diff --git "a/130091/metadata.json" "b/130091/metadata.json" new file mode 100644--- /dev/null +++ "b/130091/metadata.json" @@ -0,0 +1,25492 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "130091", + "quality_score": 0.9019, + "per_segment_quality_scores": [ + { + "start": 0.26, + "end": 3.74, + "probability": 0.1256 + }, + { + "start": 3.74, + "end": 5.61, + "probability": 0.1803 + }, + { + "start": 7.4, + "end": 7.5, + "probability": 0.1405 + }, + { + "start": 50.16, + "end": 50.88, + "probability": 0.0044 + }, + { + "start": 55.1, + "end": 56.42, + "probability": 0.5586 + }, + { + "start": 56.78, + "end": 60.3, + "probability": 0.6876 + }, + { + "start": 60.34, + "end": 60.76, + "probability": 0.8708 + }, + { + "start": 61.3, + "end": 62.44, + "probability": 0.7473 + }, + { + "start": 62.56, + "end": 63.52, + "probability": 0.6903 + }, + { + "start": 63.58, + "end": 66.9, + "probability": 0.9624 + }, + { + "start": 67.42, + "end": 70.26, + "probability": 0.995 + }, + { + "start": 70.44, + "end": 74.06, + "probability": 0.9059 + }, + { + "start": 74.32, + "end": 74.54, + "probability": 0.8729 + }, + { + "start": 75.76, + "end": 76.98, + "probability": 0.9338 + }, + { + "start": 77.12, + "end": 79.28, + "probability": 0.9927 + }, + { + "start": 79.28, + "end": 83.6, + "probability": 0.952 + }, + { + "start": 83.66, + "end": 85.62, + "probability": 0.4831 + }, + { + "start": 85.82, + "end": 86.58, + "probability": 0.7138 + }, + { + "start": 86.66, + "end": 92.12, + "probability": 0.981 + }, + { + "start": 92.4, + "end": 93.82, + "probability": 0.8305 + }, + { + "start": 95.86, + "end": 98.82, + "probability": 0.3194 + }, + { + "start": 100.06, + "end": 100.08, + "probability": 0.3253 + }, + { + "start": 100.08, + "end": 101.96, + "probability": 0.5767 + }, + { + "start": 102.26, + "end": 103.6, + "probability": 0.7851 + }, + { + "start": 105.6, + "end": 110.98, + "probability": 0.7652 + }, + { + "start": 111.94, + "end": 113.7, + "probability": 0.9626 + }, + { + "start": 115.74, + "end": 116.64, + "probability": 0.1013 + }, + { + "start": 117.16, + "end": 119.68, + "probability": 0.9781 + }, + { + "start": 119.68, + "end": 123.58, + "probability": 0.9891 + }, + { + "start": 124.68, + "end": 125.44, + "probability": 0.9006 + }, + { + "start": 125.48, + "end": 127.44, + "probability": 0.9427 + }, + { + "start": 127.5, + "end": 131.3, + "probability": 0.9993 + }, + { + "start": 131.3, + "end": 135.06, + "probability": 0.926 + }, + { + "start": 135.2, + "end": 138.4, + "probability": 0.9974 + }, + { + "start": 138.4, + "end": 141.84, + "probability": 0.9938 + }, + { + "start": 142.64, + "end": 143.9, + "probability": 0.7476 + }, + { + "start": 144.04, + "end": 148.46, + "probability": 0.8553 + }, + { + "start": 148.46, + "end": 151.08, + "probability": 0.9286 + }, + { + "start": 151.22, + "end": 152.86, + "probability": 0.9376 + }, + { + "start": 152.98, + "end": 154.48, + "probability": 0.9481 + }, + { + "start": 155.18, + "end": 159.36, + "probability": 0.9327 + }, + { + "start": 159.4, + "end": 161.94, + "probability": 0.9819 + }, + { + "start": 162.84, + "end": 164.54, + "probability": 0.9534 + }, + { + "start": 164.92, + "end": 169.34, + "probability": 0.9946 + }, + { + "start": 170.96, + "end": 171.92, + "probability": 0.9268 + }, + { + "start": 172.74, + "end": 175.48, + "probability": 0.9911 + }, + { + "start": 175.48, + "end": 178.32, + "probability": 0.6669 + }, + { + "start": 178.8, + "end": 180.5, + "probability": 0.9415 + }, + { + "start": 180.78, + "end": 181.46, + "probability": 0.7843 + }, + { + "start": 181.5, + "end": 185.02, + "probability": 0.9747 + }, + { + "start": 185.54, + "end": 188.16, + "probability": 0.9908 + }, + { + "start": 188.16, + "end": 191.8, + "probability": 0.9147 + }, + { + "start": 192.34, + "end": 194.72, + "probability": 0.9761 + }, + { + "start": 194.72, + "end": 198.9, + "probability": 0.9883 + }, + { + "start": 199.48, + "end": 203.26, + "probability": 0.9576 + }, + { + "start": 204.72, + "end": 208.6, + "probability": 0.8892 + }, + { + "start": 209.06, + "end": 213.06, + "probability": 0.9476 + }, + { + "start": 213.56, + "end": 214.28, + "probability": 0.7263 + }, + { + "start": 214.6, + "end": 220.08, + "probability": 0.9843 + }, + { + "start": 220.6, + "end": 225.74, + "probability": 0.9769 + }, + { + "start": 225.74, + "end": 229.78, + "probability": 0.9948 + }, + { + "start": 231.12, + "end": 234.69, + "probability": 0.9822 + }, + { + "start": 235.38, + "end": 241.16, + "probability": 0.9122 + }, + { + "start": 241.22, + "end": 243.43, + "probability": 0.9985 + }, + { + "start": 244.28, + "end": 246.8, + "probability": 0.9542 + }, + { + "start": 248.28, + "end": 250.9, + "probability": 0.739 + }, + { + "start": 251.36, + "end": 254.8, + "probability": 0.9899 + }, + { + "start": 254.8, + "end": 259.0, + "probability": 0.9943 + }, + { + "start": 259.56, + "end": 264.7, + "probability": 0.9565 + }, + { + "start": 266.38, + "end": 270.06, + "probability": 0.9958 + }, + { + "start": 270.06, + "end": 274.7, + "probability": 0.9898 + }, + { + "start": 274.94, + "end": 279.24, + "probability": 0.9818 + }, + { + "start": 280.71, + "end": 285.26, + "probability": 0.9932 + }, + { + "start": 285.26, + "end": 291.54, + "probability": 0.9914 + }, + { + "start": 291.54, + "end": 298.42, + "probability": 0.9845 + }, + { + "start": 298.42, + "end": 304.14, + "probability": 0.9895 + }, + { + "start": 304.8, + "end": 307.92, + "probability": 0.9713 + }, + { + "start": 308.48, + "end": 313.56, + "probability": 0.9945 + }, + { + "start": 313.64, + "end": 317.78, + "probability": 0.9831 + }, + { + "start": 317.96, + "end": 322.12, + "probability": 0.9926 + }, + { + "start": 322.18, + "end": 326.18, + "probability": 0.9222 + }, + { + "start": 327.04, + "end": 329.54, + "probability": 0.9987 + }, + { + "start": 330.0, + "end": 330.5, + "probability": 0.5276 + }, + { + "start": 330.5, + "end": 330.85, + "probability": 0.5269 + }, + { + "start": 331.2, + "end": 332.84, + "probability": 0.9718 + }, + { + "start": 333.28, + "end": 336.26, + "probability": 0.9718 + }, + { + "start": 336.36, + "end": 338.16, + "probability": 0.6926 + }, + { + "start": 338.22, + "end": 338.64, + "probability": 0.5193 + }, + { + "start": 338.72, + "end": 339.38, + "probability": 0.617 + }, + { + "start": 353.66, + "end": 355.38, + "probability": 0.9485 + }, + { + "start": 357.3, + "end": 360.94, + "probability": 0.785 + }, + { + "start": 362.88, + "end": 364.86, + "probability": 0.8742 + }, + { + "start": 367.9, + "end": 369.22, + "probability": 0.7301 + }, + { + "start": 371.2, + "end": 377.54, + "probability": 0.9983 + }, + { + "start": 378.72, + "end": 380.28, + "probability": 0.8265 + }, + { + "start": 382.38, + "end": 383.48, + "probability": 0.963 + }, + { + "start": 384.88, + "end": 386.0, + "probability": 0.9917 + }, + { + "start": 387.76, + "end": 394.8, + "probability": 0.5862 + }, + { + "start": 397.02, + "end": 399.5, + "probability": 0.998 + }, + { + "start": 401.62, + "end": 405.14, + "probability": 0.9477 + }, + { + "start": 405.82, + "end": 406.66, + "probability": 0.933 + }, + { + "start": 407.88, + "end": 410.1, + "probability": 0.8179 + }, + { + "start": 411.28, + "end": 412.96, + "probability": 0.8511 + }, + { + "start": 414.0, + "end": 415.74, + "probability": 0.9554 + }, + { + "start": 416.86, + "end": 420.24, + "probability": 0.9946 + }, + { + "start": 421.8, + "end": 427.76, + "probability": 0.916 + }, + { + "start": 429.26, + "end": 431.2, + "probability": 0.938 + }, + { + "start": 431.44, + "end": 432.46, + "probability": 0.9392 + }, + { + "start": 432.46, + "end": 433.08, + "probability": 0.9376 + }, + { + "start": 433.3, + "end": 433.78, + "probability": 0.9492 + }, + { + "start": 433.92, + "end": 434.54, + "probability": 0.7865 + }, + { + "start": 435.28, + "end": 435.96, + "probability": 0.6053 + }, + { + "start": 437.9, + "end": 440.22, + "probability": 0.9229 + }, + { + "start": 440.24, + "end": 440.68, + "probability": 0.9469 + }, + { + "start": 440.76, + "end": 444.58, + "probability": 0.9907 + }, + { + "start": 446.82, + "end": 447.5, + "probability": 0.7436 + }, + { + "start": 452.84, + "end": 454.3, + "probability": 0.7323 + }, + { + "start": 456.28, + "end": 459.44, + "probability": 0.9692 + }, + { + "start": 460.92, + "end": 462.52, + "probability": 0.9266 + }, + { + "start": 463.74, + "end": 466.44, + "probability": 0.6546 + }, + { + "start": 467.86, + "end": 468.9, + "probability": 0.9481 + }, + { + "start": 470.0, + "end": 470.84, + "probability": 0.7789 + }, + { + "start": 471.02, + "end": 472.68, + "probability": 0.9823 + }, + { + "start": 472.78, + "end": 474.1, + "probability": 0.8965 + }, + { + "start": 474.34, + "end": 479.08, + "probability": 0.9927 + }, + { + "start": 480.16, + "end": 481.2, + "probability": 0.501 + }, + { + "start": 482.48, + "end": 483.94, + "probability": 0.9629 + }, + { + "start": 484.64, + "end": 485.22, + "probability": 0.9571 + }, + { + "start": 486.3, + "end": 489.92, + "probability": 0.8522 + }, + { + "start": 492.56, + "end": 499.01, + "probability": 0.9944 + }, + { + "start": 499.66, + "end": 506.2, + "probability": 0.6621 + }, + { + "start": 507.6, + "end": 508.48, + "probability": 0.0366 + }, + { + "start": 509.64, + "end": 510.74, + "probability": 0.2507 + }, + { + "start": 511.6, + "end": 512.62, + "probability": 0.8616 + }, + { + "start": 515.14, + "end": 517.26, + "probability": 0.9727 + }, + { + "start": 519.28, + "end": 522.02, + "probability": 0.9933 + }, + { + "start": 522.4, + "end": 523.76, + "probability": 0.9353 + }, + { + "start": 525.1, + "end": 526.76, + "probability": 0.9775 + }, + { + "start": 528.18, + "end": 532.08, + "probability": 0.9033 + }, + { + "start": 533.02, + "end": 536.7, + "probability": 0.9683 + }, + { + "start": 537.48, + "end": 539.2, + "probability": 0.9263 + }, + { + "start": 539.96, + "end": 540.3, + "probability": 0.7956 + }, + { + "start": 541.02, + "end": 541.84, + "probability": 0.551 + }, + { + "start": 541.88, + "end": 545.58, + "probability": 0.9188 + }, + { + "start": 560.28, + "end": 562.14, + "probability": 0.9053 + }, + { + "start": 564.3, + "end": 565.19, + "probability": 0.0601 + }, + { + "start": 566.16, + "end": 567.42, + "probability": 0.8228 + }, + { + "start": 568.49, + "end": 572.4, + "probability": 0.9941 + }, + { + "start": 573.08, + "end": 577.22, + "probability": 0.8922 + }, + { + "start": 579.42, + "end": 584.12, + "probability": 0.9274 + }, + { + "start": 585.02, + "end": 589.75, + "probability": 0.9862 + }, + { + "start": 591.22, + "end": 594.82, + "probability": 0.9171 + }, + { + "start": 596.02, + "end": 599.1, + "probability": 0.979 + }, + { + "start": 599.62, + "end": 600.7, + "probability": 0.8784 + }, + { + "start": 601.12, + "end": 601.26, + "probability": 0.5694 + }, + { + "start": 601.3, + "end": 603.98, + "probability": 0.9894 + }, + { + "start": 605.36, + "end": 605.92, + "probability": 0.8575 + }, + { + "start": 605.96, + "end": 609.48, + "probability": 0.9976 + }, + { + "start": 610.44, + "end": 616.16, + "probability": 0.9835 + }, + { + "start": 616.16, + "end": 619.08, + "probability": 0.9993 + }, + { + "start": 619.98, + "end": 620.76, + "probability": 0.915 + }, + { + "start": 621.34, + "end": 622.56, + "probability": 0.9502 + }, + { + "start": 623.16, + "end": 626.6, + "probability": 0.9862 + }, + { + "start": 627.58, + "end": 629.5, + "probability": 0.9664 + }, + { + "start": 631.38, + "end": 635.14, + "probability": 0.9903 + }, + { + "start": 635.14, + "end": 639.7, + "probability": 0.9736 + }, + { + "start": 639.76, + "end": 640.7, + "probability": 0.6432 + }, + { + "start": 641.48, + "end": 644.68, + "probability": 0.9908 + }, + { + "start": 645.66, + "end": 646.38, + "probability": 0.4798 + }, + { + "start": 646.96, + "end": 650.5, + "probability": 0.9893 + }, + { + "start": 650.9, + "end": 651.74, + "probability": 0.986 + }, + { + "start": 651.84, + "end": 652.76, + "probability": 0.8699 + }, + { + "start": 655.1, + "end": 658.5, + "probability": 0.9976 + }, + { + "start": 659.14, + "end": 660.2, + "probability": 0.8476 + }, + { + "start": 660.9, + "end": 663.02, + "probability": 0.9152 + }, + { + "start": 664.26, + "end": 668.34, + "probability": 0.9959 + }, + { + "start": 669.46, + "end": 671.82, + "probability": 0.9785 + }, + { + "start": 672.5, + "end": 675.66, + "probability": 0.984 + }, + { + "start": 676.3, + "end": 678.66, + "probability": 0.9958 + }, + { + "start": 679.6, + "end": 684.52, + "probability": 0.9902 + }, + { + "start": 685.08, + "end": 689.42, + "probability": 0.9939 + }, + { + "start": 690.32, + "end": 693.9, + "probability": 0.9969 + }, + { + "start": 694.66, + "end": 696.62, + "probability": 0.9978 + }, + { + "start": 697.98, + "end": 701.44, + "probability": 0.9977 + }, + { + "start": 701.44, + "end": 706.38, + "probability": 0.9814 + }, + { + "start": 707.26, + "end": 710.52, + "probability": 0.9902 + }, + { + "start": 710.68, + "end": 711.14, + "probability": 0.9206 + }, + { + "start": 712.5, + "end": 715.04, + "probability": 0.9984 + }, + { + "start": 716.34, + "end": 719.07, + "probability": 0.9989 + }, + { + "start": 719.84, + "end": 720.8, + "probability": 0.871 + }, + { + "start": 721.4, + "end": 723.24, + "probability": 0.9928 + }, + { + "start": 724.08, + "end": 726.06, + "probability": 0.9631 + }, + { + "start": 726.74, + "end": 729.18, + "probability": 0.9893 + }, + { + "start": 729.74, + "end": 732.12, + "probability": 0.9506 + }, + { + "start": 733.54, + "end": 734.22, + "probability": 0.9368 + }, + { + "start": 734.72, + "end": 740.66, + "probability": 0.9706 + }, + { + "start": 741.12, + "end": 742.0, + "probability": 0.9343 + }, + { + "start": 743.2, + "end": 744.1, + "probability": 0.6036 + }, + { + "start": 744.12, + "end": 746.84, + "probability": 0.9277 + }, + { + "start": 747.86, + "end": 748.92, + "probability": 0.8375 + }, + { + "start": 749.64, + "end": 751.06, + "probability": 0.9639 + }, + { + "start": 752.18, + "end": 752.94, + "probability": 0.8618 + }, + { + "start": 753.2, + "end": 756.0, + "probability": 0.9944 + }, + { + "start": 756.76, + "end": 758.24, + "probability": 0.9427 + }, + { + "start": 759.04, + "end": 759.54, + "probability": 0.9324 + }, + { + "start": 773.86, + "end": 776.04, + "probability": 0.688 + }, + { + "start": 776.8, + "end": 778.48, + "probability": 0.4832 + }, + { + "start": 779.1, + "end": 781.52, + "probability": 0.8257 + }, + { + "start": 782.6, + "end": 785.52, + "probability": 0.9373 + }, + { + "start": 786.44, + "end": 786.64, + "probability": 0.5407 + }, + { + "start": 786.78, + "end": 787.8, + "probability": 0.8606 + }, + { + "start": 787.86, + "end": 792.18, + "probability": 0.9827 + }, + { + "start": 792.94, + "end": 801.06, + "probability": 0.9961 + }, + { + "start": 801.38, + "end": 802.86, + "probability": 0.6818 + }, + { + "start": 803.5, + "end": 806.76, + "probability": 0.9699 + }, + { + "start": 807.74, + "end": 811.88, + "probability": 0.8773 + }, + { + "start": 812.78, + "end": 814.0, + "probability": 0.0335 + }, + { + "start": 814.66, + "end": 817.14, + "probability": 0.4961 + }, + { + "start": 817.36, + "end": 821.88, + "probability": 0.9054 + }, + { + "start": 822.78, + "end": 823.6, + "probability": 0.6784 + }, + { + "start": 823.94, + "end": 824.94, + "probability": 0.7233 + }, + { + "start": 825.06, + "end": 826.38, + "probability": 0.908 + }, + { + "start": 826.72, + "end": 828.12, + "probability": 0.979 + }, + { + "start": 828.82, + "end": 829.38, + "probability": 0.3196 + }, + { + "start": 830.32, + "end": 832.48, + "probability": 0.9454 + }, + { + "start": 833.6, + "end": 836.82, + "probability": 0.9926 + }, + { + "start": 838.44, + "end": 840.56, + "probability": 0.7498 + }, + { + "start": 841.44, + "end": 841.93, + "probability": 0.9541 + }, + { + "start": 843.24, + "end": 845.52, + "probability": 0.9758 + }, + { + "start": 848.3, + "end": 849.66, + "probability": 0.9747 + }, + { + "start": 849.8, + "end": 854.68, + "probability": 0.9242 + }, + { + "start": 855.62, + "end": 859.18, + "probability": 0.9861 + }, + { + "start": 859.92, + "end": 860.08, + "probability": 0.656 + }, + { + "start": 860.2, + "end": 860.85, + "probability": 0.8755 + }, + { + "start": 861.5, + "end": 861.74, + "probability": 0.9387 + }, + { + "start": 861.86, + "end": 863.24, + "probability": 0.9307 + }, + { + "start": 863.64, + "end": 863.94, + "probability": 0.9685 + }, + { + "start": 863.98, + "end": 868.43, + "probability": 0.9801 + }, + { + "start": 868.6, + "end": 870.52, + "probability": 0.7568 + }, + { + "start": 871.08, + "end": 872.24, + "probability": 0.8631 + }, + { + "start": 873.24, + "end": 874.62, + "probability": 0.939 + }, + { + "start": 875.6, + "end": 881.1, + "probability": 0.9874 + }, + { + "start": 882.18, + "end": 884.24, + "probability": 0.723 + }, + { + "start": 885.3, + "end": 885.98, + "probability": 0.953 + }, + { + "start": 887.4, + "end": 890.98, + "probability": 0.8803 + }, + { + "start": 897.66, + "end": 898.36, + "probability": 0.5587 + }, + { + "start": 900.2, + "end": 900.9, + "probability": 0.4332 + }, + { + "start": 901.5, + "end": 906.8, + "probability": 0.9346 + }, + { + "start": 907.92, + "end": 914.94, + "probability": 0.9966 + }, + { + "start": 916.4, + "end": 917.7, + "probability": 0.936 + }, + { + "start": 918.22, + "end": 919.82, + "probability": 0.9995 + }, + { + "start": 921.66, + "end": 926.42, + "probability": 0.7551 + }, + { + "start": 928.24, + "end": 929.34, + "probability": 0.7276 + }, + { + "start": 930.92, + "end": 931.9, + "probability": 0.8609 + }, + { + "start": 932.16, + "end": 937.5, + "probability": 0.9668 + }, + { + "start": 939.12, + "end": 943.04, + "probability": 0.9923 + }, + { + "start": 943.12, + "end": 944.34, + "probability": 0.7128 + }, + { + "start": 944.48, + "end": 945.48, + "probability": 0.6081 + }, + { + "start": 948.5, + "end": 952.72, + "probability": 0.8732 + }, + { + "start": 953.24, + "end": 954.9, + "probability": 0.3844 + }, + { + "start": 955.68, + "end": 960.66, + "probability": 0.9797 + }, + { + "start": 961.96, + "end": 962.3, + "probability": 0.3731 + }, + { + "start": 962.3, + "end": 963.48, + "probability": 0.949 + }, + { + "start": 963.9, + "end": 964.24, + "probability": 0.8601 + }, + { + "start": 964.26, + "end": 966.24, + "probability": 0.9049 + }, + { + "start": 966.32, + "end": 967.2, + "probability": 0.6326 + }, + { + "start": 968.74, + "end": 970.04, + "probability": 0.8882 + }, + { + "start": 970.74, + "end": 974.1, + "probability": 0.9933 + }, + { + "start": 974.28, + "end": 974.88, + "probability": 0.7152 + }, + { + "start": 975.4, + "end": 977.28, + "probability": 0.9575 + }, + { + "start": 977.42, + "end": 978.18, + "probability": 0.8816 + }, + { + "start": 978.18, + "end": 978.74, + "probability": 0.3966 + }, + { + "start": 978.76, + "end": 980.34, + "probability": 0.6626 + }, + { + "start": 994.74, + "end": 996.32, + "probability": 0.6638 + }, + { + "start": 997.26, + "end": 998.8, + "probability": 0.4948 + }, + { + "start": 998.94, + "end": 1000.66, + "probability": 0.6812 + }, + { + "start": 1001.74, + "end": 1002.88, + "probability": 0.877 + }, + { + "start": 1003.78, + "end": 1006.16, + "probability": 0.0114 + }, + { + "start": 1006.72, + "end": 1008.32, + "probability": 0.4963 + }, + { + "start": 1009.18, + "end": 1010.94, + "probability": 0.9979 + }, + { + "start": 1011.6, + "end": 1013.8, + "probability": 0.9912 + }, + { + "start": 1014.6, + "end": 1015.68, + "probability": 0.9956 + }, + { + "start": 1016.56, + "end": 1019.34, + "probability": 0.9625 + }, + { + "start": 1019.9, + "end": 1021.98, + "probability": 0.9814 + }, + { + "start": 1022.5, + "end": 1025.3, + "probability": 0.8561 + }, + { + "start": 1026.18, + "end": 1027.06, + "probability": 0.9431 + }, + { + "start": 1027.78, + "end": 1028.82, + "probability": 0.9496 + }, + { + "start": 1029.44, + "end": 1034.46, + "probability": 0.9613 + }, + { + "start": 1035.34, + "end": 1037.18, + "probability": 0.8986 + }, + { + "start": 1037.88, + "end": 1039.28, + "probability": 0.9547 + }, + { + "start": 1040.0, + "end": 1041.14, + "probability": 0.9756 + }, + { + "start": 1041.9, + "end": 1044.02, + "probability": 0.994 + }, + { + "start": 1044.66, + "end": 1047.2, + "probability": 0.9939 + }, + { + "start": 1047.78, + "end": 1051.84, + "probability": 0.874 + }, + { + "start": 1051.84, + "end": 1055.56, + "probability": 0.978 + }, + { + "start": 1056.3, + "end": 1057.52, + "probability": 0.9923 + }, + { + "start": 1058.18, + "end": 1059.64, + "probability": 0.9924 + }, + { + "start": 1060.7, + "end": 1064.1, + "probability": 0.9992 + }, + { + "start": 1065.18, + "end": 1066.24, + "probability": 0.8577 + }, + { + "start": 1066.86, + "end": 1069.1, + "probability": 0.9549 + }, + { + "start": 1069.66, + "end": 1070.6, + "probability": 0.8833 + }, + { + "start": 1071.56, + "end": 1073.64, + "probability": 0.999 + }, + { + "start": 1074.5, + "end": 1076.2, + "probability": 0.9898 + }, + { + "start": 1077.26, + "end": 1081.2, + "probability": 0.9885 + }, + { + "start": 1081.2, + "end": 1084.46, + "probability": 0.962 + }, + { + "start": 1085.44, + "end": 1087.26, + "probability": 0.997 + }, + { + "start": 1087.8, + "end": 1089.5, + "probability": 0.9949 + }, + { + "start": 1089.76, + "end": 1091.8, + "probability": 0.7543 + }, + { + "start": 1092.6, + "end": 1093.76, + "probability": 0.7507 + }, + { + "start": 1094.18, + "end": 1096.34, + "probability": 0.9893 + }, + { + "start": 1096.76, + "end": 1098.4, + "probability": 0.7406 + }, + { + "start": 1099.56, + "end": 1101.42, + "probability": 0.988 + }, + { + "start": 1102.24, + "end": 1103.14, + "probability": 0.9461 + }, + { + "start": 1103.7, + "end": 1107.36, + "probability": 0.9948 + }, + { + "start": 1107.36, + "end": 1110.4, + "probability": 0.9944 + }, + { + "start": 1111.1, + "end": 1115.28, + "probability": 0.9681 + }, + { + "start": 1116.2, + "end": 1120.62, + "probability": 0.8333 + }, + { + "start": 1120.62, + "end": 1127.16, + "probability": 0.9837 + }, + { + "start": 1127.54, + "end": 1128.08, + "probability": 0.8542 + }, + { + "start": 1128.68, + "end": 1129.52, + "probability": 0.5871 + }, + { + "start": 1129.62, + "end": 1133.14, + "probability": 0.8622 + }, + { + "start": 1157.88, + "end": 1159.48, + "probability": 0.651 + }, + { + "start": 1160.12, + "end": 1160.92, + "probability": 0.7657 + }, + { + "start": 1162.04, + "end": 1164.66, + "probability": 0.8014 + }, + { + "start": 1165.34, + "end": 1166.63, + "probability": 0.9824 + }, + { + "start": 1167.62, + "end": 1168.86, + "probability": 0.6476 + }, + { + "start": 1169.36, + "end": 1173.22, + "probability": 0.9603 + }, + { + "start": 1175.7, + "end": 1181.05, + "probability": 0.9919 + }, + { + "start": 1181.76, + "end": 1184.92, + "probability": 0.9976 + }, + { + "start": 1186.16, + "end": 1191.18, + "probability": 0.9875 + }, + { + "start": 1191.72, + "end": 1197.56, + "probability": 0.8597 + }, + { + "start": 1198.1, + "end": 1204.22, + "probability": 0.6652 + }, + { + "start": 1204.82, + "end": 1206.15, + "probability": 0.9983 + }, + { + "start": 1207.78, + "end": 1209.96, + "probability": 0.8637 + }, + { + "start": 1210.48, + "end": 1215.76, + "probability": 0.9622 + }, + { + "start": 1216.3, + "end": 1219.46, + "probability": 0.9954 + }, + { + "start": 1219.78, + "end": 1222.6, + "probability": 0.8911 + }, + { + "start": 1223.64, + "end": 1224.04, + "probability": 0.4897 + }, + { + "start": 1224.04, + "end": 1224.52, + "probability": 0.8695 + }, + { + "start": 1224.62, + "end": 1225.78, + "probability": 0.8789 + }, + { + "start": 1225.94, + "end": 1227.76, + "probability": 0.9809 + }, + { + "start": 1229.1, + "end": 1233.74, + "probability": 0.9993 + }, + { + "start": 1233.74, + "end": 1237.86, + "probability": 0.9956 + }, + { + "start": 1238.48, + "end": 1244.16, + "probability": 0.8785 + }, + { + "start": 1244.92, + "end": 1248.46, + "probability": 0.9775 + }, + { + "start": 1248.46, + "end": 1249.7, + "probability": 0.848 + }, + { + "start": 1251.95, + "end": 1256.16, + "probability": 0.8595 + }, + { + "start": 1256.3, + "end": 1258.9, + "probability": 0.9023 + }, + { + "start": 1259.52, + "end": 1261.43, + "probability": 0.9762 + }, + { + "start": 1262.02, + "end": 1264.98, + "probability": 0.8481 + }, + { + "start": 1265.04, + "end": 1265.55, + "probability": 0.981 + }, + { + "start": 1266.54, + "end": 1273.26, + "probability": 0.974 + }, + { + "start": 1275.28, + "end": 1278.92, + "probability": 0.9962 + }, + { + "start": 1278.92, + "end": 1283.78, + "probability": 0.958 + }, + { + "start": 1284.42, + "end": 1286.16, + "probability": 0.7742 + }, + { + "start": 1286.66, + "end": 1287.42, + "probability": 0.6051 + }, + { + "start": 1287.54, + "end": 1288.8, + "probability": 0.7935 + }, + { + "start": 1289.22, + "end": 1290.82, + "probability": 0.937 + }, + { + "start": 1291.46, + "end": 1293.76, + "probability": 0.862 + }, + { + "start": 1294.2, + "end": 1295.75, + "probability": 0.9688 + }, + { + "start": 1296.7, + "end": 1297.22, + "probability": 0.519 + }, + { + "start": 1297.84, + "end": 1299.0, + "probability": 0.8778 + }, + { + "start": 1299.36, + "end": 1303.18, + "probability": 0.9927 + }, + { + "start": 1303.64, + "end": 1307.04, + "probability": 0.9823 + }, + { + "start": 1307.6, + "end": 1312.52, + "probability": 0.9903 + }, + { + "start": 1313.02, + "end": 1314.44, + "probability": 0.8569 + }, + { + "start": 1316.16, + "end": 1316.5, + "probability": 0.8101 + }, + { + "start": 1317.08, + "end": 1318.22, + "probability": 0.1899 + }, + { + "start": 1318.22, + "end": 1321.26, + "probability": 0.7724 + }, + { + "start": 1333.92, + "end": 1335.36, + "probability": 0.7221 + }, + { + "start": 1337.56, + "end": 1339.02, + "probability": 0.8783 + }, + { + "start": 1339.14, + "end": 1339.96, + "probability": 0.799 + }, + { + "start": 1339.98, + "end": 1340.96, + "probability": 0.7657 + }, + { + "start": 1341.44, + "end": 1344.56, + "probability": 0.9324 + }, + { + "start": 1345.27, + "end": 1348.86, + "probability": 0.994 + }, + { + "start": 1348.86, + "end": 1354.64, + "probability": 0.9675 + }, + { + "start": 1354.8, + "end": 1357.74, + "probability": 0.9944 + }, + { + "start": 1358.7, + "end": 1360.62, + "probability": 0.9626 + }, + { + "start": 1361.12, + "end": 1364.54, + "probability": 0.9897 + }, + { + "start": 1364.68, + "end": 1367.71, + "probability": 0.967 + }, + { + "start": 1367.96, + "end": 1368.14, + "probability": 0.4559 + }, + { + "start": 1368.28, + "end": 1369.58, + "probability": 0.9618 + }, + { + "start": 1369.98, + "end": 1370.84, + "probability": 0.6958 + }, + { + "start": 1371.12, + "end": 1372.48, + "probability": 0.9834 + }, + { + "start": 1373.12, + "end": 1377.4, + "probability": 0.9604 + }, + { + "start": 1377.4, + "end": 1381.82, + "probability": 0.9927 + }, + { + "start": 1382.34, + "end": 1383.64, + "probability": 0.5125 + }, + { + "start": 1384.18, + "end": 1386.06, + "probability": 0.9831 + }, + { + "start": 1386.4, + "end": 1390.51, + "probability": 0.9608 + }, + { + "start": 1392.04, + "end": 1392.04, + "probability": 0.0257 + }, + { + "start": 1392.04, + "end": 1394.16, + "probability": 0.8022 + }, + { + "start": 1394.52, + "end": 1394.94, + "probability": 0.7806 + }, + { + "start": 1395.2, + "end": 1399.46, + "probability": 0.9889 + }, + { + "start": 1399.84, + "end": 1404.14, + "probability": 0.9773 + }, + { + "start": 1404.36, + "end": 1406.08, + "probability": 0.8747 + }, + { + "start": 1406.12, + "end": 1409.72, + "probability": 0.9581 + }, + { + "start": 1409.94, + "end": 1411.32, + "probability": 0.9862 + }, + { + "start": 1411.54, + "end": 1416.08, + "probability": 0.9773 + }, + { + "start": 1416.56, + "end": 1419.48, + "probability": 0.8883 + }, + { + "start": 1420.06, + "end": 1421.28, + "probability": 0.9674 + }, + { + "start": 1421.42, + "end": 1422.4, + "probability": 0.9783 + }, + { + "start": 1422.86, + "end": 1424.5, + "probability": 0.9956 + }, + { + "start": 1425.76, + "end": 1427.32, + "probability": 0.6738 + }, + { + "start": 1427.64, + "end": 1430.24, + "probability": 0.9731 + }, + { + "start": 1430.3, + "end": 1434.18, + "probability": 0.7816 + }, + { + "start": 1434.58, + "end": 1436.36, + "probability": 0.9666 + }, + { + "start": 1436.46, + "end": 1436.98, + "probability": 0.5305 + }, + { + "start": 1437.36, + "end": 1438.14, + "probability": 0.8883 + }, + { + "start": 1438.24, + "end": 1439.36, + "probability": 0.9771 + }, + { + "start": 1439.86, + "end": 1443.64, + "probability": 0.991 + }, + { + "start": 1443.78, + "end": 1446.44, + "probability": 0.9917 + }, + { + "start": 1446.52, + "end": 1449.18, + "probability": 0.9519 + }, + { + "start": 1449.94, + "end": 1454.08, + "probability": 0.6986 + }, + { + "start": 1454.12, + "end": 1455.24, + "probability": 0.7015 + }, + { + "start": 1455.54, + "end": 1456.86, + "probability": 0.7968 + }, + { + "start": 1457.22, + "end": 1460.88, + "probability": 0.9871 + }, + { + "start": 1460.88, + "end": 1461.42, + "probability": 0.9009 + }, + { + "start": 1461.64, + "end": 1463.06, + "probability": 0.9118 + }, + { + "start": 1463.56, + "end": 1468.12, + "probability": 0.9905 + }, + { + "start": 1468.58, + "end": 1471.14, + "probability": 0.8278 + }, + { + "start": 1471.4, + "end": 1472.48, + "probability": 0.8178 + }, + { + "start": 1472.86, + "end": 1474.72, + "probability": 0.8496 + }, + { + "start": 1475.1, + "end": 1480.5, + "probability": 0.9807 + }, + { + "start": 1481.1, + "end": 1484.9, + "probability": 0.9973 + }, + { + "start": 1485.28, + "end": 1487.42, + "probability": 0.845 + }, + { + "start": 1487.5, + "end": 1489.7, + "probability": 0.9958 + }, + { + "start": 1490.1, + "end": 1491.72, + "probability": 0.9842 + }, + { + "start": 1492.0, + "end": 1493.34, + "probability": 0.9877 + }, + { + "start": 1494.0, + "end": 1497.14, + "probability": 0.9939 + }, + { + "start": 1497.4, + "end": 1498.92, + "probability": 0.6893 + }, + { + "start": 1499.34, + "end": 1502.48, + "probability": 0.9799 + }, + { + "start": 1502.9, + "end": 1503.84, + "probability": 0.9265 + }, + { + "start": 1504.08, + "end": 1505.58, + "probability": 0.9845 + }, + { + "start": 1506.76, + "end": 1507.19, + "probability": 0.5451 + }, + { + "start": 1507.92, + "end": 1510.36, + "probability": 0.9512 + }, + { + "start": 1510.82, + "end": 1514.12, + "probability": 0.9968 + }, + { + "start": 1514.44, + "end": 1515.49, + "probability": 0.9963 + }, + { + "start": 1515.88, + "end": 1520.38, + "probability": 0.9646 + }, + { + "start": 1520.7, + "end": 1523.9, + "probability": 0.9224 + }, + { + "start": 1524.32, + "end": 1528.2, + "probability": 0.8972 + }, + { + "start": 1528.62, + "end": 1533.48, + "probability": 0.9661 + }, + { + "start": 1533.68, + "end": 1534.06, + "probability": 0.668 + }, + { + "start": 1534.2, + "end": 1536.29, + "probability": 0.9227 + }, + { + "start": 1536.58, + "end": 1540.26, + "probability": 0.998 + }, + { + "start": 1540.56, + "end": 1541.98, + "probability": 0.949 + }, + { + "start": 1542.24, + "end": 1545.26, + "probability": 0.9979 + }, + { + "start": 1545.26, + "end": 1548.28, + "probability": 0.9961 + }, + { + "start": 1548.74, + "end": 1549.26, + "probability": 0.7289 + }, + { + "start": 1549.4, + "end": 1549.94, + "probability": 0.9458 + }, + { + "start": 1550.06, + "end": 1556.62, + "probability": 0.9855 + }, + { + "start": 1556.64, + "end": 1559.94, + "probability": 0.9257 + }, + { + "start": 1559.98, + "end": 1561.46, + "probability": 0.9601 + }, + { + "start": 1561.82, + "end": 1562.26, + "probability": 0.796 + }, + { + "start": 1563.18, + "end": 1565.21, + "probability": 0.9976 + }, + { + "start": 1565.38, + "end": 1566.72, + "probability": 0.9225 + }, + { + "start": 1566.86, + "end": 1568.52, + "probability": 0.9976 + }, + { + "start": 1568.74, + "end": 1573.34, + "probability": 0.9841 + }, + { + "start": 1573.34, + "end": 1573.34, + "probability": 0.1742 + }, + { + "start": 1573.34, + "end": 1573.5, + "probability": 0.1065 + }, + { + "start": 1573.52, + "end": 1576.26, + "probability": 0.9923 + }, + { + "start": 1576.26, + "end": 1579.14, + "probability": 0.9862 + }, + { + "start": 1579.22, + "end": 1579.72, + "probability": 0.8516 + }, + { + "start": 1579.82, + "end": 1580.58, + "probability": 0.451 + }, + { + "start": 1580.58, + "end": 1582.62, + "probability": 0.9009 + }, + { + "start": 1584.46, + "end": 1585.22, + "probability": 0.5701 + }, + { + "start": 1585.3, + "end": 1586.02, + "probability": 0.4883 + }, + { + "start": 1586.08, + "end": 1588.98, + "probability": 0.3064 + }, + { + "start": 1589.78, + "end": 1590.82, + "probability": 0.1174 + }, + { + "start": 1591.02, + "end": 1591.9, + "probability": 0.6249 + }, + { + "start": 1592.0, + "end": 1592.72, + "probability": 0.7597 + }, + { + "start": 1592.8, + "end": 1593.68, + "probability": 0.3657 + }, + { + "start": 1594.12, + "end": 1597.06, + "probability": 0.0388 + }, + { + "start": 1597.28, + "end": 1597.96, + "probability": 0.3352 + }, + { + "start": 1598.2, + "end": 1603.48, + "probability": 0.6403 + }, + { + "start": 1603.8, + "end": 1606.05, + "probability": 0.1233 + }, + { + "start": 1608.32, + "end": 1609.68, + "probability": 0.4187 + }, + { + "start": 1609.69, + "end": 1610.99, + "probability": 0.082 + }, + { + "start": 1612.36, + "end": 1612.5, + "probability": 0.1413 + }, + { + "start": 1613.16, + "end": 1616.5, + "probability": 0.4204 + }, + { + "start": 1616.84, + "end": 1618.5, + "probability": 0.8171 + }, + { + "start": 1618.62, + "end": 1620.91, + "probability": 0.7712 + }, + { + "start": 1621.82, + "end": 1623.02, + "probability": 0.9156 + }, + { + "start": 1623.62, + "end": 1625.47, + "probability": 0.9749 + }, + { + "start": 1626.28, + "end": 1628.0, + "probability": 0.9951 + }, + { + "start": 1628.62, + "end": 1629.27, + "probability": 0.9107 + }, + { + "start": 1630.68, + "end": 1633.5, + "probability": 0.9784 + }, + { + "start": 1634.6, + "end": 1638.16, + "probability": 0.9761 + }, + { + "start": 1638.86, + "end": 1641.34, + "probability": 0.9974 + }, + { + "start": 1642.04, + "end": 1643.14, + "probability": 0.9766 + }, + { + "start": 1643.88, + "end": 1646.86, + "probability": 0.9903 + }, + { + "start": 1647.54, + "end": 1648.26, + "probability": 0.5817 + }, + { + "start": 1649.22, + "end": 1652.66, + "probability": 0.9969 + }, + { + "start": 1653.12, + "end": 1657.48, + "probability": 0.9365 + }, + { + "start": 1658.26, + "end": 1659.02, + "probability": 0.9375 + }, + { + "start": 1659.24, + "end": 1661.49, + "probability": 0.5511 + }, + { + "start": 1661.62, + "end": 1666.01, + "probability": 0.9858 + }, + { + "start": 1666.92, + "end": 1674.51, + "probability": 0.9727 + }, + { + "start": 1675.6, + "end": 1678.92, + "probability": 0.9975 + }, + { + "start": 1679.74, + "end": 1684.98, + "probability": 0.8894 + }, + { + "start": 1687.06, + "end": 1691.7, + "probability": 0.9932 + }, + { + "start": 1692.42, + "end": 1696.04, + "probability": 0.7696 + }, + { + "start": 1698.74, + "end": 1704.18, + "probability": 0.9958 + }, + { + "start": 1705.18, + "end": 1709.74, + "probability": 0.9579 + }, + { + "start": 1710.84, + "end": 1714.2, + "probability": 0.772 + }, + { + "start": 1715.46, + "end": 1720.58, + "probability": 0.8449 + }, + { + "start": 1720.58, + "end": 1723.82, + "probability": 0.9803 + }, + { + "start": 1724.32, + "end": 1727.62, + "probability": 0.9844 + }, + { + "start": 1727.74, + "end": 1729.78, + "probability": 0.9953 + }, + { + "start": 1730.44, + "end": 1735.76, + "probability": 0.8459 + }, + { + "start": 1735.76, + "end": 1738.72, + "probability": 0.8513 + }, + { + "start": 1739.24, + "end": 1740.2, + "probability": 0.6843 + }, + { + "start": 1741.1, + "end": 1742.96, + "probability": 0.9886 + }, + { + "start": 1743.02, + "end": 1747.7, + "probability": 0.9127 + }, + { + "start": 1748.24, + "end": 1755.04, + "probability": 0.9456 + }, + { + "start": 1755.78, + "end": 1757.24, + "probability": 0.8765 + }, + { + "start": 1757.66, + "end": 1759.98, + "probability": 0.892 + }, + { + "start": 1760.2, + "end": 1763.72, + "probability": 0.6422 + }, + { + "start": 1764.06, + "end": 1766.16, + "probability": 0.7315 + }, + { + "start": 1766.46, + "end": 1767.38, + "probability": 0.82 + }, + { + "start": 1768.12, + "end": 1769.94, + "probability": 0.7648 + }, + { + "start": 1770.76, + "end": 1772.3, + "probability": 0.9456 + }, + { + "start": 1772.64, + "end": 1775.84, + "probability": 0.9019 + }, + { + "start": 1776.6, + "end": 1778.4, + "probability": 0.9978 + }, + { + "start": 1779.06, + "end": 1781.18, + "probability": 0.8802 + }, + { + "start": 1781.76, + "end": 1783.28, + "probability": 0.9961 + }, + { + "start": 1783.74, + "end": 1785.48, + "probability": 0.9987 + }, + { + "start": 1786.1, + "end": 1787.1, + "probability": 0.6302 + }, + { + "start": 1787.98, + "end": 1789.88, + "probability": 0.9788 + }, + { + "start": 1790.72, + "end": 1793.14, + "probability": 0.8218 + }, + { + "start": 1793.74, + "end": 1797.02, + "probability": 0.9735 + }, + { + "start": 1798.48, + "end": 1803.98, + "probability": 0.8781 + }, + { + "start": 1804.3, + "end": 1807.4, + "probability": 0.984 + }, + { + "start": 1807.4, + "end": 1811.18, + "probability": 0.8896 + }, + { + "start": 1811.22, + "end": 1811.7, + "probability": 0.711 + }, + { + "start": 1812.46, + "end": 1812.92, + "probability": 0.6791 + }, + { + "start": 1813.04, + "end": 1815.4, + "probability": 0.9089 + }, + { + "start": 1825.2, + "end": 1826.46, + "probability": 0.5046 + }, + { + "start": 1826.46, + "end": 1827.6, + "probability": 0.77 + }, + { + "start": 1827.74, + "end": 1829.0, + "probability": 0.6673 + }, + { + "start": 1829.7, + "end": 1831.08, + "probability": 0.9673 + }, + { + "start": 1831.66, + "end": 1833.94, + "probability": 0.9849 + }, + { + "start": 1834.94, + "end": 1836.48, + "probability": 0.9957 + }, + { + "start": 1837.04, + "end": 1838.04, + "probability": 0.764 + }, + { + "start": 1838.16, + "end": 1841.6, + "probability": 0.9692 + }, + { + "start": 1842.74, + "end": 1846.36, + "probability": 0.9017 + }, + { + "start": 1846.46, + "end": 1848.42, + "probability": 0.9983 + }, + { + "start": 1849.72, + "end": 1853.24, + "probability": 0.9966 + }, + { + "start": 1854.0, + "end": 1858.12, + "probability": 0.9938 + }, + { + "start": 1858.94, + "end": 1862.32, + "probability": 0.9761 + }, + { + "start": 1862.32, + "end": 1866.7, + "probability": 0.9952 + }, + { + "start": 1867.76, + "end": 1868.64, + "probability": 0.9016 + }, + { + "start": 1868.72, + "end": 1869.54, + "probability": 0.9583 + }, + { + "start": 1869.7, + "end": 1871.24, + "probability": 0.9908 + }, + { + "start": 1871.88, + "end": 1874.78, + "probability": 0.9846 + }, + { + "start": 1875.78, + "end": 1878.64, + "probability": 0.9554 + }, + { + "start": 1878.72, + "end": 1879.6, + "probability": 0.9792 + }, + { + "start": 1880.96, + "end": 1884.02, + "probability": 0.738 + }, + { + "start": 1884.86, + "end": 1888.42, + "probability": 0.9851 + }, + { + "start": 1889.3, + "end": 1889.89, + "probability": 0.2088 + }, + { + "start": 1890.6, + "end": 1894.04, + "probability": 0.8722 + }, + { + "start": 1894.78, + "end": 1897.12, + "probability": 0.9721 + }, + { + "start": 1897.98, + "end": 1903.36, + "probability": 0.9954 + }, + { + "start": 1903.76, + "end": 1905.48, + "probability": 0.9975 + }, + { + "start": 1906.0, + "end": 1908.04, + "probability": 0.9548 + }, + { + "start": 1909.5, + "end": 1914.22, + "probability": 0.9904 + }, + { + "start": 1914.5, + "end": 1915.1, + "probability": 0.64 + }, + { + "start": 1916.24, + "end": 1918.24, + "probability": 0.9976 + }, + { + "start": 1919.02, + "end": 1922.66, + "probability": 0.9957 + }, + { + "start": 1922.74, + "end": 1924.4, + "probability": 0.9521 + }, + { + "start": 1925.14, + "end": 1926.22, + "probability": 0.9996 + }, + { + "start": 1926.34, + "end": 1927.86, + "probability": 0.9829 + }, + { + "start": 1928.98, + "end": 1930.22, + "probability": 0.5543 + }, + { + "start": 1932.22, + "end": 1934.54, + "probability": 0.9936 + }, + { + "start": 1935.4, + "end": 1938.58, + "probability": 0.9817 + }, + { + "start": 1939.24, + "end": 1942.21, + "probability": 0.9956 + }, + { + "start": 1943.92, + "end": 1947.64, + "probability": 0.9994 + }, + { + "start": 1948.06, + "end": 1950.6, + "probability": 0.6222 + }, + { + "start": 1952.5, + "end": 1954.5, + "probability": 0.9968 + }, + { + "start": 1955.08, + "end": 1956.62, + "probability": 0.9891 + }, + { + "start": 1957.42, + "end": 1959.46, + "probability": 0.8707 + }, + { + "start": 1960.1, + "end": 1961.22, + "probability": 0.9783 + }, + { + "start": 1961.26, + "end": 1961.72, + "probability": 0.7392 + }, + { + "start": 1962.14, + "end": 1964.46, + "probability": 0.9812 + }, + { + "start": 1964.86, + "end": 1965.35, + "probability": 0.5788 + }, + { + "start": 1965.72, + "end": 1967.36, + "probability": 0.9232 + }, + { + "start": 1968.26, + "end": 1969.28, + "probability": 0.7322 + }, + { + "start": 1969.52, + "end": 1969.86, + "probability": 0.0044 + }, + { + "start": 1969.86, + "end": 1970.74, + "probability": 0.2385 + }, + { + "start": 1970.98, + "end": 1971.04, + "probability": 0.1067 + }, + { + "start": 1971.04, + "end": 1972.2, + "probability": 0.5747 + }, + { + "start": 1978.92, + "end": 1986.52, + "probability": 0.3071 + }, + { + "start": 1992.5, + "end": 1994.58, + "probability": 0.0375 + }, + { + "start": 1994.58, + "end": 1994.58, + "probability": 0.0014 + }, + { + "start": 2005.74, + "end": 2008.24, + "probability": 0.1025 + }, + { + "start": 2009.42, + "end": 2011.16, + "probability": 0.0124 + }, + { + "start": 2011.16, + "end": 2013.8, + "probability": 0.1244 + }, + { + "start": 2014.92, + "end": 2015.56, + "probability": 0.0308 + }, + { + "start": 2015.66, + "end": 2016.8, + "probability": 0.1239 + }, + { + "start": 2017.19, + "end": 2019.65, + "probability": 0.1049 + }, + { + "start": 2022.04, + "end": 2024.52, + "probability": 0.3745 + }, + { + "start": 2024.54, + "end": 2026.26, + "probability": 0.2509 + }, + { + "start": 2027.7, + "end": 2028.12, + "probability": 0.0078 + }, + { + "start": 2028.12, + "end": 2029.42, + "probability": 0.0514 + }, + { + "start": 2029.68, + "end": 2032.1, + "probability": 0.027 + }, + { + "start": 2032.1, + "end": 2033.91, + "probability": 0.0969 + }, + { + "start": 2034.8, + "end": 2035.06, + "probability": 0.0881 + }, + { + "start": 2050.0, + "end": 2050.0, + "probability": 0.0 + }, + { + "start": 2050.0, + "end": 2050.0, + "probability": 0.0 + }, + { + "start": 2050.0, + "end": 2050.0, + "probability": 0.0 + }, + { + "start": 2050.0, + "end": 2050.0, + "probability": 0.0 + }, + { + "start": 2050.0, + "end": 2050.0, + "probability": 0.0 + }, + { + "start": 2050.0, + "end": 2050.0, + "probability": 0.0 + }, + { + "start": 2050.0, + "end": 2050.0, + "probability": 0.0 + }, + { + "start": 2050.0, + "end": 2050.0, + "probability": 0.0 + }, + { + "start": 2050.0, + "end": 2050.0, + "probability": 0.0 + }, + { + "start": 2050.0, + "end": 2050.0, + "probability": 0.0 + }, + { + "start": 2050.0, + "end": 2050.0, + "probability": 0.0 + }, + { + "start": 2050.0, + "end": 2050.0, + "probability": 0.0 + }, + { + "start": 2050.0, + "end": 2050.0, + "probability": 0.0 + }, + { + "start": 2050.0, + "end": 2050.0, + "probability": 0.0 + }, + { + "start": 2050.0, + "end": 2050.0, + "probability": 0.0 + }, + { + "start": 2050.0, + "end": 2050.0, + "probability": 0.0 + }, + { + "start": 2050.0, + "end": 2050.0, + "probability": 0.0 + }, + { + "start": 2050.0, + "end": 2050.0, + "probability": 0.0 + }, + { + "start": 2050.0, + "end": 2050.0, + "probability": 0.0 + }, + { + "start": 2050.0, + "end": 2050.0, + "probability": 0.0 + }, + { + "start": 2050.0, + "end": 2050.0, + "probability": 0.0 + }, + { + "start": 2050.0, + "end": 2050.0, + "probability": 0.0 + }, + { + "start": 2050.0, + "end": 2050.0, + "probability": 0.0 + }, + { + "start": 2050.0, + "end": 2050.0, + "probability": 0.0 + }, + { + "start": 2050.0, + "end": 2050.0, + "probability": 0.0 + }, + { + "start": 2050.0, + "end": 2050.0, + "probability": 0.0 + }, + { + "start": 2050.0, + "end": 2050.0, + "probability": 0.0 + }, + { + "start": 2050.0, + "end": 2050.0, + "probability": 0.0 + }, + { + "start": 2050.0, + "end": 2050.0, + "probability": 0.0 + }, + { + "start": 2050.0, + "end": 2050.0, + "probability": 0.0 + }, + { + "start": 2050.0, + "end": 2050.0, + "probability": 0.0 + }, + { + "start": 2055.62, + "end": 2057.5, + "probability": 0.189 + }, + { + "start": 2057.6, + "end": 2059.74, + "probability": 0.8472 + }, + { + "start": 2062.32, + "end": 2064.14, + "probability": 0.8005 + }, + { + "start": 2065.66, + "end": 2066.82, + "probability": 0.9272 + }, + { + "start": 2067.4, + "end": 2068.22, + "probability": 0.9806 + }, + { + "start": 2069.52, + "end": 2071.12, + "probability": 0.8668 + }, + { + "start": 2072.24, + "end": 2073.28, + "probability": 0.4561 + }, + { + "start": 2074.64, + "end": 2075.78, + "probability": 0.7993 + }, + { + "start": 2078.64, + "end": 