{ "source_type": "knesset", "source_id": "plenum", "source_entry_id": "101478", "quality_score": 0.8415, "per_segment_quality_scores": [ { "start": 68.9, "end": 70.12, "probability": 0.0677 }, { "start": 70.42, "end": 73.48, "probability": 0.1777 }, { "start": 73.84, "end": 75.34, "probability": 0.1801 }, { "start": 76.52, "end": 76.86, "probability": 0.0164 }, { "start": 77.9, "end": 82.2, "probability": 0.0548 }, { "start": 82.48, "end": 83.68, "probability": 0.0548 }, { "start": 83.68, "end": 83.78, "probability": 0.4457 }, { "start": 150.0, "end": 150.0, "probability": 0.0 }, { "start": 150.0, "end": 150.0, "probability": 0.0 }, { "start": 150.0, "end": 150.0, "probability": 0.0 }, { "start": 150.0, "end": 150.0, "probability": 0.0 }, { "start": 150.0, "end": 150.0, "probability": 0.0 }, { "start": 150.0, "end": 150.0, "probability": 0.0 }, { "start": 150.0, "end": 150.0, "probability": 0.0 }, { "start": 150.0, "end": 150.0, "probability": 0.0 }, { "start": 150.0, "end": 150.0, "probability": 0.0 }, { "start": 150.0, "end": 150.0, "probability": 0.0 }, { "start": 150.0, "end": 150.0, "probability": 0.0 }, { "start": 150.0, "end": 150.0, "probability": 0.0 }, { "start": 150.0, "end": 150.0, "probability": 0.0 }, { "start": 150.0, "end": 150.0, "probability": 0.0 }, { "start": 150.0, "end": 150.0, "probability": 0.0 }, { "start": 150.0, "end": 150.0, "probability": 0.0 }, { "start": 150.0, "end": 150.0, "probability": 0.0 }, { "start": 150.0, "end": 150.0, "probability": 0.0 }, { "start": 152.72, "end": 155.62, "probability": 0.8027 }, { "start": 155.72, "end": 155.94, "probability": 0.3258 }, { "start": 156.1, "end": 156.82, "probability": 0.7428 }, { "start": 157.2, "end": 158.71, "probability": 0.9914 }, { "start": 159.24, "end": 161.6, "probability": 0.3297 }, { "start": 162.29, "end": 166.6, "probability": 0.948 }, { "start": 166.6, "end": 167.16, "probability": 0.6343 }, { "start": 167.26, "end": 171.4, "probability": 0.939 }, { "start": 172.16, "end": 175.5, "probability": 0.9916 }, { "start": 175.62, "end": 178.46, "probability": 0.9987 }, { "start": 179.74, "end": 180.64, "probability": 0.4659 }, { "start": 180.68, "end": 181.84, "probability": 0.8171 }, { "start": 182.0, "end": 186.54, "probability": 0.8018 }, { "start": 187.64, "end": 190.66, "probability": 0.8842 }, { "start": 191.24, "end": 195.04, "probability": 0.9617 }, { "start": 195.64, "end": 198.3, "probability": 0.9272 }, { "start": 198.3, "end": 201.5, "probability": 0.9485 }, { "start": 201.6, "end": 202.18, "probability": 0.4086 }, { "start": 202.34, "end": 205.8, "probability": 0.9934 }, { "start": 206.74, "end": 210.3, "probability": 0.9781 }, { "start": 210.38, "end": 211.1, "probability": 0.5312 }, { "start": 211.44, "end": 212.56, "probability": 0.8556 }, { "start": 213.18, "end": 214.92, "probability": 0.6179 }, { "start": 215.02, "end": 216.58, "probability": 0.9879 }, { "start": 218.26, "end": 221.6, "probability": 0.9741 }, { "start": 221.6, "end": 224.1, "probability": 0.9865 }, { "start": 225.26, "end": 228.76, "probability": 0.8604 }, { "start": 229.38, "end": 233.44, "probability": 0.7933 }, { "start": 235.22, "end": 236.82, "probability": 0.8209 }, { "start": 236.96, "end": 237.48, "probability": 0.7707 }, { "start": 237.74, "end": 239.64, "probability": 0.9403 }, { "start": 240.52, "end": 247.14, "probability": 0.9885 }, { "start": 247.32, "end": 251.04, "probability": 0.9693 }, { "start": 252.4, "end": 256.06, "probability": 0.989 }, { "start": 256.2, "end": 261.3, "probability": 0.9961 }, { "start": 261.34, "end": 266.84, "probability": 0.7024 }, { "start": 267.28, "end": 269.1, "probability": 0.6698 }, { "start": 280.58, "end": 282.38, "probability": 0.6619 }, { "start": 283.68, "end": 287.98, "probability": 0.8665 }, { "start": 287.98, "end": 291.3, "probability": 0.9907 }, { "start": 292.1, "end": 294.64, "probability": 0.9552 }, { "start": 295.28, "end": 295.82, "probability": 0.6473 }, { "start": 296.64, "end": 298.65, "probability": 0.3544 }, { "start": 299.42, "end": 302.24, "probability": 0.9829 }, { "start": 302.24, "end": 305.56, "probability": 0.9637 }, { "start": 305.74, "end": 308.08, "probability": 0.9503 }, { "start": 308.78, "end": 310.62, "probability": 0.9582 }, { "start": 311.12, "end": 313.06, "probability": 0.8479 }, { "start": 313.14, "end": 315.2, "probability": 0.9041 }, { "start": 315.74, "end": 317.38, "probability": 0.958 }, { "start": 317.44, "end": 318.34, "probability": 0.7408 }, { "start": 319.32, "end": 323.46, "probability": 0.8734 }, { "start": 323.62, "end": 325.46, "probability": 0.998 }, { "start": 326.3, "end": 327.7, "probability": 0.9949 }, { "start": 328.12, "end": 330.38, "probability": 0.4993 }, { "start": 331.1, "end": 333.33, "probability": 0.7699 }, { "start": 334.0, "end": 334.92, "probability": 0.8881 }, { "start": 335.04, "end": 336.66, "probability": 0.9269 }, { "start": 336.76, "end": 338.4, "probability": 0.8841 }, { "start": 339.02, "end": 339.18, "probability": 0.1038 }, { "start": 340.34, "end": 340.34, "probability": 0.0928 }, { "start": 340.34, "end": 341.02, "probability": 0.6183 }, { "start": 341.5, "end": 346.56, "probability": 0.9576 }, { "start": 346.56, "end": 349.6, "probability": 0.9937 }, { "start": 350.4, "end": 355.96, "probability": 0.874 }, { "start": 356.6, "end": 360.78, "probability": 0.5768 }, { "start": 362.68, "end": 364.66, "probability": 0.7246 }, { "start": 365.18, "end": 367.7, "probability": 0.8526 }, { "start": 368.06, "end": 368.64, "probability": 0.6053 }, { "start": 369.4, "end": 372.9, "probability": 0.7102 }, { "start": 373.64, "end": 378.26, "probability": 0.9915 }, { "start": 379.43, "end": 382.5, "probability": 0.0571 }, { "start": 382.5, "end": 384.56, "probability": 0.5507 }, { "start": 386.14, "end": 388.14, "probability": 0.9595 }, { "start": 388.4, "end": 391.07, "probability": 0.687 }, { "start": 391.44, "end": 393.17, "probability": 0.9756 }, { "start": 393.76, "end": 397.5, "probability": 0.9115 }, { "start": 397.58, "end": 400.24, "probability": 0.808 }, { "start": 400.68, "end": 404.06, "probability": 0.9077 }, { "start": 404.52, "end": 406.58, "probability": 0.7552 }, { "start": 406.62, "end": 408.7, "probability": 0.9937 }, { "start": 409.12, "end": 410.22, "probability": 0.5507 }, { "start": 411.1, "end": 412.74, "probability": 0.8311 }, { "start": 413.64, "end": 417.36, "probability": 0.9089 }, { "start": 417.54, "end": 418.2, "probability": 0.4509 }, { "start": 418.2, "end": 418.81, "probability": 0.9492 }, { "start": 420.24, "end": 421.02, "probability": 0.2376 }, { "start": 421.02, "end": 422.94, "probability": 0.936 }, { "start": 427.24, "end": 428.36, "probability": 0.4007 }, { "start": 428.36, "end": 429.1, "probability": 0.7382 }, { "start": 429.38, "end": 429.7, "probability": 0.778 }, { "start": 434.62, "end": 436.12, "probability": 0.6473 }, { "start": 436.92, "end": 438.86, "probability": 0.5887 }, { "start": 440.12, "end": 446.56, "probability": 0.9949 }, { "start": 446.98, "end": 451.22, "probability": 0.9852 }, { "start": 451.22, "end": 454.6, "probability": 0.9996 }, { "start": 455.18, "end": 458.7, "probability": 0.9935 }, { "start": 458.82, "end": 460.24, "probability": 0.9016 }, { "start": 460.41, "end": 464.74, "probability": 0.9904 }, { "start": 464.74, "end": 468.08, "probability": 0.9707 }, { "start": 468.26, "end": 469.8, "probability": 0.989 }, { "start": 470.32, "end": 474.56, "probability": 0.9966 }, { "start": 474.56, "end": 479.52, "probability": 0.9919 }, { "start": 479.62, "end": 483.64, "probability": 0.749 }, { "start": 483.84, "end": 484.1, "probability": 0.689 }, { "start": 484.2, "end": 489.28, "probability": 0.9773 }, { "start": 490.04, "end": 493.56, "probability": 0.9475 }, { "start": 493.76, "end": 494.68, "probability": 0.954 }, { "start": 494.74, "end": 497.36, "probability": 0.9975 }, { "start": 498.46, "end": 504.38, "probability": 0.9975 }, { "start": 504.92, "end": 506.12, "probability": 0.899 }, { "start": 506.76, "end": 508.62, "probability": 0.5748 }, { "start": 508.9, "end": 514.24, "probability": 0.7231 }, { "start": 514.54, "end": 517.14, "probability": 0.9461 }, { "start": 518.12, "end": 520.65, "probability": 0.9727 }, { "start": 521.4, "end": 523.18, "probability": 0.8086 }, { "start": 523.7, "end": 527.6, "probability": 0.9906 }, { "start": 527.74, "end": 530.2, "probability": 0.998 }, { "start": 531.82, "end": 532.66, "probability": 0.6907 }, { "start": 533.76, "end": 534.88, "probability": 0.9787 }, { "start": 539.54, "end": 542.14, "probability": 0.6527 }, { "start": 542.8, "end": 544.54, "probability": 0.6851 }, { "start": 545.92, "end": 548.86, "probability": 0.9881 }, { "start": 550.04, "end": 550.78, "probability": 0.5971 }, { "start": 551.4, "end": 553.29, "probability": 0.9648 }, { "start": 558.9, "end": 559.84, "probability": 0.4064 }, { "start": 559.94, "end": 560.28, "probability": 0.3323 }, { "start": 560.9, "end": 560.9, "probability": 0.0953 }, { "start": 560.9, "end": 562.64, "probability": 0.5091 }, { "start": 563.42, "end": 564.38, "probability": 0.5598 }, { "start": 565.3, "end": 571.78, "probability": 0.9726 }, { "start": 572.6, "end": 577.08, "probability": 0.9102 }, { "start": 577.6, "end": 579.06, "probability": 0.8942 }, { "start": 579.12, "end": 582.04, "probability": 0.9844 }, { "start": 582.6, "end": 584.56, "probability": 0.7506 }, { "start": 585.3, "end": 588.96, "probability": 0.9976 }, { "start": 590.68, "end": 591.78, "probability": 0.0437 }, { "start": 591.78, "end": 597.08, "probability": 0.9741 }, { "start": 597.08, "end": 599.7, "probability": 0.969 }, { "start": 600.52, "end": 600.82, "probability": 0.629 }, { "start": 601.62, "end": 603.16, "probability": 0.0545 }, { "start": 603.76, "end": 604.64, "probability": 0.3971 }, { "start": 604.72, "end": 605.14, "probability": 0.0378 }, { "start": 605.68, "end": 605.92, "probability": 0.0051 }, { "start": 605.92, "end": 606.52, "probability": 0.5237 }, { "start": 606.7, "end": 607.68, "probability": 0.9524 }, { "start": 607.8, "end": 609.14, "probability": 0.8914 }, { "start": 609.58, "end": 615.46, "probability": 0.9591 }, { "start": 615.64, "end": 615.7, "probability": 0.0801 }, { "start": 615.7, "end": 617.2, "probability": 0.4243 }, { "start": 617.2, "end": 620.76, "probability": 0.8346 }, { "start": 621.14, "end": 625.42, "probability": 0.9187 }, { "start": 625.42, "end": 631.74, "probability": 0.9305 }, { "start": 632.3, "end": 634.02, "probability": 0.9043 }, { "start": 640.21, "end": 642.4, "probability": 0.6055 }, { "start": 652.3, "end": 656.1, "probability": 0.9249 }, { "start": 656.94, "end": 661.14, "probability": 0.9529 }, { "start": 661.88, "end": 665.96, "probability": 0.9971 }, { "start": 666.88, "end": 671.52, "probability": 0.9038 }, { "start": 672.22, "end": 676.76, "probability": 0.5641 }, { "start": 677.26, "end": 680.78, "probability": 0.787 }, { "start": 681.62, "end": 684.9, "probability": 0.9828 }, { "start": 685.98, "end": 691.0, "probability": 0.8523 }, { "start": 691.16, "end": 691.4, "probability": 0.6893 }, { "start": 691.58, "end": 691.94, "probability": 0.7027 }, { "start": 692.14, "end": 692.66, "probability": 0.8475 }, { "start": 697.78, "end": 698.48, "probability": 0.7981 }, { "start": 701.56, "end": 705.08, "probability": 0.9538 }, { "start": 705.94, "end": 711.98, "probability": 0.6643 }, { "start": 713.2, "end": 715.54, "probability": 0.9861 }, { "start": 715.54, "end": 718.48, "probability": 0.999 }, { "start": 719.62, "end": 721.62, "probability": 0.855 }, { "start": 721.82, "end": 725.28, "probability": 0.9963 }, { "start": 725.54, "end": 727.1, "probability": 0.9683 }, { "start": 727.22, "end": 732.88, "probability": 0.7498 }, { "start": 733.14, "end": 735.24, "probability": 0.9771 }, { "start": 736.08, "end": 739.62, "probability": 0.9873 }, { "start": 739.62, "end": 742.22, "probability": 0.9965 }, { "start": 742.46, "end": 745.36, "probability": 0.7424 }, { "start": 746.46, "end": 752.94, "probability": 0.9236 }, { "start": 752.98, "end": 757.06, "probability": 0.9761 }, { "start": 757.78, "end": 764.0, "probability": 0.9968 }, { "start": 764.78, "end": 766.08, "probability": 0.998 }, { "start": 766.96, "end": 770.36, "probability": 0.9969 }, { "start": 771.0, "end": 771.76, "probability": 0.6877 }, { "start": 772.52, "end": 777.32, "probability": 0.8175 }, { "start": 778.06, "end": 782.64, "probability": 0.9921 }, { "start": 783.76, "end": 789.66, "probability": 0.9865 }, { "start": 791.0, "end": 798.28, "probability": 0.9995 }, { "start": 799.36, "end": 803.66, "probability": 0.9255 }, { "start": 804.96, "end": 809.48, "probability": 0.9889 }, { "start": 810.02, "end": 814.84, "probability": 0.9929 }, { "start": 815.32, "end": 817.94, "probability": 0.8967 }, { "start": 818.68, "end": 822.5, "probability": 0.9979 }, { "start": 822.5, "end": 827.68, "probability": 0.9882 }, { "start": 827.8, "end": 830.12, "probability": 0.8251 }, { "start": 830.86, "end": 837.46, "probability": 0.9906 }, { "start": 838.06, "end": 838.86, "probability": 0.6495 }, { "start": 839.04, "end": 839.78, "probability": 0.8358 }, { "start": 839.9, "end": 840.32, "probability": 0.8975 }, { "start": 840.36, "end": 842.6, "probability": 0.9232 }, { "start": 843.06, "end": 843.32, "probability": 0.7557 }, { "start": 843.48, "end": 844.46, "probability": 0.7882 }, { "start": 844.64, "end": 845.72, "probability": 0.7553 }, { "start": 852.28, "end": 852.98, "probability": 0.8135 }, { "start": 853.64, "end": 855.72, "probability": 0.7878 }, { "start": 857.16, "end": 861.28, "probability": 0.9867 }, { "start": 861.28, "end": 865.28, "probability": 0.9893 }, { "start": 865.36, "end": 865.58, "probability": 0.7327 }, { "start": 866.08, "end": 867.68, "probability": 0.6424 }, { "start": 867.94, "end": 868.94, "probability": 0.8123 }, { "start": 869.44, "end": 873.16, "probability": 0.99 }, { "start": 873.28, "end": 874.92, "probability": 0.5289 }, { "start": 875.48, "end": 882.24, "probability": 0.9253 }, { "start": 882.5, "end": 885.64, "probability": 0.9945 }, { "start": 885.66, "end": 890.16, "probability": 0.8921 }, { "start": 890.24, "end": 894.24, "probability": 0.9429 }, { "start": 894.66, "end": 898.91, "probability": 0.9899 }, { "start": 899.63, "end": 903.18, "probability": 0.9937 }, { "start": 903.54, "end": 906.74, "probability": 0.9756 }, { "start": 907.08, "end": 911.64, "probability": 0.9901 }, { "start": 911.64, "end": 915.48, "probability": 0.9991 }, { "start": 916.0, "end": 918.64, "probability": 0.9913 }, { "start": 918.9, "end": 922.4, "probability": 0.9971 }, { "start": 922.58, "end": 922.8, "probability": 0.6426 }, { "start": 922.8, "end": 922.9, "probability": 0.6787 }, { "start": 923.16, "end": 923.6, "probability": 0.8172 }, { "start": 923.84, "end": 929.64, "probability": 0.7854 }, { "start": 931.78, "end": 934.46, "probability": 0.9836 }, { "start": 934.76, "end": 935.74, "probability": 0.9802 }, { "start": 936.64, "end": 939.9, "probability": 0.9881 }, { "start": 940.48, "end": 946.36, "probability": 0.977 }, { "start": 946.88, "end": 951.5, "probability": 0.9188 }, { "start": 952.2, "end": 955.98, "probability": 0.9952 }, { "start": 955.98, "end": 958.7, "probability": 0.9952 }, { "start": 959.16, "end": 964.16, "probability": 0.9966 }, { "start": 964.72, "end": 966.76, "probability": 0.9873 }, { "start": 967.14, "end": 969.18, "probability": 0.7338 }, { "start": 969.6, "end": 970.06, "probability": 0.9225 }, { "start": 970.12, "end": 973.48, "probability": 0.9888 }, { "start": 973.58, "end": 978.0, "probability": 0.9034 }, { "start": 979.34, "end": 985.44, "probability": 0.9587 }, { "start": 985.58, "end": 987.9, "probability": 0.9944 }, { "start": 988.34, "end": 989.06, "probability": 0.7602 }, { "start": 989.32, "end": 989.98, "probability": 0.8346 }, { "start": 990.7, "end": 991.88, "probability": 0.3722 }, { "start": 993.56, "end": 994.18, "probability": 0.7901 }, { "start": 998.04, "end": 1001.18, "probability": 0.9824 }, { "start": 1001.48, "end": 1002.48, "probability": 0.7181 }, { "start": 1002.52, "end": 1002.66, "probability": 0.6819 }, { "start": 1002.78, "end": 1002.9, "probability": 0.2871 }, { "start": 1002.92, "end": 1004.12, "probability": 0.9759 }, { "start": 1004.2, "end": 1005.42, "probability": 0.9955 }, { "start": 1006.2, "end": 1006.88, "probability": 0.5174 }, { "start": 1007.2, "end": 1009.48, "probability": 0.8997 }, { "start": 1010.22, "end": 1013.88, "probability": 0.8727 }, { "start": 1013.88, "end": 1016.52, "probability": 0.9971 }, { "start": 1016.76, "end": 1017.64, "probability": 0.7456 }, { "start": 1018.24, "end": 1021.04, "probability": 0.8041 }, { "start": 1021.62, "end": 1023.76, "probability": 0.9205 }, { "start": 1023.92, "end": 1027.36, "probability": 0.9885 }, { "start": 1027.8, "end": 1029.98, "probability": 0.6482 }, { "start": 1030.46, "end": 1031.06, "probability": 0.3386 }, { "start": 1031.2, "end": 1032.16, "probability": 0.6456 }, { "start": 1032.58, "end": 1035.24, "probability": 0.8955 }, { "start": 1035.72, "end": 1036.92, "probability": 0.9282 }, { "start": 1036.96, "end": 1037.92, "probability": 0.8657 }, { "start": 1038.18, "end": 1039.52, "probability": 0.9688 }, { "start": 1040.26, "end": 1040.56, "probability": 0.2884 }, { "start": 1042.18, "end": 1047.86, "probability": 0.9832 }, { "start": 1049.82, "end": 1051.38, "probability": 0.9956 }, { "start": 1051.82, "end": 1054.0, "probability": 0.9768 }, { "start": 1054.06, "end": 1054.14, "probability": 0.0049 }, { "start": 1054.16, "end": 1055.14, "probability": 0.7428 }, { "start": 1055.2, "end": 1058.0, "probability": 0.9496 }, { "start": 1058.4, "end": 1061.22, "probability": 0.9889 }, { "start": 1061.22, "end": 1064.48, "probability": 0.9637 }, { "start": 1065.1, "end": 1067.54, "probability": 0.9967 }, { "start": 1068.34, "end": 1070.62, "probability": 0.9459 }, { "start": 1070.74, "end": 1071.4, "probability": 0.75 }, { "start": 1071.62, "end": 1072.22, "probability": 0.4807 }, { "start": 1072.42, "end": 1074.36, "probability": 0.9715 }, { "start": 1075.4, "end": 1080.1, "probability": 0.9821 }, { "start": 1080.64, "end": 1086.18, "probability": 0.9982 }, { "start": 1086.54, "end": 1088.16, "probability": 0.9721 }, { "start": 1088.3, "end": 1089.32, "probability": 0.9385 }, { "start": 1089.78, "end": 1090.78, "probability": 0.9395 }, { "start": 1090.94, "end": 1092.34, "probability": 0.998 }, { "start": 1092.86, "end": 1096.64, "probability": 0.9938 }, { "start": 1096.7, "end": 1097.88, "probability": 0.8094 }, { "start": 1098.06, "end": 1099.5, "probability": 0.8468 }, { "start": 1100.26, "end": 1103.3, "probability": 0.866 }, { "start": 1104.52, "end": 1105.14, "probability": 0.4458 }, { "start": 1105.26, "end": 1106.16, "probability": 0.5136 }, { "start": 1106.48, "end": 1107.14, "probability": 0.4365 }, { "start": 1107.44, "end": 1108.02, "probability": 0.3626 }, { "start": 1108.02, "end": 1108.65, "probability": 0.1335 }, { "start": 1109.32, "end": 1110.18, "probability": 0.0912 }, { "start": 1110.76, "end": 1111.3, "probability": 0.3481 }, { "start": 1111.3, "end": 1112.9, "probability": 0.5846 }, { "start": 1113.0, "end": 1114.14, "probability": 0.8933 }, { "start": 1114.34, "end": 1115.9, "probability": 0.9146 }, { "start": 1116.78, "end": 1120.72, "probability": 0.8624 }, { "start": 1120.8, "end": 1121.62, "probability": 0.5503 }, { "start": 1122.22, "end": 1124.2, "probability": 0.9333 }, { "start": 1124.22, "end": 1126.8, "probability": 0.88 }, { "start": 1126.88, "end": 1128.4, "probability": 0.9894 }, { "start": 1128.82, "end": 1131.38, "probability": 0.285 }, { "start": 1131.46, "end": 1132.06, "probability": 0.5037 }, { "start": 1132.34, "end": 1134.24, "probability": 0.9848 }, { "start": 1134.3, "end": 1137.28, "probability": 0.9951 }, { "start": 1137.82, "end": 1139.18, "probability": 0.8515 }, { "start": 1139.24, "end": 1142.26, "probability": 0.9935 }, { "start": 1142.36, "end": 1144.6, "probability": 0.9555 }, { "start": 1145.04, "end": 1146.46, "probability": 0.9782 }, { "start": 1146.74, "end": 1148.1, "probability": 0.9665 }, { "start": 1148.16, "end": 1150.05, "probability": 0.9897 }, { "start": 1150.82, "end": 1152.52, "probability": 0.8316 }, { "start": 1152.84, "end": 1153.54, "probability": 0.7811 }, { "start": 1153.68, "end": 1155.18, "probability": 0.995 }, { "start": 1155.94, "end": 1159.52, "probability": 0.9937 }, { "start": 1159.72, "end": 1160.56, "probability": 0.9686 }, { "start": 1160.92, "end": 1162.5, "probability": 0.999 }, { "start": 1162.96, "end": 1164.56, "probability": 0.9553 }, { "start": 1164.9, "end": 1169.08, "probability": 0.9943 }, { "start": 1169.7, "end": 1172.36, "probability": 0.9993 }, { "start": 1172.86, "end": 1174.88, "probability": 0.7342 }, { "start": 1175.38, "end": 1176.9, "probability": 0.5388 }, { "start": 1177.52, "end": 1178.26, "probability": 0.8241 }, { "start": 1178.88, "end": 1181.5, "probability": 0.9019 }, { "start": 1181.68, "end": 1182.88, "probability": 0.7105 }, { "start": 1183.16, "end": 1183.82, "probability": 0.8212 }, { "start": 1184.22, "end": 1189.02, "probability": 0.7257 }, { "start": 1189.1, "end": 1189.88, "probability": 0.5461 }, { "start": 1198.18, "end": 1200.6, "probability": 0.8537 }, { "start": 1201.48, "end": 1207.76, "probability": 0.9689 }, { "start": 1208.58, "end": 1213.6, "probability": 0.9632 }, { "start": 1213.6, "end": 1220.2, "probability": 0.9987 }, { "start": 1221.12, "end": 1230.94, "probability": 0.984 }, { "start": 1231.46, "end": 1232.92, "probability": 0.9002 }, { "start": 1233.34, "end": 1238.22, "probability": 0.915 }, { "start": 1238.3, "end": 1238.66, "probability": 0.6034 }, { "start": 1238.96, "end": 1240.95, "probability": 0.9682 }, { "start": 1241.02, "end": 1241.82, "probability": 0.506 }, { "start": 1242.24, "end": 1242.34, "probability": 0.2295 }, { "start": 1243.18, "end": 1245.24, "probability": 0.105 }, { "start": 1245.68, "end": 1247.32, "probability": 0.0789 }, { "start": 1248.44, "end": 1249.28, "probability": 0.5219 }, { "start": 1249.76, "end": 1250.62, "probability": 0.516 }, { "start": 1251.0, "end": 1252.44, "probability": 0.4943 }, { "start": 1252.44, "end": 1253.12, "probability": 0.9677 }, { "start": 1254.12, "end": 1258.22, "probability": 0.9405 }, { "start": 1258.68, "end": 1259.64, "probability": 0.6348 }, { "start": 1260.42, "end": 1264.62, "probability": 0.995 }, { "start": 1264.62, "end": 1270.14, "probability": 0.9805 }, { "start": 1270.2, "end": 1270.86, "probability": 0.7697 }, { "start": 1271.44, "end": 1271.98, "probability": 0.5136 }, { "start": 1274.78, "end": 1282.06, "probability": 0.8781 }, { "start": 1282.76, "end": 1283.16, "probability": 0.4755 }, { "start": 1283.26, "end": 1286.3, "probability": 0.9578 }, { "start": 1286.34, "end": 1287.78, "probability": 0.9299 }, { "start": 1287.98, "end": 1292.6, "probability": 0.9862 }, { "start": 1293.42, "end": 1295.28, "probability": 0.9841 }, { "start": 1296.02, "end": 1298.44, "probability": 0.6775 }, { "start": 1299.24, "end": 1304.58, "probability": 0.9285 }, { "start": 1305.12, "end": 1305.99, "probability": 0.9766 }, { "start": 1306.86, "end": 1308.3, "probability": 0.8772 }, { "start": 1309.44, "end": 1309.9, "probability": 0.6305 }, { "start": 1310.04, "end": 1311.52, "probability": 0.9839 }, { "start": 1311.66, "end": 1314.74, "probability": 0.9854 }, { "start": 1315.86, "end": 1318.78, "probability": 0.6455 }, { "start": 1319.32, "end": 1320.9, "probability": 0.5981 }, { "start": 1320.96, "end": 1325.22, "probability": 0.8572 }, { "start": 1326.52, "end": 1329.96, "probability": 0.9911 }, { "start": 1330.2, "end": 1330.8, "probability": 0.7941 }, { "start": 1330.99, "end": 1333.74, "probability": 0.9955 }, { "start": 1333.74, "end": 1337.26, "probability": 0.8852 }, { "start": 1337.28, "end": 1342.56, "probability": 0.9873 }, { "start": 1342.76, "end": 1343.42, "probability": 0.7955 }, { "start": 1343.54, "end": 1344.84, "probability": 0.9963 }, { "start": 1345.18, "end": 1345.72, "probability": 0.7653 }, { "start": 1345.72, "end": 1346.78, "probability": 0.9277 }, { "start": 1346.92, "end": 1351.46, "probability": 0.9935 }, { "start": 1351.94, "end": 1353.16, "probability": 0.8484 }, { "start": 1353.94, "end": 1356.54, "probability": 0.9956 }, { "start": 1357.12, "end": 1361.88, "probability": 0.9567 }, { "start": 1362.46, "end": 1364.82, "probability": 0.8956 }, { "start": 1365.7, "end": 1371.74, "probability": 0.9382 }, { "start": 1371.74, "end": 1377.06, "probability": 0.9981 }, { "start": 1377.58, "end": 1381.56, "probability": 0.9961 }, { "start": 1381.72, "end": 1385.7, "probability": 0.9956 }, { "start": 1385.7, "end": 1389.66, "probability": 0.9977 }, { "start": 1389.96, "end": 1390.2, "probability": 0.4802 }, { "start": 1390.42, "end": 1391.16, "probability": 0.678 }, { "start": 1391.32, "end": 1392.42, "probability": 0.8439 }, { "start": 1393.74, "end": 1396.22, "probability": 0.9087 }, { "start": 1397.62, "end": 1399.12, "probability": 0.9549 }, { "start": 1399.72, "end": 1410.02, "probability": 0.9604 }, { "start": 1410.1, "end": 1411.82, "probability": 0.8392 }, { "start": 1412.28, "end": 1415.32, "probability": 0.9711 }, { "start": 1415.42, "end": 1418.7, "probability": 0.9885 }, { "start": 1419.32, "end": 1421.68, "probability": 0.8369 }, { "start": 1423.08, "end": 1424.64, "probability": 0.9857 }, { "start": 1425.24, "end": 1426.2, "probability": 0.6906 }, { "start": 1426.6, "end": 1430.06, "probability": 0.954 }, { "start": 1430.7, "end": 1433.12, "probability": 0.9796 }, { "start": 1434.28, "end": 1436.84, "probability": 0.9927 }, { "start": 1437.06, "end": 1442.96, "probability": 0.9058 }, { "start": 1443.96, "end": 1449.48, "probability": 0.9839 }, { "start": 1450.12, "end": 1453.62, "probability": 0.9806 }, { "start": 1454.2, "end": 1455.5, "probability": 0.7634 }, { "start": 1455.7, "end": 1460.9, "probability": 0.9955 }, { "start": 1461.44, "end": 1463.7, "probability": 0.9924 }, { "start": 1464.44, "end": 1466.0, "probability": 0.7294 }, { "start": 1466.86, "end": 1468.38, "probability": 0.5173 }, { "start": 1468.46, "end": 1471.74, "probability": 0.9518 }, { "start": 1472.44, "end": 1475.11, "probability": 0.9587 }, { "start": 1476.5, "end": 1479.1, "probability": 0.7715 }, { "start": 1479.66, "end": 1479.7, "probability": 0.025 }, { "start": 1479.7, "end": 1482.24, "probability": 0.9754 }, { "start": 1482.98, "end": 1484.74, "probability": 0.8935 }, { "start": 1484.84, "end": 1487.74, "probability": 0.4333 }, { "start": 1488.36, "end": 1489.22, "probability": 0.0599 }, { "start": 1489.86, "end": 1490.52, "probability": 0.0515 }, { "start": 1491.5, "end": 1493.94, "probability": 0.2374 }, { "start": 1497.12, "end": 1502.18, "probability": 0.3445 }, { "start": 1530.1, "end": 1530.82, "probability": 0.0044 }, { "start": 1534.64, "end": 1537.52, "probability": 0.379 }, { "start": 1538.1, "end": 1541.96, "probability": 0.9964 }, { "start": 1542.98, "end": 1546.26, "probability": 0.9862 }, { "start": 1546.7, "end": 1547.82, "probability": 0.9223 }, { "start": 1548.46, "end": 1549.14, "probability": 0.6976 }, { "start": 1549.24, "end": 1555.26, "probability": 0.9905 }, { "start": 1555.96, "end": 1558.3, "probability": 0.999 }, { "start": 1558.3, "end": 1561.36, "probability": 0.9063 }, { "start": 1561.88, "end": 1565.4, "probability": 0.913 }, { "start": 1565.96, "end": 1570.2, "probability": 0.9442 }, { "start": 1571.1, "end": 1575.78, "probability": 0.9908 }, { "start": 1575.78, "end": 1579.8, "probability": 0.9989 }, { "start": 1580.68, "end": 1582.86, "probability": 0.9771 }, { "start": 1583.4, "end": 1587.56, "probability": 0.9956 }, { "start": 1587.56, "end": 1590.54, "probability": 0.9943 }, { "start": 1591.74, "end": 1595.74, "probability": 0.9893 }, { "start": 1596.38, "end": 1598.26, "probability": 0.9958 }, { "start": 1598.68, "end": 1600.62, "probability": 0.9867 }, { "start": 1601.38, "end": 1607.44, "probability": 0.9938 }, { "start": 1608.14, "end": 1610.7, "probability": 0.9735 }, { "start": 1611.82, "end": 1613.9, "probability": 0.9966 }, { "start": 1613.9, "end": 1616.3, "probability": 0.9958 }, { "start": 1616.88, "end": 1618.32, "probability": 0.9979 }, { "start": 1619.32, "end": 1623.72, "probability": 0.9946 }, { "start": 1623.72, "end": 1628.18, "probability": 0.9904 }, { "start": 1628.64, "end": 1630.62, "probability": 0.9893 }, { "start": 1631.64, "end": 1635.54, "probability": 0.9922 }, { "start": 1636.4, "end": 1639.06, "probability": 0.8877 }, { "start": 1639.5, "end": 1642.76, "probability": 0.9874 }, { "start": 1643.3, "end": 1646.08, "probability": 0.9976 }, { "start": 1646.46, "end": 1649.32, "probability": 0.9851 }, { "start": 1649.32, "end": 1652.93, "probability": 0.9976 }, { "start": 1653.2, "end": 1655.14, "probability": 0.761 }, { "start": 1655.88, "end": 1660.24, "probability": 0.9926 }, { "start": 1660.24, "end": 1665.44, "probability": 0.9755 }, { "start": 1666.04, "end": 1666.52, "probability": 0.8608 }, { "start": 1667.02, "end": 1669.32, "probability": 0.9939 }, { "start": 1669.32, "end": 1672.4, "probability": 0.9985 }, { "start": 1672.86, "end": 1676.78, "probability": 0.9966 }, { "start": 1678.14, "end": 1680.84, "probability": 0.9857 }, { "start": 1681.84, "end": 1683.46, "probability": 0.9556 }, { "start": 1685.06, "end": 1688.62, "probability": 0.829 }, { "start": 1688.78, "end": 1692.62, "probability": 0.9983 }, { "start": 1693.5, "end": 1694.76, "probability": 0.7955 }, { "start": 1695.22, "end": 1696.62, "probability": 0.905 }, { "start": 1696.82, "end": 1697.24, "probability": 0.9379 }, { "start": 1697.38, "end": 1697.92, "probability": 0.9813 }, { "start": 1697.98, "end": 1698.96, "probability": 0.78 }, { "start": 1699.4, "end": 1703.04, "probability": 0.9296 }, { "start": 1704.08, "end": 1707.62, "probability": 0.7904 }, { "start": 1710.3, "end": 1711.04, "probability": 0.5075 }, { "start": 1711.98, "end": 1717.12, "probability": 0.9468 }, { "start": 1717.64, "end": 1723.04, "probability": 0.9887 }, { "start": 1723.74, "end": 1727.5, "probability": 0.9699 }, { "start": 1727.92, "end": 1731.72, "probability": 0.9966 }, { "start": 1732.32, "end": 1737.8, "probability": 0.9928 }, { "start": 1738.82, "end": 1742.22, "probability": 0.998 }, { "start": 1742.88, "end": 1745.22, "probability": 0.9427 }, { "start": 1745.78, "end": 1750.36, "probability": 0.9937 }, { "start": 1751.46, "end": 1754.26, "probability": 0.9945 }, { "start": 1754.74, "end": 1757.42, "probability": 0.9832 }, { "start": 1757.88, "end": 1761.54, "probability": 0.9949 }, { "start": 1761.54, "end": 1764.8, "probability": 0.9968 }, { "start": 1766.22, "end": 1769.54, "probability": 0.9674 }, { "start": 1770.0, "end": 1773.8, "probability": 0.9948 }, { "start": 1774.42, "end": 1777.5, "probability": 0.9781 }, { "start": 1778.2, "end": 1782.7, "probability": 0.9595 }, { "start": 1783.32, "end": 1789.12, "probability": 0.9962 }, { "start": 1789.68, "end": 1792.48, "probability": 0.925 }, { "start": 1793.08, "end": 1795.7, "probability": 0.9964 }, { "start": 1796.26, "end": 1798.64, "probability": 0.9741 }, { "start": 1799.06, "end": 1799.98, "probability": 0.5683 }, { "start": 1801.7, "end": 1803.84, "probability": 0.7917 }, { "start": 1805.32, "end": 1809.38, "probability": 0.7845 }, { "start": 1811.98, "end": 1814.48, "probability": 0.5752 }, { "start": 1815.66, "end": 1816.44, "probability": 0.5575 }, { "start": 1817.22, "end": 1818.98, "probability": 0.9393 }, { "start": 1819.42, "end": 1821.42, "probability": 0.9095 }, { "start": 1824.66, "end": 1824.9, "probability": 0.1575 }, { "start": 1860.28, "end": 1864.14, "probability": 0.7425 }, { "start": 1864.82, "end": 1866.88, "probability": 0.5407 }, { "start": 1867.68, "end": 1869.98, "probability": 0.9707 }, { "start": 1870.7, "end": 1872.62, "probability": 0.6125 }, { "start": 1873.96, "end": 1880.66, "probability": 0.9727 }, { "start": 1881.19, "end": 1886.26, "probability": 0.9169 }, { "start": 1886.4, "end": 1890.9, "probability": 0.7926 }, { "start": 1891.0, "end": 1893.2, "probability": 0.9506 }, { "start": 1893.68, "end": 1899.44, "probability": 0.9639 }, { "start": 1900.04, "end": 1903.86, "probability": 0.9451 }, { "start": 1904.78, "end": 1906.46, "probability": 0.7311 }, { "start": 1906.64, "end": 1906.64, "probability": 0.5851 }, { "start": 1906.72, "end": 1911.52, "probability": 0.694 }, { "start": 1911.9, "end": 1913.96, "probability": 0.8304 }, { "start": 1914.44, "end": 1915.3, "probability": 0.3742 }, { "start": 1915.6, "end": 1920.54, "probability": 0.7819 }, { "start": 1920.6, "end": 1923.96, "probability": 0.8574 }, { "start": 1924.66, "end": 1926.08, "probability": 0.6094 }, { "start": 1926.34, "end": 1928.72, "probability": 0.8693 }, { "start": 1928.92, "end": 1929.83, "probability": 0.9937 }, { "start": 1930.64, "end": 1933.5, "probability": 0.997 }, { "start": 1935.96, "end": 1939.12, "probability": 0.981 }, { "start": 1940.24, "end": 1944.2, "probability": 0.98 }, { "start": 1944.88, "end": 1945.82, "probability": 0.8429 }, { "start": 1946.22, "end": 1947.44, "probability": 0.9657 }, { "start": 1947.54, "end": 1950.8, "probability": 0.92 }, { "start": 1951.24, "end": 1952.34, "probability": 0.8415 }, { "start": 1952.92, "end": 1954.36, "probability": 0.9538 }, { "start": 1954.98, "end": 1961.36, "probability": 0.6443 }, { "start": 1963.0, "end": 1965.2, "probability": 0.9404 }, { "start": 1966.12, "end": 1969.28, "probability": 0.9804 }, { "start": 1969.68, "end": 1972.1, "probability": 0.9476 }, { "start": 1972.46, "end": 1974.68, "probability": 0.8643 }, { "start": 1975.54, "end": 1978.16, "probability": 0.9928 }, { "start": 1978.6, "end": 1979.88, "probability": 0.9022 }, { "start": 1979.94, "end": 1980.62, "probability": 0.7357 }, { "start": 1980.72, "end": 1982.1, "probability": 0.9106 }, { "start": 1982.58, "end": 1987.88, "probability": 0.9769 }, { "start": 1988.18, "end": 1989.86, "probability": 0.9799 }, { "start": 1991.04, "end": 1992.18, "probability": 0.9054 }, { "start": 1999.22, "end": 2002.42, "probability": 0.9983 }, { "start": 2004.1, "end": 2006.94, "probability": 0.8384 }, { "start": 2007.22, "end": 2009.46, "probability": 0.8623 }, { "start": 2010.08, "end": 2013.14, "probability": 0.8906 }, { "start": 2013.82, "end": 2015.68, "probability": 0.9552 }, { "start": 2016.68, "end": 2018.72, "probability": 0.9857 }, { "start": 2019.06, "end": 2022.9, "probability": 0.9924 }, { "start": 2022.9, "end": 2026.52, "probability": 0.9993 }, { "start": 2026.9, "end": 2032.2, "probability": 0.9954 }, { "start": 2032.48, "end": 2035.2, "probability": 0.9849 }, { "start": 2035.66, "end": 2042.34, "probability": 0.9976 }, { "start": 2042.54, "end": 2048.66, "probability": 0.62 }, { "start": 2049.04, "end": 2049.68, "probability": 0.8055 }, { "start": 2050.3, "end": 2052.78, "probability": 0.4941 }, { "start": 2053.68, "end": 2056.66, "probability": 0.1031 }, { "start": 2057.26, "end": 2062.04, "probability": 0.9883 }, { "start": 2062.12, "end": 2066.96, "probability": 0.9842 }, { "start": 2067.32, "end": 2070.5, "probability": 0.6555 }, { "start": 2071.04, "end": 2071.04, "probability": 0.4977 }, { "start": 2071.08, "end": 2077.12, "probability": 0.981 }, { "start": 2077.54, "end": 2080.72, "probability": 0.9639 }, { "start": 2080.8, "end": 2082.36, "probability": 0.9672 }, { "start": 2082.74, "end": 2085.12, "probability": 0.9559 }, { "start": 2085.3, "end": 2086.18, "probability": 0.3118 }, { "start": 2086.76, "end": 2090.6, "probability": 0.8984 }, { "start": 2091.34, "end": 2094.5, "probability": 0.6415 }, { "start": 2106.95, "end": 2109.24, "probability": 0.8601 }, { "start": 2114.72, "end": 2115.48, "probability": 0.765 }, { "start": 2115.58, "end": 2116.64, "probability": 0.8166 }, { "start": 2117.17, "end": 2122.18, "probability": 0.9939 }, { "start": 2122.9, "end": 2126.14, "probability": 0.998 }, { "start": 2126.9, "end": 2130.9, "probability": 0.9888 }, { "start": 2131.38, "end": 2131.9, "probability": 0.9753 }, { "start": 2132.34, "end": 2133.18, "probability": 0.5464 }, { "start": 2133.84, "end": 2134.86, "probability": 0.976 }, { "start": 2135.28, "end": 2137.56, "probability": 0.9403 }, { "start": 2138.02, "end": 2138.72, "probability": 0.8524 }, { "start": 2139.38, "end": 2143.3, "probability": 0.9943 }, { "start": 2144.22, "end": 2145.02, "probability": 0.8832 }, { "start": 2145.12, "end": 2147.52, "probability": 0.9875 }, { "start": 2147.6, "end": 2149.17, "probability": 0.8008 }, { "start": 2150.28, "end": 2154.84, "probability": 0.9978 }, { "start": 2155.36, "end": 2156.14, "probability": 0.8601 }, { "start": 2156.28, "end": 2160.42, "probability": 0.9474 }, { "start": 2161.16, "end": 2162.6, "probability": 0.9956 }, { "start": 2163.2, "end": 2165.9, "probability": 0.998 }, { "start": 2165.9, "end": 2169.74, "probability": 0.9841 }, { "start": 2170.2, "end": 2173.7, "probability": 0.9797 }, { "start": 2174.2, "end": 2175.36, "probability": 0.7505 }, { "start": 2176.04, "end": 2177.66, "probability": 0.7757 }, { "start": 2178.2, "end": 2183.78, "probability": 0.989 }, { "start": 2184.26, "end": 2187.3, "probability": 0.9961 }, { "start": 2188.08, "end": 2191.26, "probability": 0.9962 }, { "start": 2191.26, "end": 2195.18, "probability": 0.9852 }, { "start": 2195.92, "end": 2199.22, "probability": 0.9971 }, { "start": 2199.76, "end": 2204.12, "probability": 0.991 }, { "start": 2204.84, "end": 2207.1, "probability": 0.9485 }, { "start": 2207.24, "end": 2208.28, "probability": 0.7241 }, { "start": 2208.86, "end": 2211.42, "probability": 0.9897 }, { "start": 2211.52, "end": 2214.58, "probability": 0.6798 }, { "start": 2215.64, "end": 2216.22, "probability": 0.4943 }, { "start": 2216.24, "end": 2220.42, "probability": 0.9873 }, { "start": 2221.0, "end": 2222.82, "probability": 0.991 }, { "start": 2223.42, "end": 2227.16, "probability": 0.9915 }, { "start": 2227.84, "end": 2229.0, "probability": 0.9022 }, { "start": 2229.58, "end": 2232.84, "probability": 0.9958 }, { "start": 2233.6, "end": 2236.78, "probability": 0.9752 }, { "start": 2237.3, "end": 2238.78, "probability": 0.9829 }, { "start": 2239.28, "end": 2243.76, "probability": 0.9989 }, { "start": 2244.2, "end": 2245.72, "probability": 0.9976 }, { "start": 2246.54, "end": 2250.12, "probability": 0.9921 }, { "start": 2250.66, "end": 2254.44, "probability": 0.8398 }, { "start": 2255.0, "end": 2259.5, "probability": 0.8878 }, { "start": 2259.78, "end": 2261.1, "probability": 0.9984 }, { "start": 2261.68, "end": 2265.52, "probability": 0.9739 }, { "start": 2265.96, "end": 2268.56, "probability": 0.9859 }, { "start": 2269.22, "end": 2270.16, "probability": 0.8954 }, { "start": 2270.44, "end": 2272.84, "probability": 0.9719 }, { "start": 2273.1, "end": 2273.46, "probability": 0.743 }, { "start": 2273.72, "end": 2275.54, "probability": 0.5854 }, { "start": 2275.62, "end": 2277.22, "probability": 0.9176 }, { "start": 2278.32, "end": 2282.74, "probability": 0.8215 }, { "start": 2284.62, "end": 2286.18, "probability": 0.9292 }, { "start": 2288.24, "end": 2289.7, "probability": 0.9589 }, { "start": 2294.92, "end": 2295.82, "probability": 0.6962 }, { "start": 2296.0, "end": 2296.82, "probability": 0.8811 }, { "start": 2301.1, "end": 2305.34, "probability": 0.5872 }, { "start": 2307.06, "end": 2309.86, "probability": 0.7428 }, { "start": 2310.58, "end": 2311.32, "probability": 0.6831 }, { "start": 2311.83, "end": 2313.94, "probability": 0.9943 }, { "start": 2314.06, "end": 2317.2, "probability": 0.9401 }, { "start": 2318.32, "end": 2320.25, "probability": 0.9834 }, { "start": 2325.38, "end": 2325.7, "probability": 0.791 }, { "start": 2326.54, "end": 2328.7, "probability": 0.7577 }, { "start": 2329.02, "end": 2330.56, "probability": 0.998 }, { "start": 2330.7, "end": 2332.14, "probability": 0.9096 }, { "start": 2338.12, "end": 2338.96, "probability": 0.2712 }, { "start": 2339.14, "end": 2339.84, "probability": 0.9775 }, { "start": 2339.84, "end": 2340.26, "probability": 0.978 }, { "start": 2340.32, "end": 2343.46, "probability": 0.8459 }, { "start": 2343.58, "end": 2344.98, "probability": 0.6974 }, { "start": 2345.54, "end": 2349.96, "probability": 0.6329 }, { "start": 2350.44, "end": 2351.1, "probability": 0.376 }, { "start": 2352.02, "end": 2354.3, "probability": 0.7456 }, { "start": 2354.3, "end": 2355.04, "probability": 0.5825 }, { "start": 2355.48, "end": 2357.46, "probability": 0.8556 }, { "start": 2357.54, "end": 2359.12, "probability": 0.8074 }, { "start": 2359.56, "end": 2360.8, "probability": 0.4484 }, { "start": 2361.84, "end": 2364.99, "probability": 0.9478 }, { "start": 2365.6, "end": 2366.26, "probability": 0.9633 }, { "start": 2366.6, "end": 2369.5, "probability": 0.7112 }, { "start": 2370.12, "end": 2371.48, "probability": 0.7655 }, { "start": 2371.8, "end": 2374.94, "probability": 0.9919 }, { "start": 2375.5, "end": 2379.96, "probability": 0.9709 }, { "start": 2380.68, "end": 2381.98, "probability": 0.7134 }, { "start": 2382.5, "end": 2383.62, "probability": 0.9438 }, { "start": 2383.82, "end": 2386.06, "probability": 0.853 }, { "start": 2386.54, "end": 2387.74, "probability": 0.5751 }, { "start": 2387.88, "end": 2388.76, "probability": 0.7169 }, { "start": 2388.96, "end": 2390.08, "probability": 0.9961 }, { "start": 2390.78, "end": 2392.4, "probability": 0.9546 }, { "start": 2392.92, "end": 2395.08, "probability": 0.896 }, { "start": 2395.6, "end": 2397.28, "probability": 0.9951 }, { "start": 2397.76, "end": 2399.66, "probability": 0.9536 }, { "start": 2400.24, "end": 2404.48, "probability": 0.9808 }, { "start": 2404.94, "end": 2405.08, "probability": 0.7632 }, { "start": 2405.1, "end": 2408.18, "probability": 0.7202 }, { "start": 2409.78, "end": 2415.84, "probability": 0.6127 }, { "start": 2418.18, "end": 2419.7, "probability": 0.8767 }, { "start": 2422.56, "end": 2425.26, "probability": 0.8306 }, { "start": 2425.36, "end": 2426.32, "probability": 0.7276 }, { "start": 2427.32, "end": 2428.29, "probability": 0.6646 }, { "start": 2430.2, "end": 2431.12, "probability": 0.7786 }, { "start": 2431.24, "end": 2433.08, "probability": 0.8162 }, { "start": 2433.14, "end": 2436.86, "probability": 0.7657 }, { "start": 2438.55, "end": 2440.3, "probability": 0.8936 }, { "start": 2441.48, "end": 2442.62, "probability": 0.8589 }, { "start": 2442.92, "end": 2446.18, "probability": 0.5847 }, { "start": 2446.7, "end": 2451.12, "probability": 0.989 }, { "start": 2452.42, "end": 2454.2, "probability": 0.841 }, { "start": 2454.28, "end": 2456.16, "probability": 0.9971 }, { "start": 2456.94, "end": 2457.62, "probability": 0.3564 }, { "start": 2458.44, "end": 2461.74, "probability": 0.759 }, { "start": 2462.26, "end": 2465.88, "probability": 0.9859 }, { "start": 2468.14, "end": 2470.14, "probability": 0.7103 }, { "start": 2471.04, "end": 2473.68, "probability": 0.5993 }, { "start": 2474.34, "end": 2479.12, "probability": 0.8676 }, { "start": 2480.94, "end": 2482.18, "probability": 0.8091 }, { "start": 2483.84, "end": 2486.5, "probability": 0.9138 }, { "start": 2487.22, "end": 2488.26, "probability": 0.5736 }, { "start": 2488.64, "end": 2490.98, "probability": 0.9768 }, { "start": 2492.04, "end": 2494.64, "probability": 0.8585 }, { "start": 2495.08, "end": 2495.46, "probability": 0.6877 }, { "start": 2496.76, "end": 2499.06, "probability": 0.3306 }, { "start": 2499.18, "end": 2502.04, "probability": 0.9145 }, { "start": 2502.18, "end": 2502.52, "probability": 0.7292 }, { "start": 2503.76, "end": 2504.28, "probability": 0.019 }, { "start": 2504.38, "end": 2505.74, "probability": 0.8649 }, { "start": 2505.78, "end": 2508.1, "probability": 0.9251 }, { "start": 2508.54, "end": 2509.62, "probability": 0.9419 }, { "start": 2510.64, "end": 2512.78, "probability": 0.8747 }, { "start": 2513.4, "end": 2515.66, "probability": 0.7727 }, { "start": 2516.62, "end": 2517.64, "probability": 0.8502 }, { "start": 2517.74, "end": 2520.58, "probability": 0.8679 }, { "start": 2520.84, "end": 2522.28, "probability": 0.9671 }, { "start": 2522.68, "end": 2526.18, "probability": 0.7087 }, { "start": 2526.5, "end": 2527.48, "probability": 0.7599 }, { "start": 2527.78, "end": 2529.56, "probability": 0.8535 }, { "start": 2529.74, "end": 2530.98, "probability": 0.9733 }, { "start": 2531.38, "end": 2533.0, "probability": 0.4275 }, { "start": 2533.12, "end": 2534.94, "probability": 0.9889 }, { "start": 2535.52, "end": 2537.38, "probability": 0.9937 }, { "start": 2537.84, "end": 2538.84, "probability": 0.8932 }, { "start": 2539.0, "end": 2540.66, "probability": 0.9891 }, { "start": 2541.06, "end": 2542.32, "probability": 0.7251 }, { "start": 2542.58, "end": 2544.34, "probability": 0.8006 }, { "start": 2544.4, "end": 2545.22, "probability": 0.9419 }, { "start": 2547.64, "end": 2549.1, "probability": 0.4508 }, { "start": 2549.24, "end": 2555.87, "probability": 0.3039 }, { "start": 2556.32, "end": 2559.02, "probability": 0.4544 }, { "start": 2559.02, "end": 2561.2, "probability": 0.08 }, { "start": 2574.42, "end": 2575.36, "probability": 0.1405 }, { "start": 2575.36, "end": 2576.12, "probability": 0.1252 }, { "start": 2576.28, "end": 2579.6, "probability": 0.9263 }, { "start": 2580.46, "end": 2581.84, "probability": 0.9971 }, { "start": 2582.82, "end": 2584.16, "probability": 0.8982 }, { "start": 2585.12, "end": 2586.34, "probability": 0.9689 }, { "start": 2586.44, "end": 2587.7, "probability": 0.8816 }, { "start": 2587.76, "end": 2589.26, "probability": 0.3728 }, { "start": 2589.8, "end": 2590.52, "probability": 0.6323 }, { "start": 2590.7, "end": 2590.88, "probability": 0.4847 }, { "start": 2590.96, "end": 2591.66, "probability": 0.9746 }, { "start": 2591.78, "end": 2592.63, "probability": 0.9314 }, { "start": 2593.5, "end": 2594.9, "probability": 0.8098 }, { "start": 2595.48, "end": 2596.6, "probability": 0.9797 }, { "start": 2597.14, "end": 2597.78, "probability": 0.5541 }, { "start": 2598.28, "end": 2599.62, "probability": 0.9839 }, { "start": 2599.94, "end": 2601.06, "probability": 0.9688 }, { "start": 2601.28, "end": 2603.18, "probability": 0.9121 }, { "start": 2603.68, "end": 2607.32, "probability": 0.994 }, { "start": 2607.8, "end": 2609.8, "probability": 0.8872 }, { "start": 2610.18, "end": 2612.98, "probability": 0.8255 }, { "start": 2613.62, "end": 2615.66, "probability": 0.4055 }, { "start": 2616.0, "end": 2619.82, "probability": 0.7544 }, { "start": 2620.48, "end": 2622.7, "probability": 0.9928 }, { "start": 2623.18, "end": 2624.56, "probability": 0.9716 }, { "start": 2625.0, "end": 2628.36, "probability": 0.8762 }, { "start": 2628.8, "end": 2629.78, "probability": 0.7866 }, { "start": 2630.22, "end": 2631.6, "probability": 0.9712 }, { "start": 2632.46, "end": 2634.22, "probability": 0.9719 }, { "start": 2634.7, "end": 2636.58, "probability": 0.9905 }, { "start": 2637.12, "end": 2639.7, "probability": 0.998 }, { "start": 2640.24, "end": 2645.48, "probability": 0.997 }, { "start": 2646.38, "end": 2647.58, "probability": 0.8432 }, { "start": 2649.14, "end": 2651.44, "probability": 0.9308 }, { "start": 2652.64, "end": 2653.66, "probability": 0.9207 }, { "start": 2654.2, "end": 2654.56, "probability": 0.6562 }, { "start": 2654.68, "end": 2655.56, "probability": 0.907 }, { "start": 2655.64, "end": 2659.78, "probability": 0.8635 }, { "start": 2660.32, "end": 2664.36, "probability": 0.865 }, { "start": 2664.54, "end": 2665.96, "probability": 0.9852 }, { "start": 2666.56, "end": 2669.48, "probability": 0.6943 }, { "start": 2670.08, "end": 2671.2, "probability": 0.9195 }, { "start": 2671.26, "end": 2673.28, "probability": 0.8431 }, { "start": 2673.82, "end": 2674.46, "probability": 0.4929 }, { "start": 2674.46, "end": 2675.16, "probability": 0.4169 }, { "start": 2675.66, "end": 2678.1, "probability": 0.7353 }, { "start": 2678.44, "end": 2679.56, "probability": 0.5768 }, { "start": 2680.5, "end": 2682.74, "probability": 0.9226 }, { "start": 2683.03, "end": 2684.15, "probability": 0.9634 }, { "start": 2684.58, "end": 2688.92, "probability": 0.9519 }, { "start": 2689.12, "end": 2692.72, "probability": 0.989 }, { "start": 2693.12, "end": 2694.78, "probability": 0.9377 }, { "start": 2695.18, "end": 2696.88, "probability": 0.8288 }, { "start": 2697.04, "end": 2700.22, "probability": 0.9663 }, { "start": 2700.74, "end": 2702.25, "probability": 0.748 }, { "start": 2702.72, "end": 2705.46, "probability": 0.8081 }, { "start": 2705.86, "end": 2707.18, "probability": 0.9861 }, { "start": 2707.78, "end": 2709.68, "probability": 0.9779 }, { "start": 2710.18, "end": 2712.48, "probability": 0.9856 }, { "start": 2712.56, "end": 2714.7, "probability": 0.981 }, { "start": 2715.4, "end": 2717.96, "probability": 0.894 }, { "start": 2718.42, "end": 2722.02, "probability": 0.9639 }, { "start": 2722.44, "end": 2723.28, "probability": 0.8843 }, { "start": 2723.46, "end": 2726.72, "probability": 0.991 }, { "start": 2726.72, "end": 2730.4, "probability": 0.992 }, { "start": 2731.0, "end": 2731.68, "probability": 0.5924 }, { "start": 2731.98, "end": 2734.5, "probability": 0.997 }, { "start": 2734.5, "end": 2737.98, "probability": 0.9995 }, { "start": 2738.42, "end": 2740.36, "probability": 0.9686 }, { "start": 2740.78, "end": 2741.04, "probability": 0.5636 }, { "start": 2741.32, "end": 2743.3, "probability": 0.8741 }, { "start": 2743.38, "end": 2744.42, "probability": 0.8159 }, { "start": 2744.72, "end": 2747.62, "probability": 0.802 }, { "start": 2747.96, "end": 2752.56, "probability": 0.9696 }, { "start": 2752.9, "end": 2753.66, "probability": 0.7959 }, { "start": 2754.24, "end": 2756.3, "probability": 0.7689 }, { "start": 2756.74, "end": 2759.1, "probability": 0.9034 }, { "start": 2762.28, "end": 2764.14, "probability": 0.7471 }, { "start": 2764.44, "end": 2765.1, "probability": 0.0003 }, { "start": 2769.21, "end": 2772.96, "probability": 0.9595 }, { "start": 2775.3, "end": 2778.12, "probability": 0.7685 }, { "start": 2778.88, "end": 2779.44, "probability": 0.6177 }, { "start": 2779.44, "end": 2779.88, "probability": 0.0411 }, { "start": 2781.8, "end": 2783.9, "probability": 0.142 }, { "start": 2784.52, "end": 2785.76, "probability": 0.7977 }, { "start": 2789.72, "end": 2792.14, "probability": 0.6776 }, { "start": 2793.24, "end": 2794.68, "probability": 0.7938 }, { "start": 2795.78, "end": 2797.87, "probability": 0.983 }, { "start": 2798.78, "end": 2802.38, "probability": 0.6503 }, { "start": 2802.5, "end": 2802.88, "probability": 0.8652 }, { "start": 2803.0, "end": 2804.76, "probability": 0.9615 }, { "start": 2804.82, "end": 2806.12, "probability": 0.9575 }, { "start": 2806.82, "end": 2808.22, "probability": 0.6252 }, { "start": 2808.34, "end": 2809.38, "probability": 0.9868 }, { "start": 2809.98, "end": 2811.14, "probability": 0.9715 }, { "start": 2812.52, "end": 2814.02, "probability": 0.6012 }, { "start": 2814.08, "end": 2814.66, "probability": 0.7889 }, { "start": 2814.78, "end": 2815.2, "probability": 0.8199 }, { "start": 2815.26, "end": 2815.6, "probability": 0.755 }, { "start": 2815.6, "end": 2816.8, "probability": 0.8042 }, { "start": 2816.88, "end": 2817.58, "probability": 0.8926 }, { "start": 2817.72, "end": 2818.46, "probability": 0.8022 }, { "start": 2818.6, "end": 2821.98, "probability": 0.6241 }, { "start": 2822.66, "end": 2828.0, "probability": 0.8386 }, { "start": 2828.4, "end": 2829.1, "probability": 0.9307 }, { "start": 2829.68, "end": 2830.38, "probability": 0.9139 }, { "start": 2830.44, "end": 2830.72, "probability": 0.6207 }, { "start": 2830.78, "end": 2831.72, "probability": 0.98 }, { "start": 2831.78, "end": 2832.91, "probability": 0.8447 }, { "start": 2833.22, "end": 2834.13, "probability": 0.9948 }, { "start": 2834.68, "end": 2836.9, "probability": 0.7697 }, { "start": 2836.98, "end": 2837.4, "probability": 0.801 }, { "start": 2837.52, "end": 2838.56, "probability": 0.8702 }, { "start": 2838.88, "end": 2839.82, "probability": 0.9812 }, { "start": 2840.18, "end": 2842.72, "probability": 0.9697 }, { "start": 2843.22, "end": 2843.74, "probability": 0.4989 }, { "start": 2844.02, "end": 2846.46, "probability": 0.6506 }, { "start": 2846.62, "end": 2847.74, "probability": 0.8657 }, { "start": 2848.1, "end": 2849.72, "probability": 0.9919 }, { "start": 2850.0, "end": 2851.08, "probability": 0.99 }, { "start": 2851.4, "end": 2854.32, "probability": 0.9937 }, { "start": 2854.56, "end": 2857.4, "probability": 0.8563 }, { "start": 2857.64, "end": 2858.24, "probability": 0.7456 }, { "start": 2858.34, "end": 2859.88, "probability": 0.9883 }, { "start": 2860.02, "end": 2860.8, "probability": 0.7743 }, { "start": 2861.04, "end": 2861.57, "probability": 0.9314 }, { "start": 2862.26, "end": 2863.64, "probability": 0.8184 }, { "start": 2863.7, "end": 2864.52, "probability": 0.9568 }, { "start": 2864.82, "end": 2867.26, "probability": 0.7304 }, { "start": 2867.68, "end": 2870.6, "probability": 0.7489 }, { "start": 2871.04, "end": 2872.54, "probability": 0.619 }, { "start": 2873.32, "end": 2876.42, "probability": 0.701 }, { "start": 2876.74, "end": 2878.74, "probability": 0.7902 }, { "start": 2879.12, "end": 2880.86, "probability": 0.9867 }, { "start": 2881.64, "end": 2881.7, "probability": 0.1283 }, { "start": 2881.9, "end": 2882.44, "probability": 0.6304 }, { "start": 2882.74, "end": 2884.48, "probability": 0.9797 }, { "start": 2884.94, "end": 2886.82, "probability": 0.7146 }, { "start": 2887.3, "end": 2888.66, "probability": 0.9717 }, { "start": 2889.0, "end": 2890.19, "probability": 0.9653 }, { "start": 2890.72, "end": 2892.1, "probability": 0.6425 }, { "start": 2892.51, "end": 2897.24, "probability": 0.7412 }, { "start": 2897.4, "end": 2898.1, "probability": 0.8561 }, { "start": 2898.14, "end": 2899.26, "probability": 0.864 }, { "start": 2899.7, "end": 2902.72, "probability": 0.5315 }, { "start": 2903.26, "end": 2903.8, "probability": 0.7879 }, { "start": 2904.0, "end": 2906.4, "probability": 0.9352 }, { "start": 2906.68, "end": 2909.74, "probability": 0.858 }, { "start": 2910.02, "end": 2911.38, "probability": 0.8097 }, { "start": 2911.42, "end": 2912.34, "probability": 0.7322 }, { "start": 2912.66, "end": 2915.9, "probability": 0.6433 }, { "start": 2916.28, "end": 2919.86, "probability": 0.8065 }, { "start": 2920.0, "end": 2921.24, "probability": 0.0283 }, { "start": 2923.04, "end": 2923.44, "probability": 0.7741 }, { "start": 2923.58, "end": 2925.5, "probability": 0.9604 }, { "start": 2926.16, "end": 2929.18, "probability": 0.9771 }, { "start": 2930.58, "end": 2933.14, "probability": 0.8168 }, { "start": 2933.22, "end": 2934.4, "probability": 0.5543 }, { "start": 2935.0, "end": 2935.68, "probability": 0.7749 }, { "start": 2935.8, "end": 2936.56, "probability": 0.7502 }, { "start": 2936.82, "end": 2938.3, "probability": 0.4941 }, { "start": 2940.22, "end": 2942.02, "probability": 0.2762 }, { "start": 2944.04, "end": 2944.22, "probability": 0.055 }, { "start": 3056.0, "end": 3056.0, "probability": 0.0 }, { "start": 3056.0, "end": 3056.0, "probability": 0.0 }, { "start": 3056.0, "end": 3056.0, "probability": 0.0 }, { "start": 3056.0, "end": 3056.0, "probability": 0.0 }, { "start": 