diff --git "a/38038/metadata.json" "b/38038/metadata.json" new file mode 100644--- /dev/null +++ "b/38038/metadata.json" @@ -0,0 +1,16652 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "38038", + "quality_score": 0.912, + "per_segment_quality_scores": [ + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 152.6, + "end": 155.14, + "probability": 0.4802 + }, + { + "start": 210.24, + "end": 211.46, + "probability": 0.0567 + }, + { + "start": 212.12, + "end": 212.36, + "probability": 0.0043 + }, + { + "start": 220.8, + "end": 221.22, + "probability": 0.0896 + }, + { + "start": 222.72, + "end": 231.36, + "probability": 0.1022 + }, + { + "start": 231.36, + "end": 233.0, + "probability": 0.1739 + }, + { + "start": 236.48, + "end": 239.46, + "probability": 0.1298 + }, + { + "start": 269.0, + "end": 269.0, + "probability": 0.0 + }, + { + "start": 269.0, + "end": 269.0, + "probability": 0.0 + }, + { + "start": 269.0, + "end": 269.0, + "probability": 0.0 + }, + { + "start": 269.0, + "end": 269.0, + "probability": 0.0 + }, + { + "start": 269.0, + "end": 269.0, + "probability": 0.0 + }, + { + "start": 269.0, + "end": 269.0, + "probability": 0.0 + }, + { + "start": 269.0, + "end": 269.0, + "probability": 0.0 + }, + { + "start": 269.0, + "end": 269.0, + "probability": 0.0 + }, + { + "start": 269.0, + "end": 269.0, + "probability": 0.0 + }, + { + "start": 269.0, + "end": 269.0, + "probability": 0.0 + }, + { + "start": 269.0, + "end": 269.0, + "probability": 0.0 + }, + { + "start": 269.0, + "end": 269.0, + "probability": 0.0 + }, + { + "start": 269.0, + "end": 269.0, + "probability": 0.0 + }, + { + "start": 269.0, + "end": 269.0, + "probability": 0.0 + }, + { + "start": 269.0, + "end": 269.0, + "probability": 0.0 + }, + { + "start": 269.0, + "end": 269.0, + "probability": 0.0 + }, + { + "start": 269.0, + "end": 269.0, + "probability": 0.0 + }, + { + "start": 269.0, + "end": 269.0, + "probability": 0.0 + }, + { + "start": 269.0, + "end": 269.0, + "probability": 0.0 + }, + { + "start": 269.0, + "end": 269.0, + "probability": 0.0 + }, + { + "start": 269.0, + "end": 269.0, + "probability": 0.0 + }, + { + "start": 269.0, + "end": 269.0, + "probability": 0.0 + }, + { + "start": 269.0, + "end": 269.0, + "probability": 0.0 + }, + { + "start": 269.0, + "end": 269.0, + "probability": 0.0 + }, + { + "start": 269.0, + "end": 269.0, + "probability": 0.0 + }, + { + "start": 269.0, + "end": 269.0, + "probability": 0.0 + }, + { + "start": 269.0, + "end": 269.0, + "probability": 0.0 + }, + { + "start": 269.0, + "end": 269.0, + "probability": 0.0 + }, + { + "start": 269.16, + "end": 269.76, + "probability": 0.6257 + }, + { + "start": 270.36, + "end": 276.5, + "probability": 0.6036 + }, + { + "start": 277.42, + "end": 279.02, + "probability": 0.9707 + }, + { + "start": 280.12, + "end": 283.33, + "probability": 0.9219 + }, + { + "start": 285.1, + "end": 286.82, + "probability": 0.8477 + }, + { + "start": 287.44, + "end": 289.16, + "probability": 0.7997 + }, + { + "start": 291.18, + "end": 294.1, + "probability": 0.7619 + }, + { + "start": 295.18, + "end": 296.54, + "probability": 0.9917 + }, + { + "start": 296.58, + "end": 300.68, + "probability": 0.9144 + }, + { + "start": 302.0, + "end": 303.5, + "probability": 0.9724 + }, + { + "start": 304.82, + "end": 309.56, + "probability": 0.9854 + }, + { + "start": 309.56, + "end": 314.9, + "probability": 0.998 + }, + { + "start": 315.58, + "end": 316.4, + "probability": 0.9959 + }, + { + "start": 317.76, + "end": 321.89, + "probability": 0.9962 + }, + { + "start": 322.22, + "end": 324.3, + "probability": 0.989 + }, + { + "start": 324.82, + "end": 329.76, + "probability": 0.9514 + }, + { + "start": 330.54, + "end": 333.96, + "probability": 0.9664 + }, + { + "start": 335.02, + "end": 339.42, + "probability": 0.5903 + }, + { + "start": 340.18, + "end": 340.5, + "probability": 0.4539 + }, + { + "start": 340.54, + "end": 343.68, + "probability": 0.8411 + }, + { + "start": 344.18, + "end": 345.24, + "probability": 0.935 + }, + { + "start": 345.32, + "end": 349.58, + "probability": 0.9899 + }, + { + "start": 350.18, + "end": 356.04, + "probability": 0.9645 + }, + { + "start": 356.1, + "end": 358.4, + "probability": 0.9295 + }, + { + "start": 358.56, + "end": 364.22, + "probability": 0.8952 + }, + { + "start": 364.72, + "end": 364.98, + "probability": 0.4104 + }, + { + "start": 365.0, + "end": 368.96, + "probability": 0.9081 + }, + { + "start": 369.36, + "end": 371.76, + "probability": 0.9178 + }, + { + "start": 372.26, + "end": 375.96, + "probability": 0.9883 + }, + { + "start": 376.32, + "end": 376.52, + "probability": 0.6083 + }, + { + "start": 376.88, + "end": 379.02, + "probability": 0.5126 + }, + { + "start": 379.08, + "end": 381.06, + "probability": 0.9432 + }, + { + "start": 381.16, + "end": 381.8, + "probability": 0.6099 + }, + { + "start": 381.92, + "end": 383.58, + "probability": 0.8553 + }, + { + "start": 388.34, + "end": 388.88, + "probability": 0.4269 + }, + { + "start": 390.04, + "end": 390.04, + "probability": 0.3271 + }, + { + "start": 390.04, + "end": 395.92, + "probability": 0.5301 + }, + { + "start": 397.08, + "end": 399.56, + "probability": 0.9562 + }, + { + "start": 399.78, + "end": 401.66, + "probability": 0.7049 + }, + { + "start": 402.2, + "end": 404.28, + "probability": 0.9621 + }, + { + "start": 404.84, + "end": 406.32, + "probability": 0.962 + }, + { + "start": 407.76, + "end": 410.5, + "probability": 0.9316 + }, + { + "start": 410.84, + "end": 413.4, + "probability": 0.9801 + }, + { + "start": 414.54, + "end": 416.2, + "probability": 0.8965 + }, + { + "start": 417.1, + "end": 420.52, + "probability": 0.815 + }, + { + "start": 421.32, + "end": 423.52, + "probability": 0.992 + }, + { + "start": 424.18, + "end": 426.3, + "probability": 0.9912 + }, + { + "start": 427.04, + "end": 429.94, + "probability": 0.9775 + }, + { + "start": 430.54, + "end": 434.36, + "probability": 0.9984 + }, + { + "start": 435.82, + "end": 437.3, + "probability": 0.9622 + }, + { + "start": 437.72, + "end": 439.76, + "probability": 0.8348 + }, + { + "start": 439.76, + "end": 442.76, + "probability": 0.9266 + }, + { + "start": 443.54, + "end": 444.58, + "probability": 0.6749 + }, + { + "start": 444.64, + "end": 445.54, + "probability": 0.6703 + }, + { + "start": 445.88, + "end": 449.07, + "probability": 0.9636 + }, + { + "start": 449.7, + "end": 450.92, + "probability": 0.7077 + }, + { + "start": 451.88, + "end": 453.72, + "probability": 0.8882 + }, + { + "start": 454.18, + "end": 456.14, + "probability": 0.9834 + }, + { + "start": 456.96, + "end": 457.32, + "probability": 0.8559 + }, + { + "start": 457.7, + "end": 459.52, + "probability": 0.9683 + }, + { + "start": 459.8, + "end": 460.06, + "probability": 0.5787 + }, + { + "start": 460.16, + "end": 461.62, + "probability": 0.7403 + }, + { + "start": 461.68, + "end": 462.48, + "probability": 0.8105 + }, + { + "start": 462.6, + "end": 464.8, + "probability": 0.9797 + }, + { + "start": 467.98, + "end": 470.52, + "probability": 0.6671 + }, + { + "start": 471.18, + "end": 473.76, + "probability": 0.4669 + }, + { + "start": 474.9, + "end": 477.46, + "probability": 0.8921 + }, + { + "start": 477.94, + "end": 480.08, + "probability": 0.8274 + }, + { + "start": 480.74, + "end": 483.54, + "probability": 0.9436 + }, + { + "start": 485.1, + "end": 489.34, + "probability": 0.9757 + }, + { + "start": 489.34, + "end": 492.88, + "probability": 0.9907 + }, + { + "start": 493.34, + "end": 494.72, + "probability": 0.9422 + }, + { + "start": 495.18, + "end": 496.84, + "probability": 0.9633 + }, + { + "start": 497.58, + "end": 500.52, + "probability": 0.8037 + }, + { + "start": 501.14, + "end": 505.52, + "probability": 0.9499 + }, + { + "start": 506.0, + "end": 509.7, + "probability": 0.8917 + }, + { + "start": 510.26, + "end": 512.02, + "probability": 0.8155 + }, + { + "start": 512.86, + "end": 514.48, + "probability": 0.991 + }, + { + "start": 514.84, + "end": 515.48, + "probability": 0.8948 + }, + { + "start": 515.86, + "end": 518.12, + "probability": 0.9521 + }, + { + "start": 520.54, + "end": 521.8, + "probability": 0.5681 + }, + { + "start": 523.22, + "end": 527.08, + "probability": 0.936 + }, + { + "start": 527.52, + "end": 530.32, + "probability": 0.9854 + }, + { + "start": 530.96, + "end": 535.24, + "probability": 0.9873 + }, + { + "start": 535.3, + "end": 541.54, + "probability": 0.9795 + }, + { + "start": 542.84, + "end": 547.28, + "probability": 0.869 + }, + { + "start": 547.9, + "end": 548.46, + "probability": 0.698 + }, + { + "start": 548.76, + "end": 549.14, + "probability": 0.5151 + }, + { + "start": 552.0, + "end": 554.24, + "probability": 0.6831 + }, + { + "start": 554.46, + "end": 556.48, + "probability": 0.9845 + }, + { + "start": 557.7, + "end": 558.76, + "probability": 0.8678 + }, + { + "start": 561.82, + "end": 564.06, + "probability": 0.6147 + }, + { + "start": 564.78, + "end": 566.68, + "probability": 0.7882 + }, + { + "start": 567.88, + "end": 570.72, + "probability": 0.9977 + }, + { + "start": 571.86, + "end": 575.1, + "probability": 0.8763 + }, + { + "start": 575.96, + "end": 577.8, + "probability": 0.7058 + }, + { + "start": 578.52, + "end": 579.92, + "probability": 0.7544 + }, + { + "start": 581.04, + "end": 587.34, + "probability": 0.9857 + }, + { + "start": 587.9, + "end": 589.06, + "probability": 0.922 + }, + { + "start": 589.16, + "end": 592.74, + "probability": 0.7449 + }, + { + "start": 593.18, + "end": 598.16, + "probability": 0.848 + }, + { + "start": 598.98, + "end": 599.74, + "probability": 0.7217 + }, + { + "start": 600.46, + "end": 604.04, + "probability": 0.7951 + }, + { + "start": 604.88, + "end": 607.88, + "probability": 0.8145 + }, + { + "start": 608.48, + "end": 612.9, + "probability": 0.9634 + }, + { + "start": 613.98, + "end": 615.72, + "probability": 0.8523 + }, + { + "start": 616.9, + "end": 619.64, + "probability": 0.7483 + }, + { + "start": 620.44, + "end": 624.82, + "probability": 0.7206 + }, + { + "start": 624.82, + "end": 628.62, + "probability": 0.8909 + }, + { + "start": 629.34, + "end": 631.79, + "probability": 0.9985 + }, + { + "start": 632.44, + "end": 636.4, + "probability": 0.9053 + }, + { + "start": 636.4, + "end": 640.64, + "probability": 0.9981 + }, + { + "start": 641.16, + "end": 643.32, + "probability": 0.8304 + }, + { + "start": 643.88, + "end": 646.12, + "probability": 0.8294 + }, + { + "start": 646.8, + "end": 650.32, + "probability": 0.957 + }, + { + "start": 650.32, + "end": 654.66, + "probability": 0.998 + }, + { + "start": 655.34, + "end": 655.46, + "probability": 0.7135 + }, + { + "start": 656.28, + "end": 656.56, + "probability": 0.3474 + }, + { + "start": 657.38, + "end": 659.4, + "probability": 0.9673 + }, + { + "start": 659.58, + "end": 661.76, + "probability": 0.8554 + }, + { + "start": 662.22, + "end": 663.9, + "probability": 0.9001 + }, + { + "start": 667.7, + "end": 668.46, + "probability": 0.8507 + }, + { + "start": 668.58, + "end": 669.1, + "probability": 0.9467 + }, + { + "start": 669.22, + "end": 670.88, + "probability": 0.764 + }, + { + "start": 671.96, + "end": 672.62, + "probability": 0.8959 + }, + { + "start": 672.66, + "end": 674.86, + "probability": 0.9941 + }, + { + "start": 675.74, + "end": 681.54, + "probability": 0.989 + }, + { + "start": 682.26, + "end": 683.34, + "probability": 0.8035 + }, + { + "start": 683.74, + "end": 684.52, + "probability": 0.8714 + }, + { + "start": 685.02, + "end": 686.46, + "probability": 0.98 + }, + { + "start": 686.68, + "end": 688.1, + "probability": 0.8901 + }, + { + "start": 688.76, + "end": 691.26, + "probability": 0.9945 + }, + { + "start": 691.26, + "end": 693.98, + "probability": 0.9917 + }, + { + "start": 694.82, + "end": 696.16, + "probability": 0.7815 + }, + { + "start": 696.54, + "end": 696.62, + "probability": 0.4802 + }, + { + "start": 696.72, + "end": 699.06, + "probability": 0.9721 + }, + { + "start": 699.92, + "end": 701.74, + "probability": 0.9754 + }, + { + "start": 702.44, + "end": 706.44, + "probability": 0.9391 + }, + { + "start": 707.26, + "end": 707.92, + "probability": 0.5268 + }, + { + "start": 707.98, + "end": 708.73, + "probability": 0.8837 + }, + { + "start": 709.42, + "end": 710.84, + "probability": 0.978 + }, + { + "start": 711.52, + "end": 713.5, + "probability": 0.8807 + }, + { + "start": 713.9, + "end": 718.28, + "probability": 0.8488 + }, + { + "start": 720.04, + "end": 723.62, + "probability": 0.9773 + }, + { + "start": 724.14, + "end": 728.96, + "probability": 0.9821 + }, + { + "start": 729.52, + "end": 733.74, + "probability": 0.9741 + }, + { + "start": 733.74, + "end": 737.48, + "probability": 0.7322 + }, + { + "start": 738.32, + "end": 739.78, + "probability": 0.9854 + }, + { + "start": 740.32, + "end": 741.58, + "probability": 0.6464 + }, + { + "start": 742.14, + "end": 743.04, + "probability": 0.9077 + }, + { + "start": 743.1, + "end": 746.82, + "probability": 0.972 + }, + { + "start": 747.42, + "end": 748.32, + "probability": 0.9847 + }, + { + "start": 748.94, + "end": 749.6, + "probability": 0.9146 + }, + { + "start": 749.74, + "end": 749.82, + "probability": 0.8776 + }, + { + "start": 750.02, + "end": 755.16, + "probability": 0.9821 + }, + { + "start": 756.46, + "end": 758.4, + "probability": 0.9958 + }, + { + "start": 758.78, + "end": 762.68, + "probability": 0.9834 + }, + { + "start": 763.3, + "end": 767.46, + "probability": 0.9971 + }, + { + "start": 767.74, + "end": 768.56, + "probability": 0.9636 + }, + { + "start": 768.74, + "end": 768.96, + "probability": 0.5039 + }, + { + "start": 770.2, + "end": 772.26, + "probability": 0.9709 + }, + { + "start": 772.36, + "end": 774.62, + "probability": 0.8691 + }, + { + "start": 775.38, + "end": 777.2, + "probability": 0.9598 + }, + { + "start": 778.08, + "end": 779.06, + "probability": 0.8558 + }, + { + "start": 779.22, + "end": 780.14, + "probability": 0.8252 + }, + { + "start": 780.36, + "end": 781.46, + "probability": 0.9982 + }, + { + "start": 782.14, + "end": 784.34, + "probability": 0.5309 + }, + { + "start": 785.18, + "end": 787.74, + "probability": 0.7105 + }, + { + "start": 787.74, + "end": 791.1, + "probability": 0.8861 + }, + { + "start": 791.94, + "end": 793.6, + "probability": 0.6135 + }, + { + "start": 794.64, + "end": 796.54, + "probability": 0.9784 + }, + { + "start": 796.66, + "end": 799.5, + "probability": 0.7496 + }, + { + "start": 800.12, + "end": 802.92, + "probability": 0.9759 + }, + { + "start": 803.62, + "end": 807.94, + "probability": 0.9257 + }, + { + "start": 808.42, + "end": 811.72, + "probability": 0.9863 + }, + { + "start": 812.48, + "end": 815.86, + "probability": 0.9885 + }, + { + "start": 815.86, + "end": 819.18, + "probability": 0.8899 + }, + { + "start": 819.82, + "end": 821.14, + "probability": 0.7389 + }, + { + "start": 822.02, + "end": 827.25, + "probability": 0.8809 + }, + { + "start": 827.92, + "end": 829.58, + "probability": 0.5949 + }, + { + "start": 830.18, + "end": 832.49, + "probability": 0.861 + }, + { + "start": 833.94, + "end": 835.34, + "probability": 0.8626 + }, + { + "start": 835.4, + "end": 836.22, + "probability": 0.6777 + }, + { + "start": 836.24, + "end": 837.12, + "probability": 0.9845 + }, + { + "start": 837.92, + "end": 840.64, + "probability": 0.9016 + }, + { + "start": 841.38, + "end": 842.4, + "probability": 0.8241 + }, + { + "start": 842.94, + "end": 845.06, + "probability": 0.9438 + }, + { + "start": 845.52, + "end": 848.26, + "probability": 0.8757 + }, + { + "start": 848.68, + "end": 849.52, + "probability": 0.8042 + }, + { + "start": 849.56, + "end": 851.72, + "probability": 0.9051 + }, + { + "start": 852.1, + "end": 854.38, + "probability": 0.5867 + }, + { + "start": 854.44, + "end": 856.76, + "probability": 0.8865 + }, + { + "start": 857.08, + "end": 857.3, + "probability": 0.785 + }, + { + "start": 858.92, + "end": 860.58, + "probability": 0.7473 + }, + { + "start": 860.68, + "end": 862.12, + "probability": 0.8733 + }, + { + "start": 862.14, + "end": 862.88, + "probability": 0.6157 + }, + { + "start": 863.04, + "end": 864.0, + "probability": 0.9745 + }, + { + "start": 872.06, + "end": 878.24, + "probability": 0.8372 + }, + { + "start": 879.04, + "end": 880.26, + "probability": 0.6651 + }, + { + "start": 880.42, + "end": 881.26, + "probability": 0.6478 + }, + { + "start": 881.34, + "end": 882.18, + "probability": 0.9047 + }, + { + "start": 882.24, + "end": 883.57, + "probability": 0.8408 + }, + { + "start": 884.96, + "end": 886.62, + "probability": 0.9005 + }, + { + "start": 887.95, + "end": 894.4, + "probability": 0.7219 + }, + { + "start": 899.1, + "end": 899.76, + "probability": 0.1682 + }, + { + "start": 901.8, + "end": 908.38, + "probability": 0.6334 + }, + { + "start": 908.94, + "end": 913.08, + "probability": 0.9716 + }, + { + "start": 913.08, + "end": 916.26, + "probability": 0.9916 + }, + { + "start": 917.38, + "end": 921.76, + "probability": 0.7869 + }, + { + "start": 922.52, + "end": 925.68, + "probability": 0.9622 + }, + { + "start": 926.26, + "end": 928.62, + "probability": 0.5867 + }, + { + "start": 928.66, + "end": 930.52, + "probability": 0.6979 + }, + { + "start": 930.62, + "end": 932.76, + "probability": 0.9789 + }, + { + "start": 933.34, + "end": 937.17, + "probability": 0.9883 + }, + { + "start": 937.48, + "end": 938.94, + "probability": 0.8767 + }, + { + "start": 939.56, + "end": 940.38, + "probability": 0.8335 + }, + { + "start": 941.02, + "end": 943.24, + "probability": 0.7949 + }, + { + "start": 944.06, + "end": 947.96, + "probability": 0.8535 + }, + { + "start": 948.44, + "end": 948.62, + "probability": 0.8182 + }, + { + "start": 949.78, + "end": 951.94, + "probability": 0.7763 + }, + { + "start": 953.36, + "end": 956.46, + "probability": 0.6129 + }, + { + "start": 957.35, + "end": 961.78, + "probability": 0.9623 + }, + { + "start": 962.28, + "end": 965.02, + "probability": 0.6 + }, + { + "start": 965.76, + "end": 967.64, + "probability": 0.6324 + }, + { + "start": 968.76, + "end": 970.18, + "probability": 0.6322 + }, + { + "start": 971.2, + "end": 975.8, + "probability": 0.9373 + }, + { + "start": 975.86, + "end": 977.24, + "probability": 0.9678 + }, + { + "start": 977.52, + "end": 978.82, + "probability": 0.8615 + }, + { + "start": 980.24, + "end": 983.26, + "probability": 0.8401 + }, + { + "start": 984.0, + "end": 987.02, + "probability": 0.9703 + }, + { + "start": 987.02, + "end": 991.32, + "probability": 0.8354 + }, + { + "start": 991.9, + "end": 993.78, + "probability": 0.9286 + }, + { + "start": 994.5, + "end": 996.54, + "probability": 0.8744 + }, + { + "start": 997.12, + "end": 998.96, + "probability": 0.99 + }, + { + "start": 999.02, + "end": 999.78, + "probability": 0.9299 + }, + { + "start": 1000.28, + "end": 1004.86, + "probability": 0.9203 + }, + { + "start": 1004.92, + "end": 1006.48, + "probability": 0.9173 + }, + { + "start": 1007.64, + "end": 1010.3, + "probability": 0.9775 + }, + { + "start": 1010.3, + "end": 1012.66, + "probability": 0.8475 + }, + { + "start": 1012.7, + "end": 1014.72, + "probability": 0.9409 + }, + { + "start": 1014.8, + "end": 1017.48, + "probability": 0.9751 + }, + { + "start": 1019.0, + "end": 1021.86, + "probability": 0.9685 + }, + { + "start": 1021.92, + "end": 1024.7, + "probability": 0.7161 + }, + { + "start": 1026.36, + "end": 1029.42, + "probability": 0.9922 + }, + { + "start": 1029.84, + "end": 1030.72, + "probability": 0.8306 + }, + { + "start": 1031.28, + "end": 1035.86, + "probability": 0.9178 + }, + { + "start": 1036.14, + "end": 1036.5, + "probability": 0.4908 + }, + { + "start": 1036.62, + "end": 1037.86, + "probability": 0.8233 + }, + { + "start": 1038.24, + "end": 1040.88, + "probability": 0.693 + }, + { + "start": 1040.88, + "end": 1043.76, + "probability": 0.9475 + }, + { + "start": 1044.18, + "end": 1045.8, + "probability": 0.9118 + }, + { + "start": 1046.62, + "end": 1049.68, + "probability": 0.9764 + }, + { + "start": 1049.78, + "end": 1051.65, + "probability": 0.7842 + }, + { + "start": 1052.44, + "end": 1053.34, + "probability": 0.7439 + }, + { + "start": 1053.96, + "end": 1056.7, + "probability": 0.9003 + }, + { + "start": 1057.0, + "end": 1058.7, + "probability": 0.9818 + }, + { + "start": 1058.88, + "end": 1060.44, + "probability": 0.9214 + }, + { + "start": 1060.86, + "end": 1063.5, + "probability": 0.9466 + }, + { + "start": 1063.82, + "end": 1065.77, + "probability": 0.8035 + }, + { + "start": 1066.04, + "end": 1066.26, + "probability": 0.829 + }, + { + "start": 1068.74, + "end": 1070.88, + "probability": 0.8432 + }, + { + "start": 1071.74, + "end": 1074.6, + "probability": 0.9516 + }, + { + "start": 1074.6, + "end": 1075.3, + "probability": 0.8189 + }, + { + "start": 1075.96, + "end": 1077.34, + "probability": 0.7256 + }, + { + "start": 1077.7, + "end": 1078.84, + "probability": 0.8863 + }, + { + "start": 1078.94, + "end": 1079.5, + "probability": 0.8926 + }, + { + "start": 1080.06, + "end": 1083.04, + "probability": 0.9666 + }, + { + "start": 1083.14, + "end": 1083.71, + "probability": 0.6904 + }, + { + "start": 1084.68, + "end": 1086.22, + "probability": 0.8952 + }, + { + "start": 1087.06, + "end": 1090.48, + "probability": 0.6256 + }, + { + "start": 1091.48, + "end": 1094.98, + "probability": 0.891 + }, + { + "start": 1095.52, + "end": 1098.6, + "probability": 0.9073 + }, + { + "start": 1099.62, + "end": 1103.9, + "probability": 0.9961 + }, + { + "start": 1104.48, + "end": 1105.22, + "probability": 0.5779 + }, + { + "start": 1106.2, + "end": 1108.22, + "probability": 0.7768 + }, + { + "start": 1109.32, + "end": 1110.13, + "probability": 0.5894 + }, + { + "start": 1110.88, + "end": 1111.44, + "probability": 0.8452 + }, + { + "start": 1111.62, + "end": 1114.9, + "probability": 0.9482 + }, + { + "start": 1115.74, + "end": 1122.74, + "probability": 0.9024 + }, + { + "start": 1123.5, + "end": 1124.72, + "probability": 0.6085 + }, + { + "start": 1125.8, + "end": 1131.88, + "probability": 0.9727 + }, + { + "start": 1133.28, + "end": 1136.96, + "probability": 0.9531 + }, + { + "start": 1137.6, + "end": 1140.38, + "probability": 0.9887 + }, + { + "start": 1141.0, + "end": 1143.88, + "probability": 0.9539 + }, + { + "start": 1144.38, + "end": 1149.58, + "probability": 0.9974 + }, + { + "start": 1150.26, + "end": 1155.72, + "probability": 0.9867 + }, + { + "start": 1155.84, + "end": 1156.76, + "probability": 0.7427 + }, + { + "start": 1156.8, + "end": 1158.1, + "probability": 0.8298 + }, + { + "start": 1158.12, + "end": 1159.36, + "probability": 0.9597 + }, + { + "start": 1159.64, + "end": 1160.86, + "probability": 0.7554 + }, + { + "start": 1161.54, + "end": 1166.5, + "probability": 0.9755 + }, + { + "start": 1167.2, + "end": 1170.7, + "probability": 0.5536 + }, + { + "start": 1171.24, + "end": 1175.82, + "probability": 0.9602 + }, + { + "start": 1176.02, + "end": 1177.12, + "probability": 0.882 + }, + { + "start": 1177.72, + "end": 1179.86, + "probability": 0.957 + }, + { + "start": 1180.62, + "end": 1180.92, + "probability": 0.5054 + }, + { + "start": 1182.74, + "end": 1184.6, + "probability": 0.9643 + }, + { + "start": 1185.1, + "end": 1189.72, + "probability": 0.9903 + }, + { + "start": 1189.94, + "end": 1193.14, + "probability": 0.9892 + }, + { + "start": 1193.32, + "end": 1194.62, + "probability": 0.8857 + }, + { + "start": 1195.12, + "end": 1196.52, + "probability": 0.7544 + }, + { + "start": 1197.1, + "end": 1201.1, + "probability": 0.9927 + }, + { + "start": 1201.74, + "end": 1207.26, + "probability": 0.9889 + }, + { + "start": 1207.8, + "end": 1208.0, + "probability": 0.7259 + }, + { + "start": 1208.78, + "end": 1210.44, + "probability": 0.9561 + }, + { + "start": 1210.58, + "end": 1212.04, + "probability": 0.9814 + }, + { + "start": 1212.16, + "end": 1212.26, + "probability": 0.7243 + }, + { + "start": 1212.58, + "end": 1212.86, + "probability": 0.7289 + }, + { + "start": 1213.04, + "end": 1213.78, + "probability": 0.5491 + }, + { + "start": 1213.88, + "end": 1214.84, + "probability": 0.9171 + }, + { + "start": 1217.64, + "end": 1218.64, + "probability": 0.8314 + }, + { + "start": 1219.14, + "end": 1223.6, + "probability": 0.9865 + }, + { + "start": 1224.4, + "end": 1231.22, + "probability": 0.9855 + }, + { + "start": 1231.74, + "end": 1232.28, + "probability": 0.7054 + }, + { + "start": 1232.92, + "end": 1234.12, + "probability": 0.8766 + }, + { + "start": 1234.86, + "end": 1237.06, + "probability": 0.943 + }, + { + "start": 1238.34, + "end": 1243.98, + "probability": 0.9856 + }, + { + "start": 1245.92, + "end": 1250.06, + "probability": 0.9714 + }, + { + "start": 1250.18, + "end": 1251.58, + "probability": 0.9982 + }, + { + "start": 1251.68, + "end": 1252.4, + "probability": 0.9625 + }, + { + "start": 1252.5, + "end": 1253.24, + "probability": 0.9028 + }, + { + "start": 1253.3, + "end": 1256.02, + "probability": 0.9254 + }, + { + "start": 1256.54, + "end": 1258.68, + "probability": 0.9337 + }, + { + "start": 1259.24, + "end": 1262.66, + "probability": 0.9316 + }, + { + "start": 1263.7, + "end": 1265.78, + "probability": 0.8717 + }, + { + "start": 1266.54, + "end": 1268.06, + "probability": 0.8662 + }, + { + "start": 1268.44, + "end": 1270.88, + "probability": 0.9308 + }, + { + "start": 1270.92, + "end": 1271.44, + "probability": 0.8438 + }, + { + "start": 1271.48, + "end": 1278.94, + "probability": 0.9817 + }, + { + "start": 1279.6, + "end": 1281.02, + "probability": 0.9978 + }, + { + "start": 1282.55, + "end": 1286.0, + "probability": 0.9418 + }, + { + "start": 1286.8, + "end": 1290.34, + "probability": 0.8691 + }, + { + "start": 1291.3, + "end": 1293.32, + "probability": 0.9702 + }, + { + "start": 1294.34, + "end": 1299.44, + "probability": 0.8928 + }, + { + "start": 1300.16, + "end": 1306.8, + "probability": 0.9307 + }, + { + "start": 1307.34, + "end": 1309.78, + "probability": 0.9868 + }, + { + "start": 1309.94, + "end": 1310.52, + "probability": 0.3832 + }, + { + "start": 1310.96, + "end": 1314.42, + "probability": 0.9561 + }, + { + "start": 1314.54, + "end": 1315.9, + "probability": 0.8745 + }, + { + "start": 1316.64, + "end": 1317.28, + "probability": 0.9738 + }, + { + "start": 1318.2, + "end": 1320.76, + "probability": 0.6015 + }, + { + "start": 1321.38, + "end": 1323.12, + "probability": 0.8315 + }, + { + "start": 1323.54, + "end": 1324.41, + "probability": 0.9167 + }, + { + "start": 1324.98, + "end": 1326.68, + "probability": 0.8484 + }, + { + "start": 1327.18, + "end": 1329.0, + "probability": 0.9707 + }, + { + "start": 1329.4, + "end": 1332.94, + "probability": 0.8172 + }, + { + "start": 1333.44, + "end": 1333.62, + "probability": 0.728 + }, + { + "start": 1334.4, + "end": 1337.26, + "probability": 0.9193 + }, + { + "start": 1337.4, + "end": 1338.9, + "probability": 0.8468 + }, + { + "start": 1345.28, + "end": 1347.4, + "probability": 0.7254 + }, + { + "start": 1347.54, + "end": 1351.64, + "probability": 0.9946 + }, + { + "start": 1351.7, + "end": 1353.1, + "probability": 0.9828 + }, + { + "start": 1353.98, + "end": 1357.2, + "probability": 0.9956 + }, + { + "start": 1357.88, + "end": 1361.18, + "probability": 0.9567 + }, + { + "start": 1361.42, + "end": 1363.88, + "probability": 0.9952 + }, + { + "start": 1364.44, + "end": 1368.84, + "probability": 0.9669 + }, + { + "start": 1369.58, + "end": 1373.19, + "probability": 0.9937 + }, + { + "start": 1373.98, + "end": 1379.6, + "probability": 0.981 + }, + { + "start": 1379.72, + "end": 1381.16, + "probability": 0.9224 + }, + { + "start": 1381.78, + "end": 1385.0, + "probability": 0.9292 + }, + { + "start": 1385.76, + "end": 1391.62, + "probability": 0.9881 + }, + { + "start": 1392.74, + "end": 1399.7, + "probability": 0.9817 + }, + { + "start": 1400.38, + "end": 1402.68, + "probability": 0.9687 + }, + { + "start": 1402.84, + "end": 1404.4, + "probability": 0.9956 + }, + { + "start": 1404.48, + "end": 1407.32, + "probability": 0.9843 + }, + { + "start": 1407.34, + "end": 1410.2, + "probability": 0.9302 + }, + { + "start": 1411.36, + "end": 1412.42, + "probability": 0.7681 + }, + { + "start": 1412.58, + "end": 1413.02, + "probability": 0.6536 + }, + { + "start": 1413.2, + "end": 1415.52, + "probability": 0.9933 + }, + { + "start": 1415.58, + "end": 1417.18, + "probability": 0.9739 + }, + { + "start": 1417.3, + "end": 1418.5, + "probability": 0.8633 + }, + { + "start": 1419.12, + "end": 1421.28, + "probability": 0.9849 + }, + { + "start": 1421.84, + "end": 1425.59, + "probability": 0.9942 + }, + { + "start": 1425.84, + "end": 1431.1, + "probability": 0.9938 + }, + { + "start": 1431.2, + "end": 1433.96, + "probability": 0.9733 + }, + { + "start": 1434.62, + "end": 1437.3, + "probability": 0.9184 + }, + { + "start": 1437.82, + "end": 1438.6, + "probability": 0.6372 + }, + { + "start": 1438.7, + "end": 1441.22, + "probability": 0.8358 + }, + { + "start": 1441.28, + "end": 1444.36, + "probability": 0.9932 + }, + { + "start": 1445.34, + "end": 1447.28, + "probability": 0.9419 + }, + { + "start": 1447.88, + "end": 1451.88, + "probability": 0.7742 + }, + { + "start": 1452.46, + "end": 1455.5, + "probability": 0.9929 + }, + { + "start": 1455.7, + "end": 1458.6, + "probability": 0.9858 + }, + { + "start": 1459.28, + "end": 1463.48, + "probability": 0.9961 + }, + { + "start": 1463.78, + "end": 1464.06, + "probability": 