2079.2, + "probability": 0.6045 + }, + { + "start": 2080.64, + "end": 2082.24, + "probability": 0.9617 + }, + { + "start": 2084.34, + "end": 2084.62, + "probability": 0.601 + }, + { + "start": 2087.3, + "end": 2088.46, + "probability": 0.5197 + }, + { + "start": 2089.6, + "end": 2091.12, + "probability": 0.9719 + }, + { + "start": 2094.24, + "end": 2095.42, + "probability": 0.9548 + }, + { + "start": 2096.4, + "end": 2099.86, + "probability": 0.9803 + }, + { + "start": 2101.98, + "end": 2103.44, + "probability": 0.7281 + }, + { + "start": 2104.1, + "end": 2105.72, + "probability": 0.9155 + }, + { + "start": 2106.94, + "end": 2108.4, + "probability": 0.9785 + }, + { + "start": 2109.84, + "end": 2111.82, + "probability": 0.8665 + }, + { + "start": 2113.56, + "end": 2115.48, + "probability": 0.9004 + }, + { + "start": 2115.98, + "end": 2117.64, + "probability": 0.999 + }, + { + "start": 2119.66, + "end": 2121.0, + "probability": 0.9726 + }, + { + "start": 2122.12, + "end": 2126.98, + "probability": 0.9943 + }, + { + "start": 2128.02, + "end": 2129.32, + "probability": 0.72 + }, + { + "start": 2130.68, + "end": 2132.98, + "probability": 0.7819 + }, + { + "start": 2134.72, + "end": 2136.0, + "probability": 0.9927 + }, + { + "start": 2137.16, + "end": 2142.08, + "probability": 0.9709 + }, + { + "start": 2143.92, + "end": 2149.52, + "probability": 0.8139 + }, + { + "start": 2151.6, + "end": 2153.58, + "probability": 0.9933 + }, + { + "start": 2156.0, + "end": 2157.3, + "probability": 0.9195 + }, + { + "start": 2158.6, + "end": 2159.94, + "probability": 0.9872 + }, + { + "start": 2161.0, + "end": 2161.9, + "probability": 0.9766 + }, + { + "start": 2162.54, + "end": 2163.92, + "probability": 0.9513 + }, + { + "start": 2165.4, + "end": 2167.04, + "probability": 0.7581 + }, + { + "start": 2168.06, + "end": 2169.08, + "probability": 0.7705 + }, + { + "start": 2172.12, + "end": 2173.26, + "probability": 0.4971 + }, + { + "start": 2173.78, + "end": 2174.9, + "probability": 0.8599 + }, + { + "start": 2176.06, + "end": 2177.16, + "probability": 0.7397 + }, + { + "start": 2178.46, + "end": 2179.34, + "probability": 0.6852 + }, + { + "start": 2180.62, + "end": 2183.1, + "probability": 0.9761 + }, + { + "start": 2184.04, + "end": 2185.62, + "probability": 0.9736 + }, + { + "start": 2187.34, + "end": 2188.16, + "probability": 0.9899 + }, + { + "start": 2189.38, + "end": 2193.96, + "probability": 0.9835 + }, + { + "start": 2194.46, + "end": 2195.56, + "probability": 0.9701 + }, + { + "start": 2197.48, + "end": 2198.38, + "probability": 0.9563 + }, + { + "start": 2199.68, + "end": 2200.58, + "probability": 0.9084 + }, + { + "start": 2203.04, + "end": 2204.82, + "probability": 0.9305 + }, + { + "start": 2205.64, + "end": 2206.5, + "probability": 0.9476 + }, + { + "start": 2207.36, + "end": 2209.72, + "probability": 0.9936 + }, + { + "start": 2210.8, + "end": 2212.28, + "probability": 0.6039 + }, + { + "start": 2213.16, + "end": 2214.12, + "probability": 0.9932 + }, + { + "start": 2216.18, + "end": 2217.94, + "probability": 0.9973 + }, + { + "start": 2220.56, + "end": 2221.38, + "probability": 0.7822 + }, + { + "start": 2222.7, + "end": 2223.9, + "probability": 0.9834 + }, + { + "start": 2224.56, + "end": 2226.38, + "probability": 0.998 + }, + { + "start": 2227.18, + "end": 2227.96, + "probability": 0.624 + }, + { + "start": 2229.74, + "end": 2231.32, + "probability": 0.9989 + }, + { + "start": 2232.02, + "end": 2233.1, + "probability": 0.966 + }, + { + "start": 2234.36, + "end": 2235.8, + "probability": 0.7551 + }, + { + "start": 2238.86, + "end": 2241.04, + "probability": 0.8682 + }, + { + "start": 2250.88, + "end": 2251.26, + "probability": 0.7333 + }, + { + "start": 2252.54, + "end": 2254.3, + "probability": 0.9806 + }, + { + "start": 2254.72, + "end": 2255.84, + "probability": 0.5753 + }, + { + "start": 2256.02, + "end": 2257.45, + "probability": 0.4946 + }, + { + "start": 2258.28, + "end": 2262.86, + "probability": 0.9893 + }, + { + "start": 2262.92, + "end": 2265.3, + "probability": 0.9908 + }, + { + "start": 2266.08, + "end": 2268.62, + "probability": 0.8705 + }, + { + "start": 2268.62, + "end": 2272.74, + "probability": 0.9753 + }, + { + "start": 2272.82, + "end": 2274.4, + "probability": 0.6313 + }, + { + "start": 2274.52, + "end": 2277.0, + "probability": 0.9956 + }, + { + "start": 2277.6, + "end": 2281.42, + "probability": 0.9936 + }, + { + "start": 2282.7, + "end": 2283.74, + "probability": 0.7876 + }, + { + "start": 2284.52, + "end": 2286.04, + "probability": 0.6046 + }, + { + "start": 2286.5, + "end": 2288.7, + "probability": 0.9297 + }, + { + "start": 2288.88, + "end": 2289.5, + "probability": 0.892 + }, + { + "start": 2289.94, + "end": 2290.84, + "probability": 0.9655 + }, + { + "start": 2291.2, + "end": 2293.14, + "probability": 0.9709 + }, + { + "start": 2293.64, + "end": 2294.16, + "probability": 0.8391 + }, + { + "start": 2294.8, + "end": 2299.24, + "probability": 0.9824 + }, + { + "start": 2299.9, + "end": 2303.67, + "probability": 0.995 + }, + { + "start": 2303.94, + "end": 2304.46, + "probability": 0.4967 + }, + { + "start": 2305.02, + "end": 2309.7, + "probability": 0.8801 + }, + { + "start": 2310.48, + "end": 2316.06, + "probability": 0.9809 + }, + { + "start": 2317.3, + "end": 2320.18, + "probability": 0.9286 + }, + { + "start": 2320.74, + "end": 2322.37, + "probability": 0.6694 + }, + { + "start": 2323.14, + "end": 2324.36, + "probability": 0.9278 + }, + { + "start": 2324.4, + "end": 2325.49, + "probability": 0.9954 + }, + { + "start": 2327.9, + "end": 2335.42, + "probability": 0.9724 + }, + { + "start": 2336.32, + "end": 2340.86, + "probability": 0.9075 + }, + { + "start": 2342.04, + "end": 2342.42, + "probability": 0.7139 + }, + { + "start": 2343.24, + "end": 2344.14, + "probability": 0.6822 + }, + { + "start": 2345.44, + "end": 2346.74, + "probability": 0.7113 + }, + { + "start": 2347.36, + "end": 2348.28, + "probability": 0.9212 + }, + { + "start": 2349.1, + "end": 2350.58, + "probability": 0.9795 + }, + { + "start": 2351.22, + "end": 2352.9, + "probability": 0.9966 + }, + { + "start": 2353.58, + "end": 2358.34, + "probability": 0.9845 + }, + { + "start": 2359.08, + "end": 2360.5, + "probability": 0.9863 + }, + { + "start": 2360.86, + "end": 2362.39, + "probability": 0.7619 + }, + { + "start": 2362.64, + "end": 2364.6, + "probability": 0.7672 + }, + { + "start": 2365.52, + "end": 2372.94, + "probability": 0.9102 + }, + { + "start": 2373.3, + "end": 2378.28, + "probability": 0.967 + }, + { + "start": 2380.24, + "end": 2380.92, + "probability": 0.9644 + }, + { + "start": 2381.6, + "end": 2384.04, + "probability": 0.9212 + }, + { + "start": 2384.58, + "end": 2385.02, + "probability": 0.7671 + }, + { + "start": 2385.72, + "end": 2386.56, + "probability": 0.8834 + }, + { + "start": 2387.26, + "end": 2387.9, + "probability": 0.8055 + }, + { + "start": 2388.56, + "end": 2389.8, + "probability": 0.9119 + }, + { + "start": 2390.82, + "end": 2394.86, + "probability": 0.9883 + }, + { + "start": 2395.54, + "end": 2398.16, + "probability": 0.7843 + }, + { + "start": 2398.9, + "end": 2400.2, + "probability": 0.9745 + }, + { + "start": 2400.88, + "end": 2401.3, + "probability": 0.8268 + }, + { + "start": 2402.0, + "end": 2405.24, + "probability": 0.9915 + }, + { + "start": 2406.06, + "end": 2407.44, + "probability": 0.3661 + }, + { + "start": 2409.62, + "end": 2412.16, + "probability": 0.8687 + }, + { + "start": 2412.8, + "end": 2414.68, + "probability": 0.7796 + }, + { + "start": 2415.22, + "end": 2419.2, + "probability": 0.9312 + }, + { + "start": 2419.64, + "end": 2421.38, + "probability": 0.9325 + }, + { + "start": 2422.58, + "end": 2429.94, + "probability": 0.9614 + }, + { + "start": 2432.26, + "end": 2435.3, + "probability": 0.7402 + }, + { + "start": 2435.92, + "end": 2436.98, + "probability": 0.9446 + }, + { + "start": 2438.08, + "end": 2438.68, + "probability": 0.9445 + }, + { + "start": 2439.58, + "end": 2440.46, + "probability": 0.7559 + }, + { + "start": 2440.64, + "end": 2442.34, + "probability": 0.9486 + }, + { + "start": 2442.7, + "end": 2444.56, + "probability": 0.7669 + }, + { + "start": 2444.9, + "end": 2446.3, + "probability": 0.9155 + }, + { + "start": 2446.54, + "end": 2447.54, + "probability": 0.4319 + }, + { + "start": 2448.6, + "end": 2451.7, + "probability": 0.6318 + }, + { + "start": 2453.65, + "end": 2453.86, + "probability": 0.0904 + }, + { + "start": 2453.86, + "end": 2453.86, + "probability": 0.0165 + }, + { + "start": 2453.86, + "end": 2454.56, + "probability": 0.3078 + }, + { + "start": 2455.5, + "end": 2457.48, + "probability": 0.7941 + }, + { + "start": 2458.22, + "end": 2459.0, + "probability": 0.8464 + }, + { + "start": 2459.52, + "end": 2460.26, + "probability": 0.8083 + }, + { + "start": 2461.08, + "end": 2463.94, + "probability": 0.9242 + }, + { + "start": 2484.04, + "end": 2489.88, + "probability": 0.9788 + }, + { + "start": 2490.36, + "end": 2496.62, + "probability": 0.99 + }, + { + "start": 2497.86, + "end": 2500.54, + "probability": 0.7458 + }, + { + "start": 2500.74, + "end": 2507.8, + "probability": 0.9847 + }, + { + "start": 2508.06, + "end": 2513.7, + "probability": 0.9978 + }, + { + "start": 2515.48, + "end": 2519.64, + "probability": 0.9963 + }, + { + "start": 2520.26, + "end": 2521.66, + "probability": 0.9896 + }, + { + "start": 2521.88, + "end": 2528.24, + "probability": 0.9987 + }, + { + "start": 2529.18, + "end": 2533.24, + "probability": 0.9986 + }, + { + "start": 2533.24, + "end": 2537.7, + "probability": 0.9995 + }, + { + "start": 2538.58, + "end": 2539.95, + "probability": 0.8848 + }, + { + "start": 2540.52, + "end": 2541.32, + "probability": 0.9941 + }, + { + "start": 2542.44, + "end": 2545.78, + "probability": 0.9827 + }, + { + "start": 2546.88, + "end": 2548.12, + "probability": 0.9528 + }, + { + "start": 2548.96, + "end": 2554.3, + "probability": 0.9986 + }, + { + "start": 2555.34, + "end": 2558.78, + "probability": 0.9982 + }, + { + "start": 2559.24, + "end": 2562.44, + "probability": 0.9907 + }, + { + "start": 2563.64, + "end": 2565.36, + "probability": 0.5274 + }, + { + "start": 2566.16, + "end": 2567.22, + "probability": 0.9415 + }, + { + "start": 2567.8, + "end": 2572.62, + "probability": 0.9847 + }, + { + "start": 2573.5, + "end": 2575.19, + "probability": 0.8999 + }, + { + "start": 2575.34, + "end": 2580.1, + "probability": 0.9819 + }, + { + "start": 2580.76, + "end": 2583.48, + "probability": 0.98 + }, + { + "start": 2583.96, + "end": 2585.66, + "probability": 0.9415 + }, + { + "start": 2586.4, + "end": 2588.9, + "probability": 0.9133 + }, + { + "start": 2589.66, + "end": 2592.12, + "probability": 0.9792 + }, + { + "start": 2592.68, + "end": 2595.44, + "probability": 0.9878 + }, + { + "start": 2595.94, + "end": 2596.88, + "probability": 0.7997 + }, + { + "start": 2597.56, + "end": 2599.88, + "probability": 0.6699 + }, + { + "start": 2600.8, + "end": 2602.0, + "probability": 0.7404 + }, + { + "start": 2602.66, + "end": 2606.4, + "probability": 0.995 + }, + { + "start": 2606.76, + "end": 2612.96, + "probability": 0.9689 + }, + { + "start": 2613.78, + "end": 2617.04, + "probability": 0.8756 + }, + { + "start": 2618.0, + "end": 2622.54, + "probability": 0.8325 + }, + { + "start": 2623.0, + "end": 2627.82, + "probability": 0.9914 + }, + { + "start": 2628.62, + "end": 2630.02, + "probability": 0.9971 + }, + { + "start": 2630.9, + "end": 2632.24, + "probability": 0.9873 + }, + { + "start": 2633.36, + "end": 2636.0, + "probability": 0.9709 + }, + { + "start": 2636.66, + "end": 2638.02, + "probability": 0.9885 + }, + { + "start": 2639.1, + "end": 2641.28, + "probability": 0.9966 + }, + { + "start": 2643.24, + "end": 2643.98, + "probability": 0.8703 + }, + { + "start": 2645.28, + "end": 2648.42, + "probability": 0.7643 + }, + { + "start": 2648.7, + "end": 2651.62, + "probability": 0.8948 + }, + { + "start": 2677.3, + "end": 2678.54, + "probability": 0.5074 + }, + { + "start": 2680.1, + "end": 2689.26, + "probability": 0.9439 + }, + { + "start": 2689.94, + "end": 2692.3, + "probability": 0.9899 + }, + { + "start": 2693.5, + "end": 2695.96, + "probability": 0.9974 + }, + { + "start": 2697.78, + "end": 2707.46, + "probability": 0.9633 + }, + { + "start": 2709.24, + "end": 2714.96, + "probability": 0.994 + }, + { + "start": 2715.52, + "end": 2721.3, + "probability": 0.9551 + }, + { + "start": 2723.16, + "end": 2728.36, + "probability": 0.9866 + }, + { + "start": 2730.7, + "end": 2733.46, + "probability": 0.9855 + }, + { + "start": 2735.54, + "end": 2739.22, + "probability": 0.9907 + }, + { + "start": 2742.0, + "end": 2743.52, + "probability": 0.5038 + }, + { + "start": 2744.36, + "end": 2751.82, + "probability": 0.9635 + }, + { + "start": 2753.2, + "end": 2758.47, + "probability": 0.9975 + }, + { + "start": 2761.9, + "end": 2762.8, + "probability": 0.9064 + }, + { + "start": 2766.03, + "end": 2769.38, + "probability": 0.7369 + }, + { + "start": 2771.6, + "end": 2776.88, + "probability": 0.9939 + }, + { + "start": 2777.94, + "end": 2785.44, + "probability": 0.9158 + }, + { + "start": 2786.14, + "end": 2789.28, + "probability": 0.9752 + }, + { + "start": 2791.58, + "end": 2795.64, + "probability": 0.9941 + }, + { + "start": 2796.84, + "end": 2797.76, + "probability": 0.8918 + }, + { + "start": 2799.56, + "end": 2801.62, + "probability": 0.9786 + }, + { + "start": 2801.68, + "end": 2803.5, + "probability": 0.9779 + }, + { + "start": 2804.14, + "end": 2806.86, + "probability": 0.9875 + }, + { + "start": 2807.7, + "end": 2808.46, + "probability": 0.9781 + }, + { + "start": 2809.42, + "end": 2814.46, + "probability": 0.8618 + }, + { + "start": 2815.42, + "end": 2816.98, + "probability": 0.9646 + }, + { + "start": 2819.72, + "end": 2823.38, + "probability": 0.9105 + }, + { + "start": 2825.1, + "end": 2827.88, + "probability": 0.9966 + }, + { + "start": 2829.78, + "end": 2831.04, + "probability": 0.5304 + }, + { + "start": 2831.18, + "end": 2835.06, + "probability": 0.8883 + }, + { + "start": 2835.3, + "end": 2839.46, + "probability": 0.9963 + }, + { + "start": 2840.3, + "end": 2843.7, + "probability": 0.947 + }, + { + "start": 2844.22, + "end": 2851.1, + "probability": 0.7446 + }, + { + "start": 2852.4, + "end": 2853.48, + "probability": 0.9607 + }, + { + "start": 2854.48, + "end": 2856.62, + "probability": 0.8704 + }, + { + "start": 2858.12, + "end": 2859.42, + "probability": 0.9903 + }, + { + "start": 2859.6, + "end": 2863.96, + "probability": 0.981 + }, + { + "start": 2863.96, + "end": 2867.58, + "probability": 0.7587 + }, + { + "start": 2867.68, + "end": 2868.32, + "probability": 0.5966 + }, + { + "start": 2868.5, + "end": 2872.06, + "probability": 0.882 + }, + { + "start": 2872.62, + "end": 2875.4, + "probability": 0.9829 + }, + { + "start": 2901.78, + "end": 2903.68, + "probability": 0.7546 + }, + { + "start": 2906.92, + "end": 2910.57, + "probability": 0.9844 + }, + { + "start": 2911.44, + "end": 2912.26, + "probability": 0.7038 + }, + { + "start": 2912.8, + "end": 2913.82, + "probability": 0.8043 + }, + { + "start": 2914.12, + "end": 2914.86, + "probability": 0.7257 + }, + { + "start": 2916.0, + "end": 2918.58, + "probability": 0.9743 + }, + { + "start": 2918.64, + "end": 2919.22, + "probability": 0.994 + }, + { + "start": 2919.3, + "end": 2922.0, + "probability": 0.98 + }, + { + "start": 2923.66, + "end": 2924.38, + "probability": 0.924 + }, + { + "start": 2925.5, + "end": 2930.4, + "probability": 0.9911 + }, + { + "start": 2931.48, + "end": 2932.72, + "probability": 0.8026 + }, + { + "start": 2933.82, + "end": 2937.18, + "probability": 0.9954 + }, + { + "start": 2938.0, + "end": 2939.24, + "probability": 0.9669 + }, + { + "start": 2940.32, + "end": 2945.82, + "probability": 0.7609 + }, + { + "start": 2947.68, + "end": 2949.28, + "probability": 0.9098 + }, + { + "start": 2950.2, + "end": 2952.36, + "probability": 0.998 + }, + { + "start": 2952.56, + "end": 2953.48, + "probability": 0.9585 + }, + { + "start": 2953.56, + "end": 2954.61, + "probability": 0.8531 + }, + { + "start": 2955.72, + "end": 2958.3, + "probability": 0.9807 + }, + { + "start": 2958.5, + "end": 2962.06, + "probability": 0.9618 + }, + { + "start": 2963.54, + "end": 2966.26, + "probability": 0.7523 + }, + { + "start": 2966.4, + "end": 2968.88, + "probability": 0.587 + }, + { + "start": 2968.96, + "end": 2973.36, + "probability": 0.9833 + }, + { + "start": 2975.64, + "end": 2980.4, + "probability": 0.9539 + }, + { + "start": 2981.36, + "end": 2985.3, + "probability": 0.9283 + }, + { + "start": 2985.96, + "end": 2987.78, + "probability": 0.9926 + }, + { + "start": 2987.84, + "end": 2989.42, + "probability": 0.9985 + }, + { + "start": 2991.58, + "end": 2993.86, + "probability": 0.9956 + }, + { + "start": 2994.32, + "end": 2994.72, + "probability": 0.4947 + }, + { + "start": 2994.78, + "end": 2996.6, + "probability": 0.9596 + }, + { + "start": 2996.74, + "end": 2998.1, + "probability": 0.9962 + }, + { + "start": 3000.16, + "end": 3003.3, + "probability": 0.8555 + }, + { + "start": 3004.2, + "end": 3005.38, + "probability": 0.779 + }, + { + "start": 3006.16, + "end": 3010.47, + "probability": 0.6587 + }, + { + "start": 3011.86, + "end": 3014.1, + "probability": 0.8872 + }, + { + "start": 3014.26, + "end": 3018.84, + "probability": 0.9908 + }, + { + "start": 3019.76, + "end": 3020.78, + "probability": 0.6684 + }, + { + "start": 3022.16, + "end": 3023.32, + "probability": 0.9801 + }, + { + "start": 3024.5, + "end": 3025.78, + "probability": 0.9905 + }, + { + "start": 3026.66, + "end": 3030.56, + "probability": 0.9887 + }, + { + "start": 3033.08, + "end": 3034.78, + "probability": 0.789 + }, + { + "start": 3035.74, + "end": 3037.76, + "probability": 0.8272 + }, + { + "start": 3038.56, + "end": 3041.3, + "probability": 0.9902 + }, + { + "start": 3042.0, + "end": 3044.16, + "probability": 0.7704 + }, + { + "start": 3044.6, + "end": 3047.16, + "probability": 0.7373 + }, + { + "start": 3047.22, + "end": 3049.0, + "probability": 0.9675 + }, + { + "start": 3049.14, + "end": 3052.28, + "probability": 0.9711 + }, + { + "start": 3052.56, + "end": 3055.66, + "probability": 0.9889 + }, + { + "start": 3055.9, + "end": 3058.08, + "probability": 0.8629 + }, + { + "start": 3058.72, + "end": 3061.0, + "probability": 0.7692 + }, + { + "start": 3063.42, + "end": 3065.48, + "probability": 0.9956 + }, + { + "start": 3066.56, + "end": 3069.24, + "probability": 0.8736 + }, + { + "start": 3069.8, + "end": 3072.72, + "probability": 0.9617 + }, + { + "start": 3073.8, + "end": 3077.24, + "probability": 0.9956 + }, + { + "start": 3078.02, + "end": 3084.7, + "probability": 0.995 + }, + { + "start": 3085.82, + "end": 3090.52, + "probability": 0.999 + }, + { + "start": 3091.46, + "end": 3093.46, + "probability": 0.6318 + }, + { + "start": 3093.56, + "end": 3095.64, + "probability": 0.9659 + }, + { + "start": 3096.22, + "end": 3096.94, + "probability": 0.6255 + }, + { + "start": 3097.64, + "end": 3100.54, + "probability": 0.994 + }, + { + "start": 3101.32, + "end": 3102.68, + "probability": 0.7991 + }, + { + "start": 3103.34, + "end": 3105.26, + "probability": 0.9008 + }, + { + "start": 3105.38, + "end": 3107.82, + "probability": 0.9537 + }, + { + "start": 3108.34, + "end": 3111.56, + "probability": 0.9846 + }, + { + "start": 3111.62, + "end": 3112.16, + "probability": 0.9085 + }, + { + "start": 3112.4, + "end": 3112.88, + "probability": 0.6583 + }, + { + "start": 3113.1, + "end": 3116.1, + "probability": 0.7479 + }, + { + "start": 3136.9, + "end": 3139.8, + "probability": 0.8151 + }, + { + "start": 3140.74, + "end": 3144.58, + "probability": 0.9773 + }, + { + "start": 3145.24, + "end": 3145.9, + "probability": 0.6581 + }, + { + "start": 3145.98, + "end": 3149.04, + "probability": 0.9465 + }, + { + "start": 3149.34, + "end": 3152.12, + "probability": 0.9993 + }, + { + "start": 3153.18, + "end": 3157.62, + "probability": 0.9958 + }, + { + "start": 3157.62, + "end": 3160.98, + "probability": 0.9983 + }, + { + "start": 3161.06, + "end": 3162.6, + "probability": 0.5029 + }, + { + "start": 3162.82, + "end": 3167.29, + "probability": 0.8315 + }, + { + "start": 3168.34, + "end": 3169.13, + "probability": 0.678 + }, + { + "start": 3170.18, + "end": 3174.5, + "probability": 0.9849 + }, + { + "start": 3174.5, + "end": 3178.92, + "probability": 0.995 + }, + { + "start": 3178.92, + "end": 3179.98, + "probability": 0.7751 + }, + { + "start": 3180.22, + "end": 3181.32, + "probability": 0.8669 + }, + { + "start": 3182.08, + "end": 3183.8, + "probability": 0.9565 + }, + { + "start": 3183.92, + "end": 3184.68, + "probability": 0.9878 + }, + { + "start": 3184.76, + "end": 3185.8, + "probability": 0.9465 + }, + { + "start": 3186.36, + "end": 3191.04, + "probability": 0.9619 + }, + { + "start": 3191.36, + "end": 3192.31, + "probability": 0.9185 + }, + { + "start": 3192.48, + "end": 3194.95, + "probability": 0.937 + }, + { + "start": 3195.42, + "end": 3196.87, + "probability": 0.9291 + }, + { + "start": 3197.86, + "end": 3202.24, + "probability": 0.6645 + }, + { + "start": 3202.38, + "end": 3203.38, + "probability": 0.1179 + }, + { + "start": 3204.2, + "end": 3205.72, + "probability": 0.0295 + }, + { + "start": 3206.08, + "end": 3207.5, + "probability": 0.4204 + }, + { + "start": 3208.18, + "end": 3208.96, + "probability": 0.6367 + }, + { + "start": 3208.96, + "end": 3209.56, + "probability": 0.0222 + }, + { + "start": 3209.8, + "end": 3210.02, + "probability": 0.3445 + }, + { + "start": 3210.02, + "end": 3213.62, + "probability": 0.6937 + }, + { + "start": 3213.68, + "end": 3215.24, + "probability": 0.3142 + }, + { + "start": 3216.1, + "end": 3219.06, + "probability": 0.4101 + }, + { + "start": 3219.06, + "end": 3219.78, + "probability": 0.1843 + }, + { + "start": 3219.78, + "end": 3219.82, + "probability": 0.3216 + }, + { + "start": 3219.82, + "end": 3220.38, + "probability": 0.0639 + }, + { + "start": 3220.58, + "end": 3221.88, + "probability": 0.2167 + }, + { + "start": 3222.02, + "end": 3224.56, + "probability": 0.5182 + }, + { + "start": 3224.74, + "end": 3226.96, + "probability": 0.8921 + }, + { + "start": 3227.02, + "end": 3230.98, + "probability": 0.9496 + }, + { + "start": 3231.38, + "end": 3232.24, + "probability": 0.2895 + }, + { + "start": 3232.24, + "end": 3234.7, + "probability": 0.376 + }, + { + "start": 3235.18, + "end": 3235.92, + "probability": 0.1035 + }, + { + "start": 3236.58, + "end": 3236.78, + "probability": 0.43 + }, + { + "start": 3236.78, + "end": 3236.78, + "probability": 0.6233 + }, + { + "start": 3236.78, + "end": 3238.88, + "probability": 0.306 + }, + { + "start": 3238.98, + "end": 3240.34, + "probability": 0.69 + }, + { + "start": 3240.52, + "end": 3241.5, + "probability": 0.4522 + }, + { + "start": 3242.38, + "end": 3245.74, + "probability": 0.9195 + }, + { + "start": 3245.94, + "end": 3246.62, + "probability": 0.1317 + }, + { + "start": 3248.13, + "end": 3251.7, + "probability": 0.5709 + }, + { + "start": 3251.72, + "end": 3251.74, + "probability": 0.6296 + }, + { + "start": 3251.78, + "end": 3253.49, + "probability": 0.7056 + }, + { + "start": 3253.78, + "end": 3254.94, + "probability": 0.9626 + }, + { + "start": 3255.02, + "end": 3255.5, + "probability": 0.885 + }, + { + "start": 3255.7, + "end": 3256.72, + "probability": 0.9655 + }, + { + "start": 3256.82, + "end": 3260.14, + "probability": 0.9545 + }, + { + "start": 3260.22, + "end": 3263.92, + "probability": 0.9961 + }, + { + "start": 3263.92, + "end": 3266.48, + "probability": 0.9619 + }, + { + "start": 3266.62, + "end": 3267.44, + "probability": 0.6181 + }, + { + "start": 3267.6, + "end": 3270.68, + "probability": 0.998 + }, + { + "start": 3270.77, + "end": 3272.88, + "probability": 0.0296 + }, + { + "start": 3273.2, + "end": 3274.1, + "probability": 0.0483 + }, + { + "start": 3274.1, + "end": 3276.18, + "probability": 0.6895 + }, + { + "start": 3276.5, + "end": 3278.82, + "probability": 0.9051 + }, + { + "start": 3279.66, + "end": 3280.18, + "probability": 0.0952 + }, + { + "start": 3280.22, + "end": 3280.48, + "probability": 0.0946 + }, + { + "start": 3280.48, + "end": 3280.83, + "probability": 0.2318 + }, + { + "start": 3281.78, + "end": 3283.1, + "probability": 0.5183 + }, + { + "start": 3283.5, + "end": 3286.66, + "probability": 0.9525 + }, + { + "start": 3286.8, + "end": 3289.14, + "probability": 0.9274 + }, + { + "start": 3289.22, + "end": 3289.82, + "probability": 0.6602 + }, + { + "start": 3289.92, + "end": 3290.3, + "probability": 0.9024 + }, + { + "start": 3290.44, + "end": 3292.2, + "probability": 0.9614 + }, + { + "start": 3292.72, + "end": 3294.48, + "probability": 0.8833 + }, + { + "start": 3294.88, + "end": 3296.08, + "probability": 0.8226 + }, + { + "start": 3296.38, + "end": 3297.84, + "probability": 0.939 + }, + { + "start": 3298.14, + "end": 3299.34, + "probability": 0.9804 + }, + { + "start": 3299.48, + "end": 3300.82, + "probability": 0.645 + }, + { + "start": 3301.06, + "end": 3301.52, + "probability": 0.3881 + }, + { + "start": 3301.6, + "end": 3303.01, + "probability": 0.3016 + }, + { + "start": 3303.56, + "end": 3304.9, + "probability": 0.9891 + }, + { + "start": 3305.1, + "end": 3306.65, + "probability": 0.8159 + }, + { + "start": 3306.96, + "end": 3310.82, + "probability": 0.7692 + }, + { + "start": 3310.9, + "end": 3311.1, + "probability": 0.3194 + }, + { + "start": 3311.1, + "end": 3312.0, + "probability": 0.3678 + }, + { + "start": 3312.06, + "end": 3312.12, + "probability": 0.3012 + }, + { + "start": 3312.12, + "end": 3313.86, + "probability": 0.7583 + }, + { + "start": 3313.86, + "end": 3314.34, + "probability": 0.7106 + }, + { + "start": 3315.54, + "end": 3315.82, + "probability": 0.9406 + }, + { + "start": 3318.84, + "end": 3321.72, + "probability": 0.9697 + }, + { + "start": 3322.54, + "end": 3324.76, + "probability": 0.9976 + }, + { + "start": 3325.34, + "end": 3328.82, + "probability": 0.9423 + }, + { + "start": 3329.3, + "end": 3330.48, + "probability": 0.9993 + }, + { + "start": 3330.88, + "end": 3334.28, + "probability": 0.9553 + }, + { + "start": 3334.54, + "end": 3337.46, + "probability": 0.9994 + }, + { + "start": 3337.8, + "end": 3339.48, + "probability": 0.9956 + }, + { + "start": 3339.82, + "end": 3343.36, + "probability": 0.9606 + }, + { + "start": 3343.66, + "end": 3343.66, + "probability": 0.0489 + }, + { + "start": 3343.66, + "end": 3346.04, + "probability": 0.978 + }, + { + "start": 3346.58, + "end": 3352.08, + "probability": 0.9404 + }, + { + "start": 3352.36, + "end": 3354.4, + "probability": 0.7728 + }, + { + "start": 3354.52, + "end": 3354.82, + "probability": 0.0982 + }, + { + "start": 3354.94, + "end": 3357.78, + "probability": 0.7351 + }, + { + "start": 3358.0, + "end": 3358.96, + "probability": 0.9758 + }, + { + "start": 3359.02, + "end": 3360.1, + "probability": 0.9667 + }, + { + "start": 3360.7, + "end": 3362.56, + "probability": 0.9857 + }, + { + "start": 3364.04, + "end": 3367.56, + "probability": 0.8646 + }, + { + "start": 3367.64, + "end": 3370.6, + "probability": 0.6062 + }, + { + "start": 3371.1, + "end": 3374.5, + "probability": 0.9684 + }, + { + "start": 3374.86, + "end": 3376.68, + "probability": 0.9572 + }, + { + "start": 3377.22, + "end": 3382.74, + "probability": 0.3393 + }, + { + "start": 3382.74, + "end": 3383.58, + "probability": 0.1589 + }, + { + "start": 3383.86, + "end": 3384.1, + "probability": 0.0695 + }, + { + "start": 3384.18, + "end": 3384.18, + "probability": 0.4089 + }, + { + "start": 3384.19, + "end": 3384.26, + "probability": 0.0389 + }, + { + "start": 3384.26, + "end": 3386.98, + "probability": 0.2014 + }, + { + "start": 3387.2, + "end": 3388.84, + "probability": 0.3995 + }, + { + "start": 3391.8, + "end": 3392.72, + "probability": 0.0283 + }, + { + "start": 3392.72, + "end": 3392.72, + "probability": 0.2258 + }, + { + "start": 3392.72, + "end": 3392.72, + "probability": 0.2784 + }, + { + "start": 3392.72, + "end": 3395.82, + "probability": 0.8084 + }, + { + "start": 3396.2, + "end": 3398.26, + "probability": 0.373 + }, + { + "start": 3398.26, + "end": 3402.28, + "probability": 0.6362 + }, + { + "start": 3402.3, + "end": 3402.9, + "probability": 0.4644 + }, + { + "start": 3402.9, + "end": 3403.06, + "probability": 0.7611 + }, + { + "start": 3403.06, + "end": 3403.98, + "probability": 0.6357 + }, + { + "start": 3404.26, + "end": 3406.14, + "probability": 0.7161 + }, + { + "start": 3406.14, + "end": 3411.94, + "probability": 0.8586 + }, + { + "start": 3411.94, + "end": 3413.1, + "probability": 0.2771 + }, + { + "start": 3413.1, + "end": 3413.16, + "probability": 0.1296 + }, + { + "start": 3413.16, + "end": 3413.79, + "probability": 0.0616 + }, + { + "start": 3417.04, + "end": 3418.64, + "probability": 0.0083 + }, + { + "start": 3419.45, + "end": 3422.22, + "probability": 0.1765 + }, + { + "start": 3422.22, + "end": 3422.38, + "probability": 0.2697 + }, + { + "start": 3423.27, + "end": 3426.84, + "probability": 0.0313 + }, + { + "start": 3428.84, + "end": 3429.64, + "probability": 0.1155 + }, + { + "start": 3429.96, + "end": 3432.78, + "probability": 0.1255 + }, + { + "start": 3433.14, + "end": 3434.79, + "probability": 0.0036 + }, + { + "start": 3435.74, + "end": 3435.74, + "probability": 0.242 + }, + { + "start": 3435.74, + "end": 3435.84, + "probability": 0.088 + }, + { + "start": 3436.14, + "end": 3437.76, + "probability": 0.0764 + }, + { + "start": 3438.02, + "end": 3442.26, + "probability": 0.0501 + }, + { + "start": 3448.0, + "end": 3453.18, + "probability": 0.02 + }, + { + "start": 3453.18, + "end": 3457.1, + "probability": 0.0663 + }, + { + "start": 3457.1, + "end": 3457.86, + "probability": 0.2731 + }, + { + "start": 3458.17, + "end": 3459.94, + "probability": 0.0127 + }, + { + "start": 3460.0, + "end": 3460.0, + "probability": 0.0 + }, + { + "start": 3460.0, + "end": 3460.0, + "probability": 0.0 + }, + { + "start": 3460.0, + "end": 3460.0, + "probability": 0.0 + }, + { + "start": 3460.0, + "end": 3460.0, + "probability": 0.0 + }, + { + "start": 3460.0, + "end": 3460.0, + "probability": 0.0 + }, + { + "start": 3460.0, + "end": 3460.0, + "probability": 0.0 + }, + { + "start": 3460.0, + "end": 3460.0, + "probability": 0.0 + }, + { + "start": 3460.0, + "end": 3460.0, + "probability": 0.0 + }, + { + "start": 3460.0, + "end": 3460.0, + "probability": 0.0 + }, + { + "start": 3460.0, + "end": 3460.0, + "probability": 0.0 + }, + { + "start": 3460.0, + "end": 3460.0, + "probability": 0.0 + }, + { + "start": 3460.0, + "end": 3460.0, + "probability": 0.0 + }, + { + "start": 3460.0, + "end": 3460.0, + "probability": 0.0 + }, + { + "start": 3460.0, + "end": 3460.0, + "probability": 0.0 + }, + { + "start": 3460.08, + "end": 3460.18, + "probability": 0.0633 + }, + { + "start": 3460.48, + "end": 3465.08, + "probability": 0.1869 + }, + { + "start": 3465.08, + "end": 3468.94, + "probability": 0.0097 + }, + { + "start": 3469.0, + "end": 3471.68, + "probability": 0.314 + }, + { + "start": 3473.54, + "end": 3477.14, + "probability": 0.383 + }, + { + "start": 3477.54, + "end": 3482.0, + "probability": 0.2132 + }, + { + "start": 3585.0, + "end": 3585.0, + "probability": 0.0 + }, + { + "start": 3585.0, + "end": 3585.0, + "probability": 0.0 + }, + { + "start": 3585.0, + "end": 3585.0, + "probability": 0.0 + }, + { + "start": 3585.0, + "end": 3585.0, + "probability": 0.0 + }, + { + "start": 3585.0, + "end": 3585.0, + "probability": 0.0 + }, + { + "start": 3585.0, + "end": 3585.0, + "probability": 0.0 + }, + { + "start": 3585.0, + "end": 3585.0, + "probability": 0.0 + }, + { + "start": 3585.0, + "end": 3585.0, + "probability": 0.0 + }, + { + "start": 3585.0, + "end": 3585.0, + "probability": 0.0 + }, + { + "start": 3585.0, + "end": 3585.0, + "probability": 0.0 + }, + { + "start": 3585.0, + "end": 3585.0, + "probability": 0.0 + }, + { + "start": 3585.0, + "end": 3585.0, + "probability": 0.0 + }, + { + "start": 3585.0, + "end": 3585.0, + "probability": 0.0 + }, + { + "start": 3585.0, + "end": 3585.0, + "probability": 0.0 + }, + { + "start": 3585.0, + "end": 3585.0, + "probability": 0.0 + }, + { + "start": 3585.0, + "end": 3585.0, + "probability": 0.0 + }, + { + "start": 3585.0, + "end": 3585.0, + "probability": 0.0 + }, + { + "start": 3585.0, + "end": 3585.0, + "probability": 0.0 + }, + { + "start": 3585.0, + "end": 3585.0, + "probability": 0.0 + }, + { + "start": 3585.0, + "end": 3585.0, + "probability": 0.0 + }, + { + "start": 3585.0, + "end": 3585.0, + "probability": 0.0 + }, + { + "start": 3585.0, + "end": 3585.0, + "probability": 0.0 + }, + { + "start": 3585.0, + "end": 3585.0, + "probability": 0.0 + }, + { + "start": 3585.0, + "end": 3585.0, + "probability": 0.0 + }, + { + "start": 3585.0, + "end": 3585.0, + "probability": 0.0 + }, + { + "start": 3585.0, + "end": 3585.0, + "probability": 0.0 + }, + { + "start": 3585.0, + "end": 3585.0, + "probability": 0.0 + }, + { + "start": 3585.0, + "end": 3585.0, + "probability": 0.0 + }, + { + "start": 3585.0, + "end": 3585.0, + "probability": 0.0 + }, + { + "start": 3585.0, + "end": 3585.0, + "probability": 0.0 + }, + { + "start": 3585.0, + "end": 3585.0, + "probability": 0.0 + }, + { + "start": 3585.0, + "end": 3585.0, + "probability": 0.0 + }, + { + "start": 3585.0, + "end": 3585.0, + "probability": 0.0 + }, + { + "start": 3585.0, + "end": 3585.0, + "probability": 0.0 + }, + { + "start": 3585.0, + "end": 3585.0, + "probability": 0.0 + }, + { + "start": 3585.0, + "end": 3585.0, + "probability": 0.0 + }, + { + "start": 3585.0, + "end": 3585.0, + "probability": 0.0 + }, + { + "start": 3585.0, + "end": 3585.0, + "probability": 0.0 + }, + { + "start": 3585.0, + "end": 3585.0, + "probability": 0.0 + }, + { + "start": 3585.0, + "end": 3585.0, + "probability": 0.0 + }, + { + "start": 3585.0, + "end": 3585.0, + "probability": 0.0 + }, + { + "start": 3585.0, + "end": 3585.0, + "probability": 0.0 + }, + { + "start": 3585.0, + "end": 3585.0, + "probability": 0.0 + }, + { + "start": 3585.0, + "end": 3585.0, + "probability": 0.0 + }, + { + "start": 3585.0, + "end": 3585.0, + "probability": 0.0 + }, + { + "start": 3585.0, + "end": 3585.0, + "probability": 0.0 + }, + { + "start": 3585.0, + "end": 3585.0, + "probability": 0.0 + }, + { + "start": 3585.0, + "end": 3585.0, + "probability": 0.0 + }, + { + "start": 3585.0, + "end": 3585.0, + "probability": 0.0 + }, + { + "start": 3585.0, + "end": 3585.0, + "probability": 0.0 + }, + { + "start": 3585.0, + "end": 3585.0, + "probability": 0.0 + }, + { + "start": 3585.0, + "end": 3585.0, + "probability": 0.0 + }, + { + "start": 3585.0, + "end": 3585.0, + "probability": 0.0 + }, + { + "start": 3585.0, + "end": 3585.0, + "probability": 0.0 + }, + { + "start": 3585.32, + "end": 3585.32, + "probability": 0.0003 + }, + { + "start": 3585.34, + "end": 3585.34, + "probability": 0.0951 + }, + { + "start": 3585.34, + "end": 3585.34, + "probability": 0.0187 + }, + { + "start": 3585.34, + "end": 3585.34, + "probability": 0.0811 + }, + { + "start": 3585.34, + "end": 3586.96, + "probability": 0.5872 + }, + { + "start": 3587.1, + "end": 3588.83, + "probability": 0.8286 + }, + { + "start": 3589.28, + "end": 3590.62, + "probability": 0.7488 + }, + { + "start": 3590.72, + "end": 3591.58, + "probability": 0.6547 + }, + { + "start": 3591.98, + "end": 3595.18, + "probability": 0.4102 + }, + { + "start": 3595.68, + "end": 3595.72, + "probability": 0.0318 + }, + { + "start": 3595.72, + "end": 3595.72, + "probability": 0.232 + }, + { + "start": 3595.72, + "end": 3597.32, + "probability": 0.9386 + }, + { + "start": 3597.63, + "end": 3599.56, + "probability": 0.7352 + }, + { + "start": 3599.8, + "end": 3600.18, + "probability": 0.4072 + }, + { + "start": 3600.18, + "end": 3600.42, + "probability": 0.6825 + }, + { + "start": 3602.4, + "end": 3603.56, + "probability": 0.2525 + }, + { + "start": 3603.56, + "end": 3604.08, + "probability": 0.5265 + }, + { + "start": 3604.58, + "end": 3607.32, + "probability": 0.4787 + }, + { + "start": 3607.48, + "end": 3607.88, + "probability": 0.1762 + }, + { + "start": 3607.88, + "end": 3609.92, + "probability": 0.0618 + }, + { + "start": 3610.7, + "end": 3613.84, + "probability": 0.3976 + }, + { + "start": 3614.1, + "end": 3615.98, + "probability": 0.0176 + }, + { + "start": 3617.62, + "end": 3620.08, + "probability": 0.106 + }, + { + "start": 3621.8, + "end": 3622.8, + "probability": 0.1406 + }, + { + "start": 3623.04, + "end": 3625.56, + "probability": 0.1145 + }, + { + "start": 3625.56, + "end": 3625.56, + "probability": 0.455 + }, + { + "start": 3625.56, + "end": 3629.16, + "probability": 0.1666 + }, + { + "start": 3629.16, + "end": 3630.02, + "probability": 0.0876 + }, + { + "start": 3630.5, + "end": 3631.74, + "probability": 0.106 + }, + { + "start": 3631.74, + "end": 3633.28, + "probability": 0.2125 + }, + { + "start": 3633.9, + "end": 3637.74, + "probability": 0.1155 + }, + { + "start": 3637.74, + "end": 3638.06, + "probability": 0.151 + }, + { + "start": 3709.0, + "end": 3709.0, + "probability": 0.0 + }, + { + "start": 3709.0, + "end": 3709.0, + "probability": 0.0 + }, + { + "start": 3709.0, + "end": 3709.0, + "probability": 0.0 + }, + { + "start": 3709.0, + "end": 3709.0, + "probability": 0.0 + }, + { + "start": 3709.0, + "end": 3709.0, + "probability": 0.0 + }, + { + "start": 3709.0, + "end": 3709.0, + "probability": 0.0 + }, + { + "start": 3709.0, + "end": 3709.0, + "probability": 0.0 + }, + { + "start": 3709.0, + "end": 3709.0, + "probability": 0.0 + }, + { + "start": 3709.0, + "end": 3709.0, + "probability": 0.0 + }, + { + "start": 3709.0, + "end": 3709.0, + "probability": 0.0 + }, + { + "start": 3709.0, + "end": 3709.0, + "probability": 0.0 + }, + { + "start": 3709.0, + "end": 3709.0, + "probability": 0.0 + }, + { + "start": 3709.0, + "end": 3709.0, + "probability": 0.0 + }, + { + "start": 3709.0, + "end": 3709.0, + "probability": 0.0 + }, + { + "start": 3709.0, + "end": 3709.0, + "probability": 0.0 + }, + { + "start": 3709.0, + "end": 3709.0, + "probability": 0.0 + }, + { + "start": 3709.0, + "end": 3709.0, + "probability": 0.0 + }, + { + "start": 3709.0, + "end": 3709.0, + "probability": 0.0 + }, + { + "start": 3709.0, + "end": 3709.0, + "probability": 0.0 + }, + { + "start": 3709.0, + "end": 3709.0, + "probability": 0.0 + }, + { + "start": 3709.0, + "end": 3709.0, + "probability": 0.0 + }, + { + "start": 3709.0, + "end": 3709.0, + "probability": 0.0 + }, + { + "start": 3709.0, + "end": 3709.0, + "probability": 0.0 + }, + { + "start": 3709.0, + "end": 3709.0, + "probability": 0.0 + }, + { + "start": 3709.0, + "end": 3709.0, + "probability": 0.0 + }, + { + "start": 3709.0, + "end": 3709.0, + "probability": 0.0 + }, + { + "start": 3709.0, + "end": 3709.0, + "probability": 0.0 + }, + { + "start": 3709.0, + "end": 3709.0, + "probability": 0.0 + }, + { + "start": 3709.0, + "end": 3709.0, + "probability": 0.0 + }, + { + "start": 3709.0, + "end": 3709.0, + "probability": 0.0 + }, + { + "start": 3709.0, + "end": 3709.0, + "probability": 0.0 + }, + { + "start": 3709.0, + "end": 3709.0, + "probability": 0.0 + }, + { + "start": 3709.0, + "end": 3709.0, + "probability": 0.0 + }, + { + "start": 3709.0, + "end": 3709.0, + "probability": 0.0 + }, + { + "start": 3709.0, + "end": 3709.0, + "probability": 0.0 + }, + { + "start": 3709.0, + "end": 3709.0, + "probability": 0.0 + }, + { + "start": 3709.0, + "end": 3709.0, + "probability": 0.0 + }, + { + "start": 3709.0, + "end": 3709.0, + "probability": 0.0 + }, + { + "start": 3709.0, + "end": 3709.0, + "probability": 0.0 + }, + { + "start": 3709.0, + "end": 3709.0, + "probability": 0.0 + }, + { + "start": 3709.0, + "end": 3709.0, + "probability": 0.0 + }, + { + "start": 3709.0, + "end": 3709.0, + "probability": 0.0 + }, + { + "start": 3709.0, + "end": 3709.0, + "probability": 0.0 + }, + { + "start": 3709.0, + "end": 3709.0, + "probability": 0.0 + }, + { + "start": 3709.0, + "end": 3709.0, + "probability": 0.0 + }, + { + "start": 3709.0, + "end": 3709.0, + "probability": 0.0 + }, + { + "start": 3709.0, + "end": 3709.0, + "probability": 0.0 + }, + { + "start": 3709.0, + "end": 3709.0, + "probability": 0.0 + }, + { + "start": 3709.0, + "end": 3709.0, + "probability": 0.0 + }, + { + "start": 3709.0, + "end": 3709.0, + "probability": 0.0 + }, + { + "start": 3709.0, + "end": 3709.0, + "probability": 0.0 + }, + { + "start": 3709.0, + "end": 3709.0, + "probability": 0.0 + }, + { + "start": 3709.0, + "end": 3709.0, + "probability": 0.0 + }, + { + "start": 3709.0, + "end": 3709.0, + "probability": 0.0 + }, + { + "start": 3709.18, + "end": 3709.18, + "probability": 0.5875 + }, + { + "start": 3709.18, + "end": 3710.16, + "probability": 0.2653 + }, + { + "start": 3710.18, + "end": 3711.48, + "probability": 0.8055 + }, + { + "start": 3712.36, + "end": 3713.48, + "probability": 0.8152 + }, + { + "start": 3715.06, + "end": 3718.09, + "probability": 0.955 + }, + { + "start": 3718.96, + "end": 3720.12, + "probability": 0.8538 + }, + { + "start": 3720.58, + "end": 3721.98, + "probability": 0.9845 + }, + { + "start": 3722.04, + "end": 3722.89, + "probability": 0.998 + }, + { + "start": 3723.8, + "end": 3727.38, + "probability": 0.8599 + }, + { + "start": 3728.82, + "end": 3732.18, + "probability": 0.9099 + }, + { + "start": 3732.58, + "end": 3733.4, + "probability": 0.6124 + }, + { + "start": 3736.44, + "end": 3739.02, + "probability": 0.9634 + }, + { + "start": 3740.7, + "end": 3743.66, + "probability": 0.9592 + }, + { + "start": 3744.78, + "end": 3747.3, + "probability": 0.7979 + }, + { + "start": 3750.42, + "end": 3751.5, + "probability": 0.8874 + }, + { + "start": 3752.04, + "end": 3754.82, + "probability": 0.9062 + }, + { + "start": 3755.56, + "end": 3756.54, + "probability": 0.8667 + }, + { + "start": 3757.72, + "end": 3760.88, + "probability": 0.9608 + }, + { + "start": 3761.74, + "end": 3762.98, + "probability": 0.9164 + }, + { + "start": 3764.2, + "end": 3767.32, + "probability": 0.9929 + }, + { + "start": 3768.84, + "end": 3769.84, + "probability": 0.8429 + }, + { + "start": 3771.1, + "end": 3773.6, + "probability": 0.9834 + }, + { + "start": 3773.66, + "end": 3774.68, + "probability": 0.9347 + }, + { + "start": 3775.5, + "end": 3776.38, + "probability": 0.7819 + }, + { + "start": 3777.76, + "end": 3779.46, + "probability": 0.998 + }, + { + "start": 3780.04, + "end": 3781.22, + "probability": 0.4999 + }, + { + "start": 3782.46, + "end": 3782.98, + "probability": 0.7955 + }, + { + "start": 3786.02, + "end": 3788.1, + "probability": 0.9744 + }, + { + "start": 3788.62, + "end": 3789.32, + "probability": 0.8774 + }, + { + "start": 3790.08, + "end": 3791.1, + "probability": 0.6075 + }, + { + "start": 3792.72, + "end": 3794.6, + "probability": 0.9578 + }, + { + "start": 3795.32, + "end": 3795.96, + "probability": 0.4401 + }, + { + "start": 3796.88, + "end": 3799.74, + "probability": 0.9686 + }, + { + "start": 3799.86, + "end": 3800.58, + "probability": 0.8953 + }, + { + "start": 3802.66, + "end": 3804.48, + "probability": 0.9272 + }, + { + "start": 3805.38, + "end": 3808.6, + "probability": 0.966 + }, + { + "start": 3810.02, + "end": 3811.52, + "probability": 0.9922 + }, + { + "start": 3811.62, + "end": 3812.08, + "probability": 0.9342 + }, + { + "start": 3812.58, + "end": 3813.86, + "probability": 0.9295 + }, + { + "start": 3814.72, + "end": 3816.16, + "probability": 0.9615 + }, + { + "start": 3816.62, + "end": 3818.44, + "probability": 0.9941 + }, + { + "start": 3818.48, + "end": 3824.42, + "probability": 0.9963 + }, + { + "start": 3826.9, + "end": 3828.36, + "probability": 0.9987 + }, + { + "start": 3829.4, + "end": 3830.76, + "probability": 0.9862 + }, + { + "start": 3833.06, + "end": 3835.34, + "probability": 0.8657 + }, + { + "start": 3836.59, + "end": 3840.34, + "probability": 0.9932 + }, + { + "start": 3840.88, + "end": 3842.54, + "probability": 0.9197 + }, + { + "start": 3844.18, + "end": 3848.06, + "probability": 0.8949 + }, + { + "start": 3849.28, + "end": 3849.8, + "probability": 0.7598 + }, + { + "start": 3849.88, + "end": 3855.8, + "probability": 0.98 + }, + { + "start": 3856.88, + "end": 3857.66, + "probability": 0.9173 + }, + { + "start": 3858.34, + "end": 3858.64, + "probability": 0.7187 + }, + { + "start": 3858.74, + "end": 3861.34, + "probability": 0.6229 + }, + { + "start": 3861.44, + "end": 3862.62, + "probability": 0.9979 + }, + { + "start": 3862.74, + "end": 3863.1, + "probability": 0.6879 + }, + { + "start": 3863.3, + "end": 3865.22, + "probability": 0.8411 + }, + { + "start": 3865.54, + "end": 3868.66, + "probability": 0.5941 + }, + { + "start": 3869.18, + "end": 3869.66, + "probability": 0.8487 + }, + { + "start": 3872.5, + "end": 3874.32, + "probability": 0.6623 + }, + { + "start": 3874.38, + "end": 3875.38, + "probability": 0.7688 + }, + { + "start": 3875.48, + "end": 3878.58, + "probability": 0.9905 + }, + { + "start": 3878.58, + "end": 3882.12, + "probability": 0.9975 + }, + { + "start": 3882.12, + "end": 3885.8, + "probability": 0.996 + }, + { + "start": 3886.04, + "end": 3886.3, + "probability": 0.7409 + }, + { + "start": 3887.34, + "end": 3891.9, + "probability": 0.9922 + }, + { + "start": 