diff --git "a/27710/metadata.json" "b/27710/metadata.json" new file mode 100644--- /dev/null +++ "b/27710/metadata.json" @@ -0,0 +1,31597 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "27710", + "quality_score": 0.9009, + "per_segment_quality_scores": [ + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.16, + "end": 120.48, + "probability": 0.1491 + }, + { + "start": 120.48, + "end": 122.84, + "probability": 0.5518 + }, + { + "start": 129.5, + "end": 131.7, + "probability": 0.8165 + }, + { + "start": 131.98, + "end": 135.78, + "probability": 0.8142 + }, + { + "start": 136.03, + "end": 141.3, + "probability": 0.8905 + }, + { + "start": 146.54, + "end": 147.32, + "probability": 0.147 + }, + { + "start": 150.28, + "end": 154.02, + "probability": 0.9935 + }, + { + "start": 154.02, + "end": 157.02, + "probability": 0.9922 + }, + { + "start": 157.18, + "end": 158.88, + "probability": 0.7948 + }, + { + "start": 159.1, + "end": 161.64, + "probability": 0.9639 + }, + { + "start": 167.36, + "end": 170.2, + "probability": 0.4895 + }, + { + "start": 170.88, + "end": 173.64, + "probability": 0.7951 + }, + { + "start": 174.98, + "end": 179.26, + "probability": 0.6785 + }, + { + "start": 179.96, + "end": 181.92, + "probability": 0.7458 + }, + { + "start": 182.5, + "end": 187.0, + "probability": 0.9932 + }, + { + "start": 187.0, + "end": 191.56, + "probability": 0.9917 + }, + { + "start": 192.24, + "end": 195.1, + "probability": 0.9243 + }, + { + "start": 195.36, + "end": 196.32, + "probability": 0.6853 + }, + { + "start": 196.92, + "end": 198.16, + "probability": 0.4591 + }, + { + "start": 199.08, + "end": 201.9, + "probability": 0.9796 + }, + { + "start": 202.36, + "end": 204.42, + "probability": 0.7212 + }, + { + "start": 205.38, + "end": 206.92, + "probability": 0.5737 + }, + { + "start": 206.96, + "end": 207.92, + "probability": 0.7796 + }, + { + "start": 208.54, + "end": 210.56, + "probability": 0.9875 + }, + { + "start": 211.2, + "end": 211.46, + "probability": 0.9699 + }, + { + "start": 211.52, + "end": 213.04, + "probability": 0.9919 + }, + { + "start": 213.04, + "end": 215.52, + "probability": 0.8229 + }, + { + "start": 215.52, + "end": 217.62, + "probability": 0.9475 + }, + { + "start": 217.98, + "end": 219.7, + "probability": 0.9836 + }, + { + "start": 219.8, + "end": 222.16, + "probability": 0.98 + }, + { + "start": 223.1, + "end": 224.94, + "probability": 0.8313 + }, + { + "start": 224.94, + "end": 227.3, + "probability": 0.9912 + }, + { + "start": 227.46, + "end": 228.64, + "probability": 0.4975 + }, + { + "start": 229.42, + "end": 233.88, + "probability": 0.9803 + }, + { + "start": 233.88, + "end": 238.94, + "probability": 0.9922 + }, + { + "start": 239.38, + "end": 244.78, + "probability": 0.9927 + }, + { + "start": 245.0, + "end": 246.9, + "probability": 0.9971 + }, + { + "start": 247.52, + "end": 251.64, + "probability": 0.9952 + }, + { + "start": 251.64, + "end": 256.12, + "probability": 0.9697 + }, + { + "start": 256.12, + "end": 260.68, + "probability": 0.9973 + }, + { + "start": 261.68, + "end": 265.16, + "probability": 0.9878 + }, + { + "start": 265.16, + "end": 268.7, + "probability": 0.9891 + }, + { + "start": 269.56, + "end": 270.22, + "probability": 0.4823 + }, + { + "start": 270.32, + "end": 274.2, + "probability": 0.783 + }, + { + "start": 274.2, + "end": 278.24, + "probability": 0.9954 + }, + { + "start": 278.64, + "end": 282.28, + "probability": 0.8851 + }, + { + "start": 282.36, + "end": 286.48, + "probability": 0.9814 + }, + { + "start": 287.0, + "end": 288.84, + "probability": 0.7301 + }, + { + "start": 290.02, + "end": 293.44, + "probability": 0.9911 + }, + { + "start": 293.56, + "end": 295.66, + "probability": 0.6997 + }, + { + "start": 296.44, + "end": 296.9, + "probability": 0.7315 + }, + { + "start": 297.04, + "end": 301.28, + "probability": 0.7776 + }, + { + "start": 301.28, + "end": 304.42, + "probability": 0.9836 + }, + { + "start": 304.6, + "end": 306.98, + "probability": 0.8888 + }, + { + "start": 306.98, + "end": 309.76, + "probability": 0.9961 + }, + { + "start": 310.62, + "end": 313.0, + "probability": 0.9263 + }, + { + "start": 313.22, + "end": 316.52, + "probability": 0.8875 + }, + { + "start": 316.96, + "end": 320.56, + "probability": 0.9893 + }, + { + "start": 320.56, + "end": 326.8, + "probability": 0.9504 + }, + { + "start": 326.86, + "end": 330.26, + "probability": 0.9255 + }, + { + "start": 332.76, + "end": 333.86, + "probability": 0.8944 + }, + { + "start": 334.14, + "end": 338.4, + "probability": 0.9281 + }, + { + "start": 338.96, + "end": 339.24, + "probability": 0.8975 + }, + { + "start": 339.32, + "end": 343.24, + "probability": 0.9948 + }, + { + "start": 343.32, + "end": 344.78, + "probability": 0.9971 + }, + { + "start": 344.92, + "end": 345.84, + "probability": 0.7419 + }, + { + "start": 345.94, + "end": 346.4, + "probability": 0.6987 + }, + { + "start": 346.42, + "end": 346.96, + "probability": 0.9231 + }, + { + "start": 347.1, + "end": 352.44, + "probability": 0.9505 + }, + { + "start": 353.02, + "end": 355.62, + "probability": 0.9359 + }, + { + "start": 356.1, + "end": 356.36, + "probability": 0.4303 + }, + { + "start": 356.48, + "end": 357.46, + "probability": 0.5606 + }, + { + "start": 357.48, + "end": 360.84, + "probability": 0.5718 + }, + { + "start": 360.98, + "end": 361.87, + "probability": 0.8763 + }, + { + "start": 361.92, + "end": 363.31, + "probability": 0.917 + }, + { + "start": 364.0, + "end": 365.58, + "probability": 0.7158 + }, + { + "start": 365.82, + "end": 369.18, + "probability": 0.9711 + }, + { + "start": 369.24, + "end": 374.78, + "probability": 0.9711 + }, + { + "start": 374.86, + "end": 375.5, + "probability": 0.7908 + }, + { + "start": 375.64, + "end": 378.96, + "probability": 0.91 + }, + { + "start": 379.08, + "end": 382.06, + "probability": 0.939 + }, + { + "start": 382.34, + "end": 383.63, + "probability": 0.4849 + }, + { + "start": 383.84, + "end": 384.36, + "probability": 0.7388 + }, + { + "start": 384.72, + "end": 386.56, + "probability": 0.943 + }, + { + "start": 386.74, + "end": 388.22, + "probability": 0.7744 + }, + { + "start": 388.3, + "end": 390.26, + "probability": 0.8858 + }, + { + "start": 390.42, + "end": 391.13, + "probability": 0.9247 + }, + { + "start": 392.0, + "end": 395.5, + "probability": 0.9636 + }, + { + "start": 396.53, + "end": 399.0, + "probability": 0.8176 + }, + { + "start": 399.02, + "end": 399.98, + "probability": 0.7102 + }, + { + "start": 399.98, + "end": 400.52, + "probability": 0.5327 + }, + { + "start": 400.96, + "end": 404.4, + "probability": 0.6991 + }, + { + "start": 404.78, + "end": 405.34, + "probability": 0.7209 + }, + { + "start": 405.4, + "end": 406.48, + "probability": 0.7273 + }, + { + "start": 406.62, + "end": 407.56, + "probability": 0.5555 + }, + { + "start": 407.68, + "end": 408.48, + "probability": 0.8169 + }, + { + "start": 408.62, + "end": 409.62, + "probability": 0.8728 + }, + { + "start": 409.82, + "end": 410.1, + "probability": 0.6754 + }, + { + "start": 410.22, + "end": 411.64, + "probability": 0.9813 + }, + { + "start": 411.64, + "end": 417.26, + "probability": 0.9507 + }, + { + "start": 417.32, + "end": 419.8, + "probability": 0.7816 + }, + { + "start": 420.76, + "end": 421.22, + "probability": 0.8078 + }, + { + "start": 421.58, + "end": 426.74, + "probability": 0.9012 + }, + { + "start": 426.88, + "end": 428.49, + "probability": 0.9604 + }, + { + "start": 429.34, + "end": 431.82, + "probability": 0.7983 + }, + { + "start": 431.9, + "end": 434.94, + "probability": 0.9955 + }, + { + "start": 434.94, + "end": 438.62, + "probability": 0.9941 + }, + { + "start": 438.92, + "end": 443.1, + "probability": 0.9824 + }, + { + "start": 443.48, + "end": 444.84, + "probability": 0.9948 + }, + { + "start": 444.9, + "end": 447.7, + "probability": 0.96 + }, + { + "start": 447.7, + "end": 452.12, + "probability": 0.9818 + }, + { + "start": 452.76, + "end": 453.4, + "probability": 0.3851 + }, + { + "start": 453.52, + "end": 454.8, + "probability": 0.866 + }, + { + "start": 454.88, + "end": 457.91, + "probability": 0.9948 + }, + { + "start": 458.4, + "end": 458.6, + "probability": 0.7452 + }, + { + "start": 458.8, + "end": 462.82, + "probability": 0.9764 + }, + { + "start": 462.96, + "end": 464.62, + "probability": 0.4682 + }, + { + "start": 467.64, + "end": 468.66, + "probability": 0.8478 + }, + { + "start": 468.88, + "end": 469.32, + "probability": 0.6523 + }, + { + "start": 469.48, + "end": 470.86, + "probability": 0.6365 + }, + { + "start": 473.76, + "end": 473.82, + "probability": 0.0084 + }, + { + "start": 475.44, + "end": 475.56, + "probability": 0.3823 + }, + { + "start": 478.12, + "end": 481.08, + "probability": 0.9739 + }, + { + "start": 481.08, + "end": 483.28, + "probability": 0.9956 + }, + { + "start": 483.52, + "end": 484.72, + "probability": 0.2849 + }, + { + "start": 485.74, + "end": 486.6, + "probability": 0.5584 + }, + { + "start": 486.66, + "end": 487.32, + "probability": 0.9362 + }, + { + "start": 487.32, + "end": 492.18, + "probability": 0.9619 + }, + { + "start": 492.74, + "end": 493.66, + "probability": 0.5203 + }, + { + "start": 493.72, + "end": 500.18, + "probability": 0.9937 + }, + { + "start": 500.34, + "end": 503.96, + "probability": 0.9556 + }, + { + "start": 504.36, + "end": 506.52, + "probability": 0.8633 + }, + { + "start": 506.62, + "end": 507.36, + "probability": 0.7859 + }, + { + "start": 507.66, + "end": 509.66, + "probability": 0.7815 + }, + { + "start": 522.48, + "end": 525.92, + "probability": 0.7739 + }, + { + "start": 526.79, + "end": 529.11, + "probability": 0.5971 + }, + { + "start": 529.7, + "end": 533.46, + "probability": 0.7029 + }, + { + "start": 533.7, + "end": 533.7, + "probability": 0.2784 + }, + { + "start": 534.26, + "end": 536.61, + "probability": 0.8637 + }, + { + "start": 536.92, + "end": 537.58, + "probability": 0.7052 + }, + { + "start": 538.1, + "end": 539.2, + "probability": 0.589 + }, + { + "start": 539.76, + "end": 544.92, + "probability": 0.9127 + }, + { + "start": 544.92, + "end": 552.0, + "probability": 0.9901 + }, + { + "start": 552.88, + "end": 553.58, + "probability": 0.4701 + }, + { + "start": 553.72, + "end": 555.0, + "probability": 0.5541 + }, + { + "start": 555.8, + "end": 556.8, + "probability": 0.6599 + }, + { + "start": 557.16, + "end": 557.98, + "probability": 0.7776 + }, + { + "start": 558.14, + "end": 560.68, + "probability": 0.9766 + }, + { + "start": 561.22, + "end": 562.66, + "probability": 0.6175 + }, + { + "start": 563.0, + "end": 565.48, + "probability": 0.7173 + }, + { + "start": 566.24, + "end": 568.3, + "probability": 0.7886 + }, + { + "start": 568.4, + "end": 573.04, + "probability": 0.8672 + }, + { + "start": 573.04, + "end": 576.8, + "probability": 0.9518 + }, + { + "start": 577.02, + "end": 581.5, + "probability": 0.9951 + }, + { + "start": 581.62, + "end": 584.88, + "probability": 0.9866 + }, + { + "start": 585.6, + "end": 586.9, + "probability": 0.79 + }, + { + "start": 587.1, + "end": 588.36, + "probability": 0.9562 + }, + { + "start": 588.52, + "end": 591.44, + "probability": 0.671 + }, + { + "start": 591.74, + "end": 594.5, + "probability": 0.9587 + }, + { + "start": 594.98, + "end": 600.1, + "probability": 0.9984 + }, + { + "start": 600.7, + "end": 602.5, + "probability": 0.9001 + }, + { + "start": 602.64, + "end": 607.62, + "probability": 0.9315 + }, + { + "start": 608.08, + "end": 612.22, + "probability": 0.9402 + }, + { + "start": 612.56, + "end": 613.82, + "probability": 0.9407 + }, + { + "start": 614.42, + "end": 617.16, + "probability": 0.8291 + }, + { + "start": 617.84, + "end": 621.12, + "probability": 0.794 + }, + { + "start": 621.32, + "end": 621.58, + "probability": 0.651 + }, + { + "start": 621.7, + "end": 622.7, + "probability": 0.9624 + }, + { + "start": 622.88, + "end": 627.58, + "probability": 0.9437 + }, + { + "start": 627.84, + "end": 631.88, + "probability": 0.8751 + }, + { + "start": 632.66, + "end": 636.74, + "probability": 0.9334 + }, + { + "start": 636.8, + "end": 637.42, + "probability": 0.769 + }, + { + "start": 637.68, + "end": 639.2, + "probability": 0.6894 + }, + { + "start": 639.54, + "end": 645.26, + "probability": 0.9873 + }, + { + "start": 645.92, + "end": 651.26, + "probability": 0.9881 + }, + { + "start": 651.26, + "end": 655.88, + "probability": 0.9968 + }, + { + "start": 656.38, + "end": 656.56, + "probability": 0.506 + }, + { + "start": 657.14, + "end": 659.76, + "probability": 0.5654 + }, + { + "start": 659.84, + "end": 660.88, + "probability": 0.816 + }, + { + "start": 661.34, + "end": 665.78, + "probability": 0.6677 + }, + { + "start": 666.06, + "end": 671.08, + "probability": 0.9582 + }, + { + "start": 671.6, + "end": 674.05, + "probability": 0.9679 + }, + { + "start": 674.58, + "end": 675.72, + "probability": 0.8828 + }, + { + "start": 676.08, + "end": 677.02, + "probability": 0.6422 + }, + { + "start": 677.12, + "end": 683.82, + "probability": 0.9395 + }, + { + "start": 684.24, + "end": 688.18, + "probability": 0.9952 + }, + { + "start": 688.7, + "end": 689.42, + "probability": 0.4833 + }, + { + "start": 689.7, + "end": 691.14, + "probability": 0.8645 + }, + { + "start": 691.6, + "end": 694.44, + "probability": 0.9217 + }, + { + "start": 695.58, + "end": 696.5, + "probability": 0.9366 + }, + { + "start": 696.88, + "end": 699.08, + "probability": 0.8267 + }, + { + "start": 699.5, + "end": 702.86, + "probability": 0.993 + }, + { + "start": 703.04, + "end": 705.04, + "probability": 0.9857 + }, + { + "start": 705.08, + "end": 708.98, + "probability": 0.9826 + }, + { + "start": 709.2, + "end": 710.24, + "probability": 0.7357 + }, + { + "start": 711.02, + "end": 712.18, + "probability": 0.7867 + }, + { + "start": 712.58, + "end": 715.52, + "probability": 0.9796 + }, + { + "start": 716.2, + "end": 721.34, + "probability": 0.9787 + }, + { + "start": 721.9, + "end": 725.02, + "probability": 0.9774 + }, + { + "start": 726.46, + "end": 729.02, + "probability": 0.8271 + }, + { + "start": 729.62, + "end": 734.12, + "probability": 0.7838 + }, + { + "start": 734.3, + "end": 736.14, + "probability": 0.6784 + }, + { + "start": 736.18, + "end": 738.15, + "probability": 0.98 + }, + { + "start": 738.52, + "end": 740.64, + "probability": 0.8476 + }, + { + "start": 740.64, + "end": 743.44, + "probability": 0.998 + }, + { + "start": 743.44, + "end": 744.5, + "probability": 0.6664 + }, + { + "start": 744.86, + "end": 750.76, + "probability": 0.931 + }, + { + "start": 751.68, + "end": 752.6, + "probability": 0.7451 + }, + { + "start": 752.7, + "end": 753.6, + "probability": 0.538 + }, + { + "start": 753.8, + "end": 755.84, + "probability": 0.5233 + }, + { + "start": 756.74, + "end": 758.44, + "probability": 0.7277 + }, + { + "start": 759.04, + "end": 765.1, + "probability": 0.8234 + }, + { + "start": 765.34, + "end": 767.16, + "probability": 0.9514 + }, + { + "start": 767.54, + "end": 772.4, + "probability": 0.7622 + }, + { + "start": 772.9, + "end": 776.92, + "probability": 0.91 + }, + { + "start": 777.2, + "end": 778.14, + "probability": 0.7187 + }, + { + "start": 778.2, + "end": 780.0, + "probability": 0.517 + }, + { + "start": 780.28, + "end": 781.44, + "probability": 0.7006 + }, + { + "start": 781.7, + "end": 783.14, + "probability": 0.7371 + }, + { + "start": 783.36, + "end": 785.78, + "probability": 0.9448 + }, + { + "start": 786.16, + "end": 788.22, + "probability": 0.662 + }, + { + "start": 788.52, + "end": 790.0, + "probability": 0.5807 + }, + { + "start": 790.46, + "end": 791.34, + "probability": 0.7609 + }, + { + "start": 791.44, + "end": 792.88, + "probability": 0.8738 + }, + { + "start": 793.26, + "end": 794.26, + "probability": 0.87 + }, + { + "start": 794.42, + "end": 795.1, + "probability": 0.8213 + }, + { + "start": 795.24, + "end": 795.82, + "probability": 0.9443 + }, + { + "start": 795.98, + "end": 797.48, + "probability": 0.9796 + }, + { + "start": 797.72, + "end": 798.53, + "probability": 0.5487 + }, + { + "start": 798.72, + "end": 801.32, + "probability": 0.8778 + }, + { + "start": 801.44, + "end": 802.25, + "probability": 0.9291 + }, + { + "start": 802.44, + "end": 802.64, + "probability": 0.03 + }, + { + "start": 804.58, + "end": 806.22, + "probability": 0.8937 + }, + { + "start": 806.36, + "end": 809.96, + "probability": 0.8778 + }, + { + "start": 810.56, + "end": 812.1, + "probability": 0.933 + }, + { + "start": 813.08, + "end": 814.5, + "probability": 0.5936 + }, + { + "start": 814.88, + "end": 815.54, + "probability": 0.8268 + }, + { + "start": 815.68, + "end": 816.38, + "probability": 0.6099 + }, + { + "start": 816.38, + "end": 818.78, + "probability": 0.9749 + }, + { + "start": 819.14, + "end": 823.5, + "probability": 0.984 + }, + { + "start": 823.88, + "end": 828.4, + "probability": 0.9889 + }, + { + "start": 828.44, + "end": 830.98, + "probability": 0.9631 + }, + { + "start": 831.54, + "end": 833.19, + "probability": 0.7642 + }, + { + "start": 833.92, + "end": 834.54, + "probability": 0.6048 + }, + { + "start": 834.62, + "end": 835.18, + "probability": 0.8226 + }, + { + "start": 835.34, + "end": 838.78, + "probability": 0.9034 + }, + { + "start": 838.78, + "end": 839.34, + "probability": 0.8524 + }, + { + "start": 839.64, + "end": 842.82, + "probability": 0.9043 + }, + { + "start": 842.82, + "end": 845.46, + "probability": 0.975 + }, + { + "start": 845.68, + "end": 846.58, + "probability": 0.8711 + }, + { + "start": 846.62, + "end": 850.3, + "probability": 0.8967 + }, + { + "start": 851.58, + "end": 853.96, + "probability": 0.9248 + }, + { + "start": 854.3, + "end": 858.22, + "probability": 0.7478 + }, + { + "start": 858.46, + "end": 859.6, + "probability": 0.6299 + }, + { + "start": 860.22, + "end": 864.26, + "probability": 0.9585 + }, + { + "start": 864.44, + "end": 868.04, + "probability": 0.9905 + }, + { + "start": 868.38, + "end": 870.32, + "probability": 0.9971 + }, + { + "start": 871.08, + "end": 875.3, + "probability": 0.9641 + }, + { + "start": 875.54, + "end": 876.74, + "probability": 0.941 + }, + { + "start": 877.04, + "end": 877.54, + "probability": 0.785 + }, + { + "start": 877.6, + "end": 879.76, + "probability": 0.939 + }, + { + "start": 879.88, + "end": 881.18, + "probability": 0.9582 + }, + { + "start": 882.24, + "end": 885.52, + "probability": 0.9273 + }, + { + "start": 885.94, + "end": 886.97, + "probability": 0.9413 + }, + { + "start": 887.22, + "end": 889.22, + "probability": 0.8278 + }, + { + "start": 889.4, + "end": 892.66, + "probability": 0.9699 + }, + { + "start": 892.92, + "end": 895.24, + "probability": 0.8483 + }, + { + "start": 895.42, + "end": 896.06, + "probability": 0.7458 + }, + { + "start": 896.98, + "end": 899.18, + "probability": 0.6848 + }, + { + "start": 899.5, + "end": 902.68, + "probability": 0.9788 + }, + { + "start": 902.68, + "end": 906.56, + "probability": 0.9902 + }, + { + "start": 906.7, + "end": 909.48, + "probability": 0.9619 + }, + { + "start": 910.0, + "end": 911.94, + "probability": 0.9602 + }, + { + "start": 912.2, + "end": 915.56, + "probability": 0.8746 + }, + { + "start": 915.9, + "end": 918.6, + "probability": 0.9834 + }, + { + "start": 919.2, + "end": 922.26, + "probability": 0.8032 + }, + { + "start": 922.84, + "end": 925.08, + "probability": 0.9893 + }, + { + "start": 925.24, + "end": 926.52, + "probability": 0.9042 + }, + { + "start": 927.14, + "end": 931.56, + "probability": 0.8159 + }, + { + "start": 931.56, + "end": 936.04, + "probability": 0.8038 + }, + { + "start": 936.52, + "end": 940.9, + "probability": 0.9976 + }, + { + "start": 940.9, + "end": 944.45, + "probability": 0.8258 + }, + { + "start": 944.72, + "end": 946.78, + "probability": 0.3482 + }, + { + "start": 946.88, + "end": 948.2, + "probability": 0.4813 + }, + { + "start": 948.66, + "end": 949.18, + "probability": 0.6574 + }, + { + "start": 949.3, + "end": 951.32, + "probability": 0.9404 + }, + { + "start": 951.52, + "end": 952.18, + "probability": 0.8641 + }, + { + "start": 952.34, + "end": 956.86, + "probability": 0.9868 + }, + { + "start": 957.22, + "end": 959.24, + "probability": 0.9849 + }, + { + "start": 959.68, + "end": 961.28, + "probability": 0.9632 + }, + { + "start": 961.46, + "end": 962.38, + "probability": 0.6888 + }, + { + "start": 962.5, + "end": 963.88, + "probability": 0.9406 + }, + { + "start": 964.14, + "end": 964.74, + "probability": 0.6564 + }, + { + "start": 965.34, + "end": 970.78, + "probability": 0.9367 + }, + { + "start": 971.16, + "end": 974.82, + "probability": 0.7973 + }, + { + "start": 975.2, + "end": 982.22, + "probability": 0.8713 + }, + { + "start": 982.48, + "end": 985.92, + "probability": 0.9775 + }, + { + "start": 986.28, + "end": 991.38, + "probability": 0.9883 + }, + { + "start": 991.74, + "end": 994.2, + "probability": 0.9862 + }, + { + "start": 994.24, + "end": 998.8, + "probability": 0.6733 + }, + { + "start": 998.8, + "end": 1003.34, + "probability": 0.9909 + }, + { + "start": 1003.94, + "end": 1004.32, + "probability": 0.4777 + }, + { + "start": 1004.74, + "end": 1005.46, + "probability": 0.8024 + }, + { + "start": 1005.66, + "end": 1008.18, + "probability": 0.9222 + }, + { + "start": 1009.5, + "end": 1011.86, + "probability": 0.9729 + }, + { + "start": 1012.76, + "end": 1018.2, + "probability": 0.7358 + }, + { + "start": 1018.6, + "end": 1019.34, + "probability": 0.87 + }, + { + "start": 1019.9, + "end": 1023.04, + "probability": 0.9843 + }, + { + "start": 1023.56, + "end": 1025.54, + "probability": 0.9838 + }, + { + "start": 1026.04, + "end": 1027.3, + "probability": 0.7269 + }, + { + "start": 1027.68, + "end": 1032.5, + "probability": 0.9894 + }, + { + "start": 1033.22, + "end": 1034.68, + "probability": 0.98 + }, + { + "start": 1034.78, + "end": 1040.3, + "probability": 0.9809 + }, + { + "start": 1041.6, + "end": 1045.1, + "probability": 0.9587 + }, + { + "start": 1045.16, + "end": 1048.08, + "probability": 0.7195 + }, + { + "start": 1048.44, + "end": 1049.6, + "probability": 0.8826 + }, + { + "start": 1050.28, + "end": 1052.58, + "probability": 0.8901 + }, + { + "start": 1052.74, + "end": 1056.98, + "probability": 0.9827 + }, + { + "start": 1057.47, + "end": 1062.06, + "probability": 0.9889 + }, + { + "start": 1062.14, + "end": 1066.68, + "probability": 0.9964 + }, + { + "start": 1067.52, + "end": 1069.56, + "probability": 0.9871 + }, + { + "start": 1069.7, + "end": 1071.8, + "probability": 0.9014 + }, + { + "start": 1072.14, + "end": 1072.86, + "probability": 0.3 + }, + { + "start": 1072.96, + "end": 1073.22, + "probability": 0.5677 + }, + { + "start": 1073.22, + "end": 1075.28, + "probability": 0.9305 + }, + { + "start": 1075.76, + "end": 1078.74, + "probability": 0.8771 + }, + { + "start": 1078.78, + "end": 1083.1, + "probability": 0.7498 + }, + { + "start": 1083.34, + "end": 1087.36, + "probability": 0.9747 + }, + { + "start": 1087.66, + "end": 1091.8, + "probability": 0.6411 + }, + { + "start": 1093.32, + "end": 1095.76, + "probability": 0.5715 + }, + { + "start": 1095.76, + "end": 1097.58, + "probability": 0.7684 + }, + { + "start": 1098.16, + "end": 1098.96, + "probability": 0.8541 + }, + { + "start": 1099.1, + "end": 1103.7, + "probability": 0.976 + }, + { + "start": 1103.8, + "end": 1107.06, + "probability": 0.9644 + }, + { + "start": 1107.12, + "end": 1108.56, + "probability": 0.7361 + }, + { + "start": 1108.68, + "end": 1110.78, + "probability": 0.8855 + }, + { + "start": 1110.96, + "end": 1114.14, + "probability": 0.8655 + }, + { + "start": 1114.3, + "end": 1118.12, + "probability": 0.8193 + }, + { + "start": 1118.3, + "end": 1120.46, + "probability": 0.8204 + }, + { + "start": 1121.94, + "end": 1122.72, + "probability": 0.7237 + }, + { + "start": 1122.8, + "end": 1123.7, + "probability": 0.8233 + }, + { + "start": 1123.9, + "end": 1124.9, + "probability": 0.6264 + }, + { + "start": 1125.0, + "end": 1132.08, + "probability": 0.7785 + }, + { + "start": 1132.64, + "end": 1136.22, + "probability": 0.8811 + }, + { + "start": 1136.34, + "end": 1140.98, + "probability": 0.616 + }, + { + "start": 1141.38, + "end": 1144.06, + "probability": 0.8573 + }, + { + "start": 1144.44, + "end": 1147.76, + "probability": 0.7977 + }, + { + "start": 1148.76, + "end": 1157.86, + "probability": 0.7649 + }, + { + "start": 1157.86, + "end": 1161.08, + "probability": 0.8125 + }, + { + "start": 1163.02, + "end": 1166.44, + "probability": 0.9314 + }, + { + "start": 1167.14, + "end": 1169.6, + "probability": 0.8892 + }, + { + "start": 1171.18, + "end": 1175.28, + "probability": 0.9842 + }, + { + "start": 1176.98, + "end": 1180.62, + "probability": 0.9932 + }, + { + "start": 1180.62, + "end": 1186.16, + "probability": 0.9594 + }, + { + "start": 1187.06, + "end": 1191.12, + "probability": 0.9131 + }, + { + "start": 1192.36, + "end": 1193.52, + "probability": 0.9112 + }, + { + "start": 1194.1, + "end": 1194.46, + "probability": 0.7589 + }, + { + "start": 1194.58, + "end": 1200.36, + "probability": 0.9686 + }, + { + "start": 1201.56, + "end": 1202.59, + "probability": 0.7869 + }, + { + "start": 1204.06, + "end": 1205.84, + "probability": 0.8453 + }, + { + "start": 1207.26, + "end": 1209.2, + "probability": 0.8276 + }, + { + "start": 1210.42, + "end": 1213.8, + "probability": 0.939 + }, + { + "start": 1214.94, + "end": 1218.68, + "probability": 0.8926 + }, + { + "start": 1219.96, + "end": 1221.96, + "probability": 0.8685 + }, + { + "start": 1221.96, + "end": 1226.56, + "probability": 0.9668 + }, + { + "start": 1226.76, + "end": 1227.86, + "probability": 0.6541 + }, + { + "start": 1229.26, + "end": 1232.14, + "probability": 0.8511 + }, + { + "start": 1233.5, + "end": 1233.54, + "probability": 0.0313 + }, + { + "start": 1233.54, + "end": 1239.18, + "probability": 0.7578 + }, + { + "start": 1240.2, + "end": 1243.16, + "probability": 0.7545 + }, + { + "start": 1244.75, + "end": 1248.32, + "probability": 0.9988 + }, + { + "start": 1248.32, + "end": 1252.62, + "probability": 0.9895 + }, + { + "start": 1252.62, + "end": 1258.12, + "probability": 0.8619 + }, + { + "start": 1258.2, + "end": 1261.76, + "probability": 0.7265 + }, + { + "start": 1262.28, + "end": 1265.88, + "probability": 0.9375 + }, + { + "start": 1266.68, + "end": 1267.36, + "probability": 0.3684 + }, + { + "start": 1267.86, + "end": 1271.98, + "probability": 0.9868 + }, + { + "start": 1271.98, + "end": 1275.36, + "probability": 0.3586 + }, + { + "start": 1275.96, + "end": 1278.67, + "probability": 0.7038 + }, + { + "start": 1280.22, + "end": 1282.0, + "probability": 0.9025 + }, + { + "start": 1282.16, + "end": 1284.0, + "probability": 0.9951 + }, + { + "start": 1284.7, + "end": 1290.38, + "probability": 0.5336 + }, + { + "start": 1291.28, + "end": 1295.96, + "probability": 0.4174 + }, + { + "start": 1296.66, + "end": 1298.6, + "probability": 0.7493 + }, + { + "start": 1299.28, + "end": 1300.86, + "probability": 0.8663 + }, + { + "start": 1301.1, + "end": 1304.28, + "probability": 0.6668 + }, + { + "start": 1304.72, + "end": 1306.24, + "probability": 0.9911 + }, + { + "start": 1306.3, + "end": 1308.14, + "probability": 0.7732 + }, + { + "start": 1308.4, + "end": 1310.2, + "probability": 0.999 + }, + { + "start": 1310.2, + "end": 1313.04, + "probability": 0.8393 + }, + { + "start": 1313.2, + "end": 1314.22, + "probability": 0.9591 + }, + { + "start": 1314.64, + "end": 1316.44, + "probability": 0.8138 + }, + { + "start": 1317.54, + "end": 1321.64, + "probability": 0.9573 + }, + { + "start": 1322.24, + "end": 1322.66, + "probability": 0.6915 + }, + { + "start": 1322.72, + "end": 1323.22, + "probability": 0.7546 + }, + { + "start": 1323.9, + "end": 1327.04, + "probability": 0.8154 + }, + { + "start": 1327.14, + "end": 1330.46, + "probability": 0.9912 + }, + { + "start": 1330.82, + "end": 1333.84, + "probability": 0.8965 + }, + { + "start": 1334.04, + "end": 1337.1, + "probability": 0.7306 + }, + { + "start": 1338.44, + "end": 1339.54, + "probability": 0.8114 + }, + { + "start": 1340.28, + "end": 1347.06, + "probability": 0.6994 + }, + { + "start": 1347.4, + "end": 1348.22, + "probability": 0.6536 + }, + { + "start": 1348.28, + "end": 1349.4, + "probability": 0.8239 + }, + { + "start": 1349.72, + "end": 1355.58, + "probability": 0.9897 + }, + { + "start": 1355.94, + "end": 1357.04, + "probability": 0.9328 + }, + { + "start": 1357.84, + "end": 1359.56, + "probability": 0.9445 + }, + { + "start": 1360.81, + "end": 1365.19, + "probability": 0.9983 + }, + { + "start": 1366.1, + "end": 1368.62, + "probability": 0.8212 + }, + { + "start": 1369.4, + "end": 1370.94, + "probability": 0.7405 + }, + { + "start": 1371.08, + "end": 1371.24, + "probability": 0.7507 + }, + { + "start": 1371.44, + "end": 1376.66, + "probability": 0.9636 + }, + { + "start": 1376.74, + "end": 1377.88, + "probability": 0.8212 + }, + { + "start": 1378.14, + "end": 1380.33, + "probability": 0.9873 + }, + { + "start": 1380.86, + "end": 1382.22, + "probability": 0.9756 + }, + { + "start": 1382.95, + "end": 1384.14, + "probability": 0.2971 + }, + { + "start": 1384.14, + "end": 1386.6, + "probability": 0.7765 + }, + { + "start": 1386.72, + "end": 1387.2, + "probability": 0.7479 + }, + { + "start": 1387.34, + "end": 1389.74, + "probability": 0.9089 + }, + { + "start": 1389.82, + "end": 1393.1, + "probability": 0.5933 + }, + { + "start": 1393.18, + "end": 1393.92, + "probability": 0.8168 + }, + { + "start": 1394.6, + "end": 1395.34, + "probability": 0.9047 + }, + { + "start": 1395.42, + "end": 1396.08, + "probability": 0.7237 + }, + { + "start": 1396.12, + "end": 1396.64, + "probability": 0.5473 + }, + { + "start": 1396.68, + "end": 1398.48, + "probability": 0.6531 + }, + { + "start": 1398.56, + "end": 1399.66, + "probability": 0.7235 + }, + { + "start": 1399.84, + "end": 1401.38, + "probability": 0.8406 + }, + { + "start": 1401.68, + "end": 1404.16, + "probability": 0.7967 + }, + { + "start": 1404.66, + "end": 1406.9, + "probability": 0.6917 + }, + { + "start": 1407.04, + "end": 1407.83, + "probability": 0.7018 + }, + { + "start": 1408.24, + "end": 1411.12, + "probability": 0.91 + }, + { + "start": 1411.3, + "end": 1412.05, + "probability": 0.7471 + }, + { + "start": 1412.48, + "end": 1414.08, + "probability": 0.9842 + }, + { + "start": 1414.6, + "end": 1416.16, + "probability": 0.5679 + }, + { + "start": 1416.3, + "end": 1417.72, + "probability": 0.7749 + }, + { + "start": 1417.74, + "end": 1418.2, + "probability": 0.8327 + }, + { + "start": 1418.26, + "end": 1418.52, + "probability": 0.7881 + }, + { + "start": 1418.6, + "end": 1420.42, + "probability": 0.9807 + }, + { + "start": 1421.68, + "end": 1423.18, + "probability": 0.772 + }, + { + "start": 1425.82, + "end": 1427.54, + "probability": 0.6445 + }, + { + "start": 1428.12, + "end": 1431.04, + "probability": 0.8057 + }, + { + "start": 1431.52, + "end": 1435.32, + "probability": 0.99 + }, + { + "start": 1435.32, + "end": 1436.12, + "probability": 0.928 + }, + { + "start": 1436.48, + "end": 1437.82, + "probability": 0.6844 + }, + { + "start": 1438.02, + "end": 1440.28, + "probability": 0.5524 + }, + { + "start": 1440.74, + "end": 1443.44, + "probability": 0.6751 + }, + { + "start": 1443.76, + "end": 1444.68, + "probability": 0.8226 + }, + { + "start": 1444.76, + "end": 1445.7, + "probability": 0.948 + }, + { + "start": 1446.52, + "end": 1451.57, + "probability": 0.6913 + }, + { + "start": 1452.54, + "end": 1452.78, + "probability": 0.3431 + }, + { + "start": 1452.86, + "end": 1455.8, + "probability": 0.6277 + }, + { + "start": 1455.9, + "end": 1458.98, + "probability": 0.8088 + }, + { + "start": 1459.28, + "end": 1459.84, + "probability": 0.8052 + }, + { + "start": 1459.96, + "end": 1461.24, + "probability": 0.7865 + }, + { + "start": 1461.44, + "end": 1463.14, + "probability": 0.6968 + }, + { + "start": 1463.7, + "end": 1467.28, + "probability": 0.9137 + }, + { + "start": 1467.28, + "end": 1468.86, + "probability": 0.7794 + }, + { + "start": 1468.94, + "end": 1469.98, + "probability": 0.2648 + }, + { + "start": 1470.72, + "end": 1471.2, + "probability": 0.37 + }, + { + "start": 1471.32, + "end": 1471.98, + "probability": 0.8439 + }, + { + "start": 1472.06, + "end": 1472.46, + "probability": 0.3629 + }, + { + "start": 1472.48, + "end": 1474.48, + "probability": 0.8018 + }, + { + "start": 1474.56, + "end": 1477.26, + "probability": 0.8374 + }, + { + "start": 1477.36, + "end": 1478.32, + "probability": 0.936 + }, + { + "start": 1478.86, + "end": 1481.26, + "probability": 0.99 + }, + { + "start": 1481.74, + "end": 1482.46, + "probability": 0.4573 + }, + { + "start": 1483.0, + "end": 1486.82, + "probability": 0.8629 + }, + { + "start": 1487.2, + "end": 1490.26, + "probability": 0.9897 + }, + { + "start": 1490.26, + "end": 1494.58, + "probability": 0.9648 + }, + { + "start": 1494.62, + "end": 1497.58, + "probability": 0.4727 + }, + { + "start": 1499.7, + "end": 1499.76, + "probability": 0.0802 + }, + { + "start": 1499.76, + "end": 1502.16, + "probability": 0.5602 + }, + { + "start": 1502.6, + "end": 1504.38, + "probability": 0.7193 + }, + { + "start": 1507.06, + "end": 1508.38, + "probability": 0.6066 + }, + { + "start": 1508.4, + "end": 1509.18, + "probability": 0.7509 + }, + { + "start": 1509.38, + "end": 1509.92, + "probability": 0.8133 + }, + { + "start": 1509.96, + "end": 1512.4, + "probability": 0.9931 + }, + { + "start": 1512.68, + "end": 1516.0, + "probability": 0.9426 + }, + { + "start": 1516.14, + "end": 1517.27, + "probability": 0.9973 + }, + { + "start": 1517.72, + "end": 1522.4, + "probability": 0.9661 + }, + { + "start": 1522.4, + "end": 1526.28, + "probability": 0.9614 + }, + { + "start": 1527.36, + "end": 1532.28, + "probability": 0.9958 + }, + { + "start": 1532.28, + "end": 1534.44, + "probability": 0.987 + }, + { + "start": 1534.56, + "end": 1538.6, + "probability": 0.9863 + }, + { + "start": 1538.74, + "end": 1540.9, + "probability": 0.9868 + }, + { + "start": 1540.98, + "end": 1542.72, + "probability": 0.9968 + }, + { + "start": 1543.62, + "end": 1544.32, + "probability": 0.6513 + }, + { + "start": 1544.44, + "end": 1545.02, + "probability": 0.8597 + }, + { + "start": 1545.18, + "end": 1547.1, + "probability": 0.9642 + }, + { + "start": 1547.28, + "end": 1551.98, + "probability": 0.9811 + }, + { + "start": 1552.2, + "end": 1553.6, + "probability": 0.4142 + }, + { + "start": 1553.74, + "end": 1554.24, + "probability": 0.9619 + }, + { + "start": 1555.3, + "end": 1559.34, + "probability": 0.9933 + }, + { + "start": 1559.6, + "end": 1561.5, + "probability": 0.9697 + }, + { + "start": 1561.98, + "end": 1564.58, + "probability": 0.9044 + }, + { + "start": 1564.94, + "end": 1570.48, + "probability": 0.932 + }, + { + "start": 1571.65, + "end": 1574.02, + "probability": 0.9993 + }, + { + "start": 1574.2, + "end": 1577.84, + "probability": 0.9993 + }, + { + "start": 1578.22, + "end": 1579.76, + "probability": 0.9969 + }, + { + "start": 1579.88, + "end": 1581.92, + "probability": 0.7667 + }, + { + "start": 1581.96, + "end": 1582.78, + "probability": 0.8812 + }, + { + "start": 1582.86, + "end": 1584.12, + "probability": 0.8877 + }, + { + "start": 1584.98, + "end": 1587.8, + "probability": 0.8114 + }, + { + "start": 1587.86, + "end": 1588.48, + "probability": 0.7087 + }, + { + "start": 1588.56, + "end": 1592.56, + "probability": 0.9752 + }, + { + "start": 1592.78, + "end": 1593.26, + "probability": 0.6945 + }, + { + "start": 1593.36, + "end": 1594.68, + "probability": 0.7164 + }, + { + "start": 1594.78, + "end": 1596.4, + "probability": 0.8669 + }, + { + "start": 1596.4, + "end": 1601.6, + "probability": 0.8562 + }, + { + "start": 1601.84, + "end": 1604.3, + "probability": 0.8135 + }, + { + "start": 1604.54, + "end": 1605.48, + "probability": 0.9199 + }, + { + "start": 1605.76, + "end": 1608.96, + "probability": 0.9935 + }, + { + "start": 1609.28, + "end": 1609.86, + "probability": 0.8137 + }, + { + "start": 1609.94, + "end": 1611.38, + "probability": 0.9292 + }, + { + "start": 1612.52, + "end": 1617.92, + "probability": 0.9681 + }, + { + "start": 1618.66, + "end": 1619.98, + "probability": 0.534 + }, + { + "start": 1621.12, + "end": 1624.78, + "probability": 0.9385 + }, + { + "start": 1625.86, + "end": 1629.72, + "probability": 0.7244 + }, + { + "start": 1630.48, + "end": 1633.19, + "probability": 0.9675 + }, + { + "start": 1633.46, + "end": 1635.16, + "probability": 0.9912 + }, + { + "start": 1635.6, + "end": 1638.14, + "probability": 0.8234 + }, + { + "start": 1638.14, + "end": 1643.88, + "probability": 0.9846 + }, + { + "start": 1647.24, + "end": 1648.54, + "probability": 0.0388 + }, + { + "start": 1649.16, + "end": 1651.36, + "probability": 0.827 + }, + { + "start": 1651.56, + "end": 1656.34, + "probability": 0.9952 + }, + { + "start": 1657.0, + "end": 1660.6, + "probability": 0.91 + }, + { + "start": 1661.1, + "end": 1661.8, + "probability": 0.3286 + }, + { + "start": 1661.84, + "end": 1662.23, + "probability": 0.1158 + }, + { + "start": 1663.16, + "end": 1665.88, + "probability": 0.9562 + }, + { + "start": 1666.04, + "end": 1666.38, + "probability": 0.6507 + }, + { + "start": 1666.4, + "end": 1667.3, + "probability": 0.9441 + }, + { + "start": 1667.54, + "end": 1672.72, + "probability": 0.881 + }, + { + "start": 1672.84, + "end": 1675.4, + "probability": 0.7587 + }, + { + "start": 1675.9, + "end": 1676.36, + "probability": 0.6754 + }, + { + "start": 1676.54, + "end": 1677.58, + "probability": 0.9263 + }, + { + "start": 1678.12, + "end": 1680.86, + "probability": 0.6662 + }, + { + "start": 1680.98, + "end": 1681.82, + "probability": 0.8896 + }, + { + "start": 1682.92, + "end": 1685.76, + "probability": 0.9094 + }, + { + "start": 1685.82, + "end": 1693.32, + "probability": 0.7664 + }, + { + "start": 1693.72, + "end": 1694.5, + "probability": 0.8638 + }, + { + "start": 1695.74, + "end": 1697.94, + "probability": 0.9733 + }, + { + "start": 1698.58, + "end": 1700.94, + "probability": 0.9946 + }, + { + "start": 1701.1, + "end": 1701.42, + "probability": 0.8155 + }, + { + "start": 1701.78, + "end": 1702.48, + "probability": 0.7481 + }, + { + "start": 1703.74, + "end": 1704.54, + "probability": 0.4622 + }, + { + "start": 1704.76, + "end": 1706.3, + "probability": 0.3439 + }, + { + "start": 1706.4, + "end": 1707.75, + "probability": 0.9131 + }, + { + "start": 1708.06, + "end": 1708.93, + "probability": 0.4883 + }, + { + "start": 1709.64, + "end": 1712.22, + "probability": 0.7397 + }, + { + "start": 1712.48, + "end": 1715.4, + "probability": 0.8088 + }, + { + "start": 1717.28, + "end": 1719.36, + "probability": 0.7548 + }, + { + "start": 1719.92, + "end": 1723.58, + "probability": 0.7201 + }, + { + "start": 1725.3, + "end": 1728.46, + "probability": 0.9481 + }, + { + "start": 1729.02, + "end": 1729.94, + "probability": 0.1362 + }, + { + "start": 1729.94, + "end": 1732.44, + "probability": 0.8684 + }, + { + "start": 1733.14, + "end": 1733.63, + "probability": 0.9658 + }, + { + "start": 1733.94, + "end": 1735.5, + "probability": 0.7422 + }, + { + "start": 1735.5, + "end": 1736.24, + "probability": 0.5518 + }, + { + "start": 1736.24, + "end": 1740.62, + "probability": 0.8901 + }, + { + "start": 1741.24, + "end": 1744.02, + "probability": 0.8276 + }, + { + "start": 1744.78, + "end": 1747.74, + "probability": 0.9573 + }, + { + "start": 1747.86, + "end": 1748.78, + "probability": 0.8488 + }, + { + "start": 1748.86, + "end": 1749.52, + "probability": 0.7775 + }, + { + "start": 1750.36, + "end": 1752.34, + "probability": 0.9631 + }, + { + "start": 1752.5, + "end": 1753.26, + "probability": 0.7919 + }, + { + "start": 1753.32, + "end": 1753.74, + "probability": 0.6942 + }, + { + "start": 1753.8, + "end": 1755.38, + "probability": 0.9139 + }, + { + "start": 1755.86, + "end": 1758.14, + "probability": 0.9748 + }, + { + "start": 1758.36, + "end": 1760.74, + "probability": 0.8146 + }, + { + "start": 1761.12, + "end": 1766.3, + "probability": 0.9868 + }, + { + "start": 1768.88, + "end": 1771.7, + "probability": 0.9899 + }, + { + "start": 1772.4, + "end": 1776.32, + "probability": 0.7191 + }, + { + "start": 1777.0, + "end": 1778.72, + "probability": 0.8872 + }, + { + "start": 1780.32, + "end": 1782.64, + "probability": 0.8822 + }, + { + "start": 1782.86, + "end": 1783.98, + "probability": 0.8513 + }, + { + "start": 1784.0, + "end": 1785.48, + "probability": 0.9955 + }, + { + "start": 1786.26, + "end": 1788.58, + "probability": 0.5597 + }, + { + "start": 1788.66, + "end": 1791.94, + "probability": 0.8984 + }, + { + "start": 1792.4, + "end": 1794.48, + "probability": 0.9902 + }, + { + "start": 1794.56, + "end": 1796.67, + "probability": 0.9351 + }, + { + "start": 1796.72, + "end": 1798.12, + "probability": 0.8929 + }, + { + "start": 1798.16, + "end": 1798.92, + "probability": 0.8559 + }, + { + "start": 1799.42, + "end": 1800.16, + "probability": 0.9316 + }, + { + "start": 1800.28, + "end": 1800.96, + "probability": 0.8143 + }, + { + "start": 1801.18, + "end": 1804.78, + "probability": 0.7764 + }, + { + "start": 1805.12, + "end": 1807.16, + "probability": 0.9082 + }, + { + "start": 1807.62, + "end": 1810.8, + "probability": 0.8506 + }, + { + "start": 1810.88, + "end": 1811.84, + "probability": 0.9849 + }, + { + "start": 1812.66, + "end": 1815.22, + "probability": 0.9741 + }, + { + "start": 1815.78, + "end": 1819.18, + "probability": 0.5967 + }, + { + "start": 1819.38, + "end": 1820.38, + "probability": 0.6679 + }, + { + "start": 1820.56, + "end": 1822.28, + "probability": 0.9485 + }, + { + "start": 1822.4, + "end": 1822.96, + "probability": 0.7293 + }, + { + "start": 1823.0, + "end": 1823.18, + "probability": 0.6674 + }, + { + "start": 1823.34, + "end": 1824.38, + "probability": 0.8783 + }, + { + "start": 1824.78, + "end": 1827.68, + "probability": 0.9839 + }, + { + "start": 1827.86, + "end": 1828.72, + "probability": 0.2224 + }, + { + "start": 1828.74, + "end": 1831.94, + "probability": 0.3423 + }, + { + "start": 1832.02, + "end": 1833.02, + "probability": 0.6413 + }, + { + "start": 1833.32, + "end": 1835.58, + "probability": 0.8252 + }, + { + "start": 1835.68, + "end": 1838.08, + "probability": 0.727 + }, + { + "start": 1838.24, + "end": 1840.78, + "probability": 0.6682 + }, + { + "start": 1840.92, + "end": 1841.76, + "probability": 0.8711 + }, + { + "start": 1842.4, + "end": 1843.78, + "probability": 0.8228 + }, + { + "start": 1844.46, + "end": 1844.96, + "probability": 0.4725 + }, + { + "start": 1845.64, + "end": 1846.52, + "probability": 0.1724 + }, + { + "start": 1846.52, + "end": 1850.58, + "probability": 0.7027 + }, + { + "start": 1851.1, + "end": 1853.31, + "probability": 0.8649 + }, + { + "start": 1854.24, + "end": 1856.48, + "probability": 0.9761 + }, + { + "start": 1856.54, + "end": 1857.68, + "probability": 0.9725 + }, + { + "start": 1857.78, + "end": 1858.78, + "probability": 0.9594 + }, + { + "start": 1858.84, + "end": 1860.19, + "probability": 0.9883 + }, + { + "start": 1860.58, + "end": 1861.35, + "probability": 0.9741 + }, + { + "start": 1862.66, + "end": 1865.08, + "probability": 0.7831 + }, + { + "start": 1865.7, + "end": 1868.6, + "probability": 0.8908 + }, + { + "start": 1868.66, + "end": 1871.66, + "probability": 0.9407 + }, + { + "start": 1872.4, + "end": 1873.12, + "probability": 0.9657 + }, + { + "start": 1873.48, + "end": 1875.54, + "probability": 0.9929 + }, + { + "start": 1875.76, + "end": 1877.32, + "probability": 0.9104 + }, + { + "start": 1877.7, + "end": 1882.8, + "probability": 0.9816 + }, + { + "start": 1882.92, + "end": 1886.5, + "probability": 0.9689 + }, + { + "start": 1886.9, + "end": 1889.36, + "probability": 0.877 + }, + { + "start": 1889.44, + "end": 1893.14, + "probability": 0.9417 + }, + { + "start": 1893.2, + "end": 1895.5, + "probability": 0.9732 + }, + { + "start": 1895.6, + "end": 1896.56, + "probability": 0.8186 + }, + { + "start": 1896.56, + "end": 1897.24, + "probability": 0.8405 + }, + { + "start": 1897.72, + "end": 1898.64, + "probability": 0.7802 + }, + { + "start": 1899.18, + "end": 1901.72, + "probability": 0.8948 + }, + { + "start": 1901.72, + "end": 1902.76, + "probability": 0.524 + }, + { + "start": 1903.72, + "end": 1907.6, + "probability": 0.9706 + }, + { + "start": 1907.68, + "end": 1908.66, + "probability": 0.4233 + }, + { + "start": 1908.76, + "end": 1914.87, + "probability": 0.5326 + }, + { + "start": 1915.54, + "end": 1919.08, + "probability": 0.8503 + }, + { + "start": 1919.68, + "end": 1920.64, + "probability": 0.8551 + }, + { + "start": 1920.94, + "end": 1922.46, + "probability": 0.9506 + }, + { + "start": 1922.82, + "end": 1923.86, + "probability": 0.9614 + }, + { + "start": 1924.1, + "end": 1926.94, + "probability": 0.8593 + }, + { + "start": 1927.3, + "end": 1927.58, + "probability": 0.6453 + }, + { + "start": 1927.62, + "end": 1931.2, + "probability": 0.9971 + }, + { + "start": 1931.8, + "end": 1934.6, + "probability": 0.9606 + }, + { + "start": 1935.94, + "end": 1940.06, + "probability": 0.8142 + }, + { + "start": 1940.5, + "end": 1942.24, + "probability": 0.6688 + }, + { + "start": 1942.36, + "end": 1945.64, + "probability": 0.9386 + }, + { + "start": 1945.82, + "end": 1946.22, + "probability": 0.7373 + }, + { + "start": 1946.3, + "end": 1946.82, + "probability": 0.4728 + }, + { + "start": 1946.92, + "end": 1951.84, + "probability": 0.8909 + }, + { + "start": 1952.02, + "end": 1952.62, + "probability": 0.894 + }, + { + "start": 1952.76, + "end": 1953.64, + "probability": 0.9623 + }, + { + "start": 1954.08, + "end": 1957.94, + "probability": 0.9727 + }, + { + "start": 1958.12, + "end": 1958.86, + "probability": 0.5975 + }, + { + "start": 1959.58, + "end": 1962.5, + "probability": 0.7853 + }, + { + "start": 1962.62, + "end": 1966.65, + "probability": 0.6573 + }, + { + "start": 1967.08, + "end": 1968.99, + "probability": 0.9731 + }, + { + "start": 1969.44, + "end": 1972.64, + "probability": 0.81 + }, + { + "start": 1973.5, + "end": 1978.86, + "probability": 0.984 + }, + { + "start": 1979.22, + "end": 1983.68, + "probability": 0.9209 + }, + { + "start": 1984.32, + "end": 1986.86, + "probability": 0.8869 + }, + { + "start": 1987.18, + "end": 1989.34, + "probability": 0.771 + }, + { + "start": 1989.46, + "end": 1992.32, + "probability": 0.8716 + }, + { + "start": 1993.06, + "end": 1995.35, + "probability": 0.9352 + }, + { + "start": 1996.06, + "end": 1996.8, + "probability": 0.6857 + }, + { + "start": 1997.02, + "end": 1998.02, + "probability": 0.5781 + }, + { + "start": 1998.18, + "end": 1999.84, + "probability": 0.8428 + }, + { + "start": 1999.92, + "end": 2000.36, + "probability": 0.3957 + }, + { + "start": 2000.42, + "end": 2001.43, + "probability": 0.801 + }, + { + "start": 2001.76, + "end": 2005.14, + "probability": 0.9373 + }, + { + "start": 2005.48, + "end": 2006.02, + "probability": 0.8597 + }, + { + "start": 2006.08, + "end": 2007.8, + "probability": 0.9762 + }, + { + "start": 2008.2, + "end": 2015.92, + "probability": 0.929 + }, + { + "start": 2016.32, + "end": 2017.16, + "probability": 0.4185 + }, + { + "start": 2017.44, + "end": 2018.07, + "probability": 0.6999 + }, + { + "start": 2018.91, + "end": 2021.02, + "probability": 0.9646 + }, + { + "start": 2021.6, + "end": 2026.94, + "probability": 0.8706 + }, + { + "start": 2026.98, + "end": 2028.56, + "probability": 0.6152 + }, + { + "start": 2028.7, + "end": 2030.3, + "probability": 0.7614 + }, + { + "start": 2030.74, + "end": 2035.2, + "probability": 0.9974 + }, + { + "start": 2035.32, + "end": 2038.2, + "probability": 0.9814 + }, + { + "start": 2038.32, + "end": 2039.18, + "probability": 0.881 + }, + { + "start": 2040.14, + "end": 2041.5, + "probability": 0.7266 + }, + { + "start": 2041.66, + "end": 2043.26, + "probability": 0.9289 + }, + { + "start": 2043.4, + "end": 2049.0, + "probability": 0.838 + }, + { + "start": 2049.04, + "end": 2050.2, + "probability": 0.88 + }, + { + "start": 2050.32, + "end": 2051.66, + "probability": 0.6663 + }, + { + "start": 2051.94, + "end": 2055.32, + "probability": 0.91 + }, + { + "start": 2056.06, + "end": 2062.8, + "probability": 0.9858 + }, + { + "start": 2063.08, + "end": 2064.79, + "probability": 0.8625 + }, + { + "start": 2064.9, + "end": 2067.02, + "probability": 0.7397 + }, + { + "start": 2067.9, + "end": 2069.36, + "probability": 0.3419 + }, + { + "start": 2069.36, + "end": 2071.28, + "probability": 0.762 + }, + { + "start": 2073.64, + "end": 2078.18, + "probability": 0.9238 + }, + { + "start": 2078.18, + "end": 2080.62, + "probability": 0.7666 + }, + { + "start": 2081.18, + "end": 2083.02, + "probability": 0.9798 + }, + { + "start": 2085.06, + "end": 2088.98, + "probability": 0.8845 + }, + { + "start": 2089.54, + "end": 2091.89, + "probability": 0.8552 + }, + { + "start": 2093.14, + "end": 2096.88, + "probability": 0.8042 + }, + { + "start": 2096.88, + "end": 2100.44, + "probability": 0.9932 + }, + { + "start": 2103.08, + "end": 2104.98, + "probability": 0.6934 + }, + { + "start": 2105.18, + "end": 2106.44, + "probability": 0.7974 + }, + { + "start": 2106.48, + "end": 2107.68, + "probability": 0.668 + }, + { + "start": 2108.06, + "end": 2108.72, + "probability": 0.05 + }, + { + "start": 2108.72, + "end": 2108.72, + "probability": 0.425 + }, + { + "start": 2108.72, + "end": 2109.46, + "probability": 0.6861 + }, + { + "start": 2110.48, + "end": 2114.32, + "probability": 0.7291 + }, + { + "start": 2115.1, + "end": 2118.03, + "probability": 0.7601 + }, + { + "start": 2118.6, + "end": 2121.4, + "probability": 0.9838 + }, + { + "start": 2122.52, + "end": 2124.48, + "probability": 0.8514 + }, + { + "start": 2124.58, + "end": 2126.92, + "probability": 0.9527 + }, + { + "start": 2127.28, + "end": 2132.83, + "probability": 0.9019 + }, + { + "start": 2133.68, + "end": 2139.68, + "probability": 0.7906 + }, + { + "start": 2140.52, + "end": 2144.9, + "probability": 0.9684 + }, + { + "start": 2144.9, + "end": 2151.0, + "probability": 0.9987 + }, + { + "start": 2151.06, + "end": 2153.72, + "probability": 0.9004 + }, + { + "start": 2155.04, + "end": 2161.02, + "probability": 0.9146 + }, + { + "start": 2162.04, + "end": 2165.2, + "probability": 0.7673 + }, + { + "start": 2165.38, + "end": 2171.9, + "probability": 0.9895 + }, + { + "start": 2172.02, + "end": 2172.84, + "probability": 0.7942 + }, + { + "start": 2173.0, + "end": 2174.54, + "probability": 0.8937 + }, + { + "start": 2175.0, + "end": 2180.04, + "probability": 0.8719 + }, + { + "start": 2180.12, + "end": 2181.32, + "probability": 0.9633 + }, + { + "start": 2182.74, + "end": 2186.26, + "probability": 0.9959 + }, + { + "start": 2187.32, + "end": 2191.48, + "probability": 0.9966 + }, + { + "start": 2192.65, + "end": 2195.35, + "probability": 0.4973 + }, + { + "start": 2196.26, + "end": 2199.04, + "probability": 0.921 + }, + { + "start": 2200.0, + "end": 2203.18, + "probability": 0.9844 + }, + { + "start": 2203.18, + "end": 2207.1, + "probability": 0.8604 + }, + { + "start": 2208.38, + "end": 2210.48, + "probability": 0.875 + }, + { + "start": 2210.6, + "end": 2214.2, + "probability": 0.9488 + }, + { + "start": 2214.84, + "end": 2215.82, + "probability": 0.7715 + }, + { + "start": 2215.9, + "end": 2216.7, + "probability": 0.9209 + }, + { + "start": 2216.84, + "end": 2218.56, + "probability": 0.8115 + }, + { + "start": 2219.04, + "end": 2222.92, + "probability": 0.9828 + }, + { + "start": 2223.04, + "end": 2227.88, + "probability": 0.9342 + }, + { + "start": 2228.54, + "end": 2232.6, + "probability": 0.7551 + }, + { + "start": 2233.48, + "end": 2235.75, + "probability": 0.7326 + }, + { + "start": 2236.58, + "end": 2238.86, + "probability": 0.9694 + }, + { + "start": 2239.44, + "end": 2242.28, + "probability": 0.9856 + }, + { + "start": 2242.84, + "end": 2248.82, + "probability": 0.9778 + }, + { + "start": 2249.2, + "end": 2250.44, + "probability": 0.8098 + }, + { + "start": 2250.84, + "end": 2251.9, + "probability": 0.8087 + }, + { + "start": 2252.08, + "end": 2254.06, + "probability": 0.9946 + }, + { + "start": 2254.56, + "end": 2255.42, + "probability": 0.9238 + }, + { + "start": 2256.36, + "end": 2257.58, + "probability": 0.5495 + }, + { + "start": 2258.4, + "end": 2260.92, + "probability": 0.8645 + }, + { + "start": 2261.46, + "end": 2263.5, + "probability": 0.8618 + }, + { + "start": 2264.3, + "end": 2269.0, + "probability": 0.9044 + }, + { + "start": 2269.38, + "end": 2272.94, + "probability": 0.8046 + }, + { + "start": 2273.12, + "end": 2276.46, + "probability": 0.9932 + }, + { + "start": 2276.52, + "end": 2279.12, + "probability": 0.9687 + }, + { + "start": 2281.46, + "end": 2284.28, + "probability": 0.8058 + }, + { + "start": 2284.38, + "end": 2285.1, + "probability": 0.7378 + }, + { + "start": 2285.18, + "end": 2287.66, + "probability": 0.9823 + }, + { + "start": 2287.92, + "end": 2289.32, + "probability": 0.9879 + }, + { + "start": 2289.66, + "end": 2290.48, + "probability": 0.9123 + }, + { + "start": 2290.66, + "end": 2292.06, + "probability": 0.7969 + }, + { + "start": 2292.06, + "end": 2296.0, + "probability": 0.971 + }, + { + "start": 2296.0, + "end": 2301.4, + "probability": 0.8616 + }, + { + "start": 2302.04, + "end": 2302.18, + "probability": 0.6977 + }, + { + "start": 2302.32, + "end": 2303.08, + "probability": 0.8672 + }, + { + "start": 2303.24, + "end": 2304.48, + "probability": 0.9924 + }, + { + "start": 2305.06, + "end": 2308.04, + "probability": 0.9773 + }, + { + "start": 2308.1, + "end": 2311.96, + "probability": 0.8836 + }, + { + "start": 2312.04, + "end": 2312.46, + "probability": 0.6743 + }, + { + "start": 2312.52, + "end": 2317.96, + "probability": 0.9915 + }, + { + "start": 2318.42, + "end": 2319.32, + "probability": 0.9616 + }, + { + "start": 2319.5, + "end": 2320.96, + "probability": 0.9531 + }, + { + "start": 2321.26, + "end": 2322.74, + "probability": 0.9378 + }, + { + "start": 2323.14, + "end": 2328.18, + "probability": 0.996 + }, + { + "start": 2328.18, + "end": 2334.62, + "probability": 0.9825 + }, + { + "start": 2335.22, + "end": 2336.98, + "probability": 0.5289 + }, + { + "start": 2337.02, + "end": 2339.08, + "probability": 0.7039 + }, + { + "start": 2340.32, + "end": 2342.48, + "probability": 0.6672 + }, + { + "start": 2342.78, + "end": 2345.54, + "probability": 0.5634 + }, + { + "start": 2345.6, + "end": 2346.46, + "probability": 0.6902 + }, + { + "start": 2346.68, + "end": 2347.28, + "probability": 0.916 + }, + { + "start": 2347.4, + "end": 2348.44, + "probability": 0.7209 + }, + { + "start": 2348.5, + "end": 2349.14, + "probability": 0.8914 + }, + { + "start": 2349.2, + "end": 2352.36, + "probability": 0.978 + }, + { + "start": 2352.36, + "end": 2355.04, + "probability": 0.9805 + }, + { + "start": 2355.9, + "end": 2358.7, + "probability": 0.913 + }, + { + "start": 2358.86, + "end": 2362.46, + "probability": 0.9851 + }, + { + "start": 2362.58, + "end": 2362.74, + "probability": 0.5846 + }, + { + "start": 2362.86, + "end": 2365.32, + "probability": 0.96 + }, + { + "start": 2365.64, + "end": 2367.28, + "probability": 0.9119 + }, + { + "start": 2367.4, + "end": 2370.12, + "probability": 0.9969 + }, + { + "start": 2371.54, + "end": 2374.2, + "probability": 0.8669 + }, + { + "start": 2374.34, + "end": 2378.18, + "probability": 0.9843 + }, + { + "start": 2378.48, + "end": 2379.9, + "probability": 0.5384 + }, + { + "start": 2380.0, + "end": 2382.08, + "probability": 0.8404 + }, + { + "start": 2382.24, + "end": 2382.88, + "probability": 0.7921 + }, + { + "start": 2382.96, + "end": 2384.9, + "probability": 0.9684 + }, + { + "start": 2385.04, + "end": 2386.44, + "probability": 0.9579 + }, + { + "start": 2392.32, + "end": 2393.02, + "probability": 0.7947 + }, + { + "start": 2393.18, + "end": 2394.36, + "probability": 0.9318 + }, + { + "start": 2394.46, + "end": 2395.67, + "probability": 0.9688 + }, + { + "start": 2396.18, + "end": 2399.54, + "probability": 0.924 + }, + { + "start": 2400.3, + "end": 2403.86, + "probability": 0.9211 + }, + { + "start": 2404.8, + "end": 2409.66, + "probability": 0.8625 + }, + { + "start": 2409.86, + "end": 2412.24, + "probability": 0.979 + }, + { + "start": 2412.3, + "end": 2413.45, + "probability": 0.8754 + }, + { + "start": 2413.88, + "end": 2415.26, + "probability": 0.9329 + }, + { + "start": 2415.36, + "end": 2417.48, + "probability": 0.5951 + }, + { + "start": 2417.48, + "end": 2419.64, + "probability": 0.9224 + }, + { + "start": 2419.92, + "end": 2422.58, + "probability": 0.9852 + }, + { + "start": 2423.16, + "end": 2424.66, + "probability": 0.8804 + }, + { + "start": 2424.76, + "end": 2427.76, + "probability": 0.8306 + }, + { + "start": 2427.82, + "end": 2428.48, + "probability": 0.9558 + }, + { + "start": 2428.6, + "end": 2431.96, + "probability": 0.9953 + }, + { + "start": 2432.56, + "end": 2434.44, + "probability": 0.7109 + }, + { + "start": 2435.36, + "end": 2437.42, + "probability": 0.5533 + }, + { + "start": 2437.82, + "end": 2439.36, + "probability": 0.8849 + }, + { + "start": 2439.76, + "end": 2442.02, + "probability": 0.9709 + }, + { + "start": 2442.3, + "end": 2445.5, + "probability": 0.9667 + }, + { + "start": 2445.92, + "end": 2447.12, + "probability": 0.9968 + }, + { + "start": 2447.64, + "end": 2448.76, + "probability": 0.5668 + }, + { + "start": 2449.22, + "end": 2450.45, + "probability": 0.436 + }, + { + "start": 2450.56, + "end": 2453.52, + "probability": 0.9108 + }, + { + "start": 2453.66, + "end": 2457.08, + "probability": 0.7109 + }, + { + "start": 2457.54, + "end": 2457.54, + "probability": 0.6501 + }, + { + "start": 2457.54, + "end": 2458.6, + "probability": 0.6776 + }, + { + "start": 2458.68, + "end": 2459.78, + "probability": 0.9961 + }, + { + "start": 2460.3, + "end": 2461.6, + "probability": 0.6657 + }, + { + "start": 2461.72, + "end": 2462.92, + "probability": 0.9126 + }, + { + "start": 2463.28, + "end": 2464.6, + "probability": 0.5674 + }, + { + "start": 2464.72, + "end": 2466.5, + "probability": 0.6787 + }, + { + "start": 2467.46, + "end": 2471.6, + "probability": 0.6732 + }, + { + "start": 2471.84, + "end": 2477.64, + "probability": 0.9595 + }, + { + "start": 2478.66, + "end": 2481.72, + "probability": 0.8309 + }, + { + "start": 2482.38, + "end": 2485.64, + "probability": 0.814 + }, + { + "start": 2486.3, + "end": 2495.22, + "probability": 0.9207 + }, + { + "start": 2495.72, + "end": 2497.92, + "probability": 0.9287 + }, + { + "start": 2498.14, + "end": 2500.56, + "probability": 0.7601 + }, + { + "start": 2501.18, + "end": 2505.38, + "probability": 0.966 + }, + { + "start": 2505.4, + "end": 2506.1, + "probability": 0.6584 + }, + { + "start": 2506.24, + "end": 2510.62, + "probability": 0.7041 + }, + { + "start": 2511.46, + "end": 2513.87, + "probability": 0.5672 + }, + { + "start": 2514.8, + "end": 2517.48, + "probability": 0.9263 + }, + { + "start": 2517.56, + "end": 2519.28, + "probability": 0.6008 + }, + { + "start": 2519.8, + "end": 2520.92, + "probability": 0.9422 + }, + { + "start": 2521.04, + "end": 2523.64, + "probability": 0.7719 + }, + { + "start": 2523.7, + "end": 2529.04, + "probability": 0.894 + }, + { + "start": 2529.22, + "end": 2530.82, + "probability": 0.5338 + }, + { + "start": 2531.3, + "end": 2534.52, + "probability": 0.9124 + }, + { + "start": 2534.64, + "end": 2535.14, + "probability": 0.8607 + }, + { + "start": 2535.3, + "end": 2535.76, + "probability": 0.8701 + }, + { + "start": 2535.78, + "end": 2537.27, + "probability": 0.9251 + }, + { + "start": 2537.8, + "end": 2540.06, + "probability": 0.5808 + }, + { + "start": 2540.34, + "end": 2540.42, + "probability": 0.3294 + }, + { + "start": 2540.42, + "end": 2544.0, + "probability": 0.6895 + }, + { + "start": 2544.04, + "end": 2550.6, + "probability": 0.6582 + }, + { + "start": 2550.88, + "end": 2557.16, + "probability": 0.9038 + }, + { + "start": 2557.44, + "end": 2559.19, + "probability": 0.7007 + }, + { + "start": 2559.52, + "end": 2562.42, + "probability": 0.8379 + }, + { + "start": 2562.68, + "end": 2563.96, + "probability": 0.9695 + }, + { + "start": 2564.08, + "end": 2564.22, + "probability": 0.946 + }, + { + "start": 2564.96, + "end": 2568.08, + "probability": 0.9905 + }, + { + "start": 2568.08, + "end": 2571.46, + "probability": 0.7444 + }, + { + "start": 2571.58, + "end": 2572.96, + "probability": 0.6219 + }, + { + "start": 2573.54, + "end": 2574.86, + "probability": 0.7543 + }, + { + "start": 2575.1, + "end": 2577.43, + "probability": 0.9772 + }, + { + "start": 2577.88, + "end": 2579.56, + "probability": 0.9474 + }, + { + "start": 2580.02, + "end": 2581.74, + "probability": 0.9175 + }, + { + "start": 2581.9, + "end": 2584.58, + "probability": 0.7486 + }, + { + "start": 2585.28, + "end": 2590.58, + "probability": 0.8752 + }, + { + "start": 2591.08, + "end": 2593.88, + "probability": 0.5429 + }, + { + "start": 2595.18, + "end": 2596.54, + "probability": 0.8708 + }, + { + "start": 2597.12, + "end": 2603.2, + "probability": 0.9291 + }, + { + "start": 2603.23, + "end": 2607.84, + "probability": 0.9766 + }, + { + "start": 2608.54, + "end": 2610.5, + "probability": 0.8564 + }, + { + "start": 2611.04, + "end": 2614.28, + "probability": 0.9609 + }, + { + "start": 2614.28, + "end": 2618.1, + "probability": 0.9252 + }, + { + "start": 2618.96, + "end": 2620.12, + "probability": 0.5261 + }, + { + "start": 2620.28, + "end": 2621.4, + "probability": 0.6769 + }, + { + "start": 2621.52, + "end": 2623.18, + "probability": 0.8369 + }, + { + "start": 2623.18, + "end": 2623.98, + "probability": 0.7345 + }, + { + "start": 2624.66, + "end": 2628.0, + "probability": 0.9655 + }, + { + "start": 2628.36, + "end": 2631.34, + "probability": 0.861 + }, + { + "start": 2631.76, + "end": 2636.92, + "probability": 0.9849 + }, + { + "start": 2637.02, + "end": 2641.47, + "probability": 0.9236 + }, + { + "start": 2641.94, + "end": 2642.7, + "probability": 0.6368 + }, + { + "start": 2642.76, + "end": 2644.0, + "probability": 0.5018 + }, + { + "start": 2645.06, + "end": 2645.06, + "probability": 0.1554 + }, + { + "start": 2645.06, + "end": 2651.24, + "probability": 0.6611 + }, + { + "start": 2651.4, + "end": 2654.38, + "probability": 0.9653 + }, + { + "start": 2655.06, + "end": 2657.6, + "probability": 0.5633 + }, + { + "start": 2663.66, + "end": 2665.98, + "probability": 0.4274 + }, + { + "start": 2666.8, + "end": 2666.9, + "probability": 0.5968 + }, + { + "start": 2669.62, + "end": 2671.24, + "probability": 0.3832 + }, + { + "start": 2672.31, + "end": 2674.24, + "probability": 0.6449 + }, + { + "start": 2675.22, + "end": 2678.88, + "probability": 0.4544 + }, + { + "start": 2679.58, + "end": 2685.86, + "probability": 0.9843 + }, + { + "start": 2686.84, + "end": 2691.22, + "probability": 0.773 + }, + { + "start": 2691.96, + "end": 2696.02, + "probability": 0.9569 + }, + { + "start": 2696.84, + "end": 2700.02, + "probability": 0.7182 + }, + { + "start": 2700.02, + "end": 2702.68, + "probability": 0.9498 + }, + { + "start": 2704.72, + "end": 2706.02, + "probability": 0.5858 + }, + { + "start": 2706.34, + "end": 2710.27, + "probability": 0.9747 + }, + { + "start": 2710.5, + "end": 2711.66, + "probability": 0.9478 + }, + { + "start": 2711.84, + "end": 2715.35, + "probability": 0.9819 + }, + { + "start": 2716.1, + "end": 2718.84, + "probability": 0.6747 + }, + { + "start": 2719.18, + "end": 2721.22, + "probability": 0.8803 + }, + { + "start": 2721.54, + "end": 2724.8, + "probability": 0.9052 + }, + { + "start": 2725.44, + "end": 2729.21, + "probability": 0.995 + }, + { + "start": 2729.74, + "end": 2731.3, + "probability": 0.6138 + }, + { + "start": 2731.44, + "end": 2732.78, + "probability": 0.8249 + }, + { + "start": 2733.26, + "end": 2734.6, + "probability": 0.0302 + }, + { + "start": 2735.02, + "end": 2735.52, + "probability": 0.9019 + }, + { + "start": 2736.24, + "end": 2740.44, + "probability": 0.9676 + }, + { + "start": 2741.24, + "end": 2743.09, + "probability": 0.9746 + }, + { + "start": 2743.96, + "end": 2746.63, + "probability": 0.9872 + }, + { + "start": 2747.88, + "end": 2751.18, + "probability": 0.8586 + }, + { + "start": 2751.86, + "end": 2753.04, + "probability": 0.8375 + }, + { + "start": 2753.62, + "end": 2756.64, + "probability": 0.9845 + }, + { + "start": 2757.28, + "end": 2759.62, + "probability": 0.9948 + }, + { + "start": 2759.62, + "end": 2761.7, + "probability": 0.9727 + }, + { + "start": 2761.9, + "end": 2766.84, + "probability": 0.9439 + }, + { + "start": 2767.3, + "end": 2771.96, + "probability": 0.7677 + }, + { + "start": 2772.5, + "end": 2777.6, + "probability": 0.9035 + }, + { + "start": 2777.76, + "end": 2781.32, + "probability": 0.5004 + }, + { + "start": 2781.32, + "end": 2784.66, + "probability": 0.9395 + }, + { + "start": 2785.12, + "end": 2788.12, + "probability": 0.9976 + }, + { + "start": 2788.12, + "end": 2791.02, + "probability": 0.9734 + }, + { + "start": 2791.2, + "end": 2792.32, + "probability": 0.9624 + }, + { + "start": 2793.2, + "end": 2795.2, + "probability": 0.8462 + }, + { + "start": 2795.2, + "end": 2800.82, + "probability": 0.8914 + }, + { + "start": 2801.38, + "end": 2802.31, + "probability": 0.5123 + }, + { + "start": 2803.24, + "end": 2803.8, + "probability": 0.7615 + }, + { + "start": 2803.92, + "end": 2804.76, + "probability": 0.6303 + }, + { + "start": 2804.88, + "end": 2805.46, + "probability": 0.8945 + }, + { + "start": 2805.94, + "end": 2807.2, + "probability": 0.9165 + }, + { + "start": 2808.1, + "end": 2811.5, + "probability": 0.9866 + }, + { + "start": 2812.56, + "end": 2818.34, + "probability": 0.8312 + }, + { + "start": 2818.96, + "end": 2822.5, + "probability": 0.9153 + }, + { + "start": 2823.34, + "end": 2824.98, + "probability": 0.9062 + }, + { + "start": 2825.74, + "end": 2828.52, + "probability": 0.9066 + }, + { + "start": 2829.06, + "end": 2831.96, + "probability": 0.9342 + }, + { + "start": 2832.01, + "end": 2834.68, + "probability": 0.9962 + }, + { + "start": 2834.76, + "end": 2835.36, + "probability": 0.7244 + }, + { + "start": 2836.36, + "end": 2841.68, + "probability": 0.9548 + }, + { + "start": 2842.2, + "end": 2842.82, + "probability": 0.6434 + }, + { + "start": 2842.88, + "end": 2844.82, + "probability": 0.9377 + }, + { + "start": 2845.06, + "end": 2849.26, + "probability": 0.9145 + }, + { + "start": 2849.26, + "end": 2853.42, + "probability": 0.7041 + }, + { + "start": 2853.58, + "end": 2856.68, + "probability": 0.8293 + }, + { + "start": 2857.14, + "end": 2860.4, + "probability": 0.986 + }, + { + "start": 2861.14, + "end": 2861.9, + "probability": 0.0161 + }, + { + "start": 2861.9, + "end": 2862.34, + "probability": 0.5811 + }, + { + "start": 2863.16, + "end": 2866.56, + "probability": 0.8008 + }, + { + "start": 2867.46, + "end": 2868.5, + "probability": 0.6155 + }, + { + "start": 2868.66, + "end": 2870.48, + "probability": 0.6803 + }, + { + "start": 2870.56, + "end": 2874.34, + "probability": 0.98 + }, + { + "start": 2874.34, + "end": 2877.64, + "probability": 0.7682 + }, + { + "start": 2877.92, + "end": 2881.26, + "probability": 0.7559 + }, + { + "start": 2883.06, + "end": 2884.9, + "probability": 0.7602 + }, + { + "start": 2885.3, + "end": 2887.3, + "probability": 0.8268 + }, + { + "start": 2887.68, + "end": 2889.9, + "probability": 0.9271 + }, + { + "start": 2891.22, + "end": 2892.34, + "probability": 0.7404 + }, + { + "start": 2892.44, + "end": 2893.62, + "probability": 0.9768 + }, + { + "start": 2893.7, + "end": 2894.86, + "probability": 0.8599 + }, + { + "start": 2895.16, + "end": 2899.32, + "probability": 0.9812 + }, + { + "start": 2899.42, + "end": 2901.06, + "probability": 0.8877 + }, + { + "start": 2901.08, + "end": 2903.48, + "probability": 0.9226 + }, + { + "start": 2904.36, + "end": 2905.64, + "probability": 0.8438 + }, + { + "start": 2905.7, + "end": 2907.56, + "probability": 0.8445 + }, + { + "start": 2908.18, + "end": 2909.46, + "probability": 0.7598 + }, + { + "start": 2909.6, + "end": 2911.02, + "probability": 0.9707 + }, + { + "start": 2911.04, + "end": 2912.84, + "probability": 0.6985 + }, + { + "start": 2912.84, + "end": 2915.0, + "probability": 0.749 + }, + { + "start": 2915.46, + "end": 2918.32, + "probability": 0.9924 + }, + { + "start": 2918.32, + "end": 2922.78, + "probability": 0.7413 + }, + { + "start": 2923.22, + "end": 2929.18, + "probability": 0.9885 + }, + { + "start": 2929.5, + "end": 2932.78, + "probability": 0.9878 + }, + { + "start": 2934.94, + "end": 2936.74, + "probability": 0.9797 + }, + { + "start": 2936.78, + "end": 2938.78, + "probability": 0.7779 + }, + { + "start": 2938.78, + "end": 2940.78, + "probability": 0.9058 + }, + { + "start": 2941.24, + "end": 2944.82, + "probability": 0.9515 + }, + { + "start": 2944.82, + "end": 2948.76, + "probability": 0.9429 + }, + { + "start": 2949.06, + "end": 2951.2, + "probability": 0.7737 + }, + { + "start": 2953.02, + "end": 2954.42, + "probability": 0.8759 + }, + { + "start": 2954.54, + "end": 2954.88, + "probability": 0.8602 + }, + { + "start": 2954.96, + "end": 2955.76, + "probability": 0.8961 + }, + { + "start": 2955.94, + "end": 2959.56, + "probability": 0.5025 + }, + { + "start": 2960.38, + "end": 2962.44, + "probability": 0.8186 + }, + { + "start": 2963.26, + "end": 2963.26, + "probability": 0.1366 + }, + { + "start": 2963.26, + "end": 2965.52, + "probability": 0.8745 + }, + { + "start": 2965.62, + "end": 2968.68, + "probability": 0.9712 + }, + { + "start": 2969.04, + "end": 2969.36, + "probability": 0.4408 + }, + { + "start": 2969.44, + "end": 2971.4, + "probability": 0.9801 + }, + { + "start": 2971.68, + "end": 2972.6, + "probability": 0.7814 + }, + { + "start": 2972.92, + "end": 2975.8, + "probability": 0.5316 + }, + { + "start": 2975.96, + "end": 2976.94, + "probability": 0.8162 + }, + { + "start": 2977.48, + "end": 2980.02, + "probability": 0.8911 + }, + { + "start": 2980.32, + "end": 2980.84, + "probability": 0.6834 + }, + { + "start": 2980.9, + "end": 2981.86, + "probability": 0.7728 + }, + { + "start": 2982.02, + "end": 2983.06, + "probability": 0.5636 + }, + { + "start": 2983.88, + "end": 2984.82, + "probability": 0.4803 + }, + { + "start": 2984.88, + "end": 2986.48, + "probability": 0.8035 + }, + { + "start": 2986.62, + "end": 2991.0, + "probability": 0.9569 + }, + { + "start": 2991.48, + "end": 2993.04, + "probability": 0.5036 + }, + { + "start": 2993.44, + "end": 2993.62, + "probability": 0.6046 + }, + { + "start": 2993.72, + "end": 2998.3, + "probability": 0.979 + }, + { + "start": 2999.24, + "end": 3002.26, + "probability": 0.7573 + }, + { + "start": 3002.26, + "end": 3006.26, + "probability": 0.9972 + }, + { + "start": 3009.78, + "end": 3011.84, + "probability": 0.5737 + }, + { + "start": 3012.7, + "end": 3015.6, + "probability": 0.9905 + }, + { + "start": 3016.58, + "end": 3018.6, + "probability": 0.8789 + }, + { + "start": 3019.38, + "end": 3020.88, + "probability": 0.8615 + }, + { + "start": 3021.68, + "end": 3022.8, + "probability": 0.9749 + }, + { + "start": 3022.82, + "end": 3022.94, + "probability": 0.7343 + }, + { + "start": 3023.02, + "end": 3023.38, + "probability": 0.4955 + }, + { + "start": 3023.46, + "end": 3024.37, + "probability": 0.6396 + }, + { + "start": 3024.62, + "end": 3025.94, + "probability": 0.6747 + }, + { + "start": 3026.34, + "end": 3026.79, + "probability": 0.9641 + }, + { + "start": 3027.26, + "end": 3028.25, + "probability": 0.6469 + }, + { + "start": 3028.94, + "end": 3030.52, + "probability": 0.8596 + }, + { + "start": 3031.36, + "end": 3031.92, + "probability": 0.5931 + }, + { + "start": 3031.96, + "end": 3033.3, + "probability": 0.822 + }, + { + "start": 3033.42, + "end": 3035.55, + "probability": 0.903 + }, + { + "start": 3037.26, + "end": 3038.38, + "probability": 0.9851 + }, + { + "start": 3038.46, + "end": 3042.22, + "probability": 0.9032 + }, + { + "start": 3042.66, + "end": 3046.02, + "probability": 0.8835 + }, + { + "start": 3047.6, + "end": 3048.0, + "probability": 0.3365 + }, + { + "start": 3048.1, + "end": 3050.34, + "probability": 0.9735 + }, + { + "start": 3051.2, + "end": 3057.56, + "probability": 0.9746 + }, + { + "start": 3058.18, + "end": 3058.42, + "probability": 0.7482 + }, + { + "start": 3058.5, + "end": 3059.76, + "probability": 0.833 + }, + { + "start": 3059.92, + "end": 3060.78, + "probability": 0.9661 + }, + { + "start": 3060.92, + "end": 3062.5, + "probability": 0.9949 + }, + { + "start": 3066.16, + "end": 3068.62, + "probability": 0.66 + }, + { + "start": 3068.86, + "end": 3072.1, + "probability": 0.9947 + }, + { + "start": 3072.1, + "end": 3075.84, + "probability": 0.993 + }, + { + "start": 3077.3, + "end": 3080.92, + "probability": 0.9276 + }, + { + "start": 3081.84, + "end": 3084.84, + "probability": 0.9657 + }, + { + "start": 3085.64, + "end": 3091.08, + "probability": 0.9496 + }, + { + "start": 3092.14, + "end": 3094.14, + "probability": 0.955 + }, + { + "start": 3094.68, + "end": 3095.86, + "probability": 0.8845 + }, + { + "start": 3096.74, + "end": 3098.34, + "probability": 0.9495 + }, + { + "start": 3099.28, + "end": 3104.2, + "probability": 0.9737 + }, + { + "start": 3105.12, + "end": 3111.68, + "probability": 0.9868 + }, + { + "start": 3111.68, + "end": 3116.8, + "probability": 0.952 + }, + { + "start": 3117.74, + "end": 3119.08, + "probability": 0.7791 + }, + { + "start": 3119.22, + "end": 3120.82, + "probability": 0.9297 + }, + { + "start": 3121.66, + "end": 3127.92, + "probability": 0.9898 + }, + { + "start": 3128.6, + "end": 3130.41, + "probability": 0.8853 + }, + { + "start": 3131.18, + "end": 3134.02, + "probability": 0.9384 + }, + { + "start": 3135.02, + "end": 3136.8, + "probability": 0.9819 + }, + { + "start": 3137.1, + "end": 3141.2, + "probability": 0.9684 + }, + { + "start": 3141.84, + "end": 3145.98, + "probability": 0.9886 + }, + { + "start": 3145.98, + "end": 3149.82, + "probability": 0.995 + }, + { + "start": 3149.9, + "end": 3153.84, + "probability": 0.9054 + }, + { + "start": 3154.02, + "end": 3155.1, + "probability": 0.8138 + }, + { + "start": 3155.38, + "end": 3160.0, + "probability": 0.9683 + }, + { + "start": 3160.2, + "end": 3163.26, + "probability": 0.9633 + }, + { + "start": 3163.78, + "end": 3169.1, + "probability": 0.9927 + }, + { + "start": 3169.12, + "end": 3170.66, + "probability": 0.8853 + }, + { + "start": 3172.21, + "end": 3174.06, + "probability": 0.9185 + }, + { + "start": 3174.64, + "end": 3175.34, + "probability": 0.0188 + }, + { + "start": 3176.3, + "end": 3177.82, + "probability": 0.6416 + }, + { + "start": 3179.09, + "end": 3180.56, + "probability": 0.5112 + }, + { + "start": 3180.6, + "end": 3184.32, + "probability": 0.9814 + }, + { + "start": 3184.72, + "end": 3190.26, + "probability": 0.978 + }, + { + "start": 3190.33, + "end": 3195.96, + "probability": 0.9209 + }, + { + "start": 3196.38, + "end": 3197.86, + "probability": 0.9767 + }, + { + "start": 3198.32, + "end": 3202.22, + "probability": 0.9895 + }, + { + "start": 3202.3, + "end": 3204.21, + "probability": 0.8613 + }, + { + "start": 3205.38, + "end": 3208.18, + "probability": 0.9544 + }, + { + "start": 3208.24, + "end": 3209.84, + "probability": 0.9873 + }, + { + "start": 3209.9, + "end": 3211.0, + "probability": 0.9308 + }, + { + "start": 3211.06, + "end": 3212.18, + "probability": 0.7131 + }, + { + "start": 3212.7, + "end": 3214.84, + "probability": 0.9805 + }, + { + "start": 3215.38, + "end": 3219.04, + "probability": 0.802 + }, + { + "start": 3219.1, + "end": 3220.12, + "probability": 0.7992 + }, + { + "start": 3220.62, + "end": 3223.56, + "probability": 0.9502 + }, + { + "start": 3224.0, + "end": 3225.26, + "probability": 0.8203 + }, + { + "start": 3225.3, + "end": 3229.9, + "probability": 0.9947 + }, + { + "start": 3229.9, + "end": 3233.72, + "probability": 0.9872 + }, + { + "start": 3233.94, + "end": 3235.02, + "probability": 0.4818 + }, + { + "start": 3235.06, + "end": 3235.62, + "probability": 0.8434 + }, + { + "start": 3235.74, + "end": 3237.71, + "probability": 0.8147 + }, + { + "start": 3238.58, + "end": 3240.06, + "probability": 0.8906 + }, + { + "start": 3240.26, + "end": 3241.26, + "probability": 0.8594 + }, + { + "start": 3241.38, + "end": 3242.64, + "probability": 0.9857 + }, + { + "start": 3243.3, + "end": 3244.28, + "probability": 0.4785 + }, + { + "start": 3244.28, + "end": 3246.52, + "probability": 0.077 + }, + { + "start": 3246.64, + "end": 3250.9, + "probability": 0.1367 + }, + { + "start": 3251.2, + "end": 3255.08, + "probability": 0.4216 + }, + { + "start": 3258.28, + "end": 3259.55, + "probability": 0.3621 + }, + { + "start": 3260.36, + "end": 3261.4, + "probability": 0.9734 + }, + { + "start": 3262.92, + "end": 3263.42, + "probability": 0.6103 + }, + { + "start": 3263.52, + "end": 3264.04, + "probability": 0.693 + }, + { + "start": 3264.14, + "end": 3264.82, + "probability": 0.8794 + }, + { + "start": 3264.94, + "end": 3266.76, + "probability": 0.8632 + }, + { + "start": 3266.82, + "end": 3269.1, + "probability": 0.9524 + }, + { + "start": 3269.26, + "end": 3271.54, + "probability": 0.7429 + }, + { + "start": 3271.74, + "end": 3274.87, + "probability": 0.9766 + }, + { + "start": 3275.3, + "end": 3275.54, + "probability": 0.8244 + }, + { + "start": 3275.62, + "end": 3276.54, + "probability": 0.7018 + }, + { + "start": 3276.62, + "end": 3277.58, + "probability": 0.721 + }, + { + "start": 3277.68, + "end": 3278.6, + "probability": 0.7021 + }, + { + "start": 3278.72, + "end": 3279.48, + "probability": 0.6831 + }, + { + "start": 3279.54, + "end": 3281.2, + "probability": 0.9638 + }, + { + "start": 3281.54, + "end": 3282.2, + "probability": 0.1748 + }, + { + "start": 3282.3, + "end": 3282.42, + "probability": 0.329 + }, + { + "start": 3282.86, + "end": 3283.0, + "probability": 0.4705 + }, + { + "start": 3283.22, + "end": 3283.38, + "probability": 0.4689 + }, + { + "start": 3283.38, + "end": 3285.94, + "probability": 0.7124 + }, + { + "start": 3286.54, + "end": 3288.2, + "probability": 0.8726 + }, + { + "start": 3288.58, + "end": 3290.14, + "probability": 0.6787 + }, + { + "start": 3290.28, + "end": 3295.64, + "probability": 0.9731 + }, + { + "start": 3296.44, + "end": 3297.78, + "probability": 0.765 + }, + { + "start": 3298.52, + "end": 3300.3, + "probability": 0.6704 + }, + { + "start": 3300.48, + "end": 3302.4, + "probability": 0.8618 + }, + { + "start": 3302.5, + "end": 3303.34, + "probability": 0.9556 + }, + { + "start": 3303.44, + "end": 3308.74, + "probability": 0.9812 + }, + { + "start": 3308.76, + "end": 3312.76, + "probability": 0.9728 + }, + { + "start": 3312.76, + "end": 3315.62, + "probability": 0.9783 + }, + { + "start": 3316.28, + "end": 3321.66, + "probability": 0.9846 + }, + { + "start": 3321.76, + "end": 3322.62, + "probability": 0.865 + }, + { + "start": 3323.22, + "end": 3326.12, + "probability": 0.9929 + }, + { + "start": 3326.34, + "end": 3328.84, + "probability": 0.9914 + }, + { + "start": 3329.08, + "end": 3329.9, + "probability": 0.6746 + }, + { + "start": 3330.12, + "end": 3334.2, + "probability": 0.9782 + }, + { + "start": 3335.16, + "end": 3336.04, + "probability": 0.9006 + }, + { + "start": 3336.22, + "end": 3337.66, + "probability": 0.9494 + }, + { + "start": 3338.04, + "end": 3342.58, + "probability": 0.9546 + }, + { + "start": 3343.02, + "end": 3347.46, + "probability": 0.9868 + }, + { + "start": 3347.46, + "end": 3352.72, + "probability": 0.9365 + }, + { + "start": 3353.38, + "end": 3358.98, + "probability": 0.9573 + }, + { + "start": 3358.98, + "end": 3361.36, + "probability": 0.9956 + }, + { + "start": 3361.46, + "end": 3366.88, + "probability": 0.9296 + }, + { + "start": 3367.58, + "end": 3368.2, + "probability": 0.9164 + }, + { + "start": 3368.32, + "end": 3370.08, + "probability": 0.9198 + }, + { + "start": 3370.54, + "end": 3374.26, + "probability": 0.993 + }, + { + "start": 3374.26, + "end": 3378.86, + "probability": 0.996 + }, + { + "start": 3379.68, + "end": 3384.72, + "probability": 0.9269 + }, + { + "start": 3385.32, + "end": 3390.02, + "probability": 0.9351 + }, + { + "start": 3390.7, + "end": 3395.56, + "probability": 0.9819 + }, + { + "start": 3395.9, + "end": 3398.3, + "probability": 0.9647 + }, + { + "start": 3398.72, + "end": 3403.8, + "probability": 0.9945 + }, + { + "start": 3404.78, + "end": 3405.66, + "probability": 0.621 + }, + { + "start": 3406.82, + "end": 3409.16, + "probability": 0.9541 + }, + { + "start": 3409.7, + "end": 3414.16, + "probability": 0.9713 + }, + { + "start": 3414.16, + "end": 3419.18, + "probability": 0.9578 + }, + { + "start": 3419.5, + "end": 3422.4, + "probability": 0.8809 + }, + { + "start": 3422.74, + "end": 3425.4, + "probability": 0.9476 + }, + { + "start": 3425.74, + "end": 3430.56, + "probability": 0.9929 + }, + { + "start": 3430.74, + "end": 3434.62, + "probability": 0.9414 + }, + { + "start": 3434.8, + "end": 3436.44, + "probability": 0.86 + }, + { + "start": 3436.62, + "end": 3439.02, + "probability": 0.9563 + }, + { + "start": 3439.02, + "end": 3442.58, + "probability": 0.9911 + }, + { + "start": 3443.32, + "end": 3444.34, + "probability": 0.61 + }, + { + "start": 3444.4, + "end": 3447.32, + "probability": 0.8889 + }, + { + "start": 3447.64, + "end": 3454.76, + "probability": 0.8853 + }, + { + "start": 3455.28, + "end": 3458.98, + "probability": 0.9546 + }, + { + "start": 3458.98, + "end": 3462.6, + "probability": 0.9941 + }, + { + "start": 3463.24, + "end": 3464.98, + "probability": 0.7381 + }, + { + "start": 3465.5, + "end": 3473.0, + "probability": 0.9422 + }, + { + "start": 3473.4, + "end": 3480.94, + "probability": 0.9766 + }, + { + "start": 3480.96, + "end": 3483.46, + "probability": 0.7861 + }, + { + "start": 3483.6, + "end": 3483.82, + "probability": 0.6762 + }, + { + "start": 3483.98, + "end": 3485.94, + "probability": 0.7559 + }, + { + "start": 3486.04, + "end": 3488.14, + "probability": 0.7575 + }, + { + "start": 3503.08, + "end": 3504.86, + "probability": 0.6826 + }, + { + "start": 3506.6, + "end": 3510.3, + "probability": 0.8227 + }, + { + "start": 3510.9, + "end": 3511.22, + "probability": 0.8579 + }, + { + "start": 3515.54, + "end": 3519.44, + "probability": 0.6707 + }, + { + "start": 3520.06, + "end": 3520.98, + "probability": 0.6814 + }, + { + "start": 3521.22, + "end": 3522.97, + "probability": 0.8172 + }, + { + "start": 3523.72, + "end": 3526.68, + "probability": 0.9935 + }, + { + "start": 3526.68, + "end": 3531.72, + "probability": 0.8843 + }, + { + "start": 3531.86, + "end": 3534.72, + "probability": 0.9873 + }, + { + "start": 3535.74, + "end": 3537.8, + "probability": 0.9377 + }, + { + "start": 3538.68, + "end": 3541.4, + "probability": 0.9181 + }, + { + "start": 3542.16, + "end": 3546.02, + "probability": 0.8537 + }, + { + "start": 3546.58, + "end": 3552.18, + "probability": 0.748 + }, + { + "start": 3552.8, + "end": 3553.88, + "probability": 0.8489 + }, + { + "start": 3555.38, + "end": 3558.35, + "probability": 0.7078 + }, + { + "start": 3559.66, + "end": 3564.82, + "probability": 0.8931 + }, + { + "start": 3564.82, + "end": 3572.34, + "probability": 0.9713 + }, + { + "start": 3572.48, + "end": 3573.08, + "probability": 0.1424 + }, + { + "start": 3573.76, + "end": 3577.5, + "probability": 0.6835 + }, + { + "start": 3578.88, + "end": 3581.96, + "probability": 0.9149 + }, + { + "start": 3582.68, + "end": 3585.5, + "probability": 0.9894 + }, + { + "start": 3585.74, + "end": 3586.86, + "probability": 0.7587 + }, + { + "start": 3587.28, + "end": 3589.38, + "probability": 0.8017 + }, + { + "start": 3589.46, + "end": 3591.52, + "probability": 0.8291 + }, + { + "start": 3591.82, + "end": 3595.14, + "probability": 0.952 + }, + { + "start": 3596.34, + "end": 3597.94, + "probability": 0.6761 + }, + { + "start": 3598.54, + "end": 3602.04, + "probability": 0.9863 + }, + { + "start": 3602.04, + "end": 3606.44, + "probability": 0.8254 + }, + { + "start": 3606.84, + "end": 3610.72, + "probability": 0.9795 + }, + { + "start": 3611.4, + "end": 3614.04, + "probability": 0.715 + }, + { + "start": 3614.26, + "end": 3619.82, + "probability": 0.9745 + }, + { + "start": 3621.76, + "end": 3624.04, + "probability": 0.9746 + }, + { + "start": 3624.72, + "end": 3630.0, + "probability": 0.7723 + }, + { + "start": 3630.0, + "end": 3634.24, + "probability": 0.9624 + }, + { + "start": 3634.8, + "end": 3638.58, + "probability": 0.8346 + }, + { + "start": 3638.58, + "end": 3642.7, + "probability": 0.979 + }, + { + "start": 3643.34, + "end": 3647.18, + "probability": 0.8846 + }, + { + "start": 3647.3, + "end": 3648.44, + "probability": 0.8713 + }, + { + "start": 3649.48, + "end": 3651.42, + "probability": 0.705 + }, + { + "start": 3653.34, + "end": 3656.92, + "probability": 0.8563 + }, + { + "start": 3658.26, + "end": 3659.34, + "probability": 0.2788 + }, + { + "start": 3659.72, + "end": 3662.2, + "probability": 0.9695 + }, + { + "start": 3663.08, + "end": 3664.86, + "probability": 0.91 + }, + { + "start": 3668.66, + "end": 3670.64, + "probability": 0.8552 + }, + { + "start": 3670.82, + "end": 3673.74, + "probability": 0.9872 + }, + { + "start": 3675.24, + "end": 3677.54, + "probability": 0.1119 + }, + { + "start": 3677.64, + "end": 3682.32, + "probability": 0.8765 + }, + { + "start": 3682.4, + "end": 3689.04, + "probability": 0.905 + }, + { + "start": 3689.04, + "end": 3693.32, + "probability": 0.8652 + }, + { + "start": 3693.32, + "end": 3695.12, + "probability": 0.8604 + }, + { + "start": 3695.52, + "end": 3696.66, + "probability": 0.7929 + }, + { + "start": 3696.8, + "end": 3697.02, + "probability": 0.2236 + }, + { + "start": 3697.02, + "end": 3704.36, + "probability": 0.8727 + }, + { + "start": 3704.8, + "end": 3706.76, + "probability": 0.7381 + }, + { + "start": 3706.8, + "end": 3707.88, + "probability": 0.9952 + }, + { + "start": 3708.88, + "end": 3709.88, + "probability": 0.715 + }, + { + "start": 3709.94, + "end": 3715.04, + "probability": 0.882 + }, + { + "start": 3715.14, + "end": 3715.3, + "probability": 0.5826 + }, + { + "start": 3715.42, + "end": 3718.02, + "probability": 0.5236 + }, + { + "start": 3719.48, + "end": 3721.48, + "probability": 0.7658 + }, + { + "start": 3742.0, + "end": 3745.16, + "probability": 0.3994 + }, + { + "start": 3745.16, + "end": 3745.84, + "probability": 0.9568 + }, + { + "start": 3748.06, + "end": 3750.28, + "probability": 0.7467 + }, + { + "start": 3751.3, + "end": 3752.06, + "probability": 0.5157 + }, + { + "start": 3752.14, + "end": 3753.8, + "probability": 0.6479 + }, + { + "start": 3754.16, + "end": 3754.16, + "probability": 0.2126 + }, + { + "start": 3754.16, + "end": 3757.34, + "probability": 0.9853 + }, + { + "start": 3757.48, + "end": 3761.08, + "probability": 0.9954 + }, + { + "start": 3762.08, + "end": 3762.42, + "probability": 0.4844 + }, + { + "start": 3762.48, + "end": 3762.84, + "probability": 0.8212 + }, + { + "start": 3763.0, + "end": 3765.82, + "probability": 0.771 + }, + { + "start": 3766.32, + "end": 3768.03, + "probability": 0.9863 + }, + { + "start": 3769.71, + "end": 3771.92, + "probability": 0.9585 + }, + { + "start": 3772.1, + "end": 3774.42, + "probability": 0.9467 + }, + { + "start": 3774.78, + "end": 3775.9, + "probability": 0.7373 + }, + { + "start": 3776.14, + "end": 3778.86, + "probability": 0.9949 + }, + { + "start": 3779.34, + "end": 3781.86, + "probability": 0.6036 + }, + { + "start": 3782.38, + "end": 3785.86, + "probability": 0.9716 + }, + { + "start": 3786.64, + "end": 3788.02, + "probability": 0.843 + }, + { + "start": 3788.1, + "end": 3788.78, + "probability": 0.8117 + }, + { + "start": 3788.82, + "end": 3789.8, + "probability": 0.9589 + }, + { + "start": 3790.08, + "end": 3792.3, + "probability": 0.9946 + }, + { + "start": 3792.32, + "end": 3795.78, + "probability": 0.9756 + }, + { + "start": 3796.44, + "end": 3797.0, + "probability": 0.8643 + }, + { + "start": 3797.4, + "end": 3803.32, + "probability": 0.9969 + }, + { + "start": 3803.94, + "end": 3807.75, + "probability": 0.9937 + }, + { + "start": 3809.2, + "end": 3811.72, + "probability": 0.9302 + }, + { + "start": 3812.14, + "end": 3814.94, + "probability": 0.9038 + }, + { + "start": 3815.5, + "end": 3820.94, + "probability": 0.9871 + }, + { + "start": 3820.94, + "end": 3824.72, + "probability": 0.9968 + }, + { + "start": 3825.28, + "end": 3827.76, + "probability": 0.8083 + }, + { + "start": 3828.2, + "end": 3832.38, + "probability": 0.9975 + }, + { + "start": 3832.6, + "end": 3835.44, + "probability": 0.8152 + }, + { + "start": 3835.9, + "end": 3840.66, + "probability": 0.9909 + }, + { + "start": 3841.0, + "end": 3843.64, + "probability": 0.8951 + }, + { + "start": 3844.42, + "end": 3845.88, + "probability": 0.9245 + }, + { + "start": 3846.52, + "end": 3854.18, + "probability": 0.831 + }, + { + "start": 3854.84, + "end": 3857.64, + "probability": 0.9839 + }, + { + "start": 3858.46, + "end": 3860.22, + "probability": 0.9978 + }, + { + "start": 3860.36, + "end": 3865.26, + "probability": 0.9771 + }, + { + "start": 3866.16, + "end": 3868.82, + "probability": 0.9352 + }, + { + "start": 3869.5, + "end": 3871.96, + "probability": 0.4977 + }, + { + "start": 3872.64, + "end": 3874.22, + "probability": 0.6932 + }, + { + "start": 3874.9, + "end": 3877.46, + "probability": 0.9663 + }, + { + "start": 3877.86, + "end": 3879.42, + "probability": 0.7741 + }, + { + "start": 3879.78, + "end": 3883.98, + "probability": 0.9429 + }, + { + "start": 3884.94, + "end": 3886.64, + "probability": 0.9523 + }, + { + "start": 3887.2, + "end": 3888.66, + "probability": 0.9468 + }, + { + "start": 3889.0, + "end": 3892.14, + "probability": 0.9983 + }, + { + "start": 3892.64, + "end": 3896.82, + "probability": 0.9187 + }, + { + "start": 3896.82, + "end": 3901.56, + "probability": 0.995 + }, + { + "start": 3902.26, + "end": 3905.8, + "probability": 0.8108 + }, + { + "start": 3906.32, + "end": 3907.06, + "probability": 0.675 + }, + { + "start": 3908.06, + "end": 3910.12, + "probability": 0.7998 + }, + { + "start": 3910.2, + "end": 3911.68, + "probability": 0.7831 + }, + { + "start": 3912.04, + "end": 3913.36, + "probability": 0.7071 + }, + { + "start": 3913.64, + "end": 3914.7, + "probability": 0.985 + }, + { + "start": 3915.32, + "end": 3916.9, + "probability": 0.8829 + }, + { + "start": 3917.32, + "end": 3919.14, + "probability": 0.9921 + }, + { + "start": 3919.6, + "end": 3921.71, + "probability": 0.9779 + }, + { + "start": 3922.54, + "end": 3927.22, + "probability": 0.9596 + }, + { + "start": 3928.04, + "end": 3931.96, + "probability": 0.9946 + }, + { + "start": 3932.12, + "end": 3933.2, + "probability": 0.9512 + }, + { + "start": 3934.22, + "end": 3937.09, + "probability": 0.761 + }, + { + "start": 3937.7, + "end": 3942.66, + "probability": 0.8773 + }, + { + "start": 3942.98, + "end": 3945.4, + "probability": 0.7702 + }, + { + "start": 3945.58, + "end": 3950.76, + "probability": 0.9907 + }, + { + "start": 3951.02, + "end": 3954.18, + "probability": 0.972 + }, + { + "start": 3954.26, + "end": 3960.06, + "probability": 0.978 + }, + { + "start": 3960.06, + "end": 3967.9, + "probability": 0.9913 + }, + { + "start": 3968.92, + "end": 3969.54, + "probability": 0.3965 + }, + { + "start": 3970.22, + "end": 3971.7, + "probability": 0.5799 + }, + { + "start": 3972.16, + "end": 3973.99, + "probability": 0.5462 + }, + { + "start": 3974.36, + "end": 3976.22, + "probability": 0.9482 + }, + { + "start": 3976.64, + "end": 3978.82, + "probability": 0.8061 + }, + { + "start": 3978.88, + "end": 3982.18, + "probability": 0.8198 + }, + { + "start": 3983.34, + "end": 3987.9, + "probability": 0.8822 + }, + { + "start": 3987.96, + "end": 3989.58, + "probability": 0.8347 + }, + { + "start": 3990.2, + "end": 3994.44, + "probability": 0.9111 + }, + { + "start": 3994.58, + "end": 3996.49, + "probability": 0.8406 + }, + { + "start": 3996.91, + "end": 3999.72, + "probability": 0.9974 + }, + { + "start": 3999.86, + "end": 4001.69, + "probability": 0.9922 + }, + { + "start": 4003.1, + "end": 4006.19, + "probability": 0.7688 + }, + { + "start": 4007.02, + "end": 4008.12, + "probability": 0.3371 + }, + { + "start": 4008.24, + "end": 4011.34, + "probability": 0.8012 + }, + { + "start": 4011.9, + "end": 4013.32, + "probability": 0.9512 + }, + { + "start": 4014.54, + "end": 4015.14, + "probability": 0.6481 + }, + { + "start": 4015.14, + "end": 4019.44, + "probability": 0.8519 + }, + { + "start": 4020.0, + "end": 4025.23, + "probability": 0.9702 + }, + { + "start": 4026.58, + "end": 4034.8, + "probability": 0.876 + }, + { + "start": 4035.1, + "end": 4035.88, + "probability": 0.6838 + }, + { + "start": 4039.58, + "end": 4043.24, + "probability": 0.9512 + }, + { + "start": 4043.24, + "end": 4046.84, + "probability": 0.862 + }, + { + "start": 4047.8, + "end": 4050.5, + "probability": 0.9232 + }, + { + "start": 4050.56, + "end": 4051.92, + "probability": 0.9666 + }, + { + "start": 4052.36, + "end": 4055.1, + "probability": 0.8055 + }, + { + "start": 4055.58, + "end": 4056.56, + "probability": 0.5028 + }, + { + "start": 4056.8, + "end": 4062.14, + "probability": 0.7979 + }, + { + "start": 4062.58, + "end": 4064.1, + "probability": 0.9025 + }, + { + "start": 4064.4, + "end": 4065.24, + "probability": 0.7158 + }, + { + "start": 4065.4, + "end": 4066.68, + "probability": 0.8584 + }, + { + "start": 4066.84, + "end": 4069.22, + "probability": 0.6161 + }, + { + "start": 4070.18, + "end": 4072.08, + "probability": 0.7692 + }, + { + "start": 4072.28, + "end": 4073.7, + "probability": 0.7659 + }, + { + "start": 4073.8, + "end": 4075.42, + "probability": 0.7487 + }, + { + "start": 4076.1, + "end": 4077.71, + "probability": 0.7587 + }, + { + "start": 4078.1, + "end": 4079.64, + "probability": 0.988 + }, + { + "start": 4079.86, + "end": 4081.64, + "probability": 0.4669 + }, + { + "start": 4081.72, + "end": 4084.56, + "probability": 0.9642 + }, + { + "start": 4084.56, + "end": 4088.5, + "probability": 0.9894 + }, + { + "start": 4088.6, + "end": 4090.52, + "probability": 0.8913 + }, + { + "start": 4090.96, + "end": 4091.92, + "probability": 0.7347 + }, + { + "start": 4091.96, + "end": 4093.22, + "probability": 0.8192 + }, + { + "start": 4093.4, + "end": 4094.74, + "probability": 0.6387 + }, + { + "start": 4095.28, + "end": 4096.25, + "probability": 0.9658 + }, + { + "start": 4096.56, + "end": 4098.46, + "probability": 0.7549 + }, + { + "start": 4098.64, + "end": 4101.74, + "probability": 0.9934 + }, + { + "start": 4101.74, + "end": 4105.5, + "probability": 0.9753 + }, + { + "start": 4106.54, + "end": 4108.52, + "probability": 0.8745 + }, + { + "start": 4108.6, + "end": 4111.26, + "probability": 0.9863 + }, + { + "start": 4111.64, + "end": 4115.36, + "probability": 0.8481 + }, + { + "start": 4115.52, + "end": 4116.78, + "probability": 0.4471 + }, + { + "start": 4117.08, + "end": 4118.14, + "probability": 0.8874 + }, + { + "start": 4118.5, + "end": 4119.72, + "probability": 0.9951 + }, + { + "start": 4119.88, + "end": 4121.14, + "probability": 0.9917 + }, + { + "start": 4121.44, + "end": 4124.18, + "probability": 0.973 + }, + { + "start": 4124.4, + "end": 4126.09, + "probability": 0.9834 + }, + { + "start": 4126.74, + "end": 4128.14, + "probability": 0.7375 + }, + { + "start": 4128.26, + "end": 4131.9, + "probability": 0.912 + }, + { + "start": 4131.98, + "end": 4136.92, + "probability": 0.9878 + }, + { + "start": 4137.2, + "end": 4138.84, + "probability": 0.98 + }, + { + "start": 4139.64, + "end": 4140.92, + "probability": 0.2201 + }, + { + "start": 4140.92, + "end": 4142.3, + "probability": 0.9165 + }, + { + "start": 4142.42, + "end": 4143.1, + "probability": 0.8076 + }, + { + "start": 4143.2, + "end": 4144.32, + "probability": 0.8875 + }, + { + "start": 4144.36, + "end": 4146.88, + "probability": 0.9115 + }, + { + "start": 4146.96, + "end": 4150.0, + "probability": 0.9757 + }, + { + "start": 4150.86, + "end": 4155.92, + "probability": 0.8883 + }, + { + "start": 4157.0, + "end": 4157.9, + "probability": 0.9139 + }, + { + "start": 4158.02, + "end": 4159.0, + "probability": 0.9821 + }, + { + "start": 4159.64, + "end": 4164.84, + "probability": 0.9798 + }, + { + "start": 4165.36, + "end": 4166.12, + "probability": 0.9617 + }, + { + "start": 4166.26, + "end": 4169.68, + "probability": 0.9924 + }, + { + "start": 4169.68, + "end": 4174.22, + "probability": 0.9873 + }, + { + "start": 4175.18, + "end": 4177.58, + "probability": 0.4404 + }, + { + "start": 4178.52, + "end": 4181.78, + "probability": 0.7379 + }, + { + "start": 4182.22, + "end": 4186.46, + "probability": 0.8076 + }, + { + "start": 4186.76, + "end": 4191.9, + "probability": 0.9588 + }, + { + "start": 4192.0, + "end": 4193.02, + "probability": 0.7327 + }, + { + "start": 4193.42, + "end": 4195.64, + "probability": 0.9863 + }, + { + "start": 4195.92, + "end": 4198.42, + "probability": 0.9947 + }, + { + "start": 4199.78, + "end": 4205.68, + "probability": 0.9792 + }, + { + "start": 4206.46, + "end": 4209.06, + "probability": 0.9896 + }, + { + "start": 4209.22, + "end": 4212.56, + "probability": 0.9789 + }, + { + "start": 4213.58, + "end": 4217.54, + "probability": 0.9921 + }, + { + "start": 4218.2, + "end": 4219.98, + "probability": 0.866 + }, + { + "start": 4220.54, + "end": 4224.92, + "probability": 0.9854 + }, + { + "start": 4224.92, + "end": 4230.3, + "probability": 0.9309 + }, + { + "start": 4230.96, + "end": 4235.8, + "probability": 0.8036 + }, + { + "start": 4236.13, + "end": 4243.34, + "probability": 0.9192 + }, + { + "start": 4243.34, + "end": 4251.26, + "probability": 0.9049 + }, + { + "start": 4251.26, + "end": 4257.62, + "probability": 0.8887 + }, + { + "start": 4258.1, + "end": 4260.48, + "probability": 0.7079 + }, + { + "start": 4260.54, + "end": 4261.9, + "probability": 0.8346 + }, + { + "start": 4262.44, + "end": 4266.8, + "probability": 0.9799 + }, + { + "start": 4268.24, + "end": 4268.24, + "probability": 0.0002 + }, + { + "start": 4268.24, + "end": 4272.68, + "probability": 0.9916 + }, + { + "start": 4273.38, + "end": 4274.5, + "probability": 0.6507 + }, + { + "start": 4274.86, + "end": 4279.56, + "probability": 0.9861 + }, + { + "start": 4280.8, + "end": 4284.42, + "probability": 0.9893 + }, + { + "start": 4284.42, + "end": 4288.78, + "probability": 0.98 + }, + { + "start": 4290.7, + "end": 4291.68, + "probability": 0.6602 + }, + { + "start": 4291.78, + "end": 4292.96, + "probability": 0.5189 + }, + { + "start": 4293.08, + "end": 4297.96, + "probability": 0.9962 + }, + { + "start": 4298.34, + "end": 4301.5, + "probability": 0.9919 + }, + { + "start": 4301.5, + "end": 4304.68, + "probability": 0.8812 + }, + { + "start": 4305.54, + "end": 4309.1, + "probability": 0.9891 + }, + { + "start": 4309.1, + "end": 4312.66, + "probability": 0.8681 + }, + { + "start": 4313.54, + "end": 4315.52, + "probability": 0.9377 + }, + { + "start": 4315.76, + "end": 4319.14, + "probability": 0.9608 + }, + { + "start": 4320.08, + "end": 4325.14, + "probability": 0.9766 + }, + { + "start": 4325.6, + "end": 4333.12, + "probability": 0.9879 + }, + { + "start": 4334.8, + "end": 4336.76, + "probability": 0.682 + }, + { + "start": 4337.12, + "end": 4340.02, + "probability": 0.9965 + }, + { + "start": 4340.02, + "end": 4343.72, + "probability": 0.9959 + }, + { + "start": 4344.68, + "end": 4345.18, + "probability": 0.7738 + }, + { + "start": 4345.56, + "end": 4346.74, + "probability": 0.2949 + }, + { + "start": 4347.02, + "end": 4350.36, + "probability": 0.991 + }, + { + "start": 4350.64, + "end": 4353.36, + "probability": 0.9907 + }, + { + "start": 4354.48, + "end": 4358.18, + "probability": 0.9951 + }, + { + "start": 4358.44, + "end": 4362.8, + "probability": 0.9985 + }, + { + "start": 4363.74, + "end": 4368.6, + "probability": 0.9935 + }, + { + "start": 4369.3, + "end": 4371.62, + "probability": 0.7701 + }, + { + "start": 4371.9, + "end": 4376.38, + "probability": 0.9934 + }, + { + "start": 4378.06, + "end": 4378.74, + "probability": 0.6942 + }, + { + "start": 4378.86, + "end": 4382.28, + "probability": 0.9946 + }, + { + "start": 4382.32, + "end": 4386.16, + "probability": 0.9116 + }, + { + "start": 4386.16, + "end": 4390.12, + "probability": 0.9991 + }, + { + "start": 4391.08, + "end": 4396.18, + "probability": 0.9806 + }, + { + "start": 4397.28, + "end": 4402.14, + "probability": 0.9302 + }, + { + "start": 4402.38, + "end": 4403.46, + "probability": 0.9074 + }, + { + "start": 4403.7, + "end": 4405.44, + "probability": 0.905 + }, + { + "start": 4406.14, + "end": 4407.32, + "probability": 0.874 + }, + { + "start": 4407.54, + "end": 4409.64, + "probability": 0.9324 + }, + { + "start": 4409.78, + "end": 4412.0, + "probability": 0.9893 + }, + { + "start": 4412.58, + "end": 4414.12, + "probability": 0.939 + }, + { + "start": 4414.74, + "end": 4418.22, + "probability": 0.9822 + }, + { + "start": 4418.74, + "end": 4423.91, + "probability": 0.9746 + }, + { + "start": 4424.82, + "end": 4426.12, + "probability": 0.9034 + }, + { + "start": 4426.38, + "end": 4427.72, + "probability": 0.7489 + }, + { + "start": 4428.94, + "end": 4432.56, + "probability": 0.9292 + }, + { + "start": 4432.68, + "end": 4433.84, + "probability": 0.9374 + }, + { + "start": 4434.18, + "end": 4436.52, + "probability": 0.8982 + }, + { + "start": 4436.56, + "end": 4441.85, + "probability": 0.9535 + }, + { + "start": 4441.86, + "end": 4445.94, + "probability": 0.9941 + }, + { + "start": 4447.48, + "end": 4449.96, + "probability": 0.9967 + }, + { + "start": 4450.08, + "end": 4451.94, + "probability": 0.9674 + }, + { + "start": 4452.16, + "end": 4453.68, + "probability": 0.8618 + }, + { + "start": 4454.28, + "end": 4454.72, + "probability": 0.6437 + }, + { + "start": 4454.76, + "end": 4455.2, + "probability": 0.6776 + }, + { + "start": 4455.38, + "end": 4456.84, + "probability": 0.7902 + }, + { + "start": 4456.92, + "end": 4457.84, + "probability": 0.7272 + }, + { + "start": 4474.42, + "end": 4474.5, + "probability": 0.0934 + }, + { + "start": 4474.5, + "end": 4475.1, + "probability": 0.577 + }, + { + "start": 4479.56, + "end": 4480.78, + "probability": 0.7177 + }, + { + "start": 4482.64, + "end": 4484.46, + "probability": 0.9388 + }, + { + "start": 4485.22, + "end": 4486.56, + "probability": 0.9395 + }, + { + "start": 4488.54, + "end": 4492.46, + "probability": 0.9903 + }, + { + "start": 4493.08, + "end": 4494.28, + "probability": 0.7077 + }, + { + "start": 4498.62, + "end": 4500.25, + "probability": 0.5485 + }, + { + "start": 4500.62, + "end": 4504.94, + "probability": 0.9609 + }, + { + "start": 4506.06, + "end": 4508.77, + "probability": 0.9823 + }, + { + "start": 4513.1, + "end": 4513.92, + "probability": 0.5746 + }, + { + "start": 4514.76, + "end": 4516.67, + "probability": 0.9881 + }, + { + "start": 4523.72, + "end": 4529.58, + "probability": 0.9675 + }, + { + "start": 4531.36, + "end": 4533.34, + "probability": 0.6545 + }, + { + "start": 4533.9, + "end": 4535.38, + "probability": 0.9038 + }, + { + "start": 4536.04, + "end": 4537.98, + "probability": 0.9606 + }, + { + "start": 4539.6, + "end": 4544.0, + "probability": 0.9676 + }, + { + "start": 4545.7, + "end": 4547.48, + "probability": 0.9932 + }, + { + "start": 4548.32, + "end": 4549.88, + "probability": 0.998 + }, + { + "start": 4550.0, + "end": 4554.82, + "probability": 0.9316 + }, + { + "start": 4555.74, + "end": 4564.56, + "probability": 0.8984 + }, + { + "start": 4565.16, + "end": 4566.12, + "probability": 0.5665 + }, + { + "start": 4566.7, + "end": 4572.52, + "probability": 0.861 + }, + { + "start": 4572.62, + "end": 4573.43, + "probability": 0.8701 + }, + { + "start": 4574.44, + "end": 4580.78, + "probability": 0.9736 + }, + { + "start": 4580.96, + "end": 4582.74, + "probability": 0.9285 + }, + { + "start": 4583.64, + "end": 4585.52, + "probability": 0.8663 + }, + { + "start": 4585.6, + "end": 4587.88, + "probability": 0.9962 + }, + { + "start": 4588.94, + "end": 4591.66, + "probability": 0.9947 + }, + { + "start": 4592.16, + "end": 4593.04, + "probability": 0.7853 + }, + { + "start": 4593.8, + "end": 4595.8, + "probability": 0.9707 + }, + { + "start": 4596.86, + "end": 4601.36, + "probability": 0.9805 + }, + { + "start": 4601.56, + "end": 4604.67, + "probability": 0.972 + }, + { + "start": 4605.28, + "end": 4608.5, + "probability": 0.9088 + }, + { + "start": 4609.16, + "end": 4611.24, + "probability": 0.9961 + }, + { + "start": 4611.38, + "end": 4612.76, + "probability": 0.9844 + }, + { + "start": 4612.84, + "end": 4615.58, + "probability": 0.9772 + }, + { + "start": 4616.08, + "end": 4619.96, + "probability": 0.9631 + }, + { + "start": 4620.14, + "end": 4623.21, + "probability": 0.9845 + }, + { + "start": 4626.92, + "end": 4631.42, + "probability": 0.9966 + }, + { + "start": 4631.58, + "end": 4637.94, + "probability": 0.9624 + }, + { + "start": 4638.98, + "end": 4640.58, + "probability": 0.4798 + }, + { + "start": 4642.33, + "end": 4647.28, + "probability": 0.9845 + }, + { + "start": 4647.4, + "end": 4650.44, + "probability": 0.8243 + }, + { + "start": 4650.68, + "end": 4653.4, + "probability": 0.8617 + }, + { + "start": 4654.74, + "end": 4655.16, + "probability": 0.4049 + }, + { + "start": 4655.98, + "end": 4659.84, + "probability": 0.9934 + }, + { + "start": 4659.84, + "end": 4664.62, + "probability": 0.9963 + }, + { + "start": 4665.56, + "end": 4670.86, + "probability": 0.9644 + }, + { + "start": 4671.0, + "end": 4671.6, + "probability": 0.3367 + }, + { + "start": 4671.84, + "end": 4675.0, + "probability": 0.9763 + }, + { + "start": 4675.12, + "end": 4680.88, + "probability": 0.9607 + }, + { + "start": 4682.42, + "end": 4682.82, + "probability": 0.3113 + }, + { + "start": 4682.92, + "end": 4687.36, + "probability": 0.9635 + }, + { + "start": 4687.36, + "end": 4692.14, + "probability": 0.9946 + }, + { + "start": 4692.95, + "end": 4695.85, + "probability": 0.9127 + }, + { + "start": 4696.44, + "end": 4698.7, + "probability": 0.8921 + }, + { + "start": 4699.82, + "end": 4701.96, + "probability": 0.8662 + }, + { + "start": 4704.38, + "end": 4705.7, + "probability": 0.8429 + }, + { + "start": 4706.36, + "end": 4706.56, + "probability": 0.7989 + }, + { + "start": 4706.72, + "end": 4710.68, + "probability": 0.9757 + }, + { + "start": 4711.88, + "end": 4714.78, + "probability": 0.842 + }, + { + "start": 4715.98, + "end": 4723.38, + "probability": 0.9963 + }, + { + "start": 4724.3, + "end": 4727.22, + "probability": 0.9844 + }, + { + "start": 4729.42, + "end": 4735.32, + "probability": 0.9894 + }, + { + "start": 4735.94, + "end": 4737.32, + "probability": 0.7485 + }, + { + "start": 4738.48, + "end": 4741.92, + "probability": 0.9641 + }, + { + "start": 4741.96, + "end": 4747.34, + "probability": 0.9864 + }, + { + "start": 4748.54, + "end": 4754.24, + "probability": 0.9572 + }, + { + "start": 4755.46, + "end": 4756.99, + "probability": 0.9861 + }, + { + "start": 4758.24, + "end": 4760.04, + "probability": 0.9768 + }, + { + "start": 4761.48, + "end": 4765.77, + "probability": 0.9854 + }, + { + "start": 4766.44, + "end": 4769.87, + "probability": 0.8397 + }, + { + "start": 4771.86, + "end": 4772.34, + "probability": 0.7931 + }, + { + "start": 4772.44, + "end": 4773.62, + "probability": 0.9486 + }, + { + "start": 4773.74, + "end": 4774.5, + "probability": 0.4877 + }, + { + "start": 4774.8, + "end": 4775.66, + "probability": 0.7931 + }, + { + "start": 4777.0, + "end": 4778.72, + "probability": 0.8726 + }, + { + "start": 4779.74, + "end": 4783.14, + "probability": 0.9995 + }, + { + "start": 4785.02, + "end": 4787.02, + "probability": 0.9924 + }, + { + "start": 4788.46, + "end": 4791.38, + "probability": 0.9832 + }, + { + "start": 4791.96, + "end": 4796.3, + "probability": 0.9786 + }, + { + "start": 4798.0, + "end": 4800.8, + "probability": 0.7778 + }, + { + "start": 4801.84, + "end": 4805.82, + "probability": 0.8912 + }, + { + "start": 4806.6, + "end": 4810.61, + "probability": 0.7969 + }, + { + "start": 4811.32, + "end": 4812.16, + "probability": 0.401 + }, + { + "start": 4813.16, + "end": 4816.7, + "probability": 0.9319 + }, + { + "start": 4816.7, + "end": 4820.92, + "probability": 0.9325 + }, + { + "start": 4823.98, + "end": 4826.38, + "probability": 0.6701 + }, + { + "start": 4827.5, + "end": 4828.26, + "probability": 0.2078 + }, + { + "start": 4829.36, + "end": 4832.64, + "probability": 0.9595 + }, + { + "start": 4834.02, + "end": 4835.64, + "probability": 0.9888 + }, + { + "start": 4838.34, + "end": 4839.52, + "probability": 0.9314 + }, + { + "start": 4840.34, + "end": 4841.36, + "probability": 0.5708 + }, + { + "start": 4842.56, + "end": 4846.94, + "probability": 0.9631 + }, + { + "start": 4848.88, + "end": 4853.04, + "probability": 0.8996 + }, + { + "start": 4855.96, + "end": 4857.92, + "probability": 0.9145 + }, + { + "start": 4859.4, + "end": 4861.44, + "probability": 0.8312 + }, + { + "start": 4862.44, + "end": 4863.82, + "probability": 0.7716 + }, + { + "start": 4864.74, + "end": 4867.64, + "probability": 0.9642 + }, + { + "start": 4868.32, + "end": 4870.72, + "probability": 0.9458 + }, + { + "start": 4872.38, + "end": 4874.22, + "probability": 0.9946 + }, + { + "start": 4874.5, + "end": 4876.0, + "probability": 0.728 + }, + { + "start": 4877.24, + "end": 4878.45, + "probability": 0.7687 + }, + { + "start": 4882.2, + "end": 4883.68, + "probability": 0.7795 + }, + { + "start": 4886.26, + "end": 4886.82, + "probability": 0.9084 + }, + { + "start": 4887.22, + "end": 4892.56, + "probability": 0.991 + }, + { + "start": 4892.56, + "end": 4900.02, + "probability": 0.995 + }, + { + "start": 4900.14, + "end": 4900.74, + "probability": 0.8895 + }, + { + "start": 4901.98, + "end": 4906.3, + "probability": 0.9764 + }, + { + "start": 4907.56, + "end": 4908.04, + "probability": 0.3005 + }, + { + "start": 4908.04, + "end": 4909.2, + "probability": 0.6369 + }, + { + "start": 4909.24, + "end": 4912.1, + "probability": 0.9181 + }, + { + "start": 4912.1, + "end": 4913.1, + "probability": 0.7659 + }, + { + "start": 4913.2, + "end": 4914.5, + "probability": 0.8779 + }, + { + "start": 4917.72, + "end": 4918.3, + "probability": 0.8096 + }, + { + "start": 4918.52, + "end": 4922.72, + "probability": 0.9965 + }, + { + "start": 4923.84, + "end": 4926.02, + "probability": 0.9931 + }, + { + "start": 4926.14, + "end": 4927.98, + "probability": 0.9982 + }, + { + "start": 4928.1, + "end": 4931.28, + "probability": 0.9984 + }, + { + "start": 4933.16, + "end": 4934.36, + "probability": 0.9828 + }, + { + "start": 4935.44, + "end": 4936.64, + "probability": 0.9746 + }, + { + "start": 4937.72, + "end": 4939.64, + "probability": 0.9204 + }, + { + "start": 4940.66, + "end": 4944.42, + "probability": 0.9848 + }, + { + "start": 4944.96, + "end": 4949.26, + "probability": 0.9937 + }, + { + "start": 4950.4, + "end": 4952.4, + "probability": 0.9742 + }, + { + "start": 4953.78, + "end": 4954.91, + "probability": 0.968 + }, + { + "start": 4956.38, + "end": 4959.96, + "probability": 0.9855 + }, + { + "start": 4960.52, + "end": 4963.08, + "probability": 0.8479 + }, + { + "start": 4963.48, + "end": 4967.54, + "probability": 0.8727 + }, + { + "start": 4967.76, + "end": 4972.68, + "probability": 0.9723 + }, + { + "start": 4973.06, + "end": 4975.36, + "probability": 0.9982 + }, + { + "start": 4975.6, + "end": 4978.04, + "probability": 0.9081 + }, + { + "start": 4979.7, + "end": 4980.8, + "probability": 0.938 + }, + { + "start": 4982.5, + "end": 4986.3, + "probability": 0.9871 + }, + { + "start": 4988.0, + "end": 4989.36, + "probability": 0.9692 + }, + { + "start": 4990.38, + "end": 4994.3, + "probability": 0.8416 + }, + { + "start": 4996.18, + "end": 4996.18, + "probability": 0.7515 + }, + { + "start": 5000.56, + "end": 5001.42, + "probability": 0.3223 + }, + { + "start": 5002.34, + "end": 5009.22, + "probability": 0.9906 + }, + { + "start": 5011.11, + "end": 5014.28, + "probability": 0.9955 + }, + { + "start": 5015.36, + "end": 5019.42, + "probability": 0.9959 + }, + { + "start": 5020.46, + "end": 5025.0, + "probability": 0.9722 + }, + { + "start": 5025.92, + "end": 5027.6, + "probability": 0.9946 + }, + { + "start": 5029.04, + "end": 5031.28, + "probability": 0.7292 + }, + { + "start": 5032.14, + "end": 5033.28, + "probability": 0.8433 + }, + { + "start": 5034.26, + "end": 5037.5, + "probability": 0.9485 + }, + { + "start": 5039.46, + "end": 5044.08, + "probability": 0.7957 + }, + { + "start": 5044.26, + "end": 5050.5, + "probability": 0.9734 + }, + { + "start": 5051.58, + "end": 5055.6, + "probability": 0.984 + }, + { + "start": 5056.7, + "end": 5058.38, + "probability": 0.642 + }, + { + "start": 5059.24, + "end": 5061.94, + "probability": 0.9868 + }, + { + "start": 5062.48, + "end": 5064.52, + "probability": 0.9468 + }, + { + "start": 5065.22, + "end": 5068.6, + "probability": 0.9282 + }, + { + "start": 5069.84, + "end": 5074.44, + "probability": 0.9917 + }, + { + "start": 5075.32, + "end": 5077.62, + "probability": 0.8711 + }, + { + "start": 5078.68, + "end": 5082.32, + "probability": 0.9655 + }, + { + "start": 