0.7243 + }, + { + "start": 1465.04, + "end": 1467.18, + "probability": 0.7892 + }, + { + "start": 1467.9, + "end": 1470.26, + "probability": 0.8218 + }, + { + "start": 1472.62, + "end": 1473.24, + "probability": 0.943 + }, + { + "start": 1473.8, + "end": 1475.8, + "probability": 0.9385 + }, + { + "start": 1485.92, + "end": 1488.46, + "probability": 0.6647 + }, + { + "start": 1489.92, + "end": 1496.78, + "probability": 0.9854 + }, + { + "start": 1497.96, + "end": 1499.56, + "probability": 0.7506 + }, + { + "start": 1500.04, + "end": 1500.42, + "probability": 0.8679 + }, + { + "start": 1500.48, + "end": 1502.32, + "probability": 0.9944 + }, + { + "start": 1503.24, + "end": 1506.94, + "probability": 0.9933 + }, + { + "start": 1508.62, + "end": 1513.84, + "probability": 0.8687 + }, + { + "start": 1514.72, + "end": 1516.16, + "probability": 0.9929 + }, + { + "start": 1517.18, + "end": 1518.48, + "probability": 0.5679 + }, + { + "start": 1519.38, + "end": 1522.32, + "probability": 0.9424 + }, + { + "start": 1522.72, + "end": 1525.76, + "probability": 0.4634 + }, + { + "start": 1526.68, + "end": 1531.15, + "probability": 0.8808 + }, + { + "start": 1531.5, + "end": 1532.78, + "probability": 0.2634 + }, + { + "start": 1533.92, + "end": 1537.92, + "probability": 0.9088 + }, + { + "start": 1538.1, + "end": 1541.34, + "probability": 0.9803 + }, + { + "start": 1542.16, + "end": 1543.36, + "probability": 0.307 + }, + { + "start": 1543.92, + "end": 1545.7, + "probability": 0.98 + }, + { + "start": 1545.86, + "end": 1545.94, + "probability": 0.0069 + }, + { + "start": 1546.12, + "end": 1547.98, + "probability": 0.7698 + }, + { + "start": 1548.22, + "end": 1549.05, + "probability": 0.3532 + }, + { + "start": 1550.33, + "end": 1552.64, + "probability": 0.953 + }, + { + "start": 1553.6, + "end": 1554.84, + "probability": 0.9012 + }, + { + "start": 1556.04, + "end": 1556.98, + "probability": 0.9438 + }, + { + "start": 1557.78, + "end": 1562.42, + "probability": 0.9954 + }, + { + "start": 1562.54, + "end": 1564.7, + "probability": 0.9655 + }, + { + "start": 1565.74, + "end": 1566.36, + "probability": 0.5291 + }, + { + "start": 1566.64, + "end": 1567.92, + "probability": 0.9178 + }, + { + "start": 1567.98, + "end": 1571.46, + "probability": 0.9757 + }, + { + "start": 1572.1, + "end": 1572.46, + "probability": 0.8843 + }, + { + "start": 1573.3, + "end": 1580.62, + "probability": 0.8546 + }, + { + "start": 1581.48, + "end": 1582.42, + "probability": 0.9173 + }, + { + "start": 1583.42, + "end": 1585.56, + "probability": 0.9857 + }, + { + "start": 1588.16, + "end": 1590.94, + "probability": 0.9991 + }, + { + "start": 1591.12, + "end": 1594.42, + "probability": 0.8551 + }, + { + "start": 1595.1, + "end": 1596.8, + "probability": 0.9888 + }, + { + "start": 1596.86, + "end": 1598.8, + "probability": 0.9976 + }, + { + "start": 1600.04, + "end": 1604.18, + "probability": 0.9769 + }, + { + "start": 1604.56, + "end": 1604.66, + "probability": 0.0446 + }, + { + "start": 1604.94, + "end": 1605.14, + "probability": 0.8271 + }, + { + "start": 1605.68, + "end": 1608.62, + "probability": 0.9897 + }, + { + "start": 1609.14, + "end": 1611.08, + "probability": 0.8669 + }, + { + "start": 1611.7, + "end": 1612.92, + "probability": 0.9507 + }, + { + "start": 1613.46, + "end": 1614.98, + "probability": 0.9521 + }, + { + "start": 1615.1, + "end": 1615.24, + "probability": 0.8027 + }, + { + "start": 1616.72, + "end": 1619.06, + "probability": 0.8467 + }, + { + "start": 1619.36, + "end": 1621.84, + "probability": 0.9417 + }, + { + "start": 1621.94, + "end": 1625.36, + "probability": 0.8585 + }, + { + "start": 1625.88, + "end": 1627.18, + "probability": 0.851 + }, + { + "start": 1627.38, + "end": 1632.84, + "probability": 0.9388 + }, + { + "start": 1633.26, + "end": 1634.4, + "probability": 0.744 + }, + { + "start": 1636.84, + "end": 1638.74, + "probability": 0.9594 + }, + { + "start": 1664.4, + "end": 1665.44, + "probability": 0.6285 + }, + { + "start": 1665.62, + "end": 1666.46, + "probability": 0.8465 + }, + { + "start": 1666.64, + "end": 1669.36, + "probability": 0.9233 + }, + { + "start": 1672.96, + "end": 1677.92, + "probability": 0.9912 + }, + { + "start": 1679.0, + "end": 1680.96, + "probability": 0.7368 + }, + { + "start": 1681.6, + "end": 1683.83, + "probability": 0.7884 + }, + { + "start": 1684.94, + "end": 1686.3, + "probability": 0.7084 + }, + { + "start": 1687.86, + "end": 1688.16, + "probability": 0.3388 + }, + { + "start": 1688.22, + "end": 1691.92, + "probability": 0.9468 + }, + { + "start": 1692.38, + "end": 1694.24, + "probability": 0.8963 + }, + { + "start": 1694.82, + "end": 1696.8, + "probability": 0.9946 + }, + { + "start": 1696.92, + "end": 1698.06, + "probability": 0.9822 + }, + { + "start": 1698.66, + "end": 1699.56, + "probability": 0.971 + }, + { + "start": 1700.52, + "end": 1700.88, + "probability": 0.6468 + }, + { + "start": 1700.96, + "end": 1704.62, + "probability": 0.9783 + }, + { + "start": 1705.12, + "end": 1706.06, + "probability": 0.8271 + }, + { + "start": 1706.96, + "end": 1709.76, + "probability": 0.9694 + }, + { + "start": 1710.72, + "end": 1712.66, + "probability": 0.9622 + }, + { + "start": 1713.3, + "end": 1716.26, + "probability": 0.6668 + }, + { + "start": 1717.12, + "end": 1720.34, + "probability": 0.9702 + }, + { + "start": 1720.72, + "end": 1722.18, + "probability": 0.9705 + }, + { + "start": 1723.28, + "end": 1724.98, + "probability": 0.8214 + }, + { + "start": 1725.68, + "end": 1730.64, + "probability": 0.9246 + }, + { + "start": 1731.64, + "end": 1735.88, + "probability": 0.9553 + }, + { + "start": 1735.88, + "end": 1740.48, + "probability": 0.8879 + }, + { + "start": 1741.24, + "end": 1744.62, + "probability": 0.9943 + }, + { + "start": 1744.98, + "end": 1748.48, + "probability": 0.9263 + }, + { + "start": 1748.88, + "end": 1750.06, + "probability": 0.931 + }, + { + "start": 1751.22, + "end": 1753.3, + "probability": 0.8342 + }, + { + "start": 1754.24, + "end": 1756.62, + "probability": 0.9984 + }, + { + "start": 1756.62, + "end": 1760.26, + "probability": 0.9741 + }, + { + "start": 1761.04, + "end": 1762.96, + "probability": 0.9985 + }, + { + "start": 1762.96, + "end": 1766.0, + "probability": 0.9878 + }, + { + "start": 1766.42, + "end": 1769.22, + "probability": 0.968 + }, + { + "start": 1770.34, + "end": 1770.82, + "probability": 0.6724 + }, + { + "start": 1772.0, + "end": 1776.66, + "probability": 0.9653 + }, + { + "start": 1776.96, + "end": 1781.34, + "probability": 0.9702 + }, + { + "start": 1781.34, + "end": 1786.52, + "probability": 0.9957 + }, + { + "start": 1787.6, + "end": 1791.76, + "probability": 0.9977 + }, + { + "start": 1792.3, + "end": 1793.0, + "probability": 0.8008 + }, + { + "start": 1794.2, + "end": 1794.44, + "probability": 0.6317 + }, + { + "start": 1794.72, + "end": 1795.94, + "probability": 0.5114 + }, + { + "start": 1796.2, + "end": 1797.3, + "probability": 0.7683 + }, + { + "start": 1798.86, + "end": 1801.28, + "probability": 0.6556 + }, + { + "start": 1802.52, + "end": 1805.68, + "probability": 0.8789 + }, + { + "start": 1807.58, + "end": 1807.98, + "probability": 0.7834 + }, + { + "start": 1808.14, + "end": 1813.24, + "probability": 0.9867 + }, + { + "start": 1813.24, + "end": 1817.7, + "probability": 0.9221 + }, + { + "start": 1819.18, + "end": 1821.4, + "probability": 0.9923 + }, + { + "start": 1821.4, + "end": 1824.93, + "probability": 0.6491 + }, + { + "start": 1826.26, + "end": 1828.64, + "probability": 0.7977 + }, + { + "start": 1829.92, + "end": 1832.8, + "probability": 0.9954 + }, + { + "start": 1832.8, + "end": 1835.7, + "probability": 0.995 + }, + { + "start": 1836.6, + "end": 1837.08, + "probability": 0.7789 + }, + { + "start": 1837.14, + "end": 1837.42, + "probability": 0.9872 + }, + { + "start": 1837.5, + "end": 1838.38, + "probability": 0.798 + }, + { + "start": 1838.5, + "end": 1842.52, + "probability": 0.9979 + }, + { + "start": 1843.4, + "end": 1845.8, + "probability": 0.8393 + }, + { + "start": 1846.68, + "end": 1847.24, + "probability": 0.742 + }, + { + "start": 1848.26, + "end": 1853.06, + "probability": 0.2295 + }, + { + "start": 1854.32, + "end": 1855.34, + "probability": 0.1944 + }, + { + "start": 1856.22, + "end": 1859.24, + "probability": 0.9312 + }, + { + "start": 1859.24, + "end": 1863.5, + "probability": 0.9747 + }, + { + "start": 1865.72, + "end": 1867.0, + "probability": 0.6732 + }, + { + "start": 1867.18, + "end": 1870.02, + "probability": 0.9552 + }, + { + "start": 1870.02, + "end": 1872.54, + "probability": 0.9623 + }, + { + "start": 1874.18, + "end": 1876.86, + "probability": 0.8195 + }, + { + "start": 1877.56, + "end": 1879.96, + "probability": 0.9868 + }, + { + "start": 1879.96, + "end": 1882.05, + "probability": 0.7165 + }, + { + "start": 1883.04, + "end": 1885.52, + "probability": 0.9664 + }, + { + "start": 1886.22, + "end": 1889.92, + "probability": 0.9113 + }, + { + "start": 1890.46, + "end": 1891.4, + "probability": 0.2608 + }, + { + "start": 1891.5, + "end": 1892.22, + "probability": 0.6775 + }, + { + "start": 1892.64, + "end": 1894.26, + "probability": 0.9398 + }, + { + "start": 1895.4, + "end": 1900.34, + "probability": 0.9066 + }, + { + "start": 1900.4, + "end": 1902.4, + "probability": 0.9164 + }, + { + "start": 1903.14, + "end": 1905.56, + "probability": 0.9957 + }, + { + "start": 1905.56, + "end": 1908.88, + "probability": 0.9988 + }, + { + "start": 1909.32, + "end": 1912.48, + "probability": 0.7515 + }, + { + "start": 1913.26, + "end": 1914.24, + "probability": 0.608 + }, + { + "start": 1914.74, + "end": 1917.42, + "probability": 0.8776 + }, + { + "start": 1917.86, + "end": 1921.08, + "probability": 0.7998 + }, + { + "start": 1922.32, + "end": 1926.32, + "probability": 0.7307 + }, + { + "start": 1927.0, + "end": 1932.96, + "probability": 0.8021 + }, + { + "start": 1933.61, + "end": 1938.16, + "probability": 0.7413 + }, + { + "start": 1938.84, + "end": 1943.34, + "probability": 0.686 + }, + { + "start": 1943.94, + "end": 1947.72, + "probability": 0.9599 + }, + { + "start": 1947.92, + "end": 1950.54, + "probability": 0.7854 + }, + { + "start": 1951.26, + "end": 1954.6, + "probability": 0.9888 + }, + { + "start": 1955.16, + "end": 1956.32, + "probability": 0.7787 + }, + { + "start": 1957.0, + "end": 1962.3, + "probability": 0.95 + }, + { + "start": 1963.6, + "end": 1965.36, + "probability": 0.8219 + }, + { + "start": 1966.16, + "end": 1966.34, + "probability": 0.5281 + }, + { + "start": 1966.42, + "end": 1970.44, + "probability": 0.9779 + }, + { + "start": 1970.54, + "end": 1973.88, + "probability": 0.974 + }, + { + "start": 1973.88, + "end": 1976.52, + "probability": 0.8999 + }, + { + "start": 1976.58, + "end": 1979.76, + "probability": 0.7944 + }, + { + "start": 1980.64, + "end": 1981.54, + "probability": 0.84 + }, + { + "start": 1981.8, + "end": 1983.48, + "probability": 0.9773 + }, + { + "start": 1983.52, + "end": 1984.04, + "probability": 0.5637 + }, + { + "start": 1985.16, + "end": 1990.48, + "probability": 0.812 + }, + { + "start": 1990.48, + "end": 1995.74, + "probability": 0.99 + }, + { + "start": 1996.04, + "end": 1996.58, + "probability": 0.4375 + }, + { + "start": 1997.12, + "end": 1997.44, + "probability": 0.8585 + }, + { + "start": 1997.5, + "end": 1998.16, + "probability": 0.7285 + }, + { + "start": 1998.42, + "end": 1999.12, + "probability": 0.647 + }, + { + "start": 1999.12, + "end": 1999.38, + "probability": 0.8834 + }, + { + "start": 1999.64, + "end": 2001.83, + "probability": 0.5978 + }, + { + "start": 2002.4, + "end": 2005.32, + "probability": 0.0572 + }, + { + "start": 2005.32, + "end": 2005.32, + "probability": 0.0664 + }, + { + "start": 2005.32, + "end": 2006.18, + "probability": 0.6775 + }, + { + "start": 2007.74, + "end": 2008.08, + "probability": 0.5675 + }, + { + "start": 2008.12, + "end": 2008.66, + "probability": 0.8566 + }, + { + "start": 2008.86, + "end": 2011.8, + "probability": 0.9723 + }, + { + "start": 2011.8, + "end": 2013.9, + "probability": 0.8087 + }, + { + "start": 2014.0, + "end": 2015.33, + "probability": 0.739 + }, + { + "start": 2015.52, + "end": 2018.88, + "probability": 0.6504 + }, + { + "start": 2019.04, + "end": 2023.22, + "probability": 0.7861 + }, + { + "start": 2024.05, + "end": 2026.82, + "probability": 0.6695 + }, + { + "start": 2026.82, + "end": 2029.47, + "probability": 0.8326 + }, + { + "start": 2030.34, + "end": 2031.46, + "probability": 0.9244 + }, + { + "start": 2031.54, + "end": 2032.54, + "probability": 0.9604 + }, + { + "start": 2032.86, + "end": 2034.68, + "probability": 0.837 + }, + { + "start": 2034.84, + "end": 2036.12, + "probability": 0.9581 + }, + { + "start": 2036.12, + "end": 2037.04, + "probability": 0.9231 + }, + { + "start": 2037.12, + "end": 2040.76, + "probability": 0.9054 + }, + { + "start": 2040.98, + "end": 2044.58, + "probability": 0.9893 + }, + { + "start": 2044.66, + "end": 2045.08, + "probability": 0.5831 + }, + { + "start": 2045.52, + "end": 2047.18, + "probability": 0.7604 + }, + { + "start": 2047.3, + "end": 2048.42, + "probability": 0.5892 + }, + { + "start": 2048.64, + "end": 2052.54, + "probability": 0.8882 + }, + { + "start": 2053.2, + "end": 2055.5, + "probability": 0.5529 + }, + { + "start": 2055.52, + "end": 2056.1, + "probability": 0.6241 + }, + { + "start": 2056.2, + "end": 2057.62, + "probability": 0.8742 + }, + { + "start": 2058.42, + "end": 2059.69, + "probability": 0.7158 + }, + { + "start": 2060.7, + "end": 2065.0, + "probability": 0.6396 + }, + { + "start": 2065.82, + "end": 2070.1, + "probability": 0.9217 + }, + { + "start": 2070.2, + "end": 2071.08, + "probability": 0.9761 + }, + { + "start": 2071.26, + "end": 2071.6, + "probability": 0.9399 + }, + { + "start": 2072.72, + "end": 2073.12, + "probability": 0.4999 + }, + { + "start": 2073.12, + "end": 2073.98, + "probability": 0.3731 + }, + { + "start": 2074.62, + "end": 2076.46, + "probability": 0.4464 + }, + { + "start": 2076.72, + "end": 2077.88, + "probability": 0.8549 + }, + { + "start": 2077.92, + "end": 2079.06, + "probability": 0.9686 + }, + { + "start": 2080.64, + "end": 2082.5, + "probability": 0.64 + }, + { + "start": 2082.74, + "end": 2085.54, + "probability": 0.9852 + }, + { + "start": 2085.62, + "end": 2086.2, + "probability": 0.5953 + }, + { + "start": 2090.3, + "end": 2092.04, + "probability": 0.7264 + }, + { + "start": 2093.38, + "end": 2093.92, + "probability": 0.2737 + }, + { + "start": 2094.64, + "end": 2098.22, + "probability": 0.8753 + }, + { + "start": 2098.22, + "end": 2101.94, + "probability": 0.9946 + }, + { + "start": 2102.94, + "end": 2106.88, + "probability": 0.9434 + }, + { + "start": 2107.86, + "end": 2111.52, + "probability": 0.8123 + }, + { + "start": 2111.52, + "end": 2114.72, + "probability": 0.7755 + }, + { + "start": 2115.28, + "end": 2117.02, + "probability": 0.9945 + }, + { + "start": 2118.28, + "end": 2122.9, + "probability": 0.9954 + }, + { + "start": 2122.9, + "end": 2127.44, + "probability": 0.9566 + }, + { + "start": 2128.02, + "end": 2131.98, + "probability": 0.9831 + }, + { + "start": 2132.0, + "end": 2135.02, + "probability": 0.9937 + }, + { + "start": 2135.46, + "end": 2137.28, + "probability": 0.6504 + }, + { + "start": 2137.54, + "end": 2138.52, + "probability": 0.9149 + }, + { + "start": 2138.92, + "end": 2139.98, + "probability": 0.696 + }, + { + "start": 2140.22, + "end": 2141.56, + "probability": 0.6939 + }, + { + "start": 2141.94, + "end": 2147.56, + "probability": 0.8788 + }, + { + "start": 2148.44, + "end": 2152.28, + "probability": 0.9748 + }, + { + "start": 2153.72, + "end": 2156.16, + "probability": 0.9975 + }, + { + "start": 2156.16, + "end": 2160.42, + "probability": 0.9932 + }, + { + "start": 2161.34, + "end": 2164.02, + "probability": 0.7201 + }, + { + "start": 2164.66, + "end": 2166.36, + "probability": 0.6975 + }, + { + "start": 2168.0, + "end": 2172.74, + "probability": 0.9822 + }, + { + "start": 2173.62, + "end": 2177.53, + "probability": 0.9041 + }, + { + "start": 2177.82, + "end": 2183.04, + "probability": 0.8591 + }, + { + "start": 2183.3, + "end": 2188.7, + "probability": 0.9209 + }, + { + "start": 2189.18, + "end": 2189.82, + "probability": 0.7302 + }, + { + "start": 2189.92, + "end": 2190.1, + "probability": 0.9668 + }, + { + "start": 2191.4, + "end": 2193.7, + "probability": 0.6663 + }, + { + "start": 2194.88, + "end": 2195.56, + "probability": 0.5315 + }, + { + "start": 2195.66, + "end": 2198.44, + "probability": 0.7515 + }, + { + "start": 2198.46, + "end": 2198.92, + "probability": 0.811 + }, + { + "start": 2198.98, + "end": 2203.6, + "probability": 0.812 + }, + { + "start": 2203.62, + "end": 2206.92, + "probability": 0.733 + }, + { + "start": 2207.46, + "end": 2208.78, + "probability": 0.9646 + }, + { + "start": 2208.84, + "end": 2212.32, + "probability": 0.9951 + }, + { + "start": 2212.32, + "end": 2215.44, + "probability": 0.9495 + }, + { + "start": 2217.04, + "end": 2219.84, + "probability": 0.9246 + }, + { + "start": 2220.18, + "end": 2224.04, + "probability": 0.8296 + }, + { + "start": 2224.04, + "end": 2227.44, + "probability": 0.8101 + }, + { + "start": 2227.8, + "end": 2229.94, + "probability": 0.8135 + }, + { + "start": 2230.34, + "end": 2230.92, + "probability": 0.7582 + }, + { + "start": 2231.44, + "end": 2235.1, + "probability": 0.9711 + }, + { + "start": 2236.12, + "end": 2240.2, + "probability": 0.8222 + }, + { + "start": 2240.72, + "end": 2242.64, + "probability": 0.9741 + }, + { + "start": 2244.16, + "end": 2247.66, + "probability": 0.9846 + }, + { + "start": 2247.66, + "end": 2251.56, + "probability": 0.8972 + }, + { + "start": 2251.64, + "end": 2256.94, + "probability": 0.9269 + }, + { + "start": 2258.36, + "end": 2260.78, + "probability": 0.7735 + }, + { + "start": 2261.14, + "end": 2261.84, + "probability": 0.7354 + }, + { + "start": 2263.16, + "end": 2268.24, + "probability": 0.9371 + }, + { + "start": 2268.74, + "end": 2270.26, + "probability": 0.6201 + }, + { + "start": 2271.08, + "end": 2274.5, + "probability": 0.998 + }, + { + "start": 2275.5, + "end": 2279.82, + "probability": 0.7958 + }, + { + "start": 2280.48, + "end": 2282.18, + "probability": 0.9917 + }, + { + "start": 2284.02, + "end": 2287.88, + "probability": 0.988 + }, + { + "start": 2288.0, + "end": 2288.74, + "probability": 0.9147 + }, + { + "start": 2288.86, + "end": 2289.56, + "probability": 0.6604 + }, + { + "start": 2289.7, + "end": 2292.16, + "probability": 0.8154 + }, + { + "start": 2292.76, + "end": 2295.6, + "probability": 0.8349 + }, + { + "start": 2296.42, + "end": 2299.96, + "probability": 0.9917 + }, + { + "start": 2300.54, + "end": 2302.74, + "probability": 0.9314 + }, + { + "start": 2304.93, + "end": 2308.22, + "probability": 0.9779 + }, + { + "start": 2308.54, + "end": 2313.38, + "probability": 0.895 + }, + { + "start": 2313.9, + "end": 2316.24, + "probability": 0.9917 + }, + { + "start": 2316.98, + "end": 2320.24, + "probability": 0.8103 + }, + { + "start": 2320.84, + "end": 2323.42, + "probability": 0.4598 + }, + { + "start": 2323.56, + "end": 2326.46, + "probability": 0.794 + }, + { + "start": 2327.2, + "end": 2332.88, + "probability": 0.6666 + }, + { + "start": 2333.5, + "end": 2335.96, + "probability": 0.6662 + }, + { + "start": 2336.04, + "end": 2336.56, + "probability": 0.5164 + }, + { + "start": 2336.66, + "end": 2338.38, + "probability": 0.874 + }, + { + "start": 2339.06, + "end": 2339.48, + "probability": 0.8208 + }, + { + "start": 2339.62, + "end": 2343.48, + "probability": 0.9313 + }, + { + "start": 2343.48, + "end": 2347.38, + "probability": 0.9956 + }, + { + "start": 2347.92, + "end": 2350.52, + "probability": 0.8958 + }, + { + "start": 2351.26, + "end": 2353.9, + "probability": 0.8584 + }, + { + "start": 2354.12, + "end": 2356.55, + "probability": 0.8492 + }, + { + "start": 2357.22, + "end": 2358.73, + "probability": 0.6945 + }, + { + "start": 2359.14, + "end": 2360.74, + "probability": 0.9517 + }, + { + "start": 2361.34, + "end": 2363.2, + "probability": 0.5643 + }, + { + "start": 2363.32, + "end": 2367.4, + "probability": 0.9395 + }, + { + "start": 2367.64, + "end": 2367.86, + "probability": 0.7343 + }, + { + "start": 2368.86, + "end": 2369.2, + "probability": 0.5495 + }, + { + "start": 2369.42, + "end": 2371.94, + "probability": 0.919 + }, + { + "start": 2374.38, + "end": 2375.95, + "probability": 0.6503 + }, + { + "start": 2376.62, + "end": 2381.9, + "probability": 0.9915 + }, + { + "start": 2382.46, + "end": 2383.7, + "probability": 0.9626 + }, + { + "start": 2384.34, + "end": 2385.54, + "probability": 0.8949 + }, + { + "start": 2385.7, + "end": 2389.3, + "probability": 0.9618 + }, + { + "start": 2389.3, + "end": 2392.66, + "probability": 0.9966 + }, + { + "start": 2393.26, + "end": 2397.18, + "probability": 0.9991 + }, + { + "start": 2397.88, + "end": 2399.16, + "probability": 0.9046 + }, + { + "start": 2399.26, + "end": 2399.82, + "probability": 0.8697 + }, + { + "start": 2400.3, + "end": 2402.44, + "probability": 0.9214 + }, + { + "start": 2402.52, + "end": 2402.96, + "probability": 0.6885 + }, + { + "start": 2403.02, + "end": 2406.8, + "probability": 0.9588 + }, + { + "start": 2406.8, + "end": 2410.44, + "probability": 0.9347 + }, + { + "start": 2410.84, + "end": 2412.58, + "probability": 0.9867 + }, + { + "start": 2413.34, + "end": 2416.18, + "probability": 0.9888 + }, + { + "start": 2416.18, + "end": 2419.68, + "probability": 0.9727 + }, + { + "start": 2419.78, + "end": 2424.26, + "probability": 0.8887 + }, + { + "start": 2424.4, + "end": 2426.52, + "probability": 0.9429 + }, + { + "start": 2426.8, + "end": 2429.5, + "probability": 0.9417 + }, + { + "start": 2429.6, + "end": 2431.34, + "probability": 0.6536 + }, + { + "start": 2431.66, + "end": 2431.68, + "probability": 0.9028 + }, + { + "start": 2432.56, + "end": 2432.68, + "probability": 0.1003 + }, + { + "start": 2432.68, + "end": 2436.8, + "probability": 0.8496 + }, + { + "start": 2436.96, + "end": 2439.62, + "probability": 0.9448 + }, + { + "start": 2439.86, + "end": 2442.16, + "probability": 0.8991 + }, + { + "start": 2442.52, + "end": 2442.66, + "probability": 0.4343 + }, + { + "start": 2442.76, + "end": 2444.14, + "probability": 0.6654 + }, + { + "start": 2444.22, + "end": 2445.41, + "probability": 0.6745 + }, + { + "start": 2447.36, + "end": 2447.62, + "probability": 0.0635 + }, + { + "start": 2447.62, + "end": 2449.86, + "probability": 0.8304 + }, + { + "start": 2449.94, + "end": 2450.4, + "probability": 0.7974 + }, + { + "start": 2450.92, + "end": 2453.76, + "probability": 0.986 + }, + { + "start": 2454.1, + "end": 2458.74, + "probability": 0.9574 + }, + { + "start": 2458.78, + "end": 2461.04, + "probability": 0.9972 + }, + { + "start": 2461.5, + "end": 2463.36, + "probability": 0.9058 + }, + { + "start": 2463.84, + "end": 2464.74, + "probability": 0.7634 + }, + { + "start": 2465.44, + "end": 2468.08, + "probability": 0.981 + }, + { + "start": 2469.74, + "end": 2472.64, + "probability": 0.9485 + }, + { + "start": 2473.68, + "end": 2477.66, + "probability": 0.762 + }, + { + "start": 2477.98, + "end": 2478.78, + "probability": 0.8603 + }, + { + "start": 2479.38, + "end": 2481.44, + "probability": 0.963 + }, + { + "start": 2481.72, + "end": 2482.44, + "probability": 0.7637 + }, + { + "start": 2482.46, + "end": 2483.04, + "probability": 0.9897 + }, + { + "start": 2483.1, + "end": 2485.76, + "probability": 0.9606 + }, + { + "start": 2486.46, + "end": 2490.86, + "probability": 0.9619 + }, + { + "start": 2491.68, + "end": 2496.94, + "probability": 0.9688 + }, + { + "start": 2497.5, + "end": 2500.74, + "probability": 0.9222 + }, + { + "start": 2500.74, + "end": 2503.66, + "probability": 0.9414 + }, + { + "start": 2504.58, + "end": 2508.32, + "probability": 0.9515 + }, + { + "start": 2508.32, + "end": 2514.46, + "probability": 0.9835 + }, + { + "start": 2515.1, + "end": 2516.34, + "probability": 0.7249 + }, + { + "start": 2516.54, + "end": 2519.8, + "probability": 0.6209 + }, + { + "start": 2520.7, + "end": 2525.6, + "probability": 0.9674 + }, + { + "start": 2526.26, + "end": 2529.48, + "probability": 0.7631 + }, + { + "start": 2530.1, + "end": 2537.5, + "probability": 0.9632 + }, + { + "start": 2538.16, + "end": 2540.5, + "probability": 0.7991 + }, + { + "start": 2541.1, + "end": 2545.26, + "probability": 0.9968 + }, + { + "start": 2545.72, + "end": 2549.38, + "probability": 0.8783 + }, + { + "start": 2551.0, + "end": 2551.8, + "probability": 0.6916 + }, + { + "start": 2552.46, + "end": 2553.34, + "probability": 0.8088 + }, + { + "start": 2553.44, + "end": 2554.66, + "probability": 0.7793 + }, + { + "start": 2554.78, + "end": 2557.32, + "probability": 0.9224 + }, + { + "start": 2557.44, + "end": 2559.0, + "probability": 0.6543 + }, + { + "start": 2559.22, + "end": 2560.02, + "probability": 0.9945 + }, + { + "start": 2560.7, + "end": 2564.06, + "probability": 0.664 + }, + { + "start": 2564.14, + "end": 2566.46, + "probability": 0.959 + }, + { + "start": 2566.6, + "end": 2567.73, + "probability": 0.9313 + }, + { + "start": 2568.08, + "end": 2568.8, + "probability": 0.6796 + }, + { + "start": 2568.8, + "end": 2570.56, + "probability": 0.4941 + }, + { + "start": 2570.64, + "end": 2572.32, + "probability": 0.8982 + }, + { + "start": 2572.62, + "end": 2573.67, + "probability": 0.41 + }, + { + "start": 2575.88, + "end": 2578.66, + "probability": 0.8815 + }, + { + "start": 2578.92, + "end": 2581.8, + "probability": 0.9478 + }, + { + "start": 2582.6, + "end": 2587.42, + "probability": 0.894 + }, + { + "start": 2587.76, + "end": 2592.18, + "probability": 0.9288 + }, + { + "start": 2592.18, + "end": 2595.22, + "probability": 0.9421 + }, + { + "start": 2596.5, + "end": 2599.3, + "probability": 0.9971 + }, + { + "start": 2599.84, + "end": 2600.84, + "probability": 0.7494 + }, + { + "start": 2601.48, + "end": 2605.26, + "probability": 0.8129 + }, + { + "start": 2606.0, + "end": 2608.3, + "probability": 0.6077 + }, + { + "start": 2608.98, + "end": 2611.16, + "probability": 0.8799 + }, + { + "start": 2611.9, + "end": 2616.8, + "probability": 0.8671 + }, + { + "start": 2617.64, + "end": 2619.76, + "probability": 0.951 + }, + { + "start": 2620.18, + "end": 2625.12, + "probability": 0.9863 + }, + { + "start": 2625.28, + "end": 2626.64, + "probability": 0.8944 + }, + { + "start": 2626.96, + "end": 2627.72, + "probability": 0.7527 + }, + { + "start": 2628.08, + "end": 2629.44, + "probability": 0.9679 + }, + { + "start": 2630.72, + "end": 2633.98, + "probability": 0.993 + }, + { + "start": 2633.98, + "end": 2637.98, + "probability": 0.9712 + }, + { + "start": 2638.52, + "end": 2641.12, + "probability": 0.9415 + }, + { + "start": 2642.06, + "end": 2644.66, + "probability": 0.9958 + }, + { + "start": 2645.22, + "end": 2646.58, + "probability": 0.9985 + }, + { + "start": 2647.1, + "end": 2649.52, + "probability": 0.9287 + }, + { + "start": 2651.26, + "end": 2654.2, + "probability": 0.998 + }, + { + "start": 2654.2, + "end": 2658.1, + "probability": 0.9832 + }, + { + "start": 2658.8, + "end": 2659.48, + "probability": 0.4204 + }, + { + "start": 2659.76, + "end": 2660.62, + "probability": 0.8708 + }, + { + "start": 2660.7, + "end": 2663.98, + "probability": 0.9922 + }, + { + "start": 2664.42, + "end": 2666.86, + "probability": 0.5081 + }, + { + "start": 2667.7, + "end": 2669.92, + "probability": 0.5071 + }, + { + "start": 2671.5, + "end": 2673.98, + "probability": 0.9134 + }, + { + "start": 2674.12, + "end": 2676.78, + "probability": 0.9372 + }, + { + "start": 2677.36, + "end": 2681.14, + "probability": 0.9006 + }, + { + "start": 2682.08, + "end": 2683.94, + "probability": 0.9491 + }, + { + "start": 2684.18, + "end": 2685.16, + "probability": 0.9166 + }, + { + "start": 2685.24, + "end": 2686.46, + "probability": 0.8513 + }, + { + "start": 2686.6, + "end": 2686.98, + "probability": 0.8739 + }, + { + "start": 2687.5, + "end": 2689.48, + "probability": 0.9644 + }, + { + "start": 2690.12, + "end": 2693.52, + "probability": 0.9692 + }, + { + "start": 2693.52, + "end": 2696.38, + "probability": 0.9883 + }, + { + "start": 2697.3, + "end": 2700.68, + "probability": 0.8139 + }, + { + "start": 2701.32, + "end": 2704.18, + "probability": 0.9045 + }, + { + "start": 2705.16, + "end": 2709.36, + "probability": 0.9878 + }, + { + "start": 2710.12, + "end": 2713.02, + "probability": 0.9232 + }, + { + "start": 2713.86, + "end": 2716.46, + "probability": 0.9955 + }, + { + "start": 2716.58, + "end": 2721.56, + "probability": 0.9613 + }, + { + "start": 2721.98, + "end": 2725.36, + "probability": 0.8574 + }, + { + "start": 2726.1, + "end": 2729.46, + "probability": 0.9099 + }, + { + "start": 2730.16, + "end": 2733.06, + "probability": 0.9849 + }, + { + "start": 2733.8, + "end": 2735.14, + "probability": 0.6473 + }, + { + "start": 2735.76, + "end": 2737.68, + "probability": 0.9906 + }, + { + "start": 2739.53, + "end": 2745.68, + "probability": 0.9882 + }, + { + "start": 2745.72, + "end": 2747.68, + "probability": 0.8936 + }, + { + "start": 2748.46, + "end": 2752.98, + "probability": 0.9888 + }, + { + "start": 2753.6, + "end": 2755.8, + "probability": 0.9471 + }, + { + "start": 2756.72, + "end": 2758.84, + "probability": 0.9921 + }, + { + "start": 2760.06, + "end": 2763.38, + "probability": 0.9757 + }, + { + "start": 2765.16, + "end": 