{ "source_type": "knesset", "source_id": "plenum", "source_entry_id": "102000", "quality_score": 0.9254, "per_segment_quality_scores": [ { "start": 95.26, "end": 97.98, "probability": 0.0383 }, { "start": 98.62, "end": 101.18, "probability": 0.8676 }, { "start": 101.94, "end": 105.44, "probability": 0.9276 }, { "start": 106.48, "end": 109.48, "probability": 0.9609 }, { "start": 110.24, "end": 111.38, "probability": 0.7524 }, { "start": 112.2, "end": 116.0, "probability": 0.999 }, { "start": 116.58, "end": 124.5, "probability": 0.9926 }, { "start": 125.4, "end": 126.94, "probability": 0.7955 }, { "start": 127.88, "end": 128.94, "probability": 0.6434 }, { "start": 129.0, "end": 129.0, "probability": 0.0 }, { "start": 129.0, "end": 129.0, "probability": 0.0 }, { "start": 129.26, "end": 131.72, "probability": 0.6361 }, { "start": 132.58, "end": 134.74, "probability": 0.6942 }, { "start": 135.34, "end": 136.94, "probability": 0.9171 }, { "start": 137.48, "end": 139.52, "probability": 0.6905 }, { "start": 140.12, "end": 143.34, "probability": 0.9583 }, { "start": 144.0, "end": 147.9, "probability": 0.7634 }, { "start": 148.8, "end": 152.98, "probability": 0.8156 }, { "start": 153.54, "end": 154.62, "probability": 0.7133 }, { "start": 155.18, "end": 156.86, "probability": 0.8429 }, { "start": 157.88, "end": 162.58, "probability": 0.4127 }, { "start": 163.9, "end": 166.1, "probability": 0.6821 }, { "start": 166.6, "end": 168.98, "probability": 0.8322 }, { "start": 169.54, "end": 170.48, "probability": 0.9868 }, { "start": 172.86, "end": 177.26, "probability": 0.7015 }, { "start": 177.68, "end": 179.24, "probability": 0.852 }, { "start": 179.8, "end": 183.02, "probability": 0.578 }, { "start": 183.6, "end": 184.68, "probability": 0.3449 }, { "start": 185.68, "end": 186.64, "probability": 0.0288 }, { "start": 193.66, "end": 194.86, "probability": 0.1259 }, { "start": 195.66, "end": 197.61, "probability": 0.1341 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.0, "end": 317.0, "probability": 0.0 }, { "start": 317.58, "end": 318.55, "probability": 0.1937 }, { "start": 319.66, "end": 321.74, "probability": 0.9524 }, { "start": 322.92, "end": 325.3, "probability": 0.8342 }, { "start": 325.94, "end": 329.76, "probability": 0.9817 }, { "start": 331.08, "end": 333.86, "probability": 0.9089 }, { "start": 334.06, "end": 336.6, "probability": 0.9496 }, { "start": 337.62, "end": 339.8, "probability": 0.9976 }, { "start": 340.14, "end": 342.04, "probability": 0.9989 }, { "start": 342.5, "end": 343.48, "probability": 0.9954 }, { "start": 345.04, "end": 349.36, "probability": 0.9583 }, { "start": 349.36, "end": 353.38, "probability": 0.9808 }, { "start": 354.34, "end": 357.5, "probability": 0.9979 }, { "start": 358.48, "end": 361.86, "probability": 0.996 }, { "start": 363.06, "end": 366.02, "probability": 0.9873 }, { "start": 366.7, "end": 368.24, "probability": 0.9956 }, { "start": 368.88, "end": 371.58, "probability": 0.7178 }, { "start": 372.5, "end": 372.5, "probability": 0.1071 }, { "start": 372.5, "end": 373.16, "probability": 0.1237 }, { "start": 374.02, "end": 375.02, "probability": 0.8214 }, { "start": 375.64, "end": 377.64, "probability": 0.9915 }, { "start": 378.22, "end": 378.8, "probability": 0.7328 }, { "start": 379.06, "end": 379.4, "probability": 0.9148 }, { "start": 379.46, "end": 380.3, "probability": 0.967 }, { "start": 380.92, "end": 382.52, "probability": 0.9781 }, { "start": 383.34, "end": 385.2, "probability": 0.9377 }, { "start": 385.96, "end": 390.06, "probability": 0.9906 }, { "start": 390.82, "end": 393.84, "probability": 0.9647 }, { "start": 394.56, "end": 395.44, "probability": 0.5787 }, { "start": 396.56, "end": 399.64, "probability": 0.9883 }, { "start": 400.38, "end": 402.3, "probability": 0.9801 }, { "start": 402.98, "end": 404.88, "probability": 0.9766 }, { "start": 405.74, "end": 409.36, "probability": 0.9993 }, { "start": 410.66, "end": 411.64, "probability": 0.9554 }, { "start": 412.54, "end": 414.8, "probability": 0.7476 }, { "start": 415.38, "end": 416.44, "probability": 0.8889 }, { "start": 416.74, "end": 421.76, "probability": 0.994 }, { "start": 422.4, "end": 426.02, "probability": 0.9896 }, { "start": 427.02, "end": 427.8, "probability": 0.3754 }, { "start": 428.46, "end": 430.62, "probability": 0.9626 }, { "start": 431.38, "end": 433.22, "probability": 0.9429 }, { "start": 433.82, "end": 434.32, "probability": 0.8466 }, { "start": 435.72, "end": 436.46, "probability": 0.9087 }, { "start": 437.14, "end": 437.86, "probability": 0.4836 }, { "start": 438.52, "end": 440.28, "probability": 0.8363 }, { "start": 440.94, "end": 444.24, "probability": 0.9739 }, { "start": 444.54, "end": 445.02, "probability": 0.3501 }, { "start": 445.92, "end": 448.76, "probability": 0.9915 }, { "start": 449.28, "end": 453.14, "probability": 0.9966 }, { "start": 453.72, "end": 457.66, "probability": 0.9727 }, { "start": 458.18, "end": 458.98, "probability": 0.7834 }, { "start": 459.16, "end": 459.7, "probability": 0.9067 }, { "start": 459.98, "end": 464.6, "probability": 0.9956 }, { "start": 465.06, "end": 466.88, "probability": 0.93 }, { "start": 467.74, "end": 469.32, "probability": 0.9548 }, { "start": 470.1, "end": 472.16, "probability": 0.8988 }, { "start": 472.98, "end": 474.54, "probability": 0.9282 }, { "start": 475.18, "end": 476.88, "probability": 0.9909 }, { "start": 477.62, "end": 478.48, "probability": 0.5278 }, { "start": 478.58, "end": 479.34, "probability": 0.7778 }, { "start": 479.8, "end": 483.58, "probability": 0.9785 }, { "start": 483.86, "end": 484.04, "probability": 0.8716 }, { "start": 484.52, "end": 484.62, "probability": 0.6423 }, { "start": 484.66, "end": 485.86, "probability": 0.8681 }, { "start": 485.92, "end": 487.96, "probability": 0.9958 }, { "start": 488.8, "end": 489.38, "probability": 0.5252 }, { "start": 489.52, "end": 493.8, "probability": 0.9624 }, { "start": 494.8, "end": 495.26, "probability": 0.6989 }, { "start": 495.3, "end": 495.58, "probability": 0.7252 }, { "start": 496.0, "end": 496.62, "probability": 0.8138 }, { "start": 496.68, "end": 498.06, "probability": 0.846 }, { "start": 498.62, "end": 500.9, "probability": 0.8733 }, { "start": 501.5, "end": 502.28, "probability": 0.8997 }, { "start": 502.88, "end": 503.46, "probability": 0.9175 }, { "start": 504.2, "end": 505.18, "probability": 0.9508 }, { "start": 505.48, "end": 505.96, "probability": 0.9129 }, { "start": 506.04, "end": 506.46, "probability": 0.968 }, { "start": 506.54, "end": 507.0, "probability": 0.899 }, { "start": 507.02, "end": 507.38, "probability": 0.5521 }, { "start": 507.46, "end": 509.28, "probability": 0.9277 }, { "start": 509.6, "end": 511.72, "probability": 0.6031 }, { "start": 511.82, "end": 512.12, "probability": 0.511 }, { "start": 512.12, "end": 512.24, "probability": 0.803 }, { "start": 512.78, "end": 513.31, "probability": 0.5704 }, { "start": 514.08, "end": 517.44, "probability": 0.8926 }, { "start": 517.8, "end": 521.12, "probability": 0.9917 }, { "start": 521.12, "end": 524.48, "probability": 0.9937 }, { "start": 524.6, "end": 525.32, "probability": 0.8042 }, { "start": 525.64, "end": 526.58, "probability": 0.7881 }, { "start": 527.28, "end": 530.04, "probability": 0.9886 }, { "start": 530.76, "end": 532.1, "probability": 0.9822 }, { "start": 532.62, "end": 533.5, "probability": 0.9717 }, { "start": 533.94, "end": 534.92, "probability": 0.9853 }, { "start": 535.4, "end": 536.5, "probability": 0.9787 }, { "start": 536.94, "end": 537.7, "probability": 0.9658 }, { "start": 538.08, "end": 538.68, "probability": 0.8927 }, { "start": 538.78, "end": 539.26, "probability": 0.8932 }, { "start": 539.34, "end": 542.26, "probability": 0.905 }, { "start": 542.9, "end": 543.68, "probability": 0.9631 }, { "start": 544.04, "end": 545.44, "probability": 0.9655 }, { "start": 545.54, "end": 546.48, "probability": 0.9961 }, { "start": 547.0, "end": 551.04, "probability": 0.6588 }, { "start": 551.12, "end": 552.3, "probability": 0.8734 }, { "start": 552.4, "end": 553.66, "probability": 0.6323 }, { "start": 554.1, "end": 557.0, "probability": 0.993 }, { "start": 557.28, "end": 558.58, "probability": 0.9836 }, { "start": 559.2, "end": 560.94, "probability": 0.8583 }, { "start": 562.41, "end": 563.46, "probability": 0.0853 }, { "start": 563.46, "end": 563.64, "probability": 0.5965 }, { "start": 564.26, "end": 565.5, "probability": 0.5505 }, { "start": 566.2, "end": 566.76, "probability": 0.8641 }, { "start": 567.56, "end": 568.4, "probability": 0.7876 }, { "start": 568.88, "end": 572.18, "probability": 0.9942 }, { "start": 572.9, "end": 573.2, "probability": 0.9054 }, { "start": 573.48, "end": 574.78, "probability": 0.9505 }, { "start": 574.94, "end": 575.7, "probability": 0.9426 }, { "start": 576.06, "end": 578.92, "probability": 0.9874 }, { "start": 579.34, "end": 579.46, "probability": 0.0983 }, { "start": 579.5, "end": 580.22, "probability": 0.8481 }, { "start": 580.68, "end": 581.36, "probability": 0.9331 }, { "start": 581.74, "end": 582.48, "probability": 0.9877 }, { "start": 582.98, "end": 584.46, "probability": 0.9604 }, { "start": 584.92, "end": 588.92, "probability": 0.9961 }, { "start": 589.34, "end": 590.74, "probability": 0.9831 }, { "start": 590.9, "end": 592.38, "probability": 0.6442 }, { "start": 593.06, "end": 594.74, "probability": 0.9729 }, { "start": 595.36, "end": 597.18, "probability": 0.9114 }, { "start": 597.7, "end": 599.62, "probability": 0.8992 }, { "start": 600.14, "end": 600.58, "probability": 0.806 }, { "start": 601.1, "end": 603.02, "probability": 0.9881 }, { "start": 603.36, "end": 603.92, "probability": 0.5309 }, { "start": 604.52, "end": 610.5, "probability": 0.9989 }, { "start": 611.12, "end": 612.12, "probability": 0.9559 }, { "start": 612.8, "end": 613.36, "probability": 0.7809 }, { "start": 613.48, "end": 615.72, "probability": 0.8506 }, { "start": 616.14, "end": 616.66, "probability": 0.4527 }, { "start": 616.66, "end": 619.72, "probability": 0.9689 }, { "start": 620.22, "end": 620.64, "probability": 0.8043 }, { "start": 621.12, "end": 621.56, "probability": 0.5181 }, { "start": 622.02, "end": 623.06, "probability": 0.8771 }, { "start": 623.44, "end": 626.59, "probability": 0.9705 }, { "start": 627.62, "end": 628.1, "probability": 0.7128 }, { "start": 628.62, "end": 629.1, "probability": 0.9555 }, { "start": 630.18, "end": 631.66, "probability": 0.9902 }, { "start": 632.28, "end": 636.02, "probability": 0.9795 }, { "start": 636.64, "end": 637.44, "probability": 0.6571 }, { "start": 638.16, "end": 638.36, "probability": 0.338 }, { "start": 638.9, "end": 639.62, "probability": 0.946 }, { "start": 640.16, "end": 641.42, "probability": 0.7296 }, { "start": 642.08, "end": 643.58, "probability": 0.9253 }, { "start": 644.42, "end": 648.0, "probability": 0.9274 }, { "start": 648.82, "end": 654.0, "probability": 0.995 }, { "start": 654.44, "end": 655.82, "probability": 0.7902 }, { "start": 656.16, "end": 660.02, "probability": 0.9886 }, { "start": 660.58, "end": 663.44, "probability": 0.9855 }, { "start": 663.98, "end": 665.16, "probability": 0.9156 }, { "start": 665.76, "end": 668.0, "probability": 0.9914 }, { "start": 668.52, "end": 669.2, "probability": 0.5804 }, { "start": 669.74, "end": 672.92, "probability": 0.9086 }, { "start": 673.44, "end": 676.1, "probability": 0.9238 }, { "start": 676.22, "end": 679.72, "probability": 0.9761 }, { "start": 680.38, "end": 681.82, "probability": 0.9856 }, { "start": 682.5, "end": 685.02, "probability": 0.9978 }, { "start": 685.02, "end": 688.3, "probability": 0.9986 }, { "start": 688.38, "end": 693.1, "probability": 0.9923 }, { "start": 693.52, "end": 694.82, "probability": 0.9072 }, { "start": 695.5, "end": 697.2, "probability": 0.996 }, { "start": 697.74, "end": 702.52, "probability": 0.9965 }, { "start": 702.8, "end": 703.02, "probability": 0.4878 }, { "start": 703.1, "end": 704.14, "probability": 0.9443 }, { "start": 704.44, "end": 707.94, "probability": 0.8823 }, { "start": 708.34, "end": 711.18, "probability": 0.9927 }, { "start": 711.56, "end": 712.12, "probability": 0.4403 }, { "start": 712.5, "end": 713.52, "probability": 0.9826 }, { "start": 713.92, "end": 716.68, "probability": 0.9832 }, { "start": 717.1, "end": 718.56, "probability": 0.9326 }, { "start": 719.1, "end": 721.24, "probability": 0.9788 }, { "start": 721.62, "end": 722.18, "probability": 0.9236 }, { "start": 722.48, "end": 723.9, "probability": 0.8591 }, { "start": 723.92, "end": 724.64, "probability": 0.9856 }, { "start": 725.18, "end": 728.46, "probability": 0.8364 }, { "start": 728.9, "end": 730.62, "probability": 0.999 }, { "start": 730.76, "end": 731.68, "probability": 0.8213 }, { "start": 731.86, "end": 733.3, "probability": 0.971 }, { "start": 733.76, "end": 736.84, "probability": 0.9882 }, { "start": 737.32, "end": 738.52, "probability": 0.9871 }, { "start": 738.78, "end": 739.36, "probability": 0.8019 }, { "start": 739.7, "end": 741.32, "probability": 0.9856 }, { "start": 741.46, "end": 742.66, "probability": 0.99 }, { "start": 742.98, "end": 745.7, "probability": 0.991 }, { "start": 746.06, "end": 747.18, "probability": 0.842 }, { "start": 747.76, "end": 750.36, "probability": 0.9985 }, { "start": 750.72, "end": 751.18, "probability": 0.8123 }, { "start": 751.56, "end": 755.88, "probability": 0.9926 }, { "start": 756.42, "end": 759.07, "probability": 0.9863 }, { "start": 759.54, "end": 762.92, "probability": 0.8442 }, { "start": 763.04, "end": 765.24, "probability": 0.9923 }, { "start": 765.8, "end": 766.74, "probability": 0.9587 }, { "start": 767.08, "end": 767.38, "probability": 0.9032 }, { "start": 767.44, "end": 768.14, "probability": 0.9326 }, { "start": 768.54, "end": 769.8, "probability": 0.9568 }, { "start": 770.36, "end": 774.3, "probability": 0.9899 }, { "start": 774.8, "end": 780.08, "probability": 0.9995 }, { "start": 780.42, "end": 780.58, "probability": 0.7848 }, { "start": 780.68, "end": 783.56, "probability": 0.9974 }, { "start": 783.56, "end": 786.92, "probability": 0.9971 }, { "start": 787.42, "end": 788.86, "probability": 0.699 }, { "start": 789.02, "end": 791.04, "probability": 0.8708 }, { "start": 791.44, "end": 792.24, "probability": 0.9009 }, { "start": 792.24, "end": 792.5, "probability": 0.7719 }, { "start": 792.9, "end": 793.73, "probability": 0.9782 }, { "start": 794.3, "end": 795.58, "probability": 0.9897 }, { "start": 795.64, "end": 796.48, "probability": 0.5255 }, { "start": 796.96, "end": 800.5, "probability": 0.9263 }, { "start": 801.0, "end": 804.42, "probability": 0.9934 }, { "start": 804.48, "end": 805.0, "probability": 0.3709 }, { "start": 805.16, "end": 805.44, "probability": 0.75 }, { "start": 806.16, "end": 809.6, "probability": 0.9871 }, { "start": 809.96, "end": 812.8, "probability": 0.9937 }, { "start": 813.26, "end": 815.08, "probability": 0.9939 }, { "start": 815.44, "end": 819.02, "probability": 0.9836 }, { "start": 819.02, "end": 821.78, "probability": 0.9986 }, { "start": 822.38, "end": 824.1, "probability": 0.8233 }, { "start": 824.54, "end": 828.58, "probability": 0.9902 }, { "start": 829.1, "end": 830.52, "probability": 0.9535 }, { "start": 830.92, "end": 832.04, "probability": 0.8723 }, { "start": 832.5, "end": 833.46, "probability": 0.9345 }, { "start": 833.6, "end": 834.62, "probability": 0.9009 }, { "start": 834.9, "end": 839.34, "probability": 0.9049 }, { "start": 839.44, "end": 840.7, "probability": 0.9648 }, { "start": 841.02, "end": 841.62, "probability": 0.8574 }, { "start": 841.94, "end": 842.68, "probability": 0.9305 }, { "start": 842.72, "end": 843.4, "probability": 0.9757 }, { "start": 843.78, "end": 845.84, "probability": 0.9917 }, { "start": 845.96, "end": 846.42, "probability": 0.6399 }, { "start": 846.94, "end": 849.82, "probability": 0.8522 }, { "start": 849.9, "end": 852.34, "probability": 0.6946 }, { "start": 852.5, "end": 855.12, "probability": 0.8619 }, { "start": 855.42, "end": 859.66, "probability": 0.9984 }, { "start": 860.06, "end": 860.5, "probability": 0.5166 }, { "start": 860.76, "end": 861.54, "probability": 0.5296 }, { "start": 861.74, "end": 863.48, "probability": 0.9808 }, { "start": 863.88, "end": 866.08, "probability": 0.9854 }, { "start": 866.08, "end": 869.42, "probability": 0.9823 }, { "start": 869.72, "end": 870.96, "probability": 0.9492 }, { "start": 871.1, "end": 873.3, "probability": 0.9866 }, { "start": 873.82, "end": 874.46, "probability": 0.7764 }, { "start": 875.18, "end": 877.24, "probability": 0.9663 }, { "start": 877.98, "end": 878.8, "probability": 0.7463 }, { "start": 879.34, "end": 880.06, "probability": 0.7005 }, { "start": 880.58, "end": 882.08, "probability": 0.7303 }, { "start": 882.3, "end": 884.32, "probability": 0.7368 }, { "start": 884.7, "end": 886.04, "probability": 0.9938 }, { "start": 886.34, "end": 887.22, "probability": 0.8638 }, { "start": 887.44, "end": 890.34, "probability": 0.9884 }, { "start": 890.46, "end": 890.98, "probability": 0.8914 }, { "start": 892.12, "end": 892.98, "probability": 0.7827 }, { "start": 893.36, "end": 895.06, "probability": 0.9403 }, { "start": 895.06, "end": 899.58, "probability": 0.984 }, { "start": 900.52, "end": 905.16, "probability": 0.8733 }, { "start": 905.76, "end": 907.8, "probability": 0.8101 }, { "start": 907.9, "end": 908.62, "probability": 0.9147 }, { "start": 908.68, "end": 910.12, "probability": 0.8937 }, { "start": 910.54, "end": 914.36, "probability": 0.9559 }, { "start": 915.06, "end": 918.76, "probability": 0.9722 }, { "start": 918.78, "end": 918.96, "probability": 0.8657 }, { "start": 935.61, "end": 936.1, "probability": 0.216 }, { "start": 949.48, "end": 951.94, "probability": 0.7627 }, { "start": 952.7, "end": 957.47, "probability": 0.8963 }, { "start": 959.26, "end": 964.02, "probability": 0.9735 }, { "start": 964.14, "end": 964.48, "probability": 0.4943 }, { "start": 964.9, "end": 966.1, "probability": 0.7278 }, { "start": 967.04, "end": 971.96, "probability": 0.981 }, { "start": 972.42, "end": 974.74, "probability": 0.8779 }, { "start": 977.72, "end": 979.7, "probability": 0.7071 }, { "start": 981.28, "end": 982.58, "probability": 0.6714 }, { "start": 982.68, "end": 983.64, "probability": 0.544 }, { "start": 983.72, "end": 985.1, "probability": 0.8738 }, { "start": 986.02, "end": 991.12, "probability": 0.9441 }, { "start": 991.3, "end": 995.16, "probability": 0.9656 }, { "start": 995.86, "end": 996.78, "probability": 0.9968 }, { "start": 997.86, "end": 999.94, "probability": 0.9691 }, { "start": 1000.48, "end": 1001.94, "probability": 0.7618 }, { "start": 1003.34, "end": 1005.2, "probability": 0.9897 }, { "start": 1005.24, "end": 1006.56, "probability": 0.8609 }, { "start": 1006.84, "end": 1010.62, "probability": 0.9045 }, { "start": 1011.34, "end": 1014.14, "probability": 0.8723 }, { "start": 1015.04, "end": 1017.88, "probability": 0.7346 }, { "start": 1020.06, "end": 1021.02, "probability": 0.8993 }, { "start": 1021.12, "end": 1023.94, "probability": 0.8613 }, { "start": 1023.98, "end": 1024.96, "probability": 0.9197 }, { "start": 1025.84, "end": 1026.36, "probability": 0.5674 }, { "start": 1026.58, "end": 1028.46, "probability": 0.9685 }, { "start": 1028.62, "end": 1030.84, "probability": 0.7431 }, { "start": 1031.96, "end": 1035.88, "probability": 0.7717 }, { "start": 1037.46, "end": 1038.36, "probability": 0.6715 }, { "start": 1038.44, "end": 1041.04, "probability": 0.9207 }, { "start": 1041.66, "end": 1044.08, "probability": 0.9526 }, { "start": 1044.1, "end": 1046.66, "probability": 0.771 }, { "start": 1046.82, "end": 1049.74, "probability": 0.8358 }, { "start": 1050.82, "end": 1051.52, "probability": 0.9337 }, { "start": 1052.08, "end": 1054.18, "probability": 0.9492 }, { "start": 1054.84, "end": 1056.88, "probability": 0.8097 }, { "start": 1056.96, "end": 1058.42, "probability": 0.5268 }, { "start": 1058.98, "end": 1060.44, "probability": 0.6874 }, { "start": 1060.5, "end": 1064.8, "probability": 0.979 }, { "start": 1065.32, "end": 1066.62, "probability": 0.8594 }, { "start": 1066.8, "end": 1068.66, "probability": 0.6685 }, { "start": 1069.1, "end": 1070.68, "probability": 0.6055 }, { "start": 1070.8, "end": 1071.26, "probability": 0.3941 }, { "start": 1071.36, "end": 1074.72, "probability": 0.8536 }, { "start": 1075.32, "end": 1077.16, "probability": 0.9716 }, { "start": 1078.24, "end": 1082.48, "probability": 0.8859 }, { "start": 1082.62, "end": 1083.1, "probability": 0.912 }, { "start": 1083.4, "end": 1085.22, "probability": 0.6737 }, { "start": 1086.12, "end": 1089.14, "probability": 0.9483 }, { "start": 1090.42, "end": 1092.44, "probability": 0.9643 }, { "start": 1092.56, "end": 1093.92, "probability": 0.5882 }, { "start": 1094.12, "end": 1094.68, "probability": 0.8372 }, { "start": 1095.1, "end": 1096.08, "probability": 0.9407 }, { "start": 1096.34, "end": 1097.86, "probability": 0.7418 }, { "start": 1098.48, "end": 1099.64, "probability": 0.9966 }, { "start": 1100.28, "end": 1100.66, "probability": 0.5292 }, { "start": 1101.36, "end": 1101.78, "probability": 0.7619 }, { "start": 1102.84, "end": 1104.28, "probability": 0.9897 }, { "start": 1105.32, "end": 