{ "source_type": "knesset", "source_id": "plenum", "source_entry_id": "102593", "quality_score": 0.9435, "per_segment_quality_scores": [ { "start": 0.34, "end": 0.36, "probability": 0.3124 }, { "start": 9.46, "end": 10.88, "probability": 0.1018 }, { "start": 65.8, "end": 66.04, "probability": 0.8295 }, { "start": 66.74, "end": 67.52, "probability": 0.6781 }, { "start": 67.88, "end": 70.42, "probability": 0.8306 }, { "start": 71.18, "end": 76.06, "probability": 0.9757 }, { "start": 76.76, "end": 80.26, "probability": 0.9188 }, { "start": 80.34, "end": 83.54, "probability": 0.9968 }, { "start": 83.8, "end": 84.04, "probability": 0.7045 }, { "start": 86.42, "end": 87.92, "probability": 0.8506 }, { "start": 92.88, "end": 95.78, "probability": 0.6764 }, { "start": 105.14, "end": 105.71, "probability": 0.4576 }, { "start": 106.28, "end": 108.9, "probability": 0.8208 }, { "start": 110.68, "end": 113.84, "probability": 0.9904 }, { "start": 113.84, "end": 116.0, "probability": 0.989 }, { "start": 117.2, "end": 120.02, "probability": 0.9847 }, { "start": 120.02, "end": 123.54, "probability": 0.8472 }, { "start": 123.83, "end": 127.48, "probability": 0.5298 }, { "start": 127.58, "end": 129.74, "probability": 0.4465 }, { "start": 129.82, "end": 130.9, "probability": 0.4515 }, { "start": 132.14, "end": 136.54, "probability": 0.6452 }, { "start": 137.06, "end": 140.3, "probability": 0.2987 }, { "start": 140.88, "end": 144.86, "probability": 0.7223 }, { "start": 145.5, "end": 146.9, "probability": 0.76 }, { "start": 147.68, "end": 150.7, "probability": 0.1413 }, { "start": 151.6, "end": 151.96, "probability": 0.794 }, { "start": 154.22, "end": 154.96, "probability": 0.705 }, { "start": 155.5, "end": 157.56, "probability": 0.8555 }, { "start": 158.18, "end": 159.98, "probability": 0.698 }, { "start": 160.2, "end": 161.68, "probability": 0.8497 }, { "start": 178.68, "end": 181.92, "probability": 0.9299 }, { "start": 200.52, "end": 201.36, "probability": 0.6389 }, { "start": 201.52, "end": 202.66, "probability": 0.8351 }, { "start": 202.86, "end": 204.6, "probability": 0.7535 }, { "start": 205.56, "end": 209.34, "probability": 0.9885 }, { "start": 209.38, "end": 212.28, "probability": 0.6811 }, { "start": 212.56, "end": 215.56, "probability": 0.9229 }, { "start": 215.56, "end": 220.44, "probability": 0.9955 }, { "start": 221.1, "end": 223.82, "probability": 0.715 }, { "start": 224.86, "end": 226.3, "probability": 0.9546 }, { "start": 226.68, "end": 230.82, "probability": 0.9469 }, { "start": 231.26, "end": 236.98, "probability": 0.9903 }, { "start": 237.56, "end": 238.98, "probability": 0.4141 }, { "start": 239.18, "end": 247.02, "probability": 0.9246 }, { "start": 247.72, "end": 252.58, "probability": 0.997 }, { "start": 252.78, "end": 258.66, "probability": 0.9755 }, { "start": 259.26, "end": 264.2, "probability": 0.9255 }, { "start": 264.94, "end": 267.68, "probability": 0.8789 }, { "start": 267.94, "end": 268.96, "probability": 0.8372 }, { "start": 269.06, "end": 269.64, "probability": 0.5165 }, { "start": 269.7, "end": 270.34, "probability": 0.4649 }, { "start": 270.96, "end": 274.6, "probability": 0.9653 }, { "start": 275.04, "end": 277.76, "probability": 0.9713 }, { "start": 278.0, "end": 278.7, "probability": 0.8358 }, { "start": 279.18, "end": 284.0, "probability": 0.9385 }, { "start": 284.46, "end": 288.68, "probability": 0.6798 }, { "start": 289.14, "end": 289.86, "probability": 0.882 }, { "start": 290.38, "end": 294.14, "probability": 0.7337 }, { "start": 294.74, "end": 298.56, "probability": 0.9852 }, { "start": 299.72, "end": 302.98, "probability": 0.9884 }, { "start": 303.24, "end": 303.64, "probability": 0.8226 }, { "start": 304.44, "end": 306.62, "probability": 0.8775 }, { "start": 306.8, "end": 306.86, "probability": 0.6258 }, { "start": 307.06, "end": 308.46, "probability": 0.6932 }, { "start": 309.4, "end": 313.35, "probability": 0.7358 }, { "start": 313.38, "end": 314.52, "probability": 0.8123 }, { "start": 317.8, "end": 320.14, "probability": 0.7534 }, { "start": 325.71, "end": 328.06, "probability": 0.6368 }, { "start": 328.36, "end": 330.14, "probability": 0.5945 }, { "start": 331.14, "end": 332.32, "probability": 0.9438 }, { "start": 332.4, "end": 337.12, "probability": 0.9087 }, { "start": 337.74, "end": 339.52, "probability": 0.9226 }, { "start": 340.14, "end": 341.78, "probability": 0.8213 }, { "start": 342.74, "end": 343.28, "probability": 0.6931 }, { "start": 343.4, "end": 344.16, "probability": 0.4947 }, { "start": 344.22, "end": 345.92, "probability": 0.825 }, { "start": 346.4, "end": 347.08, "probability": 0.7014 }, { "start": 347.34, "end": 348.94, "probability": 0.98 }, { "start": 349.86, "end": 353.92, "probability": 0.9614 }, { "start": 355.22, "end": 360.78, "probability": 0.8038 }, { "start": 362.18, "end": 363.18, "probability": 0.7661 }, { "start": 363.76, "end": 364.58, "probability": 0.9825 }, { "start": 366.0, "end": 370.54, "probability": 0.9788 }, { "start": 371.58, "end": 372.78, "probability": 0.6805 }, { "start": 372.96, "end": 373.62, "probability": 0.7943 }, { "start": 373.9, "end": 378.26, "probability": 0.8025 }, { "start": 378.36, "end": 379.58, "probability": 0.4842 }, { "start": 379.74, "end": 380.96, "probability": 0.9863 }, { "start": 381.56, "end": 385.7, "probability": 0.7378 }, { "start": 386.52, "end": 387.06, "probability": 0.8388 }, { "start": 387.92, "end": 388.3, "probability": 0.8114 }, { "start": 388.74, "end": 392.06, "probability": 0.984 }, { "start": 393.4, "end": 394.34, "probability": 0.9932 }, { "start": 395.34, "end": 400.24, "probability": 0.8615 }, { "start": 401.0, "end": 404.34, "probability": 0.9392 }, { "start": 405.62, "end": 408.96, "probability": 0.9757 }, { "start": 409.46, "end": 413.86, "probability": 0.8242 }, { "start": 414.1, "end": 416.2, "probability": 0.6416 }, { "start": 416.34, "end": 417.82, "probability": 0.8298 }, { "start": 418.2, "end": 420.84, "probability": 0.9653 }, { "start": 420.84, "end": 421.8, "probability": 0.9341 }, { "start": 422.52, "end": 426.42, "probability": 0.8185 }, { "start": 426.56, "end": 430.92, "probability": 0.989 }, { "start": 431.02, "end": 432.36, "probability": 0.9611 }, { "start": 432.8, "end": 433.56, "probability": 0.7821 }, { "start": 433.68, "end": 434.76, "probability": 0.958 }, { "start": 435.28, "end": 439.2, "probability": 0.9424 }, { "start": 439.28, "end": 441.62, "probability": 0.9875 }, { "start": 442.52, "end": 443.0, "probability": 0.7138 }, { "start": 444.34, "end": 444.86, "probability": 0.3381 }, { "start": 444.88, "end": 446.6, "probability": 0.8219 }, { "start": 452.59, "end": 455.44, "probability": 0.6653 }, { "start": 456.62, "end": 460.28, "probability": 0.771 }, { "start": 461.88, "end": 464.44, "probability": 0.9735 }, { "start": 465.48, "end": 468.58, "probability": 0.9829 }, { "start": 469.02, "end": 471.18, "probability": 0.9796 }, { "start": 472.04, "end": 475.56, "probability": 0.9996 }, { "start": 476.64, "end": 479.34, "probability": 0.9493 }, { "start": 480.2, "end": 483.42, "probability": 0.9926 }, { "start": 484.24, "end": 488.52, "probability": 0.9872 }, { "start": 488.56, "end": 491.14, "probability": 0.9464 }, { "start": 491.84, "end": 495.12, "probability": 0.9274 }, { "start": 495.98, "end": 497.14, "probability": 0.8593 }, { "start": 497.68, "end": 501.2, "probability": 0.9725 }, { "start": 501.74, "end": 504.9, "probability": 0.9382 }, { "start": 505.52, "end": 507.1, "probability": 0.9902 }, { "start": 507.7, "end": 508.8, "probability": 0.8455 }, { "start": 509.72, "end": 511.62, "probability": 0.7563 }, { "start": 511.78, "end": 514.7, "probability": 0.9802 }, { "start": 515.26, "end": 517.56, "probability": 0.6715 }, { "start": 518.48, "end": 520.1, "probability": 0.9368 }, { "start": 520.44, "end": 522.84, "probability": 0.9987 }, { "start": 522.86, "end": 526.44, "probability": 0.9901 }, { "start": 526.98, "end": 529.66, "probability": 0.9954 }, { "start": 530.26, "end": 530.68, "probability": 0.7121 }, { "start": 531.12, "end": 531.56, "probability": 0.5252 }, { "start": 531.62, "end": 533.84, "probability": 0.8399 }, { "start": 540.28, "end": 541.2, "probability": 0.7507 }, { "start": 541.96, "end": 543.2, "probability": 0.5377 }, { "start": 543.54, "end": 544.5, "probability": 0.9277 }, { "start": 544.68, "end": 546.46, "probability": 0.9435 }, { "start": 547.22, "end": 550.18, "probability": 0.9943 }, { "start": 550.44, "end": 552.84, "probability": 0.9905 }, { "start": 553.48, "end": 554.4, "probability": 0.879 }, { "start": 555.04, "end": 555.68, "probability": 0.718 }, { "start": 555.8, "end": 559.5, "probability": 0.7095 }, { "start": 559.64, "end": 560.88, "probability": 0.9604 }, { "start": 561.3, "end": 563.46, "probability": 0.9356 }, { "start": 563.88, "end": 565.64, "probability": 0.9849 }, { "start": 566.16, "end": 567.74, "probability": 0.9607 }, { "start": 567.94, "end": 568.5, "probability": 0.8926 }, { "start": 568.92, "end": 569.62, "probability": 0.8216 }, { "start": 569.9, "end": 570.88, "probability": 0.5831 }, { "start": 571.18, "end": 572.94, "probability": 0.9699 }, { "start": 573.3, "end": 575.02, "probability": 0.9774 }, { "start": 575.34, "end": 578.68, "probability": 0.8968 }, { "start": 578.94, "end": 581.12, "probability": 0.989 }, { "start": 581.42, "end": 582.23, "probability": 0.9985 }, { "start": 583.04, "end": 585.14, "probability": 0.8556 }, { "start": 585.54, "end": 586.4, "probability": 0.8885 }, { "start": 587.93, "end": 591.04, "probability": 0.9851 }, { "start": 591.24, "end": 594.24, "probability": 0.9116 }, { "start": 594.24, "end": 598.16, "probability": 0.9981 }, { "start": 598.64, "end": 602.92, "probability": 0.9855 }, { "start": 603.15, "end": 607.74, "probability": 0.9975 }, { "start": 607.92, "end": 608.5, "probability": 0.9861 }, { "start": 609.1, "end": 612.16, "probability": 0.9964 }, { "start": 612.6, "end": 615.18, "probability": 0.999 }, { "start": 615.26, "end": 615.5, "probability": 0.4992 }, { "start": 616.38, "end": 617.02, "probability": 0.7593 }, { "start": 617.54, "end": 621.3, "probability": 0.7774 }, { "start": 622.12, "end": 624.52, "probability": 0.9551 }, { "start": 625.88, "end": 629.12, "probability": 0.9099 }, { "start": 631.04, "end": 632.54, "probability": 0.2211 }, { "start": 660.54, "end": 661.38, "probability": 0.7465 }, { "start": 662.12, "end": 663.66, "probability": 0.7093 }, { "start": 664.5, "end": 666.34, "probability": 0.7222 }, { "start": 666.96, "end": 668.26, "probability": 0.9707 }, { "start": 668.98, "end": 675.44, "probability": 0.9502 }, { "start": 676.52, "end": 677.64, "probability": 0.9092 }, { "start": 677.8, "end": 678.8, "probability": 0.9409 }, { "start": 678.86, "end": 680.96, "probability": 0.9917 }, { "start": 681.66, "end": 685.32, "probability": 0.8737 }, { "start": 685.52, "end": 691.48, "probability": 0.9893 }, { "start": 691.48, "end": 696.18, "probability": 0.9676 }, { "start": 696.18, "end": 702.88, "probability": 0.9795 }, { "start": 703.24, "end": 703.98, "probability": 0.6407 }, { "start": 704.58, "end": 708.18, "probability": 0.9085 }, { "start": 708.88, "end": 714.52, "probability": 0.9951 }, { "start": 715.3, "end": 718.5, "probability": 0.9948 }, { "start": 719.58, "end": 722.92, "probability": 0.9325 }, { "start": 723.92, "end": 730.78, "probability": 0.991 }, { "start": 731.16, "end": 731.62, "probability": 0.903 }, { "start": 731.82, "end": 731.92, "probability": 0.7657 }, { "start": 732.58, "end": 736.22, "probability": 0.9575 }, { "start": 736.78, "end": 739.44, "probability": 0.9551 }, { "start": 740.56, "end": 742.74, "probability": 0.9504 }, { "start": 743.22, "end": 748.22, "probability": 0.985 }, { "start": 749.88, "end": 755.5, "probability": 0.7201 }, { "start": 755.5, "end": 758.58, "probability": 0.9575 }, { "start": 759.56, "end": 762.02, "probability": 0.9568 }, { "start": 762.68, "end": 765.02, "probability": 0.9878 }, { "start": 765.66, "end": 773.48, "probability": 0.9921 }, { "start": 774.8, "end": 777.06, "probability": 0.8452 }, { "start": 778.0, "end": 782.94, "probability": 0.9744 }, { "start": 784.18, "end": 786.52, "probability": 0.8042 }, { "start": 787.16, "end": 789.4, "probability": 0.9655 }, { "start": 790.22, "end": 794.2, "probability": 0.9968 }, { "start": 794.78, "end": 796.86, "probability": 0.9336 }, { "start": 796.92, "end": 797.64, "probability": 0.8819 }, { "start": 798.14, "end": 798.64, "probability": 0.3571 }, { "start": 799.0, "end": 799.54, "probability": 0.6815 }, { "start": 799.88, "end": 803.18, "probability": 0.9924 }, { "start": 803.66, "end": 807.32, "probability": 0.918 }, { "start": 807.88, "end": 810.42, "probability": 0.942 }, { "start": 810.76, "end": 811.02, "probability": 0.8038 }, { "start": 811.14, "end": 815.36, "probability": 0.982 }, { "start": 816.04, "end": 818.88, "probability": 0.6298 }, { "start": 819.52, "end": 822.66, "probability": 0.9453 }, { "start": 823.28, "end": 827.4, "probability": 0.7692 }, { "start": 828.08, "end": 831.14, "probability": 0.9954 }, { "start": 832.32, "end": 835.76, "probability": 0.8784 }, { "start": 836.56, "end": 844.42, "probability": 0.9556 }, { "start": 845.04, "end": 845.98, "probability": 0.2436 }, { "start": 846.7, "end": 852.92, "probability": 0.8122 }, { "start": 853.26, "end": 855.08, "probability": 0.3765 }, { "start": 855.56, "end": 857.58, "probability": 0.9727 }, { "start": 859.14, "end": 862.96, "probability": 0.9731 }, { "start": 863.64, "end": 865.76, "probability": 0.9579 }, { "start": 866.5, "end": 869.1, "probability": 0.9961 }, { "start": 869.1, "end": 871.44, "probability": 0.9493 }, { "start": 871.84, "end": 873.98, "probability": 0.998 }, { "start": 874.74, "end": 878.68, "probability": 0.8811 }, { "start": 881.64, "end": 884.04, "probability": 0.2343 }, { "start": 884.6, "end": 890.5, "probability": 0.5266 }, { "start": 891.18, "end": 892.24, "probability": 0.9772 }, { "start": 892.52, "end": 892.52, "probability": 0.5582 }, { "start": 892.52, "end": 893.5, "probability": 0.7397 }, { "start": 893.96, "end": 895.58, "probability": 0.8907 }, { "start": 896.16, "end": 897.38, "probability": 0.9189 }, { "start": 897.48, "end": 897.92, "probability": 0.9821 }, { "start": 898.18, "end": 899.24, "probability": 0.9933 }, { "start": 899.52, "end": 903.18, "probability": 0.9574 }, { "start": 903.78, "end": 906.02, "probability": 0.9958 }, { "start": 906.68, "end": 909.36, "probability": 0.9905 }, { "start": 909.98, "end": 915.22, "probability": 0.9965 }, { "start": 917.24, "end": 920.98, "probability": 0.9878 }, { "start": 921.34, "end": 925.76, "probability": 0.9812 }, { "start": 926.18, "end": 926.68, "probability": 0.3541 }, { "start": 926.74, "end": 930.62, "probability": 0.949 }, { "start": 931.34, "end": 934.32, "probability": 0.812 }, { "start": 934.68, "end": 935.74, "probability": 0.9747 }, { "start": 936.36, "end": 939.7, "probability": 0.967 }, { "start": 941.62, "end": 942.9, "probability": 0.7766 }, { "start": 943.44, "end": 949.06, "probability": 0.9892 }, { "start": 949.32, "end": 950.4, "probability": 0.4139 }, { "start": 950.52, "end": 951.12, "probability": 0.3668 }, { "start": 954.18, "end": 960.06, "probability": 0.7172 }, { "start": 960.44, "end": 961.16, "probability": 0.6299 }, { "start": 962.16, "end": 962.64, "probability": 0.8123 }, { "start": 964.34, "end": 969.88, "probability": 0.9915 }, { "start": 970.3, "end": 972.0, "probability": 0.8669 }, { "start": 972.5, "end": 976.14, "probability": 0.9925 }, { "start": 977.16, "end": 979.08, "probability": 0.9228 }, { "start": 980.1, "end": 982.96, "probability": 0.9961 }, { "start": 984.02, "end": 984.4, "probability": 0.9047 }, { "start": 985.24, "end": 986.0, "probability": 0.8542 }, { "start": 986.34, "end": 990.86, "probability": 0.9825 }, { "start": 991.7, "end": 992.68, "probability": 0.7803 }, { "start": 993.26, "end": 994.36, "probability": 0.7596 }, { "start": 994.92, "end": 996.42, "probability": 0.9637 }, { "start": 997.64, "end": 1001.8, "probability": 0.9841 }, { "start": 1002.3, "end": 1002.82, "probability": 0.9814 }, { "start": 1003.26, "end": 1005.16, "probability": 0.8754 }, { "start": 1005.78, "end": 1008.72, "probability": 0.9835 }, { "start": 1009.3, "end": 1010.76, "probability": 0.8029 }, { "start": 1010.88, "end": 1012.98, "probability": 0.6693 }, { "start": 1013.16, "end": 1014.42, "probability": 0.4969 }, { "start": 1014.82, "end": 1017.3, "probability": 0.8426 }, { "start": 1017.9, "end": 1019.44, "probability": 0.828 }, { "start": 1019.88, "end": 1022.92, "probability": 0.8165 }, { "start": 1023.52, "end": 1024.43, "probability": 0.9899 }, { "start": 1024.84, "end": 1025.32, "probability": 0.6558 }, { "start": 1026.64, "end": 1027.44, "probability": 0.8632 }, { "start": 1029.4, "end": 1031.72, "probability": 0.6505 }, { "start": 1032.68, "end": 1035.02, "probability": 0.9492 }, { "start": 1035.34, "end": 1037.58, "probability": 0.9696 }, { "start": 1068.34, "end": 1069.34, "probability": 0.5808 }, { "start": 1070.12, "end": 1070.88, "probability": 0.8426 }, { "start": 1071.56, "end": 1072.58, "probability": 0.6696 }, { "start": 1074.8, "end": 1077.58, "probability": 0.8329 }, { "start": 1078.84, "end": 1081.7, "probability": 0.9453 }, { "start": 1083.64, "end": 1085.44, "probability": 0.898 }, { "start": 1087.38, "end": 1088.52, "probability": 0.588 }, { "start": 1089.44, "end": 1090.94, "probability": 0.8506 }, { "start": 1092.44, "end": 1096.9, "probability": 0.6471 }, { "start": 1097.82, "end": 1099.5, "probability": 0.9937 }, { "start": 1100.32, "end": 1103.01, "probability": 0.9651 }, { "start": 1104.46, "end": 1109.18, "probability": 0.7305 }, { "start": 1109.8, "end": 1111.6, "probability": 0.5781 }, { "start": 1112.72, "end": 1112.88, "probability": 0.7752 }, { "start": 1113.5, "end": 1114.04, "probability": 0.9865 }, { "start": 1114.78, "end": 1115.16, "probability": 0.9814 }, { "start": 1116.07, "end": 1117.02, "probability": 0.9181 }, { "start": 1117.7, "end": 1118.48, "probability": 0.7909 }, { "start": 1119.02, "end": 1119.9, "probability": 0.907 }, { "start": 1121.68, "end": 1122.82, "probability": 0.8845 }, { "start": 1124.86, "end": 1128.06, "probability": 0.9734 }, { "start": 1128.76, "end": 1130.84, "probability": 0.4616 }, { "start": 1132.02, "end": 1132.02, "probability": 0.3733 }, { "start": 1132.84, "end": 1133.5, "probability": 0.7817 }, { "start": 1136.68, "end": 1138.56, "probability": 0.2493 }, { "start": 1140.26, "end": 1141.76, "probability": 0.6856 }, { "start": 1143.58, "end": 1144.5, "probability": 0.7449 }, { "start": 1145.84, "end": 1146.66, "probability": 0.9152 }, { "start": 1148.26, "end": 1150.12, "probability": 0.9036 }, { "start": 1150.3, "end": 1151.4, "probability": 0.7346 }, { "start": 1152.08, "end": 1152.7, "probability": 0.9868 }, { "start": 1153.46, "end": 1155.2, "probability": 0.8198 }, { "start": 1155.94, "end": 1156.54, "probability": 0.9918 }, { "start": 1157.38, "end": 1158.06, "probability": 0.933 }, { "start": 1159.6, "end": 1160.52, "probability": 0.8911 }, { "start": 1161.54, "end": 1162.72, "probability": 0.994 }, { "start": 1164.28, "end": 1165.24, "probability": 0.9207 }, { "start": 1166.7, "end": 1166.8, "probability": 0.5237 }, { "start": 1171.67, "end": 1174.98, "probability": 0.7465 }, { "start": 1175.86, "end": 1177.86, "probability": 0.8568 }, { "start": 1178.72, "end": 1180.04, "probability": 0.7866 }, { "start": 1180.78, "end": 1183.36, "probability": 0.7603 }, { "start": 1184.7, "end": 1185.24, "probability": 0.8111 }, { "start": 1186.26, "end": 1186.56, "probability": 0.6512 }, { "start": 1196.9, "end": 1198.36, "probability": 0.991 }, { "start": 1199.32, "end": 1201.2, "probability": 0.9463 }, { "start": 1202.2, "end": 1203.4, "probability": 0.7081 }, { "start": 1203.48, "end": 1205.64, "probability": 0.9779 }, { "start": 1206.26, "end": 1207.48, "probability": 0.8396 }, { "start": 1208.28, "end": 1209.5, "probability": 0.7781 }, { "start": 1210.32, "end": 1211.16, "probability": 0.7337 }, { "start": 1211.82, "end": 1218.88, "probability": 0.6447 }, { "start": 1219.72, "end": 1221.02, "probability": 0.9481 }, { "start": 1222.1, "end": 1223.16, "probability": 0.5518 }, { "start": 1223.82, "end": 1226.72, "probability": 0.9724 }, { "start": 1227.52, "end": 1228.04, "probability": 0.6881 }, { "start": 1229.64, "end": 1231.18, "probability": 0.8509 }, { "start": 1233.29, "end": 1235.7, "probability": 0.8043 }, { "start": 1236.7, "end": 1239.64, "probability": 0.78 }, { "start": 1241.46, "end": 1241.88, "probability": 0.5925 }, { "start": 1244.26, "end": 1249.22, "probability": 0.7968 }, { "start": 1250.2, "end": 1250.6, "probability": 0.6573 }, { "start": 1251.82, "end": 1252.14, "probability": 0.8521 }, { "start": 1252.72, "end": 1254.34, "probability": 0.9805 }, { "start": 1254.46, "end": 1255.34, "probability": 0.6028 }, { "start": 1256.3, "end": 1256.8, "probability": 0.5751 }, { "start": 1257.74, "end": 1260.52, "probability": 0.9371 }, { "start": 1261.48, "end": 1264.25, "probability": 0.8761 }, { "start": 1265.74, "end": 1266.95, "probability": 0.5281 }, { "start": 1268.44, "end": 1277.48, "probability": 0.8454 }, { "start": 1277.96, "end": 1279.14, "probability": 0.9176 }, { "start": 1280.6, "end": 1284.62, "probability": 0.6018 }, { "start": 1285.52, "end": 1287.66, "probability": 0.8954 }, { "start": 1288.24, "end": 1290.18, "probability": 0.8279 }, { "start": 1290.26, "end": 1292.94, "probability": 0.8446 }, { "start": 1294.38, "end": 1294.68, "probability": 0.5054 }, { "start": 1295.36, "end": 1296.22, "probability": 0.7865 }, { "start": 1296.92, "end": 1298.62, "probability": 0.9928 }, { "start": 1299.4, "end": 1301.28, "probability": 0.9965 }, { "start": 1302.1, "end": 1303.44, "probability": 0.998 }, { "start": 1304.22, "end": 1306.84, "probability": 0.9288 }, { "start": 1308.44, "end": 1313.92, "probability": 0.8608 }, { "start": 1316.5, "end": 1320.24, "probability": 0.9714 }, { "start": 1321.74, "end": 1322.2, "probability": 0.3372 }, { "start": 1323.49, "end": 1325.26, "probability": 0.4973 }, { "start": 1325.44, "end": 1327.0, "probability": 0.9159 }, { "start": 1327.92, "end": 1328.56, "probability": 0.4099 }, { "start": 1330.02, "end": 1331.86, "probability": 0.6435 }, { "start": 1333.1, "end": 1337.32, "probability": 0.9614 }, { "start": 1337.9, "end": 1340.28, "probability": 0.9924 }, { "start": 1342.42, "end": 1345.1, "probability": 0.9409 }, { "start": 1345.66, "end": 1346.96, "probability": 0.9932 }, { "start": 1347.76, "end": 1348.79, "probability": 0.9897 }, { "start": 1349.14, "end": 1349.92, "probability": 0.9966 }, { "start": 1351.5, "end": 1352.2, "probability": 0.9978 }, { "start": 1352.94, "end": 1353.84, "probability": 0.7669 }, { "start": 1355.1, "end": 1355.5, "probability": 0.4537 }, { "start": 1356.08, "end": 1362.2, "probability": 0.6674 }, { "start": 1362.4, "end": 1366.82, "probability": 0.9747 }, { "start": 1369.8, "end": 1374.26, "probability": 0.6146 }, { "start": 1377.34, "end": 1382.76, "probability": 0.6264 }, { "start": 1384.2, "end": 1388.71, "probability": 0.6502 }, { "start": 1390.6, "end": 1395.9, "probability": 0.9943 }, { "start": 1396.6, "end": 1397.36, "probability": 0.6218 }, { "start": 1398.6, "end": 1399.08, "probability": 0.5804 }, { "start": 1400.66, "end": 1402.4, "probability": 0.948 }, { "start": 1402.88, "end": 1405.58, "probability": 0.845 }, { "start": 1406.12, "end": 1407.72, "probability": 0.9548 }, { "start": 1408.94, "end": 1409.16, "probability": 0.842 }, { "start": 1410.08, "end": 1410.72, "probability": 0.6626 }, { "start": 1412.14, "end": 1413.64, "probability": 0.7063 }, { "start": 1422.8, "end": 1423.1, "probability": 0.3755 }, { "start": 1441.22, "end": 1443.1, "probability": 0.7607 }, { "start": 1445.28, "end": 1447.08, "probability": 0.9427 }, { "start": 1448.14, "end": 1448.7, "probability": 0.9355 }, { "start": 1449.9, "end": 1451.94, "probability": 0.7677 }, { "start": 1453.94, "end": 1454.48, "probability": 0.9609 }, { "start": 1455.62, "end": 1456.36, "probability": 0.7876 }, { "start": 1456.54, "end": 1458.72, "probability": 0.9836 }, { "start": 1458.78, "end": 1460.38, "probability": 0.8636 }, { "start": 1461.32, "end": 1464.22, "probability": 0.9673 }, { "start": 1464.28, "end": 1465.5, "probability": 0.9363 }, { "start": 1465.58, "end": 1467.68, "probability": 0.5889 }, { "start": 1468.68, "end": 1470.84, "probability": 0.5572 }, { "start": 1473.14, "end": 1474.9, "probability": 0.8116 }, { "start": 1475.98, "end": 1477.56, "probability": 0.7089 }, { "start": 1483.96, "end": 1483.96, "probability": 0.0092 }, { "start": 1483.96, "end": 1484.66, "probability": 0.4442 }, { "start": 1486.3, "end": 1487.43, "probability": 0.4402 }, { "start": 1489.28, "end": 1492.16, "probability": 0.9862 }, { "start": 1492.3, "end": 1494.58, "probability": 0.9814 }, { "start": 1494.82, "end": 1496.16, "probability": 0.9658 }, { "start": 1497.96, "end": 1499.13, "probability": 0.9587 }, { "start": 1501.8, "end": 1503.56, "probability": 0.9639 }, { "start": 1504.02, "end": 1505.94, "probability": 0.9993 }, { "start": 1506.88, "end": 1508.2, "probability": 0.9889 }, { "start": 1509.78, "end": 1513.44, "probability": 0.9864 }, { "start": 1514.86, "end": 1515.46, "probability": 0.5922 }, { "start": 1515.58, "end": 1521.94, "probability": 0.6433 }, { "start": 1522.68, "end": 1522.84, "probability": 0.0774 }, { "start": 1522.84, "end": 1525.3, "probability": 0.7398 }, { "start": 1525.34, "end": 1528.12, "probability": 0.9585 }, { "start": 1528.32, "end": 1532.0, "probability": 0.9666 }, { "start": 1532.92, "end": 1534.26, "probability": 0.9602 }, { "start": 1534.9, "end": 1535.56, "probability": 0.8339 }, { "start": 1536.24, "end": 1537.52, "probability": 0.9016 }, { "start": 1537.88, "end": 1538.84, "probability": 0.9731 }, { "start": 1539.02, "end": 1539.83, "probability": 0.9956 }, { "start": 1542.25, "end": 1544.7, "probability": 0.7454 }, { "start": 1545.7, "end": 1547.1, "probability": 0.8616 }, { "start": 1549.04, "end": 1549.04, "probability": 0.2156 }, { "start": 1549.14, "end": 1551.12, "probability": 0.8636 }, { "start": 1552.28, "end": 1556.02, "probability": 0.536 }, { "start": 1556.82, "end": 1558.06, "probability": 0.9967 }, { "start": 1560.78, "end": 1563.4, "probability": 0.845 }, { "start": 1564.76, "end": 1566.3, "probability": 0.9492 }, { "start": 1567.2, "end": 1570.12, "probability": 0.8276 }, { "start": 1571.44, "end": 1572.56, "probability": 0.9664 }, { "start": 1573.34, "end": 1574.76, "probability": 0.6413 }, { "start": 1574.88, "end": 1577.08, "probability": 0.925 }, { "start": 1577.22, "end": 1579.18, "probability": 0.9961 }, { "start": 1580.9, "end": 1581.84, "probability": 0.5304 }, { "start": 1582.56, "end": 1583.26, "probability": 0.7419 }, { "start": 1584.64, "end": 1586.14, "probability": 0.8968 }, { "start": 1586.28, "end": 1587.04, "probability": 0.6117 }, { "start": 1587.22, "end": 1590.24, "probability": 0.9918 }, { "start": 1590.38, "end": 1591.64, "probability": 0.282 }, { "start": 1593.06, "end": 1595.14, "probability": 0.9094 }, { "start": 1596.16, "end": 1596.88, "probability": 0.8357 }, { "start": 1597.76, "end": 1602.06, "probability": 0.8097 }, { "start": 1602.6, "end": 1603.56, "probability": 0.8133 }, { "start": 1605.08, "end": 1605.63, "probability": 0.9443 }, { "start": 1606.72, "end": 1609.6, "probability": 0.8451 }, { "start": 1610.02, "end": 1611.12, "probability": 0.9924 }, { "start": 1612.38, "end": 1612.78, "probability": 0.9278 }, { "start": 1612.94, "end": 1616.66, "probability": 0.9914 }, { "start": 1618.8, "end": 1619.12, "probability": 0.452 }, { "start": 1619.92, "end": 1622.82, "probability": 0.999 }, { "start": 1623.62, "end": 1625.9, "probability": 0.8871 }, { "start": 1626.88, "end": 1628.77, "probability": 0.9414 }, { "start": 1628.88, "end": 1629.36, "probability": 0.5113 }, { "start": 1630.26, "end": 1630.68, "probability": 0.7099 }, { "start": 1630.92, "end": 1632.3, "probability": 0.9801 }, { "start": 1632.34, "end": 1633.26, "probability": 0.9897 }, { "start": 1633.38, "end": 1634.48, "probability": 0.9985 }, { "start": 1634.66, "end": 1635.04, "probability": 0.7699 }, { "start": 1636.36, "end": 1638.46, "probability": 0.973 }, { "start": 1638.68, "end": 1639.78, "probability": 0.7531 }, { "start": 1639.8, "end": 1640.82, "probability": 0.9233 }, { "start": 1643.42, "end": 1644.62, "probability": 0.825 }, { "start": 1645.22, "end": 1648.7, "probability": 0.9976 }, { "start": 1648.72, "end": 1653.62, "probability": 0.9961 }, { "start": 1654.0, "end": 1656.32, "probability": 0.5781 }, { "start": 1657.26, "end": 1660.86, "probability": 0.8838 }, { "start": 1660.94, "end": 1662.15, "probability": 0.8696 }, { "start": 1663.54, "end": 1664.24, "probability": 0.8702 }, { "start": 1664.26, "end": 1665.2, "probability": 0.9637 }, { "start": 1665.62, "end": 1670.22, "probability": 0.9775 }, { "start": 1671.06, "end": 1673.82, "probability": 0.9858 }, { "start": 1674.7, "end": 1675.76, "probability": 0.9993 }, { "start": 1676.44, "end": 1677.14, "probability": 0.999 }, { "start": 1678.34, "end": 1679.5, "probability": 0.9312 }, { "start": 1680.56, "end": 1682.14, "probability": 0.6882 }, { "start": 1684.78, "end": 1686.3, "probability": 0.9252 }, { "start": 1686.38, "end": 1689.55, "probability": 0.9658 }, { "start": 1690.58, "end": 1692.6, "probability": 0.8647 }, { "start": 1694.1, "end": 1695.6, "probability": 0.5601 }, { "start": 1695.74, "end": 1696.2, "probability": 0.6292 }, { "start": 1696.38, "end": 1697.28, "probability": 0.9326 }, { "start": 1697.72, "end": 1699.16, "probability": 0.9527 }, { "start": 1699.54, "end": 1700.58, "probability": 0.9112 }, { "start": 1701.6, "end": 1702.42, "probability": 0.4989 }, { "start": 1703.36, "end": 1709.08, "probability": 0.9143 }, { "start": 1710.36, "end": 1711.2, "probability": 0.9171 }, { "start": 1712.0, "end": 1713.48, "probability": 0.836 }, { "start": 1714.36, "end": 1715.9, "probability": 0.6725 }, { "start": 1716.14, "end": 1717.18, "probability": 0.9153 }, { "start": 1717.84, "end": 1718.5, "probability": 0.9359 }, { "start": 1719.04, "end": 1724.77, "probability": 0.9629 }, { "start": 1725.46, "end": 1726.88, "probability": 0.7261 }, { "start": 1727.74, "end": 1730.54, "probability": 0.9944 }, { "start": 1731.16, "end": 1733.6, "probability": 0.9919 }, { "start": 1734.48, "end": 1736.0, "probability": 0.7402 }, { "start": 1736.08, "end": 1736.96, "probability": 0.9946 }, { "start": 1737.54, "end": 1737.9, "probability": 0.9534 }, { "start": 1738.3, "end": 1738.96, "probability": 0.6339 }, { "start": 1739.1, "end": 1740.86, "probability": 0.9914 }, { "start": 1741.26, "end": 1741.98, "probability": 0.659 }, { "start": 1742.94, "end": 1745.8, "probability": 0.9476 }, { "start": 1747.68, "end": 1754.54, "probability": 0.9189 }, { "start": 1755.02, "end": 1755.86, "probability": 0.8243 }, { "start": 1755.98, "end": 1757.38, "probability": 0.8558 }, { "start": 1757.6, "end": 1758.16, "probability": 0.71 }, { "start": 1758.28, "end": 1759.15, "probability": 0.9746 }, { "start": 1760.2, "end": 1763.4, "probability": 0.8171 }, { "start": 1764.04, "end": 1766.98, "probability": 0.9907 }, { "start": 1767.22, "end": 1768.86, "probability": 0.9941 }, { "start": 1769.9, "end": 1771.68, "probability": 0.9998 }, { "start": 1773.42, "end": 1775.66, "probability": 0.9883 }, { "start": 1776.4, "end": 1779.48, "probability": 0.9527 }, { "start": 1781.0, "end": 1783.48, "probability": 0.9706 }, { "start": 1783.76, "end": 1785.26, "probability": 0.9232 }, { "start": 1785.4, "end": 1790.3, "probability": 0.9984 }, { "start": 1791.46, "end": 1794.02, "probability": 0.8093 }, { "start": 1794.74, "end": 1799.12, "probability": 0.9941 }, { "start": 1799.32, "end": 1799.72, "probability": 0.7927 }, { "start": 1800.14, "end": 1800.66, "probability": 0.6055 }, { "start": 1800.7, "end": 1801.62, "probability": 0.7255 }, { "start": 1807.74, "end": 1809.3, "probability": 0.2892 }, { "start": 1824.56, "end": 1827.12, "probability": 0.7029 }, { "start": 1832.18, "end": 1833.72, "probability": 0.5349 }, { "start": 1834.74, "end": 1838.2, "probability": 0.9032 }, { "start": 1839.6, "end": 1840.6, "probability": 0.9294 }, { "start": 1841.44, "end": 1844.84, "probability": 0.9937 }, { "start": 1845.82, "end": 1848.06, "probability": 0.9965 }, { "start": 1849.35, "end": 1852.64, "probability": 0.9842 }, { "start": 1853.92, "end": 1855.56, "probability": 0.8106 }, { "start": 1856.2, "end": 1857.14, "probability": 0.9998 }, { "start": 1857.82, "end": 1861.6, "probability": 0.9995 }, { "start": 1861.6, "end": 1865.4, "probability": 0.999 }, { "start": 1866.6, "end": 1870.0, "probability": 0.9995 }, { "start": 1870.6, "end": 1872.12, "probability": 0.9908 }, { "start": 1873.26, "end": 1876.82, "probability": 0.9263 }, { "start": 1878.48, "end": 1880.3, "probability": 0.9693 }, { "start": 1881.14, "end": 1882.12, "probability": 0.9873 }, { "start": 1882.78, "end": 1884.56, "probability": 0.8936 }, { "start": 1885.24, "end": 1886.16, "probability": 0.9722 }, { "start": 1888.02, "end": 1891.92, "probability": 0.9955 }, { "start": 1892.78, "end": 1893.42, "probability": 0.9692 }, { "start": 1894.72, "end": 1895.06, "probability": 0.7436 }, { "start": 1895.86, "end": 1896.38, "probability": 0.7865 }, { "start": 1897.06, "end": 1898.02, "probability": 0.7338 }, { "start": 1899.0, "end": 1899.66, "probability": 0.9407 }, { "start": 1900.44, "end": 1901.24, "probability": 0.791 }, { "start": 1902.1, "end": 1903.3, "probability": 0.9504 }, { "start": 1904.1, "end": 1904.94, "probability": 0.9871 }, { "start": 1905.72, "end": 1908.52, "probability": 0.9865 }, { "start": 1909.18, "end": 1911.58, "probability": 0.9883 }, { "start": 1912.44, "end": 1916.16, "probability": 0.8649 }, { "start": 1917.18, "end": 1919.5, "probability": 0.9889 }, { "start": 1920.34, "end": 1920.92, "probability": 0.9357 }, { "start": 1921.48, "end": 1922.8, "probability": 0.9658 }, { "start": 1923.34, "end": 1928.12, "probability": 0.9985 }, { "start": 1929.02, "end": 1932.3, "probability": 0.9459 }, { "start": 1933.38, "end": 1935.48, "probability": 0.9302 }, { "start": 1936.04, "end": 1937.98, "probability": 0.9345 }, { "start": 1938.86, "end": 1942.72, "probability": 0.9828 }, { "start": 1943.46, "end": 1946.52, "probability": 0.9051 }, { "start": 1947.08, "end": 1949.08, "probability": 0.9536 }, { "start": 1950.3, "end": 1954.44, "probability": 0.9613 }, { "start": 1954.44, "end": 1957.68, "probability": 0.9784 }, { "start": 1959.64, "end": 1960.0, "probability": 0.309 }, { "start": 1960.1, "end": 1960.92, "probability": 0.6156 }, { "start": 1961.12, "end": 1964.36, "probability": 0.9712 }, { "start": 1965.4, "end": 1972.28, "probability": 0.856 }, { "start": 1972.96, "end": 1975.06, "probability": 0.733 }, { "start": 1976.02, "end": 1977.38, "probability": 0.9951 }, { "start": 1978.3, "end": 1979.22, "probability": 0.2779 }, { "start": 1979.8, "end": 1983.84, "probability": 0.9946 }, { "start": 1984.34, "end": 1989.62, "probability": 0.9194 }, { "start": 1990.5, "end": 1992.2, "probability": 0.9855 }, { "start": 1993.24, "end": 1993.72, "probability": 0.9173 }, { "start": 1994.62, "end": 1996.86, "probability": 0.9683 }, { "start": 1997.42, "end": 2005.92, "probability": 0.9895 }, { "start": 2006.48, "end": 2008.06, "probability": 0.9904 }, { "start": 2008.72, "end": 2014.68, "probability": 0.9833 }, { "start": 2015.56, "end": 2016.94, "probability": 0.5648 }, { "start": 2017.48, "end": 2021.46, "probability": 0.8519 }, { "start": 2022.18, "end": 2024.38, "probability": 0.9632 }, { "start": 2025.44, "end": 2029.94, "probability": 0.9967 }, { "start": 2030.66, "end": 2035.56, "probability": 0.9626 }, { "start": 2036.34, "end": 2040.34, "probability": 0.9478 }, { "start": 2040.34, "end": 2043.98, "probability": 0.9009 }, { "start": 2044.32, "end": 2048.76, "probability": 0.9578 }, { "start": 2049.3, "end": 2051.06, "probability": 0.9524 }, { "start": 2051.82, "end": 2055.8, "probability": 0.9169 }, { "start": 2056.52, "end": 2057.12, "probability": 0.7301 }, { "start": 2057.84, "end": 2058.92, "probability": 0.95 }, { "start": 2059.3, "end": 2060.26, "probability": 0.9368 }, { "start": 2060.36, "end": 2061.24, "probability": 0.9594 }, { "start": 2061.64, "end": 2063.78, "probability": 0.9162 }, { "start": 2064.22, "end": 2068.14, "probability": 0.973 }, { "start": 2068.92, "end": 2074.22, "probability": 0.9871 }, { "start": 2074.84, "end": 2076.0, "probability": 0.8049 }, { "start": 2076.48, "end": 2082.98, "probability": 0.9712 }, { "start": 2084.24, "end": 2084.74, "probability": 0.9324 }, { "start": 2085.46, "end": 2089.04, "probability": 0.9932 }, { "start": 2089.78, "end": 2092.32, "probability": 0.785 }, { "start": 2093.12, "end": 2099.02, "probability": 0.9781 }, { "start": 2099.94, "end": 2102.94, "probability": 0.9776 }, { "start": 2103.48, "end": 2106.5, "probability": 0.9866 }, { "start": 2107.3, "end": 2110.76, "probability": 0.9093 }, { "start": 2111.22, "end": 2114.68, "probability": 0.8691 }, { "start": 2115.38, "end": 2115.72, "probability": 0.7164 }, { "start": 2116.28, "end": 2116.86, "probability": 0.9689 }, { "start": 2117.8, "end": 2120.88, "probability": 0.0518 }, { "start": 2120.96, "end": 2125.72, "probability": 0.689 }, { "start": 2125.98, "end": 2129.02, "probability": 0.6613 }, { "start": 2129.56, "end": 2133.3, "probability": 0.5874 }, { "start": 2133.4, "end": 2133.54, "probability": 0.4665 }, { "start": 