3056.0, "end": 3056.0, "probability": 0.0 }, { "start": 3056.0, "end": 3056.0, "probability": 0.0 }, { "start": 3056.0, "end": 3056.0, "probability": 0.0 }, { "start": 3056.0, "end": 3056.0, "probability": 0.0 }, { "start": 3056.0, "end": 3056.0, "probability": 0.0 }, { "start": 3056.0, "end": 3056.0, "probability": 0.0 }, { "start": 3056.0, "end": 3056.0, "probability": 0.0 }, { "start": 3056.0, "end": 3056.0, "probability": 0.0 }, { "start": 3056.0, "end": 3056.0, "probability": 0.0 }, { "start": 3056.0, "end": 3056.0, "probability": 0.0 }, { "start": 3056.0, "end": 3056.0, "probability": 0.0 }, { "start": 3056.0, "end": 3056.0, "probability": 0.0 }, { "start": 3056.0, "end": 3056.0, "probability": 0.0 }, { "start": 3056.0, "end": 3056.0, "probability": 0.0 }, { "start": 3056.0, "end": 3056.0, "probability": 0.0 }, { "start": 3056.0, "end": 3056.0, "probability": 0.0 }, { "start": 3056.0, "end": 3056.0, "probability": 0.0 }, { "start": 3056.0, "end": 3056.0, "probability": 0.0 }, { "start": 3056.0, "end": 3056.0, "probability": 0.0 }, { "start": 3056.0, "end": 3056.0, "probability": 0.0 }, { "start": 3056.0, "end": 3056.0, "probability": 0.0 }, { "start": 3056.0, "end": 3056.0, "probability": 0.0 }, { "start": 3056.0, "end": 3056.0, "probability": 0.0 }, { "start": 3056.0, "end": 3056.0, "probability": 0.0 }, { "start": 3056.0, "end": 3056.0, "probability": 0.0 }, { "start": 3056.0, "end": 3056.0, "probability": 0.0 }, { "start": 3056.0, "end": 3056.0, "probability": 0.0 }, { "start": 3056.0, "end": 3056.0, "probability": 0.0 }, { "start": 3056.0, "end": 3056.0, "probability": 0.0 }, { "start": 3056.0, "end": 3056.0, "probability": 0.0 }, { "start": 3056.0, "end": 3056.0, "probability": 0.0 }, { "start": 3056.42, "end": 3058.38, "probability": 0.1582 }, { "start": 3058.88, "end": 3058.96, "probability": 0.5781 }, { "start": 3058.98, "end": 3060.5, "probability": 0.1488 }, { "start": 3060.72, "end": 3062.6, "probability": 0.2752 }, { "start": 3064.67, "end": 3068.3, "probability": 0.6694 }, { "start": 3184.0, "end": 3184.0, "probability": 0.0 }, { "start": 3184.0, "end": 3184.0, "probability": 0.0 }, { "start": 3184.0, "end": 3184.0, "probability": 0.0 }, { "start": 3184.0, "end": 3184.0, "probability": 0.0 }, { "start": 3184.0, "end": 3184.0, "probability": 0.0 }, { "start": 3184.0, "end": 3184.0, "probability": 0.0 }, { "start": 3184.0, "end": 3184.0, "probability": 0.0 }, { "start": 3184.0, "end": 3184.0, "probability": 0.0 }, { "start": 3184.0, "end": 3184.0, "probability": 0.0 }, { "start": 3184.0, "end": 3184.0, "probability": 0.0 }, { "start": 3184.0, "end": 3184.0, "probability": 0.0 }, { "start": 3184.0, "end": 3184.0, "probability": 0.0 }, { "start": 3184.0, "end": 3184.0, "probability": 0.0 }, { "start": 3184.0, "end": 3184.0, "probability": 0.0 }, { "start": 3184.0, "end": 3184.0, "probability": 0.0 }, { "start": 3184.0, "end": 3184.0, "probability": 0.0 }, { "start": 3184.0, "end": 3184.0, "probability": 0.0 }, { "start": 3184.0, "end": 3184.0, "probability": 0.0 }, { "start": 3184.0, "end": 3184.0, "probability": 0.0 }, { "start": 3184.0, "end": 3184.0, "probability": 0.0 }, { "start": 3184.0, "end": 3184.0, "probability": 0.0 }, { "start": 3184.0, "end": 3184.0, "probability": 0.0 }, { "start": 3184.0, "end": 3184.0, "probability": 0.0 }, { "start": 3184.0, "end": 3184.0, "probability": 0.0 }, { "start": 3184.0, "end": 3184.0, "probability": 0.0 }, { "start": 3184.0, "end": 3184.0, "probability": 0.0 }, { "start": 3184.0, "end": 3184.0, "probability": 0.0 }, { "start": 3184.0, "end": 3184.0, "probability": 0.0 }, { "start": 3184.0, "end": 3184.0, "probability": 0.0 }, { "start": 3184.0, "end": 3184.0, "probability": 0.0 }, { "start": 3184.0, "end": 3184.0, "probability": 0.0 }, { "start": 3184.0, "end": 3184.0, "probability": 0.0 }, { "start": 3184.0, "end": 3184.0, "probability": 0.0 }, { "start": 3184.0, "end": 3184.0, "probability": 0.0 }, { "start": 3184.0, "end": 3184.0, "probability": 0.0 }, { "start": 3184.0, "end": 3184.0, "probability": 0.0 }, { "start": 3184.0, "end": 3184.0, "probability": 0.0 }, { "start": 3184.0, "end": 3184.0, "probability": 0.0 }, { "start": 3184.0, "end": 3184.0, "probability": 0.0 }, { "start": 3184.0, "end": 3184.0, "probability": 0.0 }, { "start": 3194.08, "end": 3194.6, "probability": 0.012 }, { "start": 3194.6, "end": 3195.08, "probability": 0.0844 }, { "start": 3195.25, "end": 3195.32, "probability": 0.034 }, { "start": 3195.34, "end": 3195.7, "probability": 0.1285 }, { "start": 3195.73, "end": 3196.22, "probability": 0.0737 }, { "start": 3196.22, "end": 3203.56, "probability": 0.0683 }, { "start": 3224.29, "end": 3229.24, "probability": 0.2572 }, { "start": 3229.4, "end": 3230.3, "probability": 0.0321 }, { "start": 3230.3, "end": 3231.46, "probability": 0.1416 }, { "start": 3231.46, "end": 3231.88, "probability": 0.1174 }, { "start": 3231.88, "end": 3233.3, "probability": 0.0609 }, { "start": 3307.0, "end": 3307.0, "probability": 0.0 }, { "start": 3307.0, "end": 3307.0, "probability": 0.0 }, { "start": 3307.0, "end": 3307.0, "probability": 0.0 }, { "start": 3307.0, "end": 3307.0, "probability": 0.0 }, { "start": 3307.0, "end": 3307.0, "probability": 0.0 }, { "start": 3307.0, "end": 3307.0, "probability": 0.0 }, { "start": 3307.0, "end": 3307.0, "probability": 0.0 }, { "start": 3307.0, "end": 3307.0, "probability": 0.0 }, { "start": 3307.0, "end": 3307.0, "probability": 0.0 }, { "start": 3307.0, "end": 3307.0, "probability": 0.0 }, { "start": 3307.0, "end": 3307.0, "probability": 0.0 }, { "start": 3307.0, "end": 3307.0, "probability": 0.0 }, { "start": 3307.0, "end": 3307.0, "probability": 0.0 }, { "start": 3307.0, "end": 3307.0, "probability": 0.0 }, { "start": 3307.0, "end": 3307.0, "probability": 0.0 }, { "start": 3307.0, "end": 3307.0, "probability": 0.0 }, { "start": 3307.0, "end": 3307.0, "probability": 0.0 }, { "start": 3307.0, "end": 3307.0, "probability": 0.0 }, { "start": 3307.0, "end": 3307.0, "probability": 0.0 }, { "start": 3307.0, "end": 3307.0, "probability": 0.0 }, { "start": 3307.0, "end": 3307.0, "probability": 0.0 }, { "start": 3307.0, "end": 3307.0, "probability": 0.0 }, { "start": 3307.0, "end": 3307.0, "probability": 0.0 }, { "start": 3307.0, "end": 3307.0, "probability": 0.0 }, { "start": 3307.0, "end": 3307.0, "probability": 0.0 }, { "start": 3307.0, "end": 3307.0, "probability": 0.0 }, { "start": 3307.0, "end": 3307.0, "probability": 0.0 }, { "start": 3307.0, "end": 3307.0, "probability": 0.0 }, { "start": 3307.0, "end": 3307.0, "probability": 0.0 }, { "start": 3307.0, "end": 3307.0, "probability": 0.0 }, { "start": 3318.16, "end": 3322.7, "probability": 0.979 }, { "start": 3323.38, "end": 3325.74, "probability": 0.9837 }, { "start": 3326.58, "end": 3327.76, "probability": 0.9762 }, { "start": 3328.64, "end": 3330.3, "probability": 0.9759 }, { "start": 3331.7, "end": 3334.5, "probability": 0.7557 }, { "start": 3335.14, "end": 3336.28, "probability": 0.0216 }, { "start": 3336.28, "end": 3336.28, "probability": 0.1929 }, { "start": 3336.28, "end": 3338.04, "probability": 0.3787 }, { "start": 3338.28, "end": 3342.08, "probability": 0.7967 }, { "start": 3342.86, "end": 3343.06, "probability": 0.0212 }, { "start": 3343.06, "end": 3343.06, "probability": 0.0578 }, { "start": 3343.06, "end": 3347.1, "probability": 0.6993 }, { "start": 3347.44, "end": 3351.86, "probability": 0.8258 }, { "start": 3352.46, "end": 3354.46, "probability": 0.8871 }, { "start": 3355.14, "end": 3357.96, "probability": 0.5073 }, { "start": 3361.95, "end": 3364.4, "probability": 0.2555 }, { "start": 3364.4, "end": 3364.4, "probability": 0.1613 }, { "start": 3364.4, "end": 3364.4, "probability": 0.1121 }, { "start": 3364.4, "end": 3364.4, "probability": 0.0323 }, { "start": 3364.4, "end": 3365.96, "probability": 0.1912 }, { "start": 3366.5, "end": 3367.01, "probability": 0.7876 }, { "start": 3368.08, "end": 3368.76, "probability": 0.7895 }, { "start": 3368.76, "end": 3369.94, "probability": 0.7446 }, { "start": 3369.94, "end": 3373.52, "probability": 0.9247 }, { "start": 3374.08, "end": 3377.14, "probability": 0.9574 }, { "start": 3377.28, "end": 3377.77, "probability": 0.9245 }, { "start": 3378.62, "end": 3380.52, "probability": 0.8574 }, { "start": 3381.4, "end": 3382.54, "probability": 0.798 }, { "start": 3382.98, "end": 3384.94, "probability": 0.2632 }, { "start": 3385.16, "end": 3386.44, "probability": 0.0898 }, { "start": 3386.7, "end": 3391.58, "probability": 0.3568 }, { "start": 3391.66, "end": 3393.54, "probability": 0.6682 }, { "start": 3393.54, "end": 3393.98, "probability": 0.0335 }, { "start": 3394.34, "end": 3394.34, "probability": 0.2847 }, { "start": 3394.38, "end": 3395.54, "probability": 0.7735 }, { "start": 3395.54, "end": 3395.88, "probability": 0.6356 }, { "start": 3396.22, "end": 3397.04, "probability": 0.446 }, { "start": 3397.22, "end": 3398.48, "probability": 0.77 }, { "start": 3398.66, "end": 3408.2, "probability": 0.9952 }, { "start": 3408.74, "end": 3410.56, "probability": 0.7022 }, { "start": 3411.3, "end": 3414.66, "probability": 0.8016 }, { "start": 3415.54, "end": 3420.22, "probability": 0.7882 }, { "start": 3420.28, "end": 3427.4, "probability": 0.7487 }, { "start": 3429.16, "end": 3429.28, "probability": 0.0156 }, { "start": 3429.28, "end": 3429.28, "probability": 0.2878 }, { "start": 3429.28, "end": 3431.28, "probability": 0.5744 }, { "start": 3431.96, "end": 3439.5, "probability": 0.9845 }, { "start": 3440.39, "end": 3446.68, "probability": 0.9678 }, { "start": 3448.0, "end": 3455.76, "probability": 0.9353 }, { "start": 3456.98, "end": 3459.68, "probability": 0.9901 }, { "start": 3459.68, "end": 3462.98, "probability": 0.9902 }, { "start": 3464.44, "end": 3469.24, "probability": 0.9884 }, { "start": 3469.72, "end": 3471.0, "probability": 0.8301 }, { "start": 3471.66, "end": 3475.22, "probability": 0.973 }, { "start": 3476.03, "end": 3483.64, "probability": 0.9481 }, { "start": 3484.02, "end": 3484.14, "probability": 0.0439 }, { "start": 3484.18, "end": 3484.98, "probability": 0.7623 }, { "start": 3485.46, "end": 3489.3, "probability": 0.9025 }, { "start": 3490.02, "end": 3494.62, "probability": 0.9344 }, { "start": 3495.58, "end": 3501.2, "probability": 0.9255 }, { "start": 3502.62, "end": 3504.9, "probability": 0.8097 }, { "start": 3505.54, "end": 3508.6, "probability": 0.9067 }, { "start": 3509.2, "end": 3510.26, "probability": 0.6107 }, { "start": 3510.82, "end": 3512.08, "probability": 0.8422 }, { "start": 3512.66, "end": 3514.46, "probability": 0.8749 }, { "start": 3514.64, "end": 3517.08, "probability": 0.8652 }, { "start": 3517.72, "end": 3517.82, "probability": 0.0104 }, { "start": 3517.82, "end": 3519.06, "probability": 0.1001 }, { "start": 3519.74, "end": 3521.52, "probability": 0.4114 }, { "start": 3521.82, "end": 3523.82, "probability": 0.8651 }, { "start": 3525.78, "end": 3525.94, "probability": 0.0427 }, { "start": 3525.94, "end": 3526.32, "probability": 0.1601 }, { "start": 3526.42, "end": 3526.9, "probability": 0.7219 }, { "start": 3527.34, "end": 3529.86, "probability": 0.8099 }, { "start": 3531.46, "end": 3532.06, "probability": 0.0696 }, { "start": 3532.12, "end": 3533.4, "probability": 0.8535 }, { "start": 3533.56, "end": 3535.14, "probability": 0.6379 }, { "start": 3536.14, "end": 3537.28, "probability": 0.7794 }, { "start": 3537.44, "end": 3538.62, "probability": 0.8115 }, { "start": 3538.72, "end": 3539.36, "probability": 0.5696 }, { "start": 3540.14, "end": 3541.22, "probability": 0.0609 }, { "start": 3541.24, "end": 3543.06, "probability": 0.5246 }, { "start": 3543.12, "end": 3543.44, "probability": 0.8462 }, { "start": 3544.08, "end": 3544.32, "probability": 0.4601 }, { "start": 3544.8, "end": 3545.2, "probability": 0.0506 }, { "start": 3545.2, "end": 3545.2, "probability": 0.0039 }, { "start": 3545.2, "end": 3545.3, "probability": 0.0885 }, { "start": 3546.22, "end": 3547.34, "probability": 0.7646 }, { "start": 3547.82, "end": 3548.06, "probability": 0.2521 }, { "start": 3548.06, "end": 3548.5, "probability": 0.4008 }, { "start": 3548.56, "end": 3548.88, "probability": 0.7652 }, { "start": 3548.94, "end": 3549.76, "probability": 0.3814 }, { "start": 3550.1, "end": 3551.86, "probability": 0.8622 }, { "start": 3551.88, "end": 3554.24, "probability": 0.9893 }, { "start": 3555.18, "end": 3559.88, "probability": 0.9729 }, { "start": 3560.76, "end": 3563.58, "probability": 0.9671 }, { "start": 3564.3, "end": 3567.46, "probability": 0.9956 }, { "start": 3568.24, "end": 3569.06, "probability": 0.9318 }, { "start": 3569.14, "end": 3570.16, "probability": 0.9627 }, { "start": 3570.28, "end": 3570.84, "probability": 0.9863 }, { "start": 3570.92, "end": 3571.34, "probability": 0.893 }, { "start": 3571.44, "end": 3571.9, "probability": 0.9854 }, { "start": 3571.9, "end": 3572.56, "probability": 0.9865 }, { "start": 3572.96, "end": 3574.66, "probability": 0.7366 }, { "start": 3575.18, "end": 3576.82, "probability": 0.9966 }, { "start": 3577.4, "end": 3579.58, "probability": 0.8032 }, { "start": 3579.58, "end": 3583.62, "probability": 0.9692 }, { "start": 3583.62, "end": 3586.8, "probability": 0.9929 }, { "start": 3587.6, "end": 3591.46, "probability": 0.9847 }, { "start": 3591.54, "end": 3592.28, "probability": 0.8048 }, { "start": 3592.66, "end": 3593.68, "probability": 0.6258 }, { "start": 3594.74, "end": 3599.22, "probability": 0.9319 }, { "start": 3599.84, "end": 3604.9, "probability": 0.832 }, { "start": 3605.46, "end": 3610.56, "probability": 0.9985 }, { "start": 3611.38, "end": 3612.32, "probability": 0.6145 }, { "start": 3613.4, "end": 3617.82, "probability": 0.9702 }, { "start": 3618.4, "end": 3619.44, "probability": 0.6939 }, { "start": 3620.8, "end": 3623.68, "probability": 0.9946 }, { "start": 3624.5, "end": 3628.06, "probability": 0.9582 }, { "start": 3629.04, "end": 3629.74, "probability": 0.5677 }, { "start": 3629.88, "end": 3631.1, "probability": 0.9946 }, { "start": 3631.32, "end": 3633.36, "probability": 0.946 }, { "start": 3633.46, "end": 3638.72, "probability": 0.9416 }, { "start": 3640.02, "end": 3640.5, "probability": 0.8682 }, { "start": 3640.52, "end": 3640.68, "probability": 0.5855 }, { "start": 3640.76, "end": 3641.32, "probability": 0.6136 }, { "start": 3641.46, "end": 3644.74, "probability": 0.8982 }, { "start": 3645.3, "end": 3645.98, "probability": 0.986 }, { "start": 3646.4, "end": 3646.56, "probability": 0.822 }, { "start": 3646.66, "end": 3647.84, "probability": 0.8271 }, { "start": 3647.88, "end": 3649.06, "probability": 0.883 }, { "start": 3649.42, "end": 3650.88, "probability": 0.8208 }, { "start": 3650.98, "end": 3652.26, "probability": 0.7806 }, { "start": 3653.57, "end": 3657.72, "probability": 0.918 }, { "start": 3658.42, "end": 3660.16, "probability": 0.7988 }, { "start": 3660.84, "end": 3663.66, "probability": 0.8586 }, { "start": 3663.66, "end": 3663.86, "probability": 0.8668 }, { "start": 3664.2, "end": 3670.3, "probability": 0.9365 }, { "start": 3671.04, "end": 3674.98, "probability": 0.9383 }, { "start": 3676.56, "end": 3681.48, "probability": 0.9395 }, { "start": 3682.02, "end": 3686.58, "probability": 0.8108 }, { "start": 3686.62, "end": 3687.86, "probability": 0.8868 }, { "start": 3688.0, "end": 3689.5, "probability": 0.8668 }, { "start": 3691.76, "end": 3692.46, "probability": 0.8624 }, { "start": 3693.18, "end": 3695.48, "probability": 0.8521 }, { "start": 3696.0, "end": 3700.4, "probability": 0.975 }, { "start": 3701.06, "end": 3703.22, "probability": 0.8937 }, { "start": 3703.92, "end": 3708.5, "probability": 0.9899 }, { "start": 3709.42, "end": 3709.9, "probability": 0.9384 }, { "start": 3710.56, "end": 3711.22, "probability": 0.7544 }, { "start": 3711.74, "end": 3719.24, "probability": 0.9689 }, { "start": 3720.08, "end": 3720.92, "probability": 0.862 }, { "start": 3721.56, "end": 3727.46, "probability": 0.9285 }, { "start": 3729.14, "end": 3731.52, "probability": 0.9072 }, { "start": 3733.08, "end": 3738.42, "probability": 0.7935 }, { "start": 3740.92, "end": 3742.4, "probability": 0.8819 }, { "start": 3742.64, "end": 3746.62, "probability": 0.9965 }, { "start": 3746.62, "end": 3750.66, "probability": 0.9879 }, { "start": 3751.34, "end": 3756.3, "probability": 0.9987 }, { "start": 3756.74, "end": 3759.64, "probability": 0.9878 }, { "start": 3759.64, "end": 3762.1, "probability": 0.9686 }, { "start": 3762.74, "end": 3763.22, "probability": 0.5064 }, { "start": 3763.24, "end": 3768.1, "probability": 0.7299 }, { "start": 3768.72, "end": 3772.68, "probability": 0.9891 }, { "start": 3773.22, "end": 3774.02, "probability": 0.9998 }, { "start": 3774.78, "end": 3775.32, "probability": 0.7796 }, { "start": 3776.66, "end": 3780.0, "probability": 0.8036 }, { "start": 3780.32, "end": 3780.98, "probability": 0.8521 }, { "start": 3781.14, "end": 3781.82, "probability": 0.9022 }, { "start": 3781.98, "end": 3783.1, "probability": 0.9842 }, { "start": 3783.22, "end": 3784.24, "probability": 0.8531 }, { "start": 3784.78, "end": 3792.82, "probability": 0.9706 }, { "start": 3793.74, "end": 3795.76, "probability": 0.6461 }, { "start": 3810.52, "end": 3814.94, "probability": 0.8429 }, { "start": 3815.7, "end": 3817.84, "probability": 0.9871 }, { "start": 3819.52, "end": 3821.1, "probability": 0.6947 }, { "start": 3821.16, "end": 3822.48, "probability": 0.6685 }, { "start": 3824.32, "end": 3825.58, "probability": 0.5206 }, { "start": 3827.04, "end": 3827.74, "probability": 0.6968 }, { "start": 3851.38, "end": 3852.46, "probability": 0.7437 }, { "start": 3856.2, "end": 3856.46, "probability": 0.9028 }, { "start": 3861.55, "end": 3864.24, "probability": 0.639 }, { "start": 3865.26, "end": 3870.74, "probability": 0.9639 }, { "start": 3871.82, "end": 3875.56, "probability": 0.9756 }, { "start": 3875.56, "end": 3880.2, "probability": 0.9916 }, { "start": 3882.96, "end": 3882.98, "probability": 0.262 }, { "start": 3882.98, "end": 3887.18, "probability": 0.9543 }, { "start": 3887.18, "end": 3891.68, "probability": 0.9989 }, { "start": 3892.86, "end": 3893.5, "probability": 0.6944 }, { "start": 3894.02, "end": 3895.16, "probability": 0.9895 }, { "start": 3895.66, "end": 3898.34, "probability": 0.9982 }, { "start": 3898.68, "end": 3901.9, "probability": 0.718 }, { "start": 3902.6, "end": 3905.96, "probability": 0.9585 }, { "start": 3905.96, "end": 3910.72, "probability": 0.9872 }, { "start": 3912.44, "end": 3914.56, "probability": 0.9954 }, { "start": 3915.1, "end": 3921.72, "probability": 0.9943 }, { "start": 3923.32, "end": 3927.2, "probability": 0.996 }, { "start": 3928.1, "end": 3929.72, "probability": 0.9688 }, { "start": 3931.06, "end": 3933.48, "probability": 0.8463 }, { "start": 3934.5, "end": 3938.94, "probability": 0.9604 }, { "start": 3940.16, "end": 3945.18, "probability": 0.9907 }, { "start": 3945.18, "end": 3949.68, "probability": 0.9995 }, { "start": 3950.32, "end": 3957.86, "probability": 0.9868 }, { "start": 3960.2, "end": 3965.86, "probability": 0.9932 }, { "start": 3967.18, "end": 3973.78, "probability": 0.9805 }, { "start": 3975.08, "end": 3980.1, "probability": 0.9744 }, { "start": 3980.88, "end": 3986.96, "probability": 0.9754 }, { "start": 3988.1, "end": 3994.9, "probability": 0.9941 }, { "start": 3996.12, "end": 3999.08, "probability": 0.745 }, { "start": 3999.7, "end": 4003.88, "probability": 0.9831 }, { "start": 4005.68, "end": 4008.92, "probability": 0.9877 }, { "start": 4008.92, "end": 4012.64, "probability": 0.9998 }, { "start": 4013.46, "end": 4013.98, "probability": 0.5592 }, { "start": 4014.04, "end": 4014.72, "probability": 0.9431 }, { "start": 4015.06, "end": 4021.0, "probability": 0.8153 }, { "start": 4021.74, "end": 4025.14, "probability": 0.9881 }, { "start": 4026.0, "end": 4029.96, "probability": 0.6528 }, { "start": 4031.1, "end": 4033.72, "probability": 0.9969 }, { "start": 4034.3, "end": 4038.32, "probability": 0.9962 }, { "start": 4039.88, "end": 4040.32, "probability": 0.7408 }, { "start": 4040.92, "end": 4043.04, "probability": 0.9972 }, { "start": 4043.56, "end": 4044.72, "probability": 0.9729 }, { "start": 4045.36, "end": 4048.34, "probability": 0.9826 }, { "start": 4048.86, "end": 4054.16, "probability": 0.9887 }, { "start": 4055.6, "end": 4061.8, "probability": 0.987 }, { "start": 4062.22, "end": 4064.94, "probability": 0.9928 }, { "start": 4065.56, "end": 4067.12, "probability": 0.9855 }, { "start": 4068.28, "end": 4072.52, "probability": 0.9356 }, { "start": 4074.16, "end": 4078.72, "probability": 0.9787 }, { "start": 4078.72, "end": 4083.86, "probability": 0.982 }, { "start": 4085.4, "end": 4087.88, "probability": 0.958 }, { "start": 4088.52, "end": 4097.6, "probability": 0.9707 }, { "start": 4097.6, "end": 4104.92, "probability": 0.9843 }, { "start": 4105.78, "end": 4112.48, "probability": 0.9833 }, { "start": 4113.58, "end": 4114.76, "probability": 0.7854 }, { "start": 4116.22, "end": 4120.2, "probability": 0.9696 }, { "start": 4120.2, "end": 4125.36, "probability": 0.9957 }, { "start": 4125.92, "end": 4128.28, "probability": 0.9902 }, { "start": 4129.36, "end": 4134.06, "probability": 0.9791 }, { "start": 4134.06, "end": 4137.72, "probability": 0.9976 }, { "start": 4138.74, "end": 4142.94, "probability": 0.8671 }, { "start": 4143.48, "end": 4144.78, "probability": 0.9288 }, { "start": 4144.98, "end": 4151.1, "probability": 0.9914 }, { "start": 4151.1, "end": 4157.66, "probability": 0.8794 }, { "start": 4159.16, "end": 4159.72, "probability": 0.8144 }, { "start": 4160.62, "end": 4162.98, "probability": 0.8062 }, { "start": 4163.2, "end": 4170.34, "probability": 0.9973 }, { "start": 4170.88, "end": 4173.08, "probability": 0.9891 }, { "start": 4174.06, "end": 4178.62, "probability": 0.9891 }, { "start": 4178.62, "end": 4182.58, "probability": 0.9956 }, { "start": 4183.7, "end": 4189.86, "probability": 0.9849 }, { "start": 4191.2, "end": 4192.66, "probability": 0.9928 }, { "start": 4193.2, "end": 4196.5, "probability": 0.9926 }, { "start": 4197.1, "end": 4200.06, "probability": 0.7323 }, { "start": 4200.66, "end": 4206.2, "probability": 0.9722 }, { "start": 4207.5, "end": 4209.24, "probability": 0.7476 }, { "start": 4210.2, "end": 4213.84, "probability": 0.99 }, { "start": 4214.6, "end": 4217.86, "probability": 0.4959 }, { "start": 4218.92, "end": 4224.42, "probability": 0.9824 }, { "start": 4224.42, "end": 4230.84, "probability": 0.9927 }, { "start": 4231.64, "end": 4235.98, "probability": 0.9985 }, { "start": 4237.5, "end": 4246.28, "probability": 0.9932 }, { "start": 4246.28, "end": 4255.2, "probability": 0.995 }, { "start": 4256.1, "end": 4257.78, "probability": 0.7572 }, { "start": 4258.3, "end": 4260.92, "probability": 0.9302 }, { "start": 4261.38, "end": 4265.68, "probability": 0.9265 }, { "start": 4266.82, "end": 4271.9, "probability": 0.979 }, { "start": 4272.6, "end": 4278.56, "probability": 0.9946 }, { "start": 4278.94, "end": 4283.76, "probability": 0.9977 }, { "start": 4284.47, "end": 4284.92, "probability": 0.9716 }, { "start": 4286.22, "end": 4290.64, "probability": 0.9673 }, { "start": 4290.64, "end": 4295.68, "probability": 0.9985 }, { "start": 4296.5, "end": 4301.68, "probability": 0.9491 }, { "start": 4302.12, "end": 4302.48, "probability": 0.74 }, { "start": 4303.82, "end": 4306.4, "probability": 0.8758 }, { "start": 4307.2, "end": 4308.48, "probability": 0.9925 }, { "start": 4309.26, "end": 4311.54, "probability": 0.772 }, { "start": 4312.91, "end": 4313.79, "probability": 0.1949 }, { "start": 4315.2, "end": 4316.64, "probability": 0.4009 }, { "start": 4316.72, "end": 4317.18, "probability": 0.8434 }, { "start": 4334.04, "end": 4335.4, "probability": 0.8972 }, { "start": 4337.74, "end": 4340.1, "probability": 0.3127 }, { "start": 4340.62, "end": 4341.46, "probability": 0.6357 }, { "start": 4342.66, "end": 4343.74, "probability": 0.7726 }, { "start": 4344.5, "end": 4345.12, "probability": 0.811 }, { "start": 4347.02, "end": 4348.9, "probability": 0.9711 }, { "start": 4349.52, "end": 4352.88, "probability": 0.9938 }, { "start": 4353.9, "end": 4357.44, "probability": 0.9782 }, { "start": 4358.92, "end": 4363.26, "probability": 0.9924 }, { "start": 4364.94, "end": 4367.14, "probability": 0.9062 }, { "start": 4367.28, "end": 4371.0, "probability": 0.9871 }, { "start": 4372.68, "end": 4375.68, "probability": 0.8884 }, { "start": 4376.42, "end": 4376.78, "probability": 0.3268 }, { "start": 4376.78, "end": 4382.64, "probability": 0.9727 }, { "start": 4384.0, "end": 4387.76, "probability": 0.96 }, { "start": 4388.5, "end": 4393.48, "probability": 0.9971 }, { "start": 4395.26, "end": 4399.9, "probability": 0.9379 }, { "start": 4401.98, "end": 4402.92, "probability": 0.9951 }, { "start": 4404.9, "end": 4410.28, "probability": 0.7501 }, { "start": 4410.66, "end": 4414.56, "probability": 0.8539 }, { "start": 4415.46, "end": 4416.7, "probability": 0.6024 }, { "start": 4417.28, "end": 4418.0, "probability": 0.9805 }, { "start": 4418.82, "end": 4422.42, "probability": 0.9682 }, { "start": 4423.1, "end": 4424.94, "probability": 0.9647 }, { "start": 4425.56, "end": 4426.64, "probability": 0.8784 }, { "start": 4428.26, "end": 4429.02, "probability": 0.9668 }, { "start": 4429.2, "end": 4433.94, "probability": 0.9679 }, { "start": 4434.76, "end": 4438.26, "probability": 0.991 }, { "start": 4438.84, "end": 4439.95, "probability": 0.9829 }, { "start": 4441.3, "end": 4447.41, "probability": 0.9952 }, { "start": 4450.48, "end": 4454.54, "probability": 0.9921 }, { "start": 4455.08, "end": 4458.2, "probability": 0.7957 }, { "start": 4459.24, "end": 4461.9, "probability": 0.924 }, { "start": 4462.94, "end": 4463.87, "probability": 0.9673 }, { "start": 4465.0, "end": 4466.05, "probability": 0.9801 }, { "start": 4466.86, "end": 4468.02, "probability": 0.9766 }, { "start": 4468.78, "end": 4471.62, "probability": 0.9413 }, { "start": 4473.16, "end": 4475.32, "probability": 0.9052 }, { "start": 4476.16, "end": 4479.94, "probability": 0.9811 }, { "start": 4480.56, "end": 4483.64, "probability": 0.8338 }, { "start": 4484.78, "end": 4490.74, "probability": 0.9531 }, { "start": 4492.54, "end": 4492.98, "probability": 0.7155 }, { "start": 4493.56, "end": 4496.82, "probability": 0.9877 }, { "start": 4496.82, "end": 4501.84, "probability": 0.9917 }, { "start": 4503.16, "end": 4505.24, "probability": 0.9348 }, { "start": 4505.84, "end": 4508.44, "probability": 0.9639 }, { "start": 4509.22, "end": 4511.84, "probability": 0.6373 }, { "start": 4512.44, "end": 4513.68, "probability": 0.8286 }, { "start": 4516.06, "end": 4516.78, "probability": 0.6788 }, { "start": 4517.42, "end": 4518.84, "probability": 0.9403 }, { "start": 4519.48, "end": 4523.06, "probability": 0.9568 }, { "start": 4523.6, "end": 4526.06, "probability": 0.982 }, { "start": 4526.52, "end": 4530.76, "probability": 0.9829 }, { "start": 4532.4, "end": 4534.26, "probability": 0.9987 }, { "start": 4535.78, "end": 4541.76, "probability": 0.9875 }, { "start": 4543.68, "end": 4547.66, "probability": 0.9873 }, { "start": 4547.66, "end": 4551.36, "probability": 0.9963 }, { "start": 4551.64, "end": 4552.22, "probability": 0.7566 }, { "start": 4553.08, "end": 4554.66, "probability": 0.762 }, { "start": 4555.22, "end": 4557.02, "probability": 0.9979 }, { "start": 4557.72, "end": 4558.7, "probability": 0.9753 }, { "start": 4559.74, "end": 4560.06, "probability": 0.8125 }, { "start": 4560.14, "end": 4564.72, "probability": 0.8818 }, { "start": 4565.66, "end": 4566.62, "probability": 0.9539 }, { "start": 4570.08, "end": 4571.98, "probability": 0.6659 }, { "start": 4572.68, "end": 4574.74, "probability": 0.751 }, { "start": 4574.9, "end": 4579.52, "probability": 0.9877 }, { "start": 4580.68, "end": 4584.68, "probability": 0.9204 }, { "start": 4585.56, "end": 4588.57, "probability": 0.9966 }, { "start": 4589.06, "end": 4593.84, "probability": 0.998 }, { "start": 4594.4, "end": 4597.78, "probability": 0.8856 }, { "start": 4598.32, "end": 4599.02, "probability": 0.9622 }, { "start": 4601.72, "end": 4602.66, "probability": 0.9084 }, { "start": 4603.32, "end": 4605.2, "probability": 0.9868 }, { "start": 4605.3, "end": 4607.62, "probability": 0.9761 }, { "start": 4608.32, "end": 4611.96, "probability": 0.9811 }, { "start": 4612.72, "end": 4615.54, "probability": 0.8496 }, { "start": 4616.24, "end": 4617.76, "probability": 0.9807 }, { "start": 4618.48, "end": 4619.92, "probability": 0.9718 }, { "start": 4620.46, "end": 4622.08, "probability": 0.9854 }, { "start": 4623.36, "end": 4626.7, "probability": 0.9802 }, { "start": 4626.7, "end": 4632.24, "probability": 0.8186 }, { "start": 4632.38, "end": 4638.1, "probability": 0.9978 }, { "start": 4639.3, "end": 4642.66, "probability": 0.9944 }, { "start": 4643.32, "end": 4645.02, "probability": 0.7381 }, { "start": 4645.74, "end": 4650.72, "probability": 0.8975 }, { "start": 4651.22, "end": 4653.66, "probability": 0.9895 }, { "start": 4655.5, "end": 4657.9, "probability": 0.965 }, { "start": 4658.94, "end": 4664.18, "probability": 0.9922 }, { "start": 4665.22, "end": 4667.7, "probability": 0.7988 }, { "start": 4668.24, "end": 4671.6, "probability": 0.9253 }, { "start": 4673.26, "end": 4676.3, "probability": 0.9293 }, { "start": 4676.68, "end": 4681.58, "probability": 0.9947 }, { "start": 4683.8, "end": 4688.04, "probability": 0.6625 }, { "start": 4689.26, "end": 4689.92, "probability": 0.73 }, { "start": 4690.7, "end": 4692.56, "probability": 0.7316 }, { "start": 4693.58, "end": 4695.2, "probability": 0.9945 }, { "start": 4696.5, "end": 4698.44, "probability": 0.9908 }, { "start": 4698.6, "end": 4700.82, "probability": 0.958 }, { "start": 4700.88, "end": 4701.66, "probability": 0.9222 }, { "start": 4701.86, "end": 4702.56, "probability": 0.9377 }, { "start": 4703.16, "end": 4703.52, "probability": 0.7734 }, { "start": 4706.26, "end": 4706.68, "probability": 0.4726 }, { "start": 4706.76, "end": 4707.18, "probability": 0.7387 }, { "start": 4707.68, "end": 4713.6, "probability": 0.9664 }, { "start": 4714.12, "end": 4716.02, "probability": 0.7438 }, { "start": 4716.64, "end": 4717.8, "probability": 0.9149 }, { "start": 4718.5, "end": 4719.54, "probability": 0.9863 }, { "start": 4719.76, "end": 4720.64, "probability": 0.9943 }, { "start": 4720.82, "end": 4721.94, "probability": 0.7163 }, { "start": 4722.24, "end": 4723.32, "probability": 0.9167 }, { "start": 4723.92, "end": 4724.62, "probability": 0.7731 }, { "start": 4726.16, "end": 4728.18, "probability": 0.7197 }, { "start": 4728.58, "end": 4730.56, "probability": 0.9926 }, { "start": 4731.1, "end": 4732.25, "probability": 0.359 }, { "start": 4734.1, "end": 4739.8, "probability": 0.8389 }, { "start": 4739.8, "end": 4742.78, "probability": 0.8643 }, { "start": 4742.88, "end": 4742.96, "probability": 0.0243 }, { "start": 4742.96, "end": 4745.46, "probability": 0.9762 }, { "start": 4746.42, "end": 4749.34, "probability": 0.9613 }, { "start": 4750.1, "end": 4750.58, "probability": 0.6338 }, { "start": 4762.9, "end": 4763.24, "probability": 0.2801 }, { "start": 4785.42, "end": 4786.86, "probability": 0.677 }, { "start": 4787.8, "end": 4790.87, "probability": 0.7723 }, { "start": 4791.5, "end": 4794.5, "probability": 0.6085 }, { "start": 4794.58, "end": 4797.86, "probability": 0.9124 }, { "start": 4799.02, "end": 4800.52, "probability": 0.9863 }, { "start": 4800.6, "end": 4803.42, "probability": 0.9944 }, { "start": 4804.02, "end": 4805.3, "probability": 0.7967 }, { "start": 4805.44, "end": 4806.64, "probability": 0.9906 }, { "start": 4806.78, "end": 4807.94, "probability": 0.7913 }, { "start": 4808.4, "end": 4810.04, "probability": 0.9888 }, { "start": 4810.66, "end": 4812.88, "probability": 0.9921 }, { "start": 4813.06, "end": 4815.32, "probability": 0.9593 }, { "start": 4816.3, "end": 4820.94, "probability": 0.9952 }, { "start": 4821.82, "end": 4824.6, "probability": 0.8204 }, { "start": 4824.68, "end": 4825.48, "probability": 0.7221 }, { "start": 4825.6, "end": 4830.46, "probability": 0.8001 }, { "start": 4830.46, "end": 4831.92, "probability": 0.7947 }, { "start": 4832.06, "end": 4834.14, "probability": 0.4976 }, { "start": 4834.2, "end": 4835.84, "probability": 0.8954 }, { "start": 4836.6, "end": 4839.3, "probability": 0.8899 }, { "start": 4839.4, "end": 4842.56, "probability": 0.6898 }, { "start": 4842.6, "end": 4844.54, "probability": 0.9196 }, { "start": 4844.6, "end": 4846.92, "probability": 0.9788 }, { "start": 4847.74, "end": 4849.17, "probability": 0.939 }, { "start": 4849.96, "end": 4854.4, "probability": 0.9791 }, { "start": 4855.12, "end": 4859.22, "probability": 0.9878 }, { "start": 4859.84, "end": 4862.66, "probability": 0.9855 }, { "start": 4862.76, "end": 4866.38, "probability": 0.9692 }, { "start": 4866.5, "end": 4872.18, "probability": 0.9939 }, { "start": 4872.71, "end": 4874.38, "probability": 0.7312 }, { "start": 4875.14, "end": 4876.72, "probability": 0.9375 }, { "start": 4877.64, "end": 4881.94, "probability": 0.969 }, { "start": 4882.0, "end": 4885.88, "probability": 0.9442 }, { "start": 4886.02, "end": 4887.44, "probability": 0.9881 }, { "start": 4888.38, "end": 4889.74, "probability": 0.6522 }, { "start": 4889.78, "end": 4892.34, "probability": 0.9076 }, { "start": 4892.58, "end": 4893.3, "probability": 0.6774 }, { "start": 4894.16, "end": 4896.35, "probability": 0.725 }, { "start": 4896.84, "end": 4899.34, "probability": 0.9803 }, { "start": 4899.46, "end": 4901.4, "probability": 0.8877 }, { "start": 4901.48, "end": 4903.16, "probability": 0.9919 }, { "start": 4903.36, "end": 4907.76, "probability": 0.9943 }, { "start": 4908.62, "end": 4911.36, "probability": 0.9994 }, { "start": 4912.08, "end": 4912.14, "probability": 0.7831 }, { "start": 4912.36, "end": 4913.46, "probability": 0.9868 }, { "start": 4913.52, "end": 4917.08, "probability": 0.999 }, { "start": 4917.56, "end": 4923.7, "probability": 0.9901 }, { "start": 4924.26, "end": 4926.28, "probability": 0.6153 }, { "start": 4926.56, "end": 4927.54, "probability": 0.674 }, { "start": 4927.6, "end": 4928.58, "probability": 0.5274 }, { "start": 4929.36, "end": 4931.16, "probability": 0.9691 }, { "start": 4931.28, "end": 4933.68, "probability": 0.9893 }, { "start": 4934.31, "end": 4935.6, "probability": 0.9679 }, { "start": 4936.98, "end": 4943.82, "probability": 0.8935 }, { "start": 4944.14, "end": 4944.72, "probability": 0.6019 }, { "start": 4944.86, "end": 4945.36, "probability": 0.5099 }, { "start": 4945.42, "end": 4946.48, "probability": 0.8401 }, { "start": 4946.76, "end": 4950.08, "probability": 0.8306 }, { "start": 4950.26, "end": 4951.1, "probability": 0.9747 }, { "start": 4951.26, "end": 4952.2, "probability": 0.9733 }, { "start": 4952.36, "end": 4955.64, "probability": 0.9315 }, { "start": 4955.92, "end": 4958.17, "probability": 0.9873 }, { "start": 4958.62, "end": 4960.28, "probability": 0.928 }, { "start": 4960.62, "end": 4962.74, "probability": 0.9872 }, { "start": 4963.0, "end": 4963.34, "probability": 0.9364 }, { "start": 4963.38, "end": 4966.3, "probability": 0.9918 }, { "start": 4966.56, "end": 4970.86, "probability": 0.9551 }, { "start": 4970.98, "end": 4971.62, "probability": 0.744 }, { "start": 4972.02, "end": 4973.38, "probability": 0.9522 }, { "start": 4973.48, "end": 4977.4, "probability": 0.9852 }, { "start": 4978.0, "end": 4979.98, "probability": 0.4546 }, { "start": 4980.06, "end": 4980.84, "probability": 0.7933 }, { "start": 4980.9, "end": 4985.3, "probability": 0.985 }, { "start": 4985.58, "end": 4987.1, "probability": 0.9224 }, { "start": 4987.46, "end": 4991.78, "probability": 0.8618 }, { "start": 4991.84, "end": 4993.0, "probability": 0.3105 }, { "start": 4993.52, "end": 4994.14, "probability": 0.5971 }, { "start": 4994.3, "end": 4999.2, "probability": 0.9548 }, { "start": 4999.2, "end": 5003.86, "probability": 0.936 }, { "start": 5004.24, "end": 5005.66, "probability": 0.9771 }, { "start": 5006.06, "end": 5006.06, "probability": 0.0455 }, { "start": 5006.06, "end": 5008.02, "probability": 0.9109 }, { "start": 5008.42, "end": 5010.72, "probability": 0.9972 }, { "start": 5011.0, "end": 5011.4, "probability": 0.6403 }, { "start": 5011.44, "end": 5015.16, "probability": 0.9153 }, { "start": 5015.2, "end": 5019.64, "probability": 0.9786 }, { "start": 5019.98, "end": 5020.8, "probability": 0.7988 }, { "start": 5021.34, "end": 5023.84, "probability": 0.7609 }, { "start": 5024.0, "end": 5024.46, "probability": 0.3706 }, { "start": 5024.5, "end": 5026.12, "probability": 0.7956 }, { "start": 5026.2, "end": 5028.22, "probability": 0.9282 }, { "start": 5028.84, "end": 5032.92, "probability": 0.4616 }, { "start": 5032.94, "end": 5033.62, "probability": 0.4303 }, { "start": 5033.86, "end": 5034.56, "probability": 0.5522 }, { "start": 5034.74, "end": 5035.48, "probability": 0.6787 }, { "start": 5035.96, "end": 5035.96, "probability": 0.528 }, { "start": 5035.96, "end": 5038.92, "probability": 0.2712 }, { "start": 5039.4, "end": 5042.64, "probability": 0.8077 }, { "start": 5042.92, "end": 5044.04, "probability": 0.493 }, { "start": 5044.9, "end": 5046.2, "probability": 0.9153 }, { "start": 5046.28, "end": 5046.96, "probability": 0.6607 }, { "start": 5046.96, "end": 5047.04, "probability": 0.0502 }, { "start": 5047.04, "end": 5047.5, "probability": 0.5165 }, { "start": 5049.96, "end": 5052.58, "probability": 0.3054 }, { "start": 5059.04, "end": 5059.7, "probability": 0.6021 }, { "start": 5059.78, "end": 5061.36, "probability": 0.7465 }, { "start": 5062.86, "end": 5066.0, "probability": 0.989 }, { "start": 5067.78, "end": 5071.8, "probability": 0.9611 }, { "start": 5072.98, "end": 5075.98, "probability": 0.8533 }, { "start": 5077.48, "end": 5078.36, "probability": 0.939 }, { "start": 5079.5, "end": 5082.68, "probability": 0.9881 }, { "start": 5086.2, "end": 5090.82, "probability": 0.9939 }, { "start": 5092.18, "end": 5092.78, "probability": 0.6127 }, { "start": 5094.16, "end": 5096.16, "probability": 0.8214 }, { "start": 5097.92, "end": 5100.54, "probability": 0.9598 }, { "start": 5100.98, "end": 5103.74, "probability": 0.992 }, { "start": 5104.36, "end": 5105.76, "probability": 0.9652 }, { "start": 5106.34, "end": 5108.84, "probability": 0.8787 }, { "start": 5110.2, "end": 5111.28, "probability": 0.7426 }, { "start": 5111.64, "end": 5114.54, "probability": 0.0576 }, { "start": 5115.44, "end": 5116.06, "probability": 0.4404 }, { "start": 5117.66, "end": 5122.82, "probability": 0.7646 }, { "start": 5124.48, "end": 5126.24, "probability": 0.9636 }, { "start": 5127.74, "end": 5130.64, "probability": 0.8221 }, { "start": 5132.24, "end": 5133.44, "probability": 0.5562 }, { "start": 5136.62, "end": 5141.46, "probability": 0.9695 }, { "start": 5142.06, "end": 5148.0, "probability": 0.9012 }, { "start": 5148.78, "end": 5152.22, "probability": 0.9808 }, { "start": 5153.62, "end": 5155.22, "probability": 0.9971 }, { "start": 5156.0, "end": 5157.42, "probability": 0.9987 }, { "start": 5158.02, "end": 5158.96, "probability": 0.6152 }, { "start": 5160.22, "end": 5162.96, "probability": 0.7305 }, { "start": 5164.72, "end": 5168.22, "probability": 0.9844 }, { "start": 5169.54, "end": 5171.74, "probability": 0.8802 }, { "start": 5173.34, "end": 5174.68, "probability": 0.6786 }, { "start": 5175.92, "end": 5176.96, "probability": 0.5345 }, { "start": 5177.24, "end": 5177.96, "probability": 0.7127 }, { "start": 5178.72, "end": 5180.3, "probability": 0.4841 }, { "start": 5181.56, "end": 5183.82, "probability": 0.3189 }, { "start": 5184.66, "end": 5185.44, "probability": 0.8227 }, { "start": 5186.32, "end": 5187.06, "probability": 0.918 }, { "start": 5187.84, "end": 5189.42, "probability": 0.8251 }, { "start": 5190.96, "end": 5192.9, "probability": 0.7105 }, { "start": 5193.62, "end": 5194.98, "probability": 0.209 }, { "start": 5195.94, "end": 5197.86, "probability": 0.7676 }, { "start": 5198.98, "end": 5200.8, "probability": 0.2997 }, { "start": 5201.86, "end": 5205.76, "probability": 0.8446 }, { "start": 5207.16, "end": 5209.38, "probability": 0.8195 }, { "start": 5209.84, "end": 5211.66, "probability": 0.9034 }, { "start": 5212.54, "end": 5214.48, "probability": 0.4859 }, { "start": 5215.72, "end": 5218.84, "probability": 0.5797 }, { "start": 5219.44, "end": 5220.21, "probability": 0.6037 }, { "start": 5221.16, "end": 5222.66, "probability": 0.9773 }, { "start": 5223.18, "end": 5226.24, "probability": 0.9871 }, { "start": 5227.38, "end": 5229.72, "probability": 0.8887 }, { "start": 5231.6, "end": 5234.62, "probability": 0.918 }, { "start": 5235.66, "end": 5238.6, "probability": 0.9712 }, { "start": 5239.16, "end": 5241.88, "probability": 0.8481 }, { "start": 5244.08, "end": 5246.84, "probability": 0.8222 }, { "start": 5248.18, "end": 5250.72, "probability": 0.9465 }, { "start": 5251.46, "end": 5251.92, "probability": 0.6619 }, { "start": 5253.26, "end": 5253.76, "probability": 0.8905 }, { "start": 5254.16, "end": 5256.56, "probability": 0.8036 }, { "start": 5257.26, "end": 5259.4, "probability": 0.9766 }, { "start": 5259.4, "end": 5261.0, "probability": 0.7885 }, { "start": 5261.02, "end": 5261.92, "probability": 0.6011 }, { "start": 5262.56, "end": 5263.42, "probability": 0.0902 }, { "start": 5263.42, "end": 5263.64, "probability": 0.1372 }, { "start": 5264.06, "end": 5266.18, "probability": 0.7072 }, { "start": 5267.54, "end": 5268.42, "probability": 0.4785 }, { "start": 5283.52, "end": 5285.02, "probability": 0.8281 }, { "start": 5296.36, "end": 5299.08, "probability": 0.7415 }, { "start": 5300.52, "end": 5304.7, "probability": 0.749 }, { "start": 5305.92, "end": 5310.12, "probability": 0.9878 }, { "start": 5310.12, "end": 5314.4, "probability": 0.9568 }, { "start": 5315.06, "end": 5315.44, "probability": 0.3663 }, { "start": 5315.5, "end": 5317.92, "probability": 0.9717 }, { "start": 5317.92, "end": 5318.5, "probability": 0.3116 }, { "start": 5319.16, "end": 5320.66, "probability": 0.993 }, { "start": 5323.0, "end": 5325.84, "probability": 0.962 }, { "start": 5325.84, "end": 5329.72, "probability": 0.9974 }, { "start": 5330.24, "end": 5333.8, "probability": 0.9947 }, { "start": 5334.44, "end": 5340.08, "probability": 0.9914 }, { "start": 5340.08, "end": 5346.32, "probability": 0.9965 }, { "start": 5346.5, "end": 5352.56, "probability": 0.9701 }, { "start": 5353.18, "end": 5359.92, "probability": 0.9761 }, { "start": 5360.6, "end": 5363.02, "probability": 0.6515 }, { "start": 5363.48, "end": 5365.76, "probability": 0.7413 }, { "start": 5366.2, "end": 5369.02, "probability": 0.9829 }, { "start": 5369.84, "end": 5373.96, "probability": 0.9673 }, { "start": 5373.96, "end": 5380.48, "probability": 0.9554 }, { "start": 5381.18, "end": 5383.96, "probability": 0.9624 }, { "start": 5384.32, "end": 5386.4, "probability": 0.8316 }, { "start": 5387.24, "end": 5389.08, "probability": 0.9656 }, { "start": 5389.78, "end": 5396.64, "probability": 0.9919 }, { "start": 5397.12, "end": 5403.6, "probability": 0.9905 }, { "start": 5404.12, "end": 5405.84, "probability": 0.9997 }, { "start": 5406.64, "end": 5411.1, "probability": 0.9956 }, { "start": 5411.1, "end": 5415.02, "probability": 0.9942 }, { "start": 5415.78, "end": 5416.58, "probability": 0.6463 }, { "start": 5416.74, "end": 5421.52, "probability": 0.9904 }, { "start": 5421.52, "end": 5426.9, "probability": 0.9982 }, { "start": 5428.28, "end": 5433.88, "probability": 0.9987 }, { "start": 5434.46, "end": 5440.72, "probability": 0.9952 }, { "start": 5441.18, "end": 5443.68, "probability": 0.8339 }, { "start": 5444.22, "end": 5447.46, "probability": 0.9917 }, { "start": 5447.58, "end": 5451.8, "probability": 0.9819 }, { "start": 5452.48, "end": 5458.94, "probability": 0.9548 }, { "start": 5459.44, "end": 5464.69, "probability": 0.991 }, { "start": 5465.09, "end": 5468.64, "probability": 0.9824 }, { "start": 5469.26, "end": 5473.24, "probability": 0.9957 }, { "start": 5473.32, "end": 5474.08, "probability": 0.83 }, { "start": 5474.76, "end": 5479.14, "probability": 0.9577 }, { "start": 5479.3, "end": 5480.24, "probability": 0.6398 }, { "start": 5480.28, "end": 5481.44, "probability": 0.9812 }, { "start": 5481.58, "end": 5482.04, "probability": 0.8371 }, { "start": 5482.2, "end": 5485.36, "probability": 0.8676 }, { "start": 5485.82, "end": 5487.52, "probability": 0.6697 }, { "start": 5487.52, "end": 5487.72, "probability": 0.6734 }, { "start": 5488.32, "end": 5489.92, "probability": 0.9692 }, { "start": 5491.38, "end": 5493.14, "probability": 0.8605 }, { "start": 5493.22, "end": 5496.42, "probability": 0.5711 }, { "start": 5505.12, "end": 5506.26, "probability": 0.4118 }, { "start": 5506.86, "end": 5511.34, "probability": 0.517 }, { "start": 5511.8, "end": 5512.52, "probability": 0.6463 }, { "start": 5513.44, "end": 5513.72, "probability": 0.4978 }, { "start": 5515.24, "end": 5517.66, "probability": 0.0949 }, { "start": 5520.42, "end": 5520.94, "probability": 0.1427 }, { "start": 5522.18, "end": 5522.7, "probability": 0.0278 }, { "start": 5539.14, "end": 5542.06, "probability": 0.491 }, { "start": 5542.24, "end": 5546.96, "probability": 0.9926 }, { "start": 5546.96, "end": 5551.21, "probability": 0.9946 }, { "start": 5553.48, "end": 5555.28, "probability": 0.9727 }, { "start": 5555.56, "end": 5558.8, "probability": 0.9947 }, { "start": 5559.48, "end": 5560.92, "probability": 0.6338 }, { "start": 5563.62, "end": 5567.28, "probability": 0.9944 }, { "start": 5568.46, "end": 5572.41, "probability": 0.8341 }, { "start": 5573.82, "end": 5576.76, "probability": 0.4565 }, { "start": 5577.7, "end": 5581.19, "probability": 0.9447 }, { "start": 5582.44, "end": 5584.42, "probability": 0.9958 }, { "start": 5584.96, "end": 5585.84, "probability": 0.9392 }, { "start": 5587.02, "end": 5588.92, "probability": 0.9966 }, { "start": 5590.18, "end": 5593.74, "probability": 0.9871 }, { "start": 5594.3, "end": 5596.58, "probability": 0.6725 }, { "start": 5597.38, "end": 5599.36, "probability": 0.9875 }, { "start": 5600.16, "end": 5601.62, "probability": 0.547 }, { "start": 5603.12, "end": 5604.14, "probability": 0.6607 }, { "start": 5605.26, "end": 5607.24, "probability": 0.9578 }, { "start": 5607.24, "end": 5611.86, "probability": 0.8739 }, { "start": 5614.12, "end": 5616.54, "probability": 0.4305 }, { "start": 5617.04, "end": 5617.26, "probability": 0.2604 }, { "start": 5617.86, "end": 5624.44, "probability": 0.8302 }, { "start": 5625.05, "end": 5632.26, "probability": 0.3958 }, { "start": 5632.7, "end": 5634.76, "probability": 0.6594 }, { "start": 5634.98, "end": 5638.08, "probability": 0.8571 }, { "start": 5639.5, "end": 5641.32, "probability": 0.9608 }, { "start": 5641.46, "end": 5642.53, "probability": 0.72 }, { "start": 5642.94, "end": 5646.26, "probability": 0.0529 }, { "start": 5646.46, "end": 5648.56, "probability": 0.2648 }, { "start": 5648.56, "end": 5648.84, "probability": 0.1125 }, { "start": 5649.94, "end": 5656.1, "probability": 0.6471 }, { "start": 5656.98, "end": 5658.36, "probability": 0.6394 }, { "start": 5658.84, "end": 5659.61, "probability": 0.7944 }, { "start": 5660.26, "end": 5661.94, "probability": 0.6518 }, { "start": 5662.4, "end": 5663.88, "probability": 0.9309 }, { "start": 5663.9, "end": 5666.07, "probability": 0.9775 }, { "start": 5667.0, "end": 5667.22, "probability": 0.873 }, { "start": 5668.22, "end": 5670.54, "probability": 0.6625 }, { "start": 5671.5, "end": 5673.18, "probability": 0.9904 }, { "start": 5673.28, "end": 5675.06, "probability": 0.6896 }, { "start": 5675.74, "end": 5678.76, "probability": 0.9452 }, { "start": 5679.5, "end": 5680.38, "probability": 0.7799 }, { "start": 5681.06, "end": 5683.7, "probability": 0.996 }, { "start": 5683.88, "end": 5684.46, "probability": 0.7482 }, { "start": 5685.54, "end": 5687.28, "probability": 0.9973 }, { "start": 5687.3, "end": 5690.38, "probability": 0.9795 }, { "start": 5691.04, "end": 5694.5, "probability": 0.9146 }, { "start": 5694.98, "end": 5695.6, "probability": 0.8121 }, { "start": 5697.13, "end": 5698.14, "probability": 0.2717 }, { "start": 5698.24, "end": 5699.18, "probability": 0.8704 }, { "start": 5701.26, "end": 5702.3, "probability": 0.2244 }, { "start": 5702.3, "end": 5704.44, "probability": 0.4933 }, { "start": 5704.44, "end": 5707.18, "probability": 0.9941 }, { "start": 5707.38, "end": 5708.68, "probability": 0.4342 }, { "start": 5709.26, "end": 5710.36, "probability": 0.7973 }, { "start": 5711.08, "end": 5711.62, "probability": 0.7351 }, { "start": 5711.62, "end": 5717.06, "probability": 0.9181 }, { "start": 5717.1, "end": 5721.58, "probability": 0.8312 }, { "start": 5723.06, "end": 5724.64, "probability": 0.9729 }, { "start": 5725.22, "end": 5727.12, "probability": 0.6773 }, { "start": 5727.96, "end": 5731.7, "probability": 0.7611 }, { "start": 5732.84, "end": 5736.84, "probability": 0.7507 }, { "start": 5737.72, "end": 5738.12, "probability": 0.7685 }, { "start": 5738.64, "end": 5740.18, "probability": 0.9978 }, { "start": 5741.14, "end": 5745.78, "probability": 0.9947 }, { "start": 5747.47, "end": 5749.3, "probability": 0.9399 }, { "start": 5749.54, "end": 5752.04, "probability": 0.9329 }, { "start": 5753.2, "end": 5755.56, "probability": 0.9043 }, { "start": 5756.2, "end": 5758.74, "probability": 0.9936 }, { "start": 5759.34, "end": 5762.22, "probability": 0.9993 }, { "start": 5763.42, "end": 5766.26, "probability": 0.7904 }, { "start": 5767.28, "end": 5772.0, "probability": 0.9954 }, { "start": 5772.04, "end": 5774.9, "probability": 0.9786 }, { "start": 5775.52, "end": 5776.6, "probability": 0.9103 }, { "start": 5777.56, "end": 5781.16, "probability": 0.897 }, { "start": 5782.0, "end": 5784.58, "probability": 0.9697 }, { "start": 5784.86, "end": 5786.7, "probability": 0.6667 }, { "start": 5787.26, "end": 5789.38, "probability": 0.9922 }, { "start": 5789.48, "end": 5792.18, "probability": 0.9887 }, { "start": 5792.7, "end": 5793.0, "probability": 0.0535 }, { "start": 5793.0, "end": 5794.74, "probability": 0.7015 }, { "start": 5795.56, "end": 5798.14, "probability": 0.9948 }, { "start": 5798.8, "end": 5800.64, "probability": 0.8735 }, { "start": 5801.48, "end": 5802.78, "probability": 0.7876 }, { "start": 5803.44, "end": 5804.89, "probability": 0.7744 }, { "start": 5805.54, "end": 5807.74, "probability": 0.978 }, { "start": 5808.38, "end": 5810.0, "probability": 0.7125 }, { "start": 5810.22, "end": 5813.9, "probability": 0.9825 }, { "start": 5814.58, "end": 5815.86, "probability": 0.4699 }, { "start": 5816.28, "end": 5820.36, "probability": 0.8053 }, { "start": 5821.14, "end": 5822.0, "probability": 0.7357 }, { "start": 5822.22, "end": 5824.96, "probability": 0.998 }, { "start": 5825.26, "end": 5827.38, "probability": 0.9525 }, { "start": 5827.56, "end": 5828.06, "probability": 0.5982 }, { "start": 5828.48, "end": 5830.44, "probability": 0.7676 }, { "start": 5831.1, "end": 5834.42, "probability": 0.9792 }, { "start": 5834.52, "end": 5835.57, "probability": 0.6568 }, { "start": 5835.9, "end": 5838.02, "probability": 0.5483 }, { "start": 5838.38, "end": 5841.46, "probability": 0.9805 }, { "start": 5841.46, "end": 5842.24, "probability": 0.7921 }, { "start": 5842.82, "end": 5843.46, "probability": 0.8345 }, { "start": 5853.66, "end": 5855.24, "probability": 0.826 }, { "start": 5862.06, "end": 5863.22, "probability": 0.7191 }, { "start": 5863.84, "end": 5867.5, "probability": 0.9513 }, { "start": 5868.3, "end": 5872.66, "probability": 0.9663 }, { "start": 5873.64, "end": 5875.86, "probability": 0.7486 }, { "start": 5877.4, "end": 5879.34, "probability": 0.177 }, { "start": 5879.54, "end": 5881.65, "probability": 0.455 }, { "start": 5881.84, "end": 5883.07, "probability": 0.6021 }, { "start": 5883.94, "end": 5887.12, "probability": 0.9937 }, { "start": 5887.12, "end": 5891.88, "probability": 0.9956 }, { "start": 5891.98, "end": 5896.16, "probability": 0.978 }, { "start": 5896.94, "end": 5901.44, "probability": 0.9738 }, { "start": 5902.19, "end": 5907.94, "probability": 0.985 }, { "start": 5907.96, "end": 5912.86, "probability": 0.997 }, { "start": 5913.88, "end": 5915.94, "probability": 0.999 }, { "start": 5916.54, "end": 5919.0, "probability": 0.6119 }, { "start": 5919.94, "end": 5922.34, "probability": 0.9989 }, { "start": 5923.16, "end": 5923.76, "probability": 0.8685 }, { "start": 5925.12, "end": 5926.08, "probability": 0.0818 }, { "start": 5927.7, "end": 5930.16, "probability": 0.3412 }, { "start": 5931.06, "end": 5932.1, "probability": 0.6368 }, { "start": 5932.4, "end": 5932.4, "probability": 0.77 }, { "start": 5932.82, "end": 5933.26, "probability": 0.5576 }, { "start": 5933.72, "end": 5935.7, "probability": 0.8309 }, { "start": 5935.78, "end": 5939.22, "probability": 0.9067 }, { "start": 5940.18, "end": 5941.26, "probability": 0.0502 }, { "start": 5941.26, "end": 5941.9, "probability": 0.5508 }, { "start": 5942.44, "end": 5942.98, "probability": 0.7497 }, { "start": 5943.76, "end": 5944.9, "probability": 0.7047 }, { "start": 5945.02, "end": 5947.02, "probability": 0.8861 }, { "start": 5947.54, "end": 5949.1, "probability": 0.9907 }, { "start": 5949.24, "end": 5950.26, "probability": 0.6467 }, { "start": 5950.84, "end": 5951.62, "probability": 0.957 }, { "start": 5952.54, "end": 5954.32, "probability": 0.321 }, { "start": 5954.42, "end": 5955.42, "probability": 0.5336 }, { "start": 5956.41, "end": 5960.72, "probability": 0.8425 }, { "start": 5961.02, "end": 5961.64, "probability": 0.8156 }, { "start": 5961.86, "end": 5965.24, "probability": 0.9296 }, { "start": 5965.3, "end": 5967.18, "probability": 0.9915 }, { "start": 5967.52, "end": 5968.24, "probability": 0.7022 }, { "start": 5970.34, "end": 5970.34, "probability": 0.0568 }, { "start": 5970.34, "end": 5972.74, "probability": 0.7926 }, { "start": 5972.94, "end": 5973.44, "probability": 0.6405 }, { "start": 5973.76, "end": 5974.7, "probability": 0.1065 }, { "start": 5974.7, "end": 5975.34, "probability": 0.5861 }, { "start": 5975.96, "end": 5978.04, "probability": 0.7216 }, { "start": 5978.2, "end": 5979.64, "probability": 0.9119 }, { "start": 5980.26, "end": 5982.2, "probability": 0.915 }, { "start": 5982.98, "end": 5986.08, "probability": 0.9303 }, { "start": 5986.22, "end": 5988.5, "probability": 0.9601 }, { "start": 5988.96, "end": 5990.52, "probability": 0.9951 }, { "start": 5990.94, "end": 5992.56, "probability": 0.9754 }, { "start": 5992.64, "end": 5994.91, "probability": 0.6543 }, { "start": 5995.08, "end": 5995.94, "probability": 0.5228 }, { "start": 5996.02, "end": 5997.18, "probability": 0.7935 }, { "start": 5997.26, "end": 5997.84, "probability": 0.6554 }, { "start": 5998.4, "end": 6000.64, "probability": 0.2538 }, { "start": 6003.16, "end": 6006.48, "probability": 0.9498 }, { "start": 6006.7, "end": 6013.14, "probability": 0.8682 }, { "start": 6013.32, "end": 6014.74, "probability": 0.9917 }, { "start": 6015.68, "end": 6019.38, "probability": 0.9283 }, { "start": 6020.06, "end": 6021.12, "probability": 0.7767 }, { "start": 6021.2, "end": 6023.4, "probability": 0.6488 }, { "start": 6024.48, "end": 6028.44, "probability": 0.9534 }, { "start": 6029.16, "end": 6030.9, "probability": 0.9663 }, { "start": 6031.72, "end": 6033.58, "probability": 0.9865 }, { "start": 6034.5, "end": 6035.42, "probability": 0.868 }, { "start": 6035.64, "end": 6039.9, "probability": 