diff --git "a/67928/metadata.json" "b/67928/metadata.json" new file mode 100644--- /dev/null +++ "b/67928/metadata.json" @@ -0,0 +1,38317 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "67928", + "quality_score": 0.8879, + "per_segment_quality_scores": [ + { + "start": 59.6, + "end": 60.22, + "probability": 0.7504 + }, + { + "start": 70.1, + "end": 70.58, + "probability": 0.5256 + }, + { + "start": 70.62, + "end": 73.26, + "probability": 0.9658 + }, + { + "start": 73.26, + "end": 77.56, + "probability": 0.6661 + }, + { + "start": 78.0, + "end": 79.06, + "probability": 0.423 + }, + { + "start": 79.76, + "end": 83.38, + "probability": 0.9932 + }, + { + "start": 84.1, + "end": 86.4, + "probability": 0.9946 + }, + { + "start": 86.82, + "end": 89.46, + "probability": 0.5074 + }, + { + "start": 89.64, + "end": 91.3, + "probability": 0.4307 + }, + { + "start": 92.08, + "end": 96.28, + "probability": 0.8827 + }, + { + "start": 96.82, + "end": 97.9, + "probability": 0.512 + }, + { + "start": 98.72, + "end": 101.3, + "probability": 0.9907 + }, + { + "start": 101.3, + "end": 105.94, + "probability": 0.5196 + }, + { + "start": 106.8, + "end": 110.8, + "probability": 0.7265 + }, + { + "start": 111.52, + "end": 113.5, + "probability": 0.7146 + }, + { + "start": 114.12, + "end": 119.52, + "probability": 0.8491 + }, + { + "start": 119.94, + "end": 120.82, + "probability": 0.4344 + }, + { + "start": 121.2, + "end": 124.28, + "probability": 0.923 + }, + { + "start": 124.96, + "end": 125.7, + "probability": 0.7766 + }, + { + "start": 126.3, + "end": 131.28, + "probability": 0.7253 + }, + { + "start": 131.28, + "end": 135.26, + "probability": 0.8201 + }, + { + "start": 135.7, + "end": 138.12, + "probability": 0.9429 + }, + { + "start": 138.8, + "end": 139.88, + "probability": 0.5613 + }, + { + "start": 140.68, + "end": 143.3, + "probability": 0.9948 + }, + { + "start": 143.92, + "end": 145.24, + "probability": 0.8311 + }, + { + "start": 149.32, + "end": 151.72, + "probability": 0.0956 + }, + { + "start": 152.52, + "end": 154.78, + "probability": 0.0629 + }, + { + "start": 155.24, + "end": 156.36, + "probability": 0.3553 + }, + { + "start": 156.66, + "end": 158.08, + "probability": 0.3857 + }, + { + "start": 158.66, + "end": 158.98, + "probability": 0.2634 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.0, + "end": 159.0, + "probability": 0.0 + }, + { + "start": 159.12, + "end": 162.2, + "probability": 0.8885 + }, + { + "start": 162.2, + "end": 166.38, + "probability": 0.9988 + }, + { + "start": 166.38, + "end": 171.76, + "probability": 0.9926 + }, + { + "start": 172.62, + "end": 173.24, + "probability": 0.6674 + }, + { + "start": 173.36, + "end": 179.24, + "probability": 0.9709 + }, + { + "start": 179.24, + "end": 185.62, + "probability": 0.9935 + }, + { + "start": 186.16, + "end": 188.14, + "probability": 0.7068 + }, + { + "start": 188.66, + "end": 189.96, + "probability": 0.7944 + }, + { + "start": 190.18, + "end": 192.02, + "probability": 0.5598 + }, + { + "start": 192.14, + "end": 193.38, + "probability": 0.8245 + }, + { + "start": 194.34, + "end": 197.92, + "probability": 0.957 + }, + { + "start": 198.36, + "end": 200.3, + "probability": 0.949 + }, + { + "start": 201.2, + "end": 202.76, + "probability": 0.9832 + }, + { + "start": 216.92, + "end": 220.12, + "probability": 0.9434 + }, + { + "start": 220.36, + "end": 221.88, + "probability": 0.9796 + }, + { + "start": 222.38, + "end": 223.02, + "probability": 0.7788 + }, + { + "start": 223.16, + "end": 224.98, + "probability": 0.9217 + }, + { + "start": 226.46, + "end": 227.96, + "probability": 0.7766 + }, + { + "start": 228.74, + "end": 231.94, + "probability": 0.9968 + }, + { + "start": 231.94, + "end": 236.8, + "probability": 0.9806 + }, + { + "start": 237.8, + "end": 243.24, + "probability": 0.9793 + }, + { + "start": 243.24, + "end": 250.32, + "probability": 0.989 + }, + { + "start": 250.88, + "end": 253.34, + "probability": 0.9888 + }, + { + "start": 254.12, + "end": 256.0, + "probability": 0.8521 + }, + { + "start": 256.56, + "end": 260.28, + "probability": 0.9815 + }, + { + "start": 261.18, + "end": 265.4, + "probability": 0.9612 + }, + { + "start": 265.88, + "end": 267.27, + "probability": 0.9796 + }, + { + "start": 267.58, + "end": 270.76, + "probability": 0.981 + }, + { + "start": 270.78, + "end": 273.76, + "probability": 0.9968 + }, + { + "start": 274.88, + "end": 280.22, + "probability": 0.9904 + }, + { + "start": 281.0, + "end": 286.34, + "probability": 0.973 + }, + { + "start": 286.39, + "end": 290.32, + "probability": 0.99 + }, + { + "start": 291.44, + "end": 293.5, + "probability": 0.7134 + }, + { + "start": 293.62, + "end": 294.68, + "probability": 0.8248 + }, + { + "start": 296.29, + "end": 298.08, + "probability": 0.9208 + }, + { + "start": 300.22, + "end": 301.24, + "probability": 0.6463 + }, + { + "start": 303.38, + "end": 307.43, + "probability": 0.97 + }, + { + "start": 309.64, + "end": 313.66, + "probability": 0.9922 + }, + { + "start": 314.32, + "end": 314.72, + "probability": 0.5417 + }, + { + "start": 315.62, + "end": 316.88, + "probability": 0.8066 + }, + { + "start": 318.3, + "end": 319.18, + "probability": 0.5962 + }, + { + "start": 319.68, + "end": 321.1, + "probability": 0.9287 + }, + { + "start": 321.4, + "end": 322.64, + "probability": 0.7225 + }, + { + "start": 323.08, + "end": 324.22, + "probability": 0.6711 + }, + { + "start": 324.34, + "end": 325.52, + "probability": 0.9607 + }, + { + "start": 325.52, + "end": 329.7, + "probability": 0.7917 + }, + { + "start": 330.28, + "end": 332.88, + "probability": 0.7551 + }, + { + "start": 333.72, + "end": 334.7, + "probability": 0.985 + }, + { + "start": 335.6, + "end": 340.18, + "probability": 0.9769 + }, + { + "start": 340.82, + "end": 343.1, + "probability": 0.7974 + }, + { + "start": 343.88, + "end": 344.82, + "probability": 0.9441 + }, + { + "start": 345.14, + "end": 346.54, + "probability": 0.9181 + }, + { + "start": 346.9, + "end": 348.19, + "probability": 0.9882 + }, + { + "start": 348.82, + "end": 350.38, + "probability": 0.5146 + }, + { + "start": 350.4, + "end": 350.54, + "probability": 0.5395 + }, + { + "start": 351.34, + "end": 352.82, + "probability": 0.769 + }, + { + "start": 353.14, + "end": 354.94, + "probability": 0.9847 + }, + { + "start": 355.44, + "end": 359.6, + "probability": 0.9917 + }, + { + "start": 359.6, + "end": 364.14, + "probability": 0.9861 + }, + { + "start": 364.54, + "end": 365.28, + "probability": 0.1719 + }, + { + "start": 366.54, + "end": 368.74, + "probability": 0.9128 + }, + { + "start": 368.82, + "end": 370.08, + "probability": 0.9244 + }, + { + "start": 370.18, + "end": 370.58, + "probability": 0.7391 + }, + { + "start": 370.66, + "end": 371.0, + "probability": 0.6673 + }, + { + "start": 371.42, + "end": 371.98, + "probability": 0.4624 + }, + { + "start": 372.02, + "end": 373.38, + "probability": 0.9934 + }, + { + "start": 378.52, + "end": 380.02, + "probability": 0.6421 + }, + { + "start": 380.84, + "end": 385.76, + "probability": 0.9808 + }, + { + "start": 386.42, + "end": 390.66, + "probability": 0.968 + }, + { + "start": 390.7, + "end": 391.34, + "probability": 0.4075 + }, + { + "start": 391.94, + "end": 395.66, + "probability": 0.8362 + }, + { + "start": 396.6, + "end": 399.44, + "probability": 0.9336 + }, + { + "start": 399.64, + "end": 403.2, + "probability": 0.8858 + }, + { + "start": 404.46, + "end": 405.2, + "probability": 0.9099 + }, + { + "start": 405.42, + "end": 408.04, + "probability": 0.8792 + }, + { + "start": 408.84, + "end": 409.96, + "probability": 0.9893 + }, + { + "start": 410.98, + "end": 416.48, + "probability": 0.938 + }, + { + "start": 416.8, + "end": 417.56, + "probability": 0.7178 + }, + { + "start": 417.76, + "end": 418.1, + "probability": 0.8434 + }, + { + "start": 418.18, + "end": 422.2, + "probability": 0.8489 + }, + { + "start": 423.1, + "end": 425.68, + "probability": 0.969 + }, + { + "start": 425.74, + "end": 428.26, + "probability": 0.6991 + }, + { + "start": 428.28, + "end": 430.2, + "probability": 0.9907 + }, + { + "start": 430.78, + "end": 434.56, + "probability": 0.9827 + }, + { + "start": 435.82, + "end": 438.06, + "probability": 0.9805 + }, + { + "start": 439.28, + "end": 441.06, + "probability": 0.9883 + }, + { + "start": 441.18, + "end": 442.0, + "probability": 0.723 + }, + { + "start": 442.14, + "end": 442.5, + "probability": 0.9091 + }, + { + "start": 442.6, + "end": 445.74, + "probability": 0.9689 + }, + { + "start": 445.74, + "end": 447.04, + "probability": 0.9609 + }, + { + "start": 448.06, + "end": 449.94, + "probability": 0.6793 + }, + { + "start": 450.04, + "end": 451.44, + "probability": 0.6889 + }, + { + "start": 452.32, + "end": 454.84, + "probability": 0.9719 + }, + { + "start": 455.36, + "end": 457.46, + "probability": 0.8043 + }, + { + "start": 458.36, + "end": 461.72, + "probability": 0.7842 + }, + { + "start": 461.72, + "end": 464.42, + "probability": 0.9902 + }, + { + "start": 464.86, + "end": 469.52, + "probability": 0.9994 + }, + { + "start": 470.06, + "end": 473.62, + "probability": 0.9286 + }, + { + "start": 474.64, + "end": 476.8, + "probability": 0.6468 + }, + { + "start": 477.36, + "end": 480.1, + "probability": 0.8891 + }, + { + "start": 480.84, + "end": 483.1, + "probability": 0.9754 + }, + { + "start": 486.84, + "end": 488.86, + "probability": 0.8503 + }, + { + "start": 489.66, + "end": 490.74, + "probability": 0.6686 + }, + { + "start": 492.06, + "end": 495.3, + "probability": 0.9746 + }, + { + "start": 495.84, + "end": 496.48, + "probability": 0.9058 + }, + { + "start": 496.58, + "end": 498.52, + "probability": 0.8675 + }, + { + "start": 498.7, + "end": 500.48, + "probability": 0.7587 + }, + { + "start": 500.56, + "end": 501.36, + "probability": 0.6268 + }, + { + "start": 501.56, + "end": 502.3, + "probability": 0.9652 + }, + { + "start": 502.38, + "end": 503.32, + "probability": 0.6624 + }, + { + "start": 503.52, + "end": 506.48, + "probability": 0.9747 + }, + { + "start": 507.06, + "end": 507.64, + "probability": 0.7976 + }, + { + "start": 507.76, + "end": 508.62, + "probability": 0.8805 + }, + { + "start": 508.68, + "end": 510.14, + "probability": 0.7858 + }, + { + "start": 510.14, + "end": 512.9, + "probability": 0.8984 + }, + { + "start": 514.24, + "end": 516.72, + "probability": 0.7934 + }, + { + "start": 517.42, + "end": 519.82, + "probability": 0.8864 + }, + { + "start": 520.6, + "end": 523.48, + "probability": 0.8723 + }, + { + "start": 524.18, + "end": 526.04, + "probability": 0.9085 + }, + { + "start": 526.62, + "end": 530.82, + "probability": 0.9545 + }, + { + "start": 531.4, + "end": 533.6, + "probability": 0.9844 + }, + { + "start": 534.02, + "end": 534.74, + "probability": 0.6453 + }, + { + "start": 535.12, + "end": 540.0, + "probability": 0.9495 + }, + { + "start": 540.96, + "end": 542.58, + "probability": 0.9616 + }, + { + "start": 543.18, + "end": 544.04, + "probability": 0.9786 + }, + { + "start": 544.68, + "end": 545.4, + "probability": 0.9142 + }, + { + "start": 546.12, + "end": 548.32, + "probability": 0.9885 + }, + { + "start": 549.0, + "end": 552.98, + "probability": 0.7295 + }, + { + "start": 553.54, + "end": 555.72, + "probability": 0.8856 + }, + { + "start": 556.34, + "end": 558.96, + "probability": 0.9772 + }, + { + "start": 559.14, + "end": 561.96, + "probability": 0.9756 + }, + { + "start": 562.74, + "end": 564.04, + "probability": 0.8134 + }, + { + "start": 564.16, + "end": 564.46, + "probability": 0.8809 + }, + { + "start": 564.54, + "end": 565.26, + "probability": 0.6187 + }, + { + "start": 565.26, + "end": 566.98, + "probability": 0.7367 + }, + { + "start": 567.04, + "end": 568.56, + "probability": 0.8778 + }, + { + "start": 568.76, + "end": 571.42, + "probability": 0.9377 + }, + { + "start": 572.0, + "end": 577.3, + "probability": 0.7944 + }, + { + "start": 577.3, + "end": 577.52, + "probability": 0.4993 + }, + { + "start": 577.58, + "end": 579.0, + "probability": 0.982 + }, + { + "start": 579.46, + "end": 582.46, + "probability": 0.9712 + }, + { + "start": 583.08, + "end": 586.4, + "probability": 0.9801 + }, + { + "start": 586.76, + "end": 589.16, + "probability": 0.9243 + }, + { + "start": 590.2, + "end": 595.4, + "probability": 0.9722 + }, + { + "start": 595.7, + "end": 597.68, + "probability": 0.9586 + }, + { + "start": 598.28, + "end": 599.32, + "probability": 0.9658 + }, + { + "start": 600.58, + "end": 601.26, + "probability": 0.7445 + }, + { + "start": 602.0, + "end": 605.44, + "probability": 0.8042 + }, + { + "start": 605.76, + "end": 606.52, + "probability": 0.5234 + }, + { + "start": 606.7, + "end": 611.94, + "probability": 0.9653 + }, + { + "start": 612.12, + "end": 614.27, + "probability": 0.9824 + }, + { + "start": 614.62, + "end": 615.72, + "probability": 0.8481 + }, + { + "start": 615.88, + "end": 616.16, + "probability": 0.8884 + }, + { + "start": 616.74, + "end": 618.26, + "probability": 0.627 + }, + { + "start": 618.4, + "end": 618.92, + "probability": 0.7373 + }, + { + "start": 619.54, + "end": 621.22, + "probability": 0.7634 + }, + { + "start": 621.5, + "end": 624.68, + "probability": 0.8176 + }, + { + "start": 625.22, + "end": 627.02, + "probability": 0.9037 + }, + { + "start": 633.8, + "end": 635.14, + "probability": 0.6588 + }, + { + "start": 636.1, + "end": 640.16, + "probability": 0.9688 + }, + { + "start": 641.3, + "end": 644.88, + "probability": 0.6957 + }, + { + "start": 644.88, + "end": 645.36, + "probability": 0.102 + }, + { + "start": 646.1, + "end": 649.58, + "probability": 0.9743 + }, + { + "start": 651.34, + "end": 655.64, + "probability": 0.7832 + }, + { + "start": 656.18, + "end": 656.76, + "probability": 0.6171 + }, + { + "start": 657.12, + "end": 658.5, + "probability": 0.8376 + }, + { + "start": 659.02, + "end": 662.1, + "probability": 0.9224 + }, + { + "start": 663.8, + "end": 666.58, + "probability": 0.8425 + }, + { + "start": 667.36, + "end": 673.36, + "probability": 0.9167 + }, + { + "start": 674.14, + "end": 677.44, + "probability": 0.9925 + }, + { + "start": 677.94, + "end": 680.12, + "probability": 0.9204 + }, + { + "start": 680.82, + "end": 685.7, + "probability": 0.9385 + }, + { + "start": 685.84, + "end": 687.6, + "probability": 0.9548 + }, + { + "start": 688.14, + "end": 690.7, + "probability": 0.747 + }, + { + "start": 690.82, + "end": 693.56, + "probability": 0.9926 + }, + { + "start": 693.56, + "end": 697.84, + "probability": 0.8929 + }, + { + "start": 698.3, + "end": 700.0, + "probability": 0.9971 + }, + { + "start": 701.02, + "end": 703.24, + "probability": 0.8039 + }, + { + "start": 703.7, + "end": 705.48, + "probability": 0.9171 + }, + { + "start": 706.2, + "end": 707.26, + "probability": 0.6298 + }, + { + "start": 708.32, + "end": 710.68, + "probability": 0.8836 + }, + { + "start": 712.16, + "end": 712.68, + "probability": 0.7896 + }, + { + "start": 712.82, + "end": 713.92, + "probability": 0.7498 + }, + { + "start": 713.94, + "end": 714.3, + "probability": 0.6226 + }, + { + "start": 714.68, + "end": 717.66, + "probability": 0.9665 + }, + { + "start": 717.76, + "end": 719.62, + "probability": 0.9231 + }, + { + "start": 719.94, + "end": 720.73, + "probability": 0.6243 + }, + { + "start": 721.24, + "end": 723.04, + "probability": 0.3304 + }, + { + "start": 723.14, + "end": 723.82, + "probability": 0.8403 + }, + { + "start": 723.94, + "end": 725.1, + "probability": 0.8777 + }, + { + "start": 725.38, + "end": 728.72, + "probability": 0.9561 + }, + { + "start": 728.84, + "end": 729.62, + "probability": 0.8607 + }, + { + "start": 730.56, + "end": 734.68, + "probability": 0.9865 + }, + { + "start": 735.48, + "end": 735.48, + "probability": 0.1563 + }, + { + "start": 735.48, + "end": 737.8, + "probability": 0.792 + }, + { + "start": 738.24, + "end": 739.44, + "probability": 0.6525 + }, + { + "start": 739.6, + "end": 743.1, + "probability": 0.8953 + }, + { + "start": 743.78, + "end": 746.0, + "probability": 0.8294 + }, + { + "start": 746.1, + "end": 747.76, + "probability": 0.8682 + }, + { + "start": 747.8, + "end": 749.62, + "probability": 0.9131 + }, + { + "start": 750.58, + "end": 751.65, + "probability": 0.9238 + }, + { + "start": 752.26, + "end": 755.12, + "probability": 0.9744 + }, + { + "start": 756.04, + "end": 758.0, + "probability": 0.7842 + }, + { + "start": 758.24, + "end": 762.8, + "probability": 0.9529 + }, + { + "start": 763.04, + "end": 765.28, + "probability": 0.9084 + }, + { + "start": 766.56, + "end": 767.09, + "probability": 0.6875 + }, + { + "start": 767.46, + "end": 768.74, + "probability": 0.7305 + }, + { + "start": 768.82, + "end": 770.64, + "probability": 0.9268 + }, + { + "start": 771.18, + "end": 774.32, + "probability": 0.998 + }, + { + "start": 777.14, + "end": 779.34, + "probability": 0.9863 + }, + { + "start": 779.98, + "end": 783.7, + "probability": 0.9569 + }, + { + "start": 784.2, + "end": 785.42, + "probability": 0.6489 + }, + { + "start": 785.96, + "end": 789.36, + "probability": 0.9141 + }, + { + "start": 789.98, + "end": 790.92, + "probability": 0.2557 + }, + { + "start": 791.14, + "end": 792.38, + "probability": 0.7112 + }, + { + "start": 792.74, + "end": 794.8, + "probability": 0.9558 + }, + { + "start": 795.66, + "end": 798.42, + "probability": 0.6623 + }, + { + "start": 798.9, + "end": 802.26, + "probability": 0.9055 + }, + { + "start": 802.26, + "end": 805.16, + "probability": 0.937 + }, + { + "start": 805.74, + "end": 809.94, + "probability": 0.9676 + }, + { + "start": 810.48, + "end": 812.96, + "probability": 0.9454 + }, + { + "start": 813.54, + "end": 814.18, + "probability": 0.9615 + }, + { + "start": 814.62, + "end": 818.64, + "probability": 0.9893 + }, + { + "start": 819.16, + "end": 819.98, + "probability": 0.8103 + }, + { + "start": 820.18, + "end": 820.62, + "probability": 0.5568 + }, + { + "start": 820.76, + "end": 821.24, + "probability": 0.8179 + }, + { + "start": 821.34, + "end": 824.86, + "probability": 0.9578 + }, + { + "start": 824.9, + "end": 825.62, + "probability": 0.9128 + }, + { + "start": 825.88, + "end": 826.74, + "probability": 0.9745 + }, + { + "start": 829.68, + "end": 832.48, + "probability": 0.6179 + }, + { + "start": 832.88, + "end": 835.4, + "probability": 0.8564 + }, + { + "start": 836.0, + "end": 838.58, + "probability": 0.9453 + }, + { + "start": 839.92, + "end": 840.48, + "probability": 0.6594 + }, + { + "start": 840.79, + "end": 845.2, + "probability": 0.8318 + }, + { + "start": 845.38, + "end": 846.92, + "probability": 0.5085 + }, + { + "start": 847.78, + "end": 852.2, + "probability": 0.9404 + }, + { + "start": 852.92, + "end": 853.74, + "probability": 0.7353 + }, + { + "start": 854.38, + "end": 859.3, + "probability": 0.8823 + }, + { + "start": 859.78, + "end": 862.2, + "probability": 0.6128 + }, + { + "start": 863.38, + "end": 866.18, + "probability": 0.8866 + }, + { + "start": 866.32, + "end": 870.06, + "probability": 0.9365 + }, + { + "start": 872.24, + "end": 876.3, + "probability": 0.9762 + }, + { + "start": 876.76, + "end": 878.52, + "probability": 0.8729 + }, + { + "start": 879.42, + "end": 884.2, + "probability": 0.8513 + }, + { + "start": 885.54, + "end": 889.8, + "probability": 0.9729 + }, + { + "start": 890.82, + "end": 893.44, + "probability": 0.8817 + }, + { + "start": 894.4, + "end": 896.7, + "probability": 0.9982 + }, + { + "start": 897.3, + "end": 897.6, + "probability": 0.381 + }, + { + "start": 897.68, + "end": 899.44, + "probability": 0.6361 + }, + { + "start": 899.58, + "end": 902.2, + "probability": 0.9977 + }, + { + "start": 902.9, + "end": 908.8, + "probability": 0.9865 + }, + { + "start": 908.86, + "end": 909.96, + "probability": 0.702 + }, + { + "start": 910.26, + "end": 910.94, + "probability": 0.6046 + }, + { + "start": 911.52, + "end": 914.72, + "probability": 0.6924 + }, + { + "start": 915.6, + "end": 917.2, + "probability": 0.8969 + }, + { + "start": 917.74, + "end": 922.82, + "probability": 0.9495 + }, + { + "start": 922.84, + "end": 924.24, + "probability": 0.9366 + }, + { + "start": 924.84, + "end": 926.74, + "probability": 0.9351 + }, + { + "start": 927.02, + "end": 927.26, + "probability": 0.5911 + }, + { + "start": 927.7, + "end": 929.84, + "probability": 0.884 + }, + { + "start": 929.92, + "end": 931.32, + "probability": 0.9274 + }, + { + "start": 931.44, + "end": 932.0, + "probability": 0.7576 + }, + { + "start": 932.06, + "end": 932.42, + "probability": 0.7245 + }, + { + "start": 932.92, + "end": 933.7, + "probability": 0.6196 + }, + { + "start": 933.94, + "end": 935.92, + "probability": 0.7906 + }, + { + "start": 940.17, + "end": 943.74, + "probability": 0.7366 + }, + { + "start": 943.92, + "end": 944.92, + "probability": 0.6633 + }, + { + "start": 944.92, + "end": 945.38, + "probability": 0.8552 + }, + { + "start": 945.52, + "end": 947.5, + "probability": 0.9629 + }, + { + "start": 947.62, + "end": 948.56, + "probability": 0.8159 + }, + { + "start": 948.9, + "end": 951.38, + "probability": 0.947 + }, + { + "start": 952.16, + "end": 954.34, + "probability": 0.8989 + }, + { + "start": 954.5, + "end": 956.08, + "probability": 0.9655 + }, + { + "start": 956.16, + "end": 958.66, + "probability": 0.9958 + }, + { + "start": 959.4, + "end": 961.58, + "probability": 0.9454 + }, + { + "start": 962.2, + "end": 964.68, + "probability": 0.8699 + }, + { + "start": 965.24, + "end": 969.18, + "probability": 0.8399 + }, + { + "start": 969.58, + "end": 969.86, + "probability": 0.6881 + }, + { + "start": 971.28, + "end": 977.08, + "probability": 0.8833 + }, + { + "start": 977.14, + "end": 982.3, + "probability": 0.9961 + }, + { + "start": 982.3, + "end": 986.12, + "probability": 0.9956 + }, + { + "start": 987.54, + "end": 991.1, + "probability": 0.9988 + }, + { + "start": 991.56, + "end": 992.82, + "probability": 0.9932 + }, + { + "start": 993.02, + "end": 993.38, + "probability": 0.8201 + }, + { + "start": 993.48, + "end": 997.3, + "probability": 0.9259 + }, + { + "start": 997.48, + "end": 999.62, + "probability": 0.4714 + }, + { + "start": 999.7, + "end": 1000.24, + "probability": 0.7321 + }, + { + "start": 1000.32, + "end": 1004.98, + "probability": 0.8861 + }, + { + "start": 1005.06, + "end": 1010.6, + "probability": 0.9967 + }, + { + "start": 1010.6, + "end": 1015.64, + "probability": 0.9983 + }, + { + "start": 1016.08, + "end": 1020.02, + "probability": 0.9987 + }, + { + "start": 1020.02, + "end": 1023.7, + "probability": 0.9989 + }, + { + "start": 1024.18, + "end": 1027.9, + "probability": 0.9614 + }, + { + "start": 1028.18, + "end": 1030.72, + "probability": 0.9377 + }, + { + "start": 1030.8, + "end": 1033.08, + "probability": 0.9946 + }, + { + "start": 1034.06, + "end": 1037.16, + "probability": 0.9254 + }, + { + "start": 1037.46, + "end": 1038.58, + "probability": 0.5189 + }, + { + "start": 1038.62, + "end": 1042.26, + "probability": 0.9896 + }, + { + "start": 1042.56, + "end": 1044.36, + "probability": 0.9828 + }, + { + "start": 1044.5, + "end": 1048.76, + "probability": 0.9976 + }, + { + "start": 1049.1, + "end": 1049.34, + "probability": 0.741 + }, + { + "start": 1049.52, + "end": 1051.4, + "probability": 0.5922 + }, + { + "start": 1051.64, + "end": 1053.12, + "probability": 0.5963 + }, + { + "start": 1053.86, + "end": 1055.7, + "probability": 0.9374 + }, + { + "start": 1059.68, + "end": 1060.42, + "probability": 0.6384 + }, + { + "start": 1060.46, + "end": 1061.44, + "probability": 0.7494 + }, + { + "start": 1061.6, + "end": 1065.34, + "probability": 0.6412 + }, + { + "start": 1065.34, + "end": 1070.86, + "probability": 0.8014 + }, + { + "start": 1071.34, + "end": 1079.02, + "probability": 0.9757 + }, + { + "start": 1079.14, + "end": 1079.48, + "probability": 0.7817 + }, + { + "start": 1079.98, + "end": 1083.6, + "probability": 0.9775 + }, + { + "start": 1084.06, + "end": 1084.98, + "probability": 0.8643 + }, + { + "start": 1085.08, + "end": 1090.66, + "probability": 0.9828 + }, + { + "start": 1090.98, + "end": 1091.6, + "probability": 0.9761 + }, + { + "start": 1092.34, + "end": 1093.24, + "probability": 0.5156 + }, + { + "start": 1093.52, + "end": 1097.16, + "probability": 0.9385 + }, + { + "start": 1097.54, + "end": 1098.52, + "probability": 0.8699 + }, + { + "start": 1098.64, + "end": 1099.04, + "probability": 0.4383 + }, + { + "start": 1099.08, + "end": 1099.38, + "probability": 0.3367 + }, + { + "start": 1099.44, + "end": 1100.92, + "probability": 0.908 + }, + { + "start": 1101.24, + "end": 1107.38, + "probability": 0.8434 + }, + { + "start": 1108.24, + "end": 1111.7, + "probability": 0.9837 + }, + { + "start": 1111.7, + "end": 1115.74, + "probability": 0.9963 + }, + { + "start": 1116.24, + "end": 1120.93, + "probability": 0.9915 + }, + { + "start": 1121.18, + "end": 1122.98, + "probability": 0.756 + }, + { + "start": 1123.06, + "end": 1125.9, + "probability": 0.8165 + }, + { + "start": 1126.54, + "end": 1127.42, + "probability": 0.9133 + }, + { + "start": 1127.7, + "end": 1132.18, + "probability": 0.9173 + }, + { + "start": 1132.54, + "end": 1133.87, + "probability": 0.9849 + }, + { + "start": 1134.16, + "end": 1134.72, + "probability": 0.7544 + }, + { + "start": 1136.32, + "end": 1138.22, + "probability": 0.6754 + }, + { + "start": 1138.28, + "end": 1140.48, + "probability": 0.8557 + }, + { + "start": 1141.34, + "end": 1142.26, + "probability": 0.7926 + }, + { + "start": 1142.32, + "end": 1144.56, + "probability": 0.8726 + }, + { + "start": 1154.66, + "end": 1156.72, + "probability": 0.7112 + }, + { + "start": 1157.5, + "end": 1161.42, + "probability": 0.9611 + }, + { + "start": 1161.42, + "end": 1165.7, + "probability": 0.9321 + }, + { + "start": 1166.4, + "end": 1168.22, + "probability": 0.9971 + }, + { + "start": 1168.36, + "end": 1173.1, + "probability": 0.9075 + }, + { + "start": 1173.68, + "end": 1176.76, + "probability": 0.9977 + }, + { + "start": 1177.38, + "end": 1179.2, + "probability": 0.9813 + }, + { + "start": 1179.34, + "end": 1185.26, + "probability": 0.9874 + }, + { + "start": 1185.7, + "end": 1187.3, + "probability": 0.7676 + }, + { + "start": 1187.4, + "end": 1191.84, + "probability": 0.9782 + }, + { + "start": 1192.36, + "end": 1195.03, + "probability": 0.8809 + }, + { + "start": 1195.9, + "end": 1197.32, + "probability": 0.9076 + }, + { + "start": 1197.96, + "end": 1201.3, + "probability": 0.9647 + }, + { + "start": 1201.86, + "end": 1207.86, + "probability": 0.9702 + }, + { + "start": 1208.34, + "end": 1213.31, + "probability": 0.7146 + }, + { + "start": 1214.12, + "end": 1214.2, + "probability": 0.3488 + }, + { + "start": 1214.3, + "end": 1215.94, + "probability": 0.7324 + }, + { + "start": 1216.02, + "end": 1217.35, + "probability": 0.9328 + }, + { + "start": 1217.88, + "end": 1220.26, + "probability": 0.8451 + }, + { + "start": 1220.4, + "end": 1221.16, + "probability": 0.7092 + }, + { + "start": 1221.72, + "end": 1225.68, + "probability": 0.9913 + }, + { + "start": 1225.78, + "end": 1226.68, + "probability": 0.9423 + }, + { + "start": 1227.38, + "end": 1229.0, + "probability": 0.9587 + }, + { + "start": 1229.14, + "end": 1230.24, + "probability": 0.5261 + }, + { + "start": 1230.36, + "end": 1231.06, + "probability": 0.7608 + }, + { + "start": 1231.48, + "end": 1231.58, + "probability": 0.6186 + }, + { + "start": 1232.24, + "end": 1233.94, + "probability": 0.4924 + }, + { + "start": 1234.1, + "end": 1235.5, + "probability": 0.8779 + }, + { + "start": 1235.6, + "end": 1236.02, + "probability": 0.7688 + }, + { + "start": 1236.08, + "end": 1236.46, + "probability": 0.8166 + }, + { + "start": 1236.54, + "end": 1237.06, + "probability": 0.7151 + }, + { + "start": 1237.16, + "end": 1238.12, + "probability": 0.9592 + }, + { + "start": 1244.02, + "end": 1246.18, + "probability": 0.7072 + }, + { + "start": 1247.04, + "end": 1255.4, + "probability": 0.7335 + }, + { + "start": 1256.9, + "end": 1258.02, + "probability": 0.9092 + }, + { + "start": 1258.14, + "end": 1259.7, + "probability": 0.9579 + }, + { + "start": 1260.18, + "end": 1262.28, + "probability": 0.9805 + }, + { + "start": 1262.92, + "end": 1264.56, + "probability": 0.5534 + }, + { + "start": 1265.2, + "end": 1269.88, + "probability": 0.9935 + }, + { + "start": 1270.62, + "end": 1274.1, + "probability": 0.977 + }, + { + "start": 1274.1, + "end": 1278.92, + "probability": 0.8364 + }, + { + "start": 1280.2, + "end": 1283.66, + "probability": 0.9421 + }, + { + "start": 1283.88, + "end": 1285.46, + "probability": 0.8377 + }, + { + "start": 1285.96, + "end": 1291.64, + "probability": 0.9255 + }, + { + "start": 1292.2, + "end": 1299.38, + "probability": 0.7111 + }, + { + "start": 1299.94, + "end": 1301.78, + "probability": 0.188 + }, + { + "start": 1302.44, + "end": 1305.26, + "probability": 0.835 + }, + { + "start": 1305.66, + "end": 1310.56, + "probability": 0.9713 + }, + { + "start": 1310.64, + "end": 1312.0, + "probability": 0.6955 + }, + { + "start": 1312.5, + "end": 1314.08, + "probability": 0.9763 + }, + { + "start": 1315.0, + "end": 1321.22, + "probability": 0.9403 + }, + { + "start": 1321.66, + "end": 1323.02, + "probability": 0.4012 + }, + { + "start": 1323.52, + "end": 1328.08, + "probability": 0.7353 + }, + { + "start": 1328.4, + "end": 1332.0, + "probability": 0.7815 + }, + { + "start": 1332.18, + "end": 1334.76, + "probability": 0.8757 + }, + { + "start": 1335.16, + "end": 1337.1, + "probability": 0.8396 + }, + { + "start": 1337.18, + "end": 1337.78, + "probability": 0.7181 + }, + { + "start": 1338.12, + "end": 1340.26, + "probability": 0.6475 + }, + { + "start": 1340.68, + "end": 1347.36, + "probability": 0.9287 + }, + { + "start": 1347.72, + "end": 1350.18, + "probability": 0.791 + }, + { + "start": 1350.5, + "end": 1352.2, + "probability": 0.8149 + }, + { + "start": 1352.48, + "end": 1352.48, + "probability": 0.1556 + }, + { + "start": 1352.64, + "end": 1353.78, + "probability": 0.7892 + }, + { + "start": 1354.12, + "end": 1356.64, + "probability": 0.7076 + }, + { + "start": 1357.02, + "end": 1361.7, + "probability": 0.9407 + }, + { + "start": 1361.7, + "end": 1361.7, + "probability": 0.4442 + }, + { + "start": 1361.7, + "end": 1362.61, + "probability": 0.9316 + }, + { + "start": 1363.02, + "end": 1366.74, + "probability": 0.9849 + }, + { + "start": 1367.44, + "end": 1368.08, + "probability": 0.2528 + }, + { + "start": 1368.38, + "end": 1369.8, + "probability": 0.9932 + }, + { + "start": 1370.4, + "end": 1371.46, + "probability": 0.7632 + }, + { + "start": 1371.8, + "end": 1373.02, + "probability": 0.9425 + }, + { + "start": 1373.28, + "end": 1373.98, + "probability": 0.9693 + }, + { + "start": 1374.74, + "end": 1376.54, + "probability": 0.7974 + }, + { + "start": 1376.62, + "end": 1379.58, + "probability": 0.821 + }, + { + "start": 1379.74, + "end": 1380.5, + "probability": 0.5377 + }, + { + "start": 1381.9, + "end": 1382.08, + "probability": 0.4284 + }, + { + "start": 1382.32, + "end": 1382.32, + "probability": 0.102 + }, + { + "start": 1382.32, + "end": 1383.42, + "probability": 0.4221 + }, + { + "start": 1383.6, + "end": 1385.56, + "probability": 0.8513 + }, + { + "start": 1386.38, + "end": 1388.16, + "probability": 0.8885 + }, + { + "start": 1388.64, + "end": 1390.9, + "probability": 0.9807 + }, + { + "start": 1391.64, + "end": 1396.38, + "probability": 0.9841 + }, + { + "start": 1396.9, + "end": 1398.4, + "probability": 0.8497 + }, + { + "start": 1399.54, + "end": 1399.9, + "probability": 0.7318 + }, + { + "start": 1400.04, + "end": 1400.68, + "probability": 0.7577 + }, + { + "start": 1400.7, + "end": 1405.36, + "probability": 0.9906 + }, + { + "start": 1405.52, + "end": 1406.28, + "probability": 0.8438 + }, + { + "start": 1406.62, + "end": 1407.3, + "probability": 0.8706 + }, + { + "start": 1407.46, + "end": 1408.7, + "probability": 0.6397 + }, + { + "start": 1409.2, + "end": 1411.46, + "probability": 0.9315 + }, + { + "start": 1412.14, + "end": 1416.24, + "probability": 0.9039 + }, + { + "start": 1416.4, + "end": 1417.58, + "probability": 0.9695 + }, + { + "start": 1418.22, + "end": 1421.56, + "probability": 0.9887 + }, + { + "start": 1422.14, + "end": 1423.72, + "probability": 0.8438 + }, + { + "start": 1424.3, + "end": 1427.52, + "probability": 0.9941 + }, + { + "start": 1428.5, + "end": 1429.36, + "probability": 0.9793 + }, + { + "start": 1429.96, + "end": 1431.18, + "probability": 0.9487 + }, + { + "start": 1432.22, + "end": 1432.68, + "probability": 0.6506 + }, + { + "start": 1432.78, + "end": 1436.34, + "probability": 0.9893 + }, + { + "start": 1436.62, + "end": 1438.54, + "probability": 0.7192 + }, + { + "start": 1439.26, + "end": 1442.28, + "probability": 0.9294 + }, + { + "start": 1442.94, + "end": 1447.9, + "probability": 0.9445 + }, + { + "start": 1448.36, + "end": 1449.42, + "probability": 0.9749 + }, + { + "start": 1449.9, + "end": 1455.1, + "probability": 0.9703 + }, + { + "start": 1455.68, + "end": 1457.92, + "probability": 0.9395 + }, + { + "start": 1458.24, + "end": 1460.78, + "probability": 0.7685 + }, + { + "start": 1460.88, + "end": 1462.0, + "probability": 0.9513 + }, + { + "start": 1462.54, + "end": 1464.05, + "probability": 0.6835 + }, + { + "start": 1464.82, + "end": 1468.3, + "probability": 0.9665 + }, + { + "start": 1468.76, + "end": 1472.06, + "probability": 0.9914 + }, + { + "start": 1472.06, + "end": 1476.14, + "probability": 0.967 + }, + { + "start": 1476.4, + "end": 1476.92, + "probability": 0.699 + }, + { + "start": 1477.02, + "end": 1477.34, + "probability": 0.8517 + }, + { + "start": 1477.72, + "end": 1478.28, + "probability": 0.9659 + }, + { + "start": 1478.84, + "end": 1479.16, + "probability": 0.4421 + }, + { + "start": 1479.88, + "end": 1481.18, + "probability": 0.5546 + }, + { + "start": 1481.3, + "end": 1483.42, + "probability": 0.8283 + }, + { + "start": 1483.46, + "end": 1485.88, + "probability": 0.8812 + }, + { + "start": 1486.0, + "end": 1489.38, + "probability": 0.9941 + }, + { + "start": 1490.18, + "end": 1492.16, + "probability": 0.8046 + }, + { + "start": 1492.22, + "end": 1492.56, + "probability": 0.5135 + }, + { + "start": 1492.64, + "end": 1492.98, + "probability": 0.5851 + }, + { + "start": 1493.12, + "end": 1493.72, + "probability": 0.7939 + }, + { + "start": 1493.76, + "end": 1495.22, + "probability": 0.8175 + }, + { + "start": 1495.9, + "end": 1496.8, + "probability": 0.2776 + }, + { + "start": 1496.96, + "end": 1497.9, + "probability": 0.6132 + }, + { + "start": 1498.46, + "end": 1499.16, + "probability": 0.6816 + }, + { + "start": 1500.68, + "end": 1504.12, + "probability": 0.9849 + }, + { + "start": 1505.12, + "end": 1509.88, + "probability": 0.7351 + }, + { + "start": 1509.96, + "end": 1511.02, + "probability": 0.8481 + }, + { + "start": 1511.7, + "end": 1514.24, + "probability": 0.8254 + }, + { + "start": 1514.68, + "end": 1518.12, + "probability": 0.8 + }, + { + "start": 1519.86, + "end": 1522.18, + "probability": 0.9549 + }, + { + "start": 1522.54, + "end": 1524.74, + "probability": 0.9228 + }, + { + "start": 1524.94, + "end": 1525.72, + "probability": 0.6966 + }, + { + "start": 1526.08, + "end": 1529.12, + "probability": 0.7262 + }, + { + "start": 1529.8, + "end": 1531.26, + "probability": 0.6873 + }, + { + "start": 1531.92, + "end": 1538.48, + "probability": 0.9038 + }, + { + "start": 1538.84, + "end": 1541.76, + "probability": 0.9836 + }, + { + "start": 1542.0, + "end": 1544.8, + "probability": 0.6857 + }, + { + "start": 1545.1, + "end": 1549.0, + "probability": 0.9291 + }, + { + "start": 1549.0, + "end": 1558.26, + "probability": 0.8864 + }, + { + "start": 1558.64, + "end": 1561.56, + "probability": 0.9873 + }, + { + "start": 1563.16, + "end": 1566.22, + "probability": 0.7595 + }, + { + "start": 1567.02, + "end": 1568.32, + "probability": 0.5341 + }, + { + "start": 1568.34, + "end": 1571.06, + "probability": 0.8335 + }, + { + "start": 1571.38, + "end": 1572.38, + "probability": 0.8162 + }, + { + "start": 1572.52, + "end": 1572.72, + "probability": 0.7137 + }, + { + "start": 1573.34, + "end": 1575.46, + "probability": 0.5888 + }, + { + "start": 1575.54, + "end": 1577.2, + "probability": 0.5459 + }, + { + "start": 1578.78, + "end": 1578.8, + "probability": 0.2949 + }, + { + "start": 1578.8, + "end": 1581.0, + "probability": 0.7598 + }, + { + "start": 1581.06, + "end": 1582.63, + "probability": 0.676 + }, + { + "start": 1583.9, + "end": 1588.28, + "probability": 0.5931 + }, + { + "start": 1589.48, + "end": 1593.52, + "probability": 0.8047 + }, + { + "start": 1594.46, + "end": 1597.68, + "probability": 0.5354 + }, + { + "start": 1598.86, + "end": 1599.36, + "probability": 0.5174 + }, + { + "start": 1599.94, + "end": 1601.54, + "probability": 0.7741 + }, + { + "start": 1602.54, + "end": 1603.18, + "probability": 0.8127 + }, + { + "start": 1604.08, + "end": 1609.4, + "probability": 0.8794 + }, + { + "start": 1610.6, + "end": 1616.92, + "probability": 0.7519 + }, + { + "start": 1617.48, + "end": 1619.72, + "probability": 0.8508 + }, + { + "start": 1620.62, + "end": 1623.88, + "probability": 0.9124 + }, + { + "start": 1624.78, + "end": 1626.06, + "probability": 0.7397 + }, + { + "start": 1627.1, + "end": 1628.8, + "probability": 0.8218 + }, + { + "start": 1629.98, + "end": 1632.18, + "probability": 0.9797 + }, + { + "start": 1632.24, + "end": 1634.18, + "probability": 0.6153 + }, + { + "start": 1634.94, + "end": 1636.0, + "probability": 0.8584 + }, + { + "start": 1636.34, + "end": 1637.08, + "probability": 0.5657 + }, + { + "start": 1637.48, + "end": 1641.02, + "probability": 0.7393 + }, + { + "start": 1641.2, + "end": 1642.1, + "probability": 0.5941 + }, + { + "start": 1642.68, + "end": 1647.0, + "probability": 0.9526 + }, + { + "start": 1647.52, + "end": 1648.34, + "probability": 0.7283 + }, + { + "start": 1648.82, + "end": 1649.31, + "probability": 0.665 + }, + { + "start": 1650.08, + "end": 1653.56, + "probability": 0.9521 + }, + { + "start": 1654.28, + "end": 1657.7, + "probability": 0.7118 + }, + { + "start": 1658.42, + "end": 1658.96, + "probability": 0.563 + }, + { + "start": 1659.42, + "end": 1659.76, + "probability": 0.8519 + }, + { + "start": 1660.9, + "end": 1664.26, + "probability": 0.7492 + }, + { + "start": 1664.4, + "end": 1666.06, + "probability": 0.9198 + }, + { + "start": 1666.8, + "end": 1667.77, + "probability": 0.8999 + }, + { + "start": 1668.0, + "end": 1671.08, + "probability": 0.9163 + }, + { + "start": 1671.16, + "end": 1672.34, + "probability": 0.5063 + }, + { + "start": 1672.9, + "end": 1677.08, + "probability": 0.6317 + }, + { + "start": 1677.24, + "end": 1677.54, + "probability": 0.6425 + }, + { + "start": 1677.6, + "end": 1678.54, + "probability": 0.7017 + }, + { + "start": 1678.64, + "end": 1681.46, + "probability": 0.8888 + }, + { + "start": 1681.68, + "end": 1682.9, + "probability": 0.9276 + }, + { + "start": 1684.32, + "end": 1686.02, + "probability": 0.8151 + }, + { + "start": 1686.9, + "end": 1687.94, + "probability": 0.6481 + }, + { + "start": 1688.44, + "end": 1690.54, + "probability": 0.0939 + }, + { + "start": 1690.82, + "end": 1693.22, + "probability": 0.9499 + }, + { + "start": 1693.9, + "end": 1694.48, + "probability": 0.7309 + }, + { + "start": 1694.68, + "end": 1698.44, + "probability": 0.8426 + }, + { + "start": 1699.48, + "end": 1705.94, + "probability": 0.9963 + }, + { + "start": 1705.94, + "end": 1710.74, + "probability": 0.9987 + }, + { + "start": 1710.84, + "end": 1711.58, + "probability": 0.6749 + }, + { + "start": 1712.26, + "end": 1713.68, + "probability": 0.6555 + }, + { + "start": 1714.54, + "end": 1716.94, + "probability": 0.9601 + }, + { + "start": 1717.02, + "end": 1718.62, + "probability": 0.5462 + }, + { + "start": 1718.62, + "end": 1722.64, + "probability": 0.9733 + }, + { + "start": 1723.44, + "end": 1729.22, + "probability": 0.9834 + }, + { + "start": 1729.38, + "end": 1731.86, + "probability": 0.9982 + }, + { + "start": 1732.38, + "end": 1734.2, + "probability": 0.9627 + }, + { + "start": 1734.86, + "end": 1738.98, + "probability": 0.9566 + }, + { + "start": 1738.98, + "end": 1742.8, + "probability": 0.9919 + }, + { + "start": 1743.34, + "end": 1746.72, + "probability": 0.9938 + }, + { + "start": 1747.36, + "end": 1752.72, + "probability": 0.9972 + }, + { + "start": 1753.38, + "end": 1757.02, + "probability": 0.9829 + }, + { + "start": 1757.7, + "end": 1758.18, + "probability": 0.5852 + }, + { + "start": 1758.24, + "end": 1763.06, + "probability": 0.96 + }, + { + "start": 1763.06, + "end": 1769.0, + "probability": 0.9242 + }, + { + "start": 1769.8, + "end": 1772.14, + "probability": 0.7729 + }, + { + "start": 1772.72, + "end": 1775.22, + "probability": 0.9924 + }, + { + "start": 1775.22, + "end": 1779.96, + "probability": 0.9754 + }, + { + "start": 1780.7, + "end": 1781.18, + "probability": 0.4193 + }, + { + "start": 1781.72, + "end": 1783.66, + "probability": 0.9948 + }, + { + "start": 1784.2, + "end": 1785.78, + "probability": 0.9299 + }, + { + "start": 1786.42, + "end": 1790.5, + "probability": 0.9963 + }, + { + "start": 1791.06, + "end": 1795.94, + "probability": 0.944 + }, + { + "start": 1796.42, + "end": 1798.2, + "probability": 0.9529 + }, + { + "start": 1798.8, + "end": 1802.96, + "probability": 0.9698 + }, + { + "start": 1803.74, + "end": 1807.32, + "probability": 0.9214 + }, + { + "start": 1807.96, + "end": 1810.92, + "probability": 0.9512 + }, + { + "start": 1812.24, + "end": 1812.8, + "probability": 0.6802 + }, + { + "start": 1814.22, + "end": 1814.94, + "probability": 0.6776 + }, + { + "start": 1817.0, + "end": 1818.15, + "probability": 0.9855 + }, + { + "start": 1820.06, + "end": 1823.82, + "probability": 0.8232 + }, + { + "start": 1823.92, + "end": 1825.18, + "probability": 0.4989 + }, + { + "start": 1825.18, + "end": 1825.7, + "probability": 0.1241 + }, + { + "start": 1828.72, + "end": 1832.79, + "probability": 0.6752 + }, + { + "start": 1836.6, + "end": 1838.66, + "probability": 0.0411 + }, + { + "start": 1838.66, + "end": 1840.84, + "probability": 0.0022 + }, + { + "start": 1843.04, + "end": 1845.78, + "probability": 0.1616 + }, + { + "start": 1854.08, + "end": 1854.76, + "probability": 0.0099 + }, + { + "start": 1855.72, + "end": 1856.7, + "probability": 0.0411 + }, + { + "start": 1856.7, + "end": 1856.7, + "probability": 0.3648 + }, + { + "start": 1856.7, + "end": 1856.7, + "probability": 0.1883 + }, + { + "start": 1856.7, + "end": 1858.84, + "probability": 0.4042 + }, + { + "start": 1858.96, + "end": 1862.3, + "probability": 0.4961 + }, + { + "start": 1863.78, + "end": 1864.5, + "probability": 0.4435 + }, + { + "start": 1864.64, + "end": 1867.68, + "probability": 0.5356 + }, + { + "start": 1869.44, + "end": 1871.42, + "probability": 0.9163 + }, + { + "start": 1871.52, + "end": 1875.3, + "probability": 0.3143 + }, + { + "start": 1875.3, + "end": 1878.64, + "probability": 0.629 + }, + { + "start": 1878.8, + "end": 1884.78, + "probability": 0.3235 + }, + { + "start": 1898.0, + "end": 1899.74, + "probability": 0.2523 + }, + { + "start": 1899.74, + "end": 1903.96, + "probability": 0.7548 + }, + { + "start": 1904.8, + "end": 1906.76, + "probability": 0.8243 + }, + { + "start": 1909.7, + "end": 1915.66, + "probability": 0.979 + }, + { + "start": 1915.66, + "end": 1919.68, + "probability": 0.9914 + }, + { + "start": 1920.74, + "end": 1924.72, + "probability": 0.7749 + }, + { + "start": 1924.72, + "end": 1928.36, + "probability": 0.9913 + }, + { + "start": 1928.92, + "end": 1933.08, + "probability": 0.4432 + }, + { + "start": 1936.12, + "end": 1939.24, + "probability": 0.4546 + }, + { + "start": 1940.48, + "end": 1946.24, + "probability": 0.8738 + }, + { + "start": 1950.46, + "end": 1951.34, + "probability": 0.5036 + }, + { + "start": 1951.88, + "end": 1955.72, + "probability": 0.9876 + }, + { + "start": 1955.94, + "end": 1959.56, + "probability": 0.8987 + }, + { + "start": 1960.5, + "end": 1964.64, + "probability": 0.3565 + }, + { + "start": 1965.2, + "end": 1966.7, + "probability": 0.4661 + }, + { + "start": 1967.4, + "end": 1973.44, + "probability": 0.9843 + }, + { + "start": 1974.04, + "end": 1976.34, + "probability": 0.9953 + }, + { + "start": 1977.18, + "end": 1980.12, + "probability": 0.9385 + }, + { + "start": 1981.18, + "end": 1983.12, + "probability": 0.6923 + }, + { + "start": 1984.36, + "end": 1985.28, + "probability": 0.4027 + }, + { + "start": 1985.4, + "end": 1986.01, + "probability": 0.9634 + }, + { + "start": 1986.44, + "end": 1987.0, + "probability": 0.8861 + }, + { + "start": 1987.46, + "end": 1988.4, + "probability": 0.7759 + }, + { + "start": 1988.46, + "end": 1989.16, + "probability": 0.5832 + }, + { + "start": 1989.2, + "end": 1990.82, + "probability": 0.8516 + }, + { + "start": 1996.78, + "end": 1997.68, + "probability": 0.5095 + }, + { + "start": 1997.68, + "end": 1998.08, + "probability": 0.7073 + }, + { + "start": 2002.06, + "end": 2002.68, + "probability": 0.6217 + }, + { + "start": 2002.76, + "end": 2003.52, + "probability": 0.6017 + }, + { + "start": 2003.64, + "end": 2004.34, + "probability": 0.7269 + }, + { + "start": 2004.42, + "end": 2004.84, + "probability": 0.4444 + }, + { + "start": 2004.96, + "end": 2007.12, + "probability": 0.9185 + }, + { + "start": 2007.64, + "end": 2009.14, + "probability": 0.8022 + }, + { + "start": 2010.16, + "end": 2012.36, + "probability": 0.7705 + }, + { + "start": 2012.98, + "end": 2014.06, + "probability": 0.927 + }, + { + "start": 2014.24, + "end": 2021.3, + "probability": 0.9897 + }, + { + "start": 2021.84, + "end": 2023.52, + "probability": 0.936 + }, + { + "start": 2024.3, + "end": 2025.82, + "probability": 0.6867 + }, + { + "start": 2026.38, + "end": 2029.92, + "probability": 0.9594 + }, + { + "start": 2030.46, + "end": 2036.2, + "probability": 0.9744 + }, + { + "start": 2036.68, + "end": 2038.62, + "probability": 0.7412 + }, + { + "start": 2039.08, + "end": 2044.18, + "probability": 0.818 + }, + { + "start": 2044.18, + "end": 2048.56, + "probability": 0.9885 + }, + { + "start": 2048.96, + "end": 2051.02, + "probability": 0.7031 + }, + { + "start": 2051.68, + "end": 2054.82, + "probability": 0.9628 + }, + { + "start": 2055.36, + "end": 2057.9, + "probability": 0.918 + }, + { + "start": 2057.98, + "end": 2061.08, + "probability": 0.9778 + }, + { + "start": 2061.26, + "end": 2062.76, + "probability": 0.5249 + }, + { + "start": 2062.96, + "end": 2064.38, + "probability": 0.7065 + }, + { + "start": 2064.48, + "end": 2065.11, + "probability": 0.9593 + }, + { + "start": 2065.62, + "end": 2066.82, + "probability": 0.9246 + }, + { + "start": 2067.28, + "end": 2071.1, + "probability": 0.9624 + }, + { + "start": 2071.2, + "end": 2073.12, + "probability": 0.998 + }, + { + "start": 2073.58, + "end": 2075.9, + "probability": 0.9164 + }, + { + "start": 2076.44, + "end": 2078.7, + "probability": 0.8896 + }, + { + "start": 2078.7, + "end": 2082.72, + "probability": 0.9622 + }, + { + "start": 2083.12, + "end": 2084.2, + "probability": 0.5739 + }, + { + "start": 2085.26, + "end": 2090.92, + "probability": 0.9693 + }, + { + "start": 2091.42, + "end": 2096.74, + "probability": 0.9544 + }, + { + "start": 2097.3, + "end": 2099.18, + "probability": 0.8783 + }, + { + "start": 2099.3, + "end": 2105.2, + "probability": 0.9947 + }, + { + "start": 2105.56, + "end": 2106.78, + "probability": 0.8486 + }, + { + "start": 2106.84, + "end": 2107.54, + "probability": 0.8899 + }, + { + "start": 2107.74, + "end": 2108.5, + "probability": 0.8372 + }, + { + "start": 2109.02, + "end": 2112.62, + "probability": 0.8076 + }, + { + "start": 2113.92, + "end": 2114.68, + "probability": 0.8743 + }, + { + "start": 2114.86, + "end": 2116.16, + "probability": 0.9722 + }, + { + "start": 2116.2, + "end": 2117.58, + "probability": 0.7995 + }, + { + "start": 2118.0, + "end": 2119.4, + "probability": 0.9028 + }, + { + "start": 2119.8, + "end": 2120.5, + "probability": 0.7468 + }, + { + "start": 2120.86, + "end": 2122.48, + "probability": 0.9918 + }, + { + "start": 2122.62, + "end": 2123.08, + "probability": 0.5028 + }, + { + "start": 2123.18, + "end": 2123.52, + "probability": 0.9453 + }, + { + "start": 2123.92, + "end": 2130.24, + "probability": 0.9976 + }, + { + "start": 2130.86, + "end": 2132.16, + "probability": 0.3228 + }, + { + "start": 2132.56, + "end": 2133.68, + "probability": 0.8275 + }, + { + "start": 2134.02, + "end": 2134.92, + "probability": 0.9045 + }, + { + "start": 2135.04, + "end": 2135.92, + "probability": 0.8996 + }, + { + "start": 2135.96, + "end": 2137.09, + "probability": 0.9311 + }, + { + "start": 2137.5, + "end": 2141.2, + "probability": 0.9466 + }, + { + "start": 2141.28, + "end": 2145.66, + "probability": 0.9914 + }, + { + "start": 2145.98, + "end": 2148.9, + "probability": 0.9797 + }, + { + "start": 2149.46, + "end": 2152.14, + "probability": 0.9766 + }, + { + "start": 2152.28, + "end": 2153.5, + "probability": 0.82 + }, + { + "start": 2153.92, + "end": 2157.66, + "probability": 0.8388 + }, + { + "start": 2157.66, + "end": 2161.84, + "probability": 0.9963 + }, + { + "start": 2162.52, + "end": 2165.5, + "probability": 0.8403 + }, + { + "start": 2165.8, + "end": 2167.34, + "probability": 0.8877 + }, + { + "start": 2167.58, + "end": 2171.28, + "probability": 0.9489 + }, + { + "start": 2171.42, + "end": 2176.72, + "probability": 0.8053 + }, + { + "start": 2177.0, + "end": 2179.96, + "probability": 0.9924 + }, + { + "start": 2180.2, + "end": 2183.88, + "probability": 0.9691 + }, + { + "start": 2184.22, + "end": 2185.32, + "probability": 0.7146 + }, + { + "start": 2185.48, + "end": 2185.96, + "probability": 0.6461 + }, + { + "start": 2186.1, + "end": 2186.9, + "probability": 0.9966 + }, + { + "start": 2188.26, + "end": 2189.6, + "probability": 0.8599 + }, + { + "start": 2190.72, + "end": 2192.46, + "probability": 0.9183 + }, + { + "start": 2196.86, + "end": 2197.78, + "probability": 0.4203 + }, + { + "start": 2213.98, + "end": 2218.44, + "probability": 0.2974 + }, + { + "start": 2218.44, + "end": 2218.78, + "probability": 0.0885 + }, + { + "start": 2218.78, + "end": 2218.78, + "probability": 0.0959 + }, + { + "start": 2218.78, + "end": 2218.78, + "probability": 0.0357 + }, + { + "start": 2218.78, + "end": 2218.82, + "probability": 0.039 + }, + { + "start": 2218.82, + "end": 2219.03, + "probability": 0.2473 + }, + { + "start": 2219.32, + "end": 2221.58, + "probability": 0.7302 + }, + { + "start": 2221.58, + "end": 2224.22, + "probability": 0.8006 + }, + { + "start": 2224.76, + "end": 2226.36, + "probability": 0.9766 + }, + { + "start": 2228.16, + "end": 2230.92, + "probability": 0.993 + }, + { + "start": 2230.92, + "end": 2235.06, + "probability": 0.7156 + }, + { + "start": 2235.8, + "end": 2236.16, + "probability": 0.5143 + }, + { + "start": 2237.1, + "end": 2240.78, + "probability": 0.7509 + }, + { + "start": 2241.74, + "end": 2245.48, + "probability": 0.4854 + }, + { + "start": 2248.56, + "end": 2249.44, + "probability": 0.1122 + }, + { + "start": 2249.94, + "end": 2250.8, + "probability": 0.8123 + }, + { + "start": 2251.48, + "end": 2251.76, + "probability": 0.9023 + }, + { + "start": 2255.44, + "end": 2256.76, + "probability": 0.186 + }, + { + "start": 2277.52, + "end": 2279.14, + "probability": 0.2521 + }, + { + "start": 2279.38, + "end": 2281.84, + "probability": 0.6933 + }, + { + "start": 2284.6, + "end": 2284.88, + "probability": 0.0186 + }, + { + "start": 2306.2, + "end": 2306.2, + "probability": 0.0192 + }, + { + "start": 2306.48, + "end": 2308.78, + "probability": 0.0042 + }, + { + "start": 2308.78, + "end": 2308.94, + "probability": 0.0376 + }, + { + "start": 2308.94, + "end": 2311.46, + "probability": 0.1242 + }, + { + "start": 2311.46, + "end": 2311.52, + "probability": 0.1168 + }, + { + "start": 2311.52, + "end": 2314.51, + "probability": 0.1781 + }, + { + "start": 2427.0, + "end": 2427.0, + "probability": 0.0 + }, + { + "start": 2427.0, + "end": 2427.0, + "probability": 0.0 + }, + { + "start": 2427.0, + "end": 2427.0, + "probability": 0.0 + }, + { + "start": 2427.0, + "end": 2427.0, + "probability": 0.0 + }, + { + "start": 2427.0, + "end": 2427.0, + "probability": 0.0 + }, + { + "start": 2427.0, + "end": 2427.0, + "probability": 0.0 + }, + { + "start": 2427.0, + "end": 2427.0, + "probability": 0.0 + }, + { + "start": 2427.0, + "end": 2427.0, + "probability": 0.0 + }, + { + "start": 2427.0, + "end": 2427.0, + "probability": 0.0 + }, + { + "start": 2427.0, + "end": 2427.0, + "probability": 0.0 + }, + { + "start": 2427.0, + "end": 2427.0, + "probability": 0.0 + }, + { + "start": 2427.0, + "end": 2427.0, + "probability": 0.0 + }, + { + "start": 2427.0, + "end": 2427.0, + "probability": 0.0 + }, + { + "start": 2427.0, + "end": 2427.0, + "probability": 0.0 + }, + { + "start": 2427.0, + "end": 2427.0, + "probability": 0.0 + }, + { + "start": 2427.0, + "end": 2427.0, + "probability": 0.0 + }, + { + "start": 2427.0, + "end": 2427.0, + "probability": 0.0 + }, + { + "start": 2427.0, + "end": 2427.0, + "probability": 0.0 + }, + { + "start": 2427.0, + "end": 2427.0, + "probability": 0.0 + }, + { + "start": 2427.0, + "end": 2427.0, + "probability": 0.0 + }, + { + "start": 2427.0, + "end": 2427.0, + "probability": 0.0 + }, + { + "start": 2427.0, + "end": 2427.0, + "probability": 0.0 + }, + { + "start": 2427.0, + "end": 2427.0, + "probability": 0.0 + }, + { + "start": 2427.0, + "end": 2427.0, + "probability": 0.0 + }, + { + "start": 2427.0, + "end": 2427.0, + "probability": 0.0 + }, + { + "start": 2427.0, + "end": 2427.0, + "probability": 0.0 + }, + { + "start": 2427.0, + "end": 2427.0, + "probability": 0.0 + }, + { + "start": 2427.0, + "end": 2427.0, + "probability": 0.0 + }, + { + "start": 2427.0, + "end": 2427.0, + "probability": 0.0 + }, + { + "start": 2427.0, + "end": 2427.0, + "probability": 0.0 + }, + { + "start": 2427.0, + "end": 2427.0, + "probability": 0.0 + }, + { + "start": 2427.0, + "end": 2427.0, + "probability": 0.0 + }, + { + "start": 2427.0, + "end": 2427.0, + "probability": 0.0 + }, + { + "start": 2427.62, + "end": 2427.62, + "probability": 0.2706 + }, + { + "start": 2427.62, + "end": 2429.08, + "probability": 0.1766 + }, + { + "start": 2430.44, + "end": 2431.84, + "probability": 0.4243 + }, + { + "start": 2432.78, + "end": 2433.04, + "probability": 0.8689 + }, + { + "start": 2433.66, + "end": 2434.74, + "probability": 0.8862 + }, + { + "start": 2435.62, + "end": 2436.46, + "probability": 0.4687 + }, + { + "start": 2437.38, + "end": 2438.66, + "probability": 0.9448 + }, + { + "start": 2440.88, + "end": 2441.54, + "probability": 0.5159 + }, + { + "start": 2442.12, + "end": 2444.44, + "probability": 0.7065 + }, + { + "start": 2445.28, + "end": 2446.3, + "probability": 0.9666 + }, + { + "start": 2447.78, + "end": 2449.14, + "probability": 0.981 + }, + { + "start": 2450.28, + "end": 2450.84, + "probability": 0.8556 + }, + { + "start": 2451.64, + "end": 2452.94, + "probability": 0.862 + }, + { + "start": 2455.16, + "end": 2456.5, + "probability": 0.7164 + }, + { + "start": 2457.06, + "end": 2459.56, + "probability": 0.9913 + }, + { + "start": 2460.9, + "end": 2461.18, + "probability": 0.1176 + }, + { + "start": 2461.76, + "end": 2463.66, + "probability": 0.9048 + }, + { + "start": 2466.28, + "end": 2468.5, + "probability": 0.8994 + }, + { + "start": 2469.16, + "end": 2470.02, + "probability": 0.7383 + }, + { + "start": 2471.78, + "end": 2472.96, + "probability": 0.9739 + }, + { + "start": 2474.54, + "end": 2475.34, + "probability": 0.7506 + }, + { + "start": 2476.58, + "end": 2477.74, + "probability": 0.9939 + }, + { + "start": 2478.4, + "end": 2479.04, + "probability": 0.9907 + }, + { + "start": 2480.04, + "end": 2481.36, + "probability": 0.8765 + }, + { + "start": 2482.54, + "end": 2483.44, + "probability": 0.4092 + }, + { + "start": 2484.78, + "end": 2487.43, + "probability": 0.6905 + }, + { + "start": 2488.3, + "end": 2489.52, + "probability": 0.8161 + }, + { + "start": 2490.04, + "end": 2490.66, + "probability": 0.9489 + }, + { + "start": 2492.0, + "end": 2494.2, + "probability": 0.972 + }, + { + "start": 2495.16, + "end": 2496.16, + "probability": 0.6091 + }, + { + "start": 2499.45, + "end": 2502.44, + "probability": 0.6882 + }, + { + "start": 2504.54, + "end": 2505.8, + "probability": 0.7318 + }, + { + "start": 2508.96, + "end": 2514.58, + "probability": 0.8287 + }, + { + "start": 2516.28, + "end": 2518.8, + "probability": 0.9504 + }, + { + "start": 2521.32, + "end": 2522.66, + "probability": 0.9615 + }, + { + "start": 2524.24, + "end": 2525.56, + "probability": 0.9093 + }, + { + "start": 2528.75, + "end": 2530.22, + "probability": 0.3192 + }, + { + "start": 2536.42, + "end": 2537.14, + "probability": 0.2336 + }, + { + "start": 2540.3, + "end": 2541.68, + "probability": 0.6889 + }, + { + "start": 2551.92, + "end": 2553.92, + "probability": 0.8315 + }, + { + "start": 2554.78, + "end": 2557.08, + "probability": 0.9702 + }, + { + "start": 2563.46, + "end": 2563.54, + "probability": 0.1278 + }, + { + "start": 2563.54, + "end": 2563.98, + "probability": 0.1664 + }, + { + "start": 2563.98, + "end": 2564.26, + "probability": 0.1207 + }, + { + "start": 2564.26, + "end": 2564.26, + "probability": 0.0344 + }, + { + "start": 2574.26, + "end": 2574.54, + "probability": 0.1565 + }, + { + "start": 2577.61, + "end": 2583.6, + "probability": 0.9377 + }, + { + "start": 2584.04, + "end": 2585.3, + "probability": 0.8911 + }, + { + "start": 2586.2, + "end": 2590.98, + "probability": 0.8547 + }, + { + "start": 2591.38, + "end": 2592.92, + "probability": 0.8386 + }, + { + "start": 2593.4, + "end": 2597.94, + "probability": 0.9954 + }, + { + "start": 2599.32, + "end": 2604.06, + "probability": 0.9609 + }, + { + "start": 2604.42, + "end": 2605.74, + "probability": 0.8066 + }, + { + "start": 2606.2, + "end": 2608.4, + "probability": 0.8464 + }, + { + "start": 2608.64, + "end": 2609.5, + "probability": 0.6889 + }, + { + "start": 2610.08, + "end": 2613.72, + "probability": 0.8592 + }, + { + "start": 2614.9, + "end": 2618.54, + "probability": 0.9805 + }, + { + "start": 2618.54, + "end": 2622.0, + "probability": 0.9981 + }, + { + "start": 2623.16, + "end": 2625.34, + "probability": 0.658 + }, + { + "start": 2626.02, + "end": 2627.44, + "probability": 0.7529 + }, + { + "start": 2628.4, + "end": 2635.8, + "probability": 0.9368 + }, + { + "start": 2636.66, + "end": 2637.74, + "probability": 0.8131 + }, + { + "start": 2639.12, + "end": 2643.94, + "probability": 0.9941 + }, + { + "start": 2644.5, + "end": 2647.32, + "probability": 0.8885 + }, + { + "start": 2648.1, + "end": 2650.44, + "probability": 0.981 + }, + { + "start": 2651.32, + "end": 2652.12, + "probability": 0.934 + }, + { + "start": 2652.86, + "end": 2660.1, + "probability": 0.9915 + }, + { + "start": 2660.72, + "end": 2666.21, + "probability": 0.9854 + }, + { + "start": 2667.68, + "end": 2669.18, + "probability": 0.999 + }, + { + "start": 2669.32, + "end": 2673.44, + "probability": 0.9357 + }, + { + "start": 2673.58, + "end": 2676.94, + "probability": 0.7483 + }, + { + "start": 2678.54, + "end": 2681.04, + "probability": 0.9731 + }, + { + "start": 2681.38, + "end": 2682.94, + "probability": 0.9868 + }, + { + "start": 2683.56, + "end": 2691.1, + "probability": 0.9642 + }, + { + "start": 2691.78, + "end": 2693.84, + "probability": 0.9842 + }, + { + "start": 2694.3, + "end": 2699.24, + "probability": 0.9937 + }, + { + "start": 2700.76, + "end": 2702.4, + "probability": 0.965 + }, + { + "start": 2702.48, + "end": 2710.18, + "probability": 0.9417 + }, + { + "start": 2710.18, + "end": 2717.92, + "probability": 0.9919 + }, + { + "start": 2719.16, + "end": 2723.96, + "probability": 0.9977 + }, + { + "start": 2724.3, + "end": 2728.24, + "probability": 0.9918 + }, + { + "start": 2728.24, + "end": 2731.34, + "probability": 0.4206 + }, + { + "start": 2732.16, + "end": 2738.42, + "probability": 0.9136 + }, + { + "start": 2738.96, + "end": 2740.74, + "probability": 0.6959 + }, + { + "start": 2741.2, + "end": 2743.88, + "probability": 0.9871 + }, + { + "start": 2744.3, + "end": 2744.98, + "probability": 0.4248 + }, + { + "start": 2745.32, + "end": 2746.65, + "probability": 0.9745 + }, + { + "start": 2747.02, + "end": 2750.04, + "probability": 0.9958 + }, + { + "start": 2750.6, + "end": 2755.66, + "probability": 0.7637 + }, + { + "start": 2756.8, + "end": 2759.14, + "probability": 0.9866 + }, + { + "start": 2759.94, + "end": 2761.78, + "probability": 0.6804 + }, + { + "start": 2762.18, + "end": 2764.58, + "probability": 0.9075 + }, + { + "start": 2765.16, + "end": 2767.26, + "probability": 0.4368 + }, + { + "start": 2768.22, + "end": 2769.08, + "probability": 0.749 + }, + { + "start": 2770.81, + "end": 2773.79, + "probability": 0.6536 + }, + { + "start": 2774.94, + "end": 2776.48, + "probability": 0.8703 + }, + { + "start": 2776.58, + "end": 2777.1, + "probability": 0.6797 + }, + { + "start": 2777.48, + "end": 2779.14, + "probability": 0.7254 + }, + { + "start": 2779.24, + "end": 2779.8, + "probability": 0.6874 + }, + { + "start": 2779.88, + "end": 2780.04, + "probability": 0.9653 + }, + { + "start": 2781.06, + "end": 2781.9, + "probability": 0.3327 + }, + { + "start": 2781.9, + "end": 2784.51, + "probability": 0.1171 + }, + { + "start": 2784.66, + "end": 2792.6, + "probability": 0.9807 + }, + { + "start": 2793.14, + "end": 2798.16, + "probability": 0.5679 + }, + { + "start": 2798.72, + "end": 2800.94, + "probability": 0.9894 + }, + { + "start": 2801.56, + "end": 2804.34, + "probability": 0.6719 + }, + { + "start": 2804.76, + "end": 2809.58, + "probability": 0.9481 + }, + { + "start": 2810.08, + "end": 2813.0, + "probability": 0.9563 + }, + { + "start": 2813.64, + "end": 2818.4, + "probability": 0.7206 + }, + { + "start": 2818.84, + "end": 2819.82, + "probability": 0.1666 + }, + { + "start": 2819.84, + "end": 2821.42, + "probability": 0.3064 + }, + { + "start": 2821.48, + "end": 2822.28, + "probability": 0.507 + }, + { + "start": 2823.46, + "end": 2823.5, + "probability": 0.3924 + }, + { + "start": 2823.82, + "end": 2824.8, + "probability": 0.5135 + }, + { + "start": 2824.98, + "end": 2827.66, + "probability": 0.2078 + }, + { + "start": 2827.66, + "end": 2828.3, + "probability": 0.6909 + }, + { + "start": 2828.74, + "end": 2828.74, + "probability": 0.3268 + }, + { + "start": 2828.74, + "end": 2828.74, + "probability": 0.6367 + }, + { + "start": 2828.74, + "end": 2829.5, + "probability": 0.2296 + }, + { + "start": 2829.56, + "end": 2829.78, + "probability": 0.3587 + }, + { + "start": 2829.86, + "end": 2830.51, + "probability": 0.6448 + }, + { + "start": 2831.56, + "end": 2833.32, + "probability": 0.6868 + }, + { + "start": 2833.4, + "end": 2836.48, + "probability": 0.045 + }, + { + "start": 2836.88, + "end": 2836.9, + "probability": 0.4958 + }, + { + "start": 2836.9, + "end": 2837.78, + "probability": 0.3235 + }, + { + "start": 2838.88, + "end": 2838.9, + "probability": 0.3714 + }, + { + "start": 2838.9, + "end": 2838.94, + "probability": 0.2261 + }, + { + "start": 2838.94, + "end": 2839.64, + "probability": 0.0493 + }, + { + "start": 2839.72, + "end": 2840.04, + "probability": 0.3288 + }, + { + "start": 2840.92, + "end": 2841.0, + "probability": 0.0883 + }, + { + "start": 2841.0, + "end": 2841.6, + "probability": 0.3816 + }, + { + "start": 2841.7, + "end": 2844.38, + "probability": 0.9886 + }, + { + "start": 2844.6, + "end": 2845.74, + "probability": 0.3844 + }, + { + "start": 2845.76, + "end": 2846.24, + "probability": 0.7889 + }, + { + "start": 2846.28, + "end": 2847.3, + "probability": 0.4407 + }, + { + "start": 2847.62, + "end": 2848.74, + "probability": 0.9369 + }, + { + "start": 2848.8, + "end": 2849.3, + "probability": 0.4737 + }, + { + "start": 2849.34, + "end": 2850.04, + "probability": 0.9663 + }, + { + "start": 2850.18, + "end": 2851.08, + "probability": 0.9775 + }, + { + "start": 2851.34, + "end": 2852.48, + "probability": 0.7497 + }, + { + "start": 2853.42, + "end": 2855.06, + "probability": 0.6906 + }, + { + "start": 2855.98, + "end": 2858.84, + "probability": 0.54 + }, + { + "start": 2859.08, + "end": 2859.62, + "probability": 0.6267 + }, + { + "start": 2870.35, + "end": 2872.42, + "probability": 0.8394 + }, + { + "start": 2872.5, + "end": 2875.98, + "probability": 0.2002 + }, + { + "start": 2876.83, + "end": 2878.52, + "probability": 0.4983 + }, + { + "start": 2883.82, + "end": 2887.62, + "probability": 0.9963 + }, + { + "start": 2888.26, + "end": 2890.64, + "probability": 0.8434 + }, + { + "start": 2890.7, + "end": 2892.32, + "probability": 0.7842 + }, + { + "start": 2893.44, + "end": 2896.64, + "probability": 0.9976 + }, + { + "start": 2898.24, + "end": 2899.08, + "probability": 0.9863 + }, + { + "start": 2899.14, + "end": 2900.64, + "probability": 0.9968 + }, + { + "start": 2900.76, + "end": 2901.48, + "probability": 0.9736 + }, + { + "start": 2901.62, + "end": 2904.74, + "probability": 0.7501 + }, + { + "start": 2904.8, + "end": 2905.1, + "probability": 0.3903 + }, + { + "start": 2905.24, + "end": 2912.76, + "probability": 0.9566 + }, + { + "start": 2913.77, + "end": 2918.48, + "probability": 0.9974 + }, + { + "start": 2919.06, + "end": 2919.98, + "probability": 0.9445 + }, + { + "start": 2920.32, + "end": 2923.64, + "probability": 0.9849 + }, + { + "start": 2926.1, + "end": 2927.94, + "probability": 0.9939 + }, + { + "start": 2928.0, + "end": 2929.48, + "probability": 0.8214 + }, + { + "start": 2929.56, + "end": 2930.56, + "probability": 0.984 + }, + { + "start": 2931.2, + "end": 2935.72, + "probability": 0.9934 + }, + { + "start": 2936.5, + "end": 2940.5, + "probability": 0.6957 + }, + { + "start": 2941.0, + "end": 2942.16, + "probability": 0.8398 + }, + { + "start": 2942.58, + "end": 2944.32, + "probability": 0.9171 + }, + { + "start": 2944.86, + "end": 2945.14, + "probability": 0.8657 + }, + { + "start": 2945.2, + "end": 2946.1, + "probability": 0.8691 + }, + { + "start": 2946.18, + "end": 2949.54, + "probability": 0.7367 + }, + { + "start": 2949.54, + "end": 2953.18, + "probability": 0.9978 + }, + { + "start": 2953.56, + "end": 2953.94, + "probability": 0.1445 + }, + { + "start": 2954.32, + "end": 2956.84, + "probability": 0.8735 + }, + { + "start": 2956.92, + "end": 2958.0, + "probability": 0.9431 + }, + { + "start": 2958.08, + "end": 2960.04, + "probability": 0.9548 + }, + { + "start": 2960.64, + "end": 2962.58, + "probability": 0.9873 + }, + { + "start": 2963.52, + "end": 2964.04, + "probability": 0.0335 + }, + { + "start": 2964.04, + "end": 2964.54, + "probability": 0.4883 + }, + { + "start": 2964.58, + "end": 2965.18, + "probability": 0.5125 + }, + { + "start": 2965.24, + "end": 2965.67, + "probability": 0.5603 + }, + { + "start": 2966.62, + "end": 2968.22, + "probability": 0.9868 + }, + { + "start": 2969.3, + "end": 2969.72, + "probability": 0.7546 + }, + { + "start": 2969.82, + "end": 2971.06, + "probability": 0.8079 + }, + { + "start": 2971.28, + "end": 2976.18, + "probability": 0.9376 + }, + { + "start": 2976.24, + "end": 2976.96, + "probability": 0.9567 + }, + { + "start": 2977.82, + "end": 2980.02, + "probability": 0.8711 + }, + { + "start": 2981.18, + "end": 2981.86, + "probability": 