3893.68, + "end": 3898.0, + "probability": 0.9932 + }, + { + "start": 3898.7, + "end": 3900.3, + "probability": 0.9961 + }, + { + "start": 3901.0, + "end": 3901.26, + "probability": 0.9927 + }, + { + "start": 3901.84, + "end": 3902.96, + "probability": 0.9963 + }, + { + "start": 3904.0, + "end": 3908.52, + "probability": 0.9951 + }, + { + "start": 3908.86, + "end": 3911.2, + "probability": 0.9603 + }, + { + "start": 3911.88, + "end": 3915.78, + "probability": 0.9959 + }, + { + "start": 3915.78, + "end": 3918.74, + "probability": 0.9957 + }, + { + "start": 3919.3, + "end": 3923.42, + "probability": 0.9711 + }, + { + "start": 3923.42, + "end": 3928.2, + "probability": 0.9826 + }, + { + "start": 3928.62, + "end": 3931.1, + "probability": 0.9992 + }, + { + "start": 3931.44, + "end": 3932.26, + "probability": 0.8367 + }, + { + "start": 3932.34, + "end": 3936.06, + "probability": 0.9136 + }, + { + "start": 3936.34, + "end": 3938.74, + "probability": 0.9855 + }, + { + "start": 3939.3, + "end": 3940.34, + "probability": 0.9966 + }, + { + "start": 3940.94, + "end": 3942.76, + "probability": 0.6656 + }, + { + "start": 3943.0, + "end": 3945.86, + "probability": 0.4081 + }, + { + "start": 3945.98, + "end": 3947.96, + "probability": 0.52 + }, + { + "start": 3960.8, + "end": 3962.9, + "probability": 0.7155 + }, + { + "start": 3963.9, + "end": 3966.06, + "probability": 0.8501 + }, + { + "start": 3966.18, + "end": 3968.3, + "probability": 0.9214 + }, + { + "start": 3969.28, + "end": 3973.65, + "probability": 0.9554 + }, + { + "start": 3975.82, + "end": 3976.7, + "probability": 0.8436 + }, + { + "start": 3976.92, + "end": 3982.96, + "probability": 0.935 + }, + { + "start": 3983.38, + "end": 3984.6, + "probability": 0.7254 + }, + { + "start": 3985.22, + "end": 3985.7, + "probability": 0.8163 + }, + { + "start": 3986.02, + "end": 3988.06, + "probability": 0.9945 + }, + { + "start": 3988.62, + "end": 3989.58, + "probability": 0.9668 + }, + { + "start": 3990.14, + "end": 3991.1, + "probability": 0.9589 + }, + { + "start": 3991.38, + "end": 3993.66, + "probability": 0.9757 + }, + { + "start": 3993.86, + "end": 3997.09, + "probability": 0.9896 + }, + { + "start": 3997.78, + "end": 3999.06, + "probability": 0.9944 + }, + { + "start": 3999.58, + "end": 4002.78, + "probability": 0.9833 + }, + { + "start": 4002.84, + "end": 4004.4, + "probability": 0.8694 + }, + { + "start": 4005.12, + "end": 4008.72, + "probability": 0.9868 + }, + { + "start": 4009.68, + "end": 4010.48, + "probability": 0.8929 + }, + { + "start": 4011.06, + "end": 4017.52, + "probability": 0.9788 + }, + { + "start": 4017.52, + "end": 4022.46, + "probability": 0.855 + }, + { + "start": 4022.46, + "end": 4030.6, + "probability": 0.9919 + }, + { + "start": 4031.0, + "end": 4033.13, + "probability": 0.998 + }, + { + "start": 4033.82, + "end": 4039.8, + "probability": 0.9989 + }, + { + "start": 4039.86, + "end": 4044.96, + "probability": 0.9924 + }, + { + "start": 4046.24, + "end": 4046.94, + "probability": 0.7303 + }, + { + "start": 4047.18, + "end": 4052.68, + "probability": 0.9852 + }, + { + "start": 4052.82, + "end": 4053.56, + "probability": 0.8371 + }, + { + "start": 4053.94, + "end": 4054.28, + "probability": 0.5885 + }, + { + "start": 4054.4, + "end": 4056.34, + "probability": 0.9863 + }, + { + "start": 4056.7, + "end": 4058.58, + "probability": 0.9842 + }, + { + "start": 4059.1, + "end": 4059.92, + "probability": 0.8314 + }, + { + "start": 4060.68, + "end": 4064.04, + "probability": 0.9678 + }, + { + "start": 4065.22, + "end": 4068.08, + "probability": 0.9432 + }, + { + "start": 4068.62, + "end": 4075.22, + "probability": 0.857 + }, + { + "start": 4075.92, + "end": 4079.66, + "probability": 0.9917 + }, + { + "start": 4080.08, + "end": 4083.36, + "probability": 0.9756 + }, + { + "start": 4084.32, + "end": 4085.5, + "probability": 0.7517 + }, + { + "start": 4085.56, + "end": 4088.07, + "probability": 0.8939 + }, + { + "start": 4088.68, + "end": 4090.42, + "probability": 0.8791 + }, + { + "start": 4091.22, + "end": 4092.32, + "probability": 0.9912 + }, + { + "start": 4092.46, + "end": 4093.44, + "probability": 0.458 + }, + { + "start": 4094.28, + "end": 4097.76, + "probability": 0.9929 + }, + { + "start": 4097.76, + "end": 4102.14, + "probability": 0.9696 + }, + { + "start": 4102.42, + "end": 4103.84, + "probability": 0.7193 + }, + { + "start": 4104.28, + "end": 4105.33, + "probability": 0.8501 + }, + { + "start": 4105.5, + "end": 4108.62, + "probability": 0.9117 + }, + { + "start": 4109.1, + "end": 4110.46, + "probability": 0.5991 + }, + { + "start": 4110.7, + "end": 4111.75, + "probability": 0.9927 + }, + { + "start": 4111.86, + "end": 4113.36, + "probability": 0.9894 + }, + { + "start": 4113.68, + "end": 4116.52, + "probability": 0.9908 + }, + { + "start": 4116.74, + "end": 4118.12, + "probability": 0.6443 + }, + { + "start": 4118.54, + "end": 4123.3, + "probability": 0.9458 + }, + { + "start": 4124.22, + "end": 4127.8, + "probability": 0.985 + }, + { + "start": 4128.54, + "end": 4131.48, + "probability": 0.9985 + }, + { + "start": 4131.98, + "end": 4134.32, + "probability": 0.9731 + }, + { + "start": 4134.7, + "end": 4136.38, + "probability": 0.9902 + }, + { + "start": 4136.98, + "end": 4144.64, + "probability": 0.9922 + }, + { + "start": 4144.76, + "end": 4144.76, + "probability": 0.7487 + }, + { + "start": 4145.02, + "end": 4148.96, + "probability": 0.9965 + }, + { + "start": 4149.0, + "end": 4149.34, + "probability": 0.9386 + }, + { + "start": 4150.02, + "end": 4150.46, + "probability": 0.587 + }, + { + "start": 4150.72, + "end": 4152.38, + "probability": 0.8375 + }, + { + "start": 4166.72, + "end": 4167.2, + "probability": 0.4575 + }, + { + "start": 4167.66, + "end": 4168.0, + "probability": 0.8315 + }, + { + "start": 4168.0, + "end": 4169.16, + "probability": 0.6913 + }, + { + "start": 4169.78, + "end": 4169.94, + "probability": 0.1802 + }, + { + "start": 4170.04, + "end": 4170.94, + "probability": 0.4601 + }, + { + "start": 4171.88, + "end": 4173.06, + "probability": 0.605 + }, + { + "start": 4173.08, + "end": 4174.38, + "probability": 0.9395 + }, + { + "start": 4175.32, + "end": 4177.56, + "probability": 0.9733 + }, + { + "start": 4178.9, + "end": 4180.08, + "probability": 0.7777 + }, + { + "start": 4193.04, + "end": 4193.88, + "probability": 0.1213 + }, + { + "start": 4193.88, + "end": 4193.88, + "probability": 0.0553 + }, + { + "start": 4193.88, + "end": 4195.38, + "probability": 0.1606 + }, + { + "start": 4195.38, + "end": 4196.04, + "probability": 0.3399 + }, + { + "start": 4196.3, + "end": 4197.28, + "probability": 0.5495 + }, + { + "start": 4197.94, + "end": 4199.37, + "probability": 0.9166 + }, + { + "start": 4200.56, + "end": 4202.32, + "probability": 0.9543 + }, + { + "start": 4202.94, + "end": 4206.98, + "probability": 0.6271 + }, + { + "start": 4207.74, + "end": 4214.88, + "probability": 0.9812 + }, + { + "start": 4215.64, + "end": 4219.26, + "probability": 0.9613 + }, + { + "start": 4219.98, + "end": 4221.94, + "probability": 0.9452 + }, + { + "start": 4222.22, + "end": 4222.88, + "probability": 0.5043 + }, + { + "start": 4222.92, + "end": 4225.7, + "probability": 0.9494 + }, + { + "start": 4226.42, + "end": 4228.96, + "probability": 0.998 + }, + { + "start": 4228.96, + "end": 4232.08, + "probability": 0.9798 + }, + { + "start": 4233.0, + "end": 4237.02, + "probability": 0.9875 + }, + { + "start": 4238.06, + "end": 4238.98, + "probability": 0.8791 + }, + { + "start": 4239.02, + "end": 4242.28, + "probability": 0.9932 + }, + { + "start": 4242.39, + "end": 4245.48, + "probability": 0.8511 + }, + { + "start": 4245.78, + "end": 4246.84, + "probability": 0.6714 + }, + { + "start": 4247.34, + "end": 4249.28, + "probability": 0.8617 + }, + { + "start": 4249.86, + "end": 4251.46, + "probability": 0.9946 + }, + { + "start": 4251.56, + "end": 4252.1, + "probability": 0.6079 + }, + { + "start": 4252.2, + "end": 4253.56, + "probability": 0.9252 + }, + { + "start": 4254.2, + "end": 4256.56, + "probability": 0.8837 + }, + { + "start": 4256.76, + "end": 4259.18, + "probability": 0.9658 + }, + { + "start": 4259.56, + "end": 4260.64, + "probability": 0.982 + }, + { + "start": 4260.86, + "end": 4261.26, + "probability": 0.8804 + }, + { + "start": 4261.94, + "end": 4262.42, + "probability": 0.6273 + }, + { + "start": 4262.44, + "end": 4264.72, + "probability": 0.9825 + }, + { + "start": 4281.04, + "end": 4281.12, + "probability": 0.4781 + }, + { + "start": 4281.12, + "end": 4282.0, + "probability": 0.7599 + }, + { + "start": 4283.2, + "end": 4284.22, + "probability": 0.6361 + }, + { + "start": 4284.32, + "end": 4291.14, + "probability": 0.7041 + }, + { + "start": 4293.58, + "end": 4296.9, + "probability": 0.4687 + }, + { + "start": 4298.16, + "end": 4300.03, + "probability": 0.995 + }, + { + "start": 4300.22, + "end": 4301.28, + "probability": 0.9573 + }, + { + "start": 4301.5, + "end": 4304.04, + "probability": 0.9496 + }, + { + "start": 4304.78, + "end": 4305.76, + "probability": 0.8134 + }, + { + "start": 4306.1, + "end": 4306.98, + "probability": 0.9322 + }, + { + "start": 4307.32, + "end": 4309.8, + "probability": 0.8322 + }, + { + "start": 4310.1, + "end": 4311.32, + "probability": 0.9346 + }, + { + "start": 4314.01, + "end": 4315.84, + "probability": 0.9673 + }, + { + "start": 4316.58, + "end": 4319.5, + "probability": 0.5768 + }, + { + "start": 4323.12, + "end": 4324.74, + "probability": 0.9988 + }, + { + "start": 4327.06, + "end": 4331.72, + "probability": 0.8672 + }, + { + "start": 4333.16, + "end": 4335.24, + "probability": 0.972 + }, + { + "start": 4337.02, + "end": 4341.22, + "probability": 0.7059 + }, + { + "start": 4342.7, + "end": 4346.8, + "probability": 0.9496 + }, + { + "start": 4347.82, + "end": 4350.4, + "probability": 0.981 + }, + { + "start": 4351.3, + "end": 4353.14, + "probability": 0.7376 + }, + { + "start": 4355.98, + "end": 4357.56, + "probability": 0.993 + }, + { + "start": 4358.82, + "end": 4363.66, + "probability": 0.9987 + }, + { + "start": 4364.22, + "end": 4366.46, + "probability": 0.9933 + }, + { + "start": 4366.98, + "end": 4371.24, + "probability": 0.9952 + }, + { + "start": 4372.1, + "end": 4373.08, + "probability": 0.7474 + }, + { + "start": 4374.16, + "end": 4376.26, + "probability": 0.867 + }, + { + "start": 4377.66, + "end": 4382.1, + "probability": 0.992 + }, + { + "start": 4382.76, + "end": 4383.98, + "probability": 0.6349 + }, + { + "start": 4384.54, + "end": 4389.1, + "probability": 0.9897 + }, + { + "start": 4390.02, + "end": 4391.4, + "probability": 0.8747 + }, + { + "start": 4391.88, + "end": 4399.56, + "probability": 0.9731 + }, + { + "start": 4400.26, + "end": 4401.05, + "probability": 0.9447 + }, + { + "start": 4402.46, + "end": 4409.1, + "probability": 0.9496 + }, + { + "start": 4409.92, + "end": 4417.94, + "probability": 0.8664 + }, + { + "start": 4417.94, + "end": 4424.08, + "probability": 0.99 + }, + { + "start": 4424.66, + "end": 4426.82, + "probability": 0.8252 + }, + { + "start": 4427.96, + "end": 4429.22, + "probability": 0.9867 + }, + { + "start": 4429.68, + "end": 4430.26, + "probability": 0.8839 + }, + { + "start": 4430.64, + "end": 4435.24, + "probability": 0.9517 + }, + { + "start": 4435.34, + "end": 4439.36, + "probability": 0.9985 + }, + { + "start": 4440.58, + "end": 4444.8, + "probability": 0.82 + }, + { + "start": 4445.68, + "end": 4448.06, + "probability": 0.8259 + }, + { + "start": 4448.78, + "end": 4453.66, + "probability": 0.9961 + }, + { + "start": 4454.52, + "end": 4458.44, + "probability": 0.9658 + }, + { + "start": 4459.1, + "end": 4462.36, + "probability": 0.9786 + }, + { + "start": 4463.28, + "end": 4465.4, + "probability": 0.998 + }, + { + "start": 4466.1, + "end": 4467.6, + "probability": 0.9679 + }, + { + "start": 4468.2, + "end": 4470.1, + "probability": 0.8489 + }, + { + "start": 4471.26, + "end": 4472.22, + "probability": 0.652 + }, + { + "start": 4472.94, + "end": 4474.52, + "probability": 0.916 + }, + { + "start": 4474.6, + "end": 4475.64, + "probability": 0.4294 + }, + { + "start": 4476.6, + "end": 4478.1, + "probability": 0.9932 + }, + { + "start": 4478.88, + "end": 4480.66, + "probability": 0.9691 + }, + { + "start": 4481.0, + "end": 4486.5, + "probability": 0.8931 + }, + { + "start": 4486.86, + "end": 4491.98, + "probability": 0.9478 + }, + { + "start": 4492.6, + "end": 4494.22, + "probability": 0.9116 + }, + { + "start": 4494.84, + "end": 4495.86, + "probability": 0.5234 + }, + { + "start": 4496.06, + "end": 4499.06, + "probability": 0.9695 + }, + { + "start": 4499.36, + "end": 4501.22, + "probability": 0.9107 + }, + { + "start": 4501.93, + "end": 4503.06, + "probability": 0.7555 + }, + { + "start": 4503.06, + "end": 4505.84, + "probability": 0.8696 + }, + { + "start": 4506.46, + "end": 4507.81, + "probability": 0.9682 + }, + { + "start": 4508.44, + "end": 4509.82, + "probability": 0.392 + }, + { + "start": 4510.76, + "end": 4515.78, + "probability": 0.9982 + }, + { + "start": 4516.84, + "end": 4518.04, + "probability": 0.9602 + }, + { + "start": 4518.1, + "end": 4519.6, + "probability": 0.8218 + }, + { + "start": 4519.66, + "end": 4519.94, + "probability": 0.3719 + }, + { + "start": 4519.94, + "end": 4520.26, + "probability": 0.6797 + }, + { + "start": 4520.64, + "end": 4521.54, + "probability": 0.9797 + }, + { + "start": 4522.3, + "end": 4522.9, + "probability": 0.8846 + }, + { + "start": 4523.14, + "end": 4525.68, + "probability": 0.2868 + }, + { + "start": 4525.8, + "end": 4527.96, + "probability": 0.0066 + }, + { + "start": 4528.26, + "end": 4528.26, + "probability": 0.2115 + }, + { + "start": 4528.26, + "end": 4528.26, + "probability": 0.0945 + }, + { + "start": 4528.26, + "end": 4531.16, + "probability": 0.5366 + }, + { + "start": 4532.02, + "end": 4532.56, + "probability": 0.11 + }, + { + "start": 4533.78, + "end": 4537.36, + "probability": 0.4289 + }, + { + "start": 4553.44, + "end": 4556.66, + "probability": 0.3474 + }, + { + "start": 4556.72, + "end": 4557.98, + "probability": 0.991 + }, + { + "start": 4557.98, + "end": 4560.05, + "probability": 0.1203 + }, + { + "start": 4560.58, + "end": 4562.08, + "probability": 0.5413 + }, + { + "start": 4562.64, + "end": 4564.68, + "probability": 0.887 + }, + { + "start": 4565.32, + "end": 4567.36, + "probability": 0.7449 + }, + { + "start": 4568.08, + "end": 4569.28, + "probability": 0.9827 + }, + { + "start": 4570.54, + "end": 4571.66, + "probability": 0.8979 + }, + { + "start": 4571.88, + "end": 4573.82, + "probability": 0.7708 + }, + { + "start": 4573.92, + "end": 4575.26, + "probability": 0.8721 + }, + { + "start": 4576.3, + "end": 4584.12, + "probability": 0.9897 + }, + { + "start": 4585.6, + "end": 4587.14, + "probability": 0.7929 + }, + { + "start": 4588.1, + "end": 4590.68, + "probability": 0.762 + }, + { + "start": 4591.28, + "end": 4593.34, + "probability": 0.5818 + }, + { + "start": 4594.08, + "end": 4595.36, + "probability": 0.7061 + }, + { + "start": 4595.56, + "end": 4599.44, + "probability": 0.9729 + }, + { + "start": 4600.98, + "end": 4604.24, + "probability": 0.9154 + }, + { + "start": 4605.32, + "end": 4614.12, + "probability": 0.8835 + }, + { + "start": 4616.84, + "end": 4621.32, + "probability": 0.9954 + }, + { + "start": 4622.74, + "end": 4625.4, + "probability": 0.9985 + }, + { + "start": 4625.54, + "end": 4631.32, + "probability": 0.989 + }, + { + "start": 4632.6, + "end": 4635.39, + "probability": 0.9565 + }, + { + "start": 4636.06, + "end": 4640.54, + "probability": 0.9886 + }, + { + "start": 4640.54, + "end": 4644.64, + "probability": 0.9994 + }, + { + "start": 4646.6, + "end": 4648.62, + "probability": 0.7583 + }, + { + "start": 4648.74, + "end": 4653.32, + "probability": 0.9586 + }, + { + "start": 4654.44, + "end": 4655.72, + "probability": 0.8064 + }, + { + "start": 4656.42, + "end": 4660.34, + "probability": 0.9779 + }, + { + "start": 4661.88, + "end": 4664.46, + "probability": 0.7293 + }, + { + "start": 4664.98, + "end": 4666.3, + "probability": 0.9784 + }, + { + "start": 4667.24, + "end": 4669.86, + "probability": 0.8534 + }, + { + "start": 4670.7, + "end": 4674.2, + "probability": 0.9773 + }, + { + "start": 4674.96, + "end": 4680.42, + "probability": 0.9728 + }, + { + "start": 4680.44, + "end": 4684.3, + "probability": 0.998 + }, + { + "start": 4685.2, + "end": 4692.74, + "probability": 0.9984 + }, + { + "start": 4693.4, + "end": 4696.76, + "probability": 0.9353 + }, + { + "start": 4697.32, + "end": 4698.6, + "probability": 0.9364 + }, + { + "start": 4700.16, + "end": 4702.66, + "probability": 0.7087 + }, + { + "start": 4703.64, + "end": 4706.26, + "probability": 0.9751 + }, + { + "start": 4706.58, + "end": 4707.56, + "probability": 0.5672 + }, + { + "start": 4708.02, + "end": 4710.26, + "probability": 0.8224 + }, + { + "start": 4710.32, + "end": 4714.9, + "probability": 0.9654 + }, + { + "start": 4715.48, + "end": 4721.56, + "probability": 0.9186 + }, + { + "start": 4722.08, + "end": 4726.48, + "probability": 0.9965 + }, + { + "start": 4726.48, + "end": 4730.34, + "probability": 0.9709 + }, + { + "start": 4730.86, + "end": 4732.22, + "probability": 0.7664 + }, + { + "start": 4732.68, + "end": 4736.24, + "probability": 0.8951 + }, + { + "start": 4736.6, + "end": 4738.7, + "probability": 0.9603 + }, + { + "start": 4738.82, + "end": 4743.26, + "probability": 0.9939 + }, + { + "start": 4743.6, + "end": 4743.96, + "probability": 0.7253 + }, + { + "start": 4743.96, + "end": 4744.08, + "probability": 0.1992 + }, + { + "start": 4744.08, + "end": 4744.86, + "probability": 0.7914 + }, + { + "start": 4744.96, + "end": 4747.8, + "probability": 0.9729 + }, + { + "start": 4748.2, + "end": 4750.58, + "probability": 0.9709 + }, + { + "start": 4750.64, + "end": 4758.4, + "probability": 0.3978 + }, + { + "start": 4758.6, + "end": 4760.02, + "probability": 0.6897 + }, + { + "start": 4760.94, + "end": 4761.74, + "probability": 0.6922 + }, + { + "start": 4762.38, + "end": 4762.38, + "probability": 0.4443 + }, + { + "start": 4762.82, + "end": 4765.16, + "probability": 0.9659 + }, + { + "start": 4766.02, + "end": 4767.32, + "probability": 0.3383 + }, + { + "start": 4788.56, + "end": 4790.78, + "probability": 0.7057 + }, + { + "start": 4791.5, + "end": 4792.36, + "probability": 0.8053 + }, + { + "start": 4792.84, + "end": 4796.52, + "probability": 0.7437 + }, + { + "start": 4797.2, + "end": 4802.14, + "probability": 0.8362 + }, + { + "start": 4802.82, + "end": 4805.56, + "probability": 0.9517 + }, + { + "start": 4806.28, + "end": 4810.06, + "probability": 0.9668 + }, + { + "start": 4810.74, + "end": 4815.1, + "probability": 0.9958 + }, + { + "start": 4815.82, + "end": 4820.56, + "probability": 0.9769 + }, + { + "start": 4821.26, + "end": 4824.02, + "probability": 0.939 + }, + { + "start": 4824.58, + "end": 4830.58, + "probability": 0.9868 + }, + { + "start": 4831.2, + "end": 4832.8, + "probability": 0.505 + }, + { + "start": 4833.4, + "end": 4833.64, + "probability": 0.2878 + }, + { + "start": 4833.7, + "end": 4836.6, + "probability": 0.8198 + }, + { + "start": 4837.02, + "end": 4839.58, + "probability": 0.9882 + }, + { + "start": 4840.04, + "end": 4844.9, + "probability": 0.9862 + }, + { + "start": 4845.28, + "end": 4849.66, + "probability": 0.9313 + }, + { + "start": 4849.86, + "end": 4853.0, + "probability": 0.9438 + }, + { + "start": 4853.2, + "end": 4856.56, + "probability": 0.8536 + }, + { + "start": 4856.78, + "end": 4860.04, + "probability": 0.9514 + }, + { + "start": 4860.5, + "end": 4862.94, + "probability": 0.8414 + }, + { + "start": 4863.24, + "end": 4867.58, + "probability": 0.9446 + }, + { + "start": 4868.14, + "end": 4873.66, + "probability": 0.7533 + }, + { + "start": 4874.2, + "end": 4877.48, + "probability": 0.7453 + }, + { + "start": 4877.86, + "end": 4885.16, + "probability": 0.8541 + }, + { + "start": 4885.58, + "end": 4886.66, + "probability": 0.5737 + }, + { + "start": 4887.06, + "end": 4887.83, + "probability": 0.9492 + }, + { + "start": 4888.34, + "end": 4892.46, + "probability": 0.9868 + }, + { + "start": 4892.46, + "end": 4897.62, + "probability": 0.9968 + }, + { + "start": 4898.1, + "end": 4899.56, + "probability": 0.9674 + }, + { + "start": 4899.82, + "end": 4904.64, + "probability": 0.8314 + }, + { + "start": 4905.22, + "end": 4909.86, + "probability": 0.9106 + }, + { + "start": 4910.16, + "end": 4911.92, + "probability": 0.8296 + }, + { + "start": 4912.36, + "end": 4915.2, + "probability": 0.8132 + }, + { + "start": 4915.54, + "end": 4917.98, + "probability": 0.7311 + }, + { + "start": 4918.8, + "end": 4919.58, + "probability": 0.7538 + }, + { + "start": 4919.94, + "end": 4923.98, + "probability": 0.8539 + }, + { + "start": 4924.14, + "end": 4925.42, + "probability": 0.9269 + }, + { + "start": 4925.64, + "end": 4929.84, + "probability": 0.9535 + }, + { + "start": 4930.24, + "end": 4932.88, + "probability": 0.9904 + }, + { + "start": 4933.14, + "end": 4934.78, + "probability": 0.9969 + }, + { + "start": 4935.12, + "end": 4937.32, + "probability": 0.9532 + }, + { + "start": 4937.7, + "end": 4942.04, + "probability": 0.9906 + }, + { + "start": 4942.7, + "end": 4949.28, + "probability": 0.8289 + }, + { + "start": 4949.5, + "end": 4949.7, + "probability": 0.7234 + }, + { + "start": 4949.78, + "end": 4950.38, + "probability": 0.5816 + }, + { + "start": 4950.54, + "end": 4952.3, + "probability": 0.9561 + }, + { + "start": 4955.3, + "end": 4955.94, + "probability": 0.1949 + }, + { + "start": 4957.92, + "end": 4960.48, + "probability": 0.0453 + }, + { + "start": 4970.92, + "end": 4973.52, + "probability": 0.5928 + }, + { + "start": 4974.76, + "end": 4975.13, + "probability": 0.9814 + }, + { + "start": 4976.68, + "end": 4977.24, + "probability": 0.1704 + }, + { + "start": 4979.8, + "end": 4988.36, + "probability": 0.9642 + }, + { + "start": 4988.39, + "end": 4994.42, + "probability": 0.9955 + }, + { + "start": 4995.08, + "end": 4995.58, + "probability": 0.4221 + }, + { + "start": 4997.7, + "end": 5005.2, + "probability": 0.994 + }, + { + "start": 5005.2, + "end": 5010.98, + "probability": 0.9437 + }, + { + "start": 5011.56, + "end": 5015.88, + "probability": 0.9722 + }, + { + "start": 5016.54, + "end": 5021.86, + "probability": 0.9937 + }, + { + "start": 5022.64, + "end": 5026.56, + "probability": 0.9978 + }, + { + "start": 5027.44, + "end": 5028.38, + "probability": 0.9438 + }, + { + "start": 5030.52, + "end": 5031.44, + "probability": 0.9971 + }, + { + "start": 5032.16, + "end": 5033.04, + "probability": 0.9976 + }, + { + "start": 5033.58, + "end": 5035.91, + "probability": 0.9773 + }, + { + "start": 5036.68, + "end": 5037.82, + "probability": 0.803 + }, + { + "start": 5039.26, + "end": 5041.88, + "probability": 0.9408 + }, + { + "start": 5042.0, + "end": 5045.18, + "probability": 0.9958 + }, + { + "start": 5045.84, + "end": 5047.34, + "probability": 0.8655 + }, + { + "start": 5048.72, + "end": 5051.74, + "probability": 0.988 + }, + { + "start": 5052.46, + "end": 5054.06, + "probability": 0.8441 + }, + { + "start": 5054.4, + "end": 5055.88, + "probability": 0.9839 + }, + { + "start": 5055.98, + "end": 5058.54, + "probability": 0.9856 + }, + { + "start": 5058.88, + "end": 5062.26, + "probability": 0.9902 + }, + { + "start": 5062.3, + "end": 5062.98, + "probability": 0.6898 + }, + { + "start": 5063.08, + "end": 5063.66, + "probability": 0.6883 + }, + { + "start": 5064.42, + "end": 5067.1, + "probability": 0.8572 + }, + { + "start": 5067.46, + "end": 5068.68, + "probability": 0.9956 + }, + { + "start": 5069.32, + "end": 5070.82, + "probability": 0.9924 + }, + { + "start": 5070.92, + "end": 5073.5, + "probability": 0.9908 + }, + { + "start": 5074.2, + "end": 5075.2, + "probability": 0.8381 + }, + { + "start": 5075.76, + "end": 5076.64, + "probability": 0.4571 + }, + { + "start": 5077.02, + "end": 5078.06, + "probability": 0.7409 + }, + { + "start": 5078.5, + "end": 5079.93, + "probability": 0.9963 + }, + { + "start": 5080.66, + "end": 5081.3, + "probability": 0.8524 + }, + { + "start": 5081.38, + "end": 5082.26, + "probability": 0.9062 + }, + { + "start": 5082.64, + "end": 5084.46, + "probability": 0.9901 + }, + { + "start": 5084.74, + "end": 5085.32, + "probability": 0.9926 + }, + { + "start": 5085.4, + "end": 5086.44, + "probability": 0.994 + }, + { + "start": 5087.32, + "end": 5093.2, + "probability": 0.9993 + }, + { + "start": 5093.28, + "end": 5096.5, + "probability": 0.8211 + }, + { + "start": 5097.06, + "end": 5101.24, + "probability": 0.9437 + }, + { + "start": 5102.12, + "end": 5104.36, + "probability": 0.9813 + }, + { + "start": 5105.68, + "end": 5107.1, + "probability": 0.9976 + }, + { + "start": 5107.28, + "end": 5109.98, + "probability": 0.9977 + }, + { + "start": 5110.7, + "end": 5112.58, + "probability": 0.9874 + }, + { + "start": 5112.74, + "end": 5114.36, + "probability": 0.9049 + }, + { + "start": 5114.46, + "end": 5115.64, + "probability": 0.8892 + }, + { + "start": 5115.94, + "end": 5117.32, + "probability": 0.9979 + }, + { + "start": 5118.12, + "end": 5120.7, + "probability": 0.8771 + }, + { + "start": 5121.08, + "end": 5121.69, + "probability": 0.992 + }, + { + "start": 5121.78, + "end": 5123.32, + "probability": 0.9674 + }, + { + "start": 5124.48, + "end": 5132.76, + "probability": 0.9774 + }, + { + "start": 5133.66, + "end": 5135.18, + "probability": 0.5949 + }, + { + "start": 5135.18, + "end": 5136.06, + "probability": 0.9077 + }, + { + "start": 5136.2, + "end": 5137.4, + "probability": 0.9806 + }, + { + "start": 5137.82, + "end": 5139.12, + "probability": 0.9719 + }, + { + "start": 5139.56, + "end": 5141.12, + "probability": 0.9751 + }, + { + "start": 5141.18, + "end": 5142.48, + "probability": 0.9929 + }, + { + "start": 5143.5, + "end": 5145.68, + "probability": 0.9557 + }, + { + "start": 5145.78, + "end": 5147.92, + "probability": 0.9945 + }, + { + "start": 5148.52, + "end": 5149.66, + "probability": 0.9977 + }, + { + "start": 5150.6, + "end": 5154.54, + "probability": 0.8071 + }, + { + "start": 5154.62, + "end": 5157.42, + "probability": 0.9966 + }, + { + "start": 5157.44, + "end": 5158.98, + "probability": 0.824 + }, + { + "start": 5159.04, + "end": 5159.42, + "probability": 0.7806 + }, + { + "start": 5159.48, + "end": 5160.14, + "probability": 0.6482 + }, + { + "start": 5160.3, + "end": 5161.08, + "probability": 0.9628 + }, + { + "start": 5161.38, + "end": 5162.04, + "probability": 0.9944 + }, + { + "start": 5162.08, + "end": 5162.98, + "probability": 0.721 + }, + { + "start": 5163.04, + "end": 5166.84, + "probability": 0.7501 + }, + { + "start": 5166.84, + "end": 5169.38, + "probability": 0.999 + }, + { + "start": 5169.5, + "end": 5172.42, + "probability": 0.9921 + }, + { + "start": 5173.46, + "end": 5174.1, + "probability": 0.8228 + }, + { + "start": 5174.26, + "end": 5175.32, + "probability": 0.5478 + }, + { + "start": 5196.86, + "end": 5197.26, + "probability": 0.3812 + }, + { + "start": 5197.42, + "end": 5198.27, + "probability": 0.3832 + }, + { + "start": 5199.44, + "end": 5202.98, + "probability": 0.8934 + }, + { + "start": 5204.12, + "end": 5208.64, + "probability": 0.9296 + }, + { + "start": 5209.76, + "end": 5216.18, + "probability": 0.9897 + }, + { + "start": 5217.4, + "end": 5219.14, + "probability": 0.9985 + }, + { + "start": 5220.06, + "end": 5224.66, + "probability": 0.9971 + }, + { + "start": 5225.2, + "end": 5227.0, + "probability": 0.9868 + }, + { + "start": 5227.94, + "end": 5230.08, + "probability": 0.9114 + }, + { + "start": 5230.86, + "end": 5231.66, + "probability": 0.9442 + }, + { + "start": 5231.7, + "end": 5233.4, + "probability": 0.3084 + }, + { + "start": 5233.4, + "end": 5234.92, + "probability": 0.8889 + }, + { + "start": 5235.7, + "end": 5238.48, + "probability": 0.9988 + }, + { + "start": 5239.26, + "end": 5242.18, + "probability": 0.9897 + }, + { + "start": 5242.82, + "end": 5246.8, + "probability": 0.9995 + }, + { + "start": 5247.6, + "end": 5250.75, + "probability": 0.9939 + }, + { + "start": 5251.6, + "end": 5252.04, + "probability": 0.8457 + }, + { + "start": 5253.24, + "end": 5255.06, + "probability": 0.9783 + }, + { + "start": 5256.16, + "end": 5256.94, + "probability": 0.9917 + }, + { + "start": 5257.54, + "end": 5258.88, + "probability": 0.9748 + }, + { + "start": 5259.62, + "end": 5263.0, + "probability": 0.9992 + }, + { + "start": 5263.88, + "end": 5265.56, + "probability": 0.9974 + }, + { + "start": 5265.76, + "end": 5267.32, + "probability": 0.9963 + }, + { + "start": 5268.02, + "end": 5272.84, + "probability": 0.8914 + }, + { + "start": 5273.62, + "end": 5276.66, + "probability": 0.9984 + }, + { + "start": 5277.12, + "end": 5280.32, + "probability": 0.9717 + }, + { + "start": 5280.98, + "end": 5283.06, + "probability": 0.9982 + }, + { + "start": 5283.42, + "end": 5285.38, + "probability": 0.9982 + }, + { + "start": 5286.22, + "end": 5286.86, + "probability": 0.9128 + }, + { + "start": 5287.02, + "end": 5288.86, + "probability": 0.999 + }, + { + "start": 5289.54, + "end": 5295.02, + "probability": 0.9786 + }, + { + "start": 5295.12, + "end": 5295.68, + "probability": 0.7166 + }, + { + "start": 5296.86, + "end": 5297.78, + "probability": 0.957 + }, + { + "start": 5297.88, + "end": 5298.78, + "probability": 0.9855 + }, + { + "start": 5299.58, + "end": 5300.54, + "probability": 0.9821 + }, + { + "start": 5301.6, + "end": 5304.04, + "probability": 0.9985 + }, + { + "start": 5304.34, + "end": 5307.62, + "probability": 0.9973 + }, + { + "start": 5308.34, + "end": 5309.9, + "probability": 0.9587 + }, + { + "start": 5310.16, + "end": 5310.44, + "probability": 0.6623 + }, + { + "start": 5311.3, + "end": 5312.36, + "probability": 0.4061 + }, + { + "start": 5312.36, + "end": 5314.28, + "probability": 0.7028 + }, + { + "start": 5340.24, + "end": 5341.18, + "probability": 0.471 + }, + { + "start": 5341.4, + "end": 5342.96, + "probability": 0.7064 + }, + { + "start": 5343.96, + "end": 5348.18, + "probability": 0.9598 + }, + { + "start": 5349.0, + "end": 5350.74, + "probability": 0.9495 + }, + { + "start": 5351.56, + "end": 5354.1, + "probability": 0.9736 + }, + { + "start": 5355.66, + "end": 5359.64, + "probability": 0.8796 + }, + { + "start": 5360.34, + "end": 5362.56, + "probability": 0.7326 + }, + { + "start": 5363.62, + "end": 5364.64, + "probability": 0.7929 + }, + { + "start": 5365.74, + "end": 5368.68, + "probability": 0.9915 + }, + { + "start": 5368.68, + "end": 5372.18, + "probability": 0.9968 + }, + { + "start": 5373.08, + "end": 5374.72, + "probability": 0.983 + }, + { + "start": 5374.9, + "end": 5378.98, + "probability": 0.9609 + }, + { + "start": 5380.58, + "end": 5384.18, + "probability": 0.9834 + }, + { + "start": 5384.38, + "end": 5385.3, + "probability": 0.8829 + }, + { + "start": 5385.44, + "end": 5386.38, + "probability": 0.9669 + }, + { + "start": 5386.76, + "end": 5387.1, + "probability": 0.696 + }, + { + "start": 5387.32, + "end": 5391.81, + "probability": 0.985 + }, + { + "start": 5392.5, + "end": 5395.06, + "probability": 0.9584 + }, + { + "start": 5395.94, + "end": 5397.72, + "probability": 0.7921 + }, + { + "start": 5398.14, + "end": 5399.76, + "probability": 0.9965 + }, + { + "start": 5400.2, + "end": 5402.06, + "probability": 0.9941 + }, + { + "start": 5402.14, + "end": 5404.68, + "probability": 0.7435 + }, + { + "start": 5404.76, + "end": 5406.43, + "probability": 0.9792 + }, + { + "start": 5406.86, + "end": 5410.48, + "probability": 0.9985 + }, + { + "start": 5411.1, + "end": 5414.58, + "probability": 0.9935 + }, + { + "start": 5416.08, + "end": 5420.06, + "probability": 0.9796 + }, + { + "start": 5420.26, + "end": 5421.08, + "probability": 0.7587 + }, + { + "start": 5421.18, + "end": 5422.4, + "probability": 0.981 + }, + { + "start": 5423.06, + "end": 5423.74, + "probability": 0.939 + }, + { + "start": 5425.3, + "end": 5426.3, + "probability": 0.6231 + }, + { + "start": 5427.12, + "end": 5430.4, + "probability": 0.9219 + }, + { + "start": 5430.88, + "end": 5431.62, + "probability": 0.7725 + }, + { + "start": 5432.06, + "end": 5433.2, + "probability": 0.9782 + }, + { + "start": 5434.0, + "end": 5437.9, + "probability": 0.977 + }, + { + "start": 5439.02, + "end": 5442.52, + "probability": 0.9484 + }, + { + "start": 5443.12, + "end": 5444.78, + "probability": 0.9468 + }, + { + "start": 5445.54, + "end": 5452.0, + "probability": 0.9835 + }, + { + "start": 5452.04, + "end": 5452.72, + "probability": 0.925 + }, + { + "start": 5453.5, + "end": 5455.3, + "probability": 0.9945 + }, + { + "start": 5455.6, + "end": 5463.16, + "probability": 0.9968 + }, + { + "start": 5463.32, + "end": 5464.66, + "probability": 0.6956 + }, + { + "start": 5464.78, + "end": 5466.54, + "probability": 0.7505 + }, + { + "start": 5467.0, + "end": 5471.18, + "probability": 0.9689 + }, + { + "start": 5471.7, + "end": 5471.9, + "probability": 0.8705 + }, + { + "start": 5472.0, + "end": 5472.28, + "probability": 0.9171 + }, + { + "start": 5472.36, + "end": 5478.04, + "probability": 0.9413 + }, + { + "start": 5478.12, + "end": 5479.3, + "probability": 0.764 + }, + { + "start": 5479.32, + "end": 5480.9, + "probability": 0.9647 + }, + { + "start": 5481.0, + "end": 5481.16, + "probability": 0.4316 + }, + { + "start": 5481.18, + "end": 5482.94, + "probability": 0.8349 + }, + { + "start": 5483.12, + "end": 5485.92, + "probability": 0.9857 + }, + { + "start": 5486.54, + "end": 5490.16, + "probability": 0.9936 + }, + { + "start": 5491.04, + "end": 5494.24, + "probability": 0.9979 + }, + { + "start": 5494.46, + "end": 5499.02, + "probability": 0.9888 + }, + { + "start": 5499.28, + "end": 5500.22, + "probability": 0.8645 + }, + { + "start": 5500.38, + "end": 5503.24, + "probability": 0.8945 + }, + { + "start": 5503.34, + "end": 5504.58, + "probability": 0.9368 + }, + { + "start": 5504.6, + "end": 5505.34, + "probability": 0.7723 + }, + { + "start": 5505.96, + "end": 5508.02, + "probability": 0.5529 + }, + { + "start": 5508.28, + "end": 5509.94, + "probability": 0.9827 + }, + { + "start": 5510.3, + "end": 5513.66, + "probability": 0.8797 + }, + { + "start": 5514.32, + "end": 5517.6, + "probability": 0.9375 + }, + { + "start": 5518.22, + "end": 5520.68, + "probability": 0.9448 + }, + { + "start": 5520.86, + "end": 5521.86, + "probability": 0.9153 + }, + { + "start": 5523.06, + "end": 5525.12, + "probability": 0.7063 + }, + { + "start": 5525.2, + "end": 5525.92, + "probability": 0.4881 + }, + { + "start": 5526.36, + "end": 5529.8, + "probability": 0.9969 + }, + { + "start": 5529.8, + "end": 5532.4, + "probability": 0.9991 + }, + { + "start": 5532.96, + "end": 5535.16, + "probability": 0.9873 + }, + { + "start": 5535.52, + "end": 5539.3, + "probability": 0.9908 + }, + { + "start": 5539.88, + "end": 5544.5, + "probability": 0.8554 + }, + { + "start": 5544.82, + "end": 5547.34, + "probability": 0.9976 + }, + { + "start": 5547.74, + "end": 5550.5, + "probability": 0.9798 + }, + { + "start": 5550.74, + "end": 5554.8, + "probability": 0.9323 + }, + { + "start": 5555.6, + "end": 5558.0, + "probability": 0.9985 + }, + { + "start": 5558.46, + "end": 5562.02, + "probability": 0.8745 + }, + { + "start": 5562.42, + "end": 5565.88, + "probability": 0.9907 + }, + { + "start": 5565.88, + "end": 5567.38, + "probability": 0.9278 + }, + { + "start": 5567.82, + "end": 5571.76, + "probability": 0.9922 + }, + { + "start": 5572.2, + "end": 5573.98, + "probability": 0.802 + }, + { + "start": 5573.98, + "end": 5574.84, + "probability": 0.6194 + }, + { + "start": 5575.66, + "end": 5578.24, + "probability": 0.9749 + }, + { + "start": 5578.32, + "end": 5582.68, + "probability": 0.9988 + }, + { + "start": 5582.98, + "end": 5586.66, + "probability": 0.9817 + }, + { + "start": 5586.66, + "end": 5589.66, + "probability": 0.9988 + }, + { + "start": 5590.02, + "end": 5591.42, + "probability": 0.8566 + }, + { + "start": 5591.76, + "end": 5595.04, + "probability": 0.8944 + }, + { + "start": 5595.36, + "end": 5595.58, + "probability": 0.7903 + }, + { + "start": 5595.58, + "end": 5596.44, + "probability": 0.5934 + }, + { + "start": 5596.52, + "end": 5597.96, + "probability": 0.6624 + }, + { + "start": 5598.5, + "end": 5599.56, + "probability": 0.662 + }, + { + "start": 5599.86, + "end": 5602.12, + "probability": 0.8728 + }, + { + "start": 5621.3, + "end": 5622.38, + "probability": 0.6812 + }, + { + "start": 5623.9, + "end": 5626.04, + "probability": 0.66 + }, + { + "start": 5626.56, + "end": 5631.96, + "probability": 0.9946 + }, + { + "start": 5632.18, + "end": 5633.88, + "probability": 0.9855 + }, + { + "start": 5634.44, + "end": 5639.18, + "probability": 0.9915 + }, + { + "start": 5640.28, + "end": 5643.16, + "probability": 0.8372 + }, + { + "start": 5644.22, + "end": 5647.04, + "probability": 0.9639 + }, + { + "start": 5647.04, + "end": 5650.4, + "probability": 0.9941 + }, + { + "start": 5651.1, + "end": 5654.68, + "probability": 0.9989 + }, + { + "start": 5654.81, + "end": 5660.18, + "probability": 0.9734 + }, + { + "start": 5660.66, + "end": 5661.4, + "probability": 0.9592 + }, + { + "start": 5662.94, + "end": 5664.38, + "probability": 0.8667 + }, + { + "start": 5664.92, + "end": 5665.8, + "probability": 0.8584 + }, + { + "start": 5666.82, + "end": 5671.22, + "probability": 0.9949 + }, + { + "start": 5672.2, + "end": 5674.28, + "probability": 0.9907 + }, + { + "start": 5675.2, + "end": 5681.12, + "probability": 0.9893 + }, + { + "start": 5681.12, + "end": 5686.36, + "probability": 0.9973 + }, + { + "start": 5687.16, + "end": 5688.62, + "probability": 0.5904 + }, + { + "start": 5689.94, + "end": 5694.6, + "probability": 0.7299 + }, + { + "start": 5695.52, + "end": 5698.44, + "probability": 0.9856 + }, + { + "start": 5698.64, + "end": 5700.4, + "probability": 0.9244 + }, + { + "start": 5701.22, + "end": 5704.52, + "probability": 0.9735 + }, + { + "start": 5705.24, + "end": 5715.68, + "probability": 0.975 + }, + { + "start": 5715.88, + "end": 5716.96, + "probability": 0.9241 + }, + { + "start": 5717.5, + "end": 5721.14, + "probability": 0.9254 + }, + { + "start": 5721.88, + "end": 5722.38, + "probability": 0.6756 + }, + { + "start": 5723.24, + "end": 5726.26, + "probability": 0.9714 + }, + { + "start": 5726.76, + "end": 5728.78, + "probability": 0.9971 + }, + { + "start": 5730.44, + "end": 5735.34, + "probability": 0.6325 + }, + { + "start": 5736.48, + "end": 5738.64, + "probability": 0.9087 + }, + { + "start": 5739.62, + "end": 5747.66, + "probability": 0.9902 + }, + { + "start": 5748.36, + "end": 5751.1, + "probability": 0.9937 + }, + { + "start": 5751.92, + "end": 5754.62, + "probability": 0.9545 + }, + { + "start": 5755.38, + "end": 5760.24, + "probability": 0.9974 + }, + { + "start": 5760.64, + "end": 5762.98, + "probability": 0.9659 + }, + { + "start": 5763.68, + "end": 5769.22, + "probability": 0.9768 + }, + { + "start": 5771.08, + "end": 5775.28, + "probability": 0.991 + }, + { + "start": 5776.06, + "end": 5779.02, + "probability": 0.9878 + }, + { + "start": 5779.94, + "end": 5781.18, + "probability": 0.4191 + }, + { + "start": 5782.14, + "end": 5786.52, + "probability": 0.9648 + }, + { + "start": 5787.72, + "end": 5789.24, + "probability": 0.9567 + }, + { + "start": 5789.8, + "end": 5791.36, + "probability": 0.9819 + }, + { + "start": 5792.28, + "end": 5797.58, + "probability": 0.8879 + }, + { + "start": 5799.1, + "end": 5804.42, + "probability": 0.9636 + }, + { + "start": 5804.42, + "end": 5808.6, + "probability": 0.708 + }, + { + "start": 5808.98, + "end": 5808.98, + "probability": 0.6944 + }, + { + "start": 5809.24, + "end": 5815.42, + "probability": 0.9529 + }, + { + "start": 5815.42, + "end": 5821.76, + "probability": 0.954 + }, + { + "start": 5822.32, + "end": 5825.02, + "probability": 0.9886 + }, + { + "start": 5825.38, + "end": 5825.7, + "probability": 0.616 + }, + { + "start": 5826.02, + "end": 5827.42, + "probability": 0.6966 + }, + { + "start": 5827.56, + "end": 5828.7, + "probability": 0.8497 + }, + { + "start": 5828.82, + "end": 5829.76, + "probability": 0.9154 + }, + { + "start": 5830.36, + "end": 5832.44, + "probability": 0.6508 + }, + { + "start": 5843.16, + "end": 5844.34, + "probability": 0.5622 + }, + { + "start": 5845.06, + "end": 5845.88, + "probability": 0.7612 + }, + { + "start": 5846.02, + "end": 5847.28, + "probability": 0.9419 + }, + { + "start": 5847.34, + "end": 5848.72, + "probability": 0.9012 + }, + { + "start": 5849.14, + "end": 5850.64, + "probability": 0.9895 + }, + { + "start": 5851.52, + "end": 5854.38, + "probability": 0.9571 + }, + { + "start": 5855.12, + "end": 5857.88, + "probability": 0.9404 + }, + { + "start": 5858.32, + "end": 5859.56, + "probability": 0.9401 + }, + { + "start": 5859.62, + "end": 5863.62, + "probability": 0.9774 + }, + { + "start": 5864.5, + "end": 5865.34, + "probability": 0.5354 + }, + { + "start": 5865.72, + "end": 5866.0, + "probability": 0.5265 + }, + { + "start": 5866.24, + "end": 5867.12, + "probability": 0.9762 + }, + { + "start": 5867.38, + "end": 5867.86, + "probability": 0.9648 + }, + { + "start": 5868.0, + "end": 5868.72, + "probability": 0.7955 + }, + { + "start": 5869.0, + "end": 5869.28, + "probability": 0.8734 + }, + { + "start": 5869.56, + "end": 5870.52, + "probability": 0.9376 + }, + { + "start": 5871.12, + "end": 5871.44, + "probability": 0.6615 + }, + { + "start": 5872.02, + "end": 5874.7, + "probability": 0.994 + }, + { + "start": 5874.82, + "end": 5875.69, + "probability": 0.6699 + }, + { + "start": 5876.24, + "end": 5877.04, + "probability": 0.7818 + }, + { + "start": 5877.68, + "end": 5878.92, + "probability": 0.7984 + }, + { + "start": 5879.6, + "end": 5881.78, + "probability": 0.9773 + }, + { + "start": 5882.4, + "end": 5883.52, + "probability": 0.542 + }, + { + "start": 5884.24, + "end": 5885.42, + "probability": 0.8721 + }, + { + "start": 5885.44, + "end": 5886.54, + "probability": 0.8943 + }, + { + "start": 5886.66, + "end": 5887.71, + "probability": 0.4736 + }, + { + "start": 5888.06, + "end": 5888.2, + "probability": 0.0293 + }, + { + "start": 5888.2, + "end": 5890.78, + "probability": 0.5113 + }, + { + "start": 5891.08, + "end": 5891.86, + "probability": 0.9133 + }, + { + "start": 5892.44, + "end": 5893.8, + "probability": 0.9415 + }, + { + "start": 5893.84, + "end": 5896.42, + "probability": 0.9712 + }, + { + "start": 5896.7, + "end": 5897.0, + "probability": 0.9719 + }, + { + "start": 5898.12, + "end": 5898.42, + "probability": 0.5797 + }, + { + "start": 5898.46, + "end": 5899.3, + "probability": 0.6795 + }, + { + "start": 5901.26, + "end": 5906.22, + "probability": 0.9449 + }, + { + "start": 5907.12, + "end": 5910.72, + "probability": 0.993 + }, + { + "start": 5911.08, + "end": 5914.46, + "probability": 0.8978 + }, + { + "start": 5914.98, + "end": 5919.16, + "probability": 0.993 + }, + { + "start": 5920.06, + "end": 5922.12, + "probability": 0.8502 + }, + { + "start": 5922.68, + "end": 5925.86, + "probability": 0.9673 + }, + { + "start": 5926.26, + "end": 5926.86, + "probability": 0.9398 + }, + { + "start": 5927.22, + "end": 5927.96, + "probability": 0.9853 + }, + { + "start": 5928.9, + "end": 5930.74, + "probability": 0.9758 + }, + { + "start": 5930.8, + "end": 5932.1, + "probability": 0.9782 + }, + { + "start": 5933.54, + "end": 5934.66, + "probability": 0.9949 + }, + { + "start": 5934.8, + "end": 5935.94, + "probability": 0.7378 + }, + { + "start": 5936.16, + "end": 5938.98, + "probability": 0.7959 + }, + { + "start": 5939.04, + "end": 5942.4, + "probability": 0.9009 + }, + { + "start": 5944.32, + "end": 5944.32, + "probability": 0.1969 + }, + { + "start": 5944.32, + "end": 5945.58, + "probability": 0.3784 + }, + { + "start": 5945.7, + "end": 5947.58, + "probability": 0.5254 + }, + { + "start": 5948.36, + "end": 5949.5, + "probability": 0.1677 + }, + { + "start": 5950.42, + "end": 5951.8, + "probability": 0.9478 + }, + { + "start": 5951.86, + "end": 5952.42, + "probability": 0.4024 + }, + { + "start": 5953.02, + "end": 5955.95, + "probability": 0.1427 + }, + { + "start": 5956.96, + "end": 5958.88, + "probability": 0.0861 + }, + { + "start": 5958.98, + "end": 5958.98, + "probability": 0.0345 + }, + { + "start": 5959.06, + "end": 5961.7, + "probability": 0.7488 + }, + { + "start": 5962.08, + "end": 5963.28, + "probability": 0.8584 + }, + { + "start": 5963.38, + "end": 5964.72, + "probability": 0.9788 + }, + { + "start": 5964.82, + "end": 5965.73, + "probability": 0.9336 + }, + { + "start": 5966.82, + "end": 5971.58, + "probability": 0.9316 + }, + { + "start": 5971.6, + "end": 5972.5, + "probability": 0.4511 + }, + { + "start": 5972.76, + "end": 5973.62, + "probability": 0.4722 + }, + { + "start": 5973.66, + "end": 5974.2, + "probability": 0.4687 + }, + { + "start": 5974.74, + "end": 5975.69, + "probability": 0.96 + }, + { + "start": 5975.82, + "end": 5978.78, + "probability": 0.8567 + }, + { + "start": 5979.2, + "end": 5980.0, + "probability": 0.8589 + }, + { + "start": 5980.06, + "end": 5982.08, + "probability": 0.6505 + }, + { + "start": 5982.26, + "end": 5983.68, + "probability": 0.5031 + }, + { + "start": 5984.04, + "end": 5984.22, + "probability": 0.1117 + }, + { + "start": 5984.28, + "end": 5985.08, + "probability": 