5083.46, + "end": 5087.18, + "probability": 0.9979 + }, + { + "start": 5087.18, + "end": 5091.5, + "probability": 0.9915 + }, + { + "start": 5092.2, + "end": 5096.96, + "probability": 0.9583 + }, + { + "start": 5098.08, + "end": 5101.92, + "probability": 0.9878 + }, + { + "start": 5101.92, + "end": 5106.24, + "probability": 0.997 + }, + { + "start": 5107.12, + "end": 5107.68, + "probability": 0.7793 + }, + { + "start": 5108.84, + "end": 5114.5, + "probability": 0.9954 + }, + { + "start": 5115.02, + "end": 5116.38, + "probability": 0.9996 + }, + { + "start": 5117.1, + "end": 5121.35, + "probability": 0.9975 + }, + { + "start": 5122.56, + "end": 5128.1, + "probability": 0.9846 + }, + { + "start": 5128.59, + "end": 5135.6, + "probability": 0.9915 + }, + { + "start": 5135.64, + "end": 5137.66, + "probability": 0.9767 + }, + { + "start": 5138.36, + "end": 5143.44, + "probability": 0.996 + }, + { + "start": 5143.68, + "end": 5145.83, + "probability": 0.9956 + }, + { + "start": 5146.32, + "end": 5150.3, + "probability": 0.9318 + }, + { + "start": 5150.86, + "end": 5154.96, + "probability": 0.9967 + }, + { + "start": 5156.42, + "end": 5157.8, + "probability": 0.9973 + }, + { + "start": 5157.96, + "end": 5159.7, + "probability": 0.8317 + }, + { + "start": 5160.34, + "end": 5161.78, + "probability": 0.8639 + }, + { + "start": 5161.92, + "end": 5163.44, + "probability": 0.7114 + }, + { + "start": 5163.56, + "end": 5163.98, + "probability": 0.7433 + }, + { + "start": 5164.02, + "end": 5164.48, + "probability": 0.8084 + }, + { + "start": 5174.78, + "end": 5178.52, + "probability": 0.9138 + }, + { + "start": 5179.26, + "end": 5180.8, + "probability": 0.6654 + }, + { + "start": 5181.82, + "end": 5184.98, + "probability": 0.9939 + }, + { + "start": 5185.52, + "end": 5187.14, + "probability": 0.8893 + }, + { + "start": 5187.92, + "end": 5191.62, + "probability": 0.9247 + }, + { + "start": 5192.76, + "end": 5197.36, + "probability": 0.9904 + }, + { + "start": 5198.76, + "end": 5203.48, + "probability": 0.9324 + }, + { + "start": 5203.82, + "end": 5205.04, + "probability": 0.7903 + }, + { + "start": 5206.22, + "end": 5208.54, + "probability": 0.9958 + }, + { + "start": 5208.66, + "end": 5209.77, + "probability": 0.9487 + }, + { + "start": 5211.38, + "end": 5214.58, + "probability": 0.9771 + }, + { + "start": 5215.72, + "end": 5219.38, + "probability": 0.9657 + }, + { + "start": 5219.92, + "end": 5223.12, + "probability": 0.9544 + }, + { + "start": 5224.12, + "end": 5228.36, + "probability": 0.8445 + }, + { + "start": 5229.62, + "end": 5232.56, + "probability": 0.9905 + }, + { + "start": 5232.56, + "end": 5236.9, + "probability": 0.9882 + }, + { + "start": 5238.7, + "end": 5239.4, + "probability": 0.7802 + }, + { + "start": 5240.5, + "end": 5241.64, + "probability": 0.9486 + }, + { + "start": 5242.42, + "end": 5245.56, + "probability": 0.9222 + }, + { + "start": 5246.48, + "end": 5250.8, + "probability": 0.9761 + }, + { + "start": 5251.76, + "end": 5261.24, + "probability": 0.9941 + }, + { + "start": 5263.52, + "end": 5266.3, + "probability": 0.9615 + }, + { + "start": 5267.46, + "end": 5272.96, + "probability": 0.9839 + }, + { + "start": 5272.96, + "end": 5279.22, + "probability": 0.9657 + }, + { + "start": 5279.72, + "end": 5282.48, + "probability": 0.8447 + }, + { + "start": 5282.62, + "end": 5288.8, + "probability": 0.9558 + }, + { + "start": 5288.94, + "end": 5289.46, + "probability": 0.4737 + }, + { + "start": 5290.34, + "end": 5294.82, + "probability": 0.9653 + }, + { + "start": 5295.32, + "end": 5300.44, + "probability": 0.9933 + }, + { + "start": 5301.12, + "end": 5302.12, + "probability": 0.926 + }, + { + "start": 5302.18, + "end": 5302.92, + "probability": 0.723 + }, + { + "start": 5303.4, + "end": 5309.2, + "probability": 0.959 + }, + { + "start": 5309.3, + "end": 5310.16, + "probability": 0.9081 + }, + { + "start": 5310.28, + "end": 5311.36, + "probability": 0.7369 + }, + { + "start": 5312.44, + "end": 5313.02, + "probability": 0.9465 + }, + { + "start": 5313.12, + "end": 5313.94, + "probability": 0.9251 + }, + { + "start": 5314.12, + "end": 5316.12, + "probability": 0.9884 + }, + { + "start": 5316.36, + "end": 5319.42, + "probability": 0.849 + }, + { + "start": 5320.22, + "end": 5322.2, + "probability": 0.9493 + }, + { + "start": 5322.3, + "end": 5322.92, + "probability": 0.9376 + }, + { + "start": 5322.98, + "end": 5327.22, + "probability": 0.9916 + }, + { + "start": 5327.22, + "end": 5332.62, + "probability": 0.9988 + }, + { + "start": 5334.92, + "end": 5336.18, + "probability": 0.8442 + }, + { + "start": 5338.2, + "end": 5339.44, + "probability": 0.9587 + }, + { + "start": 5340.16, + "end": 5340.7, + "probability": 0.8235 + }, + { + "start": 5341.8, + "end": 5342.5, + "probability": 0.7027 + }, + { + "start": 5343.56, + "end": 5345.04, + "probability": 0.9926 + }, + { + "start": 5345.7, + "end": 5347.28, + "probability": 0.9911 + }, + { + "start": 5347.86, + "end": 5352.56, + "probability": 0.9838 + }, + { + "start": 5353.22, + "end": 5354.06, + "probability": 0.9435 + }, + { + "start": 5355.42, + "end": 5362.9, + "probability": 0.9928 + }, + { + "start": 5364.26, + "end": 5366.52, + "probability": 0.9537 + }, + { + "start": 5366.96, + "end": 5372.68, + "probability": 0.9613 + }, + { + "start": 5373.6, + "end": 5375.48, + "probability": 0.9229 + }, + { + "start": 5376.7, + "end": 5379.5, + "probability": 0.9108 + }, + { + "start": 5379.5, + "end": 5383.94, + "probability": 0.9936 + }, + { + "start": 5384.3, + "end": 5388.14, + "probability": 0.9939 + }, + { + "start": 5388.14, + "end": 5393.1, + "probability": 0.9938 + }, + { + "start": 5393.58, + "end": 5394.66, + "probability": 0.9607 + }, + { + "start": 5396.84, + "end": 5398.86, + "probability": 0.991 + }, + { + "start": 5399.98, + "end": 5403.36, + "probability": 0.9966 + }, + { + "start": 5403.56, + "end": 5409.14, + "probability": 0.9407 + }, + { + "start": 5409.7, + "end": 5411.0, + "probability": 0.8416 + }, + { + "start": 5411.68, + "end": 5419.02, + "probability": 0.984 + }, + { + "start": 5419.02, + "end": 5426.46, + "probability": 0.9992 + }, + { + "start": 5426.52, + "end": 5428.36, + "probability": 0.9886 + }, + { + "start": 5429.5, + "end": 5431.34, + "probability": 0.724 + }, + { + "start": 5432.5, + "end": 5439.3, + "probability": 0.9736 + }, + { + "start": 5439.56, + "end": 5440.86, + "probability": 0.8566 + }, + { + "start": 5441.22, + "end": 5442.78, + "probability": 0.8396 + }, + { + "start": 5444.74, + "end": 5447.78, + "probability": 0.9822 + }, + { + "start": 5448.06, + "end": 5450.02, + "probability": 0.9966 + }, + { + "start": 5450.16, + "end": 5451.74, + "probability": 0.9902 + }, + { + "start": 5453.4, + "end": 5454.66, + "probability": 0.7375 + }, + { + "start": 5455.62, + "end": 5457.66, + "probability": 0.9749 + }, + { + "start": 5458.06, + "end": 5462.0, + "probability": 0.9985 + }, + { + "start": 5462.0, + "end": 5466.76, + "probability": 0.9976 + }, + { + "start": 5467.72, + "end": 5468.34, + "probability": 0.5865 + }, + { + "start": 5468.36, + "end": 5469.9, + "probability": 0.9502 + }, + { + "start": 5470.08, + "end": 5470.5, + "probability": 0.7401 + }, + { + "start": 5470.68, + "end": 5471.72, + "probability": 0.8707 + }, + { + "start": 5472.3, + "end": 5475.12, + "probability": 0.9385 + }, + { + "start": 5475.28, + "end": 5479.54, + "probability": 0.9858 + }, + { + "start": 5479.78, + "end": 5485.54, + "probability": 0.8274 + }, + { + "start": 5486.48, + "end": 5488.36, + "probability": 0.9624 + }, + { + "start": 5489.36, + "end": 5492.1, + "probability": 0.8489 + }, + { + "start": 5492.8, + "end": 5494.48, + "probability": 0.9338 + }, + { + "start": 5495.22, + "end": 5499.74, + "probability": 0.989 + }, + { + "start": 5500.3, + "end": 5501.36, + "probability": 0.7531 + }, + { + "start": 5501.6, + "end": 5502.48, + "probability": 0.8738 + }, + { + "start": 5502.62, + "end": 5507.16, + "probability": 0.9662 + }, + { + "start": 5507.58, + "end": 5510.22, + "probability": 0.7906 + }, + { + "start": 5510.86, + "end": 5515.58, + "probability": 0.9865 + }, + { + "start": 5516.12, + "end": 5523.3, + "probability": 0.9728 + }, + { + "start": 5523.36, + "end": 5524.16, + "probability": 0.5154 + }, + { + "start": 5524.56, + "end": 5525.52, + "probability": 0.7024 + }, + { + "start": 5525.6, + "end": 5527.3, + "probability": 0.9755 + }, + { + "start": 5527.74, + "end": 5534.02, + "probability": 0.9447 + }, + { + "start": 5534.6, + "end": 5540.0, + "probability": 0.9629 + }, + { + "start": 5541.38, + "end": 5544.74, + "probability": 0.9807 + }, + { + "start": 5545.02, + "end": 5546.06, + "probability": 0.8827 + }, + { + "start": 5546.38, + "end": 5547.88, + "probability": 0.968 + }, + { + "start": 5548.22, + "end": 5554.54, + "probability": 0.9901 + }, + { + "start": 5554.88, + "end": 5557.1, + "probability": 0.9764 + }, + { + "start": 5557.28, + "end": 5561.02, + "probability": 0.717 + }, + { + "start": 5561.36, + "end": 5566.4, + "probability": 0.9795 + }, + { + "start": 5566.6, + "end": 5569.34, + "probability": 0.8993 + }, + { + "start": 5569.42, + "end": 5570.78, + "probability": 0.9615 + }, + { + "start": 5571.4, + "end": 5577.94, + "probability": 0.9843 + }, + { + "start": 5578.38, + "end": 5580.16, + "probability": 0.9935 + }, + { + "start": 5580.44, + "end": 5588.48, + "probability": 0.9407 + }, + { + "start": 5588.68, + "end": 5590.26, + "probability": 0.6627 + }, + { + "start": 5590.36, + "end": 5591.34, + "probability": 0.6215 + }, + { + "start": 5592.9, + "end": 5593.67, + "probability": 0.8945 + }, + { + "start": 5594.8, + "end": 5595.86, + "probability": 0.9668 + }, + { + "start": 5596.98, + "end": 5599.46, + "probability": 0.7613 + }, + { + "start": 5599.52, + "end": 5602.14, + "probability": 0.9367 + }, + { + "start": 5602.58, + "end": 5607.02, + "probability": 0.9872 + }, + { + "start": 5607.18, + "end": 5608.76, + "probability": 0.9282 + }, + { + "start": 5608.98, + "end": 5611.9, + "probability": 0.9335 + }, + { + "start": 5612.36, + "end": 5615.32, + "probability": 0.9687 + }, + { + "start": 5615.92, + "end": 5619.28, + "probability": 0.9208 + }, + { + "start": 5619.52, + "end": 5622.82, + "probability": 0.96 + }, + { + "start": 5623.34, + "end": 5626.08, + "probability": 0.9889 + }, + { + "start": 5626.16, + "end": 5629.18, + "probability": 0.9936 + }, + { + "start": 5629.5, + "end": 5631.96, + "probability": 0.8005 + }, + { + "start": 5632.28, + "end": 5637.16, + "probability": 0.9993 + }, + { + "start": 5639.0, + "end": 5642.82, + "probability": 0.9969 + }, + { + "start": 5643.48, + "end": 5646.04, + "probability": 0.7444 + }, + { + "start": 5646.56, + "end": 5650.24, + "probability": 0.9846 + }, + { + "start": 5650.4, + "end": 5651.58, + "probability": 0.7729 + }, + { + "start": 5651.9, + "end": 5656.88, + "probability": 0.8508 + }, + { + "start": 5656.88, + "end": 5662.36, + "probability": 0.9905 + }, + { + "start": 5662.92, + "end": 5663.78, + "probability": 0.3553 + }, + { + "start": 5665.34, + "end": 5667.1, + "probability": 0.7147 + }, + { + "start": 5667.16, + "end": 5670.26, + "probability": 0.9741 + }, + { + "start": 5670.4, + "end": 5674.54, + "probability": 0.8402 + }, + { + "start": 5678.58, + "end": 5680.58, + "probability": 0.8074 + }, + { + "start": 5681.18, + "end": 5684.78, + "probability": 0.8681 + }, + { + "start": 5685.44, + "end": 5689.46, + "probability": 0.974 + }, + { + "start": 5690.24, + "end": 5691.54, + "probability": 0.8844 + }, + { + "start": 5692.18, + "end": 5694.62, + "probability": 0.9095 + }, + { + "start": 5695.56, + "end": 5697.82, + "probability": 0.9094 + }, + { + "start": 5698.24, + "end": 5702.58, + "probability": 0.9885 + }, + { + "start": 5703.42, + "end": 5706.6, + "probability": 0.9371 + }, + { + "start": 5706.98, + "end": 5711.54, + "probability": 0.9944 + }, + { + "start": 5713.16, + "end": 5717.64, + "probability": 0.79 + }, + { + "start": 5717.94, + "end": 5724.92, + "probability": 0.9813 + }, + { + "start": 5725.28, + "end": 5730.06, + "probability": 0.9017 + }, + { + "start": 5730.38, + "end": 5732.6, + "probability": 0.7576 + }, + { + "start": 5733.1, + "end": 5735.1, + "probability": 0.8806 + }, + { + "start": 5735.42, + "end": 5737.58, + "probability": 0.8329 + }, + { + "start": 5737.9, + "end": 5741.08, + "probability": 0.988 + }, + { + "start": 5743.46, + "end": 5744.5, + "probability": 0.8938 + }, + { + "start": 5744.56, + "end": 5745.58, + "probability": 0.84 + }, + { + "start": 5745.7, + "end": 5749.04, + "probability": 0.7813 + }, + { + "start": 5749.38, + "end": 5751.88, + "probability": 0.9795 + }, + { + "start": 5754.06, + "end": 5754.92, + "probability": 0.8865 + }, + { + "start": 5755.66, + "end": 5757.56, + "probability": 0.8481 + }, + { + "start": 5757.6, + "end": 5758.96, + "probability": 0.8863 + }, + { + "start": 5759.46, + "end": 5763.5, + "probability": 0.9343 + }, + { + "start": 5763.56, + "end": 5768.58, + "probability": 0.9623 + }, + { + "start": 5769.16, + "end": 5770.02, + "probability": 0.6581 + }, + { + "start": 5770.78, + "end": 5773.16, + "probability": 0.896 + }, + { + "start": 5775.66, + "end": 5776.61, + "probability": 0.6322 + }, + { + "start": 5778.0, + "end": 5781.0, + "probability": 0.9302 + }, + { + "start": 5782.1, + "end": 5783.31, + "probability": 0.9041 + }, + { + "start": 5784.2, + "end": 5784.94, + "probability": 0.9833 + }, + { + "start": 5785.68, + "end": 5790.54, + "probability": 0.9526 + }, + { + "start": 5791.5, + "end": 5794.44, + "probability": 0.9858 + }, + { + "start": 5795.3, + "end": 5797.26, + "probability": 0.959 + }, + { + "start": 5798.0, + "end": 5800.18, + "probability": 0.7813 + }, + { + "start": 5800.58, + "end": 5805.22, + "probability": 0.9877 + }, + { + "start": 5805.64, + "end": 5809.34, + "probability": 0.98 + }, + { + "start": 5809.48, + "end": 5811.38, + "probability": 0.8959 + }, + { + "start": 5812.68, + "end": 5815.86, + "probability": 0.9192 + }, + { + "start": 5816.06, + "end": 5817.06, + "probability": 0.8042 + }, + { + "start": 5818.18, + "end": 5818.54, + "probability": 0.5941 + }, + { + "start": 5819.06, + "end": 5821.52, + "probability": 0.9811 + }, + { + "start": 5822.8, + "end": 5824.74, + "probability": 0.9447 + }, + { + "start": 5825.52, + "end": 5829.26, + "probability": 0.967 + }, + { + "start": 5829.86, + "end": 5835.2, + "probability": 0.9389 + }, + { + "start": 5836.04, + "end": 5840.34, + "probability": 0.9795 + }, + { + "start": 5840.48, + "end": 5842.6, + "probability": 0.9881 + }, + { + "start": 5843.86, + "end": 5849.2, + "probability": 0.9631 + }, + { + "start": 5849.22, + "end": 5850.66, + "probability": 0.7901 + }, + { + "start": 5850.8, + "end": 5851.68, + "probability": 0.7118 + }, + { + "start": 5852.48, + "end": 5856.7, + "probability": 0.8818 + }, + { + "start": 5857.22, + "end": 5859.92, + "probability": 0.9845 + }, + { + "start": 5860.26, + "end": 5864.1, + "probability": 0.9175 + }, + { + "start": 5865.48, + "end": 5867.82, + "probability": 0.9891 + }, + { + "start": 5868.96, + "end": 5870.4, + "probability": 0.7524 + }, + { + "start": 5871.26, + "end": 5874.24, + "probability": 0.9769 + }, + { + "start": 5874.8, + "end": 5878.22, + "probability": 0.9794 + }, + { + "start": 5879.06, + "end": 5884.06, + "probability": 0.9946 + }, + { + "start": 5884.46, + "end": 5886.5, + "probability": 0.9408 + }, + { + "start": 5886.7, + "end": 5887.04, + "probability": 0.3934 + }, + { + "start": 5889.06, + "end": 5891.12, + "probability": 0.9719 + }, + { + "start": 5891.44, + "end": 5893.12, + "probability": 0.6369 + }, + { + "start": 5893.3, + "end": 5896.94, + "probability": 0.7899 + }, + { + "start": 5897.04, + "end": 5902.88, + "probability": 0.9932 + }, + { + "start": 5903.3, + "end": 5907.68, + "probability": 0.9846 + }, + { + "start": 5907.82, + "end": 5911.36, + "probability": 0.9872 + }, + { + "start": 5911.58, + "end": 5916.56, + "probability": 0.9952 + }, + { + "start": 5916.56, + "end": 5921.14, + "probability": 0.9702 + }, + { + "start": 5921.54, + "end": 5922.88, + "probability": 0.7031 + }, + { + "start": 5924.92, + "end": 5925.6, + "probability": 0.7739 + }, + { + "start": 5927.34, + "end": 5929.66, + "probability": 0.7538 + }, + { + "start": 5930.36, + "end": 5933.34, + "probability": 0.9779 + }, + { + "start": 5934.66, + "end": 5940.9, + "probability": 0.9897 + }, + { + "start": 5941.74, + "end": 5943.54, + "probability": 0.8291 + }, + { + "start": 5944.58, + "end": 5946.06, + "probability": 0.9932 + }, + { + "start": 5946.3, + "end": 5948.36, + "probability": 0.9098 + }, + { + "start": 5948.42, + "end": 5949.08, + "probability": 0.6767 + }, + { + "start": 5949.56, + "end": 5953.09, + "probability": 0.9854 + }, + { + "start": 5954.82, + "end": 5960.2, + "probability": 0.9552 + }, + { + "start": 5960.2, + "end": 5966.14, + "probability": 0.998 + }, + { + "start": 5966.76, + "end": 5969.88, + "probability": 0.9528 + }, + { + "start": 5970.12, + "end": 5972.24, + "probability": 0.9703 + }, + { + "start": 5972.58, + "end": 5974.62, + "probability": 0.9536 + }, + { + "start": 5975.14, + "end": 5975.78, + "probability": 0.9075 + }, + { + "start": 5976.02, + "end": 5976.74, + "probability": 0.968 + }, + { + "start": 5976.9, + "end": 5981.08, + "probability": 0.9746 + }, + { + "start": 5981.1, + "end": 5981.98, + "probability": 0.9791 + }, + { + "start": 5982.02, + "end": 5983.08, + "probability": 0.9229 + }, + { + "start": 5983.22, + "end": 5983.78, + "probability": 0.4593 + }, + { + "start": 5983.78, + "end": 5984.62, + "probability": 0.9791 + }, + { + "start": 5984.82, + "end": 5985.96, + "probability": 0.8851 + }, + { + "start": 5986.1, + "end": 5986.84, + "probability": 0.8239 + }, + { + "start": 5987.02, + "end": 5987.68, + "probability": 0.908 + }, + { + "start": 5988.02, + "end": 5989.16, + "probability": 0.9921 + }, + { + "start": 5989.24, + "end": 5989.68, + "probability": 0.9505 + }, + { + "start": 5989.74, + "end": 5990.3, + "probability": 0.9927 + }, + { + "start": 5990.42, + "end": 5991.12, + "probability": 0.8585 + }, + { + "start": 5991.22, + "end": 5993.4, + "probability": 0.9834 + }, + { + "start": 5993.4, + "end": 5994.18, + "probability": 0.9142 + }, + { + "start": 5994.64, + "end": 5996.1, + "probability": 0.6595 + }, + { + "start": 5996.32, + "end": 5997.44, + "probability": 0.7973 + }, + { + "start": 5997.76, + "end": 6001.44, + "probability": 0.9845 + }, + { + "start": 6001.8, + "end": 6003.62, + "probability": 0.7403 + }, + { + "start": 6004.0, + "end": 6008.0, + "probability": 0.9662 + }, + { + "start": 6009.02, + "end": 6010.3, + "probability": 0.9788 + }, + { + "start": 6010.92, + "end": 6012.3, + "probability": 0.896 + }, + { + "start": 6012.78, + "end": 6014.88, + "probability": 0.9631 + }, + { + "start": 6015.08, + "end": 6016.82, + "probability": 0.7849 + }, + { + "start": 6016.9, + "end": 6017.78, + "probability": 0.9419 + }, + { + "start": 6017.9, + "end": 6019.5, + "probability": 0.9947 + }, + { + "start": 6019.6, + "end": 6020.98, + "probability": 0.8512 + }, + { + "start": 6021.4, + "end": 6027.76, + "probability": 0.9661 + }, + { + "start": 6029.52, + "end": 6035.06, + "probability": 0.9781 + }, + { + "start": 6035.14, + "end": 6038.74, + "probability": 0.9542 + }, + { + "start": 6039.6, + "end": 6040.26, + "probability": 0.8506 + }, + { + "start": 6040.42, + "end": 6041.36, + "probability": 0.8929 + }, + { + "start": 6041.54, + "end": 6043.58, + "probability": 0.8121 + }, + { + "start": 6043.96, + "end": 6046.48, + "probability": 0.9532 + }, + { + "start": 6047.6, + "end": 6052.54, + "probability": 0.968 + }, + { + "start": 6052.88, + "end": 6054.92, + "probability": 0.9552 + }, + { + "start": 6055.38, + "end": 6057.7, + "probability": 0.9851 + }, + { + "start": 6057.9, + "end": 6058.7, + "probability": 0.8373 + }, + { + "start": 6058.9, + "end": 6059.66, + "probability": 0.8407 + }, + { + "start": 6059.8, + "end": 6060.68, + "probability": 0.8788 + }, + { + "start": 6061.54, + "end": 6063.18, + "probability": 0.9712 + }, + { + "start": 6064.56, + "end": 6069.16, + "probability": 0.9595 + }, + { + "start": 6071.1, + "end": 6074.72, + "probability": 0.9993 + }, + { + "start": 6074.72, + "end": 6079.0, + "probability": 0.9524 + }, + { + "start": 6079.9, + "end": 6084.8, + "probability": 0.9971 + }, + { + "start": 6085.56, + "end": 6088.72, + "probability": 0.9782 + }, + { + "start": 6089.06, + "end": 6092.6, + "probability": 0.9962 + }, + { + "start": 6092.6, + "end": 6096.46, + "probability": 0.9974 + }, + { + "start": 6097.08, + "end": 6101.76, + "probability": 0.982 + }, + { + "start": 6102.12, + "end": 6103.68, + "probability": 0.9175 + }, + { + "start": 6104.02, + "end": 6105.72, + "probability": 0.8475 + }, + { + "start": 6106.16, + "end": 6113.4, + "probability": 0.9958 + }, + { + "start": 6113.72, + "end": 6118.64, + "probability": 0.9945 + }, + { + "start": 6119.04, + "end": 6119.76, + "probability": 0.8129 + }, + { + "start": 6119.86, + "end": 6120.54, + "probability": 0.7191 + }, + { + "start": 6122.06, + "end": 6125.4, + "probability": 0.9729 + }, + { + "start": 6126.08, + "end": 6127.64, + "probability": 0.9031 + }, + { + "start": 6128.3, + "end": 6132.76, + "probability": 0.9032 + }, + { + "start": 6133.42, + "end": 6136.42, + "probability": 0.6637 + }, + { + "start": 6137.04, + "end": 6137.9, + "probability": 0.4462 + }, + { + "start": 6138.46, + "end": 6139.28, + "probability": 0.8948 + }, + { + "start": 6139.82, + "end": 6140.38, + "probability": 0.8574 + }, + { + "start": 6140.84, + "end": 6142.82, + "probability": 0.5652 + }, + { + "start": 6142.96, + "end": 6145.24, + "probability": 0.8731 + }, + { + "start": 6145.3, + "end": 6146.88, + "probability": 0.9777 + }, + { + "start": 6146.94, + "end": 6148.1, + "probability": 0.6649 + }, + { + "start": 6148.18, + "end": 6151.08, + "probability": 0.9213 + }, + { + "start": 6151.92, + "end": 6154.2, + "probability": 0.7521 + }, + { + "start": 6154.36, + "end": 6159.44, + "probability": 0.9745 + }, + { + "start": 6159.44, + "end": 6164.0, + "probability": 0.9564 + }, + { + "start": 6164.6, + "end": 6169.04, + "probability": 0.9341 + }, + { + "start": 6169.2, + "end": 6170.66, + "probability": 0.4692 + }, + { + "start": 6170.76, + "end": 6173.82, + "probability": 0.702 + }, + { + "start": 6174.3, + "end": 6178.38, + "probability": 0.9637 + }, + { + "start": 6178.78, + "end": 6181.48, + "probability": 0.8312 + }, + { + "start": 6181.92, + "end": 6187.76, + "probability": 0.9814 + }, + { + "start": 6197.32, + "end": 6200.31, + "probability": 0.6514 + }, + { + "start": 6210.54, + "end": 6214.06, + "probability": 0.6642 + }, + { + "start": 6214.14, + "end": 6215.1, + "probability": 0.7566 + }, + { + "start": 6215.26, + "end": 6217.26, + "probability": 0.9608 + }, + { + "start": 6217.62, + "end": 6219.36, + "probability": 0.6001 + }, + { + "start": 6220.26, + "end": 6223.58, + "probability": 0.722 + }, + { + "start": 6224.06, + "end": 6224.06, + "probability": 0.159 + }, + { + "start": 6224.06, + "end": 6226.56, + "probability": 0.6806 + }, + { + "start": 6227.14, + "end": 6232.75, + "probability": 0.9517 + }, + { + "start": 6233.36, + "end": 6235.3, + "probability": 0.9924 + }, + { + "start": 6235.38, + "end": 6237.34, + "probability": 0.9445 + }, + { + "start": 6237.38, + "end": 6239.84, + "probability": 0.9533 + }, + { + "start": 6240.18, + "end": 6242.1, + "probability": 0.7606 + }, + { + "start": 6242.16, + "end": 6245.94, + "probability": 0.7848 + }, + { + "start": 6246.44, + "end": 6249.22, + "probability": 0.9895 + }, + { + "start": 6249.4, + "end": 6253.92, + "probability": 0.9935 + }, + { + "start": 6254.14, + "end": 6257.98, + "probability": 0.8108 + }, + { + "start": 6258.82, + "end": 6261.16, + "probability": 0.9937 + }, + { + "start": 6261.74, + "end": 6265.36, + "probability": 0.482 + }, + { + "start": 6266.34, + "end": 6270.5, + "probability": 0.9777 + }, + { + "start": 6270.78, + "end": 6272.64, + "probability": 0.768 + }, + { + "start": 6273.46, + "end": 6275.14, + "probability": 0.9485 + }, + { + "start": 6275.92, + "end": 6276.68, + "probability": 0.8983 + }, + { + "start": 6277.28, + "end": 6277.52, + "probability": 0.7266 + }, + { + "start": 6277.52, + "end": 6278.22, + "probability": 0.4196 + }, + { + "start": 6279.1, + "end": 6284.44, + "probability": 0.9467 + }, + { + "start": 6285.5, + "end": 6287.26, + "probability": 0.6677 + }, + { + "start": 6287.34, + "end": 6289.07, + "probability": 0.8584 + }, + { + "start": 6290.28, + "end": 6290.96, + "probability": 0.9744 + }, + { + "start": 6291.14, + "end": 6294.36, + "probability": 0.9331 + }, + { + "start": 6294.36, + "end": 6299.18, + "probability": 0.9977 + }, + { + "start": 6299.68, + "end": 6301.92, + "probability": 0.979 + }, + { + "start": 6303.24, + "end": 6306.86, + "probability": 0.9817 + }, + { + "start": 6307.76, + "end": 6309.66, + "probability": 0.9031 + }, + { + "start": 6310.2, + "end": 6311.46, + "probability": 0.9787 + }, + { + "start": 6311.94, + "end": 6317.42, + "probability": 0.86 + }, + { + "start": 6317.42, + "end": 6325.44, + "probability": 0.9798 + }, + { + "start": 6326.0, + "end": 6329.0, + "probability": 0.9545 + }, + { + "start": 6329.58, + "end": 6330.5, + "probability": 0.8868 + }, + { + "start": 6330.68, + "end": 6332.36, + "probability": 0.9479 + }, + { + "start": 6332.98, + "end": 6336.06, + "probability": 0.975 + }, + { + "start": 6336.54, + "end": 6337.44, + "probability": 0.8038 + }, + { + "start": 6337.54, + "end": 6338.5, + "probability": 0.786 + }, + { + "start": 6338.94, + "end": 6340.46, + "probability": 0.9895 + }, + { + "start": 6340.88, + "end": 6342.22, + "probability": 0.7974 + }, + { + "start": 6342.68, + "end": 6343.82, + "probability": 0.745 + }, + { + "start": 6344.42, + "end": 6345.84, + "probability": 0.9467 + }, + { + "start": 6346.22, + "end": 6348.16, + "probability": 0.9427 + }, + { + "start": 6348.2, + "end": 6350.54, + "probability": 0.8331 + }, + { + "start": 6351.4, + "end": 6353.52, + "probability": 0.9694 + }, + { + "start": 6354.08, + "end": 6359.34, + "probability": 0.8569 + }, + { + "start": 6359.9, + "end": 6363.94, + "probability": 0.9648 + }, + { + "start": 6364.82, + "end": 6367.9, + "probability": 0.9165 + }, + { + "start": 6368.82, + "end": 6371.02, + "probability": 0.8791 + }, + { + "start": 6372.25, + "end": 6380.75, + "probability": 0.9497 + }, + { + "start": 6381.02, + "end": 6383.7, + "probability": 0.7134 + }, + { + "start": 6384.22, + "end": 6388.52, + "probability": 0.8857 + }, + { + "start": 6388.7, + "end": 6390.0, + "probability": 0.706 + }, + { + "start": 6390.12, + "end": 6394.12, + "probability": 0.8613 + }, + { + "start": 6394.18, + "end": 6394.98, + "probability": 0.4146 + }, + { + "start": 6395.3, + "end": 6396.62, + "probability": 0.9614 + }, + { + "start": 6396.78, + "end": 6398.19, + "probability": 0.9519 + }, + { + "start": 6398.66, + "end": 6401.18, + "probability": 0.9839 + }, + { + "start": 6401.36, + "end": 6404.76, + "probability": 0.8904 + }, + { + "start": 6405.2, + "end": 6405.42, + "probability": 0.6099 + }, + { + "start": 6405.5, + "end": 6406.22, + "probability": 0.9336 + }, + { + "start": 6406.3, + "end": 6407.96, + "probability": 0.813 + }, + { + "start": 6408.42, + "end": 6410.72, + "probability": 0.9363 + }, + { + "start": 6410.72, + "end": 6414.02, + "probability": 0.6508 + }, + { + "start": 6414.12, + "end": 6414.14, + "probability": 0.3225 + }, + { + "start": 6414.2, + "end": 6416.21, + "probability": 0.8069 + }, + { + "start": 6416.54, + "end": 6416.68, + "probability": 0.2599 + }, + { + "start": 6416.8, + "end": 6421.56, + "probability": 0.9671 + }, + { + "start": 6421.6, + "end": 6422.62, + "probability": 0.7952 + }, + { + "start": 6422.74, + "end": 6423.54, + "probability": 0.9774 + }, + { + "start": 6424.1, + "end": 6426.18, + "probability": 0.5694 + }, + { + "start": 6426.26, + "end": 6426.96, + "probability": 0.9403 + }, + { + "start": 6427.1, + "end": 6428.72, + "probability": 0.7676 + }, + { + "start": 6428.9, + "end": 6432.24, + "probability": 0.5695 + }, + { + "start": 6432.24, + "end": 6432.24, + "probability": 0.2088 + }, + { + "start": 6432.24, + "end": 6433.7, + "probability": 0.5467 + }, + { + "start": 6434.12, + "end": 6434.78, + "probability": 0.7153 + }, + { + "start": 6434.86, + "end": 6435.5, + "probability": 0.8382 + }, + { + "start": 6435.56, + "end": 6437.25, + "probability": 0.8197 + }, + { + "start": 6437.92, + "end": 6438.96, + "probability": 0.8946 + }, + { + "start": 6439.04, + "end": 6440.04, + "probability": 0.8673 + }, + { + "start": 6440.16, + "end": 6440.9, + "probability": 0.463 + }, + { + "start": 6443.68, + "end": 6445.0, + "probability": 0.7915 + }, + { + "start": 6446.52, + "end": 6447.56, + "probability": 0.9145 + }, + { + "start": 6455.68, + "end": 6457.38, + "probability": 0.6008 + }, + { + "start": 6459.54, + "end": 6462.36, + "probability": 0.9796 + }, + { + "start": 6464.74, + "end": 6469.82, + "probability": 0.7114 + }, + { + "start": 6469.86, + "end": 6471.1, + "probability": 0.9544 + }, + { + "start": 6472.06, + "end": 6472.66, + "probability": 0.7395 + }, + { + "start": 6472.74, + "end": 6473.34, + "probability": 0.91 + }, + { + "start": 6473.62, + "end": 6479.76, + "probability": 0.8669 + }, + { + "start": 6479.84, + "end": 6480.66, + "probability": 0.8697 + }, + { + "start": 6480.74, + "end": 6484.36, + "probability": 0.8146 + }, + { + "start": 6485.44, + "end": 6487.25, + "probability": 0.9266 + }, + { + "start": 6489.54, + "end": 6490.06, + "probability": 0.8299 + }, + { + "start": 6490.22, + "end": 6491.22, + "probability": 0.7571 + }, + { + "start": 6491.56, + "end": 6493.22, + "probability": 0.9578 + }, + { + "start": 6494.24, + "end": 6498.86, + "probability": 0.924 + }, + { + "start": 6499.0, + "end": 6500.5, + "probability": 0.7475 + }, + { + "start": 6501.32, + "end": 6503.76, + "probability": 0.9963 + }, + { + "start": 6504.86, + "end": 6508.6, + "probability": 0.967 + }, + { + "start": 6511.96, + "end": 6512.82, + "probability": 0.5545 + }, + { + "start": 6512.82, + "end": 6516.3, + "probability": 0.8812 + }, + { + "start": 6516.68, + "end": 6517.94, + "probability": 0.8793 + }, + { + "start": 6518.1, + "end": 6518.84, + "probability": 0.7756 + }, + { + "start": 6518.94, + "end": 6519.98, + "probability": 0.8305 + }, + { + "start": 6520.64, + "end": 6523.08, + "probability": 0.9714 + }, + { + "start": 6523.54, + "end": 6525.64, + "probability": 0.8844 + }, + { + "start": 6526.92, + "end": 6527.34, + "probability": 0.9453 + }, + { + "start": 6530.1, + "end": 6530.88, + "probability": 0.2976 + }, + { + "start": 6530.9, + "end": 6531.18, + "probability": 0.573 + }, + { + "start": 6531.18, + "end": 6532.97, + "probability": 0.4829 + }, + { + "start": 6533.31, + "end": 6537.4, + "probability": 0.8592 + }, + { + "start": 6538.58, + "end": 6539.54, + "probability": 0.798 + }, + { + "start": 6539.56, + "end": 6540.0, + "probability": 0.7477 + }, + { + "start": 6540.12, + "end": 6540.98, + "probability": 0.6489 + }, + { + "start": 6541.4, + "end": 6544.08, + "probability": 0.9042 + }, + { + "start": 6545.8, + "end": 6548.12, + "probability": 0.9883 + }, + { + "start": 6548.96, + "end": 6551.96, + "probability": 0.9555 + }, + { + "start": 6552.6, + "end": 6554.34, + "probability": 0.9878 + }, + { + "start": 6554.38, + "end": 6562.12, + "probability": 0.9109 + }, + { + "start": 6563.58, + "end": 6564.92, + "probability": 0.7482 + }, + { + "start": 6566.12, + "end": 6567.44, + "probability": 0.9832 + }, + { + "start": 6567.92, + "end": 6575.38, + "probability": 0.8301 + }, + { + "start": 6575.7, + "end": 6576.6, + "probability": 0.6686 + }, + { + "start": 6576.86, + "end": 6578.5, + "probability": 0.2265 + }, + { + "start": 6578.58, + "end": 6579.42, + "probability": 0.7733 + }, + { + "start": 6580.49, + "end": 6582.8, + "probability": 0.9307 + }, + { + "start": 6583.52, + "end": 6589.62, + "probability": 0.9795 + }, + { + "start": 6590.18, + "end": 6591.14, + "probability": 0.8647 + }, + { + "start": 6591.24, + "end": 6596.14, + "probability": 0.8413 + }, + { + "start": 6596.18, + "end": 6597.92, + "probability": 0.8799 + }, + { + "start": 6598.48, + "end": 6604.5, + "probability": 0.9677 + }, + { + "start": 6605.36, + "end": 6607.98, + "probability": 0.6572 + }, + { + "start": 6609.04, + "end": 6609.42, + "probability": 0.5793 + }, + { + "start": 6609.74, + "end": 6616.34, + "probability": 0.9867 + }, + { + "start": 6616.7, + "end": 6617.84, + "probability": 0.5648 + }, + { + "start": 6617.9, + "end": 6618.3, + "probability": 0.5195 + }, + { + "start": 6618.48, + "end": 6621.24, + "probability": 0.6794 + }, + { + "start": 6621.5, + "end": 6627.18, + "probability": 0.8901 + }, + { + "start": 6627.32, + "end": 6632.16, + "probability": 0.8482 + }, + { + "start": 6632.32, + "end": 6633.84, + "probability": 0.8207 + }, + { + "start": 6634.48, + "end": 6635.34, + "probability": 0.9128 + }, + { + "start": 6635.62, + "end": 6638.56, + "probability": 0.9632 + }, + { + "start": 6638.86, + "end": 6641.0, + "probability": 0.979 + }, + { + "start": 6641.1, + "end": 6642.4, + "probability": 0.8974 + }, + { + "start": 6642.6, + "end": 6646.74, + "probability": 0.7329 + }, + { + "start": 6646.74, + "end": 6647.14, + "probability": 0.7361 + }, + { + "start": 6647.22, + "end": 6648.22, + "probability": 0.6927 + }, + { + "start": 6648.5, + "end": 6653.0, + "probability": 0.9595 + }, + { + "start": 6653.6, + "end": 6654.93, + "probability": 0.7944 + }, + { + "start": 6655.34, + "end": 6659.1, + "probability": 0.981 + }, + { + "start": 6660.02, + "end": 6661.8, + "probability": 0.4496 + }, + { + "start": 6661.86, + "end": 6664.73, + "probability": 0.8887 + }, + { + "start": 6665.3, + "end": 6666.66, + "probability": 0.8636 + }, + { + "start": 6666.9, + "end": 6669.49, + "probability": 0.8166 + }, + { + "start": 6670.34, + "end": 6671.25, + "probability": 0.5978 + }, + { + "start": 6671.3, + "end": 6672.54, + "probability": 0.7861 + }, + { + "start": 6672.68, + "end": 6674.03, + "probability": 0.6977 + }, + { + "start": 6674.64, + "end": 6676.11, + "probability": 0.5246 + }, + { + "start": 6676.48, + "end": 6678.02, + "probability": 0.9376 + }, + { + "start": 6678.06, + "end": 6678.52, + "probability": 0.5839 + }, + { + "start": 6678.6, + "end": 6680.58, + "probability": 0.9456 + }, + { + "start": 6680.88, + "end": 6683.82, + "probability": 0.9279 + }, + { + "start": 6684.06, + "end": 6684.22, + "probability": 0.5381 + }, + { + "start": 6684.36, + "end": 6685.56, + "probability": 0.8127 + }, + { + "start": 6685.64, + "end": 6687.24, + "probability": 0.8982 + }, + { + "start": 6687.6, + "end": 6688.64, + "probability": 0.4055 + }, + { + "start": 6688.68, + "end": 6690.18, + "probability": 0.9325 + }, + { + "start": 6690.18, + "end": 6690.48, + "probability": 0.1476 + }, + { + "start": 6690.88, + "end": 6691.5, + "probability": 0.4463 + }, + { + "start": 6691.6, + "end": 6692.9, + "probability": 0.9956 + }, + { + "start": 6694.78, + "end": 6696.94, + "probability": 0.7088 + }, + { + "start": 6697.02, + "end": 6697.54, + "probability": 0.4157 + }, + { + "start": 6697.66, + "end": 6698.32, + "probability": 0.2409 + }, + { + "start": 6698.36, + "end": 6699.7, + "probability": 0.54 + }, + { + "start": 6699.86, + "end": 6700.2, + "probability": 0.8336 + }, + { + "start": 6701.9, + "end": 6704.5, + "probability": 0.479 + }, + { + "start": 6705.24, + "end": 6706.94, + "probability": 0.7267 + }, + { + "start": 6707.5, + "end": 6712.16, + "probability": 0.9521 + }, + { + "start": 6712.54, + "end": 6715.4, + "probability": 0.9596 + }, + { + "start": 6715.96, + "end": 6718.46, + "probability": 0.8859 + }, + { + "start": 6719.86, + "end": 6723.2, + "probability": 0.7811 + }, + { + "start": 6723.72, + "end": 6724.9, + "probability": 0.8967 + }, + { + "start": 6725.5, + "end": 6731.14, + "probability": 0.994 + }, + { + "start": 6731.8, + "end": 6732.76, + "probability": 0.8529 + }, + { + "start": 6733.74, + "end": 6736.0, + "probability": 0.9348 + }, + { + "start": 6736.6, + "end": 6739.24, + "probability": 0.9624 + }, + { + "start": 6739.86, + "end": 6742.1, + "probability": 0.9813 + }, + { + "start": 6742.56, + "end": 6746.9, + "probability": 0.9282 + }, + { + "start": 6747.36, + "end": 6750.54, + "probability": 0.9756 + }, + { + "start": 6751.2, + "end": 6752.76, + "probability": 0.8155 + }, + { + "start": 6753.98, + "end": 6757.06, + "probability": 0.9845 + }, + { + "start": 6757.36, + "end": 6760.1, + "probability": 0.8488 + }, + { + "start": 6761.32, + "end": 6764.88, + "probability": 0.9714 + }, + { + "start": 6765.34, + "end": 6765.69, + "probability": 0.9902 + }, + { + "start": 6766.88, + "end": 6771.42, + "probability": 0.8481 + }, + { + "start": 6771.68, + "end": 6776.22, + "probability": 0.9967 + }, + { + "start": 6779.8, + "end": 6780.58, + "probability": 0.6478 + }, + { + "start": 6781.21, + "end": 6781.98, + "probability": 0.8503 + }, + { + "start": 6781.98, + "end": 6784.16, + "probability": 0.6903 + }, + { + "start": 6784.48, + "end": 6784.72, + "probability": 0.6494 + }, + { + "start": 6784.72, + "end": 6785.46, + "probability": 0.4342 + }, + { + "start": 6785.54, + "end": 6787.98, + "probability": 0.8985 + }, + { + "start": 6789.12, + "end": 6789.9, + "probability": 0.7781 + }, + { + "start": 6790.16, + "end": 6791.76, + "probability": 0.9203 + }, + { + "start": 6792.14, + "end": 6798.9, + "probability": 0.9541 + }, + { + "start": 6799.28, + "end": 6803.8, + "probability": 0.9646 + }, + { + "start": 6803.8, + "end": 6807.46, + "probability": 0.9987 + }, + { + "start": 6808.02, + "end": 6809.0, + "probability": 0.7103 + }, + { + "start": 6809.6, + "end": 6811.18, + "probability": 0.9417 + }, + { + "start": 6811.34, + "end": 6811.98, + "probability": 0.8211 + }, + { + "start": 6812.18, + "end": 6813.08, + "probability": 0.8304 + }, + { + "start": 6813.5, + "end": 6818.08, + "probability": 0.9409 + }, + { + "start": 6818.58, + "end": 6820.46, + "probability": 0.959 + }, + { + "start": 6820.76, + "end": 6820.82, + "probability": 0.04 + }, + { + "start": 6820.86, + "end": 6821.86, + "probability": 0.6141 + }, + { + "start": 6821.86, + "end": 6822.6, + "probability": 0.8862 + }, + { + "start": 6823.06, + "end": 6825.9, + "probability": 0.9099 + }, + { + "start": 6827.74, + "end": 6831.78, + "probability": 0.9125 + }, + { + "start": 6831.78, + "end": 6836.38, + "probability": 0.7729 + }, + { + "start": 6836.8, + "end": 6842.14, + "probability": 0.9854 + }, + { + "start": 6842.68, + "end": 6843.58, + "probability": 0.5863 + }, + { + "start": 6843.96, + "end": 6845.76, + "probability": 0.8896 + }, + { + "start": 6846.34, + "end": 6848.14, + "probability": 0.9329 + }, + { + "start": 6849.22, + "end": 6852.12, + "probability": 0.8719 + }, + { + "start": 6852.12, + "end": 6855.44, + "probability": 0.824 + }, + { + "start": 6855.9, + "end": 6857.02, + "probability": 0.6918 + }, + { + "start": 6857.18, + "end": 6858.92, + "probability": 0.9001 + }, + { + "start": 6859.34, + "end": 6862.74, + "probability": 0.9785 + }, + { + "start": 6863.92, + "end": 6864.36, + "probability": 0.9619 + }, + { + "start": 6865.96, + "end": 6867.46, + "probability": 0.7017 + }, + { + "start": 6867.94, + "end": 6873.3, + "probability": 0.9856 + }, + { + "start": 6873.82, + "end": 6876.46, + "probability": 0.9851 + }, + { + "start": 6876.74, + "end": 6880.6, + "probability": 0.9924 + }, + { + "start": 6881.06, + "end": 6884.12, + "probability": 0.9958 + }, + { + "start": 6884.86, + "end": 6889.98, + "probability": 0.8835 + }, + { + "start": 6889.98, + "end": 6894.54, + "probability": 0.9977 + }, + { + "start": 6895.16, + "end": 6898.4, + "probability": 0.9897 + }, + { + "start": 6898.4, + "end": 6902.8, + "probability": 0.9822 + }, + { + "start": 6903.64, + "end": 6907.98, + "probability": 0.9358 + }, + { + "start": 6908.74, + "end": 6909.9, + "probability": 0.802 + }, + { + "start": 6910.22, + "end": 6915.14, + "probability": 0.9846 + }, + { + "start": 6916.56, + "end": 6917.66, + "probability": 0.7823 + }, + { + "start": 6918.0, + "end": 6919.2, + "probability": 0.6832 + }, + { + "start": 6919.52, + "end": 6922.6, + "probability": 0.9008 + }, + { + "start": 6923.0, + "end": 6927.1, + "probability": 0.7753 + }, + { + "start": 6927.26, + "end": 6929.74, + "probability": 0.9772 + }, + { + "start": 6929.74, + "end": 6932.14, + "probability": 0.9133 + }, + { + "start": 6932.62, + "end": 6937.72, + "probability": 0.9866 + }, + { + "start": 6938.26, + "end": 6942.68, + "probability": 0.9694 + }, + { + "start": 6943.6, + "end": 6946.32, + "probability": 0.9967 + }, + { + "start": 6946.32, + "end": 6949.28, + "probability": 0.83 + }, + { + "start": 6949.84, + "end": 6952.6, + "probability": 0.9673 + }, + { + "start": 6953.14, + "end": 6954.84, + "probability": 0.6869 + }, + { + "start": 6954.96, + "end": 6957.38, + "probability": 0.9231 + }, + { + "start": 6957.46, + "end": 6961.82, + "probability": 0.993 + }, + { + "start": 6962.36, + "end": 6965.2, + "probability": 0.9969 + }, + { + "start": 6965.24, + "end": 6966.74, + "probability": 0.795 + }, + { + "start": 6967.06, + "end": 6971.2, + "probability": 0.9585 + }, + { + "start": 6971.32, + "end": 6972.41, + "probability": 0.812 + }, + { + "start": 6972.78, + "end": 6973.13, + "probability": 0.3836 + }, + { + "start": 6973.58, + "end": 6974.97, + "probability": 0.9095 + }, + { + "start": 6975.32, + "end": 6975.7, + "probability": 0.5624 + }, + { + "start": 6975.78, + "end": 6976.56, + "probability": 0.863 + }, + { + "start": 6976.62, + "end": 6977.38, + "probability": 0.5035 + }, + { + "start": 6978.0, + "end": 6982.24, + "probability": 0.894 + }, + { + "start": 6984.28, + "end": 6984.93, + "probability": 0.34 + }, + { + "start": 6987.96, + "end": 6988.84, + "probability": 0.7971 + }, + { + "start": 7004.36, + "end": 7005.44, + "probability": 0.0965 + }, + { + "start": 7005.44, + "end": 7005.44, + "probability": 0.1878 + }, + { + "start": 7005.44, + "end": 7005.44, + "probability": 0.1383 + }, + { + "start": 7005.44, + "end": 7005.44, + "probability": 0.1207 + }, + { + "start": 7005.44, + "end": 7005.76, + "probability": 0.1649 + }, + { + "start": 7020.36, + "end": 7031.16, + "probability": 0.9283 + }, + { + "start": 7031.26, + "end": 7032.22, + "probability": 0.5644 + }, + { + "start": 7032.72, + "end": 7037.7, + "probability": 0.9323 + }, + { + "start": 7038.04, + "end": 7039.51, + "probability": 0.5345 + }, + { + "start": 7039.94, + "end": 7041.66, + "probability": 0.8591 + }, + { + "start": 7042.16, + "end": 7046.36, + "probability": 0.9546 + }, + { + "start": 7047.7, + "end": 7050.36, + "probability": 0.7474 + }, + { + "start": 7050.82, + "end": 7052.34, + "probability": 0.8167 + }, + { + "start": 7052.44, + "end": 7055.56, + "probability": 0.591 + }, + { + "start": 7056.14, + "end": 7060.06, + "probability": 0.8752 + }, + { + "start": 7060.16, + "end": 7061.2, + "probability": 0.676 + }, + { + "start": 7061.52, + "end": 7069.24, + "probability": 0.7555 + }, + { + "start": 7069.4, + "end": 7073.08, + "probability": 0.8868 + }, + { + "start": 7073.3, + "end": 7075.32, + "probability": 0.5779 + }, + { + "start": 7075.72, + "end": 7077.82, + "probability": 0.8059 + }, + { + "start": 7078.04, + "end": 7078.74, + "probability": 0.7712 + }, + { + "start": 7078.8, + "end": 7079.56, + "probability": 0.9103 + }, + { + "start": 7079.66, + "end": 7083.26, + "probability": 0.9902 + }, + { + "start": 7083.8, + "end": 7084.32, + "probability": 0.7248 + }, + { + "start": 7084.52, + "end": 7086.82, + "probability": 0.9614 + }, + { + "start": 7086.82, + "end": 7089.96, + "probability": 0.9396 + }, + { + "start": 7090.4, + "end": 7095.14, + "probability": 0.9866 + }, + { + "start": 7095.28, + "end": 7096.34, + "probability": 0.9495 + }, + { + "start": 7096.7, + "end": 7099.28, + "probability": 0.8323 + }, + { + "start": 7099.38, + "end": 7099.84, + "probability": 0.8492 + }, + { + "start": 7100.1, + "end": 7100.98, + "probability": 0.8314 + }, + { + "start": 7102.04, + "end": 7103.4, + "probability": 0.8091 + }, + { + "start": 7103.96, + "end": 7104.46, + "probability": 0.2449 + }, + { + "start": 7104.46, + "end": 7105.68, + "probability": 0.5041 + }, + { + "start": 7105.76, + "end": 7107.5, + "probability": 0.98 + }, + { + "start": 7108.72, + "end": 7110.3, + "probability": 0.7715 + }, + { + "start": 7111.1, + "end": 7114.16, + "probability": 0.7714 + }, + { + "start": 7115.18, + "end": 7119.22, + "probability": 0.9836 + }, + { + "start": 7119.22, + "end": 7124.6, + "probability": 0.9796 + }, + { + "start": 7124.74, + "end": 7126.1, + "probability": 0.0506 + }, + { + "start": 7126.68, + "end": 7133.96, + "probability": 0.9873 + }, + { + "start": 7134.52, + "end": 7142.56, + "probability": 0.9966 + }, + { + "start": 7142.56, + "end": 7151.52, + "probability": 0.992 + }, + { + "start": 7152.3, + "end": 7155.1, + "probability": 0.7907 + }, + { + "start": 7156.32, + "end": 7162.16, + "probability": 0.992 + }, + { + "start": 7162.42, + "end": 7165.18, + "probability": 0.8173 + }, + { + "start": 7165.78, + "end": 7169.74, + "probability": 0.9805 + }, + { + "start": 7170.4, + "end": 7177.2, + "probability": 0.9913 + }, + { + "start": 7178.34, + "end": 7179.54, + "probability": 0.4792 + }, + { + "start": 7180.48, + "end": 7180.7, + "probability": 0.0143 + }, + { + "start": 7180.7, + "end": 7186.86, + "probability": 0.9803 + }, + { + "start": 7186.86, + "end": 7194.42, + "probability": 0.9995 + }, + { + "start": 7194.84, + "end": 7198.34, + "probability": 0.9971 + }, + { + "start": 7199.2, + "end": 7201.02, + "probability": 0.7473 + }, + { + "start": 7201.84, + "end": 7209.48, + "probability": 0.8826 + }, + { + "start": 7210.34, + "end": 7214.14, + "probability": 0.8001 + }, + { + "start": 7214.8, + "end": 7217.32, + "probability": 0.9329 + }, + { + "start": 7217.6, + "end": 7223.04, + "probability": 0.9335 + }, + { + "start": 7223.48, + "end": 7226.18, + "probability": 0.9425 + }, + { + "start": 7226.28, + "end": 7230.39, + "probability": 0.9961 + }, + { + "start": 7231.06, + "end": 7232.14, + "probability": 0.4538 + }, + { + "start": 7234.06, + "end": 7238.42, + "probability": 0.9897 + }, + { + "start": 7238.94, + "end": 7242.7, + "probability": 0.9354 + }, + { + "start": 7243.54, + "end": 7245.76, + "probability": 0.5965 + }, + { + "start": 7246.32, + "end": 7249.66, + "probability": 0.9183 + }, + { + "start": 7250.15, + "end": 7252.82, + "probability": 0.6669 + }, + { + "start": 7252.98, + "end": 7255.5, + "probability": 0.3103 + }, + { + "start": 7255.88, + "end": 7256.18, + "probability": 0.1649 + }, + { + "start": 7256.56, + "end": 7264.98, + "probability": 0.9324 + }, + { + "start": 7265.26, + "end": 7269.06, + "probability": 0.9893 + }, + { + "start": 7269.52, + "end": 7273.06, + "probability": 0.9946 + }, + { + "start": 7273.86, + "end": 7279.22, + "probability": 0.9879 + }, + { + "start": 7279.64, + "end": 7281.58, + "probability": 0.8233 + }, + { + "start": 7282.52, + "end": 7285.68, + "probability": 0.892 + }, + { + "start": 7285.74, + "end": 7288.98, + "probability": 0.9082 + }, + { + "start": 7289.32, + "end": 7296.74, + "probability": 0.9658 + }, + { + "start": 7297.5, + "end": 7302.8, + "probability": 0.9902 + }, + { + "start": 7303.32, + "end": 7307.32, + "probability": 0.7815 + }, + { + "start": 7307.8, + "end": 7311.84, + "probability": 0.7781 + }, + { + "start": 7311.84, + "end": 7314.7, + "probability": 0.9913 + }, + { + "start": 7315.2, + "end": 7316.58, + "probability": 0.5278 + }, + { + "start": 7317.24, + "end": 7322.76, + "probability": 0.9134 + }, + { + "start": 7323.62, + "end": 7327.78, + "probability": 0.9753 + }, + { + "start": 7327.78, + "end": 7331.24, + "probability": 0.9834 + }, + { + "start": 7331.74, + "end": 7332.42, + "probability": 0.6444 + }, + { + "start": 7332.44, + "end": 7334.2, + "probability": 0.8427 + }, + { + "start": 7334.66, + "end": 7339.52, + "probability": 0.9587 + }, + { + "start": 7339.64, + "end": 7343.44, + "probability": 0.9542 + }, + { + "start": 7344.12, + "end": 7350.82, + "probability": 0.9944 + }, + { + "start": 7351.0, + "end": 7352.12, + "probability": 0.8742 + }, + { + "start": 7352.6, + "end": 7355.94, + "probability": 0.9767 + }, + { + "start": 7356.68, + "end": 7361.54, + "probability": 0.9924 + }, + { + "start": 7361.54, + "end": 7367.18, + "probability": 0.999 + }, + { + "start": 7368.55, + "end": 7370.7, + "probability": 0.6291 + }, + { + "start": 7370.7, + "end": 7371.41, + "probability": 0.6533 + }, + { + "start": 7373.02, + "end": 7377.86, + "probability": 0.9399 + }, + { + "start": 7378.9, + "end": 7378.9, + "probability": 0.0224 + }, + { + "start": 7378.9, + "end": 7382.38, + "probability": 0.9853 + }, + { + "start": 7382.78, + "end": 7383.66, + "probability": 0.3168 + }, + { + "start": 7384.06, + "end": 7385.24, + "probability": 0.851 + }, + { + "start": 7385.3, + "end": 7388.36, + "probability": 0.6689 + }, + { + "start": 7388.92, + "end": 7392.66, + "probability": 0.1901 + }, + { + "start": 7393.18, + "end": 7396.8, + "probability": 0.9586 + }, + { + "start": 7396.9, + "end": 7400.78, + "probability": 0.7162 + }, + { + "start": 7401.3, + "end": 7405.56, + "probability": 0.9874 + }, + { + "start": 7405.94, + "end": 7409.86, + "probability": 0.0218 + }, + { + "start": 7410.34, + "end": 7412.54, + "probability": 0.1223 + }, + { + "start": 7412.54, + "end": 7417.02, + "probability": 0.2408 + }, + { + "start": 7417.02, + "end": 7418.21, + "probability": 0.2681 + }, + { + "start": 7419.0, + "end": 7420.3, + "probability": 0.5389 + }, + { + "start": 7420.86, + "end": 7422.37, + "probability": 0.7852 + }, + { + "start": 7422.86, + "end": 7424.05, + "probability": 0.6739 + }, + { + "start": 7424.36, + "end": 7426.14, + "probability": 0.8594 + }, + { + "start": 7426.56, + "end": 7430.42, + "probability": 0.9779 + }, + { + "start": 7430.8, + "end": 7433.06, + "probability": 0.9281 + }, + { + "start": 7433.06, + "end": 7435.9, + "probability": 0.8477 + }, + { + "start": 7436.02, + "end": 7436.34, + "probability": 0.4973 + }, + { + "start": 7436.48, + "end": 7437.46, + "probability": 0.8771 + }, + { + "start": 7437.54, + "end": 7440.36, + "probability": 0.9716 + }, + { + "start": 7440.36, + "end": 7443.42, + "probability": 0.613 + }, + { + "start": 7443.46, + "end": 7443.7, + "probability": 0.0145 + }, + { + "start": 7443.7, + "end": 7443.78, + "probability": 0.2202 + }, + { + "start": 7444.08, + "end": 7444.85, + "probability": 0.0486 + }, + { + "start": 7445.04, + "end": 7446.26, + "probability": 0.6881 + }, + { + "start": 7446.68, + "end": 7449.68, + "probability": 0.5021 + }, + { + "start": 7450.14, + "end": 7450.92, + "probability": 0.0119 + }, + { + "start": 7450.92, + "end": 7450.92, + "probability": 0.0333 + }, + { + "start": 7450.92, + "end": 7451.22, + "probability": 0.2489 + }, + { + "start": 7451.34, + "end": 7455.7, + "probability": 0.9756 + }, + { + "start": 7455.78, + "end": 7459.04, + "probability": 0.9258 + }, + { + "start": 7459.3, + "end": 7464.6, + "probability": 0.9673 + }, + { + "start": 7464.68, + "end": 7470.64, + "probability": 0.8688 + }, + { + "start": 7471.3, + "end": 7476.22, + "probability": 0.9283 + }, + { + "start": 7476.56, + "end": 7480.54, + "probability": 0.9924 + }, + { + "start": 7480.68, + "end": 7484.5, + "probability": 0.6767 + }, + { + "start": 7484.92, + "end": 7487.04, + "probability": 0.3291 + }, + { + "start": 7487.04, + "end": 7487.64, + "probability": 0.3588 + }, + { + "start": 7487.7, + "end": 7490.04, + "probability": 0.8038 + }, + { + "start": 7490.18, + "end": 7490.34, + "probability": 0.2477 + }, + { + "start": 7490.52, + "end": 7492.1, + "probability": 0.8347 + }, + { + "start": 7492.2, + "end": 7494.92, + "probability": 0.9006 + }, + { + "start": 7495.44, + "end": 7497.56, + "probability": 0.7391 + }, + { + "start": 7497.56, + "end": 7497.68, + "probability": 0.5241 + }, + { + "start": 7497.72, + "end": 7498.36, + "probability": 0.8866 + }, + { + "start": 7498.82, + "end": 7499.86, + "probability": 0.841 + }, + { + "start": 7499.98, + "end": 7500.56, + "probability": 0.7982 + }, + { + "start": 7500.62, + "end": 7501.4, + "probability": 0.8895 + }, + { + "start": 7501.66, + "end": 7506.44, + "probability": 0.9522 + }, + { + "start": 7506.94, + "end": 7509.86, + "probability": 0.9993 + }, + { + "start": 7509.86, + "end": 7513.26, + "probability": 0.9902 + }, + { + "start": 7513.64, + "end": 7513.82, + "probability": 0.041 + }, + { + "start": 7513.82, + "end": 7517.9, + "probability": 0.5349 + }, + { + "start": 7518.3, + "end": 7521.82, + "probability": 0.9904 + }, + { + "start": 7521.98, + "end": 7522.96, + "probability": 0.967 + }, + { + "start": 7523.04, + "end": 7525.72, + "probability": 0.0313 + }, + { + "start": 7525.91, + "end": 7527.1, + "probability": 0.1522 + }, + { + "start": 7527.1, + "end": 7527.1, + "probability": 0.3912 + }, + { + "start": 7527.1, + "end": 7527.76, + "probability": 0.3703 + }, + { + "start": 7528.1, + "end": 7528.84, + "probability": 0.4011 + }, + { + "start": 7529.75, + "end": 7531.09, + "probability": 0.5989 + }, + { + "start": 7531.3, + "end": 7533.66, + "probability": 0.9941 + }, + { + "start": 7533.82, + "end": 7535.44, + "probability": 0.6117 + }, + { + "start": 7535.48, + "end": 7538.64, + "probability": 0.6797 + }, + { + "start": 7539.22, + "end": 7541.02, + "probability": 0.7927 + }, + { + "start": 7541.58, + "end": 7541.96, + "probability": 0.927 + }, + { + "start": 7542.04, + "end": 7544.0, + "probability": 0.9152 + }, + { + "start": 7544.3, + "end": 7547.9, + "probability": 0.7871 + }, + { + "start": 7547.98, + "end": 7550.94, + "probability": 0.9321 + }, + { + "start": 7551.3, + "end": 7552.18, + "probability": 0.9739 + }, + { + "start": 7552.22, + "end": 7552.5, + "probability": 0.6065 + }, + { + "start": 7552.62, + "end": 7553.32, + "probability": 0.6397 + }, + { + "start": 7554.04, + "end": 7555.94, + "probability": 0.8963 + }, + { + "start": 7556.0, + "end": 7559.78, + "probability": 0.7957 + }, + { + "start": 7559.86, + "end": 7561.0, + "probability": 0.9006 + }, + { + "start": 7561.12, + "end": 7562.18, + "probability": 0.9569 + }, + { + "start": 7562.2, + "end": 7562.98, + "probability": 0.8193 + }, + { + "start": 7562.98, + "end": 7563.88, + "probability": 0.5942 + }, + { + "start": 7564.16, + "end": 7569.46, + "probability": 0.9472 + }, + { + "start": 7569.58, + "end": 7575.36, + "probability": 0.8979 + }, + { + "start": 7575.36, + "end": 7579.46, + "probability": 0.9847 + }, + { + "start": 7579.6, + "end": 7584.36, + "probability": 0.0546 + }, + { + "start": 7585.3, + "end": 7585.88, + "probability": 0.0131 + }, + { + "start": 7585.88, + "end": 7585.88, + "probability": 0.1108 + }, + { + "start": 7585.88, + "end": 7585.88, + "probability": 0.2117 + }, + { + "start": 7585.88, + "end": 7586.14, + "probability": 0.0699 + }, + { + "start": 7586.14, + "end": 7586.14, + "probability": 0.2469 + }, + { + "start": 7586.14, + "end": 7589.72, + "probability": 0.6754 + }, + { + "start": 7589.72, + "end": 7591.04, + "probability": 0.5024 + }, + { + "start": 7591.81, + "end": 7593.04, + "probability": 0.98 + }, + { + "start": 7593.14, + "end": 7593.76, + "probability": 0.3676 + }, + { + "start": 7593.78, + "end": 7595.04, + "probability": 0.6344 + }, + { + "start": 7595.92, + "end": 7599.36, + "probability": 0.6721 + }, + { + "start": 7599.84, + "end": 7601.68, + "probability": 0.4077 + }, + { + "start": 7602.46, + "end": 7609.66, + "probability": 0.377 + }, + { + "start": 7610.32, + "end": 7611.22, + "probability": 0.8809 + }, + { + "start": 7611.74, + "end": 7612.48, + "probability": 0.6201 + }, + { + "start": 7612.68, + "end": 7614.24, + "probability": 0.5915 + }, + { + "start": 7614.52, + "end": 7614.96, + "probability": 0.8378 + }, + { + "start": 7615.04, + "end": 7619.14, + "probability": 0.7087 + }, + { + "start": 7619.32, + "end": 7619.64, + "probability": 0.4459 + }, + { + "start": 7619.64, + "end": 7620.38, + "probability": 0.4578 + }, + { + "start": 7620.52, + "end": 7621.8, + "probability": 0.6022 + }, + { + "start": 7622.56, + "end": 7623.58, + "probability": 0.3715 + }, + { + "start": 7625.52, + "end": 7626.88, + "probability": 0.5672 + }, + { + "start": 7627.06, + "end": 7629.2, + "probability": 0.3293 + }, + { + "start": 7629.7, + "end": 7632.04, + "probability": 0.8773 + }, + { + "start": 7632.28, + "end": 7633.3, + "probability": 0.1182 + }, + { + "start": 7633.5, + "end": 7633.94, + "probability": 0.4709 + }, + { + "start": 7634.5, + "end": 7634.78, + "probability": 0.1032 + }, + { + "start": 7635.72, + "end": 7637.34, + "probability": 0.1689 + }, + { + "start": 7637.68, + "end": 7639.52, + "probability": 0.3843 + }, + { + "start": 7639.72, + "end": 7641.82, + "probability": 0.2578 + }, + { + "start": 7641.82, + "end": 7642.22, + "probability": 0.2681 + }, + { + "start": 7642.44, + "end": 7644.34, + "probability": 0.75 + }, + { + "start": 7644.4, + "end": 7648.36, + "probability": 0.9891 + }, + { + "start": 7648.36, + "end": 7651.92, + "probability": 0.9794 + }, + { + "start": 7652.22, + "end": 7652.5, + "probability": 0.6117 + }, + { + "start": 7652.92, + "end": 7655.11, + "probability": 0.5364 + }, + { + "start": 7655.26, + "end": 7657.82, + "probability": 0.0901 + }, + { + "start": 7657.82, + "end": 7658.58, + "probability": 0.1952 + }, + { + "start": 7658.8, + "end": 7659.16, + "probability": 0.1287 + }, + { + "start": 7659.16, + "end": 7659.88, + "probability": 0.6163 + }, + { + "start": 7659.94, + "end": 7659.94, + "probability": 0.5344 + }, + { + "start": 7660.02, + "end": 7661.1, + "probability": 0.6478 + }, + { + "start": 7661.16, + "end": 7662.0, + "probability": 0.9149 + }, + { + "start": 7662.04, + "end": 7664.47, + "probability": 0.7535 + }, + { + "start": 7665.34, + "end": 7669.24, + "probability": 0.9658 + }, + { + "start": 7669.56, + "end": 7671.6, + "probability": 0.9469 + }, + { + "start": 7671.82, + "end": 7672.3, + "probability": 0.5108 + }, + { + "start": 7672.36, + "end": 7673.14, + "probability": 0.6498 + }, + { + "start": 7673.2, + "end": 7677.25, + "probability": 0.928 + }, + { + "start": 7677.62, + "end": 7679.1, + "probability": 0.8741 + }, + { + "start": 7679.68, + "end": 7681.06, + "probability": 0.9648 + }, + { + "start": 7681.26, + "end": 7688.7, + "probability": 0.9756 + }, + { + "start": 7688.82, + "end": 7690.76, + "probability": 0.872 + }, + { + "start": 7690.94, + "end": 7694.64, + "probability": 0.9673 + }, + { + "start": 7695.0, + "end": 7700.44, + "probability": 0.9572 + }, + { + "start": 7700.64, + "end": 7702.12, + "probability": 0.9224 + }, + { + "start": 7702.24, + "end": 7703.02, + "probability": 0.6652 + }, + { + "start": 7703.08, + "end": 7706.86, + "probability": 0.9788 + }, + { + "start": 7706.86, + "end": 7711.18, + "probability": 0.9634 + }, + { + "start": 7711.7, + "end": 7713.98, + "probability": 0.8665 + }, + { + "start": 7714.44, + "end": 7720.26, + "probability": 0.9663 + }, + { + "start": 7720.36, + "end": 7721.8, + "probability": 0.4901 + }, + { + "start": 7721.88, + "end": 7723.9, + "probability": 0.5655 + }, + { + "start": 7729.38, + "end": 7729.94, + "probability": 0.5137 + }, + { + "start": 7729.98, + "end": 7730.9, + "probability": 0.6282 + }, + { + "start": 7730.9, + "end": 7737.86, + "probability": 0.9599 + }, + { + "start": 7738.0, + "end": 7739.46, + "probability": 0.948 + }, + { + "start": 7739.76, + "end": 7745.54, + "probability": 0.8809 + }, + { + "start": 7745.7, + "end": 7750.78, + "probability": 0.9071 + }, + { + "start": 7750.78, + "end": 7754.78, + "probability": 0.9958 + }, + { + "start": 7754.86, + "end": 7757.36, + "probability": 0.6507 + }, + { + "start": 7758.74, + "end": 7761.32, + "probability": 0.9997 + }, + { + "start": 7762.9, + "end": 7766.12, + "probability": 0.9469 + }, + { + "start": 7766.82, + "end": 7771.06, + "probability": 0.9912 + }, + { + "start": 7771.28, + "end": 7772.9, + "probability": 0.9666 + }, + { + "start": 7773.48, + "end": 7777.12, + "probability": 0.9428 + }, + { + "start": 7777.28, + "end": 7778.6, + "probability": 0.8973 + }, + { + "start": 7778.74, + "end": 7781.37, + "probability": 0.9725 + }, + { + "start": 7781.7, + "end": 7785.18, + "probability": 0.9644 + }, + { + "start": 7785.3, + "end": 7786.14, + "probability": 0.1425 + }, + { + "start": 7788.62, + "end": 7789.14, + "probability": 0.1556 + }, + { + "start": 7789.24, + "end": 7790.48, + "probability": 0.3912 + }, + { + "start": 7790.58, + "end": 7794.7, + "probability": 0.7994 + }, + { + "start": 7794.92, + "end": 7795.54, + "probability": 0.3024 + }, + { + "start": 7795.74, + "end": 7796.06, + "probability": 0.399 + }, + { + "start": 7796.56, + "end": 7799.0, + "probability": 0.9308 + }, + { + "start": 7799.12, + "end": 7799.62, + "probability": 0.6307 + }, + { + "start": 7800.22, + "end": 7801.28, + "probability": 0.557 + }, + { + "start": 7801.4, + "end": 7803.08, + "probability": 0.6707 + }, + { + "start": 7803.58, + "end": 7803.94, + "probability": 0.2116 + }, + { + "start": 7803.94, + "end": 7805.64, + "probability": 0.2254 + }, + { + "start": 7805.74, + "end": 7806.9, + "probability": 0.4756 + }, + { + "start": 7807.26, + "end": 7808.54, + "probability": 0.3794 + }, + { + "start": 7808.92, + "end": 7809.58, + "probability": 0.1892 + }, + { + "start": 7810.9, + "end": 7810.9, + "probability": 0.2183 + }, + { + "start": 7811.22, + "end": 7811.22, + "probability": 0.015 + }, + { + "start": 7811.22, + "end": 7812.16, + "probability": 0.1519 + }, + { + "start": 7812.38, + "end": 7813.08, + "probability": 0.34 + }, + { + "start": 7813.2, + "end": 7813.54, + "probability": 0.0638 + }, + { + "start": 7815.16, + "end": 7815.92, + "probability": 0.0047 + }, + { + "start": 7815.92, + "end": 7815.92, + "probability": 0.1472 + }, + { + "start": 7815.92, + "end": 7815.96, + "probability": 0.1212 + }, + { + "start": 7816.1, + "end": 7816.3, + "probability": 0.4529 + }, + { + "start": 7816.4, + "end": 7821.52, + "probability": 0.9624 + }, + { + "start": 7822.32, + "end": 7826.14, + "probability": 0.9888 + }, + { + "start": 7826.54, + "end": 7829.92, + "probability": 0.9523 + }, + { + "start": 7830.18, + "end": 7835.88, + "probability": 0.9901 + }, + { + "start": 7835.88, + "end": 7842.54, + "probability": 0.9952 + }, + { + "start": 7842.64, + "end": 7847.3, + "probability": 0.9573 + }, + { + "start": 7847.76, + "end": 7849.58, + "probability": 0.9941 + }, + { + "start": 7849.76, + "end": 7850.08, + "probability": 0.281 + }, + { + "start": 7850.08, + "end": 7851.02, + "probability": 0.4684 + }, + { + "start": 7851.32, + "end": 7851.74, + "probability": 0.5928 + }, + { + "start": 7852.64, + "end": 7852.98, + "probability": 0.5352 + }, + { + "start": 7853.1, + "end": 7853.68, + "probability": 0.4569 + }, + { + "start": 7853.76, + "end": 7855.64, + "probability": 0.9003 + }, + { + "start": 7860.48, + "end": 7861.72, + "probability": 0.692 + }, + { + "start": 7861.72, + "end": 7863.18, + "probability": 0.7482 + }, + { + "start": 7863.24, + "end": 7868.54, + "probability": 0.8825 + }, + { + "start": 7869.0, + "end": 7870.52, + "probability": 0.6544 + }, + { + "start": 7870.96, + "end": 7873.36, + "probability": 0.797 + }, + { + "start": 7873.88, + "end": 7875.56, + "probability": 0.9875 + }, + { + "start": 7875.86, + "end": 7882.68, + "probability": 0.9778 + }, + { + "start": 7883.02, + "end": 7883.82, + "probability": 0.8844 + }, + { + "start": 7884.14, + "end": 7888.24, + "probability": 0.9595 + }, + { + "start": 7888.72, + "end": 7889.94, + "probability": 0.3336 + }, + { + "start": 7889.96, + "end": 7893.44, + "probability": 0.6679 + }, + { + "start": 7893.44, + "end": 7893.62, + "probability": 0.7016 + }, + { + "start": 7894.08, + "end": 7897.18, + "probability": 0.6852 + }, + { + "start": 7897.2, + "end": 7898.08, + "probability": 0.7555 + }, + { + "start": 7898.22, + "end": 7899.14, + "probability": 0.5836 + }, + { + "start": 7899.78, + "end": 7904.32, + "probability": 0.9305 + }, + { + "start": 7904.78, + "end": 7908.44, + "probability": 0.9836 + }, + { + "start": 7908.86, + "end": 7908.86, + "probability": 0.2469 + }, + { + "start": 7908.86, + "end": 7911.8, + "probability": 0.7567 + }, + { + "start": 7911.9, + "end": 7913.0, + "probability": 0.7098 + }, + { + "start": 7913.0, + "end": 7914.38, + "probability": 0.5383 + }, + { + "start": 7914.58, + "end": 7916.32, + "probability": 0.5943 + }, + { + "start": 7916.7, + "end": 7916.7, + "probability": 0.0052 + }, + { + "start": 7916.7, + "end": 7916.92, + "probability": 0.4711 + }, + { + "start": 7916.92, + "end": 7917.7, + "probability": 0.5253 + }, + { + "start": 7917.92, + "end": 7919.11, + "probability": 0.5995 + }, + { + "start": 7919.64, + "end": 7921.14, + "probability": 0.7802 + }, + { + "start": 7921.6, + "end": 7922.98, + "probability": 0.4993 + }, + { + "start": 7923.42, + "end": 7926.52, + "probability": 0.9389 + }, + { + "start": 7927.38, + "end": 7927.38, + "probability": 0.0008 + }, + { + "start": 7927.44, + "end": 7928.28, + "probability": 0.1198 + }, + { + "start": 7928.32, + "end": 7931.18, + "probability": 0.5435 + }, + { + "start": 7931.3, + "end": 7932.79, + "probability": 0.802 + }, + { + "start": 7933.36, + "end": 7934.79, + "probability": 0.9417 + }, + { + "start": 7936.44, + "end": 7940.6, + "probability": 0.9253 + }, + { + "start": 7941.12, + "end": 7943.74, + "probability": 0.8156 + }, + { + "start": 7943.94, + "end": 7945.76, + "probability": 0.4941 + }, + { + "start": 7945.78, + "end": 7949.52, + "probability": 0.6515 + }, + { + "start": 7949.6, + "end": 7950.6, + "probability": 0.8413 + }, + { + "start": 7950.96, + "end": 7952.45, + "probability": 0.5343 + }, + { + "start": 7953.02, + "end": 7954.28, + "probability": 0.5574 + }, + { + "start": 7954.86, + "end": 7957.64, + "probability": 0.7876 + }, + { + "start": 7957.64, + "end": 7957.88, + "probability": 0.6233 + }, + { + "start": 7957.88, + "end": 7959.18, + "probability": 0.6966 + }, + { + "start": 7959.68, + "end": 7961.84, + "probability": 0.8813 + }, + { + "start": 7964.32, + "end": 7969.82, + "probability": 0.0966 + }, + { + "start": 7970.72, + "end": 7974.5, + "probability": 0.1752 + }, + { + "start": 7979.78, + "end": 7980.68, + "probability": 0.2253 + }, + { + "start": 7981.74, + "end": 7986.01, + "probability": 0.0421 + }, + { + "start": 7988.1, + "end": 7989.06, + "probability": 0.0128 + }, + { + "start": 7989.06, + "end": 7990.76, + "probability": 0.0922 + }, + { + "start": 7993.66, + "end": 7994.46, + "probability": 0.016 + }, + { + "start": 7997.28, + "end": 7997.38, + "probability": 0.3291 + }, + { + "start": 8000.44, + "end": 8002.82, + "probability": 0.0276 + }, + { + "start": 8002.82, + "end": 8004.38, + "probability": 0.0448 + }, + { + "start": 8004.82, + "end": 8006.4, + "probability": 0.0554 + }, + { + "start": 8006.42, + "end": 8008.82, + "probability": 0.0875 + }, + { + "start": 8009.1, + "end": 8010.16, + "probability": 0.0687 + }, + { + "start": 8010.62, + "end": 8011.98, + "probability": 0.0982 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8018.58, + "end": 8020.2, + "probability": 0.0422 + }, + { + "start": 8022.58, + "end": 8024.7, + "probability": 0.2001 + }, + { + "start": 8024.7, + "end": 8025.34, + "probability": 0.2688 + }, + { + "start": 8027.46, + "end": 8027.76, + "probability": 0.6025 + }, + { + "start": 8027.84, + "end": 8031.3, + "probability": 0.9087 + }, + { + "start": 8031.76, + "end": 8032.98, + "probability": 0.5796 + }, + { + "start": 8033.0, + "end": 8034.64, + "probability": 0.6845 + }, + { + "start": 8034.74, + "end": 8035.66, + "probability": 0.6256 + }, + { + "start": 8036.48, + "end": 8037.38, + "probability": 0.5579 + }, + { + "start": 8037.5, + "end": 8039.1, + "probability": 0.8415 + }, + { + "start": 8039.58, + "end": 8040.6, + "probability": 0.9385 + }, + { + "start": 8041.46, + "end": 8048.58, + "probability": 0.0356 + }, + { + "start": 8149.0, + "end": 8149.0, + "probability": 0.0 + }, + { + "start": 8149.0, + "end": 8149.0, + "probability": 0.0 + }, + { + "start": 8149.0, + "end": 8149.0, + "probability": 0.0 + }, + { + "start": 8149.0, + "end": 8149.0, + "probability": 0.0 + }, + { + "start": 8149.0, + "end": 8149.0, + "probability": 0.0 + }, + { + "start": 8149.0, + "end": 8149.0, + "probability": 0.0 + }, + { + "start": 8149.0, + "end": 8149.0, + "probability": 0.0 + }, + { + "start": 8149.0, + "end": 8149.0, + "probability": 0.0 + }, + { + "start": 8149.0, + "end": 8149.0, + "probability": 0.0 + }, + { + "start": 8149.0, + "end": 8149.0, + "probability": 0.0 + }, + { + "start": 8149.0, + "end": 8149.0, + "probability": 0.0 + }, + { + "start": 8149.0, + "end": 8149.0, + "probability": 0.0 + }, + { + "start": 8149.0, + "end": 8149.0, + "probability": 0.0 + }, + { + "start": 8149.0, + "end": 8149.0, + "probability": 0.0 + }, + { + "start": 8149.0, + "end": 8149.0, + "probability": 0.0 + }, + { + "start": 8149.0, + "end": 8149.0, + "probability": 0.0 + }, + { + "start": 8149.0, + "end": 8149.0, + "probability": 0.0 + }, + { + "start": 8149.4, + "end": 8150.98, + "probability": 0.058 + }, + { + "start": 8150.98, + "end": 8153.92, + "probability": 0.0548 + }, + { + "start": 8157.38, + "end": 8158.12, + "probability": 0.2557 + }, + { + "start": 8158.12, + "end": 8162.74, + "probability": 0.1059 + }, + { + "start": 8162.74, + "end": 8163.3, + "probability": 0.1782 + }, + { + "start": 8275.0, + "end": 8275.0, + "probability": 0.0 + }, + { + "start": 8275.0, + "end": 8275.0, + "probability": 0.0 + }, + { + "start": 8275.0, + "end": 8275.0, + "probability": 0.0 + }, + { + "start": 8275.0, + "end": 8275.0, + "probability": 0.0 + }, + { + "start": 8275.0, + "end": 8275.0, + "probability": 0.0 + }, + { + "start": 8275.0, + "end": 8275.0, + "probability": 0.0 + }, + { + "start": 8275.0, + "end": 8275.0, + "probability": 0.0 + }, + { + "start": 8275.0, + "end": 8275.0, + "probability": 0.0 + }, + { + "start": 8275.0, + "end": 8275.0, + "probability": 0.0 + }, + { + "start": 8275.0, + "end": 8275.0, + "probability": 0.0 + }, + { + "start": 8275.0, + "end": 8275.0, + "probability": 0.0 + }, + { + "start": 8275.0, + "end": 8275.0, + "probability": 0.0 + }, + { + "start": 8275.0, + "end": 8275.0, + "probability": 0.0 + }, + { + "start": 8275.0, + "end": 8275.0, + "probability": 0.0 + }, + { + "start": 8275.0, + "end": 8275.0, + "probability": 0.0 + }, + { + "start": 8275.0, + "end": 8275.0, + "probability": 0.0 + }, + { + "start": 8275.0, + "end": 8275.0, + "probability": 0.0 + }, + { + "start": 8275.0, + "end": 8275.0, + "probability": 0.0 + }, + { + "start": 8275.0, + "end": 8275.0, + "probability": 0.0 + }, + { + "start": 8275.0, + "end": 8275.0, + "probability": 0.0 + }, + { + "start": 8275.0, + "end": 8275.0, + "probability": 0.0 + }, + { + "start": 8275.0, + "end": 8275.0, + "probability": 0.0 + }, + { + "start": 8275.0, + "end": 8275.0, + "probability": 0.0 + }, + { + "start": 8275.0, + "end": 8275.0, + "probability": 0.0 + }, + { + "start": 8275.0, + "end": 8275.0, + "probability": 0.0 + }, + { + "start": 8278.79, + "end": 8287.32, + "probability": 0.0872 + }, + { + "start": 8287.92, + "end": 8294.68, + "probability": 0.1409 + }, + { + "start": 8295.17, + "end": 8298.91, + "probability": 0.0948 + }, + { + "start": 8301.58, + "end": 8304.64, + "probability": 0.1894 + }, + { + "start": 8399.0, + "end": 8399.0, + "probability": 0.0 + }, + { + "start": 8399.0, + "end": 8399.0, + "probability": 0.0 + }, + { + "start": 8399.0, + "end": 8399.0, + "probability": 0.0 + }, + { + "start": 8399.0, + "end": 8399.0, + "probability": 0.0 + }, + { + "start": 8399.0, + "end": 8399.0, + "probability": 0.0 + }, + { + "start": 8399.0, + "end": 8399.0, + "probability": 0.0 + }, + { + "start": 8399.0, + "end": 8399.0, + "probability": 0.0 + }, + { + "start": 8399.0, + "end": 8399.0, + "probability": 0.0 + }, + { + "start": 8399.0, + "end": 8399.0, + "probability": 0.0 + }, + { + "start": 8399.0, + "end": 8399.0, + "probability": 0.0 + }, + { + "start": 8399.0, + "end": 8399.0, + "probability": 0.0 + }, + { + "start": 8399.0, + "end": 8399.0, + "probability": 0.0 + }, + { + "start": 8399.0, + "end": 8399.0, + "probability": 0.0 + }, + { + "start": 8399.0, + "end": 8399.0, + "probability": 0.0 + }, + { + "start": 8399.0, + "end": 8399.0, + "probability": 0.0 + }, + { + "start": 8399.0, + "end": 8399.0, + "probability": 0.0 + }, + { + "start": 8399.0, + "end": 8399.0, + "probability": 0.0 + }, + { + "start": 8399.0, + "end": 8399.0, + "probability": 0.0 + }, + { + "start": 8399.0, + "end": 8399.0, + "probability": 0.0 + }, + { + "start": 8399.0, + "end": 8399.0, + "probability": 0.0 + }, + { + "start": 8399.0, + "end": 8399.0, + "probability": 0.0 + }, + { + "start": 8399.0, + "end": 8399.0, + "probability": 0.0 + }, + { + "start": 8399.0, + "end": 8399.0, + "probability": 0.0 + }, + { + "start": 8399.0, + "end": 8399.0, + "probability": 0.0 + }, + { + "start": 8399.0, + "end": 8399.0, + "probability": 0.0 + }, + { + "start": 8399.0, + "end": 8399.0, + "probability": 0.0 + }, + { + "start": 8399.0, + "end": 8399.0, + "probability": 0.0 + }, + { + "start": 8399.0, + "end": 8399.0, + "probability": 0.0 + }, + { + "start": 8399.0, + "end": 8399.0, + "probability": 0.0 + }, + { + "start": 8399.0, + "end": 8399.0, + "probability": 0.0 + }, + { + "start": 8399.0, + "end": 8399.0, + "probability": 0.0 + }, + { + "start": 8399.0, + "end": 8399.0, + "probability": 0.0 + }, + { + "start": 8399.0, + "end": 8399.0, + "probability": 0.0 + }, + { + "start": 8399.0, + "end": 8399.0, + "probability": 0.0 + }, + { + "start": 8399.0, + "end": 8399.0, + "probability": 0.0 + }, + { + "start": 8399.0, + "end": 8399.0, + "probability": 0.0 + }, + { + "start": 8399.0, + "end": 8399.0, + "probability": 0.0 + }, + { + "start": 8399.0, + "end": 8399.0, + "probability": 0.0 + }, + { + "start": 8399.0, + "end": 8399.0, + "probability": 0.0 + }, + { + "start": 8399.0, + "end": 8399.0, + "probability": 0.0 + }, + { + "start": 8399.0, + "end": 8399.0, + "probability": 0.0 + }, + { + "start": 8399.0, + "end": 8399.0, + "probability": 0.0 + }, + { + "start": 8399.0, + "end": 8399.0, + "probability": 0.0 + }, + { + "start": 8399.0, + "end": 8399.0, + "probability": 0.0 + }, + { + "start": 8399.0, + "end": 8399.0, + "probability": 0.0 + }, + { + "start": 8399.0, + "end": 8399.0, + "probability": 0.0 + }, + { + "start": 8399.0, + "end": 8399.0, + "probability": 0.0 + }, + { + "start": 8399.0, + "end": 8399.0, + "probability": 0.0 + }, + { + "start": 8399.0, + "end": 8399.0, + "probability": 0.0 + }, + { + "start": 8399.0, + "end": 8399.0, + "probability": 0.0 + }, + { + "start": 8399.0, + "end": 8399.0, + "probability": 0.0 + }, + { + "start": 8399.8, + "end": 8399.8, + "probability": 0.0275 + }, + { + "start": 8399.8, + "end": 8400.84, + "probability": 0.5791 + }, + { + "start": 8401.04, + "end": 8409.8, + "probability": 0.8723 + }, + { + "start": 8409.86, + "end": 8410.6, + "probability": 0.8245 + }, + { + "start": 8411.4, + "end": 8413.48, + "probability": 0.9083 + }, + { + "start": 8414.04, + "end": 8414.74, + "probability": 0.6617 + }, + { + "start": 8417.76, + "end": 8421.34, + "probability": 0.9959 + }, + { + "start": 8421.76, + "end": 8422.34, + "probability": 0.7983 + }, + { + "start": 8422.62, + "end": 8423.6, + "probability": 0.9351 + }, + { + "start": 8424.34, + "end": 8426.44, + "probability": 0.9806 + }, + { + "start": 8426.56, + "end": 8427.42, + "probability": 0.896 + }, + { + "start": 8427.92, + "end": 8430.0, + "probability": 0.9932 + }, + { + "start": 8430.08, + "end": 8431.66, + "probability": 0.974 + }, + { + "start": 8432.28, + "end": 8433.54, + "probability": 0.8708 + }, + { + "start": 8433.66, + "end": 8434.52, + "probability": 0.6035 + }, + { + "start": 8435.06, + "end": 8435.72, + "probability": 0.4853 + }, + { + "start": 8435.72, + "end": 8437.9, + "probability": 0.6194 + }, + { + "start": 8438.0, + "end": 8438.5, + "probability": 0.7263 + }, + { + "start": 8439.82, + "end": 8447.3, + "probability": 0.8703 + }, + { + "start": 8447.46, + "end": 8449.04, + "probability": 0.725 + }, + { + "start": 8450.36, + "end": 8453.46, + "probability": 0.6779 + }, + { + "start": 8454.42, + "end": 8458.44, + "probability": 0.7904 + }, + { + "start": 8459.12, + "end": 8461.32, + "probability": 0.9431 + }, + { + "start": 8461.98, + "end": 8466.22, + "probability": 0.9695 + }, + { + "start": 8467.68, + "end": 8474.32, + "probability": 0.6941 + }, + { + "start": 8474.71, + "end": 8477.86, + "probability": 0.7498 + }, + { + "start": 8478.4, + "end": 8479.42, + "probability": 0.769 + }, + { + "start": 8479.76, + "end": 8481.02, + "probability": 0.8405 + }, + { + "start": 8481.12, + "end": 8482.34, + "probability": 0.8388 + }, + { + "start": 8482.66, + "end": 8487.44, + "probability": 0.9336 + }, + { + "start": 8487.52, + "end": 8489.18, + "probability": 0.7716 + }, + { + "start": 8489.66, + "end": 8493.44, + "probability": 0.9972 + }, + { + "start": 8493.62, + "end": 8494.41, + "probability": 0.9858 + }, + { + "start": 8495.96, + "end": 8498.92, + "probability": 0.969 + }, + { + "start": 8499.8, + "end": 8501.14, + "probability": 0.9868 + }, + { + "start": 8501.92, + "end": 8505.08, + "probability": 0.8896 + }, + { + "start": 8506.18, + "end": 8507.38, + "probability": 0.5998 + }, + { + "start": 8507.64, + "end": 8513.6, + "probability": 0.803 + }, + { + "start": 8513.64, + "end": 8514.7, + "probability": 0.6356 + }, + { + "start": 8515.12, + "end": 8524.44, + "probability": 0.9614 + }, + { + "start": 8525.2, + "end": 8528.48, + "probability": 0.9089 + }, + { + "start": 8528.48, + "end": 8531.4, + "probability": 0.999 + }, + { + "start": 8531.58, + "end": 8531.94, + "probability": 0.8985 + }, + { + "start": 8532.04, + "end": 8533.08, + "probability": 0.6678 + }, + { + "start": 8534.94, + "end": 8535.86, + "probability": 0.9099 + }, + { + "start": 8536.68, + "end": 8542.16, + "probability": 0.9683 + }, + { + "start": 8542.64, + "end": 8545.34, + "probability": 0.9858 + }, + { + "start": 8545.54, + "end": 8546.44, + "probability": 0.9482 + }, + { + "start": 8547.22, + "end": 8551.04, + "probability": 0.9897 + }, + { + "start": 8551.52, + "end": 8554.04, + "probability": 0.9746 + }, + { + "start": 8554.72, + "end": 8556.24, + "probability": 0.975 + }, + { + "start": 8557.2, + "end": 8559.32, + "probability": 0.9972 + }, + { + "start": 8560.08, + "end": 8560.98, + "probability": 0.7435 + }, + { + "start": 8561.08, + "end": 8562.14, + "probability": 0.8883 + }, + { + "start": 8562.58, + "end": 8568.06, + "probability": 0.9824 + }, + { + "start": 8568.18, + "end": 8568.42, + "probability": 0.6006 + }, + { + "start": 8568.5, + "end": 8570.06, + "probability": 0.7195 + }, + { + "start": 8570.12, + "end": 8574.7, + "probability": 0.9507 + }, + { + "start": 8574.82, + "end": 8575.3, + "probability": 0.6131 + }, + { + "start": 8575.38, + "end": 8576.92, + "probability": 0.7217 + }, + { + "start": 8578.32, + "end": 8580.86, + "probability": 0.641 + }, + { + "start": 8582.92, + "end": 8585.86, + "probability": 0.6875 + }, + { + "start": 8586.4, + "end": 8589.14, + "probability": 0.9586 + }, + { + "start": 8589.86, + "end": 8594.2, + "probability": 0.9703 + }, + { + "start": 8595.22, + "end": 8601.32, + "probability": 0.7377 + }, + { + "start": 8601.84, + "end": 8601.98, + "probability": 0.4116 + }, + { + "start": 8602.09, + "end": 8603.78, + "probability": 0.7495 + }, + { + "start": 8603.9, + "end": 8604.52, + "probability": 0.6228 + }, + { + "start": 8604.52, + "end": 8608.04, + "probability": 0.7443 + }, + { + "start": 8609.32, + "end": 8609.98, + "probability": 0.8359 + }, + { + "start": 8610.24, + "end": 8611.54, + "probability": 0.967 + }, + { + "start": 8611.72, + "end": 8613.0, + "probability": 0.6891 + }, + { + "start": 8613.84, + "end": 8615.68, + "probability": 0.7415 + }, + { + "start": 8616.1, + "end": 8618.76, + "probability": 0.9841 + }, + { + "start": 8618.94, + "end": 8620.45, + "probability": 0.9697 + }, + { + "start": 8621.46, + "end": 8626.84, + "probability": 0.9102 + }, + { + "start": 8627.12, + "end": 8628.9, + "probability": 0.8778 + }, + { + "start": 8629.66, + "end": 8631.48, + "probability": 0.9888 + }, + { + "start": 8631.84, + "end": 8633.4, + "probability": 0.9478 + }, + { + "start": 8633.66, + "end": 8634.65, + "probability": 0.9771 + }, + { + "start": 8635.44, + "end": 8637.06, + "probability": 0.9897 + }, + { + "start": 8638.4, + "end": 8642.0, + "probability": 0.9934 + }, + { + "start": 8643.3, + "end": 8643.79, + "probability": 0.9508 + }, + { + "start": 8644.04, + "end": 8644.62, + "probability": 0.7408 + }, + { + "start": 8644.66, + "end": 8646.58, + "probability": 0.9893 + }, + { + "start": 8647.3, + "end": 8651.04, + "probability": 0.9736 + }, + { + "start": 8651.38, + "end": 8654.36, + "probability": 0.9889 + }, + { + "start": 8654.48, + "end": 8655.92, + "probability": 0.9744 + }, + { + "start": 8656.08, + "end": 8659.48, + "probability": 0.9304 + }, + { + "start": 8659.5, + "end": 8659.9, + "probability": 0.6494 + }, + { + "start": 8659.96, + "end": 8660.72, + "probability": 0.5986 + }, + { + "start": 8661.04, + "end": 8665.08, + "probability": 0.9741 + }, + { + "start": 8665.08, + "end": 8668.62, + "probability": 0.9938 + }, + { + "start": 8669.3, + "end": 8671.24, + "probability": 0.9332 + }, + { + "start": 8671.86, + "end": 8672.49, + "probability": 0.4848 + }, + { + "start": 8673.06, + "end": 8675.8, + "probability": 0.8509 + }, + { + "start": 8675.94, + "end": 8676.96, + "probability": 0.6862 + }, + { + "start": 8677.04, + "end": 8681.12, + "probability": 0.8246 + }, + { + "start": 8681.28, + "end": 8683.4, + "probability": 0.9058 + }, + { + "start": 8683.78, + "end": 8685.26, + "probability": 0.7766 + }, + { + "start": 8686.02, + "end": 8687.18, + "probability": 0.9189 + }, + { + "start": 8687.34, + "end": 8688.46, + "probability": 0.9172 + }, + { + "start": 8688.6, + "end": 8689.78, + "probability": 0.6918 + }, + { + "start": 8690.2, + "end": 8691.52, + "probability": 0.8837 + }, + { + "start": 8692.34, + "end": 8692.82, + "probability": 0.6922 + }, + { + "start": 8692.84, + "end": 8694.82, + "probability": 0.9858 + }, + { + "start": 8695.1, + "end": 8695.12, + "probability": 0.7126 + }, + { + "start": 8695.26, + "end": 8699.48, + "probability": 0.991 + }, + { + "start": 8699.64, + "end": 8703.38, + "probability": 0.9134 + }, + { + "start": 8704.26, + "end": 8708.18, + "probability": 0.8867 + }, + { + "start": 8708.28, + "end": 8712.02, + "probability": 0.9638 + }, + { + "start": 8712.36, + "end": 8713.56, + "probability": 0.9765 + }, + { + "start": 8713.68, + "end": 8714.7, + "probability": 0.9495 + }, + { + "start": 8715.04, + "end": 8717.82, + "probability": 0.8165 + }, + { + "start": 8717.96, + "end": 8719.6, + "probability": 0.9969 + }, + { + "start": 8719.74, + "end": 8721.16, + "probability": 0.8805 + }, + { + "start": 8721.42, + "end": 8723.01, + "probability": 0.766 + }, + { + "start": 8723.4, + "end": 8724.9, + "probability": 0.8131 + }, + { + "start": 8725.08, + "end": 8726.02, + "probability": 0.9795 + }, + { + "start": 8726.12, + "end": 8729.06, + "probability": 0.5309 + }, + { + "start": 8729.24, + "end": 8731.42, + "probability": 0.7402 + }, + { + "start": 8734.17, + "end": 8735.84, + "probability": 0.4448 + }, + { + "start": 8736.9, + "end": 8740.28, + "probability": 0.28 + }, + { + "start": 8740.72, + "end": 8741.87, + "probability": 0.73 + }, + { + "start": 8742.91, + "end": 8746.02, + "probability": 0.979 + }, + { + "start": 8747.0, + "end": 8749.62, + "probability": 0.9938 + }, + { + "start": 8750.14, + "end": 8753.42, + "probability": 0.9949 + }, + { + "start": 8753.74, + "end": 8755.02, + "probability": 0.9463 + }, + { + "start": 8755.16, + "end": 8757.0, + "probability": 0.9968 + }, + { + "start": 8757.26, + "end": 8758.06, + "probability": 0.8301 + }, + { + "start": 8758.2, + "end": 8760.24, + "probability": 0.8913 + }, + { + "start": 8761.34, + "end": 8763.38, + "probability": 0.0532 + }, + { + "start": 8763.56, + "end": 8763.88, + "probability": 0.7857 + }, + { + "start": 8763.96, + "end": 8765.26, + "probability": 0.8184 + }, + { + "start": 8765.34, + "end": 8766.14, + "probability": 0.2891 + }, + { + "start": 8766.24, + "end": 8767.1, + "probability": 0.8029 + }, + { + "start": 8767.2, + "end": 8767.9, + "probability": 0.6044 + }, + { + "start": 8768.3, + "end": 8769.07, + "probability": 0.0088 + }, + { + "start": 8769.64, + "end": 8773.44, + "probability": 0.8992 + }, + { + "start": 8773.98, + "end": 8774.98, + "probability": 0.8767 + }, + { + "start": 8775.4, + "end": 8779.94, + "probability": 0.9713 + }, + { + "start": 8780.04, + "end": 8780.06, + "probability": 0.4707 + }, + { + "start": 8780.18, + "end": 8780.32, + "probability": 0.4952 + }, + { + "start": 8780.4, + "end": 8781.08, + "probability": 0.9219 + }, + { + "start": 8781.32, + "end": 8785.3, + "probability": 0.9504 + }, + { + "start": 8785.66, + "end": 8786.94, + "probability": 0.998 + }, + { + "start": 8787.02, + "end": 8788.48, + "probability": 0.7704 + }, + { + "start": 8788.56, + "end": 8789.72, + "probability": 0.9464 + }, + { + "start": 8789.98, + "end": 8790.78, + "probability": 0.6928 + }, + { + "start": 8791.0, + "end": 8793.62, + "probability": 0.9427 + }, + { + "start": 8793.66, + "end": 8796.72, + "probability": 0.9948 + }, + { + "start": 8797.26, + "end": 8800.48, + "probability": 0.8445 + }, + { + "start": 8800.74, + "end": 8801.92, + "probability": 0.8751 + }, + { + "start": 8801.96, + "end": 8803.16, + "probability": 0.824 + }, + { + "start": 8803.44, + "end": 8804.9, + "probability": 0.9969 + }, + { + "start": 8805.16, + "end": 8807.49, + "probability": 0.9034 + }, + { + "start": 8807.8, + "end": 8809.66, + "probability": 0.994 + }, + { + "start": 8809.76, + "end": 8811.0, + "probability": 0.9412 + }, + { + "start": 8811.1, + "end": 8811.96, + "probability": 0.9501 + }, + { + "start": 8812.08, + "end": 8812.96, + "probability": 0.9521 + }, + { + "start": 8813.08, + "end": 8814.42, + "probability": 0.845 + }, + { + "start": 8814.66, + "end": 8816.24, + "probability": 0.7133 + }, + { + "start": 8816.42, + "end": 8818.74, + "probability": 0.9357 + }, + { + "start": 8819.0, + "end": 8821.46, + "probability": 0.9644 + }, + { + "start": 8821.6, + "end": 8822.14, + "probability": 0.7363 + }, + { + "start": 8822.26, + "end": 8825.36, + "probability": 0.9954 + }, + { + "start": 8825.42, + "end": 8825.58, + "probability": 0.1486 + }, + { + "start": 8826.26, + "end": 8826.98, + "probability": 0.8613 + }, + { + "start": 8827.52, + "end": 8830.64, + "probability": 0.8395 + }, + { + "start": 8830.64, + "end": 8831.22, + "probability": 0.7307 + }, + { + "start": 8831.3, + "end": 8832.18, + "probability": 0.3301 + }, + { + "start": 8832.24, + "end": 8833.63, + "probability": 0.9932 + }, + { + "start": 8833.78, + "end": 8835.66, + "probability": 0.8153 + }, + { + "start": 8835.66, + "end": 8836.5, + "probability": 0.8277 + }, + { + "start": 8836.52, + "end": 8841.34, + "probability": 0.9856 + }, + { + "start": 8841.38, + "end": 8842.86, + "probability": 0.7435 + }, + { + "start": 8842.86, + "end": 8844.0, + "probability": 0.5029 + }, + { + "start": 8844.38, + "end": 8846.42, + "probability": 0.8428 + }, + { + "start": 8846.42, + "end": 8847.38, + "probability": 0.9758 + }, + { + "start": 8848.0, + "end": 8851.4, + "probability": 0.988 + }, + { + "start": 8851.52, + "end": 8851.68, + "probability": 0.1816 + }, + { + "start": 8851.7, + "end": 8852.66, + "probability": 0.9042 + }, + { + "start": 8852.76, + "end": 8854.22, + "probability": 0.4285 + }, + { + "start": 8854.64, + "end": 8854.98, + "probability": 0.8274 + }, + { + "start": 8855.08, + "end": 8856.88, + "probability": 0.9808 + }, + { + "start": 8857.24, + "end": 8857.48, + "probability": 0.498 + }, + { + "start": 8857.54, + "end": 8858.22, + "probability": 0.7922 + }, + { + "start": 8858.3, + "end": 8859.24, + "probability": 0.9446 + }, + { + "start": 8859.5, + "end": 8861.47, + "probability": 0.9244 + }, + { + "start": 8861.76, + "end": 8864.18, + "probability": 0.7994 + }, + { + "start": 8864.18, + "end": 8866.2, + "probability": 0.8594 + }, + { + "start": 8866.42, + "end": 8868.04, + "probability": 0.9316 + }, + { + "start": 8868.04, + "end": 8868.98, + "probability": 0.5012 + }, + { + "start": 8869.16, + "end": 8870.07, + "probability": 0.1232 + }, + { + "start": 8872.42, + "end": 8874.14, + "probability": 0.2384 + }, + { + "start": 8874.68, + "end": 8875.5, + "probability": 0.607 + }, + { + "start": 8875.94, + "end": 8877.96, + "probability": 0.655 + }, + { + "start": 8878.4, + "end": 8878.4, + "probability": 0.5207 + }, + { + "start": 8878.4, + "end": 8881.58, + "probability": 0.7926 + }, + { + "start": 8881.58, + "end": 8881.92, + "probability": 0.9519 + }, + { + "start": 8884.62, + "end": 8888.68, + "probability": 0.5133 + }, + { + "start": 8889.04, + "end": 8890.34, + "probability": 0.3503 + }, + { + "start": 8890.83, + "end": 8894.38, + "probability": 0.6427 + }, + { + "start": 8894.38, + "end": 8897.54, + "probability": 0.6988 + }, + { + "start": 8897.64, + "end": 8899.47, + "probability": 0.6575 + }, + { + "start": 8900.5, + "end": 8903.87, + "probability": 0.7901 + }, + { + "start": 8904.54, + "end": 8907.14, + "probability": 0.741 + }, + { + "start": 8907.32, + "end": 8913.9, + "probability": 0.5168 + }, + { + "start": 8914.18, + "end": 8915.5, + "probability": 0.9863 + }, + { + "start": 8915.7, + "end": 8917.48, + "probability": 0.8456 + }, + { + "start": 8917.48, + "end": 8920.28, + "probability": 0.7916 + }, + { + "start": 8920.64, + "end": 8923.74, + "probability": 0.876 + }, + { + "start": 8923.74, + "end": 8926.38, + "probability": 0.9941 + }, + { + "start": 8926.98, + "end": 8929.28, + "probability": 0.9456 + }, + { + "start": 8929.34, + "end": 8929.64, + "probability": 0.631 + }, + { + "start": 8930.14, + "end": 8930.8, + "probability": 0.7095 + }, + { + "start": 8930.98, + "end": 8932.85, + "probability": 0.3861 + }, + { + "start": 8932.92, + "end": 8936.06, + "probability": 0.974 + }, + { + "start": 8936.14, + "end": 8938.8, + "probability": 0.9512 + }, + { + "start": 8939.0, + "end": 8940.46, + "probability": 0.8407 + }, + { + "start": 8940.52, + "end": 8942.78, + "probability": 0.5738 + }, + { + "start": 8942.94, + "end": 8943.32, + "probability": 0.1712 + }, + { + "start": 8943.44, + "end": 8943.98, + "probability": 0.7913 + }, + { + "start": 8944.76, + "end": 8945.84, + "probability": 0.4701 + }, + { + "start": 8959.2, + "end": 8959.3, + "probability": 0.3063 + }, + { + "start": 8959.3, + "end": 8961.32, + "probability": 0.9076 + }, + { + "start": 8961.36, + "end": 8962.88, + "probability": 0.8632 + }, + { + "start": 8963.08, + "end": 8967.8, + "probability": 0.7726 + }, + { + "start": 8969.34, + "end": 8969.64, + "probability": 0.4348 + }, + { + "start": 8969.68, + "end": 8969.72, + "probability": 0.3565 + }, + { + "start": 8969.72, + "end": 8970.56, + "probability": 0.3016 + }, + { + "start": 8971.02, + "end": 8972.36, + "probability": 0.8594 + }, + { + "start": 8973.94, + "end": 8974.66, + "probability": 0.359 + }, + { + "start": 8974.68, + "end": 8976.66, + "probability": 0.9338 + }, + { + "start": 8976.66, + "end": 8979.96, + "probability": 0.8667 + }, + { + "start": 8980.16, + "end": 8980.38, + "probability": 0.0046 + }, + { + "start": 8980.38, + "end": 8980.38, + "probability": 0.2482 + }, + { + "start": 8980.38, + "end": 8980.38, + "probability": 0.3631 + }, + { + "start": 8980.38, + "end": 8980.38, + "probability": 0.0699 + }, + { + "start": 8980.38, + "end": 8980.74, + "probability": 0.2106 + }, + { + "start": 8980.76, + "end": 8982.08, + "probability": 0.6377 + }, + { + "start": 8982.48, + "end": 8982.9, + "probability": 0.4499 + }, + { + "start": 8982.94, + "end": 8984.1, + "probability": 0.9901 + }, + { + "start": 8984.64, + "end": 8985.78, + "probability": 0.9469 + }, + { + "start": 8985.88, + "end": 8987.46, + "probability": 0.7529 + }, + { + "start": 8988.1, + "end": 8990.9, + "probability": 0.9687 + }, + { + "start": 8991.56, + "end": 8992.07, + "probability": 0.979 + }, + { + "start": 8992.42, + "end": 8994.9, + "probability": 0.9805 + }, + { + "start": 8995.42, + "end": 8996.48, + "probability": 0.9004 + }, + { + "start": 8996.56, + "end": 8998.08, + "probability": 0.9218 + }, + { + "start": 8998.24, + "end": 9001.63, + "probability": 0.9424 + }, + { + "start": 9002.04, + "end": 9002.52, + "probability": 0.7758 + }, + { + "start": 9002.6, + "end": 9004.98, + "probability": 0.9959 + }, + { + "start": 9005.0, + "end": 9005.84, + "probability": 0.458 + }, + { + "start": 9005.94, + "end": 9007.12, + "probability": 0.7635 + }, + { + "start": 9007.22, + "end": 9008.97, + "probability": 0.9937 + }, + { + "start": 9009.64, + "end": 9009.78, + "probability": 0.5469 + }, + { + "start": 9009.96, + "end": 9011.22, + "probability": 0.8025 + }, + { + "start": 9011.5, + "end": 9012.24, + "probability": 0.5295 + }, + { + "start": 9012.32, + "end": 9013.34, + "probability": 0.9924 + }, + { + "start": 9013.48, + "end": 9014.36, + "probability": 0.9403 + }, + { + "start": 9014.5, + "end": 9015.48, + "probability": 0.4821 + }, + { + "start": 9015.48, + "end": 9016.24, + "probability": 0.8376 + }, + { + "start": 9016.68, + "end": 9017.2, + "probability": 0.8466 + }, + { + "start": 9017.48, + "end": 9018.6, + "probability": 0.5435 + }, + { + "start": 9019.04, + "end": 9021.4, + "probability": 0.5803 + }, + { + "start": 9022.78, + "end": 9024.55, + "probability": 0.516 + }, + { + "start": 9025.58, + "end": 9028.04, + "probability": 0.9364 + }, + { + "start": 9028.14, + "end": 9029.48, + "probability": 0.8515 + }, + { + "start": 9029.94, + "end": 9032.16, + "probability": 0.9966 + }, + { + "start": 9032.3, + "end": 9032.72, + "probability": 0.9775 + }, + { + "start": 9032.84, + "end": 9033.36, + "probability": 0.9911 + }, + { + "start": 9033.5, + "end": 9034.16, + "probability": 0.7204 + }, + { + "start": 9034.98, + "end": 9038.2, + "probability": 0.9672 + }, + { + "start": 9038.24, + "end": 9040.2, + "probability": 0.908 + }, + { + "start": 9040.88, + "end": 9044.12, + "probability": 0.9961 + }, + { + "start": 9044.2, + "end": 9044.96, + "probability": 0.9492 + }, + { + "start": 9045.06, + "end": 9045.9, + "probability": 0.9385 + }, + { + "start": 9046.78, + "end": 9051.16, + "probability": 0.9734 + }, + { + "start": 9051.16, + "end": 9054.7, + "probability": 0.9969 + }, + { + "start": 9055.08, + "end": 9058.0, + "probability": 0.9702 + }, + { + "start": 9058.3, + "end": 9059.98, + "probability": 0.9414 + }, + { + "start": 9060.52, + "end": 9062.3, + "probability": 0.9266 + }, + { + "start": 9062.86, + "end": 9064.85, + "probability": 0.9414 + }, + { + "start": 9065.9, + "end": 9068.36, + "probability": 0.7974 + }, + { + "start": 9069.16, + "end": 9075.04, + "probability": 0.9863 + }, + { + "start": 9075.48, + "end": 9076.94, + "probability": 0.6892 + }, + { + "start": 9077.38, + "end": 9080.96, + "probability": 0.915 + }, + { + "start": 9081.92, + "end": 9084.7, + "probability": 0.9372 + }, + { + "start": 9085.4, + "end": 9090.22, + "probability": 0.9899 + }, + { + "start": 9090.56, + "end": 9092.68, + "probability": 0.9883 + }, + { + "start": 9093.36, + "end": 9097.04, + "probability": 0.9932 + }, + { + "start": 9098.14, + "end": 9100.88, + "probability": 0.9711 + }, + { + "start": 9100.98, + "end": 9101.9, + "probability": 0.6635 + }, + { + "start": 9102.06, + "end": 9104.7, + "probability": 0.9383 + }, + { + "start": 9104.8, + "end": 9110.8, + "probability": 0.9613 + }, + { + "start": 9110.9, + "end": 9112.12, + "probability": 0.7851 + }, + { + "start": 9112.32, + "end": 9113.44, + "probability": 0.988 + }, + { + "start": 9113.78, + "end": 9114.69, + "probability": 0.9771 + }, + { + "start": 9114.94, + "end": 9115.56, + "probability": 0.9159 + }, + { + "start": 9115.96, + "end": 9117.88, + "probability": 0.9897 + }, + { + "start": 9118.48, + "end": 9118.68, + "probability": 0.4355 + }, + { + "start": 9118.82, + "end": 9123.26, + "probability": 0.9251 + }, + { + "start": 9123.36, + "end": 9128.54, + "probability": 0.9816 + }, + { + "start": 9128.88, + "end": 9129.74, + "probability": 0.9163 + }, + { + "start": 9130.6, + "end": 9132.0, + "probability": 0.8262 + }, + { + "start": 9132.68, + "end": 9139.68, + "probability": 0.9972 + }, + { + "start": 9140.34, + "end": 9146.16, + "probability": 0.9899 + }, + { + "start": 9146.16, + "end": 9152.62, + "probability": 0.9969 + }, + { + "start": 9153.54, + "end": 9154.6, + "probability": 0.7343 + }, + { + "start": 9155.08, + "end": 9156.22, + "probability": 0.922 + }, + { + "start": 9156.28, + "end": 9159.48, + "probability": 0.9492 + }, + { + "start": 9160.2, + "end": 9163.92, + "probability": 0.9568 + }, + { + "start": 9163.92, + "end": 9168.96, + "probability": 0.9681 + }, + { + "start": 9169.06, + "end": 9170.11, + "probability": 0.5999 + }, + { + "start": 9170.26, + "end": 9173.16, + "probability": 0.8281 + }, + { + "start": 9174.14, + "end": 9177.2, + "probability": 0.9801 + }, + { + "start": 9177.26, + "end": 9179.03, + "probability": 0.9395 + }, + { + "start": 9180.16, + "end": 9182.98, + "probability": 0.9814 + }, + { + "start": 9183.14, + "end": 9185.02, + "probability": 0.9797 + }, + { + "start": 9185.06, + "end": 9186.34, + "probability": 0.8633 + }, + { + "start": 9187.24, + "end": 9191.94, + "probability": 0.9966 + }, + { + "start": 9192.66, + "end": 9194.8, + "probability": 0.9941 + }, + { + "start": 9195.0, + "end": 9195.88, + "probability": 0.8895 + }, + { + "start": 9196.14, + "end": 9198.68, + "probability": 0.9227 + }, + { + "start": 9198.74, + "end": 9201.18, + "probability": 0.7357 + }, + { + "start": 9201.36, + "end": 9202.74, + "probability": 0.8711 + }, + { + "start": 9202.98, + "end": 9205.22, + "probability": 0.9718 + }, + { + "start": 9205.6, + "end": 9208.5, + "probability": 0.9958 + }, + { + "start": 9209.22, + "end": 9210.82, + "probability": 0.9966 + }, + { + "start": 9211.02, + "end": 9213.02, + "probability": 0.8679 + }, + { + "start": 9213.2, + "end": 9217.26, + "probability": 0.9468 + }, + { + "start": 9217.6, + "end": 9219.8, + "probability": 0.6645 + }, + { + "start": 9221.16, + "end": 9221.92, + "probability": 0.4607 + }, + { + "start": 9222.04, + "end": 9222.04, + "probability": 0.0746 + }, + { + "start": 9222.04, + "end": 9222.04, + "probability": 0.227 + }, + { + "start": 9222.04, + "end": 9222.06, + "probability": 0.1209 + }, + { + "start": 9222.06, + "end": 9222.06, + "probability": 0.4225 + }, + { + "start": 9222.06, + "end": 9223.98, + "probability": 0.7134 + }, + { + "start": 9224.02, + "end": 9224.16, + "probability": 0.4465 + }, + { + "start": 9224.16, + "end": 9224.54, + "probability": 0.6348 + }, + { + "start": 9224.76, + "end": 9225.99, + "probability": 0.5002 + }, + { + "start": 9226.24, + "end": 9228.08, + "probability": 0.6951 + }, + { + "start": 9228.5, + "end": 9230.46, + "probability": 0.7342 + }, + { + "start": 9237.58, + "end": 9239.28, + "probability": 0.8295 + }, + { + "start": 9242.16, + "end": 9243.06, + "probability": 0.8158 + }, + { + "start": 9243.42, + "end": 9244.9, + "probability": 0.6522 + }, + { + "start": 9244.98, + "end": 9245.72, + "probability": 0.8086 + }, + { + "start": 9246.36, + "end": 9250.2, + "probability": 0.9733 + }, + { + "start": 9251.08, + "end": 9254.94, + "probability": 0.9772 + }, + { + "start": 9255.06, + "end": 9259.28, + "probability": 0.9601 + }, + { + "start": 9259.28, + "end": 9263.08, + "probability": 0.9777 + }, + { + "start": 9264.08, + "end": 9267.88, + "probability": 0.9614 + }, + { + "start": 9268.04, + "end": 9271.58, + "probability": 0.9823 + }, + { + "start": 9271.58, + "end": 9276.38, + "probability": 0.9984 + }, + { + "start": 9277.34, + "end": 9277.9, + "probability": 0.8346 + }, + { + "start": 9278.02, + "end": 9282.12, + "probability": 0.9902 + }, + { + "start": 9282.26, + "end": 9283.08, + "probability": 0.7941 + }, + { + "start": 9283.08, + "end": 9286.48, + "probability": 0.8888 + }, + { + "start": 9286.78, + "end": 9289.36, + "probability": 0.6646 + }, + { + "start": 9289.98, + "end": 9291.72, + "probability": 0.8184 + }, + { + "start": 9292.64, + "end": 9298.6, + "probability": 0.9898 + }, + { + "start": 9299.18, + "end": 9303.14, + "probability": 0.9916 + }, + { + "start": 9303.54, + "end": 9305.38, + "probability": 0.7974 + }, + { + "start": 9305.5, + "end": 9309.34, + "probability": 0.988 + }, + { + "start": 9309.64, + "end": 9314.1, + "probability": 0.9961 + }, + { + "start": 9314.88, + "end": 9315.18, + "probability": 0.9345 + }, + { + "start": 9315.46, + "end": 9317.28, + "probability": 0.9645 + }, + { + "start": 9317.52, + "end": 9319.84, + "probability": 0.9764 + }, + { + "start": 9320.4, + "end": 9321.42, + "probability": 0.8311 + }, + { + "start": 9321.86, + "end": 9322.04, + "probability": 0.9114 + }, + { + "start": 9322.18, + "end": 9326.42, + "probability": 0.9819 + }, + { + "start": 9326.88, + "end": 9329.02, + "probability": 0.9702 + }, + { + "start": 9329.14, + "end": 9329.98, + "probability": 0.891 + }, + { + "start": 9330.6, + "end": 9333.24, + "probability": 0.744 + }, + { + "start": 9333.36, + "end": 9334.9, + "probability": 0.9946 + }, + { + "start": 9335.48, + "end": 9338.74, + "probability": 0.7046 + }, + { + "start": 9339.5, + "end": 9342.06, + "probability": 0.9373 + }, + { + "start": 9342.16, + "end": 9346.14, + "probability": 0.9841 + }, + { + "start": 9346.24, + "end": 9348.7, + "probability": 0.9779 + }, + { + "start": 9349.56, + "end": 9350.62, + "probability": 0.9518 + }, + { + "start": 9350.84, + "end": 9351.28, + "probability": 0.8936 + }, + { + "start": 9351.44, + "end": 9352.32, + "probability": 0.9149 + }, + { + "start": 9352.32, + "end": 9353.08, + "probability": 0.1216 + }, + { + "start": 9353.08, + "end": 9355.05, + "probability": 0.9862 + }, + { + "start": 9355.5, + "end": 9356.84, + "probability": 0.8867 + }, + { + "start": 9357.28, + "end": 9361.84, + "probability": 0.9232 + }, + { + "start": 9362.06, + "end": 9366.12, + "probability": 0.9758 + }, + { + "start": 9366.5, + "end": 9367.46, + "probability": 0.9413 + }, + { + "start": 9367.88, + "end": 9369.44, + "probability": 0.9569 + }, + { + "start": 9369.86, + "end": 9371.04, + "probability": 0.8861 + }, + { + "start": 9371.18, + "end": 9374.1, + "probability": 0.9907 + }, + { + "start": 9374.34, + "end": 9376.43, + "probability": 0.7738 + }, + { + "start": 9377.04, + "end": 9378.21, + "probability": 0.9924 + }, + { + "start": 9378.38, + "end": 9379.54, + "probability": 0.9674 + }, + { + "start": 9379.7, + "end": 9380.76, + "probability": 0.9714 + }, + { + "start": 9380.94, + "end": 9382.1, + "probability": 0.9214 + }, + { + "start": 9382.58, + "end": 9388.7, + "probability": 0.994 + }, + { + "start": 9389.12, + "end": 9391.5, + "probability": 0.9824 + }, + { + "start": 9392.1, + "end": 9395.1, + "probability": 0.974 + }, + { + "start": 9395.1, + "end": 9398.08, + "probability": 0.8414 + }, + { + "start": 9398.16, + "end": 9398.86, + "probability": 0.8554 + }, + { + "start": 9399.62, + "end": 9405.6, + "probability": 0.9786 + }, + { + "start": 9405.68, + "end": 9405.92, + "probability": 0.7374 + }, + { + "start": 9406.22, + "end": 9407.94, + "probability": 0.8133 + }, + { + "start": 9408.1, + "end": 9411.4, + "probability": 0.8435 + }, + { + "start": 9418.7, + "end": 9421.36, + "probability": 0.6753 + }, + { + "start": 9430.86, + "end": 9434.12, + "probability": 0.4732 + }, + { + "start": 9435.0, + "end": 9438.58, + "probability": 0.7286 + }, + { + "start": 9440.12, + "end": 9446.44, + "probability": 0.9149 + }, + { + "start": 9447.16, + "end": 9449.56, + "probability": 0.846 + }, + { + "start": 9451.22, + "end": 9458.06, + "probability": 0.9685 + }, + { + "start": 9458.06, + "end": 9462.3, + "probability": 0.9922 + }, + { + "start": 9462.46, + "end": 9463.34, + "probability": 0.4689 + }, + { + "start": 9464.16, + "end": 9467.0, + "probability": 0.9934 + }, + { + "start": 9467.72, + "end": 9471.54, + "probability": 0.6512 + }, + { + "start": 9472.32, + "end": 9473.94, + "probability": 0.9139 + }, + { + "start": 9474.8, + "end": 9477.86, + "probability": 0.965 + }, + { + "start": 9478.4, + "end": 9479.24, + "probability": 0.6434 + }, + { + "start": 9479.86, + "end": 9482.98, + "probability": 0.901 + }, + { + "start": 9483.74, + "end": 9490.44, + "probability": 0.9549 + }, + { + "start": 9492.34, + "end": 9495.14, + "probability": 0.7672 + }, + { + "start": 9495.22, + "end": 9495.88, + "probability": 0.5663 + }, + { + "start": 9496.34, + "end": 9499.76, + "probability": 0.9346 + }, + { + "start": 9500.7, + "end": 9507.5, + "probability": 0.9394 + }, + { + "start": 9508.54, + "end": 9509.1, + "probability": 0.6284 + }, + { + "start": 9509.14, + "end": 9513.06, + "probability": 0.6405 + }, + { + "start": 9513.06, + "end": 9513.34, + "probability": 0.5745 + }, + { + "start": 9515.06, + "end": 9517.77, + "probability": 0.9775 + }, + { + "start": 9518.3, + "end": 9522.74, + "probability": 0.7676 + }, + { + "start": 9523.58, + "end": 9525.1, + "probability": 0.7398 + }, + { + "start": 9527.1, + "end": 9528.18, + "probability": 0.8517 + }, + { + "start": 9528.22, + "end": 9530.68, + "probability": 0.9114 + }, + { + "start": 9531.06, + "end": 9532.0, + "probability": 0.9005 + }, + { + "start": 9532.1, + "end": 9533.14, + "probability": 0.6416 + }, + { + "start": 9534.22, + "end": 9539.82, + "probability": 0.8842 + }, + { + "start": 9540.5, + "end": 9541.04, + "probability": 0.2561 + }, + { + "start": 9542.3, + "end": 9543.1, + "probability": 0.9678 + }, + { + "start": 9543.2, + "end": 9544.95, + "probability": 0.9904 + }, + { + "start": 9545.9, + "end": 9548.32, + "probability": 0.9673 + }, + { + "start": 9548.48, + "end": 9552.94, + "probability": 0.9891 + }, + { + "start": 9553.56, + "end": 9555.52, + "probability": 0.726 + }, + { + "start": 9556.1, + "end": 9557.32, + "probability": 0.6835 + }, + { + "start": 9557.38, + "end": 9559.16, + "probability": 0.733 + }, + { + "start": 9559.2, + "end": 9560.54, + "probability": 0.7935 + }, + { + "start": 9561.12, + "end": 9564.64, + "probability": 0.7122 + }, + { + "start": 9564.64, + "end": 9566.78, + "probability": 0.9778 + }, + { + "start": 9567.12, + "end": 9569.88, + "probability": 0.9945 + }, + { + "start": 9571.58, + "end": 9573.3, + "probability": 0.8928 + }, + { + "start": 9573.44, + "end": 9576.56, + "probability": 0.944 + }, + { + "start": 9576.58, + "end": 9581.36, + "probability": 0.9416 + }, + { + "start": 9581.92, + "end": 9586.44, + "probability": 0.6756 + }, + { + "start": 9586.46, + "end": 9586.96, + "probability": 0.7424 + }, + { + "start": 9587.36, + "end": 9588.58, + "probability": 0.7568 + }, + { + "start": 9588.74, + "end": 9590.76, + "probability": 0.6357 + }, + { + "start": 9591.76, + "end": 9593.24, + "probability": 0.5665 + }, + { + "start": 9594.14, + "end": 9594.62, + "probability": 0.6895 + }, + { + "start": 9603.64, + "end": 9605.92, + "probability": 0.4866 + }, + { + "start": 9607.04, + "end": 9610.32, + "probability": 0.8689 + }, + { + "start": 9610.32, + "end": 9612.74, + "probability": 0.9713 + }, + { + "start": 9614.02, + "end": 9617.82, + "probability": 0.9808 + }, + { + "start": 9617.82, + "end": 9622.24, + "probability": 0.8012 + }, + { + "start": 9623.2, + "end": 9624.72, + "probability": 0.5098 + }, + { + "start": 9625.96, + "end": 9630.8, + "probability": 0.9928 + }, + { + "start": 9631.02, + "end": 9634.76, + "probability": 0.9886 + }, + { + "start": 9634.76, + "end": 9639.02, + "probability": 0.9316 + }, + { + "start": 9640.28, + "end": 9640.36, + "probability": 0.2266 + }, + { + "start": 9640.36, + "end": 9640.36, + "probability": 0.1903 + }, + { + "start": 9640.36, + "end": 9647.44, + "probability": 0.8938 + }, + { + "start": 9647.44, + "end": 9652.32, + "probability": 0.9971 + }, + { + "start": 9652.82, + "end": 9657.16, + "probability": 0.9819 + }, + { + "start": 9657.16, + "end": 9662.26, + "probability": 0.9622 + }, + { + "start": 9662.42, + "end": 9667.16, + "probability": 0.9154 + }, + { + "start": 9667.6, + "end": 9672.54, + "probability": 0.9059 + }, + { + "start": 9673.78, + "end": 9674.62, + "probability": 0.4053 + }, + { + "start": 9674.72, + "end": 9678.86, + "probability": 0.6504 + }, + { + "start": 9678.86, + "end": 9680.56, + "probability": 0.722 + }, + { + "start": 9680.7, + "end": 9681.94, + "probability": 0.5729 + }, + { + "start": 9682.08, + "end": 9683.98, + "probability": 0.8005 + }, + { + "start": 9684.56, + "end": 9686.34, + "probability": 0.7287 + }, + { + "start": 9686.56, + "end": 9689.96, + "probability": 0.833 + }, + { + "start": 9690.78, + "end": 9695.9, + "probability": 0.676 + }, + { + "start": 9696.38, + "end": 9697.84, + "probability": 0.6696 + }, + { + "start": 9697.9, + "end": 9701.56, + "probability": 0.7174 + }, + { + "start": 9702.02, + "end": 9704.74, + "probability": 0.9648 + }, + { + "start": 9705.2, + "end": 9710.58, + "probability": 0.6661 + }, + { + "start": 9711.24, + "end": 9713.42, + "probability": 0.6206 + }, + { + "start": 9713.54, + "end": 9716.28, + "probability": 0.7979 + }, + { + "start": 9716.72, + "end": 9720.08, + "probability": 0.8253 + }, + { + "start": 9720.66, + "end": 9724.74, + "probability": 0.7867 + }, + { + "start": 9724.74, + "end": 9727.36, + "probability": 0.8997 + }, + { + "start": 9728.42, + "end": 9732.74, + "probability": 0.7283 + }, + { + "start": 9733.26, + "end": 9735.6, + "probability": 0.3118 + }, + { + "start": 9735.8, + "end": 9737.56, + "probability": 0.7445 + }, + { + "start": 9738.14, + "end": 9742.02, + "probability": 0.5498 + }, + { + "start": 9742.42, + "end": 9745.16, + "probability": 0.8211 + }, + { + "start": 9745.84, + "end": 9749.84, + "probability": 0.7104 + }, + { + "start": 9750.22, + "end": 9754.1, + "probability": 0.7749 + }, + { + "start": 9754.3, + "end": 9755.69, + "probability": 0.8148 + }, + { + "start": 9756.92, + "end": 9762.76, + "probability": 0.6633 + }, + { + "start": 9763.24, + "end": 9766.72, + "probability": 0.8954 + }, + { + "start": 9767.3, + "end": 9768.9, + "probability": 0.8686 + }, + { + "start": 9769.3, + "end": 9770.88, + "probability": 0.8214 + }, + { + "start": 9771.3, + "end": 9780.08, + "probability": 0.9866 + }, + { + "start": 9780.24, + "end": 9782.68, + "probability": 0.8093 + }, + { + "start": 9783.26, + "end": 9784.94, + "probability": 0.9194 + }, + { + "start": 9785.04, + "end": 9786.96, + "probability": 0.8311 + }, + { + "start": 9787.3, + "end": 9790.87, + "probability": 0.9358 + }, + { + "start": 9791.08, + "end": 9792.34, + "probability": 0.5094 + }, + { + "start": 9792.42, + "end": 9794.12, + "probability": 0.6117 + }, + { + "start": 9794.22, + "end": 9797.84, + "probability": 0.9507 + }, + { + "start": 9798.04, + "end": 9803.78, + "probability": 0.9954 + }, + { + "start": 9803.78, + "end": 9807.92, + "probability": 0.9271 + }, + { + "start": 9808.12, + "end": 9813.16, + "probability": 0.9609 + }, + { + "start": 9813.16, + "end": 9819.98, + "probability": 0.9927 + }, + { + "start": 9820.06, + "end": 9820.68, + "probability": 0.5703 + }, + { + "start": 9820.88, + "end": 9822.3, + "probability": 0.6055 + }, + { + "start": 9822.36, + "end": 9830.22, + "probability": 0.8251 + }, + { + "start": 9830.24, + "end": 9830.64, + "probability": 0.8154 + }, + { + "start": 9841.2, + "end": 9842.24, + "probability": 0.5622 + }, + { + "start": 9843.26, + "end": 9844.22, + "probability": 0.3961 + }, + { + "start": 9844.96, + "end": 9845.94, + "probability": 0.7265 + }, + { + "start": 9846.94, + "end": 9851.4, + "probability": 0.9701 + }, + { + "start": 9852.46, + "end": 9861.78, + "probability": 0.9136 + }, + { + "start": 9861.78, + "end": 9867.78, + "probability": 0.9982 + }, + { + "start": 9868.36, + "end": 9871.92, + "probability": 0.9982 + }, + { + "start": 9871.92, + "end": 9876.62, + "probability": 0.9966 + }, + { + "start": 9878.26, + "end": 9882.68, + "probability": 0.9087 + }, + { + "start": 9882.84, + "end": 9886.06, + "probability": 0.8852 + }, + { + "start": 9887.4, + "end": 9889.8, + "probability": 0.9704 + }, + { + "start": 9890.0, + "end": 9892.96, + "probability": 0.8798 + }, + { + "start": 9893.5, + "end": 9899.48, + "probability": 0.8841 + }, + { + "start": 9900.02, + "end": 9904.16, + "probability": 0.9895 + }, + { + "start": 9904.9, + "end": 9906.16, + "probability": 0.4566 + }, + { + "start": 9906.68, + "end": 9908.12, + "probability": 0.9855 + }, + { + "start": 9908.36, + "end": 9909.7, + "probability": 0.9847 + }, + { + "start": 9909.8, + "end": 