0.8765 }, { "start": 6040.04, "end": 6042.67, "probability": 0.7691 }, { "start": 6044.16, "end": 6044.54, "probability": 0.783 }, { "start": 6044.72, "end": 6049.78, "probability": 0.9532 }, { "start": 6050.64, "end": 6054.46, "probability": 0.9154 }, { "start": 6055.2, "end": 6057.84, "probability": 0.9267 }, { "start": 6058.5, "end": 6059.64, "probability": 0.9827 }, { "start": 6059.78, "end": 6060.82, "probability": 0.8801 }, { "start": 6060.92, "end": 6062.5, "probability": 0.9174 }, { "start": 6063.18, "end": 6066.0, "probability": 0.9094 }, { "start": 6066.78, "end": 6071.94, "probability": 0.9816 }, { "start": 6072.02, "end": 6074.74, "probability": 0.9816 }, { "start": 6076.48, "end": 6078.76, "probability": 0.8566 }, { "start": 6079.26, "end": 6080.86, "probability": 0.9904 }, { "start": 6080.9, "end": 6084.52, "probability": 0.9697 }, { "start": 6084.52, "end": 6088.44, "probability": 0.9987 }, { "start": 6089.82, "end": 6092.32, "probability": 0.9761 }, { "start": 6093.76, "end": 6098.7, "probability": 0.9742 }, { "start": 6100.24, "end": 6101.7, "probability": 0.8472 }, { "start": 6101.78, "end": 6105.3, "probability": 0.9281 }, { "start": 6107.18, "end": 6110.0, "probability": 0.2587 }, { "start": 6111.96, "end": 6113.98, "probability": 0.341 }, { "start": 6114.96, "end": 6116.42, "probability": 0.6444 }, { "start": 6116.54, "end": 6118.18, "probability": 0.9292 }, { "start": 6118.7, "end": 6120.04, "probability": 0.5768 }, { "start": 6120.16, "end": 6121.64, "probability": 0.1035 }, { "start": 6123.5, "end": 6125.82, "probability": 0.9969 }, { "start": 6126.0, "end": 6129.84, "probability": 0.6031 }, { "start": 6130.4, "end": 6130.4, "probability": 0.2119 }, { "start": 6130.4, "end": 6133.34, "probability": 0.981 }, { "start": 6134.34, "end": 6137.1, "probability": 0.9335 }, { "start": 6137.76, "end": 6139.9, "probability": 0.9657 }, { "start": 6140.22, "end": 6141.36, "probability": 0.8389 }, { "start": 6141.78, "end": 6143.2, "probability": 0.9837 }, { "start": 6143.32, "end": 6146.58, "probability": 0.9553 }, { "start": 6147.86, "end": 6150.3, "probability": 0.8508 }, { "start": 6150.78, "end": 6151.56, "probability": 0.9263 }, { "start": 6151.76, "end": 6152.98, "probability": 0.9961 }, { "start": 6154.26, "end": 6156.26, "probability": 0.9129 }, { "start": 6156.52, "end": 6157.8, "probability": 0.9396 }, { "start": 6157.86, "end": 6159.7, "probability": 0.9501 }, { "start": 6159.82, "end": 6161.28, "probability": 0.95 }, { "start": 6161.7, "end": 6163.04, "probability": 0.9863 }, { "start": 6163.38, "end": 6165.76, "probability": 0.9912 }, { "start": 6166.42, "end": 6168.54, "probability": 0.2744 }, { "start": 6170.22, "end": 6170.44, "probability": 0.7537 }, { "start": 6170.5, "end": 6170.94, "probability": 0.5519 }, { "start": 6171.08, "end": 6171.61, "probability": 0.8857 }, { "start": 6172.12, "end": 6174.98, "probability": 0.9323 }, { "start": 6175.1, "end": 6176.32, "probability": 0.8999 }, { "start": 6176.44, "end": 6177.42, "probability": 0.8313 }, { "start": 6177.54, "end": 6178.29, "probability": 0.8989 }, { "start": 6178.66, "end": 6183.18, "probability": 0.6547 }, { "start": 6184.86, "end": 6188.74, "probability": 0.19 }, { "start": 6189.54, "end": 6189.96, "probability": 0.5907 }, { "start": 6190.04, "end": 6190.78, "probability": 0.4714 }, { "start": 6190.9, "end": 6190.9, "probability": 0.4777 }, { "start": 6190.98, "end": 6191.12, "probability": 0.0309 }, { "start": 6191.2, "end": 6194.88, "probability": 0.7407 }, { "start": 6196.51, "end": 6199.1, "probability": 0.9969 }, { "start": 6199.68, "end": 6203.76, "probability": 0.9888 }, { "start": 6205.18, "end": 6211.44, "probability": 0.9949 }, { "start": 6211.98, "end": 6213.62, "probability": 0.8474 }, { "start": 6214.22, "end": 6214.86, "probability": 0.7308 }, { "start": 6215.04, "end": 6220.72, "probability": 0.9855 }, { "start": 6220.78, "end": 6221.42, "probability": 0.5511 }, { "start": 6222.04, "end": 6224.42, "probability": 0.9561 }, { "start": 6224.6, "end": 6225.92, "probability": 0.9902 }, { "start": 6226.42, "end": 6227.52, "probability": 0.8208 }, { "start": 6227.9, "end": 6231.78, "probability": 0.9764 }, { "start": 6232.1, "end": 6235.36, "probability": 0.9126 }, { "start": 6235.44, "end": 6238.48, "probability": 0.9385 }, { "start": 6238.68, "end": 6240.4, "probability": 0.3134 }, { "start": 6240.4, "end": 6241.65, "probability": 0.9084 }, { "start": 6242.52, "end": 6243.56, "probability": 0.7897 }, { "start": 6243.66, "end": 6245.84, "probability": 0.9966 }, { "start": 6245.84, "end": 6248.9, "probability": 0.9881 }, { "start": 6249.04, "end": 6250.42, "probability": 0.5656 }, { "start": 6250.82, "end": 6253.44, "probability": 0.918 }, { "start": 6253.54, "end": 6254.98, "probability": 0.9389 }, { "start": 6255.42, "end": 6257.02, "probability": 0.8994 }, { "start": 6257.16, "end": 6260.42, "probability": 0.9717 }, { "start": 6261.26, "end": 6262.2, "probability": 0.9135 }, { "start": 6262.38, "end": 6265.38, "probability": 0.9881 }, { "start": 6265.38, "end": 6268.02, "probability": 0.9722 }, { "start": 6268.72, "end": 6274.04, "probability": 0.9897 }, { "start": 6274.04, "end": 6277.56, "probability": 0.9995 }, { "start": 6278.44, "end": 6278.9, "probability": 0.8039 }, { "start": 6279.0, "end": 6280.14, "probability": 0.9124 }, { "start": 6280.24, "end": 6281.14, "probability": 0.9971 }, { "start": 6283.9, "end": 6286.14, "probability": 0.9783 }, { "start": 6286.44, "end": 6293.44, "probability": 0.9874 }, { "start": 6293.6, "end": 6294.22, "probability": 0.7895 }, { "start": 6294.28, "end": 6296.68, "probability": 0.7986 }, { "start": 6296.68, "end": 6297.86, "probability": 0.0665 }, { "start": 6297.86, "end": 6298.59, "probability": 0.551 }, { "start": 6298.72, "end": 6301.8, "probability": 0.9189 }, { "start": 6301.94, "end": 6303.92, "probability": 0.7733 }, { "start": 6304.06, "end": 6305.24, "probability": 0.9612 }, { "start": 6305.34, "end": 6305.88, "probability": 0.6236 }, { "start": 6306.06, "end": 6309.1, "probability": 0.8093 }, { "start": 6309.58, "end": 6310.76, "probability": 0.6851 }, { "start": 6311.6, "end": 6314.18, "probability": 0.2094 }, { "start": 6318.62, "end": 6320.26, "probability": 0.6508 }, { "start": 6320.44, "end": 6321.46, "probability": 0.7994 }, { "start": 6321.54, "end": 6322.1, "probability": 0.5327 }, { "start": 6322.66, "end": 6326.26, "probability": 0.8877 }, { "start": 6326.8, "end": 6328.9, "probability": 0.9963 }, { "start": 6328.9, "end": 6330.1, "probability": 0.5664 }, { "start": 6330.19, "end": 6332.04, "probability": 0.4667 }, { "start": 6332.04, "end": 6334.76, "probability": 0.9624 }, { "start": 6335.08, "end": 6335.72, "probability": 0.9885 }, { "start": 6336.36, "end": 6341.24, "probability": 0.9821 }, { "start": 6342.3, "end": 6345.57, "probability": 0.9963 }, { "start": 6346.14, "end": 6347.72, "probability": 0.91 }, { "start": 6347.82, "end": 6350.06, "probability": 0.7833 }, { "start": 6350.68, "end": 6353.58, "probability": 0.7945 }, { "start": 6353.62, "end": 6356.01, "probability": 0.9795 }, { "start": 6356.8, "end": 6359.02, "probability": 0.6952 }, { "start": 6359.52, "end": 6362.66, "probability": 0.9937 }, { "start": 6362.72, "end": 6366.34, "probability": 0.9892 }, { "start": 6366.36, "end": 6367.42, "probability": 0.9125 }, { "start": 6367.94, "end": 6369.25, "probability": 0.9946 }, { "start": 6370.44, "end": 6372.53, "probability": 0.9912 }, { "start": 6373.18, "end": 6374.1, "probability": 0.7495 }, { "start": 6374.76, "end": 6375.78, "probability": 0.9404 }, { "start": 6376.68, "end": 6378.49, "probability": 0.9879 }, { "start": 6379.36, "end": 6381.87, "probability": 0.9937 }, { "start": 6382.4, "end": 6384.45, "probability": 0.7511 }, { "start": 6385.06, "end": 6387.58, "probability": 0.6019 }, { "start": 6387.8, "end": 6392.2, "probability": 0.8951 }, { "start": 6392.72, "end": 6395.91, "probability": 0.8624 }, { "start": 6396.94, "end": 6398.86, "probability": 0.9518 }, { "start": 6398.96, "end": 6401.84, "probability": 0.843 }, { "start": 6401.96, "end": 6403.8, "probability": 0.9973 }, { "start": 6404.56, "end": 6405.25, "probability": 0.7545 }, { "start": 6405.72, "end": 6407.96, "probability": 0.8223 }, { "start": 6408.14, "end": 6409.02, "probability": 0.9561 }, { "start": 6409.12, "end": 6410.16, "probability": 0.8777 }, { "start": 6410.18, "end": 6412.02, "probability": 0.5526 }, { "start": 6412.22, "end": 6413.44, "probability": 0.6498 }, { "start": 6414.04, "end": 6420.44, "probability": 0.9634 }, { "start": 6421.12, "end": 6423.76, "probability": 0.9278 }, { "start": 6423.78, "end": 6424.86, "probability": 0.7683 }, { "start": 6426.42, "end": 6428.78, "probability": 0.9948 }, { "start": 6429.5, "end": 6437.3, "probability": 0.9647 }, { "start": 6438.02, "end": 6443.2, "probability": 0.7684 }, { "start": 6443.2, "end": 6448.3, "probability": 0.9939 }, { "start": 6449.34, "end": 6451.06, "probability": 0.8299 }, { "start": 6451.16, "end": 6455.48, "probability": 0.9945 }, { "start": 6455.48, "end": 6457.04, "probability": 0.5804 }, { "start": 6457.44, "end": 6461.0, "probability": 0.7493 }, { "start": 6461.18, "end": 6463.96, "probability": 0.4312 }, { "start": 6463.96, "end": 6467.62, "probability": 0.7949 }, { "start": 6468.12, "end": 6470.4, "probability": 0.99 }, { "start": 6471.42, "end": 6474.96, "probability": 0.9827 }, { "start": 6475.54, "end": 6477.2, "probability": 0.9964 }, { "start": 6478.16, "end": 6481.44, "probability": 0.9594 }, { "start": 6481.54, "end": 6482.28, "probability": 0.9725 }, { "start": 6482.6, "end": 6487.78, "probability": 0.9873 }, { "start": 6488.52, "end": 6489.88, "probability": 0.7976 }, { "start": 6490.4, "end": 6493.44, "probability": 0.9771 }, { "start": 6493.74, "end": 6494.24, "probability": 0.7417 }, { "start": 6494.34, "end": 6497.14, "probability": 0.7979 }, { "start": 6498.53, "end": 6502.2, "probability": 0.9139 }, { "start": 6503.04, "end": 6504.92, "probability": 0.7462 }, { "start": 6505.0, "end": 6505.98, "probability": 0.3963 }, { "start": 6506.68, "end": 6506.98, "probability": 0.0059 }, { "start": 6514.86, "end": 6515.64, "probability": 0.0073 }, { "start": 6515.74, "end": 6516.06, "probability": 0.3129 }, { "start": 6517.2, "end": 6519.72, "probability": 0.5644 }, { "start": 6519.72, "end": 6522.44, "probability": 0.5778 }, { "start": 6523.32, "end": 6524.94, "probability": 0.4245 }, { "start": 6525.4, "end": 6526.76, "probability": 0.6662 }, { "start": 6526.9, "end": 6527.22, "probability": 0.7879 }, { "start": 6527.36, "end": 6528.16, "probability": 0.6616 }, { "start": 6528.9, "end": 6530.12, "probability": 0.728 }, { "start": 6530.3, "end": 6531.58, "probability": 0.8134 }, { "start": 6531.7, "end": 6532.66, "probability": 0.7618 }, { "start": 6532.68, "end": 6534.62, "probability": 0.4226 }, { "start": 6534.74, "end": 6536.52, "probability": 0.0137 }, { "start": 6537.24, "end": 6537.56, "probability": 0.6575 }, { "start": 6538.94, "end": 6539.75, "probability": 0.9211 }, { "start": 6541.26, "end": 6547.26, "probability": 0.9871 }, { "start": 6549.18, "end": 6551.98, "probability": 0.7003 }, { "start": 6553.24, "end": 6556.26, "probability": 0.9974 }, { "start": 6557.22, "end": 6559.29, "probability": 0.7036 }, { "start": 6560.06, "end": 6567.46, "probability": 0.7933 }, { "start": 6568.78, "end": 6571.38, "probability": 0.7713 }, { "start": 6572.64, "end": 6575.97, "probability": 0.99 }, { "start": 6576.6, "end": 6577.04, "probability": 0.9455 }, { "start": 6577.96, "end": 6578.78, "probability": 0.9374 }, { "start": 6579.4, "end": 6581.98, "probability": 0.9095 }, { "start": 6582.54, "end": 6585.38, "probability": 0.736 }, { "start": 6586.26, "end": 6587.42, "probability": 0.846 }, { "start": 6587.7, "end": 6588.48, "probability": 0.7076 }, { "start": 6588.52, "end": 6591.52, "probability": 0.9754 }, { "start": 6592.5, "end": 6596.02, "probability": 0.9694 }, { "start": 6596.18, "end": 6598.16, "probability": 0.7729 }, { "start": 6599.92, "end": 6604.08, "probability": 0.9613 }, { "start": 6605.26, "end": 6605.96, "probability": 0.5113 }, { "start": 6607.26, "end": 6607.7, "probability": 0.9346 }, { "start": 6609.52, "end": 6617.5, "probability": 0.9873 }, { "start": 6617.58, "end": 6623.14, "probability": 0.9828 }, { "start": 6623.9, "end": 6629.26, "probability": 0.7224 }, { "start": 6630.86, "end": 6632.72, "probability": 0.8948 }, { "start": 6634.1, "end": 6636.7, "probability": 0.9668 }, { "start": 6637.38, "end": 6640.24, "probability": 0.975 }, { "start": 6641.92, "end": 6645.08, "probability": 0.7735 }, { "start": 6646.16, "end": 6649.14, "probability": 0.7953 }, { "start": 6650.4, "end": 6651.34, "probability": 0.8933 }, { "start": 6651.9, "end": 6653.04, "probability": 0.8639 }, { "start": 6653.94, "end": 6659.38, "probability": 0.8158 }, { "start": 6659.5, "end": 6664.42, "probability": 0.9743 }, { "start": 6664.96, "end": 6667.3, "probability": 0.6555 }, { "start": 6667.94, "end": 6668.56, "probability": 0.4493 }, { "start": 6670.34, "end": 6673.91, "probability": 0.8659 }, { "start": 6675.6, "end": 6676.66, "probability": 0.9277 }, { "start": 6678.2, "end": 6681.92, "probability": 0.9583 }, { "start": 6682.42, "end": 6683.72, "probability": 0.8201 }, { "start": 6684.52, "end": 6685.28, "probability": 0.9761 }, { "start": 6685.42, "end": 6688.38, "probability": 0.9756 }, { "start": 6691.64, "end": 6693.82, "probability": 0.667 }, { "start": 6696.04, "end": 6698.18, "probability": 0.971 }, { "start": 6699.62, "end": 6700.94, "probability": 0.988 }, { "start": 6702.04, "end": 6704.4, "probability": 0.991 }, { "start": 6706.04, "end": 6706.78, "probability": 0.8236 }, { "start": 6707.94, "end": 6708.45, "probability": 0.9238 }, { "start": 6709.34, "end": 6711.38, "probability": 0.7124 }, { "start": 6712.38, "end": 6718.92, "probability": 0.979 }, { "start": 6719.02, "end": 6719.54, "probability": 0.6008 }, { "start": 6720.72, "end": 6722.44, "probability": 0.915 }, { "start": 6723.34, "end": 6724.46, "probability": 0.672 }, { "start": 6725.14, "end": 6729.22, "probability": 0.6491 }, { "start": 6729.84, "end": 6731.54, "probability": 0.7817 }, { "start": 6732.72, "end": 6735.3, "probability": 0.9939 }, { "start": 6736.14, "end": 6737.44, "probability": 0.9746 }, { "start": 6738.82, "end": 6740.57, "probability": 0.9749 }, { "start": 6741.48, "end": 6745.34, "probability": 0.9415 }, { "start": 6747.04, "end": 6747.54, "probability": 0.5418 }, { "start": 6748.66, "end": 6751.08, "probability": 0.9568 }, { "start": 6752.2, "end": 6753.88, "probability": 0.9462 }, { "start": 6754.52, "end": 6755.5, "probability": 0.9694 }, { "start": 6756.48, "end": 6759.74, "probability": 0.9691 }, { "start": 6761.76, "end": 6762.88, "probability": 0.7387 }, { "start": 6763.98, "end": 6766.86, "probability": 0.8949 }, { "start": 6766.86, "end": 6770.26, "probability": 0.9551 }, { "start": 6770.3, "end": 6770.9, "probability": 0.7433 }, { "start": 6771.36, "end": 6772.22, "probability": 0.8996 }, { "start": 6772.36, "end": 6774.48, "probability": 0.9816 }, { "start": 6774.68, "end": 6775.3, "probability": 0.9785 }, { "start": 6775.66, "end": 6776.64, "probability": 0.9335 }, { "start": 6777.0, "end": 6777.88, "probability": 0.8472 }, { "start": 6778.34, "end": 6779.74, "probability": 0.4907 }, { "start": 6779.82, "end": 6781.52, "probability": 0.7186 }, { "start": 6782.06, "end": 6783.78, "probability": 0.9645 }, { "start": 6784.36, "end": 6785.84, "probability": 0.1044 }, { "start": 6786.02, "end": 6786.26, "probability": 0.4822 }, { "start": 6787.54, "end": 6787.8, "probability": 0.7493 }, { "start": 6788.32, "end": 6788.39, "probability": 0.0327 }, { "start": 6789.04, "end": 6790.1, "probability": 0.0386 }, { "start": 6790.1, "end": 6796.86, "probability": 0.2034 }, { "start": 6797.28, "end": 6800.02, "probability": 0.2348 }, { "start": 6800.7, "end": 6801.48, "probability": 0.3839 }, { "start": 6801.68, "end": 6801.94, "probability": 0.4086 }, { "start": 6802.2, "end": 6805.68, "probability": 0.2721 }, { "start": 6806.18, "end": 6808.7, "probability": 0.5019 }, { "start": 6808.7, "end": 6811.08, "probability": 0.8857 }, { "start": 6811.12, "end": 6812.06, "probability": 0.225 }, { "start": 6812.16, "end": 6815.7, "probability": 0.5923 }, { "start": 6815.8, "end": 6816.26, "probability": 0.5179 }, { "start": 6816.36, "end": 6819.92, "probability": 0.6077 }, { "start": 6820.06, "end": 6821.0, "probability": 0.835 }, { "start": 6821.46, "end": 6822.14, "probability": 0.1263 }, { "start": 6822.14, "end": 6822.42, "probability": 0.3467 }, { "start": 6822.66, "end": 6823.18, "probability": 0.4347 }, { "start": 6823.18, "end": 6825.18, "probability": 0.6291 }, { "start": 6825.52, "end": 6827.32, "probability": 0.9277 }, { "start": 6827.38, "end": 6828.1, "probability": 0.2162 }, { "start": 6829.8, "end": 6830.6, "probability": 0.3672 }, { "start": 6830.84, "end": 6832.82, "probability": 0.9849 }, { "start": 6832.92, "end": 6835.22, "probability": 0.8164 }, { "start": 6835.8, "end": 6839.96, "probability": 0.9244 }, { "start": 6840.12, "end": 6844.18, "probability": 0.3172 }, { "start": 6845.26, "end": 6845.7, "probability": 0.5742 }, { "start": 6845.78, "end": 6847.02, "probability": 0.5532 }, { "start": 6847.1, "end": 6848.89, "probability": 0.9211 }, { "start": 6849.62, "end": 6850.14, "probability": 0.053 }, { "start": 6851.92, "end": 6855.22, "probability": 0.7388 }, { "start": 6855.94, "end": 6856.1, "probability": 0.3161 }, { "start": 6856.1, "end": 6856.1, "probability": 0.2666 }, { "start": 6856.1, "end": 6858.52, "probability": 0.9526 }, { "start": 6858.68, "end": 6862.04, "probability": 0.967 }, { "start": 6862.64, "end": 6864.18, "probability": 0.6182 }, { "start": 6864.34, "end": 6864.76, "probability": 0.5266 }, { "start": 6864.86, "end": 6865.48, "probability": 0.567 }, { "start": 6865.62, "end": 6867.32, "probability": 0.7869 }, { "start": 6867.5, "end": 6868.48, "probability": 0.8013 }, { "start": 6869.12, "end": 6870.18, "probability": 0.8846 }, { "start": 6870.34, "end": 6870.84, "probability": 0.5783 }, { "start": 6870.98, "end": 6871.26, "probability": 0.7988 }, { "start": 6871.8, "end": 6872.18, "probability": 0.9196 }, { "start": 6872.27, "end": 6877.14, "probability": 0.9619 }, { "start": 6877.14, "end": 6877.98, "probability": 0.6042 }, { "start": 6878.2, "end": 6880.1, "probability": 0.6305 }, { "start": 6880.14, "end": 6881.6, "probability": 0.8558 }, { "start": 6881.66, "end": 6882.42, "probability": 0.8105 }, { "start": 6882.42, "end": 6882.44, "probability": 0.34 }, { "start": 6882.58, "end": 6883.24, "probability": 0.8901 }, { "start": 6883.4, "end": 6884.4, "probability": 0.9243 }, { "start": 6884.68, "end": 6886.28, "probability": 0.9866 }, { "start": 6887.04, "end": 6889.88, "probability": 0.8252 }, { "start": 6890.8, "end": 6891.9, "probability": 0.2398 }, { "start": 6892.94, "end": 6892.96, "probability": 0.2464 }, { "start": 6892.97, "end": 6894.98, "probability": 0.377 }, { "start": 6895.18, "end": 6896.32, "probability": 0.953 }, { "start": 6896.4, "end": 6896.84, "probability": 0.7284 }, { "start": 6897.0, "end": 6900.48, "probability": 0.9772 }, { "start": 6900.54, "end": 6901.38, "probability": 0.7691 }, { "start": 6901.58, "end": 6906.86, "probability": 0.9736 }, { "start": 6907.04, "end": 6910.88, "probability": 0.9569 }, { "start": 6910.96, "end": 6911.24, "probability": 0.3674 }, { "start": 6911.45, "end": 6915.56, "probability": 0.7313 }, { "start": 6916.24, "end": 6921.84, "probability": 0.8859 }, { "start": 6931.62, "end": 6931.62, "probability": 0.5379 }, { "start": 6931.62, "end": 6935.86, "probability": 0.4236 }, { "start": 6936.1, "end": 6939.1, "probability": 0.8828 }, { "start": 6940.18, "end": 6943.9, "probability": 0.9941 }, { "start": 6944.26, "end": 6945.0, "probability": 0.2806 }, { "start": 6945.66, "end": 6945.9, "probability": 0.8909 }, { "start": 6946.54, "end": 6946.54, "probability": 0.0547 }, { "start": 6946.54, "end": 6946.9, "probability": 0.2749 }, { "start": 6946.9, "end": 6947.76, "probability": 0.6667 }, { "start": 6947.88, "end": 6949.56, "probability": 0.8794 }, { "start": 6951.06, "end": 6953.52, "probability": 0.9757 }, { "start": 6953.52, "end": 6955.96, "probability": 0.9863 }, { "start": 6956.16, "end": 6957.92, "probability": 0.7098 }, { "start": 6959.78, "end": 6960.26, "probability": 0.7553 }, { "start": 6960.38, "end": 6963.7, "probability": 0.9927 }, { "start": 6963.82, "end": 6965.16, "probability": 0.9795 }, { "start": 6966.12, "end": 6969.84, "probability": 0.9966 }, { "start": 6970.88, "end": 6972.86, "probability": 0.9667 }, { "start": 6972.98, "end": 6975.8, "probability": 0.9988 }, { "start": 6975.9, "end": 6977.18, "probability": 0.884 }, { "start": 6978.0, "end": 6978.92, "probability": 0.5999 }, { "start": 6979.16, "end": 6980.44, "probability": 0.8472 }, { "start": 6980.5, "end": 6981.96, "probability": 0.1372 }, { "start": 6981.96, "end": 6982.34, "probability": 0.4438 }, { "start": 6982.62, "end": 6983.02, "probability": 0.3934 }, { "start": 6983.02, "end": 6983.6, "probability": 0.5404 }, { "start": 6984.84, "end": 6986.12, "probability": 0.0281 }, { "start": 6986.12, "end": 6988.53, "probability": 0.7779 }, { "start": 6988.62, "end": 6989.4, "probability": 0.0341 }, { "start": 6991.92, "end": 6995.1, "probability": 0.2461 }, { "start": 6995.78, "end": 6996.26, "probability": 0.1431 }, { "start": 6996.26, "end": 6996.26, "probability": 0.3532 }, { "start": 6996.26, "end": 6998.26, "probability": 0.5811 }, { "start": 6998.46, "end": 7000.26, "probability": 0.7991 }, { "start": 7000.36, "end": 7001.26, "probability": 0.794 }, { "start": 7001.42, "end": 7002.66, "probability": 0.8723 }, { "start": 7002.86, "end": 7004.1, "probability": 0.7822 }, { "start": 7004.2, "end": 7007.94, "probability": 0.9941 }, { "start": 7007.94, "end": 7011.32, "probability": 0.9979 }, { "start": 7011.38, "end": 7011.96, "probability": 0.7544 }, { "start": 7012.5, "end": 7015.2, "probability": 0.7155 }, { "start": 7015.72, "end": 7017.38, "probability": 0.4886 }, { "start": 7017.54, "end": 7019.68, "probability": 0.6473 }, { "start": 7021.86, "end": 7022.08, "probability": 0.2798 }, { "start": 7022.84, "end": 7026.28, "probability": 0.1701 }, { "start": 7026.76, "end": 7028.06, "probability": 0.1473 }, { "start": 7028.68, "end": 7029.72, "probability": 0.7139 }, { "start": 7030.14, "end": 7032.96, "probability": 0.6334 }, { "start": 7033.08, "end": 7034.36, "probability": 0.333 }, { "start": 7035.8, "end": 7037.38, "probability": 0.8491 }, { "start": 7038.52, "end": 7039.78, "probability": 0.8238 }, { "start": 7040.0, "end": 7041.02, "probability": 0.8779 }, { "start": 7041.74, "end": 7047.92, "probability": 0.9933 }, { "start": 7048.68, "end": 7053.14, "probability": 0.9954 }, { "start": 7053.76, "end": 7058.22, "probability": 0.6983 }, { "start": 7058.92, "end": 7062.94, "probability": 0.9927 }, { "start": 7063.62, "end": 7064.62, "probability": 0.9995 }, { "start": 7065.36, "end": 7071.98, "probability": 0.9783 }, { "start": 7072.32, "end": 7073.5, "probability": 0.2992 }, { "start": 7073.82, "end": 7074.34, "probability": 0.4772 }, { "start": 7074.34, "end": 7075.56, "probability": 0.796 }, { "start": 7076.16, "end": 7076.68, "probability": 0.977 }, { "start": 7077.14, "end": 7080.16, "probability": 0.9618 }, { "start": 7080.6, "end": 7082.1, "probability": 0.9002 }, { "start": 7082.62, "end": 7085.72, "probability": 0.9299 }, { "start": 7086.12, "end": 7086.68, "probability": 0.4942 }, { "start": 7087.14, "end": 7088.24, "probability": 0.9743 }, { "start": 7088.78, "end": 7090.8, "probability": 0.9691 }, { "start": 7090.8, "end": 7091.74, "probability": 0.9688 }, { "start": 7092.46, "end": 7094.26, "probability": 0.9031 }, { "start": 7094.4, "end": 7095.18, "probability": 0.9299 }, { "start": 7095.68, "end": 7098.02, "probability": 0.9485 }, { "start": 7098.52, "end": 7099.08, "probability": 0.9312 }, { "start": 7099.26, "end": 7101.92, "probability": 0.9388 }, { "start": 7102.3, "end": 7104.12, "probability": 0.9651 }, { "start": 7104.74, "end": 7105.56, "probability": 0.7135 }, { "start": 7105.96, "end": 7106.76, "probability": 0.4881 }, { "start": 7107.1, "end": 7110.92, "probability": 0.8721 }, { "start": 7111.48, "end": 7114.54, "probability": 0.9653 }, { "start": 7115.72, "end": 7115.72, "probability": 0.0213 }, { "start": 7115.72, "end": 7115.86, "probability": 0.0409 }, { "start": 7115.86, "end": 7116.1, "probability": 0.7318 }, { "start": 7116.22, "end": 7118.35, "probability": 0.9683 }, { "start": 7118.78, "end": 7118.78, "probability": 0.1944 }, { "start": 7118.78, "end": 7118.78, "probability": 0.0388 }, { "start": 7118.78, "end": 7118.78, "probability": 0.0653 }, { "start": 7118.78, "end": 7120.56, "probability": 0.522 }, { "start": 7120.56, "end": 7124.88, "probability": 0.9784 }, { "start": 7125.22, "end": 7128.7, "probability": 0.8677 }, { "start": 7129.38, "end": 7135.96, "probability": 0.9789 }, { "start": 7135.96, "end": 7142.94, "probability": 0.9924 }, { "start": 7143.54, "end": 7147.04, "probability": 0.9126 }, { "start": 7147.5, "end": 7149.66, "probability": 0.9949 }, { "start": 7150.12, "end": 7151.14, "probability": 0.8438 }, { "start": 7151.94, "end": 7155.18, "probability": 0.9544 }, { "start": 7155.72, "end": 7156.88, "probability": 0.7718 }, { "start": 7157.28, "end": 7159.8, "probability": 0.8639 }, { "start": 7160.0, "end": 7162.72, "probability": 0.9707 }, { "start": 7163.14, "end": 7164.82, "probability": 0.9706 }, { "start": 7165.24, "end": 7168.54, "probability": 0.9937 }, { "start": 7169.14, "end": 7170.28, "probability": 0.9353 }, { "start": 7170.76, "end": 7171.42, "probability": 0.7364 }, { "start": 7171.64, "end": 7175.84, "probability": 0.9979 }, { "start": 7176.18, "end": 7178.68, "probability": 0.991 }, { "start": 7178.86, "end": 7179.82, "probability": 0.751 }, { "start": 7180.32, "end": 7182.8, "probability": 0.9587 }, { "start": 7183.36, "end": 7185.18, "probability": 0.3571 }, { "start": 7186.68, "end": 7189.66, "probability": 0.2547 }, { "start": 7189.92, "end": 7191.38, "probability": 0.1565 }, { "start": 7191.64, "end": 7192.64, "probability": 0.7327 }, { "start": 7192.64, "end": 7194.04, "probability": 0.8819 }, { "start": 7194.16, "end": 7197.2, "probability": 0.9842 }, { "start": 7197.66, "end": 7202.14, "probability": 0.9976 }, { "start": 7202.56, "end": 7205.54, "probability": 0.9797 }, { "start": 7205.84, "end": 7208.96, "probability": 0.996 }, { "start": 7209.54, "end": 7210.48, "probability": 0.6454 }, { "start": 7210.52, "end": 7215.66, "probability": 0.9957 }, { "start": 7216.44, "end": 7220.4, "probability": 0.6108 }, { "start": 7222.46, "end": 7226.26, "probability": 0.7841 }, { "start": 7227.16, "end": 7230.08, "probability": 0.9798 }, { "start": 7231.22, "end": 7239.0, "probability": 0.9316 }, { "start": 7239.62, "end": 7243.44, "probability": 0.9902 }, { "start": 7244.1, "end": 7245.44, "probability": 0.8073 }, { "start": 7245.98, "end": 7248.82, "probability": 0.912 }, { "start": 7249.36, "end": 7251.76, "probability": 0.8845 }, { "start": 7252.12, "end": 7255.76, "probability": 0.989 }, { "start": 7256.24, "end": 7260.96, "probability": 0.8579 }, { "start": 7261.02, "end": 7261.52, "probability": 0.7538 }, { "start": 7263.52, "end": 7263.66, "probability": 0.0595 }, { "start": 7263.66, "end": 7264.34, "probability": 0.1923 }, { "start": 7264.62, "end": 7266.52, "probability": 0.5454 }, { "start": 7274.36, "end": 7276.32, "probability": 0.0316 }, { "start": 7276.96, "end": 7277.7, "probability": 0.7355 }, { "start": 7280.64, "end": 7281.66, "probability": 0.6302 }, { "start": 7283.66, "end": 7285.52, "probability": 0.712 }, { "start": 7286.48, "end": 7289.96, "probability": 0.8846 }, { "start": 7290.92, "end": 7292.48, "probability": 0.5137 }, { "start": 7292.98, "end": 7295.63, "probability": 0.6691 }, { "start": 7296.62, "end": 7297.2, "probability": 0.8713 }, { "start": 7297.8, "end": 7298.84, "probability": 0.8906 }, { "start": 7299.88, "end": 7302.06, "probability": 0.744 }, { "start": 7303.92, "end": 7304.94, "probability": 0.8857 }, { "start": 7305.28, "end": 7308.18, "probability": 0.9692 }, { "start": 7308.56, "end": 7309.1, "probability": 0.7651 }, { "start": 7309.18, "end": 7310.14, "probability": 0.9351 }, { "start": 7310.2, "end": 7310.7, "probability": 0.8744 }, { "start": 7310.72, "end": 7311.01, "probability": 0.4949 }, { "start": 7311.26, "end": 7311.6, "probability": 0.7452 }, { "start": 7312.34, "end": 7313.36, "probability": 0.9127 }, { "start": 7315.04, "end": 7317.22, "probability": 0.9495 }, { "start": 7317.74, "end": 7319.34, "probability": 0.9162 }, { "start": 7319.84, "end": 7320.54, "probability": 0.4047 }, { "start": 7320.68, "end": 7321.08, "probability": 0.2912 }, { "start": 7321.24, "end": 7321.76, "probability": 0.3196 }, { "start": 7321.82, "end": 7322.6, "probability": 0.765 }, { "start": 7323.16, "end": 7324.48, "probability": 0.8499 }, { "start": 7325.48, "end": 7327.21, "probability": 0.7756 }, { "start": 7328.34, "end": 7329.82, "probability": 0.8577 }, { "start": 7330.86, "end": 7332.32, "probability": 0.6479 }, { "start": 7332.44, "end": 7333.38, "probability": 0.532 }, { "start": 7333.42, "end": 7334.42, "probability": 0.9221 }, { "start": 7334.62, "end": 7336.68, "probability": 0.7154 }, { "start": 7336.82, "end": 7338.34, "probability": 0.7719 }, { "start": 7339.08, "end": 7339.74, "probability": 0.5071 }, { "start": 7339.84, "end": 7343.16, "probability": 0.939 }, { "start": 7343.8, "end": 7346.5, "probability": 0.9733 }, { "start": 7347.44, "end": 7349.28, "probability": 0.9133 }, { "start": 7354.87, "end": 7354.87, "probability": 0.1651 }, { "start": 7354.87, "end": 7355.12, "probability": 0.6335 }, { "start": 7355.51, "end": 7357.41, "probability": 0.8572 }, { "start": 7357.47, "end": 7358.38, "probability": 0.7658 }, { "start": 7359.59, "end": 7360.82, "probability": 0.9332 }, { "start": 7361.99, "end": 7363.57, "probability": 0.8811 }, { "start": 7363.67, "end": 7365.36, "probability": 0.9187 }, { "start": 7365.51, "end": 7366.63, "probability": 0.8934 }, { "start": 7367.17, "end": 7368.87, "probability": 0.552 }, { "start": 7370.41, "end": 7372.54, "probability": 0.9805 }, { "start": 7373.17, "end": 7374.71, "probability": 0.9362 }, { "start": 7375.23, "end": 7376.57, "probability": 0.9976 }, { "start": 7377.69, "end": 7380.45, "probability": 0.7579 }, { "start": 7381.03, "end": 7383.07, "probability": 0.7899 }, { "start": 7383.77, "end": 7384.91, "probability": 0.989 }, { "start": 7385.71, "end": 7386.53, "probability": 0.6093 }, { "start": 7386.65, "end": 7390.31, "probability": 0.8985 }, { "start": 7391.05, "end": 7394.37, "probability": 0.9489 }, { "start": 7395.77, "end": 7397.77, "probability": 0.9969 }, { "start": 7397.77, "end": 7399.97, "probability": 0.8844 }, { "start": 7400.6, "end": 7402.65, "probability": 0.9548 }, { "start": 7403.85, "end": 7404.31, "probability": 0.785 }, { "start": 7405.13, "end": 7406.19, "probability": 0.9043 }, { "start": 7406.89, "end": 7407.86, "probability": 0.7332 }, { "start": 7408.71, "end": 7410.09, "probability": 0.6157 }, { "start": 7411.53, "end": 7413.39, "probability": 0.9894 }, { "start": 7413.97, "end": 7414.81, "probability": 0.7582 }, { "start": 7415.83, "end": 7417.78, "probability": 0.9115 }, { "start": 7418.47, "end": 7419.11, "probability": 0.5553 }, { "start": 7420.19, "end": 7420.73, "probability": 0.5607 }, { "start": 7421.79, "end": 7424.03, "probability": 0.9987 }, { "start": 7425.35, "end": 7427.37, "probability": 0.8916 }, { "start": 7427.95, "end": 7428.43, "probability": 0.7885 }, { "start": 7429.25, "end": 7430.7, "probability": 0.9033 }, { "start": 7431.29, "end": 7432.41, "probability": 0.9365 }, { "start": 7433.07, "end": 7435.77, "probability": 0.9948 }, { "start": 7436.39, "end": 7438.77, "probability": 0.9209 }, { "start": 7439.71, "end": 7440.73, "probability": 0.7283 }, { "start": 7440.81, "end": 7441.97, "probability": 0.9816 }, { "start": 7443.71, "end": 7444.49, "probability": 0.5253 }, { "start": 7444.67, "end": 7447.38, "probability": 0.7648 }, { "start": 7448.15, "end": 7450.97, "probability": 0.9188 }, { "start": 7451.43, "end": 7452.61, "probability": 0.9623 }, { "start": 7452.99, "end": 7457.13, "probability": 0.9849 }, { "start": 7457.37, "end": 7459.01, "probability": 0.6393 }, { "start": 7459.29, "end": 7460.03, "probability": 0.6044 }, { "start": 7460.21, "end": 7462.09, "probability": 0.7602 }, { "start": 7462.47, "end": 7463.47, "probability": 0.6748 }, { "start": 7463.59, "end": 7464.97, "probability": 0.7547 }, { "start": 7464.97, "end": 7466.25, "probability": 0.9591 }, { "start": 7466.31, "end": 7466.65, "probability": 0.8033 }, { "start": 7467.15, "end": 7468.79, "probability": 0.8573 }, { "start": 7469.21, "end": 7470.91, "probability": 0.8152 }, { "start": 7472.19, "end": 7477.19, "probability": 0.9536 }, { "start": 7477.19, "end": 7477.91, "probability": 0.5148 }, { "start": 7478.03, "end": 7479.03, "probability": 0.2916 }, { "start": 7479.65, "end": 7481.59, "probability": 0.8765 }, { "start": 7482.37, "end": 7483.03, "probability": 0.6844 }, { "start": 7483.41, "end": 7484.09, "probability": 0.5698 }, { "start": 7484.59, "end": 7485.17, "probability": 0.5024 }, { "start": 7485.65, "end": 7489.01, "probability": 0.0874 }, { "start": 7489.01, "end": 7489.31, "probability": 0.052 }, { "start": 7501.35, "end": 7501.87, "probability": 0.0267 }, { "start": 7502.81, "end": 7504.67, "probability": 0.1429 }, { "start": 7504.93, "end": 7509.13, "probability": 0.6872 }, { "start": 7509.59, "end": 7511.73, "probability": 0.9505 }, { "start": 7511.73, "end": 7514.41, "probability": 0.9828 }, { "start": 7515.05, "end": 7515.05, "probability": 0.0001 }, { "start": 7515.71, "end": 7518.45, "probability": 0.3516 }, { "start": 7518.75, "end": 7519.39, "probability": 0.5337 }, { "start": 7520.03, "end": 7522.75, "probability": 0.7572 }, { "start": 7522.91, "end": 7525.27, "probability": 0.8846 }, { "start": 7525.77, "end": 7526.73, "probability": 0.6344 }, { "start": 7527.23, "end": 7531.13, "probability": 0.8406 }, { "start": 7531.37, "end": 7531.67, "probability": 0.8707 }, { "start": 7532.17, "end": 7533.65, "probability": 0.8936 }, { "start": 7535.61, "end": 7540.89, "probability": 0.9664 }, { "start": 7542.19, "end": 7543.61, "probability": 0.8343 }, { "start": 7543.81, "end": 7545.15, "probability": 0.0792 }, { "start": 7545.25, "end": 7547.65, "probability": 0.0282 }, { "start": 7547.65, "end": 7547.85, "probability": 0.1455 }, { "start": 7547.85, "end": 7548.73, "probability": 0.2475 }, { "start": 7555.87, "end": 7555.97, "probability": 0.1559 }, { "start": 7566.37, "end": 7569.67, "probability": 0.1368 }, { "start": 7574.49, "end": 7576.69, "probability": 0.437 }, { "start": 7576.79, "end": 7578.61, "probability": 0.2785 }, { "start": 7578.61, "end": 7579.61, "probability": 0.028 }, { "start": 7579.61, "end": 7581.03, "probability": 0.0977 }, { "start": 7581.43, "end": 7583.11, "probability": 0.2515 }, { "start": 7646.0, "end": 7646.0, "probability": 0.0 }, { "start": 7646.0, "end": 7646.0, "probability": 0.0 }, { "start": 7646.0, "end": 7646.0, "probability": 0.0 }, { "start": 7646.0, "end": 7646.0, "probability": 0.0 }, { "start": 7646.0, "end": 7646.0, "probability": 0.0 }, { "start": 7646.0, "end": 7646.0, "probability": 0.0 }, { "start": 7646.0, "end": 7646.0, "probability": 0.0 }, { "start": 7646.0, "end": 7646.0, "probability": 0.0 }, { "start": 7646.0, "end": 7646.0, "probability": 0.0 }, { "start": 7646.0, "end": 7646.0, "probability": 0.0 }, { "start": 7646.0, "end": 7646.0, "probability": 0.0 }, { "start": 7646.0, "end": 7646.0, "probability": 0.0 }, { "start": 7646.0, "end": 7646.0, "probability": 0.0 }, { "start": 7646.0, "end": 7646.0, "probability": 0.0 }, { "start": 7646.0, "end": 7646.0, "probability": 0.0 }, { "start": 7646.0, "end": 7646.0, "probability": 0.0 }, { "start": 7646.0, "end": 7646.0, "probability": 0.0 }, { "start": 7646.0, "end": 7646.0, "probability": 0.0 }, { "start": 7646.0, "end": 7646.0, "probability": 0.0 }, { "start": 7646.0, "end": 7646.0, "probability": 0.0 }, { "start": 7646.0, "end": 7646.0, "probability": 0.0 }, { "start": 7646.0, "end": 7646.0, "probability": 0.0 }, { "start": 7646.0, "end": 7646.0, "probability": 0.0 }, { "start": 7646.0, "end": 7646.0, "probability": 0.0 }, { "start": 7646.0, "end": 7646.0, "probability": 0.0 }, { "start": 7646.0, "end": 7646.0, "probability": 0.0 }, { "start": 7646.0, "end": 7646.0, "probability": 0.0 }, { "start": 7646.0, "end": 7646.0, "probability": 0.0 }, { "start": 7646.0, "end": 7646.0, "probability": 0.0 }, { "start": 7676.36, "end": 7677.88, "probability": 0.4617 }, { "start": 7678.3, "end": 7680.04, "probability": 0.8365 }, { "start": 7680.04, "end": 7681.82, "probability": 0.7516 }, { "start": 7681.9, "end": 7684.11, "probability": 0.6281 }, { "start": 7684.9, "end": 7687.68, "probability": 0.578 }, { "start": 7687.68, "end": 7688.17, "probability": 0.6057 }, { "start": 7689.6, "end": 7692.54, "probability": 0.2576 }, { "start": 7693.06, "end": 7693.06, "probability": 0.2374 }, { "start": 7693.06, "end": 7693.72, "probability": 0.576 }, { "start": 7693.76, "end": 7694.42, "probability": 0.5233 }, { "start": 7793.0, "end": 7793.0, "probability": 0.0 }, { "start": 7793.0, "end": 7793.0, "probability": 0.0 }, { "start": 7793.0, "end": 7793.0, "probability": 0.0 }, { "start": 7793.0, "end": 7793.0, "probability": 0.0 }, { "start": 7793.0, "end": 7793.0, "probability": 0.0 }, { "start": 7793.0, "end": 7793.0, "probability": 0.0 }, { "start": 7793.0, "end": 7793.0, "probability": 0.0 }, { "start": 7793.0, "end": 7793.0, "probability": 0.0 }, { "start": 7793.0, "end": 7793.0, "probability": 0.0 }, { "start": 7793.0, "end": 7793.0, "probability": 0.0 }, { "start": 7793.0, "end": 7793.0, "probability": 0.0 }, { "start": 7793.0, "end": 7793.0, "probability": 0.0 }, { "start": 7793.0, "end": 7793.0, "probability": 0.0 }, { "start": 7793.0, "end": 7793.0, "probability": 0.0 }, { "start": 7793.0, "end": 7793.0, "probability": 0.0 }, { "start": 7793.0, "end": 7793.0, "probability": 0.0 }, { "start": 7793.0, "end": 7793.0, "probability": 0.0 }, { "start": 7793.0, "end": 7793.0, "probability": 0.0 }, { "start": 7793.0, "end": 7793.0, "probability": 0.0 }, { "start": 7793.0, "end": 7793.0, "probability": 0.0 }, { "start": 7793.0, "end": 7793.0, "probability": 0.0 }, { "start": 7793.0, "end": 7793.0, "probability": 0.0 }, { "start": 7793.0, "end": 7793.0, "probability": 0.0 }, { "start": 7793.0, "end": 7793.0, "probability": 0.0 }, { "start": 7793.0, "end": 7793.0, "probability": 0.0 }, { "start": 7793.0, "end": 7793.0, "probability": 0.0 }, { "start": 7793.0, "end": 7793.0, "probability": 0.0 }, { "start": 7793.0, "end": 7793.0, "probability": 0.0 }, { "start": 7793.0, "end": 7793.0, "probability": 0.0 }, { "start": 7793.0, "end": 7793.0, "probability": 0.0 }, { "start": 7793.0, "end": 7793.0, "probability": 0.0 }, { "start": 7793.0, "end": 7793.0, "probability": 0.0 }, { "start": 7793.0, "end": 7793.0, "probability": 0.0 }, { "start": 7793.0, "end": 7793.0, "probability": 0.0 }, { "start": 7793.0, "end": 7793.0, "probability": 0.0 }, { "start": 7793.0, "end": 7793.0, "probability": 0.0 }, { "start": 7793.0, "end": 7793.0, "probability": 0.0 }, { "start": 7793.0, "end": 7793.0, "probability": 0.0 }, { "start": 7793.0, "end": 7793.0, "probability": 0.0 }, { "start": 7793.0, "end": 7793.0, "probability": 0.0 }, { "start": 7793.0, "end": 7793.0, "probability": 0.0 }, { "start": 7793.0, "end": 7793.0, "probability": 0.0 }, { "start": 7793.0, "end": 7793.0, "probability": 0.0 }, { "start": 7793.0, "end": 7793.0, "probability": 0.0 }, { "start": 7793.0, "end": 7793.0, "probability": 0.0 }, { "start": 7793.0, "end": 7793.0, "probability": 0.0 }, { "start": 7793.0, "end": 7793.0, "probability": 0.0 }, { "start": 7793.0, "end": 7793.0, "probability": 0.0 }, { "start": 7793.0, "end": 7793.0, "probability": 0.0 }, { "start": 7793.0, "end": 7793.0, "probability": 0.0 }, { "start": 7793.0, "end": 7793.0, "probability": 0.0 }, { "start": 7793.0, "end": 7793.0, "probability": 0.0 }, { "start": 7793.24, "end": 7795.92, "probability": 0.6511 }, { "start": 7797.32, "end": 7799.52, "probability": 0.7627 }, { "start": 7799.52, "end": 7800.29, "probability": 0.5521 }, { "start": 7800.78, "end": 7803.9, "probability": 0.7631 }, { "start": 7805.0, "end": 7807.58, "probability": 0.4941 }, { "start": 7807.66, "end": 7808.42, "probability": 0.5829 }, { "start": 7808.72, "end": 7809.24, "probability": 0.2754 }, { "start": 7809.42, "end": 7809.92, "probability": 0.4986 }, { "start": 7811.04, "end": 7817.72, "probability": 0.2033 }, { "start": 7817.72, "end": 7817.72, "probability": 0.0821 }, { "start": 7922.0, "end": 7922.0, "probability": 0.0 }, { "start": 7922.0, "end": 7922.0, "probability": 0.0 }, { "start": 7922.0, "end": 7922.0, "probability": 0.0 }, { "start": 7922.0, "end": 7922.0, "probability": 0.0 }, { "start": 7922.0, "end": 7922.0, "probability": 0.0 }, { "start": 7922.0, "end": 7922.0, "probability": 0.0 }, { "start": 7922.0, "end": 7922.0, "probability": 0.0 }, { "start": 7922.0, "end": 7922.0, "probability": 0.0 }, { "start": 7922.0, "end": 7922.0, "probability": 0.0 }, { "start": 7922.0, "end": 7922.0, "probability": 0.0 }, { "start": 7922.0, "end": 7922.0, "probability": 0.0 }, { "start": 7922.0, "end": 7922.0, "probability": 0.0 }, { "start": 7922.0, "end": 7922.0, "probability": 0.0 }, { "start": 7922.0, "end": 7922.0, "probability": 0.0 }, { "start": 7922.0, "end": 7922.0, "probability": 0.0 }, { "start": 7922.0, "end": 7922.0, "probability": 0.0 }, { "start": 7922.0, "end": 7922.0, "probability": 0.0 }, { "start": 7922.0, "end": 7922.0, "probability": 0.0 }, { "start": 7922.0, "end": 7922.0, "probability": 0.0 }, { "start": 7922.0, "end": 7922.0, "probability": 0.0 }, { "start": 7922.0, "end": 7922.0, "probability": 0.0 }, { "start": 7922.0, "end": 7922.0, "probability": 0.0 }, { "start": 7922.0, "end": 7922.0, "probability": 0.0 }, { "start": 7922.0, "end": 7922.0, "probability": 0.0 }, { "start": 7922.0, "end": 7922.0, "probability": 0.0 }, { "start": 7922.0, "end": 7922.0, "probability": 0.0 }, { "start": 7922.58, "end": 7922.58, "probability": 0.0103 }, { "start": 7922.58, "end": 7924.28, "probability": 0.6895 }, { "start": 7926.66, "end": 7928.46, "probability": 0.9524 }, { "start": 7928.74, "end": 7930.53, "probability": 0.9149 }, { "start": 7931.08, "end": 7935.03, "probability": 0.9497 }, { "start": 7935.08, "end": 7939.24, "probability": 0.9954 }, { "start": 7940.32, "end": 7943.7, "probability": 0.7449 }, { "start": 7944.46, "end": 7947.42, "probability": 0.9865 }, { "start": 7948.14, "end": 7954.7, "probability": 0.8952 }, { "start": 7955.26, "end": 7958.8, "probability": 0.6584 }, { "start": 7960.16, "end": 7963.14, "probability": 0.9958 }, { "start": 7963.14, "end": 7967.44, "probability": 0.9594 }, { "start": 7968.14, "end": 7972.06, "probability": 0.9646 }, { "start": 7972.66, "end": 7975.02, "probability": 0.9811 }, { "start": 7975.6, "end": 7979.3, "probability": 0.8958 }, { "start": 7979.96, "end": 7983.04, "probability": 0.9943 }, { "start": 7983.44, "end": 7985.3, "probability": 0.9974 }, { "start": 7986.22, "end": 7988.12, "probability": 0.8871 }, { "start": 7988.3, "end": 7993.38, "probability": 0.995 }, { "start": 7993.82, "end": 7995.62, "probability": 0.9253 }, { "start": 7996.66, "end": 8000.84, "probability": 0.9941 }, { "start": 8001.34, "end": 8006.16, "probability": 0.9956 }, { "start": 8006.16, "end": 8010.82, "probability": 0.984 }, { "start": 8011.42, "end": 8017.84, "probability": 0.9949 }, { "start": 8018.5, "end": 8020.54, "probability": 0.9744 }, { "start": 8021.7, "end": 8026.44, "probability": 0.9937 }, { "start": 8026.44, "end": 8031.56, "probability": 0.7075 }, { "start": 8032.02, "end": 8035.52, "probability": 0.6704 }, { "start": 8036.64, "end": 8041.08, "probability": 0.9851 }, { "start": 8042.24, "end": 8046.06, "probability": 0.9653 }, { "start": 8046.16, "end": 8047.32, "probability": 0.6267 }, { "start": 8047.38, "end": 8048.8, "probability": 0.9625 }, { "start": 8049.78, "end": 8052.5, "probability": 0.9554 }, { "start": 8052.5, "end": 8055.92, "probability": 0.9875 }, { "start": 8056.48, "end": 8057.28, "probability": 0.711 }, { "start": 8057.78, "end": 8061.72, "probability": 0.9678 }, { "start": 8063.08, "end": 8067.84, "probability": 0.832 }, { "start": 8069.14, "end": 8074.6, "probability": 0.6246 }, { "start": 8075.56, "end": 8078.42, "probability": 0.9026 }, { "start": 8078.46, "end": 8081.54, "probability": 0.7051 }, { "start": 8082.22, "end": 8084.14, "probability": 0.745 }, { "start": 8084.72, "end": 8086.74, "probability": 0.9786 }, { "start": 8087.32, "end": 8088.54, "probability": 0.5598 }, { "start": 8089.56, "end": 8090.36, "probability": 0.7169 }, { "start": 8090.56, "end": 8091.44, "probability": 0.8604 }, { "start": 8091.84, "end": 8094.44, "probability": 0.8602 }, { "start": 8095.04, "end": 8097.28, "probability": 0.9836 }, { "start": 8097.44, "end": 8098.36, "probability": 0.9538 }, { "start": 8098.76, "end": 8099.4, "probability": 0.9684 }, { "start": 8099.84, "end": 8100.64, "probability": 0.9582 }, { "start": 8100.98, "end": 8104.24, "probability": 0.9844 }, { "start": 8104.96, "end": 8105.06, "probability": 0.9608 }, { "start": 8106.46, "end": 8110.54, "probability": 0.9525 }, { "start": 8111.1, "end": 8111.28, "probability": 0.2428 }, { "start": 8111.32, "end": 8112.46, "probability": 0.6099 }, { "start": 8112.6, "end": 8115.8, "probability": 0.9076 }, { "start": 8117.0, "end": 8119.94, "probability": 0.8536 }, { "start": 8120.48, "end": 8121.72, "probability": 0.9021 }, { "start": 8122.36, "end": 8125.24, "probability": 0.795 }, { "start": 8125.88, "end": 8129.94, "probability": 0.9111 }, { "start": 8130.88, "end": 8133.9, "probability": 0.9199 }, { "start": 8134.28, "end": 8137.24, "probability": 0.9561 }, { "start": 8137.74, "end": 8142.32, "probability": 0.7991 }, { "start": 8142.54, "end": 8143.96, "probability": 0.9694 }, { "start": 8144.38, "end": 8147.3, "probability": 0.8581 }, { "start": 8148.92, "end": 8150.16, "probability": 0.8555 }, { "start": 8150.3, "end": 8152.86, "probability": 0.9919 }, { "start": 8153.66, "end": 8156.96, "probability": 0.9407 }, { "start": 8157.54, "end": 8163.44, "probability": 0.98 }, { "start": 8164.08, "end": 8166.56, "probability": 0.9877 }, { "start": 8167.02, "end": 8171.08, "probability": 0.9894 }, { "start": 8171.26, "end": 8173.32, "probability": 0.9136 }, { "start": 8173.92, "end": 8175.26, "probability": 0.7766 }, { "start": 8175.48, "end": 8177.94, "probability": 0.887 }, { "start": 8178.9, "end": 8180.48, "probability": 0.986 }, { "start": 8180.96, "end": 8185.38, "probability": 0.9811 }, { "start": 8185.56, "end": 8186.34, "probability": 0.7145 }, { "start": 8186.58, "end": 8188.36, "probability": 0.7964 }, { "start": 8190.56, "end": 8192.58, "probability": 0.9111 }, { "start": 8193.24, "end": 8194.98, "probability": 0.76 }, { "start": 8195.0, "end": 8197.36, "probability": 0.7918 }, { "start": 8197.78, "end": 8200.74, "probability": 0.9205 }, { "start": 8201.68, "end": 8202.78, "probability": 0.5932 }, { "start": 8217.4, "end": 8218.32, "probability": 0.6643 }, { "start": 8218.36, "end": 8219.64, "probability": 0.8481 }, { "start": 8220.66, "end": 8221.26, "probability": 0.9492 }, { "start": 8222.38, "end": 8229.58, "probability": 0.7856 }, { "start": 8230.36, "end": 8235.46, "probability": 0.996 }, { "start": 8235.46, "end": 8239.5, "probability": 0.8674 }, { "start": 8240.18, "end": 8244.06, "probability": 0.9957 }, { "start": 8244.64, "end": 8245.24, "probability": 0.8926 }, { "start": 8245.62, "end": 8249.2, "probability": 0.9471 }, { "start": 8249.34, "end": 8251.37, "probability": 0.9578 }, { "start": 8252.28, "end": 8257.82, "probability": 0.9759 }, { "start": 8257.94, "end": 8261.89, "probability": 0.9888 }, { "start": 8262.36, "end": 8268.6, "probability": 0.9908 }, { "start": 8268.6, "end": 8274.72, "probability": 0.994 }, { "start": 8275.26, "end": 8279.76, "probability": 0.9492 }, { "start": 8280.38, "end": 8284.54, "probability": 0.967 }, { "start": 8285.76, "end": 8292.0, "probability": 0.9885 }, { "start": 8292.28, "end": 8292.98, "probability": 0.809 }, { "start": 8293.36, "end": 8299.0, "probability": 0.9435 }, { "start": 8299.18, "end": 8305.02, "probability": 0.7283 }, { "start": 8305.02, "end": 8309.62, "probability": 0.9943 }, { "start": 8310.02, "end": 8312.08, "probability": 0.7745 }, { "start": 8312.2, "end": 8319.04, "probability": 0.9789 }, { "start": 8319.5, "end": 8322.14, "probability": 0.7978 }, { "start": 8322.94, "end": 8327.74, "probability": 0.9114 }, { "start": 8328.52, "end": 8334.92, "probability": 0.9952 }, { "start": 8334.92, "end": 8340.24, "probability": 0.9983 }, { "start": 8340.56, "end": 8340.82, "probability": 0.8076 }, { "start": 8341.92, "end": 8345.92, "probability": 0.9973 }, { "start": 8347.48, "end": 8354.5, "probability": 0.9973 }, { "start": 8354.64, "end": 8357.12, "probability": 0.9585 }, { "start": 8357.42, "end": 8362.7, "probability": 0.8131 }, { "start": 8363.52, "end": 8366.8, "probability": 0.6463 }, { "start": 8367.42, "end": 8371.64, "probability": 0.9962 }, { "start": 8371.98, "end": 8377.52, "probability": 0.9802 }, { "start": 8377.52, "end": 8384.38, "probability": 0.764 }, { "start": 8384.94, "end": 8390.0, "probability": 0.9944 }, { "start": 8390.1, "end": 8395.38, "probability": 0.9667 }, { "start": 8395.48, "end": 8399.36, "probability": 0.9941 }, { "start": 8399.56, "end": 8400.12, "probability": 0.7553 }, { "start": 8400.46, "end": 8402.4, "probability": 0.5704 }, { "start": 8402.48, "end": 8405.7, "probability": 0.9798 }, { "start": 8426.04, "end": 8428.66, "probability": 0.6087 }, { "start": 8428.68, "end": 8429.72, "probability": 0.6474 }, { "start": 8430.56, "end": 8431.44, "probability": 0.6802 }, { "start": 8432.62, "end": 8434.26, "probability": 0.8548 }, { "start": 8434.32, "end": 8436.16, "probability": 0.8177 }, { "start": 8436.24, "end": 8437.94, "probability": 0.9033 }, { "start": 8438.74, "end": 8442.38, "probability": 0.9721 }, { "start": 8443.06, "end": 8445.84, "probability": 0.9515 }, { "start": 8446.36, "end": 8450.08, "probability": 0.9964 }, { "start": 8450.82, "end": 8453.42, "probability": 0.9932 }, { "start": 8454.24, "end": 8455.28, "probability": 0.9698 }, { "start": 8455.48, "end": 8456.18, "probability": 0.278 }, { "start": 8456.28, "end": 8460.08, "probability": 0.9925 }, { "start": 8461.3, "end": 8463.88, "probability": 0.9902 }, { "start": 8463.98, "end": 8467.96, "probability": 0.9746 }, { "start": 8468.7, "end": 8473.62, "probability": 0.6652 }, { "start": 8474.3, "end": 8475.34, "probability": 0.9126 }, { "start": 8475.44, "end": 8477.2, "probability": 0.705 }, { "start": 8477.62, "end": 8479.44, "probability": 0.9807 }, { "start": 8480.12, "end": 8481.94, "probability": 0.8927 }, { "start": 8482.04, "end": 8484.82, "probability": 0.755 }, { "start": 8486.5, "end": 8489.98, "probability": 0.9092 }, { "start": 8490.76, "end": 8493.14, "probability": 0.8763 }, { "start": 8493.14, "end": 8496.12, "probability": 0.9952 }, { "start": 8496.32, "end": 8497.54, "probability": 0.6366 }, { "start": 8498.44, "end": 8501.1, "probability": 0.9892 }, { "start": 8501.22, "end": 8502.42, "probability": 0.9655 }, { "start": 8503.14, "end": 8504.22, "probability": 0.9421 }, { "start": 8504.96, "end": 8508.38, "probability": 0.9931 }, { "start": 8508.44, "end": 8514.72, "probability": 0.9963 }, { "start": 8516.1, "end": 8518.82, "probability": 0.9889 }, { "start": 8518.82, "end": 8520.88, "probability": 0.9973 }, { "start": 8521.5, "end": 8524.12, "probability": 0.7896 }, { "start": 8524.58, "end": 8526.8, "probability": 0.9434 }, { "start": 8526.8, "end": 8530.12, "probability": 0.998 }, { "start": 8530.68, "end": 8532.06, "probability": 0.6739 }, { "start": 8532.14, "end": 8536.54, "probability": 0.9927 }, { "start": 8537.74, "end": 8538.84, "probability": 0.7469 }, { "start": 8539.0, "end": 8540.54, "probability": 0.8933 }, { "start": 8540.62, "end": 8545.84, "probability": 0.916 }, { "start": 8546.36, "end": 8550.8, "probability": 0.9775 }, { "start": 8551.06, "end": 8553.06, "probability": 0.9928 }, { "start": 8555.1, "end": 8557.88, "probability": 0.8573 }, { "start": 8558.42, "end": 8561.84, "probability": 0.9915 }, { "start": 8562.6, "end": 8564.18, "probability": 0.8299 }, { "start": 8564.96, "end": 8568.88, "probability": 0.9896 }, { "start": 8570.66, "end": 8571.35, "probability": 0.5036 }, { "start": 8571.56, "end": 8572.38, "probability": 0.7961 }, { "start": 8572.7, "end": 8577.72, "probability": 0.8422 }, { "start": 8578.78, "end": 8586.84, "probability": 0.9795 }, { "start": 8587.72, "end": 8595.16, "probability": 0.9253 }, { "start": 8596.36, "end": 8597.26, "probability": 0.791 }, { "start": 8597.42, "end": 8602.28, "probability": 0.9849 }, { "start": 8602.36, "end": 8606.78, "probability": 0.8975 }, { "start": 8606.84, "end": 8607.7, "probability": 0.8672 }, { "start": 8608.64, "end": 8612.0, "probability": 0.8596 }, { "start": 8612.78, "end": 8617.36, "probability": 0.9875 }, { "start": 8617.82, "end": 8619.86, "probability": 0.7722 }, { "start": 8620.06, "end": 8620.7, "probability": 0.7714 }, { "start": 8620.76, "end": 8623.16, "probability": 0.9836 }, { "start": 8623.24, "end": 8623.68, "probability": 0.3857 }, { "start": 8623.7, "end": 8626.66, "probability": 0.9527 }, { "start": 8627.18, "end": 8627.64, "probability": 0.7312 }, { "start": 8627.72, "end": 8630.1, "probability": 0.9552 }, { "start": 8630.48, "end": 8631.82, "probability": 0.7454 }, { "start": 8631.96, "end": 8633.54, "probability": 0.3541 }, { "start": 8634.16, "end": 8634.6, "probability": 0.0226 }, { "start": 8634.6, "end": 8635.42, "probability": 0.0009 }, { "start": 8636.58, "end": 8638.24, "probability": 0.4903 }, { "start": 8638.44, "end": 8641.5, "probability": 0.6606 }, { "start": 8641.6, "end": 8642.1, "probability": 0.8521 }, { "start": 8642.18, "end": 8643.72, "probability": 0.9022 }, { "start": 8643.82, "end": 8645.1, "probability": 0.8764 }, { "start": 8645.48, "end": 8647.54, "probability": 0.5022 }, { "start": 8648.12, "end": 8649.48, "probability": 0.8493 }, { "start": 8649.48, "end": 8650.98, "probability": 0.5438 }, { "start": 8651.18, "end": 8655.44, "probability": 0.7958 }, { "start": 8655.72, "end": 8657.96, "probability": 0.9528 }, { "start": 8658.08, "end": 8660.5, "probability": 0.7852 }, { "start": 8660.52, "end": 8660.62, "probability": 0.9021 }, { "start": 8683.36, "end": 8683.76, "probability": 0.5369 }, { "start": 8684.22, "end": 8685.22, "probability": 0.8574 }, { "start": 8690.1, "end": 8691.4, "probability": 0.7254 }, { "start": 8692.62, "end": 8694.64, "probability": 0.8253 }, { "start": 8695.82, "end": 8697.64, "probability": 0.9072 }, { "start": 8698.48, "end": 