0.8313 + }, + { + "start": 5985.38, + "end": 5985.52, + "probability": 0.3853 + }, + { + "start": 5985.86, + "end": 5987.06, + "probability": 0.5593 + }, + { + "start": 5987.28, + "end": 5990.92, + "probability": 0.7579 + }, + { + "start": 5991.42, + "end": 5991.86, + "probability": 0.0063 + }, + { + "start": 5991.96, + "end": 5992.64, + "probability": 0.0612 + }, + { + "start": 5992.64, + "end": 5992.64, + "probability": 0.0996 + }, + { + "start": 5992.64, + "end": 5993.6, + "probability": 0.773 + }, + { + "start": 5994.08, + "end": 5999.66, + "probability": 0.9718 + }, + { + "start": 6000.34, + "end": 6002.88, + "probability": 0.724 + }, + { + "start": 6003.46, + "end": 6005.76, + "probability": 0.6687 + }, + { + "start": 6005.84, + "end": 6006.44, + "probability": 0.8024 + }, + { + "start": 6006.58, + "end": 6008.94, + "probability": 0.9847 + }, + { + "start": 6009.28, + "end": 6009.98, + "probability": 0.9632 + }, + { + "start": 6010.26, + "end": 6010.88, + "probability": 0.5631 + }, + { + "start": 6011.58, + "end": 6013.6, + "probability": 0.7817 + }, + { + "start": 6013.96, + "end": 6014.62, + "probability": 0.5113 + }, + { + "start": 6014.68, + "end": 6016.36, + "probability": 0.9954 + }, + { + "start": 6016.62, + "end": 6017.07, + "probability": 0.9595 + }, + { + "start": 6017.82, + "end": 6019.73, + "probability": 0.8332 + }, + { + "start": 6020.1, + "end": 6020.94, + "probability": 0.9335 + }, + { + "start": 6022.02, + "end": 6023.72, + "probability": 0.9506 + }, + { + "start": 6023.94, + "end": 6027.31, + "probability": 0.9813 + }, + { + "start": 6027.48, + "end": 6027.98, + "probability": 0.77 + }, + { + "start": 6029.8, + "end": 6029.94, + "probability": 0.2927 + }, + { + "start": 6029.94, + "end": 6029.94, + "probability": 0.1399 + }, + { + "start": 6029.94, + "end": 6031.02, + "probability": 0.6134 + }, + { + "start": 6031.18, + "end": 6032.38, + "probability": 0.9483 + }, + { + "start": 6032.48, + "end": 6033.1, + "probability": 0.8734 + }, + { + "start": 6033.14, + "end": 6033.74, + "probability": 0.9293 + }, + { + "start": 6033.94, + "end": 6035.03, + "probability": 0.8299 + }, + { + "start": 6035.38, + "end": 6036.32, + "probability": 0.2166 + }, + { + "start": 6036.44, + "end": 6040.04, + "probability": 0.8553 + }, + { + "start": 6040.1, + "end": 6041.4, + "probability": 0.4644 + }, + { + "start": 6041.9, + "end": 6043.34, + "probability": 0.6006 + }, + { + "start": 6043.84, + "end": 6044.44, + "probability": 0.8628 + }, + { + "start": 6044.76, + "end": 6045.39, + "probability": 0.0947 + }, + { + "start": 6047.56, + "end": 6048.36, + "probability": 0.6548 + }, + { + "start": 6049.32, + "end": 6051.36, + "probability": 0.5844 + }, + { + "start": 6051.44, + "end": 6054.56, + "probability": 0.4105 + }, + { + "start": 6054.56, + "end": 6057.11, + "probability": 0.3089 + }, + { + "start": 6057.7, + "end": 6059.28, + "probability": 0.1482 + }, + { + "start": 6059.28, + "end": 6059.54, + "probability": 0.3091 + }, + { + "start": 6060.0, + "end": 6062.88, + "probability": 0.1183 + }, + { + "start": 6063.3, + "end": 6064.14, + "probability": 0.2421 + }, + { + "start": 6065.24, + "end": 6067.44, + "probability": 0.276 + }, + { + "start": 6067.92, + "end": 6068.28, + "probability": 0.1027 + }, + { + "start": 6068.4, + "end": 6068.4, + "probability": 0.095 + }, + { + "start": 6068.4, + "end": 6069.52, + "probability": 0.519 + }, + { + "start": 6069.98, + "end": 6071.06, + "probability": 0.465 + }, + { + "start": 6071.54, + "end": 6075.52, + "probability": 0.5217 + }, + { + "start": 6075.58, + "end": 6075.8, + "probability": 0.0278 + }, + { + "start": 6075.8, + "end": 6076.91, + "probability": 0.3392 + }, + { + "start": 6077.5, + "end": 6082.38, + "probability": 0.5963 + }, + { + "start": 6082.52, + "end": 6084.46, + "probability": 0.7634 + }, + { + "start": 6084.58, + "end": 6085.06, + "probability": 0.1718 + }, + { + "start": 6085.41, + "end": 6086.22, + "probability": 0.1786 + }, + { + "start": 6086.26, + "end": 6087.66, + "probability": 0.6353 + }, + { + "start": 6088.08, + "end": 6089.94, + "probability": 0.0503 + }, + { + "start": 6090.14, + "end": 6090.42, + "probability": 0.0609 + }, + { + "start": 6090.7, + "end": 6094.07, + "probability": 0.4448 + }, + { + "start": 6095.24, + "end": 6095.68, + "probability": 0.1503 + }, + { + "start": 6096.02, + "end": 6097.8, + "probability": 0.5555 + }, + { + "start": 6098.2, + "end": 6099.58, + "probability": 0.7978 + }, + { + "start": 6099.6, + "end": 6100.34, + "probability": 0.8023 + }, + { + "start": 6100.44, + "end": 6102.34, + "probability": 0.8971 + }, + { + "start": 6102.34, + "end": 6105.48, + "probability": 0.9604 + }, + { + "start": 6105.66, + "end": 6106.98, + "probability": 0.7353 + }, + { + "start": 6107.88, + "end": 6108.94, + "probability": 0.8393 + }, + { + "start": 6109.86, + "end": 6110.16, + "probability": 0.1237 + }, + { + "start": 6110.22, + "end": 6111.34, + "probability": 0.9438 + }, + { + "start": 6111.42, + "end": 6115.72, + "probability": 0.9187 + }, + { + "start": 6117.06, + "end": 6118.56, + "probability": 0.7237 + }, + { + "start": 6118.78, + "end": 6120.7, + "probability": 0.8466 + }, + { + "start": 6120.86, + "end": 6122.4, + "probability": 0.9963 + }, + { + "start": 6122.54, + "end": 6122.9, + "probability": 0.534 + }, + { + "start": 6122.96, + "end": 6125.64, + "probability": 0.9933 + }, + { + "start": 6125.68, + "end": 6126.4, + "probability": 0.8945 + }, + { + "start": 6126.44, + "end": 6129.14, + "probability": 0.7969 + }, + { + "start": 6129.2, + "end": 6129.8, + "probability": 0.5706 + }, + { + "start": 6131.06, + "end": 6132.36, + "probability": 0.8016 + }, + { + "start": 6132.56, + "end": 6132.82, + "probability": 0.7479 + }, + { + "start": 6132.9, + "end": 6134.08, + "probability": 0.7457 + }, + { + "start": 6134.54, + "end": 6136.08, + "probability": 0.9971 + }, + { + "start": 6136.16, + "end": 6137.85, + "probability": 0.9521 + }, + { + "start": 6138.28, + "end": 6140.06, + "probability": 0.6689 + }, + { + "start": 6140.18, + "end": 6141.18, + "probability": 0.8358 + }, + { + "start": 6141.38, + "end": 6141.78, + "probability": 0.076 + }, + { + "start": 6141.94, + "end": 6142.76, + "probability": 0.6506 + }, + { + "start": 6143.1, + "end": 6144.9, + "probability": 0.4975 + }, + { + "start": 6145.06, + "end": 6145.16, + "probability": 0.067 + }, + { + "start": 6145.18, + "end": 6146.32, + "probability": 0.9831 + }, + { + "start": 6146.48, + "end": 6148.46, + "probability": 0.9537 + }, + { + "start": 6148.73, + "end": 6150.98, + "probability": 0.9976 + }, + { + "start": 6151.81, + "end": 6152.02, + "probability": 0.1547 + }, + { + "start": 6152.02, + "end": 6152.23, + "probability": 0.3296 + }, + { + "start": 6153.14, + "end": 6154.44, + "probability": 0.988 + }, + { + "start": 6155.1, + "end": 6157.08, + "probability": 0.9976 + }, + { + "start": 6157.1, + "end": 6157.54, + "probability": 0.9209 + }, + { + "start": 6157.6, + "end": 6158.42, + "probability": 0.6221 + }, + { + "start": 6158.48, + "end": 6160.4, + "probability": 0.9919 + }, + { + "start": 6160.5, + "end": 6162.66, + "probability": 0.4011 + }, + { + "start": 6164.05, + "end": 6164.92, + "probability": 0.2773 + }, + { + "start": 6164.92, + "end": 6165.74, + "probability": 0.139 + }, + { + "start": 6166.22, + "end": 6167.44, + "probability": 0.1859 + }, + { + "start": 6167.44, + "end": 6169.27, + "probability": 0.7111 + }, + { + "start": 6170.02, + "end": 6172.64, + "probability": 0.4308 + }, + { + "start": 6172.7, + "end": 6173.52, + "probability": 0.5849 + }, + { + "start": 6173.56, + "end": 6177.56, + "probability": 0.0573 + }, + { + "start": 6177.58, + "end": 6178.64, + "probability": 0.1326 + }, + { + "start": 6178.72, + "end": 6178.72, + "probability": 0.1367 + }, + { + "start": 6178.72, + "end": 6179.88, + "probability": 0.5995 + }, + { + "start": 6179.88, + "end": 6183.26, + "probability": 0.7963 + }, + { + "start": 6183.3, + "end": 6184.22, + "probability": 0.6863 + }, + { + "start": 6184.92, + "end": 6185.52, + "probability": 0.0934 + }, + { + "start": 6185.52, + "end": 6187.34, + "probability": 0.0529 + }, + { + "start": 6187.4, + "end": 6190.64, + "probability": 0.7806 + }, + { + "start": 6191.24, + "end": 6192.5, + "probability": 0.9854 + }, + { + "start": 6192.72, + "end": 6193.22, + "probability": 0.6387 + }, + { + "start": 6193.26, + "end": 6196.84, + "probability": 0.98 + }, + { + "start": 6196.92, + "end": 6197.32, + "probability": 0.5522 + }, + { + "start": 6197.42, + "end": 6198.51, + "probability": 0.9288 + }, + { + "start": 6199.06, + "end": 6199.88, + "probability": 0.8311 + }, + { + "start": 6199.94, + "end": 6204.08, + "probability": 0.9297 + }, + { + "start": 6204.74, + "end": 6204.84, + "probability": 0.1563 + }, + { + "start": 6204.84, + "end": 6205.72, + "probability": 0.4314 + }, + { + "start": 6205.78, + "end": 6206.32, + "probability": 0.7319 + }, + { + "start": 6206.36, + "end": 6207.38, + "probability": 0.6202 + }, + { + "start": 6207.98, + "end": 6209.78, + "probability": 0.9871 + }, + { + "start": 6209.82, + "end": 6211.52, + "probability": 0.1248 + }, + { + "start": 6212.56, + "end": 6214.3, + "probability": 0.027 + }, + { + "start": 6214.3, + "end": 6216.56, + "probability": 0.5759 + }, + { + "start": 6217.21, + "end": 6220.62, + "probability": 0.9796 + }, + { + "start": 6220.64, + "end": 6220.66, + "probability": 0.182 + }, + { + "start": 6220.66, + "end": 6221.62, + "probability": 0.2733 + }, + { + "start": 6221.64, + "end": 6222.24, + "probability": 0.818 + }, + { + "start": 6222.26, + "end": 6223.1, + "probability": 0.9336 + }, + { + "start": 6223.78, + "end": 6225.28, + "probability": 0.8196 + }, + { + "start": 6227.12, + "end": 6227.12, + "probability": 0.1075 + }, + { + "start": 6228.16, + "end": 6229.14, + "probability": 0.8929 + }, + { + "start": 6229.18, + "end": 6229.86, + "probability": 0.7426 + }, + { + "start": 6231.22, + "end": 6232.2, + "probability": 0.9043 + }, + { + "start": 6232.26, + "end": 6233.36, + "probability": 0.5059 + }, + { + "start": 6233.36, + "end": 6233.78, + "probability": 0.7746 + }, + { + "start": 6234.68, + "end": 6235.44, + "probability": 0.5619 + }, + { + "start": 6235.44, + "end": 6237.5, + "probability": 0.961 + }, + { + "start": 6238.92, + "end": 6240.2, + "probability": 0.9035 + }, + { + "start": 6240.28, + "end": 6240.46, + "probability": 0.6833 + }, + { + "start": 6240.52, + "end": 6243.56, + "probability": 0.9796 + }, + { + "start": 6244.06, + "end": 6245.18, + "probability": 0.8618 + }, + { + "start": 6245.24, + "end": 6246.92, + "probability": 0.804 + }, + { + "start": 6247.76, + "end": 6250.3, + "probability": 0.9272 + }, + { + "start": 6250.62, + "end": 6251.56, + "probability": 0.979 + }, + { + "start": 6251.6, + "end": 6252.7, + "probability": 0.9803 + }, + { + "start": 6253.08, + "end": 6254.66, + "probability": 0.0233 + }, + { + "start": 6254.66, + "end": 6257.54, + "probability": 0.9863 + }, + { + "start": 6258.18, + "end": 6258.9, + "probability": 0.5579 + }, + { + "start": 6259.06, + "end": 6259.84, + "probability": 0.9755 + }, + { + "start": 6259.9, + "end": 6260.62, + "probability": 0.8523 + }, + { + "start": 6260.7, + "end": 6261.66, + "probability": 0.9759 + }, + { + "start": 6261.8, + "end": 6264.66, + "probability": 0.749 + }, + { + "start": 6265.18, + "end": 6266.62, + "probability": 0.8512 + }, + { + "start": 6267.1, + "end": 6269.12, + "probability": 0.9326 + }, + { + "start": 6269.62, + "end": 6271.62, + "probability": 0.7815 + }, + { + "start": 6272.26, + "end": 6273.84, + "probability": 0.9549 + }, + { + "start": 6273.88, + "end": 6276.92, + "probability": 0.9055 + }, + { + "start": 6277.64, + "end": 6279.26, + "probability": 0.8993 + }, + { + "start": 6279.36, + "end": 6282.4, + "probability": 0.7866 + }, + { + "start": 6282.78, + "end": 6283.9, + "probability": 0.915 + }, + { + "start": 6284.18, + "end": 6285.04, + "probability": 0.9035 + }, + { + "start": 6285.38, + "end": 6285.86, + "probability": 0.729 + }, + { + "start": 6285.9, + "end": 6286.73, + "probability": 0.9697 + }, + { + "start": 6287.38, + "end": 6289.52, + "probability": 0.1853 + }, + { + "start": 6289.52, + "end": 6292.4, + "probability": 0.843 + }, + { + "start": 6292.5, + "end": 6293.48, + "probability": 0.0524 + }, + { + "start": 6293.7, + "end": 6297.54, + "probability": 0.2282 + }, + { + "start": 6297.76, + "end": 6297.76, + "probability": 0.1099 + }, + { + "start": 6297.78, + "end": 6297.78, + "probability": 0.0994 + }, + { + "start": 6297.78, + "end": 6300.25, + "probability": 0.5699 + }, + { + "start": 6300.28, + "end": 6301.48, + "probability": 0.6644 + }, + { + "start": 6301.96, + "end": 6304.48, + "probability": 0.6929 + }, + { + "start": 6304.92, + "end": 6306.88, + "probability": 0.1644 + }, + { + "start": 6307.68, + "end": 6307.74, + "probability": 0.1247 + }, + { + "start": 6307.74, + "end": 6308.24, + "probability": 0.3355 + }, + { + "start": 6308.36, + "end": 6310.42, + "probability": 0.9573 + }, + { + "start": 6310.48, + "end": 6312.26, + "probability": 0.7365 + }, + { + "start": 6313.06, + "end": 6314.2, + "probability": 0.0892 + }, + { + "start": 6315.08, + "end": 6315.72, + "probability": 0.1805 + }, + { + "start": 6315.72, + "end": 6315.93, + "probability": 0.0265 + }, + { + "start": 6316.32, + "end": 6318.32, + "probability": 0.4242 + }, + { + "start": 6318.44, + "end": 6322.27, + "probability": 0.3403 + }, + { + "start": 6323.92, + "end": 6324.7, + "probability": 0.069 + }, + { + "start": 6325.36, + "end": 6325.54, + "probability": 0.4024 + }, + { + "start": 6325.54, + "end": 6327.7, + "probability": 0.9732 + }, + { + "start": 6327.8, + "end": 6328.64, + "probability": 0.8974 + }, + { + "start": 6328.68, + "end": 6330.3, + "probability": 0.9909 + }, + { + "start": 6330.46, + "end": 6332.22, + "probability": 0.9966 + }, + { + "start": 6332.22, + "end": 6333.9, + "probability": 0.998 + }, + { + "start": 6334.66, + "end": 6336.24, + "probability": 0.7749 + }, + { + "start": 6336.6, + "end": 6339.22, + "probability": 0.9689 + }, + { + "start": 6339.78, + "end": 6340.92, + "probability": 0.7195 + }, + { + "start": 6341.34, + "end": 6342.36, + "probability": 0.6157 + }, + { + "start": 6343.0, + "end": 6343.72, + "probability": 0.9253 + }, + { + "start": 6343.82, + "end": 6344.71, + "probability": 0.8286 + }, + { + "start": 6344.94, + "end": 6345.28, + "probability": 0.7679 + }, + { + "start": 6345.78, + "end": 6347.22, + "probability": 0.9141 + }, + { + "start": 6347.28, + "end": 6349.84, + "probability": 0.7794 + }, + { + "start": 6349.84, + "end": 6350.9, + "probability": 0.4725 + }, + { + "start": 6351.6, + "end": 6353.48, + "probability": 0.6382 + }, + { + "start": 6353.56, + "end": 6354.48, + "probability": 0.525 + }, + { + "start": 6355.48, + "end": 6356.22, + "probability": 0.869 + }, + { + "start": 6356.22, + "end": 6356.26, + "probability": 0.6692 + }, + { + "start": 6356.26, + "end": 6357.5, + "probability": 0.6346 + }, + { + "start": 6357.7, + "end": 6359.84, + "probability": 0.9271 + }, + { + "start": 6359.92, + "end": 6363.03, + "probability": 0.9761 + }, + { + "start": 6363.3, + "end": 6364.92, + "probability": 0.9649 + }, + { + "start": 6365.88, + "end": 6367.38, + "probability": 0.7628 + }, + { + "start": 6368.1, + "end": 6368.58, + "probability": 0.7418 + }, + { + "start": 6368.7, + "end": 6369.4, + "probability": 0.9722 + }, + { + "start": 6369.5, + "end": 6370.0, + "probability": 0.6046 + }, + { + "start": 6370.3, + "end": 6373.24, + "probability": 0.9185 + }, + { + "start": 6373.62, + "end": 6375.31, + "probability": 0.8032 + }, + { + "start": 6376.38, + "end": 6376.8, + "probability": 0.9462 + }, + { + "start": 6377.1, + "end": 6378.24, + "probability": 0.7046 + }, + { + "start": 6378.32, + "end": 6379.54, + "probability": 0.6913 + }, + { + "start": 6379.54, + "end": 6380.22, + "probability": 0.7458 + }, + { + "start": 6380.34, + "end": 6382.52, + "probability": 0.9336 + }, + { + "start": 6382.54, + "end": 6383.08, + "probability": 0.8853 + }, + { + "start": 6383.64, + "end": 6384.84, + "probability": 0.8748 + }, + { + "start": 6384.91, + "end": 6385.85, + "probability": 0.8586 + }, + { + "start": 6386.04, + "end": 6387.94, + "probability": 0.621 + }, + { + "start": 6388.3, + "end": 6389.28, + "probability": 0.8609 + }, + { + "start": 6389.64, + "end": 6391.76, + "probability": 0.6626 + }, + { + "start": 6391.78, + "end": 6391.78, + "probability": 0.4998 + }, + { + "start": 6391.78, + "end": 6391.86, + "probability": 0.3919 + }, + { + "start": 6392.08, + "end": 6392.44, + "probability": 0.3202 + }, + { + "start": 6393.0, + "end": 6396.04, + "probability": 0.2804 + }, + { + "start": 6396.18, + "end": 6400.1, + "probability": 0.5077 + }, + { + "start": 6401.44, + "end": 6407.04, + "probability": 0.0259 + }, + { + "start": 6412.76, + "end": 6416.86, + "probability": 0.0423 + }, + { + "start": 6416.86, + "end": 6416.86, + "probability": 0.1532 + }, + { + "start": 6416.86, + "end": 6417.96, + "probability": 0.0174 + }, + { + "start": 6417.96, + "end": 6417.96, + "probability": 0.0122 + }, + { + "start": 6417.96, + "end": 6418.36, + "probability": 0.0756 + }, + { + "start": 6420.3, + "end": 6421.9, + "probability": 0.3751 + }, + { + "start": 6421.9, + "end": 6422.22, + "probability": 0.1282 + }, + { + "start": 6422.28, + "end": 6422.78, + "probability": 0.0445 + }, + { + "start": 6423.01, + "end": 6423.64, + "probability": 0.0051 + }, + { + "start": 6423.64, + "end": 6424.24, + "probability": 0.0404 + }, + { + "start": 6425.16, + "end": 6425.26, + "probability": 0.0133 + }, + { + "start": 6426.46, + "end": 6426.46, + "probability": 0.0591 + }, + { + "start": 6428.02, + "end": 6428.9, + "probability": 0.0964 + }, + { + "start": 6431.76, + "end": 6434.23, + "probability": 0.1302 + }, + { + "start": 6434.84, + "end": 6438.06, + "probability": 0.0087 + }, + { + "start": 6439.06, + "end": 6443.32, + "probability": 0.2719 + }, + { + "start": 6443.34, + "end": 6444.58, + "probability": 0.1648 + }, + { + "start": 6444.58, + "end": 6447.42, + "probability": 0.0219 + }, + { + "start": 6447.52, + "end": 6447.52, + "probability": 0.0103 + }, + { + "start": 6447.52, + "end": 6447.92, + "probability": 0.0194 + }, + { + "start": 6447.92, + "end": 6447.92, + "probability": 0.0275 + }, + { + "start": 6448.2, + "end": 6451.38, + "probability": 0.122 + }, + { + "start": 6451.38, + "end": 6452.92, + "probability": 0.0906 + }, + { + "start": 6455.48, + "end": 6459.18, + "probability": 0.0143 + }, + { + "start": 6463.0, + "end": 6463.0, + "probability": 0.0 + }, + { + "start": 6463.0, + "end": 6463.0, + "probability": 0.0 + }, + { + "start": 6463.0, + "end": 6463.0, + "probability": 0.0 + }, + { + "start": 6463.0, + "end": 6463.0, + "probability": 0.0 + }, + { + "start": 6463.0, + "end": 6463.0, + "probability": 0.0 + }, + { + "start": 6463.0, + "end": 6463.0, + "probability": 0.0 + }, + { + "start": 6463.0, + "end": 6463.0, + "probability": 0.0 + }, + { + "start": 6463.0, + "end": 6463.0, + "probability": 0.0 + }, + { + "start": 6463.0, + "end": 6463.0, + "probability": 0.0 + }, + { + "start": 6463.0, + "end": 6463.0, + "probability": 0.0 + }, + { + "start": 6463.0, + "end": 6463.0, + "probability": 0.0 + }, + { + "start": 6463.0, + "end": 6463.0, + "probability": 0.0 + }, + { + "start": 6463.0, + "end": 6463.0, + "probability": 0.0 + }, + { + "start": 6463.0, + "end": 6463.0, + "probability": 0.0 + }, + { + "start": 6463.0, + "end": 6463.0, + "probability": 0.0 + }, + { + "start": 6463.0, + "end": 6463.0, + "probability": 0.0 + }, + { + "start": 6463.0, + "end": 6463.0, + "probability": 0.0 + }, + { + "start": 6463.0, + "end": 6463.0, + "probability": 0.0 + }, + { + "start": 6463.0, + "end": 6463.0, + "probability": 0.0 + }, + { + "start": 6463.0, + "end": 6463.0, + "probability": 0.0 + }, + { + "start": 6463.0, + "end": 6463.0, + "probability": 0.0 + }, + { + "start": 6463.0, + "end": 6463.0, + "probability": 0.0 + }, + { + "start": 6463.0, + "end": 6463.0, + "probability": 0.0 + }, + { + "start": 6463.0, + "end": 6463.0, + "probability": 0.0 + }, + { + "start": 6463.0, + "end": 6463.0, + "probability": 0.0 + }, + { + "start": 6463.0, + "end": 6463.0, + "probability": 0.0 + }, + { + "start": 6463.0, + "end": 6463.0, + "probability": 0.0 + }, + { + "start": 6463.0, + "end": 6463.0, + "probability": 0.0 + }, + { + "start": 6463.0, + "end": 6463.0, + "probability": 0.0 + }, + { + "start": 6463.0, + "end": 6463.0, + "probability": 0.0 + }, + { + "start": 6463.0, + "end": 6463.0, + "probability": 0.0 + }, + { + "start": 6463.0, + "end": 6463.0, + "probability": 0.0 + }, + { + "start": 6463.0, + "end": 6463.0, + "probability": 0.0 + }, + { + "start": 6463.0, + "end": 6463.0, + "probability": 0.0 + }, + { + "start": 6463.0, + "end": 6463.0, + "probability": 0.0 + }, + { + "start": 6463.0, + "end": 6463.0, + "probability": 0.0 + }, + { + "start": 6463.0, + "end": 6463.0, + "probability": 0.0 + }, + { + "start": 6463.0, + "end": 6463.0, + "probability": 0.0 + }, + { + "start": 6463.0, + "end": 6463.0, + "probability": 0.0 + }, + { + "start": 6463.0, + "end": 6463.0, + "probability": 0.0 + }, + { + "start": 6463.0, + "end": 6463.0, + "probability": 0.0 + }, + { + "start": 6463.0, + "end": 6463.0, + "probability": 0.0 + }, + { + "start": 6463.0, + "end": 6463.0, + "probability": 0.0 + }, + { + "start": 6463.0, + "end": 6463.0, + "probability": 0.0 + }, + { + "start": 6463.0, + "end": 6463.0, + "probability": 0.0 + }, + { + "start": 6463.0, + "end": 6463.0, + "probability": 0.0 + }, + { + "start": 6463.0, + "end": 6463.0, + "probability": 0.0 + }, + { + "start": 6463.0, + "end": 6463.0, + "probability": 0.0 + }, + { + "start": 6463.0, + "end": 6463.0, + "probability": 0.0 + }, + { + "start": 6463.0, + "end": 6463.0, + "probability": 0.0 + }, + { + "start": 6463.0, + "end": 6463.0, + "probability": 0.0 + }, + { + "start": 6463.0, + "end": 6463.0, + "probability": 0.0 + }, + { + "start": 6463.76, + "end": 6465.06, + "probability": 0.0015 + }, + { + "start": 6465.16, + "end": 6466.32, + "probability": 0.1086 + }, + { + "start": 6466.32, + "end": 6466.66, + "probability": 0.4133 + }, + { + "start": 6466.72, + "end": 6468.8, + "probability": 0.7079 + }, + { + "start": 6469.42, + "end": 6473.34, + "probability": 0.8966 + }, + { + "start": 6473.34, + "end": 6476.94, + "probability": 0.9787 + }, + { + "start": 6488.74, + "end": 6488.9, + "probability": 0.7671 + }, + { + "start": 6498.22, + "end": 6500.5, + "probability": 0.2284 + }, + { + "start": 6501.08, + "end": 6503.44, + "probability": 0.0292 + }, + { + "start": 6504.32, + "end": 6505.76, + "probability": 0.0023 + }, + { + "start": 6583.0, + "end": 6583.0, + "probability": 0.0 + }, + { + "start": 6583.0, + "end": 6583.0, + "probability": 0.0 + }, + { + "start": 6583.0, + "end": 6583.0, + "probability": 0.0 + }, + { + "start": 6583.0, + "end": 6583.0, + "probability": 0.0 + }, + { + "start": 6583.0, + "end": 6583.0, + "probability": 0.0 + }, + { + "start": 6583.0, + "end": 6583.0, + "probability": 0.0 + }, + { + "start": 6583.0, + "end": 6583.0, + "probability": 0.0 + }, + { + "start": 6583.0, + "end": 6583.0, + "probability": 0.0 + }, + { + "start": 6583.0, + "end": 6583.0, + "probability": 0.0 + }, + { + "start": 6583.0, + "end": 6583.0, + "probability": 0.0 + }, + { + "start": 6583.0, + "end": 6583.0, + "probability": 0.0 + }, + { + "start": 6583.0, + "end": 6583.0, + "probability": 0.0 + }, + { + "start": 6583.0, + "end": 6583.0, + "probability": 0.0 + }, + { + "start": 6583.0, + "end": 6583.0, + "probability": 0.0 + }, + { + "start": 6583.0, + "end": 6583.0, + "probability": 0.0 + }, + { + "start": 6583.0, + "end": 6583.0, + "probability": 0.0 + }, + { + "start": 6583.0, + "end": 6583.0, + "probability": 0.0 + }, + { + "start": 6583.0, + "end": 6583.0, + "probability": 0.0 + }, + { + "start": 6583.0, + "end": 6583.0, + "probability": 0.0 + }, + { + "start": 6583.0, + "end": 6583.0, + "probability": 0.0 + }, + { + "start": 6583.0, + "end": 6583.0, + "probability": 0.0 + }, + { + "start": 6583.0, + "end": 6583.0, + "probability": 0.0 + }, + { + "start": 6583.0, + "end": 6583.0, + "probability": 0.0 + }, + { + "start": 6583.0, + "end": 6583.0, + "probability": 0.0 + }, + { + "start": 6583.0, + "end": 6583.0, + "probability": 0.0 + }, + { + "start": 6583.0, + "end": 6583.0, + "probability": 0.0 + }, + { + "start": 6583.0, + "end": 6583.0, + "probability": 0.0 + }, + { + "start": 6583.0, + "end": 6583.0, + "probability": 0.0 + }, + { + "start": 6583.0, + "end": 6583.0, + "probability": 0.0 + }, + { + "start": 6583.0, + "end": 6583.0, + "probability": 0.0 + }, + { + "start": 6583.0, + "end": 6583.0, + "probability": 0.0 + }, + { + "start": 6583.0, + "end": 6583.0, + "probability": 0.0 + }, + { + "start": 6583.0, + "end": 6583.0, + "probability": 0.0 + }, + { + "start": 6583.0, + "end": 6583.0, + "probability": 0.0 + }, + { + "start": 6583.0, + "end": 6583.0, + "probability": 0.0 + }, + { + "start": 6583.0, + "end": 6583.0, + "probability": 0.0 + }, + { + "start": 6583.0, + "end": 6583.0, + "probability": 0.0 + }, + { + "start": 6583.0, + "end": 6583.0, + "probability": 0.0 + }, + { + "start": 6583.0, + "end": 6583.0, + "probability": 0.0 + }, + { + "start": 6583.0, + "end": 6583.0, + "probability": 0.0 + }, + { + "start": 6583.0, + "end": 6583.0, + "probability": 0.0 + }, + { + "start": 6583.0, + "end": 6583.0, + "probability": 0.0 + }, + { + "start": 6583.0, + "end": 6583.0, + "probability": 0.0 + }, + { + "start": 6583.0, + "end": 6583.0, + "probability": 0.0 + }, + { + "start": 6583.24, + "end": 6584.76, + "probability": 0.4696 + }, + { + "start": 6585.3, + "end": 6589.14, + "probability": 0.9943 + }, + { + "start": 6589.14, + "end": 6592.54, + "probability": 0.9969 + }, + { + "start": 6592.78, + "end": 6594.84, + "probability": 0.9972 + }, + { + "start": 6594.84, + "end": 6598.04, + "probability": 0.995 + }, + { + "start": 6599.5, + "end": 6600.78, + "probability": 0.8519 + }, + { + "start": 6600.88, + "end": 6603.28, + "probability": 0.9961 + }, + { + "start": 6603.42, + "end": 6603.44, + "probability": 0.1873 + }, + { + "start": 6603.72, + "end": 6605.3, + "probability": 0.8079 + }, + { + "start": 6605.4, + "end": 6606.78, + "probability": 0.9294 + }, + { + "start": 6606.94, + "end": 6610.86, + "probability": 0.976 + }, + { + "start": 6611.08, + "end": 6612.14, + "probability": 0.9753 + }, + { + "start": 6612.62, + "end": 6615.99, + "probability": 0.9937 + }, + { + "start": 6617.74, + "end": 6620.0, + "probability": 0.7896 + }, + { + "start": 6620.16, + "end": 6623.72, + "probability": 0.9199 + }, + { + "start": 6623.86, + "end": 6625.68, + "probability": 0.973 + }, + { + "start": 6625.74, + "end": 6627.34, + "probability": 0.4635 + }, + { + "start": 6627.4, + "end": 6628.82, + "probability": 0.8747 + }, + { + "start": 6629.24, + "end": 6632.9, + "probability": 0.9868 + }, + { + "start": 6633.04, + "end": 6635.82, + "probability": 0.9974 + }, + { + "start": 6636.48, + "end": 6640.12, + "probability": 0.8826 + }, + { + "start": 6640.32, + "end": 6640.32, + "probability": 0.642 + }, + { + "start": 6640.32, + "end": 6640.32, + "probability": 0.2123 + }, + { + "start": 6640.32, + "end": 6640.66, + "probability": 0.6186 + }, + { + "start": 6640.82, + "end": 6641.98, + "probability": 0.6311 + }, + { + "start": 6642.2, + "end": 6642.32, + "probability": 0.4542 + }, + { + "start": 6642.32, + "end": 6643.98, + "probability": 0.8898 + }, + { + "start": 6644.0, + "end": 6644.52, + "probability": 0.576 + }, + { + "start": 6644.62, + "end": 6645.8, + "probability": 0.948 + }, + { + "start": 6646.3, + "end": 6648.2, + "probability": 0.4477 + }, + { + "start": 6648.66, + "end": 6650.02, + "probability": 0.3275 + }, + { + "start": 6651.68, + "end": 6655.24, + "probability": 0.9685 + }, + { + "start": 6657.56, + "end": 6657.94, + "probability": 0.5008 + }, + { + "start": 6657.98, + "end": 6657.98, + "probability": 0.0422 + }, + { + "start": 6657.98, + "end": 6658.68, + "probability": 0.3227 + }, + { + "start": 6658.68, + "end": 6659.72, + "probability": 0.9546 + }, + { + "start": 6659.82, + "end": 6660.44, + "probability": 0.5755 + }, + { + "start": 6660.56, + "end": 6662.36, + "probability": 0.5659 + }, + { + "start": 6669.04, + "end": 6669.04, + "probability": 0.4211 + }, + { + "start": 6669.04, + "end": 6670.24, + "probability": 0.6501 + }, + { + "start": 6670.38, + "end": 6671.62, + "probability": 0.4771 + }, + { + "start": 6672.73, + "end": 6675.5, + "probability": 0.6767 + }, + { + "start": 6676.52, + "end": 6677.82, + "probability": 0.7253 + }, + { + "start": 6678.0, + "end": 6679.6, + "probability": 0.7369 + }, + { + "start": 6680.24, + "end": 6681.26, + "probability": 0.6734 + }, + { + "start": 6681.32, + "end": 6682.34, + "probability": 0.9665 + }, + { + "start": 6682.6, + "end": 6683.34, + "probability": 0.5366 + }, + { + "start": 6684.14, + "end": 6686.96, + "probability": 0.9839 + }, + { + "start": 6688.7, + "end": 6692.6, + "probability": 0.954 + }, + { + "start": 6693.52, + "end": 6694.12, + "probability": 0.9545 + }, + { + "start": 6695.56, + "end": 6698.48, + "probability": 0.9729 + }, + { + "start": 6698.52, + "end": 6704.94, + "probability": 0.9962 + }, + { + "start": 6705.88, + "end": 6708.52, + "probability": 0.9711 + }, + { + "start": 6708.52, + "end": 6712.78, + "probability": 0.9988 + }, + { + "start": 6713.98, + "end": 6714.96, + "probability": 0.9415 + }, + { + "start": 6715.8, + "end": 6717.6, + "probability": 0.9866 + }, + { + "start": 6718.74, + "end": 6720.84, + "probability": 0.9989 + }, + { + "start": 6722.02, + "end": 6723.98, + "probability": 0.9966 + }, + { + "start": 6724.96, + "end": 6726.48, + "probability": 0.9692 + }, + { + "start": 6727.52, + "end": 6730.58, + "probability": 0.9948 + }, + { + "start": 6731.9, + "end": 6732.78, + "probability": 0.9761 + }, + { + "start": 6732.82, + "end": 6733.46, + "probability": 0.536 + }, + { + "start": 6733.54, + "end": 6736.08, + "probability": 0.988 + }, + { + "start": 6737.58, + "end": 6740.4, + "probability": 0.9255 + }, + { + "start": 6741.24, + "end": 6743.4, + "probability": 0.8939 + }, + { + "start": 6744.68, + "end": 6748.02, + "probability": 0.9932 + }, + { + "start": 6748.38, + "end": 6750.94, + "probability": 0.7702 + }, + { + "start": 6751.58, + "end": 6751.98, + "probability": 0.8172 + }, + { + "start": 6753.84, + "end": 6758.56, + "probability": 0.9956 + }, + { + "start": 6760.28, + "end": 6762.64, + "probability": 0.9914 + }, + { + "start": 6762.64, + "end": 6766.38, + "probability": 0.9961 + }, + { + "start": 6767.12, + "end": 6768.4, + "probability": 0.9854 + }, + { + "start": 6769.24, + "end": 6770.6, + "probability": 0.994 + }, + { + "start": 6771.28, + "end": 6771.98, + "probability": 0.4873 + }, + { + "start": 6772.44, + "end": 6775.18, + "probability": 0.9924 + }, + { + "start": 6775.86, + "end": 6777.54, + "probability": 0.9339 + }, + { + "start": 6778.42, + "end": 6781.62, + "probability": 0.9933 + }, + { + "start": 6782.2, + "end": 6783.52, + "probability": 0.9966 + }, + { + "start": 6785.02, + "end": 6787.22, + "probability": 0.875 + }, + { + "start": 6787.88, + "end": 6788.64, + "probability": 0.9856 + }, + { + "start": 6789.22, + "end": 6793.76, + "probability": 0.9709 + }, + { + "start": 6795.16, + "end": 6797.48, + "probability": 0.9951 + }, + { + "start": 6797.92, + "end": 6798.57, + "probability": 0.9762 + }, + { + "start": 6799.74, + "end": 6802.36, + "probability": 0.981 + }, + { + "start": 6802.42, + "end": 6803.92, + "probability": 0.8094 + }, + { + "start": 6804.28, + "end": 6805.7, + "probability": 0.7586 + }, + { + "start": 6805.76, + "end": 6808.28, + "probability": 0.9598 + }, + { + "start": 6808.42, + "end": 6810.72, + "probability": 0.9295 + }, + { + "start": 6811.0, + "end": 6815.76, + "probability": 0.9646 + }, + { + "start": 6816.14, + "end": 6819.0, + "probability": 0.9634 + }, + { + "start": 6819.86, + "end": 6821.18, + "probability": 0.7229 + }, + { + "start": 6821.66, + "end": 6824.84, + "probability": 0.9008 + }, + { + "start": 6825.14, + "end": 6830.88, + "probability": 0.9897 + }, + { + "start": 6832.02, + "end": 6834.62, + "probability": 0.9922 + }, + { + "start": 6835.76, + "end": 6837.22, + "probability": 0.9664 + }, + { + "start": 6838.14, + "end": 6839.32, + "probability": 0.9581 + }, + { + "start": 6840.52, + "end": 6842.51, + "probability": 0.9479 + }, + { + "start": 6842.66, + "end": 6844.06, + "probability": 0.9821 + }, + { + "start": 6845.04, + "end": 6846.74, + "probability": 0.8007 + }, + { + "start": 6847.92, + "end": 6849.64, + "probability": 0.7806 + }, + { + "start": 6849.94, + "end": 6850.36, + "probability": 0.9806 + }, + { + "start": 6850.82, + "end": 6851.85, + "probability": 0.886 + }, + { + "start": 6852.26, + "end": 6854.04, + "probability": 0.9697 + }, + { + "start": 6854.48, + "end": 6857.74, + "probability": 0.9907 + }, + { + "start": 6859.14, + "end": 6862.88, + "probability": 0.9937 + }, + { + "start": 6862.88, + "end": 6866.14, + "probability": 0.9993 + }, + { + "start": 6866.52, + "end": 6866.87, + "probability": 0.6053 + }, + { + "start": 6867.58, + "end": 6871.3, + "probability": 0.9261 + }, + { + "start": 6871.32, + "end": 6871.32, + "probability": 0.64 + }, + { + "start": 6871.32, + "end": 6872.34, + "probability": 0.6488 + }, + { + "start": 6873.12, + "end": 6875.48, + "probability": 0.7846 + }, + { + "start": 6876.4, + "end": 6878.62, + "probability": 0.9122 + }, + { + "start": 6879.26, + "end": 6880.3, + "probability": 0.7892 + }, + { + "start": 6880.78, + "end": 6887.72, + "probability": 0.9801 + }, + { + "start": 6888.32, + "end": 6888.6, + "probability": 0.7559 + }, + { + "start": 6888.78, + "end": 6889.2, + "probability": 0.3425 + }, + { + "start": 6889.26, + "end": 6892.76, + "probability": 0.8608 + }, + { + "start": 6896.22, + "end": 6896.7, + "probability": 0.1229 + }, + { + "start": 6897.38, + "end": 6897.92, + "probability": 0.3297 + }, + { + "start": 6898.72, + "end": 6899.34, + "probability": 0.1684 + }, + { + "start": 6908.86, + "end": 6909.38, + "probability": 0.002 + }, + { + "start": 6911.1, + "end": 6911.94, + "probability": 0.0735 + }, + { + "start": 6913.16, + "end": 6917.52, + "probability": 0.0346 + }, + { + "start": 6921.8, + "end": 6925.14, + "probability": 0.0334 + }, + { + "start": 6925.96, + "end": 6926.52, + "probability": 0.0484 + }, + { + "start": 6927.34, + "end": 6928.5, + "probability": 0.0812 + }, + { + "start": 6931.28, + "end": 6932.04, + "probability": 0.0253 + }, + { + "start": 6933.1, + "end": 6936.44, + "probability": 0.2082 + }, + { + "start": 6936.46, + "end": 6936.66, + "probability": 0.7568 + }, + { + "start": 6936.66, + "end": 6937.04, + "probability": 0.0061 + }, + { + "start": 6937.12, + "end": 6937.7, + "probability": 0.0364 + }, + { + "start": 6939.76, + "end": 6941.34, + "probability": 0.3016 + }, + { + "start": 6945.06, + "end": 6945.06, + "probability": 0.2441 + }, + { + "start": 6946.8, + "end": 6947.86, + "probability": 0.3164 + }, + { + "start": 6973.78, + "end": 6976.6, + "probability": 0.6735 + }, + { + "start": 6977.58, + "end": 6978.86, + "probability": 0.6431 + }, + { + "start": 6980.42, + "end": 6982.34, + "probability": 0.543 + }, + { + "start": 6983.3, + "end": 6984.3, + "probability": 0.4014 + }, + { + "start": 6985.94, + "end": 6986.86, + "probability": 0.4678 + }, + { + "start": 6988.46, + "end": 6994.56, + "probability": 0.9657 + }, + { + "start": 6995.5, + "end": 7001.34, + "probability": 0.9353 + }, + { + "start": 7002.0, + "end": 7002.52, + "probability": 0.5891 + }, + { + "start": 7003.32, + "end": 7006.32, + "probability": 0.8475 + }, + { + "start": 7007.78, + "end": 7008.9, + "probability": 0.8371 + }, + { + "start": 7010.8, + "end": 7015.22, + "probability": 0.9062 + }, + { + "start": 7016.9, + "end": 7019.62, + "probability": 0.9393 + }, + { + "start": 7021.24, + "end": 7025.16, + "probability": 0.8063 + }, + { + "start": 7026.7, + "end": 7028.66, + "probability": 0.9807 + }, + { + "start": 7029.94, + "end": 7031.24, + "probability": 0.9891 + }, + { + "start": 7031.9, + "end": 7033.66, + "probability": 0.7842 + }, + { + "start": 7034.6, + "end": 7036.3, + "probability": 0.9752 + }, + { + "start": 7037.76, + "end": 7039.82, + "probability": 0.9836 + }, + { + "start": 7040.9, + "end": 7044.72, + "probability": 0.9856 + }, + { + "start": 7045.96, + "end": 7050.1, + "probability": 0.9797 + }, + { + "start": 7051.06, + "end": 7052.34, + "probability": 0.9773 + }, + { + "start": 7054.4, + "end": 7060.45, + "probability": 0.9392 + }, + { + "start": 7062.02, + "end": 7062.76, + "probability": 0.8082 + }, + { + "start": 7064.14, + "end": 7066.39, + "probability": 0.9961 + }, + { + "start": 7067.32, + "end": 7068.54, + "probability": 0.9502 + }, + { + "start": 7069.56, + "end": 7071.7, + "probability": 0.971 + }, + { + "start": 7072.72, + "end": 7074.84, + "probability": 0.9583 + }, + { + "start": 7075.68, + "end": 7076.72, + "probability": 0.9536 + }, + { + "start": 7077.7, + "end": 7079.68, + "probability": 0.9645 + }, + { + "start": 7080.64, + "end": 7081.14, + "probability": 0.8965 + }, + { + "start": 7082.38, + "end": 7083.58, + "probability": 0.9822 + }, + { + "start": 7084.42, + "end": 7085.9, + "probability": 0.9894 + }, + { + "start": 7086.66, + "end": 7087.54, + "probability": 0.9419 + }, + { + "start": 7089.22, + "end": 7090.56, + "probability": 0.7938 + }, + { + "start": 7091.8, + "end": 7093.56, + "probability": 0.9413 + }, + { + "start": 7094.98, + "end": 7095.88, + "probability": 0.88 + }, + { + "start": 7097.14, + "end": 7098.88, + "probability": 0.9594 + }, + { + "start": 7099.68, + "end": 7101.04, + "probability": 0.4917 + }, + { + "start": 7102.1, + "end": 7102.75, + "probability": 0.988 + }, + { + "start": 7104.08, + "end": 7105.98, + "probability": 0.9734 + }, + { + "start": 7107.7, + "end": 7114.62, + "probability": 0.9832 + }, + { + "start": 7116.68, + "end": 7118.12, + "probability": 0.8257 + }, + { + "start": 7119.72, + "end": 7121.84, + "probability": 0.9586 + }, + { + "start": 7123.24, + "end": 7127.74, + "probability": 0.9871 + }, + { + "start": 7129.06, + "end": 7130.56, + "probability": 0.9658 + }, + { + "start": 7132.8, + "end": 7137.36, + "probability": 0.9946 + }, + { + "start": 7138.08, + "end": 7140.04, + "probability": 0.998 + }, + { + "start": 7141.2, + "end": 7142.52, + "probability": 0.8995 + }, + { + "start": 7143.44, + "end": 7145.54, + "probability": 0.9561 + }, + { + "start": 7146.82, + "end": 7150.22, + "probability": 0.9535 + }, + { + "start": 7150.4, + "end": 7154.16, + "probability": 0.9656 + }, + { + "start": 7155.16, + "end": 7156.72, + "probability": 0.9767 + }, + { + "start": 7158.0, + "end": 7161.68, + "probability": 0.988 + }, + { + "start": 7163.14, + "end": 7169.72, + "probability": 0.9943 + }, + { + "start": 7170.74, + "end": 7172.14, + "probability": 0.7239 + }, + { + "start": 7173.56, + "end": 7177.07, + "probability": 0.9052 + }, + { + "start": 7178.86, + "end": 7179.92, + "probability": 0.752 + }, + { + "start": 7180.02, + "end": 7181.02, + "probability": 0.8221 + }, + { + "start": 7181.88, + "end": 7183.28, + "probability": 0.9885 + }, + { + "start": 7184.0, + "end": 7185.08, + "probability": 0.7735 + }, + { + "start": 7185.7, + "end": 7186.54, + "probability": 0.5603 + }, + { + "start": 7187.76, + "end": 7188.76, + "probability": 0.91 + }, + { + "start": 7189.78, + "end": 7191.78, + "probability": 0.8031 + }, + { + "start": 7216.84, + "end": 7218.24, + "probability": 0.5487 + }, + { + "start": 7220.46, + "end": 7224.36, + "probability": 0.968 + }, + { + "start": 7224.36, + "end": 7230.1, + "probability": 0.9991 + }, + { + "start": 7230.1, + "end": 7235.12, + "probability": 0.9908 + }, + { + "start": 7236.42, + "end": 7241.18, + "probability": 0.9987 + }, + { + "start": 7242.02, + "end": 7245.78, + "probability": 0.9995 + }, + { + "start": 7245.78, + "end": 7249.82, + "probability": 0.9543 + }, + { + "start": 7251.02, + "end": 7253.02, + "probability": 0.834 + }, + { + "start": 7253.86, + "end": 7258.82, + "probability": 0.9634 + }, + { + "start": 7258.82, + "end": 7262.08, + "probability": 0.996 + }, + { + "start": 7263.92, + "end": 7267.02, + "probability": 0.9766 + }, + { + "start": 7267.14, + "end": 7271.18, + "probability": 0.9954 + }, + { + "start": 7273.08, + "end": 7274.04, + "probability": 0.799 + }, + { + "start": 7274.96, + "end": 7279.18, + "probability": 0.9907 + }, + { + "start": 7279.18, + "end": 7283.4, + "probability": 0.9965 + }, + { + "start": 7286.28, + "end": 7287.24, + "probability": 0.6447 + }, + { + "start": 7287.96, + "end": 7291.22, + "probability": 0.7659 + }, + { + "start": 7291.78, + "end": 7293.06, + "probability": 0.9674 + }, + { + "start": 7293.44, + "end": 7295.72, + "probability": 0.9861 + }, + { + "start": 7297.1, + "end": 7301.96, + "probability": 0.988 + }, + { + "start": 7302.1, + "end": 7304.64, + "probability": 0.6779 + }, + { + "start": 7305.66, + "end": 7312.5, + "probability": 0.9507 + }, + { + "start": 7313.74, + "end": 7315.0, + "probability": 0.6633 + }, + { + "start": 7315.08, + "end": 7316.62, + "probability": 0.9944 + }, + { + "start": 7316.94, + "end": 7321.74, + "probability": 0.9863 + }, + { + "start": 7321.74, + "end": 7324.66, + "probability": 0.9927 + }, + { + "start": 7326.08, + "end": 7332.02, + "probability": 0.8869 + }, + { + "start": 7332.04, + "end": 7336.3, + "probability": 0.8652 + }, + { + "start": 7336.92, + "end": 7338.02, + "probability": 0.6867 + }, + { + "start": 7340.36, + "end": 7345.24, + "probability": 0.989 + }, + { + "start": 7345.24, + "end": 7350.52, + "probability": 0.9965 + }, + { + "start": 7351.06, + "end": 7359.78, + "probability": 0.9672 + }, + { + "start": 7360.78, + "end": 7362.68, + "probability": 0.9961 + }, + { + "start": 7363.68, + "end": 7365.1, + "probability": 0.5696 + }, + { + "start": 7365.2, + "end": 7370.06, + "probability": 0.9946 + }, + { + "start": 7370.06, + "end": 7373.66, + "probability": 0.8805 + }, + { + "start": 7374.0, + "end": 7375.74, + "probability": 0.7467 + }, + { + "start": 7375.78, + "end": 7376.48, + "probability": 0.7635 + }, + { + "start": 7376.52, + "end": 7376.9, + "probability": 0.4443 + }, + { + "start": 7376.92, + "end": 7377.4, + "probability": 0.4333 + }, + { + "start": 7377.44, + "end": 7378.55, + "probability": 0.98 + }, + { + "start": 7378.66, + "end": 7378.78, + "probability": 0.4067 + }, + { + "start": 7379.66, + "end": 7380.1, + "probability": 0.5485 + }, + { + "start": 7380.58, + "end": 7381.32, + "probability": 0.6913 + }, + { + "start": 7381.4, + "end": 7381.56, + "probability": 0.154 + }, + { + "start": 7381.56, + "end": 7384.56, + "probability": 0.943 + }, + { + "start": 7384.56, + "end": 7388.12, + "probability": 0.9987 + }, + { + "start": 7388.18, + "end": 7390.48, + "probability": 0.6712 + }, + { + "start": 7391.18, + "end": 7396.66, + "probability": 0.9962 + }, + { + "start": 7397.74, + "end": 7402.2, + "probability": 0.6716 + }, + { + "start": 7402.62, + "end": 7405.06, + "probability": 0.8934 + }, + { + "start": 7405.36, + "end": 7406.7, + "probability": 0.5048 + }, + { + "start": 7407.32, + "end": 7410.24, + "probability": 0.6047 + }, + { + "start": 7411.46, + "end": 7414.38, + "probability": 0.7957 + }, + { + "start": 7414.48, + "end": 7416.62, + "probability": 0.9359 + }, + { + "start": 7416.62, + "end": 7416.62, + "probability": 0.1365 + }, + { + "start": 7416.62, + "end": 7418.06, + "probability": 0.9261 + }, + { + "start": 7418.1, + "end": 7419.46, + "probability": 0.8417 + }, + { + "start": 7419.87, + "end": 7422.03, + "probability": 0.9787 + }, + { + "start": 7422.78, + "end": 7423.6, + "probability": 0.4667 + }, + { + "start": 7423.72, + "end": 7429.18, + "probability": 0.9065 + }, + { + "start": 7430.12, + "end": 7433.72, + "probability": 0.8151 + }, + { + "start": 7433.82, + "end": 7435.02, + "probability": 0.6737 + }, + { + "start": 7436.0, + "end": 7442.84, + "probability": 0.8972 + }, + { + "start": 7443.64, + "end": 7446.62, + "probability": 0.8592 + }, + { + "start": 7447.1, + "end": 7448.12, + "probability": 0.7227 + }, + { + "start": 7448.12, + "end": 7451.56, + "probability": 0.8369 + }, + { + "start": 7451.56, + "end": 7452.62, + "probability": 0.5069 + }, + { + "start": 7452.62, + "end": 7454.2, + "probability": 0.0212 + }, + { + "start": 7454.2, + "end": 7455.72, + "probability": 0.688 + }, + { + "start": 7456.14, + "end": 7457.42, + "probability": 0.9831 + }, + { + "start": 7457.56, + "end": 7459.1, + "probability": 0.9827 + }, + { + "start": 7459.54, + "end": 7461.64, + "probability": 0.9979 + }, + { + "start": 7461.94, + "end": 7465.88, + "probability": 0.9849 + }, + { + "start": 7465.88, + "end": 7465.96, + "probability": 0.2801 + }, + { + "start": 7465.96, + "end": 7469.04, + "probability": 0.9864 + }, + { + "start": 7469.24, + "end": 7469.84, + "probability": 0.5192 + }, + { + "start": 7469.88, + "end": 7471.64, + "probability": 0.8907 + }, + { + "start": 7492.82, + "end": 7493.94, + "probability": 0.7582 + }, + { + "start": 