2768.46, + "probability": 0.8756 + }, + { + "start": 2768.52, + "end": 2773.38, + "probability": 0.99 + }, + { + "start": 2773.66, + "end": 2777.08, + "probability": 0.887 + }, + { + "start": 2777.42, + "end": 2777.96, + "probability": 0.3392 + }, + { + "start": 2779.18, + "end": 2781.22, + "probability": 0.6529 + }, + { + "start": 2782.16, + "end": 2784.14, + "probability": 0.8707 + }, + { + "start": 2784.9, + "end": 2789.5, + "probability": 0.8861 + }, + { + "start": 2790.38, + "end": 2791.18, + "probability": 0.8289 + }, + { + "start": 2792.06, + "end": 2795.86, + "probability": 0.9086 + }, + { + "start": 2796.4, + "end": 2797.7, + "probability": 0.8588 + }, + { + "start": 2798.42, + "end": 2800.08, + "probability": 0.9967 + }, + { + "start": 2800.1, + "end": 2802.24, + "probability": 0.8783 + }, + { + "start": 2802.8, + "end": 2804.36, + "probability": 0.9666 + }, + { + "start": 2805.02, + "end": 2807.0, + "probability": 0.9635 + }, + { + "start": 2807.78, + "end": 2809.46, + "probability": 0.7629 + }, + { + "start": 2810.86, + "end": 2813.82, + "probability": 0.8442 + }, + { + "start": 2814.58, + "end": 2815.72, + "probability": 0.8325 + }, + { + "start": 2816.74, + "end": 2819.82, + "probability": 0.8627 + }, + { + "start": 2821.88, + "end": 2825.98, + "probability": 0.9744 + }, + { + "start": 2826.96, + "end": 2829.12, + "probability": 0.7802 + }, + { + "start": 2829.26, + "end": 2832.22, + "probability": 0.7885 + }, + { + "start": 2833.02, + "end": 2834.24, + "probability": 0.7364 + }, + { + "start": 2834.76, + "end": 2837.88, + "probability": 0.8979 + }, + { + "start": 2838.56, + "end": 2840.46, + "probability": 0.9598 + }, + { + "start": 2841.5, + "end": 2842.5, + "probability": 0.8676 + }, + { + "start": 2842.78, + "end": 2846.06, + "probability": 0.9338 + }, + { + "start": 2847.0, + "end": 2848.28, + "probability": 0.5144 + }, + { + "start": 2848.76, + "end": 2850.0, + "probability": 0.9662 + }, + { + "start": 2850.1, + "end": 2851.15, + "probability": 0.7119 + }, + { + "start": 2852.12, + "end": 2854.3, + "probability": 0.7424 + }, + { + "start": 2854.9, + "end": 2857.96, + "probability": 0.8419 + }, + { + "start": 2858.52, + "end": 2862.82, + "probability": 0.9021 + }, + { + "start": 2863.36, + "end": 2865.72, + "probability": 0.9461 + }, + { + "start": 2866.22, + "end": 2867.69, + "probability": 0.9844 + }, + { + "start": 2867.94, + "end": 2868.2, + "probability": 0.5955 + }, + { + "start": 2870.12, + "end": 2871.7, + "probability": 0.6872 + }, + { + "start": 2871.8, + "end": 2874.56, + "probability": 0.8035 + }, + { + "start": 2875.62, + "end": 2876.1, + "probability": 0.5087 + }, + { + "start": 2876.38, + "end": 2882.96, + "probability": 0.8818 + }, + { + "start": 2883.08, + "end": 2885.66, + "probability": 0.8998 + }, + { + "start": 2886.14, + "end": 2890.9, + "probability": 0.9603 + }, + { + "start": 2891.12, + "end": 2893.82, + "probability": 0.8896 + }, + { + "start": 2893.88, + "end": 2894.98, + "probability": 0.8987 + }, + { + "start": 2895.24, + "end": 2898.58, + "probability": 0.8067 + }, + { + "start": 2898.58, + "end": 2898.68, + "probability": 0.6533 + }, + { + "start": 2898.84, + "end": 2899.4, + "probability": 0.5405 + }, + { + "start": 2899.4, + "end": 2900.54, + "probability": 0.2902 + }, + { + "start": 2900.58, + "end": 2901.4, + "probability": 0.8553 + }, + { + "start": 2901.46, + "end": 2902.84, + "probability": 0.9917 + }, + { + "start": 2902.84, + "end": 2903.2, + "probability": 0.7773 + }, + { + "start": 2903.3, + "end": 2903.7, + "probability": 0.3491 + }, + { + "start": 2903.7, + "end": 2907.62, + "probability": 0.7983 + }, + { + "start": 2908.32, + "end": 2912.5, + "probability": 0.9597 + }, + { + "start": 2912.62, + "end": 2913.14, + "probability": 0.9129 + }, + { + "start": 2914.42, + "end": 2916.46, + "probability": 0.9457 + }, + { + "start": 2916.64, + "end": 2918.14, + "probability": 0.7158 + }, + { + "start": 2918.8, + "end": 2920.1, + "probability": 0.9553 + }, + { + "start": 2920.28, + "end": 2921.64, + "probability": 0.5936 + }, + { + "start": 2921.98, + "end": 2924.44, + "probability": 0.9689 + }, + { + "start": 2924.54, + "end": 2926.04, + "probability": 0.8998 + }, + { + "start": 2926.04, + "end": 2926.14, + "probability": 0.2566 + }, + { + "start": 2926.14, + "end": 2929.78, + "probability": 0.9953 + }, + { + "start": 2929.8, + "end": 2930.46, + "probability": 0.5023 + }, + { + "start": 2930.48, + "end": 2931.98, + "probability": 0.7455 + }, + { + "start": 2932.04, + "end": 2933.16, + "probability": 0.7431 + }, + { + "start": 2933.5, + "end": 2934.16, + "probability": 0.9632 + }, + { + "start": 2936.03, + "end": 2939.18, + "probability": 0.9884 + }, + { + "start": 2939.56, + "end": 2940.9, + "probability": 0.6211 + }, + { + "start": 2943.82, + "end": 2946.9, + "probability": 0.9657 + }, + { + "start": 2947.86, + "end": 2948.78, + "probability": 0.925 + }, + { + "start": 2949.18, + "end": 2950.4, + "probability": 0.9697 + }, + { + "start": 2950.46, + "end": 2952.22, + "probability": 0.9391 + }, + { + "start": 2952.32, + "end": 2953.9, + "probability": 0.987 + }, + { + "start": 2954.36, + "end": 2957.52, + "probability": 0.9155 + }, + { + "start": 2957.62, + "end": 2961.82, + "probability": 0.9774 + }, + { + "start": 2962.1, + "end": 2963.02, + "probability": 0.6476 + }, + { + "start": 2963.6, + "end": 2964.16, + "probability": 0.5607 + }, + { + "start": 2964.3, + "end": 2967.4, + "probability": 0.9954 + }, + { + "start": 2967.58, + "end": 2972.04, + "probability": 0.9924 + }, + { + "start": 2972.94, + "end": 2977.08, + "probability": 0.991 + }, + { + "start": 2977.08, + "end": 2980.42, + "probability": 0.999 + }, + { + "start": 2981.06, + "end": 2983.52, + "probability": 0.9988 + }, + { + "start": 2983.64, + "end": 2985.0, + "probability": 0.986 + }, + { + "start": 2985.44, + "end": 2987.92, + "probability": 0.999 + }, + { + "start": 2988.5, + "end": 2990.66, + "probability": 0.9905 + }, + { + "start": 2990.88, + "end": 2995.58, + "probability": 0.9938 + }, + { + "start": 2996.38, + "end": 3001.42, + "probability": 0.9614 + }, + { + "start": 3002.0, + "end": 3005.66, + "probability": 0.9966 + }, + { + "start": 3005.88, + "end": 3011.02, + "probability": 0.9259 + }, + { + "start": 3011.02, + "end": 3016.18, + "probability": 0.9976 + }, + { + "start": 3017.1, + "end": 3021.58, + "probability": 0.9843 + }, + { + "start": 3021.58, + "end": 3026.78, + "probability": 0.9905 + }, + { + "start": 3026.78, + "end": 3031.5, + "probability": 0.9924 + }, + { + "start": 3031.6, + "end": 3032.92, + "probability": 0.587 + }, + { + "start": 3033.68, + "end": 3038.64, + "probability": 0.9786 + }, + { + "start": 3039.6, + "end": 3047.12, + "probability": 0.9408 + }, + { + "start": 3047.12, + "end": 3053.16, + "probability": 0.9926 + }, + { + "start": 3053.94, + "end": 3057.4, + "probability": 0.8672 + }, + { + "start": 3057.72, + "end": 3060.52, + "probability": 0.9961 + }, + { + "start": 3064.9, + "end": 3067.5, + "probability": 0.5989 + }, + { + "start": 3069.22, + "end": 3075.9, + "probability": 0.9926 + }, + { + "start": 3075.9, + "end": 3080.64, + "probability": 0.9889 + }, + { + "start": 3082.18, + "end": 3082.48, + "probability": 0.7114 + }, + { + "start": 3083.32, + "end": 3083.42, + "probability": 0.9688 + }, + { + "start": 3084.08, + "end": 3086.76, + "probability": 0.5271 + }, + { + "start": 3086.88, + "end": 3088.86, + "probability": 0.9817 + }, + { + "start": 3090.1, + "end": 3093.96, + "probability": 0.9873 + }, + { + "start": 3094.08, + "end": 3094.84, + "probability": 0.9635 + }, + { + "start": 3094.92, + "end": 3096.36, + "probability": 0.9624 + }, + { + "start": 3098.16, + "end": 3102.56, + "probability": 0.9935 + }, + { + "start": 3102.56, + "end": 3106.74, + "probability": 0.872 + }, + { + "start": 3108.32, + "end": 3115.18, + "probability": 0.918 + }, + { + "start": 3116.0, + "end": 3117.3, + "probability": 0.8032 + }, + { + "start": 3118.56, + "end": 3121.32, + "probability": 0.9645 + }, + { + "start": 3122.62, + "end": 3124.92, + "probability": 0.8377 + }, + { + "start": 3125.0, + "end": 3127.1, + "probability": 0.9172 + }, + { + "start": 3128.76, + "end": 3133.28, + "probability": 0.9736 + }, + { + "start": 3133.66, + "end": 3137.5, + "probability": 0.9943 + }, + { + "start": 3138.78, + "end": 3143.62, + "probability": 0.8758 + }, + { + "start": 3144.84, + "end": 3150.14, + "probability": 0.9932 + }, + { + "start": 3151.16, + "end": 3155.88, + "probability": 0.993 + }, + { + "start": 3156.58, + "end": 3159.04, + "probability": 0.9393 + }, + { + "start": 3160.04, + "end": 3163.46, + "probability": 0.9981 + }, + { + "start": 3164.3, + "end": 3167.68, + "probability": 0.6268 + }, + { + "start": 3168.42, + "end": 3173.38, + "probability": 0.7991 + }, + { + "start": 3174.34, + "end": 3177.82, + "probability": 0.9871 + }, + { + "start": 3178.24, + "end": 3181.36, + "probability": 0.9648 + }, + { + "start": 3181.36, + "end": 3187.14, + "probability": 0.9862 + }, + { + "start": 3188.38, + "end": 3191.06, + "probability": 0.9976 + }, + { + "start": 3191.2, + "end": 3192.71, + "probability": 0.8974 + }, + { + "start": 3193.42, + "end": 3194.3, + "probability": 0.5909 + }, + { + "start": 3194.76, + "end": 3195.5, + "probability": 0.7601 + }, + { + "start": 3195.86, + "end": 3199.18, + "probability": 0.865 + }, + { + "start": 3199.78, + "end": 3201.98, + "probability": 0.9142 + }, + { + "start": 3202.12, + "end": 3203.82, + "probability": 0.9984 + }, + { + "start": 3204.38, + "end": 3204.74, + "probability": 0.7803 + }, + { + "start": 3204.92, + "end": 3205.24, + "probability": 0.7635 + }, + { + "start": 3206.06, + "end": 3208.93, + "probability": 0.9328 + }, + { + "start": 3209.16, + "end": 3209.67, + "probability": 0.6582 + }, + { + "start": 3216.84, + "end": 3217.7, + "probability": 0.6567 + }, + { + "start": 3218.86, + "end": 3220.96, + "probability": 0.9492 + }, + { + "start": 3221.06, + "end": 3225.7, + "probability": 0.9974 + }, + { + "start": 3226.56, + "end": 3230.02, + "probability": 0.9629 + }, + { + "start": 3230.18, + "end": 3231.6, + "probability": 0.9982 + }, + { + "start": 3231.74, + "end": 3232.4, + "probability": 0.6271 + }, + { + "start": 3233.18, + "end": 3239.46, + "probability": 0.9781 + }, + { + "start": 3239.88, + "end": 3242.76, + "probability": 0.9899 + }, + { + "start": 3243.08, + "end": 3243.8, + "probability": 0.6631 + }, + { + "start": 3243.92, + "end": 3244.5, + "probability": 0.9411 + }, + { + "start": 3245.1, + "end": 3247.42, + "probability": 0.9716 + }, + { + "start": 3248.08, + "end": 3248.76, + "probability": 0.7954 + }, + { + "start": 3248.88, + "end": 3249.74, + "probability": 0.7395 + }, + { + "start": 3249.96, + "end": 3251.25, + "probability": 0.9732 + }, + { + "start": 3251.74, + "end": 3253.54, + "probability": 0.992 + }, + { + "start": 3253.68, + "end": 3254.44, + "probability": 0.9024 + }, + { + "start": 3254.72, + "end": 3257.54, + "probability": 0.9842 + }, + { + "start": 3258.08, + "end": 3260.98, + "probability": 0.9657 + }, + { + "start": 3261.08, + "end": 3264.67, + "probability": 0.9951 + }, + { + "start": 3265.1, + "end": 3268.63, + "probability": 0.9951 + }, + { + "start": 3269.02, + "end": 3269.48, + "probability": 0.5862 + }, + { + "start": 3269.94, + "end": 3271.6, + "probability": 0.8382 + }, + { + "start": 3272.46, + "end": 3274.12, + "probability": 0.6449 + }, + { + "start": 3274.24, + "end": 3276.55, + "probability": 0.9174 + }, + { + "start": 3277.18, + "end": 3277.66, + "probability": 0.0076 + }, + { + "start": 3277.66, + "end": 3279.22, + "probability": 0.8872 + }, + { + "start": 3281.72, + "end": 3282.04, + "probability": 0.066 + }, + { + "start": 3282.04, + "end": 3284.12, + "probability": 0.7803 + }, + { + "start": 3284.58, + "end": 3285.44, + "probability": 0.9878 + }, + { + "start": 3286.4, + "end": 3289.46, + "probability": 0.9232 + }, + { + "start": 3290.02, + "end": 3290.91, + "probability": 0.9671 + }, + { + "start": 3291.22, + "end": 3293.28, + "probability": 0.9071 + }, + { + "start": 3294.1, + "end": 3295.06, + "probability": 0.6734 + }, + { + "start": 3296.92, + "end": 3298.46, + "probability": 0.1261 + }, + { + "start": 3298.46, + "end": 3299.18, + "probability": 0.0531 + }, + { + "start": 3299.2, + "end": 3301.3, + "probability": 0.8239 + }, + { + "start": 3301.42, + "end": 3303.14, + "probability": 0.9596 + }, + { + "start": 3303.9, + "end": 3306.75, + "probability": 0.9289 + }, + { + "start": 3308.28, + "end": 3309.54, + "probability": 0.7883 + }, + { + "start": 3309.92, + "end": 3312.26, + "probability": 0.5791 + }, + { + "start": 3312.46, + "end": 3313.9, + "probability": 0.6787 + }, + { + "start": 3315.68, + "end": 3316.84, + "probability": 0.9888 + }, + { + "start": 3318.28, + "end": 3321.5, + "probability": 0.9472 + }, + { + "start": 3322.76, + "end": 3323.78, + "probability": 0.9941 + }, + { + "start": 3323.88, + "end": 3327.84, + "probability": 0.9885 + }, + { + "start": 3327.9, + "end": 3331.0, + "probability": 0.9644 + }, + { + "start": 3331.46, + "end": 3332.92, + "probability": 0.9742 + }, + { + "start": 3333.56, + "end": 3334.18, + "probability": 0.7106 + }, + { + "start": 3334.4, + "end": 3336.2, + "probability": 0.9318 + }, + { + "start": 3336.26, + "end": 3337.34, + "probability": 0.7549 + }, + { + "start": 3337.9, + "end": 3340.12, + "probability": 0.9919 + }, + { + "start": 3340.2, + "end": 3342.12, + "probability": 0.8826 + }, + { + "start": 3342.64, + "end": 3345.46, + "probability": 0.9318 + }, + { + "start": 3345.58, + "end": 3346.06, + "probability": 0.7417 + }, + { + "start": 3346.64, + "end": 3347.4, + "probability": 0.98 + }, + { + "start": 3348.4, + "end": 3349.9, + "probability": 0.9771 + }, + { + "start": 3350.7, + "end": 3351.44, + "probability": 0.6656 + }, + { + "start": 3352.22, + "end": 3353.06, + "probability": 0.8757 + }, + { + "start": 3353.14, + "end": 3353.54, + "probability": 0.4907 + }, + { + "start": 3353.58, + "end": 3354.98, + "probability": 0.926 + }, + { + "start": 3362.78, + "end": 3363.94, + "probability": 0.4444 + }, + { + "start": 3365.14, + "end": 3365.9, + "probability": 0.6846 + }, + { + "start": 3366.92, + "end": 3370.6, + "probability": 0.9899 + }, + { + "start": 3371.2, + "end": 3374.46, + "probability": 0.9742 + }, + { + "start": 3374.74, + "end": 3375.24, + "probability": 0.9738 + }, + { + "start": 3375.94, + "end": 3378.44, + "probability": 0.998 + }, + { + "start": 3379.38, + "end": 3380.57, + "probability": 0.9888 + }, + { + "start": 3381.28, + "end": 3385.04, + "probability": 0.9917 + }, + { + "start": 3385.74, + "end": 3387.72, + "probability": 0.1183 + }, + { + "start": 3388.46, + "end": 3390.2, + "probability": 0.8123 + }, + { + "start": 3390.82, + "end": 3391.32, + "probability": 0.2174 + }, + { + "start": 3391.44, + "end": 3395.76, + "probability": 0.9934 + }, + { + "start": 3396.16, + "end": 3400.6, + "probability": 0.9723 + }, + { + "start": 3401.66, + "end": 3405.58, + "probability": 0.9858 + }, + { + "start": 3406.38, + "end": 3407.3, + "probability": 0.7642 + }, + { + "start": 3408.04, + "end": 3411.04, + "probability": 0.9744 + }, + { + "start": 3411.76, + "end": 3415.36, + "probability": 0.9963 + }, + { + "start": 3416.0, + "end": 3420.84, + "probability": 0.8084 + }, + { + "start": 3421.46, + "end": 3422.62, + "probability": 0.8844 + }, + { + "start": 3423.22, + "end": 3426.28, + "probability": 0.6782 + }, + { + "start": 3426.28, + "end": 3430.12, + "probability": 0.8951 + }, + { + "start": 3434.02, + "end": 3436.16, + "probability": 0.5444 + }, + { + "start": 3436.42, + "end": 3436.42, + "probability": 0.3738 + }, + { + "start": 3436.42, + "end": 3437.82, + "probability": 0.9725 + }, + { + "start": 3437.88, + "end": 3438.4, + "probability": 0.7401 + }, + { + "start": 3438.5, + "end": 3439.04, + "probability": 0.9636 + }, + { + "start": 3439.14, + "end": 3440.02, + "probability": 0.8451 + }, + { + "start": 3440.1, + "end": 3442.56, + "probability": 0.7845 + }, + { + "start": 3443.64, + "end": 3446.88, + "probability": 0.8292 + }, + { + "start": 3448.2, + "end": 3451.94, + "probability": 0.9156 + }, + { + "start": 3452.02, + "end": 3453.02, + "probability": 0.8372 + }, + { + "start": 3453.84, + "end": 3455.12, + "probability": 0.6168 + }, + { + "start": 3455.94, + "end": 3457.38, + "probability": 0.3563 + }, + { + "start": 3457.54, + "end": 3458.28, + "probability": 0.7762 + }, + { + "start": 3458.7, + "end": 3461.86, + "probability": 0.6677 + }, + { + "start": 3462.08, + "end": 3464.88, + "probability": 0.6714 + }, + { + "start": 3465.02, + "end": 3465.02, + "probability": 0.2384 + }, + { + "start": 3469.5, + "end": 3472.24, + "probability": 0.6368 + }, + { + "start": 3474.57, + "end": 3477.16, + "probability": 0.7659 + }, + { + "start": 3478.46, + "end": 3484.06, + "probability": 0.6821 + }, + { + "start": 3484.06, + "end": 3486.74, + "probability": 0.9896 + }, + { + "start": 3487.34, + "end": 3487.92, + "probability": 0.8559 + }, + { + "start": 3489.32, + "end": 3490.7, + "probability": 0.5416 + }, + { + "start": 3490.7, + "end": 3493.12, + "probability": 0.6664 + }, + { + "start": 3493.3, + "end": 3494.02, + "probability": 0.8722 + }, + { + "start": 3494.14, + "end": 3494.82, + "probability": 0.899 + }, + { + "start": 3495.22, + "end": 3495.68, + "probability": 0.9061 + }, + { + "start": 3495.72, + "end": 3498.98, + "probability": 0.7494 + }, + { + "start": 3500.04, + "end": 3504.96, + "probability": 0.9543 + }, + { + "start": 3505.08, + "end": 3505.94, + "probability": 0.9535 + }, + { + "start": 3506.74, + "end": 3511.96, + "probability": 0.9486 + }, + { + "start": 3512.38, + "end": 3518.42, + "probability": 0.9962 + }, + { + "start": 3519.88, + "end": 3520.5, + "probability": 0.7477 + }, + { + "start": 3521.66, + "end": 3526.66, + "probability": 0.9866 + }, + { + "start": 3527.56, + "end": 3528.52, + "probability": 0.5092 + }, + { + "start": 3529.1, + "end": 3532.64, + "probability": 0.6114 + }, + { + "start": 3533.64, + "end": 3540.12, + "probability": 0.7278 + }, + { + "start": 3540.42, + "end": 3542.34, + "probability": 0.9544 + }, + { + "start": 3543.2, + "end": 3543.56, + "probability": 0.4553 + }, + { + "start": 3543.6, + "end": 3545.82, + "probability": 0.9909 + }, + { + "start": 3545.82, + "end": 3548.52, + "probability": 0.9924 + }, + { + "start": 3549.46, + "end": 3553.08, + "probability": 0.9243 + }, + { + "start": 3554.66, + "end": 3562.6, + "probability": 0.9585 + }, + { + "start": 3562.7, + "end": 3563.19, + "probability": 0.8978 + }, + { + "start": 3563.88, + "end": 3564.44, + "probability": 0.7227 + }, + { + "start": 3564.98, + "end": 3566.28, + "probability": 0.9883 + }, + { + "start": 3567.16, + "end": 3570.08, + "probability": 0.6094 + }, + { + "start": 3571.6, + "end": 3574.54, + "probability": 0.9826 + }, + { + "start": 3575.08, + "end": 3576.5, + "probability": 0.9742 + }, + { + "start": 3576.98, + "end": 3580.26, + "probability": 0.9923 + }, + { + "start": 3581.12, + "end": 3584.26, + "probability": 0.9741 + }, + { + "start": 3584.4, + "end": 3585.08, + "probability": 0.9781 + }, + { + "start": 3585.12, + "end": 3585.7, + "probability": 0.9584 + }, + { + "start": 3586.22, + "end": 3588.02, + "probability": 0.5359 + }, + { + "start": 3589.64, + "end": 3595.56, + "probability": 0.9263 + }, + { + "start": 3596.22, + "end": 3600.8, + "probability": 0.9547 + }, + { + "start": 3601.56, + "end": 3605.82, + "probability": 0.9953 + }, + { + "start": 3605.84, + "end": 3609.08, + "probability": 0.9948 + }, + { + "start": 3609.18, + "end": 3611.72, + "probability": 0.8292 + }, + { + "start": 3613.28, + "end": 3615.82, + "probability": 0.6859 + }, + { + "start": 3615.82, + "end": 3618.22, + "probability": 0.9987 + }, + { + "start": 3620.55, + "end": 3625.02, + "probability": 0.9906 + }, + { + "start": 3625.36, + "end": 3627.54, + "probability": 0.9937 + }, + { + "start": 3627.54, + "end": 3629.8, + "probability": 0.8678 + }, + { + "start": 3630.76, + "end": 3635.68, + "probability": 0.9744 + }, + { + "start": 3636.32, + "end": 3641.06, + "probability": 0.6581 + }, + { + "start": 3641.46, + "end": 3643.8, + "probability": 0.9332 + }, + { + "start": 3644.46, + "end": 3648.3, + "probability": 0.9684 + }, + { + "start": 3649.0, + "end": 3649.48, + "probability": 0.7394 + }, + { + "start": 3649.62, + "end": 3653.28, + "probability": 0.9937 + }, + { + "start": 3653.7, + "end": 3655.08, + "probability": 0.9895 + }, + { + "start": 3655.48, + "end": 3658.72, + "probability": 0.9964 + }, + { + "start": 3658.72, + "end": 3663.18, + "probability": 0.9927 + }, + { + "start": 3663.48, + "end": 3663.94, + "probability": 0.9224 + }, + { + "start": 3664.06, + "end": 3668.8, + "probability": 0.9811 + }, + { + "start": 3668.9, + "end": 3669.58, + "probability": 0.9838 + }, + { + "start": 3669.64, + "end": 3670.68, + "probability": 0.8754 + }, + { + "start": 3670.92, + "end": 3673.48, + "probability": 0.9919 + }, + { + "start": 3674.4, + "end": 3677.72, + "probability": 0.897 + }, + { + "start": 3678.52, + "end": 3679.36, + "probability": 0.6558 + }, + { + "start": 3680.26, + "end": 3682.2, + "probability": 0.9612 + }, + { + "start": 3682.2, + "end": 3682.86, + "probability": 0.7901 + }, + { + "start": 3682.98, + "end": 3684.56, + "probability": 0.9412 + }, + { + "start": 3685.06, + "end": 3687.52, + "probability": 0.899 + }, + { + "start": 3688.2, + "end": 3690.28, + "probability": 0.9591 + }, + { + "start": 3690.76, + "end": 3691.51, + "probability": 0.4877 + }, + { + "start": 3692.56, + "end": 3695.56, + "probability": 0.8621 + }, + { + "start": 3697.72, + "end": 3700.64, + "probability": 0.3891 + }, + { + "start": 3700.72, + "end": 3703.22, + "probability": 0.914 + }, + { + "start": 3703.66, + "end": 3704.12, + "probability": 0.679 + }, + { + "start": 3704.14, + "end": 3706.02, + "probability": 0.9943 + }, + { + "start": 3706.92, + "end": 3708.44, + "probability": 0.5681 + }, + { + "start": 3708.58, + "end": 3713.14, + "probability": 0.6815 + }, + { + "start": 3713.22, + "end": 3713.52, + "probability": 0.844 + }, + { + "start": 3713.6, + "end": 3714.04, + "probability": 0.9723 + }, + { + "start": 3714.1, + "end": 3715.44, + "probability": 0.9946 + }, + { + "start": 3716.74, + "end": 3720.2, + "probability": 0.835 + }, + { + "start": 3720.52, + "end": 3723.7, + "probability": 0.9207 + }, + { + "start": 3724.44, + "end": 3728.78, + "probability": 0.9971 + }, + { + "start": 3729.72, + "end": 3734.18, + "probability": 0.8037 + }, + { + "start": 3734.58, + "end": 3736.44, + "probability": 0.9951 + }, + { + "start": 3738.02, + "end": 3740.88, + "probability": 0.6484 + }, + { + "start": 3741.18, + "end": 3742.54, + "probability": 0.5786 + }, + { + "start": 3743.02, + "end": 3745.32, + "probability": 0.8034 + }, + { + "start": 3745.5, + "end": 3748.36, + "probability": 0.9863 + }, + { + "start": 3748.82, + "end": 3749.04, + "probability": 0.7341 + }, + { + "start": 3750.38, + "end": 3751.52, + "probability": 0.6067 + }, + { + "start": 3751.98, + "end": 3754.9, + "probability": 0.7454 + }, + { + "start": 3757.11, + "end": 3758.72, + "probability": 0.7938 + }, + { + "start": 3759.66, + "end": 3767.46, + "probability": 0.8332 + }, + { + "start": 3768.38, + "end": 3773.22, + "probability": 0.9984 + }, + { + "start": 3773.22, + "end": 3777.98, + "probability": 0.9889 + }, + { + "start": 3777.98, + "end": 3783.36, + "probability": 0.984 + }, + { + "start": 3783.58, + "end": 3783.84, + "probability": 0.8817 + }, + { + "start": 3784.78, + "end": 3789.44, + "probability": 0.9886 + }, + { + "start": 3789.66, + "end": 3790.62, + "probability": 0.5954 + }, + { + "start": 3791.16, + "end": 3792.54, + "probability": 0.4242 + }, + { + "start": 3792.98, + "end": 3797.46, + "probability": 0.9897 + }, + { + "start": 3797.46, + "end": 3801.58, + "probability": 0.9963 + }, + { + "start": 3802.5, + "end": 3806.62, + "probability": 0.9966 + }, + { + "start": 3807.84, + "end": 3809.26, + "probability": 0.4964 + }, + { + "start": 3810.0, + "end": 3815.86, + "probability": 0.913 + }, + { + "start": 3816.5, + "end": 3820.66, + "probability": 0.9931 + }, + { + "start": 3821.16, + "end": 3822.66, + "probability": 0.9564 + }, + { + "start": 3823.6, + "end": 3824.0, + "probability": 0.5861 + }, + { + "start": 3824.36, + "end": 3825.72, + "probability": 0.7525 + }, + { + "start": 3825.9, + "end": 3827.22, + "probability": 0.8965 + }, + { + "start": 3828.67, + "end": 3834.0, + "probability": 0.9238 + }, + { + "start": 3834.58, + "end": 3837.76, + "probability": 0.9814 + }, + { + "start": 3837.76, + "end": 3841.5, + "probability": 0.9758 + }, + { + "start": 3842.02, + "end": 3842.8, + "probability": 0.8179 + }, + { + "start": 3847.52, + "end": 3849.58, + "probability": 0.904 + }, + { + "start": 3850.42, + "end": 3852.26, + "probability": 0.974 + }, + { + "start": 3853.46, + "end": 3858.16, + "probability": 0.9956 + }, + { + "start": 3858.84, + "end": 3860.24, + "probability": 0.9938 + }, + { + "start": 3861.81, + "end": 3865.06, + "probability": 0.9883 + }, + { + "start": 3866.46, + "end": 3867.38, + "probability": 0.5116 + }, + { + "start": 3867.48, + "end": 3868.22, + "probability": 0.6876 + }, + { + "start": 3868.32, + "end": 3874.24, + "probability": 0.8684 + }, + { + "start": 3874.78, + "end": 3876.44, + "probability": 0.9815 + }, + { + "start": 3877.92, + "end": 3883.94, + "probability": 0.9124 + }, + { + "start": 3884.6, + "end": 3888.64, + "probability": 0.8641 + }, + { + "start": 3888.64, + "end": 3891.54, + "probability": 0.9014 + }, + { + "start": 3891.62, + "end": 3893.0, + "probability": 0.8329 + }, + { + "start": 3894.14, + "end": 3896.3, + "probability": 0.6403 + }, + { + "start": 3897.18, + "end": 3901.5, + "probability": 0.9208 + }, + { + "start": 3902.8, + "end": 3904.36, + "probability": 0.7638 + }, + { + "start": 3904.44, + "end": 3906.62, + "probability": 0.9943 + }, + { + "start": 3908.56, + "end": 3914.88, + "probability": 0.974 + }, + { + "start": 3915.94, + "end": 3917.94, + "probability": 0.9954 + }, + { + "start": 3918.74, + "end": 3920.42, + "probability": 0.7988 + }, + { + "start": 3920.6, + "end": 3923.42, + "probability": 0.461 + }, + { + "start": 3923.42, + "end": 3927.82, + "probability": 0.8972 + }, + { + "start": 3929.08, + "end": 3930.6, + "probability": 0.7236 + }, + { + "start": 3930.76, + "end": 3934.82, + "probability": 0.9619 + }, + { + "start": 3935.34, + "end": 3940.32, + "probability": 0.9191 + }, + { + "start": 3941.18, + "end": 3942.84, + "probability": 0.6359 + }, + { + "start": 3943.84, + "end": 3947.06, + "probability": 0.9177 + }, + { + "start": 3947.06, + "end": 3951.68, + "probability": 0.8152 + }, + { + "start": 3952.6, + "end": 3956.62, + "probability": 0.9863 + }, + { + "start": 3956.62, + "end": 3961.6, + "probability": 0.8731 + }, + { + "start": 3961.66, + "end": 3964.14, + "probability": 0.97 + }, + { + "start": 3965.12, + "end": 3970.96, + "probability": 0.8648 + }, + { + "start": 3970.96, + "end": 3976.58, + "probability": 0.9702 + }, + { + "start": 3977.3, + "end": 3983.7, + "probability": 0.9549 + }, + { + "start": 3984.6, + "end": 3987.24, + "probability": 0.9888 + }, + { + "start": 3987.4, + "end": 3988.44, + "probability": 0.6085 + }, + { + "start": 3989.32, + "end": 3991.46, + "probability": 0.976 + }, + { + "start": 3992.06, + "end": 3995.5, + "probability": 0.9548 + }, + { + "start": 3995.5, + "end": 3998.98, + "probability": 0.9316 + }, + { + "start": 3999.2, + "end": 4001.24, + "probability": 0.7907 + }, + { + "start": 4001.92, + "end": 4003.64, + "probability": 0.925 + }, + { + "start": 4003.8, + "end": 4006.92, + "probability": 0.9855 + }, + { + "start": 4008.9, + "end": 4014.18, + "probability": 0.9641 + }, + { + "start": 4014.18, + "end": 4017.76, + "probability": 0.9958 + }, + { + "start": 4017.76, + "end": 4021.9, + "probability": 0.9844 + }, + { + "start": 4024.36, + "end": 4026.96, + "probability": 0.4345 + }, + { + "start": 4027.18, + "end": 4028.84, + "probability": 0.8922 + }, + { + "start": 4028.92, + "end": 4030.52, + "probability": 0.9697 + }, + { + "start": 4030.7, + "end": 4031.32, + "probability": 0.9771 + }, + { + "start": 4032.5, + "end": 4036.92, + "probability": 0.6058 + }, + { + "start": 4037.78, + "end": 4041.86, + "probability": 0.9222 + }, + { + "start": 4043.0, + "end": 4046.98, + "probability": 0.9497 + }, + { + "start": 4047.02, + "end": 4050.76, + "probability": 0.9926 + }, + { + "start": 4051.28, + "end": 4054.88, + "probability": 0.9797 + }, + { + "start": 4055.78, + "end": 4059.14, + "probability": 0.9807 + }, + { + "start": 4059.94, + "end": 4062.98, + "probability": 0.9777 + }, + { + "start": 4062.98, + "end": 4065.9, + "probability": 0.9771 + }, + { + "start": 4066.42, + "end": 4069.76, + "probability": 0.9671 + }, + { + "start": 4069.8, + "end": 4070.82, + "probability": 0.8855 + }, + { + "start": 4072.06, + "end": 4075.3, + "probability": 0.9172 + }, + { + "start": 4075.94, + "end": 4079.72, + "probability": 0.9925 + }, + { + "start": 4081.04, + "end": 4083.68, + "probability": 0.9187 + }, + { + "start": 4083.68, + "end": 4087.44, + "probability": 0.7482 + }, + { + "start": 4087.46, + "end": 4092.23, + "probability": 0.9026 + }, + { + "start": 4093.02, + "end": 4095.58, + "probability": 0.9881 + }, + { + "start": 4096.74, + "end": 