8701.34, "probability": 0.9904 }, { "start": 8703.92, "end": 8704.5, "probability": 0.3688 }, { "start": 8705.5, "end": 8707.26, "probability": 0.3314 }, { "start": 8707.9, "end": 8709.64, "probability": 0.877 }, { "start": 8710.12, "end": 8711.34, "probability": 0.5944 }, { "start": 8712.08, "end": 8713.52, "probability": 0.9653 }, { "start": 8713.56, "end": 8714.74, "probability": 0.8088 }, { "start": 8716.14, "end": 8724.42, "probability": 0.9864 }, { "start": 8725.4, "end": 8733.52, "probability": 0.9588 }, { "start": 8734.72, "end": 8735.78, "probability": 0.9301 }, { "start": 8737.68, "end": 8742.64, "probability": 0.9761 }, { "start": 8742.82, "end": 8748.02, "probability": 0.9973 }, { "start": 8749.48, "end": 8751.74, "probability": 0.8153 }, { "start": 8752.78, "end": 8755.76, "probability": 0.9804 }, { "start": 8756.46, "end": 8758.26, "probability": 0.996 }, { "start": 8759.9, "end": 8760.88, "probability": 0.8895 }, { "start": 8761.14, "end": 8761.76, "probability": 0.8886 }, { "start": 8761.94, "end": 8768.64, "probability": 0.9878 }, { "start": 8769.14, "end": 8772.78, "probability": 0.9888 }, { "start": 8774.06, "end": 8775.68, "probability": 0.8394 }, { "start": 8776.44, "end": 8779.07, "probability": 0.9673 }, { "start": 8780.52, "end": 8781.34, "probability": 0.9292 }, { "start": 8781.44, "end": 8782.48, "probability": 0.8203 }, { "start": 8782.86, "end": 8786.42, "probability": 0.9953 }, { "start": 8787.68, "end": 8791.01, "probability": 0.8181 }, { "start": 8792.66, "end": 8795.12, "probability": 0.8663 }, { "start": 8796.2, "end": 8799.38, "probability": 0.8117 }, { "start": 8799.96, "end": 8802.14, "probability": 0.9925 }, { "start": 8802.58, "end": 8804.24, "probability": 0.9076 }, { "start": 8804.76, "end": 8806.14, "probability": 0.9854 }, { "start": 8806.74, "end": 8809.5, "probability": 0.9908 }, { "start": 8810.24, "end": 8811.99, "probability": 0.978 }, { "start": 8813.08, "end": 8814.62, "probability": 0.7604 }, { "start": 8815.96, "end": 8819.3, "probability": 0.9598 }, { "start": 8819.3, "end": 8822.44, "probability": 0.9903 }, { "start": 8823.38, "end": 8825.96, "probability": 0.9886 }, { "start": 8826.68, "end": 8830.92, "probability": 0.9834 }, { "start": 8831.62, "end": 8833.88, "probability": 0.9915 }, { "start": 8834.64, "end": 8836.04, "probability": 0.9458 }, { "start": 8836.72, "end": 8838.42, "probability": 0.9733 }, { "start": 8838.96, "end": 8839.59, "probability": 0.9761 }, { "start": 8841.32, "end": 8846.34, "probability": 0.986 }, { "start": 8846.82, "end": 8848.1, "probability": 0.6092 }, { "start": 8848.1, "end": 8850.06, "probability": 0.7063 }, { "start": 8850.68, "end": 8852.78, "probability": 0.7935 }, { "start": 8853.32, "end": 8855.42, "probability": 0.981 }, { "start": 8856.3, "end": 8859.48, "probability": 0.9512 }, { "start": 8860.18, "end": 8861.96, "probability": 0.9937 }, { "start": 8862.84, "end": 8863.72, "probability": 0.6791 }, { "start": 8863.8, "end": 8866.48, "probability": 0.9128 }, { "start": 8867.22, "end": 8873.72, "probability": 0.9702 }, { "start": 8874.3, "end": 8875.98, "probability": 0.991 }, { "start": 8876.44, "end": 8878.04, "probability": 0.9893 }, { "start": 8878.7, "end": 8880.7, "probability": 0.9634 }, { "start": 8881.94, "end": 8883.56, "probability": 0.9231 }, { "start": 8884.1, "end": 8885.52, "probability": 0.8691 }, { "start": 8886.38, "end": 8890.42, "probability": 0.9366 }, { "start": 8890.42, "end": 8893.48, "probability": 0.9958 }, { "start": 8894.22, "end": 8897.1, "probability": 0.9626 }, { "start": 8897.24, "end": 8898.16, "probability": 0.8521 }, { "start": 8898.86, "end": 8900.16, "probability": 0.688 }, { "start": 8900.76, "end": 8903.82, "probability": 0.9858 }, { "start": 8904.34, "end": 8909.58, "probability": 0.9794 }, { "start": 8909.58, "end": 8912.1, "probability": 0.9239 }, { "start": 8912.26, "end": 8918.74, "probability": 0.8472 }, { "start": 8919.28, "end": 8920.62, "probability": 0.6244 }, { "start": 8920.74, "end": 8921.92, "probability": 0.8014 }, { "start": 8922.34, "end": 8923.76, "probability": 0.9927 }, { "start": 8924.12, "end": 8925.32, "probability": 0.9943 }, { "start": 8925.96, "end": 8927.5, "probability": 0.8382 }, { "start": 8929.38, "end": 8930.88, "probability": 0.0696 }, { "start": 8930.9, "end": 8931.3, "probability": 0.4739 }, { "start": 8931.56, "end": 8932.88, "probability": 0.5742 }, { "start": 8933.94, "end": 8934.18, "probability": 0.1873 }, { "start": 8934.88, "end": 8943.12, "probability": 0.1314 }, { "start": 8943.12, "end": 8943.26, "probability": 0.1791 }, { "start": 8945.74, "end": 8946.12, "probability": 0.1904 }, { "start": 8963.6, "end": 8964.56, "probability": 0.0472 }, { "start": 8966.24, "end": 8970.06, "probability": 0.7441 }, { "start": 8971.02, "end": 8971.72, "probability": 0.8497 }, { "start": 8971.76, "end": 8975.64, "probability": 0.981 }, { "start": 8975.78, "end": 8979.04, "probability": 0.931 }, { "start": 8979.14, "end": 8980.92, "probability": 0.9623 }, { "start": 8981.7, "end": 8982.42, "probability": 0.7161 }, { "start": 8983.54, "end": 8985.56, "probability": 0.8424 }, { "start": 8986.78, "end": 8988.6, "probability": 0.9619 }, { "start": 8989.36, "end": 8992.48, "probability": 0.9865 }, { "start": 8993.26, "end": 8996.42, "probability": 0.998 }, { "start": 8997.26, "end": 8999.18, "probability": 0.9683 }, { "start": 9000.12, "end": 9004.88, "probability": 0.9193 }, { "start": 9005.66, "end": 9007.76, "probability": 0.9802 }, { "start": 9007.84, "end": 9008.34, "probability": 0.8949 }, { "start": 9008.42, "end": 9009.56, "probability": 0.848 }, { "start": 9010.06, "end": 9012.04, "probability": 0.984 }, { "start": 9012.48, "end": 9015.72, "probability": 0.9718 }, { "start": 9016.46, "end": 9019.78, "probability": 0.9954 }, { "start": 9020.36, "end": 9022.48, "probability": 0.9004 }, { "start": 9023.24, "end": 9029.66, "probability": 0.9286 }, { "start": 9030.3, "end": 9032.8, "probability": 0.9452 }, { "start": 9033.4, "end": 9036.92, "probability": 0.8403 }, { "start": 9037.52, "end": 9038.32, "probability": 0.9827 }, { "start": 9038.92, "end": 9041.68, "probability": 0.9036 }, { "start": 9042.34, "end": 9044.72, "probability": 0.9966 }, { "start": 9045.36, "end": 9048.06, "probability": 0.9712 }, { "start": 9049.16, "end": 9050.02, "probability": 0.8681 }, { "start": 9053.03, "end": 9054.85, "probability": 0.6955 }, { "start": 9055.14, "end": 9056.78, "probability": 0.664 }, { "start": 9056.8, "end": 9057.8, "probability": 0.7976 }, { "start": 9057.9, "end": 9059.16, "probability": 0.6874 }, { "start": 9059.22, "end": 9061.31, "probability": 0.7981 }, { "start": 9063.22, "end": 9066.42, "probability": 0.8538 }, { "start": 9067.16, "end": 9070.02, "probability": 0.858 }, { "start": 9070.64, "end": 9075.22, "probability": 0.9934 }, { "start": 9075.76, "end": 9081.84, "probability": 0.9421 }, { "start": 9082.48, "end": 9084.02, "probability": 0.9963 }, { "start": 9084.64, "end": 9089.72, "probability": 0.99 }, { "start": 9090.2, "end": 9091.56, "probability": 0.9911 }, { "start": 9092.02, "end": 9093.3, "probability": 0.9315 }, { "start": 9093.74, "end": 9095.24, "probability": 0.8288 }, { "start": 9095.38, "end": 9098.24, "probability": 0.9844 }, { "start": 9098.7, "end": 9100.1, "probability": 0.984 }, { "start": 9100.52, "end": 9101.89, "probability": 0.9971 }, { "start": 9102.58, "end": 9106.48, "probability": 0.999 }, { "start": 9106.88, "end": 9111.62, "probability": 0.8094 }, { "start": 9113.98, "end": 9114.78, "probability": 0.668 }, { "start": 9115.22, "end": 9117.34, "probability": 0.747 }, { "start": 9120.52, "end": 9122.14, "probability": 0.9937 }, { "start": 9133.34, "end": 9133.44, "probability": 0.5751 }, { "start": 9134.1, "end": 9136.44, "probability": 0.9972 }, { "start": 9136.52, "end": 9137.52, "probability": 0.947 }, { "start": 9137.64, "end": 9139.4, "probability": 0.9956 }, { "start": 9140.4, "end": 9141.46, "probability": 0.5223 }, { "start": 9142.86, "end": 9145.96, "probability": 0.9928 }, { "start": 9146.36, "end": 9147.31, "probability": 0.988 }, { "start": 9148.16, "end": 9150.24, "probability": 0.8682 }, { "start": 9150.36, "end": 9152.0, "probability": 0.8219 }, { "start": 9152.46, "end": 9155.56, "probability": 0.9755 }, { "start": 9156.08, "end": 9158.02, "probability": 0.6973 }, { "start": 9158.04, "end": 9158.86, "probability": 0.3245 }, { "start": 9158.98, "end": 9163.06, "probability": 0.9919 }, { "start": 9163.6, "end": 9165.16, "probability": 0.9917 }, { "start": 9166.0, "end": 9166.46, "probability": 0.6767 }, { "start": 9166.48, "end": 9169.96, "probability": 0.9379 }, { "start": 9170.2, "end": 9170.34, "probability": 0.6272 }, { "start": 9170.42, "end": 9172.36, "probability": 0.37 }, { "start": 9172.58, "end": 9174.2, "probability": 0.9609 }, { "start": 9174.58, "end": 9179.1, "probability": 0.9391 }, { "start": 9179.4, "end": 9183.06, "probability": 0.8053 }, { "start": 9183.14, "end": 9186.78, "probability": 0.9951 }, { "start": 9187.38, "end": 9188.08, "probability": 0.9485 }, { "start": 9188.42, "end": 9190.1, "probability": 0.9244 }, { "start": 9190.16, "end": 9193.1, "probability": 0.9775 }, { "start": 9193.32, "end": 9194.1, "probability": 0.8969 }, { "start": 9194.98, "end": 9199.82, "probability": 0.697 }, { "start": 9200.3, "end": 9205.58, "probability": 0.9784 }, { "start": 9206.9, "end": 9209.3, "probability": 0.9846 }, { "start": 9210.0, "end": 9212.26, "probability": 0.7509 }, { "start": 9212.34, "end": 9213.92, "probability": 0.7265 }, { "start": 9214.98, "end": 9216.58, "probability": 0.9789 }, { "start": 9216.8, "end": 9218.6, "probability": 0.9719 }, { "start": 9220.71, "end": 9228.48, "probability": 0.9984 }, { "start": 9228.82, "end": 9229.34, "probability": 0.4711 }, { "start": 9229.38, "end": 9230.82, "probability": 0.6797 }, { "start": 9230.86, "end": 9233.02, "probability": 0.8493 }, { "start": 9233.52, "end": 9237.74, "probability": 0.6361 }, { "start": 9238.26, "end": 9238.82, "probability": 0.1088 }, { "start": 9239.56, "end": 9240.04, "probability": 0.6088 }, { "start": 9240.8, "end": 9243.28, "probability": 0.8841 }, { "start": 9243.72, "end": 9246.12, "probability": 0.7819 }, { "start": 9246.54, "end": 9248.3, "probability": 0.7756 }, { "start": 9248.4, "end": 9249.98, "probability": 0.9766 }, { "start": 9250.32, "end": 9251.14, "probability": 0.3669 }, { "start": 9251.14, "end": 9251.34, "probability": 0.4069 }, { "start": 9251.46, "end": 9254.72, "probability": 0.9663 }, { "start": 9257.32, "end": 9261.34, "probability": 0.9497 }, { "start": 9261.42, "end": 9261.88, "probability": 0.9427 }, { "start": 9262.14, "end": 9263.76, "probability": 0.9353 }, { "start": 9264.36, "end": 9268.98, "probability": 0.983 }, { "start": 9269.28, "end": 9273.74, "probability": 0.9973 }, { "start": 9274.18, "end": 9279.2, "probability": 0.9753 }, { "start": 9280.04, "end": 9287.08, "probability": 0.7111 }, { "start": 9287.26, "end": 9289.4, "probability": 0.7335 }, { "start": 9289.4, "end": 9290.4, "probability": 0.5406 }, { "start": 9290.56, "end": 9295.3, "probability": 0.9395 }, { "start": 9295.62, "end": 9299.46, "probability": 0.49 }, { "start": 9299.46, "end": 9299.95, "probability": 0.5646 }, { "start": 9300.7, "end": 9301.34, "probability": 0.7374 }, { "start": 9301.93, "end": 9304.88, "probability": 0.7906 }, { "start": 9305.16, "end": 9307.48, "probability": 0.7271 }, { "start": 9307.68, "end": 9308.3, "probability": 0.6954 }, { "start": 9308.56, "end": 9310.3, "probability": 0.7763 }, { "start": 9310.98, "end": 9312.92, "probability": 0.9687 }, { "start": 9313.04, "end": 9317.78, "probability": 0.7545 }, { "start": 9317.8, "end": 9318.84, "probability": 0.7851 }, { "start": 9319.18, "end": 9322.18, "probability": 0.8469 }, { "start": 9322.54, "end": 9323.28, "probability": 0.9976 }, { "start": 9324.02, "end": 9324.96, "probability": 0.7865 }, { "start": 9325.8, "end": 9329.18, "probability": 0.9976 }, { "start": 9329.52, "end": 9333.98, "probability": 0.9785 }, { "start": 9334.2, "end": 9335.73, "probability": 0.9966 }, { "start": 9336.24, "end": 9338.86, "probability": 0.9762 }, { "start": 9339.02, "end": 9346.46, "probability": 0.9666 }, { "start": 9346.96, "end": 9349.98, "probability": 0.905 }, { "start": 9350.84, "end": 9354.86, "probability": 0.9989 }, { "start": 9354.98, "end": 9356.7, "probability": 0.9377 }, { "start": 9357.06, "end": 9359.42, "probability": 0.9993 }, { "start": 9359.86, "end": 9362.92, "probability": 0.9414 }, { "start": 9363.38, "end": 9367.84, "probability": 0.9417 }, { "start": 9367.84, "end": 9372.58, "probability": 0.279 }, { "start": 9375.02, "end": 9377.92, "probability": 0.3596 }, { "start": 9377.92, "end": 9378.72, "probability": 0.3625 }, { "start": 9380.35, "end": 9385.46, "probability": 0.9912 }, { "start": 9385.92, "end": 9389.38, "probability": 0.9245 }, { "start": 9389.8, "end": 9394.88, "probability": 0.9282 }, { "start": 9395.08, "end": 9395.42, "probability": 0.1511 }, { "start": 9395.72, "end": 9397.24, "probability": 0.9478 }, { "start": 9399.66, "end": 9404.0, "probability": 0.9269 }, { "start": 9404.9, "end": 9405.98, "probability": 0.8429 }, { "start": 9407.6, "end": 9409.76, "probability": 0.6841 }, { "start": 9410.32, "end": 9411.84, "probability": 0.8598 }, { "start": 9412.86, "end": 9413.56, "probability": 0.793 }, { "start": 9413.64, "end": 9414.2, "probability": 0.7211 }, { "start": 9414.2, "end": 9415.38, "probability": 0.7872 }, { "start": 9415.44, "end": 9417.35, "probability": 0.9609 }, { "start": 9417.5, "end": 9418.2, "probability": 0.725 }, { "start": 9418.52, "end": 9419.5, "probability": 0.63 }, { "start": 9420.06, "end": 9425.3, "probability": 0.9861 }, { "start": 9425.78, "end": 9432.92, "probability": 0.9861 }, { "start": 9434.04, "end": 9434.04, "probability": 0.1502 }, { "start": 9434.04, "end": 9438.62, "probability": 0.9878 }, { "start": 9439.02, "end": 9441.56, "probability": 0.9922 }, { "start": 9441.98, "end": 9447.5, "probability": 0.9411 }, { "start": 9448.3, "end": 9453.0, "probability": 0.6991 }, { "start": 9453.54, "end": 9455.02, "probability": 0.6616 }, { "start": 9455.04, "end": 9457.9, "probability": 0.9871 }, { "start": 9457.9, "end": 9463.48, "probability": 0.9951 }, { "start": 9464.06, "end": 9464.62, "probability": 0.8039 }, { "start": 9465.26, "end": 9466.96, "probability": 0.9252 }, { "start": 9468.46, "end": 9471.36, "probability": 0.9484 }, { "start": 9471.76, "end": 9476.4, "probability": 0.964 }, { "start": 9476.68, "end": 9483.42, "probability": 0.9968 }, { "start": 9483.56, "end": 9488.04, "probability": 0.7206 }, { "start": 9488.76, "end": 9493.68, "probability": 0.965 }, { "start": 9494.16, "end": 9498.45, "probability": 0.9976 }, { "start": 9498.74, "end": 9500.02, "probability": 0.9941 }, { "start": 9500.36, "end": 9501.96, "probability": 0.6501 }, { "start": 9503.02, "end": 9507.42, "probability": 0.9865 }, { "start": 9507.48, "end": 9510.06, "probability": 0.9963 }, { "start": 9510.5, "end": 9511.54, "probability": 0.9754 }, { "start": 9511.94, "end": 9512.92, "probability": 0.9182 }, { "start": 9513.28, "end": 9514.42, "probability": 0.9917 }, { "start": 9514.76, "end": 9515.66, "probability": 0.9624 }, { "start": 9516.34, "end": 9517.66, "probability": 0.7535 }, { "start": 9517.8, "end": 9518.68, "probability": 0.8209 }, { "start": 9519.06, "end": 9523.08, "probability": 0.4863 }, { "start": 9523.08, "end": 9525.54, "probability": 0.0145 }, { "start": 9525.94, "end": 9530.02, "probability": 0.6649 }, { "start": 9530.06, "end": 9533.38, "probability": 0.9349 }, { "start": 9535.48, "end": 9536.92, "probability": 0.0176 }, { "start": 9538.56, "end": 9539.16, "probability": 0.6583 }, { "start": 9541.2, "end": 9542.24, "probability": 0.7193 }, { "start": 9543.4, "end": 9544.12, "probability": 0.9584 }, { "start": 9545.0, "end": 9546.04, "probability": 0.8685 }, { "start": 9547.88, "end": 9548.68, "probability": 0.8623 }, { "start": 9549.3, "end": 9550.34, "probability": 0.6642 }, { "start": 9550.98, "end": 9551.7, "probability": 0.9796 }, { "start": 9552.4, "end": 9553.3, "probability": 0.9266 }, { "start": 9553.98, "end": 9554.78, "probability": 0.9867 }, { "start": 9555.62, "end": 9557.4, "probability": 0.9254 }, { "start": 9558.54, "end": 9560.84, "probability": 0.8779 }, { "start": 9561.86, "end": 9563.0, "probability": 0.8306 }, { "start": 9563.84, "end": 9564.78, "probability": 0.7772 }, { "start": 9566.08, "end": 9568.68, "probability": 0.952 }, { "start": 9583.34, "end": 9584.22, "probability": 0.4382 }, { "start": 9584.82, "end": 9585.84, "probability": 0.583 }, { "start": 9586.38, "end": 9587.06, "probability": 0.8894 }, { "start": 9587.84, "end": 9588.58, "probability": 0.7926 }, { "start": 9589.8, "end": 9591.96, "probability": 0.9379 }, { "start": 9599.44, "end": 9602.02, "probability": 0.6657 }, { "start": 9603.0, "end": 9603.52, "probability": 0.4539 }, { "start": 9604.22, "end": 9605.52, "probability": 0.7568 }, { "start": 9608.08, "end": 9609.96, "probability": 0.5638 }, { "start": 9610.7, "end": 9611.88, "probability": 0.725 }, { "start": 9616.4, "end": 9617.2, "probability": 0.9708 }, { "start": 9617.92, "end": 9618.76, "probability": 0.9301 }, { "start": 9619.92, "end": 9620.18, "probability": 0.734 }, { "start": 9621.22, "end": 9621.92, "probability": 0.7646 }, { "start": 9623.42, "end": 9624.12, "probability": 0.9706 }, { "start": 9624.72, "end": 9625.86, "probability": 0.5828 }, { "start": 9626.82, "end": 9627.62, "probability": 0.8106 }, { "start": 9630.78, "end": 9631.72, "probability": 0.5373 }, { "start": 9632.72, "end": 9634.68, "probability": 0.787 }, { "start": 9635.76, "end": 9636.14, "probability": 0.7335 }, { "start": 9637.42, "end": 9638.06, "probability": 0.98 }, { "start": 9639.09, "end": 9641.06, "probability": 0.959 }, { "start": 9642.28, "end": 9642.66, "probability": 0.9596 }, { "start": 9645.32, "end": 9646.34, "probability": 0.9835 }, { "start": 9648.16, "end": 9648.68, "probability": 0.9907 }, { "start": 9650.08, "end": 9650.72, "probability": 0.9642 }, { "start": 9651.3, "end": 9653.28, "probability": 0.8051 }, { "start": 9655.02, "end": 9655.38, "probability": 0.9729 }, { "start": 9656.54, "end": 9656.88, "probability": 0.6997 }, { "start": 9658.5, "end": 9664.46, "probability": 0.6782 }, { "start": 9665.06, "end": 9666.76, "probability": 0.9065 }, { "start": 9668.4, "end": 9670.42, "probability": 0.8228 }, { "start": 9671.66, "end": 9672.54, "probability": 0.9074 }, { "start": 9673.52, "end": 9674.48, "probability": 0.8014 }, { "start": 9675.04, "end": 9676.62, "probability": 0.9033 }, { "start": 9677.54, "end": 9678.26, "probability": 0.9216 }, { "start": 9679.16, "end": 9682.0, "probability": 0.869 }, { "start": 9682.86, "end": 9683.26, "probability": 0.596 }, { "start": 9685.52, "end": 9686.34, "probability": 0.8456 }, { "start": 9687.38, "end": 9688.04, "probability": 0.7747 }, { "start": 9688.82, "end": 9689.68, "probability": 0.8388 }, { "start": 9692.7, "end": 9694.9, "probability": 0.9213 }, { "start": 9695.82, "end": 9697.6, "probability": 0.9811 }, { "start": 9697.98, "end": 9699.9, "probability": 0.6261 }, { "start": 9699.96, "end": 9702.1, "probability": 0.9592 }, { "start": 9702.34, "end": 9702.88, "probability": 0.692 }, { "start": 9703.62, "end": 9704.3, "probability": 0.5078 }, { "start": 9705.38, "end": 9707.5, "probability": 0.8214 }, { "start": 9708.12, "end": 9710.78, "probability": 0.6606 }, { "start": 9711.54, "end": 9712.48, "probability": 0.8009 }, { "start": 9715.7, "end": 9716.56, "probability": 0.929 }, { "start": 9717.14, "end": 9718.3, "probability": 0.927 }, { "start": 9719.12, "end": 9719.92, "probability": 0.9243 }, { "start": 9720.56, "end": 9722.14, "probability": 0.8586 }, { "start": 9722.78, "end": 9724.78, "probability": 0.7296 }, { "start": 9725.68, "end": 9726.1, "probability": 0.5464 }, { "start": 9728.74, "end": 9730.18, "probability": 0.3899 }, { "start": 9731.06, "end": 9731.8, "probability": 0.7498 }, { "start": 9732.78, "end": 9733.88, "probability": 0.7572 }, { "start": 9735.18, "end": 9735.98, "probability": 0.9873 }, { "start": 9736.92, "end": 9737.7, "probability": 0.7345 }, { "start": 9738.44, "end": 9738.68, "probability": 0.3547 }, { "start": 9739.68, "end": 9739.92, "probability": 0.9767 }, { "start": 9742.02, "end": 9744.36, "probability": 0.968 }, { "start": 9745.68, "end": 9746.42, "probability": 0.9553 }, { "start": 9747.54, "end": 9748.4, "probability": 0.3115 }, { "start": 9749.02, "end": 9749.8, "probability": 0.9108 }, { "start": 9750.32, "end": 9751.3, "probability": 0.9871 }, { "start": 9752.2, "end": 9753.98, "probability": 0.978 }, { "start": 9754.8, "end": 9756.68, "probability": 0.4948 }, { "start": 9757.62, "end": 9758.34, "probability": 0.9761 }, { "start": 9758.88, "end": 9760.16, "probability": 0.8819 }, { "start": 9761.68, "end": 9763.3, "probability": 0.9261 }, { "start": 9764.8, "end": 9767.12, "probability": 0.9404 }, { "start": 9767.8, "end": 9769.2, "probability": 0.9775 }, { "start": 9770.02, "end": 9772.5, "probability": 0.959 }, { "start": 9774.62, "end": 9775.36, "probability": 0.9947 }, { "start": 9777.12, "end": 9778.2, "probability": 0.8692 }, { "start": 9778.88, "end": 9780.32, "probability": 0.5708 }, { "start": 9780.98, "end": 9782.92, "probability": 0.908 }, { "start": 9783.62, "end": 9787.24, "probability": 0.9219 }, { "start": 9788.24, "end": 9790.66, "probability": 0.9656 }, { "start": 9791.78, "end": 9792.52, "probability": 0.9455 }, { "start": 9793.22, "end": 9794.0, "probability": 0.9691 }, { "start": 9795.6, "end": 9797.14, "probability": 0.9743 }, { "start": 9798.16, "end": 9799.72, "probability": 0.9143 }, { "start": 9800.62, "end": 9801.0, "probability": 0.5859 }, { "start": 9801.78, "end": 9802.68, "probability": 0.5759 }, { "start": 9804.86, "end": 9805.26, "probability": 0.8987 }, { "start": 9806.66, "end": 9807.34, "probability": 0.6757 }, { "start": 9808.8, "end": 9810.72, "probability": 0.8591 }, { "start": 9812.36, "end": 9813.34, "probability": 0.9789 }, { "start": 9814.1, "end": 9815.06, "probability": 0.765 }, { "start": 9816.74, "end": 9817.18, "probability": 0.9697 }, { "start": 9818.58, "end": 9819.68, "probability": 0.9291 }, { "start": 9820.8, "end": 9823.1, "probability": 0.9578 }, { "start": 9823.84, "end": 9825.28, "probability": 0.7273 }, { "start": 9826.1, "end": 9827.7, "probability": 0.8868 }, { "start": 9828.88, "end": 9830.0, "probability": 0.7652 }, { "start": 9835.16, "end": 9835.6, "probability": 0.5363 }, { "start": 9837.36, "end": 9838.38, "probability": 0.9382 }, { "start": 9841.94, "end": 9844.26, "probability": 0.9563 }, { "start": 9845.08, "end": 9845.46, "probability": 0.5964 }, { "start": 9846.56, "end": 9847.7, "probability": 0.9484 }, { "start": 9848.96, "end": 9849.8, "probability": 0.9964 }, { "start": 9850.62, "end": 9851.52, "probability": 0.7847 }, { "start": 9854.0, "end": 9856.54, "probability": 0.5952 }, { "start": 9857.41, "end": 9859.88, "probability": 0.9446 }, { "start": 9861.06, "end": 9863.02, "probability": 0.8867 }, { "start": 9864.2, "end": 9864.94, "probability": 0.611 }, { "start": 9866.94, "end": 9867.3, "probability": 0.8853 }, { "start": 9868.32, "end": 9869.1, "probability": 0.7971 }, { "start": 9870.62, "end": 9871.58, "probability": 0.9675 }, { "start": 9872.68, "end": 9873.7, "probability": 0.4496 }, { "start": 9875.48, "end": 9876.88, "probability": 0.8131 }, { "start": 9877.8, "end": 9878.6, "probability": 0.8573 }, { "start": 9879.38, "end": 9879.8, "probability": 0.9867 }, { "start": 9881.4, "end": 9881.94, "probability": 0.4486 }, { "start": 9883.08, "end": 9883.94, "probability": 0.511 }, { "start": 9884.8, "end": 9885.52, "probability": 0.8159 }, { "start": 9889.0, "end": 9889.34, "probability": 0.5568 }, { "start": 9891.08, "end": 9891.86, "probability": 0.8188 }, { "start": 9893.58, "end": 9893.76, "probability": 0.4915 }, { "start": 9895.98, "end": 9896.08, "probability": 0.0001 }, { "start": 9899.64, "end": 9900.18, "probability": 0.3322 }, { "start": 9901.14, "end": 9902.06, "probability": 0.8309 }, { "start": 9903.4, "end": 9904.06, "probability": 0.8519 }, { "start": 9905.22, "end": 9907.04, "probability": 0.8278 }, { "start": 9907.3, "end": 9909.38, "probability": 0.9232 }, { "start": 9912.64, "end": 9913.34, "probability": 0.8363 }, { "start": 9914.08, "end": 9914.88, "probability": 0.9384 }, { "start": 9916.04, "end": 9918.04, "probability": 0.9643 }, { "start": 9919.2, "end": 9919.94, "probability": 0.9939 }, { "start": 9920.46, "end": 9921.44, "probability": 0.9069 }, { "start": 9922.62, "end": 9924.46, "probability": 0.6377 }, { "start": 9925.7, "end": 9932.84, "probability": 0.7512 }, { "start": 9934.48, "end": 9934.84, "probability": 0.6407 }, { "start": 9936.12, "end": 9936.92, "probability": 0.6974 }, { "start": 9938.2, "end": 9938.54, "probability": 0.7411 }, { "start": 9939.72, "end": 9940.46, "probability": 0.7492 }, { "start": 9941.44, "end": 9942.98, "probability": 0.825 }, { "start": 9947.2, "end": 9948.14, "probability": 0.5558 }, { "start": 9949.18, "end": 9950.02, "probability": 0.6424 }, { "start": 9951.6, "end": 9954.2, "probability": 0.9334 }, { "start": 9954.78, "end": 9957.4, "probability": 0.9344 }, { "start": 9959.1, "end": 9959.96, "probability": 0.9675 }, { "start": 9960.94, "end": 9961.66, "probability": 0.9256 }, { "start": 9962.62, "end": 9963.02, "probability": 0.9434 }, { "start": 9963.82, "end": 9964.84, "probability": 0.7485 }, { "start": 9966.0, "end": 9966.82, "probability": 0.8709 }, { "start": 9967.52, "end": 9969.9, "probability": 0.8753 }, { "start": 9970.88, "end": 9971.86, "probability": 0.8667 }, { "start": 9972.94, "end": 9974.54, "probability": 0.5211 }, { "start": 9975.64, "end": 9976.28, "probability": 0.9386 }, { "start": 9976.86, "end": 9977.86, "probability": 0.8006 }, { "start": 9981.52, "end": 9982.2, "probability": 0.8901 }, { "start": 9983.34, "end": 9984.3, "probability": 0.5976 }, { "start": 9985.52, "end": 9986.52, "probability": 0.986 }, { "start": 9989.34, "end": 9990.18, "probability": 0.6648 }, { "start": 9993.38, "end": 9994.16, "probability": 0.8899 }, { "start": 9994.78, "end": 9995.52, "probability": 0.632 }, { "start": 9997.48, "end": 9998.26, "probability": 0.9871 }, { "start": 9999.38, "end": 10000.46, "probability": 0.9694 }, { "start": 10001.6, "end": 10002.3, "probability": 0.9888 }, { "start": 10002.94, "end": 10004.18, "probability": 0.7864 }, { "start": 10006.4, "end": 10008.84, "probability": 0.8762 }, { "start": 10010.76, "end": 10011.5, "probability": 0.7971 }, { "start": 10012.14, "end": 10013.1, "probability": 0.821 }, { "start": 10013.82, "end": 10014.5, "probability": 0.66 }, { "start": 10019.02, "end": 10019.6, "probability": 0.5982 }, { "start": 10021.04, "end": 10022.1, "probability": 0.7309 }, { "start": 10023.06, "end": 10023.48, "probability": 0.8413 }, { "start": 10024.0, "end": 10025.92, "probability": 0.6475 }, { "start": 10028.04, "end": 10028.86, "probability": 0.4914 }, { "start": 10029.08, "end": 10030.66, "probability": 0.8573 }, { "start": 10041.07, "end": 10045.74, "probability": 0.3855 }, { "start": 10046.42, "end": 10049.0, "probability": 0.6926 }, { "start": 10049.58, "end": 10050.28, "probability": 0.6319 }, { "start": 10051.06, "end": 10051.68, "probability": 0.979 }, { "start": 10052.46, "end": 10053.02, "probability": 0.4292 }, { "start": 10053.78, "end": 10056.26, "probability": 0.9368 }, { "start": 10058.2, "end": 10059.1, "probability": 0.7536 }, { "start": 10060.38, "end": 10063.68, "probability": 0.8803 }, { "start": 10064.4, "end": 10066.16, "probability": 0.9335 }, { "start": 10067.48, "end": 10069.06, "probability": 0.3078 }, { "start": 10073.54, "end": 10076.52, "probability": 0.2184 }, { "start": 10077.38, "end": 10079.64, "probability": 0.7058 }, { "start": 10081.18, "end": 10082.06, "probability": 0.9088 }, { "start": 10082.72, "end": 10083.72, "probability": 0.8622 }, { "start": 10084.96, "end": 10088.44, "probability": 0.917 }, { "start": 10089.08, "end": 10089.98, "probability": 0.9299 }, { "start": 10092.0, "end": 10096.08, "probability": 0.8053 }, { "start": 10097.04, "end": 10099.2, "probability": 0.7284 }, { "start": 10099.94, "end": 10100.78, "probability": 0.9803 }, { "start": 10103.84, "end": 10104.88, "probability": 0.6092 }, { "start": 10105.6, "end": 10108.82, "probability": 0.7998 }, { "start": 10109.66, "end": 10111.8, "probability": 0.9741 }, { "start": 10112.6, "end": 10114.92, "probability": 0.9608 }, { "start": 10115.86, "end": 10117.96, "probability": 0.9841 }, { "start": 10119.86, "end": 10122.6, "probability": 0.9414 }, { "start": 10123.3, "end": 10125.68, "probability": 0.7536 }, { "start": 10126.26, "end": 10129.26, "probability": 0.7384 }, { "start": 10129.82, "end": 10132.12, "probability": 0.882 }, { "start": 10134.6, "end": 10135.24, "probability": 0.9129 }, { "start": 10136.62, "end": 10140.08, "probability": 0.51 }, { "start": 10140.74, "end": 10143.5, "probability": 0.6601 }, { "start": 10144.68, "end": 10148.3, "probability": 0.5962 }, { "start": 10149.36, "end": 10149.86, "probability": 0.498 }, { "start": 10150.98, "end": 10152.22, "probability": 0.8019 }, { "start": 10152.88, "end": 10154.86, "probability": 0.9392 }, { "start": 10156.42, "end": 10160.94, "probability": 0.7054 }, { "start": 10161.5, "end": 10163.16, "probability": 0.9575 }, { "start": 10163.66, "end": 10164.7, "probability": 0.5054 }, { "start": 10165.06, "end": 10166.82, "probability": 0.8495 }, { "start": 10167.0, "end": 10170.14, "probability": 0.9591 }, { "start": 10170.3, "end": 10172.98, "probability": 0.9003 }, { "start": 10174.3, "end": 10179.6, "probability": 0.9524 }, { "start": 10182.62, "end": 10183.28, "probability": 0.6071 }, { "start": 10183.66, "end": 10185.7, "probability": 0.8467 }, { "start": 10185.84, "end": 10187.64, "probability": 0.9593 }, { "start": 10188.24, "end": 10190.32, "probability": 0.9791 }, { "start": 10191.22, "end": 10193.92, "probability": 0.9865 }, { "start": 10194.56, "end": 10195.6, "probability": 0.7742 }, { "start": 10196.4, "end": 10198.72, "probability": 0.9804 }, { "start": 10199.66, "end": 10201.52, "probability": 0.6065 }, { "start": 10203.62, "end": 10203.88, "probability": 0.477 }, { "start": 10205.36, "end": 10206.86, "probability": 0.692 }, { "start": 10209.94, "end": 10211.62, "probability": 0.857 }, { "start": 10212.9, "end": 10216.16, "probability": 0.8726 }, { "start": 10217.28, "end": 10220.04, "probability": 0.9062 }, { "start": 10220.62, "end": 10222.64, "probability": 0.8954 }, { "start": 10223.3, "end": 10224.4, "probability": 0.9799 }, { "start": 10225.18, "end": 10225.62, "probability": 0.8047 }, { "start": 10228.14, "end": 10229.88, "probability": 0.8121 }, { "start": 10230.46, "end": 10231.58, "probability": 0.428 }, { "start": 10232.92, "end": 10235.42, "probability": 0.6842 }, { "start": 10236.3, "end": 10237.5, "probability": 0.9701 }, { "start": 10240.2, "end": 10241.42, "probability": 0.7533 }, { "start": 10242.4, "end": 10244.66, "probability": 0.8914 }, { "start": 10245.5, "end": 10247.2, "probability": 0.8314 }, { "start": 10248.44, "end": 10250.46, "probability": 0.9509 }, { "start": 10251.56, "end": 10253.24, "probability": 0.982 }, { "start": 10254.48, "end": 10257.58, "probability": 0.9497 }, { "start": 10261.26, "end": 10262.06, "probability": 0.7022 }, { "start": 10264.51, "end": 10267.88, "probability": 0.6116 }, { "start": 10268.42, "end": 10270.68, "probability": 0.9211 }, { "start": 10274.26, "end": 10275.9, "probability": 0.6735 }, { "start": 10276.02, "end": 10277.66, "probability": 0.915 }, { "start": 10277.66, "end": 10278.5, "probability": 0.916 }, { "start": 10279.5, "end": 10282.46, "probability": 0.783 }, { "start": 10283.28, "end": 10284.9, "probability": 0.8571 }, { "start": 10287.3, "end": 10289.66, "probability": 0.8379 }, { "start": 10289.66, "end": 10290.6, "probability": 0.6965 }, { "start": 10291.08, "end": 10292.26, "probability": 0.4893 }, { "start": 10293.36, "end": 10297.2, "probability": 0.779 }, { "start": 10298.1, "end": 10298.86, "probability": 0.9379 }, { "start": 10299.52, "end": 10301.62, "probability": 0.5034 }, { "start": 10302.66, "end": 10303.82, "probability": 0.6373 }, { "start": 10303.86, "end": 10304.56, "probability": 0.6897 }, { "start": 10315.42, "end": 10316.62, "probability": 0.0253 }, { "start": 10321.08, "end": 10321.4, "probability": 0.1403 }, { "start": 10323.24, "end": 10323.34, "probability": 0.0596 }, { "start": 10337.82, "end": 10339.82, "probability": 0.0906 }, { "start": 10342.36, "end": 10342.64, "probability": 0.0011 }, { "start": 10343.98, "end": 10345.88, "probability": 0.2761 }, { "start": 10346.4, "end": 10347.44, "probability": 0.0031 }, { "start": 10398.0, "end": 10406.34, "probability": 0.8208 }, { "start": 10406.44, "end": 10407.78, "probability": 0.4384 }, { "start": 10407.96, "end": 10409.2, "probability": 0.607 }, { "start": 10409.68, "end": 10411.64, "probability": 0.9443 }, { "start": 10411.82, "end": 10414.86, "probability": 0.7924 }, { "start": 10415.32, "end": 10415.32, "probability": 0.2606 }, { "start": 10415.34, "end": 10416.42, "probability": 0.6811 }, { "start": 10420.52, "end": 10421.54, "probability": 0.6861 }, { "start": 10421.56, "end": 10421.91, "probability": 0.5755 }, { "start": 10422.48, "end": 10424.32, "probability": 0.5045 }, { "start": 10424.7, "end": 10429.32, "probability": 0.7692 }, { "start": 10429.32, "end": 10430.66, "probability": 0.5443 }, { "start": 10431.54, "end": 10432.32, "probability": 0.5238 }, { "start": 10432.58, "end": 10433.94, "probability": 0.493 }, { "start": 10434.14, "end": 10436.94, "probability": 0.2691 }, { "start": 10436.94, "end": 10437.5, "probability": 0.5437 }, { "start": 10437.56, "end": 10438.16, "probability": 0.3932 }, { "start": 10438.68, "end": 10439.96, "probability": 0.6294 }, { "start": 10447.32, "end": 10449.64, "probability": 0.2275 }, { "start": 10450.38, "end": 10452.02, "probability": 0.1047 }, { "start": 10454.1, "end": 10455.4, "probability": 0.0165 }, { "start": 10456.86, "end": 10457.0, "probability": 0.0232 }, { "start": 10459.06, "end": 10459.36, "probability": 0.0005 }, { "start": 10460.0, "end": 10460.74, "probability": 0.0206 }, { "start": 10460.82, "end": 10461.2, "probability": 0.0339 }, { "start": 10461.2, "end": 10461.2, "probability": 0.0788 }, { "start": 10461.2, "end": 10462.88, "probability": 0.3581 }, { "start": 10463.0, "end": 10467.88, "probability": 0.9277 }, { "start": 10467.96, "end": 10468.94, "probability": 0.7448 }, { "start": 10469.66, "end": 10471.04, "probability": 0.6673 }, { "start": 10471.14, "end": 10473.2, "probability": 0.3503 }, { "start": 10473.2, "end": 10474.16, "probability": 0.5379 }, { "start": 10475.06, "end": 10478.7, "probability": 0.7184 }, { "start": 10478.82, "end": 10482.62, "probability": 0.8931 }, { "start": 10494.38, "end": 10495.96, "probability": 0.6363 }, { "start": 10496.02, "end": 10496.96, "probability": 0.7566 }, { "start": 10496.96, "end": 10499.56, "probability": 0.7692 }, { "start": 10499.66, "end": 10501.16, "probability": 0.8971 }, { "start": 10502.06, "end": 10503.62, "probability": 0.9805 }, { "start": 10504.68, "end": 10506.18, "probability": 0.9566 }, { "start": 10506.9, "end": 10508.04, "probability": 0.923 }, { "start": 10508.16, "end": 10511.3, "probability": 0.9316 }, { "start": 10511.4, "end": 10516.12, "probability": 0.908 }, { "start": 10516.74, "end": 10517.38, "probability": 0.8276 }, { "start": 10517.52, "end": 10518.23, "probability": 0.9832 }, { "start": 10518.48, "end": 10519.01, "probability": 0.9038 }, { "start": 10519.84, "end": 10520.52, "probability": 0.9403 }, { "start": 10520.88, "end": 10522.16, "probability": 0.9468 }, { "start": 10522.92, "end": 10523.64, "probability": 0.3084 }, { "start": 10523.94, "end": 10524.38, "probability": 0.3008 }, { "start": 10525.08, "end": 10526.86, "probability": 0.9916 }, { "start": 10526.92, "end": 10527.74, "probability": 0.7607 }, { "start": 10528.48, "end": 10529.44, "probability": 0.9539 }, { "start": 10530.0, "end": 10532.97, "probability": 0.9302 }, { "start": 10533.2, "end": 10534.38, "probability": 0.7983 }, { "start": 10535.18, "end": 10536.22, "probability": 0.8643 }, { "start": 10536.82, "end": 10538.12, "probability": 0.9951 }, { "start": 10538.9, "end": 10541.26, "probability": 0.8322 }, { "start": 10542.0, "end": 10545.46, "probability": 0.748 }, { "start": 10546.22, "end": 10547.08, "probability": 0.889 }, { "start": 10547.96, "end": 10550.42, "probability": 0.7836 }, { "start": 10550.62, "end": 10554.22, "probability": 0.939 }, { "start": 10554.22, "end": 10558.26, "probability": 0.9167 }, { "start": 10559.15, "end": 10561.8, "probability": 0.8864 }, { "start": 10562.5, "end": 10564.52, "probability": 0.5973 }, { "start": 10564.6, "end": 10565.7, "probability": 0.8434 }, { "start": 10566.18, "end": 10567.66, "probability": 0.805 }, { "start": 10569.04, "end": 10569.24, "probability": 0.3071 }, { "start": 10569.28, "end": 10570.06, "probability": 0.3823 }, { "start": 10570.06, "end": 10572.0, "probability": 0.9159 }, { "start": 10572.9, "end": 10573.8, "probability": 0.5154 }, { "start": 10573.98, "end": 10575.17, "probability": 0.6385 }, { "start": 10575.24, "end": 10579.28, "probability": 0.4049 }, { "start": 10579.46, "end": 10580.52, "probability": 0.0798 }, { "start": 10580.52, "end": 10584.0, "probability": 0.9073 }, { "start": 10584.2, "end": 10586.97, "probability": 0.9891 }, { "start": 10589.52, "end": 10591.24, "probability": 0.1468 }, { "start": 10591.24, "end": 10591.24, "probability": 0.4767 }, { "start": 10591.24, "end": 10591.88, "probability": 0.5247 }, { "start": 10592.64, "end": 10593.29, "probability": 0.9777 }, { "start": 10594.04, "end": 10596.2, "probability": 0.9526 }, { "start": 10596.58, "end": 10597.5, "probability": 0.9714 }, { "start": 10598.02, "end": 10599.12, "probability": 0.7349 }, { "start": 10599.18, "end": 10600.06, "probability": 0.9058 }, { "start": 10600.42, "end": 10601.6, "probability": 0.9709 }, { "start": 10601.76, "end": 10602.86, "probability": 0.8322 }, { "start": 10603.5, "end": 10604.46, "probability": 0.085 }, { "start": 10606.34, "end": 10607.74, "probability": 0.6022 }, { "start": 10608.04, "end": 10609.76, "probability": 0.8377 }, { "start": 10609.78, "end": 10611.06, "probability": 0.7528 }, { "start": 10611.06, "end": 10612.6, "probability": 0.8662 }, { "start": 10613.26, "end": 10613.26, "probability": 0.016 }, { "start": 10613.26, "end": 10614.7, "probability": 0.5822 }, { "start": 10614.84, "end": 10616.44, "probability": 0.5507 }, { "start": 10617.48, "end": 10618.8, "probability": 0.5398 }, { "start": 10619.02, "end": 10621.93, "probability": 0.9185 }, { "start": 10623.3, "end": 10623.84, "probability": 0.6903 }, { "start": 10627.44, "end": 10629.88, "probability": 0.0291 }, { "start": 10630.96, "end": 10631.08, "probability": 0.0785 }, { "start": 10645.14, "end": 10645.56, "probability": 0.0311 }, { "start": 10646.06, "end": 10646.94, "probability": 0.1044 }, { "start": 10656.02, "end": 10656.02, "probability": 0.3257 }, { "start": 10656.02, "end": 10656.78, "probability": 0.2988 }, { "start": 10656.78, "end": 10657.18, "probability": 0.8452 }, { "start": 10657.84, "end": 10658.34, "probability": 0.7349 }, { "start": 10658.54, "end": 10658.76, "probability": 0.9775 }, { "start": 10662.74, "end": 10665.72, "probability": 0.6823 }, { "start": 10666.54, "end": 10669.06, "probability": 0.7922 }, { "start": 10669.2, "end": 10670.74, "probability": 0.9919 }, { "start": 10671.6, "end": 10673.02, "probability": 0.965 }, { "start": 10674.18, "end": 10680.54, "probability": 0.9439 }, { "start": 10681.0, "end": 10684.26, "probability": 0.9855 }, { "start": 10685.3, "end": 10686.8, "probability": 0.5024 }, { "start": 10686.8, "end": 10689.86, "probability": 0.2181 }, { "start": 10689.86, "end": 10692.26, "probability": 0.8245 }, { "start": 10692.76, "end": 10696.96, "probability": 0.8809 }, { "start": 10697.76, "end": 10698.0, "probability": 0.0684 }, { "start": 10698.0, "end": 10702.3, "probability": 0.4064 }, { "start": 10702.5, "end": 10703.46, "probability": 0.4167 }, { "start": 10703.74, "end": 10705.2, "probability": 0.8334 }, { "start": 10706.1, "end": 10706.88, "probability": 0.1268 }, { "start": 10706.88, "end": 10706.88, "probability": 0.2481 }, { "start": 10706.88, "end": 10706.98, "probability": 0.3737 }, { "start": 10706.98, "end": 10710.58, "probability": 0.9574 }, { "start": 10711.53, "end": 10717.62, "probability": 0.9712 }, { "start": 10717.62, "end": 10720.72, "probability": 0.899 }, { "start": 10721.94, "end": 10726.96, "probability": 0.981 }, { "start": 10728.88, "end": 10735.12, "probability": 0.9975 }, { "start": 10736.64, "end": 10738.56, "probability": 0.6998 }, { "start": 10739.48, "end": 10744.96, "probability": 0.9102 }, { "start": 10745.54, "end": 10749.3, "probability": 0.8846 }, { "start": 10751.06, "end": 10754.2, "probability": 0.9766 }, { "start": 10754.74, "end": 10757.5, "probability": 0.9112 }, { "start": 10758.02, "end": 10761.76, "probability": 0.897 }, { "start": 10762.3, "end": 10763.96, "probability": 0.5756 }, { "start": 10764.58, "end": 10770.78, "probability": 0.9786 }, { "start": 10771.2, "end": 10773.04, "probability": 0.9947 }, { "start": 10773.36, "end": 10774.2, "probability": 0.0993 }, { "start": 10774.7, "end": 10776.02, "probability": 0.3487 }, { "start": 10776.22, "end": 10782.28, "probability": 0.3403 }, { "start": 10783.18, "end": 10784.24, "probability": 0.0959 }, { "start": 10784.62, "end": 10787.14, "probability": 0.3084 }, { "start": 10788.34, "end": 10790.2, "probability": 0.9073 }, { "start": 10791.04, "end": 10791.06, "probability": 0.1585 }, { "start": 10791.06, "end": 10796.24, "probability": 0.1717 }, { "start": 10797.36, "end": 10798.46, "probability": 0.1147 }, { "start": 10798.46, "end": 10799.24, "probability": 0.0427 }, { "start": 10799.32, "end": 10800.04, "probability": 0.2431 }, { "start": 10800.32, "end": 10800.46, "probability": 0.0114 }, { "start": 10800.46, "end": 10800.46, "probability": 0.1538 }, { "start": 10800.46, "end": 10802.12, "probability": 0.449 }, { "start": 10802.22, "end": 10803.98, "probability": 0.5739 }, { "start": 10804.16, "end": 10805.52, "probability": 0.4995 }, { "start": 10805.88, "end": 10807.82, "probability": 0.443 }, { "start": 10808.54, "end": 10811.34, "probability": 0.4033 }, { "start": 10883.0, "end": 10883.0, "probability": 0.0 }, { "start": 10883.0, "end": 10883.0, "probability": 0.0 }, { "start": 10883.0, "end": 10883.0, "probability": 0.0 }, { "start": 10883.0, "end": 10883.0, "probability": 0.0 }, { "start": 10883.0, "end": 10883.0, "probability": 0.0 }, { "start": 10883.0, "end": 10883.0, "probability": 0.0 }, { "start": 10883.0, "end": 10883.0, "probability": 0.0 }, { "start": 10883.0, "end": 10883.0, "probability": 0.0 }, { "start": 10883.0, "end": 10883.0, "probability": 0.0 }, { "start": 10883.0, "end": 10883.0, "probability": 0.0 }, { "start": 10883.0, "end": 10883.0, "probability": 0.0 }, { "start": 10883.0, "end": 10883.0, "probability": 0.0 }, { "start": 10883.0, "end": 10883.0, "probability": 0.0 }, { "start": 10883.0, "end": 10883.0, "probability": 0.0 }, { "start": 10883.0, "end": 10883.0, "probability": 0.0 }, { "start": 10883.0, "end": 10883.0, "probability": 0.0 }, { "start": 10883.0, "end": 10883.0, "probability": 0.0 }, { "start": 10883.0, "end": 10883.0, "probability": 0.0 }, { "start": 10883.0, "end": 10883.0, "probability": 0.0 }, { "start": 10883.0, "end": 10883.0, "probability": 0.0 }, { "start": 10883.0, "end": 10883.0, "probability": 0.0 }, { "start": 10883.0, "end": 10883.0, "probability": 0.0 }, { "start": 10883.0, "end": 10883.0, "probability": 0.0 }, { "start": 10883.0, "end": 10883.0, "probability": 0.0 }, { "start": 10883.0, "end": 10883.0, "probability": 0.0 }, { "start": 10883.0, "end": 10883.0, "probability": 0.0 }, { "start": 10883.0, "end": 10883.0, "probability": 0.0 }, { "start": 10883.0, "end": 10883.0, "probability": 0.0 }, { "start": 10883.0, "end": 10883.0, "probability": 0.0 }, { "start": 10883.0, "end": 10883.0, "probability": 0.0 }, { "start": 10883.0, "end": 10883.0, "probability": 0.0 }, { "start": 10883.0, "end": 10883.0, "probability": 0.0 }, { "start": 10883.0, "end": 10883.0, "probability": 0.0 }, { "start": 10883.0, "end": 10883.0, "probability": 0.0 }, { "start": 10883.0, "end": 10883.0, "probability": 0.0 }, { "start": 10883.0, "end": 10883.0, "probability": 0.0 }, { "start": 10883.0, "end": 10883.0, "probability": 0.0 }, { "start": 10883.0, "end": 10883.0, "probability": 0.0 }, { "start": 10883.0, "end": 10883.0, "probability": 0.0 }, { "start": 10883.0, "end": 10883.0, "probability": 0.0 }, { "start": 10883.0, "end": 10883.0, "probability": 0.0 }, { "start": 10883.0, "end": 10883.0, "probability": 0.0 }, { "start": 10883.52, "end": 10883.83, "probability": 0.0488 }, { "start": 10884.86, "end": 10892.0, "probability": 0.5256 }, { "start": 10892.92, "end": 10894.12, "probability": 0.1718 }, { "start": 10894.12, "end": 10894.2, "probability": 0.1131 }, { "start": 10894.2, "end": 10894.76, "probability": 0.0413 }, { "start": 10895.74, "end": 10897.18, "probability": 0.2438 }, { "start": 10897.18, "end": 10901.32, "probability": 0.1891 }, { "start": 11010.0, "end": 11010.0, "probability": 0.0 }, { "start": 11010.0, "end": 11010.0, "probability": 0.0 }, { "start": 11010.0, "end": 11010.0, "probability": 0.0 }, { "start": 11010.0, "end": 11010.0, "probability": 0.0 }, { "start": 11010.0, "end": 11010.0, "probability": 0.0 }, { "start": 11010.0, "end": 11010.0, "probability": 0.0 }, { "start": 11010.0, "end": 11010.0, "probability": 0.0 }, { "start": 11010.0, "end": 11010.0, "probability": 0.0 }, { "start": 11010.0, "end": 11010.0, "probability": 0.0 }, { "start": 11010.0, "end": 11010.0, "probability": 0.0 }, { "start": 11010.0, "end": 11010.0, "probability": 0.0 }, { "start": 11010.0, "end": 11010.0, "probability": 0.0 }, { "start": 11010.0, "end": 11010.0, "probability": 0.0 }, { "start": 11010.0, "end": 11010.0, "probability": 0.0 }, { "start": 11010.0, "end": 11010.0, "probability": 0.0 }, { "start": 11010.0, "end": 11010.0, "probability": 0.0 }, { "start": 11010.0, "end": 11010.0, "probability": 0.0 }, { "start": 11010.0, "end": 11010.0, "probability": 0.0 }, { "start": 11010.0, "end": 11010.0, "probability": 0.0 }, { "start": 11010.0, "end": 11010.0, "probability": 0.0 }, { "start": 11010.0, "end": 11010.0, "probability": 0.0 }, { "start": 11010.0, "end": 11010.0, "probability": 0.0 }, { "start": 11010.0, "end": 11010.0, "probability": 0.0 }, { "start": 11010.0, "end": 11010.0, "probability": 0.0 }, { "start": 11010.0, "end": 11010.0, "probability": 0.0 }, { "start": 11010.0, "end": 11010.0, "probability": 0.0 }, { "start": 11010.0, "end": 11010.0, "probability": 0.0 }, { "start": 11010.0, "end": 11010.0, "probability": 0.0 }, { "start": 11010.0, "end": 11010.0, "probability": 0.0 }, { "start": 11010.0, "end": 11010.0, "probability": 0.0 }, { "start": 11010.0, "end": 11010.0, "probability": 0.0 }, { "start": 11010.0, "end": 11010.0, "probability": 0.0 }, { "start": 11010.0, "end": 11010.0, "probability": 0.0 }, { "start": 11010.0, "end": 11010.0, "probability": 0.0 }, { "start": 11010.0, "end": 11010.0, "probability": 0.0 }, { "start": 11010.0, "end": 11010.0, "probability": 0.0 }, { "start": 11010.0, "end": 11010.0, "probability": 0.0 }, { "start": 11010.0, "end": 11010.0, "probability": 0.0 }, { "start": 11010.0, "end": 11010.0, "probability": 0.0 }, { "start": 11010.0, "end": 11010.0, "probability": 0.0 }, { "start": 11010.0, "end": 11010.0, "probability": 0.0 }, { "start": 11010.0, "end": 11010.0, "probability": 0.0 }, { "start": 11010.0, "end": 11010.0, "probability": 0.0 }, { "start": 11010.0, "end": 11010.0, "probability": 0.0 }, { "start": 11010.0, "end": 11010.0, "probability": 0.0 }, { "start": 11010.0, "end": 11010.0, "probability": 0.0 }, { "start": 11010.0, "end": 11010.0, "probability": 0.0 }, { "start": 11010.0, "end": 11010.0, "probability": 0.0 }, { "start": 11010.0, "end": 11010.0, "probability": 0.0 }, { "start": 11010.0, "end": 11010.0, "probability": 0.0 }, { "start": 11010.0, "end": 11010.0, "probability": 0.0 }, { "start": 11010.0, "end": 11010.0, "probability": 0.0 }, { "start": 11010.0, "end": 11010.0, "probability": 0.0 }, { "start": 11010.0, "end": 11010.0, "probability": 0.0 }, { "start": 11010.08, "end": 11010.1, "probability": 0.0321 }, { "start": 11010.1, "end": 11010.8, "probability": 0.3532 }, { "start": 11011.0, "end": 11011.24, "probability": 0.7321 }, { "start": 11011.38, "end": 11013.08, "probability": 0.6836 }, { "start": 11013.08, "end": 11014.2, "probability": 0.71 }, { "start": 11014.3, "end": 11017.7, "probability": 0.5348 }, { "start": 11017.88, "end": 11018.58, "probability": 0.8666 }, { "start": 11018.66, "end": 11019.3, "probability": 0.5348 }, { "start": 11019.3, "end": 11020.42, "probability": 0.3601 }, { "start": 11020.52, "end": 11023.26, "probability": 0.4221 }, { "start": 11023.3, "end": 11024.26, "probability": 0.7571 }, { "start": 11024.8, "end": 11025.62, "probability": 0.0771 }, { "start": 11025.62, "end": 11027.9, "probability": 0.3766 }, { "start": 11028.82, "end": 11031.28, "probability": 0.5907 }, { "start": 11031.7, "end": 11033.04, "probability": 0.6081 }, { "start": 11033.82, "end": 11034.08, "probability": 0.5116 }, { "start": 11034.1, "end": 11034.58, "probability": 0.6759 }, { "start": 11037.28, "end": 11040.96, "probability": 0.6513 }, { "start": 11042.02, "end": 11046.34, "probability": 0.8225 }, { "start": 11046.8, "end": 11050.1, "probability": 0.6762 }, { "start": 11050.8, "end": 11054.4, "probability": 0.5848 }, { "start": 11054.46, "end": 11055.52, "probability": 0.9917 }, { "start": 11056.44, "end": 11057.82, "probability": 0.9166 }, { "start": 11058.24, "end": 11059.06, "probability": 0.9584 }, { "start": 11059.44, "end": 11061.6, "probability": 0.8394 }, { "start": 11062.7, "end": 11067.22, "probability": 0.9923 }, { "start": 11068.98, "end": 11069.94, "probability": 0.6692 }, { "start": 11070.72, "end": 11074.18, "probability": 0.9788 }, { "start": 11075.36, "end": 11075.56, "probability": 0.3466 }, { "start": 11075.56, "end": 11076.72, "probability": 0.8012 }, { "start": 11077.5, "end": 11083.14, "probability": 0.7896 }, { "start": 11083.56, "end": 11088.98, "probability": 0.9973 }, { "start": 11089.62, "end": 11092.54, "probability": 0.8784 }, { "start": 11092.78, "end": 11093.2, "probability": 0.6583 }, { "start": 11093.3, "end": 11095.32, "probability": 0.9485 }, { "start": 11098.55, "end": 11100.98, "probability": 0.6018 }, { "start": 11103.42, "end": 11104.2, "probability": 0.2506 }, { "start": 11105.1, "end": 11105.4, "probability": 0.479 }, { "start": 11105.42, "end": 11107.64, "probability": 0.5303 }, { "start": 11107.76, "end": 11108.62, "probability": 0.2664 }, { "start": 11108.88, "end": 11109.66, "probability": 0.7753 }, { "start": 11109.74, "end": 11109.74, "probability": 0.6088 }, { "start": 11109.74, "end": 11109.84, "probability": 0.1156 }, { "start": 11109.9, "end": 11110.54, "probability": 0.6835 }, { "start": 11110.96, "end": 11112.57, "probability": 0.4818 }, { "start": 11116.62, "end": 11119.24, "probability": 0.7892 }, { "start": 11120.66, "end": 11121.16, "probability": 0.809 }, { "start": 11139.36, "end": 11140.66, "probability": 0.5698 }, { "start": 11140.92, "end": 11142.66, "probability": 0.8563 }, { "start": 11142.66, "end": 11144.32, "probability": 0.8489 }, { "start": 11144.86, "end": 11144.92, "probability": 0.4044 }, { "start": 11144.96, "end": 11145.78, "probability": 0.9167 }, { "start": 11146.22, "end": 11147.4, "probability": 0.7644 }, { "start": 11148.34, "end": 11152.36, "probability": 0.9902 }, { "start": 11153.42, "end": 11155.72, "probability": 0.9746 }, { "start": 11156.44, "end": 11158.62, "probability": 0.9327 }, { "start": 11158.62, "end": 11161.68, "probability": 0.993 }, { "start": 11162.24, "end": 11165.72, "probability": 0.997 }, { "start": 11166.42, "end": 11167.1, "probability": 0.6018 }, { "start": 11167.32, "end": 11172.14, "probability": 0.8276 }, { "start": 11172.92, "end": 11174.98, "probability": 0.9515 }, { "start": 11175.74, "end": 11180.72, "probability": 0.7972 }, { "start": 11181.92, "end": 11183.6, "probability": 0.9053 }, { "start": 11184.12, "end": 11185.0, "probability": 0.7534 }, { "start": 11185.58, "end": 11188.04, "probability": 0.9476 }, { "start": 11189.6, "end": 11192.84, "probability": 0.9647 }, { "start": 11193.92, "end": 11195.66, "probability": 0.9966 }, { "start": 11198.62, "end": 11201.82, "probability": 0.9283 }, { "start": 11203.22, "end": 11204.42, "probability": 0.5815 }, { "start": 11205.34, "end": 11212.12, "probability": 0.9865 }, { "start": 11212.36, "end": 11213.78, "probability": 0.7969 }, { "start": 11214.52, "end": 11215.92, "probability": 0.9359 }, { "start": 11219.62, "end": 11220.62, "probability": 0.8961 }, { "start": 11221.7, "end": 11223.32, "probability": 0.9786 }, { "start": 11224.26, "end": 11224.78, "probability": 0.928 }, { "start": 11225.28, "end": 11230.12, "probability": 0.979 }, { "start": 11231.08, "end": 11231.72, "probability": 0.727 }, { "start": 11231.82, "end": 11234.36, "probability": 0.9694 }, { "start": 11234.92, "end": 11236.24, "probability": 0.9307 }, { "start": 11237.92, "end": 11239.18, "probability": 0.6753 }, { "start": 11239.34, "end": 11243.22, "probability": 0.8553 }, { "start": 11243.82, "end": 11245.5, "probability": 0.9307 }, { "start": 11245.96, "end": 11250.26, "probability": 0.957 }, { "start": 11250.26, "end": 11253.08, "probability": 0.9725 }, { "start": 11255.6, "end": 11260.06, "probability": 0.9882 }, { "start": 11260.2, "end": 11262.22, "probability": 0.7208 }, { "start": 11262.34, "end": 11263.08, "probability": 0.8164 }, { "start": 11263.66, "end": 11266.38, "probability": 0.9387 }, { "start": 11266.98, "end": 11269.04, "probability": 0.9099 }, { "start": 11270.02, "end": 11272.4, "probability": 0.9784 }, { "start": 11272.4, "end": 11276.76, "probability": 0.7944 }, { "start": 11278.76, "end": 11281.56, "probability": 0.9729 }, { "start": 11282.18, "end": 11284.88, "probability": 0.9855 }, { "start": 11285.12, "end": 11287.8, "probability": 0.7499 }, { "start": 11288.4, "end": 11292.7, "probability": 0.9979 }, { "start": 11293.36, "end": 11296.94, "probability": 0.998 }, { "start": 11297.92, "end": 11302.5, "probability": 0.974 }, { "start": 11303.6, "end": 11305.8, "probability": 0.9827 }, { "start": 11305.9, "end": 11307.38, "probability": 0.8289 }, { "start": 11308.02, "end": 11310.42, "probability": 0.9653 }, { "start": 11312.04, "end": 11316.36, "probability": 0.9924 }, { "start": 11316.64, "end": 11320.52, "probability": 0.9985 }, { "start": 11321.5, "end": 11325.44, "probability": 0.9993 }, { "start": 11325.44, "end": 11330.48, "probability": 0.9827 }, { "start": 11331.72, "end": 11332.92, "probability": 0.6375 }, { "start": 11333.04, "end": 11335.2, "probability": 