059 + }, + { + "start": 5911.56, + "end": 5915.64, + "probability": 0.9763 + }, + { + "start": 5915.96, + "end": 5919.66, + "probability": 0.5379 + }, + { + "start": 5920.92, + "end": 5924.0, + "probability": 0.883 + }, + { + "start": 5924.56, + "end": 5926.82, + "probability": 0.9197 + }, + { + "start": 5927.12, + "end": 5930.06, + "probability": 0.9844 + }, + { + "start": 5930.12, + "end": 5930.76, + "probability": 0.514 + }, + { + "start": 5931.34, + "end": 5933.54, + "probability": 0.8801 + }, + { + "start": 5933.66, + "end": 5934.99, + "probability": 0.9795 + }, + { + "start": 5935.7, + "end": 5937.98, + "probability": 0.9856 + }, + { + "start": 5938.5, + "end": 5941.08, + "probability": 0.9681 + }, + { + "start": 5941.64, + "end": 5944.66, + "probability": 0.9871 + }, + { + "start": 5945.1, + "end": 5951.76, + "probability": 0.9482 + }, + { + "start": 5952.7, + "end": 5954.12, + "probability": 0.9446 + }, + { + "start": 5954.32, + "end": 5955.56, + "probability": 0.7457 + }, + { + "start": 5955.8, + "end": 5956.5, + "probability": 0.7014 + }, + { + "start": 5956.58, + "end": 5957.78, + "probability": 0.9828 + }, + { + "start": 5957.92, + "end": 5959.88, + "probability": 0.9567 + }, + { + "start": 5960.4, + "end": 5961.7, + "probability": 0.9331 + }, + { + "start": 5961.74, + "end": 5963.08, + "probability": 0.7036 + }, + { + "start": 5963.58, + "end": 5967.1, + "probability": 0.9129 + }, + { + "start": 5967.54, + "end": 5969.12, + "probability": 0.8579 + }, + { + "start": 5969.16, + "end": 5970.28, + "probability": 0.9086 + }, + { + "start": 5970.42, + "end": 5971.52, + "probability": 0.9714 + }, + { + "start": 5971.64, + "end": 5972.22, + "probability": 0.9661 + }, + { + "start": 5972.62, + "end": 5974.66, + "probability": 0.9927 + }, + { + "start": 5977.3, + "end": 5979.54, + "probability": 0.9697 + }, + { + "start": 5979.68, + "end": 5982.8, + "probability": 0.981 + }, + { + "start": 5982.88, + "end": 5984.02, + "probability": 0.9022 + }, + { + "start": 5985.14, + "end": 5987.52, + "probability": 0.9983 + }, + { + "start": 5987.92, + "end": 5989.5, + "probability": 0.9744 + }, + { + "start": 5990.22, + "end": 5991.72, + "probability": 0.8198 + }, + { + "start": 5991.88, + "end": 5993.26, + "probability": 0.9617 + }, + { + "start": 5993.94, + "end": 5995.12, + "probability": 0.8193 + }, + { + "start": 5996.2, + "end": 5999.76, + "probability": 0.9982 + }, + { + "start": 6000.88, + "end": 6005.54, + "probability": 0.9977 + }, + { + "start": 6006.12, + "end": 6009.06, + "probability": 0.9983 + }, + { + "start": 6009.5, + "end": 6011.87, + "probability": 0.901 + }, + { + "start": 6012.66, + "end": 6014.96, + "probability": 0.7262 + }, + { + "start": 6015.44, + "end": 6017.7, + "probability": 0.9918 + }, + { + "start": 6018.58, + "end": 6021.2, + "probability": 0.9736 + }, + { + "start": 6022.8, + "end": 6028.48, + "probability": 0.9976 + }, + { + "start": 6028.64, + "end": 6030.66, + "probability": 0.9666 + }, + { + "start": 6031.12, + "end": 6031.4, + "probability": 0.3446 + }, + { + "start": 6031.46, + "end": 6035.28, + "probability": 0.9917 + }, + { + "start": 6035.96, + "end": 6038.68, + "probability": 0.9642 + }, + { + "start": 6038.68, + "end": 6042.94, + "probability": 0.9927 + }, + { + "start": 6043.4, + "end": 6046.7, + "probability": 0.9976 + }, + { + "start": 6046.84, + "end": 6048.04, + "probability": 0.9284 + }, + { + "start": 6048.2, + "end": 6049.74, + "probability": 0.8268 + }, + { + "start": 6049.88, + "end": 6050.84, + "probability": 0.8691 + }, + { + "start": 6051.38, + "end": 6052.4, + "probability": 0.9575 + }, + { + "start": 6052.78, + "end": 6057.76, + "probability": 0.9926 + }, + { + "start": 6057.94, + "end": 6062.9, + "probability": 0.968 + }, + { + "start": 6063.34, + "end": 6065.16, + "probability": 0.9214 + }, + { + "start": 6065.7, + "end": 6067.34, + "probability": 0.7706 + }, + { + "start": 6067.52, + "end": 6069.6, + "probability": 0.9979 + }, + { + "start": 6069.68, + "end": 6070.96, + "probability": 0.6518 + }, + { + "start": 6071.56, + "end": 6073.0, + "probability": 0.9871 + }, + { + "start": 6073.1, + "end": 6075.07, + "probability": 0.8964 + }, + { + "start": 6075.4, + "end": 6076.52, + "probability": 0.5766 + }, + { + "start": 6077.0, + "end": 6077.26, + "probability": 0.6967 + }, + { + "start": 6077.74, + "end": 6078.84, + "probability": 0.9976 + }, + { + "start": 6079.36, + "end": 6080.24, + "probability": 0.4741 + }, + { + "start": 6081.46, + "end": 6083.88, + "probability": 0.8756 + }, + { + "start": 6083.92, + "end": 6086.38, + "probability": 0.9311 + }, + { + "start": 6086.44, + "end": 6090.76, + "probability": 0.9564 + }, + { + "start": 6090.76, + "end": 6090.76, + "probability": 0.2456 + }, + { + "start": 6090.76, + "end": 6091.26, + "probability": 0.1631 + }, + { + "start": 6091.66, + "end": 6092.08, + "probability": 0.8568 + }, + { + "start": 6092.92, + "end": 6095.07, + "probability": 0.9404 + }, + { + "start": 6095.2, + "end": 6095.61, + "probability": 0.9136 + }, + { + "start": 6095.84, + "end": 6096.24, + "probability": 0.7215 + }, + { + "start": 6096.34, + "end": 6097.06, + "probability": 0.7864 + }, + { + "start": 6097.5, + "end": 6100.1, + "probability": 0.972 + }, + { + "start": 6101.02, + "end": 6103.5, + "probability": 0.7593 + }, + { + "start": 6104.74, + "end": 6107.5, + "probability": 0.904 + }, + { + "start": 6107.56, + "end": 6109.68, + "probability": 0.9824 + }, + { + "start": 6109.76, + "end": 6110.98, + "probability": 0.7945 + }, + { + "start": 6111.02, + "end": 6112.04, + "probability": 0.7462 + }, + { + "start": 6112.1, + "end": 6113.2, + "probability": 0.8101 + }, + { + "start": 6113.34, + "end": 6114.84, + "probability": 0.998 + }, + { + "start": 6115.28, + "end": 6118.16, + "probability": 0.821 + }, + { + "start": 6118.32, + "end": 6119.8, + "probability": 0.9323 + }, + { + "start": 6119.98, + "end": 6122.14, + "probability": 0.7805 + }, + { + "start": 6122.6, + "end": 6123.7, + "probability": 0.8933 + }, + { + "start": 6123.76, + "end": 6126.56, + "probability": 0.8272 + }, + { + "start": 6127.24, + "end": 6128.72, + "probability": 0.8253 + }, + { + "start": 6129.06, + "end": 6130.96, + "probability": 0.9946 + }, + { + "start": 6131.36, + "end": 6132.72, + "probability": 0.8624 + }, + { + "start": 6135.0, + "end": 6137.48, + "probability": 0.9976 + }, + { + "start": 6138.46, + "end": 6141.18, + "probability": 0.9836 + }, + { + "start": 6141.36, + "end": 6143.08, + "probability": 0.9778 + }, + { + "start": 6143.62, + "end": 6145.92, + "probability": 0.7202 + }, + { + "start": 6146.0, + "end": 6148.62, + "probability": 0.9831 + }, + { + "start": 6149.08, + "end": 6151.84, + "probability": 0.9602 + }, + { + "start": 6152.08, + "end": 6156.92, + "probability": 0.998 + }, + { + "start": 6156.96, + "end": 6157.98, + "probability": 0.7273 + }, + { + "start": 6158.8, + "end": 6162.62, + "probability": 0.9591 + }, + { + "start": 6163.06, + "end": 6166.32, + "probability": 0.9713 + }, + { + "start": 6166.62, + "end": 6171.98, + "probability": 0.9859 + }, + { + "start": 6172.88, + "end": 6175.71, + "probability": 0.9781 + }, + { + "start": 6176.44, + "end": 6177.34, + "probability": 0.808 + }, + { + "start": 6177.44, + "end": 6178.36, + "probability": 0.7807 + }, + { + "start": 6178.44, + "end": 6179.18, + "probability": 0.9267 + }, + { + "start": 6179.26, + "end": 6181.24, + "probability": 0.9428 + }, + { + "start": 6182.96, + "end": 6185.48, + "probability": 0.9634 + }, + { + "start": 6185.94, + "end": 6187.28, + "probability": 0.9594 + }, + { + "start": 6187.34, + "end": 6189.94, + "probability": 0.8056 + }, + { + "start": 6190.04, + "end": 6190.88, + "probability": 0.936 + }, + { + "start": 6191.2, + "end": 6193.52, + "probability": 0.7938 + }, + { + "start": 6193.56, + "end": 6199.0, + "probability": 0.9045 + }, + { + "start": 6199.24, + "end": 6201.7, + "probability": 0.9473 + }, + { + "start": 6202.56, + "end": 6208.52, + "probability": 0.9941 + }, + { + "start": 6209.16, + "end": 6215.4, + "probability": 0.9932 + }, + { + "start": 6215.68, + "end": 6217.2, + "probability": 0.9478 + }, + { + "start": 6217.48, + "end": 6219.66, + "probability": 0.8484 + }, + { + "start": 6219.78, + "end": 6221.7, + "probability": 0.9625 + }, + { + "start": 6221.84, + "end": 6223.26, + "probability": 0.931 + }, + { + "start": 6223.86, + "end": 6224.98, + "probability": 0.9142 + }, + { + "start": 6225.38, + "end": 6228.24, + "probability": 0.8061 + }, + { + "start": 6228.64, + "end": 6229.02, + "probability": 0.801 + }, + { + "start": 6229.16, + "end": 6230.08, + "probability": 0.8694 + }, + { + "start": 6230.16, + "end": 6232.26, + "probability": 0.7755 + }, + { + "start": 6232.48, + "end": 6234.16, + "probability": 0.9658 + }, + { + "start": 6234.44, + "end": 6235.6, + "probability": 0.5239 + }, + { + "start": 6236.02, + "end": 6236.56, + "probability": 0.8308 + }, + { + "start": 6236.76, + "end": 6239.14, + "probability": 0.9656 + }, + { + "start": 6239.88, + "end": 6243.36, + "probability": 0.9928 + }, + { + "start": 6243.44, + "end": 6244.46, + "probability": 0.8591 + }, + { + "start": 6244.56, + "end": 6245.84, + "probability": 0.8909 + }, + { + "start": 6246.7, + "end": 6249.62, + "probability": 0.9953 + }, + { + "start": 6250.16, + "end": 6252.48, + "probability": 0.8468 + }, + { + "start": 6253.16, + "end": 6254.26, + "probability": 0.9695 + }, + { + "start": 6254.92, + "end": 6255.92, + "probability": 0.8417 + }, + { + "start": 6256.6, + "end": 6259.58, + "probability": 0.9445 + }, + { + "start": 6266.86, + "end": 6268.62, + "probability": 0.6639 + }, + { + "start": 6271.52, + "end": 6272.52, + "probability": 0.8046 + }, + { + "start": 6273.92, + "end": 6274.82, + "probability": 0.8951 + }, + { + "start": 6274.94, + "end": 6275.96, + "probability": 0.5878 + }, + { + "start": 6276.28, + "end": 6281.44, + "probability": 0.9312 + }, + { + "start": 6281.82, + "end": 6282.78, + "probability": 0.9342 + }, + { + "start": 6283.74, + "end": 6285.97, + "probability": 0.9331 + }, + { + "start": 6287.72, + "end": 6289.02, + "probability": 0.9507 + }, + { + "start": 6290.16, + "end": 6291.08, + "probability": 0.32 + }, + { + "start": 6291.38, + "end": 6292.48, + "probability": 0.8954 + }, + { + "start": 6292.58, + "end": 6294.02, + "probability": 0.6653 + }, + { + "start": 6294.04, + "end": 6294.62, + "probability": 0.6528 + }, + { + "start": 6296.18, + "end": 6299.8, + "probability": 0.9953 + }, + { + "start": 6299.8, + "end": 6304.64, + "probability": 0.9526 + }, + { + "start": 6305.18, + "end": 6308.24, + "probability": 0.7808 + }, + { + "start": 6309.0, + "end": 6311.83, + "probability": 0.9556 + }, + { + "start": 6313.96, + "end": 6319.68, + "probability": 0.9901 + }, + { + "start": 6320.6, + "end": 6322.66, + "probability": 0.8993 + }, + { + "start": 6324.4, + "end": 6326.74, + "probability": 0.765 + }, + { + "start": 6327.6, + "end": 6328.3, + "probability": 0.4601 + }, + { + "start": 6330.54, + "end": 6332.08, + "probability": 0.8371 + }, + { + "start": 6333.42, + "end": 6335.08, + "probability": 0.8555 + }, + { + "start": 6336.56, + "end": 6338.94, + "probability": 0.9912 + }, + { + "start": 6339.4, + "end": 6340.42, + "probability": 0.8779 + }, + { + "start": 6341.64, + "end": 6344.14, + "probability": 0.9399 + }, + { + "start": 6347.48, + "end": 6348.34, + "probability": 0.0388 + }, + { + "start": 6349.08, + "end": 6350.72, + "probability": 0.4663 + }, + { + "start": 6351.96, + "end": 6355.28, + "probability": 0.9613 + }, + { + "start": 6356.42, + "end": 6358.12, + "probability": 0.8817 + }, + { + "start": 6359.24, + "end": 6364.6, + "probability": 0.7843 + }, + { + "start": 6366.6, + "end": 6367.48, + "probability": 0.5867 + }, + { + "start": 6369.86, + "end": 6370.84, + "probability": 0.992 + }, + { + "start": 6372.04, + "end": 6375.16, + "probability": 0.9736 + }, + { + "start": 6377.32, + "end": 6378.36, + "probability": 0.979 + }, + { + "start": 6379.68, + "end": 6382.04, + "probability": 0.873 + }, + { + "start": 6382.84, + "end": 6383.7, + "probability": 0.9614 + }, + { + "start": 6384.52, + "end": 6386.76, + "probability": 0.9185 + }, + { + "start": 6387.56, + "end": 6390.32, + "probability": 0.9815 + }, + { + "start": 6391.74, + "end": 6393.32, + "probability": 0.9387 + }, + { + "start": 6395.6, + "end": 6395.78, + "probability": 0.9504 + }, + { + "start": 6396.32, + "end": 6398.18, + "probability": 0.966 + }, + { + "start": 6400.32, + "end": 6402.5, + "probability": 0.6505 + }, + { + "start": 6403.98, + "end": 6407.22, + "probability": 0.9893 + }, + { + "start": 6408.46, + "end": 6411.28, + "probability": 0.9722 + }, + { + "start": 6412.34, + "end": 6417.38, + "probability": 0.9606 + }, + { + "start": 6418.82, + "end": 6419.74, + "probability": 0.9282 + }, + { + "start": 6421.0, + "end": 6422.8, + "probability": 0.9692 + }, + { + "start": 6423.0, + "end": 6424.96, + "probability": 0.9517 + }, + { + "start": 6425.48, + "end": 6427.97, + "probability": 0.8218 + }, + { + "start": 6429.02, + "end": 6430.54, + "probability": 0.8055 + }, + { + "start": 6431.92, + "end": 6434.34, + "probability": 0.9566 + }, + { + "start": 6435.88, + "end": 6437.83, + "probability": 0.5611 + }, + { + "start": 6438.88, + "end": 6439.78, + "probability": 0.737 + }, + { + "start": 6440.78, + "end": 6441.68, + "probability": 0.6757 + }, + { + "start": 6442.08, + "end": 6442.62, + "probability": 0.8555 + }, + { + "start": 6442.7, + "end": 6444.84, + "probability": 0.8938 + }, + { + "start": 6445.42, + "end": 6447.3, + "probability": 0.9482 + }, + { + "start": 6448.06, + "end": 6450.56, + "probability": 0.9687 + }, + { + "start": 6451.22, + "end": 6452.08, + "probability": 0.5776 + }, + { + "start": 6452.1, + "end": 6453.04, + "probability": 0.5601 + }, + { + "start": 6454.58, + "end": 6456.5, + "probability": 0.9833 + }, + { + "start": 6456.6, + "end": 6458.02, + "probability": 0.8777 + }, + { + "start": 6458.98, + "end": 6459.9, + "probability": 0.9175 + }, + { + "start": 6461.16, + "end": 6461.94, + "probability": 0.9917 + }, + { + "start": 6462.02, + "end": 6463.46, + "probability": 0.9647 + }, + { + "start": 6463.54, + "end": 6464.54, + "probability": 0.8668 + }, + { + "start": 6465.54, + "end": 6466.68, + "probability": 0.6728 + }, + { + "start": 6468.02, + "end": 6471.56, + "probability": 0.9795 + }, + { + "start": 6471.74, + "end": 6476.14, + "probability": 0.9462 + }, + { + "start": 6477.54, + "end": 6479.02, + "probability": 0.8311 + }, + { + "start": 6480.0, + "end": 6481.34, + "probability": 0.9703 + }, + { + "start": 6482.5, + "end": 6483.28, + "probability": 0.8507 + }, + { + "start": 6485.08, + "end": 6486.28, + "probability": 0.8748 + }, + { + "start": 6487.76, + "end": 6490.74, + "probability": 0.9189 + }, + { + "start": 6491.8, + "end": 6492.74, + "probability": 0.8777 + }, + { + "start": 6494.18, + "end": 6495.62, + "probability": 0.968 + }, + { + "start": 6496.24, + "end": 6497.6, + "probability": 0.9136 + }, + { + "start": 6498.4, + "end": 6499.44, + "probability": 0.9805 + }, + { + "start": 6499.56, + "end": 6499.74, + "probability": 0.2373 + }, + { + "start": 6499.78, + "end": 6501.24, + "probability": 0.7766 + }, + { + "start": 6501.52, + "end": 6502.76, + "probability": 0.5259 + }, + { + "start": 6503.96, + "end": 6504.48, + "probability": 0.9337 + }, + { + "start": 6507.16, + "end": 6509.04, + "probability": 0.9951 + }, + { + "start": 6510.56, + "end": 6512.08, + "probability": 0.7637 + }, + { + "start": 6513.54, + "end": 6514.58, + "probability": 0.7129 + }, + { + "start": 6515.24, + "end": 6516.14, + "probability": 0.9917 + }, + { + "start": 6517.06, + "end": 6521.89, + "probability": 0.9224 + }, + { + "start": 6524.45, + "end": 6525.44, + "probability": 0.0107 + }, + { + "start": 6525.44, + "end": 6525.81, + "probability": 0.3132 + }, + { + "start": 6526.42, + "end": 6531.34, + "probability": 0.7078 + }, + { + "start": 6533.34, + "end": 6536.84, + "probability": 0.9979 + }, + { + "start": 6536.84, + "end": 6540.34, + "probability": 0.9922 + }, + { + "start": 6541.34, + "end": 6543.86, + "probability": 0.679 + }, + { + "start": 6544.44, + "end": 6546.1, + "probability": 0.7906 + }, + { + "start": 6546.16, + "end": 6548.36, + "probability": 0.5627 + }, + { + "start": 6548.84, + "end": 6549.22, + "probability": 0.8028 + }, + { + "start": 6549.68, + "end": 6551.0, + "probability": 0.9508 + }, + { + "start": 6551.06, + "end": 6553.58, + "probability": 0.8506 + }, + { + "start": 6554.04, + "end": 6557.54, + "probability": 0.9775 + }, + { + "start": 6558.04, + "end": 6562.2, + "probability": 0.9734 + }, + { + "start": 6563.22, + "end": 6566.58, + "probability": 0.9873 + }, + { + "start": 6567.44, + "end": 6570.48, + "probability": 0.7387 + }, + { + "start": 6571.04, + "end": 6572.12, + "probability": 0.7521 + }, + { + "start": 6573.62, + "end": 6575.6, + "probability": 0.9227 + }, + { + "start": 6575.78, + "end": 6579.56, + "probability": 0.9764 + }, + { + "start": 6580.14, + "end": 6582.23, + "probability": 0.7705 + }, + { + "start": 6583.28, + "end": 6584.18, + "probability": 0.9648 + }, + { + "start": 6585.62, + "end": 6586.94, + "probability": 0.9733 + }, + { + "start": 6586.94, + "end": 6588.37, + "probability": 0.8335 + }, + { + "start": 6589.52, + "end": 6592.28, + "probability": 0.9832 + }, + { + "start": 6592.74, + "end": 6595.78, + "probability": 0.9244 + }, + { + "start": 6596.22, + "end": 6598.8, + "probability": 0.8979 + }, + { + "start": 6599.18, + "end": 6599.88, + "probability": 0.7765 + }, + { + "start": 6600.3, + "end": 6602.62, + "probability": 0.981 + }, + { + "start": 6603.14, + "end": 6606.64, + "probability": 0.8873 + }, + { + "start": 6607.36, + "end": 6607.84, + "probability": 0.7688 + }, + { + "start": 6608.48, + "end": 6608.74, + "probability": 0.7418 + }, + { + "start": 6608.84, + "end": 6609.88, + "probability": 0.6241 + }, + { + "start": 6610.38, + "end": 6611.68, + "probability": 0.8848 + }, + { + "start": 6612.22, + "end": 6613.4, + "probability": 0.9642 + }, + { + "start": 6615.12, + "end": 6615.78, + "probability": 0.7826 + }, + { + "start": 6616.44, + "end": 6620.7, + "probability": 0.9529 + }, + { + "start": 6621.02, + "end": 6623.66, + "probability": 0.6643 + }, + { + "start": 6623.78, + "end": 6624.26, + "probability": 0.76 + }, + { + "start": 6624.34, + "end": 6625.26, + "probability": 0.5916 + }, + { + "start": 6625.98, + "end": 6630.06, + "probability": 0.7994 + }, + { + "start": 6630.22, + "end": 6632.92, + "probability": 0.8923 + }, + { + "start": 6633.26, + "end": 6637.35, + "probability": 0.8877 + }, + { + "start": 6638.0, + "end": 6638.94, + "probability": 0.9308 + }, + { + "start": 6639.92, + "end": 6641.54, + "probability": 0.9443 + }, + { + "start": 6642.18, + "end": 6644.88, + "probability": 0.9893 + }, + { + "start": 6645.42, + "end": 6648.1, + "probability": 0.9762 + }, + { + "start": 6648.52, + "end": 6648.92, + "probability": 0.5067 + }, + { + "start": 6649.02, + "end": 6649.58, + "probability": 0.7483 + }, + { + "start": 6649.88, + "end": 6650.82, + "probability": 0.8483 + }, + { + "start": 6651.12, + "end": 6651.96, + "probability": 0.9836 + }, + { + "start": 6652.62, + "end": 6653.8, + "probability": 0.869 + }, + { + "start": 6655.38, + "end": 6657.4, + "probability": 0.7135 + }, + { + "start": 6658.88, + "end": 6661.35, + "probability": 0.8589 + }, + { + "start": 6661.7, + "end": 6664.03, + "probability": 0.9863 + }, + { + "start": 6664.82, + "end": 6665.55, + "probability": 0.7209 + }, + { + "start": 6666.22, + "end": 6668.48, + "probability": 0.9958 + }, + { + "start": 6669.62, + "end": 6672.86, + "probability": 0.6515 + }, + { + "start": 6673.34, + "end": 6676.88, + "probability": 0.9213 + }, + { + "start": 6677.5, + "end": 6679.78, + "probability": 0.9539 + }, + { + "start": 6682.44, + "end": 6684.7, + "probability": 0.6972 + }, + { + "start": 6695.64, + "end": 6698.12, + "probability": 0.5884 + }, + { + "start": 6698.96, + "end": 6700.22, + "probability": 0.8123 + }, + { + "start": 6700.22, + "end": 6705.36, + "probability": 0.8709 + }, + { + "start": 6706.46, + "end": 6708.16, + "probability": 0.9479 + }, + { + "start": 6709.18, + "end": 6709.79, + "probability": 0.8445 + }, + { + "start": 6710.9, + "end": 6712.5, + "probability": 0.9099 + }, + { + "start": 6714.02, + "end": 6715.08, + "probability": 0.783 + }, + { + "start": 6715.28, + "end": 6717.66, + "probability": 0.9371 + }, + { + "start": 6718.64, + "end": 6721.32, + "probability": 0.9531 + }, + { + "start": 6722.3, + "end": 6724.02, + "probability": 0.9933 + }, + { + "start": 6724.08, + "end": 6726.64, + "probability": 0.973 + }, + { + "start": 6730.08, + "end": 6733.36, + "probability": 0.8793 + }, + { + "start": 6734.26, + "end": 6737.84, + "probability": 0.6321 + }, + { + "start": 6738.42, + "end": 6739.28, + "probability": 0.7344 + }, + { + "start": 6742.12, + "end": 6743.88, + "probability": 0.7068 + }, + { + "start": 6746.52, + "end": 6747.72, + "probability": 0.8469 + }, + { + "start": 6748.08, + "end": 6748.74, + "probability": 0.9106 + }, + { + "start": 6748.8, + "end": 6751.54, + "probability": 0.627 + }, + { + "start": 6752.24, + "end": 6753.54, + "probability": 0.9665 + }, + { + "start": 6753.7, + "end": 6754.82, + "probability": 0.9882 + }, + { + "start": 6754.98, + "end": 6756.04, + "probability": 0.9231 + }, + { + "start": 6756.16, + "end": 6757.09, + "probability": 0.8532 + }, + { + "start": 6757.62, + "end": 6759.28, + "probability": 0.8225 + }, + { + "start": 6760.06, + "end": 6761.3, + "probability": 0.9587 + }, + { + "start": 6761.34, + "end": 6761.98, + "probability": 0.9712 + }, + { + "start": 6762.04, + "end": 6763.94, + "probability": 0.887 + }, + { + "start": 6765.34, + "end": 6767.27, + "probability": 0.9248 + }, + { + "start": 6768.12, + "end": 6770.04, + "probability": 0.9019 + }, + { + "start": 6770.32, + "end": 6774.4, + "probability": 0.6504 + }, + { + "start": 6775.28, + "end": 6776.26, + "probability": 0.8065 + }, + { + "start": 6777.48, + "end": 6780.36, + "probability": 0.9197 + }, + { + "start": 6781.34, + "end": 6786.5, + "probability": 0.7831 + }, + { + "start": 6787.4, + "end": 6790.64, + "probability": 0.8291 + }, + { + "start": 6791.8, + "end": 6793.8, + "probability": 0.8378 + }, + { + "start": 6794.52, + "end": 6798.06, + "probability": 0.7371 + }, + { + "start": 6800.06, + "end": 6801.23, + "probability": 0.8457 + }, + { + "start": 6802.1, + "end": 6803.84, + "probability": 0.5155 + }, + { + "start": 6804.02, + "end": 6804.94, + "probability": 0.95 + }, + { + "start": 6806.58, + "end": 6807.4, + "probability": 0.9929 + }, + { + "start": 6808.64, + "end": 6814.48, + "probability": 0.8206 + }, + { + "start": 6815.5, + "end": 6817.93, + "probability": 0.9668 + }, + { + "start": 6819.14, + "end": 6822.5, + "probability": 0.7935 + }, + { + "start": 6824.32, + "end": 6825.16, + "probability": 0.5903 + }, + { + "start": 6827.4, + "end": 6828.14, + "probability": 0.8331 + }, + { + "start": 6830.62, + "end": 6834.76, + "probability": 0.8369 + }, + { + "start": 6835.24, + "end": 6837.52, + "probability": 0.9741 + }, + { + "start": 6838.48, + "end": 6840.06, + "probability": 0.6052 + }, + { + "start": 6841.92, + "end": 6846.49, + "probability": 0.803 + }, + { + "start": 6849.6, + "end": 6850.14, + "probability": 0.0239 + }, + { + "start": 6850.6, + "end": 6851.78, + "probability": 0.6491 + }, + { + "start": 6852.74, + "end": 6853.53, + "probability": 0.0714 + }, + { + "start": 6854.12, + "end": 6856.24, + "probability": 0.6801 + }, + { + "start": 6856.5, + "end": 6859.5, + "probability": 0.8511 + }, + { + "start": 6859.66, + "end": 6860.4, + "probability": 0.58 + }, + { + "start": 6860.64, + "end": 6861.5, + "probability": 0.6914 + }, + { + "start": 6863.88, + "end": 6865.46, + "probability": 0.9868 + }, + { + "start": 6868.1, + "end": 6869.28, + "probability": 0.4179 + }, + { + "start": 6869.66, + "end": 6870.76, + "probability": 0.0422 + }, + { + "start": 6871.72, + "end": 6872.36, + "probability": 0.2419 + }, + { + "start": 6872.48, + "end": 6872.88, + "probability": 0.4658 + }, + { + "start": 6873.02, + "end": 6876.18, + "probability": 0.499 + }, + { + "start": 6876.5, + "end": 6877.92, + "probability": 0.2131 + }, + { + "start": 6878.76, + "end": 6879.22, + "probability": 0.7412 + }, + { + "start": 6879.66, + "end": 6879.72, + "probability": 0.18 + }, + { + "start": 6879.72, + "end": 6883.3, + "probability": 0.3442 + }, + { + "start": 6884.06, + "end": 6886.94, + "probability": 0.7079 + }, + { + "start": 6888.58, + "end": 6891.56, + "probability": 0.7858 + }, + { + "start": 6892.32, + "end": 6896.46, + "probability": 0.8683 + }, + { + "start": 6897.12, + "end": 6901.16, + "probability": 0.9941 + }, + { + "start": 6902.34, + "end": 6904.14, + "probability": 0.1293 + }, + { + "start": 6904.82, + "end": 6905.28, + "probability": 0.5931 + }, + { + "start": 6905.68, + "end": 6909.46, + "probability": 0.338 + }, + { + "start": 6911.12, + "end": 6914.1, + "probability": 0.9238 + }, + { + "start": 6914.54, + "end": 6915.91, + "probability": 0.501 + }, + { + "start": 6916.6, + "end": 6917.7, + "probability": 0.9811 + }, + { + "start": 7019.0, + "end": 7019.0, + "probability": 0.0 + }, + { + "start": 7019.0, + "end": 7019.0, + "probability": 0.0 + }, + { + "start": 7019.0, + "end": 7019.0, + "probability": 0.0 + }, + { + "start": 7019.0, + "end": 7019.0, + "probability": 0.0 + }, + { + "start": 7019.0, + "end": 7019.0, + "probability": 0.0 + }, + { + "start": 7019.0, + "end": 7019.0, + "probability": 0.0 + }, + { + "start": 7019.0, + "end": 7019.0, + "probability": 0.0 + }, + { + "start": 7019.0, + "end": 7019.0, + "probability": 0.0 + }, + { + "start": 7019.0, + "end": 7019.0, + "probability": 0.0 + }, + { + "start": 7019.0, + "end": 7019.0, + "probability": 0.0 + }, + { + "start": 7019.0, + "end": 7019.0, + "probability": 0.0 + }, + { + "start": 7019.0, + "end": 7019.0, + "probability": 0.0 + }, + { + "start": 7019.0, + "end": 7019.0, + "probability": 0.0 + }, + { + "start": 7019.0, + "end": 7019.0, + "probability": 0.0 + }, + { + "start": 7019.0, + "end": 7019.0, + "probability": 0.0 + }, + { + "start": 7019.0, + "end": 7019.0, + "probability": 0.0 + }, + { + "start": 7019.0, + "end": 7019.0, + "probability": 0.0 + }, + { + "start": 7019.0, + "end": 7019.0, + "probability": 0.0 + }, + { + "start": 7019.0, + "end": 7019.0, + "probability": 0.0 + }, + { + "start": 7019.0, + "end": 7019.0, + "probability": 0.0 + }, + { + "start": 7019.0, + "end": 7019.0, + "probability": 0.0 + }, + { + "start": 7019.0, + "end": 7019.0, + "probability": 0.0 + }, + { + "start": 7019.0, + "end": 7019.0, + "probability": 0.0 + }, + { + "start": 7019.0, + "end": 7019.0, + "probability": 0.0 + }, + { + "start": 7019.0, + "end": 7019.0, + "probability": 0.0 + }, + { + "start": 7019.0, + "end": 7019.0, + "probability": 0.0 + }, + { + "start": 7019.0, + "end": 7019.0, + "probability": 0.0 + }, + { + "start": 7019.0, + "end": 7019.0, + "probability": 0.0 + }, + { + "start": 7019.0, + "end": 7019.0, + "probability": 0.0 + }, + { + "start": 7019.0, + "end": 7019.0, + "probability": 0.0 + }, + { + "start": 7019.0, + "end": 7019.0, + "probability": 0.0 + }, + { + "start": 7019.0, + "end": 7019.0, + "probability": 0.0 + }, + { + "start": 7019.0, + "end": 7019.0, + "probability": 0.0 + }, + { + "start": 7019.0, + "end": 7019.0, + "probability": 0.0 + }, + { + "start": 7019.0, + "end": 7019.0, + "probability": 0.0 + }, + { + "start": 7019.0, + "end": 7019.0, + "probability": 0.0 + }, + { + "start": 7019.0, + "end": 7019.0, + "probability": 0.0 + }, + { + "start": 7019.0, + "end": 7019.0, + "probability": 0.0 + }, + { + "start": 7019.0, + "end": 7019.0, + "probability": 0.0 + }, + { + "start": 7019.0, + "end": 7019.0, + "probability": 0.0 + }, + { + "start": 7019.0, + "end": 7019.0, + "probability": 0.0 + }, + { + "start": 7019.0, + "end": 7019.0, + "probability": 0.0 + }, + { + "start": 7019.0, + "end": 7019.0, + "probability": 0.0 + }, + { + "start": 7019.0, + "end": 7019.0, + "probability": 0.0 + }, + { + "start": 7019.0, + "end": 7019.0, + "probability": 0.0 + }, + { + "start": 7019.0, + "end": 7019.0, + "probability": 0.0 + }, + { + "start": 7019.0, + "end": 7019.0, + "probability": 0.0 + }, + { + "start": 7019.0, + "end": 7019.0, + "probability": 0.0 + }, + { + "start": 7019.0, + "end": 7019.0, + "probability": 0.0 + }, + { + "start": 7019.0, + "end": 7019.0, + "probability": 0.0 + }, + { + "start": 7019.0, + "end": 7019.0, + "probability": 0.0 + }, + { + "start": 7019.0, + "end": 7019.0, + "probability": 0.0 + }, + { + "start": 7019.16, + "end": 7019.16, + "probability": 0.0177 + }, + { + "start": 7019.16, + "end": 7019.16, + "probability": 0.0707 + }, + { + "start": 7019.16, + "end": 7019.16, + "probability": 0.1102 + }, + { + "start": 7019.16, + "end": 7019.16, + "probability": 0.0265 + }, + { + "start": 7019.16, + "end": 7020.6, + "probability": 0.1666 + }, + { + "start": 7021.0, + "end": 7022.5, + "probability": 0.5836 + }, + { + "start": 7022.7, + "end": 7026.3, + "probability": 0.5558 + }, + { + "start": 7027.98, + "end": 7029.46, + "probability": 0.9663 + }, + { + "start": 7030.18, + "end": 7033.28, + "probability": 0.8252 + }, + { + "start": 7033.28, + "end": 7034.28, + "probability": 0.2772 + }, + { + "start": 7034.28, + "end": 7038.06, + "probability": 0.6576 + }, + { + "start": 7038.22, + "end": 7039.24, + "probability": 0.7688 + }, + { + "start": 7039.3, + "end": 7040.62, + "probability": 0.5635 + }, + { + "start": 7041.04, + "end": 7041.12, + "probability": 0.0079 + }, + { + "start": 7041.12, + "end": 7041.81, + "probability": 0.6557 + }, + { + "start": 7043.46, + "end": 7048.24, + "probability": 0.7876 + }, + { + "start": 7048.98, + "end": 7050.08, + "probability": 0.4314 + }, + { + "start": 7050.2, + "end": 7050.86, + "probability": 0.7039 + }, + { + "start": 7050.94, + "end": 7052.9, + "probability": 0.9177 + }, + { + "start": 7054.16, + "end": 7056.01, + "probability": 0.3715 + }, + { + "start": 7057.12, + "end": 7058.14, + "probability": 0.8952 + }, + { + "start": 7059.36, + "end": 7059.72, + "probability": 0.6626 + }, + { + "start": 7060.26, + "end": 7060.86, + "probability": 0.5125 + }, + { + "start": 7061.0, + "end": 7064.15, + "probability": 0.5837 + }, + { + "start": 7064.76, + "end": 7065.96, + "probability": 0.8511 + }, + { + "start": 7066.4, + "end": 7067.26, + "probability": 0.9918 + }, + { + "start": 7068.64, + "end": 7069.88, + "probability": 0.8379 + }, + { + "start": 7070.06, + "end": 7071.48, + "probability": 0.8342 + }, + { + "start": 7071.58, + "end": 7072.7, + "probability": 0.8054 + }, + { + "start": 7072.96, + "end": 7076.6, + "probability": 0.8203 + }, + { + "start": 7076.82, + "end": 7078.38, + "probability": 0.9325 + }, + { + "start": 7078.68, + "end": 7079.79, + "probability": 0.9917 + }, + { + "start": 7082.18, + "end": 7084.18, + "probability": 0.9912 + }, + { + "start": 7085.3, + "end": 7087.48, + "probability": 0.9805 + }, + { + "start": 7088.32, + "end": 7089.36, + "probability": 0.9623 + }, + { + "start": 7090.16, + "end": 7093.66, + "probability": 0.9338 + }, + { + "start": 7096.12, + "end": 7100.7, + "probability": 0.9917 + }, + { + "start": 7101.6, + "end": 7102.12, + "probability": 0.5617 + }, + { + "start": 7103.64, + "end": 7104.7, + "probability": 0.4867 + }, + { + "start": 7104.76, + "end": 7106.12, + "probability": 0.7583 + }, + { + "start": 7107.32, + "end": 7108.78, + "probability": 0.845 + }, + { + "start": 7109.34, + "end": 7110.18, + "probability": 0.1109 + }, + { + "start": 7110.18, + "end": 7110.39, + "probability": 0.3171 + }, + { + "start": 7110.94, + "end": 7111.16, + "probability": 0.2078 + }, + { + "start": 7111.16, + "end": 7113.5, + "probability": 0.3429 + }, + { + "start": 7113.54, + "end": 7113.96, + "probability": 0.2525 + }, + { + "start": 7113.98, + "end": 7114.16, + "probability": 0.5881 + }, + { + "start": 7114.16, + "end": 7114.58, + "probability": 0.6543 + }, + { + "start": 7114.8, + "end": 7116.56, + "probability": 0.6432 + }, + { + "start": 7116.62, + "end": 7118.08, + "probability": 0.5611 + }, + { + "start": 7119.32, + "end": 7124.32, + "probability": 0.3703 + }, + { + "start": 7124.76, + "end": 7128.72, + "probability": 0.7976 + }, + { + "start": 7129.21, + "end": 7134.24, + "probability": 0.9627 + }, + { + "start": 7134.72, + "end": 7135.75, + "probability": 0.4752 + }, + { + "start": 7136.08, + "end": 7137.02, + "probability": 0.63 + }, + { + "start": 7137.16, + "end": 7137.7, + "probability": 0.5453 + }, + { + "start": 7138.5, + "end": 7139.04, + "probability": 0.8921 + }, + { + "start": 7139.5, + "end": 7141.2, + "probability": 0.761 + }, + { + "start": 7142.84, + "end": 7144.22, + "probability": 0.467 + }, + { + "start": 7144.3, + "end": 7145.33, + "probability": 0.9854 + }, + { + "start": 7145.66, + "end": 7149.84, + "probability": 0.9185 + }, + { + "start": 7149.84, + "end": 7153.72, + "probability": 0.743 + }, + { + "start": 7153.74, + "end": 7156.26, + "probability": 0.8769 + }, + { + "start": 7156.82, + "end": 7157.35, + "probability": 0.9249 + }, + { + "start": 7158.02, + "end": 7158.46, + "probability": 0.8921 + }, + { + "start": 7158.82, + "end": 7160.84, + "probability": 0.9529 + }, + { + "start": 7161.0, + "end": 7162.52, + "probability": 0.9808 + }, + { + "start": 7162.82, + "end": 7165.32, + "probability": 0.9806 + }, + { + "start": 7166.02, + "end": 7167.24, + "probability": 0.5498 + }, + { + "start": 7168.54, + "end": 7170.64, + "probability": 0.9006 + }, + { + "start": 7171.4, + "end": 7171.86, + "probability": 0.5818 + }, + { + "start": 7172.16, + "end": 7173.3, + "probability": 0.6493 + }, + { + "start": 7173.3, + "end": 7174.6, + "probability": 0.5539 + }, + { + "start": 7174.7, + "end": 7175.3, + "probability": 0.3466 + }, + { + "start": 7175.48, + "end": 7175.86, + "probability": 0.3459 + }, + { + "start": 7175.86, + "end": 7176.72, + "probability": 0.4229 + }, + { + "start": 7176.72, + "end": 7177.26, + "probability": 0.4568 + }, + { + "start": 7188.52, + "end": 7192.38, + "probability": 0.7959 + }, + { + "start": 7192.52, + "end": 7195.8, + "probability": 0.6833 + }, + { + "start": 7196.2, + "end": 7197.0, + "probability": 0.9967 + }, + { + "start": 7197.68, + "end": 7198.7, + "probability": 0.5344 + }, + { + "start": 7198.76, + "end": 7200.24, + "probability": 0.9652 + }, + { + "start": 7201.18, + "end": 7201.96, + "probability": 0.6095 + }, + { + "start": 7202.58, + "end": 7204.48, + "probability": 0.6442 + }, + { + "start": 7208.86, + "end": 7209.98, + "probability": 0.8099 + }, + { + "start": 7210.58, + "end": 7210.98, + "probability": 0.8783 + }, + { + "start": 7212.72, + "end": 7214.02, + "probability": 0.9868 + }, + { + "start": 7214.98, + "end": 7220.08, + "probability": 0.8122 + }, + { + "start": 7221.76, + "end": 7225.64, + "probability": 0.8472 + }, + { + "start": 7228.68, + "end": 7230.22, + "probability": 0.5207 + }, + { + "start": 7231.14, + "end": 7233.64, + "probability": 0.8563 + }, + { + "start": 7234.58, + "end": 7236.5, + "probability": 0.7502 + }, + { + "start": 7236.84, + "end": 7238.92, + "probability": 0.6422 + }, + { + "start": 7240.6, + "end": 7240.62, + "probability": 0.2599 + }, + { + "start": 7240.62, + "end": 7242.82, + "probability": 0.3799 + }, + { + "start": 7243.04, + "end": 7244.64, + "probability": 0.6451 + }, + { + "start": 7244.68, + "end": 7245.32, + "probability": 0.7233 + }, + { + "start": 7245.4, + "end": 7245.76, + "probability": 0.4597 + }, + { + "start": 7245.82, + "end": 7247.72, + "probability": 0.9403 + }, + { + "start": 7247.84, + "end": 7248.64, + "probability": 0.7412 + }, + { + "start": 7249.88, + "end": 7252.64, + "probability": 0.9122 + }, + { + "start": 7252.8, + "end": 7255.02, + "probability": 0.9531 + }, + { + "start": 7255.12, + "end": 7255.86, + "probability": 0.4242 + }, + { + "start": 7255.9, + "end": 7257.9, + "probability": 0.8347 + }, + { + "start": 7259.26, + "end": 7261.09, + "probability": 0.1759 + }, + { + "start": 7261.4, + "end": 7262.4, + "probability": 0.5846 + }, + { + "start": 7262.48, + "end": 7263.76, + "probability": 0.8923 + }, + { + "start": 7264.07, + "end": 7264.12, + "probability": 0.1276 + }, + { + "start": 7264.12, + "end": 7266.54, + "probability": 0.9207 + }, + { + "start": 7266.62, + "end": 7267.12, + "probability": 0.6208 + }, + { + "start": 7267.2, + "end": 7268.97, + "probability": 0.8481 + }, + { + "start": 7269.56, + "end": 7271.05, + "probability": 0.0109 + }, + { + "start": 7271.18, + "end": 7271.32, + "probability": 0.311 + }, + { + "start": 7271.32, + "end": 7273.9, + "probability": 0.4874 + }, + { + "start": 7274.56, + "end": 7276.83, + "probability": 0.8047 + }, + { + "start": 7279.0, + "end": 7280.98, + "probability": 0.2575 + }, + { + "start": 7282.34, + "end": 7284.32, + "probability": 0.7718 + }, + { + "start": 7284.38, + "end": 7284.88, + "probability": 0.6291 + }, + { + "start": 7284.88, + "end": 7288.0, + "probability": 0.988 + }, + { + "start": 7288.56, + "end": 7290.44, + "probability": 0.7011 + }, + { + "start": 7290.72, + "end": 7291.72, + "probability": 0.0525 + }, + { + "start": 7291.74, + "end": 7293.14, + "probability": 0.6551 + }, + { + "start": 7293.18, + "end": 7293.96, + "probability": 0.7721 + }, + { + "start": 7294.0, + "end": 7295.94, + "probability": 0.9678 + }, + { + "start": 7296.18, + "end": 7296.76, + "probability": 0.8296 + }, + { + "start": 7297.44, + "end": 7298.14, + "probability": 0.9514 + }, + { + "start": 7299.7, + "end": 7301.4, + "probability": 0.7234 + }, + { + "start": 7302.32, + "end": 7303.5, + "probability": 0.5903 + }, + { + "start": 7304.08, + "end": 7305.78, + "probability": 0.9983 + }, + { + "start": 7306.64, + "end": 7309.12, + "probability": 0.8712 + }, + { + "start": 7309.3, + "end": 7309.94, + "probability": 0.8064 + }, + { + "start": 7310.62, + "end": 7311.9, + "probability": 0.1012 + }, + { + "start": 7312.16, + "end": 7312.54, + "probability": 0.0732 + }, + { + "start": 7312.54, + "end": 7313.26, + "probability": 0.0518 + }, + { + "start": 7313.26, + "end": 7313.76, + "probability": 0.5758 + }, + { + "start": 7313.96, + "end": 7315.46, + "probability": 0.7072 + }, + { + "start": 7317.68, + "end": 7318.82, + "probability": 0.6383 + }, + { + "start": 7319.16, + "end": 7320.74, + "probability": 0.2671 + }, + { + "start": 7321.32, + "end": 7322.14, + "probability": 0.5194 + }, + { + "start": 7322.14, + "end": 7324.48, + "probability": 0.1237 + }, + { + "start": 7326.12, + "end": 7327.67, + "probability": 0.2505 + }, + { + "start": 7328.74, + "end": 7329.26, + "probability": 0.3369 + }, + { + "start": 7329.5, + "end": 7329.5, + "probability": 0.1363 + }, + { + "start": 7329.5, + "end": 7333.18, + "probability": 0.0418 + }, + { + "start": 7334.1, + "end": 7338.6, + "probability": 0.8587 + }, + { + "start": 7341.0, + "end": 7341.34, + "probability": 0.2038 + }, + { + "start": 7341.64, + "end": 7342.52, + "probability": 0.2316 + }, + { + "start": 7342.6, + "end": 7343.32, + "probability": 0.2225 + }, + { + "start": 7344.06, + "end": 7345.82, + "probability": 0.0272 + }, + { + "start": 7356.94, + "end": 7360.72, + "probability": 0.0578 + }, + { + "start": 7360.72, + "end": 7362.68, + "probability": 0.5075 + }, + { + "start": 7366.36, + "end": 7366.74, + "probability": 0.0448 + }, + { + "start": 7366.74, + "end": 7366.74, + "probability": 0.1082 + }, + { + "start": 7366.74, + "end": 7367.96, + "probability": 0.3572 + }, + { + "start": 7368.66, + "end": 7369.14, + "probability": 0.0886 + }, + { + "start": 7369.46, + "end": 7369.8, + "probability": 0.1888 + }, + { + "start": 7371.06, + "end": 7373.0, + "probability": 0.0762 + }, + { + "start": 7385.0, + "end": 7385.0, + "probability": 0.0 + }, + { + "start": 7385.0, + "end": 7385.0, + "probability": 0.0 + }, + { + "start": 7385.0, + "end": 7385.0, + "probability": 0.0 + }, + { + "start": 7385.0, + "end": 7385.0, + "probability": 0.0 + }, + { + "start": 7385.0, + "end": 7385.0, + "probability": 0.0 + }, + { + "start": 7385.0, + "end": 