4098.42, + "probability": 0.962 + }, + { + "start": 4098.6, + "end": 4100.44, + "probability": 0.9503 + }, + { + "start": 4101.34, + "end": 4103.36, + "probability": 0.9843 + }, + { + "start": 4104.04, + "end": 4106.9, + "probability": 0.9955 + }, + { + "start": 4106.9, + "end": 4110.44, + "probability": 0.9951 + }, + { + "start": 4111.32, + "end": 4115.7, + "probability": 0.9191 + }, + { + "start": 4116.26, + "end": 4117.08, + "probability": 0.9946 + }, + { + "start": 4117.24, + "end": 4118.32, + "probability": 0.7417 + }, + { + "start": 4118.72, + "end": 4120.48, + "probability": 0.9337 + }, + { + "start": 4121.24, + "end": 4121.52, + "probability": 0.7601 + }, + { + "start": 4122.8, + "end": 4123.64, + "probability": 0.6607 + }, + { + "start": 4124.82, + "end": 4125.48, + "probability": 0.8342 + }, + { + "start": 4128.6, + "end": 4131.7, + "probability": 0.9772 + }, + { + "start": 4131.82, + "end": 4133.98, + "probability": 0.9492 + }, + { + "start": 4134.16, + "end": 4134.92, + "probability": 0.8118 + }, + { + "start": 4135.06, + "end": 4136.92, + "probability": 0.9814 + }, + { + "start": 4136.94, + "end": 4138.26, + "probability": 0.8286 + }, + { + "start": 4138.32, + "end": 4142.36, + "probability": 0.8075 + }, + { + "start": 4143.34, + "end": 4145.1, + "probability": 0.9883 + }, + { + "start": 4145.16, + "end": 4146.88, + "probability": 0.8418 + }, + { + "start": 4146.92, + "end": 4152.44, + "probability": 0.8721 + }, + { + "start": 4152.56, + "end": 4153.63, + "probability": 0.69 + }, + { + "start": 4153.9, + "end": 4157.04, + "probability": 0.9956 + }, + { + "start": 4157.14, + "end": 4158.8, + "probability": 0.8977 + }, + { + "start": 4158.94, + "end": 4160.1, + "probability": 0.7906 + }, + { + "start": 4160.84, + "end": 4163.84, + "probability": 0.9967 + }, + { + "start": 4163.84, + "end": 4169.58, + "probability": 0.9648 + }, + { + "start": 4169.96, + "end": 4174.3, + "probability": 0.9902 + }, + { + "start": 4174.64, + "end": 4175.04, + "probability": 0.9351 + }, + { + "start": 4175.82, + "end": 4180.76, + "probability": 0.9751 + }, + { + "start": 4181.22, + "end": 4182.54, + "probability": 0.9314 + }, + { + "start": 4182.68, + "end": 4185.48, + "probability": 0.9656 + }, + { + "start": 4185.8, + "end": 4188.06, + "probability": 0.9276 + }, + { + "start": 4188.46, + "end": 4192.54, + "probability": 0.91 + }, + { + "start": 4192.6, + "end": 4194.78, + "probability": 0.8398 + }, + { + "start": 4195.1, + "end": 4195.98, + "probability": 0.5627 + }, + { + "start": 4196.54, + "end": 4201.38, + "probability": 0.6759 + }, + { + "start": 4201.52, + "end": 4204.36, + "probability": 0.9922 + }, + { + "start": 4204.36, + "end": 4207.54, + "probability": 0.9877 + }, + { + "start": 4207.86, + "end": 4208.1, + "probability": 0.69 + }, + { + "start": 4209.88, + "end": 4211.22, + "probability": 0.9063 + }, + { + "start": 4211.96, + "end": 4215.26, + "probability": 0.9701 + }, + { + "start": 4215.3, + "end": 4216.21, + "probability": 0.9299 + }, + { + "start": 4216.72, + "end": 4217.94, + "probability": 0.9467 + }, + { + "start": 4218.92, + "end": 4221.05, + "probability": 0.9457 + }, + { + "start": 4221.38, + "end": 4222.66, + "probability": 0.9978 + }, + { + "start": 4223.52, + "end": 4227.5, + "probability": 0.9882 + }, + { + "start": 4227.58, + "end": 4229.22, + "probability": 0.9971 + }, + { + "start": 4229.32, + "end": 4229.54, + "probability": 0.7544 + }, + { + "start": 4231.06, + "end": 4231.58, + "probability": 0.8555 + }, + { + "start": 4232.54, + "end": 4234.52, + "probability": 0.8888 + }, + { + "start": 4241.32, + "end": 4244.5, + "probability": 0.7 + }, + { + "start": 4246.0, + "end": 4247.84, + "probability": 0.6411 + }, + { + "start": 4249.26, + "end": 4254.28, + "probability": 0.9712 + }, + { + "start": 4254.6, + "end": 4258.7, + "probability": 0.9498 + }, + { + "start": 4258.7, + "end": 4263.26, + "probability": 0.9935 + }, + { + "start": 4263.9, + "end": 4266.6, + "probability": 0.9646 + }, + { + "start": 4267.3, + "end": 4269.9, + "probability": 0.878 + }, + { + "start": 4270.82, + "end": 4275.58, + "probability": 0.8258 + }, + { + "start": 4276.18, + "end": 4280.0, + "probability": 0.5257 + }, + { + "start": 4283.34, + "end": 4285.64, + "probability": 0.7591 + }, + { + "start": 4285.86, + "end": 4289.34, + "probability": 0.9126 + }, + { + "start": 4290.3, + "end": 4292.0, + "probability": 0.9623 + }, + { + "start": 4293.02, + "end": 4294.52, + "probability": 0.981 + }, + { + "start": 4295.22, + "end": 4296.96, + "probability": 0.955 + }, + { + "start": 4298.22, + "end": 4300.68, + "probability": 0.9554 + }, + { + "start": 4301.4, + "end": 4304.14, + "probability": 0.9859 + }, + { + "start": 4304.14, + "end": 4308.4, + "probability": 0.9897 + }, + { + "start": 4309.68, + "end": 4316.34, + "probability": 0.9559 + }, + { + "start": 4316.98, + "end": 4321.14, + "probability": 0.5043 + }, + { + "start": 4321.14, + "end": 4325.16, + "probability": 0.9329 + }, + { + "start": 4325.3, + "end": 4326.18, + "probability": 0.9734 + }, + { + "start": 4327.1, + "end": 4330.02, + "probability": 0.8319 + }, + { + "start": 4333.1, + "end": 4336.2, + "probability": 0.9934 + }, + { + "start": 4336.2, + "end": 4341.0, + "probability": 0.9989 + }, + { + "start": 4341.98, + "end": 4345.14, + "probability": 0.6932 + }, + { + "start": 4346.08, + "end": 4349.04, + "probability": 0.9553 + }, + { + "start": 4349.04, + "end": 4352.34, + "probability": 0.9863 + }, + { + "start": 4353.62, + "end": 4354.3, + "probability": 0.6155 + }, + { + "start": 4355.02, + "end": 4358.58, + "probability": 0.9297 + }, + { + "start": 4359.14, + "end": 4361.54, + "probability": 0.9893 + }, + { + "start": 4362.38, + "end": 4363.8, + "probability": 0.7976 + }, + { + "start": 4364.06, + "end": 4369.42, + "probability": 0.9847 + }, + { + "start": 4369.96, + "end": 4371.3, + "probability": 0.9357 + }, + { + "start": 4372.72, + "end": 4376.44, + "probability": 0.983 + }, + { + "start": 4376.8, + "end": 4377.88, + "probability": 0.5656 + }, + { + "start": 4378.06, + "end": 4378.88, + "probability": 0.5484 + }, + { + "start": 4378.98, + "end": 4381.64, + "probability": 0.8892 + }, + { + "start": 4382.66, + "end": 4383.22, + "probability": 0.4602 + }, + { + "start": 4383.36, + "end": 4387.0, + "probability": 0.9819 + }, + { + "start": 4387.64, + "end": 4390.08, + "probability": 0.9702 + }, + { + "start": 4390.08, + "end": 4393.3, + "probability": 0.9833 + }, + { + "start": 4393.72, + "end": 4397.28, + "probability": 0.7482 + }, + { + "start": 4397.96, + "end": 4401.44, + "probability": 0.8972 + }, + { + "start": 4402.82, + "end": 4406.02, + "probability": 0.9875 + }, + { + "start": 4406.02, + "end": 4408.78, + "probability": 0.6892 + }, + { + "start": 4409.28, + "end": 4414.74, + "probability": 0.5616 + }, + { + "start": 4415.56, + "end": 4419.92, + "probability": 0.9527 + }, + { + "start": 4420.98, + "end": 4422.36, + "probability": 0.4258 + }, + { + "start": 4424.94, + "end": 4426.58, + "probability": 0.9816 + }, + { + "start": 4426.7, + "end": 4428.2, + "probability": 0.9952 + }, + { + "start": 4428.38, + "end": 4431.8, + "probability": 0.9953 + }, + { + "start": 4432.56, + "end": 4435.68, + "probability": 0.8713 + }, + { + "start": 4435.68, + "end": 4439.92, + "probability": 0.995 + }, + { + "start": 4441.26, + "end": 4444.36, + "probability": 0.995 + }, + { + "start": 4444.82, + "end": 4445.52, + "probability": 0.5737 + }, + { + "start": 4446.1, + "end": 4450.0, + "probability": 0.9898 + }, + { + "start": 4450.64, + "end": 4453.18, + "probability": 0.8917 + }, + { + "start": 4453.82, + "end": 4455.08, + "probability": 0.9349 + }, + { + "start": 4456.26, + "end": 4460.56, + "probability": 0.8797 + }, + { + "start": 4460.72, + "end": 4463.78, + "probability": 0.9969 + }, + { + "start": 4464.44, + "end": 4466.24, + "probability": 0.834 + }, + { + "start": 4467.04, + "end": 4470.08, + "probability": 0.5678 + }, + { + "start": 4470.74, + "end": 4471.76, + "probability": 0.6206 + }, + { + "start": 4471.84, + "end": 4474.12, + "probability": 0.9463 + }, + { + "start": 4474.56, + "end": 4476.2, + "probability": 0.9563 + }, + { + "start": 4476.22, + "end": 4476.48, + "probability": 0.3623 + }, + { + "start": 4476.64, + "end": 4477.86, + "probability": 0.6788 + }, + { + "start": 4478.42, + "end": 4479.42, + "probability": 0.9878 + }, + { + "start": 4480.64, + "end": 4483.69, + "probability": 0.9978 + }, + { + "start": 4484.2, + "end": 4484.86, + "probability": 0.87 + }, + { + "start": 4486.3, + "end": 4489.74, + "probability": 0.9556 + }, + { + "start": 4490.32, + "end": 4493.36, + "probability": 0.8464 + }, + { + "start": 4493.82, + "end": 4495.4, + "probability": 0.837 + }, + { + "start": 4496.18, + "end": 4497.98, + "probability": 0.9919 + }, + { + "start": 4499.12, + "end": 4500.98, + "probability": 0.7515 + }, + { + "start": 4501.5, + "end": 4503.08, + "probability": 0.9575 + }, + { + "start": 4503.84, + "end": 4505.66, + "probability": 0.3733 + }, + { + "start": 4505.82, + "end": 4510.54, + "probability": 0.9868 + }, + { + "start": 4511.3, + "end": 4514.66, + "probability": 0.7303 + }, + { + "start": 4515.1, + "end": 4515.7, + "probability": 0.4727 + }, + { + "start": 4515.76, + "end": 4516.0, + "probability": 0.7393 + }, + { + "start": 4516.08, + "end": 4517.42, + "probability": 0.767 + }, + { + "start": 4518.24, + "end": 4520.9, + "probability": 0.8415 + }, + { + "start": 4520.9, + "end": 4523.8, + "probability": 0.8685 + }, + { + "start": 4524.46, + "end": 4527.42, + "probability": 0.7882 + }, + { + "start": 4527.64, + "end": 4528.15, + "probability": 0.4581 + }, + { + "start": 4528.46, + "end": 4529.0, + "probability": 0.6617 + }, + { + "start": 4529.06, + "end": 4529.86, + "probability": 0.9369 + }, + { + "start": 4530.7, + "end": 4533.28, + "probability": 0.9398 + }, + { + "start": 4533.64, + "end": 4535.96, + "probability": 0.898 + }, + { + "start": 4536.18, + "end": 4538.98, + "probability": 0.9843 + }, + { + "start": 4539.56, + "end": 4543.48, + "probability": 0.806 + }, + { + "start": 4544.06, + "end": 4545.78, + "probability": 0.852 + }, + { + "start": 4545.96, + "end": 4547.04, + "probability": 0.771 + }, + { + "start": 4547.42, + "end": 4549.68, + "probability": 0.9593 + }, + { + "start": 4550.8, + "end": 4551.8, + "probability": 0.7899 + }, + { + "start": 4552.12, + "end": 4554.52, + "probability": 0.9321 + }, + { + "start": 4555.02, + "end": 4556.16, + "probability": 0.9204 + }, + { + "start": 4556.24, + "end": 4557.88, + "probability": 0.8341 + }, + { + "start": 4558.56, + "end": 4562.18, + "probability": 0.8658 + }, + { + "start": 4562.18, + "end": 4562.58, + "probability": 0.8575 + }, + { + "start": 4562.8, + "end": 4564.98, + "probability": 0.9468 + }, + { + "start": 4565.78, + "end": 4570.02, + "probability": 0.7277 + }, + { + "start": 4570.74, + "end": 4571.14, + "probability": 0.3835 + }, + { + "start": 4571.14, + "end": 4574.42, + "probability": 0.9831 + }, + { + "start": 4575.56, + "end": 4576.02, + "probability": 0.3147 + }, + { + "start": 4576.02, + "end": 4579.84, + "probability": 0.864 + }, + { + "start": 4580.0, + "end": 4580.04, + "probability": 0.0143 + }, + { + "start": 4580.04, + "end": 4583.58, + "probability": 0.9678 + }, + { + "start": 4583.58, + "end": 4588.02, + "probability": 0.832 + }, + { + "start": 4588.62, + "end": 4589.18, + "probability": 0.2516 + }, + { + "start": 4589.68, + "end": 4593.9, + "probability": 0.9685 + }, + { + "start": 4594.32, + "end": 4594.68, + "probability": 0.3034 + }, + { + "start": 4594.84, + "end": 4598.36, + "probability": 0.9753 + }, + { + "start": 4598.88, + "end": 4598.98, + "probability": 0.0084 + }, + { + "start": 4599.28, + "end": 4602.0, + "probability": 0.964 + }, + { + "start": 4602.74, + "end": 4604.82, + "probability": 0.7057 + }, + { + "start": 4606.68, + "end": 4608.0, + "probability": 0.2218 + }, + { + "start": 4608.6, + "end": 4609.48, + "probability": 0.5682 + }, + { + "start": 4610.38, + "end": 4613.96, + "probability": 0.7581 + }, + { + "start": 4614.52, + "end": 4617.92, + "probability": 0.8204 + }, + { + "start": 4618.18, + "end": 4619.58, + "probability": 0.8186 + }, + { + "start": 4619.72, + "end": 4620.64, + "probability": 0.8833 + }, + { + "start": 4621.28, + "end": 4622.94, + "probability": 0.9897 + }, + { + "start": 4623.32, + "end": 4626.39, + "probability": 0.854 + }, + { + "start": 4627.06, + "end": 4627.72, + "probability": 0.712 + }, + { + "start": 4627.86, + "end": 4628.74, + "probability": 0.9702 + }, + { + "start": 4629.06, + "end": 4631.04, + "probability": 0.9596 + }, + { + "start": 4631.88, + "end": 4635.2, + "probability": 0.9936 + }, + { + "start": 4635.88, + "end": 4637.38, + "probability": 0.952 + }, + { + "start": 4637.78, + "end": 4639.24, + "probability": 0.9934 + }, + { + "start": 4639.68, + "end": 4641.08, + "probability": 0.8048 + }, + { + "start": 4641.18, + "end": 4642.16, + "probability": 0.696 + }, + { + "start": 4642.22, + "end": 4644.08, + "probability": 0.9933 + }, + { + "start": 4644.5, + "end": 4647.3, + "probability": 0.9976 + }, + { + "start": 4647.82, + "end": 4652.44, + "probability": 0.7794 + }, + { + "start": 4652.5, + "end": 4654.74, + "probability": 0.9504 + }, + { + "start": 4655.04, + "end": 4655.54, + "probability": 0.9438 + }, + { + "start": 4656.7, + "end": 4659.46, + "probability": 0.9397 + }, + { + "start": 4659.56, + "end": 4659.82, + "probability": 0.8088 + }, + { + "start": 4661.04, + "end": 4661.6, + "probability": 0.8397 + }, + { + "start": 4663.46, + "end": 4663.7, + "probability": 0.7931 + }, + { + "start": 4664.28, + "end": 4665.42, + "probability": 0.9982 + }, + { + "start": 4667.0, + "end": 4667.64, + "probability": 0.7152 + }, + { + "start": 4670.24, + "end": 4673.1, + "probability": 0.8382 + }, + { + "start": 4673.86, + "end": 4674.36, + "probability": 0.9231 + }, + { + "start": 4674.48, + "end": 4678.64, + "probability": 0.8836 + }, + { + "start": 4679.26, + "end": 4683.72, + "probability": 0.98 + }, + { + "start": 4683.82, + "end": 4686.9, + "probability": 0.9736 + }, + { + "start": 4687.54, + "end": 4691.76, + "probability": 0.9067 + }, + { + "start": 4692.56, + "end": 4694.68, + "probability": 0.993 + }, + { + "start": 4694.94, + "end": 4696.3, + "probability": 0.9371 + }, + { + "start": 4696.48, + "end": 4697.7, + "probability": 0.8388 + }, + { + "start": 4698.0, + "end": 4700.3, + "probability": 0.9141 + }, + { + "start": 4701.06, + "end": 4706.22, + "probability": 0.9904 + }, + { + "start": 4706.8, + "end": 4711.8, + "probability": 0.9683 + }, + { + "start": 4712.22, + "end": 4714.14, + "probability": 0.9421 + }, + { + "start": 4714.36, + "end": 4721.6, + "probability": 0.9657 + }, + { + "start": 4721.72, + "end": 4724.42, + "probability": 0.9739 + }, + { + "start": 4725.42, + "end": 4728.3, + "probability": 0.9545 + }, + { + "start": 4728.8, + "end": 4730.12, + "probability": 0.8406 + }, + { + "start": 4730.3, + "end": 4730.88, + "probability": 0.8604 + }, + { + "start": 4730.94, + "end": 4733.4, + "probability": 0.9707 + }, + { + "start": 4734.02, + "end": 4737.98, + "probability": 0.901 + }, + { + "start": 4739.22, + "end": 4740.5, + "probability": 0.8838 + }, + { + "start": 4740.74, + "end": 4744.38, + "probability": 0.9064 + }, + { + "start": 4744.58, + "end": 4745.58, + "probability": 0.8188 + }, + { + "start": 4746.62, + "end": 4747.6, + "probability": 0.2615 + }, + { + "start": 4750.44, + "end": 4751.24, + "probability": 0.3583 + }, + { + "start": 4751.62, + "end": 4752.72, + "probability": 0.9816 + }, + { + "start": 4752.84, + "end": 4753.3, + "probability": 0.6919 + }, + { + "start": 4753.7, + "end": 4754.38, + "probability": 0.8852 + }, + { + "start": 4754.86, + "end": 4757.7, + "probability": 0.9869 + }, + { + "start": 4758.38, + "end": 4758.96, + "probability": 0.819 + }, + { + "start": 4759.14, + "end": 4763.22, + "probability": 0.8265 + }, + { + "start": 4764.54, + "end": 4767.2, + "probability": 0.5362 + }, + { + "start": 4767.22, + "end": 4768.92, + "probability": 0.598 + }, + { + "start": 4769.84, + "end": 4774.42, + "probability": 0.9331 + }, + { + "start": 4775.18, + "end": 4776.2, + "probability": 0.7158 + }, + { + "start": 4777.24, + "end": 4779.78, + "probability": 0.887 + }, + { + "start": 4780.84, + "end": 4783.12, + "probability": 0.9639 + }, + { + "start": 4783.84, + "end": 4786.62, + "probability": 0.8262 + }, + { + "start": 4787.3, + "end": 4790.34, + "probability": 0.9471 + }, + { + "start": 4791.12, + "end": 4793.5, + "probability": 0.8077 + }, + { + "start": 4794.2, + "end": 4794.62, + "probability": 0.8292 + }, + { + "start": 4794.72, + "end": 4798.18, + "probability": 0.7578 + }, + { + "start": 4799.34, + "end": 4799.88, + "probability": 0.8464 + }, + { + "start": 4800.44, + "end": 4801.72, + "probability": 0.9912 + }, + { + "start": 4801.84, + "end": 4802.04, + "probability": 0.718 + }, + { + "start": 4803.58, + "end": 4804.58, + "probability": 0.8558 + }, + { + "start": 4806.14, + "end": 4809.04, + "probability": 0.685 + }, + { + "start": 4813.98, + "end": 4816.48, + "probability": 0.7804 + }, + { + "start": 4817.14, + "end": 4818.5, + "probability": 0.8379 + }, + { + "start": 4819.32, + "end": 4819.42, + "probability": 0.0456 + }, + { + "start": 4819.42, + "end": 4819.92, + "probability": 0.4557 + }, + { + "start": 4820.26, + "end": 4822.28, + "probability": 0.8768 + }, + { + "start": 4822.28, + "end": 4826.72, + "probability": 0.9896 + }, + { + "start": 4827.72, + "end": 4832.72, + "probability": 0.772 + }, + { + "start": 4832.72, + "end": 4837.48, + "probability": 0.9979 + }, + { + "start": 4838.56, + "end": 4841.16, + "probability": 0.8757 + }, + { + "start": 4841.32, + "end": 4842.08, + "probability": 0.7727 + }, + { + "start": 4842.22, + "end": 4845.32, + "probability": 0.7293 + }, + { + "start": 4845.6, + "end": 4848.06, + "probability": 0.999 + }, + { + "start": 4848.12, + "end": 4849.96, + "probability": 0.701 + }, + { + "start": 4850.3, + "end": 4851.72, + "probability": 0.9376 + }, + { + "start": 4851.78, + "end": 4853.46, + "probability": 0.9609 + }, + { + "start": 4853.9, + "end": 4856.02, + "probability": 0.7929 + }, + { + "start": 4856.02, + "end": 4858.86, + "probability": 0.9417 + }, + { + "start": 4859.24, + "end": 4859.4, + "probability": 0.5432 + }, + { + "start": 4860.54, + "end": 4862.28, + "probability": 0.5245 + }, + { + "start": 4862.92, + "end": 4864.77, + "probability": 0.7428 + }, + { + "start": 4865.3, + "end": 4871.1, + "probability": 0.959 + }, + { + "start": 4872.7, + "end": 4875.54, + "probability": 0.8524 + }, + { + "start": 4875.68, + "end": 4879.32, + "probability": 0.9912 + }, + { + "start": 4879.32, + "end": 4883.18, + "probability": 0.9646 + }, + { + "start": 4883.86, + "end": 4887.02, + "probability": 0.878 + }, + { + "start": 4887.74, + "end": 4891.96, + "probability": 0.9768 + }, + { + "start": 4893.06, + "end": 4898.04, + "probability": 0.8974 + }, + { + "start": 4898.68, + "end": 4901.4, + "probability": 0.9858 + }, + { + "start": 4901.4, + "end": 4904.14, + "probability": 0.8978 + }, + { + "start": 4905.26, + "end": 4907.98, + "probability": 0.9499 + }, + { + "start": 4908.36, + "end": 4912.22, + "probability": 0.8615 + }, + { + "start": 4913.9, + "end": 4916.56, + "probability": 0.9976 + }, + { + "start": 4917.28, + "end": 4919.78, + "probability": 0.9799 + }, + { + "start": 4919.78, + "end": 4922.66, + "probability": 0.9891 + }, + { + "start": 4923.38, + "end": 4926.32, + "probability": 0.807 + }, + { + "start": 4926.32, + "end": 4930.32, + "probability": 0.9794 + }, + { + "start": 4931.38, + "end": 4934.8, + "probability": 0.9785 + }, + { + "start": 4935.04, + "end": 4940.96, + "probability": 0.8395 + }, + { + "start": 4941.06, + "end": 4942.44, + "probability": 0.6063 + }, + { + "start": 4943.08, + "end": 4945.4, + "probability": 0.9777 + }, + { + "start": 4946.3, + "end": 4949.66, + "probability": 0.9626 + }, + { + "start": 4950.23, + "end": 4953.84, + "probability": 0.9816 + }, + { + "start": 4954.02, + "end": 4957.06, + "probability": 0.9204 + }, + { + "start": 4957.88, + "end": 4961.82, + "probability": 0.9921 + }, + { + "start": 4962.58, + "end": 4964.6, + "probability": 0.7306 + }, + { + "start": 4965.18, + "end": 4966.76, + "probability": 0.7559 + }, + { + "start": 4966.92, + "end": 4967.62, + "probability": 0.974 + }, + { + "start": 4967.68, + "end": 4968.7, + "probability": 0.9585 + }, + { + "start": 4969.64, + "end": 4971.14, + "probability": 0.8311 + }, + { + "start": 4971.38, + "end": 4973.24, + "probability": 0.9782 + }, + { + "start": 4973.26, + "end": 4974.42, + "probability": 0.9105 + }, + { + "start": 4975.76, + "end": 4977.86, + "probability": 0.8568 + }, + { + "start": 4978.42, + "end": 4980.14, + "probability": 0.9802 + }, + { + "start": 4980.68, + "end": 4983.28, + "probability": 0.9761 + }, + { + "start": 4984.12, + "end": 4985.7, + "probability": 0.8387 + }, + { + "start": 4985.84, + "end": 4987.34, + "probability": 0.9883 + }, + { + "start": 4987.98, + "end": 4990.42, + "probability": 0.808 + }, + { + "start": 4990.44, + "end": 4993.78, + "probability": 0.6479 + }, + { + "start": 4994.34, + "end": 4996.16, + "probability": 0.8964 + }, + { + "start": 4996.2, + "end": 4999.82, + "probability": 0.7932 + }, + { + "start": 4999.9, + "end": 5001.7, + "probability": 0.7056 + }, + { + "start": 5002.74, + "end": 5003.78, + "probability": 0.9879 + }, + { + "start": 5005.08, + "end": 5006.38, + "probability": 0.8279 + }, + { + "start": 5007.18, + "end": 5009.0, + "probability": 0.9851 + }, + { + "start": 5009.12, + "end": 5009.48, + "probability": 0.8862 + }, + { + "start": 5009.56, + "end": 5010.84, + "probability": 0.8136 + }, + { + "start": 5011.54, + "end": 5015.06, + "probability": 0.9712 + }, + { + "start": 5015.76, + "end": 5019.4, + "probability": 0.6004 + }, + { + "start": 5021.32, + "end": 5021.32, + "probability": 0.1425 + }, + { + "start": 5021.32, + "end": 5023.0, + "probability": 0.9192 + }, + { + "start": 5023.18, + "end": 5025.54, + "probability": 0.9758 + }, + { + "start": 5026.14, + "end": 5028.14, + "probability": 0.6781 + }, + { + "start": 5028.76, + "end": 5031.4, + "probability": 0.919 + }, + { + "start": 5031.4, + "end": 5036.08, + "probability": 0.8858 + }, + { + "start": 5036.08, + "end": 5040.52, + "probability": 0.8588 + }, + { + "start": 5041.1, + "end": 5044.26, + "probability": 0.9655 + }, + { + "start": 5045.06, + "end": 5049.96, + "probability": 0.6646 + }, + { + "start": 5050.48, + "end": 5053.46, + "probability": 0.9764 + }, + { + "start": 5053.46, + "end": 5055.26, + "probability": 0.9183 + }, + { + "start": 5055.88, + "end": 5058.04, + "probability": 0.9513 + }, + { + "start": 5058.7, + "end": 5063.52, + "probability": 0.8331 + }, + { + "start": 5064.74, + "end": 5070.24, + "probability": 0.7255 + }, + { + "start": 5071.02, + "end": 5074.6, + "probability": 0.8986 + }, + { + "start": 5074.6, + "end": 5078.56, + "probability": 0.9694 + }, + { + "start": 5079.28, + "end": 5082.48, + "probability": 0.9293 + }, + { + "start": 5083.02, + "end": 5085.16, + "probability": 0.9151 + }, + { + "start": 5085.64, + "end": 5087.8, + "probability": 0.9645 + }, + { + "start": 5088.06, + "end": 5088.64, + "probability": 0.6252 + }, + { + "start": 5089.68, + "end": 5091.21, + "probability": 0.9503 + }, + { + "start": 5091.76, + "end": 5096.42, + "probability": 0.8505 + }, + { + "start": 5097.2, + "end": 5100.6, + "probability": 0.6161 + }, + { + "start": 5101.08, + "end": 5101.68, + "probability": 0.5435 + }, + { + "start": 5101.78, + "end": 5105.94, + "probability": 0.9596 + }, + { + "start": 5106.88, + "end": 5109.1, + "probability": 0.8608 + }, + { + "start": 5109.26, + "end": 5112.24, + "probability": 0.8709 + }, + { + "start": 5113.59, + "end": 5116.28, + "probability": 0.2578 + }, + { + "start": 5116.4, + "end": 5122.14, + "probability": 0.9061 + }, + { + "start": 5122.26, + "end": 5124.7, + "probability": 0.8031 + }, + { + "start": 5125.24, + "end": 5127.48, + "probability": 0.9891 + }, + { + "start": 5128.24, + "end": 5132.16, + "probability": 0.9465 + }, + { + "start": 5132.86, + "end": 5137.5, + "probability": 0.9592 + }, + { + "start": 5137.56, + "end": 5139.76, + "probability": 0.9247 + }, + { + "start": 5140.64, + "end": 5142.74, + "probability": 0.5645 + }, + { + "start": 5142.78, + "end": 5144.5, + "probability": 0.9679 + }, + { + "start": 5145.02, + "end": 5146.06, + "probability": 0.7491 + }, + { + "start": 5146.34, + "end": 5150.56, + "probability": 0.8131 + }, + { + "start": 5150.72, + "end": 5152.7, + "probability": 0.7156 + }, + { + "start": 5153.02, + "end": 5154.02, + "probability": 0.9818 + }, + { + "start": 5154.56, + "end": 5156.58, + "probability": 0.9307 + }, + { + "start": 5157.22, + "end": 5158.32, + "probability": 0.8625 + }, + { + "start": 5158.68, + "end": 5159.2, + "probability": 0.7171 + }, + { + "start": 5159.38, + "end": 5160.16, + "probability": 0.873 + }, + { + "start": 5160.2, + "end": 5161.46, + "probability": 0.9014 + }, + { + "start": 5162.08, + "end": 5164.0, + "probability": 0.8739 + }, + { + "start": 5164.58, + "end": 5166.64, + "probability": 0.8521 + }, + { + "start": 5166.7, + "end": 5168.7, + "probability": 0.9238 + }, + { + "start": 5169.57, + "end": 5171.58, + "probability": 0.7971 + }, + { + "start": 5171.62, + "end": 5171.92, + "probability": 0.7802 + }, + { + "start": 5172.8, + "end": 5173.36, + "probability": 0.7438 + }, + { + "start": 5175.06, + "end": 5177.59, + "probability": 0.6846 + }, + { + "start": 5177.68, + "end": 5180.38, + "probability": 0.7012 + }, + { + "start": 5188.24, + "end": 5189.02, + "probability": 0.6226 + }, + { + "start": 5189.9, + "end": 5193.92, + "probability": 0.8761 + }, + { + "start": 5194.14, + "end": 5195.98, + "probability": 0.5994 + }, + { + "start": 5196.0, + "end": 5200.12, + "probability": 0.9203 + }, + { + "start": 5200.12, + "end": 5204.08, + "probability": 0.9837 + }, + { + "start": 5204.84, + "end": 5208.44, + "probability": 0.7687 + }, + { + "start": 5209.04, + "end": 5210.38, + "probability": 0.8032 + }, + { + "start": 5210.46, + "end": 5210.92, + "probability": 0.807 + }, + { + "start": 5211.06, + "end": 5213.04, + "probability": 0.8964 + }, + { + "start": 5214.16, + "end": 5215.21, + "probability": 0.2932 + }, + { + "start": 5215.72, + "end": 5220.2, + "probability": 0.9136 + }, + { + "start": 5221.04, + "end": 5221.98, + "probability": 0.5499 + }, + { + "start": 5222.54, + "end": 5224.56, + "probability": 0.748 + }, + { + "start": 5225.04, + "end": 5225.39, + "probability": 0.451 + }, + { + "start": 5226.24, + "end": 5232.7, + "probability": 0.9661 + }, + { + "start": 5232.79, + "end": 5239.64, + "probability": 0.9711 + }, + { + "start": 5239.64, + "end": 5246.44, + "probability": 0.9971 + }, + { + "start": 5249.06, + "end": 5252.74, + "probability": 0.6319 + }, + { + "start": 5253.56, + "end": 5257.56, + "probability": 0.7064 + }, + { + "start": 5258.54, + "end": 5261.2, + "probability": 0.9595 + }, + { + "start": 5261.42, + "end": 5262.2, + "probability": 0.7356 + }, + { + "start": 5262.92, + "end": 5266.56, + "probability": 0.9829 + }, + { + "start": 5267.4, + "end": 5271.5, + "probability": 0.7503 + }, + { + "start": 5271.5, + "end": 5276.74, + "probability": 0.9978 + }, + { + "start": 5276.88, + "end": 5280.88, + "probability": 0.8052 + }, + { + "start": 5281.62, + "end": 5285.78, + "probability": 0.7442 + }, + { + "start": 5286.56, + "end": 5291.5, + "probability": 0.9832 + }, + { + "start": 5291.5, + "end": 5294.1, + "probability": 0.9667 + }, + { + "start": 5294.86, + "end": 5295.96, + "probability": 0.6835 + }, + { + "start": 5296.54, + "end": 5296.86, + "probability": 0.5393 + }, + { + "start": 5296.92, + "end": 5300.92, + "probability": 0.96 + }, + { + "start": 5300.94, + "end": 5305.34, + "probability": 0.7994 + }, + { + "start": 5305.76, + "end": 5306.02, + "probability": 0.7084 + }, + { + "start": 5307.56, + "end": 5308.44, + "probability": 0.7704 + }, + { + "start": 5308.66, + "end": 5309.28, + "probability": 0.6801 + }, + { + "start": 5318.4, + "end": 5319.74, + "probability": 0.9463 + }, + { + "start": 5320.92, + "end": 5321.74, + "probability": 0.6768 + }, + { + "start": 5322.3, + "end": 5326.5, + "probability": 0.9366 + }, + { + "start": 5326.5, + "end": 5331.7, + "probability": 0.9878 + }, + { + "start": 5332.66, + "end": 5333.66, + "probability": 0.7577 + }, + { + "start": 5334.28, + "end": 5338.24, + "probability": 0.9417 + }, + { + "start": 5338.36, + "end": 5339.04, + "probability": 0.9323 + }, + { + "start": 5339.74, + "end": 5340.96, + "probability": 0.9376 + }, + { + "start": 5341.04, + "end": 5341.26, + "probability": 0.5734 + }, + { + "start": 5342.18, + "end": 5344.16, + "probability": 0.893 + }, + { + "start": 5344.4, + "end": 5345.74, + "probability": 0.976 + }, + { + "start": 5345.84, + "end": 5346.76, + "probability": 0.9922 + }, + { + "start": 5348.24, + "end": 5349.66, + "probability": 0.6057 + }, + { + "start": 5350.3, + "end": 5352.1, + "probability": 0.9824 + }, + { + "start": 5353.3, + "end": 5354.32, + "probability": 0.2618 + }, + { + "start": 5354.5, + "end": 5354.8, + "probability": 0.2493 + }, + { + "start": 5354.8, + "end": 5354.82, + "probability": 0.2011 + }, + { + "start": 5355.1, + "end": 