1106.68, "probability": 0.9333 }, { "start": 1106.8, "end": 1109.36, "probability": 0.9734 }, { "start": 1110.58, "end": 1114.24, "probability": 0.9895 }, { "start": 1114.24, "end": 1117.4, "probability": 0.9945 }, { "start": 1117.48, "end": 1119.2, "probability": 0.9712 }, { "start": 1120.82, "end": 1122.84, "probability": 0.9596 }, { "start": 1123.38, "end": 1125.7, "probability": 0.9381 }, { "start": 1126.56, "end": 1128.9, "probability": 0.9906 }, { "start": 1129.44, "end": 1129.78, "probability": 0.8475 }, { "start": 1130.6, "end": 1132.12, "probability": 0.9858 }, { "start": 1132.18, "end": 1135.8, "probability": 0.842 }, { "start": 1136.64, "end": 1138.22, "probability": 0.9264 }, { "start": 1138.28, "end": 1138.54, "probability": 0.8541 }, { "start": 1138.64, "end": 1139.46, "probability": 0.9137 }, { "start": 1139.92, "end": 1142.9, "probability": 0.971 }, { "start": 1143.6, "end": 1147.38, "probability": 0.9855 }, { "start": 1147.46, "end": 1148.38, "probability": 0.8188 }, { "start": 1148.6, "end": 1149.3, "probability": 0.5257 }, { "start": 1149.84, "end": 1151.24, "probability": 0.5995 }, { "start": 1151.78, "end": 1151.9, "probability": 0.4242 }, { "start": 1152.02, "end": 1153.38, "probability": 0.7305 }, { "start": 1155.66, "end": 1156.36, "probability": 0.622 }, { "start": 1157.98, "end": 1161.02, "probability": 0.8217 }, { "start": 1161.04, "end": 1163.64, "probability": 0.8828 }, { "start": 1165.0, "end": 1165.84, "probability": 0.6209 }, { "start": 1167.22, "end": 1169.54, "probability": 0.9894 }, { "start": 1169.98, "end": 1171.0, "probability": 0.9144 }, { "start": 1171.16, "end": 1172.56, "probability": 0.8148 }, { "start": 1174.48, "end": 1178.04, "probability": 0.9985 }, { "start": 1179.14, "end": 1181.88, "probability": 0.9162 }, { "start": 1183.06, "end": 1184.92, "probability": 0.8586 }, { "start": 1185.62, "end": 1186.5, "probability": 0.941 }, { "start": 1187.04, "end": 1189.04, "probability": 0.9125 }, { "start": 1189.66, "end": 1195.8, "probability": 0.9856 }, { "start": 1196.6, "end": 1199.02, "probability": 0.9779 }, { "start": 1199.1, "end": 1200.96, "probability": 0.8904 }, { "start": 1201.42, "end": 1202.26, "probability": 0.9257 }, { "start": 1202.76, "end": 1203.62, "probability": 0.8651 }, { "start": 1205.2, "end": 1208.3, "probability": 0.9901 }, { "start": 1208.5, "end": 1208.8, "probability": 0.9259 }, { "start": 1208.82, "end": 1211.2, "probability": 0.9907 }, { "start": 1212.12, "end": 1213.6, "probability": 0.934 }, { "start": 1214.12, "end": 1215.58, "probability": 0.8611 }, { "start": 1216.96, "end": 1218.04, "probability": 0.9719 }, { "start": 1219.02, "end": 1221.5, "probability": 0.782 }, { "start": 1222.16, "end": 1222.96, "probability": 0.8964 }, { "start": 1224.08, "end": 1225.74, "probability": 0.874 }, { "start": 1225.74, "end": 1227.3, "probability": 0.9824 }, { "start": 1227.38, "end": 1228.2, "probability": 0.9207 }, { "start": 1228.38, "end": 1229.4, "probability": 0.9677 }, { "start": 1230.06, "end": 1231.0, "probability": 0.8317 }, { "start": 1232.56, "end": 1233.3, "probability": 0.9113 }, { "start": 1233.94, "end": 1234.68, "probability": 0.3317 }, { "start": 1235.72, "end": 1237.08, "probability": 0.9042 }, { "start": 1237.2, "end": 1238.04, "probability": 0.7225 }, { "start": 1238.54, "end": 1239.72, "probability": 0.9502 }, { "start": 1240.2, "end": 1241.38, "probability": 0.9463 }, { "start": 1242.06, "end": 1243.37, "probability": 0.9741 }, { "start": 1244.16, "end": 1245.18, "probability": 0.8163 }, { "start": 1245.26, "end": 1246.68, "probability": 0.7412 }, { "start": 1246.8, "end": 1247.42, "probability": 0.7511 }, { "start": 1247.46, "end": 1248.06, "probability": 0.9624 }, { "start": 1249.34, "end": 1253.26, "probability": 0.9097 }, { "start": 1253.4, "end": 1255.88, "probability": 0.9829 }, { "start": 1257.04, "end": 1259.56, "probability": 0.8874 }, { "start": 1260.22, "end": 1260.99, "probability": 0.896 }, { "start": 1261.28, "end": 1263.48, "probability": 0.9561 }, { "start": 1263.48, "end": 1266.22, "probability": 0.8407 }, { "start": 1267.3, "end": 1267.84, "probability": 0.9054 }, { "start": 1267.92, "end": 1269.15, "probability": 0.995 }, { "start": 1269.6, "end": 1271.76, "probability": 0.8941 }, { "start": 1272.24, "end": 1274.28, "probability": 0.9832 }, { "start": 1275.06, "end": 1277.2, "probability": 0.6253 }, { "start": 1277.44, "end": 1278.55, "probability": 0.979 }, { "start": 1279.0, "end": 1281.66, "probability": 0.9845 }, { "start": 1281.88, "end": 1283.88, "probability": 0.9798 }, { "start": 1283.88, "end": 1286.08, "probability": 0.8916 }, { "start": 1286.44, "end": 1287.9, "probability": 0.9978 }, { "start": 1289.36, "end": 1291.64, "probability": 0.9207 }, { "start": 1292.88, "end": 1294.06, "probability": 0.8445 }, { "start": 1295.04, "end": 1299.58, "probability": 0.6712 }, { "start": 1299.62, "end": 1301.86, "probability": 0.9709 }, { "start": 1302.68, "end": 1305.48, "probability": 0.9504 }, { "start": 1306.08, "end": 1307.78, "probability": 0.839 }, { "start": 1307.94, "end": 1308.7, "probability": 0.9009 }, { "start": 1308.78, "end": 1310.29, "probability": 0.9334 }, { "start": 1311.0, "end": 1312.06, "probability": 0.807 }, { "start": 1312.98, "end": 1314.63, "probability": 0.99 }, { "start": 1317.26, "end": 1317.84, "probability": 0.9458 }, { "start": 1317.94, "end": 1318.52, "probability": 0.8691 }, { "start": 1318.62, "end": 1322.34, "probability": 0.9967 }, { "start": 1322.72, "end": 1324.58, "probability": 0.9989 }, { "start": 1325.38, "end": 1327.56, "probability": 0.8884 }, { "start": 1328.28, "end": 1330.16, "probability": 0.9373 }, { "start": 1330.88, "end": 1331.68, "probability": 0.2583 }, { "start": 1331.86, "end": 1333.36, "probability": 0.8472 }, { "start": 1333.56, "end": 1335.9, "probability": 0.9611 }, { "start": 1337.7, "end": 1342.24, "probability": 0.9968 }, { "start": 1343.54, "end": 1345.64, "probability": 0.9427 }, { "start": 1346.5, "end": 1347.66, "probability": 0.6918 }, { "start": 1348.42, "end": 1350.38, "probability": 0.8947 }, { "start": 1352.76, "end": 1354.48, "probability": 0.9724 }, { "start": 1354.6, "end": 1355.0, "probability": 0.6081 }, { "start": 1355.06, "end": 1356.66, "probability": 0.9878 }, { "start": 1356.74, "end": 1357.96, "probability": 0.8382 }, { "start": 1358.62, "end": 1361.94, "probability": 0.9817 }, { "start": 1362.66, "end": 1363.56, "probability": 0.6116 }, { "start": 1364.66, "end": 1368.94, "probability": 0.8713 }, { "start": 1369.12, "end": 1370.84, "probability": 0.8282 }, { "start": 1371.26, "end": 1372.52, "probability": 0.9798 }, { "start": 1373.18, "end": 1374.76, "probability": 0.5591 }, { "start": 1374.78, "end": 1375.59, "probability": 0.9195 }, { "start": 1376.72, "end": 1377.4, "probability": 0.814 }, { "start": 1378.56, "end": 1381.56, "probability": 0.8617 }, { "start": 1382.08, "end": 1386.84, "probability": 0.9844 }, { "start": 1386.92, "end": 1388.0, "probability": 0.8813 }, { "start": 1389.54, "end": 1391.34, "probability": 0.8874 }, { "start": 1392.14, "end": 1393.54, "probability": 0.8682 }, { "start": 1394.14, "end": 1395.52, "probability": 0.981 }, { "start": 1398.28, "end": 1400.42, "probability": 0.6931 }, { "start": 1401.08, "end": 1404.72, "probability": 0.9498 }, { "start": 1404.8, "end": 1405.82, "probability": 0.9597 }, { "start": 1405.96, "end": 1406.64, "probability": 0.9017 }, { "start": 1406.68, "end": 1407.29, "probability": 0.981 }, { "start": 1407.88, "end": 1408.9, "probability": 0.9688 }, { "start": 1409.5, "end": 1410.38, "probability": 0.9182 }, { "start": 1411.42, "end": 1412.7, "probability": 0.7754 }, { "start": 1414.57, "end": 1416.7, "probability": 0.8254 }, { "start": 1416.72, "end": 1418.62, "probability": 0.7537 }, { "start": 1419.18, "end": 1420.24, "probability": 0.916 }, { "start": 1420.86, "end": 1421.06, "probability": 0.8956 }, { "start": 1421.94, "end": 1423.56, "probability": 0.9632 }, { "start": 1423.74, "end": 1426.6, "probability": 0.985 }, { "start": 1427.26, "end": 1429.74, "probability": 0.9702 }, { "start": 1430.24, "end": 1430.9, "probability": 0.6691 }, { "start": 1431.36, "end": 1432.92, "probability": 0.8368 }, { "start": 1433.38, "end": 1434.66, "probability": 0.7876 }, { "start": 1434.9, "end": 1436.3, "probability": 0.8233 }, { "start": 1436.78, "end": 1439.25, "probability": 0.8555 }, { "start": 1439.56, "end": 1442.5, "probability": 0.9659 }, { "start": 1442.58, "end": 1443.04, "probability": 0.8051 }, { "start": 1443.8, "end": 1444.58, "probability": 0.5643 }, { "start": 1444.82, "end": 1446.92, "probability": 0.8656 }, { "start": 1452.1, "end": 1453.14, "probability": 0.1985 }, { "start": 1453.44, "end": 1455.52, "probability": 0.8281 }, { "start": 1455.9, "end": 1458.74, "probability": 0.967 }, { "start": 1460.08, "end": 1464.56, "probability": 0.5205 }, { "start": 1465.36, "end": 1467.1, "probability": 0.9766 }, { "start": 1471.36, "end": 1477.0, "probability": 0.7827 }, { "start": 1477.2, "end": 1477.86, "probability": 0.867 }, { "start": 1478.14, "end": 1478.88, "probability": 0.8046 }, { "start": 1479.04, "end": 1482.26, "probability": 0.9948 }, { "start": 1482.9, "end": 1486.42, "probability": 0.9957 }, { "start": 1486.42, "end": 1489.46, "probability": 0.9988 }, { "start": 1491.34, "end": 1495.34, "probability": 0.9678 }, { "start": 1496.44, "end": 1499.76, "probability": 0.9411 }, { "start": 1500.08, "end": 1503.52, "probability": 0.9971 }, { "start": 1503.68, "end": 1504.9, "probability": 0.915 }, { "start": 1505.62, "end": 1507.38, "probability": 0.8274 }, { "start": 1508.1, "end": 1509.5, "probability": 0.8305 }, { "start": 1509.8, "end": 1512.46, "probability": 0.7538 }, { "start": 1512.56, "end": 1513.56, "probability": 0.0962 }, { "start": 1513.56, "end": 1513.8, "probability": 0.1402 }, { "start": 1513.8, "end": 1514.72, "probability": 0.2852 }, { "start": 1514.78, "end": 1516.26, "probability": 0.1042 }, { "start": 1516.26, "end": 1517.14, "probability": 0.5156 }, { "start": 1517.2, "end": 1519.96, "probability": 0.9945 }, { "start": 1520.64, "end": 1522.16, "probability": 0.9501 }, { "start": 1523.0, "end": 1524.34, "probability": 0.9446 }, { "start": 1524.52, "end": 1526.74, "probability": 0.9828 }, { "start": 1527.28, "end": 1528.86, "probability": 0.981 }, { "start": 1529.6, "end": 1531.66, "probability": 0.9945 }, { "start": 1532.14, "end": 1533.52, "probability": 0.9575 }, { "start": 1534.16, "end": 1537.04, "probability": 0.9854 }, { "start": 1537.8, "end": 1540.76, "probability": 0.9639 }, { "start": 1540.94, "end": 1544.54, "probability": 0.9993 }, { "start": 1545.62, "end": 1545.92, "probability": 0.8246 }, { "start": 1546.0, "end": 1547.1, "probability": 0.9552 }, { "start": 1547.54, "end": 1550.76, "probability": 0.9565 }, { "start": 1551.2, "end": 1552.0, "probability": 0.8816 }, { "start": 1552.44, "end": 1557.52, "probability": 0.992 }, { "start": 1558.14, "end": 1559.84, "probability": 0.9226 }, { "start": 1560.36, "end": 1560.82, "probability": 0.682 }, { "start": 1560.86, "end": 1564.24, "probability": 0.9971 }, { "start": 1564.68, "end": 1570.18, "probability": 0.9976 }, { "start": 1571.1, "end": 1572.68, "probability": 0.9946 }, { "start": 1573.02, "end": 1576.26, "probability": 0.9932 }, { "start": 1576.8, "end": 1577.36, "probability": 0.8029 }, { "start": 1577.92, "end": 1579.74, "probability": 0.8519 }, { "start": 1580.96, "end": 1583.36, "probability": 0.9788 }, { "start": 1588.22, "end": 1588.22, "probability": 0.6493 }, { "start": 1599.54, "end": 1601.16, "probability": 0.6797 }, { "start": 1601.8, "end": 1602.48, "probability": 0.8248 }, { "start": 1603.12, "end": 1604.08, "probability": 0.8089 }, { "start": 1605.8, "end": 1606.57, "probability": 0.7136 }, { "start": 1608.84, "end": 1610.86, "probability": 0.9012 }, { "start": 1612.0, "end": 1614.26, "probability": 0.8774 }, { "start": 1615.28, "end": 1617.5, "probability": 0.9589 }, { "start": 1618.32, "end": 1619.02, "probability": 0.941 }, { "start": 1619.86, "end": 1622.86, "probability": 0.9603 }, { "start": 1622.88, "end": 1624.4, "probability": 0.9664 }, { "start": 1624.62, "end": 1625.58, "probability": 0.9264 }, { "start": 1626.12, "end": 1627.66, "probability": 0.9755 }, { "start": 1629.26, "end": 1632.54, "probability": 0.9828 }, { "start": 1633.36, "end": 1634.26, "probability": 0.7039 }, { "start": 1635.26, "end": 1636.48, "probability": 0.8301 }, { "start": 1637.2, "end": 1640.2, "probability": 0.9847 }, { "start": 1640.72, "end": 1643.72, "probability": 0.8799 }, { "start": 1643.84, "end": 1645.36, "probability": 0.9265 }, { "start": 1645.78, "end": 1647.18, "probability": 0.9861 }, { "start": 1647.4, "end": 1648.36, "probability": 0.9893 }, { "start": 1649.56, "end": 1652.52, "probability": 0.9798 }, { "start": 1653.14, "end": 1655.52, "probability": 0.9982 }, { "start": 1656.1, "end": 1662.24, "probability": 0.9755 }, { "start": 1663.92, "end": 1664.84, "probability": 0.6412 }, { "start": 1665.42, "end": 1666.46, "probability": 0.9656 }, { "start": 1667.62, "end": 1668.68, "probability": 0.9656 }, { "start": 1669.62, "end": 1671.22, "probability": 0.9961 }, { "start": 1673.14, "end": 1676.24, "probability": 0.9568 }, { "start": 1676.94, "end": 1679.96, "probability": 0.9971 }, { "start": 1681.1, "end": 1684.38, "probability": 0.979 }, { "start": 1685.38, "end": 1687.48, "probability": 0.9385 }, { "start": 1689.12, "end": 1692.5, "probability": 0.9836 }, { "start": 1693.02, "end": 1695.08, "probability": 0.6195 }, { "start": 1695.7, "end": 1697.76, "probability": 0.9922 }, { "start": 1699.34, "end": 1700.26, "probability": 0.6673 }, { "start": 1700.88, "end": 1705.86, "probability": 0.9888 }, { "start": 1706.36, "end": 1707.42, "probability": 0.9394 }, { "start": 1707.48, "end": 1708.58, "probability": 0.917 }, { "start": 1709.19, "end": 1709.92, "probability": 0.7872 }, { "start": 1710.94, "end": 1712.26, "probability": 0.8791 }, { "start": 1712.34, "end": 1713.98, "probability": 0.9896 }, { "start": 1714.32, "end": 1717.4, "probability": 0.9845 }, { "start": 1718.56, "end": 1723.84, "probability": 0.9619 }, { "start": 1724.64, "end": 1727.56, "probability": 0.8843 }, { "start": 1728.34, "end": 1731.66, "probability": 0.9951 }, { "start": 1732.1, "end": 1737.02, "probability": 0.91 }, { "start": 1737.3, "end": 1742.32, "probability": 0.9953 }, { "start": 1743.76, "end": 1744.83, "probability": 0.7397 }, { "start": 1745.82, "end": 1748.52, "probability": 0.9946 }, { "start": 1749.18, "end": 1749.84, "probability": 0.9824 }, { "start": 1750.56, "end": 1751.18, "probability": 0.6947 }, { "start": 1751.68, "end": 1755.14, "probability": 0.9755 }, { "start": 1755.52, "end": 1756.38, "probability": 0.9075 }, { "start": 1756.96, "end": 1759.76, "probability": 0.9876 }, { "start": 1760.58, "end": 1762.9, "probability": 0.959 }, { "start": 1762.9, "end": 1766.06, "probability": 0.9981 }, { "start": 1766.68, "end": 1769.52, "probability": 0.9934 }, { "start": 1770.06, "end": 1773.58, "probability": 0.709 }, { "start": 1774.16, "end": 1776.18, "probability": 0.9985 }, { "start": 1776.2, "end": 1778.68, "probability": 0.9949 }, { "start": 1779.44, "end": 1783.0, "probability": 0.999 }, { "start": 1783.72, "end": 1786.4, "probability": 0.9777 }, { "start": 1786.54, "end": 1788.32, "probability": 0.9586 }, { "start": 1789.68, "end": 1791.1, "probability": 0.9813 }, { "start": 1791.68, "end": 1795.22, "probability": 0.9963 }, { "start": 1795.72, "end": 1797.48, "probability": 0.8821 }, { "start": 1798.28, "end": 1799.62, "probability": 0.8068 }, { "start": 1799.9, "end": 1800.88, "probability": 0.9432 }, { "start": 1801.36, "end": 1802.3, "probability": 0.9372 }, { "start": 1802.6, "end": 1803.52, "probability": 0.9513 }, { "start": 1803.98, "end": 1804.52, "probability": 0.7651 }, { "start": 1804.68, "end": 1805.38, "probability": 0.6543 }, { "start": 1805.88, "end": 1812.34, "probability": 0.8968 }, { "start": 1812.8, "end": 1815.1, "probability": 0.9263 }, { "start": 1815.72, "end": 1816.18, "probability": 0.942 }, { "start": 1820.72, "end": 1821.94, "probability": 0.7575 }, { "start": 1822.22, "end": 1824.92, "probability": 0.7687 }, { "start": 1825.36, "end": 1827.14, "probability": 0.9644 }, { "start": 1827.78, "end": 1828.8, "probability": 0.7081 }, { "start": 1828.86, "end": 1830.56, "probability": 0.5818 }, { "start": 1830.9, "end": 1832.28, "probability": 0.352 }, { "start": 1832.78, "end": 1833.98, "probability": 0.6905 }, { "start": 1836.13, "end": 1837.5, "probability": 0.8946 }, { "start": 1838.12, "end": 1840.86, "probability": 0.9725 }, { "start": 1843.98, "end": 1845.38, "probability": 0.9971 }, { "start": 1845.66, "end": 1849.16, "probability": 0.9949 }, { "start": 1849.58, "end": 1849.78, "probability": 0.891 }, { "start": 1849.86, "end": 1851.67, "probability": 0.7808 }, { "start": 1851.84, "end": 1854.84, "probability": 0.9912 }, { "start": 1857.5, "end": 1858.94, "probability": 0.9855 }, { "start": 1859.24, "end": 1860.1, "probability": 0.6658 }, { "start": 1860.18, "end": 1861.72, "probability": 0.9781 }, { "start": 1861.8, "end": 1865.68, "probability": 0.9974 }, { "start": 1866.3, "end": 1868.52, "probability": 0.9899 }, { "start": 1868.62, "end": 1872.2, "probability": 0.998 }, { "start": 1872.3, "end": 1875.08, "probability": 0.9881 }, { "start": 1875.14, "end": 1876.78, "probability": 0.5815 }, { "start": 1876.84, "end": 1878.2, "probability": 0.9253 }, { "start": 1878.24, "end": 1881.28, "probability": 0.9768 }, { "start": 1881.34, "end": 1882.42, "probability": 0.7773 }, { "start": 1882.44, "end": 1884.12, "probability": 0.9858 }, { "start": 1884.42, "end": 1887.54, "probability": 0.9946 }, { "start": 1887.54, "end": 1890.84, "probability": 0.9773 }, { "start": 1893.76, "end": 1894.42, "probability": 0.6884 }, { "start": 1894.5, "end": 1898.27, "probability": 0.9924 }, { "start": 1899.28, "end": 1900.08, "probability": 0.8063 }, { "start": 1900.22, "end": 1901.01, "probability": 0.8721 }, { "start": 1901.48, "end": 1902.04, "probability": 0.1722 }, { "start": 1902.1, "end": 1905.14, "probability": 0.9001 }, { "start": 1905.48, "end": 1906.59, "probability": 0.7991 }, { "start": 1907.18, "end": 1909.24, "probability": 0.9906 }, { "start": 1909.68, "end": 1909.8, "probability": 0.1988 }, { "start": 1909.84, "end": 1911.62, "probability": 0.9978 }, { "start": 1912.0, "end": 1914.42, "probability": 0.9964 }, { "start": 1914.76, "end": 1919.22, "probability": 0.9961 }, { "start": 1919.64, "end": 1921.34, "probability": 0.7618 }, { "start": 1921.4, "end": 1922.42, "probability": 0.9941 }, { "start": 1922.92, "end": 1923.48, "probability": 0.9829 }, { "start": 1923.9, "end": 1924.86, "probability": 0.9084 }, { "start": 1925.24, "end": 1926.96, "probability": 0.9907 }, { "start": 1927.14, "end": 1929.12, "probability": 0.9491 }, { "start": 1929.48, "end": 1930.92, "probability": 0.7705 }, { "start": 1931.26, "end": 1931.7, "probability": 0.5995 }, { "start": 1931.78, "end": 1932.96, "probability": 0.9736 }, { "start": 1933.56, "end": 1937.84, "probability": 0.9615 }, { "start": 1938.24, "end": 1939.66, "probability": 0.9222 }, { "start": 1940.06, "end": 1942.42, "probability": 0.8672 }, { "start": 1942.56, "end": 1943.6, "probability": 0.7595 }, { "start": 1944.08, "end": 1945.76, "probability": 0.9478 }, { "start": 1945.96, "end": 1949.46, "probability": 0.9851 }, { "start": 1949.46, "end": 1954.94, "probability": 0.9629 }, { "start": 1955.38, "end": 1957.12, "probability": 0.9934 }, { "start": 1957.52, "end": 1959.88, "probability": 0.9983 }, { "start": 1961.0, "end": 1963.46, "probability": 0.959 }, { "start": 1963.72, "end": 1966.38, "probability": 0.9928 }, { "start": 1966.38, "end": 1969.48, "probability": 0.9956 }, { "start": 1969.96, "end": 1970.72, "probability": 0.7962 }, { "start": 1971.24, "end": 1973.8, "probability": 0.9839 }, { "start": 1974.06, "end": 1977.94, "probability": 0.9955 }, { "start": 1978.04, "end": 1978.32, "probability": 0.8104 }, { "start": 1984.66, "end": 1984.68, "probability": 0.0118 }, { "start": 1984.68, "end": 1984.68, "probability": 0.2272 }, { "start": 1993.18, "end": 1993.84, "probability": 0.1403 }, { "start": 1994.7, "end": 1997.34, "probability": 0.1438 }, { "start": 1998.46, "end": 1999.96, "probability": 0.0054 }, { "start": 2014.49, "end": 2015.51, "probability": 0.0306 }, { "start": 2017.05, "end": 2019.68, "probability": 0.0043 }, { "start": 2023.55, "end": 2025.51, "probability": 0.3334 }, { "start": 2027.75, "end": 2033.23, "probability": 0.1178 }, { "start": 2035.05, "end": 2035.12, "probability": 0.0908 }, { "start": 2038.19, "end": 2038.49, "probability": 0.0059 }, { "start": 2077.1, "end": 2078.08, "probability": 0.0488 }, { "start": 2078.4, "end": 2078.88, "probability": 0.5576 }, { "start": 2079.2, "end": 2080.02, "probability": 0.7939 }, { "start": 2081.76, "end": 2083.26, "probability": 0.9663 }, { "start": 2086.02, "end": 2087.7, "probability": 0.9922 }, { "start": 2089.34, "end": 2091.7, "probability": 0.9936 }, { "start": 2092.96, "end": 2094.74, "probability": 0.9901 }, { "start": 2095.9, "end": 2097.06, "probability": 0.7725 }, { "start": 2098.34, "end": 2099.64, "probability": 0.8353 }, { "start": 2100.2, "end": 2101.74, "probability": 0.9448 }, { "start": 2102.62, "end": 2104.46, "probability": 0.7642 }, { "start": 2105.2, "end": 2106.95, "probability": 0.9961 }, { "start": 2107.76, "end": 2110.62, "probability": 0.9521 }, { "start": 2110.8, "end": 2111.71, "probability": 0.9953 }, { "start": 2113.52, "end": 2115.34, "probability": 0.8138 }, { "start": 2116.74, "end": 2117.72, "probability": 0.9886 }, { "start": 2119.62, "end": 2120.84, "probability": 0.9878 }, { "start": 2121.86, "end": 2125.46, "probability": 0.9843 }, { "start": 2126.14, "end": 2126.42, "probability": 0.7006 }, { "start": 2127.42, "end": 2127.9, "probability": 0.6866 }, { "start": 2129.0, "end": 2130.16, "probability": 0.9118 }, { "start": 2131.1, "end": 2132.5, "probability": 0.5043 }, { "start": 2133.66, "end": 2135.46, "probability": 0.7096 }, { "start": 2136.7, "end": 2139.66, "probability": 0.969 }, { "start": 2140.72, "end": 2143.38, "probability": 0.8406 }, { "start": 2145.9, "end": 2152.98, "probability": 0.6559 }, { "start": 2154.18, "end": 2158.32, "probability": 0.9969 }, { "start": 2159.2, "end": 2161.08, "probability": 0.9887 }, { "start": 2161.24, "end": 2161.92, "probability": 0.5001 }, { "start": 2162.74, "end": 2163.82, "probability": 0.637 }, { "start": 2164.88, "end": 2165.7, "probability": 0.8477 }, { "start": 2167.08, "end": 2169.14, "probability": 0.9627 }, { "start": 2170.94, "end": 2177.96, "probability": 0.7955 }, { "start": 2178.58, "end": 2179.52, "probability": 0.9176 }, { "start": 2180.04, "end": 2180.75, "probability": 0.812 }, { "start": 2181.58, "end": 2182.08, "probability": 0.7028 }, { "start": 2182.9, "end": 2184.92, "probability": 0.912 }, { "start": 2186.3, "end": 2186.96, "probability": 0.9912 }, { "start": 2189.74, "end": 2190.88, "probability": 0.9963 }, { "start": 2191.64, "end": 2192.54, "probability": 0.957 }, { "start": 2193.94, "end": 2194.62, "probability": 0.8819 }, { "start": 2195.54, "end": 2199.4, "probability": 0.9966 }, { "start": 2199.52, "end": 2199.94, "probability": 0.7098 }, { "start": 2201.18, "end": 2202.28, "probability": 0.9905 }, { "start": 2204.48, "end": 2205.46, "probability": 0.8004 }, { "start": 2206.66, "end": 2207.95, "probability": 0.9495 }, { "start": 2208.48, "end": 2209.88, "probability": 0.9832 }, { "start": 2209.94, "end": 2210.94, "probability": 0.9007 }, { "start": 2212.12, "end": 2215.54, "probability": 0.9887 }, { "start": 2216.48, "end": 2218.24, "probability": 0.6172 }, { "start": 2219.58, "end": 2220.5, "probability": 0.9323 }, { "start": 2221.38, "end": 2225.8, "probability": 0.9613 }, { "start": 2227.12, "end": 2227.76, "probability": 0.9033 }, { "start": 2228.26, "end": 2230.86, "probability": 0.9742 }, { "start": 2230.96, "end": 2231.92, "probability": 0.9785 }, { "start": 2232.84, "end": 2233.84, "probability": 0.9859 }, { "start": 2233.9, "end": 2234.86, "probability": 0.9881 }, { "start": 2235.6, "end": 2237.58, "probability": 0.9956 }, { "start": 2238.16, "end": 2240.34, "probability": 0.9893 }, { "start": 2241.04, "end": 2241.88, "probability": 0.9932 }, { "start": 2241.98, "end": 2242.41, "probability": 0.8224 }, { "start": 2244.64, "end": 2246.04, "probability": 0.7434 }, { "start": 2247.04, "end": 2248.8, "probability": 0.7965 }, { "start": 2249.64, "end": 2250.12, "probability": 0.8484 }, { "start": 2250.96, "end": 2252.49, "probability": 0.9619 }, { "start": 2253.64, "end": 2253.64, "probability": 0.958 }, { "start": 2257.16, "end": 2258.6, "probability": 0.9916 }, { "start": 2259.22, "end": 2259.52, "probability": 0.1565 }, { "start": 2260.1, "end": 2261.94, "probability": 0.9688 }, { "start": 2263.4, "end": 2265.62, "probability": 0.9651 }, { "start": 2265.8, "end": 2266.84, "probability": 0.9473 }, { "start": 2267.38, "end": 2268.74, "probability": 0.9678 }, { "start": 2268.82, "end": 2270.54, "probability": 0.9739 }, { "start": 2270.8, "end": 2272.06, "probability": 0.9307 }, { "start": 2274.12, "end": 2276.98, "probability": 0.9016 }, { "start": 2278.2, "end": 2279.28, "probability": 0.9808 }, { "start": 2280.3, "end": 2280.86, "probability": 0.7018 }, { "start": 2281.42, "end": 2281.84, "probability": 0.4485 }, { "start": 2282.74, "end": 2285.82, "probability": 0.9915 }, { "start": 2287.36, "end": 2290.24, "probability": 0.7845 }, { "start": 2291.32, "end": 2293.54, "probability": 0.9946 }, { "start": 2293.78, "end": 2296.08, "probability": 0.9847 }, { "start": 2296.74, "end": 2297.6, "probability": 0.9723 }, { "start": 2298.7, "end": 2303.78, "probability": 0.8334 }, { "start": 2304.42, "end": 2306.98, "probability": 0.8928 }, { "start": 2308.04, "end": 2309.24, "probability": 0.9269 }, { "start": 2310.04, "end": 2312.08, "probability": 0.8786 }, { "start": 2312.93, "end": 2316.24, "probability": 0.8659 }, { "start": 2316.26, "end": 2318.03, "probability": 0.9869 }, { "start": 2320.12, "end": 2321.23, "probability": 0.8317 }, { "start": 2322.88, "end": 2327.56, "probability": 0.998 }, { "start": 2328.0, "end": 2328.72, "probability": 0.9558 }, { "start": 2330.32, "end": 2333.12, "probability": 0.7209 }, { "start": 2333.12, "end": 2333.66, "probability": 0.5173 }, { "start": 2334.2, "end": 2334.56, "probability": 0.6484 }, { "start": 2335.28, "end": 2336.6, "probability": 0.7151 }, { "start": 2338.84, "end": 2340.5, "probability": 0.8462 }, { "start": 2340.68, "end": 2342.2, "probability": 0.9958 }, { "start": 2343.1, "end": 2346.92, "probability": 0.9513 }, { "start": 2348.14, "end": 2351.6, "probability": 0.7135 }, { "start": 2351.6, "end": 2353.4, "probability": 0.6677 }, { "start": 2354.04, "end": 2354.78, "probability": 0.6861 }, { "start": 2354.8, "end": 2355.5, "probability": 0.8909 }, { "start": 2356.9, "end": 2357.78, "probability": 0.9945 }, { "start": 2359.24, "end": 2360.46, "probability": 0.9946 }, { "start": 2363.04, "end": 2365.04, "probability": 0.271 }, { "start": 2365.98, "end": 2369.24, "probability": 0.9957 }, { "start": 2370.2, "end": 2371.82, "probability": 0.6862 }, { "start": 2373.16, "end": 2373.6, "probability": 0.8725 }, { "start": 2374.1, "end": 2374.9, "probability": 0.8592 }, { "start": 2375.12, "end": 2376.0, "probability": 0.9684 }, { "start": 2376.5, "end": 2376.86, "probability": 0.8583 }, { "start": 2377.16, "end": 2378.1, "probability": 0.9927 }, { "start": 2378.22, "end": 2378.86, "probability": 0.9478 }, { "start": 2379.68, "end": 2381.52, "probability": 0.959 }, { "start": 2382.72, "end": 2383.74, "probability": 0.7013 }, { "start": 2384.56, "end": 2386.54, "probability": 0.9946 }, { "start": 2387.26, "end": 2389.4, "probability": 0.8792 }, { "start": 2389.5, "end": 2389.82, "probability": 0.5609 }, { "start": 2389.86, "end": 2390.68, "probability": 0.4962 }, { "start": 2392.1, "end": 2393.18, "probability": 0.9965 }, { "start": 2394.31, "end": 2397.3, "probability": 0.9875 }, { "start": 2398.08, "end": 2399.66, "probability": 0.9686 }, { "start": 2400.04, "end": 2403.04, "probability": 0.9985 }, { "start": 2404.26, "end": 2405.9, "probability": 0.9055 }, { "start": 2406.16, "end": 2407.92, "probability": 0.7354 }, { "start": 2408.0, "end": 2411.04, "probability": 0.9567 }, { "start": 2412.06, "end": 2412.8, "probability": 0.906 }, { "start": 2413.86, "end": 2415.42, "probability": 0.7437 }, { "start": 2416.24, "end": 2417.06, "probability": 0.6663 }, { "start": 2418.04, "end": 2419.52, "probability": 0.9941 }, { "start": 2419.72, "end": 2421.24, "probability": 0.9373 }, { "start": 2422.04, "end": 2423.08, "probability": 0.998 }, { "start": 2424.12, "end": 2426.12, "probability": 0.9857 }, { "start": 2426.66, "end": 2427.66, "probability": 0.7339 }, { "start": 2428.54, "end": 2430.28, "probability": 0.8431 }, { "start": 2430.78, "end": 2431.74, "probability": 0.8047 }, { "start": 2432.18, "end": 2435.78, "probability": 0.9664 }, { "start": 2435.78, "end": 2438.2, "probability": 0.9569 }, { "start": 2438.56, "end": 2440.92, "probability": 0.9792 }, { "start": 2441.48, "end": 2442.47, "probability": 0.9917 }, { "start": 2442.9, "end": 2443.76, "probability": 0.9213 }, { "start": 2444.74, "end": 2445.22, "probability": 0.8979 }, { "start": 2446.02, "end": 2446.6, "probability": 0.8118 }, { "start": 2446.7, "end": 2448.36, "probability": 0.9162 }, { "start": 2448.86, "end": 2450.42, "probability": 0.8953 }, { "start": 2450.5, "end": 2453.64, "probability": 0.0435 }, { "start": 2453.64, "end": 2453.64, "probability": 0.0314 }, { "start": 2453.64, "end": 2453.97, "probability": 0.6934 }, { "start": 2454.68, "end": 2457.1, "probability": 0.8082 }, { "start": 2457.6, "end": 2458.46, "probability": 0.616 }, { "start": 2459.02, "end": 2463.54, "probability": 0.9805 }, { "start": 2464.7, "end": 2466.34, "probability": 0.9173 }, { "start": 2466.42, "end": 2467.0, "probability": 0.9068 }, { "start": 2467.08, "end": 2469.48, "probability": 0.9787 }, { "start": 2469.6, "end": 2472.4, "probability": 0.9124 }, { "start": 2472.48, "end": 2474.4, "probability": 0.9978 }, { "start": 2475.34, "end": 2476.86, "probability": 0.9004 }, { "start": 2477.74, "end": 2478.74, "probability": 0.4542 }, { "start": 2480.58, "end": 2483.0, "probability": 0.9822 }, { "start": 2484.24, "end": 2486.88, "probability": 0.9914 }, { "start": 2487.74, "end": 2488.16, "probability": 0.9787 }, { "start": 2489.22, "end": 2490.74, "probability": 0.9969 }, { "start": 2491.44, "end": 2493.6, "probability": 0.9971 }, { "start": 2494.8, "end": 2495.36, "probability": 0.9296 }, { "start": 2495.96, "end": 2496.58, "probability": 0.9731 }, { "start": 2497.42, "end": 2499.64, "probability": 0.6907 }, { "start": 2500.36, "end": 2501.76, "probability": 0.9922 }, { "start": 2501.86, "end": 2503.0, "probability": 0.9821 }, { "start": 2503.14, "end": 2505.02, "probability": 0.7575 }, { "start": 2505.84, "end": 2507.58, "probability": 0.6079 }, { "start": 2510.15, "end": 2512.26, "probability": 0.8023 }, { "start": 2513.8, "end": 2514.88, "probability": 0.9974 }, { "start": 2515.9, "end": 2516.56, "probability": 0.9386 }, { "start": 2517.18, "end": 2519.66, "probability": 0.9873 }, { "start": 2520.38, "end": 2522.46, "probability": 0.9868 }, { "start": 2522.58, "end": 2523.46, "probability": 0.9094 }, { "start": 2524.32, "end": 2525.14, "probability": 0.9431 }, { "start": 2525.24, "end": 2528.68, "probability": 0.9928 }, { "start": 2529.2, "end": 2532.5, "probability": 0.986 }, { "start": 2533.58, "end": 2536.5, "probability": 0.8995 }, { "start": 2537.24, "end": 2539.18, "probability": 0.7886 }, { "start": 2539.3, "end": 2539.94, "probability": 0.9802 }, { "start": 2540.8, "end": 2543.7, "probability": 0.9843 }, { "start": 2545.0, "end": 2546.24, "probability": 0.9907 }, { "start": 2546.74, "end": 2547.37, "probability": 0.9729 }, { "start": 2548.32, "end": 2551.1, "probability": 0.8459 }, { "start": 2551.62, "end": 2551.72, "probability": 0.3737 }, { "start": 2552.42, "end": 2553.52, "probability": 0.9629 }, { "start": 2554.36, "end": 2556.4, "probability": 0.9661 }, { "start": 2557.38, "end": 2561.24, "probability": 0.8994 }, { "start": 2561.84, "end": 2563.74, "probability": 0.9697 }, { "start": 2563.82, "end": 2565.34, "probability": 0.6007 }, { "start": 2566.06, "end": 2567.88, "probability": 0.9907 }, { "start": 2568.42, "end": 2568.76, "probability": 0.7879 }, { "start": 2570.56, "end": 2571.26, "probability": 0.8136 }, { "start": 2572.14, "end": 2573.66, "probability": 0.9087 }, { "start": 2573.94, "end": 2576.52, "probability": 0.9344 }, { "start": 2577.04, "end": 2577.74, "probability": 0.0567 }, { "start": 2579.08, "end": 2579.18, "probability": 0.121 }, { "start": 2580.08, "end": 2580.08, "probability": 0.1947 }, { "start": 2580.08, "end": 2580.08, "probability": 0.0675 }, { "start": 2580.3, "end": 2581.49, "probability": 0.7252 }, { "start": 2582.06, "end": 2582.06, "probability": 0.1514 }, { "start": 2582.06, "end": 2583.36, "probability": 0.1773 }, { "start": 2583.46, "end": 2586.1, "probability": 0.9595 }, { "start": 2586.46, "end": 2588.14, "probability": 0.2474 }, { "start": 2588.46, "end": 2589.42, "probability": 0.4712 }, { "start": 2589.42, "end": 2589.42, "probability": 0.2117 }, { "start": 2589.42, "end": 2591.2, "probability": 0.5091 }, { "start": 2591.56, "end": 2592.9, "probability": 0.7174 }, { "start": 2593.04, "end": 2594.71, "probability": 0.5666 }, { "start": 2594.9, "end": 2595.5, "probability": 0.6971 }, { "start": 2613.49, "end": 2616.76, "probability": 0.5625 }, { "start": 2617.02, "end": 2617.82, "probability": 0.6591 }, { "start": 2620.76, "end": 2622.24, "probability": 0.7742 }, { "start": 2622.34, "end": 2626.38, "probability": 0.918 }, { "start": 2627.14, "end": 2627.84, "probability": 0.892 }, { "start": 2628.4, "end": 2633.98, "probability": 0.9989 }, { "start": 2633.98, "end": 2639.86, "probability": 0.979 }, { "start": 2640.64, "end": 2647.2, "probability": 0.9949 }, { "start": 2647.96, "end": 2653.16, "probability": 0.9668 }, { "start": 2653.24, "end": 2655.84, "probability": 0.9971 }, { "start": 2656.84, "end": 2661.42, "probability": 0.9924 }, { "start": 2662.58, "end": 2666.3, "probability": 0.9868 }, { "start": 2666.92, "end": 2669.32, "probability": 0.9949 }, { "start": 2670.56, "end": 2672.54, "probability": 0.8225 }, { "start": 2672.78, "end": 2674.8, "probability": 0.869 }, { "start": 2674.84, "end": 2676.42, "probability": 0.9877 }, { "start": 2676.98, "end": 2679.92, "probability": 0.9741 }, { "start": 2680.96, "end": 2681.44, "probability": 0.5305 }, { "start": 2681.58, "end": 2682.26, "probability": 0.5205 }, { "start": 2682.36, "end": 2683.24, "probability": 0.7495 }, { "start": 2683.72, "end": 2688.2, "probability": 0.962 }, { "start": 2688.3, "end": 2689.02, "probability": 0.906 }, { "start": 2689.56, "end": 2690.54, "probability": 0.774 }, { "start": 2691.92, "end": 2696.5, "probability": 0.9806 }, { "start": 2697.72, "end": 2699.62, "probability": 0.879 }, { "start": 2700.54, "end": 2701.24, "probability": 0.9897 }, { "start": 2701.34, "end": 2705.42, "probability": 0.9961 }, { "start": 2705.86, "end": 2707.02, "probability": 0.7668 }, { "start": 2707.66, "end": 2711.3, "probability": 0.9707 }, { "start": 2711.82, "end": 2714.02, "probability": 0.9933 }, { "start": 2714.36, "end": 2717.54, "probability": 0.9892 }, { "start": 2718.22, "end": 2718.9, "probability": 0.9416 }, { "start": 2719.6, "end": 2724.92, "probability": 0.9922 }, { "start": 2726.08, "end": 2727.46, "probability": 0.8557 }, { "start": 2728.0, "end": 2728.18, "probability": 0.4494 }, { "start": 2728.22, "end": 2728.52, "probability": 0.8848 }, { "start": 2728.56, "end": 2732.16, "probability": 0.9969 }, { "start": 2733.46, "end": 2738.36, "probability": 0.9955 }, { "start": 2738.88, "end": 2741.94, "probability": 0.9795 }, { "start": 2742.66, "end": 2743.54, "probability": 0.8001 }, { "start": 2744.1, "end": 2749.46, "probability": 0.9776 }, { "start": 2749.46, "end": 2755.48, "probability": 0.9935 }, { "start": 2756.8, "end": 2757.9, "probability": 0.8913 }, { "start": 2758.16, "end": 2759.28, "probability": 0.9163 }, { "start": 2759.38, "end": 2760.72, "probability": 0.8535 }, { "start": 2761.16, "end": 2761.66, "probability": 0.428 }, { "start": 2761.72, "end": 2762.2, "probability": 0.9246 }, { "start": 2762.82, "end": 2764.82, "probability": 0.926 }, { "start": 2764.98, "end": 2765.9, "probability": 0.8115 }, { "start": 2766.08, "end": 2766.86, "probability": 0.8853 }, { "start": 2766.92, "end": 2767.84, "probability": 0.901 }, { "start": 2768.38, "end": 2771.72, "probability": 0.9571 }, { "start": 2772.64, "end": 2773.74, "probability": 0.798 }, { "start": 2774.62, "end": 2775.54, "probability": 0.998 }, { "start": 2776.42, "end": 2779.82, "probability": 0.9856 }, { "start": 2780.86, "end": 2784.3, "probability": 0.9753 }, { "start": 2784.52, "end": 2785.62, "probability": 0.9446 }, { "start": 2786.04, "end": 2786.44, "probability": 0.6716 }, { "start": 2786.6, "end": 2787.62, "probability": 0.8768 }, { "start": 2788.44, "end": 2788.74, "probability": 0.0155 }, { "start": 2789.08, "end": 2789.08, "probability": 0.0777 }, { "start": 2789.08, "end": 2789.98, "probability": 0.6836 }, { "start": 2790.54, "end": 2794.18, "probability": 0.9645 }, { "start": 2794.48, "end": 2794.82, "probability": 0.7762 }, { "start": 2795.28, "end": 2796.34, "probability": 0.9882 }, { "start": 2796.4, "end": 2796.82, "probability": 0.7312 }, { "start": 2797.38, "end": 2800.42, "probability": 0.9734 }, { "start": 2801.04, "end": 2804.16, "probability": 0.7316 }, { "start": 2804.18, "end": 2804.62, "probability": 0.9956 }, { "start": 2805.6, "end": 2806.44, "probability": 0.9934 }, { "start": 2807.14, "end": 2810.28, "probability": 0.9565 }, { "start": 2810.7, "end": 2812.92, "probability": 0.9961 }, { "start": 2813.82, "end": 2814.16, "probability": 0.0389 }, { "start": 2814.66, "end": 2814.7, "probability": 0.1145 }, { "start": 2814.7, "end": 2815.78, "probability": 0.3582 }, { "start": 2815.86, "end": 2819.04, "probability": 0.8019 }, { "start": 2819.64, "end": 2820.36, "probability": 0.6927 }, { "start": 2821.0, "end": 2822.34, "probability": 0.9778 }, { "start": 2822.96, "end": 2823.5, "probability": 0.5463 }, { "start": 2823.6, "end": 2824.4, "probability": 0.5997 }, { "start": 2824.48, "end": 2826.44, "probability": 0.7233 }, { "start": 2827.04, "end": 2829.4, "probability": 0.9938 }, { "start": 2830.3, "end": 2831.98, "probability": 0.8623 }, { "start": 2832.18, "end": 2832.82, "probability": 0.9242 }, { "start": 2832.88, "end": 2833.7, "probability": 0.9971 }, { "start": 2834.36, "end": 2835.12, "probability": 0.9289 }, { "start": 2835.9, "end": 2836.44, "probability": 0.8643 }, { "start": 2836.54, "end": 2838.46, "probability": 0.9709 }, { "start": 2839.12, "end": 2840.12, "probability": 0.9106 }, { "start": 2840.68, "end": 2842.58, "probability": 0.9033 }, { "start": 2843.58, "end": 2847.63, "probability": 0.8141 }, { "start": 2848.14, "end": 2849.18, "probability": 0.9897 }, { "start": 2849.3, "end": 2850.1, "probability": 0.9966 }, { "start": 2850.9, "end": 2852.82, "probability": 0.8276 }, { "start": 2853.12, "end": 2855.74, "probability": 0.9242 }, { "start": 2856.14, "end": 2857.38, "probability": 0.8086 }, { "start": 2857.5, "end": 2858.14, "probability": 0.8518 }, { "start": 2858.14, "end": 2859.14, "probability": 0.9552 }, { "start": 2859.66, "end": 2860.18, "probability": 0.6179 }, { "start": 2860.4, "end": 2861.02, "probability": 0.683 }, { "start": 2861.12, "end": 2863.48, "probability": 0.9302 }, { "start": 2863.92, "end": 2865.78, "probability": 0.9387 }, { "start": 2883.32, "end": 2885.8, "probability": 0.6224 }, { "start": 2885.94, "end": 2890.77, "probability": 0.6702 }, { "start": 2894.3, "end": 2895.12, "probability": 0.5184 }, { "start": 2907.78, "end": 2909.62, "probability": 0.5457 }, { "start": 2910.7, "end": 2911.54, "probability": 0.542 }, { "start": 2911.84, "end": 2913.2, "probability": 0.7292 }, { "start": 2913.56, "end": 2913.94, "probability": 0.8177 }, { "start": 2914.32, "end": 2919.24, "probability": 0.9572 }, { "start": 2919.8, "end": 2924.8, "probability": 0.6686 }, { "start": 2924.94, "end": 2930.9, "probability": 0.9958 }, { "start": 2931.5, "end": 2935.88, "probability": 0.9744 }, { "start": 2936.0, "end": 2939.14, "probability": 0.9906 }, { "start": 2939.28, "end": 2942.36, "probability": 0.8125 }, { "start": 2942.88, "end": 2945.56, "probability": 0.9902 }, { "start": 2946.32, "end": 2948.96, "probability": 0.7206 }, { "start": 2949.68, "end": 2951.0, "probability": 0.9189 }, { "start": 2951.38, "end": 2955.12, "probability": 0.8976 }, { "start": 2955.26, "end": 2957.8, "probability": 0.897 }, { "start": 2958.14, "end": 2964.18, "probability": 0.8496 }, { "start": 2964.54, "end": 2967.78, "probability": 0.9367 }, { "start": 2967.98, "end": 2969.24, "probability": 0.9043 }, { "start": 2970.3, "end": 2973.88, "probability": 0.9771 }, { "start": 2974.6, "end": 2978.86, "probability": 0.9962 }, { "start": 2979.74, "end": 2980.68, "probability": 0.836 }, { "start": 2980.82, "end": 2981.42, "probability": 0.7618 }, { "start": 2981.58, "end": 2982.42, "probability": 0.8854 }, { "start": 2982.88, "end": 2986.56, "probability": 0.9937 }, { "start": 2987.24, "end": 2989.74, "probability": 0.9931 }, { "start": 2990.34, "end": 2997.0, "probability": 0.9941 }, { "start": 2997.22, "end": 2998.48, "probability": 0.8055 }, { "start": 2999.06, "end": 3002.7, "probability": 0.8559 }, { "start": 3003.2, "end": 3005.06, "probability": 0.8573 }, { "start": 3005.52, "end": 3007.18, "probability": 0.7083 }, { "start": 3007.83, "end": 3012.76, "probability": 0.8506 }, { "start": 3013.44, "end": 3013.44, "probability": 0.0186 }, { "start": 3014.34, "end": 3015.9, "probability": 0.6477 }, { "start": 3016.02, "end": 3016.3, "probability": 0.6777 }, { "start": 3016.36, "end": 3017.16, "probability": 0.8517 }, { "start": 3017.2, "end": 3018.04, "probability": 0.9215 }, { "start": 3018.38, "end": 3019.34, "probability": 0.7893 }, { "start": 3019.44, "end": 3021.12, "probability": 