7385.0, + "probability": 0.0 + }, + { + "start": 7385.0, + "end": 7385.0, + "probability": 0.0 + }, + { + "start": 7385.0, + "end": 7385.0, + "probability": 0.0 + }, + { + "start": 7385.0, + "end": 7385.0, + "probability": 0.0 + }, + { + "start": 7385.0, + "end": 7385.0, + "probability": 0.0 + }, + { + "start": 7385.0, + "end": 7385.0, + "probability": 0.0 + }, + { + "start": 7385.0, + "end": 7385.0, + "probability": 0.0 + }, + { + "start": 7385.0, + "end": 7385.0, + "probability": 0.0 + }, + { + "start": 7385.0, + "end": 7385.0, + "probability": 0.0 + }, + { + "start": 7385.0, + "end": 7385.0, + "probability": 0.0 + }, + { + "start": 7385.0, + "end": 7385.0, + "probability": 0.0 + }, + { + "start": 7385.0, + "end": 7385.0, + "probability": 0.0 + }, + { + "start": 7385.0, + "end": 7385.0, + "probability": 0.0 + }, + { + "start": 7385.0, + "end": 7385.0, + "probability": 0.0 + }, + { + "start": 7385.0, + "end": 7385.0, + "probability": 0.0 + }, + { + "start": 7385.0, + "end": 7385.0, + "probability": 0.0 + }, + { + "start": 7385.0, + "end": 7385.0, + "probability": 0.0 + }, + { + "start": 7385.0, + "end": 7385.0, + "probability": 0.0 + }, + { + "start": 7385.0, + "end": 7385.0, + "probability": 0.0 + }, + { + "start": 7385.0, + "end": 7385.0, + "probability": 0.0 + }, + { + "start": 7385.0, + "end": 7385.0, + "probability": 0.0 + }, + { + "start": 7385.0, + "end": 7385.0, + "probability": 0.0 + }, + { + "start": 7385.0, + "end": 7385.0, + "probability": 0.0 + }, + { + "start": 7385.24, + "end": 7385.68, + "probability": 0.0015 + }, + { + "start": 7386.64, + "end": 7387.52, + "probability": 0.0649 + }, + { + "start": 7387.52, + "end": 7388.66, + "probability": 0.1103 + }, + { + "start": 7388.66, + "end": 7391.1, + "probability": 0.4735 + }, + { + "start": 7391.28, + "end": 7391.88, + "probability": 0.0286 + }, + { + "start": 7394.02, + "end": 7395.47, + "probability": 0.2119 + }, + { + "start": 7400.16, + "end": 7400.88, + "probability": 0.0399 + }, + { + "start": 7405.1, + "end": 7407.16, + "probability": 0.3331 + }, + { + "start": 7407.16, + "end": 7407.16, + "probability": 0.1357 + }, + { + "start": 7407.16, + "end": 7407.82, + "probability": 0.2531 + }, + { + "start": 7410.8, + "end": 7411.8, + "probability": 0.2039 + }, + { + "start": 7412.12, + "end": 7414.7, + "probability": 0.0426 + }, + { + "start": 7414.7, + "end": 7414.7, + "probability": 0.3117 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7510.0, + "end": 7511.84, + "probability": 0.8126 + }, + { + "start": 7512.6, + "end": 7514.5, + "probability": 0.9658 + }, + { + "start": 7514.58, + "end": 7515.67, + "probability": 0.9963 + }, + { + "start": 7516.98, + "end": 7517.02, + "probability": 0.1104 + }, + { + "start": 7517.02, + "end": 7518.14, + "probability": 0.9973 + }, + { + "start": 7519.02, + "end": 7523.76, + "probability": 0.8659 + }, + { + "start": 7524.16, + "end": 7526.24, + "probability": 0.848 + }, + { + "start": 7526.8, + "end": 7530.96, + "probability": 0.9862 + }, + { + "start": 7531.68, + "end": 7537.8, + "probability": 0.9807 + }, + { + "start": 7539.56, + "end": 7542.7, + "probability": 0.9951 + }, + { + "start": 7543.38, + "end": 7548.36, + "probability": 0.9758 + }, + { + "start": 7549.9, + "end": 7553.24, + "probability": 0.9946 + }, + { + "start": 7553.82, + "end": 7555.38, + "probability": 0.8748 + }, + { + "start": 7556.28, + "end": 7559.34, + "probability": 0.9377 + }, + { + "start": 7560.26, + "end": 7563.86, + "probability": 0.9675 + }, + { + "start": 7564.98, + "end": 7566.02, + "probability": 0.9822 + }, + { + "start": 7568.8, + "end": 7571.78, + "probability": 0.8552 + }, + { + "start": 7572.3, + "end": 7576.3, + "probability": 0.9684 + }, + { + "start": 7576.32, + "end": 7578.8, + "probability": 0.819 + }, + { + "start": 7580.02, + "end": 7581.26, + "probability": 0.9897 + }, + { + "start": 7582.58, + "end": 7584.44, + "probability": 0.9944 + }, + { + "start": 7586.6, + "end": 7590.4, + "probability": 0.9963 + }, + { + "start": 7591.16, + "end": 7592.72, + "probability": 0.9956 + }, + { + "start": 7594.42, + "end": 7594.96, + "probability": 0.958 + }, + { + "start": 7596.32, + "end": 7597.16, + "probability": 0.9779 + }, + { + "start": 7597.8, + "end": 7599.64, + "probability": 0.9912 + }, + { + "start": 7600.66, + "end": 7601.79, + "probability": 0.9736 + }, + { + "start": 7602.52, + "end": 7603.82, + "probability": 0.9883 + }, + { + "start": 7603.98, + "end": 7604.36, + "probability": 0.7408 + }, + { + "start": 7604.48, + "end": 7605.4, + "probability": 0.9805 + }, + { + "start": 7605.66, + "end": 7606.2, + "probability": 0.8002 + }, + { + "start": 7606.26, + "end": 7607.08, + "probability": 0.9966 + }, + { + "start": 7608.38, + "end": 7609.88, + "probability": 0.9398 + }, + { + "start": 7610.04, + "end": 7610.28, + "probability": 0.5618 + }, + { + "start": 7610.48, + "end": 7610.84, + "probability": 0.9449 + }, + { + "start": 7610.9, + "end": 7613.28, + "probability": 0.9957 + }, + { + "start": 7615.5, + "end": 7623.36, + "probability": 0.9586 + }, + { + "start": 7624.14, + "end": 7626.86, + "probability": 0.967 + }, + { + "start": 7627.9, + "end": 7632.54, + "probability": 0.9161 + }, + { + "start": 7634.44, + "end": 7638.2, + "probability": 0.5275 + }, + { + "start": 7638.62, + "end": 7640.04, + "probability": 0.4338 + }, + { + "start": 7641.2, + "end": 7641.42, + "probability": 0.2632 + }, + { + "start": 7641.42, + "end": 7641.84, + "probability": 0.0666 + }, + { + "start": 7641.96, + "end": 7643.62, + "probability": 0.4999 + }, + { + "start": 7643.7, + "end": 7643.96, + "probability": 0.6829 + }, + { + "start": 7643.99, + "end": 7644.18, + "probability": 0.0469 + }, + { + "start": 7644.3, + "end": 7645.88, + "probability": 0.8628 + }, + { + "start": 7646.02, + "end": 7648.34, + "probability": 0.8657 + }, + { + "start": 7648.38, + "end": 7650.34, + "probability": 0.6259 + }, + { + "start": 7650.4, + "end": 7653.8, + "probability": 0.7095 + }, + { + "start": 7653.82, + "end": 7654.1, + "probability": 0.0098 + }, + { + "start": 7654.1, + "end": 7656.64, + "probability": 0.2628 + }, + { + "start": 7657.08, + "end": 7658.16, + "probability": 0.2399 + }, + { + "start": 7659.3, + "end": 7659.32, + "probability": 0.7081 + }, + { + "start": 7659.4, + "end": 7662.36, + "probability": 0.343 + }, + { + "start": 7664.68, + "end": 7664.86, + "probability": 0.482 + }, + { + "start": 7664.88, + "end": 7665.3, + "probability": 0.1687 + }, + { + "start": 7665.74, + "end": 7667.04, + "probability": 0.6503 + }, + { + "start": 7668.02, + "end": 7672.36, + "probability": 0.5759 + }, + { + "start": 7672.48, + "end": 7673.52, + "probability": 0.0688 + }, + { + "start": 7673.52, + "end": 7674.2, + "probability": 0.3883 + }, + { + "start": 7675.14, + "end": 7678.36, + "probability": 0.6193 + }, + { + "start": 7682.38, + "end": 7683.12, + "probability": 0.0943 + }, + { + "start": 7683.52, + "end": 7685.0, + "probability": 0.1326 + }, + { + "start": 7685.0, + "end": 7685.86, + "probability": 0.8324 + }, + { + "start": 7686.02, + "end": 7688.38, + "probability": 0.0647 + }, + { + "start": 7693.54, + "end": 7695.9, + "probability": 0.3645 + }, + { + "start": 7695.98, + "end": 7696.52, + "probability": 0.1 + }, + { + "start": 7697.28, + "end": 7697.86, + "probability": 0.0503 + }, + { + "start": 7698.1, + "end": 7698.92, + "probability": 0.2002 + }, + { + "start": 7698.94, + "end": 7699.76, + "probability": 0.444 + }, + { + "start": 7699.9, + "end": 7703.56, + "probability": 0.2 + }, + { + "start": 7704.84, + "end": 7708.7, + "probability": 0.0112 + }, + { + "start": 7709.38, + "end": 7710.8, + "probability": 0.0916 + }, + { + "start": 7710.8, + "end": 7710.8, + "probability": 0.2135 + }, + { + "start": 7710.8, + "end": 7710.82, + "probability": 0.0556 + }, + { + "start": 7710.82, + "end": 7710.82, + "probability": 0.0414 + }, + { + "start": 7710.82, + "end": 7710.82, + "probability": 0.0044 + }, + { + "start": 7710.82, + "end": 7710.82, + "probability": 0.3635 + }, + { + "start": 7710.82, + "end": 7710.82, + "probability": 0.034 + }, + { + "start": 7710.82, + "end": 7710.82, + "probability": 0.1462 + }, + { + "start": 7710.82, + "end": 7710.92, + "probability": 0.1033 + }, + { + "start": 7711.0, + "end": 7711.0, + "probability": 0.0 + }, + { + "start": 7711.56, + "end": 7711.6, + "probability": 0.0518 + }, + { + "start": 7711.6, + "end": 7711.6, + "probability": 0.1244 + }, + { + "start": 7711.6, + "end": 7713.04, + "probability": 0.8042 + }, + { + "start": 7713.22, + "end": 7714.66, + "probability": 0.9251 + }, + { + "start": 7714.66, + "end": 7716.22, + "probability": 0.0971 + }, + { + "start": 7718.3, + "end": 7718.58, + "probability": 0.0048 + }, + { + "start": 7718.58, + "end": 7718.58, + "probability": 0.1496 + }, + { + "start": 7718.58, + "end": 7718.58, + "probability": 0.2406 + }, + { + "start": 7718.58, + "end": 7718.58, + "probability": 0.0685 + }, + { + "start": 7718.58, + "end": 7722.84, + "probability": 0.8858 + }, + { + "start": 7723.88, + "end": 7726.34, + "probability": 0.999 + }, + { + "start": 7729.2, + "end": 7730.58, + "probability": 0.9673 + }, + { + "start": 7731.26, + "end": 7734.4, + "probability": 0.8494 + }, + { + "start": 7736.26, + "end": 7738.82, + "probability": 0.9631 + }, + { + "start": 7739.5, + "end": 7742.58, + "probability": 0.9532 + }, + { + "start": 7742.78, + "end": 7743.72, + "probability": 0.082 + }, + { + "start": 7745.52, + "end": 7745.64, + "probability": 0.1076 + }, + { + "start": 7745.64, + "end": 7745.64, + "probability": 0.3182 + }, + { + "start": 7745.64, + "end": 7745.84, + "probability": 0.1886 + }, + { + "start": 7745.94, + "end": 7746.12, + "probability": 0.9092 + }, + { + "start": 7746.2, + "end": 7747.18, + "probability": 0.8896 + }, + { + "start": 7747.18, + "end": 7748.51, + "probability": 0.0192 + }, + { + "start": 7748.96, + "end": 7750.82, + "probability": 0.7371 + }, + { + "start": 7750.82, + "end": 7753.0, + "probability": 0.5915 + }, + { + "start": 7753.64, + "end": 7753.64, + "probability": 0.314 + }, + { + "start": 7753.74, + "end": 7756.44, + "probability": 0.3391 + }, + { + "start": 7757.0, + "end": 7758.56, + "probability": 0.05 + }, + { + "start": 7758.62, + "end": 7761.0, + "probability": 0.5569 + }, + { + "start": 7761.2, + "end": 7762.74, + "probability": 0.2284 + }, + { + "start": 7765.92, + "end": 7767.1, + "probability": 0.3746 + }, + { + "start": 7768.18, + "end": 7769.54, + "probability": 0.5258 + }, + { + "start": 7769.54, + "end": 7770.04, + "probability": 0.7195 + }, + { + "start": 7771.3, + "end": 7771.46, + "probability": 0.0404 + }, + { + "start": 7771.46, + "end": 7771.46, + "probability": 0.0162 + }, + { + "start": 7771.46, + "end": 7771.46, + "probability": 0.0557 + }, + { + "start": 7771.46, + "end": 7771.46, + "probability": 0.0214 + }, + { + "start": 7771.46, + "end": 7775.54, + "probability": 0.9395 + }, + { + "start": 7776.32, + "end": 7778.59, + "probability": 0.9893 + }, + { + "start": 7780.18, + "end": 7782.74, + "probability": 0.7907 + }, + { + "start": 7783.56, + "end": 7784.76, + "probability": 0.8286 + }, + { + "start": 7785.0, + "end": 7785.78, + "probability": 0.2692 + }, + { + "start": 7786.22, + "end": 7787.88, + "probability": 0.9976 + }, + { + "start": 7787.96, + "end": 7789.5, + "probability": 0.9181 + }, + { + "start": 7789.58, + "end": 7790.42, + "probability": 0.648 + }, + { + "start": 7790.82, + "end": 7792.5, + "probability": 0.7233 + }, + { + "start": 7794.2, + "end": 7794.2, + "probability": 0.0453 + }, + { + "start": 7794.2, + "end": 7795.12, + "probability": 0.8986 + }, + { + "start": 7795.22, + "end": 7797.88, + "probability": 0.981 + }, + { + "start": 7797.88, + "end": 7801.08, + "probability": 0.9963 + }, + { + "start": 7802.54, + "end": 7803.3, + "probability": 0.8371 + }, + { + "start": 7805.32, + "end": 7806.34, + "probability": 0.998 + }, + { + "start": 7807.84, + "end": 7810.74, + "probability": 0.8922 + }, + { + "start": 7811.4, + "end": 7813.44, + "probability": 0.9185 + }, + { + "start": 7814.24, + "end": 7816.0, + "probability": 0.9148 + }, + { + "start": 7816.1, + "end": 7816.94, + "probability": 0.808 + }, + { + "start": 7816.96, + "end": 7817.66, + "probability": 0.9877 + }, + { + "start": 7818.5, + "end": 7821.72, + "probability": 0.9916 + }, + { + "start": 7822.68, + "end": 7823.44, + "probability": 0.8728 + }, + { + "start": 7824.16, + "end": 7825.94, + "probability": 0.903 + }, + { + "start": 7827.92, + "end": 7829.24, + "probability": 0.9845 + }, + { + "start": 7830.42, + "end": 7832.6, + "probability": 0.018 + }, + { + "start": 7832.64, + "end": 7833.36, + "probability": 0.0528 + }, + { + "start": 7834.96, + "end": 7836.26, + "probability": 0.7915 + }, + { + "start": 7836.4, + "end": 7837.68, + "probability": 0.1243 + }, + { + "start": 7837.68, + "end": 7840.04, + "probability": 0.8289 + }, + { + "start": 7840.06, + "end": 7842.1, + "probability": 0.6323 + }, + { + "start": 7843.5, + "end": 7846.6, + "probability": 0.7087 + }, + { + "start": 7847.48, + "end": 7849.78, + "probability": 0.6764 + }, + { + "start": 7849.78, + "end": 7853.32, + "probability": 0.3655 + }, + { + "start": 7853.82, + "end": 7855.3, + "probability": 0.3244 + }, + { + "start": 7855.3, + "end": 7857.24, + "probability": 0.0807 + }, + { + "start": 7857.34, + "end": 7859.01, + "probability": 0.7744 + }, + { + "start": 7859.3, + "end": 7861.86, + "probability": 0.807 + }, + { + "start": 7863.17, + "end": 7868.92, + "probability": 0.7061 + }, + { + "start": 7869.78, + "end": 7872.86, + "probability": 0.994 + }, + { + "start": 7872.96, + "end": 7873.75, + "probability": 0.9722 + }, + { + "start": 7874.66, + "end": 7875.6, + "probability": 0.8898 + }, + { + "start": 7876.06, + "end": 7879.62, + "probability": 0.9922 + }, + { + "start": 7879.82, + "end": 7882.1, + "probability": 0.9976 + }, + { + "start": 7882.72, + "end": 7884.5, + "probability": 0.936 + }, + { + "start": 7884.68, + "end": 7885.5, + "probability": 0.9272 + }, + { + "start": 7885.54, + "end": 7886.22, + "probability": 0.7019 + }, + { + "start": 7886.98, + "end": 7888.0, + "probability": 0.908 + }, + { + "start": 7888.74, + "end": 7890.28, + "probability": 0.7136 + }, + { + "start": 7890.92, + "end": 7891.87, + "probability": 0.9419 + }, + { + "start": 7892.48, + "end": 7893.98, + "probability": 0.9927 + }, + { + "start": 7894.08, + "end": 7899.96, + "probability": 0.9584 + }, + { + "start": 7901.18, + "end": 7903.04, + "probability": 0.6708 + }, + { + "start": 7903.1, + "end": 7904.36, + "probability": 0.7235 + }, + { + "start": 7904.5, + "end": 7905.68, + "probability": 0.3138 + }, + { + "start": 7906.48, + "end": 7907.08, + "probability": 0.8734 + }, + { + "start": 7907.16, + "end": 7908.56, + "probability": 0.8043 + }, + { + "start": 7908.56, + "end": 7912.96, + "probability": 0.5326 + }, + { + "start": 7913.06, + "end": 7914.5, + "probability": 0.9177 + }, + { + "start": 7914.66, + "end": 7915.82, + "probability": 0.5059 + }, + { + "start": 7915.9, + "end": 7916.74, + "probability": 0.7417 + }, + { + "start": 7920.14, + "end": 7921.62, + "probability": 0.7394 + }, + { + "start": 7921.78, + "end": 7925.44, + "probability": 0.9969 + }, + { + "start": 7926.42, + "end": 7928.96, + "probability": 0.7031 + }, + { + "start": 7929.58, + "end": 7932.38, + "probability": 0.9769 + }, + { + "start": 7932.82, + "end": 7933.94, + "probability": 0.9332 + }, + { + "start": 7934.1, + "end": 7934.58, + "probability": 0.6906 + }, + { + "start": 7934.7, + "end": 7936.28, + "probability": 0.8889 + }, + { + "start": 7936.36, + "end": 7937.44, + "probability": 0.7072 + }, + { + "start": 7937.52, + "end": 7938.32, + "probability": 0.7452 + }, + { + "start": 7938.48, + "end": 7939.4, + "probability": 0.5457 + }, + { + "start": 7940.94, + "end": 7942.66, + "probability": 0.9743 + }, + { + "start": 7943.34, + "end": 7949.16, + "probability": 0.8979 + }, + { + "start": 7950.3, + "end": 7955.62, + "probability": 0.9917 + }, + { + "start": 7955.62, + "end": 7961.84, + "probability": 0.9786 + }, + { + "start": 7962.08, + "end": 7963.1, + "probability": 0.7434 + }, + { + "start": 7963.4, + "end": 7965.62, + "probability": 0.9248 + }, + { + "start": 7966.08, + "end": 7968.26, + "probability": 0.8762 + }, + { + "start": 7968.98, + "end": 7969.96, + "probability": 0.9468 + }, + { + "start": 7970.1, + "end": 7971.36, + "probability": 0.7617 + }, + { + "start": 7971.84, + "end": 7974.28, + "probability": 0.9195 + }, + { + "start": 7974.32, + "end": 7976.28, + "probability": 0.9594 + }, + { + "start": 7976.78, + "end": 7980.69, + "probability": 0.9741 + }, + { + "start": 7981.24, + "end": 7981.58, + "probability": 0.8173 + }, + { + "start": 7981.82, + "end": 7983.1, + "probability": 0.9727 + }, + { + "start": 7983.96, + "end": 7984.88, + "probability": 0.8704 + }, + { + "start": 7984.94, + "end": 7985.62, + "probability": 0.9689 + }, + { + "start": 7985.66, + "end": 7987.22, + "probability": 0.8107 + }, + { + "start": 7987.72, + "end": 7989.14, + "probability": 0.7498 + }, + { + "start": 7989.46, + "end": 7991.68, + "probability": 0.7483 + }, + { + "start": 7992.66, + "end": 7994.24, + "probability": 0.8048 + }, + { + "start": 7994.38, + "end": 7997.6, + "probability": 0.9592 + }, + { + "start": 7998.0, + "end": 8000.76, + "probability": 0.9738 + }, + { + "start": 8001.92, + "end": 8003.96, + "probability": 0.7731 + }, + { + "start": 8004.0, + "end": 8004.62, + "probability": 0.7523 + }, + { + "start": 8004.7, + "end": 8006.58, + "probability": 0.8664 + }, + { + "start": 8007.04, + "end": 8008.06, + "probability": 0.8773 + }, + { + "start": 8008.08, + "end": 8010.68, + "probability": 0.9403 + }, + { + "start": 8011.22, + "end": 8015.14, + "probability": 0.9713 + }, + { + "start": 8015.58, + "end": 8018.12, + "probability": 0.9898 + }, + { + "start": 8018.48, + "end": 8018.9, + "probability": 0.4683 + }, + { + "start": 8018.98, + "end": 8020.17, + "probability": 0.7924 + }, + { + "start": 8020.62, + "end": 8022.3, + "probability": 0.958 + }, + { + "start": 8022.42, + "end": 8022.64, + "probability": 0.5172 + }, + { + "start": 8022.68, + "end": 8024.68, + "probability": 0.9449 + }, + { + "start": 8025.28, + "end": 8027.28, + "probability": 0.9424 + }, + { + "start": 8027.76, + "end": 8030.84, + "probability": 0.8964 + }, + { + "start": 8031.44, + "end": 8032.78, + "probability": 0.9197 + }, + { + "start": 8033.0, + "end": 8033.42, + "probability": 0.8895 + }, + { + "start": 8033.52, + "end": 8034.78, + "probability": 0.9467 + }, + { + "start": 8034.9, + "end": 8036.92, + "probability": 0.9498 + }, + { + "start": 8037.48, + "end": 8038.32, + "probability": 0.9064 + }, + { + "start": 8038.52, + "end": 8039.24, + "probability": 0.6305 + }, + { + "start": 8039.72, + "end": 8046.22, + "probability": 0.953 + }, + { + "start": 8046.62, + "end": 8047.7, + "probability": 0.8145 + }, + { + "start": 8048.32, + "end": 8048.94, + "probability": 0.7351 + }, + { + "start": 8049.0, + "end": 8051.14, + "probability": 0.6891 + }, + { + "start": 8051.28, + "end": 8053.62, + "probability": 0.9788 + }, + { + "start": 8053.82, + "end": 8054.56, + "probability": 0.8275 + }, + { + "start": 8054.94, + "end": 8056.8, + "probability": 0.9293 + }, + { + "start": 8057.54, + "end": 8059.56, + "probability": 0.8421 + }, + { + "start": 8059.64, + "end": 8060.54, + "probability": 0.9268 + }, + { + "start": 8060.64, + "end": 8061.34, + "probability": 0.8975 + }, + { + "start": 8061.42, + "end": 8062.64, + "probability": 0.9756 + }, + { + "start": 8064.06, + "end": 8064.48, + "probability": 0.6742 + }, + { + "start": 8064.58, + "end": 8064.94, + "probability": 0.8336 + }, + { + "start": 8065.02, + "end": 8065.94, + "probability": 0.6542 + }, + { + "start": 8066.02, + "end": 8067.54, + "probability": 0.7087 + }, + { + "start": 8067.96, + "end": 8068.58, + "probability": 0.9208 + }, + { + "start": 8069.22, + "end": 8070.88, + "probability": 0.4138 + }, + { + "start": 8071.02, + "end": 8071.48, + "probability": 0.6105 + }, + { + "start": 8071.84, + "end": 8073.56, + "probability": 0.7871 + }, + { + "start": 8073.94, + "end": 8074.08, + "probability": 0.4721 + }, + { + "start": 8074.12, + "end": 8075.26, + "probability": 0.9425 + }, + { + "start": 8075.4, + "end": 8075.96, + "probability": 0.9339 + }, + { + "start": 8076.06, + "end": 8076.8, + "probability": 0.864 + }, + { + "start": 8077.2, + "end": 8077.66, + "probability": 0.5804 + }, + { + "start": 8077.7, + "end": 8084.38, + "probability": 0.9952 + }, + { + "start": 8085.12, + "end": 8088.74, + "probability": 0.9827 + }, + { + "start": 8088.74, + "end": 8092.02, + "probability": 0.998 + }, + { + "start": 8092.56, + "end": 8093.96, + "probability": 0.6926 + }, + { + "start": 8095.38, + "end": 8100.43, + "probability": 0.9878 + }, + { + "start": 8101.38, + "end": 8104.08, + "probability": 0.9949 + }, + { + "start": 8104.66, + "end": 8108.18, + "probability": 0.9938 + }, + { + "start": 8108.86, + "end": 8112.98, + "probability": 0.8075 + }, + { + "start": 8113.24, + "end": 8113.32, + "probability": 0.538 + }, + { + "start": 8113.4, + "end": 8115.02, + "probability": 0.9618 + }, + { + "start": 8115.32, + "end": 8116.0, + "probability": 0.803 + }, + { + "start": 8116.42, + "end": 8117.32, + "probability": 0.7041 + }, + { + "start": 8117.48, + "end": 8120.0, + "probability": 0.9957 + }, + { + "start": 8120.38, + "end": 8121.9, + "probability": 0.9316 + }, + { + "start": 8121.9, + "end": 8126.24, + "probability": 0.9626 + }, + { + "start": 8126.74, + "end": 8127.8, + "probability": 0.6509 + }, + { + "start": 8127.9, + "end": 8130.07, + "probability": 0.7346 + }, + { + "start": 8130.96, + "end": 8134.2, + "probability": 0.9274 + }, + { + "start": 8134.54, + "end": 8137.16, + "probability": 0.9945 + }, + { + "start": 8137.86, + "end": 8139.16, + "probability": 0.9904 + }, + { + "start": 8139.2, + "end": 8140.38, + "probability": 0.6668 + }, + { + "start": 8140.48, + "end": 8142.72, + "probability": 0.9378 + }, + { + "start": 8143.68, + "end": 8146.18, + "probability": 0.9323 + }, + { + "start": 8146.28, + "end": 8147.03, + "probability": 0.924 + }, + { + "start": 8147.66, + "end": 8148.22, + "probability": 0.4363 + }, + { + "start": 8148.32, + "end": 8149.6, + "probability": 0.7059 + }, + { + "start": 8149.96, + "end": 8150.76, + "probability": 0.7455 + }, + { + "start": 8151.18, + "end": 8152.34, + "probability": 0.5254 + }, + { + "start": 8152.64, + "end": 8153.28, + "probability": 0.7326 + }, + { + "start": 8153.72, + "end": 8154.46, + "probability": 0.7456 + }, + { + "start": 8154.52, + "end": 8156.8, + "probability": 0.8749 + }, + { + "start": 8157.22, + "end": 8159.54, + "probability": 0.9708 + }, + { + "start": 8159.56, + "end": 8161.0, + "probability": 0.7231 + }, + { + "start": 8161.74, + "end": 8163.74, + "probability": 0.9727 + }, + { + "start": 8163.86, + "end": 8164.84, + "probability": 0.9375 + }, + { + "start": 8165.3, + "end": 8169.74, + "probability": 0.9902 + }, + { + "start": 8170.36, + "end": 8172.78, + "probability": 0.9899 + }, + { + "start": 8173.24, + "end": 8175.76, + "probability": 0.888 + }, + { + "start": 8176.1, + "end": 8179.54, + "probability": 0.8921 + }, + { + "start": 8179.6, + "end": 8183.36, + "probability": 0.9971 + }, + { + "start": 8183.8, + "end": 8185.22, + "probability": 0.7424 + }, + { + "start": 8186.32, + "end": 8188.98, + "probability": 0.9241 + }, + { + "start": 8189.42, + "end": 8190.78, + "probability": 0.9821 + }, + { + "start": 8190.82, + "end": 8194.42, + "probability": 0.975 + }, + { + "start": 8194.42, + "end": 8197.58, + "probability": 0.9984 + }, + { + "start": 8197.94, + "end": 8200.28, + "probability": 0.9941 + }, + { + "start": 8200.54, + "end": 8201.3, + "probability": 0.8789 + }, + { + "start": 8201.4, + "end": 8202.22, + "probability": 0.9148 + }, + { + "start": 8202.44, + "end": 8203.7, + "probability": 0.7492 + }, + { + "start": 8204.1, + "end": 8205.48, + "probability": 0.9421 + }, + { + "start": 8206.24, + "end": 8209.65, + "probability": 0.9798 + }, + { + "start": 8210.2, + "end": 8213.7, + "probability": 0.9985 + }, + { + "start": 8214.04, + "end": 8215.2, + "probability": 0.7954 + }, + { + "start": 8215.32, + "end": 8216.2, + "probability": 0.8646 + }, + { + "start": 8216.3, + "end": 8217.78, + "probability": 0.7806 + }, + { + "start": 8218.26, + "end": 8219.78, + "probability": 0.7478 + }, + { + "start": 8220.14, + "end": 8222.3, + "probability": 0.9889 + }, + { + "start": 8223.02, + "end": 8224.82, + "probability": 0.8952 + }, + { + "start": 8224.84, + "end": 8226.34, + "probability": 0.7522 + }, + { + "start": 8226.46, + "end": 8226.66, + "probability": 0.6402 + }, + { + "start": 8226.76, + "end": 8227.56, + "probability": 0.9469 + }, + { + "start": 8227.96, + "end": 8229.84, + "probability": 0.9774 + }, + { + "start": 8230.28, + "end": 8231.54, + "probability": 0.9922 + }, + { + "start": 8231.62, + "end": 8232.58, + "probability": 0.7573 + }, + { + "start": 8232.58, + "end": 8233.36, + "probability": 0.8036 + }, + { + "start": 8233.74, + "end": 8234.76, + "probability": 0.9564 + }, + { + "start": 8234.82, + "end": 8237.5, + "probability": 0.8928 + }, + { + "start": 8237.64, + "end": 8238.82, + "probability": 0.9531 + }, + { + "start": 8239.28, + "end": 8241.2, + "probability": 0.9873 + }, + { + "start": 8241.62, + "end": 8243.14, + "probability": 0.9548 + }, + { + "start": 8243.26, + "end": 8246.02, + "probability": 0.933 + }, + { + "start": 8246.54, + "end": 8247.62, + "probability": 0.9209 + }, + { + "start": 8248.3, + "end": 8250.28, + "probability": 0.9916 + }, + { + "start": 8250.34, + "end": 8252.18, + "probability": 0.9972 + }, + { + "start": 8252.48, + "end": 8253.5, + "probability": 0.8802 + }, + { + "start": 8253.54, + "end": 8254.74, + "probability": 0.6788 + }, + { + "start": 8254.78, + "end": 8255.8, + "probability": 0.8359 + }, + { + "start": 8256.2, + "end": 8257.53, + "probability": 0.9091 + }, + { + "start": 8257.64, + "end": 8258.54, + "probability": 0.8194 + }, + { + "start": 8258.58, + "end": 8260.3, + "probability": 0.9907 + }, + { + "start": 8260.68, + "end": 8263.94, + "probability": 0.9987 + }, + { + "start": 8264.54, + "end": 8267.24, + "probability": 0.5663 + }, + { + "start": 8268.22, + "end": 8269.53, + "probability": 0.0137 + }, + { + "start": 8270.1, + "end": 8270.94, + "probability": 0.5494 + }, + { + "start": 8271.08, + "end": 8271.4, + "probability": 0.6896 + }, + { + "start": 8271.44, + "end": 8273.56, + "probability": 0.9749 + }, + { + "start": 8274.16, + "end": 8275.1, + "probability": 0.8112 + }, + { + "start": 8275.86, + "end": 8279.28, + "probability": 0.9695 + }, + { + "start": 8279.38, + "end": 8280.3, + "probability": 0.8757 + }, + { + "start": 8280.76, + "end": 8282.68, + "probability": 0.9156 + }, + { + "start": 8283.04, + "end": 8284.48, + "probability": 0.8019 + }, + { + "start": 8285.08, + "end": 8286.68, + "probability": 0.7604 + }, + { + "start": 8286.8, + "end": 8288.92, + "probability": 0.9844 + }, + { + "start": 8289.42, + "end": 8290.28, + "probability": 0.9636 + }, + { + "start": 8290.38, + "end": 8290.72, + "probability": 0.8751 + }, + { + "start": 8290.82, + "end": 8291.42, + "probability": 0.9221 + }, + { + "start": 8291.88, + "end": 8295.8, + "probability": 0.9378 + }, + { + "start": 8296.36, + "end": 8298.88, + "probability": 0.6715 + }, + { + "start": 8299.82, + "end": 8304.04, + "probability": 0.9902 + }, + { + "start": 8304.04, + "end": 8309.88, + "probability": 0.996 + }, + { + "start": 8310.4, + "end": 8314.56, + "probability": 0.9687 + }, + { + "start": 8315.16, + "end": 8317.44, + "probability": 0.5682 + }, + { + "start": 8317.54, + "end": 8319.24, + "probability": 0.9731 + }, + { + "start": 8319.66, + "end": 8324.3, + "probability": 0.9795 + }, + { + "start": 8325.0, + "end": 8328.1, + "probability": 0.7788 + }, + { + "start": 8328.22, + "end": 8329.8, + "probability": 0.9877 + }, + { + "start": 8330.44, + "end": 8333.7, + "probability": 0.748 + }, + { + "start": 8334.28, + "end": 8336.0, + "probability": 0.8848 + }, + { + "start": 8336.14, + "end": 8338.58, + "probability": 0.8232 + }, + { + "start": 8340.0, + "end": 8342.78, + "probability": 0.8941 + }, + { + "start": 8343.68, + "end": 8346.32, + "probability": 0.8987 + }, + { + "start": 8346.88, + "end": 8348.36, + "probability": 0.8065 + }, + { + "start": 8348.92, + "end": 8349.38, + "probability": 0.7688 + }, + { + "start": 8349.48, + "end": 8350.08, + "probability": 0.8031 + }, + { + "start": 8350.52, + "end": 8353.04, + "probability": 0.9013 + }, + { + "start": 8353.14, + "end": 8356.2, + "probability": 0.9514 + }, + { + "start": 8356.58, + "end": 8358.92, + "probability": 0.9485 + }, + { + "start": 8360.06, + "end": 8363.18, + "probability": 0.9928 + }, + { + "start": 8363.84, + "end": 8365.84, + "probability": 0.9145 + }, + { + "start": 8366.52, + "end": 8367.16, + "probability": 0.6835 + }, + { + "start": 8367.34, + "end": 8370.04, + "probability": 0.9129 + }, + { + "start": 8370.04, + "end": 8373.5, + "probability": 0.9762 + }, + { + "start": 8373.96, + "end": 8376.32, + "probability": 0.8063 + }, + { + "start": 8377.06, + "end": 8379.12, + "probability": 0.9316 + }, + { + "start": 8379.22, + "end": 8379.8, + "probability": 0.8772 + }, + { + "start": 8380.28, + "end": 8382.48, + "probability": 0.708 + }, + { + "start": 8382.58, + "end": 8385.12, + "probability": 0.845 + }, + { + "start": 8385.68, + "end": 8388.64, + "probability": 0.9666 + }, + { + "start": 8394.76, + "end": 8396.58, + "probability": 0.6033 + }, + { + "start": 8397.34, + "end": 8399.62, + "probability": 0.7455 + }, + { + "start": 8401.02, + "end": 8402.44, + "probability": 0.8537 + }, + { + "start": 8404.12, + "end": 8404.4, + "probability": 0.786 + }, + { + "start": 8407.02, + "end": 8408.06, + "probability": 0.6162 + }, + { + "start": 8408.74, + "end": 8411.34, + "probability": 0.6156 + }, + { + "start": 8412.36, + "end": 8414.54, + "probability": 0.9907 + }, + { + "start": 8415.12, + "end": 8416.04, + "probability": 0.7227 + }, + { + "start": 8416.14, + "end": 8417.94, + "probability": 0.6588 + }, + { + "start": 8417.98, + "end": 8418.5, + "probability": 0.6779 + }, + { + "start": 8418.94, + "end": 8419.7, + "probability": 0.5753 + }, + { + "start": 8420.58, + "end": 8426.66, + "probability": 0.8009 + }, + { + "start": 8429.02, + "end": 8432.2, + "probability": 0.623 + }, + { + "start": 8432.78, + "end": 8434.32, + "probability": 0.7722 + }, + { + "start": 8435.78, + "end": 8437.56, + "probability": 0.8501 + }, + { + "start": 8438.18, + "end": 8438.72, + "probability": 0.3307 + }, + { + "start": 8438.82, + "end": 8440.78, + "probability": 0.3616 + }, + { + "start": 8440.78, + "end": 8440.78, + "probability": 0.612 + }, + { + "start": 8440.84, + "end": 8441.42, + "probability": 0.4307 + }, + { + "start": 8442.44, + "end": 8442.96, + "probability": 0.8989 + }, + { + "start": 8443.16, + "end": 8445.16, + "probability": 0.8313 + }, + { + "start": 8446.12, + "end": 8447.28, + "probability": 0.0275 + }, + { + "start": 8448.22, + "end": 8453.38, + "probability": 0.6623 + }, + { + "start": 8454.72, + "end": 8459.58, + "probability": 0.9845 + }, + { + "start": 8460.74, + "end": 8461.82, + "probability": 0.8449 + }, + { + "start": 8464.38, + "end": 8465.94, + "probability": 0.9215 + }, + { + "start": 8468.14, + "end": 8469.08, + "probability": 0.7097 + }, + { + "start": 8469.12, + "end": 8470.98, + "probability": 0.979 + }, + { + "start": 8471.12, + "end": 8472.06, + "probability": 0.6141 + }, + { + "start": 8473.24, + "end": 8476.27, + "probability": 0.9802 + }, + { + "start": 8477.36, + "end": 8478.6, + "probability": 0.9855 + }, + { + "start": 8480.7, + "end": 8483.68, + "probability": 0.8065 + }, + { + "start": 8484.44, + "end": 8485.16, + "probability": 0.8101 + }, + { + "start": 8486.2, + "end": 8488.79, + "probability": 0.8242 + }, + { + "start": 8489.74, + "end": 8492.27, + "probability": 0.8817 + }, + { + "start": 8495.54, + "end": 8499.88, + "probability": 0.9302 + }, + { + "start": 8501.54, + "end": 8506.02, + "probability": 0.9469 + }, + { + "start": 8507.74, + "end": 8513.42, + "probability": 0.9787 + }, + { + "start": 8514.9, + "end": 8521.58, + "probability": 0.9333 + }, + { + "start": 8521.68, + "end": 8522.3, + "probability": 0.8197 + }, + { + "start": 8522.32, + "end": 8524.38, + "probability": 0.8071 + }, + { + "start": 8524.56, + "end": 8526.74, + "probability": 0.7762 + }, + { + "start": 8527.92, + "end": 8530.12, + "probability": 0.7063 + }, + { + "start": 8530.78, + "end": 8531.34, + "probability": 0.9066 + }, + { + "start": 8532.46, + "end": 8538.4, + "probability": 0.9858 + }, + { + "start": 8539.42, + "end": 8544.9, + "probability": 0.8277 + }, + { + "start": 8546.3, + "end": 8549.44, + "probability": 0.8477 + }, + { + "start": 8552.28, + "end": 8553.0, + "probability": 0.7793 + }, + { + "start": 8553.06, + "end": 8555.3, + "probability": 0.8849 + }, + { + "start": 8555.7, + "end": 8559.14, + "probability": 0.7403 + }, + { + "start": 8560.44, + "end": 8563.2, + "probability": 0.8706 + }, + { + "start": 8564.66, + "end": 8571.12, + "probability": 0.9673 + }, + { + "start": 8572.62, + "end": 8574.0, + "probability": 0.7393 + }, + { + "start": 8575.52, + "end": 8576.89, + "probability": 0.9593 + }, + { + "start": 8577.2, + "end": 8581.46, + "probability": 0.5199 + }, + { + "start": 8581.62, + "end": 8586.8, + "probability": 0.9962 + }, + { + "start": 8586.8, + "end": 8591.14, + "probability": 0.9989 + }, + { + "start": 8592.76, + "end": 8596.58, + "probability": 0.7019 + }, + { + "start": 8597.42, + "end": 8600.46, + "probability": 0.9646 + }, + { + "start": 8601.12, + "end": 8604.28, + "probability": 0.928 + }, + { + "start": 8605.22, + "end": 8610.52, + "probability": 0.8856 + }, + { + "start": 8610.76, + "end": 8615.12, + "probability": 0.8929 + }, + { + "start": 8617.52, + "end": 8618.56, + "probability": 0.9954 + }, + { + "start": 8619.98, + "end": 8626.28, + "probability": 0.9918 + }, + { + "start": 8627.48, + "end": 8632.28, + "probability": 0.9923 + }, + { + "start": 8633.28, + "end": 8635.78, + "probability": 0.7864 + }, + { + "start": 8636.64, + "end": 8640.76, + "probability": 0.995 + }, + { + "start": 8641.6, + "end": 8643.18, + "probability": 0.994 + }, + { + "start": 8644.04, + "end": 8645.88, + "probability": 0.7605 + }, + { + "start": 8646.48, + "end": 8650.64, + "probability": 0.92 + }, + { + "start": 8651.88, + "end": 8654.8, + "probability": 0.9268 + }, + { + "start": 8655.6, + "end": 8657.42, + "probability": 0.9224 + }, + { + "start": 8658.28, + "end": 8658.8, + "probability": 0.895 + }, + { + "start": 8659.74, + "end": 8664.22, + "probability": 0.957 + }, + { + "start": 8665.46, + "end": 8671.46, + "probability": 0.9739 + }, + { + "start": 8671.46, + "end": 8677.72, + "probability": 0.9769 + }, + { + "start": 8678.64, + "end": 8679.92, + "probability": 0.6549 + }, + { + "start": 8680.06, + "end": 8682.26, + "probability": 0.8404 + }, + { + "start": 8683.3, + "end": 8686.78, + "probability": 0.9508 + }, + { + "start": 8687.7, + "end": 8691.46, + "probability": 0.9841 + }, + { + "start": 8692.46, + "end": 8693.88, + "probability": 0.6107 + }, + { + "start": 8694.58, + "end": 8697.48, + "probability": 0.7983 + }, + { + "start": 8698.58, + "end": 8700.5, + "probability": 0.6159 + }, + { + "start": 8701.24, + "end": 8702.3, + "probability": 0.7902 + }, + { + "start": 8702.86, + "end": 8704.37, + "probability": 0.9397 + }, + { + "start": 8706.02, + "end": 8709.64, + "probability": 0.9919 + }, + { + "start": 8711.18, + "end": 8716.76, + "probability": 0.966 + }, + { + "start": 8717.9, + "end": 8721.79, + "probability": 0.9858 + }, + { + "start": 8721.82, + "end": 8725.02, + "probability": 0.9992 + }, + { + "start": 8725.78, + "end": 8726.44, + "probability": 0.7742 + }, + { + "start": 8727.14, + "end": 8731.72, + "probability": 0.9875 + }, + { + "start": 8732.6, + "end": 8734.1, + "probability": 0.9766 + }, + { + "start": 8734.76, + "end": 8737.08, + "probability": 0.6768 + }, + { + "start": 8737.9, + "end": 8739.24, + "probability": 0.7399 + }, + { + "start": 8740.26, + "end": 8746.88, + "probability": 0.9963 + }, + { + "start": 8746.92, + "end": 8752.92, + "probability": 0.8835 + }, + { + "start": 8752.96, + "end": 8755.84, + "probability": 0.9791 + }, + { + "start": 8757.04, + "end": 8760.26, + "probability": 0.7841 + }, + { + "start": 8760.62, + "end": 8761.72, + "probability": 0.8774 + }, + { + "start": 8761.92, + "end": 8763.32, + "probability": 0.4576 + }, + { + "start": 8764.3, + "end": 8765.18, + "probability": 0.9725 + }, + { + "start": 8765.22, + "end": 8767.58, + "probability": 0.885 + }, + { + "start": 8767.64, + "end": 8768.48, + "probability": 0.6392 + }, + { + "start": 8769.54, + "end": 8772.2, + "probability": 0.7545 + }, + { + "start": 8773.28, + "end": 8774.22, + "probability": 0.91 + }, + { + "start": 8775.0, + "end": 8775.88, + "probability": 0.7653 + }, + { + "start": 8776.96, + "end": 8779.14, + "probability": 0.7428 + }, + { + "start": 8781.32, + "end": 8782.08, + "probability": 0.7838 + }, + { + "start": 8782.9, + "end": 8783.82, + "probability": 0.9577 + }, + { + "start": 8785.06, + "end": 8792.5, + "probability": 0.9877 + }, + { + "start": 8794.22, + "end": 8794.9, + "probability": 0.5247 + }, + { + "start": 8795.1, + "end": 8800.24, + "probability": 0.9417 + }, + { + "start": 8800.6, + "end": 8804.18, + "probability": 0.983 + }, + { + "start": 8805.62, + "end": 8811.22, + "probability": 0.9429 + }, + { + "start": 8813.22, + "end": 8814.1, + "probability": 0.8525 + }, + { + "start": 8814.76, + "end": 8818.04, + "probability": 0.9326 + }, + { + "start": 8819.02, + "end": 8823.98, + "probability": 0.9853 + }, + { + "start": 8825.0, + "end": 8827.41, + "probability": 0.873 + }, + { + "start": 8828.4, + "end": 8831.92, + "probability": 0.96 + }, + { + "start": 8833.1, + "end": 8838.56, + "probability": 0.9077 + }, + { + "start": 8839.36, + "end": 8843.88, + "probability": 0.8215 + }, + { + "start": 8844.68, + "end": 8847.3, + "probability": 0.7611 + }, + { + "start": 8847.8, + "end": 8849.64, + "probability": 0.9033 + }, + { + "start": 8849.9, + "end": 8851.76, + "probability": 0.8626 + }, + { + "start": 8851.78, + "end": 8852.8, + "probability": 0.5462 + }, + { + "start": 8853.31, + "end": 8857.06, + "probability": 0.853 + }, + { + "start": 8857.72, + "end": 8858.2, + "probability": 0.8838 + }, + { + "start": 8859.08, + "end": 8860.1, + "probability": 0.9867 + }, + { + "start": 8861.04, + "end": 8863.34, + "probability": 0.9739 + }, + { + "start": 8863.88, + "end": 8864.68, + "probability": 0.8903 + }, + { + "start": 8864.92, + "end": 8866.0, + "probability": 0.5535 + }, + { + "start": 8866.14, + "end": 8868.56, + "probability": 0.7873 + }, + { + "start": 8868.7, + "end": 8874.72, + "probability": 0.9876 + }, + { + "start": 8875.26, + "end": 8878.02, + "probability": 0.9921 + }, + { + "start": 8878.02, + "end": 8880.22, + "probability": 0.8396 + }, + { + "start": 8881.12, + "end": 8882.02, + "probability": 0.651 + }, + { + "start": 8882.7, + "end": 8884.02, + "probability": 0.4965 + }, + { + "start": 8884.04, + "end": 8885.44, + "probability": 0.8137 + }, + { + "start": 8885.58, + "end": 8888.0, + "probability": 0.8509 + }, + { + "start": 8888.1, + "end": 8889.38, + "probability": 0.8586 + }, + { + "start": 8890.04, + "end": 8891.48, + "probability": 0.8923 + }, + { + "start": 8893.02, + "end": 8894.68, + "probability": 0.9134 + }, + { + "start": 8896.46, + "end": 8897.24, + "probability": 0.998 + }, + { + "start": 8900.58, + "end": 8903.82, + "probability": 0.9336 + }, + { + "start": 8905.54, + "end": 8907.2, + "probability": 0.8773 + }, + { + "start": 8908.48, + "end": 8909.76, + "probability": 0.904 + }, + { + "start": 8910.74, + "end": 8911.4, + "probability": 0.6552 + }, + { + "start": 8911.5, + "end": 8917.0, + "probability": 0.951 + }, + { + "start": 8917.66, + "end": 8918.48, + "probability": 0.9006 + }, + { + "start": 8918.68, + "end": 8919.86, + "probability": 0.7704 + }, + { + "start": 8919.92, + "end": 8925.38, + "probability": 0.9838 + }, + { + "start": 8925.46, + "end": 8928.38, + "probability": 0.6921 + }, + { + "start": 8928.44, + "end": 8931.58, + "probability": 0.9146 + }, + { + "start": 8931.76, + "end": 8939.04, + "probability": 0.9521 + }, + { + "start": 8939.16, + "end": 8942.36, + "probability": 0.8649 + }, + { + "start": 8942.52, + "end": 8942.9, + "probability": 0.6934 + }, + { + "start": 8943.5, + "end": 8944.16, + "probability": 0.9721 + }, + { + "start": 8944.3, + "end": 8944.5, + "probability": 0.7571 + }, + { + "start": 8945.28, + "end": 8947.54, + "probability": 0.7154 + }, + { + "start": 8947.74, + "end": 8950.16, + "probability": 0.8689 + }, + { + "start": 8950.96, + "end": 8953.82, + "probability": 0.8987 + }, + { + "start": 8959.74, + "end": 8963.08, + "probability": 0.9306 + }, + { + "start": 8967.82, + "end": 8970.22, + "probability": 0.7544 + }, + { + "start": 8971.2, + "end": 8972.64, + "probability": 0.7474 + }, + { + "start": 8974.26, + "end": 8978.42, + "probability": 0.9339 + }, + { + "start": 8978.56, + "end": 8979.58, + "probability": 0.8409 + }, + { + "start": 8980.94, + "end": 8984.6, + "probability": 0.997 + }, + { + "start": 8986.24, + "end": 8987.22, + "probability": 0.5017 + }, + { + "start": 8987.26, + "end": 8988.16, + "probability": 0.6746 + }, + { + "start": 8988.42, + "end": 8991.36, + "probability": 0.7735 + }, + { + "start": 8992.76, + "end": 8995.92, + "probability": 0.8981 + }, + { + "start": 8996.06, + "end": 8998.16, + "probability": 0.8982 + }, + { + "start": 8999.98, + "end": 9005.82, + "probability": 0.9961 + }, + { + "start": 9007.06, + "end": 9010.8, + "probability": 0.7207 + }, + { + "start": 9011.3, + "end": 9014.8, + "probability": 0.7437 + }, + { + "start": 9016.2, + "end": 9019.12, + "probability": 0.8941 + }, + { + "start": 9019.78, + "end": 9021.68, + "probability": 0.9292 + }, + { + "start": 9022.68, + "end": 9023.12, + "probability": 0.8075 + }, + { + "start": 9023.32, + "end": 9023.81, + "probability": 0.855 + }, + { + "start": 9024.3, + "end": 9024.98, + "probability": 0.8833 + }, + { + "start": 9025.42, + "end": 9028.95, + "probability": 0.9585 + }, + { + "start": 9030.1, + "end": 9031.04, + "probability": 0.9486 + }, + { + "start": 9032.2, + "end": 9033.9, + "probability": 0.8131 + }, + { + "start": 9034.38, + "end": 9036.68, + "probability": 0.8618 + }, + { + "start": 9038.14, + "end": 9043.78, + "probability": 0.9868 + }, + { + "start": 9045.7, + "end": 9050.0, + "probability": 0.5731 + }, + { + "start": 9051.64, + "end": 9055.6, + "probability": 0.798 + }, + { + "start": 9056.82, + "end": 9059.93, + "probability": 0.9249 + }, + { + "start": 9060.8, + "end": 9061.72, + "probability": 0.7853 + }, + { + "start": 9062.54, + "end": 9067.9, + "probability": 0.9978 + }, + { + "start": 9069.24, + "end": 9072.3, + "probability": 0.9565 + }, + { + "start": 9073.16, + "end": 9075.42, + "probability": 0.9878 + }, + { + "start": 9076.86, + "end": 9077.42, + "probability": 0.6295 + }, + { + "start": 9077.54, + "end": 9078.2, + "probability": 0.7102 + }, + { + "start": 9078.48, + "end": 9080.18, + "probability": 0.9332 + }, + { + "start": 9082.1, + "end": 9083.08, + "probability": 0.6713 + }, + { + "start": 9085.68, + "end": 9086.56, + "probability": 0.575 + }, + { + "start": 9086.72, + "end": 9088.3, + "probability": 0.9308 + }, + { + "start": 9088.48, + "end": 9090.48, + "probability": 0.8817 + }, + { + "start": 9090.66, + "end": 9091.9, + "probability": 0.714 + }, + { + "start": 9093.12, + "end": 9098.7, + "probability": 0.989 + }, + { + "start": 9098.7, + "end": 9099.09, + "probability": 0.8816 + }, + { + "start": 9099.22, + "end": 9100.82, + "probability": 0.938 + }, + { + "start": 9101.04, + "end": 9102.36, + "probability": 0.887 + }, + { + "start": 9103.44, + "end": 9105.64, + "probability": 0.8615 + }, + { + "start": 9106.18, + "end": 9107.38, + "probability": 0.7533 + }, + { + "start": 9108.68, + "end": 9111.46, + "probability": 0.8956 + }, + { + "start": 9112.02, + "end": 9115.28, + "probability": 0.9772 + }, + { + "start": 9116.26, + "end": 9120.58, + "probability": 0.9938 + }, + { + "start": 9120.8, + "end": 9122.92, + "probability": 0.9425 + }, + { + "start": 9124.38, + "end": 9127.34, + "probability": 0.8434 + }, + { + "start": 9129.0, + "end": 9135.1, + "probability": 0.9872 + }, + { + "start": 9135.96, + "end": 9137.38, + "probability": 0.9886 + }, + { + "start": 9137.46, + "end": 9138.6, + "probability": 0.9816 + }, + { + "start": 9139.22, + "end": 9139.66, + "probability": 0.4983 + }, + { + "start": 9140.96, + "end": 9141.0, + "probability": 0.3003 + }, + { + "start": 9141.0, + "end": 9141.56, + "probability": 0.4482 + }, + { + "start": 9142.3, + "end": 9144.04, + "probability": 0.7573 + }, + { + "start": 9144.76, + "end": 9144.82, + "probability": 0.0041 + }, + { + "start": 9144.82, + "end": 9146.22, + "probability": 0.609 + }, + { + "start": 9146.36, + "end": 9148.26, + "probability": 0.9359 + }, + { + "start": 9148.36, + "end": 9150.9, + "probability": 0.9404 + }, + { + "start": 9151.1, + "end": 9152.12, + "probability": 0.5424 + }, + { + "start": 9153.26, + "end": 9156.42, + "probability": 0.9731 + }, + { + "start": 9157.36, + "end": 9164.98, + "probability": 0.8057 + }, + { + "start": 9165.0, + "end": 9165.82, + "probability": 0.9023 + }, + { + "start": 9165.88, + "end": 9167.06, + "probability": 0.8901 + }, + { + "start": 9167.64, + "end": 9170.06, + "probability": 0.8789 + }, + { + "start": 9170.54, + "end": 9171.02, + "probability": 0.7304 + }, + { + "start": 9171.08, + "end": 9171.7, + "probability": 0.9482 + }, + { + "start": 9173.12, + "end": 9177.37, + "probability": 0.925 + }, + { + "start": 9178.16, + "end": 9178.88, + "probability": 0.8119 + }, + { + "start": 9179.28, + "end": 9180.68, + "probability": 0.7503 + }, + { + "start": 9180.74, + "end": 9182.34, + "probability": 0.9622 + }, + { + "start": 9183.56, + "end": 9186.62, + "probability": 0.8397 + }, + { + "start": 9187.2, + "end": 9188.82, + "probability": 0.8271 + }, + { + "start": 9188.88, + "end": 9189.14, + "probability": 0.7377 + }, + { + "start": 9189.3, + "end": 9193.16, + "probability": 0.96 + }, + { + "start": 9193.5, + "end": 9194.5, + "probability": 0.8674 + }, + { + "start": 9195.06, + "end": 9199.24, + "probability": 0.926 + }, + { + "start": 9199.74, + "end": 9208.32, + "probability": 0.9658 + }, + { + "start": 9209.46, + "end": 9212.62, + "probability": 0.9957 + }, + { + "start": 9213.22, + "end": 9215.4, + "probability": 0.9878 + }, + { + "start": 9216.38, + "end": 9216.75, + "probability": 0.9745 + }, + { + "start": 9217.26, + "end": 9220.02, + "probability": 0.8913 + }, + { + "start": 9220.04, + "end": 9225.08, + "probability": 0.9812 + }, + { + "start": 9225.82, + "end": 9229.21, + "probability": 0.8565 + }, + { + "start": 9229.32, + "end": 9232.8, + "probability": 0.98 + }, + { + "start": 9232.9, + "end": 9234.08, + "probability": 0.8265 + }, + { + "start": 9235.62, + "end": 9237.7, + "probability": 0.8124 + }, + { + "start": 9238.48, + "end": 9243.62, + "probability": 0.7692 + }, + { + "start": 9244.72, + "end": 9247.48, + "probability": 0.6242 + }, + { + "start": 9248.1, + "end": 9249.96, + "probability": 0.9285 + }, + { + "start": 9250.38, + "end": 9256.98, + "probability": 0.9961 + }, + { + "start": 9257.36, + "end": 9258.0, + "probability": 0.969 + }, + { + "start": 9258.34, + "end": 9259.6, + "probability": 0.7358 + }, + { + "start": 9259.7, + "end": 9261.56, + "probability": 0.9823 + }, + { + "start": 9262.0, + "end": 9265.04, + "probability": 0.9501 + }, + { + "start": 9265.94, + "end": 9267.3, + "probability": 0.9426 + }, + { + "start": 9267.98, + "end": 9270.1, + "probability": 0.9175 + }, + { + "start": 9270.16, + "end": 9270.98, + "probability": 0.7746 + }, + { + "start": 9271.16, + "end": 9273.72, + "probability": 0.9833 + }, + { + "start": 9274.7, + "end": 9276.04, + "probability": 0.6771 + }, + { + "start": 9276.24, + "end": 9281.64, + "probability": 0.9352 + }, + { + "start": 9282.78, + "end": 9285.94, + "probability": 0.787 + }, + { + "start": 9289.88, + "end": 9292.33, + "probability": 0.9767 + }, + { + "start": 9294.4, + "end": 9295.96, + "probability": 0.9154 + }, + { + "start": 9297.0, + "end": 9299.24, + "probability": 0.9773 + }, + { + "start": 9299.36, + "end": 9300.4, + "probability": 0.805 + }, + { + "start": 9301.68, + "end": 9305.78, + "probability": 0.9355 + }, + { + "start": 9307.62, + "end": 9314.56, + "probability": 0.9855 + }, + { + "start": 9315.0, + "end": 9316.1, + "probability": 0.9723 + }, + { + "start": 9316.84, + "end": 9317.82, + "probability": 0.9342 + }, + { + "start": 9318.58, + "end": 9319.88, + "probability": 0.8882 + }, + { + "start": 9320.38, + "end": 9321.18, + "probability": 0.8188 + }, + { + "start": 9321.4, + "end": 9323.0, + "probability": 0.936 + }, + { + "start": 9323.46, + "end": 9325.3, + "probability": 0.973 + }, + { + "start": 9331.4, + "end": 9331.7, + "probability": 0.3019 + }, + { + "start": 9331.76, + "end": 9333.5, + "probability": 0.8641 + }, + { + "start": 9333.58, + "end": 9333.82, + "probability": 0.7062 + }, + { + "start": 9334.18, + "end": 9336.24, + "probability": 0.9761 + }, + { + "start": 9336.42, + "end": 9341.92, + "probability": 0.9328 + }, + { + "start": 9342.6, + "end": 9346.2, + "probability": 0.9915 + }, + { + "start": 9346.34, + "end": 9347.94, + "probability": 0.8456 + }, + { + "start": 9348.9, + "end": 9355.42, + "probability": 0.8482 + }, + { + "start": 9355.96, + "end": 9359.2, + "probability": 0.8151 + }, + { + "start": 9361.56, + "end": 9363.72, + "probability": 0.986 + }, + { + "start": 9365.44, + "end": 9366.18, + "probability": 0.5736 + }, + { + "start": 9367.2, + "end": 9369.22, + "probability": 0.7398 + }, + { + "start": 9371.38, + "end": 9376.6, + "probability": 0.9329 + }, + { + "start": 9378.14, + "end": 9380.7, + "probability": 0.998 + }, + { + "start": 9382.76, + "end": 9384.82, + "probability": 0.8382 + }, + { + "start": 9385.26, + "end": 9388.14, + "probability": 0.9455 + }, + { + "start": 9389.4, + "end": 9390.54, + "probability": 0.8858 + }, + { + "start": 9392.32, + "end": 9396.46, + "probability": 0.948 + }, + { + "start": 9397.62, + "end": 9400.78, + "probability": 0.986 + }, + { + "start": 9400.92, + "end": 9403.22, + "probability": 0.6524 + }, + { + "start": 9403.44, + "end": 9405.64, + "probability": 0.9106 + }, + { + "start": 9406.44, + "end": 9407.98, + "probability": 0.8235 + }, + { + "start": 9409.18, + "end": 9413.32, + "probability": 0.684 + }, + { + "start": 9413.4, + "end": 9417.74, + "probability": 0.7625 + }, + { + "start": 9418.72, + "end": 9420.98, + "probability": 0.7062 + }, + { + "start": 9421.22, + "end": 9424.5, + "probability": 0.9634 + }, + { + "start": 9425.34, + "end": 9426.44, + "probability": 0.6212 + }, + { + "start": 9426.44, + "end": 9429.24, + "probability": 0.915 + }, + { + "start": 9429.82, + "end": 9432.02, + "probability": 0.9102 + }, + { + "start": 9432.06, + "end": 9432.6, + "probability": 0.014 + }, + { + "start": 9432.82, + "end": 9433.48, + "probability": 0.5878 + }, + { + "start": 9433.64, + "end": 9435.52, + "probability": 0.9745 + }, + { + "start": 9435.56, + "end": 9436.46, + "probability": 0.6874 + }, + { + "start": 9437.46, + "end": 9441.94, + "probability": 0.9875 + }, + { + "start": 9442.4, + "end": 9443.64, + "probability": 0.7276 + }, + { + "start": 9444.02, + "end": 9447.74, + "probability": 0.8866 + }, + { + "start": 9447.78, + "end": 9451.26, + "probability": 0.9419 + }, + { + "start": 9452.34, + "end": 9452.88, + "probability": 0.5479 + }, + { + "start": 9453.28, + "end": 9455.48, + "probability": 0.9427 + }, + { + "start": 9456.3, + "end": 9457.4, + "probability": 0.6414 + }, + { + "start": 9457.46, + "end": 9458.18, + "probability": 0.778 + }, + { + "start": 9458.38, + "end": 9459.26, + "probability": 0.5443 + }, + { + "start": 9462.58, + "end": 9465.48, + "probability": 0.7856 + }, + { + "start": 9466.2, + "end": 9467.36, + "probability": 0.6424 + }, + { + "start": 9469.46, + "end": 9471.06, + "probability": 0.8353 + }, + { + "start": 9471.88, + "end": 9474.54, + "probability": 0.7191 + }, + { + "start": 9476.14, + "end": 9477.92, + "probability": 0.9868 + }, + { + "start": 9478.02, + "end": 9481.7, + "probability": 0.9903 + }, + { + "start": 9482.82, + "end": 9483.22, + "probability": 0.9124 + }, + { + "start": 9484.58, + "end": 9486.39, + "probability": 0.8601 + }, + { + "start": 9486.94, + "end": 9488.0, + "probability": 0.753 + }, + { + "start": 9488.38, + "end": 9489.64, + "probability": 0.1593 + }, + { + "start": 9489.74, + "end": 9493.02, + "probability": 0.6951 + }, + { + "start": 9493.02, + "end": 9493.82, + "probability": 0.2779 + }, + { + "start": 9493.96, + "end": 9497.6, + "probability": 0.9148 + }, + { + "start": 9497.6, + "end": 9502.28, + "probability": 0.9791 + }, + { + "start": 9502.62, + "end": 9502.62, + "probability": 0.0587 + }, + { + "start": 9502.62, + "end": 9502.78, + "probability": 0.0663 + }, + { + "start": 9502.78, + "end": 9507.24, + "probability": 0.8135 + }, + { + "start": 9507.8, + "end": 9510.42, + "probability": 0.8658 + }, + { + "start": 9510.94, + "end": 9515.58, + "probability": 0.962 + }, + { + "start": 9515.74, + "end": 9518.16, + "probability": 0.9156 + }, + { + "start": 9518.22, + "end": 9522.32, + "probability": 0.7934 + }, + { + "start": 9523.12, + "end": 9523.6, + "probability": 0.8798 + }, + { + "start": 9523.78, + "end": 9528.48, + "probability": 0.9398 + }, + { + "start": 9528.48, + "end": 9530.66, + "probability": 0.8409 + }, + { + "start": 9530.66, + "end": 9532.12, + "probability": 0.5243 + }, + { + "start": 9532.22, + "end": 9533.29, + "probability": 0.4624 + }, + { + "start": 9533.84, + "end": 9534.24, + "probability": 0.5352 + }, + { + "start": 9535.18, + "end": 9538.58, + "probability": 0.9792 + }, + { + "start": 9538.72, + "end": 9539.28, + "probability": 0.9133 + }, + { + "start": 9539.6, + "end": 9542.02, + "probability": 0.9679 + }, + { + "start": 9543.08, + "end": 9545.76, + "probability": 0.9961 + }, + { + "start": 9547.14, + "end": 9548.54, + "probability": 0.8706 + }, + { + "start": 9549.48, + "end": 9550.96, + "probability": 0.6688 + }, + { + "start": 9550.98, + "end": 9555.14, + "probability": 0.954 + }, + { + "start": 9556.04, + "end": 9556.18, + "probability": 0.75 + }, + { + "start": 9556.76, + "end": 9557.74, + "probability": 0.9502 + }, + { + "start": 9558.38, + "end": 9559.98, + "probability": 0.9709 + }, + { + "start": 9560.8, + "end": 9563.4, + "probability": 0.8303 + }, + { + "start": 9563.94, + "end": 9565.34, + "probability": 0.806 + }, + { + "start": 9565.44, + "end": 9566.46, + "probability": 0.7688 + }, + { + "start": 9566.56, + "end": 9567.28, + "probability": 0.7337 + }, + { + "start": 9567.4, + "end": 9567.54, + "probability": 0.7339 + }, + { + "start": 9568.32, + "end": 9574.04, + "probability": 0.8892 + }, + { + "start": 9574.24, + "end": 9574.88, + "probability": 0.377 + }, + { + "start": 9575.26, + "end": 9576.46, + "probability": 0.8681 + }, + { + "start": 9577.08, + "end": 9579.6, + "probability": 0.924 + }, + { + "start": 9580.14, + "end": 9581.83, + "probability": 0.6522 + }, + { + "start": 9583.68, + "end": 9590.98, + "probability": 0.9353 + }, + { + "start": 9591.4, + "end": 9592.5, + "probability": 0.9481 + }, + { + "start": 9593.16, + "end": 9593.7, + "probability": 0.8516 + }, + { + "start": 9594.16, + "end": 9598.14, + "probability": 0.8801 + }, + { + "start": 9598.48, + "end": 9599.42, + "probability": 0.6734 + }, + { + "start": 9599.48, + "end": 9602.22, + "probability": 0.8984 + }, + { + "start": 9602.22, + "end": 9605.02, + "probability": 0.9669 + }, + { + "start": 9605.28, + "end": 9606.86, + "probability": 0.9715 + }, + { + "start": 9607.14, + "end": 9607.93, + "probability": 0.7469 + }, + { + "start": 9610.22, + "end": 9612.51, + "probability": 0.995 + }, + { + "start": 9613.34, + "end": 9615.28, + "probability": 0.9888 + }, + { + "start": 9615.54, + "end": 9616.28, + "probability": 0.6422 + }, + { + "start": 9616.5, + "end": 9618.6, + "probability": 0.9451 + }, + { + "start": 9618.6, + "end": 9622.2, + "probability": 0.7287 + }, + { + "start": 9623.16, + "end": 9624.16, + "probability": 0.6715 + }, + { + "start": 9624.8, + "end": 9628.22, + "probability": 0.9633 + }, + { + "start": 9628.86, + "end": 9628.98, + "probability": 0.2489 + }, + { + "start": 9630.04, + "end": 9630.38, + "probability": 0.449 + }, + { + "start": 9631.8, + "end": 9631.94, + "probability": 0.0431 + }, + { + "start": 9631.94, + "end": 9631.94, + "probability": 0.0196 + }, + { + "start": 9631.94, + "end": 9632.92, + "probability": 0.1436 + }, + { + "start": 9634.22, + "end": 9635.08, + "probability": 0.5456 + }, + { + "start": 9635.62, + "end": 9637.0, + "probability": 0.6198 + }, + { + "start": 9637.78, + "end": 9641.42, + "probability": 0.573 + }, + { + "start": 9643.16, + "end": 9643.8, + "probability": 0.5506 + }, + { + "start": 9647.62, + "end": 9650.84, + "probability": 0.8411 + }, + { + "start": 9651.44, + "end": 9652.84, + "probability": 0.0276 + }, + { + "start": 9653.06, + "end": 9654.9, + "probability": 0.6719 + }, + { + "start": 9655.5, + "end": 9656.24, + "probability": 0.8359 + }, + { + "start": 9660.82, + "end": 9663.32, + "probability": 0.0338 + }, + { + "start": 9665.82, + "end": 9668.3, + "probability": 0.1923 + }, + { + "start": 9671.52, + "end": 9671.66, + "probability": 0.1495 + }, + { + "start": 9671.66, + "end": 9671.66, + "probability": 0.075 + }, + { + "start": 9671.66, + "end": 9671.66, + "probability": 0.4084 + }, + { + "start": 9671.66, + "end": 9673.68, + "probability": 0.6489 + }, + { + "start": 9674.3, + "end": 9677.4, + "probability": 0.892 + }, + { + "start": 9677.9, + "end": 9681.84, + "probability": 0.8942 + }, + { + "start": 9682.26, + "end": 9683.72, + "probability": 0.9667 + }, + { + "start": 9683.74, + "end": 9684.5, + "probability": 0.9387 + }, + { + "start": 9685.62, + "end": 9687.44, + "probability": 0.991 + }, + { + "start": 9687.58, + "end": 9690.76, + "probability": 0.9012 + }, + { + "start": 9693.02, + "end": 9694.76, + "probability": 0.7746 + }, + { + "start": 9695.0, + "end": 9699.24, + "probability": 0.9564 + }, + { + "start": 9699.72, + "end": 9705.12, + "probability": 0.9918 + }, + { + "start": 9707.08, + "end": 9707.98, + "probability": 0.6753 + }, + { + "start": 9710.82, + "end": 9715.54, + "probability": 0.9987 + }, + { + "start": 9717.34, + "end": 9719.56, + "probability": 0.7968 + }, + { + "start": 9721.58, + "end": 9725.34, + "probability": 0.9917 + }, + { + "start": 9726.32, + "end": 9730.92, + "probability": 0.9684 + }, + { + "start": 9733.14, + "end": 9735.78, + "probability": 0.9812 + }, + { + "start": 9735.84, + "end": 9737.02, + "probability": 0.9843 + }, + { + "start": 9737.28, + "end": 9738.12, + "probability": 0.5135 + }, + { + "start": 9739.42, + "end": 9741.74, + "probability": 0.9651 + }, + { + "start": 9743.14, + "end": 9746.32, + "probability": 0.9543 + }, + { + "start": 9749.42, + "end": 9752.86, + "probability": 0.996 + }, + { + "start": 9753.46, + "end": 9755.64, + "probability": 0.9236 + }, + { + "start": 9757.18, + "end": 9757.78, + "probability": 0.7208 + }, + { + "start": 9758.04, + "end": 9759.38, + "probability": 0.9893 + }, + { + "start": 9759.46, + "end": 9760.14, + "probability": 0.8441 + }, + { + "start": 9760.22, + "end": 9760.78, + "probability": 0.8599 + }, + { + "start": 9760.78, + "end": 9762.12, + "probability": 0.8943 + }, + { + "start": 9762.28, + "end": 9763.02, + "probability": 0.9523 + }, + { + "start": 9764.62, + "end": 9765.2, + "probability": 0.648 + }, + { + "start": 9765.28, + "end": 9766.12, + "probability": 0.7333 + }, + { + "start": 9766.18, + "end": 9769.32, + "probability": 0.667 + }, + { + "start": 9770.4, + "end": 9771.1, + "probability": 0.9668 + }, + { + "start": 9771.58, + "end": 9774.4, + "probability": 0.6838 + }, + { + "start": 9774.9, + "end": 9776.76, + "probability": 0.9331 + }, + { + "start": 9777.16, + "end": 9779.38, + "probability": 0.9845 + }, + { + "start": 9779.94, + "end": 9781.52, + "probability": 0.937 + }, + { + "start": 9781.64, + "end": 9782.78, + "probability": 0.9508 + }, + { + "start": 9782.98, + "end": 9784.44, + "probability": 0.9923 + }, + { + "start": 9787.7, + "end": 9788.6, + "probability": 0.9687 + }, + { + "start": 9789.48, + "end": 9790.8, + "probability": 0.9647 + }, + { + "start": 9792.0, + "end": 9793.98, + "probability": 0.7099 + }, + { + "start": 9794.34, + "end": 9795.74, + "probability": 0.4499 + }, + { + "start": 9795.8, + "end": 9797.96, + "probability": 0.9714 + }, + { + "start": 9798.16, + "end": 9799.86, + "probability": 0.8167 + }, + { + "start": 9800.22, + "end": 9802.06, + "probability": 0.8744 + }, + { + "start": 9804.88, + "end": 9807.18, + "probability": 0.9609 + }, + { + "start": 9808.8, + "end": 9810.26, + "probability": 0.7866 + }, + { + "start": 9811.46, + "end": 9812.3, + "probability": 0.8442 + }, + { + "start": 9813.28, + "end": 9815.7, + "probability": 0.7314 + }, + { + "start": 9815.78, + "end": 9816.98, + "probability": 0.5234 + }, + { + "start": 9817.04, + "end": 9821.82, + "probability": 0.6614 + }, + { + "start": 9822.66, + "end": 9823.62, + "probability": 0.6794 + }, + { + "start": 9825.02, + "end": 9826.46, + "probability": 0.9302 + }, + { + "start": 9827.9, + "end": 9833.1, + "probability": 0.9908 + }, + { + "start": 9834.7, + "end": 9836.1, + "probability": 0.9419 + }, + { + "start": 9837.42, + "end": 9838.44, + "probability": 0.8394 + }, + { + "start": 9838.96, + "end": 9840.18, + "probability": 0.9985 + }, + { + "start": 9842.32, + "end": 9846.72, + "probability": 0.994 + }, + { + "start": 9847.86, + "end": 9848.52, + "probability": 0.7413 + }, + { + "start": 9848.7, + "end": 9851.46, + "probability": 0.6852 + }, + { + "start": 9851.46, + "end": 9852.24, + "probability": 0.5962 + }, + { + "start": 9852.72, + "end": 9853.3, + "probability": 0.2283 + }, + { + "start": 9853.3, + "end": 9854.18, + "probability": 0.6419 + }, + { + "start": 9854.28, + "end": 9857.2, + "probability": 0.656 + }, + { + "start": 9857.46, + "end": 9858.82, + "probability": 0.3489 + }, + { + "start": 9858.82, + "end": 9859.42, + "probability": 0.4231 + }, + { + "start": 9859.68, + "end": 9862.66, + "probability": 0.473 + }, + { + "start": 9862.76, + "end": 9863.8, + "probability": 0.3303 + }, + { + "start": 9864.44, + "end": 9865.88, + "probability": 0.5419 + }, + { + "start": 9865.9, + "end": 9868.28, + "probability": 0.8252 + }, + { + "start": 9868.28, + "end": 9872.28, + "probability": 0.5391 + }, + { + "start": 9872.52, + "end": 9872.52, + "probability": 0.2411 + }, + { + "start": 9872.52, + "end": 9874.8, + "probability": 0.7439 + }, + { + "start": 9874.92, + "end": 9876.56, + "probability": 0.9759 + }, + { + "start": 9876.58, + "end": 9877.3, + "probability": 0.5704 + }, + { + "start": 9878.04, + "end": 9878.84, + "probability": 0.9837 + }, + { + "start": 9879.28, + "end": 9879.44, + "probability": 0.8655 + }, + { + "start": 9884.08, + "end": 9885.56, + "probability": 0.9917 + }, + { + "start": 9889.52, + "end": 9889.84, + "probability": 0.2402 + }, + { + "start": 9892.86, + "end": 9894.94, + "probability": 0.9854 + }, + { + "start": 9896.84, + "end": 9898.74, + "probability": 0.9219 + }, + { + "start": 9899.86, + "end": 9901.98, + "probability": 0.9982 + }, + { + "start": 9904.68, + "end": 9907.76, + "probability": 0.9898 + }, + { + "start": 9908.6, + "end": 9911.08, + "probability": 0.8175 + }, + { + "start": 9912.12, + "end": 9913.3, + "probability": 0.8768 + }, + { + "start": 9914.12, + "end": 9918.56, + "probability": 0.9976 + }, + { + "start": 9919.72, + "end": 9922.86, + "probability": 0.8014 + }, + { + "start": 9924.04, + "end": 9925.36, + "probability": 0.924 + }, + { + "start": 9925.98, + "end": 9926.64, + "probability": 0.8546 + }, + { + "start": 9927.18, + "end": 9927.94, + "probability": 0.3541 + }, + { + "start": 9928.12, + "end": 9929.86, + "probability": 0.9613 + }, + { + "start": 9931.72, + "end": 9935.64, + "probability": 0.9509 + }, + { + "start": 9936.0, + "end": 9936.64, + "probability": 0.2021 + }, + { + "start": 9936.64, + "end": 9939.36, + "probability": 0.5977 + }, + { + "start": 9939.58, + "end": 9939.72, + "probability": 0.7043 + }, + { + "start": 9940.18, + "end": 9941.18, + "probability": 0.9241 + }, + { + "start": 9942.15, + "end": 9943.92, + "probability": 0.9119 + }, + { + "start": 9943.94, + "end": 9945.84, + "probability": 0.5398 + }, + { + "start": 9945.88, + "end": 9948.3, + "probability": 0.9688 + }, + { + "start": 9949.3, + "end": 9949.3, + "probability": 0.021 + }, + { + "start": 9949.3, + "end": 9949.3, + "probability": 0.0195 + }, + { + "start": 9949.3, + "end": 9949.66, + "probability": 0.4341 + }, + { + "start": 9950.75, + "end": 9952.26, + "probability": 0.5484 + }, + { + "start": 9952.44, + "end": 9954.84, + "probability": 0.8137 + }, + { + "start": 9954.84, + "end": 9956.06, + "probability": 0.7671 + }, + { + "start": 9956.3, + "end": 9958.24, + "probability": 0.7012 + }, + { + "start": 9958.54, + "end": 9958.6, + "probability": 0.0563 + }, + { + "start": 9958.74, + "end": 9960.18, + "probability": 0.5157 + }, + { + "start": 9960.36, + "end": 9961.72, + "probability": 0.9468 + }, + { + "start": 9962.12, + "end": 9962.12, + "probability": 0.074 + }, + { + "start": 9962.12, + "end": 9962.12, + "probability": 0.4664 + }, + { + "start": 9962.12, + "end": 9963.88, + "probability": 0.7126 + }, + { + "start": 9964.04, + "end": 9964.42, + "probability": 0.8057 + }, + { + "start": 9964.88, + "end": 9964.88, + "probability": 0.0629 + }, + { + "start": 9964.88, + "end": 9965.3, + "probability": 0.5916 + }, + { + "start": 9965.42, + "end": 9972.8, + "probability": 0.9392 + }, + { + "start": 9972.9, + "end": 9973.16, + "probability": 0.0347 + }, + { + "start": 9973.16, + "end": 9973.96, + "probability": 0.4598 + }, + { + "start": 9973.96, + "end": 9974.82, + "probability": 0.1435 + }, + { + "start": 9974.84, + "end": 9975.86, + "probability": 0.6965 + }, + { + "start": 9976.66, + "end": 9976.72, + "probability": 0.0366 + }, + { + "start": 9976.72, + "end": 9978.62, + "probability": 0.8115 + }, + { + "start": 9979.08, + "end": 9979.14, + "probability": 0.3942 + }, + { + "start": 9979.14, + "end": 9981.22, + "probability": 0.871 + }, + { + "start": 9981.4, + "end": 9982.04, + "probability": 0.2539 + }, + { + "start": 9982.18, + "end": 9983.9, + "probability": 0.6916 + }, + { + "start": 9984.04, + "end": 9984.56, + "probability": 0.1334 + }, + { + "start": 9984.68, + "end": 9986.4, + "probability": 0.3307 + }, + { + "start": 9986.4, + "end": 9990.38, + "probability": 0.6667 + }, + { + "start": 9990.7, + "end": 9990.84, + "probability": 0.3972 + }, + { + "start": 9991.72, + "end": 9992.48, + "probability": 0.3638 + }, + { + "start": 9992.48, + "end": 9993.44, + "probability": 0.0351 + }, + { + "start": 9993.58, + "end": 9994.3, + "probability": 0.4125 + }, + { + "start": 9994.4, + "end": 9995.96, + "probability": 0.5762 + }, + { + "start": 9996.66, + "end": 9998.58, + "probability": 0.6808 + }, + { + "start": 9999.32, + "end": 10002.72, + "probability": 0.937 + }, + { + "start": 10002.8, + "end": 10005.0, + "probability": 0.8832 + }, + { + "start": 10005.44, + "end": 10006.54, + "probability": 0.6691 + }, + { + "start": 10007.12, + "end": 10009.54, + "probability": 0.8016 + }, + { + "start": 10010.4, + "end": 10013.12, + "probability": 0.8663 + }, + { + "start": 10013.32, + "end": 10014.86, + "probability": 0.993 + }, + { + "start": 10014.9, + "end": 10015.56, + "probability": 0.526 + }, + { + "start": 10016.0, + "end": 10016.59, + "probability": 0.9277 + }, + { + "start": 10016.88, + "end": 10017.86, + "probability": 0.8835 + }, + { + "start": 10018.7, + "end": 10019.8, + "probability": 0.9576 + }, + { + "start": 10020.9, + "end": 10022.28, + "probability": 0.9086 + }, + { + "start": 10022.5, + "end": 10023.02, + "probability": 0.6532 + }, + { + "start": 10023.74, + "end": 10025.2, + "probability": 0.8916 + }, + { + "start": 10026.04, + "end": 10026.36, + "probability": 0.1809 + }, + { + "start": 10026.36, + "end": 10026.78, + "probability": 0.4544 + }, + { + "start": 10027.44, + "end": 10028.06, + "probability": 0.6743 + }, + { + "start": 10028.12, + "end": 10029.28, + "probability": 0.5952 + }, + { + "start": 10029.56, + "end": 10030.24, + "probability": 0.2441 + }, + { + "start": 10030.24, + "end": 10031.01, + "probability": 0.3553 + }, + { + "start": 10031.02, + "end": 10032.36, + "probability": 0.8923 + }, + { + "start": 10032.36, + "end": 10033.81, + "probability": 0.6792 + }, + { + "start": 10034.54, + "end": 10034.56, + "probability": 0.3665 + }, + { + "start": 10034.56, + "end": 10034.56, + "probability": 0.3289 + }, + { + "start": 10034.56, + "end": 10036.24, + "probability": 0.3964 + }, + { + "start": 10036.34, + "end": 10036.86, + "probability": 0.4656 + }, + { + "start": 10037.54, + "end": 10038.83, + "probability": 0.5291 + }, + { + "start": 10039.0, + "end": 10040.82, + "probability": 0.4444 + }, + { + "start": 10041.02, + "end": 10044.98, + "probability": 0.9409 + }, + { + "start": 10045.18, + "end": 10046.48, + "probability": 0.215 + }, + { + "start": 10046.48, + "end": 10047.08, + "probability": 0.502 + }, + { + "start": 10047.14, + "end": 10047.49, + "probability": 0.9422 + }, + { + "start": 10048.34, + "end": 10048.54, + "probability": 0.5299 + }, + { + "start": 10048.56, + "end": 10049.78, + "probability": 0.9619 + }, + { + "start": 10049.8, + "end": 10050.32, + "probability": 0.6523 + }, + { + "start": 10050.5, + "end": 10051.64, + "probability": 0.4326 + }, + { + "start": 10052.16, + "end": 10054.76, + "probability": 0.6864 + }, + { + "start": 10054.96, + "end": 10055.08, + "probability": 0.058 + }, + { + "start": 10055.08, + "end": 10055.08, + "probability": 0.2529 + }, + { + "start": 10055.08, + "end": 10056.74, + "probability": 0.7952 + }, + { + "start": 10056.86, + "end": 10059.12, + "probability": 0.4924 + }, + { + "start": 10059.76, + "end": 10059.78, + "probability": 0.0121 + }, + { + "start": 10059.78, + "end": 10059.78, + "probability": 0.0569 + }, + { + "start": 10059.78, + "end": 10059.78, + "probability": 0.4461 + }, + { + "start": 10059.78, + "end": 10060.5, + "probability": 0.7085 + }, + { + "start": 10060.56, + "end": 10061.86, + "probability": 0.9565 + }, + { + "start": 10061.88, + "end": 10063.12, + "probability": 0.5072 + }, + { + "start": 10063.24, + "end": 10063.96, + "probability": 0.671 + }, + { + "start": 10063.96, + "end": 10069.22, + "probability": 0.99 + }, + { + "start": 10070.18, + "end": 10071.24, + "probability": 0.7642 + }, + { + "start": 10072.26, + "end": 10075.48, + "probability": 0.8514 + }, + { + "start": 10076.06, + "end": 10079.24, + "probability": 0.9905 + }, + { + "start": 10079.32, + "end": 10080.24, + "probability": 0.9471 + }, + { + "start": 10082.12, + "end": 10085.76, + "probability": 0.9527 + }, + { + "start": 10086.14, + "end": 10090.14, + "probability": 0.8637 + }, + { + "start": 10090.24, + "end": 10092.28, + "probability": 0.5942 + }, + { + "start": 10092.78, + "end": 10093.14, + "probability": 0.7298 + }, + { + "start": 10094.8, + "end": 10094.94, + "probability": 0.003 + }, + { + "start": 10102.16, + "end": 10102.44, + "probability": 0.0163 + }, + { + "start": 10102.44, + "end": 10102.44, + "probability": 0.017 + }, + { + "start": 10102.44, + "end": 10102.44, + "probability": 0.0342 + }, + { + "start": 10102.44, + "end": 10102.44, + "probability": 0.1063 + }, + { + "start": 10102.44, + "end": 10103.54, + "probability": 0.559 + }, + { + "start": 10104.68, + "end": 10105.55, + "probability": 0.7714 + }, + { + "start": 10106.56, + "end": 10108.12, + "probability": 0.8278 + }, + { + "start": 10108.24, + "end": 10109.32, + "probability": 0.9688 + }, + { + "start": 10109.94, + "end": 10113.8, + "probability": 0.8802 + }, + { + "start": 10114.32, + "end": 10114.82, + "probability": 0.4745 + }, + { + "start": 10115.4, + "end": 10116.58, + "probability": 0.7489 + }, + { + "start": 10116.78, + "end": 10120.28, + "probability": 0.7772 + }, + { + "start": 10120.98, + "end": 10122.5, + "probability": 0.9107 + }, + { + "start": 10122.86, + "end": 10123.51, + "probability": 0.8251 + }, + { + "start": 10124.48, + "end": 10126.74, + "probability": 0.7522 + }, + { + "start": 10127.18, + "end": 10128.14, + "probability": 0.6647 + }, + { + "start": 10128.34, + "end": 10129.56, + "probability": 0.6333 + }, + { + "start": 10130.04, + "end": 10131.86, + "probability": 0.874 + }, + { + "start": 10132.62, + "end": 10134.1, + "probability": 0.9224 + }, + { + "start": 10134.14, + "end": 10134.97, + "probability": 0.8739 + }, + { + "start": 10139.0, + "end": 10140.34, + "probability": 0.9972 + }, + { + "start": 10141.3, + "end": 10144.24, + "probability": 0.9901 + }, + { + "start": 10144.52, + "end": 10145.36, + "probability": 0.7066 + }, + { + "start": 10145.64, + "end": 10149.98, + "probability": 0.9333 + }, + { + "start": 10150.56, + "end": 10153.7, + "probability": 0.9968 + }, + { + "start": 10154.28, + "end": 10155.61, + "probability": 0.9829 + }, + { + "start": 10156.94, + "end": 10158.97, + "probability": 0.9783 + }, + { + "start": 10159.92, + "end": 10160.5, + "probability": 0.734 + }, + { + "start": 10160.66, + "end": 10166.04, + "probability": 0.9523 + }, + { + "start": 10166.46, + "end": 10167.18, + "probability": 0.735 + }, + { + "start": 10167.6, + "end": 10167.96, + "probability": 0.1513 + }, + { + "start": 10167.96, + "end": 10169.0, + "probability": 0.1981 + }, + { + "start": 10172.28, + "end": 10172.84, + "probability": 0.7049 + }, + { + "start": 10174.26, + "end": 10174.7, + "probability": 0.4819 + }, + { + "start": 10178.62, + "end": 10178.92, + "probability": 0.1967 + }, + { + "start": 10180.74, + "end": 10183.74, + "probability": 0.9937 + }, + { + "start": 10184.22, + "end": 10184.74, + "probability": 0.7216 + }, + { + "start": 10184.82, + "end": 10187.24, + "probability": 0.979 + }, + { + "start": 10188.7, + "end": 10189.56, + "probability": 0.8452 + }, + { + "start": 10189.7, + "end": 10189.86, + "probability": 0.0194 + }, + { + "start": 10189.86, + "end": 10190.66, + "probability": 0.9014 + }, + { + "start": 10190.72, + "end": 10192.84, + "probability": 0.9211 + }, + { + "start": 10193.08, + "end": 10193.84, + "probability": 0.6229 + }, + { + "start": 10194.62, + "end": 10195.16, + "probability": 0.4718 + }, + { + "start": 10195.18, + "end": 10195.5, + "probability": 0.3121 + }, + { + "start": 10195.74, + "end": 10196.84, + "probability": 0.4874 + }, + { + "start": 10196.9, + "end": 10197.53, + "probability": 0.6004 + }, + { + "start": 10197.78, + "end": 10198.48, + "probability": 0.8652 + }, + { + "start": 10198.5, + "end": 10199.93, + "probability": 0.9206 + }, + { + "start": 10200.26, + "end": 10201.28, + "probability": 0.7285 + }, + { + "start": 10201.32, + "end": 10202.08, + "probability": 0.7134 + }, + { + "start": 10202.14, + "end": 10204.04, + "probability": 0.8816 + }, + { + "start": 10204.38, + "end": 10207.34, + "probability": 0.7668 + }, + { + "start": 10208.42, + "end": 10209.34, + "probability": 0.8359 + }, + { + "start": 10209.48, + "end": 10210.64, + "probability": 0.9587 + }, + { + "start": 10210.94, + "end": 10212.14, + "probability": 0.95 + }, + { + "start": 10212.2, + "end": 10213.3, + "probability": 0.7634 + }, + { + "start": 10213.3, + "end": 10214.68, + "probability": 0.0117 + }, + { + "start": 10216.12, + "end": 10216.6, + "probability": 0.0043 + }, + { + "start": 10216.6, + "end": 10216.98, + "probability": 0.1925 + }, + { + "start": 10216.98, + "end": 10219.42, + "probability": 0.606 + }, + { + "start": 10219.52, + "end": 10223.14, + "probability": 0.9493 + }, + { + "start": 10223.46, + "end": 10226.31, + "probability": 0.9941 + }, + { + "start": 10227.22, + "end": 10228.36, + "probability": 0.9645 + }, + { + "start": 10229.44, + "end": 10229.86, + "probability": 0.1888 + }, + { + "start": 10229.86, + "end": 10231.34, + "probability": 0.6454 + }, + { + "start": 10231.48, + "end": 10232.22, + "probability": 0.3629 + }, + { + "start": 10233.04, + "end": 10234.7, + "probability": 0.7022 + }, + { + "start": 10235.34, + "end": 10237.2, + "probability": 0.9869 + }, + { + "start": 10237.78, + "end": 10238.44, + "probability": 0.0588 + }, + { + "start": 10239.06, + "end": 10244.1, + "probability": 0.9863 + }, + { + "start": 10244.9, + "end": 10245.32, + "probability": 0.3236 + }, + { + "start": 10245.9, + "end": 10248.8, + "probability": 0.8528 + }, + { + "start": 10249.38, + "end": 10250.26, + "probability": 0.8918 + }, + { + "start": 10251.08, + "end": 10256.04, + "probability": 0.9521 + }, + { + "start": 10256.2, + "end": 10258.76, + "probability": 0.915 + }, + { + "start": 10259.16, + "end": 10259.76, + "probability": 0.9404 + }, + { + "start": 10260.06, + "end": 10263.3, + "probability": 0.8592 + }, + { + "start": 10263.73, + "end": 10267.22, + "probability": 0.8693 + }, + { + "start": 10268.38, + "end": 10270.72, + "probability": 0.6808 + }, + { + "start": 10271.06, + "end": 10271.56, + "probability": 0.2422 + }, + { + "start": 10271.56, + "end": 10272.01, + "probability": 0.8723 + }, + { + "start": 10273.0, + "end": 10273.6, + "probability": 0.3234 + }, + { + "start": 10273.6, + "end": 10274.09, + "probability": 0.9946 + }, + { + "start": 10274.78, + "end": 10276.8, + "probability": 0.9839 + }, + { + "start": 10277.64, + "end": 10282.9, + "probability": 0.6042 + }, + { + "start": 10283.02, + "end": 10283.64, + "probability": 0.9331 + }, + { + "start": 10284.48, + "end": 10288.58, + "probability": 0.9777 + }, + { + "start": 10289.68, + "end": 10293.66, + "probability": 0.95 + }, + { + "start": 10294.52, + "end": 10296.04, + "probability": 0.96 + }, + { + "start": 10296.94, + "end": 10298.84, + "probability": 0.9681 + }, + { + "start": 10299.18, + "end": 10300.2, + "probability": 0.9602 + }, + { + "start": 10300.26, + "end": 10300.62, + "probability": 0.944 + }, + { + "start": 10300.74, + "end": 10301.44, + "probability": 0.8081 + }, + { + "start": 10301.58, + "end": 10302.32, + "probability": 0.1393 + }, + { + "start": 10302.38, + "end": 10303.82, + "probability": 0.9307 + }, + { + "start": 10304.26, + "end": 10305.12, + "probability": 0.9502 + }, + { + "start": 10305.78, + "end": 10308.97, + "probability": 0.9662 + }, + { + "start": 10309.2, + "end": 10310.72, + "probability": 0.9678 + }, + { + "start": 10310.72, + "end": 10310.8, + "probability": 0.4409 + }, + { + "start": 10310.98, + "end": 10315.68, + "probability": 0.9907 + }, + { + "start": 10315.68, + "end": 10315.86, + "probability": 0.6892 + }, + { + "start": 10315.94, + "end": 10318.52, + "probability": 0.7408 + }, + { + "start": 10318.76, + "end": 10321.24, + "probability": 0.9215 + }, + { + "start": 10321.82, + "end": 10322.9, + "probability": 0.7229 + }, + { + "start": 10323.14, + "end": 10327.52, + "probability": 0.8132 + }, + { + "start": 10332.0, + "end": 10332.96, + "probability": 0.8147 + }, + { + "start": 10333.62, + "end": 10334.78, + "probability": 0.6718 + }, + { + "start": 10336.36, + "end": 10340.12, + "probability": 0.8264 + }, + { + "start": 10341.52, + "end": 10344.1, + "probability": 0.9343 + }, + { + "start": 10345.62, + "end": 10349.36, + "probability": 0.9984 + }, + { + "start": 10349.94, + "end": 10354.62, + "probability": 0.9927 + }, + { + "start": 10355.18, + "end": 10356.28, + "probability": 0.9709 + }, + { + "start": 10356.86, + "end": 10358.96, + "probability": 0.993 + }, + { + "start": 10359.52, + "end": 10361.24, + "probability": 0.9968 + }, + { + "start": 10362.0, + "end": 10365.16, + "probability": 0.8811 + }, + { + "start": 10365.86, + "end": 10368.86, + "probability": 0.9897 + }, + { + "start": 10369.88, + "end": 10371.46, + "probability": 0.523 + }, + { + "start": 10373.0, + "end": 10378.76, + "probability": 0.9955 + }, + { + "start": 10379.7, + "end": 10385.86, + "probability": 0.9936 + }, + { + "start": 10386.36, + "end": 