0.4048 + }, + { + "start": 2981.94, + "end": 2984.03, + "probability": 0.8925 + }, + { + "start": 2984.74, + "end": 2986.58, + "probability": 0.936 + }, + { + "start": 2987.58, + "end": 2988.74, + "probability": 0.9398 + }, + { + "start": 2989.22, + "end": 2990.56, + "probability": 0.988 + }, + { + "start": 2991.2, + "end": 2991.76, + "probability": 0.9185 + }, + { + "start": 2991.9, + "end": 2993.28, + "probability": 0.9176 + }, + { + "start": 2994.04, + "end": 2995.2, + "probability": 0.8719 + }, + { + "start": 2995.26, + "end": 2996.18, + "probability": 0.8441 + }, + { + "start": 2996.2, + "end": 2998.18, + "probability": 0.9086 + }, + { + "start": 2998.84, + "end": 2999.7, + "probability": 0.9184 + }, + { + "start": 2999.8, + "end": 3002.68, + "probability": 0.9858 + }, + { + "start": 3002.82, + "end": 3003.74, + "probability": 0.9574 + }, + { + "start": 3004.14, + "end": 3006.98, + "probability": 0.9692 + }, + { + "start": 3007.4, + "end": 3008.34, + "probability": 0.5297 + }, + { + "start": 3008.84, + "end": 3009.46, + "probability": 0.5983 + }, + { + "start": 3009.86, + "end": 3009.94, + "probability": 0.1246 + }, + { + "start": 3009.94, + "end": 3009.94, + "probability": 0.2327 + }, + { + "start": 3009.94, + "end": 3012.96, + "probability": 0.6336 + }, + { + "start": 3013.48, + "end": 3013.87, + "probability": 0.5802 + }, + { + "start": 3014.3, + "end": 3016.08, + "probability": 0.9912 + }, + { + "start": 3016.66, + "end": 3017.26, + "probability": 0.1944 + }, + { + "start": 3017.52, + "end": 3017.52, + "probability": 0.6027 + }, + { + "start": 3017.52, + "end": 3017.64, + "probability": 0.656 + }, + { + "start": 3017.74, + "end": 3020.98, + "probability": 0.9692 + }, + { + "start": 3021.42, + "end": 3026.12, + "probability": 0.6459 + }, + { + "start": 3026.12, + "end": 3026.58, + "probability": 0.6064 + }, + { + "start": 3026.76, + "end": 3027.88, + "probability": 0.656 + }, + { + "start": 3028.14, + "end": 3029.94, + "probability": 0.813 + }, + { + "start": 3030.4, + "end": 3031.71, + "probability": 0.9445 + }, + { + "start": 3031.92, + "end": 3032.94, + "probability": 0.7559 + }, + { + "start": 3032.98, + "end": 3034.1, + "probability": 0.7783 + }, + { + "start": 3034.32, + "end": 3036.68, + "probability": 0.9667 + }, + { + "start": 3036.98, + "end": 3038.18, + "probability": 0.9507 + }, + { + "start": 3038.46, + "end": 3039.86, + "probability": 0.9423 + }, + { + "start": 3039.98, + "end": 3041.26, + "probability": 0.999 + }, + { + "start": 3042.12, + "end": 3043.06, + "probability": 0.9116 + }, + { + "start": 3043.12, + "end": 3043.26, + "probability": 0.4409 + }, + { + "start": 3043.42, + "end": 3045.46, + "probability": 0.5385 + }, + { + "start": 3045.54, + "end": 3049.6, + "probability": 0.9088 + }, + { + "start": 3049.98, + "end": 3052.4, + "probability": 0.7701 + }, + { + "start": 3052.76, + "end": 3055.36, + "probability": 0.9974 + }, + { + "start": 3055.56, + "end": 3058.34, + "probability": 0.9949 + }, + { + "start": 3058.34, + "end": 3062.72, + "probability": 0.9971 + }, + { + "start": 3063.4, + "end": 3064.36, + "probability": 0.5124 + }, + { + "start": 3064.74, + "end": 3066.74, + "probability": 0.8704 + }, + { + "start": 3066.82, + "end": 3067.86, + "probability": 0.765 + }, + { + "start": 3068.16, + "end": 3069.22, + "probability": 0.9766 + }, + { + "start": 3069.68, + "end": 3070.76, + "probability": 0.9653 + }, + { + "start": 3071.18, + "end": 3077.6, + "probability": 0.9683 + }, + { + "start": 3078.1, + "end": 3078.18, + "probability": 0.3404 + }, + { + "start": 3078.18, + "end": 3078.18, + "probability": 0.0652 + }, + { + "start": 3078.18, + "end": 3081.94, + "probability": 0.7844 + }, + { + "start": 3082.26, + "end": 3084.66, + "probability": 0.9685 + }, + { + "start": 3084.68, + "end": 3085.2, + "probability": 0.9049 + }, + { + "start": 3086.16, + "end": 3087.54, + "probability": 0.936 + }, + { + "start": 3088.34, + "end": 3089.3, + "probability": 0.3661 + }, + { + "start": 3089.42, + "end": 3091.44, + "probability": 0.9938 + }, + { + "start": 3091.88, + "end": 3092.48, + "probability": 0.2488 + }, + { + "start": 3092.48, + "end": 3092.69, + "probability": 0.1485 + }, + { + "start": 3092.78, + "end": 3093.05, + "probability": 0.3424 + }, + { + "start": 3093.9, + "end": 3093.9, + "probability": 0.277 + }, + { + "start": 3094.0, + "end": 3095.12, + "probability": 0.5797 + }, + { + "start": 3095.28, + "end": 3095.56, + "probability": 0.1357 + }, + { + "start": 3095.56, + "end": 3096.16, + "probability": 0.2585 + }, + { + "start": 3096.3, + "end": 3099.26, + "probability": 0.5103 + }, + { + "start": 3099.62, + "end": 3101.16, + "probability": 0.1875 + }, + { + "start": 3101.16, + "end": 3104.2, + "probability": 0.6764 + }, + { + "start": 3104.34, + "end": 3104.58, + "probability": 0.1138 + }, + { + "start": 3107.92, + "end": 3110.86, + "probability": 0.0163 + }, + { + "start": 3113.16, + "end": 3114.18, + "probability": 0.2076 + }, + { + "start": 3114.32, + "end": 3115.74, + "probability": 0.4329 + }, + { + "start": 3118.94, + "end": 3119.52, + "probability": 0.6154 + }, + { + "start": 3121.19, + "end": 3127.16, + "probability": 0.4255 + }, + { + "start": 3128.38, + "end": 3128.69, + "probability": 0.0111 + }, + { + "start": 3129.12, + "end": 3130.2, + "probability": 0.1912 + }, + { + "start": 3130.76, + "end": 3134.08, + "probability": 0.0318 + }, + { + "start": 3135.38, + "end": 3136.64, + "probability": 0.1033 + }, + { + "start": 3139.22, + "end": 3140.5, + "probability": 0.7413 + }, + { + "start": 3140.62, + "end": 3142.07, + "probability": 0.9513 + }, + { + "start": 3142.42, + "end": 3143.68, + "probability": 0.9221 + }, + { + "start": 3143.92, + "end": 3146.34, + "probability": 0.8057 + }, + { + "start": 3146.46, + "end": 3147.16, + "probability": 0.503 + }, + { + "start": 3147.3, + "end": 3147.82, + "probability": 0.51 + }, + { + "start": 3147.88, + "end": 3148.72, + "probability": 0.5948 + }, + { + "start": 3148.98, + "end": 3149.26, + "probability": 0.6715 + }, + { + "start": 3149.3, + "end": 3149.88, + "probability": 0.8758 + }, + { + "start": 3152.02, + "end": 3152.96, + "probability": 0.0209 + }, + { + "start": 3153.25, + "end": 3153.5, + "probability": 0.0581 + }, + { + "start": 3153.5, + "end": 3157.0, + "probability": 0.776 + }, + { + "start": 3157.64, + "end": 3159.46, + "probability": 0.8694 + }, + { + "start": 3159.76, + "end": 3160.44, + "probability": 0.0096 + }, + { + "start": 3160.64, + "end": 3161.6, + "probability": 0.0916 + }, + { + "start": 3162.78, + "end": 3164.16, + "probability": 0.0594 + }, + { + "start": 3164.16, + "end": 3164.16, + "probability": 0.044 + }, + { + "start": 3164.16, + "end": 3164.16, + "probability": 0.2497 + }, + { + "start": 3164.16, + "end": 3164.16, + "probability": 0.0184 + }, + { + "start": 3164.16, + "end": 3164.44, + "probability": 0.3655 + }, + { + "start": 3165.1, + "end": 3171.74, + "probability": 0.5073 + }, + { + "start": 3172.18, + "end": 3174.26, + "probability": 0.9312 + }, + { + "start": 3174.26, + "end": 3177.94, + "probability": 0.9889 + }, + { + "start": 3178.08, + "end": 3179.2, + "probability": 0.7703 + }, + { + "start": 3179.96, + "end": 3181.08, + "probability": 0.6562 + }, + { + "start": 3181.44, + "end": 3182.35, + "probability": 0.2993 + }, + { + "start": 3182.6, + "end": 3182.88, + "probability": 0.7996 + }, + { + "start": 3182.96, + "end": 3184.16, + "probability": 0.6568 + }, + { + "start": 3184.24, + "end": 3184.58, + "probability": 0.9014 + }, + { + "start": 3184.66, + "end": 3186.77, + "probability": 0.9521 + }, + { + "start": 3187.28, + "end": 3188.8, + "probability": 0.7839 + }, + { + "start": 3188.92, + "end": 3190.84, + "probability": 0.958 + }, + { + "start": 3191.24, + "end": 3192.46, + "probability": 0.9115 + }, + { + "start": 3193.12, + "end": 3193.98, + "probability": 0.3092 + }, + { + "start": 3195.26, + "end": 3199.22, + "probability": 0.9084 + }, + { + "start": 3199.3, + "end": 3200.46, + "probability": 0.5424 + }, + { + "start": 3203.14, + "end": 3206.24, + "probability": 0.6367 + }, + { + "start": 3206.34, + "end": 3207.7, + "probability": 0.7693 + }, + { + "start": 3207.88, + "end": 3207.98, + "probability": 0.7422 + }, + { + "start": 3208.18, + "end": 3210.78, + "probability": 0.9707 + }, + { + "start": 3211.36, + "end": 3217.94, + "probability": 0.9902 + }, + { + "start": 3218.12, + "end": 3221.4, + "probability": 0.8505 + }, + { + "start": 3223.22, + "end": 3226.58, + "probability": 0.8691 + }, + { + "start": 3227.34, + "end": 3231.36, + "probability": 0.8319 + }, + { + "start": 3231.36, + "end": 3235.5, + "probability": 0.9882 + }, + { + "start": 3238.04, + "end": 3239.6, + "probability": 0.5056 + }, + { + "start": 3239.6, + "end": 3239.6, + "probability": 0.9268 + }, + { + "start": 3239.6, + "end": 3240.02, + "probability": 0.4167 + }, + { + "start": 3241.36, + "end": 3241.4, + "probability": 0.8467 + }, + { + "start": 3241.4, + "end": 3243.33, + "probability": 0.8801 + }, + { + "start": 3243.62, + "end": 3243.98, + "probability": 0.0896 + }, + { + "start": 3244.32, + "end": 3247.4, + "probability": 0.973 + }, + { + "start": 3247.56, + "end": 3247.68, + "probability": 0.9155 + }, + { + "start": 3247.68, + "end": 3248.04, + "probability": 0.8743 + }, + { + "start": 3248.46, + "end": 3250.9, + "probability": 0.6843 + }, + { + "start": 3250.98, + "end": 3254.64, + "probability": 0.7883 + }, + { + "start": 3254.68, + "end": 3255.91, + "probability": 0.6577 + }, + { + "start": 3256.26, + "end": 3257.74, + "probability": 0.7844 + }, + { + "start": 3257.82, + "end": 3258.42, + "probability": 0.933 + }, + { + "start": 3259.6, + "end": 3263.4, + "probability": 0.8958 + }, + { + "start": 3266.76, + "end": 3273.0, + "probability": 0.9154 + }, + { + "start": 3273.92, + "end": 3275.2, + "probability": 0.8358 + }, + { + "start": 3275.38, + "end": 3278.66, + "probability": 0.9714 + }, + { + "start": 3279.18, + "end": 3280.26, + "probability": 0.8302 + }, + { + "start": 3281.3, + "end": 3288.78, + "probability": 0.8722 + }, + { + "start": 3289.42, + "end": 3293.03, + "probability": 0.8062 + }, + { + "start": 3294.24, + "end": 3296.82, + "probability": 0.8997 + }, + { + "start": 3297.36, + "end": 3299.38, + "probability": 0.9165 + }, + { + "start": 3299.86, + "end": 3301.44, + "probability": 0.6642 + }, + { + "start": 3301.82, + "end": 3303.5, + "probability": 0.9626 + }, + { + "start": 3303.82, + "end": 3305.14, + "probability": 0.9819 + }, + { + "start": 3305.76, + "end": 3309.04, + "probability": 0.995 + }, + { + "start": 3309.96, + "end": 3312.64, + "probability": 0.8036 + }, + { + "start": 3314.24, + "end": 3317.64, + "probability": 0.6583 + }, + { + "start": 3318.24, + "end": 3319.94, + "probability": 0.7152 + }, + { + "start": 3320.04, + "end": 3320.62, + "probability": 0.0044 + }, + { + "start": 3321.14, + "end": 3325.66, + "probability": 0.6657 + }, + { + "start": 3326.48, + "end": 3332.9, + "probability": 0.9855 + }, + { + "start": 3333.88, + "end": 3336.58, + "probability": 0.939 + }, + { + "start": 3336.74, + "end": 3337.34, + "probability": 0.0894 + }, + { + "start": 3337.44, + "end": 3338.26, + "probability": 0.2389 + }, + { + "start": 3340.9, + "end": 3342.96, + "probability": 0.8452 + }, + { + "start": 3343.02, + "end": 3344.34, + "probability": 0.7365 + }, + { + "start": 3344.7, + "end": 3349.58, + "probability": 0.8783 + }, + { + "start": 3349.82, + "end": 3350.6, + "probability": 0.9177 + }, + { + "start": 3350.74, + "end": 3351.52, + "probability": 0.9662 + }, + { + "start": 3354.24, + "end": 3355.38, + "probability": 0.209 + }, + { + "start": 3355.38, + "end": 3357.42, + "probability": 0.401 + }, + { + "start": 3358.46, + "end": 3359.6, + "probability": 0.9298 + }, + { + "start": 3360.36, + "end": 3365.88, + "probability": 0.7517 + }, + { + "start": 3366.6, + "end": 3368.82, + "probability": 0.801 + }, + { + "start": 3369.6, + "end": 3370.02, + "probability": 0.2597 + }, + { + "start": 3370.72, + "end": 3372.24, + "probability": 0.966 + }, + { + "start": 3372.3, + "end": 3373.0, + "probability": 0.8784 + }, + { + "start": 3373.92, + "end": 3374.34, + "probability": 0.7984 + }, + { + "start": 3374.4, + "end": 3376.24, + "probability": 0.7805 + }, + { + "start": 3376.28, + "end": 3377.58, + "probability": 0.9436 + }, + { + "start": 3386.62, + "end": 3388.78, + "probability": 0.6343 + }, + { + "start": 3389.16, + "end": 3390.08, + "probability": 0.7405 + }, + { + "start": 3391.4, + "end": 3392.46, + "probability": 0.2522 + }, + { + "start": 3397.5, + "end": 3397.82, + "probability": 0.0708 + }, + { + "start": 3407.12, + "end": 3410.68, + "probability": 0.1593 + }, + { + "start": 3414.48, + "end": 3416.28, + "probability": 0.0505 + }, + { + "start": 3416.7, + "end": 3417.08, + "probability": 0.0544 + }, + { + "start": 3417.08, + "end": 3418.94, + "probability": 0.5969 + }, + { + "start": 3419.02, + "end": 3421.15, + "probability": 0.4851 + }, + { + "start": 3424.2, + "end": 3425.34, + "probability": 0.0643 + }, + { + "start": 3425.34, + "end": 3431.44, + "probability": 0.0684 + }, + { + "start": 3431.44, + "end": 3433.28, + "probability": 0.1572 + }, + { + "start": 3436.04, + "end": 3436.16, + "probability": 0.0879 + }, + { + "start": 3437.29, + "end": 3437.7, + "probability": 0.0072 + }, + { + "start": 3439.54, + "end": 3439.64, + "probability": 0.0 + }, + { + "start": 3442.22, + "end": 3444.08, + "probability": 0.07 + }, + { + "start": 3449.5, + "end": 3456.78, + "probability": 0.0976 + }, + { + "start": 3456.78, + "end": 3457.94, + "probability": 0.1411 + }, + { + "start": 3458.0, + "end": 3458.0, + "probability": 0.0 + }, + { + "start": 3458.0, + "end": 3458.0, + "probability": 0.0 + }, + { + "start": 3458.0, + "end": 3458.0, + "probability": 0.0 + }, + { + "start": 3458.0, + "end": 3458.0, + "probability": 0.0 + }, + { + "start": 3458.0, + "end": 3458.0, + "probability": 0.0 + }, + { + "start": 3458.0, + "end": 3458.0, + "probability": 0.0 + }, + { + "start": 3458.0, + "end": 3458.0, + "probability": 0.0 + }, + { + "start": 3458.0, + "end": 3458.0, + "probability": 0.0 + }, + { + "start": 3458.0, + "end": 3458.0, + "probability": 0.0 + }, + { + "start": 3458.0, + "end": 3458.0, + "probability": 0.0 + }, + { + "start": 3458.0, + "end": 3458.0, + "probability": 0.0 + }, + { + "start": 3458.0, + "end": 3458.0, + "probability": 0.0 + }, + { + "start": 3458.0, + "end": 3458.0, + "probability": 0.0 + }, + { + "start": 3458.0, + "end": 3458.0, + "probability": 0.0 + }, + { + "start": 3458.08, + "end": 3459.68, + "probability": 0.2605 + }, + { + "start": 3462.18, + "end": 3463.48, + "probability": 0.4944 + }, + { + "start": 3464.54, + "end": 3465.86, + "probability": 0.6933 + }, + { + "start": 3466.24, + "end": 3467.72, + "probability": 0.9553 + }, + { + "start": 3467.78, + "end": 3468.18, + "probability": 0.599 + }, + { + "start": 3468.56, + "end": 3469.37, + "probability": 0.9668 + }, + { + "start": 3469.86, + "end": 3470.16, + "probability": 0.4253 + }, + { + "start": 3470.2, + "end": 3471.18, + "probability": 0.9045 + }, + { + "start": 3472.24, + "end": 3473.48, + "probability": 0.9941 + }, + { + "start": 3474.26, + "end": 3476.1, + "probability": 0.9177 + }, + { + "start": 3477.8, + "end": 3478.64, + "probability": 0.9614 + }, + { + "start": 3478.78, + "end": 3479.0, + "probability": 0.3228 + }, + { + "start": 3480.02, + "end": 3480.6, + "probability": 0.6597 + }, + { + "start": 3482.45, + "end": 3484.46, + "probability": 0.8838 + }, + { + "start": 3485.28, + "end": 3486.36, + "probability": 0.8183 + }, + { + "start": 3487.46, + "end": 3489.66, + "probability": 0.9543 + }, + { + "start": 3490.34, + "end": 3492.42, + "probability": 0.8792 + }, + { + "start": 3494.06, + "end": 3494.5, + "probability": 0.9489 + }, + { + "start": 3494.52, + "end": 3494.68, + "probability": 0.8557 + }, + { + "start": 3494.78, + "end": 3495.4, + "probability": 0.9286 + }, + { + "start": 3495.5, + "end": 3498.28, + "probability": 0.9181 + }, + { + "start": 3498.44, + "end": 3499.3, + "probability": 0.8551 + }, + { + "start": 3500.2, + "end": 3501.76, + "probability": 0.9181 + }, + { + "start": 3502.76, + "end": 3503.78, + "probability": 0.8647 + }, + { + "start": 3504.18, + "end": 3507.08, + "probability": 0.923 + }, + { + "start": 3508.74, + "end": 3510.16, + "probability": 0.9331 + }, + { + "start": 3510.24, + "end": 3511.28, + "probability": 0.8646 + }, + { + "start": 3511.34, + "end": 3513.66, + "probability": 0.9351 + }, + { + "start": 3514.22, + "end": 3514.36, + "probability": 0.9652 + }, + { + "start": 3514.44, + "end": 3515.22, + "probability": 0.9243 + }, + { + "start": 3515.32, + "end": 3517.4, + "probability": 0.9353 + }, + { + "start": 3517.48, + "end": 3518.6, + "probability": 0.9015 + }, + { + "start": 3519.52, + "end": 3520.04, + "probability": 0.7547 + }, + { + "start": 3520.24, + "end": 3521.1, + "probability": 0.8689 + }, + { + "start": 3521.16, + "end": 3522.07, + "probability": 0.6086 + }, + { + "start": 3522.94, + "end": 3523.52, + "probability": 0.8723 + }, + { + "start": 3523.62, + "end": 3524.9, + "probability": 0.985 + }, + { + "start": 3524.98, + "end": 3528.42, + "probability": 0.996 + }, + { + "start": 3528.52, + "end": 3530.24, + "probability": 0.2774 + }, + { + "start": 3531.12, + "end": 3532.34, + "probability": 0.9551 + }, + { + "start": 3533.71, + "end": 3534.44, + "probability": 0.6993 + }, + { + "start": 3534.54, + "end": 3534.94, + "probability": 0.8434 + }, + { + "start": 3535.06, + "end": 3538.26, + "probability": 0.76 + }, + { + "start": 3538.26, + "end": 3540.96, + "probability": 0.9824 + }, + { + "start": 3541.12, + "end": 3546.52, + "probability": 0.9497 + }, + { + "start": 3547.22, + "end": 3549.6, + "probability": 0.868 + }, + { + "start": 3550.68, + "end": 3552.52, + "probability": 0.7971 + }, + { + "start": 3553.06, + "end": 3553.44, + "probability": 0.4246 + }, + { + "start": 3553.78, + "end": 3554.94, + "probability": 0.7473 + }, + { + "start": 3555.02, + "end": 3556.18, + "probability": 0.6411 + }, + { + "start": 3556.28, + "end": 3557.38, + "probability": 0.8931 + }, + { + "start": 3557.98, + "end": 3559.6, + "probability": 0.9908 + }, + { + "start": 3560.34, + "end": 3561.26, + "probability": 0.6327 + }, + { + "start": 3561.92, + "end": 3564.84, + "probability": 0.9202 + }, + { + "start": 3565.44, + "end": 3566.62, + "probability": 0.9487 + }, + { + "start": 3567.56, + "end": 3568.78, + "probability": 0.959 + }, + { + "start": 3569.72, + "end": 3573.4, + "probability": 0.9919 + }, + { + "start": 3574.14, + "end": 3577.94, + "probability": 0.9851 + }, + { + "start": 3578.92, + "end": 3582.32, + "probability": 0.6603 + }, + { + "start": 3582.52, + "end": 3584.08, + "probability": 0.0742 + }, + { + "start": 3584.16, + "end": 3584.82, + "probability": 0.0795 + }, + { + "start": 3585.68, + "end": 3586.28, + "probability": 0.4976 + }, + { + "start": 3586.4, + "end": 3589.1, + "probability": 0.0526 + }, + { + "start": 3589.58, + "end": 3590.76, + "probability": 0.4971 + }, + { + "start": 3591.02, + "end": 3592.88, + "probability": 0.7108 + }, + { + "start": 3594.34, + "end": 3596.32, + "probability": 0.5156 + }, + { + "start": 3596.32, + "end": 3598.48, + "probability": 0.717 + }, + { + "start": 3598.77, + "end": 3600.36, + "probability": 0.7344 + }, + { + "start": 3600.44, + "end": 3602.4, + "probability": 0.9951 + }, + { + "start": 3602.4, + "end": 3606.36, + "probability": 0.9762 + }, + { + "start": 3606.72, + "end": 3606.86, + "probability": 0.4343 + }, + { + "start": 3606.98, + "end": 3609.52, + "probability": 0.689 + }, + { + "start": 3612.15, + "end": 3615.3, + "probability": 0.8153 + }, + { + "start": 3615.8, + "end": 3616.1, + "probability": 0.6041 + }, + { + "start": 3616.16, + "end": 3618.56, + "probability": 0.8134 + }, + { + "start": 3619.76, + "end": 3620.64, + "probability": 0.1818 + }, + { + "start": 3620.98, + "end": 3622.04, + "probability": 0.8832 + }, + { + "start": 3622.5, + "end": 3623.04, + "probability": 0.9326 + }, + { + "start": 3623.66, + "end": 3627.44, + "probability": 0.8061 + }, + { + "start": 3628.18, + "end": 3629.62, + "probability": 0.9622 + }, + { + "start": 3630.56, + "end": 3632.16, + "probability": 0.9922 + }, + { + "start": 3632.48, + "end": 3632.82, + "probability": 0.2727 + }, + { + "start": 3632.9, + "end": 3633.63, + "probability": 0.9588 + }, + { + "start": 3634.1, + "end": 3636.32, + "probability": 0.9831 + }, + { + "start": 3636.32, + "end": 3639.7, + "probability": 0.9954 + }, + { + "start": 3639.84, + "end": 3640.51, + "probability": 0.8813 + }, + { + "start": 3640.78, + "end": 3642.06, + "probability": 0.9941 + }, + { + "start": 3642.62, + "end": 3643.96, + "probability": 0.9967 + }, + { + "start": 3644.58, + "end": 3648.04, + "probability": 0.9636 + }, + { + "start": 3648.14, + "end": 3648.86, + "probability": 0.6495 + }, + { + "start": 3649.6, + "end": 3652.56, + "probability": 0.9642 + }, + { + "start": 3653.46, + "end": 3656.4, + "probability": 0.9937 + }, + { + "start": 3657.02, + "end": 3658.6, + "probability": 0.9495 + }, + { + "start": 3659.72, + "end": 3663.64, + "probability": 0.9802 + }, + { + "start": 3664.48, + "end": 3665.76, + "probability": 0.9531 + }, + { + "start": 3666.06, + "end": 3668.24, + "probability": 0.9929 + }, + { + "start": 3668.36, + "end": 3669.52, + "probability": 0.8195 + }, + { + "start": 3669.6, + "end": 3671.42, + "probability": 0.6749 + }, + { + "start": 3671.8, + "end": 3674.2, + "probability": 0.952 + }, + { + "start": 3675.12, + "end": 3676.31, + "probability": 0.7259 + }, + { + "start": 3676.62, + "end": 3679.44, + "probability": 0.9494 + }, + { + "start": 3680.5, + "end": 3682.68, + "probability": 0.7388 + }, + { + "start": 3684.06, + "end": 3684.38, + "probability": 0.497 + }, + { + "start": 3685.75, + "end": 3687.98, + "probability": 0.7372 + }, + { + "start": 3688.34, + "end": 3688.58, + "probability": 0.8765 + }, + { + "start": 3688.66, + "end": 3688.82, + "probability": 0.7418 + }, + { + "start": 3688.86, + "end": 3689.58, + "probability": 0.9756 + }, + { + "start": 3690.46, + "end": 3691.74, + "probability": 0.8395 + }, + { + "start": 3691.78, + "end": 3692.56, + "probability": 0.9809 + }, + { + "start": 3692.58, + "end": 3693.12, + "probability": 0.6969 + }, + { + "start": 3693.2, + "end": 3693.4, + "probability": 0.9019 + }, + { + "start": 3693.56, + "end": 3693.86, + "probability": 0.444 + }, + { + "start": 3694.16, + "end": 3695.66, + "probability": 0.5541 + }, + { + "start": 3695.74, + "end": 3697.18, + "probability": 0.988 + }, + { + "start": 3697.22, + "end": 3698.42, + "probability": 0.907 + }, + { + "start": 3698.72, + "end": 3701.0, + "probability": 0.9521 + }, + { + "start": 3702.52, + "end": 3704.6, + "probability": 0.7753 + }, + { + "start": 3705.54, + "end": 3707.1, + "probability": 0.9639 + }, + { + "start": 3707.16, + "end": 3707.98, + "probability": 0.9326 + }, + { + "start": 3708.04, + "end": 3709.36, + "probability": 0.5471 + }, + { + "start": 3709.48, + "end": 3710.84, + "probability": 0.6798 + }, + { + "start": 3711.5, + "end": 3713.8, + "probability": 0.9542 + }, + { + "start": 3714.02, + "end": 3715.14, + "probability": 0.779 + }, + { + "start": 3715.54, + "end": 3719.4, + "probability": 0.9476 + }, + { + "start": 3719.82, + "end": 3720.18, + "probability": 0.7005 + }, + { + "start": 3720.34, + "end": 3720.8, + "probability": 0.8989 + }, + { + "start": 3720.92, + "end": 3722.82, + "probability": 0.9631 + }, + { + "start": 3722.92, + "end": 3723.1, + "probability": 0.7289 + }, + { + "start": 3723.16, + "end": 3723.92, + "probability": 0.7854 + }, + { + "start": 3724.0, + "end": 3724.32, + "probability": 0.8086 + }, + { + "start": 3724.38, + "end": 3725.96, + "probability": 0.9274 + }, + { + "start": 3725.98, + "end": 3726.81, + "probability": 0.9292 + }, + { + "start": 3728.58, + "end": 3729.44, + "probability": 0.9058 + }, + { + "start": 3731.32, + "end": 3733.08, + "probability": 0.8983 + }, + { + "start": 3733.08, + "end": 3734.24, + "probability": 0.8448 + }, + { + "start": 3734.58, + "end": 3734.58, + "probability": 0.001 + }, + { + "start": 3735.48, + "end": 3736.19, + "probability": 0.4869 + }, + { + "start": 3736.86, + "end": 3740.82, + "probability": 0.8208 + }, + { + "start": 3740.98, + "end": 3742.54, + "probability": 0.9933 + }, + { + "start": 3742.68, + "end": 3744.08, + "probability": 0.9943 + }, + { + "start": 3744.16, + "end": 3744.86, + "probability": 0.6758 + }, + { + "start": 3744.98, + "end": 3745.62, + "probability": 0.9132 + }, + { + "start": 3745.62, + "end": 3746.66, + "probability": 0.3919 + }, + { + "start": 3746.72, + "end": 3747.21, + "probability": 0.976 + }, + { + "start": 3747.88, + "end": 3750.84, + "probability": 0.999 + }, + { + "start": 3751.52, + "end": 3753.66, + "probability": 0.9856 + }, + { + "start": 3754.5, + "end": 3756.8, + "probability": 0.9695 + }, + { + "start": 3757.48, + "end": 3757.76, + "probability": 0.3683 + }, + { + "start": 3758.12, + "end": 3760.82, + "probability": 0.9781 + }, + { + "start": 3761.82, + "end": 3762.4, + "probability": 0.7267 + }, + { + "start": 3762.74, + "end": 3763.26, + "probability": 0.5285 + }, + { + "start": 3764.8, + "end": 3766.42, + "probability": 0.3842 + }, + { + "start": 3766.46, + "end": 3768.0, + "probability": 0.9667 + }, + { + "start": 3768.06, + "end": 3768.2, + "probability": 0.6701 + }, + { + "start": 3768.36, + "end": 3768.68, + "probability": 0.3824 + }, + { + "start": 3768.7, + "end": 3770.0, + "probability": 0.9126 + }, + { + "start": 3770.16, + "end": 3771.24, + "probability": 0.9255 + }, + { + "start": 3771.44, + "end": 3772.2, + "probability": 0.6701 + }, + { + "start": 3773.34, + "end": 3775.72, + "probability": 0.985 + }, + { + "start": 3775.76, + "end": 3778.06, + "probability": 0.9958 + }, + { + "start": 3778.14, + "end": 3778.74, + "probability": 0.6733 + }, + { + "start": 3779.12, + "end": 3779.46, + "probability": 0.8271 + }, + { + "start": 3779.56, + "end": 3780.5, + "probability": 0.9662 + }, + { + "start": 3780.66, + "end": 3783.74, + "probability": 0.9764 + }, + { + "start": 3784.28, + "end": 3785.36, + "probability": 0.8513 + }, + { + "start": 3785.8, + "end": 3786.38, + "probability": 0.9243 + }, + { + "start": 3786.78, + "end": 3787.64, + "probability": 0.9925 + }, + { + "start": 3788.46, + "end": 3789.42, + "probability": 0.735 + }, + { + "start": 3790.18, + "end": 3790.94, + "probability": 0.751 + }, + { + "start": 3791.92, + "end": 3793.46, + "probability": 0.9328 + }, + { + "start": 3794.12, + "end": 3794.78, + "probability": 0.6753 + }, + { + "start": 3794.86, + "end": 3795.7, + "probability": 0.9584 + }, + { + "start": 3795.8, + "end": 3798.96, + "probability": 0.9814 + }, + { + "start": 3800.14, + "end": 3801.28, + "probability": 0.9557 + }, + { + "start": 3801.4, + "end": 3802.18, + "probability": 0.808 + }, + { + "start": 3802.38, + "end": 3803.66, + "probability": 0.7984 + }, + { + "start": 3803.66, + "end": 3805.72, + "probability": 0.9829 + }, + { + "start": 3806.02, + "end": 3808.26, + "probability": 0.9441 + }, + { + "start": 3808.82, + "end": 3810.22, + "probability": 0.9934 + }, + { + "start": 3811.16, + "end": 3812.08, + "probability": 0.9521 + }, + { + "start": 3812.62, + "end": 3813.42, + "probability": 0.8374 + }, + { + "start": 3814.24, + "end": 3814.82, + "probability": 0.6383 + }, + { + "start": 3814.92, + "end": 3816.5, + "probability": 0.9554 + }, + { + "start": 3817.17, + "end": 3820.48, + "probability": 0.9072 + }, + { + "start": 3820.58, + "end": 3821.89, + "probability": 0.9834 + }, + { + "start": 3822.3, + "end": 3822.66, + "probability": 0.6149 + }, + { + "start": 3822.78, + "end": 3824.52, + "probability": 0.7667 + }, + { + "start": 3824.6, + "end": 3825.92, + "probability": 0.9959 + }, + { + "start": 3826.02, + "end": 3827.26, + "probability": 0.9966 + }, + { + "start": 3827.9, + "end": 3830.0, + "probability": 0.7417 + }, + { + "start": 3831.62, + "end": 3833.98, + "probability": 0.7466 + }, + { + "start": 3835.2, + "end": 3837.14, + "probability": 0.8038 + }, + { + "start": 3838.1, + "end": 3839.78, + "probability": 0.98 + }, + { + "start": 3839.88, + "end": 3840.13, + "probability": 0.5215 + }, + { + "start": 3841.3, + "end": 3841.88, + "probability": 0.4697 + }, + { + "start": 3841.98, + "end": 3842.2, + "probability": 0.7599 + }, + { + "start": 3842.26, + "end": 3842.7, + "probability": 0.7708 + }, + { + "start": 3842.74, + "end": 3843.92, + "probability": 0.9584 + }, + { + "start": 3844.08, + "end": 3846.18, + "probability": 0.9919 + }, + { + "start": 3847.4, + "end": 3849.18, + "probability": 0.9489 + }, + { + "start": 3849.98, + "end": 3851.19, + "probability": 0.9545 + }, + { + "start": 3851.44, + "end": 3852.37, + "probability": 0.9241 + }, + { + "start": 3852.62, + "end": 3855.28, + "probability": 0.8475 + }, + { + "start": 3856.0, + "end": 3859.54, + "probability": 0.9881 + }, + { + "start": 3859.6, + "end": 3860.09, + "probability": 0.9258 + }, + { + "start": 3860.92, + "end": 3866.48, + "probability": 0.991 + }, + { + "start": 3879.8, + "end": 3880.1, + "probability": 0.1011 + }, + { + "start": 3880.1, + "end": 3880.1, + "probability": 0.0633 + }, + { + "start": 3880.1, + "end": 3880.1, + "probability": 0.0363 + }, + { + "start": 3880.1, + "end": 3880.1, + "probability": 0.1623 + }, + { + "start": 3880.1, + "end": 3880.45, + "probability": 0.2038 + }, + { + "start": 3880.58, + "end": 3881.42, + "probability": 0.4347 + }, + { + "start": 3881.48, + "end": 3881.84, + "probability": 0.2176 + }, + { + "start": 3881.86, + "end": 3882.16, + "probability": 0.4885 + }, + { + "start": 3883.24, + "end": 3883.62, + "probability": 0.3673 + }, + { + "start": 3885.22, + "end": 3887.0, + "probability": 0.9375 + }, + { + "start": 3887.04, + "end": 3893.98, + "probability": 0.938 + }, + { + "start": 3894.44, + "end": 3895.88, + "probability": 0.7813 + }, + { + "start": 3896.84, + "end": 3897.44, + "probability": 0.8904 + }, + { + "start": 3897.56, + "end": 3900.7, + "probability": 0.9766 + }, + { + "start": 3902.1, + "end": 3902.42, + "probability": 0.8936 + }, + { + "start": 3902.48, + "end": 3904.24, + "probability": 0.7849 + }, + { + "start": 3904.8, + "end": 3910.08, + "probability": 0.9838 + }, + { + "start": 3910.36, + "end": 3910.74, + "probability": 0.3693 + }, + { + "start": 3910.88, + "end": 3910.98, + "probability": 0.5163 + }, + { + "start": 3911.14, + "end": 3911.76, + "probability": 0.6273 + }, + { + "start": 3913.0, + "end": 3919.08, + "probability": 0.9861 + }, + { + "start": 3919.08, + "end": 3923.68, + "probability": 0.9857 + }, + { + "start": 3924.36, + "end": 3927.64, + "probability": 0.8748 + }, + { + "start": 3928.6, + "end": 3929.32, + "probability": 0.1526 + }, + { + "start": 3929.62, + "end": 3934.24, + "probability": 0.1974 + }, + { + "start": 3934.56, + "end": 3935.98, + "probability": 0.6699 + }, + { + "start": 3936.44, + "end": 3937.86, + "probability": 0.9987 + }, + { + "start": 3938.44, + "end": 3939.54, + "probability": 0.6525 + }, + { + "start": 3939.62, + "end": 3941.96, + "probability": 0.9979 + }, + { + "start": 3942.38, + "end": 3942.92, + "probability": 0.9933 + }, + { + "start": 3943.48, + "end": 3945.4, + "probability": 0.208 + }, + { + "start": 3945.56, + "end": 3947.16, + "probability": 0.8129 + }, + { + "start": 3947.72, + "end": 3950.42, + "probability": 0.9832 + }, + { + "start": 3951.67, + "end": 3953.14, + "probability": 0.9966 + }, + { + "start": 3953.24, + "end": 3954.6, + "probability": 0.8965 + }, + { + "start": 3954.66, + "end": 3957.61, + "probability": 0.9142 + }, + { + "start": 3958.44, + "end": 3960.2, + "probability": 0.7357 + }, + { + "start": 3960.36, + "end": 3961.0, + "probability": 0.5929 + }, + { + "start": 3961.18, + "end": 3965.46, + "probability": 0.9476 + }, + { + "start": 3966.1, + "end": 3967.98, + "probability": 0.9977 + }, + { + "start": 3968.0, + "end": 3969.74, + "probability": 0.7617 + }, + { + "start": 3970.3, + "end": 3974.36, + "probability": 0.9834 + }, + { + "start": 3974.44, + "end": 3975.96, + "probability": 0.9945 + }, + { + "start": 3976.1, + "end": 3977.42, + "probability": 0.9569 + }, + { + "start": 3977.88, + "end": 3981.26, + "probability": 0.9754 + }, + { + "start": 3982.32, + "end": 3982.94, + "probability": 0.9502 + }, + { + "start": 3982.94, + "end": 3984.36, + "probability": 0.9852 + }, + { + "start": 3984.36, + "end": 3986.1, + "probability": 0.5975 + }, + { + "start": 3986.52, + "end": 3986.52, + "probability": 0.007 + }, + { + "start": 3986.52, + "end": 3986.76, + "probability": 0.6082 + }, + { + "start": 3986.92, + "end": 3987.08, + "probability": 0.4084 + }, + { + "start": 3987.16, + "end": 3988.2, + "probability": 0.9795 + }, + { + "start": 3988.24, + "end": 3989.36, + "probability": 0.9388 + }, + { + "start": 3990.02, + "end": 3993.48, + "probability": 0.9453 + }, + { + "start": 3994.26, + "end": 3997.84, + "probability": 0.9622 + }, + { + "start": 3998.52, + "end": 4001.78, + "probability": 0.9895 + }, + { + "start": 4001.86, + "end": 4004.3, + "probability": 0.9977 + }, + { + "start": 4004.66, + "end": 4006.66, + "probability": 0.992 + }, + { + "start": 4006.66, + "end": 4008.7, + "probability": 0.9341 + }, + { + "start": 4009.18, + "end": 4010.36, + "probability": 0.6201 + }, + { + "start": 4010.58, + "end": 4012.4, + "probability": 0.1521 + }, + { + "start": 4012.46, + "end": 4012.88, + "probability": 0.4117 + }, + { + "start": 4013.0, + "end": 4013.86, + "probability": 0.8693 + }, + { + "start": 4013.9, + "end": 4014.54, + "probability": 0.6282 + }, + { + "start": 4015.48, + "end": 4017.44, + "probability": 0.9164 + }, + { + "start": 4018.22, + "end": 4019.18, + "probability": 0.4962 + }, + { + "start": 4020.0, + "end": 4022.54, + "probability": 0.7694 + }, + { + "start": 4022.58, + "end": 4023.0, + "probability": 0.8682 + }, + { + "start": 4023.1, + "end": 4024.5, + "probability": 0.9299 + }, + { + "start": 4024.58, + "end": 4027.46, + "probability": 0.9961 + }, + { + "start": 4028.02, + "end": 4029.38, + "probability": 0.9976 + }, + { + "start": 4029.44, + "end": 4030.04, + "probability": 0.9281 + }, + { + "start": 4030.1, + "end": 4030.46, + "probability": 0.769 + }, + { + "start": 4030.52, + "end": 4031.34, + "probability": 0.8538 + }, + { + "start": 4031.8, + "end": 4033.38, + "probability": 0.7371 + }, + { + "start": 4033.94, + "end": 4035.96, + "probability": 0.9985 + }, + { + "start": 4036.74, + "end": 4037.1, + "probability": 0.3247 + }, + { + "start": 4038.22, + "end": 4039.74, + "probability": 0.5659 + }, + { + "start": 4039.82, + "end": 4043.46, + "probability": 0.9669 + }, + { + "start": 4043.54, + "end": 4044.66, + "probability": 0.7944 + }, + { + "start": 4044.7, + "end": 4047.5, + "probability": 0.8462 + }, + { + "start": 4048.14, + "end": 4050.5, + "probability": 0.2627 + }, + { + "start": 4051.44, + "end": 4052.16, + "probability": 0.1816 + }, + { + "start": 4052.16, + "end": 4052.16, + "probability": 0.4517 + }, + { + "start": 4052.16, + "end": 4053.38, + "probability": 0.9811 + }, + { + "start": 4053.46, + "end": 4054.02, + "probability": 0.7851 + }, + { + "start": 4054.7, + "end": 4059.04, + "probability": 0.9725 + }, + { + "start": 4059.42, + "end": 4061.74, + "probability": 0.9476 + }, + { + "start": 4062.42, + "end": 4064.82, + "probability": 0.9282 + }, + { + "start": 4065.14, + "end": 4066.08, + "probability": 0.8864 + }, + { + "start": 4066.58, + "end": 4069.66, + "probability": 0.9015 + }, + { + "start": 4069.72, + "end": 4071.62, + "probability": 0.9471 + }, + { + "start": 4072.44, + "end": 4074.08, + "probability": 0.4341 + }, + { + "start": 4074.2, + "end": 4079.16, + "probability": 0.8748 + }, + { + "start": 4079.34, + "end": 4079.84, + "probability": 0.6796 + }, + { + "start": 4080.58, + "end": 4081.9, + "probability": 0.6761 + }, + { + "start": 4084.02, + "end": 4085.88, + "probability": 0.1963 + }, + { + "start": 4086.14, + "end": 4087.62, + "probability": 0.688 + }, + { + "start": 4087.78, + "end": 4088.38, + "probability": 0.1871 + }, + { + "start": 4088.38, + "end": 4090.42, + "probability": 0.2934 + }, + { + "start": 4090.52, + "end": 4091.36, + "probability": 0.2191 + }, + { + "start": 4091.7, + "end": 4092.68, + "probability": 0.5872 + }, + { + "start": 4092.8, + "end": 4094.62, + "probability": 0.8665 + }, + { + "start": 4094.64, + "end": 4097.6, + "probability": 0.8199 + }, + { + "start": 4097.68, + "end": 4098.18, + "probability": 0.6804 + }, + { + "start": 4098.68, + "end": 4099.3, + "probability": 0.9717 + }, + { + "start": 4099.42, + "end": 4101.74, + "probability": 0.573 + }, + { + "start": 4102.28, + "end": 4103.6, + "probability": 0.9927 + }, + { + "start": 4103.66, + "end": 4105.32, + "probability": 0.603 + }, + { + "start": 4105.46, + "end": 4105.92, + "probability": 0.9567 + }, + { + "start": 4105.98, + "end": 4107.13, + "probability": 0.8332 + }, + { + "start": 4107.74, + "end": 4108.37, + "probability": 0.3231 + }, + { + "start": 4108.58, + "end": 4109.29, + "probability": 0.0316 + }, + { + "start": 4109.46, + "end": 4109.92, + "probability": 0.4971 + }, + { + "start": 4110.02, + "end": 4116.36, + "probability": 0.9819 + }, + { + "start": 4116.44, + "end": 4118.14, + "probability": 0.9961 + }, + { + "start": 4118.98, + "end": 4122.5, + "probability": 0.9809 + }, + { + "start": 4123.52, + "end": 4126.14, + "probability": 0.9956 + }, + { + "start": 4126.14, + "end": 4128.62, + "probability": 0.9868 + }, + { + "start": 4129.42, + "end": 4132.34, + "probability": 0.821 + }, + { + "start": 4133.3, + "end": 4134.64, + "probability": 0.9868 + }, + { + "start": 4134.66, + "end": 4137.42, + "probability": 0.7003 + }, + { + "start": 4137.6, + "end": 4140.48, + "probability": 0.5633 + }, + { + "start": 4140.78, + "end": 4140.78, + "probability": 0.1994 + }, + { + "start": 4140.78, + "end": 4141.38, + "probability": 0.0508 + }, + { + "start": 4141.54, + "end": 4142.28, + "probability": 0.559 + }, + { + "start": 4142.4, + "end": 4142.5, + "probability": 0.3201 + }, + { + "start": 4142.52, + "end": 4144.34, + "probability": 0.7485 + }, + { + "start": 4144.44, + "end": 4145.0, + "probability": 0.7799 + }, + { + "start": 4145.28, + "end": 4146.16, + "probability": 0.7747 + }, + { + "start": 4146.76, + "end": 4146.96, + "probability": 0.6187 + }, + { + "start": 4147.34, + "end": 4148.32, + "probability": 0.7886 + }, + { + "start": 4148.34, + "end": 4149.14, + "probability": 0.4924 + }, + { + "start": 4149.76, + "end": 4152.16, + "probability": 0.8961 + }, + { + "start": 4153.02, + "end": 4155.4, + "probability": 0.9827 + }, + { + "start": 4155.82, + "end": 4160.2, + "probability": 0.809 + }, + { + "start": 4160.2, + "end": 4162.58, + "probability": 0.4753 + }, + { + "start": 4162.58, + "end": 4163.46, + "probability": 0.7864 + }, + { + "start": 4163.64, + "end": 4169.74, + "probability": 0.9485 + }, + { + "start": 4169.82, + "end": 4170.24, + "probability": 0.7119 + }, + { + "start": 4170.34, + "end": 4171.52, + "probability": 0.8966 + }, + { + "start": 4172.78, + "end": 4173.12, + "probability": 0.4321 + }, + { + "start": 4173.12, + "end": 4174.64, + "probability": 0.7373 + }, + { + "start": 4174.72, + "end": 4176.3, + "probability": 0.8906 + }, + { + "start": 4182.86, + "end": 4183.52, + "probability": 0.522 + }, + { + "start": 4183.62, + "end": 4183.86, + "probability": 0.6938 + }, + { + "start": 4196.66, + "end": 4198.26, + "probability": 0.8554 + }, + { + "start": 4199.12, + "end": 4201.06, + "probability": 0.9758 + }, + { + "start": 4201.06, + "end": 4201.34, + "probability": 0.6893 + }, + { + "start": 4201.46, + "end": 4202.34, + "probability": 0.9656 + }, + { + "start": 4202.5, + "end": 4204.88, + "probability": 0.9213 + }, + { + "start": 4205.54, + "end": 4206.94, + "probability": 0.9277 + }, + { + "start": 4207.74, + "end": 4208.94, + "probability": 0.9012 + }, + { + "start": 4209.74, + "end": 4211.98, + "probability": 0.6845 + }, + { + "start": 4213.56, + "end": 4215.52, + "probability": 0.8368 + }, + { + "start": 4215.96, + "end": 4216.7, + "probability": 0.7493 + }, + { + "start": 4216.9, + "end": 4217.1, + "probability": 0.368 + }, + { + "start": 4217.2, + "end": 4220.0, + "probability": 0.8956 + }, + { + "start": 4220.68, + "end": 4223.98, + "probability": 0.903 + }, + { + "start": 4224.52, + "end": 4225.2, + "probability": 0.9795 + }, + { + "start": 4226.28, + "end": 4227.9, + "probability": 0.6644 + }, + { + "start": 4228.04, + "end": 4230.72, + "probability": 0.9948 + }, + { + "start": 4231.5, + "end": 4232.78, + "probability": 0.9961 + }, + { + "start": 4232.84, + "end": 4234.94, + "probability": 0.9671 + }, + { + "start": 4235.66, + "end": 4235.98, + "probability": 0.8664 + }, + { + "start": 4236.58, + "end": 4237.68, + "probability": 0.9309 + }, + { + "start": 4239.46, + "end": 4242.31, + "probability": 0.9638 + }, + { + "start": 4242.94, + "end": 4243.88, + "probability": 0.8424 + }, + { + "start": 4244.4, + "end": 4246.62, + "probability": 0.9777 + }, + { + "start": 4246.62, + "end": 4251.24, + "probability": 0.9813 + }, + { + "start": 4251.26, + "end": 4253.24, + "probability": 0.9932 + }, + { + "start": 4254.38, + "end": 4255.28, + "probability": 0.6312 + }, + { + "start": 4255.92, + "end": 4260.74, + "probability": 0.9751 + }, + { + "start": 4261.04, + "end": 4261.98, + "probability": 0.6837 + }, + { + "start": 4262.24, + "end": 4265.12, + "probability": 0.9814 + }, + { + "start": 4265.12, + "end": 4267.96, + "probability": 0.9906 + }, + { + "start": 4268.68, + "end": 4272.4, + "probability": 0.9923 + }, + { + "start": 4272.94, + "end": 4275.66, + "probability": 0.9716 + }, + { + "start": 4276.2, + "end": 4279.86, + "probability": 0.9658 + }, + { + "start": 4280.54, + "end": 4285.06, + "probability": 0.981 + }, + { + "start": 4285.06, + "end": 4289.2, + "probability": 0.9986 + }, + { + "start": 4289.68, + "end": 4290.69, + "probability": 0.8794 + }, + { + "start": 4291.38, + "end": 4295.22, + "probability": 0.657 + }, + { + "start": 4295.78, + "end": 4297.26, + "probability": 0.6334 + }, + { + "start": 4298.04, + "end": 4299.56, + "probability": 0.7906 + }, + { + "start": 4300.2, + "end": 4304.16, + "probability": 0.9655 + }, + { + "start": 4304.9, + "end": 4305.76, + "probability": 0.7601 + }, + { + "start": 4305.84, + "end": 4309.32, + "probability": 0.9728 + }, + { + "start": 4310.38, + "end": 4315.68, + "probability": 0.9584 + }, + { + "start": 4316.96, + "end": 4318.02, + "probability": 0.7678 + }, + { + "start": 4318.08, + "end": 4319.32, + "probability": 0.9939 + }, + { + "start": 4321.27, + "end": 4322.46, + "probability": 0.7017 + }, + { + "start": 4323.12, + "end": 4323.94, + "probability": 0.1211 + }, + { + "start": 4325.84, + "end": 4328.62, + "probability": 0.9873 + }, + { + "start": 4329.84, + "end": 4332.9, + "probability": 0.9901 + }, + { + "start": 4333.62, + "end": 4333.76, + "probability": 0.9404 + }, + { + "start": 4335.3, + "end": 4337.01, + "probability": 0.9904 + }, + { + "start": 4337.3, + "end": 4339.66, + "probability": 0.9873 + }, + { + "start": 4341.14, + "end": 4341.72, + "probability": 0.8205 + }, + { + "start": 4342.54, + "end": 4344.62, + "probability": 0.9951 + }, + { + "start": 4344.62, + "end": 4348.52, + "probability": 0.9939 + }, + { + "start": 4348.98, + "end": 4349.0, + "probability": 0.4355 + }, + { + "start": 4349.08, + "end": 4354.14, + "probability": 0.9946 + }, + { + "start": 4355.02, + "end": 4356.96, + "probability": 0.9926 + }, + { + "start": 4357.4, + "end": 4360.0, + "probability": 0.9941 + }, + { + "start": 4360.0, + "end": 4362.3, + "probability": 0.7532 + }, + { + "start": 4363.06, + "end": 4364.74, + "probability": 0.9281 + }, + { + "start": 4365.35, + "end": 4368.6, + "probability": 0.9775 + }, + { + "start": 4368.6, + "end": 4371.8, + "probability": 0.995 + }, + { + "start": 4371.84, + "end": 4374.22, + "probability": 0.8524 + }, + { + "start": 4374.82, + "end": 4376.36, + "probability": 0.982 + }, + { + "start": 4377.0, + "end": 4378.62, + "probability": 0.9948 + }, + { + "start": 4378.9, + "end": 4383.18, + "probability": 0.9823 + }, + { + "start": 4384.86, + "end": 4385.38, + "probability": 0.4488 + }, + { + "start": 4385.5, + "end": 4387.04, + "probability": 0.9041 + }, + { + "start": 4387.1, + "end": 4387.58, + "probability": 0.6827 + }, + { + "start": 4387.66, + "end": 4392.42, + "probability": 0.989 + }, + { + "start": 4392.82, + "end": 4396.22, + "probability": 0.9865 + }, + { + "start": 4396.58, + "end": 4401.08, + "probability": 0.9856 + }, + { + "start": 4401.6, + "end": 4404.14, + "probability": 0.8223 + }, + { + "start": 4404.4, + "end": 4405.12, + "probability": 0.9241 + }, + { + "start": 4405.22, + "end": 4408.46, + "probability": 0.9933 + }, + { + "start": 4408.88, + "end": 4411.86, + "probability": 0.9662 + }, + { + "start": 4411.86, + "end": 4414.74, + "probability": 0.9048 + }, + { + "start": 4414.92, + "end": 4415.78, + "probability": 0.5159 + }, + { + "start": 4415.78, + "end": 4415.78, + "probability": 0.5649 + }, + { + "start": 4416.1, + "end": 4429.2, + "probability": 0.627 + }, + { + "start": 4438.4, + "end": 4439.16, + "probability": 0.5102 + }, + { + "start": 4439.18, + "end": 4439.58, + "probability": 0.8896 + }, + { + "start": 4449.56, + "end": 4454.12, + "probability": 0.7759 + }, + { + "start": 4454.26, + "end": 4456.76, + "probability": 0.8635 + }, + { + "start": 4457.52, + "end": 4458.9, + "probability": 0.9248 + }, + { + "start": 4459.96, + "end": 4464.62, + "probability": 0.8904 + }, + { + "start": 4465.56, + "end": 4470.56, + "probability": 0.9904 + }, + { + "start": 4471.46, + "end": 4471.66, + "probability": 0.4404 + }, + { + "start": 4471.74, + "end": 4472.02, + "probability": 0.7829 + }, + { + "start": 4472.14, + "end": 4473.9, + "probability": 0.5246 + }, + { + "start": 4473.92, + "end": 4475.4, + "probability": 0.7782 + }, + { + "start": 4475.84, + "end": 4477.1, + "probability": 0.9485 + }, + { + "start": 4478.06, + "end": 4484.14, + "probability": 0.9663 + }, + { + "start": 4484.34, + "end": 4484.88, + "probability": 0.8791 + }, + { + "start": 4485.38, + "end": 4487.16, + "probability": 0.9072 + }, + { + "start": 4488.4, + "end": 4488.7, + "probability": 0.9506 + }, + { + "start": 4488.84, + "end": 4490.9, + "probability": 0.9727 + }, + { + "start": 4491.68, + "end": 4494.07, + "probability": 0.9868 + }, + { + "start": 4494.9, + "end": 4496.36, + "probability": 0.8196 + }, + { + "start": 4498.04, + "end": 4500.48, + "probability": 0.9701 + }, + { + "start": 4500.76, + "end": 4500.98, + "probability": 0.7094 + }, + { + "start": 4501.1, + "end": 4502.18, + "probability": 0.9753 + }, + { + "start": 4502.9, + "end": 4505.14, + "probability": 0.9751 + }, + { + "start": 4505.74, + "end": 4507.62, + "probability": 0.9801 + }, + { + "start": 4508.54, + "end": 4512.12, + "probability": 0.9963 + }, + { + "start": 4512.2, + "end": 4513.02, + "probability": 0.9097 + }, + { + "start": 4513.48, + "end": 4515.3, + "probability": 0.9956 + }, + { + "start": 4516.38, + "end": 4519.14, + "probability": 0.8467 + }, + { + "start": 4519.92, + "end": 4521.24, + "probability": 0.9617 + }, + { + "start": 4522.5, + "end": 4525.52, + "probability": 0.561 + }, + { + "start": 4526.8, + "end": 4530.22, + "probability": 0.9617 + }, + { + "start": 4530.88, + "end": 4534.88, + "probability": 0.7305 + }, + { + "start": 4535.08, + "end": 4536.14, + "probability": 0.496 + }, + { + "start": 4536.66, + "end": 4539.74, + "probability": 0.8704 + }, + { + "start": 4539.9, + "end": 4540.55, + "probability": 0.2478 + }, + { + "start": 4541.6, + "end": 4545.26, + "probability": 0.5696 + }, + { + "start": 4546.14, + "end": 4546.34, + "probability": 0.1807 + }, + { + "start": 4546.34, + "end": 4547.24, + "probability": 0.7228 + }, + { + "start": 4547.94, + "end": 4548.74, + "probability": 0.9606 + }, + { + "start": 4549.34, + "end": 4550.51, + "probability": 0.96 + }, + { + "start": 4550.68, + "end": 4551.43, + "probability": 0.0299 + }, + { + "start": 4552.0, + "end": 4552.8, + "probability": 0.8976 + }, + { + "start": 4552.8, + "end": 4554.21, + "probability": 0.9731 + }, + { + "start": 4555.18, + "end": 4557.52, + "probability": 0.8054 + }, + { + "start": 4557.6, + "end": 4563.28, + "probability": 0.969 + }, + { + "start": 4564.46, + "end": 4565.38, + "probability": 0.9966 + }, + { + "start": 4566.1, + "end": 4568.26, + "probability": 0.9944 + }, + { + "start": 4568.86, + "end": 4572.04, + "probability": 0.9514 + }, + { + "start": 4572.22, + "end": 4574.1, + "probability": 0.927 + }, + { + "start": 4574.5, + "end": 4581.34, + "probability": 0.9885 + }, + { + "start": 4581.94, + "end": 4584.64, + "probability": 0.9607 + }, + { + "start": 4585.24, + "end": 4586.44, + "probability": 0.9796 + }, + { + "start": 4587.28, + "end": 4589.94, + "probability": 0.8472 + }, + { + "start": 4590.54, + "end": 4595.46, + "probability": 0.8279 + }, + { + "start": 4596.02, + "end": 4600.0, + "probability": 0.9824 + }, + { + "start": 4601.22, + "end": 4607.46, + "probability": 0.9946 + }, + { + "start": 4608.66, + "end": 4610.9, + "probability": 0.9176 + }, + { + "start": 4611.62, + "end": 4614.28, + "probability": 0.9989 + }, + { + "start": 4614.8, + "end": 4619.1, + "probability": 0.9946 + }, + { + "start": 4619.8, + "end": 4626.86, + "probability": 0.9897 + }, + { + "start": 4627.7, + "end": 4628.7, + "probability": 0.5141 + }, + { + "start": 4629.22, + "end": 4632.98, + "probability": 0.9727 + }, + { + "start": 4633.54, + "end": 4635.68, + "probability": 0.8793 + }, + { + "start": 4636.36, + "end": 4639.78, + "probability": 0.9989 + }, + { + "start": 4640.28, + "end": 4641.24, + "probability": 0.7101 + }, + { + "start": 4641.3, + "end": 4644.12, + "probability": 0.9878 + }, + { + "start": 4644.84, + "end": 4649.46, + "probability": 0.9789 + }, + { + "start": 4649.84, + "end": 4652.72, + "probability": 0.9825 + }, + { + "start": 4653.16, + "end": 4653.78, + "probability": 0.5728 + }, + { + "start": 4653.78, + "end": 4654.12, + "probability": 0.3162 + }, + { + "start": 4654.26, + "end": 4654.58, + "probability": 0.4551 + }, + { + "start": 4654.7, + "end": 4656.09, + "probability": 0.7388 + }, + { + "start": 4656.82, + "end": 4656.86, + "probability": 0.0318 + }, + { + "start": 4656.86, + "end": 4658.88, + "probability": 0.9298 + }, + { + "start": 4658.9, + "end": 4660.7, + "probability": 0.7231 + }, + { + "start": 4660.82, + "end": 4663.73, + "probability": 0.9602 + }, + { + "start": 4664.18, + "end": 4666.94, + "probability": 0.9508 + }, + { + "start": 4667.02, + "end": 4668.62, + "probability": 0.8811 + }, + { + "start": 4668.86, + "end": 4670.18, + "probability": 0.9442 + }, + { + "start": 4670.26, + "end": 4675.3, + "probability": 0.9157 + }, + { + "start": 4675.68, + "end": 4676.7, + "probability": 0.8753 + }, + { + "start": 4677.32, + "end": 4680.74, + "probability": 0.9874 + }, + { + "start": 4680.8, + "end": 4683.38, + "probability": 0.9877 + }, + { + "start": 4683.46, + "end": 4683.92, + "probability": 0.7346 + }, + { + "start": 4684.08, + "end": 4685.0, + "probability": 0.6921 + }, + { + "start": 4685.1, + "end": 4686.22, + "probability": 0.9523 + }, + { + "start": 4686.26, + "end": 4687.63, + "probability": 0.9739 + }, + { + "start": 4688.62, + "end": 4689.26, + "probability": 0.0423 + }, + { + "start": 4689.26, + "end": 4689.66, + "probability": 0.4501 + }, + { + "start": 4689.78, + "end": 4690.4, + "probability": 0.5899 + }, + { + "start": 4690.44, + "end": 4690.9, + "probability": 0.6794 + }, + { + "start": 4691.14, + "end": 4691.6, + "probability": 0.5545 + }, + { + "start": 4692.84, + "end": 4696.04, + "probability": 0.0138 + }, + { + "start": 4696.08, + "end": 4696.08, + "probability": 0.1337 + }, + { + "start": 4696.18, + "end": 4697.8, + "probability": 0.1028 + }, + { + "start": 4699.76, + "end": 4701.52, + "probability": 0.0492 + }, + { + "start": 4701.54, + "end": 4702.46, + "probability": 0.1911 + }, + { + "start": 4702.52, + "end": 4702.92, + "probability": 0.0986 + }, + { + "start": 4703.66, + "end": 4705.64, + "probability": 0.4213 + }, + { + "start": 4705.64, + "end": 4705.98, + "probability": 0.1019 + }, + { + "start": 4706.08, + "end": 4706.08, + "probability": 0.1545 + }, + { + "start": 4706.18, + "end": 4706.36, + "probability": 0.0749 + }, + { + "start": 4706.36, + "end": 4706.86, + "probability": 0.1563 + }, + { + "start": 4706.88, + "end": 4708.42, + "probability": 0.2706 + }, + { + "start": 4708.48, + "end": 4709.84, + "probability": 0.0255 + }, + { + "start": 4711.02, + "end": 4712.14, + "probability": 0.395 + }, + { + "start": 4712.28, + "end": 4712.34, + "probability": 0.5372 + }, + { + "start": 4712.34, + "end": 4713.22, + "probability": 0.1242 + }, + { + "start": 4713.7, + "end": 4715.12, + "probability": 0.3766 + }, + { + "start": 4715.12, + "end": 4717.06, + "probability": 0.5163 + }, + { + "start": 4719.79, + "end": 4721.4, + "probability": 0.5503 + }, + { + "start": 4721.4, + "end": 4722.86, + "probability": 0.0357 + }, + { + "start": 4726.14, + "end": 4727.08, + "probability": 0.2609 + }, + { + "start": 4729.44, + "end": 4730.64, + "probability": 0.1922 + }, + { + "start": 4732.91, + "end": 4737.66, + "probability": 0.3019 + }, + { + "start": 4737.66, + "end": 4738.18, + "probability": 0.0149 + }, + { + "start": 4738.44, + "end": 4740.48, + "probability": 0.0789 + }, + { + "start": 4742.79, + "end": 4743.64, + "probability": 0.3465 + }, + { + "start": 4744.34, + "end": 4746.78, + "probability": 0.0559 + }, + { + "start": 4747.4, + "end": 4747.92, + "probability": 0.0352 + }, + { + "start": 4748.42, + "end": 4751.34, + "probability": 0.0738 + }, + { + "start": 4752.34, + "end": 4753.98, + "probability": 0.0869 + }, + { + "start": 4753.98, + "end": 4754.56, + "probability": 0.2777 + }, + { + "start": 4754.56, + "end": 4754.74, + "probability": 0.0341 + }, + { + "start": 4756.14, + "end": 4756.74, + "probability": 0.145 + }, + { + "start": 4756.74, + "end": 4757.28, + "probability": 0.166 + }, + { + "start": 4757.34, + "end": 4758.86, + "probability": 0.1291 + }, + { + "start": 4759.16, + "end": 4759.16, + "probability": 0.0085 + }, + { + "start": 4759.16, + "end": 4759.26, + "probability": 0.3393 + }, + { + "start": 4759.26, + "end": 4759.26, + "probability": 0.2123 + }, + { + "start": 4759.26, + "end": 4759.38, + "probability": 0.5674 + }, + { + "start": 4759.59, + "end": 4759.86, + "probability": 0.121 + }, + { + "start": 4759.86, + "end": 4759.98, + "probability": 0.0874 + }, + { + "start": 4760.0, + "end": 4760.0, + "probability": 0.0 + }, + { + "start": 4760.0, + "end": 4760.0, + "probability": 0.0 + }, + { + "start": 4760.0, + "end": 4760.0, + "probability": 0.0 + }, + { + "start": 4760.0, + "end": 4760.0, + "probability": 0.0 + }, + { + "start": 4760.0, + "end": 4760.0, + "probability": 0.0 + }, + { + "start": 4760.0, + "end": 4760.0, + "probability": 0.0 + }, + { + "start": 4760.0, + "end": 4760.0, + "probability": 0.0 + }, + { + "start": 4760.0, + "end": 4760.0, + "probability": 0.0 + }, + { + "start": 4760.0, + "end": 4760.0, + "probability": 0.0 + }, + { + "start": 4760.0, + "end": 4760.0, + "probability": 0.0 + }, + { + "start": 4760.0, + "end": 4760.0, + "probability": 0.0 + }, + { + "start": 4760.0, + "end": 4760.0, + "probability": 0.0 + }, + { + "start": 4760.0, + "end": 4760.0, + "probability": 0.0 + }, + { + "start": 4760.08, + "end": 4761.58, + "probability": 0.0285 + }, + { + "start": 4761.58, + "end": 4762.14, + "probability": 0.4511 + }, + { + "start": 4762.7, + "end": 4764.62, + "probability": 0.4244 + }, + { + "start": 4765.55, + "end": 4766.56, + "probability": 0.3717 + }, + { + "start": 4766.58, + "end": 4766.58, + "probability": 0.2533 + }, + { + "start": 4766.58, + "end": 4766.58, + "probability": 0.4317 + }, + { + "start": 4766.58, + "end": 4768.0, + "probability": 0.6829 + }, + { + "start": 4768.24, + "end": 4771.14, + "probability": 0.732 + }, + { + "start": 4771.26, + "end": 4771.26, + "probability": 0.0266 + }, + { + "start": 4771.26, + "end": 4773.22, + "probability": 0.3076 + }, + { + "start": 4773.36, + "end": 4774.56, + "probability": 0.8561 + }, + { + "start": 4774.98, + "end": 4776.56, + "probability": 0.5224 + }, + { + "start": 4777.26, + "end": 4777.56, + "probability": 0.1457 + }, + { + "start": 4777.56, + "end": 4778.34, + "probability": 0.5799 + }, + { + "start": 4778.7, + "end": 4780.44, + "probability": 0.3147 + }, + { + "start": 4780.44, + "end": 4780.46, + "probability": 0.28 + }, + { + "start": 4780.46, + "end": 4783.86, + "probability": 0.592 + }, + { + "start": 4783.9, + "end": 4784.8, + "probability": 0.8546 + }, + { + "start": 4785.52, + "end": 4786.08, + "probability": 0.7092 + }, + { + "start": 4786.68, + "end": 4786.68, + "probability": 0.2733 + }, + { + "start": 4786.68, + "end": 4787.46, + "probability": 0.1608 + }, + { + "start": 4787.68, + "end": 4788.7, + "probability": 0.0718 + }, + { + "start": 4789.32, + "end": 4790.32, + "probability": 0.862 + }, + { + "start": 4794.1, + "end": 4795.38, + "probability": 0.6616 + }, + { + "start": 4795.56, + "end": 4797.32, + "probability": 0.4551 + }, + { + "start": 4798.06, + "end": 4799.96, + "probability": 0.887 + }, + { + "start": 4800.66, + "end": 4801.88, + "probability": 0.7247 + }, + { + "start": 4802.0, + "end": 4803.61, + "probability": 0.9094 + }, + { + "start": 4804.32, + "end": 4804.4, + "probability": 0.2714 + }, + { + "start": 4804.54, + "end": 4805.48, + "probability": 0.7394 + }, + { + "start": 4805.64, + "end": 4807.68, + "probability": 0.8796 + }, + { + "start": 4808.72, + "end": 4808.82, + "probability": 0.1729 + }, + { + "start": 4808.96, + "end": 4810.72, + "probability": 0.9384 + }, + { + "start": 4811.18, + "end": 4812.51, + "probability": 0.5238 + }, + { + "start": 4813.18, + "end": 4814.42, + "probability": 0.8166 + }, + { + "start": 4815.0, + "end": 4816.69, + "probability": 0.9907 + }, + { + "start": 4816.86, + "end": 4819.3, + "probability": 0.9851 + }, + { + "start": 4819.72, + "end": 4820.78, + "probability": 0.8005 + }, + { + "start": 4821.96, + "end": 4823.1, + "probability": 0.825 + }, + { + "start": 4823.82, + "end": 4825.44, + "probability": 0.6866 + }, + { + "start": 4825.98, + "end": 4828.86, + "probability": 0.8307 + }, + { + "start": 4829.56, + "end": 4832.02, + "probability": 0.9542 + }, + { + "start": 4832.1, + "end": 4832.62, + "probability": 0.5077 + }, + { + "start": 4832.64, + "end": 4834.88, + "probability": 0.7936 + }, + { + "start": 4835.22, + "end": 4835.9, + "probability": 0.9136 + }, + { + "start": 4836.82, + "end": 4838.82, + "probability": 0.8612 + }, + { + "start": 4839.72, + "end": 4842.88, + "probability": 0.8895 + }, + { + "start": 4843.8, + "end": 4847.82, + "probability": 0.9907 + }, + { + "start": 4849.64, + "end": 4851.04, + "probability": 0.7644 + }, + { + "start": 4852.5, + "end": 4853.5, + "probability": 0.7379 + }, + { + "start": 4854.96, + "end": 4856.98, + "probability": 0.723 + }, + { + "start": 4858.26, + "end": 4858.66, + "probability": 0.6811 + }, + { + "start": 4859.66, + "end": 4861.56, + "probability": 0.9725 + }, + { + "start": 4861.68, + "end": 4863.9, + "probability": 0.9261 + }, + { + "start": 4864.38, + "end": 4865.02, + "probability": 0.8125 + }, + { + "start": 4865.08, + "end": 4870.34, + "probability": 0.9533 + }, + { + "start": 4870.92, + "end": 4875.64, + "probability": 0.9788 + }, + { + "start": 4876.48, + "end": 4878.24, + "probability": 0.8987 + }, + { + "start": 4878.86, + "end": 4882.52, + "probability": 0.8223 + }, + { + "start": 4882.86, + "end": 4885.3, + "probability": 0.9438 + }, + { + "start": 4885.9, + "end": 4886.44, + "probability": 0.8154 + }, + { + "start": 4886.58, + "end": 4888.98, + "probability": 0.9458 + }, + { + "start": 4889.0, + "end": 4890.04, + "probability": 0.932 + }, + { + "start": 4890.58, + "end": 4891.9, + "probability": 0.785 + }, + { + "start": 4892.14, + "end": 4893.74, + "probability": 0.9404 + }, + { + "start": 4893.94, + "end": 4894.9, + "probability": 0.9836 + }, + { + "start": 4895.7, + "end": 4897.34, + "probability": 0.9258 + }, + { + "start": 4897.9, + "end": 4899.13, + "probability": 0.9873 + }, + { + "start": 4899.8, + "end": 4901.32, + "probability": 0.5216 + }, + { + "start": 4902.57, + "end": 4907.38, + "probability": 0.7147 + }, + { + "start": 4907.74, + "end": 4915.64, + "probability": 0.974 + }, + { + "start": 4915.66, + "end": 4917.76, + "probability": 0.0174 + }, + { + "start": 4918.08, + "end": 4918.56, + "probability": 0.5361 + }, + { + "start": 4918.68, + "end": 4922.18, + "probability": 0.9917 + }, + { + "start": 4922.5, + "end": 4923.58, + "probability": 0.8038 + }, + { + "start": 4923.78, + "end": 4924.86, + "probability": 0.808 + }, + { + "start": 4925.32, + "end": 4927.94, + "probability": 0.7961 + }, + { + "start": 4927.98, + "end": 4929.92, + "probability": 0.4233 + }, + { + "start": 4929.96, + "end": 4930.72, + "probability": 0.7887 + }, + { + "start": 4930.98, + "end": 4931.98, + "probability": 0.8175 + }, + { + "start": 4932.44, + "end": 4936.56, + "probability": 0.9835 + }, + { + "start": 4937.3, + "end": 4942.44, + "probability": 0.9468 + }, + { + "start": 4942.8, + "end": 4944.48, + "probability": 0.6668 + }, + { + "start": 4944.62, + "end": 4945.56, + "probability": 0.7402 + }, + { + "start": 4946.48, + "end": 4949.46, + "probability": 0.899 + }, + { + "start": 4950.0, + "end": 4953.38, + "probability": 0.9385 + }, + { + "start": 4953.8, + "end": 4958.18, + "probability": 0.9821 + }, + { + "start": 4958.88, + "end": 4961.04, + "probability": 0.8088 + }, + { + "start": 4963.26, + "end": 4965.84, + "probability": 0.8939 + }, + { + "start": 4966.6, + "end": 4971.34, + "probability": 0.6462 + }, + { + "start": 4971.36, + "end": 4972.3, + "probability": 0.7015 + }, + { + "start": 4972.34, + "end": 4973.52, + "probability": 0.8587 + }, + { + "start": 4973.94, + "end": 4976.42, + "probability": 0.8559 + }, + { + "start": 4976.82, + "end": 4978.54, + "probability": 0.9862 + }, + { + "start": 4978.89, + "end": 4982.24, + "probability": 0.9951 + }, + { + "start": 4982.82, + "end": 4986.44, + "probability": 0.7532 + }, + { + "start": 4986.84, + "end": 4989.44, + "probability": 0.9928 + }, + { + "start": 4989.62, + "end": 4990.06, + "probability": 0.488 + }, + { + "start": 4990.1, + "end": 4991.02, + "probability": 0.7126 + }, + { + "start": 4991.42, + "end": 4991.92, + "probability": 0.736 + }, + { + "start": 4992.02, + "end": 4992.72, + "probability": 0.7364 + }, + { + "start": 4993.02, + "end": 4994.33, + "probability": 0.9521 + }, + { + "start": 4996.84, + "end": 4997.84, + "probability": 0.6278 + }, + { + "start": 4999.32, + "end": 5000.42, + "probability": 0.9928 + }, + { + "start": 5005.4, + "end": 5006.62, + "probability": 0.5456 + }, + { + "start": 5008.7, + "end": 5010.12, + "probability": 0.9932 + }, + { + "start": 5017.96, + "end": 5019.72, + "probability": 0.8859 + }, + { + "start": 5032.84, + "end": 5035.02, + "probability": 0.7188 + }, + { + "start": 5035.06, + "end": 5037.38, + "probability": 0.9424 + }, + { + "start": 5037.44, + "end": 5038.76, + "probability": 0.7801 + }, + { + "start": 5039.44, + "end": 5042.44, + "probability": 0.8474 + }, + { + "start": 5042.82, + "end": 5046.48, + "probability": 0.8743 + }, + { + "start": 5046.48, + "end": 5046.8, + "probability": 0.4674 + }, + { + "start": 5046.98, + "end": 5047.22, + "probability": 0.3668 + }, + { + "start": 5047.48, + "end": 5047.86, + "probability": 0.4474 + }, + { + "start": 5047.9, + "end": 5050.2, + "probability": 0.4553 + }, + { + "start": 5051.34, + "end": 5051.5, + "probability": 0.1333 + }, + { + "start": 5052.06, + "end": 5053.86, + "probability": 0.3458 + }, + { + "start": 5053.86, + "end": 5053.86, + "probability": 0.107 + }, + { + "start": 5053.86, + "end": 5055.44, + "probability": 0.3312 + }, + { + "start": 5055.48, + "end": 5058.38, + "probability": 0.4602 + }, + { + "start": 5060.02, + "end": 5061.32, + "probability": 0.529 + }, + { + "start": 5061.78, + "end": 5065.9, + "probability": 0.9359 + }, + { + "start": 5065.98, + "end": 5066.84, + "probability": 0.7237 + }, + { + "start": 5066.86, + "end": 5066.86, + "probability": 0.7049 + }, + { + "start": 5066.98, + "end": 5067.4, + "probability": 0.4484 + }, + { + "start": 5067.4, + "end": 5067.66, + "probability": 0.5254 + }, + { + "start": 5067.7, + "end": 5068.44, + "probability": 0.6008 + }, + { + "start": 5068.44, + "end": 5070.56, + "probability": 0.6963 + }, + { + "start": 5070.76, + "end": 5071.84, + "probability": 0.0928 + }, + { + "start": 5071.84, + "end": 5072.78, + "probability": 0.7917 + }, + { + "start": 5073.52, + "end": 5074.8, + "probability": 0.0804 + }, + { + "start": 5076.14, + "end": 5076.28, + "probability": 0.0357 + }, + { + "start": 5076.28, + "end": 5077.7, + "probability": 0.1653 + }, + { + "start": 5077.7, + "end": 5079.62, + "probability": 0.8981 + }, + { + "start": 5080.16, + "end": 5081.42, + "probability": 0.9602 + }, + { + "start": 5081.54, + "end": 5082.74, + "probability": 0.9885 + }, + { + "start": 5082.8, + "end": 5083.87, + "probability": 0.9545 + }, + { + "start": 5084.1, + "end": 5086.94, + "probability": 0.9007 + }, + { + "start": 5087.12, + "end": 5089.46, + "probability": 0.7128 + }, + { + "start": 5089.96, + "end": 5091.86, + "probability": 0.987 + }, + { + "start": 5091.86, + "end": 5093.16, + "probability": 0.1031 + }, + { + "start": 5093.3, + "end": 5095.46, + "probability": 0.7267 + }, + { + "start": 5097.08, + "end": 5097.72, + "probability": 0.0717 + }, + { + "start": 5099.24, + "end": 5100.42, + "probability": 0.8954 + }, + { + "start": 5100.98, + "end": 5103.16, + "probability": 0.9069 + }, + { + "start": 5103.22, + "end": 5106.3, + "probability": 0.9697 + }, + { + "start": 5106.46, + "end": 5109.64, + "probability": 0.8499 + }, + { + "start": 5110.2, + "end": 5111.38, + "probability": 0.8042 + }, + { + "start": 5111.78, + "end": 5112.9, + "probability": 0.9834 + }, + { + "start": 5113.02, + "end": 5114.34, + "probability": 0.9358 + }, + { + "start": 5114.46, + "end": 5116.0, + "probability": 0.9704 + }, + { + "start": 5116.4, + "end": 5119.96, + "probability": 0.0152 + }, + { + "start": 5119.96, + "end": 5123.06, + "probability": 0.2989 + }, + { + "start": 5123.34, + "end": 5125.88, + "probability": 0.8232 + }, + { + "start": 5126.26, + "end": 5127.76, + "probability": 0.8481 + }, + { + "start": 5128.14, + "end": 5129.31, + "probability": 0.8482 + }, + { + "start": 5130.3, + "end": 5132.52, + "probability": 0.0231 + }, + { + "start": 5132.52, + "end": 5132.52, + "probability": 0.4826 + }, + { + "start": 5132.58, + "end": 5134.56, + "probability": 0.3766 + }, + { + "start": 5134.8, + "end": 5138.68, + "probability": 0.21 + }, + { + "start": 5138.68, + "end": 5139.26, + "probability": 0.4792 + }, + { + "start": 5139.78, + "end": 5141.88, + "probability": 0.2719 + }, + { + "start": 5142.38, + "end": 5145.92, + "probability": 0.6718 + }, + { + "start": 5146.6, + "end": 