2133.54, "end": 2133.56, "probability": 0.4406 }, { "start": 2133.84, "end": 2135.86, "probability": 0.8517 }, { "start": 2136.1, "end": 2137.82, "probability": 0.6731 }, { "start": 2138.06, "end": 2139.05, "probability": 0.4724 }, { "start": 2139.66, "end": 2141.06, "probability": 0.9906 }, { "start": 2141.58, "end": 2142.46, "probability": 0.7027 }, { "start": 2143.58, "end": 2143.93, "probability": 0.0576 }, { "start": 2144.96, "end": 2150.98, "probability": 0.9005 }, { "start": 2151.6, "end": 2154.42, "probability": 0.5824 }, { "start": 2154.84, "end": 2158.68, "probability": 0.8842 }, { "start": 2158.7, "end": 2162.86, "probability": 0.9799 }, { "start": 2163.4, "end": 2170.24, "probability": 0.9842 }, { "start": 2170.6, "end": 2173.02, "probability": 0.993 }, { "start": 2173.48, "end": 2178.44, "probability": 0.9825 }, { "start": 2178.64, "end": 2179.26, "probability": 0.8021 }, { "start": 2189.5, "end": 2190.38, "probability": 0.0604 }, { "start": 2194.4, "end": 2194.98, "probability": 0.0615 }, { "start": 2195.0, "end": 2197.92, "probability": 0.2753 }, { "start": 2197.92, "end": 2198.16, "probability": 0.2559 }, { "start": 2198.16, "end": 2198.16, "probability": 0.3984 }, { "start": 2198.16, "end": 2198.42, "probability": 0.0236 }, { "start": 2198.6, "end": 2200.3, "probability": 0.8696 }, { "start": 2204.32, "end": 2206.04, "probability": 0.2656 }, { "start": 2206.04, "end": 2207.2, "probability": 0.5298 }, { "start": 2208.67, "end": 2211.07, "probability": 0.189 }, { "start": 2211.62, "end": 2212.52, "probability": 0.9437 }, { "start": 2228.76, "end": 2229.16, "probability": 0.1151 }, { "start": 2229.16, "end": 2229.16, "probability": 0.1558 }, { "start": 2229.16, "end": 2230.52, "probability": 0.4685 }, { "start": 2231.28, "end": 2232.54, "probability": 0.7755 }, { "start": 2233.44, "end": 2234.88, "probability": 0.475 }, { "start": 2238.0, "end": 2241.8, "probability": 0.6248 }, { "start": 2241.88, "end": 2243.68, "probability": 0.9245 }, { "start": 2244.06, "end": 2244.2, "probability": 0.9344 }, { "start": 2244.82, "end": 2248.42, "probability": 0.6476 }, { "start": 2248.44, "end": 2249.66, "probability": 0.9834 }, { "start": 2251.06, "end": 2254.04, "probability": 0.6084 }, { "start": 2254.62, "end": 2255.72, "probability": 0.7976 }, { "start": 2256.26, "end": 2259.28, "probability": 0.775 }, { "start": 2259.4, "end": 2260.31, "probability": 0.4991 }, { "start": 2261.4, "end": 2262.15, "probability": 0.9521 }, { "start": 2262.42, "end": 2264.42, "probability": 0.6527 }, { "start": 2264.48, "end": 2268.5, "probability": 0.8036 }, { "start": 2269.36, "end": 2272.2, "probability": 0.9547 }, { "start": 2272.5, "end": 2274.92, "probability": 0.998 }, { "start": 2275.3, "end": 2279.64, "probability": 0.9919 }, { "start": 2279.74, "end": 2280.12, "probability": 0.8044 }, { "start": 2280.24, "end": 2280.83, "probability": 0.6799 }, { "start": 2281.76, "end": 2285.69, "probability": 0.9789 }, { "start": 2286.16, "end": 2287.32, "probability": 0.9927 }, { "start": 2287.54, "end": 2288.86, "probability": 0.9888 }, { "start": 2289.02, "end": 2291.36, "probability": 0.9858 }, { "start": 2291.5, "end": 2293.76, "probability": 0.8803 }, { "start": 2294.25, "end": 2295.86, "probability": 0.4943 }, { "start": 2296.72, "end": 2297.4, "probability": 0.3457 }, { "start": 2297.66, "end": 2299.12, "probability": 0.6609 }, { "start": 2299.22, "end": 2300.18, "probability": 0.9454 }, { "start": 2300.8, "end": 2303.02, "probability": 0.997 }, { "start": 2303.7, "end": 2314.1, "probability": 0.9121 }, { "start": 2314.62, "end": 2314.7, "probability": 0.4932 }, { "start": 2314.7, "end": 2320.76, "probability": 0.9713 }, { "start": 2320.9, "end": 2321.88, "probability": 0.9822 }, { "start": 2322.54, "end": 2324.7, "probability": 0.846 }, { "start": 2326.69, "end": 2327.48, "probability": 0.5 }, { "start": 2327.84, "end": 2328.96, "probability": 0.9338 }, { "start": 2329.4, "end": 2330.24, "probability": 0.8727 }, { "start": 2330.3, "end": 2331.56, "probability": 0.9946 }, { "start": 2331.7, "end": 2334.96, "probability": 0.9912 }, { "start": 2335.1, "end": 2336.46, "probability": 0.8625 }, { "start": 2336.9, "end": 2338.3, "probability": 0.9046 }, { "start": 2338.5, "end": 2341.0, "probability": 0.9765 }, { "start": 2341.0, "end": 2347.52, "probability": 0.943 }, { "start": 2348.1, "end": 2350.28, "probability": 0.9086 }, { "start": 2351.16, "end": 2351.88, "probability": 0.6407 }, { "start": 2352.16, "end": 2354.12, "probability": 0.9454 }, { "start": 2354.6, "end": 2355.44, "probability": 0.9744 }, { "start": 2356.34, "end": 2359.7, "probability": 0.9935 }, { "start": 2359.7, "end": 2364.03, "probability": 0.9888 }, { "start": 2364.56, "end": 2365.92, "probability": 0.8247 }, { "start": 2366.14, "end": 2367.32, "probability": 0.8776 }, { "start": 2368.21, "end": 2371.38, "probability": 0.7307 }, { "start": 2371.64, "end": 2374.16, "probability": 0.6948 }, { "start": 2374.92, "end": 2378.48, "probability": 0.9685 }, { "start": 2378.7, "end": 2380.76, "probability": 0.8452 }, { "start": 2380.98, "end": 2381.56, "probability": 0.6554 }, { "start": 2381.74, "end": 2388.18, "probability": 0.997 }, { "start": 2388.18, "end": 2395.28, "probability": 0.9673 }, { "start": 2395.88, "end": 2400.32, "probability": 0.9507 }, { "start": 2400.46, "end": 2400.96, "probability": 0.3253 }, { "start": 2401.2, "end": 2404.08, "probability": 0.8524 }, { "start": 2404.76, "end": 2408.23, "probability": 0.9875 }, { "start": 2408.98, "end": 2411.48, "probability": 0.681 }, { "start": 2411.48, "end": 2414.72, "probability": 0.9102 }, { "start": 2414.84, "end": 2415.08, "probability": 0.5694 }, { "start": 2415.36, "end": 2415.64, "probability": 0.8279 }, { "start": 2416.12, "end": 2418.0, "probability": 0.9941 }, { "start": 2418.56, "end": 2423.08, "probability": 0.8853 }, { "start": 2423.28, "end": 2426.46, "probability": 0.9918 }, { "start": 2426.88, "end": 2427.88, "probability": 0.3821 }, { "start": 2428.34, "end": 2429.56, "probability": 0.7976 }, { "start": 2430.24, "end": 2433.84, "probability": 0.9925 }, { "start": 2434.08, "end": 2437.42, "probability": 0.9766 }, { "start": 2437.84, "end": 2439.56, "probability": 0.9884 }, { "start": 2439.64, "end": 2444.38, "probability": 0.9836 }, { "start": 2444.98, "end": 2446.48, "probability": 0.9546 }, { "start": 2446.52, "end": 2450.48, "probability": 0.9663 }, { "start": 2450.48, "end": 2455.6, "probability": 0.9889 }, { "start": 2455.68, "end": 2462.84, "probability": 0.9939 }, { "start": 2462.96, "end": 2466.52, "probability": 0.9534 }, { "start": 2466.72, "end": 2471.02, "probability": 0.9551 }, { "start": 2471.02, "end": 2474.92, "probability": 0.9946 }, { "start": 2475.26, "end": 2476.42, "probability": 0.8868 }, { "start": 2477.08, "end": 2480.1, "probability": 0.9364 }, { "start": 2480.26, "end": 2483.72, "probability": 0.9641 }, { "start": 2484.34, "end": 2487.14, "probability": 0.817 }, { "start": 2487.96, "end": 2491.18, "probability": 0.9789 }, { "start": 2491.32, "end": 2497.66, "probability": 0.7367 }, { "start": 2497.9, "end": 2501.16, "probability": 0.9064 }, { "start": 2501.9, "end": 2502.8, "probability": 0.6758 }, { "start": 2502.9, "end": 2503.5, "probability": 0.8671 }, { "start": 2503.74, "end": 2506.14, "probability": 0.9423 }, { "start": 2506.24, "end": 2509.12, "probability": 0.7993 }, { "start": 2509.18, "end": 2510.0, "probability": 0.7246 }, { "start": 2510.34, "end": 2511.88, "probability": 0.9013 }, { "start": 2512.38, "end": 2513.46, "probability": 0.601 }, { "start": 2513.7, "end": 2514.9, "probability": 0.7424 }, { "start": 2515.56, "end": 2517.95, "probability": 0.6436 }, { "start": 2518.1, "end": 2521.92, "probability": 0.8145 }, { "start": 2522.02, "end": 2523.26, "probability": 0.9441 }, { "start": 2523.36, "end": 2523.88, "probability": 0.4941 }, { "start": 2524.1, "end": 2524.82, "probability": 0.6995 }, { "start": 2524.96, "end": 2526.7, "probability": 0.9878 }, { "start": 2527.22, "end": 2528.18, "probability": 0.7973 }, { "start": 2528.26, "end": 2528.52, "probability": 0.4819 }, { "start": 2528.84, "end": 2532.42, "probability": 0.8648 }, { "start": 2533.26, "end": 2535.68, "probability": 0.993 }, { "start": 2535.86, "end": 2537.18, "probability": 0.9287 }, { "start": 2537.34, "end": 2538.46, "probability": 0.979 }, { "start": 2538.88, "end": 2540.72, "probability": 0.903 }, { "start": 2540.96, "end": 2541.52, "probability": 0.8518 }, { "start": 2542.8, "end": 2545.36, "probability": 0.6263 }, { "start": 2545.36, "end": 2545.36, "probability": 0.0922 }, { "start": 2545.36, "end": 2545.36, "probability": 0.1801 }, { "start": 2545.36, "end": 2547.86, "probability": 0.9663 }, { "start": 2547.86, "end": 2550.62, "probability": 0.9773 }, { "start": 2551.16, "end": 2553.98, "probability": 0.9246 }, { "start": 2554.72, "end": 2557.26, "probability": 0.8351 }, { "start": 2557.46, "end": 2557.7, "probability": 0.7609 }, { "start": 2558.7, "end": 2561.52, "probability": 0.9313 }, { "start": 2561.7, "end": 2562.88, "probability": 0.907 }, { "start": 2562.9, "end": 2565.68, "probability": 0.9902 }, { "start": 2565.68, "end": 2569.72, "probability": 0.8952 }, { "start": 2569.94, "end": 2570.76, "probability": 0.9963 }, { "start": 2571.62, "end": 2573.64, "probability": 0.9967 }, { "start": 2573.86, "end": 2577.7, "probability": 0.984 }, { "start": 2578.22, "end": 2579.12, "probability": 0.7943 }, { "start": 2579.8, "end": 2580.5, "probability": 0.8113 }, { "start": 2581.7, "end": 2583.82, "probability": 0.9453 }, { "start": 2584.26, "end": 2586.1, "probability": 0.7859 }, { "start": 2616.14, "end": 2616.98, "probability": 0.6673 }, { "start": 2618.28, "end": 2619.2, "probability": 0.7061 }, { "start": 2621.4, "end": 2627.44, "probability": 0.9459 }, { "start": 2629.72, "end": 2633.92, "probability": 0.9506 }, { "start": 2635.44, "end": 2644.84, "probability": 0.9736 }, { "start": 2646.9, "end": 2654.34, "probability": 0.9788 }, { "start": 2654.86, "end": 2656.14, "probability": 0.7388 }, { "start": 2657.6, "end": 2658.4, "probability": 0.9783 }, { "start": 2659.04, "end": 2660.42, "probability": 0.6481 }, { "start": 2660.98, "end": 2664.32, "probability": 0.9354 }, { "start": 2665.66, "end": 2667.2, "probability": 0.9754 }, { "start": 2668.68, "end": 2670.22, "probability": 0.9866 }, { "start": 2672.76, "end": 2676.8, "probability": 0.6833 }, { "start": 2677.46, "end": 2678.74, "probability": 0.9566 }, { "start": 2680.0, "end": 2683.02, "probability": 0.9934 }, { "start": 2683.7, "end": 2684.2, "probability": 0.9424 }, { "start": 2686.72, "end": 2690.94, "probability": 0.9328 }, { "start": 2691.92, "end": 2693.48, "probability": 0.9185 }, { "start": 2694.72, "end": 2698.04, "probability": 0.9977 }, { "start": 2698.66, "end": 2699.36, "probability": 0.8613 }, { "start": 2701.2, "end": 2704.46, "probability": 0.7352 }, { "start": 2705.28, "end": 2707.38, "probability": 0.7946 }, { "start": 2709.94, "end": 2710.5, "probability": 0.0445 }, { "start": 2710.5, "end": 2713.02, "probability": 0.9045 }, { "start": 2713.26, "end": 2714.12, "probability": 0.5395 }, { "start": 2714.28, "end": 2715.16, "probability": 0.6842 }, { "start": 2716.34, "end": 2717.74, "probability": 0.9342 }, { "start": 2718.42, "end": 2720.68, "probability": 0.9678 }, { "start": 2722.48, "end": 2726.7, "probability": 0.9567 }, { "start": 2728.12, "end": 2729.54, "probability": 0.9833 }, { "start": 2733.3, "end": 2733.82, "probability": 0.6586 }, { "start": 2734.74, "end": 2738.86, "probability": 0.9959 }, { "start": 2739.36, "end": 2740.14, "probability": 0.4835 }, { "start": 2740.24, "end": 2741.54, "probability": 0.8591 }, { "start": 2742.1, "end": 2748.86, "probability": 0.9608 }, { "start": 2750.08, "end": 2753.86, "probability": 0.9659 }, { "start": 2755.96, "end": 2756.82, "probability": 0.4989 }, { "start": 2757.4, "end": 2758.64, "probability": 0.9773 }, { "start": 2759.4, "end": 2761.59, "probability": 0.876 }, { "start": 2765.28, "end": 2765.72, "probability": 0.5348 }, { "start": 2766.62, "end": 2768.36, "probability": 0.9968 }, { "start": 2769.2, "end": 2770.44, "probability": 0.9875 }, { "start": 2772.96, "end": 2774.84, "probability": 0.9967 }, { "start": 2775.72, "end": 2777.86, "probability": 0.9712 }, { "start": 2778.66, "end": 2780.16, "probability": 0.8755 }, { "start": 2780.78, "end": 2786.4, "probability": 0.9108 }, { "start": 2787.56, "end": 2788.54, "probability": 0.899 }, { "start": 2792.28, "end": 2793.92, "probability": 0.6974 }, { "start": 2794.04, "end": 2794.28, "probability": 0.6656 }, { "start": 2794.76, "end": 2795.98, "probability": 0.9247 }, { "start": 2796.9, "end": 2797.82, "probability": 0.973 }, { "start": 2797.94, "end": 2798.06, "probability": 0.7623 }, { "start": 2798.46, "end": 2804.1, "probability": 0.9653 }, { "start": 2804.32, "end": 2804.84, "probability": 0.1922 }, { "start": 2804.96, "end": 2807.28, "probability": 0.9949 }, { "start": 2808.4, "end": 2811.06, "probability": 0.9581 }, { "start": 2812.86, "end": 2814.78, "probability": 0.9717 }, { "start": 2816.34, "end": 2816.94, "probability": 0.8318 }, { "start": 2817.9, "end": 2818.77, "probability": 0.986 }, { "start": 2819.42, "end": 2822.36, "probability": 0.8123 }, { "start": 2822.52, "end": 2823.68, "probability": 0.7375 }, { "start": 2823.76, "end": 2825.11, "probability": 0.9695 }, { "start": 2825.36, "end": 2825.4, "probability": 0.4491 }, { "start": 2825.6, "end": 2825.86, "probability": 0.575 }, { "start": 2825.88, "end": 2827.12, "probability": 0.8188 }, { "start": 2827.5, "end": 2830.26, "probability": 0.6516 }, { "start": 2830.42, "end": 2837.02, "probability": 0.9492 }, { "start": 2837.86, "end": 2838.48, "probability": 0.7673 }, { "start": 2840.1, "end": 2844.42, "probability": 0.5066 }, { "start": 2844.44, "end": 2846.08, "probability": 0.6428 }, { "start": 2846.2, "end": 2846.2, "probability": 0.1013 }, { "start": 2846.2, "end": 2846.2, "probability": 0.2384 }, { "start": 2846.2, "end": 2846.2, "probability": 0.9637 }, { "start": 2846.2, "end": 2849.06, "probability": 0.9653 }, { "start": 2849.5, "end": 2854.96, "probability": 0.9255 }, { "start": 2855.3, "end": 2856.08, "probability": 0.6969 }, { "start": 2856.74, "end": 2858.76, "probability": 0.9943 }, { "start": 2859.56, "end": 2861.52, "probability": 0.7296 }, { "start": 2861.94, "end": 2866.2, "probability": 0.9884 }, { "start": 2866.2, "end": 2870.16, "probability": 0.9868 }, { "start": 2870.54, "end": 2870.56, "probability": 0.1158 }, { "start": 2870.56, "end": 2872.3, "probability": 0.6049 }, { "start": 2872.36, "end": 2872.84, "probability": 0.2016 }, { "start": 2872.84, "end": 2872.86, "probability": 0.544 }, { "start": 2872.86, "end": 2877.82, "probability": 0.7317 }, { "start": 2877.92, "end": 2879.0, "probability": 0.8257 }, { "start": 2880.64, "end": 2883.64, "probability": 0.9968 }, { "start": 2884.06, "end": 2885.06, "probability": 0.875 }, { "start": 2885.88, "end": 2890.44, "probability": 0.9619 }, { "start": 2890.64, "end": 2892.65, "probability": 0.1199 }, { "start": 2893.46, "end": 2894.22, "probability": 0.9937 }, { "start": 2894.88, "end": 2894.9, "probability": 0.1102 }, { "start": 2895.0, "end": 2895.78, "probability": 0.6069 }, { "start": 2895.78, "end": 2896.18, "probability": 0.4496 }, { "start": 2896.32, "end": 2897.92, "probability": 0.9391 }, { "start": 2898.42, "end": 2901.24, "probability": 0.9664 }, { "start": 2901.24, "end": 2906.48, "probability": 0.9766 }, { "start": 2907.5, "end": 2912.08, "probability": 0.7832 }, { "start": 2912.62, "end": 2914.48, "probability": 0.978 }, { "start": 2915.04, "end": 2915.84, "probability": 0.7899 }, { "start": 2916.18, "end": 2917.2, "probability": 0.8303 }, { "start": 2917.3, "end": 2918.66, "probability": 0.845 }, { "start": 2918.74, "end": 2920.46, "probability": 0.8394 }, { "start": 2920.56, "end": 2923.07, "probability": 0.9819 }, { "start": 2923.58, "end": 2924.08, "probability": 0.9003 }, { "start": 2924.16, "end": 2926.96, "probability": 0.8831 }, { "start": 2927.72, "end": 2933.24, "probability": 0.9869 }, { "start": 2933.88, "end": 2936.4, "probability": 0.9391 }, { "start": 2937.52, "end": 2938.68, "probability": 0.9569 }, { "start": 2939.76, "end": 2942.2, "probability": 0.847 }, { "start": 2942.68, "end": 2943.4, "probability": 0.5267 }, { "start": 2943.96, "end": 2945.6, "probability": 0.7387 }, { "start": 2945.78, "end": 2948.9, "probability": 0.8943 }, { "start": 2950.62, "end": 2952.96, "probability": 0.8534 }, { "start": 2953.54, "end": 2953.96, "probability": 0.7464 }, { "start": 2954.68, "end": 2955.08, "probability": 0.46 }, { "start": 2955.6, "end": 2955.94, "probability": 0.8007 }, { "start": 2957.18, "end": 2958.02, "probability": 0.9468 }, { "start": 2959.08, "end": 2961.84, "probability": 0.8916 }, { "start": 2961.9, "end": 2963.82, "probability": 0.7691 }, { "start": 2964.9, "end": 2966.86, "probability": 0.7247 }, { "start": 2967.78, "end": 2968.2, "probability": 0.5005 }, { "start": 2968.9, "end": 2971.28, "probability": 0.9541 }, { "start": 2972.44, "end": 2972.86, "probability": 0.9521 }, { "start": 2973.88, "end": 2980.04, "probability": 0.8839 }, { "start": 2981.26, "end": 2988.4, "probability": 0.8525 }, { "start": 2988.84, "end": 2989.22, "probability": 0.8782 }, { "start": 2989.94, "end": 2990.28, "probability": 0.995 }, { "start": 2991.02, "end": 2992.48, "probability": 0.5311 }, { "start": 2992.6, "end": 2994.62, "probability": 0.9042 }, { "start": 2995.06, "end": 3000.64, "probability": 0.8789 }, { "start": 3001.66, "end": 3003.46, "probability": 0.9692 }, { "start": 3003.5, "end": 3004.12, "probability": 0.3568 }, { "start": 3004.24, "end": 3005.1, "probability": 0.5145 }, { "start": 3006.56, "end": 3009.38, "probability": 0.9494 }, { "start": 3009.56, "end": 3010.54, "probability": 0.9534 }, { "start": 3010.82, "end": 3011.34, "probability": 0.9552 }, { "start": 3016.02, "end": 3016.72, "probability": 0.528 }, { "start": 3017.08, "end": 3018.56, "probability": 0.9198 }, { "start": 3039.42, "end": 3040.44, "probability": 0.711 }, { "start": 3041.5, "end": 3042.56, "probability": 0.9401 }, { "start": 3043.62, "end": 3046.06, "probability": 0.7203 }, { "start": 3047.44, "end": 3053.74, "probability": 0.9976 }, { "start": 3053.74, "end": 3058.28, "probability": 0.9731 }, { "start": 3059.28, "end": 3060.44, "probability": 0.7145 }, { "start": 3061.36, "end": 3062.46, "probability": 0.8984 }, { "start": 3063.28, "end": 3064.66, "probability": 0.9485 }, { "start": 3065.18, "end": 3066.5, "probability": 0.9363 }, { "start": 3067.54, "end": 3077.92, "probability": 0.9949 }, { "start": 3078.86, "end": 3079.88, "probability": 0.9238 }, { "start": 3080.1, "end": 3081.12, "probability": 0.9413 }, { "start": 3081.26, "end": 