0.8818 }, { "start": 11335.42, "end": 11337.04, "probability": 0.9904 }, { "start": 11337.96, "end": 11339.32, "probability": 0.9796 }, { "start": 11341.04, "end": 11348.5, "probability": 0.9619 }, { "start": 11349.1, "end": 11350.44, "probability": 0.8931 }, { "start": 11351.18, "end": 11353.86, "probability": 0.9 }, { "start": 11354.66, "end": 11356.76, "probability": 0.9954 }, { "start": 11358.91, "end": 11363.06, "probability": 0.8214 }, { "start": 11363.74, "end": 11369.14, "probability": 0.9861 }, { "start": 11370.26, "end": 11372.34, "probability": 0.9547 }, { "start": 11372.5, "end": 11373.4, "probability": 0.9589 }, { "start": 11373.54, "end": 11374.86, "probability": 0.6826 }, { "start": 11375.52, "end": 11378.32, "probability": 0.9811 }, { "start": 11379.1, "end": 11383.16, "probability": 0.9548 }, { "start": 11391.12, "end": 11392.46, "probability": 0.9979 }, { "start": 11394.66, "end": 11396.0, "probability": 0.0518 }, { "start": 11397.45, "end": 11403.36, "probability": 0.7203 }, { "start": 11405.3, "end": 11407.96, "probability": 0.9165 }, { "start": 11408.26, "end": 11414.46, "probability": 0.9961 }, { "start": 11414.46, "end": 11421.62, "probability": 0.9938 }, { "start": 11423.14, "end": 11424.74, "probability": 0.7812 }, { "start": 11424.9, "end": 11425.6, "probability": 0.6943 }, { "start": 11425.78, "end": 11429.86, "probability": 0.9849 }, { "start": 11430.62, "end": 11432.46, "probability": 0.6068 }, { "start": 11432.72, "end": 11433.78, "probability": 0.9824 }, { "start": 11434.42, "end": 11435.84, "probability": 0.9392 }, { "start": 11438.76, "end": 11440.04, "probability": 0.1637 }, { "start": 11440.04, "end": 11440.7, "probability": 0.5472 }, { "start": 11441.88, "end": 11443.6, "probability": 0.924 }, { "start": 11445.12, "end": 11447.46, "probability": 0.9893 }, { "start": 11451.14, "end": 11453.54, "probability": 0.2226 }, { "start": 11455.22, "end": 11456.48, "probability": 0.072 }, { "start": 11457.22, "end": 11458.48, "probability": 0.2479 }, { "start": 11470.54, "end": 11471.48, "probability": 0.0806 }, { "start": 11472.22, "end": 11473.02, "probability": 0.1495 }, { "start": 11473.81, "end": 11474.02, "probability": 0.0201 }, { "start": 11474.02, "end": 11474.02, "probability": 0.1167 }, { "start": 11474.02, "end": 11474.4, "probability": 0.0847 }, { "start": 11474.46, "end": 11474.7, "probability": 0.0314 }, { "start": 11474.86, "end": 11475.78, "probability": 0.0604 }, { "start": 11501.5, "end": 11506.04, "probability": 0.5104 }, { "start": 11508.8, "end": 11508.88, "probability": 0.1727 }, { "start": 11508.88, "end": 11508.88, "probability": 0.0988 }, { "start": 11508.88, "end": 11509.84, "probability": 0.1199 }, { "start": 11509.84, "end": 11510.68, "probability": 0.0313 }, { "start": 11512.08, "end": 11513.58, "probability": 0.0534 }, { "start": 11525.3, "end": 11527.22, "probability": 0.7841 }, { "start": 11528.84, "end": 11530.76, "probability": 0.9979 }, { "start": 11531.54, "end": 11533.1, "probability": 0.9863 }, { "start": 11533.52, "end": 11535.8, "probability": 0.9358 }, { "start": 11536.58, "end": 11539.66, "probability": 0.9907 }, { "start": 11539.66, "end": 11542.36, "probability": 0.9978 }, { "start": 11542.42, "end": 11543.11, "probability": 0.9914 }, { "start": 11544.06, "end": 11547.28, "probability": 0.9084 }, { "start": 11548.28, "end": 11552.08, "probability": 0.95 }, { "start": 11552.24, "end": 11554.42, "probability": 0.9856 }, { "start": 11554.6, "end": 11556.18, "probability": 0.8643 }, { "start": 11557.02, "end": 11559.1, "probability": 0.97 }, { "start": 11559.77, "end": 11564.5, "probability": 0.991 }, { "start": 11565.48, "end": 11567.56, "probability": 0.4805 }, { "start": 11568.4, "end": 11570.32, "probability": 0.7349 }, { "start": 11571.22, "end": 11573.62, "probability": 0.9198 }, { "start": 11574.24, "end": 11575.72, "probability": 0.7214 }, { "start": 11576.62, "end": 11578.2, "probability": 0.9836 }, { "start": 11578.74, "end": 11580.31, "probability": 0.9983 }, { "start": 11581.04, "end": 11586.34, "probability": 0.9351 }, { "start": 11587.08, "end": 11588.54, "probability": 0.6988 }, { "start": 11589.14, "end": 11591.36, "probability": 0.9304 }, { "start": 11591.88, "end": 11594.2, "probability": 0.8662 }, { "start": 11595.0, "end": 11595.98, "probability": 0.868 }, { "start": 11596.56, "end": 11598.14, "probability": 0.9137 }, { "start": 11598.68, "end": 11601.9, "probability": 0.9852 }, { "start": 11602.66, "end": 11605.96, "probability": 0.9764 }, { "start": 11606.1, "end": 11608.2, "probability": 0.9892 }, { "start": 11609.36, "end": 11611.76, "probability": 0.8747 }, { "start": 11612.48, "end": 11616.22, "probability": 0.8472 }, { "start": 11616.76, "end": 11620.16, "probability": 0.9774 }, { "start": 11620.84, "end": 11621.94, "probability": 0.9392 }, { "start": 11622.16, "end": 11623.66, "probability": 0.9954 }, { "start": 11624.34, "end": 11625.44, "probability": 0.8721 }, { "start": 11625.98, "end": 11629.6, "probability": 0.9458 }, { "start": 11629.8, "end": 11632.22, "probability": 0.4632 }, { "start": 11633.0, "end": 11635.12, "probability": 0.9353 }, { "start": 11636.3, "end": 11637.38, "probability": 0.8561 }, { "start": 11638.1, "end": 11639.74, "probability": 0.9241 }, { "start": 11640.12, "end": 11641.22, "probability": 0.5088 }, { "start": 11641.52, "end": 11642.36, "probability": 0.7328 }, { "start": 11644.22, "end": 11645.64, "probability": 0.8438 }, { "start": 11651.66, "end": 11652.74, "probability": 0.1287 }, { "start": 11653.56, "end": 11656.62, "probability": 0.5605 }, { "start": 11657.46, "end": 11658.62, "probability": 0.538 }, { "start": 11658.72, "end": 11659.7, "probability": 0.8835 }, { "start": 11659.82, "end": 11661.84, "probability": 0.1281 }, { "start": 11662.48, "end": 11665.96, "probability": 0.5452 }, { "start": 11666.46, "end": 11667.12, "probability": 0.6346 }, { "start": 11667.12, "end": 11668.14, "probability": 0.9369 }, { "start": 11668.72, "end": 11670.24, "probability": 0.8051 }, { "start": 11670.38, "end": 11672.3, "probability": 0.3205 }, { "start": 11675.47, "end": 11678.92, "probability": 0.7285 }, { "start": 11679.8, "end": 11682.08, "probability": 0.5168 }, { "start": 11683.6, "end": 11688.58, "probability": 0.7985 }, { "start": 11688.68, "end": 11689.1, "probability": 0.4225 }, { "start": 11689.26, "end": 11690.08, "probability": 0.9366 }, { "start": 11690.18, "end": 11691.24, "probability": 0.726 }, { "start": 11692.14, "end": 11693.42, "probability": 0.8138 }, { "start": 11693.84, "end": 11696.58, "probability": 0.979 }, { "start": 11698.65, "end": 11699.82, "probability": 0.9854 }, { "start": 11699.82, "end": 11701.07, "probability": 0.7565 }, { "start": 11701.9, "end": 11702.8, "probability": 0.7758 }, { "start": 11703.52, "end": 11705.52, "probability": 0.7958 }, { "start": 11705.74, "end": 11709.06, "probability": 0.986 }, { "start": 11710.56, "end": 11711.66, "probability": 0.672 }, { "start": 11712.54, "end": 11715.14, "probability": 0.7606 }, { "start": 11715.66, "end": 11716.64, "probability": 0.5896 }, { "start": 11716.92, "end": 11720.36, "probability": 0.3683 }, { "start": 11720.62, "end": 11722.96, "probability": 0.6989 }, { "start": 11723.04, "end": 11724.96, "probability": 0.8782 }, { "start": 11725.1, "end": 11726.38, "probability": 0.3058 }, { "start": 11726.78, "end": 11731.22, "probability": 0.5663 }, { "start": 11731.32, "end": 11731.32, "probability": 0.2045 }, { "start": 11731.32, "end": 11731.6, "probability": 0.5043 }, { "start": 11732.06, "end": 11732.76, "probability": 0.3682 }, { "start": 11734.84, "end": 11738.26, "probability": 0.2651 }, { "start": 11746.8, "end": 11747.96, "probability": 0.1967 }, { "start": 11753.74, "end": 11756.0, "probability": 0.6177 }, { "start": 11756.08, "end": 11759.96, "probability": 0.9546 }, { "start": 11759.96, "end": 11763.5, "probability": 0.5512 }, { "start": 11765.34, "end": 11767.36, "probability": 0.1832 }, { "start": 11767.58, "end": 11770.26, "probability": 0.9706 }, { "start": 11770.96, "end": 11771.82, "probability": 0.5797 }, { "start": 11771.88, "end": 11774.98, "probability": 0.4707 }, { "start": 11775.78, "end": 11778.58, "probability": 0.8149 }, { "start": 11778.78, "end": 11781.98, "probability": 0.6802 }, { "start": 11782.14, "end": 11784.08, "probability": 0.9565 }, { "start": 11784.5, "end": 11785.22, "probability": 0.9038 }, { "start": 11786.48, "end": 11788.2, "probability": 0.7927 }, { "start": 11788.78, "end": 11789.36, "probability": 0.4999 }, { "start": 11789.54, "end": 11793.32, "probability": 0.9619 }, { "start": 11793.66, "end": 11795.12, "probability": 0.9295 }, { "start": 11796.02, "end": 11796.5, "probability": 0.6903 }, { "start": 11797.02, "end": 11803.2, "probability": 0.6689 }, { "start": 11803.66, "end": 11805.89, "probability": 0.9844 }, { "start": 11806.5, "end": 11809.8, "probability": 0.9595 }, { "start": 11810.22, "end": 11812.86, "probability": 0.9641 }, { "start": 11813.22, "end": 11817.68, "probability": 0.9944 }, { "start": 11818.12, "end": 11819.5, "probability": 0.7895 }, { "start": 11819.88, "end": 11820.86, "probability": 0.8721 }, { "start": 11821.2, "end": 11822.56, "probability": 0.9644 }, { "start": 11823.02, "end": 11823.32, "probability": 0.3436 }, { "start": 11823.7, "end": 11825.14, "probability": 0.9932 }, { "start": 11825.66, "end": 11827.22, "probability": 0.0537 }, { "start": 11827.22, "end": 11830.79, "probability": 0.8403 }, { "start": 11831.38, "end": 11833.02, "probability": 0.9542 }, { "start": 11833.46, "end": 11836.6, "probability": 0.9639 }, { "start": 11837.42, "end": 11839.26, "probability": 0.9321 }, { "start": 11840.02, "end": 11841.38, "probability": 0.3757 }, { "start": 11842.34, "end": 11843.32, "probability": 0.8514 }, { "start": 11843.44, "end": 11844.04, "probability": 0.8091 }, { "start": 11844.1, "end": 11845.8, "probability": 0.8892 }, { "start": 11846.14, "end": 11847.72, "probability": 0.8923 }, { "start": 11848.06, "end": 11849.98, "probability": 0.9612 }, { "start": 11850.98, "end": 11853.08, "probability": 0.9136 }, { "start": 11853.62, "end": 11854.7, "probability": 0.9805 }, { "start": 11855.18, "end": 11856.56, "probability": 0.807 }, { "start": 11857.04, "end": 11859.02, "probability": 0.6988 }, { "start": 11860.53, "end": 11864.02, "probability": 0.8659 }, { "start": 11864.76, "end": 11872.2, "probability": 0.4985 }, { "start": 11872.26, "end": 11876.52, "probability": 0.9219 }, { "start": 11876.82, "end": 11878.82, "probability": 0.916 }, { "start": 11879.08, "end": 11881.7, "probability": 0.7887 }, { "start": 11882.0, "end": 11883.58, "probability": 0.6961 }, { "start": 11883.88, "end": 11887.84, "probability": 0.9267 }, { "start": 11888.0, "end": 11888.74, "probability": 0.7279 }, { "start": 11888.98, "end": 11891.52, "probability": 0.8818 }, { "start": 11891.88, "end": 11894.94, "probability": 0.7144 }, { "start": 11895.16, "end": 11899.94, "probability": 0.8608 }, { "start": 11900.04, "end": 11903.36, "probability": 0.9191 }, { "start": 11903.54, "end": 11904.14, "probability": 0.5313 }, { "start": 11904.48, "end": 11906.77, "probability": 0.6644 }, { "start": 11907.1, "end": 11910.74, "probability": 0.921 }, { "start": 11911.74, "end": 11912.56, "probability": 0.7518 }, { "start": 11913.1, "end": 11914.88, "probability": 0.6784 }, { "start": 11914.94, "end": 11918.38, "probability": 0.0023 }, { "start": 11919.28, "end": 11922.9, "probability": 0.7662 }, { "start": 11923.72, "end": 11927.78, "probability": 0.9862 }, { "start": 11929.1, "end": 11929.65, "probability": 0.4958 }, { "start": 11930.1, "end": 11931.0, "probability": 0.62 }, { "start": 11931.66, "end": 11935.98, "probability": 0.901 }, { "start": 11936.4, "end": 11938.42, "probability": 0.936 }, { "start": 11938.5, "end": 11941.12, "probability": 0.8254 }, { "start": 11941.16, "end": 11942.72, "probability": 0.9535 }, { "start": 11943.34, "end": 11943.36, "probability": 0.0003 }, { "start": 11944.58, "end": 11945.6, "probability": 0.2128 }, { "start": 11945.6, "end": 11948.34, "probability": 0.7564 }, { "start": 11948.88, "end": 11951.46, "probability": 0.9883 }, { "start": 11951.82, "end": 11952.4, "probability": 0.8682 }, { "start": 11955.76, "end": 11957.7, "probability": 0.0485 }, { "start": 11958.2, "end": 11959.98, "probability": 0.1897 }, { "start": 11959.98, "end": 11960.68, "probability": 0.1015 }, { "start": 11961.22, "end": 11965.64, "probability": 0.2973 }, { "start": 11965.74, "end": 11966.76, "probability": 0.5445 }, { "start": 11966.98, "end": 11967.84, "probability": 0.3737 }, { "start": 11967.84, "end": 11970.76, "probability": 0.3968 }, { "start": 11970.82, "end": 11971.92, "probability": 0.298 }, { "start": 11972.06, "end": 11972.06, "probability": 0.1225 }, { "start": 11972.12, "end": 11975.55, "probability": 0.6957 }, { "start": 11976.92, "end": 11977.8, "probability": 0.0075 }, { "start": 11978.04, "end": 11978.1, "probability": 0.2653 }, { "start": 11978.1, "end": 11978.1, "probability": 0.4451 }, { "start": 11978.1, "end": 11978.6, "probability": 0.0914 }, { "start": 11978.64, "end": 11979.57, "probability": 0.4198 }, { "start": 11979.88, "end": 11980.12, "probability": 0.0119 }, { "start": 11980.12, "end": 11982.26, "probability": 0.6999 }, { "start": 11983.14, "end": 11983.82, "probability": 0.9615 }, { "start": 11984.34, "end": 11985.32, "probability": 0.3465 }, { "start": 11987.7, "end": 11988.14, "probability": 0.9816 }, { "start": 11988.78, "end": 11990.06, "probability": 0.5547 }, { "start": 11991.62, "end": 11994.48, "probability": 0.7182 }, { "start": 11997.82, "end": 11998.18, "probability": 0.6484 }, { "start": 11998.76, "end": 11999.66, "probability": 0.5496 }, { "start": 12001.18, "end": 12001.6, "probability": 0.9845 }, { "start": 12002.7, "end": 12003.66, "probability": 0.7198 }, { "start": 12004.76, "end": 12006.88, "probability": 0.9865 }, { "start": 12007.94, "end": 12008.72, "probability": 0.6899 }, { "start": 12011.42, "end": 12018.7, "probability": 0.6332 }, { "start": 12020.74, "end": 12021.58, "probability": 0.0985 }, { "start": 12021.6, "end": 12022.06, "probability": 0.0369 }, { "start": 12022.06, "end": 12024.54, "probability": 0.2534 }, { "start": 12025.8, "end": 12029.76, "probability": 0.8377 }, { "start": 12030.08, "end": 12033.72, "probability": 0.8902 }, { "start": 12034.16, "end": 12035.62, "probability": 0.9391 }, { "start": 12036.26, "end": 12036.76, "probability": 0.012 }, { "start": 12037.3, "end": 12038.24, "probability": 0.695 }, { "start": 12038.9, "end": 12040.16, "probability": 0.4543 }, { "start": 12040.9, "end": 12041.32, "probability": 0.8599 }, { "start": 12042.04, "end": 12043.02, "probability": 0.8393 }, { "start": 12043.92, "end": 12044.34, "probability": 0.9401 }, { "start": 12045.64, "end": 12046.28, "probability": 0.9131 }, { "start": 12046.88, "end": 12047.28, "probability": 0.936 }, { "start": 12048.02, "end": 12048.74, "probability": 0.9836 }, { "start": 12049.72, "end": 12050.08, "probability": 0.9891 }, { "start": 12050.96, "end": 12051.96, "probability": 0.3207 }, { "start": 12053.12, "end": 12055.0, "probability": 0.7233 }, { "start": 12056.14, "end": 12056.52, "probability": 0.9344 }, { "start": 12057.66, "end": 12058.58, "probability": 0.8558 }, { "start": 12059.22, "end": 12059.62, "probability": 0.8486 }, { "start": 12060.66, "end": 12061.42, "probability": 0.9692 }, { "start": 12062.06, "end": 12063.12, "probability": 0.9908 }, { "start": 12064.02, "end": 12066.08, "probability": 0.9881 }, { "start": 12066.96, "end": 12067.46, "probability": 0.9844 }, { "start": 12068.6, "end": 12069.48, "probability": 0.9725 }, { "start": 12071.1, "end": 12073.34, "probability": 0.8413 }, { "start": 12075.18, "end": 12075.68, "probability": 0.9657 }, { "start": 12076.54, "end": 12077.3, "probability": 0.9922 }, { "start": 12077.84, "end": 12078.9, "probability": 0.6129 }, { "start": 12080.52, "end": 12080.88, "probability": 0.6411 }, { "start": 12081.86, "end": 12082.58, "probability": 0.6743 }, { "start": 12084.26, "end": 12087.3, "probability": 0.7883 }, { "start": 12088.42, "end": 12090.18, "probability": 0.9267 }, { "start": 12091.34, "end": 12093.26, "probability": 0.9731 }, { "start": 12094.54, "end": 12095.44, "probability": 0.9897 }, { "start": 12096.36, "end": 12097.34, "probability": 0.9339 }, { "start": 12098.96, "end": 12099.34, "probability": 0.9438 }, { "start": 12100.18, "end": 12101.02, "probability": 0.9632 }, { "start": 12102.34, "end": 12103.98, "probability": 0.959 }, { "start": 12104.7, "end": 12107.24, "probability": 0.5385 }, { "start": 12110.42, "end": 12111.14, "probability": 0.9297 }, { "start": 12112.04, "end": 12112.6, "probability": 0.927 }, { "start": 12114.14, "end": 12114.82, "probability": 0.9738 }, { "start": 12115.44, "end": 12116.32, "probability": 0.9034 }, { "start": 12117.6, "end": 12118.06, "probability": 0.9904 }, { "start": 12119.52, "end": 12120.66, "probability": 0.8451 }, { "start": 12124.02, "end": 12124.72, "probability": 0.9637 }, { "start": 12125.74, "end": 12126.6, "probability": 0.9663 }, { "start": 12127.22, "end": 12129.82, "probability": 0.926 }, { "start": 12131.26, "end": 12131.68, "probability": 0.9935 }, { "start": 12133.0, "end": 12134.14, "probability": 0.9136 }, { "start": 12135.38, "end": 12136.1, "probability": 0.8398 }, { "start": 12136.82, "end": 12137.62, "probability": 0.7272 }, { "start": 12138.71, "end": 12142.96, "probability": 0.9292 }, { "start": 12144.42, "end": 12146.52, "probability": 0.8088 }, { "start": 12147.36, "end": 12147.8, "probability": 0.989 }, { "start": 12148.74, "end": 12149.9, "probability": 0.9018 }, { "start": 12153.24, "end": 12153.8, "probability": 0.866 }, { "start": 12155.02, "end": 12157.72, "probability": 0.9391 }, { "start": 12158.42, "end": 12159.94, "probability": 0.6786 }, { "start": 12161.56, "end": 12161.9, "probability": 0.7161 }, { "start": 12163.14, "end": 12164.56, "probability": 0.6221 }, { "start": 12165.3, "end": 12165.64, "probability": 0.8147 }, { "start": 12166.38, "end": 12168.52, "probability": 0.7567 }, { "start": 12169.44, "end": 12170.64, "probability": 0.8047 }, { "start": 12171.9, "end": 12173.68, "probability": 0.8286 }, { "start": 12175.73, "end": 12178.02, "probability": 0.9906 }, { "start": 12179.9, "end": 12180.62, "probability": 0.9655 }, { "start": 12181.64, "end": 12182.4, "probability": 0.938 }, { "start": 12183.68, "end": 12184.14, "probability": 0.9868 }, { "start": 12186.02, "end": 12186.82, "probability": 0.6716 }, { "start": 12189.62, "end": 12190.38, "probability": 0.7698 }, { "start": 12191.36, "end": 12192.48, "probability": 0.5444 }, { "start": 12194.08, "end": 12194.48, "probability": 0.6719 }, { "start": 12195.16, "end": 12195.94, "probability": 0.7981 }, { "start": 12197.66, "end": 12198.1, "probability": 0.9733 }, { "start": 12199.36, "end": 12199.78, "probability": 0.9684 }, { "start": 12200.88, "end": 12203.24, "probability": 0.9814 }, { "start": 12204.44, "end": 12205.14, "probability": 0.9956 }, { "start": 12205.72, "end": 12206.54, "probability": 0.8812 }, { "start": 12208.54, "end": 12210.2, "probability": 0.957 }, { "start": 12211.14, "end": 12211.56, "probability": 0.9893 }, { "start": 12212.46, "end": 12213.14, "probability": 0.9844 }, { "start": 12215.16, "end": 12215.64, "probability": 0.994 }, { "start": 12217.16, "end": 12218.3, "probability": 0.9269 }, { "start": 12221.1, "end": 12222.98, "probability": 0.8258 }, { "start": 12224.7, "end": 12225.52, "probability": 0.9685 }, { "start": 12227.64, "end": 12229.06, "probability": 0.6443 }, { "start": 12230.1, "end": 12230.32, "probability": 0.5578 }, { "start": 12231.88, "end": 12232.8, "probability": 0.896 }, { "start": 12233.74, "end": 12234.44, "probability": 0.9808 }, { "start": 12235.02, "end": 12236.24, "probability": 0.9603 }, { "start": 12237.22, "end": 12239.4, "probability": 0.9543 }, { "start": 12242.86, "end": 12245.74, "probability": 0.8509 }, { "start": 12247.02, "end": 12250.72, "probability": 0.5346 }, { "start": 12251.58, "end": 12252.46, "probability": 0.831 }, { "start": 12253.1, "end": 12255.12, "probability": 0.8066 }, { "start": 12257.08, "end": 12260.68, "probability": 0.7804 }, { "start": 12261.74, "end": 12262.76, "probability": 0.7865 }, { "start": 12263.88, "end": 12264.26, "probability": 0.9661 }, { "start": 12265.42, "end": 12265.98, "probability": 0.7803 }, { "start": 12267.2, "end": 12267.62, "probability": 0.9899 }, { "start": 12268.52, "end": 12269.7, "probability": 0.864 }, { "start": 12270.48, "end": 12270.92, "probability": 0.9834 }, { "start": 12271.74, "end": 12272.72, "probability": 0.7903 }, { "start": 12275.18, "end": 12277.8, "probability": 0.8349 }, { "start": 12278.56, "end": 12281.02, "probability": 0.6702 }, { "start": 12281.8, "end": 12282.18, "probability": 0.9479 }, { "start": 12282.9, "end": 12283.68, "probability": 0.9273 }, { "start": 12284.94, "end": 12285.48, "probability": 0.9917 }, { "start": 12286.16, "end": 12287.0, "probability": 0.9352 }, { "start": 12288.26, "end": 12290.58, "probability": 0.738 }, { "start": 12291.54, "end": 12291.96, "probability": 0.9631 }, { "start": 12292.66, "end": 12293.72, "probability": 0.988 }, { "start": 12294.4, "end": 12294.74, "probability": 0.8647 }, { "start": 12295.46, "end": 12298.22, "probability": 0.7758 }, { "start": 12299.16, "end": 12299.56, "probability": 0.8762 }, { "start": 12300.34, "end": 12301.44, "probability": 0.9127 }, { "start": 12303.38, "end": 12306.26, "probability": 0.8499 }, { "start": 12310.78, "end": 12311.2, "probability": 0.6307 }, { "start": 12313.08, "end": 12313.92, "probability": 0.6269 }, { "start": 12314.8, "end": 12316.7, "probability": 0.9077 }, { "start": 12319.54, "end": 12320.02, "probability": 0.9788 }, { "start": 12321.42, "end": 12322.7, "probability": 0.8365 }, { "start": 12323.94, "end": 12324.4, "probability": 0.8231 }, { "start": 12325.3, "end": 12325.72, "probability": 0.9082 }, { "start": 12327.96, "end": 12331.34, "probability": 0.9153 }, { "start": 12332.46, "end": 12332.82, "probability": 0.4617 }, { "start": 12334.68, "end": 12335.0, "probability": 0.9624 }, { "start": 12335.76, "end": 12336.94, "probability": 0.6866 }, { "start": 12338.0, "end": 12338.46, "probability": 0.9258 }, { "start": 12339.34, "end": 12340.28, "probability": 0.5711 }, { "start": 12344.18, "end": 12344.9, "probability": 0.9371 }, { "start": 12345.66, "end": 12346.34, "probability": 0.9734 }, { "start": 12347.18, "end": 12348.56, "probability": 0.9285 }, { "start": 12349.08, "end": 12349.88, "probability": 0.9589 }, { "start": 12351.7, "end": 12352.16, "probability": 0.9902 }, { "start": 12352.94, "end": 12353.82, "probability": 0.4945 }, { "start": 12355.18, "end": 12356.0, "probability": 0.5873 }, { "start": 12357.52, "end": 12358.54, "probability": 0.4284 }, { "start": 12360.3, "end": 12361.02, "probability": 0.8347 }, { "start": 12361.74, "end": 12363.04, "probability": 0.842 }, { "start": 12363.84, "end": 12364.26, "probability": 0.7581 }, { "start": 12365.9, "end": 12366.74, "probability": 0.7754 }, { "start": 12367.98, "end": 12368.42, "probability": 0.9038 }, { "start": 12369.44, "end": 12370.44, "probability": 0.9415 }, { "start": 12371.6, "end": 12372.02, "probability": 0.9878 }, { "start": 12372.76, "end": 12373.64, "probability": 0.9047 }, { "start": 12374.64, "end": 12375.04, "probability": 0.9966 }, { "start": 12375.64, "end": 12376.62, "probability": 0.9289 }, { "start": 12378.22, "end": 12378.62, "probability": 0.9709 }, { "start": 12379.38, "end": 12380.24, "probability": 0.9521 }, { "start": 12381.32, "end": 12381.74, "probability": 0.9491 }, { "start": 12382.86, "end": 12383.7, "probability": 0.9837 }, { "start": 12385.02, "end": 12385.24, "probability": 0.9958 }, { "start": 12386.26, "end": 12387.2, "probability": 0.5758 }, { "start": 12388.08, "end": 12388.6, "probability": 0.8483 }, { "start": 12389.44, "end": 12390.18, "probability": 0.7369 }, { "start": 12391.4, "end": 12393.5, "probability": 0.8829 }, { "start": 12398.86, "end": 12399.12, "probability": 0.5758 }, { "start": 12401.38, "end": 12402.3, "probability": 0.7377 }, { "start": 12404.18, "end": 12404.84, "probability": 0.8646 }, { "start": 12405.98, "end": 12407.24, "probability": 0.9623 }, { "start": 12408.51, "end": 12411.26, "probability": 0.9661 }, { "start": 12412.56, "end": 12414.5, "probability": 0.9445 }, { "start": 12417.64, "end": 12418.0, "probability": 0.7776 }, { "start": 12420.34, "end": 12421.2, "probability": 0.9358 }, { "start": 12422.38, "end": 12423.1, "probability": 0.9594 }, { "start": 12423.78, "end": 12424.96, "probability": 0.6119 }, { "start": 12425.74, "end": 12426.06, "probability": 0.813 }, { "start": 12428.06, "end": 12428.86, "probability": 0.7996 }, { "start": 12430.02, "end": 12432.34, "probability": 0.8791 }, { "start": 12433.4, "end": 12434.1, "probability": 0.9173 }, { "start": 12434.62, "end": 12435.44, "probability": 0.9184 }, { "start": 12439.34, "end": 12440.22, "probability": 0.9604 }, { "start": 12441.42, "end": 12442.28, "probability": 0.6323 }, { "start": 12444.92, "end": 12446.08, "probability": 0.7581 }, { "start": 12446.72, "end": 12447.8, "probability": 0.9446 }, { "start": 12449.48, "end": 12450.76, "probability": 0.9937 }, { "start": 12453.3, "end": 12454.88, "probability": 0.3714 }, { "start": 12455.58, "end": 12457.08, "probability": 0.6629 }, { "start": 12458.62, "end": 12460.3, "probability": 0.8599 }, { "start": 12460.9, "end": 12462.2, "probability": 0.7198 }, { "start": 12463.34, "end": 12463.68, "probability": 0.7988 }, { "start": 12464.58, "end": 12465.36, "probability": 0.7799 }, { "start": 12473.8, "end": 12474.14, "probability": 0.5015 }, { "start": 12476.32, "end": 12476.98, "probability": 0.5436 }, { "start": 12478.88, "end": 12480.26, "probability": 0.8032 }, { "start": 12481.22, "end": 12482.96, "probability": 0.1616 }, { "start": 12483.46, "end": 12483.46, "probability": 0.0439 }, { "start": 12483.46, "end": 12483.88, "probability": 0.0033 }, { "start": 12485.14, "end": 12486.12, "probability": 0.2434 }, { "start": 12486.12, "end": 12486.76, "probability": 0.0296 }, { "start": 12491.98, "end": 12492.78, "probability": 0.1586 }, { "start": 12493.9, "end": 12494.58, "probability": 0.0054 }, { "start": 12494.58, "end": 12495.18, "probability": 0.1523 }, { "start": 12495.44, "end": 12495.92, "probability": 0.1686 }, { "start": 12499.0, "end": 12501.42, "probability": 0.0262 }, { "start": 12501.72, "end": 12502.46, "probability": 0.3149 }, { "start": 12509.02, "end": 12512.58, "probability": 0.0936 }, { "start": 12519.94, "end": 12521.68, "probability": 0.0061 }, { "start": 12570.0, "end": 12570.0, "probability": 0.0 }, { "start": 12570.0, "end": 12570.0, "probability": 0.0 }, { "start": 12570.0, "end": 12570.0, "probability": 0.0 }, { "start": 12570.0, "end": 12570.0, "probability": 0.0 }, { "start": 12570.0, "end": 12570.0, "probability": 0.0 }, { "start": 12570.0, "end": 12570.0, "probability": 0.0 }, { "start": 12570.0, "end": 12570.0, "probability": 0.0 }, { "start": 12570.0, "end": 12570.0, "probability": 0.0 }, { "start": 12570.0, "end": 12570.0, "probability": 0.0 }, { "start": 12570.0, "end": 12570.0, "probability": 0.0 }, { "start": 12570.0, "end": 12570.0, "probability": 0.0 }, { "start": 12570.0, "end": 12570.0, "probability": 0.0 }, { "start": 12570.0, "end": 12570.0, "probability": 0.0 }, { "start": 12570.0, "end": 12570.0, "probability": 0.0 }, { "start": 12570.0, "end": 12570.0, "probability": 0.0 }, { "start": 12570.0, "end": 12570.0, "probability": 0.0 }, { "start": 12570.0, "end": 12570.0, "probability": 0.0 }, { "start": 12570.0, "end": 12570.0, "probability": 0.0 }, { "start": 12570.0, "end": 12570.0, "probability": 0.0 }, { "start": 12570.0, "end": 12570.0, "probability": 0.0 }, { "start": 12570.0, "end": 12570.0, "probability": 0.0 }, { "start": 12570.0, "end": 12570.0, "probability": 0.0 }, { "start": 12570.0, "end": 12570.0, "probability": 0.0 }, { "start": 12570.0, "end": 12570.0, "probability": 0.0 }, { "start": 12570.0, "end": 12570.0, "probability": 0.0 }, { "start": 12570.0, "end": 12570.0, "probability": 0.0 }, { "start": 12570.0, "end": 12570.0, "probability": 0.0 }, { "start": 12570.0, "end": 12570.0, "probability": 0.0 }, { "start": 12570.0, "end": 12570.0, "probability": 0.0 }, { "start": 12570.0, "end": 12570.0, "probability": 0.0 }, { "start": 12570.0, "end": 12570.0, "probability": 0.0 }, { "start": 12570.12, "end": 12570.47, "probability": 0.7157 }, { "start": 12571.26, "end": 12571.98, "probability": 0.7469 }, { "start": 12572.92, "end": 12574.0, "probability": 0.8735 }, { "start": 12575.34, "end": 12576.06, "probability": 0.7566 }, { "start": 12576.78, "end": 12577.76, "probability": 0.4591 }, { "start": 12578.8, "end": 12579.6, "probability": 0.8659 }, { "start": 12581.04, "end": 12581.84, "probability": 0.8005 }, { "start": 12582.78, "end": 12583.48, "probability": 0.7673 }, { "start": 12584.28, "end": 12586.78, "probability": 0.692 }, { "start": 12587.64, "end": 12588.44, "probability": 0.9826 }, { "start": 12589.22, "end": 12590.28, "probability": 0.9296 }, { "start": 12591.32, "end": 12594.3, "probability": 0.9001 }, { "start": 12595.1, "end": 12596.16, "probability": 0.8358 }, { "start": 12597.4, "end": 12600.64, "probability": 0.9909 }, { "start": 12601.46, "end": 12602.52, "probability": 0.8791 }, { "start": 12603.2, "end": 12605.42, "probability": 0.8337 }, { "start": 12606.3, "end": 12609.06, "probability": 0.8584 }, { "start": 12609.7, "end": 12610.5, "probability": 0.9849 }, { "start": 12611.96, "end": 12615.36, "probability": 0.7078 }, { "start": 12616.08, "end": 12618.08, "probability": 0.8134 }, { "start": 12619.66, "end": 12620.56, "probability": 0.791 }, { "start": 12621.3, "end": 12622.2, "probability": 0.3343 }, { "start": 12622.28, "end": 12623.58, "probability": 0.6647 }, { "start": 12641.06, "end": 12641.06, "probability": 0.0247 }, { "start": 12641.06, "end": 12641.06, "probability": 0.5958 }, { "start": 12646.24, "end": 12647.8, "probability": 0.2079 }, { "start": 12647.8, "end": 12648.24, "probability": 0.0822 }, { "start": 12722.78, "end": 12724.24, "probability": 0.106 }, { "start": 12724.68, "end": 12729.16, "probability": 0.0143 }, { "start": 12729.94, "end": 12739.24, "probability": 0.1254 }, { "start": 12739.84, "end": 12741.0, "probability": 0.0434 }, { "start": 12741.0, "end": 12742.4, "probability": 0.0692 }, { "start": 12742.86, "end": 12743.6, "probability": 0.2788 }, { "start": 12744.06, "end": 12744.44, "probability": 0.3375 }, { "start": 12842.0, "end": 12842.0, "probability": 0.0 }, { "start": 12842.0, "end": 12842.0, "probability": 0.0 }, { "start": 12842.0, "end": 12842.0, "probability": 0.0 }, { "start": 12842.0, "end": 12842.0, "probability": 0.0 }, { "start": 12842.0, "end": 12842.0, "probability": 0.0 }, { "start": 12842.0, "end": 12842.0, "probability": 0.0 }, { "start": 12842.0, "end": 12842.0, "probability": 0.0 }, { "start": 12842.0, "end": 12842.0, "probability": 0.0 }, { "start": 12842.0, "end": 12842.0, "probability": 0.0 }, { "start": 12842.0, "end": 12842.0, "probability": 0.0 }, { "start": 12842.0, "end": 12842.0, "probability": 0.0 }, { "start": 12842.0, "end": 12842.0, "probability": 0.0 }, { "start": 12842.0, "end": 12842.0, "probability": 0.0 }, { "start": 12842.0, "end": 12842.0, "probability": 0.0 }, { "start": 12842.0, "end": 12842.0, "probability": 0.0 }, { "start": 12842.0, "end": 12842.0, "probability": 0.0 }, { "start": 12842.0, "end": 12842.0, "probability": 0.0 }, { "start": 12842.0, "end": 12842.0, "probability": 0.0 }, { "start": 12842.0, "end": 12842.0, "probability": 0.0 }, { "start": 12842.0, "end": 12842.0, "probability": 0.0 }, { "start": 12842.0, "end": 12842.0, "probability": 0.0 }, { "start": 12842.0, "end": 12842.0, "probability": 0.0 }, { "start": 12842.0, "end": 12842.0, "probability": 0.0 }, { "start": 12842.0, "end": 12842.0, "probability": 0.0 }, { "start": 12842.0, "end": 12842.0, "probability": 0.0 }, { "start": 12842.0, "end": 12842.0, "probability": 0.0 }, { "start": 12842.0, "end": 12842.0, "probability": 0.0 }, { "start": 12842.0, "end": 12842.0, "probability": 0.0 }, { "start": 12842.0, "end": 12842.0, "probability": 0.0 }, { "start": 12842.0, "end": 12842.0, "probability": 0.0 }, { "start": 12842.0, "end": 12842.0, "probability": 0.0 }, { "start": 12842.0, "end": 12842.0, "probability": 0.0 }, { "start": 12842.0, "end": 12842.0, "probability": 0.0 }, { "start": 12842.0, "end": 12842.0, "probability": 0.0 }, { "start": 12842.0, "end": 12842.0, "probability": 0.0 }, { "start": 12842.0, "end": 12842.0, "probability": 0.0 }, { "start": 12842.0, "end": 12842.0, "probability": 0.0 }, { "start": 12842.0, "end": 12842.0, "probability": 0.0 }, { "start": 12842.0, "end": 12842.0, "probability": 0.0 }, { "start": 12842.0, "end": 12842.0, "probability": 0.0 }, { "start": 12842.0, "end": 12842.0, "probability": 0.0 }, { "start": 12842.0, "end": 12842.0, "probability": 0.0 }, { "start": 12842.12, "end": 12842.38, "probability": 0.0315 }, { "start": 12842.38, "end": 12842.64, "probability": 0.0945 }, { "start": 12843.36, "end": 12845.92, "probability": 0.7074 }, { "start": 12859.08, "end": 12859.22, "probability": 0.6176 }, { "start": 12860.85, "end": 12861.68, "probability": 0.053 }, { "start": 12861.68, "end": 12866.54, "probability": 0.0273 }, { "start": 12963.0, "end": 12963.0, "probability": 0.0 }, { "start": 12963.0, "end": 12963.0, "probability": 0.0 }, { "start": 12963.0, "end": 12963.0, "probability": 0.0 }, { "start": 12963.0, "end": 12963.0, "probability": 0.0 }, { "start": 12963.0, "end": 12963.0, "probability": 0.0 }, { "start": 12963.0, "end": 12963.0, "probability": 0.0 }, { "start": 12963.0, "end": 12963.0, "probability": 0.0 }, { "start": 12963.0, "end": 12963.0, "probability": 0.0 }, { "start": 12963.0, "end": 12963.0, "probability": 0.0 }, { "start": 12963.0, "end": 12963.0, "probability": 0.0 }, { "start": 12963.0, "end": 12963.0, "probability": 0.0 }, { "start": 12963.0, "end": 12963.0, "probability": 0.0 }, { "start": 12963.0, "end": 12963.0, "probability": 0.0 }, { "start": 12963.0, "end": 12963.0, "probability": 0.0 }, { "start": 12963.0, "end": 12963.0, "probability": 0.0 }, { "start": 12963.0, "end": 12963.0, "probability": 0.0 }, { "start": 12963.0, "end": 12963.0, "probability": 0.0 }, { "start": 12963.0, "end": 12963.0, "probability": 0.0 }, { "start": 12963.0, "end": 12963.0, "probability": 0.0 }, { "start": 12963.0, "end": 12963.0, "probability": 0.0 }, { "start": 12963.0, "end": 12963.0, "probability": 0.0 }, { "start": 12963.0, "end": 12963.0, "probability": 0.0 }, { "start": 12963.0, "end": 12963.0, "probability": 0.0 }, { "start": 12963.0, "end": 12963.0, "probability": 0.0 }, { "start": 12963.0, "end": 12963.0, "probability": 0.0 }, { "start": 12964.72, "end": 12964.84, "probability": 0.0375 }, { "start": 12964.84, "end": 12964.84, "probability": 0.0246 }, { "start": 12964.84, "end": 12969.34, "probability": 0.823 }, { "start": 12969.96, "end": 12972.12, "probability": 0.8398 }, { "start": 12972.74, "end": 12974.3, "probability": 0.9933 }, { "start": 12975.0, "end": 12976.76, "probability": 0.9968 }, { "start": 12977.66, "end": 12980.92, "probability": 0.8668 }, { "start": 12981.96, "end": 12983.42, "probability": 0.9976 }, { "start": 12984.34, "end": 12984.8, "probability": 0.9628 }, { "start": 12985.64, "end": 12986.02, "probability": 0.7908 }, { "start": 12988.1, "end": 12990.5, "probability": 0.695 }, { "start": 12991.44, "end": 12996.98, "probability": 0.9257 }, { "start": 12996.98, "end": 12997.56, "probability": 0.5024 }, { "start": 12998.66, "end": 13000.22, "probability": 0.7143 }, { "start": 13023.5, "end": 13024.32, "probability": 0.5452 }, { "start": 13029.84, "end": 13030.48, "probability": 0.5173 }, { "start": 13031.92, "end": 13032.64, "probability": 0.834 }, { "start": 13033.24, "end": 13034.36, "probability": 0.9733 }, { "start": 13035.42, "end": 13036.0, "probability": 0.9059 }, { "start": 13036.56, "end": 13039.86, "probability": 0.8748 }, { "start": 13041.1, "end": 13041.9, "probability": 0.9902 }, { "start": 13042.7, "end": 13047.58, "probability": 0.986 }, { "start": 13048.38, "end": 13050.66, "probability": 0.8695 }, { "start": 13051.48, "end": 13052.84, "probability": 0.9993 }, { "start": 13053.76, "end": 13055.1, "probability": 0.9614 }, { "start": 13056.04, "end": 13058.82, "probability": 0.9769 }, { "start": 13059.42, "end": 13060.22, "probability": 0.9406 }, { "start": 13060.74, "end": 13063.66, "probability": 0.7847 }, { "start": 13064.2, "end": 13066.3, "probability": 0.5264 }, { "start": 13067.08, "end": 13069.64, "probability": 0.8776 }, { "start": 13070.56, "end": 13072.07, "probability": 0.9927 }, { "start": 13072.7, "end": 13073.18, "probability": 0.9218 }, { "start": 13073.24, "end": 13074.26, "probability": 0.9463 }, { "start": 13074.5, "end": 13076.72, "probability": 0.9916 }, { "start": 13077.56, "end": 13079.8, "probability": 0.9696 }, { "start": 13080.5, "end": 13085.18, "probability": 0.9912 }, { "start": 13085.8, "end": 13087.72, "probability": 0.947 }, { "start": 13088.26, "end": 13089.68, "probability": 0.8435 }, { "start": 13090.12, "end": 13090.56, "probability": 0.8135 }, { "start": 13090.84, "end": 13092.96, "probability": 0.9702 }, { "start": 13093.62, "end": 13095.84, "probability": 0.9633 }, { "start": 13095.9, "end": 13096.52, "probability": 0.8737 }, { "start": 13098.22, "end": 13100.68, "probability": 0.7833 }, { "start": 13101.5, "end": 13102.24, "probability": 0.7179 }, { "start": 13102.62, "end": 13104.56, "probability": 0.9824 }, { "start": 13105.5, "end": 13106.38, "probability": 0.9248 }, { "start": 13106.7, "end": 13108.48, "probability": 0.9275 }, { "start": 13109.12, "end": 13113.16, "probability": 0.9861 }, { "start": 13113.74, "end": 13114.18, "probability": 0.5723 }, { "start": 13114.52, "end": 13115.58, "probability": 0.7791 }, { "start": 13116.96, "end": 13117.86, "probability": 0.7972 }, { "start": 13118.46, "end": 13118.8, "probability": 0.6153 }, { "start": 13120.0, "end": 13121.84, "probability": 0.7504 }, { "start": 13123.48, "end": 13124.2, "probability": 0.932 }, { "start": 13125.94, "end": 13127.94, "probability": 0.957 }, { "start": 13127.98, "end": 13129.24, "probability": 0.984 }, { "start": 13129.76, "end": 13132.74, "probability": 0.9927 }, { "start": 13133.54, "end": 13134.54, "probability": 0.6763 }, { "start": 13134.6, "end": 13135.68, "probability": 0.8885 }, { "start": 13136.12, "end": 13137.74, "probability": 0.6799 }, { "start": 13138.14, "end": 13139.2, "probability": 0.9967 }, { "start": 13139.72, "end": 13141.54, "probability": 0.9346 }, { "start": 13142.34, "end": 13143.26, "probability": 0.8783 }, { "start": 13143.9, "end": 13145.8, "probability": 0.9038 }, { "start": 13146.08, "end": 13146.84, "probability": 0.8941 }, { "start": 13147.0, "end": 13147.86, "probability": 0.9858 }, { "start": 13148.22, "end": 13149.96, "probability": 0.9346 }, { "start": 13150.38, "end": 13151.49, "probability": 0.9192 }, { "start": 13151.96, "end": 13154.9, "probability": 0.9951 }, { "start": 13155.96, "end": 13157.6, "probability": 0.9998 }, { "start": 13158.16, "end": 13160.18, "probability": 0.9073 }, { "start": 13160.64, "end": 13161.0, "probability": 0.3437 }, { "start": 13161.08, "end": 13161.46, "probability": 0.8012 }, { "start": 13162.5, "end": 13163.29, "probability": 0.999 }, { "start": 13164.04, "end": 13165.02, "probability": 0.9565 }, { "start": 13165.18, "end": 13169.05, "probability": 0.9213 }, { "start": 13169.74, "end": 13170.64, "probability": 0.9125 }, { "start": 13170.68, "end": 13171.1, "probability": 0.89 }, { "start": 13171.2, "end": 13173.34, "probability": 0.8706 }, { "start": 13174.1, "end": 13175.28, "probability": 0.9332 }, { "start": 13175.46, "end": 13176.28, "probability": 0.9854 }, { "start": 13176.66, "end": 13178.26, "probability": 0.988 }, { "start": 13178.94, "end": 13179.76, "probability": 0.9144 }, { "start": 13180.3, "end": 13185.16, "probability": 0.9943 }, { "start": 13185.66, "end": 13185.88, "probability": 0.306 }, { "start": 13185.88, "end": 13189.73, "probability": 0.9956 }, { "start": 13190.32, "end": 13192.42, "probability": 0.8296 }, { "start": 13192.76, "end": 13194.75, "probability": 0.9011 }, { "start": 13195.32, "end": 13198.7, "probability": 0.8589 }, { "start": 13199.5, "end": 13203.4, "probability": 0.9839 }, { "start": 13204.24, "end": 13205.49, "probability": 0.9736 }, { "start": 13206.26, "end": 13206.83, "probability": 0.9951 }, { "start": 13207.06, "end": 13207.46, "probability": 0.9214 }, { "start": 13207.56, "end": 13210.3, "probability": 0.8613 }, { "start": 13210.92, "end": 13211.15, "probability": 0.6052 }, { "start": 13211.72, "end": 13213.0, "probability": 0.8433 }, { "start": 13213.1, "end": 13213.74, "probability": 0.6673 }, { "start": 13214.2, "end": 13214.48, "probability": 0.7596 }, { "start": 13214.54, "end": 13215.8, "probability": 0.9902 }, { "start": 13216.22, "end": 13217.16, "probability": 0.7153 }, { "start": 13217.74, "end": 13218.78, "probability": 0.9961 }, { "start": 13219.22, "end": 13219.96, "probability": 0.9413 }, { "start": 13220.14, "end": 13220.96, "probability": 0.8312 }, { "start": 13221.62, "end": 13222.66, "probability": 0.9254 }, { "start": 13223.1, "end": 13227.06, "probability": 0.9893 }, { "start": 13227.4, "end": 13229.32, "probability": 0.9878 }, { "start": 13229.66, "end": 13230.96, "probability": 0.7724 }, { "start": 13231.66, "end": 13233.12, "probability": 0.8198 }, { "start": 13233.64, "end": 13234.55, "probability": 0.7222 }, { "start": 13235.0, "end": 13235.54, "probability": 0.8616 }, { "start": 13235.74, "end": 13236.48, "probability": 0.6405 }, { "start": 13236.84, "end": 13237.57, "probability": 0.8848 }, { "start": 13238.24, "end": 13242.0, "probability": 0.9862 }, { "start": 13242.68, "end": 13244.8, "probability": 0.7401 }, { "start": 13245.28, "end": 13247.28, "probability": 0.9373 }, { "start": 13247.74, "end": 13248.51, "probability": 0.0397 }, { "start": 13249.32, "end": 13249.76, "probability": 0.8855 }, { "start": 13252.18, "end": 13257.68, "probability": 0.8451 }, { "start": 13258.16, "end": 13259.94, "probability": 0.7812 }, { "start": 13260.26, "end": 13264.14, "probability": 0.978 }, { "start": 13264.58, "end": 13265.92, "probability": 0.7497 }, { "start": 13266.36, "end": 13267.8, "probability": 0.6548 }, { "start": 13268.36, "end": 13270.7, "probability": 0.7407 }, { "start": 13279.94, "end": 13284.3, "probability": 0.5321 }, { "start": 13284.54, "end": 13285.98, "probability": 0.6612 }, { "start": 13286.18, "end": 13287.54, "probability": 0.7676 }, { "start": 13287.64, "end": 13289.66, "probability": 0.1852 }, { "start": 13290.1, "end": 13293.08, "probability": 0.699 }, { "start": 13294.0, "end": 13297.52, "probability": 0.5402 }, { "start": 13298.46, "end": 13298.94, "probability": 0.9372 }, { "start": 13300.3, "end": 13301.3, "probability": 0.9082 }, { "start": 13302.26, "end": 13303.08, "probability": 0.957 }, { "start": 13303.62, "end": 13304.46, "probability": 0.9408 }, { "start": 13305.3, "end": 13305.76, "probability": 0.9453 }, { "start": 13306.78, "end": 13307.74, "probability": 0.8213 }, { "start": 13309.14, "end": 13313.74, "probability": 0.9419 }, { "start": 13314.9, "end": 13319.2, "probability": 0.6061 }, { "start": 13321.02, "end": 13323.46, "probability": 0.9127 }, { "start": 13325.16, "end": 13325.62, "probability": 0.9862 }, { "start": 13327.32, "end": 13328.26, "probability": 0.9309 }, { "start": 13329.54, "end": 13330.36, "probability": 0.9913 }, { "start": 13331.02, "end": 13331.96, "probability": 0.9725 }, { "start": 13333.3, "end": 13334.1, "probability": 0.9882 }, { "start": 13334.64, "end": 13335.72, "probability": 0.9502 }, { "start": 13337.18, "end": 13337.52, "probability": 0.5065 }, { "start": 13338.66, "end": 13339.38, "probability": 0.7279 }, { "start": 13340.8, "end": 13341.6, "probability": 0.7881 }, { "start": 13342.26, "end": 13343.04, "probability": 0.6077 }, { "start": 13344.06, "end": 13344.44, "probability": 0.7966 }, { "start": 13345.48, "end": 13346.18, "probability": 0.8026 }, { "start": 13349.72, "end": 13350.46, "probability": 0.7853 }, { "start": 13351.44, "end": 13352.3, "probability": 0.8573 }, { "start": 13353.24, "end": 13355.26, "probability": 0.7941 }, { "start": 13358.52, "end": 13359.52, "probability": 0.7285 }, { "start": 13360.1, "end": 13361.0, "probability": 0.8493 }, { "start": 13362.42, "end": 13362.72, "probability": 0.9749 }, { "start": 13363.54, "end": 13364.24, "probability": 0.9845 }, { "start": 13367.08, "end": 13368.98, "probability": 0.9639 }, { "start": 13369.74, "end": 13369.9, "probability": 0.5935 }, { "start": 13371.06, "end": 13371.9, "probability": 0.987 }, { "start": 13373.18, "end": 13373.86, "probability": 0.8099 }, { "start": 13374.66, "end": 13375.18, "probability": 0.6999 }, { "start": 13378.44, "end": 13378.8, "probability": 0.9041 }, { "start": 13379.86, "end": 13380.32, "probability": 0.7944 }, { "start": 13381.24, "end": 13381.92, "probability": 0.7586 }, { "start": 13382.72, "end": 13383.9, "probability": 0.7969 }, { "start": 13384.86, "end": 13385.26, "probability": 0.9243 }, { "start": 13386.18, "end": 13386.86, "probability": 0.9086 }, { "start": 13388.58, "end": 13389.38, "probability": 0.9839 }, { "start": 13390.44, "end": 13391.14, "probability": 0.8284 }, { "start": 13392.18, "end": 13392.98, "probability": 0.9669 }, { "start": 13393.62, "end": 13394.38, "probability": 0.974 }, { "start": 13395.82, "end": 13396.86, "probability": 0.7515 }, { "start": 13404.16, "end": 13405.28, "probability": 0.6704 }, { "start": 13406.88, "end": 13407.86, "probability": 0.5563 }, { "start": 13409.8, "end": 13410.22, "probability": 0.8972 }, { "start": 13410.96, "end": 13411.26, "probability": 0.8397 }, { "start": 13412.78, "end": 13413.42, "probability": 0.8953 }, { "start": 13414.06, "end": 13414.76, "probability": 0.8534 }, { "start": 13416.16, "end": 13417.84, "probability": 0.7721 }, { "start": 13419.52, "end": 13421.72, "probability": 0.9686 }, { "start": 13422.84, "end": 13425.36, "probability": 0.9775 }, { "start": 13427.22, "end": 13429.42, "probability": 0.95 }, { "start": 13430.36, "end": 13430.78, "probability": 0.9915 }, { "start": 13431.94, "end": 13432.54, "probability": 0.8136 }, { "start": 13433.62, "end": 13435.6, "probability": 0.6279 }, { "start": 13436.78, "end": 13437.18, "probability": 0.9007 }, { "start": 13438.14, "end": 13439.08, "probability": 0.9404 }, { "start": 13440.2, "end": 13440.92, "probability": 0.8693 }, { "start": 13441.62, "end": 13442.36, "probability": 0.9353 }, { "start": 13443.5, "end": 13443.88, "probability": 0.8701 }, { "start": 13444.82, "end": 13445.66, "probability": 0.8062 }, { "start": 13446.9, "end": 13447.62, "probability": 0.9016 }, { "start": 13448.42, "end": 13449.22, "probability": 0.5048 }, { "start": 13450.7, "end": 13451.06, "probability": 0.991 }, { "start": 13452.1, "end": 13452.96, "probability": 0.8798 }, { "start": 13455.34, "end": 13455.76, "probability": 0.9871 }, { "start": 13457.06, "end": 13458.18, "probability": 0.7413 }, { "start": 13459.06, "end": 13459.28, "probability": 0.5436 }, { "start": 13460.4, "end": 13460.75, "probability": 0.6435 }, { "start": 13462.18, "end": 13462.48, "probability": 0.9604 }, { "start": 13463.3, "end": 13464.36, "probability": 0.7581 }, { "start": 13466.64, "end": 13469.06, "probability": 0.8176 }, { "start": 13470.6, "end": 13471.36, "probability": 0.6374 }, { "start": 13472.26, "end": 13472.64, "probability": 0.9419 }, { "start": 13473.62, "end": 13474.56, "probability": 0.8793 }, { "start": 13475.36, "end": 13477.14, "probability": 0.7317 }, { "start": 13478.32, "end": 13478.66, "probability": 0.9817 }, { "start": 13479.54, "end": 13480.36, "probability": 0.9891 }, { "start": 13481.96, "end": 13483.1, "probability": 0.9554 }, { "start": 13484.74, "end": 13485.08, "probability": 0.6346 }, { "start": 13486.24, "end": 13487.6, "probability": 0.3957 }, { "start": 13488.9, "end": 13489.52, "probability": 0.822 }, { "start": 13490.26, "end": 13491.4, "probability": 0.8799 }, { "start": 13492.84, "end": 13494.66, "probability": 0.9744 }, { "start": 13496.26, "end": 13496.7, "probability": 0.974 }, { "start": 13497.52, "end": 13498.24, "probability": 0.9723 }, { "start": 13499.48, "end": 13500.26, "probability": 0.9743 }, { "start": 13500.94, "end": 13502.06, "probability": 0.8931 }, { "start": 13503.02, "end": 13503.4, "probability": 0.9854 }, { "start": 13504.54, "end": 13505.4, "probability": 0.9534 }, { "start": 13506.86, "end": 13507.6, "probability": 0.9927 }, { "start": 13508.46, "end": 13508.98, "probability": 0.9743 }, { "start": 13510.14, "end": 13510.54, "probability": 0.9966 }, { "start": 13511.44, "end": 13512.04, "probability": 0.9971 }, { "start": 13512.78, "end": 13513.16, "probability": 0.998 }, { "start": 13514.16, "end": 13514.8, "probability": 0.6627 }, { "start": 13515.8, "end": 13517.48, "probability": 0.8898 }, { "start": 13518.46, "end": 13521.0, "probability": 0.8347 }, { "start": 13521.74, "end": 13523.3, "probability": 0.8972 }, { "start": 13527.72, "end": 13528.94, "probability": 0.162 }, { "start": 13530.3, "end": 13531.42, "probability": 0.8914 }, { "start": 13533.22, "end": 13533.64, "probability": 0.9445 }, { "start": 13535.0, "end": 13535.78, "probability": 0.9227 }, { "start": 13537.22, "end": 13537.66, "probability": 0.9956 }, { "start": 13538.54, "end": 13539.46, "probability": 0.738 }, { "start": 13543.58, "end": 13543.98, "probability": 0.651 }, { "start": 13545.34, "end": 13546.2, "probability": 0.8421 }, { "start": 13547.98, "end": 13550.54, "probability": 0.7545 }, { "start": 13551.08, "end": 13551.88, "probability": 0.8733 }, { "start": 13552.81, "end": 13554.6, "probability": 0.9408 }, { "start": 13555.88, "end": 13557.96, "probability": 0.9844 }, { "start": 13558.9, "end": 13561.16, "probability": 0.9451 }, { "start": 13561.92, "end": 13562.3, "probability": 0.9731 }, { "start": 13563.14, "end": 13563.8, "probability": 0.7408 }, { "start": 13564.94, "end": 13565.26, "probability": 0.9922 }, { "start": 13566.34, "end": 13567.04, "probability": 0.9061 }, { "start": 13567.96, "end": 13568.2, "probability": 0.9917 }, { "start": 13569.04, "end": 13569.9, "probability": 0.5932 }, { "start": 13571.52, "end": 13571.9, "probability": 0.6949 }, { "start": 13572.74, "end": 13573.72, "probability": 0.7803 }, { "start": 13574.44, "end": 13574.74, "probability": 0.9829 }, { "start": 13575.6, "end": 13576.7, "probability": 0.8344 }, { "start": 13578.08, "end": 13578.54, "probability": 0.9803 }, { "start": 13579.74, "end": 13580.42, "probability": 0.9499 }, { "start": 13581.62, "end": 13582.12, "probability": 0.9862 }, { "start": 13582.8, "end": 13583.48, "probability": 0.8866 }, { "start": 13584.68, "end": 13585.16, "probability": 0.9881 }, { "start": 13586.22, "end": 13587.08, "probability": 0.5644 }, { "start": 13589.26, "end": 13589.66, "probability": 0.9932 }, { "start": 13590.72, "end": 13591.7, "probability": 0.9517 }, { "start": 13593.4, "end": 13595.84, "probability": 0.9003 }, { "start": 13596.78, "end": 13597.7, "probability": 0.8758 }, { "start": 13599.26, "end": 13599.5, "probability": 0.5156 }, { "start": 13600.68, "end": 13601.8, "probability": 0.6561 }, { "start": 13604.68, "end": 13605.14, "probability": 0.9718 }, { "start": 13607.0, "end": 13607.88, "probability": 0.7294 }, { "start": 13609.08, "end": 13609.42, "probability": 0.907 }, { "start": 13610.62, "end": 13611.32, "probability": 0.7606 }, { "start": 13612.06, "end": 13614.24, "probability": 0.9557 }, { "start": 13616.22, "end": 13622.16, "probability": 0.4474 }, { "start": 13623.22, "end": 13623.64, "probability": 0.8189 }, { "start": 13624.46, "end": 13625.34, "probability": 0.9248 }, { "start": 13626.38, "end": 13626.76, "probability": 0.9951 }, { "start": 13627.78, "end": 13628.44, "probability": 0.145 }, { "start": 13629.58, "end": 13629.94, "probability": 0.5854 }, { "start": 13630.68, "end": 13632.18, "probability": 0.6771 }, { "start": 13633.74, "end": 13634.12, "probability": 0.951 }, { "start": 13634.8, "end": 13635.58, "probability": 0.6858 }, { "start": 13637.16, "end": 13637.54, "probability": 0.9807 }, { "start": 13638.3, "end": 13639.02, "probability": 0.9711 }, { "start": 13639.66, "end": 13640.48, "probability": 0.9895 }, { "start": 13641.26, "end": 13642.06, "probability": 0.8529 }, { "start": 13642.9, "end": 13643.2, "probability": 0.9553 }, { "start": 13643.96, "end": 13644.76, "probability": 0.4884 }, { "start": 13648.08, "end": 13648.98, "probability": 0.8135 }, { "start": 13649.8, "end": 13650.66, "probability": 0.9252 }, { "start": 13652.3, "end": 13653.02, "probability": 0.8269 }, { "start": 13653.7, "end": 13654.62, "probability": 0.9339 }, { "start": 13655.56, "end": 13655.94, "probability": 0.5313 }, { "start": 13657.36, "end": 13658.0, "probability": 0.6241 }, { "start": 13662.34, "end": 13662.98, "probability": 0.7181 }, { "start": 13663.78, "end": 13664.62, "probability": 0.8554 }, { "start": 13665.92, "end": 13666.18, "probability": 0.9299 }, { "start": 13667.26, "end": 13667.96, "probability": 0.8837 }, { "start": 13670.02, "end": 13670.38, "probability": 0.9924 }, { "start": 13671.12, "end": 13672.08, "probability": 0.8296 }, { "start": 13675.04, "end": 13677.14, "probability": 0.9315 }, { "start": 13680.28, "end": 13680.7, "probability": 0.9618 }, { "start": 13682.38, "end": 13683.18, "probability": 0.7847 }, { "start": 13684.06, "end": 13685.86, "probability": 0.1932 }, { "start": 13686.78, "end": 13687.54, "probability": 0.4596 }, { "start": 13688.86, "end": 13689.34, "probability": 0.794 }, { "start": 13690.44, "end": 13691.12, "probability": 0.7563 }, { "start": 13692.16, "end": 13693.32, "probability": 0.9567 }, { "start": 13694.08, "end": 13694.92, "probability": 0.9152 }, { "start": 13697.2, "end": 13697.58, "probability": 0.8018 }, { "start": 13698.68, "end": 13699.62, "probability": 0.9563 }, { "start": 13700.88, "end": 13701.66, "probability": 0.5673 }, { "start": 13702.5, "end": 13703.8, "probability": 0.9722 }, { "start": 13705.1, "end": 13706.12, "probability": 0.9463 }, { "start": 13706.98, "end": 13708.1, "probability": 0.9633 }, { "start": 13708.98, "end": 13710.8, "probability": 0.8656 }, { "start": 13713.62, "end": 13714.44, "probability": 0.8642 }, { "start": 13715.6, "end": 13716.72, "probability": 0.563 }, { "start": 13717.92, "end": 13720.72, "probability": 0.8124 }, { "start": 13721.56, "end": 13721.84, "probability": 0.731 }, { "start": 13723.24, "end": 13724.14, "probability": 0.882 }, { "start": 13725.02, "end": 13726.86, "probability": 0.9338 }, { "start": 13728.46, "end": 13729.18, "probability": 0.9596 }, { "start": 13730.1, "end": 13730.86, "probability": 0.871 }, { "start": 13732.58, "end": 13734.94, "probability": 0.9748 }, { "start": 13736.1, "end": 13738.36, "probability": 0.5539 }, { "start": 13741.1, "end": 