10386.88, + "probability": 0.9915 + }, + { + "start": 10387.16, + "end": 10387.7, + "probability": 0.9848 + }, + { + "start": 10388.18, + "end": 10389.16, + "probability": 0.8024 + }, + { + "start": 10390.54, + "end": 10396.9, + "probability": 0.7962 + }, + { + "start": 10398.42, + "end": 10400.86, + "probability": 0.9976 + }, + { + "start": 10401.4, + "end": 10402.3, + "probability": 0.7999 + }, + { + "start": 10403.36, + "end": 10405.06, + "probability": 0.957 + }, + { + "start": 10405.9, + "end": 10408.0, + "probability": 0.9934 + }, + { + "start": 10408.8, + "end": 10409.92, + "probability": 0.9983 + }, + { + "start": 10410.44, + "end": 10411.52, + "probability": 0.7573 + }, + { + "start": 10412.42, + "end": 10415.32, + "probability": 0.9982 + }, + { + "start": 10416.02, + "end": 10417.44, + "probability": 0.8768 + }, + { + "start": 10418.12, + "end": 10422.18, + "probability": 0.9768 + }, + { + "start": 10423.6, + "end": 10424.2, + "probability": 0.9832 + }, + { + "start": 10425.22, + "end": 10426.84, + "probability": 0.8924 + }, + { + "start": 10427.24, + "end": 10434.14, + "probability": 0.9947 + }, + { + "start": 10434.8, + "end": 10435.98, + "probability": 0.8704 + }, + { + "start": 10436.64, + "end": 10437.24, + "probability": 0.9237 + }, + { + "start": 10437.82, + "end": 10439.4, + "probability": 0.9314 + }, + { + "start": 10440.92, + "end": 10444.92, + "probability": 0.9941 + }, + { + "start": 10446.76, + "end": 10448.42, + "probability": 0.804 + }, + { + "start": 10449.12, + "end": 10450.98, + "probability": 0.9385 + }, + { + "start": 10452.22, + "end": 10453.92, + "probability": 0.9149 + }, + { + "start": 10454.88, + "end": 10456.88, + "probability": 0.9719 + }, + { + "start": 10457.9, + "end": 10462.24, + "probability": 0.7832 + }, + { + "start": 10463.5, + "end": 10465.44, + "probability": 0.8569 + }, + { + "start": 10467.2, + "end": 10470.06, + "probability": 0.7042 + }, + { + "start": 10470.12, + "end": 10472.42, + "probability": 0.8866 + }, + { + "start": 10472.86, + "end": 10474.68, + "probability": 0.7992 + }, + { + "start": 10484.54, + "end": 10487.24, + "probability": 0.7469 + }, + { + "start": 10489.72, + "end": 10491.5, + "probability": 0.7418 + }, + { + "start": 10491.56, + "end": 10494.5, + "probability": 0.9524 + }, + { + "start": 10494.6, + "end": 10494.98, + "probability": 0.5202 + }, + { + "start": 10495.0, + "end": 10495.46, + "probability": 0.4898 + }, + { + "start": 10495.48, + "end": 10495.82, + "probability": 0.6872 + }, + { + "start": 10495.94, + "end": 10496.7, + "probability": 0.9053 + }, + { + "start": 10496.82, + "end": 10498.1, + "probability": 0.6836 + }, + { + "start": 10498.22, + "end": 10500.5, + "probability": 0.7647 + }, + { + "start": 10500.58, + "end": 10504.46, + "probability": 0.9607 + }, + { + "start": 10505.24, + "end": 10505.26, + "probability": 0.0637 + }, + { + "start": 10505.26, + "end": 10506.5, + "probability": 0.9552 + }, + { + "start": 10507.14, + "end": 10511.3, + "probability": 0.9273 + }, + { + "start": 10513.32, + "end": 10517.46, + "probability": 0.9666 + }, + { + "start": 10518.2, + "end": 10519.82, + "probability": 0.6491 + }, + { + "start": 10520.44, + "end": 10524.26, + "probability": 0.996 + }, + { + "start": 10525.3, + "end": 10525.88, + "probability": 0.9164 + }, + { + "start": 10526.52, + "end": 10529.82, + "probability": 0.9361 + }, + { + "start": 10529.88, + "end": 10531.96, + "probability": 0.8469 + }, + { + "start": 10532.46, + "end": 10536.5, + "probability": 0.5013 + }, + { + "start": 10537.04, + "end": 10538.88, + "probability": 0.8583 + }, + { + "start": 10539.18, + "end": 10543.3, + "probability": 0.9408 + }, + { + "start": 10543.78, + "end": 10544.42, + "probability": 0.8717 + }, + { + "start": 10545.22, + "end": 10546.86, + "probability": 0.9927 + }, + { + "start": 10548.52, + "end": 10550.6, + "probability": 0.8251 + }, + { + "start": 10550.8, + "end": 10551.47, + "probability": 0.9718 + }, + { + "start": 10551.84, + "end": 10553.48, + "probability": 0.9509 + }, + { + "start": 10553.56, + "end": 10555.38, + "probability": 0.924 + }, + { + "start": 10556.3, + "end": 10558.48, + "probability": 0.9961 + }, + { + "start": 10559.7, + "end": 10560.87, + "probability": 0.9083 + }, + { + "start": 10561.8, + "end": 10562.5, + "probability": 0.3573 + }, + { + "start": 10562.5, + "end": 10563.92, + "probability": 0.5167 + }, + { + "start": 10564.82, + "end": 10567.3, + "probability": 0.9863 + }, + { + "start": 10567.74, + "end": 10569.08, + "probability": 0.7181 + }, + { + "start": 10569.28, + "end": 10570.22, + "probability": 0.5982 + }, + { + "start": 10570.86, + "end": 10574.02, + "probability": 0.9707 + }, + { + "start": 10575.74, + "end": 10580.78, + "probability": 0.9101 + }, + { + "start": 10580.96, + "end": 10582.76, + "probability": 0.9896 + }, + { + "start": 10583.86, + "end": 10584.48, + "probability": 0.4597 + }, + { + "start": 10585.54, + "end": 10587.62, + "probability": 0.9565 + }, + { + "start": 10588.34, + "end": 10592.9, + "probability": 0.9741 + }, + { + "start": 10593.46, + "end": 10596.42, + "probability": 0.9985 + }, + { + "start": 10597.1, + "end": 10603.0, + "probability": 0.9916 + }, + { + "start": 10604.48, + "end": 10605.6, + "probability": 0.7625 + }, + { + "start": 10605.86, + "end": 10609.36, + "probability": 0.9826 + }, + { + "start": 10609.36, + "end": 10613.5, + "probability": 0.9954 + }, + { + "start": 10615.4, + "end": 10616.13, + "probability": 0.9357 + }, + { + "start": 10616.84, + "end": 10619.82, + "probability": 0.9915 + }, + { + "start": 10620.0, + "end": 10620.86, + "probability": 0.7737 + }, + { + "start": 10621.26, + "end": 10624.52, + "probability": 0.9354 + }, + { + "start": 10624.9, + "end": 10626.22, + "probability": 0.9863 + }, + { + "start": 10627.28, + "end": 10628.56, + "probability": 0.7903 + }, + { + "start": 10628.66, + "end": 10629.04, + "probability": 0.9727 + }, + { + "start": 10629.14, + "end": 10632.2, + "probability": 0.998 + }, + { + "start": 10632.2, + "end": 10635.26, + "probability": 0.998 + }, + { + "start": 10636.02, + "end": 10640.46, + "probability": 0.9961 + }, + { + "start": 10641.0, + "end": 10643.44, + "probability": 0.961 + }, + { + "start": 10643.68, + "end": 10646.62, + "probability": 0.8936 + }, + { + "start": 10647.56, + "end": 10652.3, + "probability": 0.9966 + }, + { + "start": 10652.3, + "end": 10655.46, + "probability": 0.98 + }, + { + "start": 10656.34, + "end": 10658.06, + "probability": 0.9952 + }, + { + "start": 10659.72, + "end": 10663.6, + "probability": 0.9965 + }, + { + "start": 10663.6, + "end": 10668.82, + "probability": 0.9987 + }, + { + "start": 10669.36, + "end": 10672.84, + "probability": 0.7533 + }, + { + "start": 10673.58, + "end": 10677.34, + "probability": 0.9796 + }, + { + "start": 10678.3, + "end": 10682.44, + "probability": 0.9962 + }, + { + "start": 10682.62, + "end": 10684.1, + "probability": 0.8368 + }, + { + "start": 10684.88, + "end": 10688.5, + "probability": 0.9878 + }, + { + "start": 10690.18, + "end": 10691.8, + "probability": 0.9111 + }, + { + "start": 10692.36, + "end": 10697.34, + "probability": 0.9916 + }, + { + "start": 10698.16, + "end": 10701.86, + "probability": 0.9921 + }, + { + "start": 10702.52, + "end": 10703.38, + "probability": 0.9877 + }, + { + "start": 10705.14, + "end": 10710.84, + "probability": 0.9921 + }, + { + "start": 10711.18, + "end": 10712.64, + "probability": 0.3854 + }, + { + "start": 10713.66, + "end": 10718.5, + "probability": 0.9972 + }, + { + "start": 10719.28, + "end": 10720.4, + "probability": 0.79 + }, + { + "start": 10720.96, + "end": 10722.78, + "probability": 0.9138 + }, + { + "start": 10723.82, + "end": 10728.44, + "probability": 0.9979 + }, + { + "start": 10728.9, + "end": 10731.7, + "probability": 0.9945 + }, + { + "start": 10731.7, + "end": 10735.0, + "probability": 0.997 + }, + { + "start": 10737.26, + "end": 10741.27, + "probability": 0.9604 + }, + { + "start": 10741.92, + "end": 10743.88, + "probability": 0.9907 + }, + { + "start": 10744.14, + "end": 10747.88, + "probability": 0.9442 + }, + { + "start": 10748.54, + "end": 10752.28, + "probability": 0.9126 + }, + { + "start": 10753.08, + "end": 10757.24, + "probability": 0.9779 + }, + { + "start": 10758.48, + "end": 10762.56, + "probability": 0.9943 + }, + { + "start": 10762.62, + "end": 10763.04, + "probability": 0.6378 + }, + { + "start": 10763.1, + "end": 10764.36, + "probability": 0.8156 + }, + { + "start": 10765.72, + "end": 10768.0, + "probability": 0.9916 + }, + { + "start": 10768.14, + "end": 10770.4, + "probability": 0.9963 + }, + { + "start": 10770.54, + "end": 10771.92, + "probability": 0.925 + }, + { + "start": 10772.24, + "end": 10773.8, + "probability": 0.9776 + }, + { + "start": 10775.72, + "end": 10778.72, + "probability": 0.6576 + }, + { + "start": 10778.96, + "end": 10782.18, + "probability": 0.8994 + }, + { + "start": 10782.74, + "end": 10784.38, + "probability": 0.9598 + }, + { + "start": 10791.54, + "end": 10793.04, + "probability": 0.9329 + }, + { + "start": 10793.64, + "end": 10795.54, + "probability": 0.8032 + }, + { + "start": 10795.74, + "end": 10797.3, + "probability": 0.597 + }, + { + "start": 10799.93, + "end": 10805.09, + "probability": 0.875 + }, + { + "start": 10806.62, + "end": 10809.34, + "probability": 0.9515 + }, + { + "start": 10810.1, + "end": 10815.3, + "probability": 0.9807 + }, + { + "start": 10816.0, + "end": 10822.3, + "probability": 0.9868 + }, + { + "start": 10824.4, + "end": 10828.22, + "probability": 0.7403 + }, + { + "start": 10830.7, + "end": 10833.22, + "probability": 0.9829 + }, + { + "start": 10834.0, + "end": 10834.82, + "probability": 0.4928 + }, + { + "start": 10835.18, + "end": 10838.94, + "probability": 0.9421 + }, + { + "start": 10839.06, + "end": 10839.85, + "probability": 0.8914 + }, + { + "start": 10840.14, + "end": 10843.34, + "probability": 0.9844 + }, + { + "start": 10843.72, + "end": 10847.66, + "probability": 0.9853 + }, + { + "start": 10847.68, + "end": 10852.94, + "probability": 0.939 + }, + { + "start": 10853.46, + "end": 10856.32, + "probability": 0.9954 + }, + { + "start": 10856.32, + "end": 10861.44, + "probability": 0.8269 + }, + { + "start": 10861.74, + "end": 10863.59, + "probability": 0.9893 + }, + { + "start": 10863.86, + "end": 10864.64, + "probability": 0.6005 + }, + { + "start": 10865.38, + "end": 10869.12, + "probability": 0.7959 + }, + { + "start": 10869.72, + "end": 10870.28, + "probability": 0.4343 + }, + { + "start": 10870.36, + "end": 10872.6, + "probability": 0.9348 + }, + { + "start": 10872.66, + "end": 10874.2, + "probability": 0.9319 + }, + { + "start": 10874.26, + "end": 10880.44, + "probability": 0.9744 + }, + { + "start": 10882.62, + "end": 10886.96, + "probability": 0.8591 + }, + { + "start": 10888.44, + "end": 10889.61, + "probability": 0.7721 + }, + { + "start": 10889.74, + "end": 10892.3, + "probability": 0.8872 + }, + { + "start": 10893.06, + "end": 10894.22, + "probability": 0.8657 + }, + { + "start": 10894.98, + "end": 10898.62, + "probability": 0.9146 + }, + { + "start": 10898.78, + "end": 10900.68, + "probability": 0.9254 + }, + { + "start": 10901.28, + "end": 10905.3, + "probability": 0.8862 + }, + { + "start": 10906.84, + "end": 10907.92, + "probability": 0.8497 + }, + { + "start": 10908.68, + "end": 10913.0, + "probability": 0.9969 + }, + { + "start": 10913.6, + "end": 10914.92, + "probability": 0.8444 + }, + { + "start": 10915.16, + "end": 10917.58, + "probability": 0.9729 + }, + { + "start": 10917.7, + "end": 10918.56, + "probability": 0.7897 + }, + { + "start": 10919.62, + "end": 10922.68, + "probability": 0.7725 + }, + { + "start": 10922.7, + "end": 10923.64, + "probability": 0.666 + }, + { + "start": 10924.64, + "end": 10927.98, + "probability": 0.8564 + }, + { + "start": 10928.04, + "end": 10931.44, + "probability": 0.8482 + }, + { + "start": 10932.04, + "end": 10934.3, + "probability": 0.9816 + }, + { + "start": 10934.38, + "end": 10934.96, + "probability": 0.8561 + }, + { + "start": 10935.14, + "end": 10938.26, + "probability": 0.8456 + }, + { + "start": 10938.34, + "end": 10938.96, + "probability": 0.8843 + }, + { + "start": 10939.2, + "end": 10940.0, + "probability": 0.7697 + }, + { + "start": 10940.1, + "end": 10944.62, + "probability": 0.963 + }, + { + "start": 10944.74, + "end": 10946.3, + "probability": 0.999 + }, + { + "start": 10947.3, + "end": 10950.34, + "probability": 0.9512 + }, + { + "start": 10951.96, + "end": 10951.96, + "probability": 0.0108 + }, + { + "start": 10951.96, + "end": 10954.36, + "probability": 0.8028 + }, + { + "start": 10954.66, + "end": 10958.3, + "probability": 0.9612 + }, + { + "start": 10958.3, + "end": 10959.88, + "probability": 0.8349 + }, + { + "start": 10960.84, + "end": 10962.92, + "probability": 0.918 + }, + { + "start": 10964.84, + "end": 10973.54, + "probability": 0.9747 + }, + { + "start": 10974.56, + "end": 10979.68, + "probability": 0.9792 + }, + { + "start": 10979.76, + "end": 10983.36, + "probability": 0.8407 + }, + { + "start": 10983.7, + "end": 10984.7, + "probability": 0.9268 + }, + { + "start": 10984.78, + "end": 10985.98, + "probability": 0.9912 + }, + { + "start": 10988.28, + "end": 10988.9, + "probability": 0.2739 + }, + { + "start": 10988.9, + "end": 10989.67, + "probability": 0.4782 + }, + { + "start": 10990.9, + "end": 10992.9, + "probability": 0.8397 + }, + { + "start": 10994.88, + "end": 10998.14, + "probability": 0.718 + }, + { + "start": 10998.2, + "end": 10998.74, + "probability": 0.736 + }, + { + "start": 10999.38, + "end": 11000.96, + "probability": 0.5505 + }, + { + "start": 11001.62, + "end": 11001.98, + "probability": 0.6593 + }, + { + "start": 11002.08, + "end": 11005.04, + "probability": 0.9866 + }, + { + "start": 11005.24, + "end": 11005.94, + "probability": 0.9128 + }, + { + "start": 11006.72, + "end": 11009.0, + "probability": 0.8887 + }, + { + "start": 11009.42, + "end": 11013.0, + "probability": 0.9875 + }, + { + "start": 11013.54, + "end": 11016.4, + "probability": 0.9899 + }, + { + "start": 11017.1, + "end": 11025.24, + "probability": 0.9757 + }, + { + "start": 11025.46, + "end": 11027.76, + "probability": 0.8965 + }, + { + "start": 11028.28, + "end": 11028.88, + "probability": 0.7256 + }, + { + "start": 11028.92, + "end": 11030.32, + "probability": 0.9903 + }, + { + "start": 11031.88, + "end": 11034.22, + "probability": 0.9848 + }, + { + "start": 11034.24, + "end": 11040.32, + "probability": 0.993 + }, + { + "start": 11041.26, + "end": 11042.14, + "probability": 0.9141 + }, + { + "start": 11042.22, + "end": 11042.8, + "probability": 0.6372 + }, + { + "start": 11043.14, + "end": 11044.1, + "probability": 0.7091 + }, + { + "start": 11044.16, + "end": 11047.82, + "probability": 0.7262 + }, + { + "start": 11048.64, + "end": 11049.24, + "probability": 0.4266 + }, + { + "start": 11049.54, + "end": 11051.02, + "probability": 0.592 + }, + { + "start": 11051.69, + "end": 11054.56, + "probability": 0.8525 + }, + { + "start": 11055.1, + "end": 11057.9, + "probability": 0.7712 + }, + { + "start": 11057.9, + "end": 11058.32, + "probability": 0.801 + }, + { + "start": 11058.5, + "end": 11059.1, + "probability": 0.8925 + }, + { + "start": 11059.14, + "end": 11059.54, + "probability": 0.5355 + }, + { + "start": 11059.54, + "end": 11060.38, + "probability": 0.498 + }, + { + "start": 11060.92, + "end": 11062.54, + "probability": 0.925 + }, + { + "start": 11062.6, + "end": 11063.26, + "probability": 0.8374 + }, + { + "start": 11064.0, + "end": 11065.38, + "probability": 0.9305 + }, + { + "start": 11065.68, + "end": 11068.3, + "probability": 0.9897 + }, + { + "start": 11068.3, + "end": 11071.16, + "probability": 0.1737 + }, + { + "start": 11071.58, + "end": 11072.14, + "probability": 0.7219 + }, + { + "start": 11072.36, + "end": 11072.92, + "probability": 0.4699 + }, + { + "start": 11072.94, + "end": 11075.36, + "probability": 0.2565 + }, + { + "start": 11075.44, + "end": 11075.44, + "probability": 0.1418 + }, + { + "start": 11075.62, + "end": 11076.38, + "probability": 0.5124 + }, + { + "start": 11078.43, + "end": 11079.06, + "probability": 0.1004 + }, + { + "start": 11079.06, + "end": 11079.88, + "probability": 0.0548 + }, + { + "start": 11080.36, + "end": 11081.3, + "probability": 0.5044 + }, + { + "start": 11081.4, + "end": 11086.59, + "probability": 0.7987 + }, + { + "start": 11087.7, + "end": 11090.98, + "probability": 0.9517 + }, + { + "start": 11091.06, + "end": 11093.52, + "probability": 0.8535 + }, + { + "start": 11093.82, + "end": 11095.82, + "probability": 0.8499 + }, + { + "start": 11095.94, + "end": 11096.46, + "probability": 0.534 + }, + { + "start": 11097.96, + "end": 11098.68, + "probability": 0.7167 + }, + { + "start": 11098.74, + "end": 11100.74, + "probability": 0.8894 + }, + { + "start": 11101.22, + "end": 11103.46, + "probability": 0.9375 + }, + { + "start": 11103.76, + "end": 11104.46, + "probability": 0.3954 + }, + { + "start": 11104.76, + "end": 11106.46, + "probability": 0.9799 + }, + { + "start": 11114.36, + "end": 11118.7, + "probability": 0.7993 + }, + { + "start": 11122.08, + "end": 11122.08, + "probability": 0.0158 + }, + { + "start": 11128.7, + "end": 11130.8, + "probability": 0.0283 + }, + { + "start": 11131.2, + "end": 11132.12, + "probability": 0.253 + }, + { + "start": 11132.2, + "end": 11133.82, + "probability": 0.4792 + }, + { + "start": 11133.96, + "end": 11135.52, + "probability": 0.5481 + }, + { + "start": 11135.64, + "end": 11137.72, + "probability": 0.9646 + }, + { + "start": 11138.78, + "end": 11141.36, + "probability": 0.78 + }, + { + "start": 11141.9, + "end": 11145.18, + "probability": 0.1587 + }, + { + "start": 11145.44, + "end": 11147.36, + "probability": 0.4531 + }, + { + "start": 11151.46, + "end": 11152.9, + "probability": 0.5566 + }, + { + "start": 11153.02, + "end": 11154.96, + "probability": 0.9531 + }, + { + "start": 11154.96, + "end": 11154.96, + "probability": 0.3704 + }, + { + "start": 11155.04, + "end": 11157.22, + "probability": 0.8353 + }, + { + "start": 11158.42, + "end": 11159.22, + "probability": 0.8816 + }, + { + "start": 11161.22, + "end": 11163.88, + "probability": 0.9608 + }, + { + "start": 11164.0, + "end": 11165.42, + "probability": 0.7633 + }, + { + "start": 11166.88, + "end": 11169.28, + "probability": 0.8989 + }, + { + "start": 11169.3, + "end": 11173.86, + "probability": 0.9485 + }, + { + "start": 11174.56, + "end": 11180.2, + "probability": 0.998 + }, + { + "start": 11181.46, + "end": 11184.36, + "probability": 0.7559 + }, + { + "start": 11185.5, + "end": 11185.76, + "probability": 0.6024 + }, + { + "start": 11185.8, + "end": 11186.06, + "probability": 0.5743 + }, + { + "start": 11186.18, + "end": 11187.45, + "probability": 0.9747 + }, + { + "start": 11187.64, + "end": 11188.18, + "probability": 0.613 + }, + { + "start": 11188.26, + "end": 11188.84, + "probability": 0.7249 + }, + { + "start": 11188.96, + "end": 11190.08, + "probability": 0.9545 + }, + { + "start": 11191.48, + "end": 11195.42, + "probability": 0.9304 + }, + { + "start": 11196.32, + "end": 11196.6, + "probability": 0.4017 + }, + { + "start": 11196.68, + "end": 11198.54, + "probability": 0.9792 + }, + { + "start": 11199.6, + "end": 11201.04, + "probability": 0.9267 + }, + { + "start": 11202.34, + "end": 11203.38, + "probability": 0.9375 + }, + { + "start": 11205.14, + "end": 11208.08, + "probability": 0.8144 + }, + { + "start": 11210.02, + "end": 11211.26, + "probability": 0.6127 + }, + { + "start": 11212.1, + "end": 11212.94, + "probability": 0.4991 + }, + { + "start": 11213.08, + "end": 11215.8, + "probability": 0.5587 + }, + { + "start": 11217.52, + "end": 11221.06, + "probability": 0.6794 + }, + { + "start": 11221.5, + "end": 11222.96, + "probability": 0.9198 + }, + { + "start": 11223.76, + "end": 11225.4, + "probability": 0.9261 + }, + { + "start": 11226.62, + "end": 11231.48, + "probability": 0.9106 + }, + { + "start": 11232.8, + "end": 11238.42, + "probability": 0.8641 + }, + { + "start": 11238.42, + "end": 11240.56, + "probability": 0.9775 + }, + { + "start": 11240.62, + "end": 11241.12, + "probability": 0.7314 + }, + { + "start": 11241.92, + "end": 11242.34, + "probability": 0.9771 + }, + { + "start": 11242.46, + "end": 11242.78, + "probability": 0.7205 + }, + { + "start": 11242.84, + "end": 11243.62, + "probability": 0.7322 + }, + { + "start": 11244.48, + "end": 11244.82, + "probability": 0.6296 + }, + { + "start": 11245.34, + "end": 11248.74, + "probability": 0.993 + }, + { + "start": 11250.16, + "end": 11251.94, + "probability": 0.948 + }, + { + "start": 11252.56, + "end": 11254.4, + "probability": 0.9939 + }, + { + "start": 11257.1, + "end": 11260.66, + "probability": 0.8881 + }, + { + "start": 11261.76, + "end": 11264.34, + "probability": 0.95 + }, + { + "start": 11264.62, + "end": 11265.58, + "probability": 0.7549 + }, + { + "start": 11266.84, + "end": 11269.44, + "probability": 0.9565 + }, + { + "start": 11270.7, + "end": 11273.02, + "probability": 0.9312 + }, + { + "start": 11273.4, + "end": 11274.02, + "probability": 0.6475 + }, + { + "start": 11274.1, + "end": 11274.96, + "probability": 0.7397 + }, + { + "start": 11275.76, + "end": 11276.26, + "probability": 0.7386 + }, + { + "start": 11276.4, + "end": 11278.18, + "probability": 0.9731 + }, + { + "start": 11279.98, + "end": 11281.86, + "probability": 0.9958 + }, + { + "start": 11282.04, + "end": 11282.04, + "probability": 0.4865 + }, + { + "start": 11282.3, + "end": 11283.52, + "probability": 0.9091 + }, + { + "start": 11283.62, + "end": 11285.24, + "probability": 0.9383 + }, + { + "start": 11286.76, + "end": 11287.46, + "probability": 0.3344 + }, + { + "start": 11287.92, + "end": 11289.66, + "probability": 0.8374 + }, + { + "start": 11289.74, + "end": 11291.28, + "probability": 0.81 + }, + { + "start": 11292.16, + "end": 11295.06, + "probability": 0.996 + }, + { + "start": 11296.2, + "end": 11297.04, + "probability": 0.9702 + }, + { + "start": 11297.1, + "end": 11298.5, + "probability": 0.9877 + }, + { + "start": 11300.12, + "end": 11306.54, + "probability": 0.9976 + }, + { + "start": 11307.3, + "end": 11309.52, + "probability": 0.9995 + }, + { + "start": 11309.7, + "end": 11313.92, + "probability": 0.9952 + }, + { + "start": 11315.22, + "end": 11317.58, + "probability": 0.9917 + }, + { + "start": 11318.52, + "end": 11320.12, + "probability": 0.9859 + }, + { + "start": 11320.94, + "end": 11322.02, + "probability": 0.7834 + }, + { + "start": 11322.7, + "end": 11325.69, + "probability": 0.8538 + }, + { + "start": 11326.98, + "end": 11331.12, + "probability": 0.9644 + }, + { + "start": 11332.84, + "end": 11336.02, + "probability": 0.9619 + }, + { + "start": 11338.26, + "end": 11343.24, + "probability": 0.9329 + }, + { + "start": 11343.8, + "end": 11345.4, + "probability": 0.9638 + }, + { + "start": 11347.92, + "end": 11352.32, + "probability": 0.9674 + }, + { + "start": 11352.52, + "end": 11354.42, + "probability": 0.9637 + }, + { + "start": 11355.6, + "end": 11360.72, + "probability": 0.981 + }, + { + "start": 11360.82, + "end": 11361.68, + "probability": 0.854 + }, + { + "start": 11362.72, + "end": 11364.62, + "probability": 0.9688 + }, + { + "start": 11365.86, + "end": 11369.48, + "probability": 0.9658 + }, + { + "start": 11370.26, + "end": 11371.4, + "probability": 0.9002 + }, + { + "start": 11371.84, + "end": 11376.36, + "probability": 0.995 + }, + { + "start": 11376.7, + "end": 11377.64, + "probability": 0.8097 + }, + { + "start": 11377.76, + "end": 11379.38, + "probability": 0.9616 + }, + { + "start": 11379.52, + "end": 11381.58, + "probability": 0.9337 + }, + { + "start": 11381.64, + "end": 11382.84, + "probability": 0.9966 + }, + { + "start": 11383.54, + "end": 11386.16, + "probability": 0.8025 + }, + { + "start": 11386.62, + "end": 11388.42, + "probability": 0.8851 + }, + { + "start": 11389.06, + "end": 11391.08, + "probability": 0.9836 + }, + { + "start": 11391.2, + "end": 11391.84, + "probability": 0.4546 + }, + { + "start": 11392.06, + "end": 11392.66, + "probability": 0.7029 + }, + { + "start": 11393.12, + "end": 11396.9, + "probability": 0.9843 + }, + { + "start": 11398.1, + "end": 11400.25, + "probability": 0.9932 + }, + { + "start": 11401.46, + "end": 11403.72, + "probability": 0.998 + }, + { + "start": 11416.72, + "end": 11419.64, + "probability": 0.0881 + }, + { + "start": 11419.64, + "end": 11419.7, + "probability": 0.0407 + }, + { + "start": 11419.7, + "end": 11420.27, + "probability": 0.1334 + }, + { + "start": 11422.24, + "end": 11422.66, + "probability": 0.0988 + }, + { + "start": 11422.66, + "end": 11424.34, + "probability": 0.6811 + }, + { + "start": 11424.88, + "end": 11425.16, + "probability": 0.0487 + }, + { + "start": 11425.16, + "end": 11425.16, + "probability": 0.3266 + }, + { + "start": 11425.16, + "end": 11426.58, + "probability": 0.8786 + }, + { + "start": 11426.94, + "end": 11428.24, + "probability": 0.8762 + }, + { + "start": 11428.42, + "end": 11429.86, + "probability": 0.8884 + }, + { + "start": 11430.3, + "end": 11432.64, + "probability": 0.7856 + }, + { + "start": 11433.94, + "end": 11435.54, + "probability": 0.8084 + }, + { + "start": 11437.42, + "end": 11439.18, + "probability": 0.981 + }, + { + "start": 11439.32, + "end": 11442.32, + "probability": 0.983 + }, + { + "start": 11443.12, + "end": 11446.08, + "probability": 0.9927 + }, + { + "start": 11446.12, + "end": 11449.18, + "probability": 0.968 + }, + { + "start": 11450.28, + "end": 11454.24, + "probability": 0.9983 + }, + { + "start": 11454.98, + "end": 11457.0, + "probability": 0.985 + }, + { + "start": 11457.74, + "end": 11459.3, + "probability": 0.9108 + }, + { + "start": 11460.06, + "end": 11462.4, + "probability": 0.9964 + }, + { + "start": 11464.04, + "end": 11467.3, + "probability": 0.9951 + }, + { + "start": 11468.54, + "end": 11470.94, + "probability": 0.8862 + }, + { + "start": 11471.41, + "end": 11474.1, + "probability": 0.9958 + }, + { + "start": 11475.44, + "end": 11477.58, + "probability": 0.8942 + }, + { + "start": 11478.5, + "end": 11479.18, + "probability": 0.9346 + }, + { + "start": 11479.92, + "end": 11480.98, + "probability": 0.8931 + }, + { + "start": 11481.6, + "end": 11484.27, + "probability": 0.9901 + }, + { + "start": 11485.28, + "end": 11486.12, + "probability": 0.4512 + }, + { + "start": 11486.92, + "end": 11489.56, + "probability": 0.8809 + }, + { + "start": 11491.18, + "end": 11494.02, + "probability": 0.7324 + }, + { + "start": 11495.54, + "end": 11497.14, + "probability": 0.2307 + }, + { + "start": 11497.14, + "end": 11497.2, + "probability": 0.7253 + }, + { + "start": 11497.5, + "end": 11498.1, + "probability": 0.3883 + }, + { + "start": 11498.22, + "end": 11499.22, + "probability": 0.0009 + }, + { + "start": 11499.22, + "end": 11501.52, + "probability": 0.9811 + }, + { + "start": 11502.78, + "end": 11506.08, + "probability": 0.9224 + }, + { + "start": 11506.45, + "end": 11511.12, + "probability": 0.9497 + }, + { + "start": 11512.42, + "end": 11513.56, + "probability": 0.8892 + }, + { + "start": 11513.68, + "end": 11516.34, + "probability": 0.9795 + }, + { + "start": 11516.42, + "end": 11516.84, + "probability": 0.5428 + }, + { + "start": 11517.0, + "end": 11518.34, + "probability": 0.6894 + }, + { + "start": 11518.4, + "end": 11519.62, + "probability": 0.9315 + }, + { + "start": 11520.36, + "end": 11522.78, + "probability": 0.9319 + }, + { + "start": 11524.02, + "end": 11525.14, + "probability": 0.875 + }, + { + "start": 11525.84, + "end": 11527.98, + "probability": 0.9883 + }, + { + "start": 11528.6, + "end": 11530.88, + "probability": 0.8717 + }, + { + "start": 11531.96, + "end": 11532.6, + "probability": 0.6097 + }, + { + "start": 11532.88, + "end": 11533.56, + "probability": 0.7753 + }, + { + "start": 11533.74, + "end": 11535.76, + "probability": 0.9258 + }, + { + "start": 11536.56, + "end": 11538.5, + "probability": 0.9443 + }, + { + "start": 11539.64, + "end": 11540.32, + "probability": 0.9717 + }, + { + "start": 11541.66, + "end": 11542.36, + "probability": 0.796 + }, + { + "start": 11542.54, + "end": 11543.24, + "probability": 0.9951 + }, + { + "start": 11543.38, + "end": 11543.98, + "probability": 0.9844 + }, + { + "start": 11546.54, + "end": 11548.94, + "probability": 0.6172 + }, + { + "start": 11550.8, + "end": 11551.46, + "probability": 0.5417 + }, + { + "start": 11551.56, + "end": 11555.38, + "probability": 0.9963 + }, + { + "start": 11556.64, + "end": 11557.7, + "probability": 0.7662 + }, + { + "start": 11557.8, + "end": 11559.06, + "probability": 0.968 + }, + { + "start": 11559.56, + "end": 11561.32, + "probability": 0.9946 + }, + { + "start": 11561.44, + "end": 11564.36, + "probability": 0.2401 + }, + { + "start": 11564.36, + "end": 11564.71, + "probability": 0.4421 + }, + { + "start": 11566.18, + "end": 11566.88, + "probability": 0.5583 + }, + { + "start": 11567.42, + "end": 11571.48, + "probability": 0.9985 + }, + { + "start": 11571.52, + "end": 11572.51, + "probability": 0.7296 + }, + { + "start": 11573.82, + "end": 11576.14, + "probability": 0.9046 + }, + { + "start": 11577.2, + "end": 11578.94, + "probability": 0.9978 + }, + { + "start": 11579.0, + "end": 11579.6, + "probability": 0.7986 + }, + { + "start": 11579.72, + "end": 11581.9, + "probability": 0.9842 + }, + { + "start": 11582.86, + "end": 11585.64, + "probability": 0.9193 + }, + { + "start": 11586.4, + "end": 11589.24, + "probability": 0.9475 + }, + { + "start": 11590.12, + "end": 11591.53, + "probability": 0.9873 + }, + { + "start": 11591.64, + "end": 11595.44, + "probability": 0.9432 + }, + { + "start": 11597.34, + "end": 11598.28, + "probability": 0.4333 + }, + { + "start": 11599.52, + "end": 11600.48, + "probability": 0.8643 + }, + { + "start": 11601.32, + "end": 11605.44, + "probability": 0.968 + }, + { + "start": 11606.7, + "end": 11607.98, + "probability": 0.9955 + }, + { + "start": 11608.98, + "end": 11612.2, + "probability": 0.9244 + }, + { + "start": 11613.48, + "end": 11615.94, + "probability": 0.8726 + }, + { + "start": 11616.58, + "end": 11619.76, + "probability": 0.9126 + }, + { + "start": 11620.26, + "end": 11621.42, + "probability": 0.6616 + }, + { + "start": 11622.22, + "end": 11623.88, + "probability": 0.8674 + }, + { + "start": 11624.18, + "end": 11626.66, + "probability": 0.9872 + }, + { + "start": 11627.02, + "end": 11628.46, + "probability": 0.8075 + }, + { + "start": 11629.04, + "end": 11629.83, + "probability": 0.7324 + }, + { + "start": 11630.72, + "end": 11634.42, + "probability": 0.9254 + }, + { + "start": 11634.84, + "end": 11636.12, + "probability": 0.8007 + }, + { + "start": 11636.54, + "end": 11638.04, + "probability": 0.9505 + }, + { + "start": 11638.52, + "end": 11640.01, + "probability": 0.9292 + }, + { + "start": 11641.04, + "end": 11642.36, + "probability": 0.9536 + }, + { + "start": 11643.06, + "end": 11644.0, + "probability": 0.4476 + }, + { + "start": 11644.1, + "end": 11646.48, + "probability": 0.8239 + }, + { + "start": 11646.6, + "end": 11647.24, + "probability": 0.4532 + }, + { + "start": 11647.26, + "end": 11649.0, + "probability": 0.8745 + }, + { + "start": 11670.06, + "end": 11671.64, + "probability": 0.782 + }, + { + "start": 11672.26, + "end": 11673.46, + "probability": 0.8955 + }, + { + "start": 11678.5, + "end": 11679.44, + "probability": 0.6044 + }, + { + "start": 11682.04, + "end": 11684.74, + "probability": 0.973 + }, + { + "start": 11686.78, + "end": 11688.56, + "probability": 0.9727 + }, + { + "start": 11690.5, + "end": 11691.96, + "probability": 0.9967 + }, + { + "start": 11692.0, + "end": 11692.7, + "probability": 0.904 + }, + { + "start": 11692.88, + "end": 11694.49, + "probability": 0.9898 + }, + { + "start": 11696.3, + "end": 11697.38, + "probability": 0.8303 + }, + { + "start": 11699.56, + "end": 11702.33, + "probability": 0.8604 + }, + { + "start": 11703.46, + "end": 11704.19, + "probability": 0.9763 + }, + { + "start": 11704.7, + "end": 11708.64, + "probability": 0.9507 + }, + { + "start": 11710.34, + "end": 11713.18, + "probability": 0.9331 + }, + { + "start": 11714.3, + "end": 11717.14, + "probability": 0.9111 + }, + { + "start": 11718.3, + "end": 11720.12, + "probability": 0.7394 + }, + { + "start": 11722.08, + "end": 11725.98, + "probability": 0.8473 + }, + { + "start": 11727.56, + "end": 11732.5, + "probability": 0.9448 + }, + { + "start": 11733.34, + "end": 11735.04, + "probability": 0.9644 + }, + { + "start": 11735.14, + "end": 11737.92, + "probability": 0.9581 + }, + { + "start": 11738.44, + "end": 11740.2, + "probability": 0.9409 + }, + { + "start": 11742.0, + "end": 11745.16, + "probability": 0.7773 + }, + { + "start": 11746.68, + "end": 11753.14, + "probability": 0.8618 + }, + { + "start": 11755.3, + "end": 11759.82, + "probability": 0.9971 + }, + { + "start": 11760.54, + "end": 11762.06, + "probability": 0.9951 + }, + { + "start": 11763.28, + "end": 11766.8, + "probability": 0.9553 + }, + { + "start": 11767.86, + "end": 11774.06, + "probability": 0.9452 + }, + { + "start": 11774.16, + "end": 11776.24, + "probability": 0.9799 + }, + { + "start": 11777.66, + "end": 11778.72, + "probability": 0.7134 + }, + { + "start": 11781.64, + "end": 11783.1, + "probability": 0.8657 + }, + { + "start": 11783.62, + "end": 11783.84, + "probability": 0.6047 + }, + { + "start": 11783.96, + "end": 11787.82, + "probability": 0.9956 + }, + { + "start": 11788.72, + "end": 11792.08, + "probability": 0.9424 + }, + { + "start": 11793.94, + "end": 11799.34, + "probability": 0.9849 + }, + { + "start": 11799.34, + "end": 11805.12, + "probability": 0.9069 + }, + { + "start": 11805.76, + "end": 11807.88, + "probability": 0.6527 + }, + { + "start": 11808.74, + "end": 11811.06, + "probability": 0.7555 + }, + { + "start": 11811.6, + "end": 11813.66, + "probability": 0.8055 + }, + { + "start": 11815.42, + "end": 11817.7, + "probability": 0.9984 + }, + { + "start": 11817.7, + "end": 11821.0, + "probability": 0.9313 + }, + { + "start": 11822.24, + "end": 11826.58, + "probability": 0.995 + }, + { + "start": 11827.94, + "end": 11829.5, + "probability": 0.5002 + }, + { + "start": 11830.66, + "end": 11832.34, + "probability": 0.8491 + }, + { + "start": 11833.1, + "end": 11836.32, + "probability": 0.897 + }, + { + "start": 11837.08, + "end": 11841.12, + "probability": 0.9883 + }, + { + "start": 11842.3, + "end": 11843.56, + "probability": 0.8283 + }, + { + "start": 11844.26, + "end": 11845.66, + "probability": 0.9935 + }, + { + "start": 11845.72, + "end": 11846.84, + "probability": 0.9767 + }, + { + "start": 11846.92, + "end": 11847.84, + "probability": 0.888 + }, + { + "start": 11848.0, + "end": 11853.24, + "probability": 0.9613 + }, + { + "start": 11854.04, + "end": 11857.4, + "probability": 0.9946 + }, + { + "start": 11858.04, + "end": 11860.5, + "probability": 0.9207 + }, + { + "start": 11861.54, + "end": 11863.5, + "probability": 0.9927 + }, + { + "start": 11863.72, + "end": 11864.46, + "probability": 0.8423 + }, + { + "start": 11865.2, + "end": 11866.09, + "probability": 0.8889 + }, + { + "start": 11866.18, + "end": 11867.36, + "probability": 0.9709 + }, + { + "start": 11867.44, + "end": 11868.88, + "probability": 0.9286 + }, + { + "start": 11870.12, + "end": 11875.64, + "probability": 0.6901 + }, + { + "start": 11875.76, + "end": 11877.2, + "probability": 0.8902 + }, + { + "start": 11878.8, + "end": 11881.42, + "probability": 0.916 + }, + { + "start": 11882.32, + "end": 11885.12, + "probability": 0.8911 + }, + { + "start": 11886.6, + "end": 11889.66, + "probability": 0.996 + }, + { + "start": 11889.66, + "end": 11893.24, + "probability": 0.872 + }, + { + "start": 11893.6, + "end": 11895.78, + "probability": 0.9962 + }, + { + "start": 11895.78, + "end": 11899.42, + "probability": 0.9949 + }, + { + "start": 11899.92, + "end": 11901.78, + "probability": 0.9883 + }, + { + "start": 11902.22, + "end": 11906.64, + "probability": 0.7492 + }, + { + "start": 11906.8, + "end": 11908.26, + "probability": 0.536 + }, + { + "start": 11909.7, + "end": 11916.62, + "probability": 0.965 + }, + { + "start": 11917.18, + "end": 11923.74, + "probability": 0.9764 + }, + { + "start": 11925.1, + "end": 11927.54, + "probability": 0.9462 + }, + { + "start": 11927.56, + "end": 11928.76, + "probability": 0.7048 + }, + { + "start": 11929.34, + "end": 11929.96, + "probability": 0.5967 + }, + { + "start": 11930.46, + "end": 11930.92, + "probability": 0.8132 + }, + { + "start": 11932.5, + "end": 11935.16, + "probability": 0.9578 + }, + { + "start": 11935.16, + "end": 11938.5, + "probability": 0.987 + }, + { + "start": 11938.5, + "end": 11941.96, + "probability": 0.9559 + }, + { + "start": 11942.2, + "end": 11945.92, + "probability": 0.9974 + }, + { + "start": 11945.92, + "end": 11949.64, + "probability": 0.9951 + }, + { + "start": 11950.72, + "end": 11953.94, + "probability": 0.9897 + }, + { + "start": 11953.94, + "end": 11957.9, + "probability": 0.9982 + }, + { + "start": 11958.22, + "end": 11959.44, + "probability": 0.9865 + }, + { + "start": 11959.84, + "end": 11962.48, + "probability": 0.968 + }, + { + "start": 11962.48, + "end": 11966.02, + "probability": 0.9395 + }, + { + "start": 11966.56, + "end": 11969.22, + "probability": 0.9915 + }, + { + "start": 11970.22, + "end": 11972.2, + "probability": 0.9858 + }, + { + "start": 11973.0, + "end": 11973.62, + "probability": 0.8 + }, + { + "start": 11974.04, + "end": 11975.02, + "probability": 0.9726 + }, + { + "start": 11975.12, + "end": 11976.26, + "probability": 0.9835 + }, + { + "start": 11976.68, + "end": 11978.0, + "probability": 0.9304 + }, + { + "start": 11978.5, + "end": 11982.16, + "probability": 0.8457 + }, + { + "start": 11982.38, + "end": 11985.12, + "probability": 0.9421 + }, + { + "start": 11985.64, + "end": 11987.8, + "probability": 0.6937 + }, + { + "start": 11989.1, + "end": 11993.56, + "probability": 0.9219 + }, + { + "start": 11994.56, + "end": 11996.32, + "probability": 0.9409 + }, + { + "start": 11997.12, + "end": 11999.28, + "probability": 0.9768 + }, + { + "start": 11999.78, + "end": 12001.34, + "probability": 0.9287 + }, + { + "start": 12001.94, + "end": 12003.7, + "probability": 0.9717 + }, + { + "start": 12004.06, + "end": 12004.38, + "probability": 0.7499 + }, + { + "start": 12004.82, + "end": 12007.16, + "probability": 0.9364 + }, + { + "start": 12007.68, + "end": 12011.26, + "probability": 0.8275 + }, + { + "start": 12011.78, + "end": 12014.22, + "probability": 0.9775 + }, + { + "start": 12018.84, + "end": 12024.36, + "probability": 0.8602 + }, + { + "start": 12029.62, + "end": 12032.2, + "probability": 0.8136 + }, + { + "start": 12033.52, + "end": 12037.78, + "probability": 0.955 + }, + { + "start": 12038.5, + "end": 12039.66, + "probability": 0.9633 + }, + { + "start": 12040.32, + "end": 12043.34, + "probability": 0.9188 + }, + { + "start": 12044.46, + "end": 12046.58, + "probability": 0.998 + }, + { + "start": 12047.68, + "end": 12049.54, + "probability": 0.9733 + }, + { + "start": 12051.7, + "end": 12054.06, + "probability": 0.9512 + }, + { + "start": 12054.07, + "end": 12058.92, + "probability": 0.9619 + }, + { + "start": 12059.8, + "end": 12061.52, + "probability": 0.9168 + }, + { + "start": 12062.16, + "end": 12063.68, + "probability": 0.9866 + }, + { + "start": 12064.64, + "end": 12066.0, + "probability": 0.9773 + }, + { + "start": 12067.16, + "end": 12070.02, + "probability": 0.8298 + }, + { + "start": 12070.26, + "end": 12070.56, + "probability": 0.0551 + }, + { + "start": 12070.56, + "end": 12071.43, + "probability": 0.6168 + }, + { + "start": 12072.92, + "end": 12074.3, + "probability": 0.9919 + }, + { + "start": 12075.74, + "end": 12078.7, + "probability": 0.7772 + }, + { + "start": 12079.92, + "end": 12085.53, + "probability": 0.9036 + }, + { + "start": 12085.8, + "end": 12086.86, + "probability": 0.7639 + }, + { + "start": 12088.04, + "end": 12089.25, + "probability": 0.9541 + }, + { + "start": 12090.4, + "end": 12095.24, + "probability": 0.9507 + }, + { + "start": 12096.28, + "end": 12098.02, + "probability": 0.9849 + }, + { + "start": 12098.9, + "end": 