0.9467 }, { "start": 3021.5, "end": 3024.0, "probability": 0.9335 }, { "start": 3024.58, "end": 3025.4, "probability": 0.7642 }, { "start": 3025.56, "end": 3027.86, "probability": 0.9546 }, { "start": 3028.46, "end": 3030.38, "probability": 0.719 }, { "start": 3030.84, "end": 3034.82, "probability": 0.8796 }, { "start": 3035.0, "end": 3035.02, "probability": 0.2657 }, { "start": 3035.02, "end": 3035.02, "probability": 0.4534 }, { "start": 3035.02, "end": 3036.92, "probability": 0.3961 }, { "start": 3036.92, "end": 3038.54, "probability": 0.6567 }, { "start": 3038.56, "end": 3041.12, "probability": 0.7873 }, { "start": 3041.12, "end": 3041.36, "probability": 0.0309 }, { "start": 3041.36, "end": 3044.14, "probability": 0.9756 }, { "start": 3044.22, "end": 3044.32, "probability": 0.27 }, { "start": 3044.46, "end": 3044.88, "probability": 0.4752 }, { "start": 3044.96, "end": 3045.22, "probability": 0.6221 }, { "start": 3045.3, "end": 3046.28, "probability": 0.7386 }, { "start": 3046.4, "end": 3048.24, "probability": 0.8701 }, { "start": 3048.7, "end": 3050.16, "probability": 0.9648 }, { "start": 3050.52, "end": 3051.52, "probability": 0.7559 }, { "start": 3051.66, "end": 3052.12, "probability": 0.6571 }, { "start": 3052.26, "end": 3055.7, "probability": 0.9867 }, { "start": 3056.36, "end": 3058.78, "probability": 0.7681 }, { "start": 3058.88, "end": 3061.36, "probability": 0.7319 }, { "start": 3061.96, "end": 3063.26, "probability": 0.9117 }, { "start": 3063.96, "end": 3067.36, "probability": 0.8632 }, { "start": 3067.96, "end": 3069.5, "probability": 0.909 }, { "start": 3070.38, "end": 3071.38, "probability": 0.6875 }, { "start": 3071.42, "end": 3073.28, "probability": 0.844 }, { "start": 3073.38, "end": 3077.4, "probability": 0.9808 }, { "start": 3077.62, "end": 3078.25, "probability": 0.9815 }, { "start": 3078.7, "end": 3079.27, "probability": 0.9922 }, { "start": 3079.92, "end": 3082.0, "probability": 0.9893 }, { "start": 3082.46, "end": 3085.56, "probability": 0.7799 }, { "start": 3085.66, "end": 3089.2, "probability": 0.9871 }, { "start": 3089.24, "end": 3092.24, "probability": 0.9668 }, { "start": 3092.6, "end": 3093.9, "probability": 0.98 }, { "start": 3094.06, "end": 3095.48, "probability": 0.9956 }, { "start": 3096.04, "end": 3100.76, "probability": 0.9208 }, { "start": 3101.3, "end": 3103.8, "probability": 0.8625 }, { "start": 3107.22, "end": 3108.4, "probability": 0.0715 }, { "start": 3109.1, "end": 3109.9, "probability": 0.8406 }, { "start": 3109.98, "end": 3112.0, "probability": 0.7839 }, { "start": 3112.14, "end": 3113.68, "probability": 0.8788 }, { "start": 3114.08, "end": 3115.62, "probability": 0.7203 }, { "start": 3115.62, "end": 3117.9, "probability": 0.958 }, { "start": 3118.4, "end": 3121.69, "probability": 0.9961 }, { "start": 3122.26, "end": 3124.58, "probability": 0.8397 }, { "start": 3124.7, "end": 3125.41, "probability": 0.9058 }, { "start": 3125.8, "end": 3126.96, "probability": 0.8774 }, { "start": 3127.2, "end": 3127.4, "probability": 0.541 }, { "start": 3127.44, "end": 3129.55, "probability": 0.8544 }, { "start": 3129.88, "end": 3133.26, "probability": 0.9987 }, { "start": 3133.8, "end": 3136.88, "probability": 0.9866 }, { "start": 3136.96, "end": 3137.7, "probability": 0.5447 }, { "start": 3137.74, "end": 3138.52, "probability": 0.9306 }, { "start": 3139.16, "end": 3140.16, "probability": 0.7086 }, { "start": 3140.4, "end": 3141.16, "probability": 0.9927 }, { "start": 3142.62, "end": 3143.2, "probability": 0.8547 }, { "start": 3150.84, "end": 3151.42, "probability": 0.3259 }, { "start": 3152.38, "end": 3153.36, "probability": 0.8842 }, { "start": 3153.36, "end": 3153.72, "probability": 0.4475 }, { "start": 3154.1, "end": 3154.42, "probability": 0.8582 }, { "start": 3154.56, "end": 3155.16, "probability": 0.9502 }, { "start": 3155.34, "end": 3157.06, "probability": 0.9773 }, { "start": 3161.98, "end": 3162.84, "probability": 0.7029 }, { "start": 3163.14, "end": 3165.38, "probability": 0.9878 }, { "start": 3165.92, "end": 3167.94, "probability": 0.9933 }, { "start": 3168.1, "end": 3169.92, "probability": 0.9622 }, { "start": 3170.42, "end": 3170.44, "probability": 0.647 }, { "start": 3171.2, "end": 3172.46, "probability": 0.9076 }, { "start": 3173.2, "end": 3176.66, "probability": 0.8942 }, { "start": 3176.92, "end": 3179.29, "probability": 0.9865 }, { "start": 3179.6, "end": 3184.66, "probability": 0.4045 }, { "start": 3184.66, "end": 3184.66, "probability": 0.1215 }, { "start": 3184.66, "end": 3184.66, "probability": 0.2416 }, { "start": 3184.66, "end": 3185.12, "probability": 0.0097 }, { "start": 3185.64, "end": 3186.2, "probability": 0.7665 }, { "start": 3188.58, "end": 3189.62, "probability": 0.8374 }, { "start": 3190.74, "end": 3192.42, "probability": 0.9846 }, { "start": 3192.78, "end": 3193.16, "probability": 0.5346 }, { "start": 3193.28, "end": 3194.48, "probability": 0.7783 }, { "start": 3197.62, "end": 3197.94, "probability": 0.7899 }, { "start": 3199.2, "end": 3199.56, "probability": 0.4922 }, { "start": 3199.56, "end": 3200.37, "probability": 0.3148 }, { "start": 3200.8, "end": 3205.08, "probability": 0.9663 }, { "start": 3206.5, "end": 3206.8, "probability": 0.927 }, { "start": 3208.36, "end": 3209.28, "probability": 0.7572 }, { "start": 3210.26, "end": 3211.18, "probability": 0.9032 }, { "start": 3213.38, "end": 3213.38, "probability": 0.8232 }, { "start": 3218.6, "end": 3219.66, "probability": 0.9716 }, { "start": 3220.48, "end": 3221.18, "probability": 0.9983 }, { "start": 3222.0, "end": 3223.7, "probability": 0.9732 }, { "start": 3223.84, "end": 3224.27, "probability": 0.8898 }, { "start": 3224.58, "end": 3225.32, "probability": 0.7914 }, { "start": 3225.34, "end": 3226.42, "probability": 0.9985 }, { "start": 3227.0, "end": 3228.46, "probability": 0.755 }, { "start": 3228.6, "end": 3230.86, "probability": 0.9943 }, { "start": 3231.6, "end": 3235.04, "probability": 0.9973 }, { "start": 3235.08, "end": 3239.4, "probability": 0.98 }, { "start": 3239.94, "end": 3240.92, "probability": 0.5399 }, { "start": 3242.25, "end": 3244.2, "probability": 0.651 }, { "start": 3244.46, "end": 3245.82, "probability": 0.8096 }, { "start": 3245.96, "end": 3248.14, "probability": 0.9028 }, { "start": 3248.24, "end": 3251.64, "probability": 0.9957 }, { "start": 3253.2, "end": 3254.97, "probability": 0.6244 }, { "start": 3255.42, "end": 3255.78, "probability": 0.4378 }, { "start": 3255.92, "end": 3256.2, "probability": 0.9502 }, { "start": 3256.24, "end": 3259.76, "probability": 0.9322 }, { "start": 3260.08, "end": 3262.2, "probability": 0.9988 }, { "start": 3262.32, "end": 3265.48, "probability": 0.9946 }, { "start": 3265.92, "end": 3271.68, "probability": 0.9619 }, { "start": 3271.76, "end": 3273.6, "probability": 0.9897 }, { "start": 3274.02, "end": 3276.52, "probability": 0.9745 }, { "start": 3276.52, "end": 3280.16, "probability": 0.984 }, { "start": 3280.28, "end": 3281.02, "probability": 0.6895 }, { "start": 3281.1, "end": 3281.72, "probability": 0.7622 }, { "start": 3281.92, "end": 3282.56, "probability": 0.9757 }, { "start": 3283.22, "end": 3284.38, "probability": 0.8002 }, { "start": 3285.24, "end": 3286.82, "probability": 0.8734 }, { "start": 3286.94, "end": 3287.62, "probability": 0.7839 }, { "start": 3287.68, "end": 3288.24, "probability": 0.8777 }, { "start": 3288.72, "end": 3289.26, "probability": 0.8454 }, { "start": 3289.86, "end": 3292.4, "probability": 0.9839 }, { "start": 3292.64, "end": 3292.88, "probability": 0.7747 }, { "start": 3293.3, "end": 3294.08, "probability": 0.9287 }, { "start": 3294.12, "end": 3295.76, "probability": 0.8048 }, { "start": 3295.84, "end": 3298.02, "probability": 0.5963 }, { "start": 3298.52, "end": 3298.9, "probability": 0.94 }, { "start": 3299.42, "end": 3301.74, "probability": 0.8669 }, { "start": 3302.16, "end": 3302.88, "probability": 0.8897 }, { "start": 3303.08, "end": 3304.02, "probability": 0.8464 }, { "start": 3304.88, "end": 3307.16, "probability": 0.955 }, { "start": 3307.3, "end": 3307.98, "probability": 0.9539 }, { "start": 3308.22, "end": 3314.2, "probability": 0.9797 }, { "start": 3314.22, "end": 3317.04, "probability": 0.994 }, { "start": 3317.12, "end": 3317.38, "probability": 0.7583 }, { "start": 3318.18, "end": 3320.08, "probability": 0.6196 }, { "start": 3320.66, "end": 3322.82, "probability": 0.8696 }, { "start": 3323.42, "end": 3326.22, "probability": 0.2337 }, { "start": 3327.48, "end": 3332.06, "probability": 0.0875 }, { "start": 3361.46, "end": 3363.86, "probability": 0.3704 }, { "start": 3364.92, "end": 3369.7, "probability": 0.9629 }, { "start": 3370.3, "end": 3372.13, "probability": 0.9751 }, { "start": 3373.02, "end": 3374.68, "probability": 0.8302 }, { "start": 3375.58, "end": 3379.52, "probability": 0.9966 }, { "start": 3379.52, "end": 3382.78, "probability": 0.8971 }, { "start": 3384.36, "end": 3385.62, "probability": 0.9556 }, { "start": 3386.66, "end": 3387.57, "probability": 0.8683 }, { "start": 3388.78, "end": 3392.28, "probability": 0.9976 }, { "start": 3392.86, "end": 3397.84, "probability": 0.9883 }, { "start": 3398.98, "end": 3399.56, "probability": 0.9408 }, { "start": 3402.06, "end": 3403.48, "probability": 0.8515 }, { "start": 3404.44, "end": 3407.54, "probability": 0.995 }, { "start": 3408.66, "end": 3412.92, "probability": 0.9702 }, { "start": 3414.3, "end": 3415.16, "probability": 0.9744 }, { "start": 3416.42, "end": 3417.36, "probability": 0.9779 }, { "start": 3418.04, "end": 3420.92, "probability": 0.9819 }, { "start": 3422.18, "end": 3423.02, "probability": 0.9248 }, { "start": 3423.44, "end": 3424.38, "probability": 0.7676 }, { "start": 3425.24, "end": 3427.44, "probability": 0.9429 }, { "start": 3428.2, "end": 3430.37, "probability": 0.9868 }, { "start": 3430.84, "end": 3432.22, "probability": 0.7431 }, { "start": 3432.68, "end": 3434.06, "probability": 0.7646 }, { "start": 3434.54, "end": 3437.24, "probability": 0.8789 }, { "start": 3437.86, "end": 3440.86, "probability": 0.0491 }, { "start": 3440.86, "end": 3441.88, "probability": 0.0962 }, { "start": 3442.54, "end": 3446.14, "probability": 0.8642 }, { "start": 3446.14, "end": 3448.24, "probability": 0.9985 }, { "start": 3449.9, "end": 3450.7, "probability": 0.9889 }, { "start": 3451.42, "end": 3458.04, "probability": 0.9915 }, { "start": 3458.78, "end": 3464.14, "probability": 0.9992 }, { "start": 3464.64, "end": 3467.52, "probability": 0.4991 }, { "start": 3468.26, "end": 3470.92, "probability": 0.9152 }, { "start": 3471.36, "end": 3473.24, "probability": 0.9279 }, { "start": 3473.32, "end": 3475.46, "probability": 0.7124 }, { "start": 3475.8, "end": 3477.72, "probability": 0.9976 }, { "start": 3478.14, "end": 3481.66, "probability": 0.9841 }, { "start": 3482.02, "end": 3486.34, "probability": 0.9927 }, { "start": 3487.2, "end": 3488.34, "probability": 0.7406 }, { "start": 3488.9, "end": 3489.58, "probability": 0.4129 }, { "start": 3489.98, "end": 3494.22, "probability": 0.9944 }, { "start": 3496.22, "end": 3497.18, "probability": 0.7915 }, { "start": 3497.92, "end": 3504.62, "probability": 0.9958 }, { "start": 3505.28, "end": 3510.42, "probability": 0.9985 }, { "start": 3511.0, "end": 3511.6, "probability": 0.8397 }, { "start": 3512.18, "end": 3513.34, "probability": 0.6907 }, { "start": 3513.4, "end": 3514.1, "probability": 0.7561 }, { "start": 3514.26, "end": 3515.04, "probability": 0.9366 }, { "start": 3515.14, "end": 3515.44, "probability": 0.956 }, { "start": 3516.46, "end": 3520.56, "probability": 0.9955 }, { "start": 3520.56, "end": 3524.32, "probability": 0.9849 }, { "start": 3524.94, "end": 3527.74, "probability": 0.9994 }, { "start": 3528.84, "end": 3530.52, "probability": 0.7712 }, { "start": 3531.42, "end": 3532.32, "probability": 0.9223 }, { "start": 3532.52, "end": 3533.88, "probability": 0.7385 }, { "start": 3534.3, "end": 3534.9, "probability": 0.9821 }, { "start": 3535.34, "end": 3536.78, "probability": 0.7019 }, { "start": 3537.36, "end": 3538.16, "probability": 0.8973 }, { "start": 3538.36, "end": 3540.68, "probability": 0.9972 }, { "start": 3541.3, "end": 3546.08, "probability": 0.7762 }, { "start": 3546.08, "end": 3546.5, "probability": 0.4211 }, { "start": 3546.5, "end": 3546.6, "probability": 0.748 }, { "start": 3546.8, "end": 3547.82, "probability": 0.9115 }, { "start": 3547.86, "end": 3549.16, "probability": 0.9925 }, { "start": 3549.92, "end": 3553.82, "probability": 0.9982 }, { "start": 3554.18, "end": 3555.7, "probability": 0.9353 }, { "start": 3556.14, "end": 3556.86, "probability": 0.8092 }, { "start": 3557.42, "end": 3562.8, "probability": 0.8736 }, { "start": 3563.36, "end": 3568.2, "probability": 0.9489 }, { "start": 3568.52, "end": 3569.55, "probability": 0.9966 }, { "start": 3569.7, "end": 3570.44, "probability": 0.9384 }, { "start": 3570.48, "end": 3572.96, "probability": 0.9731 }, { "start": 3573.58, "end": 3574.42, "probability": 0.5492 }, { "start": 3574.42, "end": 3578.26, "probability": 0.9326 }, { "start": 3578.36, "end": 3579.52, "probability": 0.5302 }, { "start": 3580.0, "end": 3580.86, "probability": 0.693 }, { "start": 3580.98, "end": 3581.14, "probability": 0.8455 }, { "start": 3581.32, "end": 3581.78, "probability": 0.7801 }, { "start": 3582.16, "end": 3582.73, "probability": 0.9792 }, { "start": 3583.2, "end": 3587.64, "probability": 0.9295 }, { "start": 3588.24, "end": 3589.6, "probability": 0.7896 }, { "start": 3590.22, "end": 3591.42, "probability": 0.9613 }, { "start": 3591.76, "end": 3595.7, "probability": 0.9034 }, { "start": 3596.0, "end": 3596.0, "probability": 0.3984 }, { "start": 3596.18, "end": 3598.6, "probability": 0.8646 }, { "start": 3598.64, "end": 3599.46, "probability": 0.9675 }, { "start": 3599.84, "end": 3600.34, "probability": 0.8581 }, { "start": 3600.98, "end": 3602.32, "probability": 0.7439 }, { "start": 3602.98, "end": 3605.1, "probability": 0.8809 }, { "start": 3605.86, "end": 3608.18, "probability": 0.8987 }, { "start": 3609.0, "end": 3610.42, "probability": 0.984 }, { "start": 3611.02, "end": 3612.66, "probability": 0.9336 }, { "start": 3612.82, "end": 3613.32, "probability": 0.8042 }, { "start": 3613.58, "end": 3615.86, "probability": 0.9861 }, { "start": 3615.86, "end": 3619.65, "probability": 0.9875 }, { "start": 3620.66, "end": 3624.06, "probability": 0.8988 }, { "start": 3624.4, "end": 3628.16, "probability": 0.9089 }, { "start": 3628.26, "end": 3628.42, "probability": 0.2272 }, { "start": 3628.42, "end": 3631.66, "probability": 0.9467 }, { "start": 3631.66, "end": 3634.5, "probability": 0.9771 }, { "start": 3634.86, "end": 3637.34, "probability": 0.9891 }, { "start": 3637.7, "end": 3640.04, "probability": 0.8777 }, { "start": 3640.2, "end": 3640.2, "probability": 0.3302 }, { "start": 3640.32, "end": 3640.58, "probability": 0.4318 }, { "start": 3640.58, "end": 3640.8, "probability": 0.7404 }, { "start": 3641.36, "end": 3643.06, "probability": 0.9597 }, { "start": 3643.88, "end": 3643.9, "probability": 0.2636 }, { "start": 3672.78, "end": 3674.36, "probability": 0.5281 }, { "start": 3674.96, "end": 3678.52, "probability": 0.8725 }, { "start": 3678.92, "end": 3680.92, "probability": 0.8983 }, { "start": 3681.88, "end": 3683.34, "probability": 0.9082 }, { "start": 3683.44, "end": 3685.12, "probability": 0.9813 }, { "start": 3685.22, "end": 3686.92, "probability": 0.7956 }, { "start": 3690.26, "end": 3691.8, "probability": 0.5893 }, { "start": 3691.92, "end": 3692.26, "probability": 0.4879 }, { "start": 3693.76, "end": 3695.98, "probability": 0.5223 }, { "start": 3698.48, "end": 3699.48, "probability": 0.828 }, { "start": 3699.58, "end": 3701.02, "probability": 0.9125 }, { "start": 3701.2, "end": 3701.68, "probability": 0.7085 }, { "start": 3701.78, "end": 3703.76, "probability": 0.9906 }, { "start": 3705.7, "end": 3705.98, "probability": 0.7032 }, { "start": 3706.8, "end": 3707.12, "probability": 0.9828 }, { "start": 3708.86, "end": 3711.04, "probability": 0.9692 }, { "start": 3712.94, "end": 3715.5, "probability": 0.9978 }, { "start": 3717.04, "end": 3718.66, "probability": 0.6387 }, { "start": 3720.12, "end": 3722.48, "probability": 0.8755 }, { "start": 3723.6, "end": 3728.58, "probability": 0.896 }, { "start": 3728.6, "end": 3732.48, "probability": 0.9365 }, { "start": 3733.24, "end": 3737.3, "probability": 0.9912 }, { "start": 3737.34, "end": 3741.82, "probability": 0.9978 }, { "start": 3742.56, "end": 3744.06, "probability": 0.7921 }, { "start": 3745.24, "end": 3747.68, "probability": 0.4202 }, { "start": 3747.9, "end": 3751.4, "probability": 0.7208 }, { "start": 3752.78, "end": 3753.28, "probability": 0.4517 }, { "start": 3754.02, "end": 3758.9, "probability": 0.9877 }, { "start": 3758.96, "end": 3761.9, "probability": 0.6094 }, { "start": 3762.88, "end": 3768.46, "probability": 0.9967 }, { "start": 3769.1, "end": 3771.36, "probability": 0.7033 }, { "start": 3772.08, "end": 3777.74, "probability": 0.713 }, { "start": 3779.14, "end": 3785.52, "probability": 0.9932 }, { "start": 3785.52, "end": 3789.24, "probability": 0.9951 }, { "start": 3789.48, "end": 3792.36, "probability": 0.9486 }, { "start": 3793.2, "end": 3795.64, "probability": 0.9944 }, { "start": 3796.52, "end": 3800.16, "probability": 0.9746 }, { "start": 3800.38, "end": 3803.16, "probability": 0.9395 }, { "start": 3803.82, "end": 3808.72, "probability": 0.823 }, { "start": 3809.34, "end": 3810.96, "probability": 0.8304 }, { "start": 3811.52, "end": 3812.98, "probability": 0.9872 }, { "start": 3813.62, "end": 3817.24, "probability": 0.9854 }, { "start": 3817.78, "end": 3820.2, "probability": 0.9953 }, { "start": 3820.72, "end": 3822.06, "probability": 0.8705 }, { "start": 3823.02, "end": 3825.08, "probability": 0.5909 }, { "start": 3825.88, "end": 3827.0, "probability": 0.9022 }, { "start": 3827.4, "end": 3829.42, "probability": 0.6652 }, { "start": 3829.9, "end": 3833.26, "probability": 0.9865 }, { "start": 3834.3, "end": 3840.1, "probability": 0.913 }, { "start": 3840.98, "end": 3843.14, "probability": 0.9957 }, { "start": 3843.7, "end": 3844.6, "probability": 0.9355 }, { "start": 3846.24, "end": 3852.66, "probability": 0.83 }, { "start": 3853.16, "end": 3857.9, "probability": 0.7515 }, { "start": 3858.58, "end": 3866.02, "probability": 0.9883 }, { "start": 3866.06, "end": 3867.32, "probability": 0.56 }, { "start": 3868.44, "end": 3872.1, "probability": 0.8976 }, { "start": 3872.68, "end": 3876.46, "probability": 0.9728 }, { "start": 3877.18, "end": 3880.22, "probability": 0.9376 }, { "start": 3880.92, "end": 3884.0, "probability": 0.7742 }, { "start": 3884.06, "end": 3885.48, "probability": 0.8134 }, { "start": 3886.02, "end": 3888.08, "probability": 0.6776 }, { "start": 3888.08, "end": 3891.38, "probability": 0.6479 }, { "start": 3891.64, "end": 3893.16, "probability": 0.9427 }, { "start": 3893.28, "end": 3896.98, "probability": 0.5037 }, { "start": 3897.1, "end": 3897.42, "probability": 0.0148 }, { "start": 3897.42, "end": 3897.56, "probability": 0.3414 }, { "start": 3898.32, "end": 3898.32, "probability": 0.1311 }, { "start": 3898.32, "end": 3898.98, "probability": 0.4431 }, { "start": 3899.16, "end": 3900.5, "probability": 0.6018 }, { "start": 3908.34, "end": 3909.8, "probability": 0.0838 }, { "start": 3932.46, "end": 3934.66, "probability": 0.9976 }, { "start": 3935.0, "end": 3935.46, "probability": 0.8339 }, { "start": 3938.6, "end": 3939.78, "probability": 0.7696 }, { "start": 3941.28, "end": 3942.78, "probability": 0.6539 }, { "start": 3944.12, "end": 3945.13, "probability": 0.5 }, { "start": 3946.16, "end": 3948.22, "probability": 0.9862 }, { "start": 3949.76, "end": 3953.06, "probability": 0.6553 }, { "start": 3956.04, "end": 3958.98, "probability": 0.9161 }, { "start": 3961.16, "end": 3961.76, "probability": 0.3646 }, { "start": 3962.02, "end": 3963.54, "probability": 0.9079 }, { "start": 3964.22, "end": 3968.3, "probability": 0.9978 }, { "start": 3969.96, "end": 3970.58, "probability": 0.9413 }, { "start": 3971.44, "end": 3972.9, "probability": 0.7181 }, { "start": 3973.74, "end": 3974.33, "probability": 0.9995 }, { "start": 3975.2, "end": 3977.92, "probability": 0.951 }, { "start": 3979.38, "end": 3981.74, "probability": 0.9832 }, { "start": 3985.02, "end": 3986.42, "probability": 0.9871 }, { "start": 3987.46, "end": 3988.4, "probability": 0.9619 }, { "start": 3989.76, "end": 3990.04, "probability": 0.4505 }, { "start": 3990.76, "end": 3991.4, "probability": 0.8602 }, { "start": 3992.44, "end": 3993.0, "probability": 0.9631 }, { "start": 3993.66, "end": 3996.18, "probability": 0.5568 }, { "start": 3997.08, "end": 3997.9, "probability": 0.8505 }, { "start": 3999.36, "end": 4001.47, "probability": 0.9897 }, { "start": 4004.6, "end": 4007.92, "probability": 0.9776 }, { "start": 4008.46, "end": 4009.43, "probability": 0.8855 }, { "start": 4010.46, "end": 4011.46, "probability": 0.7353 }, { "start": 4011.58, "end": 4013.54, "probability": 0.5172 }, { "start": 4014.84, "end": 4015.82, "probability": 0.9539 }, { "start": 4018.82, "end": 4020.22, "probability": 0.987 }, { "start": 4022.26, "end": 4029.5, "probability": 0.9875 }, { "start": 4030.48, "end": 