7495.7, + "end": 7497.0, + "probability": 0.9921 + }, + { + "start": 7497.98, + "end": 7499.38, + "probability": 0.9536 + }, + { + "start": 7500.34, + "end": 7501.06, + "probability": 0.7597 + }, + { + "start": 7502.0, + "end": 7503.28, + "probability": 0.797 + }, + { + "start": 7504.8, + "end": 7507.3, + "probability": 0.9876 + }, + { + "start": 7507.88, + "end": 7509.1, + "probability": 0.9876 + }, + { + "start": 7510.14, + "end": 7510.66, + "probability": 0.9567 + }, + { + "start": 7511.62, + "end": 7512.42, + "probability": 0.1557 + }, + { + "start": 7513.52, + "end": 7515.68, + "probability": 0.9808 + }, + { + "start": 7516.86, + "end": 7518.08, + "probability": 0.7339 + }, + { + "start": 7519.2, + "end": 7522.36, + "probability": 0.8744 + }, + { + "start": 7524.16, + "end": 7527.72, + "probability": 0.9844 + }, + { + "start": 7527.98, + "end": 7529.38, + "probability": 0.7061 + }, + { + "start": 7531.26, + "end": 7534.16, + "probability": 0.9765 + }, + { + "start": 7536.12, + "end": 7536.48, + "probability": 0.48 + }, + { + "start": 7539.26, + "end": 7539.98, + "probability": 0.9763 + }, + { + "start": 7540.66, + "end": 7544.26, + "probability": 0.8517 + }, + { + "start": 7545.14, + "end": 7547.38, + "probability": 0.6988 + }, + { + "start": 7550.66, + "end": 7551.04, + "probability": 0.4207 + }, + { + "start": 7552.56, + "end": 7556.62, + "probability": 0.9769 + }, + { + "start": 7557.8, + "end": 7559.1, + "probability": 0.9121 + }, + { + "start": 7560.52, + "end": 7566.76, + "probability": 0.6286 + }, + { + "start": 7566.76, + "end": 7567.52, + "probability": 0.8486 + }, + { + "start": 7568.86, + "end": 7573.04, + "probability": 0.7929 + }, + { + "start": 7574.02, + "end": 7576.48, + "probability": 0.8448 + }, + { + "start": 7578.3, + "end": 7581.4, + "probability": 0.9933 + }, + { + "start": 7582.02, + "end": 7582.75, + "probability": 0.8423 + }, + { + "start": 7584.48, + "end": 7585.9, + "probability": 0.9982 + }, + { + "start": 7587.44, + "end": 7589.1, + "probability": 0.9986 + }, + { + "start": 7589.76, + "end": 7592.04, + "probability": 0.979 + }, + { + "start": 7592.72, + "end": 7594.9, + "probability": 0.8843 + }, + { + "start": 7595.78, + "end": 7599.34, + "probability": 0.8643 + }, + { + "start": 7601.3, + "end": 7603.5, + "probability": 0.9141 + }, + { + "start": 7604.26, + "end": 7605.46, + "probability": 0.9927 + }, + { + "start": 7606.02, + "end": 7607.06, + "probability": 0.999 + }, + { + "start": 7608.44, + "end": 7609.32, + "probability": 0.9958 + }, + { + "start": 7610.28, + "end": 7611.02, + "probability": 0.7347 + }, + { + "start": 7612.66, + "end": 7613.98, + "probability": 0.9923 + }, + { + "start": 7614.6, + "end": 7616.06, + "probability": 0.9207 + }, + { + "start": 7617.62, + "end": 7620.46, + "probability": 0.8299 + }, + { + "start": 7621.34, + "end": 7622.06, + "probability": 0.9234 + }, + { + "start": 7623.12, + "end": 7623.88, + "probability": 0.8812 + }, + { + "start": 7625.72, + "end": 7627.66, + "probability": 0.8944 + }, + { + "start": 7629.44, + "end": 7631.82, + "probability": 0.9893 + }, + { + "start": 7633.28, + "end": 7637.66, + "probability": 0.9803 + }, + { + "start": 7639.16, + "end": 7641.42, + "probability": 0.9984 + }, + { + "start": 7643.56, + "end": 7649.42, + "probability": 0.9896 + }, + { + "start": 7650.36, + "end": 7651.32, + "probability": 0.7532 + }, + { + "start": 7652.28, + "end": 7653.64, + "probability": 0.9966 + }, + { + "start": 7654.44, + "end": 7657.8, + "probability": 0.9342 + }, + { + "start": 7658.64, + "end": 7659.8, + "probability": 0.781 + }, + { + "start": 7661.5, + "end": 7662.62, + "probability": 0.9868 + }, + { + "start": 7663.22, + "end": 7664.96, + "probability": 0.9138 + }, + { + "start": 7667.5, + "end": 7670.48, + "probability": 0.8957 + }, + { + "start": 7671.2, + "end": 7672.56, + "probability": 0.9884 + }, + { + "start": 7673.22, + "end": 7676.88, + "probability": 0.9072 + }, + { + "start": 7678.0, + "end": 7680.54, + "probability": 0.9972 + }, + { + "start": 7681.76, + "end": 7684.26, + "probability": 0.7661 + }, + { + "start": 7685.46, + "end": 7686.1, + "probability": 0.258 + }, + { + "start": 7686.1, + "end": 7686.56, + "probability": 0.1963 + }, + { + "start": 7687.98, + "end": 7691.14, + "probability": 0.0875 + }, + { + "start": 7695.18, + "end": 7696.86, + "probability": 0.1109 + }, + { + "start": 7696.86, + "end": 7698.78, + "probability": 0.063 + }, + { + "start": 7700.44, + "end": 7700.6, + "probability": 0.1128 + }, + { + "start": 7700.72, + "end": 7701.52, + "probability": 0.0646 + }, + { + "start": 7702.1, + "end": 7705.96, + "probability": 0.0138 + }, + { + "start": 7706.38, + "end": 7707.78, + "probability": 0.0617 + }, + { + "start": 7707.78, + "end": 7708.22, + "probability": 0.0337 + }, + { + "start": 7708.48, + "end": 7711.2, + "probability": 0.2311 + }, + { + "start": 7712.94, + "end": 7714.14, + "probability": 0.0913 + }, + { + "start": 7715.44, + "end": 7718.6, + "probability": 0.0315 + }, + { + "start": 7721.28, + "end": 7722.76, + "probability": 0.2631 + }, + { + "start": 7728.06, + "end": 7728.78, + "probability": 0.2871 + }, + { + "start": 7750.96, + "end": 7752.28, + "probability": 0.0394 + }, + { + "start": 7752.94, + "end": 7757.2, + "probability": 0.4307 + }, + { + "start": 7757.98, + "end": 7758.9, + "probability": 0.755 + }, + { + "start": 7759.04, + "end": 7762.9, + "probability": 0.9719 + }, + { + "start": 7763.0, + "end": 7764.44, + "probability": 0.9985 + }, + { + "start": 7765.02, + "end": 7765.4, + "probability": 0.4373 + }, + { + "start": 7765.52, + "end": 7767.68, + "probability": 0.9855 + }, + { + "start": 7767.68, + "end": 7771.86, + "probability": 0.9995 + }, + { + "start": 7771.88, + "end": 7775.72, + "probability": 0.999 + }, + { + "start": 7775.8, + "end": 7776.94, + "probability": 0.9509 + }, + { + "start": 7777.32, + "end": 7778.26, + "probability": 0.7959 + }, + { + "start": 7779.26, + "end": 7785.28, + "probability": 0.9775 + }, + { + "start": 7786.48, + "end": 7790.22, + "probability": 0.9434 + }, + { + "start": 7790.38, + "end": 7793.78, + "probability": 0.8188 + }, + { + "start": 7794.44, + "end": 7796.98, + "probability": 0.995 + }, + { + "start": 7798.1, + "end": 7799.26, + "probability": 0.8548 + }, + { + "start": 7799.6, + "end": 7805.14, + "probability": 0.9906 + }, + { + "start": 7805.3, + "end": 7807.96, + "probability": 0.9716 + }, + { + "start": 7808.56, + "end": 7810.4, + "probability": 0.9539 + }, + { + "start": 7811.36, + "end": 7813.84, + "probability": 0.9854 + }, + { + "start": 7813.86, + "end": 7815.86, + "probability": 0.9946 + }, + { + "start": 7816.54, + "end": 7819.9, + "probability": 0.9978 + }, + { + "start": 7819.9, + "end": 7822.48, + "probability": 0.978 + }, + { + "start": 7822.5, + "end": 7823.14, + "probability": 0.882 + }, + { + "start": 7824.6, + "end": 7827.94, + "probability": 0.9605 + }, + { + "start": 7827.98, + "end": 7828.93, + "probability": 0.9863 + }, + { + "start": 7829.9, + "end": 7833.08, + "probability": 0.9902 + }, + { + "start": 7833.78, + "end": 7837.2, + "probability": 0.9795 + }, + { + "start": 7837.8, + "end": 7839.6, + "probability": 0.9988 + }, + { + "start": 7840.36, + "end": 7844.12, + "probability": 0.9363 + }, + { + "start": 7845.08, + "end": 7847.58, + "probability": 0.9952 + }, + { + "start": 7848.14, + "end": 7850.84, + "probability": 0.9919 + }, + { + "start": 7851.62, + "end": 7854.9, + "probability": 0.9148 + }, + { + "start": 7855.4, + "end": 7856.0, + "probability": 0.6739 + }, + { + "start": 7856.0, + "end": 7861.98, + "probability": 0.9782 + }, + { + "start": 7863.32, + "end": 7868.08, + "probability": 0.9807 + }, + { + "start": 7868.2, + "end": 7869.16, + "probability": 0.9163 + }, + { + "start": 7869.76, + "end": 7872.9, + "probability": 0.9896 + }, + { + "start": 7873.74, + "end": 7874.88, + "probability": 0.9433 + }, + { + "start": 7875.3, + "end": 7877.94, + "probability": 0.9977 + }, + { + "start": 7877.98, + "end": 7882.76, + "probability": 0.9748 + }, + { + "start": 7883.66, + "end": 7885.68, + "probability": 0.9705 + }, + { + "start": 7886.14, + "end": 7888.9, + "probability": 0.9987 + }, + { + "start": 7888.98, + "end": 7890.66, + "probability": 0.9242 + }, + { + "start": 7891.5, + "end": 7893.8, + "probability": 0.9967 + }, + { + "start": 7894.32, + "end": 7896.7, + "probability": 0.795 + }, + { + "start": 7897.98, + "end": 7900.26, + "probability": 0.8894 + }, + { + "start": 7900.38, + "end": 7900.4, + "probability": 0.6293 + }, + { + "start": 7900.64, + "end": 7900.94, + "probability": 0.8191 + }, + { + "start": 7902.48, + "end": 7907.2, + "probability": 0.9948 + }, + { + "start": 7907.24, + "end": 7908.66, + "probability": 0.98 + }, + { + "start": 7910.18, + "end": 7912.4, + "probability": 0.9878 + }, + { + "start": 7912.96, + "end": 7914.48, + "probability": 0.8854 + }, + { + "start": 7914.86, + "end": 7919.26, + "probability": 0.9954 + }, + { + "start": 7919.32, + "end": 7919.74, + "probability": 0.3786 + }, + { + "start": 7919.74, + "end": 7919.9, + "probability": 0.7446 + }, + { + "start": 7920.48, + "end": 7922.78, + "probability": 0.9641 + }, + { + "start": 7949.06, + "end": 7951.84, + "probability": 0.7284 + }, + { + "start": 7954.94, + "end": 7960.12, + "probability": 0.9918 + }, + { + "start": 7960.44, + "end": 7962.02, + "probability": 0.9881 + }, + { + "start": 7963.02, + "end": 7964.54, + "probability": 0.9202 + }, + { + "start": 7965.3, + "end": 7968.42, + "probability": 0.9745 + }, + { + "start": 7969.92, + "end": 7974.06, + "probability": 0.9945 + }, + { + "start": 7974.06, + "end": 7978.44, + "probability": 0.9964 + }, + { + "start": 7980.56, + "end": 7980.92, + "probability": 0.355 + }, + { + "start": 7980.94, + "end": 7983.78, + "probability": 0.9805 + }, + { + "start": 7983.78, + "end": 7989.54, + "probability": 0.9952 + }, + { + "start": 7989.64, + "end": 7990.3, + "probability": 0.7975 + }, + { + "start": 7991.42, + "end": 7993.34, + "probability": 0.9797 + }, + { + "start": 7994.8, + "end": 7995.88, + "probability": 0.9985 + }, + { + "start": 7996.7, + "end": 7998.42, + "probability": 0.9314 + }, + { + "start": 7999.08, + "end": 7999.6, + "probability": 0.5863 + }, + { + "start": 8000.58, + "end": 8002.54, + "probability": 0.9702 + }, + { + "start": 8003.52, + "end": 8006.64, + "probability": 0.9866 + }, + { + "start": 8007.4, + "end": 8008.4, + "probability": 0.9432 + }, + { + "start": 8011.1, + "end": 8014.12, + "probability": 0.9802 + }, + { + "start": 8015.62, + "end": 8018.9, + "probability": 0.9935 + }, + { + "start": 8022.08, + "end": 8027.54, + "probability": 0.986 + }, + { + "start": 8027.66, + "end": 8029.54, + "probability": 0.999 + }, + { + "start": 8031.58, + "end": 8033.96, + "probability": 0.9971 + }, + { + "start": 8035.16, + "end": 8036.32, + "probability": 0.7407 + }, + { + "start": 8037.96, + "end": 8039.36, + "probability": 0.9315 + }, + { + "start": 8040.92, + "end": 8045.88, + "probability": 0.9956 + }, + { + "start": 8046.02, + "end": 8046.9, + "probability": 0.6632 + }, + { + "start": 8048.36, + "end": 8050.34, + "probability": 0.9685 + }, + { + "start": 8052.42, + "end": 8054.2, + "probability": 0.9941 + }, + { + "start": 8054.94, + "end": 8056.75, + "probability": 0.9834 + }, + { + "start": 8059.06, + "end": 8059.7, + "probability": 0.1146 + }, + { + "start": 8059.7, + "end": 8062.34, + "probability": 0.9838 + }, + { + "start": 8063.56, + "end": 8066.72, + "probability": 0.9946 + }, + { + "start": 8068.06, + "end": 8069.67, + "probability": 0.9874 + }, + { + "start": 8073.22, + "end": 8074.76, + "probability": 0.9775 + }, + { + "start": 8074.92, + "end": 8080.72, + "probability": 0.9875 + }, + { + "start": 8080.76, + "end": 8082.26, + "probability": 0.9833 + }, + { + "start": 8084.18, + "end": 8087.58, + "probability": 0.9521 + }, + { + "start": 8088.18, + "end": 8089.32, + "probability": 0.8039 + }, + { + "start": 8090.06, + "end": 8093.98, + "probability": 0.9914 + }, + { + "start": 8095.02, + "end": 8099.2, + "probability": 0.9949 + }, + { + "start": 8099.94, + "end": 8100.82, + "probability": 0.9685 + }, + { + "start": 8101.9, + "end": 8103.3, + "probability": 0.8874 + }, + { + "start": 8105.14, + "end": 8107.5, + "probability": 0.9941 + }, + { + "start": 8108.28, + "end": 8110.56, + "probability": 0.9912 + }, + { + "start": 8111.28, + "end": 8111.52, + "probability": 0.7752 + }, + { + "start": 8112.08, + "end": 8112.78, + "probability": 0.6043 + }, + { + "start": 8113.02, + "end": 8114.42, + "probability": 0.9797 + }, + { + "start": 8114.94, + "end": 8117.1, + "probability": 0.9508 + }, + { + "start": 8147.3, + "end": 8150.76, + "probability": 0.7085 + }, + { + "start": 8151.36, + "end": 8156.64, + "probability": 0.9922 + }, + { + "start": 8156.72, + "end": 8160.14, + "probability": 0.9946 + }, + { + "start": 8160.84, + "end": 8166.08, + "probability": 0.9753 + }, + { + "start": 8166.62, + "end": 8167.25, + "probability": 0.9109 + }, + { + "start": 8168.38, + "end": 8171.22, + "probability": 0.8386 + }, + { + "start": 8171.38, + "end": 8174.64, + "probability": 0.9884 + }, + { + "start": 8174.72, + "end": 8176.76, + "probability": 0.9852 + }, + { + "start": 8177.7, + "end": 8181.6, + "probability": 0.9786 + }, + { + "start": 8182.14, + "end": 8184.5, + "probability": 0.9569 + }, + { + "start": 8185.04, + "end": 8186.1, + "probability": 0.7318 + }, + { + "start": 8186.66, + "end": 8190.58, + "probability": 0.9812 + }, + { + "start": 8191.8, + "end": 8194.48, + "probability": 0.9746 + }, + { + "start": 8194.52, + "end": 8196.8, + "probability": 0.9912 + }, + { + "start": 8197.28, + "end": 8202.02, + "probability": 0.9564 + }, + { + "start": 8202.08, + "end": 8202.92, + "probability": 0.8035 + }, + { + "start": 8203.08, + "end": 8204.58, + "probability": 0.9096 + }, + { + "start": 8204.9, + "end": 8208.44, + "probability": 0.9353 + }, + { + "start": 8208.44, + "end": 8212.12, + "probability": 0.98 + }, + { + "start": 8212.18, + "end": 8213.08, + "probability": 0.7673 + }, + { + "start": 8213.74, + "end": 8214.8, + "probability": 0.9714 + }, + { + "start": 8215.38, + "end": 8219.56, + "probability": 0.8291 + }, + { + "start": 8220.14, + "end": 8222.62, + "probability": 0.9155 + }, + { + "start": 8222.96, + "end": 8224.08, + "probability": 0.8052 + }, + { + "start": 8224.2, + "end": 8225.44, + "probability": 0.7302 + }, + { + "start": 8225.5, + "end": 8227.02, + "probability": 0.9928 + }, + { + "start": 8227.66, + "end": 8228.62, + "probability": 0.9564 + }, + { + "start": 8229.0, + "end": 8229.96, + "probability": 0.9476 + }, + { + "start": 8230.12, + "end": 8231.4, + "probability": 0.9906 + }, + { + "start": 8231.5, + "end": 8232.6, + "probability": 0.7677 + }, + { + "start": 8233.0, + "end": 8234.12, + "probability": 0.9766 + }, + { + "start": 8234.84, + "end": 8236.98, + "probability": 0.9016 + }, + { + "start": 8237.6, + "end": 8240.66, + "probability": 0.9023 + }, + { + "start": 8241.12, + "end": 8244.54, + "probability": 0.9844 + }, + { + "start": 8245.08, + "end": 8248.06, + "probability": 0.8724 + }, + { + "start": 8248.06, + "end": 8251.92, + "probability": 0.9966 + }, + { + "start": 8252.28, + "end": 8254.84, + "probability": 0.9315 + }, + { + "start": 8255.02, + "end": 8255.26, + "probability": 0.6278 + }, + { + "start": 8255.32, + "end": 8257.32, + "probability": 0.9744 + }, + { + "start": 8257.42, + "end": 8262.74, + "probability": 0.9877 + }, + { + "start": 8263.32, + "end": 8264.92, + "probability": 0.9922 + }, + { + "start": 8264.98, + "end": 8265.9, + "probability": 0.765 + }, + { + "start": 8266.02, + "end": 8267.82, + "probability": 0.9884 + }, + { + "start": 8268.28, + "end": 8271.16, + "probability": 0.9518 + }, + { + "start": 8271.3, + "end": 8273.04, + "probability": 0.8451 + }, + { + "start": 8273.74, + "end": 8279.18, + "probability": 0.9307 + }, + { + "start": 8279.52, + "end": 8280.52, + "probability": 0.9623 + }, + { + "start": 8280.7, + "end": 8284.22, + "probability": 0.8781 + }, + { + "start": 8284.68, + "end": 8286.86, + "probability": 0.7124 + }, + { + "start": 8287.66, + "end": 8288.38, + "probability": 0.7332 + }, + { + "start": 8288.5, + "end": 8289.3, + "probability": 0.9274 + }, + { + "start": 8289.4, + "end": 8291.3, + "probability": 0.7526 + }, + { + "start": 8291.76, + "end": 8294.7, + "probability": 0.9827 + }, + { + "start": 8295.08, + "end": 8296.56, + "probability": 0.9892 + }, + { + "start": 8296.66, + "end": 8297.48, + "probability": 0.7937 + }, + { + "start": 8298.58, + "end": 8300.48, + "probability": 0.9538 + }, + { + "start": 8301.46, + "end": 8302.36, + "probability": 0.5646 + }, + { + "start": 8302.92, + "end": 8304.76, + "probability": 0.9506 + }, + { + "start": 8304.9, + "end": 8307.42, + "probability": 0.942 + }, + { + "start": 8307.58, + "end": 8311.9, + "probability": 0.9782 + }, + { + "start": 8312.06, + "end": 8313.26, + "probability": 0.9318 + }, + { + "start": 8313.3, + "end": 8314.99, + "probability": 0.965 + }, + { + "start": 8315.3, + "end": 8317.68, + "probability": 0.9925 + }, + { + "start": 8317.9, + "end": 8323.02, + "probability": 0.9883 + }, + { + "start": 8323.16, + "end": 8324.66, + "probability": 0.9838 + }, + { + "start": 8324.88, + "end": 8326.62, + "probability": 0.9937 + }, + { + "start": 8326.68, + "end": 8327.12, + "probability": 0.9758 + }, + { + "start": 8327.72, + "end": 8329.24, + "probability": 0.7009 + }, + { + "start": 8329.34, + "end": 8332.04, + "probability": 0.974 + }, + { + "start": 8332.22, + "end": 8334.4, + "probability": 0.8428 + }, + { + "start": 8334.64, + "end": 8338.7, + "probability": 0.9863 + }, + { + "start": 8338.7, + "end": 8340.9, + "probability": 0.8723 + }, + { + "start": 8343.6, + "end": 8344.84, + "probability": 0.7221 + }, + { + "start": 8345.38, + "end": 8345.42, + "probability": 0.0126 + }, + { + "start": 8345.42, + "end": 8347.22, + "probability": 0.7526 + }, + { + "start": 8347.54, + "end": 8350.16, + "probability": 0.9891 + }, + { + "start": 8350.22, + "end": 8350.42, + "probability": 0.7825 + }, + { + "start": 8350.42, + "end": 8352.16, + "probability": 0.7493 + }, + { + "start": 8353.36, + "end": 8356.84, + "probability": 0.9961 + }, + { + "start": 8356.92, + "end": 8358.17, + "probability": 0.9839 + }, + { + "start": 8359.0, + "end": 8360.32, + "probability": 0.9508 + }, + { + "start": 8360.36, + "end": 8362.42, + "probability": 0.9951 + }, + { + "start": 8362.78, + "end": 8365.34, + "probability": 0.9364 + }, + { + "start": 8365.44, + "end": 8366.18, + "probability": 0.958 + }, + { + "start": 8367.02, + "end": 8368.01, + "probability": 0.8013 + }, + { + "start": 8368.44, + "end": 8369.76, + "probability": 0.8258 + }, + { + "start": 8370.1, + "end": 8373.26, + "probability": 0.6089 + }, + { + "start": 8373.26, + "end": 8373.3, + "probability": 0.2556 + }, + { + "start": 8373.3, + "end": 8373.36, + "probability": 0.6466 + }, + { + "start": 8373.36, + "end": 8376.52, + "probability": 0.8642 + }, + { + "start": 8390.54, + "end": 8391.24, + "probability": 0.6597 + }, + { + "start": 8391.44, + "end": 8392.42, + "probability": 0.7813 + }, + { + "start": 8392.78, + "end": 8396.2, + "probability": 0.9932 + }, + { + "start": 8397.48, + "end": 8403.56, + "probability": 0.9897 + }, + { + "start": 8404.96, + "end": 8408.8, + "probability": 0.9491 + }, + { + "start": 8410.4, + "end": 8412.5, + "probability": 0.7893 + }, + { + "start": 8413.58, + "end": 8418.74, + "probability": 0.9936 + }, + { + "start": 8418.74, + "end": 8424.92, + "probability": 0.9567 + }, + { + "start": 8425.1, + "end": 8426.46, + "probability": 0.9365 + }, + { + "start": 8427.62, + "end": 8429.64, + "probability": 0.9668 + }, + { + "start": 8429.74, + "end": 8430.74, + "probability": 0.735 + }, + { + "start": 8431.24, + "end": 8436.38, + "probability": 0.984 + }, + { + "start": 8436.38, + "end": 8440.22, + "probability": 0.9548 + }, + { + "start": 8440.44, + "end": 8445.34, + "probability": 0.9714 + }, + { + "start": 8445.63, + "end": 8450.98, + "probability": 0.9931 + }, + { + "start": 8450.98, + "end": 8455.54, + "probability": 0.9955 + }, + { + "start": 8456.28, + "end": 8458.66, + "probability": 0.9578 + }, + { + "start": 8458.96, + "end": 8463.22, + "probability": 0.8619 + }, + { + "start": 8463.68, + "end": 8468.22, + "probability": 0.9004 + }, + { + "start": 8468.6, + "end": 8472.82, + "probability": 0.9841 + }, + { + "start": 8472.82, + "end": 8477.38, + "probability": 0.9672 + }, + { + "start": 8477.98, + "end": 8482.44, + "probability": 0.9524 + }, + { + "start": 8482.92, + "end": 8489.88, + "probability": 0.7987 + }, + { + "start": 8489.88, + "end": 8496.0, + "probability": 0.987 + }, + { + "start": 8496.18, + "end": 8497.06, + "probability": 0.942 + }, + { + "start": 8497.22, + "end": 8498.44, + "probability": 0.8696 + }, + { + "start": 8499.76, + "end": 8502.48, + "probability": 0.9543 + }, + { + "start": 8502.56, + "end": 8503.04, + "probability": 0.6474 + }, + { + "start": 8503.04, + "end": 8507.96, + "probability": 0.9103 + }, + { + "start": 8507.96, + "end": 8513.14, + "probability": 0.9973 + }, + { + "start": 8513.64, + "end": 8518.22, + "probability": 0.9721 + }, + { + "start": 8519.18, + "end": 8523.72, + "probability": 0.8291 + }, + { + "start": 8523.86, + "end": 8525.84, + "probability": 0.8407 + }, + { + "start": 8525.96, + "end": 8528.8, + "probability": 0.9704 + }, + { + "start": 8529.42, + "end": 8534.74, + "probability": 0.8412 + }, + { + "start": 8534.8, + "end": 8537.46, + "probability": 0.9251 + }, + { + "start": 8538.18, + "end": 8543.08, + "probability": 0.8799 + }, + { + "start": 8543.24, + "end": 8544.8, + "probability": 0.751 + }, + { + "start": 8545.1, + "end": 8546.32, + "probability": 0.9414 + }, + { + "start": 8546.52, + "end": 8550.14, + "probability": 0.9045 + }, + { + "start": 8550.7, + "end": 8556.26, + "probability": 0.9906 + }, + { + "start": 8557.34, + "end": 8562.26, + "probability": 0.9661 + }, + { + "start": 8562.88, + "end": 8567.64, + "probability": 0.9954 + }, + { + "start": 8568.14, + "end": 8571.54, + "probability": 0.8164 + }, + { + "start": 8573.08, + "end": 8574.54, + "probability": 0.8955 + }, + { + "start": 8574.54, + "end": 8576.12, + "probability": 0.6862 + }, + { + "start": 8576.46, + "end": 8577.28, + "probability": 0.6707 + }, + { + "start": 8577.28, + "end": 8580.32, + "probability": 0.9395 + }, + { + "start": 8580.48, + "end": 8583.74, + "probability": 0.9616 + }, + { + "start": 8584.66, + "end": 8586.98, + "probability": 0.8578 + }, + { + "start": 8587.14, + "end": 8589.6, + "probability": 0.908 + }, + { + "start": 8590.62, + "end": 8591.02, + "probability": 0.7797 + }, + { + "start": 8591.08, + "end": 8592.12, + "probability": 0.4332 + }, + { + "start": 8592.3, + "end": 8598.34, + "probability": 0.9873 + }, + { + "start": 8598.68, + "end": 8601.48, + "probability": 0.9775 + }, + { + "start": 8601.52, + "end": 8603.68, + "probability": 0.918 + }, + { + "start": 8603.86, + "end": 8604.44, + "probability": 0.8026 + }, + { + "start": 8604.5, + "end": 8606.58, + "probability": 0.7953 + }, + { + "start": 8607.4, + "end": 8608.3, + "probability": 0.6825 + }, + { + "start": 8608.78, + "end": 8610.9, + "probability": 0.9674 + }, + { + "start": 8623.66, + "end": 8624.48, + "probability": 0.819 + }, + { + "start": 8624.6, + "end": 8625.46, + "probability": 0.6796 + }, + { + "start": 8626.08, + "end": 8631.16, + "probability": 0.9974 + }, + { + "start": 8631.94, + "end": 8632.54, + "probability": 0.6487 + }, + { + "start": 8632.56, + "end": 8638.04, + "probability": 0.9919 + }, + { + "start": 8638.98, + "end": 8641.11, + "probability": 0.9771 + }, + { + "start": 8642.18, + "end": 8645.86, + "probability": 0.9978 + }, + { + "start": 8645.94, + "end": 8649.22, + "probability": 0.9907 + }, + { + "start": 8649.4, + "end": 8650.08, + "probability": 0.4988 + }, + { + "start": 8650.22, + "end": 8651.18, + "probability": 0.872 + }, + { + "start": 8651.54, + "end": 8652.24, + "probability": 0.5202 + }, + { + "start": 8652.32, + "end": 8654.72, + "probability": 0.9893 + }, + { + "start": 8655.84, + "end": 8659.94, + "probability": 0.999 + }, + { + "start": 8660.5, + "end": 8660.98, + "probability": 0.883 + }, + { + "start": 8661.6, + "end": 8665.36, + "probability": 0.9886 + }, + { + "start": 8666.14, + "end": 8667.28, + "probability": 0.8413 + }, + { + "start": 8667.78, + "end": 8669.34, + "probability": 0.9131 + }, + { + "start": 8669.44, + "end": 8670.9, + "probability": 0.9713 + }, + { + "start": 8671.64, + "end": 8672.52, + "probability": 0.7255 + }, + { + "start": 8673.76, + "end": 8678.44, + "probability": 0.9927 + }, + { + "start": 8678.94, + "end": 8680.9, + "probability": 0.9951 + }, + { + "start": 8680.9, + "end": 8683.56, + "probability": 0.8746 + }, + { + "start": 8684.28, + "end": 8686.02, + "probability": 0.894 + }, + { + "start": 8686.74, + "end": 8691.02, + "probability": 0.9667 + }, + { + "start": 8691.6, + "end": 8697.14, + "probability": 0.9889 + }, + { + "start": 8697.28, + "end": 8700.68, + "probability": 0.9863 + }, + { + "start": 8700.68, + "end": 8705.04, + "probability": 0.8821 + }, + { + "start": 8705.28, + "end": 8707.44, + "probability": 0.9786 + }, + { + "start": 8708.06, + "end": 8711.7, + "probability": 0.9495 + }, + { + "start": 8712.74, + "end": 8713.69, + "probability": 0.9951 + }, + { + "start": 8714.44, + "end": 8715.44, + "probability": 0.9762 + }, + { + "start": 8715.68, + "end": 8717.0, + "probability": 0.9763 + }, + { + "start": 8717.48, + "end": 8720.74, + "probability": 0.9823 + }, + { + "start": 8721.44, + "end": 8725.06, + "probability": 0.9956 + }, + { + "start": 8725.78, + "end": 8730.02, + "probability": 0.9795 + }, + { + "start": 8730.7, + "end": 8734.22, + "probability": 0.9927 + }, + { + "start": 8734.38, + "end": 8738.26, + "probability": 0.9888 + }, + { + "start": 8739.16, + "end": 8745.26, + "probability": 0.9983 + }, + { + "start": 8745.26, + "end": 8751.04, + "probability": 0.9936 + }, + { + "start": 8751.22, + "end": 8752.22, + "probability": 0.9893 + }, + { + "start": 8753.52, + "end": 8757.24, + "probability": 0.9966 + }, + { + "start": 8757.72, + "end": 8761.58, + "probability": 0.9884 + }, + { + "start": 8762.34, + "end": 8765.12, + "probability": 0.9824 + }, + { + "start": 8765.32, + "end": 8767.32, + "probability": 0.9909 + }, + { + "start": 8767.94, + "end": 8771.86, + "probability": 0.979 + }, + { + "start": 8771.86, + "end": 8776.22, + "probability": 0.9965 + }, + { + "start": 8777.08, + "end": 8779.98, + "probability": 0.9805 + }, + { + "start": 8780.42, + "end": 8782.28, + "probability": 0.9867 + }, + { + "start": 8783.54, + "end": 8787.02, + "probability": 0.9141 + }, + { + "start": 8787.02, + "end": 8791.5, + "probability": 0.9946 + }, + { + "start": 8792.92, + "end": 8797.16, + "probability": 0.994 + }, + { + "start": 8797.16, + "end": 8802.14, + "probability": 0.9956 + }, + { + "start": 8802.3, + "end": 8802.86, + "probability": 0.6165 + }, + { + "start": 8802.94, + "end": 8803.6, + "probability": 0.9594 + }, + { + "start": 8804.0, + "end": 8805.84, + "probability": 0.9451 + }, + { + "start": 8806.64, + "end": 8807.98, + "probability": 0.9741 + }, + { + "start": 8808.04, + "end": 8808.72, + "probability": 0.5811 + }, + { + "start": 8809.06, + "end": 8810.58, + "probability": 0.9971 + }, + { + "start": 8810.9, + "end": 8812.32, + "probability": 0.9934 + }, + { + "start": 8812.32, + "end": 8812.82, + "probability": 0.7436 + }, + { + "start": 8812.96, + "end": 8815.1, + "probability": 0.9897 + }, + { + "start": 8815.68, + "end": 8818.92, + "probability": 0.9849 + }, + { + "start": 8818.92, + "end": 8822.64, + "probability": 0.9773 + }, + { + "start": 8823.1, + "end": 8824.34, + "probability": 0.8571 + }, + { + "start": 8824.8, + "end": 8826.44, + "probability": 0.9478 + }, + { + "start": 8826.44, + "end": 8826.72, + "probability": 0.5168 + }, + { + "start": 8827.36, + "end": 8828.42, + "probability": 0.3337 + }, + { + "start": 8828.86, + "end": 8829.86, + "probability": 0.6735 + }, + { + "start": 8830.06, + "end": 8831.84, + "probability": 0.767 + }, + { + "start": 8832.24, + "end": 8833.56, + "probability": 0.9256 + }, + { + "start": 8833.72, + "end": 8834.9, + "probability": 0.7643 + }, + { + "start": 8834.92, + "end": 8835.22, + "probability": 0.5891 + }, + { + "start": 8835.42, + "end": 8837.66, + "probability": 0.8371 + }, + { + "start": 8859.3, + "end": 8860.78, + "probability": 0.8171 + }, + { + "start": 8860.9, + "end": 8862.16, + "probability": 0.7006 + }, + { + "start": 8862.58, + "end": 8864.2, + "probability": 0.9529 + }, + { + "start": 8866.4, + "end": 8867.26, + "probability": 0.7756 + }, + { + "start": 8867.8, + "end": 8874.78, + "probability": 0.9506 + }, + { + "start": 8875.7, + "end": 8879.22, + "probability": 0.989 + }, + { + "start": 8880.06, + "end": 8881.1, + "probability": 0.3851 + }, + { + "start": 8882.26, + "end": 8883.7, + "probability": 0.9196 + }, + { + "start": 8884.84, + "end": 8885.91, + "probability": 0.9789 + }, + { + "start": 8888.38, + "end": 8892.74, + "probability": 0.9609 + }, + { + "start": 8893.1, + "end": 8893.58, + "probability": 0.7723 + }, + { + "start": 8893.98, + "end": 8897.32, + "probability": 0.9971 + }, + { + "start": 8899.02, + "end": 8900.88, + "probability": 0.9249 + }, + { + "start": 8901.88, + "end": 8902.42, + "probability": 0.7948 + }, + { + "start": 8903.1, + "end": 8905.26, + "probability": 0.8704 + }, + { + "start": 8906.32, + "end": 8907.74, + "probability": 0.9374 + }, + { + "start": 8908.42, + "end": 8909.94, + "probability": 0.7808 + }, + { + "start": 8910.72, + "end": 8913.44, + "probability": 0.8965 + }, + { + "start": 8914.7, + "end": 8919.67, + "probability": 0.8776 + }, + { + "start": 8921.66, + "end": 8921.88, + "probability": 0.1193 + }, + { + "start": 8922.56, + "end": 8928.28, + "probability": 0.8076 + }, + { + "start": 8929.04, + "end": 8935.26, + "probability": 0.993 + }, + { + "start": 8936.54, + "end": 8937.66, + "probability": 0.8366 + }, + { + "start": 8938.0, + "end": 8939.09, + "probability": 0.6643 + }, + { + "start": 8939.6, + "end": 8944.44, + "probability": 0.9978 + }, + { + "start": 8945.4, + "end": 8951.68, + "probability": 0.9832 + }, + { + "start": 8951.9, + "end": 8955.38, + "probability": 0.8424 + }, + { + "start": 8955.44, + "end": 8956.72, + "probability": 0.973 + }, + { + "start": 8956.92, + "end": 8957.6, + "probability": 0.8733 + }, + { + "start": 8958.22, + "end": 8958.95, + "probability": 0.9941 + }, + { + "start": 8960.16, + "end": 8962.8, + "probability": 0.9831 + }, + { + "start": 8963.62, + "end": 8964.3, + "probability": 0.1566 + }, + { + "start": 8965.12, + "end": 8968.96, + "probability": 0.8971 + }, + { + "start": 8969.74, + "end": 8970.4, + "probability": 0.8574 + }, + { + "start": 8971.28, + "end": 8971.9, + "probability": 0.8335 + }, + { + "start": 8972.32, + "end": 8978.7, + "probability": 0.9817 + }, + { + "start": 8979.3, + "end": 8981.96, + "probability": 0.7276 + }, + { + "start": 8982.02, + "end": 8986.78, + "probability": 0.9657 + }, + { + "start": 8986.78, + "end": 8994.78, + "probability": 0.8961 + }, + { + "start": 8995.64, + "end": 8999.68, + "probability": 0.9434 + }, + { + "start": 9000.7, + "end": 9005.74, + "probability": 0.9453 + }, + { + "start": 9006.46, + "end": 9010.66, + "probability": 0.784 + }, + { + "start": 9011.74, + "end": 9015.42, + "probability": 0.9626 + }, + { + "start": 9016.02, + "end": 9018.4, + "probability": 0.995 + }, + { + "start": 9020.38, + "end": 9022.72, + "probability": 0.8277 + }, + { + "start": 9023.52, + "end": 9027.54, + "probability": 0.7897 + }, + { + "start": 9028.3, + "end": 9032.66, + "probability": 0.9871 + }, + { + "start": 9033.88, + "end": 9034.22, + "probability": 0.9692 + }, + { + "start": 9035.1, + "end": 9037.36, + "probability": 0.9883 + }, + { + "start": 9037.52, + "end": 9039.84, + "probability": 0.9308 + }, + { + "start": 9040.02, + "end": 9041.44, + "probability": 0.6894 + }, + { + "start": 9042.1, + "end": 9047.46, + "probability": 0.9354 + }, + { + "start": 9047.58, + "end": 9049.14, + "probability": 0.6765 + }, + { + "start": 9049.62, + "end": 9049.62, + "probability": 0.3348 + }, + { + "start": 9049.62, + "end": 9050.58, + "probability": 0.639 + }, + { + "start": 9050.72, + "end": 9054.34, + "probability": 0.9965 + }, + { + "start": 9054.76, + "end": 9056.18, + "probability": 0.7516 + }, + { + "start": 9056.86, + "end": 9058.76, + "probability": 0.9351 + }, + { + "start": 9059.08, + "end": 9061.2, + "probability": 0.9939 + }, + { + "start": 9061.26, + "end": 9063.98, + "probability": 0.8802 + }, + { + "start": 9064.06, + "end": 9064.22, + "probability": 0.4482 + }, + { + "start": 9064.22, + "end": 9064.82, + "probability": 0.5852 + }, + { + "start": 9064.86, + "end": 9067.0, + "probability": 0.8491 + }, + { + "start": 9069.6, + "end": 9069.84, + "probability": 0.2112 + }, + { + "start": 9089.08, + "end": 9092.72, + "probability": 0.5834 + }, + { + "start": 9093.74, + "end": 9095.24, + "probability": 0.9018 + }, + { + "start": 9098.26, + "end": 9100.68, + "probability": 0.6629 + }, + { + "start": 9105.3, + "end": 9107.4, + "probability": 0.6012 + }, + { + "start": 9108.32, + "end": 9110.22, + "probability": 0.8681 + }, + { + "start": 9111.36, + "end": 9115.72, + "probability": 0.7144 + }, + { + "start": 9116.42, + "end": 9117.94, + "probability": 0.77 + }, + { + "start": 9119.2, + "end": 9119.6, + "probability": 0.8024 + }, + { + "start": 9120.98, + "end": 9123.98, + "probability": 0.9901 + }, + { + "start": 9124.16, + "end": 9126.38, + "probability": 0.9077 + }, + { + "start": 9126.74, + "end": 9128.36, + "probability": 0.8044 + }, + { + "start": 9128.84, + "end": 9130.16, + "probability": 0.6149 + }, + { + "start": 9131.94, + "end": 9133.32, + "probability": 0.9968 + }, + { + "start": 9134.16, + "end": 9138.85, + "probability": 0.8537 + }, + { + "start": 9139.96, + "end": 9144.1, + "probability": 0.9951 + }, + { + "start": 9145.5, + "end": 9148.78, + "probability": 0.9833 + }, + { + "start": 9149.3, + "end": 9154.2, + "probability": 0.9831 + }, + { + "start": 9156.96, + "end": 9160.46, + "probability": 0.7264 + }, + { + "start": 9161.22, + "end": 9162.86, + "probability": 0.9233 + }, + { + "start": 9163.6, + "end": 9164.64, + "probability": 0.8651 + }, + { + "start": 9165.6, + "end": 9173.36, + "probability": 0.9705 + }, + { + "start": 9175.56, + "end": 9179.88, + "probability": 0.6632 + }, + { + "start": 9180.72, + "end": 9182.9, + "probability": 0.931 + }, + { + "start": 9185.24, + "end": 9188.46, + "probability": 0.9834 + }, + { + "start": 9189.46, + "end": 9194.58, + "probability": 0.9614 + }, + { + "start": 9195.34, + "end": 9196.08, + "probability": 0.9368 + }, + { + "start": 9197.02, + "end": 9202.42, + "probability": 0.9746 + }, + { + "start": 9203.44, + "end": 9203.96, + "probability": 0.676 + }, + { + "start": 9204.64, + "end": 9207.62, + "probability": 0.6236 + }, + { + "start": 9207.84, + "end": 9208.96, + "probability": 0.8602 + }, + { + "start": 9209.36, + "end": 9209.85, + "probability": 0.4119 + }, + { + "start": 9210.8, + "end": 9212.14, + "probability": 0.6588 + }, + { + "start": 9213.44, + "end": 9214.26, + "probability": 0.8003 + }, + { + "start": 9215.81, + "end": 9217.7, + "probability": 0.9938 + }, + { + "start": 9217.78, + "end": 9220.98, + "probability": 0.9516 + }, + { + "start": 9221.52, + "end": 9227.08, + "probability": 0.9177 + }, + { + "start": 9228.51, + "end": 9230.82, + "probability": 0.8973 + }, + { + "start": 9231.56, + "end": 9233.72, + "probability": 0.9758 + }, + { + "start": 9234.6, + "end": 9235.04, + "probability": 0.8442 + }, + { + "start": 9235.6, + "end": 9236.25, + "probability": 0.0244 + }, + { + "start": 9237.46, + "end": 9241.48, + "probability": 0.9511 + }, + { + "start": 9241.72, + "end": 9244.46, + "probability": 0.9266 + }, + { + "start": 9245.2, + "end": 9245.86, + "probability": 0.9509 + }, + { + "start": 9248.16, + "end": 9253.28, + "probability": 0.9868 + }, + { + "start": 9254.34, + "end": 9256.66, + "probability": 0.7819 + }, + { + "start": 9257.36, + "end": 9259.18, + "probability": 0.8051 + }, + { + "start": 9259.5, + "end": 9265.42, + "probability": 0.9826 + }, + { + "start": 9265.64, + "end": 9266.52, + "probability": 0.8085 + }, + { + "start": 9267.16, + "end": 9267.84, + "probability": 0.5581 + }, + { + "start": 9267.98, + "end": 9269.64, + "probability": 0.738 + }, + { + "start": 9291.64, + "end": 9292.14, + "probability": 0.4999 + }, + { + "start": 9292.16, + "end": 9293.12, + "probability": 0.7116 + }, + { + "start": 9293.68, + "end": 9294.74, + "probability": 0.9325 + }, + { + "start": 9294.84, + "end": 9296.3, + "probability": 0.8802 + }, + { + "start": 9296.62, + "end": 9299.1, + "probability": 0.9478 + }, + { + "start": 9299.71, + "end": 9299.78, + "probability": 0.7492 + }, + { + "start": 9299.78, + "end": 9301.36, + "probability": 0.4514 + }, + { + "start": 9302.0, + "end": 9304.7, + "probability": 0.9648 + }, + { + "start": 9305.46, + "end": 9307.9, + "probability": 0.0388 + }, + { + "start": 9309.23, + "end": 9310.04, + "probability": 0.6209 + }, + { + "start": 9310.62, + "end": 9311.24, + "probability": 0.8141 + }, + { + "start": 9312.32, + "end": 9313.96, + "probability": 0.0866 + }, + { + "start": 9314.22, + "end": 9315.24, + "probability": 0.4241 + }, + { + "start": 9315.78, + "end": 9318.44, + "probability": 0.7892 + }, + { + "start": 9319.05, + "end": 9320.39, + "probability": 0.9399 + }, + { + "start": 9320.9, + "end": 9323.3, + "probability": 0.8332 + }, + { + "start": 9323.44, + "end": 9324.18, + "probability": 0.6558 + }, + { + "start": 9325.17, + "end": 9328.5, + "probability": 0.8694 + }, + { + "start": 9328.56, + "end": 9329.8, + "probability": 0.4089 + }, + { + "start": 9329.92, + "end": 9330.94, + "probability": 0.7535 + }, + { + "start": 9331.04, + "end": 9331.7, + "probability": 0.6948 + }, + { + "start": 9331.96, + "end": 9334.72, + "probability": 0.8468 + }, + { + "start": 9334.92, + "end": 9336.16, + "probability": 0.998 + }, + { + "start": 9336.5, + "end": 9338.8, + "probability": 0.7504 + }, + { + "start": 9338.8, + "end": 9339.94, + "probability": 0.6202 + }, + { + "start": 9339.94, + "end": 9341.32, + "probability": 0.7244 + }, + { + "start": 9341.44, + "end": 9342.14, + "probability": 0.5557 + }, + { + "start": 9342.16, + "end": 9342.82, + "probability": 0.8369 + }, + { + "start": 9342.92, + "end": 9343.49, + "probability": 0.6408 + }, + { + "start": 9345.34, + "end": 9355.26, + "probability": 0.6151 + }, + { + "start": 9355.32, + "end": 9357.4, + "probability": 0.3604 + }, + { + "start": 9357.74, + "end": 9359.68, + "probability": 0.8931 + }, + { + "start": 9359.92, + "end": 9361.3, + "probability": 0.9756 + }, + { + "start": 9362.1, + "end": 9362.44, + "probability": 0.6756 + }, + { + "start": 9364.22, + "end": 9366.14, + "probability": 0.8279 + }, + { + "start": 9366.26, + "end": 9370.36, + "probability": 0.9869 + }, + { + "start": 9370.5, + "end": 9371.89, + "probability": 0.8711 + }, + { + "start": 9372.38, + "end": 9372.79, + "probability": 0.9607 + }, + { + "start": 9373.08, + "end": 9373.42, + "probability": 0.7551 + }, + { + "start": 9374.28, + "end": 9376.22, + "probability": 0.9742 + }, + { + "start": 9376.28, + "end": 9380.4, + "probability": 0.9896 + }, + { + "start": 9381.08, + "end": 9383.27, + "probability": 0.991 + }, + { + "start": 9383.56, + "end": 9385.28, + "probability": 0.9436 + }, + { + "start": 9385.78, + "end": 9388.92, + "probability": 0.9658 + }, + { + "start": 9389.56, + "end": 9389.94, + "probability": 0.4016 + }, + { + "start": 9390.66, + "end": 9392.72, + "probability": 0.0935 + }, + { + "start": 9392.8, + "end": 9394.46, + "probability": 0.9248 + }, + { + "start": 9394.54, + "end": 9396.58, + "probability": 0.7467 + }, + { + "start": 9396.76, + "end": 9399.64, + "probability": 0.7474 + }, + { + "start": 9399.68, + "end": 9400.22, + "probability": 0.3847 + }, + { + "start": 9400.4, + "end": 9400.66, + "probability": 0.2028 + }, + { + "start": 9400.76, + "end": 9402.67, + "probability": 0.3756 + }, + { + "start": 9403.8, + "end": 9407.96, + "probability": 0.9972 + }, + { + "start": 9410.08, + "end": 9414.6, + "probability": 0.9725 + }, + { + "start": 9415.3, + "end": 9419.72, + "probability": 0.8806 + }, + { + "start": 9420.34, + "end": 9425.7, + "probability": 0.9888 + }, + { + "start": 9426.14, + "end": 9430.88, + "probability": 0.9997 + }, + { + "start": 9431.4, + "end": 9436.2, + "probability": 0.9751 + }, + { + "start": 9436.76, + "end": 9439.26, + "probability": 0.5239 + }, + { + "start": 9440.14, + "end": 9443.74, + "probability": 0.9894 + }, + { + "start": 9444.88, + "end": 9447.52, + "probability": 0.9975 + }, + { + "start": 9448.66, + "end": 9452.94, + "probability": 0.9599 + }, + { + "start": 9453.5, + "end": 9455.36, + "probability": 0.9961 + }, + { + "start": 9455.36, + "end": 9457.66, + "probability": 0.9985 + }, + { + "start": 9458.34, + "end": 9459.58, + "probability": 0.6963 + }, + { + "start": 9459.74, + "end": 9460.91, + "probability": 0.4869 + }, + { + "start": 9461.8, + "end": 9465.18, + "probability": 0.9979 + }, + { + "start": 9465.68, + "end": 9466.92, + "probability": 0.9365 + }, + { + "start": 9467.32, + "end": 9467.42, + "probability": 0.3925 + }, + { + "start": 9467.42, + "end": 9468.34, + "probability": 0.4941 + }, + { + "start": 9468.62, + "end": 9469.66, + "probability": 0.9687 + }, + { + "start": 9469.84, + "end": 9470.9, + "probability": 0.8903 + }, + { + "start": 9471.22, + "end": 9472.7, + "probability": 0.9037 + }, + { + "start": 9473.26, + "end": 9475.52, + "probability": 0.2995 + }, + { + "start": 9475.74, + "end": 9477.86, + "probability": 0.0937 + }, + { + "start": 9479.89, + "end": 9481.1, + "probability": 0.5177 + }, + { + "start": 9484.19, + "end": 9489.52, + "probability": 0.1661 + }, + { + "start": 9489.76, + "end": 9490.62, + "probability": 0.9472 + }, + { + "start": 9490.95, + "end": 9491.86, + "probability": 0.1486 + }, + { + "start": 9491.86, + "end": 9493.26, + "probability": 0.4911 + }, + { + "start": 9493.32, + "end": 9495.16, + "probability": 0.9193 + }, + { + "start": 9495.46, + "end": 9495.89, + "probability": 0.7778 + }, + { + "start": 9496.44, + "end": 9500.4, + "probability": 0.5978 + }, + { + "start": 9500.52, + "end": 9504.64, + "probability": 0.4745 + }, + { + "start": 9504.76, + "end": 9504.98, + "probability": 0.2276 + }, + { + "start": 9505.16, + "end": 9507.12, + "probability": 0.8415 + }, + { + "start": 9507.12, + "end": 9510.64, + "probability": 0.8862 + }, + { + "start": 9510.72, + "end": 9514.62, + "probability": 0.4817 + }, + { + "start": 9514.9, + "end": 9514.92, + "probability": 0.0748 + }, + { + "start": 9514.92, + "end": 9515.94, + "probability": 0.3816 + }, + { + "start": 9516.44, + "end": 9516.8, + "probability": 0.4326 + }, + { + "start": 9517.34, + "end": 9521.28, + "probability": 0.2527 + }, + { + "start": 9522.0, + "end": 9524.72, + "probability": 0.4622 + }, + { + "start": 9524.8, + "end": 9525.78, + "probability": 0.6144 + }, + { + "start": 9525.8, + "end": 9526.22, + "probability": 0.3099 + }, + { + "start": 9526.28, + "end": 9528.56, + "probability": 0.6882 + }, + { + "start": 9528.68, + "end": 9531.06, + "probability": 0.8925 + }, + { + "start": 9531.1, + "end": 9532.12, + "probability": 0.8314 + }, + { + "start": 9532.28, + "end": 9533.34, + "probability": 0.544 + }, + { + "start": 9533.34, + "end": 9533.84, + "probability": 0.5244 + }, + { + "start": 9533.9, + "end": 9534.46, + "probability": 0.5523 + }, + { + "start": 9534.82, + "end": 9537.7, + "probability": 0.1803 + }, + { + "start": 9538.16, + "end": 9538.16, + "probability": 0.0719 + }, + { + "start": 9538.16, + "end": 9538.3, + "probability": 0.296 + }, + { + "start": 9538.3, + "end": 9539.26, + "probability": 0.2797 + }, + { + "start": 9539.26, + "end": 9540.46, + "probability": 0.8359 + }, + { + "start": 9540.74, + "end": 9544.42, + "probability": 0.2884 + }, + { + "start": 9544.68, + "end": 9546.24, + "probability": 0.4555 + }, + { + "start": 9546.36, + "end": 9548.78, + "probability": 0.573 + }, + { + "start": 9549.16, + "end": 9549.48, + "probability": 0.4442 + }, + { + "start": 9549.9, + "end": 9551.12, + "probability": 0.6031 + }, + { + "start": 9551.18, + "end": 9553.56, + "probability": 0.952 + }, + { + "start": 9553.78, + "end": 9557.22, + "probability": 0.5237 + }, + { + "start": 9557.3, + "end": 9560.94, + "probability": 0.7201 + }, + { + "start": 9561.39, + "end": 9563.9, + "probability": 0.3081 + }, + { + "start": 9563.98, + "end": 9563.98, + "probability": 0.1308 + }, + { + "start": 9563.98, + "end": 9567.13, + "probability": 0.5402 + }, + { + "start": 9569.32, + "end": 9570.44, + "probability": 0.8246 + }, + { + "start": 9570.82, + "end": 9571.78, + "probability": 0.4497 + }, + { + "start": 9572.08, + "end": 9575.34, + "probability": 0.7047 + }, + { + "start": 9575.52, + "end": 9576.64, + "probability": 0.4359 + }, + { + "start": 9576.92, + "end": 9578.71, + "probability": 0.0819 + }, + { + "start": 9578.84, + "end": 9579.85, + "probability": 