12100.84, + "probability": 0.9961 + }, + { + "start": 12101.5, + "end": 12103.54, + "probability": 0.9097 + }, + { + "start": 12104.58, + "end": 12106.16, + "probability": 0.6865 + }, + { + "start": 12107.16, + "end": 12108.9, + "probability": 0.9869 + }, + { + "start": 12109.58, + "end": 12113.16, + "probability": 0.9884 + }, + { + "start": 12113.88, + "end": 12116.84, + "probability": 0.9915 + }, + { + "start": 12117.64, + "end": 12120.92, + "probability": 0.9932 + }, + { + "start": 12121.84, + "end": 12123.6, + "probability": 0.9911 + }, + { + "start": 12125.38, + "end": 12126.18, + "probability": 0.6258 + }, + { + "start": 12127.18, + "end": 12131.23, + "probability": 0.995 + }, + { + "start": 12132.3, + "end": 12133.34, + "probability": 0.7602 + }, + { + "start": 12133.72, + "end": 12136.46, + "probability": 0.9705 + }, + { + "start": 12137.56, + "end": 12139.54, + "probability": 0.7625 + }, + { + "start": 12140.36, + "end": 12144.38, + "probability": 0.8915 + }, + { + "start": 12144.98, + "end": 12147.2, + "probability": 0.8514 + }, + { + "start": 12148.02, + "end": 12149.54, + "probability": 0.9554 + }, + { + "start": 12150.36, + "end": 12153.24, + "probability": 0.9751 + }, + { + "start": 12153.94, + "end": 12155.96, + "probability": 0.9038 + }, + { + "start": 12156.3, + "end": 12158.6, + "probability": 0.6001 + }, + { + "start": 12159.3, + "end": 12160.78, + "probability": 0.986 + }, + { + "start": 12161.8, + "end": 12163.08, + "probability": 0.8843 + }, + { + "start": 12163.9, + "end": 12168.52, + "probability": 0.9822 + }, + { + "start": 12168.52, + "end": 12173.38, + "probability": 0.986 + }, + { + "start": 12173.72, + "end": 12174.48, + "probability": 0.9135 + }, + { + "start": 12175.0, + "end": 12178.18, + "probability": 0.9684 + }, + { + "start": 12178.68, + "end": 12180.82, + "probability": 0.9506 + }, + { + "start": 12181.46, + "end": 12184.2, + "probability": 0.894 + }, + { + "start": 12184.92, + "end": 12189.62, + "probability": 0.9751 + }, + { + "start": 12189.96, + "end": 12191.42, + "probability": 0.8925 + }, + { + "start": 12191.66, + "end": 12195.76, + "probability": 0.9572 + }, + { + "start": 12196.74, + "end": 12198.4, + "probability": 0.9988 + }, + { + "start": 12199.18, + "end": 12200.74, + "probability": 0.7555 + }, + { + "start": 12201.58, + "end": 12202.58, + "probability": 0.8095 + }, + { + "start": 12202.98, + "end": 12205.28, + "probability": 0.8216 + }, + { + "start": 12206.0, + "end": 12209.78, + "probability": 0.5709 + }, + { + "start": 12209.88, + "end": 12210.1, + "probability": 0.5472 + }, + { + "start": 12210.66, + "end": 12214.96, + "probability": 0.8372 + }, + { + "start": 12215.56, + "end": 12218.26, + "probability": 0.9589 + }, + { + "start": 12218.52, + "end": 12219.68, + "probability": 0.9243 + }, + { + "start": 12220.66, + "end": 12222.74, + "probability": 0.8826 + }, + { + "start": 12223.3, + "end": 12225.36, + "probability": 0.8682 + }, + { + "start": 12226.14, + "end": 12229.36, + "probability": 0.9894 + }, + { + "start": 12230.84, + "end": 12233.52, + "probability": 0.9261 + }, + { + "start": 12234.26, + "end": 12237.12, + "probability": 0.9993 + }, + { + "start": 12237.86, + "end": 12239.84, + "probability": 0.9551 + }, + { + "start": 12240.3, + "end": 12242.76, + "probability": 0.9868 + }, + { + "start": 12243.4, + "end": 12246.16, + "probability": 0.9913 + }, + { + "start": 12246.86, + "end": 12248.24, + "probability": 0.9813 + }, + { + "start": 12248.74, + "end": 12250.5, + "probability": 0.9934 + }, + { + "start": 12250.72, + "end": 12252.28, + "probability": 0.8956 + }, + { + "start": 12254.12, + "end": 12255.66, + "probability": 0.9177 + }, + { + "start": 12256.2, + "end": 12257.92, + "probability": 0.9706 + }, + { + "start": 12258.48, + "end": 12259.04, + "probability": 0.7917 + }, + { + "start": 12259.78, + "end": 12261.46, + "probability": 0.875 + }, + { + "start": 12262.58, + "end": 12266.54, + "probability": 0.9648 + }, + { + "start": 12267.16, + "end": 12268.72, + "probability": 0.5955 + }, + { + "start": 12269.4, + "end": 12273.64, + "probability": 0.9288 + }, + { + "start": 12274.3, + "end": 12277.96, + "probability": 0.9274 + }, + { + "start": 12278.92, + "end": 12281.94, + "probability": 0.9326 + }, + { + "start": 12282.56, + "end": 12283.76, + "probability": 0.9841 + }, + { + "start": 12285.8, + "end": 12286.84, + "probability": 0.9312 + }, + { + "start": 12287.0, + "end": 12289.9, + "probability": 0.9052 + }, + { + "start": 12290.7, + "end": 12291.52, + "probability": 0.4517 + }, + { + "start": 12292.46, + "end": 12296.3, + "probability": 0.8413 + }, + { + "start": 12296.32, + "end": 12299.38, + "probability": 0.9761 + }, + { + "start": 12299.78, + "end": 12301.02, + "probability": 0.9452 + }, + { + "start": 12301.62, + "end": 12302.34, + "probability": 0.3761 + }, + { + "start": 12302.34, + "end": 12303.18, + "probability": 0.6352 + }, + { + "start": 12303.64, + "end": 12305.48, + "probability": 0.9795 + }, + { + "start": 12305.78, + "end": 12306.38, + "probability": 0.7235 + }, + { + "start": 12306.68, + "end": 12307.82, + "probability": 0.9908 + }, + { + "start": 12308.22, + "end": 12309.96, + "probability": 0.9932 + }, + { + "start": 12310.74, + "end": 12313.04, + "probability": 0.9583 + }, + { + "start": 12313.88, + "end": 12314.7, + "probability": 0.592 + }, + { + "start": 12315.1, + "end": 12316.2, + "probability": 0.6601 + }, + { + "start": 12316.24, + "end": 12317.22, + "probability": 0.7165 + }, + { + "start": 12317.56, + "end": 12319.04, + "probability": 0.9043 + }, + { + "start": 12319.32, + "end": 12323.12, + "probability": 0.9893 + }, + { + "start": 12323.62, + "end": 12324.9, + "probability": 0.9447 + }, + { + "start": 12325.32, + "end": 12325.62, + "probability": 0.8913 + }, + { + "start": 12325.7, + "end": 12326.18, + "probability": 0.9431 + }, + { + "start": 12326.44, + "end": 12327.0, + "probability": 0.3871 + }, + { + "start": 12327.16, + "end": 12328.16, + "probability": 0.6703 + }, + { + "start": 12329.98, + "end": 12331.82, + "probability": 0.8595 + }, + { + "start": 12333.2, + "end": 12334.61, + "probability": 0.9937 + }, + { + "start": 12335.0, + "end": 12336.04, + "probability": 0.9876 + }, + { + "start": 12336.36, + "end": 12337.32, + "probability": 0.9463 + }, + { + "start": 12337.82, + "end": 12340.96, + "probability": 0.9834 + }, + { + "start": 12341.68, + "end": 12343.48, + "probability": 0.9292 + }, + { + "start": 12343.88, + "end": 12345.38, + "probability": 0.8996 + }, + { + "start": 12345.84, + "end": 12347.24, + "probability": 0.9264 + }, + { + "start": 12347.52, + "end": 12348.7, + "probability": 0.9082 + }, + { + "start": 12349.38, + "end": 12350.28, + "probability": 0.7491 + }, + { + "start": 12350.92, + "end": 12353.02, + "probability": 0.9598 + }, + { + "start": 12354.02, + "end": 12356.5, + "probability": 0.9772 + }, + { + "start": 12356.84, + "end": 12358.14, + "probability": 0.9811 + }, + { + "start": 12358.62, + "end": 12358.74, + "probability": 0.6348 + }, + { + "start": 12358.78, + "end": 12361.28, + "probability": 0.8189 + }, + { + "start": 12361.32, + "end": 12362.02, + "probability": 0.758 + }, + { + "start": 12363.7, + "end": 12366.94, + "probability": 0.9492 + }, + { + "start": 12371.0, + "end": 12372.54, + "probability": 0.9074 + }, + { + "start": 12373.16, + "end": 12377.42, + "probability": 0.9896 + }, + { + "start": 12378.98, + "end": 12380.84, + "probability": 0.85 + }, + { + "start": 12381.82, + "end": 12383.36, + "probability": 0.7897 + }, + { + "start": 12384.52, + "end": 12386.74, + "probability": 0.807 + }, + { + "start": 12388.18, + "end": 12388.88, + "probability": 0.7151 + }, + { + "start": 12389.02, + "end": 12390.56, + "probability": 0.8577 + }, + { + "start": 12391.08, + "end": 12391.65, + "probability": 0.9151 + }, + { + "start": 12393.0, + "end": 12395.1, + "probability": 0.9766 + }, + { + "start": 12395.9, + "end": 12398.02, + "probability": 0.7963 + }, + { + "start": 12398.6, + "end": 12401.38, + "probability": 0.8752 + }, + { + "start": 12402.06, + "end": 12405.28, + "probability": 0.9625 + }, + { + "start": 12405.88, + "end": 12406.42, + "probability": 0.8476 + }, + { + "start": 12407.02, + "end": 12409.4, + "probability": 0.9895 + }, + { + "start": 12410.54, + "end": 12411.35, + "probability": 0.9674 + }, + { + "start": 12412.44, + "end": 12416.16, + "probability": 0.9833 + }, + { + "start": 12416.64, + "end": 12417.92, + "probability": 0.7498 + }, + { + "start": 12418.72, + "end": 12419.18, + "probability": 0.8724 + }, + { + "start": 12419.24, + "end": 12423.76, + "probability": 0.9001 + }, + { + "start": 12424.38, + "end": 12424.96, + "probability": 0.879 + }, + { + "start": 12425.74, + "end": 12426.34, + "probability": 0.9355 + }, + { + "start": 12427.08, + "end": 12429.24, + "probability": 0.9937 + }, + { + "start": 12429.82, + "end": 12431.07, + "probability": 0.8326 + }, + { + "start": 12431.6, + "end": 12432.26, + "probability": 0.4932 + }, + { + "start": 12432.92, + "end": 12435.22, + "probability": 0.9194 + }, + { + "start": 12435.66, + "end": 12436.66, + "probability": 0.8301 + }, + { + "start": 12437.04, + "end": 12439.2, + "probability": 0.9888 + }, + { + "start": 12440.5, + "end": 12443.62, + "probability": 0.8604 + }, + { + "start": 12444.14, + "end": 12445.62, + "probability": 0.7087 + }, + { + "start": 12446.26, + "end": 12447.56, + "probability": 0.9695 + }, + { + "start": 12448.04, + "end": 12449.76, + "probability": 0.9951 + }, + { + "start": 12450.26, + "end": 12452.06, + "probability": 0.9793 + }, + { + "start": 12454.0, + "end": 12454.64, + "probability": 0.6064 + }, + { + "start": 12455.4, + "end": 12456.22, + "probability": 0.6608 + }, + { + "start": 12457.04, + "end": 12457.24, + "probability": 0.8269 + }, + { + "start": 12458.42, + "end": 12459.64, + "probability": 0.9483 + }, + { + "start": 12460.4, + "end": 12460.98, + "probability": 0.8136 + }, + { + "start": 12461.02, + "end": 12461.98, + "probability": 0.919 + }, + { + "start": 12462.34, + "end": 12463.58, + "probability": 0.6977 + }, + { + "start": 12463.92, + "end": 12464.68, + "probability": 0.7442 + }, + { + "start": 12464.94, + "end": 12466.36, + "probability": 0.9702 + }, + { + "start": 12467.84, + "end": 12468.98, + "probability": 0.986 + }, + { + "start": 12469.44, + "end": 12470.22, + "probability": 0.9653 + }, + { + "start": 12470.54, + "end": 12471.6, + "probability": 0.9867 + }, + { + "start": 12472.08, + "end": 12473.88, + "probability": 0.4125 + }, + { + "start": 12473.88, + "end": 12474.32, + "probability": 0.4094 + }, + { + "start": 12474.96, + "end": 12475.32, + "probability": 0.7294 + }, + { + "start": 12475.5, + "end": 12478.06, + "probability": 0.9978 + }, + { + "start": 12478.52, + "end": 12479.1, + "probability": 0.8955 + }, + { + "start": 12479.54, + "end": 12480.6, + "probability": 0.9479 + }, + { + "start": 12480.7, + "end": 12484.72, + "probability": 0.9939 + }, + { + "start": 12485.98, + "end": 12489.02, + "probability": 0.922 + }, + { + "start": 12489.76, + "end": 12492.64, + "probability": 0.8757 + }, + { + "start": 12492.78, + "end": 12494.2, + "probability": 0.74 + }, + { + "start": 12494.58, + "end": 12496.04, + "probability": 0.9512 + }, + { + "start": 12496.92, + "end": 12498.12, + "probability": 0.7098 + }, + { + "start": 12499.54, + "end": 12502.72, + "probability": 0.9563 + }, + { + "start": 12509.84, + "end": 12512.44, + "probability": 0.9683 + }, + { + "start": 12513.1, + "end": 12514.82, + "probability": 0.8568 + }, + { + "start": 12526.6, + "end": 12528.5, + "probability": 0.7379 + }, + { + "start": 12529.02, + "end": 12533.0, + "probability": 0.9636 + }, + { + "start": 12534.2, + "end": 12537.16, + "probability": 0.9033 + }, + { + "start": 12537.2, + "end": 12538.72, + "probability": 0.9365 + }, + { + "start": 12539.56, + "end": 12540.86, + "probability": 0.7159 + }, + { + "start": 12541.16, + "end": 12543.76, + "probability": 0.9692 + }, + { + "start": 12544.94, + "end": 12551.16, + "probability": 0.9968 + }, + { + "start": 12552.42, + "end": 12552.88, + "probability": 0.7286 + }, + { + "start": 12553.0, + "end": 12554.9, + "probability": 0.9824 + }, + { + "start": 12555.1, + "end": 12555.74, + "probability": 0.9663 + }, + { + "start": 12556.22, + "end": 12556.76, + "probability": 0.9831 + }, + { + "start": 12557.26, + "end": 12557.86, + "probability": 0.2881 + }, + { + "start": 12558.64, + "end": 12560.05, + "probability": 0.973 + }, + { + "start": 12560.84, + "end": 12562.16, + "probability": 0.9213 + }, + { + "start": 12562.96, + "end": 12565.08, + "probability": 0.9924 + }, + { + "start": 12565.3, + "end": 12567.23, + "probability": 0.9927 + }, + { + "start": 12568.1, + "end": 12569.74, + "probability": 0.9966 + }, + { + "start": 12570.02, + "end": 12571.54, + "probability": 0.9723 + }, + { + "start": 12571.68, + "end": 12573.14, + "probability": 0.7014 + }, + { + "start": 12573.78, + "end": 12577.08, + "probability": 0.9923 + }, + { + "start": 12578.18, + "end": 12582.12, + "probability": 0.9832 + }, + { + "start": 12582.86, + "end": 12585.66, + "probability": 0.9811 + }, + { + "start": 12585.8, + "end": 12585.9, + "probability": 0.8091 + }, + { + "start": 12586.86, + "end": 12589.68, + "probability": 0.8832 + }, + { + "start": 12591.1, + "end": 12592.96, + "probability": 0.9847 + }, + { + "start": 12594.08, + "end": 12596.56, + "probability": 0.9194 + }, + { + "start": 12596.56, + "end": 12599.42, + "probability": 0.9844 + }, + { + "start": 12599.7, + "end": 12600.2, + "probability": 0.8469 + }, + { + "start": 12600.6, + "end": 12601.54, + "probability": 0.8684 + }, + { + "start": 12602.66, + "end": 12605.72, + "probability": 0.961 + }, + { + "start": 12605.84, + "end": 12607.62, + "probability": 0.9858 + }, + { + "start": 12607.98, + "end": 12609.38, + "probability": 0.8407 + }, + { + "start": 12610.0, + "end": 12613.01, + "probability": 0.9972 + }, + { + "start": 12613.36, + "end": 12614.5, + "probability": 0.9009 + }, + { + "start": 12614.6, + "end": 12616.36, + "probability": 0.99 + }, + { + "start": 12616.7, + "end": 12618.7, + "probability": 0.9934 + }, + { + "start": 12619.04, + "end": 12623.36, + "probability": 0.9985 + }, + { + "start": 12623.86, + "end": 12624.6, + "probability": 0.8663 + }, + { + "start": 12625.74, + "end": 12626.42, + "probability": 0.7868 + }, + { + "start": 12627.4, + "end": 12629.1, + "probability": 0.9907 + }, + { + "start": 12629.1, + "end": 12632.42, + "probability": 0.9945 + }, + { + "start": 12632.64, + "end": 12635.96, + "probability": 0.9893 + }, + { + "start": 12636.66, + "end": 12637.68, + "probability": 0.7484 + }, + { + "start": 12637.94, + "end": 12638.46, + "probability": 0.8365 + }, + { + "start": 12638.96, + "end": 12639.54, + "probability": 0.8912 + }, + { + "start": 12639.82, + "end": 12641.12, + "probability": 0.9014 + }, + { + "start": 12641.58, + "end": 12642.32, + "probability": 0.7933 + }, + { + "start": 12643.08, + "end": 12646.18, + "probability": 0.9772 + }, + { + "start": 12646.7, + "end": 12647.76, + "probability": 0.8512 + }, + { + "start": 12648.56, + "end": 12650.38, + "probability": 0.7668 + }, + { + "start": 12650.5, + "end": 12651.14, + "probability": 0.9095 + }, + { + "start": 12651.52, + "end": 12654.94, + "probability": 0.9917 + }, + { + "start": 12654.94, + "end": 12658.68, + "probability": 0.9738 + }, + { + "start": 12659.16, + "end": 12659.6, + "probability": 0.4775 + }, + { + "start": 12659.96, + "end": 12661.14, + "probability": 0.8953 + }, + { + "start": 12661.5, + "end": 12663.28, + "probability": 0.9116 + }, + { + "start": 12663.6, + "end": 12664.52, + "probability": 0.99 + }, + { + "start": 12664.88, + "end": 12667.44, + "probability": 0.9832 + }, + { + "start": 12668.36, + "end": 12669.18, + "probability": 0.9608 + }, + { + "start": 12670.24, + "end": 12671.88, + "probability": 0.9793 + }, + { + "start": 12672.46, + "end": 12675.14, + "probability": 0.9813 + }, + { + "start": 12675.64, + "end": 12678.28, + "probability": 0.9929 + }, + { + "start": 12679.34, + "end": 12683.88, + "probability": 0.9918 + }, + { + "start": 12684.66, + "end": 12686.5, + "probability": 0.9196 + }, + { + "start": 12687.26, + "end": 12687.78, + "probability": 0.9333 + }, + { + "start": 12688.44, + "end": 12690.36, + "probability": 0.9976 + }, + { + "start": 12691.02, + "end": 12694.36, + "probability": 0.8868 + }, + { + "start": 12694.8, + "end": 12698.0, + "probability": 0.9823 + }, + { + "start": 12698.0, + "end": 12700.54, + "probability": 0.9862 + }, + { + "start": 12700.92, + "end": 12704.86, + "probability": 0.9969 + }, + { + "start": 12705.42, + "end": 12707.08, + "probability": 0.9345 + }, + { + "start": 12707.46, + "end": 12709.74, + "probability": 0.9696 + }, + { + "start": 12710.5, + "end": 12711.98, + "probability": 0.8012 + }, + { + "start": 12712.1, + "end": 12713.26, + "probability": 0.8714 + }, + { + "start": 12713.68, + "end": 12714.6, + "probability": 0.9263 + }, + { + "start": 12714.7, + "end": 12715.16, + "probability": 0.8503 + }, + { + "start": 12715.26, + "end": 12716.88, + "probability": 0.9818 + }, + { + "start": 12717.1, + "end": 12718.02, + "probability": 0.8125 + }, + { + "start": 12718.44, + "end": 12719.95, + "probability": 0.9867 + }, + { + "start": 12720.62, + "end": 12723.56, + "probability": 0.7539 + }, + { + "start": 12723.86, + "end": 12724.58, + "probability": 0.9221 + }, + { + "start": 12725.1, + "end": 12726.78, + "probability": 0.9329 + }, + { + "start": 12727.3, + "end": 12727.46, + "probability": 0.518 + }, + { + "start": 12728.18, + "end": 12729.44, + "probability": 0.948 + }, + { + "start": 12730.52, + "end": 12732.08, + "probability": 0.9951 + }, + { + "start": 12732.08, + "end": 12734.24, + "probability": 0.9171 + }, + { + "start": 12734.56, + "end": 12738.06, + "probability": 0.9875 + }, + { + "start": 12738.06, + "end": 12742.02, + "probability": 0.9912 + }, + { + "start": 12742.6, + "end": 12743.56, + "probability": 0.8949 + }, + { + "start": 12744.44, + "end": 12748.86, + "probability": 0.9842 + }, + { + "start": 12748.92, + "end": 12751.86, + "probability": 0.7822 + }, + { + "start": 12752.0, + "end": 12754.16, + "probability": 0.9899 + }, + { + "start": 12754.52, + "end": 12759.34, + "probability": 0.986 + }, + { + "start": 12759.9, + "end": 12763.36, + "probability": 0.8296 + }, + { + "start": 12764.78, + "end": 12765.1, + "probability": 0.5912 + }, + { + "start": 12765.42, + "end": 12769.06, + "probability": 0.9849 + }, + { + "start": 12769.06, + "end": 12769.94, + "probability": 0.9136 + }, + { + "start": 12770.2, + "end": 12770.84, + "probability": 0.76 + }, + { + "start": 12771.18, + "end": 12772.02, + "probability": 0.9355 + }, + { + "start": 12772.68, + "end": 12774.42, + "probability": 0.9284 + }, + { + "start": 12775.24, + "end": 12778.4, + "probability": 0.9771 + }, + { + "start": 12778.84, + "end": 12781.2, + "probability": 0.9928 + }, + { + "start": 12781.2, + "end": 12784.68, + "probability": 0.9878 + }, + { + "start": 12784.8, + "end": 12786.2, + "probability": 0.7942 + }, + { + "start": 12786.34, + "end": 12786.86, + "probability": 0.4144 + }, + { + "start": 12787.04, + "end": 12787.9, + "probability": 0.7725 + }, + { + "start": 12788.2, + "end": 12792.24, + "probability": 0.9575 + }, + { + "start": 12794.14, + "end": 12797.28, + "probability": 0.9888 + }, + { + "start": 12798.72, + "end": 12801.22, + "probability": 0.9746 + }, + { + "start": 12802.02, + "end": 12803.96, + "probability": 0.8166 + }, + { + "start": 12804.78, + "end": 12805.18, + "probability": 0.7103 + }, + { + "start": 12805.32, + "end": 12807.58, + "probability": 0.9071 + }, + { + "start": 12808.0, + "end": 12810.12, + "probability": 0.9971 + }, + { + "start": 12811.74, + "end": 12813.98, + "probability": 0.9795 + }, + { + "start": 12814.62, + "end": 12815.72, + "probability": 0.9929 + }, + { + "start": 12816.3, + "end": 12818.54, + "probability": 0.993 + }, + { + "start": 12818.96, + "end": 12820.38, + "probability": 0.9515 + }, + { + "start": 12821.14, + "end": 12821.46, + "probability": 0.5245 + }, + { + "start": 12821.54, + "end": 12821.9, + "probability": 0.5643 + }, + { + "start": 12822.0, + "end": 12824.78, + "probability": 0.9931 + }, + { + "start": 12825.38, + "end": 12826.14, + "probability": 0.7179 + }, + { + "start": 12827.48, + "end": 12830.3, + "probability": 0.9808 + }, + { + "start": 12830.96, + "end": 12832.96, + "probability": 0.907 + }, + { + "start": 12834.48, + "end": 12836.46, + "probability": 0.9186 + }, + { + "start": 12837.16, + "end": 12840.72, + "probability": 0.963 + }, + { + "start": 12842.2, + "end": 12842.76, + "probability": 0.8955 + }, + { + "start": 12844.28, + "end": 12846.82, + "probability": 0.9946 + }, + { + "start": 12847.42, + "end": 12851.3, + "probability": 0.9943 + }, + { + "start": 12851.78, + "end": 12856.66, + "probability": 0.9932 + }, + { + "start": 12857.34, + "end": 12860.3, + "probability": 0.7681 + }, + { + "start": 12860.7, + "end": 12864.24, + "probability": 0.9513 + }, + { + "start": 12865.0, + "end": 12867.62, + "probability": 0.9528 + }, + { + "start": 12867.62, + "end": 12871.62, + "probability": 0.9873 + }, + { + "start": 12871.76, + "end": 12872.22, + "probability": 0.9733 + }, + { + "start": 12872.32, + "end": 12872.8, + "probability": 0.9233 + }, + { + "start": 12872.92, + "end": 12873.5, + "probability": 0.8797 + }, + { + "start": 12873.56, + "end": 12874.14, + "probability": 0.534 + }, + { + "start": 12874.62, + "end": 12875.6, + "probability": 0.9837 + }, + { + "start": 12876.12, + "end": 12876.56, + "probability": 0.7924 + }, + { + "start": 12876.62, + "end": 12877.46, + "probability": 0.7345 + }, + { + "start": 12877.8, + "end": 12878.38, + "probability": 0.938 + }, + { + "start": 12878.44, + "end": 12880.28, + "probability": 0.9716 + }, + { + "start": 12880.96, + "end": 12881.82, + "probability": 0.7547 + }, + { + "start": 12882.44, + "end": 12884.66, + "probability": 0.9893 + }, + { + "start": 12885.04, + "end": 12887.26, + "probability": 0.9957 + }, + { + "start": 12887.76, + "end": 12888.3, + "probability": 0.8838 + }, + { + "start": 12888.7, + "end": 12889.5, + "probability": 0.9429 + }, + { + "start": 12890.2, + "end": 12891.94, + "probability": 0.9814 + }, + { + "start": 12892.48, + "end": 12895.28, + "probability": 0.9727 + }, + { + "start": 12895.66, + "end": 12896.86, + "probability": 0.9355 + }, + { + "start": 12897.2, + "end": 12898.42, + "probability": 0.9866 + }, + { + "start": 12898.74, + "end": 12899.54, + "probability": 0.9315 + }, + { + "start": 12899.6, + "end": 12900.18, + "probability": 0.8893 + }, + { + "start": 12900.32, + "end": 12900.96, + "probability": 0.3316 + }, + { + "start": 12901.96, + "end": 12904.08, + "probability": 0.7722 + }, + { + "start": 12904.86, + "end": 12907.98, + "probability": 0.959 + }, + { + "start": 12908.64, + "end": 12909.38, + "probability": 0.7854 + }, + { + "start": 12910.2, + "end": 12911.84, + "probability": 0.9501 + }, + { + "start": 12912.56, + "end": 12914.92, + "probability": 0.9145 + }, + { + "start": 12915.24, + "end": 12918.78, + "probability": 0.9845 + }, + { + "start": 12919.2, + "end": 12923.4, + "probability": 0.8826 + }, + { + "start": 12923.88, + "end": 12924.4, + "probability": 0.9231 + }, + { + "start": 12925.02, + "end": 12925.98, + "probability": 0.701 + }, + { + "start": 12926.44, + "end": 12929.36, + "probability": 0.9398 + }, + { + "start": 12929.94, + "end": 12931.94, + "probability": 0.9861 + }, + { + "start": 12932.06, + "end": 12932.68, + "probability": 0.7438 + }, + { + "start": 12932.8, + "end": 12934.6, + "probability": 0.8766 + }, + { + "start": 12941.0, + "end": 12944.42, + "probability": 0.8499 + }, + { + "start": 12955.78, + "end": 12958.34, + "probability": 0.5734 + }, + { + "start": 12959.96, + "end": 12960.94, + "probability": 0.8861 + }, + { + "start": 12961.68, + "end": 12966.46, + "probability": 0.9874 + }, + { + "start": 12967.5, + "end": 12968.42, + "probability": 0.4994 + }, + { + "start": 12968.76, + "end": 12973.7, + "probability": 0.9917 + }, + { + "start": 12973.74, + "end": 12974.62, + "probability": 0.594 + }, + { + "start": 12975.4, + "end": 12977.12, + "probability": 0.8916 + }, + { + "start": 12978.96, + "end": 12985.26, + "probability": 0.9645 + }, + { + "start": 12985.88, + "end": 12988.3, + "probability": 0.8746 + }, + { + "start": 12989.22, + "end": 12991.0, + "probability": 0.9336 + }, + { + "start": 12992.18, + "end": 12994.92, + "probability": 0.8129 + }, + { + "start": 12995.0, + "end": 12996.48, + "probability": 0.9751 + }, + { + "start": 12996.62, + "end": 12998.52, + "probability": 0.9763 + }, + { + "start": 12998.56, + "end": 12999.32, + "probability": 0.7426 + }, + { + "start": 12999.38, + "end": 13000.4, + "probability": 0.8672 + }, + { + "start": 13001.3, + "end": 13007.14, + "probability": 0.9604 + }, + { + "start": 13008.6, + "end": 13009.46, + "probability": 0.8434 + }, + { + "start": 13010.1, + "end": 13011.74, + "probability": 0.9214 + }, + { + "start": 13013.16, + "end": 13016.36, + "probability": 0.8138 + }, + { + "start": 13017.36, + "end": 13018.42, + "probability": 0.7858 + }, + { + "start": 13020.58, + "end": 13023.44, + "probability": 0.8733 + }, + { + "start": 13025.44, + "end": 13028.98, + "probability": 0.9323 + }, + { + "start": 13030.56, + "end": 13036.86, + "probability": 0.9593 + }, + { + "start": 13038.24, + "end": 13041.26, + "probability": 0.7901 + }, + { + "start": 13042.16, + "end": 13045.72, + "probability": 0.6723 + }, + { + "start": 13046.34, + "end": 13048.54, + "probability": 0.9676 + }, + { + "start": 13048.74, + "end": 13050.1, + "probability": 0.9946 + }, + { + "start": 13051.06, + "end": 13053.18, + "probability": 0.9937 + }, + { + "start": 13053.4, + "end": 13057.66, + "probability": 0.9815 + }, + { + "start": 13057.66, + "end": 13061.86, + "probability": 0.9984 + }, + { + "start": 13062.38, + "end": 13064.02, + "probability": 0.9936 + }, + { + "start": 13065.68, + "end": 13066.12, + "probability": 0.3763 + }, + { + "start": 13066.38, + "end": 13070.26, + "probability": 0.9954 + }, + { + "start": 13071.0, + "end": 13071.84, + "probability": 0.9605 + }, + { + "start": 13072.62, + "end": 13076.2, + "probability": 0.9652 + }, + { + "start": 13077.1, + "end": 13082.98, + "probability": 0.9918 + }, + { + "start": 13083.7, + "end": 13084.33, + "probability": 0.8596 + }, + { + "start": 13085.0, + "end": 13086.78, + "probability": 0.9194 + }, + { + "start": 13086.9, + "end": 13089.45, + "probability": 0.985 + }, + { + "start": 13090.22, + "end": 13091.58, + "probability": 0.8206 + }, + { + "start": 13092.58, + "end": 13095.32, + "probability": 0.9817 + }, + { + "start": 13095.5, + "end": 13099.32, + "probability": 0.9712 + }, + { + "start": 13099.4, + "end": 13101.42, + "probability": 0.6557 + }, + { + "start": 13102.56, + "end": 13106.22, + "probability": 0.8972 + }, + { + "start": 13107.0, + "end": 13107.84, + "probability": 0.9808 + }, + { + "start": 13108.0, + "end": 13108.56, + "probability": 0.95 + }, + { + "start": 13109.06, + "end": 13111.34, + "probability": 0.991 + }, + { + "start": 13111.4, + "end": 13113.16, + "probability": 0.8254 + }, + { + "start": 13113.78, + "end": 13116.76, + "probability": 0.6976 + }, + { + "start": 13121.04, + "end": 13124.04, + "probability": 0.7678 + }, + { + "start": 13124.22, + "end": 13128.22, + "probability": 0.8036 + }, + { + "start": 13133.3, + "end": 13133.98, + "probability": 0.6251 + }, + { + "start": 13136.68, + "end": 13137.36, + "probability": 0.7507 + }, + { + "start": 13138.09, + "end": 13140.52, + "probability": 0.7843 + }, + { + "start": 13141.86, + "end": 13142.86, + "probability": 0.7032 + }, + { + "start": 13145.4, + "end": 13148.28, + "probability": 0.06 + }, + { + "start": 13149.26, + "end": 13151.48, + "probability": 0.2416 + }, + { + "start": 13151.9, + "end": 13153.58, + "probability": 0.6968 + }, + { + "start": 13154.12, + "end": 13155.42, + "probability": 0.7209 + }, + { + "start": 13157.06, + "end": 13158.8, + "probability": 0.7275 + }, + { + "start": 13159.08, + "end": 13161.48, + "probability": 0.5803 + }, + { + "start": 13162.32, + "end": 13165.5, + "probability": 0.0442 + }, + { + "start": 13170.54, + "end": 13170.72, + "probability": 0.2628 + }, + { + "start": 13172.04, + "end": 13173.9, + "probability": 0.1494 + }, + { + "start": 13173.9, + "end": 13174.02, + "probability": 0.336 + }, + { + "start": 13174.22, + "end": 13174.46, + "probability": 0.2058 + }, + { + "start": 13174.46, + "end": 13175.72, + "probability": 0.1658 + }, + { + "start": 13176.26, + "end": 13178.34, + "probability": 0.1345 + }, + { + "start": 13178.36, + "end": 13178.36, + "probability": 0.1017 + }, + { + "start": 13181.44, + "end": 13185.42, + "probability": 0.6475 + }, + { + "start": 13186.18, + "end": 13192.96, + "probability": 0.8381 + }, + { + "start": 13193.7, + "end": 13196.26, + "probability": 0.8134 + }, + { + "start": 13196.4, + "end": 13197.06, + "probability": 0.8321 + }, + { + "start": 13197.48, + "end": 13198.7, + "probability": 0.9695 + }, + { + "start": 13198.94, + "end": 13200.4, + "probability": 0.7804 + }, + { + "start": 13200.52, + "end": 13203.48, + "probability": 0.9963 + }, + { + "start": 13204.58, + "end": 13204.66, + "probability": 0.3399 + }, + { + "start": 13204.66, + "end": 13207.74, + "probability": 0.6263 + }, + { + "start": 13207.92, + "end": 13208.06, + "probability": 0.5704 + }, + { + "start": 13208.16, + "end": 13211.0, + "probability": 0.8966 + }, + { + "start": 13211.86, + "end": 13212.42, + "probability": 0.9275 + }, + { + "start": 13212.94, + "end": 13217.56, + "probability": 0.9899 + }, + { + "start": 13218.64, + "end": 13220.46, + "probability": 0.9962 + }, + { + "start": 13221.0, + "end": 13225.74, + "probability": 0.8927 + }, + { + "start": 13226.34, + "end": 13228.56, + "probability": 0.9734 + }, + { + "start": 13229.34, + "end": 13232.38, + "probability": 0.9868 + }, + { + "start": 13233.08, + "end": 13237.1, + "probability": 0.9476 + }, + { + "start": 13237.44, + "end": 13238.9, + "probability": 0.8772 + }, + { + "start": 13239.96, + "end": 13241.16, + "probability": 0.8788 + }, + { + "start": 13241.76, + "end": 13243.96, + "probability": 0.998 + }, + { + "start": 13244.88, + "end": 13249.38, + "probability": 0.9904 + }, + { + "start": 13250.08, + "end": 13251.2, + "probability": 0.9385 + }, + { + "start": 13252.62, + "end": 13255.96, + "probability": 0.9989 + }, + { + "start": 13259.12, + "end": 13260.5, + "probability": 0.8981 + }, + { + "start": 13262.7, + "end": 13265.14, + "probability": 0.9445 + }, + { + "start": 13266.52, + "end": 13269.46, + "probability": 0.9946 + }, + { + "start": 13270.38, + "end": 13270.56, + "probability": 0.9548 + }, + { + "start": 13271.9, + "end": 13275.08, + "probability": 0.9638 + }, + { + "start": 13279.36, + "end": 13280.46, + "probability": 0.939 + }, + { + "start": 13282.86, + "end": 13285.96, + "probability": 0.9709 + }, + { + "start": 13286.5, + "end": 13287.73, + "probability": 0.5911 + }, + { + "start": 13288.3, + "end": 13289.34, + "probability": 0.8574 + }, + { + "start": 13289.68, + "end": 13295.0, + "probability": 0.9724 + }, + { + "start": 13296.4, + "end": 13297.74, + "probability": 0.9504 + }, + { + "start": 13298.4, + "end": 13299.68, + "probability": 0.9958 + }, + { + "start": 13300.38, + "end": 13301.32, + "probability": 0.8386 + }, + { + "start": 13303.58, + "end": 13306.74, + "probability": 0.8656 + }, + { + "start": 13307.62, + "end": 13309.04, + "probability": 0.9724 + }, + { + "start": 13309.64, + "end": 13310.18, + "probability": 0.7644 + }, + { + "start": 13311.4, + "end": 13312.72, + "probability": 0.9226 + }, + { + "start": 13312.76, + "end": 13313.92, + "probability": 0.9831 + }, + { + "start": 13314.28, + "end": 13315.74, + "probability": 0.9951 + }, + { + "start": 13316.74, + "end": 13317.38, + "probability": 0.9668 + }, + { + "start": 13318.28, + "end": 13319.96, + "probability": 0.8349 + }, + { + "start": 13321.22, + "end": 13323.4, + "probability": 0.7746 + }, + { + "start": 13324.56, + "end": 13327.02, + "probability": 0.9696 + }, + { + "start": 13328.14, + "end": 13328.66, + "probability": 0.9326 + }, + { + "start": 13328.74, + "end": 13332.56, + "probability": 0.9506 + }, + { + "start": 13333.78, + "end": 13336.18, + "probability": 0.787 + }, + { + "start": 13336.72, + "end": 13337.52, + "probability": 0.9289 + }, + { + "start": 13340.54, + "end": 13342.52, + "probability": 0.9966 + }, + { + "start": 13345.48, + "end": 13351.38, + "probability": 0.9635 + }, + { + "start": 13351.5, + "end": 13352.34, + "probability": 0.8395 + }, + { + "start": 13353.18, + "end": 13355.28, + "probability": 0.6175 + }, + { + "start": 13357.02, + "end": 13357.76, + "probability": 0.7029 + }, + { + "start": 13359.34, + "end": 13360.08, + "probability": 0.9642 + }, + { + "start": 13360.3, + "end": 13361.12, + "probability": 0.6959 + }, + { + "start": 13361.36, + "end": 13361.95, + "probability": 0.8964 + }, + { + "start": 13362.52, + "end": 13364.58, + "probability": 0.9808 + }, + { + "start": 13365.1, + "end": 13366.6, + "probability": 0.9966 + }, + { + "start": 13367.14, + "end": 13373.32, + "probability": 0.9805 + }, + { + "start": 13374.02, + "end": 13377.42, + "probability": 0.8493 + }, + { + "start": 13377.56, + "end": 13381.46, + "probability": 0.9232 + }, + { + "start": 13381.82, + "end": 13385.04, + "probability": 0.9777 + }, + { + "start": 13388.28, + "end": 13392.6, + "probability": 0.8482 + }, + { + "start": 13394.28, + "end": 13395.14, + "probability": 0.966 + }, + { + "start": 13395.36, + "end": 13399.3, + "probability": 0.9495 + }, + { + "start": 13400.68, + "end": 13403.46, + "probability": 0.9917 + }, + { + "start": 13404.36, + "end": 13405.06, + "probability": 0.9174 + }, + { + "start": 13406.8, + "end": 13412.42, + "probability": 0.9351 + }, + { + "start": 13412.78, + "end": 13414.44, + "probability": 0.9974 + }, + { + "start": 13414.44, + "end": 13417.36, + "probability": 0.9067 + }, + { + "start": 13417.76, + "end": 13420.28, + "probability": 0.9895 + }, + { + "start": 13421.24, + "end": 13423.5, + "probability": 0.8955 + }, + { + "start": 13423.72, + "end": 13423.72, + "probability": 0.3101 + }, + { + "start": 13423.72, + "end": 13424.3, + "probability": 0.4273 + }, + { + "start": 13424.46, + "end": 13424.96, + "probability": 0.3387 + }, + { + "start": 13425.16, + "end": 13425.86, + "probability": 0.3089 + }, + { + "start": 13428.78, + "end": 13431.76, + "probability": 0.9929 + }, + { + "start": 13432.44, + "end": 13434.28, + "probability": 0.9604 + }, + { + "start": 13434.32, + "end": 13438.02, + "probability": 0.9958 + }, + { + "start": 13438.28, + "end": 13438.6, + "probability": 0.15 + }, + { + "start": 13438.6, + "end": 13438.66, + "probability": 0.238 + }, + { + "start": 13438.66, + "end": 13439.58, + "probability": 0.1881 + }, + { + "start": 13439.8, + "end": 13443.84, + "probability": 0.6881 + }, + { + "start": 13444.02, + "end": 13447.44, + "probability": 0.9285 + }, + { + "start": 13447.54, + "end": 13448.6, + "probability": 0.8694 + }, + { + "start": 13449.08, + "end": 13450.26, + "probability": 0.0449 + }, + { + "start": 13450.26, + "end": 13450.26, + "probability": 0.0471 + }, + { + "start": 13450.44, + "end": 13452.12, + "probability": 0.7804 + }, + { + "start": 13452.58, + "end": 13455.44, + "probability": 0.9042 + }, + { + "start": 13456.34, + "end": 13459.96, + "probability": 0.9965 + }, + { + "start": 13461.14, + "end": 13463.52, + "probability": 0.8475 + }, + { + "start": 13464.0, + "end": 13464.42, + "probability": 0.7101 + }, + { + "start": 13464.84, + "end": 13465.4, + "probability": 0.9657 + }, + { + "start": 13465.44, + "end": 13466.72, + "probability": 0.8976 + }, + { + "start": 13467.16, + "end": 13468.08, + "probability": 0.8889 + }, + { + "start": 13468.42, + "end": 13468.98, + "probability": 0.8115 + }, + { + "start": 13469.5, + "end": 13471.04, + "probability": 0.9648 + }, + { + "start": 13471.6, + "end": 13472.68, + "probability": 0.8514 + }, + { + "start": 13472.84, + "end": 13473.64, + "probability": 0.716 + }, + { + "start": 13473.72, + "end": 13474.18, + "probability": 0.9561 + }, + { + "start": 13474.9, + "end": 13476.5, + "probability": 0.9598 + }, + { + "start": 13477.1, + "end": 13477.76, + "probability": 0.873 + }, + { + "start": 13479.82, + "end": 13482.24, + "probability": 0.9414 + }, + { + "start": 13482.84, + "end": 13484.3, + "probability": 0.9148 + }, + { + "start": 13484.72, + "end": 13485.4, + "probability": 0.7325 + }, + { + "start": 13485.5, + "end": 13486.38, + "probability": 0.9181 + }, + { + "start": 13486.46, + "end": 13490.8, + "probability": 0.9653 + }, + { + "start": 13490.8, + "end": 13494.92, + "probability": 0.9804 + }, + { + "start": 13495.38, + "end": 13498.56, + "probability": 0.8209 + }, + { + "start": 13499.02, + "end": 13499.38, + "probability": 0.6994 + }, + { + "start": 13499.98, + "end": 13501.3, + "probability": 0.9629 + }, + { + "start": 13501.38, + "end": 13502.94, + "probability": 0.801 + }, + { + "start": 13502.94, + "end": 13503.7, + "probability": 0.4616 + }, + { + "start": 13504.38, + "end": 13508.0, + "probability": 0.9115 + }, + { + "start": 13509.0, + "end": 13511.9, + "probability": 0.9891 + }, + { + "start": 13512.42, + "end": 13515.12, + "probability": 0.8841 + }, + { + "start": 13515.78, + "end": 13516.72, + "probability": 0.9515 + }, + { + "start": 13517.18, + "end": 13518.44, + "probability": 0.7705 + }, + { + "start": 13518.64, + "end": 13523.96, + "probability": 0.9893 + }, + { + "start": 13524.3, + "end": 13525.84, + "probability": 0.7646 + }, + { + "start": 13525.94, + "end": 13526.68, + "probability": 0.928 + }, + { + "start": 13527.04, + "end": 13527.36, + "probability": 0.707 + }, + { + "start": 13527.84, + "end": 13529.7, + "probability": 0.988 + }, + { + "start": 13529.74, + "end": 13532.66, + "probability": 0.9722 + }, + { + "start": 13533.4, + "end": 13534.4, + "probability": 0.9658 + }, + { + "start": 13535.6, + "end": 13537.28, + "probability": 0.8774 + }, + { + "start": 13538.28, + "end": 13541.2, + "probability": 0.9946 + }, + { + "start": 13541.92, + "end": 13545.8, + "probability": 0.9607 + }, + { + "start": 13546.74, + "end": 13547.64, + "probability": 0.9834 + }, + { + "start": 13547.8, + "end": 13553.4, + "probability": 0.9773 + }, + { + "start": 13554.08, + "end": 13556.03, + "probability": 0.6293 + }, + { + "start": 13557.86, + "end": 13562.62, + "probability": 0.854 + }, + { + "start": 13562.9, + "end": 13564.98, + "probability": 0.9458 + }, + { + "start": 13564.98, + "end": 13567.7, + "probability": 0.9941 + }, + { + "start": 13567.88, + "end": 13569.67, + "probability": 0.8556 + }, + { + "start": 13570.66, + "end": 13572.66, + "probability": 0.6712 + }, + { + "start": 13572.72, + "end": 13574.18, + "probability": 0.9042 + }, + { + "start": 13574.44, + "end": 13575.48, + "probability": 0.8054 + }, + { + "start": 13576.54, + "end": 13577.76, + "probability": 0.7885 + }, + { + "start": 13578.02, + "end": 13579.3, + "probability": 0.9149 + }, + { + "start": 13579.38, + "end": 13580.38, + "probability": 0.8045 + }, + { + "start": 13580.48, + "end": 13581.23, + "probability": 0.9569 + }, + { + "start": 13582.14, + "end": 13582.68, + "probability": 0.7573 + }, + { + "start": 13582.82, + "end": 13583.86, + "probability": 0.6858 + }, + { + "start": 13584.36, + "end": 13588.7, + "probability": 0.9795 + }, + { + "start": 13588.9, + "end": 13589.92, + "probability": 0.9274 + }, + { + "start": 13590.0, + "end": 13590.88, + "probability": 0.914 + }, + { + "start": 13592.48, + "end": 13594.02, + "probability": 0.9854 + }, + { + "start": 13594.7, + "end": 13598.02, + "probability": 0.9862 + }, + { + "start": 13598.32, + "end": 13599.2, + "probability": 0.2799 + }, + { + "start": 13599.24, + "end": 13599.98, + "probability": 0.6161 + }, + { + "start": 13600.24, + "end": 13601.32, + "probability": 0.9187 + }, + { + "start": 13601.6, + "end": 13602.74, + "probability": 0.6738 + }, + { + "start": 13602.84, + "end": 