3083.22, "probability": 0.8818 }, { "start": 3084.42, "end": 3090.82, "probability": 0.9645 }, { "start": 3090.96, "end": 3091.5, "probability": 0.7267 }, { "start": 3092.14, "end": 3092.76, "probability": 0.4673 }, { "start": 3093.56, "end": 3094.42, "probability": 0.6845 }, { "start": 3095.98, "end": 3097.02, "probability": 0.747 }, { "start": 3099.06, "end": 3100.5, "probability": 0.9839 }, { "start": 3102.08, "end": 3106.74, "probability": 0.9462 }, { "start": 3107.72, "end": 3116.28, "probability": 0.9908 }, { "start": 3117.18, "end": 3118.02, "probability": 0.796 }, { "start": 3118.92, "end": 3119.98, "probability": 0.7893 }, { "start": 3120.24, "end": 3123.34, "probability": 0.991 }, { "start": 3123.98, "end": 3124.82, "probability": 0.9703 }, { "start": 3125.56, "end": 3128.96, "probability": 0.9912 }, { "start": 3130.18, "end": 3131.26, "probability": 0.9997 }, { "start": 3132.14, "end": 3133.82, "probability": 0.7208 }, { "start": 3134.6, "end": 3138.34, "probability": 0.8112 }, { "start": 3139.82, "end": 3140.64, "probability": 0.4261 }, { "start": 3141.32, "end": 3142.78, "probability": 0.9273 }, { "start": 3143.0, "end": 3144.82, "probability": 0.8286 }, { "start": 3147.06, "end": 3147.84, "probability": 0.9803 }, { "start": 3148.84, "end": 3151.44, "probability": 0.9957 }, { "start": 3151.58, "end": 3153.06, "probability": 0.91 }, { "start": 3153.46, "end": 3157.54, "probability": 0.995 }, { "start": 3158.1, "end": 3159.44, "probability": 0.863 }, { "start": 3160.72, "end": 3161.32, "probability": 0.9839 }, { "start": 3163.12, "end": 3163.78, "probability": 0.9995 }, { "start": 3166.03, "end": 3172.28, "probability": 0.9735 }, { "start": 3173.14, "end": 3175.4, "probability": 0.9976 }, { "start": 3175.92, "end": 3179.36, "probability": 0.9929 }, { "start": 3179.86, "end": 3180.88, "probability": 0.9493 }, { "start": 3182.28, "end": 3182.68, "probability": 0.99 }, { "start": 3184.36, "end": 3187.04, "probability": 0.9993 }, { "start": 3187.16, "end": 3189.8, "probability": 0.998 }, { "start": 3190.6, "end": 3192.68, "probability": 0.7542 }, { "start": 3193.16, "end": 3194.04, "probability": 0.9632 }, { "start": 3194.64, "end": 3195.42, "probability": 0.747 }, { "start": 3196.46, "end": 3197.08, "probability": 0.8174 }, { "start": 3198.0, "end": 3198.58, "probability": 0.9644 }, { "start": 3199.44, "end": 3200.14, "probability": 0.8114 }, { "start": 3200.18, "end": 3200.7, "probability": 0.68 }, { "start": 3200.8, "end": 3201.4, "probability": 0.8539 }, { "start": 3201.76, "end": 3202.58, "probability": 0.9272 }, { "start": 3202.74, "end": 3203.12, "probability": 0.9267 }, { "start": 3203.46, "end": 3205.52, "probability": 0.9827 }, { "start": 3206.68, "end": 3207.3, "probability": 0.9897 }, { "start": 3207.92, "end": 3211.36, "probability": 0.9144 }, { "start": 3212.22, "end": 3212.96, "probability": 0.8147 }, { "start": 3213.62, "end": 3216.23, "probability": 0.9924 }, { "start": 3217.16, "end": 3220.18, "probability": 0.9451 }, { "start": 3220.46, "end": 3220.88, "probability": 0.628 }, { "start": 3220.98, "end": 3224.56, "probability": 0.9897 }, { "start": 3224.56, "end": 3226.84, "probability": 0.9768 }, { "start": 3227.54, "end": 3228.38, "probability": 0.9665 }, { "start": 3229.4, "end": 3230.48, "probability": 0.9658 }, { "start": 3231.26, "end": 3232.02, "probability": 0.6251 }, { "start": 3232.1, "end": 3232.52, "probability": 0.7355 }, { "start": 3232.58, "end": 3233.04, "probability": 0.9861 }, { "start": 3234.24, "end": 3234.8, "probability": 0.7855 }, { "start": 3235.24, "end": 3239.24, "probability": 0.9886 }, { "start": 3241.0, "end": 3241.74, "probability": 0.8135 }, { "start": 3243.9, "end": 3246.46, "probability": 0.806 }, { "start": 3247.78, "end": 3248.18, "probability": 0.9901 }, { "start": 3248.98, "end": 3251.44, "probability": 0.9873 }, { "start": 3252.92, "end": 3253.86, "probability": 0.9761 }, { "start": 3253.88, "end": 3258.02, "probability": 0.7252 }, { "start": 3258.78, "end": 3261.08, "probability": 0.8743 }, { "start": 3263.08, "end": 3263.78, "probability": 0.9279 }, { "start": 3265.36, "end": 3266.26, "probability": 0.9993 }, { "start": 3266.96, "end": 3267.42, "probability": 0.8674 }, { "start": 3268.16, "end": 3268.66, "probability": 0.962 }, { "start": 3269.88, "end": 3270.48, "probability": 0.8837 }, { "start": 3271.76, "end": 3275.06, "probability": 0.9624 }, { "start": 3275.4, "end": 3278.74, "probability": 0.9071 }, { "start": 3278.88, "end": 3279.6, "probability": 0.933 }, { "start": 3279.66, "end": 3280.3, "probability": 0.8041 }, { "start": 3280.72, "end": 3281.9, "probability": 0.9951 }, { "start": 3283.42, "end": 3284.12, "probability": 0.8676 }, { "start": 3284.36, "end": 3286.3, "probability": 0.8047 }, { "start": 3286.62, "end": 3287.54, "probability": 0.7733 }, { "start": 3288.48, "end": 3289.22, "probability": 0.7834 }, { "start": 3289.52, "end": 3292.62, "probability": 0.8354 }, { "start": 3293.34, "end": 3294.0, "probability": 0.9141 }, { "start": 3294.98, "end": 3298.48, "probability": 0.8634 }, { "start": 3299.72, "end": 3300.72, "probability": 0.937 }, { "start": 3301.08, "end": 3301.9, "probability": 0.7864 }, { "start": 3301.94, "end": 3302.42, "probability": 0.5211 }, { "start": 3302.6, "end": 3305.04, "probability": 0.8978 }, { "start": 3307.7, "end": 3308.84, "probability": 0.8354 }, { "start": 3309.98, "end": 3311.82, "probability": 0.99 }, { "start": 3312.42, "end": 3313.26, "probability": 0.8059 }, { "start": 3314.56, "end": 3318.06, "probability": 0.9972 }, { "start": 3318.58, "end": 3320.6, "probability": 0.9946 }, { "start": 3321.38, "end": 3322.06, "probability": 0.8636 }, { "start": 3323.38, "end": 3323.72, "probability": 0.7055 }, { "start": 3324.5, "end": 3327.96, "probability": 0.9834 }, { "start": 3328.5, "end": 3329.18, "probability": 0.8225 }, { "start": 3330.74, "end": 3332.66, "probability": 0.9956 }, { "start": 3333.74, "end": 3335.42, "probability": 0.9261 }, { "start": 3336.44, "end": 3338.6, "probability": 0.9751 }, { "start": 3338.92, "end": 3339.46, "probability": 0.7256 }, { "start": 3339.74, "end": 3339.98, "probability": 0.7856 }, { "start": 3340.96, "end": 3341.72, "probability": 0.9544 }, { "start": 3342.78, "end": 3344.28, "probability": 0.9399 }, { "start": 3346.12, "end": 3347.3, "probability": 0.6814 }, { "start": 3347.36, "end": 3348.56, "probability": 0.8522 }, { "start": 3348.56, "end": 3349.5, "probability": 0.6311 }, { "start": 3349.5, "end": 3349.6, "probability": 0.6721 }, { "start": 3350.3, "end": 3351.76, "probability": 0.9645 }, { "start": 3352.48, "end": 3353.12, "probability": 0.817 }, { "start": 3353.48, "end": 3353.96, "probability": 0.6022 }, { "start": 3354.0, "end": 3354.36, "probability": 0.5893 }, { "start": 3354.76, "end": 3354.96, "probability": 0.3644 }, { "start": 3355.06, "end": 3355.92, "probability": 0.9485 }, { "start": 3356.0, "end": 3356.74, "probability": 0.7936 }, { "start": 3356.86, "end": 3358.44, "probability": 0.9899 }, { "start": 3358.96, "end": 3360.44, "probability": 0.7275 }, { "start": 3361.48, "end": 3362.88, "probability": 0.9805 }, { "start": 3363.02, "end": 3363.86, "probability": 0.9976 }, { "start": 3364.72, "end": 3365.68, "probability": 0.8348 }, { "start": 3366.76, "end": 3368.46, "probability": 0.9366 }, { "start": 3369.44, "end": 3369.82, "probability": 0.9833 }, { "start": 3371.32, "end": 3371.92, "probability": 0.5581 }, { "start": 3382.28, "end": 3383.28, "probability": 0.8237 }, { "start": 3400.44, "end": 3401.1, "probability": 0.5863 }, { "start": 3403.44, "end": 3403.68, "probability": 0.7433 }, { "start": 3405.38, "end": 3408.6, "probability": 0.9855 }, { "start": 3409.18, "end": 3410.0, "probability": 0.8543 }, { "start": 3410.88, "end": 3411.66, "probability": 0.8529 }, { "start": 3412.36, "end": 3413.0, "probability": 0.7812 }, { "start": 3414.16, "end": 3417.87, "probability": 0.9351 }, { "start": 3419.7, "end": 3421.41, "probability": 0.9181 }, { "start": 3422.88, "end": 3424.22, "probability": 0.8673 }, { "start": 3425.74, "end": 3426.16, "probability": 0.7635 }, { "start": 3427.68, "end": 3431.22, "probability": 0.8914 }, { "start": 3432.14, "end": 3433.46, "probability": 0.9738 }, { "start": 3434.26, "end": 3439.54, "probability": 0.8599 }, { "start": 3439.54, "end": 3443.64, "probability": 0.9956 }, { "start": 3444.6, "end": 3449.02, "probability": 0.7158 }, { "start": 3450.08, "end": 3454.94, "probability": 0.8735 }, { "start": 3455.8, "end": 3457.08, "probability": 0.9758 }, { "start": 3458.4, "end": 3459.92, "probability": 0.7455 }, { "start": 3460.32, "end": 3464.16, "probability": 0.9321 }, { "start": 3464.9, "end": 3470.12, "probability": 0.7628 }, { "start": 3470.98, "end": 3472.76, "probability": 0.9868 }, { "start": 3475.6, "end": 3479.9, "probability": 0.9878 }, { "start": 3480.48, "end": 3481.48, "probability": 0.7499 }, { "start": 3481.6, "end": 3484.04, "probability": 0.9768 }, { "start": 3484.22, "end": 3484.74, "probability": 0.8802 }, { "start": 3484.96, "end": 3485.56, "probability": 0.9058 }, { "start": 3486.52, "end": 3490.08, "probability": 0.9812 }, { "start": 3491.5, "end": 3495.92, "probability": 0.7345 }, { "start": 3496.64, "end": 3498.58, "probability": 0.7462 }, { "start": 3499.56, "end": 3500.83, "probability": 0.9448 }, { "start": 3501.52, "end": 3505.0, "probability": 0.8232 }, { "start": 3505.86, "end": 3506.66, "probability": 0.9478 }, { "start": 3507.96, "end": 3509.42, "probability": 0.9675 }, { "start": 3510.24, "end": 3512.44, "probability": 0.8381 }, { "start": 3513.34, "end": 3514.68, "probability": 0.957 }, { "start": 3517.36, "end": 3519.12, "probability": 0.7319 }, { "start": 3519.14, "end": 3520.34, "probability": 0.726 }, { "start": 3520.5, "end": 3527.12, "probability": 0.9341 }, { "start": 3528.08, "end": 3530.64, "probability": 0.8051 }, { "start": 3532.18, "end": 3532.54, "probability": 0.8641 }, { "start": 3532.76, "end": 3535.32, "probability": 0.874 }, { "start": 3535.32, "end": 3538.18, "probability": 0.9114 }, { "start": 3538.92, "end": 3542.6, "probability": 0.9893 }, { "start": 3544.28, "end": 3545.04, "probability": 0.9623 }, { "start": 3546.0, "end": 3550.66, "probability": 0.9771 }, { "start": 3551.6, "end": 3554.0, "probability": 0.987 }, { "start": 3554.58, "end": 3556.26, "probability": 0.7927 }, { "start": 3556.94, "end": 3559.3, "probability": 0.9276 }, { "start": 3560.8, "end": 3561.24, "probability": 0.9353 }, { "start": 3562.26, "end": 3562.78, "probability": 0.7277 }, { "start": 3564.16, "end": 3568.16, "probability": 0.999 }, { "start": 3568.82, "end": 3571.28, "probability": 0.9072 }, { "start": 3572.8, "end": 3573.58, "probability": 0.8291 }, { "start": 3574.36, "end": 3575.0, "probability": 0.9923 }, { "start": 3577.16, "end": 3578.9, "probability": 0.9744 }, { "start": 3580.06, "end": 3582.86, "probability": 0.9854 }, { "start": 3583.86, "end": 3587.18, "probability": 0.9769 }, { "start": 3588.32, "end": 3589.78, "probability": 0.8595 }, { "start": 3590.82, "end": 3592.42, "probability": 0.8022 }, { "start": 3592.66, "end": 3594.06, "probability": 0.8917 }, { "start": 3595.18, "end": 3595.84, "probability": 0.9864 }, { "start": 3596.38, "end": 3598.34, "probability": 0.8047 }, { "start": 3599.16, "end": 3599.98, "probability": 0.9706 }, { "start": 3600.66, "end": 3601.42, "probability": 0.9794 }, { "start": 3602.34, "end": 3603.08, "probability": 0.983 }, { "start": 3604.2, "end": 3606.82, "probability": 0.9956 }, { "start": 3609.14, "end": 3610.16, "probability": 0.8244 }, { "start": 3611.04, "end": 3611.82, "probability": 0.8001 }, { "start": 3612.84, "end": 3617.28, "probability": 0.9944 }, { "start": 3618.76, "end": 3619.04, "probability": 0.9501 }, { "start": 3621.18, "end": 3624.98, "probability": 0.979 }, { "start": 3625.48, "end": 3628.6, "probability": 0.9611 }, { "start": 3628.66, "end": 3629.3, "probability": 0.7113 }, { "start": 3630.32, "end": 3631.6, "probability": 0.9471 }, { "start": 3632.14, "end": 3632.92, "probability": 0.9546 }, { "start": 3633.44, "end": 3635.34, "probability": 0.9903 }, { "start": 3636.0, "end": 3637.82, "probability": 0.983 }, { "start": 3638.48, "end": 3641.2, "probability": 0.9141 }, { "start": 3642.88, "end": 3647.2, "probability": 0.9858 }, { "start": 3648.44, "end": 3648.94, "probability": 0.8346 }, { "start": 3650.88, "end": 3652.54, "probability": 0.9724 }, { "start": 3653.88, "end": 3656.52, "probability": 0.8965 }, { "start": 3657.8, "end": 3658.24, "probability": 0.5655 }, { "start": 3659.3, "end": 3662.92, "probability": 0.9969 }, { "start": 3662.92, "end": 3666.86, "probability": 0.9984 }, { "start": 3667.74, "end": 3671.08, "probability": 0.9971 }, { "start": 3672.38, "end": 3675.08, "probability": 0.9859 }, { "start": 3675.64, "end": 3677.42, "probability": 0.9639 }, { "start": 3678.18, "end": 3679.55, "probability": 0.9814 }, { "start": 3680.4, "end": 3681.82, "probability": 0.976 }, { "start": 3682.04, "end": 3685.22, "probability": 0.969 }, { "start": 3686.8, "end": 3688.36, "probability": 0.9663 }, { "start": 3689.58, "end": 3691.22, "probability": 0.9988 }, { "start": 3691.96, "end": 3694.78, "probability": 0.9979 }, { "start": 3695.52, "end": 3698.98, "probability": 0.9732 }, { "start": 3700.4, "end": 3702.76, "probability": 0.8999 }, { "start": 3703.84, "end": 3705.0, "probability": 0.9524 }, { "start": 3705.82, "end": 3710.48, "probability": 0.7014 }, { "start": 3710.76, "end": 3713.88, "probability": 0.9944 }, { "start": 3714.48, "end": 3717.62, "probability": 0.999 }, { "start": 3718.14, "end": 3720.86, "probability": 0.9021 }, { "start": 3722.16, "end": 3723.02, "probability": 0.89 }, { "start": 3723.86, "end": 3724.06, "probability": 0.7994 }, { "start": 3724.86, "end": 3725.62, "probability": 0.3919 }, { "start": 3726.14, "end": 3729.28, "probability": 0.6094 }, { "start": 3744.68, "end": 3745.46, "probability": 0.572 }, { "start": 3757.24, "end": 3757.24, "probability": 0.1514 }, { "start": 3757.24, "end": 3757.24, "probability": 0.1745 }, { "start": 3757.24, "end": 3757.24, "probability": 0.066 }, { "start": 3757.24, "end": 3757.24, "probability": 0.034 }, { "start": 3757.24, "end": 3757.24, "probability": 0.1038 }, { "start": 3766.28, "end": 3767.32, "probability": 0.0709 }, { "start": 3768.28, "end": 3768.74, "probability": 0.0378 }, { "start": 3769.5, "end": 3771.44, "probability": 0.0129 }, { "start": 3773.04, "end": 3773.48, "probability": 0.0102 }, { "start": 3774.28, "end": 3776.18, "probability": 0.2338 }, { "start": 3777.86, "end": 3781.08, "probability": 0.3661 }, { "start": 3795.28, "end": 3796.38, "probability": 0.1961 }, { "start": 3797.06, "end": 3800.28, "probability": 0.7723 }, { "start": 3801.14, "end": 3804.9, "probability": 0.9369 }, { "start": 3806.48, "end": 3806.48, "probability": 0.2059 }, { "start": 3808.2, "end": 3811.38, "probability": 0.9988 }, { "start": 3811.9, "end": 3812.7, "probability": 0.9288 }, { "start": 3814.66, "end": 3815.58, "probability": 0.9843 }, { "start": 3816.32, "end": 3816.94, "probability": 0.9569 }, { "start": 3818.44, "end": 3819.88, "probability": 0.9976 }, { "start": 3821.16, "end": 3824.0, "probability": 0.8017 }, { "start": 3825.96, "end": 3828.96, "probability": 0.9778 }, { "start": 3828.98, "end": 3836.38, "probability": 0.9234 }, { "start": 3837.68, "end": 3838.74, "probability": 0.8464 }, { "start": 3838.82, "end": 3839.62, "probability": 0.8183 }, { "start": 3839.86, "end": 3840.6, "probability": 0.6777 }, { "start": 3840.66, "end": 3841.31, "probability": 0.7211 }, { "start": 3841.88, "end": 3844.02, "probability": 0.9409 }, { "start": 3844.54, "end": 3846.88, "probability": 0.9897 }, { "start": 3849.24, "end": 3850.51, "probability": 0.9985 }, { "start": 3852.12, "end": 3856.84, "probability": 0.9868 }, { "start": 3857.1, "end": 3857.94, "probability": 0.9894 }, { "start": 3859.28, "end": 3864.32, "probability": 0.9757 }, { "start": 3866.32, "end": 3867.2, "probability": 0.4245 }, { "start": 3868.96, "end": 3872.22, "probability": 0.9925 }, { "start": 3872.42, "end": 3875.02, "probability": 0.9995 }, { "start": 3876.14, "end": 3880.18, "probability": 0.998 }, { "start": 3881.16, "end": 3883.18, "probability": 0.9972 }, { "start": 3883.48, "end": 3887.52, "probability": 0.9944 }, { "start": 3887.84, "end": 3888.28, "probability": 0.921 }, { "start": 3888.8, "end": 3890.08, "probability": 0.9743 }, { "start": 3890.64, "end": 3892.98, "probability": 0.9429 }, { "start": 3895.08, "end": 3899.67, "probability": 0.9844 }, { "start": 3901.32, "end": 3902.72, "probability": 0.9989 }, { "start": 3903.26, "end": 3905.75, "probability": 0.8203 }, { "start": 3907.63, "end": 3910.88, "probability": 0.5748 }, { "start": 3910.88, "end": 3911.22, "probability": 0.1542 }, { "start": 3911.22, "end": 3911.32, "probability": 0.0416 }, { "start": 3911.94, "end": 3912.16, "probability": 0.3881 }, { "start": 3912.9, "end": 3917.04, "probability": 0.7385 }, { "start": 3920.82, "end": 3924.58, "probability": 0.9982 }, { "start": 3924.64, "end": 3926.74, "probability": 0.9816 }, { "start": 3928.78, "end": 3929.92, "probability": 0.7521 }, { "start": 3930.5, "end": 3932.1, "probability": 0.9976 }, { "start": 3932.44, "end": 3934.96, "probability": 0.996 }, { "start": 3936.4, "end": 3939.02, "probability": 0.9458 }, { "start": 3939.3, "end": 3940.26, "probability": 0.9976 }, { "start": 3940.84, "end": 3941.06, "probability": 0.5095 }, { "start": 3941.6, "end": 3942.84, "probability": 0.9986 }, { "start": 3943.38, "end": 3945.26, "probability": 0.8408 }, { "start": 3945.96, "end": 3948.26, "probability": 0.9663 }, { "start": 3948.38, "end": 3950.3, "probability": 0.9961 }, { "start": 3950.88, "end": 3952.1, "probability": 0.9775 }, { "start": 3953.02, "end": 3954.4, "probability": 0.6564 }, { "start": 3955.36, "end": 3958.2, "probability": 0.941 }, { "start": 3960.0, "end": 3960.9, "probability": 0.9319 }, { "start": 3961.72, "end": 3962.48, "probability": 0.859 }, { "start": 3963.6, "end": 3966.7, "probability": 0.9938 }, { "start": 3966.96, "end": 3968.06, "probability": 0.9422 }, { "start": 3969.58, "end": 3970.51, "probability": 0.9951 }, { "start": 3972.62, "end": 3977.28, "probability": 0.9741 }, { "start": 3978.08, "end": 3978.92, "probability": 0.602 }, { "start": 3979.72, "end": 3981.06, "probability": 0.9598 }, { "start": 3982.7, "end": 3983.26, "probability": 0.9788 }, { "start": 3985.14, "end": 3985.48, "probability": 0.4364 }, { "start": 3988.18, "end": 3991.5, "probability": 0.8291 }, { "start": 3993.38, "end": 3994.6, "probability": 0.9741 }, { "start": 3995.48, "end": 4004.04, "probability": 0.9932 }, { "start": 4007.28, "end": 4011.7, "probability": 0.9216 }, { "start": 4012.46, "end": 4017.4, "probability": 0.8913 }, { "start": 4018.44, "end": 