9913.66, + "probability": 0.9146 + }, + { + "start": 9914.5, + "end": 9915.86, + "probability": 0.8575 + }, + { + "start": 9916.44, + "end": 9923.08, + "probability": 0.9773 + }, + { + "start": 9923.9, + "end": 9925.03, + "probability": 0.5439 + }, + { + "start": 9925.78, + "end": 9928.22, + "probability": 0.9019 + }, + { + "start": 9928.56, + "end": 9932.44, + "probability": 0.6818 + }, + { + "start": 9933.02, + "end": 9936.2, + "probability": 0.9826 + }, + { + "start": 9937.6, + "end": 9938.64, + "probability": 0.6855 + }, + { + "start": 9938.72, + "end": 9941.51, + "probability": 0.9845 + }, + { + "start": 9941.96, + "end": 9943.0, + "probability": 0.9168 + }, + { + "start": 9943.16, + "end": 9945.52, + "probability": 0.671 + }, + { + "start": 9945.52, + "end": 9946.28, + "probability": 0.7787 + }, + { + "start": 9946.38, + "end": 9948.54, + "probability": 0.6923 + }, + { + "start": 9948.62, + "end": 9950.52, + "probability": 0.7965 + }, + { + "start": 9951.26, + "end": 9953.52, + "probability": 0.8487 + }, + { + "start": 9953.6, + "end": 9960.02, + "probability": 0.8947 + }, + { + "start": 9960.62, + "end": 9963.36, + "probability": 0.8293 + }, + { + "start": 9963.56, + "end": 9964.36, + "probability": 0.4071 + }, + { + "start": 9964.46, + "end": 9968.78, + "probability": 0.8113 + }, + { + "start": 9969.28, + "end": 9971.2, + "probability": 0.8991 + }, + { + "start": 9972.28, + "end": 9976.56, + "probability": 0.7303 + }, + { + "start": 9976.86, + "end": 9980.94, + "probability": 0.838 + }, + { + "start": 9981.28, + "end": 9987.26, + "probability": 0.986 + }, + { + "start": 9987.76, + "end": 9989.2, + "probability": 0.7684 + }, + { + "start": 9990.24, + "end": 9990.72, + "probability": 0.5084 + }, + { + "start": 9991.32, + "end": 9993.64, + "probability": 0.7365 + }, + { + "start": 9993.7, + "end": 10001.98, + "probability": 0.7498 + }, + { + "start": 10002.18, + "end": 10003.44, + "probability": 0.8112 + }, + { + "start": 10003.83, + "end": 10007.42, + "probability": 0.9438 + }, + { + "start": 10007.88, + "end": 10008.4, + "probability": 0.835 + }, + { + "start": 10008.54, + "end": 10008.98, + "probability": 0.3556 + }, + { + "start": 10009.04, + "end": 10014.42, + "probability": 0.9689 + }, + { + "start": 10015.08, + "end": 10023.88, + "probability": 0.9611 + }, + { + "start": 10023.96, + "end": 10029.38, + "probability": 0.984 + }, + { + "start": 10030.38, + "end": 10034.78, + "probability": 0.9737 + }, + { + "start": 10034.78, + "end": 10037.8, + "probability": 0.8174 + }, + { + "start": 10038.72, + "end": 10042.66, + "probability": 0.981 + }, + { + "start": 10042.82, + "end": 10048.58, + "probability": 0.7266 + }, + { + "start": 10049.12, + "end": 10050.02, + "probability": 0.5934 + }, + { + "start": 10050.08, + "end": 10051.7, + "probability": 0.807 + }, + { + "start": 10051.94, + "end": 10056.28, + "probability": 0.667 + }, + { + "start": 10056.36, + "end": 10057.92, + "probability": 0.7935 + }, + { + "start": 10058.0, + "end": 10064.58, + "probability": 0.9149 + }, + { + "start": 10064.58, + "end": 10070.68, + "probability": 0.9971 + }, + { + "start": 10072.16, + "end": 10074.68, + "probability": 0.8329 + }, + { + "start": 10075.32, + "end": 10076.24, + "probability": 0.553 + }, + { + "start": 10077.32, + "end": 10080.04, + "probability": 0.9976 + }, + { + "start": 10080.04, + "end": 10083.98, + "probability": 0.9302 + }, + { + "start": 10084.2, + "end": 10089.26, + "probability": 0.9892 + }, + { + "start": 10089.26, + "end": 10093.86, + "probability": 0.849 + }, + { + "start": 10094.14, + "end": 10094.9, + "probability": 0.4679 + }, + { + "start": 10095.38, + "end": 10097.12, + "probability": 0.8281 + }, + { + "start": 10097.76, + "end": 10103.2, + "probability": 0.9573 + }, + { + "start": 10103.96, + "end": 10107.82, + "probability": 0.9629 + }, + { + "start": 10107.94, + "end": 10109.36, + "probability": 0.8928 + }, + { + "start": 10110.5, + "end": 10111.74, + "probability": 0.8477 + }, + { + "start": 10112.42, + "end": 10115.56, + "probability": 0.9818 + }, + { + "start": 10116.1, + "end": 10118.54, + "probability": 0.763 + }, + { + "start": 10119.14, + "end": 10121.68, + "probability": 0.7588 + }, + { + "start": 10122.08, + "end": 10127.16, + "probability": 0.9645 + }, + { + "start": 10127.86, + "end": 10127.86, + "probability": 0.3079 + }, + { + "start": 10128.54, + "end": 10132.08, + "probability": 0.6553 + }, + { + "start": 10132.56, + "end": 10133.64, + "probability": 0.8783 + }, + { + "start": 10133.76, + "end": 10134.72, + "probability": 0.7563 + }, + { + "start": 10135.22, + "end": 10143.42, + "probability": 0.9885 + }, + { + "start": 10143.68, + "end": 10146.36, + "probability": 0.9207 + }, + { + "start": 10147.56, + "end": 10153.14, + "probability": 0.9904 + }, + { + "start": 10153.24, + "end": 10154.56, + "probability": 0.6938 + }, + { + "start": 10155.26, + "end": 10161.36, + "probability": 0.9596 + }, + { + "start": 10162.16, + "end": 10163.82, + "probability": 0.9829 + }, + { + "start": 10164.8, + "end": 10165.92, + "probability": 0.5181 + }, + { + "start": 10167.34, + "end": 10168.64, + "probability": 0.619 + }, + { + "start": 10170.16, + "end": 10174.48, + "probability": 0.9345 + }, + { + "start": 10175.4, + "end": 10178.36, + "probability": 0.995 + }, + { + "start": 10178.44, + "end": 10179.58, + "probability": 0.9808 + }, + { + "start": 10180.3, + "end": 10182.98, + "probability": 0.7476 + }, + { + "start": 10183.72, + "end": 10186.32, + "probability": 0.9176 + }, + { + "start": 10186.72, + "end": 10187.92, + "probability": 0.6875 + }, + { + "start": 10188.08, + "end": 10190.28, + "probability": 0.98 + }, + { + "start": 10194.5, + "end": 10197.98, + "probability": 0.9646 + }, + { + "start": 10198.52, + "end": 10201.42, + "probability": 0.9976 + }, + { + "start": 10201.42, + "end": 10204.38, + "probability": 0.9979 + }, + { + "start": 10205.08, + "end": 10205.64, + "probability": 0.5282 + }, + { + "start": 10205.82, + "end": 10208.86, + "probability": 0.9974 + }, + { + "start": 10209.02, + "end": 10212.48, + "probability": 0.8986 + }, + { + "start": 10212.56, + "end": 10214.54, + "probability": 0.4612 + }, + { + "start": 10214.6, + "end": 10214.6, + "probability": 0.5118 + }, + { + "start": 10214.62, + "end": 10217.96, + "probability": 0.904 + }, + { + "start": 10218.58, + "end": 10220.1, + "probability": 0.5016 + }, + { + "start": 10221.28, + "end": 10224.26, + "probability": 0.5288 + }, + { + "start": 10224.86, + "end": 10225.84, + "probability": 0.6044 + }, + { + "start": 10225.9, + "end": 10228.58, + "probability": 0.8851 + }, + { + "start": 10228.64, + "end": 10230.18, + "probability": 0.9216 + }, + { + "start": 10230.26, + "end": 10231.62, + "probability": 0.9352 + }, + { + "start": 10231.94, + "end": 10232.44, + "probability": 0.3719 + }, + { + "start": 10232.92, + "end": 10233.46, + "probability": 0.835 + }, + { + "start": 10233.54, + "end": 10234.08, + "probability": 0.5353 + }, + { + "start": 10234.66, + "end": 10237.32, + "probability": 0.8737 + }, + { + "start": 10238.0, + "end": 10240.54, + "probability": 0.8239 + }, + { + "start": 10241.94, + "end": 10243.64, + "probability": 0.6449 + }, + { + "start": 10244.02, + "end": 10247.6, + "probability": 0.9787 + }, + { + "start": 10248.34, + "end": 10248.8, + "probability": 0.5779 + }, + { + "start": 10249.36, + "end": 10252.7, + "probability": 0.9577 + }, + { + "start": 10252.78, + "end": 10254.02, + "probability": 0.454 + }, + { + "start": 10254.16, + "end": 10254.82, + "probability": 0.916 + }, + { + "start": 10254.98, + "end": 10255.18, + "probability": 0.6758 + }, + { + "start": 10255.24, + "end": 10256.22, + "probability": 0.9232 + }, + { + "start": 10256.26, + "end": 10257.54, + "probability": 0.7643 + }, + { + "start": 10257.56, + "end": 10257.63, + "probability": 0.022 + }, + { + "start": 10258.16, + "end": 10259.46, + "probability": 0.9888 + }, + { + "start": 10259.5, + "end": 10262.0, + "probability": 0.7428 + }, + { + "start": 10262.52, + "end": 10265.67, + "probability": 0.753 + }, + { + "start": 10266.88, + "end": 10267.67, + "probability": 0.9236 + }, + { + "start": 10267.8, + "end": 10268.7, + "probability": 0.9268 + }, + { + "start": 10268.78, + "end": 10269.06, + "probability": 0.59 + }, + { + "start": 10269.08, + "end": 10271.08, + "probability": 0.968 + }, + { + "start": 10271.7, + "end": 10274.2, + "probability": 0.9906 + }, + { + "start": 10274.66, + "end": 10275.88, + "probability": 0.4926 + }, + { + "start": 10276.5, + "end": 10278.86, + "probability": 0.8414 + }, + { + "start": 10279.48, + "end": 10286.98, + "probability": 0.795 + }, + { + "start": 10287.48, + "end": 10288.06, + "probability": 0.894 + }, + { + "start": 10288.1, + "end": 10292.64, + "probability": 0.978 + }, + { + "start": 10293.68, + "end": 10295.52, + "probability": 0.9473 + }, + { + "start": 10296.0, + "end": 10297.78, + "probability": 0.8859 + }, + { + "start": 10297.84, + "end": 10298.58, + "probability": 0.7788 + }, + { + "start": 10298.88, + "end": 10301.26, + "probability": 0.9907 + }, + { + "start": 10301.58, + "end": 10303.24, + "probability": 0.9531 + }, + { + "start": 10303.48, + "end": 10305.98, + "probability": 0.9955 + }, + { + "start": 10306.4, + "end": 10308.38, + "probability": 0.846 + }, + { + "start": 10308.46, + "end": 10309.28, + "probability": 0.7987 + }, + { + "start": 10310.24, + "end": 10313.68, + "probability": 0.986 + }, + { + "start": 10314.54, + "end": 10316.96, + "probability": 0.9623 + }, + { + "start": 10317.06, + "end": 10317.4, + "probability": 0.6475 + }, + { + "start": 10317.48, + "end": 10319.32, + "probability": 0.7881 + }, + { + "start": 10319.32, + "end": 10319.9, + "probability": 0.2052 + }, + { + "start": 10320.38, + "end": 10325.2, + "probability": 0.6896 + }, + { + "start": 10325.58, + "end": 10327.5, + "probability": 0.6256 + }, + { + "start": 10327.58, + "end": 10329.02, + "probability": 0.9659 + }, + { + "start": 10329.38, + "end": 10329.9, + "probability": 0.9499 + }, + { + "start": 10330.16, + "end": 10333.04, + "probability": 0.4338 + }, + { + "start": 10333.9, + "end": 10333.9, + "probability": 0.1923 + }, + { + "start": 10333.9, + "end": 10333.92, + "probability": 0.0697 + }, + { + "start": 10333.92, + "end": 10335.96, + "probability": 0.1746 + }, + { + "start": 10336.36, + "end": 10338.54, + "probability": 0.8124 + }, + { + "start": 10338.56, + "end": 10340.7, + "probability": 0.8453 + }, + { + "start": 10340.82, + "end": 10345.84, + "probability": 0.9208 + }, + { + "start": 10346.06, + "end": 10348.16, + "probability": 0.6381 + }, + { + "start": 10348.84, + "end": 10351.82, + "probability": 0.925 + }, + { + "start": 10352.56, + "end": 10353.84, + "probability": 0.6261 + }, + { + "start": 10354.38, + "end": 10359.2, + "probability": 0.9176 + }, + { + "start": 10359.82, + "end": 10363.12, + "probability": 0.998 + }, + { + "start": 10363.12, + "end": 10366.7, + "probability": 0.9111 + }, + { + "start": 10367.18, + "end": 10368.36, + "probability": 0.8411 + }, + { + "start": 10368.66, + "end": 10371.36, + "probability": 0.9886 + }, + { + "start": 10371.82, + "end": 10375.12, + "probability": 0.8867 + }, + { + "start": 10375.24, + "end": 10376.08, + "probability": 0.9026 + }, + { + "start": 10376.3, + "end": 10376.72, + "probability": 0.9302 + }, + { + "start": 10377.7, + "end": 10379.3, + "probability": 0.9379 + }, + { + "start": 10379.64, + "end": 10382.96, + "probability": 0.8903 + }, + { + "start": 10382.96, + "end": 10386.14, + "probability": 0.9688 + }, + { + "start": 10386.22, + "end": 10386.68, + "probability": 0.6444 + }, + { + "start": 10386.68, + "end": 10387.4, + "probability": 0.6671 + }, + { + "start": 10388.0, + "end": 10390.16, + "probability": 0.5115 + }, + { + "start": 10390.52, + "end": 10391.48, + "probability": 0.348 + }, + { + "start": 10391.48, + "end": 10392.14, + "probability": 0.7831 + }, + { + "start": 10392.24, + "end": 10392.88, + "probability": 0.7831 + }, + { + "start": 10400.02, + "end": 10401.22, + "probability": 0.9883 + }, + { + "start": 10401.74, + "end": 10402.18, + "probability": 0.4999 + }, + { + "start": 10402.52, + "end": 10403.33, + "probability": 0.5069 + }, + { + "start": 10403.74, + "end": 10404.66, + "probability": 0.9492 + }, + { + "start": 10404.68, + "end": 10407.48, + "probability": 0.9556 + }, + { + "start": 10407.54, + "end": 10409.3, + "probability": 0.8521 + }, + { + "start": 10410.22, + "end": 10410.71, + "probability": 0.7674 + }, + { + "start": 10410.92, + "end": 10411.2, + "probability": 0.7001 + }, + { + "start": 10411.38, + "end": 10415.24, + "probability": 0.8157 + }, + { + "start": 10415.56, + "end": 10418.92, + "probability": 0.783 + }, + { + "start": 10419.34, + "end": 10420.4, + "probability": 0.8703 + }, + { + "start": 10423.1, + "end": 10425.02, + "probability": 0.7389 + }, + { + "start": 10425.14, + "end": 10426.3, + "probability": 0.8391 + }, + { + "start": 10426.38, + "end": 10426.84, + "probability": 0.4309 + }, + { + "start": 10435.9, + "end": 10435.9, + "probability": 0.3583 + }, + { + "start": 10435.9, + "end": 10435.98, + "probability": 0.1534 + }, + { + "start": 10435.98, + "end": 10438.24, + "probability": 0.5063 + }, + { + "start": 10438.3, + "end": 10439.96, + "probability": 0.5459 + }, + { + "start": 10440.56, + "end": 10441.22, + "probability": 0.4859 + }, + { + "start": 10441.52, + "end": 10443.75, + "probability": 0.7715 + }, + { + "start": 10445.46, + "end": 10445.9, + "probability": 0.5591 + }, + { + "start": 10446.02, + "end": 10447.51, + "probability": 0.8335 + }, + { + "start": 10448.02, + "end": 10450.14, + "probability": 0.9481 + }, + { + "start": 10450.48, + "end": 10451.44, + "probability": 0.0372 + }, + { + "start": 10453.28, + "end": 10455.18, + "probability": 0.1047 + }, + { + "start": 10460.42, + "end": 10460.98, + "probability": 0.022 + }, + { + "start": 10465.06, + "end": 10465.22, + "probability": 0.2276 + }, + { + "start": 10465.22, + "end": 10465.56, + "probability": 0.038 + }, + { + "start": 10467.38, + "end": 10467.38, + "probability": 0.0695 + }, + { + "start": 10467.44, + "end": 10468.78, + "probability": 0.3121 + }, + { + "start": 10474.14, + "end": 10476.42, + "probability": 0.6429 + }, + { + "start": 10477.36, + "end": 10483.05, + "probability": 0.967 + }, + { + "start": 10483.4, + "end": 10486.94, + "probability": 0.9988 + }, + { + "start": 10486.94, + "end": 10492.66, + "probability": 0.9977 + }, + { + "start": 10493.72, + "end": 10497.84, + "probability": 0.7819 + }, + { + "start": 10498.68, + "end": 10500.51, + "probability": 0.9504 + }, + { + "start": 10501.86, + "end": 10508.62, + "probability": 0.9878 + }, + { + "start": 10510.06, + "end": 10513.9, + "probability": 0.9925 + }, + { + "start": 10514.78, + "end": 10516.98, + "probability": 0.9993 + }, + { + "start": 10516.98, + "end": 10522.1, + "probability": 0.9067 + }, + { + "start": 10522.6, + "end": 10524.2, + "probability": 0.6405 + }, + { + "start": 10524.44, + "end": 10526.24, + "probability": 0.936 + }, + { + "start": 10526.74, + "end": 10528.77, + "probability": 0.9673 + }, + { + "start": 10529.46, + "end": 10532.1, + "probability": 0.953 + }, + { + "start": 10532.7, + "end": 10536.3, + "probability": 0.9619 + }, + { + "start": 10537.28, + "end": 10542.0, + "probability": 0.9744 + }, + { + "start": 10542.84, + "end": 10545.72, + "probability": 0.9814 + }, + { + "start": 10546.4, + "end": 10549.68, + "probability": 0.8071 + }, + { + "start": 10549.96, + "end": 10550.88, + "probability": 0.7158 + }, + { + "start": 10551.22, + "end": 10552.38, + "probability": 0.9731 + }, + { + "start": 10552.46, + "end": 10553.3, + "probability": 0.7785 + }, + { + "start": 10553.66, + "end": 10554.64, + "probability": 0.916 + }, + { + "start": 10555.48, + "end": 10559.96, + "probability": 0.9939 + }, + { + "start": 10560.38, + "end": 10565.64, + "probability": 0.9255 + }, + { + "start": 10566.1, + "end": 10567.46, + "probability": 0.9183 + }, + { + "start": 10568.18, + "end": 10573.02, + "probability": 0.9991 + }, + { + "start": 10573.8, + "end": 10575.74, + "probability": 0.9934 + }, + { + "start": 10576.02, + "end": 10579.1, + "probability": 0.9534 + }, + { + "start": 10579.24, + "end": 10580.26, + "probability": 0.9349 + }, + { + "start": 10580.94, + "end": 10584.22, + "probability": 0.9332 + }, + { + "start": 10584.38, + "end": 10585.5, + "probability": 0.8834 + }, + { + "start": 10589.7, + "end": 10590.94, + "probability": 0.0087 + }, + { + "start": 10591.06, + "end": 10591.36, + "probability": 0.0118 + }, + { + "start": 10591.36, + "end": 10592.98, + "probability": 0.7542 + }, + { + "start": 10593.24, + "end": 10595.84, + "probability": 0.9065 + }, + { + "start": 10596.14, + "end": 10597.26, + "probability": 0.8198 + }, + { + "start": 10597.76, + "end": 10598.32, + "probability": 0.2354 + }, + { + "start": 10598.52, + "end": 10601.36, + "probability": 0.8347 + }, + { + "start": 10601.5, + "end": 10604.06, + "probability": 0.8908 + }, + { + "start": 10604.22, + "end": 10606.7, + "probability": 0.6076 + }, + { + "start": 10606.76, + "end": 10609.3, + "probability": 0.4516 + }, + { + "start": 10609.68, + "end": 10613.38, + "probability": 0.4386 + }, + { + "start": 10613.42, + "end": 10614.54, + "probability": 0.7681 + }, + { + "start": 10615.08, + "end": 10616.38, + "probability": 0.8476 + }, + { + "start": 10616.48, + "end": 10619.06, + "probability": 0.9154 + }, + { + "start": 10619.32, + "end": 10621.58, + "probability": 0.9482 + }, + { + "start": 10622.34, + "end": 10624.06, + "probability": 0.817 + }, + { + "start": 10624.08, + "end": 10626.14, + "probability": 0.8394 + }, + { + "start": 10626.14, + "end": 10628.56, + "probability": 0.9966 + }, + { + "start": 10628.92, + "end": 10630.66, + "probability": 0.791 + }, + { + "start": 10630.78, + "end": 10631.3, + "probability": 0.6984 + }, + { + "start": 10631.46, + "end": 10632.74, + "probability": 0.5955 + }, + { + "start": 10632.98, + "end": 10634.1, + "probability": 0.9922 + }, + { + "start": 10634.8, + "end": 10636.58, + "probability": 0.9905 + }, + { + "start": 10636.74, + "end": 10638.6, + "probability": 0.9946 + }, + { + "start": 10638.84, + "end": 10640.46, + "probability": 0.9181 + }, + { + "start": 10640.56, + "end": 10643.88, + "probability": 0.9871 + }, + { + "start": 10644.24, + "end": 10647.56, + "probability": 0.9336 + }, + { + "start": 10647.58, + "end": 10648.64, + "probability": 0.7484 + }, + { + "start": 10648.72, + "end": 10649.64, + "probability": 0.7705 + }, + { + "start": 10649.8, + "end": 10650.24, + "probability": 0.5664 + }, + { + "start": 10650.28, + "end": 10651.48, + "probability": 0.8793 + }, + { + "start": 10651.66, + "end": 10654.22, + "probability": 0.9337 + }, + { + "start": 10654.28, + "end": 10657.8, + "probability": 0.9531 + }, + { + "start": 10657.94, + "end": 10659.52, + "probability": 0.9843 + }, + { + "start": 10659.84, + "end": 10661.66, + "probability": 0.9216 + }, + { + "start": 10661.76, + "end": 10663.66, + "probability": 0.8068 + }, + { + "start": 10664.0, + "end": 10666.8, + "probability": 0.9958 + }, + { + "start": 10666.8, + "end": 10669.84, + "probability": 0.9649 + }, + { + "start": 10669.98, + "end": 10672.34, + "probability": 0.808 + }, + { + "start": 10672.46, + "end": 10675.98, + "probability": 0.9846 + }, + { + "start": 10676.18, + "end": 10678.92, + "probability": 0.9849 + }, + { + "start": 10678.92, + "end": 10681.12, + "probability": 0.9896 + }, + { + "start": 10681.26, + "end": 10682.85, + "probability": 0.9858 + }, + { + "start": 10683.32, + "end": 10684.58, + "probability": 0.4167 + }, + { + "start": 10684.68, + "end": 10686.52, + "probability": 0.5816 + }, + { + "start": 10687.12, + "end": 10690.36, + "probability": 0.998 + }, + { + "start": 10690.36, + "end": 10693.12, + "probability": 0.6934 + }, + { + "start": 10693.42, + "end": 10697.2, + "probability": 0.8431 + }, + { + "start": 10697.34, + "end": 10700.36, + "probability": 0.8333 + }, + { + "start": 10700.62, + "end": 10701.6, + "probability": 0.9214 + }, + { + "start": 10701.88, + "end": 10704.58, + "probability": 0.8274 + }, + { + "start": 10704.86, + "end": 10707.1, + "probability": 0.9135 + }, + { + "start": 10707.18, + "end": 10709.58, + "probability": 0.9543 + }, + { + "start": 10709.68, + "end": 10711.92, + "probability": 0.7894 + }, + { + "start": 10712.26, + "end": 10715.4, + "probability": 0.998 + }, + { + "start": 10715.48, + "end": 10716.12, + "probability": 0.8431 + }, + { + "start": 10716.42, + "end": 10718.52, + "probability": 0.9902 + }, + { + "start": 10718.76, + "end": 10720.46, + "probability": 0.991 + }, + { + "start": 10720.68, + "end": 10723.06, + "probability": 0.9805 + }, + { + "start": 10723.3, + "end": 10724.86, + "probability": 0.9814 + }, + { + "start": 10725.08, + "end": 10727.84, + "probability": 0.7358 + }, + { + "start": 10728.06, + "end": 10729.36, + "probability": 0.9752 + }, + { + "start": 10729.44, + "end": 10730.64, + "probability": 0.9976 + }, + { + "start": 10730.74, + "end": 10733.1, + "probability": 0.9971 + }, + { + "start": 10733.18, + "end": 10736.04, + "probability": 0.9857 + }, + { + "start": 10736.42, + "end": 10736.94, + "probability": 0.5018 + }, + { + "start": 10737.02, + "end": 10739.72, + "probability": 0.9533 + }, + { + "start": 10739.76, + "end": 10740.68, + "probability": 0.5559 + }, + { + "start": 10740.68, + "end": 10741.68, + "probability": 0.6792 + }, + { + "start": 10741.76, + "end": 10743.16, + "probability": 0.6595 + }, + { + "start": 10743.98, + "end": 10744.78, + "probability": 0.5219 + }, + { + "start": 10745.3, + "end": 10746.58, + "probability": 0.9383 + }, + { + "start": 10763.06, + "end": 10764.36, + "probability": 0.6555 + }, + { + "start": 10764.48, + "end": 10764.54, + "probability": 0.4708 + }, + { + "start": 10764.54, + "end": 10765.54, + "probability": 0.8336 + }, + { + "start": 10765.8, + "end": 10766.84, + "probability": 0.9098 + }, + { + "start": 10767.46, + "end": 10770.12, + "probability": 0.9553 + }, + { + "start": 10770.38, + "end": 10772.52, + "probability": 0.6907 + }, + { + "start": 10773.24, + "end": 10775.98, + "probability": 0.9456 + }, + { + "start": 10775.98, + "end": 10779.32, + "probability": 0.9888 + }, + { + "start": 10779.64, + "end": 10781.08, + "probability": 0.8954 + }, + { + "start": 10781.48, + "end": 10784.24, + "probability": 0.8573 + }, + { + "start": 10784.28, + "end": 10784.82, + "probability": 0.5756 + }, + { + "start": 10785.06, + "end": 10786.4, + "probability": 0.8188 + }, + { + "start": 10786.48, + "end": 10789.58, + "probability": 0.6613 + }, + { + "start": 10789.68, + "end": 10790.78, + "probability": 0.7494 + }, + { + "start": 10790.96, + "end": 10792.9, + "probability": 0.7291 + }, + { + "start": 10793.36, + "end": 10795.3, + "probability": 0.5193 + }, + { + "start": 10795.5, + "end": 10797.2, + "probability": 0.9976 + }, + { + "start": 10798.12, + "end": 10799.44, + "probability": 0.7095 + }, + { + "start": 10799.64, + "end": 10805.58, + "probability": 0.9775 + }, + { + "start": 10805.66, + "end": 10809.06, + "probability": 0.9925 + }, + { + "start": 10809.4, + "end": 10812.56, + "probability": 0.9913 + }, + { + "start": 10812.56, + "end": 10814.66, + "probability": 0.925 + }, + { + "start": 10814.96, + "end": 10815.44, + "probability": 0.6973 + }, + { + "start": 10815.5, + "end": 10817.36, + "probability": 0.9395 + }, + { + "start": 10817.36, + "end": 10818.06, + "probability": 0.983 + }, + { + "start": 10818.1, + "end": 10819.36, + "probability": 0.909 + }, + { + "start": 10819.46, + "end": 10820.22, + "probability": 0.6874 + }, + { + "start": 10820.26, + "end": 10824.36, + "probability": 0.9494 + }, + { + "start": 10825.0, + "end": 10831.48, + "probability": 0.9949 + }, + { + "start": 10832.08, + "end": 10835.18, + "probability": 0.9983 + }, + { + "start": 10835.74, + "end": 10839.28, + "probability": 0.9825 + }, + { + "start": 10839.28, + "end": 10844.7, + "probability": 0.6841 + }, + { + "start": 10844.86, + "end": 10849.74, + "probability": 0.7952 + }, + { + "start": 10849.86, + "end": 10852.04, + "probability": 0.9092 + }, + { + "start": 10852.38, + "end": 10853.92, + "probability": 0.9976 + }, + { + "start": 10854.62, + "end": 10857.18, + "probability": 0.9892 + }, + { + "start": 10857.34, + "end": 10859.84, + "probability": 0.9968 + }, + { + "start": 10860.6, + "end": 10864.02, + "probability": 0.5765 + }, + { + "start": 10864.32, + "end": 10867.34, + "probability": 0.6143 + }, + { + "start": 10868.18, + "end": 10869.64, + "probability": 0.6032 + }, + { + "start": 10869.64, + "end": 10873.08, + "probability": 0.6968 + }, + { + "start": 10873.5, + "end": 10873.5, + "probability": 0.1866 + }, + { + "start": 10873.5, + "end": 10875.22, + "probability": 0.395 + }, + { + "start": 10875.5, + "end": 10877.46, + "probability": 0.993 + }, + { + "start": 10877.46, + "end": 10878.95, + "probability": 0.4785 + }, + { + "start": 10879.3, + "end": 10884.4, + "probability": 0.9891 + }, + { + "start": 10884.78, + "end": 10886.82, + "probability": 0.7294 + }, + { + "start": 10886.98, + "end": 10887.92, + "probability": 0.911 + }, + { + "start": 10888.02, + "end": 10888.46, + "probability": 0.862 + }, + { + "start": 10888.52, + "end": 10890.38, + "probability": 0.9897 + }, + { + "start": 10892.4, + "end": 10895.26, + "probability": 0.7693 + }, + { + "start": 10895.32, + "end": 10896.5, + "probability": 0.77 + }, + { + "start": 10896.56, + "end": 10897.26, + "probability": 0.8975 + }, + { + "start": 10897.8, + "end": 10900.48, + "probability": 0.5613 + }, + { + "start": 10901.22, + "end": 10901.99, + "probability": 0.9897 + }, + { + "start": 10902.62, + "end": 10903.88, + "probability": 0.4953 + }, + { + "start": 10904.08, + "end": 10908.2, + "probability": 0.6249 + }, + { + "start": 10908.2, + "end": 10910.8, + "probability": 0.8986 + }, + { + "start": 10910.88, + "end": 10913.6, + "probability": 0.9297 + }, + { + "start": 10914.32, + "end": 10917.76, + "probability": 0.8986 + }, + { + "start": 10918.36, + "end": 10921.48, + "probability": 0.9123 + }, + { + "start": 10921.74, + "end": 10924.39, + "probability": 0.9902 + }, + { + "start": 10925.34, + "end": 10929.52, + "probability": 0.9156 + }, + { + "start": 10929.68, + "end": 10936.54, + "probability": 0.9463 + }, + { + "start": 10937.38, + "end": 10942.16, + "probability": 0.9911 + }, + { + "start": 10942.72, + "end": 10945.32, + "probability": 0.9919 + }, + { + "start": 10945.5, + "end": 10946.2, + "probability": 0.7607 + }, + { + "start": 10946.3, + "end": 10949.3, + "probability": 0.8782 + }, + { + "start": 10949.58, + "end": 10950.72, + "probability": 0.9616 + }, + { + "start": 10950.94, + "end": 10951.7, + "probability": 0.7952 + }, + { + "start": 10951.82, + "end": 10952.96, + "probability": 0.9009 + }, + { + "start": 10953.28, + "end": 10956.2, + "probability": 0.9917 + }, + { + "start": 10956.74, + "end": 10960.3, + "probability": 0.9209 + }, + { + "start": 10960.68, + "end": 10961.9, + "probability": 0.7957 + }, + { + "start": 10962.18, + "end": 10964.52, + "probability": 0.9697 + }, + { + "start": 10964.76, + "end": 10969.16, + "probability": 0.9923 + }, + { + "start": 10969.22, + "end": 10971.36, + "probability": 0.9958 + }, + { + "start": 10971.56, + "end": 10973.07, + "probability": 0.9958 + }, + { + "start": 10973.96, + "end": 10978.24, + "probability": 0.7178 + }, + { + "start": 10978.3, + "end": 10978.58, + "probability": 0.3536 + }, + { + "start": 10978.86, + "end": 10978.86, + "probability": 0.6753 + }, + { + "start": 10978.86, + "end": 10978.86, + "probability": 0.7096 + }, + { + "start": 10979.12, + "end": 10981.33, + "probability": 0.984 + }, + { + "start": 10981.84, + "end": 10983.9, + "probability": 0.9976 + }, + { + "start": 10984.22, + "end": 10985.61, + "probability": 0.9838 + }, + { + "start": 10985.92, + "end": 10988.16, + "probability": 0.8002 + }, + { + "start": 10988.89, + "end": 10990.72, + "probability": 0.9561 + }, + { + "start": 11012.02, + "end": 11013.14, + "probability": 0.6756 + }, + { + "start": 11018.9, + "end": 11022.14, + "probability": 0.53 + }, + { + "start": 11023.68, + "end": 11024.82, + "probability": 0.7509 + }, + { + "start": 11025.76, + "end": 11029.22, + "probability": 0.3457 + }, + { + "start": 11029.22, + "end": 11035.32, + "probability": 0.825 + }, + { + "start": 11036.28, + "end": 11044.64, + "probability": 0.9966 + }, + { + "start": 11045.08, + "end": 11047.88, + "probability": 0.8724 + }, + { + "start": 11047.88, + "end": 11053.58, + "probability": 0.9797 + }, + { + "start": 11054.64, + "end": 11058.22, + "probability": 0.8794 + }, + { + "start": 11058.88, + "end": 11060.02, + "probability": 0.8926 + }, + { + "start": 11060.56, + "end": 11063.42, + "probability": 0.7109 + }, + { + "start": 11064.32, + "end": 11064.88, + "probability": 0.6687 + }, + { + "start": 11064.96, + "end": 11068.6, + "probability": 0.9706 + }, + { + "start": 11069.56, + "end": 11072.62, + "probability": 0.9419 + }, + { + "start": 11072.62, + "end": 11073.78, + "probability": 0.9014 + }, + { + "start": 11074.48, + "end": 11078.42, + "probability": 0.9918 + }, + { + "start": 11078.42, + "end": 11082.26, + "probability": 0.949 + }, + { + "start": 11083.06, + "end": 11088.18, + "probability": 0.8029 + }, + { + "start": 11088.62, + "end": 11089.89, + "probability": 0.9091 + }, + { + "start": 11090.4, + "end": 11092.92, + "probability": 0.9896 + }, + { + "start": 11093.3, + "end": 11094.68, + "probability": 0.6196 + }, + { + "start": 11095.52, + "end": 11097.24, + "probability": 0.8299 + }, + { + "start": 11097.52, + "end": 11101.74, + "probability": 0.9874 + }, + { + "start": 11102.12, + "end": 11105.76, + "probability": 0.7793 + }, + { + "start": 11105.76, + "end": 11108.9, + "probability": 0.8037 + }, + { + "start": 11109.32, + "end": 11113.22, + "probability": 0.9291 + }, + { + "start": 11113.54, + "end": 11114.68, + "probability": 0.8895 + }, + { + "start": 11114.94, + "end": 11116.16, + "probability": 0.6641 + }, + { + "start": 11116.72, + "end": 11118.04, + "probability": 0.8266 + }, + { + "start": 11118.28, + "end": 11119.4, + "probability": 0.8071 + }, + { + "start": 11119.9, + "end": 11123.64, + "probability": 0.7178 + }, + { + "start": 11123.72, + "end": 11127.68, + "probability": 0.9814 + }, + { + "start": 11127.8, + "end": 11128.82, + "probability": 0.9279 + }, + { + "start": 11129.08, + "end": 11133.92, + "probability": 0.9746 + }, + { + "start": 11134.5, + "end": 11136.36, + "probability": 0.5019 + }, + { + "start": 11136.88, + "end": 11140.42, + "probability": 0.7358 + }, + { + "start": 11140.88, + "end": 11143.56, + "probability": 0.8146 + }, + { + "start": 11144.06, + "end": 11144.98, + "probability": 0.7077 + }, + { + "start": 11145.46, + "end": 11148.42, + "probability": 0.329 + }, + { + "start": 11148.5, + "end": 11149.56, + "probability": 0.4179 + }, + { + "start": 11149.82, + "end": 11151.82, + "probability": 0.8682 + }, + { + "start": 11151.92, + "end": 11155.94, + "probability": 0.9467 + }, + { + "start": 11156.28, + "end": 11160.88, + "probability": 0.9963 + }, + { + "start": 11161.32, + "end": 11166.34, + "probability": 0.996 + }, + { + "start": 11166.34, + "end": 11170.24, + "probability": 0.9995 + }, + { + "start": 11171.2, + "end": 11177.96, + "probability": 0.999 + }, + { + "start": 11178.28, + "end": 11181.12, + "probability": 0.9675 + }, + { + "start": 11181.82, + "end": 11183.58, + "probability": 0.9971 + }, + { + "start": 11184.08, + "end": 11188.48, + "probability": 0.9917 + }, + { + "start": 11188.74, + "end": 11190.8, + "probability": 0.9034 + }, + { + "start": 11191.02, + "end": 11194.72, + "probability": 0.88 + }, + { + "start": 11195.04, + "end": 11199.96, + "probability": 0.9614 + }, + { + "start": 11200.46, + "end": 11203.28, + "probability": 0.9719 + }, + { + "start": 11203.7, + "end": 11206.36, + "probability": 0.9253 + }, + { + "start": 11206.82, + "end": 11209.36, + "probability": 0.7071 + }, + { + "start": 11209.36, + "end": 11211.88, + "probability": 0.925 + }, + { + "start": 11211.92, + "end": 11212.48, + "probability": 0.6514 + }, + { + "start": 11213.96, + "end": 11214.56, + "probability": 0.2977 + }, + { + "start": 11214.56, + "end": 11215.2, + "probability": 0.4543 + }, + { + "start": 11215.96, + "end": 11217.78, + "probability": 0.6002 + }, + { + "start": 11233.14, + "end": 11233.34, + "probability": 0.0407 + }, + { + "start": 11233.34, + "end": 11234.4, + "probability": 0.6547 + }, + { + "start": 11235.42, + "end": 11237.72, + "probability": 0.7638 + }, + { + "start": 11239.14, + "end": 11240.6, + "probability": 0.7642 + }, + { + "start": 11243.7, + "end": 11244.63, + "probability": 0.7612 + }, + { + "start": 11245.82, + "end": 11248.26, + "probability": 0.9767 + }, + { + "start": 11249.44, + "end": 11250.36, + "probability": 0.3718 + }, + { + "start": 11250.54, + "end": 11251.47, + "probability": 0.9192 + }, + { + "start": 11252.78, + "end": 11259.04, + "probability": 0.9761 + }, + { + "start": 11259.88, + "end": 11262.24, + "probability": 0.9104 + }, + { + "start": 11262.32, + "end": 11262.68, + "probability": 0.7427 + }, + { + "start": 11262.84, + "end": 11265.62, + "probability": 0.9297 + }, + { + "start": 11265.72, + "end": 11267.08, + "probability": 0.9346 + }, + { + "start": 11268.08, + "end": 11273.78, + "probability": 0.928 + }, + { + "start": 11274.78, + "end": 11279.19, + "probability": 0.9961 + }, + { + "start": 11279.38, + "end": 11284.44, + "probability": 0.9948 + }, + { + "start": 11285.26, + "end": 11288.36, + "probability": 0.8181 + }, + { + "start": 11288.68, + "end": 11289.62, + "probability": 0.6029 + }, + { + "start": 11289.98, + "end": 11290.6, + "probability": 0.7441 + }, + { + "start": 11291.22, + "end": 11294.48, + "probability": 0.9872 + }, + { + "start": 11295.49, + "end": 11298.82, + "probability": 0.9738 + }, + { + "start": 11299.28, + "end": 11300.42, + "probability": 0.7475 + }, + { + "start": 11301.46, + "end": 11305.24, + "probability": 0.9797 + }, + { + "start": 11305.94, + "end": 11309.02, + "probability": 0.6779 + }, + { + "start": 11309.06, + "end": 11310.66, + "probability": 0.4837 + }, + { + "start": 11311.46, + "end": 11312.62, + "probability": 0.5808 + }, + { + "start": 11313.08, + "end": 11318.3, + "probability": 0.9626 + }, + { + "start": 11319.34, + "end": 11323.76, + "probability": 0.7502 + }, + { + "start": 11323.82, + "end": 11325.88, + "probability": 0.4338 + }, + { + "start": 11327.18, + "end": 11327.64, + "probability": 0.5978 + }, + { + "start": 11327.92, + "end": 11331.76, + "probability": 0.8748 + }, + { + "start": 11333.02, + "end": 11334.04, + "probability": 0.6546 + }, + { + "start": 11335.32, + "end": 11338.48, + "probability": 0.7944 + }, + { + "start": 11339.52, + "end": 11341.3, + "probability": 0.5973 + }, + { + "start": 11341.76, + "end": 11344.9, + "probability": 0.6181 + }, + { + "start": 11345.54, + "end": 11347.86, + "probability": 0.5961 + }, + { + "start": 11348.2, + "end": 11351.28, + "probability": 0.7917 + }, + { + "start": 11351.78, + "end": 11353.04, + "probability": 0.9152 + }, + { + "start": 11353.48, + "end": 11354.68, + "probability": 0.7541 + }, + { + "start": 11357.4, + "end": 11357.76, + "probability": 0.1058 + }, + { + "start": 11357.76, + "end": 11357.9, + "probability": 0.3717 + }, + { + "start": 11358.38, + "end": 11359.54, + "probability": 0.9221 + }, + { + "start": 11359.66, + "end": 11360.4, + "probability": 0.7888 + }, + { + "start": 11360.44, + "end": 11362.08, + "probability": 0.9135 + }, + { + "start": 11362.26, + "end": 11363.0, + "probability": 0.4959 + }, + { + "start": 11363.62, + "end": 11366.72, + "probability": 0.4949 + }, + { + "start": 11366.72, + "end": 11368.31, + "probability": 0.9009 + }, + { + "start": 11368.52, + "end": 11369.5, + "probability": 0.6104 + }, + { + "start": 11369.64, + "end": 11371.74, + "probability": 0.794 + }, + { + "start": 11371.92, + "end": 11372.72, + "probability": 0.7538 + }, + { + "start": 11372.78, + "end": 11374.62, + "probability": 0.9545 + }, + { + "start": 11374.72, + "end": 11375.54, + "probability": 0.9573 + }, + { + "start": 11375.82, + "end": 11376.88, + "probability": 0.7167 + }, + { + "start": 11376.98, + "end": 11377.58, + "probability": 0.8492 + }, + { + "start": 11377.82, + "end": 11379.26, + "probability": 0.9053 + }, + { + "start": 11379.42, + "end": 11380.08, + "probability": 0.3833 + }, + { + "start": 11380.38, + "end": 11381.01, + "probability": 0.7822 + }, + { + "start": 11381.62, + "end": 11383.36, + "probability": 0.9766 + }, + { + "start": 11384.2, + "end": 11385.58, + "probability": 0.9442 + }, + { + "start": 11385.7, + "end": 11389.06, + "probability": 0.8108 + }, + { + "start": 11389.22, + "end": 11390.56, + "probability": 0.6633 + }, + { + "start": 11393.49, + "end": 11395.18, + "probability": 0.7437 + }, + { + "start": 11395.46, + "end": 11395.46, + "probability": 0.162 + }, + { + "start": 11395.46, + "end": 11395.46, + "probability": 0.591 + }, + { + "start": 11395.46, + "end": 11399.68, + "probability": 0.8821 + }, + { + "start": 11400.02, + "end": 11402.84, + "probability": 0.482 + }, + { + "start": 11403.18, + "end": 11407.66, + "probability": 0.9668 + }, + { + "start": 11408.08, + "end": 11410.5, + "probability": 0.8616 + }, + { + "start": 11410.62, + "end": 11412.32, + "probability": 0.8688 + }, + { + "start": 11412.5, + "end": 11414.56, + "probability": 0.9657 + }, + { + "start": 11414.6, + "end": 11416.46, + "probability": 0.725 + }, + { + "start": 11416.68, + "end": 11418.86, + "probability": 0.9478 + }, + { + "start": 11419.22, + "end": 11422.56, + "probability": 0.9874 + }, + { + "start": 11422.62, + "end": 11425.02, + "probability": 0.7732 + }, + { + "start": 11425.46, + "end": 11427.96, + "probability": 0.6205 + }, + { + "start": 11428.28, + "end": 11428.7, + "probability": 0.6994 + }, + { + "start": 11428.78, + "end": 11428.9, + "probability": 0.3635 + }, + { + "start": 11428.92, + "end": 11431.62, + "probability": 0.9539 + }, + { + "start": 11431.84, + "end": 11433.88, + "probability": 0.5205 + }, + { + "start": 11433.92, + "end": 11434.54, + "probability": 0.7271 + }, + { + "start": 11434.56, + "end": 11434.74, + "probability": 0.5635 + }, + { + "start": 11434.8, + "end": 11435.2, + "probability": 0.8427 + }, + { + "start": 11435.28, + "end": 11436.78, + "probability": 0.5669 + }, + { + "start": 11436.86, + "end": 11438.42, + "probability": 0.8771 + }, + { + "start": 11438.42, + "end": 11438.88, + "probability": 0.5011 + }, + { + "start": 11438.92, + "end": 11440.28, + "probability": 0.8378 + }, + { + "start": 11466.24, + "end": 11468.38, + "probability": 0.6489 + }, + { + "start": 11473.61, + "end": 11478.08, + "probability": 0.9976 + }, + { + "start": 11478.28, + "end": 11479.54, + "probability": 0.9871 + }, + { + "start": 11480.68, + "end": 11481.46, + "probability": 0.6594 + }, + { + "start": 11483.86, + "end": 11484.2, + "probability": 0.7799 + }, + { + "start": 11484.38, + "end": 11492.04, + "probability": 0.958 + }, + { + "start": 11494.4, + "end": 11496.38, + "probability": 0.9971 + }, + { + "start": 11497.18, + "end": 11499.12, + "probability": 0.8999 + }, + { + "start": 11500.4, + "end": 11503.16, + "probability": 0.9982 + }, + { + "start": 11503.26, + "end": 11510.43, + "probability": 0.9975 + }, + { + "start": 11511.63, + "end": 11515.46, + "probability": 0.9822 + }, + { + "start": 11515.54, + "end": 11519.6, + "probability": 0.9863 + }, + { + "start": 11520.82, + "end": 11521.75, + "probability": 0.8622 + }, + { + "start": 11521.94, + "end": 11524.3, + "probability": 0.9719 + }, + { + "start": 11524.4, + "end": 11525.8, + "probability": 0.943 + }, + { + "start": 11526.28, + "end": 11527.14, + "probability": 0.7042 + }, + { + "start": 11527.22, + "end": 11527.86, + "probability": 0.1878 + }, + { + "start": 11527.98, + "end": 11530.36, + "probability": 0.981 + }, + { + "start": 11530.84, + "end": 11532.85, + "probability": 0.6935 + }, + { + "start": 11533.28, + "end": 11533.94, + "probability": 0.2405 + }, + { + "start": 11533.94, + "end": 11538.9, + "probability": 0.9859 + }, + { + "start": 11540.28, + "end": 11542.46, + "probability": 0.819 + }, + { + "start": 11543.62, + "end": 11545.3, + "probability": 0.6586 + }, + { + "start": 11545.38, + "end": 11549.6, + "probability": 0.9589 + }, + { + "start": 11550.36, + "end": 11551.74, + "probability": 0.5746 + }, + { + "start": 11552.69, + "end": 11555.1, + "probability": 0.8252 + }, + { + "start": 11555.16, + "end": 11557.14, + "probability": 0.9483 + }, + { + "start": 11557.42, + "end": 11557.88, + "probability": 0.4274 + }, + { + "start": 11558.08, + "end": 11558.9, + "probability": 0.7512 + }, + { + "start": 11559.44, + "end": 11562.06, + "probability": 0.8892 + }, + { + "start": 11562.26, + "end": 11563.06, + "probability": 0.7891 + }, + { + "start": 11564.12, + "end": 11568.34, + "probability": 0.9962 + }, + { + "start": 11568.58, + "end": 11575.4, + "probability": 0.9147 + }, + { + "start": 11576.58, + "end": 11582.42, + "probability": 0.6483 + }, + { + "start": 11583.92, + "end": 11585.74, + "probability": 0.8682 + }, + { + "start": 11585.84, + "end": 11586.86, + "probability": 0.6419 + }, + { + "start": 11586.96, + "end": 11587.78, + "probability": 0.8792 + }, + { + "start": 11588.32, + "end": 11590.08, + "probability": 0.7544 + }, + { + "start": 11590.14, + "end": 11591.08, + "probability": 0.5795 + }, + { + "start": 11592.1, + "end": 11595.4, + "probability": 0.746 + }, + { + "start": 11596.2, + "end": 11597.64, + "probability": 0.955 + }, + { + "start": 11597.82, + "end": 11598.53, + "probability": 0.7979 + }, + { + "start": 11599.2, + "end": 11601.55, + "probability": 0.9906 + }, + { + "start": 11602.38, + "end": 11603.72, + "probability": 0.4276 + }, + { + "start": 11605.44, + "end": 11606.86, + "probability": 0.6483 + }, + { + "start": 11607.4, + "end": 11608.66, + "probability": 0.4494 + }, + { + "start": 11608.92, + "end": 11609.72, + "probability": 0.9894 + }, + { + "start": 11609.8, + "end": 11615.1, + "probability": 0.7594 + }, + { + "start": 11615.34, + "end": 11615.85, + "probability": 0.2505 + }, + { + "start": 11615.96, + "end": 11617.25, + "probability": 0.8067 + }, + { + "start": 11617.84, + "end": 11619.16, + "probability": 0.6211 + }, + { + "start": 11619.36, + "end": 11619.78, + "probability": 0.5365 + }, + { + "start": 11619.78, + "end": 11622.22, + "probability": 0.0022 + }, + { + "start": 11622.36, + "end": 11622.96, + "probability": 0.1749 + }, + { + "start": 11622.96, + "end": 11622.98, + "probability": 0.1823 + }, + { + "start": 11623.1, + "end": 11623.14, + "probability": 0.033 + }, + { + "start": 11623.54, + "end": 11624.64, + "probability": 0.0811 + }, + { + "start": 11625.42, + "end": 11628.48, + "probability": 0.4304 + }, + { + "start": 11628.68, + "end": 11629.26, + "probability": 0.7092 + }, + { + "start": 11629.48, + "end": 11631.96, + "probability": 0.9385 + }, + { + "start": 11632.2, + "end": 11634.66, + "probability": 0.7875 + }, + { + "start": 11635.27, + "end": 11638.1, + "probability": 0.7486 + }, + { + "start": 11638.96, + "end": 11641.07, + "probability": 0.8427 + }, + { + "start": 11642.04, + "end": 11642.95, + "probability": 0.4519 + }, + { + "start": 11643.76, + "end": 11645.58, + "probability": 0.7625 + }, + { + "start": 11645.9, + "end": 11647.56, + "probability": 0.4618 + }, + { + "start": 11648.56, + "end": 11654.52, + "probability": 0.9564 + }, + { + "start": 11655.2, + "end": 11657.88, + "probability": 0.8625 + }, + { + "start": 11658.62, + "end": 11661.43, + "probability": 0.9546 + }, + { + "start": 11661.62, + "end": 11668.08, + "probability": 0.525 + }, + { + "start": 11668.86, + "end": 11669.94, + "probability": 0.5575 + }, + { + "start": 11670.44, + "end": 11678.74, + "probability": 0.8089 + }, + { + "start": 11679.72, + "end": 11681.14, + "probability": 0.9245 + }, + { + "start": 11684.26, + "end": 11687.5, + "probability": 0.6614 + }, + { + "start": 11688.84, + "end": 11695.32, + "probability": 0.9238 + }, + { + "start": 11695.94, + "end": 11702.24, + "probability": 0.937 + }, + { + "start": 11702.76, + "end": 11704.06, + "probability": 0.6803 + }, + { + "start": 11705.5, + "end": 11708.62, + "probability": 0.8047 + }, + { + "start": 11709.58, + "end": 11712.64, + "probability": 0.4052 + }, + { + "start": 11712.64, + "end": 11713.26, + "probability": 0.6716 + }, + { + "start": 11713.36, + "end": 11714.12, + "probability": 0.8547 + }, + { + "start": 11714.28, + "end": 11716.92, + "probability": 0.7041 + }, + { + "start": 11719.26, + "end": 11719.98, + "probability": 0.5378 + }, + { + "start": 11722.42, + "end": 11724.0, + "probability": 0.9048 + }, + { + "start": 11724.34, + "end": 11725.6, + "probability": 0.8131 + }, + { + "start": 11725.84, + "end": 11728.22, + "probability": 0.834 + }, + { + "start": 11728.28, + "end": 11729.56, + "probability": 0.6488 + }, + { + "start": 11729.62, + "end": 11730.86, + "probability": 0.7913 + }, + { + "start": 11733.18, + "end": 11737.7, + "probability": 0.9023 + }, + { + "start": 11738.4, + "end": 11739.39, + "probability": 0.972 + }, + { + "start": 11739.7, + "end": 11740.08, + "probability": 0.8704 + }, + { + "start": 11740.08, + "end": 11741.12, + "probability": 0.7873 + }, + { + "start": 11741.18, + "end": 11743.7, + "probability": 0.8986 + }, + { + "start": 11744.86, + "end": 11748.62, + "probability": 0.9974 + }, + { + "start": 11748.98, + "end": 11750.36, + "probability": 0.8628 + }, + { + "start": 11750.58, + "end": 11752.04, + "probability": 0.6426 + }, + { + "start": 11752.16, + "end": 11754.48, + "probability": 0.9844 + }, + { + "start": 11754.88, + "end": 11755.98, + "probability": 0.845 + }, + { + "start": 11756.44, + "end": 11758.42, + "probability": 0.9401 + }, + { + "start": 11758.52, + "end": 11760.61, + "probability": 0.5381 + }, + { + "start": 11761.02, + "end": 11766.8, + "probability": 0.9075 + }, + { + "start": 11767.2, + "end": 11770.36, + "probability": 0.7967 + }, + { + "start": 11770.42, + "end": 11778.52, + "probability": 0.9453 + }, + { + "start": 11778.78, + "end": 11781.7, + "probability": 0.9645 + }, + { + "start": 11781.96, + "end": 11783.2, + "probability": 0.7718 + }, + { + "start": 11783.36, + "end": 11783.56, + "probability": 0.3422 + }, + { + "start": 11783.56, + "end": 11785.22, + "probability": 0.7834 + }, + { + "start": 11785.92, + "end": 11785.92, + "probability": 0.3207 + }, + { + "start": 11785.92, + "end": 11790.32, + "probability": 0.6435 + }, + { + "start": 11791.04, + "end": 11792.16, + "probability": 0.9402 + }, + { + "start": 11794.12, + "end": 11794.58, + "probability": 0.74 + }, + { + "start": 11795.12, + "end": 11795.12, + "probability": 0.2021 + }, + { + "start": 11795.12, + "end": 11799.58, + "probability": 0.5177 + }, + { + "start": 11801.1, + "end": 11802.38, + "probability": 0.9501 + }, + { + "start": 11803.3, + "end": 11804.98, + "probability": 0.7102 + }, + { + "start": 11805.7, + "end": 11806.64, + "probability": 0.9376 + }, + { + "start": 11806.92, + "end": 11807.98, + "probability": 0.7131 + }, + { + "start": 11808.22, + "end": 11810.0, + "probability": 0.9304 + }, + { + "start": 11810.38, + "end": 11811.14, + "probability": 0.66 + }, + { + "start": 11811.2, + "end": 11811.64, + "probability": 0.3408 + }, + { + "start": 11811.74, + "end": 11813.82, + "probability": 0.9806 + }, + { + "start": 11814.0, + "end": 11815.3, + "probability": 0.9744 + }, + { + "start": 11815.64, + "end": 11816.89, + "probability": 0.8661 + }, + { + "start": 11817.66, + "end": 11817.94, + "probability": 0.7416 + }, + { + "start": 11818.04, + "end": 11819.78, + "probability": 0.9879 + }, + { + "start": 11819.98, + "end": 11824.48, + "probability": 0.9823 + }, + { + "start": 11825.06, + "end": 11826.62, + "probability": 0.7625 + }, + { + "start": 11826.7, + "end": 11828.88, + "probability": 0.9561 + }, + { + "start": 11829.06, + "end": 11829.9, + "probability": 0.3394 + }, + { + "start": 11830.16, + "end": 11830.48, + "probability": 0.674 + }, + { + "start": 11830.6, + "end": 11832.1, + "probability": 0.8483 + }, + { + "start": 11833.2, + "end": 11835.68, + "probability": 0.7368 + }, + { + "start": 11835.88, + "end": 11837.16, + "probability": 0.9941 + }, + { + "start": 11837.64, + "end": 11842.54, + "probability": 0.9962 + }, + { + "start": 11842.88, + "end": 11844.76, + "probability": 0.9653 + }, + { + "start": 11845.18, + "end": 11848.23, + "probability": 0.991 + }, + { + "start": 11848.74, + "end": 11849.92, + "probability": 0.9004 + }, + { + "start": 11850.4, + "end": 11851.58, + "probability": 0.9281 + }, + { + "start": 11852.6, + "end": 11855.03, + "probability": 0.519 + }, + { + "start": 11855.92, + "end": 11858.14, + "probability": 0.7859 + }, + { + "start": 11858.68, + "end": 11862.64, + "probability": 0.9448 + }, + { + "start": 11864.46, + "end": 11866.26, + "probability": 0.9684 + }, + { + "start": 11866.46, + "end": 11867.48, + "probability": 0.7644 + }, + { + "start": 11867.64, + "end": 11870.44, + "probability": 0.8781 + }, + { + "start": 11871.14, + "end": 11875.12, + "probability": 0.9897 + }, + { + "start": 11876.04, + "end": 11877.58, + "probability": 0.9878 + }, + { + "start": 11877.74, + "end": 11881.72, + "probability": 0.9939 + }, + { + "start": 11882.06, + "end": 11883.34, + "probability": 0.9974 + }, + { + "start": 11883.72, + "end": 11884.46, + "probability": 0.7904 + }, + { + "start": 11884.62, + "end": 11888.04, + "probability": 0.8771 + }, + { + "start": 11888.16, + "end": 11889.14, + "probability": 0.9536 + }, + { + "start": 11889.28, + "end": 11890.02, + "probability": 0.6772 + }, + { + "start": 11890.08, + "end": 11891.02, + "probability": 0.7645 + }, + { + "start": 11891.24, + "end": 11892.7, + "probability": 0.9954 + }, + { + "start": 11892.76, + "end": 11895.0, + "probability": 0.8634 + }, + { + "start": 11895.68, + "end": 11897.14, + "probability": 0.9424 + }, + { + "start": 11898.36, + "end": 11902.1, + "probability": 0.9854 + }, + { + "start": 11902.18, + "end": 11903.82, + "probability": 0.9515 + }, + { + "start": 11903.88, + "end": 11909.94, + "probability": 0.7494 + }, + { + "start": 11910.78, + "end": 11912.24, + "probability": 0.7958 + }, + { + "start": 11912.56, + "end": 11912.78, + "probability": 0.683 + }, + { + "start": 11913.32, + "end": 11918.44, + "probability": 0.9762 + }, + { + "start": 11918.74, + "end": 11920.6, + "probability": 0.984 + }, + { + "start": 11921.42, + "end": 11922.82, + "probability": 0.8583 + }, + { + "start": 11922.98, + "end": 11926.16, + "probability": 0.7853 + }, + { + "start": 11926.68, + "end": 11929.42, + "probability": 0.8101 + }, + { + "start": 11929.54, + "end": 11930.33, + "probability": 0.8569 + }, + { + "start": 11930.6, + "end": 11931.64, + "probability": 0.9384 + }, + { + "start": 11931.98, + "end": 11937.74, + "probability": 0.7592 + }, + { + "start": 11937.74, + "end": 11942.08, + "probability": 0.9829 + }, + { + "start": 11943.48, + "end": 11950.62, + "probability": 0.9797 + }, + { + "start": 11950.62, + "end": 11954.62, + "probability": 0.9995 + }, + { + "start": 11955.04, + "end": 11956.68, + "probability": 0.9973 + }, + { + "start": 11957.58, + "end": 11958.26, + "probability": 0.9017 + }, + { + "start": 11958.8, + "end": 11962.9, + "probability": 0.9974 + }, + { + "start": 11962.9, + "end": 11967.36, + "probability": 0.9878 + }, + { + "start": 11968.2, + "end": 11970.3, + "probability": 0.9987 + }, + { + "start": 11970.98, + "end": 11973.68, + "probability": 0.9623 + }, + { + "start": 11974.14, + "end": 11977.38, + "probability": 0.918 + }, + { + "start": 11977.38, + "end": 11980.02, + "probability": 0.999 + }, + { + "start": 11980.3, + "end": 11981.78, + "probability": 0.9234 + }, + { + "start": 11981.82, + "end": 11984.08, + "probability": 0.9922 + }, + { + "start": 11984.6, + "end": 11985.9, + "probability": 0.92 + }, + { + "start": 11985.98, + "end": 11986.18, + "probability": 0.6879 + }, + { + "start": 11986.66, + "end": 11988.68, + "probability": 0.7667 + }, + { + "start": 11988.78, + "end": 11990.58, + "probability": 0.7387 + }, + { + "start": 11990.76, + "end": 11991.21, + "probability": 0.3738 + }, + { + "start": 11992.3, + "end": 11993.0, + "probability": 0.3645 + }, + { + "start": 11993.6, + "end": 11995.02, + "probability": 0.7755 + }, + { + "start": 11996.08, + "end": 11996.68, + "probability": 0.8276 + }, + { + "start": 12003.18, + "end": 12004.92, + "probability": 0.5107 + }, + { + "start": 12005.04, + "end": 12007.1, + "probability": 0.7461 + }, + { + "start": 12007.76, + "end": 12009.08, + "probability": 0.9401 + }, + { + "start": 12009.16, + "end": 12011.82, + "probability": 0.9223 + }, + { + "start": 12012.22, + "end": 12015.78, + "probability": 0.8377 + }, + { + "start": 12017.12, + "end": 12019.8, + "probability": 0.9916 + }, + { + "start": 12019.88, + "end": 12021.65, + "probability": 0.9969 + }, + { + "start": 12022.22, + "end": 12023.14, + "probability": 0.9281 + }, + { + "start": 12023.34, + "end": 12024.0, + "probability": 0.9049 + }, + { + "start": 12024.6, + "end": 12026.74, + "probability": 0.9895 + }, + { + "start": 12027.1, + "end": 12027.86, + "probability": 0.8975 + }, + { + "start": 12028.3, + "end": 12030.6, + "probability": 0.9237 + }, + { + "start": 12030.88, + "end": 12032.66, + "probability": 0.7572 + }, + { + "start": 12033.9, + "end": 12034.28, + "probability": 0.8163 + }, + { + "start": 12034.32, + "end": 12035.38, + "probability": 0.9525 + }, + { + "start": 12035.48, + "end": 12036.18, + "probability": 0.664 + }, + { + "start": 12036.48, + "end": 12038.47, + "probability": 0.9224 + }, + { + "start": 12039.08, + "end": 12040.38, + "probability": 0.6481 + }, + { + "start": 12040.44, + "end": 12040.58, + "probability": 0.8599 + }, + { + "start": 12040.92, + "end": 12041.2, + "probability": 0.4899 + }, + { + "start": 12042.26, + "end": 12044.14, + "probability": 0.6549 + }, + { + "start": 12045.58, + "end": 12049.74, + "probability": 0.959 + }, + { + "start": 12049.74, + "end": 12053.4, + "probability": 0.9168 + }, + { + "start": 12054.3, + "end": 12055.22, + "probability": 0.6627 + }, + { + "start": 12055.4, + "end": 12058.48, + "probability": 0.9917 + }, + { + "start": 12058.7, + "end": 12062.48, + "probability": 0.9969 + }, + { + "start": 12063.82, + "end": 12067.98, + "probability": 0.9761 + }, + { + "start": 12068.16, + "end": 12072.3, + "probability": 0.7067 + }, + { + "start": 12072.38, + "end": 12076.76, + "probability": 0.9937 + }, + { + "start": 12077.28, + "end": 12081.06, + "probability": 0.9861 + }, + { + "start": 12081.46, + "end": 12085.48, + "probability": 0.9581 + }, + { + "start": 12085.58, + "end": 12087.98, + "probability": 0.9871 + }, + { + "start": 12088.08, + "end": 12090.28, + "probability": 0.9962 + }, + { + "start": 12091.02, + "end": 12093.26, + "probability": 0.9951 + }, + { + "start": 12093.26, + "end": 12095.6, + "probability": 0.757 + }, + { + "start": 12096.02, + "end": 12099.24, + "probability": 0.9782 + }, + { + "start": 12099.24, + "end": 12101.6, + "probability": 0.9944 + }, + { + "start": 12101.96, + "end": 12102.42, + "probability": 0.5688 + }, + { + "start": 12102.58, + "end": 12105.42, + "probability": 0.7636 + }, + { + "start": 12105.84, + "end": 12107.12, + "probability": 0.9908 + }, + { + "start": 12108.18, + "end": 12112.5, + "probability": 0.9951 + }, + { + "start": 12112.5, + "end": 12116.74, + "probability": 0.9941 + }, + { + "start": 12117.2, + "end": 12119.56, + "probability": 0.9973 + }, + { + "start": 12119.74, + "end": 12121.96, + "probability": 0.9249 + }, + { + "start": 12121.96, + "end": 12124.4, + "probability": 0.9946 + }, + { + "start": 12124.7, + "end": 12128.62, + "probability": 0.9976 + }, + { + "start": 12129.0, + "end": 12131.94, + "probability": 0.9955 + }, + { + "start": 12132.44, + "end": 12133.2, + "probability": 0.8011 + }, + { + "start": 12133.36, + "end": 12138.64, + "probability": 0.9563 + }, + { + "start": 12139.16, + "end": 12142.38, + "probability": 0.9857 + }, + { + "start": 12142.38, + "end": 12146.04, + "probability": 0.9978 + }, + { + "start": 12146.16, + "end": 12147.5, + "probability": 0.7577 + }, + { + "start": 12147.64, + "end": 12153.22, + "probability": 0.953 + }, + { + "start": 12153.3, + "end": 12156.86, + "probability": 0.9934 + }, + { + "start": 