0.2814 + }, + { + "start": 9580.66, + "end": 9582.48, + "probability": 0.3235 + }, + { + "start": 9585.4, + "end": 9586.24, + "probability": 0.0431 + }, + { + "start": 9586.24, + "end": 9589.92, + "probability": 0.5072 + }, + { + "start": 9590.22, + "end": 9592.9, + "probability": 0.6314 + }, + { + "start": 9593.04, + "end": 9594.7, + "probability": 0.3887 + }, + { + "start": 9594.7, + "end": 9596.08, + "probability": 0.2526 + }, + { + "start": 9596.38, + "end": 9599.38, + "probability": 0.2835 + }, + { + "start": 9605.64, + "end": 9611.03, + "probability": 0.2983 + }, + { + "start": 9611.26, + "end": 9613.68, + "probability": 0.1369 + }, + { + "start": 9613.68, + "end": 9613.68, + "probability": 0.0087 + }, + { + "start": 9613.68, + "end": 9613.76, + "probability": 0.1702 + }, + { + "start": 9613.76, + "end": 9614.34, + "probability": 0.062 + }, + { + "start": 9614.42, + "end": 9616.98, + "probability": 0.0632 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.33, + "end": 9618.95, + "probability": 0.1253 + }, + { + "start": 9619.64, + "end": 9620.82, + "probability": 0.3592 + }, + { + "start": 9621.1, + "end": 9621.32, + "probability": 0.0193 + }, + { + "start": 9621.32, + "end": 9621.82, + "probability": 0.1464 + }, + { + "start": 9621.88, + "end": 9623.42, + "probability": 0.2639 + }, + { + "start": 9623.94, + "end": 9627.88, + "probability": 0.0362 + }, + { + "start": 9750.0, + "end": 9750.0, + "probability": 0.0 + }, + { + "start": 9750.0, + "end": 9750.0, + "probability": 0.0 + }, + { + "start": 9750.0, + "end": 9750.0, + "probability": 0.0 + }, + { + "start": 9750.0, + "end": 9750.0, + "probability": 0.0 + }, + { + "start": 9750.0, + "end": 9750.0, + "probability": 0.0 + }, + { + "start": 9750.0, + "end": 9750.0, + "probability": 0.0 + }, + { + "start": 9750.0, + "end": 9750.0, + "probability": 0.0 + }, + { + "start": 9750.0, + "end": 9750.0, + "probability": 0.0 + }, + { + "start": 9750.0, + "end": 9750.0, + "probability": 0.0 + }, + { + "start": 9750.0, + "end": 9750.0, + "probability": 0.0 + }, + { + "start": 9750.0, + "end": 9750.0, + "probability": 0.0 + }, + { + "start": 9750.0, + "end": 9750.0, + "probability": 0.0 + }, + { + "start": 9750.0, + "end": 9750.0, + "probability": 0.0 + }, + { + "start": 9750.0, + "end": 9750.0, + "probability": 0.0 + }, + { + "start": 9750.0, + "end": 9750.0, + "probability": 0.0 + }, + { + "start": 9750.0, + "end": 9750.0, + "probability": 0.0 + }, + { + "start": 9750.0, + "end": 9750.0, + "probability": 0.0 + }, + { + "start": 9750.0, + "end": 9750.0, + "probability": 0.0 + }, + { + "start": 9750.0, + "end": 9750.0, + "probability": 0.0 + }, + { + "start": 9750.0, + "end": 9750.0, + "probability": 0.0 + }, + { + "start": 9750.0, + "end": 9750.0, + "probability": 0.0 + }, + { + "start": 9750.0, + "end": 9750.0, + "probability": 0.0 + }, + { + "start": 9750.0, + "end": 9750.0, + "probability": 0.0 + }, + { + "start": 9750.0, + "end": 9750.0, + "probability": 0.0 + }, + { + "start": 9750.0, + "end": 9750.0, + "probability": 0.0 + }, + { + "start": 9750.0, + "end": 9750.0, + "probability": 0.0 + }, + { + "start": 9750.0, + "end": 9750.0, + "probability": 0.0 + }, + { + "start": 9750.0, + "end": 9750.0, + "probability": 0.0 + }, + { + "start": 9750.0, + "end": 9750.0, + "probability": 0.0 + }, + { + "start": 9750.0, + "end": 9750.0, + "probability": 0.0 + }, + { + "start": 9750.0, + "end": 9750.0, + "probability": 0.0 + }, + { + "start": 9750.0, + "end": 9750.0, + "probability": 0.0 + }, + { + "start": 9750.0, + "end": 9750.0, + "probability": 0.0 + }, + { + "start": 9750.0, + "end": 9750.0, + "probability": 0.0 + }, + { + "start": 9750.0, + "end": 9750.0, + "probability": 0.0 + }, + { + "start": 9750.0, + "end": 9750.0, + "probability": 0.0 + }, + { + "start": 9750.0, + "end": 9750.0, + "probability": 0.0 + }, + { + "start": 9750.0, + "end": 9750.0, + "probability": 0.0 + }, + { + "start": 9750.0, + "end": 9750.0, + "probability": 0.0 + }, + { + "start": 9750.0, + "end": 9750.0, + "probability": 0.0 + }, + { + "start": 9750.0, + "end": 9750.0, + "probability": 0.0 + }, + { + "start": 9750.0, + "end": 9750.0, + "probability": 0.0 + }, + { + "start": 9750.0, + "end": 9750.0, + "probability": 0.0 + }, + { + "start": 9750.0, + "end": 9750.0, + "probability": 0.0 + }, + { + "start": 9750.0, + "end": 9750.0, + "probability": 0.0 + }, + { + "start": 9750.0, + "end": 9750.0, + "probability": 0.0 + }, + { + "start": 9750.0, + "end": 9750.0, + "probability": 0.0 + }, + { + "start": 9750.0, + "end": 9750.0, + "probability": 0.0 + }, + { + "start": 9750.0, + "end": 9750.0, + "probability": 0.0 + }, + { + "start": 9750.0, + "end": 9750.0, + "probability": 0.0 + }, + { + "start": 9750.16, + "end": 9750.78, + "probability": 0.1024 + }, + { + "start": 9750.78, + "end": 9750.78, + "probability": 0.0223 + }, + { + "start": 9750.78, + "end": 9750.94, + "probability": 0.0447 + }, + { + "start": 9751.34, + "end": 9751.44, + "probability": 0.1404 + }, + { + "start": 9752.56, + "end": 9755.72, + "probability": 0.2941 + }, + { + "start": 9756.32, + "end": 9763.06, + "probability": 0.7727 + }, + { + "start": 9775.57, + "end": 9777.02, + "probability": 0.3555 + }, + { + "start": 9777.02, + "end": 9777.02, + "probability": 0.194 + }, + { + "start": 9777.02, + "end": 9777.02, + "probability": 0.0421 + }, + { + "start": 9777.02, + "end": 9777.96, + "probability": 0.1006 + }, + { + "start": 9777.96, + "end": 9777.96, + "probability": 0.4076 + }, + { + "start": 9778.36, + "end": 9778.54, + "probability": 0.2882 + }, + { + "start": 9779.4, + "end": 9781.7, + "probability": 0.8599 + }, + { + "start": 9782.76, + "end": 9785.7, + "probability": 0.2045 + }, + { + "start": 9786.96, + "end": 9789.52, + "probability": 0.9854 + }, + { + "start": 9793.02, + "end": 9793.96, + "probability": 0.7672 + }, + { + "start": 9794.7, + "end": 9796.98, + "probability": 0.9921 + }, + { + "start": 9797.26, + "end": 9798.02, + "probability": 0.896 + }, + { + "start": 9798.2, + "end": 9798.81, + "probability": 0.8652 + }, + { + "start": 9798.92, + "end": 9800.1, + "probability": 0.9788 + }, + { + "start": 9800.48, + "end": 9803.1, + "probability": 0.9475 + }, + { + "start": 9803.74, + "end": 9805.66, + "probability": 0.9085 + }, + { + "start": 9806.78, + "end": 9808.2, + "probability": 0.9875 + }, + { + "start": 9808.72, + "end": 9809.14, + "probability": 0.4721 + }, + { + "start": 9809.2, + "end": 9813.76, + "probability": 0.9784 + }, + { + "start": 9813.76, + "end": 9817.88, + "probability": 0.9907 + }, + { + "start": 9818.4, + "end": 9818.58, + "probability": 0.6631 + }, + { + "start": 9818.78, + "end": 9822.12, + "probability": 0.9939 + }, + { + "start": 9822.6, + "end": 9824.44, + "probability": 0.877 + }, + { + "start": 9825.3, + "end": 9827.91, + "probability": 0.9937 + }, + { + "start": 9828.82, + "end": 9831.14, + "probability": 0.9538 + }, + { + "start": 9832.74, + "end": 9834.4, + "probability": 0.6552 + }, + { + "start": 9834.78, + "end": 9838.42, + "probability": 0.6689 + }, + { + "start": 9839.3, + "end": 9839.54, + "probability": 0.5253 + }, + { + "start": 9839.54, + "end": 9842.26, + "probability": 0.9883 + }, + { + "start": 9842.46, + "end": 9843.34, + "probability": 0.6778 + }, + { + "start": 9843.42, + "end": 9844.7, + "probability": 0.8522 + }, + { + "start": 9845.0, + "end": 9846.28, + "probability": 0.8624 + }, + { + "start": 9846.86, + "end": 9848.76, + "probability": 0.9191 + }, + { + "start": 9849.54, + "end": 9850.5, + "probability": 0.6459 + }, + { + "start": 9850.96, + "end": 9854.2, + "probability": 0.9694 + }, + { + "start": 9854.7, + "end": 9855.56, + "probability": 0.7681 + }, + { + "start": 9855.68, + "end": 9857.42, + "probability": 0.9685 + }, + { + "start": 9871.88, + "end": 9876.04, + "probability": 0.798 + }, + { + "start": 9877.32, + "end": 9878.52, + "probability": 0.6098 + }, + { + "start": 9878.74, + "end": 9879.02, + "probability": 0.405 + }, + { + "start": 9879.16, + "end": 9883.0, + "probability": 0.9838 + }, + { + "start": 9883.08, + "end": 9883.44, + "probability": 0.4586 + }, + { + "start": 9884.08, + "end": 9888.66, + "probability": 0.7734 + }, + { + "start": 9889.38, + "end": 9890.96, + "probability": 0.9585 + }, + { + "start": 9893.02, + "end": 9893.76, + "probability": 0.5678 + }, + { + "start": 9894.44, + "end": 9895.36, + "probability": 0.5977 + }, + { + "start": 9895.42, + "end": 9896.24, + "probability": 0.7129 + }, + { + "start": 9896.94, + "end": 9898.1, + "probability": 0.8113 + }, + { + "start": 9898.16, + "end": 9907.38, + "probability": 0.9146 + }, + { + "start": 9908.24, + "end": 9910.02, + "probability": 0.5215 + }, + { + "start": 9910.2, + "end": 9914.0, + "probability": 0.9796 + }, + { + "start": 9914.2, + "end": 9916.5, + "probability": 0.5505 + }, + { + "start": 9916.5, + "end": 9918.76, + "probability": 0.7579 + }, + { + "start": 9918.84, + "end": 9926.98, + "probability": 0.8386 + }, + { + "start": 9927.3, + "end": 9928.0, + "probability": 0.8833 + }, + { + "start": 9928.64, + "end": 9935.6, + "probability": 0.9163 + }, + { + "start": 9936.14, + "end": 9941.14, + "probability": 0.8721 + }, + { + "start": 9941.2, + "end": 9944.04, + "probability": 0.9657 + }, + { + "start": 9944.2, + "end": 9944.55, + "probability": 0.9396 + }, + { + "start": 9945.24, + "end": 9949.2, + "probability": 0.9055 + }, + { + "start": 9950.26, + "end": 9956.36, + "probability": 0.9923 + }, + { + "start": 9957.2, + "end": 9960.0, + "probability": 0.9456 + }, + { + "start": 9960.5, + "end": 9960.86, + "probability": 0.5656 + }, + { + "start": 9960.92, + "end": 9961.72, + "probability": 0.7144 + }, + { + "start": 9962.22, + "end": 9968.33, + "probability": 0.924 + }, + { + "start": 9970.18, + "end": 9977.96, + "probability": 0.9528 + }, + { + "start": 9978.82, + "end": 9980.08, + "probability": 0.9706 + }, + { + "start": 9980.34, + "end": 9986.04, + "probability": 0.9974 + }, + { + "start": 9986.56, + "end": 9988.04, + "probability": 0.9618 + }, + { + "start": 9988.58, + "end": 9992.48, + "probability": 0.9923 + }, + { + "start": 9993.08, + "end": 9995.56, + "probability": 0.6951 + }, + { + "start": 9996.16, + "end": 10001.78, + "probability": 0.9845 + }, + { + "start": 10002.82, + "end": 10007.5, + "probability": 0.9908 + }, + { + "start": 10007.98, + "end": 10010.9, + "probability": 0.9192 + }, + { + "start": 10011.48, + "end": 10013.84, + "probability": 0.9969 + }, + { + "start": 10013.94, + "end": 10018.5, + "probability": 0.9937 + }, + { + "start": 10019.22, + "end": 10022.08, + "probability": 0.9937 + }, + { + "start": 10022.8, + "end": 10026.36, + "probability": 0.9066 + }, + { + "start": 10026.82, + "end": 10027.66, + "probability": 0.6201 + }, + { + "start": 10027.76, + "end": 10031.34, + "probability": 0.996 + }, + { + "start": 10031.5, + "end": 10032.44, + "probability": 0.9387 + }, + { + "start": 10032.5, + "end": 10033.34, + "probability": 0.9028 + }, + { + "start": 10033.84, + "end": 10038.22, + "probability": 0.909 + }, + { + "start": 10038.58, + "end": 10047.74, + "probability": 0.9476 + }, + { + "start": 10047.8, + "end": 10051.54, + "probability": 0.9112 + }, + { + "start": 10051.86, + "end": 10058.02, + "probability": 0.9971 + }, + { + "start": 10058.02, + "end": 10063.46, + "probability": 0.9927 + }, + { + "start": 10063.6, + "end": 10065.78, + "probability": 0.7959 + }, + { + "start": 10066.4, + "end": 10074.34, + "probability": 0.9969 + }, + { + "start": 10075.08, + "end": 10077.96, + "probability": 0.9983 + }, + { + "start": 10077.96, + "end": 10082.32, + "probability": 0.9981 + }, + { + "start": 10082.54, + "end": 10084.74, + "probability": 0.9405 + }, + { + "start": 10085.6, + "end": 10086.14, + "probability": 0.8137 + }, + { + "start": 10086.28, + "end": 10088.04, + "probability": 0.7454 + }, + { + "start": 10088.08, + "end": 10094.22, + "probability": 0.9277 + }, + { + "start": 10094.22, + "end": 10099.22, + "probability": 0.9977 + }, + { + "start": 10099.9, + "end": 10102.9, + "probability": 0.9171 + }, + { + "start": 10103.22, + "end": 10108.22, + "probability": 0.8751 + }, + { + "start": 10109.9, + "end": 10111.18, + "probability": 0.9636 + }, + { + "start": 10111.32, + "end": 10111.78, + "probability": 0.6936 + }, + { + "start": 10112.14, + "end": 10113.86, + "probability": 0.5602 + }, + { + "start": 10128.7, + "end": 10131.04, + "probability": 0.7445 + }, + { + "start": 10131.16, + "end": 10132.08, + "probability": 0.859 + }, + { + "start": 10132.82, + "end": 10136.78, + "probability": 0.9719 + }, + { + "start": 10137.74, + "end": 10139.52, + "probability": 0.7696 + }, + { + "start": 10140.34, + "end": 10141.78, + "probability": 0.998 + }, + { + "start": 10142.4, + "end": 10146.06, + "probability": 0.9897 + }, + { + "start": 10147.04, + "end": 10148.58, + "probability": 0.9979 + }, + { + "start": 10149.2, + "end": 10153.58, + "probability": 0.9956 + }, + { + "start": 10153.66, + "end": 10155.36, + "probability": 0.8773 + }, + { + "start": 10156.3, + "end": 10156.5, + "probability": 0.6909 + }, + { + "start": 10156.6, + "end": 10159.78, + "probability": 0.9951 + }, + { + "start": 10160.34, + "end": 10161.4, + "probability": 0.8585 + }, + { + "start": 10161.52, + "end": 10162.43, + "probability": 0.9644 + }, + { + "start": 10163.14, + "end": 10164.22, + "probability": 0.8753 + }, + { + "start": 10165.28, + "end": 10167.6, + "probability": 0.9616 + }, + { + "start": 10168.2, + "end": 10169.88, + "probability": 0.9926 + }, + { + "start": 10169.96, + "end": 10171.5, + "probability": 0.8887 + }, + { + "start": 10172.08, + "end": 10172.98, + "probability": 0.9658 + }, + { + "start": 10173.14, + "end": 10173.54, + "probability": 0.8884 + }, + { + "start": 10173.68, + "end": 10174.4, + "probability": 0.7327 + }, + { + "start": 10174.78, + "end": 10177.4, + "probability": 0.9109 + }, + { + "start": 10177.9, + "end": 10179.54, + "probability": 0.9825 + }, + { + "start": 10180.88, + "end": 10181.82, + "probability": 0.8455 + }, + { + "start": 10182.5, + "end": 10186.04, + "probability": 0.9886 + }, + { + "start": 10186.88, + "end": 10187.84, + "probability": 0.8867 + }, + { + "start": 10188.52, + "end": 10190.34, + "probability": 0.9965 + }, + { + "start": 10191.22, + "end": 10193.98, + "probability": 0.9738 + }, + { + "start": 10194.32, + "end": 10196.66, + "probability": 0.866 + }, + { + "start": 10197.38, + "end": 10198.29, + "probability": 0.9814 + }, + { + "start": 10198.96, + "end": 10201.3, + "probability": 0.9083 + }, + { + "start": 10201.88, + "end": 10203.94, + "probability": 0.9915 + }, + { + "start": 10204.42, + "end": 10210.84, + "probability": 0.9945 + }, + { + "start": 10210.92, + "end": 10212.16, + "probability": 0.7555 + }, + { + "start": 10212.62, + "end": 10213.9, + "probability": 0.5506 + }, + { + "start": 10214.52, + "end": 10216.52, + "probability": 0.5994 + }, + { + "start": 10216.92, + "end": 10220.2, + "probability": 0.9904 + }, + { + "start": 10220.84, + "end": 10222.56, + "probability": 0.8804 + }, + { + "start": 10223.16, + "end": 10224.26, + "probability": 0.909 + }, + { + "start": 10224.64, + "end": 10227.16, + "probability": 0.989 + }, + { + "start": 10227.3, + "end": 10227.72, + "probability": 0.5629 + }, + { + "start": 10228.1, + "end": 10232.34, + "probability": 0.9061 + }, + { + "start": 10232.78, + "end": 10234.56, + "probability": 0.9941 + }, + { + "start": 10235.24, + "end": 10237.88, + "probability": 0.9924 + }, + { + "start": 10238.48, + "end": 10239.7, + "probability": 0.7501 + }, + { + "start": 10240.7, + "end": 10243.4, + "probability": 0.6971 + }, + { + "start": 10244.04, + "end": 10244.72, + "probability": 0.9482 + }, + { + "start": 10245.56, + "end": 10246.22, + "probability": 0.9344 + }, + { + "start": 10247.5, + "end": 10248.38, + "probability": 0.897 + }, + { + "start": 10248.96, + "end": 10249.98, + "probability": 0.766 + }, + { + "start": 10250.2, + "end": 10251.47, + "probability": 0.988 + }, + { + "start": 10252.06, + "end": 10252.84, + "probability": 0.9784 + }, + { + "start": 10253.1, + "end": 10258.98, + "probability": 0.7562 + }, + { + "start": 10258.98, + "end": 10260.19, + "probability": 0.3709 + }, + { + "start": 10261.16, + "end": 10263.04, + "probability": 0.9352 + }, + { + "start": 10263.48, + "end": 10266.86, + "probability": 0.9034 + }, + { + "start": 10267.18, + "end": 10268.86, + "probability": 0.8787 + }, + { + "start": 10269.24, + "end": 10271.78, + "probability": 0.6442 + }, + { + "start": 10272.72, + "end": 10274.63, + "probability": 0.9979 + }, + { + "start": 10275.3, + "end": 10276.54, + "probability": 0.9078 + }, + { + "start": 10278.14, + "end": 10278.52, + "probability": 0.881 + }, + { + "start": 10278.66, + "end": 10279.32, + "probability": 0.5438 + }, + { + "start": 10279.42, + "end": 10282.82, + "probability": 0.9307 + }, + { + "start": 10283.34, + "end": 10284.58, + "probability": 0.8729 + }, + { + "start": 10285.12, + "end": 10285.58, + "probability": 0.3108 + }, + { + "start": 10286.32, + "end": 10287.36, + "probability": 0.8843 + }, + { + "start": 10288.16, + "end": 10290.07, + "probability": 0.6705 + }, + { + "start": 10290.98, + "end": 10293.58, + "probability": 0.869 + }, + { + "start": 10293.62, + "end": 10294.66, + "probability": 0.9233 + }, + { + "start": 10295.38, + "end": 10298.1, + "probability": 0.9731 + }, + { + "start": 10299.04, + "end": 10301.74, + "probability": 0.5764 + }, + { + "start": 10302.18, + "end": 10304.08, + "probability": 0.8823 + }, + { + "start": 10304.8, + "end": 10305.7, + "probability": 0.7391 + }, + { + "start": 10306.36, + "end": 10308.04, + "probability": 0.9934 + }, + { + "start": 10308.2, + "end": 10309.85, + "probability": 0.8735 + }, + { + "start": 10310.6, + "end": 10313.08, + "probability": 0.788 + }, + { + "start": 10313.64, + "end": 10314.96, + "probability": 0.6949 + }, + { + "start": 10315.62, + "end": 10321.16, + "probability": 0.8128 + }, + { + "start": 10321.16, + "end": 10328.22, + "probability": 0.6515 + }, + { + "start": 10328.28, + "end": 10330.86, + "probability": 0.8511 + }, + { + "start": 10331.68, + "end": 10331.76, + "probability": 0.044 + }, + { + "start": 10332.68, + "end": 10333.92, + "probability": 0.9179 + }, + { + "start": 10333.92, + "end": 10334.68, + "probability": 0.5522 + }, + { + "start": 10334.7, + "end": 10336.67, + "probability": 0.9329 + }, + { + "start": 10356.68, + "end": 10359.32, + "probability": 0.7359 + }, + { + "start": 10360.24, + "end": 10362.94, + "probability": 0.9747 + }, + { + "start": 10363.98, + "end": 10365.2, + "probability": 0.8652 + }, + { + "start": 10365.26, + "end": 10369.0, + "probability": 0.9762 + }, + { + "start": 10369.5, + "end": 10370.68, + "probability": 0.9976 + }, + { + "start": 10371.74, + "end": 10373.16, + "probability": 0.8969 + }, + { + "start": 10373.24, + "end": 10374.94, + "probability": 0.9881 + }, + { + "start": 10375.9, + "end": 10378.16, + "probability": 0.9953 + }, + { + "start": 10379.24, + "end": 10383.44, + "probability": 0.9131 + }, + { + "start": 10384.76, + "end": 10386.18, + "probability": 0.9328 + }, + { + "start": 10386.2, + "end": 10387.64, + "probability": 0.9812 + }, + { + "start": 10388.82, + "end": 10391.76, + "probability": 0.8945 + }, + { + "start": 10393.28, + "end": 10393.78, + "probability": 0.5882 + }, + { + "start": 10395.02, + "end": 10396.18, + "probability": 0.8384 + }, + { + "start": 10397.52, + "end": 10399.76, + "probability": 0.9762 + }, + { + "start": 10400.98, + "end": 10402.16, + "probability": 0.9156 + }, + { + "start": 10402.22, + "end": 10403.66, + "probability": 0.9276 + }, + { + "start": 10403.74, + "end": 10405.8, + "probability": 0.9539 + }, + { + "start": 10407.18, + "end": 10409.88, + "probability": 0.9976 + }, + { + "start": 10412.08, + "end": 10416.48, + "probability": 0.9972 + }, + { + "start": 10416.62, + "end": 10419.7, + "probability": 0.8951 + }, + { + "start": 10421.0, + "end": 10421.96, + "probability": 0.5905 + }, + { + "start": 10422.66, + "end": 10428.08, + "probability": 0.8936 + }, + { + "start": 10430.99, + "end": 10431.54, + "probability": 0.3622 + }, + { + "start": 10433.42, + "end": 10434.84, + "probability": 0.7491 + }, + { + "start": 10434.96, + "end": 10437.62, + "probability": 0.8915 + }, + { + "start": 10438.12, + "end": 10438.96, + "probability": 0.9783 + }, + { + "start": 10439.08, + "end": 10439.92, + "probability": 0.9077 + }, + { + "start": 10440.64, + "end": 10444.12, + "probability": 0.8651 + }, + { + "start": 10446.34, + "end": 10450.23, + "probability": 0.4738 + }, + { + "start": 10452.36, + "end": 10453.0, + "probability": 0.8122 + }, + { + "start": 10454.12, + "end": 10455.4, + "probability": 0.8677 + }, + { + "start": 10455.8, + "end": 10456.64, + "probability": 0.9849 + }, + { + "start": 10458.9, + "end": 10459.24, + "probability": 0.8124 + }, + { + "start": 10461.96, + "end": 10464.46, + "probability": 0.9 + }, + { + "start": 10466.2, + "end": 10466.62, + "probability": 0.7829 + }, + { + "start": 10468.66, + "end": 10469.96, + "probability": 0.9792 + }, + { + "start": 10470.76, + "end": 10471.54, + "probability": 0.8442 + }, + { + "start": 10473.14, + "end": 10474.22, + "probability": 0.946 + }, + { + "start": 10475.92, + "end": 10477.1, + "probability": 0.6809 + }, + { + "start": 10477.24, + "end": 10478.34, + "probability": 0.4392 + }, + { + "start": 10478.6, + "end": 10479.78, + "probability": 0.9059 + }, + { + "start": 10481.58, + "end": 10483.08, + "probability": 0.9821 + }, + { + "start": 10483.66, + "end": 10484.0, + "probability": 0.5776 + }, + { + "start": 10486.06, + "end": 10487.2, + "probability": 0.8538 + }, + { + "start": 10487.86, + "end": 10489.78, + "probability": 0.356 + }, + { + "start": 10490.06, + "end": 10493.4, + "probability": 0.981 + }, + { + "start": 10493.52, + "end": 10494.42, + "probability": 0.5473 + }, + { + "start": 10494.88, + "end": 10495.9, + "probability": 0.7116 + }, + { + "start": 10495.96, + "end": 10496.96, + "probability": 0.7227 + }, + { + "start": 10497.16, + "end": 10500.74, + "probability": 0.1742 + }, + { + "start": 10502.46, + "end": 10506.9, + "probability": 0.1685 + }, + { + "start": 10508.4, + "end": 10511.22, + "probability": 0.0437 + }, + { + "start": 10511.82, + "end": 10518.0, + "probability": 0.0731 + }, + { + "start": 10518.4, + "end": 10519.12, + "probability": 0.0245 + }, + { + "start": 10519.12, + "end": 10521.26, + "probability": 0.502 + }, + { + "start": 10521.26, + "end": 10522.46, + "probability": 0.0531 + }, + { + "start": 10522.56, + "end": 10522.78, + "probability": 0.3304 + }, + { + "start": 10522.78, + "end": 10523.92, + "probability": 0.0689 + }, + { + "start": 10523.96, + "end": 10524.56, + "probability": 0.2186 + }, + { + "start": 10524.56, + "end": 10525.54, + "probability": 0.047 + }, + { + "start": 10527.84, + "end": 10528.9, + "probability": 0.1665 + }, + { + "start": 10529.04, + "end": 10531.88, + "probability": 0.0613 + }, + { + "start": 10531.88, + "end": 10531.88, + "probability": 0.1223 + }, + { + "start": 10531.88, + "end": 10533.8, + "probability": 0.1125 + }, + { + "start": 10534.76, + "end": 10535.94, + "probability": 0.015 + }, + { + "start": 10535.94, + "end": 10540.48, + "probability": 0.1312 + }, + { + "start": 10540.48, + "end": 10542.92, + "probability": 0.0209 + }, + { + "start": 10553.0, + "end": 10553.0, + "probability": 0.0 + }, + { + "start": 10553.0, + "end": 10553.0, + "probability": 0.0 + }, + { + "start": 10553.0, + "end": 10553.0, + "probability": 0.0 + }, + { + "start": 10553.0, + "end": 10553.0, + "probability": 0.0 + }, + { + "start": 10553.0, + "end": 10553.0, + "probability": 0.0 + }, + { + "start": 10553.0, + "end": 10553.0, + "probability": 0.0 + }, + { + "start": 10553.0, + "end": 10553.0, + "probability": 0.0 + }, + { + "start": 10553.0, + "end": 10553.0, + "probability": 0.0 + }, + { + "start": 10553.0, + "end": 10553.0, + "probability": 0.0 + }, + { + "start": 10553.0, + "end": 10553.0, + "probability": 0.0 + }, + { + "start": 10553.0, + "end": 10553.0, + "probability": 0.0 + }, + { + "start": 10553.0, + "end": 10553.0, + "probability": 0.0 + }, + { + "start": 10554.46, + "end": 10555.04, + "probability": 0.0692 + }, + { + "start": 10555.04, + "end": 10556.56, + "probability": 0.222 + }, + { + "start": 10556.56, + "end": 10556.7, + "probability": 0.0121 + }, + { + "start": 10556.7, + "end": 10556.7, + "probability": 0.0211 + }, + { + "start": 10556.7, + "end": 10556.7, + "probability": 0.0702 + }, + { + "start": 10556.7, + "end": 10558.04, + "probability": 0.6167 + }, + { + "start": 10558.52, + "end": 10558.98, + "probability": 0.6968 + }, + { + "start": 10559.92, + "end": 10562.85, + "probability": 0.8471 + }, + { + "start": 10584.66, + "end": 10586.64, + "probability": 0.7873 + }, + { + "start": 10588.2, + "end": 10588.94, + "probability": 0.7048 + }, + { + "start": 10589.88, + "end": 10592.5, + "probability": 0.9362 + }, + { + "start": 10593.42, + "end": 10597.82, + "probability": 0.9909 + }, + { + "start": 10598.62, + "end": 10599.58, + "probability": 0.9539 + }, + { + "start": 10599.88, + "end": 10604.2, + "probability": 0.9529 + }, + { + "start": 10605.16, + "end": 10607.94, + "probability": 0.9772 + }, + { + "start": 10608.64, + "end": 10609.94, + "probability": 0.5736 + }, + { + "start": 10611.0, + "end": 10615.92, + "probability": 0.8887 + }, + { + "start": 10616.6, + "end": 10622.06, + "probability": 0.9309 + }, + { + "start": 10622.52, + "end": 10623.48, + "probability": 0.9709 + }, + { + "start": 10624.02, + "end": 10626.26, + "probability": 0.955 + }, + { + "start": 10627.68, + "end": 10628.84, + "probability": 0.8548 + }, + { + "start": 10629.12, + "end": 10631.88, + "probability": 0.9934 + }, + { + "start": 10632.36, + "end": 10635.58, + "probability": 0.9611 + }, + { + "start": 10636.34, + "end": 10637.28, + "probability": 0.7591 + }, + { + "start": 10637.98, + "end": 10641.52, + "probability": 0.9889 + }, + { + "start": 10641.52, + "end": 10644.18, + "probability": 0.9348 + }, + { + "start": 10644.92, + "end": 10647.98, + "probability": 0.9956 + }, + { + "start": 10648.68, + "end": 10652.22, + "probability": 0.9841 + }, + { + "start": 10652.56, + "end": 10653.82, + "probability": 0.7829 + }, + { + "start": 10653.88, + "end": 10654.78, + "probability": 0.9482 + }, + { + "start": 10655.18, + "end": 10656.14, + "probability": 0.9864 + }, + { + "start": 10656.4, + "end": 10657.55, + "probability": 0.9973 + }, + { + "start": 10657.66, + "end": 10658.36, + "probability": 0.7131 + }, + { + "start": 10658.46, + "end": 10659.36, + "probability": 0.7366 + }, + { + "start": 10660.02, + "end": 10664.56, + "probability": 0.97 + }, + { + "start": 10665.12, + "end": 10668.68, + "probability": 0.9961 + }, + { + "start": 10669.52, + "end": 10671.7, + "probability": 0.77 + }, + { + "start": 10672.22, + "end": 10672.88, + "probability": 0.8096 + }, + { + "start": 10673.5, + "end": 10676.44, + "probability": 0.9631 + }, + { + "start": 10676.6, + "end": 10680.38, + "probability": 0.9914 + }, + { + "start": 10680.92, + "end": 10681.24, + "probability": 0.3668 + }, + { + "start": 10681.34, + "end": 10682.2, + "probability": 0.9554 + }, + { + "start": 10682.24, + "end": 10684.24, + "probability": 0.9011 + }, + { + "start": 10685.4, + "end": 10687.5, + "probability": 0.9851 + }, + { + "start": 10688.36, + "end": 10692.84, + "probability": 0.954 + }, + { + "start": 10692.94, + "end": 10695.08, + "probability": 0.89 + }, + { + "start": 10695.36, + "end": 10696.28, + "probability": 0.696 + }, + { + "start": 10696.84, + "end": 10698.9, + "probability": 0.7911 + }, + { + "start": 10699.24, + "end": 10699.48, + "probability": 0.9268 + }, + { + "start": 10700.18, + "end": 10703.54, + "probability": 0.9764 + }, + { + "start": 10704.16, + "end": 10704.42, + "probability": 0.6263 + }, + { + "start": 10704.48, + "end": 10709.72, + "probability": 0.9633 + }, + { + "start": 10710.26, + "end": 10714.16, + "probability": 0.9942 + }, + { + "start": 10715.48, + "end": 10718.2, + "probability": 0.9098 + }, + { + "start": 10718.78, + "end": 10719.6, + "probability": 0.948 + }, + { + "start": 10720.2, + "end": 10721.5, + "probability": 0.9507 + }, + { + "start": 10721.86, + "end": 10724.92, + "probability": 0.9854 + }, + { + "start": 10725.62, + "end": 10725.96, + "probability": 0.8625 + }, + { + "start": 10726.38, + "end": 10729.12, + "probability": 0.9551 + }, + { + "start": 10729.44, + "end": 10730.32, + "probability": 0.8851 + }, + { + "start": 10730.68, + "end": 10732.0, + "probability": 0.9933 + }, + { + "start": 10733.06, + "end": 10739.98, + "probability": 0.9058 + }, + { + "start": 10740.38, + "end": 10742.26, + "probability": 0.9969 + }, + { + "start": 10742.66, + "end": 10743.62, + "probability": 0.768 + }, + { + "start": 10743.98, + "end": 10748.1, + "probability": 0.9397 + }, + { + "start": 10748.48, + "end": 10750.5, + "probability": 0.9932 + }, + { + "start": 10750.76, + "end": 10751.78, + "probability": 0.9324 + }, + { + "start": 10752.26, + "end": 10753.64, + "probability": 0.7827 + }, + { + "start": 10754.12, + "end": 10757.18, + "probability": 0.9382 + }, + { + "start": 10757.52, + "end": 10759.55, + "probability": 0.9983 + }, + { + "start": 10760.08, + "end": 10762.27, + "probability": 0.9406 + }, + { + "start": 10763.7, + "end": 10764.58, + "probability": 0.965 + }, + { + "start": 10765.04, + "end": 10765.82, + "probability": 0.8835 + }, + { + "start": 10766.04, + "end": 10767.08, + "probability": 0.7822 + }, + { + "start": 10767.32, + "end": 10768.9, + "probability": 0.7086 + }, + { + "start": 10769.16, + "end": 10769.6, + "probability": 0.6855 + }, + { + "start": 10769.66, + "end": 10770.02, + "probability": 0.8835 + }, + { + "start": 10770.2, + "end": 10770.84, + "probability": 0.7534 + }, + { + "start": 10771.16, + "end": 10772.66, + "probability": 0.9858 + }, + { + "start": 10772.96, + "end": 10773.76, + "probability": 0.6916 + }, + { + "start": 10773.96, + "end": 10774.54, + "probability": 0.9738 + }, + { + "start": 10774.62, + "end": 10775.24, + "probability": 0.8307 + }, + { + "start": 10775.26, + "end": 10779.68, + "probability": 0.9866 + }, + { + "start": 10779.9, + "end": 10780.06, + "probability": 0.7328 + }, + { + "start": 10780.06, + "end": 10781.0, + "probability": 0.8714 + }, + { + "start": 10781.08, + "end": 10782.22, + "probability": 0.8151 + }, + { + "start": 10788.86, + "end": 10788.86, + "probability": 0.0283 + }, + { + "start": 10788.86, + "end": 10788.86, + "probability": 0.0434 + }, + { + "start": 10788.86, + "end": 10788.86, + "probability": 0.1516 + }, + { + "start": 10788.86, + "end": 10788.86, + "probability": 0.1714 + }, + { + "start": 10788.86, + "end": 10788.9, + "probability": 0.0874 + }, + { + "start": 10811.68, + "end": 10817.82, + "probability": 0.8073 + }, + { + "start": 10818.7, + "end": 10820.78, + "probability": 0.987 + }, + { + "start": 10821.98, + "end": 10823.64, + "probability": 0.4214 + }, + { + "start": 10823.77, + "end": 10826.72, + "probability": 0.3075 + }, + { + "start": 10826.72, + "end": 10828.34, + "probability": 0.9225 + }, + { + "start": 10828.44, + "end": 10831.06, + "probability": 0.9993 + }, + { + "start": 10831.36, + "end": 10835.52, + "probability": 0.9255 + }, + { + "start": 10835.68, + "end": 10840.1, + "probability": 0.9987 + }, + { + "start": 10841.34, + "end": 10842.32, + "probability": 0.6561 + }, + { + "start": 10842.92, + "end": 10844.34, + "probability": 0.6989 + }, + { + "start": 10844.6, + "end": 10846.39, + "probability": 0.998 + }, + { + "start": 10846.96, + "end": 10850.54, + "probability": 0.9881 + }, + { + "start": 10850.92, + "end": 10852.2, + "probability": 0.7939 + }, + { + "start": 10852.52, + "end": 10852.8, + "probability": 0.3629 + }, + { + "start": 10852.9, + "end": 10854.36, + "probability": 0.9471 + }, + { + "start": 10854.46, + "end": 10855.52, + "probability": 0.9138 + }, + { + "start": 10855.54, + "end": 10856.38, + "probability": 0.8619 + }, + { + "start": 10856.86, + "end": 10859.1, + "probability": 0.7144 + }, + { + "start": 10859.54, + "end": 10860.44, + "probability": 0.781 + }, + { + "start": 10860.82, + "end": 10862.24, + "probability": 0.9234 + }, + { + "start": 10862.42, + "end": 10864.22, + "probability": 0.916 + }, + { + "start": 10864.46, + "end": 10865.26, + "probability": 0.6174 + }, + { + "start": 10865.32, + "end": 10866.24, + "probability": 0.9104 + }, + { + "start": 10866.54, + "end": 10869.7, + "probability": 0.9066 + }, + { + "start": 10870.06, + "end": 10873.68, + "probability": 0.9626 + }, + { + "start": 10873.98, + "end": 10875.21, + "probability": 0.9688 + }, + { + "start": 10875.42, + "end": 10876.18, + "probability": 0.9128 + }, + { + "start": 10876.32, + "end": 10876.8, + "probability": 0.8593 + }, + { + "start": 10879.17, + "end": 10881.48, + "probability": 0.9267 + }, + { + "start": 10881.62, + "end": 10882.46, + "probability": 0.9358 + }, + { + "start": 10882.48, + "end": 10883.38, + "probability": 0.9937 + }, + { + "start": 10883.94, + "end": 10884.56, + "probability": 0.9092 + }, + { + "start": 10885.18, + "end": 10885.96, + "probability": 0.8145 + }, + { + "start": 10888.3, + "end": 10891.44, + "probability": 0.9149 + }, + { + "start": 10891.54, + "end": 10892.72, + "probability": 0.924 + }, + { + "start": 10893.04, + "end": 10895.52, + "probability": 0.9712 + }, + { + "start": 10895.58, + "end": 10899.24, + "probability": 0.9861 + }, + { + "start": 10899.64, + "end": 10899.82, + "probability": 0.8192 + }, + { + "start": 10899.9, + "end": 10903.06, + "probability": 0.9618 + }, + { + "start": 10903.4, + "end": 10906.62, + "probability": 0.9529 + }, + { + "start": 10906.96, + "end": 10910.78, + "probability": 0.9985 + }, + { + "start": 10911.52, + "end": 10914.52, + "probability": 0.9709 + }, + { + "start": 10914.76, + "end": 10915.8, + "probability": 0.9902 + }, + { + "start": 10915.9, + "end": 10917.34, + "probability": 0.9756 + }, + { + "start": 10917.92, + "end": 10919.82, + "probability": 0.9919 + }, + { + "start": 10919.88, + "end": 10923.26, + "probability": 0.9797 + }, + { + "start": 10923.46, + "end": 10924.68, + "probability": 0.9336 + }, + { + "start": 10924.8, + "end": 10927.1, + "probability": 0.9253 + }, + { + "start": 10927.3, + "end": 10927.88, + "probability": 0.782 + }, + { + "start": 10928.22, + "end": 10931.38, + "probability": 0.306 + }, + { + "start": 10931.44, + "end": 10931.52, + "probability": 0.8643 + }, + { + "start": 10931.58, + "end": 10932.45, + "probability": 0.9946 + }, + { + "start": 10932.64, + "end": 10933.72, + "probability": 0.6658 + }, + { + "start": 10934.34, + "end": 10937.26, + "probability": 0.9878 + }, + { + "start": 10937.26, + "end": 10939.84, + "probability": 0.9985 + }, + { + "start": 10940.06, + "end": 10940.18, + "probability": 0.0468 + }, + { + "start": 10940.18, + "end": 10940.78, + "probability": 0.8752 + }, + { + "start": 10940.86, + "end": 10941.92, + "probability": 0.9397 + }, + { + "start": 10941.92, + "end": 10942.4, + "probability": 0.5491 + }, + { + "start": 10943.38, + "end": 10946.78, + "probability": 0.8662 + }, + { + "start": 10946.94, + "end": 10950.28, + "probability": 0.9839 + }, + { + "start": 10950.62, + "end": 10955.4, + "probability": 0.9954 + }, + { + "start": 10955.62, + "end": 10956.54, + "probability": 0.9465 + }, + { + "start": 10957.08, + "end": 10961.32, + "probability": 0.9861 + }, + { + "start": 10961.9, + "end": 10962.54, + "probability": 0.0305 + }, + { + "start": 10962.54, + "end": 10962.54, + "probability": 0.4307 + }, + { + "start": 10962.54, + "end": 10963.72, + "probability": 0.6897 + }, + { + "start": 10963.92, + "end": 10964.68, + "probability": 0.1893 + }, + { + "start": 10964.78, + "end": 10968.14, + "probability": 0.6198 + }, + { + "start": 10968.28, + "end": 10971.36, + "probability": 0.999 + }, + { + "start": 10971.44, + "end": 10974.54, + "probability": 0.9641 + }, + { + "start": 10974.58, + "end": 10975.08, + "probability": 0.5022 + }, + { + "start": 10975.5, + "end": 10978.22, + "probability": 0.9986 + }, + { + "start": 10978.22, + "end": 10980.04, + "probability": 0.9917 + }, + { + "start": 10980.12, + "end": 10983.68, + "probability": 0.9852 + }, + { + "start": 10983.68, + "end": 10984.74, + "probability": 0.5772 + }, + { + "start": 10984.85, + "end": 10985.26, + "probability": 0.2055 + }, + { + "start": 10985.26, + "end": 10987.3, + "probability": 0.6432 + }, + { + "start": 10987.88, + "end": 10993.0, + "probability": 0.9202 + }, + { + "start": 10993.08, + "end": 10994.2, + "probability": 0.9873 + }, + { + "start": 10995.54, + "end": 10998.52, + "probability": 0.7728 + }, + { + "start": 10998.52, + "end": 10999.84, + "probability": 0.5781 + }, + { + "start": 11000.1, + "end": 11000.1, + "probability": 0.3417 + }, + { + "start": 11000.24, + "end": 11005.02, + "probability": 0.7516 + }, + { + "start": 11005.02, + "end": 11007.26, + "probability": 0.548 + }, + { + "start": 11016.06, + "end": 11019.96, + "probability": 0.6387 + }, + { + "start": 11020.86, + "end": 11026.18, + "probability": 0.3481 + }, + { + "start": 11030.26, + "end": 11032.18, + "probability": 0.0399 + }, + { + "start": 11034.02, + "end": 11037.18, + "probability": 0.508 + }, + { + "start": 11043.48, + "end": 11047.08, + "probability": 0.9647 + }, + { + "start": 11049.32, + "end": 11053.18, + "probability": 0.8883 + }, + { + "start": 11053.4, + "end": 11054.14, + "probability": 0.5015 + }, + { + "start": 11054.26, + "end": 11056.04, + "probability": 0.9961 + }, + { + "start": 11058.0, + "end": 11062.62, + "probability": 0.9146 + }, + { + "start": 11063.16, + "end": 11064.86, + "probability": 0.8909 + }, + { + "start": 11066.06, + "end": 11067.55, + "probability": 0.9179 + }, + { + "start": 11067.96, + "end": 11069.76, + "probability": 0.8214 + }, + { + "start": 11070.24, + "end": 11071.36, + "probability": 0.5655 + }, + { + "start": 11071.62, + "end": 11072.02, + "probability": 0.623 + }, + { + "start": 11074.12, + "end": 11078.24, + "probability": 0.7674 + }, + { + "start": 11079.22, + "end": 11082.16, + "probability": 0.9152 + }, + { + "start": 11083.08, + "end": 11084.56, + "probability": 0.9827 + }, + { + "start": 11085.68, + "end": 11086.62, + "probability": 0.9678 + }, + { + "start": 11087.38, + "end": 11089.22, + "probability": 0.8256 + }, + { + "start": 11090.7, + "end": 11092.51, + "probability": 0.9934 + }, + { + "start": 11093.32, + "end": 11093.7, + "probability": 0.5991 + }, + { + "start": 11093.82, + "end": 11096.54, + "probability": 0.963 + }, + { + "start": 11097.02, + "end": 11098.64, + "probability": 0.656 + }, + { + "start": 11100.06, + "end": 11101.22, + "probability": 0.9879 + }, + { + "start": 11103.26, + "end": 11104.48, + "probability": 0.6487 + }, + { + "start": 11107.14, + "end": 11109.0, + "probability": 0.7129 + }, + { + "start": 11110.12, + "end": 11111.94, + "probability": 0.9899 + }, + { + "start": 11113.42, + "end": 11114.06, + "probability": 0.9111 + }, + { + "start": 11115.24, + "end": 11117.06, + "probability": 0.9759 + }, + { + "start": 11117.14, + "end": 11118.68, + "probability": 0.9548 + }, + { + "start": 11118.78, + "end": 11121.44, + "probability": 0.9636 + }, + { + "start": 11121.52, + "end": 11122.56, + "probability": 0.8333 + }, + { + "start": 11123.68, + "end": 11125.78, + "probability": 0.7104 + }, + { + "start": 11125.82, + "end": 11126.72, + "probability": 0.7861 + }, + { + "start": 11126.74, + "end": 11129.07, + "probability": 0.9487 + }, + { + "start": 11131.12, + "end": 11131.61, + "probability": 0.9347 + }, + { + "start": 11133.56, + "end": 11135.42, + "probability": 0.9973 + }, + { + "start": 11135.58, + "end": 11136.48, + "probability": 0.8755 + }, + { + "start": 11136.96, + "end": 11141.4, + "probability": 0.9253 + }, + { + "start": 11143.53, + "end": 11146.74, + "probability": 0.8409 + }, + { + "start": 11146.86, + "end": 11149.68, + "probability": 0.8422 + }, + { + "start": 11150.34, + "end": 11152.26, + "probability": 0.9622 + }, + { + "start": 11153.58, + "end": 11155.22, + "probability": 0.3153 + }, + { + "start": 11155.94, + "end": 11157.87, + "probability": 0.9805 + }, + { + "start": 11159.2, + "end": 11160.0, + "probability": 0.4643 + }, + { + "start": 11160.34, + "end": 11163.34, + "probability": 0.9924 + }, + { + "start": 11164.5, + "end": 11166.46, + "probability": 0.6665 + }, + { + "start": 11166.58, + "end": 11168.1, + "probability": 0.9062 + }, + { + "start": 11169.82, + "end": 11172.82, + "probability": 0.9393 + }, + { + "start": 11174.72, + "end": 11177.68, + "probability": 0.9293 + }, + { + "start": 11179.58, + "end": 11184.18, + "probability": 0.8799 + }, + { + "start": 11185.8, + "end": 11189.6, + "probability": 0.9338 + }, + { + "start": 11190.66, + "end": 11191.88, + "probability": 0.9602 + }, + { + "start": 11193.96, + "end": 11195.84, + "probability": 0.7455 + }, + { + "start": 11197.24, + "end": 11200.16, + "probability": 0.9913 + }, + { + "start": 11202.42, + "end": 11205.82, + "probability": 0.8046 + }, + { + "start": 11205.86, + "end": 11206.34, + "probability": 0.8992 + }, + { + "start": 11206.5, + "end": 11208.5, + "probability": 0.9554 + }, + { + "start": 11208.6, + "end": 11210.02, + "probability": 0.9785 + }, + { + "start": 11211.9, + "end": 11213.26, + "probability": 0.9879 + }, + { + "start": 11215.28, + "end": 11217.64, + "probability": 0.8541 + }, + { + "start": 11217.84, + "end": 11218.88, + "probability": 0.8992 + }, + { + "start": 11218.92, + "end": 11219.22, + "probability": 0.6074 + }, + { + "start": 11219.36, + "end": 11219.56, + "probability": 0.0993 + }, + { + "start": 11220.82, + "end": 11221.76, + "probability": 0.8792 + }, + { + "start": 11222.56, + "end": 11226.5, + "probability": 0.9795 + }, + { + "start": 11227.76, + "end": 11230.68, + "probability": 0.8733 + }, + { + "start": 11233.08, + "end": 11236.32, + "probability": 0.8033 + }, + { + "start": 11237.1, + "end": 11239.74, + "probability": 0.9976 + }, + { + "start": 11241.32, + "end": 11242.58, + "probability": 0.524 + }, + { + "start": 11243.14, + "end": 11243.93, + "probability": 0.7533 + }, + { + "start": 11245.28, + "end": 11248.32, + "probability": 0.9771 + }, + { + "start": 11249.38, + "end": 11251.22, + "probability": 0.9299 + }, + { + "start": 11253.0, + "end": 11254.49, + "probability": 0.9951 + }, + { + "start": 11257.34, + "end": 11258.54, + "probability": 0.4824 + }, + { + "start": 11259.26, + "end": 11261.4, + "probability": 0.8153 + }, + { + "start": 11267.48, + "end": 11268.0, + "probability": 0.2316 + }, + { + "start": 11269.14, + "end": 11272.64, + "probability": 0.1314 + }, + { + "start": 11273.28, + "end": 11276.79, + "probability": 0.1126 + }, + { + "start": 11278.56, + "end": 11280.52, + "probability": 0.0457 + }, + { + "start": 11296.22, + "end": 11297.5, + "probability": 0.1831 + }, + { + "start": 11301.38, + "end": 11306.12, + "probability": 0.958 + }, + { + "start": 11306.8, + "end": 11310.32, + "probability": 0.9959 + }, + { + "start": 11311.02, + "end": 11312.4, + "probability": 0.9968 + }, + { + "start": 11313.74, + "end": 11318.02, + "probability": 0.7027 + }, + { + "start": 11322.5, + "end": 11324.16, + "probability": 0.9961 + }, + { + "start": 11326.0, + "end": 11331.82, + "probability": 0.999 + }, + { + "start": 11335.12, + "end": 11336.16, + "probability": 0.8022 + }, + { + "start": 11339.32, + "end": 11339.66, + "probability": 0.9026 + }, + { + "start": 11341.38, + "end": 11343.64, + "probability": 0.7809 + }, + { + "start": 11347.54, + "end": 11349.0, + "probability": 0.6804 + }, + { + "start": 11349.54, + "end": 11351.74, + "probability": 0.9395 + }, + { + "start": 11352.06, + "end": 11352.62, + "probability": 0.7302 + }, + { + "start": 11353.3, + "end": 11354.7, + "probability": 0.8597 + }, + { + "start": 11358.42, + "end": 11361.0, + "probability": 0.9926 + }, + { + "start": 11361.84, + "end": 11362.56, + "probability": 0.933 + }, + { + "start": 11362.64, + "end": 11364.58, + "probability": 0.9784 + }, + { + "start": 11364.78, + "end": 11366.38, + "probability": 0.9623 + }, + { + "start": 11366.82, + "end": 11367.4, + "probability": 0.9071 + }, + { + "start": 11368.48, + "end": 11370.72, + "probability": 0.6259 + }, + { + "start": 11370.96, + "end": 11373.74, + "probability": 0.9221 + }, + { + "start": 11375.0, + "end": 11375.9, + "probability": 0.7223 + }, + { + "start": 11376.06, + "end": 11376.8, + "probability": 0.9744 + }, + { + "start": 11376.92, + "end": 11381.36, + "probability": 0.6458 + }, + { + "start": 11381.42, + "end": 11381.76, + "probability": 0.8811 + }, + { + "start": 11383.18, + "end": 11384.22, + "probability": 0.9556 + }, + { + "start": 11385.38, + "end": 11387.66, + "probability": 0.7552 + }, + { + "start": 11388.3, + "end": 11388.64, + "probability": 0.5286 + }, + { + "start": 11391.38, + "end": 11391.82, + "probability": 0.5471 + }, + { + "start": 11394.08, + "end": 11398.06, + "probability": 0.986 + }, + { + "start": 11398.98, + "end": 11400.46, + "probability": 0.999 + }, + { + "start": 11401.44, + "end": 11402.52, + "probability": 0.9403 + }, + { + "start": 11403.98, + "end": 11405.76, + "probability": 0.8848 + }, + { + "start": 11406.86, + "end": 11410.78, + "probability": 0.9619 + }, + { + "start": 11411.58, + "end": 11413.36, + "probability": 0.5047 + }, + { + "start": 11414.94, + "end": 11418.54, + "probability": 0.8336 + }, + { + "start": 11418.54, + "end": 11423.7, + "probability": 0.9921 + }, + { + "start": 11424.06, + "end": 11427.8, + "probability": 0.9402 + }, + { + "start": 11429.26, + "end": 11431.66, + "probability": 0.7903 + }, + { + "start": 11434.52, + "end": 11437.62, + "probability": 0.9693 + }, + { + "start": 11438.66, + "end": 11440.56, + "probability": 0.8019 + }, + { + "start": 11442.74, + "end": 11446.24, + "probability": 0.8106 + }, + { + "start": 11446.38, + "end": 11447.02, + "probability": 0.5898 + }, + { + "start": 11447.36, + "end": 11447.88, + "probability": 0.3274 + }, + { + "start": 11447.98, + "end": 11450.08, + "probability": 0.8747 + }, + { + "start": 11450.22, + "end": 11450.66, + "probability": 0.7905 + }, + { + "start": 11453.74, + "end": 11456.7, + "probability": 0.9556 + }, + { + "start": 11457.72, + "end": 11459.9, + "probability": 0.7928 + }, + { + "start": 11461.0, + "end": 11462.74, + "probability": 0.9705 + }, + { + "start": 11464.36, + "end": 11465.34, + "probability": 0.5293 + }, + { + "start": 11466.38, + "end": 11469.0, + "probability": 0.9447 + }, + { + "start": 11470.38, + "end": 11475.56, + "probability": 0.9316 + }, + { + "start": 11475.56, + "end": 11476.12, + "probability": 0.7236 + }, + { + "start": 11476.54, + "end": 11476.96, + "probability": 0.5388 + }, + { + "start": 11476.96, + "end": 11479.76, + "probability": 0.9805 + }, + { + "start": 11479.76, + "end": 11480.56, + "probability": 0.8759 + }, + { + "start": 11481.0, + "end": 11484.32, + "probability": 0.9879 + }, + { + "start": 11485.36, + "end": 11486.04, + "probability": 0.3389 + }, + { + "start": 11500.7, + "end": 11501.44, + "probability": 0.3947 + }, + { + "start": 11509.6, + "end": 11511.86, + "probability": 0.6398 + }, + { + "start": 11513.36, + "end": 11515.56, + "probability": 0.9976 + }, + { + "start": 11516.4, + "end": 11520.56, + "probability": 0.9304 + }, + { + "start": 11521.72, + "end": 11525.5, + "probability": 0.9958 + }, + { + "start": 11526.52, + "end": 11530.26, + "probability": 0.9893 + }, + { + "start": 11531.0, + "end": 11532.0, + "probability": 0.9984 + }, + { + "start": 11533.22, + "end": 11534.24, + "probability": 0.8677 + }, + { + "start": 11536.06, + "end": 11539.6, + "probability": 0.9273 + }, + { + "start": 11541.28, + "end": 11544.94, + "probability": 0.9529 + }, + { + "start": 11546.24, + "end": 11550.54, + "probability": 0.9912 + }, + { + "start": 11550.54, + "end": 11553.36, + "probability": 0.9995 + }, + { + "start": 11554.62, + "end": 11557.74, + "probability": 0.9193 + }, + { + "start": 11558.1, + "end": 11561.82, + "probability": 0.879 + }, + { + "start": 11562.36, + "end": 11564.16, + "probability": 0.9915 + }, + { + "start": 11565.16, + "end": 11568.4, + "probability": 0.9928 + }, + { + "start": 11570.02, + "end": 11572.2, + "probability": 0.7811 + }, + { + "start": 11573.2, + "end": 11577.24, + "probability": 0.9976 + }, + { + "start": 11578.02, + "end": 11580.72, + "probability": 0.9932 + }, + { + "start": 11581.3, + "end": 11583.56, + "probability": 0.8763 + }, + { + "start": 11583.68, + "end": 11584.48, + "probability": 0.8071 + }, + { + "start": 11584.54, + "end": 11586.84, + "probability": 0.8904 + }, + { + "start": 11587.76, + "end": 11592.74, + "probability": 0.9892 + }, + { + "start": 11593.78, + "end": 11595.24, + "probability": 0.9267 + }, + { + "start": 11597.12, + "end": 11601.6, + "probability": 0.9961 + }, + { + "start": 11602.34, + "end": 11603.5, + "probability": 0.9743 + }, + { + "start": 11604.52, + "end": 11607.36, + "probability": 0.9282 + }, + { + "start": 11608.58, + "end": 11613.4, + "probability": 0.9834 + }, + { + "start": 11614.26, + "end": 11618.94, + "probability": 0.9706 + }, + { + "start": 11619.72, + "end": 11623.72, + "probability": 0.997 + }, + { + "start": 11624.66, + "end": 11627.5, + "probability": 0.9974 + }, + { + "start": 11628.44, + "end": 11632.4, + "probability": 0.9685 + }, + { + "start": 11633.36, + "end": 11635.54, + "probability": 0.8599 + }, + { + "start": 11636.8, + "end": 11638.88, + "probability": 0.9982 + }, + { + "start": 11639.0, + "end": 11641.62, + "probability": 0.9105 + }, + { + "start": 11642.68, + "end": 11646.02, + "probability": 0.9892 + }, + { + "start": 11646.68, + "end": 11648.6, + "probability": 0.9764 + }, + { + "start": 11649.36, + "end": 11653.9, + "probability": 0.9961 + }, + { + "start": 11654.72, + "end": 11659.94, + "probability": 0.7372 + }, + { + "start": 11660.68, + "end": 11661.33, + "probability": 0.9561 + }, + { + "start": 11662.36, + "end": 11663.22, + "probability": 0.8011 + }, + { + "start": 11665.08, + "end": 11668.44, + "probability": 0.9958 + }, + { + "start": 11669.78, + "end": 11673.34, + "probability": 0.9985 + }, + { + "start": 11674.12, + "end": 11676.92, + "probability": 0.9972 + }, + { + "start": 11676.92, + "end": 11679.98, + "probability": 0.946 + }, + { + "start": 11681.48, + "end": 11685.76, + "probability": 0.9814 + }, + { + "start": 11686.34, + "end": 11688.6, + "probability": 0.968 + }, + { + "start": 11689.96, + "end": 11695.86, + "probability": 0.9911 + }, + { + "start": 11696.78, + "end": 11698.2, + "probability": 0.9312 + }, + { + "start": 11699.42, + "end": 11702.92, + "probability": 0.9891 + }, + { + "start": 11702.96, + "end": 11707.06, + "probability": 0.9895 + }, + { + "start": 11708.38, + "end": 11713.74, + "probability": 0.9987 + }, + { + "start": 11715.34, + "end": 11720.24, + "probability": 0.9901 + }, + { + "start": 11720.64, + "end": 11723.04, + "probability": 0.7338 + }, + { + "start": 11723.52, + "end": 11725.88, + "probability": 0.7702 + }, + { + "start": 11725.94, + "end": 11727.88, + "probability": 0.9008 + }, + { + "start": 11727.98, + "end": 11731.24, + "probability": 0.9283 + }, + { + "start": 11731.58, + "end": 11736.3, + "probability": 0.9659 + }, + { + "start": 11736.44, + "end": 11736.78, + "probability": 0.5517 + }, + { + "start": 11736.86, + "end": 11737.5, + "probability": 0.5217 + }, + { + "start": 11737.54, + "end": 11739.5, + "probability": 0.8975 + }, + { + "start": 11756.54, + "end": 11757.26, + "probability": 0.4567 + }, + { + "start": 11757.28, + "end": 11758.26, + "probability": 0.8179 + }, + { + "start": 11758.38, + "end": 11762.12, + "probability": 0.9076 + }, + { + "start": 11763.16, + "end": 11764.62, + "probability": 0.9231 + }, + { + "start": 11766.32, + "end": 11769.76, + "probability": 0.994 + }, + { + "start": 11769.86, + "end": 11771.14, + "probability": 0.8331 + }, + { + "start": 11771.3, + "end": 11772.37, + "probability": 0.5483 + }, + { + "start": 11772.9, + "end": 11775.89, + "probability": 0.9741 + }, + { + "start": 11775.96, + "end": 11777.76, + "probability": 0.9302 + }, + { + "start": 11779.48, + "end": 11783.36, + "probability": 0.9844 + }, + { + "start": 11783.84, + "end": 11785.24, + "probability": 0.7858 + }, + { + "start": 11785.28, + "end": 11786.26, + "probability": 0.6011 + }, + { + "start": 11786.7, + "end": 11788.7, + "probability": 0.9473 + }, + { + "start": 11789.81, + "end": 11792.94, + "probability": 0.9966 + }, + { + "start": 11793.1, + "end": 11796.0, + "probability": 0.9873 + }, + { + "start": 11796.4, + "end": 11800.44, + "probability": 0.9609 + }, + { + "start": 11800.56, + "end": 11802.6, + "probability": 0.8623 + }, + { + "start": 11803.42, + "end": 11804.22, + "probability": 0.8117 + }, + { + "start": 11804.32, + "end": 11804.98, + "probability": 0.4712 + }, + { + "start": 11805.12, + "end": 11805.54, + "probability": 0.6824 + }, + { + "start": 11805.62, + "end": 11809.56, + "probability": 0.9815 + }, + { + "start": 11809.56, + "end": 11813.36, + "probability": 0.9936 + }, + { + "start": 11814.72, + "end": 11817.14, + "probability": 0.9722 + }, + { + "start": 11817.22, + "end": 11817.94, + "probability": 0.5785 + }, + { + "start": 11818.04, + "end": 11819.08, + "probability": 0.8401 + }, + { + "start": 11819.66, + "end": 11822.76, + "probability": 0.9414 + }, + { + "start": 11823.84, + "end": 11826.0, + "probability": 0.9788 + }, + { + "start": 11826.16, + "end": 11828.34, + "probability": 0.8354 + }, + { + "start": 11829.38, + "end": 11831.1, + "probability": 0.9919 + }, + { + "start": 11831.16, + "end": 11836.52, + "probability": 0.9941 + }, + { + "start": 11837.22, + "end": 11841.76, + "probability": 0.9798 + }, + { + "start": 11841.76, + "end": 11845.54, + "probability": 0.9807 + }, + { + "start": 11845.98, + "end": 11848.02, + "probability": 0.9827 + }, + { + "start": 11848.64, + "end": 11852.18, + "probability": 0.9875 + }, + { + "start": 11852.26, + "end": 11853.64, + "probability": 0.812 + }, + { + "start": 11853.66, + "end": 11856.06, + "probability": 0.723 + }, + { + "start": 11856.34, + "end": 11858.1, + "probability": 0.8881 + }, + { + "start": 11858.4, + "end": 11858.72, + "probability": 0.5761 + }, + { + "start": 11859.78, + "end": 11861.14, + "probability": 0.9955 + }, + { + "start": 11862.2, + "end": 11863.12, + "probability": 0.8725 + }, + { + "start": 11863.38, + "end": 11866.52, + "probability": 0.9743 + }, + { + "start": 11866.52, + "end": 11870.64, + "probability": 0.8734 + }, + { + "start": 11871.04, + "end": 11874.3, + "probability": 0.9348 + }, + { + "start": 11874.9, + "end": 11880.06, + "probability": 0.9951 + }, + { + "start": 11880.44, + "end": 11882.96, + "probability": 0.9971 + }, + { + "start": 11883.02, + "end": 11884.24, + "probability": 0.7344 + }, + { + "start": 11884.52, + "end": 11886.12, + "probability": 0.9875 + }, + { + "start": 11886.74, + "end": 11888.14, + "probability": 0.9669 + }, + { + "start": 11889.9, + "end": 11893.64, + "probability": 0.9661 + }, + { + "start": 11894.44, + "end": 11895.66, + "probability": 0.7699 + }, + { + "start": 11895.66, + "end": 11896.5, + "probability": 0.519 + }, + { + "start": 11896.88, + "end": 11899.78, + "probability": 0.9333 + }, + { + "start": 11899.94, + "end": 11901.74, + "probability": 0.9941 + }, + { + "start": 11903.5, + "end": 11905.8, + "probability": 0.986 + }, + { + "start": 11905.86, + "end": 11908.24, + "probability": 0.9872 + }, + { + "start": 11908.6, + "end": 11913.86, + "probability": 0.9949 + }, + { + "start": 11914.18, + "end": 11917.0, + "probability": 0.9971 + }, + { + "start": 11917.46, + "end": 11918.48, + "probability": 0.6894 + }, + { + "start": 11918.88, + "end": 11924.61, + "probability": 0.9946 + }, + { + "start": 11926.46, + "end": 11927.8, + "probability": 0.1049 + }, + { + "start": 11928.0, + "end": 11929.58, + "probability": 0.4891 + }, + { + "start": 11929.58, + "end": 11931.26, + "probability": 0.4003 + }, + { + "start": 11931.26, + "end": 11934.27, + "probability": 0.5536 + }, + { + "start": 11943.18, + "end": 11944.32, + "probability": 0.6549 + }, + { + "start": 11944.44, + "end": 11945.48, + "probability": 0.9455 + }, + { + "start": 11945.56, + "end": 11947.48, + "probability": 0.7609 + }, + { + "start": 11947.58, + "end": 11952.2, + "probability": 0.9057 + }, + { + "start": 11954.42, + "end": 11955.62, + "probability": 0.7598 + }, + { + "start": 11956.16, + "end": 11956.98, + "probability": 0.6049 + }, + { + "start": 11957.04, + "end": 11957.73, + "probability": 0.9524 + }, + { + "start": 11957.92, + "end": 11961.44, + "probability": 0.8376 + }, + { + "start": 11962.18, + "end": 11964.78, + "probability": 0.9145 + }, + { + "start": 11965.08, + "end": 11967.22, + "probability": 0.9619 + }, + { + "start": 11967.42, + "end": 11968.2, + "probability": 0.9289 + }, + { + "start": 11968.58, + "end": 11971.8, + "probability": 0.9878 + }, + { + "start": 11972.18, + "end": 11973.84, + "probability": 0.9937 + }, + { + "start": 11975.14, + "end": 11977.1, + "probability": 0.999 + }, + { + "start": 11977.66, + "end": 11980.3, + "probability": 0.9773 + }, + { + "start": 11981.12, + "end": 11987.08, + "probability": 0.9941 + }, + { + "start": 11987.12, + "end": 11987.76, + "probability": 0.7867 + }, + { + "start": 11989.5, + "end": 11992.76, + "probability": 0.0147 + }, + { + "start": 11992.96, + "end": 11996.42, + "probability": 0.6801 + }, + { + "start": 11996.42, + "end": 11996.78, + "probability": 0.1522 + }, + { + "start": 11996.96, + "end": 11999.16, + "probability": 0.7785 + }, + { + "start": 11999.48, + "end": 12003.0, + "probability": 0.5591 + }, + { + "start": 12003.66, + "end": 12005.42, + "probability": 0.9913 + }, + { + "start": 12005.66, + "end": 12008.6, + "probability": 0.9871 + }, + { + "start": 12008.62, + "end": 12009.88, + "probability": 0.2902 + }, + { + "start": 12010.06, + "end": 12010.06, + "probability": 0.6249 + }, + { + "start": 12010.06, + "end": 12011.96, + "probability": 0.697 + }, + { + "start": 12012.24, + "end": 12015.04, + "probability": 0.8905 + }, + { + "start": 12015.62, + "end": 12016.38, + "probability": 0.7723 + }, + { + "start": 12016.52, + "end": 12017.38, + "probability": 0.5695 + }, + { + "start": 12017.46, + "end": 12018.58, + "probability": 0.9757 + }, + { + "start": 12018.64, + "end": 12020.22, + "probability": 0.8093 + }, + { + "start": 12020.58, + "end": 12022.4, + "probability": 0.7284 + }, + { + "start": 12022.4, + "end": 12023.72, + "probability": 0.3808 + }, + { + "start": 12026.2, + "end": 12027.16, + "probability": 0.7262 + }, + { + "start": 12027.54, + "end": 12032.4, + "probability": 0.6986 + }, + { + "start": 12032.4, + "end": 12038.16, + "probability": 0.7601 + }, + { + "start": 12038.42, + "end": 12040.4, + "probability": 0.6429 + }, + { + "start": 12040.52, + "end": 12040.52, + "probability": 0.5857 + }, + { + "start": 12040.62, + "end": 12043.39, + "probability": 0.8 + }, + { + "start": 12043.76, + "end": 12046.0, + "probability": 0.8336 + }, + { + "start": 12047.02, + "end": 12047.92, + "probability": 0.6329 + }, + { + "start": 12048.14, + "end": 12049.52, + "probability": 0.957 + }, + { + "start": 12049.8, + "end": 12052.09, + "probability": 0.9468 + }, + { + "start": 12052.2, + "end": 12053.48, + "probability": 0.5337 + }, + { + "start": 12053.54, + "end": 12054.18, + "probability": 0.1946 + }, + { + "start": 12054.28, + "end": 12055.17, + "probability": 0.5991 + }, + { + "start": 12055.26, + "end": 12060.22, + "probability": 0.7996 + }, + { + "start": 12060.26, + "end": 12063.2, + "probability": 0.8866 + }, + { + "start": 12063.72, + "end": 12065.26, + "probability": 0.4761 + }, + { + "start": 12065.26, + "end": 12066.6, + "probability": 0.518 + }, + { + "start": 12066.66, + "end": 12071.58, + "probability": 0.9921 + }, + { + "start": 12071.66, + "end": 12071.82, + "probability": 0.1986 + }, + { + "start": 12071.86, + "end": 12074.06, + "probability": 0.4603 + }, + { + "start": 12074.06, + "end": 12074.06, + "probability": 0.3091 + }, + { + "start": 12074.06, + "end": 12074.06, + "probability": 0.0777 + }, + { + "start": 12074.06, + "end": 12078.1, + "probability": 0.6576 + }, + { + "start": 12078.1, + "end": 12080.9, + "probability": 0.9766 + }, + { + "start": 12081.18, + "end": 12084.36, + "probability": 0.6714 + }, + { + "start": 12084.78, + "end": 12087.52, + "probability": 0.9497 + }, + { + "start": 12087.68, + "end": 12089.64, + "probability": 0.1653 + }, + { + "start": 12089.72, + "end": 12093.82, + "probability": 0.9985 + }, + { + "start": 12093.82, + "end": 12098.5, + "probability": 0.9985 + }, + { + "start": 12098.82, + "end": 12099.2, + "probability": 0.2596 + }, + { + "start": 12099.2, + "end": 12100.64, + "probability": 0.1767 + }, + { + "start": 12100.64, + "end": 12100.64, + "probability": 0.3103 + }, + { + "start": 12100.64, + "end": 12100.64, + "probability": 0.0919 + }, + { + "start": 12100.64, + "end": 12100.64, + "probability": 0.3434 + }, + { + "start": 12100.64, + "end": 12107.5, + "probability": 0.4872 + }, + { + "start": 12107.98, + "end": 12112.12, + "probability": 0.896 + }, + { + "start": 12112.78, + "end": 12115.28, + "probability": 0.7613 + }, + { + "start": 12115.86, + "end": 12116.84, + "probability": 0.8253 + }, + { + "start": 12117.16, + "end": 12119.83, + "probability": 0.9836 + }, + { + "start": 12120.01, + "end": 12122.93, + "probability": 0.9521 + }, + { + "start": 12123.27, + "end": 12123.27, + "probability": 0.0009 + }, + { + "start": 12123.27, + "end": 12128.57, + "probability": 0.711 + }, + { + "start": 12128.89, + "end": 12132.87, + "probability": 0.7649 + }, + { + "start": 12133.09, + "end": 12135.03, + "probability": 0.8289 + }, + { + "start": 12135.17, + "end": 12136.95, + "probability": 0.9159 + }, + { + "start": 12137.25, + "end": 12139.27, + "probability": 0.9683 + }, + { + "start": 12139.81, + "end": 12141.77, + "probability": 0.7656 + }, + { + "start": 12141.87, + "end": 12143.19, + "probability": 0.4114 + }, + { + "start": 12143.19, + "end": 12145.47, + "probability": 0.941 + }, + { + "start": 12145.71, + "end": 12148.67, + "probability": 0.8183 + }, + { + "start": 12148.95, + "end": 12150.47, + "probability": 0.9666 + }, + { + "start": 12150.65, + "end": 12154.69, + "probability": 0.989 + }, + { + "start": 12156.42, + "end": 12157.43, + "probability": 0.1876 + }, + { + "start": 12157.65, + "end": 12160.49, + "probability": 0.9629 + }, + { + "start": 12161.01, + "end": 12164.05, + "probability": 0.9984 + }, + { + "start": 12164.05, + "end": 12168.17, + "probability": 0.995 + }, + { + "start": 12168.43, + "end": 12168.49, + "probability": 0.8679 + }, + { + "start": 12169.53, + "end": 12169.67, + "probability": 0.0014 + }, + { + "start": 12169.67, + "end": 12170.29, + "probability": 0.0809 + }, + { + "start": 12170.87, + "end": 12170.87, + "probability": 0.212 + }, + { + "start": 12170.87, + "end": 12172.07, + "probability": 0.4786 + }, + { + "start": 12172.21, + "end": 12173.47, + "probability": 0.9349 + }, + { + "start": 12173.77, + "end": 12177.17, + "probability": 0.7954 + }, + { + "start": 12177.49, + "end": 12181.05, + "probability": 0.8744 + }, + { + "start": 12181.59, + "end": 12186.01, + "probability": 0.9683 + }, + { + "start": 12186.15, + "end": 12186.17, + "probability": 0.3538 + }, + { + "start": 12188.09, + "end": 12188.65, + "probability": 0.164 + }, + { + "start": 12188.65, + "end": 12189.49, + "probability": 0.3435 + }, + { + "start": 12189.51, + "end": 12190.01, + "probability": 0.0088 + }, + { + "start": 12190.01, + "end": 12190.01, + "probability": 0.0673 + }, + { + "start": 12190.01, + "end": 12190.15, + "probability": 0.3434 + }, + { + "start": 12190.15, + "end": 12190.17, + "probability": 0.3613 + }, + { + "start": 12190.17, + "end": 12191.27, + "probability": 0.3979 + }, + { + "start": 12192.27, + "end": 12193.77, + "probability": 0.6782 + }, + { + "start": 12193.85, + "end": 12194.33, + "probability": 0.8767 + }, + { + "start": 12195.32, + "end": 12197.27, + "probability": 0.0289 + }, + { + "start": 12197.27, + "end": 12199.83, + "probability": 0.0652 + }, + { + "start": 12199.9, + "end": 12203.11, + "probability": 0.0411 + }, + { + "start": 12213.73, + "end": 12219.29, + "probability": 0.1029 + }, + { + "start": 12219.29, + "end": 12221.01, + "probability": 0.0789 + }, + { + "start": 12221.73, + "end": 12223.91, + "probability": 0.199 + }, + { + "start": 12223.91, + "end": 12224.39, + "probability": 0.5501 + }, + { + "start": 12224.77, + "end": 12226.89, + "probability": 0.1134 + }, + { + "start": 12226.89, + "end": 12230.59, + "probability": 0.1286 + }, + { + "start": 12230.59, + "end": 12232.43, + "probability": 0.2097 + }, + { + "start": 12234.27, + "end": 12236.83, + "probability": 0.0283 + }, + { + "start": 12237.33, + "end": 12238.65, + "probability": 0.1833 + }, + { + "start": 12238.65, + "end": 12239.09, + "probability": 0.1688 + }, + { + "start": 12239.45, + "end": 12241.49, + "probability": 0.0258 + }, + { + "start": 12241.49, + "end": 12242.73, + "probability": 0.1081 + }, + { + "start": 12243.0, + "end": 12243.0, + "probability": 0.0 + }, + { + "start": 12243.0, + "end": 12243.0, + "probability": 0.0 + }, + { + "start": 12243.0, + "end": 12243.0, + "probability": 0.0 + }, + { + "start": 12243.0, + "end": 12243.0, + "probability": 0.0 + }, + { + "start": 12243.0, + "end": 12243.0, + "probability": 0.0 + }, + { + "start": 12243.0, + "end": 12243.0, + "probability": 0.0 + }, + { + "start": 12243.0, + "end": 12243.0, + "probability": 0.0 + }, + { + "start": 12243.0, + "end": 12243.0, + "probability": 0.0 + }, + { + "start": 12243.0, + "end": 12243.0, + "probability": 0.0 + }, + { + "start": 12243.0, + "end": 12243.0, + "probability": 0.0 + }, + { + "start": 12243.0, + "end": 12243.0, + "probability": 0.0 + }, + { + "start": 12243.0, + "end": 12243.0, + "probability": 0.0 + }, + { + "start": 12243.0, + "end": 12243.0, + "probability": 0.0 + }, + { + "start": 12243.0, + "end": 12243.0, + "probability": 0.0 + }, + { + "start": 12243.0, + "end": 12243.0, + "probability": 0.0 + }, + { + "start": 12243.0, + "end": 12243.0, + "probability": 0.0 + }, + { + "start": 12243.0, + "end": 12243.0, + "probability": 0.0 + }, + { + "start": 12243.0, + "end": 12243.0, + "probability": 0.0 + }, + { + "start": 12243.0, + "end": 12243.0, + "probability": 0.0 + }, + { + "start": 12243.0, + "end": 12243.0, + "probability": 0.0 + }, + { + "start": 12243.14, + "end": 12243.14, + "probability": 0.087 + }, + { + "start": 12243.14, + "end": 12243.72, + "probability": 0.558 + }, + { + "start": 12244.38, + "end": 12248.52, + "probability": 0.9949 + }, + { + "start": 12248.66, + "end": 12252.34, + "probability": 0.9033 + }, + { + "start": 12252.44, + "end": 12255.64, + "probability": 0.9971 + }, + { + "start": 12256.18, + "end": 12259.34, + "probability": 0.9989 + }, + { + "start": 12260.08, + "end": 12261.87, + "probability": 0.9827 + }, + { + "start": 12262.62, + "end": 12265.62, + "probability": 0.997 + }, + { + "start": 12266.32, + "end": 12271.14, + "probability": 0.9983 + }, + { + "start": 12280.78, + "end": 12284.72, + "probability": 0.0596 + }, + { + "start": 12285.92, + "end": 12286.72, + "probability": 0.0482 + }, + { + "start": 12286.72, + "end": 12288.5, + "probability": 0.231 + }, + { + "start": 12292.02, + "end": 12292.52, + "probability": 0.4843 + }, + { + "start": 12295.32, + "end": 12299.44, + "probability": 0.0234 + }, + { + "start": 12299.44, + "end": 12301.98, + "probability": 0.065 + }, + { + "start": 12302.0, + "end": 12305.22, + "probability": 0.0336 + }, + { + "start": 12376.0, + "end": 12376.0, + "probability": 0.0 + }, + { + "start": 12376.0, + "end": 12376.0, + "probability": 0.0 + }, + { + "start": 12376.0, + "end": 12376.0, + "probability": 0.0 + }, + { + "start": 12376.0, + "end": 12376.0, + "probability": 0.0 + }, + { + "start": 12376.0, + "end": 12376.0, + "probability": 0.0 + }, + { + "start": 12376.0, + "end": 12376.0, + "probability": 0.0 + }, + { + "start": 12376.0, + "end": 12376.0, + "probability": 0.0 + }, + { + "start": 12376.0, + "end": 12376.0, + "probability": 0.0 + }, + { + "start": 12376.0, + "end": 12376.0, + "probability": 0.0 + }, + { + "start": 12376.0, + "end": 12376.0, + "probability": 0.0 + }, + { + "start": 12376.0, + "end": 12376.0, + "probability": 0.0 + }, + { + "start": 12376.0, + "end": 12376.0, + "probability": 0.0 + }, + { + "start": 12376.0, + "end": 12376.0, + "probability": 0.0 + }, + { + "start": 12376.0, + "end": 12376.0, + "probability": 0.0 + }, + { + "start": 12376.0, + "end": 12376.0, + "probability": 0.0 + }, + { + "start": 12376.0, + "end": 12376.0, + "probability": 0.0 + }, + { + "start": 12376.0, + "end": 12376.0, + "probability": 0.0 + }, + { + "start": 12376.0, + "end": 12376.0, + "probability": 0.0 + }, + { + "start": 12376.0, + "end": 12376.0, + "probability": 0.0 + }, + { + "start": 12376.0, + "end": 12376.0, + "probability": 0.0 + }, + { + "start": 12376.0, + "end": 12376.0, + "probability": 0.0 + }, + { + "start": 12376.0, + "end": 12376.0, + "probability": 0.0 + }, + { + "start": 12376.0, + "end": 12376.0, + "probability": 0.0 + }, + { + "start": 12376.0, + "end": 12376.0, + "probability": 0.0 + }, + { + "start": 12376.0, + "end": 12376.0, + "probability": 0.0 + }, + { + "start": 12376.0, + "end": 12376.0, + "probability": 0.0 + }, + { + "start": 12376.0, + "end": 12376.0, + "probability": 0.0 + }, + { + "start": 12376.0, + "end": 12376.0, + "probability": 0.0 + }, + { + "start": 12376.0, + "end": 12376.0, + "probability": 0.0 + }, + { + "start": 12376.0, + "end": 12376.0, + "probability": 0.0 + }, + { + "start": 12376.0, + "end": 12376.0, + "probability": 0.0 + }, + { + "start": 12376.0, + "end": 12376.0, + "probability": 0.0 + }, + { + "start": 12376.0, + "end": 12376.0, + "probability": 0.0 + }, + { + "start": 12376.0, + "end": 12376.0, + "probability": 0.0 + }, + { + "start": 12376.0, + "end": 12376.0, + "probability": 0.0 + }, + { + "start": 12376.0, + "end": 12376.0, + "probability": 0.0 + }, + { + "start": 12376.0, + "end": 12376.0, + "probability": 0.0 + }, + { + "start": 12376.0, + "end": 12376.0, + "probability": 0.0 + }, + { + "start": 12376.0, + "end": 12376.0, + "probability": 0.0 + }, + { + "start": 12376.0, + "end": 12376.0, + "probability": 0.0 + }, + { + "start": 12376.0, + "end": 12376.0, + "probability": 0.0 + }, + { + "start": 12376.0, + "end": 12376.0, + "probability": 0.0 + }, + { + "start": 12376.0, + "end": 12376.0, + "probability": 0.0 + }, + { + "start": 12376.0, + "end": 12376.0, + "probability": 0.0 + }, + { + "start": 12376.0, + "end": 12376.0, + "probability": 0.0 + }, + { + "start": 12376.0, + "end": 12376.0, + "probability": 0.0 + }, + { + "start": 12376.0, + "end": 12376.0, + "probability": 0.0 + }, + { + "start": 12376.0, + "end": 12376.0, + "probability": 0.0 + }, + { + "start": 12376.0, + "end": 12376.0, + "probability": 0.0 + }, + { + "start": 12376.0, + "end": 12376.0, + "probability": 0.0 + }, + { + "start": 12376.0, + "end": 12376.0, + "probability": 0.0 + }, + { + "start": 12376.0, + "end": 12376.0, + "probability": 0.0 + }, + { + "start": 12376.0, + "end": 12376.0, + "probability": 0.0 + }, + { + "start": 12376.0, + "end": 12376.0, + "probability": 0.0 + }, + { + "start": 12376.0, + "end": 12376.0, + "probability": 0.0 + }, + { + "start": 12376.0, + "end": 12376.0, + "probability": 0.0 + }, + { + "start": 12376.0, + "end": 12376.0, + "probability": 0.0 + }, + { + "start": 12376.0, + "end": 12376.0, + "probability": 0.0 + }, + { + "start": 12376.0, + "end": 12376.0, + "probability": 0.0 + }, + { + "start": 12376.0, + "end": 12376.0, + "probability": 0.0 + }, + { + "start": 12376.0, + "end": 12376.0, + "probability": 0.0 + }, + { + "start": 12376.08, + "end": 12376.7, + "probability": 0.1547 + }, + { + "start": 12377.2, + "end": 12381.92, + "probability": 0.9863 + }, + { + "start": 12382.14, + "end": 12384.08, + "probability": 0.9578 + }, + { + "start": 12384.38, + "end": 12385.46, + "probability": 0.7934 + }, + { + "start": 12385.66, + "end": 12386.48, + "probability": 0.6501 + }, + { + "start": 12386.58, + "end": 12387.86, + "probability": 0.8796 + }, + { + "start": 12389.06, + "end": 12389.92, + "probability": 0.6421 + }, + { + "start": 12391.02, + "end": 12392.44, + "probability": 0.3776 + }, + { + "start": 12392.58, + "end": 12395.18, + "probability": 0.0667 + }, + { + "start": 12395.18, + "end": 12395.18, + "probability": 0.2493 + }, + { + "start": 12395.18, + "end": 12395.4, + "probability": 0.3216 + }, + { + "start": 12395.64, + "end": 12395.82, + "probability": 0.309 + }, + { + "start": 12395.82, + "end": 12397.38, + "probability": 0.1037 + }, + { + "start": 12399.0, + "end": 12399.12, + "probability": 0.0323 + }, + { + "start": 12399.12, + "end": 12399.72, + "probability": 0.0155 + }, + { + "start": 12400.76, + "end": 12401.24, + "probability": 0.0258 + }, + { + "start": 12401.88, + "end": 12402.52, + "probability": 0.4242 + }, + { + "start": 12402.52, + "end": 12403.0, + "probability": 0.305 + }, + { + "start": 12403.16, + "end": 12404.1, + "probability": 0.0427 + }, + { + "start": 12404.96, + "end": 12410.32, + "probability": 0.4738 + }, + { + "start": 12411.78, + "end": 12417.16, + "probability": 0.0371 + }, + { + "start": 12417.69, + "end": 12419.46, + "probability": 0.1756 + }, + { + "start": 12419.46, + "end": 12420.54, + "probability": 0.2827 + }, + { + "start": 12422.24, + "end": 12423.24, + "probability": 0.0334 + }, + { + "start": 12424.4, + "end": 12424.98, + "probability": 0.2028 + }, + { + "start": 12424.98, + "end": 12424.98, + "probability": 0.345 + }, + { + "start": 12424.98, + "end": 12426.28, + "probability": 0.0325 + }, + { + "start": 12497.0, + "end": 12497.0, + "probability": 0.0 + }, + { + "start": 12497.0, + "end": 12497.0, + "probability": 0.0 + }, + { + "start": 12497.0, + "end": 12497.0, + "probability": 0.0 + }, + { + "start": 12497.0, + "end": 12497.0, + "probability": 0.0 + }, + { + "start": 12497.0, + "end": 12497.0, + "probability": 0.0 + }, + { + "start": 12497.0, + "end": 12497.0, + "probability": 0.0 + }, + { + "start": 12497.0, + "end": 12497.0, + "probability": 0.0 + }, + { + "start": 12497.0, + "end": 12497.0, + "probability": 0.0 + }, + { + "start": 12497.0, + "end": 12497.0, + "probability": 0.0 + }, + { + "start": 12497.0, + "end": 12497.0, + "probability": 0.0 + }, + { + "start": 12497.0, + "end": 12497.0, + "probability": 0.0 + }, + { + "start": 12497.0, + "end": 12497.0, + "probability": 0.0 + }, + { + "start": 12497.0, + "end": 12497.0, + "probability": 0.0 + }, + { + "start": 12497.0, + "end": 12497.0, + "probability": 0.0 + }, + { + "start": 12497.0, + "end": 12497.0, + "probability": 0.0 + }, + { + "start": 12497.0, + "end": 12497.0, + "probability": 0.0 + }, + { + "start": 12497.0, + "end": 12497.0, + "probability": 0.0 + }, + { + "start": 12497.0, + "end": 12497.0, + "probability": 0.0 + }, + { + "start": 12497.0, + "end": 12497.0, + "probability": 0.0 + }, + { + "start": 12497.0, + "end": 12497.0, + "probability": 0.0 + }, + { + "start": 12497.0, + "end": 12497.0, + "probability": 0.0 + }, + { + "start": 12497.0, + "end": 12497.0, + "probability": 0.0 + }, + { + "start": 12497.0, + "end": 12497.0, + "probability": 0.0 + }, + { + "start": 12497.0, + "end": 12497.0, + "probability": 0.0 + }, + { + "start": 12497.0, + "end": 12497.0, + "probability": 0.0 + }, + { + "start": 12497.0, + "end": 12497.0, + "probability": 0.0 + }, + { + "start": 12497.0, + "end": 12497.0, + "probability": 0.0 + }, + { + "start": 12497.0, + "end": 12497.0, + "probability": 0.0 + }, + { + "start": 12497.0, + "end": 12497.0, + "probability": 0.0 + }, + { + "start": 12497.0, + "end": 12497.0, + "probability": 0.0 + }, + { + "start": 12497.0, + "end": 12497.0, + "probability": 0.0 + }, + { + "start": 12497.0, + "end": 12497.0, + "probability": 0.0 + }, + { + "start": 12497.0, + "end": 12497.0, + "probability": 0.0 + }, + { + "start": 12497.0, + "end": 12497.0, + "probability": 0.0 + }, + { + "start": 12497.2, + "end": 12497.9, + "probability": 0.0782 + }, + { + "start": 12498.52, + "end": 12506.5, + "probability": 0.7202 + }, + { + "start": 12506.62, + "end": 12508.22, + "probability": 0.6993 + }, + { + "start": 12508.6, + "end": 12511.76, + "probability": 0.9958 + }, + { + "start": 12511.84, + "end": 12514.34, + "probability": 0.9954 + }, + { + "start": 12516.04, + "end": 12520.2, + "probability": 0.9992 + }, + { + "start": 12520.2, + "end": 12523.96, + "probability": 0.7211 + }, + { + "start": 12523.96, + "end": 12524.72, + "probability": 0.4146 + }, + { + "start": 12525.1, + "end": 12526.18, + "probability": 0.5339 + }, + { + "start": 12529.3, + "end": 12531.54, + "probability": 0.5379 + }, + { + "start": 12531.7, + "end": 12531.7, + "probability": 0.0827 + }, + { + "start": 12531.7, + "end": 12535.38, + "probability": 0.1666 + }, + { + "start": 12535.64, + "end": 12538.72, + "probability": 0.9953 + }, + { + "start": 12539.06, + "end": 12545.18, + "probability": 0.9841 + }, + { + "start": 12546.12, + "end": 12547.05, + "probability": 0.9773 + }, + { + "start": 12547.6, + "end": 12549.3, + "probability": 0.8471 + }, + { + "start": 12549.76, + "end": 12553.7, + "probability": 0.9974 + }, + { + "start": 12554.12, + "end": 12557.98, + "probability": 0.9767 + }, + { + "start": 12558.08, + "end": 12559.0, + "probability": 0.8255 + }, + { + "start": 12559.16, + "end": 12563.64, + "probability": 0.9929 + }, + { + "start": 12564.28, + "end": 12565.98, + "probability": 0.812 + }, + { + "start": 12566.12, + "end": 12567.56, + "probability": 0.9924 + }, + { + "start": 12567.86, + "end": 12569.66, + "probability": 0.9515 + }, + { + "start": 12569.66, + "end": 12570.22, + "probability": 0.6862 + }, + { + "start": 12570.26, + "end": 12576.26, + "probability": 0.906 + }, + { + "start": 12577.28, + "end": 12578.96, + "probability": 0.3417 + }, + { + "start": 12579.5, + "end": 12583.62, + "probability": 0.7539 + }, + { + "start": 12584.28, + "end": 12586.38, + "probability": 0.9677 + }, + { + "start": 12587.12, + "end": 12593.14, + "probability": 0.9788 + }, + { + "start": 12593.32, + "end": 12597.22, + "probability": 0.9572 + }, + { + "start": 12597.48, + "end": 12600.0, + "probability": 0.9862 + }, + { + "start": 12600.5, + "end": 12603.0, + "probability": 0.9904 + }, + { + "start": 12603.5, + "end": 12607.18, + "probability": 0.9958 + }, + { + "start": 12607.44, + "end": 12610.9, + "probability": 0.9971 + }, + { + "start": 12611.3, + "end": 12615.14, + "probability": 0.9988 + }, + { + "start": 12615.14, + "end": 12619.58, + "probability": 0.9795 + }, + { + "start": 12619.58, + "end": 12621.44, + "probability": 0.7277 + }, + { + "start": 12621.98, + "end": 12624.22, + "probability": 0.852 + }, + { + "start": 12624.32, + "end": 12630.02, + "probability": 0.878 + }, + { + "start": 12630.74, + "end": 12637.52, + "probability": 0.9972 + }, + { + "start": 12637.52, + "end": 12640.98, + "probability": 0.7652 + }, + { + "start": 12641.3, + "end": 12647.24, + "probability": 0.9859 + }, + { + "start": 12647.88, + "end": 12650.34, + "probability": 0.966 + }, + { + "start": 12650.98, + "end": 12652.05, + "probability": 0.1143 + }, + { + "start": 12652.96, + "end": 12653.98, + "probability": 0.2351 + }, + { + "start": 12654.2, + "end": 12655.48, + "probability": 0.8584 + }, + { + "start": 12655.9, + "end": 12660.96, + "probability": 0.9967 + }, + { + "start": 12661.08, + "end": 12662.84, + "probability": 0.7142 + }, + { + "start": 12663.36, + "end": 12665.04, + "probability": 0.5383 + }, + { + "start": 12665.72, + "end": 12668.22, + "probability": 0.4655 + }, + { + "start": 12668.68, + "end": 12668.82, + "probability": 0.3898 + }, + { + "start": 12668.82, + "end": 12671.66, + "probability": 0.528 + }, + { + "start": 12671.66, + "end": 12671.82, + "probability": 0.0183 + }, + { + "start": 12671.82, + "end": 12676.0, + "probability": 0.8678 + }, + { + "start": 12676.68, + "end": 12679.1, + "probability": 0.9803 + }, + { + "start": 12679.46, + "end": 12682.9, + "probability": 0.7451 + }, + { + "start": 12682.9, + "end": 12682.9, + "probability": 0.0793 + }, + { + "start": 12682.9, + "end": 12689.46, + "probability": 0.9481 + }, + { + "start": 12689.54, + "end": 12695.2, + "probability": 0.9498 + }, + { + "start": 12695.82, + "end": 12700.94, + "probability": 0.9873 + }, + { + "start": 12701.38, + "end": 12703.3, + "probability": 0.7931 + }, + { + "start": 12703.56, + "end": 12705.4, + "probability": 0.9843 + }, + { + "start": 12705.8, + "end": 12710.24, + "probability": 0.9946 + }, + { + "start": 12711.58, + "end": 12712.12, + "probability": 0.6696 + }, + { + "start": 12712.54, + "end": 12716.84, + "probability": 0.9932 + }, + { + "start": 12717.12, + "end": 12718.2, + "probability": 0.8992 + }, + { + "start": 12718.42, + "end": 12719.68, + "probability": 0.988 + }, + { + "start": 12719.96, + "end": 12722.98, + "probability": 0.8601 + }, + { + "start": 12723.36, + "end": 12725.04, + "probability": 0.9741 + }, + { + "start": 12725.14, + "end": 12726.1, + "probability": 0.9219 + }, + { + "start": 12726.22, + "end": 12727.36, + "probability": 0.9843 + }, + { + "start": 12727.62, + "end": 12728.44, + "probability": 0.8729 + }, + { + "start": 12729.38, + "end": 12732.5, + "probability": 0.9481 + }, + { + "start": 12732.78, + "end": 12734.7, + "probability": 0.3802 + }, + { + "start": 12734.96, + "end": 12736.72, + "probability": 0.9876 + }, + { + "start": 12736.74, + "end": 12736.86, + "probability": 0.0016 + }, + { + "start": 12739.1, + "end": 12739.76, + "probability": 0.0502 + }, + { + "start": 12739.76, + "end": 12740.8, + "probability": 0.0897 + }, + { + "start": 12741.28, + "end": 12747.5, + "probability": 0.9755 + }, + { + "start": 12747.8, + "end": 12751.52, + "probability": 0.9396 + }, + { + "start": 12751.82, + "end": 12753.82, + "probability": 0.9914 + }, + { + "start": 12754.06, + "end": 12761.04, + "probability": 0.8282 + }, + { + "start": 12761.7, + "end": 12761.72, + "probability": 0.2983 + }, + { + "start": 12761.72, + "end": 12765.64, + "probability": 0.7347 + }, + { + "start": 12766.12, + "end": 12769.9, + "probability": 0.9729 + }, + { + "start": 12769.9, + "end": 12770.8, + "probability": 0.6462 + }, + { + "start": 12770.86, + "end": 12772.34, + "probability": 0.9595 + }, + { + "start": 12772.82, + "end": 12778.48, + "probability": 0.9985 + }, + { + "start": 12778.48, + "end": 12782.73, + "probability": 0.9995 + }, + { + "start": 12792.2, + "end": 12793.44, + "probability": 0.5076 + }, + { + "start": 12793.6, + "end": 12794.98, + "probability": 0.8671 + }, + { + "start": 12795.08, + "end": 12799.66, + "probability": 0.9622 + }, + { + "start": 12800.1, + "end": 12803.44, + "probability": 0.9948 + }, + { + "start": 12803.96, + "end": 12806.3, + "probability": 0.9799 + }, + { + "start": 12806.48, + "end": 12811.9, + "probability": 0.6922 + }, + { + "start": 12812.14, + "end": 12813.4, + "probability": 0.3526 + }, + { + "start": 12813.76, + "end": 12817.3, + "probability": 0.8271 + }, + { + "start": 12817.68, + "end": 12824.32, + "probability": 0.9966 + }, + { + "start": 12824.78, + "end": 12827.24, + "probability": 0.4418 + }, + { + "start": 12828.32, + "end": 12828.32, + "probability": 0.4019 + }, + { + "start": 12828.32, + "end": 12828.9, + "probability": 0.4745 + }, + { + "start": 12829.48, + "end": 12830.3, + "probability": 0.3868 + }, + { + "start": 12831.6, + "end": 12840.62, + "probability": 0.5326 + }, + { + "start": 12840.64, + "end": 12841.78, + "probability": 0.5643 + }, + { + "start": 12843.63, + "end": 12843.7, + "probability": 0.4689 + }, + { + "start": 12844.14, + "end": 12846.92, + "probability": 0.774 + }, + { + "start": 12847.18, + "end": 12848.62, + "probability": 0.7969 + }, + { + "start": 12848.82, + "end": 12854.16, + "probability": 0.9493 + }, + { + "start": 12854.48, + "end": 12855.72, + "probability": 0.6178 + }, + { + "start": 12856.4, + "end": 12859.66, + "probability": 0.9741 + }, + { + "start": 12859.66, + "end": 12863.06, + "probability": 0.9774 + }, + { + "start": 12864.71, + "end": 12868.64, + "probability": 0.7612 + }, + { + "start": 12868.76, + "end": 12869.98, + "probability": 0.641 + }, + { + "start": 12870.06, + "end": 12870.94, + "probability": 0.6935 + }, + { + "start": 12871.0, + "end": 12873.52, + "probability": 0.9485 + }, + { + "start": 12873.52, + "end": 12877.12, + "probability": 0.786 + }, + { + "start": 12877.12, + "end": 12880.72, + "probability": 0.4634 + }, + { + "start": 12880.84, + "end": 12881.8, + "probability": 0.3314 + }, + { + "start": 12883.12, + "end": 12887.88, + "probability": 0.5686 + }, + { + "start": 12888.02, + "end": 12890.92, + "probability": 0.7214 + }, + { + "start": 12901.6, + "end": 12905.59, + "probability": 0.8833 + }, + { + "start": 12906.32, + "end": 12909.16, + "probability": 0.4145 + }, + { + "start": 12923.38, + "end": 12923.52, + "probability": 0.581 + }, + { + "start": 12928.3, + "end": 12929.7, + "probability": 0.4403 + }, + { + "start": 12931.24, + "end": 12936.18, + "probability": 0.9634 + }, + { + "start": 12939.0, + "end": 12940.68, + "probability": 0.7173 + }, + { + "start": 12941.32, + "end": 12942.86, + "probability": 0.8956 + }, + { + "start": 12943.66, + "end": 12946.07, + "probability": 0.9801 + }, + { + "start": 12947.02, + "end": 12951.74, + "probability": 0.985 + }, + { + "start": 12951.74, + "end": 12958.18, + "probability": 0.9973 + }, + { + "start": 12958.8, + "end": 12961.22, + "probability": 0.971 + }, + { + "start": 12961.28, + "end": 12966.78, + "probability": 0.9627 + }, + { + "start": 12966.88, + "end": 12968.74, + "probability": 0.9347 + }, + { + "start": 12969.72, + "end": 12972.13, + "probability": 0.9784 + }, + { + "start": 12973.18, + "end": 12978.06, + "probability": 0.9772 + }, + { + "start": 12978.72, + "end": 12982.76, + "probability": 0.7581 + }, + { + "start": 12983.6, + "end": 12986.1, + "probability": 0.8291 + }, + { + "start": 12986.62, + "end": 12988.01, + "probability": 0.9901 + }, + { + "start": 12988.64, + "end": 12989.86, + "probability": 0.976 + }, + { + "start": 12989.9, + "end": 12990.92, + "probability": 0.9667 + }, + { + "start": 12990.98, + "end": 12997.1, + "probability": 0.9937 + }, + { + "start": 12997.84, + "end": 12998.5, + "probability": 0.4465 + }, + { + "start": 12998.72, + "end": 13001.06, + "probability": 0.734 + }, + { + "start": 13001.54, + "end": 13007.06, + "probability": 0.9903 + }, + { + "start": 13008.04, + "end": 13012.42, + "probability": 0.9991 + }, + { + "start": 13012.42, + "end": 13016.48, + "probability": 0.9896 + }, + { + "start": 13017.2, + "end": 13022.62, + "probability": 0.9926 + }, + { + "start": 13023.34, + "end": 13030.08, + "probability": 0.9951 + }, + { + "start": 13030.48, + "end": 13031.48, + "probability": 0.9542 + }, + { + "start": 13031.72, + "end": 13033.18, + "probability": 0.9896 + }, + { + "start": 13033.36, + "end": 13035.07, + "probability": 0.9951 + }, + { + "start": 13035.58, + "end": 13038.8, + "probability": 0.9951 + }, + { + "start": 13039.34, + "end": 13041.62, + "probability": 0.8001 + }, + { + "start": 13042.4, + "end": 13044.58, + "probability": 0.9885 + }, + { + "start": 13044.58, + "end": 13048.54, + "probability": 0.9958 + }, + { + "start": 13049.16, + "end": 13053.1, + "probability": 0.9966 + }, + { + "start": 13053.1, + "end": 13056.7, + "probability": 0.9864 + }, + { + "start": 13057.04, + "end": 13061.68, + "probability": 0.9998 + }, + { + "start": 13061.74, + "end": 13062.64, + "probability": 0.8265 + }, + { + "start": 13063.56, + "end": 13065.02, + "probability": 0.6569 + }, + { + "start": 13065.98, + "end": 13069.62, + "probability": 0.998 + }, + { + "start": 13069.62, + "end": 13070.98, + "probability": 0.4513 + }, + { + "start": 13073.42, + "end": 13073.42, + "probability": 0.0017 + }, + { + "start": 13073.42, + "end": 13075.52, + "probability": 0.4985 + }, + { + "start": 13076.46, + "end": 13081.7, + "probability": 0.9922 + }, + { + "start": 13081.86, + "end": 13082.39, + "probability": 0.629 + }, + { + "start": 13083.36, + "end": 13085.56, + "probability": 0.9426 + }, + { + "start": 13086.32, + "end": 13088.94, + "probability": 0.876 + }, + { + "start": 13089.88, + "end": 13092.04, + "probability": 0.931 + }, + { + "start": 13092.38, + "end": 13093.8, + "probability": 0.9879 + }, + { + "start": 13093.96, + "end": 13094.9, + "probability": 0.9808 + }, + { + "start": 13095.3, + "end": 13098.9, + "probability": 0.9695 + }, + { + "start": 13099.22, + "end": 13100.8, + "probability": 0.9517 + }, + { + "start": 13101.18, + "end": 13102.52, + "probability": 0.9863 + }, + { + "start": 13102.9, + "end": 13104.16, + "probability": 0.9784 + }, + { + "start": 13105.1, + "end": 13106.42, + "probability": 0.9936 + }, + { + "start": 13106.54, + "end": 13107.88, + "probability": 0.9854 + }, + { + "start": 13108.28, + "end": 13109.88, + "probability": 0.9836 + }, + { + "start": 13110.24, + "end": 13111.56, + "probability": 0.9645 + }, + { + "start": 13112.32, + "end": 13115.22, + "probability": 0.9438 + }, + { + "start": 13115.78, + "end": 13116.88, + "probability": 0.957 + }, + { + "start": 13116.96, + "end": 13121.1, + "probability": 0.9993 + }, + { + "start": 13121.1, + "end": 13121.98, + "probability": 0.8728 + }, + { + "start": 13122.72, + "end": 13129.74, + "probability": 0.9847 + }, + { + "start": 13130.5, + "end": 13132.98, + "probability": 0.9948 + }, + { + "start": 13134.0, + "end": 13137.1, + "probability": 0.7816 + }, + { + "start": 13137.3, + "end": 13137.76, + "probability": 0.6807 + }, + { + "start": 13138.12, + "end": 13139.3, + "probability": 0.838 + }, + { + "start": 13139.82, + "end": 13142.42, + "probability": 0.9517 + }, + { + "start": 13142.94, + "end": 13144.94, + "probability": 0.9992 + }, + { + "start": 13145.44, + "end": 13146.18, + "probability": 0.952 + }, + { + "start": 13146.28, + "end": 13147.76, + "probability": 0.9345 + }, + { + "start": 13148.3, + "end": 13150.06, + "probability": 0.6463 + }, + { + "start": 13150.24, + "end": 13153.36, + "probability": 0.9957 + }, + { + "start": 13153.36, + "end": 13154.38, + "probability": 0.8168 + }, + { + "start": 13154.76, + "end": 13157.66, + "probability": 0.9889 + }, + { + "start": 13158.38, + "end": 13162.48, + "probability": 