5356.74, + "probability": 0.4576 + }, + { + "start": 5356.76, + "end": 5357.9, + "probability": 0.4642 + }, + { + "start": 5358.18, + "end": 5359.06, + "probability": 0.9456 + }, + { + "start": 5359.12, + "end": 5360.02, + "probability": 0.966 + }, + { + "start": 5360.78, + "end": 5362.18, + "probability": 0.8496 + }, + { + "start": 5362.44, + "end": 5364.76, + "probability": 0.8822 + }, + { + "start": 5364.84, + "end": 5366.12, + "probability": 0.7775 + }, + { + "start": 5366.62, + "end": 5373.62, + "probability": 0.9539 + }, + { + "start": 5373.62, + "end": 5374.34, + "probability": 0.6698 + }, + { + "start": 5374.98, + "end": 5377.76, + "probability": 0.9893 + }, + { + "start": 5378.08, + "end": 5379.18, + "probability": 0.9961 + }, + { + "start": 5379.28, + "end": 5380.1, + "probability": 0.9478 + }, + { + "start": 5380.48, + "end": 5381.7, + "probability": 0.9665 + }, + { + "start": 5382.16, + "end": 5385.62, + "probability": 0.9898 + }, + { + "start": 5386.52, + "end": 5389.02, + "probability": 0.8936 + }, + { + "start": 5389.14, + "end": 5392.84, + "probability": 0.9928 + }, + { + "start": 5393.12, + "end": 5394.08, + "probability": 0.8423 + }, + { + "start": 5394.54, + "end": 5395.44, + "probability": 0.2465 + }, + { + "start": 5395.44, + "end": 5396.7, + "probability": 0.676 + }, + { + "start": 5397.32, + "end": 5398.92, + "probability": 0.9123 + }, + { + "start": 5399.0, + "end": 5401.13, + "probability": 0.9447 + }, + { + "start": 5401.62, + "end": 5403.99, + "probability": 0.9434 + }, + { + "start": 5404.82, + "end": 5406.62, + "probability": 0.7562 + }, + { + "start": 5406.72, + "end": 5408.38, + "probability": 0.9665 + }, + { + "start": 5408.46, + "end": 5408.92, + "probability": 0.4728 + }, + { + "start": 5409.48, + "end": 5410.66, + "probability": 0.9353 + }, + { + "start": 5410.74, + "end": 5411.42, + "probability": 0.756 + }, + { + "start": 5411.56, + "end": 5411.94, + "probability": 0.9356 + }, + { + "start": 5411.94, + "end": 5412.52, + "probability": 0.9377 + }, + { + "start": 5412.92, + "end": 5413.92, + "probability": 0.9827 + }, + { + "start": 5414.8, + "end": 5415.32, + "probability": 0.7122 + }, + { + "start": 5416.08, + "end": 5416.58, + "probability": 0.8698 + }, + { + "start": 5416.68, + "end": 5418.06, + "probability": 0.7605 + }, + { + "start": 5418.18, + "end": 5419.86, + "probability": 0.7863 + }, + { + "start": 5421.6, + "end": 5425.18, + "probability": 0.5751 + }, + { + "start": 5425.26, + "end": 5426.38, + "probability": 0.8748 + }, + { + "start": 5426.94, + "end": 5427.42, + "probability": 0.7887 + }, + { + "start": 5427.92, + "end": 5428.28, + "probability": 0.4976 + }, + { + "start": 5429.72, + "end": 5430.82, + "probability": 0.9215 + }, + { + "start": 5431.54, + "end": 5435.38, + "probability": 0.9186 + }, + { + "start": 5436.54, + "end": 5441.0, + "probability": 0.9859 + }, + { + "start": 5454.42, + "end": 5456.08, + "probability": 0.2463 + }, + { + "start": 5456.44, + "end": 5456.46, + "probability": 0.3103 + }, + { + "start": 5456.46, + "end": 5457.38, + "probability": 0.5158 + }, + { + "start": 5458.76, + "end": 5459.2, + "probability": 0.1674 + }, + { + "start": 5459.4, + "end": 5460.66, + "probability": 0.7089 + }, + { + "start": 5461.3, + "end": 5461.7, + "probability": 0.4491 + }, + { + "start": 5469.18, + "end": 5469.36, + "probability": 0.0007 + }, + { + "start": 5471.82, + "end": 5479.92, + "probability": 0.6276 + }, + { + "start": 5480.84, + "end": 5484.54, + "probability": 0.8956 + }, + { + "start": 5485.5, + "end": 5486.83, + "probability": 0.5876 + }, + { + "start": 5488.42, + "end": 5490.82, + "probability": 0.9938 + }, + { + "start": 5491.44, + "end": 5493.96, + "probability": 0.9852 + }, + { + "start": 5496.06, + "end": 5505.3, + "probability": 0.8406 + }, + { + "start": 5505.3, + "end": 5511.82, + "probability": 0.788 + }, + { + "start": 5512.86, + "end": 5517.66, + "probability": 0.9777 + }, + { + "start": 5518.62, + "end": 5520.08, + "probability": 0.9563 + }, + { + "start": 5521.4, + "end": 5523.84, + "probability": 0.8747 + }, + { + "start": 5526.22, + "end": 5530.1, + "probability": 0.6863 + }, + { + "start": 5531.46, + "end": 5536.54, + "probability": 0.981 + }, + { + "start": 5536.68, + "end": 5537.98, + "probability": 0.6614 + }, + { + "start": 5538.08, + "end": 5538.56, + "probability": 0.9736 + }, + { + "start": 5539.26, + "end": 5540.0, + "probability": 0.7141 + }, + { + "start": 5540.8, + "end": 5545.98, + "probability": 0.901 + }, + { + "start": 5546.16, + "end": 5549.82, + "probability": 0.9294 + }, + { + "start": 5550.68, + "end": 5553.2, + "probability": 0.9756 + }, + { + "start": 5554.02, + "end": 5556.38, + "probability": 0.9294 + }, + { + "start": 5556.66, + "end": 5558.4, + "probability": 0.9293 + }, + { + "start": 5559.16, + "end": 5560.54, + "probability": 0.9596 + }, + { + "start": 5561.3, + "end": 5561.64, + "probability": 0.3989 + }, + { + "start": 5561.72, + "end": 5564.58, + "probability": 0.8582 + }, + { + "start": 5564.64, + "end": 5567.14, + "probability": 0.8719 + }, + { + "start": 5567.3, + "end": 5568.4, + "probability": 0.819 + }, + { + "start": 5569.0, + "end": 5571.98, + "probability": 0.9877 + }, + { + "start": 5572.32, + "end": 5573.0, + "probability": 0.7351 + }, + { + "start": 5573.64, + "end": 5575.42, + "probability": 0.7856 + }, + { + "start": 5575.52, + "end": 5581.04, + "probability": 0.909 + }, + { + "start": 5581.64, + "end": 5583.12, + "probability": 0.8831 + }, + { + "start": 5584.5, + "end": 5587.38, + "probability": 0.967 + }, + { + "start": 5587.38, + "end": 5591.04, + "probability": 0.9774 + }, + { + "start": 5591.48, + "end": 5593.6, + "probability": 0.7174 + }, + { + "start": 5593.98, + "end": 5596.78, + "probability": 0.9829 + }, + { + "start": 5597.38, + "end": 5601.06, + "probability": 0.693 + }, + { + "start": 5601.86, + "end": 5602.56, + "probability": 0.757 + }, + { + "start": 5602.64, + "end": 5606.13, + "probability": 0.9217 + }, + { + "start": 5606.52, + "end": 5611.54, + "probability": 0.8738 + }, + { + "start": 5612.02, + "end": 5617.1, + "probability": 0.8755 + }, + { + "start": 5618.9, + "end": 5623.8, + "probability": 0.9785 + }, + { + "start": 5624.56, + "end": 5628.64, + "probability": 0.854 + }, + { + "start": 5628.64, + "end": 5632.78, + "probability": 0.9484 + }, + { + "start": 5633.32, + "end": 5639.1, + "probability": 0.9827 + }, + { + "start": 5641.0, + "end": 5643.2, + "probability": 0.6607 + }, + { + "start": 5643.76, + "end": 5647.66, + "probability": 0.7137 + }, + { + "start": 5648.64, + "end": 5651.42, + "probability": 0.836 + }, + { + "start": 5652.2, + "end": 5653.84, + "probability": 0.678 + }, + { + "start": 5654.12, + "end": 5658.84, + "probability": 0.9433 + }, + { + "start": 5658.9, + "end": 5662.58, + "probability": 0.874 + }, + { + "start": 5663.14, + "end": 5664.24, + "probability": 0.5941 + }, + { + "start": 5664.24, + "end": 5664.9, + "probability": 0.6037 + }, + { + "start": 5664.98, + "end": 5667.32, + "probability": 0.9933 + }, + { + "start": 5667.92, + "end": 5668.68, + "probability": 0.8759 + }, + { + "start": 5669.3, + "end": 5672.98, + "probability": 0.8281 + }, + { + "start": 5673.64, + "end": 5677.5, + "probability": 0.9762 + }, + { + "start": 5677.5, + "end": 5680.62, + "probability": 0.9512 + }, + { + "start": 5681.54, + "end": 5684.82, + "probability": 0.9945 + }, + { + "start": 5684.82, + "end": 5689.5, + "probability": 0.9601 + }, + { + "start": 5690.64, + "end": 5693.66, + "probability": 0.514 + }, + { + "start": 5694.48, + "end": 5699.5, + "probability": 0.8975 + }, + { + "start": 5700.24, + "end": 5705.26, + "probability": 0.9578 + }, + { + "start": 5705.26, + "end": 5709.18, + "probability": 0.967 + }, + { + "start": 5710.02, + "end": 5712.92, + "probability": 0.8283 + }, + { + "start": 5712.92, + "end": 5716.44, + "probability": 0.8238 + }, + { + "start": 5717.12, + "end": 5720.52, + "probability": 0.6152 + }, + { + "start": 5722.16, + "end": 5722.5, + "probability": 0.8095 + }, + { + "start": 5730.58, + "end": 5731.5, + "probability": 0.6877 + }, + { + "start": 5732.66, + "end": 5737.12, + "probability": 0.9673 + }, + { + "start": 5738.0, + "end": 5740.18, + "probability": 0.9959 + }, + { + "start": 5741.3, + "end": 5741.44, + "probability": 0.3194 + }, + { + "start": 5741.56, + "end": 5748.06, + "probability": 0.9963 + }, + { + "start": 5749.24, + "end": 5750.52, + "probability": 0.8004 + }, + { + "start": 5750.82, + "end": 5755.32, + "probability": 0.8317 + }, + { + "start": 5756.3, + "end": 5756.7, + "probability": 0.6946 + }, + { + "start": 5756.86, + "end": 5758.42, + "probability": 0.977 + }, + { + "start": 5758.5, + "end": 5759.7, + "probability": 0.6167 + }, + { + "start": 5759.82, + "end": 5761.18, + "probability": 0.9432 + }, + { + "start": 5761.5, + "end": 5763.48, + "probability": 0.9354 + }, + { + "start": 5763.92, + "end": 5766.06, + "probability": 0.9958 + }, + { + "start": 5766.1, + "end": 5769.16, + "probability": 0.8247 + }, + { + "start": 5769.4, + "end": 5771.04, + "probability": 0.8374 + }, + { + "start": 5771.1, + "end": 5771.78, + "probability": 0.7203 + }, + { + "start": 5772.0, + "end": 5772.96, + "probability": 0.7935 + }, + { + "start": 5773.86, + "end": 5774.24, + "probability": 0.7624 + }, + { + "start": 5774.4, + "end": 5780.4, + "probability": 0.9373 + }, + { + "start": 5781.3, + "end": 5788.76, + "probability": 0.975 + }, + { + "start": 5789.6, + "end": 5790.46, + "probability": 0.8265 + }, + { + "start": 5790.56, + "end": 5792.74, + "probability": 0.9093 + }, + { + "start": 5792.86, + "end": 5794.64, + "probability": 0.9968 + }, + { + "start": 5794.78, + "end": 5795.4, + "probability": 0.9061 + }, + { + "start": 5796.24, + "end": 5801.26, + "probability": 0.9763 + }, + { + "start": 5802.08, + "end": 5805.04, + "probability": 0.991 + }, + { + "start": 5805.04, + "end": 5809.4, + "probability": 0.982 + }, + { + "start": 5809.52, + "end": 5814.1, + "probability": 0.9921 + }, + { + "start": 5814.3, + "end": 5818.72, + "probability": 0.8414 + }, + { + "start": 5818.82, + "end": 5820.78, + "probability": 0.5196 + }, + { + "start": 5820.92, + "end": 5822.08, + "probability": 0.5634 + }, + { + "start": 5822.96, + "end": 5827.56, + "probability": 0.9207 + }, + { + "start": 5827.56, + "end": 5834.02, + "probability": 0.8656 + }, + { + "start": 5834.68, + "end": 5836.78, + "probability": 0.8921 + }, + { + "start": 5837.04, + "end": 5838.22, + "probability": 0.9438 + }, + { + "start": 5838.38, + "end": 5840.38, + "probability": 0.9056 + }, + { + "start": 5840.46, + "end": 5841.54, + "probability": 0.9629 + }, + { + "start": 5841.68, + "end": 5844.96, + "probability": 0.9736 + }, + { + "start": 5845.06, + "end": 5845.74, + "probability": 0.7162 + }, + { + "start": 5846.72, + "end": 5847.76, + "probability": 0.9814 + }, + { + "start": 5847.96, + "end": 5849.2, + "probability": 0.6584 + }, + { + "start": 5849.7, + "end": 5854.1, + "probability": 0.984 + }, + { + "start": 5854.2, + "end": 5856.34, + "probability": 0.7213 + }, + { + "start": 5856.44, + "end": 5858.62, + "probability": 0.9468 + }, + { + "start": 5858.8, + "end": 5864.58, + "probability": 0.9662 + }, + { + "start": 5864.62, + "end": 5865.5, + "probability": 0.7568 + }, + { + "start": 5865.58, + "end": 5866.38, + "probability": 0.9054 + }, + { + "start": 5867.0, + "end": 5868.84, + "probability": 0.7456 + }, + { + "start": 5869.58, + "end": 5870.3, + "probability": 0.9492 + }, + { + "start": 5870.44, + "end": 5871.28, + "probability": 0.9068 + }, + { + "start": 5871.44, + "end": 5874.7, + "probability": 0.9502 + }, + { + "start": 5874.9, + "end": 5877.92, + "probability": 0.8806 + }, + { + "start": 5878.14, + "end": 5879.68, + "probability": 0.9964 + }, + { + "start": 5879.68, + "end": 5882.14, + "probability": 0.9949 + }, + { + "start": 5882.98, + "end": 5885.0, + "probability": 0.7482 + }, + { + "start": 5885.06, + "end": 5885.36, + "probability": 0.7943 + }, + { + "start": 5886.62, + "end": 5888.62, + "probability": 0.8442 + }, + { + "start": 5889.44, + "end": 5889.98, + "probability": 0.5701 + }, + { + "start": 5891.22, + "end": 5892.04, + "probability": 0.9814 + }, + { + "start": 5893.56, + "end": 5896.0, + "probability": 0.8001 + }, + { + "start": 5898.34, + "end": 5899.16, + "probability": 0.0291 + }, + { + "start": 5899.16, + "end": 5900.88, + "probability": 0.8901 + }, + { + "start": 5902.12, + "end": 5904.82, + "probability": 0.8877 + }, + { + "start": 5904.92, + "end": 5906.86, + "probability": 0.9017 + }, + { + "start": 5907.04, + "end": 5909.02, + "probability": 0.8148 + }, + { + "start": 5909.8, + "end": 5911.18, + "probability": 0.914 + }, + { + "start": 5911.28, + "end": 5916.68, + "probability": 0.9921 + }, + { + "start": 5917.76, + "end": 5921.38, + "probability": 0.9985 + }, + { + "start": 5921.64, + "end": 5922.28, + "probability": 0.9125 + }, + { + "start": 5922.32, + "end": 5923.04, + "probability": 0.9478 + }, + { + "start": 5923.5, + "end": 5924.86, + "probability": 0.9916 + }, + { + "start": 5925.02, + "end": 5926.42, + "probability": 0.9326 + }, + { + "start": 5926.52, + "end": 5931.08, + "probability": 0.9246 + }, + { + "start": 5932.3, + "end": 5933.8, + "probability": 0.4279 + }, + { + "start": 5933.82, + "end": 5933.82, + "probability": 0.0173 + }, + { + "start": 5933.82, + "end": 5933.82, + "probability": 0.8279 + }, + { + "start": 5934.02, + "end": 5936.54, + "probability": 0.9941 + }, + { + "start": 5936.68, + "end": 5937.56, + "probability": 0.5839 + }, + { + "start": 5938.2, + "end": 5938.88, + "probability": 0.6505 + }, + { + "start": 5939.12, + "end": 5939.7, + "probability": 0.9357 + }, + { + "start": 5939.74, + "end": 5941.4, + "probability": 0.9766 + }, + { + "start": 5941.64, + "end": 5943.28, + "probability": 0.584 + }, + { + "start": 5943.36, + "end": 5945.16, + "probability": 0.8306 + }, + { + "start": 5945.68, + "end": 5946.66, + "probability": 0.6797 + }, + { + "start": 5947.62, + "end": 5951.46, + "probability": 0.9923 + }, + { + "start": 5951.8, + "end": 5952.28, + "probability": 0.5076 + }, + { + "start": 5952.36, + "end": 5954.26, + "probability": 0.93 + }, + { + "start": 5954.32, + "end": 5955.78, + "probability": 0.9827 + }, + { + "start": 5956.18, + "end": 5959.04, + "probability": 0.864 + }, + { + "start": 5959.62, + "end": 5961.94, + "probability": 0.9683 + }, + { + "start": 5962.36, + "end": 5963.31, + "probability": 0.6061 + }, + { + "start": 5963.64, + "end": 5964.26, + "probability": 0.9295 + }, + { + "start": 5964.32, + "end": 5967.58, + "probability": 0.8916 + }, + { + "start": 5968.16, + "end": 5969.7, + "probability": 0.9244 + }, + { + "start": 5970.12, + "end": 5971.64, + "probability": 0.9924 + }, + { + "start": 5972.92, + "end": 5973.54, + "probability": 0.2459 + }, + { + "start": 5973.66, + "end": 5976.26, + "probability": 0.7395 + }, + { + "start": 5976.42, + "end": 5977.26, + "probability": 0.9402 + }, + { + "start": 5977.82, + "end": 5982.88, + "probability": 0.9553 + }, + { + "start": 5983.3, + "end": 5984.16, + "probability": 0.9705 + }, + { + "start": 5984.2, + "end": 5986.86, + "probability": 0.991 + }, + { + "start": 5987.04, + "end": 5990.08, + "probability": 0.7375 + }, + { + "start": 5990.2, + "end": 5991.16, + "probability": 0.9874 + }, + { + "start": 5991.8, + "end": 5995.22, + "probability": 0.9587 + }, + { + "start": 5995.72, + "end": 5996.26, + "probability": 0.904 + }, + { + "start": 5996.36, + "end": 5997.98, + "probability": 0.9788 + }, + { + "start": 5998.1, + "end": 5999.08, + "probability": 0.928 + }, + { + "start": 5999.42, + "end": 6000.72, + "probability": 0.9956 + }, + { + "start": 6000.8, + "end": 6003.24, + "probability": 0.9567 + }, + { + "start": 6003.48, + "end": 6003.76, + "probability": 0.9106 + }, + { + "start": 6003.9, + "end": 6004.43, + "probability": 0.9181 + }, + { + "start": 6004.88, + "end": 6006.14, + "probability": 0.6724 + }, + { + "start": 6006.18, + "end": 6008.32, + "probability": 0.9706 + }, + { + "start": 6008.72, + "end": 6009.58, + "probability": 0.7799 + }, + { + "start": 6010.14, + "end": 6012.74, + "probability": 0.9937 + }, + { + "start": 6013.16, + "end": 6015.06, + "probability": 0.9884 + }, + { + "start": 6015.74, + "end": 6016.2, + "probability": 0.7231 + }, + { + "start": 6017.44, + "end": 6019.04, + "probability": 0.7762 + }, + { + "start": 6020.76, + "end": 6023.82, + "probability": 0.6707 + }, + { + "start": 6027.3, + "end": 6030.04, + "probability": 0.8485 + }, + { + "start": 6032.76, + "end": 6033.68, + "probability": 0.8017 + }, + { + "start": 6035.42, + "end": 6040.0, + "probability": 0.9338 + }, + { + "start": 6040.26, + "end": 6041.76, + "probability": 0.9182 + }, + { + "start": 6042.46, + "end": 6045.48, + "probability": 0.9207 + }, + { + "start": 6047.14, + "end": 6048.62, + "probability": 0.9037 + }, + { + "start": 6050.62, + "end": 6053.1, + "probability": 0.9589 + }, + { + "start": 6053.1, + "end": 6055.4, + "probability": 0.9849 + }, + { + "start": 6056.32, + "end": 6058.92, + "probability": 0.858 + }, + { + "start": 6059.58, + "end": 6062.18, + "probability": 0.6393 + }, + { + "start": 6063.98, + "end": 6065.2, + "probability": 0.747 + }, + { + "start": 6067.18, + "end": 6068.9, + "probability": 0.9172 + }, + { + "start": 6071.58, + "end": 6072.52, + "probability": 0.5401 + }, + { + "start": 6073.68, + "end": 6074.26, + "probability": 0.7978 + }, + { + "start": 6078.0, + "end": 6078.1, + "probability": 0.2525 + }, + { + "start": 6078.1, + "end": 6078.3, + "probability": 0.7202 + }, + { + "start": 6079.26, + "end": 6080.2, + "probability": 0.4654 + }, + { + "start": 6082.36, + "end": 6082.7, + "probability": 0.3129 + }, + { + "start": 6083.26, + "end": 6085.28, + "probability": 0.0092 + }, + { + "start": 6085.48, + "end": 6085.64, + "probability": 0.0445 + }, + { + "start": 6085.64, + "end": 6085.64, + "probability": 0.0606 + }, + { + "start": 6085.64, + "end": 6085.64, + "probability": 0.1274 + }, + { + "start": 6085.64, + "end": 6086.92, + "probability": 0.668 + }, + { + "start": 6088.74, + "end": 6091.14, + "probability": 0.8799 + }, + { + "start": 6091.22, + "end": 6092.3, + "probability": 0.9932 + }, + { + "start": 6092.3, + "end": 6093.5, + "probability": 0.7867 + }, + { + "start": 6095.34, + "end": 6096.53, + "probability": 0.0287 + }, + { + "start": 6098.02, + "end": 6102.58, + "probability": 0.139 + }, + { + "start": 6103.1, + "end": 6104.0, + "probability": 0.3174 + }, + { + "start": 6104.0, + "end": 6105.51, + "probability": 0.7915 + }, + { + "start": 6105.8, + "end": 6106.85, + "probability": 0.7573 + }, + { + "start": 6107.02, + "end": 6107.72, + "probability": 0.4922 + }, + { + "start": 6108.08, + "end": 6108.6, + "probability": 0.4993 + }, + { + "start": 6109.5, + "end": 6109.5, + "probability": 0.2559 + }, + { + "start": 6109.5, + "end": 6111.36, + "probability": 0.9085 + }, + { + "start": 6111.36, + "end": 6114.29, + "probability": 0.0532 + }, + { + "start": 6115.36, + "end": 6115.72, + "probability": 0.3061 + }, + { + "start": 6115.92, + "end": 6117.08, + "probability": 0.8208 + }, + { + "start": 6117.24, + "end": 6117.96, + "probability": 0.7874 + }, + { + "start": 6118.06, + "end": 6118.84, + "probability": 0.9634 + }, + { + "start": 6119.02, + "end": 6119.48, + "probability": 0.6141 + }, + { + "start": 6120.12, + "end": 6121.4, + "probability": 0.9797 + }, + { + "start": 6121.74, + "end": 6121.76, + "probability": 0.2289 + }, + { + "start": 6121.76, + "end": 6122.8, + "probability": 0.5515 + }, + { + "start": 6123.16, + "end": 6123.84, + "probability": 0.8664 + }, + { + "start": 6124.32, + "end": 6126.36, + "probability": 0.9758 + }, + { + "start": 6126.4, + "end": 6129.86, + "probability": 0.9831 + }, + { + "start": 6130.46, + "end": 6132.72, + "probability": 0.8408 + }, + { + "start": 6135.4, + "end": 6137.12, + "probability": 0.6567 + }, + { + "start": 6138.38, + "end": 6142.5, + "probability": 0.8599 + }, + { + "start": 6143.98, + "end": 6144.4, + "probability": 0.8823 + }, + { + "start": 6144.5, + "end": 6147.58, + "probability": 0.8883 + }, + { + "start": 6147.58, + "end": 6151.42, + "probability": 0.6659 + }, + { + "start": 6151.5, + "end": 6152.74, + "probability": 0.9639 + }, + { + "start": 6154.26, + "end": 6156.56, + "probability": 0.6695 + }, + { + "start": 6156.86, + "end": 6161.88, + "probability": 0.9751 + }, + { + "start": 6161.88, + "end": 6166.18, + "probability": 0.9556 + }, + { + "start": 6166.94, + "end": 6168.72, + "probability": 0.9827 + }, + { + "start": 6169.5, + "end": 6173.4, + "probability": 0.872 + }, + { + "start": 6173.52, + "end": 6176.54, + "probability": 0.7402 + }, + { + "start": 6177.76, + "end": 6183.52, + "probability": 0.9419 + }, + { + "start": 6183.54, + "end": 6188.96, + "probability": 0.9946 + }, + { + "start": 6190.2, + "end": 6193.98, + "probability": 0.7871 + }, + { + "start": 6194.84, + "end": 6196.84, + "probability": 0.9542 + }, + { + "start": 6197.14, + "end": 6201.08, + "probability": 0.9878 + }, + { + "start": 6202.56, + "end": 6206.48, + "probability": 0.7179 + }, + { + "start": 6206.48, + "end": 6211.34, + "probability": 0.9192 + }, + { + "start": 6211.86, + "end": 6214.5, + "probability": 0.874 + }, + { + "start": 6215.26, + "end": 6215.66, + "probability": 0.387 + }, + { + "start": 6215.74, + "end": 6221.26, + "probability": 0.9841 + }, + { + "start": 6221.84, + "end": 6225.0, + "probability": 0.993 + }, + { + "start": 6225.9, + "end": 6229.7, + "probability": 0.7698 + }, + { + "start": 6230.98, + "end": 6233.88, + "probability": 0.9316 + }, + { + "start": 6234.4, + "end": 6236.02, + "probability": 0.9595 + }, + { + "start": 6236.16, + "end": 6239.22, + "probability": 0.9362 + }, + { + "start": 6239.96, + "end": 6242.28, + "probability": 0.9908 + }, + { + "start": 6243.04, + "end": 6245.52, + "probability": 0.6847 + }, + { + "start": 6245.66, + "end": 6252.04, + "probability": 0.9485 + }, + { + "start": 6252.04, + "end": 6256.16, + "probability": 0.9717 + }, + { + "start": 6256.86, + "end": 6257.98, + "probability": 0.7244 + }, + { + "start": 6258.84, + "end": 6260.22, + "probability": 0.8039 + }, + { + "start": 6260.36, + "end": 6262.58, + "probability": 0.8755 + }, + { + "start": 6262.58, + "end": 6266.48, + "probability": 0.7407 + }, + { + "start": 6266.62, + "end": 6270.2, + "probability": 0.9661 + }, + { + "start": 6270.2, + "end": 6273.24, + "probability": 0.637 + }, + { + "start": 6274.12, + "end": 6277.47, + "probability": 0.7502 + }, + { + "start": 6277.8, + "end": 6280.56, + "probability": 0.6814 + }, + { + "start": 6281.54, + "end": 6283.52, + "probability": 0.8764 + }, + { + "start": 6283.7, + "end": 6286.06, + "probability": 0.9191 + }, + { + "start": 6286.12, + "end": 6290.3, + "probability": 0.7715 + }, + { + "start": 6291.0, + "end": 6295.04, + "probability": 0.9819 + }, + { + "start": 6295.7, + "end": 6298.38, + "probability": 0.9647 + }, + { + "start": 6298.38, + "end": 6301.98, + "probability": 0.8877 + }, + { + "start": 6302.24, + "end": 6305.18, + "probability": 0.5997 + }, + { + "start": 6306.0, + "end": 6306.4, + "probability": 0.7004 + }, + { + "start": 6306.52, + "end": 6309.02, + "probability": 0.8994 + }, + { + "start": 6309.02, + "end": 6312.62, + "probability": 0.9966 + }, + { + "start": 6313.08, + "end": 6315.08, + "probability": 0.9653 + }, + { + "start": 6315.5, + "end": 6318.8, + "probability": 0.9351 + }, + { + "start": 6318.8, + "end": 6322.56, + "probability": 0.9112 + }, + { + "start": 6323.12, + "end": 6323.46, + "probability": 0.3932 + }, + { + "start": 6323.56, + "end": 6325.68, + "probability": 0.9878 + }, + { + "start": 6325.68, + "end": 6328.32, + "probability": 0.979 + }, + { + "start": 6328.84, + "end": 6332.28, + "probability": 0.9326 + }, + { + "start": 6333.66, + "end": 6338.36, + "probability": 0.9941 + }, + { + "start": 6340.1, + "end": 6340.46, + "probability": 0.8274 + }, + { + "start": 6340.82, + "end": 6341.34, + "probability": 0.6622 + }, + { + "start": 6341.62, + "end": 6344.2, + "probability": 0.8308 + }, + { + "start": 6344.7, + "end": 6344.88, + "probability": 0.7321 + }, + { + "start": 6344.88, + "end": 6345.46, + "probability": 0.9534 + }, + { + "start": 6345.84, + "end": 6349.42, + "probability": 0.9203 + }, + { + "start": 6350.64, + "end": 6353.36, + "probability": 0.9935 + }, + { + "start": 6354.94, + "end": 6356.74, + "probability": 0.9821 + }, + { + "start": 6357.6, + "end": 6359.92, + "probability": 0.9172 + }, + { + "start": 6360.6, + "end": 6361.42, + "probability": 0.0323 + }, + { + "start": 6362.74, + "end": 6364.04, + "probability": 0.7561 + }, + { + "start": 6365.92, + "end": 6366.92, + "probability": 0.5001 + }, + { + "start": 6367.18, + "end": 6368.84, + "probability": 0.8197 + }, + { + "start": 6370.36, + "end": 6374.14, + "probability": 0.9549 + }, + { + "start": 6376.06, + "end": 6377.64, + "probability": 0.9879 + }, + { + "start": 6378.22, + "end": 6378.7, + "probability": 0.8294 + }, + { + "start": 6378.94, + "end": 6380.36, + "probability": 0.9968 + }, + { + "start": 6380.76, + "end": 6381.58, + "probability": 0.7767 + }, + { + "start": 6382.94, + "end": 6385.34, + "probability": 0.9193 + }, + { + "start": 6385.4, + "end": 6386.7, + "probability": 0.8376 + }, + { + "start": 6388.02, + "end": 6389.48, + "probability": 0.8869 + }, + { + "start": 6390.38, + "end": 6391.72, + "probability": 0.9862 + }, + { + "start": 6392.14, + "end": 6395.8, + "probability": 0.9918 + }, + { + "start": 6397.0, + "end": 6397.5, + "probability": 0.6421 + }, + { + "start": 6398.48, + "end": 6400.52, + "probability": 0.8755 + }, + { + "start": 6400.7, + "end": 6402.52, + "probability": 0.9855 + }, + { + "start": 6405.64, + "end": 6408.76, + "probability": 0.9856 + }, + { + "start": 6410.66, + "end": 6411.42, + "probability": 0.9617 + }, + { + "start": 6412.4, + "end": 6412.98, + "probability": 0.9355 + }, + { + "start": 6414.2, + "end": 6415.32, + "probability": 0.6882 + }, + { + "start": 6415.92, + "end": 6417.78, + "probability": 0.9479 + }, + { + "start": 6419.45, + "end": 6422.52, + "probability": 0.9552 + }, + { + "start": 6424.58, + "end": 6426.06, + "probability": 0.9993 + }, + { + "start": 6427.62, + "end": 6428.14, + "probability": 0.9976 + }, + { + "start": 6429.84, + "end": 6432.64, + "probability": 0.9013 + }, + { + "start": 6433.92, + "end": 6435.08, + "probability": 0.2661 + }, + { + "start": 6435.14, + "end": 6436.54, + "probability": 0.9659 + }, + { + "start": 6436.74, + "end": 6437.46, + "probability": 0.7416 + }, + { + "start": 6437.6, + "end": 6438.28, + "probability": 0.923 + }, + { + "start": 6439.24, + "end": 6442.74, + "probability": 0.9724 + }, + { + "start": 6443.66, + "end": 6445.96, + "probability": 0.9586 + }, + { + "start": 6446.98, + "end": 6447.88, + "probability": 0.7943 + }, + { + "start": 6449.22, + "end": 6450.0, + "probability": 0.6893 + }, + { + "start": 6450.02, + "end": 6450.86, + "probability": 0.9179 + }, + { + "start": 6451.38, + "end": 6452.8, + "probability": 0.9134 + }, + { + "start": 6453.02, + "end": 6453.68, + "probability": 0.8674 + }, + { + "start": 6454.42, + "end": 6454.64, + "probability": 0.2304 + }, + { + "start": 6454.64, + "end": 6455.36, + "probability": 0.7357 + }, + { + "start": 6455.38, + "end": 6457.32, + "probability": 0.0498 + }, + { + "start": 6457.32, + "end": 6457.32, + "probability": 0.0001 + }, + { + "start": 6458.36, + "end": 6459.9, + "probability": 0.4306 + }, + { + "start": 6460.34, + "end": 6462.06, + "probability": 0.5331 + }, + { + "start": 6462.34, + "end": 6462.76, + "probability": 0.7834 + }, + { + "start": 6463.2, + "end": 6463.5, + "probability": 0.4563 + }, + { + "start": 6464.5, + "end": 6468.68, + "probability": 0.9162 + }, + { + "start": 6470.0, + "end": 6470.88, + "probability": 0.6092 + }, + { + "start": 6471.72, + "end": 6472.02, + "probability": 0.0662 + }, + { + "start": 6472.22, + "end": 6472.92, + "probability": 0.7893 + }, + { + "start": 6472.92, + "end": 6474.46, + "probability": 0.7328 + }, + { + "start": 6474.56, + "end": 6476.45, + "probability": 0.8193 + }, + { + "start": 6476.86, + "end": 6478.3, + "probability": 0.9678 + }, + { + "start": 6479.06, + "end": 6481.66, + "probability": 0.9601 + }, + { + "start": 6482.48, + "end": 6484.72, + "probability": 0.9916 + }, + { + "start": 6485.06, + "end": 6487.52, + "probability": 0.9926 + }, + { + "start": 6487.84, + "end": 6491.06, + "probability": 0.9582 + }, + { + "start": 6491.22, + "end": 6493.24, + "probability": 0.9825 + }, + { + "start": 6493.74, + "end": 6494.2, + "probability": 0.3279 + }, + { + "start": 6494.48, + "end": 6498.86, + "probability": 0.8766 + }, + { + "start": 6498.88, + "end": 6502.06, + "probability": 0.6554 + }, + { + "start": 6502.1, + "end": 6503.42, + "probability": 0.9768 + }, + { + "start": 6503.48, + "end": 6504.87, + "probability": 0.9653 + }, + { + "start": 6505.72, + "end": 6508.88, + "probability": 0.921 + }, + { + "start": 6509.48, + "end": 6509.48, + "probability": 0.0434 + }, + { + "start": 6509.48, + "end": 6513.0, + "probability": 0.9248 + }, + { + "start": 6514.04, + "end": 6514.56, + "probability": 0.8055 + }, + { + "start": 6515.46, + "end": 6518.14, + "probability": 0.9723 + }, + { + "start": 6518.14, + "end": 6521.08, + "probability": 0.9746 + }, + { + "start": 6521.42, + "end": 