4021.4, "probability": 0.9948 }, { "start": 4022.6, "end": 4026.12, "probability": 0.986 }, { "start": 4027.38, "end": 4028.06, "probability": 0.4546 }, { "start": 4028.68, "end": 4031.46, "probability": 0.9832 }, { "start": 4032.41, "end": 4033.72, "probability": 0.7001 }, { "start": 4033.98, "end": 4034.94, "probability": 0.978 }, { "start": 4037.86, "end": 4038.54, "probability": 0.7371 }, { "start": 4040.68, "end": 4041.52, "probability": 0.9302 }, { "start": 4041.78, "end": 4043.94, "probability": 0.9763 }, { "start": 4044.48, "end": 4047.0, "probability": 0.9548 }, { "start": 4047.28, "end": 4047.7, "probability": 0.426 }, { "start": 4048.2, "end": 4051.66, "probability": 0.8337 }, { "start": 4052.88, "end": 4058.44, "probability": 0.9857 }, { "start": 4059.08, "end": 4059.92, "probability": 0.9406 }, { "start": 4060.46, "end": 4062.58, "probability": 0.9011 }, { "start": 4063.58, "end": 4065.94, "probability": 0.9847 }, { "start": 4066.14, "end": 4069.08, "probability": 0.9756 }, { "start": 4069.4, "end": 4072.38, "probability": 0.9933 }, { "start": 4072.82, "end": 4073.76, "probability": 0.8801 }, { "start": 4074.2, "end": 4075.08, "probability": 0.8184 }, { "start": 4075.56, "end": 4075.76, "probability": 0.6492 }, { "start": 4076.78, "end": 4077.69, "probability": 0.9489 }, { "start": 4078.42, "end": 4079.04, "probability": 0.9824 }, { "start": 4080.04, "end": 4081.32, "probability": 0.9653 }, { "start": 4082.62, "end": 4084.6, "probability": 0.9819 }, { "start": 4085.3, "end": 4086.32, "probability": 0.9986 }, { "start": 4087.46, "end": 4088.44, "probability": 0.998 }, { "start": 4088.88, "end": 4088.88, "probability": 0.0006 }, { "start": 4089.82, "end": 4091.42, "probability": 0.1391 }, { "start": 4091.42, "end": 4094.42, "probability": 0.4714 }, { "start": 4094.82, "end": 4096.9, "probability": 0.9697 }, { "start": 4097.52, "end": 4099.74, "probability": 0.4417 }, { "start": 4099.9, "end": 4106.44, "probability": 0.0951 }, { "start": 4108.36, "end": 4111.36, "probability": 0.6557 }, { "start": 4112.0, "end": 4112.28, "probability": 0.505 }, { "start": 4113.98, "end": 4114.56, "probability": 0.821 }, { "start": 4115.34, "end": 4118.76, "probability": 0.9839 }, { "start": 4119.96, "end": 4121.64, "probability": 0.9377 }, { "start": 4122.1, "end": 4126.6, "probability": 0.0226 }, { "start": 4127.36, "end": 4127.48, "probability": 0.0039 }, { "start": 4127.48, "end": 4128.06, "probability": 0.1105 }, { "start": 4128.06, "end": 4130.22, "probability": 0.4085 }, { "start": 4130.5, "end": 4130.52, "probability": 0.0618 }, { "start": 4130.52, "end": 4131.54, "probability": 0.613 }, { "start": 4132.1, "end": 4134.38, "probability": 0.9355 }, { "start": 4135.24, "end": 4136.22, "probability": 0.9707 }, { "start": 4136.24, "end": 4139.18, "probability": 0.8375 }, { "start": 4139.54, "end": 4142.2, "probability": 0.9349 }, { "start": 4142.64, "end": 4146.34, "probability": 0.6951 }, { "start": 4146.7, "end": 4147.9, "probability": 0.9427 }, { "start": 4149.82, "end": 4150.14, "probability": 0.0878 }, { "start": 4150.2, "end": 4153.4, "probability": 0.5348 }, { "start": 4154.44, "end": 4154.82, "probability": 0.0269 }, { "start": 4154.82, "end": 4154.82, "probability": 0.0725 }, { "start": 4154.82, "end": 4156.02, "probability": 0.6565 }, { "start": 4158.12, "end": 4158.7, "probability": 0.212 }, { "start": 4158.7, "end": 4161.16, "probability": 0.3996 }, { "start": 4161.16, "end": 4162.76, "probability": 0.9622 }, { "start": 4162.86, "end": 4164.38, "probability": 0.0452 }, { "start": 4165.56, "end": 4168.76, "probability": 0.3196 }, { "start": 4169.9, "end": 4175.42, "probability": 0.9948 }, { "start": 4176.54, "end": 4177.68, "probability": 0.9989 }, { "start": 4178.82, "end": 4181.06, "probability": 0.9119 }, { "start": 4181.8, "end": 4184.22, "probability": 0.7593 }, { "start": 4185.02, "end": 4186.08, "probability": 0.9954 }, { "start": 4186.18, "end": 4186.94, "probability": 0.5078 }, { "start": 4187.04, "end": 4189.06, "probability": 0.9253 }, { "start": 4189.62, "end": 4193.36, "probability": 0.8927 }, { "start": 4193.48, "end": 4195.24, "probability": 0.9989 }, { "start": 4197.84, "end": 4199.96, "probability": 0.8291 }, { "start": 4200.6, "end": 4200.86, "probability": 0.876 }, { "start": 4202.8, "end": 4207.64, "probability": 0.5747 }, { "start": 4207.76, "end": 4207.84, "probability": 0.1555 }, { "start": 4207.84, "end": 4211.32, "probability": 0.5551 }, { "start": 4211.38, "end": 4212.66, "probability": 0.3433 }, { "start": 4212.9, "end": 4213.64, "probability": 0.1271 }, { "start": 4213.64, "end": 4213.64, "probability": 0.2702 }, { "start": 4213.64, "end": 4216.23, "probability": 0.469 }, { "start": 4216.58, "end": 4217.96, "probability": 0.9473 }, { "start": 4218.1, "end": 4220.54, "probability": 0.9583 }, { "start": 4221.06, "end": 4221.82, "probability": 0.9599 }, { "start": 4223.88, "end": 4226.24, "probability": 0.9421 }, { "start": 4228.42, "end": 4230.26, "probability": 0.7499 }, { "start": 4230.76, "end": 4238.08, "probability": 0.9902 }, { "start": 4238.68, "end": 4241.02, "probability": 0.9889 }, { "start": 4242.19, "end": 4244.98, "probability": 0.9973 }, { "start": 4245.08, "end": 4246.72, "probability": 0.991 }, { "start": 4246.92, "end": 4250.3, "probability": 0.998 }, { "start": 4250.7, "end": 4254.2, "probability": 0.9905 }, { "start": 4255.3, "end": 4255.32, "probability": 0.7559 }, { "start": 4256.3, "end": 4258.68, "probability": 0.9103 }, { "start": 4259.26, "end": 4259.8, "probability": 0.4906 }, { "start": 4261.22, "end": 4262.68, "probability": 0.9976 }, { "start": 4264.3, "end": 4265.08, "probability": 0.6756 }, { "start": 4265.46, "end": 4266.02, "probability": 0.8643 }, { "start": 4267.0, "end": 4268.64, "probability": 0.7891 }, { "start": 4269.28, "end": 4270.88, "probability": 0.6667 }, { "start": 4271.5, "end": 4272.28, "probability": 0.6927 }, { "start": 4272.4, "end": 4276.62, "probability": 0.9365 }, { "start": 4276.9, "end": 4278.8, "probability": 0.9275 }, { "start": 4279.08, "end": 4281.82, "probability": 0.9875 }, { "start": 4282.14, "end": 4282.72, "probability": 0.8786 }, { "start": 4284.3, "end": 4285.56, "probability": 0.9941 }, { "start": 4286.36, "end": 4287.0, "probability": 0.7704 }, { "start": 4289.5, "end": 4291.0, "probability": 0.8954 }, { "start": 4291.34, "end": 4295.04, "probability": 0.9263 }, { "start": 4295.72, "end": 4295.84, "probability": 0.7095 }, { "start": 4297.28, "end": 4300.06, "probability": 0.9393 }, { "start": 4301.86, "end": 4305.04, "probability": 0.7995 }, { "start": 4306.76, "end": 4308.94, "probability": 0.9362 }, { "start": 4309.58, "end": 4309.96, "probability": 0.9219 }, { "start": 4311.12, "end": 4314.82, "probability": 0.8778 }, { "start": 4317.14, "end": 4320.2, "probability": 0.9946 }, { "start": 4320.3, "end": 4322.98, "probability": 0.9892 }, { "start": 4323.83, "end": 4325.7, "probability": 0.9764 }, { "start": 4326.38, "end": 4329.46, "probability": 0.9963 }, { "start": 4329.72, "end": 4333.08, "probability": 0.9712 }, { "start": 4333.5, "end": 4335.42, "probability": 0.9775 }, { "start": 4337.18, "end": 4337.42, "probability": 0.0799 }, { "start": 4337.42, "end": 4340.5, "probability": 0.9487 }, { "start": 4341.66, "end": 4342.58, "probability": 0.9575 }, { "start": 4343.26, "end": 4346.4, "probability": 0.9126 }, { "start": 4346.6, "end": 4347.0, "probability": 0.8222 }, { "start": 4347.48, "end": 4349.42, "probability": 0.8449 }, { "start": 4349.84, "end": 4351.12, "probability": 0.9858 }, { "start": 4351.64, "end": 4355.4, "probability": 0.9622 }, { "start": 4355.9, "end": 4357.36, "probability": 0.7525 }, { "start": 4357.4, "end": 4358.62, "probability": 0.4362 }, { "start": 4358.78, "end": 4361.12, "probability": 0.8023 }, { "start": 4361.36, "end": 4361.9, "probability": 0.2663 }, { "start": 4361.94, "end": 4361.94, "probability": 0.8502 }, { "start": 4361.94, "end": 4363.09, "probability": 0.5733 }, { "start": 4363.32, "end": 4365.52, "probability": 0.8024 }, { "start": 4365.72, "end": 4369.26, "probability": 0.6573 }, { "start": 4370.0, "end": 4372.42, "probability": 0.9902 }, { "start": 4373.36, "end": 4374.02, "probability": 0.9353 }, { "start": 4374.62, "end": 4375.7, "probability": 0.6605 }, { "start": 4376.06, "end": 4378.08, "probability": 0.9478 }, { "start": 4378.2, "end": 4378.76, "probability": 0.9499 }, { "start": 4379.16, "end": 4379.78, "probability": 0.5458 }, { "start": 4380.58, "end": 4385.92, "probability": 0.8501 }, { "start": 4386.08, "end": 4386.62, "probability": 0.9945 }, { "start": 4387.46, "end": 4388.32, "probability": 0.856 }, { "start": 4388.96, "end": 4393.32, "probability": 0.9094 }, { "start": 4393.98, "end": 4394.8, "probability": 0.9257 }, { "start": 4394.88, "end": 4395.8, "probability": 0.9654 }, { "start": 4396.0, "end": 4398.0, "probability": 0.9795 }, { "start": 4398.52, "end": 4399.9, "probability": 0.9888 }, { "start": 4400.8, "end": 4401.0, "probability": 0.6171 }, { "start": 4402.5, "end": 4404.48, "probability": 0.9236 }, { "start": 4404.82, "end": 4408.56, "probability": 0.0616 }, { "start": 4408.56, "end": 4409.85, "probability": 0.4711 }, { "start": 4410.3, "end": 4411.96, "probability": 0.719 }, { "start": 4412.24, "end": 4413.1, "probability": 0.3441 }, { "start": 4413.3, "end": 4413.97, "probability": 0.536 }, { "start": 4414.28, "end": 4415.36, "probability": 0.7111 }, { "start": 4415.6, "end": 4417.02, "probability": 0.6051 }, { "start": 4417.04, "end": 4419.78, "probability": 0.9014 }, { "start": 4420.46, "end": 4422.58, "probability": 0.999 }, { "start": 4423.26, "end": 4424.9, "probability": 0.9832 }, { "start": 4426.0, "end": 4426.68, "probability": 0.8777 }, { "start": 4428.14, "end": 4431.12, "probability": 0.9932 }, { "start": 4432.72, "end": 4434.48, "probability": 0.9572 }, { "start": 4435.08, "end": 4440.22, "probability": 0.982 }, { "start": 4440.76, "end": 4444.0, "probability": 0.9792 }, { "start": 4444.32, "end": 4445.76, "probability": 0.8415 }, { "start": 4446.32, "end": 4448.32, "probability": 0.7357 }, { "start": 4448.84, "end": 4448.84, "probability": 0.0938 }, { "start": 4448.84, "end": 4448.84, "probability": 0.1488 }, { "start": 4448.84, "end": 4450.74, "probability": 0.6436 }, { "start": 4452.1, "end": 4454.1, "probability": 0.6836 }, { "start": 4455.14, "end": 4456.82, "probability": 0.929 }, { "start": 4457.68, "end": 4458.72, "probability": 0.7727 }, { "start": 4458.76, "end": 4461.48, "probability": 0.8921 }, { "start": 4462.68, "end": 4465.06, "probability": 0.9884 }, { "start": 4466.62, "end": 4469.52, "probability": 0.9837 }, { "start": 4469.52, "end": 4471.5, "probability": 0.9915 }, { "start": 4472.28, "end": 4473.1, "probability": 0.9259 }, { "start": 4473.4, "end": 4475.87, "probability": 0.6836 }, { "start": 4476.14, "end": 4477.46, "probability": 0.9429 }, { "start": 4477.86, "end": 4478.68, "probability": 0.8976 }, { "start": 4479.38, "end": 4480.38, "probability": 0.9796 }, { "start": 4480.66, "end": 4484.86, "probability": 0.8987 }, { "start": 4485.34, "end": 4489.32, "probability": 0.998 }, { "start": 4489.98, "end": 4491.52, "probability": 0.897 }, { "start": 4491.82, "end": 4492.98, "probability": 0.3606 }, { "start": 4493.94, "end": 4494.16, "probability": 0.178 }, { "start": 4495.1, "end": 4496.1, "probability": 0.5094 }, { "start": 4498.56, "end": 4498.64, "probability": 0.6505 }, { "start": 4498.64, "end": 4500.26, "probability": 0.5557 }, { "start": 4500.26, "end": 4502.01, "probability": 0.3729 }, { "start": 4502.28, "end": 4503.26, "probability": 0.6255 }, { "start": 4506.86, "end": 4507.46, "probability": 0.0002 }, { "start": 4508.22, "end": 4508.7, "probability": 0.1093 }, { "start": 4508.7, "end": 4508.7, "probability": 0.0432 }, { "start": 4508.7, "end": 4510.76, "probability": 0.8394 }, { "start": 4511.06, "end": 4511.68, "probability": 0.4604 }, { "start": 4513.38, "end": 4515.72, "probability": 0.9913 }, { "start": 4515.9, "end": 4517.32, "probability": 0.9692 }, { "start": 4518.5, "end": 4521.86, "probability": 0.8267 }, { "start": 4522.36, "end": 4523.46, "probability": 0.7586 }, { "start": 4524.08, "end": 4525.58, "probability": 0.9568 }, { "start": 4525.68, "end": 4531.02, "probability": 0.9885 }, { "start": 4531.28, "end": 4531.85, "probability": 0.8848 }, { "start": 4532.46, "end": 4533.54, "probability": 0.9861 }, { "start": 4534.02, "end": 4536.94, "probability": 0.9617 }, { "start": 4537.74, "end": 4539.68, "probability": 0.9822 }, { "start": 4541.98, "end": 4542.98, "probability": 0.9805 }, { "start": 4544.0, "end": 4544.56, "probability": 0.9956 }, { "start": 4545.08, "end": 4546.02, "probability": 0.9984 }, { "start": 4546.86, "end": 4548.74, "probability": 0.9661 }, { "start": 4549.18, "end": 4550.9, "probability": 0.8296 }, { "start": 4551.3, "end": 4551.82, "probability": 0.4273 }, { "start": 4552.44, "end": 4554.02, "probability": 0.9941 }, { "start": 4554.64, "end": 4555.96, "probability": 0.5503 }, { "start": 4556.32, "end": 4562.54, "probability": 0.998 }, { "start": 4562.58, "end": 4563.12, "probability": 0.8311 }, { "start": 4563.24, "end": 4563.83, "probability": 0.9985 }, { "start": 4564.5, "end": 4566.4, "probability": 0.9806 }, { "start": 4567.2, "end": 4569.2, "probability": 0.9917 }, { "start": 4569.28, "end": 4570.52, "probability": 0.9914 }, { "start": 4571.06, "end": 4575.04, "probability": 0.9879 }, { "start": 4576.54, "end": 4577.7, "probability": 0.9988 }, { "start": 4578.24, "end": 4578.98, "probability": 0.8166 }, { "start": 4579.72, "end": 4580.06, "probability": 0.9017 }, { "start": 4581.02, "end": 4581.3, "probability": 0.9329 }, { "start": 4582.16, "end": 4583.78, "probability": 0.9707 }, { "start": 4584.28, "end": 4585.44, "probability": 0.9366 }, { "start": 4585.76, "end": 4588.08, "probability": 0.9106 }, { "start": 4588.82, "end": 4589.64, "probability": 0.5541 }, { "start": 4589.68, "end": 4592.0, "probability": 0.9956 }, { "start": 4592.62, "end": 4593.46, "probability": 0.3536 }, { "start": 4594.06, "end": 4595.5, "probability": 0.9576 }, { "start": 4596.26, "end": 4597.28, "probability": 0.6527 }, { "start": 4597.92, "end": 4599.2, "probability": 0.0991 }, { "start": 4600.12, "end": 4600.72, "probability": 0.0601 }, { "start": 4600.72, "end": 4601.7, "probability": 0.5448 }, { "start": 4602.3, "end": 4602.96, "probability": 0.9387 }, { "start": 4603.3, "end": 4604.38, "probability": 0.1681 }, { "start": 4604.48, "end": 4604.8, "probability": 0.8135 }, { "start": 4605.34, "end": 4605.92, "probability": 0.6988 }, { "start": 4606.82, "end": 4608.04, "probability": 0.4933 }, { "start": 4608.08, "end": 4608.64, "probability": 0.6711 }, { "start": 4608.74, "end": 4609.92, "probability": 0.0336 }, { "start": 4609.96, "end": 4612.12, "probability": 0.7666 }, { "start": 4612.98, "end": 4615.94, "probability": 0.7966 }, { "start": 4616.8, "end": 4619.75, "probability": 0.9864 }, { "start": 4619.92, "end": 4620.66, "probability": 0.8184 }, { "start": 4621.5, "end": 4623.24, "probability": 0.903 }, { "start": 4623.56, "end": 4625.34, "probability": 0.774 }, { "start": 4625.86, "end": 4628.72, "probability": 0.8222 }, { "start": 4628.92, "end": 4629.82, "probability": 0.9102 }, { "start": 4630.04, "end": 4632.14, "probability": 0.8567 }, { "start": 4632.2, "end": 4634.42, "probability": 0.9845 }, { "start": 4634.58, "end": 4635.06, "probability": 0.1106 }, { "start": 4635.56, "end": 4636.7, "probability": 0.069 }, { "start": 4637.0, "end": 4641.04, "probability": 0.8103 }, { "start": 4641.92, "end": 4643.61, "probability": 0.2251 }, { "start": 4644.06, "end": 4644.42, "probability": 0.3717 }, { "start": 4644.94, "end": 4645.5, "probability": 0.6147 }, { "start": 4645.86, "end": 4652.2, "probability": 0.9897 }, { "start": 4652.34, "end": 4652.82, "probability": 0.5109 }, { "start": 4652.82, "end": 4653.0, "probability": 0.1832 }, { "start": 4653.52, "end": 4654.58, "probability": 0.6528 }, { "start": 4655.18, "end": 4657.06, "probability": 0.7607 }, { "start": 4657.06, "end": 4657.51, "probability": 0.6534 }, { "start": 4658.34, "end": 4658.42, "probability": 0.3995 }, { "start": 4658.42, "end": 4663.09, "probability": 0.934 }, { "start": 4663.78, "end": 4666.66, "probability": 0.7478 }, { "start": 4667.2, "end": 4668.04, "probability": 0.9845 }, { "start": 4670.36, "end": 4671.28, "probability": 0.7444 }, { "start": 4671.68, "end": 4676.16, "probability": 0.9822 }, { "start": 4676.26, "end": 4677.16, "probability": 0.7883 }, { "start": 4677.18, "end": 4679.68, "probability": 0.9895 }, { "start": 4679.74, "end": 4680.28, "probability": 0.7506 }, { "start": 4680.44, "end": 4680.88, "probability": 0.8223 }, { "start": 4681.3, "end": 4685.68, "probability": 0.9935 }, { "start": 4686.74, "end": 4687.26, "probability": 0.7228 }, { "start": 4687.5, "end": 4687.9, "probability": 0.4934 }, { "start": 4687.96, "end": 4689.64, "probability": 0.9945 }, { "start": 4690.54, "end": 4691.38, "probability": 0.9148 }, { "start": 4691.5, "end": 4693.92, "probability": 0.9409 }, { "start": 4694.32, "end": 4695.86, "probability": 0.9656 }, { "start": 4696.02, "end": 4697.02, "probability": 0.9879 }, { "start": 4697.72, "end": 4701.36, "probability": 0.9888 }, { "start": 4701.66, "end": 4701.82, "probability": 0.6378 }, { "start": 4702.6, "end": 4706.02, "probability": 0.7742 }, { "start": 4706.5, "end": 4710.78, "probability": 0.9839 }, { "start": 4711.2, "end": 4712.3, "probability": 0.9754 }, { "start": 4712.62, "end": 4714.96, "probability": 0.9953 }, { "start": 4715.46, "end": 4716.68, "probability": 0.872 }, { "start": 4727.02, "end": 4729.22, "probability": 0.9536 }, { "start": 4730.11, "end": 4730.72, "probability": 0.0409 }, { "start": 4730.72, "end": 4730.72, "probability": 0.0968 }, { "start": 4730.72, "end": 4732.06, "probability": 0.0643 }, { "start": 4732.06, "end": 4734.18, "probability": 0.0587 }, { "start": 4734.2, "end": 4734.2, "probability": 0.1617 }, { "start": 4734.46, "end": 4734.46, "probability": 0.1562 }, { "start": 4734.46, "end": 4734.46, "probability": 0.0601 }, { "start": 4734.46, "end": 4734.46, "probability": 0.184 }, { "start": 4734.46, "end": 4734.62, "probability": 0.2193 }, { "start": 4734.62, "end": 4735.36, "probability": 0.7883 }, { "start": 4735.68, "end": 4737.22, "probability": 0.7157 }, { "start": 4739.16, "end": 4739.66, "probability": 0.3203 }, { "start": 4739.96, "end": 4740.96, "probability": 0.988 }, { "start": 4742.08, "end": 4743.03, "probability": 0.761 }, { "start": 4745.2, "end": 4746.68, "probability": 0.8937 }, { "start": 4747.6, "end": 4747.82, "probability": 0.9475 }, { "start": 4748.32, "end": 4750.86, "probability": 0.9865 }, { "start": 4751.5, "end": 4753.2, "probability": 0.7053 }, { "start": 4753.36, "end": 