4031.68, "probability": 0.7155 }, { "start": 4034.02, "end": 4038.82, "probability": 0.7254 }, { "start": 4039.94, "end": 4040.64, "probability": 0.7462 }, { "start": 4042.22, "end": 4045.42, "probability": 0.6149 }, { "start": 4046.84, "end": 4050.41, "probability": 0.7142 }, { "start": 4052.66, "end": 4053.32, "probability": 0.8571 }, { "start": 4053.38, "end": 4057.7, "probability": 0.8589 }, { "start": 4059.26, "end": 4061.1, "probability": 0.5659 }, { "start": 4063.98, "end": 4064.82, "probability": 0.8848 }, { "start": 4065.98, "end": 4069.04, "probability": 0.9842 }, { "start": 4070.32, "end": 4074.52, "probability": 0.8382 }, { "start": 4074.86, "end": 4077.56, "probability": 0.8263 }, { "start": 4078.78, "end": 4081.52, "probability": 0.8269 }, { "start": 4082.48, "end": 4083.24, "probability": 0.9878 }, { "start": 4084.64, "end": 4085.4, "probability": 0.9928 }, { "start": 4086.96, "end": 4088.32, "probability": 0.9934 }, { "start": 4089.16, "end": 4091.02, "probability": 0.9631 }, { "start": 4092.12, "end": 4096.82, "probability": 0.926 }, { "start": 4098.08, "end": 4100.18, "probability": 0.9899 }, { "start": 4101.54, "end": 4103.64, "probability": 0.9263 }, { "start": 4104.78, "end": 4107.3, "probability": 0.9939 }, { "start": 4108.1, "end": 4111.44, "probability": 0.9828 }, { "start": 4112.3, "end": 4114.12, "probability": 0.8658 }, { "start": 4114.92, "end": 4116.52, "probability": 0.6849 }, { "start": 4117.68, "end": 4121.16, "probability": 0.9935 }, { "start": 4122.06, "end": 4122.98, "probability": 0.9087 }, { "start": 4123.74, "end": 4126.62, "probability": 0.8302 }, { "start": 4128.8, "end": 4131.66, "probability": 0.9811 }, { "start": 4131.82, "end": 4135.66, "probability": 0.9954 }, { "start": 4137.2, "end": 4139.46, "probability": 0.8391 }, { "start": 4139.56, "end": 4139.9, "probability": 0.5028 }, { "start": 4140.0, "end": 4140.68, "probability": 0.7729 }, { "start": 4140.9, "end": 4143.18, "probability": 0.9256 }, { "start": 4175.42, "end": 4176.7, "probability": 0.7727 }, { "start": 4177.24, "end": 4178.36, "probability": 0.7537 }, { "start": 4180.86, "end": 4182.9, "probability": 0.9945 }, { "start": 4184.2, "end": 4185.72, "probability": 0.9909 }, { "start": 4186.94, "end": 4188.73, "probability": 0.9937 }, { "start": 4190.42, "end": 4194.84, "probability": 0.9919 }, { "start": 4197.42, "end": 4199.92, "probability": 0.9539 }, { "start": 4204.3, "end": 4205.3, "probability": 0.9983 }, { "start": 4206.7, "end": 4210.64, "probability": 0.7489 }, { "start": 4211.74, "end": 4212.56, "probability": 0.9302 }, { "start": 4214.18, "end": 4216.78, "probability": 0.9205 }, { "start": 4218.64, "end": 4220.3, "probability": 0.8876 }, { "start": 4221.52, "end": 4223.5, "probability": 0.9393 }, { "start": 4224.82, "end": 4226.92, "probability": 0.7406 }, { "start": 4229.68, "end": 4230.08, "probability": 0.7253 }, { "start": 4231.16, "end": 4235.52, "probability": 0.9795 }, { "start": 4237.16, "end": 4238.08, "probability": 0.8347 }, { "start": 4240.24, "end": 4244.62, "probability": 0.9978 }, { "start": 4245.76, "end": 4247.46, "probability": 0.7903 }, { "start": 4249.9, "end": 4253.82, "probability": 0.9481 }, { "start": 4255.32, "end": 4256.06, "probability": 0.779 }, { "start": 4257.0, "end": 4264.46, "probability": 0.9983 }, { "start": 4266.78, "end": 4270.46, "probability": 0.9763 }, { "start": 4271.4, "end": 4272.34, "probability": 0.9614 }, { "start": 4273.48, "end": 4274.12, "probability": 0.9797 }, { "start": 4275.04, "end": 4275.84, "probability": 0.8049 }, { "start": 4277.74, "end": 4279.46, "probability": 0.7265 }, { "start": 4280.48, "end": 4283.06, "probability": 0.9006 }, { "start": 4283.9, "end": 4284.96, "probability": 0.5635 }, { "start": 4286.44, "end": 4288.1, "probability": 0.9409 }, { "start": 4289.36, "end": 4294.44, "probability": 0.9837 }, { "start": 4296.06, "end": 4299.42, "probability": 0.98 }, { "start": 4300.4, "end": 4301.78, "probability": 0.8062 }, { "start": 4304.18, "end": 4304.66, "probability": 0.9779 }, { "start": 4305.78, "end": 4307.4, "probability": 0.8828 }, { "start": 4308.9, "end": 4310.4, "probability": 0.9517 }, { "start": 4311.4, "end": 4312.26, "probability": 0.6654 }, { "start": 4314.12, "end": 4315.32, "probability": 0.735 }, { "start": 4318.56, "end": 4319.42, "probability": 0.6342 }, { "start": 4320.96, "end": 4321.66, "probability": 0.9849 }, { "start": 4322.5, "end": 4323.28, "probability": 0.9734 }, { "start": 4324.5, "end": 4325.02, "probability": 0.5622 }, { "start": 4326.0, "end": 4327.28, "probability": 0.9698 }, { "start": 4330.14, "end": 4330.14, "probability": 0.9331 }, { "start": 4331.26, "end": 4334.64, "probability": 0.7994 }, { "start": 4335.8, "end": 4337.3, "probability": 0.9702 }, { "start": 4338.22, "end": 4341.72, "probability": 0.5224 }, { "start": 4341.74, "end": 4348.36, "probability": 0.9982 }, { "start": 4350.22, "end": 4351.6, "probability": 0.9863 }, { "start": 4354.36, "end": 4355.32, "probability": 0.8568 }, { "start": 4356.6, "end": 4357.74, "probability": 0.9498 }, { "start": 4359.0, "end": 4360.48, "probability": 0.9879 }, { "start": 4361.48, "end": 4362.64, "probability": 0.762 }, { "start": 4363.46, "end": 4363.68, "probability": 0.5638 }, { "start": 4364.18, "end": 4366.92, "probability": 0.8539 }, { "start": 4367.82, "end": 4373.1, "probability": 0.9946 }, { "start": 4373.86, "end": 4374.28, "probability": 0.8728 }, { "start": 4374.76, "end": 4375.54, "probability": 0.6101 }, { "start": 4375.78, "end": 4378.16, "probability": 0.9387 }, { "start": 4405.94, "end": 4409.54, "probability": 0.7268 }, { "start": 4412.66, "end": 4414.76, "probability": 0.8605 }, { "start": 4415.7, "end": 4416.82, "probability": 0.9972 }, { "start": 4417.86, "end": 4418.94, "probability": 0.984 }, { "start": 4420.0, "end": 4428.0, "probability": 0.9092 }, { "start": 4428.24, "end": 4429.14, "probability": 0.8334 }, { "start": 4430.66, "end": 4433.06, "probability": 0.994 }, { "start": 4434.36, "end": 4439.76, "probability": 0.9274 }, { "start": 4439.96, "end": 4442.28, "probability": 0.8148 }, { "start": 4443.6, "end": 4446.48, "probability": 0.966 }, { "start": 4448.98, "end": 4453.34, "probability": 0.8113 }, { "start": 4454.4, "end": 4455.3, "probability": 0.8864 }, { "start": 4456.52, "end": 4459.22, "probability": 0.6183 }, { "start": 4462.03, "end": 4464.48, "probability": 0.8264 }, { "start": 4465.24, "end": 4467.66, "probability": 0.7831 }, { "start": 4468.48, "end": 4470.7, "probability": 0.9971 }, { "start": 4471.44, "end": 4474.52, "probability": 0.9966 }, { "start": 4474.7, "end": 4475.48, "probability": 0.7924 }, { "start": 4476.22, "end": 4481.82, "probability": 0.9891 }, { "start": 4483.38, "end": 4484.94, "probability": 0.8661 }, { "start": 4485.08, "end": 4488.84, "probability": 0.9972 }, { "start": 4489.5, "end": 4492.26, "probability": 0.9876 }, { "start": 4494.94, "end": 4495.26, "probability": 0.0551 }, { "start": 4495.36, "end": 4496.5, "probability": 0.1262 }, { "start": 4496.5, "end": 4496.5, "probability": 0.316 }, { "start": 4496.5, "end": 4496.5, "probability": 0.578 }, { "start": 4496.5, "end": 4496.77, "probability": 0.3204 }, { "start": 4498.04, "end": 4500.04, "probability": 0.7253 }, { "start": 4500.04, "end": 4503.2, "probability": 0.5793 }, { "start": 4503.58, "end": 4504.8, "probability": 0.7394 }, { "start": 4505.44, "end": 4505.92, "probability": 0.7156 }, { "start": 4506.52, "end": 4506.52, "probability": 0.4812 }, { "start": 4506.62, "end": 4508.36, "probability": 0.9375 }, { "start": 4508.62, "end": 4509.0, "probability": 0.6711 }, { "start": 4510.18, "end": 4513.98, "probability": 0.9373 }, { "start": 4514.18, "end": 4514.72, "probability": 0.2295 }, { "start": 4514.94, "end": 4517.38, "probability": 0.4443 }, { "start": 4531.26, "end": 4536.4, "probability": 0.0787 }, { "start": 4536.44, "end": 4537.5, "probability": 0.1041 }, { "start": 4537.52, "end": 4537.52, "probability": 0.015 }, { "start": 4537.66, "end": 4537.78, "probability": 0.1846 }, { "start": 4538.28, "end": 4538.78, "probability": 0.0318 }, { "start": 4538.78, "end": 4539.33, "probability": 0.18 }, { "start": 4539.56, "end": 4539.72, "probability": 0.0521 }, { "start": 4544.22, "end": 4545.0, "probability": 0.2269 }, { "start": 4547.96, "end": 4548.9, "probability": 0.1226 }, { "start": 4554.68, "end": 4555.76, "probability": 0.2269 }, { "start": 4555.76, "end": 4558.64, "probability": 0.4319 }, { "start": 4559.58, "end": 4559.58, "probability": 0.0268 }, { "start": 4559.58, "end": 4560.78, "probability": 0.2059 }, { "start": 4560.84, "end": 4560.84, "probability": 0.0967 }, { "start": 4560.86, "end": 4561.04, "probability": 0.6386 }, { "start": 4573.44, "end": 4574.08, "probability": 0.2506 }, { "start": 4575.32, "end": 4577.16, "probability": 0.099 }, { "start": 4577.74, "end": 4578.94, "probability": 0.0104 }, { "start": 4578.98, "end": 4582.44, "probability": 0.0884 }, { "start": 4582.44, "end": 4584.66, "probability": 0.5806 }, { "start": 4584.92, "end": 4587.66, "probability": 0.1273 }, { "start": 4587.82, "end": 4588.14, "probability": 0.0571 }, { "start": 4588.14, "end": 4589.26, "probability": 0.0747 }, { "start": 4589.26, "end": 4591.34, "probability": 0.2252 }, { "start": 4592.5, "end": 4593.8, "probability": 0.0484 }, { "start": 4598.34, "end": 4600.46, "probability": 0.222 }, { "start": 4601.0, "end": 4601.0, "probability": 0.0 }, { "start": 4601.0, "end": 4601.0, "probability": 0.0 }, { "start": 4601.0, "end": 4601.0, "probability": 0.0 }, { "start": 4601.0, "end": 4601.0, "probability": 0.0 }, { "start": 4601.0, "end": 4601.0, "probability": 0.0 }, { "start": 4601.0, "end": 4601.0, "probability": 0.0 }, { "start": 4601.0, "end": 4601.0, "probability": 0.0 }, { "start": 4601.0, "end": 4601.0, "probability": 0.0 }, { "start": 4601.0, "end": 4601.0, "probability": 0.0 }, { "start": 4601.0, "end": 4601.0, "probability": 0.0 }, { "start": 4601.0, "end": 4601.0, "probability": 0.0 }, { "start": 4601.0, "end": 4601.0, "probability": 0.0 }, { "start": 4601.0, "end": 4601.0, "probability": 0.0 }, { "start": 4601.0, "end": 4601.0, "probability": 0.0 }, { "start": 4601.0, "end": 4601.0, "probability": 0.0 }, { "start": 4601.0, "end": 4601.0, "probability": 0.0 }, { "start": 4601.0, "end": 4601.0, "probability": 0.0 }, { "start": 4601.0, "end": 4601.0, "probability": 0.0 }, { "start": 4601.0, "end": 4601.0, "probability": 0.0 }, { "start": 4601.0, "end": 4601.0, "probability": 0.0 }, { "start": 4601.0, "end": 4601.0, "probability": 0.0 }, { "start": 4601.0, "end": 4601.0, "probability": 0.0 }, { "start": 4601.0, "end": 4601.0, "probability": 0.0 }, { "start": 4601.0, "end": 4601.0, "probability": 0.0 }, { "start": 4601.0, "end": 4601.0, "probability": 0.0 }, { "start": 4601.0, "end": 4601.0, "probability": 0.0 }, { "start": 4601.0, "end": 4601.0, "probability": 0.0 }, { "start": 4601.0, "end": 4601.0, "probability": 0.0 }, { "start": 4601.0, "end": 4601.0, "probability": 0.0 }, { "start": 4601.0, "end": 4601.0, "probability": 0.0 }, { "start": 4601.0, "end": 4601.0, "probability": 0.0 }, { "start": 4601.0, "end": 4601.0, "probability": 0.0 }, { "start": 4601.46, "end": 4602.5, "probability": 0.2804 }, { "start": 4603.76, "end": 4607.22, "probability": 0.7925 }, { "start": 4608.44, "end": 4613.88, "probability": 0.9246 }, { "start": 4614.86, "end": 4618.62, "probability": 0.9451 }, { "start": 4619.54, "end": 4622.36, "probability": 0.996 }, { "start": 4623.66, "end": 4630.14, "probability": 0.9908 }, { "start": 4631.2, "end": 4632.4, "probability": 0.8474 }, { "start": 4633.16, "end": 4636.86, "probability": 0.9613 }, { "start": 4636.92, "end": 4639.56, "probability": 0.9251 }, { "start": 4640.3, "end": 4643.5, "probability": 0.9287 }, { "start": 4643.92, "end": 4645.12, "probability": 0.9897 }, { "start": 4645.6, "end": 4646.56, "probability": 0.9453 }, { "start": 4646.78, "end": 4649.46, "probability": 0.9619 }, { "start": 4649.56, "end": 4650.08, "probability": 0.8203 }, { "start": 4650.12, "end": 4651.36, "probability": 0.9644 }, { "start": 4651.8, "end": 4652.92, "probability": 0.9687 }, { "start": 4654.22, "end": 4657.44, "probability": 0.9143 }, { "start": 4657.54, "end": 4661.58, "probability": 0.9761 }, { "start": 4661.84, "end": 4663.24, "probability": 0.2384 }, { "start": 4663.6, "end": 4665.7, "probability": 0.9174 }, { "start": 4665.78, "end": 4667.2, "probability": 0.6942 }, { "start": 4667.28, "end": 4670.66, "probability": 0.9622 }, { "start": 4672.26, "end": 4672.72, "probability": 0.569 }, { "start": 4672.82, "end": 4675.14, "probability": 0.9973 }, { "start": 4675.28, "end": 4675.9, "probability": 0.5046 }, { "start": 4678.28, "end": 4678.5, "probability": 0.3639 }, { "start": 4678.64, "end": 4683.26, "probability": 0.9411 }, { "start": 4683.8, "end": 4687.56, "probability": 0.9878 }, { "start": 4688.14, "end": 4692.66, "probability": 0.9936 }, { "start": 4692.8, "end": 4694.64, "probability": 0.7998 }, { "start": 4694.9, "end": 4696.3, "probability": 0.2004 }, { "start": 4696.56, "end": 4697.6, "probability": 0.6536 }, { "start": 4697.72, "end": 4698.06, "probability": 0.7642 }, { "start": 4698.6, "end": 4698.98, "probability": 0.4975 }, { "start": 4698.98, "end": 4699.08, "probability": 0.5492 }, { "start": 4699.18, "end": 4699.7, "probability": 0.3068 }, { "start": 4700.16, "end": 4700.56, "probability": 0.5336 }, { "start": 4701.54, "end": 4704.02, "probability": 0.1127 }, { "start": 4705.42, "end": 4706.72, "probability": 0.0401 }, { "start": 4706.72, "end": 4706.74, "probability": 0.1173 }, { "start": 4706.74, "end": 4706.74, "probability": 0.0874 }, { "start": 4706.74, "end": 4706.74, "probability": 0.2664 }, { "start": 4706.74, "end": 4706.74, "probability": 0.327 }, { "start": 4706.74, "end": 4706.88, "probability": 0.2624 }, { "start": 4707.5, "end": 4708.84, "probability": 0.3881 }, { "start": 4710.5, "end": 4713.28, "probability": 0.8897 }, { "start": 4713.48, "end": 4713.8, "probability": 0.8441 }, { "start": 4713.96, "end": 4714.7, "probability": 0.8762 }, { "start": 4715.14, "end": 4716.14, "probability": 0.7499 }, { "start": 4717.14, "end": 4719.74, "probability": 0.318 }, { "start": 4720.66, "end": 4725.06, "probability": 0.9889 }, { "start": 4725.06, "end": 4727.8, "probability": 0.9854 }, { "start": 4729.36, "end": 4730.63, "probability": 0.9707 }, { "start": 4731.8, "end": 4733.14, "probability": 0.6681 }, { "start": 4733.14, "end": 4733.56, "probability": 0.3827 }, { "start": 4733.94, "end": 4736.08, "probability": 0.9403 }, { "start": 4736.2, "end": 4739.82, "probability": 0.9813 }, { "start": 4740.6, "end": 4743.58, "probability": 0.9637 }, { "start": 4744.52, "end": 4748.22, "probability": 0.9871 }, { "start": 4748.92, "end": 4753.38, "probability": 0.9162 }, { "start": 4753.94, "end": 4755.36, "probability": 0.9588 }, { "start": 4755.5, "end": 4756.34, "probability": 0.9205 }, { "start": 4756.86, "end": 4757.66, "probability": 0.9775 }, { "start": 4758.1, "end": 4759.28, "probability": 0.975 }, { "start": 4761.69, "end": 4765.8, "probability": 0.9498 }, { "start": 4766.1, "end": 4767.0, "probability": 0.8984 }, { "start": 4767.56, "end": 4769.08, "probability": 0.8604 }, { "start": 4769.86, "end": 4774.76, "probability": 0.8161 }, { "start": 4775.02, "end": 4779.48, "probability": 0.9309 }, { "start": 4779.98, "end": 4782.48, "probability": 0.9756 }, { "start": 4782.82, "end": 4783.38, "probability": 0.7999 }, { "start": 4783.68, "end": 4783.92, "probability": 0.6747 }, { "start": 4786.52, "end": 4787.3, "probability": 0.5711 }, { "start": 4788.16, "end": 4789.56, "probability": 0.5192 }, { "start": 4790.44, "end": 4795.46, "probability": 0.9883 }, { "start": 4796.24, "end": 4802.06, "probability": 0.9949 }, { "start": 4802.62, "end": 4806.92, "probability": 0.9904 }, { "start": 4806.92, "end": 4811.24, "probability": 0.991 }, { "start": 4811.3, "end": 4812.28, "probability": 0.8326 }, { "start": 4813.84, "end": 4817.66, "probability": 0.1226 }, { "start": 4836.54, "end": 4836.54, "probability": 0.6853 }, { "start": 4836.54, "end": 4837.3, "probability": 0.6244 }, { "start": 4844.2, "end": 4844.76, "probability": 0.6137 }, { "start": 4845.12, "end": 4847.78, "probability": 0.9508 }, { "start": 4848.18, "end": 4849.24, "probability": 0.9251 }, { "start": 4849.42, "end": 4849.94, "probability": 0.5004 }, { "start": 4850.06, "end": 4850.88, "probability": 0.834 }, { "start": 4851.46, "end": 4854.06, "probability": 0.973 }, { "start": 4855.06, "end": 4857.64, "probability": 0.7721 }, { "start": 4858.52, "end": 4864.76, "probability": 0.9937 }, { "start": 4865.36, "end": 4865.94, "probability": 0.8648 }, { "start": 4867.14, "end": 4870.86, "probability": 0.9824 }, { "start": 4871.42, "end": 4880.54, "probability": 0.8602 }, { "start": 4880.54, "end": 4886.38, "probability": 0.9236 }, { "start": 4888.0, "end": 4893.56, "probability": 0.9975 }, { "start": 4893.56, "end": 4898.5, "probability": 0.9967 }, { "start": 4899.88, "end": 4906.04, "probability": 0.98 }, { "start": 4906.04, "end": 4911.46, "probability": 0.9982 }, { "start": 4912.34, "end": 4918.04, "probability": 0.9906 }, { "start": 4918.64, "end": 4921.66, "probability": 0.9857 }, { "start": 4922.4, "end": 4930.24, "probability": 0.993 }, { "start": 4931.1, "end": 4933.88, "probability": 0.9038 }, { "start": 4935.06, "end": 4936.34, "probability": 0.9902 }, { "start": 4937.88, "end": 4940.16, "probability": 0.97 }, { "start": 4943.56, "end": 4945.68, "probability": 0.854 }, { "start": 4974.02, "end": 4975.64, "probability": 0.7637 }, { "start": 4976.58, "end": 4977.68, "probability": 0.6655 }, { "start": 4979.34, "end": 4982.46, "probability": 0.9624 }, { "start": 4984.28, "end": 4988.35, "probability": 0.9028 }, { "start": 4990.84, "end": 4992.36, "probability": 0.9879 }, { "start": 4993.68, "end": 4997.24, "probability": 0.9713 }, { "start": 4997.92, "end": 5002.48, "probability": 0.8457 }, { "start": 5002.6, "end": 5004.81, "probability": 0.7544 }, { "start": 5005.64, "end": 5007.48, "probability": 0.9531 }, { "start": 5008.84, "end": 5011.28, "probability": 0.998 }, { "start": 5012.2, "end": 5013.64, "probability": 0.7473 }, { "start": 5013.9, "end": 5017.56, "probability": 0.7478 }, { "start": 5018.8, "end": 5020.9, "probability": 0.8045 }, { "start": 5021.6, "end": 5024.1, "probability": 0.9751 }, { "start": 5024.22, "end": 5028.74, "probability": 0.9922 }, { "start": 5030.08, "end": 5037.66, "probability": 0.9085 }, { "start": 5039.59, "end": 5047.37, "probability": 0.9692 }, { "start": 5048.4, "end": 5051.49, "probability": 0.9929 }, { "start": 5052.64, "end": 5057.84, "probability": 0.8773 }, { "start": 5058.52, "end": 5062.3, "probability": 0.9417 }, { "start": 5063.86, "end": 5065.38, "probability": 0.5026 }, { "start": 5066.3, "end": 5067.74, "probability": 0.8492 }, { "start": 5068.44, "end": 5069.0, "probability": 0.9899 }, { "start": 5070.62, "end": 5074.48, "probability": 0.9405 }, { "start": 5075.92, "end": 5077.66, "probability": 0.9238 }, { "start": 5078.6, "end": 5080.7, "probability": 0.9534 }, { "start": 5081.52, "end": 5083.9, "probability": 0.647 }, { "start": 5084.48, "end": 5085.4, "probability": 0.8174 }, { "start": 5086.24, "end": 5088.46, "probability": 0.9554 }, { "start": 5089.2, "end": 5090.46, "probability": 0.6927 }, { "start": 5091.98, "end": 5094.62, "probability": 0.7511 }, { "start": 5094.62, "end": 5098.42, "probability": 0.9513 }, { "start": 5100.4, "end": 5109.16, "probability": 0.9359 }, { "start": 5110.0, "end": 5110.72, "probability": 0.7681 }, { "start": 5111.78, "end": 5113.76, "probability": 0.9814 }, { "start": 5114.8, "end": 5116.52, "probability": 0.9842 }, { "start": 5117.2, "end": 5121.8, "probability": 0.9792 }, { "start": 5123.6, "end": 5126.16, "probability": 0.9527 }, { "start": 5126.84, "end": 5132.7, "probability": 0.9326 }, { "start": 5132.72, "end": 5136.9, "probability": 0.9939 }, { "start": 5137.86, "end": 5140.86, "probability": 0.9912 }, { "start": 5142.62, "end": 5144.04, "probability": 0.8477 }, { "start": 5144.96, "end": 5149.8, "probability": 0.8365 }, { "start": 5150.62, "end": 5153.22, "probability": 0.832 }, { "start": 5153.82, "end": 5154.78, "probability": 0.9079 }, { "start": 5156.3, "end": 5160.98, "probability": 0.9741 }, { "start": 5162.84, "end": 5164.4, "probability": 0.9402 }, { "start": 5165.08, "end": 5167.5, "probability": 0.9234 }, { "start": 5168.02, "end": 5173.12, "probability": 0.9948 }, { "start": 5174.86, "end": 5180.04, "probability": 0.8585 }, { "start": 5181.12, "end": 5185.18, "probability": 0.9777 }, { "start": 5186.0, "end": 5191.0, "probability": 0.9474 }, { "start": 5191.76, "end": 5197.48, "probability": 0.9863 }, { "start": 5199.42, "end": 5203.22, "probability": 0.7008 }, { "start": 5204.3, "end": 5206.0, "probability": 0.9512 }, { "start": 5206.2, "end": 5207.58, "probability": 0.6804 }, { "start": 5208.38, "end": 5213.66, "probability": 0.9966 }, { "start": 5214.74, "end": 5220.16, "probability": 0.8785 }, { "start": 5221.96, "end": 5228.06, "probability": 0.9827 }, { "start": 5229.6, "end": 5235.52, "probability": 