6521.96, + "probability": 0.2535 + }, + { + "start": 6522.35, + "end": 6526.22, + "probability": 0.9807 + }, + { + "start": 6526.28, + "end": 6526.56, + "probability": 0.7121 + }, + { + "start": 6527.62, + "end": 6531.68, + "probability": 0.8541 + }, + { + "start": 6532.46, + "end": 6534.74, + "probability": 0.6011 + }, + { + "start": 6534.88, + "end": 6534.95, + "probability": 0.242 + }, + { + "start": 6535.34, + "end": 6535.62, + "probability": 0.0104 + }, + { + "start": 6535.74, + "end": 6535.9, + "probability": 0.1652 + }, + { + "start": 6535.9, + "end": 6536.76, + "probability": 0.6242 + }, + { + "start": 6536.82, + "end": 6538.26, + "probability": 0.9526 + }, + { + "start": 6538.4, + "end": 6539.03, + "probability": 0.5018 + }, + { + "start": 6539.9, + "end": 6541.52, + "probability": 0.7404 + }, + { + "start": 6542.32, + "end": 6544.26, + "probability": 0.6721 + }, + { + "start": 6545.26, + "end": 6548.34, + "probability": 0.9818 + }, + { + "start": 6549.32, + "end": 6551.28, + "probability": 0.9006 + }, + { + "start": 6551.42, + "end": 6551.8, + "probability": 0.9019 + }, + { + "start": 6551.86, + "end": 6554.24, + "probability": 0.7463 + }, + { + "start": 6554.36, + "end": 6557.02, + "probability": 0.9193 + }, + { + "start": 6557.56, + "end": 6558.65, + "probability": 0.7758 + }, + { + "start": 6558.86, + "end": 6559.88, + "probability": 0.7957 + }, + { + "start": 6560.52, + "end": 6561.6, + "probability": 0.8608 + }, + { + "start": 6561.88, + "end": 6563.36, + "probability": 0.9916 + }, + { + "start": 6563.44, + "end": 6566.68, + "probability": 0.4872 + }, + { + "start": 6568.12, + "end": 6569.66, + "probability": 0.2787 + }, + { + "start": 6571.48, + "end": 6574.36, + "probability": 0.0669 + }, + { + "start": 6578.78, + "end": 6579.78, + "probability": 0.3812 + }, + { + "start": 6580.62, + "end": 6580.72, + "probability": 0.1579 + }, + { + "start": 6580.72, + "end": 6580.72, + "probability": 0.094 + }, + { + "start": 6580.72, + "end": 6580.72, + "probability": 0.0122 + }, + { + "start": 6580.72, + "end": 6580.72, + "probability": 0.0865 + }, + { + "start": 6580.72, + "end": 6581.4, + "probability": 0.1263 + }, + { + "start": 6582.22, + "end": 6585.78, + "probability": 0.4727 + }, + { + "start": 6585.9, + "end": 6587.66, + "probability": 0.8106 + }, + { + "start": 6588.78, + "end": 6589.86, + "probability": 0.9797 + }, + { + "start": 6590.54, + "end": 6591.04, + "probability": 0.8051 + }, + { + "start": 6591.22, + "end": 6594.02, + "probability": 0.9202 + }, + { + "start": 6594.42, + "end": 6595.44, + "probability": 0.9968 + }, + { + "start": 6596.14, + "end": 6596.63, + "probability": 0.9353 + }, + { + "start": 6597.3, + "end": 6598.78, + "probability": 0.999 + }, + { + "start": 6599.18, + "end": 6600.44, + "probability": 0.9839 + }, + { + "start": 6600.9, + "end": 6602.28, + "probability": 0.9931 + }, + { + "start": 6602.5, + "end": 6603.28, + "probability": 0.9985 + }, + { + "start": 6604.06, + "end": 6605.1, + "probability": 0.9219 + }, + { + "start": 6605.46, + "end": 6608.46, + "probability": 0.9402 + }, + { + "start": 6609.02, + "end": 6612.26, + "probability": 0.9296 + }, + { + "start": 6612.36, + "end": 6613.04, + "probability": 0.8666 + }, + { + "start": 6613.36, + "end": 6613.68, + "probability": 0.1939 + }, + { + "start": 6613.94, + "end": 6614.64, + "probability": 0.7682 + }, + { + "start": 6615.96, + "end": 6619.18, + "probability": 0.944 + }, + { + "start": 6619.76, + "end": 6620.74, + "probability": 0.9868 + }, + { + "start": 6622.02, + "end": 6623.54, + "probability": 0.6235 + }, + { + "start": 6623.82, + "end": 6625.42, + "probability": 0.9408 + }, + { + "start": 6625.92, + "end": 6627.92, + "probability": 0.4981 + }, + { + "start": 6628.64, + "end": 6630.82, + "probability": 0.7335 + }, + { + "start": 6631.82, + "end": 6632.08, + "probability": 0.2574 + }, + { + "start": 6633.14, + "end": 6638.36, + "probability": 0.8964 + }, + { + "start": 6639.12, + "end": 6639.94, + "probability": 0.671 + }, + { + "start": 6640.6, + "end": 6643.44, + "probability": 0.5568 + }, + { + "start": 6645.3, + "end": 6650.22, + "probability": 0.911 + }, + { + "start": 6651.36, + "end": 6656.3, + "probability": 0.8547 + }, + { + "start": 6657.3, + "end": 6661.47, + "probability": 0.8295 + }, + { + "start": 6662.66, + "end": 6664.54, + "probability": 0.8134 + }, + { + "start": 6665.88, + "end": 6669.38, + "probability": 0.7983 + }, + { + "start": 6670.26, + "end": 6670.47, + "probability": 0.4777 + }, + { + "start": 6671.58, + "end": 6673.58, + "probability": 0.9642 + }, + { + "start": 6674.18, + "end": 6677.62, + "probability": 0.9772 + }, + { + "start": 6678.46, + "end": 6680.28, + "probability": 0.9727 + }, + { + "start": 6680.86, + "end": 6682.06, + "probability": 0.9297 + }, + { + "start": 6683.08, + "end": 6683.32, + "probability": 0.5939 + }, + { + "start": 6685.86, + "end": 6689.18, + "probability": 0.7157 + }, + { + "start": 6690.12, + "end": 6692.48, + "probability": 0.9821 + }, + { + "start": 6694.22, + "end": 6694.84, + "probability": 0.1402 + }, + { + "start": 6694.9, + "end": 6702.58, + "probability": 0.7999 + }, + { + "start": 6703.62, + "end": 6705.6, + "probability": 0.9956 + }, + { + "start": 6706.24, + "end": 6712.12, + "probability": 0.5788 + }, + { + "start": 6712.42, + "end": 6715.87, + "probability": 0.9949 + }, + { + "start": 6716.72, + "end": 6720.12, + "probability": 0.8104 + }, + { + "start": 6720.2, + "end": 6721.44, + "probability": 0.7824 + }, + { + "start": 6722.87, + "end": 6726.14, + "probability": 0.9453 + }, + { + "start": 6726.8, + "end": 6729.92, + "probability": 0.9585 + }, + { + "start": 6730.5, + "end": 6732.78, + "probability": 0.8022 + }, + { + "start": 6732.78, + "end": 6734.86, + "probability": 0.9893 + }, + { + "start": 6735.58, + "end": 6737.28, + "probability": 0.9159 + }, + { + "start": 6737.48, + "end": 6738.42, + "probability": 0.1758 + }, + { + "start": 6738.96, + "end": 6739.86, + "probability": 0.7871 + }, + { + "start": 6740.5, + "end": 6741.44, + "probability": 0.9927 + }, + { + "start": 6742.22, + "end": 6743.86, + "probability": 0.8933 + }, + { + "start": 6745.8, + "end": 6746.98, + "probability": 0.9512 + }, + { + "start": 6747.7, + "end": 6748.54, + "probability": 0.5118 + }, + { + "start": 6749.06, + "end": 6749.46, + "probability": 0.8801 + }, + { + "start": 6754.16, + "end": 6755.62, + "probability": 0.7833 + }, + { + "start": 6756.82, + "end": 6758.38, + "probability": 0.7895 + }, + { + "start": 6759.48, + "end": 6760.52, + "probability": 0.4836 + }, + { + "start": 6761.3, + "end": 6761.94, + "probability": 0.8368 + }, + { + "start": 6765.6, + "end": 6766.32, + "probability": 0.7448 + }, + { + "start": 6767.2, + "end": 6769.09, + "probability": 0.9923 + }, + { + "start": 6769.78, + "end": 6771.02, + "probability": 0.9884 + }, + { + "start": 6772.0, + "end": 6772.3, + "probability": 0.7184 + }, + { + "start": 6772.34, + "end": 6772.6, + "probability": 0.4944 + }, + { + "start": 6772.78, + "end": 6776.14, + "probability": 0.9707 + }, + { + "start": 6777.42, + "end": 6779.9, + "probability": 0.9294 + }, + { + "start": 6780.86, + "end": 6781.78, + "probability": 0.9398 + }, + { + "start": 6782.54, + "end": 6784.78, + "probability": 0.9849 + }, + { + "start": 6785.18, + "end": 6787.36, + "probability": 0.995 + }, + { + "start": 6788.6, + "end": 6790.44, + "probability": 0.999 + }, + { + "start": 6791.12, + "end": 6792.0, + "probability": 0.9878 + }, + { + "start": 6793.5, + "end": 6793.74, + "probability": 0.6548 + }, + { + "start": 6793.9, + "end": 6794.54, + "probability": 0.9536 + }, + { + "start": 6794.66, + "end": 6796.2, + "probability": 0.8501 + }, + { + "start": 6796.48, + "end": 6796.62, + "probability": 0.6545 + }, + { + "start": 6796.84, + "end": 6800.08, + "probability": 0.9795 + }, + { + "start": 6800.28, + "end": 6800.68, + "probability": 0.6276 + }, + { + "start": 6801.46, + "end": 6807.02, + "probability": 0.9863 + }, + { + "start": 6807.12, + "end": 6808.5, + "probability": 0.8068 + }, + { + "start": 6809.04, + "end": 6809.9, + "probability": 0.7915 + }, + { + "start": 6810.48, + "end": 6814.84, + "probability": 0.9967 + }, + { + "start": 6814.88, + "end": 6816.58, + "probability": 0.9469 + }, + { + "start": 6817.36, + "end": 6822.82, + "probability": 0.975 + }, + { + "start": 6823.3, + "end": 6824.4, + "probability": 0.7057 + }, + { + "start": 6824.98, + "end": 6827.32, + "probability": 0.9731 + }, + { + "start": 6827.9, + "end": 6831.24, + "probability": 0.8931 + }, + { + "start": 6831.28, + "end": 6832.02, + "probability": 0.8519 + }, + { + "start": 6832.36, + "end": 6834.2, + "probability": 0.8861 + }, + { + "start": 6834.26, + "end": 6837.06, + "probability": 0.9812 + }, + { + "start": 6837.74, + "end": 6840.7, + "probability": 0.9927 + }, + { + "start": 6840.88, + "end": 6842.82, + "probability": 0.6764 + }, + { + "start": 6842.96, + "end": 6843.84, + "probability": 0.8641 + }, + { + "start": 6844.32, + "end": 6847.04, + "probability": 0.9941 + }, + { + "start": 6847.08, + "end": 6848.78, + "probability": 0.6716 + }, + { + "start": 6848.86, + "end": 6850.39, + "probability": 0.9878 + }, + { + "start": 6851.1, + "end": 6853.18, + "probability": 0.7685 + }, + { + "start": 6853.24, + "end": 6855.98, + "probability": 0.8495 + }, + { + "start": 6856.04, + "end": 6858.98, + "probability": 0.8905 + }, + { + "start": 6860.04, + "end": 6860.44, + "probability": 0.3557 + }, + { + "start": 6860.5, + "end": 6861.2, + "probability": 0.851 + }, + { + "start": 6861.3, + "end": 6861.46, + "probability": 0.8898 + }, + { + "start": 6861.58, + "end": 6863.44, + "probability": 0.9937 + }, + { + "start": 6864.24, + "end": 6865.22, + "probability": 0.6898 + }, + { + "start": 6865.92, + "end": 6867.44, + "probability": 0.8011 + }, + { + "start": 6867.8, + "end": 6869.66, + "probability": 0.8902 + }, + { + "start": 6869.76, + "end": 6872.96, + "probability": 0.9854 + }, + { + "start": 6873.64, + "end": 6875.01, + "probability": 0.9969 + }, + { + "start": 6875.98, + "end": 6878.41, + "probability": 0.998 + }, + { + "start": 6879.18, + "end": 6882.12, + "probability": 0.9954 + }, + { + "start": 6882.72, + "end": 6886.46, + "probability": 0.9961 + }, + { + "start": 6886.76, + "end": 6888.1, + "probability": 0.981 + }, + { + "start": 6888.28, + "end": 6889.7, + "probability": 0.6484 + }, + { + "start": 6889.72, + "end": 6891.14, + "probability": 0.9408 + }, + { + "start": 6891.16, + "end": 6892.5, + "probability": 0.881 + }, + { + "start": 6892.98, + "end": 6894.22, + "probability": 0.6101 + }, + { + "start": 6894.24, + "end": 6895.02, + "probability": 0.2273 + }, + { + "start": 6895.18, + "end": 6895.74, + "probability": 0.7535 + }, + { + "start": 6895.8, + "end": 6896.28, + "probability": 0.7528 + }, + { + "start": 6896.42, + "end": 6898.56, + "probability": 0.6306 + }, + { + "start": 6898.98, + "end": 6900.98, + "probability": 0.9766 + }, + { + "start": 6901.32, + "end": 6904.0, + "probability": 0.9658 + }, + { + "start": 6904.12, + "end": 6904.42, + "probability": 0.8755 + }, + { + "start": 6908.16, + "end": 6908.84, + "probability": 0.3535 + }, + { + "start": 6909.06, + "end": 6910.74, + "probability": 0.8312 + }, + { + "start": 6910.92, + "end": 6912.48, + "probability": 0.8684 + }, + { + "start": 6912.58, + "end": 6915.22, + "probability": 0.8718 + }, + { + "start": 6915.58, + "end": 6918.0, + "probability": 0.95 + }, + { + "start": 6918.7, + "end": 6921.02, + "probability": 0.9932 + }, + { + "start": 6921.68, + "end": 6922.6, + "probability": 0.9927 + }, + { + "start": 6923.44, + "end": 6924.92, + "probability": 0.9945 + }, + { + "start": 6925.6, + "end": 6927.04, + "probability": 0.998 + }, + { + "start": 6927.84, + "end": 6928.33, + "probability": 0.8687 + }, + { + "start": 6928.58, + "end": 6929.04, + "probability": 0.937 + }, + { + "start": 6929.34, + "end": 6932.0, + "probability": 0.779 + }, + { + "start": 6933.02, + "end": 6937.5, + "probability": 0.9116 + }, + { + "start": 6938.06, + "end": 6938.55, + "probability": 0.9751 + }, + { + "start": 6939.1, + "end": 6940.06, + "probability": 0.5513 + }, + { + "start": 6940.24, + "end": 6942.56, + "probability": 0.7994 + }, + { + "start": 6942.94, + "end": 6943.4, + "probability": 0.5714 + }, + { + "start": 6943.4, + "end": 6944.24, + "probability": 0.7446 + }, + { + "start": 6944.78, + "end": 6946.24, + "probability": 0.7848 + }, + { + "start": 6946.64, + "end": 6947.28, + "probability": 0.8664 + }, + { + "start": 6947.32, + "end": 6948.38, + "probability": 0.716 + }, + { + "start": 6948.68, + "end": 6949.78, + "probability": 0.8832 + }, + { + "start": 6949.82, + "end": 6950.5, + "probability": 0.8253 + }, + { + "start": 6951.44, + "end": 6951.66, + "probability": 0.7644 + }, + { + "start": 6952.42, + "end": 6953.26, + "probability": 0.6755 + }, + { + "start": 6954.14, + "end": 6956.04, + "probability": 0.8904 + }, + { + "start": 6957.82, + "end": 6957.82, + "probability": 0.0073 + }, + { + "start": 6957.82, + "end": 6957.82, + "probability": 0.0389 + }, + { + "start": 6957.82, + "end": 6958.76, + "probability": 0.477 + }, + { + "start": 6958.9, + "end": 6962.2, + "probability": 0.9047 + }, + { + "start": 6962.28, + "end": 6963.16, + "probability": 0.9514 + }, + { + "start": 6963.64, + "end": 6966.32, + "probability": 0.9922 + }, + { + "start": 6966.88, + "end": 6968.32, + "probability": 0.6761 + }, + { + "start": 6968.36, + "end": 6971.0, + "probability": 0.8555 + }, + { + "start": 6971.16, + "end": 6973.6, + "probability": 0.8631 + }, + { + "start": 6974.1, + "end": 6978.12, + "probability": 0.8945 + }, + { + "start": 6978.26, + "end": 6979.06, + "probability": 0.7799 + }, + { + "start": 6979.46, + "end": 6981.78, + "probability": 0.978 + }, + { + "start": 6982.38, + "end": 6985.86, + "probability": 0.7538 + }, + { + "start": 6985.98, + "end": 6986.62, + "probability": 0.751 + }, + { + "start": 6986.88, + "end": 6988.62, + "probability": 0.7389 + }, + { + "start": 6989.22, + "end": 6990.48, + "probability": 0.5677 + }, + { + "start": 6990.54, + "end": 6990.96, + "probability": 0.3302 + }, + { + "start": 6990.98, + "end": 6992.44, + "probability": 0.7352 + }, + { + "start": 6992.78, + "end": 6993.24, + "probability": 0.7055 + }, + { + "start": 6993.68, + "end": 6996.44, + "probability": 0.8227 + }, + { + "start": 6996.96, + "end": 6999.3, + "probability": 0.9561 + }, + { + "start": 6999.62, + "end": 7000.18, + "probability": 0.8077 + }, + { + "start": 7000.24, + "end": 7001.3, + "probability": 0.7584 + }, + { + "start": 7001.34, + "end": 7001.72, + "probability": 0.6089 + }, + { + "start": 7001.78, + "end": 7002.74, + "probability": 0.9093 + }, + { + "start": 7003.2, + "end": 7003.85, + "probability": 0.9167 + }, + { + "start": 7004.0, + "end": 7006.62, + "probability": 0.9403 + }, + { + "start": 7006.96, + "end": 7009.08, + "probability": 0.928 + }, + { + "start": 7009.18, + "end": 7011.42, + "probability": 0.9497 + }, + { + "start": 7011.86, + "end": 7015.02, + "probability": 0.8555 + }, + { + "start": 7015.06, + "end": 7016.24, + "probability": 0.3939 + }, + { + "start": 7016.32, + "end": 7016.6, + "probability": 0.6541 + }, + { + "start": 7016.78, + "end": 7017.12, + "probability": 0.7695 + }, + { + "start": 7017.48, + "end": 7018.99, + "probability": 0.987 + }, + { + "start": 7019.42, + "end": 7021.42, + "probability": 0.7923 + }, + { + "start": 7022.36, + "end": 7023.22, + "probability": 0.8382 + }, + { + "start": 7023.44, + "end": 7024.9, + "probability": 0.5927 + }, + { + "start": 7024.94, + "end": 7025.02, + "probability": 0.1266 + }, + { + "start": 7025.44, + "end": 7026.24, + "probability": 0.7782 + }, + { + "start": 7026.64, + "end": 7027.9, + "probability": 0.7981 + }, + { + "start": 7027.98, + "end": 7028.58, + "probability": 0.7632 + }, + { + "start": 7029.2, + "end": 7030.12, + "probability": 0.896 + }, + { + "start": 7030.18, + "end": 7030.74, + "probability": 0.884 + }, + { + "start": 7030.82, + "end": 7031.4, + "probability": 0.8347 + }, + { + "start": 7031.98, + "end": 7033.14, + "probability": 0.9694 + }, + { + "start": 7034.16, + "end": 7037.02, + "probability": 0.7391 + }, + { + "start": 7037.06, + "end": 7037.54, + "probability": 0.7738 + }, + { + "start": 7038.82, + "end": 7041.96, + "probability": 0.7805 + }, + { + "start": 7042.7, + "end": 7043.8, + "probability": 0.8556 + }, + { + "start": 7049.66, + "end": 7050.22, + "probability": 0.625 + }, + { + "start": 7050.28, + "end": 7053.92, + "probability": 0.8608 + }, + { + "start": 7053.92, + "end": 7057.18, + "probability": 0.9107 + }, + { + "start": 7057.84, + "end": 7059.4, + "probability": 0.9495 + }, + { + "start": 7060.36, + "end": 7060.8, + "probability": 0.7784 + }, + { + "start": 7061.46, + "end": 7066.76, + "probability": 0.8194 + }, + { + "start": 7067.08, + "end": 7069.86, + "probability": 0.9819 + }, + { + "start": 7070.02, + "end": 7073.96, + "probability": 0.9831 + }, + { + "start": 7074.1, + "end": 7074.3, + "probability": 0.3657 + }, + { + "start": 7074.3, + "end": 7075.82, + "probability": 0.9874 + }, + { + "start": 7075.94, + "end": 7077.24, + "probability": 0.787 + }, + { + "start": 7077.28, + "end": 7077.86, + "probability": 0.6 + }, + { + "start": 7078.0, + "end": 7080.34, + "probability": 0.9748 + }, + { + "start": 7080.38, + "end": 7080.38, + "probability": 0.4205 + }, + { + "start": 7080.38, + "end": 7082.02, + "probability": 0.8901 + }, + { + "start": 7082.26, + "end": 7085.98, + "probability": 0.8828 + }, + { + "start": 7086.58, + "end": 7089.6, + "probability": 0.9116 + }, + { + "start": 7090.18, + "end": 7091.18, + "probability": 0.74 + }, + { + "start": 7091.64, + "end": 7092.2, + "probability": 0.9638 + }, + { + "start": 7092.42, + "end": 7095.6, + "probability": 0.8521 + }, + { + "start": 7096.64, + "end": 7096.76, + "probability": 0.7216 + }, + { + "start": 7100.04, + "end": 7103.72, + "probability": 0.8097 + }, + { + "start": 7104.28, + "end": 7104.7, + "probability": 0.8169 + }, + { + "start": 7105.78, + "end": 7108.78, + "probability": 0.8698 + }, + { + "start": 7109.7, + "end": 7112.66, + "probability": 0.8633 + }, + { + "start": 7113.9, + "end": 7118.06, + "probability": 0.4653 + }, + { + "start": 7118.68, + "end": 7121.32, + "probability": 0.9646 + }, + { + "start": 7121.32, + "end": 7125.06, + "probability": 0.9712 + }, + { + "start": 7125.88, + "end": 7129.66, + "probability": 0.9619 + }, + { + "start": 7130.18, + "end": 7132.0, + "probability": 0.9934 + }, + { + "start": 7133.02, + "end": 7136.96, + "probability": 0.9841 + }, + { + "start": 7136.96, + "end": 7141.72, + "probability": 0.9844 + }, + { + "start": 7142.94, + "end": 7143.54, + "probability": 0.8035 + }, + { + "start": 7143.72, + "end": 7147.36, + "probability": 0.9925 + }, + { + "start": 7147.38, + "end": 7148.2, + "probability": 0.9621 + }, + { + "start": 7148.74, + "end": 7152.5, + "probability": 0.9757 + }, + { + "start": 7153.24, + "end": 7156.92, + "probability": 0.9966 + }, + { + "start": 7157.54, + "end": 7160.96, + "probability": 0.9974 + }, + { + "start": 7160.96, + "end": 7164.56, + "probability": 0.9988 + }, + { + "start": 7164.98, + "end": 7165.9, + "probability": 0.8828 + }, + { + "start": 7166.34, + "end": 7167.16, + "probability": 0.9009 + }, + { + "start": 7167.42, + "end": 7171.76, + "probability": 0.9885 + }, + { + "start": 7172.68, + "end": 7173.44, + "probability": 0.8191 + }, + { + "start": 7179.92, + "end": 7180.5, + "probability": 0.8488 + }, + { + "start": 7181.56, + "end": 7181.88, + "probability": 0.7944 + }, + { + "start": 7182.56, + "end": 7185.88, + "probability": 0.9199 + }, + { + "start": 7188.84, + "end": 7193.78, + "probability": 0.9777 + }, + { + "start": 7194.72, + "end": 7199.88, + "probability": 0.6657 + }, + { + "start": 7201.94, + "end": 7203.58, + "probability": 0.8027 + }, + { + "start": 7203.98, + "end": 7207.4, + "probability": 0.9695 + }, + { + "start": 7208.06, + "end": 7211.96, + "probability": 0.7815 + }, + { + "start": 7211.96, + "end": 7214.96, + "probability": 0.8887 + }, + { + "start": 7215.08, + "end": 7216.34, + "probability": 0.7338 + }, + { + "start": 7217.02, + "end": 7217.64, + "probability": 0.8479 + }, + { + "start": 7218.38, + "end": 7221.5, + "probability": 0.5093 + }, + { + "start": 7221.62, + "end": 7221.74, + "probability": 0.1967 + }, + { + "start": 7223.14, + "end": 7229.66, + "probability": 0.9692 + }, + { + "start": 7230.66, + "end": 7234.2, + "probability": 0.9688 + }, + { + "start": 7234.78, + "end": 7238.2, + "probability": 0.9547 + }, + { + "start": 7238.76, + "end": 7239.54, + "probability": 0.7625 + }, + { + "start": 7240.2, + "end": 7241.46, + "probability": 0.9323 + }, + { + "start": 7241.58, + "end": 7244.94, + "probability": 0.8573 + }, + { + "start": 7245.6, + "end": 7249.16, + "probability": 0.9174 + }, + { + "start": 7249.74, + "end": 7254.1, + "probability": 0.9985 + }, + { + "start": 7254.72, + "end": 7259.94, + "probability": 0.9805 + }, + { + "start": 7260.28, + "end": 7261.95, + "probability": 0.8798 + }, + { + "start": 7262.48, + "end": 7268.46, + "probability": 0.8032 + }, + { + "start": 7268.8, + "end": 7269.86, + "probability": 0.5679 + }, + { + "start": 7269.94, + "end": 7271.44, + "probability": 0.9465 + }, + { + "start": 7273.32, + "end": 7274.42, + "probability": 0.915 + }, + { + "start": 7274.62, + "end": 7277.06, + "probability": 0.8019 + }, + { + "start": 7277.38, + "end": 7278.14, + "probability": 0.027 + }, + { + "start": 7278.16, + "end": 7280.02, + "probability": 0.7265 + }, + { + "start": 7280.78, + "end": 7283.2, + "probability": 0.9866 + }, + { + "start": 7283.38, + "end": 7284.86, + "probability": 0.9837 + }, + { + "start": 7285.22, + "end": 7285.86, + "probability": 0.8521 + }, + { + "start": 7286.04, + "end": 7286.93, + "probability": 0.8762 + }, + { + "start": 7287.28, + "end": 7287.9, + "probability": 0.0897 + }, + { + "start": 7288.46, + "end": 7291.52, + "probability": 0.7414 + }, + { + "start": 7291.66, + "end": 7293.56, + "probability": 0.9734 + }, + { + "start": 7294.34, + "end": 7296.94, + "probability": 0.8573 + }, + { + "start": 7297.0, + "end": 7298.0, + "probability": 0.9888 + }, + { + "start": 7298.62, + "end": 7299.89, + "probability": 0.9644 + }, + { + "start": 7302.16, + "end": 7305.72, + "probability": 0.9432 + }, + { + "start": 7306.76, + "end": 7309.74, + "probability": 0.8241 + }, + { + "start": 7310.64, + "end": 7313.24, + "probability": 0.7092 + }, + { + "start": 7313.86, + "end": 7316.06, + "probability": 0.9802 + }, + { + "start": 7316.22, + "end": 7316.6, + "probability": 0.9045 + }, + { + "start": 7317.22, + "end": 7317.78, + "probability": 0.7077 + }, + { + "start": 7318.78, + "end": 7320.76, + "probability": 0.8142 + }, + { + "start": 7321.28, + "end": 7322.7, + "probability": 0.324 + }, + { + "start": 7323.52, + "end": 7324.86, + "probability": 0.8079 + }, + { + "start": 7327.28, + "end": 7328.76, + "probability": 0.6061 + }, + { + "start": 7329.72, + "end": 7331.74, + "probability": 0.9587 + }, + { + "start": 7331.88, + "end": 7338.26, + "probability": 0.8892 + }, + { + "start": 7339.06, + "end": 7342.44, + "probability": 0.98 + }, + { + "start": 7342.86, + "end": 7344.72, + "probability": 0.898 + }, + { + "start": 7345.12, + "end": 7347.52, + "probability": 0.9252 + }, + { + "start": 7347.78, + "end": 7351.74, + "probability": 0.9832 + }, + { + "start": 7352.42, + "end": 7357.96, + "probability": 0.8058 + }, + { + "start": 7358.28, + "end": 7358.52, + "probability": 0.7648 + }, + { + "start": 7363.06, + "end": 7364.64, + "probability": 0.6018 + }, + { + "start": 7367.04, + "end": 7369.94, + "probability": 0.754 + }, + { + "start": 7369.94, + "end": 7373.0, + "probability": 0.8447 + }, + { + "start": 7373.62, + "end": 7374.64, + "probability": 0.8671 + }, + { + "start": 7375.52, + "end": 7378.76, + "probability": 0.9897 + }, + { + "start": 7378.9, + "end": 7380.22, + "probability": 0.9286 + }, + { + "start": 7380.76, + "end": 7382.04, + "probability": 0.9809 + }, + { + "start": 7382.16, + "end": 7383.09, + "probability": 0.9751 + }, + { + "start": 7384.26, + "end": 7384.86, + "probability": 0.8004 + }, + { + "start": 7384.98, + "end": 7387.62, + "probability": 0.9819 + }, + { + "start": 7388.12, + "end": 7388.6, + "probability": 0.412 + }, + { + "start": 7388.68, + "end": 7390.03, + "probability": 0.9591 + }, + { + "start": 7390.26, + "end": 7391.12, + "probability": 0.9759 + }, + { + "start": 7392.28, + "end": 7400.6, + "probability": 0.8593 + }, + { + "start": 7401.1, + "end": 7408.74, + "probability": 0.9169 + }, + { + "start": 7409.32, + "end": 7411.68, + "probability": 0.7393 + }, + { + "start": 7412.88, + "end": 7419.1, + "probability": 0.9806 + }, + { + "start": 7419.82, + "end": 7419.82, + "probability": 0.0537 + }, + { + "start": 7419.82, + "end": 7425.04, + "probability": 0.8809 + }, + { + "start": 7425.04, + "end": 7427.78, + "probability": 0.428 + }, + { + "start": 7428.28, + "end": 7430.9, + "probability": 0.7556 + }, + { + "start": 7431.74, + "end": 7434.42, + "probability": 0.924 + }, + { + "start": 7434.42, + "end": 7438.2, + "probability": 0.9884 + }, + { + "start": 7438.58, + "end": 7439.6, + "probability": 0.947 + }, + { + "start": 7440.26, + "end": 7442.92, + "probability": 0.9103 + }, + { + "start": 7443.9, + "end": 7445.52, + "probability": 0.7389 + }, + { + "start": 7446.6, + "end": 7447.5, + "probability": 0.6002 + }, + { + "start": 7448.52, + "end": 7450.1, + "probability": 0.9385 + }, + { + "start": 7450.26, + "end": 7452.74, + "probability": 0.7905 + }, + { + "start": 7453.58, + "end": 7456.22, + "probability": 0.7725 + }, + { + "start": 7456.68, + "end": 7458.26, + "probability": 0.7896 + }, + { + "start": 7458.38, + "end": 7459.75, + "probability": 0.7419 + }, + { + "start": 7460.48, + "end": 7460.82, + "probability": 0.5907 + }, + { + "start": 7462.04, + "end": 7462.66, + "probability": 0.2403 + }, + { + "start": 7462.76, + "end": 7464.86, + "probability": 0.8858 + }, + { + "start": 7465.36, + "end": 7469.14, + "probability": 0.9638 + }, + { + "start": 7470.22, + "end": 7472.04, + "probability": 0.749 + }, + { + "start": 7472.78, + "end": 7473.74, + "probability": 0.3578 + }, + { + "start": 7473.9, + "end": 7474.69, + "probability": 0.5818 + }, + { + "start": 7474.98, + "end": 7475.02, + "probability": 0.0357 + }, + { + "start": 7475.02, + "end": 7475.66, + "probability": 0.4275 + }, + { + "start": 7475.76, + "end": 7476.38, + "probability": 0.8245 + }, + { + "start": 7476.76, + "end": 7476.78, + "probability": 0.0508 + }, + { + "start": 7476.78, + "end": 7477.66, + "probability": 0.9521 + }, + { + "start": 7478.5, + "end": 7481.72, + "probability": 0.4627 + }, + { + "start": 7482.2, + "end": 7485.2, + "probability": 0.7828 + }, + { + "start": 7486.24, + "end": 7489.64, + "probability": 0.9397 + }, + { + "start": 7490.78, + "end": 7496.84, + "probability": 0.9957 + }, + { + "start": 7496.84, + "end": 7500.92, + "probability": 0.998 + }, + { + "start": 7501.46, + "end": 7505.08, + "probability": 0.9349 + }, + { + "start": 7505.64, + "end": 7506.44, + "probability": 0.8132 + }, + { + "start": 7506.66, + "end": 7509.8, + "probability": 0.6551 + }, + { + "start": 7509.96, + "end": 7511.74, + "probability": 0.702 + }, + { + "start": 7512.92, + "end": 7517.96, + "probability": 0.9742 + }, + { + "start": 7518.54, + "end": 7520.82, + "probability": 0.9468 + }, + { + "start": 7521.4, + "end": 7522.06, + "probability": 0.8418 + }, + { + "start": 7522.76, + "end": 7524.96, + "probability": 0.8892 + }, + { + "start": 7525.26, + "end": 7526.32, + "probability": 0.9255 + }, + { + "start": 7526.36, + "end": 7526.8, + "probability": 0.8965 + }, + { + "start": 7527.92, + "end": 7528.46, + "probability": 0.7698 + }, + { + "start": 7530.22, + "end": 7532.2, + "probability": 0.5462 + }, + { + "start": 7532.3, + "end": 7532.88, + "probability": 0.7656 + }, + { + "start": 7533.36, + "end": 7536.36, + "probability": 0.8942 + }, + { + "start": 7538.28, + "end": 7538.74, + "probability": 0.0857 + }, + { + "start": 7539.18, + "end": 7539.92, + "probability": 0.9047 + }, + { + "start": 7539.96, + "end": 7542.1, + "probability": 0.4626 + }, + { + "start": 7542.16, + "end": 7542.6, + "probability": 0.4005 + }, + { + "start": 7543.04, + "end": 7545.08, + "probability": 0.9927 + }, + { + "start": 7545.7, + "end": 7549.56, + "probability": 0.9804 + }, + { + "start": 7549.64, + "end": 7550.48, + "probability": 0.9009 + }, + { + "start": 7550.96, + "end": 7553.4, + "probability": 0.9166 + }, + { + "start": 7553.68, + "end": 7556.92, + "probability": 0.9334 + }, + { + "start": 7557.08, + "end": 7557.68, + "probability": 0.6701 + }, + { + "start": 7557.72, + "end": 7559.56, + "probability": 0.7221 + }, + { + "start": 7560.02, + "end": 7560.16, + "probability": 0.6669 + }, + { + "start": 7560.36, + "end": 7561.8, + "probability": 0.722 + }, + { + "start": 7561.9, + "end": 7565.46, + "probability": 0.9944 + }, + { + "start": 7565.5, + "end": 7566.16, + "probability": 0.9162 + }, + { + "start": 7566.9, + "end": 7569.66, + "probability": 0.7336 + }, + { + "start": 7569.8, + "end": 7570.4, + "probability": 0.7304 + }, + { + "start": 7570.52, + "end": 7572.44, + "probability": 0.6625 + }, + { + "start": 7572.5, + "end": 7573.22, + "probability": 0.86 + }, + { + "start": 7574.75, + "end": 7576.96, + "probability": 0.6572 + }, + { + "start": 7577.7, + "end": 7577.72, + "probability": 0.2914 + }, + { + "start": 7577.72, + "end": 7578.51, + "probability": 0.4606 + }, + { + "start": 7578.6, + "end": 7580.3, + "probability": 0.9522 + }, + { + "start": 7580.94, + "end": 7582.72, + "probability": 0.9681 + }, + { + "start": 7583.28, + "end": 7585.7, + "probability": 0.8818 + }, + { + "start": 7587.16, + "end": 7587.76, + "probability": 0.8915 + }, + { + "start": 7588.28, + "end": 7589.72, + "probability": 0.8456 + }, + { + "start": 7589.8, + "end": 7591.2, + "probability": 0.6147 + }, + { + "start": 7591.48, + "end": 7593.08, + "probability": 0.7676 + }, + { + "start": 7595.67, + "end": 7598.02, + "probability": 0.8018 + }, + { + "start": 7599.08, + "end": 7602.44, + "probability": 0.9648 + }, + { + "start": 7603.78, + "end": 7604.9, + "probability": 0.7848 + }, + { + "start": 7605.56, + "end": 7609.62, + "probability": 0.9657 + }, + { + "start": 7609.84, + "end": 7611.66, + "probability": 0.8311 + }, + { + "start": 7612.26, + "end": 7613.16, + "probability": 0.5685 + }, + { + "start": 7613.24, + "end": 7614.08, + "probability": 0.5021 + }, + { + "start": 7614.58, + "end": 7616.18, + "probability": 0.9639 + }, + { + "start": 7616.76, + "end": 7617.42, + "probability": 0.7692 + }, + { + "start": 7618.04, + "end": 7618.94, + "probability": 0.6578 + }, + { + "start": 7619.5, + "end": 7619.57, + "probability": 0.5007 + }, + { + "start": 7619.96, + "end": 7622.1, + "probability": 0.8349 + }, + { + "start": 7625.11, + "end": 7628.84, + "probability": 0.5896 + }, + { + "start": 7629.56, + "end": 7635.14, + "probability": 0.6523 + }, + { + "start": 7635.92, + "end": 7640.34, + "probability": 0.9812 + }, + { + "start": 7640.34, + "end": 7645.46, + "probability": 0.9939 + }, + { + "start": 7646.72, + "end": 7649.84, + "probability": 0.9539 + }, + { + "start": 7650.46, + "end": 7651.72, + "probability": 0.9937 + }, + { + "start": 7652.1, + "end": 7656.62, + "probability": 0.7429 + }, + { + "start": 7656.76, + "end": 7657.52, + "probability": 0.8568 + }, + { + "start": 7657.62, + "end": 7658.26, + "probability": 0.9204 + }, + { + "start": 7659.24, + "end": 7661.56, + "probability": 0.9354 + }, + { + "start": 7661.56, + "end": 7665.08, + "probability": 0.9834 + }, + { + "start": 7665.7, + "end": 7668.14, + "probability": 0.9513 + }, + { + "start": 7669.46, + "end": 7669.72, + "probability": 0.5938 + }, + { + "start": 7669.88, + "end": 7672.5, + "probability": 0.9189 + }, + { + "start": 7672.62, + "end": 7675.44, + "probability": 0.9602 + }, + { + "start": 7676.9, + "end": 7680.4, + "probability": 0.9313 + }, + { + "start": 7681.44, + "end": 7683.3, + "probability": 0.8012 + }, + { + "start": 7684.08, + "end": 7684.78, + "probability": 0.7229 + }, + { + "start": 7685.7, + "end": 7687.06, + "probability": 0.9572 + }, + { + "start": 7687.26, + "end": 7689.86, + "probability": 0.9929 + }, + { + "start": 7690.58, + "end": 7692.62, + "probability": 0.9964 + }, + { + "start": 7692.62, + "end": 7696.58, + "probability": 0.9534 + }, + { + "start": 7697.48, + "end": 7699.56, + "probability": 0.9046 + }, + { + "start": 7700.56, + "end": 7705.0, + "probability": 0.9473 + }, + { + "start": 7705.64, + "end": 7708.1, + "probability": 0.7276 + }, + { + "start": 7708.18, + "end": 7708.7, + "probability": 0.6419 + }, + { + "start": 7709.46, + "end": 7710.04, + "probability": 0.9418 + }, + { + "start": 7710.96, + "end": 7712.44, + "probability": 0.9774 + }, + { + "start": 7713.9, + "end": 7715.96, + "probability": 0.8236 + }, + { + "start": 7716.04, + "end": 7718.96, + "probability": 0.8459 + }, + { + "start": 7719.14, + "end": 7722.4, + "probability": 0.9443 + }, + { + "start": 7722.52, + "end": 7723.82, + "probability": 0.7763 + }, + { + "start": 7724.5, + "end": 7727.66, + "probability": 0.8887 + }, + { + "start": 7728.26, + "end": 7731.58, + "probability": 0.8281 + }, + { + "start": 7732.4, + "end": 7735.9, + "probability": 0.997 + }, + { + "start": 7735.9, + "end": 7741.04, + "probability": 0.9966 + }, + { + "start": 7742.64, + "end": 7744.7, + "probability": 0.8833 + }, + { + "start": 7745.16, + "end": 7746.88, + "probability": 0.9382 + }, + { + "start": 7747.58, + "end": 7751.9, + "probability": 0.8527 + }, + { + "start": 7752.36, + "end": 7756.74, + "probability": 0.9834 + }, + { + "start": 7756.74, + "end": 7759.78, + "probability": 0.9719 + }, + { + "start": 7760.9, + "end": 7763.9, + "probability": 0.7749 + }, + { + "start": 7764.74, + "end": 7767.28, + "probability": 0.8851 + }, + { + "start": 7767.82, + "end": 7769.54, + "probability": 0.9132 + }, + { + "start": 7769.66, + "end": 7772.44, + "probability": 0.9743 + }, + { + "start": 7773.08, + "end": 7778.06, + "probability": 0.8966 + }, + { + "start": 7779.0, + "end": 7779.98, + "probability": 0.8756 + }, + { + "start": 7781.34, + "end": 7783.5, + "probability": 0.6872 + }, + { + "start": 7783.62, + "end": 7785.98, + "probability": 0.8611 + }, + { + "start": 7786.8, + "end": 7790.82, + "probability": 0.8232 + }, + { + "start": 7791.3, + "end": 7791.96, + "probability": 0.4048 + }, + { + "start": 7792.56, + "end": 7796.0, + "probability": 0.6265 + }, + { + "start": 7797.2, + "end": 7800.16, + "probability": 0.7258 + }, + { + "start": 7802.08, + "end": 7802.42, + "probability": 0.47 + }, + { + "start": 7802.44, + "end": 7802.96, + "probability": 0.7195 + }, + { + "start": 7803.06, + "end": 7806.18, + "probability": 0.9234 + }, + { + "start": 7806.86, + "end": 7809.5, + "probability": 0.9611 + }, + { + "start": 7809.96, + "end": 7810.72, + "probability": 0.825 + }, + { + "start": 7811.28, + "end": 7813.24, + "probability": 0.7599 + }, + { + "start": 7814.32, + "end": 7816.18, + "probability": 0.9583 + }, + { + "start": 7816.9, + "end": 7819.92, + "probability": 0.7488 + }, + { + "start": 7820.44, + "end": 7822.28, + "probability": 0.2568 + }, + { + "start": 7822.86, + "end": 7824.08, + "probability": 0.9983 + }, + { + "start": 7824.82, + "end": 7827.04, + "probability": 0.2742 + }, + { + "start": 7827.86, + "end": 7830.24, + "probability": 0.8549 + }, + { + "start": 7830.76, + "end": 7833.28, + "probability": 0.9893 + }, + { + "start": 7833.78, + "end": 7834.72, + "probability": 0.8402 + }, + { + "start": 7835.56, + "end": 7836.14, + "probability": 0.7107 + }, + { + "start": 7836.48, + "end": 7840.76, + "probability": 0.9488 + }, + { + "start": 7840.92, + "end": 7842.34, + "probability": 0.9833 + }, + { + "start": 7843.46, + "end": 7843.74, + "probability": 0.7533 + }, + { + "start": 7845.8, + "end": 7846.56, + "probability": 0.8018 + }, + { + "start": 7847.06, + "end": 7849.26, + "probability": 0.969 + }, + { + "start": 7849.74, + "end": 7851.88, + "probability": 0.9801 + }, + { + "start": 7851.92, + "end": 7854.84, + "probability": 0.9858 + }, + { + "start": 7855.44, + "end": 7860.56, + "probability": 0.9948 + }, + { + "start": 7860.76, + "end": 7861.66, + "probability": 0.7444 + }, + { + "start": 7861.76, + "end": 7862.1, + "probability": 0.773 + }, + { + "start": 7863.16, + "end": 7864.44, + "probability": 0.7822 + }, + { + "start": 7864.54, + "end": 7868.36, + "probability": 0.9958 + }, + { + "start": 7868.96, + "end": 7871.22, + "probability": 0.6943 + }, + { + "start": 7871.24, + "end": 7871.54, + "probability": 0.8028 + }, + { + "start": 7871.62, + "end": 7872.48, + "probability": 0.9799 + }, + { + "start": 7872.8, + "end": 7875.96, + "probability": 0.9883 + }, + { + "start": 7876.04, + "end": 7878.24, + "probability": 0.89 + }, + { + "start": 7878.92, + "end": 7879.44, + "probability": 0.7806 + }, + { + "start": 7879.78, + "end": 7881.24, + "probability": 0.8755 + }, + { + "start": 7881.52, + "end": 7882.3, + "probability": 0.8891 + }, + { + "start": 7882.64, + "end": 7884.38, + "probability": 0.8099 + }, + { + "start": 7884.76, + "end": 7885.7, + "probability": 0.9881 + }, + { + "start": 7886.08, + "end": 7886.14, + "probability": 0.6764 + }, + { + "start": 7886.24, + "end": 7887.62, + "probability": 0.7761 + }, + { + "start": 7887.7, + "end": 7889.78, + "probability": 0.9772 + }, + { + "start": 7889.94, + "end": 7893.54, + "probability": 0.9666 + }, + { + "start": 7894.14, + "end": 7895.88, + "probability": 0.7629 + }, + { + "start": 7896.14, + "end": 7896.87, + "probability": 0.9535 + }, + { + "start": 7897.34, + "end": 7898.7, + "probability": 0.9153 + }, + { + "start": 7898.78, + "end": 7899.58, + "probability": 0.8127 + }, + { + "start": 7900.16, + "end": 7901.95, + "probability": 0.9561 + }, + { + "start": 7902.16, + "end": 7903.1, + "probability": 0.8508 + }, + { + "start": 7903.14, + "end": 7906.56, + "probability": 0.7206 + }, + { + "start": 7906.8, + "end": 7908.04, + "probability": 0.9134 + }, + { + "start": 7908.52, + "end": 7908.98, + "probability": 0.7757 + }, + { + "start": 7909.22, + "end": 7910.36, + "probability": 0.7603 + }, + { + "start": 7910.4, + "end": 7910.84, + "probability": 0.6487 + }, + { + "start": 7911.18, + "end": 7912.42, + "probability": 0.9474 + }, + { + "start": 7912.5, + "end": 7913.22, + "probability": 0.6415 + }, + { + "start": 7913.24, + "end": 7914.04, + "probability": 0.7197 + }, + { + "start": 7914.42, + "end": 7914.86, + "probability": 0.7673 + }, + { + "start": 7915.4, + "end": 7918.07, + "probability": 0.9041 + }, + { + "start": 7919.4, + "end": 7922.44, + "probability": 0.8118 + }, + { + "start": 7923.0, + "end": 7926.06, + "probability": 0.9696 + }, + { + "start": 7926.44, + "end": 7927.18, + "probability": 0.893 + }, + { + "start": 7927.22, + "end": 7928.0, + "probability": 0.9594 + }, + { + "start": 7928.46, + "end": 7930.02, + "probability": 0.9822 + }, + { + "start": 7930.12, + "end": 7931.88, + "probability": 0.9917 + }, + { + "start": 7932.44, + "end": 7932.82, + "probability": 0.8543 + }, + { + "start": 7933.52, + "end": 7935.02, + "probability": 0.8584 + }, + { + "start": 7935.12, + "end": 7936.78, + "probability": 0.5997 + }, + { + "start": 7936.88, + "end": 7937.02, + "probability": 0.1302 + }, + { + "start": 7937.02, + "end": 7937.51, + "probability": 0.4006 + }, + { + "start": 7937.8, + "end": 7938.56, + "probability": 0.4922 + }, + { + "start": 7940.5, + "end": 7942.18, + "probability": 0.9832 + }, + { + "start": 7943.04, + "end": 7944.04, + "probability": 0.7337 + }, + { + "start": 7944.66, + "end": 7946.58, + "probability": 0.9464 + }, + { + "start": 7947.36, + "end": 7950.34, + "probability": 0.9757 + }, + { + "start": 7951.5, + "end": 7953.48, + "probability": 0.8356 + }, + { + "start": 7954.36, + "end": 7954.72, + "probability": 0.5894 + }, + { + "start": 7957.34, + "end": 7958.26, + "probability": 0.7651 + }, + { + "start": 7959.74, + "end": 7959.92, + "probability": 0.6062 + }, + { + "start": 7962.42, + "end": 7963.92, + "probability": 0.9547 + }, + { + "start": 7966.02, + "end": 7968.62, + "probability": 0.4531 + }, + { + "start": 7969.48, + "end": 7970.38, + "probability": 0.7773 + }, + { + "start": 7971.28, + "end": 7972.3, + "probability": 0.6134 + }, + { + "start": 7976.14, + "end": 7978.58, + "probability": 0.5981 + }, + { + "start": 7979.2, + "end": 7982.32, + "probability": 0.6508 + }, + { + "start": 7983.02, + "end": 7983.76, + "probability": 0.6423 + }, + { + "start": 7983.76, + "end": 7984.08, + "probability": 0.364 + }, + { + "start": 8001.34, + "end": 8002.88, + "probability": 0.6566 + }, + { + "start": 8003.94, + "end": 8006.69, + "probability": 0.8879 + }, + { + "start": 8008.54, + "end": 8013.98, + "probability": 0.9834 + }, + { + "start": 8014.66, + "end": 8019.86, + "probability": 0.5176 + }, + { + "start": 8020.48, + "end": 8024.86, + "probability": 0.8341 + }, + { + "start": 8025.22, + "end": 8029.76, + "probability": 0.9981 + }, + { + "start": 8029.76, + "end": 8034.64, + "probability": 0.9946 + }, + { + "start": 8035.52, + "end": 8037.7, + "probability": 0.7815 + }, + { + "start": 8038.02, + "end": 8039.18, + "probability": 0.2224 + }, + { + "start": 8039.18, + "end": 8043.12, + "probability": 0.7463 + }, + { + "start": 8043.78, + "end": 8046.29, + "probability": 0.4658 + }, + { + "start": 8047.06, + "end": 8052.28, + "probability": 0.9578 + }, + { + "start": 8054.24, + "end": 8057.54, + "probability": 0.6207 + }, + { + "start": 8058.16, + "end": 8059.34, + "probability": 0.5071 + }, + { + "start": 8060.4, + "end": 8063.86, + "probability": 0.9562 + }, + { + "start": 8063.88, + "end": 8068.14, + "probability": 0.9988 + }, + { + "start": 8068.82, + "end": 8071.44, + "probability": 0.9849 + }, + { + "start": 8072.44, + "end": 8077.46, + "probability": 0.9699 + }, + { + "start": 8077.6, + "end": 8078.7, + "probability": 0.8189 + }, + { + "start": 8080.04, + "end": 8085.3, + "probability": 0.7463 + }, + { + "start": 8086.2, + "end": 8087.46, + "probability": 0.8703 + }, + { + "start": 8088.28, + "end": 8090.12, + "probability": 0.7207 + }, + { + "start": 8090.34, + "end": 8093.12, + "probability": 0.9753 + }, + { + "start": 8093.84, + "end": 8095.1, + "probability": 0.8647 + }, + { + "start": 8096.38, + "end": 8100.34, + "probability": 0.752 + }, + { + "start": 8100.54, + "end": 8103.38, + "probability": 0.9806 + }, + { + "start": 8103.52, + "end": 8107.58, + "probability": 0.8673 + }, + { + "start": 8108.12, + "end": 8111.37, + "probability": 0.5882 + }, + { + "start": 8111.88, + "end": 8113.9, + "probability": 0.9977 + }, + { + "start": 8114.74, + "end": 8116.66, + "probability": 0.8327 + }, + { + "start": 8117.22, + "end": 8120.22, + "probability": 0.8971 + }, + { + "start": 8120.7, + "end": 8121.2, + "probability": 0.6459 + }, + { + "start": 8121.52, + "end": 8121.84, + "probability": 0.7271 + }, + { + "start": 8121.92, + "end": 8122.98, + "probability": 0.7408 + }, + { + "start": 8123.6, + "end": 8124.28, + "probability": 0.9475 + }, + { + "start": 8124.94, + "end": 8125.78, + "probability": 0.9462 + }, + { + "start": 8125.88, + "end": 8126.9, + "probability": 0.9493 + }, + { + "start": 8127.1, + "end": 8129.36, + "probability": 0.9443 + }, + { + "start": 8130.32, + "end": 8131.36, + "probability": 0.5485 + }, + { + "start": 8132.14, + "end": 8136.8, + "probability": 0.9814 + }, + { + "start": 8137.22, + "end": 8138.48, + "probability": 0.9312 + }, + { + "start": 8139.7, + "end": 8145.38, + "probability": 0.9282 + }, + { + "start": 8146.64, + "end": 8149.78, + "probability": 0.9955 + }, + { + "start": 8151.68, + "end": 8156.05, + "probability": 0.7179 + }, + { + "start": 8157.5, + "end": 8159.94, + "probability": 0.9733 + }, + { + "start": 8161.0, + "end": 8164.18, + "probability": 0.9678 + }, + { + "start": 8164.7, + "end": 8167.78, + "probability": 0.9453 + }, + { + "start": 8173.68, + "end": 8174.38, + "probability": 0.8124 + }, + { + "start": 8175.12, + "end": 8180.48, + "probability": 0.9802 + }, + { + "start": 8181.08, + "end": 8187.98, + "probability": 0.8735 + }, + { + "start": 8187.98, + "end": 8193.92, + "probability": 0.9517 + }, + { + "start": 8198.82, + "end": 8199.6, + "probability": 0.622 + }, + { + "start": 8200.94, + "end": 8202.7, + "probability": 0.766 + }, + { + "start": 8202.9, + "end": 8207.64, + "probability": 0.7185 + }, + { + "start": 8207.64, + "end": 8207.76, + "probability": 0.3902 + }, + { + "start": 8207.76, + "end": 8207.76, + "probability": 0.4927 + }, + { + "start": 8207.96, + "end": 8209.18, + "probability": 0.5065 + }, + { + "start": 8209.24, + "end": 8213.22, + "probability": 0.9831 + }, + { + "start": 8216.24, + "end": 8216.24, + "probability": 0.0371 + }, + { + "start": 8216.24, + "end": 8216.24, + "probability": 0.1969 + }, + { + "start": 8216.24, + "end": 8216.24, + "probability": 0.2275 + }, + { + "start": 8216.24, + "end": 8216.24, + "probability": 0.2084 + }, + { + "start": 8216.24, + "end": 8218.2, + "probability": 0.4177 + }, + { + "start": 8218.84, + "end": 8220.64, + "probability": 0.6712 + }, + { + "start": 8220.78, + "end": 8225.0, + "probability": 0.517 + }, + { + "start": 8225.0, + "end": 8225.72, + "probability": 0.214 + }, + { + "start": 8228.22, + "end": 8228.74, + "probability": 0.6628 + }, + { + "start": 8228.88, + "end": 8230.54, + "probability": 0.1796 + }, + { + "start": 8230.64, + "end": 8231.28, + "probability": 0.5883 + }, + { + "start": 8231.64, + "end": 8232.52, + "probability": 0.965 + }, + { + "start": 8232.64, + "end": 8236.58, + "probability": 0.923 + }, + { + "start": 8237.2, + "end": 8237.94, + "probability": 0.9819 + }, + { + "start": 8239.28, + "end": 8240.84, + "probability": 0.9896 + }, + { + "start": 8241.52, + "end": 8243.86, + "probability": 0.6918 + }, + { + "start": 8244.04, + "end": 8244.6, + "probability": 0.6462 + }, + { + "start": 8244.8, + "end": 8248.0, + "probability": 0.9449 + }, + { + "start": 8248.7, + "end": 8251.3, + "probability": 0.9885 + }, + { + "start": 8252.08, + "end": 8255.06, + "probability": 0.917 + }, + { + "start": 8255.76, + "end": 8259.92, + "probability": 0.9735 + }, + { + "start": 8261.26, + "end": 8263.84, + "probability": 0.771 + }, + { + "start": 8263.92, + "end": 8267.22, + "probability": 0.9798 + }, + { + "start": 8267.4, + "end": 8268.34, + "probability": 0.8868 + }, + { + "start": 8268.48, + "end": 8272.04, + "probability": 0.7783 + }, + { + "start": 8272.62, + "end": 8274.76, + "probability": 0.6894 + }, + { + "start": 8274.96, + "end": 8275.7, + "probability": 0.8383 + }, + { + "start": 8277.79, + "end": 8281.06, + "probability": 0.5128 + }, + { + "start": 8281.32, + "end": 8283.06, + "probability": 0.8264 + }, + { + "start": 8283.14, + "end": 8284.78, + "probability": 0.5401 + }, + { + "start": 8284.86, + "end": 8285.26, + "probability": 0.6008 + }, + { + "start": 8285.64, + "end": 8291.68, + "probability": 0.8989 + }, + { + "start": 8292.2, + "end": 8293.04, + "probability": 0.9448 + }, + { + "start": 8293.42, + "end": 8294.5, + "probability": 0.9872 + }, + { + "start": 8294.62, + "end": 8299.72, + "probability": 0.9216 + }, + { + "start": 8299.78, + "end": 8302.06, + "probability": 0.9767 + }, + { + "start": 8302.5, + "end": 8304.4, + "probability": 0.9419 + }, + { + "start": 8304.44, + "end": 8305.72, + "probability": 0.7225 + }, + { + "start": 8306.1, + "end": 8309.6, + "probability": 0.9915 + }, + { + "start": 8311.12, + "end": 8312.54, + "probability": 0.9827 + }, + { + "start": 8313.24, + "end": 8315.24, + "probability": 0.9644 + }, + { + "start": 8316.18, + "end": 8318.12, + "probability": 0.8097 + }, + { + "start": 8318.52, + "end": 8320.2, + "probability": 0.7695 + }, + { + "start": 8320.38, + "end": 8321.85, + "probability": 0.9819 + }, + { + "start": 8322.34, + "end": 8327.3, + "probability": 0.9176 + }, + { + "start": 8327.76, + "end": 8328.9, + "probability": 0.7239 + }, + { + "start": 8329.18, + "end": 8330.78, + "probability": 0.6952 + }, + { + "start": 8330.78, + "end": 8336.4, + "probability": 0.9188 + }, + { + "start": 8336.78, + "end": 8343.4, + "probability": 0.9942 + }, + { + "start": 8343.42, + "end": 8348.16, + "probability": 0.9951 + }, + { + "start": 8348.22, + "end": 8348.88, + "probability": 0.6017 + }, + { + "start": 8349.16, + "end": 8352.02, + "probability": 0.9666 + }, + { + "start": 8352.44, + "end": 8352.72, + "probability": 0.4958 + }, + { + "start": 8353.3, + "end": 8357.4, + "probability": 0.9938 + }, + { + "start": 8357.58, + "end": 8358.58, + "probability": 0.814 + }, + { + "start": 8359.02, + "end": 8361.98, + "probability": 0.6162 + }, + { + "start": 8362.04, + "end": 8363.06, + "probability": 0.9715 + }, + { + "start": 8363.8, + "end": 8367.88, + "probability": 0.9073 + }, + { + "start": 8368.8, + "end": 8370.9, + "probability": 0.9355 + }, + { + "start": 8371.08, + "end": 8386.08, + "probability": 0.9728 + }, + { + "start": 8386.3, + "end": 8388.08, + "probability": 0.9545 + }, + { + "start": 8388.18, + "end": 8388.5, + "probability": 0.7196 + }, + { + "start": 8388.56, + "end": 8389.98, + "probability": 0.8744 + }, + { + "start": 8390.42, + "end": 8394.84, + "probability": 0.9951 + }, + { + "start": 8395.46, + "end": 8396.46, + "probability": 0.5595 + }, + { + "start": 8396.86, + "end": 8398.9, + "probability": 0.6418 + }, + { + "start": 8399.0, + "end": 8401.48, + "probability": 0.9976 + }, + { + "start": 8402.04, + "end": 8404.56, + "probability": 0.9304 + }, + { + "start": 8406.27, + "end": 8410.38, + "probability": 0.9098 + }, + { + "start": 8410.7, + "end": 8411.28, + "probability": 0.7352 + }, + { + "start": 8411.78, + "end": 8413.2, + "probability": 0.9654 + }, + { + "start": 8413.96, + "end": 8416.14, + "probability": 0.6646 + }, + { + "start": 8416.24, + "end": 8419.86, + "probability": 0.9428 + }, + { + "start": 8420.5, + "end": 8421.1, + "probability": 0.3346 + }, + { + "start": 8421.84, + "end": 8424.82, + "probability": 0.5696 + }, + { + "start": 8425.26, + "end": 8426.28, + "probability": 0.8933 + }, + { + "start": 8426.36, + "end": 8428.13, + "probability": 0.9943 + }, + { + "start": 8428.38, + "end": 8431.16, + "probability": 0.9305 + }, + { + "start": 8431.22, + "end": 8434.18, + "probability": 0.9655 + }, + { + "start": 8434.86, + "end": 8436.96, + "probability": 0.8794 + }, + { + "start": 8437.58, + "end": 8440.04, + "probability": 0.3255 + }, + { + "start": 8440.04, + "end": 8440.32, + "probability": 0.7248 + }, + { + "start": 8441.88, + "end": 8443.42, + "probability": 0.8092 + }, + { + "start": 8444.3, + "end": 8445.78, + "probability": 0.7085 + }, + { + "start": 8446.1, + "end": 8449.22, + "probability": 0.9836 + }, + { + "start": 8450.06, + "end": 8450.92, + "probability": 0.5548 + }, + { + "start": 8451.9, + "end": 8453.0, + "probability": 0.5069 + }, + { + "start": 8453.52, + "end": 8454.58, + "probability": 0.4212 + }, + { + "start": 8454.6, + "end": 8455.44, + "probability": 0.4579 + }, + { + "start": 8455.54, + "end": 8455.64, + "probability": 0.1355 + }, + { + "start": 8455.68, + "end": 8456.44, + "probability": 0.435 + }, + { + "start": 8456.64, + "end": 8457.98, + "probability": 0.9585 + }, + { + "start": 8458.1, + "end": 8458.72, + "probability": 0.696 + }, + { + "start": 8459.04, + "end": 8463.42, + "probability": 0.8837 + }, + { + "start": 8463.94, + "end": 8470.5, + "probability": 0.9366 + }, + { + "start": 8471.34, + "end": 8472.42, + "probability": 0.6256 + }, + { + "start": 8473.14, + "end": 8478.52, + "probability": 0.6663 + }, + { + "start": 8479.24, + "end": 8480.32, + "probability": 0.8623 + }, + { + "start": 8482.13, + "end": 8484.91, + "probability": 0.4305 + }, + { + "start": 8485.78, + "end": 8489.38, + "probability": 0.7059 + }, + { + "start": 8490.36, + "end": 8496.9, + "probability": 0.7961 + }, + { + "start": 8497.0, + "end": 8497.89, + "probability": 0.6124 + }, + { + "start": 8498.14, + "end": 8498.62, + "probability": 0.8453 + }, + { + "start": 8501.56, + "end": 8502.42, + "probability": 0.6218 + }, + { + "start": 8502.5, + "end": 8503.62, + "probability": 0.6728 + }, + { + "start": 8503.9, + "end": 8504.6, + "probability": 0.49 + }, + { + "start": 8504.64, + "end": 8504.64, + "probability": 0.0811 + }, + { + "start": 8504.64, + "end": 8506.7, + "probability": 0.5336 + }, + { + "start": 8506.72, + "end": 8509.58, + "probability": 0.8733 + }, + { + "start": 8509.68, + "end": 8515.48, + "probability": 0.8958 + }, + { + "start": 8515.48, + "end": 8521.24, + "probability": 0.9573 + }, + { + "start": 8522.52, + "end": 8528.62, + "probability": 0.9742 + }, + { + "start": 8529.38, + "end": 8531.14, + "probability": 0.872 + }, + { + "start": 8531.28, + "end": 8536.16, + "probability": 0.9261 + }, + { + "start": 8536.62, + "end": 8539.82, + "probability": 0.6167 + }, + { + "start": 8540.46, + "end": 8543.58, + "probability": 0.9617 + }, + { + "start": 8544.02, + "end": 8544.56, + "probability": 0.8195 + }, + { + "start": 8545.18, + "end": 8550.34, + "probability": 0.8472 + }, + { + "start": 8550.62, + "end": 8552.2, + "probability": 0.6738 + }, + { + "start": 8552.96, + "end": 8553.46, + "probability": 0.4843 + }, + { + "start": 8554.12, + "end": 8559.5, + "probability": 0.8376 + }, + { + "start": 8559.5, + "end": 8564.9, + "probability": 0.6118 + }, + { + "start": 8565.92, + "end": 8569.92, + "probability": 0.763 + }, + { + "start": 8570.54, + "end": 8571.56, + "probability": 0.6693 + }, + { + "start": 8571.94, + "end": 8573.62, + "probability": 0.9918 + }, + { + "start": 8573.78, + "end": 8574.74, + "probability": 0.8937 + }, + { + "start": 8576.84, + "end": 8580.38, + "probability": 0.309 + }, + { + "start": 8581.08, + "end": 8581.08, + "probability": 0.2194 + }, + { + "start": 8581.08, + "end": 8581.1, + "probability": 0.0201 + }, + { + "start": 8581.1, + "end": 8581.26, + "probability": 0.0401 + }, + { + "start": 8581.26, + "end": 8581.68, + "probability": 0.0459 + }, + { + "start": 8581.68, + "end": 8584.2, + "probability": 0.225 + }, + { + "start": 8585.84, + "end": 8588.34, + "probability": 0.6287 + }, + { + "start": 8589.1, + "end": 8591.18, + "probability": 0.6218 + }, + { + "start": 8591.8, + "end": 8597.22, + "probability": 0.5812 + }, + { + "start": 8598.2, + "end": 8605.0, + "probability": 0.8655 + }, + { + "start": 8605.84, + "end": 8610.02, + "probability": 0.9962 + }, + { + "start": 8610.94, + "end": 8611.76, + "probability": 0.944 + }, + { + "start": 8613.5, + "end": 8617.96, + "probability": 0.7968 + }, + { + "start": 8618.42, + "end": 8621.24, + "probability": 0.6997 + }, + { + "start": 8622.2, + "end": 8627.76, + "probability": 0.5946 + }, + { + "start": 8628.82, + "end": 8630.48, + "probability": 0.8938 + }, + { + "start": 8630.58, + "end": 8633.5, + "probability": 0.874 + }, + { + "start": 8635.44, + "end": 8640.28, + "probability": 0.9797 + }, + { + "start": 8640.82, + "end": 8642.82, + "probability": 0.9548 + }, + { + "start": 8643.25, + "end": 8650.48, + "probability": 0.7496 + }, + { + "start": 8651.62, + "end": 8652.22, + "probability": 0.4959 + }, + { + "start": 8653.26, + "end": 8654.78, + "probability": 0.5466 + }, + { + "start": 8655.32, + "end": 8656.76, + "probability": 0.4277 + }, + { + "start": 8658.86, + "end": 8662.57, + "probability": 0.0253 + }, + { + "start": 8664.44, + "end": 8667.32, + "probability": 0.5504 + }, + { + "start": 8668.52, + "end": 8670.6, + "probability": 0.7946 + }, + { + "start": 8671.26, + "end": 8672.58, + "probability": 0.5167 + }, + { + "start": 8674.13, + "end": 8675.48, + "probability": 0.0003 + }, + { + "start": 8678.32, + "end": 8678.42, + "probability": 0.8641 + }, + { + "start": 8680.24, + "end": 8682.88, + "probability": 0.5285 + }, + { + "start": 8683.92, + "end": 8691.38, + "probability": 0.7379 + }, + { + "start": 8692.34, + "end": 8693.82, + "probability": 0.8625 + }, + { + "start": 8694.72, + "end": 8694.86, + "probability": 0.5132 + }, + { + "start": 8695.88, + "end": 8697.83, + "probability": 0.1832 + }, + { + "start": 8698.84, + "end": 8700.17, + "probability": 0.8465 + }, + { + "start": 8700.4, + "end": 8700.92, + "probability": 0.4581 + }, + { + "start": 8701.58, + "end": 8709.42, + "probability": 0.6685 + }, + { + "start": 8710.02, + "end": 8714.32, + "probability": 0.7067 + }, + { + "start": 8714.92, + "end": 8717.56, + "probability": 0.9588 + }, + { + "start": 8718.38, + "end": 8724.24, + "probability": 0.6581 + }, + { + "start": 8724.86, + "end": 8728.1, + "probability": 0.8254 + }, + { + "start": 8728.58, + "end": 8730.38, + "probability": 0.9915 + }, + { + "start": 8730.46, + "end": 8734.48, + "probability": 0.7959 + }, + { + "start": 8734.5, + "end": 8737.04, + "probability": 0.7704 + }, + { + "start": 8737.62, + "end": 8743.0, + "probability": 0.507 + }, + { + "start": 8743.64, + "end": 8744.14, + "probability": 0.9069 + }, + { + "start": 8746.28, + "end": 8747.08, + "probability": 0.5737 + }, + { + "start": 8748.92, + "end": 8749.68, + "probability": 0.0065 + }, + { + "start": 8750.06, + "end": 8753.04, + "probability": 0.7375 + }, + { + "start": 8753.24, + "end": 8754.76, + "probability": 0.7607 + }, + { + "start": 8756.15, + "end": 8760.64, + "probability": 0.5322 + }, + { + "start": 8761.5, + "end": 8762.62, + "probability": 0.8019 + }, + { + "start": 8762.84, + "end": 8763.08, + "probability": 0.7362 + }, + { + "start": 8763.1, + "end": 8764.98, + "probability": 0.9553 + }, + { + "start": 8765.1, + "end": 8766.38, + "probability": 0.7141 + }, + { + "start": 8766.86, + "end": 8768.9, + "probability": 0.9771 + }, + { + "start": 8769.7, + "end": 8771.96, + "probability": 0.6194 + }, + { + "start": 8771.98, + "end": 8772.08, + "probability": 0.0339 + }, + { + "start": 8772.6, + "end": 8773.64, + "probability": 0.9775 + }, + { + "start": 8773.64, + "end": 8773.64, + "probability": 0.3621 + }, + { + "start": 8773.7, + "end": 8775.62, + "probability": 0.7566 + }, + { + "start": 8775.72, + "end": 8776.76, + "probability": 0.8527 + }, + { + "start": 8776.86, + "end": 8783.04, + "probability": 0.876 + }, + { + "start": 8783.16, + "end": 8783.52, + "probability": 0.9731 + }, + { + "start": 8784.7, + "end": 8784.98, + "probability": 0.9231 + }, + { + "start": 8785.02, + "end": 8786.68, + "probability": 0.9728 + }, + { + "start": 8786.98, + "end": 8790.42, + "probability": 0.9009 + }, + { + "start": 8791.86, + "end": 8792.6, + "probability": 0.7994 + }, + { + "start": 8792.74, + "end": 8800.84, + "probability": 0.8002 + }, + { + "start": 8800.84, + "end": 8807.1, + "probability": 0.9176 + }, + { + "start": 8808.04, + "end": 