5150.22, + "probability": 0.9017 + }, + { + "start": 5150.28, + "end": 5150.84, + "probability": 0.5294 + }, + { + "start": 5150.84, + "end": 5152.26, + "probability": 0.8525 + }, + { + "start": 5152.66, + "end": 5153.04, + "probability": 0.7336 + }, + { + "start": 5154.31, + "end": 5154.66, + "probability": 0.0322 + }, + { + "start": 5155.53, + "end": 5157.38, + "probability": 0.5671 + }, + { + "start": 5157.42, + "end": 5159.0, + "probability": 0.9327 + }, + { + "start": 5159.02, + "end": 5159.28, + "probability": 0.7648 + }, + { + "start": 5159.44, + "end": 5160.12, + "probability": 0.7845 + }, + { + "start": 5160.18, + "end": 5160.9, + "probability": 0.9673 + }, + { + "start": 5160.9, + "end": 5161.44, + "probability": 0.6259 + }, + { + "start": 5161.86, + "end": 5164.7, + "probability": 0.647 + }, + { + "start": 5164.84, + "end": 5165.44, + "probability": 0.4661 + }, + { + "start": 5165.96, + "end": 5167.98, + "probability": 0.9526 + }, + { + "start": 5168.52, + "end": 5172.5, + "probability": 0.8613 + }, + { + "start": 5172.88, + "end": 5173.3, + "probability": 0.7534 + }, + { + "start": 5173.36, + "end": 5177.42, + "probability": 0.9753 + }, + { + "start": 5177.92, + "end": 5180.14, + "probability": 0.9449 + }, + { + "start": 5180.34, + "end": 5180.82, + "probability": 0.5614 + }, + { + "start": 5181.08, + "end": 5183.26, + "probability": 0.9767 + }, + { + "start": 5183.48, + "end": 5186.12, + "probability": 0.8453 + }, + { + "start": 5186.52, + "end": 5186.74, + "probability": 0.5157 + }, + { + "start": 5186.8, + "end": 5187.46, + "probability": 0.8409 + }, + { + "start": 5187.84, + "end": 5193.38, + "probability": 0.9963 + }, + { + "start": 5193.96, + "end": 5194.28, + "probability": 0.7053 + }, + { + "start": 5195.54, + "end": 5196.54, + "probability": 0.7265 + }, + { + "start": 5197.36, + "end": 5197.56, + "probability": 0.5735 + }, + { + "start": 5197.62, + "end": 5198.52, + "probability": 0.9822 + }, + { + "start": 5198.6, + "end": 5199.54, + "probability": 0.9673 + }, + { + "start": 5199.62, + "end": 5202.04, + "probability": 0.9745 + }, + { + "start": 5202.6, + "end": 5203.6, + "probability": 0.9363 + }, + { + "start": 5203.74, + "end": 5207.78, + "probability": 0.9688 + }, + { + "start": 5207.96, + "end": 5210.14, + "probability": 0.9961 + }, + { + "start": 5210.82, + "end": 5214.28, + "probability": 0.9945 + }, + { + "start": 5215.52, + "end": 5216.33, + "probability": 0.9336 + }, + { + "start": 5217.36, + "end": 5219.78, + "probability": 0.9886 + }, + { + "start": 5220.96, + "end": 5221.86, + "probability": 0.5363 + }, + { + "start": 5222.04, + "end": 5222.38, + "probability": 0.6818 + }, + { + "start": 5222.66, + "end": 5223.88, + "probability": 0.9443 + }, + { + "start": 5224.1, + "end": 5226.12, + "probability": 0.9207 + }, + { + "start": 5226.26, + "end": 5229.04, + "probability": 0.9784 + }, + { + "start": 5230.12, + "end": 5232.77, + "probability": 0.9907 + }, + { + "start": 5233.3, + "end": 5235.53, + "probability": 0.792 + }, + { + "start": 5236.34, + "end": 5237.16, + "probability": 0.6951 + }, + { + "start": 5239.08, + "end": 5240.76, + "probability": 0.8946 + }, + { + "start": 5241.0, + "end": 5243.96, + "probability": 0.9979 + }, + { + "start": 5244.02, + "end": 5245.26, + "probability": 0.9284 + }, + { + "start": 5246.02, + "end": 5249.2, + "probability": 0.9827 + }, + { + "start": 5250.24, + "end": 5253.24, + "probability": 0.9795 + }, + { + "start": 5255.65, + "end": 5260.69, + "probability": 0.9425 + }, + { + "start": 5261.46, + "end": 5262.94, + "probability": 0.9925 + }, + { + "start": 5263.06, + "end": 5265.04, + "probability": 0.8883 + }, + { + "start": 5266.0, + "end": 5267.6, + "probability": 0.985 + }, + { + "start": 5267.94, + "end": 5269.28, + "probability": 0.9762 + }, + { + "start": 5269.78, + "end": 5273.02, + "probability": 0.9761 + }, + { + "start": 5273.22, + "end": 5273.7, + "probability": 0.6779 + }, + { + "start": 5274.86, + "end": 5278.6, + "probability": 0.9736 + }, + { + "start": 5279.26, + "end": 5281.98, + "probability": 0.9893 + }, + { + "start": 5282.66, + "end": 5284.9, + "probability": 0.991 + }, + { + "start": 5285.6, + "end": 5286.48, + "probability": 0.9603 + }, + { + "start": 5288.48, + "end": 5291.28, + "probability": 0.6065 + }, + { + "start": 5291.4, + "end": 5293.76, + "probability": 0.9656 + }, + { + "start": 5295.56, + "end": 5297.58, + "probability": 0.9361 + }, + { + "start": 5298.52, + "end": 5301.02, + "probability": 0.9744 + }, + { + "start": 5301.24, + "end": 5303.34, + "probability": 0.967 + }, + { + "start": 5303.44, + "end": 5304.8, + "probability": 0.9897 + }, + { + "start": 5305.66, + "end": 5307.09, + "probability": 0.6667 + }, + { + "start": 5307.26, + "end": 5308.26, + "probability": 0.7179 + }, + { + "start": 5308.34, + "end": 5308.58, + "probability": 0.742 + }, + { + "start": 5308.7, + "end": 5308.84, + "probability": 0.9268 + }, + { + "start": 5308.92, + "end": 5314.71, + "probability": 0.9969 + }, + { + "start": 5315.92, + "end": 5317.46, + "probability": 0.9052 + }, + { + "start": 5318.08, + "end": 5318.76, + "probability": 0.9668 + }, + { + "start": 5320.0, + "end": 5322.6, + "probability": 0.9961 + }, + { + "start": 5323.0, + "end": 5324.58, + "probability": 0.6594 + }, + { + "start": 5324.92, + "end": 5325.86, + "probability": 0.894 + }, + { + "start": 5326.69, + "end": 5328.74, + "probability": 0.8584 + }, + { + "start": 5329.56, + "end": 5330.98, + "probability": 0.5257 + }, + { + "start": 5330.98, + "end": 5333.46, + "probability": 0.9337 + }, + { + "start": 5334.18, + "end": 5336.34, + "probability": 0.8061 + }, + { + "start": 5336.88, + "end": 5337.45, + "probability": 0.7646 + }, + { + "start": 5338.52, + "end": 5339.78, + "probability": 0.9355 + }, + { + "start": 5339.86, + "end": 5340.82, + "probability": 0.8154 + }, + { + "start": 5340.9, + "end": 5342.2, + "probability": 0.9971 + }, + { + "start": 5342.68, + "end": 5343.79, + "probability": 0.9702 + }, + { + "start": 5343.9, + "end": 5345.88, + "probability": 0.9925 + }, + { + "start": 5346.28, + "end": 5348.5, + "probability": 0.994 + }, + { + "start": 5348.8, + "end": 5351.08, + "probability": 0.9937 + }, + { + "start": 5351.7, + "end": 5351.88, + "probability": 0.2598 + }, + { + "start": 5352.06, + "end": 5354.1, + "probability": 0.9941 + }, + { + "start": 5354.54, + "end": 5356.24, + "probability": 0.6563 + }, + { + "start": 5356.82, + "end": 5359.02, + "probability": 0.9872 + }, + { + "start": 5359.24, + "end": 5360.88, + "probability": 0.9142 + }, + { + "start": 5361.46, + "end": 5361.74, + "probability": 0.7091 + }, + { + "start": 5361.82, + "end": 5366.12, + "probability": 0.9873 + }, + { + "start": 5366.3, + "end": 5370.06, + "probability": 0.8572 + }, + { + "start": 5370.3, + "end": 5370.98, + "probability": 0.1649 + }, + { + "start": 5371.29, + "end": 5373.24, + "probability": 0.8999 + }, + { + "start": 5373.26, + "end": 5374.02, + "probability": 0.6647 + }, + { + "start": 5374.02, + "end": 5374.28, + "probability": 0.7856 + }, + { + "start": 5374.3, + "end": 5374.66, + "probability": 0.7263 + }, + { + "start": 5375.9, + "end": 5377.24, + "probability": 0.9556 + }, + { + "start": 5379.5, + "end": 5381.49, + "probability": 0.7928 + }, + { + "start": 5383.58, + "end": 5384.1, + "probability": 0.2637 + }, + { + "start": 5406.3, + "end": 5407.9, + "probability": 0.3791 + }, + { + "start": 5408.66, + "end": 5411.1, + "probability": 0.7917 + }, + { + "start": 5411.9, + "end": 5412.6, + "probability": 0.9292 + }, + { + "start": 5413.62, + "end": 5417.84, + "probability": 0.9973 + }, + { + "start": 5418.48, + "end": 5419.78, + "probability": 0.8738 + }, + { + "start": 5420.74, + "end": 5421.26, + "probability": 0.5193 + }, + { + "start": 5422.08, + "end": 5422.72, + "probability": 0.6346 + }, + { + "start": 5423.58, + "end": 5426.24, + "probability": 0.9854 + }, + { + "start": 5426.9, + "end": 5428.18, + "probability": 0.9748 + }, + { + "start": 5429.26, + "end": 5430.0, + "probability": 0.9846 + }, + { + "start": 5430.94, + "end": 5431.92, + "probability": 0.8674 + }, + { + "start": 5433.54, + "end": 5434.17, + "probability": 0.9038 + }, + { + "start": 5435.14, + "end": 5442.22, + "probability": 0.9699 + }, + { + "start": 5443.68, + "end": 5447.64, + "probability": 0.9868 + }, + { + "start": 5448.7, + "end": 5452.46, + "probability": 0.9939 + }, + { + "start": 5453.44, + "end": 5457.5, + "probability": 0.9673 + }, + { + "start": 5458.6, + "end": 5459.62, + "probability": 0.8944 + }, + { + "start": 5460.32, + "end": 5462.16, + "probability": 0.9361 + }, + { + "start": 5462.9, + "end": 5465.84, + "probability": 0.9102 + }, + { + "start": 5466.46, + "end": 5467.12, + "probability": 0.7411 + }, + { + "start": 5467.7, + "end": 5471.4, + "probability": 0.957 + }, + { + "start": 5472.02, + "end": 5473.04, + "probability": 0.9946 + }, + { + "start": 5474.18, + "end": 5475.52, + "probability": 0.986 + }, + { + "start": 5476.02, + "end": 5477.1, + "probability": 0.9307 + }, + { + "start": 5477.2, + "end": 5479.34, + "probability": 0.9836 + }, + { + "start": 5480.16, + "end": 5480.5, + "probability": 0.3504 + }, + { + "start": 5480.68, + "end": 5482.7, + "probability": 0.9775 + }, + { + "start": 5483.08, + "end": 5486.74, + "probability": 0.9834 + }, + { + "start": 5487.68, + "end": 5490.32, + "probability": 0.95 + }, + { + "start": 5492.06, + "end": 5496.16, + "probability": 0.9924 + }, + { + "start": 5496.92, + "end": 5500.24, + "probability": 0.966 + }, + { + "start": 5501.04, + "end": 5503.52, + "probability": 0.9867 + }, + { + "start": 5504.04, + "end": 5506.16, + "probability": 0.7459 + }, + { + "start": 5507.04, + "end": 5511.14, + "probability": 0.9941 + }, + { + "start": 5511.7, + "end": 5514.7, + "probability": 0.9683 + }, + { + "start": 5515.86, + "end": 5516.72, + "probability": 0.8935 + }, + { + "start": 5518.24, + "end": 5520.28, + "probability": 0.9551 + }, + { + "start": 5521.12, + "end": 5524.62, + "probability": 0.9727 + }, + { + "start": 5525.16, + "end": 5526.06, + "probability": 0.9073 + }, + { + "start": 5527.08, + "end": 5527.66, + "probability": 0.7202 + }, + { + "start": 5528.1, + "end": 5532.94, + "probability": 0.9384 + }, + { + "start": 5533.64, + "end": 5539.48, + "probability": 0.9906 + }, + { + "start": 5540.2, + "end": 5545.48, + "probability": 0.9696 + }, + { + "start": 5545.58, + "end": 5546.56, + "probability": 0.8051 + }, + { + "start": 5547.82, + "end": 5548.68, + "probability": 0.7635 + }, + { + "start": 5548.74, + "end": 5549.28, + "probability": 0.6461 + }, + { + "start": 5549.4, + "end": 5554.64, + "probability": 0.9888 + }, + { + "start": 5555.44, + "end": 5559.52, + "probability": 0.9952 + }, + { + "start": 5560.08, + "end": 5562.26, + "probability": 0.9878 + }, + { + "start": 5562.86, + "end": 5563.58, + "probability": 0.6296 + }, + { + "start": 5564.12, + "end": 5566.26, + "probability": 0.9939 + }, + { + "start": 5566.86, + "end": 5567.82, + "probability": 0.7651 + }, + { + "start": 5568.42, + "end": 5573.46, + "probability": 0.8614 + }, + { + "start": 5573.58, + "end": 5577.52, + "probability": 0.9658 + }, + { + "start": 5578.46, + "end": 5582.22, + "probability": 0.9966 + }, + { + "start": 5582.22, + "end": 5585.78, + "probability": 0.9967 + }, + { + "start": 5586.68, + "end": 5592.54, + "probability": 0.9962 + }, + { + "start": 5593.14, + "end": 5596.3, + "probability": 0.8828 + }, + { + "start": 5597.06, + "end": 5599.94, + "probability": 0.6992 + }, + { + "start": 5599.94, + "end": 5602.36, + "probability": 0.9938 + }, + { + "start": 5602.68, + "end": 5606.08, + "probability": 0.9915 + }, + { + "start": 5606.9, + "end": 5607.36, + "probability": 0.8497 + }, + { + "start": 5607.48, + "end": 5608.0, + "probability": 0.9357 + }, + { + "start": 5609.72, + "end": 5611.14, + "probability": 0.789 + }, + { + "start": 5611.48, + "end": 5612.64, + "probability": 0.7473 + }, + { + "start": 5613.18, + "end": 5614.84, + "probability": 0.6792 + }, + { + "start": 5614.94, + "end": 5617.36, + "probability": 0.9756 + }, + { + "start": 5636.74, + "end": 5637.64, + "probability": 0.8523 + }, + { + "start": 5637.64, + "end": 5638.06, + "probability": 0.8347 + }, + { + "start": 5638.62, + "end": 5638.82, + "probability": 0.7481 + }, + { + "start": 5639.22, + "end": 5639.74, + "probability": 0.4387 + }, + { + "start": 5640.14, + "end": 5642.38, + "probability": 0.7756 + }, + { + "start": 5642.58, + "end": 5643.06, + "probability": 0.6665 + }, + { + "start": 5643.76, + "end": 5644.16, + "probability": 0.6344 + }, + { + "start": 5644.28, + "end": 5649.88, + "probability": 0.9712 + }, + { + "start": 5649.92, + "end": 5656.14, + "probability": 0.9976 + }, + { + "start": 5657.37, + "end": 5664.48, + "probability": 0.8987 + }, + { + "start": 5664.92, + "end": 5666.82, + "probability": 0.7508 + }, + { + "start": 5668.18, + "end": 5670.54, + "probability": 0.9878 + }, + { + "start": 5671.32, + "end": 5672.02, + "probability": 0.7194 + }, + { + "start": 5672.28, + "end": 5672.9, + "probability": 0.9792 + }, + { + "start": 5672.96, + "end": 5676.08, + "probability": 0.9868 + }, + { + "start": 5676.7, + "end": 5680.04, + "probability": 0.875 + }, + { + "start": 5680.9, + "end": 5683.76, + "probability": 0.9392 + }, + { + "start": 5686.48, + "end": 5689.9, + "probability": 0.9943 + }, + { + "start": 5691.71, + "end": 5697.62, + "probability": 0.9984 + }, + { + "start": 5698.26, + "end": 5702.9, + "probability": 0.9908 + }, + { + "start": 5703.54, + "end": 5705.9, + "probability": 0.9312 + }, + { + "start": 5706.38, + "end": 5707.54, + "probability": 0.8441 + }, + { + "start": 5707.92, + "end": 5711.96, + "probability": 0.9922 + }, + { + "start": 5712.8, + "end": 5713.22, + "probability": 0.7107 + }, + { + "start": 5713.36, + "end": 5714.02, + "probability": 0.891 + }, + { + "start": 5714.02, + "end": 5715.3, + "probability": 0.7823 + }, + { + "start": 5715.78, + "end": 5722.08, + "probability": 0.9915 + }, + { + "start": 5722.2, + "end": 5723.2, + "probability": 0.8511 + }, + { + "start": 5723.56, + "end": 5724.6, + "probability": 0.9373 + }, + { + "start": 5725.58, + "end": 5729.0, + "probability": 0.9913 + }, + { + "start": 5730.18, + "end": 5731.82, + "probability": 0.9077 + }, + { + "start": 5732.22, + "end": 5733.94, + "probability": 0.9166 + }, + { + "start": 5734.38, + "end": 5735.6, + "probability": 0.8883 + }, + { + "start": 5735.66, + "end": 5743.92, + "probability": 0.9678 + }, + { + "start": 5744.3, + "end": 5744.8, + "probability": 0.6381 + }, + { + "start": 5745.02, + "end": 5745.56, + "probability": 0.9666 + }, + { + "start": 5745.62, + "end": 5745.72, + "probability": 0.8931 + }, + { + "start": 5746.64, + "end": 5750.38, + "probability": 0.9653 + }, + { + "start": 5750.84, + "end": 5754.96, + "probability": 0.8512 + }, + { + "start": 5755.44, + "end": 5758.94, + "probability": 0.9653 + }, + { + "start": 5759.7, + "end": 5763.54, + "probability": 0.9965 + }, + { + "start": 5763.54, + "end": 5767.7, + "probability": 0.8861 + }, + { + "start": 5768.18, + "end": 5768.92, + "probability": 0.4524 + }, + { + "start": 5769.7, + "end": 5771.32, + "probability": 0.6705 + }, + { + "start": 5771.4, + "end": 5776.6, + "probability": 0.7628 + }, + { + "start": 5776.68, + "end": 5777.78, + "probability": 0.9171 + }, + { + "start": 5778.24, + "end": 5781.4, + "probability": 0.9948 + }, + { + "start": 5782.66, + "end": 5791.86, + "probability": 0.9734 + }, + { + "start": 5791.92, + "end": 5793.68, + "probability": 0.8763 + }, + { + "start": 5794.42, + "end": 5796.46, + "probability": 0.8604 + }, + { + "start": 5796.98, + "end": 5798.54, + "probability": 0.9331 + }, + { + "start": 5798.58, + "end": 5804.46, + "probability": 0.9582 + }, + { + "start": 5805.92, + "end": 5806.4, + "probability": 0.008 + }, + { + "start": 5806.4, + "end": 5808.26, + "probability": 0.8262 + }, + { + "start": 5808.62, + "end": 5809.48, + "probability": 0.724 + }, + { + "start": 5809.68, + "end": 5812.08, + "probability": 0.9622 + }, + { + "start": 5812.58, + "end": 5814.76, + "probability": 0.9633 + }, + { + "start": 5815.16, + "end": 5815.74, + "probability": 0.5032 + }, + { + "start": 5815.88, + "end": 5819.72, + "probability": 0.9408 + }, + { + "start": 5820.42, + "end": 5824.42, + "probability": 0.99 + }, + { + "start": 5824.94, + "end": 5827.32, + "probability": 0.9972 + }, + { + "start": 5827.4, + "end": 5828.56, + "probability": 0.6609 + }, + { + "start": 5829.14, + "end": 5831.44, + "probability": 0.8947 + }, + { + "start": 5831.9, + "end": 5831.9, + "probability": 0.4761 + }, + { + "start": 5831.9, + "end": 5832.8, + "probability": 0.9001 + }, + { + "start": 5832.96, + "end": 5834.04, + "probability": 0.9495 + }, + { + "start": 5834.4, + "end": 5837.42, + "probability": 0.998 + }, + { + "start": 5837.42, + "end": 5841.98, + "probability": 0.9932 + }, + { + "start": 5842.42, + "end": 5846.44, + "probability": 0.9896 + }, + { + "start": 5846.92, + "end": 5846.92, + "probability": 0.1164 + }, + { + "start": 5846.92, + "end": 5849.54, + "probability": 0.7368 + }, + { + "start": 5849.88, + "end": 5852.24, + "probability": 0.9937 + }, + { + "start": 5853.82, + "end": 5855.84, + "probability": 0.9638 + }, + { + "start": 5856.2, + "end": 5858.32, + "probability": 0.9928 + }, + { + "start": 5858.64, + "end": 5861.98, + "probability": 0.9974 + }, + { + "start": 5862.14, + "end": 5862.96, + "probability": 0.74 + }, + { + "start": 5863.4, + "end": 5869.46, + "probability": 0.9907 + }, + { + "start": 5869.88, + "end": 5875.02, + "probability": 0.9853 + }, + { + "start": 5875.1, + "end": 5876.1, + "probability": 0.7404 + }, + { + "start": 5876.58, + "end": 5877.06, + "probability": 0.4004 + }, + { + "start": 5877.5, + "end": 5877.56, + "probability": 0.3896 + }, + { + "start": 5878.22, + "end": 5878.36, + "probability": 0.1522 + }, + { + "start": 5878.36, + "end": 5879.16, + "probability": 0.6099 + }, + { + "start": 5879.22, + "end": 5883.26, + "probability": 0.9643 + }, + { + "start": 5883.32, + "end": 5884.4, + "probability": 0.9218 + }, + { + "start": 5884.68, + "end": 5886.64, + "probability": 0.3517 + }, + { + "start": 5894.24, + "end": 5896.62, + "probability": 0.0749 + }, + { + "start": 5896.84, + "end": 5897.88, + "probability": 0.1448 + }, + { + "start": 5898.08, + "end": 5898.76, + "probability": 0.5074 + }, + { + "start": 5899.02, + "end": 5904.0, + "probability": 0.5405 + }, + { + "start": 5904.6, + "end": 5906.34, + "probability": 0.0764 + }, + { + "start": 5908.11, + "end": 5909.94, + "probability": 0.5612 + }, + { + "start": 5909.98, + "end": 5910.6, + "probability": 0.7168 + }, + { + "start": 5911.34, + "end": 5912.01, + "probability": 0.1845 + }, + { + "start": 5918.1, + "end": 5919.9, + "probability": 0.1323 + }, + { + "start": 5922.76, + "end": 5923.1, + "probability": 0.2583 + }, + { + "start": 5923.68, + "end": 5923.8, + "probability": 0.0474 + }, + { + "start": 5923.8, + "end": 5923.8, + "probability": 0.1903 + }, + { + "start": 5923.8, + "end": 5923.8, + "probability": 0.0402 + }, + { + "start": 5923.8, + "end": 5923.8, + "probability": 0.1379 + }, + { + "start": 5923.8, + "end": 5923.8, + "probability": 0.0339 + }, + { + "start": 5923.8, + "end": 5923.8, + "probability": 0.1153 + }, + { + "start": 5923.8, + "end": 5923.8, + "probability": 0.0582 + }, + { + "start": 5923.8, + "end": 5926.42, + "probability": 0.5932 + }, + { + "start": 5931.26, + "end": 5931.94, + "probability": 0.8023 + }, + { + "start": 5932.74, + "end": 5932.86, + "probability": 0.2456 + }, + { + "start": 5932.86, + "end": 5934.42, + "probability": 0.5459 + }, + { + "start": 5935.28, + "end": 5936.68, + "probability": 0.6439 + }, + { + "start": 5937.34, + "end": 5939.72, + "probability": 0.9832 + }, + { + "start": 5940.66, + "end": 5941.56, + "probability": 0.9581 + }, + { + "start": 5942.28, + "end": 5943.18, + "probability": 0.8964 + }, + { + "start": 5943.84, + "end": 5945.74, + "probability": 0.9907 + }, + { + "start": 5946.78, + "end": 5948.02, + "probability": 0.8064 + }, + { + "start": 5948.72, + "end": 5951.58, + "probability": 0.9836 + }, + { + "start": 5952.44, + "end": 5956.92, + "probability": 0.9507 + }, + { + "start": 5956.98, + "end": 5960.1, + "probability": 0.8584 + }, + { + "start": 5960.84, + "end": 5963.96, + "probability": 0.9659 + }, + { + "start": 5964.62, + "end": 5967.7, + "probability": 0.6334 + }, + { + "start": 5968.48, + "end": 5969.78, + "probability": 0.9713 + }, + { + "start": 5970.36, + "end": 5971.48, + "probability": 0.7205 + }, + { + "start": 5972.26, + "end": 5973.08, + "probability": 0.9404 + }, + { + "start": 5974.28, + "end": 5977.12, + "probability": 0.9736 + }, + { + "start": 5978.26, + "end": 5979.86, + "probability": 0.9136 + }, + { + "start": 5980.6, + "end": 5982.74, + "probability": 0.6554 + }, + { + "start": 5982.94, + "end": 5984.78, + "probability": 0.8194 + }, + { + "start": 5985.34, + "end": 5985.36, + "probability": 0.0964 + }, + { + "start": 5985.52, + "end": 5986.76, + "probability": 0.6853 + }, + { + "start": 5986.92, + "end": 5988.28, + "probability": 0.8601 + }, + { + "start": 5988.44, + "end": 5989.46, + "probability": 0.8311 + }, + { + "start": 5989.92, + "end": 5990.32, + "probability": 0.7842 + }, + { + "start": 5990.38, + "end": 5991.38, + "probability": 0.9497 + }, + { + "start": 5991.5, + "end": 5991.66, + "probability": 0.5092 + }, + { + "start": 5992.27, + "end": 5996.04, + "probability": 0.9525 + }, + { + "start": 5996.04, + "end": 5998.0, + "probability": 0.932 + }, + { + "start": 5998.22, + "end": 5999.12, + "probability": 0.3749 + }, + { + "start": 5999.2, + "end": 6000.74, + "probability": 0.5619 + }, + { + "start": 6000.74, + "end": 6001.5, + "probability": 0.2221 + }, + { + "start": 6001.52, + "end": 6003.68, + "probability": 0.8831 + }, + { + "start": 6004.26, + "end": 6006.18, + "probability": 0.8233 + }, + { + "start": 6006.2, + "end": 6007.0, + "probability": 0.2141 + }, + { + "start": 6007.0, + "end": 6007.18, + "probability": 0.1196 + }, + { + "start": 6007.18, + "end": 6011.94, + "probability": 0.8491 + }, + { + "start": 6011.94, + "end": 6015.12, + "probability": 0.687 + }, + { + "start": 6015.38, + "end": 6015.52, + "probability": 0.1292 + }, + { + "start": 6015.52, + "end": 6016.3, + "probability": 0.6899 + }, + { + "start": 6016.4, + "end": 6016.99, + "probability": 0.9593 + }, + { + "start": 6017.62, + "end": 6018.86, + "probability": 0.9937 + }, + { + "start": 6019.6, + "end": 6021.62, + "probability": 0.9827 + }, + { + "start": 6022.16, + "end": 6023.38, + "probability": 0.9549 + }, + { + "start": 6023.86, + "end": 6024.54, + "probability": 0.9341 + }, + { + "start": 6024.98, + "end": 6026.64, + "probability": 0.9849 + }, + { + "start": 6027.12, + "end": 6029.34, + "probability": 0.993 + }, + { + "start": 6029.7, + "end": 6032.78, + "probability": 0.9682 + }, + { + "start": 6033.92, + "end": 6037.06, + "probability": 0.7248 + }, + { + "start": 6037.86, + "end": 6040.82, + "probability": 0.7464 + }, + { + "start": 6041.84, + "end": 6044.52, + "probability": 0.768 + }, + { + "start": 6045.08, + "end": 6049.62, + "probability": 0.8362 + }, + { + "start": 6050.2, + "end": 6052.66, + "probability": 0.9807 + }, + { + "start": 6053.28, + "end": 6054.04, + "probability": 0.8201 + }, + { + "start": 6054.62, + "end": 6055.94, + "probability": 0.6895 + }, + { + "start": 6056.5, + "end": 6059.76, + "probability": 0.908 + }, + { + "start": 6060.1, + "end": 6061.62, + "probability": 0.7877 + }, + { + "start": 6062.2, + "end": 6062.98, + "probability": 0.98 + }, + { + "start": 6063.22, + "end": 6064.26, + "probability": 0.8202 + }, + { + "start": 6064.82, + "end": 6067.44, + "probability": 0.8253 + }, + { + "start": 6068.02, + "end": 6069.66, + "probability": 0.7995 + }, + { + "start": 6070.32, + "end": 6071.74, + "probability": 0.6163 + }, + { + "start": 6072.42, + "end": 6074.48, + "probability": 0.8883 + }, + { + "start": 6075.6, + "end": 6077.68, + "probability": 0.9605 + }, + { + "start": 6078.24, + "end": 6080.38, + "probability": 0.952 + }, + { + "start": 6081.12, + "end": 6085.08, + "probability": 0.8812 + }, + { + "start": 6085.96, + "end": 6087.52, + "probability": 0.9057 + }, + { + "start": 6088.43, + "end": 6090.18, + "probability": 0.5836 + }, + { + "start": 6090.56, + "end": 6091.8, + "probability": 0.9328 + }, + { + "start": 6092.2, + "end": 6094.17, + "probability": 0.9797 + }, + { + "start": 6094.8, + "end": 6095.81, + "probability": 0.9668 + }, + { + "start": 6096.54, + "end": 6098.08, + "probability": 0.9886 + }, + { + "start": 6098.14, + "end": 6099.18, + "probability": 0.6522 + }, + { + "start": 6099.4, + "end": 6100.22, + "probability": 0.8302 + }, + { + "start": 6100.38, + "end": 6100.96, + "probability": 0.5981 + }, + { + "start": 6100.96, + "end": 6101.44, + "probability": 0.5834 + }, + { + "start": 6101.92, + "end": 6102.5, + "probability": 0.3513 + }, + { + "start": 6102.5, + "end": 6103.3, + "probability": 0.6476 + }, + { + "start": 6103.32, + "end": 6104.66, + "probability": 0.9577 + }, + { + "start": 6105.24, + "end": 6107.32, + "probability": 0.9818 + }, + { + "start": 6108.1, + "end": 6110.24, + "probability": 0.9268 + }, + { + "start": 6110.8, + "end": 6112.0, + "probability": 0.9646 + }, + { + "start": 6112.58, + "end": 6112.96, + "probability": 0.8616 + }, + { + "start": 6112.96, + "end": 6113.7, + "probability": 0.9442 + }, + { + "start": 6114.2, + "end": 6115.94, + "probability": 0.9092 + }, + { + "start": 6116.44, + "end": 6116.68, + "probability": 0.3823 + }, + { + "start": 6116.8, + "end": 6117.48, + "probability": 0.6074 + }, + { + "start": 6117.56, + "end": 6119.3, + "probability": 0.8707 + }, + { + "start": 6120.26, + "end": 6125.0, + "probability": 0.9984 + }, + { + "start": 6125.62, + "end": 6128.2, + "probability": 0.9496 + }, + { + "start": 6129.02, + "end": 6130.62, + "probability": 0.8862 + }, + { + "start": 6131.18, + "end": 6131.84, + "probability": 0.2407 + }, + { + "start": 6131.88, + "end": 6133.1, + "probability": 0.9637 + }, + { + "start": 6133.12, + "end": 6133.42, + "probability": 0.7055 + }, + { + "start": 6133.48, + "end": 6134.0, + "probability": 0.9423 + }, + { + "start": 6134.42, + "end": 6135.14, + "probability": 0.8054 + }, + { + "start": 6136.02, + "end": 6142.86, + "probability": 0.9637 + }, + { + "start": 6143.44, + "end": 6144.2, + "probability": 0.474 + }, + { + "start": 6144.66, + "end": 6146.68, + "probability": 0.9946 + }, + { + "start": 6147.2, + "end": 6150.68, + "probability": 0.9858 + }, + { + "start": 6151.08, + "end": 6151.08, + "probability": 0.6459 + }, + { + "start": 6151.1, + "end": 6152.48, + "probability": 0.7659 + }, + { + "start": 6153.12, + "end": 6155.88, + "probability": 0.9361 + }, + { + "start": 6156.54, + "end": 6158.6, + "probability": 0.9905 + }, + { + "start": 6158.64, + "end": 6159.36, + "probability": 0.6512 + }, + { + "start": 6159.4, + "end": 6160.16, + "probability": 0.8906 + }, + { + "start": 6160.5, + "end": 6164.74, + "probability": 0.9753 + }, + { + "start": 6165.18, + "end": 6165.88, + "probability": 0.6709 + }, + { + "start": 6165.94, + "end": 6166.72, + "probability": 0.7525 + }, + { + "start": 6180.34, + "end": 6181.92, + "probability": 0.7024 + }, + { + "start": 6182.16, + "end": 6182.86, + "probability": 0.8335 + }, + { + "start": 6184.92, + "end": 6185.92, + "probability": 0.7352 + }, + { + "start": 6186.02, + "end": 6187.42, + "probability": 0.7293 + }, + { + "start": 6187.54, + "end": 6188.94, + "probability": 0.6915 + }, + { + "start": 6189.08, + "end": 6189.92, + "probability": 0.7716 + }, + { + "start": 6189.98, + "end": 6191.62, + "probability": 0.7184 + }, + { + "start": 6193.84, + "end": 6195.98, + "probability": 0.4481 + }, + { + "start": 6196.1, + "end": 6197.98, + "probability": 0.4606 + }, + { + "start": 6199.14, + "end": 6199.14, + "probability": 0.0438 + }, + { + "start": 6199.14, + "end": 6201.34, + "probability": 0.7023 + }, + { + "start": 6204.6, + "end": 6207.78, + "probability": 0.7764 + }, + { + "start": 6207.78, + "end": 6208.94, + "probability": 0.5453 + }, + { + "start": 6208.94, + "end": 6212.18, + "probability": 0.637 + }, + { + "start": 6212.7, + "end": 6216.26, + "probability": 0.8015 + }, + { + "start": 6216.96, + "end": 6219.52, + "probability": 0.7745 + }, + { + "start": 6220.06, + "end": 6221.44, + "probability": 0.3893 + }, + { + "start": 6222.06, + "end": 6224.18, + "probability": 0.9016 + }, + { + "start": 6225.22, + "end": 6228.32, + "probability": 0.6316 + }, + { + "start": 6229.6, + "end": 6234.12, + "probability": 0.9519 + }, + { + "start": 6234.14, + "end": 6235.16, + "probability": 0.7673 + }, + { + "start": 6235.84, + "end": 6238.42, + "probability": 0.5223 + }, + { + "start": 6239.6, + "end": 6239.76, + "probability": 0.1446 + }, + { + "start": 6239.76, + "end": 6240.16, + "probability": 0.4442 + }, + { + "start": 6240.76, + "end": 6240.76, + "probability": 0.0611 + }, + { + "start": 6240.76, + "end": 6244.82, + "probability": 0.7841 + }, + { + "start": 6245.44, + "end": 6253.52, + "probability": 0.9281 + }, + { + "start": 6254.58, + "end": 6255.3, + "probability": 0.5265 + }, + { + "start": 6255.38, + "end": 6255.92, + "probability": 0.3657 + }, + { + "start": 6256.46, + "end": 6256.86, + "probability": 0.4166 + }, + { + "start": 6256.92, + "end": 6258.9, + "probability": 0.2613 + }, + { + "start": 6259.78, + "end": 6261.2, + "probability": 0.5817 + }, + { + "start": 6261.22, + "end": 6261.7, + "probability": 0.286 + }, + { + "start": 6262.26, + "end": 6262.32, + "probability": 0.3972 + }, + { + "start": 6262.32, + "end": 6263.46, + "probability": 0.1463 + }, + { + "start": 6265.54, + "end": 6268.08, + "probability": 0.2457 + }, + { + "start": 6269.53, + "end": 6271.23, + "probability": 0.3637 + }, + { + "start": 6272.04, + "end": 6272.74, + "probability": 0.4088 + }, + { + "start": 6272.74, + "end": 6272.92, + "probability": 0.1515 + }, + { + "start": 6272.92, + "end": 6273.44, + "probability": 0.0278 + }, + { + "start": 6273.78, + "end": 6274.56, + "probability": 0.3392 + }, + { + "start": 6274.64, + "end": 6275.34, + "probability": 0.4082 + }, + { + "start": 6275.7, + "end": 6276.78, + "probability": 0.5345 + }, + { + "start": 6281.98, + "end": 6285.03, + "probability": 0.7275 + }, + { + "start": 6285.48, + "end": 6287.14, + "probability": 0.4714 + }, + { + "start": 6287.44, + "end": 6288.03, + "probability": 0.1227 + }, + { + "start": 6297.04, + "end": 6299.98, + "probability": 0.6807 + }, + { + "start": 6302.28, + "end": 6305.48, + "probability": 0.5708 + }, + { + "start": 6305.88, + "end": 6306.68, + "probability": 0.7686 + }, + { + "start": 6306.68, + "end": 6307.02, + "probability": 0.854 + }, + { + "start": 6307.02, + "end": 6309.0, + "probability": 0.7612 + }, + { + "start": 6309.0, + "end": 6313.18, + "probability": 0.9939 + }, + { + "start": 6313.18, + "end": 6317.44, + "probability": 0.9886 + }, + { + "start": 6318.44, + "end": 6322.72, + "probability": 0.9885 + }, + { + "start": 6322.72, + "end": 6327.42, + "probability": 0.998 + }, + { + "start": 6328.38, + "end": 6328.56, + "probability": 0.6877 + }, + { + "start": 6328.66, + "end": 6331.38, + "probability": 0.9224 + }, + { + "start": 6331.86, + "end": 6332.98, + "probability": 0.9322 + }, + { + "start": 6333.74, + "end": 6336.12, + "probability": 0.9406 + }, + { + "start": 6336.76, + "end": 6341.02, + "probability": 0.9824 + }, + { + "start": 6341.78, + "end": 6346.4, + "probability": 0.9743 + }, + { + "start": 6346.82, + "end": 6348.9, + "probability": 0.967 + }, + { + "start": 6349.52, + "end": 6356.06, + "probability": 0.9989 + }, + { + "start": 6356.78, + "end": 6361.98, + "probability": 0.9933 + }, + { + "start": 6363.4, + "end": 6369.04, + "probability": 0.9915 + }, + { + "start": 6369.04, + "end": 6374.02, + "probability": 0.995 + }, + { + "start": 6375.04, + "end": 6376.26, + "probability": 0.1073 + }, + { + "start": 6376.26, + "end": 6377.92, + "probability": 0.9941 + }, + { + "start": 6378.04, + "end": 6378.4, + "probability": 0.8379 + }, + { + "start": 6378.48, + "end": 6378.64, + "probability": 0.4286 + }, + { + "start": 6378.72, + "end": 6379.08, + "probability": 0.7244 + }, + { + "start": 6379.58, + "end": 6384.78, + "probability": 0.9509 + }, + { + "start": 6384.78, + "end": 6390.22, + "probability": 0.9539 + }, + { + "start": 6390.56, + "end": 6391.34, + "probability": 0.9915 + }, + { + "start": 6392.32, + "end": 6395.4, + "probability": 0.9837 + }, + { + "start": 6396.06, + "end": 6397.18, + "probability": 0.8182 + }, + { + "start": 6397.58, + "end": 6398.78, + "probability": 0.6058 + }, + { + "start": 6399.46, + "end": 6403.02, + "probability": 0.9757 + }, + { + "start": 6404.2, + "end": 6405.94, + "probability": 0.9781 + }, + { + "start": 6407.48, + "end": 6408.92, + "probability": 0.9902 + }, + { + "start": 6408.96, + "end": 6409.32, + "probability": 0.9587 + }, + { + "start": 6409.48, + "end": 6413.62, + "probability": 0.9507 + }, + { + "start": 6414.08, + "end": 6415.04, + "probability": 0.4053 + }, + { + "start": 6415.86, + "end": 6418.84, + "probability": 0.9848 + }, + { + "start": 6420.06, + "end": 6424.96, + "probability": 0.9762 + }, + { + "start": 6424.96, + "end": 6428.32, + "probability": 0.8781 + }, + { + "start": 6429.32, + "end": 6432.78, + "probability": 0.9878 + }, + { + "start": 6432.78, + "end": 6438.22, + "probability": 0.9445 + }, + { + "start": 6439.34, + "end": 6441.92, + "probability": 0.9394 + }, + { + "start": 6442.48, + "end": 6447.62, + "probability": 0.9415 + }, + { + "start": 6448.24, + "end": 6450.82, + "probability": 0.9343 + }, + { + "start": 6452.04, + "end": 6457.12, + "probability": 0.979 + }, + { + "start": 6457.66, + "end": 6459.04, + "probability": 0.8923 + }, + { + "start": 6459.72, + "end": 6467.56, + "probability": 0.9951 + }, + { + "start": 6468.2, + "end": 6470.42, + "probability": 0.8899 + }, + { + "start": 6471.64, + "end": 6473.04, + "probability": 0.9993 + }, + { + "start": 6474.84, + "end": 6479.88, + "probability": 0.9928 + }, + { + "start": 6480.42, + "end": 6483.12, + "probability": 0.9993 + }, + { + "start": 6483.58, + "end": 6485.68, + "probability": 0.9823 + }, + { + "start": 6486.06, + "end": 6486.58, + "probability": 0.7665 + }, + { + "start": 6487.66, + "end": 6488.48, + "probability": 0.8411 + }, + { + "start": 6489.4, + "end": 6491.92, + "probability": 0.9419 + }, + { + "start": 6494.32, + "end": 6495.86, + "probability": 0.9717 + }, + { + "start": 6523.96, + "end": 6524.04, + "probability": 0.1061 + }, + { + "start": 6524.04, + "end": 6524.04, + "probability": 0.5514 + }, + { + "start": 6524.04, + "end": 6525.9, + "probability": 0.2989 + }, + { + "start": 6529.32, + "end": 6533.8, + "probability": 0.9934 + }, + { + "start": 6534.62, + "end": 6538.94, + "probability": 0.8552 + }, + { + "start": 6538.94, + "end": 6542.72, + "probability": 0.9136 + }, + { + "start": 6543.32, + "end": 6545.04, + "probability": 0.6003 + }, + { + "start": 6545.74, + "end": 6546.76, + "probability": 0.5435 + }, + { + "start": 6548.68, + "end": 6550.92, + "probability": 0.7954 + }, + { + "start": 6551.8, + "end": 6553.78, + "probability": 0.9945 + }, + { + "start": 6555.12, + "end": 6558.3, + "probability": 0.9818 + }, + { + "start": 6558.9, + "end": 6560.92, + "probability": 0.8563 + }, + { + "start": 6562.5, + "end": 6565.18, + "probability": 0.998 + }, + { + "start": 6566.28, + "end": 6567.54, + "probability": 0.6334 + }, + { + "start": 6567.7, + "end": 6572.06, + "probability": 0.9941 + }, + { + "start": 6572.06, + "end": 6580.08, + "probability": 0.9582 + }, + { + "start": 6580.36, + "end": 6582.3, + "probability": 0.9967 + }, + { + "start": 6582.4, + "end": 6587.46, + "probability": 0.4201 + }, + { + "start": 6588.5, + "end": 6594.92, + "probability": 0.929 + }, + { + "start": 6595.42, + "end": 6599.32, + "probability": 0.9536 + }, + { + "start": 6600.12, + "end": 6602.08, + "probability": 0.9782 + }, + { + "start": 6603.14, + "end": 6607.94, + "probability": 0.961 + }, + { + "start": 6608.58, + "end": 6610.42, + "probability": 0.8924 + }, + { + "start": 6611.44, + "end": 6615.54, + "probability": 0.9514 + }, + { + "start": 6615.62, + "end": 6616.86, + "probability": 0.9116 + }, + { + "start": 6617.58, + "end": 6620.18, + "probability": 0.7091 + }, + { + "start": 6620.26, + "end": 6621.16, + "probability": 0.8638 + }, + { + "start": 6621.92, + "end": 6622.76, + "probability": 0.9188 + }, + { + "start": 6622.82, + "end": 6623.72, + "probability": 0.7351 + }, + { + "start": 6624.24, + "end": 6625.36, + "probability": 0.6193 + }, + { + "start": 6625.8, + "end": 6627.5, + "probability": 0.9712 + }, + { + "start": 6628.68, + "end": 6632.1, + "probability": 0.9812 + }, + { + "start": 6632.1, + "end": 6636.06, + "probability": 0.9528 + }, + { + "start": 6639.18, + "end": 6640.24, + "probability": 0.5871 + }, + { + "start": 6640.64, + "end": 6643.34, + "probability": 0.3793 + }, + { + "start": 6643.44, + "end": 6646.8, + "probability": 0.9834 + }, + { + "start": 6646.8, + "end": 6650.0, + "probability": 0.9692 + }, + { + "start": 6651.14, + "end": 6653.66, + "probability": 0.8962 + }, + { + "start": 6654.36, + "end": 6657.66, + "probability": 0.5938 + }, + { + "start": 6658.28, + "end": 6661.18, + "probability": 0.9858 + }, + { + "start": 6661.3, + "end": 6662.38, + "probability": 0.7698 + }, + { + "start": 6663.9, + "end": 6669.02, + "probability": 0.9246 + }, + { + "start": 6669.46, + "end": 6671.34, + "probability": 0.7125 + }, + { + "start": 6672.24, + "end": 6674.6, + "probability": 0.8516 + }, + { + "start": 6675.42, + "end": 6676.8, + "probability": 0.7151 + }, + { + "start": 6676.8, + "end": 6680.36, + "probability": 0.9826 + }, + { + "start": 6680.5, + "end": 6681.82, + "probability": 0.6621 + }, + { + "start": 6682.5, + "end": 6683.62, + "probability": 0.9283 + }, + { + "start": 6683.8, + "end": 6688.78, + "probability": 0.9917 + }, + { + "start": 6688.82, + "end": 6689.36, + "probability": 0.8875 + }, + { + "start": 6693.6, + "end": 6694.88, + "probability": 0.8927 + }, + { + "start": 6695.58, + "end": 6697.08, + "probability": 0.7107 + }, + { + "start": 6728.46, + "end": 6728.52, + "probability": 0.3043 + }, + { + "start": 6728.56, + "end": 6729.32, + "probability": 0.8613 + }, + { + "start": 6730.5, + "end": 6732.88, + "probability": 0.624 + }, + { + "start": 6735.58, + "end": 6737.64, + "probability": 0.988 + }, + { + "start": 6737.8, + "end": 6739.58, + "probability": 0.9434 + }, + { + "start": 6740.38, + "end": 6743.86, + "probability": 0.9223 + }, + { + "start": 6744.0, + "end": 6745.34, + "probability": 0.9353 + }, + { + "start": 6747.26, + "end": 6753.02, + "probability": 0.9351 + }, + { + "start": 6753.28, + "end": 6756.72, + "probability": 0.9819 + }, + { + "start": 6757.46, + "end": 6765.86, + "probability": 0.9917 + }, + { + "start": 6766.94, + "end": 6767.6, + "probability": 0.7422 + }, + { + "start": 6767.76, + "end": 6768.24, + "probability": 0.5531 + }, + { + "start": 6768.4, + "end": 6770.44, + "probability": 0.8106 + }, + { + "start": 6771.02, + "end": 6772.34, + "probability": 0.8221 + }, + { + "start": 6772.46, + "end": 6774.85, + "probability": 0.9929 + }, + { + "start": 6775.42, + "end": 6778.38, + "probability": 0.9734 + }, + { + "start": 6778.84, + "end": 6782.04, + "probability": 0.8254 + }, + { + "start": 6782.74, + "end": 6783.74, + "probability": 0.8665 + }, + { + "start": 6784.32, + "end": 6787.06, + "probability": 0.6921 + }, + { + "start": 6788.42, + "end": 6792.22, + "probability": 0.7842 + }, + { + "start": 6793.6, + "end": 6795.14, + "probability": 0.998 + }, + { + "start": 6796.08, + "end": 6798.5, + "probability": 0.7806 + }, + { + "start": 6799.08, + "end": 6800.32, + "probability": 0.9696 + }, + { + "start": 6801.28, + "end": 6802.04, + "probability": 0.6684 + }, + { + "start": 6802.18, + "end": 6805.04, + "probability": 0.9434 + }, + { + "start": 6805.08, + "end": 6808.52, + "probability": 0.9263 + }, + { + "start": 6809.74, + "end": 6815.32, + "probability": 0.892 + }, + { + "start": 6815.54, + "end": 6817.6, + "probability": 0.6314 + }, + { + "start": 6817.88, + "end": 6818.82, + "probability": 0.5442 + }, + { + "start": 6819.14, + "end": 6822.93, + "probability": 0.9281 + }, + { + "start": 6823.36, + "end": 6828.56, + "probability": 0.9383 + }, + { + "start": 6829.18, + "end": 6830.42, + "probability": 0.7895 + }, + { + "start": 6830.68, + "end": 6834.76, + "probability": 0.9918 + }, + { + "start": 6835.34, + "end": 6837.52, + "probability": 0.9599 + }, + { + "start": 6838.08, + "end": 6841.04, + "probability": 0.7237 + }, + { + "start": 6842.5, + "end": 6844.86, + "probability": 0.7932 + }, + { + "start": 6844.9, + "end": 6847.06, + "probability": 0.8472 + }, + { + "start": 6847.24, + "end": 6851.24, + "probability": 0.9304 + }, + { + "start": 6851.36, + "end": 6851.8, + "probability": 0.7627 + }, + { + "start": 6852.74, + "end": 6854.5, + "probability": 0.8442 + }, + { + "start": 6855.04, + "end": 6856.78, + "probability": 0.9798 + }, + { + "start": 6856.96, + "end": 6857.8, + "probability": 0.993 + }, + { + "start": 6857.86, + "end": 6858.58, + "probability": 0.6357 + }, + { + "start": 6859.36, + "end": 6860.6, + "probability": 0.9339 + }, + { + "start": 6860.94, + "end": 6862.24, + "probability": 0.9741 + }, + { + "start": 6862.64, + "end": 6864.24, + "probability": 0.9658 + }, + { + "start": 6864.5, + "end": 6865.82, + "probability": 0.6669 + }, + { + "start": 6866.12, + "end": 6866.92, + "probability": 0.8438 + }, + { + "start": 6866.98, + "end": 6867.14, + "probability": 0.4501 + }, + { + "start": 6867.26, + "end": 6867.72, + "probability": 0.4858 + }, + { + "start": 6867.82, + "end": 6869.1, + "probability": 0.8047 + }, + { + "start": 6869.14, + "end": 6870.86, + "probability": 0.8145 + }, + { + "start": 6870.88, + "end": 6872.6, + "probability": 0.9684 + }, + { + "start": 6873.34, + "end": 6874.66, + "probability": 0.8873 + }, + { + "start": 6874.94, + "end": 6876.26, + "probability": 0.7587 + }, + { + "start": 6876.62, + "end": 6881.96, + "probability": 0.8923 + }, + { + "start": 6882.52, + "end": 6883.17, + "probability": 0.8725 + }, + { + "start": 6883.96, + "end": 6886.74, + "probability": 0.9255 + }, + { + "start": 6886.98, + "end": 6888.56, + "probability": 0.9189 + }, + { + "start": 6888.96, + "end": 6890.66, + "probability": 0.864 + }, + { + "start": 6890.8, + "end": 6891.51, + "probability": 0.3777 + }, + { + "start": 6891.74, + "end": 6892.76, + "probability": 0.6968 + }, + { + "start": 6893.24, + "end": 6893.4, + "probability": 0.3907 + }, + { + "start": 6893.66, + "end": 6895.02, + "probability": 0.9764 + }, + { + "start": 6895.12, + "end": 6896.02, + "probability": 0.9316 + }, + { + "start": 6896.34, + "end": 6897.74, + "probability": 0.9832 + }, + { + "start": 6898.08, + "end": 6901.96, + "probability": 0.8928 + }, + { + "start": 6902.46, + "end": 6903.87, + "probability": 0.9225 + }, + { + "start": 6904.96, + "end": 6909.16, + "probability": 0.9688 + }, + { + "start": 6909.18, + "end": 6910.0, + "probability": 0.7459 + }, + { + "start": 6910.16, + "end": 6910.96, + "probability": 0.9573 + }, + { + "start": 6911.32, + "end": 6912.32, + "probability": 0.5793 + }, + { + "start": 6912.78, + "end": 6914.86, + "probability": 0.9671 + }, + { + "start": 6914.86, + "end": 6918.2, + "probability": 0.9304 + }, + { + "start": 6918.52, + "end": 6920.18, + "probability": 0.7768 + }, + { + "start": 6920.58, + "end": 6922.2, + "probability": 0.8086 + }, + { + "start": 6922.28, + "end": 6922.74, + "probability": 0.4637 + }, + { + "start": 6922.86, + "end": 6927.5, + "probability": 0.9703 + }, + { + "start": 6927.6, + "end": 6928.2, + "probability": 0.8516 + }, + { + "start": 6929.04, + "end": 6931.1, + "probability": 0.9857 + }, + { + "start": 6931.36, + "end": 6933.62, + "probability": 0.9374 + }, + { + "start": 6933.96, + "end": 6934.6, + "probability": 0.6839 + }, + { + "start": 6934.66, + "end": 6936.94, + "probability": 0.9661 + }, + { + "start": 6937.14, + "end": 6938.1, + "probability": 0.9644 + }, + { + "start": 6938.18, + "end": 6938.44, + "probability": 0.3466 + }, + { + "start": 6938.44, + "end": 6938.7, + "probability": 0.6759 + }, + { + "start": 6938.94, + "end": 6940.26, + "probability": 0.6886 + }, + { + "start": 6941.42, + "end": 6944.06, + "probability": 0.616 + }, + { + "start": 6944.06, + "end": 6944.32, + "probability": 0.6446 + }, + { + "start": 6947.46, + "end": 6948.5, + "probability": 0.4942 + }, + { + "start": 6948.5, + "end": 6949.68, + "probability": 0.5504 + }, + { + "start": 6952.84, + "end": 6954.02, + "probability": 0.7435 + }, + { + "start": 6955.36, + "end": 6956.38, + "probability": 0.5148 + }, + { + "start": 6956.74, + "end": 6957.38, + "probability": 0.5939 + }, + { + "start": 6957.46, + "end": 6958.8, + "probability": 0.9402 + }, + { + "start": 6959.64, + "end": 6961.12, + "probability": 0.9654 + }, + { + "start": 6963.26, + "end": 6964.48, + "probability": 0.9949 + }, + { + "start": 6965.08, + "end": 6967.6, + "probability": 0.5242 + }, + { + "start": 6967.92, + "end": 6969.22, + "probability": 0.1295 + }, + { + "start": 6971.34, + "end": 6971.48, + "probability": 0.2462 + }, + { + "start": 6971.48, + "end": 6972.2, + "probability": 0.6116 + }, + { + "start": 6973.14, + "end": 6976.48, + "probability": 0.5678 + }, + { + "start": 6977.06, + "end": 6980.43, + "probability": 0.1561 + }, + { + "start": 6986.3, + "end": 6987.08, + "probability": 0.527 + }, + { + "start": 6987.36, + "end": 6990.2, + "probability": 0.1608 + }, + { + "start": 6991.26, + "end": 6992.4, + "probability": 0.96 + }, + { + "start": 6995.64, + "end": 6996.5, + "probability": 0.9741 + }, + { + "start": 6997.1, + "end": 6997.64, + "probability": 0.0662 + }, + { + "start": 7000.82, + "end": 7001.18, + "probability": 0.6099 + }, + { + "start": 7002.0, + "end": 7002.68, + "probability": 0.2129 + }, + { + "start": 7004.32, + "end": 7005.66, + "probability": 0.8724 + }, + { + "start": 7008.88, + "end": 7009.56, + "probability": 0.3218 + }, + { + "start": 7010.22, + "end": 7011.44, + "probability": 0.9794 + }, + { + "start": 7015.48, + "end": 7017.26, + "probability": 0.5861 + }, + { + "start": 7022.44, + "end": 7024.9, + "probability": 0.6842 + }, + { + "start": 7025.04, + "end": 7027.98, + "probability": 0.9219 + }, + { + "start": 7028.42, + "end": 7030.9, + "probability": 0.9902 + }, + { + "start": 7031.44, + "end": 7036.84, + "probability": 0.5891 + }, + { + "start": 7037.88, + "end": 7039.64, + "probability": 0.6049 + }, + { + "start": 7041.98, + "end": 7042.6, + "probability": 0.6273 + }, + { + "start": 7042.74, + "end": 7044.56, + "probability": 0.9695 + }, + { + "start": 7044.94, + "end": 7045.28, + "probability": 0.8938 + }, + { + "start": 7046.16, + "end": 7047.46, + "probability": 0.8442 + }, + { + "start": 7048.72, + "end": 7053.54, + "probability": 0.9927 + }, + { + "start": 7054.04, + "end": 7055.34, + "probability": 0.7131 + }, + { + "start": 7055.42, + "end": 7058.22, + "probability": 0.8932 + }, + { + "start": 7059.1, + "end": 7065.18, + "probability": 0.9784 + }, + { + "start": 7065.8, + "end": 7066.4, + "probability": 0.7095 + }, + { + "start": 7066.48, + "end": 7068.62, + "probability": 0.9905 + }, + { + "start": 7068.62, + "end": 7071.58, + "probability": 0.9972 + }, + { + "start": 7072.0, + "end": 7076.26, + "probability": 0.9607 + }, + { + "start": 7077.34, + "end": 7080.94, + "probability": 0.9705 + }, + { + "start": 7081.02, + "end": 7083.96, + "probability": 0.9982 + }, + { + "start": 7084.56, + "end": 7087.1, + "probability": 0.973 + }, + { + "start": 7088.16, + "end": 7091.68, + "probability": 0.8688 + }, + { + "start": 7092.28, + "end": 7095.68, + "probability": 0.6449 + }, + { + "start": 7096.78, + "end": 7099.22, + "probability": 0.9847 + }, + { + "start": 7099.88, + "end": 7102.1, + "probability": 0.5991 + }, + { + "start": 7102.16, + "end": 7105.24, + "probability": 0.958 + }, + { + "start": 7106.08, + "end": 7108.62, + "probability": 0.9474 + }, + { + "start": 7110.04, + "end": 7112.11, + "probability": 0.9602 + }, + { + "start": 7112.32, + "end": 7115.72, + "probability": 0.9908 + }, + { + "start": 7116.42, + "end": 7117.66, + "probability": 0.9943 + }, + { + "start": 7118.74, + "end": 7122.6, + "probability": 0.9292 + }, + { + "start": 7123.42, + "end": 7125.24, + "probability": 0.9797 + }, + { + "start": 7125.42, + "end": 7127.26, + "probability": 0.9539 + }, + { + "start": 7127.82, + "end": 7128.68, + "probability": 0.9232 + }, + { + "start": 7128.96, + "end": 7129.38, + "probability": 0.5064 + }, + { + "start": 7129.42, + "end": 7130.14, + "probability": 0.9069 + }, + { + "start": 7130.54, + "end": 7132.24, + "probability": 0.9926 + }, + { + "start": 7132.64, + "end": 7133.42, + "probability": 0.9678 + }, + { + "start": 7133.96, + "end": 7137.62, + "probability": 0.8746 + }, + { + "start": 7138.06, + "end": 7140.7, + "probability": 0.9907 + }, + { + "start": 7140.74, + "end": 7141.56, + "probability": 0.859 + }, + { + "start": 7141.74, + "end": 7142.4, + "probability": 0.7752 + }, + { + "start": 7142.72, + "end": 7143.75, + "probability": 0.9789 + }, + { + "start": 7145.2, + "end": 7147.16, + "probability": 0.9624 + }, + { + "start": 7148.04, + "end": 7149.96, + "probability": 0.9868 + }, + { + "start": 7150.0, + "end": 7154.08, + "probability": 0.9829 + }, + { + "start": 7154.18, + "end": 7158.44, + "probability": 0.9866 + }, + { + "start": 7159.2, + "end": 7162.4, + "probability": 0.9025 + }, + { + "start": 7162.58, + "end": 7163.46, + "probability": 0.6804 + }, + { + "start": 7163.5, + "end": 7164.24, + "probability": 0.7577 + }, + { + "start": 7164.6, + "end": 7165.88, + "probability": 0.9836 + }, + { + "start": 7166.26, + "end": 7167.22, + "probability": 0.7687 + }, + { + "start": 7167.28, + "end": 7169.26, + "probability": 0.7862 + }, + { + "start": 7169.86, + "end": 7170.66, + "probability": 0.5532 + }, + { + "start": 7171.02, + "end": 7171.34, + "probability": 0.9249 + }, + { + "start": 7171.54, + "end": 7172.36, + "probability": 0.8773 + }, + { + "start": 7172.42, + "end": 7174.32, + "probability": 0.9598 + }, + { + "start": 7175.0, + "end": 7179.84, + "probability": 0.9828 + }, + { + "start": 7180.48, + "end": 7181.19, + "probability": 0.6099 + }, + { + "start": 7181.42, + "end": 7183.82, + "probability": 0.9878 + }, + { + "start": 7184.74, + "end": 7188.84, + "probability": 0.7136 + }, + { + "start": 7188.98, + "end": 7189.94, + "probability": 0.9365 + }, + { + "start": 7190.02, + "end": 7191.39, + "probability": 0.9929 + }, + { + "start": 7191.89, + "end": 7193.59, + "probability": 0.6256 + }, + { + "start": 7194.21, + "end": 7197.65, + "probability": 0.9771 + }, + { + "start": 7198.17, + "end": 7200.63, + "probability": 0.9383 + }, + { + "start": 7200.99, + "end": 7202.15, + "probability": 0.7438 + }, + { + "start": 7202.23, + "end": 7202.81, + "probability": 0.8125 + }, + { + "start": 7202.91, + "end": 7205.01, + "probability": 0.9876 + }, + { + "start": 7205.11, + "end": 7208.13, + "probability": 0.9924 + }, + { + "start": 7208.45, + "end": 7209.25, + "probability": 0.7804 + }, + { + "start": 7209.35, + "end": 7211.61, + "probability": 0.9663 + }, + { + "start": 7212.79, + "end": 7213.35, + "probability": 0.4064 + }, + { + "start": 7213.35, + "end": 7214.43, + "probability": 0.7326 + }, + { + "start": 7229.39, + "end": 7229.55, + "probability": 0.26 + }, + { + "start": 7229.57, + "end": 7230.31, + "probability": 0.8383 + }, + { + "start": 7230.67, + "end": 7231.17, + "probability": 0.4849 + }, + { + "start": 7231.21, + "end": 7232.05, + "probability": 0.6369 + }, + { + "start": 7232.13, + "end": 7233.47, + "probability": 0.7936 + }, + { + "start": 7233.69, + "end": 7238.25, + "probability": 0.9635 + }, + { + "start": 7239.19, + "end": 7240.45, + "probability": 0.9952 + }, + { + "start": 7240.99, + "end": 7242.69, + "probability": 0.9573 + }, + { + "start": 7243.65, + "end": 7244.25, + "probability": 0.6919 + }, + { + "start": 7244.35, + "end": 7245.53, + "probability": 0.8129 + }, + { + "start": 7245.57, + "end": 7246.59, + "probability": 0.879 + }, + { + "start": 7246.77, + "end": 7247.97, + "probability": 0.977 + }, + { + "start": 7248.05, + "end": 7248.99, + "probability": 0.7696 + }, + { + "start": 7249.11, + "end": 7251.39, + "probability": 0.7561 + }, + { + "start": 7251.51, + "end": 7253.17, + "probability": 0.7189 + }, + { + "start": 7253.83, + "end": 7255.77, + "probability": 0.5305 + }, + { + "start": 7255.89, + "end": 7256.69, + "probability": 0.9343 + }, + { + "start": 7256.79, + "end": 7258.19, + "probability": 0.9106 + }, + { + "start": 7259.19, + "end": 7263.49, + "probability": 0.1133 + }, + { + "start": 7263.49, + "end": 7264.55, + "probability": 0.1285 + }, + { + "start": 7264.55, + "end": 7265.65, + "probability": 0.2531 + }, + { + "start": 7265.93, + "end": 7266.41, + "probability": 0.2478 + }, + { + "start": 7267.85, + "end": 7268.23, + "probability": 0.2029 + }, + { + "start": 7268.95, + "end": 7274.07, + "probability": 0.0865 + }, + { + "start": 7275.39, + "end": 7276.37, + "probability": 0.3367 + }, + { + "start": 7287.47, + "end": 7288.39, + "probability": 0.3834 + }, + { + "start": 7289.91, + "end": 7293.71, + "probability": 0.0594 + }, + { + "start": 7295.61, + "end": 7298.73, + "probability": 0.0337 + }, + { + "start": 7299.71, + "end": 7299.71, + "probability": 0.0611 + }, + { + "start": 7299.71, + "end": 7299.71, + "probability": 0.0752 + }, + { + "start": 7299.71, + "end": 7299.71, + "probability": 0.0486 + }, + { + "start": 7299.71, + "end": 7299.71, + "probability": 0.1704 + }, + { + "start": 7299.71, + "end": 7300.73, + "probability": 0.1567 + }, + { + "start": 7302.77, + "end": 7302.99, + "probability": 0.0727 + }, + { + "start": 7302.99, + "end": 7306.01, + "probability": 0.0466 + }, + { + "start": 7307.19, + "end": 7307.71, + "probability": 0.004 + }, + { + "start": 7308.15, + "end": 7308.77, + "probability": 0.0613 + }, + { + "start": 7311.15, + "end": 7312.03, + "probability": 0.2255 + }, + { + "start": 7312.89, + "end": 7313.15, + "probability": 0.0297 + }, + { + "start": 7313.57, + "end": 7315.69, + "probability": 0.1599 + }, + { + "start": 7316.02, + "end": 7319.12, + "probability": 0.029 + }, + { + "start": 7319.35, + "end": 7319.71, + "probability": 0.0434 + }, + { + "start": 7320.57, + "end": 7321.91, + "probability": 0.0561 + }, + { + "start": 7322.0, + "end": 7322.0, + "probability": 0.0 + }, + { + "start": 7322.0, + "end": 7322.0, + "probability": 0.0 + }, + { + "start": 7322.0, + "end": 7322.0, + "probability": 0.0 + }, + { + "start": 7322.0, + "end": 7322.0, + "probability": 0.0 + }, + { + "start": 7322.0, + "end": 7322.0, + "probability": 0.0 + }, + { + "start": 7322.0, + "end": 7322.0, + "probability": 0.0 + }, + { + "start": 7322.0, + "end": 7322.0, + "probability": 0.0 + }, + { + "start": 7322.0, + "end": 7322.0, + "probability": 0.0 + }, + { + "start": 7322.0, + "end": 7322.0, + "probability": 0.0 + }, + { + "start": 7322.16, + "end": 7322.4, + "probability": 0.3006 + }, + { + "start": 7323.54, + "end": 7325.14, + "probability": 0.8752 + }, + { + "start": 7325.36, + "end": 7326.54, + "probability": 0.7411 + }, + { + "start": 7326.58, + "end": 7327.23, + "probability": 0.8597 + }, + { + "start": 7327.74, + "end": 7331.92, + "probability": 0.9894 + }, + { + "start": 7331.96, + "end": 7334.1, + "probability": 0.858 + }, + { + "start": 7334.6, + "end": 7338.62, + "probability": 0.9849 + }, + { + "start": 7338.66, + "end": 7338.9, + "probability": 0.6236 + }, + { + "start": 7341.36, + "end": 7344.08, + "probability": 0.8631 + }, + { + "start": 7355.24, + "end": 7356.26, + "probability": 0.4722 + }, + { + "start": 7359.96, + "end": 7360.42, + "probability": 0.5966 + }, + { + "start": 7360.5, + "end": 7361.16, + "probability": 0.6901 + }, + { + "start": 7361.24, + "end": 7361.94, + "probability": 0.5937 + }, + { + "start": 7362.0, + "end": 7362.78, + "probability": 0.6819 + }, + { + "start": 7362.9, + "end": 7363.44, + "probability": 0.7754 + }, + { + "start": 7363.46, + "end": 7364.6, + "probability": 0.9234 + }, + { + "start": 7364.66, + "end": 7365.74, + "probability": 0.9498 + }, + { + "start": 7366.6, + "end": 7370.96, + "probability": 0.9487 + }, + { + "start": 7371.08, + "end": 7372.78, + "probability": 0.7632 + }, + { + "start": 7373.4, + "end": 7374.88, + "probability": 0.6657 + }, + { + "start": 7375.18, + "end": 7376.1, + "probability": 0.8044 + }, + { + "start": 7376.16, + "end": 7377.32, + "probability": 0.7835 + }, + { + "start": 7378.08, + "end": 7382.6, + "probability": 0.9643 + }, + { + "start": 7382.94, + "end": 7384.74, + "probability": 0.9747 + }, + { + "start": 7385.04, + "end": 7385.68, + "probability": 0.8807 + }, + { + "start": 7386.34, + "end": 7387.22, + "probability": 0.7845 + }, + { + "start": 7387.62, + "end": 7389.6, + "probability": 0.9739 + }, + { + "start": 7389.74, + "end": 7392.0, + "probability": 0.8569 + }, + { + "start": 7392.14, + "end": 7393.62, + "probability": 0.6403 + }, + { + "start": 7394.06, + "end": 7398.38, + "probability": 0.9763 + }, + { + "start": 7399.82, + "end": 7400.4, + "probability": 0.7592 + }, + { + "start": 7400.48, + "end": 7404.72, + "probability": 0.9411 + }, + { + "start": 7405.12, + "end": 7409.92, + "probability": 0.9668 + }, + { + "start": 7410.34, + "end": 7411.04, + "probability": 0.7729 + }, + { + "start": 7411.1, + "end": 7412.64, + "probability": 0.9918 + }, + { + "start": 7412.92, + "end": 7416.4, + "probability": 0.9052 + }, + { + "start": 7416.76, + "end": 7419.78, + "probability": 0.9845 + }, + { + "start": 7419.78, + "end": 7420.24, + "probability": 0.7878 + }, + { + "start": 7420.54, + "end": 7421.38, + "probability": 0.7741 + }, + { + "start": 7421.92, + "end": 7423.28, + "probability": 0.9605 + }, + { + "start": 7423.6, + "end": 7424.74, + "probability": 0.9786 + }, + { + "start": 7424.92, + "end": 7426.06, + "probability": 0.8517 + }, + { + "start": 7426.68, + "end": 7428.92, + "probability": 0.9078 + }, + { + "start": 7429.76, + "end": 7432.24, + "probability": 0.9066 + }, + { + "start": 7432.26, + "end": 7434.17, + "probability": 0.9214 + }, + { + "start": 7434.3, + "end": 7436.06, + "probability": 0.101 + }, + { + "start": 7436.56, + "end": 7440.56, + "probability": 0.9013 + }, + { + "start": 7440.7, + "end": 7441.46, + "probability": 0.838 + }, + { + "start": 7441.6, + "end": 7442.48, + "probability": 0.6475 + }, + { + "start": 7442.86, + "end": 7443.14, + "probability": 0.584 + }, + { + "start": 7443.22, + "end": 7443.76, + "probability": 0.8822 + }, + { + "start": 7443.8, + "end": 7445.92, + "probability": 0.9814 + }, + { + "start": 7446.08, + "end": 7446.94, + "probability": 0.6729 + }, + { + "start": 7448.09, + "end": 7451.72, + "probability": 0.9774 + }, + { + "start": 7451.86, + "end": 7453.0, + "probability": 0.9299 + }, + { + "start": 7453.38, + "end": 7453.96, + "probability": 0.5926 + }, + { + "start": 7454.36, + "end": 7455.66, + "probability": 0.972 + }, + { + "start": 7455.98, + "end": 7458.18, + "probability": 0.9751 + }, + { + "start": 7458.82, + "end": 7459.88, + "probability": 0.8877 + }, + { + "start": 7460.0, + "end": 7460.58, + "probability": 0.8644 + }, + { + "start": 7460.94, + "end": 7464.22, + "probability": 0.9929 + }, + { + "start": 7464.3, + "end": 7465.08, + "probability": 0.9459 + }, + { + "start": 7465.08, + "end": 7467.66, + "probability": 0.9198 + }, + { + "start": 7468.08, + "end": 7471.22, + "probability": 0.9331 + }, + { + "start": 7471.4, + "end": 7471.84, + "probability": 0.9159 + }, + { + "start": 7472.02, + "end": 7472.88, + "probability": 0.2877 + }, + { + "start": 7473.34, + "end": 7474.72, + "probability": 0.9974 + }, + { + "start": 7474.98, + "end": 7476.56, + "probability": 0.9654 + }, + { + "start": 7478.85, + "end": 7479.1, + "probability": 0.3782 + }, + { + "start": 7479.14, + "end": 7481.56, + "probability": 0.836 + }, + { + "start": 7481.74, + "end": 7485.1, + "probability": 0.799 + }, + { + "start": 7485.46, + "end": 7489.14, + "probability": 0.9008 + }, + { + "start": 7489.7, + "end": 7491.08, + "probability": 0.9201 + }, + { + "start": 7491.3, + "end": 7493.78, + "probability": 0.9909 + }, + { + "start": 7493.88, + "end": 7494.1, + "probability": 0.724 + }, + { + "start": 7494.62, + "end": 7495.46, + "probability": 0.4609 + }, + { + "start": 7496.12, + "end": 7497.22, + "probability": 0.9952 + }, + { + "start": 7498.98, + "end": 7502.52, + "probability": 0.5781 + }, + { + "start": 7503.28, + "end": 7508.42, + "probability": 0.8724 + }, + { + "start": 7508.74, + "end": 7513.66, + "probability": 0.4407 + }, + { + "start": 7513.76, + "end": 7514.54, + "probability": 0.5819 + }, + { + "start": 7523.14, + "end": 7525.02, + "probability": 0.1806 + }, + { + "start": 7536.92, + "end": 7542.18, + "probability": 0.1034 + }, + { + "start": 7542.18, + "end": 7542.18, + "probability": 0.0495 + }, + { + "start": 7542.18, + "end": 7542.18, + "probability": 0.0279 + }, + { + "start": 7542.18, + "end": 7544.84, + "probability": 0.4823 + }, + { + "start": 7547.32, + "end": 7549.96, + "probability": 0.3037 + }, + { + "start": 7550.4, + "end": 7552.84, + "probability": 0.0292 + }, + { + "start": 7553.46, + "end": 7556.86, + "probability": 0.0877 + }, + { + "start": 7558.16, + "end": 7560.68, + "probability": 0.0494 + }, + { + "start": 7562.24, + "end": 7564.38, + "probability": 0.1295 + }, + { + "start": 7566.86, + "end": 7567.18, + "probability": 0.0972 + }, + { + "start": 7598.0, + "end": 7598.0, + "probability": 0.0 + }, + { + "start": 7598.0, + "end": 7598.0, + "probability": 0.0 + }, + { + "start": 7598.0, + "end": 7598.0, + "probability": 0.0 + }, + { + "start": 7598.0, + "end": 7598.0, + "probability": 0.0 + }, + { + "start": 7598.0, + "end": 7598.0, + "probability": 0.0 + }, + { + "start": 7598.0, + "end": 7598.0, + "probability": 0.0 + }, + { + "start": 7598.0, + "end": 7598.0, + "probability": 0.0 + }, + { + "start": 7598.0, + "end": 7598.0, + "probability": 0.0 + }, + { + "start": 7598.0, + "end": 7598.0, + "probability": 0.0 + }, + { + "start": 7598.0, + "end": 7598.0, + "probability": 0.0 + }, + { + "start": 7598.0, + "end": 7598.0, + "probability": 0.0 + }, + { + "start": 7598.0, + "end": 7598.0, + "probability": 0.0 + }, + { + "start": 7598.0, + "end": 7598.0, + "probability": 0.0 + }, + { + "start": 7598.0, + "end": 7598.0, + "probability": 0.0 + }, + { + "start": 7598.0, + "end": 7598.0, + "probability": 0.0 + }, + { + "start": 7598.0, + "end": 7598.0, + "probability": 0.0 + }, + { + "start": 7598.0, + "end": 7598.0, + "probability": 0.0 + }, + { + "start": 7598.0, + "end": 7598.0, + "probability": 0.0 + }, + { + "start": 7598.53, + "end": 7600.58, + "probability": 0.1028 + }, + { + "start": 7600.8, + "end": 7602.16, + "probability": 0.8394 + }, + { + "start": 7602.98, + "end": 7605.04, + "probability": 0.9637 + }, + { + "start": 7605.6, + "end": 7607.14, + "probability": 0.6849 + }, + { + "start": 7607.7, + "end": 7609.08, + "probability": 0.1581 + }, + { + "start": 7610.0, + "end": 7610.94, + "probability": 0.2984 + }, + { + "start": 7719.0, + "end": 7719.0, + "probability": 0.0 + }, + { + "start": 7719.0, + "end": 7719.0, + "probability": 0.0 + }, + { + "start": 7719.0, + "end": 7719.0, + "probability": 0.0 + }, + { + "start": 7719.0, + "end": 7719.0, + "probability": 0.0 + }, + { + "start": 7719.0, + "end": 7719.0, + "probability": 0.0 + }, + { + "start": 7719.0, + "end": 7719.0, + "probability": 0.0 + }, + { + "start": 7719.0, + "end": 7719.0, + "probability": 0.0 + }, + { + "start": 7719.0, + "end": 7719.0, + "probability": 0.0 + }, + { + "start": 7719.0, + "end": 7719.0, + "probability": 0.0 + }, + { + "start": 7719.0, + "end": 7719.0, + "probability": 0.0 + }, + { + "start": 7719.0, + "end": 7719.0, + "probability": 0.0 + }, + { + "start": 7719.0, + "end": 7719.0, + "probability": 0.0 + }, + { + "start": 7719.0, + "end": 7719.0, + "probability": 0.0 + }, + { + "start": 7719.0, + "end": 7719.0, + "probability": 0.0 + }, + { + "start": 7719.0, + "end": 7719.0, + "probability": 0.0 + }, + { + "start": 7719.0, + "end": 7719.0, + "probability": 0.0 + }, + { + "start": 7719.0, + "end": 7719.0, + "probability": 0.0 + }, + { + "start": 7719.0, + "end": 7719.0, + "probability": 0.0 + }, + { + "start": 7719.0, + "end": 7719.0, + "probability": 0.0 + }, + { + "start": 7719.0, + "end": 7719.0, + "probability": 0.0 + }, + { + "start": 7719.0, + "end": 7719.0, + "probability": 0.0 + }, + { + "start": 7719.0, + "end": 7719.0, + "probability": 0.0 + }, + { + "start": 7719.0, + "end": 7719.0, + "probability": 0.0 + }, + { + "start": 7719.0, + "end": 7719.0, + "probability": 0.0 + }, + { + "start": 7719.0, + "end": 7719.0, + "probability": 0.0 + }, + { + "start": 7719.0, + "end": 7719.0, + "probability": 0.0 + }, + { + "start": 7719.0, + "end": 7719.0, + "probability": 0.0 + }, + { + "start": 7719.0, + "end": 7719.0, + "probability": 0.0 + }, + { + "start": 7719.0, + "end": 7719.0, + "probability": 0.0 + }, + { + "start": 7719.0, + "end": 7719.0, + "probability": 0.0 + }, + { + "start": 7719.0, + "end": 7719.0, + "probability": 0.0 + }, + { + "start": 7719.0, + "end": 7719.0, + "probability": 0.0 + }, + { + "start": 7719.0, + "end": 7719.0, + "probability": 0.0 + }, + { + "start": 7719.0, + "end": 7719.0, + "probability": 0.0 + }, + { + "start": 7719.0, + "end": 7719.0, + "probability": 0.0 + }, + { + "start": 7719.0, + "end": 7719.0, + "probability": 0.0 + }, + { + "start": 7719.0, + "end": 7719.0, + "probability": 0.0 + }, + { + "start": 7719.0, + "end": 7719.0, + "probability": 0.0 + }, + { + "start": 7719.0, + "end": 7719.0, + "probability": 0.0 + }, + { + "start": 7719.0, + "end": 7719.0, + "probability": 0.0 + }, + { + "start": 7719.0, + "end": 7719.0, + "probability": 0.0 + }, + { + "start": 7719.0, + "end": 7719.0, + "probability": 0.0 + }, + { + "start": 7719.0, + "end": 7719.0, + "probability": 0.0 + }, + { + "start": 7719.0, + "end": 7719.0, + "probability": 0.0 + }, + { + "start": 7719.0, + "end": 7719.0, + "probability": 0.0 + }, + { + "start": 7719.0, + "end": 7719.0, + "probability": 0.0 + }, + { + "start": 7719.0, + "end": 7719.0, + "probability": 0.0 + }, + { + "start": 7719.0, + "end": 7719.0, + "probability": 0.0 + }, + { + "start": 7719.0, + "end": 7719.0, + "probability": 0.0 + }, + { + "start": 7719.0, + "end": 7719.0, + "probability": 0.0 + }, + { + "start": 7719.0, + "end": 7719.0, + "probability": 0.0 + }, + { + "start": 7719.0, + "end": 7719.0, + "probability": 0.0 + }, + { + "start": 7719.0, + "end": 7719.0, + "probability": 0.0 + }, + { + "start": 7719.0, + "end": 7719.0, + "probability": 0.0 + }, + { + "start": 7719.0, + "end": 7719.0, + "probability": 0.0 + }, + { + "start": 7719.0, + "end": 7719.0, + "probability": 0.0 + }, + { + "start": 7719.0, + "end": 7719.0, + "probability": 0.0 + }, + { + "start": 7719.0, + "end": 7719.0, + "probability": 0.0 + }, + { + "start": 