0.7766 }, { "start": 5237.22, "end": 5242.62, "probability": 0.9471 }, { "start": 5243.22, "end": 5243.98, "probability": 0.9844 }, { "start": 5245.43, "end": 5246.44, "probability": 0.652 }, { "start": 5247.96, "end": 5248.46, "probability": 0.3963 }, { "start": 5249.16, "end": 5253.94, "probability": 0.835 }, { "start": 5255.86, "end": 5260.46, "probability": 0.8901 }, { "start": 5262.35, "end": 5264.32, "probability": 0.7429 }, { "start": 5266.32, "end": 5269.56, "probability": 0.8218 }, { "start": 5270.3, "end": 5271.28, "probability": 0.5697 }, { "start": 5272.3, "end": 5278.4, "probability": 0.9836 }, { "start": 5279.68, "end": 5282.6, "probability": 0.968 }, { "start": 5283.88, "end": 5285.18, "probability": 0.8223 }, { "start": 5285.88, "end": 5287.22, "probability": 0.4912 }, { "start": 5287.58, "end": 5288.2, "probability": 0.7817 }, { "start": 5289.1, "end": 5290.72, "probability": 0.9335 }, { "start": 5291.62, "end": 5293.94, "probability": 0.9629 }, { "start": 5310.68, "end": 5311.98, "probability": 0.3961 }, { "start": 5312.2, "end": 5314.4, "probability": 0.5278 }, { "start": 5314.48, "end": 5314.86, "probability": 0.5568 }, { "start": 5315.04, "end": 5315.96, "probability": 0.874 }, { "start": 5316.14, "end": 5317.34, "probability": 0.825 }, { "start": 5319.6, "end": 5320.5, "probability": 0.9744 }, { "start": 5322.68, "end": 5325.18, "probability": 0.8648 }, { "start": 5325.36, "end": 5326.1, "probability": 0.6903 }, { "start": 5326.16, "end": 5326.88, "probability": 0.7155 }, { "start": 5328.26, "end": 5329.04, "probability": 0.9416 }, { "start": 5331.98, "end": 5334.12, "probability": 0.9976 }, { "start": 5334.64, "end": 5340.72, "probability": 0.9773 }, { "start": 5341.84, "end": 5345.58, "probability": 0.9089 }, { "start": 5348.04, "end": 5351.22, "probability": 0.9775 }, { "start": 5352.82, "end": 5354.72, "probability": 0.7959 }, { "start": 5355.28, "end": 5356.4, "probability": 0.9248 }, { "start": 5357.34, "end": 5358.84, "probability": 0.981 }, { "start": 5359.84, "end": 5362.06, "probability": 0.9858 }, { "start": 5363.5, "end": 5364.64, "probability": 0.9507 }, { "start": 5364.7, "end": 5365.02, "probability": 0.5552 }, { "start": 5365.14, "end": 5367.86, "probability": 0.9568 }, { "start": 5369.1, "end": 5369.98, "probability": 0.8807 }, { "start": 5370.78, "end": 5374.76, "probability": 0.9447 }, { "start": 5375.66, "end": 5377.42, "probability": 0.8072 }, { "start": 5378.04, "end": 5383.48, "probability": 0.8996 }, { "start": 5385.5, "end": 5386.62, "probability": 0.8904 }, { "start": 5389.38, "end": 5392.72, "probability": 0.9703 }, { "start": 5393.64, "end": 5396.34, "probability": 0.9941 }, { "start": 5397.56, "end": 5399.02, "probability": 0.7388 }, { "start": 5399.96, "end": 5401.3, "probability": 0.97 }, { "start": 5402.86, "end": 5404.56, "probability": 0.9854 }, { "start": 5405.86, "end": 5407.42, "probability": 0.9371 }, { "start": 5408.22, "end": 5409.54, "probability": 0.8894 }, { "start": 5412.14, "end": 5415.44, "probability": 0.9917 }, { "start": 5416.6, "end": 5420.94, "probability": 0.9068 }, { "start": 5423.02, "end": 5423.32, "probability": 0.3797 }, { "start": 5425.54, "end": 5428.66, "probability": 0.9643 }, { "start": 5429.68, "end": 5433.0, "probability": 0.7419 }, { "start": 5433.74, "end": 5437.38, "probability": 0.9679 }, { "start": 5437.66, "end": 5438.86, "probability": 0.9422 }, { "start": 5440.72, "end": 5441.56, "probability": 0.9619 }, { "start": 5442.44, "end": 5442.82, "probability": 0.3923 }, { "start": 5442.86, "end": 5445.28, "probability": 0.6272 }, { "start": 5445.42, "end": 5447.24, "probability": 0.9304 }, { "start": 5468.0, "end": 5469.4, "probability": 0.6729 }, { "start": 5469.7, "end": 5470.28, "probability": 0.8517 }, { "start": 5470.34, "end": 5470.82, "probability": 0.9462 }, { "start": 5471.0, "end": 5471.9, "probability": 0.9753 }, { "start": 5472.06, "end": 5473.0, "probability": 0.7336 }, { "start": 5473.12, "end": 5475.1, "probability": 0.7297 }, { "start": 5475.82, "end": 5477.54, "probability": 0.9794 }, { "start": 5478.42, "end": 5478.76, "probability": 0.9152 }, { "start": 5479.8, "end": 5483.34, "probability": 0.9946 }, { "start": 5485.46, "end": 5488.52, "probability": 0.8243 }, { "start": 5489.04, "end": 5490.34, "probability": 0.8779 }, { "start": 5491.68, "end": 5495.88, "probability": 0.9797 }, { "start": 5496.3, "end": 5499.24, "probability": 0.9079 }, { "start": 5500.54, "end": 5503.14, "probability": 0.9982 }, { "start": 5503.92, "end": 5508.06, "probability": 0.9658 }, { "start": 5509.76, "end": 5510.68, "probability": 0.9811 }, { "start": 5511.48, "end": 5513.32, "probability": 0.9985 }, { "start": 5514.72, "end": 5515.92, "probability": 0.8563 }, { "start": 5517.56, "end": 5520.2, "probability": 0.9995 }, { "start": 5520.3, "end": 5521.7, "probability": 0.9906 }, { "start": 5522.58, "end": 5525.74, "probability": 0.9682 }, { "start": 5526.5, "end": 5529.92, "probability": 0.8441 }, { "start": 5530.74, "end": 5533.34, "probability": 0.9899 }, { "start": 5535.8, "end": 5538.58, "probability": 0.8384 }, { "start": 5538.6, "end": 5539.86, "probability": 0.9796 }, { "start": 5539.92, "end": 5541.8, "probability": 0.9806 }, { "start": 5542.04, "end": 5542.88, "probability": 0.3282 }, { "start": 5542.94, "end": 5544.02, "probability": 0.4638 }, { "start": 5544.14, "end": 5545.4, "probability": 0.6113 }, { "start": 5545.46, "end": 5546.82, "probability": 0.8569 }, { "start": 5547.48, "end": 5548.88, "probability": 0.9092 }, { "start": 5549.66, "end": 5551.66, "probability": 0.9896 }, { "start": 5552.86, "end": 5554.96, "probability": 0.9718 }, { "start": 5555.64, "end": 5556.78, "probability": 0.8748 }, { "start": 5557.4, "end": 5558.7, "probability": 0.8192 }, { "start": 5559.1, "end": 5561.4, "probability": 0.9334 }, { "start": 5563.32, "end": 5567.84, "probability": 0.9917 }, { "start": 5567.84, "end": 5572.1, "probability": 0.9913 }, { "start": 5572.82, "end": 5573.12, "probability": 0.7554 }, { "start": 5573.22, "end": 5574.84, "probability": 0.9937 }, { "start": 5575.22, "end": 5575.88, "probability": 0.7677 }, { "start": 5576.06, "end": 5577.56, "probability": 0.9746 }, { "start": 5577.96, "end": 5581.22, "probability": 0.9609 }, { "start": 5582.82, "end": 5587.62, "probability": 0.817 }, { "start": 5588.26, "end": 5589.8, "probability": 0.9546 }, { "start": 5590.5, "end": 5593.66, "probability": 0.9949 }, { "start": 5593.92, "end": 5595.38, "probability": 0.9374 }, { "start": 5595.88, "end": 5596.32, "probability": 0.8371 }, { "start": 5596.58, "end": 5597.38, "probability": 0.7767 }, { "start": 5597.94, "end": 5599.08, "probability": 0.8794 }, { "start": 5599.66, "end": 5604.0, "probability": 0.9946 }, { "start": 5605.04, "end": 5606.34, "probability": 0.9413 }, { "start": 5607.24, "end": 5612.04, "probability": 0.9977 }, { "start": 5612.88, "end": 5615.34, "probability": 0.5381 }, { "start": 5615.9, "end": 5617.46, "probability": 0.9807 }, { "start": 5618.4, "end": 5619.02, "probability": 0.8726 }, { "start": 5619.18, "end": 5620.22, "probability": 0.8705 }, { "start": 5620.6, "end": 5623.06, "probability": 0.9941 }, { "start": 5623.5, "end": 5624.5, "probability": 0.9819 }, { "start": 5625.12, "end": 5625.84, "probability": 0.8779 }, { "start": 5626.38, "end": 5629.38, "probability": 0.9291 }, { "start": 5629.46, "end": 5634.78, "probability": 0.9484 }, { "start": 5635.6, "end": 5636.58, "probability": 0.848 }, { "start": 5637.46, "end": 5639.72, "probability": 0.8639 }, { "start": 5640.8, "end": 5642.16, "probability": 0.8999 }, { "start": 5642.38, "end": 5643.2, "probability": 0.8403 }, { "start": 5643.64, "end": 5644.12, "probability": 0.7462 }, { "start": 5644.78, "end": 5647.24, "probability": 0.7693 }, { "start": 5648.1, "end": 5648.22, "probability": 0.2767 }, { "start": 5648.98, "end": 5649.32, "probability": 0.4374 }, { "start": 5649.5, "end": 5649.78, "probability": 0.863 }, { "start": 5650.1, "end": 5651.54, "probability": 0.871 }, { "start": 5651.68, "end": 5653.84, "probability": 0.8718 }, { "start": 5654.44, "end": 5657.86, "probability": 0.99 }, { "start": 5658.28, "end": 5658.86, "probability": 0.8253 }, { "start": 5660.32, "end": 5663.34, "probability": 0.8705 }, { "start": 5663.96, "end": 5665.0, "probability": 0.955 }, { "start": 5665.92, "end": 5667.62, "probability": 0.7906 }, { "start": 5668.38, "end": 5673.96, "probability": 0.9917 }, { "start": 5674.66, "end": 5679.5, "probability": 0.9623 }, { "start": 5679.62, "end": 5683.38, "probability": 0.9599 }, { "start": 5683.8, "end": 5684.2, "probability": 0.5514 }, { "start": 5685.74, "end": 5686.52, "probability": 0.7762 }, { "start": 5687.5, "end": 5691.82, "probability": 0.9849 }, { "start": 5692.4, "end": 5693.26, "probability": 0.9169 }, { "start": 5697.28, "end": 5699.32, "probability": 0.7673 }, { "start": 5699.4, "end": 5700.4, "probability": 0.8283 }, { "start": 5701.32, "end": 5702.62, "probability": 0.7478 }, { "start": 5708.62, "end": 5718.7, "probability": 0.8624 }, { "start": 5719.94, "end": 5720.62, "probability": 0.7171 }, { "start": 5721.76, "end": 5723.14, "probability": 0.299 }, { "start": 5724.12, "end": 5729.88, "probability": 0.0243 }, { "start": 5740.94, "end": 5741.1, "probability": 0.0254 }, { "start": 5741.1, "end": 5745.48, "probability": 0.7815 }, { "start": 5745.56, "end": 5749.46, "probability": 0.9141 }, { "start": 5749.5, "end": 5751.42, "probability": 0.6589 }, { "start": 5752.1, "end": 5754.06, "probability": 0.0235 }, { "start": 5758.3, "end": 5759.74, "probability": 0.0951 }, { "start": 5760.74, "end": 5764.74, "probability": 0.0949 }, { "start": 5766.78, "end": 5769.98, "probability": 0.5162 }, { "start": 5770.96, "end": 5774.66, "probability": 0.8875 }, { "start": 5775.08, "end": 5777.8, "probability": 0.6577 }, { "start": 5778.78, "end": 5781.0, "probability": 0.721 }, { "start": 5781.22, "end": 5781.82, "probability": 0.8982 }, { "start": 5782.74, "end": 5787.2, "probability": 0.0111 }, { "start": 5801.64, "end": 5802.78, "probability": 0.0196 }, { "start": 5802.78, "end": 5806.84, "probability": 0.634 }, { "start": 5807.76, "end": 5807.76, "probability": 0.7128 }, { "start": 5807.76, "end": 5809.02, "probability": 0.6268 }, { "start": 5904.0, "end": 5904.0, "probability": 0.0 }, { "start": 5904.0, "end": 5904.0, "probability": 0.0 }, { "start": 5904.0, "end": 5904.0, "probability": 0.0 }, { "start": 5904.0, "end": 5904.0, "probability": 0.0 }, { "start": 5904.0, "end": 5904.0, "probability": 0.0 }, { "start": 5904.0, "end": 5904.0, "probability": 0.0 }, { "start": 5904.0, "end": 5904.0, "probability": 0.0 }, { "start": 5904.0, "end": 5904.0, "probability": 0.0 }, { "start": 5904.0, "end": 5904.0, "probability": 0.0 }, { "start": 5904.0, "end": 5904.0, "probability": 0.0 }, { "start": 5904.0, "end": 5904.0, "probability": 0.0 }, { "start": 5904.0, "end": 5904.0, "probability": 0.0 }, { "start": 5904.0, "end": 5904.0, "probability": 0.0 }, { "start": 5904.0, "end": 5904.0, "probability": 0.0 }, { "start": 5904.0, "end": 5904.0, "probability": 0.0 }, { "start": 5904.0, "end": 5904.0, "probability": 0.0 }, { "start": 5904.0, "end": 5904.0, "probability": 0.0 }, { "start": 5904.0, "end": 5904.0, "probability": 0.0 }, { "start": 5904.0, "end": 5904.0, "probability": 0.0 }, { "start": 5904.0, "end": 5904.0, "probability": 0.0 }, { "start": 5904.0, "end": 5904.0, "probability": 0.0 }, { "start": 5904.42, "end": 5904.74, "probability": 0.071 }, { "start": 5904.74, "end": 5904.74, "probability": 0.2339 }, { "start": 5904.74, "end": 5904.94, "probability": 0.0226 }, { "start": 5905.56, "end": 5905.7, "probability": 0.0116 }, { "start": 5907.54, "end": 5909.24, "probability": 0.3063 }, { "start": 5910.14, "end": 5912.6, "probability": 0.867 }, { "start": 5913.14, "end": 5915.66, "probability": 0.9647 }, { "start": 5915.8, "end": 5918.14, "probability": 0.9809 }, { "start": 5920.24, "end": 5921.6, "probability": 0.8517 }, { "start": 5930.7, "end": 5931.98, "probability": 0.7915 }, { "start": 5932.18, "end": 5934.32, "probability": 0.9919 }, { "start": 5934.64, "end": 5935.72, "probability": 0.9343 }, { "start": 5937.04, "end": 5938.1, "probability": 0.9502 }, { "start": 5938.24, "end": 5939.14, "probability": 0.7293 }, { "start": 5939.18, "end": 5942.72, "probability": 0.9964 }, { "start": 5943.5, "end": 5946.26, "probability": 0.9975 }, { "start": 5946.28, "end": 5949.6, "probability": 0.9995 }, { "start": 5950.22, "end": 5952.6, "probability": 0.4922 }, { "start": 5953.14, "end": 5955.24, "probability": 0.5125 }, { "start": 5956.26, "end": 5960.9, "probability": 0.7743 }, { "start": 5961.84, "end": 5963.82, "probability": 0.9574 }, { "start": 5964.22, "end": 5966.12, "probability": 0.9917 }, { "start": 5966.4, "end": 5968.0, "probability": 0.9194 }, { "start": 5968.62, "end": 5970.82, "probability": 0.9694 }, { "start": 5971.82, "end": 5972.74, "probability": 0.9219 }, { "start": 5973.28, "end": 5976.9, "probability": 0.9158 }, { "start": 5976.9, "end": 5980.0, "probability": 0.9875 }, { "start": 5980.62, "end": 5986.4, "probability": 0.9983 }, { "start": 5987.38, "end": 5991.56, "probability": 0.9949 }, { "start": 5991.56, "end": 5995.18, "probability": 0.9998 }, { "start": 5995.64, "end": 5996.9, "probability": 0.995 }, { "start": 5997.02, "end": 5998.98, "probability": 0.9832 }, { "start": 5999.56, "end": 6004.2, "probability": 0.9948 }, { "start": 6004.22, "end": 6008.2, "probability": 0.9983 }, { "start": 6009.28, "end": 6013.72, "probability": 0.9959 }, { "start": 6014.24, "end": 6017.78, "probability": 0.9843 }, { "start": 6018.96, "end": 6020.18, "probability": 0.6671 }, { "start": 6020.86, "end": 6026.1, "probability": 0.9966 }, { "start": 6026.86, "end": 6030.54, "probability": 0.9981 }, { "start": 6031.18, "end": 6034.17, "probability": 0.7262 }, { "start": 6035.16, "end": 6037.34, "probability": 0.9281 }, { "start": 6037.38, "end": 6038.24, "probability": 0.7554 }, { "start": 6038.4, "end": 6039.1, "probability": 0.7472 }, { "start": 6040.38, "end": 6046.36, "probability": 0.9974 }, { "start": 6047.2, "end": 6049.78, "probability": 0.896 }, { "start": 6050.36, "end": 6052.44, "probability": 0.9985 }, { "start": 6053.02, "end": 6056.76, "probability": 0.9971 }, { "start": 6057.28, "end": 6057.52, "probability": 0.9774 }, { "start": 6058.74, "end": 6059.64, "probability": 0.7621 }, { "start": 6059.72, "end": 6064.58, "probability": 0.9972 }, { "start": 6064.58, "end": 6069.18, "probability": 0.9995 }, { "start": 6069.86, "end": 6076.0, "probability": 0.9985 }, { "start": 6076.0, "end": 6083.06, "probability": 0.9971 }, { "start": 6083.52, "end": 6088.08, "probability": 0.9972 }, { "start": 6088.08, "end": 6091.62, "probability": 0.9994 }, { "start": 6092.34, "end": 6093.7, "probability": 0.7344 }, { "start": 6094.28, "end": 6096.94, "probability": 0.9603 }, { "start": 6097.34, "end": 6101.48, "probability": 0.9836 }, { "start": 6102.28, "end": 6105.4, "probability": 0.9817 }, { "start": 6105.92, "end": 6109.16, "probability": 0.9899 }, { "start": 6109.76, "end": 6113.62, "probability": 0.9878 }, { "start": 6114.26, "end": 6116.68, "probability": 0.9952 }, { "start": 6116.68, "end": 6120.34, "probability": 0.9917 }, { "start": 6120.42, "end": 6124.68, "probability": 0.9937 }, { "start": 6125.68, "end": 6129.58, "probability": 0.9829 }, { "start": 6129.78, "end": 6132.46, "probability": 0.8982 }, { "start": 6132.9, "end": 6137.34, "probability": 0.9964 }, { "start": 6137.46, "end": 6141.7, "probability": 0.7754 }, { "start": 6142.3, "end": 6143.9, "probability": 0.1897 }, { "start": 6144.34, "end": 6147.68, "probability": 0.9956 }, { "start": 6147.86, "end": 6150.86, "probability": 0.7706 }, { "start": 6150.9, "end": 6153.22, "probability": 0.7973 }, { "start": 6154.1, "end": 6158.52, "probability": 0.634 }, { "start": 6159.06, "end": 6165.18, "probability": 0.9282 }, { "start": 6165.18, "end": 6169.72, "probability": 0.9896 }, { "start": 6169.72, "end": 6173.36, "probability": 0.9941 }, { "start": 6173.98, "end": 6178.8, "probability": 0.993 }, { "start": 6179.88, "end": 6183.18, "probability": 0.9935 }, { "start": 6183.21, "end": 6187.68, "probability": 0.9989 }, { "start": 6188.26, "end": 6192.92, "probability": 0.9997 }, { "start": 6193.62, "end": 6198.16, "probability": 0.9904 }, { "start": 6198.16, "end": 6203.66, "probability": 0.9984 }, { "start": 6203.66, "end": 6209.1, "probability": 0.9907 }, { "start": 6209.86, "end": 6211.2, "probability": 0.7456 }, { "start": 6212.42, "end": 6216.56, "probability": 0.9924 }, { "start": 6217.0, "end": 6218.66, "probability": 0.9225 }, { "start": 6219.04, "end": 6221.4, "probability": 0.9625 }, { "start": 6222.04, "end": 6226.6, "probability": 0.9876 }, { "start": 6226.6, "end": 6230.56, "probability": 0.9983 }, { "start": 6231.22, "end": 6235.96, "probability": 0.9993 }, { "start": 6236.0, "end": 6241.16, "probability": 0.9958 }, { "start": 6241.9, "end": 6246.2, "probability": 0.9951 }, { "start": 6246.74, "end": 6249.36, "probability": 0.9974 }, { "start": 6249.36, "end": 6252.7, "probability": 0.9906 }, { "start": 6252.98, "end": 6253.26, "probability": 0.6621 }, { "start": 6254.16, "end": 6258.06, "probability": 0.559 }, { "start": 6258.92, "end": 6259.62, "probability": 0.5595 }, { "start": 6260.14, "end": 6260.14, "probability": 0.2297 }, { "start": 6260.14, "end": 6260.74, "probability": 0.4185 }, { "start": 6260.88, "end": 6261.92, "probability": 0.7914 }, { "start": 6262.02, "end": 6263.2, "probability": 0.5175 }, { "start": 6263.22, "end": 6264.48, "probability": 0.7933 }, { "start": 6264.8, "end": 6265.32, "probability": 0.7263 }, { "start": 6265.34, "end": 6266.16, "probability": 0.7141 }, { "start": 6266.84, "end": 6270.82, "probability": 0.7197 }, { "start": 6271.38, "end": 6274.76, "probability": 0.7797 }, { "start": 6274.82, "end": 6275.04, "probability": 0.808 }, { "start": 6275.32, "end": 6276.0, "probability": 0.8206 }, { "start": 6276.52, "end": 6278.98, "probability": 0.32 }, { "start": 6279.72, "end": 6280.24, "probability": 0.5591 }, { "start": 6280.86, "end": 6283.98, "probability": 0.6835 }, { "start": 6284.66, "end": 6286.3, "probability": 0.5407 }, { "start": 6286.32, "end": 6286.74, "probability": 0.8477 }, { "start": 6287.6, "end": 6288.4, "probability": 0.8242 }, { "start": 6289.86, "end": 6291.08, "probability": 0.7931 }, { "start": 6292.9, "end": 6293.34, "probability": 0.2882 }, { "start": 6293.42, "end": 6293.44, "probability": 0.0184 }, { "start": 6293.44, "end": 6295.98, "probability": 0.7514 }, { "start": 6306.7, "end": 6307.32, "probability": 0.2356 }, { "start": 6307.34, "end": 6308.64, "probability": 0.4272 }, { "start": 6308.76, "end": 6311.32, "probability": 0.8432 }, { "start": 6312.42, "end": 6314.36, "probability": 0.675 }, { "start": 6314.52, "end": 6316.02, "probability": 0.7935 }, { "start": 6316.7, "end": 6317.38, "probability": 0.2921 }, { "start": 6317.56, "end": 6317.96, "probability": 0.2149 }, { "start": 6319.34, "end": 6323.28, "probability": 0.7462 }, { "start": 6323.46, "end": 6324.42, "probability": 0.884 }, { "start": 6324.9, "end": 6326.9, "probability": 0.8173 }, { "start": 6327.9, "end": 6329.74, "probability": 0.5375 }, { "start": 6330.72, "end": 6331.7, "probability": 0.6712 }, { "start": 6334.4, "end": 6336.38, "probability": 0.5993 }, { "start": 6337.04, "end": 6337.9, "probability": 0.7774 }, { "start": 6339.28, "end": 6340.56, "probability": 0.3748 }, { "start": 6341.04, "end": 6341.58, "probability": 0.7431 }, { "start": 6351.7, "end": 6357.32, "probability": 0.8231 }, { "start": 6357.78, "end": 6358.8, "probability": 0.6519 }, { "start": 6359.88, "end": 6361.52, "probability": 0.9097 }, { "start": 6362.1, "end": 6363.5, "probability": 0.9021 }, { "start": 6364.62, "end": 6365.84, "probability": 0.917 }, { "start": 6365.92, "end": 6368.13, "probability": 0.8062 }, { "start": 6368.98, "end": 6372.8, "probability": 0.8864 }, { "start": 6373.3, "end": 6374.32, "probability": 0.8711 }, { "start": 6374.46, "end": 6379.08, "probability": 0.9976 }, { "start": 6380.08, "end": 6380.88, "probability": 0.7913 }, { "start": 6382.66, "end": 6383.64, "probability": 0.9792 }, { "start": 6383.74, "end": 6384.68, "probability": 0.909 }, { "start": 6384.84, "end": 6388.16, "probability": 0.9786 }, { "start": 6389.2, "end": 6392.52, "probability": 0.985 }, { "start": 6393.64, "end": 6394.06, "probability": 0.6421 }, { "start": 6394.84, "end": 6396.26, "probability": 0.6725 }, { "start": 6396.48, "end": 6397.46, "probability": 0.9172 }, { "start": 6397.76, "end": 6399.37, "probability": 0.9833 }, { "start": 6399.88, "end": 6401.7, "probability": 0.9668 }, { "start": 6402.3, "end": 6403.13, "probability": 0.9912 }, { "start": 6403.66, "end": 6405.4, "probability": 0.8699 }, { "start": 6405.96, "end": 6407.88, "probability": 0.994 }, { "start": 6408.64, "end": 6411.16, "probability": 0.9955 }, { "start": 6411.2, "end": 6412.35, "probability": 0.4724 }, { "start": 6412.94, "end": 6414.1, "probability": 0.9771 }, { "start": 6414.2, "end": 6416.44, "probability": 0.9937 }, { "start": 