4757.44, "probability": 0.5902 }, { "start": 4757.76, "end": 4759.96, "probability": 0.9811 }, { "start": 4760.3, "end": 4761.78, "probability": 0.9551 }, { "start": 4762.28, "end": 4765.98, "probability": 0.9966 }, { "start": 4766.46, "end": 4767.8, "probability": 0.9275 }, { "start": 4768.5, "end": 4769.22, "probability": 0.9103 }, { "start": 4770.48, "end": 4775.12, "probability": 0.9913 }, { "start": 4775.9, "end": 4777.76, "probability": 0.9369 }, { "start": 4778.3, "end": 4781.88, "probability": 0.9911 }, { "start": 4782.88, "end": 4784.68, "probability": 0.9773 }, { "start": 4785.54, "end": 4786.98, "probability": 0.7568 }, { "start": 4787.54, "end": 4789.42, "probability": 0.741 }, { "start": 4790.0, "end": 4792.22, "probability": 0.9805 }, { "start": 4792.7, "end": 4795.42, "probability": 0.9977 }, { "start": 4796.44, "end": 4796.66, "probability": 0.9074 }, { "start": 4797.26, "end": 4798.04, "probability": 0.9015 }, { "start": 4798.4, "end": 4799.84, "probability": 0.9922 }, { "start": 4801.68, "end": 4804.0, "probability": 0.5115 }, { "start": 4805.74, "end": 4811.68, "probability": 0.5134 }, { "start": 4812.2, "end": 4817.2, "probability": 0.0559 }, { "start": 4818.2, "end": 4818.2, "probability": 0.092 }, { "start": 4818.2, "end": 4818.2, "probability": 0.1288 }, { "start": 4818.2, "end": 4818.2, "probability": 0.2856 }, { "start": 4818.2, "end": 4822.36, "probability": 0.9229 }, { "start": 4823.08, "end": 4825.34, "probability": 0.9838 }, { "start": 4826.06, "end": 4828.94, "probability": 0.9646 }, { "start": 4829.56, "end": 4834.02, "probability": 0.943 }, { "start": 4835.0, "end": 4838.22, "probability": 0.9868 }, { "start": 4838.8, "end": 4845.6, "probability": 0.9253 }, { "start": 4846.38, "end": 4850.42, "probability": 0.9751 }, { "start": 4851.06, "end": 4852.34, "probability": 0.699 }, { "start": 4852.56, "end": 4854.98, "probability": 0.9528 }, { "start": 4855.26, "end": 4855.86, "probability": 0.8873 }, { "start": 4856.24, "end": 4858.78, "probability": 0.9408 }, { "start": 4859.64, "end": 4865.84, "probability": 0.9926 }, { "start": 4866.04, "end": 4873.5, "probability": 0.9963 }, { "start": 4874.48, "end": 4879.84, "probability": 0.9027 }, { "start": 4880.34, "end": 4883.2, "probability": 0.9974 }, { "start": 4884.24, "end": 4886.02, "probability": 0.8631 }, { "start": 4886.9, "end": 4887.96, "probability": 0.8468 }, { "start": 4888.9, "end": 4892.92, "probability": 0.9854 }, { "start": 4892.92, "end": 4897.06, "probability": 0.9798 }, { "start": 4898.2, "end": 4903.34, "probability": 0.9949 }, { "start": 4903.9, "end": 4904.96, "probability": 0.6856 }, { "start": 4905.58, "end": 4909.95, "probability": 0.9938 }, { "start": 4910.56, "end": 4913.28, "probability": 0.927 }, { "start": 4914.62, "end": 4921.34, "probability": 0.9974 }, { "start": 4922.64, "end": 4924.82, "probability": 0.97 }, { "start": 4925.24, "end": 4928.62, "probability": 0.9871 }, { "start": 4929.86, "end": 4934.46, "probability": 0.998 }, { "start": 4935.04, "end": 4937.6, "probability": 0.9992 }, { "start": 4938.38, "end": 4940.84, "probability": 0.9371 }, { "start": 4942.32, "end": 4943.54, "probability": 0.96 }, { "start": 4944.3, "end": 4949.56, "probability": 0.9891 }, { "start": 4950.22, "end": 4951.24, "probability": 0.9755 }, { "start": 4951.82, "end": 4953.3, "probability": 0.9974 }, { "start": 4953.86, "end": 4956.82, "probability": 0.9972 }, { "start": 4957.48, "end": 4961.36, "probability": 0.995 }, { "start": 4961.82, "end": 4964.6, "probability": 0.9775 }, { "start": 4965.64, "end": 4966.7, "probability": 0.6682 }, { "start": 4967.52, "end": 4971.14, "probability": 0.9934 }, { "start": 4971.8, "end": 4977.4, "probability": 0.9982 }, { "start": 4978.72, "end": 4984.48, "probability": 0.9569 }, { "start": 4984.9, "end": 4986.08, "probability": 0.8263 }, { "start": 4986.78, "end": 4987.84, "probability": 0.957 }, { "start": 4988.4, "end": 4989.78, "probability": 0.9954 }, { "start": 4991.14, "end": 4991.84, "probability": 0.964 }, { "start": 4992.54, "end": 4998.6, "probability": 0.9772 }, { "start": 4999.18, "end": 5001.08, "probability": 0.9141 }, { "start": 5001.62, "end": 5004.28, "probability": 0.9958 }, { "start": 5004.8, "end": 5007.54, "probability": 0.968 }, { "start": 5008.38, "end": 5009.56, "probability": 0.6978 }, { "start": 5010.22, "end": 5011.5, "probability": 0.6607 }, { "start": 5012.04, "end": 5012.92, "probability": 0.9831 }, { "start": 5013.5, "end": 5013.96, "probability": 0.9444 }, { "start": 5014.76, "end": 5015.74, "probability": 0.928 }, { "start": 5035.84, "end": 5036.94, "probability": 0.6534 }, { "start": 5037.5, "end": 5038.46, "probability": 0.6625 }, { "start": 5039.86, "end": 5041.38, "probability": 0.9709 }, { "start": 5042.68, "end": 5044.78, "probability": 0.9574 }, { "start": 5045.52, "end": 5046.1, "probability": 0.9802 }, { "start": 5047.04, "end": 5050.75, "probability": 0.9873 }, { "start": 5052.26, "end": 5056.12, "probability": 0.8506 }, { "start": 5056.98, "end": 5059.44, "probability": 0.9958 }, { "start": 5060.46, "end": 5062.76, "probability": 0.9777 }, { "start": 5064.54, "end": 5067.58, "probability": 0.9619 }, { "start": 5068.1, "end": 5070.2, "probability": 0.9731 }, { "start": 5070.92, "end": 5075.98, "probability": 0.9983 }, { "start": 5076.72, "end": 5078.26, "probability": 0.99 }, { "start": 5079.3, "end": 5082.72, "probability": 0.9437 }, { "start": 5084.22, "end": 5086.32, "probability": 0.892 }, { "start": 5086.72, "end": 5089.9, "probability": 0.9524 }, { "start": 5091.2, "end": 5094.56, "probability": 0.9842 }, { "start": 5095.38, "end": 5098.44, "probability": 0.988 }, { "start": 5099.06, "end": 5102.54, "probability": 0.9925 }, { "start": 5104.62, "end": 5106.74, "probability": 0.9985 }, { "start": 5107.22, "end": 5108.98, "probability": 0.9961 }, { "start": 5110.02, "end": 5113.58, "probability": 0.9679 }, { "start": 5113.94, "end": 5114.64, "probability": 0.9751 }, { "start": 5116.08, "end": 5117.0, "probability": 0.9736 }, { "start": 5117.6, "end": 5118.08, "probability": 0.9613 }, { "start": 5119.54, "end": 5122.82, "probability": 0.9968 }, { "start": 5122.82, "end": 5126.32, "probability": 0.9293 }, { "start": 5127.7, "end": 5132.28, "probability": 0.9899 }, { "start": 5133.02, "end": 5137.5, "probability": 0.9984 }, { "start": 5138.6, "end": 5139.22, "probability": 0.6799 }, { "start": 5139.6, "end": 5140.5, "probability": 0.9536 }, { "start": 5140.74, "end": 5143.34, "probability": 0.9001 }, { "start": 5143.94, "end": 5146.68, "probability": 0.9001 }, { "start": 5147.26, "end": 5149.64, "probability": 0.877 }, { "start": 5149.98, "end": 5152.12, "probability": 0.9921 }, { "start": 5153.22, "end": 5157.46, "probability": 0.936 }, { "start": 5157.7, "end": 5158.98, "probability": 0.9669 }, { "start": 5159.62, "end": 5160.64, "probability": 0.9875 }, { "start": 5161.46, "end": 5165.7, "probability": 0.9821 }, { "start": 5166.8, "end": 5170.3, "probability": 0.9456 }, { "start": 5170.88, "end": 5173.36, "probability": 0.5866 }, { "start": 5174.02, "end": 5174.7, "probability": 0.7111 }, { "start": 5175.3, "end": 5178.86, "probability": 0.9898 }, { "start": 5179.98, "end": 5182.4, "probability": 0.8347 }, { "start": 5182.5, "end": 5183.72, "probability": 0.6849 }, { "start": 5183.96, "end": 5188.78, "probability": 0.9858 }, { "start": 5189.54, "end": 5192.26, "probability": 0.987 }, { "start": 5192.26, "end": 5195.14, "probability": 0.9921 }, { "start": 5195.92, "end": 5200.08, "probability": 0.9205 }, { "start": 5200.08, "end": 5203.02, "probability": 0.9966 }, { "start": 5204.7, "end": 5206.78, "probability": 0.9966 }, { "start": 5206.78, "end": 5209.58, "probability": 0.975 }, { "start": 5210.44, "end": 5213.54, "probability": 0.9329 }, { "start": 5214.28, "end": 5215.12, "probability": 0.9966 }, { "start": 5215.76, "end": 5219.42, "probability": 0.9792 }, { "start": 5219.78, "end": 5221.21, "probability": 0.9722 }, { "start": 5221.98, "end": 5222.56, "probability": 0.9779 }, { "start": 5224.08, "end": 5224.98, "probability": 0.8807 }, { "start": 5225.62, "end": 5226.86, "probability": 0.9711 }, { "start": 5227.92, "end": 5233.84, "probability": 0.9862 }, { "start": 5233.92, "end": 5235.54, "probability": 0.9017 }, { "start": 5236.3, "end": 5238.64, "probability": 0.9709 }, { "start": 5239.5, "end": 5241.64, "probability": 0.9712 }, { "start": 5242.3, "end": 5245.36, "probability": 0.9976 }, { "start": 5245.58, "end": 5246.6, "probability": 0.8459 }, { "start": 5246.64, "end": 5247.92, "probability": 0.9871 }, { "start": 5249.42, "end": 5251.24, "probability": 0.8846 }, { "start": 5251.46, "end": 5254.22, "probability": 0.9719 }, { "start": 5254.32, "end": 5255.18, "probability": 0.8472 }, { "start": 5255.38, "end": 5256.08, "probability": 0.8017 }, { "start": 5256.22, "end": 5256.6, "probability": 0.9264 }, { "start": 5257.52, "end": 5260.54, "probability": 0.9609 }, { "start": 5261.28, "end": 5264.68, "probability": 0.9652 }, { "start": 5265.74, "end": 5268.58, "probability": 0.8499 }, { "start": 5269.82, "end": 5270.42, "probability": 0.7374 }, { "start": 5270.64, "end": 5271.26, "probability": 0.9421 }, { "start": 5271.46, "end": 5273.22, "probability": 0.9933 }, { "start": 5274.08, "end": 5275.24, "probability": 0.6691 }, { "start": 5275.32, "end": 5276.0, "probability": 0.8677 }, { "start": 5276.32, "end": 5277.14, "probability": 0.7728 }, { "start": 5277.66, "end": 5282.36, "probability": 0.9916 }, { "start": 5283.0, "end": 5284.76, "probability": 0.9563 }, { "start": 5285.52, "end": 5288.94, "probability": 0.9814 }, { "start": 5289.68, "end": 5292.74, "probability": 0.9617 }, { "start": 5293.88, "end": 5296.02, "probability": 0.926 }, { "start": 5296.6, "end": 5298.24, "probability": 0.8224 }, { "start": 5298.78, "end": 5300.76, "probability": 0.9033 }, { "start": 5301.46, "end": 5303.62, "probability": 0.9941 }, { "start": 5303.9, "end": 5305.28, "probability": 0.6749 }, { "start": 5305.3, "end": 5306.28, "probability": 0.7686 }, { "start": 5307.92, "end": 5311.48, "probability": 0.9636 }, { "start": 5313.12, "end": 5315.22, "probability": 0.579 }, { "start": 5316.08, "end": 5317.28, "probability": 0.7851 }, { "start": 5318.54, "end": 5322.16, "probability": 0.642 }, { "start": 5322.92, "end": 5324.36, "probability": 0.9048 }, { "start": 5325.28, "end": 5326.88, "probability": 0.6395 }, { "start": 5327.18, "end": 5327.64, "probability": 0.7839 }, { "start": 5328.88, "end": 5329.6, "probability": 0.4396 }, { "start": 5330.1, "end": 5332.64, "probability": 0.3067 }, { "start": 5341.96, "end": 5342.28, "probability": 0.0237 }, { "start": 5345.8, "end": 5346.22, "probability": 0.3049 }, { "start": 5359.48, "end": 5359.74, "probability": 0.5829 }, { "start": 5360.54, "end": 5361.14, "probability": 0.6669 }, { "start": 5361.88, "end": 5362.78, "probability": 0.8481 }, { "start": 5364.38, "end": 5365.88, "probability": 0.818 }, { "start": 5366.58, "end": 5367.12, "probability": 0.4432 }, { "start": 5367.78, "end": 5368.56, "probability": 0.6343 }, { "start": 5368.62, "end": 5370.16, "probability": 0.5123 }, { "start": 5370.38, "end": 5370.86, "probability": 0.7895 }, { "start": 5371.04, "end": 5375.02, "probability": 0.9619 }, { "start": 5375.24, "end": 5375.76, "probability": 0.6049 }, { "start": 5375.94, "end": 5380.18, "probability": 0.9673 }, { "start": 5380.86, "end": 5381.6, "probability": 0.6009 }, { "start": 5382.12, "end": 5383.02, "probability": 0.9868 }, { "start": 5383.5, "end": 5388.02, "probability": 0.8141 }, { "start": 5388.24, "end": 5391.12, "probability": 0.7716 }, { "start": 5392.14, "end": 5394.56, "probability": 0.95 }, { "start": 5394.78, "end": 5400.24, "probability": 0.7949 }, { "start": 5401.22, "end": 5402.6, "probability": 0.9366 }, { "start": 5402.98, "end": 5403.66, "probability": 0.8374 }, { "start": 5403.96, "end": 5408.28, "probability": 0.8506 }, { "start": 5408.96, "end": 5410.2, "probability": 0.9871 }, { "start": 5411.9, "end": 5415.24, "probability": 0.8168 }, { "start": 5415.36, "end": 5417.08, "probability": 0.8405 }, { "start": 5417.26, "end": 5417.74, "probability": 0.7874 }, { "start": 5418.52, "end": 5420.06, "probability": 0.6055 }, { "start": 5420.62, "end": 5423.2, "probability": 0.883 }, { "start": 5423.22, "end": 5423.88, "probability": 0.8735 }, { "start": 5423.92, "end": 5426.18, "probability": 0.963 }, { "start": 5426.26, "end": 5428.8, "probability": 0.9915 }, { "start": 5430.11, "end": 5431.29, "probability": 0.8953 }, { "start": 5431.96, "end": 5432.62, "probability": 0.4988 }, { "start": 5433.36, "end": 5435.08, "probability": 0.6777 }, { "start": 5435.52, "end": 5436.16, "probability": 0.7581 }, { "start": 5436.36, "end": 5441.76, "probability": 0.6929 }, { "start": 5441.88, "end": 5442.64, "probability": 0.8988 }, { "start": 5443.08, "end": 5445.36, "probability": 0.0794 }, { "start": 5445.36, "end": 5447.28, "probability": 0.7678 }, { "start": 5447.9, "end": 5451.66, "probability": 0.9329 }, { "start": 5452.36, "end": 5454.26, "probability": 0.6533 }, { "start": 5455.9, "end": 5456.88, "probability": 0.1987 }, { "start": 5458.36, "end": 5460.48, "probability": 0.6588 }, { "start": 5460.48, "end": 5461.18, "probability": 0.1528 }, { "start": 5461.3, "end": 5462.84, "probability": 0.8369 }, { "start": 5464.04, "end": 5464.72, "probability": 0.5185 }, { "start": 5464.84, "end": 5466.3, "probability": 0.8585 }, { "start": 5466.34, "end": 5467.5, "probability": 0.5784 }, { "start": 5467.6, "end": 5468.24, "probability": 0.8918 }, { "start": 5468.7, "end": 5469.52, "probability": 0.8376 }, { "start": 5469.52, "end": 5470.96, "probability": 0.8208 }, { "start": 5471.16, "end": 5472.28, "probability": 0.603 }, { "start": 5472.36, "end": 5474.74, "probability": 0.3697 }, { "start": 5475.4, "end": 5479.06, "probability": 0.803 }, { "start": 5479.68, "end": 5480.08, "probability": 0.8579 }, { "start": 5480.76, "end": 5482.08, "probability": 0.5669 }, { "start": 5482.14, "end": 5482.54, "probability": 0.7607 }, { "start": 5482.82, "end": 5484.18, "probability": 0.784 }, { "start": 5484.36, "end": 5486.32, "probability": 0.6824 }, { "start": 5486.34, "end": 5489.18, "probability": 0.9225 }, { "start": 5489.48, "end": 5495.26, "probability": 0.7982 }, { "start": 5495.62, "end": 5499.42, "probability": 0.9904 }, { "start": 5499.62, "end": 5501.0, "probability": 0.8538 }, { "start": 5501.1, "end": 5501.48, "probability": 0.4891 }, { "start": 5501.52, "end": 5503.4, "probability": 0.455 }, { "start": 5503.66, "end": 5504.14, "probability": 0.6914 }, { "start": 5504.6, "end": 5509.18, "probability": 0.9617 }, { "start": 5509.26, "end": 5510.34, "probability": 0.8898 }, { "start": 5510.9, "end": 5512.2, "probability": 0.6366 }, { "start": 5512.46, "end": 5513.22, "probability": 0.7534 }, { "start": 5514.0, "end": 5515.88, "probability": 0.8407 }, { "start": 5516.04, "end": 5517.85, "probability": 0.8195 }, { "start": 5518.1, "end": 5519.68, "probability": 0.4941 }, { "start": 5520.31, "end": 5523.0, "probability": 0.919 }, { "start": 5523.16, "end": 5523.62, "probability": 0.5065 }, { "start": 5523.92, "end": 5524.24, "probability": 0.7145 }, { "start": 5524.56, "end": 5526.06, "probability": 0.0476 }, { "start": 5526.06, "end": 5526.88, "probability": 0.1145 }, { "start": 5527.42, "end": 5527.92, "probability": 0.545 }, { "start": 5528.18, "end": 5528.46, "probability": 0.833 }, { "start": 5528.66, "end": 5528.98, "probability": 0.7664 }, { "start": 5529.04, "end": 5530.34, "probability": 0.3428 }, { "start": 5530.48, "end": 5531.26, "probability": 0.4387 }, { "start": 5531.32, "end": 5531.42, "probability": 0.1372 }, { "start": 5531.48, "end": 5532.5, "probability": 0.8442 }, { "start": 5534.04, "end": 5535.26, "probability": 0.7471 }, { "start": 5535.42, "end": 5538.02, "probability": 0.9746 }, { "start": 5538.44, "end": 5539.68, "probability": 0.5559 }, { "start": 5540.28, "end": 5541.08, "probability": 0.5126 }, { "start": 5541.14, "end": 5541.93, "probability": 0.8623 }, { "start": 5542.72, "end": 5545.14, "probability": 0.8438 }, { "start": 5545.4, "end": 5546.12, "probability": 0.6818 }, { "start": 5546.16, "end": 5549.48, "probability": 0.9931 }, { "start": 5550.14, "end": 5555.88, "probability": 0.6666 }, { "start": 5555.88, "end": 5561.9, "probability": 0.9918 }, { "start": 5562.47, "end": 5563.98, "probability": 0.7083 }, { "start": 5564.54, "end": 5564.98, "probability": 0.7903 }, { "start": 5566.0, "end": 5568.54, "probability": 0.7722 }, { "start": 5569.16, "end": 5570.56, "probability": 0.7644 }, { "start": 5571.22, "end": 5574.3, "probability": 0.7015 }, { "start": 5574.74, "end": 5575.6, "probability": 0.7449 }, { "start": 5576.26, "end": 5577.74, "probability": 0.7267 }, { "start": 5578.26, "end": 5580.94, "probability": 0.9268 }, { "start": 5581.08, "end": 5582.0, "probability": 0.6652 }, { "start": 5582.92, "end": 5583.74, "probability": 0.9071 }, { "start": 5583.96, "end": 5585.96, "probability": 0.8867 }, { "start": 5586.48, "end": 5588.18, "probability": 0.9884 }, { "start": 5588.7, "end": 5591.88, "probability": 0.984 }, { "start": 5592.4, "end": 5594.16, "probability": 0.661 }, { "start": 5594.22, "end": 5595.92, "probability": 0.7133 }, { "start": 5596.04, "end": 5600.36, "probability": 0.9858 }, { "start": 5600.84, "end": 5605.12, "probability": 0.9922 }, { "start": 5605.54, "end": 5607.04, "probability": 0.9302 }, { "start": 5607.16, "end": 5609.58, "probability": 0.5502 }, { "start": 5609.7, "end": 5610.32, "probability": 0.8115 }, { "start": 5610.78, "end": 5611.46, "probability": 0.8667 }, { "start": 5611.58, "end": 5612.66, "probability": 0.4282 }, { "start": 5612.78, "end": 5615.18, "probability": 0.9792 }, { "start": 5615.72, "end": 5619.08, "probability": 0.7518 }, { "start": 5619.42, "end": 5623.68, "probability": 0.9886 }, { "start": 5624.32, "end": 5630.5, "probability": 0.9967 }, { "start": 5630.58, "end": 5632.1, "probability": 0.597 }, { "start": 5632.2, "end": 5637.7, "probability": 0.9893 }, { "start": 5638.24, "end": 5638.76, "probability": 0.7529 }, { "start": 5638.96, "end": 5639.68, "probability": 0.5429 }, { "start": 5639.88, "end": 5640.94, "probability": 0.9234 }, { "start": 5641.1, "end": 5641.48, "probability": 0.6677 }, { "start": 5642.02, "end": 5643.38, "probability": 0.9084 }, { "start": 5643.84, "end": 5646.86, "probability": 0.9743 }, { "start": 5647.38, "end": 5649.8, "probability": 0.992 }, { "start": 5649.8, "end": 5651.44, "probability": 0.9434 }, { "start": 5651.92, "end": 5659.04, "probability": 0.7328 }, { "start": 5659.14, "end": 5659.62, "probability": 0.6574 }, { "start": 5659.64, "end": 5660.08, "probability": 0.7912 }, { "start": 5660.52, "end": 5660.8, "probability": 0.9051 }, { "start": 5661.76, "end": 