13741.56, "probability": 0.7008 }, { "start": 13743.16, "end": 13744.06, "probability": 0.5737 }, { "start": 13745.98, "end": 13746.84, "probability": 0.9238 }, { "start": 13747.44, "end": 13748.16, "probability": 0.6322 }, { "start": 13749.16, "end": 13749.58, "probability": 0.9077 }, { "start": 13750.64, "end": 13751.66, "probability": 0.9348 }, { "start": 13752.84, "end": 13753.62, "probability": 0.9514 }, { "start": 13754.42, "end": 13755.38, "probability": 0.6947 }, { "start": 13756.46, "end": 13756.94, "probability": 0.9822 }, { "start": 13757.92, "end": 13758.64, "probability": 0.8474 }, { "start": 13763.6, "end": 13763.98, "probability": 0.7656 }, { "start": 13765.76, "end": 13766.08, "probability": 0.5519 }, { "start": 13767.26, "end": 13769.36, "probability": 0.6381 }, { "start": 13770.64, "end": 13770.98, "probability": 0.9648 }, { "start": 13775.84, "end": 13780.06, "probability": 0.7744 }, { "start": 13780.45, "end": 13781.87, "probability": 0.4701 }, { "start": 13783.32, "end": 13784.94, "probability": 0.9287 }, { "start": 13785.54, "end": 13786.3, "probability": 0.7801 }, { "start": 13786.88, "end": 13787.54, "probability": 0.9897 }, { "start": 13788.24, "end": 13788.96, "probability": 0.442 }, { "start": 13790.12, "end": 13791.98, "probability": 0.9928 }, { "start": 13792.88, "end": 13794.66, "probability": 0.8725 }, { "start": 13795.46, "end": 13798.34, "probability": 0.9069 }, { "start": 13799.22, "end": 13801.12, "probability": 0.9795 }, { "start": 13802.1, "end": 13802.92, "probability": 0.991 }, { "start": 13803.98, "end": 13804.66, "probability": 0.9113 }, { "start": 13806.96, "end": 13807.34, "probability": 0.7762 }, { "start": 13814.28, "end": 13815.1, "probability": 0.3394 }, { "start": 13816.24, "end": 13816.88, "probability": 0.7967 }, { "start": 13819.02, "end": 13819.8, "probability": 0.887 }, { "start": 13821.26, "end": 13822.72, "probability": 0.9027 }, { "start": 13823.4, "end": 13824.22, "probability": 0.9167 }, { "start": 13826.48, "end": 13826.98, "probability": 0.9102 }, { "start": 13829.12, "end": 13829.6, "probability": 0.8863 }, { "start": 13830.14, "end": 13830.82, "probability": 0.9578 }, { "start": 13831.92, "end": 13832.58, "probability": 0.9648 }, { "start": 13834.1, "end": 13837.98, "probability": 0.931 }, { "start": 13839.76, "end": 13840.34, "probability": 0.9883 }, { "start": 13843.22, "end": 13843.98, "probability": 0.803 }, { "start": 13845.2, "end": 13846.94, "probability": 0.5962 }, { "start": 13848.58, "end": 13849.68, "probability": 0.834 }, { "start": 13852.66, "end": 13853.54, "probability": 0.7684 }, { "start": 13854.2, "end": 13855.82, "probability": 0.6406 }, { "start": 13858.26, "end": 13859.3, "probability": 0.9577 }, { "start": 13861.28, "end": 13862.14, "probability": 0.7873 }, { "start": 13863.48, "end": 13865.38, "probability": 0.923 }, { "start": 13866.2, "end": 13867.68, "probability": 0.8814 }, { "start": 13868.62, "end": 13869.36, "probability": 0.9588 }, { "start": 13870.08, "end": 13871.72, "probability": 0.9033 }, { "start": 13872.92, "end": 13873.78, "probability": 0.9925 }, { "start": 13874.88, "end": 13875.64, "probability": 0.6063 }, { "start": 13876.3, "end": 13877.1, "probability": 0.3983 }, { "start": 13879.14, "end": 13879.52, "probability": 0.8783 }, { "start": 13880.86, "end": 13881.64, "probability": 0.33 }, { "start": 13882.2, "end": 13884.12, "probability": 0.8184 }, { "start": 13885.3, "end": 13889.26, "probability": 0.9417 }, { "start": 13890.36, "end": 13891.28, "probability": 0.9597 }, { "start": 13893.3, "end": 13894.22, "probability": 0.9589 }, { "start": 13895.68, "end": 13896.48, "probability": 0.9679 }, { "start": 13897.14, "end": 13900.2, "probability": 0.8567 }, { "start": 13901.76, "end": 13903.78, "probability": 0.9659 }, { "start": 13904.4, "end": 13905.17, "probability": 0.4905 }, { "start": 13906.74, "end": 13907.72, "probability": 0.7564 }, { "start": 13910.04, "end": 13911.12, "probability": 0.912 }, { "start": 13912.54, "end": 13914.6, "probability": 0.7875 }, { "start": 13923.56, "end": 13924.48, "probability": 0.3508 }, { "start": 13926.84, "end": 13927.58, "probability": 0.6332 }, { "start": 13929.0, "end": 13930.36, "probability": 0.6508 }, { "start": 13931.34, "end": 13932.28, "probability": 0.744 }, { "start": 13933.88, "end": 13936.02, "probability": 0.9132 }, { "start": 13936.7, "end": 13938.24, "probability": 0.9061 }, { "start": 13939.82, "end": 13940.3, "probability": 0.6763 }, { "start": 13941.84, "end": 13944.0, "probability": 0.906 }, { "start": 13944.66, "end": 13945.47, "probability": 0.6882 }, { "start": 13946.3, "end": 13948.22, "probability": 0.9492 }, { "start": 13949.08, "end": 13950.92, "probability": 0.732 }, { "start": 13952.18, "end": 13953.88, "probability": 0.7489 }, { "start": 13954.68, "end": 13956.88, "probability": 0.6617 }, { "start": 13957.88, "end": 13963.6, "probability": 0.8955 }, { "start": 13964.7, "end": 13965.84, "probability": 0.0757 }, { "start": 13967.28, "end": 13968.08, "probability": 0.4517 }, { "start": 13969.06, "end": 13969.48, "probability": 0.909 }, { "start": 13972.46, "end": 13974.32, "probability": 0.2107 }, { "start": 13981.78, "end": 13982.26, "probability": 0.6991 }, { "start": 13986.26, "end": 13988.72, "probability": 0.1593 }, { "start": 13994.32, "end": 13995.72, "probability": 0.0613 }, { "start": 14066.94, "end": 14071.6, "probability": 0.5949 }, { "start": 14071.76, "end": 14076.22, "probability": 0.8881 }, { "start": 14076.3, "end": 14078.53, "probability": 0.819 }, { "start": 14078.82, "end": 14079.0, "probability": 0.1009 }, { "start": 14079.0, "end": 14083.08, "probability": 0.9885 }, { "start": 14084.8, "end": 14086.94, "probability": 0.8248 }, { "start": 14087.62, "end": 14091.78, "probability": 0.7253 }, { "start": 14092.44, "end": 14096.8, "probability": 0.449 }, { "start": 14103.38, "end": 14107.48, "probability": 0.8189 }, { "start": 14108.72, "end": 14111.52, "probability": 0.0067 }, { "start": 14113.76, "end": 14114.12, "probability": 0.1206 }, { "start": 14114.96, "end": 14118.66, "probability": 0.7968 }, { "start": 14122.2, "end": 14122.2, "probability": 0.6259 }, { "start": 14122.2, "end": 14122.2, "probability": 0.4491 }, { "start": 14122.2, "end": 14124.76, "probability": 0.7026 }, { "start": 14125.56, "end": 14126.22, "probability": 0.3224 }, { "start": 14129.14, "end": 14132.64, "probability": 0.7317 }, { "start": 14133.16, "end": 14134.56, "probability": 0.8315 }, { "start": 14135.12, "end": 14138.0, "probability": 0.7212 }, { "start": 14141.08, "end": 14142.08, "probability": 0.6542 }, { "start": 14152.5, "end": 14153.6, "probability": 0.5956 }, { "start": 14153.88, "end": 14155.26, "probability": 0.7504 }, { "start": 14155.34, "end": 14155.56, "probability": 0.5237 }, { "start": 14155.64, "end": 14160.68, "probability": 0.9966 }, { "start": 14160.94, "end": 14165.34, "probability": 0.9875 }, { "start": 14175.86, "end": 14176.16, "probability": 0.8028 }, { "start": 14176.22, "end": 14176.64, "probability": 0.6945 }, { "start": 14176.76, "end": 14178.5, "probability": 0.8078 }, { "start": 14178.72, "end": 14181.72, "probability": 0.9722 }, { "start": 14181.78, "end": 14182.42, "probability": 0.9224 }, { "start": 14182.52, "end": 14184.74, "probability": 0.9891 }, { "start": 14185.24, "end": 14186.96, "probability": 0.899 }, { "start": 14187.18, "end": 14190.0, "probability": 0.9959 }, { "start": 14190.92, "end": 14194.2, "probability": 0.9932 }, { "start": 14194.86, "end": 14199.6, "probability": 0.9991 }, { "start": 14199.7, "end": 14203.2, "probability": 0.9992 }, { "start": 14203.72, "end": 14205.74, "probability": 0.9657 }, { "start": 14207.18, "end": 14209.3, "probability": 0.6041 }, { "start": 14211.84, "end": 14212.88, "probability": 0.7024 }, { "start": 14213.04, "end": 14215.32, "probability": 0.7077 }, { "start": 14215.32, "end": 14216.14, "probability": 0.7063 }, { "start": 14216.2, "end": 14219.9, "probability": 0.7054 }, { "start": 14221.18, "end": 14224.3, "probability": 0.9956 }, { "start": 14225.74, "end": 14228.36, "probability": 0.9849 }, { "start": 14229.06, "end": 14232.36, "probability": 0.6704 }, { "start": 14233.82, "end": 14237.56, "probability": 0.9929 }, { "start": 14238.08, "end": 14239.66, "probability": 0.9849 }, { "start": 14240.02, "end": 14243.04, "probability": 0.9758 }, { "start": 14243.9, "end": 14244.62, "probability": 0.8439 }, { "start": 14245.18, "end": 14246.22, "probability": 0.7858 }, { "start": 14246.78, "end": 14250.1, "probability": 0.9709 }, { "start": 14250.98, "end": 14252.96, "probability": 0.8877 }, { "start": 14254.98, "end": 14255.24, "probability": 0.1725 }, { "start": 14255.24, "end": 14256.62, "probability": 0.846 }, { "start": 14257.68, "end": 14259.32, "probability": 0.8521 }, { "start": 14259.46, "end": 14261.44, "probability": 0.9519 }, { "start": 14262.04, "end": 14263.78, "probability": 0.8861 }, { "start": 14264.34, "end": 14267.04, "probability": 0.9609 }, { "start": 14267.56, "end": 14270.5, "probability": 0.8475 }, { "start": 14271.08, "end": 14273.3, "probability": 0.9779 }, { "start": 14274.14, "end": 14276.8, "probability": 0.84 }, { "start": 14276.88, "end": 14280.66, "probability": 0.9692 }, { "start": 14281.74, "end": 14282.24, "probability": 0.8769 }, { "start": 14283.18, "end": 14286.83, "probability": 0.9968 }, { "start": 14287.36, "end": 14292.16, "probability": 0.9954 }, { "start": 14293.48, "end": 14295.36, "probability": 0.5872 }, { "start": 14297.62, "end": 14302.54, "probability": 0.9863 }, { "start": 14302.76, "end": 14304.1, "probability": 0.7784 }, { "start": 14304.58, "end": 14306.28, "probability": 0.9805 }, { "start": 14306.38, "end": 14307.02, "probability": 0.7952 }, { "start": 14307.7, "end": 14308.54, "probability": 0.5201 }, { "start": 14309.1, "end": 14312.86, "probability": 0.9706 }, { "start": 14312.94, "end": 14314.2, "probability": 0.8271 }, { "start": 14315.08, "end": 14316.01, "probability": 0.9878 }, { "start": 14316.48, "end": 14316.9, "probability": 0.9849 }, { "start": 14317.04, "end": 14321.19, "probability": 0.8914 }, { "start": 14321.84, "end": 14325.7, "probability": 0.991 }, { "start": 14326.18, "end": 14326.68, "probability": 0.2775 }, { "start": 14327.28, "end": 14332.08, "probability": 0.9112 }, { "start": 14332.6, "end": 14333.84, "probability": 0.5776 }, { "start": 14334.64, "end": 14336.16, "probability": 0.6667 }, { "start": 14336.66, "end": 14339.22, "probability": 0.9712 }, { "start": 14339.7, "end": 14344.72, "probability": 0.9951 }, { "start": 14346.46, "end": 14347.4, "probability": 0.9115 }, { "start": 14348.8, "end": 14350.5, "probability": 0.9576 }, { "start": 14351.18, "end": 14352.2, "probability": 0.982 }, { "start": 14352.48, "end": 14353.3, "probability": 0.9395 }, { "start": 14353.6, "end": 14355.16, "probability": 0.9878 }, { "start": 14355.24, "end": 14357.04, "probability": 0.9938 }, { "start": 14357.68, "end": 14359.0, "probability": 0.9727 }, { "start": 14359.58, "end": 14361.6, "probability": 0.9782 }, { "start": 14362.64, "end": 14366.14, "probability": 0.8665 }, { "start": 14366.28, "end": 14368.31, "probability": 0.9829 }, { "start": 14369.04, "end": 14370.46, "probability": 0.8857 }, { "start": 14371.2, "end": 14371.68, "probability": 0.3227 }, { "start": 14372.0, "end": 14372.52, "probability": 0.8864 }, { "start": 14372.88, "end": 14375.2, "probability": 0.8979 }, { "start": 14376.1, "end": 14377.9, "probability": 0.7041 }, { "start": 14378.62, "end": 14379.54, "probability": 0.8062 }, { "start": 14380.0, "end": 14382.68, "probability": 0.9897 }, { "start": 14383.06, "end": 14385.9, "probability": 0.955 }, { "start": 14386.36, "end": 14387.54, "probability": 0.9871 }, { "start": 14387.64, "end": 14391.12, "probability": 0.9851 }, { "start": 14391.48, "end": 14392.52, "probability": 0.9719 }, { "start": 14392.62, "end": 14393.72, "probability": 0.9703 }, { "start": 14394.18, "end": 14395.52, "probability": 0.9707 }, { "start": 14396.44, "end": 14397.38, "probability": 0.718 }, { "start": 14397.62, "end": 14398.96, "probability": 0.602 }, { "start": 14399.02, "end": 14400.48, "probability": 0.9937 }, { "start": 14401.14, "end": 14404.64, "probability": 0.9767 }, { "start": 14404.94, "end": 14406.72, "probability": 0.992 }, { "start": 14407.06, "end": 14409.06, "probability": 0.8665 }, { "start": 14410.28, "end": 14412.44, "probability": 0.9119 }, { "start": 14412.82, "end": 14417.3, "probability": 0.9928 }, { "start": 14417.74, "end": 14419.02, "probability": 0.9214 }, { "start": 14419.46, "end": 14421.24, "probability": 0.9812 }, { "start": 14421.84, "end": 14422.98, "probability": 0.8525 }, { "start": 14423.52, "end": 14427.3, "probability": 0.9864 }, { "start": 14427.66, "end": 14430.44, "probability": 0.8198 }, { "start": 14430.86, "end": 14432.54, "probability": 0.9512 }, { "start": 14432.92, "end": 14433.8, "probability": 0.7042 }, { "start": 14434.16, "end": 14436.52, "probability": 0.9587 }, { "start": 14436.9, "end": 14437.67, "probability": 0.6768 }, { "start": 14438.28, "end": 14440.14, "probability": 0.9977 }, { "start": 14441.74, "end": 14442.82, "probability": 0.9692 }, { "start": 14444.74, "end": 14445.8, "probability": 0.7279 }, { "start": 14446.36, "end": 14449.47, "probability": 0.9942 }, { "start": 14451.52, "end": 14455.6, "probability": 0.9872 }, { "start": 14455.66, "end": 14456.4, "probability": 0.9675 }, { "start": 14457.66, "end": 14458.52, "probability": 0.9219 }, { "start": 14459.2, "end": 14467.24, "probability": 0.848 }, { "start": 14467.92, "end": 14471.14, "probability": 0.9597 }, { "start": 14471.6, "end": 14472.8, "probability": 0.8341 }, { "start": 14473.3, "end": 14475.7, "probability": 0.8741 }, { "start": 14476.4, "end": 14478.32, "probability": 0.9901 }, { "start": 14478.86, "end": 14480.02, "probability": 0.9717 }, { "start": 14480.56, "end": 14484.52, "probability": 0.9907 }, { "start": 14485.08, "end": 14487.46, "probability": 0.9622 }, { "start": 14489.48, "end": 14492.64, "probability": 0.9829 }, { "start": 14492.64, "end": 14493.62, "probability": 0.8306 }, { "start": 14495.52, "end": 14497.12, "probability": 0.9778 }, { "start": 14497.52, "end": 14499.48, "probability": 0.8305 }, { "start": 14499.88, "end": 14501.58, "probability": 0.9386 }, { "start": 14501.7, "end": 14503.04, "probability": 0.9552 }, { "start": 14503.58, "end": 14507.14, "probability": 0.9356 }, { "start": 14508.16, "end": 14511.36, "probability": 0.9841 }, { "start": 14511.94, "end": 14514.84, "probability": 0.9663 }, { "start": 14515.44, "end": 14520.12, "probability": 0.9338 }, { "start": 14520.92, "end": 14521.84, "probability": 0.918 }, { "start": 14521.92, "end": 14523.34, "probability": 0.9576 }, { "start": 14523.58, "end": 14528.28, "probability": 0.9476 }, { "start": 14528.82, "end": 14529.4, "probability": 0.9673 }, { "start": 14530.02, "end": 14532.52, "probability": 0.5262 }, { "start": 14532.7, "end": 14536.42, "probability": 0.8694 }, { "start": 14536.76, "end": 14538.08, "probability": 0.944 }, { "start": 14538.22, "end": 14539.02, "probability": 0.6742 }, { "start": 14539.38, "end": 14541.5, "probability": 0.9664 }, { "start": 14541.86, "end": 14542.96, "probability": 0.8306 }, { "start": 14543.98, "end": 14546.26, "probability": 0.9114 }, { "start": 14546.68, "end": 14547.92, "probability": 0.9132 }, { "start": 14547.98, "end": 14549.24, "probability": 0.7496 }, { "start": 14549.86, "end": 14550.64, "probability": 0.853 }, { "start": 14551.06, "end": 14552.46, "probability": 0.8518 }, { "start": 14552.9, "end": 14556.88, "probability": 0.9538 }, { "start": 14557.08, "end": 14558.14, "probability": 0.8991 }, { "start": 14565.56, "end": 14566.2, "probability": 0.2884 }, { "start": 14566.3, "end": 14567.58, "probability": 0.8009 }, { "start": 14567.7, "end": 14569.46, "probability": 0.9675 }, { "start": 14569.46, "end": 14572.06, "probability": 0.7008 }, { "start": 14572.12, "end": 14574.2, "probability": 0.0457 }, { "start": 14574.3, "end": 14578.16, "probability": 0.9844 }, { "start": 14578.31, "end": 14583.74, "probability": 0.997 }, { "start": 14584.3, "end": 14585.64, "probability": 0.7886 }, { "start": 14588.14, "end": 14588.56, "probability": 0.0927 }, { "start": 14588.82, "end": 14590.42, "probability": 0.1927 }, { "start": 14590.52, "end": 14592.22, "probability": 0.2188 }, { "start": 14592.48, "end": 14593.34, "probability": 0.8682 }, { "start": 14593.52, "end": 14594.56, "probability": 0.765 }, { "start": 14594.6, "end": 14596.86, "probability": 0.7204 }, { "start": 14597.08, "end": 14598.5, "probability": 0.4513 }, { "start": 14598.7, "end": 14600.28, "probability": 0.1834 }, { "start": 14600.88, "end": 14604.72, "probability": 0.1507 }, { "start": 14608.3, "end": 14610.6, "probability": 0.9951 }, { "start": 14610.68, "end": 14611.68, "probability": 0.4106 }, { "start": 14612.38, "end": 14613.32, "probability": 0.2536 }, { "start": 14613.46, "end": 14616.1, "probability": 0.2755 }, { "start": 14618.33, "end": 14623.88, "probability": 0.2051 }, { "start": 14624.12, "end": 14625.06, "probability": 0.212 }, { "start": 14625.08, "end": 14625.08, "probability": 0.2519 }, { "start": 14625.08, "end": 14625.74, "probability": 0.4339 }, { "start": 14625.74, "end": 14631.28, "probability": 0.7707 }, { "start": 14632.24, "end": 14638.12, "probability": 0.9766 }, { "start": 14639.47, "end": 14642.26, "probability": 0.0704 }, { "start": 14642.9, "end": 14642.9, "probability": 0.3416 }, { "start": 14642.9, "end": 14644.16, "probability": 0.4829 }, { "start": 14644.4, "end": 14649.12, "probability": 0.9374 }, { "start": 14649.5, "end": 14651.48, "probability": 0.9989 }, { "start": 14651.7, "end": 14653.42, "probability": 0.7935 }, { "start": 14653.86, "end": 14657.84, "probability": 0.9875 }, { "start": 14657.94, "end": 14661.94, "probability": 0.7886 }, { "start": 14662.42, "end": 14663.62, "probability": 0.9694 }, { "start": 14663.9, "end": 14665.17, "probability": 0.9055 }, { "start": 14665.86, "end": 14672.2, "probability": 0.9688 }, { "start": 14672.38, "end": 14673.72, "probability": 0.9329 }, { "start": 14674.14, "end": 14678.2, "probability": 0.9822 }, { "start": 14678.46, "end": 14680.25, "probability": 0.9523 }, { "start": 14681.1, "end": 14686.04, "probability": 0.9808 }, { "start": 14686.04, "end": 14689.78, "probability": 0.6768 }, { "start": 14690.78, "end": 14692.62, "probability": 0.9422 }, { "start": 14693.3, "end": 14694.28, "probability": 0.8611 }, { "start": 14694.48, "end": 14695.58, "probability": 0.7817 }, { "start": 14696.0, "end": 14697.49, "probability": 0.7378 }, { "start": 14697.88, "end": 14700.9, "probability": 0.9796 }, { "start": 14701.04, "end": 14702.14, "probability": 0.9191 }, { "start": 14702.48, "end": 14704.02, "probability": 0.9647 }, { "start": 14704.2, "end": 14708.2, "probability": 0.9885 }, { "start": 14708.9, "end": 14712.74, "probability": 0.9634 }, { "start": 14713.2, "end": 14716.64, "probability": 0.8892 }, { "start": 14717.36, "end": 14720.62, "probability": 0.7781 }, { "start": 14720.62, "end": 14723.6, "probability": 0.8635 }, { "start": 14723.66, "end": 14728.08, "probability": 0.8172 }, { "start": 14728.62, "end": 14728.98, "probability": 0.6713 }, { "start": 14729.72, "end": 14733.56, "probability": 0.929 }, { "start": 14733.56, "end": 14737.14, "probability": 0.9594 }, { "start": 14737.38, "end": 14737.9, "probability": 0.9413 }, { "start": 14738.02, "end": 14738.4, "probability": 0.9703 }, { "start": 14738.52, "end": 14738.9, "probability": 0.9879 }, { "start": 14739.0, "end": 14739.78, "probability": 0.8844 }, { "start": 14740.02, "end": 14742.32, "probability": 0.9714 }, { "start": 14743.06, "end": 14743.44, "probability": 0.9006 }, { "start": 14743.86, "end": 14745.7, "probability": 0.9956 }, { "start": 14746.34, "end": 14751.98, "probability": 0.9285 }, { "start": 14752.38, "end": 14753.54, "probability": 0.9821 }, { "start": 14754.1, "end": 14756.5, "probability": 0.9996 }, { "start": 14756.96, "end": 14759.84, "probability": 0.9906 }, { "start": 14761.14, "end": 14762.42, "probability": 0.8941 }, { "start": 14762.94, "end": 14764.58, "probability": 0.7889 }, { "start": 14765.5, "end": 14767.76, "probability": 0.6828 }, { "start": 14768.4, "end": 14772.18, "probability": 0.8312 }, { "start": 14773.6, "end": 14774.06, "probability": 0.1199 }, { "start": 14775.12, "end": 14775.36, "probability": 0.0252 }, { "start": 14775.38, "end": 14776.36, "probability": 0.598 }, { "start": 14776.36, "end": 14778.46, "probability": 0.5652 }, { "start": 14778.64, "end": 14778.94, "probability": 0.3603 }, { "start": 14780.14, "end": 14781.7, "probability": 0.6234 }, { "start": 14781.7, "end": 14781.8, "probability": 0.4869 }, { "start": 14782.78, "end": 14785.42, "probability": 0.9768 }, { "start": 14785.42, "end": 14785.9, "probability": 0.4927 }, { "start": 14785.9, "end": 14786.06, "probability": 0.908 }, { "start": 14787.5, "end": 14790.2, "probability": 0.8258 }, { "start": 14790.34, "end": 14791.22, "probability": 0.6867 }, { "start": 14791.32, "end": 14791.88, "probability": 0.5139 }, { "start": 14792.82, "end": 14793.92, "probability": 0.978 }, { "start": 14824.6, "end": 14826.18, "probability": 0.7952 }, { "start": 14827.66, "end": 14828.44, "probability": 0.3347 }, { "start": 14829.38, "end": 14829.44, "probability": 0.1631 }, { "start": 14829.44, "end": 14832.92, "probability": 0.9915 }, { "start": 14833.08, "end": 14835.25, "probability": 0.9981 }, { "start": 14840.08, "end": 14841.52, "probability": 0.5131 }, { "start": 14842.56, "end": 14844.75, "probability": 0.5648 }, { "start": 14845.7, "end": 14848.4, "probability": 0.842 }, { "start": 14849.38, "end": 14856.85, "probability": 0.9946 }, { "start": 14857.58, "end": 14858.62, "probability": 0.9023 }, { "start": 14861.06, "end": 14864.18, "probability": 0.8724 }, { "start": 14865.28, "end": 14868.34, "probability": 0.9934 }, { "start": 14870.76, "end": 14874.86, "probability": 0.9937 }, { "start": 14877.37, "end": 14880.24, "probability": 0.9574 }, { "start": 14880.24, "end": 14882.68, "probability": 0.9995 }, { "start": 14886.28, "end": 14886.48, "probability": 0.6079 }, { "start": 14889.6, "end": 14892.02, "probability": 0.826 }, { "start": 14893.92, "end": 14895.04, "probability": 0.9963 }, { "start": 14895.9, "end": 14899.98, "probability": 0.9122 }, { "start": 14902.06, "end": 14906.04, "probability": 0.9925 }, { "start": 14907.38, "end": 14908.6, "probability": 0.7364 }, { "start": 14908.9, "end": 14911.48, "probability": 0.9808 }, { "start": 14912.34, "end": 14914.56, "probability": 0.9922 }, { "start": 14916.26, "end": 14918.96, "probability": 0.4355 }, { "start": 14919.54, "end": 14922.06, "probability": 0.9581 }, { "start": 14922.3, "end": 14924.58, "probability": 0.951 }, { "start": 14925.3, "end": 14928.28, "probability": 0.9919 }, { "start": 14929.24, "end": 14934.88, "probability": 0.9892 }, { "start": 14934.88, "end": 14939.92, "probability": 0.9937 }, { "start": 14941.3, "end": 14943.42, "probability": 0.0491 }, { "start": 14943.42, "end": 14945.1, "probability": 0.078 }, { "start": 14945.66, "end": 14947.74, "probability": 0.2721 }, { "start": 14948.12, "end": 14949.14, "probability": 0.1557 }, { "start": 14949.38, "end": 14953.22, "probability": 0.366 }, { "start": 14953.4, "end": 14956.7, "probability": 0.5166 }, { "start": 14956.7, "end": 14960.58, "probability": 0.3533 }, { "start": 14960.96, "end": 14961.48, "probability": 0.5449 }, { "start": 14961.96, "end": 14968.12, "probability": 0.5545 }, { "start": 14968.18, "end": 14969.56, "probability": 0.2297 }, { "start": 14969.76, "end": 14971.6, "probability": 0.4496 }, { "start": 14971.92, "end": 14971.92, "probability": 0.2851 }, { "start": 14972.44, "end": 14974.78, "probability": 0.8782 }, { "start": 14975.16, "end": 14976.68, "probability": 0.8735 }, { "start": 14977.48, "end": 14979.84, "probability": 0.407 }, { "start": 14979.88, "end": 14981.04, "probability": 0.3402 }, { "start": 14981.12, "end": 14982.4, "probability": 0.7418 }, { "start": 14983.52, "end": 14984.78, "probability": 0.4497 }, { "start": 14985.4, "end": 14988.76, "probability": 0.5255 }, { "start": 14989.0, "end": 14990.82, "probability": 0.5411 }, { "start": 14991.56, "end": 14994.1, "probability": 0.5505 }, { "start": 14995.9, "end": 14998.97, "probability": 0.5952 }, { "start": 14999.76, "end": 15000.72, "probability": 0.8564 }, { "start": 15000.82, "end": 15001.88, "probability": 0.7038 }, { "start": 15001.96, "end": 15003.12, "probability": 0.5007 }, { "start": 15003.24, "end": 15004.24, "probability": 0.7179 }, { "start": 15004.4, "end": 15005.1, "probability": 0.672 }, { "start": 15005.32, "end": 15006.21, "probability": 0.1333 }, { "start": 15006.6, "end": 15007.48, "probability": 0.8924 }, { "start": 15007.54, "end": 15008.7, "probability": 0.7013 }, { "start": 15009.18, "end": 15009.96, "probability": 0.5113 }, { "start": 15010.1, "end": 15012.42, "probability": 0.8086 }, { "start": 15012.42, "end": 15013.24, "probability": 0.7056 }, { "start": 15013.24, "end": 15013.34, "probability": 0.5047 }, { "start": 15013.34, "end": 15015.02, "probability": 0.4145 }, { "start": 15015.02, "end": 15019.0, "probability": 0.9712 }, { "start": 15019.46, "end": 15021.06, "probability": 0.6604 }, { "start": 15021.38, "end": 15022.5, "probability": 0.9427 }, { "start": 15022.56, "end": 15023.32, "probability": 0.9009 }, { "start": 15024.3, "end": 15026.56, "probability": 0.8838 }, { "start": 15026.8, "end": 15027.52, "probability": 0.8525 }, { "start": 15028.2, "end": 15028.88, "probability": 0.3842 }, { "start": 15028.88, "end": 15029.48, "probability": 0.014 }, { "start": 15029.48, "end": 15030.38, "probability": 0.2791 }, { "start": 15030.64, "end": 15031.51, "probability": 0.7422 }, { "start": 15032.08, "end": 15032.84, "probability": 0.4425 }, { "start": 15033.74, "end": 15036.04, "probability": 0.7972 }, { "start": 15036.34, "end": 15036.9, "probability": 0.9726 }, { "start": 15037.62, "end": 15038.86, "probability": 0.7468 }, { "start": 15040.26, "end": 15041.76, "probability": 0.4804 }, { "start": 15042.12, "end": 15042.24, "probability": 0.2732 }, { "start": 15042.24, "end": 15042.24, "probability": 0.1389 }, { "start": 15042.24, "end": 15042.24, "probability": 0.0694 }, { "start": 15042.24, "end": 15042.24, "probability": 0.1735 }, { "start": 15042.24, "end": 15045.94, "probability": 0.9766 }, { "start": 15046.79, "end": 15047.32, "probability": 0.4348 }, { "start": 15047.34, "end": 15047.34, "probability": 0.7197 }, { "start": 15047.84, "end": 15050.46, "probability": 0.9115 }, { "start": 15050.74, "end": 15053.22, "probability": 0.8995 }, { "start": 15053.36, "end": 15053.46, "probability": 0.2052 }, { "start": 15053.64, "end": 15053.82, "probability": 0.181 }, { "start": 15053.82, "end": 15055.1, "probability": 0.6706 }, { "start": 15055.12, "end": 15060.4, "probability": 0.8616 }, { "start": 15060.52, "end": 15062.94, "probability": 0.9014 }, { "start": 15063.3, "end": 15067.24, "probability": 0.7065 }, { "start": 15067.84, "end": 15069.22, "probability": 0.8648 }, { "start": 15070.46, "end": 15077.38, "probability": 0.9971 }, { "start": 15077.92, "end": 15079.82, "probability": 0.9969 }, { "start": 15080.54, "end": 15083.8, "probability": 0.72 }, { "start": 15084.54, "end": 15087.72, "probability": 0.988 }, { "start": 15087.72, "end": 15091.1, "probability": 0.9736 }, { "start": 15091.72, "end": 15092.35, "probability": 0.9138 }, { "start": 15092.58, "end": 15093.04, "probability": 0.7607 }, { "start": 15093.36, "end": 15096.74, "probability": 0.9819 }, { "start": 15097.2, "end": 15097.58, "probability": 0.4673 }, { "start": 15097.96, "end": 15100.88, "probability": 0.9821 }, { "start": 15101.18, "end": 15103.98, "probability": 0.9871 }, { "start": 15104.42, "end": 15105.68, "probability": 0.6603 }, { "start": 15106.2, "end": 15109.3, "probability": 0.9154 }, { "start": 15109.42, "end": 15113.06, "probability": 0.9859 }, { "start": 15114.55, "end": 15117.66, "probability": 0.8848 }, { "start": 15118.46, "end": 15122.66, "probability": 0.9526 }, { "start": 15122.84, "end": 15125.36, "probability": 0.866 }, { "start": 15126.54, "end": 15126.78, "probability": 0.2703 }, { "start": 15126.88, "end": 15131.7, "probability": 0.9865 }, { "start": 15132.56, "end": 15135.68, "probability": 0.9956 }, { "start": 15136.0, "end": 15136.86, "probability": 0.9764 }, { "start": 15137.98, "end": 15140.58, "probability": 0.9968 }, { "start": 15140.58, "end": 15144.62, "probability": 0.9715 }, { "start": 15144.82, "end": 15146.8, "probability": 0.9604 }, { "start": 15147.4, "end": 15150.01, "probability": 0.8838 }, { "start": 15150.7, "end": 15151.25, "probability": 0.335 }, { "start": 15151.68, "end": 15152.32, "probability": 0.2687 }, { "start": 15152.52, "end": 15154.28, "probability": 0.9659 }, { "start": 15154.36, "end": 15159.1, "probability": 0.9539 }, { "start": 15159.1, "end": 15164.0, "probability": 0.9895 }, { "start": 15164.78, "end": 15165.5, "probability": 0.6124 }, { "start": 15166.92, "end": 15170.48, "probability": 0.9711 }, { "start": 15171.14, "end": 15173.78, "probability": 0.999 }, { "start": 15173.78, "end": 15178.84, "probability": 0.9836 }, { "start": 15179.34, "end": 15182.74, "probability": 0.9971 }, { "start": 15183.16, "end": 15187.6, "probability": 0.9962 }, { "start": 15188.16, "end": 15191.78, "probability": 0.9855 }, { "start": 15194.02, "end": 15196.92, "probability": 0.9186 }, { "start": 15197.36, "end": 15203.88, "probability": 0.9662 }, { "start": 15203.88, "end": 15210.02, "probability": 0.9985 }, { "start": 15210.02, "end": 15216.64, "probability": 0.9967 }, { "start": 15217.22, "end": 15217.88, "probability": 0.7939 }, { "start": 15218.58, "end": 15222.54, "probability": 0.9955 }, { "start": 15223.52, "end": 15223.52, "probability": 0.6255 }, { "start": 15224.34, "end": 15227.66, "probability": 0.9893 }, { "start": 15227.66, "end": 15231.2, "probability": 0.9913 }, { "start": 15231.32, "end": 15231.38, "probability": 0.0 }, { "start": 15233.48, "end": 15233.82, "probability": 0.0727 }, { "start": 15234.08, "end": 15238.82, "probability": 0.5966 }, { "start": 15238.82, "end": 15242.04, "probability": 0.9988 }, { "start": 15242.12, "end": 15244.96, "probability": 0.9917 }, { "start": 15245.64, "end": 15246.54, "probability": 0.7397 }, { "start": 15247.54, "end": 15251.72, "probability": 0.9947 }, { "start": 15252.26, "end": 15256.16, "probability": 0.9836 }, { "start": 15256.82, "end": 15259.16, "probability": 0.7888 }, { "start": 15259.84, "end": 15262.42, "probability": 0.9793 }, { "start": 15262.42, "end": 15265.78, "probability": 0.9971 }, { "start": 15266.1, "end": 15266.4, "probability": 0.5027 }, { "start": 15266.6, "end": 15267.91, "probability": 0.9897 }, { "start": 15269.1, "end": 15271.13, "probability": 0.832 }, { "start": 15272.36, "end": 15273.6, "probability": 0.842 }, { "start": 15273.78, "end": 15276.12, "probability": 0.9966 }, { "start": 15276.96, "end": 15278.84, "probability": 0.9955 }, { "start": 15279.88, "end": 15284.62, "probability": 0.9972 }, { "start": 15286.06, "end": 15289.52, "probability": 0.9966 }, { "start": 15290.92, "end": 15294.68, "probability": 0.9957 }, { "start": 15294.68, "end": 15299.96, "probability": 0.9924 }, { "start": 15301.1, "end": 15302.74, "probability": 0.7879 }, { "start": 15303.76, "end": 15306.12, "probability": 0.9735 }, { "start": 15306.8, "end": 15307.46, "probability": 0.7942 }, { "start": 15308.8, "end": 15314.48, "probability": 0.9598 }, { "start": 15315.32, "end": 15318.48, "probability": 0.9608 }, { "start": 15319.38, "end": 15323.8, "probability": 0.8603 }, { "start": 15324.18, "end": 15326.22, "probability": 0.9896 }, { "start": 15326.58, "end": 15328.02, "probability": 0.7994 }, { "start": 15329.48, "end": 15331.46, "probability": 0.727 }, { "start": 15332.32, "end": 15333.82, "probability": 0.4961 }, { "start": 15335.14, "end": 15335.42, "probability": 0.4141 }, { "start": 15335.76, "end": 15337.86, "probability": 0.3331 }, { "start": 15337.96, "end": 15338.2, "probability": 0.5457 }, { "start": 15338.36, "end": 15339.26, "probability": 0.9417 }, { "start": 15341.72, "end": 15342.06, "probability": 0.9236 }, { "start": 15342.08, "end": 15342.84, "probability": 0.8515 }, { "start": 15342.9, "end": 15344.28, "probability": 0.9391 }, { "start": 15344.46, "end": 15347.76, "probability": 0.7482 }, { "start": 15348.34, "end": 15350.4, "probability": 0.9305 }, { "start": 15350.92, "end": 15354.78, "probability": 0.993 }, { "start": 15355.58, "end": 15357.0, "probability": 0.9289 }, { "start": 15357.06, "end": 15358.76, "probability": 0.499 }, { "start": 15360.34, "end": 15362.56, "probability": 0.7757 }, { "start": 15363.22, "end": 15364.94, "probability": 0.8717 }, { "start": 15365.94, "end": 15367.4, "probability": 0.89 }, { "start": 15367.84, "end": 15369.34, "probability": 0.8488 }, { "start": 15369.44, "end": 15369.86, "probability": 0.693 }, { "start": 15369.88, "end": 15370.74, "probability": 0.8353 }, { "start": 15371.14, "end": 15373.96, "probability": 0.9526 }, { "start": 15374.28, "end": 15375.36, "probability": 0.7353 }, { "start": 15375.76, "end": 15378.04, "probability": 0.8744 }, { "start": 15378.52, "end": 15381.62, "probability": 0.9498 }, { "start": 15382.04, "end": 15383.12, "probability": 0.9609 }, { "start": 15384.38, "end": 15385.44, "probability": 0.9458 }, { "start": 15386.78, "end": 15389.72, "probability": 0.9676 }, { "start": 15391.06, "end": 15391.74, "probability": 0.8134 }, { "start": 15392.04, "end": 15392.72, "probability": 0.5829 }, { "start": 15392.96, "end": 15393.6, "probability": 0.7511 }, { "start": 15393.98, "end": 15398.46, "probability": 0.9751 }, { "start": 15399.14, "end": 15400.94, "probability": 0.96 }, { "start": 15401.42, "end": 15404.18, "probability": 0.9449 }, { "start": 15405.12, "end": 15406.78, "probability": 0.9956 }, { "start": 15407.0, "end": 15409.2, "probability": 0.8735 }, { "start": 15409.56, "end": 15411.08, "probability": 0.8997 }, { "start": 15411.56, "end": 15416.4, "probability": 0.9504 }, { "start": 15417.3, "end": 15420.32, "probability": 0.9894 }, { "start": 15420.72, "end": 15421.84, "probability": 0.7877 }, { "start": 15422.18, "end": 15423.69, "probability": 0.979 }, { "start": 15424.46, "end": 15425.96, "probability": 0.9922 }, { "start": 15426.38, "end": 15427.15, "probability": 0.9884 }, { "start": 15429.58, "end": 15431.64, "probability": 0.5397 }, { "start": 15432.04, "end": 15434.18, "probability": 0.9254 }, { "start": 15434.54, "end": 15436.28, "probability": 0.8965 }, { "start": 15436.48, "end": 15438.57, "probability": 0.9878 }, { "start": 15439.42, "end": 15442.9, "probability": 0.9972 }, { "start": 15442.9, "end": 15446.44, "probability": 0.9927 }, { "start": 15446.84, "end": 15447.94, "probability": 0.854 }, { "start": 15448.42, "end": 15452.28, "probability": 0.9946 }, { "start": 15452.28, "end": 15456.06, "probability": 0.897 }, { "start": 15456.44, "end": 15457.63, "probability": 0.9971 }, { "start": 15459.58, "end": 15466.5, "probability": 0.9969 }, { "start": 15466.66, "end": 15468.24, "probability": 0.7547 }, { "start": 15468.3, "end": 15469.6, "probability": 0.8377 }, { "start": 15470.36, "end": 15471.48, "probability": 0.9985 }, { "start": 15473.02, "end": 15477.78, "probability": 0.9613 }, { "start": 15477.78, "end": 15482.76, "probability": 0.9994 }, { "start": 15483.46, "end": 15485.7, "probability": 0.9938 }, { "start": 15486.36, "end": 15488.78, "probability": 0.8823 }, { "start": 15490.1, "end": 15490.96, "probability": 0.7514 }, { "start": 15491.08, "end": 15495.28, "probability": 0.9741 }, { "start": 15496.38, "end": 15499.14, "probability": 0.972 }, { "start": 15499.84, "end": 15501.68, "probability": 0.9699 }, { "start": 15502.26, "end": 15508.43, "probability": 0.9941 }, { "start": 15509.1, "end": 15514.38, "probability": 0.8508 }, { "start": 15515.22, "end": 15519.42, "probability": 0.9387 }, { "start": 15519.42, "end": 15524.9, "probability": 0.5185 }, { "start": 15524.92, "end": 15529.34, "probability": 0.9282 }, { "start": 15529.34, "end": 15529.88, "probability": 0.6841 }, { "start": 15529.94, "end": 15531.28, "probability": 0.7249 }, { "start": 15532.44, "end": 15536.32, "probability": 0.9822 }, { "start": 15537.22, "end": 15538.42, "probability": 0.7299 }, { "start": 15538.52, "end": 15539.32, "probability": 0.6245 }, { "start": 15539.46, "end": 15541.32, "probability": 0.793 }, { "start": 15541.92, "end": 15543.22, "probability": 0.6818 }, { "start": 15543.64, "end": 15545.42, "probability": 0.8481 }, { "start": 15551.34, "end": 15552.82, "probability": 0.5068 }, { "start": 15552.82, "end": 15552.82, "probability": 0.5029 }, { "start": 15552.82, "end": 15553.16, "probability": 0.2785 }, { "start": 15553.16, "end": 15553.58, "probability": 0.7561 }, { "start": 15553.96, "end": 15555.36, "probability": 0.9828 }, { "start": 15556.2, "end": 15559.38, "probability": 0.9934 }, { "start": 15559.82, "end": 15565.36, "probability": 0.9965 }, { "start": 15565.52, "end": 15567.76, "probability": 0.9057 }, { "start": 15568.16, "end": 15568.94, "probability": 0.717 }, { "start": 15569.24, "end": 15570.06, "probability": 0.897 }, { "start": 15570.18, "end": 15570.86, "probability": 0.6583 }, { "start": 15570.86, "end": 15571.32, "probability": 0.5899 }, { "start": 15571.4, "end": 15571.56, "probability": 0.441 }, { "start": 15571.56, "end": 15572.88, "probability": 0.502 }, { "start": 15573.04, "end": 15576.52, "probability": 0.7739 }, { "start": 15577.34, "end": 15577.78, "probability": 0.5419 }, { "start": 15577.78, "end": 15585.86, "probability": 0.9619 }, { "start": 15586.3, "end": 15590.3, "probability": 0.9965 }, { "start": 15591.44, "end": 15594.42, "probability": 0.6683 }, { "start": 15596.28, "end": 15596.58, "probability": 0.2432 }, { "start": 15596.58, "end": 15596.58, "probability": 0.0697 }, { "start": 15596.58, "end": 15597.5, "probability": 0.7362 }, { "start": 15597.66, "end": 15599.32, "probability": 0.8728 }, { "start": 15599.38, "end": 15601.44, "probability": 0.8623 }, { "start": 15602.08, "end": 15606.02, "probability": 0.7681 }, { "start": 15607.44, "end": 15609.54, "probability": 0.6449 }, { "start": 15609.64, "end": 15614.46, "probability": 0.9141 }, { "start": 15614.46, "end": 15617.58, "probability": 0.6925 }, { "start": 15619.08, "end": 15619.4, "probability": 0.6058 }, { "start": 15619.4, "end": 15619.52, "probability": 0.0022 }, { "start": 15619.72, "end": 15620.67, "probability": 0.2457 }, { "start": 15620.7, "end": 15621.78, "probability": 0.1602 }, { "start": 15625.02, "end": 15627.04, "probability": 0.9805 }, { "start": 15627.44, "end": 15628.0, "probability": 0.1033 }, { "start": 15628.0, "end": 15628.2, "probability": 0.2269 }, { "start": 15628.2, "end": 15628.2, "probability": 0.2889 }, { "start": 15628.2, "end": 15629.95, "probability": 0.6492 }, { "start": 15630.0, "end": 15631.8, "probability": 0.9954 }, { "start": 15631.84, "end": 15632.42, "probability": 0.8685 }, { "start": 15632.76, "end": 15633.27, "probability": 0.2252 }, { "start": 15635.16, "end": 15639.72, "probability": 0.755 }, { "start": 15641.32, "end": 15642.22, "probability": 0.4344 }, { "start": 15647.68, "end": 15652.76, "probability": 0.5508 }, { "start": 15654.92, "end": 15655.76, "probability": 0.6021 }, { "start": 15656.54, "end": 15657.28, "probability": 0.729 }, { "start": 15658.14, "end": 15659.0, "probability": 0.9128 }, { "start": 15659.6, "end": 15661.44, "probability": 0.6157 }, { "start": 15663.32, "end": 15673.32, "probability": 0.8071 }, { "start": 15674.18, "end": 15677.06, "probability": 0.8729 }, { "start": 15677.72, "end": 15680.18, "probability": 0.5183 }, { "start": 15680.72, "end": 15685.9, "probability": 0.7366 }, { "start": 15687.74, "end": 15691.92, "probability": 0.8481 }, { "start": 15692.8, "end": 15695.02, "probability": 0.9054 }, { "start": 15696.66, "end": 15699.3, "probability": 0.9688 }, { "start": 15700.0, "end": 15700.4, "probability": 0.9198 }, { "start": 15701.74, "end": 15702.7, "probability": 0.9599 }, { "start": 15704.3, "end": 15708.39, "probability": 0.7346 }, { "start": 15713.24, "end": 15715.5, "probability": 0.5411 }, { "start": 15716.52, "end": 15723.88, "probability": 0.5023 }, { "start": 15724.94, "end": 15727.74, "probability": 0.8667 }, { "start": 15729.26, "end": 15732.28, "probability": 0.916 }, { "start": 15734.62, "end": 15736.54, "probability": 0.8599 }, { "start": 15738.92, "end": 15740.66, "probability": 0.8903 }, { "start": 15741.92, "end": 15742.84, "probability": 0.995 }, { "start": 15743.62, "end": 15744.74, "probability": 0.5261 }, { "start": 15745.72, "end": 15746.12, "probability": 0.9395 }, { "start": 15747.28, "end": 15748.14, "probability": 0.679 }, { "start": 15749.14, "end": 15751.42, "probability": 0.8819 }, { "start": 15752.04, "end": 15752.98, "probability": 0.8867 }, { "start": 15753.9, "end": 15754.72, "probability": 0.9615 }, { "start": 15755.52, "end": 15757.78, "probability": 0.9321 }, { "start": 15759.56, "end": 15762.22, "probability": 0.9175 }, { "start": 15762.74, "end": 15763.28, "probability": 0.9587 }, { "start": 15764.32, "end": 15765.42, "probability": 0.8499 }, { "start": 15767.48, "end": 15772.14, "probability": 0.7953 }, { "start": 15773.54, "end": 15773.7, "probability": 0.9512 }, { "start": 15774.4, "end": 15776.26, "probability": 0.6127 }, { "start": 15776.92, "end": 15777.34, "probability": 0.7439 }, { "start": 15778.76, "end": 15779.56, "probability": 0.9616 }, { "start": 15780.18, "end": 15782.38, "probability": 0.8659 }, { "start": 15785.88, "end": 15786.46, "probability": 0.6975 }, { "start": 15786.98, "end": 15787.94, "probability": 0.5376 }, { "start": 15791.14, "end": 15791.54, "probability": 0.7532 }, { "start": 15793.06, "end": 15793.94, "probability": 0.646 }, { "start": 15796.4, "end": 15798.04, "probability": 0.7539 }, { "start": 15798.86, "end": 15800.18, "probability": 0.82 }, { "start": 15800.84, "end": 15801.34, "probability": 0.8357 }, { "start": 15802.34, "end": 15803.48, "probability": 0.9417 }, { "start": 15804.84, "end": 15807.04, "probability": 0.9505 }, { "start": 15808.46, "end": 15809.04, "probability": 0.9924 }, { "start": 15810.46, "end": 15811.42, "probability": 0.8311 }, { "start": 15812.94, "end": 15815.42, "probability": 0.9171 }, { "start": 15816.34, "end": 15817.6, "probability": 0.42 }, { "start": 15818.64, "end": 15819.6, "probability": 0.5224 }, { "start": 15820.82, "end": 15823.44, "probability": 0.7019 }, { "start": 15824.18, "end": 15824.78, "probability": 0.9935 }, { "start": 15825.46, "end": 15826.62, "probability": 0.9875 }, { "start": 15827.82, "end": 15828.3, "probability": 0.9792 }, { "start": 15829.94, "end": 15831.06, "probability": 0.7185 }, { "start": 15834.04, "end": 15837.68, "probability": 0.1882 }, { "start": 15838.4, "end": 15838.86, "probability": 0.9657 }, { "start": 15839.58, "end": 15840.58, "probability": 0.4913 }, { "start": 15841.62, "end": 15842.1, "probability": 0.9922 }, { "start": 15843.18, "end": 15844.12, "probability": 0.7181 }, { "start": 15845.38, "end": 15847.24, "probability": 0.9886 }, { "start": 15849.04, "end": 15851.58, "probability": 0.785 }, { "start": 15852.54, "end": 15853.16, "probability": 0.9748 }, { "start": 15853.84, "end": 15855.06, "probability": 0.768 }, { "start": 15856.3, "end": 15856.8, "probability": 0.8704 }, { "start": 15858.48, "end": 15859.52, "probability": 0.7889 }, { "start": 15860.1, "end": 15860.5, "probability": 0.8874 }, { "start": 15861.62, "end": 15862.44, "probability": 0.9652 }, { "start": 15863.54, "end": 15866.52, "probability": 0.5936 }, { "start": 15867.42, "end": 15868.34, "probability": 0.7753 }, { "start": 15869.16, "end": 15870.44, "probability": 0.9219 }, { "start": 15872.06, "end": 15872.84, "probability": 0.9484 }, { "start": 15873.44, "end": 15874.2, "probability": 0.8873 }, { "start": 15875.34, "end": 15875.88, "probability": 0.9243 }, { "start": 15876.98, "end": 15877.52, "probability": 0.9203 }, { "start": 15878.4, "end": 15882.52, "probability": 0.9727 }, { "start": 15883.48, "end": 15884.46, "probability": 0.9854 }, { "start": 15885.38, "end": 15886.3, "probability": 0.9116 }, { "start": 15888.38, "end": 15889.16, "probability": 0.8545 }, { "start": 15891.54, "end": 15892.32, "probability": 0.9461 }, { "start": 15893.44, "end": 15894.56, "probability": 0.6366 }, { "start": 15895.34, "end": 15897.64, "probability": 0.7728 }, { "start": 15898.84, "end": 15901.42, "probability": 0.947 }, { "start": 15902.68, "end": 15903.18, "probability": 0.9216 }, { "start": 15904.52, "end": 15905.28, "probability": 0.9243 }, { "start": 15908.14, "end": 15910.66, "probability": 0.5892 }, { "start": 15913.08, "end": 15913.54, "probability": 0.9237 }, { "start": 15914.9, "end": 15916.02, "probability": 0.8197 }, { "start": 15917.18, "end": 15919.96, "probability": 0.9085 }, { "start": 15921.12, "end": 15922.3, "probability": 0.9907 }, { "start": 15924.1, "end": 15924.76, "probability": 0.8099 }, { "start": 15925.52, "end": 15927.54, "probability": 0.9387 }, { "start": 15928.06, "end": 15928.58, "probability": 0.9871 }, { "start": 15929.36, "end": 15932.79, "probability": 0.6644 }, { "start": 15935.4, "end": 15937.04, "probability": 0.0748 }, { "start": 15939.2, "end": 15939.74, "probability": 0.1819 }, { "start": 15941.57, "end": 15941.75, "probability": 0.0323 }, { "start": 15942.3, "end": 15944.3, "probability": 0.0051 }, { "start": 15945.34, "end": 15951.2, "probability": 0.2376 }, { "start": 15954.24, "end": 15955.78, "probability": 0.033 }, { "start": 15959.42, "end": 15960.88, "probability": 0.2047 }, { "start": 15961.8, "end": 15963.95, "probability": 0.305 }, { "start": 16039.0, "end": 16039.0, "probability": 0.0 }, { "start": 16039.0, "end": 16039.0, "probability": 0.0 }, { "start": 16039.0, "end": 16039.0, "probability": 0.0 }, { "start": 16039.0, "end": 16039.0, "probability": 0.0 }, { "start": 16039.0, "end": 16039.0, "probability": 0.0 }, { "start": 16039.0, "end": 16039.0, "probability": 0.0 }, { "start": 16039.0, "end": 16039.0, "probability": 0.0 }, { "start": 16039.0, "end": 16039.0, "probability": 0.0 }, { "start": 16039.0, "end": 16039.0, "probability": 0.0 }, { "start": 16039.0, "end": 16039.0, "probability": 0.0 }, { "start": 16039.0, "end": 16039.0, "probability": 0.0 }, { "start": 16039.0, "end": 16039.0, "probability": 0.0 }, { "start": 16039.0, "end": 16039.0, "probability": 0.0 }, { "start": 16039.0, "end": 16039.0, "probability": 0.0 }, { "start": 16039.0, "end": 16039.0, "probability": 0.0 }, { "start": 16039.0, "end": 16039.0, "probability": 0.0 }, { "start": 16039.0, "end": 16039.0, "probability": 0.0 }, { "start": 16039.0, "end": 16039.0, "probability": 0.0 }, { "start": 16039.0, "end": 16039.0, "probability": 0.0 }, { "start": 16039.0, "end": 16039.0, "probability": 0.0 }, { "start": 16039.0, "end": 16039.0, "probability": 0.0 }, { "start": 16039.0, "end": 16039.0, "probability": 0.0 }, { "start": 16039.0, "end": 16039.0, "probability": 0.0 }, { "start": 16045.18, "end": 16046.16, "probability": 0.6142 }, { "start": 16046.96, "end": 16047.5, "probability": 0.8454 }, { "start": 16048.9, "end": 16049.74, "probability": 0.6845 }, { "start": 16050.9, "end": 16051.4, "probability": 0.9951 }, { "start": 16052.58, "end": 16053.38, "probability": 0.8925 }, { "start": 16054.24, "end": 16056.5, "probability": 0.9772 }, { "start": 16057.1, "end": 16059.32, "probability": 0.9827 }, { "start": 16064.36, "end": 16071.04, "probability": 0.8341 }, { "start": 16072.18, "end": 16072.38, "probability": 0.0013 }, { "start": 16073.18, "end": 16073.95, "probability": 0.0989 }, { "start": 16077.46, "end": 16080.26, "probability": 0.221 }, { "start": 16082.0, "end": 16088.62, "probability": 0.7904 }, { "start": 16092.36, "end": 16098.16, "probability": 0.691 }, { "start": 16098.82, "end": 16100.8, "probability": 0.8547 }, { "start": 16101.72, "end": 16104.42, "probability": 0.6411 }, { "start": 16105.52, "end": 16107.66, "probability": 0.8708 }, { "start": 16108.14, "end": 16110.68, "probability": 0.9185 }, { "start": 16112.68, "end": 16114.64, "probability": 0.9651 }, { "start": 16116.44, "end": 16118.8, "probability": 0.8746 }, { "start": 16121.46, "end": 16123.66, "probability": 0.793 }, { "start": 16124.7, "end": 16127.78, "probability": 0.769 }, { "start": 16128.83, "end": 16132.2, "probability": 0.574 }, { "start": 16132.26, "end": 16135.06, "probability": 0.9565 }, { "start": 16137.0, "end": 16139.22, "probability": 0.8517 }, { "start": 16139.92, "end": 16141.92, "probability": 0.9224 }, { "start": 16142.62, "end": 16144.82, "probability": 0.8115 }, { "start": 16147.0, "end": 16152.06, "probability": 0.6125 }, { "start": 16154.52, "end": 16157.86, "probability": 0.202 }, { "start": 16158.28, "end": 16162.42, "probability": 0.2342 }, { "start": 16163.48, "end": 16167.16, "probability": 0.8749 }, { "start": 16168.86, "end": 16171.62, "probability": 0.9224 }, { "start": 16172.92, "end": 16175.48, "probability": 0.9035 }, { "start": 16175.66, "end": 16178.86, "probability": 0.9601 }, { "start": 16179.14, "end": 16182.44, "probability": 0.7047 }, { "start": 16186.58, "end": 16187.06, "probability": 0.6955 }, { "start": 16189.4, "end": 16190.34, "probability": 0.6626 }, { "start": 16190.7, "end": 16194.68, "probability": 0.7789 }, { "start": 16195.18, "end": 16197.42, "probability": 0.7085 }, { "start": 16199.42, "end": 16204.58, "probability": 0.734 }, { "start": 16205.92, "end": 16208.56, "probability": 0.9388 }, { "start": 16210.4, "end": 16212.56, "probability": 0.9724 }, { "start": 16214.66, "end": 16214.94, "probability": 0.9871 }, { "start": 16215.48, "end": 16216.52, "probability": 0.578 }, { "start": 16218.06, "end": 16221.68, "probability": 0.8671 }, { "start": 16222.88, "end": 16223.9, "probability": 0.9385 }, { "start": 16224.64, "end": 16226.14, "probability": 0.9486 }, { "start": 16227.48, "end": 16229.66, "probability": 0.9507 }, { "start": 16231.42, "end": 16233.92, "probability": 0.9532 }, { "start": 16235.18, "end": 16236.08, "probability": 0.9209 }, { "start": 16237.0, "end": 16237.52, "probability": 0.9821 }, { "start": 16239.8, "end": 16240.72, "probability": 0.9153 }, { "start": 16243.14, "end": 16243.88, "probability": 0.9937 }, { "start": 16244.9, "end": 16246.04, "probability": 0.8722 }, { "start": 16247.4, "end": 16248.92, "probability": 0.7858 }, { "start": 16250.04, "end": 16251.96, "probability": 0.9888 }, { "start": 16252.52, "end": 16253.36, "probability": 0.8929 }, { "start": 16255.34, "end": 16257.22, "probability": 0.9886 }, { "start": 16258.32, "end": 16261.4, "probability": 0.9688 }, { "start": 16262.36, "end": 16263.22, "probability": 0.8848 }, { "start": 16265.1, "end": 16266.3, "probability": 0.959 }, { "start": 16268.36, "end": 16269.24, "probability": 0.9098 }, { "start": 16270.66, "end": 16271.44, "probability": 0.9729 }, { "start": 16272.42, "end": 16275.08, "probability": 0.6542 }, { "start": 16275.86, "end": 16276.26, "probability": 0.9658 }, { "start": 16279.44, "end": 16280.52, "probability": 0.4934 }, { "start": 16282.32, "end": 16284.6, "probability": 0.789 }, { "start": 16286.94, "end": 16288.46, "probability": 0.8661 }, { "start": 16289.36, "end": 16290.02, "probability": 0.9935 }, { "start": 16291.56, "end": 16292.5, "probability": 0.9685 }, { "start": 16293.74, "end": 16296.32, "probability": 0.9546 }, { "start": 16297.02, "end": 16297.74, "probability": 0.936 }, { "start": 16301.22, "end": 16301.84, "probability": 0.6763 }, { "start": 16303.8, "end": 16304.5, "probability": 0.7282 }, { "start": 16306.34, "end": 16307.08, "probability": 0.7825 }, { "start": 16318.36, "end": 16319.88, "probability": 0.4766 }, { "start": 16320.98, "end": 16323.36, "probability": 0.7907 }, { "start": 16325.2, "end": 16327.46, "probability": 0.9702 }, { "start": 16328.6, "end": 16330.46, "probability": 0.8831 }, { "start": 16331.34, "end": 16333.3, "probability": 0.9639 }, { "start": 16334.12, "end": 16334.98, "probability": 0.985 }, { "start": 16335.86, "end": 16338.36, "probability": 0.8597 }, { "start": 16340.22, "end": 16342.32, "probability": 0.6465 }, { "start": 16342.92, "end": 16344.9, "probability": 0.9417 }, { "start": 16345.88, "end": 16346.86, "probability": 0.962 }, { "start": 16348.14, "end": 16350.86, "probability": 0.7718 }, { "start": 16351.52, "end": 16352.02, "probability": 0.0256 }, { "start": 16353.28, "end": 16354.08, "probability": 0.5438 }, { "start": 16357.52, "end": 16360.74, "probability": 0.7759 }, { "start": 16363.02, "end": 16364.6, "probability": 0.3616 }, { "start": 16368.66, "end": 16368.98, "probability": 0.197 }, { "start": 16377.26, "end": 16379.04, "probability": 0.8218 }, { "start": 16380.1, "end": 16383.06, "probability": 0.5706 }, { "start": 16388.16, "end": 16388.78, "probability": 0.132 }, { "start": 16388.84, "end": 16389.62, "probability": 0.3922 }, { "start": 16389.68, "end": 16390.6, "probability": 0.4333 }, { "start": 16391.12, "end": 16393.54, "probability": 0.9385 }, { "start": 16393.68, "end": 16397.5, "probability": 0.8918 }, { "start": 16397.66, "end": 16398.32, "probability": 0.2852 }, { "start": 16398.32, "end": 16400.29, "probability": 0.5758 }, { "start": 16400.42, "end": 16402.66, "probability": 0.2622 }, { "start": 16403.02, "end": 16405.18, "probability": 0.8629 }, { "start": 16405.18, "end": 16405.2, "probability": 0.0297 }, { "start": 16405.2, "end": 16405.74, "probability": 0.5136 }, { "start": 16407.21, "end": 16410.04, "probability": 0.2167 }, { "start": 16410.04, "end": 16410.04, "probability": 0.3212 }, { "start": 16410.04, "end": 16410.9, "probability": 0.097 }, { "start": 16412.46, "end": 16416.52, "probability": 0.4064 }, { "start": 16416.88, "end": 16417.86, "probability": 0.0229 }, { "start": 16418.35, "end": 16419.96, "probability": 0.5138 }, { "start": 16420.85, "end": 16422.72, "probability": 0.4383 }, { "start": 16422.9, "end": 16423.32, "probability": 0.0903 }, { "start": 16423.78, "end": 16425.35, "probability": 0.7262 }, { "start": 16425.54, "end": 16428.16, "probability": 0.9666 }, { "start": 16428.44, "end": 16428.9, "probability": 0.726 }, { "start": 16428.96, "end": 16430.12, "probability": 0.535 }, { "start": 16430.26, "end": 16431.4, "probability": 0.0139 }, { "start": 16431.84, "end": 16432.88, "probability": 0.8466 }, { "start": 16433.02, "end": 16433.6, "probability": 0.4054 }, { "start": 16433.6, "end": 16435.06, "probability": 0.8248 }, { "start": 16435.1, "end": 16436.6, "probability": 0.5595 }, { "start": 16437.1, "end": 16438.68, "probability": 0.9506 }, { "start": 16438.8, "end": 16439.96, "probability": 0.7247 }, { "start": 16440.04, "end": 16440.81, "probability": 0.7321 }, { "start": 16443.88, "end": 16444.98, "probability": 0.2685 }, { "start": 16444.98, "end": 16447.36, "probability": 0.8189 }, { "start": 16447.72, "end": 16448.56, "probability": 0.439 }, { "start": 16448.72, "end": 16452.24, "probability": 0.8522 }, { "start": 16452.64, "end": 16453.46, "probability": 0.5433 }, { "start": 