12157.0, + "end": 12158.54, + "probability": 0.9932 + }, + { + "start": 12158.94, + "end": 12160.46, + "probability": 0.8643 + }, + { + "start": 12160.5, + "end": 12164.56, + "probability": 0.9858 + }, + { + "start": 12165.38, + "end": 12165.64, + "probability": 0.0912 + }, + { + "start": 12165.64, + "end": 12165.64, + "probability": 0.1226 + }, + { + "start": 12165.64, + "end": 12166.74, + "probability": 0.6787 + }, + { + "start": 12166.82, + "end": 12167.84, + "probability": 0.8141 + }, + { + "start": 12167.9, + "end": 12168.78, + "probability": 0.9004 + }, + { + "start": 12168.82, + "end": 12169.68, + "probability": 0.8606 + }, + { + "start": 12169.76, + "end": 12170.58, + "probability": 0.1939 + }, + { + "start": 12171.88, + "end": 12174.22, + "probability": 0.1134 + }, + { + "start": 12174.66, + "end": 12174.76, + "probability": 0.1769 + }, + { + "start": 12174.76, + "end": 12175.4, + "probability": 0.0478 + }, + { + "start": 12175.4, + "end": 12175.4, + "probability": 0.13 + }, + { + "start": 12175.4, + "end": 12175.56, + "probability": 0.08 + }, + { + "start": 12175.56, + "end": 12176.04, + "probability": 0.2554 + }, + { + "start": 12176.04, + "end": 12176.04, + "probability": 0.359 + }, + { + "start": 12176.04, + "end": 12176.52, + "probability": 0.1206 + }, + { + "start": 12176.52, + "end": 12178.18, + "probability": 0.2419 + }, + { + "start": 12178.2, + "end": 12178.36, + "probability": 0.3079 + }, + { + "start": 12178.78, + "end": 12179.42, + "probability": 0.5057 + }, + { + "start": 12179.8, + "end": 12181.6, + "probability": 0.9762 + }, + { + "start": 12181.72, + "end": 12183.8, + "probability": 0.9863 + }, + { + "start": 12184.26, + "end": 12187.64, + "probability": 0.9966 + }, + { + "start": 12187.64, + "end": 12191.0, + "probability": 0.9946 + }, + { + "start": 12191.06, + "end": 12192.22, + "probability": 0.9047 + }, + { + "start": 12193.08, + "end": 12195.54, + "probability": 0.965 + }, + { + "start": 12195.54, + "end": 12198.72, + "probability": 0.9966 + }, + { + "start": 12199.22, + "end": 12202.82, + "probability": 0.9978 + }, + { + "start": 12203.68, + "end": 12204.88, + "probability": 0.5121 + }, + { + "start": 12205.0, + "end": 12206.96, + "probability": 0.8747 + }, + { + "start": 12207.04, + "end": 12209.64, + "probability": 0.9887 + }, + { + "start": 12210.12, + "end": 12212.9, + "probability": 0.999 + }, + { + "start": 12213.52, + "end": 12213.82, + "probability": 0.6686 + }, + { + "start": 12213.88, + "end": 12214.56, + "probability": 0.5931 + }, + { + "start": 12214.64, + "end": 12216.64, + "probability": 0.931 + }, + { + "start": 12216.68, + "end": 12221.14, + "probability": 0.9283 + }, + { + "start": 12221.14, + "end": 12224.02, + "probability": 0.9911 + }, + { + "start": 12224.22, + "end": 12227.2, + "probability": 0.9935 + }, + { + "start": 12227.94, + "end": 12231.52, + "probability": 0.9629 + }, + { + "start": 12232.38, + "end": 12235.9, + "probability": 0.9835 + }, + { + "start": 12235.9, + "end": 12239.96, + "probability": 0.9669 + }, + { + "start": 12240.34, + "end": 12242.44, + "probability": 0.7618 + }, + { + "start": 12242.46, + "end": 12248.12, + "probability": 0.9769 + }, + { + "start": 12248.12, + "end": 12253.16, + "probability": 0.9337 + }, + { + "start": 12254.12, + "end": 12256.46, + "probability": 0.9937 + }, + { + "start": 12256.46, + "end": 12260.26, + "probability": 0.9634 + }, + { + "start": 12261.86, + "end": 12262.66, + "probability": 0.7188 + }, + { + "start": 12262.82, + "end": 12265.16, + "probability": 0.9886 + }, + { + "start": 12265.32, + "end": 12267.58, + "probability": 0.9951 + }, + { + "start": 12267.58, + "end": 12269.86, + "probability": 0.9845 + }, + { + "start": 12269.9, + "end": 12274.06, + "probability": 0.9913 + }, + { + "start": 12274.06, + "end": 12278.12, + "probability": 0.9913 + }, + { + "start": 12278.54, + "end": 12282.42, + "probability": 0.995 + }, + { + "start": 12283.46, + "end": 12287.44, + "probability": 0.9867 + }, + { + "start": 12287.44, + "end": 12291.14, + "probability": 0.9739 + }, + { + "start": 12291.14, + "end": 12296.36, + "probability": 0.9835 + }, + { + "start": 12297.34, + "end": 12299.1, + "probability": 0.9002 + }, + { + "start": 12299.18, + "end": 12299.42, + "probability": 0.9062 + }, + { + "start": 12299.6, + "end": 12301.74, + "probability": 0.96 + }, + { + "start": 12301.74, + "end": 12305.3, + "probability": 0.9953 + }, + { + "start": 12305.9, + "end": 12307.48, + "probability": 0.8136 + }, + { + "start": 12307.64, + "end": 12307.86, + "probability": 0.6999 + }, + { + "start": 12307.9, + "end": 12311.0, + "probability": 0.9821 + }, + { + "start": 12311.08, + "end": 12312.64, + "probability": 0.9873 + }, + { + "start": 12312.68, + "end": 12314.56, + "probability": 0.9186 + }, + { + "start": 12314.8, + "end": 12316.38, + "probability": 0.8615 + }, + { + "start": 12316.72, + "end": 12320.5, + "probability": 0.998 + }, + { + "start": 12320.64, + "end": 12322.22, + "probability": 0.9568 + }, + { + "start": 12322.92, + "end": 12328.1, + "probability": 0.9933 + }, + { + "start": 12328.28, + "end": 12331.84, + "probability": 0.9532 + }, + { + "start": 12332.0, + "end": 12335.8, + "probability": 0.9664 + }, + { + "start": 12336.0, + "end": 12337.2, + "probability": 0.9977 + }, + { + "start": 12337.22, + "end": 12338.36, + "probability": 0.999 + }, + { + "start": 12338.98, + "end": 12339.42, + "probability": 0.4755 + }, + { + "start": 12339.5, + "end": 12345.02, + "probability": 0.9743 + }, + { + "start": 12345.1, + "end": 12347.2, + "probability": 0.9507 + }, + { + "start": 12347.34, + "end": 12350.74, + "probability": 0.9952 + }, + { + "start": 12350.88, + "end": 12355.44, + "probability": 0.9898 + }, + { + "start": 12356.26, + "end": 12356.42, + "probability": 0.3883 + }, + { + "start": 12356.52, + "end": 12357.24, + "probability": 0.9099 + }, + { + "start": 12357.8, + "end": 12360.5, + "probability": 0.9898 + }, + { + "start": 12360.68, + "end": 12363.66, + "probability": 0.994 + }, + { + "start": 12364.74, + "end": 12366.56, + "probability": 0.9938 + }, + { + "start": 12367.26, + "end": 12369.64, + "probability": 0.928 + }, + { + "start": 12369.9, + "end": 12372.02, + "probability": 0.7949 + }, + { + "start": 12372.12, + "end": 12373.49, + "probability": 0.8533 + }, + { + "start": 12373.92, + "end": 12377.22, + "probability": 0.9703 + }, + { + "start": 12377.42, + "end": 12379.5, + "probability": 0.9943 + }, + { + "start": 12379.86, + "end": 12382.8, + "probability": 0.9956 + }, + { + "start": 12383.38, + "end": 12387.64, + "probability": 0.9934 + }, + { + "start": 12387.7, + "end": 12390.2, + "probability": 0.9811 + }, + { + "start": 12391.26, + "end": 12393.0, + "probability": 0.9295 + }, + { + "start": 12393.02, + "end": 12395.76, + "probability": 0.875 + }, + { + "start": 12396.08, + "end": 12399.74, + "probability": 0.8362 + }, + { + "start": 12399.84, + "end": 12402.1, + "probability": 0.9789 + }, + { + "start": 12402.46, + "end": 12404.54, + "probability": 0.9543 + }, + { + "start": 12404.66, + "end": 12408.68, + "probability": 0.8586 + }, + { + "start": 12408.68, + "end": 12412.2, + "probability": 0.9909 + }, + { + "start": 12412.94, + "end": 12414.3, + "probability": 0.7567 + }, + { + "start": 12414.52, + "end": 12418.36, + "probability": 0.9691 + }, + { + "start": 12418.62, + "end": 12421.44, + "probability": 0.9956 + }, + { + "start": 12421.96, + "end": 12425.12, + "probability": 0.9922 + }, + { + "start": 12425.18, + "end": 12428.12, + "probability": 0.995 + }, + { + "start": 12428.5, + "end": 12432.48, + "probability": 0.9857 + }, + { + "start": 12433.72, + "end": 12436.56, + "probability": 0.9307 + }, + { + "start": 12436.56, + "end": 12439.98, + "probability": 0.951 + }, + { + "start": 12439.98, + "end": 12443.08, + "probability": 0.9596 + }, + { + "start": 12443.72, + "end": 12445.78, + "probability": 0.9961 + }, + { + "start": 12445.78, + "end": 12448.08, + "probability": 0.944 + }, + { + "start": 12448.14, + "end": 12448.86, + "probability": 0.8082 + }, + { + "start": 12449.3, + "end": 12451.6, + "probability": 0.962 + }, + { + "start": 12451.74, + "end": 12452.23, + "probability": 0.6558 + }, + { + "start": 12452.5, + "end": 12454.2, + "probability": 0.9934 + }, + { + "start": 12454.58, + "end": 12457.62, + "probability": 0.9879 + }, + { + "start": 12458.2, + "end": 12458.5, + "probability": 0.811 + }, + { + "start": 12458.56, + "end": 12460.46, + "probability": 0.9408 + }, + { + "start": 12460.54, + "end": 12463.86, + "probability": 0.8293 + }, + { + "start": 12464.1, + "end": 12466.28, + "probability": 0.9971 + }, + { + "start": 12466.88, + "end": 12470.92, + "probability": 0.8176 + }, + { + "start": 12471.28, + "end": 12472.36, + "probability": 0.8421 + }, + { + "start": 12472.44, + "end": 12472.52, + "probability": 0.0176 + }, + { + "start": 12472.52, + "end": 12474.04, + "probability": 0.8411 + }, + { + "start": 12474.78, + "end": 12476.62, + "probability": 0.1102 + }, + { + "start": 12477.58, + "end": 12480.4, + "probability": 0.92 + }, + { + "start": 12480.72, + "end": 12485.46, + "probability": 0.9712 + }, + { + "start": 12485.84, + "end": 12489.18, + "probability": 0.6523 + }, + { + "start": 12489.18, + "end": 12493.32, + "probability": 0.9973 + }, + { + "start": 12493.8, + "end": 12496.62, + "probability": 0.9927 + }, + { + "start": 12496.62, + "end": 12501.44, + "probability": 0.9261 + }, + { + "start": 12502.76, + "end": 12502.76, + "probability": 0.0406 + }, + { + "start": 12502.76, + "end": 12503.76, + "probability": 0.7091 + }, + { + "start": 12503.9, + "end": 12508.36, + "probability": 0.9589 + }, + { + "start": 12508.66, + "end": 12509.5, + "probability": 0.6705 + }, + { + "start": 12509.8, + "end": 12511.86, + "probability": 0.8051 + }, + { + "start": 12512.04, + "end": 12514.46, + "probability": 0.9836 + }, + { + "start": 12514.54, + "end": 12518.24, + "probability": 0.9867 + }, + { + "start": 12518.78, + "end": 12519.62, + "probability": 0.5077 + }, + { + "start": 12519.74, + "end": 12522.04, + "probability": 0.9907 + }, + { + "start": 12523.18, + "end": 12524.3, + "probability": 0.7654 + }, + { + "start": 12524.66, + "end": 12526.02, + "probability": 0.5237 + }, + { + "start": 12526.02, + "end": 12528.6, + "probability": 0.8105 + }, + { + "start": 12528.9, + "end": 12531.54, + "probability": 0.9832 + }, + { + "start": 12531.6, + "end": 12533.44, + "probability": 0.826 + }, + { + "start": 12533.78, + "end": 12534.37, + "probability": 0.1639 + }, + { + "start": 12534.4, + "end": 12536.86, + "probability": 0.5924 + }, + { + "start": 12536.96, + "end": 12537.74, + "probability": 0.1136 + }, + { + "start": 12538.18, + "end": 12538.4, + "probability": 0.7769 + }, + { + "start": 12538.46, + "end": 12539.54, + "probability": 0.887 + }, + { + "start": 12539.62, + "end": 12540.9, + "probability": 0.8672 + }, + { + "start": 12540.98, + "end": 12542.9, + "probability": 0.8674 + }, + { + "start": 12543.02, + "end": 12543.04, + "probability": 0.2179 + }, + { + "start": 12543.04, + "end": 12544.42, + "probability": 0.4115 + }, + { + "start": 12544.76, + "end": 12547.92, + "probability": 0.7542 + }, + { + "start": 12548.38, + "end": 12549.24, + "probability": 0.344 + }, + { + "start": 12549.4, + "end": 12549.94, + "probability": 0.137 + }, + { + "start": 12550.02, + "end": 12552.5, + "probability": 0.8879 + }, + { + "start": 12553.26, + "end": 12556.78, + "probability": 0.8283 + }, + { + "start": 12557.12, + "end": 12558.16, + "probability": 0.5678 + }, + { + "start": 12558.24, + "end": 12558.64, + "probability": 0.7159 + }, + { + "start": 12558.68, + "end": 12560.78, + "probability": 0.9394 + }, + { + "start": 12560.86, + "end": 12562.48, + "probability": 0.8769 + }, + { + "start": 12562.52, + "end": 12562.76, + "probability": 0.7169 + }, + { + "start": 12563.4, + "end": 12565.6, + "probability": 0.9715 + }, + { + "start": 12566.22, + "end": 12566.98, + "probability": 0.8789 + }, + { + "start": 12567.72, + "end": 12570.04, + "probability": 0.6697 + }, + { + "start": 12570.26, + "end": 12571.78, + "probability": 0.9571 + }, + { + "start": 12571.9, + "end": 12572.62, + "probability": 0.7598 + }, + { + "start": 12572.7, + "end": 12573.5, + "probability": 0.8948 + }, + { + "start": 12573.92, + "end": 12575.39, + "probability": 0.938 + }, + { + "start": 12575.74, + "end": 12578.34, + "probability": 0.9347 + }, + { + "start": 12578.38, + "end": 12580.42, + "probability": 0.9329 + }, + { + "start": 12580.5, + "end": 12581.94, + "probability": 0.8984 + }, + { + "start": 12582.84, + "end": 12584.4, + "probability": 0.6368 + }, + { + "start": 12584.56, + "end": 12585.64, + "probability": 0.8301 + }, + { + "start": 12586.16, + "end": 12590.48, + "probability": 0.4771 + }, + { + "start": 12590.54, + "end": 12592.76, + "probability": 0.8781 + }, + { + "start": 12593.58, + "end": 12594.24, + "probability": 0.1125 + }, + { + "start": 12596.24, + "end": 12596.9, + "probability": 0.0917 + }, + { + "start": 12596.9, + "end": 12598.98, + "probability": 0.9176 + }, + { + "start": 12599.5, + "end": 12603.7, + "probability": 0.9403 + }, + { + "start": 12604.28, + "end": 12610.74, + "probability": 0.9839 + }, + { + "start": 12611.3, + "end": 12616.69, + "probability": 0.9658 + }, + { + "start": 12617.68, + "end": 12622.64, + "probability": 0.9194 + }, + { + "start": 12622.68, + "end": 12624.84, + "probability": 0.7522 + }, + { + "start": 12625.62, + "end": 12626.85, + "probability": 0.5869 + }, + { + "start": 12627.48, + "end": 12628.58, + "probability": 0.5972 + }, + { + "start": 12629.64, + "end": 12629.96, + "probability": 0.7359 + }, + { + "start": 12630.08, + "end": 12631.12, + "probability": 0.8247 + }, + { + "start": 12631.22, + "end": 12637.18, + "probability": 0.6644 + }, + { + "start": 12637.52, + "end": 12638.5, + "probability": 0.6454 + }, + { + "start": 12638.56, + "end": 12642.32, + "probability": 0.8648 + }, + { + "start": 12642.66, + "end": 12647.64, + "probability": 0.9166 + }, + { + "start": 12648.44, + "end": 12651.66, + "probability": 0.7323 + }, + { + "start": 12651.74, + "end": 12652.77, + "probability": 0.9565 + }, + { + "start": 12653.38, + "end": 12657.72, + "probability": 0.9854 + }, + { + "start": 12658.32, + "end": 12659.82, + "probability": 0.8035 + }, + { + "start": 12660.0, + "end": 12661.94, + "probability": 0.9721 + }, + { + "start": 12662.36, + "end": 12663.72, + "probability": 0.8638 + }, + { + "start": 12663.88, + "end": 12664.18, + "probability": 0.7657 + }, + { + "start": 12664.3, + "end": 12666.78, + "probability": 0.7563 + }, + { + "start": 12666.94, + "end": 12667.5, + "probability": 0.531 + }, + { + "start": 12667.7, + "end": 12668.0, + "probability": 0.7396 + }, + { + "start": 12668.7, + "end": 12669.37, + "probability": 0.5017 + }, + { + "start": 12669.66, + "end": 12670.54, + "probability": 0.6326 + }, + { + "start": 12671.02, + "end": 12672.42, + "probability": 0.1329 + }, + { + "start": 12673.22, + "end": 12673.32, + "probability": 0.1646 + }, + { + "start": 12673.32, + "end": 12673.48, + "probability": 0.2481 + }, + { + "start": 12673.54, + "end": 12673.74, + "probability": 0.7695 + }, + { + "start": 12673.78, + "end": 12675.46, + "probability": 0.8109 + }, + { + "start": 12675.8, + "end": 12676.22, + "probability": 0.2818 + }, + { + "start": 12676.36, + "end": 12678.38, + "probability": 0.565 + }, + { + "start": 12678.46, + "end": 12679.06, + "probability": 0.6226 + }, + { + "start": 12679.72, + "end": 12680.78, + "probability": 0.6298 + }, + { + "start": 12681.26, + "end": 12682.25, + "probability": 0.4724 + }, + { + "start": 12682.66, + "end": 12683.72, + "probability": 0.5185 + }, + { + "start": 12683.98, + "end": 12686.92, + "probability": 0.8037 + }, + { + "start": 12687.68, + "end": 12688.62, + "probability": 0.7041 + }, + { + "start": 12690.4, + "end": 12691.46, + "probability": 0.0811 + }, + { + "start": 12691.46, + "end": 12694.76, + "probability": 0.6295 + }, + { + "start": 12695.22, + "end": 12698.37, + "probability": 0.7817 + }, + { + "start": 12699.08, + "end": 12703.28, + "probability": 0.6424 + }, + { + "start": 12703.32, + "end": 12705.23, + "probability": 0.9844 + }, + { + "start": 12706.08, + "end": 12708.82, + "probability": 0.3652 + }, + { + "start": 12708.92, + "end": 12709.44, + "probability": 0.2983 + }, + { + "start": 12710.06, + "end": 12713.58, + "probability": 0.9268 + }, + { + "start": 12713.86, + "end": 12716.04, + "probability": 0.9789 + }, + { + "start": 12716.12, + "end": 12717.38, + "probability": 0.9795 + }, + { + "start": 12717.4, + "end": 12718.06, + "probability": 0.0803 + }, + { + "start": 12718.06, + "end": 12718.74, + "probability": 0.6829 + }, + { + "start": 12720.96, + "end": 12721.52, + "probability": 0.0591 + }, + { + "start": 12727.16, + "end": 12731.2, + "probability": 0.2528 + }, + { + "start": 12734.34, + "end": 12734.48, + "probability": 0.1944 + }, + { + "start": 12734.6, + "end": 12738.88, + "probability": 0.7943 + }, + { + "start": 12739.32, + "end": 12740.92, + "probability": 0.908 + }, + { + "start": 12741.24, + "end": 12744.56, + "probability": 0.903 + }, + { + "start": 12745.04, + "end": 12746.74, + "probability": 0.4087 + }, + { + "start": 12746.82, + "end": 12749.7, + "probability": 0.8817 + }, + { + "start": 12749.82, + "end": 12750.92, + "probability": 0.663 + }, + { + "start": 12751.28, + "end": 12751.5, + "probability": 0.0049 + }, + { + "start": 12751.5, + "end": 12751.82, + "probability": 0.6075 + }, + { + "start": 12751.98, + "end": 12753.32, + "probability": 0.9023 + }, + { + "start": 12753.64, + "end": 12754.28, + "probability": 0.6765 + }, + { + "start": 12754.6, + "end": 12755.86, + "probability": 0.9328 + }, + { + "start": 12756.22, + "end": 12756.6, + "probability": 0.8849 + }, + { + "start": 12779.94, + "end": 12782.36, + "probability": 0.732 + }, + { + "start": 12783.52, + "end": 12786.88, + "probability": 0.9082 + }, + { + "start": 12787.54, + "end": 12790.72, + "probability": 0.7547 + }, + { + "start": 12791.1, + "end": 12795.38, + "probability": 0.5409 + }, + { + "start": 12796.08, + "end": 12799.82, + "probability": 0.9341 + }, + { + "start": 12799.94, + "end": 12801.57, + "probability": 0.9512 + }, + { + "start": 12802.68, + "end": 12804.0, + "probability": 0.8325 + }, + { + "start": 12805.06, + "end": 12807.7, + "probability": 0.9863 + }, + { + "start": 12808.6, + "end": 12812.46, + "probability": 0.6668 + }, + { + "start": 12812.58, + "end": 12814.56, + "probability": 0.7467 + }, + { + "start": 12814.94, + "end": 12816.18, + "probability": 0.6442 + }, + { + "start": 12816.58, + "end": 12819.18, + "probability": 0.9692 + }, + { + "start": 12819.18, + "end": 12821.9, + "probability": 0.7831 + }, + { + "start": 12822.26, + "end": 12824.9, + "probability": 0.6431 + }, + { + "start": 12825.2, + "end": 12826.38, + "probability": 0.7997 + }, + { + "start": 12828.54, + "end": 12829.48, + "probability": 0.5051 + }, + { + "start": 12830.74, + "end": 12833.06, + "probability": 0.8022 + }, + { + "start": 12833.4, + "end": 12834.34, + "probability": 0.5555 + }, + { + "start": 12834.34, + "end": 12839.98, + "probability": 0.8794 + }, + { + "start": 12839.98, + "end": 12844.78, + "probability": 0.9574 + }, + { + "start": 12845.16, + "end": 12847.12, + "probability": 0.8599 + }, + { + "start": 12847.12, + "end": 12850.12, + "probability": 0.8041 + }, + { + "start": 12850.52, + "end": 12851.64, + "probability": 0.8491 + }, + { + "start": 12852.38, + "end": 12853.56, + "probability": 0.832 + }, + { + "start": 12853.98, + "end": 12857.56, + "probability": 0.9376 + }, + { + "start": 12857.7, + "end": 12859.48, + "probability": 0.9287 + }, + { + "start": 12859.68, + "end": 12861.1, + "probability": 0.6886 + }, + { + "start": 12861.34, + "end": 12862.66, + "probability": 0.7209 + }, + { + "start": 12863.0, + "end": 12863.1, + "probability": 0.407 + }, + { + "start": 12863.24, + "end": 12864.98, + "probability": 0.8291 + }, + { + "start": 12865.12, + "end": 12865.62, + "probability": 0.8434 + }, + { + "start": 12865.72, + "end": 12868.92, + "probability": 0.8509 + }, + { + "start": 12869.48, + "end": 12874.3, + "probability": 0.9954 + }, + { + "start": 12875.48, + "end": 12878.26, + "probability": 0.9363 + }, + { + "start": 12878.72, + "end": 12879.6, + "probability": 0.5112 + }, + { + "start": 12880.54, + "end": 12882.1, + "probability": 0.9932 + }, + { + "start": 12882.42, + "end": 12883.32, + "probability": 0.9535 + }, + { + "start": 12883.38, + "end": 12884.5, + "probability": 0.8937 + }, + { + "start": 12884.94, + "end": 12887.4, + "probability": 0.776 + }, + { + "start": 12887.84, + "end": 12889.74, + "probability": 0.7425 + }, + { + "start": 12890.46, + "end": 12893.9, + "probability": 0.9807 + }, + { + "start": 12894.4, + "end": 12895.56, + "probability": 0.8485 + }, + { + "start": 12896.2, + "end": 12896.32, + "probability": 0.4965 + }, + { + "start": 12896.44, + "end": 12897.46, + "probability": 0.965 + }, + { + "start": 12897.52, + "end": 12898.88, + "probability": 0.953 + }, + { + "start": 12899.2, + "end": 12900.16, + "probability": 0.976 + }, + { + "start": 12900.34, + "end": 12901.22, + "probability": 0.8191 + }, + { + "start": 12901.22, + "end": 12905.88, + "probability": 0.9586 + }, + { + "start": 12906.38, + "end": 12908.86, + "probability": 0.7657 + }, + { + "start": 12909.4, + "end": 12914.05, + "probability": 0.9734 + }, + { + "start": 12915.7, + "end": 12917.5, + "probability": 0.9707 + }, + { + "start": 12917.8, + "end": 12918.76, + "probability": 0.8929 + }, + { + "start": 12919.96, + "end": 12923.49, + "probability": 0.9785 + }, + { + "start": 12923.94, + "end": 12925.7, + "probability": 0.9888 + }, + { + "start": 12926.02, + "end": 12929.7, + "probability": 0.9971 + }, + { + "start": 12930.04, + "end": 12932.48, + "probability": 0.8384 + }, + { + "start": 12932.48, + "end": 12938.06, + "probability": 0.9847 + }, + { + "start": 12938.52, + "end": 12940.5, + "probability": 0.7518 + }, + { + "start": 12941.76, + "end": 12944.62, + "probability": 0.8174 + }, + { + "start": 12944.84, + "end": 12947.66, + "probability": 0.7883 + }, + { + "start": 12948.36, + "end": 12950.06, + "probability": 0.9915 + }, + { + "start": 12950.96, + "end": 12952.36, + "probability": 0.8631 + }, + { + "start": 12953.18, + "end": 12955.42, + "probability": 0.7087 + }, + { + "start": 12955.7, + "end": 12957.58, + "probability": 0.7526 + }, + { + "start": 12958.0, + "end": 12959.38, + "probability": 0.7065 + }, + { + "start": 12959.5, + "end": 12960.56, + "probability": 0.9082 + }, + { + "start": 12960.86, + "end": 12964.2, + "probability": 0.8666 + }, + { + "start": 12964.5, + "end": 12966.56, + "probability": 0.7745 + }, + { + "start": 12966.96, + "end": 12969.32, + "probability": 0.988 + }, + { + "start": 12969.84, + "end": 12971.44, + "probability": 0.9638 + }, + { + "start": 12971.8, + "end": 12973.88, + "probability": 0.9904 + }, + { + "start": 12973.96, + "end": 12974.92, + "probability": 0.9232 + }, + { + "start": 12975.02, + "end": 12975.98, + "probability": 0.8445 + }, + { + "start": 12976.18, + "end": 12976.76, + "probability": 0.8833 + }, + { + "start": 12976.86, + "end": 12978.12, + "probability": 0.9413 + }, + { + "start": 12979.14, + "end": 12980.82, + "probability": 0.8915 + }, + { + "start": 12981.16, + "end": 12983.82, + "probability": 0.9911 + }, + { + "start": 12984.14, + "end": 12984.86, + "probability": 0.7394 + }, + { + "start": 12985.28, + "end": 12986.76, + "probability": 0.9951 + }, + { + "start": 12987.18, + "end": 12990.92, + "probability": 0.965 + }, + { + "start": 12991.22, + "end": 12993.0, + "probability": 0.9912 + }, + { + "start": 12993.0, + "end": 12996.94, + "probability": 0.7298 + }, + { + "start": 12998.18, + "end": 13001.28, + "probability": 0.9927 + }, + { + "start": 13001.8, + "end": 13005.32, + "probability": 0.5037 + }, + { + "start": 13005.88, + "end": 13006.72, + "probability": 0.4734 + }, + { + "start": 13006.9, + "end": 13007.96, + "probability": 0.6523 + }, + { + "start": 13008.24, + "end": 13010.2, + "probability": 0.7251 + }, + { + "start": 13010.58, + "end": 13013.06, + "probability": 0.9471 + }, + { + "start": 13013.42, + "end": 13015.08, + "probability": 0.9635 + }, + { + "start": 13015.48, + "end": 13017.19, + "probability": 0.9985 + }, + { + "start": 13017.54, + "end": 13019.02, + "probability": 0.8493 + }, + { + "start": 13019.2, + "end": 13020.38, + "probability": 0.83 + }, + { + "start": 13020.8, + "end": 13022.74, + "probability": 0.7798 + }, + { + "start": 13022.74, + "end": 13025.39, + "probability": 0.9922 + }, + { + "start": 13025.72, + "end": 13029.29, + "probability": 0.7461 + }, + { + "start": 13030.2, + "end": 13030.4, + "probability": 0.1942 + }, + { + "start": 13030.8, + "end": 13034.86, + "probability": 0.9587 + }, + { + "start": 13034.98, + "end": 13036.6, + "probability": 0.6941 + }, + { + "start": 13036.84, + "end": 13037.36, + "probability": 0.766 + }, + { + "start": 13037.86, + "end": 13039.22, + "probability": 0.4095 + }, + { + "start": 13039.24, + "end": 13040.78, + "probability": 0.8562 + }, + { + "start": 13042.49, + "end": 13045.62, + "probability": 0.9088 + }, + { + "start": 13046.22, + "end": 13047.02, + "probability": 0.8585 + }, + { + "start": 13047.1, + "end": 13050.02, + "probability": 0.9196 + }, + { + "start": 13050.02, + "end": 13053.44, + "probability": 0.9932 + }, + { + "start": 13054.48, + "end": 13057.02, + "probability": 0.7743 + }, + { + "start": 13057.14, + "end": 13058.5, + "probability": 0.6676 + }, + { + "start": 13058.6, + "end": 13059.31, + "probability": 0.3115 + }, + { + "start": 13059.98, + "end": 13062.02, + "probability": 0.7663 + }, + { + "start": 13062.18, + "end": 13064.8, + "probability": 0.9878 + }, + { + "start": 13066.36, + "end": 13068.28, + "probability": 0.5883 + }, + { + "start": 13068.34, + "end": 13069.47, + "probability": 0.9771 + }, + { + "start": 13070.74, + "end": 13071.5, + "probability": 0.2675 + }, + { + "start": 13072.26, + "end": 13073.98, + "probability": 0.7971 + }, + { + "start": 13076.78, + "end": 13077.84, + "probability": 0.7732 + }, + { + "start": 13078.38, + "end": 13079.56, + "probability": 0.9766 + }, + { + "start": 13080.38, + "end": 13082.26, + "probability": 0.7487 + }, + { + "start": 13083.96, + "end": 13086.56, + "probability": 0.6248 + }, + { + "start": 13087.62, + "end": 13090.18, + "probability": 0.9501 + }, + { + "start": 13091.0, + "end": 13091.34, + "probability": 0.6006 + }, + { + "start": 13091.88, + "end": 13093.36, + "probability": 0.8691 + }, + { + "start": 13094.7, + "end": 13096.46, + "probability": 0.8915 + }, + { + "start": 13097.24, + "end": 13098.65, + "probability": 0.9832 + }, + { + "start": 13098.82, + "end": 13100.94, + "probability": 0.6918 + }, + { + "start": 13101.86, + "end": 13103.12, + "probability": 0.96 + }, + { + "start": 13103.6, + "end": 13105.44, + "probability": 0.9561 + }, + { + "start": 13106.28, + "end": 13109.28, + "probability": 0.8759 + }, + { + "start": 13109.82, + "end": 13109.96, + "probability": 0.4858 + }, + { + "start": 13109.98, + "end": 13111.4, + "probability": 0.7797 + }, + { + "start": 13111.62, + "end": 13113.4, + "probability": 0.7817 + }, + { + "start": 13113.44, + "end": 13115.06, + "probability": 0.6865 + }, + { + "start": 13115.92, + "end": 13117.28, + "probability": 0.919 + }, + { + "start": 13117.46, + "end": 13122.12, + "probability": 0.9403 + }, + { + "start": 13122.2, + "end": 13123.74, + "probability": 0.9707 + }, + { + "start": 13125.4, + "end": 13128.54, + "probability": 0.9258 + }, + { + "start": 13128.94, + "end": 13133.72, + "probability": 0.9619 + }, + { + "start": 13134.08, + "end": 13134.44, + "probability": 0.6521 + }, + { + "start": 13134.46, + "end": 13136.0, + "probability": 0.5758 + }, + { + "start": 13136.22, + "end": 13137.66, + "probability": 0.9939 + }, + { + "start": 13137.72, + "end": 13139.22, + "probability": 0.9941 + }, + { + "start": 13139.32, + "end": 13140.66, + "probability": 0.3889 + }, + { + "start": 13140.74, + "end": 13141.18, + "probability": 0.3746 + }, + { + "start": 13141.36, + "end": 13143.55, + "probability": 0.8601 + }, + { + "start": 13144.88, + "end": 13149.14, + "probability": 0.8379 + }, + { + "start": 13150.02, + "end": 13150.92, + "probability": 0.9108 + }, + { + "start": 13151.0, + "end": 13151.42, + "probability": 0.7717 + }, + { + "start": 13151.74, + "end": 13152.24, + "probability": 0.5791 + }, + { + "start": 13152.44, + "end": 13153.32, + "probability": 0.8168 + }, + { + "start": 13153.32, + "end": 13154.34, + "probability": 0.868 + }, + { + "start": 13155.1, + "end": 13156.78, + "probability": 0.9565 + }, + { + "start": 13157.8, + "end": 13158.76, + "probability": 0.8877 + }, + { + "start": 13161.44, + "end": 13164.82, + "probability": 0.8823 + }, + { + "start": 13165.34, + "end": 13166.3, + "probability": 0.7206 + }, + { + "start": 13166.42, + "end": 13167.42, + "probability": 0.7045 + }, + { + "start": 13167.42, + "end": 13168.04, + "probability": 0.9785 + }, + { + "start": 13168.36, + "end": 13171.62, + "probability": 0.9697 + }, + { + "start": 13171.64, + "end": 13173.08, + "probability": 0.9495 + }, + { + "start": 13173.1, + "end": 13173.96, + "probability": 0.7405 + }, + { + "start": 13174.54, + "end": 13178.22, + "probability": 0.8832 + }, + { + "start": 13179.32, + "end": 13181.36, + "probability": 0.9672 + }, + { + "start": 13182.36, + "end": 13183.36, + "probability": 0.637 + }, + { + "start": 13183.4, + "end": 13184.38, + "probability": 0.6741 + }, + { + "start": 13184.9, + "end": 13185.33, + "probability": 0.957 + }, + { + "start": 13186.14, + "end": 13188.6, + "probability": 0.952 + }, + { + "start": 13190.08, + "end": 13190.92, + "probability": 0.7913 + }, + { + "start": 13191.5, + "end": 13197.44, + "probability": 0.9244 + }, + { + "start": 13198.26, + "end": 13201.62, + "probability": 0.957 + }, + { + "start": 13202.52, + "end": 13204.64, + "probability": 0.995 + }, + { + "start": 13206.44, + "end": 13210.78, + "probability": 0.9587 + }, + { + "start": 13211.86, + "end": 13213.68, + "probability": 0.9845 + }, + { + "start": 13213.88, + "end": 13215.14, + "probability": 0.7203 + }, + { + "start": 13215.56, + "end": 13218.09, + "probability": 0.8403 + }, + { + "start": 13219.2, + "end": 13222.84, + "probability": 0.994 + }, + { + "start": 13222.88, + "end": 13227.24, + "probability": 0.9876 + }, + { + "start": 13227.24, + "end": 13232.18, + "probability": 0.9947 + }, + { + "start": 13232.92, + "end": 13235.94, + "probability": 0.9332 + }, + { + "start": 13237.64, + "end": 13238.52, + "probability": 0.8853 + }, + { + "start": 13238.6, + "end": 13239.72, + "probability": 0.9822 + }, + { + "start": 13239.88, + "end": 13240.84, + "probability": 0.7946 + }, + { + "start": 13240.9, + "end": 13241.6, + "probability": 0.8802 + }, + { + "start": 13242.06, + "end": 13243.36, + "probability": 0.4687 + }, + { + "start": 13243.42, + "end": 13244.2, + "probability": 0.7645 + }, + { + "start": 13244.24, + "end": 13245.0, + "probability": 0.8564 + }, + { + "start": 13245.84, + "end": 13247.62, + "probability": 0.9873 + }, + { + "start": 13248.42, + "end": 13250.68, + "probability": 0.8777 + }, + { + "start": 13251.34, + "end": 13252.76, + "probability": 0.9246 + }, + { + "start": 13253.7, + "end": 13254.6, + "probability": 0.9827 + }, + { + "start": 13255.34, + "end": 13257.73, + "probability": 0.9792 + }, + { + "start": 13258.06, + "end": 13258.41, + "probability": 0.1824 + }, + { + "start": 13259.6, + "end": 13260.8, + "probability": 0.667 + }, + { + "start": 13262.67, + "end": 13264.16, + "probability": 0.9342 + }, + { + "start": 13265.12, + "end": 13265.42, + "probability": 0.7403 + }, + { + "start": 13265.48, + "end": 13267.79, + "probability": 0.909 + }, + { + "start": 13268.18, + "end": 13269.14, + "probability": 0.9396 + }, + { + "start": 13269.4, + "end": 13270.77, + "probability": 0.9875 + }, + { + "start": 13271.18, + "end": 13272.74, + "probability": 0.8928 + }, + { + "start": 13272.8, + "end": 13273.94, + "probability": 0.5871 + }, + { + "start": 13274.9, + "end": 13275.75, + "probability": 0.9819 + }, + { + "start": 13275.86, + "end": 13277.08, + "probability": 0.8462 + }, + { + "start": 13277.18, + "end": 13277.44, + "probability": 0.5559 + }, + { + "start": 13277.44, + "end": 13278.16, + "probability": 0.6868 + }, + { + "start": 13279.14, + "end": 13280.23, + "probability": 0.9897 + }, + { + "start": 13281.28, + "end": 13286.45, + "probability": 0.9279 + }, + { + "start": 13287.34, + "end": 13288.32, + "probability": 0.5384 + }, + { + "start": 13290.84, + "end": 13291.76, + "probability": 0.9218 + }, + { + "start": 13291.86, + "end": 13296.3, + "probability": 0.9688 + }, + { + "start": 13296.3, + "end": 13300.04, + "probability": 0.9987 + }, + { + "start": 13300.26, + "end": 13304.86, + "probability": 0.9833 + }, + { + "start": 13305.02, + "end": 13306.28, + "probability": 0.5356 + }, + { + "start": 13306.72, + "end": 13310.44, + "probability": 0.8214 + }, + { + "start": 13311.8, + "end": 13314.14, + "probability": 0.8944 + }, + { + "start": 13315.04, + "end": 13317.52, + "probability": 0.5825 + }, + { + "start": 13317.7, + "end": 13320.38, + "probability": 0.8784 + }, + { + "start": 13320.54, + "end": 13322.82, + "probability": 0.9994 + }, + { + "start": 13323.56, + "end": 13324.88, + "probability": 0.7273 + }, + { + "start": 13325.86, + "end": 13327.72, + "probability": 0.5805 + }, + { + "start": 13327.8, + "end": 13331.22, + "probability": 0.7808 + }, + { + "start": 13331.32, + "end": 13331.7, + "probability": 0.9562 + }, + { + "start": 13352.79, + "end": 13355.5, + "probability": 0.6802 + }, + { + "start": 13355.78, + "end": 13357.06, + "probability": 0.9799 + }, + { + "start": 13358.82, + "end": 13360.76, + "probability": 0.7689 + }, + { + "start": 13361.46, + "end": 13362.28, + "probability": 0.9278 + }, + { + "start": 13362.38, + "end": 13363.42, + "probability": 0.9788 + }, + { + "start": 13363.46, + "end": 13364.46, + "probability": 0.8389 + }, + { + "start": 13366.34, + "end": 13368.66, + "probability": 0.9736 + }, + { + "start": 13369.7, + "end": 13372.62, + "probability": 0.9809 + }, + { + "start": 13372.62, + "end": 13375.24, + "probability": 0.9962 + }, + { + "start": 13376.54, + "end": 13381.72, + "probability": 0.9877 + }, + { + "start": 13381.8, + "end": 13383.74, + "probability": 0.9865 + }, + { + "start": 13384.54, + "end": 13386.6, + "probability": 0.8404 + }, + { + "start": 13386.88, + "end": 13388.8, + "probability": 0.8913 + }, + { + "start": 13388.9, + "end": 13393.14, + "probability": 0.9921 + }, + { + "start": 13393.24, + "end": 13395.68, + "probability": 0.9867 + }, + { + "start": 13396.32, + "end": 13396.86, + "probability": 0.8531 + }, + { + "start": 13397.08, + "end": 13402.54, + "probability": 0.559 + }, + { + "start": 13402.54, + "end": 13404.66, + "probability": 0.6468 + }, + { + "start": 13404.72, + "end": 13407.1, + "probability": 0.98 + }, + { + "start": 13407.26, + "end": 13409.92, + "probability": 0.9898 + }, + { + "start": 13410.08, + "end": 13413.54, + "probability": 0.9939 + }, + { + "start": 13413.56, + "end": 13417.56, + "probability": 0.9766 + }, + { + "start": 13417.56, + "end": 13420.78, + "probability": 0.9985 + }, + { + "start": 13421.64, + "end": 13425.0, + "probability": 0.9961 + }, + { + "start": 13425.42, + "end": 13427.48, + "probability": 0.8032 + }, + { + "start": 13427.9, + "end": 13428.56, + "probability": 0.5234 + }, + { + "start": 13428.64, + "end": 13430.98, + "probability": 0.9293 + }, + { + "start": 13431.08, + "end": 13434.26, + "probability": 0.9436 + }, + { + "start": 13434.48, + "end": 13436.48, + "probability": 0.99 + }, + { + "start": 13436.94, + "end": 13438.93, + "probability": 0.8999 + }, + { + "start": 13439.18, + "end": 13441.4, + "probability": 0.9363 + }, + { + "start": 13441.8, + "end": 13445.14, + "probability": 0.7786 + }, + { + "start": 13445.76, + "end": 13448.34, + "probability": 0.8857 + }, + { + "start": 13448.4, + "end": 13452.06, + "probability": 0.9036 + }, + { + "start": 13452.12, + "end": 13454.12, + "probability": 0.9967 + }, + { + "start": 13454.34, + "end": 13455.7, + "probability": 0.9813 + }, + { + "start": 13455.78, + "end": 13460.08, + "probability": 0.9531 + }, + { + "start": 13460.14, + "end": 13464.3, + "probability": 0.9801 + }, + { + "start": 13464.74, + "end": 13465.92, + "probability": 0.912 + }, + { + "start": 13466.12, + "end": 13468.76, + "probability": 0.9154 + }, + { + "start": 13468.82, + "end": 13470.18, + "probability": 0.8009 + }, + { + "start": 13470.54, + "end": 13475.24, + "probability": 0.984 + }, + { + "start": 13475.26, + "end": 13480.26, + "probability": 0.9995 + }, + { + "start": 13481.1, + "end": 13482.14, + "probability": 0.8766 + }, + { + "start": 13482.68, + "end": 13486.26, + "probability": 0.9985 + }, + { + "start": 13486.26, + "end": 13489.16, + "probability": 0.9938 + }, + { + "start": 13489.88, + "end": 13494.08, + "probability": 0.9934 + }, + { + "start": 13494.14, + "end": 13497.16, + "probability": 0.9612 + }, + { + "start": 13497.62, + "end": 13501.66, + "probability": 0.9791 + }, + { + "start": 13502.32, + "end": 13507.64, + "probability": 0.9847 + }, + { + "start": 13509.26, + "end": 13510.96, + "probability": 0.9985 + }, + { + "start": 13511.1, + "end": 13512.24, + "probability": 0.9843 + }, + { + "start": 13512.46, + "end": 13513.1, + "probability": 0.8838 + }, + { + "start": 13513.26, + "end": 13514.86, + "probability": 0.8616 + }, + { + "start": 13515.22, + "end": 13520.16, + "probability": 0.9904 + }, + { + "start": 13520.9, + "end": 13524.86, + "probability": 0.6741 + }, + { + "start": 13525.08, + "end": 13528.6, + "probability": 0.9948 + }, + { + "start": 13529.34, + "end": 13532.9, + "probability": 0.9963 + }, + { + "start": 13533.8, + "end": 13534.5, + "probability": 0.7717 + }, + { + "start": 13534.66, + "end": 13538.22, + "probability": 0.877 + }, + { + "start": 13538.52, + "end": 13540.08, + "probability": 0.5479 + }, + { + "start": 13540.16, + "end": 13543.8, + "probability": 0.847 + }, + { + "start": 13543.9, + "end": 13545.02, + "probability": 0.516 + }, + { + "start": 13545.08, + "end": 13546.16, + "probability": 0.9321 + }, + { + "start": 13547.72, + "end": 13551.1, + "probability": 0.642 + }, + { + "start": 13551.6, + "end": 13554.06, + "probability": 0.7646 + }, + { + "start": 13554.6, + "end": 13556.78, + "probability": 0.8201 + }, + { + "start": 13557.0, + "end": 13558.08, + "probability": 0.787 + }, + { + "start": 13558.16, + "end": 13558.44, + "probability": 0.8459 + }, + { + "start": 13558.6, + "end": 13559.88, + "probability": 0.924 + }, + { + "start": 13560.26, + "end": 13562.34, + "probability": 0.9792 + }, + { + "start": 13563.2, + "end": 13568.46, + "probability": 0.9101 + }, + { + "start": 13568.96, + "end": 13573.0, + "probability": 0.9966 + }, + { + "start": 13573.36, + "end": 13577.04, + "probability": 0.9977 + }, + { + "start": 13577.1, + "end": 13577.38, + "probability": 0.7223 + }, + { + "start": 13577.62, + "end": 13579.38, + "probability": 0.853 + }, + { + "start": 13579.88, + "end": 13582.44, + "probability": 0.9492 + }, + { + "start": 13582.74, + "end": 13586.78, + "probability": 0.98 + }, + { + "start": 13586.94, + "end": 13589.08, + "probability": 0.9085 + }, + { + "start": 13590.0, + "end": 13593.1, + "probability": 0.9781 + }, + { + "start": 13593.1, + "end": 13596.5, + "probability": 0.9941 + }, + { + "start": 13597.36, + "end": 13598.6, + "probability": 0.9546 + }, + { + "start": 13598.74, + "end": 13599.34, + "probability": 0.5362 + }, + { + "start": 13599.4, + "end": 13602.14, + "probability": 0.9958 + }, + { + "start": 13602.64, + "end": 13604.46, + "probability": 0.9135 + }, + { + "start": 13604.72, + "end": 13607.86, + "probability": 0.9818 + }, + { + "start": 13608.88, + "end": 13611.8, + "probability": 0.9497 + }, + { + "start": 13611.8, + "end": 13615.64, + "probability": 0.9818 + }, + { + "start": 13615.86, + "end": 13618.64, + "probability": 0.8213 + }, + { + "start": 13618.74, + "end": 13622.88, + "probability": 0.985 + }, + { + "start": 13623.9, + "end": 13624.66, + "probability": 0.6778 + }, + { + "start": 13624.72, + "end": 13626.52, + "probability": 0.9841 + }, + { + "start": 13626.58, + "end": 13630.8, + "probability": 0.8698 + }, + { + "start": 13631.12, + "end": 13634.34, + "probability": 0.8955 + }, + { + "start": 13635.1, + "end": 13639.96, + "probability": 0.9335 + }, + { + "start": 13639.96, + "end": 13643.2, + "probability": 0.9966 + }, + { + "start": 13644.18, + "end": 13644.42, + "probability": 0.0548 + }, + { + "start": 13644.42, + "end": 13647.5, + "probability": 0.9724 + }, + { + "start": 13647.5, + "end": 13650.56, + "probability": 0.9727 + }, + { + "start": 13651.38, + "end": 13651.96, + "probability": 0.6159 + }, + { + "start": 13652.04, + "end": 13654.54, + "probability": 0.9924 + }, + { + "start": 13654.54, + "end": 13658.6, + "probability": 0.8169 + }, + { + "start": 13658.96, + "end": 13661.84, + "probability": 0.8542 + }, + { + "start": 13661.9, + "end": 13663.24, + "probability": 0.5761 + }, + { + "start": 13663.36, + "end": 13664.16, + "probability": 0.8283 + }, + { + "start": 13664.34, + "end": 13666.4, + "probability": 0.9865 + }, + { + "start": 13666.74, + "end": 13670.3, + "probability": 0.9972 + }, + { + "start": 13670.3, + "end": 13673.72, + "probability": 0.747 + }, + { + "start": 13675.12, + "end": 13677.34, + "probability": 0.9882 + }, + { + "start": 13677.55, + "end": 13681.01, + "probability": 0.999 + }, + { + "start": 13681.16, + "end": 13682.78, + "probability": 0.9309 + }, + { + "start": 13683.16, + "end": 13685.96, + "probability": 0.8029 + }, + { + "start": 13686.2, + "end": 13688.16, + "probability": 0.8181 + }, + { + "start": 13688.16, + "end": 13691.32, + "probability": 0.884 + }, + { + "start": 13692.54, + "end": 13693.28, + "probability": 0.7168 + }, + { + "start": 13694.04, + "end": 13697.64, + "probability": 0.9869 + }, + { + "start": 13697.82, + "end": 13699.66, + "probability": 0.9424 + }, + { + "start": 13699.7, + "end": 13699.86, + "probability": 0.4064 + }, + { + "start": 13699.94, + "end": 13702.28, + "probability": 0.9826 + }, + { + "start": 13702.54, + "end": 13706.14, + "probability": 0.9827 + }, + { + "start": 13706.46, + "end": 13708.65, + "probability": 0.9814 + }, + { + "start": 13709.5, + "end": 13710.8, + "probability": 0.821 + }, + { + "start": 13710.98, + "end": 13711.42, + "probability": 0.5488 + }, + { + "start": 13711.5, + "end": 13713.54, + "probability": 0.9881 + }, + { + "start": 13713.8, + "end": 13714.22, + "probability": 0.8351 + }, + { + "start": 13714.34, + "end": 13718.45, + "probability": 0.979 + }, + { + "start": 13718.65, + "end": 13722.09, + "probability": 0.6441 + }, + { + "start": 13722.53, + "end": 13723.85, + "probability": 0.7875 + }, + { + "start": 13723.89, + "end": 13725.49, + "probability": 0.985 + }, + { + "start": 13725.55, + "end": 13727.07, + "probability": 0.8716 + }, + { + "start": 13727.21, + "end": 13730.97, + "probability": 0.9148 + }, + { + "start": 13731.05, + "end": 13734.03, + "probability": 0.7944 + }, + { + "start": 13734.07, + "end": 13735.79, + "probability": 0.766 + }, + { + "start": 13735.97, + "end": 13738.83, + "probability": 0.9895 + }, + { + "start": 13738.91, + "end": 13741.19, + "probability": 0.9849 + }, + { + "start": 13741.37, + "end": 13743.79, + "probability": 0.9135 + }, + { + "start": 13746.73, + "end": 13746.75, + "probability": 0.1674 + }, + { + "start": 13746.75, + "end": 13746.75, + "probability": 0.0554 + }, + { + "start": 13746.75, + "end": 13746.75, + "probability": 0.1936 + }, + { + "start": 13746.91, + "end": 13747.77, + "probability": 0.8057 + }, + { + "start": 13747.83, + "end": 13748.43, + "probability": 0.3061 + }, + { + "start": 13748.53, + "end": 13749.79, + "probability": 0.2585 + }, + { + "start": 13750.11, + "end": 13751.69, + "probability": 0.5252 + }, + { + "start": 13751.95, + "end": 13753.67, + "probability": 0.5753 + }, + { + "start": 13753.81, + "end": 13755.01, + "probability": 0.7828 + }, + { + "start": 13755.07, + "end": 13756.31, + "probability": 0.9777 + }, + { + "start": 13756.35, + "end": 13758.14, + "probability": 0.7546 + }, + { + "start": 13758.21, + "end": 13758.91, + "probability": 0.2198 + }, + { + "start": 13759.09, + "end": 13761.29, + "probability": 0.5499 + }, + { + "start": 13761.37, + "end": 13762.27, + "probability": 0.4633 + }, + { + "start": 13762.89, + "end": 13764.44, + "probability": 0.1866 + }, + { + "start": 13765.53, + "end": 13767.93, + "probability": 0.057 + }, + { + "start": 13769.91, + "end": 13773.59, + "probability": 0.9331 + }, + { + "start": 13773.59, + "end": 13775.25, + "probability": 0.5216 + }, + { + "start": 13777.33, + "end": 13778.85, + "probability": 0.2739 + }, + { + "start": 13778.85, + "end": 13778.85, + "probability": 0.5194 + }, + { + "start": 13778.85, + "end": 13778.85, + "probability": 0.0427 + }, + { + "start": 13778.85, + "end": 13780.38, + "probability": 0.3667 + }, + { + "start": 13782.83, + "end": 13782.83, + "probability": 0.0453 + }, + { + "start": 13784.83, + "end": 13789.87, + "probability": 0.1905 + }, + { + "start": 13789.87, + "end": 13789.87, + "probability": 0.2936 + }, + { + "start": 13794.97, + "end": 13796.29, + "probability": 0.1822 + }, + { + "start": 13797.67, + "end": 13803.09, + "probability": 0.016 + }, + { + "start": 13803.09, + "end": 13806.21, + "probability": 0.0235 + }, + { + "start": 13806.21, + "end": 13808.39, + "probability": 0.066 + }, + { + "start": 13808.87, + "end": 13810.17, + "probability": 0.1887 + }, + { + "start": 13813.33, + "end": 13820.49, + "probability": 0.2151 + }, + { + "start": 13821.83, + "end": 13823.03, + "probability": 0.019 + }, + { + "start": 13823.03, + "end": 13823.19, + "probability": 0.0382 + }, + { + "start": 13823.19, + "end": 13823.19, + "probability": 0.0474 + }, + { + "start": 13823.19, + "end": 13823.19, + "probability": 0.0462 + }, + { + "start": 13823.19, + "end": 13824.49, + "probability": 0.0824 + }, + { + "start": 13824.49, + "end": 13828.17, + "probability": 0.2046 + }, + { + "start": 13828.17, + "end": 13828.17, + "probability": 0.0684 + }, + { + "start": 13828.17, + "end": 13828.17, + "probability": 0.0493 + }, + { + "start": 13828.17, + "end": 13829.78, + "probability": 0.2753 + }, + { + "start": 13841.0, + "end": 13841.0, + "probability": 0.0 + }, + { + "start": 13841.0, + "end": 13841.0, + "probability": 0.0 + }, + { + "start": 13841.0, + "end": 13841.0, + "probability": 0.0 + }, + { + "start": 13841.0, + "end": 13841.0, + "probability": 0.0 + }, + { + "start": 13841.0, + "end": 13841.0, + "probability": 0.0 + }, + { + "start": 13841.0, + "end": 13841.0, + "probability": 0.0 + }, + { + "start": 13841.0, + "end": 13841.0, + "probability": 0.0 + }, + { + "start": 13841.0, + "end": 13841.0, + "probability": 0.0 + }, + { + "start": 13841.0, + "end": 13841.0, + "probability": 0.0 + }, + { + "start": 13841.0, + "end": 13841.0, + "probability": 0.0 + }, + { + "start": 13841.0, + "end": 13841.0, + "probability": 0.0 + }, + { + "start": 13841.14, + "end": 13843.16, + "probability": 0.5783 + }, + { + "start": 13843.5, + "end": 13844.7, + "probability": 0.525 + }, + { + "start": 13844.94, + "end": 13848.1, + "probability": 0.712 + }, + { + "start": 13848.1, + "end": 13848.7, + "probability": 0.4496 + }, + { + "start": 13848.86, + "end": 13851.57, + "probability": 0.9862 + }, + { + "start": 13852.44, + "end": 13855.74, + "probability": 0.9282 + }, + { + "start": 13855.94, + "end": 13857.48, + "probability": 0.9933 + }, + { + "start": 13857.68, + "end": 13860.94, + "probability": 0.8595 + }, + { + "start": 13860.96, + "end": 13861.58, + "probability": 0.8078 + }, + { + "start": 13861.98, + "end": 13862.2, + "probability": 0.6436 + }, + { + "start": 13862.2, + "end": 13862.84, + "probability": 0.6246 + }, + { + "start": 13862.98, + "end": 13864.76, + "probability": 0.8989 + }, + { + "start": 13864.84, + "end": 13866.02, + "probability": 0.8569 + }, + { + "start": 13867.0, + "end": 13869.27, + "probability": 0.9352 + }, + { + "start": 13869.64, + "end": 13872.32, + "probability": 0.8547 + }, + { + "start": 13872.4, + "end": 13874.02, + "probability": 0.8682 + }, + { + "start": 13874.44, + "end": 13875.54, + "probability": 0.8623 + }, + { + "start": 13875.64, + "end": 13876.26, + "probability": 0.872 + }, + { + "start": 13876.32, + "end": 13879.3, + "probability": 0.5295 + }, + { + "start": 13879.3, + "end": 13882.8, + "probability": 0.9921 + }, + { + "start": 13882.9, + "end": 13884.66, + "probability": 0.9961 + }, + { + "start": 13886.36, + "end": 13888.34, + "probability": 0.9262 + }, + { + "start": 13888.92, + "end": 13889.32, + "probability": 0.3577 + }, + { + "start": 13889.42, + "end": 13890.4, + "probability": 0.7026 + }, + { + "start": 13890.48, + "end": 13893.16, + "probability": 0.9351 + }, + { + "start": 13893.7, + "end": 13894.68, + "probability": 0.9047 + }, + { + "start": 13894.84, + "end": 13895.08, + "probability": 0.6872 + }, + { + "start": 13895.1, + "end": 13896.26, + "probability": 0.9956 + }, + { + "start": 13896.46, + "end": 13899.42, + "probability": 0.9779 + }, + { + "start": 13899.6, + "end": 13900.8, + "probability": 0.96 + }, + { + "start": 13900.92, + "end": 13901.76, + "probability": 0.7506 + }, + { + "start": 13902.02, + "end": 13903.64, + "probability": 0.5481 + }, + { + "start": 13903.9, + "end": 13904.88, + "probability": 0.8628 + }, + { + "start": 13905.08, + "end": 13910.76, + "probability": 0.7151 + }, + { + "start": 13911.14, + "end": 13914.18, + "probability": 0.9849 + }, + { + "start": 13914.3, + "end": 13917.8, + "probability": 0.9569 + }, + { + "start": 13918.32, + "end": 13920.8, + "probability": 0.9363 + }, + { + "start": 13921.08, + "end": 13924.08, + "probability": 0.8745 + }, + { + "start": 13924.36, + "end": 13925.86, + "probability": 0.8558 + }, + { + "start": 13926.12, + "end": 13927.0, + "probability": 0.7991 + }, + { + "start": 13927.1, + "end": 13927.86, + "probability": 0.8367 + }, + { + "start": 13928.04, + "end": 13928.6, + "probability": 0.7788 + }, + { + "start": 13928.8, + "end": 13931.68, + "probability": 0.9774 + }, + { + "start": 13932.28, + "end": 13933.02, + "probability": 0.256 + }, + { + "start": 13933.02, + "end": 13934.26, + "probability": 0.7658 + }, + { + "start": 13934.6, + "end": 13935.16, + "probability": 0.4802 + }, + { + "start": 13935.49, + "end": 13940.36, + "probability": 0.9188 + }, + { + "start": 13940.74, + "end": 13942.24, + "probability": 0.7296 + }, + { + "start": 13942.74, + "end": 13944.74, + "probability": 0.9939 + }, + { + "start": 13944.92, + "end": 13949.26, + "probability": 0.6529 + }, + { + "start": 13949.84, + "end": 13952.06, + "probability": 0.7863 + }, + { + "start": 13952.26, + "end": 13954.0, + "probability": 0.8155 + }, + { + "start": 13954.64, + "end": 13958.76, + "probability": 0.5552 + }, + { + "start": 13958.86, + "end": 13960.8, + "probability": 0.9754 + }, + { + "start": 13961.02, + "end": 13961.52, + "probability": 0.7546 + }, + { + "start": 13968.58, + "end": 13969.7, + "probability": 0.7508 + }, + { + "start": 13970.6, + "end": 13973.18, + "probability": 0.7867 + }, + { + "start": 13974.28, + "end": 13979.36, + "probability": 0.6294 + }, + { + "start": 13979.9, + "end": 13981.32, + "probability": 0.9347 + }, + { + "start": 13981.52, + "end": 13982.78, + "probability": 0.9623 + }, + { + "start": 13983.1, + "end": 13987.2, + "probability": 0.9128 + }, + { + "start": 13987.74, + "end": 13993.9, + "probability": 0.9286 + }, + { + "start": 13993.94, + "end": 13995.8, + "probability": 0.9752 + }, + { + "start": 13996.14, + "end": 13997.9, + "probability": 0.8278 + }, + { + "start": 13998.24, + "end": 13999.52, + "probability": 0.8207 + }, + { + "start": 14000.46, + "end": 14001.98, + "probability": 0.0679 + }, + { + "start": 14003.74, + "end": 14004.56, + "probability": 0.001 + }, + { + "start": 14004.56, + "end": 14005.76, + "probability": 0.0512 + }, + { + "start": 14005.82, + "end": 14005.96, + "probability": 0.1012 + }, + { + "start": 14005.96, + "end": 14009.04, + "probability": 0.8531 + }, + { + "start": 14011.48, + "end": 14012.44, + "probability": 0.8702 + }, + { + "start": 14012.68, + "end": 14014.16, + "probability": 0.9157 + }, + { + "start": 14014.16, + "end": 14015.78, + "probability": 0.7992 + }, + { + "start": 14015.78, + "end": 14016.98, + "probability": 0.7423 + }, + { + "start": 14017.16, + "end": 14019.72, + "probability": 0.8478 + }, + { + "start": 14019.98, + "end": 14024.67, + "probability": 0.9805 + }, + { + "start": 14025.52, + "end": 14027.26, + "probability": 0.5702 + }, + { + "start": 14027.4, + "end": 14029.71, + "probability": 0.9922 + }, + { + "start": 14029.82, + "end": 14030.84, + "probability": 0.4385 + }, + { + "start": 14030.98, + "end": 14033.58, + "probability": 0.3614 + }, + { + "start": 14033.62, + "end": 14034.42, + "probability": 0.614 + }, + { + "start": 14034.54, + "end": 14038.2, + "probability": 0.9644 + }, + { + "start": 14038.26, + "end": 14040.69, + "probability": 0.9948 + }, + { + "start": 14041.72, + "end": 14044.68, + "probability": 0.882 + }, + { + "start": 14045.26, + "end": 14048.68, + "probability": 0.9619 + }, + { + "start": 14049.16, + "end": 14054.06, + "probability": 0.9444 + }, + { + "start": 14054.78, + "end": 14058.8, + "probability": 0.8846 + }, + { + "start": 14058.86, + "end": 14060.26, + "probability": 0.8457 + }, + { + "start": 14060.6, + "end": 14060.98, + "probability": 0.7653 + }, + { + "start": 14061.1, + "end": 14062.9, + "probability": 0.4253 + }, + { + "start": 14063.76, + "end": 14070.04, + "probability": 0.9409 + }, + { + "start": 14070.52, + "end": 14072.12, + "probability": 0.9887 + }, + { + "start": 14072.64, + "end": 14079.62, + "probability": 0.9382 + }, + { + "start": 14080.68, + "end": 14083.1, + "probability": 0.7043 + }, + { + "start": 14084.76, + "end": 14087.46, + "probability": 0.6665 + }, + { + "start": 14087.56, + "end": 14092.46, + "probability": 0.7793 + }, + { + "start": 14093.04, + "end": 14096.24, + "probability": 0.5544 + }, + { + "start": 14096.94, + "end": 14099.1, + "probability": 0.9524 + }, + { + "start": 14099.18, + "end": 14099.46, + "probability": 0.5516 + }, + { + "start": 14099.5, + "end": 14100.34, + "probability": 0.9523 + }, + { + "start": 14100.84, + "end": 14103.6, + "probability": 0.6418 + }, + { + "start": 14104.16, + "end": 14108.64, + "probability": 0.8999 + }, + { + "start": 14109.64, + "end": 14112.84, + "probability": 0.9754 + }, + { + "start": 14113.44, + "end": 14116.59, + "probability": 0.7932 + }, + { + "start": 14116.86, + "end": 14119.76, + "probability": 0.6693 + }, + { + "start": 14121.22, + "end": 14124.74, + "probability": 0.9353 + }, + { + "start": 14126.12, + "end": 14126.72, + "probability": 0.7147 + }, + { + "start": 14126.8, + "end": 14129.16, + "probability": 0.9568 + }, + { + "start": 14130.18, + "end": 14134.66, + "probability": 0.954 + }, + { + "start": 14135.72, + "end": 14139.56, + "probability": 0.9797 + }, + { + "start": 14140.14, + "end": 14141.7, + "probability": 0.7055 + }, + { + "start": 14141.7, + "end": 14143.28, + "probability": 0.4997 + }, + { + "start": 14144.12, + "end": 14146.16, + "probability": 0.8718 + }, + { + "start": 14146.74, + "end": 14148.12, + "probability": 0.9963 + }, + { + "start": 14148.26, + "end": 14148.46, + "probability": 0.2717 + }, + { + "start": 14148.9, + "end": 14152.42, + "probability": 0.9474 + }, + { + "start": 14152.64, + "end": 14156.22, + "probability": 0.6732 + }, + { + "start": 14156.7, + "end": 14159.62, + "probability": 0.9294 + }, + { + "start": 14160.44, + "end": 14163.5, + "probability": 0.9696 + }, + { + "start": 14163.74, + "end": 14164.56, + "probability": 0.8351 + }, + { + "start": 14164.68, + "end": 14173.1, + "probability": 0.983 + }, + { + "start": 14173.64, + "end": 14175.3, + "probability": 0.3787 + }, + { + "start": 14176.32, + "end": 14177.39, + "probability": 0.6836 + }, + { + "start": 14177.84, + "end": 14178.88, + "probability": 0.4229 + }, + { + "start": 14179.44, + "end": 14183.52, + "probability": 0.9679 + }, + { + "start": 14183.86, + "end": 14185.82, + "probability": 0.9277 + }, + { + "start": 14186.08, + "end": 