6416.88, "end": 6420.02, "probability": 0.6477 }, { "start": 6420.1, "end": 6420.38, "probability": 0.363 }, { "start": 6420.42, "end": 6420.48, "probability": 0.0588 }, { "start": 6420.48, "end": 6424.18, "probability": 0.7148 }, { "start": 6424.38, "end": 6425.7, "probability": 0.9973 }, { "start": 6426.06, "end": 6427.66, "probability": 0.9512 }, { "start": 6428.0, "end": 6429.22, "probability": 0.6327 }, { "start": 6429.3, "end": 6431.06, "probability": 0.9546 }, { "start": 6431.9, "end": 6433.48, "probability": 0.951 }, { "start": 6433.68, "end": 6434.1, "probability": 0.6861 }, { "start": 6434.2, "end": 6434.7, "probability": 0.8424 }, { "start": 6435.28, "end": 6439.16, "probability": 0.9216 }, { "start": 6439.72, "end": 6439.86, "probability": 0.6896 }, { "start": 6439.96, "end": 6440.96, "probability": 0.7918 }, { "start": 6441.3, "end": 6446.08, "probability": 0.9669 }, { "start": 6446.7, "end": 6448.7, "probability": 0.9891 }, { "start": 6449.84, "end": 6451.84, "probability": 0.975 }, { "start": 6453.04, "end": 6454.52, "probability": 0.8197 }, { "start": 6455.02, "end": 6457.0, "probability": 0.9554 }, { "start": 6457.76, "end": 6458.24, "probability": 0.7773 }, { "start": 6458.48, "end": 6460.26, "probability": 0.9933 }, { "start": 6461.28, "end": 6465.58, "probability": 0.9987 }, { "start": 6465.58, "end": 6469.2, "probability": 0.9954 }, { "start": 6469.94, "end": 6471.08, "probability": 0.9733 }, { "start": 6471.66, "end": 6473.24, "probability": 0.9964 }, { "start": 6474.06, "end": 6474.56, "probability": 0.8538 }, { "start": 6475.14, "end": 6475.76, "probability": 0.7116 }, { "start": 6475.92, "end": 6482.62, "probability": 0.9979 }, { "start": 6482.7, "end": 6483.78, "probability": 0.5172 }, { "start": 6484.76, "end": 6488.86, "probability": 0.9714 }, { "start": 6489.98, "end": 6490.74, "probability": 0.9707 }, { "start": 6490.96, "end": 6493.0, "probability": 0.9971 }, { "start": 6493.46, "end": 6494.88, "probability": 0.9872 }, { "start": 6495.38, "end": 6500.26, "probability": 0.9984 }, { "start": 6501.78, "end": 6506.8, "probability": 0.9987 }, { "start": 6507.86, "end": 6509.84, "probability": 0.9685 }, { "start": 6510.6, "end": 6512.96, "probability": 0.9957 }, { "start": 6514.22, "end": 6515.04, "probability": 0.8523 }, { "start": 6515.78, "end": 6520.04, "probability": 0.9637 }, { "start": 6520.78, "end": 6522.26, "probability": 0.9717 }, { "start": 6523.46, "end": 6524.92, "probability": 0.8327 }, { "start": 6526.6, "end": 6531.18, "probability": 0.9941 }, { "start": 6532.22, "end": 6533.46, "probability": 0.9943 }, { "start": 6534.8, "end": 6535.9, "probability": 0.6891 }, { "start": 6537.42, "end": 6539.24, "probability": 0.9537 }, { "start": 6541.14, "end": 6541.78, "probability": 0.4831 }, { "start": 6541.86, "end": 6542.72, "probability": 0.7564 }, { "start": 6542.9, "end": 6543.84, "probability": 0.9854 }, { "start": 6543.94, "end": 6545.68, "probability": 0.9739 }, { "start": 6545.86, "end": 6546.12, "probability": 0.6989 }, { "start": 6546.76, "end": 6551.48, "probability": 0.9887 }, { "start": 6552.66, "end": 6555.12, "probability": 0.998 }, { "start": 6555.12, "end": 6557.54, "probability": 0.999 }, { "start": 6557.98, "end": 6560.35, "probability": 0.9973 }, { "start": 6561.62, "end": 6566.58, "probability": 0.9799 }, { "start": 6567.02, "end": 6567.96, "probability": 0.7369 }, { "start": 6568.26, "end": 6568.38, "probability": 0.4767 }, { "start": 6568.44, "end": 6569.72, "probability": 0.7694 }, { "start": 6569.78, "end": 6570.6, "probability": 0.9411 }, { "start": 6571.06, "end": 6572.38, "probability": 0.844 }, { "start": 6573.41, "end": 6573.76, "probability": 0.3873 }, { "start": 6573.82, "end": 6574.7, "probability": 0.6942 }, { "start": 6574.76, "end": 6576.32, "probability": 0.6666 }, { "start": 6577.3, "end": 6579.2, "probability": 0.9852 }, { "start": 6580.0, "end": 6581.84, "probability": 0.8034 }, { "start": 6582.54, "end": 6585.72, "probability": 0.9579 }, { "start": 6586.18, "end": 6589.18, "probability": 0.849 }, { "start": 6589.56, "end": 6593.6, "probability": 0.9919 }, { "start": 6593.6, "end": 6597.48, "probability": 0.9732 }, { "start": 6598.12, "end": 6600.22, "probability": 0.9622 }, { "start": 6600.74, "end": 6605.2, "probability": 0.9869 }, { "start": 6605.92, "end": 6608.52, "probability": 0.9675 }, { "start": 6609.2, "end": 6612.32, "probability": 0.9948 }, { "start": 6613.84, "end": 6615.12, "probability": 0.0799 }, { "start": 6615.7, "end": 6615.98, "probability": 0.6361 }, { "start": 6616.1, "end": 6617.15, "probability": 0.6231 }, { "start": 6617.58, "end": 6618.28, "probability": 0.052 }, { "start": 6619.28, "end": 6622.3, "probability": 0.9745 }, { "start": 6622.98, "end": 6624.0, "probability": 0.1125 }, { "start": 6624.0, "end": 6625.2, "probability": 0.4896 }, { "start": 6625.24, "end": 6625.9, "probability": 0.853 }, { "start": 6625.9, "end": 6630.16, "probability": 0.9989 }, { "start": 6630.62, "end": 6632.32, "probability": 0.985 }, { "start": 6633.02, "end": 6638.66, "probability": 0.9838 }, { "start": 6639.97, "end": 6641.26, "probability": 0.2098 }, { "start": 6641.36, "end": 6643.38, "probability": 0.7585 }, { "start": 6643.84, "end": 6644.24, "probability": 0.6553 }, { "start": 6644.34, "end": 6645.72, "probability": 0.989 }, { "start": 6645.92, "end": 6646.74, "probability": 0.7419 }, { "start": 6646.8, "end": 6650.5, "probability": 0.9951 }, { "start": 6650.84, "end": 6651.5, "probability": 0.5789 }, { "start": 6652.8, "end": 6653.76, "probability": 0.661 }, { "start": 6654.9, "end": 6655.66, "probability": 0.9769 }, { "start": 6655.72, "end": 6656.04, "probability": 0.4794 }, { "start": 6656.24, "end": 6659.12, "probability": 0.9662 }, { "start": 6659.26, "end": 6660.42, "probability": 0.9102 }, { "start": 6661.3, "end": 6665.04, "probability": 0.9557 }, { "start": 6665.18, "end": 6666.22, "probability": 0.9441 }, { "start": 6666.5, "end": 6666.9, "probability": 0.8294 }, { "start": 6667.08, "end": 6669.26, "probability": 0.9995 }, { "start": 6669.86, "end": 6671.54, "probability": 0.8158 }, { "start": 6671.9, "end": 6674.4, "probability": 0.9392 }, { "start": 6675.64, "end": 6679.66, "probability": 0.9941 }, { "start": 6680.04, "end": 6680.42, "probability": 0.591 }, { "start": 6682.36, "end": 6684.54, "probability": 0.974 }, { "start": 6685.58, "end": 6688.26, "probability": 0.8546 }, { "start": 6689.24, "end": 6690.38, "probability": 0.6514 }, { "start": 6691.19, "end": 6692.96, "probability": 0.7935 }, { "start": 6693.86, "end": 6694.9, "probability": 0.3637 }, { "start": 6699.42, "end": 6700.12, "probability": 0.6791 }, { "start": 6705.74, "end": 6706.58, "probability": 0.7565 }, { "start": 6707.62, "end": 6708.92, "probability": 0.9477 }, { "start": 6711.28, "end": 6716.42, "probability": 0.5347 }, { "start": 6717.3, "end": 6719.14, "probability": 0.9951 }, { "start": 6719.68, "end": 6724.6, "probability": 0.9407 }, { "start": 6725.16, "end": 6725.82, "probability": 0.9148 }, { "start": 6726.2, "end": 6727.64, "probability": 0.9757 }, { "start": 6728.82, "end": 6732.28, "probability": 0.9937 }, { "start": 6733.02, "end": 6735.76, "probability": 0.9057 }, { "start": 6736.58, "end": 6737.7, "probability": 0.9462 }, { "start": 6738.34, "end": 6743.32, "probability": 0.989 }, { "start": 6743.32, "end": 6747.52, "probability": 0.9017 }, { "start": 6748.06, "end": 6750.48, "probability": 0.9951 }, { "start": 6751.38, "end": 6751.82, "probability": 0.7994 }, { "start": 6753.04, "end": 6754.3, "probability": 0.946 }, { "start": 6754.92, "end": 6758.18, "probability": 0.9809 }, { "start": 6758.96, "end": 6763.2, "probability": 0.8994 }, { "start": 6764.6, "end": 6766.72, "probability": 0.9377 }, { "start": 6766.9, "end": 6767.76, "probability": 0.8667 }, { "start": 6767.94, "end": 6769.3, "probability": 0.6672 }, { "start": 6770.36, "end": 6771.82, "probability": 0.8337 }, { "start": 6772.76, "end": 6777.88, "probability": 0.9832 }, { "start": 6777.88, "end": 6783.76, "probability": 0.9955 }, { "start": 6785.06, "end": 6786.66, "probability": 0.9251 }, { "start": 6787.38, "end": 6793.44, "probability": 0.9957 }, { "start": 6794.04, "end": 6796.13, "probability": 0.998 }, { "start": 6797.4, "end": 6802.28, "probability": 0.9623 }, { "start": 6802.28, "end": 6807.2, "probability": 0.9922 }, { "start": 6807.72, "end": 6810.62, "probability": 0.9946 }, { "start": 6811.34, "end": 6816.18, "probability": 0.9915 }, { "start": 6816.18, "end": 6821.84, "probability": 0.9678 }, { "start": 6822.48, "end": 6823.91, "probability": 0.6239 }, { "start": 6825.12, "end": 6830.38, "probability": 0.9559 }, { "start": 6830.94, "end": 6833.48, "probability": 0.982 }, { "start": 6833.86, "end": 6836.9, "probability": 0.9975 }, { "start": 6837.46, "end": 6840.76, "probability": 0.9803 }, { "start": 6841.22, "end": 6842.88, "probability": 0.9961 }, { "start": 6844.14, "end": 6844.96, "probability": 0.6867 }, { "start": 6845.62, "end": 6846.42, "probability": 0.9228 }, { "start": 6847.4, "end": 6851.88, "probability": 0.9854 }, { "start": 6852.9, "end": 6855.72, "probability": 0.7635 }, { "start": 6856.56, "end": 6859.3, "probability": 0.9652 }, { "start": 6860.66, "end": 6862.88, "probability": 0.9814 }, { "start": 6863.56, "end": 6868.44, "probability": 0.9909 }, { "start": 6869.44, "end": 6871.32, "probability": 0.9921 }, { "start": 6871.84, "end": 6872.72, "probability": 0.5505 }, { "start": 6872.8, "end": 6874.04, "probability": 0.9437 }, { "start": 6874.44, "end": 6878.94, "probability": 0.9963 }, { "start": 6879.56, "end": 6884.2, "probability": 0.9395 }, { "start": 6884.68, "end": 6888.32, "probability": 0.9878 }, { "start": 6888.88, "end": 6894.16, "probability": 0.9812 }, { "start": 6894.82, "end": 6898.0, "probability": 0.9898 }, { "start": 6898.56, "end": 6899.12, "probability": 0.8315 }, { "start": 6899.5, "end": 6902.16, "probability": 0.9855 }, { "start": 6902.9, "end": 6907.16, "probability": 0.9854 }, { "start": 6907.16, "end": 6911.5, "probability": 0.8193 }, { "start": 6912.98, "end": 6916.24, "probability": 0.9823 }, { "start": 6916.84, "end": 6919.06, "probability": 0.9045 }, { "start": 6919.58, "end": 6925.12, "probability": 0.9951 }, { "start": 6925.62, "end": 6926.74, "probability": 0.8612 }, { "start": 6927.2, "end": 6931.02, "probability": 0.9675 }, { "start": 6931.04, "end": 6934.02, "probability": 0.9428 }, { "start": 6934.68, "end": 6938.68, "probability": 0.9867 }, { "start": 6938.68, "end": 6942.6, "probability": 0.9942 }, { "start": 6943.36, "end": 6947.06, "probability": 0.5094 }, { "start": 6947.44, "end": 6947.86, "probability": 0.5703 }, { "start": 6949.2, "end": 6950.62, "probability": 0.9795 }, { "start": 6951.26, "end": 6952.54, "probability": 0.8379 }, { "start": 6952.96, "end": 6953.7, "probability": 0.8795 }, { "start": 6953.94, "end": 6955.5, "probability": 0.9492 }, { "start": 6955.96, "end": 6957.46, "probability": 0.974 }, { "start": 6957.9, "end": 6960.96, "probability": 0.9976 }, { "start": 6961.3, "end": 6963.9, "probability": 0.9854 }, { "start": 6964.7, "end": 6966.2, "probability": 0.8339 }, { "start": 6966.84, "end": 6967.22, "probability": 0.4911 }, { "start": 6967.94, "end": 6972.02, "probability": 0.9849 }, { "start": 6972.58, "end": 6975.9, "probability": 0.9904 }, { "start": 6975.9, "end": 6979.72, "probability": 0.9416 }, { "start": 6980.34, "end": 6981.64, "probability": 0.804 }, { "start": 6982.02, "end": 6986.7, "probability": 0.945 }, { "start": 6987.2, "end": 6989.42, "probability": 0.9181 }, { "start": 6990.1, "end": 6992.42, "probability": 0.894 }, { "start": 6992.86, "end": 6993.74, "probability": 0.9573 }, { "start": 6993.94, "end": 6995.32, "probability": 0.9326 }, { "start": 6995.78, "end": 6996.34, "probability": 0.4919 }, { "start": 6996.4, "end": 6997.04, "probability": 0.9498 }, { "start": 6997.1, "end": 6998.56, "probability": 0.9093 }, { "start": 6999.16, "end": 7005.22, "probability": 0.9456 }, { "start": 7005.56, "end": 7008.78, "probability": 0.8887 }, { "start": 7008.84, "end": 7011.6, "probability": 0.9607 }, { "start": 7011.98, "end": 7012.9, "probability": 0.8202 }, { "start": 7013.38, "end": 7018.1, "probability": 0.9907 }, { "start": 7018.58, "end": 7020.8, "probability": 0.8 }, { "start": 7021.34, "end": 7023.06, "probability": 0.8871 }, { "start": 7023.44, "end": 7025.7, "probability": 0.6111 }, { "start": 7026.24, "end": 7027.96, "probability": 0.6688 }, { "start": 7028.4, "end": 7032.46, "probability": 0.9991 }, { "start": 7033.2, "end": 7033.73, "probability": 0.9699 }, { "start": 7034.36, "end": 7037.04, "probability": 0.9436 }, { "start": 7037.74, "end": 7037.74, "probability": 0.4366 }, { "start": 7037.82, "end": 7040.02, "probability": 0.9856 }, { "start": 7040.36, "end": 7043.98, "probability": 0.997 }, { "start": 7044.52, "end": 7046.22, "probability": 0.9988 }, { "start": 7047.4, "end": 7049.82, "probability": 0.8416 }, { "start": 7049.88, "end": 7051.0, "probability": 0.8106 }, { "start": 7051.4, "end": 7052.42, "probability": 0.9802 }, { "start": 7052.7, "end": 7054.5, "probability": 0.9302 }, { "start": 7054.92, "end": 7056.2, "probability": 0.7198 }, { "start": 7056.36, "end": 7058.44, "probability": 0.9703 }, { "start": 7058.8, "end": 7061.26, "probability": 0.9909 }, { "start": 7061.26, "end": 7065.38, "probability": 0.9984 }, { "start": 7066.5, "end": 7067.12, "probability": 0.645 }, { "start": 7071.76, "end": 7071.86, "probability": 0.1335 }, { "start": 7071.86, "end": 7071.86, "probability": 0.249 }, { "start": 7071.86, "end": 7071.86, "probability": 0.0589 }, { "start": 7071.86, "end": 7071.86, "probability": 0.0348 }, { "start": 7071.86, "end": 7074.94, "probability": 0.297 }, { "start": 7075.56, "end": 7076.14, "probability": 0.4553 }, { "start": 7076.66, "end": 7077.8, "probability": 0.7512 }, { "start": 7078.18, "end": 7080.72, "probability": 0.9868 }, { "start": 7081.02, "end": 7081.99, "probability": 0.8631 }, { "start": 7082.6, "end": 7083.09, "probability": 0.9563 }, { "start": 7083.52, "end": 7084.51, "probability": 0.9262 }, { "start": 7084.64, "end": 7085.96, "probability": 0.8493 }, { "start": 7085.96, "end": 7086.82, "probability": 0.8311 }, { "start": 7086.82, "end": 7089.62, "probability": 0.7311 }, { "start": 7089.62, "end": 7089.64, "probability": 0.0498 }, { "start": 7089.64, "end": 7090.72, "probability": 0.9405 }, { "start": 7091.04, "end": 7094.22, "probability": 0.9932 }, { "start": 7094.34, "end": 7096.86, "probability": 0.6262 }, { "start": 7097.48, "end": 7101.1, "probability": 0.9115 }, { "start": 7101.2, "end": 7101.52, "probability": 0.7176 }, { "start": 7101.96, "end": 7101.96, "probability": 0.4314 }, { "start": 7102.08, "end": 7103.98, "probability": 0.7482 }, { "start": 7105.34, "end": 7107.04, "probability": 0.7803 }, { "start": 7110.12, "end": 7113.6, "probability": 0.1033 }, { "start": 7115.68, "end": 7116.78, "probability": 0.7039 }, { "start": 7116.92, "end": 7117.8, "probability": 0.65 }, { "start": 7117.92, "end": 7118.58, "probability": 0.6788 }, { "start": 7118.7, "end": 7119.02, "probability": 0.807 }, { "start": 7125.74, "end": 7127.5, "probability": 0.5676 }, { "start": 7129.24, "end": 7130.56, "probability": 0.3376 }, { "start": 7131.0, "end": 7131.54, "probability": 0.7262 }, { "start": 7132.2, "end": 7132.58, "probability": 0.6331 }, { "start": 7132.74, "end": 7136.94, "probability": 0.7197 }, { "start": 7137.86, "end": 7139.94, "probability": 0.9892 }, { "start": 7141.04, "end": 7142.42, "probability": 0.8628 }, { "start": 7144.44, "end": 7148.44, "probability": 0.893 }, { "start": 7149.22, "end": 7153.78, "probability": 0.9839 }, { "start": 7153.98, "end": 7154.58, "probability": 0.9001 }, { "start": 7155.32, "end": 7156.3, "probability": 0.6468 }, { "start": 7157.4, "end": 7164.8, "probability": 0.9207 }, { "start": 7165.1, "end": 7167.6, "probability": 0.998 }, { "start": 7168.76, "end": 7172.34, "probability": 0.9752 }, { "start": 7173.28, "end": 7175.06, "probability": 0.6157 }, { "start": 7175.74, "end": 7178.44, "probability": 0.7705 }, { "start": 7179.02, "end": 7181.52, "probability": 0.9969 }, { "start": 7181.92, "end": 7183.1, "probability": 0.9995 }, { "start": 7183.82, "end": 7188.44, "probability": 0.9872 }, { "start": 7189.54, "end": 7192.02, "probability": 0.9078 }, { "start": 7192.86, "end": 7200.02, "probability": 0.9961 }, { "start": 7200.74, "end": 7202.76, "probability": 0.9246 }, { "start": 7203.32, "end": 7205.52, "probability": 0.9927 }, { "start": 7206.14, "end": 7208.18, "probability": 0.9912 }, { "start": 7209.1, "end": 7209.58, "probability": 0.8423 }, { "start": 7209.64, "end": 7211.56, "probability": 0.8878 }, { "start": 7212.7, "end": 7214.52, "probability": 0.8763 }, { "start": 7215.26, "end": 7217.06, "probability": 0.9788 }, { "start": 7218.14, "end": 7218.5, "probability": 0.8917 }, { "start": 7218.68, "end": 7220.06, "probability": 0.9562 }, { "start": 7220.18, "end": 7221.58, "probability": 0.7612 }, { "start": 7222.44, "end": 7223.58, "probability": 0.6748 }, { "start": 7223.6, "end": 7225.6, "probability": 0.9188 }, { "start": 7225.74, "end": 7227.54, "probability": 0.9736 }, { "start": 7227.58, "end": 7228.78, "probability": 0.8867 }, { "start": 7229.36, "end": 7231.64, "probability": 0.9814 }, { "start": 7231.64, "end": 7235.94, "probability": 0.9668 }, { "start": 7237.24, "end": 7240.54, "probability": 0.9977 }, { "start": 7240.54, "end": 7243.96, "probability": 0.9446 }, { "start": 7244.64, "end": 7248.28, "probability": 0.995 }, { "start": 7249.4, "end": 7255.16, "probability": 0.9594 }, { "start": 7255.4, "end": 7258.42, "probability": 0.9847 }, { "start": 7259.32, "end": 7261.78, "probability": 0.9306 }, { "start": 7262.68, "end": 7264.8, "probability": 0.7959 }, { "start": 7265.52, "end": 7268.76, "probability": 0.987 }, { "start": 7268.76, "end": 7272.38, "probability": 0.9897 }, { "start": 7273.42, "end": 7275.54, "probability": 0.6944 }, { "start": 7276.32, "end": 7277.54, "probability": 0.913 }, { "start": 7278.14, "end": 7279.22, "probability": 0.958 }, { "start": 7282.04, "end": 7285.25, "probability": 0.9987 }, { "start": 7285.5, "end": 7289.38, "probability": 0.928 }, { "start": 7290.44, "end": 7293.08, "probability": 0.9364 }, { "start": 7293.14, "end": 7294.3, "probability": 0.8018 }, { "start": 7295.44, "end": 7295.96, "probability": 0.8123 }, { "start": 7296.18, "end": 7300.78, "probability": 0.9806 }, { "start": 7300.78, "end": 7306.14, "probability": 0.9974 }, { "start": 7306.86, "end": 7309.51, "probability": 0.935 }, { "start": 7310.4, "end": 7312.58, "probability": 0.9914 }, { "start": 7312.58, "end": 7315.9, "probability": 0.9067 }, { "start": 7316.58, "end": 7317.18, "probability": 0.9221 }, { "start": 7318.02, "end": 7319.58, "probability": 0.942 }, { "start": 7321.16, "end": 7324.2, "probability": 0.9872 }, { "start": 7324.62, "end": 7326.44, "probability": 0.978 }, { "start": 7327.12, "end": 7330.74, "probability": 0.9448 }, { "start": 7331.44, "end": 7334.3, "probability": 0.9447 }, { "start": 7335.38, "end": 7340.56, "probability": 0.95 }, { "start": 7340.58, "end": 7343.12, "probability": 0.998 }, { "start": 7343.42, "end": 7344.15, "probability": 0.9445 }, { "start": 7345.68, "end": 7348.1, "probability": 0.998 }, { "start": 7348.8, "end": 7353.14, "probability": 0.9912 }, { "start": 7353.14, "end": 7356.1, "probability": 0.9963 }, { "start": 7356.38, "end": 7357.08, "probability": 0.7022 }, { "start": 7359.26, "end": 7360.42, "probability": 0.8984 }, { "start": 7361.0, "end": 7363.96, "probability": 0.8628 }, { "start": 7363.96, "end": 7366.82, "probability": 0.995 }, { "start": 7367.56, "end": 7369.34, "probability": 0.9985 }, { "start": 7369.34, "end": 7372.6, "probability": 0.9907 }, { "start": 7373.4, "end": 7373.92, "probability": 0.8582 }, { "start": 7375.1, "end": 7379.36, "probability": 0.9926 }, { "start": 7379.92, "end": 7380.4, "probability": 0.4837 }, { "start": 7381.0, "end": 7381.98, "probability": 0.9946 }, { "start": 7382.88, "end": 7383.56, "probability": 0.7812 }, { "start": 7384.48, "end": 7386.14, "probability": 0.9531 }, { "start": 7386.8, "end": 7388.7, "probability": 0.9713 }, { "start": 7389.64, "end": 7392.22, "probability": 0.8508 }, { "start": 7392.74, "end": 7394.46, "probability": 0.9971 }, { "start": 7395.22, "end": 7396.4, "probability": 0.958 }, { "start": 7397.1, "end": 7400.08, "probability": 0.9939 }, { "start": 7400.68, "end": 7403.86, "probability": 0.9717 }, { "start": 7404.4, "end": 7407.72, "probability": 0.9979 }, { "start": 7408.74, "end": 7409.84, "probability": 0.9334 }, { "start": 7410.66, "end": 7415.02, "probability": 0.9863 }, { "start": 7415.2, "end": 7415.74, "probability": 0.9023 }, { "start": 7417.18, "end": 7417.9, "probability": 0.6668 }, { "start": 7418.1, "end": 7422.32, "probability": 0.7215 }, { "start": 7422.72, "end": 7428.0, "probability": 0.9982 }, { "start": 7428.08, "end": 7430.62, "probability": 0.986 }, { "start": 7431.24, "end": 7432.9, "probability": 0.9788 }, { "start": 7433.58, "end": 7435.7, "probability": 0.9932 }, { "start": 7436.9, "end": 