7719.0, + "end": 7719.0, + "probability": 0.0 + }, + { + "start": 7719.08, + "end": 7723.12, + "probability": 0.5466 + }, + { + "start": 7723.66, + "end": 7725.12, + "probability": 0.28 + }, + { + "start": 7725.25, + "end": 7725.9, + "probability": 0.2572 + }, + { + "start": 7725.94, + "end": 7728.76, + "probability": 0.7341 + }, + { + "start": 7728.9, + "end": 7729.28, + "probability": 0.5265 + }, + { + "start": 7729.92, + "end": 7731.04, + "probability": 0.0481 + }, + { + "start": 7732.24, + "end": 7732.42, + "probability": 0.0286 + }, + { + "start": 7732.42, + "end": 7732.92, + "probability": 0.2384 + }, + { + "start": 7733.18, + "end": 7734.9, + "probability": 0.4435 + }, + { + "start": 7735.2, + "end": 7737.08, + "probability": 0.8161 + }, + { + "start": 7737.08, + "end": 7738.08, + "probability": 0.4362 + }, + { + "start": 7738.08, + "end": 7739.44, + "probability": 0.9555 + }, + { + "start": 7739.44, + "end": 7740.0, + "probability": 0.04 + }, + { + "start": 7740.0, + "end": 7740.66, + "probability": 0.3854 + }, + { + "start": 7741.16, + "end": 7741.52, + "probability": 0.444 + }, + { + "start": 7741.52, + "end": 7743.31, + "probability": 0.4687 + }, + { + "start": 7743.66, + "end": 7744.38, + "probability": 0.4063 + }, + { + "start": 7744.72, + "end": 7747.82, + "probability": 0.2921 + }, + { + "start": 7748.2, + "end": 7749.88, + "probability": 0.4235 + }, + { + "start": 7749.88, + "end": 7750.58, + "probability": 0.7423 + }, + { + "start": 7750.82, + "end": 7751.48, + "probability": 0.2689 + }, + { + "start": 7751.48, + "end": 7753.06, + "probability": 0.8064 + }, + { + "start": 7753.78, + "end": 7756.14, + "probability": 0.9841 + }, + { + "start": 7758.44, + "end": 7759.58, + "probability": 0.0117 + }, + { + "start": 7759.92, + "end": 7760.2, + "probability": 0.1206 + }, + { + "start": 7760.32, + "end": 7761.5, + "probability": 0.4624 + }, + { + "start": 7761.6, + "end": 7762.24, + "probability": 0.0765 + }, + { + "start": 7765.62, + "end": 7765.72, + "probability": 0.0434 + }, + { + "start": 7766.46, + "end": 7769.59, + "probability": 0.0144 + }, + { + "start": 7844.0, + "end": 7844.0, + "probability": 0.0 + }, + { + "start": 7844.0, + "end": 7844.0, + "probability": 0.0 + }, + { + "start": 7844.0, + "end": 7844.0, + "probability": 0.0 + }, + { + "start": 7844.0, + "end": 7844.0, + "probability": 0.0 + }, + { + "start": 7844.0, + "end": 7844.0, + "probability": 0.0 + }, + { + "start": 7844.0, + "end": 7844.0, + "probability": 0.0 + }, + { + "start": 7844.0, + "end": 7844.0, + "probability": 0.0 + }, + { + "start": 7844.0, + "end": 7844.0, + "probability": 0.0 + }, + { + "start": 7844.0, + "end": 7844.0, + "probability": 0.0 + }, + { + "start": 7844.0, + "end": 7844.0, + "probability": 0.0 + }, + { + "start": 7844.0, + "end": 7844.0, + "probability": 0.0 + }, + { + "start": 7844.0, + "end": 7844.0, + "probability": 0.0 + }, + { + "start": 7844.0, + "end": 7844.0, + "probability": 0.0 + }, + { + "start": 7844.0, + "end": 7844.0, + "probability": 0.0 + }, + { + "start": 7844.0, + "end": 7844.0, + "probability": 0.0 + }, + { + "start": 7844.0, + "end": 7844.0, + "probability": 0.0 + }, + { + "start": 7844.0, + "end": 7844.0, + "probability": 0.0 + }, + { + "start": 7844.0, + "end": 7844.0, + "probability": 0.0 + }, + { + "start": 7844.0, + "end": 7844.0, + "probability": 0.0 + }, + { + "start": 7844.0, + "end": 7844.0, + "probability": 0.0 + }, + { + "start": 7844.0, + "end": 7844.0, + "probability": 0.0 + }, + { + "start": 7844.0, + "end": 7844.0, + "probability": 0.0 + }, + { + "start": 7844.0, + "end": 7844.0, + "probability": 0.0 + }, + { + "start": 7844.0, + "end": 7844.0, + "probability": 0.0 + }, + { + "start": 7844.0, + "end": 7844.0, + "probability": 0.0 + }, + { + "start": 7844.0, + "end": 7844.0, + "probability": 0.0 + }, + { + "start": 7844.0, + "end": 7844.0, + "probability": 0.0 + }, + { + "start": 7844.0, + "end": 7844.0, + "probability": 0.0 + }, + { + "start": 7844.0, + "end": 7844.0, + "probability": 0.0 + }, + { + "start": 7844.0, + "end": 7844.0, + "probability": 0.0 + }, + { + "start": 7844.0, + "end": 7844.0, + "probability": 0.0 + }, + { + "start": 7844.0, + "end": 7844.0, + "probability": 0.0 + }, + { + "start": 7844.0, + "end": 7844.0, + "probability": 0.0 + }, + { + "start": 7844.0, + "end": 7844.0, + "probability": 0.0 + }, + { + "start": 7844.0, + "end": 7844.0, + "probability": 0.0 + }, + { + "start": 7844.0, + "end": 7844.0, + "probability": 0.0 + }, + { + "start": 7844.0, + "end": 7844.0, + "probability": 0.0 + }, + { + "start": 7844.0, + "end": 7844.0, + "probability": 0.0 + }, + { + "start": 7844.0, + "end": 7844.0, + "probability": 0.0 + }, + { + "start": 7844.0, + "end": 7844.0, + "probability": 0.0 + }, + { + "start": 7844.0, + "end": 7844.0, + "probability": 0.0 + }, + { + "start": 7844.0, + "end": 7844.0, + "probability": 0.0 + }, + { + "start": 7844.0, + "end": 7844.0, + "probability": 0.0 + }, + { + "start": 7844.89, + "end": 7848.74, + "probability": 0.7129 + }, + { + "start": 7849.16, + "end": 7851.42, + "probability": 0.8596 + }, + { + "start": 7851.82, + "end": 7854.68, + "probability": 0.9679 + }, + { + "start": 7855.08, + "end": 7858.28, + "probability": 0.9968 + }, + { + "start": 7858.7, + "end": 7859.64, + "probability": 0.9555 + }, + { + "start": 7860.02, + "end": 7860.88, + "probability": 0.9769 + }, + { + "start": 7861.3, + "end": 7865.42, + "probability": 0.7071 + }, + { + "start": 7865.68, + "end": 7867.48, + "probability": 0.967 + }, + { + "start": 7868.04, + "end": 7869.82, + "probability": 0.9058 + }, + { + "start": 7869.96, + "end": 7873.79, + "probability": 0.8492 + }, + { + "start": 7874.98, + "end": 7875.8, + "probability": 0.0487 + }, + { + "start": 7877.34, + "end": 7877.58, + "probability": 0.0025 + }, + { + "start": 7877.58, + "end": 7877.58, + "probability": 0.0841 + }, + { + "start": 7877.58, + "end": 7877.58, + "probability": 0.0858 + }, + { + "start": 7877.58, + "end": 7877.58, + "probability": 0.0863 + }, + { + "start": 7877.58, + "end": 7877.58, + "probability": 0.0863 + }, + { + "start": 7877.58, + "end": 7877.58, + "probability": 0.1362 + }, + { + "start": 7877.58, + "end": 7878.52, + "probability": 0.266 + }, + { + "start": 7878.86, + "end": 7879.66, + "probability": 0.1279 + }, + { + "start": 7880.1, + "end": 7881.24, + "probability": 0.5367 + }, + { + "start": 7881.5, + "end": 7884.05, + "probability": 0.5103 + }, + { + "start": 7884.76, + "end": 7885.46, + "probability": 0.1691 + }, + { + "start": 7892.28, + "end": 7893.61, + "probability": 0.2378 + }, + { + "start": 7895.92, + "end": 7898.0, + "probability": 0.1183 + }, + { + "start": 7898.18, + "end": 7899.04, + "probability": 0.1349 + }, + { + "start": 7900.74, + "end": 7908.68, + "probability": 0.2347 + }, + { + "start": 7909.6, + "end": 7910.08, + "probability": 0.1847 + }, + { + "start": 7912.6, + "end": 7913.16, + "probability": 0.012 + }, + { + "start": 7922.64, + "end": 7923.71, + "probability": 0.0269 + }, + { + "start": 7926.0, + "end": 7926.12, + "probability": 0.3926 + }, + { + "start": 7927.22, + "end": 7927.58, + "probability": 0.0194 + }, + { + "start": 7927.58, + "end": 7927.58, + "probability": 0.0432 + }, + { + "start": 7927.58, + "end": 7927.58, + "probability": 0.2515 + }, + { + "start": 7927.58, + "end": 7927.58, + "probability": 0.111 + }, + { + "start": 7927.58, + "end": 7927.96, + "probability": 0.0247 + }, + { + "start": 7930.8, + "end": 7931.6, + "probability": 0.0381 + }, + { + "start": 7937.22, + "end": 7937.88, + "probability": 0.0274 + }, + { + "start": 7976.0, + "end": 7976.0, + "probability": 0.0 + }, + { + "start": 7976.0, + "end": 7976.0, + "probability": 0.0 + }, + { + "start": 7976.0, + "end": 7976.0, + "probability": 0.0 + }, + { + "start": 7976.0, + "end": 7976.0, + "probability": 0.0 + }, + { + "start": 7976.0, + "end": 7976.0, + "probability": 0.0 + }, + { + "start": 7976.0, + "end": 7976.0, + "probability": 0.0 + }, + { + "start": 7976.0, + "end": 7976.0, + "probability": 0.0 + }, + { + "start": 7976.0, + "end": 7976.0, + "probability": 0.0 + }, + { + "start": 7976.0, + "end": 7976.0, + "probability": 0.0 + }, + { + "start": 7976.0, + "end": 7976.0, + "probability": 0.0 + }, + { + "start": 7976.0, + "end": 7976.0, + "probability": 0.0 + }, + { + "start": 7976.0, + "end": 7976.0, + "probability": 0.0 + }, + { + "start": 7976.0, + "end": 7976.0, + "probability": 0.0 + }, + { + "start": 7976.0, + "end": 7976.0, + "probability": 0.0 + }, + { + "start": 7976.0, + "end": 7976.0, + "probability": 0.0 + }, + { + "start": 7976.0, + "end": 7976.0, + "probability": 0.0 + }, + { + "start": 7976.0, + "end": 7976.0, + "probability": 0.0 + }, + { + "start": 7976.0, + "end": 7976.0, + "probability": 0.0 + }, + { + "start": 7976.0, + "end": 7976.0, + "probability": 0.0 + }, + { + "start": 7976.0, + "end": 7976.0, + "probability": 0.0 + }, + { + "start": 7976.0, + "end": 7976.0, + "probability": 0.0 + }, + { + "start": 7976.0, + "end": 7976.0, + "probability": 0.0 + }, + { + "start": 7976.0, + "end": 7976.0, + "probability": 0.0 + }, + { + "start": 7976.0, + "end": 7976.0, + "probability": 0.0 + }, + { + "start": 7976.0, + "end": 7976.0, + "probability": 0.0 + }, + { + "start": 7976.0, + "end": 7976.0, + "probability": 0.0 + }, + { + "start": 7976.0, + "end": 7976.0, + "probability": 0.0 + }, + { + "start": 7976.0, + "end": 7976.0, + "probability": 0.0 + }, + { + "start": 7976.0, + "end": 7976.0, + "probability": 0.0 + }, + { + "start": 7976.0, + "end": 7976.0, + "probability": 0.0 + }, + { + "start": 7976.0, + "end": 7976.36, + "probability": 0.2572 + }, + { + "start": 7976.36, + "end": 7976.36, + "probability": 0.0248 + }, + { + "start": 7976.36, + "end": 7976.36, + "probability": 0.0331 + }, + { + "start": 7976.36, + "end": 7976.36, + "probability": 0.0373 + }, + { + "start": 7976.36, + "end": 7976.36, + "probability": 0.2705 + }, + { + "start": 7976.36, + "end": 7977.12, + "probability": 0.6414 + }, + { + "start": 7977.6, + "end": 7978.24, + "probability": 0.3656 + }, + { + "start": 7978.68, + "end": 7980.72, + "probability": 0.6615 + }, + { + "start": 7980.86, + "end": 7983.36, + "probability": 0.5655 + }, + { + "start": 7983.44, + "end": 7987.22, + "probability": 0.9946 + }, + { + "start": 7987.36, + "end": 7988.54, + "probability": 0.3864 + }, + { + "start": 7988.62, + "end": 7988.64, + "probability": 0.283 + }, + { + "start": 7988.64, + "end": 7989.08, + "probability": 0.3751 + }, + { + "start": 7989.64, + "end": 7991.14, + "probability": 0.8359 + }, + { + "start": 7991.18, + "end": 7991.76, + "probability": 0.7732 + }, + { + "start": 7992.08, + "end": 7992.94, + "probability": 0.9647 + }, + { + "start": 7993.08, + "end": 7993.7, + "probability": 0.6974 + }, + { + "start": 7993.98, + "end": 7995.38, + "probability": 0.743 + }, + { + "start": 7995.72, + "end": 7996.35, + "probability": 0.8709 + }, + { + "start": 7996.5, + "end": 7997.52, + "probability": 0.9985 + }, + { + "start": 7997.86, + "end": 7998.08, + "probability": 0.1308 + }, + { + "start": 7998.3, + "end": 8002.98, + "probability": 0.9493 + }, + { + "start": 8003.28, + "end": 8004.58, + "probability": 0.8735 + }, + { + "start": 8004.58, + "end": 8004.86, + "probability": 0.2363 + }, + { + "start": 8005.0, + "end": 8005.72, + "probability": 0.1095 + }, + { + "start": 8006.02, + "end": 8007.86, + "probability": 0.8231 + }, + { + "start": 8008.56, + "end": 8008.62, + "probability": 0.0803 + }, + { + "start": 8008.62, + "end": 8011.28, + "probability": 0.8748 + }, + { + "start": 8011.54, + "end": 8012.27, + "probability": 0.826 + }, + { + "start": 8012.86, + "end": 8015.32, + "probability": 0.9893 + }, + { + "start": 8015.54, + "end": 8017.34, + "probability": 0.9963 + }, + { + "start": 8017.66, + "end": 8018.96, + "probability": 0.8907 + }, + { + "start": 8019.36, + "end": 8020.59, + "probability": 0.4993 + }, + { + "start": 8021.18, + "end": 8023.44, + "probability": 0.8937 + }, + { + "start": 8023.72, + "end": 8026.72, + "probability": 0.976 + }, + { + "start": 8027.0, + "end": 8028.4, + "probability": 0.828 + }, + { + "start": 8028.95, + "end": 8032.74, + "probability": 0.909 + }, + { + "start": 8033.0, + "end": 8034.48, + "probability": 0.8103 + }, + { + "start": 8034.64, + "end": 8037.52, + "probability": 0.9934 + }, + { + "start": 8037.76, + "end": 8039.44, + "probability": 0.9899 + }, + { + "start": 8039.76, + "end": 8043.7, + "probability": 0.9731 + }, + { + "start": 8044.28, + "end": 8046.46, + "probability": 0.9781 + }, + { + "start": 8046.88, + "end": 8050.46, + "probability": 0.9912 + }, + { + "start": 8050.46, + "end": 8053.9, + "probability": 0.994 + }, + { + "start": 8054.36, + "end": 8055.16, + "probability": 0.5142 + }, + { + "start": 8055.16, + "end": 8055.16, + "probability": 0.0186 + }, + { + "start": 8055.16, + "end": 8055.62, + "probability": 0.2942 + }, + { + "start": 8056.14, + "end": 8056.46, + "probability": 0.4378 + }, + { + "start": 8056.64, + "end": 8058.58, + "probability": 0.9957 + }, + { + "start": 8058.68, + "end": 8059.66, + "probability": 0.957 + }, + { + "start": 8060.26, + "end": 8062.46, + "probability": 0.978 + }, + { + "start": 8062.68, + "end": 8065.94, + "probability": 0.9937 + }, + { + "start": 8066.2, + "end": 8068.76, + "probability": 0.9921 + }, + { + "start": 8069.26, + "end": 8069.96, + "probability": 0.7633 + }, + { + "start": 8071.06, + "end": 8072.48, + "probability": 0.9832 + }, + { + "start": 8073.02, + "end": 8074.8, + "probability": 0.9653 + }, + { + "start": 8074.92, + "end": 8075.2, + "probability": 0.8008 + }, + { + "start": 8075.32, + "end": 8078.84, + "probability": 0.9645 + }, + { + "start": 8079.42, + "end": 8083.32, + "probability": 0.8733 + }, + { + "start": 8084.76, + "end": 8088.08, + "probability": 0.9927 + }, + { + "start": 8088.08, + "end": 8092.14, + "probability": 0.9957 + }, + { + "start": 8092.88, + "end": 8098.56, + "probability": 0.9965 + }, + { + "start": 8098.56, + "end": 8101.38, + "probability": 0.9941 + }, + { + "start": 8102.5, + "end": 8104.54, + "probability": 0.9284 + }, + { + "start": 8105.1, + "end": 8105.72, + "probability": 0.0922 + }, + { + "start": 8105.92, + "end": 8106.28, + "probability": 0.4084 + }, + { + "start": 8106.28, + "end": 8107.58, + "probability": 0.4496 + }, + { + "start": 8107.58, + "end": 8108.1, + "probability": 0.7245 + }, + { + "start": 8108.4, + "end": 8109.82, + "probability": 0.193 + }, + { + "start": 8110.1, + "end": 8112.36, + "probability": 0.7896 + }, + { + "start": 8112.54, + "end": 8112.96, + "probability": 0.4998 + }, + { + "start": 8113.16, + "end": 8116.38, + "probability": 0.938 + }, + { + "start": 8116.46, + "end": 8118.9, + "probability": 0.9001 + }, + { + "start": 8119.26, + "end": 8120.36, + "probability": 0.8576 + }, + { + "start": 8121.26, + "end": 8124.62, + "probability": 0.7272 + }, + { + "start": 8124.76, + "end": 8127.92, + "probability": 0.8936 + }, + { + "start": 8127.92, + "end": 8133.34, + "probability": 0.7349 + }, + { + "start": 8134.22, + "end": 8134.82, + "probability": 0.8352 + }, + { + "start": 8135.28, + "end": 8136.34, + "probability": 0.9146 + }, + { + "start": 8136.5, + "end": 8138.92, + "probability": 0.8396 + }, + { + "start": 8139.18, + "end": 8139.82, + "probability": 0.6478 + }, + { + "start": 8139.98, + "end": 8141.68, + "probability": 0.9899 + }, + { + "start": 8142.24, + "end": 8143.57, + "probability": 0.9438 + }, + { + "start": 8144.1, + "end": 8146.73, + "probability": 0.96 + }, + { + "start": 8147.38, + "end": 8148.74, + "probability": 0.9589 + }, + { + "start": 8150.16, + "end": 8151.44, + "probability": 0.5414 + }, + { + "start": 8151.66, + "end": 8153.08, + "probability": 0.9221 + }, + { + "start": 8153.74, + "end": 8154.7, + "probability": 0.8761 + }, + { + "start": 8154.86, + "end": 8157.68, + "probability": 0.8187 + }, + { + "start": 8157.86, + "end": 8158.92, + "probability": 0.9141 + }, + { + "start": 8159.34, + "end": 8162.98, + "probability": 0.9673 + }, + { + "start": 8163.1, + "end": 8165.08, + "probability": 0.7319 + }, + { + "start": 8165.18, + "end": 8166.46, + "probability": 0.9164 + }, + { + "start": 8167.64, + "end": 8169.86, + "probability": 0.8981 + }, + { + "start": 8170.74, + "end": 8171.06, + "probability": 0.4851 + }, + { + "start": 8171.12, + "end": 8171.58, + "probability": 0.7155 + }, + { + "start": 8171.72, + "end": 8174.46, + "probability": 0.9437 + }, + { + "start": 8174.94, + "end": 8175.42, + "probability": 0.9287 + }, + { + "start": 8175.72, + "end": 8176.62, + "probability": 0.9785 + }, + { + "start": 8176.78, + "end": 8178.08, + "probability": 0.9069 + }, + { + "start": 8178.12, + "end": 8178.54, + "probability": 0.9733 + }, + { + "start": 8179.24, + "end": 8179.7, + "probability": 0.0235 + }, + { + "start": 8179.88, + "end": 8181.9, + "probability": 0.0046 + }, + { + "start": 8182.1, + "end": 8182.86, + "probability": 0.4011 + }, + { + "start": 8183.34, + "end": 8184.06, + "probability": 0.9679 + }, + { + "start": 8184.84, + "end": 8185.26, + "probability": 0.8681 + }, + { + "start": 8185.28, + "end": 8186.8, + "probability": 0.939 + }, + { + "start": 8186.94, + "end": 8187.4, + "probability": 0.5697 + }, + { + "start": 8187.48, + "end": 8188.9, + "probability": 0.7411 + }, + { + "start": 8189.48, + "end": 8190.82, + "probability": 0.7938 + }, + { + "start": 8190.92, + "end": 8193.2, + "probability": 0.9694 + }, + { + "start": 8194.28, + "end": 8195.79, + "probability": 0.7887 + }, + { + "start": 8195.98, + "end": 8198.52, + "probability": 0.7375 + }, + { + "start": 8198.6, + "end": 8200.2, + "probability": 0.5734 + }, + { + "start": 8200.36, + "end": 8201.12, + "probability": 0.1523 + }, + { + "start": 8201.12, + "end": 8201.6, + "probability": 0.2807 + }, + { + "start": 8202.46, + "end": 8204.88, + "probability": 0.8912 + }, + { + "start": 8205.16, + "end": 8208.46, + "probability": 0.1134 + }, + { + "start": 8209.08, + "end": 8209.76, + "probability": 0.5885 + }, + { + "start": 8209.82, + "end": 8211.36, + "probability": 0.7192 + }, + { + "start": 8211.42, + "end": 8212.4, + "probability": 0.868 + }, + { + "start": 8212.4, + "end": 8215.06, + "probability": 0.958 + }, + { + "start": 8215.16, + "end": 8216.4, + "probability": 0.9618 + }, + { + "start": 8216.52, + "end": 8217.38, + "probability": 0.5039 + }, + { + "start": 8217.46, + "end": 8219.88, + "probability": 0.9761 + }, + { + "start": 8220.1, + "end": 8221.18, + "probability": 0.3878 + }, + { + "start": 8221.4, + "end": 8223.32, + "probability": 0.4578 + }, + { + "start": 8223.42, + "end": 8225.24, + "probability": 0.387 + }, + { + "start": 8225.4, + "end": 8227.88, + "probability": 0.3115 + }, + { + "start": 8228.4, + "end": 8229.42, + "probability": 0.4717 + }, + { + "start": 8229.58, + "end": 8230.74, + "probability": 0.7381 + }, + { + "start": 8230.82, + "end": 8234.32, + "probability": 0.9883 + }, + { + "start": 8234.64, + "end": 8238.86, + "probability": 0.9967 + }, + { + "start": 8239.12, + "end": 8239.48, + "probability": 0.9267 + }, + { + "start": 8239.52, + "end": 8241.54, + "probability": 0.9099 + }, + { + "start": 8241.62, + "end": 8242.3, + "probability": 0.915 + }, + { + "start": 8242.92, + "end": 8246.02, + "probability": 0.8169 + }, + { + "start": 8246.44, + "end": 8246.62, + "probability": 0.047 + }, + { + "start": 8246.62, + "end": 8246.62, + "probability": 0.4868 + }, + { + "start": 8246.62, + "end": 8250.56, + "probability": 0.9342 + }, + { + "start": 8250.68, + "end": 8251.52, + "probability": 0.8521 + }, + { + "start": 8252.02, + "end": 8253.18, + "probability": 0.9966 + }, + { + "start": 8253.3, + "end": 8253.72, + "probability": 0.9055 + }, + { + "start": 8253.72, + "end": 8254.68, + "probability": 0.9258 + }, + { + "start": 8254.94, + "end": 8256.18, + "probability": 0.9221 + }, + { + "start": 8256.74, + "end": 8258.38, + "probability": 0.9794 + }, + { + "start": 8258.56, + "end": 8259.14, + "probability": 0.8206 + }, + { + "start": 8259.54, + "end": 8261.02, + "probability": 0.9387 + }, + { + "start": 8262.28, + "end": 8264.38, + "probability": 0.9238 + }, + { + "start": 8264.48, + "end": 8265.88, + "probability": 0.9548 + }, + { + "start": 8265.96, + "end": 8267.94, + "probability": 0.9937 + }, + { + "start": 8268.56, + "end": 8269.26, + "probability": 0.9763 + }, + { + "start": 8269.88, + "end": 8272.1, + "probability": 0.9825 + }, + { + "start": 8272.56, + "end": 8273.1, + "probability": 0.8562 + }, + { + "start": 8273.24, + "end": 8277.13, + "probability": 0.5688 + }, + { + "start": 8277.26, + "end": 8280.18, + "probability": 0.796 + }, + { + "start": 8280.34, + "end": 8281.21, + "probability": 0.9961 + }, + { + "start": 8282.34, + "end": 8282.94, + "probability": 0.9287 + }, + { + "start": 8283.0, + "end": 8284.52, + "probability": 0.9583 + }, + { + "start": 8285.34, + "end": 8288.38, + "probability": 0.7773 + }, + { + "start": 8288.54, + "end": 8289.41, + "probability": 0.922 + }, + { + "start": 8289.94, + "end": 8292.2, + "probability": 0.9928 + }, + { + "start": 8292.38, + "end": 8294.86, + "probability": 0.9873 + }, + { + "start": 8295.12, + "end": 8297.97, + "probability": 0.9783 + }, + { + "start": 8298.24, + "end": 8300.06, + "probability": 0.9414 + }, + { + "start": 8300.24, + "end": 8302.64, + "probability": 0.0797 + }, + { + "start": 8302.64, + "end": 8303.14, + "probability": 0.0688 + }, + { + "start": 8303.2, + "end": 8305.38, + "probability": 0.5596 + }, + { + "start": 8305.62, + "end": 8307.16, + "probability": 0.3408 + }, + { + "start": 8307.36, + "end": 8312.58, + "probability": 0.8051 + }, + { + "start": 8312.58, + "end": 8318.58, + "probability": 0.8014 + }, + { + "start": 8319.06, + "end": 8321.7, + "probability": 0.8828 + }, + { + "start": 8322.74, + "end": 8326.06, + "probability": 0.8697 + }, + { + "start": 8326.4, + "end": 8329.24, + "probability": 0.9214 + }, + { + "start": 8330.48, + "end": 8332.88, + "probability": 0.975 + }, + { + "start": 8333.26, + "end": 8333.74, + "probability": 0.2195 + }, + { + "start": 8333.82, + "end": 8333.9, + "probability": 0.419 + }, + { + "start": 8333.9, + "end": 8334.24, + "probability": 0.4688 + }, + { + "start": 8334.24, + "end": 8335.68, + "probability": 0.2069 + }, + { + "start": 8336.44, + "end": 8337.3, + "probability": 0.6936 + }, + { + "start": 8337.68, + "end": 8338.48, + "probability": 0.914 + }, + { + "start": 8338.64, + "end": 8338.96, + "probability": 0.6787 + }, + { + "start": 8339.06, + "end": 8342.72, + "probability": 0.8335 + }, + { + "start": 8344.24, + "end": 8349.5, + "probability": 0.9187 + }, + { + "start": 8349.6, + "end": 8355.16, + "probability": 0.5516 + }, + { + "start": 8355.22, + "end": 8357.1, + "probability": 0.7798 + }, + { + "start": 8358.54, + "end": 8360.7, + "probability": 0.9182 + }, + { + "start": 8361.22, + "end": 8363.56, + "probability": 0.991 + }, + { + "start": 8364.92, + "end": 8368.36, + "probability": 0.4605 + }, + { + "start": 8368.88, + "end": 8369.36, + "probability": 0.7732 + }, + { + "start": 8369.52, + "end": 8370.08, + "probability": 0.6929 + }, + { + "start": 8370.14, + "end": 8372.14, + "probability": 0.8719 + }, + { + "start": 8372.4, + "end": 8375.46, + "probability": 0.9708 + }, + { + "start": 8376.26, + "end": 8376.92, + "probability": 0.7511 + }, + { + "start": 8378.46, + "end": 8381.36, + "probability": 0.9085 + }, + { + "start": 8382.12, + "end": 8383.82, + "probability": 0.6216 + }, + { + "start": 8384.54, + "end": 8387.42, + "probability": 0.9396 + }, + { + "start": 8387.66, + "end": 8388.04, + "probability": 0.4849 + }, + { + "start": 8388.36, + "end": 8392.1, + "probability": 0.9523 + }, + { + "start": 8392.38, + "end": 8393.94, + "probability": 0.8971 + }, + { + "start": 8394.34, + "end": 8396.14, + "probability": 0.9265 + }, + { + "start": 8396.3, + "end": 8398.02, + "probability": 0.9782 + }, + { + "start": 8398.7, + "end": 8398.8, + "probability": 0.9008 + }, + { + "start": 8398.96, + "end": 8400.24, + "probability": 0.8079 + }, + { + "start": 8400.34, + "end": 8401.22, + "probability": 0.6268 + }, + { + "start": 8402.02, + "end": 8403.08, + "probability": 0.7125 + }, + { + "start": 8404.26, + "end": 8405.66, + "probability": 0.6133 + }, + { + "start": 8406.58, + "end": 8407.5, + "probability": 0.3836 + }, + { + "start": 8407.5, + "end": 8408.73, + "probability": 0.924 + }, + { + "start": 8409.52, + "end": 8410.44, + "probability": 0.9408 + }, + { + "start": 8410.82, + "end": 8413.16, + "probability": 0.9614 + }, + { + "start": 8413.84, + "end": 8415.36, + "probability": 0.4429 + }, + { + "start": 8415.72, + "end": 8416.66, + "probability": 0.9771 + }, + { + "start": 8417.12, + "end": 8418.3, + "probability": 0.3087 + }, + { + "start": 8418.42, + "end": 8418.82, + "probability": 0.7645 + }, + { + "start": 8418.88, + "end": 8419.58, + "probability": 0.355 + }, + { + "start": 8419.94, + "end": 8420.7, + "probability": 0.729 + }, + { + "start": 8421.14, + "end": 8421.4, + "probability": 0.6129 + }, + { + "start": 8421.44, + "end": 8422.28, + "probability": 0.5156 + }, + { + "start": 8422.8, + "end": 8424.08, + "probability": 0.5855 + }, + { + "start": 8424.66, + "end": 8428.23, + "probability": 0.1024 + }, + { + "start": 8430.62, + "end": 8431.74, + "probability": 0.0644 + }, + { + "start": 8431.74, + "end": 8431.78, + "probability": 0.1042 + }, + { + "start": 8431.78, + "end": 8431.9, + "probability": 0.0219 + }, + { + "start": 8431.9, + "end": 8431.9, + "probability": 0.2647 + }, + { + "start": 8431.9, + "end": 8432.04, + "probability": 0.1329 + }, + { + "start": 8432.04, + "end": 8432.04, + "probability": 0.1682 + }, + { + "start": 8432.04, + "end": 8432.04, + "probability": 0.149 + }, + { + "start": 8432.04, + "end": 8433.52, + "probability": 0.6455 + }, + { + "start": 8434.2, + "end": 8435.96, + "probability": 0.8304 + }, + { + "start": 8436.66, + "end": 8439.98, + "probability": 0.6839 + }, + { + "start": 8440.8, + "end": 8442.4, + "probability": 0.8349 + }, + { + "start": 8442.52, + "end": 8445.52, + "probability": 0.8667 + }, + { + "start": 8446.74, + "end": 8450.2, + "probability": 0.754 + }, + { + "start": 8450.7, + "end": 8453.34, + "probability": 0.0503 + }, + { + "start": 8454.71, + "end": 8457.56, + "probability": 0.0587 + }, + { + "start": 8457.78, + "end": 8458.02, + "probability": 0.0085 + }, + { + "start": 8458.02, + "end": 8458.52, + "probability": 0.022 + }, + { + "start": 8458.52, + "end": 8459.92, + "probability": 0.1541 + }, + { + "start": 8460.7, + "end": 8461.46, + "probability": 0.0594 + }, + { + "start": 8461.46, + "end": 8461.46, + "probability": 0.1242 + }, + { + "start": 8461.7, + "end": 8462.42, + "probability": 0.2842 + }, + { + "start": 8464.04, + "end": 8464.98, + "probability": 0.092 + }, + { + "start": 8465.7, + "end": 8466.1, + "probability": 0.3119 + }, + { + "start": 8466.1, + "end": 8466.2, + "probability": 0.1726 + }, + { + "start": 8466.5, + "end": 8466.76, + "probability": 0.3424 + }, + { + "start": 8467.56, + "end": 8469.68, + "probability": 0.3917 + }, + { + "start": 8479.12, + "end": 8481.94, + "probability": 0.2512 + }, + { + "start": 8481.94, + "end": 8482.24, + "probability": 0.31 + }, + { + "start": 8482.24, + "end": 8483.76, + "probability": 0.1325 + }, + { + "start": 8484.35, + "end": 8486.72, + "probability": 0.0874 + }, + { + "start": 8486.84, + "end": 8489.14, + "probability": 0.0017 + }, + { + "start": 8489.14, + "end": 8489.22, + "probability": 0.0517 + }, + { + "start": 8489.22, + "end": 8490.66, + "probability": 0.0508 + }, + { + "start": 8491.4, + "end": 8491.4, + "probability": 0.164 + }, + { + "start": 8491.42, + "end": 8495.7, + "probability": 0.1564 + }, + { + "start": 8496.11, + "end": 8497.6, + "probability": 0.0507 + }, + { + "start": 8497.98, + "end": 8503.88, + "probability": 0.1127 + }, + { + "start": 8504.0, + "end": 8504.0, + "probability": 0.0 + }, + { + "start": 8504.0, + "end": 8504.0, + "probability": 0.0 + }, + { + "start": 8504.0, + "end": 8504.0, + "probability": 0.0 + }, + { + "start": 8504.0, + "end": 8504.0, + "probability": 0.0 + }, + { + "start": 8504.0, + "end": 8504.0, + "probability": 0.0 + }, + { + "start": 8504.0, + "end": 8504.0, + "probability": 0.0 + }, + { + "start": 8504.0, + "end": 8504.0, + "probability": 0.0 + }, + { + "start": 8504.0, + "end": 8504.0, + "probability": 0.0 + }, + { + "start": 8504.0, + "end": 8504.0, + "probability": 0.0 + }, + { + "start": 8504.0, + "end": 8504.0, + "probability": 0.0 + }, + { + "start": 8504.0, + "end": 8504.0, + "probability": 0.0 + }, + { + "start": 8504.0, + "end": 8504.0, + "probability": 0.0 + }, + { + "start": 8504.0, + "end": 8504.0, + "probability": 0.0 + }, + { + "start": 8504.0, + "end": 8504.0, + "probability": 0.0 + }, + { + "start": 8504.82, + "end": 8505.31, + "probability": 0.0615 + }, + { + "start": 8505.9, + "end": 8507.22, + "probability": 0.4895 + }, + { + "start": 8507.34, + "end": 8508.0, + "probability": 0.4395 + }, + { + "start": 8508.04, + "end": 8508.57, + "probability": 0.538 + }, + { + "start": 8508.8, + "end": 8510.24, + "probability": 0.565 + }, + { + "start": 8510.4, + "end": 8512.02, + "probability": 0.8014 + }, + { + "start": 8512.24, + "end": 8513.12, + "probability": 0.7725 + }, + { + "start": 8513.52, + "end": 8514.54, + "probability": 0.8164 + }, + { + "start": 8514.54, + "end": 8519.9, + "probability": 0.9757 + }, + { + "start": 8519.9, + "end": 8520.84, + "probability": 0.7911 + }, + { + "start": 8521.24, + "end": 8523.34, + "probability": 0.6425 + }, + { + "start": 8523.4, + "end": 8524.78, + "probability": 0.8735 + }, + { + "start": 8524.92, + "end": 8525.36, + "probability": 0.7888 + }, + { + "start": 8525.64, + "end": 8526.18, + "probability": 0.7892 + }, + { + "start": 8526.2, + "end": 8526.78, + "probability": 0.6031 + }, + { + "start": 8527.18, + "end": 8528.24, + "probability": 0.759 + }, + { + "start": 8528.3, + "end": 8528.66, + "probability": 0.9735 + }, + { + "start": 8528.72, + "end": 8529.7, + "probability": 0.9912 + }, + { + "start": 8530.24, + "end": 8531.02, + "probability": 0.1903 + }, + { + "start": 8531.26, + "end": 8531.86, + "probability": 0.2372 + }, + { + "start": 8532.02, + "end": 8535.28, + "probability": 0.8765 + }, + { + "start": 8535.38, + "end": 8537.76, + "probability": 0.809 + }, + { + "start": 8537.9, + "end": 8540.04, + "probability": 0.9591 + }, + { + "start": 8540.24, + "end": 8540.76, + "probability": 0.5253 + }, + { + "start": 8540.86, + "end": 8542.4, + "probability": 0.9574 + }, + { + "start": 8542.86, + "end": 8546.78, + "probability": 0.8417 + }, + { + "start": 8546.9, + "end": 8548.42, + "probability": 0.9021 + }, + { + "start": 8548.5, + "end": 8549.86, + "probability": 0.8604 + }, + { + "start": 8549.88, + "end": 8551.16, + "probability": 0.9102 + }, + { + "start": 8552.0, + "end": 8552.68, + "probability": 0.9644 + }, + { + "start": 8553.44, + "end": 8554.02, + "probability": 0.858 + }, + { + "start": 8554.4, + "end": 8555.44, + "probability": 0.8336 + }, + { + "start": 8555.64, + "end": 8555.94, + "probability": 0.6507 + }, + { + "start": 8556.02, + "end": 8556.89, + "probability": 0.9404 + }, + { + "start": 8557.92, + "end": 8559.88, + "probability": 0.9009 + }, + { + "start": 8560.68, + "end": 8563.12, + "probability": 0.7248 + }, + { + "start": 8563.6, + "end": 8564.18, + "probability": 0.9214 + }, + { + "start": 8564.24, + "end": 8565.62, + "probability": 0.9691 + }, + { + "start": 8565.96, + "end": 8568.0, + "probability": 0.8303 + }, + { + "start": 8568.46, + "end": 8572.42, + "probability": 0.9766 + }, + { + "start": 8572.52, + "end": 8574.52, + "probability": 0.8739 + }, + { + "start": 8574.58, + "end": 8575.88, + "probability": 0.9498 + }, + { + "start": 8576.14, + "end": 8577.12, + "probability": 0.8147 + }, + { + "start": 8577.26, + "end": 8577.6, + "probability": 0.6593 + }, + { + "start": 8577.76, + "end": 8579.28, + "probability": 0.7633 + }, + { + "start": 8580.0, + "end": 8581.74, + "probability": 0.9987 + }, + { + "start": 8582.26, + "end": 8582.36, + "probability": 0.2722 + }, + { + "start": 8582.36, + "end": 8583.9, + "probability": 0.8942 + }, + { + "start": 8584.74, + "end": 8585.62, + "probability": 0.9219 + }, + { + "start": 8586.74, + "end": 8590.6, + "probability": 0.9885 + }, + { + "start": 8590.74, + "end": 8592.02, + "probability": 0.8086 + }, + { + "start": 8592.6, + "end": 8594.14, + "probability": 0.6292 + }, + { + "start": 8594.82, + "end": 8602.62, + "probability": 0.939 + }, + { + "start": 8602.8, + "end": 8604.42, + "probability": 0.9219 + }, + { + "start": 8605.28, + "end": 8606.58, + "probability": 0.534 + }, + { + "start": 8606.58, + "end": 8607.98, + "probability": 0.8746 + }, + { + "start": 8608.54, + "end": 8610.74, + "probability": 0.9394 + }, + { + "start": 8611.44, + "end": 8612.3, + "probability": 0.9025 + }, + { + "start": 8612.58, + "end": 8613.2, + "probability": 0.8453 + }, + { + "start": 8613.56, + "end": 8614.78, + "probability": 0.9227 + }, + { + "start": 8615.16, + "end": 8616.74, + "probability": 0.9626 + }, + { + "start": 8616.88, + "end": 8617.52, + "probability": 0.8903 + }, + { + "start": 8617.9, + "end": 8620.1, + "probability": 0.9744 + }, + { + "start": 8620.18, + "end": 8620.44, + "probability": 0.2766 + }, + { + "start": 8620.5, + "end": 8620.62, + "probability": 0.3003 + }, + { + "start": 8620.62, + "end": 8625.14, + "probability": 0.979 + }, + { + "start": 8625.26, + "end": 8627.86, + "probability": 0.4996 + }, + { + "start": 8629.63, + "end": 8632.98, + "probability": 0.9683 + }, + { + "start": 8633.0, + "end": 8635.08, + "probability": 0.4243 + }, + { + "start": 8635.36, + "end": 8635.38, + "probability": 0.0628 + }, + { + "start": 8635.38, + "end": 8635.6, + "probability": 0.6422 + }, + { + "start": 8635.7, + "end": 8635.7, + "probability": 0.0641 + }, + { + "start": 8635.92, + "end": 8636.74, + "probability": 0.7023 + }, + { + "start": 8636.76, + "end": 8637.86, + "probability": 0.8473 + }, + { + "start": 8638.06, + "end": 8640.68, + "probability": 0.8793 + }, + { + "start": 8641.0, + "end": 8641.72, + "probability": 0.7513 + }, + { + "start": 8642.82, + "end": 8644.7, + "probability": 0.9033 + }, + { + "start": 8645.1, + "end": 8648.62, + "probability": 0.93 + }, + { + "start": 8648.98, + "end": 8649.26, + "probability": 0.8915 + }, + { + "start": 8652.2, + "end": 8653.26, + "probability": 0.9429 + }, + { + "start": 8655.84, + "end": 8657.98, + "probability": 0.608 + }, + { + "start": 8658.24, + "end": 8659.87, + "probability": 0.673 + }, + { + "start": 8660.62, + "end": 8662.92, + "probability": 0.9688 + }, + { + "start": 8663.0, + "end": 8664.44, + "probability": 0.9966 + }, + { + "start": 8664.66, + "end": 8665.48, + "probability": 0.845 + }, + { + "start": 8666.02, + "end": 8669.12, + "probability": 0.0297 + }, + { + "start": 8670.84, + "end": 8671.04, + "probability": 0.4232 + }, + { + "start": 8671.04, + "end": 8671.04, + "probability": 0.3491 + }, + { + "start": 8671.04, + "end": 8671.04, + "probability": 0.1051 + }, + { + "start": 8671.04, + "end": 8671.04, + "probability": 0.304 + }, + { + "start": 8671.04, + "end": 8671.04, + "probability": 0.0359 + }, + { + "start": 8671.04, + "end": 8671.04, + "probability": 0.2662 + }, + { + "start": 8671.04, + "end": 8675.2, + "probability": 0.6725 + }, + { + "start": 8675.26, + "end": 8675.8, + "probability": 0.6813 + }, + { + "start": 8676.36, + "end": 8679.36, + "probability": 0.8783 + }, + { + "start": 8679.92, + "end": 8681.02, + "probability": 0.6323 + }, + { + "start": 8682.19, + "end": 8685.6, + "probability": 0.8604 + }, + { + "start": 8685.66, + "end": 8686.8, + "probability": 0.9801 + }, + { + "start": 8687.32, + "end": 8689.48, + "probability": 0.9089 + }, + { + "start": 8689.96, + "end": 8690.84, + "probability": 0.9972 + }, + { + "start": 8690.88, + "end": 8691.33, + "probability": 0.9424 + }, + { + "start": 8692.0, + "end": 8693.68, + "probability": 0.0453 + }, + { + "start": 8694.0, + "end": 8694.02, + "probability": 0.2602 + }, + { + "start": 8694.02, + "end": 8694.26, + "probability": 0.0646 + }, + { + "start": 8694.26, + "end": 8697.54, + "probability": 0.9568 + }, + { + "start": 8698.2, + "end": 8699.28, + "probability": 0.9767 + }, + { + "start": 8700.3, + "end": 8702.38, + "probability": 0.9211 + }, + { + "start": 8702.48, + "end": 8702.82, + "probability": 0.6665 + }, + { + "start": 8702.82, + "end": 8703.94, + "probability": 0.9377 + }, + { + "start": 8704.04, + "end": 8706.28, + "probability": 0.9977 + }, + { + "start": 8707.26, + "end": 8708.8, + "probability": 0.8876 + }, + { + "start": 8709.22, + "end": 8711.46, + "probability": 0.9026 + }, + { + "start": 8711.48, + "end": 8712.26, + "probability": 0.3699 + }, + { + "start": 8712.32, + "end": 8712.96, + "probability": 0.6562 + }, + { + "start": 8713.58, + "end": 8714.3, + "probability": 0.8027 + }, + { + "start": 8714.62, + "end": 8714.62, + "probability": 0.4936 + }, + { + "start": 8714.62, + "end": 8715.48, + "probability": 0.5858 + }, + { + "start": 8716.1, + "end": 8723.78, + "probability": 0.9741 + }, + { + "start": 8726.96, + "end": 8727.46, + "probability": 0.3743 + }, + { + "start": 8727.68, + "end": 8728.48, + "probability": 0.25 + }, + { + "start": 8728.48, + "end": 8729.74, + "probability": 0.4811 + }, + { + "start": 8729.74, + "end": 8730.28, + "probability": 0.2834 + }, + { + "start": 8730.52, + "end": 8731.86, + "probability": 0.7372 + }, + { + "start": 8731.86, + "end": 8733.0, + "probability": 0.0322 + }, + { + "start": 8733.06, + "end": 8733.64, + "probability": 0.6232 + }, + { + "start": 8734.04, + "end": 8735.5, + "probability": 0.9857 + }, + { + "start": 8736.28, + "end": 8738.04, + "probability": 0.6943 + }, + { + "start": 8738.14, + "end": 8738.82, + "probability": 0.2969 + }, + { + "start": 8738.9, + "end": 8740.7, + "probability": 0.7512 + }, + { + "start": 8740.8, + "end": 8741.04, + "probability": 0.1457 + }, + { + "start": 8741.04, + "end": 8741.62, + "probability": 0.1462 + }, + { + "start": 8741.62, + "end": 8743.17, + "probability": 0.3014 + }, + { + "start": 8743.84, + "end": 8746.88, + "probability": 0.7802 + }, + { + "start": 8746.88, + "end": 8747.38, + "probability": 0.7263 + }, + { + "start": 8747.5, + "end": 8750.92, + "probability": 0.9668 + }, + { + "start": 8750.92, + "end": 8751.88, + "probability": 0.2716 + }, + { + "start": 8751.92, + "end": 8752.18, + "probability": 0.0652 + }, + { + "start": 8752.18, + "end": 8752.54, + "probability": 0.2603 + }, + { + "start": 8752.54, + "end": 8753.06, + "probability": 0.4715 + }, + { + "start": 8753.1, + "end": 8754.76, + "probability": 0.5784 + }, + { + "start": 8755.06, + "end": 8759.28, + "probability": 0.9214 + }, + { + "start": 8759.28, + "end": 8760.46, + "probability": 0.5373 + }, + { + "start": 8760.94, + "end": 8762.4, + "probability": 0.9858 + }, + { + "start": 8762.66, + "end": 8762.98, + "probability": 0.3599 + }, + { + "start": 8763.0, + "end": 8763.0, + "probability": 0.0 + }, + { + "start": 8763.66, + "end": 8765.82, + "probability": 0.1203 + }, + { + "start": 8765.82, + "end": 8766.96, + "probability": 0.3181 + }, + { + "start": 8767.66, + "end": 8769.3, + "probability": 0.407 + }, + { + "start": 8769.74, + "end": 8771.66, + "probability": 0.1169 + }, + { + "start": 8771.86, + "end": 8773.18, + "probability": 0.9041 + }, + { + "start": 8773.24, + "end": 8774.02, + "probability": 0.2901 + }, + { + "start": 8774.04, + "end": 8775.8, + "probability": 0.5795 + }, + { + "start": 8777.24, + "end": 8778.82, + "probability": 0.9861 + }, + { + "start": 8779.24, + "end": 8781.88, + "probability": 0.9956 + }, + { + "start": 8782.98, + "end": 8785.14, + "probability": 0.8318 + }, + { + "start": 8786.18, + "end": 8787.93, + "probability": 0.9621 + }, + { + "start": 8788.06, + "end": 8788.36, + "probability": 0.8573 + }, + { + "start": 8788.86, + "end": 8793.28, + "probability": 0.9167 + }, + { + "start": 8794.02, + "end": 8797.57, + "probability": 0.9976 + }, + { + "start": 8798.36, + "end": 8799.0, + "probability": 0.919 + }, + { + "start": 8799.62, + "end": 8800.52, + "probability": 0.8631 + }, + { + "start": 8801.44, + "end": 8803.56, + "probability": 0.9617 + }, + { + "start": 8804.14, + "end": 8805.14, + "probability": 0.972 + }, + { + "start": 8805.6, + "end": 8809.14, + "probability": 0.9601 + }, + { + "start": 8809.86, + "end": 8811.56, + "probability": 0.7464 + }, + { + "start": 8811.62, + "end": 8812.83, + "probability": 0.9984 + }, + { + "start": 8813.84, + "end": 8815.94, + "probability": 0.9767 + }, + { + "start": 8816.32, + "end": 8818.02, + "probability": 0.6065 + }, + { + "start": 8819.38, + "end": 8820.72, + "probability": 0.8386 + }, + { + "start": 8821.7, + "end": 8824.0, + "probability": 0.9984 + }, + { + "start": 8824.48, + "end": 8825.34, + "probability": 0.9885 + }, + { + "start": 8825.88, + "end": 8828.0, + "probability": 0.9883 + }, + { + "start": 8828.8, + "end": 8829.36, + "probability": 0.6288 + }, + { + "start": 8829.46, + "end": 8830.16, + "probability": 0.9281 + }, + { + "start": 8830.2, + "end": 8832.32, + "probability": 0.8833 + }, + { + "start": 8832.32, + "end": 8832.62, + "probability": 0.3272 + }, + { + "start": 8832.66, + "end": 8834.32, + "probability": 0.3686 + }, + { + "start": 8836.14, + "end": 8836.49, + "probability": 0.0286 + }, + { + "start": 8836.72, + "end": 8836.8, + "probability": 0.0408 + }, + { + "start": 8836.8, + "end": 8836.8, + "probability": 0.1356 + }, + { + "start": 8836.8, + "end": 8837.96, + "probability": 0.5815 + }, + { + "start": 8838.06, + "end": 8839.08, + "probability": 0.5883 + }, + { + "start": 8839.52, + "end": 8842.78, + "probability": 0.8908 + }, + { + "start": 8843.3, + "end": 8846.74, + "probability": 0.7895 + }, + { + "start": 8846.92, + "end": 8847.82, + "probability": 0.4359 + }, + { + "start": 8847.92, + "end": 8847.92, + "probability": 0.5928 + }, + { + "start": 8847.92, + "end": 8848.96, + "probability": 0.6575 + }, + { + "start": 8850.04, + "end": 8851.78, + "probability": 0.9969 + }, + { + "start": 8852.52, + "end": 8854.72, + "probability": 0.9337 + }, + { + "start": 8855.24, + "end": 8856.88, + "probability": 0.8848 + }, + { + "start": 8857.54, + "end": 8859.32, + "probability": 0.7561 + }, + { + "start": 8859.9, + "end": 8860.86, + "probability": 0.7829 + }, + { + "start": 8861.36, + "end": 8863.64, + "probability": 0.9108 + }, + { + "start": 8864.22, + "end": 8864.76, + "probability": 0.8046 + }, + { + "start": 8866.54, + "end": 8868.04, + "probability": 0.6755 + }, + { + "start": 8868.4, + "end": 8870.18, + "probability": 0.9839 + }, + { + "start": 8879.5, + "end": 8880.68, + "probability": 0.5707 + }, + { + "start": 8883.98, + "end": 8887.52, + "probability": 0.6859 + }, + { + "start": 8888.58, + "end": 8891.42, + "probability": 0.9594 + }, + { + "start": 8892.44, + "end": 8895.02, + "probability": 0.9519 + }, + { + "start": 8895.84, + "end": 8898.44, + "probability": 0.9917 + }, + { + "start": 8899.0, + "end": 8900.46, + "probability": 0.9622 + }, + { + "start": 8900.88, + "end": 8902.42, + "probability": 0.8987 + }, + { + "start": 8903.24, + "end": 8905.26, + "probability": 0.9569 + }, + { + "start": 8906.04, + "end": 8908.18, + "probability": 0.9426 + }, + { + "start": 8909.14, + "end": 8915.38, + "probability": 0.934 + }, + { + "start": 8915.76, + "end": 8915.94, + "probability": 0.4806 + }, + { + "start": 8916.02, + "end": 8920.76, + "probability": 0.9927 + }, + { + "start": 8920.8, + "end": 8922.67, + "probability": 0.5892 + }, + { + "start": 8922.99, + "end": 8928.04, + "probability": 0.9897 + }, + { + "start": 8928.2, + "end": 8928.62, + "probability": 0.5189 + }, + { + "start": 8928.74, + "end": 8929.6, + "probability": 0.6792 + }, + { + "start": 8929.6, + "end": 8930.96, + "probability": 0.6849 + }, + { + "start": 8931.84, + "end": 8932.96, + "probability": 0.9932 + }, + { + "start": 8933.78, + "end": 8934.38, + "probability": 0.7467 + }, + { + "start": 8935.26, + "end": 8938.56, + "probability": 0.9719 + }, + { + "start": 8938.98, + "end": 8942.06, + "probability": 0.9974 + }, + { + "start": 8942.22, + "end": 8945.38, + "probability": 0.7879 + }, + { + "start": 8946.24, + "end": 8947.28, + "probability": 0.648 + }, + { + "start": 8948.52, + "end": 8949.42, + "probability": 0.7638 + }, + { + "start": 8949.5, + "end": 8952.4, + "probability": 0.9915 + }, + { + "start": 8952.52, + "end": 8955.4, + "probability": 0.8874 + }, + { + "start": 8956.16, + "end": 8957.49, + "probability": 0.9917 + }, + { + "start": 8958.62, + "end": 8960.5, + "probability": 0.8863 + }, + { + "start": 8961.02, + "end": 8963.06, + "probability": 0.9205 + }, + { + "start": 8963.36, + "end": 8964.52, + "probability": 0.8385 + }, + { + "start": 8965.36, + "end": 8966.48, + "probability": 0.9777 + }, + { + "start": 8966.54, + "end": 8968.4, + "probability": 0.938 + }, + { + "start": 8968.6, + "end": 8969.64, + "probability": 0.9885 + }, + { + "start": 8969.76, + "end": 8971.92, + "probability": 0.9339 + }, + { + "start": 8971.94, + "end": 8972.62, + "probability": 0.6311 + }, + { + "start": 8973.0, + "end": 8974.02, + "probability": 0.8293 + }, + { + "start": 8974.46, + "end": 8975.8, + "probability": 0.9823 + }, + { + "start": 8976.14, + "end": 8977.5, + "probability": 0.9436 + }, + { + "start": 8978.04, + "end": 8979.72, + "probability": 0.972 + }, + { + "start": 8979.8, + "end": 8982.34, + "probability": 0.9897 + }, + { + "start": 8982.8, + "end": 8983.62, + "probability": 0.6292 + }, + { + "start": 8983.94, + "end": 8986.3, + "probability": 0.9919 + }, + { + "start": 8986.68, + "end": 8988.74, + "probability": 0.9244 + }, + { + "start": 8989.76, + "end": 8990.36, + "probability": 0.9245 + }, + { + "start": 8990.36, + "end": 8991.44, + "probability": 0.9019 + }, + { + "start": 8991.7, + "end": 8993.2, + "probability": 0.9858 + }, + { + "start": 8993.32, + "end": 8996.8, + "probability": 0.9731 + }, + { + "start": 8997.42, + "end": 8998.26, + "probability": 0.9502 + }, + { + "start": 8998.34, + "end": 8999.68, + "probability": 0.9956 + }, + { + "start": 9000.5, + "end": 9003.28, + "probability": 0.9854 + }, + { + "start": 9004.34, + "end": 9004.84, + "probability": 0.9056 + }, + { + "start": 9005.5, + "end": 9008.77, + "probability": 0.9871 + }, + { + "start": 9009.7, + "end": 9014.54, + "probability": 0.9926 + }, + { + "start": 9014.72, + "end": 9017.92, + "probability": 0.9769 + }, + { + "start": 9018.4, + "end": 9024.98, + "probability": 0.999 + }, + { + "start": 9026.14, + "end": 9026.68, + "probability": 0.681 + }, + { + "start": 9028.12, + "end": 9029.32, + "probability": 0.9614 + }, + { + "start": 9030.66, + "end": 9032.22, + "probability": 0.9844 + }, + { + "start": 9035.2, + "end": 9036.44, + "probability": 0.9378 + }, + { + "start": 9036.52, + "end": 9037.0, + "probability": 0.9814 + }, + { + "start": 9038.14, + "end": 9038.74, + "probability": 0.9073 + }, + { + "start": 9039.76, + "end": 9041.48, + "probability": 0.6135 + }, + { + "start": 9043.58, + "end": 9046.73, + "probability": 0.8815 + }, + { + "start": 9047.18, + "end": 9048.64, + "probability": 0.7606 + }, + { + "start": 9048.8, + "end": 9052.04, + "probability": 0.9489 + }, + { + "start": 9052.6, + "end": 9054.14, + "probability": 0.9963 + }, + { + "start": 9054.54, + "end": 9055.58, + "probability": 0.9806 + }, + { + "start": 9055.64, + "end": 9058.28, + "probability": 0.99 + }, + { + "start": 9060.32, + "end": 9061.9, + "probability": 0.8364 + }, + { + "start": 9062.0, + "end": 9062.26, + "probability": 0.3137 + }, + { + "start": 9062.26, + "end": 9062.8, + "probability": 0.4777 + }, + { + "start": 9062.8, + "end": 9066.43, + "probability": 0.6235 + }, + { + "start": 9066.67, + "end": 9067.24, + "probability": 0.106 + }, + { + "start": 9067.24, + "end": 9070.62, + "probability": 0.9325 + }, + { + "start": 9070.62, + "end": 9074.78, + "probability": 0.9445 + }, + { + "start": 9074.98, + "end": 9075.66, + "probability": 0.2839 + }, + { + "start": 9075.66, + "end": 9076.82, + "probability": 0.6484 + }, + { + "start": 9077.82, + "end": 9079.72, + "probability": 0.5438 + }, + { + "start": 9079.78, + "end": 9081.75, + "probability": 0.8652 + }, + { + "start": 9082.06, + "end": 9083.46, + "probability": 0.9097 + }, + { + "start": 9083.66, + "end": 9084.52, + "probability": 0.3941 + }, + { + "start": 9084.7, + "end": 9085.06, + "probability": 0.5387 + }, + { + "start": 9085.14, + "end": 9088.54, + "probability": 0.9042 + }, + { + "start": 9088.66, + "end": 9090.5, + "probability": 0.7128 + }, + { + "start": 9090.78, + "end": 9094.04, + "probability": 0.4987 + }, + { + "start": 9094.3, + "end": 9094.3, + "probability": 0.0203 + }, + { + "start": 9094.3, + "end": 9096.44, + "probability": 0.9873 + }, + { + "start": 9096.64, + "end": 9097.64, + "probability": 0.9105 + }, + { + "start": 9097.72, + "end": 9101.28, + "probability": 0.9778 + }, + { + "start": 9101.62, + "end": 9102.7, + "probability": 0.8321 + }, + { + "start": 9103.04, + "end": 9104.22, + "probability": 0.9696 + }, + { + "start": 9104.5, + "end": 9106.06, + "probability": 0.9639 + }, + { + "start": 9106.34, + "end": 9107.16, + "probability": 0.3033 + }, + { + "start": 9107.3, + "end": 9107.5, + "probability": 0.0452 + }, + { + "start": 9107.5, + "end": 9108.18, + "probability": 0.3614 + }, + { + "start": 9108.26, + "end": 9110.44, + "probability": 0.6372 + }, + { + "start": 9110.5, + "end": 9112.88, + "probability": 0.814 + }, + { + "start": 9113.02, + "end": 9114.28, + "probability": 0.6385 + }, + { + "start": 9115.58, + "end": 9115.58, + "probability": 0.2866 + }, + { + "start": 9115.58, + "end": 9121.78, + "probability": 0.9871 + }, + { + "start": 9121.94, + "end": 9123.42, + "probability": 0.9631 + }, + { + "start": 9123.62, + "end": 9124.84, + "probability": 0.9727 + }, + { + "start": 9125.14, + "end": 9126.38, + "probability": 0.9615 + }, + { + "start": 9126.8, + "end": 9128.66, + "probability": 0.9932 + }, + { + "start": 9129.24, + "end": 9130.34, + "probability": 0.9425 + }, + { + "start": 9130.88, + "end": 9132.38, + "probability": 0.9703 + }, + { + "start": 9132.52, + "end": 9134.26, + "probability": 0.847 + }, + { + "start": 9134.98, + "end": 9135.86, + "probability": 0.5718 + }, + { + "start": 9136.06, + "end": 9141.76, + "probability": 0.8445 + }, + { + "start": 9142.28, + "end": 9142.78, + "probability": 0.6359 + }, + { + "start": 9143.1, + "end": 9145.44, + "probability": 0.9354 + }, + { + "start": 9145.68, + "end": 9147.78, + "probability": 0.9925 + }, + { + "start": 9148.0, + "end": 9150.18, + "probability": 0.9951 + }, + { + "start": 9150.22, + "end": 9151.15, + "probability": 0.2006 + }, + { + "start": 9151.26, + "end": 9151.26, + "probability": 0.268 + }, + { + "start": 9151.26, + "end": 9151.32, + "probability": 0.5396 + }, + { + "start": 9151.44, + "end": 9154.88, + "probability": 0.8933 + }, + { + "start": 9155.08, + "end": 9155.86, + "probability": 0.5528 + }, + { + "start": 9155.9, + "end": 9156.82, + "probability": 0.9058 + }, + { + "start": 9156.84, + "end": 9157.9, + "probability": 0.5385 + }, + { + "start": 9158.08, + "end": 9159.06, + "probability": 0.8624 + }, + { + "start": 9159.1, + "end": 9161.64, + "probability": 0.6895 + }, + { + "start": 9162.52, + "end": 9165.9, + "probability": 0.9921 + }, + { + "start": 9166.14, + "end": 9166.44, + "probability": 0.2767 + }, + { + "start": 9166.56, + "end": 9167.1, + "probability": 0.9518 + }, + { + "start": 9167.12, + "end": 9167.68, + "probability": 0.9842 + }, + { + "start": 9167.72, + "end": 9168.26, + "probability": 0.9869 + }, + { + "start": 9168.26, + "end": 9168.92, + "probability": 0.6908 + }, + { + "start": 9169.3, + "end": 9172.64, + "probability": 0.9877 + }, + { + "start": 9173.22, + "end": 9173.94, + "probability": 0.9697 + }, + { + "start": 9175.5, + "end": 9176.36, + "probability": 0.9709 + }, + { + "start": 9176.46, + "end": 9177.92, + "probability": 0.9927 + }, + { + "start": 9178.9, + "end": 9179.53, + "probability": 0.958 + }, + { + "start": 9180.18, + "end": 9180.74, + "probability": 0.9299 + }, + { + "start": 9181.16, + "end": 9182.4, + "probability": 0.855 + }, + { + "start": 9182.88, + "end": 9184.48, + "probability": 0.9692 + }, + { + "start": 9184.6, + "end": 9185.6, + "probability": 0.9945 + }, + { + "start": 9185.72, + "end": 9187.78, + "probability": 0.9829 + }, + { + "start": 9188.16, + "end": 9189.04, + "probability": 0.7596 + }, + { + "start": 9189.19, + "end": 9190.0, + "probability": 0.2257 + }, + { + "start": 9190.0, + "end": 9191.06, + "probability": 0.7695 + }, + { + "start": 9191.28, + "end": 9191.98, + "probability": 0.1907 + }, + { + "start": 9191.98, + "end": 9195.2, + "probability": 0.3095 + }, + { + "start": 9195.3, + "end": 9196.28, + "probability": 0.8169 + }, + { + "start": 9196.3, + "end": 9196.76, + "probability": 0.418 + }, + { + "start": 9196.92, + "end": 9198.52, + "probability": 0.9619 + }, + { + "start": 9198.64, + "end": 9200.62, + "probability": 0.4334 + }, + { + "start": 9201.04, + "end": 9201.1, + "probability": 0.0861 + }, + { + "start": 9201.1, + "end": 9201.59, + "probability": 0.5671 + }, + { + "start": 9202.24, + "end": 9202.78, + "probability": 0.8916 + }, + { + "start": 9203.5, + "end": 9203.93, + "probability": 0.895 + }, + { + "start": 9204.72, + "end": 9207.54, + "probability": 0.6492 + }, + { + "start": 9207.66, + "end": 9210.46, + "probability": 0.9924 + }, + { + "start": 9210.54, + "end": 9211.54, + "probability": 0.5744 + }, + { + "start": 9211.62, + "end": 9211.62, + "probability": 0.5094 + }, + { + "start": 9211.68, + "end": 9212.76, + "probability": 0.5591 + }, + { + "start": 9212.76, + "end": 9215.84, + "probability": 0.6055 + }, + { + "start": 9216.16, + "end": 9218.94, + "probability": 0.903 + }, + { + "start": 9219.06, + "end": 9220.34, + "probability": 0.9632 + }, + { + "start": 9220.72, + "end": 9222.4, + "probability": 0.5059 + }, + { + "start": 9222.58, + "end": 9223.1, + "probability": 0.8088 + }, + { + "start": 9223.56, + "end": 9225.14, + "probability": 0.9409 + }, + { + "start": 9225.3, + "end": 9226.76, + "probability": 0.9758 + }, + { + "start": 9226.84, + "end": 9227.62, + "probability": 0.8594 + }, + { + "start": 9227.76, + "end": 9228.84, + "probability": 0.7242 + }, + { + "start": 9228.86, + "end": 9234.1, + "probability": 0.0789 + }, + { + "start": 9251.4, + "end": 9254.62, + "probability": 0.0213 + }, + { + "start": 9254.88, + "end": 9255.06, + "probability": 0.0399 + }, + { + "start": 9255.98, + "end": 9257.0, + "probability": 0.1102 + }, + { + "start": 9257.0, + "end": 9257.72, + "probability": 0.3376 + }, + { + "start": 9258.54, + "end": 9259.2, + "probability": 0.0204 + }, + { + "start": 9261.46, + "end": 9262.9, + "probability": 0.3817 + }, + { + "start": 9264.24, + "end": 9265.78, + "probability": 0.0197 + }, + { + "start": 9265.78, + "end": 9265.78, + "probability": 0.0034 + }, + { + "start": 9265.78, + "end": 9265.78, + "probability": 0.0113 + }, + { + "start": 9265.78, + "end": 9267.18, + "probability": 0.047 + }, + { + "start": 9267.78, + "end": 9269.06, + "probability": 0.0146 + }, + { + "start": 9273.5, + "end": 9277.98, + "probability": 0.0009 + }, + { + "start": 9279.52, + "end": 9282.4, + "probability": 0.4172 + }, + { + "start": 9282.74, + "end": 9283.42, + "probability": 0.0504 + }, + { + "start": 9283.8, + "end": 9284.88, + "probability": 0.0548 + }, + { + "start": 9284.98, + "end": 9286.1, + "probability": 0.2988 + }, + { + "start": 9286.2, + "end": 9287.76, + "probability": 0.2776 + }, + { + "start": 9288.74, + "end": 9290.48, + "probability": 0.3406 + }, + { + "start": 9290.66, + "end": 9291.1, + "probability": 0.1708 + }, + { + "start": 9292.3, + "end": 9292.62, + "probability": 0.0742 + }, + { + "start": 9292.62, + "end": 9293.42, + "probability": 0.3753 + }, + { + "start": 9294.84, + "end": 9297.76, + "probability": 0.0063 + }, + { + "start": 9298.06, + "end": 9298.46, + "probability": 0.3878 + }, + { + "start": 9308.0, + "end": 9308.0, + "probability": 0.0 + }, + { + "start": 9308.0, + "end": 9308.0, + "probability": 0.0 + }, + { + "start": 9308.0, + "end": 9308.0, + "probability": 0.0 + }, + { + "start": 9308.0, + "end": 9308.0, + "probability": 0.0 + }, + { + "start": 9308.0, + "end": 9308.0, + "probability": 0.0 + }, + { + "start": 9308.0, + "end": 9308.0, + "probability": 0.0 + }, + { + "start": 9308.0, + "end": 9308.0, + "probability": 0.0 + }, + { + "start": 9308.0, + "end": 9308.0, + "probability": 0.0 + }, + { + "start": 9308.0, + "end": 9308.0, + "probability": 0.0 + }, + { + "start": 9308.0, + "end": 9308.0, + "probability": 0.0 + }, + { + "start": 9308.0, + "end": 9308.0, + "probability": 0.0 + }, + { + "start": 9308.0, + "end": 9308.0, + "probability": 0.0 + }, + { + "start": 9308.0, + "end": 9308.0, + "probability": 0.0 + }, + { + "start": 9308.0, + "end": 9308.0, + "probability": 0.0 + }, + { + "start": 9308.0, + "end": 9308.0, + "probability": 0.0 + }, + { + "start": 9308.0, + "end": 9308.0, + "probability": 0.0 + }, + { + "start": 9308.0, + "end": 9308.0, + "probability": 0.0 + }, + { + "start": 9308.0, + "end": 9308.0, + "probability": 0.0 + }, + { + "start": 9308.0, + "end": 9308.0, + "probability": 0.0 + }, + { + "start": 9308.0, + "end": 9308.0, + "probability": 0.0 + }, + { + "start": 9308.0, + "end": 9308.0, + "probability": 0.0 + }, + { + "start": 9308.0, + "end": 9308.0, + "probability": 0.0 + }, + { + "start": 9308.0, + "end": 9308.0, + "probability": 0.0 + }, + { + "start": 9308.0, + "end": 9308.0, + "probability": 0.0 + }, + { + "start": 9308.0, + "end": 9308.0, + "probability": 0.0 + }, + { + "start": 9308.0, + "end": 9308.0, + "probability": 0.0 + }, + { + "start": 9308.0, + "end": 9308.0, + "probability": 0.0 + }, + { + "start": 9308.0, + "end": 9308.0, + "probability": 0.0 + }, + { + "start": 9308.0, + "end": 9308.0, + "probability": 0.0 + }, + { + "start": 9308.0, + "end": 9308.0, + "probability": 0.0 + }, + { + "start": 9308.0, + "end": 9308.0, + "probability": 0.0 + }, + { + "start": 9308.0, + "end": 9308.0, + "probability": 0.0 + }, + { + "start": 9309.18, + "end": 9317.28, + "probability": 0.9963 + }, + { + "start": 9318.1, + "end": 9320.54, + "probability": 0.9906 + }, + { + "start": 9321.78, + "end": 9322.46, + "probability": 0.7917 + }, + { + "start": 9323.48, + "end": 9325.28, + "probability": 0.8162 + }, + { + "start": 9325.88, + "end": 9328.3, + "probability": 0.918 + }, + { + "start": 9328.86, + "end": 9332.64, + "probability": 0.999 + }, + { + "start": 9332.74, + "end": 9333.56, + "probability": 0.9802 + }, + { + "start": 9334.08, + "end": 9336.68, + "probability": 0.9458 + }, + { + "start": 9337.58, + "end": 9342.64, + "probability": 0.9984 + }, + { + "start": 9343.08, + "end": 9344.88, + "probability": 0.9807 + }, + { + "start": 9345.46, + "end": 9349.04, + "probability": 0.9974 + }, + { + "start": 9349.1, + "end": 9352.44, + "probability": 0.9873 + }, + { + "start": 9353.02, + "end": 9357.92, + "probability": 0.998 + }, + { + "start": 9357.92, + "end": 9363.24, + "probability": 0.9979 + }, + { + "start": 9363.92, + "end": 9365.62, + "probability": 0.9625 + }, + { + "start": 9367.76, + "end": 9368.72, + "probability": 0.8385 + }, + { + "start": 9368.78, + "end": 9369.76, + "probability": 0.8456 + }, + { + "start": 9369.98, + "end": 9373.34, + "probability": 0.9932 + }, + { + "start": 9373.96, + "end": 9376.92, + "probability": 0.9893 + }, + { + "start": 9377.06, + "end": 9379.3, + "probability": 0.9988 + }, + { + "start": 9380.46, + "end": 9387.54, + "probability": 0.9685 + }, + { + "start": 9388.18, + "end": 9391.34, + "probability": 0.8719 + }, + { + "start": 9391.84, + "end": 9393.12, + "probability": 0.8688 + }, + { + "start": 9393.64, + "end": 9396.68, + "probability": 0.8792 + }, + { + "start": 9397.08, + "end": 9401.36, + "probability": 0.965 + }, + { + "start": 9401.66, + "end": 9403.64, + "probability": 0.9722 + }, + { + "start": 9403.74, + "end": 9405.34, + "probability": 0.9084 + }, + { + "start": 9405.72, + "end": 9407.28, + "probability": 0.9955 + }, + { + "start": 9407.76, + "end": 9413.0, + "probability": 0.9926 + }, + { + "start": 9413.06, + "end": 9414.68, + "probability": 0.9915 + }, + { + "start": 9414.82, + "end": 9417.42, + "probability": 0.9648 + }, + { + "start": 9417.48, + "end": 9418.46, + "probability": 0.9259 + }, + { + "start": 9418.76, + "end": 9420.22, + "probability": 0.9486 + }, + { + "start": 9420.26, + "end": 9421.06, + "probability": 0.9736 + }, + { + "start": 9422.24, + "end": 9426.46, + "probability": 0.9316 + }, + { + "start": 9426.58, + "end": 9429.42, + "probability": 0.9798 + }, + { + "start": 9429.96, + "end": 9433.38, + "probability": 0.9471 + }, + { + "start": 9434.6, + "end": 9436.08, + "probability": 0.9688 + }, + { + "start": 9436.34, + "end": 9436.48, + "probability": 0.4237 + }, + { + "start": 9436.58, + "end": 9437.72, + "probability": 0.7953 + }, + { + "start": 9438.16, + "end": 9440.93, + "probability": 0.8862 + }, + { + "start": 9441.94, + "end": 9442.58, + "probability": 0.6891 + }, + { + "start": 9442.68, + "end": 9443.16, + "probability": 0.6389 + }, + { + "start": 9443.72, + "end": 9446.0, + "probability": 0.9802 + }, + { + "start": 9446.1, + "end": 9447.4, + "probability": 0.8122 + }, + { + "start": 9447.5, + "end": 9448.8, + "probability": 0.9532 + }, + { + "start": 9448.84, + "end": 9449.82, + "probability": 0.8935 + }, + { + "start": 9450.12, + "end": 9452.34, + "probability": 0.9863 + }, + { + "start": 9453.24, + "end": 9454.84, + "probability": 0.9915 + }, + { + "start": 9455.54, + "end": 9461.16, + "probability": 0.9928 + }, + { + "start": 9461.46, + "end": 9463.52, + "probability": 0.9912 + }, + { + "start": 9463.92, + "end": 9467.1, + "probability": 0.974 + }, + { + "start": 9467.18, + "end": 9469.2, + "probability": 0.9267 + }, + { + "start": 9469.24, + "end": 9470.36, + "probability": 0.6463 + }, + { + "start": 9470.4, + "end": 9474.08, + "probability": 0.9482 + }, + { + "start": 9474.44, + "end": 9476.88, + "probability": 0.9797 + }, + { + "start": 9477.18, + "end": 9478.44, + "probability": 0.917 + }, + { + "start": 9478.9, + "end": 9479.12, + "probability": 0.3463 + }, + { + "start": 9479.12, + "end": 9480.18, + "probability": 0.9764 + }, + { + "start": 9480.46, + "end": 9481.14, + "probability": 0.7789 + }, + { + "start": 9481.42, + "end": 9482.64, + "probability": 0.9629 + }, + { + "start": 9482.92, + "end": 9484.94, + "probability": 0.6357 + }, + { + "start": 9485.46, + "end": 9486.56, + "probability": 0.8204 + }, + { + "start": 9486.82, + "end": 9488.58, + "probability": 0.9478 + }, + { + "start": 9488.76, + "end": 9489.24, + "probability": 0.53 + }, + { + "start": 9489.26, + "end": 9490.52, + "probability": 0.7096 + }, + { + "start": 9490.8, + "end": 9492.08, + "probability": 0.9956 + }, + { + "start": 9492.16, + "end": 9494.52, + "probability": 0.7366 + }, + { + "start": 9495.06, + "end": 9496.68, + "probability": 0.9844 + }, + { + "start": 9497.1, + "end": 9497.98, + "probability": 0.9126 + }, + { + "start": 9498.06, + "end": 9498.98, + "probability": 0.8994 + }, + { + "start": 9499.16, + "end": 9501.0, + "probability": 0.9351 + }, + { + "start": 9501.4, + "end": 9501.92, + "probability": 0.5445 + }, + { + "start": 9502.02, + "end": 9503.38, + "probability": 0.7328 + }, + { + "start": 9504.22, + "end": 9504.29, + "probability": 0.0947 + }, + { + "start": 9505.02, + "end": 9505.6, + "probability": 0.479 + }, + { + "start": 9507.26, + "end": 9508.94, + "probability": 0.2972 + }, + { + "start": 9509.66, + "end": 9512.38, + "probability": 0.4187 + }, + { + "start": 9513.76, + "end": 9514.54, + "probability": 0.8831 + }, + { + "start": 9514.68, + "end": 9515.44, + "probability": 0.9263 + }, + { + "start": 9516.72, + "end": 9518.74, + "probability": 0.6073 + }, + { + "start": 9519.87, + "end": 9521.85, + "probability": 0.7663 + }, + { + "start": 9522.62, + "end": 9525.98, + "probability": 0.8165 + }, + { + "start": 9526.5, + "end": 9527.68, + "probability": 0.8902 + }, + { + "start": 9528.5, + "end": 9530.32, + "probability": 0.9834 + }, + { + "start": 9530.82, + "end": 9531.74, + "probability": 0.8345 + }, + { + "start": 9531.9, + "end": 9538.02, + "probability": 0.998 + }, + { + "start": 9539.1, + "end": 9540.12, + "probability": 0.4937 + }, + { + "start": 9540.26, + "end": 9540.82, + "probability": 0.7773 + }, + { + "start": 9541.22, + "end": 9542.58, + "probability": 0.9927 + }, + { + "start": 9543.0, + "end": 9544.4, + "probability": 0.9946 + }, + { + "start": 9545.02, + "end": 9545.94, + "probability": 0.9321 + }, + { + "start": 9545.94, + "end": 9547.14, + "probability": 0.834 + }, + { + "start": 9547.7, + "end": 9555.5, + "probability": 0.9906 + }, + { + "start": 9555.82, + "end": 9560.56, + "probability": 0.9997 + }, + { + "start": 9561.1, + "end": 9562.5, + "probability": 0.1974 + }, + { + "start": 9563.44, + "end": 9566.32, + "probability": 0.9254 + }, + { + "start": 9566.98, + "end": 9571.6, + "probability": 0.965 + }, + { + "start": 9572.14, + "end": 9575.74, + "probability": 0.9966 + }, + { + "start": 9576.14, + "end": 9577.52, + "probability": 0.9513 + }, + { + "start": 9577.94, + "end": 9580.36, + "probability": 0.9641 + }, + { + "start": 9580.8, + "end": 9584.18, + "probability": 0.9805 + }, + { + "start": 9585.24, + "end": 9586.86, + "probability": 0.9529 + }, + { + "start": 9587.42, + "end": 9590.44, + "probability": 0.938 + }, + { + "start": 9591.18, + "end": 9594.84, + "probability": 0.8115 + }, + { + "start": 9595.44, + "end": 9596.36, + "probability": 0.8506 + }, + { + "start": 9596.98, + "end": 9598.3, + "probability": 0.9744 + }, + { + "start": 9599.04, + "end": 9600.64, + "probability": 0.9739 + }, + { + "start": 9601.24, + "end": 9604.6, + "probability": 0.9266 + }, + { + "start": 9605.42, + "end": 9607.5, + "probability": 0.6901 + }, + { + "start": 9608.0, + "end": 9608.5, + "probability": 0.8358 + }, + { + "start": 9608.84, + "end": 9612.76, + "probability": 0.839 + }, + { + "start": 9613.34, + "end": 9613.74, + "probability": 0.8229 + }, + { + "start": 9614.16, + "end": 9618.74, + "probability": 0.8697 + }, + { + "start": 9619.22, + "end": 9622.24, + "probability": 0.9961 + }, + { + "start": 9622.76, + "end": 9625.16, + "probability": 0.9916 + }, + { + "start": 9625.9, + "end": 9627.24, + "probability": 0.7011 + }, + { + "start": 9628.46, + "end": 9630.56, + "probability": 0.7864 + }, + { + "start": 9631.04, + "end": 9631.94, + "probability": 0.7735 + }, + { + "start": 9632.44, + "end": 9638.7, + "probability": 0.948 + }, + { + "start": 9639.0, + "end": 9640.66, + "probability": 0.715 + }, + { + "start": 9640.68, + "end": 9642.8, + "probability": 0.991 + }, + { + "start": 9643.42, + "end": 9646.52, + "probability": 0.7407 + }, + { + "start": 9646.98, + "end": 9648.38, + "probability": 0.9932 + }, + { + "start": 9648.92, + "end": 9653.84, + "probability": 0.9854 + }, + { + "start": 9654.22, + "end": 9656.82, + "probability": 0.8855 + }, + { + "start": 9657.16, + "end": 9660.2, + "probability": 0.973 + }, + { + "start": 9661.2, + "end": 9661.62, + "probability": 0.6792 + }, + { + "start": 9662.78, + "end": 9664.02, + "probability": 0.6846 + }, + { + "start": 9664.08, + "end": 9665.1, + "probability": 0.5246 + }, + { + "start": 9665.98, + "end": 9666.58, + "probability": 0.8384 + }, + { + "start": 9682.7, + "end": 9684.98, + "probability": 0.6941 + }, + { + "start": 9685.08, + "end": 9685.58, + "probability": 0.8864 + }, + { + "start": 9686.04, + "end": 9687.36, + "probability": 0.9377 + }, + { + "start": 9688.42, + "end": 9689.1, + "probability": 0.9664 + }, + { + "start": 9690.68, + "end": 9695.48, + "probability": 0.9782 + }, + { + "start": 9696.52, + "end": 9698.58, + "probability": 0.9833 + }, + { + "start": 9701.36, + "end": 9705.3, + "probability": 0.9912 + }, + { + "start": 9706.14, + "end": 9706.88, + "probability": 0.7085 + }, + { + "start": 9707.0, + "end": 9709.3, + "probability": 0.9961 + }, + { + "start": 9711.5, + "end": 9717.26, + "probability": 0.9831 + }, + { + "start": 9718.24, + "end": 9718.42, + "probability": 0.519 + }, + { + "start": 9718.6, + "end": 9722.4, + "probability": 0.9974 + }, + { + "start": 9722.4, + "end": 9725.98, + "probability": 0.998 + }, + { + "start": 9726.54, + "end": 9729.26, + "probability": 0.8853 + }, + { + "start": 9730.26, + "end": 9733.74, + "probability": 0.7921 + }, + { + "start": 9734.12, + "end": 9735.1, + "probability": 0.0258 + }, + { + "start": 9735.16, + "end": 9735.52, + "probability": 0.4311 + }, + { + "start": 9735.78, + "end": 9735.86, + "probability": 0.4837 + }, + { + "start": 9735.86, + "end": 9737.26, + "probability": 0.7052 + }, + { + "start": 9737.34, + "end": 9738.52, + "probability": 0.164 + }, + { + "start": 9739.2, + "end": 9740.34, + "probability": 0.5512 + }, + { + "start": 9740.4, + "end": 9740.54, + "probability": 0.679 + }, + { + "start": 9741.8, + "end": 9744.52, + "probability": 0.9333 + }, + { + "start": 9745.56, + "end": 9746.76, + "probability": 0.9651 + }, + { + "start": 9748.78, + "end": 9751.98, + "probability": 0.7325 + }, + { + "start": 9753.3, + "end": 9758.38, + "probability": 0.9792 + }, + { + "start": 9758.92, + "end": 9762.46, + "probability": 0.9433 + }, + { + "start": 9764.28, + "end": 9765.24, + "probability": 0.92 + }, + { + "start": 9766.54, + "end": 9768.94, + "probability": 0.9837 + }, + { + "start": 9769.82, + "end": 9776.98, + "probability": 0.8638 + }, + { + "start": 9777.8, + "end": 9782.22, + "probability": 0.9194 + }, + { + "start": 9782.84, + "end": 9783.58, + "probability": 0.6429 + }, + { + "start": 9784.02, + "end": 9787.92, + "probability": 0.9958 + }, + { + "start": 9788.36, + "end": 9789.82, + "probability": 0.8576 + }, + { + "start": 9790.56, + "end": 9796.05, + "probability": 0.8982 + }, + { + "start": 9797.52, + "end": 9801.88, + "probability": 0.9579 + }, + { + "start": 9802.76, + "end": 9804.28, + "probability": 0.8799 + }, + { + "start": 9804.32, + "end": 9805.98, + "probability": 0.9803 + }, + { + "start": 9806.48, + "end": 9807.24, + "probability": 0.7586 + }, + { + "start": 9807.42, + "end": 9808.28, + "probability": 0.6976 + }, + { + "start": 9808.72, + "end": 9812.08, + "probability": 0.9927 + }, + { + "start": 9812.56, + "end": 9817.02, + "probability": 0.9859 + }, + { + "start": 9817.62, + "end": 9818.83, + "probability": 0.5221 + }, + { + "start": 9819.54, + "end": 9821.3, + "probability": 0.8809 + }, + { + "start": 9821.68, + "end": 9822.98, + "probability": 0.979 + }, + { + "start": 9823.42, + "end": 9824.94, + "probability": 0.9816 + }, + { + "start": 9825.42, + "end": 9831.78, + "probability": 0.9872 + }, + { + "start": 9832.24, + "end": 9834.16, + "probability": 0.8396 + }, + { + "start": 9834.24, + "end": 9835.94, + "probability": 0.8987 + }, + { + "start": 9836.32, + "end": 9838.1, + "probability": 0.9224 + }, + { + "start": 9838.96, + "end": 9840.67, + "probability": 0.9588 + }, + { + "start": 9841.34, + "end": 9844.52, + "probability": 0.9884 + }, + { + "start": 9844.9, + "end": 9846.26, + "probability": 0.8622 + }, + { + "start": 9846.7, + "end": 9847.24, + "probability": 0.8939 + }, + { + "start": 9847.66, + "end": 9848.5, + "probability": 0.7051 + }, + { + "start": 9849.48, + "end": 9852.68, + "probability": 0.988 + }, + { + "start": 9852.68, + "end": 9856.48, + "probability": 0.9957 + }, + { + "start": 9857.06, + "end": 9858.69, + "probability": 0.9937 + }, + { + "start": 9860.42, + "end": 9860.96, + "probability": 0.8162 + }, + { + "start": 9861.86, + "end": 9863.27, + "probability": 0.7568 + }, + { + "start": 9864.0, + "end": 9867.24, + "probability": 0.9407 + }, + { + "start": 9867.74, + "end": 9868.66, + "probability": 0.9657 + }, + { + "start": 9868.8, + "end": 9871.08, + "probability": 0.8995 + }, + { + "start": 9871.58, + "end": 9872.4, + "probability": 0.7875 + }, + { + "start": 9872.72, + "end": 9873.48, + "probability": 0.6263 + }, + { + "start": 9874.14, + "end": 9876.72, + "probability": 0.8637 + }, + { + "start": 9877.36, + "end": 9879.18, + "probability": 0.814 + }, + { + "start": 9880.1, + "end": 9881.4, + "probability": 0.5564 + }, + { + "start": 9882.1, + "end": 9883.9, + "probability": 0.8953 + }, + { + "start": 9884.34, + "end": 9888.84, + "probability": 0.9955 + }, + { + "start": 9889.02, + "end": 9890.0, + "probability": 0.9751 + }, + { + "start": 9890.42, + "end": 9891.02, + "probability": 0.9396 + }, + { + "start": 9891.32, + "end": 9892.24, + "probability": 0.821 + }, + { + "start": 9892.28, + "end": 9895.26, + "probability": 0.7382 + }, + { + "start": 9895.26, + "end": 9895.42, + "probability": 0.0569 + }, + { + "start": 9895.42, + "end": 9895.42, + "probability": 0.1743 + }, + { + "start": 9895.42, + "end": 9895.42, + "probability": 0.0942 + }, + { + "start": 9895.42, + "end": 9896.04, + "probability": 0.2203 + }, + { + "start": 9896.3, + "end": 9900.2, + "probability": 0.615 + }, + { + "start": 9900.5, + "end": 9902.76, + "probability": 0.7326 + }, + { + "start": 9916.48, + "end": 9917.56, + "probability": 0.6461 + }, + { + "start": 9917.62, + "end": 9918.1, + "probability": 0.8314 + }, + { + "start": 9918.46, + "end": 9921.72, + "probability": 0.894 + }, + { + "start": 9923.0, + "end": 9925.86, + "probability": 0.9143 + }, + { + "start": 9926.2, + "end": 9930.88, + "probability": 0.9934 + }, + { + "start": 9931.52, + "end": 9935.34, + "probability": 0.9944 + }, + { + "start": 9936.12, + "end": 9941.18, + "probability": 0.9912 + }, + { + "start": 9941.5, + "end": 9944.8, + "probability": 0.8213 + }, + { + "start": 9945.56, + "end": 9949.0, + "probability": 0.9727 + }, + { + "start": 9949.76, + "end": 9950.9, + "probability": 0.9172 + }, + { + "start": 9951.46, + "end": 9956.1, + "probability": 0.9923 + }, + { + "start": 9956.32, + "end": 9956.85, + "probability": 0.722 + }, + { + "start": 9957.66, + "end": 9959.24, + "probability": 0.9625 + }, + { + "start": 9960.0, + "end": 9961.71, + "probability": 0.9966 + }, + { + "start": 9961.78, + "end": 9963.24, + "probability": 0.9879 + }, + { + "start": 9963.36, + "end": 9964.54, + "probability": 0.9608 + }, + { + "start": 9965.0, + "end": 9966.02, + "probability": 0.9537 + }, + { + "start": 9966.44, + "end": 9967.32, + "probability": 0.757 + }, + { + "start": 9969.08, + "end": 9970.66, + "probability": 0.4128 + }, + { + "start": 9970.66, + "end": 9970.87, + "probability": 0.3732 + }, + { + "start": 9971.26, + "end": 9972.72, + "probability": 0.9485 + }, + { + "start": 9972.78, + "end": 9978.25, + "probability": 0.9971 + }, + { + "start": 9979.0, + "end": 9984.62, + "probability": 0.965 + }, + { + "start": 9985.98, + "end": 9988.18, + "probability": 0.9894 + }, + { + "start": 9988.26, + "end": 9988.63, + "probability": 0.7188 + }, + { + "start": 9989.14, + "end": 9989.62, + "probability": 0.6846 + }, + { + "start": 9990.02, + "end": 9990.38, + "probability": 0.9219 + }, + { + "start": 9990.48, + "end": 9990.9, + "probability": 0.4169 + }, + { + "start": 9991.24, + "end": 9992.1, + "probability": 0.9928 + }, + { + "start": 9992.66, + "end": 9994.6, + "probability": 0.9593 + }, + { + "start": 9995.02, + "end": 9998.24, + "probability": 0.7156 + }, + { + "start": 9998.26, + "end": 9999.6, + "probability": 0.9995 + }, + { + "start": 10000.16, + "end": 10001.06, + "probability": 0.9924 + }, + { + "start": 10001.94, + "end": 10004.04, + "probability": 0.9564 + }, + { + "start": 10004.16, + "end": 10005.29, + "probability": 0.9845 + }, + { + "start": 10006.34, + "end": 10007.9, + "probability": 0.9805 + }, + { + "start": 10007.96, + "end": 10009.36, + "probability": 0.985 + }, + { + "start": 10009.44, + "end": 10010.58, + "probability": 0.9202 + }, + { + "start": 10010.84, + "end": 10011.86, + "probability": 0.7749 + }, + { + "start": 10012.22, + "end": 10013.24, + "probability": 0.7437 + }, + { + "start": 10014.02, + "end": 10016.82, + "probability": 0.8098 + }, + { + "start": 10017.36, + "end": 10020.06, + "probability": 0.9562 + }, + { + "start": 10020.14, + "end": 10021.4, + "probability": 0.8721 + }, + { + "start": 10022.0, + "end": 10024.96, + "probability": 0.9621 + }, + { + "start": 10025.4, + "end": 10027.36, + "probability": 0.9941 + }, + { + "start": 10027.56, + "end": 10032.02, + "probability": 0.8558 + }, + { + "start": 10032.04, + "end": 10034.96, + "probability": 0.9671 + }, + { + "start": 10035.08, + "end": 10035.62, + "probability": 0.7369 + }, + { + "start": 10035.78, + "end": 10037.22, + "probability": 0.9697 + }, + { + "start": 10037.96, + "end": 10039.4, + "probability": 0.7329 + }, + { + "start": 10039.76, + "end": 10043.12, + "probability": 0.9593 + }, + { + "start": 10043.62, + "end": 10044.4, + "probability": 0.8856 + }, + { + "start": 10045.34, + "end": 10046.05, + "probability": 0.942 + }, + { + "start": 10046.36, + "end": 10049.72, + "probability": 0.9752 + }, + { + "start": 10049.9, + "end": 10050.86, + "probability": 0.9727 + }, + { + "start": 10050.98, + "end": 10051.2, + "probability": 0.533 + }, + { + "start": 10051.3, + "end": 10052.98, + "probability": 0.9289 + }, + { + "start": 10053.5, + "end": 10056.04, + "probability": 0.8167 + }, + { + "start": 10056.4, + "end": 10058.54, + "probability": 0.9523 + }, + { + "start": 10058.6, + "end": 10060.78, + "probability": 0.7411 + }, + { + "start": 10061.3, + "end": 10063.3, + "probability": 0.9326 + }, + { + "start": 10063.94, + "end": 10065.34, + "probability": 0.7338 + }, + { + "start": 10065.46, + "end": 10066.94, + "probability": 0.8445 + }, + { + "start": 10067.1, + "end": 10067.22, + "probability": 0.1484 + }, + { + "start": 10067.82, + "end": 10068.41, + "probability": 0.8369 + }, + { + "start": 10068.6, + "end": 10069.0, + "probability": 0.6353 + }, + { + "start": 10069.06, + "end": 10072.66, + "probability": 0.9418 + }, + { + "start": 10072.72, + "end": 10074.76, + "probability": 0.8669 + }, + { + "start": 10074.82, + "end": 10075.52, + "probability": 0.8331 + }, + { + "start": 10076.0, + "end": 10078.36, + "probability": 0.98 + }, + { + "start": 10078.38, + "end": 10079.64, + "probability": 0.9098 + }, + { + "start": 10080.52, + "end": 10081.22, + "probability": 0.1934 + }, + { + "start": 10081.4, + "end": 10085.02, + "probability": 0.9793 + }, + { + "start": 10085.4, + "end": 10086.0, + "probability": 0.8017 + }, + { + "start": 10086.06, + "end": 10087.12, + "probability": 0.9811 + }, + { + "start": 10087.24, + "end": 10088.48, + "probability": 0.8644 + }, + { + "start": 10088.96, + "end": 10093.88, + "probability": 0.9957 + }, + { + "start": 10094.22, + "end": 10094.46, + "probability": 0.6608 + }, + { + "start": 10096.46, + "end": 10096.98, + "probability": 0.6837 + }, + { + "start": 10098.1, + "end": 10099.62, + "probability": 0.8343 + }, + { + "start": 10101.22, + "end": 10102.42, + "probability": 0.9189 + }, + { + "start": 10103.0, + "end": 10103.38, + "probability": 0.9552 + }, + { + "start": 10114.34, + "end": 10115.32, + "probability": 0.8958 + }, + { + "start": 10115.54, + "end": 10115.98, + "probability": 0.9233 + }, + { + "start": 10116.32, + "end": 10116.74, + "probability": 0.1046 + }, + { + "start": 10116.74, + "end": 10117.9, + "probability": 0.0822 + }, + { + "start": 10117.9, + "end": 10119.28, + "probability": 0.1433 + }, + { + "start": 10119.34, + "end": 10121.15, + "probability": 0.0115 + }, + { + "start": 10129.78, + "end": 10131.28, + "probability": 0.2275 + }, + { + "start": 10132.08, + "end": 10136.78, + "probability": 0.9546 + }, + { + "start": 10136.78, + "end": 10141.2, + "probability": 0.9932 + }, + { + "start": 10141.8, + "end": 10144.4, + "probability": 0.7198 + }, + { + "start": 10145.28, + "end": 10147.14, + "probability": 0.8658 + }, + { + "start": 10147.36, + "end": 10150.46, + "probability": 0.9644 + }, + { + "start": 10151.06, + "end": 10155.0, + "probability": 0.8846 + }, + { + "start": 10155.84, + "end": 10161.54, + "probability": 0.9224 + }, + { + "start": 10161.7, + "end": 10162.74, + "probability": 0.8778 + }, + { + "start": 10163.72, + "end": 10166.44, + "probability": 0.9884 + }, + { + "start": 10167.2, + "end": 10169.17, + "probability": 0.7866 + }, + { + "start": 10169.62, + "end": 10170.88, + "probability": 0.7641 + }, + { + "start": 10171.4, + "end": 10175.28, + "probability": 0.9941 + }, + { + "start": 10176.06, + "end": 10176.57, + "probability": 0.8394 + }, + { + "start": 10177.24, + "end": 10178.46, + "probability": 0.9807 + }, + { + "start": 10178.9, + "end": 10180.78, + "probability": 0.9956 + }, + { + "start": 10181.12, + "end": 10182.98, + "probability": 0.9002 + }, + { + "start": 10183.14, + "end": 10183.68, + "probability": 0.7113 + }, + { + "start": 10183.76, + "end": 10186.54, + "probability": 0.9716 + }, + { + "start": 10187.2, + "end": 10190.78, + "probability": 0.9831 + }, + { + "start": 10190.78, + "end": 10194.32, + "probability": 0.9932 + }, + { + "start": 10195.12, + "end": 10196.34, + "probability": 0.971 + }, + { + "start": 10196.38, + "end": 10199.84, + "probability": 0.9033 + }, + { + "start": 10200.16, + "end": 10202.2, + "probability": 0.981 + }, + { + "start": 10202.6, + "end": 10203.7, + "probability": 0.586 + }, + { + "start": 10204.18, + "end": 10205.54, + "probability": 0.8579 + }, + { + "start": 10205.58, + "end": 10206.36, + "probability": 0.8855 + }, + { + "start": 10206.44, + "end": 10207.34, + "probability": 0.9388 + }, + { + "start": 10207.34, + "end": 10209.02, + "probability": 0.7638 + }, + { + "start": 10209.5, + "end": 10213.3, + "probability": 0.9663 + }, + { + "start": 10213.6, + "end": 10215.09, + "probability": 0.9137 + }, + { + "start": 10215.34, + "end": 10220.1, + "probability": 0.9842 + }, + { + "start": 10220.16, + "end": 10221.53, + "probability": 0.981 + }, + { + "start": 10222.2, + "end": 10224.46, + "probability": 0.9937 + }, + { + "start": 10225.3, + "end": 10227.66, + "probability": 0.9849 + }, + { + "start": 10228.52, + "end": 10231.74, + "probability": 0.8943 + }, + { + "start": 10232.5, + "end": 10234.26, + "probability": 0.8739 + }, + { + "start": 10234.6, + "end": 10236.85, + "probability": 0.9004 + }, + { + "start": 10237.38, + "end": 10240.9, + "probability": 0.9979 + }, + { + "start": 10241.28, + "end": 10244.04, + "probability": 0.9943 + }, + { + "start": 10244.22, + "end": 10245.14, + "probability": 0.4435 + }, + { + "start": 10245.92, + "end": 10246.82, + "probability": 0.8317 + }, + { + "start": 10246.92, + "end": 10247.38, + "probability": 0.9499 + }, + { + "start": 10247.46, + "end": 10248.66, + "probability": 0.9081 + }, + { + "start": 10249.14, + "end": 10252.74, + "probability": 0.9925 + }, + { + "start": 10252.74, + "end": 10256.18, + "probability": 0.9691 + }, + { + "start": 10256.66, + "end": 10259.62, + "probability": 0.9071 + }, + { + "start": 10260.12, + "end": 10265.56, + "probability": 0.9805 + }, + { + "start": 10265.6, + "end": 10266.18, + "probability": 0.6772 + }, + { + "start": 10266.2, + "end": 10267.04, + "probability": 0.9609 + }, + { + "start": 10267.56, + "end": 10268.88, + "probability": 0.9207 + }, + { + "start": 10269.46, + "end": 10276.54, + "probability": 0.9436 + }, + { + "start": 10276.8, + "end": 10277.0, + "probability": 0.1779 + }, + { + "start": 10277.0, + "end": 10278.76, + "probability": 0.9116 + }, + { + "start": 10278.82, + "end": 10280.18, + "probability": 0.6328 + }, + { + "start": 10280.32, + "end": 10280.88, + "probability": 0.9572 + }, + { + "start": 10281.34, + "end": 10282.42, + "probability": 0.8804 + }, + { + "start": 10282.6, + "end": 10283.86, + "probability": 0.9471 + }, + { + "start": 10283.96, + "end": 10284.76, + "probability": 0.8367 + }, + { + "start": 10285.18, + "end": 10286.98, + "probability": 0.7626 + }, + { + "start": 10287.7, + "end": 10290.46, + "probability": 0.995 + }, + { + "start": 10290.62, + "end": 10291.78, + "probability": 0.8776 + }, + { + "start": 10292.34, + "end": 10293.7, + "probability": 0.929 + }, + { + "start": 10293.8, + "end": 10294.48, + "probability": 0.9565 + }, + { + "start": 10294.54, + "end": 10298.16, + "probability": 0.9814 + }, + { + "start": 10298.88, + "end": 10301.34, + "probability": 0.9911 + }, + { + "start": 10301.66, + "end": 10302.68, + "probability": 0.8049 + }, + { + "start": 10302.76, + "end": 10305.58, + "probability": 0.9797 + }, + { + "start": 10305.9, + "end": 10308.44, + "probability": 0.9411 + }, + { + "start": 10308.68, + "end": 10313.72, + "probability": 0.9775 + }, + { + "start": 10314.14, + "end": 10316.18, + "probability": 0.694 + }, + { + "start": 10316.34, + "end": 10316.52, + "probability": 0.7893 + }, + { + "start": 10316.62, + "end": 10317.22, + "probability": 0.8091 + }, + { + "start": 10317.72, + "end": 10321.06, + "probability": 0.9419 + }, + { + "start": 10321.58, + "end": 10322.26, + "probability": 0.9106 + }, + { + "start": 10322.54, + "end": 10327.12, + "probability": 0.9768 + }, + { + "start": 10327.48, + "end": 10330.62, + "probability": 0.8538 + }, + { + "start": 10330.62, + "end": 10330.96, + "probability": 0.7042 + }, + { + "start": 10331.42, + "end": 10331.42, + "probability": 0.5206 + }, + { + "start": 10333.08, + "end": 10334.7, + "probability": 0.9087 + }, + { + "start": 10336.16, + "end": 10337.86, + "probability": 0.7709 + }, + { + "start": 10360.7, + "end": 10362.66, + "probability": 0.5336 + }, + { + "start": 10362.78, + "end": 10363.44, + "probability": 0.8291 + }, + { + "start": 10363.94, + "end": 10364.62, + "probability": 0.5867 + }, + { + "start": 10366.1, + "end": 10366.8, + "probability": 0.5969 + }, + { + "start": 10369.72, + "end": 10373.14, + "probability": 0.8222 + }, + { + "start": 10375.24, + "end": 10377.98, + "probability": 0.9254 + }, + { + "start": 10380.24, + "end": 10384.08, + "probability": 0.988 + }, + { + "start": 10384.76, + "end": 10385.22, + "probability": 0.4718 + }, + { + "start": 10386.56, + "end": 10389.12, + "probability": 0.9829 + }, + { + "start": 10389.64, + "end": 10392.26, + "probability": 0.9757 + }, + { + "start": 10392.88, + "end": 10395.14, + "probability": 0.9109 + }, + { + "start": 10396.34, + "end": 10400.08, + "probability": 0.9329 + }, + { + "start": 10400.86, + "end": 10402.77, + "probability": 0.8363 + }, + { + "start": 10403.64, + "end": 10407.3, + "probability": 0.9424 + }, + { + "start": 10408.56, + "end": 10412.09, + "probability": 0.9653 + }, + { + "start": 10412.16, + "end": 10415.74, + "probability": 0.999 + }, + { + "start": 10417.22, + "end": 10418.28, + "probability": 0.6158 + }, + { + "start": 10419.6, + "end": 10420.2, + "probability": 0.8525 + }, + { + "start": 10422.36, + "end": 10423.66, + "probability": 0.595 + }, + { + "start": 10424.11, + "end": 10427.1, + "probability": 0.1342 + }, + { + "start": 10427.78, + "end": 10430.12, + "probability": 0.3978 + }, + { + "start": 10430.12, + "end": 10431.38, + "probability": 0.2043 + }, + { + "start": 10431.92, + "end": 10434.34, + "probability": 0.1012 + }, + { + "start": 10434.48, + "end": 10435.9, + "probability": 0.0342 + }, + { + "start": 10436.02, + "end": 10439.08, + "probability": 0.0843 + }, + { + "start": 10439.08, + "end": 10439.08, + "probability": 0.1805 + }, + { + "start": 10439.08, + "end": 10439.08, + "probability": 0.0651 + }, + { + "start": 10439.08, + "end": 10441.28, + "probability": 0.7579 + }, + { + "start": 10441.38, + "end": 10444.88, + "probability": 0.9932 + }, + { + "start": 10446.0, + "end": 10449.34, + "probability": 0.9905 + }, + { + "start": 10450.32, + "end": 10454.2, + "probability": 0.9215 + }, + { + "start": 10454.34, + "end": 10456.22, + "probability": 0.9799 + }, + { + "start": 10456.26, + "end": 10458.28, + "probability": 0.9758 + }, + { + "start": 10460.18, + "end": 10460.96, + "probability": 0.8757 + }, + { + "start": 10461.48, + "end": 10463.4, + "probability": 0.9699 + }, + { + "start": 10464.34, + "end": 10465.58, + "probability": 0.9873 + }, + { + "start": 10466.8, + "end": 10469.98, + "probability": 0.7546 + }, + { + "start": 10471.24, + "end": 10474.52, + "probability": 0.9691 + }, + { + "start": 10474.52, + "end": 10478.86, + "probability": 0.9961 + }, + { + "start": 10480.44, + "end": 10482.08, + "probability": 0.6282 + }, + { + "start": 10483.16, + "end": 10485.92, + "probability": 0.9634 + }, + { + "start": 10486.64, + "end": 10489.5, + "probability": 0.8176 + }, + { + "start": 10491.14, + "end": 10492.2, + "probability": 0.8685 + }, + { + "start": 10493.34, + "end": 10495.38, + "probability": 0.9174 + }, + { + "start": 10496.32, + "end": 10498.56, + "probability": 0.8936 + }, + { + "start": 10499.86, + "end": 10502.94, + "probability": 0.9631 + }, + { + "start": 10504.58, + "end": 10506.6, + "probability": 0.7012 + }, + { + "start": 10507.9, + "end": 10512.06, + "probability": 0.7027 + }, + { + "start": 10513.46, + "end": 10517.66, + "probability": 0.8136 + }, + { + "start": 10517.74, + "end": 10521.22, + "probability": 0.9937 + }, + { + "start": 10523.0, + "end": 10524.1, + "probability": 0.9163 + }, + { + "start": 10525.72, + "end": 10528.76, + "probability": 0.988 + }, + { + "start": 10530.12, + "end": 10533.3, + "probability": 0.997 + }, + { + "start": 10533.36, + "end": 10533.54, + "probability": 0.7128 + }, + { + "start": 10535.3, + "end": 10537.0, + "probability": 0.8628 + }, + { + "start": 10538.68, + "end": 10540.18, + "probability": 0.9983 + }, + { + "start": 10541.86, + "end": 10542.86, + "probability": 0.9469 + }, + { + "start": 10543.7, + "end": 10544.66, + "probability": 0.582 + }, + { + "start": 10545.82, + "end": 10546.9, + "probability": 0.783 + }, + { + "start": 10548.26, + "end": 10549.18, + "probability": 0.7584 + }, + { + "start": 10549.34, + "end": 10550.16, + "probability": 0.4995 + }, + { + "start": 10550.16, + "end": 10550.26, + "probability": 0.0886 + }, + { + "start": 10550.3, + "end": 10551.32, + "probability": 0.532 + }, + { + "start": 10553.24, + "end": 10555.78, + "probability": 0.7874 + }, + { + "start": 10555.86, + "end": 10557.88, + "probability": 0.9829 + }, + { + "start": 10558.6, + "end": 10560.24, + "probability": 0.9751 + }, + { + "start": 10561.0, + "end": 10562.84, + "probability": 0.8644 + }, + { + "start": 10563.24, + "end": 10564.26, + "probability": 0.2017 + }, + { + "start": 10564.7, + "end": 10566.56, + "probability": 0.8259 + }, + { + "start": 10566.82, + "end": 10568.78, + "probability": 0.859 + }, + { + "start": 10569.8, + "end": 10571.7, + "probability": 0.7826 + }, + { + "start": 10571.76, + "end": 10572.02, + "probability": 0.3527 + }, + { + "start": 10572.02, + "end": 10572.54, + "probability": 0.7181 + }, + { + "start": 10572.9, + "end": 10574.22, + "probability": 0.9451 + }, + { + "start": 10574.22, + "end": 10575.8, + "probability": 0.4706 + }, + { + "start": 10575.96, + "end": 10577.51, + "probability": 0.6816 + }, + { + "start": 10579.76, + "end": 10580.0, + "probability": 0.3833 + }, + { + "start": 10580.6, + "end": 10582.0, + "probability": 0.1474 + }, + { + "start": 10582.22, + "end": 10582.9, + "probability": 0.0596 + }, + { + "start": 10582.92, + "end": 10584.08, + "probability": 0.8503 + }, + { + "start": 10584.6, + "end": 10587.0, + "probability": 0.9854 + }, + { + "start": 10587.84, + "end": 10588.36, + "probability": 0.8172 + }, + { + "start": 10589.34, + "end": 10590.28, + "probability": 0.8106 + }, + { + "start": 10590.56, + "end": 10591.66, + "probability": 0.8694 + }, + { + "start": 10591.76, + "end": 10592.96, + "probability": 0.4519 + }, + { + "start": 10593.48, + "end": 10594.36, + "probability": 0.2624 + }, + { + "start": 10594.88, + "end": 10597.76, + "probability": 0.9963 + }, + { + "start": 10598.28, + "end": 10599.32, + "probability": 0.5315 + }, + { + "start": 10599.86, + "end": 10602.16, + "probability": 0.9625 + }, + { + "start": 10602.18, + "end": 10602.42, + "probability": 0.6049 + }, + { + "start": 10602.44, + "end": 10602.9, + "probability": 0.3799 + }, + { + "start": 10603.0, + "end": 10603.96, + "probability": 0.7619 + }, + { + "start": 10603.96, + "end": 10604.22, + "probability": 0.7027 + }, + { + "start": 10604.3, + "end": 10604.78, + "probability": 0.4812 + }, + { + "start": 10604.78, + "end": 10613.72, + "probability": 0.52 + }, + { + "start": 10614.6, + "end": 10614.6, + "probability": 0.0424 + }, + { + "start": 10614.6, + "end": 10614.6, + "probability": 0.1588 + }, + { + "start": 10614.6, + "end": 10614.6, + "probability": 0.1103 + }, + { + "start": 10614.6, + "end": 10614.6, + "probability": 0.0452 + }, + { + "start": 10614.6, + "end": 10614.6, + "probability": 0.1408 + }, + { + "start": 10614.6, + "end": 10617.22, + "probability": 0.5179 + }, + { + "start": 10618.68, + "end": 10620.42, + "probability": 0.5194 + }, + { + "start": 10621.92, + "end": 10625.1, + "probability": 0.9536 + }, + { + "start": 10641.02, + "end": 10642.88, + "probability": 0.5882 + }, + { + "start": 10642.88, + "end": 10642.88, + "probability": 0.0011 + }, + { + "start": 10642.88, + "end": 10645.8, + "probability": 0.2925 + }, + { + "start": 10646.38, + "end": 10647.64, + "probability": 0.7417 + }, + { + "start": 10648.88, + "end": 10651.18, + "probability": 0.8495 + }, + { + "start": 10652.36, + "end": 10656.16, + "probability": 0.6772 + }, + { + "start": 10657.6, + "end": 10660.5, + "probability": 0.0022 + }, + { + "start": 10660.5, + "end": 10660.76, + "probability": 0.0781 + }, + { + "start": 10660.94, + "end": 10662.32, + "probability": 0.5014 + }, + { + "start": 10663.9, + "end": 10669.8, + "probability": 0.9746 + }, + { + "start": 10671.82, + "end": 10673.4, + "probability": 0.8962 + }, + { + "start": 10674.82, + "end": 10676.44, + "probability": 0.8711 + }, + { + "start": 10677.58, + "end": 10678.94, + "probability": 0.99 + }, + { + "start": 10679.74, + "end": 10681.28, + "probability": 0.9111 + }, + { + "start": 10682.68, + "end": 10686.14, + "probability": 0.877 + }, + { + "start": 10686.96, + "end": 10687.88, + "probability": 0.865 + }, + { + "start": 10688.9, + "end": 10689.64, + "probability": 0.7557 + }, + { + "start": 10690.92, + "end": 10693.94, + "probability": 0.9556 + }, + { + "start": 10694.56, + "end": 10696.62, + "probability": 0.979 + }, + { + "start": 10698.3, + "end": 10700.5, + "probability": 0.988 + }, + { + "start": 10701.98, + "end": 10708.32, + "probability": 0.9463 + }, + { + "start": 10709.32, + "end": 10711.0, + "probability": 0.8813 + }, + { + "start": 10712.06, + "end": 10718.42, + "probability": 0.8598 + }, + { + "start": 10719.24, + "end": 10720.16, + "probability": 0.728 + }, + { + "start": 10720.58, + "end": 10723.66, + "probability": 0.779 + }, + { + "start": 10723.72, + "end": 10725.92, + "probability": 0.9338 + }, + { + "start": 10727.7, + "end": 10729.5, + "probability": 0.7043 + }, + { + "start": 10729.6, + "end": 10731.54, + "probability": 0.709 + }, + { + "start": 10731.92, + "end": 10732.22, + "probability": 0.0349 + }, + { + "start": 10732.58, + "end": 10734.28, + "probability": 0.3479 + }, + { + "start": 10734.42, + "end": 10736.9, + "probability": 0.9555 + }, + { + "start": 10737.32, + "end": 10739.62, + "probability": 0.9586 + }, + { + "start": 10740.3, + "end": 10745.14, + "probability": 0.9396 + }, + { + "start": 10745.9, + "end": 10747.72, + "probability": 0.8662 + }, + { + "start": 10749.34, + "end": 10754.28, + "probability": 0.9514 + }, + { + "start": 10755.64, + "end": 10759.04, + "probability": 0.3178 + }, + { + "start": 10759.88, + "end": 10761.04, + "probability": 0.8642 + }, + { + "start": 10761.88, + "end": 10764.14, + "probability": 0.8756 + }, + { + "start": 10765.34, + "end": 10766.66, + "probability": 0.483 + }, + { + "start": 10768.16, + "end": 10768.3, + "probability": 0.6281 + }, + { + "start": 10770.62, + "end": 10772.28, + "probability": 0.9366 + }, + { + "start": 10773.92, + "end": 10775.02, + "probability": 0.7056 + }, + { + "start": 10776.32, + "end": 10777.24, + "probability": 0.6795 + }, + { + "start": 10777.76, + "end": 10778.76, + "probability": 0.5002 + }, + { + "start": 10780.02, + "end": 10781.41, + "probability": 0.9187 + }, + { + "start": 10782.64, + "end": 10783.66, + "probability": 0.6447 + }, + { + "start": 10784.52, + "end": 10785.62, + "probability": 0.9201 + }, + { + "start": 10786.32, + "end": 10788.98, + "probability": 0.7546 + }, + { + "start": 10790.14, + "end": 10791.78, + "probability": 0.969 + }, + { + "start": 10792.46, + "end": 10794.28, + "probability": 0.99 + }, + { + "start": 10795.2, + "end": 10795.9, + "probability": 0.8115 + }, + { + "start": 10797.32, + "end": 10797.46, + "probability": 0.7218 + }, + { + "start": 10798.2, + "end": 10799.56, + "probability": 0.9386 + }, + { + "start": 10800.64, + "end": 10801.16, + "probability": 0.6571 + }, + { + "start": 10801.82, + "end": 10802.98, + "probability": 0.659 + }, + { + "start": 10815.92, + "end": 10816.32, + "probability": 0.53 + }, + { + "start": 10816.7, + "end": 10817.42, + "probability": 0.8981 + }, + { + "start": 10819.08, + "end": 10819.5, + "probability": 0.6261 + }, + { + "start": 10819.56, + "end": 10820.28, + "probability": 0.6332 + }, + { + "start": 10821.0, + "end": 10821.46, + "probability": 0.7597 + }, + { + "start": 10821.5, + "end": 10824.0, + "probability": 0.9769 + }, + { + "start": 10824.0, + "end": 10827.44, + "probability": 0.8469 + }, + { + "start": 10828.04, + "end": 10828.4, + "probability": 0.7869 + }, + { + "start": 10828.94, + "end": 10830.0, + "probability": 0.9839 + }, + { + "start": 10830.02, + "end": 10834.42, + "probability": 0.8708 + }, + { + "start": 10834.66, + "end": 10835.5, + "probability": 0.6846 + }, + { + "start": 10835.58, + "end": 10836.86, + "probability": 0.9653 + }, + { + "start": 10837.26, + "end": 10838.48, + "probability": 0.8632 + }, + { + "start": 10839.22, + "end": 10841.06, + "probability": 0.9903 + }, + { + "start": 10841.34, + "end": 10842.22, + "probability": 0.9017 + }, + { + "start": 10842.46, + "end": 10843.68, + "probability": 0.9924 + }, + { + "start": 10844.38, + "end": 10846.04, + "probability": 0.6236 + }, + { + "start": 10846.62, + "end": 10848.12, + "probability": 0.9845 + }, + { + "start": 10848.2, + "end": 10852.56, + "probability": 0.9837 + }, + { + "start": 10853.02, + "end": 10857.9, + "probability": 0.9929 + }, + { + "start": 10858.38, + "end": 10860.16, + "probability": 0.9589 + }, + { + "start": 10860.72, + "end": 10861.18, + "probability": 0.8651 + }, + { + "start": 10861.8, + "end": 10864.92, + "probability": 0.9875 + }, + { + "start": 10865.36, + "end": 10866.56, + "probability": 0.8319 + }, + { + "start": 10867.02, + "end": 10870.12, + "probability": 0.9638 + }, + { + "start": 10870.52, + "end": 10871.65, + "probability": 0.9077 + }, + { + "start": 10871.86, + "end": 10873.88, + "probability": 0.9724 + }, + { + "start": 10874.74, + "end": 10876.54, + "probability": 0.8916 + }, + { + "start": 10877.1, + "end": 10879.58, + "probability": 0.9974 + }, + { + "start": 10879.98, + "end": 10881.5, + "probability": 0.9533 + }, + { + "start": 10882.42, + "end": 10884.54, + "probability": 0.9222 + }, + { + "start": 10885.1, + "end": 10889.74, + "probability": 0.9739 + }, + { + "start": 10890.14, + "end": 10893.36, + "probability": 0.7275 + }, + { + "start": 10893.92, + "end": 10895.56, + "probability": 0.8434 + }, + { + "start": 10896.44, + "end": 10898.72, + "probability": 0.9829 + }, + { + "start": 10899.06, + "end": 10900.3, + "probability": 0.9584 + }, + { + "start": 10900.48, + "end": 10905.92, + "probability": 0.8697 + }, + { + "start": 10906.18, + "end": 10908.64, + "probability": 0.9209 + }, + { + "start": 10909.8, + "end": 10909.84, + "probability": 0.0872 + }, + { + "start": 10909.84, + "end": 10910.64, + "probability": 0.3547 + }, + { + "start": 10912.83, + "end": 10918.64, + "probability": 0.9832 + }, + { + "start": 10919.16, + "end": 10920.74, + "probability": 0.5972 + }, + { + "start": 10921.52, + "end": 10922.24, + "probability": 0.8951 + }, + { + "start": 10922.8, + "end": 10929.26, + "probability": 0.976 + }, + { + "start": 10929.58, + "end": 10930.92, + "probability": 0.9889 + }, + { + "start": 10931.36, + "end": 10934.42, + "probability": 0.8622 + }, + { + "start": 10935.38, + "end": 10938.84, + "probability": 0.9071 + }, + { + "start": 10939.18, + "end": 10942.7, + "probability": 0.9916 + }, + { + "start": 10942.94, + "end": 10943.84, + "probability": 0.8372 + }, + { + "start": 10944.06, + "end": 10946.38, + "probability": 0.9401 + }, + { + "start": 10946.72, + "end": 10949.8, + "probability": 0.9827 + }, + { + "start": 10950.18, + "end": 10950.88, + "probability": 0.4759 + }, + { + "start": 10950.96, + "end": 10953.7, + "probability": 0.9714 + }, + { + "start": 10954.1, + "end": 10955.74, + "probability": 0.9784 + }, + { + "start": 10955.9, + "end": 10959.98, + "probability": 0.8176 + }, + { + "start": 10960.58, + "end": 10962.92, + "probability": 0.1151 + }, + { + "start": 10963.6, + "end": 10963.62, + "probability": 0.0055 + }, + { + "start": 10963.62, + "end": 10963.62, + "probability": 0.3463 + }, + { + "start": 10963.62, + "end": 10965.0, + "probability": 0.7567 + }, + { + "start": 10965.12, + "end": 10965.71, + "probability": 0.8879 + }, + { + "start": 10966.2, + "end": 10968.18, + "probability": 0.8845 + }, + { + "start": 10968.24, + "end": 10969.68, + "probability": 0.9934 + }, + { + "start": 10969.82, + "end": 10971.1, + "probability": 0.9805 + }, + { + "start": 10971.38, + "end": 10972.34, + "probability": 0.875 + }, + { + "start": 10972.7, + "end": 10976.26, + "probability": 0.854 + }, + { + "start": 10976.56, + "end": 10977.92, + "probability": 0.6586 + }, + { + "start": 10978.28, + "end": 10979.18, + "probability": 0.9712 + }, + { + "start": 10979.44, + "end": 10980.58, + "probability": 0.9429 + }, + { + "start": 10980.86, + "end": 10981.64, + "probability": 0.9729 + }, + { + "start": 10981.74, + "end": 10988.7, + "probability": 0.8528 + }, + { + "start": 10988.92, + "end": 10990.1, + "probability": 0.8035 + }, + { + "start": 10990.34, + "end": 10991.48, + "probability": 0.9659 + }, + { + "start": 10991.62, + "end": 10993.1, + "probability": 0.9743 + }, + { + "start": 10993.4, + "end": 10994.34, + "probability": 0.9851 + }, + { + "start": 10994.82, + "end": 10995.66, + "probability": 0.9697 + }, + { + "start": 10995.84, + "end": 10998.92, + "probability": 0.9683 + }, + { + "start": 10999.72, + "end": 11001.38, + "probability": 0.6511 + }, + { + "start": 11001.66, + "end": 11003.84, + "probability": 0.9844 + }, + { + "start": 11004.14, + "end": 11004.52, + "probability": 0.9619 + }, + { + "start": 11004.76, + "end": 11006.04, + "probability": 0.9752 + }, + { + "start": 11006.24, + "end": 11008.98, + "probability": 0.9865 + }, + { + "start": 11009.26, + "end": 11012.58, + "probability": 0.8434 + }, + { + "start": 11012.9, + "end": 11013.34, + "probability": 0.8004 + }, + { + "start": 11014.8, + "end": 11015.4, + "probability": 0.8017 + }, + { + "start": 11016.82, + "end": 11018.2, + "probability": 0.713 + }, + { + "start": 11019.74, + "end": 11021.78, + "probability": 0.8667 + }, + { + "start": 11023.14, + "end": 11023.56, + "probability": 0.7475 + }, + { + "start": 11023.56, + "end": 11028.16, + "probability": 0.1539 + }, + { + "start": 11028.22, + "end": 11029.56, + "probability": 0.8254 + }, + { + "start": 11029.96, + "end": 11031.3, + "probability": 0.864 + }, + { + "start": 11031.68, + "end": 11035.52, + "probability": 0.9905 + }, + { + "start": 11036.04, + "end": 11038.08, + "probability": 0.1761 + }, + { + "start": 11038.14, + "end": 11039.02, + "probability": 0.3942 + }, + { + "start": 11039.02, + "end": 11039.66, + "probability": 0.0601 + }, + { + "start": 11039.82, + "end": 11041.08, + "probability": 0.2923 + }, + { + "start": 11043.74, + "end": 11046.56, + "probability": 0.881 + }, + { + "start": 11047.04, + "end": 11051.14, + "probability": 0.9929 + }, + { + "start": 11051.14, + "end": 11057.56, + "probability": 0.9945 + }, + { + "start": 11058.34, + "end": 11059.13, + "probability": 0.8611 + }, + { + "start": 11059.8, + "end": 11062.52, + "probability": 0.9094 + }, + { + "start": 11063.0, + "end": 11063.62, + "probability": 0.5718 + }, + { + "start": 11063.72, + "end": 11066.14, + "probability": 0.9214 + }, + { + "start": 11066.76, + "end": 11068.09, + "probability": 0.874 + }, + { + "start": 11068.2, + "end": 11070.58, + "probability": 0.9744 + }, + { + "start": 11070.94, + "end": 11072.26, + "probability": 0.9544 + }, + { + "start": 11072.86, + "end": 11074.02, + "probability": 0.7154 + }, + { + "start": 11074.64, + "end": 11075.88, + "probability": 0.9602 + }, + { + "start": 11077.14, + "end": 11077.62, + "probability": 0.9458 + }, + { + "start": 11078.46, + "end": 11082.52, + "probability": 0.9751 + }, + { + "start": 11083.26, + "end": 11089.0, + "probability": 0.9904 + }, + { + "start": 11090.48, + "end": 11093.34, + "probability": 0.892 + }, + { + "start": 11093.98, + "end": 11097.42, + "probability": 0.9905 + }, + { + "start": 11097.56, + "end": 11098.16, + "probability": 0.0362 + }, + { + "start": 11098.16, + "end": 11098.32, + "probability": 0.0525 + }, + { + "start": 11098.32, + "end": 11103.38, + "probability": 0.9493 + }, + { + "start": 11103.56, + "end": 11104.34, + "probability": 0.7443 + }, + { + "start": 11104.72, + "end": 11105.42, + "probability": 0.3698 + }, + { + "start": 11105.84, + "end": 11106.5, + "probability": 0.6958 + }, + { + "start": 11106.94, + "end": 11109.68, + "probability": 0.9816 + }, + { + "start": 11110.28, + "end": 11112.42, + "probability": 0.6365 + }, + { + "start": 11112.96, + "end": 11120.6, + "probability": 0.9608 + }, + { + "start": 11120.74, + "end": 11123.2, + "probability": 0.991 + }, + { + "start": 11124.18, + "end": 11127.82, + "probability": 0.9251 + }, + { + "start": 11128.34, + "end": 11129.14, + "probability": 0.8024 + }, + { + "start": 11129.74, + "end": 11132.26, + "probability": 0.7296 + }, + { + "start": 11132.86, + "end": 11134.66, + "probability": 0.6721 + }, + { + "start": 11135.12, + "end": 11137.24, + "probability": 0.7637 + }, + { + "start": 11137.6, + "end": 11139.36, + "probability": 0.9243 + }, + { + "start": 11139.74, + "end": 11142.02, + "probability": 0.9297 + }, + { + "start": 11142.34, + "end": 11143.04, + "probability": 0.9501 + }, + { + "start": 11143.66, + "end": 11145.48, + "probability": 0.8855 + }, + { + "start": 11146.3, + "end": 11148.08, + "probability": 0.9768 + }, + { + "start": 11148.74, + "end": 11151.27, + "probability": 0.665 + }, + { + "start": 11151.52, + "end": 11155.28, + "probability": 0.9173 + }, + { + "start": 11155.8, + "end": 11159.32, + "probability": 0.6737 + }, + { + "start": 11160.0, + "end": 11164.38, + "probability": 0.9203 + }, + { + "start": 11164.92, + "end": 11165.8, + "probability": 0.7496 + }, + { + "start": 11166.28, + "end": 11168.84, + "probability": 0.9611 + }, + { + "start": 11169.3, + "end": 11170.66, + "probability": 0.9156 + }, + { + "start": 11171.0, + "end": 11172.08, + "probability": 0.7649 + }, + { + "start": 11172.12, + "end": 11173.76, + "probability": 0.765 + }, + { + "start": 11174.12, + "end": 11174.7, + "probability": 0.8659 + }, + { + "start": 11175.08, + "end": 11178.82, + "probability": 0.9026 + }, + { + "start": 11179.14, + "end": 11179.72, + "probability": 0.5717 + }, + { + "start": 11180.18, + "end": 11182.84, + "probability": 0.9367 + }, + { + "start": 11183.0, + "end": 11183.22, + "probability": 0.6267 + }, + { + "start": 11183.66, + "end": 11184.34, + "probability": 0.7414 + }, + { + "start": 11184.8, + "end": 11186.6, + "probability": 0.829 + }, + { + "start": 11187.24, + "end": 11188.61, + "probability": 0.9355 + }, + { + "start": 11189.44, + "end": 11193.0, + "probability": 0.9399 + }, + { + "start": 11193.52, + "end": 11193.94, + "probability": 0.8737 + }, + { + "start": 11194.22, + "end": 11194.95, + "probability": 0.9278 + }, + { + "start": 11195.46, + "end": 11198.28, + "probability": 0.7975 + }, + { + "start": 11198.38, + "end": 11202.0, + "probability": 0.9345 + }, + { + "start": 11202.52, + "end": 11204.08, + "probability": 0.6646 + }, + { + "start": 11204.5, + "end": 11207.0, + "probability": 0.9514 + }, + { + "start": 11207.44, + "end": 11209.14, + "probability": 0.9805 + }, + { + "start": 11209.24, + "end": 11210.28, + "probability": 0.847 + }, + { + "start": 11210.68, + "end": 11211.72, + "probability": 0.9797 + }, + { + "start": 11212.08, + "end": 11216.52, + "probability": 0.9948 + }, + { + "start": 11217.3, + "end": 11218.94, + "probability": 0.838 + }, + { + "start": 11219.28, + "end": 11220.32, + "probability": 0.9058 + }, + { + "start": 11220.68, + "end": 11221.88, + "probability": 0.9203 + }, + { + "start": 11222.18, + "end": 11223.83, + "probability": 0.9373 + }, + { + "start": 11223.94, + "end": 11226.08, + "probability": 0.9718 + }, + { + "start": 11226.32, + "end": 11229.06, + "probability": 0.9969 + }, + { + "start": 11229.84, + "end": 11229.86, + "probability": 0.3342 + }, + { + "start": 11231.32, + "end": 11232.38, + "probability": 0.9995 + }, + { + "start": 11233.52, + "end": 11235.92, + "probability": 0.9371 + }, + { + "start": 11236.6, + "end": 11238.1, + "probability": 0.9437 + }, + { + "start": 11238.88, + "end": 11242.04, + "probability": 0.9794 + }, + { + "start": 11242.4, + "end": 11244.96, + "probability": 0.9941 + }, + { + "start": 11246.7, + "end": 11247.14, + "probability": 0.7025 + }, + { + "start": 11247.16, + "end": 11248.56, + "probability": 0.7837 + }, + { + "start": 11249.68, + "end": 11250.66, + "probability": 0.9791 + }, + { + "start": 11269.62, + "end": 11269.8, + "probability": 0.17 + }, + { + "start": 11269.8, + "end": 11271.62, + "probability": 0.4652 + }, + { + "start": 11275.2, + "end": 11279.38, + "probability": 0.7306 + }, + { + "start": 11281.02, + "end": 11283.18, + "probability": 0.0905 + }, + { + "start": 11283.46, + "end": 11284.42, + "probability": 0.5489 + }, + { + "start": 11284.86, + "end": 11286.69, + "probability": 0.3069 + }, + { + "start": 11286.9, + "end": 11287.66, + "probability": 0.0728 + }, + { + "start": 11288.85, + "end": 11292.0, + "probability": 0.7729 + }, + { + "start": 11292.34, + "end": 11294.18, + "probability": 0.8989 + }, + { + "start": 11296.57, + "end": 11297.06, + "probability": 0.6423 + }, + { + "start": 11297.06, + "end": 11299.22, + "probability": 0.6276 + }, + { + "start": 11302.38, + "end": 11303.92, + "probability": 0.998 + }, + { + "start": 11304.22, + "end": 11308.22, + "probability": 0.9937 + }, + { + "start": 11309.34, + "end": 11310.44, + "probability": 0.8953 + }, + { + "start": 11313.32, + "end": 11314.16, + "probability": 0.9836 + }, + { + "start": 11316.08, + "end": 11318.28, + "probability": 0.9255 + }, + { + "start": 11319.92, + "end": 11321.7, + "probability": 0.9866 + }, + { + "start": 11326.22, + "end": 11326.98, + "probability": 0.4755 + }, + { + "start": 11327.72, + "end": 11329.22, + "probability": 0.909 + }, + { + "start": 11330.18, + "end": 11333.28, + "probability": 0.9317 + }, + { + "start": 11334.52, + "end": 11339.26, + "probability": 0.9917 + }, + { + "start": 11340.16, + "end": 11341.28, + "probability": 0.0125 + }, + { + "start": 11341.96, + "end": 11342.52, + "probability": 0.6833 + }, + { + "start": 11342.58, + "end": 11345.32, + "probability": 0.9893 + }, + { + "start": 11345.66, + "end": 11348.96, + "probability": 0.2929 + }, + { + "start": 11349.0, + "end": 11349.08, + "probability": 0.3996 + }, + { + "start": 11349.42, + "end": 11350.96, + "probability": 0.9481 + }, + { + "start": 11350.96, + "end": 11353.12, + "probability": 0.9796 + }, + { + "start": 11353.3, + "end": 11353.56, + "probability": 0.5121 + }, + { + "start": 11353.76, + "end": 11355.08, + "probability": 0.4984 + }, + { + "start": 11355.08, + "end": 11355.96, + "probability": 0.8287 + }, + { + "start": 11356.48, + "end": 11357.62, + "probability": 0.79 + }, + { + "start": 11358.82, + "end": 11362.26, + "probability": 0.0229 + }, + { + "start": 11362.26, + "end": 11362.76, + "probability": 0.2499 + }, + { + "start": 11362.76, + "end": 11365.04, + "probability": 0.9872 + }, + { + "start": 11365.54, + "end": 11366.82, + "probability": 0.0355 + }, + { + "start": 11367.27, + "end": 11368.57, + "probability": 0.9848 + }, + { + "start": 11368.94, + "end": 11370.39, + "probability": 0.981 + }, + { + "start": 11371.2, + "end": 11372.23, + "probability": 0.4638 + }, + { + "start": 11372.98, + "end": 11374.12, + "probability": 0.9875 + }, + { + "start": 11374.44, + "end": 11376.14, + "probability": 0.7442 + }, + { + "start": 11376.44, + "end": 11377.31, + "probability": 0.9614 + }, + { + "start": 11377.72, + "end": 11379.68, + "probability": 0.8994 + }, + { + "start": 11380.2, + "end": 11380.2, + "probability": 0.129 + }, + { + "start": 11380.2, + "end": 11382.62, + "probability": 0.8142 + }, + { + "start": 11382.84, + "end": 11384.77, + "probability": 0.9235 + }, + { + "start": 11385.19, + "end": 11387.43, + "probability": 0.4952 + }, + { + "start": 11387.67, + "end": 11390.21, + "probability": 0.8299 + }, + { + "start": 11390.37, + "end": 11393.42, + "probability": 0.3454 + }, + { + "start": 11394.25, + "end": 11394.25, + "probability": 0.1896 + }, + { + "start": 11394.25, + "end": 11394.69, + "probability": 0.8009 + }, + { + "start": 11394.77, + "end": 11395.83, + "probability": 0.6233 + }, + { + "start": 11395.83, + "end": 11396.67, + "probability": 0.0482 + }, + { + "start": 11396.97, + "end": 11397.01, + "probability": 0.3008 + }, + { + "start": 11397.01, + "end": 11397.01, + "probability": 0.2721 + }, + { + "start": 11397.01, + "end": 11398.69, + "probability": 0.8714 + }, + { + "start": 11398.71, + "end": 11399.29, + "probability": 0.6294 + }, + { + "start": 11399.87, + "end": 11403.01, + "probability": 0.9904 + }, + { + "start": 11403.13, + "end": 11403.69, + "probability": 0.7652 + }, + { + "start": 11404.23, + "end": 11404.35, + "probability": 0.4557 + }, + { + "start": 11405.27, + "end": 11407.43, + "probability": 0.824 + }, + { + "start": 11408.87, + "end": 11412.67, + "probability": 0.9958 + }, + { + "start": 11413.71, + "end": 11417.83, + "probability": 0.3269 + }, + { + "start": 11419.03, + "end": 11421.79, + "probability": 0.9555 + }, + { + "start": 11422.23, + "end": 11422.75, + "probability": 0.9547 + }, + { + "start": 11423.87, + "end": 11427.29, + "probability": 0.992 + }, + { + "start": 11427.39, + "end": 11428.95, + "probability": 0.8901 + }, + { + "start": 11432.25, + "end": 11432.29, + "probability": 0.0883 + }, + { + "start": 11432.29, + "end": 11432.29, + "probability": 0.2023 + }, + { + "start": 11432.29, + "end": 11432.91, + "probability": 0.2173 + }, + { + "start": 11432.91, + "end": 11438.63, + "probability": 0.9919 + }, + { + "start": 11440.09, + "end": 11442.37, + "probability": 0.7196 + }, + { + "start": 11443.99, + "end": 11445.45, + "probability": 0.8433 + }, + { + "start": 11446.51, + "end": 11447.57, + "probability": 0.5686 + }, + { + "start": 11448.31, + "end": 11451.61, + "probability": 0.9512 + }, + { + "start": 11452.99, + "end": 11454.13, + "probability": 0.7716 + }, + { + "start": 11454.89, + "end": 11456.95, + "probability": 0.6909 + }, + { + "start": 11457.09, + "end": 11458.55, + "probability": 0.8407 + }, + { + "start": 11458.59, + "end": 11460.23, + "probability": 0.5925 + }, + { + "start": 11460.23, + "end": 11461.13, + "probability": 0.0509 + }, + { + "start": 11461.13, + "end": 11462.37, + "probability": 0.8262 + }, + { + "start": 11462.99, + "end": 11464.67, + "probability": 0.9836 + }, + { + "start": 11465.63, + "end": 11467.53, + "probability": 0.9863 + }, + { + "start": 11468.39, + "end": 11471.65, + "probability": 0.9129 + }, + { + "start": 11471.75, + "end": 11472.35, + "probability": 0.8015 + }, + { + "start": 11472.45, + "end": 11472.81, + "probability": 0.1297 + }, + { + "start": 11472.83, + "end": 11473.68, + "probability": 0.2807 + }, + { + "start": 11474.43, + "end": 11475.11, + "probability": 0.4134 + }, + { + "start": 11475.13, + "end": 11475.19, + "probability": 0.1735 + }, + { + "start": 11475.19, + "end": 11475.19, + "probability": 0.0882 + }, + { + "start": 11475.19, + "end": 11477.07, + "probability": 0.9113 + }, + { + "start": 11477.47, + "end": 11477.57, + "probability": 0.0884 + }, + { + "start": 11477.57, + "end": 11478.63, + "probability": 0.1067 + }, + { + "start": 11478.79, + "end": 11480.05, + "probability": 0.99 + }, + { + "start": 11480.27, + "end": 11481.15, + "probability": 0.6288 + }, + { + "start": 11481.35, + "end": 11481.77, + "probability": 0.7249 + }, + { + "start": 11481.77, + "end": 11482.15, + "probability": 0.7745 + }, + { + "start": 11482.19, + "end": 11483.09, + "probability": 0.54 + }, + { + "start": 11483.41, + "end": 11485.27, + "probability": 0.4348 + }, + { + "start": 11485.39, + "end": 11486.05, + "probability": 0.4998 + }, + { + "start": 11486.21, + "end": 11486.89, + "probability": 0.8943 + }, + { + "start": 11486.91, + "end": 11491.27, + "probability": 0.7383 + }, + { + "start": 11491.27, + "end": 11491.27, + "probability": 0.2256 + }, + { + "start": 11491.27, + "end": 11491.81, + "probability": 0.3059 + }, + { + "start": 11491.85, + "end": 11492.81, + "probability": 0.7847 + }, + { + "start": 11492.87, + "end": 11493.69, + "probability": 0.9802 + }, + { + "start": 11493.89, + "end": 11495.66, + "probability": 0.9486 + }, + { + "start": 11496.17, + "end": 11496.91, + "probability": 0.9009 + }, + { + "start": 11497.49, + "end": 11498.55, + "probability": 0.8882 + }, + { + "start": 11499.11, + "end": 11499.47, + "probability": 0.3021 + }, + { + "start": 11499.47, + "end": 11499.81, + "probability": 0.6413 + }, + { + "start": 11500.61, + "end": 11502.39, + "probability": 0.775 + }, + { + "start": 11502.77, + "end": 11505.21, + "probability": 0.1824 + }, + { + "start": 11512.53, + "end": 11514.89, + "probability": 0.8538 + }, + { + "start": 11515.83, + "end": 11516.87, + "probability": 0.8616 + }, + { + "start": 11517.45, + "end": 11522.47, + "probability": 0.9826 + }, + { + "start": 11523.79, + "end": 11524.45, + "probability": 0.0396 + }, + { + "start": 11524.45, + "end": 11529.65, + "probability": 0.9971 + }, + { + "start": 11529.79, + "end": 11530.95, + "probability": 0.8147 + }, + { + "start": 11531.09, + "end": 11531.78, + "probability": 0.8591 + }, + { + "start": 11532.53, + "end": 11533.97, + "probability": 0.9927 + }, + { + "start": 11535.59, + "end": 11536.57, + "probability": 0.8713 + }, + { + "start": 11537.59, + "end": 11541.29, + "probability": 0.9949 + }, + { + "start": 11542.01, + "end": 11545.65, + "probability": 0.9847 + }, + { + "start": 11545.71, + "end": 11546.31, + "probability": 0.7043 + }, + { + "start": 11546.95, + "end": 11548.01, + "probability": 0.7044 + }, + { + "start": 11548.33, + "end": 11555.93, + "probability": 0.9917 + }, + { + "start": 11556.47, + "end": 11558.51, + "probability": 0.9761 + }, + { + "start": 11558.73, + "end": 11559.19, + "probability": 0.5257 + }, + { + "start": 11559.31, + "end": 11560.57, + "probability": 0.9229 + }, + { + "start": 11560.69, + "end": 11561.59, + "probability": 0.251 + }, + { + "start": 11561.71, + "end": 11563.35, + "probability": 0.9745 + }, + { + "start": 11564.01, + "end": 11565.25, + "probability": 0.5002 + }, + { + "start": 11565.97, + "end": 11567.53, + "probability": 0.9738 + }, + { + "start": 11568.35, + "end": 11570.41, + "probability": 0.8286 + }, + { + "start": 11570.61, + "end": 11572.75, + "probability": 0.8977 + }, + { + "start": 11573.11, + "end": 11574.71, + "probability": 0.9728 + }, + { + "start": 11575.35, + "end": 11581.91, + "probability": 0.9945 + }, + { + "start": 11583.91, + "end": 11586.47, + "probability": 0.8484 + }, + { + "start": 11588.23, + "end": 11588.23, + "probability": 0.2747 + }, + { + "start": 11588.23, + "end": 11589.03, + "probability": 0.7384 + }, + { + "start": 11589.19, + "end": 11590.13, + "probability": 0.6381 + }, + { + "start": 11590.33, + "end": 11592.73, + "probability": 0.8761 + }, + { + "start": 11593.05, + "end": 11593.05, + "probability": 0.0876 + }, + { + "start": 11593.05, + "end": 11599.29, + "probability": 0.9536 + }, + { + "start": 11599.31, + "end": 11599.69, + "probability": 0.0833 + }, + { + "start": 11599.69, + "end": 11599.87, + "probability": 0.2369 + }, + { + "start": 11600.15, + "end": 11601.15, + "probability": 0.6109 + }, + { + "start": 11601.29, + "end": 11604.15, + "probability": 0.9182 + }, + { + "start": 11604.61, + "end": 11605.37, + "probability": 0.0714 + }, + { + "start": 11607.19, + "end": 11607.81, + "probability": 0.0915 + }, + { + "start": 11607.81, + "end": 11607.81, + "probability": 0.0426 + }, + { + "start": 11607.81, + "end": 11612.55, + "probability": 0.5821 + }, + { + "start": 11613.89, + "end": 11613.89, + "probability": 0.1985 + }, + { + "start": 11613.89, + "end": 11616.77, + "probability": 0.81 + }, + { + "start": 11617.69, + "end": 11617.9, + "probability": 0.0382 + }, + { + "start": 11618.81, + "end": 11620.19, + "probability": 0.8073 + }, + { + "start": 11622.27, + "end": 11624.19, + "probability": 0.8311 + }, + { + "start": 11625.51, + "end": 11627.07, + "probability": 0.8858 + }, + { + "start": 11627.21, + "end": 11628.03, + "probability": 0.0928 + }, + { + "start": 11628.09, + "end": 11631.59, + "probability": 0.9788 + }, + { + "start": 11631.71, + "end": 11633.61, + "probability": 0.9914 + }, + { + "start": 11633.67, + "end": 11637.03, + "probability": 0.9618 + }, + { + "start": 11637.35, + "end": 11638.07, + "probability": 0.7374 + }, + { + "start": 11638.21, + "end": 11638.31, + "probability": 0.8632 + }, + { + "start": 11638.73, + "end": 11639.83, + "probability": 0.9622 + }, + { + "start": 11640.61, + "end": 11642.19, + "probability": 0.7869 + }, + { + "start": 11643.55, + "end": 11644.37, + "probability": 0.9517 + }, + { + "start": 11644.49, + "end": 11644.73, + "probability": 0.9282 + }, + { + "start": 11644.85, + "end": 11648.99, + "probability": 0.8281 + }, + { + "start": 11649.03, + "end": 11653.11, + "probability": 0.8237 + }, + { + "start": 11653.67, + "end": 11659.19, + "probability": 0.9658 + }, + { + "start": 11659.29, + "end": 11660.25, + "probability": 0.8983 + }, + { + "start": 11660.73, + "end": 11664.43, + "probability": 0.9708 + }, + { + "start": 11665.79, + "end": 11665.79, + "probability": 0.2676 + }, + { + "start": 11665.79, + "end": 11668.39, + "probability": 0.9822 + }, + { + "start": 11669.13, + "end": 11672.65, + "probability": 0.9958 + }, + { + "start": 11673.39, + "end": 11675.71, + "probability": 0.9841 + }, + { + "start": 11676.43, + "end": 11678.29, + "probability": 0.9436 + }, + { + "start": 11678.43, + "end": 11680.01, + "probability": 0.9297 + }, + { + "start": 11680.75, + "end": 11682.65, + "probability": 0.9946 + }, + { + "start": 11683.09, + "end": 11684.37, + "probability": 0.8861 + }, + { + "start": 11684.79, + "end": 11687.89, + "probability": 0.9932 + }, + { + "start": 11687.89, + "end": 11691.27, + "probability": 0.9995 + }, + { + "start": 11692.01, + "end": 11693.95, + "probability": 0.9961 + }, + { + "start": 11694.43, + "end": 11695.8, + "probability": 0.8525 + }, + { + "start": 11696.55, + "end": 11700.01, + "probability": 0.9958 + }, + { + "start": 11700.65, + "end": 11703.31, + "probability": 0.9875 + }, + { + "start": 11703.31, + "end": 11704.57, + "probability": 0.8585 + }, + { + "start": 11705.15, + "end": 11708.93, + "probability": 0.9834 + }, + { + "start": 11709.61, + "end": 11712.57, + "probability": 0.985 + }, + { + "start": 11712.57, + "end": 11715.95, + "probability": 0.9715 + }, + { + "start": 11716.23, + "end": 11716.51, + "probability": 0.3287 + }, + { + "start": 11716.67, + "end": 11716.71, + "probability": 0.3362 + }, + { + "start": 11716.75, + "end": 11716.83, + "probability": 0.0082 + }, + { + "start": 11716.83, + "end": 11721.59, + "probability": 0.9868 + }, + { + "start": 11722.03, + "end": 11723.12, + "probability": 0.9522 + }, + { + "start": 11723.55, + "end": 11724.53, + "probability": 0.9248 + }, + { + "start": 11724.53, + "end": 11725.19, + "probability": 0.7621 + }, + { + "start": 11726.05, + "end": 11727.97, + "probability": 0.9421 + }, + { + "start": 11742.65, + "end": 11743.55, + "probability": 0.5487 + }, + { + "start": 11744.53, + "end": 11746.25, + "probability": 0.8049 + }, + { + "start": 11747.31, + "end": 11748.09, + "probability": 0.9413 + }, + { + "start": 11750.01, + "end": 11750.21, + "probability": 0.9876 + }, + { + "start": 11752.61, + "end": 11753.61, + "probability": 0.9071 + }, + { + "start": 11755.19, + "end": 11755.97, + "probability": 0.9046 + }, + { + "start": 11757.65, + "end": 11758.37, + "probability": 0.2678 + }, + { + "start": 11759.03, + "end": 11761.87, + "probability": 0.9912 + }, + { + "start": 11762.71, + "end": 11764.75, + "probability": 0.966 + }, + { + "start": 11765.69, + "end": 11767.66, + "probability": 0.8459 + }, + { + "start": 11769.19, + "end": 11772.03, + "probability": 0.8231 + }, + { + "start": 11772.69, + "end": 11774.13, + "probability": 0.7202 + }, + { + "start": 11775.23, + "end": 11777.39, + "probability": 0.9475 + }, + { + "start": 11778.75, + "end": 11779.27, + "probability": 0.9731 + }, + { + "start": 11779.35, + "end": 11780.07, + "probability": 0.9699 + }, + { + "start": 11780.49, + "end": 11784.69, + "probability": 0.9865 + }, + { + "start": 11785.79, + "end": 11786.97, + "probability": 0.9025 + }, + { + "start": 11788.51, + "end": 11790.03, + "probability": 0.9257 + }, + { + "start": 11791.69, + "end": 11796.19, + "probability": 0.9034 + }, + { + "start": 11797.97, + "end": 11798.81, + "probability": 0.8164 + }, + { + "start": 11800.21, + "end": 11802.83, + "probability": 0.9919 + }, + { + "start": 11804.21, + "end": 11806.63, + "probability": 0.8613 + }, + { + "start": 11807.37, + "end": 11813.92, + "probability": 0.9827 + }, + { + "start": 11814.83, + "end": 11816.11, + "probability": 0.9075 + }, + { + "start": 11816.85, + "end": 11818.55, + "probability": 0.9071 + }, + { + "start": 11819.47, + "end": 11820.31, + "probability": 0.856 + }, + { + "start": 11821.33, + "end": 11822.47, + "probability": 0.8968 + }, + { + "start": 11823.91, + "end": 11827.73, + "probability": 0.8623 + }, + { + "start": 11829.71, + "end": 11836.11, + "probability": 0.9734 + }, + { + "start": 11836.31, + "end": 11837.22, + "probability": 0.9954 + }, + { + "start": 11837.61, + "end": 11838.21, + "probability": 0.6643 + }, + { + "start": 11839.91, + "end": 11841.71, + "probability": 0.9677 + }, + { + "start": 11841.79, + "end": 11843.09, + "probability": 0.885 + }, + { + "start": 11843.21, + "end": 11844.45, + "probability": 0.9712 + }, + { + "start": 11845.05, + "end": 11846.13, + "probability": 0.9278 + }, + { + "start": 11847.61, + "end": 11848.75, + "probability": 0.7322 + }, + { + "start": 11849.27, + "end": 11852.72, + "probability": 0.9789 + }, + { + "start": 11855.07, + "end": 11855.73, + "probability": 0.9849 + }, + { + "start": 11856.51, + "end": 11857.95, + "probability": 0.9752 + }, + { + "start": 11858.53, + "end": 11860.41, + "probability": 0.9552 + }, + { + "start": 11861.07, + "end": 11863.19, + "probability": 0.9839 + }, + { + "start": 11863.77, + "end": 11864.58, + "probability": 0.5184 + }, + { + "start": 11865.67, + "end": 11866.25, + "probability": 0.943 + }, + { + "start": 11867.07, + "end": 11868.13, + "probability": 0.8794 + }, + { + "start": 11868.95, + "end": 11873.71, + "probability": 0.9564 + }, + { + "start": 11875.09, + "end": 11877.25, + "probability": 0.8436 + }, + { + "start": 11877.31, + "end": 11883.83, + "probability": 0.9644 + }, + { + "start": 11884.47, + "end": 11885.51, + "probability": 0.9045 + }, + { + "start": 11886.11, + "end": 11890.77, + "probability": 0.9754 + }, + { + "start": 11891.73, + "end": 11893.55, + "probability": 0.9982 + }, + { + "start": 11894.17, + "end": 11895.39, + "probability": 0.9451 + }, + { + "start": 11895.95, + "end": 11898.01, + "probability": 0.998 + }, + { + "start": 11898.25, + "end": 11899.33, + "probability": 0.8411 + }, + { + "start": 11899.77, + "end": 11901.05, + "probability": 0.9451 + }, + { + "start": 11901.49, + "end": 11902.51, + "probability": 0.8659 + }, + { + "start": 11903.55, + "end": 11906.23, + "probability": 0.9217 + }, + { + "start": 11906.53, + "end": 11906.77, + "probability": 0.8683 + }, + { + "start": 11907.05, + "end": 11907.71, + "probability": 0.8778 + }, + { + "start": 11908.33, + "end": 11909.71, + "probability": 0.7906 + }, + { + "start": 11910.85, + "end": 11911.03, + "probability": 0.0888 + }, + { + "start": 11911.03, + "end": 11911.39, + "probability": 0.1768 + }, + { + "start": 11912.33, + "end": 11913.79, + "probability": 0.8979 + }, + { + "start": 11925.03, + "end": 11927.73, + "probability": 0.6117 + }, + { + "start": 11928.27, + "end": 11929.21, + "probability": 0.9229 + }, + { + "start": 11931.83, + "end": 11932.49, + "probability": 0.5165 + }, + { + "start": 11933.07, + "end": 11933.79, + "probability": 0.332 + }, + { + "start": 11934.07, + "end": 11934.45, + "probability": 0.7375 + }, + { + "start": 11937.45, + "end": 11939.77, + "probability": 0.8037 + }, + { + "start": 11941.17, + "end": 11944.07, + "probability": 0.9983 + }, + { + "start": 11945.81, + "end": 11947.39, + "probability": 0.9164 + }, + { + "start": 11949.87, + "end": 11950.95, + "probability": 0.989 + }, + { + "start": 11951.89, + "end": 11953.65, + "probability": 0.6911 + }, + { + "start": 11954.19, + "end": 11955.43, + "probability": 0.9812 + }, + { + "start": 11956.41, + "end": 11956.79, + "probability": 0.7822 + }, + { + "start": 11957.17, + "end": 11959.97, + "probability": 0.9985 + }, + { + "start": 11960.25, + "end": 11961.3, + "probability": 0.9982 + }, + { + "start": 11962.35, + "end": 11962.84, + "probability": 0.8381 + }, + { + "start": 11964.11, + "end": 11966.59, + "probability": 0.9429 + }, + { + "start": 11967.73, + "end": 11969.89, + "probability": 0.9855 + }, + { + "start": 11971.17, + "end": 11971.83, + "probability": 0.7108 + }, + { + "start": 11971.99, + "end": 11972.13, + "probability": 0.7571 + }, + { + "start": 11972.29, + "end": 11973.31, + "probability": 0.9603 + }, + { + "start": 11973.43, + "end": 11974.73, + "probability": 0.9827 + }, + { + "start": 11976.15, + "end": 11978.83, + "probability": 0.905 + }, + { + "start": 11978.83, + "end": 11980.03, + "probability": 0.794 + }, + { + "start": 11981.13, + "end": 11982.85, + "probability": 0.9391 + }, + { + "start": 11984.37, + "end": 11986.71, + "probability": 0.9541 + }, + { + "start": 11987.53, + "end": 11994.87, + "probability": 0.9893 + }, + { + "start": 11995.37, + "end": 11997.71, + "probability": 0.9569 + }, + { + "start": 11998.87, + "end": 12000.69, + "probability": 0.9586 + }, + { + "start": 12001.39, + "end": 12003.21, + "probability": 0.9916 + }, + { + "start": 12003.29, + "end": 12004.13, + "probability": 0.5635 + }, + { + "start": 12004.59, + "end": 12006.97, + "probability": 0.7504 + }, + { + "start": 12007.03, + "end": 12007.95, + "probability": 0.6684 + }, + { + "start": 12008.47, + "end": 12008.47, + "probability": 0.3978 + }, + { + "start": 12008.47, + "end": 12008.47, + "probability": 0.0488 + }, + { + "start": 12008.47, + "end": 12012.67, + "probability": 0.866 + }, + { + "start": 12013.07, + "end": 12014.91, + "probability": 0.5815 + }, + { + "start": 12016.55, + "end": 12019.97, + "probability": 0.7348 + }, + { + "start": 12020.41, + "end": 12021.47, + "probability": 0.2935 + }, + { + "start": 12021.71, + "end": 12024.71, + "probability": 0.6286 + }, + { + "start": 12026.99, + "end": 12028.45, + "probability": 0.5513 + }, + { + "start": 12028.51, + "end": 12029.09, + "probability": 0.5153 + }, + { + "start": 12029.23, + "end": 12031.15, + "probability": 0.9207 + }, + { + "start": 12032.43, + "end": 12033.73, + "probability": 0.9556 + }, + { + "start": 12033.85, + "end": 12034.17, + "probability": 0.6601 + }, + { + "start": 12034.23, + "end": 12035.15, + "probability": 0.8186 + }, + { + "start": 12035.19, + "end": 12039.89, + "probability": 0.6098 + }, + { + "start": 12040.51, + "end": 12043.17, + "probability": 0.9932 + }, + { + "start": 12043.17, + "end": 12047.27, + "probability": 0.9853 + }, + { + "start": 12047.97, + "end": 12049.41, + "probability": 0.9854 + }, + { + "start": 12050.49, + "end": 12052.15, + "probability": 0.9905 + }, + { + "start": 12052.61, + "end": 12053.29, + "probability": 0.7566 + }, + { + "start": 12054.15, + "end": 12055.27, + "probability": 0.5674 + }, + { + "start": 12056.03, + "end": 12058.81, + "probability": 0.9873 + }, + { + "start": 12058.89, + "end": 12059.59, + "probability": 0.7267 + }, + { + "start": 12059.85, + "end": 12060.85, + "probability": 0.9922 + }, + { + "start": 12061.25, + "end": 12062.33, + "probability": 0.9731 + }, + { + "start": 12062.57, + "end": 12065.01, + "probability": 0.9818 + }, + { + "start": 12065.01, + "end": 12067.73, + "probability": 0.9915 + }, + { + "start": 12068.59, + "end": 12070.11, + "probability": 0.8457 + }, + { + "start": 12070.69, + "end": 12072.31, + "probability": 0.9213 + }, + { + "start": 12072.85, + "end": 12076.61, + "probability": 0.9014 + }, + { + "start": 12077.45, + "end": 12079.06, + "probability": 0.9661 + }, + { + "start": 12079.45, + "end": 12080.1, + "probability": 0.9448 + }, + { + "start": 12080.61, + "end": 12081.47, + "probability": 0.9883 + }, + { + "start": 12081.89, + "end": 12082.47, + "probability": 0.053 + }, + { + "start": 12083.03, + "end": 12083.31, + "probability": 0.4964 + }, + { + "start": 12083.49, + "end": 12084.94, + "probability": 0.9272 + }, + { + "start": 12085.95, + "end": 12088.85, + "probability": 0.9973 + }, + { + "start": 12089.31, + "end": 12090.15, + "probability": 0.9458 + }, + { + "start": 12090.83, + "end": 12092.35, + "probability": 0.8197 + }, + { + "start": 12092.61, + "end": 12093.81, + "probability": 0.9937 + }, + { + "start": 12093.91, + "end": 12095.15, + "probability": 0.8115 + }, + { + "start": 12095.57, + "end": 12096.25, + "probability": 0.9274 + }, + { + "start": 12096.57, + "end": 12096.91, + "probability": 0.6448 + }, + { + "start": 12097.07, + "end": 12097.45, + "probability": 0.4098 + }, + { + "start": 12097.73, + "end": 12100.51, + "probability": 