0.9924 + }, + { + "start": 13162.72, + "end": 13164.66, + "probability": 0.8682 + }, + { + "start": 13164.86, + "end": 13168.0, + "probability": 0.9143 + }, + { + "start": 13168.26, + "end": 13170.08, + "probability": 0.9924 + }, + { + "start": 13170.56, + "end": 13173.72, + "probability": 0.9355 + }, + { + "start": 13173.72, + "end": 13177.0, + "probability": 0.9917 + }, + { + "start": 13177.18, + "end": 13180.38, + "probability": 0.9699 + }, + { + "start": 13180.62, + "end": 13182.36, + "probability": 0.6675 + }, + { + "start": 13182.38, + "end": 13186.96, + "probability": 0.9954 + }, + { + "start": 13186.96, + "end": 13188.7, + "probability": 0.8457 + }, + { + "start": 13188.76, + "end": 13194.4, + "probability": 0.9976 + }, + { + "start": 13194.4, + "end": 13199.38, + "probability": 0.985 + }, + { + "start": 13200.12, + "end": 13205.9, + "probability": 0.9717 + }, + { + "start": 13206.28, + "end": 13207.04, + "probability": 0.8901 + }, + { + "start": 13207.58, + "end": 13210.38, + "probability": 0.994 + }, + { + "start": 13210.76, + "end": 13213.53, + "probability": 0.999 + }, + { + "start": 13213.8, + "end": 13216.84, + "probability": 0.9857 + }, + { + "start": 13216.9, + "end": 13218.48, + "probability": 0.9594 + }, + { + "start": 13219.02, + "end": 13222.16, + "probability": 0.9622 + }, + { + "start": 13222.16, + "end": 13225.94, + "probability": 0.998 + }, + { + "start": 13226.62, + "end": 13228.88, + "probability": 0.9927 + }, + { + "start": 13229.44, + "end": 13234.96, + "probability": 0.9954 + }, + { + "start": 13235.36, + "end": 13237.09, + "probability": 0.9967 + }, + { + "start": 13239.6, + "end": 13240.56, + "probability": 0.7676 + }, + { + "start": 13240.94, + "end": 13242.72, + "probability": 0.9753 + }, + { + "start": 13243.92, + "end": 13247.98, + "probability": 0.986 + }, + { + "start": 13248.5, + "end": 13248.5, + "probability": 0.7301 + }, + { + "start": 13248.5, + "end": 13250.48, + "probability": 0.8054 + }, + { + "start": 13250.48, + "end": 13251.25, + "probability": 0.8638 + }, + { + "start": 13251.48, + "end": 13252.84, + "probability": 0.9115 + }, + { + "start": 13252.9, + "end": 13253.26, + "probability": 0.954 + }, + { + "start": 13253.6, + "end": 13254.36, + "probability": 0.9941 + }, + { + "start": 13254.56, + "end": 13254.98, + "probability": 0.6011 + }, + { + "start": 13255.06, + "end": 13256.52, + "probability": 0.913 + }, + { + "start": 13257.42, + "end": 13258.34, + "probability": 0.3404 + }, + { + "start": 13258.5, + "end": 13258.87, + "probability": 0.6747 + }, + { + "start": 13259.5, + "end": 13259.5, + "probability": 0.3564 + }, + { + "start": 13259.5, + "end": 13260.02, + "probability": 0.8296 + }, + { + "start": 13260.34, + "end": 13260.66, + "probability": 0.2201 + }, + { + "start": 13260.66, + "end": 13264.26, + "probability": 0.991 + }, + { + "start": 13264.82, + "end": 13266.18, + "probability": 0.5135 + }, + { + "start": 13266.34, + "end": 13267.68, + "probability": 0.9733 + }, + { + "start": 13268.24, + "end": 13269.89, + "probability": 0.9995 + }, + { + "start": 13270.08, + "end": 13270.89, + "probability": 0.9984 + }, + { + "start": 13271.66, + "end": 13272.52, + "probability": 0.8054 + }, + { + "start": 13272.9, + "end": 13273.02, + "probability": 0.9175 + }, + { + "start": 13273.88, + "end": 13274.3, + "probability": 0.8679 + }, + { + "start": 13274.44, + "end": 13275.0, + "probability": 0.8261 + }, + { + "start": 13275.62, + "end": 13276.42, + "probability": 0.7898 + }, + { + "start": 13276.5, + "end": 13278.34, + "probability": 0.9869 + }, + { + "start": 13278.34, + "end": 13284.92, + "probability": 0.948 + }, + { + "start": 13285.52, + "end": 13289.28, + "probability": 0.9911 + }, + { + "start": 13290.56, + "end": 13292.46, + "probability": 0.9323 + }, + { + "start": 13292.66, + "end": 13294.98, + "probability": 0.8974 + }, + { + "start": 13312.2, + "end": 13315.18, + "probability": 0.98 + }, + { + "start": 13315.22, + "end": 13316.51, + "probability": 0.9912 + }, + { + "start": 13317.04, + "end": 13318.1, + "probability": 0.3502 + }, + { + "start": 13318.1, + "end": 13318.76, + "probability": 0.7691 + }, + { + "start": 13319.1, + "end": 13322.06, + "probability": 0.7943 + }, + { + "start": 13324.1, + "end": 13324.68, + "probability": 0.6488 + }, + { + "start": 13324.88, + "end": 13325.58, + "probability": 0.6322 + }, + { + "start": 13325.78, + "end": 13328.64, + "probability": 0.8752 + }, + { + "start": 13328.68, + "end": 13330.68, + "probability": 0.8492 + }, + { + "start": 13330.74, + "end": 13333.8, + "probability": 0.8029 + }, + { + "start": 13333.9, + "end": 13335.22, + "probability": 0.3983 + }, + { + "start": 13335.3, + "end": 13338.5, + "probability": 0.9722 + }, + { + "start": 13338.82, + "end": 13340.78, + "probability": 0.9533 + }, + { + "start": 13341.54, + "end": 13341.68, + "probability": 0.184 + }, + { + "start": 13341.68, + "end": 13342.55, + "probability": 0.7051 + }, + { + "start": 13343.12, + "end": 13345.78, + "probability": 0.7281 + }, + { + "start": 13346.28, + "end": 13347.82, + "probability": 0.9932 + }, + { + "start": 13347.84, + "end": 13349.38, + "probability": 0.7474 + }, + { + "start": 13349.38, + "end": 13350.88, + "probability": 0.7631 + }, + { + "start": 13351.62, + "end": 13354.16, + "probability": 0.8653 + }, + { + "start": 13354.38, + "end": 13356.52, + "probability": 0.9502 + }, + { + "start": 13356.52, + "end": 13358.42, + "probability": 0.9952 + }, + { + "start": 13358.42, + "end": 13362.08, + "probability": 0.927 + }, + { + "start": 13362.08, + "end": 13365.79, + "probability": 0.9898 + }, + { + "start": 13366.02, + "end": 13367.14, + "probability": 0.7137 + }, + { + "start": 13367.88, + "end": 13369.65, + "probability": 0.8911 + }, + { + "start": 13370.42, + "end": 13370.42, + "probability": 0.1838 + }, + { + "start": 13370.46, + "end": 13372.98, + "probability": 0.9971 + }, + { + "start": 13372.98, + "end": 13376.16, + "probability": 0.9971 + }, + { + "start": 13376.2, + "end": 13378.0, + "probability": 0.685 + }, + { + "start": 13378.54, + "end": 13380.24, + "probability": 0.9324 + }, + { + "start": 13380.24, + "end": 13382.48, + "probability": 0.8964 + }, + { + "start": 13382.72, + "end": 13382.96, + "probability": 0.7322 + }, + { + "start": 13382.98, + "end": 13384.4, + "probability": 0.9589 + }, + { + "start": 13384.5, + "end": 13387.5, + "probability": 0.7786 + }, + { + "start": 13387.8, + "end": 13390.06, + "probability": 0.8226 + }, + { + "start": 13390.06, + "end": 13393.0, + "probability": 0.886 + }, + { + "start": 13393.26, + "end": 13395.94, + "probability": 0.9775 + }, + { + "start": 13396.28, + "end": 13399.56, + "probability": 0.9946 + }, + { + "start": 13399.68, + "end": 13400.06, + "probability": 0.6961 + }, + { + "start": 13400.22, + "end": 13403.56, + "probability": 0.9812 + }, + { + "start": 13403.56, + "end": 13407.98, + "probability": 0.9931 + }, + { + "start": 13408.04, + "end": 13408.68, + "probability": 0.7893 + }, + { + "start": 13408.84, + "end": 13410.64, + "probability": 0.4999 + }, + { + "start": 13410.7, + "end": 13413.58, + "probability": 0.8392 + }, + { + "start": 13413.66, + "end": 13415.34, + "probability": 0.9844 + }, + { + "start": 13415.52, + "end": 13416.1, + "probability": 0.7415 + }, + { + "start": 13416.1, + "end": 13416.45, + "probability": 0.9689 + }, + { + "start": 13417.52, + "end": 13417.9, + "probability": 0.0525 + }, + { + "start": 13418.84, + "end": 13420.38, + "probability": 0.8264 + }, + { + "start": 13421.88, + "end": 13423.12, + "probability": 0.4426 + }, + { + "start": 13423.12, + "end": 13423.12, + "probability": 0.1288 + }, + { + "start": 13423.12, + "end": 13423.79, + "probability": 0.6412 + }, + { + "start": 13426.18, + "end": 13429.52, + "probability": 0.9054 + }, + { + "start": 13430.42, + "end": 13430.96, + "probability": 0.5646 + }, + { + "start": 13431.04, + "end": 13431.68, + "probability": 0.8181 + }, + { + "start": 13431.78, + "end": 13432.74, + "probability": 0.5905 + }, + { + "start": 13432.8, + "end": 13434.34, + "probability": 0.7909 + }, + { + "start": 13434.74, + "end": 13435.3, + "probability": 0.4609 + }, + { + "start": 13435.76, + "end": 13436.2, + "probability": 0.9058 + }, + { + "start": 13436.8, + "end": 13437.12, + "probability": 0.6293 + }, + { + "start": 13437.44, + "end": 13438.28, + "probability": 0.8639 + }, + { + "start": 13438.34, + "end": 13439.36, + "probability": 0.9351 + }, + { + "start": 13439.64, + "end": 13440.62, + "probability": 0.4387 + }, + { + "start": 13441.87, + "end": 13443.34, + "probability": 0.9328 + }, + { + "start": 13443.44, + "end": 13443.52, + "probability": 0.052 + }, + { + "start": 13443.52, + "end": 13443.52, + "probability": 0.2591 + }, + { + "start": 13443.52, + "end": 13444.04, + "probability": 0.7441 + }, + { + "start": 13444.12, + "end": 13444.91, + "probability": 0.7703 + }, + { + "start": 13445.36, + "end": 13446.38, + "probability": 0.912 + }, + { + "start": 13446.38, + "end": 13448.54, + "probability": 0.8771 + }, + { + "start": 13449.9, + "end": 13450.84, + "probability": 0.5614 + }, + { + "start": 13452.16, + "end": 13452.88, + "probability": 0.6968 + }, + { + "start": 13453.86, + "end": 13456.46, + "probability": 0.9622 + }, + { + "start": 13457.24, + "end": 13459.8, + "probability": 0.7215 + }, + { + "start": 13460.62, + "end": 13462.96, + "probability": 0.6461 + }, + { + "start": 13464.04, + "end": 13464.76, + "probability": 0.8968 + }, + { + "start": 13465.74, + "end": 13468.98, + "probability": 0.7425 + }, + { + "start": 13469.56, + "end": 13472.4, + "probability": 0.7669 + }, + { + "start": 13473.2, + "end": 13474.8, + "probability": 0.8615 + }, + { + "start": 13475.48, + "end": 13476.34, + "probability": 0.5799 + }, + { + "start": 13476.68, + "end": 13478.96, + "probability": 0.5673 + }, + { + "start": 13492.18, + "end": 13493.7, + "probability": 0.6735 + }, + { + "start": 13494.06, + "end": 13495.86, + "probability": 0.6655 + }, + { + "start": 13496.4, + "end": 13502.22, + "probability": 0.9919 + }, + { + "start": 13503.12, + "end": 13506.1, + "probability": 0.9234 + }, + { + "start": 13506.9, + "end": 13509.56, + "probability": 0.7607 + }, + { + "start": 13510.62, + "end": 13513.06, + "probability": 0.9805 + }, + { + "start": 13513.12, + "end": 13514.12, + "probability": 0.8647 + }, + { + "start": 13515.44, + "end": 13518.2, + "probability": 0.9586 + }, + { + "start": 13519.24, + "end": 13522.3, + "probability": 0.9332 + }, + { + "start": 13523.68, + "end": 13526.32, + "probability": 0.7498 + }, + { + "start": 13527.14, + "end": 13528.56, + "probability": 0.9907 + }, + { + "start": 13528.82, + "end": 13532.2, + "probability": 0.9818 + }, + { + "start": 13533.38, + "end": 13536.74, + "probability": 0.8633 + }, + { + "start": 13536.92, + "end": 13538.22, + "probability": 0.7555 + }, + { + "start": 13538.74, + "end": 13542.44, + "probability": 0.9507 + }, + { + "start": 13543.24, + "end": 13543.54, + "probability": 0.4192 + }, + { + "start": 13543.6, + "end": 13544.4, + "probability": 0.6645 + }, + { + "start": 13544.4, + "end": 13547.76, + "probability": 0.9441 + }, + { + "start": 13548.12, + "end": 13549.82, + "probability": 0.9226 + }, + { + "start": 13550.38, + "end": 13552.8, + "probability": 0.795 + }, + { + "start": 13554.76, + "end": 13555.26, + "probability": 0.02 + }, + { + "start": 13558.0, + "end": 13558.42, + "probability": 0.2921 + }, + { + "start": 13559.8, + "end": 13560.8, + "probability": 0.0553 + }, + { + "start": 13674.28, + "end": 13676.2, + "probability": 0.4265 + }, + { + "start": 13679.78, + "end": 13681.38, + "probability": 0.5209 + }, + { + "start": 13682.22, + "end": 13683.02, + "probability": 0.6944 + }, + { + "start": 13683.68, + "end": 13686.24, + "probability": 0.6934 + }, + { + "start": 13688.12, + "end": 13703.6, + "probability": 0.6853 + }, + { + "start": 13704.22, + "end": 13706.9, + "probability": 0.8579 + }, + { + "start": 13707.78, + "end": 13710.58, + "probability": 0.9202 + }, + { + "start": 13710.84, + "end": 13716.03, + "probability": 0.9711 + }, + { + "start": 13716.36, + "end": 13721.14, + "probability": 0.9937 + }, + { + "start": 13721.36, + "end": 13721.98, + "probability": 0.6872 + }, + { + "start": 13722.12, + "end": 13729.5, + "probability": 0.9971 + }, + { + "start": 13730.24, + "end": 13736.62, + "probability": 0.9784 + }, + { + "start": 13737.72, + "end": 13738.62, + "probability": 0.9338 + }, + { + "start": 13738.72, + "end": 13740.92, + "probability": 0.9659 + }, + { + "start": 13741.1, + "end": 13746.32, + "probability": 0.9806 + }, + { + "start": 13746.34, + "end": 13747.48, + "probability": 0.8969 + }, + { + "start": 13747.98, + "end": 13748.96, + "probability": 0.9551 + }, + { + "start": 13749.2, + "end": 13749.72, + "probability": 0.4541 + }, + { + "start": 13749.78, + "end": 13751.13, + "probability": 0.8988 + }, + { + "start": 13752.2, + "end": 13756.38, + "probability": 0.8465 + }, + { + "start": 13756.38, + "end": 13762.8, + "probability": 0.9897 + }, + { + "start": 13763.24, + "end": 13766.7, + "probability": 0.9907 + }, + { + "start": 13767.24, + "end": 13770.34, + "probability": 0.9697 + }, + { + "start": 13770.56, + "end": 13771.16, + "probability": 0.6382 + }, + { + "start": 13771.36, + "end": 13774.86, + "probability": 0.9417 + }, + { + "start": 13775.32, + "end": 13779.02, + "probability": 0.9397 + }, + { + "start": 13779.64, + "end": 13783.22, + "probability": 0.9346 + }, + { + "start": 13783.52, + "end": 13784.15, + "probability": 0.854 + }, + { + "start": 13784.96, + "end": 13791.76, + "probability": 0.99 + }, + { + "start": 13792.12, + "end": 13794.08, + "probability": 0.8466 + }, + { + "start": 13794.36, + "end": 13796.06, + "probability": 0.8035 + }, + { + "start": 13796.36, + "end": 13798.81, + "probability": 0.7006 + }, + { + "start": 13799.44, + "end": 13802.22, + "probability": 0.7691 + }, + { + "start": 13802.32, + "end": 13803.66, + "probability": 0.7257 + }, + { + "start": 13804.08, + "end": 13807.0, + "probability": 0.7725 + }, + { + "start": 13807.44, + "end": 13811.12, + "probability": 0.6679 + }, + { + "start": 13811.24, + "end": 13815.94, + "probability": 0.8878 + }, + { + "start": 13816.36, + "end": 13820.12, + "probability": 0.9941 + }, + { + "start": 13820.32, + "end": 13821.86, + "probability": 0.9453 + }, + { + "start": 13822.94, + "end": 13824.26, + "probability": 0.582 + }, + { + "start": 13824.48, + "end": 13826.82, + "probability": 0.929 + }, + { + "start": 13826.82, + "end": 13830.2, + "probability": 0.8945 + }, + { + "start": 13830.5, + "end": 13833.04, + "probability": 0.6886 + }, + { + "start": 13833.28, + "end": 13841.08, + "probability": 0.9985 + }, + { + "start": 13841.22, + "end": 13841.82, + "probability": 0.7075 + }, + { + "start": 13842.02, + "end": 13842.56, + "probability": 0.7726 + }, + { + "start": 13844.38, + "end": 13846.06, + "probability": 0.9103 + }, + { + "start": 13846.36, + "end": 13846.92, + "probability": 0.8263 + }, + { + "start": 13847.0, + "end": 13849.04, + "probability": 0.9777 + }, + { + "start": 13849.32, + "end": 13850.1, + "probability": 0.9665 + }, + { + "start": 13850.26, + "end": 13851.84, + "probability": 0.9883 + }, + { + "start": 13851.9, + "end": 13852.64, + "probability": 0.8778 + }, + { + "start": 13853.12, + "end": 13854.66, + "probability": 0.9809 + }, + { + "start": 13854.9, + "end": 13855.46, + "probability": 0.3749 + }, + { + "start": 13856.12, + "end": 13857.48, + "probability": 0.7891 + }, + { + "start": 13876.16, + "end": 13877.88, + "probability": 0.6841 + }, + { + "start": 13878.2, + "end": 13878.84, + "probability": 0.9561 + }, + { + "start": 13880.08, + "end": 13883.14, + "probability": 0.8157 + }, + { + "start": 13883.92, + "end": 13886.08, + "probability": 0.8788 + }, + { + "start": 13886.16, + "end": 13888.84, + "probability": 0.9941 + }, + { + "start": 13888.94, + "end": 13891.18, + "probability": 0.9978 + }, + { + "start": 13892.22, + "end": 13894.5, + "probability": 0.7164 + }, + { + "start": 13895.22, + "end": 13897.96, + "probability": 0.9963 + }, + { + "start": 13897.96, + "end": 13900.7, + "probability": 0.9926 + }, + { + "start": 13901.28, + "end": 13902.3, + "probability": 0.7572 + }, + { + "start": 13903.06, + "end": 13905.72, + "probability": 0.7873 + }, + { + "start": 13906.44, + "end": 13909.91, + "probability": 0.6409 + }, + { + "start": 13910.68, + "end": 13912.8, + "probability": 0.9886 + }, + { + "start": 13913.64, + "end": 13915.22, + "probability": 0.9619 + }, + { + "start": 13915.76, + "end": 13918.04, + "probability": 0.9176 + }, + { + "start": 13918.8, + "end": 13920.36, + "probability": 0.9053 + }, + { + "start": 13920.86, + "end": 13923.14, + "probability": 0.99 + }, + { + "start": 13924.16, + "end": 13927.08, + "probability": 0.9918 + }, + { + "start": 13927.68, + "end": 13929.22, + "probability": 0.9283 + }, + { + "start": 13929.94, + "end": 13933.86, + "probability": 0.9574 + }, + { + "start": 13934.76, + "end": 13938.06, + "probability": 0.7338 + }, + { + "start": 13938.6, + "end": 13943.18, + "probability": 0.9959 + }, + { + "start": 13943.18, + "end": 13947.36, + "probability": 0.9854 + }, + { + "start": 13948.3, + "end": 13952.1, + "probability": 0.9479 + }, + { + "start": 13952.94, + "end": 13955.2, + "probability": 0.9594 + }, + { + "start": 13956.16, + "end": 13958.92, + "probability": 0.9609 + }, + { + "start": 13959.86, + "end": 13961.82, + "probability": 0.9965 + }, + { + "start": 13963.16, + "end": 13966.92, + "probability": 0.8311 + }, + { + "start": 13967.48, + "end": 13970.29, + "probability": 0.9612 + }, + { + "start": 13971.1, + "end": 13977.62, + "probability": 0.985 + }, + { + "start": 13978.14, + "end": 13980.38, + "probability": 0.7112 + }, + { + "start": 13981.02, + "end": 13983.32, + "probability": 0.9442 + }, + { + "start": 13984.46, + "end": 13987.83, + "probability": 0.9316 + }, + { + "start": 13988.24, + "end": 13990.38, + "probability": 0.9524 + }, + { + "start": 13991.44, + "end": 13995.98, + "probability": 0.9732 + }, + { + "start": 13996.74, + "end": 14001.86, + "probability": 0.9927 + }, + { + "start": 14002.26, + "end": 14004.12, + "probability": 0.9841 + }, + { + "start": 14004.18, + "end": 14005.8, + "probability": 0.4495 + }, + { + "start": 14006.3, + "end": 14007.56, + "probability": 0.821 + }, + { + "start": 14008.34, + "end": 14012.6, + "probability": 0.957 + }, + { + "start": 14012.6, + "end": 14016.18, + "probability": 0.9941 + }, + { + "start": 14017.28, + "end": 14020.9, + "probability": 0.9579 + }, + { + "start": 14020.9, + "end": 14024.62, + "probability": 0.9469 + }, + { + "start": 14025.1, + "end": 14031.34, + "probability": 0.9808 + }, + { + "start": 14032.04, + "end": 14038.98, + "probability": 0.9866 + }, + { + "start": 14039.56, + "end": 14042.86, + "probability": 0.9925 + }, + { + "start": 14043.46, + "end": 14045.78, + "probability": 0.8268 + }, + { + "start": 14046.38, + "end": 14048.14, + "probability": 0.9094 + }, + { + "start": 14050.06, + "end": 14053.62, + "probability": 0.9927 + }, + { + "start": 14054.54, + "end": 14061.08, + "probability": 0.9294 + }, + { + "start": 14061.2, + "end": 14061.2, + "probability": 0.0331 + }, + { + "start": 14061.2, + "end": 14062.52, + "probability": 0.5661 + }, + { + "start": 14062.58, + "end": 14062.8, + "probability": 0.6242 + }, + { + "start": 14062.8, + "end": 14064.44, + "probability": 0.9268 + }, + { + "start": 14064.74, + "end": 14068.7, + "probability": 0.7639 + }, + { + "start": 14069.69, + "end": 14072.52, + "probability": 0.685 + }, + { + "start": 14072.7, + "end": 14073.24, + "probability": 0.1149 + }, + { + "start": 14073.24, + "end": 14073.3, + "probability": 0.6161 + }, + { + "start": 14073.32, + "end": 14074.16, + "probability": 0.7061 + }, + { + "start": 14074.16, + "end": 14075.12, + "probability": 0.2066 + }, + { + "start": 14075.32, + "end": 14077.96, + "probability": 0.8018 + }, + { + "start": 14078.0, + "end": 14078.78, + "probability": 0.9403 + }, + { + "start": 14078.98, + "end": 14079.94, + "probability": 0.9648 + }, + { + "start": 14082.15, + "end": 14083.66, + "probability": 0.5602 + }, + { + "start": 14083.66, + "end": 14083.66, + "probability": 0.0883 + }, + { + "start": 14083.66, + "end": 14084.64, + "probability": 0.446 + }, + { + "start": 14085.5, + "end": 14086.48, + "probability": 0.5689 + }, + { + "start": 14086.54, + "end": 14088.38, + "probability": 0.647 + }, + { + "start": 14103.44, + "end": 14106.32, + "probability": 0.7018 + }, + { + "start": 14108.08, + "end": 14110.26, + "probability": 0.7898 + }, + { + "start": 14111.16, + "end": 14111.94, + "probability": 0.5881 + }, + { + "start": 14111.94, + "end": 14116.92, + "probability": 0.7314 + }, + { + "start": 14117.08, + "end": 14121.98, + "probability": 0.5844 + }, + { + "start": 14123.0, + "end": 14127.02, + "probability": 0.7257 + }, + { + "start": 14127.46, + "end": 14129.44, + "probability": 0.8323 + }, + { + "start": 14130.52, + "end": 14131.86, + "probability": 0.7183 + }, + { + "start": 14132.38, + "end": 14134.74, + "probability": 0.9171 + }, + { + "start": 14135.54, + "end": 14137.64, + "probability": 0.9902 + }, + { + "start": 14139.62, + "end": 14140.76, + "probability": 0.3612 + }, + { + "start": 14141.5, + "end": 14147.64, + "probability": 0.5903 + }, + { + "start": 14148.34, + "end": 14152.46, + "probability": 0.8994 + }, + { + "start": 14152.96, + "end": 14156.68, + "probability": 0.9196 + }, + { + "start": 14157.44, + "end": 14158.6, + "probability": 0.8262 + }, + { + "start": 14159.22, + "end": 14159.84, + "probability": 0.9339 + }, + { + "start": 14160.42, + "end": 14161.06, + "probability": 0.9814 + }, + { + "start": 14161.16, + "end": 14162.78, + "probability": 0.9672 + }, + { + "start": 14163.24, + "end": 14166.66, + "probability": 0.8378 + }, + { + "start": 14167.14, + "end": 14169.36, + "probability": 0.9701 + }, + { + "start": 14169.48, + "end": 14174.78, + "probability": 0.76 + }, + { + "start": 14175.64, + "end": 14181.74, + "probability": 0.9684 + }, + { + "start": 14182.22, + "end": 14187.46, + "probability": 0.9817 + }, + { + "start": 14188.32, + "end": 14190.38, + "probability": 0.8429 + }, + { + "start": 14190.98, + "end": 14193.58, + "probability": 0.9941 + }, + { + "start": 14195.12, + "end": 14196.04, + "probability": 0.8996 + }, + { + "start": 14196.6, + "end": 14198.4, + "probability": 0.9019 + }, + { + "start": 14198.84, + "end": 14200.1, + "probability": 0.8581 + }, + { + "start": 14200.6, + "end": 14205.0, + "probability": 0.9575 + }, + { + "start": 14205.06, + "end": 14207.32, + "probability": 0.519 + }, + { + "start": 14207.76, + "end": 14211.5, + "probability": 0.9758 + }, + { + "start": 14211.62, + "end": 14214.94, + "probability": 0.8208 + }, + { + "start": 14215.38, + "end": 14215.92, + "probability": 0.6873 + }, + { + "start": 14215.96, + "end": 14218.9, + "probability": 0.9129 + }, + { + "start": 14219.38, + "end": 14221.47, + "probability": 0.8267 + }, + { + "start": 14222.2, + "end": 14224.18, + "probability": 0.8483 + }, + { + "start": 14224.88, + "end": 14225.94, + "probability": 0.4701 + }, + { + "start": 14227.34, + "end": 14232.76, + "probability": 0.9182 + }, + { + "start": 14232.88, + "end": 14233.44, + "probability": 0.8979 + }, + { + "start": 14233.54, + "end": 14234.06, + "probability": 0.0703 + }, + { + "start": 14235.04, + "end": 14240.52, + "probability": 0.1677 + }, + { + "start": 14240.56, + "end": 14241.5, + "probability": 0.0846 + }, + { + "start": 14241.6, + "end": 14242.14, + "probability": 0.7609 + }, + { + "start": 14242.62, + "end": 14243.28, + "probability": 0.7566 + }, + { + "start": 14243.62, + "end": 14246.04, + "probability": 0.6092 + }, + { + "start": 14246.24, + "end": 14248.92, + "probability": 0.7616 + }, + { + "start": 14273.54, + "end": 14274.58, + "probability": 0.4678 + }, + { + "start": 14274.58, + "end": 14276.82, + "probability": 0.5509 + }, + { + "start": 14277.86, + "end": 14280.3, + "probability": 0.1447 + }, + { + "start": 14283.92, + "end": 14284.4, + "probability": 0.634 + }, + { + "start": 14285.26, + "end": 14286.26, + "probability": 0.7492 + }, + { + "start": 14286.42, + "end": 14287.76, + "probability": 0.8269 + }, + { + "start": 14288.06, + "end": 14290.32, + "probability": 0.939 + }, + { + "start": 14290.44, + "end": 14293.24, + "probability": 0.9725 + }, + { + "start": 14293.24, + "end": 14297.6, + "probability": 0.9707 + }, + { + "start": 14298.1, + "end": 14302.66, + "probability": 0.9835 + }, + { + "start": 14302.72, + "end": 14304.8, + "probability": 0.9919 + }, + { + "start": 14305.46, + "end": 14307.22, + "probability": 0.7817 + }, + { + "start": 14307.42, + "end": 14312.34, + "probability": 0.9519 + }, + { + "start": 14312.34, + "end": 14315.36, + "probability": 0.991 + }, + { + "start": 14315.82, + "end": 14317.34, + "probability": 0.9998 + }, + { + "start": 14317.46, + "end": 14319.36, + "probability": 0.9949 + }, + { + "start": 14319.44, + "end": 14320.52, + "probability": 0.7414 + }, + { + "start": 14320.88, + "end": 14326.52, + "probability": 0.8224 + }, + { + "start": 14326.82, + "end": 14331.98, + "probability": 0.9839 + }, + { + "start": 14332.42, + "end": 14334.04, + "probability": 0.9037 + }, + { + "start": 14334.28, + "end": 14337.18, + "probability": 0.8812 + }, + { + "start": 14337.62, + "end": 14339.72, + "probability": 0.9872 + }, + { + "start": 14340.18, + "end": 14342.42, + "probability": 0.975 + }, + { + "start": 14342.82, + "end": 14347.12, + "probability": 0.9976 + }, + { + "start": 14347.12, + "end": 14353.06, + "probability": 0.987 + }, + { + "start": 14353.4, + "end": 14358.18, + "probability": 0.994 + }, + { + "start": 14358.72, + "end": 14361.06, + "probability": 0.9759 + }, + { + "start": 14361.1, + "end": 14365.46, + "probability": 0.9316 + }, + { + "start": 14365.92, + "end": 14366.82, + "probability": 0.6306 + }, + { + "start": 14367.22, + "end": 14369.38, + "probability": 0.9984 + }, + { + "start": 14369.38, + "end": 14371.84, + "probability": 0.9958 + }, + { + "start": 14372.38, + "end": 14375.36, + "probability": 0.9976 + }, + { + "start": 14375.36, + "end": 14378.0, + "probability": 0.9844 + }, + { + "start": 14379.24, + "end": 14382.54, + "probability": 0.9673 + }, + { + "start": 14382.98, + "end": 14388.98, + "probability": 0.9905 + }, + { + "start": 14389.46, + "end": 14390.52, + "probability": 0.8751 + }, + { + "start": 14390.96, + "end": 14395.34, + "probability": 0.8701 + }, + { + "start": 14395.48, + "end": 14397.82, + "probability": 0.993 + }, + { + "start": 14398.1, + "end": 14401.32, + "probability": 0.8041 + }, + { + "start": 14401.76, + "end": 14402.84, + "probability": 0.9089 + }, + { + "start": 14403.04, + "end": 14406.34, + "probability": 0.9535 + }, + { + "start": 14406.62, + "end": 14407.08, + "probability": 0.86 + }, + { + "start": 14407.14, + "end": 14409.57, + "probability": 0.9659 + }, + { + "start": 14409.74, + "end": 14414.02, + "probability": 0.9879 + }, + { + "start": 14414.52, + "end": 14418.08, + "probability": 0.9971 + }, + { + "start": 14418.08, + "end": 14422.64, + "probability": 0.9972 + }, + { + "start": 14423.3, + "end": 14426.5, + "probability": 0.993 + }, + { + "start": 14426.68, + "end": 14429.1, + "probability": 0.9971 + }, + { + "start": 14429.4, + "end": 14432.98, + "probability": 0.9824 + }, + { + "start": 14433.14, + "end": 14434.26, + "probability": 0.7018 + }, + { + "start": 14434.38, + "end": 14437.34, + "probability": 0.9677 + }, + { + "start": 14437.7, + "end": 14440.2, + "probability": 0.9306 + }, + { + "start": 14440.26, + "end": 14441.88, + "probability": 0.9273 + }, + { + "start": 14442.48, + "end": 14443.67, + "probability": 0.9381 + }, + { + "start": 14443.92, + "end": 14445.1, + "probability": 0.892 + }, + { + "start": 14445.28, + "end": 14449.44, + "probability": 0.9098 + }, + { + "start": 14449.94, + "end": 14450.82, + "probability": 0.8608 + }, + { + "start": 14450.9, + "end": 14453.86, + "probability": 0.9787 + }, + { + "start": 14454.24, + "end": 14458.82, + "probability": 0.995 + }, + { + "start": 14459.22, + "end": 14461.02, + "probability": 0.9482 + }, + { + "start": 14461.46, + "end": 14464.18, + "probability": 0.9874 + }, + { + "start": 14464.18, + "end": 14467.38, + "probability": 0.9988 + }, + { + "start": 14469.68, + "end": 14470.2, + "probability": 0.6116 + }, + { + "start": 14470.4, + "end": 14471.54, + "probability": 0.7471 + }, + { + "start": 14471.64, + "end": 14472.88, + "probability": 0.9714 + }, + { + "start": 14472.96, + "end": 14476.94, + "probability": 0.9833 + }, + { + "start": 14477.4, + "end": 14479.78, + "probability": 0.9829 + }, + { + "start": 14479.78, + "end": 14483.02, + "probability": 0.9935 + }, + { + "start": 14483.44, + "end": 14484.5, + "probability": 0.8943 + }, + { + "start": 14484.56, + "end": 14486.78, + "probability": 0.9351 + }, + { + "start": 14486.92, + "end": 14488.52, + "probability": 0.7002 + }, + { + "start": 14488.9, + "end": 14489.84, + "probability": 0.8352 + }, + { + "start": 14490.14, + "end": 14494.12, + "probability": 0.9906 + }, + { + "start": 14494.12, + "end": 14497.4, + "probability": 0.9963 + }, + { + "start": 14497.98, + "end": 14501.02, + "probability": 0.9927 + }, + { + "start": 14501.42, + "end": 14503.5, + "probability": 0.949 + }, + { + "start": 14503.58, + "end": 14506.34, + "probability": 0.7694 + }, + { + "start": 14506.72, + "end": 14509.28, + "probability": 0.9938 + }, + { + "start": 14509.38, + "end": 14512.02, + "probability": 0.9903 + }, + { + "start": 14512.32, + "end": 14515.7, + "probability": 0.9867 + }, + { + "start": 14516.0, + "end": 14518.64, + "probability": 0.8812 + }, + { + "start": 14519.02, + "end": 14521.26, + "probability": 0.998 + }, + { + "start": 14521.46, + "end": 14521.9, + "probability": 0.6644 + }, + { + "start": 14522.1, + "end": 14524.82, + "probability": 0.8056 + }, + { + "start": 14524.9, + "end": 14526.7, + "probability": 0.9741 + }, + { + "start": 14536.06, + "end": 14538.7, + "probability": 0.9336 + }, + { + "start": 14539.88, + "end": 14540.38, + "probability": 0.689 + }, + { + "start": 14541.6, + "end": 14542.14, + "probability": 0.4367 + }, + { + "start": 14542.88, + "end": 14543.76, + "probability": 0.9031 + }, + { + "start": 14543.94, + "end": 14545.48, + "probability": 0.8639 + }, + { + "start": 14545.62, + "end": 14546.86, + "probability": 0.8338 + }, + { + "start": 14547.26, + "end": 14548.3, + "probability": 0.8506 + }, + { + "start": 14548.57, + "end": 14550.82, + "probability": 0.8811 + }, + { + "start": 14550.92, + "end": 14552.46, + "probability": 0.7518 + }, + { + "start": 14553.44, + "end": 14555.56, + "probability": 0.9917 + }, + { + "start": 14555.98, + "end": 14556.72, + "probability": 0.7101 + }, + { + "start": 14557.2, + "end": 14558.4, + "probability": 0.8459 + }, + { + "start": 14558.74, + "end": 14560.38, + "probability": 0.9976 + }, + { + "start": 14561.92, + "end": 14567.46, + "probability": 0.998 + }, + { + "start": 14568.26, + "end": 14569.68, + "probability": 0.9521 + }, + { + "start": 14571.02, + "end": 14573.22, + "probability": 0.8883 + }, + { + "start": 14574.08, + "end": 14574.56, + "probability": 0.7466 + }, + { + "start": 14575.94, + "end": 14580.64, + "probability": 0.9916 + }, + { + "start": 14580.88, + "end": 14581.94, + "probability": 0.7896 + }, + { + "start": 14582.04, + "end": 14583.48, + "probability": 0.9966 + }, + { + "start": 14584.56, + "end": 14585.98, + "probability": 0.999 + }, + { + "start": 14586.52, + "end": 14587.0, + "probability": 0.5194 + }, + { + "start": 14587.88, + "end": 14593.26, + "probability": 0.9933 + }, + { + "start": 14594.1, + "end": 14596.14, + "probability": 0.9915 + }, + { + "start": 14597.04, + "end": 14598.48, + "probability": 0.936 + }, + { + "start": 14598.78, + "end": 14601.62, + "probability": 0.9946 + }, + { + "start": 14602.14, + "end": 14603.64, + "probability": 0.9297 + }, + { + "start": 14604.06, + "end": 14606.44, + "probability": 0.9968 + }, + { + "start": 14606.5, + "end": 14609.64, + "probability": 0.9834 + }, + { + "start": 14611.14, + "end": 14614.34, + "probability": 0.9759 + }, + { + "start": 14614.52, + "end": 14615.54, + "probability": 0.6509 + }, + { + "start": 14616.08, + "end": 14618.54, + "probability": 0.9716 + }, + { + "start": 14619.04, + "end": 14620.26, + "probability": 0.61 + }, + { + "start": 14620.98, + "end": 14623.84, + "probability": 0.9883 + }, + { + "start": 14624.4, + "end": 14627.42, + "probability": 0.9855 + }, + { + "start": 14628.18, + "end": 14631.9, + "probability": 0.9658 + }, + { + "start": 14632.66, + "end": 14636.82, + "probability": 0.9946 + }, + { + "start": 14636.82, + "end": 14642.4, + "probability": 0.9958 + }, + { + "start": 14642.62, + "end": 14644.58, + "probability": 0.9363 + }, + { + "start": 14644.84, + "end": 14645.96, + "probability": 0.7974 + }, + { + "start": 14646.7, + "end": 14651.0, + "probability": 0.823 + }, + { + "start": 14651.62, + "end": 14652.85, + "probability": 0.9661 + }, + { + "start": 14653.24, + "end": 14656.36, + "probability": 0.9207 + }, + { + "start": 14656.72, + "end": 14657.8, + "probability": 0.8706 + }, + { + "start": 14658.3, + "end": 14659.7, + "probability": 0.98 + }, + { + "start": 14660.04, + "end": 14662.88, + "probability": 0.7769 + }, + { + "start": 14663.54, + "end": 14664.97, + "probability": 0.9282 + }, + { + "start": 14666.12, + "end": 14668.14, + "probability": 0.9491 + }, + { + "start": 14668.54, + "end": 14670.04, + "probability": 0.9922 + }, + { + "start": 14670.82, + "end": 14673.16, + "probability": 0.9915 + }, + { + "start": 14673.38, + "end": 14674.74, + "probability": 0.9958 + }, + { + "start": 14675.06, + "end": 14677.34, + "probability": 0.9794 + }, + { + "start": 14677.7, + "end": 14682.74, + "probability": 0.9668 + }, + { + "start": 14683.12, + "end": 14683.52, + "probability": 0.8127 + }, + { + "start": 14683.62, + "end": 14684.2, + "probability": 0.6557 + }, + { + "start": 14684.28, + "end": 14686.68, + "probability": 0.9755 + }, + { + "start": 14687.04, + "end": 14687.66, + "probability": 0.844 + }, + { + "start": 14688.02, + "end": 14694.8, + "probability": 0.9933 + }, + { + "start": 14696.4, + "end": 14698.45, + "probability": 0.8436 + }, + { + "start": 14699.48, + "end": 14700.82, + "probability": 0.9363 + }, + { + "start": 14702.72, + "end": 14704.78, + "probability": 0.9306 + }, + { + "start": 14705.24, + "end": 14706.16, + "probability": 0.5796 + }, + { + "start": 14706.68, + "end": 14710.04, + "probability": 0.9974 + }, + { + "start": 14711.54, + "end": 14717.08, + "probability": 0.9775 + }, + { + "start": 14717.56, + "end": 14718.8, + "probability": 0.7713 + }, + { + "start": 14719.24, + "end": 14719.82, + "probability": 0.551 + }, + { + "start": 14720.34, + "end": 14724.84, + "probability": 0.944 + }, + { + "start": 14725.28, + "end": 14727.66, + "probability": 0.7863 + }, + { + "start": 14728.3, + "end": 14731.91, + "probability": 0.5845 + }, + { + "start": 14732.94, + "end": 14735.22, + "probability": 0.9821 + }, + { + "start": 14735.48, + "end": 14736.58, + "probability": 0.8627 + }, + { + "start": 14736.9, + "end": 14736.9, + "probability": 0.6154 + }, + { + "start": 14736.9, + "end": 14738.36, + "probability": 0.4323 + }, + { + "start": 14739.3, + "end": 14740.16, + "probability": 0.7109 + }, + { + "start": 14741.04, + "end": 14745.76, + "probability": 0.8857 + }, + { + "start": 14750.8, + "end": 14752.58, + "probability": 0.0227 + }, + { + "start": 14769.12, + "end": 14770.1, + "probability": 0.2839 + }, + { + "start": 14770.86, + "end": 14773.14, + "probability": 0.5512 + }, + { + "start": 14780.64, + "end": 14781.06, + "probability": 0.7042 + }, + { + "start": 14781.94, + "end": 14783.66, + "probability": 0.503 + }, + { + "start": 14785.26, + "end": 14789.52, + "probability": 0.9894 + }, + { + "start": 14790.88, + "end": 14795.08, + "probability": 0.9803 + }, + { + "start": 14796.0, + "end": 14797.28, + "probability": 0.9617 + }, + { + "start": 14797.92, + "end": 14799.34, + "probability": 0.8543 + }, + { + "start": 14802.18, + "end": 14803.5, + "probability": 0.9965 + }, + { + "start": 14803.7, + "end": 14805.44, + "probability": 0.9433 + }, + { + "start": 14806.26, + "end": 14808.78, + "probability": 0.8083 + }, + { + "start": 14810.48, + "end": 14812.23, + "probability": 0.9442 + }, + { + "start": 14813.42, + "end": 14814.93, + "probability": 0.9924 + }, + { + "start": 14816.7, + "end": 14820.66, + "probability": 0.998 + }, + { + "start": 14821.7, + "end": 14827.42, + "probability": 0.9954 + }, + { + "start": 14828.5, + "end": 14830.24, + "probability": 0.5558 + }, + { + "start": 14830.92, + "end": 14834.68, + "probability": 0.978 + }, + { + "start": 14835.32, + "end": 14836.7, + "probability": 0.9326 + }, + { + "start": 14837.36, + "end": 14839.32, + "probability": 0.9968 + }, + { + "start": 14840.96, + "end": 14842.87, + "probability": 0.9944 + }, + { + "start": 14843.7, + "end": 14846.72, + "probability": 0.9932 + }, + { + "start": 14847.26, + "end": 14849.6, + "probability": 0.9533 + }, + { + "start": 14850.8, + "end": 14856.74, + "probability": 0.9395 + }, + { + "start": 14856.86, + "end": 14857.76, + "probability": 0.8943 + }, + { + "start": 14858.82, + "end": 14862.14, + "probability": 0.9944 + }, + { + "start": 14862.46, + "end": 14865.12, + "probability": 0.9687 + }, + { + "start": 14866.3, + "end": 14868.55, + "probability": 0.9468 + }, + { + "start": 14869.9, + "end": 14873.88, + "probability": 0.9741 + }, + { + "start": 14875.16, + "end": 14878.52, + "probability": 0.9775 + }, + { + "start": 14880.1, + "end": 14881.99, + "probability": 0.9855 + }, + { + "start": 14882.56, + "end": 14884.36, + "probability": 0.9923 + }, + { + "start": 14885.14, + "end": 14887.64, + "probability": 0.9923 + }, + { + "start": 14887.8, + "end": 14888.87, + "probability": 0.8553 + }, + { + "start": 14889.62, + "end": 14892.9, + "probability": 0.9912 + }, + { + "start": 14893.68, + "end": 14894.68, + "probability": 0.9993 + }, + { + "start": 14895.18, + "end": 14898.7, + "probability": 0.9971 + }, + { + "start": 14899.26, + "end": 14901.36, + "probability": 0.6767 + }, + { + "start": 14902.96, + "end": 14904.98, + "probability": 0.9871 + }, + { + "start": 14905.12, + "end": 14906.3, + "probability": 0.7783 + }, + { + "start": 14906.58, + "end": 14907.46, + "probability": 0.9558 + }, + { + "start": 14908.86, + "end": 14909.88, + "probability": 0.993 + }, + { + "start": 14910.0, + "end": 14911.58, + "probability": 0.9491 + }, + { + "start": 14911.98, + "end": 14914.48, + "probability": 0.9956 + }, + { + "start": 14916.06, + "end": 14918.68, + "probability": 0.8598 + }, + { + "start": 14919.48, + "end": 14921.16, + "probability": 0.9819 + }, + { + "start": 14921.28, + "end": 14923.1, + "probability": 0.9869 + }, + { + "start": 14924.02, + "end": 14926.7, + "probability": 0.8013 + }, + { + "start": 14926.8, + "end": 14929.46, + "probability": 0.9272 + }, + { + "start": 14930.82, + "end": 14936.24, + "probability": 0.9982 + }, + { + "start": 14937.52, + "end": 14939.8, + "probability": 0.996 + }, + { + "start": 14940.48, + "end": 14942.08, + "probability": 0.9841 + }, + { + "start": 14942.38, + "end": 14945.56, + "probability": 0.9813 + }, + { + "start": 14946.66, + "end": 14948.6, + "probability": 0.9699 + }, + { + "start": 14949.14, + "end": 14950.3, + "probability": 0.9858 + }, + { + "start": 14950.92, + "end": 14954.24, + "probability": 0.964 + }, + { + "start": 14954.86, + "end": 14957.78, + "probability": 0.9893 + }, + { + "start": 14958.3, + "end": 14958.8, + "probability": 0.9088 + }, + { + "start": 14959.42, + "end": 14960.48, + "probability": 0.7375 + }, + { + "start": 14960.9, + "end": 14962.5, + "probability": 0.8079 + }, + { + "start": 14963.58, + "end": 14966.82, + "probability": 0.965 + }, + { + "start": 14967.8, + "end": 14968.54, + "probability": 0.6916 + }, + { + "start": 14969.94, + "end": 14972.4, + "probability": 0.9089 + }, + { + "start": 14986.3, + "end": 14987.64, + "probability": 0.7065 + }, + { + "start": 14987.84, + "end": 14988.9, + "probability": 0.6803 + }, + { + "start": 14989.04, + "end": 14990.48, + "probability": 0.9615 + }, + { + "start": 14990.98, + "end": 14992.04, + "probability": 0.7505 + }, + { + "start": 14992.28, + "end": 14993.64, + "probability": 0.998 + }, + { + "start": 14993.92, + "end": 14995.22, + "probability": 0.9866 + }, + { + "start": 14995.92, + "end": 15000.5, + "probability": 0.972 + }, + { + "start": 15001.88, + "end": 15005.34, + "probability": 0.7578 + }, + { + "start": 15006.54, + "end": 15011.86, + "probability": 0.9878 + }, + { + "start": 15012.14, + "end": 15012.82, + "probability": 0.8047 + }, + { + "start": 15014.1, + "end": 15016.68, + "probability": 0.9924 + }, + { + "start": 15017.44, + "end": 15021.0, + "probability": 0.7723 + }, + { + "start": 15022.0, + "end": 15024.8, + "probability": 0.9741 + }, + { + "start": 15024.9, + "end": 15027.04, + "probability": 0.9819 + }, + { + "start": 15028.54, + "end": 15030.16, + "probability": 0.8901 + }, + { + "start": 15031.06, + "end": 15034.92, + "probability": 0.9859 + }, + { + "start": 15035.04, + "end": 15037.18, + "probability": 0.9899 + }, + { + "start": 15038.0, + "end": 15041.22, + "probability": 0.9529 + }, + { + "start": 15041.32, + "end": 15043.24, + "probability": 0.882 + }, + { + "start": 15043.88, + "end": 15046.44, + "probability": 0.9784 + }, + { + "start": 15047.42, + "end": 15051.74, + "probability": 0.9175 + }, + { + "start": 15052.94, + "end": 15062.44, + "probability": 0.9977 + }, + { + "start": 15062.58, + "end": 15068.86, + "probability": 0.9763 + }, + { + "start": 15069.82, + "end": 15074.9, + "probability": 0.9926 + }, + { + "start": 15075.0, + "end": 15082.1, + "probability": 0.9305 + }, + { + "start": 15082.48, + "end": 15087.74, + "probability": 0.9919 + }, + { + "start": 15088.5, + "end": 15091.56, + "probability": 0.957 + }, + { + "start": 15092.14, + "end": 15093.66, + "probability": 0.7639 + }, + { + "start": 15094.42, + "end": 15096.94, + "probability": 0.7063 + }, + { + "start": 15097.52, + "end": 15103.14, + "probability": 0.9967 + }, + { + "start": 15103.92, + "end": 15105.72, + "probability": 0.9549 + }, + { + "start": 15106.68, + "end": 15118.96, + "probability": 0.9843 + }, + { + "start": 15120.1, + "end": 15121.16, + "probability": 0.7372 + }, + { + "start": 15121.38, + "end": 15121.66, + "probability": 0.392 + }, + { + "start": 15122.4, + "end": 15125.88, + "probability": 0.0037 + }, + { + "start": 15127.04, + "end": 15127.56, + "probability": 0.0 + }, + { + "start": 15129.8, + "end": 15134.23, + "probability": 0.0597 + }, + { + "start": 15135.06, + "end": 15137.72, + "probability": 0.0482 + }, + { + "start": 15137.72, + "end": 15141.84, + "probability": 0.1409 + }, + { + "start": 15141.84, + "end": 15146.14, + "probability": 0.109 + }, + { + "start": 15146.92, + "end": 15147.26, + "probability": 0.0437 + }, + { + "start": 15192.18, + "end": 15192.28, + "probability": 0.0847 + }, + { + "start": 15192.54, + "end": 15193.1, + "probability": 0.7374 + }, + { + "start": 15193.1, + "end": 15193.2, + "probability": 0.716 + }, + { + "start": 15193.78, + "end": 15197.88, + "probability": 0.7517 + }, + { + "start": 15197.98, + "end": 15197.98, + "probability": 0.4526 + }, + { + "start": 15198.12, + "end": 15199.6, + "probability": 0.9165 + }, + { + "start": 15204.06, + "end": 15204.94, + "probability": 0.2149 + }, + { + "start": 15205.1, + "end": 15205.88, + "probability": 0.7113 + }, + { + "start": 15205.96, + "end": 15209.78, + "probability": 0.9601 + }, + { + "start": 15209.78, + "end": 15213.06, + "probability": 0.8822 + }, + { + "start": 15213.12, + "end": 15216.3, + "probability": 0.9781 + }, + { + "start": 15217.3, + "end": 15218.56, + "probability": 0.6701 + }, + { + "start": 15219.24, + "end": 15219.6, + "probability": 0.0276 + }, + { + "start": 15224.33, + "end": 15225.08, + "probability": 0.2994 + }, + { + "start": 15226.01, + "end": 15231.5, + "probability": 0.2424 + }, + { + "start": 15233.26, + "end": 15235.44, + "probability": 0.2995 + }, + { + "start": 15237.36, + "end": 15238.74, + "probability": 0.575 + }, + { + "start": 15239.3, + "end": 15242.52, + "probability": 0.9805 + }, + { + "start": 15243.3, + "end": 15244.44, + "probability": 0.8671 + }, + { + "start": 15244.44, + "end": 15246.26, + "probability": 0.5045 + }, + { + "start": 15246.38, + "end": 15248.46, + "probability": 0.9484 + }, + { + "start": 15248.58, + "end": 15249.44, + "probability": 0.8239 + }, + { + "start": 15249.66, + "end": 15251.68, + "probability": 0.8336 + }, + { + "start": 15252.2, + "end": 15259.56, + "probability": 0.7773 + }, + { + "start": 15260.08, + "end": 15260.92, + "probability": 0.8168 + }, + { + "start": 15263.54, + "end": 15266.88, + "probability": 0.7693 + } + ], + "segments_count": 5095, + "words_count": 25119, + "avg_words_per_segment": 4.9301, + "avg_segment_duration": 2.0747, + "avg_words_per_minute": 97.2943, + "plenum_id": "130091", + "duration": 15490.52, + "title": null, + "plenum_date": "2024-09-12" +} \ No newline at end of file