5663.62, "probability": 0.9382 }, { "start": 5663.74, "end": 5669.06, "probability": 0.9584 }, { "start": 5669.42, "end": 5673.72, "probability": 0.9751 }, { "start": 5674.14, "end": 5679.74, "probability": 0.9919 }, { "start": 5680.3, "end": 5681.56, "probability": 0.5905 }, { "start": 5681.78, "end": 5682.32, "probability": 0.8691 }, { "start": 5683.43, "end": 5686.58, "probability": 0.7957 }, { "start": 5686.58, "end": 5690.14, "probability": 0.5696 }, { "start": 5690.52, "end": 5692.6, "probability": 0.4854 }, { "start": 5692.78, "end": 5694.74, "probability": 0.8378 }, { "start": 5694.78, "end": 5697.82, "probability": 0.6993 }, { "start": 5698.26, "end": 5700.46, "probability": 0.8112 }, { "start": 5700.54, "end": 5704.18, "probability": 0.8058 }, { "start": 5704.58, "end": 5705.34, "probability": 0.943 }, { "start": 5705.68, "end": 5708.02, "probability": 0.9802 }, { "start": 5708.4, "end": 5709.94, "probability": 0.3217 }, { "start": 5709.98, "end": 5710.47, "probability": 0.8398 }, { "start": 5711.38, "end": 5712.02, "probability": 0.9752 }, { "start": 5712.16, "end": 5714.38, "probability": 0.991 }, { "start": 5714.92, "end": 5720.26, "probability": 0.9568 }, { "start": 5720.8, "end": 5721.14, "probability": 0.2589 }, { "start": 5721.26, "end": 5725.5, "probability": 0.8468 }, { "start": 5725.54, "end": 5726.4, "probability": 0.7379 }, { "start": 5726.7, "end": 5728.48, "probability": 0.8402 }, { "start": 5728.66, "end": 5729.36, "probability": 0.6523 }, { "start": 5729.44, "end": 5730.41, "probability": 0.7093 }, { "start": 5730.62, "end": 5732.38, "probability": 0.8923 }, { "start": 5733.33, "end": 5734.18, "probability": 0.8316 }, { "start": 5734.58, "end": 5735.04, "probability": 0.4046 }, { "start": 5735.14, "end": 5735.68, "probability": 0.9569 }, { "start": 5735.82, "end": 5736.68, "probability": 0.9012 }, { "start": 5737.02, "end": 5739.78, "probability": 0.9196 }, { "start": 5740.14, "end": 5741.42, "probability": 0.7456 }, { "start": 5741.74, "end": 5742.46, "probability": 0.7578 }, { "start": 5742.5, "end": 5744.0, "probability": 0.6583 }, { "start": 5744.02, "end": 5746.28, "probability": 0.5959 }, { "start": 5746.38, "end": 5749.07, "probability": 0.9878 }, { "start": 5749.68, "end": 5751.02, "probability": 0.8512 }, { "start": 5751.12, "end": 5752.42, "probability": 0.9091 }, { "start": 5752.56, "end": 5753.54, "probability": 0.8139 }, { "start": 5753.64, "end": 5754.42, "probability": 0.5986 }, { "start": 5755.54, "end": 5757.06, "probability": 0.7972 }, { "start": 5758.98, "end": 5759.64, "probability": 0.8645 }, { "start": 5759.82, "end": 5761.66, "probability": 0.8479 }, { "start": 5762.1, "end": 5762.86, "probability": 0.8476 }, { "start": 5763.04, "end": 5763.98, "probability": 0.8512 }, { "start": 5764.5, "end": 5765.64, "probability": 0.7743 }, { "start": 5766.36, "end": 5766.82, "probability": 0.5164 }, { "start": 5767.16, "end": 5767.86, "probability": 0.9364 }, { "start": 5768.44, "end": 5769.26, "probability": 0.7485 }, { "start": 5769.68, "end": 5772.16, "probability": 0.9038 }, { "start": 5772.16, "end": 5772.16, "probability": 0.2944 }, { "start": 5772.44, "end": 5773.04, "probability": 0.928 }, { "start": 5773.8, "end": 5774.72, "probability": 0.6357 }, { "start": 5774.92, "end": 5775.53, "probability": 0.8423 }, { "start": 5775.62, "end": 5776.86, "probability": 0.7706 }, { "start": 5777.22, "end": 5778.3, "probability": 0.7214 }, { "start": 5779.24, "end": 5779.86, "probability": 0.6816 }, { "start": 5780.12, "end": 5780.58, "probability": 0.5876 }, { "start": 5780.7, "end": 5786.98, "probability": 0.9504 }, { "start": 5787.36, "end": 5789.68, "probability": 0.834 }, { "start": 5790.54, "end": 5793.9, "probability": 0.8907 }, { "start": 5794.0, "end": 5796.32, "probability": 0.9564 }, { "start": 5796.5, "end": 5798.12, "probability": 0.9061 }, { "start": 5798.76, "end": 5801.96, "probability": 0.7017 }, { "start": 5802.04, "end": 5802.54, "probability": 0.1531 }, { "start": 5802.66, "end": 5803.96, "probability": 0.7677 }, { "start": 5804.54, "end": 5806.06, "probability": 0.9866 }, { "start": 5807.4, "end": 5809.0, "probability": 0.7319 }, { "start": 5809.34, "end": 5812.37, "probability": 0.9795 }, { "start": 5812.8, "end": 5813.56, "probability": 0.9636 }, { "start": 5813.7, "end": 5814.4, "probability": 0.9813 }, { "start": 5814.8, "end": 5815.12, "probability": 0.8181 }, { "start": 5815.3, "end": 5818.46, "probability": 0.9756 }, { "start": 5818.6, "end": 5819.32, "probability": 0.9368 }, { "start": 5819.48, "end": 5820.43, "probability": 0.9419 }, { "start": 5820.54, "end": 5821.98, "probability": 0.9524 }, { "start": 5822.14, "end": 5822.63, "probability": 0.7172 }, { "start": 5823.34, "end": 5824.36, "probability": 0.9618 }, { "start": 5824.62, "end": 5824.84, "probability": 0.823 }, { "start": 5825.98, "end": 5826.24, "probability": 0.6812 }, { "start": 5827.94, "end": 5829.56, "probability": 0.7697 }, { "start": 5831.38, "end": 5833.9, "probability": 0.7584 }, { "start": 5835.66, "end": 5835.66, "probability": 0.7055 }, { "start": 5836.14, "end": 5836.86, "probability": 0.6968 }, { "start": 5837.58, "end": 5838.62, "probability": 0.6708 }, { "start": 5838.7, "end": 5839.76, "probability": 0.5544 }, { "start": 5839.82, "end": 5842.26, "probability": 0.9622 }, { "start": 5842.26, "end": 5845.14, "probability": 0.9951 }, { "start": 5845.36, "end": 5846.04, "probability": 0.531 }, { "start": 5846.94, "end": 5851.46, "probability": 0.8678 }, { "start": 5851.54, "end": 5854.3, "probability": 0.9971 }, { "start": 5854.82, "end": 5857.2, "probability": 0.9989 }, { "start": 5857.2, "end": 5859.38, "probability": 0.9097 }, { "start": 5859.56, "end": 5860.06, "probability": 0.6924 }, { "start": 5861.4, "end": 5861.76, "probability": 0.8047 }, { "start": 5862.14, "end": 5863.18, "probability": 0.8814 }, { "start": 5864.02, "end": 5864.1, "probability": 0.0614 }, { "start": 5871.36, "end": 5872.46, "probability": 0.0603 }, { "start": 5873.2, "end": 5873.44, "probability": 0.9298 }, { "start": 5877.06, "end": 5878.4, "probability": 0.9908 }, { "start": 5879.52, "end": 5880.28, "probability": 0.9885 }, { "start": 5880.72, "end": 5882.1, "probability": 0.033 }, { "start": 5883.04, "end": 5884.6, "probability": 0.5487 }, { "start": 5885.68, "end": 5886.02, "probability": 0.6517 }, { "start": 5886.02, "end": 5888.1, "probability": 0.8341 }, { "start": 5889.52, "end": 5889.72, "probability": 0.8669 }, { "start": 5890.8, "end": 5892.89, "probability": 0.5204 }, { "start": 5894.36, "end": 5895.14, "probability": 0.1469 }, { "start": 5895.14, "end": 5895.56, "probability": 0.1204 }, { "start": 5896.84, "end": 5898.22, "probability": 0.842 }, { "start": 5898.88, "end": 5899.26, "probability": 0.6124 }, { "start": 5899.52, "end": 5901.22, "probability": 0.8274 }, { "start": 5901.54, "end": 5902.72, "probability": 0.7217 }, { "start": 5902.88, "end": 5903.26, "probability": 0.6596 }, { "start": 5904.08, "end": 5905.94, "probability": 0.5816 }, { "start": 5906.66, "end": 5910.12, "probability": 0.9862 }, { "start": 5910.74, "end": 5912.3, "probability": 0.8321 }, { "start": 5913.08, "end": 5919.1, "probability": 0.9717 }, { "start": 5920.2, "end": 5922.32, "probability": 0.9919 }, { "start": 5922.94, "end": 5924.56, "probability": 0.947 }, { "start": 5925.42, "end": 5925.68, "probability": 0.5907 }, { "start": 5927.2, "end": 5930.02, "probability": 0.9774 }, { "start": 5931.1, "end": 5932.2, "probability": 0.5806 }, { "start": 5933.02, "end": 5934.42, "probability": 0.9614 }, { "start": 5935.16, "end": 5938.38, "probability": 0.9918 }, { "start": 5939.2, "end": 5940.14, "probability": 0.9157 }, { "start": 5940.84, "end": 5941.62, "probability": 0.9822 }, { "start": 5942.76, "end": 5943.4, "probability": 0.8343 }, { "start": 5944.08, "end": 5945.56, "probability": 0.9714 }, { "start": 5947.94, "end": 5948.9, "probability": 0.8687 }, { "start": 5949.86, "end": 5950.48, "probability": 0.744 }, { "start": 5951.7, "end": 5954.78, "probability": 0.9707 }, { "start": 5955.44, "end": 5957.24, "probability": 0.8884 }, { "start": 5958.16, "end": 5962.7, "probability": 0.9975 }, { "start": 5963.6, "end": 5964.26, "probability": 0.7528 }, { "start": 5964.86, "end": 5969.14, "probability": 0.973 }, { "start": 5970.26, "end": 5976.32, "probability": 0.9194 }, { "start": 5977.3, "end": 5980.04, "probability": 0.7283 }, { "start": 5982.26, "end": 5983.38, "probability": 0.9359 }, { "start": 5984.0, "end": 5990.16, "probability": 0.9915 }, { "start": 5990.7, "end": 5991.62, "probability": 0.9891 }, { "start": 5992.18, "end": 5994.36, "probability": 0.9948 }, { "start": 5995.02, "end": 5995.56, "probability": 0.8733 }, { "start": 5996.26, "end": 6001.4, "probability": 0.9751 }, { "start": 6002.68, "end": 6003.36, "probability": 0.8936 }, { "start": 6004.12, "end": 6006.54, "probability": 0.9873 }, { "start": 6007.24, "end": 6007.78, "probability": 0.8831 }, { "start": 6008.44, "end": 6010.98, "probability": 0.9846 }, { "start": 6012.3, "end": 6013.12, "probability": 0.9543 }, { "start": 6013.82, "end": 6015.68, "probability": 0.9963 }, { "start": 6016.2, "end": 6017.42, "probability": 0.9855 }, { "start": 6018.38, "end": 6019.82, "probability": 0.8667 }, { "start": 6020.46, "end": 6021.26, "probability": 0.8927 }, { "start": 6021.94, "end": 6025.24, "probability": 0.9883 }, { "start": 6025.78, "end": 6028.32, "probability": 0.994 }, { "start": 6029.26, "end": 6030.0, "probability": 0.9728 }, { "start": 6030.56, "end": 6031.88, "probability": 0.792 }, { "start": 6032.58, "end": 6033.08, "probability": 0.599 }, { "start": 6034.4, "end": 6037.36, "probability": 0.9954 }, { "start": 6037.92, "end": 6040.18, "probability": 0.9889 }, { "start": 6040.32, "end": 6043.48, "probability": 0.9974 }, { "start": 6045.06, "end": 6050.76, "probability": 0.9842 }, { "start": 6051.46, "end": 6051.92, "probability": 0.7601 }, { "start": 6053.02, "end": 6057.56, "probability": 0.9935 }, { "start": 6058.28, "end": 6061.44, "probability": 0.938 }, { "start": 6062.26, "end": 6065.48, "probability": 0.9737 }, { "start": 6066.94, "end": 6069.0, "probability": 0.9844 }, { "start": 6069.58, "end": 6069.82, "probability": 0.5541 }, { "start": 6070.42, "end": 6070.96, "probability": 0.7612 }, { "start": 6071.52, "end": 6072.88, "probability": 0.9596 }, { "start": 6073.78, "end": 6077.22, "probability": 0.991 }, { "start": 6078.38, "end": 6082.08, "probability": 0.9266 }, { "start": 6082.78, "end": 6087.44, "probability": 0.9731 }, { "start": 6088.06, "end": 6091.34, "probability": 0.988 }, { "start": 6091.92, "end": 6096.3, "probability": 0.9847 }, { "start": 6097.9, "end": 6100.46, "probability": 0.8879 }, { "start": 6101.92, "end": 6103.07, "probability": 0.9775 }, { "start": 6103.7, "end": 6107.7, "probability": 0.9953 }, { "start": 6108.82, "end": 6110.86, "probability": 0.7212 }, { "start": 6112.1, "end": 6113.8, "probability": 0.9827 }, { "start": 6114.18, "end": 6120.14, "probability": 0.9744 }, { "start": 6120.66, "end": 6122.68, "probability": 0.9138 }, { "start": 6123.86, "end": 6126.84, "probability": 0.967 }, { "start": 6127.86, "end": 6129.12, "probability": 0.999 }, { "start": 6129.2, "end": 6130.52, "probability": 0.9962 }, { "start": 6131.54, "end": 6134.74, "probability": 0.9851 }, { "start": 6135.3, "end": 6136.36, "probability": 0.9823 }, { "start": 6137.72, "end": 6138.04, "probability": 0.7829 }, { "start": 6138.6, "end": 6141.9, "probability": 0.9587 }, { "start": 6142.96, "end": 6147.88, "probability": 0.9902 }, { "start": 6148.3, "end": 6149.48, "probability": 0.898 }, { "start": 6150.1, "end": 6152.88, "probability": 0.9558 }, { "start": 6153.34, "end": 6155.4, "probability": 0.998 }, { "start": 6156.02, "end": 6158.16, "probability": 0.9104 }, { "start": 6159.06, "end": 6160.72, "probability": 0.9756 }, { "start": 6160.8, "end": 6161.23, "probability": 0.9652 }, { "start": 6161.68, "end": 6163.16, "probability": 0.6364 }, { "start": 6163.74, "end": 6164.52, "probability": 0.9805 }, { "start": 6165.1, "end": 6166.74, "probability": 0.9901 }, { "start": 6167.62, "end": 6169.84, "probability": 0.981 }, { "start": 6170.3, "end": 6173.34, "probability": 0.98 }, { "start": 6174.54, "end": 6176.4, "probability": 0.6746 }, { "start": 6177.0, "end": 6179.48, "probability": 0.9633 }, { "start": 6180.88, "end": 6182.86, "probability": 0.9557 }, { "start": 6183.7, "end": 6185.54, "probability": 0.9185 }, { "start": 6186.26, "end": 6187.94, "probability": 0.8414 }, { "start": 6188.98, "end": 6193.3, "probability": 0.9949 }, { "start": 6193.58, "end": 6198.88, "probability": 0.9987 }, { "start": 6199.82, "end": 6203.66, "probability": 0.9953 }, { "start": 6204.74, "end": 6207.34, "probability": 0.8415 }, { "start": 6207.92, "end": 6208.78, "probability": 0.7479 }, { "start": 6210.14, "end": 6211.9, "probability": 0.847 }, { "start": 6213.22, "end": 6214.06, "probability": 0.9336 }, { "start": 6214.58, "end": 6215.58, "probability": 0.832 }, { "start": 6215.6, "end": 6218.52, "probability": 0.8979 }, { "start": 6218.78, "end": 6222.66, "probability": 0.9976 }, { "start": 6222.74, "end": 6225.88, "probability": 0.9945 }, { "start": 6226.7, "end": 6230.24, "probability": 0.9976 }, { "start": 6230.78, "end": 6234.18, "probability": 0.9962 }, { "start": 6234.54, "end": 6235.1, "probability": 0.754 }, { "start": 6236.98, "end": 6237.72, "probability": 0.9188 }, { "start": 6238.46, "end": 6241.65, "probability": 0.9941 }, { "start": 6242.22, "end": 6245.0, "probability": 0.999 }, { "start": 6246.28, "end": 6249.04, "probability": 0.9119 }, { "start": 6249.84, "end": 6250.48, "probability": 0.9706 }, { "start": 6251.06, "end": 6254.52, "probability": 0.988 }, { "start": 6256.26, "end": 6256.58, "probability": 0.4335 }, { "start": 6257.12, "end": 6261.1, "probability": 0.9561 }, { "start": 6261.94, "end": 6264.84, "probability": 0.9925 }, { "start": 6265.7, "end": 6266.04, "probability": 0.7687 }, { "start": 6266.12, "end": 6266.34, "probability": 0.6657 }, { "start": 6267.02, "end": 6268.0, "probability": 0.5913 }, { "start": 6301.94, "end": 6303.92, "probability": 0.6825 }, { "start": 6304.5, "end": 6305.42, "probability": 0.6881 }, { "start": 6306.36, "end": 6310.24, "probability": 0.9772 }, { "start": 6310.9, "end": 6312.16, "probability": 0.7895 }, { "start": 6312.86, "end": 6317.26, "probability": 0.9631 }, { "start": 6317.66, "end": 6322.78, "probability": 0.9941 }, { "start": 6323.82, "end": 6324.62, "probability": 0.9308 }, { "start": 6325.4, "end": 6330.7, "probability": 0.9844 }, { "start": 6331.96, "end": 6334.38, "probability": 0.8787 }, { "start": 6335.18, "end": 6336.84, "probability": 0.7808 }, { "start": 6337.06, "end": 6338.78, "probability": 0.9663 }, { "start": 6340.23, "end": 6343.54, "probability": 0.9863 }, { "start": 6344.16, "end": 6346.16, "probability": 0.813 }, { "start": 6347.44, "end": 6351.34, "probability": 0.9316 }, { "start": 6351.54, "end": 6351.76, "probability": 0.7358 }, { "start": 6351.94, "end": 6354.64, "probability": 0.93 }, { "start": 6355.36, "end": 6355.98, "probability": 0.7296 }, { "start": 6356.12, "end": 6359.36, "probability": 0.9533 }, { "start": 6359.54, "end": 6362.79, "probability": 0.98 }, { "start": 6363.56, "end": 6367.14, "probability": 0.9144 }, { "start": 6368.02, "end": 6368.92, "probability": 0.9824 }, { "start": 6369.24, "end": 6373.28, "probability": 0.9586 }, { "start": 6373.28, "end": 6378.04, "probability": 0.932 }, { "start": 6378.8, "end": 6381.4, "probability": 0.6929 }, { "start": 6381.78, "end": 6382.32, "probability": 0.873 }, { "start": 6383.74, "end": 6386.16, "probability": 0.9915 }, { "start": 6386.28, "end": 6387.26, "probability": 0.9575 }, { "start": 6387.98, "end": 6390.06, "probability": 0.9895 }, { "start": 6390.6, "end": 6392.34, "probability": 0.983 }, { "start": 6393.1, "end": 6393.88, "probability": 0.8524 }, { "start": 6394.82, "end": 6396.2, "probability": 0.9821 }, { "start": 6396.52, "end": 6397.66, "probability": 0.9651 }, { "start": 6398.04, "end": 6400.77, "probability": 0.978 }, { "start": 6401.44, "end": 6402.56, "probability": 0.9978 }, { "start": 6403.3, "end": 6404.92, "probability": 0.9954 }, { "start": 6406.36, "end": 6406.9, "probability": 0.7985 }, { "start": 6407.78, "end": 6408.86, "probability": 0.6247 }, { "start": 6409.16, "end": 6412.22, "probability": 0.8711 }, { "start": 6413.94, "end": 6417.68, "probability": 0.9307 }, { "start": 6418.28, "end": 6422.92, "probability": 0.9711 }, { "start": 6423.64, "end": 6426.0, "probability": 0.8786 }, { "start": 6427.08, "end": 6430.72, "probability": 0.6749 }, { "start": 6431.18, "end": 6433.08, "probability": 0.9762 }, { "start": 6433.3, "end": 6434.7, "probability": 0.8528 }, { "start": 6435.56, "end": 6439.98, "probability": 0.9946 }, { "start": 6440.96, "end": 6442.4, "probability": 0.9843 }, { "start": 6443.66, "end": 6448.5, "probability": 0.9839 }, { "start": 6448.76, "end": 6450.34, "probability": 0.9989 }, { "start": 6453.5, "end": 6462.66, "probability": 0.9979 }, { "start": 6463.68, "end": 6464.63, "probability": 0.9987 }, { "start": 6465.18, "end": 6465.9, "probability": 0.9074 }, { "start": 6465.94, "end": 6468.04, "probability": 0.9082 }, { "start": 6468.1, "end": 6471.58, "probability": 0.9186 }, { "start": 6472.48, "end": 6474.48, "probability": 0.9922 }, { "start": 6475.82, "end": 6479.9, "probability": 0.9613 }, { "start": 6480.84, "end": 6482.68, "probability": 0.9287 }, { "start": 6482.94, "end": 6484.32, "probability": 0.9914 }, { "start": 6484.88, "end": 6487.66, "probability": 0.9956 }, { "start": 6488.38, "end": 6489.52, "probability": 0.9297 }, { "start": 6490.38, "end": 6493.66, "probability": 0.9897 }, { "start": 6494.4, "end": 6495.7, "probability": 0.955 }, { "start": 6495.92, "end": 6497.9, "probability": 0.9844 }, { "start": 6498.84, "end": 6503.78, "probability": 0.9928 }, { "start": 6504.4, "end": 6506.86, "probability": 0.9771 }, { "start": 6507.02, "end": 6509.37, "probability": 0.854 }, { "start": 6510.1, "end": 6512.6, "probability": 0.999 }, { "start": 6513.16, "end": 6515.8, "probability": 0.8808 }, { "start": 6516.82, "end": 6519.2, "probability": 0.8657 }, { "start": 6519.3, "end": 6523.22, "probability": 0.9901 }, { "start": 6523.22, "end": 6526.72, "probability": 0.9717 }, { "start": 6527.38, "end": 6529.18, "probability": 0.7693 }, { "start": 6529.24, "end": 6530.56, "probability": 0.8058 }, { "start": 6530.96, "end": 6531.54, "probability": 0.5178 }, { "start": 6531.66, "end": 6534.44, "probability": 0.9724 }, { "start": 6535.96, "end": 6537.2, "probability": 0.9714 }, { "start": 6537.98, "end": 6540.24, "probability": 0.9672 }, { "start": 6540.88, "end": 6543.4, "probability": 0.9913 }, { "start": 6543.96, "end": 6549.54, "probability": 