14190.72, + "probability": 0.8971 + }, + { + "start": 14190.82, + "end": 14193.86, + "probability": 0.9695 + }, + { + "start": 14194.24, + "end": 14197.66, + "probability": 0.9035 + }, + { + "start": 14198.0, + "end": 14200.5, + "probability": 0.793 + }, + { + "start": 14200.8, + "end": 14201.6, + "probability": 0.9629 + }, + { + "start": 14202.18, + "end": 14204.48, + "probability": 0.8553 + }, + { + "start": 14204.9, + "end": 14207.02, + "probability": 0.7275 + }, + { + "start": 14208.26, + "end": 14214.92, + "probability": 0.9919 + }, + { + "start": 14215.36, + "end": 14217.1, + "probability": 0.8815 + }, + { + "start": 14218.38, + "end": 14223.6, + "probability": 0.9225 + }, + { + "start": 14224.58, + "end": 14225.64, + "probability": 0.9113 + }, + { + "start": 14226.68, + "end": 14227.94, + "probability": 0.9477 + }, + { + "start": 14228.8, + "end": 14230.28, + "probability": 0.8219 + }, + { + "start": 14230.88, + "end": 14235.52, + "probability": 0.7653 + }, + { + "start": 14236.6, + "end": 14237.78, + "probability": 0.9079 + }, + { + "start": 14238.06, + "end": 14238.7, + "probability": 0.9563 + }, + { + "start": 14238.96, + "end": 14242.33, + "probability": 0.8179 + }, + { + "start": 14243.02, + "end": 14245.04, + "probability": 0.9494 + }, + { + "start": 14245.2, + "end": 14245.98, + "probability": 0.9588 + }, + { + "start": 14246.08, + "end": 14246.46, + "probability": 0.9945 + }, + { + "start": 14247.2, + "end": 14247.84, + "probability": 0.5618 + }, + { + "start": 14248.58, + "end": 14250.26, + "probability": 0.7432 + }, + { + "start": 14250.96, + "end": 14252.92, + "probability": 0.7332 + }, + { + "start": 14253.84, + "end": 14257.48, + "probability": 0.7059 + }, + { + "start": 14257.54, + "end": 14262.34, + "probability": 0.9854 + }, + { + "start": 14265.3, + "end": 14265.82, + "probability": 0.3284 + }, + { + "start": 14266.38, + "end": 14267.8, + "probability": 0.5804 + }, + { + "start": 14268.5, + "end": 14269.52, + "probability": 0.8569 + }, + { + "start": 14269.6, + "end": 14270.8, + "probability": 0.8316 + }, + { + "start": 14271.2, + "end": 14272.99, + "probability": 0.9424 + }, + { + "start": 14274.14, + "end": 14275.68, + "probability": 0.9021 + }, + { + "start": 14276.24, + "end": 14279.02, + "probability": 0.8612 + }, + { + "start": 14280.08, + "end": 14280.76, + "probability": 0.7943 + }, + { + "start": 14281.46, + "end": 14284.18, + "probability": 0.8123 + }, + { + "start": 14284.82, + "end": 14286.72, + "probability": 0.8586 + }, + { + "start": 14287.6, + "end": 14288.36, + "probability": 0.6033 + }, + { + "start": 14288.48, + "end": 14289.77, + "probability": 0.8743 + }, + { + "start": 14290.22, + "end": 14291.96, + "probability": 0.7078 + }, + { + "start": 14292.76, + "end": 14296.04, + "probability": 0.9202 + }, + { + "start": 14296.78, + "end": 14297.12, + "probability": 0.3962 + }, + { + "start": 14297.28, + "end": 14297.78, + "probability": 0.8316 + }, + { + "start": 14297.88, + "end": 14301.22, + "probability": 0.9697 + }, + { + "start": 14301.92, + "end": 14305.46, + "probability": 0.946 + }, + { + "start": 14306.56, + "end": 14310.06, + "probability": 0.9982 + }, + { + "start": 14310.46, + "end": 14317.8, + "probability": 0.7245 + }, + { + "start": 14317.8, + "end": 14319.98, + "probability": 0.8794 + }, + { + "start": 14320.5, + "end": 14323.76, + "probability": 0.9617 + }, + { + "start": 14324.14, + "end": 14325.38, + "probability": 0.6001 + }, + { + "start": 14325.68, + "end": 14327.26, + "probability": 0.7258 + }, + { + "start": 14327.58, + "end": 14328.27, + "probability": 0.6397 + }, + { + "start": 14329.1, + "end": 14333.56, + "probability": 0.8566 + }, + { + "start": 14333.82, + "end": 14336.88, + "probability": 0.9064 + }, + { + "start": 14337.48, + "end": 14342.92, + "probability": 0.9224 + }, + { + "start": 14343.54, + "end": 14349.5, + "probability": 0.926 + }, + { + "start": 14349.78, + "end": 14350.66, + "probability": 0.7955 + }, + { + "start": 14350.98, + "end": 14352.22, + "probability": 0.5921 + }, + { + "start": 14352.42, + "end": 14354.0, + "probability": 0.8431 + }, + { + "start": 14373.72, + "end": 14375.74, + "probability": 0.6161 + }, + { + "start": 14376.84, + "end": 14378.32, + "probability": 0.702 + }, + { + "start": 14378.46, + "end": 14379.78, + "probability": 0.9788 + }, + { + "start": 14381.3, + "end": 14382.28, + "probability": 0.8544 + }, + { + "start": 14383.3, + "end": 14385.16, + "probability": 0.737 + }, + { + "start": 14385.2, + "end": 14388.62, + "probability": 0.7958 + }, + { + "start": 14389.4, + "end": 14391.56, + "probability": 0.5981 + }, + { + "start": 14392.8, + "end": 14394.56, + "probability": 0.8993 + }, + { + "start": 14395.12, + "end": 14396.72, + "probability": 0.806 + }, + { + "start": 14397.1, + "end": 14398.02, + "probability": 0.9567 + }, + { + "start": 14398.12, + "end": 14400.96, + "probability": 0.916 + }, + { + "start": 14401.04, + "end": 14401.92, + "probability": 0.9763 + }, + { + "start": 14403.18, + "end": 14405.4, + "probability": 0.8159 + }, + { + "start": 14408.04, + "end": 14411.68, + "probability": 0.8787 + }, + { + "start": 14411.88, + "end": 14415.25, + "probability": 0.679 + }, + { + "start": 14415.88, + "end": 14418.96, + "probability": 0.9553 + }, + { + "start": 14420.42, + "end": 14422.84, + "probability": 0.919 + }, + { + "start": 14424.3, + "end": 14425.72, + "probability": 0.6668 + }, + { + "start": 14426.04, + "end": 14430.8, + "probability": 0.8998 + }, + { + "start": 14431.14, + "end": 14432.66, + "probability": 0.6093 + }, + { + "start": 14432.78, + "end": 14434.32, + "probability": 0.7921 + }, + { + "start": 14435.28, + "end": 14437.88, + "probability": 0.9762 + }, + { + "start": 14437.88, + "end": 14442.8, + "probability": 0.9215 + }, + { + "start": 14444.28, + "end": 14449.2, + "probability": 0.7927 + }, + { + "start": 14449.38, + "end": 14449.8, + "probability": 0.0286 + }, + { + "start": 14450.04, + "end": 14453.42, + "probability": 0.1252 + }, + { + "start": 14453.46, + "end": 14454.52, + "probability": 0.9175 + }, + { + "start": 14454.96, + "end": 14457.38, + "probability": 0.7671 + }, + { + "start": 14458.76, + "end": 14459.7, + "probability": 0.9321 + }, + { + "start": 14461.56, + "end": 14466.9, + "probability": 0.7838 + }, + { + "start": 14467.82, + "end": 14471.03, + "probability": 0.9962 + }, + { + "start": 14471.56, + "end": 14475.82, + "probability": 0.9955 + }, + { + "start": 14475.82, + "end": 14480.5, + "probability": 0.7443 + }, + { + "start": 14482.36, + "end": 14482.66, + "probability": 0.2024 + }, + { + "start": 14482.66, + "end": 14486.02, + "probability": 0.7224 + }, + { + "start": 14486.02, + "end": 14489.14, + "probability": 0.9943 + }, + { + "start": 14489.86, + "end": 14493.08, + "probability": 0.9054 + }, + { + "start": 14493.14, + "end": 14495.82, + "probability": 0.8813 + }, + { + "start": 14496.14, + "end": 14496.86, + "probability": 0.8249 + }, + { + "start": 14497.0, + "end": 14497.58, + "probability": 0.3165 + }, + { + "start": 14497.6, + "end": 14498.47, + "probability": 0.7646 + }, + { + "start": 14502.96, + "end": 14508.48, + "probability": 0.6353 + }, + { + "start": 14509.12, + "end": 14509.12, + "probability": 0.0959 + }, + { + "start": 14509.12, + "end": 14509.62, + "probability": 0.5989 + }, + { + "start": 14509.82, + "end": 14510.34, + "probability": 0.6702 + }, + { + "start": 14510.48, + "end": 14512.68, + "probability": 0.9583 + }, + { + "start": 14512.76, + "end": 14517.24, + "probability": 0.9985 + }, + { + "start": 14518.22, + "end": 14525.32, + "probability": 0.7667 + }, + { + "start": 14526.86, + "end": 14527.08, + "probability": 0.2825 + }, + { + "start": 14527.08, + "end": 14527.38, + "probability": 0.4514 + }, + { + "start": 14527.52, + "end": 14527.52, + "probability": 0.6219 + }, + { + "start": 14527.8, + "end": 14529.0, + "probability": 0.8709 + }, + { + "start": 14529.46, + "end": 14530.7, + "probability": 0.7078 + }, + { + "start": 14530.78, + "end": 14531.52, + "probability": 0.6337 + }, + { + "start": 14531.74, + "end": 14533.64, + "probability": 0.8096 + }, + { + "start": 14535.8, + "end": 14539.66, + "probability": 0.8016 + }, + { + "start": 14539.94, + "end": 14542.96, + "probability": 0.7865 + }, + { + "start": 14543.1, + "end": 14547.66, + "probability": 0.7245 + }, + { + "start": 14548.14, + "end": 14549.94, + "probability": 0.7788 + }, + { + "start": 14551.04, + "end": 14554.22, + "probability": 0.9788 + }, + { + "start": 14554.66, + "end": 14557.04, + "probability": 0.8846 + }, + { + "start": 14558.44, + "end": 14563.72, + "probability": 0.9246 + }, + { + "start": 14564.64, + "end": 14568.46, + "probability": 0.9936 + }, + { + "start": 14568.46, + "end": 14571.02, + "probability": 0.8289 + }, + { + "start": 14572.16, + "end": 14575.44, + "probability": 0.9839 + }, + { + "start": 14575.44, + "end": 14581.64, + "probability": 0.8826 + }, + { + "start": 14583.08, + "end": 14584.42, + "probability": 0.5636 + }, + { + "start": 14585.2, + "end": 14586.1, + "probability": 0.8859 + }, + { + "start": 14586.16, + "end": 14592.22, + "probability": 0.8755 + }, + { + "start": 14592.62, + "end": 14596.46, + "probability": 0.9149 + }, + { + "start": 14597.64, + "end": 14598.32, + "probability": 0.6792 + }, + { + "start": 14598.44, + "end": 14601.46, + "probability": 0.7955 + }, + { + "start": 14601.94, + "end": 14604.52, + "probability": 0.754 + }, + { + "start": 14605.0, + "end": 14611.74, + "probability": 0.9671 + }, + { + "start": 14612.1, + "end": 14613.4, + "probability": 0.7961 + }, + { + "start": 14613.78, + "end": 14615.38, + "probability": 0.9284 + }, + { + "start": 14615.78, + "end": 14619.32, + "probability": 0.9778 + }, + { + "start": 14620.46, + "end": 14621.0, + "probability": 0.8475 + }, + { + "start": 14621.1, + "end": 14623.22, + "probability": 0.7316 + }, + { + "start": 14623.46, + "end": 14624.34, + "probability": 0.9638 + }, + { + "start": 14624.62, + "end": 14627.74, + "probability": 0.9956 + }, + { + "start": 14627.74, + "end": 14633.0, + "probability": 0.9476 + }, + { + "start": 14633.44, + "end": 14636.18, + "probability": 0.9979 + }, + { + "start": 14636.26, + "end": 14636.62, + "probability": 0.7162 + }, + { + "start": 14636.78, + "end": 14637.44, + "probability": 0.5451 + }, + { + "start": 14638.2, + "end": 14641.44, + "probability": 0.5167 + }, + { + "start": 14641.52, + "end": 14642.34, + "probability": 0.5257 + }, + { + "start": 14642.72, + "end": 14642.9, + "probability": 0.4172 + }, + { + "start": 14644.06, + "end": 14645.56, + "probability": 0.4786 + }, + { + "start": 14647.06, + "end": 14647.86, + "probability": 0.2697 + }, + { + "start": 14647.96, + "end": 14648.38, + "probability": 0.8118 + }, + { + "start": 14648.54, + "end": 14650.98, + "probability": 0.8729 + }, + { + "start": 14651.76, + "end": 14654.34, + "probability": 0.1464 + }, + { + "start": 14656.12, + "end": 14657.12, + "probability": 0.6078 + }, + { + "start": 14657.73, + "end": 14660.64, + "probability": 0.4911 + }, + { + "start": 14660.8, + "end": 14662.14, + "probability": 0.5026 + }, + { + "start": 14662.32, + "end": 14663.02, + "probability": 0.3618 + }, + { + "start": 14663.06, + "end": 14663.62, + "probability": 0.4744 + }, + { + "start": 14664.0, + "end": 14664.44, + "probability": 0.6011 + }, + { + "start": 14664.48, + "end": 14666.16, + "probability": 0.0641 + }, + { + "start": 14667.24, + "end": 14669.82, + "probability": 0.5395 + }, + { + "start": 14670.46, + "end": 14675.86, + "probability": 0.8806 + }, + { + "start": 14675.9, + "end": 14679.44, + "probability": 0.8965 + }, + { + "start": 14679.54, + "end": 14681.88, + "probability": 0.8716 + }, + { + "start": 14682.12, + "end": 14682.54, + "probability": 0.5406 + }, + { + "start": 14690.4, + "end": 14697.12, + "probability": 0.2512 + }, + { + "start": 14698.52, + "end": 14698.72, + "probability": 0.3224 + }, + { + "start": 14698.76, + "end": 14700.36, + "probability": 0.7276 + }, + { + "start": 14700.54, + "end": 14702.28, + "probability": 0.5561 + }, + { + "start": 14702.28, + "end": 14706.52, + "probability": 0.9315 + }, + { + "start": 14706.7, + "end": 14709.78, + "probability": 0.563 + }, + { + "start": 14709.94, + "end": 14710.14, + "probability": 0.1008 + }, + { + "start": 14710.96, + "end": 14713.8, + "probability": 0.0 + }, + { + "start": 14720.34, + "end": 14721.33, + "probability": 0.1872 + }, + { + "start": 14723.04, + "end": 14723.76, + "probability": 0.0767 + }, + { + "start": 14723.76, + "end": 14723.76, + "probability": 0.4643 + }, + { + "start": 14723.76, + "end": 14724.56, + "probability": 0.7792 + }, + { + "start": 14727.58, + "end": 14729.46, + "probability": 0.5106 + }, + { + "start": 14730.88, + "end": 14738.54, + "probability": 0.885 + }, + { + "start": 14739.52, + "end": 14741.32, + "probability": 0.9847 + }, + { + "start": 14742.4, + "end": 14744.72, + "probability": 0.8196 + }, + { + "start": 14745.4, + "end": 14748.1, + "probability": 0.9771 + }, + { + "start": 14748.3, + "end": 14749.8, + "probability": 0.9351 + }, + { + "start": 14749.92, + "end": 14753.94, + "probability": 0.8994 + }, + { + "start": 14754.18, + "end": 14755.39, + "probability": 0.9067 + }, + { + "start": 14755.66, + "end": 14755.76, + "probability": 0.5812 + }, + { + "start": 14756.42, + "end": 14760.68, + "probability": 0.6189 + }, + { + "start": 14761.88, + "end": 14768.48, + "probability": 0.8693 + }, + { + "start": 14768.52, + "end": 14773.88, + "probability": 0.8991 + }, + { + "start": 14774.5, + "end": 14776.62, + "probability": 0.9857 + }, + { + "start": 14777.78, + "end": 14783.42, + "probability": 0.9775 + }, + { + "start": 14783.44, + "end": 14784.8, + "probability": 0.8985 + }, + { + "start": 14784.92, + "end": 14786.02, + "probability": 0.8644 + }, + { + "start": 14786.2, + "end": 14788.06, + "probability": 0.9329 + }, + { + "start": 14790.26, + "end": 14797.08, + "probability": 0.8924 + }, + { + "start": 14797.5, + "end": 14799.52, + "probability": 0.986 + }, + { + "start": 14800.4, + "end": 14801.78, + "probability": 0.8857 + }, + { + "start": 14802.48, + "end": 14803.48, + "probability": 0.8374 + }, + { + "start": 14803.66, + "end": 14807.5, + "probability": 0.9584 + }, + { + "start": 14809.26, + "end": 14812.68, + "probability": 0.8259 + }, + { + "start": 14813.2, + "end": 14815.5, + "probability": 0.9484 + }, + { + "start": 14816.68, + "end": 14823.4, + "probability": 0.9813 + }, + { + "start": 14823.48, + "end": 14826.23, + "probability": 0.8127 + }, + { + "start": 14826.88, + "end": 14828.48, + "probability": 0.8306 + }, + { + "start": 14828.62, + "end": 14829.48, + "probability": 0.8987 + }, + { + "start": 14830.86, + "end": 14835.0, + "probability": 0.588 + }, + { + "start": 14837.36, + "end": 14842.38, + "probability": 0.9728 + }, + { + "start": 14843.86, + "end": 14846.04, + "probability": 0.7787 + }, + { + "start": 14846.08, + "end": 14846.96, + "probability": 0.7307 + }, + { + "start": 14847.02, + "end": 14848.64, + "probability": 0.8698 + }, + { + "start": 14848.8, + "end": 14851.22, + "probability": 0.4653 + }, + { + "start": 14851.5, + "end": 14854.02, + "probability": 0.9548 + }, + { + "start": 14854.9, + "end": 14858.68, + "probability": 0.7367 + }, + { + "start": 14860.04, + "end": 14860.74, + "probability": 0.8676 + }, + { + "start": 14860.84, + "end": 14861.26, + "probability": 0.9256 + }, + { + "start": 14861.52, + "end": 14863.08, + "probability": 0.8774 + }, + { + "start": 14863.5, + "end": 14865.62, + "probability": 0.9367 + }, + { + "start": 14866.78, + "end": 14873.92, + "probability": 0.9712 + }, + { + "start": 14874.24, + "end": 14875.82, + "probability": 0.7316 + }, + { + "start": 14876.32, + "end": 14878.28, + "probability": 0.9731 + }, + { + "start": 14878.44, + "end": 14880.82, + "probability": 0.9888 + }, + { + "start": 14882.04, + "end": 14886.26, + "probability": 0.9736 + }, + { + "start": 14887.2, + "end": 14889.7, + "probability": 0.9841 + }, + { + "start": 14890.16, + "end": 14893.79, + "probability": 0.8701 + }, + { + "start": 14894.8, + "end": 14896.46, + "probability": 0.6113 + }, + { + "start": 14896.56, + "end": 14898.1, + "probability": 0.9651 + }, + { + "start": 14898.52, + "end": 14898.84, + "probability": 0.5093 + }, + { + "start": 14898.94, + "end": 14900.94, + "probability": 0.9583 + }, + { + "start": 14901.08, + "end": 14906.56, + "probability": 0.9887 + }, + { + "start": 14906.62, + "end": 14907.42, + "probability": 0.8893 + }, + { + "start": 14908.52, + "end": 14909.59, + "probability": 0.858 + }, + { + "start": 14911.85, + "end": 14915.58, + "probability": 0.9113 + }, + { + "start": 14915.84, + "end": 14918.72, + "probability": 0.8193 + }, + { + "start": 14919.32, + "end": 14919.94, + "probability": 0.9423 + }, + { + "start": 14921.2, + "end": 14923.9, + "probability": 0.8871 + }, + { + "start": 14924.5, + "end": 14926.0, + "probability": 0.9951 + }, + { + "start": 14926.6, + "end": 14927.3, + "probability": 0.4681 + }, + { + "start": 14929.24, + "end": 14934.8, + "probability": 0.9832 + }, + { + "start": 14934.98, + "end": 14936.74, + "probability": 0.8789 + }, + { + "start": 14936.82, + "end": 14939.72, + "probability": 0.8651 + }, + { + "start": 14940.72, + "end": 14944.58, + "probability": 0.9849 + }, + { + "start": 14945.9, + "end": 14949.34, + "probability": 0.9619 + }, + { + "start": 14949.5, + "end": 14951.44, + "probability": 0.9156 + }, + { + "start": 14951.48, + "end": 14952.3, + "probability": 0.9672 + }, + { + "start": 14952.82, + "end": 14957.08, + "probability": 0.9707 + }, + { + "start": 14957.98, + "end": 14960.68, + "probability": 0.9543 + }, + { + "start": 14961.78, + "end": 14965.82, + "probability": 0.9634 + }, + { + "start": 14968.15, + "end": 14976.12, + "probability": 0.8342 + }, + { + "start": 14977.08, + "end": 14979.6, + "probability": 0.9852 + }, + { + "start": 14979.7, + "end": 14981.68, + "probability": 0.9762 + }, + { + "start": 14984.18, + "end": 14986.12, + "probability": 0.6738 + }, + { + "start": 14987.87, + "end": 14991.34, + "probability": 0.975 + }, + { + "start": 14994.31, + "end": 14996.8, + "probability": 0.4494 + }, + { + "start": 14998.16, + "end": 14999.14, + "probability": 0.3871 + }, + { + "start": 14999.78, + "end": 15001.28, + "probability": 0.6581 + }, + { + "start": 15001.42, + "end": 15002.1, + "probability": 0.7485 + }, + { + "start": 15002.56, + "end": 15007.52, + "probability": 0.9381 + }, + { + "start": 15008.24, + "end": 15011.88, + "probability": 0.9631 + }, + { + "start": 15013.24, + "end": 15014.66, + "probability": 0.3254 + }, + { + "start": 15014.72, + "end": 15017.06, + "probability": 0.8651 + }, + { + "start": 15018.0, + "end": 15021.1, + "probability": 0.7947 + }, + { + "start": 15022.32, + "end": 15024.94, + "probability": 0.8746 + }, + { + "start": 15024.94, + "end": 15029.94, + "probability": 0.8876 + }, + { + "start": 15030.7, + "end": 15031.88, + "probability": 0.7858 + }, + { + "start": 15031.92, + "end": 15033.98, + "probability": 0.9887 + }, + { + "start": 15034.9, + "end": 15036.34, + "probability": 0.8058 + }, + { + "start": 15037.42, + "end": 15039.0, + "probability": 0.9744 + }, + { + "start": 15039.92, + "end": 15041.9, + "probability": 0.9803 + }, + { + "start": 15042.0, + "end": 15045.78, + "probability": 0.9895 + }, + { + "start": 15046.84, + "end": 15048.22, + "probability": 0.7492 + }, + { + "start": 15048.68, + "end": 15049.64, + "probability": 0.859 + }, + { + "start": 15050.0, + "end": 15050.76, + "probability": 0.7419 + }, + { + "start": 15051.2, + "end": 15052.26, + "probability": 0.5037 + }, + { + "start": 15053.22, + "end": 15057.92, + "probability": 0.9329 + }, + { + "start": 15058.9, + "end": 15059.28, + "probability": 0.4843 + }, + { + "start": 15059.36, + "end": 15060.08, + "probability": 0.9892 + }, + { + "start": 15060.32, + "end": 15066.94, + "probability": 0.9226 + }, + { + "start": 15067.64, + "end": 15069.52, + "probability": 0.7356 + }, + { + "start": 15069.82, + "end": 15070.7, + "probability": 0.9463 + }, + { + "start": 15071.44, + "end": 15075.42, + "probability": 0.9783 + }, + { + "start": 15075.42, + "end": 15078.9, + "probability": 0.9795 + }, + { + "start": 15080.3, + "end": 15083.2, + "probability": 0.8973 + }, + { + "start": 15084.18, + "end": 15087.02, + "probability": 0.9414 + }, + { + "start": 15088.64, + "end": 15090.02, + "probability": 0.9355 + }, + { + "start": 15091.1, + "end": 15095.54, + "probability": 0.8889 + }, + { + "start": 15096.24, + "end": 15097.5, + "probability": 0.7367 + }, + { + "start": 15098.58, + "end": 15102.42, + "probability": 0.7818 + }, + { + "start": 15102.5, + "end": 15105.18, + "probability": 0.7569 + }, + { + "start": 15105.28, + "end": 15105.98, + "probability": 0.0081 + }, + { + "start": 15106.28, + "end": 15110.28, + "probability": 0.9972 + }, + { + "start": 15110.36, + "end": 15111.34, + "probability": 0.9503 + }, + { + "start": 15111.4, + "end": 15114.9, + "probability": 0.9648 + }, + { + "start": 15114.96, + "end": 15115.86, + "probability": 0.9852 + }, + { + "start": 15118.2, + "end": 15121.2, + "probability": 0.9204 + }, + { + "start": 15122.58, + "end": 15123.64, + "probability": 0.7666 + }, + { + "start": 15124.14, + "end": 15125.62, + "probability": 0.7846 + }, + { + "start": 15125.68, + "end": 15130.68, + "probability": 0.8865 + }, + { + "start": 15130.88, + "end": 15136.88, + "probability": 0.9885 + }, + { + "start": 15137.9, + "end": 15143.14, + "probability": 0.8671 + }, + { + "start": 15143.48, + "end": 15145.8, + "probability": 0.9924 + }, + { + "start": 15146.26, + "end": 15148.82, + "probability": 0.8106 + }, + { + "start": 15148.94, + "end": 15151.34, + "probability": 0.71 + }, + { + "start": 15151.56, + "end": 15153.32, + "probability": 0.5185 + }, + { + "start": 15156.6, + "end": 15159.26, + "probability": 0.8264 + }, + { + "start": 15159.48, + "end": 15160.12, + "probability": 0.8875 + }, + { + "start": 15160.22, + "end": 15161.04, + "probability": 0.9313 + }, + { + "start": 15161.2, + "end": 15161.88, + "probability": 0.8022 + }, + { + "start": 15162.36, + "end": 15164.94, + "probability": 0.6963 + }, + { + "start": 15165.44, + "end": 15166.7, + "probability": 0.8652 + }, + { + "start": 15168.82, + "end": 15170.48, + "probability": 0.4126 + }, + { + "start": 15170.96, + "end": 15171.38, + "probability": 0.5342 + }, + { + "start": 15171.9, + "end": 15175.42, + "probability": 0.7577 + }, + { + "start": 15175.6, + "end": 15177.82, + "probability": 0.9946 + }, + { + "start": 15178.4, + "end": 15179.0, + "probability": 0.7719 + }, + { + "start": 15179.72, + "end": 15181.52, + "probability": 0.5183 + }, + { + "start": 15181.62, + "end": 15183.26, + "probability": 0.9584 + }, + { + "start": 15183.4, + "end": 15184.12, + "probability": 0.9795 + }, + { + "start": 15184.2, + "end": 15184.91, + "probability": 0.9839 + }, + { + "start": 15186.14, + "end": 15188.64, + "probability": 0.9812 + }, + { + "start": 15189.18, + "end": 15193.39, + "probability": 0.6682 + }, + { + "start": 15193.88, + "end": 15196.64, + "probability": 0.4062 + }, + { + "start": 15196.72, + "end": 15197.02, + "probability": 0.6363 + }, + { + "start": 15197.84, + "end": 15199.26, + "probability": 0.7757 + }, + { + "start": 15199.98, + "end": 15204.64, + "probability": 0.9568 + }, + { + "start": 15204.64, + "end": 15208.72, + "probability": 0.8828 + }, + { + "start": 15209.4, + "end": 15211.34, + "probability": 0.9555 + }, + { + "start": 15212.36, + "end": 15215.7, + "probability": 0.9689 + }, + { + "start": 15215.78, + "end": 15222.1, + "probability": 0.8533 + }, + { + "start": 15222.76, + "end": 15223.58, + "probability": 0.9328 + }, + { + "start": 15224.28, + "end": 15227.72, + "probability": 0.9954 + }, + { + "start": 15227.8, + "end": 15228.22, + "probability": 0.7484 + }, + { + "start": 15228.3, + "end": 15229.54, + "probability": 0.5599 + }, + { + "start": 15229.62, + "end": 15233.56, + "probability": 0.9074 + }, + { + "start": 15248.58, + "end": 15249.58, + "probability": 0.6318 + }, + { + "start": 15249.84, + "end": 15250.96, + "probability": 0.8118 + }, + { + "start": 15251.4, + "end": 15252.28, + "probability": 0.7842 + }, + { + "start": 15254.44, + "end": 15258.64, + "probability": 0.9941 + }, + { + "start": 15258.64, + "end": 15263.76, + "probability": 0.9714 + }, + { + "start": 15265.28, + "end": 15267.68, + "probability": 0.9909 + }, + { + "start": 15268.58, + "end": 15271.4, + "probability": 0.8445 + }, + { + "start": 15271.72, + "end": 15272.92, + "probability": 0.871 + }, + { + "start": 15273.34, + "end": 15274.34, + "probability": 0.9713 + }, + { + "start": 15275.12, + "end": 15277.18, + "probability": 0.9861 + }, + { + "start": 15277.86, + "end": 15283.82, + "probability": 0.993 + }, + { + "start": 15284.72, + "end": 15285.94, + "probability": 0.7287 + }, + { + "start": 15286.7, + "end": 15290.24, + "probability": 0.9878 + }, + { + "start": 15290.24, + "end": 15295.34, + "probability": 0.9963 + }, + { + "start": 15296.6, + "end": 15299.84, + "probability": 0.993 + }, + { + "start": 15299.98, + "end": 15301.02, + "probability": 0.973 + }, + { + "start": 15301.38, + "end": 15302.16, + "probability": 0.8301 + }, + { + "start": 15302.36, + "end": 15304.96, + "probability": 0.9875 + }, + { + "start": 15305.5, + "end": 15307.76, + "probability": 0.9832 + }, + { + "start": 15309.18, + "end": 15312.67, + "probability": 0.9095 + }, + { + "start": 15313.64, + "end": 15314.22, + "probability": 0.6779 + }, + { + "start": 15314.36, + "end": 15317.18, + "probability": 0.9321 + }, + { + "start": 15317.18, + "end": 15319.78, + "probability": 0.9951 + }, + { + "start": 15320.14, + "end": 15320.72, + "probability": 0.9091 + }, + { + "start": 15320.76, + "end": 15326.64, + "probability": 0.9803 + }, + { + "start": 15327.74, + "end": 15331.18, + "probability": 0.9839 + }, + { + "start": 15331.18, + "end": 15334.5, + "probability": 0.9486 + }, + { + "start": 15335.12, + "end": 15335.84, + "probability": 0.8703 + }, + { + "start": 15336.54, + "end": 15340.5, + "probability": 0.9119 + }, + { + "start": 15340.6, + "end": 15340.92, + "probability": 0.2533 + }, + { + "start": 15340.94, + "end": 15342.74, + "probability": 0.4844 + }, + { + "start": 15343.32, + "end": 15344.1, + "probability": 0.1829 + }, + { + "start": 15344.82, + "end": 15345.38, + "probability": 0.4271 + }, + { + "start": 15345.38, + "end": 15347.74, + "probability": 0.5223 + }, + { + "start": 15347.74, + "end": 15351.44, + "probability": 0.9853 + }, + { + "start": 15351.7, + "end": 15353.4, + "probability": 0.7443 + }, + { + "start": 15353.44, + "end": 15354.54, + "probability": 0.8936 + }, + { + "start": 15354.64, + "end": 15355.32, + "probability": 0.9829 + }, + { + "start": 15355.7, + "end": 15356.3, + "probability": 0.492 + }, + { + "start": 15356.42, + "end": 15358.82, + "probability": 0.8838 + }, + { + "start": 15358.98, + "end": 15360.02, + "probability": 0.5848 + }, + { + "start": 15361.64, + "end": 15366.24, + "probability": 0.9904 + }, + { + "start": 15366.62, + "end": 15370.34, + "probability": 0.9339 + }, + { + "start": 15370.4, + "end": 15371.78, + "probability": 0.939 + }, + { + "start": 15372.12, + "end": 15373.62, + "probability": 0.929 + }, + { + "start": 15373.92, + "end": 15374.68, + "probability": 0.7879 + }, + { + "start": 15375.88, + "end": 15380.56, + "probability": 0.9799 + }, + { + "start": 15380.56, + "end": 15386.76, + "probability": 0.9945 + }, + { + "start": 15387.62, + "end": 15388.38, + "probability": 0.839 + }, + { + "start": 15389.34, + "end": 15394.28, + "probability": 0.9938 + }, + { + "start": 15395.08, + "end": 15396.86, + "probability": 0.9172 + }, + { + "start": 15398.58, + "end": 15401.12, + "probability": 0.5663 + }, + { + "start": 15402.44, + "end": 15405.81, + "probability": 0.9513 + }, + { + "start": 15406.12, + "end": 15407.1, + "probability": 0.5663 + }, + { + "start": 15407.26, + "end": 15409.28, + "probability": 0.7483 + }, + { + "start": 15409.9, + "end": 15417.28, + "probability": 0.6719 + }, + { + "start": 15417.4, + "end": 15420.46, + "probability": 0.8002 + }, + { + "start": 15420.74, + "end": 15421.54, + "probability": 0.4753 + }, + { + "start": 15424.04, + "end": 15426.64, + "probability": 0.9895 + }, + { + "start": 15426.68, + "end": 15430.3, + "probability": 0.9966 + }, + { + "start": 15430.36, + "end": 15430.9, + "probability": 0.8917 + }, + { + "start": 15431.84, + "end": 15436.52, + "probability": 0.9907 + }, + { + "start": 15437.36, + "end": 15441.52, + "probability": 0.796 + }, + { + "start": 15442.14, + "end": 15443.7, + "probability": 0.9695 + }, + { + "start": 15444.26, + "end": 15445.82, + "probability": 0.192 + }, + { + "start": 15446.78, + "end": 15449.3, + "probability": 0.9206 + }, + { + "start": 15449.98, + "end": 15451.24, + "probability": 0.9628 + }, + { + "start": 15451.36, + "end": 15453.46, + "probability": 0.6396 + }, + { + "start": 15453.66, + "end": 15460.22, + "probability": 0.9459 + }, + { + "start": 15460.78, + "end": 15463.66, + "probability": 0.9 + }, + { + "start": 15464.26, + "end": 15465.58, + "probability": 0.9961 + }, + { + "start": 15466.34, + "end": 15467.08, + "probability": 0.7365 + }, + { + "start": 15468.01, + "end": 15470.42, + "probability": 0.834 + }, + { + "start": 15471.64, + "end": 15473.54, + "probability": 0.9797 + }, + { + "start": 15474.38, + "end": 15475.52, + "probability": 0.9973 + }, + { + "start": 15476.3, + "end": 15477.86, + "probability": 0.9757 + }, + { + "start": 15478.52, + "end": 15481.48, + "probability": 0.9741 + }, + { + "start": 15482.36, + "end": 15484.32, + "probability": 0.9937 + }, + { + "start": 15485.6, + "end": 15488.32, + "probability": 0.8226 + }, + { + "start": 15488.96, + "end": 15490.67, + "probability": 0.9937 + }, + { + "start": 15490.86, + "end": 15493.88, + "probability": 0.9961 + }, + { + "start": 15494.18, + "end": 15496.2, + "probability": 0.866 + }, + { + "start": 15496.56, + "end": 15499.72, + "probability": 0.9611 + }, + { + "start": 15500.04, + "end": 15503.36, + "probability": 0.9977 + }, + { + "start": 15503.86, + "end": 15505.58, + "probability": 0.7148 + }, + { + "start": 15505.66, + "end": 15506.76, + "probability": 0.9852 + }, + { + "start": 15506.84, + "end": 15507.7, + "probability": 0.7398 + }, + { + "start": 15508.0, + "end": 15509.13, + "probability": 0.8447 + }, + { + "start": 15509.24, + "end": 15510.16, + "probability": 0.6832 + }, + { + "start": 15510.58, + "end": 15512.26, + "probability": 0.8196 + }, + { + "start": 15512.72, + "end": 15514.46, + "probability": 0.7833 + }, + { + "start": 15514.6, + "end": 15517.26, + "probability": 0.9932 + }, + { + "start": 15517.34, + "end": 15519.54, + "probability": 0.8965 + }, + { + "start": 15520.16, + "end": 15521.18, + "probability": 0.8092 + }, + { + "start": 15521.54, + "end": 15526.24, + "probability": 0.8071 + }, + { + "start": 15527.04, + "end": 15529.24, + "probability": 0.9931 + }, + { + "start": 15530.04, + "end": 15533.78, + "probability": 0.9484 + }, + { + "start": 15534.58, + "end": 15536.36, + "probability": 0.9962 + }, + { + "start": 15537.06, + "end": 15538.46, + "probability": 0.7119 + }, + { + "start": 15538.58, + "end": 15539.62, + "probability": 0.8564 + }, + { + "start": 15539.88, + "end": 15541.98, + "probability": 0.8998 + }, + { + "start": 15543.14, + "end": 15545.2, + "probability": 0.8731 + }, + { + "start": 15545.48, + "end": 15546.36, + "probability": 0.7476 + }, + { + "start": 15546.56, + "end": 15547.16, + "probability": 0.9653 + }, + { + "start": 15547.26, + "end": 15548.1, + "probability": 0.9219 + }, + { + "start": 15548.16, + "end": 15549.68, + "probability": 0.9953 + }, + { + "start": 15551.62, + "end": 15554.58, + "probability": 0.9054 + }, + { + "start": 15555.58, + "end": 15555.68, + "probability": 0.3404 + }, + { + "start": 15555.68, + "end": 15557.9, + "probability": 0.7374 + }, + { + "start": 15558.9, + "end": 15559.0, + "probability": 0.4926 + }, + { + "start": 15559.0, + "end": 15560.72, + "probability": 0.8478 + }, + { + "start": 15560.82, + "end": 15561.42, + "probability": 0.736 + }, + { + "start": 15561.44, + "end": 15562.28, + "probability": 0.6885 + }, + { + "start": 15563.0, + "end": 15564.32, + "probability": 0.9572 + }, + { + "start": 15564.42, + "end": 15567.48, + "probability": 0.9717 + }, + { + "start": 15567.98, + "end": 15569.04, + "probability": 0.4022 + }, + { + "start": 15569.14, + "end": 15570.22, + "probability": 0.8581 + }, + { + "start": 15574.08, + "end": 15577.86, + "probability": 0.9238 + }, + { + "start": 15579.04, + "end": 15580.4, + "probability": 0.8755 + }, + { + "start": 15581.36, + "end": 15584.72, + "probability": 0.9122 + }, + { + "start": 15584.78, + "end": 15585.36, + "probability": 0.9059 + }, + { + "start": 15585.92, + "end": 15587.14, + "probability": 0.961 + }, + { + "start": 15587.66, + "end": 15588.94, + "probability": 0.9959 + }, + { + "start": 15589.02, + "end": 15592.6, + "probability": 0.9978 + }, + { + "start": 15593.18, + "end": 15597.2, + "probability": 0.9868 + }, + { + "start": 15597.5, + "end": 15598.16, + "probability": 0.9291 + }, + { + "start": 15598.4, + "end": 15598.9, + "probability": 0.3833 + }, + { + "start": 15598.96, + "end": 15599.2, + "probability": 0.5186 + }, + { + "start": 15599.3, + "end": 15602.16, + "probability": 0.9315 + }, + { + "start": 15602.34, + "end": 15604.22, + "probability": 0.8928 + }, + { + "start": 15604.34, + "end": 15605.0, + "probability": 0.4862 + }, + { + "start": 15605.54, + "end": 15607.68, + "probability": 0.5557 + }, + { + "start": 15607.68, + "end": 15607.68, + "probability": 0.6279 + }, + { + "start": 15607.92, + "end": 15608.04, + "probability": 0.5649 + }, + { + "start": 15608.04, + "end": 15611.8, + "probability": 0.9717 + }, + { + "start": 15612.06, + "end": 15612.14, + "probability": 0.4892 + }, + { + "start": 15612.14, + "end": 15612.56, + "probability": 0.8062 + }, + { + "start": 15612.88, + "end": 15613.46, + "probability": 0.436 + }, + { + "start": 15613.64, + "end": 15616.54, + "probability": 0.9657 + }, + { + "start": 15616.76, + "end": 15617.98, + "probability": 0.6874 + }, + { + "start": 15618.02, + "end": 15620.48, + "probability": 0.9761 + }, + { + "start": 15620.74, + "end": 15621.62, + "probability": 0.95 + }, + { + "start": 15621.8, + "end": 15622.46, + "probability": 0.8016 + }, + { + "start": 15623.82, + "end": 15628.24, + "probability": 0.6707 + }, + { + "start": 15628.32, + "end": 15629.04, + "probability": 0.9072 + }, + { + "start": 15629.68, + "end": 15630.44, + "probability": 0.7593 + }, + { + "start": 15631.04, + "end": 15635.08, + "probability": 0.8818 + }, + { + "start": 15635.08, + "end": 15636.1, + "probability": 0.3424 + }, + { + "start": 15636.46, + "end": 15637.16, + "probability": 0.9512 + }, + { + "start": 15637.5, + "end": 15638.36, + "probability": 0.7208 + }, + { + "start": 15638.94, + "end": 15639.24, + "probability": 0.2106 + }, + { + "start": 15639.76, + "end": 15639.76, + "probability": 0.4563 + }, + { + "start": 15639.76, + "end": 15639.86, + "probability": 0.5519 + }, + { + "start": 15639.86, + "end": 15641.73, + "probability": 0.6687 + }, + { + "start": 15641.92, + "end": 15647.48, + "probability": 0.6711 + }, + { + "start": 15648.46, + "end": 15651.48, + "probability": 0.0403 + }, + { + "start": 15653.26, + "end": 15653.82, + "probability": 0.0189 + }, + { + "start": 15653.82, + "end": 15653.82, + "probability": 0.1847 + }, + { + "start": 15653.82, + "end": 15654.82, + "probability": 0.1897 + }, + { + "start": 15654.82, + "end": 15658.26, + "probability": 0.9768 + }, + { + "start": 15658.86, + "end": 15663.39, + "probability": 0.9765 + }, + { + "start": 15664.28, + "end": 15664.82, + "probability": 0.571 + }, + { + "start": 15665.56, + "end": 15666.42, + "probability": 0.8086 + }, + { + "start": 15666.44, + "end": 15666.96, + "probability": 0.3801 + }, + { + "start": 15666.98, + "end": 15667.58, + "probability": 0.7336 + }, + { + "start": 15667.92, + "end": 15668.94, + "probability": 0.681 + }, + { + "start": 15669.04, + "end": 15669.88, + "probability": 0.8622 + }, + { + "start": 15669.96, + "end": 15671.62, + "probability": 0.8843 + }, + { + "start": 15672.2, + "end": 15672.58, + "probability": 0.8433 + }, + { + "start": 15673.24, + "end": 15673.92, + "probability": 0.9492 + }, + { + "start": 15675.12, + "end": 15676.46, + "probability": 0.4361 + }, + { + "start": 15676.46, + "end": 15678.94, + "probability": 0.5028 + }, + { + "start": 15680.18, + "end": 15681.23, + "probability": 0.9209 + }, + { + "start": 15682.18, + "end": 15684.98, + "probability": 0.9153 + }, + { + "start": 15685.2, + "end": 15689.66, + "probability": 0.9844 + }, + { + "start": 15690.34, + "end": 15691.28, + "probability": 0.6245 + }, + { + "start": 15691.9, + "end": 15693.16, + "probability": 0.2483 + }, + { + "start": 15693.26, + "end": 15693.86, + "probability": 0.6299 + }, + { + "start": 15694.5, + "end": 15696.34, + "probability": 0.7607 + }, + { + "start": 15696.48, + "end": 15700.34, + "probability": 0.9761 + }, + { + "start": 15701.18, + "end": 15704.14, + "probability": 0.9778 + }, + { + "start": 15704.14, + "end": 15707.5, + "probability": 0.9848 + }, + { + "start": 15708.6, + "end": 15709.62, + "probability": 0.8898 + }, + { + "start": 15709.8, + "end": 15710.98, + "probability": 0.7246 + }, + { + "start": 15711.02, + "end": 15711.54, + "probability": 0.5933 + }, + { + "start": 15711.7, + "end": 15712.32, + "probability": 0.6934 + }, + { + "start": 15713.48, + "end": 15714.86, + "probability": 0.9897 + }, + { + "start": 15715.8, + "end": 15717.68, + "probability": 0.8657 + }, + { + "start": 15718.56, + "end": 15720.94, + "probability": 0.9332 + }, + { + "start": 15721.66, + "end": 15724.42, + "probability": 0.8399 + }, + { + "start": 15724.46, + "end": 15725.22, + "probability": 0.6792 + }, + { + "start": 15725.58, + "end": 15726.78, + "probability": 0.9648 + }, + { + "start": 15727.56, + "end": 15729.84, + "probability": 0.9239 + }, + { + "start": 15729.96, + "end": 15731.3, + "probability": 0.9347 + }, + { + "start": 15733.32, + "end": 15737.78, + "probability": 0.967 + }, + { + "start": 15738.62, + "end": 15741.96, + "probability": 0.6618 + }, + { + "start": 15742.56, + "end": 15743.84, + "probability": 0.9548 + }, + { + "start": 15745.04, + "end": 15746.22, + "probability": 0.6714 + }, + { + "start": 15746.56, + "end": 15747.84, + "probability": 0.5853 + }, + { + "start": 15748.88, + "end": 15750.62, + "probability": 0.8838 + }, + { + "start": 15751.56, + "end": 15751.68, + "probability": 0.4848 + }, + { + "start": 15751.84, + "end": 15752.5, + "probability": 0.6012 + }, + { + "start": 15752.5, + "end": 15753.06, + "probability": 0.6298 + }, + { + "start": 15753.08, + "end": 15754.18, + "probability": 0.5045 + }, + { + "start": 15754.34, + "end": 15758.8, + "probability": 0.6751 + }, + { + "start": 15758.92, + "end": 15760.78, + "probability": 0.8369 + }, + { + "start": 15761.18, + "end": 15763.22, + "probability": 0.9851 + }, + { + "start": 15764.94, + "end": 15766.96, + "probability": 0.8737 + }, + { + "start": 15767.04, + "end": 15767.58, + "probability": 0.8776 + }, + { + "start": 15767.68, + "end": 15774.02, + "probability": 0.9326 + }, + { + "start": 15774.2, + "end": 15777.52, + "probability": 0.8098 + }, + { + "start": 15777.62, + "end": 15778.52, + "probability": 0.7184 + }, + { + "start": 15778.96, + "end": 15781.01, + "probability": 0.8132 + }, + { + "start": 15781.54, + "end": 15781.92, + "probability": 0.5797 + }, + { + "start": 15782.24, + "end": 15782.94, + "probability": 0.9296 + }, + { + "start": 15783.0, + "end": 15784.1, + "probability": 0.7941 + }, + { + "start": 15784.1, + "end": 15785.04, + "probability": 0.7695 + }, + { + "start": 15785.2, + "end": 15786.38, + "probability": 0.9897 + }, + { + "start": 15786.84, + "end": 15787.46, + "probability": 0.4474 + }, + { + "start": 15788.4, + "end": 15791.68, + "probability": 0.8268 + }, + { + "start": 15791.74, + "end": 15792.36, + "probability": 0.8357 + }, + { + "start": 15792.54, + "end": 15793.96, + "probability": 0.8113 + }, + { + "start": 15794.08, + "end": 15798.4, + "probability": 0.5854 + }, + { + "start": 15798.8, + "end": 15800.0, + "probability": 0.999 + }, + { + "start": 15800.1, + "end": 15800.88, + "probability": 0.8208 + }, + { + "start": 15800.96, + "end": 15804.26, + "probability": 0.9066 + }, + { + "start": 15804.34, + "end": 15806.6, + "probability": 0.9971 + }, + { + "start": 15807.24, + "end": 15808.08, + "probability": 0.8501 + }, + { + "start": 15808.42, + "end": 15810.5, + "probability": 0.4685 + }, + { + "start": 15810.6, + "end": 15815.38, + "probability": 0.9006 + }, + { + "start": 15816.72, + "end": 15817.44, + "probability": 0.8086 + }, + { + "start": 15817.62, + "end": 15818.72, + "probability": 0.8987 + }, + { + "start": 15818.78, + "end": 15820.22, + "probability": 0.6704 + }, + { + "start": 15820.28, + "end": 15822.24, + "probability": 0.9061 + }, + { + "start": 15822.88, + "end": 15827.68, + "probability": 0.8215 + }, + { + "start": 15828.82, + "end": 15829.63, + "probability": 0.9818 + }, + { + "start": 15830.36, + "end": 15832.04, + "probability": 0.5034 + }, + { + "start": 15832.04, + "end": 15834.56, + "probability": 0.9558 + }, + { + "start": 15835.98, + "end": 15838.22, + "probability": 0.8015 + }, + { + "start": 15839.26, + "end": 15843.46, + "probability": 0.4979 + }, + { + "start": 15844.04, + "end": 15844.38, + "probability": 0.9152 + }, + { + "start": 15844.42, + "end": 15846.17, + "probability": 0.8753 + }, + { + "start": 15846.86, + "end": 15848.58, + "probability": 0.7419 + }, + { + "start": 15849.08, + "end": 15849.58, + "probability": 0.4403 + }, + { + "start": 15849.58, + "end": 15850.36, + "probability": 0.929 + }, + { + "start": 15850.48, + "end": 15854.2, + "probability": 0.8263 + }, + { + "start": 15854.3, + "end": 15855.12, + "probability": 0.9545 + }, + { + "start": 15855.38, + "end": 15856.32, + "probability": 0.5988 + }, + { + "start": 15857.26, + "end": 15858.04, + "probability": 0.5848 + }, + { + "start": 15863.08, + "end": 15864.0, + "probability": 0.8295 + }, + { + "start": 15865.3, + "end": 15867.22, + "probability": 0.7009 + }, + { + "start": 15867.94, + "end": 15870.42, + "probability": 0.5656 + }, + { + "start": 15870.54, + "end": 15877.89, + "probability": 0.9447 + }, + { + "start": 15878.32, + "end": 15881.56, + "probability": 0.908 + }, + { + "start": 15881.8, + "end": 15884.8, + "probability": 0.6113 + }, + { + "start": 15884.82, + "end": 15886.26, + "probability": 0.7915 + }, + { + "start": 15886.48, + "end": 15889.2, + "probability": 0.6405 + }, + { + "start": 15889.38, + "end": 15891.48, + "probability": 0.9858 + }, + { + "start": 15892.34, + "end": 15893.8, + "probability": 0.913 + }, + { + "start": 15894.16, + "end": 15894.58, + "probability": 0.6411 + }, + { + "start": 15895.78, + "end": 15899.52, + "probability": 0.5679 + }, + { + "start": 15899.86, + "end": 15902.54, + "probability": 0.8673 + }, + { + "start": 15902.68, + "end": 15903.84, + "probability": 0.6283 + }, + { + "start": 15903.9, + "end": 15905.14, + "probability": 0.7329 + }, + { + "start": 15909.36, + "end": 15911.68, + "probability": 0.6462 + }, + { + "start": 15911.82, + "end": 15915.82, + "probability": 0.9878 + }, + { + "start": 15916.02, + "end": 15917.68, + "probability": 0.7493 + }, + { + "start": 15918.24, + "end": 15921.54, + "probability": 0.9818 + }, + { + "start": 15922.86, + "end": 15925.3, + "probability": 0.6217 + }, + { + "start": 15926.38, + "end": 15928.12, + "probability": 0.7831 + }, + { + "start": 15928.3, + "end": 15932.46, + "probability": 0.882 + }, + { + "start": 15932.62, + "end": 15934.48, + "probability": 0.9785 + }, + { + "start": 15936.0, + "end": 15941.92, + "probability": 0.9337 + }, + { + "start": 15942.74, + "end": 15943.32, + "probability": 0.4292 + }, + { + "start": 15943.42, + "end": 15945.5, + "probability": 0.8994 + }, + { + "start": 15945.92, + "end": 15948.84, + "probability": 0.9884 + }, + { + "start": 15949.1, + "end": 15950.3, + "probability": 0.9302 + }, + { + "start": 15950.76, + "end": 15954.04, + "probability": 0.8992 + }, + { + "start": 15954.24, + "end": 15954.9, + "probability": 0.5552 + }, + { + "start": 15955.0, + "end": 15957.84, + "probability": 0.6232 + }, + { + "start": 15957.92, + "end": 15959.44, + "probability": 0.7822 + }, + { + "start": 15959.48, + "end": 15960.18, + "probability": 0.796 + }, + { + "start": 15960.38, + "end": 15962.18, + "probability": 0.7665 + }, + { + "start": 15963.22, + "end": 15964.2, + "probability": 0.6971 + }, + { + "start": 15964.36, + "end": 15965.14, + "probability": 0.5028 + }, + { + "start": 15965.18, + "end": 15969.0, + "probability": 0.8849 + }, + { + "start": 15969.16, + "end": 15969.56, + "probability": 0.788 + }, + { + "start": 15969.66, + "end": 15970.12, + "probability": 0.9421 + }, + { + "start": 15970.54, + "end": 15972.82, + "probability": 0.7839 + }, + { + "start": 15972.98, + "end": 15974.2, + "probability": 0.6432 + }, + { + "start": 15974.72, + "end": 15976.88, + "probability": 0.1762 + }, + { + "start": 15977.5, + "end": 15977.5, + "probability": 0.0315 + }, + { + "start": 15979.52, + "end": 15979.52, + "probability": 0.0525 + }, + { + "start": 15979.54, + "end": 15981.88, + "probability": 0.8525 + }, + { + "start": 15981.88, + "end": 15984.04, + "probability": 0.9595 + }, + { + "start": 15984.08, + "end": 15984.93, + "probability": 0.9834 + }, + { + "start": 15985.24, + "end": 15985.56, + "probability": 0.693 + }, + { + "start": 15985.7, + "end": 15988.42, + "probability": 0.9922 + }, + { + "start": 15988.58, + "end": 15989.3, + "probability": 0.5441 + }, + { + "start": 15989.38, + "end": 15991.3, + "probability": 0.803 + }, + { + "start": 15991.8, + "end": 15992.36, + "probability": 0.2346 + }, + { + "start": 15992.76, + "end": 15996.18, + "probability": 0.9893 + }, + { + "start": 15996.38, + "end": 15999.62, + "probability": 0.8493 + }, + { + "start": 16000.44, + "end": 16003.84, + "probability": 0.7039 + }, + { + "start": 16004.78, + "end": 16006.88, + "probability": 0.7517 + }, + { + "start": 16006.96, + "end": 16007.62, + "probability": 0.9305 + }, + { + "start": 16008.1, + "end": 16009.42, + "probability": 0.8683 + }, + { + "start": 16009.5, + "end": 16010.58, + "probability": 0.6692 + }, + { + "start": 16011.3, + "end": 16015.86, + "probability": 0.7873 + }, + { + "start": 16015.98, + "end": 16017.06, + "probability": 0.9951 + }, + { + "start": 16018.36, + "end": 16019.1, + "probability": 0.74 + }, + { + "start": 16020.14, + "end": 16020.76, + "probability": 0.1633 + }, + { + "start": 16022.94, + "end": 16023.16, + "probability": 0.0247 + }, + { + "start": 16023.16, + "end": 16024.54, + "probability": 0.1784 + }, + { + "start": 16024.66, + "end": 16026.0, + "probability": 0.8522 + }, + { + "start": 16029.44, + "end": 16030.3, + "probability": 0.8478 + }, + { + "start": 16030.44, + "end": 16033.66, + "probability": 0.948 + }, + { + "start": 16034.52, + "end": 16037.14, + "probability": 0.9559 + }, + { + "start": 16037.14, + "end": 16041.6, + "probability": 0.9927 + }, + { + "start": 16042.9, + "end": 16043.4, + "probability": 0.6163 + }, + { + "start": 16043.44, + "end": 16043.72, + "probability": 0.7138 + }, + { + "start": 16043.84, + "end": 16044.7, + "probability": 0.9805 + }, + { + "start": 16044.78, + "end": 16047.52, + "probability": 0.9923 + }, + { + "start": 16048.04, + "end": 16048.82, + "probability": 0.7582 + }, + { + "start": 16049.72, + "end": 16051.92, + "probability": 0.9873 + }, + { + "start": 16052.58, + "end": 16053.32, + "probability": 0.8007 + }, + { + "start": 16053.64, + "end": 16056.76, + "probability": 0.8994 + }, + { + "start": 16057.24, + "end": 16060.32, + "probability": 0.9497 + }, + { + "start": 16060.84, + "end": 16062.9, + "probability": 0.9523 + }, + { + "start": 16064.6, + "end": 16067.6, + "probability": 0.9763 + }, + { + "start": 16067.76, + "end": 16071.06, + "probability": 0.9363 + }, + { + "start": 16071.22, + "end": 16072.28, + "probability": 0.9164 + }, + { + "start": 16073.96, + "end": 16074.74, + "probability": 0.9057 + }, + { + "start": 16074.82, + "end": 16080.04, + "probability": 0.8885 + }, + { + "start": 16080.1, + "end": 16080.46, + "probability": 0.5566 + }, + { + "start": 16080.68, + "end": 16081.94, + "probability": 0.9597 + }, + { + "start": 16082.54, + "end": 16083.44, + "probability": 0.8884 + }, + { + "start": 16083.58, + "end": 16087.92, + "probability": 0.9365 + }, + { + "start": 16088.02, + "end": 16090.86, + "probability": 0.9215 + }, + { + "start": 16091.06, + "end": 16092.86, + "probability": 0.9495 + }, + { + "start": 16093.22, + "end": 16094.6, + "probability": 0.8393 + }, + { + "start": 16094.68, + "end": 16095.42, + "probability": 0.9769 + }, + { + "start": 16096.06, + "end": 16096.78, + "probability": 0.8799 + }, + { + "start": 16098.34, + "end": 16098.7, + "probability": 0.8685 + }, + { + "start": 16100.14, + "end": 16101.8, + "probability": 0.9562 + }, + { + "start": 16101.94, + "end": 16102.84, + "probability": 0.8898 + }, + { + "start": 16103.2, + "end": 16107.88, + "probability": 0.9774 + }, + { + "start": 16107.94, + "end": 16110.56, + "probability": 0.9421 + }, + { + "start": 16111.44, + "end": 16112.28, + "probability": 0.5211 + }, + { + "start": 16116.68, + "end": 16120.46, + "probability": 0.9045 + }, + { + "start": 16120.7, + "end": 16122.36, + "probability": 0.984 + }, + { + "start": 16122.98, + "end": 16126.8, + "probability": 0.6157 + }, + { + "start": 16127.38, + "end": 16128.02, + "probability": 0.9348 + }, + { + "start": 16128.72, + "end": 16130.24, + "probability": 0.7393 + }, + { + "start": 16130.7, + "end": 16131.54, + "probability": 0.9134 + }, + { + "start": 16132.02, + "end": 16133.24, + "probability": 0.9675 + }, + { + "start": 16133.38, + "end": 16136.02, + "probability": 0.8618 + }, + { + "start": 16136.14, + "end": 16136.32, + "probability": 0.621 + }, + { + "start": 16136.38, + "end": 16138.04, + "probability": 0.8891 + }, + { + "start": 16138.28, + "end": 16139.28, + "probability": 0.8148 + }, + { + "start": 16139.56, + "end": 16141.48, + "probability": 0.8799 + }, + { + "start": 16141.7, + "end": 16142.02, + "probability": 0.6227 + }, + { + "start": 16142.1, + "end": 16143.48, + "probability": 0.8207 + }, + { + "start": 16143.6, + "end": 16144.94, + "probability": 0.9372 + }, + { + "start": 16145.26, + "end": 16149.28, + "probability": 0.9521 + }, + { + "start": 16149.38, + "end": 16150.38, + "probability": 0.6476 + }, + { + "start": 16150.38, + "end": 16150.74, + "probability": 0.2438 + }, + { + "start": 16150.74, + "end": 16154.82, + "probability": 0.8193 + }, + { + "start": 16155.12, + "end": 16156.68, + "probability": 0.8218 + }, + { + "start": 16158.4, + "end": 16158.92, + "probability": 0.6737 + }, + { + "start": 16159.18, + "end": 16161.82, + "probability": 0.9416 + }, + { + "start": 16161.92, + "end": 16162.7, + "probability": 0.9648 + }, + { + "start": 16163.46, + "end": 16163.96, + "probability": 0.8928 + }, + { + "start": 16164.06, + "end": 16164.78, + "probability": 0.955 + }, + { + "start": 16165.02, + "end": 16166.5, + "probability": 0.985 + }, + { + "start": 16166.56, + "end": 16167.82, + "probability": 0.7004 + }, + { + "start": 16167.86, + "end": 16170.12, + "probability": 0.9395 + }, + { + "start": 16171.44, + "end": 16172.23, + "probability": 0.8747 + }, + { + "start": 16172.96, + "end": 16173.88, + "probability": 0.9529 + }, + { + "start": 16174.02, + "end": 16174.76, + "probability": 0.7783 + }, + { + "start": 16175.14, + "end": 16175.38, + "probability": 0.5093 + }, + { + "start": 16175.62, + "end": 16175.84, + "probability": 0.4973 + }, + { + "start": 16175.94, + "end": 16177.08, + "probability": 0.8429 + }, + { + "start": 16177.36, + "end": 16178.12, + "probability": 0.9519 + }, + { + "start": 16178.2, + "end": 16178.94, + "probability": 0.8131 + }, + { + "start": 16179.38, + "end": 16180.34, + "probability": 0.9951 + }, + { + "start": 16180.56, + "end": 16181.54, + "probability": 0.6318 + }, + { + "start": 16181.78, + "end": 16183.24, + "probability": 0.843 + }, + { + "start": 16183.36, + "end": 16184.08, + "probability": 0.4381 + }, + { + "start": 16184.62, + "end": 16185.4, + "probability": 0.7006 + }, + { + "start": 16185.48, + "end": 16188.9, + "probability": 0.5604 + }, + { + "start": 16189.54, + "end": 16192.8, + "probability": 0.9626 + }, + { + "start": 16193.1, + "end": 16194.02, + "probability": 0.7083 + }, + { + "start": 16196.48, + "end": 16196.5, + "probability": 0.2039 + }, + { + "start": 16196.66, + "end": 16197.14, + "probability": 0.4909 + }, + { + "start": 16198.48, + "end": 16203.84, + "probability": 0.5667 + }, + { + "start": 16204.72, + "end": 16205.5, + "probability": 0.9688 + }, + { + "start": 16205.72, + "end": 16212.32, + "probability": 0.9821 + }, + { + "start": 16212.76, + "end": 16214.78, + "probability": 0.6687 + }, + { + "start": 16216.36, + "end": 16216.76, + "probability": 0.0368 + }, + { + "start": 16216.92, + "end": 16218.68, + "probability": 0.9886 + }, + { + "start": 16218.78, + "end": 16221.26, + "probability": 0.9963 + }, + { + "start": 16221.38, + "end": 16221.8, + "probability": 0.6177 + }, + { + "start": 16221.92, + "end": 16226.2, + "probability": 0.9038 + }, + { + "start": 16227.52, + "end": 16231.12, + "probability": 0.6756 + }, + { + "start": 16231.64, + "end": 16232.4, + "probability": 0.8384 + }, + { + "start": 16232.94, + "end": 16235.66, + "probability": 0.998 + }, + { + "start": 16238.62, + "end": 16242.62, + "probability": 0.9906 + }, + { + "start": 16242.72, + "end": 16244.2, + "probability": 0.8278 + }, + { + "start": 16244.68, + "end": 16247.8, + "probability": 0.9843 + }, + { + "start": 16249.08, + "end": 16249.99, + "probability": 0.941 + }, + { + "start": 16250.72, + "end": 16251.88, + "probability": 0.8517 + }, + { + "start": 16252.34, + "end": 16256.8, + "probability": 0.8617 + }, + { + "start": 16256.98, + "end": 16258.89, + "probability": 0.826 + }, + { + "start": 16259.3, + "end": 16260.76, + "probability": 0.9078 + }, + { + "start": 16260.8, + "end": 16261.86, + "probability": 0.9312 + }, + { + "start": 16261.98, + "end": 16264.34, + "probability": 0.6644 + }, + { + "start": 16264.34, + "end": 16267.2, + "probability": 0.7176 + }, + { + "start": 16267.5, + "end": 16269.2, + "probability": 0.9278 + }, + { + "start": 16269.86, + "end": 16270.78, + "probability": 0.7725 + }, + { + "start": 16270.84, + "end": 16271.56, + "probability": 0.9341 + }, + { + "start": 16271.7, + "end": 16273.18, + "probability": 0.9213 + }, + { + "start": 16273.26, + "end": 16274.21, + "probability": 0.9922 + }, + { + "start": 16274.96, + "end": 16275.04, + "probability": 0.285 + }, + { + "start": 16275.12, + "end": 16276.78, + "probability": 0.7662 + }, + { + "start": 16276.9, + "end": 16279.52, + "probability": 0.8096 + }, + { + "start": 16298.96, + "end": 16299.88, + "probability": 0.6529 + }, + { + "start": 16300.56, + "end": 16301.18, + "probability": 0.9382 + }, + { + "start": 16302.82, + "end": 16303.44, + "probability": 0.8799 + }, + { + "start": 16304.22, + "end": 16307.4, + "probability": 0.516 + }, + { + "start": 16313.46, + "end": 16314.14, + "probability": 0.7588 + }, + { + "start": 16315.56, + "end": 16320.88, + "probability": 0.9794 + }, + { + "start": 16322.16, + "end": 16322.62, + "probability": 0.5568 + }, + { + "start": 16323.28, + "end": 16328.22, + "probability": 0.9381 + }, + { + "start": 16329.7, + "end": 16335.74, + "probability": 0.9937 + }, + { + "start": 16337.76, + "end": 16344.38, + "probability": 0.9377 + }, + { + "start": 16344.48, + "end": 16346.64, + "probability": 0.9704 + }, + { + "start": 16347.78, + "end": 16351.02, + "probability": 0.7752 + }, + { + "start": 16352.7, + "end": 16354.95, + "probability": 0.8962 + }, + { + "start": 16355.96, + "end": 16356.94, + "probability": 0.5363 + }, + { + "start": 16357.04, + "end": 16358.42, + "probability": 0.7281 + }, + { + "start": 16358.8, + "end": 16363.64, + "probability": 0.9492 + }, + { + "start": 16363.8, + "end": 16365.2, + "probability": 0.8559 + }, + { + "start": 16366.96, + "end": 16370.2, + "probability": 0.9493 + }, + { + "start": 16370.98, + "end": 16373.52, + "probability": 0.9901 + }, + { + "start": 16374.82, + "end": 