16453.66, "end": 16453.66, "probability": 0.3448 }, { "start": 16453.66, "end": 16454.45, "probability": 0.7681 }, { "start": 16454.94, "end": 16457.78, "probability": 0.9038 }, { "start": 16462.2, "end": 16464.84, "probability": 0.8715 }, { "start": 16471.54, "end": 16472.34, "probability": 0.1141 }, { "start": 16472.34, "end": 16472.75, "probability": 0.2018 }, { "start": 16473.12, "end": 16474.06, "probability": 0.7506 }, { "start": 16474.08, "end": 16474.98, "probability": 0.5281 }, { "start": 16475.22, "end": 16476.26, "probability": 0.6516 }, { "start": 16476.5, "end": 16477.56, "probability": 0.3354 }, { "start": 16477.86, "end": 16479.92, "probability": 0.5543 }, { "start": 16480.26, "end": 16482.8, "probability": 0.6713 }, { "start": 16482.82, "end": 16485.18, "probability": 0.3601 }, { "start": 16485.18, "end": 16489.74, "probability": 0.967 }, { "start": 16490.42, "end": 16493.9, "probability": 0.9784 }, { "start": 16494.44, "end": 16495.44, "probability": 0.8339 }, { "start": 16496.24, "end": 16497.12, "probability": 0.9298 }, { "start": 16497.36, "end": 16499.28, "probability": 0.7846 }, { "start": 16500.14, "end": 16503.3, "probability": 0.9702 }, { "start": 16504.02, "end": 16505.52, "probability": 0.6356 }, { "start": 16506.82, "end": 16509.98, "probability": 0.9445 }, { "start": 16532.48, "end": 16533.48, "probability": 0.5862 }, { "start": 16550.6, "end": 16552.76, "probability": 0.7087 }, { "start": 16553.68, "end": 16555.8, "probability": 0.9466 }, { "start": 16557.08, "end": 16560.1, "probability": 0.9497 }, { "start": 16561.16, "end": 16562.9, "probability": 0.9879 }, { "start": 16564.26, "end": 16567.54, "probability": 0.7684 }, { "start": 16568.58, "end": 16573.06, "probability": 0.7708 }, { "start": 16573.82, "end": 16576.1, "probability": 0.9637 }, { "start": 16577.2, "end": 16579.0, "probability": 0.7891 }, { "start": 16580.08, "end": 16581.36, "probability": 0.9955 }, { "start": 16583.1, "end": 16586.82, "probability": 0.8896 }, { "start": 16588.1, "end": 16589.64, "probability": 0.5628 }, { "start": 16590.46, "end": 16592.1, "probability": 0.9013 }, { "start": 16593.64, "end": 16594.44, "probability": 0.9298 }, { "start": 16595.1, "end": 16595.52, "probability": 0.4142 }, { "start": 16595.9, "end": 16598.02, "probability": 0.6124 }, { "start": 16598.4, "end": 16601.74, "probability": 0.98 }, { "start": 16607.22, "end": 16611.24, "probability": 0.8636 }, { "start": 16612.1, "end": 16613.52, "probability": 0.9766 }, { "start": 16614.12, "end": 16615.2, "probability": 0.9172 }, { "start": 16615.8, "end": 16619.14, "probability": 0.6702 }, { "start": 16620.42, "end": 16622.38, "probability": 0.2942 }, { "start": 16622.38, "end": 16624.48, "probability": 0.9648 }, { "start": 16625.84, "end": 16626.9, "probability": 0.9974 }, { "start": 16627.58, "end": 16632.02, "probability": 0.9967 }, { "start": 16632.02, "end": 16634.64, "probability": 0.7225 }, { "start": 16634.64, "end": 16634.87, "probability": 0.8964 }, { "start": 16635.6, "end": 16635.6, "probability": 0.946 }, { "start": 16635.6, "end": 16637.86, "probability": 0.9816 }, { "start": 16638.62, "end": 16640.8, "probability": 0.6667 }, { "start": 16640.8, "end": 16645.9, "probability": 0.9893 }, { "start": 16645.9, "end": 16649.42, "probability": 0.9949 }, { "start": 16650.68, "end": 16652.32, "probability": 0.9982 }, { "start": 16654.36, "end": 16659.96, "probability": 0.9883 }, { "start": 16660.8, "end": 16665.44, "probability": 0.9959 }, { "start": 16665.7, "end": 16670.08, "probability": 0.9951 }, { "start": 16670.3, "end": 16673.32, "probability": 0.6385 }, { "start": 16673.32, "end": 16673.68, "probability": 0.6248 }, { "start": 16674.14, "end": 16675.04, "probability": 0.8077 }, { "start": 16675.04, "end": 16677.6, "probability": 0.4307 }, { "start": 16678.58, "end": 16678.98, "probability": 0.3114 }, { "start": 16679.46, "end": 16679.98, "probability": 0.4089 }, { "start": 16680.12, "end": 16683.0, "probability": 0.0436 }, { "start": 16683.08, "end": 16684.24, "probability": 0.5647 }, { "start": 16684.72, "end": 16685.22, "probability": 0.4029 }, { "start": 16686.72, "end": 16687.56, "probability": 0.1161 }, { "start": 16689.74, "end": 16693.48, "probability": 0.0988 }, { "start": 16694.46, "end": 16698.46, "probability": 0.1323 }, { "start": 16698.46, "end": 16698.46, "probability": 0.3266 }, { "start": 16698.46, "end": 16699.38, "probability": 0.0169 }, { "start": 16699.38, "end": 16701.16, "probability": 0.6409 }, { "start": 16701.28, "end": 16701.92, "probability": 0.7848 }, { "start": 16702.38, "end": 16703.62, "probability": 0.4321 }, { "start": 16704.06, "end": 16706.24, "probability": 0.4893 }, { "start": 16706.62, "end": 16708.7, "probability": 0.8569 }, { "start": 16710.02, "end": 16710.24, "probability": 0.8743 }, { "start": 16711.14, "end": 16715.19, "probability": 0.5222 }, { "start": 16716.34, "end": 16717.54, "probability": 0.9565 }, { "start": 16717.7, "end": 16719.22, "probability": 0.6767 }, { "start": 16719.32, "end": 16721.16, "probability": 0.0949 }, { "start": 16721.2, "end": 16721.96, "probability": 0.488 }, { "start": 16724.1, "end": 16726.44, "probability": 0.7502 }, { "start": 16726.76, "end": 16729.2, "probability": 0.9681 }, { "start": 16729.56, "end": 16732.88, "probability": 0.9167 }, { "start": 16733.64, "end": 16736.64, "probability": 0.9631 }, { "start": 16736.64, "end": 16740.68, "probability": 0.7692 }, { "start": 16741.2, "end": 16743.86, "probability": 0.9085 }, { "start": 16743.9, "end": 16745.0, "probability": 0.8463 }, { "start": 16745.48, "end": 16746.12, "probability": 0.5473 }, { "start": 16746.15, "end": 16749.86, "probability": 0.9641 }, { "start": 16750.1, "end": 16751.94, "probability": 0.9934 }, { "start": 16752.72, "end": 16755.06, "probability": 0.9858 }, { "start": 16755.34, "end": 16757.56, "probability": 0.937 }, { "start": 16758.1, "end": 16763.62, "probability": 0.9936 }, { "start": 16764.14, "end": 16766.86, "probability": 0.9347 }, { "start": 16766.86, "end": 16767.85, "probability": 0.2165 }, { "start": 16769.16, "end": 16771.34, "probability": 0.4033 }, { "start": 16771.82, "end": 16773.92, "probability": 0.7412 }, { "start": 16774.22, "end": 16774.81, "probability": 0.6484 }, { "start": 16775.08, "end": 16775.58, "probability": 0.4316 }, { "start": 16776.3, "end": 16779.42, "probability": 0.9625 }, { "start": 16779.52, "end": 16782.54, "probability": 0.9831 }, { "start": 16782.6, "end": 16783.6, "probability": 0.7362 }, { "start": 16784.0, "end": 16785.48, "probability": 0.6814 }, { "start": 16785.5, "end": 16786.82, "probability": 0.5547 }, { "start": 16787.44, "end": 16788.1, "probability": 0.6513 }, { "start": 16788.64, "end": 16792.16, "probability": 0.9907 }, { "start": 16792.18, "end": 16792.74, "probability": 0.0533 }, { "start": 16792.84, "end": 16792.94, "probability": 0.0387 }, { "start": 16792.94, "end": 16793.5, "probability": 0.3642 }, { "start": 16795.88, "end": 16798.92, "probability": 0.9756 }, { "start": 16801.48, "end": 16803.28, "probability": 0.3736 }, { "start": 16804.14, "end": 16806.84, "probability": 0.7317 }, { "start": 16806.84, "end": 16810.16, "probability": 0.2822 }, { "start": 16810.42, "end": 16811.74, "probability": 0.387 }, { "start": 16813.24, "end": 16817.36, "probability": 0.596 }, { "start": 16817.38, "end": 16818.82, "probability": 0.9614 }, { "start": 16819.62, "end": 16819.66, "probability": 0.0324 }, { "start": 16819.66, "end": 16819.66, "probability": 0.2219 }, { "start": 16819.66, "end": 16819.66, "probability": 0.1587 }, { "start": 16819.66, "end": 16819.66, "probability": 0.3589 }, { "start": 16819.66, "end": 16821.82, "probability": 0.3527 }, { "start": 16822.72, "end": 16822.72, "probability": 0.1879 }, { "start": 16822.72, "end": 16822.94, "probability": 0.4499 }, { "start": 16823.9, "end": 16828.02, "probability": 0.9808 }, { "start": 16828.04, "end": 16828.7, "probability": 0.5607 }, { "start": 16828.76, "end": 16829.74, "probability": 0.0207 }, { "start": 16829.74, "end": 16830.06, "probability": 0.3829 }, { "start": 16830.14, "end": 16830.84, "probability": 0.8125 }, { "start": 16831.04, "end": 16831.04, "probability": 0.5387 }, { "start": 16831.08, "end": 16831.56, "probability": 0.2276 }, { "start": 16832.38, "end": 16836.3, "probability": 0.2227 }, { "start": 16836.54, "end": 16838.92, "probability": 0.4529 }, { "start": 16838.98, "end": 16839.76, "probability": 0.5398 }, { "start": 16840.1, "end": 16846.64, "probability": 0.9776 }, { "start": 16846.8, "end": 16850.72, "probability": 0.9753 }, { "start": 16851.56, "end": 16854.78, "probability": 0.9546 }, { "start": 16855.28, "end": 16858.2, "probability": 0.9938 }, { "start": 16858.52, "end": 16861.26, "probability": 0.9604 }, { "start": 16861.68, "end": 16864.1, "probability": 0.9551 }, { "start": 16864.33, "end": 16866.18, "probability": 0.7719 }, { "start": 16866.18, "end": 16866.84, "probability": 0.4692 }, { "start": 16866.84, "end": 16866.86, "probability": 0.0199 }, { "start": 16867.04, "end": 16867.72, "probability": 0.454 }, { "start": 16867.76, "end": 16871.44, "probability": 0.9971 }, { "start": 16871.52, "end": 16874.58, "probability": 0.9121 }, { "start": 16875.12, "end": 16877.56, "probability": 0.8746 }, { "start": 16878.1, "end": 16881.44, "probability": 0.8674 }, { "start": 16882.62, "end": 16887.54, "probability": 0.9923 }, { "start": 16887.62, "end": 16889.02, "probability": 0.8081 }, { "start": 16889.38, "end": 16895.62, "probability": 0.9133 }, { "start": 16895.62, "end": 16899.6, "probability": 0.9897 }, { "start": 16899.64, "end": 16900.16, "probability": 0.5705 }, { "start": 16900.24, "end": 16901.22, "probability": 0.796 }, { "start": 16901.64, "end": 16903.17, "probability": 0.939 }, { "start": 16903.7, "end": 16904.77, "probability": 0.958 }, { "start": 16904.96, "end": 16905.52, "probability": 0.4788 }, { "start": 16906.06, "end": 16906.8, "probability": 0.8008 }, { "start": 16907.1, "end": 16909.74, "probability": 0.9964 }, { "start": 16910.26, "end": 16913.52, "probability": 0.9988 }, { "start": 16914.04, "end": 16914.58, "probability": 0.555 }, { "start": 16914.64, "end": 16915.14, "probability": 0.8923 }, { "start": 16915.2, "end": 16920.08, "probability": 0.9905 }, { "start": 16921.0, "end": 16923.84, "probability": 0.8754 }, { "start": 16924.08, "end": 16925.8, "probability": 0.9058 }, { "start": 16926.62, "end": 16932.66, "probability": 0.9829 }, { "start": 16932.74, "end": 16934.78, "probability": 0.9827 }, { "start": 16934.96, "end": 16936.14, "probability": 0.977 }, { "start": 16936.76, "end": 16938.9, "probability": 0.8935 }, { "start": 16939.88, "end": 16942.24, "probability": 0.8697 }, { "start": 16942.6, "end": 16943.8, "probability": 0.8825 }, { "start": 16944.3, "end": 16946.3, "probability": 0.9883 }, { "start": 16946.84, "end": 16948.51, "probability": 0.9688 }, { "start": 16948.88, "end": 16951.72, "probability": 0.8443 }, { "start": 16951.72, "end": 16951.98, "probability": 0.1571 }, { "start": 16953.0, "end": 16954.08, "probability": 0.2049 }, { "start": 16954.34, "end": 16954.42, "probability": 0.0471 }, { "start": 16954.42, "end": 16955.3, "probability": 0.678 }, { "start": 16955.48, "end": 16956.28, "probability": 0.4789 }, { "start": 16956.4, "end": 16959.19, "probability": 0.4752 }, { "start": 16960.38, "end": 16961.68, "probability": 0.7269 }, { "start": 16961.86, "end": 16962.78, "probability": 0.4805 }, { "start": 16962.88, "end": 16964.62, "probability": 0.7137 }, { "start": 16964.88, "end": 16966.28, "probability": 0.9938 }, { "start": 16968.58, "end": 16971.08, "probability": 0.4141 }, { "start": 16971.78, "end": 16974.08, "probability": 0.8843 }, { "start": 16974.9, "end": 16976.76, "probability": 0.9255 }, { "start": 16977.68, "end": 16979.36, "probability": 0.8356 }, { "start": 16980.24, "end": 16983.78, "probability": 0.9489 }, { "start": 16983.78, "end": 16989.72, "probability": 0.9989 }, { "start": 16989.92, "end": 16990.66, "probability": 0.81 }, { "start": 16991.54, "end": 16995.11, "probability": 0.9851 }, { "start": 16995.52, "end": 16996.78, "probability": 0.5368 }, { "start": 16998.26, "end": 16999.4, "probability": 0.7524 }, { "start": 17000.3, "end": 17007.18, "probability": 0.945 }, { "start": 17007.18, "end": 17015.6, "probability": 0.9883 }, { "start": 17015.62, "end": 17016.36, "probability": 0.5034 }, { "start": 17017.38, "end": 17018.0, "probability": 0.8485 }, { "start": 17018.54, "end": 17022.04, "probability": 0.974 }, { "start": 17022.98, "end": 17024.24, "probability": 0.9305 }, { "start": 17024.58, "end": 17025.72, "probability": 0.8906 }, { "start": 17025.78, "end": 17028.3, "probability": 0.9953 }, { "start": 17028.3, "end": 17034.3, "probability": 0.8462 }, { "start": 17035.14, "end": 17037.64, "probability": 0.9151 }, { "start": 17038.04, "end": 17040.84, "probability": 0.9612 }, { "start": 17041.04, "end": 17043.36, "probability": 0.7118 }, { "start": 17044.36, "end": 17045.48, "probability": 0.9705 }, { "start": 17045.78, "end": 17049.2, "probability": 0.9925 }, { "start": 17049.86, "end": 17052.14, "probability": 0.8033 }, { "start": 17053.1, "end": 17055.38, "probability": 0.6592 }, { "start": 17055.54, "end": 17059.16, "probability": 0.9803 }, { "start": 17059.28, "end": 17059.64, "probability": 0.8597 }, { "start": 17060.28, "end": 17061.36, "probability": 0.9067 }, { "start": 17061.4, "end": 17064.74, "probability": 0.9966 }, { "start": 17065.18, "end": 17066.54, "probability": 0.9927 }, { "start": 17067.06, "end": 17071.14, "probability": 0.9951 }, { "start": 17071.94, "end": 17073.47, "probability": 0.6707 }, { "start": 17073.88, "end": 17076.3, "probability": 0.9947 }, { "start": 17076.34, "end": 17077.84, "probability": 0.947 }, { "start": 17078.22, "end": 17080.84, "probability": 0.967 }, { "start": 17081.24, "end": 17086.1, "probability": 0.8214 }, { "start": 17086.64, "end": 17087.58, "probability": 0.7851 }, { "start": 17087.68, "end": 17088.92, "probability": 0.4927 }, { "start": 17089.22, "end": 17090.02, "probability": 0.8684 }, { "start": 17090.44, "end": 17092.64, "probability": 0.5839 }, { "start": 17093.12, "end": 17094.18, "probability": 0.8247 }, { "start": 17094.3, "end": 17095.12, "probability": 0.8373 }, { "start": 17095.2, "end": 17096.88, "probability": 0.9684 }, { "start": 17097.34, "end": 17098.98, "probability": 0.9973 }, { "start": 17099.36, "end": 17101.1, "probability": 0.9928 }, { "start": 17101.62, "end": 17103.9, "probability": 0.9968 }, { "start": 17104.14, "end": 17106.08, "probability": 0.6969 }, { "start": 17106.2, "end": 17106.64, "probability": 0.8376 }, { "start": 17107.02, "end": 17108.24, "probability": 0.6036 }, { "start": 17108.86, "end": 17109.8, "probability": 0.9178 }, { "start": 17111.36, "end": 17115.73, "probability": 0.72 }, { "start": 17116.28, "end": 17119.14, "probability": 0.9666 }, { "start": 17119.14, "end": 17121.38, "probability": 0.9842 }, { "start": 17121.46, "end": 17123.0, "probability": 0.7971 }, { "start": 17123.68, "end": 17124.84, "probability": 0.7759 }, { "start": 17125.48, "end": 17126.12, "probability": 0.6177 }, { "start": 17126.48, "end": 17128.2, "probability": 0.6573 }, { "start": 17128.48, "end": 17132.36, "probability": 0.9858 }, { "start": 17132.72, "end": 17134.64, "probability": 0.8755 }, { "start": 17134.94, "end": 17136.02, "probability": 0.9866 }, { "start": 17136.16, "end": 17137.62, "probability": 0.9498 }, { "start": 17137.62, "end": 17140.06, "probability": 0.8076 }, { "start": 17140.08, "end": 17142.86, "probability": 0.7126 }, { "start": 17145.16, "end": 17149.2, "probability": 0.6656 }, { "start": 17149.28, "end": 17150.5, "probability": 0.991 }, { "start": 17150.56, "end": 17151.32, "probability": 0.3905 }, { "start": 17151.62, "end": 17154.48, "probability": 0.9479 }, { "start": 17155.1, "end": 17157.54, "probability": 0.9724 }, { "start": 17158.34, "end": 17161.5, "probability": 0.9801 }, { "start": 17163.0, "end": 17164.56, "probability": 0.8987 }, { "start": 17164.66, "end": 17167.88, "probability": 0.875 }, { "start": 17168.12, "end": 17170.92, "probability": 0.9464 }, { "start": 17171.08, "end": 17171.72, "probability": 0.7997 }, { "start": 17172.2, "end": 17172.7, "probability": 0.9265 }, { "start": 17173.24, "end": 17181.54, "probability": 0.9783 }, { "start": 17182.5, "end": 17183.76, "probability": 0.1107 }, { "start": 17184.48, "end": 17184.54, "probability": 0.3101 }, { "start": 17184.54, "end": 17185.18, "probability": 0.3754 }, { "start": 17185.26, "end": 17186.56, "probability": 0.6407 }, { "start": 17186.7, "end": 17187.16, "probability": 0.8025 }, { "start": 17187.22, "end": 17189.22, "probability": 0.928 }, { "start": 17189.28, "end": 17192.37, "probability": 0.9139 }, { "start": 17192.78, "end": 17194.82, "probability": 0.479 }, { "start": 17195.08, "end": 17196.08, "probability": 0.6047 }, { "start": 17196.18, "end": 17197.9, "probability": 0.8872 }, { "start": 17198.08, "end": 17199.24, "probability": 0.6982 }, { "start": 17200.02, "end": 17201.34, "probability": 0.9294 }, { "start": 17201.48, "end": 17203.82, "probability": 0.4077 }, { "start": 17203.82, "end": 17204.24, "probability": 0.4106 }, { "start": 17204.58, "end": 17205.86, "probability": 0.9683 }, { "start": 17206.14, "end": 17207.96, "probability": 0.459 }, { "start": 17208.24, "end": 17209.36, "probability": 0.8784 }, { "start": 17209.44, "end": 17211.78, "probability": 0.9327 }, { "start": 17224.4, "end": 17225.98, "probability": 0.6935 }, { "start": 17226.36, "end": 17227.42, "probability": 0.5423 }, { "start": 17228.2, "end": 17230.48, "probability": 0.7001 }, { "start": 17231.08, "end": 17232.0, "probability": 0.8924 }, { "start": 17239.1, "end": 17239.96, "probability": 0.8547 }, { "start": 17240.76, "end": 17242.66, "probability": 0.9001 }, { "start": 17243.56, "end": 17244.54, "probability": 0.677 }, { "start": 17244.54, "end": 17245.38, "probability": 0.7416 }, { "start": 17245.46, "end": 17247.76, "probability": 0.9191 }, { "start": 17247.92, "end": 17248.34, "probability": 0.9387 }, { "start": 17248.38, "end": 17248.96, "probability": 0.9507 }, { "start": 17249.7, "end": 17251.78, "probability": 0.7795 }, { "start": 17252.28, "end": 17255.1, "probability": 0.9692 }, { "start": 17255.26, "end": 17258.16, "probability": 0.9133 }, { "start": 17258.22, "end": 17258.72, "probability": 0.9302 }, { "start": 17259.58, "end": 17262.06, "probability": 0.4211 }, { "start": 17262.96, "end": 17264.14, "probability": 0.2066 }, { "start": 17264.14, "end": 17264.4, "probability": 0.2358 }, { "start": 17264.94, "end": 17266.24, "probability": 0.0668 }, { "start": 17267.28, "end": 17269.14, "probability": 0.1647 }, { "start": 17269.2, "end": 17271.22, "probability": 0.1498 }, { "start": 17272.14, "end": 17272.78, "probability": 0.3266 }, { "start": 17272.78, "end": 17273.06, "probability": 0.2849 }, { "start": 17278.28, "end": 17279.22, "probability": 0.0801 }, { "start": 17282.94, "end": 17284.26, "probability": 0.3496 }, { "start": 17291.44, "end": 17293.32, "probability": 0.7961 }, { "start": 17293.34, "end": 17294.08, "probability": 0.902 }, { "start": 17296.5, "end": 17300.88, "probability": 0.9907 }, { "start": 17301.58, "end": 17301.94, "probability": 0.6182 }, { "start": 17302.76, "end": 17304.7, "probability": 0.979 }, { "start": 17305.12, "end": 17306.78, "probability": 0.9907 }, { "start": 17307.98, "end": 17309.88, "probability": 0.8733 }, { "start": 17310.54, "end": 17312.64, "probability": 0.9756 }, { "start": 17313.06, "end": 17314.19, "probability": 0.9956 }, { "start": 17315.78, "end": 17316.72, "probability": 0.8804 }, { "start": 17317.5, "end": 17318.34, "probability": 0.791 }, { "start": 17319.49, "end": 17320.8, "probability": 0.2748 }, { "start": 17320.8, "end": 17321.06, "probability": 0.7869 }, { "start": 17322.22, "end": 17327.82, "probability": 0.7861 }, { "start": 17328.58, "end": 17330.6, "probability": 0.6873 }, { "start": 17331.92, "end": 17335.82, "probability": 0.9712 }, { "start": 17336.4, "end": 17338.6, "probability": 0.9858 }, { "start": 17339.3, "end": 17342.24, "probability": 0.0175 }, { "start": 17344.38, "end": 17345.54, "probability": 0.4356 }, { "start": 17345.92, "end": 17346.44, "probability": 0.8289 }, { "start": 17347.5, "end": 17349.2, "probability": 0.4 }, { "start": 17349.76, "end": 17352.84, "probability": 0.3553 }, { "start": 17353.08, "end": 17357.88, "probability": 0.3857 }, { "start": 17358.04, "end": 17359.4, "probability": 0.9265 }, { "start": 17359.42, "end": 17361.28, "probability": 0.907 }, { "start": 17361.88, "end": 17369.62, "probability": 0.9784 }, { "start": 17369.74, "end": 17370.68, "probability": 0.7479 }, { "start": 17371.28, "end": 17372.76, "probability": 0.8014 }, { "start": 17373.28, "end": 17373.8, "probability": 0.3699 }, { "start": 17373.8, "end": 17374.26, "probability": 0.6694 }, { "start": 17374.58, "end": 17374.88, "probability": 0.1836 }, { "start": 17374.88, "end": 17375.66, "probability": 0.6722 }, { "start": 17375.72, "end": 17375.8, "probability": 0.1996 }, { "start": 17375.8, "end": 17375.8, "probability": 0.3956 }, { "start": 17375.8, "end": 17376.04, "probability": 0.9138 }, { "start": 17376.12, "end": 17377.36, "probability": 0.9895 }, { "start": 17377.5, "end": 17378.84, "probability": 0.7398 }, { "start": 17378.98, "end": 17381.7, "probability": 0.8567 }, { "start": 17381.94, "end": 17386.6, "probability": 0.9349 }, { "start": 17386.6, "end": 17392.56, "probability": 0.9957 }, { "start": 17393.1, "end": 17396.1, "probability": 0.9769 }, { "start": 17396.68, "end": 17400.9, "probability": 0.9663 }, { "start": 17401.26, "end": 17404.02, "probability": 0.8304 }, { "start": 17404.48, "end": 17409.92, "probability": 0.8446 }, { "start": 17410.48, "end": 17411.84, "probability": 0.8492 }, { "start": 17412.32, "end": 17413.58, "probability": 0.8622 }, { "start": 17413.94, "end": 17417.74, "probability": 0.9984 }, { "start": 17418.42, "end": 17420.22, "probability": 0.5019 }, { "start": 17420.42, "end": 17425.3, "probability": 0.7962 }, { "start": 17425.4, "end": 17426.84, "probability": 0.8511 }, { "start": 17427.24, "end": 17428.74, "probability": 0.8348 }, { "start": 17429.12, "end": 17432.4, "probability": 0.981 }, { "start": 17432.72, "end": 17436.06, "probability": 0.8239 }, { "start": 17436.52, "end": 17438.18, "probability": 0.7225 }, { "start": 17438.9, "end": 17443.06, "probability": 0.7763 }, { "start": 17444.14, "end": 17445.8, "probability": 0.9419 }, { "start": 17445.94, "end": 17447.42, "probability": 0.8363 }, { "start": 17447.58, "end": 17448.2, "probability": 0.5312 }, { "start": 17448.34, "end": 17450.65, "probability": 0.9907 }, { "start": 17451.16, "end": 17454.72, "probability": 0.9818 }, { "start": 17455.78, "end": 17457.12, "probability": 0.7712 }, { "start": 17457.56, "end": 17459.94, "probability": 0.3762 }, { "start": 17459.94, "end": 17462.44, "probability": 0.7612 }, { "start": 17462.44, "end": 17463.42, "probability": 0.336 }, { "start": 17463.78, "end": 17464.36, "probability": 0.4225 }, { "start": 17464.46, "end": 17465.92, "probability": 0.1322 }, { "start": 17466.04, "end": 17467.07, "probability": 0.132 }, { "start": 17467.62, "end": 17474.4, "probability": 0.9812 }, { "start": 17474.88, "end": 17476.9, "probability": 0.9546 }, { "start": 17477.38, "end": 17480.04, "probability": 0.8466 }, { "start": 17480.14, "end": 17481.88, "probability": 0.913 }, { "start": 17482.28, "end": 17484.12, "probability": 0.8936 }, { "start": 17484.44, "end": 17489.5, "probability": 0.8839 }, { "start": 17489.54, "end": 17493.3, "probability": 0.7943 }, { "start": 17494.26, "end": 17494.94, "probability": 0.0207 }, { "start": 17497.44, "end": 17498.52, "probability": 0.3871 }, { "start": 17499.7, "end": 17501.6, "probability": 0.1082 }, { "start": 17502.76, "end": 17503.44, "probability": 0.9529 }, { "start": 17504.12, "end": 17505.06, "probability": 0.7813 }, { "start": 17505.86, "end": 17507.84, "probability": 0.7461 }, { "start": 17509.52, "end": 17517.32, "probability": 0.9111 }, { "start": 17517.94, "end": 17520.12, "probability": 0.9671 }, { "start": 17520.9, "end": 17524.02, "probability": 0.9804 }, { "start": 17525.12, "end": 17527.66, "probability": 0.5178 }, { "start": 17528.98, "end": 17529.98, "probability": 0.885 }, { "start": 17531.23, "end": 17534.04, "probability": 0.9498 }, { "start": 17534.7, "end": 17536.58, "probability": 0.9594 }, { "start": 17537.22, "end": 17539.48, "probability": 0.9764 }, { "start": 17540.42, "end": 17547.48, "probability": 0.9466 }, { "start": 17551.32, "end": 17551.6, "probability": 0.416 }, { "start": 17558.76, "end": 17559.92, "probability": 0.2226 }, { "start": 17560.9, "end": 17564.2, "probability": 0.6309 }, { "start": 17564.76, "end": 17565.14, "probability": 0.8872 }, { "start": 17565.84, "end": 17566.9, "probability": 0.9326 }, { "start": 17568.18, "end": 17571.36, "probability": 0.9624 }, { "start": 17572.9, "end": 17577.22, "probability": 0.5789 }, { "start": 17577.86, "end": 17580.64, "probability": 0.9613 }, { "start": 17581.72, "end": 17583.16, "probability": 0.3605 }, { "start": 17584.12, "end": 17586.4, "probability": 0.652 }, { "start": 17587.26, "end": 17587.72, "probability": 0.6114 }, { "start": 17587.74, "end": 17588.73, "probability": 0.4996 }, { "start": 17589.32, "end": 17591.72, "probability": 0.8159 }, { "start": 17595.62, "end": 17599.32, "probability": 0.7187 }, { "start": 17600.38, "end": 17602.9, "probability": 0.5257 }, { "start": 17603.92, "end": 17604.44, "probability": 0.8086 }, { "start": 17605.48, "end": 17606.26, "probability": 0.9461 }, { "start": 17607.3, "end": 17612.18, "probability": 0.9488 }, { "start": 17612.96, "end": 17613.5, "probability": 0.9528 }, { "start": 17614.3, "end": 17618.24, "probability": 0.9756 }, { "start": 17619.4, "end": 17621.84, "probability": 0.9566 }, { "start": 17623.32, "end": 17626.68, "probability": 0.5304 }, { "start": 17627.4, "end": 17629.68, "probability": 0.6232 }, { "start": 17630.32, "end": 17630.84, "probability": 0.8674 }, { "start": 17631.74, "end": 17636.14, "probability": 0.9519 }, { "start": 17637.0, "end": 17640.08, "probability": 0.9334 }, { "start": 17644.86, "end": 17645.3, "probability": 0.7912 }, { "start": 17646.74, "end": 17647.62, "probability": 0.7655 }, { "start": 17649.16, "end": 17652.94, "probability": 0.8165 }, { "start": 17653.46, "end": 17654.66, "probability": 0.7927 }, { "start": 17655.68, "end": 17662.24, "probability": 0.9657 }, { "start": 17663.12, "end": 17666.06, "probability": 0.937 }, { "start": 17668.34, "end": 17669.66, "probability": 0.8859 }, { "start": 17671.34, "end": 17676.36, "probability": 0.7483 }, { "start": 17676.96, "end": 17681.02, "probability": 0.891 }, { "start": 17690.86, "end": 17695.22, "probability": 0.6313 }, { "start": 17696.0, "end": 17696.46, "probability": 0.945 }, { "start": 17697.62, "end": 17698.96, "probability": 0.5437 }, { "start": 17699.52, "end": 17702.24, "probability": 0.9116 }, { "start": 17704.14, "end": 17706.92, "probability": 0.7949 }, { "start": 17708.8, "end": 17711.2, "probability": 0.9894 }, { "start": 17711.82, "end": 17713.78, "probability": 0.9835 }, { "start": 17714.26, "end": 17716.96, "probability": 0.6891 }, { "start": 17717.1, "end": 17720.7, "probability": 0.7065 }, { "start": 17721.34, "end": 17724.44, "probability": 0.8506 }, { "start": 17725.52, "end": 17730.1, "probability": 0.9892 }, { "start": 17730.64, "end": 17733.56, "probability": 0.9406 }, { "start": 17735.7, "end": 17738.1, "probability": 0.9794 }, { "start": 17738.74, "end": 17741.22, "probability": 0.938 }, { "start": 17741.8, "end": 17747.98, "probability": 0.9582 }, { "start": 17748.94, "end": 17751.32, "probability": 0.8553 }, { "start": 17753.46, "end": 17760.1, "probability": 0.8238 }, { "start": 17760.88, "end": 17763.58, "probability": 0.9276 }, { "start": 17764.78, "end": 17768.0, "probability": 0.9625 }, { "start": 17769.5, "end": 17772.12, "probability": 0.9041 }, { "start": 17772.94, "end": 17774.32, "probability": 0.288 }, { "start": 17776.92, "end": 17779.06, "probability": 0.6642 }, { "start": 17779.84, "end": 17782.22, "probability": 0.8892 }, { "start": 17782.94, "end": 17785.3, "probability": 0.9585 }, { "start": 17787.36, "end": 17788.42, "probability": 0.9922 }, { "start": 17789.0, "end": 17793.38, "probability": 0.9388 }, { "start": 17798.08, "end": 17800.9, "probability": 0.5789 }, { "start": 17802.68, "end": 17805.42, "probability": 0.8097 }, { "start": 17806.18, "end": 17808.2, "probability": 0.859 }, { "start": 17809.3, "end": 17812.86, "probability": 0.9399 }, { "start": 17814.68, "end": 17819.88, "probability": 0.9347 }, { "start": 17820.68, "end": 17823.14, "probability": 0.9637 }, { "start": 17824.54, "end": 17826.96, "probability": 0.4822 }, { "start": 17827.5, "end": 17827.86, "probability": 0.9528 }, { "start": 17828.96, "end": 17829.88, "probability": 0.8732 }, { "start": 17831.24, "end": 17833.96, "probability": 0.9451 }, { "start": 17838.36, "end": 17838.64, "probability": 0.6902 }, { "start": 17840.1, "end": 17842.06, "probability": 0.7705 }, { "start": 17846.32, "end": 17849.62, "probability": 0.6098 }, { "start": 17850.46, "end": 17850.88, "probability": 0.8134 }, { "start": 17851.7, "end": 17852.68, "probability": 0.6178 }, { "start": 17853.78, "end": 17854.34, "probability": 0.9753 }, { "start": 17854.92, "end": 17855.92, "probability": 0.9449 }, { "start": 17856.6, "end": 17857.7, "probability": 0.9875 }, { "start": 17858.44, "end": 17859.12, "probability": 0.6158 }, { "start": 17860.26, "end": 17862.62, "probability": 0.938 }, { "start": 17865.44, "end": 17866.04, "probability": 0.9876 }, { "start": 17867.16, "end": 17868.26, "probability": 0.5642 }, { "start": 17869.12, "end": 17869.66, "probability": 0.9139 }, { "start": 17870.92, "end": 17872.04, "probability": 0.8979 }, { "start": 17873.08, "end": 17875.56, "probability": 0.5113 }, { "start": 17877.4, "end": 17877.94, "probability": 0.9696 }, { "start": 17878.46, "end": 17879.32, "probability": 0.7627 }, { "start": 17880.14, "end": 17881.18, "probability": 0.9816 }, { "start": 17881.94, "end": 17882.9, "probability": 0.8163 }, { "start": 17883.7, "end": 17884.24, "probability": 0.9909 }, { "start": 17884.86, "end": 17885.59, "probability": 0.4856 }, { "start": 17888.16, "end": 17888.7, "probability": 0.9812 }, { "start": 17890.24, "end": 17891.18, "probability": 0.9452 }, { "start": 17892.94, "end": 17893.68, "probability": 0.8923 }, { "start": 17894.28, "end": 17895.58, "probability": 0.8368 }, { "start": 17896.54, "end": 17899.54, "probability": 0.7778 }, { "start": 17900.14, "end": 17900.62, "probability": 0.988 }, { "start": 17901.14, "end": 17902.22, "probability": 0.7555 }, { "start": 17907.52, "end": 17908.14, "probability": 0.7599 }, { "start": 17908.86, "end": 17912.46, "probability": 0.8361 }, { "start": 17915.78, "end": 17916.38, "probability": 0.971 }, { "start": 17917.7, "end": 17924.86, "probability": 0.8873 }, { "start": 17925.4, "end": 17925.94, "probability": 0.8924 }, { "start": 17927.38, "end": 17929.2, "probability": 0.7314 }, { "start": 17930.02, "end": 17930.86, "probability": 0.8784 }, { "start": 17932.64, "end": 17933.62, "probability": 0.6275 }, { "start": 17934.28, "end": 17935.22, "probability": 0.5918 }, { "start": 17936.28, "end": 17936.86, "probability": 0.9494 }, { "start": 17937.86, "end": 17938.7, "probability": 0.7519 }, { "start": 17941.66, "end": 17944.74, "probability": 0.8618 }, { "start": 17949.3, "end": 17949.96, "probability": 0.9036 }, { "start": 17951.08, "end": 17953.52, "probability": 0.9656 }, { "start": 17954.32, "end": 17955.2, "probability": 0.8902 }, { "start": 17955.92, "end": 17958.56, "probability": 0.9643 }, { "start": 17959.38, "end": 17961.98, "probability": 0.783 }, { "start": 17962.54, "end": 17962.98, "probability": 0.7386 }, { "start": 17964.18, "end": 17965.44, "probability": 0.873 }, { "start": 17966.04, "end": 17967.0, "probability": 0.9186 }, { "start": 17968.4, "end": 17972.26, "probability": 0.9375 }, { "start": 17974.12, "end": 17976.4, "probability": 0.8397 }, { "start": 17977.62, "end": 17978.1, "probability": 0.9165 }, { "start": 17979.82, "end": 17980.84, "probability": 0.9153 }, { "start": 17981.84, "end": 17984.48, "probability": 0.964 }, { "start": 17985.24, "end": 17985.84, "probability": 0.9958 }, { "start": 17987.02, "end": 17988.0, "probability": 0.7378 }, { "start": 17990.08, "end": 17990.88, "probability": 0.8407 }, { "start": 17991.44, "end": 17992.6, "probability": 0.7827 }, { "start": 17993.34, "end": 17993.88, "probability": 0.8374 }, { "start": 17994.9, "end": 17996.2, "probability": 0.7519 }, { "start": 17996.98, "end": 17999.38, "probability": 0.7777 }, { "start": 18006.82, "end": 18007.24, "probability": 0.8185 }, { "start": 18008.06, "end": 18011.49, "probability": 0.6711 }, { "start": 18013.18, "end": 18016.12, "probability": 0.6666 }, { "start": 18016.24, "end": 18017.38, "probability": 0.6232 }, { "start": 18018.28, "end": 18020.78, "probability": 0.7994 }, { "start": 18022.26, "end": 18022.82, "probability": 0.9749 }, { "start": 18024.8, "end": 18025.66, "probability": 0.9455 }, { "start": 18026.46, "end": 18028.5, "probability": 0.8291 }, { "start": 18029.76, "end": 18031.9, "probability": 0.9845 }, { "start": 18032.84, "end": 18033.86, "probability": 0.9584 }, { "start": 18035.18, "end": 18038.54, "probability": 0.9758 }, { "start": 18040.06, "end": 18042.44, "probability": 0.9738 }, { "start": 18044.02, "end": 18045.9, "probability": 0.8776 }, { "start": 18048.04, "end": 18049.12, "probability": 0.9808 }, { "start": 18049.96, "end": 18050.62, "probability": 0.5273 }, { "start": 18051.84, "end": 18054.28, "probability": 0.9318 }, { "start": 18055.32, "end": 18056.04, "probability": 0.9516 }, { "start": 18058.18, "end": 18059.16, "probability": 0.9362 }, { "start": 18060.94, "end": 18061.84, "probability": 0.9736 }, { "start": 18062.38, "end": 18063.56, "probability": 0.8376 }, { "start": 18064.4, "end": 18065.4, "probability": 0.9698 }, { "start": 18066.58, "end": 18067.62, "probability": 0.9842 }, { "start": 18068.88, "end": 18070.52, "probability": 0.9299 }, { "start": 18071.16, "end": 18073.4, "probability": 0.9443 }, { "start": 18075.44, "end": 18078.04, "probability": 0.734 }, { "start": 18078.22, "end": 18080.72, "probability": 0.8821 }, { "start": 18081.08, "end": 18081.88, "probability": 0.9941 }, { "start": 18082.4, "end": 18085.8, "probability": 0.9664 }, { "start": 18086.38, "end": 18087.26, "probability": 0.9915 }, { "start": 18087.88, "end": 18088.88, "probability": 0.9583 }, { "start": 18089.98, "end": 18092.24, "probability": 0.9661 }, { "start": 18093.6, "end": 18096.04, "probability": 0.721 }, { "start": 18096.92, "end": 18100.28, "probability": 0.9338 }, { "start": 18100.94, "end": 18103.04, "probability": 0.2693 }, { "start": 18103.68, "end": 18104.28, "probability": 0.3125 }, { "start": 18109.24, "end": 18112.2, "probability": 0.9915 }, { "start": 18112.2, "end": 18112.74, "probability": 0.3578 }, { "start": 18113.58, "end": 18119.32, "probability": 0.5018 }, { "start": 18121.24, "end": 18124.68, "probability": 0.0914 }, { "start": 18128.76, "end": 18128.76, "probability": 0.0588 }, { "start": 18129.72, "end": 18129.72, "probability": 0.1408 }, { "start": 18138.68, "end": 18139.44, "probability": 0.0075 }, { "start": 18149.84, "end": 18151.54, "probability": 0.1567 }, { "start": 18168.78, "end": 18168.88, "probability": 0.0003 }, { "start": 18178.12, "end": 18179.5, "probability": 0.0593 }, { "start": 18207.98, "end": 18208.86, "probability": 0.29 }, { "start": 18219.0, "end": 18220.66, "probability": 0.8309 }, { "start": 18220.84, "end": 18223.26, "probability": 0.8123 }, { "start": 18224.16, "end": 18225.5, "probability": 0.4172 }, { "start": 18226.62, "end": 18228.12, "probability": 0.9696 }, { "start": 18228.2, "end": 18228.56, "probability": 0.7965 }, { "start": 18229.16, "end": 18230.7, "probability": 0.9691 }, { "start": 18233.4, "end": 18239.62, "probability": 0.8572 }, { "start": 18240.22, "end": 18242.7, "probability": 0.732 }, { "start": 18243.24, "end": 18245.96, "probability": 0.9806 }, { "start": 18245.96, "end": 18248.72, "probability": 0.7796 }, { "start": 18251.98, "end": 18254.04, "probability": 0.723 }, { "start": 18254.56, "end": 18255.36, "probability": 0.9076 }, { "start": 18255.46, "end": 18257.78, "probability": 0.6584 }, { "start": 18258.48, "end": 18260.9, "probability": 0.7966 }, { "start": 18272.9, "end": 18273.34, "probability": 0.1006 }, { "start": 18273.68, "end": 18273.86, "probability": 0.3408 }, { "start": 18274.9, "end": 18276.1, "probability": 0.2468 }, { "start": 18278.08, "end": 18278.1, "probability": 0.0965 }, { "start": 18278.1, "end": 18280.14, "probability": 0.5692 }, { "start": 18283.76, "end": 18284.06, "probability": 0.4794 }, { "start": 18284.22, "end": 18284.82, "probability": 0.7908 }, { "start": 18284.96, "end": 18287.9, "probability": 0.8867 }, { "start": 18290.38, "end": 18293.6, "probability": 0.7998 }, { "start": 18293.74, "end": 18297.68, "probability": 0.9964 }, { "start": 18298.66, "end": 18299.8, "probability": 0.9399 }, { "start": 18299.88, "end": 18300.48, "probability": 0.9023 }, { "start": 18300.52, "end": 18302.76, "probability": 0.9868 }, { "start": 18302.8, "end": 18305.04, "probability": 0.9791 }, { "start": 18305.76, "end": 18308.24, "probability": 0.9805 }, { "start": 18308.24, "end": 18308.7, "probability": 0.7167 }, { "start": 18309.02, "end": 18313.4, "probability": 0.5318 }, { "start": 18315.94, "end": 18317.48, "probability": 0.9045 }, { "start": 18318.9, "end": 18322.18, "probability": 0.9958 }, { "start": 18324.02, "end": 18326.28, "probability": 0.9947 }, { "start": 18330.06, "end": 18331.14, "probability": 0.9769 }, { "start": 18331.7, "end": 18333.7, "probability": 0.9976 }, { "start": 18336.54, "end": 18340.12, "probability": 0.9989 }, { "start": 18341.5, "end": 18342.52, "probability": 0.937 }, { "start": 18344.2, "end": 18345.28, "probability": 0.9988 }, { "start": 18346.46, "end": 18348.72, "probability": 0.9651 }, { "start": 18350.0, "end": 18352.46, "probability": 0.9235 }, { "start": 18353.56, "end": 18355.96, "probability": 0.9868 }, { "start": 18356.56, "end": 18357.18, "probability": 0.9954 }, { "start": 18361.4, "end": 18362.54, "probability": 0.6483 }, { "start": 18363.08, "end": 18363.86, "probability": 0.9167 }, { "start": 18364.86, "end": 18365.64, "probability": 0.545 }, { "start": 18366.9, "end": 18369.34, "probability": 0.9961 }, { "start": 18371.48, "end": 18372.26, "probability": 0.8318 }, { "start": 18373.32, "end": 18377.6, "probability": 0.9873 }, { "start": 18379.22, "end": 18381.46, "probability": 0.7637 }, { "start": 18382.98, "end": 18389.1, "probability": 0.9979 }, { "start": 18390.64, "end": 18392.18, "probability": 0.9483 }, { "start": 18392.34, "end": 18394.44, "probability": 0.9378 }, { "start": 18394.7, "end": 18396.32, "probability": 0.863 }, { "start": 18396.4, "end": 18397.84, "probability": 0.928 }, { "start": 18398.74, "end": 18400.26, "probability": 0.5707 }, { "start": 18402.5, "end": 18407.5, "probability": 0.9363 }, { "start": 18408.76, "end": 18411.04, "probability": 0.9895 }, { "start": 18412.18, "end": 18416.8, "probability": 0.9921 }, { "start": 18417.54, "end": 18419.91, "probability": 0.9684 }, { "start": 18420.4, "end": 18421.86, "probability": 0.9335 }, { "start": 18421.92, "end": 18424.86, "probability": 0.8825 }, { "start": 18425.58, "end": 18432.2, "probability": 0.988 }, { "start": 18433.54, "end": 18436.12, "probability": 0.8881 }, { "start": 18444.96, "end": 18446.48, "probability": 0.9416 }, { "start": 18447.24, "end": 18449.86, "probability": 0.9363 }, { "start": 18451.3, "end": 18454.22, "probability": 0.9917 }, { "start": 18455.1, "end": 18458.1, "probability": 0.9954 }, { "start": 18459.98, "end": 18462.44, "probability": 0.9956 }, { "start": 18465.34, "end": 18470.96, "probability": 0.8809 }, { "start": 18470.96, "end": 18472.1, "probability": 0.849 }, { "start": 18472.2, "end": 18473.64, "probability": 0.8511 }, { "start": 18475.12, "end": 18475.94, "probability": 0.6796 }, { "start": 18477.62, "end": 18478.88, "probability": 0.976 }, { "start": 18479.7, "end": 18481.42, "probability": 0.9178 }, { "start": 18482.06, "end": 18483.82, "probability": 0.9876 }, { "start": 18484.26, "end": 18486.32, "probability": 0.9801 }, { "start": 18488.12, "end": 18488.68, "probability": 0.8707 }, { "start": 18489.28, "end": 18490.64, "probability": 0.9667 }, { "start": 18491.24, "end": 18495.34, "probability": 0.7362 }, { "start": 18495.6, "end": 18495.6, "probability": 0.0168 }, { "start": 18497.4, "end": 18501.39, "probability": 0.9572 }, { "start": 18501.98, "end": 18503.9, "probability": 0.9751 }, { "start": 18504.24, "end": 18506.11, "probability": 0.999 }, { "start": 18507.2, "end": 18509.64, "probability": 0.9551 }, { "start": 18510.52, "end": 18514.22, "probability": 0.9871 }, { "start": 18516.64, "end": 18518.22, "probability": 0.9962 }, { "start": 18518.9, "end": 18522.66, "probability": 0.9596 }, { "start": 18522.76, "end": 18523.9, "probability": 0.9058 }, { "start": 18524.06, "end": 18527.02, "probability": 0.9683 }, { "start": 18528.6, "end": 18528.72, "probability": 0.6361 }, { "start": 18529.44, "end": 18530.34, "probability": 0.9476 }, { "start": 18532.52, "end": 18535.02, "probability": 0.9755 }, { "start": 18536.88, "end": 18538.62, "probability": 0.981 }, { "start": 18539.96, "end": 18545.16, "probability": 0.9927 }, { "start": 18546.6, "end": 18547.68, "probability": 0.4335 }, { "start": 18548.96, "end": 18551.06, "probability": 0.9919 }, { "start": 18551.06, "end": 18552.8, "probability": 0.7073 }, { "start": 18553.32, "end": 18556.46, "probability": 0.7697 }, { "start": 18556.9, "end": 18558.36, "probability": 0.757 }, { "start": 18558.44, "end": 18560.42, "probability": 0.9966 }, { "start": 18561.12, "end": 18561.82, "probability": 0.4456 }, { "start": 18561.9, "end": 18563.12, "probability": 0.8464 }, { "start": 18563.24, "end": 18565.58, "probability": 0.9705 }, { "start": 18565.88, "end": 18568.46, "probability": 0.8056 }, { "start": 18569.2, "end": 18571.64, "probability": 0.9961 }, { "start": 18572.94, "end": 18574.02, "probability": 0.9501 }, { "start": 18574.9, "end": 18576.88, "probability": 0.9878 }, { "start": 18577.66, "end": 18580.2, "probability": 0.9333 }, { "start": 18581.76, "end": 18586.4, "probability": 0.8995 }, { "start": 18587.86, "end": 18590.96, "probability": 0.8405 }, { "start": 18591.94, "end": 18592.64, "probability": 0.9705 }, { "start": 18594.76, "end": 18596.2, "probability": 0.938 }, { "start": 18596.62, "end": 18600.12, "probability": 0.7333 }, { "start": 18600.92, "end": 18603.16, "probability": 0.9683 }, { "start": 18603.56, "end": 18606.22, "probability": 0.9631 }, { "start": 18607.16, "end": 18609.32, "probability": 0.8356 }, { "start": 18610.46, "end": 18613.1, "probability": 0.7855 }, { "start": 18613.98, "end": 18616.34, "probability": 0.9951 }, { "start": 18616.92, "end": 18619.54, "probability": 0.988 }, { "start": 18621.02, "end": 18621.65, "probability": 0.9727 }, { "start": 18622.44, "end": 18625.44, "probability": 0.9908 }, { "start": 18627.12, "end": 18630.12, "probability": 0.9302 }, { "start": 18630.7, "end": 18632.24, "probability": 0.5825 }, { "start": 18632.38, "end": 18632.38, "probability": 0.1813 }, { "start": 18632.38, "end": 18632.38, "probability": 0.7266 }, { "start": 18632.38, "end": 18632.52, "probability": 0.5789 }, { "start": 18632.58, "end": 18632.76, "probability": 0.5254 }, { "start": 18632.76, "end": 18632.78, "probability": 0.5355 }, { "start": 18632.78, "end": 18633.38, "probability": 0.6349 }, { "start": 18633.54, "end": 18633.86, "probability": 0.7481 }, { "start": 18633.96, "end": 18637.38, "probability": 0.9425 }, { "start": 18637.82, "end": 18638.92, "probability": 0.9756 }, { "start": 18641.04, "end": 18642.36, "probability": 0.9381 }, { "start": 18642.82, "end": 18642.92, "probability": 0.341 }, { "start": 18643.56, "end": 18644.28, "probability": 0.752 }, { "start": 18646.26, "end": 18647.62, "probability": 0.6815 }, { "start": 18647.92, "end": 18648.6, "probability": 0.8045 }, { "start": 18649.36, "end": 18649.76, "probability": 0.6538 }, { "start": 18649.94, "end": 18652.46, "probability": 0.9873 }, { "start": 18652.54, "end": 18652.9, "probability": 0.9621 }, { "start": 18653.72, "end": 18657.04, "probability": 0.0836 }, { "start": 18657.04, "end": 18657.58, "probability": 0.0833 }, { "start": 18659.02, "end": 18661.38, "probability": 0.4548 }, { "start": 18662.44, "end": 18662.56, "probability": 0.0599 }, { "start": 18662.56, "end": 18662.62, "probability": 0.3116 }, { "start": 18662.62, "end": 18662.68, "probability": 0.2778 }, { "start": 18662.7, "end": 18663.53, "probability": 0.8679 }, { "start": 18663.92, "end": 18664.72, "probability": 0.8723 }, { "start": 18664.74, "end": 18665.49, "probability": 0.6482 }, { "start": 18665.82, "end": 18666.54, "probability": 0.8456 }, { "start": 18667.26, "end": 18668.06, "probability": 0.8983 }, { "start": 18668.08, "end": 18669.6, "probability": 0.0196 }, { "start": 18670.46, "end": 18672.0, "probability": 0.0986 }, { "start": 18672.68, "end": 18674.18, "probability": 0.0877 }, { "start": 18674.18, "end": 18677.86, "probability": 0.5477 }, { "start": 18681.94, "end": 18682.06, "probability": 0.0423 }, { "start": 18682.06, "end": 18682.38, "probability": 0.1659 }, { "start": 18682.38, "end": 18682.48, "probability": 0.0197 }, { "start": 18683.12, "end": 18687.18, "probability": 0.0425 }, { "start": 18687.18, "end": 18689.88, "probability": 0.2628 }, { "start": 18693.0, "end": 18695.12, "probability": 0.1175 }, { "start": 18695.8, "end": 18696.06, "probability": 0.0367 }, { "start": 18696.06, "end": 18698.32, "probability": 0.2445 }, { "start": 18703.97, "end": 18704.41, "probability": 0.0587 }, { "start": 18704.91, "end": 18707.13, "probability": 0.1241 }, { "start": 18707.13, "end": 18709.17, "probability": 0.3718 }, { "start": 18709.25, "end": 18710.54, "probability": 0.1777 }, { "start": 18710.91, "end": 18711.15, "probability": 0.063 }, { "start": 18711.81, "end": 18713.73, "probability": 0.2061 }, { "start": 18714.05, "end": 18714.45, "probability": 0.1071 }, { "start": 18715.79, "end": 18716.61, "probability": 0.0868 }, { "start": 18718.25, "end": 18721.58, "probability": 0.0244 }, { "start": 18722.03, "end": 18723.13, "probability": 0.1937 }, { "start": 18723.37, "end": 18723.83, "probability": 0.0612 }, { "start": 18723.83, "end": 18724.05, "probability": 0.0179 }, { "start": 18724.05, "end": 18724.63, "probability": 0.0756 }, { "start": 18724.75, "end": 18725.97, "probability": 0.1073 }, { "start": 18726.11, "end": 18727.77, "probability": 0.0889 }, { "start": 18729.0, "end": 18729.0, "probability": 0.0 }, { "start": 18729.0, "end": 18729.0, "probability": 0.0 }, { "start": 18729.0, "end": 18729.0, "probability": 0.0 }, { "start": 18729.0, "end": 18729.0, "probability": 0.0 }, { "start": 18729.0, "end": 18729.0, "probability": 0.0 }, { "start": 18729.0, "end": 18729.0, "probability": 0.0 }, { "start": 18729.0, "end": 18729.0, "probability": 0.0 }, { "start": 18729.0, "end": 18729.0, "probability": 0.0 }, { "start": 18729.0, "end": 18729.0, "probability": 0.0 }, { "start": 18729.14, "end": 18729.14, "probability": 0.0451 }, { "start": 18729.14, "end": 18729.14, "probability": 0.4485 }, { "start": 18729.14, "end": 18729.34, "probability": 0.3019 }, { "start": 18729.46, "end": 18730.51, "probability": 0.663 }, { "start": 18730.9, "end": 18732.42, "probability": 0.9026 }, { "start": 18732.9, "end": 18734.01, "probability": 0.9264 }, { "start": 18734.3, "end": 18734.84, "probability": 0.9751 }, { "start": 18735.02, "end": 18735.86, "probability": 0.7499 }, { "start": 18736.1, "end": 18736.78, "probability": 0.9553 }, { "start": 18736.92, "end": 18737.4, "probability": 0.4385 }, { "start": 18737.4, "end": 18739.2, "probability": 0.5647 }, { "start": 18739.24, "end": 18739.6, "probability": 0.2444 }, { "start": 18739.7, "end": 18742.12, "probability": 0.987 }, { "start": 18742.14, "end": 18744.9, "probability": 0.9972 }, { "start": 18745.26, "end": 18747.16, "probability": 0.2615 }, { "start": 18747.16, "end": 18747.6, "probability": 0.5183 }, { "start": 18747.94, "end": 18749.9, "probability": 0.8914 }, { "start": 18750.7, "end": 18753.36, "probability": 0.6495 }, { "start": 18754.56, "end": 18756.83, "probability": 0.5058 }, { "start": 18757.44, "end": 18759.46, "probability": 0.9873 }, { "start": 18759.56, "end": 18760.04, "probability": 0.712 }, { "start": 18760.2, "end": 18765.62, "probability": 0.9098 }, { "start": 18765.64, "end": 18767.2, "probability": 0.9717 }, { "start": 18768.1, "end": 18769.66, "probability": 0.998 }, { "start": 18769.78, "end": 18771.03, "probability": 0.5085 }, { "start": 18771.58, "end": 18777.02, "probability": 0.7765 }, { "start": 18777.02, "end": 18779.58, "probability": 0.2517 }, { "start": 18779.68, "end": 18781.72, "probability": 0.1435 }, { "start": 18781.72, "end": 18781.72, "probability": 0.0225 }, { "start": 18781.72, "end": 18781.72, "probability": 0.3565 }, { "start": 18781.72, "end": 18783.0, "probability": 0.4819 }, { "start": 18783.14, "end": 18784.5, "probability": 0.3035 }, { "start": 18784.5, "end": 18785.62, "probability": 0.2405 }, { "start": 18785.62, "end": 18788.56, "probability": 0.4119 }, { "start": 18789.28, "end": 18792.6, "probability": 0.755 }, { "start": 18793.02, "end": 18793.24, "probability": 0.0678 }, { "start": 18793.24, "end": 18794.58, "probability": 0.7939 }, { "start": 18794.8, "end": 18796.06, "probability": 0.513 }, { "start": 18796.14, "end": 18796.29, "probability": 0.3662 }, { "start": 18798.56, "end": 18798.68, "probability": 0.1436 }, { "start": 18798.68, "end": 18800.22, "probability": 0.5447 }, { "start": 18801.5, "end": 18801.54, "probability": 0.6132 }, { "start": 18801.54, "end": 18803.76, "probability": 0.3053 }, { "start": 18806.58, "end": 18809.39, "probability": 0.8103 }, { "start": 18809.68, "end": 18813.06, "probability": 0.9932 }, { "start": 18813.08, "end": 18813.18, "probability": 0.6023 }, { "start": 18813.54, "end": 18815.92, "probability": 0.2741 }, { "start": 18816.09, "end": 18817.02, "probability": 0.0336 }, { "start": 18817.1, "end": 18818.12, "probability": 0.9603 }, { "start": 18818.28, "end": 18819.0, "probability": 0.5154 }, { "start": 18819.2, "end": 18820.1, "probability": 0.8446 }, { "start": 18820.38, "end": 18822.45, "probability": 0.9086 }, { "start": 18822.8, "end": 18825.01, "probability": 0.8563 }, { "start": 18825.06, "end": 18826.34, "probability": 0.8177 }, { "start": 18826.38, "end": 18828.04, "probability": 0.0742 }, { "start": 18828.1, "end": 18828.66, "probability": 0.1039 }, { "start": 18828.66, "end": 18831.6, "probability": 0.1428 }, { "start": 18831.92, "end": 18832.8, "probability": 0.5961 }, { "start": 18833.0, "end": 18833.4, "probability": 0.5749 }, { "start": 18833.42, "end": 18833.54, "probability": 0.5517 }, { "start": 18833.54, "end": 18836.64, "probability": 0.3842 }, { "start": 18836.7, "end": 18837.48, "probability": 0.4833 }, { "start": 18840.12, "end": 18840.12, "probability": 0.3692 }, { "start": 18840.12, "end": 18840.12, "probability": 0.0312 }, { "start": 18840.12, "end": 18840.12, "probability": 0.0937 }, { "start": 18840.12, "end": 18840.12, "probability": 0.0961 }, { "start": 18840.12, "end": 18841.24, "probability": 0.4032 }, { "start": 18843.36, "end": 18844.32, "probability": 0.9424 }, { "start": 18844.5, "end": 18844.66, "probability": 0.1726 }, { "start": 18844.66, "end": 18847.7, "probability": 0.4073 }, { "start": 18847.7, "end": 18848.3, "probability": 0.3569 }, { "start": 18849.38, "end": 18849.56, "probability": 0.1983 }, { "start": 18849.56, "end": 18851.26, "probability": 0.4839 }, { "start": 18851.72, "end": 18852.82, "probability": 0.6831 }, { "start": 18852.9, "end": 18853.26, "probability": 0.681 }, { "start": 18854.58, "end": 18855.58, "probability": 0.246 }, { "start": 18855.94, "end": 18858.2, "probability": 0.7021 }, { "start": 18859.28, "end": 18860.44, "probability": 0.207 }, { "start": 18860.44, "end": 18861.93, "probability": 0.5896 }, { "start": 18862.83, "end": 18866.75, "probability": 0.4889 }, { "start": 18866.92, "end": 18867.74, "probability": 0.3821 }, { "start": 18868.72, "end": 18869.56, "probability": 0.5555 }, { "start": 18870.6, "end": 18870.6, "probability": 0.0511 }, { "start": 18870.6, "end": 18870.6, "probability": 0.0132 }, { "start": 18870.6, "end": 18874.88, "probability": 0.5501 }, { "start": 18875.06, "end": 18876.0, "probability": 0.7499 }, { "start": 18876.0, "end": 18876.07, "probability": 0.0114 }, { "start": 18876.98, "end": 18879.4, "probability": 0.8933 }, { "start": 18879.52, "end": 18880.18, "probability": 0.5047 }, { "start": 18881.46, "end": 18883.22, "probability": 0.9529 }, { "start": 18884.16, "end": 18884.42, "probability": 0.441 }, { "start": 18884.42, "end": 18884.84, "probability": 0.0333 }, { "start": 18884.88, "end": 18887.82, "probability": 0.7637 }, { "start": 18887.92, "end": 18888.54, "probability": 0.5916 }, { "start": 18888.64, "end": 18890.96, "probability": 0.733 }, { "start": 18891.4, "end": 18891.78, "probability": 0.7387 }, { "start": 18891.82, "end": 18893.2, "probability": 0.7524 }, { "start": 18893.2, "end": 18893.2, "probability": 0.3322 }, { "start": 18893.2, "end": 18893.2, "probability": 0.6131 }, { "start": 18893.2, "end": 18895.02, "probability": 0.2408 }, { "start": 18895.24, "end": 18897.36, "probability": 0.7577 }, { "start": 18897.46, "end": 18901.86, "probability": 0.7977 }, { "start": 18902.44, "end": 18905.12, "probability": 0.7883 }, { "start": 18905.5, "end": 18910.9, "probability": 0.7313 }, { "start": 18911.12, "end": 18911.28, "probability": 0.2178 }, { "start": 18911.3, "end": 18912.04, "probability": 0.9776 }, { "start": 18912.42, "end": 18913.34, "probability": 0.9671 }, { "start": 18913.36, "end": 18913.84, "probability": 0.4922 }, { "start": 18913.88, "end": 18916.74, "probability": 0.8948 }, { "start": 18917.1, "end": 18919.64, "probability": 0.8489 }, { "start": 18919.74, "end": 18920.48, "probability": 0.354 }, { "start": 18920.48, "end": 18921.44, "probability": 0.5255 }, { "start": 18921.58, "end": 18921.58, "probability": 0.5507 }, { "start": 18921.58, "end": 18921.58, "probability": 0.4129 }, { "start": 18921.58, "end": 18921.58, "probability": 0.005 }, { "start": 18922.1, "end": 18923.2, "probability": 0.2559 }, { "start": 18923.2, "end": 18923.34, "probability": 0.2764 }, { "start": 18923.34, "end": 18923.34, "probability": 0.1315 }, { "start": 18923.34, "end": 18925.32, "probability": 0.2663 }, { "start": 18925.66, "end": 18926.56, "probability": 0.2826 }, { "start": 18926.88, "end": 18928.76, "probability": 0.792 }, { "start": 18929.02, "end": 18931.82, "probability": 0.8057 }, { "start": 18931.82, "end": 18933.05, "probability": 0.563 }, { "start": 18935.26, "end": 18936.14, "probability": 