0.9974 + }, + { + "start": 12102.47, + "end": 12103.47, + "probability": 0.9634 + }, + { + "start": 12104.39, + "end": 12108.45, + "probability": 0.9951 + }, + { + "start": 12110.23, + "end": 12113.68, + "probability": 0.9817 + }, + { + "start": 12114.39, + "end": 12115.91, + "probability": 0.9974 + }, + { + "start": 12116.77, + "end": 12118.43, + "probability": 0.9912 + }, + { + "start": 12119.53, + "end": 12123.59, + "probability": 0.5171 + }, + { + "start": 12124.21, + "end": 12126.65, + "probability": 0.871 + }, + { + "start": 12127.35, + "end": 12130.29, + "probability": 0.8503 + }, + { + "start": 12131.17, + "end": 12133.63, + "probability": 0.8035 + }, + { + "start": 12135.21, + "end": 12136.09, + "probability": 0.3753 + }, + { + "start": 12136.19, + "end": 12136.55, + "probability": 0.4185 + }, + { + "start": 12137.19, + "end": 12141.23, + "probability": 0.998 + }, + { + "start": 12141.43, + "end": 12142.11, + "probability": 0.5529 + }, + { + "start": 12142.75, + "end": 12144.31, + "probability": 0.9416 + }, + { + "start": 12145.73, + "end": 12146.73, + "probability": 0.9808 + }, + { + "start": 12147.05, + "end": 12150.47, + "probability": 0.9727 + }, + { + "start": 12150.85, + "end": 12151.85, + "probability": 0.6364 + }, + { + "start": 12152.39, + "end": 12152.49, + "probability": 0.3539 + }, + { + "start": 12152.67, + "end": 12156.43, + "probability": 0.9954 + }, + { + "start": 12156.63, + "end": 12158.75, + "probability": 0.9683 + }, + { + "start": 12159.17, + "end": 12160.59, + "probability": 0.4857 + }, + { + "start": 12160.91, + "end": 12162.21, + "probability": 0.9836 + }, + { + "start": 12162.51, + "end": 12165.99, + "probability": 0.9983 + }, + { + "start": 12166.25, + "end": 12168.92, + "probability": 0.9825 + }, + { + "start": 12169.07, + "end": 12169.59, + "probability": 0.8337 + }, + { + "start": 12169.73, + "end": 12170.71, + "probability": 0.7454 + }, + { + "start": 12170.99, + "end": 12171.17, + "probability": 0.6878 + }, + { + "start": 12171.23, + "end": 12172.75, + "probability": 0.9568 + }, + { + "start": 12172.99, + "end": 12174.28, + "probability": 0.9952 + }, + { + "start": 12175.03, + "end": 12177.13, + "probability": 0.9731 + }, + { + "start": 12195.87, + "end": 12197.65, + "probability": 0.6122 + }, + { + "start": 12198.81, + "end": 12200.01, + "probability": 0.6938 + }, + { + "start": 12200.87, + "end": 12201.09, + "probability": 0.8847 + }, + { + "start": 12201.21, + "end": 12208.11, + "probability": 0.9878 + }, + { + "start": 12208.75, + "end": 12210.63, + "probability": 0.9961 + }, + { + "start": 12211.27, + "end": 12212.61, + "probability": 0.9429 + }, + { + "start": 12213.31, + "end": 12215.45, + "probability": 0.9446 + }, + { + "start": 12216.39, + "end": 12217.85, + "probability": 0.7303 + }, + { + "start": 12218.67, + "end": 12219.39, + "probability": 0.9015 + }, + { + "start": 12220.17, + "end": 12222.11, + "probability": 0.918 + }, + { + "start": 12223.51, + "end": 12225.21, + "probability": 0.8859 + }, + { + "start": 12226.19, + "end": 12228.63, + "probability": 0.7976 + }, + { + "start": 12229.83, + "end": 12231.87, + "probability": 0.7003 + }, + { + "start": 12231.97, + "end": 12232.97, + "probability": 0.8521 + }, + { + "start": 12233.69, + "end": 12234.53, + "probability": 0.2192 + }, + { + "start": 12235.23, + "end": 12236.4, + "probability": 0.8457 + }, + { + "start": 12236.93, + "end": 12238.65, + "probability": 0.3163 + }, + { + "start": 12239.33, + "end": 12243.01, + "probability": 0.9644 + }, + { + "start": 12244.07, + "end": 12245.19, + "probability": 0.6656 + }, + { + "start": 12245.81, + "end": 12246.83, + "probability": 0.9095 + }, + { + "start": 12247.47, + "end": 12252.35, + "probability": 0.9903 + }, + { + "start": 12253.43, + "end": 12254.47, + "probability": 0.8711 + }, + { + "start": 12255.07, + "end": 12257.17, + "probability": 0.9902 + }, + { + "start": 12257.97, + "end": 12258.51, + "probability": 0.8208 + }, + { + "start": 12259.49, + "end": 12262.73, + "probability": 0.9961 + }, + { + "start": 12263.27, + "end": 12265.71, + "probability": 0.9719 + }, + { + "start": 12266.51, + "end": 12267.57, + "probability": 0.8179 + }, + { + "start": 12268.29, + "end": 12271.11, + "probability": 0.7227 + }, + { + "start": 12271.89, + "end": 12272.65, + "probability": 0.8787 + }, + { + "start": 12273.61, + "end": 12275.35, + "probability": 0.9298 + }, + { + "start": 12276.92, + "end": 12281.41, + "probability": 0.9674 + }, + { + "start": 12282.25, + "end": 12283.13, + "probability": 0.8087 + }, + { + "start": 12283.63, + "end": 12284.83, + "probability": 0.7976 + }, + { + "start": 12285.45, + "end": 12285.94, + "probability": 0.7764 + }, + { + "start": 12287.23, + "end": 12288.3, + "probability": 0.9521 + }, + { + "start": 12289.39, + "end": 12290.81, + "probability": 0.8567 + }, + { + "start": 12291.67, + "end": 12292.62, + "probability": 0.9429 + }, + { + "start": 12293.31, + "end": 12294.81, + "probability": 0.9032 + }, + { + "start": 12295.73, + "end": 12296.91, + "probability": 0.6684 + }, + { + "start": 12298.73, + "end": 12300.23, + "probability": 0.9032 + }, + { + "start": 12302.05, + "end": 12303.17, + "probability": 0.9751 + }, + { + "start": 12304.11, + "end": 12305.02, + "probability": 0.9375 + }, + { + "start": 12305.93, + "end": 12307.63, + "probability": 0.8578 + }, + { + "start": 12308.33, + "end": 12308.95, + "probability": 0.9604 + }, + { + "start": 12312.09, + "end": 12313.41, + "probability": 0.9939 + }, + { + "start": 12314.61, + "end": 12319.73, + "probability": 0.9891 + }, + { + "start": 12320.29, + "end": 12321.85, + "probability": 0.8044 + }, + { + "start": 12322.71, + "end": 12326.65, + "probability": 0.8673 + }, + { + "start": 12327.66, + "end": 12328.78, + "probability": 0.9233 + }, + { + "start": 12330.93, + "end": 12331.95, + "probability": 0.9656 + }, + { + "start": 12332.67, + "end": 12333.77, + "probability": 0.931 + }, + { + "start": 12334.67, + "end": 12335.97, + "probability": 0.9707 + }, + { + "start": 12336.89, + "end": 12337.93, + "probability": 0.9956 + }, + { + "start": 12339.49, + "end": 12340.67, + "probability": 0.9919 + }, + { + "start": 12341.87, + "end": 12344.81, + "probability": 0.9252 + }, + { + "start": 12346.27, + "end": 12346.77, + "probability": 0.6158 + }, + { + "start": 12347.41, + "end": 12348.71, + "probability": 0.7891 + }, + { + "start": 12349.29, + "end": 12350.73, + "probability": 0.9498 + }, + { + "start": 12351.27, + "end": 12352.27, + "probability": 0.9278 + }, + { + "start": 12353.25, + "end": 12357.27, + "probability": 0.9264 + }, + { + "start": 12359.11, + "end": 12360.33, + "probability": 0.9966 + }, + { + "start": 12361.15, + "end": 12365.15, + "probability": 0.8009 + }, + { + "start": 12365.15, + "end": 12365.75, + "probability": 0.0863 + }, + { + "start": 12365.81, + "end": 12367.97, + "probability": 0.8733 + }, + { + "start": 12369.24, + "end": 12369.87, + "probability": 0.5865 + }, + { + "start": 12370.09, + "end": 12370.35, + "probability": 0.7724 + }, + { + "start": 12370.35, + "end": 12374.2, + "probability": 0.7886 + }, + { + "start": 12375.35, + "end": 12375.45, + "probability": 0.0271 + }, + { + "start": 12377.01, + "end": 12378.45, + "probability": 0.7058 + }, + { + "start": 12379.23, + "end": 12381.22, + "probability": 0.8109 + }, + { + "start": 12382.71, + "end": 12385.83, + "probability": 0.9922 + }, + { + "start": 12385.87, + "end": 12391.01, + "probability": 0.9492 + }, + { + "start": 12391.51, + "end": 12392.47, + "probability": 0.6025 + }, + { + "start": 12394.31, + "end": 12395.82, + "probability": 0.9881 + }, + { + "start": 12397.47, + "end": 12398.43, + "probability": 0.7886 + }, + { + "start": 12399.27, + "end": 12400.45, + "probability": 0.923 + }, + { + "start": 12401.31, + "end": 12402.01, + "probability": 0.6484 + }, + { + "start": 12403.09, + "end": 12406.71, + "probability": 0.986 + }, + { + "start": 12407.75, + "end": 12411.39, + "probability": 0.9985 + }, + { + "start": 12412.79, + "end": 12415.31, + "probability": 0.9038 + }, + { + "start": 12416.49, + "end": 12416.67, + "probability": 0.5453 + }, + { + "start": 12416.67, + "end": 12421.95, + "probability": 0.9984 + }, + { + "start": 12422.75, + "end": 12424.05, + "probability": 0.9839 + }, + { + "start": 12425.23, + "end": 12426.53, + "probability": 0.6858 + }, + { + "start": 12427.71, + "end": 12429.09, + "probability": 0.8882 + }, + { + "start": 12430.11, + "end": 12432.15, + "probability": 0.9971 + }, + { + "start": 12433.97, + "end": 12436.81, + "probability": 0.9972 + }, + { + "start": 12437.39, + "end": 12437.81, + "probability": 0.551 + }, + { + "start": 12438.27, + "end": 12439.73, + "probability": 0.9922 + }, + { + "start": 12440.49, + "end": 12443.15, + "probability": 0.9613 + }, + { + "start": 12443.87, + "end": 12444.23, + "probability": 0.9081 + }, + { + "start": 12444.43, + "end": 12445.09, + "probability": 0.9427 + }, + { + "start": 12448.25, + "end": 12452.85, + "probability": 0.5174 + }, + { + "start": 12453.99, + "end": 12455.03, + "probability": 0.8262 + }, + { + "start": 12456.23, + "end": 12457.13, + "probability": 0.6877 + }, + { + "start": 12462.91, + "end": 12463.95, + "probability": 0.0444 + }, + { + "start": 12471.13, + "end": 12471.15, + "probability": 0.1994 + }, + { + "start": 12476.11, + "end": 12476.59, + "probability": 0.7017 + }, + { + "start": 12476.69, + "end": 12476.99, + "probability": 0.5827 + }, + { + "start": 12477.15, + "end": 12478.13, + "probability": 0.7839 + }, + { + "start": 12478.43, + "end": 12481.01, + "probability": 0.7427 + }, + { + "start": 12481.19, + "end": 12481.65, + "probability": 0.5254 + }, + { + "start": 12483.03, + "end": 12484.13, + "probability": 0.7451 + }, + { + "start": 12484.21, + "end": 12487.43, + "probability": 0.9932 + }, + { + "start": 12487.57, + "end": 12489.61, + "probability": 0.9948 + }, + { + "start": 12490.27, + "end": 12493.31, + "probability": 0.968 + }, + { + "start": 12493.41, + "end": 12494.05, + "probability": 0.9689 + }, + { + "start": 12494.11, + "end": 12494.83, + "probability": 0.7634 + }, + { + "start": 12494.91, + "end": 12497.35, + "probability": 0.9854 + }, + { + "start": 12498.03, + "end": 12500.37, + "probability": 0.9004 + }, + { + "start": 12500.79, + "end": 12504.89, + "probability": 0.9721 + }, + { + "start": 12505.11, + "end": 12508.01, + "probability": 0.9137 + }, + { + "start": 12508.03, + "end": 12511.05, + "probability": 0.98 + }, + { + "start": 12511.11, + "end": 12518.39, + "probability": 0.9933 + }, + { + "start": 12518.47, + "end": 12522.63, + "probability": 0.9976 + }, + { + "start": 12523.25, + "end": 12529.13, + "probability": 0.9982 + }, + { + "start": 12529.69, + "end": 12533.13, + "probability": 0.9949 + }, + { + "start": 12533.85, + "end": 12537.21, + "probability": 0.9182 + }, + { + "start": 12537.69, + "end": 12540.89, + "probability": 0.9847 + }, + { + "start": 12540.89, + "end": 12543.79, + "probability": 0.9971 + }, + { + "start": 12544.05, + "end": 12548.23, + "probability": 0.995 + }, + { + "start": 12548.37, + "end": 12551.19, + "probability": 0.8858 + }, + { + "start": 12551.37, + "end": 12553.21, + "probability": 0.718 + }, + { + "start": 12553.21, + "end": 12556.17, + "probability": 0.9955 + }, + { + "start": 12556.17, + "end": 12560.93, + "probability": 0.9933 + }, + { + "start": 12561.09, + "end": 12565.41, + "probability": 0.9868 + }, + { + "start": 12565.85, + "end": 12567.61, + "probability": 0.8867 + }, + { + "start": 12568.17, + "end": 12573.11, + "probability": 0.9945 + }, + { + "start": 12573.17, + "end": 12575.21, + "probability": 0.8385 + }, + { + "start": 12575.43, + "end": 12578.39, + "probability": 0.9943 + }, + { + "start": 12579.05, + "end": 12582.43, + "probability": 0.9961 + }, + { + "start": 12583.05, + "end": 12586.39, + "probability": 0.9351 + }, + { + "start": 12586.95, + "end": 12589.53, + "probability": 0.8456 + }, + { + "start": 12589.81, + "end": 12590.37, + "probability": 0.4924 + }, + { + "start": 12590.59, + "end": 12591.13, + "probability": 0.4496 + }, + { + "start": 12591.13, + "end": 12593.43, + "probability": 0.8751 + }, + { + "start": 12594.23, + "end": 12597.43, + "probability": 0.866 + }, + { + "start": 12597.69, + "end": 12600.85, + "probability": 0.9495 + }, + { + "start": 12601.71, + "end": 12606.21, + "probability": 0.959 + }, + { + "start": 12606.71, + "end": 12611.51, + "probability": 0.9151 + }, + { + "start": 12611.51, + "end": 12617.15, + "probability": 0.9995 + }, + { + "start": 12617.61, + "end": 12619.87, + "probability": 0.9658 + }, + { + "start": 12620.17, + "end": 12621.35, + "probability": 0.9011 + }, + { + "start": 12621.77, + "end": 12623.67, + "probability": 0.9627 + }, + { + "start": 12624.15, + "end": 12629.53, + "probability": 0.931 + }, + { + "start": 12629.87, + "end": 12635.67, + "probability": 0.9913 + }, + { + "start": 12636.39, + "end": 12638.07, + "probability": 0.9966 + }, + { + "start": 12638.23, + "end": 12641.67, + "probability": 0.9902 + }, + { + "start": 12642.15, + "end": 12643.19, + "probability": 0.9801 + }, + { + "start": 12644.43, + "end": 12648.93, + "probability": 0.9593 + }, + { + "start": 12649.43, + "end": 12649.97, + "probability": 0.7808 + }, + { + "start": 12650.71, + "end": 12651.91, + "probability": 0.9248 + }, + { + "start": 12652.29, + "end": 12655.19, + "probability": 0.9907 + }, + { + "start": 12655.29, + "end": 12657.21, + "probability": 0.9368 + }, + { + "start": 12657.73, + "end": 12659.19, + "probability": 0.8575 + }, + { + "start": 12659.23, + "end": 12660.31, + "probability": 0.8633 + }, + { + "start": 12660.41, + "end": 12661.09, + "probability": 0.6672 + }, + { + "start": 12661.23, + "end": 12661.65, + "probability": 0.8946 + }, + { + "start": 12661.71, + "end": 12662.01, + "probability": 0.5104 + }, + { + "start": 12663.61, + "end": 12663.83, + "probability": 0.1675 + }, + { + "start": 12663.83, + "end": 12663.99, + "probability": 0.564 + }, + { + "start": 12664.41, + "end": 12665.21, + "probability": 0.9501 + }, + { + "start": 12665.27, + "end": 12666.39, + "probability": 0.991 + }, + { + "start": 12666.55, + "end": 12666.81, + "probability": 0.7512 + }, + { + "start": 12667.57, + "end": 12668.76, + "probability": 0.9691 + }, + { + "start": 12669.33, + "end": 12672.13, + "probability": 0.9792 + }, + { + "start": 12672.49, + "end": 12673.34, + "probability": 0.7576 + }, + { + "start": 12673.99, + "end": 12675.83, + "probability": 0.5375 + }, + { + "start": 12675.95, + "end": 12677.12, + "probability": 0.9609 + }, + { + "start": 12677.29, + "end": 12677.47, + "probability": 0.6445 + }, + { + "start": 12677.49, + "end": 12677.75, + "probability": 0.1729 + }, + { + "start": 12677.75, + "end": 12678.67, + "probability": 0.6668 + }, + { + "start": 12694.77, + "end": 12697.03, + "probability": 0.6925 + }, + { + "start": 12698.45, + "end": 12700.89, + "probability": 0.911 + }, + { + "start": 12702.11, + "end": 12703.69, + "probability": 0.9527 + }, + { + "start": 12704.77, + "end": 12710.05, + "probability": 0.9783 + }, + { + "start": 12711.41, + "end": 12713.15, + "probability": 0.9788 + }, + { + "start": 12714.27, + "end": 12718.51, + "probability": 0.9512 + }, + { + "start": 12719.51, + "end": 12722.93, + "probability": 0.991 + }, + { + "start": 12723.53, + "end": 12725.15, + "probability": 0.9777 + }, + { + "start": 12726.39, + "end": 12727.69, + "probability": 0.9789 + }, + { + "start": 12728.53, + "end": 12730.07, + "probability": 0.8394 + }, + { + "start": 12730.71, + "end": 12732.35, + "probability": 0.9696 + }, + { + "start": 12733.03, + "end": 12736.79, + "probability": 0.9927 + }, + { + "start": 12737.83, + "end": 12739.41, + "probability": 0.9861 + }, + { + "start": 12740.03, + "end": 12741.71, + "probability": 0.9209 + }, + { + "start": 12742.25, + "end": 12743.13, + "probability": 0.8462 + }, + { + "start": 12743.23, + "end": 12744.49, + "probability": 0.958 + }, + { + "start": 12745.05, + "end": 12747.87, + "probability": 0.8793 + }, + { + "start": 12748.31, + "end": 12750.55, + "probability": 0.9214 + }, + { + "start": 12750.99, + "end": 12753.29, + "probability": 0.9568 + }, + { + "start": 12754.31, + "end": 12757.55, + "probability": 0.9612 + }, + { + "start": 12758.09, + "end": 12759.89, + "probability": 0.9941 + }, + { + "start": 12760.81, + "end": 12763.69, + "probability": 0.9759 + }, + { + "start": 12764.61, + "end": 12768.81, + "probability": 0.9189 + }, + { + "start": 12769.15, + "end": 12771.69, + "probability": 0.9851 + }, + { + "start": 12772.31, + "end": 12774.21, + "probability": 0.9249 + }, + { + "start": 12774.93, + "end": 12777.21, + "probability": 0.9258 + }, + { + "start": 12778.41, + "end": 12780.55, + "probability": 0.9784 + }, + { + "start": 12781.21, + "end": 12782.25, + "probability": 0.9487 + }, + { + "start": 12783.67, + "end": 12786.11, + "probability": 0.6417 + }, + { + "start": 12786.65, + "end": 12789.99, + "probability": 0.9648 + }, + { + "start": 12790.59, + "end": 12791.59, + "probability": 0.9631 + }, + { + "start": 12792.05, + "end": 12793.01, + "probability": 0.9768 + }, + { + "start": 12793.27, + "end": 12795.24, + "probability": 0.9851 + }, + { + "start": 12796.33, + "end": 12798.63, + "probability": 0.5055 + }, + { + "start": 12799.19, + "end": 12802.89, + "probability": 0.7008 + }, + { + "start": 12803.49, + "end": 12804.65, + "probability": 0.7303 + }, + { + "start": 12804.87, + "end": 12806.43, + "probability": 0.944 + }, + { + "start": 12806.59, + "end": 12808.71, + "probability": 0.9241 + }, + { + "start": 12809.51, + "end": 12811.23, + "probability": 0.9722 + }, + { + "start": 12812.01, + "end": 12815.05, + "probability": 0.949 + }, + { + "start": 12815.63, + "end": 12817.25, + "probability": 0.8319 + }, + { + "start": 12817.65, + "end": 12822.57, + "probability": 0.9177 + }, + { + "start": 12823.53, + "end": 12826.11, + "probability": 0.9764 + }, + { + "start": 12826.73, + "end": 12828.97, + "probability": 0.8715 + }, + { + "start": 12829.67, + "end": 12832.49, + "probability": 0.8199 + }, + { + "start": 12833.19, + "end": 12835.15, + "probability": 0.9893 + }, + { + "start": 12836.19, + "end": 12838.81, + "probability": 0.94 + }, + { + "start": 12839.51, + "end": 12844.05, + "probability": 0.7852 + }, + { + "start": 12844.69, + "end": 12850.17, + "probability": 0.9861 + }, + { + "start": 12850.89, + "end": 12854.45, + "probability": 0.973 + }, + { + "start": 12855.43, + "end": 12859.05, + "probability": 0.9713 + }, + { + "start": 12859.79, + "end": 12864.59, + "probability": 0.9434 + }, + { + "start": 12865.57, + "end": 12869.59, + "probability": 0.5172 + }, + { + "start": 12869.95, + "end": 12873.07, + "probability": 0.5977 + }, + { + "start": 12873.63, + "end": 12879.15, + "probability": 0.9945 + }, + { + "start": 12879.93, + "end": 12881.83, + "probability": 0.9832 + }, + { + "start": 12882.49, + "end": 12886.41, + "probability": 0.85 + }, + { + "start": 12887.05, + "end": 12892.03, + "probability": 0.9065 + }, + { + "start": 12892.63, + "end": 12897.09, + "probability": 0.9862 + }, + { + "start": 12897.45, + "end": 12899.37, + "probability": 0.6661 + }, + { + "start": 12899.59, + "end": 12901.63, + "probability": 0.1 + }, + { + "start": 12902.73, + "end": 12904.46, + "probability": 0.4916 + }, + { + "start": 12904.71, + "end": 12912.29, + "probability": 0.9788 + }, + { + "start": 12912.75, + "end": 12919.85, + "probability": 0.9958 + }, + { + "start": 12920.37, + "end": 12923.71, + "probability": 0.6077 + }, + { + "start": 12924.29, + "end": 12925.09, + "probability": 0.53 + }, + { + "start": 12925.61, + "end": 12926.71, + "probability": 0.6194 + }, + { + "start": 12927.29, + "end": 12930.11, + "probability": 0.7767 + }, + { + "start": 12930.61, + "end": 12931.13, + "probability": 0.8149 + }, + { + "start": 12931.69, + "end": 12932.29, + "probability": 0.8318 + }, + { + "start": 12933.21, + "end": 12935.25, + "probability": 0.9785 + }, + { + "start": 12954.89, + "end": 12957.91, + "probability": 0.8486 + }, + { + "start": 12958.63, + "end": 12959.49, + "probability": 0.7963 + }, + { + "start": 12960.65, + "end": 12963.37, + "probability": 0.8965 + }, + { + "start": 12964.17, + "end": 12966.99, + "probability": 0.7164 + }, + { + "start": 12968.71, + "end": 12970.69, + "probability": 0.6057 + }, + { + "start": 12972.19, + "end": 12972.99, + "probability": 0.2456 + }, + { + "start": 12974.81, + "end": 12976.91, + "probability": 0.8027 + }, + { + "start": 12977.87, + "end": 12978.39, + "probability": 0.6518 + }, + { + "start": 12978.61, + "end": 12979.03, + "probability": 0.599 + }, + { + "start": 12979.85, + "end": 12980.13, + "probability": 0.9631 + }, + { + "start": 12981.03, + "end": 12981.59, + "probability": 0.9894 + }, + { + "start": 12982.79, + "end": 12984.92, + "probability": 0.9852 + }, + { + "start": 12985.87, + "end": 12987.41, + "probability": 0.6915 + }, + { + "start": 12988.97, + "end": 12990.13, + "probability": 0.9702 + }, + { + "start": 12990.75, + "end": 12991.97, + "probability": 0.9724 + }, + { + "start": 12992.57, + "end": 12993.81, + "probability": 0.98 + }, + { + "start": 12995.15, + "end": 12995.81, + "probability": 0.9738 + }, + { + "start": 12996.47, + "end": 12999.89, + "probability": 0.9972 + }, + { + "start": 13000.47, + "end": 13002.63, + "probability": 0.7313 + }, + { + "start": 13002.85, + "end": 13003.43, + "probability": 0.8869 + }, + { + "start": 13003.53, + "end": 13004.17, + "probability": 0.9746 + }, + { + "start": 13004.77, + "end": 13007.37, + "probability": 0.7249 + }, + { + "start": 13007.95, + "end": 13008.63, + "probability": 0.6462 + }, + { + "start": 13009.31, + "end": 13010.61, + "probability": 0.9912 + }, + { + "start": 13011.19, + "end": 13012.31, + "probability": 0.9735 + }, + { + "start": 13012.39, + "end": 13013.19, + "probability": 0.9735 + }, + { + "start": 13014.07, + "end": 13018.27, + "probability": 0.9745 + }, + { + "start": 13018.77, + "end": 13025.45, + "probability": 0.9842 + }, + { + "start": 13026.45, + "end": 13029.65, + "probability": 0.8712 + }, + { + "start": 13030.23, + "end": 13034.03, + "probability": 0.9764 + }, + { + "start": 13034.53, + "end": 13034.57, + "probability": 0.0524 + }, + { + "start": 13034.57, + "end": 13034.57, + "probability": 0.1418 + }, + { + "start": 13034.57, + "end": 13038.01, + "probability": 0.6945 + }, + { + "start": 13038.45, + "end": 13039.87, + "probability": 0.829 + }, + { + "start": 13040.45, + "end": 13044.97, + "probability": 0.9906 + }, + { + "start": 13045.45, + "end": 13046.07, + "probability": 0.8995 + }, + { + "start": 13046.55, + "end": 13047.19, + "probability": 0.9465 + }, + { + "start": 13047.67, + "end": 13049.47, + "probability": 0.9385 + }, + { + "start": 13049.95, + "end": 13052.97, + "probability": 0.9836 + }, + { + "start": 13053.21, + "end": 13054.37, + "probability": 0.9417 + }, + { + "start": 13054.87, + "end": 13055.69, + "probability": 0.5108 + }, + { + "start": 13056.19, + "end": 13059.15, + "probability": 0.877 + }, + { + "start": 13059.85, + "end": 13062.25, + "probability": 0.9155 + }, + { + "start": 13062.75, + "end": 13065.11, + "probability": 0.9128 + }, + { + "start": 13065.61, + "end": 13067.89, + "probability": 0.9635 + }, + { + "start": 13068.29, + "end": 13070.11, + "probability": 0.7218 + }, + { + "start": 13070.75, + "end": 13072.83, + "probability": 0.9883 + }, + { + "start": 13073.19, + "end": 13076.93, + "probability": 0.9712 + }, + { + "start": 13077.43, + "end": 13078.59, + "probability": 0.8948 + }, + { + "start": 13079.39, + "end": 13080.83, + "probability": 0.9964 + }, + { + "start": 13081.35, + "end": 13084.58, + "probability": 0.9502 + }, + { + "start": 13085.15, + "end": 13088.37, + "probability": 0.9873 + }, + { + "start": 13088.97, + "end": 13089.57, + "probability": 0.9517 + }, + { + "start": 13090.21, + "end": 13093.31, + "probability": 0.9661 + }, + { + "start": 13093.63, + "end": 13094.51, + "probability": 0.9821 + }, + { + "start": 13094.61, + "end": 13095.77, + "probability": 0.9294 + }, + { + "start": 13096.21, + "end": 13101.61, + "probability": 0.915 + }, + { + "start": 13102.27, + "end": 13104.76, + "probability": 0.9632 + }, + { + "start": 13105.17, + "end": 13107.71, + "probability": 0.736 + }, + { + "start": 13108.19, + "end": 13108.76, + "probability": 0.7941 + }, + { + "start": 13109.53, + "end": 13115.19, + "probability": 0.9888 + }, + { + "start": 13115.61, + "end": 13117.25, + "probability": 0.9493 + }, + { + "start": 13117.81, + "end": 13121.31, + "probability": 0.8737 + }, + { + "start": 13121.91, + "end": 13123.51, + "probability": 0.5395 + }, + { + "start": 13124.15, + "end": 13125.87, + "probability": 0.9971 + }, + { + "start": 13126.61, + "end": 13128.35, + "probability": 0.9791 + }, + { + "start": 13128.91, + "end": 13129.91, + "probability": 0.5542 + }, + { + "start": 13130.25, + "end": 13133.71, + "probability": 0.9678 + }, + { + "start": 13133.71, + "end": 13134.65, + "probability": 0.975 + }, + { + "start": 13134.81, + "end": 13136.55, + "probability": 0.98 + }, + { + "start": 13137.11, + "end": 13138.54, + "probability": 0.9922 + }, + { + "start": 13139.23, + "end": 13142.08, + "probability": 0.734 + }, + { + "start": 13142.89, + "end": 13144.1, + "probability": 0.4176 + }, + { + "start": 13144.85, + "end": 13145.25, + "probability": 0.7631 + }, + { + "start": 13145.63, + "end": 13146.97, + "probability": 0.665 + }, + { + "start": 13147.59, + "end": 13151.11, + "probability": 0.141 + }, + { + "start": 13151.21, + "end": 13152.95, + "probability": 0.2898 + }, + { + "start": 13153.53, + "end": 13154.19, + "probability": 0.2208 + }, + { + "start": 13158.05, + "end": 13160.11, + "probability": 0.0467 + }, + { + "start": 13160.99, + "end": 13163.73, + "probability": 0.36 + }, + { + "start": 13164.67, + "end": 13166.78, + "probability": 0.6094 + }, + { + "start": 13167.99, + "end": 13170.79, + "probability": 0.9812 + }, + { + "start": 13171.27, + "end": 13172.89, + "probability": 0.8086 + }, + { + "start": 13173.95, + "end": 13177.43, + "probability": 0.9928 + }, + { + "start": 13178.59, + "end": 13180.85, + "probability": 0.9969 + }, + { + "start": 13180.85, + "end": 13183.67, + "probability": 0.9788 + }, + { + "start": 13183.89, + "end": 13185.51, + "probability": 0.9688 + }, + { + "start": 13186.35, + "end": 13188.25, + "probability": 0.9727 + }, + { + "start": 13188.47, + "end": 13188.96, + "probability": 0.3891 + }, + { + "start": 13189.67, + "end": 13190.73, + "probability": 0.5434 + }, + { + "start": 13190.99, + "end": 13191.29, + "probability": 0.6526 + }, + { + "start": 13191.47, + "end": 13191.67, + "probability": 0.776 + }, + { + "start": 13192.07, + "end": 13193.13, + "probability": 0.9145 + }, + { + "start": 13193.23, + "end": 13194.31, + "probability": 0.9457 + }, + { + "start": 13194.73, + "end": 13195.79, + "probability": 0.9047 + }, + { + "start": 13196.55, + "end": 13199.15, + "probability": 0.7343 + }, + { + "start": 13199.59, + "end": 13200.51, + "probability": 0.7779 + }, + { + "start": 13201.35, + "end": 13204.71, + "probability": 0.9061 + }, + { + "start": 13205.21, + "end": 13208.23, + "probability": 0.8885 + }, + { + "start": 13208.61, + "end": 13210.17, + "probability": 0.9951 + }, + { + "start": 13210.21, + "end": 13211.95, + "probability": 0.8635 + }, + { + "start": 13212.51, + "end": 13215.21, + "probability": 0.9632 + }, + { + "start": 13215.93, + "end": 13219.39, + "probability": 0.9829 + }, + { + "start": 13220.13, + "end": 13223.17, + "probability": 0.9982 + }, + { + "start": 13223.45, + "end": 13227.73, + "probability": 0.9336 + }, + { + "start": 13228.43, + "end": 13231.35, + "probability": 0.6217 + }, + { + "start": 13231.95, + "end": 13236.13, + "probability": 0.7042 + }, + { + "start": 13236.43, + "end": 13237.15, + "probability": 0.786 + }, + { + "start": 13237.61, + "end": 13238.23, + "probability": 0.9587 + }, + { + "start": 13238.69, + "end": 13240.25, + "probability": 0.8882 + }, + { + "start": 13240.69, + "end": 13242.09, + "probability": 0.9539 + }, + { + "start": 13242.45, + "end": 13244.17, + "probability": 0.959 + }, + { + "start": 13244.79, + "end": 13246.45, + "probability": 0.7007 + }, + { + "start": 13246.73, + "end": 13250.95, + "probability": 0.9375 + }, + { + "start": 13251.29, + "end": 13251.89, + "probability": 0.8263 + }, + { + "start": 13253.31, + "end": 13255.49, + "probability": 0.8646 + }, + { + "start": 13255.85, + "end": 13256.15, + "probability": 0.7349 + }, + { + "start": 13256.41, + "end": 13256.51, + "probability": 0.2207 + }, + { + "start": 13256.53, + "end": 13258.75, + "probability": 0.584 + }, + { + "start": 13258.81, + "end": 13259.35, + "probability": 0.8179 + }, + { + "start": 13259.71, + "end": 13261.05, + "probability": 0.9824 + }, + { + "start": 13261.65, + "end": 13263.85, + "probability": 0.989 + }, + { + "start": 13263.93, + "end": 13268.61, + "probability": 0.9355 + }, + { + "start": 13268.61, + "end": 13271.43, + "probability": 0.8037 + }, + { + "start": 13271.95, + "end": 13273.55, + "probability": 0.8945 + }, + { + "start": 13274.03, + "end": 13274.81, + "probability": 0.7769 + }, + { + "start": 13274.93, + "end": 13276.55, + "probability": 0.723 + }, + { + "start": 13277.05, + "end": 13280.65, + "probability": 0.9838 + }, + { + "start": 13281.33, + "end": 13282.33, + "probability": 0.8973 + }, + { + "start": 13282.79, + "end": 13284.25, + "probability": 0.9584 + }, + { + "start": 13284.75, + "end": 13286.03, + "probability": 0.5962 + }, + { + "start": 13286.09, + "end": 13289.29, + "probability": 0.9797 + }, + { + "start": 13289.73, + "end": 13290.73, + "probability": 0.9255 + }, + { + "start": 13290.83, + "end": 13293.19, + "probability": 0.967 + }, + { + "start": 13293.43, + "end": 13294.79, + "probability": 0.8346 + }, + { + "start": 13294.99, + "end": 13296.17, + "probability": 0.9146 + }, + { + "start": 13296.49, + "end": 13297.31, + "probability": 0.9211 + }, + { + "start": 13297.41, + "end": 13298.21, + "probability": 0.9845 + }, + { + "start": 13298.61, + "end": 13299.23, + "probability": 0.7951 + }, + { + "start": 13299.83, + "end": 13302.49, + "probability": 0.4938 + }, + { + "start": 13302.89, + "end": 13303.91, + "probability": 0.7475 + }, + { + "start": 13304.13, + "end": 13305.81, + "probability": 0.5701 + }, + { + "start": 13306.51, + "end": 13307.19, + "probability": 0.7852 + }, + { + "start": 13307.49, + "end": 13308.13, + "probability": 0.5134 + }, + { + "start": 13308.57, + "end": 13309.53, + "probability": 0.9816 + }, + { + "start": 13310.01, + "end": 13314.58, + "probability": 0.8047 + }, + { + "start": 13315.21, + "end": 13316.73, + "probability": 0.6848 + }, + { + "start": 13316.83, + "end": 13319.87, + "probability": 0.8884 + }, + { + "start": 13320.29, + "end": 13320.81, + "probability": 0.9331 + }, + { + "start": 13321.17, + "end": 13321.65, + "probability": 0.6311 + }, + { + "start": 13321.79, + "end": 13324.12, + "probability": 0.9149 + }, + { + "start": 13324.81, + "end": 13326.77, + "probability": 0.603 + }, + { + "start": 13326.85, + "end": 13328.25, + "probability": 0.8371 + }, + { + "start": 13328.43, + "end": 13329.27, + "probability": 0.8276 + }, + { + "start": 13329.73, + "end": 13332.11, + "probability": 0.9016 + }, + { + "start": 13332.49, + "end": 13336.09, + "probability": 0.8385 + }, + { + "start": 13336.35, + "end": 13338.75, + "probability": 0.9883 + }, + { + "start": 13339.05, + "end": 13340.79, + "probability": 0.973 + }, + { + "start": 13341.31, + "end": 13342.1, + "probability": 0.9463 + }, + { + "start": 13342.81, + "end": 13345.23, + "probability": 0.9676 + }, + { + "start": 13345.33, + "end": 13345.79, + "probability": 0.7543 + }, + { + "start": 13346.67, + "end": 13349.33, + "probability": 0.7751 + }, + { + "start": 13349.81, + "end": 13352.07, + "probability": 0.9786 + }, + { + "start": 13352.45, + "end": 13355.77, + "probability": 0.8939 + }, + { + "start": 13355.83, + "end": 13356.29, + "probability": 0.8496 + }, + { + "start": 13356.67, + "end": 13357.45, + "probability": 0.6938 + }, + { + "start": 13357.49, + "end": 13359.71, + "probability": 0.9204 + }, + { + "start": 13360.07, + "end": 13363.45, + "probability": 0.9884 + }, + { + "start": 13363.57, + "end": 13365.13, + "probability": 0.9556 + }, + { + "start": 13365.53, + "end": 13366.61, + "probability": 0.9034 + }, + { + "start": 13366.65, + "end": 13367.01, + "probability": 0.743 + }, + { + "start": 13367.41, + "end": 13369.9, + "probability": 0.9919 + }, + { + "start": 13370.31, + "end": 13371.67, + "probability": 0.9257 + }, + { + "start": 13371.79, + "end": 13372.25, + "probability": 0.8159 + }, + { + "start": 13372.29, + "end": 13372.69, + "probability": 0.7623 + }, + { + "start": 13376.59, + "end": 13380.21, + "probability": 0.7206 + }, + { + "start": 13389.05, + "end": 13389.15, + "probability": 0.4037 + }, + { + "start": 13396.25, + "end": 13396.25, + "probability": 0.065 + }, + { + "start": 13396.25, + "end": 13397.85, + "probability": 0.4854 + }, + { + "start": 13399.19, + "end": 13401.35, + "probability": 0.8273 + }, + { + "start": 13401.87, + "end": 13402.61, + "probability": 0.7488 + }, + { + "start": 13403.93, + "end": 13406.03, + "probability": 0.9908 + }, + { + "start": 13406.39, + "end": 13408.09, + "probability": 0.9982 + }, + { + "start": 13409.43, + "end": 13412.33, + "probability": 0.9705 + }, + { + "start": 13413.09, + "end": 13414.95, + "probability": 0.8397 + }, + { + "start": 13415.73, + "end": 13417.27, + "probability": 0.9814 + }, + { + "start": 13418.45, + "end": 13422.55, + "probability": 0.9931 + }, + { + "start": 13424.07, + "end": 13425.59, + "probability": 0.9458 + }, + { + "start": 13426.07, + "end": 13427.69, + "probability": 0.964 + }, + { + "start": 13428.51, + "end": 13429.51, + "probability": 0.6241 + }, + { + "start": 13430.51, + "end": 13431.25, + "probability": 0.9214 + }, + { + "start": 13431.83, + "end": 13435.87, + "probability": 0.9929 + }, + { + "start": 13436.75, + "end": 13438.01, + "probability": 0.9823 + }, + { + "start": 13438.87, + "end": 13440.61, + "probability": 0.9839 + }, + { + "start": 13441.23, + "end": 13443.03, + "probability": 0.9907 + }, + { + "start": 13443.89, + "end": 13444.65, + "probability": 0.7361 + }, + { + "start": 13445.37, + "end": 13447.05, + "probability": 0.9299 + }, + { + "start": 13447.79, + "end": 13452.09, + "probability": 0.9838 + }, + { + "start": 13452.93, + "end": 13454.01, + "probability": 0.933 + }, + { + "start": 13454.63, + "end": 13456.41, + "probability": 0.94 + }, + { + "start": 13456.99, + "end": 13462.47, + "probability": 0.9417 + }, + { + "start": 13462.77, + "end": 13463.67, + "probability": 0.6443 + }, + { + "start": 13463.93, + "end": 13465.69, + "probability": 0.9888 + }, + { + "start": 13466.01, + "end": 13468.55, + "probability": 0.9684 + }, + { + "start": 13469.21, + "end": 13472.69, + "probability": 0.9842 + }, + { + "start": 13473.63, + "end": 13474.01, + "probability": 0.8029 + }, + { + "start": 13475.09, + "end": 13475.69, + "probability": 0.985 + }, + { + "start": 13477.27, + "end": 13477.85, + "probability": 0.5499 + }, + { + "start": 13479.05, + "end": 13479.37, + "probability": 0.8208 + }, + { + "start": 13479.93, + "end": 13481.61, + "probability": 0.7135 + }, + { + "start": 13481.69, + "end": 13481.83, + "probability": 0.0243 + }, + { + "start": 13481.83, + "end": 13482.71, + "probability": 0.3282 + }, + { + "start": 13482.83, + "end": 13484.11, + "probability": 0.645 + }, + { + "start": 13484.27, + "end": 13484.95, + "probability": 0.6084 + }, + { + "start": 13488.01, + "end": 13489.97, + "probability": 0.9456 + }, + { + "start": 13490.13, + "end": 13490.81, + "probability": 0.2363 + }, + { + "start": 13490.81, + "end": 13490.81, + "probability": 0.2244 + }, + { + "start": 13490.99, + "end": 13492.47, + "probability": 0.9802 + }, + { + "start": 13492.95, + "end": 13493.07, + "probability": 0.3389 + }, + { + "start": 13493.07, + "end": 13495.17, + "probability": 0.6467 + }, + { + "start": 13495.43, + "end": 13496.55, + "probability": 0.9373 + }, + { + "start": 13496.89, + "end": 13497.45, + "probability": 0.7214 + }, + { + "start": 13497.47, + "end": 13500.21, + "probability": 0.9348 + }, + { + "start": 13501.27, + "end": 13502.73, + "probability": 0.9731 + }, + { + "start": 13503.35, + "end": 13503.51, + "probability": 0.0747 + }, + { + "start": 13504.36, + "end": 13506.27, + "probability": 0.1029 + }, + { + "start": 13506.27, + "end": 13507.43, + "probability": 0.337 + }, + { + "start": 13508.33, + "end": 13508.69, + "probability": 0.5218 + }, + { + "start": 13513.47, + "end": 13514.05, + "probability": 0.3429 + }, + { + "start": 13514.89, + "end": 13517.29, + "probability": 0.6662 + }, + { + "start": 13517.37, + "end": 13519.66, + "probability": 0.813 + }, + { + "start": 13524.51, + "end": 13525.29, + "probability": 0.5979 + }, + { + "start": 13528.57, + "end": 13529.83, + "probability": 0.7625 + }, + { + "start": 13530.97, + "end": 13532.55, + "probability": 0.9753 + }, + { + "start": 13532.87, + "end": 13535.13, + "probability": 0.9895 + }, + { + "start": 13535.67, + "end": 13536.59, + "probability": 0.8933 + }, + { + "start": 13536.97, + "end": 13539.81, + "probability": 0.9963 + }, + { + "start": 13539.81, + "end": 13543.99, + "probability": 0.975 + }, + { + "start": 13545.31, + "end": 13546.73, + "probability": 0.7751 + }, + { + "start": 13546.79, + "end": 13548.17, + "probability": 0.9784 + }, + { + "start": 13548.23, + "end": 13549.89, + "probability": 0.9324 + }, + { + "start": 13550.41, + "end": 13553.33, + "probability": 0.9872 + }, + { + "start": 13554.05, + "end": 13555.95, + "probability": 0.8296 + }, + { + "start": 13556.63, + "end": 13562.29, + "probability": 0.9619 + }, + { + "start": 13563.31, + "end": 13563.71, + "probability": 0.6197 + }, + { + "start": 13563.83, + "end": 13564.73, + "probability": 0.9606 + }, + { + "start": 13564.83, + "end": 13566.25, + "probability": 0.9601 + }, + { + "start": 13566.79, + "end": 13572.59, + "probability": 0.9717 + }, + { + "start": 13572.59, + "end": 13576.89, + "probability": 0.9975 + }, + { + "start": 13577.47, + "end": 13580.13, + "probability": 0.9889 + }, + { + "start": 13580.45, + "end": 13582.55, + "probability": 0.9152 + }, + { + "start": 13582.99, + "end": 13587.75, + "probability": 0.9966 + }, + { + "start": 13588.17, + "end": 13590.77, + "probability": 0.9521 + }, + { + "start": 13591.67, + "end": 13592.79, + "probability": 0.7795 + }, + { + "start": 13592.83, + "end": 13594.23, + "probability": 0.9744 + }, + { + "start": 13594.97, + "end": 13599.07, + "probability": 0.9967 + }, + { + "start": 13599.83, + "end": 13604.73, + "probability": 0.9969 + }, + { + "start": 13605.79, + "end": 13608.63, + "probability": 0.9681 + }, + { + "start": 13609.27, + "end": 13613.47, + "probability": 0.9948 + }, + { + "start": 13614.79, + "end": 13617.87, + "probability": 0.9028 + }, + { + "start": 13618.77, + "end": 13619.21, + "probability": 0.8921 + }, + { + "start": 13619.59, + "end": 13623.85, + "probability": 0.9774 + }, + { + "start": 13624.59, + "end": 13625.93, + "probability": 0.9702 + }, + { + "start": 13626.45, + "end": 13628.93, + "probability": 0.9751 + }, + { + "start": 13629.35, + "end": 13630.67, + "probability": 0.9835 + }, + { + "start": 13631.05, + "end": 13633.25, + "probability": 0.9949 + }, + { + "start": 13633.65, + "end": 13635.99, + "probability": 0.989 + }, + { + "start": 13636.07, + "end": 13637.93, + "probability": 0.9771 + }, + { + "start": 13638.69, + "end": 13639.33, + "probability": 0.801 + }, + { + "start": 13639.43, + "end": 13643.21, + "probability": 0.9976 + }, + { + "start": 13643.69, + "end": 13644.89, + "probability": 0.9619 + }, + { + "start": 13644.99, + "end": 13646.41, + "probability": 0.8273 + }, + { + "start": 13647.69, + "end": 13650.85, + "probability": 0.9837 + }, + { + "start": 13652.25, + "end": 13654.47, + "probability": 0.9935 + }, + { + "start": 13654.75, + "end": 13656.07, + "probability": 0.8573 + }, + { + "start": 13656.33, + "end": 13660.07, + "probability": 0.9827 + }, + { + "start": 13660.07, + "end": 13662.75, + "probability": 0.9981 + }, + { + "start": 13662.77, + "end": 13664.25, + "probability": 0.8469 + }, + { + "start": 13664.81, + "end": 13669.91, + "probability": 0.9764 + }, + { + "start": 13670.07, + "end": 13670.51, + "probability": 0.6696 + }, + { + "start": 13671.33, + "end": 13674.61, + "probability": 0.992 + }, + { + "start": 13674.75, + "end": 13677.67, + "probability": 0.9598 + }, + { + "start": 13678.51, + "end": 13681.55, + "probability": 0.8044 + }, + { + "start": 13682.33, + "end": 13684.51, + "probability": 0.9645 + }, + { + "start": 13685.47, + "end": 13686.73, + "probability": 0.856 + }, + { + "start": 13687.05, + "end": 13693.37, + "probability": 0.9582 + }, + { + "start": 13693.95, + "end": 13697.03, + "probability": 0.9936 + }, + { + "start": 13697.03, + "end": 13700.77, + "probability": 0.9938 + }, + { + "start": 13701.41, + "end": 13704.43, + "probability": 0.9989 + }, + { + "start": 13704.43, + "end": 13706.87, + "probability": 0.9963 + }, + { + "start": 13707.51, + "end": 13709.41, + "probability": 0.7719 + }, + { + "start": 13709.91, + "end": 13710.71, + "probability": 0.8629 + }, + { + "start": 13711.29, + "end": 13714.53, + "probability": 0.9902 + }, + { + "start": 13715.27, + "end": 13718.45, + "probability": 0.9616 + }, + { + "start": 13719.15, + "end": 13720.13, + "probability": 0.7418 + }, + { + "start": 13720.31, + "end": 13724.49, + "probability": 0.981 + }, + { + "start": 13724.63, + "end": 13725.61, + "probability": 0.7456 + }, + { + "start": 13725.77, + "end": 13730.51, + "probability": 0.9666 + }, + { + "start": 13730.93, + "end": 13734.37, + "probability": 0.8105 + }, + { + "start": 13734.81, + "end": 13736.51, + "probability": 0.9553 + }, + { + "start": 13736.95, + "end": 13738.91, + "probability": 0.9408 + }, + { + "start": 13739.17, + "end": 13739.29, + "probability": 0.1321 + }, + { + "start": 13739.29, + "end": 13740.95, + "probability": 0.9966 + }, + { + "start": 13741.51, + "end": 13746.01, + "probability": 0.9888 + }, + { + "start": 13746.41, + "end": 13749.27, + "probability": 0.9224 + }, + { + "start": 13749.73, + "end": 13751.09, + "probability": 0.9963 + }, + { + "start": 13751.13, + "end": 13751.37, + "probability": 0.4709 + }, + { + "start": 13751.39, + "end": 13752.91, + "probability": 0.6146 + }, + { + "start": 13766.39, + "end": 13766.47, + "probability": 0.0426 + }, + { + "start": 13766.47, + "end": 13766.77, + "probability": 0.1075 + }, + { + "start": 13766.77, + "end": 13766.77, + "probability": 0.0468 + }, + { + "start": 13766.77, + "end": 13768.03, + "probability": 0.0743 + }, + { + "start": 13778.23, + "end": 13782.99, + "probability": 0.6377 + }, + { + "start": 13783.85, + "end": 13789.39, + "probability": 0.7437 + }, + { + "start": 13790.85, + "end": 13795.59, + "probability": 0.9945 + }, + { + "start": 13796.49, + "end": 13800.98, + "probability": 0.9912 + }, + { + "start": 13801.11, + "end": 13802.81, + "probability": 0.6492 + }, + { + "start": 13803.47, + "end": 13806.89, + "probability": 0.8695 + }, + { + "start": 13808.31, + "end": 13814.99, + "probability": 0.9924 + }, + { + "start": 13816.07, + "end": 13820.74, + "probability": 0.9951 + }, + { + "start": 13822.35, + "end": 13823.95, + "probability": 0.9945 + }, + { + "start": 13824.93, + "end": 13829.21, + "probability": 0.9692 + }, + { + "start": 13829.79, + "end": 13831.21, + "probability": 0.7685 + }, + { + "start": 13832.47, + "end": 13839.05, + "probability": 0.9734 + }, + { + "start": 13839.59, + "end": 13844.57, + "probability": 0.8534 + }, + { + "start": 13846.01, + "end": 13846.47, + "probability": 0.4829 + }, + { + "start": 13847.25, + "end": 13851.31, + "probability": 0.8774 + }, + { + "start": 13851.91, + "end": 13856.69, + "probability": 0.989 + }, + { + "start": 13857.57, + "end": 13860.51, + "probability": 0.9935 + }, + { + "start": 13861.59, + "end": 13864.09, + "probability": 0.8361 + }, + { + "start": 13864.39, + "end": 13865.43, + "probability": 0.8984 + }, + { + "start": 13865.69, + "end": 13868.27, + "probability": 0.9895 + }, + { + "start": 13869.17, + "end": 13873.15, + "probability": 0.9003 + }, + { + "start": 13874.15, + "end": 13874.89, + "probability": 0.8486 + }, + { + "start": 13875.41, + "end": 13881.15, + "probability": 0.9264 + }, + { + "start": 13882.05, + "end": 13889.35, + "probability": 0.9707 + }, + { + "start": 13890.11, + "end": 13894.77, + "probability": 0.9927 + }, + { + "start": 13895.79, + "end": 13896.93, + "probability": 0.9116 + }, + { + "start": 13897.59, + "end": 13903.01, + "probability": 0.662 + }, + { + "start": 13903.15, + "end": 13904.17, + "probability": 0.6377 + }, + { + "start": 13904.93, + "end": 13909.21, + "probability": 0.9918 + }, + { + "start": 13909.33, + "end": 13910.75, + "probability": 0.8361 + }, + { + "start": 13911.55, + "end": 13912.61, + "probability": 0.859 + }, + { + "start": 13913.25, + "end": 13916.35, + "probability": 0.9949 + }, + { + "start": 13916.93, + "end": 13920.13, + "probability": 0.9193 + }, + { + "start": 13920.93, + "end": 13922.39, + "probability": 0.9939 + }, + { + "start": 13922.97, + "end": 13924.53, + "probability": 0.8228 + }, + { + "start": 13924.67, + "end": 13928.23, + "probability": 0.8322 + }, + { + "start": 13928.89, + "end": 13932.85, + "probability": 0.9932 + }, + { + "start": 13933.49, + "end": 13935.59, + "probability": 0.9954 + }, + { + "start": 13936.21, + "end": 13936.63, + "probability": 0.8271 + }, + { + "start": 13937.19, + "end": 13937.29, + "probability": 0.9973 + }, + { + "start": 13938.05, + "end": 13939.35, + "probability": 0.7804 + }, + { + "start": 13940.07, + "end": 13942.67, + "probability": 0.7354 + }, + { + "start": 13943.39, + "end": 13946.41, + "probability": 0.9785 + }, + { + "start": 13946.47, + "end": 13947.37, + "probability": 0.7577 + }, + { + "start": 13947.55, + "end": 13949.15, + "probability": 0.6828 + }, + { + "start": 13949.79, + "end": 13951.93, + "probability": 0.8571 + }, + { + "start": 13952.59, + "end": 13956.29, + "probability": 0.6744 + }, + { + "start": 13956.87, + "end": 13963.47, + "probability": 0.9609 + }, + { + "start": 13963.47, + "end": 13966.87, + "probability": 0.6973 + }, + { + "start": 13966.89, + "end": 13969.19, + "probability": 0.8408 + }, + { + "start": 13969.37, + "end": 13969.81, + "probability": 0.5532 + }, + { + "start": 13969.89, + "end": 13969.89, + "probability": 0.5002 + }, + { + "start": 13970.03, + "end": 13971.45, + "probability": 0.8616 + }, + { + "start": 13972.05, + "end": 13973.85, + "probability": 0.7587 + }, + { + "start": 13983.47, + "end": 13983.69, + "probability": 0.9633 + }, + { + "start": 13985.95, + "end": 13988.19, + "probability": 0.7724 + }, + { + "start": 13989.79, + "end": 13994.95, + "probability": 0.9224 + }, + { + "start": 13996.33, + "end": 14000.01, + "probability": 0.9766 + }, + { + "start": 14000.95, + "end": 14002.39, + "probability": 0.8596 + }, + { + "start": 14003.15, + "end": 14004.33, + "probability": 0.9291 + }, + { + "start": 14005.85, + "end": 14009.43, + "probability": 0.9958 + }, + { + "start": 14009.61, + "end": 14012.49, + "probability": 0.8846 + }, + { + "start": 14013.49, + "end": 14015.89, + "probability": 0.9909 + }, + { + "start": 14016.51, + "end": 14017.39, + "probability": 0.9339 + }, + { + "start": 14018.71, + "end": 14021.33, + "probability": 0.9677 + }, + { + "start": 14022.91, + "end": 14025.51, + "probability": 0.5993 + }, + { + "start": 14025.57, + "end": 14031.97, + "probability": 0.9734 + }, + { + "start": 14032.41, + "end": 14036.73, + "probability": 0.916 + }, + { + "start": 14036.87, + "end": 14039.93, + "probability": 0.7588 + }, + { + "start": 14039.93, + "end": 14043.5, + "probability": 0.3316 + }, + { + "start": 14044.75, + "end": 14047.03, + "probability": 0.8918 + }, + { + "start": 14047.95, + "end": 14050.25, + "probability": 0.9974 + }, + { + "start": 14051.43, + "end": 14053.73, + "probability": 0.9854 + }, + { + "start": 14053.77, + "end": 14055.15, + "probability": 0.9722 + }, + { + "start": 14055.51, + "end": 14057.09, + "probability": 0.8642 + }, + { + "start": 14058.41, + "end": 14060.97, + "probability": 0.8468 + }, + { + "start": 14061.73, + "end": 14063.39, + "probability": 0.6277 + }, + { + "start": 14063.93, + "end": 14065.81, + "probability": 0.8124 + }, + { + "start": 14066.65, + "end": 14068.71, + "probability": 0.938 + }, + { + "start": 14069.31, + "end": 14070.21, + "probability": 0.9826 + }, + { + "start": 14070.81, + "end": 14073.55, + "probability": 0.9178 + }, + { + "start": 14074.63, + "end": 14077.95, + "probability": 0.9713 + }, + { + "start": 14078.59, + "end": 14080.73, + "probability": 0.9926 + }, + { + "start": 14081.79, + "end": 14082.83, + "probability": 0.8103 + }, + { + "start": 14083.59, + "end": 14085.01, + "probability": 0.7581 + }, + { + "start": 14085.29, + "end": 14085.78, + "probability": 0.4066 + }, + { + "start": 14086.05, + "end": 14090.19, + "probability": 0.8375 + }, + { + "start": 14090.79, + "end": 14093.51, + "probability": 0.998 + }, + { + "start": 14093.65, + "end": 14094.85, + "probability": 0.8945 + }, + { + "start": 14095.41, + "end": 14096.07, + "probability": 0.8135 + }, + { + "start": 14096.13, + "end": 14099.61, + "probability": 0.9921 + }, + { + "start": 14100.33, + "end": 14100.91, + "probability": 0.979 + }, + { + "start": 14102.03, + "end": 14105.91, + "probability": 0.9963 + }, + { + "start": 14106.53, + "end": 14110.81, + "probability": 0.9314 + }, + { + "start": 14111.21, + "end": 14114.93, + "probability": 0.937 + }, + { + "start": 14115.39, + "end": 14116.07, + "probability": 0.9661 + }, + { + "start": 14116.17, + "end": 14116.81, + "probability": 0.9668 + }, + { + "start": 14117.23, + "end": 14118.46, + "probability": 0.8365 + }, + { + "start": 14120.17, + "end": 14121.45, + "probability": 0.9578 + }, + { + "start": 14121.53, + "end": 14127.13, + "probability": 0.9958 + }, + { + "start": 14129.09, + "end": 14130.67, + "probability": 0.9951 + }, + { + "start": 14130.77, + "end": 14132.2, + "probability": 0.9187 + }, + { + "start": 14133.21, + "end": 14136.01, + "probability": 0.9725 + }, + { + "start": 14138.59, + "end": 14142.09, + "probability": 0.9728 + }, + { + "start": 14142.19, + "end": 14143.51, + "probability": 0.9457 + }, + { + "start": 14144.15, + "end": 14144.63, + "probability": 0.915 + }, + { + "start": 14144.71, + "end": 14146.83, + "probability": 0.9589 + }, + { + "start": 14149.31, + "end": 14149.67, + "probability": 0.9356 + }, + { + "start": 14149.73, + "end": 14151.17, + "probability": 0.8897 + }, + { + "start": 14151.35, + "end": 14155.03, + "probability": 0.9861 + }, + { + "start": 14155.11, + "end": 14157.51, + "probability": 0.8049 + }, + { + "start": 14158.19, + "end": 14161.49, + "probability": 0.9488 + }, + { + "start": 14162.09, + "end": 14164.53, + "probability": 0.8688 + }, + { + "start": 14164.63, + "end": 14167.72, + "probability": 0.9529 + }, + { + "start": 14168.31, + "end": 14169.59, + "probability": 0.7477 + }, + { + "start": 14170.55, + "end": 14171.43, + "probability": 0.9368 + }, + { + "start": 14172.21, + "end": 14178.87, + "probability": 0.9188 + }, + { + "start": 14179.91, + "end": 14182.49, + "probability": 0.9932 + }, + { + "start": 14183.43, + "end": 14185.21, + "probability": 0.9956 + }, + { + "start": 14187.29, + "end": 14189.91, + "probability": 0.9974 + }, + { + "start": 14191.77, + "end": 14195.09, + "probability": 0.9755 + }, + { + "start": 14195.95, + "end": 14198.49, + "probability": 0.9866 + }, + { + "start": 14198.57, + "end": 14199.71, + "probability": 0.9265 + }, + { + "start": 14201.59, + "end": 14206.45, + "probability": 0.876 + }, + { + "start": 14207.33, + "end": 14207.65, + "probability": 0.1825 + }, + { + "start": 14208.14, + "end": 14210.05, + "probability": 0.9279 + }, + { + "start": 14210.13, + "end": 14213.43, + "probability": 0.9744 + }, + { + "start": 14213.83, + "end": 14214.19, + "probability": 0.79 + }, + { + "start": 14214.85, + "end": 14217.98, + "probability": 0.9453 + }, + { + "start": 14218.19, + "end": 14219.65, + "probability": 0.9976 + }, + { + "start": 14220.19, + "end": 14221.15, + "probability": 0.9941 + }, + { + "start": 14221.31, + "end": 14222.21, + "probability": 0.9641 + }, + { + "start": 14222.61, + "end": 14224.26, + "probability": 0.9985 + }, + { + "start": 14225.25, + "end": 14227.53, + "probability": 0.9265 + }, + { + "start": 14228.37, + "end": 14230.29, + "probability": 0.7824 + }, + { + "start": 14230.49, + "end": 14232.19, + "probability": 0.9956 + }, + { + "start": 14232.39, + "end": 14233.63, + "probability": 0.9216 + }, + { + "start": 14234.01, + "end": 14234.67, + "probability": 0.7991 + }, + { + "start": 14235.45, + "end": 14236.69, + "probability": 0.9958 + }, + { + "start": 14236.95, + "end": 14237.75, + "probability": 0.8423 + }, + { + "start": 14237.87, + "end": 14239.57, + "probability": 0.9899 + }, + { + "start": 14240.13, + "end": 14242.39, + "probability": 0.9968 + }, + { + "start": 14243.07, + "end": 14245.99, + "probability": 0.8984 + }, + { + "start": 14246.63, + "end": 14248.19, + "probability": 0.9171 + }, + { + "start": 14248.71, + "end": 14250.41, + "probability": 0.972 + }, + { + "start": 14250.61, + "end": 14252.33, + "probability": 0.9592 + }, + { + "start": 14253.15, + "end": 14257.01, + "probability": 0.9951 + }, + { + "start": 14257.43, + "end": 14259.86, + "probability": 0.9937 + }, + { + "start": 14260.01, + "end": 14262.19, + "probability": 0.9919 + }, + { + "start": 14262.79, + "end": 14265.19, + "probability": 0.5928 + }, + { + "start": 14265.29, + "end": 14267.13, + "probability": 0.6961 + }, + { + "start": 14267.67, + "end": 14269.77, + "probability": 0.9196 + }, + { + "start": 14270.23, + "end": 14271.11, + "probability": 0.848 + }, + { + "start": 14271.27, + "end": 14271.69, + "probability": 0.8872 + }, + { + "start": 14271.93, + "end": 14275.51, + "probability": 0.9941 + }, + { + "start": 14275.57, + "end": 14276.23, + "probability": 0.8794 + }, + { + "start": 14276.25, + "end": 14276.95, + "probability": 0.8631 + }, + { + "start": 14276.97, + "end": 14278.63, + "probability": 0.9736 + }, + { + "start": 14279.11, + "end": 14281.67, + "probability": 0.9966 + }, + { + "start": 14281.95, + "end": 14283.45, + "probability": 0.925 + }, + { + "start": 14283.55, + "end": 14285.87, + "probability": 0.9982 + }, + { + "start": 14285.87, + "end": 14288.07, + "probability": 0.9861 + }, + { + "start": 14288.45, + "end": 14291.27, + "probability": 0.9937 + }, + { + "start": 14291.69, + "end": 14294.45, + "probability": 0.9956 + }, + { + "start": 14294.81, + "end": 14296.19, + "probability": 0.976 + }, + { + "start": 14296.93, + "end": 14298.33, + "probability": 0.5809 + }, + { + "start": 14298.45, + "end": 14300.07, + "probability": 0.9336 + }, + { + "start": 14300.29, + "end": 14302.71, + "probability": 0.9822 + }, + { + "start": 14303.45, + "end": 14304.81, + "probability": 0.8063 + }, + { + "start": 14305.45, + "end": 14305.55, + "probability": 0.7013 + }, + { + "start": 14306.19, + "end": 14307.61, + "probability": 0.9875 + }, + { + "start": 14307.69, + "end": 14307.97, + "probability": 0.7466 + }, + { + "start": 14308.05, + "end": 14308.47, + "probability": 0.7776 + }, + { + "start": 14308.77, + "end": 14309.53, + "probability": 0.9578 + }, + { + "start": 14332.69, + "end": 14333.67, + "probability": 0.6459 + }, + { + "start": 14334.63, + "end": 14335.95, + "probability": 0.6471 + }, + { + "start": 14336.73, + "end": 14337.71, + "probability": 0.7233 + }, + { + "start": 14339.13, + "end": 14343.49, + "probability": 0.8933 + }, + { + "start": 14344.61, + "end": 14348.51, + "probability": 0.9589 + }, + { + "start": 14350.44, + "end": 14355.23, + "probability": 0.9189 + }, + { + "start": 14355.23, + "end": 14359.07, + "probability": 0.9777 + }, + { + "start": 14359.95, + "end": 14360.72, + "probability": 0.9111 + }, + { + "start": 14361.35, + "end": 14364.05, + "probability": 0.9285 + }, + { + "start": 14364.47, + "end": 14365.93, + "probability": 0.9527 + }, + { + "start": 14366.67, + "end": 14369.27, + "probability": 0.9957 + }, + { + "start": 14370.98, + "end": 14373.59, + "probability": 0.9951 + }, + { + "start": 14374.89, + "end": 14377.17, + "probability": 0.9148 + }, + { + "start": 14377.99, + "end": 14381.19, + "probability": 0.8482 + }, + { + "start": 14382.21, + "end": 14385.67, + "probability": 0.8287 + }, + { + "start": 14386.15, + "end": 14388.31, + "probability": 0.9552 + }, + { + "start": 14389.37, + "end": 14390.93, + "probability": 0.9568 + }, + { + "start": 14392.01, + "end": 14393.75, + "probability": 0.9951 + }, + { + "start": 14394.55, + "end": 14399.37, + "probability": 0.9939 + }, + { + "start": 14400.19, + "end": 14400.68, + "probability": 0.9756 + }, + { + "start": 14401.89, + "end": 14403.37, + "probability": 0.9111 + }, + { + "start": 14403.99, + "end": 14405.25, + "probability": 0.9918 + }, + { + "start": 14407.07, + "end": 14410.97, + "probability": 0.864 + }, + { + "start": 14411.37, + "end": 14413.13, + "probability": 0.9958 + }, + { + "start": 14413.59, + "end": 14414.17, + "probability": 0.8752 + }, + { + "start": 14414.83, + "end": 14418.13, + "probability": 0.8944 + }, + { + "start": 14418.73, + "end": 14420.51, + "probability": 0.9704 + }, + { + "start": 14421.31, + "end": 14423.01, + "probability": 0.9985 + }, + { + "start": 14423.49, + "end": 14426.45, + "probability": 0.8233 + }, + { + "start": 14426.69, + "end": 14427.71, + "probability": 0.9711 + }, + { + "start": 14427.93, + "end": 14429.03, + "probability": 0.9554 + }, + { + "start": 14429.57, + "end": 14433.31, + "probability": 0.9734 + }, + { + "start": 14433.91, + "end": 14433.99, + "probability": 0.4227 + }, + { + "start": 14433.99, + "end": 14434.96, + "probability": 0.8014 + }, + { + "start": 14436.11, + "end": 14437.01, + "probability": 0.8397 + }, + { + "start": 14437.35, + "end": 14437.97, + "probability": 0.9761 + }, + { + "start": 14438.29, + "end": 14439.66, + "probability": 0.8757 + }, + { + "start": 14439.97, + "end": 14440.51, + "probability": 0.7256 + }, + { + "start": 14441.07, + "end": 14443.85, + "probability": 0.8619 + }, + { + "start": 14444.39, + "end": 14447.39, + "probability": 0.9885 + }, + { + "start": 14450.29, + "end": 14452.39, + "probability": 0.4344 + }, + { + "start": 14453.39, + "end": 14453.99, + "probability": 0.6007 + }, + { + "start": 14456.57, + "end": 14457.83, + "probability": 0.9989 + }, + { + "start": 14458.39, + "end": 14462.37, + "probability": 0.9993 + }, + { + "start": 14463.81, + "end": 14465.39, + "probability": 0.9971 + }, + { + "start": 14466.45, + "end": 14470.77, + "probability": 0.5738 + }, + { + "start": 14471.95, + "end": 14473.97, + "probability": 0.9955 + }, + { + "start": 14474.09, + "end": 14474.09, + "probability": 0.1088 + }, + { + "start": 14474.09, + "end": 14475.57, + "probability": 0.8245 + }, + { + "start": 14476.39, + "end": 14478.41, + "probability": 0.7105 + }, + { + "start": 14478.91, + "end": 14479.53, + "probability": 0.7471 + }, + { + "start": 14479.95, + "end": 14482.45, + "probability": 0.9278 + }, + { + "start": 14482.79, + "end": 14485.09, + "probability": 0.9975 + }, + { + "start": 14485.41, + "end": 14486.69, + "probability": 0.987 + }, + { + "start": 14486.85, + "end": 14487.97, + "probability": 0.9602 + }, + { + "start": 14488.39, + "end": 14491.79, + "probability": 0.9718 + }, + { + "start": 14492.19, + "end": 14493.43, + "probability": 0.9091 + }, + { + "start": 14494.57, + "end": 14499.77, + "probability": 0.967 + }, + { + "start": 14500.95, + "end": 14503.29, + "probability": 0.59 + }, + { + "start": 14503.77, + "end": 14506.63, + "probability": 0.9883 + }, + { + "start": 14507.09, + "end": 14507.91, + "probability": 0.8607 + }, + { + "start": 14508.35, + "end": 14510.45, + "probability": 0.6689 + }, + { + "start": 14510.75, + "end": 14513.06, + "probability": 0.9409 + }, + { + "start": 14513.99, + "end": 14517.49, + "probability": 0.6079 + }, + { + "start": 14517.89, + "end": 14518.09, + "probability": 0.5024 + }, + { + "start": 14518.13, + "end": 14518.91, + "probability": 0.9679 + }, + { + "start": 14519.27, + "end": 14519.77, + "probability": 0.9219 + }, + { + "start": 14521.05, + "end": 14522.09, + "probability": 0.654 + }, + { + "start": 14525.21, + "end": 14526.73, + "probability": 0.5602 + }, + { + "start": 14527.69, + "end": 14534.41, + "probability": 0.1783 + }, + { + "start": 14541.71, + "end": 14544.29, + "probability": 0.581 + }, + { + "start": 14548.13, + "end": 14550.05, + "probability": 0.994 + }, + { + "start": 14551.53, + "end": 14553.27, + "probability": 0.8396 + }, + { + "start": 14554.27, + "end": 14557.23, + "probability": 0.8994 + }, + { + "start": 14557.36, + "end": 14560.99, + "probability": 0.8797 + }, + { + "start": 14561.91, + "end": 14563.01, + "probability": 0.9087 + }, + { + "start": 14565.21, + "end": 14565.85, + "probability": 0.6971 + }, + { + "start": 14566.37, + "end": 14568.11, + "probability": 0.9681 + }, + { + "start": 14569.23, + "end": 14570.95, + "probability": 0.817 + }, + { + "start": 14572.29, + "end": 14573.07, + "probability": 0.9534 + }, + { + "start": 14574.25, + "end": 14575.61, + "probability": 0.9884 + }, + { + "start": 14577.99, + "end": 14582.65, + "probability": 0.9902 + }, + { + "start": 14586.33, + "end": 14587.53, + "probability": 0.9008 + }, + { + "start": 14587.81, + "end": 14587.95, + "probability": 0.0557 + }, + { + "start": 14588.03, + "end": 14588.31, + "probability": 0.817 + }, + { + "start": 14588.71, + "end": 14592.07, + "probability": 0.9671 + }, + { + "start": 14592.71, + "end": 14593.65, + "probability": 0.9237 + }, + { + "start": 14595.43, + "end": 14596.11, + "probability": 0.9583 + }, + { + "start": 14598.63, + "end": 14601.29, + "probability": 0.7488 + }, + { + "start": 14602.37, + "end": 14604.05, + "probability": 0.9401 + }, + { + "start": 14604.11, + "end": 14609.57, + "probability": 0.9937 + }, + { + "start": 14612.07, + "end": 14613.53, + "probability": 0.9959 + }, + { + "start": 14615.71, + "end": 14616.89, + "probability": 0.8277 + }, + { + "start": 14618.27, + "end": 14620.33, + "probability": 0.9243 + }, + { + "start": 14620.39, + "end": 14621.81, + "probability": 0.8444 + }, + { + "start": 14621.93, + "end": 14622.89, + "probability": 0.9086 + }, + { + "start": 14623.43, + "end": 14626.01, + "probability": 0.9921 + }, + { + "start": 14627.05, + "end": 14629.95, + "probability": 0.9901 + }, + { + "start": 14633.43, + "end": 14637.39, + "probability": 0.8835 + }, + { + "start": 14638.11, + "end": 14640.85, + "probability": 0.7421 + }, + { + "start": 14641.57, + "end": 14642.87, + "probability": 0.9971 + }, + { + "start": 14643.85, + "end": 14644.97, + "probability": 0.7671 + }, + { + "start": 14646.79, + "end": 14649.69, + "probability": 0.652 + }, + { + "start": 14649.79, + "end": 14651.77, + "probability": 0.7979 + }, + { + "start": 14651.85, + "end": 14654.33, + "probability": 0.9918 + }, + { + "start": 14656.47, + "end": 14657.49, + "probability": 0.5834 + }, + { + "start": 14657.61, + "end": 14662.83, + "probability": 0.9856 + }, + { + "start": 14663.43, + "end": 14665.99, + "probability": 0.9272 + }, + { + "start": 14666.27, + "end": 14667.37, + "probability": 0.9493 + }, + { + "start": 14667.67, + "end": 14668.95, + "probability": 0.1825 + }, + { + "start": 14670.01, + "end": 14671.17, + "probability": 0.9393 + }, + { + "start": 14672.17, + "end": 14673.11, + "probability": 0.6426 + }, + { + "start": 14675.23, + "end": 14679.03, + "probability": 0.9581 + }, + { + "start": 14679.09, + "end": 14683.95, + "probability": 0.8237 + }, + { + "start": 14685.03, + "end": 14686.27, + "probability": 0.7349 + }, + { + "start": 14687.45, + "end": 14688.65, + "probability": 0.9646 + }, + { + "start": 14689.55, + "end": 14690.97, + "probability": 0.9403 + }, + { + "start": 14691.71, + "end": 14693.29, + "probability": 0.9354 + }, + { + "start": 14695.21, + "end": 14696.19, + "probability": 0.9751 + }, + { + "start": 14700.39, + "end": 14701.53, + "probability": 0.969 + }, + { + "start": 14703.13, + "end": 14703.73, + "probability": 0.5649 + }, + { + "start": 14704.63, + "end": 14705.61, + "probability": 0.8891 + }, + { + "start": 14705.77, + "end": 14706.43, + "probability": 0.9546 + }, + { + "start": 14706.89, + "end": 14708.73, + "probability": 0.844 + }, + { + "start": 14710.23, + "end": 14712.93, + "probability": 0.9877 + }, + { + "start": 14713.65, + "end": 14714.77, + "probability": 0.9827 + }, + { + "start": 14717.51, + "end": 14718.77, + "probability": 0.9929 + }, + { + "start": 14720.53, + "end": 14722.37, + "probability": 0.996 + }, + { + "start": 14722.47, + "end": 14723.01, + "probability": 0.3144 + }, + { + "start": 14723.75, + "end": 14724.65, + "probability": 0.8692 + }, + { + "start": 14726.31, + "end": 14727.91, + "probability": 0.9867 + }, + { + "start": 14729.23, + "end": 14730.81, + "probability": 0.988 + }, + { + "start": 14732.01, + "end": 14734.87, + "probability": 0.989 + }, + { + "start": 14735.61, + "end": 14736.61, + "probability": 0.9316 + }, + { + "start": 14737.03, + "end": 14738.31, + "probability": 0.9375 + }, + { + "start": 14738.67, + "end": 14739.45, + "probability": 0.9746 + }, + { + "start": 14740.53, + "end": 14741.73, + "probability": 0.6861 + }, + { + "start": 14742.47, + "end": 14745.03, + "probability": 0.918 + }, + { + "start": 14745.95, + "end": 14750.72, + "probability": 0.9941 + }, + { + "start": 14751.69, + "end": 14755.15, + "probability": 0.9805 + }, + { + "start": 14756.83, + "end": 14757.05, + "probability": 0.8333 + }, + { + "start": 14757.55, + "end": 14757.87, + "probability": 0.2643 + }, + { + "start": 14758.81, + "end": 14761.73, + "probability": 0.7397 + }, + { + "start": 14783.13, + "end": 14783.99, + "probability": 0.6115 + }, + { + "start": 14785.69, + "end": 14787.05, + "probability": 0.917 + }, + { + "start": 14787.39, + "end": 14788.73, + "probability": 0.9661 + }, + { + "start": 14788.87, + "end": 14789.81, + "probability": 0.8124 + }, + { + "start": 14789.89, + "end": 14790.53, + "probability": 0.7832 + }, + { + "start": 14791.03, + "end": 14793.03, + "probability": 0.6418 + }, + { + "start": 14793.19, + "end": 14794.25, + "probability": 0.9927 + }, + { + "start": 14794.31, + "end": 14795.05, + "probability": 0.8572 + }, + { + "start": 14795.13, + "end": 14795.93, + "probability": 0.9749 + }, + { + "start": 14796.59, + "end": 14801.08, + "probability": 0.9943 + }, + { + "start": 14801.83, + "end": 14805.27, + "probability": 0.9982 + }, + { + "start": 14805.27, + "end": 14809.07, + "probability": 0.9624 + }, + { + "start": 14809.85, + "end": 14815.15, + "probability": 0.9364 + }, + { + "start": 14815.97, + "end": 14816.63, + "probability": 0.0744 + }, + { + "start": 14817.21, + "end": 14818.99, + "probability": 0.9008 + }, + { + "start": 