13603.34, + "probability": 0.7617 + }, + { + "start": 13603.82, + "end": 13604.47, + "probability": 0.8594 + }, + { + "start": 13604.7, + "end": 13605.56, + "probability": 0.9181 + }, + { + "start": 13605.64, + "end": 13608.2, + "probability": 0.9462 + }, + { + "start": 13608.32, + "end": 13610.2, + "probability": 0.9387 + }, + { + "start": 13610.66, + "end": 13613.2, + "probability": 0.9917 + }, + { + "start": 13613.72, + "end": 13619.32, + "probability": 0.9836 + }, + { + "start": 13619.68, + "end": 13622.38, + "probability": 0.9636 + }, + { + "start": 13622.74, + "end": 13626.22, + "probability": 0.8816 + }, + { + "start": 13627.7, + "end": 13629.54, + "probability": 0.6585 + }, + { + "start": 13629.9, + "end": 13630.62, + "probability": 0.5902 + }, + { + "start": 13630.72, + "end": 13631.74, + "probability": 0.9084 + }, + { + "start": 13631.84, + "end": 13632.12, + "probability": 0.8582 + }, + { + "start": 13632.2, + "end": 13634.32, + "probability": 0.994 + }, + { + "start": 13634.46, + "end": 13635.48, + "probability": 0.9474 + }, + { + "start": 13635.58, + "end": 13639.74, + "probability": 0.9823 + }, + { + "start": 13639.78, + "end": 13641.96, + "probability": 0.9893 + }, + { + "start": 13642.4, + "end": 13643.8, + "probability": 0.9603 + }, + { + "start": 13643.98, + "end": 13645.78, + "probability": 0.9482 + }, + { + "start": 13645.82, + "end": 13648.3, + "probability": 0.9854 + }, + { + "start": 13648.5, + "end": 13649.13, + "probability": 0.8755 + }, + { + "start": 13649.4, + "end": 13652.14, + "probability": 0.9892 + }, + { + "start": 13652.14, + "end": 13655.98, + "probability": 0.9378 + }, + { + "start": 13656.3, + "end": 13657.92, + "probability": 0.8606 + }, + { + "start": 13657.98, + "end": 13659.54, + "probability": 0.6962 + }, + { + "start": 13659.92, + "end": 13661.4, + "probability": 0.9945 + }, + { + "start": 13664.36, + "end": 13665.3, + "probability": 0.9155 + }, + { + "start": 13666.24, + "end": 13667.7, + "probability": 0.9963 + }, + { + "start": 13668.52, + "end": 13669.64, + "probability": 0.6026 + }, + { + "start": 13671.12, + "end": 13672.48, + "probability": 0.9863 + }, + { + "start": 13673.78, + "end": 13675.0, + "probability": 0.9845 + }, + { + "start": 13676.56, + "end": 13677.18, + "probability": 0.5114 + }, + { + "start": 13677.24, + "end": 13677.24, + "probability": 0.6115 + }, + { + "start": 13677.34, + "end": 13678.25, + "probability": 0.917 + }, + { + "start": 13678.71, + "end": 13681.8, + "probability": 0.9943 + }, + { + "start": 13682.86, + "end": 13686.46, + "probability": 0.9871 + }, + { + "start": 13687.56, + "end": 13690.12, + "probability": 0.9085 + }, + { + "start": 13690.76, + "end": 13691.62, + "probability": 0.9305 + }, + { + "start": 13692.06, + "end": 13692.82, + "probability": 0.7937 + }, + { + "start": 13692.94, + "end": 13694.12, + "probability": 0.7898 + }, + { + "start": 13694.36, + "end": 13694.8, + "probability": 0.493 + }, + { + "start": 13694.82, + "end": 13695.36, + "probability": 0.8177 + }, + { + "start": 13696.08, + "end": 13697.68, + "probability": 0.9458 + }, + { + "start": 13698.16, + "end": 13699.74, + "probability": 0.9676 + }, + { + "start": 13700.04, + "end": 13702.5, + "probability": 0.8991 + }, + { + "start": 13702.92, + "end": 13708.52, + "probability": 0.9735 + }, + { + "start": 13708.7, + "end": 13710.46, + "probability": 0.8711 + }, + { + "start": 13710.7, + "end": 13711.14, + "probability": 0.706 + }, + { + "start": 13711.2, + "end": 13712.68, + "probability": 0.8877 + }, + { + "start": 13713.52, + "end": 13715.24, + "probability": 0.7949 + }, + { + "start": 13715.34, + "end": 13715.87, + "probability": 0.9478 + }, + { + "start": 13716.26, + "end": 13717.84, + "probability": 0.9871 + }, + { + "start": 13718.24, + "end": 13718.84, + "probability": 0.8332 + }, + { + "start": 13719.08, + "end": 13719.52, + "probability": 0.7962 + }, + { + "start": 13719.94, + "end": 13722.96, + "probability": 0.9835 + }, + { + "start": 13723.42, + "end": 13727.28, + "probability": 0.9854 + }, + { + "start": 13728.0, + "end": 13730.86, + "probability": 0.9438 + }, + { + "start": 13731.18, + "end": 13734.16, + "probability": 0.9781 + }, + { + "start": 13734.44, + "end": 13736.55, + "probability": 0.9736 + }, + { + "start": 13736.96, + "end": 13739.2, + "probability": 0.9933 + }, + { + "start": 13739.6, + "end": 13742.3, + "probability": 0.9774 + }, + { + "start": 13742.72, + "end": 13743.78, + "probability": 0.9276 + }, + { + "start": 13743.94, + "end": 13745.56, + "probability": 0.9636 + }, + { + "start": 13745.74, + "end": 13746.8, + "probability": 0.8459 + }, + { + "start": 13747.26, + "end": 13747.8, + "probability": 0.8599 + }, + { + "start": 13748.08, + "end": 13749.74, + "probability": 0.9606 + }, + { + "start": 13750.68, + "end": 13751.65, + "probability": 0.7452 + }, + { + "start": 13752.32, + "end": 13753.82, + "probability": 0.8843 + }, + { + "start": 13754.52, + "end": 13756.5, + "probability": 0.9983 + }, + { + "start": 13756.92, + "end": 13762.46, + "probability": 0.9976 + }, + { + "start": 13762.5, + "end": 13764.72, + "probability": 0.9253 + }, + { + "start": 13765.08, + "end": 13769.62, + "probability": 0.9554 + }, + { + "start": 13769.94, + "end": 13771.56, + "probability": 0.9279 + }, + { + "start": 13771.88, + "end": 13773.26, + "probability": 0.9589 + }, + { + "start": 13773.32, + "end": 13774.1, + "probability": 0.9738 + }, + { + "start": 13774.52, + "end": 13775.16, + "probability": 0.6301 + }, + { + "start": 13775.74, + "end": 13776.52, + "probability": 0.942 + }, + { + "start": 13781.64, + "end": 13782.4, + "probability": 0.3998 + }, + { + "start": 13783.02, + "end": 13787.1, + "probability": 0.9907 + }, + { + "start": 13787.48, + "end": 13788.67, + "probability": 0.9106 + }, + { + "start": 13789.84, + "end": 13792.46, + "probability": 0.6732 + }, + { + "start": 13793.9, + "end": 13798.18, + "probability": 0.9438 + }, + { + "start": 13798.26, + "end": 13801.02, + "probability": 0.6577 + }, + { + "start": 13801.68, + "end": 13804.07, + "probability": 0.9029 + }, + { + "start": 13804.48, + "end": 13805.48, + "probability": 0.5 + }, + { + "start": 13807.04, + "end": 13809.6, + "probability": 0.7292 + }, + { + "start": 13809.88, + "end": 13811.3, + "probability": 0.96 + }, + { + "start": 13811.4, + "end": 13811.97, + "probability": 0.9647 + }, + { + "start": 13812.8, + "end": 13813.64, + "probability": 0.9272 + }, + { + "start": 13813.92, + "end": 13814.9, + "probability": 0.8287 + }, + { + "start": 13815.4, + "end": 13816.74, + "probability": 0.8369 + }, + { + "start": 13817.3, + "end": 13818.8, + "probability": 0.6022 + }, + { + "start": 13819.3, + "end": 13821.34, + "probability": 0.9808 + }, + { + "start": 13821.74, + "end": 13824.82, + "probability": 0.9878 + }, + { + "start": 13825.6, + "end": 13829.11, + "probability": 0.917 + }, + { + "start": 13829.24, + "end": 13832.3, + "probability": 0.9708 + }, + { + "start": 13832.8, + "end": 13833.32, + "probability": 0.6311 + }, + { + "start": 13834.06, + "end": 13835.3, + "probability": 0.6471 + }, + { + "start": 13835.76, + "end": 13842.3, + "probability": 0.8931 + }, + { + "start": 13842.34, + "end": 13843.9, + "probability": 0.9552 + }, + { + "start": 13844.12, + "end": 13845.08, + "probability": 0.6761 + }, + { + "start": 13845.48, + "end": 13846.56, + "probability": 0.8906 + }, + { + "start": 13846.76, + "end": 13847.5, + "probability": 0.8999 + }, + { + "start": 13847.8, + "end": 13851.12, + "probability": 0.9622 + }, + { + "start": 13851.94, + "end": 13852.74, + "probability": 0.5878 + }, + { + "start": 13853.44, + "end": 13856.32, + "probability": 0.8472 + }, + { + "start": 13856.64, + "end": 13860.2, + "probability": 0.9749 + }, + { + "start": 13861.04, + "end": 13861.96, + "probability": 0.5272 + }, + { + "start": 13866.92, + "end": 13869.88, + "probability": 0.9759 + }, + { + "start": 13869.98, + "end": 13874.08, + "probability": 0.9544 + }, + { + "start": 13875.56, + "end": 13877.18, + "probability": 0.656 + }, + { + "start": 13877.74, + "end": 13879.3, + "probability": 0.6567 + }, + { + "start": 13879.5, + "end": 13880.28, + "probability": 0.8486 + }, + { + "start": 13888.44, + "end": 13891.02, + "probability": 0.7373 + }, + { + "start": 13893.0, + "end": 13897.4, + "probability": 0.9073 + }, + { + "start": 13898.16, + "end": 13903.26, + "probability": 0.9883 + }, + { + "start": 13903.8, + "end": 13904.58, + "probability": 0.9318 + }, + { + "start": 13905.12, + "end": 13907.86, + "probability": 0.895 + }, + { + "start": 13908.48, + "end": 13909.9, + "probability": 0.7604 + }, + { + "start": 13910.44, + "end": 13912.32, + "probability": 0.8858 + }, + { + "start": 13912.48, + "end": 13914.16, + "probability": 0.9873 + }, + { + "start": 13914.42, + "end": 13918.0, + "probability": 0.9567 + }, + { + "start": 13918.0, + "end": 13921.06, + "probability": 0.9799 + }, + { + "start": 13921.66, + "end": 13921.76, + "probability": 0.6214 + }, + { + "start": 13922.64, + "end": 13923.86, + "probability": 0.793 + }, + { + "start": 13923.96, + "end": 13927.02, + "probability": 0.9732 + }, + { + "start": 13927.06, + "end": 13930.92, + "probability": 0.9365 + }, + { + "start": 13930.98, + "end": 13931.52, + "probability": 0.9556 + }, + { + "start": 13931.66, + "end": 13934.22, + "probability": 0.914 + }, + { + "start": 13935.0, + "end": 13935.9, + "probability": 0.9834 + }, + { + "start": 13936.04, + "end": 13938.42, + "probability": 0.9701 + }, + { + "start": 13938.42, + "end": 13945.66, + "probability": 0.9788 + }, + { + "start": 13946.56, + "end": 13949.26, + "probability": 0.9561 + }, + { + "start": 13950.3, + "end": 13952.16, + "probability": 0.9539 + }, + { + "start": 13952.38, + "end": 13953.44, + "probability": 0.9175 + }, + { + "start": 13953.96, + "end": 13956.4, + "probability": 0.9745 + }, + { + "start": 13956.54, + "end": 13957.8, + "probability": 0.8204 + }, + { + "start": 13958.14, + "end": 13961.44, + "probability": 0.9644 + }, + { + "start": 13961.84, + "end": 13964.74, + "probability": 0.9661 + }, + { + "start": 13964.9, + "end": 13965.58, + "probability": 0.9175 + }, + { + "start": 13965.86, + "end": 13967.24, + "probability": 0.9884 + }, + { + "start": 13968.26, + "end": 13969.98, + "probability": 0.9741 + }, + { + "start": 13970.64, + "end": 13975.84, + "probability": 0.9968 + }, + { + "start": 13976.98, + "end": 13981.2, + "probability": 0.7851 + }, + { + "start": 13982.04, + "end": 13983.78, + "probability": 0.9827 + }, + { + "start": 13984.76, + "end": 13987.18, + "probability": 0.9974 + }, + { + "start": 13987.96, + "end": 13990.2, + "probability": 0.8823 + }, + { + "start": 13990.8, + "end": 13993.8, + "probability": 0.9543 + }, + { + "start": 13994.22, + "end": 13996.48, + "probability": 0.8322 + }, + { + "start": 13996.54, + "end": 14003.98, + "probability": 0.9925 + }, + { + "start": 14004.32, + "end": 14008.57, + "probability": 0.8221 + }, + { + "start": 14009.08, + "end": 14011.22, + "probability": 0.7312 + }, + { + "start": 14011.42, + "end": 14012.18, + "probability": 0.7835 + }, + { + "start": 14012.3, + "end": 14013.36, + "probability": 0.8838 + }, + { + "start": 14014.34, + "end": 14015.46, + "probability": 0.906 + }, + { + "start": 14016.16, + "end": 14017.04, + "probability": 0.9677 + }, + { + "start": 14017.12, + "end": 14018.88, + "probability": 0.8964 + }, + { + "start": 14019.04, + "end": 14022.58, + "probability": 0.9672 + }, + { + "start": 14025.12, + "end": 14027.72, + "probability": 0.9853 + }, + { + "start": 14027.86, + "end": 14029.74, + "probability": 0.8302 + }, + { + "start": 14030.48, + "end": 14033.48, + "probability": 0.9992 + }, + { + "start": 14033.48, + "end": 14036.02, + "probability": 0.9969 + }, + { + "start": 14036.98, + "end": 14038.16, + "probability": 0.5406 + }, + { + "start": 14039.32, + "end": 14040.24, + "probability": 0.9868 + }, + { + "start": 14040.34, + "end": 14043.4, + "probability": 0.9901 + }, + { + "start": 14044.4, + "end": 14045.7, + "probability": 0.9201 + }, + { + "start": 14045.8, + "end": 14047.5, + "probability": 0.9754 + }, + { + "start": 14047.62, + "end": 14050.06, + "probability": 0.9482 + }, + { + "start": 14050.8, + "end": 14053.38, + "probability": 0.9423 + }, + { + "start": 14054.3, + "end": 14057.6, + "probability": 0.9883 + }, + { + "start": 14058.46, + "end": 14062.68, + "probability": 0.9818 + }, + { + "start": 14063.38, + "end": 14064.6, + "probability": 0.7398 + }, + { + "start": 14064.68, + "end": 14069.1, + "probability": 0.9808 + }, + { + "start": 14069.86, + "end": 14070.92, + "probability": 0.5735 + }, + { + "start": 14070.98, + "end": 14071.54, + "probability": 0.5385 + }, + { + "start": 14071.6, + "end": 14072.68, + "probability": 0.8777 + }, + { + "start": 14072.86, + "end": 14075.9, + "probability": 0.9352 + }, + { + "start": 14076.26, + "end": 14077.76, + "probability": 0.9629 + }, + { + "start": 14077.8, + "end": 14078.86, + "probability": 0.8142 + }, + { + "start": 14078.86, + "end": 14079.92, + "probability": 0.9095 + }, + { + "start": 14080.2, + "end": 14080.97, + "probability": 0.8641 + }, + { + "start": 14081.14, + "end": 14082.18, + "probability": 0.8058 + }, + { + "start": 14082.3, + "end": 14083.04, + "probability": 0.9509 + }, + { + "start": 14083.06, + "end": 14084.32, + "probability": 0.9536 + }, + { + "start": 14085.06, + "end": 14085.28, + "probability": 0.1052 + }, + { + "start": 14085.28, + "end": 14088.84, + "probability": 0.985 + }, + { + "start": 14088.9, + "end": 14090.96, + "probability": 0.7206 + }, + { + "start": 14091.1, + "end": 14091.8, + "probability": 0.9215 + }, + { + "start": 14092.0, + "end": 14096.13, + "probability": 0.8909 + }, + { + "start": 14096.38, + "end": 14097.32, + "probability": 0.9535 + }, + { + "start": 14097.38, + "end": 14098.0, + "probability": 0.9487 + }, + { + "start": 14098.2, + "end": 14099.22, + "probability": 0.7927 + }, + { + "start": 14099.7, + "end": 14101.48, + "probability": 0.9933 + }, + { + "start": 14102.94, + "end": 14103.66, + "probability": 0.8793 + }, + { + "start": 14104.74, + "end": 14107.0, + "probability": 0.9585 + }, + { + "start": 14109.04, + "end": 14109.98, + "probability": 0.9696 + }, + { + "start": 14110.1, + "end": 14114.44, + "probability": 0.8994 + }, + { + "start": 14114.72, + "end": 14116.9, + "probability": 0.9905 + }, + { + "start": 14117.44, + "end": 14118.26, + "probability": 0.9376 + }, + { + "start": 14118.9, + "end": 14121.32, + "probability": 0.958 + }, + { + "start": 14121.34, + "end": 14124.7, + "probability": 0.9958 + }, + { + "start": 14125.52, + "end": 14126.72, + "probability": 0.7735 + }, + { + "start": 14127.38, + "end": 14128.32, + "probability": 0.8867 + }, + { + "start": 14128.44, + "end": 14129.67, + "probability": 0.9941 + }, + { + "start": 14129.86, + "end": 14131.7, + "probability": 0.9539 + }, + { + "start": 14132.1, + "end": 14134.22, + "probability": 0.8768 + }, + { + "start": 14134.86, + "end": 14140.12, + "probability": 0.8362 + }, + { + "start": 14140.82, + "end": 14143.24, + "probability": 0.9954 + }, + { + "start": 14143.68, + "end": 14145.1, + "probability": 0.8659 + }, + { + "start": 14145.66, + "end": 14152.16, + "probability": 0.9527 + }, + { + "start": 14153.02, + "end": 14157.5, + "probability": 0.9947 + }, + { + "start": 14157.5, + "end": 14160.78, + "probability": 0.8866 + }, + { + "start": 14161.4, + "end": 14165.48, + "probability": 0.9683 + }, + { + "start": 14166.22, + "end": 14171.0, + "probability": 0.8464 + }, + { + "start": 14171.7, + "end": 14173.72, + "probability": 0.9844 + }, + { + "start": 14173.72, + "end": 14176.56, + "probability": 0.9221 + }, + { + "start": 14177.46, + "end": 14181.38, + "probability": 0.9425 + }, + { + "start": 14181.98, + "end": 14183.68, + "probability": 0.9838 + }, + { + "start": 14184.62, + "end": 14187.06, + "probability": 0.9535 + }, + { + "start": 14187.94, + "end": 14190.18, + "probability": 0.9602 + }, + { + "start": 14190.98, + "end": 14192.4, + "probability": 0.9404 + }, + { + "start": 14192.5, + "end": 14196.44, + "probability": 0.8253 + }, + { + "start": 14196.78, + "end": 14198.12, + "probability": 0.9438 + }, + { + "start": 14198.88, + "end": 14202.68, + "probability": 0.9746 + }, + { + "start": 14202.84, + "end": 14203.76, + "probability": 0.6591 + }, + { + "start": 14204.22, + "end": 14208.32, + "probability": 0.9965 + }, + { + "start": 14208.88, + "end": 14210.5, + "probability": 0.9915 + }, + { + "start": 14212.82, + "end": 14214.86, + "probability": 0.7794 + }, + { + "start": 14214.9, + "end": 14218.6, + "probability": 0.9928 + }, + { + "start": 14219.26, + "end": 14220.54, + "probability": 0.9998 + }, + { + "start": 14221.92, + "end": 14225.3, + "probability": 0.9955 + }, + { + "start": 14226.6, + "end": 14229.14, + "probability": 0.9987 + }, + { + "start": 14229.82, + "end": 14230.92, + "probability": 0.5 + }, + { + "start": 14231.16, + "end": 14232.3, + "probability": 0.8769 + }, + { + "start": 14232.72, + "end": 14234.02, + "probability": 0.7942 + }, + { + "start": 14234.36, + "end": 14236.3, + "probability": 0.9868 + }, + { + "start": 14236.3, + "end": 14238.94, + "probability": 0.998 + }, + { + "start": 14239.48, + "end": 14240.42, + "probability": 0.4939 + }, + { + "start": 14242.38, + "end": 14246.22, + "probability": 0.9829 + }, + { + "start": 14247.14, + "end": 14254.28, + "probability": 0.9834 + }, + { + "start": 14255.16, + "end": 14256.78, + "probability": 0.9334 + }, + { + "start": 14257.5, + "end": 14259.02, + "probability": 0.9723 + }, + { + "start": 14259.76, + "end": 14261.56, + "probability": 0.978 + }, + { + "start": 14261.62, + "end": 14262.48, + "probability": 0.8538 + }, + { + "start": 14262.98, + "end": 14264.9, + "probability": 0.9928 + }, + { + "start": 14265.88, + "end": 14269.56, + "probability": 0.9845 + }, + { + "start": 14269.62, + "end": 14270.94, + "probability": 0.8669 + }, + { + "start": 14271.18, + "end": 14276.48, + "probability": 0.9727 + }, + { + "start": 14277.18, + "end": 14280.7, + "probability": 0.9983 + }, + { + "start": 14281.48, + "end": 14284.86, + "probability": 0.9874 + }, + { + "start": 14285.44, + "end": 14287.0, + "probability": 0.8982 + }, + { + "start": 14287.52, + "end": 14289.72, + "probability": 0.9832 + }, + { + "start": 14289.72, + "end": 14292.56, + "probability": 0.9933 + }, + { + "start": 14293.3, + "end": 14295.86, + "probability": 0.9893 + }, + { + "start": 14296.42, + "end": 14300.4, + "probability": 0.996 + }, + { + "start": 14301.12, + "end": 14302.52, + "probability": 0.8671 + }, + { + "start": 14302.94, + "end": 14306.6, + "probability": 0.9971 + }, + { + "start": 14307.4, + "end": 14308.66, + "probability": 0.7361 + }, + { + "start": 14309.34, + "end": 14310.22, + "probability": 0.9218 + }, + { + "start": 14310.32, + "end": 14314.12, + "probability": 0.9599 + }, + { + "start": 14314.28, + "end": 14315.28, + "probability": 0.7697 + }, + { + "start": 14315.72, + "end": 14319.62, + "probability": 0.9798 + }, + { + "start": 14320.1, + "end": 14322.82, + "probability": 0.7013 + }, + { + "start": 14323.58, + "end": 14325.38, + "probability": 0.9614 + }, + { + "start": 14325.84, + "end": 14329.5, + "probability": 0.9905 + }, + { + "start": 14330.22, + "end": 14331.26, + "probability": 0.4114 + }, + { + "start": 14331.38, + "end": 14334.36, + "probability": 0.6277 + }, + { + "start": 14334.42, + "end": 14336.24, + "probability": 0.877 + }, + { + "start": 14336.34, + "end": 14338.6, + "probability": 0.983 + }, + { + "start": 14339.52, + "end": 14341.21, + "probability": 0.7974 + }, + { + "start": 14342.14, + "end": 14343.94, + "probability": 0.9336 + }, + { + "start": 14344.1, + "end": 14345.6, + "probability": 0.8206 + }, + { + "start": 14346.02, + "end": 14347.56, + "probability": 0.5796 + }, + { + "start": 14348.56, + "end": 14351.32, + "probability": 0.9507 + }, + { + "start": 14351.58, + "end": 14354.08, + "probability": 0.978 + }, + { + "start": 14354.72, + "end": 14358.98, + "probability": 0.9889 + }, + { + "start": 14359.62, + "end": 14362.64, + "probability": 0.9463 + }, + { + "start": 14363.4, + "end": 14366.36, + "probability": 0.974 + }, + { + "start": 14366.98, + "end": 14367.06, + "probability": 0.3343 + }, + { + "start": 14367.08, + "end": 14368.28, + "probability": 0.7537 + }, + { + "start": 14368.28, + "end": 14368.88, + "probability": 0.5557 + }, + { + "start": 14368.98, + "end": 14369.86, + "probability": 0.7935 + }, + { + "start": 14370.34, + "end": 14371.7, + "probability": 0.9568 + }, + { + "start": 14371.7, + "end": 14372.34, + "probability": 0.8666 + }, + { + "start": 14372.46, + "end": 14374.28, + "probability": 0.9855 + }, + { + "start": 14374.86, + "end": 14376.6, + "probability": 0.9883 + }, + { + "start": 14376.62, + "end": 14377.06, + "probability": 0.7389 + }, + { + "start": 14377.54, + "end": 14379.7, + "probability": 0.9712 + }, + { + "start": 14379.76, + "end": 14382.3, + "probability": 0.9832 + }, + { + "start": 14382.54, + "end": 14384.0, + "probability": 0.79 + }, + { + "start": 14384.44, + "end": 14389.1, + "probability": 0.8902 + }, + { + "start": 14390.8, + "end": 14392.48, + "probability": 0.3261 + }, + { + "start": 14393.72, + "end": 14395.26, + "probability": 0.0792 + }, + { + "start": 14397.8, + "end": 14399.76, + "probability": 0.7549 + }, + { + "start": 14399.76, + "end": 14401.9, + "probability": 0.7703 + }, + { + "start": 14402.24, + "end": 14402.86, + "probability": 0.979 + }, + { + "start": 14405.22, + "end": 14407.3, + "probability": 0.857 + }, + { + "start": 14407.86, + "end": 14409.32, + "probability": 0.7668 + }, + { + "start": 14410.6, + "end": 14416.12, + "probability": 0.9797 + }, + { + "start": 14417.1, + "end": 14418.42, + "probability": 0.8948 + }, + { + "start": 14419.5, + "end": 14420.64, + "probability": 0.9919 + }, + { + "start": 14421.7, + "end": 14423.62, + "probability": 0.8076 + }, + { + "start": 14424.02, + "end": 14425.82, + "probability": 0.9808 + }, + { + "start": 14426.56, + "end": 14432.5, + "probability": 0.9935 + }, + { + "start": 14433.54, + "end": 14436.32, + "probability": 0.9769 + }, + { + "start": 14438.28, + "end": 14438.9, + "probability": 0.9023 + }, + { + "start": 14440.32, + "end": 14440.6, + "probability": 0.5197 + }, + { + "start": 14440.66, + "end": 14442.92, + "probability": 0.9557 + }, + { + "start": 14443.38, + "end": 14445.1, + "probability": 0.8325 + }, + { + "start": 14445.4, + "end": 14450.18, + "probability": 0.5113 + }, + { + "start": 14450.64, + "end": 14454.1, + "probability": 0.9673 + }, + { + "start": 14454.48, + "end": 14454.78, + "probability": 0.4423 + }, + { + "start": 14454.92, + "end": 14455.68, + "probability": 0.624 + }, + { + "start": 14456.2, + "end": 14457.16, + "probability": 0.9157 + }, + { + "start": 14459.14, + "end": 14460.78, + "probability": 0.9984 + }, + { + "start": 14461.44, + "end": 14464.82, + "probability": 0.9961 + }, + { + "start": 14464.82, + "end": 14469.64, + "probability": 0.9896 + }, + { + "start": 14470.66, + "end": 14471.82, + "probability": 0.9272 + }, + { + "start": 14472.46, + "end": 14475.64, + "probability": 0.8501 + }, + { + "start": 14477.08, + "end": 14477.68, + "probability": 0.8851 + }, + { + "start": 14477.72, + "end": 14480.6, + "probability": 0.9366 + }, + { + "start": 14480.6, + "end": 14483.3, + "probability": 0.9988 + }, + { + "start": 14484.78, + "end": 14485.54, + "probability": 0.6638 + }, + { + "start": 14486.62, + "end": 14487.56, + "probability": 0.9347 + }, + { + "start": 14488.4, + "end": 14490.34, + "probability": 0.9785 + }, + { + "start": 14492.26, + "end": 14493.46, + "probability": 0.9932 + }, + { + "start": 14494.22, + "end": 14494.9, + "probability": 0.9673 + }, + { + "start": 14497.18, + "end": 14497.82, + "probability": 0.9339 + }, + { + "start": 14497.9, + "end": 14498.46, + "probability": 0.5821 + }, + { + "start": 14498.5, + "end": 14500.87, + "probability": 0.8868 + }, + { + "start": 14501.04, + "end": 14505.26, + "probability": 0.965 + }, + { + "start": 14505.98, + "end": 14510.44, + "probability": 0.9108 + }, + { + "start": 14511.38, + "end": 14512.64, + "probability": 0.9451 + }, + { + "start": 14512.9, + "end": 14514.14, + "probability": 0.9512 + }, + { + "start": 14514.58, + "end": 14516.56, + "probability": 0.9203 + }, + { + "start": 14517.72, + "end": 14520.58, + "probability": 0.9131 + }, + { + "start": 14521.78, + "end": 14522.34, + "probability": 0.8286 + }, + { + "start": 14523.28, + "end": 14524.04, + "probability": 0.9844 + }, + { + "start": 14524.56, + "end": 14525.5, + "probability": 0.0121 + }, + { + "start": 14526.74, + "end": 14528.8, + "probability": 0.8855 + }, + { + "start": 14530.18, + "end": 14533.56, + "probability": 0.999 + }, + { + "start": 14534.54, + "end": 14535.42, + "probability": 0.8584 + }, + { + "start": 14535.72, + "end": 14536.72, + "probability": 0.9873 + }, + { + "start": 14536.88, + "end": 14537.38, + "probability": 0.9443 + }, + { + "start": 14537.88, + "end": 14538.86, + "probability": 0.9619 + }, + { + "start": 14539.48, + "end": 14541.72, + "probability": 0.7354 + }, + { + "start": 14542.64, + "end": 14546.6, + "probability": 0.9958 + }, + { + "start": 14547.28, + "end": 14551.14, + "probability": 0.9927 + }, + { + "start": 14551.88, + "end": 14552.96, + "probability": 0.9746 + }, + { + "start": 14554.7, + "end": 14556.5, + "probability": 0.6763 + }, + { + "start": 14556.62, + "end": 14557.56, + "probability": 0.8852 + }, + { + "start": 14558.54, + "end": 14560.22, + "probability": 0.9133 + }, + { + "start": 14560.82, + "end": 14562.7, + "probability": 0.5731 + }, + { + "start": 14564.06, + "end": 14565.94, + "probability": 0.9958 + }, + { + "start": 14566.34, + "end": 14567.48, + "probability": 0.9014 + }, + { + "start": 14567.62, + "end": 14569.18, + "probability": 0.8685 + }, + { + "start": 14569.5, + "end": 14572.1, + "probability": 0.9757 + }, + { + "start": 14572.2, + "end": 14572.78, + "probability": 0.9196 + }, + { + "start": 14573.4, + "end": 14575.0, + "probability": 0.8722 + }, + { + "start": 14575.24, + "end": 14576.42, + "probability": 0.9768 + }, + { + "start": 14576.9, + "end": 14578.04, + "probability": 0.9912 + }, + { + "start": 14579.28, + "end": 14582.54, + "probability": 0.8706 + }, + { + "start": 14584.02, + "end": 14587.02, + "probability": 0.899 + }, + { + "start": 14587.54, + "end": 14590.82, + "probability": 0.835 + }, + { + "start": 14591.84, + "end": 14592.46, + "probability": 0.6141 + }, + { + "start": 14592.48, + "end": 14592.78, + "probability": 0.6687 + }, + { + "start": 14592.96, + "end": 14597.46, + "probability": 0.999 + }, + { + "start": 14598.04, + "end": 14599.96, + "probability": 0.9309 + }, + { + "start": 14600.38, + "end": 14603.74, + "probability": 0.9868 + }, + { + "start": 14605.08, + "end": 14606.06, + "probability": 0.9731 + }, + { + "start": 14606.14, + "end": 14606.84, + "probability": 0.654 + }, + { + "start": 14606.92, + "end": 14612.1, + "probability": 0.9656 + }, + { + "start": 14612.86, + "end": 14613.66, + "probability": 0.6327 + }, + { + "start": 14614.26, + "end": 14616.63, + "probability": 0.8842 + }, + { + "start": 14617.12, + "end": 14620.68, + "probability": 0.9746 + }, + { + "start": 14620.8, + "end": 14621.46, + "probability": 0.512 + }, + { + "start": 14622.74, + "end": 14624.68, + "probability": 0.9748 + }, + { + "start": 14624.72, + "end": 14628.06, + "probability": 0.8758 + }, + { + "start": 14628.12, + "end": 14629.2, + "probability": 0.8496 + }, + { + "start": 14629.84, + "end": 14630.9, + "probability": 0.9843 + }, + { + "start": 14632.32, + "end": 14634.92, + "probability": 0.9248 + }, + { + "start": 14638.34, + "end": 14638.54, + "probability": 0.0974 + }, + { + "start": 14638.54, + "end": 14638.54, + "probability": 0.154 + }, + { + "start": 14638.54, + "end": 14638.78, + "probability": 0.341 + }, + { + "start": 14638.82, + "end": 14641.8, + "probability": 0.9492 + }, + { + "start": 14641.8, + "end": 14644.72, + "probability": 0.9918 + }, + { + "start": 14646.56, + "end": 14647.38, + "probability": 0.5396 + }, + { + "start": 14647.56, + "end": 14648.48, + "probability": 0.5211 + }, + { + "start": 14649.58, + "end": 14652.76, + "probability": 0.463 + }, + { + "start": 14652.76, + "end": 14653.04, + "probability": 0.1484 + }, + { + "start": 14654.1, + "end": 14659.94, + "probability": 0.9789 + }, + { + "start": 14661.54, + "end": 14665.76, + "probability": 0.9948 + }, + { + "start": 14665.76, + "end": 14672.3, + "probability": 0.9969 + }, + { + "start": 14674.46, + "end": 14675.14, + "probability": 0.7808 + }, + { + "start": 14675.42, + "end": 14675.86, + "probability": 0.3501 + }, + { + "start": 14675.94, + "end": 14678.16, + "probability": 0.9438 + }, + { + "start": 14678.64, + "end": 14680.26, + "probability": 0.9655 + }, + { + "start": 14680.66, + "end": 14682.78, + "probability": 0.8068 + }, + { + "start": 14682.9, + "end": 14684.68, + "probability": 0.99 + }, + { + "start": 14684.82, + "end": 14685.8, + "probability": 0.7587 + }, + { + "start": 14686.0, + "end": 14689.4, + "probability": 0.9967 + }, + { + "start": 14689.8, + "end": 14691.46, + "probability": 0.9875 + }, + { + "start": 14692.3, + "end": 14695.16, + "probability": 0.9754 + }, + { + "start": 14695.26, + "end": 14698.88, + "probability": 0.9956 + }, + { + "start": 14700.4, + "end": 14701.48, + "probability": 0.7421 + }, + { + "start": 14701.56, + "end": 14702.16, + "probability": 0.7754 + }, + { + "start": 14702.22, + "end": 14704.3, + "probability": 0.9904 + }, + { + "start": 14704.98, + "end": 14705.86, + "probability": 0.9782 + }, + { + "start": 14706.74, + "end": 14709.42, + "probability": 0.9869 + }, + { + "start": 14709.96, + "end": 14711.36, + "probability": 0.8772 + }, + { + "start": 14712.42, + "end": 14714.66, + "probability": 0.9968 + }, + { + "start": 14715.16, + "end": 14719.4, + "probability": 0.9989 + }, + { + "start": 14719.9, + "end": 14720.22, + "probability": 0.7136 + }, + { + "start": 14720.32, + "end": 14720.76, + "probability": 0.8367 + }, + { + "start": 14720.82, + "end": 14722.34, + "probability": 0.9919 + }, + { + "start": 14722.4, + "end": 14723.88, + "probability": 0.8331 + }, + { + "start": 14724.28, + "end": 14727.78, + "probability": 0.7393 + }, + { + "start": 14729.24, + "end": 14733.3, + "probability": 0.9399 + }, + { + "start": 14734.32, + "end": 14735.34, + "probability": 0.7305 + }, + { + "start": 14735.8, + "end": 14740.24, + "probability": 0.9894 + }, + { + "start": 14740.94, + "end": 14741.01, + "probability": 0.1231 + }, + { + "start": 14742.02, + "end": 14745.16, + "probability": 0.9989 + }, + { + "start": 14745.44, + "end": 14747.02, + "probability": 0.9839 + }, + { + "start": 14748.0, + "end": 14748.44, + "probability": 0.698 + }, + { + "start": 14748.84, + "end": 14750.1, + "probability": 0.9531 + }, + { + "start": 14750.52, + "end": 14751.77, + "probability": 0.9504 + }, + { + "start": 14752.16, + "end": 14753.5, + "probability": 0.9434 + }, + { + "start": 14753.88, + "end": 14756.32, + "probability": 0.9681 + }, + { + "start": 14757.66, + "end": 14757.9, + "probability": 0.5714 + }, + { + "start": 14757.94, + "end": 14759.08, + "probability": 0.8639 + }, + { + "start": 14759.18, + "end": 14760.16, + "probability": 0.7922 + }, + { + "start": 14760.24, + "end": 14761.6, + "probability": 0.9756 + }, + { + "start": 14761.84, + "end": 14765.5, + "probability": 0.9633 + }, + { + "start": 14766.68, + "end": 14767.08, + "probability": 0.7399 + }, + { + "start": 14767.66, + "end": 14770.36, + "probability": 0.9105 + }, + { + "start": 14770.98, + "end": 14771.96, + "probability": 0.7239 + }, + { + "start": 14773.2, + "end": 14773.42, + "probability": 0.9393 + }, + { + "start": 14773.5, + "end": 14776.44, + "probability": 0.9824 + }, + { + "start": 14777.5, + "end": 14778.54, + "probability": 0.8634 + }, + { + "start": 14778.86, + "end": 14779.61, + "probability": 0.928 + }, + { + "start": 14780.72, + "end": 14782.58, + "probability": 0.98 + }, + { + "start": 14783.34, + "end": 14784.58, + "probability": 0.9612 + }, + { + "start": 14784.96, + "end": 14786.58, + "probability": 0.9834 + }, + { + "start": 14786.74, + "end": 14791.48, + "probability": 0.9846 + }, + { + "start": 14791.56, + "end": 14792.42, + "probability": 0.9927 + }, + { + "start": 14792.82, + "end": 14795.55, + "probability": 0.918 + }, + { + "start": 14797.92, + "end": 14798.92, + "probability": 0.3445 + }, + { + "start": 14799.36, + "end": 14803.12, + "probability": 0.8209 + }, + { + "start": 14804.22, + "end": 14808.3, + "probability": 0.9496 + }, + { + "start": 14808.9, + "end": 14809.73, + "probability": 0.9746 + }, + { + "start": 14810.8, + "end": 14811.9, + "probability": 0.9656 + }, + { + "start": 14812.8, + "end": 14816.8, + "probability": 0.9957 + }, + { + "start": 14817.64, + "end": 14819.56, + "probability": 0.894 + }, + { + "start": 14820.04, + "end": 14822.42, + "probability": 0.9967 + }, + { + "start": 14825.0, + "end": 14825.92, + "probability": 0.9282 + }, + { + "start": 14826.06, + "end": 14827.18, + "probability": 0.7968 + }, + { + "start": 14827.36, + "end": 14828.98, + "probability": 0.9976 + }, + { + "start": 14829.66, + "end": 14830.57, + "probability": 0.9648 + }, + { + "start": 14831.44, + "end": 14834.12, + "probability": 0.9565 + }, + { + "start": 14834.16, + "end": 14837.56, + "probability": 0.9917 + }, + { + "start": 14837.56, + "end": 14842.66, + "probability": 0.9941 + }, + { + "start": 14846.92, + "end": 14847.16, + "probability": 0.8005 + }, + { + "start": 14847.18, + "end": 14848.92, + "probability": 0.9943 + }, + { + "start": 14849.0, + "end": 14851.89, + "probability": 0.9154 + }, + { + "start": 14852.56, + "end": 14854.07, + "probability": 0.9902 + }, + { + "start": 14854.7, + "end": 14857.82, + "probability": 0.9859 + }, + { + "start": 14857.82, + "end": 14862.98, + "probability": 0.8078 + }, + { + "start": 14863.82, + "end": 14867.0, + "probability": 0.7684 + }, + { + "start": 14867.52, + "end": 14869.62, + "probability": 0.9377 + }, + { + "start": 14870.34, + "end": 14873.22, + "probability": 0.9994 + }, + { + "start": 14873.9, + "end": 14876.67, + "probability": 0.9995 + }, + { + "start": 14877.0, + "end": 14878.12, + "probability": 0.7067 + }, + { + "start": 14878.2, + "end": 14878.6, + "probability": 0.5972 + }, + { + "start": 14878.62, + "end": 14879.12, + "probability": 0.9208 + }, + { + "start": 14879.46, + "end": 14880.48, + "probability": 0.9603 + }, + { + "start": 14880.7, + "end": 14882.8, + "probability": 0.2122 + }, + { + "start": 14883.44, + "end": 14884.84, + "probability": 0.6558 + }, + { + "start": 14885.26, + "end": 14886.08, + "probability": 0.6323 + }, + { + "start": 14886.16, + "end": 14887.78, + "probability": 0.9779 + }, + { + "start": 14888.26, + "end": 14889.86, + "probability": 0.5698 + }, + { + "start": 14890.06, + "end": 14891.9, + "probability": 0.6584 + }, + { + "start": 14892.32, + "end": 14897.44, + "probability": 0.9637 + }, + { + "start": 14897.44, + "end": 14899.66, + "probability": 0.856 + }, + { + "start": 14899.78, + "end": 14900.7, + "probability": 0.6122 + }, + { + "start": 14900.86, + "end": 14902.32, + "probability": 0.6601 + }, + { + "start": 14902.62, + "end": 14904.86, + "probability": 0.9366 + }, + { + "start": 14905.96, + "end": 14907.44, + "probability": 0.4927 + }, + { + "start": 14908.08, + "end": 14908.96, + "probability": 0.6019 + }, + { + "start": 14909.28, + "end": 14910.48, + "probability": 0.8138 + }, + { + "start": 14910.56, + "end": 14913.13, + "probability": 0.9503 + }, + { + "start": 14913.8, + "end": 14916.22, + "probability": 0.2202 + }, + { + "start": 14916.8, + "end": 14922.42, + "probability": 0.9977 + }, + { + "start": 14922.7, + "end": 14923.7, + "probability": 0.915 + }, + { + "start": 14923.74, + "end": 14924.58, + "probability": 0.9712 + }, + { + "start": 14926.38, + "end": 14926.74, + "probability": 0.6657 + }, + { + "start": 14926.88, + "end": 14928.74, + "probability": 0.632 + }, + { + "start": 14928.96, + "end": 14934.44, + "probability": 0.9336 + }, + { + "start": 14936.12, + "end": 14937.42, + "probability": 0.8147 + }, + { + "start": 14938.1, + "end": 14939.66, + "probability": 0.9577 + }, + { + "start": 14940.74, + "end": 14941.68, + "probability": 0.9299 + }, + { + "start": 14942.6, + "end": 14945.52, + "probability": 0.9752 + }, + { + "start": 14946.28, + "end": 14947.52, + "probability": 0.8224 + }, + { + "start": 14948.2, + "end": 14949.7, + "probability": 0.7452 + }, + { + "start": 14950.68, + "end": 14953.16, + "probability": 0.9738 + }, + { + "start": 14953.7, + "end": 14955.01, + "probability": 0.9886 + }, + { + "start": 14955.86, + "end": 14958.46, + "probability": 0.9871 + }, + { + "start": 14959.04, + "end": 14964.12, + "probability": 0.9895 + }, + { + "start": 14965.02, + "end": 14965.16, + "probability": 0.524 + }, + { + "start": 14965.28, + "end": 14965.62, + "probability": 0.3787 + }, + { + "start": 14965.64, + "end": 14969.54, + "probability": 0.9987 + }, + { + "start": 14970.62, + "end": 14972.02, + "probability": 0.9864 + }, + { + "start": 14972.3, + "end": 14974.64, + "probability": 0.9966 + }, + { + "start": 14975.0, + "end": 14977.14, + "probability": 0.9752 + }, + { + "start": 14977.88, + "end": 14981.54, + "probability": 0.9978 + }, + { + "start": 14982.16, + "end": 14985.26, + "probability": 0.9574 + }, + { + "start": 14986.22, + "end": 14988.12, + "probability": 0.9324 + }, + { + "start": 14988.28, + "end": 14994.0, + "probability": 0.9642 + }, + { + "start": 14995.22, + "end": 14998.52, + "probability": 0.8596 + }, + { + "start": 14999.74, + "end": 15001.88, + "probability": 0.2319 + }, + { + "start": 15002.76, + "end": 15009.6, + "probability": 0.8426 + }, + { + "start": 15010.06, + "end": 15014.3, + "probability": 0.9438 + }, + { + "start": 15015.26, + "end": 15015.48, + "probability": 0.5242 + }, + { + "start": 15015.6, + "end": 15015.9, + "probability": 0.5441 + }, + { + "start": 15015.98, + "end": 15017.27, + "probability": 0.9971 + }, + { + "start": 15017.4, + "end": 15020.16, + "probability": 0.9658 + }, + { + "start": 15020.48, + "end": 15021.18, + "probability": 0.8269 + }, + { + "start": 15022.88, + "end": 15026.3, + "probability": 0.6473 + }, + { + "start": 15027.14, + "end": 15031.48, + "probability": 0.9382 + }, + { + "start": 15031.56, + "end": 15033.02, + "probability": 0.8784 + }, + { + "start": 15033.88, + "end": 15036.86, + "probability": 0.9607 + }, + { + "start": 15037.46, + "end": 15038.24, + "probability": 0.9845 + }, + { + "start": 15038.82, + "end": 15039.12, + "probability": 0.2435 + }, + { + "start": 15039.44, + "end": 15041.1, + "probability": 0.7792 + }, + { + "start": 15042.38, + "end": 15047.68, + "probability": 0.6025 + }, + { + "start": 15048.78, + "end": 15051.7, + "probability": 0.8306 + }, + { + "start": 15051.76, + "end": 15053.3, + "probability": 0.9131 + }, + { + "start": 15055.2, + "end": 15059.86, + "probability": 0.9857 + }, + { + "start": 15060.98, + "end": 15061.7, + "probability": 0.4773 + }, + { + "start": 15061.82, + "end": 15062.56, + "probability": 0.4699 + }, + { + "start": 15062.92, + "end": 15066.58, + "probability": 0.9893 + }, + { + "start": 15066.98, + "end": 15069.42, + "probability": 0.7066 + }, + { + "start": 15069.94, + "end": 15070.99, + "probability": 0.7686 + }, + { + "start": 15071.22, + "end": 15072.24, + "probability": 0.8412 + }, + { + "start": 15072.86, + "end": 15074.48, + "probability": 0.9036 + }, + { + "start": 15079.02, + "end": 15082.14, + "probability": 0.6326 + }, + { + "start": 15082.64, + "end": 15086.44, + "probability": 0.9639 + }, + { + "start": 15086.6, + "end": 15089.44, + "probability": 0.9677 + }, + { + "start": 15089.62, + "end": 15093.64, + "probability": 0.979 + }, + { + "start": 15101.08, + "end": 15104.28, + "probability": 0.9929 + }, + { + "start": 15104.42, + "end": 15105.78, + "probability": 0.7195 + }, + { + "start": 15105.84, + "end": 15106.42, + "probability": 0.9191 + }, + { + "start": 15107.2, + "end": 15108.88, + "probability": 0.5868 + }, + { + "start": 15109.54, + "end": 