0.9995 }, { "start": 6550.56, "end": 6550.86, "probability": 0.4314 }, { "start": 6550.88, "end": 6551.92, "probability": 0.7789 }, { "start": 6552.16, "end": 6555.26, "probability": 0.993 }, { "start": 6556.02, "end": 6560.24, "probability": 0.9895 }, { "start": 6561.78, "end": 6563.06, "probability": 0.8746 }, { "start": 6563.82, "end": 6567.48, "probability": 0.6187 }, { "start": 6568.34, "end": 6568.7, "probability": 0.2839 }, { "start": 6568.7, "end": 6570.18, "probability": 0.7134 }, { "start": 6571.4, "end": 6576.24, "probability": 0.971 }, { "start": 6576.88, "end": 6577.98, "probability": 0.9819 }, { "start": 6578.28, "end": 6581.44, "probability": 0.6797 }, { "start": 6582.38, "end": 6586.13, "probability": 0.8129 }, { "start": 6586.5, "end": 6589.16, "probability": 0.9793 }, { "start": 6589.32, "end": 6590.16, "probability": 0.8013 }, { "start": 6591.1, "end": 6591.69, "probability": 0.9309 }, { "start": 6591.96, "end": 6596.26, "probability": 0.9452 }, { "start": 6597.04, "end": 6599.34, "probability": 0.892 }, { "start": 6599.78, "end": 6602.84, "probability": 0.8198 }, { "start": 6603.66, "end": 6604.64, "probability": 0.8538 }, { "start": 6605.18, "end": 6606.54, "probability": 0.9197 }, { "start": 6606.64, "end": 6608.6, "probability": 0.8367 }, { "start": 6608.62, "end": 6609.88, "probability": 0.9548 }, { "start": 6610.42, "end": 6612.55, "probability": 0.7303 }, { "start": 6613.58, "end": 6617.3, "probability": 0.9492 }, { "start": 6617.8, "end": 6619.68, "probability": 0.9915 }, { "start": 6620.22, "end": 6622.14, "probability": 0.7704 }, { "start": 6622.5, "end": 6625.44, "probability": 0.9849 }, { "start": 6625.86, "end": 6627.02, "probability": 0.6321 }, { "start": 6627.44, "end": 6628.91, "probability": 0.9375 }, { "start": 6629.82, "end": 6632.12, "probability": 0.996 }, { "start": 6632.7, "end": 6634.64, "probability": 0.9055 }, { "start": 6635.36, "end": 6637.86, "probability": 0.8684 }, { "start": 6638.54, "end": 6640.26, "probability": 0.8851 }, { "start": 6641.58, "end": 6645.14, "probability": 0.9785 }, { "start": 6645.16, "end": 6645.66, "probability": 0.5303 }, { "start": 6646.88, "end": 6651.92, "probability": 0.9912 }, { "start": 6651.92, "end": 6657.0, "probability": 0.9941 }, { "start": 6657.88, "end": 6660.36, "probability": 0.975 }, { "start": 6661.14, "end": 6665.44, "probability": 0.9871 }, { "start": 6666.08, "end": 6667.1, "probability": 0.8113 }, { "start": 6667.34, "end": 6671.14, "probability": 0.9879 }, { "start": 6671.38, "end": 6671.68, "probability": 0.8569 }, { "start": 6672.6, "end": 6672.92, "probability": 0.676 }, { "start": 6673.02, "end": 6673.12, "probability": 0.5944 }, { "start": 6685.4, "end": 6685.66, "probability": 0.2039 }, { "start": 6686.24, "end": 6686.86, "probability": 0.0403 }, { "start": 6688.04, "end": 6688.18, "probability": 0.2791 }, { "start": 6701.88, "end": 6701.98, "probability": 0.638 }, { "start": 6704.32, "end": 6705.5, "probability": 0.8035 }, { "start": 6706.04, "end": 6706.14, "probability": 0.6029 }, { "start": 6707.58, "end": 6708.28, "probability": 0.482 }, { "start": 6708.8, "end": 6713.84, "probability": 0.9982 }, { "start": 6714.5, "end": 6715.44, "probability": 0.9547 }, { "start": 6715.72, "end": 6717.58, "probability": 0.0641 }, { "start": 6717.8, "end": 6717.94, "probability": 0.3948 }, { "start": 6718.91, "end": 6722.22, "probability": 0.9783 }, { "start": 6723.36, "end": 6727.5, "probability": 0.8895 }, { "start": 6728.04, "end": 6730.98, "probability": 0.9004 }, { "start": 6731.54, "end": 6732.3, "probability": 0.5145 }, { "start": 6733.6, "end": 6737.88, "probability": 0.9169 }, { "start": 6738.36, "end": 6739.9, "probability": 0.9565 }, { "start": 6740.54, "end": 6741.56, "probability": 0.7486 }, { "start": 6742.1, "end": 6744.0, "probability": 0.9267 }, { "start": 6745.86, "end": 6748.08, "probability": 0.9375 }, { "start": 6748.36, "end": 6749.43, "probability": 0.9983 }, { "start": 6750.3, "end": 6751.66, "probability": 0.4356 }, { "start": 6752.08, "end": 6754.8, "probability": 0.1363 }, { "start": 6754.88, "end": 6757.46, "probability": 0.9902 }, { "start": 6765.66, "end": 6769.44, "probability": 0.7426 }, { "start": 6770.12, "end": 6772.26, "probability": 0.6454 }, { "start": 6773.04, "end": 6777.88, "probability": 0.9808 }, { "start": 6778.52, "end": 6781.34, "probability": 0.9751 }, { "start": 6781.9, "end": 6783.28, "probability": 0.9912 }, { "start": 6784.42, "end": 6788.52, "probability": 0.9846 }, { "start": 6788.7, "end": 6789.48, "probability": 0.9858 }, { "start": 6790.4, "end": 6791.36, "probability": 0.9346 }, { "start": 6792.64, "end": 6795.9, "probability": 0.9859 }, { "start": 6797.4, "end": 6798.3, "probability": 0.5737 }, { "start": 6798.38, "end": 6803.22, "probability": 0.9561 }, { "start": 6803.94, "end": 6806.74, "probability": 0.9881 }, { "start": 6807.36, "end": 6811.36, "probability": 0.9951 }, { "start": 6812.8, "end": 6815.5, "probability": 0.954 }, { "start": 6816.02, "end": 6819.48, "probability": 0.9846 }, { "start": 6820.66, "end": 6822.12, "probability": 0.5385 }, { "start": 6822.74, "end": 6827.82, "probability": 0.9669 }, { "start": 6828.9, "end": 6833.98, "probability": 0.9819 }, { "start": 6834.56, "end": 6835.36, "probability": 0.9763 }, { "start": 6836.42, "end": 6839.02, "probability": 0.9464 }, { "start": 6839.64, "end": 6842.24, "probability": 0.9953 }, { "start": 6843.0, "end": 6847.8, "probability": 0.9969 }, { "start": 6849.0, "end": 6851.72, "probability": 0.932 }, { "start": 6852.28, "end": 6855.14, "probability": 0.9953 }, { "start": 6855.94, "end": 6857.88, "probability": 0.9591 }, { "start": 6859.62, "end": 6860.26, "probability": 0.7525 }, { "start": 6860.42, "end": 6862.68, "probability": 0.8591 }, { "start": 6862.68, "end": 6865.76, "probability": 0.986 }, { "start": 6866.42, "end": 6868.04, "probability": 0.9154 }, { "start": 6868.74, "end": 6871.82, "probability": 0.9915 }, { "start": 6872.44, "end": 6876.54, "probability": 0.9889 }, { "start": 6878.32, "end": 6880.58, "probability": 0.9977 }, { "start": 6880.58, "end": 6884.32, "probability": 0.9957 }, { "start": 6884.92, "end": 6887.5, "probability": 0.9662 }, { "start": 6888.04, "end": 6893.14, "probability": 0.9435 }, { "start": 6894.38, "end": 6901.96, "probability": 0.8789 }, { "start": 6901.96, "end": 6908.14, "probability": 0.9948 }, { "start": 6909.6, "end": 6910.38, "probability": 0.8068 }, { "start": 6911.66, "end": 6912.94, "probability": 0.7448 }, { "start": 6913.36, "end": 6917.06, "probability": 0.8928 }, { "start": 6917.8, "end": 6919.54, "probability": 0.7732 }, { "start": 6921.24, "end": 6924.54, "probability": 0.9413 }, { "start": 6925.26, "end": 6927.42, "probability": 0.7337 }, { "start": 6928.08, "end": 6930.46, "probability": 0.9033 }, { "start": 6931.72, "end": 6935.64, "probability": 0.958 }, { "start": 6936.42, "end": 6940.94, "probability": 0.9959 }, { "start": 6941.96, "end": 6945.72, "probability": 0.8623 }, { "start": 6946.78, "end": 6948.92, "probability": 0.9837 }, { "start": 6949.72, "end": 6952.52, "probability": 0.9507 }, { "start": 6953.04, "end": 6956.76, "probability": 0.9848 }, { "start": 6957.94, "end": 6962.3, "probability": 0.9839 }, { "start": 6962.3, "end": 6965.68, "probability": 0.9945 }, { "start": 6966.94, "end": 6972.06, "probability": 0.9952 }, { "start": 6973.34, "end": 6976.7, "probability": 0.9915 }, { "start": 6978.36, "end": 6981.6, "probability": 0.9692 }, { "start": 6981.6, "end": 6984.54, "probability": 0.999 }, { "start": 6985.62, "end": 6989.38, "probability": 0.9975 }, { "start": 6989.38, "end": 6993.76, "probability": 0.9966 }, { "start": 6994.98, "end": 6996.16, "probability": 0.7042 }, { "start": 6997.2, "end": 7000.4, "probability": 0.9647 }, { "start": 7000.4, "end": 7004.04, "probability": 0.993 }, { "start": 7005.74, "end": 7008.36, "probability": 0.9218 }, { "start": 7008.74, "end": 7012.0, "probability": 0.9866 }, { "start": 7012.0, "end": 7014.1, "probability": 0.9988 }, { "start": 7015.22, "end": 7018.75, "probability": 0.9993 }, { "start": 7019.12, "end": 7022.86, "probability": 0.9862 }, { "start": 7023.38, "end": 7024.48, "probability": 0.9966 }, { "start": 7025.28, "end": 7028.7, "probability": 0.9993 }, { "start": 7029.22, "end": 7032.7, "probability": 0.9884 }, { "start": 7032.76, "end": 7034.88, "probability": 0.9948 }, { "start": 7036.3, "end": 7038.78, "probability": 0.9993 }, { "start": 7038.86, "end": 7043.44, "probability": 0.9966 }, { "start": 7044.1, "end": 7047.34, "probability": 0.9957 }, { "start": 7048.0, "end": 7053.28, "probability": 0.998 }, { "start": 7053.44, "end": 7053.88, "probability": 0.6775 }, { "start": 7054.54, "end": 7054.98, "probability": 0.7188 }, { "start": 7056.7, "end": 7057.02, "probability": 0.5357 }, { "start": 7057.9, "end": 7059.37, "probability": 0.4705 }, { "start": 7059.74, "end": 7061.42, "probability": 0.8962 }, { "start": 7063.32, "end": 7065.88, "probability": 0.7354 }, { "start": 7067.63, "end": 7070.1, "probability": 0.979 }, { "start": 7070.8, "end": 7072.46, "probability": 0.4936 }, { "start": 7072.8, "end": 7073.84, "probability": 0.7896 }, { "start": 7074.12, "end": 7075.22, "probability": 0.7238 }, { "start": 7075.88, "end": 7078.84, "probability": 0.4623 }, { "start": 7078.9, "end": 7079.29, "probability": 0.9209 }, { "start": 7079.46, "end": 7080.08, "probability": 0.8857 }, { "start": 7082.36, "end": 7083.32, "probability": 0.7939 }, { "start": 7083.52, "end": 7086.0, "probability": 0.6651 }, { "start": 7086.48, "end": 7087.0, "probability": 0.5266 }, { "start": 7087.52, "end": 7089.88, "probability": 0.7863 }, { "start": 7089.98, "end": 7090.82, "probability": 0.5923 }, { "start": 7090.82, "end": 7092.3, "probability": 0.3471 }, { "start": 7093.44, "end": 7096.28, "probability": 0.5978 }, { "start": 7096.96, "end": 7098.26, "probability": 0.8043 }, { "start": 7098.36, "end": 7099.6, "probability": 0.9615 }, { "start": 7100.34, "end": 7103.48, "probability": 0.7668 }, { "start": 7104.48, "end": 7107.06, "probability": 0.9621 }, { "start": 7107.66, "end": 7107.82, "probability": 0.7401 }, { "start": 7108.64, "end": 7109.78, "probability": 0.7964 }, { "start": 7112.24, "end": 7113.22, "probability": 0.4261 }, { "start": 7113.22, "end": 7113.22, "probability": 0.1911 }, { "start": 7113.22, "end": 7113.76, "probability": 0.3989 }, { "start": 7113.98, "end": 7116.96, "probability": 0.98 }, { "start": 7117.26, "end": 7120.62, "probability": 0.9271 }, { "start": 7121.5, "end": 7122.4, "probability": 0.8567 }, { "start": 7123.06, "end": 7124.6, "probability": 0.9213 }, { "start": 7125.94, "end": 7130.5, "probability": 0.9951 }, { "start": 7131.46, "end": 7135.92, "probability": 0.9565 }, { "start": 7136.48, "end": 7140.0, "probability": 0.9819 }, { "start": 7140.0, "end": 7144.28, "probability": 0.998 }, { "start": 7144.88, "end": 7148.7, "probability": 0.841 }, { "start": 7149.34, "end": 7149.86, "probability": 0.9241 }, { "start": 7150.66, "end": 7151.46, "probability": 0.9711 }, { "start": 7152.54, "end": 7155.74, "probability": 0.9913 }, { "start": 7156.56, "end": 7157.34, "probability": 0.8943 }, { "start": 7158.3, "end": 7162.62, "probability": 0.9894 }, { "start": 7163.6, "end": 7166.86, "probability": 0.9989 }, { "start": 7167.88, "end": 7169.08, "probability": 0.7614 }, { "start": 7169.72, "end": 7170.48, "probability": 0.9137 }, { "start": 7171.38, "end": 7173.88, "probability": 0.9886 }, { "start": 7174.1, "end": 7178.2, "probability": 0.8964 }, { "start": 7178.74, "end": 7180.1, "probability": 0.9964 }, { "start": 7180.64, "end": 7182.56, "probability": 0.9898 }, { "start": 7183.08, "end": 7183.92, "probability": 0.9329 }, { "start": 7185.08, "end": 7188.26, "probability": 0.9725 }, { "start": 7188.26, "end": 7191.54, "probability": 0.8802 }, { "start": 7192.14, "end": 7193.0, "probability": 0.9932 }, { "start": 7194.64, "end": 7195.14, "probability": 0.6244 }, { "start": 7195.5, "end": 7199.06, "probability": 0.9958 }, { "start": 7199.72, "end": 7201.46, "probability": 0.8575 }, { "start": 7203.06, "end": 7205.7, "probability": 0.9653 }, { "start": 7206.04, "end": 7210.9, "probability": 0.9796 }, { "start": 7211.3, "end": 7214.78, "probability": 0.9639 }, { "start": 7216.58, "end": 7219.56, "probability": 0.9594 }, { "start": 7219.8, "end": 7225.98, "probability": 0.9944 }, { "start": 7226.86, "end": 7227.38, "probability": 0.71 }, { "start": 7227.74, "end": 7231.24, "probability": 0.9967 }, { "start": 7231.24, "end": 7234.76, "probability": 0.9944 }, { "start": 7235.12, "end": 7236.7, "probability": 0.8888 }, { "start": 7237.24, "end": 7239.02, "probability": 0.987 }, { "start": 7239.64, "end": 7240.62, "probability": 0.9939 }, { "start": 7241.82, "end": 7244.94, "probability": 0.9972 }, { "start": 7245.26, "end": 7248.36, "probability": 0.9584 }, { "start": 7250.06, "end": 7253.86, "probability": 0.9989 }, { "start": 7254.44, "end": 7257.2, "probability": 0.9976 }, { "start": 7257.54, "end": 7260.64, "probability": 0.9988 }, { "start": 7260.64, "end": 7263.6, "probability": 0.9973 }, { "start": 7264.24, "end": 7264.82, "probability": 0.9591 }, { "start": 7266.64, "end": 7270.1, "probability": 0.9971 }, { "start": 7271.74, "end": 7272.6, "probability": 0.9845 }, { "start": 7274.08, "end": 7276.9, "probability": 0.9984 }, { "start": 7277.36, "end": 7279.32, "probability": 0.7988 }, { "start": 7279.6, "end": 7280.4, "probability": 0.9495 }, { "start": 7280.94, "end": 7285.08, "probability": 0.9998 }, { "start": 7286.06, "end": 7289.46, "probability": 0.8811 }, { "start": 7290.34, "end": 7292.36, "probability": 0.7812 }, { "start": 7292.72, "end": 7295.61, "probability": 0.9949 }, { "start": 7296.72, "end": 7297.14, "probability": 0.9614 }, { "start": 7297.82, "end": 7300.1, "probability": 0.9751 }, { "start": 7301.24, "end": 7305.06, "probability": 0.9875 }, { "start": 7305.8, "end": 7306.96, "probability": 0.9933 }, { "start": 7308.46, "end": 7310.88, "probability": 0.9089 }, { "start": 7311.6, "end": 7316.1, "probability": 0.9902 }, { "start": 7316.98, "end": 7320.34, "probability": 0.977 }, { "start": 7321.1, "end": 7323.39, "probability": 0.9886 }, { "start": 7324.06, "end": 7326.98, "probability": 0.9935 }, { "start": 7326.98, "end": 7331.26, "probability": 0.9807 }, { "start": 7332.12, "end": 7335.2, "probability": 0.7642 }, { "start": 7335.24, "end": 7336.4, "probability": 0.8444 }, { "start": 7336.92, "end": 7339.9, "probability": 0.9034 }, { "start": 7340.44, "end": 7346.9, "probability": 0.9968 }, { "start": 7347.42, "end": 7350.88, "probability": 0.999 }, { "start": 7350.88, "end": 7354.82, "probability": 0.999 }, { "start": 7354.82, "end": 7358.44, "probability": 0.9997 }, { "start": 7359.4, "end": 7360.18, "probability": 0.5514 }, { "start": 7361.08, "end": 7364.98, "probability": 0.9964 }, { "start": 7367.0, "end": 7371.76, "probability": 0.9974 }, { "start": 7371.76, "end": 7375.92, "probability": 0.9994 }, { "start": 7376.6, "end": 7377.08, "probability": 0.9944 }, { "start": 7377.94, "end": 7379.3, "probability": 0.9891 }, { "start": 7380.5, "end": 7384.32, "probability": 0.9971 }, { "start": 7384.38, "end": 7389.0, "probability": 0.9991 }, { "start": 7389.6, "end": 7394.44, "probability": 0.9948 }, { "start": 7395.9, "end": 7398.22, "probability": 0.9986 }, { "start": 7398.22, "end": 7402.0, "probability": 0.999 }, { "start": 7402.68, "end": 7405.78, "probability": 0.999 }, { "start": 7406.26, "end": 7409.08, "probability": 0.9982 }, { "start": 7410.14, "end": 7411.02, "probability": 0.998 }, { "start": 7411.58, "end": 7415.38, "probability": 0.9744 }, { "start": 7415.38, "end": 7418.86, "probability": 0.9924 }, { "start": 7419.32, "end": 7423.88, "probability": 0.9777 }, { "start": 7425.18, "end": 7427.94, "probability": 0.9945 }, { "start": 7427.94, "end": 7430.45, "probability": 0.8831 }, { "start": 7431.8, "end": 7433.84, "probability": 0.9881 }, { "start": 7433.84, "end": 7437.06, "probability": 0.9904 }, { "start": 7437.76, "end": 7439.44, "probability": 0.9906 }, { "start": 7440.32, "end": 7442.96, "probability": 0.9985 }, { "start": 7443.32, "end": 7444.16, "probability": 0.9988 }, { "start": 7444.8, "end": 7448.44, "probability": 0.9985 }, { "start": 7448.44, "end": 7452.24, "probability": 0.9977 }, { "start": 7453.78, "end": 7456.54, "probability": 0.9792 }, { "start": 7457.34, "end": 7458.3, "probability": 0.8005 }, { "start": 7459.52, "end": 7464.12, "probability": 0.9952 }, { "start": 7464.44, "end": 7465.12, "probability": 0.7992 }, { "start": 7465.74, "end": 7468.48, "probability": 0.9987 }, { "start": 7469.28, "end": 7470.82, "probability": 0.9963 }, { "start": 7472.52, "end": 7477.24, "probability": 0.9952 }, { "start": 7479.0, "end": 7479.46, "probability": 0.5251 }, { "start": 7479.56, "end": 7482.72, "probability": 0.994 }, { "start": 7483.1, "end": 7487.7, "probability": 0.9709 }, { "start": 7489.52, "end": 7493.08, "probability": 0.7471 }, { "start": 7493.6, "end": 7497.02, "probability": 0.9967 }, { "start": 7497.66, "end": 7506.08, "probability": 0.9854 }, { "start": 7506.72, "end": 7510.5, "probability": 0.9775 }, { "start": 7511.06, "end": 7513.64, "probability": 0.9997 }, { "start": 7513.64, "end": 7517.92, "probability": 0.9983 }, { "start": 7518.44, "end": 7520.38, "probability": 0.9916 }, { "start": 7520.9, "end": 7522.78, "probability": 0.9479 }, { "start": 7523.26, "end": 7523.78, "probability": 0.6219 }, { "start": 7523.86, "end": 7526.24, "probability": 0.9884 }, { "start": 7527.2, "end": 7527.7, "probability": 0.3972 }, { "start": 7527.72, "end": 7529.78, "probability": 0.9954 }, { "start": 7531.46, "end": 7532.38, "probability": 0.4921 }, { "start": 7532.9, "end": 7535.18, "probability": 0.8354 }, { "start": 7535.8, "end": 7536.2, "probability": 0.7124 }, { "start": 7536.98, "end": 7538.54, "probability": 0.9507 }, { "start": 7538.74, "end": 7539.48, "probability": 0.6338 }, { "start": 7540.72, "end": 7541.79, "probability": 0.2805 }, { "start": 7543.2, "end": 7543.72, "probability": 0.5336 }, { "start": 7544.56, "end": 7547.06, "probability": 0.8057 }, { "start": 7547.78, "end": 7549.06, "probability": 0.8175 }, { "start": 7551.14, "end": 7552.2, "probability": 0.3554 }, { "start": 7552.34, "end": 7553.54, "probability": 0.7866 }, { "start": 7553.58, "end": 7554.14, "probability": 0.7231 }, { "start": 7554.52, "end": 7556.41, "probability": 0.5315 }, { "start": 7557.44, "end": 7561.48, "probability": 0.7404 }, { "start": 7562.16, "end": 7562.52, "probability": 0.0057 } ], "segments_count": 2484, "words_count": 12395, "avg_words_per_segment": 4.9899, "avg_segment_duration": 2.1246, "avg_words_per_minute": 97.8742, "plenum_id": "102593", "duration": 7598.53, "title": null, "plenum_date": "2021-12-14" }