14819.63, + "end": 14822.81, + "probability": 0.9562 + }, + { + "start": 14823.27, + "end": 14824.41, + "probability": 0.9254 + }, + { + "start": 14824.55, + "end": 14827.39, + "probability": 0.9876 + }, + { + "start": 14827.43, + "end": 14830.03, + "probability": 0.9917 + }, + { + "start": 14831.29, + "end": 14833.97, + "probability": 0.9735 + }, + { + "start": 14834.25, + "end": 14837.61, + "probability": 0.9067 + }, + { + "start": 14838.67, + "end": 14845.15, + "probability": 0.9277 + }, + { + "start": 14846.07, + "end": 14851.06, + "probability": 0.9528 + }, + { + "start": 14852.13, + "end": 14854.15, + "probability": 0.6898 + }, + { + "start": 14855.03, + "end": 14857.05, + "probability": 0.9876 + }, + { + "start": 14858.97, + "end": 14861.71, + "probability": 0.9917 + }, + { + "start": 14861.87, + "end": 14867.45, + "probability": 0.9954 + }, + { + "start": 14868.35, + "end": 14871.79, + "probability": 0.9875 + }, + { + "start": 14873.11, + "end": 14877.03, + "probability": 0.9971 + }, + { + "start": 14878.31, + "end": 14879.51, + "probability": 0.8724 + }, + { + "start": 14881.49, + "end": 14884.23, + "probability": 0.7971 + }, + { + "start": 14884.37, + "end": 14885.13, + "probability": 0.8166 + }, + { + "start": 14885.27, + "end": 14886.83, + "probability": 0.8306 + }, + { + "start": 14886.93, + "end": 14888.45, + "probability": 0.8341 + }, + { + "start": 14888.57, + "end": 14890.53, + "probability": 0.9791 + }, + { + "start": 14890.63, + "end": 14891.73, + "probability": 0.9748 + }, + { + "start": 14891.87, + "end": 14893.85, + "probability": 0.9892 + }, + { + "start": 14894.35, + "end": 14895.58, + "probability": 0.8943 + }, + { + "start": 14895.71, + "end": 14896.93, + "probability": 0.7301 + }, + { + "start": 14897.47, + "end": 14901.61, + "probability": 0.7526 + }, + { + "start": 14902.21, + "end": 14905.71, + "probability": 0.9834 + }, + { + "start": 14906.21, + "end": 14909.55, + "probability": 0.8044 + }, + { + "start": 14910.55, + "end": 14911.91, + "probability": 0.9843 + }, + { + "start": 14912.83, + "end": 14914.13, + "probability": 0.9506 + }, + { + "start": 14914.23, + "end": 14915.99, + "probability": 0.9966 + }, + { + "start": 14916.95, + "end": 14918.13, + "probability": 0.9932 + }, + { + "start": 14919.33, + "end": 14920.55, + "probability": 0.9949 + }, + { + "start": 14920.77, + "end": 14923.09, + "probability": 0.9905 + }, + { + "start": 14923.71, + "end": 14928.15, + "probability": 0.9824 + }, + { + "start": 14928.41, + "end": 14930.63, + "probability": 0.9591 + }, + { + "start": 14930.89, + "end": 14931.99, + "probability": 0.6139 + }, + { + "start": 14933.13, + "end": 14934.69, + "probability": 0.7587 + }, + { + "start": 14935.31, + "end": 14944.73, + "probability": 0.9588 + }, + { + "start": 14945.07, + "end": 14946.15, + "probability": 0.794 + }, + { + "start": 14946.27, + "end": 14947.13, + "probability": 0.5561 + }, + { + "start": 14947.35, + "end": 14948.03, + "probability": 0.7513 + }, + { + "start": 14948.49, + "end": 14950.47, + "probability": 0.9932 + }, + { + "start": 14951.53, + "end": 14953.07, + "probability": 0.8903 + }, + { + "start": 14953.61, + "end": 14954.59, + "probability": 0.9528 + }, + { + "start": 14954.91, + "end": 14957.83, + "probability": 0.9849 + }, + { + "start": 14958.23, + "end": 14960.41, + "probability": 0.8602 + }, + { + "start": 14960.79, + "end": 14962.29, + "probability": 0.9509 + }, + { + "start": 14963.25, + "end": 14963.81, + "probability": 0.4764 + }, + { + "start": 14963.83, + "end": 14964.11, + "probability": 0.8275 + }, + { + "start": 14964.21, + "end": 14967.27, + "probability": 0.9785 + }, + { + "start": 14967.35, + "end": 14968.91, + "probability": 0.9693 + }, + { + "start": 14969.43, + "end": 14970.45, + "probability": 0.7318 + }, + { + "start": 14970.67, + "end": 14971.47, + "probability": 0.8042 + }, + { + "start": 14971.57, + "end": 14972.03, + "probability": 0.4912 + }, + { + "start": 14972.57, + "end": 14973.55, + "probability": 0.8824 + }, + { + "start": 14973.65, + "end": 14974.13, + "probability": 0.9509 + }, + { + "start": 14974.77, + "end": 14976.37, + "probability": 0.98 + }, + { + "start": 14976.63, + "end": 14978.67, + "probability": 0.8943 + }, + { + "start": 14978.89, + "end": 14979.95, + "probability": 0.8007 + }, + { + "start": 14980.65, + "end": 14982.31, + "probability": 0.9985 + }, + { + "start": 14982.99, + "end": 14983.79, + "probability": 0.6369 + }, + { + "start": 14984.13, + "end": 14986.85, + "probability": 0.9575 + }, + { + "start": 14986.97, + "end": 14989.87, + "probability": 0.9692 + }, + { + "start": 14989.87, + "end": 14993.51, + "probability": 0.9797 + }, + { + "start": 14994.23, + "end": 14994.45, + "probability": 0.3665 + }, + { + "start": 14994.57, + "end": 14996.09, + "probability": 0.8997 + }, + { + "start": 14996.23, + "end": 14998.49, + "probability": 0.9957 + }, + { + "start": 14999.05, + "end": 15000.47, + "probability": 0.9917 + }, + { + "start": 15000.99, + "end": 15003.77, + "probability": 0.9848 + }, + { + "start": 15003.87, + "end": 15008.61, + "probability": 0.9379 + }, + { + "start": 15009.45, + "end": 15011.01, + "probability": 0.9765 + }, + { + "start": 15011.53, + "end": 15012.13, + "probability": 0.627 + }, + { + "start": 15012.91, + "end": 15015.09, + "probability": 0.467 + }, + { + "start": 15016.01, + "end": 15018.05, + "probability": 0.3151 + }, + { + "start": 15018.05, + "end": 15018.71, + "probability": 0.4271 + }, + { + "start": 15027.71, + "end": 15028.07, + "probability": 0.1163 + }, + { + "start": 15028.07, + "end": 15028.07, + "probability": 0.1272 + }, + { + "start": 15028.09, + "end": 15028.09, + "probability": 0.0206 + }, + { + "start": 15028.11, + "end": 15028.21, + "probability": 0.0357 + }, + { + "start": 15028.21, + "end": 15028.21, + "probability": 0.0128 + }, + { + "start": 15041.41, + "end": 15042.73, + "probability": 0.3319 + }, + { + "start": 15044.72, + "end": 15050.21, + "probability": 0.9904 + }, + { + "start": 15050.87, + "end": 15053.89, + "probability": 0.9986 + }, + { + "start": 15054.91, + "end": 15057.54, + "probability": 0.8262 + }, + { + "start": 15059.47, + "end": 15060.67, + "probability": 0.8384 + }, + { + "start": 15061.27, + "end": 15063.01, + "probability": 0.915 + }, + { + "start": 15063.57, + "end": 15064.45, + "probability": 0.7646 + }, + { + "start": 15065.85, + "end": 15069.07, + "probability": 0.9932 + }, + { + "start": 15069.65, + "end": 15071.29, + "probability": 0.9921 + }, + { + "start": 15071.45, + "end": 15072.42, + "probability": 0.9456 + }, + { + "start": 15073.29, + "end": 15074.41, + "probability": 0.8374 + }, + { + "start": 15074.87, + "end": 15076.91, + "probability": 0.6655 + }, + { + "start": 15077.07, + "end": 15080.09, + "probability": 0.8905 + }, + { + "start": 15080.13, + "end": 15082.03, + "probability": 0.9532 + }, + { + "start": 15082.23, + "end": 15083.03, + "probability": 0.7138 + }, + { + "start": 15083.31, + "end": 15084.79, + "probability": 0.9937 + }, + { + "start": 15085.31, + "end": 15088.37, + "probability": 0.9863 + }, + { + "start": 15088.51, + "end": 15090.99, + "probability": 0.9977 + }, + { + "start": 15091.35, + "end": 15093.57, + "probability": 0.9979 + }, + { + "start": 15094.31, + "end": 15096.61, + "probability": 0.9963 + }, + { + "start": 15096.69, + "end": 15099.73, + "probability": 0.9965 + }, + { + "start": 15100.09, + "end": 15101.21, + "probability": 0.8898 + }, + { + "start": 15101.39, + "end": 15103.05, + "probability": 0.99 + }, + { + "start": 15104.25, + "end": 15107.37, + "probability": 0.7725 + }, + { + "start": 15107.97, + "end": 15111.55, + "probability": 0.9908 + }, + { + "start": 15111.65, + "end": 15113.17, + "probability": 0.9002 + }, + { + "start": 15113.29, + "end": 15119.35, + "probability": 0.9693 + }, + { + "start": 15119.73, + "end": 15119.85, + "probability": 0.5486 + }, + { + "start": 15119.97, + "end": 15122.19, + "probability": 0.6359 + }, + { + "start": 15122.23, + "end": 15127.61, + "probability": 0.9886 + }, + { + "start": 15128.85, + "end": 15130.83, + "probability": 0.9175 + }, + { + "start": 15130.91, + "end": 15131.09, + "probability": 0.9357 + }, + { + "start": 15131.49, + "end": 15132.96, + "probability": 0.9631 + }, + { + "start": 15133.21, + "end": 15135.09, + "probability": 0.9579 + }, + { + "start": 15135.65, + "end": 15138.09, + "probability": 0.9951 + }, + { + "start": 15138.65, + "end": 15141.53, + "probability": 0.9928 + }, + { + "start": 15141.71, + "end": 15142.29, + "probability": 0.9897 + }, + { + "start": 15142.73, + "end": 15143.07, + "probability": 0.8277 + }, + { + "start": 15143.73, + "end": 15146.55, + "probability": 0.9946 + }, + { + "start": 15146.95, + "end": 15147.91, + "probability": 0.9182 + }, + { + "start": 15148.41, + "end": 15150.83, + "probability": 0.9699 + }, + { + "start": 15151.29, + "end": 15151.85, + "probability": 0.9857 + }, + { + "start": 15152.55, + "end": 15153.51, + "probability": 0.9398 + }, + { + "start": 15154.33, + "end": 15158.47, + "probability": 0.9989 + }, + { + "start": 15158.87, + "end": 15161.31, + "probability": 0.9421 + }, + { + "start": 15162.73, + "end": 15166.23, + "probability": 0.9646 + }, + { + "start": 15166.75, + "end": 15168.11, + "probability": 0.808 + }, + { + "start": 15168.61, + "end": 15170.27, + "probability": 0.9897 + }, + { + "start": 15170.41, + "end": 15171.98, + "probability": 0.9747 + }, + { + "start": 15172.73, + "end": 15176.31, + "probability": 0.9897 + }, + { + "start": 15176.97, + "end": 15178.49, + "probability": 0.7952 + }, + { + "start": 15179.33, + "end": 15183.41, + "probability": 0.9726 + }, + { + "start": 15183.71, + "end": 15183.99, + "probability": 0.7096 + }, + { + "start": 15184.49, + "end": 15184.85, + "probability": 0.9197 + }, + { + "start": 15185.65, + "end": 15188.35, + "probability": 0.9993 + }, + { + "start": 15189.07, + "end": 15189.25, + "probability": 0.1165 + }, + { + "start": 15189.95, + "end": 15195.59, + "probability": 0.954 + }, + { + "start": 15196.39, + "end": 15199.99, + "probability": 0.965 + }, + { + "start": 15200.07, + "end": 15200.47, + "probability": 0.8084 + }, + { + "start": 15200.47, + "end": 15200.85, + "probability": 0.9653 + }, + { + "start": 15201.19, + "end": 15203.53, + "probability": 0.9966 + }, + { + "start": 15203.53, + "end": 15206.37, + "probability": 0.9958 + }, + { + "start": 15206.81, + "end": 15207.63, + "probability": 0.6386 + }, + { + "start": 15208.09, + "end": 15209.83, + "probability": 0.976 + }, + { + "start": 15210.21, + "end": 15214.19, + "probability": 0.8708 + }, + { + "start": 15214.39, + "end": 15216.17, + "probability": 0.8091 + }, + { + "start": 15216.73, + "end": 15218.73, + "probability": 0.8477 + }, + { + "start": 15219.03, + "end": 15219.31, + "probability": 0.3342 + }, + { + "start": 15219.41, + "end": 15219.61, + "probability": 0.7027 + }, + { + "start": 15220.15, + "end": 15221.05, + "probability": 0.4553 + }, + { + "start": 15238.45, + "end": 15239.19, + "probability": 0.8876 + }, + { + "start": 15242.41, + "end": 15243.93, + "probability": 0.6459 + }, + { + "start": 15244.79, + "end": 15246.55, + "probability": 0.8906 + }, + { + "start": 15247.19, + "end": 15249.35, + "probability": 0.9956 + }, + { + "start": 15250.35, + "end": 15253.29, + "probability": 0.9966 + }, + { + "start": 15253.31, + "end": 15253.63, + "probability": 0.3646 + }, + { + "start": 15253.95, + "end": 15256.03, + "probability": 0.9971 + }, + { + "start": 15256.47, + "end": 15257.23, + "probability": 0.9204 + }, + { + "start": 15258.41, + "end": 15259.85, + "probability": 0.9422 + }, + { + "start": 15260.55, + "end": 15260.97, + "probability": 0.8408 + }, + { + "start": 15261.49, + "end": 15262.31, + "probability": 0.9816 + }, + { + "start": 15263.27, + "end": 15266.41, + "probability": 0.9936 + }, + { + "start": 15267.79, + "end": 15269.65, + "probability": 0.9932 + }, + { + "start": 15270.79, + "end": 15274.69, + "probability": 0.9351 + }, + { + "start": 15275.45, + "end": 15276.19, + "probability": 0.8961 + }, + { + "start": 15277.17, + "end": 15281.71, + "probability": 0.9937 + }, + { + "start": 15283.01, + "end": 15283.85, + "probability": 0.6848 + }, + { + "start": 15285.01, + "end": 15288.35, + "probability": 0.7919 + }, + { + "start": 15289.31, + "end": 15289.55, + "probability": 0.2953 + }, + { + "start": 15289.67, + "end": 15289.83, + "probability": 0.8595 + }, + { + "start": 15289.91, + "end": 15291.91, + "probability": 0.8147 + }, + { + "start": 15292.85, + "end": 15293.77, + "probability": 0.5113 + }, + { + "start": 15294.77, + "end": 15295.79, + "probability": 0.5174 + }, + { + "start": 15295.79, + "end": 15297.19, + "probability": 0.9299 + }, + { + "start": 15297.29, + "end": 15300.47, + "probability": 0.7692 + }, + { + "start": 15300.87, + "end": 15304.65, + "probability": 0.9888 + }, + { + "start": 15304.95, + "end": 15306.31, + "probability": 0.855 + }, + { + "start": 15306.73, + "end": 15307.57, + "probability": 0.9648 + }, + { + "start": 15309.34, + "end": 15314.47, + "probability": 0.9771 + }, + { + "start": 15314.83, + "end": 15317.13, + "probability": 0.7738 + }, + { + "start": 15317.93, + "end": 15320.33, + "probability": 0.999 + }, + { + "start": 15320.41, + "end": 15321.05, + "probability": 0.6896 + }, + { + "start": 15321.73, + "end": 15321.73, + "probability": 0.0297 + }, + { + "start": 15321.73, + "end": 15323.29, + "probability": 0.876 + }, + { + "start": 15323.51, + "end": 15326.41, + "probability": 0.8437 + }, + { + "start": 15326.53, + "end": 15333.19, + "probability": 0.95 + }, + { + "start": 15333.33, + "end": 15334.81, + "probability": 0.8822 + }, + { + "start": 15334.91, + "end": 15335.43, + "probability": 0.5961 + }, + { + "start": 15335.51, + "end": 15336.21, + "probability": 0.4134 + }, + { + "start": 15336.47, + "end": 15337.59, + "probability": 0.687 + }, + { + "start": 15337.83, + "end": 15340.05, + "probability": 0.9863 + }, + { + "start": 15340.15, + "end": 15341.07, + "probability": 0.9142 + }, + { + "start": 15341.67, + "end": 15342.21, + "probability": 0.6607 + }, + { + "start": 15342.21, + "end": 15342.89, + "probability": 0.9857 + }, + { + "start": 15343.05, + "end": 15343.91, + "probability": 0.9356 + }, + { + "start": 15344.59, + "end": 15346.01, + "probability": 0.995 + }, + { + "start": 15346.13, + "end": 15347.97, + "probability": 0.938 + }, + { + "start": 15348.79, + "end": 15351.05, + "probability": 0.9939 + }, + { + "start": 15351.49, + "end": 15353.47, + "probability": 0.7035 + }, + { + "start": 15353.61, + "end": 15354.64, + "probability": 0.9756 + }, + { + "start": 15355.41, + "end": 15356.59, + "probability": 0.9576 + }, + { + "start": 15357.45, + "end": 15358.11, + "probability": 0.8882 + }, + { + "start": 15358.69, + "end": 15361.97, + "probability": 0.9777 + }, + { + "start": 15362.53, + "end": 15367.07, + "probability": 0.6682 + }, + { + "start": 15367.71, + "end": 15372.63, + "probability": 0.9818 + }, + { + "start": 15373.39, + "end": 15377.05, + "probability": 0.9637 + }, + { + "start": 15377.81, + "end": 15380.11, + "probability": 0.9984 + }, + { + "start": 15380.63, + "end": 15384.63, + "probability": 0.9813 + }, + { + "start": 15385.15, + "end": 15387.09, + "probability": 0.9248 + }, + { + "start": 15387.51, + "end": 15392.35, + "probability": 0.9958 + }, + { + "start": 15392.91, + "end": 15393.09, + "probability": 0.0338 + }, + { + "start": 15393.09, + "end": 15393.61, + "probability": 0.5388 + }, + { + "start": 15393.79, + "end": 15394.65, + "probability": 0.8994 + }, + { + "start": 15394.69, + "end": 15395.67, + "probability": 0.8296 + }, + { + "start": 15396.09, + "end": 15398.91, + "probability": 0.9961 + }, + { + "start": 15399.37, + "end": 15401.47, + "probability": 0.8796 + }, + { + "start": 15402.05, + "end": 15403.33, + "probability": 0.9922 + }, + { + "start": 15404.09, + "end": 15404.75, + "probability": 0.7773 + }, + { + "start": 15405.45, + "end": 15410.77, + "probability": 0.9914 + }, + { + "start": 15411.51, + "end": 15413.85, + "probability": 0.9912 + }, + { + "start": 15414.29, + "end": 15417.84, + "probability": 0.963 + }, + { + "start": 15418.47, + "end": 15422.63, + "probability": 0.8776 + }, + { + "start": 15422.69, + "end": 15424.51, + "probability": 0.8356 + }, + { + "start": 15424.85, + "end": 15425.39, + "probability": 0.0086 + }, + { + "start": 15425.39, + "end": 15425.39, + "probability": 0.39 + }, + { + "start": 15425.55, + "end": 15426.75, + "probability": 0.8934 + }, + { + "start": 15442.27, + "end": 15442.37, + "probability": 0.7384 + }, + { + "start": 15442.37, + "end": 15442.89, + "probability": 0.5046 + }, + { + "start": 15442.95, + "end": 15444.87, + "probability": 0.5043 + }, + { + "start": 15446.11, + "end": 15447.53, + "probability": 0.8003 + }, + { + "start": 15450.35, + "end": 15454.73, + "probability": 0.7484 + }, + { + "start": 15454.91, + "end": 15455.45, + "probability": 0.7668 + }, + { + "start": 15455.83, + "end": 15456.99, + "probability": 0.9548 + }, + { + "start": 15458.63, + "end": 15461.69, + "probability": 0.6103 + }, + { + "start": 15461.69, + "end": 15462.41, + "probability": 0.1305 + }, + { + "start": 15464.29, + "end": 15466.25, + "probability": 0.7498 + }, + { + "start": 15467.09, + "end": 15468.23, + "probability": 0.9161 + }, + { + "start": 15468.85, + "end": 15469.35, + "probability": 0.8013 + }, + { + "start": 15470.65, + "end": 15470.99, + "probability": 0.7764 + }, + { + "start": 15472.77, + "end": 15474.09, + "probability": 0.881 + }, + { + "start": 15475.39, + "end": 15476.57, + "probability": 0.9189 + }, + { + "start": 15477.13, + "end": 15477.67, + "probability": 0.7976 + }, + { + "start": 15480.15, + "end": 15483.21, + "probability": 0.7616 + }, + { + "start": 15484.25, + "end": 15485.29, + "probability": 0.4958 + }, + { + "start": 15486.35, + "end": 15487.95, + "probability": 0.847 + }, + { + "start": 15489.01, + "end": 15493.07, + "probability": 0.9862 + }, + { + "start": 15493.23, + "end": 15494.09, + "probability": 0.7852 + }, + { + "start": 15494.11, + "end": 15494.61, + "probability": 0.924 + }, + { + "start": 15494.66, + "end": 15496.85, + "probability": 0.9023 + }, + { + "start": 15497.97, + "end": 15502.09, + "probability": 0.9995 + }, + { + "start": 15504.35, + "end": 15505.45, + "probability": 0.9607 + }, + { + "start": 15505.53, + "end": 15506.21, + "probability": 0.998 + }, + { + "start": 15507.31, + "end": 15507.89, + "probability": 0.9135 + }, + { + "start": 15508.63, + "end": 15511.33, + "probability": 0.9771 + }, + { + "start": 15511.33, + "end": 15516.31, + "probability": 0.983 + }, + { + "start": 15516.45, + "end": 15516.57, + "probability": 0.4919 + }, + { + "start": 15517.33, + "end": 15519.41, + "probability": 0.8869 + }, + { + "start": 15519.89, + "end": 15520.25, + "probability": 0.9971 + }, + { + "start": 15522.07, + "end": 15522.43, + "probability": 0.9958 + }, + { + "start": 15524.27, + "end": 15524.85, + "probability": 0.9932 + }, + { + "start": 15525.25, + "end": 15525.61, + "probability": 0.9851 + }, + { + "start": 15525.99, + "end": 15527.23, + "probability": 0.916 + }, + { + "start": 15528.89, + "end": 15529.55, + "probability": 0.9575 + }, + { + "start": 15530.23, + "end": 15530.77, + "probability": 0.6562 + }, + { + "start": 15531.79, + "end": 15534.33, + "probability": 0.9792 + }, + { + "start": 15534.39, + "end": 15534.91, + "probability": 0.6346 + }, + { + "start": 15536.05, + "end": 15538.69, + "probability": 0.9817 + }, + { + "start": 15541.23, + "end": 15543.23, + "probability": 0.8382 + }, + { + "start": 15544.53, + "end": 15545.91, + "probability": 0.9377 + }, + { + "start": 15547.35, + "end": 15548.72, + "probability": 0.9946 + }, + { + "start": 15549.23, + "end": 15551.15, + "probability": 0.935 + }, + { + "start": 15552.51, + "end": 15555.85, + "probability": 0.9925 + }, + { + "start": 15557.27, + "end": 15558.55, + "probability": 0.7848 + }, + { + "start": 15559.29, + "end": 15560.01, + "probability": 0.9689 + }, + { + "start": 15560.15, + "end": 15561.01, + "probability": 0.7147 + }, + { + "start": 15561.41, + "end": 15563.39, + "probability": 0.9904 + }, + { + "start": 15563.45, + "end": 15564.11, + "probability": 0.963 + }, + { + "start": 15565.85, + "end": 15566.69, + "probability": 0.9774 + }, + { + "start": 15567.49, + "end": 15570.57, + "probability": 0.9902 + }, + { + "start": 15572.17, + "end": 15573.41, + "probability": 0.8007 + }, + { + "start": 15574.65, + "end": 15575.65, + "probability": 0.7625 + }, + { + "start": 15575.71, + "end": 15578.15, + "probability": 0.9886 + }, + { + "start": 15578.27, + "end": 15579.51, + "probability": 0.9805 + }, + { + "start": 15580.27, + "end": 15581.75, + "probability": 0.7461 + }, + { + "start": 15582.93, + "end": 15582.93, + "probability": 0.1087 + }, + { + "start": 15583.05, + "end": 15584.49, + "probability": 0.8443 + }, + { + "start": 15584.71, + "end": 15586.43, + "probability": 0.8687 + }, + { + "start": 15587.17, + "end": 15591.01, + "probability": 0.8988 + }, + { + "start": 15592.03, + "end": 15593.63, + "probability": 0.9349 + }, + { + "start": 15597.39, + "end": 15598.33, + "probability": 0.8568 + }, + { + "start": 15598.33, + "end": 15599.21, + "probability": 0.7056 + }, + { + "start": 15600.21, + "end": 15600.61, + "probability": 0.6164 + }, + { + "start": 15600.95, + "end": 15603.15, + "probability": 0.9752 + }, + { + "start": 15603.39, + "end": 15603.49, + "probability": 0.3854 + }, + { + "start": 15603.55, + "end": 15604.09, + "probability": 0.9001 + }, + { + "start": 15604.97, + "end": 15606.25, + "probability": 0.9658 + }, + { + "start": 15607.11, + "end": 15607.59, + "probability": 0.8266 + }, + { + "start": 15607.71, + "end": 15608.23, + "probability": 0.9572 + }, + { + "start": 15608.35, + "end": 15609.17, + "probability": 0.935 + }, + { + "start": 15610.17, + "end": 15610.87, + "probability": 0.8982 + }, + { + "start": 15611.55, + "end": 15612.99, + "probability": 0.9672 + }, + { + "start": 15614.65, + "end": 15616.57, + "probability": 0.9629 + }, + { + "start": 15618.55, + "end": 15625.07, + "probability": 0.996 + }, + { + "start": 15626.19, + "end": 15626.93, + "probability": 0.973 + }, + { + "start": 15627.41, + "end": 15628.21, + "probability": 0.7532 + }, + { + "start": 15628.27, + "end": 15630.37, + "probability": 0.8659 + }, + { + "start": 15632.15, + "end": 15632.83, + "probability": 0.3731 + }, + { + "start": 15633.67, + "end": 15635.07, + "probability": 0.9135 + }, + { + "start": 15635.69, + "end": 15637.4, + "probability": 0.9897 + }, + { + "start": 15638.45, + "end": 15639.61, + "probability": 0.8389 + }, + { + "start": 15641.65, + "end": 15643.56, + "probability": 0.9967 + }, + { + "start": 15645.29, + "end": 15647.45, + "probability": 0.9572 + }, + { + "start": 15648.03, + "end": 15648.95, + "probability": 0.68 + }, + { + "start": 15649.61, + "end": 15651.35, + "probability": 0.9099 + }, + { + "start": 15652.19, + "end": 15653.89, + "probability": 0.9467 + }, + { + "start": 15654.59, + "end": 15655.41, + "probability": 0.9819 + }, + { + "start": 15655.49, + "end": 15656.31, + "probability": 0.8744 + }, + { + "start": 15656.41, + "end": 15657.45, + "probability": 0.8391 + }, + { + "start": 15657.47, + "end": 15658.45, + "probability": 0.9784 + }, + { + "start": 15658.89, + "end": 15659.91, + "probability": 0.7635 + }, + { + "start": 15660.47, + "end": 15661.95, + "probability": 0.8539 + }, + { + "start": 15662.29, + "end": 15663.09, + "probability": 0.8093 + }, + { + "start": 15663.69, + "end": 15665.81, + "probability": 0.9822 + }, + { + "start": 15666.23, + "end": 15667.49, + "probability": 0.9863 + }, + { + "start": 15667.49, + "end": 15667.91, + "probability": 0.8317 + }, + { + "start": 15667.99, + "end": 15668.74, + "probability": 0.9014 + }, + { + "start": 15669.23, + "end": 15670.67, + "probability": 0.9824 + }, + { + "start": 15671.61, + "end": 15674.73, + "probability": 0.8423 + }, + { + "start": 15674.85, + "end": 15676.29, + "probability": 0.938 + }, + { + "start": 15676.73, + "end": 15679.69, + "probability": 0.969 + }, + { + "start": 15680.15, + "end": 15681.21, + "probability": 0.9889 + }, + { + "start": 15681.61, + "end": 15683.21, + "probability": 0.9925 + }, + { + "start": 15683.25, + "end": 15683.81, + "probability": 0.7786 + }, + { + "start": 15684.45, + "end": 15685.33, + "probability": 0.7121 + }, + { + "start": 15686.07, + "end": 15686.31, + "probability": 0.5548 + }, + { + "start": 15699.23, + "end": 15699.23, + "probability": 0.1715 + }, + { + "start": 15699.23, + "end": 15699.23, + "probability": 0.1465 + }, + { + "start": 15699.23, + "end": 15699.23, + "probability": 0.1774 + }, + { + "start": 15699.23, + "end": 15699.25, + "probability": 0.1104 + }, + { + "start": 15710.37, + "end": 15713.01, + "probability": 0.58 + }, + { + "start": 15713.17, + "end": 15717.39, + "probability": 0.9863 + }, + { + "start": 15717.39, + "end": 15721.49, + "probability": 0.9904 + }, + { + "start": 15722.61, + "end": 15725.79, + "probability": 0.8888 + }, + { + "start": 15726.43, + "end": 15727.35, + "probability": 0.9808 + }, + { + "start": 15727.39, + "end": 15728.07, + "probability": 0.8876 + }, + { + "start": 15728.23, + "end": 15729.49, + "probability": 0.9329 + }, + { + "start": 15729.55, + "end": 15729.9, + "probability": 0.4996 + }, + { + "start": 15731.67, + "end": 15734.99, + "probability": 0.9668 + }, + { + "start": 15735.65, + "end": 15738.77, + "probability": 0.9925 + }, + { + "start": 15739.43, + "end": 15740.43, + "probability": 0.9547 + }, + { + "start": 15741.07, + "end": 15742.41, + "probability": 0.9958 + }, + { + "start": 15742.99, + "end": 15743.85, + "probability": 0.9507 + }, + { + "start": 15745.43, + "end": 15745.47, + "probability": 0.4489 + }, + { + "start": 15745.59, + "end": 15746.21, + "probability": 0.761 + }, + { + "start": 15746.29, + "end": 15746.65, + "probability": 0.5981 + }, + { + "start": 15746.69, + "end": 15747.71, + "probability": 0.7949 + }, + { + "start": 15747.77, + "end": 15748.01, + "probability": 0.7576 + }, + { + "start": 15748.07, + "end": 15748.45, + "probability": 0.4585 + }, + { + "start": 15749.55, + "end": 15749.97, + "probability": 0.7693 + }, + { + "start": 15750.91, + "end": 15752.43, + "probability": 0.9497 + }, + { + "start": 15752.55, + "end": 15752.77, + "probability": 0.9298 + }, + { + "start": 15752.81, + "end": 15753.41, + "probability": 0.8806 + }, + { + "start": 15753.65, + "end": 15755.29, + "probability": 0.969 + }, + { + "start": 15756.29, + "end": 15757.11, + "probability": 0.9563 + }, + { + "start": 15757.17, + "end": 15764.19, + "probability": 0.9932 + }, + { + "start": 15765.07, + "end": 15765.79, + "probability": 0.6755 + }, + { + "start": 15765.91, + "end": 15766.81, + "probability": 0.7577 + }, + { + "start": 15767.05, + "end": 15767.63, + "probability": 0.8707 + }, + { + "start": 15768.09, + "end": 15768.88, + "probability": 0.8428 + }, + { + "start": 15769.71, + "end": 15770.19, + "probability": 0.8618 + }, + { + "start": 15770.29, + "end": 15772.65, + "probability": 0.9944 + }, + { + "start": 15773.17, + "end": 15776.91, + "probability": 0.8437 + }, + { + "start": 15777.39, + "end": 15778.65, + "probability": 0.8738 + }, + { + "start": 15778.81, + "end": 15779.07, + "probability": 0.7946 + }, + { + "start": 15779.13, + "end": 15779.55, + "probability": 0.81 + }, + { + "start": 15780.15, + "end": 15782.53, + "probability": 0.9533 + }, + { + "start": 15784.47, + "end": 15785.73, + "probability": 0.9966 + }, + { + "start": 15786.29, + "end": 15788.95, + "probability": 0.9969 + }, + { + "start": 15789.51, + "end": 15793.11, + "probability": 0.9976 + }, + { + "start": 15794.17, + "end": 15798.03, + "probability": 0.9607 + }, + { + "start": 15798.77, + "end": 15804.29, + "probability": 0.9796 + }, + { + "start": 15804.83, + "end": 15807.13, + "probability": 0.9932 + }, + { + "start": 15807.65, + "end": 15811.21, + "probability": 0.9968 + }, + { + "start": 15811.21, + "end": 15814.57, + "probability": 0.9601 + }, + { + "start": 15814.81, + "end": 15815.61, + "probability": 0.77 + }, + { + "start": 15815.87, + "end": 15815.99, + "probability": 0.7665 + }, + { + "start": 15816.15, + "end": 15816.53, + "probability": 0.8734 + }, + { + "start": 15817.45, + "end": 15818.35, + "probability": 0.9712 + }, + { + "start": 15818.45, + "end": 15819.21, + "probability": 0.9955 + }, + { + "start": 15819.75, + "end": 15820.23, + "probability": 0.6452 + }, + { + "start": 15821.31, + "end": 15822.37, + "probability": 0.6689 + }, + { + "start": 15822.45, + "end": 15822.67, + "probability": 0.627 + }, + { + "start": 15822.73, + "end": 15823.51, + "probability": 0.7135 + }, + { + "start": 15823.91, + "end": 15826.03, + "probability": 0.9648 + }, + { + "start": 15826.27, + "end": 15826.95, + "probability": 0.7913 + }, + { + "start": 15827.77, + "end": 15830.37, + "probability": 0.9674 + }, + { + "start": 15831.47, + "end": 15834.91, + "probability": 0.944 + }, + { + "start": 15835.69, + "end": 15836.76, + "probability": 0.688 + }, + { + "start": 15836.87, + "end": 15839.69, + "probability": 0.9556 + }, + { + "start": 15839.87, + "end": 15840.43, + "probability": 0.7209 + }, + { + "start": 15840.53, + "end": 15841.31, + "probability": 0.9033 + }, + { + "start": 15842.19, + "end": 15844.13, + "probability": 0.9517 + }, + { + "start": 15844.63, + "end": 15847.39, + "probability": 0.9977 + }, + { + "start": 15847.61, + "end": 15847.61, + "probability": 0.0102 + }, + { + "start": 15849.27, + "end": 15850.03, + "probability": 0.0001 + }, + { + "start": 15850.97, + "end": 15853.35, + "probability": 0.5676 + }, + { + "start": 15853.43, + "end": 15853.69, + "probability": 0.6768 + }, + { + "start": 15853.77, + "end": 15854.35, + "probability": 0.8325 + }, + { + "start": 15854.43, + "end": 15854.77, + "probability": 0.4731 + }, + { + "start": 15854.77, + "end": 15859.07, + "probability": 0.9644 + }, + { + "start": 15859.21, + "end": 15861.33, + "probability": 0.7434 + }, + { + "start": 15861.43, + "end": 15862.35, + "probability": 0.9019 + }, + { + "start": 15862.41, + "end": 15865.87, + "probability": 0.6108 + }, + { + "start": 15866.37, + "end": 15868.13, + "probability": 0.9385 + }, + { + "start": 15869.05, + "end": 15869.49, + "probability": 0.5132 + }, + { + "start": 15869.57, + "end": 15871.86, + "probability": 0.9961 + }, + { + "start": 15873.49, + "end": 15875.13, + "probability": 0.6231 + }, + { + "start": 15876.07, + "end": 15877.41, + "probability": 0.8313 + }, + { + "start": 15878.59, + "end": 15879.19, + "probability": 0.9243 + }, + { + "start": 15879.23, + "end": 15879.89, + "probability": 0.6314 + }, + { + "start": 15879.95, + "end": 15880.13, + "probability": 0.8137 + }, + { + "start": 15880.15, + "end": 15880.65, + "probability": 0.9028 + }, + { + "start": 15881.59, + "end": 15882.85, + "probability": 0.794 + }, + { + "start": 15883.23, + "end": 15885.33, + "probability": 0.6167 + }, + { + "start": 15886.15, + "end": 15888.35, + "probability": 0.9519 + }, + { + "start": 15889.51, + "end": 15890.79, + "probability": 0.957 + }, + { + "start": 15891.23, + "end": 15894.87, + "probability": 0.9541 + }, + { + "start": 15895.71, + "end": 15898.53, + "probability": 0.7853 + }, + { + "start": 15898.53, + "end": 15902.99, + "probability": 0.9968 + }, + { + "start": 15903.65, + "end": 15904.31, + "probability": 0.5118 + }, + { + "start": 15904.75, + "end": 15908.13, + "probability": 0.9931 + }, + { + "start": 15908.55, + "end": 15909.69, + "probability": 0.632 + }, + { + "start": 15910.17, + "end": 15911.4, + "probability": 0.8565 + }, + { + "start": 15912.03, + "end": 15915.39, + "probability": 0.9655 + }, + { + "start": 15916.13, + "end": 15917.61, + "probability": 0.9888 + }, + { + "start": 15918.01, + "end": 15920.61, + "probability": 0.9551 + }, + { + "start": 15921.15, + "end": 15924.73, + "probability": 0.9891 + }, + { + "start": 15925.17, + "end": 15927.77, + "probability": 0.907 + }, + { + "start": 15927.81, + "end": 15928.27, + "probability": 0.7163 + }, + { + "start": 15928.29, + "end": 15930.97, + "probability": 0.9128 + }, + { + "start": 15931.11, + "end": 15932.97, + "probability": 0.9512 + }, + { + "start": 15933.99, + "end": 15934.17, + "probability": 0.3035 + }, + { + "start": 15935.49, + "end": 15937.83, + "probability": 0.0319 + }, + { + "start": 15938.79, + "end": 15940.85, + "probability": 0.6065 + }, + { + "start": 15941.53, + "end": 15942.25, + "probability": 0.3775 + }, + { + "start": 15942.45, + "end": 15943.09, + "probability": 0.1832 + }, + { + "start": 15943.15, + "end": 15944.93, + "probability": 0.0715 + }, + { + "start": 15945.33, + "end": 15950.01, + "probability": 0.0114 + }, + { + "start": 15952.05, + "end": 15955.33, + "probability": 0.0376 + }, + { + "start": 15980.27, + "end": 15981.29, + "probability": 0.4396 + }, + { + "start": 15981.81, + "end": 15985.57, + "probability": 0.8958 + }, + { + "start": 15986.15, + "end": 15989.72, + "probability": 0.5457 + }, + { + "start": 15990.79, + "end": 15991.91, + "probability": 0.9018 + }, + { + "start": 15992.61, + "end": 15992.75, + "probability": 0.6064 + }, + { + "start": 15994.31, + "end": 15996.09, + "probability": 0.6097 + }, + { + "start": 15996.97, + "end": 16000.3, + "probability": 0.9377 + }, + { + "start": 16001.65, + "end": 16002.81, + "probability": 0.9459 + }, + { + "start": 16003.47, + "end": 16005.61, + "probability": 0.9935 + }, + { + "start": 16006.41, + "end": 16008.87, + "probability": 0.939 + }, + { + "start": 16009.47, + "end": 16013.77, + "probability": 0.9961 + }, + { + "start": 16015.69, + "end": 16016.77, + "probability": 0.7026 + }, + { + "start": 16016.87, + "end": 16017.39, + "probability": 0.5167 + }, + { + "start": 16017.39, + "end": 16018.99, + "probability": 0.9971 + }, + { + "start": 16019.83, + "end": 16022.49, + "probability": 0.1414 + }, + { + "start": 16023.35, + "end": 16024.41, + "probability": 0.225 + }, + { + "start": 16024.91, + "end": 16028.43, + "probability": 0.988 + }, + { + "start": 16028.89, + "end": 16031.31, + "probability": 0.8195 + }, + { + "start": 16031.95, + "end": 16034.73, + "probability": 0.8041 + }, + { + "start": 16035.39, + "end": 16040.17, + "probability": 0.9587 + }, + { + "start": 16041.47, + "end": 16043.07, + "probability": 0.8519 + }, + { + "start": 16043.19, + "end": 16044.95, + "probability": 0.6971 + }, + { + "start": 16045.03, + "end": 16049.63, + "probability": 0.6332 + }, + { + "start": 16050.65, + "end": 16051.59, + "probability": 0.9185 + }, + { + "start": 16052.25, + "end": 16054.02, + "probability": 0.9131 + }, + { + "start": 16054.27, + "end": 16056.01, + "probability": 0.9086 + }, + { + "start": 16056.21, + "end": 16058.61, + "probability": 0.623 + }, + { + "start": 16059.81, + "end": 16065.79, + "probability": 0.9207 + }, + { + "start": 16067.13, + "end": 16068.33, + "probability": 0.9594 + }, + { + "start": 16069.41, + "end": 16071.15, + "probability": 0.9976 + }, + { + "start": 16071.87, + "end": 16075.67, + "probability": 0.8546 + }, + { + "start": 16076.11, + "end": 16078.37, + "probability": 0.9244 + }, + { + "start": 16078.93, + "end": 16080.01, + "probability": 0.65 + }, + { + "start": 16080.55, + "end": 16082.21, + "probability": 0.9333 + }, + { + "start": 16082.79, + "end": 16082.99, + "probability": 0.2504 + }, + { + "start": 16083.05, + "end": 16083.77, + "probability": 0.8116 + }, + { + "start": 16084.21, + "end": 16085.53, + "probability": 0.9927 + }, + { + "start": 16085.81, + "end": 16089.27, + "probability": 0.9163 + }, + { + "start": 16090.65, + "end": 16092.43, + "probability": 0.9604 + }, + { + "start": 16092.87, + "end": 16094.89, + "probability": 0.9755 + }, + { + "start": 16095.15, + "end": 16100.71, + "probability": 0.9905 + }, + { + "start": 16100.75, + "end": 16102.11, + "probability": 0.9179 + }, + { + "start": 16102.33, + "end": 16105.97, + "probability": 0.9622 + }, + { + "start": 16106.37, + "end": 16107.45, + "probability": 0.9366 + }, + { + "start": 16108.01, + "end": 16111.91, + "probability": 0.9624 + }, + { + "start": 16112.47, + "end": 16116.67, + "probability": 0.9268 + }, + { + "start": 16116.67, + "end": 16120.71, + "probability": 0.8617 + }, + { + "start": 16120.87, + "end": 16121.55, + "probability": 0.6466 + }, + { + "start": 16121.95, + "end": 16123.81, + "probability": 0.9882 + }, + { + "start": 16124.25, + "end": 16127.11, + "probability": 0.9537 + }, + { + "start": 16127.83, + "end": 16130.41, + "probability": 0.8981 + }, + { + "start": 16130.57, + "end": 16131.15, + "probability": 0.9305 + }, + { + "start": 16131.59, + "end": 16132.23, + "probability": 0.6201 + }, + { + "start": 16132.61, + "end": 16136.35, + "probability": 0.9794 + }, + { + "start": 16136.43, + "end": 16139.83, + "probability": 0.8372 + }, + { + "start": 16140.21, + "end": 16144.77, + "probability": 0.8035 + }, + { + "start": 16145.69, + "end": 16147.15, + "probability": 0.7091 + }, + { + "start": 16148.13, + "end": 16148.69, + "probability": 0.586 + }, + { + "start": 16149.45, + "end": 16152.49, + "probability": 0.8017 + }, + { + "start": 16153.23, + "end": 16154.01, + "probability": 0.8532 + }, + { + "start": 16154.53, + "end": 16160.65, + "probability": 0.3778 + }, + { + "start": 16161.87, + "end": 16164.41, + "probability": 0.7107 + }, + { + "start": 16165.09, + "end": 16166.91, + "probability": 0.9834 + }, + { + "start": 16167.39, + "end": 16167.43, + "probability": 0.4066 + }, + { + "start": 16167.43, + "end": 16167.71, + "probability": 0.4595 + }, + { + "start": 16167.79, + "end": 16169.09, + "probability": 0.6066 + }, + { + "start": 16169.19, + "end": 16174.05, + "probability": 0.7935 + }, + { + "start": 16174.43, + "end": 16175.99, + "probability": 0.9848 + }, + { + "start": 16176.29, + "end": 16177.43, + "probability": 0.8726 + }, + { + "start": 16177.81, + "end": 16181.49, + "probability": 0.8263 + }, + { + "start": 16181.49, + "end": 16183.61, + "probability": 0.9587 + }, + { + "start": 16183.67, + "end": 16185.95, + "probability": 0.8245 + }, + { + "start": 16186.03, + "end": 16188.65, + "probability": 0.8587 + }, + { + "start": 16188.93, + "end": 16189.65, + "probability": 0.6864 + }, + { + "start": 16189.65, + "end": 16191.29, + "probability": 0.7717 + }, + { + "start": 16192.03, + "end": 16195.37, + "probability": 0.9337 + }, + { + "start": 16200.99, + "end": 16202.49, + "probability": 0.6169 + }, + { + "start": 16203.73, + "end": 16205.07, + "probability": 0.9503 + }, + { + "start": 16206.35, + "end": 16208.79, + "probability": 0.9438 + }, + { + "start": 16209.59, + "end": 16209.79, + "probability": 0.9409 + }, + { + "start": 16210.93, + "end": 16212.43, + "probability": 0.921 + }, + { + "start": 16213.27, + "end": 16215.71, + "probability": 0.7471 + }, + { + "start": 16216.69, + "end": 16219.72, + "probability": 0.9034 + }, + { + "start": 16220.53, + "end": 16224.61, + "probability": 0.9985 + }, + { + "start": 16224.83, + "end": 16225.47, + "probability": 0.7489 + }, + { + "start": 16225.55, + "end": 16228.53, + "probability": 0.8776 + }, + { + "start": 16228.53, + "end": 16231.55, + "probability": 0.9977 + }, + { + "start": 16232.91, + "end": 16233.45, + "probability": 0.5048 + }, + { + "start": 16234.29, + "end": 16236.51, + "probability": 0.7825 + }, + { + "start": 16237.43, + "end": 16240.77, + "probability": 0.9744 + }, + { + "start": 16240.97, + "end": 16242.89, + "probability": 0.9914 + }, + { + "start": 16243.41, + "end": 16245.73, + "probability": 0.6243 + }, + { + "start": 16246.33, + "end": 16249.51, + "probability": 0.9856 + }, + { + "start": 16250.27, + "end": 16254.69, + "probability": 0.991 + }, + { + "start": 16255.25, + "end": 16260.03, + "probability": 0.9912 + }, + { + "start": 16261.13, + "end": 16263.85, + "probability": 0.9284 + }, + { + "start": 16264.55, + "end": 16267.65, + "probability": 0.882 + }, + { + "start": 16268.09, + "end": 16269.45, + "probability": 0.9666 + }, + { + "start": 16269.55, + "end": 16271.17, + "probability": 0.7681 + }, + { + "start": 16271.85, + "end": 16276.11, + "probability": 0.9604 + }, + { + "start": 16277.05, + "end": 16278.67, + "probability": 0.9946 + }, + { + "start": 16278.81, + "end": 16279.53, + "probability": 0.7084 + }, + { + "start": 16279.59, + "end": 16281.91, + "probability": 0.6967 + }, + { + "start": 16281.97, + "end": 16283.07, + "probability": 0.9976 + }, + { + "start": 16284.75, + "end": 16287.19, + "probability": 0.8984 + }, + { + "start": 16287.71, + "end": 16288.59, + "probability": 0.8151 + }, + { + "start": 16289.11, + "end": 16291.17, + "probability": 0.9366 + }, + { + "start": 16291.63, + "end": 16293.35, + "probability": 0.9971 + }, + { + "start": 16293.99, + "end": 16298.23, + "probability": 0.9896 + }, + { + "start": 16298.85, + "end": 16300.21, + "probability": 0.9805 + }, + { + "start": 16300.21, + "end": 16301.75, + "probability": 0.8287 + }, + { + "start": 16302.25, + "end": 16302.77, + "probability": 0.8782 + }, + { + "start": 16303.85, + "end": 16308.99, + "probability": 0.968 + }, + { + "start": 16309.05, + "end": 16309.75, + "probability": 0.7674 + }, + { + "start": 16310.27, + "end": 16314.73, + "probability": 0.9856 + }, + { + "start": 16315.83, + "end": 16317.53, + "probability": 0.998 + }, + { + "start": 16318.11, + "end": 16319.43, + "probability": 0.9338 + }, + { + "start": 16319.61, + "end": 16322.09, + "probability": 0.9706 + }, + { + "start": 16322.23, + "end": 16323.09, + "probability": 0.9912 + }, + { + "start": 16323.21, + "end": 16325.53, + "probability": 0.9366 + }, + { + "start": 16325.93, + "end": 16329.25, + "probability": 0.9915 + }, + { + "start": 16329.25, + "end": 16333.03, + "probability": 0.8776 + }, + { + "start": 16334.39, + "end": 16337.49, + "probability": 0.8714 + }, + { + "start": 16338.61, + "end": 16343.93, + "probability": 0.9969 + }, + { + "start": 16344.25, + "end": 16346.45, + "probability": 0.9013 + }, + { + "start": 16347.15, + "end": 16351.67, + "probability": 0.973 + }, + { + "start": 16352.01, + "end": 16352.49, + "probability": 0.6549 + }, + { + "start": 16353.31, + "end": 16356.07, + "probability": 0.9906 + }, + { + "start": 16357.27, + "end": 16358.63, + "probability": 0.838 + }, + { + "start": 16358.81, + "end": 16360.93, + "probability": 0.9671 + }, + { + "start": 16361.07, + "end": 16364.93, + "probability": 0.9518 + }, + { + "start": 16365.89, + "end": 16367.01, + "probability": 0.991 + }, + { + "start": 16367.19, + "end": 16368.61, + "probability": 0.9105 + }, + { + "start": 16368.93, + "end": 16369.35, + "probability": 0.6358 + }, + { + "start": 16369.37, + "end": 16370.5, + "probability": 0.9709 + }, + { + "start": 16371.25, + "end": 16375.57, + "probability": 0.9866 + }, + { + "start": 16376.17, + "end": 16377.59, + "probability": 0.978 + }, + { + "start": 16378.49, + "end": 16380.01, + "probability": 0.9623 + }, + { + "start": 16380.37, + "end": 16381.05, + "probability": 0.9554 + }, + { + "start": 16381.13, + "end": 16382.01, + "probability": 0.9819 + }, + { + "start": 16382.93, + "end": 16385.33, + "probability": 0.6592 + }, + { + "start": 16386.19, + "end": 16387.25, + "probability": 0.9915 + }, + { + "start": 16388.03, + "end": 16390.41, + "probability": 0.9649 + }, + { + "start": 16391.07, + "end": 16394.71, + "probability": 0.9469 + }, + { + "start": 16395.23, + "end": 16396.39, + "probability": 0.9409 + }, + { + "start": 16396.57, + "end": 16398.23, + "probability": 0.8684 + }, + { + "start": 16399.13, + "end": 16402.05, + "probability": 0.8524 + }, + { + "start": 16402.67, + "end": 16404.13, + "probability": 0.7017 + }, + { + "start": 16404.67, + "end": 16405.91, + "probability": 0.9277 + }, + { + "start": 16406.51, + "end": 16408.65, + "probability": 0.9326 + }, + { + "start": 16409.15, + "end": 16410.67, + "probability": 0.9623 + }, + { + "start": 16411.55, + "end": 16415.03, + "probability": 0.9926 + }, + { + "start": 16415.03, + "end": 16419.71, + "probability": 0.9699 + }, + { + "start": 16419.83, + "end": 16421.75, + "probability": 0.4201 + }, + { + "start": 16421.79, + "end": 16422.53, + "probability": 0.813 + }, + { + "start": 16423.35, + "end": 16426.01, + "probability": 0.8599 + }, + { + "start": 16426.63, + "end": 16428.87, + "probability": 0.9827 + }, + { + "start": 16430.67, + "end": 16431.47, + "probability": 0.7626 + }, + { + "start": 16432.25, + "end": 16436.17, + "probability": 0.8568 + }, + { + "start": 16451.15, + "end": 16452.0, + "probability": 0.6495 + }, + { + "start": 16454.29, + "end": 16455.09, + "probability": 0.8216 + }, + { + "start": 16455.09, + "end": 16457.83, + "probability": 0.9004 + }, + { + "start": 16458.59, + "end": 16459.55, + "probability": 0.7525 + }, + { + "start": 16459.71, + "end": 16459.81, + "probability": 0.5654 + }, + { + "start": 16459.91, + "end": 16461.43, + "probability": 0.9826 + }, + { + "start": 16461.81, + "end": 16462.61, + "probability": 0.7142 + }, + { + "start": 16463.55, + "end": 16466.17, + "probability": 0.9825 + }, + { + "start": 16466.83, + "end": 16468.17, + "probability": 0.9994 + }, + { + "start": 16469.23, + "end": 16472.55, + "probability": 0.9988 + }, + { + "start": 16474.59, + "end": 16475.73, + "probability": 0.9351 + }, + { + "start": 16476.49, + "end": 16478.47, + "probability": 0.995 + }, + { + "start": 16479.03, + "end": 16480.07, + "probability": 0.9858 + }, + { + "start": 16480.39, + "end": 16481.33, + "probability": 0.9731 + }, + { + "start": 16481.71, + "end": 16483.25, + "probability": 0.8814 + }, + { + "start": 16483.65, + "end": 16484.81, + "probability": 0.6884 + }, + { + "start": 16485.23, + "end": 16486.33, + "probability": 0.7668 + }, + { + "start": 16486.49, + "end": 16488.05, + "probability": 0.8151 + }, + { + "start": 16488.15, + "end": 16488.43, + "probability": 0.8358 + }, + { + "start": 16488.45, + "end": 16493.81, + "probability": 0.982 + }, + { + "start": 16493.97, + "end": 16496.51, + "probability": 0.9894 + }, + { + "start": 16497.15, + "end": 16502.25, + "probability": 0.9971 + }, + { + "start": 16504.15, + "end": 16506.39, + "probability": 0.9982 + }, + { + "start": 16507.07, + "end": 16509.17, + "probability": 0.9963 + }, + { + "start": 16509.61, + "end": 16510.83, + "probability": 0.9966 + }, + { + "start": 16511.07, + "end": 16511.53, + "probability": 0.9092 + }, + { + "start": 16511.61, + "end": 16513.03, + "probability": 0.9798 + }, + { + "start": 16513.13, + "end": 16514.43, + "probability": 0.8202 + }, + { + "start": 16514.81, + "end": 16516.53, + "probability": 0.9957 + }, + { + "start": 16517.71, + "end": 16520.07, + "probability": 0.9961 + }, + { + "start": 16521.29, + "end": 16524.45, + "probability": 0.943 + }, + { + "start": 16524.75, + "end": 16525.57, + "probability": 0.9546 + }, + { + "start": 16526.07, + "end": 16528.27, + "probability": 0.9978 + }, + { + "start": 16528.81, + "end": 16531.27, + "probability": 0.8535 + }, + { + "start": 16531.73, + "end": 16532.05, + "probability": 0.849 + }, + { + "start": 16532.15, + "end": 16533.01, + "probability": 0.9407 + }, + { + "start": 16533.47, + "end": 16533.97, + "probability": 0.5221 + }, + { + "start": 16534.05, + "end": 16535.53, + "probability": 0.9799 + }, + { + "start": 16536.37, + "end": 16540.01, + "probability": 0.9753 + }, + { + "start": 16540.39, + "end": 16542.45, + "probability": 0.9304 + }, + { + "start": 16543.01, + "end": 16543.87, + "probability": 0.9722 + }, + { + "start": 16543.95, + "end": 16546.05, + "probability": 0.9951 + }, + { + "start": 16546.57, + "end": 16547.61, + "probability": 0.9766 + }, + { + "start": 16547.75, + "end": 16551.43, + "probability": 0.9617 + }, + { + "start": 16552.17, + "end": 16553.49, + "probability": 0.9871 + }, + { + "start": 16554.93, + "end": 16558.17, + "probability": 0.9971 + }, + { + "start": 16558.91, + "end": 16560.59, + "probability": 0.9743 + }, + { + "start": 16561.15, + "end": 16563.85, + "probability": 0.9268 + }, + { + "start": 16564.73, + "end": 16566.13, + "probability": 0.984 + }, + { + "start": 16567.51, + "end": 16569.85, + "probability": 0.9918 + }, + { + "start": 16569.99, + "end": 16574.21, + "probability": 0.9834 + }, + { + "start": 16574.47, + "end": 16575.23, + "probability": 0.9321 + }, + { + "start": 16575.59, + "end": 16577.31, + "probability": 0.994 + }, + { + "start": 16578.39, + "end": 16580.45, + "probability": 0.9972 + }, + { + "start": 16580.45, + "end": 16583.87, + "probability": 0.9995 + }, + { + "start": 16585.41, + "end": 16588.15, + "probability": 0.9984 + }, + { + "start": 16588.23, + "end": 16588.77, + "probability": 0.97 + }, + { + "start": 16588.83, + "end": 16589.39, + "probability": 0.7834 + }, + { + "start": 16590.45, + "end": 16593.15, + "probability": 0.9968 + }, + { + "start": 16593.81, + "end": 16595.21, + "probability": 0.9823 + }, + { + "start": 16595.87, + "end": 16596.87, + "probability": 0.9041 + }, + { + "start": 16596.97, + "end": 16601.77, + "probability": 0.9937 + }, + { + "start": 16602.87, + "end": 16604.05, + "probability": 0.8472 + }, + { + "start": 16604.63, + "end": 16607.81, + "probability": 0.9982 + }, + { + "start": 16608.55, + "end": 16610.87, + "probability": 0.8369 + }, + { + "start": 16612.67, + "end": 16615.79, + "probability": 0.9948 + }, + { + "start": 16617.45, + "end": 16618.26, + "probability": 0.9135 + }, + { + "start": 16619.23, + "end": 16620.27, + "probability": 0.9302 + }, + { + "start": 16622.11, + "end": 16624.47, + "probability": 0.9991 + }, + { + "start": 16624.47, + "end": 16627.15, + "probability": 0.9951 + }, + { + "start": 16627.63, + "end": 16630.09, + "probability": 0.9944 + }, + { + "start": 16631.21, + "end": 16632.65, + "probability": 0.9961 + }, + { + "start": 16634.77, + "end": 16635.23, + "probability": 0.9032 + }, + { + "start": 16637.39, + "end": 16638.01, + "probability": 0.5116 + }, + { + "start": 16638.79, + "end": 16639.67, + "probability": 0.833 + }, + { + "start": 16640.19, + "end": 16642.59, + "probability": 0.9992 + }, + { + "start": 16642.93, + "end": 16647.05, + "probability": 0.9974 + }, + { + "start": 16647.35, + "end": 16649.95, + "probability": 0.9974 + }, + { + "start": 16649.95, + "end": 16653.03, + "probability": 0.9916 + }, + { + "start": 16653.31, + "end": 16655.59, + "probability": 0.9783 + }, + { + "start": 16655.91, + "end": 16657.89, + "probability": 0.9961 + }, + { + "start": 16658.29, + "end": 16660.61, + "probability": 0.9323 + }, + { + "start": 16660.71, + "end": 16662.31, + "probability": 0.967 + }, + { + "start": 16662.35, + "end": 16663.53, + "probability": 0.9028 + }, + { + "start": 16664.59, + "end": 16666.51, + "probability": 0.9825 + }, + { + "start": 16667.11, + "end": 16672.07, + "probability": 0.9958 + }, + { + "start": 16673.19, + "end": 16675.97, + "probability": 0.9966 + }, + { + "start": 16677.99, + "end": 16678.65, + "probability": 0.8992 + }, + { + "start": 16680.25, + "end": 16682.33, + "probability": 0.9971 + }, + { + "start": 16683.27, + "end": 16686.67, + "probability": 0.9863 + }, + { + "start": 16686.73, + "end": 16688.31, + "probability": 0.8618 + }, + { + "start": 16689.37, + "end": 16691.93, + "probability": 0.9551 + }, + { + "start": 16693.17, + "end": 16694.44, + "probability": 0.4634 + }, + { + "start": 16696.37, + "end": 16699.73, + "probability": 0.9911 + }, + { + "start": 16700.21, + "end": 16701.83, + "probability": 0.7433 + }, + { + "start": 16703.27, + "end": 16704.17, + "probability": 0.7775 + }, + { + "start": 16704.27, + "end": 16708.91, + "probability": 0.9014 + }, + { + "start": 16709.05, + "end": 16710.35, + "probability": 0.9906 + }, + { + "start": 16711.01, + "end": 16711.29, + "probability": 0.7745 + }, + { + "start": 16711.35, + "end": 16712.37, + "probability": 0.8877 + }, + { + "start": 16712.43, + "end": 16712.99, + "probability": 0.9341 + }, + { + "start": 16713.33, + "end": 16714.79, + "probability": 0.9045 + }, + { + "start": 16714.79, + "end": 16716.0, + "probability": 0.4068 + }, + { + "start": 16716.67, + "end": 16719.09, + "probability": 0.6468 + }, + { + "start": 16719.25, + "end": 16721.39, + "probability": 0.985 + }, + { + "start": 16722.15, + "end": 16723.45, + "probability": 0.5938 + }, + { + "start": 16723.63, + "end": 16723.95, + "probability": 0.5825 + }, + { + "start": 16723.95, + "end": 16725.23, + "probability": 0.7812 + }, + { + "start": 16726.49, + "end": 16729.93, + "probability": 0.649 + }, + { + "start": 16730.17, + "end": 16730.67, + "probability": 0.786 + }, + { + "start": 16730.89, + "end": 16731.83, + "probability": 0.5826 + }, + { + "start": 16732.07, + "end": 16733.33, + "probability": 0.813 + }, + { + "start": 16733.43, + "end": 16734.89, + "probability": 0.3709 + }, + { + "start": 16735.05, + "end": 16737.02, + "probability": 0.515 + }, + { + "start": 16737.39, + "end": 16738.69, + "probability": 0.9619 + }, + { + "start": 16739.25, + "end": 16742.21, + "probability": 0.8203 + }, + { + "start": 16742.71, + "end": 16744.39, + "probability": 0.2069 + }, + { + "start": 16744.77, + "end": 16745.75, + "probability": 0.8614 + }, + { + "start": 16745.77, + "end": 16746.63, + "probability": 0.8198 + }, + { + "start": 16748.15, + "end": 16749.89, + "probability": 0.9558 + }, + { + "start": 16750.01, + "end": 16753.5, + "probability": 0.8914 + }, + { + "start": 16758.71, + "end": 16760.89, + "probability": 0.8301 + }, + { + "start": 16761.33, + "end": 16762.07, + "probability": 0.7265 + }, + { + "start": 16762.51, + "end": 16764.67, + "probability": 0.6045 + }, + { + "start": 16766.31, + "end": 16767.03, + "probability": 0.0018 + }, + { + "start": 16768.07, + "end": 16769.09, + "probability": 0.0237 + }, + { + "start": 16772.63, + "end": 16772.63, + "probability": 0.1366 + }, + { + "start": 16772.89, + "end": 16774.57, + "probability": 0.2884 + }, + { + "start": 16782.07, + "end": 16783.81, + "probability": 0.4204 + }, + { + "start": 16789.39, + "end": 16791.41, + "probability": 0.3855 + }, + { + "start": 16793.09, + "end": 16797.61, + "probability": 0.8931 + }, + { + "start": 16798.85, + "end": 16800.09, + "probability": 0.9075 + }, + { + "start": 16801.89, + "end": 16806.67, + "probability": 0.9051 + }, + { + "start": 16807.97, + "end": 16809.09, + "probability": 0.7971 + }, + { + "start": 16809.79, + "end": 16814.63, + "probability": 0.9858 + }, + { + "start": 16815.51, + "end": 16817.69, + "probability": 0.9566 + }, + { + "start": 16819.19, + "end": 16823.63, + "probability": 0.9583 + }, + { + "start": 16824.51, + "end": 16825.77, + "probability": 0.6092 + }, + { + "start": 16826.53, + "end": 16826.89, + "probability": 0.6808 + }, + { + "start": 16832.55, + "end": 16835.01, + "probability": 0.8601 + }, + { + "start": 16835.71, + "end": 16840.23, + "probability": 0.988 + }, + { + "start": 16840.91, + "end": 16842.13, + "probability": 0.9347 + }, + { + "start": 16842.65, + "end": 16844.0, + "probability": 0.9473 + }, + { + "start": 16844.89, + "end": 16846.53, + "probability": 0.9659 + }, + { + "start": 16846.53, + "end": 16847.09, + "probability": 0.6544 + }, + { + "start": 16847.55, + "end": 16848.81, + "probability": 0.8545 + }, + { + "start": 16849.39, + "end": 16850.25, + "probability": 0.6231 + }, + { + "start": 16850.87, + "end": 16853.89, + "probability": 0.2558 + }, + { + "start": 16854.45, + "end": 16857.81, + "probability": 0.9351 + }, + { + "start": 16858.19, + "end": 16860.23, + "probability": 0.6616 + }, + { + "start": 16861.05, + "end": 16861.71, + "probability": 0.6976 + }, + { + "start": 16862.07, + "end": 16867.15, + "probability": 0.9238 + }, + { + "start": 16868.55, + "end": 16871.07, + "probability": 0.7043 + }, + { + "start": 16872.35, + "end": 16874.39, + "probability": 0.6342 + }, + { + "start": 16874.57, + "end": 16878.69, + "probability": 0.9265 + }, + { + "start": 16879.31, + "end": 16880.49, + "probability": 0.9253 + }, + { + "start": 16881.69, + "end": 16888.89, + "probability": 0.952 + }, + { + "start": 16889.85, + "end": 16892.51, + "probability": 0.7959 + }, + { + "start": 16893.09, + "end": 16893.85, + "probability": 0.8599 + }, + { + "start": 16894.83, + "end": 16895.91, + "probability": 0.9784 + }, + { + "start": 16896.73, + "end": 16898.53, + "probability": 0.98 + }, + { + "start": 16900.59, + "end": 16902.11, + "probability": 0.9742 + }, + { + "start": 16902.69, + "end": 16904.21, + "probability": 0.9899 + }, + { + "start": 16904.47, + "end": 16905.49, + "probability": 0.9303 + }, + { + "start": 16905.53, + "end": 16906.5, + "probability": 0.9744 + }, + { + "start": 16906.91, + "end": 16907.55, + "probability": 0.6234 + }, + { + "start": 16909.41, + "end": 16909.95, + "probability": 0.9907 + }, + { + "start": 16911.25, + "end": 16912.77, + "probability": 0.8934 + }, + { + "start": 16914.11, + "end": 16918.81, + "probability": 0.9036 + }, + { + "start": 16920.93, + "end": 16925.61, + "probability": 0.9388 + }, + { + "start": 16925.67, + "end": 16929.45, + "probability": 0.9905 + }, + { + "start": 16930.15, + "end": 16932.21, + "probability": 0.8397 + }, + { + "start": 16932.95, + "end": 16934.77, + "probability": 0.9078 + }, + { + "start": 16936.25, + "end": 16936.99, + "probability": 0.6071 + }, + { + "start": 16937.75, + "end": 16938.87, + "probability": 0.7276 + }, + { + "start": 16938.89, + "end": 16939.63, + "probability": 0.7339 + }, + { + "start": 16939.79, + "end": 16940.77, + "probability": 0.8278 + }, + { + "start": 16943.01, + "end": 16949.23, + "probability": 0.9771 + }, + { + "start": 16949.59, + "end": 16950.53, + "probability": 0.993 + }, + { + "start": 16952.73, + "end": 16953.85, + "probability": 0.9147 + }, + { + "start": 16954.39, + "end": 16955.37, + "probability": 0.9617 + }, + { + "start": 16955.55, + "end": 16958.07, + "probability": 0.9863 + }, + { + "start": 16958.79, + "end": 16959.67, + "probability": 0.9113 + }, + { + "start": 16960.91, + "end": 16965.07, + "probability": 0.8721 + }, + { + "start": 16965.63, + "end": 16966.31, + "probability": 0.9004 + }, + { + "start": 16968.03, + "end": 16969.03, + "probability": 0.9774 + }, + { + "start": 16972.47, + "end": 16973.23, + "probability": 0.925 + }, + { + "start": 16975.01, + "end": 16975.99, + "probability": 0.9729 + }, + { + "start": 16977.75, + "end": 16979.49, + "probability": 0.8247 + }, + { + "start": 16980.33, + "end": 16980.99, + "probability": 0.7128 + }, + { + "start": 16981.59, + "end": 16986.47, + "probability": 0.9443 + }, + { + "start": 16987.11, + "end": 16990.47, + "probability": 0.9892 + }, + { + "start": 16991.71, + "end": 16992.37, + "probability": 0.2132 + }, + { + "start": 16992.67, + "end": 16993.44, + "probability": 0.4228 + }, + { + "start": 16994.23, + "end": 16995.03, + "probability": 0.7724 + }, + { + "start": 16995.79, + "end": 16996.37, + "probability": 0.7129 + }, + { + "start": 16997.83, + "end": 16999.37, + "probability": 0.7788 + }, + { + "start": 17000.85, + "end": 17003.59, + "probability": 0.7406 + }, + { + "start": 17004.11, + "end": 17005.53, + "probability": 0.9814 + }, + { + "start": 17006.17, + "end": 17007.25, + "probability": 0.9032 + }, + { + "start": 17007.69, + "end": 17009.41, + "probability": 0.876 + }, + { + "start": 17012.01, + "end": 17015.13, + "probability": 0.0213 + }, + { + "start": 17015.13, + "end": 17015.13, + "probability": 0.0635 + }, + { + "start": 17015.13, + "end": 17015.65, + "probability": 0.2956 + }, + { + "start": 17015.93, + "end": 17016.96, + "probability": 0.9808 + }, + { + "start": 17017.39, + "end": 17017.73, + "probability": 0.7241 + }, + { + "start": 17017.85, + "end": 17019.73, + "probability": 0.8204 + }, + { + "start": 17019.83, + "end": 17021.29, + "probability": 0.8024 + }, + { + "start": 17021.59, + "end": 17025.0, + "probability": 0.2036 + }, + { + "start": 17026.29, + "end": 17026.69, + "probability": 0.1483 + }, + { + "start": 17026.69, + "end": 17026.69, + "probability": 0.0492 + }, + { + "start": 17026.69, + "end": 17026.95, + "probability": 0.5791 + }, + { + "start": 17027.21, + "end": 17028.35, + "probability": 0.9067 + }, + { + "start": 17029.19, + "end": 17031.31, + "probability": 0.8924 + }, + { + "start": 17031.99, + "end": 17034.11, + "probability": 0.9674 + }, + { + "start": 17034.81, + "end": 17035.67, + "probability": 0.6958 + }, + { + "start": 17035.75, + "end": 17036.65, + "probability": 0.959 + }, + { + "start": 17036.87, + "end": 17041.01, + "probability": 0.9951 + }, + { + "start": 17042.13, + "end": 17042.97, + "probability": 0.7069 + }, + { + "start": 17043.55, + "end": 17046.97, + "probability": 0.8838 + }, + { + "start": 17048.49, + "end": 17050.45, + "probability": 0.9521 + }, + { + "start": 17051.11, + "end": 17053.55, + "probability": 0.5324 + }, + { + "start": 17054.35, + "end": 17057.05, + "probability": 0.9341 + }, + { + "start": 17057.13, + "end": 17058.18, + "probability": 0.9668 + }, + { + "start": 17058.85, + "end": 17059.29, + "probability": 0.7714 + }, + { + "start": 17060.13, + "end": 17062.43, + "probability": 0.9829 + }, + { + "start": 17062.89, + "end": 17064.75, + "probability": 0.9863 + }, + { + "start": 17065.37, + "end": 17066.31, + "probability": 0.7305 + }, + { + "start": 17066.33, + "end": 17067.59, + "probability": 0.6296 + }, + { + "start": 17068.79, + "end": 17072.77, + "probability": 0.5349 + }, + { + "start": 17073.47, + "end": 17073.99, + "probability": 0.5161 + }, + { + "start": 17073.99, + "end": 17078.19, + "probability": 0.9367 + }, + { + "start": 17078.43, + "end": 17078.79, + "probability": 0.951 + }, + { + "start": 17079.03, + "end": 17080.77, + "probability": 0.9182 + }, + { + "start": 17081.51, + "end": 17083.55, + "probability": 0.8196 + }, + { + "start": 17085.17, + "end": 17086.05, + "probability": 0.5054 + }, + { + "start": 17086.23, + "end": 17087.37, + "probability": 0.9933 + }, + { + "start": 17088.09, + "end": 17089.98, + "probability": 0.7039 + }, + { + "start": 17092.13, + "end": 17093.77, + "probability": 0.0637 + }, + { + "start": 17096.23, + "end": 17096.97, + "probability": 0.1298 + }, + { + "start": 17098.05, + "end": 17098.53, + "probability": 0.024 + }, + { + "start": 17113.21, + "end": 17115.29, + "probability": 0.2616 + }, + { + "start": 17115.95, + "end": 17116.25, + "probability": 0.8112 + }, + { + "start": 17118.99, + "end": 17119.63, + "probability": 0.6192 + }, + { + "start": 17120.39, + "end": 17123.45, + "probability": 0.9869 + }, + { + "start": 17124.05, + "end": 17124.89, + "probability": 0.8364 + }, + { + "start": 17125.45, + "end": 17128.01, + "probability": 0.9895 + }, + { + "start": 17129.19, + "end": 17130.97, + "probability": 0.9213 + }, + { + "start": 17132.01, + "end": 17134.25, + "probability": 0.9863 + }, + { + "start": 17135.65, + "end": 17136.91, + "probability": 0.9524 + }, + { + "start": 17137.65, + "end": 17138.17, + "probability": 0.5244 + }, + { + "start": 17138.97, + "end": 17143.17, + "probability": 0.874 + }, + { + "start": 17143.63, + "end": 17145.89, + "probability": 0.9745 + }, + { + "start": 17146.97, + "end": 17150.07, + "probability": 0.8981 + }, + { + "start": 17150.41, + "end": 17154.37, + "probability": 0.9562 + }, + { + "start": 17154.43, + "end": 17155.25, + "probability": 0.7721 + }, + { + "start": 17155.95, + "end": 17157.59, + "probability": 0.9447 + }, + { + "start": 17158.67, + "end": 17162.55, + "probability": 0.973 + }, + { + "start": 17163.09, + "end": 17164.09, + "probability": 0.8489 + }, + { + "start": 17165.13, + "end": 17165.67, + "probability": 0.9123 + }, + { + "start": 17166.11, + "end": 17166.99, + "probability": 0.9914 + }, + { + "start": 17167.79, + "end": 17169.95, + "probability": 0.9526 + }, + { + "start": 17172.01, + "end": 17173.65, + "probability": 0.9033 + }, + { + "start": 17173.83, + "end": 17174.87, + "probability": 0.7507 + }, + { + "start": 17175.01, + "end": 17177.19, + "probability": 0.7083 + }, + { + "start": 17177.29, + "end": 17179.97, + "probability": 0.9535 + }, + { + "start": 17180.67, + "end": 17182.4, + "probability": 0.944 + }, + { + "start": 17183.29, + "end": 17186.43, + "probability": 0.9892 + }, + { + "start": 17187.23, + "end": 17187.71, + "probability": 0.9771 + }, + { + "start": 17189.15, + "end": 17194.81, + "probability": 0.6496 + }, + { + "start": 17194.85, + "end": 17196.15, + "probability": 0.7576 + }, + { + "start": 17196.65, + "end": 17198.57, + "probability": 0.9825 + }, + { + "start": 17199.23, + "end": 17201.89, + "probability": 0.8065 + }, + { + "start": 17202.43, + "end": 17206.65, + "probability": 0.9282 + }, + { + "start": 17206.85, + "end": 17209.99, + "probability": 0.9204 + }, + { + "start": 17210.21, + "end": 17211.03, + "probability": 0.8824 + }, + { + "start": 17211.35, + "end": 17211.87, + "probability": 0.7588 + }, + { + "start": 17211.87, + "end": 17213.77, + "probability": 0.8607 + }, + { + "start": 17214.15, + "end": 17218.45, + "probability": 0.9669 + }, + { + "start": 17218.45, + "end": 17222.69, + "probability": 0.995 + }, + { + "start": 17222.93, + "end": 17223.75, + "probability": 0.7092 + }, + { + "start": 17223.91, + "end": 17224.41, + "probability": 0.8685 + }, + { + "start": 17224.71, + "end": 17225.59, + "probability": 0.6302 + }, + { + "start": 17225.71, + "end": 17231.93, + "probability": 0.9517 + }, + { + "start": 17233.47, + "end": 17234.33, + "probability": 0.9185 + }, + { + "start": 17236.23, + "end": 17237.53, + "probability": 0.7378 + }, + { + "start": 17239.42, + "end": 17243.15, + "probability": 0.8079 + }, + { + "start": 17245.71, + "end": 17248.31, + "probability": 0.7745 + }, + { + "start": 17248.85, + "end": 17249.53, + "probability": 0.7153 + }, + { + "start": 17251.07, + "end": 17253.65, + "probability": 0.134 + }, + { + "start": 17255.15, + "end": 17255.51, + "probability": 0.5355 + }, + { + "start": 17257.83, + "end": 17260.47, + "probability": 0.9866 + }, + { + "start": 17260.63, + "end": 17261.75, + "probability": 0.9934 + }, + { + "start": 17262.35, + "end": 17263.13, + "probability": 0.9729 + }, + { + "start": 17264.01, + "end": 17267.71, + "probability": 0.6488 + }, + { + "start": 17268.53, + "end": 17269.97, + "probability": 0.7196 + }, + { + "start": 17270.41, + "end": 17274.05, + "probability": 0.9886 + }, + { + "start": 17274.11, + "end": 17275.37, + "probability": 0.9126 + }, + { + "start": 17275.63, + "end": 17276.03, + "probability": 0.7853 + }, + { + "start": 17276.33, + "end": 17276.99, + "probability": 0.8803 + }, + { + "start": 17277.45, + "end": 17278.25, + "probability": 0.9856 + }, + { + "start": 17278.43, + "end": 17279.0, + "probability": 0.9663 + }, + { + "start": 17279.09, + "end": 17279.5, + "probability": 0.9834 + }, + { + "start": 17279.85, + "end": 17280.22, + "probability": 0.6194 + }, + { + "start": 17280.89, + "end": 17281.59, + "probability": 0.5829 + }, + { + "start": 17281.59, + "end": 17283.09, + "probability": 0.9689 + }, + { + "start": 17283.59, + "end": 17285.97, + "probability": 0.9023 + }, + { + "start": 17286.59, + "end": 17287.01, + "probability": 0.9553 + }, + { + "start": 17287.09, + "end": 17288.59, + "probability": 0.9814 + }, + { + "start": 17288.91, + "end": 