15110.0, + "probability": 0.5038 + }, + { + "start": 15110.0, + "end": 15112.98, + "probability": 0.9891 + }, + { + "start": 15112.98, + "end": 15116.78, + "probability": 0.9954 + }, + { + "start": 15116.84, + "end": 15120.5, + "probability": 0.9886 + }, + { + "start": 15120.68, + "end": 15122.78, + "probability": 0.9932 + }, + { + "start": 15123.42, + "end": 15125.04, + "probability": 0.6345 + }, + { + "start": 15125.08, + "end": 15125.68, + "probability": 0.9249 + }, + { + "start": 15125.8, + "end": 15128.03, + "probability": 0.9896 + }, + { + "start": 15128.22, + "end": 15131.08, + "probability": 0.7107 + }, + { + "start": 15131.22, + "end": 15135.46, + "probability": 0.9564 + }, + { + "start": 15135.98, + "end": 15140.78, + "probability": 0.9749 + }, + { + "start": 15141.24, + "end": 15142.6, + "probability": 0.7874 + }, + { + "start": 15142.72, + "end": 15146.2, + "probability": 0.9642 + }, + { + "start": 15146.58, + "end": 15148.28, + "probability": 0.981 + }, + { + "start": 15148.42, + "end": 15151.58, + "probability": 0.9918 + }, + { + "start": 15151.98, + "end": 15155.32, + "probability": 0.9633 + }, + { + "start": 15155.92, + "end": 15159.12, + "probability": 0.79 + }, + { + "start": 15159.32, + "end": 15162.7, + "probability": 0.9506 + }, + { + "start": 15163.44, + "end": 15164.48, + "probability": 0.6631 + }, + { + "start": 15164.66, + "end": 15166.44, + "probability": 0.5462 + }, + { + "start": 15166.54, + "end": 15169.92, + "probability": 0.9379 + }, + { + "start": 15170.4, + "end": 15173.76, + "probability": 0.9482 + }, + { + "start": 15174.24, + "end": 15176.06, + "probability": 0.8088 + }, + { + "start": 15176.36, + "end": 15179.66, + "probability": 0.9925 + }, + { + "start": 15180.46, + "end": 15183.42, + "probability": 0.8407 + }, + { + "start": 15183.84, + "end": 15188.08, + "probability": 0.9365 + }, + { + "start": 15188.46, + "end": 15189.98, + "probability": 0.807 + }, + { + "start": 15190.12, + "end": 15194.74, + "probability": 0.9457 + }, + { + "start": 15195.2, + "end": 15199.22, + "probability": 0.9223 + }, + { + "start": 15199.86, + "end": 15201.44, + "probability": 0.8073 + }, + { + "start": 15201.6, + "end": 15205.02, + "probability": 0.9174 + }, + { + "start": 15205.3, + "end": 15209.32, + "probability": 0.9833 + }, + { + "start": 15209.44, + "end": 15210.26, + "probability": 0.5117 + }, + { + "start": 15210.38, + "end": 15212.78, + "probability": 0.6334 + }, + { + "start": 15212.82, + "end": 15214.16, + "probability": 0.9133 + }, + { + "start": 15216.76, + "end": 15222.02, + "probability": 0.8355 + }, + { + "start": 15222.42, + "end": 15223.66, + "probability": 0.5401 + }, + { + "start": 15223.7, + "end": 15225.3, + "probability": 0.939 + }, + { + "start": 15225.4, + "end": 15227.9, + "probability": 0.7547 + }, + { + "start": 15228.52, + "end": 15233.48, + "probability": 0.813 + }, + { + "start": 15233.66, + "end": 15234.62, + "probability": 0.8884 + }, + { + "start": 15242.38, + "end": 15244.08, + "probability": 0.6321 + }, + { + "start": 15244.26, + "end": 15244.26, + "probability": 0.6295 + }, + { + "start": 15244.26, + "end": 15248.58, + "probability": 0.9749 + }, + { + "start": 15248.66, + "end": 15253.72, + "probability": 0.9843 + }, + { + "start": 15253.82, + "end": 15255.39, + "probability": 0.9606 + }, + { + "start": 15257.32, + "end": 15257.32, + "probability": 0.1289 + }, + { + "start": 15257.32, + "end": 15258.42, + "probability": 0.6368 + }, + { + "start": 15258.72, + "end": 15259.82, + "probability": 0.9535 + }, + { + "start": 15259.98, + "end": 15266.06, + "probability": 0.9948 + }, + { + "start": 15266.06, + "end": 15275.3, + "probability": 0.9919 + }, + { + "start": 15276.1, + "end": 15280.64, + "probability": 0.9962 + }, + { + "start": 15281.32, + "end": 15285.04, + "probability": 0.9829 + }, + { + "start": 15285.42, + "end": 15289.18, + "probability": 0.9981 + }, + { + "start": 15289.66, + "end": 15292.3, + "probability": 0.998 + }, + { + "start": 15292.3, + "end": 15296.04, + "probability": 0.9915 + }, + { + "start": 15296.2, + "end": 15301.66, + "probability": 0.9881 + }, + { + "start": 15302.24, + "end": 15303.46, + "probability": 0.9145 + }, + { + "start": 15303.66, + "end": 15305.84, + "probability": 0.1054 + }, + { + "start": 15306.76, + "end": 15310.58, + "probability": 0.9256 + }, + { + "start": 15311.08, + "end": 15314.78, + "probability": 0.9947 + }, + { + "start": 15315.52, + "end": 15319.17, + "probability": 0.8241 + }, + { + "start": 15319.74, + "end": 15324.16, + "probability": 0.9949 + }, + { + "start": 15324.86, + "end": 15329.98, + "probability": 0.9685 + }, + { + "start": 15330.56, + "end": 15336.56, + "probability": 0.9964 + }, + { + "start": 15337.32, + "end": 15338.4, + "probability": 0.9785 + }, + { + "start": 15338.58, + "end": 15339.54, + "probability": 0.7572 + }, + { + "start": 15339.7, + "end": 15343.56, + "probability": 0.9677 + }, + { + "start": 15344.1, + "end": 15347.92, + "probability": 0.964 + }, + { + "start": 15348.1, + "end": 15349.06, + "probability": 0.7067 + }, + { + "start": 15349.75, + "end": 15351.7, + "probability": 0.8115 + }, + { + "start": 15352.68, + "end": 15354.32, + "probability": 0.9493 + }, + { + "start": 15355.12, + "end": 15361.56, + "probability": 0.9941 + }, + { + "start": 15362.06, + "end": 15364.66, + "probability": 0.6537 + }, + { + "start": 15365.1, + "end": 15366.72, + "probability": 0.9153 + }, + { + "start": 15366.8, + "end": 15370.98, + "probability": 0.8245 + }, + { + "start": 15371.52, + "end": 15378.26, + "probability": 0.9528 + }, + { + "start": 15378.68, + "end": 15383.26, + "probability": 0.9652 + }, + { + "start": 15383.26, + "end": 15385.3, + "probability": 0.1666 + }, + { + "start": 15385.58, + "end": 15385.58, + "probability": 0.4202 + }, + { + "start": 15385.7, + "end": 15390.2, + "probability": 0.851 + }, + { + "start": 15390.74, + "end": 15391.56, + "probability": 0.7579 + }, + { + "start": 15391.84, + "end": 15402.3, + "probability": 0.9668 + }, + { + "start": 15402.44, + "end": 15407.22, + "probability": 0.9951 + }, + { + "start": 15407.32, + "end": 15412.74, + "probability": 0.9957 + }, + { + "start": 15412.74, + "end": 15418.1, + "probability": 0.9991 + }, + { + "start": 15418.18, + "end": 15420.88, + "probability": 0.9653 + }, + { + "start": 15421.04, + "end": 15423.08, + "probability": 0.8211 + }, + { + "start": 15423.6, + "end": 15425.86, + "probability": 0.9126 + }, + { + "start": 15426.52, + "end": 15426.82, + "probability": 0.5257 + }, + { + "start": 15427.14, + "end": 15428.4, + "probability": 0.946 + }, + { + "start": 15428.5, + "end": 15430.74, + "probability": 0.956 + }, + { + "start": 15430.9, + "end": 15432.76, + "probability": 0.9244 + }, + { + "start": 15432.82, + "end": 15434.38, + "probability": 0.8952 + }, + { + "start": 15434.56, + "end": 15440.23, + "probability": 0.9932 + }, + { + "start": 15441.24, + "end": 15443.12, + "probability": 0.8717 + }, + { + "start": 15443.34, + "end": 15446.62, + "probability": 0.995 + }, + { + "start": 15446.7, + "end": 15447.5, + "probability": 0.6181 + }, + { + "start": 15447.76, + "end": 15450.74, + "probability": 0.9609 + }, + { + "start": 15451.38, + "end": 15456.08, + "probability": 0.6441 + }, + { + "start": 15456.22, + "end": 15459.68, + "probability": 0.9863 + }, + { + "start": 15459.68, + "end": 15463.76, + "probability": 0.9964 + }, + { + "start": 15463.96, + "end": 15468.06, + "probability": 0.9961 + }, + { + "start": 15468.24, + "end": 15472.34, + "probability": 0.9938 + }, + { + "start": 15472.46, + "end": 15476.48, + "probability": 0.9907 + }, + { + "start": 15476.68, + "end": 15479.54, + "probability": 0.887 + }, + { + "start": 15479.74, + "end": 15481.18, + "probability": 0.9897 + }, + { + "start": 15482.46, + "end": 15487.78, + "probability": 0.9686 + }, + { + "start": 15488.4, + "end": 15492.09, + "probability": 0.9925 + }, + { + "start": 15492.74, + "end": 15493.76, + "probability": 0.9521 + }, + { + "start": 15495.7, + "end": 15503.08, + "probability": 0.9827 + }, + { + "start": 15503.58, + "end": 15505.9, + "probability": 0.979 + }, + { + "start": 15506.48, + "end": 15508.86, + "probability": 0.8722 + }, + { + "start": 15508.9, + "end": 15509.38, + "probability": 0.796 + }, + { + "start": 15509.46, + "end": 15510.24, + "probability": 0.7826 + }, + { + "start": 15510.34, + "end": 15512.12, + "probability": 0.8856 + }, + { + "start": 15512.16, + "end": 15518.36, + "probability": 0.9835 + }, + { + "start": 15519.12, + "end": 15521.8, + "probability": 0.9551 + }, + { + "start": 15521.92, + "end": 15526.26, + "probability": 0.9866 + }, + { + "start": 15526.58, + "end": 15530.96, + "probability": 0.9478 + }, + { + "start": 15531.1, + "end": 15533.33, + "probability": 0.9691 + }, + { + "start": 15533.82, + "end": 15537.54, + "probability": 0.9962 + }, + { + "start": 15537.72, + "end": 15538.91, + "probability": 0.8506 + }, + { + "start": 15539.16, + "end": 15545.16, + "probability": 0.9801 + }, + { + "start": 15545.34, + "end": 15547.59, + "probability": 0.9033 + }, + { + "start": 15548.48, + "end": 15550.0, + "probability": 0.8831 + }, + { + "start": 15550.68, + "end": 15554.06, + "probability": 0.9606 + }, + { + "start": 15554.06, + "end": 15559.14, + "probability": 0.9684 + }, + { + "start": 15559.24, + "end": 15561.1, + "probability": 0.3757 + }, + { + "start": 15562.04, + "end": 15563.86, + "probability": 0.9971 + }, + { + "start": 15563.86, + "end": 15567.4, + "probability": 0.9474 + }, + { + "start": 15567.48, + "end": 15572.62, + "probability": 0.9974 + }, + { + "start": 15572.68, + "end": 15577.58, + "probability": 0.9929 + }, + { + "start": 15578.04, + "end": 15581.92, + "probability": 0.9988 + }, + { + "start": 15582.08, + "end": 15589.08, + "probability": 0.9947 + }, + { + "start": 15589.52, + "end": 15593.0, + "probability": 0.9751 + }, + { + "start": 15593.46, + "end": 15596.7, + "probability": 0.9978 + }, + { + "start": 15597.06, + "end": 15597.48, + "probability": 0.5422 + }, + { + "start": 15597.54, + "end": 15598.12, + "probability": 0.7759 + }, + { + "start": 15598.24, + "end": 15601.26, + "probability": 0.9868 + }, + { + "start": 15601.4, + "end": 15607.12, + "probability": 0.9523 + }, + { + "start": 15607.58, + "end": 15608.48, + "probability": 0.8899 + }, + { + "start": 15608.54, + "end": 15615.32, + "probability": 0.9974 + }, + { + "start": 15615.96, + "end": 15617.8, + "probability": 0.8978 + }, + { + "start": 15618.62, + "end": 15618.84, + "probability": 0.666 + }, + { + "start": 15619.17, + "end": 15622.26, + "probability": 0.9784 + }, + { + "start": 15622.64, + "end": 15623.12, + "probability": 0.3903 + }, + { + "start": 15623.18, + "end": 15623.5, + "probability": 0.6384 + }, + { + "start": 15623.74, + "end": 15624.7, + "probability": 0.95 + }, + { + "start": 15624.74, + "end": 15629.07, + "probability": 0.7764 + }, + { + "start": 15630.0, + "end": 15631.36, + "probability": 0.6249 + }, + { + "start": 15631.48, + "end": 15633.68, + "probability": 0.9706 + }, + { + "start": 15633.78, + "end": 15638.36, + "probability": 0.9312 + }, + { + "start": 15638.44, + "end": 15640.42, + "probability": 0.9242 + }, + { + "start": 15640.76, + "end": 15644.96, + "probability": 0.8877 + }, + { + "start": 15645.44, + "end": 15645.9, + "probability": 0.7867 + }, + { + "start": 15645.98, + "end": 15646.9, + "probability": 0.9611 + }, + { + "start": 15647.06, + "end": 15649.58, + "probability": 0.9648 + }, + { + "start": 15649.72, + "end": 15650.98, + "probability": 0.5079 + }, + { + "start": 15651.38, + "end": 15653.02, + "probability": 0.9941 + }, + { + "start": 15653.48, + "end": 15656.76, + "probability": 0.9747 + }, + { + "start": 15657.28, + "end": 15660.68, + "probability": 0.9653 + }, + { + "start": 15661.36, + "end": 15664.24, + "probability": 0.8209 + }, + { + "start": 15664.72, + "end": 15665.0, + "probability": 0.9073 + }, + { + "start": 15665.06, + "end": 15665.94, + "probability": 0.7962 + }, + { + "start": 15666.1, + "end": 15668.76, + "probability": 0.996 + }, + { + "start": 15669.22, + "end": 15669.78, + "probability": 0.7897 + }, + { + "start": 15669.92, + "end": 15670.78, + "probability": 0.6838 + }, + { + "start": 15670.98, + "end": 15673.7, + "probability": 0.9722 + }, + { + "start": 15674.2, + "end": 15675.18, + "probability": 0.6727 + }, + { + "start": 15675.46, + "end": 15678.58, + "probability": 0.9801 + }, + { + "start": 15679.02, + "end": 15680.72, + "probability": 0.9897 + }, + { + "start": 15680.78, + "end": 15682.56, + "probability": 0.9956 + }, + { + "start": 15682.96, + "end": 15684.54, + "probability": 0.993 + }, + { + "start": 15685.04, + "end": 15685.6, + "probability": 0.7369 + }, + { + "start": 15685.74, + "end": 15686.04, + "probability": 0.726 + }, + { + "start": 15686.1, + "end": 15687.58, + "probability": 0.9956 + }, + { + "start": 15687.94, + "end": 15689.44, + "probability": 0.9706 + }, + { + "start": 15690.26, + "end": 15696.94, + "probability": 0.9816 + }, + { + "start": 15697.36, + "end": 15698.8, + "probability": 0.8838 + }, + { + "start": 15698.96, + "end": 15700.44, + "probability": 0.9706 + }, + { + "start": 15700.72, + "end": 15702.06, + "probability": 0.9697 + }, + { + "start": 15702.16, + "end": 15702.76, + "probability": 0.9003 + }, + { + "start": 15702.82, + "end": 15703.98, + "probability": 0.9905 + }, + { + "start": 15704.32, + "end": 15704.62, + "probability": 0.6655 + }, + { + "start": 15704.66, + "end": 15705.38, + "probability": 0.9434 + }, + { + "start": 15705.86, + "end": 15709.6, + "probability": 0.9956 + }, + { + "start": 15709.6, + "end": 15716.4, + "probability": 0.9634 + }, + { + "start": 15716.54, + "end": 15717.34, + "probability": 0.9396 + }, + { + "start": 15717.6, + "end": 15723.64, + "probability": 0.9958 + }, + { + "start": 15724.02, + "end": 15729.1, + "probability": 0.9966 + }, + { + "start": 15729.1, + "end": 15736.58, + "probability": 0.999 + }, + { + "start": 15736.68, + "end": 15737.06, + "probability": 0.3881 + }, + { + "start": 15737.16, + "end": 15738.5, + "probability": 0.8462 + }, + { + "start": 15739.0, + "end": 15743.4, + "probability": 0.9268 + }, + { + "start": 15743.66, + "end": 15746.04, + "probability": 0.9978 + }, + { + "start": 15746.98, + "end": 15750.96, + "probability": 0.9756 + }, + { + "start": 15752.1, + "end": 15754.34, + "probability": 0.9975 + }, + { + "start": 15754.5, + "end": 15755.24, + "probability": 0.6492 + }, + { + "start": 15755.68, + "end": 15756.9, + "probability": 0.555 + }, + { + "start": 15756.96, + "end": 15758.78, + "probability": 0.7634 + }, + { + "start": 15758.94, + "end": 15759.84, + "probability": 0.687 + }, + { + "start": 15760.0, + "end": 15760.98, + "probability": 0.7989 + }, + { + "start": 15761.64, + "end": 15766.94, + "probability": 0.9432 + }, + { + "start": 15767.62, + "end": 15774.86, + "probability": 0.9971 + }, + { + "start": 15775.28, + "end": 15777.94, + "probability": 0.9567 + }, + { + "start": 15778.58, + "end": 15781.48, + "probability": 0.9707 + }, + { + "start": 15782.04, + "end": 15789.12, + "probability": 0.9706 + }, + { + "start": 15789.28, + "end": 15794.52, + "probability": 0.9985 + }, + { + "start": 15795.36, + "end": 15797.04, + "probability": 0.9189 + }, + { + "start": 15797.28, + "end": 15801.8, + "probability": 0.9955 + }, + { + "start": 15802.14, + "end": 15803.84, + "probability": 0.9669 + }, + { + "start": 15804.42, + "end": 15807.62, + "probability": 0.9807 + }, + { + "start": 15808.3, + "end": 15812.78, + "probability": 0.9907 + }, + { + "start": 15812.82, + "end": 15814.66, + "probability": 0.9142 + }, + { + "start": 15815.26, + "end": 15818.56, + "probability": 0.9945 + }, + { + "start": 15818.96, + "end": 15823.55, + "probability": 0.9937 + }, + { + "start": 15823.78, + "end": 15829.7, + "probability": 0.9928 + }, + { + "start": 15829.84, + "end": 15833.88, + "probability": 0.9422 + }, + { + "start": 15834.46, + "end": 15835.28, + "probability": 0.5934 + }, + { + "start": 15837.68, + "end": 15837.7, + "probability": 0.1964 + }, + { + "start": 15837.7, + "end": 15838.19, + "probability": 0.0969 + }, + { + "start": 15838.62, + "end": 15839.6, + "probability": 0.8745 + }, + { + "start": 15839.66, + "end": 15840.66, + "probability": 0.8333 + }, + { + "start": 15840.74, + "end": 15842.06, + "probability": 0.5069 + }, + { + "start": 15843.96, + "end": 15843.98, + "probability": 0.4489 + }, + { + "start": 15843.98, + "end": 15847.08, + "probability": 0.8577 + }, + { + "start": 15849.58, + "end": 15849.66, + "probability": 0.0269 + }, + { + "start": 15851.82, + "end": 15852.9, + "probability": 0.2991 + }, + { + "start": 15854.41, + "end": 15856.8, + "probability": 0.5566 + }, + { + "start": 15857.02, + "end": 15858.64, + "probability": 0.9025 + }, + { + "start": 15859.14, + "end": 15862.94, + "probability": 0.9685 + }, + { + "start": 15863.46, + "end": 15870.75, + "probability": 0.514 + }, + { + "start": 15872.72, + "end": 15874.5, + "probability": 0.357 + }, + { + "start": 15875.06, + "end": 15875.16, + "probability": 0.1581 + }, + { + "start": 15884.68, + "end": 15885.42, + "probability": 0.3473 + }, + { + "start": 15886.66, + "end": 15888.56, + "probability": 0.7022 + }, + { + "start": 15888.64, + "end": 15889.36, + "probability": 0.4873 + }, + { + "start": 15889.4, + "end": 15890.54, + "probability": 0.9223 + }, + { + "start": 15890.84, + "end": 15896.74, + "probability": 0.9897 + }, + { + "start": 15897.12, + "end": 15902.4, + "probability": 0.9827 + }, + { + "start": 15902.5, + "end": 15903.88, + "probability": 0.8373 + }, + { + "start": 15904.04, + "end": 15905.92, + "probability": 0.7192 + }, + { + "start": 15906.1, + "end": 15906.6, + "probability": 0.7662 + }, + { + "start": 15906.8, + "end": 15908.48, + "probability": 0.7464 + }, + { + "start": 15908.66, + "end": 15910.34, + "probability": 0.6188 + }, + { + "start": 15910.44, + "end": 15915.34, + "probability": 0.9583 + }, + { + "start": 15915.74, + "end": 15917.26, + "probability": 0.9623 + }, + { + "start": 15917.32, + "end": 15919.58, + "probability": 0.9936 + }, + { + "start": 15919.88, + "end": 15922.06, + "probability": 0.9941 + }, + { + "start": 15922.84, + "end": 15925.28, + "probability": 0.7392 + }, + { + "start": 15928.8, + "end": 15930.04, + "probability": 0.7749 + }, + { + "start": 15930.62, + "end": 15931.4, + "probability": 0.4859 + }, + { + "start": 15931.44, + "end": 15932.12, + "probability": 0.8951 + }, + { + "start": 15932.3, + "end": 15934.76, + "probability": 0.998 + }, + { + "start": 15935.32, + "end": 15940.46, + "probability": 0.8758 + }, + { + "start": 15941.14, + "end": 15944.14, + "probability": 0.9421 + }, + { + "start": 15944.68, + "end": 15947.04, + "probability": 0.9256 + }, + { + "start": 15947.12, + "end": 15948.14, + "probability": 0.803 + }, + { + "start": 15948.88, + "end": 15949.84, + "probability": 0.976 + }, + { + "start": 15953.42, + "end": 15954.26, + "probability": 0.295 + }, + { + "start": 15954.38, + "end": 15955.08, + "probability": 0.3938 + }, + { + "start": 15955.2, + "end": 15956.58, + "probability": 0.7183 + }, + { + "start": 15956.68, + "end": 15957.94, + "probability": 0.8067 + }, + { + "start": 15959.26, + "end": 15964.64, + "probability": 0.9852 + }, + { + "start": 15965.1, + "end": 15967.16, + "probability": 0.9468 + }, + { + "start": 15972.46, + "end": 15975.34, + "probability": 0.7508 + }, + { + "start": 15975.42, + "end": 15976.02, + "probability": 0.6767 + }, + { + "start": 15976.7, + "end": 15979.76, + "probability": 0.8777 + }, + { + "start": 15988.12, + "end": 15989.44, + "probability": 0.7008 + }, + { + "start": 15989.72, + "end": 15991.06, + "probability": 0.9608 + }, + { + "start": 15991.22, + "end": 15995.76, + "probability": 0.9972 + }, + { + "start": 15995.76, + "end": 15998.94, + "probability": 0.9977 + }, + { + "start": 15999.46, + "end": 16001.8, + "probability": 0.9335 + }, + { + "start": 16011.14, + "end": 16011.88, + "probability": 0.4768 + }, + { + "start": 16011.92, + "end": 16021.0, + "probability": 0.8813 + }, + { + "start": 16022.1, + "end": 16023.7, + "probability": 0.8077 + }, + { + "start": 16023.72, + "end": 16025.15, + "probability": 0.998 + }, + { + "start": 16025.68, + "end": 16027.3, + "probability": 0.9656 + }, + { + "start": 16027.34, + "end": 16027.82, + "probability": 0.8375 + }, + { + "start": 16027.98, + "end": 16028.86, + "probability": 0.9321 + }, + { + "start": 16029.14, + "end": 16031.26, + "probability": 0.9521 + }, + { + "start": 16031.36, + "end": 16033.7, + "probability": 0.6714 + }, + { + "start": 16033.76, + "end": 16036.08, + "probability": 0.8672 + }, + { + "start": 16037.08, + "end": 16037.18, + "probability": 0.1249 + }, + { + "start": 16038.62, + "end": 16040.02, + "probability": 0.8862 + }, + { + "start": 16040.22, + "end": 16042.66, + "probability": 0.9524 + }, + { + "start": 16043.0, + "end": 16044.66, + "probability": 0.574 + }, + { + "start": 16044.68, + "end": 16046.04, + "probability": 0.7747 + }, + { + "start": 16046.18, + "end": 16052.05, + "probability": 0.9871 + }, + { + "start": 16052.44, + "end": 16055.94, + "probability": 0.9961 + }, + { + "start": 16056.74, + "end": 16058.0, + "probability": 0.9753 + }, + { + "start": 16058.14, + "end": 16061.14, + "probability": 0.9762 + }, + { + "start": 16061.94, + "end": 16062.62, + "probability": 0.55 + }, + { + "start": 16062.76, + "end": 16063.78, + "probability": 0.651 + }, + { + "start": 16063.86, + "end": 16066.42, + "probability": 0.6101 + }, + { + "start": 16066.56, + "end": 16067.02, + "probability": 0.8091 + }, + { + "start": 16067.02, + "end": 16068.96, + "probability": 0.7635 + }, + { + "start": 16069.08, + "end": 16072.74, + "probability": 0.9919 + }, + { + "start": 16073.66, + "end": 16074.42, + "probability": 0.9756 + }, + { + "start": 16074.5, + "end": 16078.54, + "probability": 0.9517 + }, + { + "start": 16078.54, + "end": 16084.24, + "probability": 0.9961 + }, + { + "start": 16084.98, + "end": 16090.0, + "probability": 0.9243 + }, + { + "start": 16091.13, + "end": 16095.6, + "probability": 0.7023 + }, + { + "start": 16096.02, + "end": 16102.5, + "probability": 0.981 + }, + { + "start": 16103.32, + "end": 16103.82, + "probability": 0.8564 + }, + { + "start": 16103.94, + "end": 16105.02, + "probability": 0.8059 + }, + { + "start": 16105.34, + "end": 16107.96, + "probability": 0.94 + }, + { + "start": 16107.96, + "end": 16111.22, + "probability": 0.9839 + }, + { + "start": 16112.02, + "end": 16115.02, + "probability": 0.8979 + }, + { + "start": 16115.06, + "end": 16117.2, + "probability": 0.7577 + }, + { + "start": 16117.28, + "end": 16117.28, + "probability": 0.5411 + }, + { + "start": 16117.28, + "end": 16119.22, + "probability": 0.9893 + }, + { + "start": 16119.88, + "end": 16120.34, + "probability": 0.8054 + }, + { + "start": 16120.9, + "end": 16123.12, + "probability": 0.9816 + }, + { + "start": 16124.22, + "end": 16124.64, + "probability": 0.8793 + }, + { + "start": 16126.38, + "end": 16126.66, + "probability": 0.4198 + }, + { + "start": 16126.66, + "end": 16126.66, + "probability": 0.2482 + }, + { + "start": 16126.66, + "end": 16127.02, + "probability": 0.5326 + }, + { + "start": 16128.28, + "end": 16128.46, + "probability": 0.6018 + }, + { + "start": 16130.74, + "end": 16132.28, + "probability": 0.8334 + }, + { + "start": 16132.34, + "end": 16134.6, + "probability": 0.9046 + }, + { + "start": 16139.12, + "end": 16139.74, + "probability": 0.6405 + }, + { + "start": 16139.92, + "end": 16142.36, + "probability": 0.9904 + }, + { + "start": 16143.24, + "end": 16146.32, + "probability": 0.9458 + }, + { + "start": 16146.9, + "end": 16148.7, + "probability": 0.9736 + }, + { + "start": 16149.28, + "end": 16152.04, + "probability": 0.9794 + }, + { + "start": 16152.46, + "end": 16154.12, + "probability": 0.9349 + }, + { + "start": 16154.54, + "end": 16157.02, + "probability": 0.9878 + }, + { + "start": 16157.64, + "end": 16159.18, + "probability": 0.8847 + }, + { + "start": 16159.26, + "end": 16159.8, + "probability": 0.8034 + }, + { + "start": 16159.92, + "end": 16161.6, + "probability": 0.9177 + }, + { + "start": 16162.14, + "end": 16165.84, + "probability": 0.9973 + }, + { + "start": 16165.94, + "end": 16166.22, + "probability": 0.5708 + }, + { + "start": 16166.48, + "end": 16167.78, + "probability": 0.7476 + }, + { + "start": 16167.9, + "end": 16168.92, + "probability": 0.8736 + }, + { + "start": 16168.96, + "end": 16170.68, + "probability": 0.9292 + }, + { + "start": 16170.78, + "end": 16172.72, + "probability": 0.8929 + }, + { + "start": 16173.82, + "end": 16176.42, + "probability": 0.9858 + }, + { + "start": 16176.54, + "end": 16177.72, + "probability": 0.8972 + }, + { + "start": 16177.9, + "end": 16180.78, + "probability": 0.9858 + }, + { + "start": 16191.04, + "end": 16191.42, + "probability": 0.2782 + }, + { + "start": 16191.48, + "end": 16192.36, + "probability": 0.29 + }, + { + "start": 16192.36, + "end": 16198.12, + "probability": 0.8418 + }, + { + "start": 16198.28, + "end": 16200.62, + "probability": 0.9414 + }, + { + "start": 16200.76, + "end": 16207.18, + "probability": 0.7939 + }, + { + "start": 16207.72, + "end": 16210.58, + "probability": 0.9919 + }, + { + "start": 16210.64, + "end": 16213.62, + "probability": 0.9483 + }, + { + "start": 16214.04, + "end": 16215.2, + "probability": 0.8241 + }, + { + "start": 16215.36, + "end": 16218.36, + "probability": 0.981 + }, + { + "start": 16218.36, + "end": 16222.12, + "probability": 0.859 + }, + { + "start": 16222.24, + "end": 16225.6, + "probability": 0.9971 + }, + { + "start": 16226.2, + "end": 16226.76, + "probability": 0.8034 + }, + { + "start": 16227.26, + "end": 16228.42, + "probability": 0.5781 + }, + { + "start": 16228.92, + "end": 16232.08, + "probability": 0.8963 + }, + { + "start": 16233.26, + "end": 16237.54, + "probability": 0.9977 + }, + { + "start": 16237.54, + "end": 16241.46, + "probability": 0.9644 + }, + { + "start": 16241.96, + "end": 16244.36, + "probability": 0.9873 + }, + { + "start": 16244.84, + "end": 16244.98, + "probability": 0.6548 + }, + { + "start": 16245.16, + "end": 16245.92, + "probability": 0.9132 + }, + { + "start": 16246.0, + "end": 16249.34, + "probability": 0.9782 + }, + { + "start": 16249.34, + "end": 16254.44, + "probability": 0.9795 + }, + { + "start": 16254.46, + "end": 16255.4, + "probability": 0.9849 + }, + { + "start": 16255.46, + "end": 16258.94, + "probability": 0.9895 + }, + { + "start": 16259.72, + "end": 16264.78, + "probability": 0.9729 + }, + { + "start": 16265.18, + "end": 16267.64, + "probability": 0.8895 + }, + { + "start": 16267.8, + "end": 16271.54, + "probability": 0.9868 + }, + { + "start": 16271.54, + "end": 16275.58, + "probability": 0.9932 + }, + { + "start": 16276.04, + "end": 16281.68, + "probability": 0.9048 + }, + { + "start": 16281.68, + "end": 16286.82, + "probability": 0.9696 + }, + { + "start": 16287.26, + "end": 16287.86, + "probability": 0.5688 + }, + { + "start": 16287.96, + "end": 16290.56, + "probability": 0.969 + }, + { + "start": 16290.74, + "end": 16296.92, + "probability": 0.9525 + }, + { + "start": 16297.96, + "end": 16303.6, + "probability": 0.9949 + }, + { + "start": 16304.34, + "end": 16312.54, + "probability": 0.9667 + }, + { + "start": 16313.68, + "end": 16318.62, + "probability": 0.9893 + }, + { + "start": 16319.12, + "end": 16323.84, + "probability": 0.8672 + }, + { + "start": 16324.84, + "end": 16329.32, + "probability": 0.989 + }, + { + "start": 16330.22, + "end": 16330.6, + "probability": 0.5712 + }, + { + "start": 16330.76, + "end": 16335.5, + "probability": 0.9231 + }, + { + "start": 16335.96, + "end": 16339.6, + "probability": 0.9856 + }, + { + "start": 16339.6, + "end": 16343.26, + "probability": 0.9771 + }, + { + "start": 16343.7, + "end": 16344.38, + "probability": 0.7158 + }, + { + "start": 16344.82, + "end": 16350.92, + "probability": 0.9824 + }, + { + "start": 16351.78, + "end": 16355.78, + "probability": 0.9885 + }, + { + "start": 16356.26, + "end": 16357.96, + "probability": 0.8892 + }, + { + "start": 16358.06, + "end": 16360.21, + "probability": 0.9509 + }, + { + "start": 16360.48, + "end": 16366.18, + "probability": 0.9356 + }, + { + "start": 16366.66, + "end": 16368.84, + "probability": 0.995 + }, + { + "start": 16370.96, + "end": 16374.56, + "probability": 0.815 + }, + { + "start": 16375.72, + "end": 16380.31, + "probability": 0.0965 + }, + { + "start": 16380.32, + "end": 16381.18, + "probability": 0.1443 + }, + { + "start": 16381.42, + "end": 16382.48, + "probability": 0.557 + }, + { + "start": 16382.48, + "end": 16383.56, + "probability": 0.7827 + }, + { + "start": 16383.74, + "end": 16384.8, + "probability": 0.8219 + }, + { + "start": 16384.94, + "end": 16385.44, + "probability": 0.6158 + }, + { + "start": 16385.68, + "end": 16388.56, + "probability": 0.9789 + }, + { + "start": 16391.16, + "end": 16394.26, + "probability": 0.5865 + }, + { + "start": 16394.76, + "end": 16399.02, + "probability": 0.9868 + }, + { + "start": 16399.1, + "end": 16407.52, + "probability": 0.9477 + }, + { + "start": 16407.92, + "end": 16411.24, + "probability": 0.9966 + }, + { + "start": 16411.52, + "end": 16412.18, + "probability": 0.7101 + }, + { + "start": 16412.58, + "end": 16413.56, + "probability": 0.767 + }, + { + "start": 16413.64, + "end": 16413.92, + "probability": 0.7344 + }, + { + "start": 16414.12, + "end": 16419.1, + "probability": 0.9584 + }, + { + "start": 16419.44, + "end": 16419.78, + "probability": 0.9464 + }, + { + "start": 16419.9, + "end": 16420.64, + "probability": 0.7006 + }, + { + "start": 16420.84, + "end": 16426.68, + "probability": 0.9932 + }, + { + "start": 16427.16, + "end": 16427.98, + "probability": 0.7892 + }, + { + "start": 16428.12, + "end": 16434.88, + "probability": 0.9842 + }, + { + "start": 16435.06, + "end": 16438.1, + "probability": 0.998 + }, + { + "start": 16438.1, + "end": 16441.16, + "probability": 0.9811 + }, + { + "start": 16441.22, + "end": 16441.64, + "probability": 0.6512 + }, + { + "start": 16441.72, + "end": 16442.26, + "probability": 0.4728 + }, + { + "start": 16442.64, + "end": 16443.5, + "probability": 0.6394 + }, + { + "start": 16443.6, + "end": 16445.18, + "probability": 0.9263 + }, + { + "start": 16446.36, + "end": 16448.06, + "probability": 0.1281 + }, + { + "start": 16449.06, + "end": 16453.0, + "probability": 0.319 + }, + { + "start": 16453.34, + "end": 16459.88, + "probability": 0.9689 + }, + { + "start": 16459.98, + "end": 16461.28, + "probability": 0.6708 + }, + { + "start": 16461.42, + "end": 16463.72, + "probability": 0.9928 + }, + { + "start": 16463.84, + "end": 16464.91, + "probability": 0.9897 + }, + { + "start": 16465.14, + "end": 16467.82, + "probability": 0.8793 + }, + { + "start": 16467.82, + "end": 16468.24, + "probability": 0.7537 + }, + { + "start": 16468.36, + "end": 16471.42, + "probability": 0.9669 + }, + { + "start": 16472.06, + "end": 16476.2, + "probability": 0.9954 + }, + { + "start": 16476.28, + "end": 16477.6, + "probability": 0.7602 + }, + { + "start": 16477.84, + "end": 16478.4, + "probability": 0.8844 + }, + { + "start": 16478.72, + "end": 16480.56, + "probability": 0.8537 + }, + { + "start": 16480.64, + "end": 16480.92, + "probability": 0.5285 + }, + { + "start": 16481.08, + "end": 16482.82, + "probability": 0.9486 + }, + { + "start": 16482.96, + "end": 16484.56, + "probability": 0.7922 + }, + { + "start": 16484.74, + "end": 16485.94, + "probability": 0.5187 + }, + { + "start": 16486.08, + "end": 16487.92, + "probability": 0.993 + }, + { + "start": 16489.12, + "end": 16494.82, + "probability": 0.794 + }, + { + "start": 16495.2, + "end": 16496.66, + "probability": 0.6463 + }, + { + "start": 16496.72, + "end": 16498.24, + "probability": 0.7237 + }, + { + "start": 16498.66, + "end": 16500.6, + "probability": 0.6744 + }, + { + "start": 16501.4, + "end": 16503.1, + "probability": 0.9384 + }, + { + "start": 16503.18, + "end": 16505.3, + "probability": 0.8377 + }, + { + "start": 16505.36, + "end": 16506.74, + "probability": 0.9697 + }, + { + "start": 16506.93, + "end": 16508.38, + "probability": 0.6688 + }, + { + "start": 16508.92, + "end": 16510.98, + "probability": 0.8467 + }, + { + "start": 16511.2, + "end": 16514.16, + "probability": 0.9724 + }, + { + "start": 16514.36, + "end": 16516.26, + "probability": 0.9907 + }, + { + "start": 16516.44, + "end": 16517.94, + "probability": 0.1559 + }, + { + "start": 16519.14, + "end": 16519.49, + "probability": 0.3009 + }, + { + "start": 16519.94, + "end": 16520.26, + "probability": 0.541 + }, + { + "start": 16520.34, + "end": 16524.06, + "probability": 0.7387 + }, + { + "start": 16524.26, + "end": 16528.1, + "probability": 0.9106 + }, + { + "start": 16528.2, + "end": 16529.88, + "probability": 0.8631 + }, + { + "start": 16530.04, + "end": 16531.24, + "probability": 0.8777 + }, + { + "start": 16531.54, + "end": 16534.5, + "probability": 0.6252 + }, + { + "start": 16535.16, + "end": 16537.88, + "probability": 0.5078 + }, + { + "start": 16538.52, + "end": 16541.82, + "probability": 0.9461 + }, + { + "start": 16541.98, + "end": 16543.38, + "probability": 0.9919 + }, + { + "start": 16543.48, + "end": 16544.19, + "probability": 0.9287 + }, + { + "start": 16544.92, + "end": 16547.58, + "probability": 0.6166 + }, + { + "start": 16548.16, + "end": 16551.78, + "probability": 0.9289 + }, + { + "start": 16552.32, + "end": 16553.52, + "probability": 0.3571 + }, + { + "start": 16553.7, + "end": 16558.74, + "probability": 0.9801 + }, + { + "start": 16559.54, + "end": 16562.74, + "probability": 0.9451 + }, + { + "start": 16563.28, + "end": 16566.94, + "probability": 0.5942 + }, + { + "start": 16567.0, + "end": 16569.06, + "probability": 0.7849 + }, + { + "start": 16569.64, + "end": 16570.3, + "probability": 0.7086 + }, + { + "start": 16570.34, + "end": 16571.82, + "probability": 0.0326 + }, + { + "start": 16572.0, + "end": 16572.32, + "probability": 0.723 + }, + { + "start": 16572.6, + "end": 16575.0, + "probability": 0.7909 + }, + { + "start": 16575.2, + "end": 16578.18, + "probability": 0.729 + }, + { + "start": 16578.6, + "end": 16580.02, + "probability": 0.9403 + }, + { + "start": 16580.34, + "end": 16582.1, + "probability": 0.8872 + }, + { + "start": 16582.1, + "end": 16584.02, + "probability": 0.8585 + }, + { + "start": 16584.16, + "end": 16585.81, + "probability": 0.7008 + }, + { + "start": 16586.32, + "end": 16588.2, + "probability": 0.9668 + }, + { + "start": 16588.34, + "end": 16590.42, + "probability": 0.8628 + }, + { + "start": 16590.72, + "end": 16591.62, + "probability": 0.8121 + }, + { + "start": 16591.94, + "end": 16593.66, + "probability": 0.4782 + }, + { + "start": 16593.9, + "end": 16594.06, + "probability": 0.0484 + }, + { + "start": 16594.64, + "end": 16595.6, + "probability": 0.455 + }, + { + "start": 16595.78, + "end": 16601.24, + "probability": 0.9683 + }, + { + "start": 16601.7, + "end": 16603.9, + "probability": 0.8582 + }, + { + "start": 16604.76, + "end": 16605.16, + "probability": 0.1537 + }, + { + "start": 16606.96, + "end": 16606.96, + "probability": 0.0486 + }, + { + "start": 16606.96, + "end": 16608.24, + "probability": 0.8849 + }, + { + "start": 16608.54, + "end": 16611.28, + "probability": 0.9927 + }, + { + "start": 16611.34, + "end": 16612.1, + "probability": 0.7884 + }, + { + "start": 16613.22, + "end": 16615.9, + "probability": 0.7435 + }, + { + "start": 16616.22, + "end": 16617.34, + "probability": 0.7797 + }, + { + "start": 16617.34, + "end": 16618.48, + "probability": 0.8997 + }, + { + "start": 16619.04, + "end": 16619.94, + "probability": 0.5815 + }, + { + "start": 16620.1, + "end": 16624.52, + "probability": 0.9813 + }, + { + "start": 16624.86, + "end": 16625.76, + "probability": 0.0207 + }, + { + "start": 16625.76, + "end": 16627.28, + "probability": 0.4202 + }, + { + "start": 16627.28, + "end": 16627.54, + "probability": 0.117 + }, + { + "start": 16627.98, + "end": 16629.38, + "probability": 0.8999 + }, + { + "start": 16629.78, + "end": 16630.38, + "probability": 0.8209 + }, + { + "start": 16630.5, + "end": 16633.72, + "probability": 0.9855 + }, + { + "start": 16634.1, + "end": 16636.12, + "probability": 0.9526 + }, + { + "start": 16636.54, + "end": 16639.16, + "probability": 0.9416 + }, + { + "start": 16639.36, + "end": 16640.7, + "probability": 0.8546 + }, + { + "start": 16640.82, + "end": 16641.7, + "probability": 0.978 + }, + { + "start": 16641.94, + "end": 16646.1, + "probability": 0.9532 + }, + { + "start": 16647.08, + "end": 16648.66, + "probability": 0.8993 + }, + { + "start": 16649.62, + "end": 16654.52, + "probability": 0.9109 + }, + { + "start": 16656.44, + "end": 16661.5, + "probability": 0.8909 + }, + { + "start": 16662.24, + "end": 16664.05, + "probability": 0.8599 + }, + { + "start": 16665.14, + "end": 16667.06, + "probability": 0.8004 + }, + { + "start": 16667.5, + "end": 16673.64, + "probability": 0.9732 + }, + { + "start": 16674.64, + "end": 16675.84, + "probability": 0.9709 + }, + { + "start": 16677.7, + "end": 16678.9, + "probability": 0.8724 + }, + { + "start": 16679.36, + "end": 16680.62, + "probability": 0.1389 + }, + { + "start": 16680.66, + "end": 16681.48, + "probability": 0.644 + }, + { + "start": 16685.66, + "end": 16688.4, + "probability": 0.5578 + }, + { + "start": 16688.46, + "end": 16688.62, + "probability": 0.1079 + }, + { + "start": 16688.64, + "end": 16689.42, + "probability": 0.7968 + }, + { + "start": 16689.42, + "end": 16692.54, + "probability": 0.9868 + }, + { + "start": 16693.2, + "end": 16694.58, + "probability": 0.948 + }, + { + "start": 16695.5, + "end": 16696.3, + "probability": 0.8772 + }, + { + "start": 16697.54, + "end": 16698.34, + "probability": 0.8232 + }, + { + "start": 16698.4, + "end": 16699.02, + "probability": 0.7501 + }, + { + "start": 16699.38, + "end": 16699.62, + "probability": 0.3339 + }, + { + "start": 16699.62, + "end": 16700.34, + "probability": 0.9897 + }, + { + "start": 16700.74, + "end": 16703.36, + "probability": 0.7665 + }, + { + "start": 16703.46, + "end": 16705.08, + "probability": 0.9932 + }, + { + "start": 16705.2, + "end": 16706.64, + "probability": 0.5268 + }, + { + "start": 16706.66, + "end": 16709.77, + "probability": 0.667 + }, + { + "start": 16710.0, + "end": 16712.84, + "probability": 0.7384 + }, + { + "start": 16713.92, + "end": 16715.58, + "probability": 0.0036 + }, + { + "start": 16715.58, + "end": 16715.58, + "probability": 0.2219 + }, + { + "start": 16725.34, + "end": 16727.78, + "probability": 0.1961 + }, + { + "start": 16727.78, + "end": 16729.48, + "probability": 0.5044 + }, + { + "start": 16729.52, + "end": 16730.4, + "probability": 0.3091 + }, + { + "start": 16731.1, + "end": 16735.42, + "probability": 0.9932 + }, + { + "start": 16735.86, + "end": 16741.28, + "probability": 0.9952 + }, + { + "start": 16741.84, + "end": 16745.32, + "probability": 0.9951 + }, + { + "start": 16745.36, + "end": 16749.64, + "probability": 0.9976 + }, + { + "start": 16749.88, + "end": 16750.64, + "probability": 0.7887 + }, + { + "start": 16751.02, + "end": 16753.3, + "probability": 0.9956 + }, + { + "start": 16753.3, + "end": 16756.44, + "probability": 0.9985 + }, + { + "start": 16756.52, + "end": 16760.84, + "probability": 0.9906 + }, + { + "start": 16761.12, + "end": 16764.74, + "probability": 0.1942 + }, + { + "start": 16765.0, + "end": 16765.94, + "probability": 0.7785 + }, + { + "start": 16766.2, + "end": 16769.42, + "probability": 0.9229 + }, + { + "start": 16769.94, + "end": 16771.84, + "probability": 0.9013 + }, + { + "start": 16773.66, + "end": 16773.72, + "probability": 0.2743 + }, + { + "start": 16773.72, + "end": 16773.78, + "probability": 0.1965 + }, + { + "start": 16773.78, + "end": 16774.76, + "probability": 0.2479 + }, + { + "start": 16774.76, + "end": 16775.58, + "probability": 0.2202 + }, + { + "start": 16775.76, + "end": 16780.96, + "probability": 0.2311 + }, + { + "start": 16781.32, + "end": 16782.82, + "probability": 0.8237 + }, + { + "start": 16783.0, + "end": 16785.0, + "probability": 0.0787 + }, + { + "start": 16785.78, + "end": 16786.88, + "probability": 