8811.96, + "probability": 0.9196 + }, + { + "start": 8812.88, + "end": 8818.36, + "probability": 0.8755 + }, + { + "start": 8818.62, + "end": 8820.84, + "probability": 0.9929 + }, + { + "start": 8821.66, + "end": 8824.2, + "probability": 0.9897 + }, + { + "start": 8825.34, + "end": 8826.42, + "probability": 0.8269 + }, + { + "start": 8828.2, + "end": 8828.64, + "probability": 0.8367 + }, + { + "start": 8829.34, + "end": 8831.02, + "probability": 0.8704 + }, + { + "start": 8831.18, + "end": 8831.98, + "probability": 0.5407 + }, + { + "start": 8832.06, + "end": 8832.86, + "probability": 0.9049 + }, + { + "start": 8833.22, + "end": 8833.4, + "probability": 0.2758 + }, + { + "start": 8833.94, + "end": 8836.54, + "probability": 0.7926 + }, + { + "start": 8837.46, + "end": 8840.34, + "probability": 0.9385 + }, + { + "start": 8840.96, + "end": 8841.56, + "probability": 0.7241 + }, + { + "start": 8842.46, + "end": 8845.5, + "probability": 0.9332 + }, + { + "start": 8846.18, + "end": 8847.04, + "probability": 0.4437 + }, + { + "start": 8847.06, + "end": 8848.8, + "probability": 0.9909 + }, + { + "start": 8849.06, + "end": 8850.5, + "probability": 0.9261 + }, + { + "start": 8850.6, + "end": 8851.06, + "probability": 0.4067 + }, + { + "start": 8851.1, + "end": 8852.2, + "probability": 0.6275 + }, + { + "start": 8852.28, + "end": 8852.72, + "probability": 0.6388 + }, + { + "start": 8857.5, + "end": 8859.12, + "probability": 0.9104 + }, + { + "start": 8859.24, + "end": 8861.18, + "probability": 0.9961 + }, + { + "start": 8861.56, + "end": 8863.18, + "probability": 0.6891 + }, + { + "start": 8863.42, + "end": 8863.9, + "probability": 0.8639 + }, + { + "start": 8865.22, + "end": 8867.14, + "probability": 0.6291 + }, + { + "start": 8867.48, + "end": 8871.58, + "probability": 0.9823 + }, + { + "start": 8873.26, + "end": 8875.0, + "probability": 0.0158 + }, + { + "start": 8875.0, + "end": 8877.62, + "probability": 0.9387 + }, + { + "start": 8877.72, + "end": 8879.14, + "probability": 0.6671 + }, + { + "start": 8879.14, + "end": 8879.44, + "probability": 0.4756 + }, + { + "start": 8879.52, + "end": 8882.58, + "probability": 0.9303 + }, + { + "start": 8883.58, + "end": 8883.94, + "probability": 0.779 + }, + { + "start": 8884.7, + "end": 8884.94, + "probability": 0.8142 + }, + { + "start": 8885.68, + "end": 8888.5, + "probability": 0.5698 + }, + { + "start": 8889.12, + "end": 8896.55, + "probability": 0.9843 + }, + { + "start": 8897.26, + "end": 8900.24, + "probability": 0.9694 + }, + { + "start": 8900.88, + "end": 8902.16, + "probability": 0.6273 + }, + { + "start": 8902.22, + "end": 8906.44, + "probability": 0.9955 + }, + { + "start": 8907.34, + "end": 8910.54, + "probability": 0.9738 + }, + { + "start": 8910.68, + "end": 8913.82, + "probability": 0.978 + }, + { + "start": 8913.86, + "end": 8914.94, + "probability": 0.93 + }, + { + "start": 8915.76, + "end": 8918.86, + "probability": 0.9923 + }, + { + "start": 8919.6, + "end": 8923.36, + "probability": 0.9818 + }, + { + "start": 8923.44, + "end": 8930.16, + "probability": 0.9769 + }, + { + "start": 8930.86, + "end": 8933.66, + "probability": 0.9849 + }, + { + "start": 8934.24, + "end": 8935.96, + "probability": 0.9279 + }, + { + "start": 8936.68, + "end": 8941.06, + "probability": 0.9603 + }, + { + "start": 8941.9, + "end": 8945.72, + "probability": 0.973 + }, + { + "start": 8945.95, + "end": 8950.36, + "probability": 0.8044 + }, + { + "start": 8951.22, + "end": 8953.96, + "probability": 0.9387 + }, + { + "start": 8954.6, + "end": 8956.14, + "probability": 0.9011 + }, + { + "start": 8956.66, + "end": 8960.62, + "probability": 0.9989 + }, + { + "start": 8960.62, + "end": 8963.92, + "probability": 0.9821 + }, + { + "start": 8965.2, + "end": 8967.02, + "probability": 0.9698 + }, + { + "start": 8967.62, + "end": 8970.46, + "probability": 0.993 + }, + { + "start": 8971.5, + "end": 8977.86, + "probability": 0.9789 + }, + { + "start": 8978.78, + "end": 8981.52, + "probability": 0.6903 + }, + { + "start": 8982.36, + "end": 8987.9, + "probability": 0.8034 + }, + { + "start": 8988.5, + "end": 8990.34, + "probability": 0.7979 + }, + { + "start": 8993.81, + "end": 8996.04, + "probability": 0.1106 + }, + { + "start": 8997.9, + "end": 9001.52, + "probability": 0.8665 + }, + { + "start": 9002.32, + "end": 9008.38, + "probability": 0.9813 + }, + { + "start": 9008.38, + "end": 9014.32, + "probability": 0.9491 + }, + { + "start": 9015.3, + "end": 9024.4, + "probability": 0.9396 + }, + { + "start": 9024.98, + "end": 9027.02, + "probability": 0.9775 + }, + { + "start": 9028.16, + "end": 9030.38, + "probability": 0.9298 + }, + { + "start": 9031.02, + "end": 9037.2, + "probability": 0.8464 + }, + { + "start": 9037.8, + "end": 9042.22, + "probability": 0.9951 + }, + { + "start": 9043.2, + "end": 9045.6, + "probability": 0.9908 + }, + { + "start": 9045.6, + "end": 9049.68, + "probability": 0.9847 + }, + { + "start": 9050.3, + "end": 9051.54, + "probability": 0.5551 + }, + { + "start": 9052.16, + "end": 9058.0, + "probability": 0.9214 + }, + { + "start": 9059.12, + "end": 9061.14, + "probability": 0.8743 + }, + { + "start": 9061.34, + "end": 9063.94, + "probability": 0.9639 + }, + { + "start": 9064.44, + "end": 9070.02, + "probability": 0.9314 + }, + { + "start": 9070.38, + "end": 9072.72, + "probability": 0.9664 + }, + { + "start": 9073.82, + "end": 9074.32, + "probability": 0.6625 + }, + { + "start": 9079.14, + "end": 9080.32, + "probability": 0.2699 + }, + { + "start": 9080.7, + "end": 9081.78, + "probability": 0.2997 + }, + { + "start": 9082.22, + "end": 9084.24, + "probability": 0.9988 + }, + { + "start": 9084.84, + "end": 9084.91, + "probability": 0.0032 + }, + { + "start": 9085.52, + "end": 9088.04, + "probability": 0.8763 + }, + { + "start": 9088.74, + "end": 9091.04, + "probability": 0.9975 + }, + { + "start": 9091.82, + "end": 9093.78, + "probability": 0.9632 + }, + { + "start": 9095.12, + "end": 9095.54, + "probability": 0.8854 + }, + { + "start": 9096.84, + "end": 9097.34, + "probability": 0.4267 + }, + { + "start": 9098.36, + "end": 9100.16, + "probability": 0.8564 + }, + { + "start": 9100.98, + "end": 9102.14, + "probability": 0.8812 + }, + { + "start": 9102.78, + "end": 9106.14, + "probability": 0.9834 + }, + { + "start": 9106.96, + "end": 9111.14, + "probability": 0.9458 + }, + { + "start": 9111.64, + "end": 9113.28, + "probability": 0.8579 + }, + { + "start": 9113.36, + "end": 9114.14, + "probability": 0.8497 + }, + { + "start": 9115.48, + "end": 9117.54, + "probability": 0.8518 + }, + { + "start": 9118.2, + "end": 9120.52, + "probability": 0.8201 + }, + { + "start": 9121.32, + "end": 9122.48, + "probability": 0.8936 + }, + { + "start": 9123.26, + "end": 9124.78, + "probability": 0.825 + }, + { + "start": 9125.06, + "end": 9126.2, + "probability": 0.9799 + }, + { + "start": 9126.28, + "end": 9127.48, + "probability": 0.9317 + }, + { + "start": 9127.54, + "end": 9128.9, + "probability": 0.9846 + }, + { + "start": 9129.9, + "end": 9132.86, + "probability": 0.7609 + }, + { + "start": 9133.0, + "end": 9133.94, + "probability": 0.7368 + }, + { + "start": 9134.46, + "end": 9134.78, + "probability": 0.2042 + }, + { + "start": 9135.72, + "end": 9136.98, + "probability": 0.6125 + }, + { + "start": 9137.14, + "end": 9139.46, + "probability": 0.8286 + }, + { + "start": 9139.94, + "end": 9141.02, + "probability": 0.846 + }, + { + "start": 9142.02, + "end": 9143.24, + "probability": 0.9072 + }, + { + "start": 9143.26, + "end": 9144.7, + "probability": 0.6472 + }, + { + "start": 9144.98, + "end": 9150.2, + "probability": 0.9485 + }, + { + "start": 9150.56, + "end": 9151.5, + "probability": 0.7541 + }, + { + "start": 9151.78, + "end": 9152.72, + "probability": 0.8853 + }, + { + "start": 9152.86, + "end": 9153.5, + "probability": 0.7715 + }, + { + "start": 9153.56, + "end": 9160.28, + "probability": 0.9736 + }, + { + "start": 9160.52, + "end": 9166.48, + "probability": 0.9722 + }, + { + "start": 9167.18, + "end": 9170.38, + "probability": 0.952 + }, + { + "start": 9171.02, + "end": 9172.98, + "probability": 0.9713 + }, + { + "start": 9173.06, + "end": 9175.18, + "probability": 0.9967 + }, + { + "start": 9176.0, + "end": 9180.44, + "probability": 0.995 + }, + { + "start": 9180.78, + "end": 9182.32, + "probability": 0.8754 + }, + { + "start": 9182.48, + "end": 9183.9, + "probability": 0.584 + }, + { + "start": 9185.31, + "end": 9186.84, + "probability": 0.4634 + }, + { + "start": 9187.04, + "end": 9189.32, + "probability": 0.8904 + }, + { + "start": 9189.7, + "end": 9190.94, + "probability": 0.9312 + }, + { + "start": 9191.1, + "end": 9192.28, + "probability": 0.9008 + }, + { + "start": 9192.78, + "end": 9195.4, + "probability": 0.882 + }, + { + "start": 9195.92, + "end": 9197.48, + "probability": 0.8226 + }, + { + "start": 9197.58, + "end": 9200.96, + "probability": 0.9749 + }, + { + "start": 9201.08, + "end": 9202.58, + "probability": 0.8017 + }, + { + "start": 9202.9, + "end": 9203.24, + "probability": 0.3236 + }, + { + "start": 9204.28, + "end": 9205.16, + "probability": 0.9675 + }, + { + "start": 9205.24, + "end": 9206.72, + "probability": 0.8015 + }, + { + "start": 9206.76, + "end": 9213.32, + "probability": 0.9976 + }, + { + "start": 9213.9, + "end": 9217.7, + "probability": 0.9762 + }, + { + "start": 9217.86, + "end": 9218.28, + "probability": 0.8696 + }, + { + "start": 9218.4, + "end": 9218.76, + "probability": 0.4528 + }, + { + "start": 9219.74, + "end": 9223.16, + "probability": 0.8096 + }, + { + "start": 9223.18, + "end": 9224.58, + "probability": 0.9755 + }, + { + "start": 9224.84, + "end": 9225.66, + "probability": 0.7475 + }, + { + "start": 9226.48, + "end": 9229.86, + "probability": 0.7558 + }, + { + "start": 9230.24, + "end": 9233.42, + "probability": 0.8701 + }, + { + "start": 9233.72, + "end": 9234.72, + "probability": 0.8994 + }, + { + "start": 9235.22, + "end": 9239.56, + "probability": 0.8463 + }, + { + "start": 9239.72, + "end": 9240.36, + "probability": 0.7248 + }, + { + "start": 9241.22, + "end": 9244.7, + "probability": 0.9966 + }, + { + "start": 9245.58, + "end": 9249.42, + "probability": 0.9523 + }, + { + "start": 9249.58, + "end": 9250.44, + "probability": 0.9153 + }, + { + "start": 9250.58, + "end": 9255.9, + "probability": 0.93 + }, + { + "start": 9256.8, + "end": 9259.68, + "probability": 0.9759 + }, + { + "start": 9261.47, + "end": 9262.0, + "probability": 0.2595 + }, + { + "start": 9262.0, + "end": 9263.44, + "probability": 0.9337 + }, + { + "start": 9263.44, + "end": 9265.24, + "probability": 0.8592 + }, + { + "start": 9265.46, + "end": 9267.16, + "probability": 0.1489 + }, + { + "start": 9267.16, + "end": 9267.28, + "probability": 0.4824 + }, + { + "start": 9267.32, + "end": 9267.9, + "probability": 0.7303 + }, + { + "start": 9267.98, + "end": 9268.98, + "probability": 0.8405 + }, + { + "start": 9269.48, + "end": 9274.78, + "probability": 0.9614 + }, + { + "start": 9275.02, + "end": 9278.72, + "probability": 0.9932 + }, + { + "start": 9278.96, + "end": 9282.74, + "probability": 0.8722 + }, + { + "start": 9283.42, + "end": 9283.42, + "probability": 0.5247 + }, + { + "start": 9283.56, + "end": 9285.14, + "probability": 0.8137 + }, + { + "start": 9285.3, + "end": 9286.42, + "probability": 0.989 + }, + { + "start": 9286.42, + "end": 9287.42, + "probability": 0.922 + }, + { + "start": 9287.54, + "end": 9289.18, + "probability": 0.9435 + }, + { + "start": 9289.3, + "end": 9290.68, + "probability": 0.7862 + }, + { + "start": 9290.78, + "end": 9291.02, + "probability": 0.8566 + }, + { + "start": 9291.32, + "end": 9292.5, + "probability": 0.908 + }, + { + "start": 9293.14, + "end": 9299.48, + "probability": 0.8102 + }, + { + "start": 9299.52, + "end": 9300.92, + "probability": 0.3643 + }, + { + "start": 9301.12, + "end": 9303.34, + "probability": 0.2037 + }, + { + "start": 9303.34, + "end": 9305.26, + "probability": 0.0625 + }, + { + "start": 9305.5, + "end": 9307.18, + "probability": 0.5708 + }, + { + "start": 9308.86, + "end": 9312.22, + "probability": 0.5775 + }, + { + "start": 9312.44, + "end": 9313.1, + "probability": 0.5267 + }, + { + "start": 9313.5, + "end": 9316.14, + "probability": 0.3301 + }, + { + "start": 9316.32, + "end": 9318.71, + "probability": 0.6771 + }, + { + "start": 9320.62, + "end": 9320.82, + "probability": 0.2871 + }, + { + "start": 9320.82, + "end": 9320.92, + "probability": 0.1534 + }, + { + "start": 9321.42, + "end": 9322.28, + "probability": 0.8092 + }, + { + "start": 9322.74, + "end": 9328.2, + "probability": 0.9053 + }, + { + "start": 9328.46, + "end": 9329.26, + "probability": 0.7152 + }, + { + "start": 9329.62, + "end": 9330.64, + "probability": 0.8685 + }, + { + "start": 9330.92, + "end": 9332.54, + "probability": 0.9177 + }, + { + "start": 9332.78, + "end": 9333.72, + "probability": 0.8451 + }, + { + "start": 9333.74, + "end": 9334.88, + "probability": 0.9303 + }, + { + "start": 9334.92, + "end": 9336.98, + "probability": 0.8484 + }, + { + "start": 9337.1, + "end": 9340.24, + "probability": 0.9671 + }, + { + "start": 9340.48, + "end": 9341.66, + "probability": 0.7121 + }, + { + "start": 9341.75, + "end": 9343.4, + "probability": 0.9893 + }, + { + "start": 9343.56, + "end": 9344.64, + "probability": 0.9553 + }, + { + "start": 9345.6, + "end": 9346.82, + "probability": 0.967 + }, + { + "start": 9346.86, + "end": 9347.74, + "probability": 0.9648 + }, + { + "start": 9348.1, + "end": 9348.84, + "probability": 0.9109 + }, + { + "start": 9349.18, + "end": 9350.17, + "probability": 0.9966 + }, + { + "start": 9350.8, + "end": 9351.99, + "probability": 0.9966 + }, + { + "start": 9352.58, + "end": 9353.26, + "probability": 0.9745 + }, + { + "start": 9354.0, + "end": 9355.92, + "probability": 0.9351 + }, + { + "start": 9355.92, + "end": 9356.7, + "probability": 0.6699 + }, + { + "start": 9356.78, + "end": 9357.4, + "probability": 0.7964 + }, + { + "start": 9357.46, + "end": 9357.9, + "probability": 0.8511 + }, + { + "start": 9358.38, + "end": 9359.15, + "probability": 0.5534 + }, + { + "start": 9360.3, + "end": 9361.78, + "probability": 0.9861 + }, + { + "start": 9361.96, + "end": 9365.9, + "probability": 0.9975 + }, + { + "start": 9365.94, + "end": 9366.36, + "probability": 0.3985 + }, + { + "start": 9366.36, + "end": 9367.72, + "probability": 0.7945 + }, + { + "start": 9369.06, + "end": 9369.42, + "probability": 0.9399 + }, + { + "start": 9371.12, + "end": 9373.42, + "probability": 0.9917 + }, + { + "start": 9373.56, + "end": 9377.88, + "probability": 0.9825 + }, + { + "start": 9378.54, + "end": 9381.72, + "probability": 0.9921 + }, + { + "start": 9382.14, + "end": 9384.04, + "probability": 0.6927 + }, + { + "start": 9385.14, + "end": 9391.06, + "probability": 0.675 + }, + { + "start": 9393.12, + "end": 9394.84, + "probability": 0.6838 + }, + { + "start": 9395.66, + "end": 9396.28, + "probability": 0.5558 + }, + { + "start": 9396.3, + "end": 9398.02, + "probability": 0.9736 + }, + { + "start": 9398.56, + "end": 9406.2, + "probability": 0.9552 + }, + { + "start": 9407.28, + "end": 9410.18, + "probability": 0.661 + }, + { + "start": 9410.18, + "end": 9414.5, + "probability": 0.0236 + }, + { + "start": 9414.54, + "end": 9414.54, + "probability": 0.0109 + }, + { + "start": 9419.44, + "end": 9420.08, + "probability": 0.1481 + }, + { + "start": 9421.12, + "end": 9423.18, + "probability": 0.5083 + }, + { + "start": 9423.46, + "end": 9424.84, + "probability": 0.9762 + }, + { + "start": 9424.92, + "end": 9426.38, + "probability": 0.8109 + }, + { + "start": 9427.34, + "end": 9429.94, + "probability": 0.4765 + }, + { + "start": 9430.16, + "end": 9433.41, + "probability": 0.031 + }, + { + "start": 9433.62, + "end": 9435.52, + "probability": 0.6321 + }, + { + "start": 9435.56, + "end": 9436.94, + "probability": 0.7048 + }, + { + "start": 9437.4, + "end": 9440.76, + "probability": 0.9656 + }, + { + "start": 9441.22, + "end": 9442.13, + "probability": 0.3652 + }, + { + "start": 9442.42, + "end": 9443.06, + "probability": 0.4245 + }, + { + "start": 9443.12, + "end": 9445.04, + "probability": 0.5062 + }, + { + "start": 9445.16, + "end": 9448.18, + "probability": 0.5102 + }, + { + "start": 9448.72, + "end": 9452.82, + "probability": 0.9617 + }, + { + "start": 9453.32, + "end": 9453.88, + "probability": 0.7309 + }, + { + "start": 9454.32, + "end": 9461.2, + "probability": 0.7703 + }, + { + "start": 9461.8, + "end": 9462.8, + "probability": 0.358 + }, + { + "start": 9462.8, + "end": 9465.26, + "probability": 0.0669 + }, + { + "start": 9465.6, + "end": 9465.74, + "probability": 0.0589 + }, + { + "start": 9465.74, + "end": 9467.32, + "probability": 0.2874 + }, + { + "start": 9468.46, + "end": 9474.0, + "probability": 0.4918 + }, + { + "start": 9474.76, + "end": 9476.75, + "probability": 0.0099 + }, + { + "start": 9477.28, + "end": 9478.28, + "probability": 0.1968 + }, + { + "start": 9478.44, + "end": 9479.44, + "probability": 0.1195 + }, + { + "start": 9479.64, + "end": 9480.62, + "probability": 0.2529 + }, + { + "start": 9484.84, + "end": 9487.88, + "probability": 0.0435 + }, + { + "start": 9488.48, + "end": 9488.94, + "probability": 0.1927 + }, + { + "start": 9490.48, + "end": 9492.2, + "probability": 0.2167 + }, + { + "start": 9497.14, + "end": 9499.1, + "probability": 0.4376 + }, + { + "start": 9499.64, + "end": 9501.94, + "probability": 0.4583 + }, + { + "start": 9501.94, + "end": 9503.87, + "probability": 0.6692 + }, + { + "start": 9506.22, + "end": 9510.04, + "probability": 0.6095 + }, + { + "start": 9510.12, + "end": 9512.26, + "probability": 0.1079 + }, + { + "start": 9512.6, + "end": 9514.1, + "probability": 0.9097 + }, + { + "start": 9514.86, + "end": 9517.06, + "probability": 0.805 + }, + { + "start": 9517.2, + "end": 9518.12, + "probability": 0.8082 + }, + { + "start": 9518.86, + "end": 9519.48, + "probability": 0.8127 + }, + { + "start": 9522.96, + "end": 9524.7, + "probability": 0.9054 + }, + { + "start": 9525.58, + "end": 9527.3, + "probability": 0.8201 + }, + { + "start": 9529.7, + "end": 9532.02, + "probability": 0.9487 + }, + { + "start": 9532.08, + "end": 9534.9, + "probability": 0.9944 + }, + { + "start": 9535.44, + "end": 9537.68, + "probability": 0.2913 + }, + { + "start": 9538.72, + "end": 9540.52, + "probability": 0.234 + }, + { + "start": 9541.04, + "end": 9541.53, + "probability": 0.0441 + }, + { + "start": 9542.6, + "end": 9543.06, + "probability": 0.1625 + }, + { + "start": 9543.06, + "end": 9543.72, + "probability": 0.1138 + }, + { + "start": 9543.82, + "end": 9547.88, + "probability": 0.5164 + }, + { + "start": 9548.44, + "end": 9548.5, + "probability": 0.1246 + }, + { + "start": 9548.66, + "end": 9553.64, + "probability": 0.9902 + }, + { + "start": 9554.0, + "end": 9554.94, + "probability": 0.4917 + }, + { + "start": 9555.06, + "end": 9555.64, + "probability": 0.8861 + }, + { + "start": 9555.74, + "end": 9556.36, + "probability": 0.7226 + }, + { + "start": 9556.72, + "end": 9557.18, + "probability": 0.9007 + }, + { + "start": 9557.28, + "end": 9558.06, + "probability": 0.8359 + }, + { + "start": 9558.2, + "end": 9558.82, + "probability": 0.8844 + }, + { + "start": 9558.94, + "end": 9560.26, + "probability": 0.9613 + }, + { + "start": 9561.4, + "end": 9562.88, + "probability": 0.6359 + }, + { + "start": 9563.02, + "end": 9564.46, + "probability": 0.4813 + }, + { + "start": 9564.92, + "end": 9568.06, + "probability": 0.9948 + }, + { + "start": 9568.06, + "end": 9571.72, + "probability": 0.9868 + }, + { + "start": 9572.22, + "end": 9573.98, + "probability": 0.9807 + }, + { + "start": 9574.58, + "end": 9578.9, + "probability": 0.9963 + }, + { + "start": 9579.5, + "end": 9582.32, + "probability": 0.9642 + }, + { + "start": 9582.7, + "end": 9584.96, + "probability": 0.992 + }, + { + "start": 9586.06, + "end": 9589.66, + "probability": 0.9364 + }, + { + "start": 9590.12, + "end": 9590.64, + "probability": 0.476 + }, + { + "start": 9590.7, + "end": 9591.3, + "probability": 0.9584 + }, + { + "start": 9591.68, + "end": 9596.16, + "probability": 0.9209 + }, + { + "start": 9596.78, + "end": 9598.06, + "probability": 0.571 + }, + { + "start": 9598.08, + "end": 9600.94, + "probability": 0.9846 + }, + { + "start": 9601.46, + "end": 9604.46, + "probability": 0.9867 + }, + { + "start": 9605.32, + "end": 9608.82, + "probability": 0.993 + }, + { + "start": 9609.28, + "end": 9611.5, + "probability": 0.8315 + }, + { + "start": 9612.02, + "end": 9613.9, + "probability": 0.9982 + }, + { + "start": 9614.64, + "end": 9618.06, + "probability": 0.9949 + }, + { + "start": 9618.24, + "end": 9619.74, + "probability": 0.9144 + }, + { + "start": 9621.04, + "end": 9623.9, + "probability": 0.9776 + }, + { + "start": 9624.22, + "end": 9626.66, + "probability": 0.9961 + }, + { + "start": 9627.34, + "end": 9629.92, + "probability": 0.9557 + }, + { + "start": 9630.44, + "end": 9633.66, + "probability": 0.9943 + }, + { + "start": 9634.52, + "end": 9635.0, + "probability": 0.6366 + }, + { + "start": 9635.52, + "end": 9638.7, + "probability": 0.9819 + }, + { + "start": 9638.9, + "end": 9642.52, + "probability": 0.9961 + }, + { + "start": 9643.02, + "end": 9646.26, + "probability": 0.9866 + }, + { + "start": 9646.92, + "end": 9650.22, + "probability": 0.6835 + }, + { + "start": 9650.22, + "end": 9654.4, + "probability": 0.9855 + }, + { + "start": 9655.26, + "end": 9656.48, + "probability": 0.8649 + }, + { + "start": 9656.9, + "end": 9659.3, + "probability": 0.9909 + }, + { + "start": 9659.3, + "end": 9662.16, + "probability": 0.8433 + }, + { + "start": 9662.8, + "end": 9663.38, + "probability": 0.7087 + }, + { + "start": 9663.56, + "end": 9664.67, + "probability": 0.813 + }, + { + "start": 9665.38, + "end": 9666.76, + "probability": 0.6526 + }, + { + "start": 9666.92, + "end": 9668.68, + "probability": 0.9734 + }, + { + "start": 9669.5, + "end": 9670.04, + "probability": 0.866 + }, + { + "start": 9671.34, + "end": 9672.66, + "probability": 0.8843 + }, + { + "start": 9673.16, + "end": 9677.66, + "probability": 0.7998 + }, + { + "start": 9678.26, + "end": 9680.0, + "probability": 0.7534 + }, + { + "start": 9680.78, + "end": 9685.46, + "probability": 0.2261 + }, + { + "start": 9686.92, + "end": 9689.58, + "probability": 0.0279 + }, + { + "start": 9701.9, + "end": 9704.56, + "probability": 0.8714 + }, + { + "start": 9704.96, + "end": 9707.42, + "probability": 0.6341 + }, + { + "start": 9708.14, + "end": 9710.21, + "probability": 0.7901 + }, + { + "start": 9713.96, + "end": 9715.17, + "probability": 0.7041 + }, + { + "start": 9716.26, + "end": 9717.32, + "probability": 0.8061 + }, + { + "start": 9717.5, + "end": 9718.34, + "probability": 0.6026 + }, + { + "start": 9725.68, + "end": 9728.22, + "probability": 0.4784 + }, + { + "start": 9729.32, + "end": 9730.22, + "probability": 0.0626 + }, + { + "start": 9734.96, + "end": 9737.42, + "probability": 0.81 + }, + { + "start": 9738.3, + "end": 9740.8, + "probability": 0.8809 + }, + { + "start": 9741.34, + "end": 9741.46, + "probability": 0.5272 + }, + { + "start": 9742.22, + "end": 9743.76, + "probability": 0.0942 + }, + { + "start": 9743.82, + "end": 9747.04, + "probability": 0.9814 + }, + { + "start": 9747.62, + "end": 9751.42, + "probability": 0.6872 + }, + { + "start": 9752.4, + "end": 9755.8, + "probability": 0.7847 + }, + { + "start": 9756.18, + "end": 9757.96, + "probability": 0.1987 + }, + { + "start": 9758.36, + "end": 9760.84, + "probability": 0.6706 + }, + { + "start": 9761.12, + "end": 9761.14, + "probability": 0.4779 + }, + { + "start": 9761.26, + "end": 9763.08, + "probability": 0.968 + }, + { + "start": 9764.56, + "end": 9765.06, + "probability": 0.8811 + }, + { + "start": 9766.6, + "end": 9768.96, + "probability": 0.7527 + }, + { + "start": 9769.16, + "end": 9770.18, + "probability": 0.7857 + }, + { + "start": 9771.28, + "end": 9773.52, + "probability": 0.1649 + }, + { + "start": 9773.74, + "end": 9773.78, + "probability": 0.01 + }, + { + "start": 9773.78, + "end": 9775.42, + "probability": 0.369 + }, + { + "start": 9775.94, + "end": 9779.16, + "probability": 0.7229 + }, + { + "start": 9779.3, + "end": 9779.66, + "probability": 0.9606 + }, + { + "start": 9780.64, + "end": 9780.88, + "probability": 0.5301 + }, + { + "start": 9780.98, + "end": 9783.64, + "probability": 0.9591 + }, + { + "start": 9783.78, + "end": 9784.7, + "probability": 0.9927 + }, + { + "start": 9785.99, + "end": 9789.6, + "probability": 0.6109 + }, + { + "start": 9790.2, + "end": 9792.46, + "probability": 0.9485 + }, + { + "start": 9793.06, + "end": 9796.04, + "probability": 0.8009 + }, + { + "start": 9796.2, + "end": 9796.46, + "probability": 0.2787 + }, + { + "start": 9796.55, + "end": 9797.99, + "probability": 0.9956 + }, + { + "start": 9799.34, + "end": 9804.26, + "probability": 0.4659 + }, + { + "start": 9804.3, + "end": 9805.7, + "probability": 0.8994 + }, + { + "start": 9805.76, + "end": 9807.08, + "probability": 0.9954 + }, + { + "start": 9807.9, + "end": 9809.94, + "probability": 0.9844 + }, + { + "start": 9811.2, + "end": 9811.62, + "probability": 0.7521 + }, + { + "start": 9813.34, + "end": 9813.44, + "probability": 0.8046 + }, + { + "start": 9816.49, + "end": 9818.95, + "probability": 0.5497 + }, + { + "start": 9819.46, + "end": 9820.28, + "probability": 0.9575 + }, + { + "start": 9821.48, + "end": 9823.08, + "probability": 0.947 + }, + { + "start": 9823.74, + "end": 9824.18, + "probability": 0.7975 + }, + { + "start": 9825.84, + "end": 9828.78, + "probability": 0.9946 + }, + { + "start": 9828.78, + "end": 9832.76, + "probability": 0.9725 + }, + { + "start": 9832.76, + "end": 9835.58, + "probability": 0.9804 + }, + { + "start": 9836.12, + "end": 9838.0, + "probability": 0.9973 + }, + { + "start": 9838.52, + "end": 9839.86, + "probability": 0.9308 + }, + { + "start": 9840.0, + "end": 9841.54, + "probability": 0.9938 + }, + { + "start": 9842.22, + "end": 9842.9, + "probability": 0.3976 + }, + { + "start": 9843.08, + "end": 9845.2, + "probability": 0.9471 + }, + { + "start": 9845.2, + "end": 9847.48, + "probability": 0.9958 + }, + { + "start": 9848.0, + "end": 9851.0, + "probability": 0.8525 + }, + { + "start": 9851.4, + "end": 9853.28, + "probability": 0.9823 + }, + { + "start": 9853.28, + "end": 9856.52, + "probability": 0.8371 + }, + { + "start": 9856.72, + "end": 9858.36, + "probability": 0.9379 + }, + { + "start": 9859.0, + "end": 9859.0, + "probability": 0.2548 + }, + { + "start": 9859.0, + "end": 9862.16, + "probability": 0.9913 + }, + { + "start": 9862.16, + "end": 9865.44, + "probability": 0.9863 + }, + { + "start": 9866.06, + "end": 9868.48, + "probability": 0.943 + }, + { + "start": 9869.02, + "end": 9872.86, + "probability": 0.9878 + }, + { + "start": 9873.22, + "end": 9875.84, + "probability": 0.9419 + }, + { + "start": 9876.56, + "end": 9878.48, + "probability": 0.868 + }, + { + "start": 9878.56, + "end": 9879.6, + "probability": 0.5653 + }, + { + "start": 9879.64, + "end": 9881.2, + "probability": 0.7096 + }, + { + "start": 9882.54, + "end": 9885.76, + "probability": 0.8765 + }, + { + "start": 9890.0, + "end": 9890.78, + "probability": 0.4324 + }, + { + "start": 9890.78, + "end": 9891.26, + "probability": 0.5223 + }, + { + "start": 9891.64, + "end": 9892.2, + "probability": 0.3739 + }, + { + "start": 9892.54, + "end": 9896.15, + "probability": 0.9152 + }, + { + "start": 9897.62, + "end": 9898.4, + "probability": 0.5888 + }, + { + "start": 9913.84, + "end": 9920.82, + "probability": 0.2791 + }, + { + "start": 9921.06, + "end": 9924.96, + "probability": 0.8586 + }, + { + "start": 9925.22, + "end": 9925.74, + "probability": 0.2367 + }, + { + "start": 9927.14, + "end": 9928.56, + "probability": 0.0532 + }, + { + "start": 9929.22, + "end": 9933.06, + "probability": 0.7168 + }, + { + "start": 9939.28, + "end": 9939.78, + "probability": 0.0459 + }, + { + "start": 9939.78, + "end": 9941.74, + "probability": 0.039 + }, + { + "start": 9943.18, + "end": 9943.58, + "probability": 0.042 + }, + { + "start": 9944.62, + "end": 9946.44, + "probability": 0.0876 + }, + { + "start": 9946.8, + "end": 9948.05, + "probability": 0.0149 + }, + { + "start": 9949.88, + "end": 9951.0, + "probability": 0.0122 + }, + { + "start": 9954.6, + "end": 9955.74, + "probability": 0.0205 + }, + { + "start": 9956.36, + "end": 9956.58, + "probability": 0.0164 + }, + { + "start": 9956.58, + "end": 9957.08, + "probability": 0.0608 + }, + { + "start": 9957.08, + "end": 9957.08, + "probability": 0.0236 + }, + { + "start": 9957.54, + "end": 9957.54, + "probability": 0.0088 + }, + { + "start": 10015.32, + "end": 10016.36, + "probability": 0.0684 + }, + { + "start": 10019.271, + "end": 10019.271, + "probability": 0.0 + }, + { + "start": 10019.271, + "end": 10019.271, + "probability": 0.0 + }, + { + "start": 10019.271, + "end": 10019.271, + "probability": 0.0 + }, + { + "start": 10019.271, + "end": 10019.271, + "probability": 0.0 + }, + { + "start": 10019.271, + "end": 10019.271, + "probability": 0.0 + }, + { + "start": 10019.271, + "end": 10019.271, + "probability": 0.0 + } + ], + "segments_count": 3327, + "words_count": 17118, + "avg_words_per_segment": 5.1452, + "avg_segment_duration": 2.2662, + "avg_words_per_minute": 102.5105, + "plenum_id": "38038", + "duration": 10019.27, + "title": null, + "plenum_date": "2014-06-24" +} \ No newline at end of file