17291.55, + "probability": 0.9709 + }, + { + "start": 17292.67, + "end": 17292.81, + "probability": 0.6159 + }, + { + "start": 17292.93, + "end": 17293.13, + "probability": 0.9246 + }, + { + "start": 17293.29, + "end": 17293.33, + "probability": 0.3979 + }, + { + "start": 17295.75, + "end": 17296.35, + "probability": 0.4157 + }, + { + "start": 17296.35, + "end": 17296.35, + "probability": 0.4396 + }, + { + "start": 17296.35, + "end": 17296.35, + "probability": 0.1336 + }, + { + "start": 17296.35, + "end": 17296.93, + "probability": 0.1754 + }, + { + "start": 17297.09, + "end": 17297.45, + "probability": 0.2441 + }, + { + "start": 17297.63, + "end": 17299.23, + "probability": 0.8593 + }, + { + "start": 17299.43, + "end": 17300.91, + "probability": 0.8235 + }, + { + "start": 17302.39, + "end": 17303.45, + "probability": 0.0036 + }, + { + "start": 17304.51, + "end": 17306.23, + "probability": 0.4465 + }, + { + "start": 17306.23, + "end": 17307.25, + "probability": 0.5883 + }, + { + "start": 17307.63, + "end": 17309.65, + "probability": 0.0779 + }, + { + "start": 17309.65, + "end": 17309.65, + "probability": 0.3125 + }, + { + "start": 17309.65, + "end": 17309.65, + "probability": 0.0462 + }, + { + "start": 17309.65, + "end": 17310.15, + "probability": 0.1564 + }, + { + "start": 17310.55, + "end": 17310.73, + "probability": 0.6016 + }, + { + "start": 17311.89, + "end": 17315.01, + "probability": 0.801 + }, + { + "start": 17315.57, + "end": 17318.83, + "probability": 0.6624 + }, + { + "start": 17318.93, + "end": 17320.15, + "probability": 0.7001 + }, + { + "start": 17320.45, + "end": 17323.31, + "probability": 0.7567 + }, + { + "start": 17323.63, + "end": 17325.91, + "probability": 0.849 + }, + { + "start": 17326.43, + "end": 17328.41, + "probability": 0.9413 + }, + { + "start": 17328.93, + "end": 17332.15, + "probability": 0.9621 + }, + { + "start": 17332.15, + "end": 17332.25, + "probability": 0.5752 + }, + { + "start": 17332.85, + "end": 17335.33, + "probability": 0.6543 + }, + { + "start": 17335.93, + "end": 17336.66, + "probability": 0.6317 + }, + { + "start": 17338.01, + "end": 17339.99, + "probability": 0.7161 + }, + { + "start": 17343.77, + "end": 17344.51, + "probability": 0.4201 + }, + { + "start": 17344.63, + "end": 17351.45, + "probability": 0.6414 + }, + { + "start": 17351.55, + "end": 17352.67, + "probability": 0.683 + }, + { + "start": 17353.75, + "end": 17357.93, + "probability": 0.9692 + }, + { + "start": 17358.95, + "end": 17360.51, + "probability": 0.9367 + }, + { + "start": 17361.19, + "end": 17362.87, + "probability": 0.9338 + }, + { + "start": 17363.03, + "end": 17366.09, + "probability": 0.9907 + }, + { + "start": 17366.09, + "end": 17368.93, + "probability": 0.9989 + }, + { + "start": 17369.19, + "end": 17370.39, + "probability": 0.9598 + }, + { + "start": 17371.47, + "end": 17374.77, + "probability": 0.9557 + }, + { + "start": 17375.67, + "end": 17376.97, + "probability": 0.989 + }, + { + "start": 17377.55, + "end": 17381.99, + "probability": 0.9432 + }, + { + "start": 17382.07, + "end": 17382.41, + "probability": 0.8947 + }, + { + "start": 17382.57, + "end": 17383.51, + "probability": 0.7042 + }, + { + "start": 17384.43, + "end": 17391.65, + "probability": 0.9773 + }, + { + "start": 17392.17, + "end": 17392.79, + "probability": 0.8561 + }, + { + "start": 17393.37, + "end": 17393.57, + "probability": 0.9356 + }, + { + "start": 17395.15, + "end": 17397.95, + "probability": 0.9424 + }, + { + "start": 17398.51, + "end": 17402.25, + "probability": 0.8038 + }, + { + "start": 17402.93, + "end": 17408.05, + "probability": 0.9814 + }, + { + "start": 17409.05, + "end": 17410.27, + "probability": 0.9858 + }, + { + "start": 17411.57, + "end": 17415.71, + "probability": 0.9884 + }, + { + "start": 17416.47, + "end": 17418.45, + "probability": 0.9876 + }, + { + "start": 17420.11, + "end": 17420.87, + "probability": 0.5011 + }, + { + "start": 17420.95, + "end": 17421.77, + "probability": 0.901 + }, + { + "start": 17422.67, + "end": 17425.25, + "probability": 0.9712 + }, + { + "start": 17425.49, + "end": 17426.99, + "probability": 0.9098 + }, + { + "start": 17427.85, + "end": 17430.85, + "probability": 0.9781 + }, + { + "start": 17430.87, + "end": 17431.65, + "probability": 0.8595 + }, + { + "start": 17432.33, + "end": 17436.45, + "probability": 0.9954 + }, + { + "start": 17437.37, + "end": 17438.37, + "probability": 0.8758 + }, + { + "start": 17438.45, + "end": 17439.65, + "probability": 0.4626 + }, + { + "start": 17439.67, + "end": 17441.87, + "probability": 0.8725 + }, + { + "start": 17442.59, + "end": 17447.65, + "probability": 0.9795 + }, + { + "start": 17448.69, + "end": 17451.25, + "probability": 0.9525 + }, + { + "start": 17451.41, + "end": 17454.21, + "probability": 0.9575 + }, + { + "start": 17454.55, + "end": 17458.23, + "probability": 0.8885 + }, + { + "start": 17458.79, + "end": 17459.63, + "probability": 0.9907 + }, + { + "start": 17459.93, + "end": 17463.93, + "probability": 0.998 + }, + { + "start": 17463.93, + "end": 17467.01, + "probability": 0.879 + }, + { + "start": 17467.97, + "end": 17469.37, + "probability": 0.9895 + }, + { + "start": 17470.51, + "end": 17475.51, + "probability": 0.998 + }, + { + "start": 17475.53, + "end": 17478.19, + "probability": 0.9421 + }, + { + "start": 17478.85, + "end": 17482.09, + "probability": 0.7917 + }, + { + "start": 17482.73, + "end": 17485.81, + "probability": 0.9532 + }, + { + "start": 17486.37, + "end": 17493.23, + "probability": 0.9912 + }, + { + "start": 17493.87, + "end": 17499.49, + "probability": 0.9812 + }, + { + "start": 17499.49, + "end": 17499.91, + "probability": 0.0372 + }, + { + "start": 17501.25, + "end": 17501.49, + "probability": 0.127 + }, + { + "start": 17501.49, + "end": 17504.85, + "probability": 0.9476 + }, + { + "start": 17505.11, + "end": 17505.55, + "probability": 0.7709 + }, + { + "start": 17505.57, + "end": 17508.55, + "probability": 0.921 + }, + { + "start": 17508.75, + "end": 17509.65, + "probability": 0.8016 + }, + { + "start": 17510.27, + "end": 17513.69, + "probability": 0.8975 + }, + { + "start": 17514.37, + "end": 17518.63, + "probability": 0.9262 + }, + { + "start": 17518.79, + "end": 17520.41, + "probability": 0.8193 + }, + { + "start": 17520.51, + "end": 17520.83, + "probability": 0.6318 + }, + { + "start": 17520.91, + "end": 17522.37, + "probability": 0.8932 + }, + { + "start": 17522.85, + "end": 17524.99, + "probability": 0.9545 + }, + { + "start": 17525.59, + "end": 17527.27, + "probability": 0.9827 + }, + { + "start": 17527.35, + "end": 17527.97, + "probability": 0.5164 + }, + { + "start": 17528.37, + "end": 17531.21, + "probability": 0.8799 + }, + { + "start": 17531.59, + "end": 17532.51, + "probability": 0.7638 + }, + { + "start": 17533.03, + "end": 17535.33, + "probability": 0.9951 + }, + { + "start": 17535.49, + "end": 17536.76, + "probability": 0.9408 + }, + { + "start": 17537.09, + "end": 17537.77, + "probability": 0.9943 + }, + { + "start": 17540.32, + "end": 17544.43, + "probability": 0.9904 + }, + { + "start": 17544.67, + "end": 17545.09, + "probability": 0.6317 + }, + { + "start": 17545.39, + "end": 17547.21, + "probability": 0.7498 + }, + { + "start": 17547.45, + "end": 17548.47, + "probability": 0.7662 + }, + { + "start": 17549.09, + "end": 17549.79, + "probability": 0.9374 + }, + { + "start": 17550.27, + "end": 17551.29, + "probability": 0.9793 + }, + { + "start": 17551.39, + "end": 17552.39, + "probability": 0.9172 + }, + { + "start": 17552.57, + "end": 17553.43, + "probability": 0.2024 + }, + { + "start": 17554.27, + "end": 17555.93, + "probability": 0.9483 + }, + { + "start": 17555.93, + "end": 17560.17, + "probability": 0.9954 + }, + { + "start": 17560.35, + "end": 17563.03, + "probability": 0.8264 + }, + { + "start": 17563.65, + "end": 17565.43, + "probability": 0.9902 + }, + { + "start": 17565.69, + "end": 17572.57, + "probability": 0.7382 + }, + { + "start": 17573.23, + "end": 17577.53, + "probability": 0.8747 + }, + { + "start": 17577.75, + "end": 17579.15, + "probability": 0.9568 + }, + { + "start": 17579.29, + "end": 17580.43, + "probability": 0.6703 + }, + { + "start": 17580.91, + "end": 17582.79, + "probability": 0.9885 + }, + { + "start": 17583.87, + "end": 17584.69, + "probability": 0.7162 + }, + { + "start": 17585.11, + "end": 17585.75, + "probability": 0.7476 + }, + { + "start": 17587.05, + "end": 17587.51, + "probability": 0.1621 + }, + { + "start": 17588.83, + "end": 17589.29, + "probability": 0.6595 + }, + { + "start": 17591.11, + "end": 17591.55, + "probability": 0.1742 + }, + { + "start": 17593.21, + "end": 17595.53, + "probability": 0.537 + }, + { + "start": 17596.31, + "end": 17600.77, + "probability": 0.9296 + }, + { + "start": 17601.57, + "end": 17603.97, + "probability": 0.938 + }, + { + "start": 17604.77, + "end": 17604.91, + "probability": 0.1621 + }, + { + "start": 17605.99, + "end": 17608.35, + "probability": 0.066 + }, + { + "start": 17609.35, + "end": 17610.95, + "probability": 0.7538 + }, + { + "start": 17620.01, + "end": 17620.81, + "probability": 0.4979 + }, + { + "start": 17626.03, + "end": 17629.11, + "probability": 0.0817 + }, + { + "start": 17629.27, + "end": 17631.37, + "probability": 0.0466 + }, + { + "start": 17632.43, + "end": 17633.91, + "probability": 0.6851 + }, + { + "start": 17642.71, + "end": 17642.95, + "probability": 0.855 + }, + { + "start": 17642.95, + "end": 17645.23, + "probability": 0.6338 + }, + { + "start": 17646.51, + "end": 17647.83, + "probability": 0.6534 + }, + { + "start": 17647.87, + "end": 17648.61, + "probability": 0.8566 + }, + { + "start": 17648.79, + "end": 17649.19, + "probability": 0.4685 + }, + { + "start": 17649.42, + "end": 17651.45, + "probability": 0.9312 + }, + { + "start": 17651.53, + "end": 17652.15, + "probability": 0.3611 + }, + { + "start": 17654.03, + "end": 17655.61, + "probability": 0.9089 + }, + { + "start": 17658.27, + "end": 17661.23, + "probability": 0.8398 + }, + { + "start": 17662.61, + "end": 17663.61, + "probability": 0.9756 + }, + { + "start": 17663.79, + "end": 17667.05, + "probability": 0.9614 + }, + { + "start": 17669.13, + "end": 17670.63, + "probability": 0.9401 + }, + { + "start": 17673.44, + "end": 17676.05, + "probability": 0.9488 + }, + { + "start": 17676.91, + "end": 17680.45, + "probability": 0.7969 + }, + { + "start": 17681.27, + "end": 17684.21, + "probability": 0.8539 + }, + { + "start": 17684.41, + "end": 17685.31, + "probability": 0.1655 + }, + { + "start": 17685.45, + "end": 17685.45, + "probability": 0.2483 + }, + { + "start": 17685.45, + "end": 17687.05, + "probability": 0.9326 + }, + { + "start": 17687.15, + "end": 17690.53, + "probability": 0.7685 + }, + { + "start": 17691.29, + "end": 17692.71, + "probability": 0.2118 + }, + { + "start": 17692.71, + "end": 17692.85, + "probability": 0.4977 + }, + { + "start": 17692.85, + "end": 17694.2, + "probability": 0.8865 + }, + { + "start": 17694.39, + "end": 17696.07, + "probability": 0.8353 + }, + { + "start": 17696.69, + "end": 17697.83, + "probability": 0.7446 + }, + { + "start": 17697.89, + "end": 17698.43, + "probability": 0.214 + }, + { + "start": 17698.81, + "end": 17698.93, + "probability": 0.2054 + }, + { + "start": 17698.93, + "end": 17700.09, + "probability": 0.7401 + }, + { + "start": 17700.75, + "end": 17700.97, + "probability": 0.2702 + }, + { + "start": 17700.97, + "end": 17703.04, + "probability": 0.7539 + }, + { + "start": 17703.21, + "end": 17704.41, + "probability": 0.8807 + }, + { + "start": 17704.79, + "end": 17704.87, + "probability": 0.295 + }, + { + "start": 17704.87, + "end": 17707.76, + "probability": 0.9116 + }, + { + "start": 17707.81, + "end": 17708.47, + "probability": 0.9675 + }, + { + "start": 17708.83, + "end": 17711.39, + "probability": 0.906 + }, + { + "start": 17711.69, + "end": 17715.31, + "probability": 0.8452 + }, + { + "start": 17716.46, + "end": 17716.53, + "probability": 0.3513 + }, + { + "start": 17716.53, + "end": 17718.13, + "probability": 0.1905 + }, + { + "start": 17718.19, + "end": 17718.93, + "probability": 0.455 + }, + { + "start": 17719.58, + "end": 17721.45, + "probability": 0.2263 + }, + { + "start": 17722.67, + "end": 17724.75, + "probability": 0.9727 + }, + { + "start": 17724.75, + "end": 17729.33, + "probability": 0.9796 + }, + { + "start": 17730.49, + "end": 17732.33, + "probability": 0.9969 + }, + { + "start": 17733.45, + "end": 17734.75, + "probability": 0.9956 + }, + { + "start": 17734.83, + "end": 17738.77, + "probability": 0.9912 + }, + { + "start": 17739.57, + "end": 17741.81, + "probability": 0.9922 + }, + { + "start": 17742.61, + "end": 17745.99, + "probability": 0.9775 + }, + { + "start": 17746.07, + "end": 17747.33, + "probability": 0.988 + }, + { + "start": 17747.67, + "end": 17748.69, + "probability": 0.9083 + }, + { + "start": 17749.11, + "end": 17750.67, + "probability": 0.6431 + }, + { + "start": 17750.89, + "end": 17751.69, + "probability": 0.7993 + }, + { + "start": 17752.13, + "end": 17752.85, + "probability": 0.845 + }, + { + "start": 17752.9, + "end": 17756.51, + "probability": 0.8799 + }, + { + "start": 17757.17, + "end": 17757.93, + "probability": 0.9971 + }, + { + "start": 17758.65, + "end": 17759.81, + "probability": 0.2746 + }, + { + "start": 17760.95, + "end": 17762.93, + "probability": 0.9119 + }, + { + "start": 17763.85, + "end": 17766.95, + "probability": 0.9873 + }, + { + "start": 17767.63, + "end": 17768.25, + "probability": 0.4273 + }, + { + "start": 17768.53, + "end": 17770.11, + "probability": 0.8609 + }, + { + "start": 17770.55, + "end": 17770.57, + "probability": 0.3246 + }, + { + "start": 17770.57, + "end": 17772.11, + "probability": 0.917 + }, + { + "start": 17772.77, + "end": 17773.87, + "probability": 0.8138 + }, + { + "start": 17774.05, + "end": 17778.23, + "probability": 0.8045 + }, + { + "start": 17779.01, + "end": 17781.85, + "probability": 0.813 + }, + { + "start": 17782.05, + "end": 17782.49, + "probability": 0.3545 + }, + { + "start": 17783.47, + "end": 17783.69, + "probability": 0.7749 + }, + { + "start": 17783.69, + "end": 17785.05, + "probability": 0.6866 + }, + { + "start": 17785.13, + "end": 17785.69, + "probability": 0.8488 + }, + { + "start": 17785.77, + "end": 17786.96, + "probability": 0.6195 + }, + { + "start": 17787.29, + "end": 17788.85, + "probability": 0.8955 + }, + { + "start": 17789.59, + "end": 17793.98, + "probability": 0.8494 + }, + { + "start": 17794.89, + "end": 17796.79, + "probability": 0.8753 + }, + { + "start": 17797.45, + "end": 17797.45, + "probability": 0.0942 + }, + { + "start": 17797.45, + "end": 17797.47, + "probability": 0.2907 + }, + { + "start": 17797.47, + "end": 17797.47, + "probability": 0.5198 + }, + { + "start": 17797.47, + "end": 17800.53, + "probability": 0.7425 + }, + { + "start": 17800.85, + "end": 17802.85, + "probability": 0.8408 + }, + { + "start": 17803.41, + "end": 17805.23, + "probability": 0.7454 + }, + { + "start": 17805.99, + "end": 17806.31, + "probability": 0.0854 + }, + { + "start": 17806.31, + "end": 17807.45, + "probability": 0.3333 + }, + { + "start": 17807.53, + "end": 17807.97, + "probability": 0.9003 + }, + { + "start": 17808.35, + "end": 17809.83, + "probability": 0.8257 + }, + { + "start": 17809.91, + "end": 17813.79, + "probability": 0.9937 + }, + { + "start": 17814.45, + "end": 17814.93, + "probability": 0.0235 + }, + { + "start": 17814.93, + "end": 17816.68, + "probability": 0.7061 + }, + { + "start": 17817.59, + "end": 17819.75, + "probability": 0.8056 + }, + { + "start": 17820.31, + "end": 17820.53, + "probability": 0.3654 + }, + { + "start": 17820.53, + "end": 17821.19, + "probability": 0.7869 + }, + { + "start": 17821.27, + "end": 17826.39, + "probability": 0.9495 + }, + { + "start": 17826.53, + "end": 17826.93, + "probability": 0.767 + }, + { + "start": 17827.57, + "end": 17830.15, + "probability": 0.7247 + }, + { + "start": 17830.25, + "end": 17830.45, + "probability": 0.2759 + }, + { + "start": 17830.45, + "end": 17830.85, + "probability": 0.5896 + }, + { + "start": 17831.47, + "end": 17833.51, + "probability": 0.9028 + }, + { + "start": 17833.57, + "end": 17835.99, + "probability": 0.8978 + }, + { + "start": 17835.99, + "end": 17836.41, + "probability": 0.3946 + }, + { + "start": 17837.07, + "end": 17837.29, + "probability": 0.0079 + }, + { + "start": 17837.87, + "end": 17840.43, + "probability": 0.5512 + }, + { + "start": 17840.61, + "end": 17841.65, + "probability": 0.9966 + }, + { + "start": 17841.65, + "end": 17843.51, + "probability": 0.5611 + }, + { + "start": 17843.59, + "end": 17844.79, + "probability": 0.6239 + }, + { + "start": 17844.91, + "end": 17846.15, + "probability": 0.7357 + }, + { + "start": 17846.61, + "end": 17848.38, + "probability": 0.9397 + }, + { + "start": 17850.17, + "end": 17851.71, + "probability": 0.4878 + }, + { + "start": 17852.11, + "end": 17853.85, + "probability": 0.896 + }, + { + "start": 17854.09, + "end": 17855.44, + "probability": 0.991 + }, + { + "start": 17855.79, + "end": 17857.13, + "probability": 0.7383 + }, + { + "start": 17857.29, + "end": 17858.06, + "probability": 0.3038 + }, + { + "start": 17858.29, + "end": 17859.09, + "probability": 0.3164 + }, + { + "start": 17859.15, + "end": 17860.01, + "probability": 0.1505 + }, + { + "start": 17860.21, + "end": 17864.55, + "probability": 0.2594 + }, + { + "start": 17865.53, + "end": 17866.29, + "probability": 0.358 + }, + { + "start": 17866.73, + "end": 17867.49, + "probability": 0.0528 + }, + { + "start": 17867.49, + "end": 17867.57, + "probability": 0.1139 + }, + { + "start": 17867.57, + "end": 17867.61, + "probability": 0.0784 + }, + { + "start": 17867.61, + "end": 17869.27, + "probability": 0.7246 + }, + { + "start": 17869.51, + "end": 17871.71, + "probability": 0.9121 + }, + { + "start": 17871.71, + "end": 17874.55, + "probability": 0.6972 + }, + { + "start": 17874.55, + "end": 17875.97, + "probability": 0.9774 + }, + { + "start": 17876.45, + "end": 17877.99, + "probability": 0.9358 + }, + { + "start": 17878.07, + "end": 17880.19, + "probability": 0.9264 + }, + { + "start": 17880.41, + "end": 17884.57, + "probability": 0.0968 + }, + { + "start": 17884.57, + "end": 17884.61, + "probability": 0.3913 + }, + { + "start": 17884.61, + "end": 17884.61, + "probability": 0.0367 + }, + { + "start": 17884.61, + "end": 17884.61, + "probability": 0.0916 + }, + { + "start": 17884.61, + "end": 17884.75, + "probability": 0.0464 + }, + { + "start": 17884.85, + "end": 17888.15, + "probability": 0.8687 + }, + { + "start": 17888.29, + "end": 17889.44, + "probability": 0.9834 + }, + { + "start": 17889.95, + "end": 17890.63, + "probability": 0.8271 + }, + { + "start": 17891.29, + "end": 17892.7, + "probability": 0.9568 + }, + { + "start": 17893.47, + "end": 17895.19, + "probability": 0.281 + }, + { + "start": 17896.05, + "end": 17902.19, + "probability": 0.6994 + }, + { + "start": 17902.81, + "end": 17903.59, + "probability": 0.0944 + }, + { + "start": 17903.59, + "end": 17904.01, + "probability": 0.1083 + }, + { + "start": 17904.09, + "end": 17904.17, + "probability": 0.1128 + }, + { + "start": 17904.17, + "end": 17904.17, + "probability": 0.0233 + }, + { + "start": 17904.17, + "end": 17904.17, + "probability": 0.3231 + }, + { + "start": 17904.17, + "end": 17908.11, + "probability": 0.5149 + }, + { + "start": 17909.79, + "end": 17910.97, + "probability": 0.4131 + }, + { + "start": 17911.61, + "end": 17912.15, + "probability": 0.0978 + }, + { + "start": 17912.15, + "end": 17912.63, + "probability": 0.2869 + }, + { + "start": 17912.63, + "end": 17913.33, + "probability": 0.7533 + }, + { + "start": 17913.51, + "end": 17914.41, + "probability": 0.5527 + }, + { + "start": 17914.65, + "end": 17915.43, + "probability": 0.5233 + }, + { + "start": 17915.43, + "end": 17916.2, + "probability": 0.6023 + }, + { + "start": 17916.79, + "end": 17918.25, + "probability": 0.8572 + }, + { + "start": 17918.71, + "end": 17922.33, + "probability": 0.9106 + }, + { + "start": 17922.99, + "end": 17923.43, + "probability": 0.1143 + }, + { + "start": 17924.68, + "end": 17926.67, + "probability": 0.7353 + }, + { + "start": 17926.87, + "end": 17929.39, + "probability": 0.8168 + }, + { + "start": 17941.75, + "end": 17944.87, + "probability": 0.7511 + }, + { + "start": 17947.99, + "end": 17948.99, + "probability": 0.7216 + }, + { + "start": 17949.27, + "end": 17953.81, + "probability": 0.9964 + }, + { + "start": 17954.71, + "end": 17956.59, + "probability": 0.4874 + }, + { + "start": 17957.79, + "end": 17960.23, + "probability": 0.7432 + }, + { + "start": 17961.09, + "end": 17963.11, + "probability": 0.7343 + }, + { + "start": 17964.88, + "end": 17967.77, + "probability": 0.9963 + }, + { + "start": 17968.55, + "end": 17969.41, + "probability": 0.7396 + }, + { + "start": 17969.51, + "end": 17970.09, + "probability": 0.9424 + }, + { + "start": 17970.15, + "end": 17972.53, + "probability": 0.9647 + }, + { + "start": 17972.85, + "end": 17973.99, + "probability": 0.0915 + }, + { + "start": 17975.79, + "end": 17977.33, + "probability": 0.8589 + }, + { + "start": 17977.59, + "end": 17979.81, + "probability": 0.9844 + }, + { + "start": 17980.73, + "end": 17982.23, + "probability": 0.9639 + }, + { + "start": 17982.67, + "end": 17986.37, + "probability": 0.9492 + }, + { + "start": 17986.41, + "end": 17987.55, + "probability": 0.57 + }, + { + "start": 17988.07, + "end": 17989.49, + "probability": 0.9565 + }, + { + "start": 17989.65, + "end": 17990.19, + "probability": 0.8975 + }, + { + "start": 17990.25, + "end": 17992.31, + "probability": 0.9829 + }, + { + "start": 17993.11, + "end": 17994.45, + "probability": 0.822 + }, + { + "start": 17994.97, + "end": 17996.35, + "probability": 0.9204 + }, + { + "start": 17997.61, + "end": 18001.91, + "probability": 0.9956 + }, + { + "start": 18001.97, + "end": 18004.01, + "probability": 0.7993 + }, + { + "start": 18004.09, + "end": 18006.39, + "probability": 0.9393 + }, + { + "start": 18007.11, + "end": 18008.49, + "probability": 0.9028 + }, + { + "start": 18009.35, + "end": 18012.87, + "probability": 0.9336 + }, + { + "start": 18013.87, + "end": 18014.31, + "probability": 0.8417 + }, + { + "start": 18015.11, + "end": 18017.57, + "probability": 0.9019 + }, + { + "start": 18018.45, + "end": 18020.41, + "probability": 0.9706 + }, + { + "start": 18021.07, + "end": 18022.93, + "probability": 0.9985 + }, + { + "start": 18023.45, + "end": 18027.83, + "probability": 0.9771 + }, + { + "start": 18028.37, + "end": 18029.97, + "probability": 0.9454 + }, + { + "start": 18030.61, + "end": 18033.63, + "probability": 0.9727 + }, + { + "start": 18034.49, + "end": 18037.75, + "probability": 0.959 + }, + { + "start": 18038.67, + "end": 18042.06, + "probability": 0.8722 + }, + { + "start": 18043.07, + "end": 18044.97, + "probability": 0.7261 + }, + { + "start": 18044.99, + "end": 18049.41, + "probability": 0.99 + }, + { + "start": 18050.05, + "end": 18051.65, + "probability": 0.9087 + }, + { + "start": 18052.81, + "end": 18053.25, + "probability": 0.9441 + }, + { + "start": 18053.59, + "end": 18059.43, + "probability": 0.9719 + }, + { + "start": 18059.99, + "end": 18060.79, + "probability": 0.9792 + }, + { + "start": 18061.33, + "end": 18062.07, + "probability": 0.8591 + }, + { + "start": 18062.31, + "end": 18065.97, + "probability": 0.6287 + }, + { + "start": 18066.07, + "end": 18066.59, + "probability": 0.8042 + }, + { + "start": 18066.93, + "end": 18067.89, + "probability": 0.7118 + }, + { + "start": 18068.81, + "end": 18072.31, + "probability": 0.7985 + }, + { + "start": 18073.49, + "end": 18077.39, + "probability": 0.9824 + }, + { + "start": 18077.83, + "end": 18081.91, + "probability": 0.9956 + }, + { + "start": 18082.35, + "end": 18087.73, + "probability": 0.9987 + }, + { + "start": 18088.15, + "end": 18090.37, + "probability": 0.9973 + }, + { + "start": 18091.71, + "end": 18094.85, + "probability": 0.8291 + }, + { + "start": 18095.73, + "end": 18096.91, + "probability": 0.7077 + }, + { + "start": 18098.37, + "end": 18102.89, + "probability": 0.9471 + }, + { + "start": 18103.75, + "end": 18109.51, + "probability": 0.9784 + }, + { + "start": 18110.01, + "end": 18111.27, + "probability": 0.6968 + }, + { + "start": 18111.73, + "end": 18115.67, + "probability": 0.9053 + }, + { + "start": 18115.85, + "end": 18122.37, + "probability": 0.9839 + }, + { + "start": 18123.11, + "end": 18124.51, + "probability": 0.8664 + }, + { + "start": 18125.19, + "end": 18126.07, + "probability": 0.9951 + }, + { + "start": 18127.07, + "end": 18130.45, + "probability": 0.9958 + }, + { + "start": 18130.83, + "end": 18134.81, + "probability": 0.9965 + }, + { + "start": 18135.39, + "end": 18138.69, + "probability": 0.8696 + }, + { + "start": 18139.29, + "end": 18142.67, + "probability": 0.9602 + }, + { + "start": 18142.71, + "end": 18144.61, + "probability": 0.9327 + }, + { + "start": 18144.93, + "end": 18146.89, + "probability": 0.8276 + }, + { + "start": 18147.27, + "end": 18151.91, + "probability": 0.9419 + }, + { + "start": 18152.61, + "end": 18155.81, + "probability": 0.9714 + }, + { + "start": 18156.81, + "end": 18159.03, + "probability": 0.8712 + }, + { + "start": 18159.61, + "end": 18163.63, + "probability": 0.979 + }, + { + "start": 18164.01, + "end": 18164.97, + "probability": 0.7555 + }, + { + "start": 18165.69, + "end": 18166.71, + "probability": 0.8493 + }, + { + "start": 18166.77, + "end": 18167.03, + "probability": 0.8521 + }, + { + "start": 18167.11, + "end": 18168.31, + "probability": 0.9366 + }, + { + "start": 18168.63, + "end": 18173.93, + "probability": 0.963 + }, + { + "start": 18174.57, + "end": 18177.47, + "probability": 0.9799 + }, + { + "start": 18178.17, + "end": 18180.79, + "probability": 0.9905 + }, + { + "start": 18181.17, + "end": 18184.97, + "probability": 0.9807 + }, + { + "start": 18185.29, + "end": 18186.19, + "probability": 0.772 + }, + { + "start": 18186.27, + "end": 18189.53, + "probability": 0.9912 + }, + { + "start": 18190.05, + "end": 18195.05, + "probability": 0.9487 + }, + { + "start": 18195.61, + "end": 18197.41, + "probability": 0.9583 + }, + { + "start": 18198.17, + "end": 18200.49, + "probability": 0.9686 + }, + { + "start": 18200.83, + "end": 18201.35, + "probability": 0.7786 + }, + { + "start": 18201.43, + "end": 18202.03, + "probability": 0.6371 + }, + { + "start": 18202.51, + "end": 18204.39, + "probability": 0.8585 + }, + { + "start": 18204.93, + "end": 18206.16, + "probability": 0.8448 + }, + { + "start": 18206.79, + "end": 18208.85, + "probability": 0.9946 + }, + { + "start": 18209.27, + "end": 18210.63, + "probability": 0.8477 + }, + { + "start": 18211.11, + "end": 18213.75, + "probability": 0.7627 + }, + { + "start": 18214.03, + "end": 18215.43, + "probability": 0.8637 + }, + { + "start": 18215.67, + "end": 18216.55, + "probability": 0.9575 + }, + { + "start": 18216.55, + "end": 18217.11, + "probability": 0.1176 + }, + { + "start": 18217.37, + "end": 18217.57, + "probability": 0.2668 + }, + { + "start": 18217.85, + "end": 18219.71, + "probability": 0.9845 + }, + { + "start": 18220.09, + "end": 18223.81, + "probability": 0.9158 + }, + { + "start": 18223.85, + "end": 18225.27, + "probability": 0.8024 + }, + { + "start": 18225.53, + "end": 18225.79, + "probability": 0.4055 + }, + { + "start": 18225.79, + "end": 18230.01, + "probability": 0.9557 + }, + { + "start": 18230.25, + "end": 18231.63, + "probability": 0.9845 + }, + { + "start": 18231.87, + "end": 18234.13, + "probability": 0.9897 + }, + { + "start": 18234.15, + "end": 18236.39, + "probability": 0.9985 + }, + { + "start": 18236.85, + "end": 18237.43, + "probability": 0.7752 + }, + { + "start": 18237.95, + "end": 18239.34, + "probability": 0.9404 + }, + { + "start": 18239.61, + "end": 18239.83, + "probability": 0.3932 + }, + { + "start": 18240.03, + "end": 18240.81, + "probability": 0.6694 + }, + { + "start": 18241.27, + "end": 18242.86, + "probability": 0.9976 + }, + { + "start": 18243.39, + "end": 18245.37, + "probability": 0.9935 + }, + { + "start": 18245.77, + "end": 18250.17, + "probability": 0.8132 + }, + { + "start": 18250.17, + "end": 18252.57, + "probability": 0.9444 + }, + { + "start": 18252.83, + "end": 18253.37, + "probability": 0.9182 + }, + { + "start": 18253.47, + "end": 18255.85, + "probability": 0.9541 + }, + { + "start": 18255.97, + "end": 18259.47, + "probability": 0.8147 + }, + { + "start": 18260.65, + "end": 18262.89, + "probability": 0.9399 + }, + { + "start": 18277.89, + "end": 18279.49, + "probability": 0.6509 + }, + { + "start": 18280.29, + "end": 18280.75, + "probability": 0.6089 + }, + { + "start": 18281.23, + "end": 18285.19, + "probability": 0.9737 + }, + { + "start": 18285.27, + "end": 18286.09, + "probability": 0.9151 + }, + { + "start": 18286.15, + "end": 18287.25, + "probability": 0.9316 + }, + { + "start": 18287.57, + "end": 18288.21, + "probability": 0.3743 + }, + { + "start": 18288.67, + "end": 18289.41, + "probability": 0.0019 + }, + { + "start": 18289.41, + "end": 18289.41, + "probability": 0.1623 + }, + { + "start": 18289.41, + "end": 18289.41, + "probability": 0.0453 + }, + { + "start": 18289.41, + "end": 18292.87, + "probability": 0.3823 + }, + { + "start": 18292.95, + "end": 18293.31, + "probability": 0.2235 + }, + { + "start": 18293.49, + "end": 18294.93, + "probability": 0.8749 + }, + { + "start": 18297.83, + "end": 18298.45, + "probability": 0.0291 + }, + { + "start": 18298.45, + "end": 18298.63, + "probability": 0.3106 + }, + { + "start": 18298.63, + "end": 18299.26, + "probability": 0.2619 + }, + { + "start": 18300.22, + "end": 18303.33, + "probability": 0.1387 + }, + { + "start": 18303.41, + "end": 18304.73, + "probability": 0.9239 + }, + { + "start": 18304.87, + "end": 18306.67, + "probability": 0.9128 + }, + { + "start": 18307.09, + "end": 18310.53, + "probability": 0.794 + }, + { + "start": 18311.51, + "end": 18314.37, + "probability": 0.8274 + }, + { + "start": 18314.47, + "end": 18315.51, + "probability": 0.5316 + }, + { + "start": 18315.61, + "end": 18317.97, + "probability": 0.7994 + }, + { + "start": 18319.01, + "end": 18319.21, + "probability": 0.4058 + }, + { + "start": 18319.21, + "end": 18321.53, + "probability": 0.7829 + }, + { + "start": 18321.85, + "end": 18322.35, + "probability": 0.9889 + }, + { + "start": 18322.43, + "end": 18324.59, + "probability": 0.9702 + }, + { + "start": 18325.29, + "end": 18325.65, + "probability": 0.1792 + }, + { + "start": 18327.31, + "end": 18327.83, + "probability": 0.4348 + }, + { + "start": 18327.83, + "end": 18328.23, + "probability": 0.6651 + }, + { + "start": 18328.29, + "end": 18328.83, + "probability": 0.8268 + }, + { + "start": 18328.91, + "end": 18330.09, + "probability": 0.687 + }, + { + "start": 18330.21, + "end": 18331.79, + "probability": 0.9464 + }, + { + "start": 18331.87, + "end": 18332.77, + "probability": 0.9596 + }, + { + "start": 18333.15, + "end": 18335.49, + "probability": 0.9238 + }, + { + "start": 18336.69, + "end": 18337.01, + "probability": 0.0275 + }, + { + "start": 18337.09, + "end": 18340.81, + "probability": 0.9847 + }, + { + "start": 18341.41, + "end": 18343.53, + "probability": 0.9937 + }, + { + "start": 18344.23, + "end": 18346.63, + "probability": 0.9868 + }, + { + "start": 18346.63, + "end": 18350.59, + "probability": 0.9887 + }, + { + "start": 18351.17, + "end": 18353.33, + "probability": 0.9412 + }, + { + "start": 18354.41, + "end": 18355.39, + "probability": 0.6333 + }, + { + "start": 18357.13, + "end": 18358.17, + "probability": 0.9093 + }, + { + "start": 18360.53, + "end": 18362.41, + "probability": 0.9124 + }, + { + "start": 18362.43, + "end": 18363.71, + "probability": 0.8384 + }, + { + "start": 18364.43, + "end": 18366.65, + "probability": 0.9782 + }, + { + "start": 18367.05, + "end": 18368.27, + "probability": 0.76 + }, + { + "start": 18368.95, + "end": 18370.41, + "probability": 0.9804 + }, + { + "start": 18371.17, + "end": 18373.93, + "probability": 0.9035 + }, + { + "start": 18374.57, + "end": 18376.55, + "probability": 0.7832 + }, + { + "start": 18377.85, + "end": 18382.45, + "probability": 0.9478 + }, + { + "start": 18382.71, + "end": 18383.55, + "probability": 0.9258 + }, + { + "start": 18383.55, + "end": 18384.37, + "probability": 0.5784 + }, + { + "start": 18384.43, + "end": 18385.62, + "probability": 0.9692 + }, + { + "start": 18385.97, + "end": 18387.05, + "probability": 0.8116 + }, + { + "start": 18387.43, + "end": 18388.95, + "probability": 0.9868 + }, + { + "start": 18389.25, + "end": 18389.89, + "probability": 0.5117 + }, + { + "start": 18390.53, + "end": 18392.57, + "probability": 0.1605 + }, + { + "start": 18392.57, + "end": 18392.91, + "probability": 0.5202 + }, + { + "start": 18392.93, + "end": 18393.89, + "probability": 0.2763 + }, + { + "start": 18393.91, + "end": 18394.62, + "probability": 0.8906 + }, + { + "start": 18394.85, + "end": 18395.65, + "probability": 0.4352 + }, + { + "start": 18395.75, + "end": 18397.15, + "probability": 0.9554 + }, + { + "start": 18397.35, + "end": 18397.93, + "probability": 0.7692 + }, + { + "start": 18397.93, + "end": 18398.69, + "probability": 0.6266 + }, + { + "start": 18399.13, + "end": 18402.81, + "probability": 0.9916 + }, + { + "start": 18404.27, + "end": 18405.83, + "probability": 0.7986 + }, + { + "start": 18406.49, + "end": 18408.39, + "probability": 0.9902 + }, + { + "start": 18409.05, + "end": 18411.77, + "probability": 0.9959 + }, + { + "start": 18412.19, + "end": 18412.67, + "probability": 0.9651 + }, + { + "start": 18412.93, + "end": 18414.59, + "probability": 0.9965 + }, + { + "start": 18415.27, + "end": 18416.29, + "probability": 0.8509 + }, + { + "start": 18416.73, + "end": 18423.67, + "probability": 0.9604 + }, + { + "start": 18423.97, + "end": 18424.19, + "probability": 0.0171 + }, + { + "start": 18424.19, + "end": 18424.19, + "probability": 0.0345 + }, + { + "start": 18424.19, + "end": 18424.61, + "probability": 0.4325 + }, + { + "start": 18425.59, + "end": 18428.05, + "probability": 0.8074 + }, + { + "start": 18428.17, + "end": 18429.69, + "probability": 0.6304 + }, + { + "start": 18429.71, + "end": 18430.11, + "probability": 0.0151 + }, + { + "start": 18430.33, + "end": 18430.51, + "probability": 0.0013 + }, + { + "start": 18430.93, + "end": 18433.77, + "probability": 0.9658 + }, + { + "start": 18433.77, + "end": 18435.13, + "probability": 0.6899 + }, + { + "start": 18435.37, + "end": 18437.09, + "probability": 0.9941 + }, + { + "start": 18438.47, + "end": 18439.15, + "probability": 0.0142 + }, + { + "start": 18439.19, + "end": 18440.73, + "probability": 0.4076 + }, + { + "start": 18440.83, + "end": 18441.55, + "probability": 0.0313 + }, + { + "start": 18441.75, + "end": 18444.15, + "probability": 0.6649 + }, + { + "start": 18444.27, + "end": 18445.79, + "probability": 0.9225 + }, + { + "start": 18445.95, + "end": 18447.89, + "probability": 0.8818 + }, + { + "start": 18448.95, + "end": 18450.01, + "probability": 0.7134 + }, + { + "start": 18450.97, + "end": 18452.57, + "probability": 0.9102 + }, + { + "start": 18454.31, + "end": 18455.57, + "probability": 0.8857 + }, + { + "start": 18455.75, + "end": 18456.89, + "probability": 0.901 + }, + { + "start": 18457.01, + "end": 18459.91, + "probability": 0.9589 + }, + { + "start": 18460.01, + "end": 18460.77, + "probability": 0.6951 + }, + { + "start": 18461.27, + "end": 18464.83, + "probability": 0.9928 + }, + { + "start": 18465.39, + "end": 18469.59, + "probability": 0.9971 + }, + { + "start": 18470.71, + "end": 18470.97, + "probability": 0.4848 + }, + { + "start": 18471.07, + "end": 18471.91, + "probability": 0.966 + }, + { + "start": 18472.05, + "end": 18474.51, + "probability": 0.9775 + }, + { + "start": 18475.35, + "end": 18478.87, + "probability": 0.9695 + }, + { + "start": 18479.51, + "end": 18482.03, + "probability": 0.837 + }, + { + "start": 18482.69, + "end": 18486.43, + "probability": 0.9729 + }, + { + "start": 18486.51, + "end": 18486.69, + "probability": 0.3724 + }, + { + "start": 18487.37, + "end": 18488.09, + "probability": 0.9766 + }, + { + "start": 18488.81, + "end": 18489.61, + "probability": 0.884 + }, + { + "start": 18489.79, + "end": 18490.33, + "probability": 0.6325 + }, + { + "start": 18490.41, + "end": 18492.41, + "probability": 0.9925 + }, + { + "start": 18492.93, + "end": 18494.71, + "probability": 0.9971 + }, + { + "start": 18495.43, + "end": 18496.09, + "probability": 0.5154 + }, + { + "start": 18496.09, + "end": 18496.59, + "probability": 0.9308 + }, + { + "start": 18496.71, + "end": 18497.07, + "probability": 0.4501 + }, + { + "start": 18497.13, + "end": 18499.33, + "probability": 0.9931 + }, + { + "start": 18499.87, + "end": 18502.21, + "probability": 0.9376 + }, + { + "start": 18503.19, + "end": 18506.41, + "probability": 0.9021 + }, + { + "start": 18506.41, + "end": 18510.13, + "probability": 0.8909 + }, + { + "start": 18511.15, + "end": 18512.61, + "probability": 0.8094 + }, + { + "start": 18513.55, + "end": 18515.07, + "probability": 0.5851 + }, + { + "start": 18515.75, + "end": 18519.35, + "probability": 0.9353 + }, + { + "start": 18520.15, + "end": 18522.15, + "probability": 0.9984 + }, + { + "start": 18523.41, + "end": 18524.37, + "probability": 0.8955 + }, + { + "start": 18524.55, + "end": 18525.43, + "probability": 0.8527 + }, + { + "start": 18525.89, + "end": 18527.01, + "probability": 0.9651 + }, + { + "start": 18527.09, + "end": 18527.83, + "probability": 0.9244 + }, + { + "start": 18528.59, + "end": 18530.71, + "probability": 0.9645 + }, + { + "start": 18530.79, + "end": 18532.55, + "probability": 0.6542 + }, + { + "start": 18532.55, + "end": 18533.79, + "probability": 0.6763 + }, + { + "start": 18534.17, + "end": 18534.79, + "probability": 0.8354 + }, + { + "start": 18534.89, + "end": 18536.35, + "probability": 0.9404 + }, + { + "start": 18536.35, + "end": 18538.11, + "probability": 0.6962 + }, + { + "start": 18538.27, + "end": 18543.91, + "probability": 0.7012 + }, + { + "start": 18545.09, + "end": 18545.33, + "probability": 0.5063 + }, + { + "start": 18545.33, + "end": 18549.61, + "probability": 0.9261 + }, + { + "start": 18549.77, + "end": 18551.31, + "probability": 0.7508 + }, + { + "start": 18551.57, + "end": 18551.83, + "probability": 0.0084 + }, + { + "start": 18551.87, + "end": 18552.69, + "probability": 0.4668 + }, + { + "start": 18552.79, + "end": 18553.13, + "probability": 0.3485 + }, + { + "start": 18553.15, + "end": 18553.57, + "probability": 0.6714 + }, + { + "start": 18553.91, + "end": 18556.03, + "probability": 0.8694 + }, + { + "start": 18556.87, + "end": 18557.15, + "probability": 0.4895 + }, + { + "start": 18558.47, + "end": 18561.43, + "probability": 0.9645 + }, + { + "start": 18561.87, + "end": 18563.06, + "probability": 0.9966 + }, + { + "start": 18563.19, + "end": 18565.91, + "probability": 0.6608 + }, + { + "start": 18565.97, + "end": 18566.23, + "probability": 0.7453 + }, + { + "start": 18567.35, + "end": 18570.21, + "probability": 0.9855 + }, + { + "start": 18570.37, + "end": 18570.81, + "probability": 0.7694 + }, + { + "start": 18570.87, + "end": 18571.69, + "probability": 0.9507 + }, + { + "start": 18571.97, + "end": 18574.05, + "probability": 0.9656 + }, + { + "start": 18574.49, + "end": 18576.93, + "probability": 0.9989 + }, + { + "start": 18577.43, + "end": 18579.19, + "probability": 0.9347 + }, + { + "start": 18579.69, + "end": 18581.29, + "probability": 0.6894 + }, + { + "start": 18582.05, + "end": 18586.35, + "probability": 0.9941 + }, + { + "start": 18586.73, + "end": 18587.61, + "probability": 0.9689 + }, + { + "start": 18588.25, + "end": 18588.85, + "probability": 0.9788 + }, + { + "start": 18590.05, + "end": 18594.65, + "probability": 0.8704 + }, + { + "start": 18594.71, + "end": 18595.35, + "probability": 0.596 + }, + { + "start": 18595.41, + "end": 18596.91, + "probability": 0.8645 + }, + { + "start": 18596.99, + "end": 18597.67, + "probability": 0.7412 + }, + { + "start": 18598.23, + "end": 18598.69, + "probability": 0.1132 + }, + { + "start": 18598.79, + "end": 18600.45, + "probability": 0.3907 + }, + { + "start": 18601.13, + "end": 18602.77, + "probability": 0.7209 + }, + { + "start": 18602.95, + "end": 18607.67, + "probability": 0.972 + }, + { + "start": 18608.03, + "end": 18609.65, + "probability": 0.9968 + }, + { + "start": 18609.69, + "end": 18610.24, + "probability": 0.7183 + }, + { + "start": 18610.39, + "end": 18612.45, + "probability": 0.7102 + }, + { + "start": 18612.99, + "end": 18613.47, + "probability": 0.8377 + }, + { + "start": 18613.69, + "end": 18616.93, + "probability": 0.987 + }, + { + "start": 18617.35, + "end": 18619.49, + "probability": 0.9739 + }, + { + "start": 18619.53, + "end": 18620.35, + "probability": 0.9315 + }, + { + "start": 18620.69, + "end": 18621.61, + "probability": 0.9863 + }, + { + "start": 18621.69, + "end": 18625.65, + "probability": 0.9867 + }, + { + "start": 18625.69, + "end": 18626.81, + "probability": 0.5949 + }, + { + "start": 18626.97, + "end": 18627.95, + "probability": 0.7805 + }, + { + "start": 18628.83, + "end": 18631.33, + "probability": 0.957 + }, + { + "start": 18632.03, + "end": 18634.49, + "probability": 0.888 + }, + { + "start": 18634.83, + "end": 18638.05, + "probability": 0.9962 + }, + { + "start": 18638.11, + "end": 18639.65, + "probability": 0.9472 + }, + { + "start": 18640.13, + "end": 18640.41, + "probability": 0.5347 + }, + { + "start": 18640.43, + "end": 18640.87, + "probability": 0.8947 + }, + { + "start": 18641.03, + "end": 18643.31, + "probability": 0.8501 + }, + { + "start": 18643.49, + "end": 18644.83, + "probability": 0.9697 + }, + { + "start": 18644.91, + "end": 18645.47, + "probability": 0.9297 + }, + { + "start": 18646.57, + "end": 18648.4, + "probability": 0.7903 + }, + { + "start": 18648.45, + "end": 18653.11, + "probability": 0.9768 + }, + { + "start": 18654.35, + "end": 18660.85, + "probability": 0.9243 + }, + { + "start": 18665.83, + "end": 18668.67, + "probability": 0.8889 + }, + { + "start": 18668.89, + "end": 18670.73, + "probability": 0.8487 + }, + { + "start": 18671.68, + "end": 18674.77, + "probability": 0.6146 + }, + { + "start": 18675.89, + "end": 18677.99, + "probability": 0.9671 + }, + { + "start": 18678.05, + "end": 18679.73, + "probability": 0.9874 + }, + { + "start": 18680.19, + "end": 18682.49, + "probability": 0.9461 + }, + { + "start": 18683.13, + "end": 18684.79, + "probability": 0.9094 + }, + { + "start": 18685.79, + "end": 18685.87, + "probability": 0.5196 + }, + { + "start": 18685.87, + "end": 18687.45, + "probability": 0.5793 + }, + { + "start": 18689.03, + "end": 18689.37, + "probability": 0.7881 + }, + { + "start": 18689.69, + "end": 18691.19, + "probability": 0.714 + }, + { + "start": 18694.35, + "end": 18696.23, + "probability": 0.7764 + }, + { + "start": 18697.11, + "end": 18699.43, + "probability": 0.6777 + }, + { + "start": 18701.63, + "end": 18704.31, + "probability": 0.8281 + }, + { + "start": 18705.09, + "end": 18708.31, + "probability": 0.9928 + }, + { + "start": 18708.67, + "end": 18710.11, + "probability": 0.7475 + }, + { + "start": 18712.42, + "end": 18718.39, + "probability": 0.8235 + }, + { + "start": 18719.39, + "end": 18719.81, + "probability": 0.8266 + }, + { + "start": 18719.93, + "end": 18725.27, + "probability": 0.8434 + }, + { + "start": 18725.65, + "end": 18726.33, + "probability": 0.7261 + }, + { + "start": 18727.19, + "end": 18727.27, + "probability": 0.7375 + }, + { + "start": 18731.55, + "end": 18732.61, + "probability": 0.2764 + }, + { + "start": 18733.31, + "end": 18733.41, + "probability": 0.5358 + }, + { + "start": 18733.41, + "end": 18733.91, + "probability": 0.9297 + }, + { + "start": 18734.35, + "end": 18735.61, + "probability": 0.0401 + }, + { + "start": 18735.83, + "end": 18737.37, + "probability": 0.8268 + }, + { + "start": 18738.19, + "end": 18739.75, + "probability": 0.9226 + }, + { + "start": 18740.29, + "end": 18744.65, + "probability": 0.9659 + }, + { + "start": 18745.45, + "end": 18747.95, + "probability": 0.9896 + }, + { + "start": 18753.67, + "end": 18758.79, + "probability": 0.9908 + }, + { + "start": 18759.77, + "end": 18762.59, + "probability": 0.9368 + }, + { + "start": 18763.87, + "end": 18765.97, + "probability": 0.9136 + }, + { + "start": 18766.81, + "end": 18767.61, + "probability": 0.9595 + }, + { + "start": 18767.89, + "end": 18769.83, + "probability": 0.9927 + }, + { + "start": 18770.07, + "end": 18771.49, + "probability": 0.7266 + }, + { + "start": 18772.03, + "end": 18774.05, + "probability": 0.8942 + }, + { + "start": 18774.57, + "end": 18779.57, + "probability": 0.8124 + }, + { + "start": 18780.37, + "end": 18781.67, + "probability": 0.808 + }, + { + "start": 18782.11, + "end": 18782.97, + "probability": 0.8291 + }, + { + "start": 18783.37, + "end": 18785.47, + "probability": 0.8033 + }, + { + "start": 18789.77, + "end": 18791.25, + "probability": 0.4232 + }, + { + "start": 18792.61, + "end": 18795.49, + "probability": 0.8029 + }, + { + "start": 18796.25, + "end": 18799.31, + "probability": 0.9062 + }, + { + "start": 18800.13, + "end": 18800.45, + "probability": 0.9868 + }, + { + "start": 18801.23, + "end": 18802.27, + "probability": 0.9657 + }, + { + "start": 18802.79, + "end": 18805.35, + "probability": 0.8231 + }, + { + "start": 18806.13, + "end": 18809.31, + "probability": 0.9209 + }, + { + "start": 18810.05, + "end": 18810.39, + "probability": 0.9949 + }, + { + "start": 18811.79, + "end": 18812.77, + "probability": 0.891 + }, + { + "start": 18813.77, + "end": 18818.57, + "probability": 0.709 + }, + { + "start": 18819.11, + "end": 18821.77, + "probability": 0.8563 + }, + { + "start": 18822.65, + "end": 18823.21, + "probability": 0.9772 + }, + { + "start": 18824.67, + "end": 18826.35, + "probability": 0.9223 + }, + { + "start": 18827.49, + "end": 18829.85, + "probability": 0.9658 + }, + { + "start": 18831.02, + "end": 18833.63, + "probability": 0.9602 + }, + { + "start": 18834.55, + "end": 18835.49, + "probability": 0.9917 + }, + { + "start": 18836.35, + "end": 18837.55, + "probability": 0.984 + }, + { + "start": 18839.69, + "end": 18840.11, + "probability": 0.9883 + }, + { + "start": 18842.31, + "end": 18843.17, + "probability": 0.6043 + }, + { + "start": 18844.17, + "end": 18844.87, + "probability": 0.9056 + }, + { + "start": 18845.89, + "end": 18846.73, + "probability": 0.9604 + }, + { + "start": 18848.21, + "end": 18849.09, + "probability": 0.966 + }, + { + "start": 18849.71, + "end": 18850.79, + "probability": 0.9403 + }, + { + "start": 18852.05, + "end": 18854.71, + "probability": 0.974 + }, + { + "start": 18856.47, + "end": 18858.69, + "probability": 0.8403 + }, + { + "start": 18859.93, + "end": 18860.55, + "probability": 0.9746 + }, + { + "start": 18861.77, + "end": 18862.59, + "probability": 0.6478 + }, + { + "start": 18863.39, + "end": 18863.89, + "probability": 0.9795 + }, + { + "start": 18864.63, + "end": 18865.57, + "probability": 0.9796 + }, + { + "start": 18866.13, + "end": 18866.99, + "probability": 0.9873 + }, + { + "start": 18867.61, + "end": 18868.53, + "probability": 0.8993 + }, + { + "start": 18869.57, + "end": 18869.91, + "probability": 0.7285 + }, + { + "start": 18870.87, + "end": 18871.75, + "probability": 0.7411 + }, + { + "start": 18875.93, + "end": 18876.87, + "probability": 0.8001 + }, + { + "start": 18877.57, + "end": 18878.49, + "probability": 0.6717 + }, + { + "start": 18879.59, + "end": 18880.07, + "probability": 0.7183 + }, + { + "start": 18880.93, + "end": 18881.85, + "probability": 0.8833 + }, + { + "start": 18882.89, + "end": 18885.11, + "probability": 0.8994 + }, + { + "start": 18886.67, + "end": 18887.47, + "probability": 0.9331 + }, + { + "start": 18888.29, + "end": 18889.21, + "probability": 0.9836 + }, + { + "start": 18890.42, + "end": 18892.61, + "probability": 0.8984 + }, + { + "start": 18893.69, + "end": 18894.25, + "probability": 0.9481 + }, + { + "start": 18895.21, + "end": 18896.15, + "probability": 0.9596 + }, + { + "start": 18896.97, + "end": 18897.47, + "probability": 0.951 + }, + { + "start": 18898.17, + "end": 18899.07, + "probability": 0.9244 + }, + { + "start": 18900.27, + "end": 18900.97, + "probability": 0.9829 + }, + { + "start": 18901.57, + "end": 18902.51, + "probability": 0.8969 + }, + { + "start": 18903.63, + "end": 18906.21, + "probability": 0.7967 + }, + { + "start": 18907.19, + "end": 18907.61, + "probability": 0.9185 + }, + { + "start": 18909.59, + "end": 18910.39, + "probability": 0.9282 + }, + { + "start": 18911.29, + "end": 18912.59, + "probability": 0.9836 + }, + { + "start": 18913.11, + "end": 18913.83, + "probability": 0.9072 + }, + { + "start": 18914.73, + "end": 18915.21, + "probability": 0.9221 + }, + { + "start": 18916.03, + "end": 18916.81, + "probability": 0.9318 + }, + { + "start": 18917.53, + "end": 18919.57, + "probability": 0.9237 + }, + { + "start": 18920.41, + "end": 18922.41, + "probability": 0.9329 + }, + { + "start": 18923.73, + "end": 18926.07, + "probability": 0.9753 + }, + { + "start": 18928.33, + "end": 18929.83, + "probability": 0.8984 + }, + { + "start": 18930.81, + "end": 18931.13, + "probability": 0.7629 + }, + { + "start": 18932.23, + "end": 18933.03, + "probability": 0.8205 + }, + { + "start": 18933.91, + "end": 18936.29, + "probability": 0.8891 + }, + { + "start": 18937.83, + "end": 18940.45, + "probability": 0.5118 + }, + { + "start": 18941.33, + "end": 18942.39, + "probability": 0.992 + }, + { + "start": 18943.25, + "end": 18943.77, + "probability": 0.8973 + }, + { + "start": 18944.63, + "end": 18945.53, + "probability": 0.7607 + }, + { + "start": 18946.49, + "end": 18949.17, + "probability": 0.9852 + }, + { + "start": 18950.95, + "end": 18953.43, + "probability": 0.9921 + }, + { + "start": 18953.99, + "end": 18954.93, + "probability": 0.8662 + }, + { + "start": 18955.57, + "end": 18956.79, + "probability": 0.9944 + }, + { + "start": 18958.11, + "end": 18958.41, + "probability": 0.641 + }, + { + "start": 18959.45, + "end": 18960.61, + "probability": 0.4583 + }, + { + "start": 18962.11, + "end": 18964.33, + "probability": 0.8823 + }, + { + "start": 18965.67, + "end": 18966.15, + "probability": 0.9774 + }, + { + "start": 18968.83, + "end": 18970.29, + "probability": 0.7705 + }, + { + "start": 18971.15, + "end": 18971.61, + "probability": 0.9683 + }, + { + "start": 18972.33, + "end": 18973.31, + "probability": 0.9166 + }, + { + "start": 18973.85, + "end": 18974.29, + "probability": 0.7334 + }, + { + "start": 18975.17, + "end": 18976.29, + "probability": 0.9602 + }, + { + "start": 18977.71, + "end": 18978.17, + "probability": 0.9902 + }, + { + "start": 18979.05, + "end": 18979.83, + "probability": 0.9001 + }, + { + "start": 18980.97, + "end": 18981.43, + "probability": 0.9795 + }, + { + "start": 18982.95, + "end": 18983.89, + "probability": 0.6752 + }, + { + "start": 18984.87, + "end": 18985.25, + "probability": 0.5408 + }, + { + "start": 18986.75, + "end": 18987.59, + "probability": 0.7213 + }, + { + "start": 18990.37, + "end": 18992.27, + "probability": 0.8563 + }, + { + "start": 18993.11, + "end": 18994.03, + "probability": 0.6716 + }, + { + "start": 18996.29, + "end": 18996.77, + "probability": 0.9816 + }, + { + "start": 18997.63, + "end": 18998.65, + "probability": 0.918 + }, + { + "start": 19000.31, + "end": 19001.13, + "probability": 0.9583 + }, + { + "start": 19001.65, + "end": 19002.61, + "probability": 0.8274 + }, + { + "start": 19004.39, + "end": 19007.03, + "probability": 0.5767 + }, + { + "start": 19007.77, + "end": 19008.25, + "probability": 0.9712 + }, + { + "start": 19008.89, + "end": 19009.83, + "probability": 0.9041 + }, + { + "start": 19010.67, + "end": 19010.99, + "probability": 0.9261 + }, + { + "start": 19012.31, + "end": 19013.31, + "probability": 0.8465 + }, + { + "start": 19015.33, + "end": 19015.79, + "probability": 0.7243 + }, + { + "start": 19017.43, + "end": 19018.21, + "probability": 0.8987 + }, + { + "start": 19018.93, + "end": 19019.73, + "probability": 0.9728 + }, + { + "start": 19020.89, + "end": 19021.35, + "probability": 0.9536 + }, + { + "start": 19022.49, + "end": 19023.37, + "probability": 0.9431 + }, + { + "start": 19024.61, + "end": 19025.41, + "probability": 0.8394 + }, + { + "start": 19025.99, + "end": 19027.29, + "probability": 0.8274 + }, + { + "start": 19028.17, + "end": 19028.67, + "probability": 0.9445 + }, + { + "start": 19029.73, + "end": 19030.65, + "probability": 0.9683 + }, + { + "start": 19031.35, + "end": 19033.37, + "probability": 0.9872 + }, + { + "start": 19034.13, + "end": 19036.25, + "probability": 0.973 + }, + { + "start": 19038.37, + "end": 19040.85, + "probability": 0.936 + }, + { + "start": 19042.25, + "end": 19043.19, + "probability": 0.853 + }, + { + "start": 19044.35, + "end": 19045.57, + "probability": 0.8486 + }, + { + "start": 19046.71, + "end": 19048.35, + "probability": 0.9686 + }, + { + "start": 19049.81, + "end": 19051.63, + "probability": 0.9509 + }, + { + "start": 19053.07, + "end": 19053.53, + "probability": 0.9774 + }, + { + "start": 19054.31, + "end": 19055.13, + "probability": 0.93 + }, + { + "start": 19056.11, + "end": 19056.57, + "probability": 0.9287 + }, + { + "start": 19058.47, + "end": 19059.53, + "probability": 0.9689 + }, + { + "start": 19060.77, + "end": 19061.25, + "probability": 0.98 + }, + { + "start": 19062.37, + "end": 19063.29, + "probability": 0.6509 + }, + { + "start": 19064.85, + "end": 19067.33, + "probability": 0.9896 + }, + { + "start": 19068.15, + "end": 19068.53, + "probability": 0.9814 + }, + { + "start": 19069.53, + "end": 19071.03, + "probability": 0.9365 + }, + { + "start": 19071.83, + "end": 19074.33, + "probability": 0.6655 + }, + { + "start": 19075.33, + "end": 19077.21, + "probability": 0.8643 + }, + { + "start": 19079.73, + "end": 19082.23, + "probability": 0.4861 + }, + { + "start": 19085.07, + "end": 19085.51, + "probability": 0.7759 + }, + { + "start": 19087.47, + "end": 19088.77, + "probability": 0.7734 + }, + { + "start": 19089.33, + "end": 19089.83, + "probability": 0.9954 + }, + { + "start": 19090.59, + "end": 19091.83, + "probability": 0.9064 + }, + { + "start": 19092.49, + "end": 19094.79, + "probability": 0.9644 + }, + { + "start": 19098.15, + "end": 19099.33, + "probability": 0.9727 + }, + { + "start": 19100.27, + "end": 19101.43, + "probability": 0.9211 + }, + { + "start": 19103.19, + "end": 19106.37, + "probability": 0.8553 + }, + { + "start": 19107.61, + "end": 19107.95, + "probability": 0.6565 + }, + { + "start": 19109.17, + "end": 19110.17, + "probability": 0.8631 + }, + { + "start": 19110.99, + "end": 19113.67, + "probability": 0.8849 + }, + { + "start": 19115.55, + "end": 19117.99, + "probability": 0.9858 + }, + { + "start": 19119.61, + "end": 19120.97, + "probability": 0.9871 + }, + { + "start": 19122.11, + "end": 19123.19, + "probability": 0.771 + }, + { + "start": 19125.27, + "end": 19127.57, + "probability": 0.847 + }, + { + "start": 19128.75, + "end": 19131.57, + "probability": 0.7884 + }, + { + "start": 19132.35, + "end": 19132.81, + "probability": 0.5177 + }, + { + "start": 19134.21, + "end": 19135.23, + "probability": 0.6304 + }, + { + "start": 19136.27, + "end": 19136.75, + "probability": 0.9375 + }, + { + "start": 19137.53, + "end": 19138.35, + "probability": 0.6667 + }, + { + "start": 19141.85, + "end": 19142.53, + "probability": 0.9743 + }, + { + "start": 19144.37, + "end": 19145.27, + "probability": 0.8745 + }, + { + "start": 19147.25, + "end": 19150.69, + "probability": 0.9372 + }, + { + "start": 19153.57, + "end": 19154.51, + "probability": 0.9321 + }, + { + "start": 19155.13, + "end": 19156.41, + "probability": 0.7395 + }, + { + "start": 19157.63, + "end": 19158.37, + "probability": 0.9929 + }, + { + "start": 19159.47, + "end": 19160.47, + "probability": 0.8009 + }, + { + "start": 19161.59, + "end": 19161.95, + "probability": 0.6471 + }, + { + "start": 19163.19, + "end": 19164.17, + "probability": 0.6905 + }, + { + "start": 19165.25, + "end": 19165.75, + "probability": 0.911 + }, + { + "start": 19166.59, + "end": 19167.55, + "probability": 0.9527 + }, + { + "start": 19168.96, + "end": 19171.33, + "probability": 0.9905 + }, + { + "start": 19172.01, + "end": 19174.05, + "probability": 0.9199 + }, + { + "start": 19174.69, + "end": 19176.97, + "probability": 0.9878 + }, + { + "start": 19177.89, + "end": 19178.39, + "probability": 0.9969 + }, + { + "start": 19179.35, + "end": 19180.29, + "probability": 0.8062 + }, + { + "start": 19181.13, + "end": 19181.67, + "probability": 0.9927 + }, + { + "start": 19182.25, + "end": 19183.33, + "probability": 0.8939 + }, + { + "start": 19184.57, + "end": 19187.47, + "probability": 0.9621 + }, + { + "start": 19188.57, + "end": 19189.03, + "probability": 0.5628 + }, + { + "start": 19189.89, + "end": 19190.67, + "probability": 0.8159 + }, + { + "start": 19191.93, + "end": 19192.37, + "probability": 0.8494 + }, + { + "start": 19192.99, + "end": 19193.91, + "probability": 0.6882 + }, + { + "start": 19195.33, + "end": 19197.31, + "probability": 0.9135 + }, + { + "start": 19199.33, + "end": 19200.81, + "probability": 0.9072 + }, + { + "start": 19202.09, + "end": 19202.59, + "probability": 0.9315 + }, + { + "start": 19203.43, + "end": 19204.55, + "probability": 0.8785 + }, + { + "start": 19207.63, + "end": 19210.05, + "probability": 0.8638 + }, + { + "start": 19211.47, + "end": 19212.41, + "probability": 0.8505 + }, + { + "start": 19213.63, + "end": 19214.03, + "probability": 0.9634 + }, + { + "start": 19215.01, + "end": 19215.95, + "probability": 0.8686 + }, + { + "start": 19216.79, + "end": 19216.87, + "probability": 0.974 + }, + { + "start": 19217.95, + "end": 19219.05, + "probability": 0.8521 + }, + { + "start": 19219.81, + "end": 19220.25, + "probability": 0.7812 + }, + { + "start": 19221.05, + "end": 19221.89, + "probability": 0.889 + }, + { + "start": 19222.93, + "end": 19223.41, + "probability": 0.9492 + }, + { + "start": 19224.19, + "end": 19225.17, + "probability": 0.9438 + }, + { + "start": 19226.17, + "end": 19228.63, + "probability": 0.9657 + }, + { + "start": 19232.79, + "end": 19233.33, + "probability": 0.992 + }, + { + "start": 19234.59, + "end": 19235.55, + "probability": 0.6134 + }, + { + "start": 19237.49, + "end": 19239.63, + "probability": 0.9544 + }, + { + "start": 19241.43, + "end": 19243.09, + "probability": 0.9686 + }, + { + "start": 19243.87, + "end": 19244.25, + "probability": 0.9751 + }, + { + "start": 19244.87, + "end": 19245.79, + "probability": 0.7719 + }, + { + "start": 19247.13, + "end": 19249.17, + "probability": 0.6882 + }, + { + "start": 19250.05, + "end": 19252.23, + "probability": 0.3856 + }, + { + "start": 19252.27, + "end": 19255.49, + "probability": 0.6034 + }, + { + "start": 19256.45, + "end": 19257.35, + "probability": 0.508 + }, + { + "start": 19257.87, + "end": 19260.21, + "probability": 0.4538 + }, + { + "start": 19261.23, + "end": 19261.87, + "probability": 0.9946 + }, + { + "start": 19262.69, + "end": 19265.53, + "probability": 0.7752 + }, + { + "start": 19266.55, + "end": 19268.13, + "probability": 0.9434 + }, + { + "start": 19269.11, + "end": 19270.93, + "probability": 0.9771 + }, + { + "start": 19272.05, + "end": 19274.35, + "probability": 0.9699 + }, + { + "start": 19275.45, + "end": 19277.39, + "probability": 0.9424 + }, + { + "start": 19278.39, + "end": 19280.29, + "probability": 0.5881 + }, + { + "start": 19280.97, + "end": 19282.59, + "probability": 0.8089 + }, + { + "start": 19283.19, + "end": 19284.89, + "probability": 0.9769 + }, + { + "start": 19285.53, + "end": 19286.49, + "probability": 0.9893 + }, + { + "start": 19287.35, + "end": 19290.25, + "probability": 0.954 + }, + { + "start": 19290.97, + "end": 19294.79, + "probability": 0.9898 + }, + { + "start": 19296.03, + "end": 19297.69, + "probability": 0.9026 + }, + { + "start": 19298.47, + "end": 19299.55, + "probability": 0.6025 + }, + { + "start": 19300.13, + "end": 19301.85, + "probability": 0.9102 + }, + { + "start": 19304.45, + "end": 19306.51, + "probability": 0.9667 + }, + { + "start": 19307.37, + "end": 19309.21, + "probability": 0.4957 + }, + { + "start": 19310.15, + "end": 19312.11, + "probability": 0.923 + }, + { + "start": 19312.83, + "end": 19314.67, + "probability": 0.4935 + }, + { + "start": 19315.23, + "end": 19316.97, + "probability": 0.8817 + }, + { + "start": 19318.09, + "end": 19319.03, + "probability": 0.8123 + }, + { + "start": 19320.03, + "end": 19321.38, + "probability": 0.739 + }, + { + "start": 19322.15, + "end": 19323.73, + "probability": 0.9308 + }, + { + "start": 19324.55, + "end": 19325.31, + "probability": 0.9283 + }, + { + "start": 19325.91, + "end": 19326.93, + "probability": 0.7947 + }, + { + "start": 19328.05, + "end": 19329.89, + "probability": 0.9821 + }, + { + "start": 19332.65, + "end": 19333.57, + "probability": 0.714 + }, + { + "start": 19334.13, + "end": 19335.35, + "probability": 0.9504 + }, + { + "start": 19336.81, + "end": 19339.23, + "probability": 0.9297 + }, + { + "start": 19339.87, + "end": 19344.73, + "probability": 0.8493 + }, + { + "start": 19345.83, + "end": 19348.29, + "probability": 0.9533 + }, + { + "start": 19349.21, + "end": 19352.83, + "probability": 0.9419 + }, + { + "start": 19355.91, + "end": 19356.95, + "probability": 0.9506 + }, + { + "start": 19357.57, + "end": 19358.69, + "probability": 0.7928 + }, + { + "start": 19359.39, + "end": 19362.79, + "probability": 0.992 + }, + { + "start": 19363.99, + "end": 19364.87, + "probability": 0.7119 + }, + { + "start": 19365.79, + "end": 19366.53, + "probability": 0.8482 + }, + { + "start": 19367.25, + "end": 19368.19, + "probability": 0.5268 + }, + { + "start": 19369.29, + "end": 19371.25, + "probability": 0.9696 + }, + { + "start": 19371.87, + "end": 19375.03, + "probability": 0.7117 + }, + { + "start": 19375.25, + "end": 19380.05, + "probability": 0.9858 + }, + { + "start": 19382.31, + "end": 19383.43, + "probability": 0.2597 + }, + { + "start": 19383.63, + "end": 19384.59, + "probability": 0.5292 + }, + { + "start": 19384.85, + "end": 19386.15, + "probability": 0.8272 + }, + { + "start": 19387.95, + "end": 19388.55, + "probability": 0.1663 + }, + { + "start": 19392.61, + "end": 19393.41, + "probability": 0.0728 + }, + { + "start": 19399.41, + "end": 19402.99, + "probability": 0.0382 + }, + { + "start": 19481.68, + "end": 19483.58, + "probability": 0.5815 + }, + { + "start": 19485.14, + "end": 19489.46, + "probability": 0.8295 + }, + { + "start": 19490.54, + "end": 19491.2, + "probability": 0.9672 + }, + { + "start": 19492.64, + "end": 19498.2, + "probability": 0.7268 + }, + { + "start": 19498.44, + "end": 19500.04, + "probability": 0.4738 + }, + { + "start": 19500.54, + "end": 19502.06, + "probability": 0.569 + }, + { + "start": 19505.22, + "end": 19508.24, + "probability": 0.994 + }, + { + "start": 19508.58, + "end": 19510.72, + "probability": 0.8934 + }, + { + "start": 19511.26, + "end": 19513.68, + "probability": 0.6599 + }, + { + "start": 19514.64, + "end": 19516.3, + "probability": 0.7959 + }, + { + "start": 19516.88, + "end": 19518.5, + "probability": 0.9346 + }, + { + "start": 19518.56, + "end": 19519.36, + "probability": 0.4428 + }, + { + "start": 19519.4, + "end": 19520.04, + "probability": 0.7374 + }, + { + "start": 19520.22, + "end": 19520.58, + "probability": 0.5564 + }, + { + "start": 19520.8, + "end": 19521.24, + "probability": 0.7642 + }, + { + "start": 19521.42, + "end": 19522.34, + "probability": 0.9081 + }, + { + "start": 19522.96, + "end": 19528.9, + "probability": 0.819 + }, + { + "start": 19529.28, + "end": 19533.8, + "probability": 0.9138 + }, + { + "start": 19533.96, + "end": 19535.12, + "probability": 0.8074 + }, + { + "start": 19535.2, + "end": 19537.6, + "probability": 0.9911 + }, + { + "start": 19538.14, + "end": 19541.36, + "probability": 0.887 + }, + { + "start": 19542.28, + "end": 19545.84, + "probability": 0.9611 + }, + { + "start": 19547.02, + "end": 19548.5, + "probability": 0.8257 + }, + { + "start": 19548.68, + "end": 19549.14, + "probability": 0.4948 + }, + { + "start": 19549.2, + "end": 19551.66, + "probability": 0.7366 + }, + { + "start": 19551.74, + "end": 19553.01, + "probability": 0.9944 + }, + { + "start": 19553.48, + "end": 19557.28, + "probability": 0.9243 + }, + { + "start": 19557.7, + "end": 19561.02, + "probability": 0.9822 + }, + { + "start": 19561.02, + "end": 19564.42, + "probability": 0.9805 + }, + { + "start": 19564.68, + "end": 19566.58, + "probability": 0.5401 + }, + { + "start": 19566.76, + "end": 19569.7, + "probability": 0.9478 + }, + { + "start": 19569.7, + "end": 19574.46, + "probability": 0.6644 + }, + { + "start": 19574.92, + "end": 19576.26, + "probability": 0.874 + }, + { + "start": 19576.28, + "end": 19577.48, + "probability": 0.8085 + }, + { + "start": 19577.72, + "end": 19581.59, + "probability": 0.9934 + }, + { + "start": 19582.34, + "end": 19583.48, + "probability": 0.7984 + }, + { + "start": 19583.88, + "end": 19584.28, + "probability": 0.5281 + }, + { + "start": 19584.36, + "end": 19584.7, + "probability": 0.575 + }, + { + "start": 19584.8, + "end": 19590.66, + "probability": 0.8396 + }, + { + "start": 19591.26, + "end": 19593.28, + "probability": 0.8881 + }, + { + "start": 19593.32, + "end": 19595.46, + "probability": 0.8679 + }, + { + "start": 19597.84, + "end": 19599.74, + "probability": 0.4216 + }, + { + "start": 19601.2, + "end": 19602.34, + "probability": 0.4506 + }, + { + "start": 19602.36, + "end": 19604.83, + "probability": 0.1713 + }, + { + "start": 19605.52, + "end": 19608.02, + "probability": 0.9224 + }, + { + "start": 19608.26, + "end": 19609.98, + "probability": 0.4391 + }, + { + "start": 19609.98, + "end": 19610.1, + "probability": 0.3696 + }, + { + "start": 19610.32, + "end": 19613.78, + "probability": 0.9087 + }, + { + "start": 19613.84, + "end": 19615.22, + "probability": 0.9333 + }, + { + "start": 19616.04, + "end": 19616.04, + "probability": 0.0304 + }, + { + "start": 19616.04, + "end": 19616.66, + "probability": 0.7133 + }, + { + "start": 19617.14, + "end": 19622.58, + "probability": 0.9085 + }, + { + "start": 19622.92, + "end": 19629.18, + "probability": 0.9259 + }, + { + "start": 19629.56, + "end": 19630.04, + "probability": 0.9521 + }, + { + "start": 19630.46, + "end": 19631.3, + "probability": 0.2895 + }, + { + "start": 19631.3, + "end": 19632.48, + "probability": 0.921 + }, + { + "start": 19632.92, + "end": 19634.22, + "probability": 0.6477 + }, + { + "start": 19634.28, + "end": 19635.28, + "probability": 0.8201 + }, + { + "start": 19636.16, + "end": 19638.28, + "probability": 0.5183 + }, + { + "start": 19638.34, + "end": 19640.24, + "probability": 0.8843 + }, + { + "start": 19640.78, + "end": 19644.04, + "probability": 0.4719 + } + ], + "segments_count": 7660, + "words_count": 34955, + "avg_words_per_segment": 4.5633, + "avg_segment_duration": 1.8074, + "avg_words_per_minute": 106.0657, + "plenum_id": "67928", + "duration": 19773.6, + "title": null, + "plenum_date": "2017-11-27" +} \ No newline at end of file