0.0265 + }, + { + "start": 16786.89, + "end": 16788.06, + "probability": 0.4017 + }, + { + "start": 16788.18, + "end": 16790.32, + "probability": 0.8953 + }, + { + "start": 16791.12, + "end": 16792.18, + "probability": 0.1425 + }, + { + "start": 16792.18, + "end": 16794.26, + "probability": 0.9906 + }, + { + "start": 16794.26, + "end": 16796.96, + "probability": 0.9957 + }, + { + "start": 16797.72, + "end": 16799.14, + "probability": 0.9125 + }, + { + "start": 16799.64, + "end": 16801.14, + "probability": 0.6924 + }, + { + "start": 16801.28, + "end": 16802.48, + "probability": 0.5409 + }, + { + "start": 16803.3, + "end": 16805.1, + "probability": 0.9679 + }, + { + "start": 16805.24, + "end": 16808.08, + "probability": 0.9528 + }, + { + "start": 16808.16, + "end": 16808.98, + "probability": 0.8256 + }, + { + "start": 16809.84, + "end": 16810.52, + "probability": 0.192 + }, + { + "start": 16812.92, + "end": 16813.98, + "probability": 0.0151 + }, + { + "start": 16814.56, + "end": 16814.58, + "probability": 0.3986 + }, + { + "start": 16814.58, + "end": 16814.58, + "probability": 0.0222 + }, + { + "start": 16814.58, + "end": 16814.58, + "probability": 0.178 + }, + { + "start": 16814.58, + "end": 16814.58, + "probability": 0.0445 + }, + { + "start": 16814.58, + "end": 16816.0, + "probability": 0.1511 + }, + { + "start": 16816.2, + "end": 16816.74, + "probability": 0.4735 + }, + { + "start": 16818.08, + "end": 16820.44, + "probability": 0.9878 + }, + { + "start": 16820.64, + "end": 16821.94, + "probability": 0.9912 + }, + { + "start": 16822.42, + "end": 16822.72, + "probability": 0.6335 + }, + { + "start": 16823.58, + "end": 16824.62, + "probability": 0.4939 + }, + { + "start": 16824.62, + "end": 16825.88, + "probability": 0.6609 + }, + { + "start": 16829.58, + "end": 16830.04, + "probability": 0.0152 + }, + { + "start": 16830.3, + "end": 16830.54, + "probability": 0.191 + }, + { + "start": 16830.7, + "end": 16830.7, + "probability": 0.0251 + }, + { + "start": 16833.4, + "end": 16834.54, + "probability": 0.1969 + }, + { + "start": 16835.04, + "end": 16835.44, + "probability": 0.1143 + }, + { + "start": 16835.44, + "end": 16835.76, + "probability": 0.3899 + }, + { + "start": 16836.2, + "end": 16838.76, + "probability": 0.5039 + }, + { + "start": 16838.92, + "end": 16842.39, + "probability": 0.8239 + }, + { + "start": 16842.66, + "end": 16843.9, + "probability": 0.082 + }, + { + "start": 16843.9, + "end": 16844.86, + "probability": 0.4384 + }, + { + "start": 16845.52, + "end": 16848.82, + "probability": 0.9899 + }, + { + "start": 16850.08, + "end": 16850.82, + "probability": 0.7947 + }, + { + "start": 16851.5, + "end": 16855.82, + "probability": 0.9895 + }, + { + "start": 16855.96, + "end": 16858.34, + "probability": 0.9668 + }, + { + "start": 16858.44, + "end": 16861.96, + "probability": 0.9591 + }, + { + "start": 16862.02, + "end": 16863.34, + "probability": 0.7964 + }, + { + "start": 16864.66, + "end": 16868.28, + "probability": 0.9018 + }, + { + "start": 16868.32, + "end": 16870.38, + "probability": 0.9868 + }, + { + "start": 16870.78, + "end": 16871.66, + "probability": 0.427 + }, + { + "start": 16873.74, + "end": 16873.74, + "probability": 0.4517 + }, + { + "start": 16873.74, + "end": 16876.1, + "probability": 0.6735 + }, + { + "start": 16876.28, + "end": 16878.28, + "probability": 0.8835 + }, + { + "start": 16878.38, + "end": 16880.7, + "probability": 0.8411 + }, + { + "start": 16881.86, + "end": 16884.6, + "probability": 0.7368 + }, + { + "start": 16884.7, + "end": 16885.26, + "probability": 0.5681 + }, + { + "start": 16886.3, + "end": 16888.32, + "probability": 0.7635 + }, + { + "start": 16889.58, + "end": 16890.12, + "probability": 0.7602 + }, + { + "start": 16890.68, + "end": 16892.92, + "probability": 0.8781 + }, + { + "start": 16893.64, + "end": 16894.7, + "probability": 0.9342 + }, + { + "start": 16894.88, + "end": 16895.32, + "probability": 0.4939 + }, + { + "start": 16895.52, + "end": 16896.48, + "probability": 0.7174 + }, + { + "start": 16896.54, + "end": 16899.4, + "probability": 0.9928 + }, + { + "start": 16900.22, + "end": 16901.16, + "probability": 0.725 + }, + { + "start": 16902.04, + "end": 16902.9, + "probability": 0.7443 + }, + { + "start": 16903.22, + "end": 16904.64, + "probability": 0.7856 + }, + { + "start": 16905.04, + "end": 16907.03, + "probability": 0.9346 + }, + { + "start": 16907.66, + "end": 16907.84, + "probability": 0.0145 + }, + { + "start": 16908.06, + "end": 16908.36, + "probability": 0.807 + }, + { + "start": 16908.42, + "end": 16916.12, + "probability": 0.9599 + }, + { + "start": 16916.24, + "end": 16918.6, + "probability": 0.983 + }, + { + "start": 16918.78, + "end": 16920.74, + "probability": 0.8983 + }, + { + "start": 16922.8, + "end": 16923.06, + "probability": 0.0161 + }, + { + "start": 16923.06, + "end": 16923.69, + "probability": 0.1907 + }, + { + "start": 16927.58, + "end": 16931.7, + "probability": 0.5432 + }, + { + "start": 16932.62, + "end": 16935.24, + "probability": 0.9126 + }, + { + "start": 16935.58, + "end": 16938.62, + "probability": 0.6919 + }, + { + "start": 16938.64, + "end": 16941.34, + "probability": 0.9639 + }, + { + "start": 16941.72, + "end": 16943.94, + "probability": 0.9839 + }, + { + "start": 16944.26, + "end": 16946.64, + "probability": 0.9563 + }, + { + "start": 16947.44, + "end": 16949.62, + "probability": 0.9894 + }, + { + "start": 16949.96, + "end": 16953.0, + "probability": 0.5078 + }, + { + "start": 16953.32, + "end": 16957.26, + "probability": 0.8527 + }, + { + "start": 16958.02, + "end": 16960.42, + "probability": 0.7297 + }, + { + "start": 16960.82, + "end": 16964.1, + "probability": 0.868 + }, + { + "start": 16964.24, + "end": 16966.08, + "probability": 0.9624 + }, + { + "start": 16966.98, + "end": 16968.7, + "probability": 0.9758 + }, + { + "start": 16969.34, + "end": 16971.04, + "probability": 0.989 + }, + { + "start": 16971.28, + "end": 16973.92, + "probability": 0.9825 + }, + { + "start": 16974.36, + "end": 16977.36, + "probability": 0.8968 + }, + { + "start": 16977.84, + "end": 16980.22, + "probability": 0.7537 + }, + { + "start": 16980.88, + "end": 16987.12, + "probability": 0.9304 + }, + { + "start": 16991.24, + "end": 16995.3, + "probability": 0.687 + }, + { + "start": 16995.9, + "end": 16998.56, + "probability": 0.9718 + }, + { + "start": 16999.42, + "end": 16999.9, + "probability": 0.9959 + }, + { + "start": 17000.72, + "end": 17001.78, + "probability": 0.8395 + }, + { + "start": 17002.48, + "end": 17004.72, + "probability": 0.8226 + }, + { + "start": 17005.54, + "end": 17010.4, + "probability": 0.967 + }, + { + "start": 17011.36, + "end": 17018.94, + "probability": 0.9637 + }, + { + "start": 17020.02, + "end": 17022.48, + "probability": 0.9881 + }, + { + "start": 17023.42, + "end": 17027.84, + "probability": 0.9846 + }, + { + "start": 17028.46, + "end": 17030.44, + "probability": 0.9743 + }, + { + "start": 17032.28, + "end": 17034.04, + "probability": 0.9753 + }, + { + "start": 17034.68, + "end": 17042.72, + "probability": 0.9602 + }, + { + "start": 17043.38, + "end": 17052.56, + "probability": 0.9071 + }, + { + "start": 17054.88, + "end": 17055.52, + "probability": 0.9596 + }, + { + "start": 17057.52, + "end": 17061.2, + "probability": 0.6268 + }, + { + "start": 17062.12, + "end": 17062.94, + "probability": 0.8883 + }, + { + "start": 17064.8, + "end": 17070.0, + "probability": 0.9305 + }, + { + "start": 17071.22, + "end": 17076.24, + "probability": 0.9527 + }, + { + "start": 17076.96, + "end": 17079.02, + "probability": 0.9873 + }, + { + "start": 17080.3, + "end": 17082.9, + "probability": 0.9568 + }, + { + "start": 17083.68, + "end": 17084.16, + "probability": 0.9934 + }, + { + "start": 17086.62, + "end": 17087.7, + "probability": 0.6377 + }, + { + "start": 17088.42, + "end": 17091.8, + "probability": 0.9261 + }, + { + "start": 17092.5, + "end": 17094.94, + "probability": 0.5209 + }, + { + "start": 17095.54, + "end": 17098.0, + "probability": 0.9613 + }, + { + "start": 17098.88, + "end": 17101.14, + "probability": 0.9465 + }, + { + "start": 17101.72, + "end": 17103.98, + "probability": 0.9648 + }, + { + "start": 17105.18, + "end": 17105.7, + "probability": 0.9924 + }, + { + "start": 17107.08, + "end": 17108.16, + "probability": 0.9871 + }, + { + "start": 17108.68, + "end": 17112.66, + "probability": 0.995 + }, + { + "start": 17113.72, + "end": 17114.38, + "probability": 0.5668 + }, + { + "start": 17114.74, + "end": 17117.02, + "probability": 0.5559 + }, + { + "start": 17117.36, + "end": 17119.44, + "probability": 0.9478 + }, + { + "start": 17119.86, + "end": 17121.84, + "probability": 0.9688 + }, + { + "start": 17122.68, + "end": 17124.6, + "probability": 0.9808 + }, + { + "start": 17125.28, + "end": 17127.24, + "probability": 0.9863 + }, + { + "start": 17127.92, + "end": 17135.08, + "probability": 0.9871 + }, + { + "start": 17135.68, + "end": 17137.86, + "probability": 0.9793 + }, + { + "start": 17138.5, + "end": 17140.88, + "probability": 0.9945 + }, + { + "start": 17141.8, + "end": 17143.72, + "probability": 0.5423 + }, + { + "start": 17144.72, + "end": 17146.84, + "probability": 0.9519 + }, + { + "start": 17147.74, + "end": 17149.96, + "probability": 0.9684 + }, + { + "start": 17151.04, + "end": 17152.7, + "probability": 0.8734 + }, + { + "start": 17153.46, + "end": 17155.18, + "probability": 0.9914 + }, + { + "start": 17155.88, + "end": 17158.46, + "probability": 0.9707 + }, + { + "start": 17160.52, + "end": 17163.9, + "probability": 0.9368 + }, + { + "start": 17164.5, + "end": 17166.78, + "probability": 0.9312 + }, + { + "start": 17167.48, + "end": 17169.62, + "probability": 0.9414 + }, + { + "start": 17170.5, + "end": 17174.16, + "probability": 0.9127 + }, + { + "start": 17174.76, + "end": 17179.0, + "probability": 0.6486 + }, + { + "start": 17179.94, + "end": 17182.2, + "probability": 0.8215 + }, + { + "start": 17182.82, + "end": 17185.12, + "probability": 0.9855 + }, + { + "start": 17185.8, + "end": 17188.54, + "probability": 0.9722 + }, + { + "start": 17189.1, + "end": 17191.24, + "probability": 0.985 + }, + { + "start": 17191.84, + "end": 17197.44, + "probability": 0.74 + }, + { + "start": 17198.34, + "end": 17199.8, + "probability": 0.8802 + }, + { + "start": 17200.94, + "end": 17202.52, + "probability": 0.9496 + }, + { + "start": 17204.32, + "end": 17206.66, + "probability": 0.9734 + }, + { + "start": 17207.28, + "end": 17209.72, + "probability": 0.9342 + }, + { + "start": 17210.34, + "end": 17215.44, + "probability": 0.9644 + }, + { + "start": 17216.1, + "end": 17218.58, + "probability": 0.925 + }, + { + "start": 17219.56, + "end": 17221.6, + "probability": 0.9639 + }, + { + "start": 17222.26, + "end": 17222.72, + "probability": 0.552 + }, + { + "start": 17223.42, + "end": 17224.5, + "probability": 0.6564 + }, + { + "start": 17225.12, + "end": 17228.2, + "probability": 0.7893 + }, + { + "start": 17229.0, + "end": 17230.22, + "probability": 0.8713 + }, + { + "start": 17231.14, + "end": 17232.02, + "probability": 0.8478 + }, + { + "start": 17233.1, + "end": 17235.42, + "probability": 0.9382 + }, + { + "start": 17236.16, + "end": 17238.34, + "probability": 0.9878 + }, + { + "start": 17239.02, + "end": 17244.92, + "probability": 0.9869 + }, + { + "start": 17245.68, + "end": 17247.78, + "probability": 0.9595 + }, + { + "start": 17248.38, + "end": 17250.78, + "probability": 0.8553 + }, + { + "start": 17251.66, + "end": 17253.52, + "probability": 0.6261 + }, + { + "start": 17255.02, + "end": 17257.3, + "probability": 0.902 + }, + { + "start": 17257.96, + "end": 17260.2, + "probability": 0.967 + }, + { + "start": 17261.04, + "end": 17262.9, + "probability": 0.9934 + }, + { + "start": 17263.9, + "end": 17266.26, + "probability": 0.9294 + }, + { + "start": 17266.94, + "end": 17267.38, + "probability": 0.9878 + }, + { + "start": 17270.94, + "end": 17272.08, + "probability": 0.6555 + }, + { + "start": 17273.06, + "end": 17275.56, + "probability": 0.7959 + }, + { + "start": 17278.2, + "end": 17283.92, + "probability": 0.9746 + }, + { + "start": 17284.74, + "end": 17287.44, + "probability": 0.9756 + }, + { + "start": 17287.66, + "end": 17290.98, + "probability": 0.9704 + }, + { + "start": 17291.3, + "end": 17293.98, + "probability": 0.929 + }, + { + "start": 17294.32, + "end": 17297.04, + "probability": 0.9877 + }, + { + "start": 17297.24, + "end": 17297.98, + "probability": 0.9937 + }, + { + "start": 17298.78, + "end": 17299.84, + "probability": 0.634 + }, + { + "start": 17300.56, + "end": 17308.62, + "probability": 0.9624 + }, + { + "start": 17309.4, + "end": 17318.3, + "probability": 0.973 + }, + { + "start": 17318.9, + "end": 17324.08, + "probability": 0.8118 + }, + { + "start": 17334.52, + "end": 17336.9, + "probability": 0.8221 + }, + { + "start": 17337.02, + "end": 17341.82, + "probability": 0.9427 + }, + { + "start": 17342.42, + "end": 17344.84, + "probability": 0.8835 + }, + { + "start": 17344.84, + "end": 17347.2, + "probability": 0.9612 + }, + { + "start": 17348.13, + "end": 17348.92, + "probability": 0.022 + }, + { + "start": 17350.32, + "end": 17350.81, + "probability": 0.1109 + }, + { + "start": 17352.6, + "end": 17353.84, + "probability": 0.6083 + }, + { + "start": 17355.58, + "end": 17356.48, + "probability": 0.8813 + }, + { + "start": 17357.08, + "end": 17358.14, + "probability": 0.7008 + }, + { + "start": 17359.8, + "end": 17360.7, + "probability": 0.877 + }, + { + "start": 17362.48, + "end": 17364.1, + "probability": 0.8722 + }, + { + "start": 17365.54, + "end": 17370.1, + "probability": 0.6805 + }, + { + "start": 17370.36, + "end": 17371.77, + "probability": 0.4531 + }, + { + "start": 17372.26, + "end": 17374.9, + "probability": 0.7524 + }, + { + "start": 17375.74, + "end": 17378.16, + "probability": 0.7798 + }, + { + "start": 17386.52, + "end": 17391.7, + "probability": 0.9466 + }, + { + "start": 17392.72, + "end": 17395.74, + "probability": 0.9548 + }, + { + "start": 17399.2, + "end": 17400.51, + "probability": 0.0934 + }, + { + "start": 17406.3, + "end": 17406.44, + "probability": 0.2216 + }, + { + "start": 17406.44, + "end": 17406.44, + "probability": 0.1582 + }, + { + "start": 17406.44, + "end": 17406.48, + "probability": 0.067 + }, + { + "start": 17406.48, + "end": 17408.06, + "probability": 0.0104 + }, + { + "start": 17422.26, + "end": 17430.1, + "probability": 0.5559 + }, + { + "start": 17430.16, + "end": 17430.24, + "probability": 0.1151 + }, + { + "start": 17430.6, + "end": 17430.6, + "probability": 0.0216 + }, + { + "start": 17430.6, + "end": 17431.16, + "probability": 0.1519 + }, + { + "start": 17431.16, + "end": 17436.44, + "probability": 0.1512 + }, + { + "start": 17436.86, + "end": 17436.93, + "probability": 0.3814 + }, + { + "start": 17447.72, + "end": 17448.46, + "probability": 0.1045 + }, + { + "start": 17454.58, + "end": 17457.2, + "probability": 0.5401 + }, + { + "start": 17457.76, + "end": 17458.42, + "probability": 0.9665 + }, + { + "start": 17459.08, + "end": 17461.74, + "probability": 0.9984 + }, + { + "start": 17462.74, + "end": 17463.08, + "probability": 0.3159 + }, + { + "start": 17463.16, + "end": 17463.4, + "probability": 0.4541 + }, + { + "start": 17463.46, + "end": 17464.8, + "probability": 0.6512 + }, + { + "start": 17464.94, + "end": 17468.62, + "probability": 0.9763 + }, + { + "start": 17471.24, + "end": 17475.34, + "probability": 0.8799 + }, + { + "start": 17476.16, + "end": 17476.66, + "probability": 0.0775 + }, + { + "start": 17478.3, + "end": 17482.26, + "probability": 0.987 + }, + { + "start": 17482.3, + "end": 17483.7, + "probability": 0.8407 + }, + { + "start": 17484.8, + "end": 17488.6, + "probability": 0.763 + }, + { + "start": 17500.88, + "end": 17502.52, + "probability": 0.6719 + }, + { + "start": 17503.26, + "end": 17505.12, + "probability": 0.7306 + }, + { + "start": 17509.0, + "end": 17514.92, + "probability": 0.7668 + }, + { + "start": 17515.46, + "end": 17516.5, + "probability": 0.3614 + }, + { + "start": 17517.14, + "end": 17517.58, + "probability": 0.4737 + }, + { + "start": 17517.92, + "end": 17521.18, + "probability": 0.9697 + }, + { + "start": 17521.38, + "end": 17523.38, + "probability": 0.9837 + }, + { + "start": 17523.5, + "end": 17525.14, + "probability": 0.8267 + }, + { + "start": 17525.86, + "end": 17527.04, + "probability": 0.038 + }, + { + "start": 17527.84, + "end": 17528.7, + "probability": 0.9604 + }, + { + "start": 17529.32, + "end": 17532.2, + "probability": 0.8673 + }, + { + "start": 17532.86, + "end": 17534.3, + "probability": 0.953 + }, + { + "start": 17534.34, + "end": 17536.16, + "probability": 0.9725 + }, + { + "start": 17537.12, + "end": 17543.56, + "probability": 0.9545 + }, + { + "start": 17546.58, + "end": 17547.66, + "probability": 0.9849 + }, + { + "start": 17550.1, + "end": 17551.62, + "probability": 0.356 + }, + { + "start": 17552.2, + "end": 17556.36, + "probability": 0.9121 + }, + { + "start": 17559.92, + "end": 17563.12, + "probability": 0.9558 + }, + { + "start": 17563.72, + "end": 17566.82, + "probability": 0.9711 + }, + { + "start": 17566.92, + "end": 17567.4, + "probability": 0.5328 + }, + { + "start": 17567.66, + "end": 17568.9, + "probability": 0.0092 + }, + { + "start": 17570.12, + "end": 17571.02, + "probability": 0.052 + }, + { + "start": 17571.02, + "end": 17571.02, + "probability": 0.1827 + }, + { + "start": 17571.02, + "end": 17571.02, + "probability": 0.0476 + }, + { + "start": 17571.02, + "end": 17571.02, + "probability": 0.1255 + }, + { + "start": 17571.02, + "end": 17574.7, + "probability": 0.863 + }, + { + "start": 17574.9, + "end": 17575.84, + "probability": 0.7885 + }, + { + "start": 17576.1, + "end": 17579.8, + "probability": 0.9336 + }, + { + "start": 17580.14, + "end": 17582.5, + "probability": 0.8925 + }, + { + "start": 17582.62, + "end": 17584.06, + "probability": 0.8436 + }, + { + "start": 17593.4, + "end": 17597.22, + "probability": 0.9972 + }, + { + "start": 17597.32, + "end": 17599.86, + "probability": 0.9734 + }, + { + "start": 17607.7, + "end": 17609.2, + "probability": 0.9064 + }, + { + "start": 17610.54, + "end": 17612.26, + "probability": 0.8898 + }, + { + "start": 17612.82, + "end": 17613.74, + "probability": 0.8857 + }, + { + "start": 17614.92, + "end": 17621.42, + "probability": 0.9746 + }, + { + "start": 17622.38, + "end": 17627.88, + "probability": 0.9975 + }, + { + "start": 17635.54, + "end": 17635.94, + "probability": 0.0074 + }, + { + "start": 17650.0, + "end": 17654.7, + "probability": 0.9835 + }, + { + "start": 17654.76, + "end": 17656.74, + "probability": 0.9985 + }, + { + "start": 17657.58, + "end": 17662.06, + "probability": 0.9893 + }, + { + "start": 17662.9, + "end": 17663.46, + "probability": 0.0013 + }, + { + "start": 17665.42, + "end": 17665.76, + "probability": 0.0922 + }, + { + "start": 17676.56, + "end": 17680.66, + "probability": 0.687 + }, + { + "start": 17681.18, + "end": 17684.2, + "probability": 0.9454 + }, + { + "start": 17718.92, + "end": 17720.12, + "probability": 0.4873 + }, + { + "start": 17721.12, + "end": 17722.32, + "probability": 0.9248 + }, + { + "start": 17722.36, + "end": 17724.64, + "probability": 0.8355 + }, + { + "start": 17724.74, + "end": 17729.94, + "probability": 0.9897 + }, + { + "start": 17730.62, + "end": 17736.24, + "probability": 0.9744 + }, + { + "start": 17738.62, + "end": 17747.54, + "probability": 0.0234 + }, + { + "start": 17749.56, + "end": 17756.1, + "probability": 0.0758 + }, + { + "start": 17759.0, + "end": 17762.52, + "probability": 0.0123 + }, + { + "start": 17771.02, + "end": 17772.48, + "probability": 0.0927 + }, + { + "start": 17773.4, + "end": 17774.08, + "probability": 0.0181 + }, + { + "start": 17811.08, + "end": 17814.44, + "probability": 0.702 + }, + { + "start": 17820.8, + "end": 17822.16, + "probability": 0.9533 + }, + { + "start": 17823.88, + "end": 17828.96, + "probability": 0.4259 + }, + { + "start": 17829.04, + "end": 17829.68, + "probability": 0.678 + }, + { + "start": 17829.76, + "end": 17830.22, + "probability": 0.5745 + }, + { + "start": 17830.24, + "end": 17831.18, + "probability": 0.8063 + }, + { + "start": 17831.64, + "end": 17831.9, + "probability": 0.4024 + }, + { + "start": 17832.06, + "end": 17832.98, + "probability": 0.9043 + }, + { + "start": 17833.42, + "end": 17837.2, + "probability": 0.9938 + }, + { + "start": 17837.7, + "end": 17841.9, + "probability": 0.9946 + }, + { + "start": 17842.38, + "end": 17846.82, + "probability": 0.0084 + }, + { + "start": 17847.78, + "end": 17849.22, + "probability": 0.0535 + }, + { + "start": 17856.2, + "end": 17858.88, + "probability": 0.1999 + }, + { + "start": 17859.77, + "end": 17861.98, + "probability": 0.0791 + }, + { + "start": 17894.98, + "end": 17895.92, + "probability": 0.3654 + }, + { + "start": 17897.1, + "end": 17899.54, + "probability": 0.6911 + }, + { + "start": 17899.68, + "end": 17903.3, + "probability": 0.9842 + }, + { + "start": 17907.9, + "end": 17911.16, + "probability": 0.7575 + }, + { + "start": 17911.7, + "end": 17916.52, + "probability": 0.9864 + }, + { + "start": 17916.98, + "end": 17922.38, + "probability": 0.9966 + }, + { + "start": 17928.14, + "end": 17931.0, + "probability": 0.0102 + }, + { + "start": 17941.14, + "end": 17943.62, + "probability": 0.998 + }, + { + "start": 17944.2, + "end": 17945.24, + "probability": 0.911 + }, + { + "start": 17946.26, + "end": 17948.76, + "probability": 0.9796 + }, + { + "start": 17950.64, + "end": 17950.66, + "probability": 0.0071 + }, + { + "start": 17952.02, + "end": 17953.96, + "probability": 0.3552 + }, + { + "start": 17954.94, + "end": 17959.54, + "probability": 0.1188 + }, + { + "start": 17979.24, + "end": 17981.0, + "probability": 0.8392 + }, + { + "start": 17981.94, + "end": 17987.48, + "probability": 0.9916 + }, + { + "start": 17988.3, + "end": 17994.46, + "probability": 0.9963 + }, + { + "start": 17996.34, + "end": 17998.12, + "probability": 0.0123 + }, + { + "start": 18020.54, + "end": 18022.26, + "probability": 0.998 + }, + { + "start": 18022.3, + "end": 18023.34, + "probability": 0.5616 + }, + { + "start": 18023.46, + "end": 18025.72, + "probability": 0.9882 + }, + { + "start": 18027.52, + "end": 18029.14, + "probability": 0.6934 + }, + { + "start": 18046.3, + "end": 18049.24, + "probability": 0.9941 + }, + { + "start": 18049.88, + "end": 18051.04, + "probability": 0.8003 + }, + { + "start": 18052.42, + "end": 18053.74, + "probability": 0.7503 + }, + { + "start": 18057.28, + "end": 18061.04, + "probability": 0.9697 + }, + { + "start": 18061.16, + "end": 18062.52, + "probability": 0.7651 + }, + { + "start": 18062.72, + "end": 18068.04, + "probability": 0.9544 + }, + { + "start": 18068.96, + "end": 18069.78, + "probability": 0.8951 + }, + { + "start": 18073.74, + "end": 18074.76, + "probability": 0.8047 + }, + { + "start": 18075.48, + "end": 18076.5, + "probability": 0.9246 + }, + { + "start": 18077.7, + "end": 18078.72, + "probability": 0.9047 + }, + { + "start": 18079.32, + "end": 18085.34, + "probability": 0.9583 + }, + { + "start": 18086.46, + "end": 18092.5, + "probability": 0.9954 + }, + { + "start": 18094.74, + "end": 18097.78, + "probability": 0.005 + }, + { + "start": 18098.92, + "end": 18099.52, + "probability": 0.1216 + }, + { + "start": 18104.96, + "end": 18106.02, + "probability": 0.0484 + }, + { + "start": 18107.14, + "end": 18108.32, + "probability": 0.0678 + }, + { + "start": 18109.32, + "end": 18109.84, + "probability": 0.1423 + }, + { + "start": 18120.32, + "end": 18123.2, + "probability": 0.0059 + }, + { + "start": 18131.24, + "end": 18133.86, + "probability": 0.0693 + }, + { + "start": 18283.0, + "end": 18283.0, + "probability": 0.0 + }, + { + "start": 18283.0, + "end": 18283.0, + "probability": 0.0 + }, + { + "start": 18283.0, + "end": 18283.0, + "probability": 0.0 + }, + { + "start": 18283.0, + "end": 18283.0, + "probability": 0.0 + }, + { + "start": 18283.0, + "end": 18283.0, + "probability": 0.0 + }, + { + "start": 18283.0, + "end": 18283.0, + "probability": 0.0 + }, + { + "start": 18283.92, + "end": 18284.02, + "probability": 0.0448 + }, + { + "start": 18284.02, + "end": 18284.02, + "probability": 0.0433 + }, + { + "start": 18284.02, + "end": 18284.02, + "probability": 0.2366 + }, + { + "start": 18284.02, + "end": 18284.02, + "probability": 0.0121 + }, + { + "start": 18284.02, + "end": 18284.02, + "probability": 0.1085 + }, + { + "start": 18284.02, + "end": 18284.51, + "probability": 0.4651 + }, + { + "start": 18285.06, + "end": 18286.06, + "probability": 0.7319 + }, + { + "start": 18286.9, + "end": 18292.22, + "probability": 0.9797 + }, + { + "start": 18293.0, + "end": 18297.98, + "probability": 0.9982 + }, + { + "start": 18306.66, + "end": 18309.02, + "probability": 0.0397 + }, + { + "start": 18309.66, + "end": 18309.66, + "probability": 0.0437 + }, + { + "start": 18309.66, + "end": 18309.66, + "probability": 0.0056 + }, + { + "start": 18311.54, + "end": 18312.38, + "probability": 0.1386 + }, + { + "start": 18316.36, + "end": 18316.36, + "probability": 0.0262 + }, + { + "start": 18508.0, + "end": 18508.0, + "probability": 0.0 + }, + { + "start": 18508.0, + "end": 18508.0, + "probability": 0.0 + }, + { + "start": 18508.0, + "end": 18508.0, + "probability": 0.0 + }, + { + "start": 18508.0, + "end": 18508.0, + "probability": 0.0 + }, + { + "start": 18508.0, + "end": 18508.0, + "probability": 0.0 + }, + { + "start": 18508.0, + "end": 18508.0, + "probability": 0.0 + }, + { + "start": 18508.0, + "end": 18508.0, + "probability": 0.0 + }, + { + "start": 18508.0, + "end": 18508.0, + "probability": 0.0 + }, + { + "start": 18508.0, + "end": 18508.0, + "probability": 0.0 + }, + { + "start": 18508.0, + "end": 18508.0, + "probability": 0.0 + }, + { + "start": 18508.0, + "end": 18508.0, + "probability": 0.0 + }, + { + "start": 18508.16, + "end": 18509.58, + "probability": 0.0436 + }, + { + "start": 18513.26, + "end": 18514.88, + "probability": 0.0133 + }, + { + "start": 18514.88, + "end": 18519.22, + "probability": 0.0105 + }, + { + "start": 18524.86, + "end": 18525.95, + "probability": 0.3497 + }, + { + "start": 18530.86, + "end": 18532.08, + "probability": 0.2127 + }, + { + "start": 18532.08, + "end": 18532.08, + "probability": 0.0293 + }, + { + "start": 18532.34, + "end": 18534.04, + "probability": 0.0669 + }, + { + "start": 18534.78, + "end": 18534.78, + "probability": 0.0308 + }, + { + "start": 18534.88, + "end": 18535.62, + "probability": 0.3548 + }, + { + "start": 18536.54, + "end": 18537.4, + "probability": 0.898 + }, + { + "start": 18630.0, + "end": 18630.0, + "probability": 0.0 + }, + { + "start": 18630.0, + "end": 18630.0, + "probability": 0.0 + }, + { + "start": 18630.0, + "end": 18630.0, + "probability": 0.0 + }, + { + "start": 18630.0, + "end": 18630.0, + "probability": 0.0 + }, + { + "start": 18630.0, + "end": 18630.0, + "probability": 0.0 + }, + { + "start": 18630.0, + "end": 18630.0, + "probability": 0.0 + }, + { + "start": 18630.0, + "end": 18630.0, + "probability": 0.0 + }, + { + "start": 18630.0, + "end": 18630.0, + "probability": 0.0 + }, + { + "start": 18630.0, + "end": 18630.0, + "probability": 0.0 + }, + { + "start": 18630.0, + "end": 18630.0, + "probability": 0.0 + }, + { + "start": 18630.0, + "end": 18630.0, + "probability": 0.0 + }, + { + "start": 18630.0, + "end": 18630.0, + "probability": 0.0 + }, + { + "start": 18630.0, + "end": 18630.0, + "probability": 0.0 + }, + { + "start": 18630.0, + "end": 18630.0, + "probability": 0.0 + }, + { + "start": 18630.0, + "end": 18630.0, + "probability": 0.0 + }, + { + "start": 18630.0, + "end": 18630.0, + "probability": 0.0 + }, + { + "start": 18630.18, + "end": 18631.0, + "probability": 0.7202 + }, + { + "start": 18631.76, + "end": 18635.38, + "probability": 0.9808 + }, + { + "start": 18645.9, + "end": 18649.52, + "probability": 0.6802 + }, + { + "start": 18651.22, + "end": 18656.56, + "probability": 0.9022 + }, + { + "start": 18657.4, + "end": 18662.92, + "probability": 0.9896 + }, + { + "start": 18663.52, + "end": 18669.74, + "probability": 0.9961 + }, + { + "start": 18681.5, + "end": 18682.26, + "probability": 0.0148 + }, + { + "start": 18685.24, + "end": 18687.16, + "probability": 0.0766 + }, + { + "start": 18693.02, + "end": 18697.14, + "probability": 0.9938 + }, + { + "start": 18697.8, + "end": 18701.38, + "probability": 0.9973 + }, + { + "start": 18717.48, + "end": 18718.36, + "probability": 0.0684 + }, + { + "start": 18719.3, + "end": 18719.3, + "probability": 0.1301 + }, + { + "start": 18720.54, + "end": 18722.28, + "probability": 0.0551 + }, + { + "start": 18731.26, + "end": 18733.1, + "probability": 0.0004 + }, + { + "start": 18812.0, + "end": 18812.0, + "probability": 0.0 + }, + { + "start": 18812.0, + "end": 18812.0, + "probability": 0.0 + }, + { + "start": 18812.0, + "end": 18812.0, + "probability": 0.0 + }, + { + "start": 18812.0, + "end": 18812.0, + "probability": 0.0 + }, + { + "start": 18812.0, + "end": 18812.0, + "probability": 0.0 + }, + { + "start": 18812.0, + "end": 18812.0, + "probability": 0.0 + }, + { + "start": 18812.0, + "end": 18812.0, + "probability": 0.0 + }, + { + "start": 18812.0, + "end": 18812.0, + "probability": 0.0 + }, + { + "start": 18812.0, + "end": 18812.0, + "probability": 0.0 + }, + { + "start": 18812.52, + "end": 18813.66, + "probability": 0.0423 + }, + { + "start": 18813.66, + "end": 18814.64, + "probability": 0.1054 + }, + { + "start": 18838.62, + "end": 18842.42, + "probability": 0.702 + }, + { + "start": 18845.18, + "end": 18847.56, + "probability": 0.9811 + }, + { + "start": 18849.76, + "end": 18851.7, + "probability": 0.9205 + }, + { + "start": 18854.34, + "end": 18855.26, + "probability": 0.7905 + }, + { + "start": 18856.48, + "end": 18858.22, + "probability": 0.7522 + }, + { + "start": 18859.1, + "end": 18859.66, + "probability": 0.7802 + }, + { + "start": 18859.74, + "end": 18861.12, + "probability": 0.8672 + }, + { + "start": 18861.16, + "end": 18861.6, + "probability": 0.6267 + }, + { + "start": 18861.78, + "end": 18864.48, + "probability": 0.8846 + }, + { + "start": 18865.08, + "end": 18870.04, + "probability": 0.988 + }, + { + "start": 18870.8, + "end": 18873.28, + "probability": 0.9907 + }, + { + "start": 18874.24, + "end": 18875.7, + "probability": 0.9565 + }, + { + "start": 18883.68, + "end": 18888.68, + "probability": 0.1178 + }, + { + "start": 18889.86, + "end": 18889.86, + "probability": 0.0326 + }, + { + "start": 18891.38, + "end": 18894.24, + "probability": 0.5674 + }, + { + "start": 18894.46, + "end": 18896.54, + "probability": 0.059 + }, + { + "start": 18898.2, + "end": 18898.2, + "probability": 0.0037 + }, + { + "start": 18898.88, + "end": 18899.96, + "probability": 0.1718 + }, + { + "start": 18900.86, + "end": 18900.86, + "probability": 0.0876 + }, + { + "start": 18900.86, + "end": 18905.36, + "probability": 0.1878 + }, + { + "start": 18923.18, + "end": 18924.9, + "probability": 0.0355 + }, + { + "start": 18926.44, + "end": 18929.1, + "probability": 0.951 + }, + { + "start": 18931.98, + "end": 18932.22, + "probability": 0.5563 + }, + { + "start": 18933.08, + "end": 18935.13, + "probability": 0.7338 + }, + { + "start": 18935.74, + "end": 18938.62, + "probability": 0.7362 + }, + { + "start": 18939.66, + "end": 18941.02, + "probability": 0.9421 + }, + { + "start": 18941.16, + "end": 18948.48, + "probability": 0.9277 + }, + { + "start": 18948.86, + "end": 18956.4, + "probability": 0.9879 + }, + { + "start": 18956.94, + "end": 18960.72, + "probability": 0.0524 + }, + { + "start": 18963.94, + "end": 18968.16, + "probability": 0.0517 + }, + { + "start": 18969.74, + "end": 18971.66, + "probability": 0.0364 + }, + { + "start": 18982.92, + "end": 18982.92, + "probability": 0.0769 + }, + { + "start": 19011.34, + "end": 19014.94, + "probability": 0.9109 + }, + { + "start": 19015.74, + "end": 19016.44, + "probability": 0.712 + }, + { + "start": 19016.76, + "end": 19018.18, + "probability": 0.8882 + }, + { + "start": 19018.76, + "end": 19022.86, + "probability": 0.9834 + }, + { + "start": 19023.3, + "end": 19027.74, + "probability": 0.9952 + }, + { + "start": 19035.73, + "end": 19038.5, + "probability": 0.0507 + }, + { + "start": 19039.08, + "end": 19043.26, + "probability": 0.0314 + }, + { + "start": 19047.36, + "end": 19047.4, + "probability": 0.0085 + }, + { + "start": 19151.7, + "end": 19152.1, + "probability": 0.5492 + }, + { + "start": 19153.34, + "end": 19156.98, + "probability": 0.9252 + }, + { + "start": 19157.88, + "end": 19163.06, + "probability": 0.994 + }, + { + "start": 19163.84, + "end": 19170.78, + "probability": 0.9885 + }, + { + "start": 19171.6, + "end": 19172.96, + "probability": 0.0086 + }, + { + "start": 19174.4, + "end": 19175.86, + "probability": 0.1027 + }, + { + "start": 19177.58, + "end": 19178.94, + "probability": 0.0134 + }, + { + "start": 19180.52, + "end": 19185.06, + "probability": 0.1021 + }, + { + "start": 19185.18, + "end": 19185.96, + "probability": 0.0414 + }, + { + "start": 19197.38, + "end": 19200.18, + "probability": 0.1565 + }, + { + "start": 19218.88, + "end": 19226.08, + "probability": 0.9931 + }, + { + "start": 19231.0, + "end": 19232.72, + "probability": 0.2688 + }, + { + "start": 19233.22, + "end": 19235.9, + "probability": 0.7253 + }, + { + "start": 19236.58, + "end": 19240.84, + "probability": 0.9801 + }, + { + "start": 19241.6, + "end": 19246.16, + "probability": 0.9844 + }, + { + "start": 19250.2, + "end": 19255.62, + "probability": 0.0188 + }, + { + "start": 19256.58, + "end": 19263.3, + "probability": 0.0496 + }, + { + "start": 19264.18, + "end": 19267.18, + "probability": 0.0115 + }, + { + "start": 19274.55, + "end": 19274.62, + "probability": 0.1215 + }, + { + "start": 19392.0, + "end": 19392.0, + "probability": 0.0 + }, + { + "start": 19392.0, + "end": 19392.0, + "probability": 0.0 + }, + { + "start": 19392.0, + "end": 19392.0, + "probability": 0.0 + }, + { + "start": 19392.0, + "end": 19392.0, + "probability": 0.0 + }, + { + "start": 19392.0, + "end": 19392.0, + "probability": 0.0 + }, + { + "start": 19392.0, + "end": 19392.0, + "probability": 0.0 + }, + { + "start": 19392.0, + "end": 19392.0, + "probability": 0.0 + }, + { + "start": 19392.2, + "end": 19394.04, + "probability": 0.6647 + }, + { + "start": 19399.02, + "end": 19404.2, + "probability": 0.9811 + }, + { + "start": 19417.35, + "end": 19420.04, + "probability": 0.5726 + }, + { + "start": 19420.18, + "end": 19424.26, + "probability": 0.8953 + }, + { + "start": 19424.42, + "end": 19426.56, + "probability": 0.7689 + }, + { + "start": 19426.88, + "end": 19428.5, + "probability": 0.7989 + }, + { + "start": 19428.68, + "end": 19433.08, + "probability": 0.9575 + }, + { + "start": 19433.82, + "end": 19438.54, + "probability": 0.9834 + }, + { + "start": 19439.0, + "end": 19440.04, + "probability": 0.0097 + }, + { + "start": 19448.52, + "end": 19449.26, + "probability": 0.2692 + }, + { + "start": 19450.06, + "end": 19451.32, + "probability": 0.004 + }, + { + "start": 19477.02, + "end": 19478.3, + "probability": 0.3415 + }, + { + "start": 19478.32, + "end": 19478.32, + "probability": 0.2842 + }, + { + "start": 19478.42, + "end": 19479.28, + "probability": 0.0437 + }, + { + "start": 19479.28, + "end": 19480.8, + "probability": 0.1907 + }, + { + "start": 19480.8, + "end": 19480.94, + "probability": 0.2377 + }, + { + "start": 19488.9, + "end": 19491.02, + "probability": 0.0179 + }, + { + "start": 19499.6, + "end": 19499.86, + "probability": 0.9751 + }, + { + "start": 19502.72, + "end": 19506.2, + "probability": 0.9912 + }, + { + "start": 19511.14, + "end": 19514.3, + "probability": 0.6392 + }, + { + "start": 19514.42, + "end": 19515.26, + "probability": 0.9032 + }, + { + "start": 19518.16, + "end": 19519.63, + "probability": 0.7656 + }, + { + "start": 19520.7, + "end": 19522.58, + "probability": 0.8357 + }, + { + "start": 19523.42, + "end": 19525.86, + "probability": 0.9131 + }, + { + "start": 19526.76, + "end": 19531.18, + "probability": 0.9937 + }, + { + "start": 19532.0, + "end": 19538.62, + "probability": 0.9959 + }, + { + "start": 19540.5, + "end": 19543.22, + "probability": 0.0123 + }, + { + "start": 19543.82, + "end": 19547.74, + "probability": 0.0661 + }, + { + "start": 19548.39, + "end": 19549.56, + "probability": 0.0717 + }, + { + "start": 19566.28, + "end": 19567.38, + "probability": 0.0068 + }, + { + "start": 19568.32, + "end": 19569.52, + "probability": 0.0294 + }, + { + "start": 19588.84, + "end": 19591.12, + "probability": 0.8842 + }, + { + "start": 19591.66, + "end": 19593.86, + "probability": 0.8257 + }, + { + "start": 19610.16, + "end": 19611.73, + "probability": 0.8057 + }, + { + "start": 19612.92, + "end": 19614.52, + "probability": 0.8435 + }, + { + "start": 19615.44, + "end": 19617.66, + "probability": 0.8772 + }, + { + "start": 19618.62, + "end": 19623.66, + "probability": 0.9964 + }, + { + "start": 19624.2, + "end": 19629.3, + "probability": 0.9958 + }, + { + "start": 19629.46, + "end": 19629.52, + "probability": 0.0099 + }, + { + "start": 19632.02, + "end": 19635.26, + "probability": 0.0351 + }, + { + "start": 19637.86, + "end": 19638.14, + "probability": 0.0781 + }, + { + "start": 19638.74, + "end": 19640.92, + "probability": 0.0553 + }, + { + "start": 19640.92, + "end": 19645.06, + "probability": 0.0452 + }, + { + "start": 20121.02, + "end": 20121.02, + "probability": 0.0 + }, + { + "start": 20121.02, + "end": 20121.02, + "probability": 0.0 + }, + { + "start": 20121.02, + "end": 20121.02, + "probability": 0.0 + }, + { + "start": 20121.02, + "end": 20121.02, + "probability": 0.0 + }, + { + "start": 20121.02, + "end": 20121.02, + "probability": 0.0 + }, + { + "start": 20121.02, + "end": 20121.02, + "probability": 0.0 + }, + { + "start": 20121.02, + "end": 20121.02, + "probability": 0.0 + }, + { + "start": 20121.02, + "end": 20121.02, + "probability": 0.0 + }, + { + "start": 20121.02, + "end": 20121.02, + "probability": 0.0 + }, + { + "start": 20121.02, + "end": 20121.02, + "probability": 0.0 + }, + { + "start": 20121.02, + "end": 20121.02, + "probability": 0.0 + }, + { + "start": 20121.02, + "end": 20121.02, + "probability": 0.0 + }, + { + "start": 20121.02, + "end": 20121.02, + "probability": 0.0 + }, + { + "start": 20121.02, + "end": 20121.02, + "probability": 0.0 + }, + { + "start": 20121.02, + "end": 20121.02, + "probability": 0.0 + }, + { + "start": 20121.02, + "end": 20121.02, + "probability": 0.0 + }, + { + "start": 20121.02, + "end": 20121.02, + "probability": 0.0 + }, + { + "start": 20121.02, + "end": 20121.02, + "probability": 0.0 + }, + { + "start": 20121.02, + "end": 20121.02, + "probability": 0.0 + }, + { + "start": 20121.02, + "end": 20121.02, + "probability": 0.0 + }, + { + "start": 20121.02, + "end": 20121.02, + "probability": 0.0 + }, + { + "start": 20121.02, + "end": 20121.02, + "probability": 0.0 + }, + { + "start": 20121.02, + "end": 20121.02, + "probability": 0.0 + }, + { + "start": 20121.02, + "end": 20121.02, + "probability": 0.0 + }, + { + "start": 20121.02, + "end": 20121.02, + "probability": 0.0 + }, + { + "start": 20404.0, + "end": 20404.0, + "probability": 0.0 + }, + { + "start": 20404.0, + "end": 20404.0, + "probability": 0.0 + }, + { + "start": 20404.0, + "end": 20404.0, + "probability": 0.0 + }, + { + "start": 20404.0, + "end": 20404.0, + "probability": 0.0 + }, + { + "start": 20404.0, + "end": 20404.0, + "probability": 0.0 + }, + { + "start": 20404.0, + "end": 20404.0, + "probability": 0.0 + }, + { + "start": 20404.0, + "end": 20404.0, + "probability": 0.0 + }, + { + "start": 20404.0, + "end": 20404.0, + "probability": 0.0 + }, + { + "start": 20404.0, + "end": 20404.0, + "probability": 0.0 + }, + { + "start": 20421.0, + "end": 20421.0, + "probability": 0.0 + }, + { + "start": 20421.0, + "end": 20421.0, + "probability": 0.0 + } + ], + "segments_count": 6893, + "words_count": 32048, + "avg_words_per_segment": 4.6494, + "avg_segment_duration": 1.8838, + "avg_words_per_minute": 95.5657, + "plenum_id": "27320", + "duration": 20121.02, + "title": null, + "plenum_date": "2013-03-18" +} \ No newline at end of file