7437.62, "probability": 0.9634 }, { "start": 7437.68, "end": 7438.52, "probability": 0.8001 }, { "start": 7438.62, "end": 7440.14, "probability": 0.9982 }, { "start": 7440.34, "end": 7441.26, "probability": 0.6759 }, { "start": 7441.8, "end": 7444.62, "probability": 0.9967 }, { "start": 7445.72, "end": 7447.76, "probability": 0.9959 }, { "start": 7447.76, "end": 7451.0, "probability": 0.9062 }, { "start": 7451.86, "end": 7454.22, "probability": 0.8833 }, { "start": 7454.82, "end": 7457.86, "probability": 0.8281 }, { "start": 7458.62, "end": 7458.96, "probability": 0.2651 }, { "start": 7458.96, "end": 7462.74, "probability": 0.9961 }, { "start": 7463.6, "end": 7464.12, "probability": 0.8271 }, { "start": 7464.2, "end": 7465.38, "probability": 0.8681 }, { "start": 7465.5, "end": 7468.52, "probability": 0.9861 }, { "start": 7469.06, "end": 7470.64, "probability": 0.9156 }, { "start": 7471.4, "end": 7474.02, "probability": 0.9501 }, { "start": 7474.16, "end": 7477.86, "probability": 0.9971 }, { "start": 7478.02, "end": 7478.84, "probability": 0.9963 }, { "start": 7479.7, "end": 7481.6, "probability": 0.9779 }, { "start": 7481.74, "end": 7483.48, "probability": 0.9822 }, { "start": 7483.98, "end": 7486.16, "probability": 0.6885 }, { "start": 7487.02, "end": 7488.18, "probability": 0.9143 }, { "start": 7488.48, "end": 7488.96, "probability": 0.9598 }, { "start": 7489.16, "end": 7489.72, "probability": 0.96 }, { "start": 7489.92, "end": 7490.52, "probability": 0.9527 }, { "start": 7490.62, "end": 7491.58, "probability": 0.88 }, { "start": 7492.14, "end": 7493.07, "probability": 0.9946 }, { "start": 7493.98, "end": 7496.56, "probability": 0.6062 }, { "start": 7496.64, "end": 7497.18, "probability": 0.7553 }, { "start": 7497.94, "end": 7500.2, "probability": 0.9724 }, { "start": 7500.28, "end": 7500.56, "probability": 0.7072 }, { "start": 7500.66, "end": 7504.44, "probability": 0.927 }, { "start": 7504.56, "end": 7506.08, "probability": 0.84 }, { "start": 7506.76, "end": 7507.63, "probability": 0.9897 }, { "start": 7508.1, "end": 7510.86, "probability": 0.9893 }, { "start": 7511.0, "end": 7511.48, "probability": 0.7492 }, { "start": 7511.48, "end": 7513.58, "probability": 0.6764 }, { "start": 7514.0, "end": 7515.94, "probability": 0.7412 }, { "start": 7516.64, "end": 7518.92, "probability": 0.827 }, { "start": 7519.5, "end": 7520.36, "probability": 0.3461 }, { "start": 7523.13, "end": 7527.04, "probability": 0.7841 }, { "start": 7528.26, "end": 7529.84, "probability": 0.9872 }, { "start": 7530.08, "end": 7533.0, "probability": 0.6015 }, { "start": 7533.04, "end": 7533.18, "probability": 0.7822 }, { "start": 7533.4, "end": 7533.62, "probability": 0.6866 }, { "start": 7533.8, "end": 7534.02, "probability": 0.5784 }, { "start": 7534.08, "end": 7534.29, "probability": 0.971 }, { "start": 7534.72, "end": 7535.34, "probability": 0.8225 }, { "start": 7535.34, "end": 7535.9, "probability": 0.3007 }, { "start": 7536.88, "end": 7537.7, "probability": 0.9336 }, { "start": 7541.04, "end": 7541.92, "probability": 0.0015 }, { "start": 7543.49, "end": 7546.3, "probability": 0.7186 }, { "start": 7546.5, "end": 7547.34, "probability": 0.6295 }, { "start": 7547.8, "end": 7549.7, "probability": 0.6621 }, { "start": 7550.8, "end": 7555.44, "probability": 0.9891 }, { "start": 7555.92, "end": 7560.86, "probability": 0.9179 }, { "start": 7561.12, "end": 7563.62, "probability": 0.9969 }, { "start": 7564.18, "end": 7568.08, "probability": 0.9951 }, { "start": 7568.96, "end": 7571.82, "probability": 0.9969 }, { "start": 7571.82, "end": 7575.3, "probability": 0.9951 }, { "start": 7576.1, "end": 7578.58, "probability": 0.8627 }, { "start": 7579.24, "end": 7581.14, "probability": 0.9041 }, { "start": 7581.68, "end": 7583.08, "probability": 0.8822 }, { "start": 7584.28, "end": 7585.82, "probability": 0.8023 }, { "start": 7585.86, "end": 7588.26, "probability": 0.9475 }, { "start": 7588.96, "end": 7594.3, "probability": 0.9929 }, { "start": 7594.3, "end": 7597.66, "probability": 0.9958 }, { "start": 7598.58, "end": 7604.38, "probability": 0.984 }, { "start": 7604.44, "end": 7605.18, "probability": 0.7694 }, { "start": 7605.92, "end": 7612.18, "probability": 0.9879 }, { "start": 7612.74, "end": 7616.28, "probability": 0.9805 }, { "start": 7616.28, "end": 7620.12, "probability": 0.9935 }, { "start": 7620.74, "end": 7623.2, "probability": 0.9964 }, { "start": 7623.74, "end": 7627.9, "probability": 0.9919 }, { "start": 7628.7, "end": 7633.74, "probability": 0.9962 }, { "start": 7634.24, "end": 7637.94, "probability": 0.9984 }, { "start": 7639.02, "end": 7643.42, "probability": 0.9944 }, { "start": 7644.38, "end": 7649.96, "probability": 0.995 }, { "start": 7650.72, "end": 7654.86, "probability": 0.9556 }, { "start": 7654.86, "end": 7658.0, "probability": 0.9985 }, { "start": 7658.58, "end": 7660.66, "probability": 0.9699 }, { "start": 7661.32, "end": 7663.12, "probability": 0.8417 }, { "start": 7663.66, "end": 7665.9, "probability": 0.9612 }, { "start": 7666.04, "end": 7667.38, "probability": 0.9032 }, { "start": 7667.86, "end": 7669.44, "probability": 0.9753 }, { "start": 7670.06, "end": 7673.06, "probability": 0.9952 }, { "start": 7673.06, "end": 7676.7, "probability": 0.9973 }, { "start": 7677.52, "end": 7679.02, "probability": 0.4994 }, { "start": 7679.18, "end": 7679.78, "probability": 0.5501 }, { "start": 7680.3, "end": 7683.96, "probability": 0.917 }, { "start": 7684.42, "end": 7687.18, "probability": 0.9961 }, { "start": 7687.74, "end": 7689.72, "probability": 0.9919 }, { "start": 7690.4, "end": 7692.64, "probability": 0.8494 }, { "start": 7692.78, "end": 7697.96, "probability": 0.6874 }, { "start": 7698.58, "end": 7701.68, "probability": 0.999 }, { "start": 7701.68, "end": 7704.42, "probability": 0.9968 }, { "start": 7705.12, "end": 7708.28, "probability": 0.9814 }, { "start": 7708.86, "end": 7711.5, "probability": 0.9727 }, { "start": 7712.44, "end": 7714.11, "probability": 0.9512 }, { "start": 7714.62, "end": 7718.9, "probability": 0.9891 }, { "start": 7718.98, "end": 7724.74, "probability": 0.8496 }, { "start": 7724.74, "end": 7729.42, "probability": 0.9971 }, { "start": 7730.2, "end": 7730.88, "probability": 0.505 }, { "start": 7730.94, "end": 7734.28, "probability": 0.9916 }, { "start": 7735.06, "end": 7739.34, "probability": 0.9172 }, { "start": 7740.22, "end": 7744.72, "probability": 0.9874 }, { "start": 7744.84, "end": 7748.7, "probability": 0.9845 }, { "start": 7748.7, "end": 7752.3, "probability": 0.9854 }, { "start": 7753.38, "end": 7755.66, "probability": 0.8362 }, { "start": 7756.4, "end": 7757.16, "probability": 0.611 }, { "start": 7757.6, "end": 7761.18, "probability": 0.9762 }, { "start": 7761.74, "end": 7764.94, "probability": 0.9163 }, { "start": 7765.78, "end": 7773.12, "probability": 0.9717 }, { "start": 7773.24, "end": 7776.66, "probability": 0.9915 }, { "start": 7777.36, "end": 7782.12, "probability": 0.994 }, { "start": 7782.3, "end": 7785.28, "probability": 0.9945 }, { "start": 7785.44, "end": 7785.8, "probability": 0.4623 }, { "start": 7786.34, "end": 7788.86, "probability": 0.821 }, { "start": 7790.44, "end": 7793.76, "probability": 0.7775 }, { "start": 7794.76, "end": 7795.76, "probability": 0.7348 }, { "start": 7813.82, "end": 7814.64, "probability": 0.6807 }, { "start": 7814.7, "end": 7816.82, "probability": 0.9461 }, { "start": 7816.94, "end": 7818.9, "probability": 0.8209 }, { "start": 7819.44, "end": 7824.56, "probability": 0.8735 }, { "start": 7824.64, "end": 7826.96, "probability": 0.9416 }, { "start": 7827.48, "end": 7829.76, "probability": 0.9947 }, { "start": 7830.86, "end": 7834.48, "probability": 0.8277 }, { "start": 7835.2, "end": 7837.96, "probability": 0.9512 }, { "start": 7838.48, "end": 7840.8, "probability": 0.9908 }, { "start": 7841.44, "end": 7847.74, "probability": 0.9913 }, { "start": 7848.4, "end": 7853.82, "probability": 0.9806 }, { "start": 7854.36, "end": 7858.68, "probability": 0.9605 }, { "start": 7858.68, "end": 7861.98, "probability": 0.9993 }, { "start": 7862.48, "end": 7866.86, "probability": 0.941 }, { "start": 7867.44, "end": 7872.2, "probability": 0.9984 }, { "start": 7872.2, "end": 7876.72, "probability": 0.9988 }, { "start": 7876.78, "end": 7878.5, "probability": 0.8429 }, { "start": 7879.76, "end": 7879.92, "probability": 0.1799 }, { "start": 7880.34, "end": 7884.62, "probability": 0.6699 }, { "start": 7884.76, "end": 7885.26, "probability": 0.8635 }, { "start": 7885.26, "end": 7888.24, "probability": 0.7226 }, { "start": 7889.0, "end": 7890.46, "probability": 0.5202 }, { "start": 7890.6, "end": 7891.44, "probability": 0.9362 }, { "start": 7892.32, "end": 7895.58, "probability": 0.9432 }, { "start": 7895.66, "end": 7898.84, "probability": 0.9335 }, { "start": 7898.84, "end": 7902.44, "probability": 0.9964 }, { "start": 7902.86, "end": 7906.44, "probability": 0.9962 }, { "start": 7906.44, "end": 7908.88, "probability": 0.998 }, { "start": 7909.74, "end": 7913.16, "probability": 0.9974 }, { "start": 7913.16, "end": 7916.88, "probability": 0.9985 }, { "start": 7917.52, "end": 7919.24, "probability": 0.9982 }, { "start": 7919.98, "end": 7923.08, "probability": 0.9974 }, { "start": 7923.08, "end": 7927.36, "probability": 0.9995 }, { "start": 7927.88, "end": 7934.12, "probability": 0.9994 }, { "start": 7934.7, "end": 7937.94, "probability": 0.9992 }, { "start": 7938.0, "end": 7942.42, "probability": 0.9989 }, { "start": 7942.42, "end": 7947.62, "probability": 0.9997 }, { "start": 7947.62, "end": 7951.58, "probability": 0.9998 }, { "start": 7952.3, "end": 7956.1, "probability": 0.9985 }, { "start": 7956.1, "end": 7960.76, "probability": 0.9735 }, { "start": 7961.82, "end": 7963.76, "probability": 0.9669 }, { "start": 7963.86, "end": 7964.16, "probability": 0.7618 }, { "start": 7964.76, "end": 7966.78, "probability": 0.8236 }, { "start": 7967.72, "end": 7970.86, "probability": 0.9717 }, { "start": 7970.86, "end": 7973.28, "probability": 0.8372 }, { "start": 7973.8, "end": 7974.5, "probability": 0.1709 }, { "start": 7975.02, "end": 7978.3, "probability": 0.2919 }, { "start": 7979.04, "end": 7979.32, "probability": 0.7747 }, { "start": 8000.92, "end": 8001.48, "probability": 0.0027 }, { "start": 8001.48, "end": 8002.66, "probability": 0.7057 }, { "start": 8004.22, "end": 8005.9, "probability": 0.5845 }, { "start": 8006.02, "end": 8010.34, "probability": 0.8625 }, { "start": 8011.28, "end": 8011.6, "probability": 0.8052 }, { "start": 8012.06, "end": 8014.4, "probability": 0.9527 }, { "start": 8014.44, "end": 8016.92, "probability": 0.9577 }, { "start": 8017.68, "end": 8022.52, "probability": 0.2053 }, { "start": 8032.14, "end": 8032.14, "probability": 0.0105 }, { "start": 8032.14, "end": 8032.16, "probability": 0.0223 }, { "start": 8032.16, "end": 8032.16, "probability": 0.1208 }, { "start": 8032.16, "end": 8032.16, "probability": 0.0903 }, { "start": 8032.2, "end": 8032.2, "probability": 0.0035 }, { "start": 8039.63, "end": 8039.94, "probability": 0.0601 }, { "start": 8039.94, "end": 8040.9, "probability": 0.3732 }, { "start": 8041.42, "end": 8041.54, "probability": 0.7314 }, { "start": 8042.72, "end": 8045.36, "probability": 0.5518 }, { "start": 8045.98, "end": 8048.34, "probability": 0.9897 }, { "start": 8048.54, "end": 8051.44, "probability": 0.381 }, { "start": 8051.66, "end": 8052.28, "probability": 0.2478 }, { "start": 8052.28, "end": 8056.74, "probability": 0.9405 }, { "start": 8057.64, "end": 8059.52, "probability": 0.9564 }, { "start": 8060.52, "end": 8063.34, "probability": 0.8761 }, { "start": 8063.66, "end": 8065.7, "probability": 0.7598 }, { "start": 8076.76, "end": 8078.26, "probability": 0.471 }, { "start": 8078.94, "end": 8080.52, "probability": 0.9476 }, { "start": 8080.68, "end": 8081.38, "probability": 0.6211 }, { "start": 8081.42, "end": 8084.74, "probability": 0.9775 }, { "start": 8084.84, "end": 8089.32, "probability": 0.9411 }, { "start": 8090.88, "end": 8092.42, "probability": 0.8867 }, { "start": 8092.56, "end": 8093.57, "probability": 0.8599 }, { "start": 8094.34, "end": 8096.57, "probability": 0.8125 }, { "start": 8098.54, "end": 8099.88, "probability": 0.8972 }, { "start": 8102.58, "end": 8103.38, "probability": 0.9385 }, { "start": 8103.58, "end": 8105.82, "probability": 0.9985 }, { "start": 8105.82, "end": 8108.66, "probability": 0.8755 }, { "start": 8109.96, "end": 8112.7, "probability": 0.9957 }, { "start": 8113.4, "end": 8115.1, "probability": 0.991 }, { "start": 8116.1, "end": 8117.4, "probability": 0.9111 }, { "start": 8119.78, "end": 8121.46, "probability": 0.9328 }, { "start": 8121.54, "end": 8121.64, "probability": 0.5287 }, { "start": 8121.88, "end": 8123.02, "probability": 0.9152 }, { "start": 8124.06, "end": 8127.66, "probability": 0.9966 }, { "start": 8129.28, "end": 8132.22, "probability": 0.9935 }, { "start": 8132.92, "end": 8133.8, "probability": 0.5879 }, { "start": 8135.22, "end": 8135.88, "probability": 0.9264 }, { "start": 8136.3, "end": 8137.44, "probability": 0.9956 }, { "start": 8137.84, "end": 8138.2, "probability": 0.7637 }, { "start": 8138.4, "end": 8139.3, "probability": 0.909 }, { "start": 8139.34, "end": 8140.26, "probability": 0.7012 }, { "start": 8141.98, "end": 8143.34, "probability": 0.7282 }, { "start": 8144.54, "end": 8148.74, "probability": 0.8892 }, { "start": 8149.24, "end": 8153.96, "probability": 0.9929 }, { "start": 8154.1, "end": 8154.84, "probability": 0.8223 }, { "start": 8154.92, "end": 8157.68, "probability": 0.8552 }, { "start": 8158.12, "end": 8159.28, "probability": 0.9688 }, { "start": 8159.32, "end": 8160.87, "probability": 0.4554 }, { "start": 8162.02, "end": 8163.76, "probability": 0.7523 }, { "start": 8164.0, "end": 8164.62, "probability": 0.8286 }, { "start": 8165.34, "end": 8168.06, "probability": 0.7782 }, { "start": 8168.78, "end": 8171.18, "probability": 0.9961 }, { "start": 8171.92, "end": 8173.44, "probability": 0.9023 }, { "start": 8174.04, "end": 8174.42, "probability": 0.9793 }, { "start": 8174.98, "end": 8175.5, "probability": 0.7213 }, { "start": 8175.64, "end": 8176.42, "probability": 0.988 }, { "start": 8177.26, "end": 8178.7, "probability": 0.9565 }, { "start": 8179.98, "end": 8181.72, "probability": 0.8267 }, { "start": 8182.28, "end": 8183.8, "probability": 0.8787 }, { "start": 8184.38, "end": 8187.36, "probability": 0.9407 }, { "start": 8188.04, "end": 8189.5, "probability": 0.9482 }, { "start": 8190.26, "end": 8192.5, "probability": 0.7271 }, { "start": 8193.78, "end": 8195.34, "probability": 0.8253 }, { "start": 8195.4, "end": 8196.52, "probability": 0.8177 }, { "start": 8196.58, "end": 8198.58, "probability": 0.9113 }, { "start": 8198.62, "end": 8200.08, "probability": 0.7861 }, { "start": 8200.22, "end": 8202.92, "probability": 0.8306 }, { "start": 8203.92, "end": 8206.2, "probability": 0.9831 }, { "start": 8206.28, "end": 8207.58, "probability": 0.8666 }, { "start": 8208.0, "end": 8210.36, "probability": 0.9031 }, { "start": 8211.24, "end": 8212.98, "probability": 0.9916 }, { "start": 8213.5, "end": 8214.38, "probability": 0.9152 }, { "start": 8214.48, "end": 8216.74, "probability": 0.7037 }, { "start": 8217.34, "end": 8218.16, "probability": 0.9976 }, { "start": 8218.38, "end": 8220.88, "probability": 0.6534 }, { "start": 8223.16, "end": 8225.66, "probability": 0.7848 }, { "start": 8226.3, "end": 8226.78, "probability": 0.7549 }, { "start": 8227.0, "end": 8227.42, "probability": 0.4369 }, { "start": 8227.7, "end": 8229.22, "probability": 0.1859 }, { "start": 8229.54, "end": 8232.24, "probability": 0.958 }, { "start": 8232.92, "end": 8234.83, "probability": 0.857 }, { "start": 8235.8, "end": 8237.66, "probability": 0.8959 }, { "start": 8238.4, "end": 8240.88, "probability": 0.9818 }, { "start": 8241.88, "end": 8242.54, "probability": 0.5826 }, { "start": 8243.52, "end": 8243.62, "probability": 0.6611 }, { "start": 8244.26, "end": 8245.22, "probability": 0.9478 }, { "start": 8245.78, "end": 8248.24, "probability": 0.988 }, { "start": 8249.4, "end": 8250.24, "probability": 0.9336 }, { "start": 8251.76, "end": 8254.06, "probability": 0.9712 }, { "start": 8254.52, "end": 8255.92, "probability": 0.6898 }, { "start": 8256.04, "end": 8258.16, "probability": 0.9531 }, { "start": 8259.7, "end": 8260.81, "probability": 0.867 }, { "start": 8260.92, "end": 8262.4, "probability": 0.8512 }, { "start": 8263.22, "end": 8264.16, "probability": 0.8889 }, { "start": 8265.94, "end": 8268.12, "probability": 0.9349 }, { "start": 8268.98, "end": 8269.36, "probability": 0.5827 }, { "start": 8269.92, "end": 8272.24, "probability": 0.881 }, { "start": 8273.64, "end": 8275.32, "probability": 0.9449 }, { "start": 8276.16, "end": 8280.82, "probability": 0.9322 }, { "start": 8282.02, "end": 8282.64, "probability": 0.9927 }, { "start": 8283.34, "end": 8284.24, "probability": 0.9807 }, { "start": 8284.84, "end": 8286.22, "probability": 0.8765 }, { "start": 8286.34, "end": 8286.52, "probability": 0.729 }, { "start": 8286.6, "end": 8291.04, "probability": 0.9954 }, { "start": 8291.06, "end": 8291.58, "probability": 0.531 }, { "start": 8292.2, "end": 8293.36, "probability": 0.7189 }, { "start": 8293.44, "end": 8294.18, "probability": 0.8689 }, { "start": 8294.24, "end": 8294.48, "probability": 0.9183 }, { "start": 8294.98, "end": 8298.54, "probability": 0.9346 }, { "start": 8298.86, "end": 8302.06, "probability": 0.9705 }, { "start": 8303.24, "end": 8305.5, "probability": 0.9514 }, { "start": 8306.7, "end": 8307.12, "probability": 0.7371 }, { "start": 8307.6, "end": 8308.76, "probability": 0.9938 }, { "start": 8308.86, "end": 8309.69, "probability": 0.9851 }, { "start": 8309.86, "end": 8310.6, "probability": 0.8325 }, { "start": 8311.18, "end": 8313.04, "probability": 0.9808 }, { "start": 8313.06, "end": 8313.66, "probability": 0.8196 }, { "start": 8313.74, "end": 8315.16, "probability": 0.9455 }, { "start": 8316.08, "end": 8317.28, "probability": 0.9724 }, { "start": 8317.82, "end": 8318.38, "probability": 0.8773 }, { "start": 8318.92, "end": 8320.78, "probability": 0.6007 }, { "start": 8321.78, "end": 8325.08, "probability": 0.9613 }, { "start": 8326.4, "end": 8328.68, "probability": 0.8472 }, { "start": 8329.92, "end": 8330.22, "probability": 0.9341 }, { "start": 8331.0, "end": 8332.62, "probability": 0.8624 }, { "start": 8333.48, "end": 8334.8, "probability": 0.9954 }, { "start": 8335.26, "end": 8335.86, "probability": 0.7196 }, { "start": 8336.74, "end": 8338.22, "probability": 0.847 }, { "start": 8338.96, "end": 8340.92, "probability": 0.9148 }, { "start": 8341.5, "end": 8346.06, "probability": 0.6577 }, { "start": 8347.7, "end": 8348.57, "probability": 0.9907 }, { "start": 8351.3, "end": 8351.78, "probability": 0.4536 }, { "start": 8351.96, "end": 8352.54, "probability": 0.6798 }, { "start": 8353.1, "end": 8353.74, "probability": 0.6846 }, { "start": 8353.82, "end": 8356.9, "probability": 0.9966 }, { "start": 8357.26, "end": 8358.7, "probability": 0.9022 }, { "start": 8358.92, "end": 8360.48, "probability": 0.7171 }, { "start": 8360.66, "end": 8360.96, "probability": 0.9209 }, { "start": 8361.16, "end": 8361.66, "probability": 0.9609 }, { "start": 8362.4, "end": 8363.62, "probability": 0.9939 }, { "start": 8363.7, "end": 8365.46, "probability": 0.9982 }, { "start": 8366.5, "end": 8368.02, "probability": 0.9757 }, { "start": 8368.18, "end": 8369.44, "probability": 0.8275 }, { "start": 8370.36, "end": 8372.28, "probability": 0.9707 }, { "start": 8376.08, "end": 8379.1, "probability": 0.8245 }, { "start": 8379.96, "end": 8383.6, "probability": 0.9121 }, { "start": 8383.7, "end": 8384.34, "probability": 0.7686 }, { "start": 8384.78, "end": 8386.66, "probability": 0.976 }, { "start": 8387.78, "end": 8388.02, "probability": 0.9453 }, { "start": 8388.08, "end": 8389.06, "probability": 0.8535 }, { "start": 8389.2, "end": 8390.32, "probability": 0.8179 }, { "start": 8390.7, "end": 8394.78, "probability": 0.6063 }, { "start": 8395.74, "end": 8398.78, "probability": 0.75 }, { "start": 8399.4, "end": 8401.9, "probability": 0.9723 }, { "start": 8403.06, "end": 8403.28, "probability": 0.6769 }, { "start": 8403.88, "end": 8404.64, "probability": 0.5888 }, { "start": 8408.7, "end": 8410.54, "probability": 0.6567 }, { "start": 8410.7, "end": 8413.1, "probability": 0.7492 }, { "start": 8413.66, "end": 8414.98, "probability": 0.8675 }, { "start": 8415.44, "end": 8416.6, "probability": 0.9859 }, { "start": 8417.48, "end": 8421.22, "probability": 0.8857 }, { "start": 8421.74, "end": 8424.26, "probability": 0.6352 }, { "start": 8424.86, "end": 8428.54, "probability": 0.9907 }, { "start": 8428.78, "end": 8429.04, "probability": 0.7987 }, { "start": 8429.12, "end": 8429.84, "probability": 0.8159 }, { "start": 8430.5, "end": 8430.52, "probability": 0.5169 }, { "start": 8430.52, "end": 8431.32, "probability": 0.4273 }, { "start": 8431.36, "end": 8433.54, "probability": 0.8291 } ], "segments_count": 2956, "words_count": 14333, "avg_words_per_segment": 4.8488, "avg_segment_duration": 1.9348, "avg_words_per_minute": 100.9088, "plenum_id": "102000", "duration": 8522.35, "title": null, "plenum_date": "2021-11-29" }