16378.9, + "probability": 0.9642 + }, + { + "start": 16380.44, + "end": 16385.02, + "probability": 0.9975 + }, + { + "start": 16386.72, + "end": 16387.68, + "probability": 0.8482 + }, + { + "start": 16389.26, + "end": 16391.46, + "probability": 0.9495 + }, + { + "start": 16391.54, + "end": 16393.34, + "probability": 0.9723 + }, + { + "start": 16396.52, + "end": 16402.24, + "probability": 0.7297 + }, + { + "start": 16403.28, + "end": 16409.22, + "probability": 0.9725 + }, + { + "start": 16410.54, + "end": 16412.6, + "probability": 0.7642 + }, + { + "start": 16413.34, + "end": 16415.78, + "probability": 0.9608 + }, + { + "start": 16416.78, + "end": 16423.02, + "probability": 0.9759 + }, + { + "start": 16424.52, + "end": 16426.08, + "probability": 0.8101 + }, + { + "start": 16426.6, + "end": 16431.88, + "probability": 0.7516 + }, + { + "start": 16432.06, + "end": 16432.72, + "probability": 0.6409 + }, + { + "start": 16433.88, + "end": 16436.5, + "probability": 0.7056 + }, + { + "start": 16438.04, + "end": 16440.4, + "probability": 0.5422 + }, + { + "start": 16440.64, + "end": 16442.24, + "probability": 0.8467 + }, + { + "start": 16444.14, + "end": 16448.98, + "probability": 0.6116 + }, + { + "start": 16449.09, + "end": 16450.81, + "probability": 0.9515 + }, + { + "start": 16451.02, + "end": 16451.86, + "probability": 0.9917 + }, + { + "start": 16452.0, + "end": 16452.6, + "probability": 0.7196 + }, + { + "start": 16452.74, + "end": 16454.41, + "probability": 0.8072 + }, + { + "start": 16456.38, + "end": 16460.12, + "probability": 0.7812 + }, + { + "start": 16461.0, + "end": 16462.94, + "probability": 0.7648 + }, + { + "start": 16463.12, + "end": 16468.62, + "probability": 0.5632 + }, + { + "start": 16468.78, + "end": 16469.74, + "probability": 0.808 + }, + { + "start": 16471.42, + "end": 16473.97, + "probability": 0.8091 + }, + { + "start": 16474.14, + "end": 16479.76, + "probability": 0.9871 + }, + { + "start": 16479.88, + "end": 16480.66, + "probability": 0.643 + }, + { + "start": 16480.74, + "end": 16481.68, + "probability": 0.8521 + }, + { + "start": 16482.42, + "end": 16483.12, + "probability": 0.7485 + }, + { + "start": 16483.34, + "end": 16484.5, + "probability": 0.9377 + }, + { + "start": 16485.18, + "end": 16489.6, + "probability": 0.9801 + }, + { + "start": 16490.56, + "end": 16492.54, + "probability": 0.8587 + }, + { + "start": 16492.62, + "end": 16493.16, + "probability": 0.9705 + }, + { + "start": 16493.28, + "end": 16493.86, + "probability": 0.7219 + }, + { + "start": 16493.94, + "end": 16495.62, + "probability": 0.8794 + }, + { + "start": 16495.82, + "end": 16497.26, + "probability": 0.7799 + }, + { + "start": 16498.62, + "end": 16500.0, + "probability": 0.9576 + }, + { + "start": 16500.14, + "end": 16502.28, + "probability": 0.9666 + }, + { + "start": 16503.76, + "end": 16508.64, + "probability": 0.9905 + }, + { + "start": 16509.62, + "end": 16512.64, + "probability": 0.9478 + }, + { + "start": 16513.48, + "end": 16514.56, + "probability": 0.6978 + }, + { + "start": 16514.64, + "end": 16517.46, + "probability": 0.7833 + }, + { + "start": 16517.54, + "end": 16521.3, + "probability": 0.9285 + }, + { + "start": 16522.5, + "end": 16524.82, + "probability": 0.9788 + }, + { + "start": 16525.22, + "end": 16528.62, + "probability": 0.7512 + }, + { + "start": 16528.76, + "end": 16529.08, + "probability": 0.2596 + }, + { + "start": 16529.08, + "end": 16529.56, + "probability": 0.8312 + }, + { + "start": 16529.84, + "end": 16531.0, + "probability": 0.7915 + }, + { + "start": 16531.96, + "end": 16532.02, + "probability": 0.0283 + }, + { + "start": 16532.02, + "end": 16534.64, + "probability": 0.8007 + }, + { + "start": 16535.1, + "end": 16539.1, + "probability": 0.9084 + }, + { + "start": 16539.18, + "end": 16541.58, + "probability": 0.6212 + }, + { + "start": 16542.12, + "end": 16542.12, + "probability": 0.2764 + }, + { + "start": 16542.12, + "end": 16545.04, + "probability": 0.8953 + }, + { + "start": 16545.98, + "end": 16551.2, + "probability": 0.9778 + }, + { + "start": 16551.72, + "end": 16555.9, + "probability": 0.9431 + }, + { + "start": 16555.92, + "end": 16557.04, + "probability": 0.8167 + }, + { + "start": 16557.1, + "end": 16558.52, + "probability": 0.8539 + }, + { + "start": 16558.62, + "end": 16559.4, + "probability": 0.9672 + }, + { + "start": 16560.86, + "end": 16563.96, + "probability": 0.8801 + }, + { + "start": 16564.68, + "end": 16567.52, + "probability": 0.983 + }, + { + "start": 16568.42, + "end": 16570.18, + "probability": 0.6217 + }, + { + "start": 16570.24, + "end": 16571.6, + "probability": 0.8074 + }, + { + "start": 16572.24, + "end": 16574.28, + "probability": 0.829 + }, + { + "start": 16574.4, + "end": 16576.23, + "probability": 0.8136 + }, + { + "start": 16577.78, + "end": 16578.34, + "probability": 0.7098 + }, + { + "start": 16578.42, + "end": 16579.0, + "probability": 0.7235 + }, + { + "start": 16579.16, + "end": 16580.6, + "probability": 0.9407 + }, + { + "start": 16581.04, + "end": 16582.34, + "probability": 0.7013 + }, + { + "start": 16582.9, + "end": 16588.24, + "probability": 0.908 + }, + { + "start": 16589.34, + "end": 16592.4, + "probability": 0.9123 + }, + { + "start": 16593.34, + "end": 16593.58, + "probability": 0.1767 + }, + { + "start": 16593.58, + "end": 16596.95, + "probability": 0.9358 + }, + { + "start": 16597.52, + "end": 16601.2, + "probability": 0.9178 + }, + { + "start": 16601.54, + "end": 16604.06, + "probability": 0.91 + }, + { + "start": 16604.7, + "end": 16606.9, + "probability": 0.9849 + }, + { + "start": 16607.8, + "end": 16610.38, + "probability": 0.9432 + }, + { + "start": 16611.16, + "end": 16614.34, + "probability": 0.9206 + }, + { + "start": 16615.06, + "end": 16618.8, + "probability": 0.9236 + }, + { + "start": 16618.8, + "end": 16622.72, + "probability": 0.9847 + }, + { + "start": 16623.6, + "end": 16626.02, + "probability": 0.9525 + }, + { + "start": 16626.02, + "end": 16629.28, + "probability": 0.793 + }, + { + "start": 16629.62, + "end": 16632.06, + "probability": 0.719 + }, + { + "start": 16632.2, + "end": 16635.1, + "probability": 0.9749 + }, + { + "start": 16636.2, + "end": 16643.22, + "probability": 0.9469 + }, + { + "start": 16643.22, + "end": 16646.82, + "probability": 0.959 + }, + { + "start": 16647.44, + "end": 16647.72, + "probability": 0.7294 + }, + { + "start": 16650.64, + "end": 16653.74, + "probability": 0.6256 + }, + { + "start": 16653.74, + "end": 16656.26, + "probability": 0.8557 + }, + { + "start": 16657.12, + "end": 16659.32, + "probability": 0.9967 + }, + { + "start": 16660.0, + "end": 16666.06, + "probability": 0.9284 + }, + { + "start": 16666.84, + "end": 16670.78, + "probability": 0.9704 + }, + { + "start": 16670.9, + "end": 16672.4, + "probability": 0.9222 + }, + { + "start": 16672.5, + "end": 16675.9, + "probability": 0.9808 + }, + { + "start": 16676.36, + "end": 16677.93, + "probability": 0.4865 + }, + { + "start": 16678.22, + "end": 16680.8, + "probability": 0.9426 + }, + { + "start": 16682.22, + "end": 16682.62, + "probability": 0.8417 + }, + { + "start": 16682.76, + "end": 16685.34, + "probability": 0.9397 + }, + { + "start": 16685.48, + "end": 16687.4, + "probability": 0.8428 + }, + { + "start": 16687.56, + "end": 16688.4, + "probability": 0.8094 + }, + { + "start": 16688.48, + "end": 16689.44, + "probability": 0.7411 + }, + { + "start": 16689.58, + "end": 16690.1, + "probability": 0.9648 + }, + { + "start": 16690.24, + "end": 16691.5, + "probability": 0.7313 + }, + { + "start": 16691.94, + "end": 16693.36, + "probability": 0.485 + }, + { + "start": 16693.42, + "end": 16695.38, + "probability": 0.9648 + }, + { + "start": 16695.44, + "end": 16697.12, + "probability": 0.9715 + }, + { + "start": 16697.5, + "end": 16700.68, + "probability": 0.7541 + }, + { + "start": 16701.34, + "end": 16702.5, + "probability": 0.7154 + }, + { + "start": 16703.28, + "end": 16705.38, + "probability": 0.7829 + }, + { + "start": 16706.08, + "end": 16712.22, + "probability": 0.6572 + }, + { + "start": 16713.56, + "end": 16714.46, + "probability": 0.2929 + }, + { + "start": 16714.46, + "end": 16714.88, + "probability": 0.3259 + }, + { + "start": 16715.48, + "end": 16719.9, + "probability": 0.6163 + }, + { + "start": 16720.04, + "end": 16720.64, + "probability": 0.9006 + }, + { + "start": 16721.68, + "end": 16721.68, + "probability": 0.1144 + }, + { + "start": 16721.68, + "end": 16721.7, + "probability": 0.0117 + }, + { + "start": 16721.7, + "end": 16721.7, + "probability": 0.0241 + }, + { + "start": 16721.7, + "end": 16722.78, + "probability": 0.2887 + }, + { + "start": 16722.98, + "end": 16723.28, + "probability": 0.4695 + }, + { + "start": 16724.13, + "end": 16725.72, + "probability": 0.4736 + }, + { + "start": 16725.72, + "end": 16725.72, + "probability": 0.4995 + }, + { + "start": 16725.72, + "end": 16726.94, + "probability": 0.4348 + }, + { + "start": 16727.24, + "end": 16727.4, + "probability": 0.4365 + }, + { + "start": 16727.52, + "end": 16727.96, + "probability": 0.6718 + }, + { + "start": 16728.12, + "end": 16730.64, + "probability": 0.8813 + }, + { + "start": 16730.72, + "end": 16731.76, + "probability": 0.3904 + }, + { + "start": 16732.02, + "end": 16735.32, + "probability": 0.5754 + }, + { + "start": 16735.44, + "end": 16739.02, + "probability": 0.9366 + }, + { + "start": 16739.34, + "end": 16740.2, + "probability": 0.6759 + }, + { + "start": 16740.24, + "end": 16740.84, + "probability": 0.6818 + }, + { + "start": 16741.04, + "end": 16742.17, + "probability": 0.4963 + }, + { + "start": 16743.14, + "end": 16743.86, + "probability": 0.3222 + }, + { + "start": 16743.86, + "end": 16744.7, + "probability": 0.5866 + }, + { + "start": 16744.76, + "end": 16745.22, + "probability": 0.5563 + }, + { + "start": 16745.38, + "end": 16747.9, + "probability": 0.926 + }, + { + "start": 16748.54, + "end": 16750.88, + "probability": 0.4545 + }, + { + "start": 16751.02, + "end": 16752.88, + "probability": 0.9097 + }, + { + "start": 16753.2, + "end": 16755.22, + "probability": 0.6843 + }, + { + "start": 16755.34, + "end": 16759.3, + "probability": 0.9338 + }, + { + "start": 16759.7, + "end": 16763.04, + "probability": 0.8518 + }, + { + "start": 16763.26, + "end": 16766.61, + "probability": 0.8132 + }, + { + "start": 16766.92, + "end": 16768.92, + "probability": 0.993 + }, + { + "start": 16769.38, + "end": 16770.64, + "probability": 0.481 + }, + { + "start": 16771.22, + "end": 16773.0, + "probability": 0.8934 + }, + { + "start": 16773.78, + "end": 16774.76, + "probability": 0.7259 + }, + { + "start": 16775.16, + "end": 16778.9, + "probability": 0.8187 + }, + { + "start": 16779.12, + "end": 16780.98, + "probability": 0.6146 + }, + { + "start": 16781.36, + "end": 16782.8, + "probability": 0.9212 + }, + { + "start": 16782.86, + "end": 16785.72, + "probability": 0.9111 + }, + { + "start": 16786.08, + "end": 16788.31, + "probability": 0.6728 + }, + { + "start": 16789.38, + "end": 16789.58, + "probability": 0.1539 + }, + { + "start": 16789.58, + "end": 16794.06, + "probability": 0.6524 + }, + { + "start": 16794.06, + "end": 16795.76, + "probability": 0.7662 + }, + { + "start": 16795.88, + "end": 16798.48, + "probability": 0.9658 + }, + { + "start": 16798.64, + "end": 16802.36, + "probability": 0.9311 + }, + { + "start": 16802.52, + "end": 16803.26, + "probability": 0.9666 + }, + { + "start": 16803.4, + "end": 16804.44, + "probability": 0.536 + }, + { + "start": 16804.52, + "end": 16805.78, + "probability": 0.5837 + }, + { + "start": 16805.78, + "end": 16806.3, + "probability": 0.836 + }, + { + "start": 16809.66, + "end": 16811.02, + "probability": 0.6523 + }, + { + "start": 16811.3, + "end": 16811.96, + "probability": 0.7395 + }, + { + "start": 16812.0, + "end": 16812.34, + "probability": 0.7558 + }, + { + "start": 16812.48, + "end": 16816.86, + "probability": 0.9365 + }, + { + "start": 16817.36, + "end": 16819.04, + "probability": 0.8685 + }, + { + "start": 16819.3, + "end": 16824.1, + "probability": 0.8541 + }, + { + "start": 16824.66, + "end": 16826.16, + "probability": 0.895 + }, + { + "start": 16826.38, + "end": 16827.62, + "probability": 0.6942 + }, + { + "start": 16827.68, + "end": 16828.72, + "probability": 0.8477 + }, + { + "start": 16829.1, + "end": 16831.68, + "probability": 0.9448 + }, + { + "start": 16831.74, + "end": 16833.01, + "probability": 0.8668 + }, + { + "start": 16833.38, + "end": 16835.36, + "probability": 0.9825 + }, + { + "start": 16835.72, + "end": 16837.66, + "probability": 0.8 + }, + { + "start": 16837.82, + "end": 16840.56, + "probability": 0.9303 + }, + { + "start": 16840.76, + "end": 16842.22, + "probability": 0.8857 + }, + { + "start": 16842.4, + "end": 16844.68, + "probability": 0.5995 + }, + { + "start": 16844.94, + "end": 16845.6, + "probability": 0.6629 + }, + { + "start": 16845.72, + "end": 16845.72, + "probability": 0.4068 + }, + { + "start": 16845.78, + "end": 16848.16, + "probability": 0.7817 + }, + { + "start": 16848.2, + "end": 16849.49, + "probability": 0.6622 + }, + { + "start": 16850.06, + "end": 16853.56, + "probability": 0.9681 + }, + { + "start": 16854.24, + "end": 16855.61, + "probability": 0.7241 + }, + { + "start": 16855.82, + "end": 16856.99, + "probability": 0.4909 + }, + { + "start": 16857.38, + "end": 16858.1, + "probability": 0.1083 + }, + { + "start": 16858.5, + "end": 16861.28, + "probability": 0.5603 + }, + { + "start": 16861.46, + "end": 16862.6, + "probability": 0.414 + }, + { + "start": 16862.72, + "end": 16864.12, + "probability": 0.735 + }, + { + "start": 16864.6, + "end": 16865.88, + "probability": 0.3504 + }, + { + "start": 16866.24, + "end": 16867.15, + "probability": 0.9434 + }, + { + "start": 16867.8, + "end": 16871.38, + "probability": 0.8104 + }, + { + "start": 16871.7, + "end": 16873.26, + "probability": 0.9863 + }, + { + "start": 16873.94, + "end": 16876.06, + "probability": 0.4883 + }, + { + "start": 16876.12, + "end": 16877.68, + "probability": 0.5804 + }, + { + "start": 16877.82, + "end": 16879.52, + "probability": 0.9423 + }, + { + "start": 16879.8, + "end": 16880.48, + "probability": 0.678 + }, + { + "start": 16881.06, + "end": 16885.26, + "probability": 0.4688 + }, + { + "start": 16885.5, + "end": 16887.82, + "probability": 0.6721 + }, + { + "start": 16887.82, + "end": 16891.78, + "probability": 0.911 + }, + { + "start": 16892.1, + "end": 16893.64, + "probability": 0.372 + }, + { + "start": 16894.08, + "end": 16896.23, + "probability": 0.6354 + }, + { + "start": 16896.9, + "end": 16900.4, + "probability": 0.6031 + }, + { + "start": 16900.62, + "end": 16901.16, + "probability": 0.9599 + }, + { + "start": 16911.56, + "end": 16914.04, + "probability": 0.6893 + }, + { + "start": 16917.74, + "end": 16920.08, + "probability": 0.7179 + }, + { + "start": 16927.84, + "end": 16931.3, + "probability": 0.6253 + }, + { + "start": 16933.98, + "end": 16935.56, + "probability": 0.291 + }, + { + "start": 16935.7, + "end": 16937.88, + "probability": 0.8991 + }, + { + "start": 16938.04, + "end": 16939.44, + "probability": 0.7841 + }, + { + "start": 16941.2, + "end": 16943.84, + "probability": 0.7765 + }, + { + "start": 16946.04, + "end": 16949.42, + "probability": 0.9746 + }, + { + "start": 16950.92, + "end": 16953.17, + "probability": 0.9542 + }, + { + "start": 16953.4, + "end": 16956.22, + "probability": 0.968 + }, + { + "start": 16956.36, + "end": 16957.12, + "probability": 0.9432 + }, + { + "start": 16958.3, + "end": 16960.4, + "probability": 0.9919 + }, + { + "start": 16963.24, + "end": 16966.18, + "probability": 0.9951 + }, + { + "start": 16966.18, + "end": 16969.86, + "probability": 0.9962 + }, + { + "start": 16971.58, + "end": 16982.16, + "probability": 0.9824 + }, + { + "start": 16982.7, + "end": 16984.02, + "probability": 0.6892 + }, + { + "start": 16985.48, + "end": 16992.1, + "probability": 0.9147 + }, + { + "start": 16993.36, + "end": 16993.36, + "probability": 0.8545 + }, + { + "start": 16995.08, + "end": 16998.24, + "probability": 0.9962 + }, + { + "start": 17001.04, + "end": 17007.88, + "probability": 0.9054 + }, + { + "start": 17007.88, + "end": 17010.18, + "probability": 0.8556 + }, + { + "start": 17011.22, + "end": 17012.76, + "probability": 0.5122 + }, + { + "start": 17014.34, + "end": 17017.34, + "probability": 0.9465 + }, + { + "start": 17017.9, + "end": 17020.24, + "probability": 0.6906 + }, + { + "start": 17022.5, + "end": 17028.0, + "probability": 0.8651 + }, + { + "start": 17028.36, + "end": 17028.88, + "probability": 0.6673 + }, + { + "start": 17029.32, + "end": 17031.1, + "probability": 0.9465 + }, + { + "start": 17032.06, + "end": 17035.3, + "probability": 0.9937 + }, + { + "start": 17036.12, + "end": 17039.58, + "probability": 0.6832 + }, + { + "start": 17039.92, + "end": 17040.38, + "probability": 0.3522 + }, + { + "start": 17041.76, + "end": 17043.24, + "probability": 0.9634 + }, + { + "start": 17044.68, + "end": 17052.64, + "probability": 0.8561 + }, + { + "start": 17053.98, + "end": 17057.3, + "probability": 0.8613 + }, + { + "start": 17057.96, + "end": 17059.34, + "probability": 0.7175 + }, + { + "start": 17059.96, + "end": 17062.52, + "probability": 0.9553 + }, + { + "start": 17063.22, + "end": 17065.91, + "probability": 0.9863 + }, + { + "start": 17066.74, + "end": 17067.82, + "probability": 0.5278 + }, + { + "start": 17067.92, + "end": 17069.12, + "probability": 0.6954 + }, + { + "start": 17070.3, + "end": 17074.24, + "probability": 0.967 + }, + { + "start": 17074.94, + "end": 17079.5, + "probability": 0.9872 + }, + { + "start": 17081.54, + "end": 17085.38, + "probability": 0.9062 + }, + { + "start": 17085.92, + "end": 17088.36, + "probability": 0.8529 + }, + { + "start": 17089.7, + "end": 17096.16, + "probability": 0.9955 + }, + { + "start": 17098.12, + "end": 17101.16, + "probability": 0.9791 + }, + { + "start": 17101.36, + "end": 17102.68, + "probability": 0.9256 + }, + { + "start": 17105.66, + "end": 17108.8, + "probability": 0.9822 + }, + { + "start": 17110.6, + "end": 17111.88, + "probability": 0.5685 + }, + { + "start": 17112.08, + "end": 17116.0, + "probability": 0.9492 + }, + { + "start": 17116.34, + "end": 17119.14, + "probability": 0.8322 + }, + { + "start": 17119.22, + "end": 17119.98, + "probability": 0.7917 + }, + { + "start": 17120.24, + "end": 17120.72, + "probability": 0.261 + }, + { + "start": 17121.86, + "end": 17124.42, + "probability": 0.9975 + }, + { + "start": 17124.54, + "end": 17125.39, + "probability": 0.9893 + }, + { + "start": 17125.6, + "end": 17127.34, + "probability": 0.8089 + }, + { + "start": 17127.86, + "end": 17131.18, + "probability": 0.9864 + }, + { + "start": 17133.82, + "end": 17136.22, + "probability": 0.9458 + }, + { + "start": 17137.66, + "end": 17138.44, + "probability": 0.494 + }, + { + "start": 17138.8, + "end": 17139.02, + "probability": 0.7508 + }, + { + "start": 17139.66, + "end": 17141.08, + "probability": 0.8827 + }, + { + "start": 17142.44, + "end": 17144.08, + "probability": 0.8164 + }, + { + "start": 17144.8, + "end": 17146.26, + "probability": 0.7557 + }, + { + "start": 17148.14, + "end": 17153.78, + "probability": 0.613 + }, + { + "start": 17154.62, + "end": 17154.8, + "probability": 0.1164 + }, + { + "start": 17154.8, + "end": 17156.39, + "probability": 0.5138 + }, + { + "start": 17157.0, + "end": 17160.98, + "probability": 0.9253 + }, + { + "start": 17161.38, + "end": 17162.98, + "probability": 0.6196 + }, + { + "start": 17164.36, + "end": 17164.36, + "probability": 0.0285 + }, + { + "start": 17164.36, + "end": 17169.48, + "probability": 0.986 + }, + { + "start": 17170.56, + "end": 17173.2, + "probability": 0.8944 + }, + { + "start": 17174.58, + "end": 17175.66, + "probability": 0.9685 + }, + { + "start": 17176.28, + "end": 17178.62, + "probability": 0.9356 + }, + { + "start": 17179.6, + "end": 17181.98, + "probability": 0.8672 + }, + { + "start": 17182.92, + "end": 17184.16, + "probability": 0.7518 + }, + { + "start": 17184.88, + "end": 17188.96, + "probability": 0.9752 + }, + { + "start": 17189.5, + "end": 17190.08, + "probability": 0.6597 + }, + { + "start": 17190.16, + "end": 17193.52, + "probability": 0.875 + }, + { + "start": 17193.6, + "end": 17195.2, + "probability": 0.9478 + }, + { + "start": 17195.36, + "end": 17198.88, + "probability": 0.907 + }, + { + "start": 17199.5, + "end": 17201.72, + "probability": 0.8113 + }, + { + "start": 17201.72, + "end": 17202.02, + "probability": 0.7972 + }, + { + "start": 17202.12, + "end": 17203.36, + "probability": 0.8769 + }, + { + "start": 17203.42, + "end": 17204.38, + "probability": 0.9709 + }, + { + "start": 17204.72, + "end": 17206.84, + "probability": 0.8261 + }, + { + "start": 17207.12, + "end": 17208.56, + "probability": 0.9761 + }, + { + "start": 17208.78, + "end": 17210.42, + "probability": 0.7334 + }, + { + "start": 17210.92, + "end": 17213.54, + "probability": 0.9302 + }, + { + "start": 17214.98, + "end": 17216.4, + "probability": 0.8864 + }, + { + "start": 17216.58, + "end": 17217.62, + "probability": 0.6713 + }, + { + "start": 17218.32, + "end": 17219.52, + "probability": 0.7566 + }, + { + "start": 17220.22, + "end": 17222.18, + "probability": 0.7744 + }, + { + "start": 17222.7, + "end": 17224.24, + "probability": 0.6584 + }, + { + "start": 17224.68, + "end": 17224.86, + "probability": 0.8771 + }, + { + "start": 17224.92, + "end": 17230.96, + "probability": 0.9704 + }, + { + "start": 17232.34, + "end": 17233.74, + "probability": 0.9893 + }, + { + "start": 17233.88, + "end": 17236.8, + "probability": 0.9412 + }, + { + "start": 17237.36, + "end": 17241.42, + "probability": 0.9927 + }, + { + "start": 17241.9, + "end": 17243.1, + "probability": 0.6283 + }, + { + "start": 17243.56, + "end": 17245.77, + "probability": 0.7984 + }, + { + "start": 17246.08, + "end": 17249.9, + "probability": 0.9452 + }, + { + "start": 17250.68, + "end": 17256.38, + "probability": 0.869 + }, + { + "start": 17256.7, + "end": 17260.0, + "probability": 0.6561 + }, + { + "start": 17261.08, + "end": 17262.46, + "probability": 0.9005 + }, + { + "start": 17262.68, + "end": 17267.74, + "probability": 0.9528 + }, + { + "start": 17267.94, + "end": 17268.9, + "probability": 0.4245 + }, + { + "start": 17269.26, + "end": 17269.96, + "probability": 0.9399 + }, + { + "start": 17270.1, + "end": 17272.78, + "probability": 0.9281 + }, + { + "start": 17272.88, + "end": 17273.88, + "probability": 0.97 + }, + { + "start": 17274.0, + "end": 17277.74, + "probability": 0.9878 + }, + { + "start": 17278.82, + "end": 17279.8, + "probability": 0.6671 + }, + { + "start": 17280.3, + "end": 17283.7, + "probability": 0.8172 + }, + { + "start": 17283.82, + "end": 17284.7, + "probability": 0.8972 + }, + { + "start": 17284.84, + "end": 17285.64, + "probability": 0.905 + }, + { + "start": 17285.74, + "end": 17287.34, + "probability": 0.9143 + }, + { + "start": 17287.5, + "end": 17289.78, + "probability": 0.7398 + }, + { + "start": 17289.89, + "end": 17292.14, + "probability": 0.668 + }, + { + "start": 17292.42, + "end": 17292.42, + "probability": 0.0228 + }, + { + "start": 17292.42, + "end": 17292.62, + "probability": 0.3114 + }, + { + "start": 17293.18, + "end": 17297.9, + "probability": 0.9375 + }, + { + "start": 17298.12, + "end": 17299.68, + "probability": 0.5776 + }, + { + "start": 17299.76, + "end": 17300.4, + "probability": 0.7281 + }, + { + "start": 17300.86, + "end": 17305.06, + "probability": 0.839 + }, + { + "start": 17305.24, + "end": 17306.14, + "probability": 0.6664 + }, + { + "start": 17307.86, + "end": 17309.4, + "probability": 0.9842 + }, + { + "start": 17314.38, + "end": 17318.24, + "probability": 0.5683 + }, + { + "start": 17319.58, + "end": 17324.3, + "probability": 0.7884 + }, + { + "start": 17324.38, + "end": 17326.02, + "probability": 0.7853 + }, + { + "start": 17326.08, + "end": 17329.9, + "probability": 0.5328 + }, + { + "start": 17331.16, + "end": 17334.78, + "probability": 0.9246 + }, + { + "start": 17335.3, + "end": 17342.74, + "probability": 0.9829 + }, + { + "start": 17343.9, + "end": 17347.62, + "probability": 0.9819 + }, + { + "start": 17348.75, + "end": 17350.5, + "probability": 0.8659 + }, + { + "start": 17354.08, + "end": 17354.54, + "probability": 0.3141 + }, + { + "start": 17357.34, + "end": 17359.16, + "probability": 0.5027 + }, + { + "start": 17360.22, + "end": 17364.48, + "probability": 0.9527 + }, + { + "start": 17365.12, + "end": 17369.88, + "probability": 0.8951 + }, + { + "start": 17370.64, + "end": 17372.54, + "probability": 0.7078 + }, + { + "start": 17373.16, + "end": 17376.18, + "probability": 0.7426 + }, + { + "start": 17376.28, + "end": 17377.46, + "probability": 0.6752 + }, + { + "start": 17378.0, + "end": 17379.48, + "probability": 0.7329 + }, + { + "start": 17380.84, + "end": 17381.92, + "probability": 0.8712 + }, + { + "start": 17381.98, + "end": 17387.9, + "probability": 0.8574 + }, + { + "start": 17389.16, + "end": 17391.72, + "probability": 0.8122 + }, + { + "start": 17391.98, + "end": 17393.38, + "probability": 0.9617 + }, + { + "start": 17393.46, + "end": 17394.28, + "probability": 0.9106 + }, + { + "start": 17394.96, + "end": 17400.0, + "probability": 0.9619 + }, + { + "start": 17401.86, + "end": 17404.12, + "probability": 0.8721 + }, + { + "start": 17404.32, + "end": 17406.38, + "probability": 0.8582 + }, + { + "start": 17407.3, + "end": 17411.12, + "probability": 0.7633 + }, + { + "start": 17411.46, + "end": 17412.98, + "probability": 0.9303 + }, + { + "start": 17413.84, + "end": 17415.54, + "probability": 0.8264 + }, + { + "start": 17416.12, + "end": 17418.44, + "probability": 0.958 + }, + { + "start": 17419.9, + "end": 17424.66, + "probability": 0.8898 + }, + { + "start": 17425.68, + "end": 17428.72, + "probability": 0.8732 + }, + { + "start": 17429.14, + "end": 17434.8, + "probability": 0.9453 + }, + { + "start": 17436.52, + "end": 17437.56, + "probability": 0.9578 + }, + { + "start": 17437.74, + "end": 17438.78, + "probability": 0.6477 + }, + { + "start": 17439.43, + "end": 17444.52, + "probability": 0.9953 + }, + { + "start": 17447.76, + "end": 17451.22, + "probability": 0.967 + }, + { + "start": 17452.44, + "end": 17457.4, + "probability": 0.9608 + }, + { + "start": 17458.5, + "end": 17459.52, + "probability": 0.6431 + }, + { + "start": 17460.08, + "end": 17462.48, + "probability": 0.8339 + }, + { + "start": 17463.62, + "end": 17465.16, + "probability": 0.9043 + }, + { + "start": 17466.22, + "end": 17471.48, + "probability": 0.8951 + }, + { + "start": 17473.38, + "end": 17476.68, + "probability": 0.2205 + }, + { + "start": 17476.88, + "end": 17482.82, + "probability": 0.9872 + }, + { + "start": 17482.94, + "end": 17485.08, + "probability": 0.7959 + }, + { + "start": 17486.94, + "end": 17489.9, + "probability": 0.9572 + }, + { + "start": 17491.44, + "end": 17491.94, + "probability": 0.5842 + }, + { + "start": 17492.48, + "end": 17492.7, + "probability": 0.1336 + }, + { + "start": 17492.7, + "end": 17495.68, + "probability": 0.8412 + }, + { + "start": 17498.3, + "end": 17498.86, + "probability": 0.8706 + }, + { + "start": 17500.58, + "end": 17502.86, + "probability": 0.9949 + }, + { + "start": 17504.06, + "end": 17505.14, + "probability": 0.8098 + }, + { + "start": 17505.66, + "end": 17508.76, + "probability": 0.9091 + }, + { + "start": 17510.84, + "end": 17512.48, + "probability": 0.6779 + }, + { + "start": 17513.04, + "end": 17514.58, + "probability": 0.9727 + }, + { + "start": 17516.64, + "end": 17519.48, + "probability": 0.9961 + }, + { + "start": 17520.9, + "end": 17522.66, + "probability": 0.8978 + }, + { + "start": 17523.38, + "end": 17524.9, + "probability": 0.9889 + }, + { + "start": 17525.76, + "end": 17526.69, + "probability": 0.8284 + }, + { + "start": 17527.26, + "end": 17527.64, + "probability": 0.788 + }, + { + "start": 17528.46, + "end": 17529.98, + "probability": 0.9854 + }, + { + "start": 17531.24, + "end": 17533.36, + "probability": 0.8805 + }, + { + "start": 17536.32, + "end": 17539.42, + "probability": 0.9148 + }, + { + "start": 17540.48, + "end": 17542.58, + "probability": 0.9773 + }, + { + "start": 17542.94, + "end": 17545.34, + "probability": 0.9587 + }, + { + "start": 17546.16, + "end": 17547.24, + "probability": 0.9678 + }, + { + "start": 17548.16, + "end": 17549.44, + "probability": 0.9844 + }, + { + "start": 17549.8, + "end": 17553.46, + "probability": 0.9966 + }, + { + "start": 17553.76, + "end": 17558.04, + "probability": 0.9543 + }, + { + "start": 17558.44, + "end": 17561.51, + "probability": 0.7283 + }, + { + "start": 17562.18, + "end": 17563.48, + "probability": 0.9275 + }, + { + "start": 17563.62, + "end": 17565.04, + "probability": 0.9626 + }, + { + "start": 17565.48, + "end": 17567.64, + "probability": 0.9811 + }, + { + "start": 17570.0, + "end": 17570.32, + "probability": 0.0189 + }, + { + "start": 17570.32, + "end": 17575.24, + "probability": 0.8071 + }, + { + "start": 17576.26, + "end": 17580.34, + "probability": 0.9545 + }, + { + "start": 17580.54, + "end": 17580.96, + "probability": 0.4991 + }, + { + "start": 17581.1, + "end": 17583.92, + "probability": 0.7512 + }, + { + "start": 17584.84, + "end": 17586.32, + "probability": 0.8589 + }, + { + "start": 17586.86, + "end": 17589.74, + "probability": 0.6913 + }, + { + "start": 17590.0, + "end": 17594.26, + "probability": 0.935 + }, + { + "start": 17594.56, + "end": 17595.02, + "probability": 0.4143 + }, + { + "start": 17595.58, + "end": 17599.16, + "probability": 0.9446 + }, + { + "start": 17600.8, + "end": 17602.58, + "probability": 0.8407 + }, + { + "start": 17603.89, + "end": 17605.92, + "probability": 0.5083 + }, + { + "start": 17605.94, + "end": 17607.52, + "probability": 0.984 + }, + { + "start": 17607.6, + "end": 17609.1, + "probability": 0.9829 + }, + { + "start": 17609.84, + "end": 17612.9, + "probability": 0.7275 + }, + { + "start": 17613.42, + "end": 17614.84, + "probability": 0.7721 + }, + { + "start": 17615.12, + "end": 17616.72, + "probability": 0.5567 + }, + { + "start": 17617.36, + "end": 17619.1, + "probability": 0.9877 + }, + { + "start": 17621.34, + "end": 17621.93, + "probability": 0.9814 + }, + { + "start": 17623.82, + "end": 17625.5, + "probability": 0.9822 + }, + { + "start": 17625.62, + "end": 17629.74, + "probability": 0.4185 + }, + { + "start": 17629.84, + "end": 17630.56, + "probability": 0.1029 + }, + { + "start": 17631.24, + "end": 17631.3, + "probability": 0.0145 + }, + { + "start": 17631.38, + "end": 17631.38, + "probability": 0.553 + }, + { + "start": 17631.38, + "end": 17631.38, + "probability": 0.0514 + }, + { + "start": 17631.38, + "end": 17633.16, + "probability": 0.8523 + }, + { + "start": 17633.58, + "end": 17636.08, + "probability": 0.9596 + }, + { + "start": 17636.34, + "end": 17639.78, + "probability": 0.9907 + }, + { + "start": 17640.54, + "end": 17644.16, + "probability": 0.9889 + }, + { + "start": 17644.78, + "end": 17645.96, + "probability": 0.8198 + }, + { + "start": 17646.54, + "end": 17648.38, + "probability": 0.8997 + }, + { + "start": 17648.64, + "end": 17649.56, + "probability": 0.9446 + }, + { + "start": 17649.72, + "end": 17651.98, + "probability": 0.9106 + }, + { + "start": 17652.8, + "end": 17656.27, + "probability": 0.9834 + }, + { + "start": 17656.72, + "end": 17658.5, + "probability": 0.6186 + }, + { + "start": 17658.84, + "end": 17662.64, + "probability": 0.986 + }, + { + "start": 17662.86, + "end": 17663.72, + "probability": 0.7023 + }, + { + "start": 17663.72, + "end": 17664.08, + "probability": 0.6911 + }, + { + "start": 17664.6, + "end": 17666.34, + "probability": 0.5876 + }, + { + "start": 17667.18, + "end": 17670.0, + "probability": 0.6992 + }, + { + "start": 17671.06, + "end": 17671.78, + "probability": 0.5964 + }, + { + "start": 17673.39, + "end": 17674.06, + "probability": 0.4988 + }, + { + "start": 17676.74, + "end": 17676.74, + "probability": 0.1615 + }, + { + "start": 17676.74, + "end": 17679.29, + "probability": 0.7285 + }, + { + "start": 17679.46, + "end": 17681.05, + "probability": 0.805 + }, + { + "start": 17682.62, + "end": 17684.04, + "probability": 0.0554 + }, + { + "start": 17688.66, + "end": 17689.88, + "probability": 0.8737 + }, + { + "start": 17690.04, + "end": 17691.0, + "probability": 0.9556 + }, + { + "start": 17693.46, + "end": 17694.28, + "probability": 0.7069 + }, + { + "start": 17694.66, + "end": 17696.24, + "probability": 0.7165 + }, + { + "start": 17697.46, + "end": 17698.59, + "probability": 0.8768 + }, + { + "start": 17700.4, + "end": 17700.86, + "probability": 0.6371 + }, + { + "start": 17701.02, + "end": 17701.86, + "probability": 0.6806 + }, + { + "start": 17701.88, + "end": 17703.64, + "probability": 0.9695 + }, + { + "start": 17704.44, + "end": 17707.16, + "probability": 0.9408 + }, + { + "start": 17708.0, + "end": 17712.38, + "probability": 0.9951 + }, + { + "start": 17712.56, + "end": 17713.2, + "probability": 0.7189 + }, + { + "start": 17713.42, + "end": 17714.1, + "probability": 0.9217 + }, + { + "start": 17714.6, + "end": 17715.66, + "probability": 0.959 + }, + { + "start": 17716.16, + "end": 17720.13, + "probability": 0.9613 + }, + { + "start": 17722.92, + "end": 17726.58, + "probability": 0.9816 + }, + { + "start": 17726.58, + "end": 17730.5, + "probability": 0.9969 + }, + { + "start": 17732.86, + "end": 17736.1, + "probability": 0.993 + }, + { + "start": 17736.7, + "end": 17740.44, + "probability": 0.9972 + }, + { + "start": 17740.44, + "end": 17744.32, + "probability": 0.9979 + }, + { + "start": 17745.2, + "end": 17747.6, + "probability": 0.9883 + }, + { + "start": 17748.56, + "end": 17749.7, + "probability": 0.8087 + }, + { + "start": 17750.2, + "end": 17754.98, + "probability": 0.8187 + }, + { + "start": 17755.18, + "end": 17755.18, + "probability": 0.1541 + }, + { + "start": 17755.3, + "end": 17755.65, + "probability": 0.3073 + }, + { + "start": 17755.76, + "end": 17758.44, + "probability": 0.8712 + }, + { + "start": 17758.66, + "end": 17759.66, + "probability": 0.5054 + }, + { + "start": 17760.62, + "end": 17763.02, + "probability": 0.77 + }, + { + "start": 17763.02, + "end": 17766.12, + "probability": 0.6851 + }, + { + "start": 17766.28, + "end": 17766.34, + "probability": 0.01 + }, + { + "start": 17766.4, + "end": 17766.76, + "probability": 0.3909 + }, + { + "start": 17766.76, + "end": 17766.86, + "probability": 0.8372 + }, + { + "start": 17767.08, + "end": 17769.14, + "probability": 0.877 + }, + { + "start": 17769.68, + "end": 17770.84, + "probability": 0.6772 + }, + { + "start": 17770.94, + "end": 17771.5, + "probability": 0.2869 + }, + { + "start": 17771.58, + "end": 17772.67, + "probability": 0.727 + }, + { + "start": 17772.8, + "end": 17773.68, + "probability": 0.684 + }, + { + "start": 17773.82, + "end": 17774.8, + "probability": 0.8682 + }, + { + "start": 17775.76, + "end": 17777.8, + "probability": 0.7931 + }, + { + "start": 17778.16, + "end": 17780.5, + "probability": 0.7642 + }, + { + "start": 17780.94, + "end": 17781.86, + "probability": 0.9148 + }, + { + "start": 17782.54, + "end": 17784.32, + "probability": 0.8713 + }, + { + "start": 17784.84, + "end": 17786.03, + "probability": 0.7933 + }, + { + "start": 17786.7, + "end": 17790.72, + "probability": 0.6579 + }, + { + "start": 17791.14, + "end": 17791.5, + "probability": 0.1928 + }, + { + "start": 17791.6, + "end": 17795.1, + "probability": 0.7975 + }, + { + "start": 17795.1, + "end": 17798.44, + "probability": 0.8043 + }, + { + "start": 17798.9, + "end": 17799.5, + "probability": 0.8306 + }, + { + "start": 17799.82, + "end": 17800.32, + "probability": 0.5975 + }, + { + "start": 17800.6, + "end": 17802.3, + "probability": 0.8429 + }, + { + "start": 17802.42, + "end": 17803.94, + "probability": 0.9909 + }, + { + "start": 17804.84, + "end": 17808.46, + "probability": 0.9587 + }, + { + "start": 17808.9, + "end": 17809.78, + "probability": 0.9594 + }, + { + "start": 17810.18, + "end": 17811.22, + "probability": 0.8292 + }, + { + "start": 17811.58, + "end": 17812.32, + "probability": 0.4988 + }, + { + "start": 17812.32, + "end": 17813.68, + "probability": 0.8977 + }, + { + "start": 17814.16, + "end": 17815.72, + "probability": 0.8768 + }, + { + "start": 17816.02, + "end": 17816.94, + "probability": 0.886 + }, + { + "start": 17817.2, + "end": 17818.02, + "probability": 0.9174 + }, + { + "start": 17819.27, + "end": 17821.6, + "probability": 0.9204 + }, + { + "start": 17822.08, + "end": 17823.28, + "probability": 0.4744 + }, + { + "start": 17823.28, + "end": 17826.28, + "probability": 0.8345 + }, + { + "start": 17826.4, + "end": 17827.4, + "probability": 0.4841 + }, + { + "start": 17829.42, + "end": 17831.48, + "probability": 0.9888 + }, + { + "start": 17831.48, + "end": 17834.88, + "probability": 0.9953 + }, + { + "start": 17835.98, + "end": 17837.72, + "probability": 0.9453 + }, + { + "start": 17837.72, + "end": 17840.1, + "probability": 0.8872 + }, + { + "start": 17841.0, + "end": 17843.92, + "probability": 0.8433 + }, + { + "start": 17843.92, + "end": 17847.06, + "probability": 0.799 + }, + { + "start": 17848.22, + "end": 17850.56, + "probability": 0.9414 + }, + { + "start": 17850.56, + "end": 17854.82, + "probability": 0.9663 + }, + { + "start": 17856.12, + "end": 17862.5, + "probability": 0.9957 + }, + { + "start": 17862.5, + "end": 17866.12, + "probability": 0.9811 + }, + { + "start": 17866.22, + "end": 17868.68, + "probability": 0.9803 + }, + { + "start": 17869.28, + "end": 17870.08, + "probability": 0.9054 + }, + { + "start": 17870.24, + "end": 17872.34, + "probability": 0.9705 + }, + { + "start": 17873.3, + "end": 17875.24, + "probability": 0.7321 + }, + { + "start": 17875.98, + "end": 17877.6, + "probability": 0.9269 + }, + { + "start": 17878.74, + "end": 17880.3, + "probability": 0.9775 + }, + { + "start": 17881.08, + "end": 17886.32, + "probability": 0.9154 + }, + { + "start": 17887.02, + "end": 17888.88, + "probability": 0.7177 + }, + { + "start": 17888.96, + "end": 17895.8, + "probability": 0.9652 + }, + { + "start": 17896.94, + "end": 17904.36, + "probability": 0.9613 + }, + { + "start": 17905.4, + "end": 17910.32, + "probability": 0.9268 + }, + { + "start": 17911.8, + "end": 17913.66, + "probability": 0.7622 + }, + { + "start": 17914.4, + "end": 17916.26, + "probability": 0.9688 + }, + { + "start": 17916.9, + "end": 17920.06, + "probability": 0.8568 + }, + { + "start": 17920.4, + "end": 17924.8, + "probability": 0.9461 + }, + { + "start": 17924.92, + "end": 17925.72, + "probability": 0.879 + }, + { + "start": 17926.0, + "end": 17927.32, + "probability": 0.8231 + }, + { + "start": 17927.68, + "end": 17928.47, + "probability": 0.7362 + }, + { + "start": 17929.38, + "end": 17934.22, + "probability": 0.9963 + }, + { + "start": 17935.08, + "end": 17936.36, + "probability": 0.9515 + }, + { + "start": 17937.0, + "end": 17944.12, + "probability": 0.9472 + }, + { + "start": 17944.22, + "end": 17946.8, + "probability": 0.722 + }, + { + "start": 17946.88, + "end": 17949.72, + "probability": 0.6861 + }, + { + "start": 17950.42, + "end": 17952.58, + "probability": 0.9775 + }, + { + "start": 17953.32, + "end": 17955.2, + "probability": 0.8052 + }, + { + "start": 17956.0, + "end": 17956.98, + "probability": 0.735 + }, + { + "start": 17958.02, + "end": 17960.3, + "probability": 0.9535 + }, + { + "start": 17960.32, + "end": 17962.6, + "probability": 0.6191 + }, + { + "start": 17963.86, + "end": 17964.6, + "probability": 0.7251 + }, + { + "start": 17964.78, + "end": 17971.04, + "probability": 0.9379 + }, + { + "start": 17972.26, + "end": 17972.88, + "probability": 0.8317 + }, + { + "start": 17972.92, + "end": 17977.04, + "probability": 0.9763 + }, + { + "start": 17977.1, + "end": 17981.7, + "probability": 0.7823 + }, + { + "start": 17982.1, + "end": 17985.6, + "probability": 0.4687 + }, + { + "start": 17985.87, + "end": 17989.52, + "probability": 0.7761 + }, + { + "start": 17989.92, + "end": 17992.6, + "probability": 0.8078 + }, + { + "start": 17994.0, + "end": 17996.2, + "probability": 0.5842 + }, + { + "start": 17996.76, + "end": 17998.12, + "probability": 0.9378 + }, + { + "start": 17998.88, + "end": 18001.54, + "probability": 0.8191 + }, + { + "start": 18002.04, + "end": 18004.8, + "probability": 0.9945 + }, + { + "start": 18005.56, + "end": 18009.26, + "probability": 0.9875 + }, + { + "start": 18010.08, + "end": 18012.52, + "probability": 0.6833 + }, + { + "start": 18013.64, + "end": 18015.92, + "probability": 0.9618 + }, + { + "start": 18016.92, + "end": 18019.7, + "probability": 0.8082 + }, + { + "start": 18020.24, + "end": 18022.38, + "probability": 0.9924 + }, + { + "start": 18023.4, + "end": 18026.5, + "probability": 0.8193 + }, + { + "start": 18026.76, + "end": 18027.6, + "probability": 0.595 + }, + { + "start": 18027.72, + "end": 18030.16, + "probability": 0.7875 + }, + { + "start": 18031.14, + "end": 18032.22, + "probability": 0.7798 + }, + { + "start": 18032.3, + "end": 18037.86, + "probability": 0.9541 + }, + { + "start": 18038.22, + "end": 18043.02, + "probability": 0.9596 + }, + { + "start": 18043.14, + "end": 18044.5, + "probability": 0.9928 + }, + { + "start": 18044.84, + "end": 18047.18, + "probability": 0.9546 + }, + { + "start": 18047.7, + "end": 18049.36, + "probability": 0.8491 + }, + { + "start": 18049.62, + "end": 18053.54, + "probability": 0.6741 + }, + { + "start": 18053.84, + "end": 18054.36, + "probability": 0.0873 + }, + { + "start": 18054.5, + "end": 18055.72, + "probability": 0.7694 + }, + { + "start": 18056.28, + "end": 18056.88, + "probability": 0.9268 + }, + { + "start": 18057.0, + "end": 18057.58, + "probability": 0.9894 + }, + { + "start": 18058.16, + "end": 18058.55, + "probability": 0.641 + }, + { + "start": 18062.46, + "end": 18063.48, + "probability": 0.6414 + }, + { + "start": 18063.76, + "end": 18065.36, + "probability": 0.6308 + }, + { + "start": 18065.42, + "end": 18066.61, + "probability": 0.48 + }, + { + "start": 18067.14, + "end": 18069.16, + "probability": 0.6263 + }, + { + "start": 18069.26, + "end": 18070.63, + "probability": 0.7628 + }, + { + "start": 18071.72, + "end": 18074.42, + "probability": 0.9963 + }, + { + "start": 18075.78, + "end": 18076.72, + "probability": 0.8768 + }, + { + "start": 18076.88, + "end": 18078.4, + "probability": 0.8499 + }, + { + "start": 18078.5, + "end": 18081.16, + "probability": 0.9646 + }, + { + "start": 18081.74, + "end": 18083.5, + "probability": 0.9951 + }, + { + "start": 18083.62, + "end": 18089.9, + "probability": 0.9939 + }, + { + "start": 18090.58, + "end": 18091.7, + "probability": 0.9308 + }, + { + "start": 18092.12, + "end": 18093.24, + "probability": 0.9738 + }, + { + "start": 18093.34, + "end": 18095.7, + "probability": 0.6487 + }, + { + "start": 18095.82, + "end": 18100.28, + "probability": 0.6343 + }, + { + "start": 18100.9, + "end": 18102.74, + "probability": 0.9371 + }, + { + "start": 18102.78, + "end": 18104.63, + "probability": 0.798 + }, + { + "start": 18105.3, + "end": 18107.84, + "probability": 0.9808 + }, + { + "start": 18107.94, + "end": 18111.66, + "probability": 0.9736 + }, + { + "start": 18111.8, + "end": 18115.39, + "probability": 0.9061 + }, + { + "start": 18115.64, + "end": 18119.52, + "probability": 0.7711 + }, + { + "start": 18119.52, + "end": 18123.84, + "probability": 0.9401 + }, + { + "start": 18124.28, + "end": 18128.18, + "probability": 0.7194 + }, + { + "start": 18129.12, + "end": 18130.44, + "probability": 0.9679 + }, + { + "start": 18130.88, + "end": 18131.98, + "probability": 0.8339 + }, + { + "start": 18132.08, + "end": 18136.54, + "probability": 0.9084 + }, + { + "start": 18137.14, + "end": 18138.12, + "probability": 0.6488 + }, + { + "start": 18138.62, + "end": 18141.11, + "probability": 0.8255 + }, + { + "start": 18141.64, + "end": 18144.56, + "probability": 0.9731 + }, + { + "start": 18144.9, + "end": 18147.42, + "probability": 0.9443 + }, + { + "start": 18148.74, + "end": 18152.44, + "probability": 0.8216 + }, + { + "start": 18153.32, + "end": 18154.52, + "probability": 0.9757 + }, + { + "start": 18155.7, + "end": 18162.88, + "probability": 0.9956 + }, + { + "start": 18163.78, + "end": 18164.28, + "probability": 0.2645 + }, + { + "start": 18164.42, + "end": 18169.2, + "probability": 0.9878 + }, + { + "start": 18169.2, + "end": 18173.26, + "probability": 0.924 + }, + { + "start": 18173.88, + "end": 18174.46, + "probability": 0.7013 + }, + { + "start": 18174.6, + "end": 18177.66, + "probability": 0.9605 + }, + { + "start": 18177.66, + "end": 18179.58, + "probability": 0.9872 + }, + { + "start": 18179.62, + "end": 18179.92, + "probability": 0.5923 + }, + { + "start": 18180.12, + "end": 18183.64, + "probability": 0.9231 + }, + { + "start": 18183.72, + "end": 18185.1, + "probability": 0.6675 + }, + { + "start": 18185.7, + "end": 18192.54, + "probability": 0.9816 + }, + { + "start": 18192.62, + "end": 18193.6, + "probability": 0.7575 + }, + { + "start": 18194.24, + "end": 18195.16, + "probability": 0.7745 + }, + { + "start": 18195.4, + "end": 18196.58, + "probability": 0.9763 + }, + { + "start": 18196.64, + "end": 18197.4, + "probability": 0.97 + }, + { + "start": 18197.44, + "end": 18198.8, + "probability": 0.8341 + }, + { + "start": 18199.02, + "end": 18200.56, + "probability": 0.9851 + }, + { + "start": 18201.6, + "end": 18202.7, + "probability": 0.7539 + }, + { + "start": 18203.1, + "end": 18206.82, + "probability": 0.9386 + }, + { + "start": 18206.9, + "end": 18210.18, + "probability": 0.9753 + }, + { + "start": 18210.7, + "end": 18211.98, + "probability": 0.8087 + }, + { + "start": 18212.34, + "end": 18213.82, + "probability": 0.8042 + }, + { + "start": 18213.96, + "end": 18214.39, + "probability": 0.72 + }, + { + "start": 18215.22, + "end": 18217.06, + "probability": 0.9701 + }, + { + "start": 18217.6, + "end": 18221.84, + "probability": 0.9637 + }, + { + "start": 18223.56, + "end": 18224.08, + "probability": 0.6999 + }, + { + "start": 18224.14, + "end": 18224.7, + "probability": 0.4183 + }, + { + "start": 18224.82, + "end": 18226.58, + "probability": 0.9675 + }, + { + "start": 18226.72, + "end": 18227.38, + "probability": 0.5431 + }, + { + "start": 18227.8, + "end": 18229.16, + "probability": 0.7697 + }, + { + "start": 18229.68, + "end": 18233.84, + "probability": 0.697 + }, + { + "start": 18234.38, + "end": 18235.38, + "probability": 0.6751 + }, + { + "start": 18235.52, + "end": 18236.62, + "probability": 0.9163 + }, + { + "start": 18237.06, + "end": 18237.93, + "probability": 0.9937 + }, + { + "start": 18238.58, + "end": 18240.86, + "probability": 0.8807 + }, + { + "start": 18241.5, + "end": 18244.9, + "probability": 0.9733 + }, + { + "start": 18248.86, + "end": 18251.38, + "probability": 0.8847 + }, + { + "start": 18251.54, + "end": 18252.66, + "probability": 0.7162 + }, + { + "start": 18253.08, + "end": 18254.56, + "probability": 0.9345 + }, + { + "start": 18255.08, + "end": 18258.02, + "probability": 0.6877 + }, + { + "start": 18258.8, + "end": 18263.74, + "probability": 0.9401 + }, + { + "start": 18264.3, + "end": 18268.48, + "probability": 0.6401 + }, + { + "start": 18269.04, + "end": 18274.12, + "probability": 0.9954 + }, + { + "start": 18274.54, + "end": 18276.04, + "probability": 0.9861 + }, + { + "start": 18276.04, + "end": 18279.1, + "probability": 0.9882 + }, + { + "start": 18279.26, + "end": 18280.22, + "probability": 0.9422 + }, + { + "start": 18280.28, + "end": 18283.78, + "probability": 0.9757 + }, + { + "start": 18284.38, + "end": 18285.17, + "probability": 0.9194 + }, + { + "start": 18285.32, + "end": 18290.46, + "probability": 0.9256 + }, + { + "start": 18291.0, + "end": 18291.78, + "probability": 0.958 + }, + { + "start": 18291.86, + "end": 18295.26, + "probability": 0.9721 + }, + { + "start": 18297.94, + "end": 18300.32, + "probability": 0.5086 + }, + { + "start": 18300.4, + "end": 18302.68, + "probability": 0.8207 + }, + { + "start": 18302.76, + "end": 18304.12, + "probability": 0.9822 + }, + { + "start": 18305.08, + "end": 18307.31, + "probability": 0.5566 + }, + { + "start": 18307.84, + "end": 18308.94, + "probability": 0.9457 + }, + { + "start": 18309.4, + "end": 18312.56, + "probability": 0.9639 + }, + { + "start": 18312.78, + "end": 18314.36, + "probability": 0.9191 + }, + { + "start": 18314.68, + "end": 18315.36, + "probability": 0.7111 + }, + { + "start": 18315.46, + "end": 18318.42, + "probability": 0.9192 + }, + { + "start": 18318.7, + "end": 18321.48, + "probability": 0.9846 + }, + { + "start": 18321.84, + "end": 18324.5, + "probability": 0.992 + }, + { + "start": 18325.18, + "end": 18327.52, + "probability": 0.9927 + }, + { + "start": 18328.16, + "end": 18329.02, + "probability": 0.2795 + }, + { + "start": 18329.58, + "end": 18332.92, + "probability": 0.9277 + }, + { + "start": 18333.38, + "end": 18333.66, + "probability": 0.8801 + }, + { + "start": 18333.7, + "end": 18335.16, + "probability": 0.686 + }, + { + "start": 18335.18, + "end": 18335.59, + "probability": 0.9364 + }, + { + "start": 18337.02, + "end": 18339.22, + "probability": 0.8257 + }, + { + "start": 18339.3, + "end": 18340.88, + "probability": 0.4598 + }, + { + "start": 18340.9, + "end": 18343.18, + "probability": 0.7861 + }, + { + "start": 18343.78, + "end": 18344.54, + "probability": 0.3013 + }, + { + "start": 18344.62, + "end": 18346.68, + "probability": 0.6852 + }, + { + "start": 18348.26, + "end": 18348.68, + "probability": 0.5417 + }, + { + "start": 18349.68, + "end": 18351.28, + "probability": 0.1741 + }, + { + "start": 18351.4, + "end": 18352.99, + "probability": 0.2474 + }, + { + "start": 18354.08, + "end": 18354.74, + "probability": 0.5604 + }, + { + "start": 18355.5, + "end": 18355.68, + "probability": 0.0251 + }, + { + "start": 18355.68, + "end": 18356.1, + "probability": 0.1393 + }, + { + "start": 18356.24, + "end": 18358.49, + "probability": 0.2501 + }, + { + "start": 18360.74, + "end": 18361.22, + "probability": 0.3676 + }, + { + "start": 18361.24, + "end": 18361.76, + "probability": 0.2581 + }, + { + "start": 18361.76, + "end": 18362.7, + "probability": 0.6659 + }, + { + "start": 18362.78, + "end": 18364.23, + "probability": 0.867 + }, + { + "start": 18364.56, + "end": 18368.04, + "probability": 0.8711 + }, + { + "start": 18368.08, + "end": 18368.68, + "probability": 0.2502 + }, + { + "start": 18368.88, + "end": 18369.44, + "probability": 0.7838 + }, + { + "start": 18369.56, + "end": 18372.5, + "probability": 0.4459 + }, + { + "start": 18372.5, + "end": 18373.82, + "probability": 0.6742 + }, + { + "start": 18384.14, + "end": 18385.26, + "probability": 0.6363 + }, + { + "start": 18385.4, + "end": 18387.42, + "probability": 0.6661 + }, + { + "start": 18387.5, + "end": 18390.88, + "probability": 0.937 + }, + { + "start": 18391.44, + "end": 18396.0, + "probability": 0.9751 + }, + { + "start": 18397.04, + "end": 18400.46, + "probability": 0.9526 + }, + { + "start": 18400.56, + "end": 18401.28, + "probability": 0.9137 + }, + { + "start": 18402.04, + "end": 18403.12, + "probability": 0.6343 + }, + { + "start": 18403.22, + "end": 18405.9, + "probability": 0.9841 + }, + { + "start": 18405.9, + "end": 18408.42, + "probability": 0.9766 + }, + { + "start": 18408.9, + "end": 18414.12, + "probability": 0.9869 + }, + { + "start": 18414.76, + "end": 18417.78, + "probability": 0.9976 + }, + { + "start": 18417.78, + "end": 18420.93, + "probability": 0.9966 + }, + { + "start": 18421.04, + "end": 18422.28, + "probability": 0.9565 + }, + { + "start": 18422.62, + "end": 18424.44, + "probability": 0.7443 + }, + { + "start": 18425.26, + "end": 18426.34, + "probability": 0.4638 + }, + { + "start": 18426.48, + "end": 18427.66, + "probability": 0.7693 + }, + { + "start": 18427.76, + "end": 18428.56, + "probability": 0.8508 + }, + { + "start": 18428.72, + "end": 18429.98, + "probability": 0.9683 + }, + { + "start": 18431.0, + "end": 18431.44, + "probability": 0.8787 + }, + { + "start": 18431.68, + "end": 18432.24, + "probability": 0.7336 + }, + { + "start": 18432.32, + "end": 18437.07, + "probability": 0.9979 + }, + { + "start": 18437.96, + "end": 18445.3, + "probability": 0.9758 + }, + { + "start": 18445.3, + "end": 18449.2, + "probability": 0.9966 + }, + { + "start": 18449.66, + "end": 18451.56, + "probability": 0.9779 + }, + { + "start": 18452.12, + "end": 18453.81, + "probability": 0.9946 + }, + { + "start": 18454.14, + "end": 18454.49, + "probability": 0.9165 + }, + { + "start": 18455.18, + "end": 18455.6, + "probability": 0.0724 + }, + { + "start": 18455.66, + "end": 18457.5, + "probability": 0.7042 + }, + { + "start": 18458.04, + "end": 18458.52, + "probability": 0.163 + }, + { + "start": 18458.72, + "end": 18458.72, + "probability": 0.0922 + }, + { + "start": 18458.72, + "end": 18459.64, + "probability": 0.6768 + }, + { + "start": 18459.76, + "end": 18459.83, + "probability": 0.8892 + }, + { + "start": 18460.46, + "end": 18462.28, + "probability": 0.9405 + }, + { + "start": 18462.68, + "end": 18465.86, + "probability": 0.952 + }, + { + "start": 18466.42, + "end": 18469.14, + "probability": 0.9917 + }, + { + "start": 18469.54, + "end": 18469.7, + "probability": 0.8031 + }, + { + "start": 18470.82, + "end": 18472.05, + "probability": 0.5067 + }, + { + "start": 18472.68, + "end": 18476.14, + "probability": 0.8512 + }, + { + "start": 18476.3, + "end": 18476.76, + "probability": 0.3077 + }, + { + "start": 18477.32, + "end": 18478.78, + "probability": 0.6393 + }, + { + "start": 18479.14, + "end": 18479.88, + "probability": 0.8074 + }, + { + "start": 18481.92, + "end": 18483.26, + "probability": 0.9768 + }, + { + "start": 18483.82, + "end": 18484.42, + "probability": 0.6987 + }, + { + "start": 18485.06, + "end": 18485.18, + "probability": 0.0585 + }, + { + "start": 18485.2, + "end": 18485.92, + "probability": 0.5906 + }, + { + "start": 18486.02, + "end": 18487.78, + "probability": 0.8119 + }, + { + "start": 18487.88, + "end": 18490.26, + "probability": 0.6527 + }, + { + "start": 18490.28, + "end": 18491.14, + "probability": 0.815 + }, + { + "start": 18491.3, + "end": 18494.16, + "probability": 0.9381 + }, + { + "start": 18494.28, + "end": 18497.0, + "probability": 0.9394 + }, + { + "start": 18497.26, + "end": 18500.48, + "probability": 0.9761 + }, + { + "start": 18500.48, + "end": 18507.78, + "probability": 0.9917 + }, + { + "start": 18507.88, + "end": 18508.2, + "probability": 0.6575 + }, + { + "start": 18508.3, + "end": 18513.88, + "probability": 0.7262 + }, + { + "start": 18514.14, + "end": 18516.88, + "probability": 0.4995 + }, + { + "start": 18517.34, + "end": 18520.94, + "probability": 0.9823 + }, + { + "start": 18521.28, + "end": 18523.9, + "probability": 0.9896 + }, + { + "start": 18523.92, + "end": 18524.24, + "probability": 0.8139 + }, + { + "start": 18524.4, + "end": 18524.98, + "probability": 0.8632 + }, + { + "start": 18525.28, + "end": 18529.6, + "probability": 0.7998 + }, + { + "start": 18529.98, + "end": 18534.58, + "probability": 0.9926 + }, + { + "start": 18534.96, + "end": 18537.82, + "probability": 0.96 + }, + { + "start": 18537.82, + "end": 18541.56, + "probability": 0.9959 + }, + { + "start": 18541.66, + "end": 18542.16, + "probability": 0.6344 + }, + { + "start": 18542.4, + "end": 18543.17, + "probability": 0.4759 + }, + { + "start": 18543.98, + "end": 18544.22, + "probability": 0.8226 + }, + { + "start": 18544.28, + "end": 18546.6, + "probability": 0.9819 + }, + { + "start": 18546.7, + "end": 18549.08, + "probability": 0.7406 + }, + { + "start": 18549.34, + "end": 18550.22, + "probability": 0.7667 + }, + { + "start": 18550.72, + "end": 18551.42, + "probability": 0.5506 + }, + { + "start": 18551.6, + "end": 18552.18, + "probability": 0.3223 + }, + { + "start": 18552.38, + "end": 18552.74, + "probability": 0.3513 + }, + { + "start": 18552.8, + "end": 18553.44, + "probability": 0.7058 + }, + { + "start": 18571.24, + "end": 18572.88, + "probability": 0.3702 + }, + { + "start": 18572.94, + "end": 18574.08, + "probability": 0.1419 + }, + { + "start": 18574.1, + "end": 18577.88, + "probability": 0.9223 + }, + { + "start": 18583.48, + "end": 18585.58, + "probability": 0.1036 + } + ], + "segments_count": 6316, + "words_count": 32963, + "avg_words_per_segment": 5.219, + "avg_segment_duration": 2.2985, + "avg_words_per_minute": 104.9691, + "plenum_id": "27710", + "duration": 18841.55, + "title": null, + "plenum_date": "2013-04-24" +} \ No newline at end of file