0.1635 }, { "start": 18936.32, "end": 18936.48, "probability": 0.1829 }, { "start": 18936.48, "end": 18938.56, "probability": 0.4246 }, { "start": 18939.1, "end": 18939.36, "probability": 0.0841 }, { "start": 18939.36, "end": 18940.4, "probability": 0.6216 }, { "start": 18940.4, "end": 18941.36, "probability": 0.6191 }, { "start": 18941.52, "end": 18942.75, "probability": 0.086 }, { "start": 18945.14, "end": 18945.36, "probability": 0.1173 }, { "start": 18945.36, "end": 18945.36, "probability": 0.0822 }, { "start": 18945.36, "end": 18945.36, "probability": 0.1649 }, { "start": 18945.36, "end": 18945.9, "probability": 0.6641 }, { "start": 18946.3, "end": 18946.32, "probability": 0.0121 }, { "start": 18946.32, "end": 18946.98, "probability": 0.4533 }, { "start": 18947.64, "end": 18948.94, "probability": 0.7 }, { "start": 18950.16, "end": 18954.54, "probability": 0.978 }, { "start": 18954.98, "end": 18956.04, "probability": 0.7123 }, { "start": 18956.44, "end": 18957.46, "probability": 0.5957 }, { "start": 18958.18, "end": 18958.78, "probability": 0.4329 }, { "start": 18959.5, "end": 18960.08, "probability": 0.7438 }, { "start": 18960.24, "end": 18963.72, "probability": 0.5864 }, { "start": 18963.8, "end": 18964.7, "probability": 0.5776 }, { "start": 18965.7, "end": 18968.42, "probability": 0.508 }, { "start": 18968.98, "end": 18973.32, "probability": 0.9929 }, { "start": 18974.1, "end": 18976.14, "probability": 0.9927 }, { "start": 18977.8, "end": 18981.18, "probability": 0.9728 }, { "start": 18981.84, "end": 18984.98, "probability": 0.9892 }, { "start": 18985.74, "end": 18987.4, "probability": 0.9984 }, { "start": 18988.24, "end": 18988.8, "probability": 0.7917 }, { "start": 18990.3, "end": 18992.22, "probability": 0.8573 }, { "start": 18992.92, "end": 18993.99, "probability": 0.7504 }, { "start": 18994.2, "end": 18995.78, "probability": 0.8261 }, { "start": 18996.12, "end": 18997.16, "probability": 0.942 }, { "start": 18997.22, "end": 18999.06, "probability": 0.9961 }, { "start": 18999.5, "end": 19001.78, "probability": 0.2193 }, { "start": 19002.34, "end": 19003.74, "probability": 0.7507 }, { "start": 19003.8, "end": 19005.54, "probability": 0.8647 }, { "start": 19005.66, "end": 19009.32, "probability": 0.325 }, { "start": 19009.36, "end": 19010.8, "probability": 0.5883 }, { "start": 19011.3, "end": 19011.78, "probability": 0.8478 }, { "start": 19011.92, "end": 19013.86, "probability": 0.662 }, { "start": 19014.36, "end": 19015.96, "probability": 0.9631 }, { "start": 19017.42, "end": 19020.72, "probability": 0.5698 }, { "start": 19020.72, "end": 19023.26, "probability": 0.7719 }, { "start": 19023.48, "end": 19026.1, "probability": 0.7794 }, { "start": 19028.24, "end": 19031.28, "probability": 0.9678 }, { "start": 19032.2, "end": 19034.78, "probability": 0.9475 }, { "start": 19035.5, "end": 19036.88, "probability": 0.4182 }, { "start": 19037.52, "end": 19040.9, "probability": 0.9719 }, { "start": 19041.9, "end": 19043.72, "probability": 0.9417 }, { "start": 19045.76, "end": 19045.98, "probability": 0.0172 }, { "start": 19045.98, "end": 19050.14, "probability": 0.9072 }, { "start": 19051.36, "end": 19052.28, "probability": 0.4316 }, { "start": 19053.66, "end": 19054.72, "probability": 0.2579 }, { "start": 19054.72, "end": 19055.12, "probability": 0.0919 }, { "start": 19055.68, "end": 19056.46, "probability": 0.4223 }, { "start": 19063.76, "end": 19066.24, "probability": 0.7349 }, { "start": 19066.78, "end": 19067.92, "probability": 0.8879 }, { "start": 19070.06, "end": 19072.68, "probability": 0.9772 }, { "start": 19074.06, "end": 19077.9, "probability": 0.998 }, { "start": 19078.58, "end": 19082.24, "probability": 0.9966 }, { "start": 19084.22, "end": 19086.5, "probability": 0.787 }, { "start": 19087.16, "end": 19089.04, "probability": 0.7741 }, { "start": 19089.96, "end": 19091.5, "probability": 0.9805 }, { "start": 19092.4, "end": 19095.7, "probability": 0.9436 }, { "start": 19097.14, "end": 19099.96, "probability": 0.9295 }, { "start": 19099.96, "end": 19102.9, "probability": 0.9878 }, { "start": 19103.6, "end": 19104.52, "probability": 0.7021 }, { "start": 19105.12, "end": 19106.86, "probability": 0.9181 }, { "start": 19107.68, "end": 19109.74, "probability": 0.9699 }, { "start": 19110.5, "end": 19111.84, "probability": 0.9561 }, { "start": 19112.52, "end": 19113.78, "probability": 0.72 }, { "start": 19114.48, "end": 19119.88, "probability": 0.9898 }, { "start": 19121.1, "end": 19121.83, "probability": 0.2274 }, { "start": 19122.84, "end": 19123.78, "probability": 0.8972 }, { "start": 19124.3, "end": 19125.62, "probability": 0.9596 }, { "start": 19125.76, "end": 19126.38, "probability": 0.9317 }, { "start": 19126.46, "end": 19127.64, "probability": 0.9691 }, { "start": 19128.18, "end": 19129.24, "probability": 0.9603 }, { "start": 19130.26, "end": 19131.16, "probability": 0.925 }, { "start": 19131.5, "end": 19136.38, "probability": 0.8466 }, { "start": 19136.38, "end": 19138.57, "probability": 0.6572 }, { "start": 19139.2, "end": 19140.7, "probability": 0.9245 }, { "start": 19141.38, "end": 19144.7, "probability": 0.9935 }, { "start": 19145.22, "end": 19149.16, "probability": 0.9966 }, { "start": 19150.04, "end": 19150.72, "probability": 0.9365 }, { "start": 19151.68, "end": 19157.57, "probability": 0.9836 }, { "start": 19157.62, "end": 19164.16, "probability": 0.9919 }, { "start": 19164.76, "end": 19166.64, "probability": 0.9464 }, { "start": 19167.72, "end": 19169.5, "probability": 0.9843 }, { "start": 19170.26, "end": 19171.26, "probability": 0.8762 }, { "start": 19171.88, "end": 19174.06, "probability": 0.9938 }, { "start": 19176.04, "end": 19179.36, "probability": 0.8767 }, { "start": 19180.12, "end": 19184.98, "probability": 0.7699 }, { "start": 19184.98, "end": 19188.66, "probability": 0.9989 }, { "start": 19189.32, "end": 19194.18, "probability": 0.9964 }, { "start": 19194.56, "end": 19195.72, "probability": 0.9614 }, { "start": 19196.88, "end": 19201.92, "probability": 0.9778 }, { "start": 19202.84, "end": 19203.78, "probability": 0.6745 }, { "start": 19203.98, "end": 19207.4, "probability": 0.8232 }, { "start": 19207.86, "end": 19210.1, "probability": 0.8919 }, { "start": 19210.24, "end": 19212.6, "probability": 0.9924 }, { "start": 19213.52, "end": 19215.5, "probability": 0.9294 }, { "start": 19216.48, "end": 19219.23, "probability": 0.8726 }, { "start": 19220.3, "end": 19223.64, "probability": 0.9917 }, { "start": 19223.74, "end": 19224.86, "probability": 0.7911 }, { "start": 19226.14, "end": 19229.02, "probability": 0.9648 }, { "start": 19229.02, "end": 19233.36, "probability": 0.9526 }, { "start": 19233.4, "end": 19235.38, "probability": 0.5842 }, { "start": 19235.94, "end": 19237.42, "probability": 0.5002 }, { "start": 19238.4, "end": 19240.72, "probability": 0.8425 }, { "start": 19241.52, "end": 19242.56, "probability": 0.9456 }, { "start": 19244.22, "end": 19247.74, "probability": 0.9412 }, { "start": 19248.98, "end": 19250.86, "probability": 0.9795 }, { "start": 19251.72, "end": 19256.42, "probability": 0.9967 }, { "start": 19257.46, "end": 19258.88, "probability": 0.7142 }, { "start": 19259.44, "end": 19262.58, "probability": 0.9685 }, { "start": 19264.0, "end": 19265.84, "probability": 0.6081 }, { "start": 19266.44, "end": 19266.96, "probability": 0.9304 }, { "start": 19267.44, "end": 19271.98, "probability": 0.9256 }, { "start": 19272.82, "end": 19275.86, "probability": 0.7255 }, { "start": 19276.9, "end": 19278.32, "probability": 0.7644 }, { "start": 19278.32, "end": 19281.44, "probability": 0.8724 }, { "start": 19282.12, "end": 19284.08, "probability": 0.8949 }, { "start": 19284.12, "end": 19288.2, "probability": 0.9941 }, { "start": 19288.32, "end": 19289.12, "probability": 0.6821 }, { "start": 19289.72, "end": 19290.08, "probability": 0.5566 }, { "start": 19290.24, "end": 19292.74, "probability": 0.9515 }, { "start": 19295.12, "end": 19296.0, "probability": 0.9622 }, { "start": 19296.12, "end": 19298.26, "probability": 0.9888 }, { "start": 19298.34, "end": 19298.98, "probability": 0.9505 }, { "start": 19299.86, "end": 19302.08, "probability": 0.2064 }, { "start": 19302.08, "end": 19302.98, "probability": 0.9333 }, { "start": 19303.88, "end": 19304.62, "probability": 0.8073 }, { "start": 19305.3, "end": 19306.22, "probability": 0.7717 }, { "start": 19307.34, "end": 19309.5, "probability": 0.7881 }, { "start": 19310.36, "end": 19314.28, "probability": 0.9918 }, { "start": 19315.14, "end": 19317.06, "probability": 0.9658 }, { "start": 19318.26, "end": 19320.04, "probability": 0.7384 }, { "start": 19320.1, "end": 19321.94, "probability": 0.982 }, { "start": 19322.42, "end": 19324.14, "probability": 0.9966 }, { "start": 19324.96, "end": 19325.54, "probability": 0.0201 }, { "start": 19327.74, "end": 19327.84, "probability": 0.0211 }, { "start": 19327.84, "end": 19328.3, "probability": 0.3444 }, { "start": 19328.82, "end": 19329.84, "probability": 0.3336 }, { "start": 19329.9, "end": 19330.62, "probability": 0.365 }, { "start": 19331.4, "end": 19333.16, "probability": 0.5986 }, { "start": 19333.22, "end": 19334.06, "probability": 0.7843 }, { "start": 19334.14, "end": 19335.55, "probability": 0.9941 }, { "start": 19336.14, "end": 19337.3, "probability": 0.9907 }, { "start": 19338.02, "end": 19338.32, "probability": 0.6868 }, { "start": 19338.36, "end": 19340.48, "probability": 0.9537 }, { "start": 19340.62, "end": 19342.1, "probability": 0.6936 }, { "start": 19343.48, "end": 19344.08, "probability": 0.8415 }, { "start": 19344.66, "end": 19346.3, "probability": 0.8906 }, { "start": 19347.14, "end": 19350.04, "probability": 0.791 }, { "start": 19350.9, "end": 19353.3, "probability": 0.9482 }, { "start": 19353.38, "end": 19354.11, "probability": 0.8845 }, { "start": 19354.86, "end": 19356.56, "probability": 0.9666 }, { "start": 19357.0, "end": 19358.48, "probability": 0.9717 }, { "start": 19358.9, "end": 19360.06, "probability": 0.828 }, { "start": 19361.8, "end": 19364.56, "probability": 0.9062 }, { "start": 19365.32, "end": 19370.13, "probability": 0.728 }, { "start": 19371.0, "end": 19373.8, "probability": 0.8644 }, { "start": 19374.54, "end": 19374.9, "probability": 0.6638 }, { "start": 19375.44, "end": 19376.82, "probability": 0.6226 }, { "start": 19377.32, "end": 19378.96, "probability": 0.6991 }, { "start": 19379.04, "end": 19383.04, "probability": 0.9771 }, { "start": 19383.58, "end": 19386.88, "probability": 0.9928 }, { "start": 19387.5, "end": 19388.33, "probability": 0.8004 }, { "start": 19389.58, "end": 19393.84, "probability": 0.9613 }, { "start": 19394.28, "end": 19396.02, "probability": 0.8203 }, { "start": 19396.5, "end": 19401.04, "probability": 0.8955 }, { "start": 19401.1, "end": 19401.88, "probability": 0.7391 }, { "start": 19402.46, "end": 19405.8, "probability": 0.9908 }, { "start": 19406.24, "end": 19407.86, "probability": 0.93 }, { "start": 19407.92, "end": 19410.22, "probability": 0.9902 }, { "start": 19410.86, "end": 19414.06, "probability": 0.8033 }, { "start": 19414.48, "end": 19416.98, "probability": 0.6764 }, { "start": 19417.66, "end": 19418.28, "probability": 0.8642 }, { "start": 19418.36, "end": 19423.7, "probability": 0.9081 }, { "start": 19423.86, "end": 19423.96, "probability": 0.2722 }, { "start": 19425.52, "end": 19427.36, "probability": 0.9873 }, { "start": 19427.88, "end": 19428.2, "probability": 0.8938 }, { "start": 19428.8, "end": 19429.52, "probability": 0.6952 }, { "start": 19430.8, "end": 19432.55, "probability": 0.9797 }, { "start": 19433.7, "end": 19434.38, "probability": 0.6801 }, { "start": 19435.16, "end": 19435.64, "probability": 0.9432 }, { "start": 19440.06, "end": 19443.24, "probability": 0.9908 }, { "start": 19443.9, "end": 19445.07, "probability": 0.9342 }, { "start": 19446.16, "end": 19446.64, "probability": 0.7178 }, { "start": 19447.72, "end": 19450.99, "probability": 0.9712 }, { "start": 19452.02, "end": 19453.06, "probability": 0.8901 }, { "start": 19453.72, "end": 19459.74, "probability": 0.9757 }, { "start": 19459.78, "end": 19460.86, "probability": 0.6961 }, { "start": 19461.5, "end": 19465.56, "probability": 0.754 }, { "start": 19466.36, "end": 19469.16, "probability": 0.9715 }, { "start": 19469.58, "end": 19470.24, "probability": 0.6562 }, { "start": 19470.26, "end": 19472.92, "probability": 0.9683 }, { "start": 19472.94, "end": 19475.44, "probability": 0.7719 }, { "start": 19475.82, "end": 19476.86, "probability": 0.6762 }, { "start": 19479.4, "end": 19482.84, "probability": 0.8628 }, { "start": 19483.44, "end": 19486.58, "probability": 0.9664 }, { "start": 19487.42, "end": 19489.26, "probability": 0.9977 }, { "start": 19489.92, "end": 19491.52, "probability": 0.7642 }, { "start": 19491.62, "end": 19491.82, "probability": 0.9045 }, { "start": 19491.84, "end": 19492.97, "probability": 0.7482 }, { "start": 19493.64, "end": 19495.18, "probability": 0.8564 }, { "start": 19495.7, "end": 19497.82, "probability": 0.9683 }, { "start": 19498.4, "end": 19499.76, "probability": 0.9775 }, { "start": 19500.48, "end": 19504.0, "probability": 0.8175 }, { "start": 19504.52, "end": 19507.82, "probability": 0.8553 }, { "start": 19508.42, "end": 19509.04, "probability": 0.9617 }, { "start": 19509.22, "end": 19510.88, "probability": 0.942 }, { "start": 19510.94, "end": 19511.98, "probability": 0.9557 }, { "start": 19512.08, "end": 19512.36, "probability": 0.9623 }, { "start": 19512.76, "end": 19513.34, "probability": 0.7623 }, { "start": 19513.42, "end": 19515.46, "probability": 0.9429 }, { "start": 19515.58, "end": 19516.18, "probability": 0.2927 }, { "start": 19516.22, "end": 19520.34, "probability": 0.9939 }, { "start": 19520.7, "end": 19526.46, "probability": 0.9186 }, { "start": 19527.08, "end": 19529.14, "probability": 0.9599 }, { "start": 19529.46, "end": 19529.58, "probability": 0.0332 }, { "start": 19529.8, "end": 19531.58, "probability": 0.8279 }, { "start": 19531.66, "end": 19533.62, "probability": 0.8422 }, { "start": 19533.96, "end": 19534.9, "probability": 0.9871 }, { "start": 19535.96, "end": 19537.4, "probability": 0.9829 }, { "start": 19537.58, "end": 19538.66, "probability": 0.8398 }, { "start": 19539.84, "end": 19541.78, "probability": 0.941 }, { "start": 19542.32, "end": 19544.32, "probability": 0.9574 }, { "start": 19544.96, "end": 19545.73, "probability": 0.9977 }, { "start": 19546.32, "end": 19546.82, "probability": 0.2732 }, { "start": 19548.08, "end": 19550.48, "probability": 0.9287 }, { "start": 19551.1, "end": 19555.78, "probability": 0.9284 }, { "start": 19556.26, "end": 19557.2, "probability": 0.9424 }, { "start": 19557.54, "end": 19559.84, "probability": 0.9059 }, { "start": 19560.22, "end": 19562.46, "probability": 0.9811 }, { "start": 19563.1, "end": 19563.56, "probability": 0.298 }, { "start": 19564.18, "end": 19565.22, "probability": 0.6671 }, { "start": 19565.4, "end": 19566.55, "probability": 0.9966 }, { "start": 19566.8, "end": 19566.94, "probability": 0.9009 }, { "start": 19567.04, "end": 19569.52, "probability": 0.7922 }, { "start": 19570.0, "end": 19570.98, "probability": 0.9927 }, { "start": 19571.24, "end": 19572.5, "probability": 0.9517 }, { "start": 19573.44, "end": 19576.66, "probability": 0.9098 }, { "start": 19577.06, "end": 19579.7, "probability": 0.832 }, { "start": 19580.08, "end": 19581.12, "probability": 0.7795 }, { "start": 19581.5, "end": 19582.94, "probability": 0.7363 }, { "start": 19583.24, "end": 19583.94, "probability": 0.8268 }, { "start": 19584.12, "end": 19585.54, "probability": 0.795 }, { "start": 19585.66, "end": 19589.96, "probability": 0.9118 }, { "start": 19590.28, "end": 19591.12, "probability": 0.8328 }, { "start": 19591.24, "end": 19594.62, "probability": 0.9905 }, { "start": 19595.26, "end": 19596.8, "probability": 0.3014 }, { "start": 19597.0, "end": 19601.14, "probability": 0.9683 }, { "start": 19601.78, "end": 19604.05, "probability": 0.9628 }, { "start": 19604.64, "end": 19605.12, "probability": 0.7128 }, { "start": 19605.62, "end": 19607.38, "probability": 0.9837 }, { "start": 19607.44, "end": 19610.2, "probability": 0.9743 }, { "start": 19610.74, "end": 19613.92, "probability": 0.9868 }, { "start": 19613.92, "end": 19617.26, "probability": 0.9784 }, { "start": 19617.6, "end": 19620.78, "probability": 0.9854 }, { "start": 19621.48, "end": 19623.86, "probability": 0.984 }, { "start": 19624.22, "end": 19626.82, "probability": 0.9684 }, { "start": 19626.88, "end": 19627.34, "probability": 0.7866 }, { "start": 19629.36, "end": 19630.9, "probability": 0.7827 }, { "start": 19631.86, "end": 19634.88, "probability": 0.8552 }, { "start": 19646.74, "end": 19647.28, "probability": 0.166 }, { "start": 19647.56, "end": 19647.66, "probability": 0.1939 }, { "start": 19647.66, "end": 19647.66, "probability": 0.0466 }, { "start": 19647.66, "end": 19647.74, "probability": 0.0514 }, { "start": 19669.42, "end": 19671.02, "probability": 0.6193 }, { "start": 19671.92, "end": 19678.14, "probability": 0.9951 }, { "start": 19678.7, "end": 19682.82, "probability": 0.9948 }, { "start": 19683.52, "end": 19685.46, "probability": 0.946 }, { "start": 19685.56, "end": 19687.04, "probability": 0.7918 }, { "start": 19688.02, "end": 19689.26, "probability": 0.7878 }, { "start": 19689.76, "end": 19691.36, "probability": 0.9859 }, { "start": 19691.68, "end": 19694.04, "probability": 0.9847 }, { "start": 19694.42, "end": 19695.2, "probability": 0.4001 }, { "start": 19695.2, "end": 19697.86, "probability": 0.5717 }, { "start": 19698.02, "end": 19700.24, "probability": 0.9453 }, { "start": 19700.44, "end": 19701.88, "probability": 0.3164 }, { "start": 19702.08, "end": 19703.54, "probability": 0.3271 }, { "start": 19703.54, "end": 19704.08, "probability": 0.4352 }, { "start": 19704.34, "end": 19707.24, "probability": 0.5879 }, { "start": 19707.94, "end": 19708.76, "probability": 0.8541 }, { "start": 19709.52, "end": 19710.08, "probability": 0.8521 }, { "start": 19710.52, "end": 19712.94, "probability": 0.2625 }, { "start": 19713.34, "end": 19715.26, "probability": 0.9186 }, { "start": 19715.42, "end": 19721.2, "probability": 0.9048 }, { "start": 19721.2, "end": 19726.12, "probability": 0.8199 }, { "start": 19726.38, "end": 19728.56, "probability": 0.9043 }, { "start": 19729.82, "end": 19732.84, "probability": 0.9833 }, { "start": 19734.04, "end": 19736.64, "probability": 0.9503 }, { "start": 19737.34, "end": 19739.12, "probability": 0.9051 }, { "start": 19739.98, "end": 19742.47, "probability": 0.8853 }, { "start": 19743.08, "end": 19743.62, "probability": 0.4033 }, { "start": 19744.12, "end": 19745.37, "probability": 0.9949 }, { "start": 19746.22, "end": 19750.64, "probability": 0.8577 }, { "start": 19751.08, "end": 19751.3, "probability": 0.0388 }, { "start": 19751.3, "end": 19751.3, "probability": 0.2209 }, { "start": 19751.3, "end": 19751.86, "probability": 0.8428 }, { "start": 19753.16, "end": 19754.1, "probability": 0.6543 }, { "start": 19755.0, "end": 19755.78, "probability": 0.6485 }, { "start": 19756.94, "end": 19759.0, "probability": 0.3108 }, { "start": 19759.52, "end": 19761.94, "probability": 0.995 }, { "start": 19762.72, "end": 19766.44, "probability": 0.9886 }, { "start": 19768.0, "end": 19768.44, "probability": 0.3624 }, { "start": 19768.44, "end": 19769.12, "probability": 0.5816 }, { "start": 19770.3, "end": 19771.88, "probability": 0.4673 }, { "start": 19772.36, "end": 19773.73, "probability": 0.9436 }, { "start": 19774.2, "end": 19774.32, "probability": 0.1041 }, { "start": 19774.32, "end": 19777.24, "probability": 0.9445 }, { "start": 19778.18, "end": 19780.0, "probability": 0.8442 }, { "start": 19780.78, "end": 19781.71, "probability": 0.8503 }, { "start": 19782.46, "end": 19784.12, "probability": 0.7153 }, { "start": 19784.44, "end": 19784.52, "probability": 0.1003 }, { "start": 19784.52, "end": 19785.82, "probability": 0.096 }, { "start": 19785.9, "end": 19787.16, "probability": 0.6243 }, { "start": 19787.56, "end": 19790.8, "probability": 0.8737 }, { "start": 19791.3, "end": 19791.4, "probability": 0.5174 }, { "start": 19791.4, "end": 19791.66, "probability": 0.5209 }, { "start": 19791.7, "end": 19793.74, "probability": 0.9584 }, { "start": 19793.74, "end": 19794.94, "probability": 0.6811 }, { "start": 19794.94, "end": 19794.98, "probability": 0.6954 }, { "start": 19795.1, "end": 19795.48, "probability": 0.8486 }, { "start": 19795.72, "end": 19801.74, "probability": 0.9928 }, { "start": 19801.84, "end": 19803.24, "probability": 0.1588 }, { "start": 19803.34, "end": 19803.96, "probability": 0.1184 }, { "start": 19803.96, "end": 19811.88, "probability": 0.833 }, { "start": 19812.3, "end": 19817.0, "probability": 0.9851 }, { "start": 19817.16, "end": 19818.34, "probability": 0.7294 }, { "start": 19818.4, "end": 19819.42, "probability": 0.7442 }, { "start": 19819.46, "end": 19821.28, "probability": 0.8928 }, { "start": 19821.5, "end": 19823.12, "probability": 0.7809 }, { "start": 19825.02, "end": 19825.72, "probability": 0.0891 }, { "start": 19825.72, "end": 19826.3, "probability": 0.3184 }, { "start": 19826.88, "end": 19829.98, "probability": 0.9069 }, { "start": 19830.06, "end": 19831.08, "probability": 0.6647 }, { "start": 19831.18, "end": 19832.58, "probability": 0.9719 }, { "start": 19833.32, "end": 19839.1, "probability": 0.9823 }, { "start": 19839.76, "end": 19840.88, "probability": 0.8231 }, { "start": 19841.36, "end": 19842.94, "probability": 0.9956 }, { "start": 19843.32, "end": 19847.78, "probability": 0.9525 }, { "start": 19848.12, "end": 19850.1, "probability": 0.8729 }, { "start": 19850.16, "end": 19851.42, "probability": 0.871 }, { "start": 19851.76, "end": 19852.8, "probability": 0.9666 }, { "start": 19852.88, "end": 19853.66, "probability": 0.803 }, { "start": 19853.96, "end": 19856.64, "probability": 0.9729 }, { "start": 19856.78, "end": 19859.67, "probability": 0.9966 }, { "start": 19860.24, "end": 19865.08, "probability": 0.9668 }, { "start": 19867.92, "end": 19872.28, "probability": 0.9765 }, { "start": 19874.22, "end": 19875.74, "probability": 0.6828 }, { "start": 19876.6, "end": 19878.64, "probability": 0.8957 }, { "start": 19880.2, "end": 19883.3, "probability": 0.9493 }, { "start": 19884.3, "end": 19885.42, "probability": 0.9955 }, { "start": 19886.7, "end": 19887.56, "probability": 0.7263 }, { "start": 19887.64, "end": 19891.16, "probability": 0.9705 }, { "start": 19892.62, "end": 19897.94, "probability": 0.9362 }, { "start": 19898.52, "end": 19899.94, "probability": 0.924 }, { "start": 19899.98, "end": 19907.06, "probability": 0.9355 }, { "start": 19907.92, "end": 19909.36, "probability": 0.9029 }, { "start": 19909.44, "end": 19910.48, "probability": 0.9652 }, { "start": 19910.96, "end": 19912.88, "probability": 0.9977 }, { "start": 19913.28, "end": 19915.9, "probability": 0.9282 }, { "start": 19915.94, "end": 19917.5, "probability": 0.8804 }, { "start": 19918.48, "end": 19920.04, "probability": 0.7899 }, { "start": 19920.56, "end": 19921.36, "probability": 0.9771 }, { "start": 19921.74, "end": 19925.52, "probability": 0.9378 }, { "start": 19926.34, "end": 19927.96, "probability": 0.9873 }, { "start": 19928.86, "end": 19929.74, "probability": 0.9932 }, { "start": 19930.9, "end": 19933.22, "probability": 0.9861 }, { "start": 19934.32, "end": 19936.02, "probability": 0.6587 }, { "start": 19936.2, "end": 19937.82, "probability": 0.5031 }, { "start": 19937.94, "end": 19938.6, "probability": 0.719 }, { "start": 19938.64, "end": 19939.66, "probability": 0.6236 }, { "start": 19939.98, "end": 19940.86, "probability": 0.9894 }, { "start": 19940.92, "end": 19941.9, "probability": 0.9512 }, { "start": 19942.0, "end": 19942.34, "probability": 0.7883 }, { "start": 19942.38, "end": 19943.1, "probability": 0.9071 }, { "start": 19943.56, "end": 19943.82, "probability": 0.8005 }, { "start": 19943.86, "end": 19944.68, "probability": 0.9128 }, { "start": 19944.74, "end": 19945.72, "probability": 0.8185 }, { "start": 19945.8, "end": 19946.24, "probability": 0.6514 }, { "start": 19946.68, "end": 19947.5, "probability": 0.999 }, { "start": 19948.06, "end": 19948.82, "probability": 0.9797 }, { "start": 19949.6, "end": 19951.9, "probability": 0.7829 }, { "start": 19952.02, "end": 19954.68, "probability": 0.9079 }, { "start": 19955.16, "end": 19957.38, "probability": 0.9898 }, { "start": 19957.44, "end": 19961.04, "probability": 0.9979 }, { "start": 19961.82, "end": 19963.06, "probability": 0.895 }, { "start": 19963.5, "end": 19964.68, "probability": 0.9956 }, { "start": 19964.76, "end": 19965.9, "probability": 0.9384 }, { "start": 19966.32, "end": 19969.04, "probability": 0.9944 }, { "start": 19969.4, "end": 19970.18, "probability": 0.9543 }, { "start": 19970.8, "end": 19974.1, "probability": 0.7793 }, { "start": 19974.66, "end": 19977.3, "probability": 0.9619 }, { "start": 19977.3, "end": 19980.8, "probability": 0.83 }, { "start": 19981.64, "end": 19982.78, "probability": 0.5583 }, { "start": 19983.54, "end": 19985.2, "probability": 0.9106 }, { "start": 19985.34, "end": 19988.74, "probability": 0.9924 }, { "start": 19990.48, "end": 19991.18, "probability": 0.0865 }, { "start": 19991.18, "end": 19994.12, "probability": 0.1366 }, { "start": 19994.62, "end": 19999.4, "probability": 0.9749 }, { "start": 19999.78, "end": 20004.06, "probability": 0.2487 }, { "start": 20004.8, "end": 20005.15, "probability": 0.252 }, { "start": 20007.26, "end": 20008.06, "probability": 0.0257 }, { "start": 20008.06, "end": 20008.06, "probability": 0.0933 }, { "start": 20008.06, "end": 20008.06, "probability": 0.2074 }, { "start": 20008.06, "end": 20011.61, "probability": 0.9463 }, { "start": 20012.14, "end": 20012.44, "probability": 0.7514 }, { "start": 20012.58, "end": 20014.4, "probability": 0.9124 }, { "start": 20014.74, "end": 20018.94, "probability": 0.97 }, { "start": 20019.74, "end": 20020.7, "probability": 0.6745 }, { "start": 20021.04, "end": 20025.78, "probability": 0.9945 }, { "start": 20025.94, "end": 20028.76, "probability": 0.9934 }, { "start": 20029.32, "end": 20033.06, "probability": 0.9976 }, { "start": 20033.06, "end": 20037.0, "probability": 0.9971 }, { "start": 20038.64, "end": 20041.78, "probability": 0.9956 }, { "start": 20041.96, "end": 20046.3, "probability": 0.9937 }, { "start": 20047.76, "end": 20048.14, "probability": 0.1176 }, { "start": 20048.88, "end": 20049.06, "probability": 0.0182 }, { "start": 20049.5, "end": 20051.36, "probability": 0.0619 }, { "start": 20051.9, "end": 20057.04, "probability": 0.9907 }, { "start": 20057.9, "end": 20059.97, "probability": 0.9023 }, { "start": 20060.54, "end": 20060.54, "probability": 0.2132 }, { "start": 20060.54, "end": 20060.68, "probability": 0.3506 }, { "start": 20060.68, "end": 20063.24, "probability": 0.7052 }, { "start": 20063.68, "end": 20069.1, "probability": 0.9884 }, { "start": 20070.06, "end": 20073.6, "probability": 0.996 }, { "start": 20073.92, "end": 20076.52, "probability": 0.9288 }, { "start": 20077.36, "end": 20079.84, "probability": 0.9954 }, { "start": 20081.18, "end": 20086.04, "probability": 0.9985 }, { "start": 20086.64, "end": 20088.76, "probability": 0.8965 }, { "start": 20089.32, "end": 20092.96, "probability": 0.755 }, { "start": 20093.44, "end": 20094.42, "probability": 0.9464 }, { "start": 20095.16, "end": 20096.64, "probability": 0.0231 }, { "start": 20099.18, "end": 20099.82, "probability": 0.6976 }, { "start": 20100.16, "end": 20104.83, "probability": 0.9939 }, { "start": 20105.04, "end": 20107.3, "probability": 0.9561 }, { "start": 20107.32, "end": 20109.68, "probability": 0.5167 }, { "start": 20109.82, "end": 20110.34, "probability": 0.2671 }, { "start": 20110.46, "end": 20111.52, "probability": 0.1714 }, { "start": 20111.68, "end": 20116.74, "probability": 0.6309 }, { "start": 20117.3, "end": 20119.02, "probability": 0.9961 }, { "start": 20119.18, "end": 20121.92, "probability": 0.9796 }, { "start": 20122.46, "end": 20125.82, "probability": 0.756 }, { "start": 20126.04, "end": 20127.8, "probability": 0.9691 }, { "start": 20128.16, "end": 20128.94, "probability": 0.5877 }, { "start": 20129.08, "end": 20130.44, "probability": 0.877 }, { "start": 20130.8, "end": 20132.33, "probability": 0.9843 }, { "start": 20132.54, "end": 20133.6, "probability": 0.4225 }, { "start": 20133.66, "end": 20134.66, "probability": 0.9404 }, { "start": 20134.78, "end": 20136.06, "probability": 0.7997 }, { "start": 20136.92, "end": 20139.48, "probability": 0.8201 }, { "start": 20140.34, "end": 20145.76, "probability": 0.9855 }, { "start": 20146.28, "end": 20147.04, "probability": 0.5099 }, { "start": 20147.96, "end": 20153.92, "probability": 0.7979 }, { "start": 20154.5, "end": 20155.3, "probability": 0.6593 }, { "start": 20155.38, "end": 20155.98, "probability": 0.8691 }, { "start": 20156.02, "end": 20157.98, "probability": 0.9445 }, { "start": 20159.24, "end": 20162.82, "probability": 0.9884 }, { "start": 20163.08, "end": 20164.62, "probability": 0.821 }, { "start": 20164.64, "end": 20166.16, "probability": 0.8982 }, { "start": 20166.38, "end": 20167.0, "probability": 0.2344 }, { "start": 20167.48, "end": 20170.58, "probability": 0.908 }, { "start": 20170.7, "end": 20171.72, "probability": 0.7743 }, { "start": 20172.2, "end": 20176.66, "probability": 0.9741 }, { "start": 20179.2, "end": 20184.18, "probability": 0.9442 }, { "start": 20184.54, "end": 20185.36, "probability": 0.5015 }, { "start": 20185.92, "end": 20190.04, "probability": 0.9323 }, { "start": 20190.88, "end": 20191.04, "probability": 0.0661 }, { "start": 20191.04, "end": 20191.04, "probability": 0.3533 }, { "start": 20191.04, "end": 20194.42, "probability": 0.8964 }, { "start": 20194.42, "end": 20197.68, "probability": 0.9738 }, { "start": 20198.24, "end": 20199.06, "probability": 0.8649 }, { "start": 20199.06, "end": 20199.15, "probability": 0.0339 }, { "start": 20199.18, "end": 20200.38, "probability": 0.049 }, { "start": 20201.68, "end": 20202.32, "probability": 0.0799 }, { "start": 20202.34, "end": 20204.26, "probability": 0.0117 }, { "start": 20206.72, "end": 20218.18, "probability": 0.8147 }, { "start": 20218.18, "end": 20219.22, "probability": 0.0327 }, { "start": 20219.22, "end": 20219.22, "probability": 0.0427 }, { "start": 20219.22, "end": 20219.22, "probability": 0.0219 }, { "start": 20219.22, "end": 20219.64, "probability": 0.1211 }, { "start": 20219.64, "end": 20221.24, "probability": 0.7087 }, { "start": 20221.9, "end": 20228.72, "probability": 0.9954 }, { "start": 20229.38, "end": 20231.64, "probability": 0.7557 }, { "start": 20232.56, "end": 20234.18, "probability": 0.9217 }, { "start": 20237.2, "end": 20238.86, "probability": 0.9761 }, { "start": 20240.32, "end": 20241.58, "probability": 0.9711 }, { "start": 20242.0, "end": 20243.94, "probability": 0.8561 }, { "start": 20244.36, "end": 20247.82, "probability": 0.9941 }, { "start": 20248.4, "end": 20252.22, "probability": 0.9526 }, { "start": 20252.8, "end": 20259.6, "probability": 0.9928 }, { "start": 20260.18, "end": 20261.1, "probability": 0.8665 }, { "start": 20262.12, "end": 20263.42, "probability": 0.9837 }, { "start": 20264.66, "end": 20266.12, "probability": 0.8193 }, { "start": 20266.84, "end": 20268.52, "probability": 0.9968 }, { "start": 20268.84, "end": 20270.24, "probability": 0.9893 }, { "start": 20271.34, "end": 20273.18, "probability": 0.7875 }, { "start": 20273.26, "end": 20275.94, "probability": 0.8571 }, { "start": 20276.58, "end": 20280.0, "probability": 0.8688 }, { "start": 20280.66, "end": 20285.72, "probability": 0.8419 }, { "start": 20285.84, "end": 20286.5, "probability": 0.9877 }, { "start": 20288.26, "end": 20292.12, "probability": 0.7759 }, { "start": 20292.46, "end": 20294.08, "probability": 0.5377 }, { "start": 20297.04, "end": 20299.66, "probability": 0.9926 }, { "start": 20300.2, "end": 20301.82, "probability": 0.9522 }, { "start": 20303.6, "end": 20307.3, "probability": 0.9878 }, { "start": 20307.3, "end": 20310.42, "probability": 0.9842 }, { "start": 20310.96, "end": 20311.4, "probability": 0.5884 }, { "start": 20312.08, "end": 20312.94, "probability": 0.2325 }, { "start": 20313.1, "end": 20316.6, "probability": 0.2144 }, { "start": 20316.84, "end": 20320.8, "probability": 0.8416 }, { "start": 20327.46, "end": 20328.98, "probability": 0.8499 }, { "start": 20330.26, "end": 20332.75, "probability": 0.6508 }, { "start": 20333.56, "end": 20334.78, "probability": 0.7057 }, { "start": 20335.46, "end": 20337.78, "probability": 0.9165 }, { "start": 20338.36, "end": 20341.5, "probability": 0.6203 }, { "start": 20341.5, "end": 20342.68, "probability": 0.8856 }, { "start": 20343.3, "end": 20346.58, "probability": 0.9971 }, { "start": 20346.98, "end": 20348.4, "probability": 0.8579 }, { "start": 20348.72, "end": 20349.74, "probability": 0.8109 }, { "start": 20350.1, "end": 20351.56, "probability": 0.9845 }, { "start": 20352.34, "end": 20354.32, "probability": 0.9518 }, { "start": 20354.46, "end": 20356.04, "probability": 0.5131 }, { "start": 20356.42, "end": 20358.86, "probability": 0.9966 }, { "start": 20359.6, "end": 20360.98, "probability": 0.9102 }, { "start": 20361.3, "end": 20364.96, "probability": 0.9257 }, { "start": 20365.8, "end": 20368.7, "probability": 0.9878 }, { "start": 20369.48, "end": 20370.42, "probability": 0.8708 }, { "start": 20370.5, "end": 20371.36, "probability": 0.9698 }, { "start": 20371.42, "end": 20374.26, "probability": 0.9499 }, { "start": 20375.02, "end": 20377.66, "probability": 0.7384 }, { "start": 20378.1, "end": 20379.56, "probability": 0.9578 }, { "start": 20379.96, "end": 20380.52, "probability": 0.6171 }, { "start": 20381.04, "end": 20383.1, "probability": 0.9806 }, { "start": 20385.0, "end": 20387.21, "probability": 0.2217 }, { "start": 20387.52, "end": 20390.34, "probability": 0.5547 }, { "start": 20391.36, "end": 20393.98, "probability": 0.7431 }, { "start": 20394.16, "end": 20395.36, "probability": 0.963 }, { "start": 20396.66, "end": 20397.96, "probability": 0.607 }, { "start": 20398.64, "end": 20400.8, "probability": 0.8594 }, { "start": 20401.0, "end": 20403.38, "probability": 0.9633 }, { "start": 20403.64, "end": 20405.84, "probability": 0.9736 }, { "start": 20406.44, "end": 20406.92, "probability": 0.6436 }, { "start": 20407.54, "end": 20410.08, "probability": 0.9727 }, { "start": 20410.48, "end": 20411.06, "probability": 0.8233 }, { "start": 20411.54, "end": 20415.8, "probability": 0.9236 }, { "start": 20415.8, "end": 20420.76, "probability": 0.9895 }, { "start": 20421.26, "end": 20422.87, "probability": 0.9888 }, { "start": 20424.22, "end": 20426.56, "probability": 0.6635 }, { "start": 20427.2, "end": 20431.9, "probability": 0.9828 }, { "start": 20432.38, "end": 20432.58, "probability": 0.829 }, { "start": 20432.66, "end": 20435.36, "probability": 0.9159 }, { "start": 20435.5, "end": 20440.28, "probability": 0.9767 }, { "start": 20440.68, "end": 20444.36, "probability": 0.6782 }, { "start": 20444.74, "end": 20445.58, "probability": 0.7467 }, { "start": 20446.1, "end": 20447.76, "probability": 0.7008 }, { "start": 20448.36, "end": 20449.66, "probability": 0.9844 }, { "start": 20450.06, "end": 20453.34, "probability": 0.9312 }, { "start": 20453.78, "end": 20454.76, "probability": 0.7073 }, { "start": 20455.1, "end": 20455.76, "probability": 0.8857 }, { "start": 20455.94, "end": 20456.04, "probability": 0.4053 }, { "start": 20456.18, "end": 20456.91, "probability": 0.9592 }, { "start": 20457.64, "end": 20461.82, "probability": 0.9878 }, { "start": 20462.18, "end": 20463.66, "probability": 0.951 }, { "start": 20463.66, "end": 20466.74, "probability": 0.9263 }, { "start": 20466.84, "end": 20469.26, "probability": 0.9738 }, { "start": 20469.58, "end": 20473.48, "probability": 0.843 }, { "start": 20473.92, "end": 20477.8, "probability": 0.9556 }, { "start": 20478.16, "end": 20482.4, "probability": 0.8266 }, { "start": 20482.76, "end": 20486.18, "probability": 0.9063 }, { "start": 20486.82, "end": 20488.74, "probability": 0.9806 }, { "start": 20489.2, "end": 20494.6, "probability": 0.9555 }, { "start": 20495.24, "end": 20495.84, "probability": 0.7528 }, { "start": 20496.24, "end": 20497.35, "probability": 0.6147 }, { "start": 20497.74, "end": 20499.05, "probability": 0.9531 }, { "start": 20499.8, "end": 20500.28, "probability": 0.7939 }, { "start": 20500.38, "end": 20501.06, "probability": 0.7533 }, { "start": 20501.56, "end": 20504.36, "probability": 0.9902 }, { "start": 20504.7, "end": 20507.22, "probability": 0.992 }, { "start": 20507.32, "end": 20507.76, "probability": 0.6919 }, { "start": 20509.28, "end": 20511.12, "probability": 0.6519 }, { "start": 20511.2, "end": 20515.94, "probability": 0.9223 }, { "start": 20516.2, "end": 20518.62, "probability": 0.8503 }, { "start": 20518.9, "end": 20520.4, "probability": 0.2176 }, { "start": 20522.02, "end": 20525.6, "probability": 0.5741 }, { "start": 20526.3, "end": 20531.8, "probability": 0.8006 }, { "start": 20532.44, "end": 20534.78, "probability": 0.9612 }, { "start": 20538.88, "end": 20542.06, "probability": 0.7498 }, { "start": 20542.8, "end": 20545.12, "probability": 0.9634 }, { "start": 20548.26, "end": 20551.06, "probability": 0.8718 }, { "start": 20551.76, "end": 20552.06, "probability": 0.9973 }, { "start": 20553.3, "end": 20554.04, "probability": 0.7768 }, { "start": 20555.76, "end": 20558.24, "probability": 0.769 }, { "start": 20560.58, "end": 20562.24, "probability": 0.9652 }, { "start": 20563.98, "end": 20564.8, "probability": 0.9775 }, { "start": 20565.44, "end": 20566.64, "probability": 0.9574 }, { "start": 20567.5, "end": 20568.0, "probability": 0.9816 }, { "start": 20569.0, "end": 20569.94, "probability": 0.95 }, { "start": 20570.68, "end": 20572.68, "probability": 0.8127 }, { "start": 20573.56, "end": 20574.08, "probability": 0.9906 }, { "start": 20575.52, "end": 20576.44, "probability": 0.9763 }, { "start": 20577.68, "end": 20578.14, "probability": 0.9263 }, { "start": 20579.5, "end": 20581.16, "probability": 0.3758 }, { "start": 20581.98, "end": 20583.1, "probability": 0.6851 }, { "start": 20583.7, "end": 20587.4, "probability": 0.8131 }, { "start": 20588.78, "end": 20589.3, "probability": 0.9862 }, { "start": 20590.7, "end": 20592.0, "probability": 0.9642 }, { "start": 20593.12, "end": 20595.24, "probability": 0.9643 }, { "start": 20597.44, "end": 20603.48, "probability": 0.9727 }, { "start": 20604.32, "end": 20606.64, "probability": 0.9175 }, { "start": 20607.54, "end": 20611.2, "probability": 0.205 }, { "start": 20611.88, "end": 20614.08, "probability": 0.8206 }, { "start": 20615.58, "end": 20617.9, "probability": 0.8437 }, { "start": 20618.74, "end": 20621.26, "probability": 0.9424 }, { "start": 20622.42, "end": 20624.92, "probability": 0.8422 }, { "start": 20627.82, "end": 20628.34, "probability": 0.6715 }, { "start": 20630.0, "end": 20631.26, "probability": 0.9154 }, { "start": 20632.16, "end": 20635.0, "probability": 0.9281 }, { "start": 20636.98, "end": 20637.58, "probability": 0.2957 }, { "start": 20641.7, "end": 20644.98, "probability": 0.4571 }, { "start": 20645.56, "end": 20646.58, "probability": 0.66 }, { "start": 20647.38, "end": 20652.98, "probability": 0.9336 }, { "start": 20654.7, "end": 20659.0, "probability": 0.9412 }, { "start": 20659.86, "end": 20660.78, "probability": 0.9812 }, { "start": 20661.66, "end": 20664.26, "probability": 0.8989 }, { "start": 20665.24, "end": 20666.5, "probability": 0.9226 }, { "start": 20668.26, "end": 20669.42, "probability": 0.7078 }, { "start": 20670.04, "end": 20675.3, "probability": 0.9421 }, { "start": 20676.26, "end": 20677.96, "probability": 0.6703 }, { "start": 20680.5, "end": 20688.2, "probability": 0.952 }, { "start": 20688.98, "end": 20693.02, "probability": 0.9782 }, { "start": 20693.74, "end": 20694.94, "probability": 0.6846 }, { "start": 20695.68, "end": 20696.18, "probability": 0.7929 }, { "start": 20697.38, "end": 20698.36, "probability": 0.4202 }, { "start": 20699.44, "end": 20702.3, "probability": 0.801 }, { "start": 20705.66, "end": 20708.82, "probability": 0.7314 }, { "start": 20709.64, "end": 20710.22, "probability": 0.9964 }, { "start": 20710.96, "end": 20711.74, "probability": 0.9768 }, { "start": 20712.72, "end": 20713.16, "probability": 0.7834 }, { "start": 20714.18, "end": 20714.94, "probability": 0.7718 }, { "start": 20716.12, "end": 20716.7, "probability": 0.9855 }, { "start": 20717.36, "end": 20718.62, "probability": 0.8094 }, { "start": 20719.36, "end": 20721.66, "probability": 0.9705 }, { "start": 20722.3, "end": 20722.78, "probability": 0.7109 }, { "start": 20723.94, "end": 20724.72, "probability": 0.7235 }, { "start": 20726.12, "end": 20726.68, "probability": 0.894 }, { "start": 20728.02, "end": 20728.82, "probability": 0.9306 }, { "start": 20729.4, "end": 20730.26, "probability": 0.8902 }, { "start": 20731.08, "end": 20732.18, "probability": 0.9457 }, { "start": 20734.72, "end": 20738.18, "probability": 0.8356 }, { "start": 20745.52, "end": 20746.62, "probability": 0.6901 }, { "start": 20747.42, "end": 20747.94, "probability": 0.8071 }, { "start": 20748.84, "end": 20749.12, "probability": 0.5142 }, { "start": 20750.94, "end": 20751.54, "probability": 0.8804 }, { "start": 20755.82, "end": 20756.04, "probability": 0.5363 }, { "start": 20757.02, "end": 20757.68, "probability": 0.6987 }, { "start": 20758.46, "end": 20759.8, "probability": 0.886 }, { "start": 20762.42, "end": 20763.3, "probability": 0.8599 }, { "start": 20764.52, "end": 20765.7, "probability": 0.7329 }, { "start": 20766.72, "end": 20766.98, "probability": 0.9761 }, { "start": 20767.78, "end": 20769.92, "probability": 0.81 }, { "start": 20771.3, "end": 20777.52, "probability": 0.9658 }, { "start": 20778.86, "end": 20784.2, "probability": 0.8089 }, { "start": 20785.0, "end": 20785.4, "probability": 0.5501 }, { "start": 20786.94, "end": 20787.82, "probability": 0.8289 }, { "start": 20788.54, "end": 20789.14, "probability": 0.8896 }, { "start": 20789.98, "end": 20790.84, "probability": 0.9083 }, { "start": 20792.0, "end": 20792.94, "probability": 0.8465 }, { "start": 20793.46, "end": 20794.54, "probability": 0.9854 }, { "start": 20795.28, "end": 20796.78, "probability": 0.9857 }, { "start": 20798.18, "end": 20800.94, "probability": 0.9264 }, { "start": 20801.84, "end": 20802.7, "probability": 0.7973 }, { "start": 20804.16, "end": 20804.66, "probability": 0.9802 }, { "start": 20805.6, "end": 20806.7, "probability": 0.9166 }, { "start": 20807.38, "end": 20807.94, "probability": 0.9836 }, { "start": 20808.92, "end": 20809.8, "probability": 0.7479 }, { "start": 20812.34, "end": 20814.26, "probability": 0.5152 }, { "start": 20815.68, "end": 20816.7, "probability": 0.9867 }, { "start": 20817.3, "end": 20819.56, "probability": 0.7784 }, { "start": 20820.2, "end": 20820.96, "probability": 0.8365 }, { "start": 20821.74, "end": 20822.66, "probability": 0.97 }, { "start": 20823.2, "end": 20824.0, "probability": 0.7854 }, { "start": 20826.98, "end": 20829.32, "probability": 0.4989 }, { "start": 20830.24, "end": 20830.72, "probability": 0.9857 }, { "start": 20831.52, "end": 20832.46, "probability": 0.9569 }, { "start": 20833.44, "end": 20834.56, "probability": 0.8389 }, { "start": 20835.18, "end": 20836.02, "probability": 0.941 }, { "start": 20836.98, "end": 20837.36, "probability": 0.855 }, { "start": 20837.96, "end": 20839.08, "probability": 0.7572 }, { "start": 20841.8, "end": 20845.78, "probability": 0.5906 }, { "start": 20846.56, "end": 20847.44, "probability": 0.6206 }, { "start": 20848.22, "end": 20850.8, "probability": 0.8246 }, { "start": 20856.06, "end": 20858.64, "probability": 0.495 }, { "start": 20860.56, "end": 20862.6, "probability": 0.9094 }, { "start": 20864.94, "end": 20865.44, "probability": 0.98 }, { "start": 20866.72, "end": 20866.82, "probability": 0.0966 }, { "start": 20868.38, "end": 20868.92, "probability": 0.7231 }, { "start": 20869.72, "end": 20870.9, "probability": 0.6949 }, { "start": 20871.92, "end": 20872.4, "probability": 0.8669 }, { "start": 20874.46, "end": 20875.54, "probability": 0.6699 }, { "start": 20877.3, "end": 20877.86, "probability": 0.9844 }, { "start": 20878.58, "end": 20879.3, "probability": 0.8007 }, { "start": 20880.36, "end": 20880.92, "probability": 0.9915 }, { "start": 20881.94, "end": 20882.7, "probability": 0.8448 }, { "start": 20883.74, "end": 20886.08, "probability": 0.5667 }, { "start": 20888.48, "end": 20894.32, "probability": 0.9048 }, { "start": 20895.26, "end": 20895.8, "probability": 0.7179 }, { "start": 20896.74, "end": 20897.6, "probability": 0.5933 }, { "start": 20899.74, "end": 20902.72, "probability": 0.7625 }, { "start": 20906.22, "end": 20909.74, "probability": 0.845 }, { "start": 20914.7, "end": 20915.58, "probability": 0.953 }, { "start": 20916.66, "end": 20917.52, "probability": 0.811 }, { "start": 20922.06, "end": 20924.78, "probability": 0.3314 }, { "start": 20927.72, "end": 20928.3, "probability": 0.7178 }, { "start": 20929.82, "end": 20930.74, "probability": 0.5948 }, { "start": 20931.58, "end": 20932.12, "probability": 0.7871 }, { "start": 20932.8, "end": 20933.62, "probability": 0.6815 }, { "start": 20934.62, "end": 20936.8, "probability": 0.8194 }, { "start": 20937.88, "end": 20938.5, "probability": 0.9883 }, { "start": 20940.28, "end": 20941.18, "probability": 0.9634 }, { "start": 20943.06, "end": 20945.36, "probability": 0.935 }, { "start": 20950.06, "end": 20953.02, "probability": 0.8973 }, { "start": 20953.64, "end": 20955.24, "probability": 0.2733 }, { "start": 20955.92, "end": 20956.78, "probability": 0.599 }, { "start": 20959.78, "end": 20960.42, "probability": 0.7295 }, { "start": 20961.7, "end": 20962.92, "probability": 0.9053 }, { "start": 20963.68, "end": 20966.1, "probability": 0.8301 }, { "start": 20966.58, "end": 20969.18, "probability": 0.8795 }, { "start": 20970.28, "end": 20971.22, "probability": 0.978 }, { "start": 20971.76, "end": 20974.78, "probability": 0.9136 }, { "start": 20976.5, "end": 20977.94, "probability": 0.8555 }, { "start": 20979.04, "end": 20984.12, "probability": 0.7534 }, { "start": 20985.78, "end": 20986.58, "probability": 0.858 }, { "start": 20987.22, "end": 20988.0, "probability": 0.6044 }, { "start": 20988.92, "end": 20989.44, "probability": 0.9718 }, { "start": 20991.44, "end": 20992.44, "probability": 0.9114 }, { "start": 20993.56, "end": 20995.5, "probability": 0.8579 }, { "start": 20998.74, "end": 20999.22, "probability": 0.8942 }, { "start": 21001.04, "end": 21001.76, "probability": 0.7941 }, { "start": 21002.54, "end": 21004.34, "probability": 0.9202 }, { "start": 21005.34, "end": 21006.72, "probability": 0.803 }, { "start": 21008.72, "end": 21009.1, "probability": 0.5801 }, { "start": 21010.48, "end": 21013.28, "probability": 0.81 }, { "start": 21013.3, "end": 21013.5, "probability": 0.6773 }, { "start": 21014.28, "end": 21015.16, "probability": 0.4596 }, { "start": 21016.02, "end": 21016.52, "probability": 0.9556 }, { "start": 21018.28, "end": 21019.16, "probability": 0.6838 }, { "start": 21025.0, "end": 21029.32, "probability": 0.6387 }, { "start": 21030.26, "end": 21030.94, "probability": 0.9459 }, { "start": 21031.94, "end": 21032.88, "probability": 0.7448 }, { "start": 21034.12, "end": 21036.7, "probability": 0.979 }, { "start": 21037.56, "end": 21039.98, "probability": 0.9367 }, { "start": 21041.04, "end": 21041.92, "probability": 0.8929 }, { "start": 21043.72, "end": 21044.62, "probability": 0.8865 }, { "start": 21045.4, "end": 21049.02, "probability": 0.9251 }, { "start": 21050.24, "end": 21051.08, "probability": 0.7787 }, { "start": 21051.62, "end": 21052.62, "probability": 0.8222 }, { "start": 21054.36, "end": 21057.12, "probability": 0.9307 }, { "start": 21057.88, "end": 21059.54, "probability": 0.8546 }, { "start": 21060.52, "end": 21062.0, "probability": 0.9886 }, { "start": 21063.7, "end": 21064.74, "probability": 0.7004 }, { "start": 21068.86, "end": 21069.72, "probability": 0.9711 }, { "start": 21070.82, "end": 21072.7, "probability": 0.9688 }, { "start": 21073.26, "end": 21074.0, "probability": 0.9467 }, { "start": 21075.14, "end": 21075.62, "probability": 0.9619 }, { "start": 21078.06, "end": 21078.52, "probability": 0.6064 }, { "start": 21080.18, "end": 21083.54, "probability": 0.8378 }, { "start": 21084.8, "end": 21086.24, "probability": 0.9347 }, { "start": 21087.86, "end": 21088.68, "probability": 0.8217 }, { "start": 21089.6, "end": 21090.62, "probability": 0.8239 }, { "start": 21092.42, "end": 21094.08, "probability": 0.8248 }, { "start": 21094.18, "end": 21096.06, "probability": 0.9214 }, { "start": 21098.26, "end": 21099.1, "probability": 0.9576 }, { "start": 21099.8, "end": 21100.88, "probability": 0.9882 }, { "start": 21101.96, "end": 21103.22, "probability": 0.9933 }, { "start": 21104.94, "end": 21107.72, "probability": 0.7809 }, { "start": 21109.96, "end": 21110.86, "probability": 0.9554 }, { "start": 21112.58, "end": 21112.96, "probability": 0.8977 }, { "start": 21115.94, "end": 21116.84, "probability": 0.8955 }, { "start": 21117.52, "end": 21118.26, "probability": 0.8372 }, { "start": 21119.12, "end": 21120.96, "probability": 0.9263 }, { "start": 21122.06, "end": 21123.96, "probability": 0.9692 }, { "start": 21124.08, "end": 21126.32, "probability": 0.9349 }, { "start": 21128.4, "end": 21129.6, "probability": 0.0496 }, { "start": 21129.6, "end": 21129.88, "probability": 0.5408 }, { "start": 21130.36, "end": 21132.36, "probability": 0.7359 }, { "start": 21133.04, "end": 21133.7, "probability": 0.9504 }, { "start": 21134.36, "end": 21135.14, "probability": 0.4721 }, { "start": 21138.34, "end": 21141.16, "probability": 0.4229 }, { "start": 21142.6, "end": 21145.3, "probability": 0.9281 }, { "start": 21146.52, "end": 21147.92, "probability": 0.9921 }, { "start": 21148.06, "end": 21152.0, "probability": 0.8899 }, { "start": 21153.14, "end": 21154.06, "probability": 0.578 }, { "start": 21154.6, "end": 21154.98, "probability": 0.6378 }, { "start": 21156.82, "end": 21158.34, "probability": 0.0329 }, { "start": 21166.6, "end": 21170.0, "probability": 0.0328 }, { "start": 21170.59, "end": 21171.22, "probability": 0.6932 }, { "start": 21208.12, "end": 21209.3, "probability": 0.1482 }, { "start": 21247.98, "end": 21249.34, "probability": 0.9481 }, { "start": 21252.29, "end": 21258.48, "probability": 0.9574 }, { "start": 21259.16, "end": 21261.1, "probability": 0.9004 }, { "start": 21262.36, "end": 21264.2, "probability": 0.9528 }, { "start": 21264.94, "end": 21266.22, "probability": 0.8074 }, { "start": 21267.14, "end": 21269.06, "probability": 0.6531 }, { "start": 21269.68, "end": 21272.48, "probability": 0.9941 }, { "start": 21273.1, "end": 21275.22, "probability": 0.4867 }, { "start": 21275.96, "end": 21277.88, "probability": 0.9565 }, { "start": 21279.38, "end": 21281.86, "probability": 0.7395 }, { "start": 21284.18, "end": 21285.2, "probability": 0.6551 }, { "start": 21285.96, "end": 21286.64, "probability": 0.9666 }, { "start": 21289.92, "end": 21291.98, "probability": 0.7986 }, { "start": 21293.84, "end": 21294.26, "probability": 0.8021 }, { "start": 21294.3, "end": 21296.42, "probability": 0.9517 }, { "start": 21296.76, "end": 21299.76, "probability": 0.9812 }, { "start": 21300.3, "end": 21305.4, "probability": 0.9924 }, { "start": 21306.1, "end": 21308.32, "probability": 0.9927 }, { "start": 21308.4, "end": 21311.4, "probability": 0.7578 }, { "start": 21311.7, "end": 21315.94, "probability": 0.8838 }, { "start": 21317.38, "end": 21321.5, "probability": 0.0416 }, { "start": 21322.3, "end": 21322.3, "probability": 0.4377 }, { "start": 21322.3, "end": 21324.48, "probability": 0.465 }, { "start": 21324.94, "end": 21326.42, "probability": 0.6481 }, { "start": 21326.56, "end": 21327.74, "probability": 0.8862 }, { "start": 21328.0, "end": 21328.82, "probability": 0.9552 }, { "start": 21328.9, "end": 21330.3, "probability": 0.9948 }, { "start": 21332.96, "end": 21332.96, "probability": 0.1377 }, { "start": 21332.96, "end": 21333.28, "probability": 0.1715 }, { "start": 21333.36, "end": 21333.38, "probability": 0.1292 }, { "start": 21333.38, "end": 21334.18, "probability": 0.3076 }, { "start": 21336.7, "end": 21339.6, "probability": 0.7465 }, { "start": 21339.66, "end": 21342.22, "probability": 0.8136 }, { "start": 21342.3, "end": 21344.34, "probability": 0.9827 }, { "start": 21344.52, "end": 21345.1, "probability": 0.5668 }, { "start": 21345.78, "end": 21346.88, "probability": 0.8571 }, { "start": 21347.14, "end": 21348.46, "probability": 0.5521 }, { "start": 21349.4, "end": 21350.82, "probability": 0.932 }, { "start": 21351.26, "end": 21351.86, "probability": 0.9328 }, { "start": 21352.0, "end": 21353.0, "probability": 0.7521 }, { "start": 21353.04, "end": 21355.14, "probability": 0.9517 }, { "start": 21355.48, "end": 21359.54, "probability": 0.809 }, { "start": 21360.0, "end": 21362.96, "probability": 0.915 }, { "start": 21363.54, "end": 21368.9, "probability": 0.8243 }, { "start": 21369.5, "end": 21371.74, "probability": 0.7959 }, { "start": 21372.46, "end": 21372.96, "probability": 0.6064 }, { "start": 21373.5, "end": 21375.16, "probability": 0.5736 }, { "start": 21375.76, "end": 21378.28, "probability": 0.7138 }, { "start": 21378.36, "end": 21378.76, "probability": 0.4594 }, { "start": 21378.88, "end": 21380.06, "probability": 0.8706 }, { "start": 21380.3, "end": 21383.98, "probability": 0.8401 }, { "start": 21384.44, "end": 21386.56, "probability": 0.7802 }, { "start": 21386.98, "end": 21387.62, "probability": 0.4549 }, { "start": 21387.86, "end": 21393.14, "probability": 0.5773 }, { "start": 21393.26, "end": 21394.64, "probability": 0.8232 }, { "start": 21395.34, "end": 21398.74, "probability": 0.9932 }, { "start": 21399.08, "end": 21399.44, "probability": 0.886 }, { "start": 21399.6, "end": 21401.86, "probability": 0.9752 }, { "start": 21402.26, "end": 21404.2, "probability": 0.9628 }, { "start": 21404.5, "end": 21407.89, "probability": 0.9814 }, { "start": 21408.08, "end": 21410.32, "probability": 0.9586 }, { "start": 21411.08, "end": 21412.54, "probability": 0.9761 }, { "start": 21413.44, "end": 21414.22, "probability": 0.7564 }, { "start": 21415.72, "end": 21418.38, "probability": 0.9889 }, { "start": 21420.08, "end": 21422.56, "probability": 0.967 }, { "start": 21423.34, "end": 21424.14, "probability": 0.5705 }, { "start": 21424.28, "end": 21429.82, "probability": 0.9463 }, { "start": 21430.84, "end": 21433.14, "probability": 0.8503 }, { "start": 21433.16, "end": 21433.52, "probability": 0.4992 }, { "start": 21433.6, "end": 21434.22, "probability": 0.7486 }, { "start": 21434.64, "end": 21436.14, "probability": 0.9549 }, { "start": 21437.04, "end": 21439.38, "probability": 0.9787 }, { "start": 21439.48, "end": 21440.6, "probability": 0.4465 }, { "start": 21440.64, "end": 21440.94, "probability": 0.7483 }, { "start": 21441.76, "end": 21442.62, "probability": 0.7545 }, { "start": 21442.7, "end": 21447.04, "probability": 0.7687 }, { "start": 21447.7, "end": 21449.94, "probability": 0.708 }, { "start": 21450.38, "end": 21452.76, "probability": 0.9932 }, { "start": 21452.84, "end": 21453.18, "probability": 0.6576 }, { "start": 21453.76, "end": 21454.58, "probability": 0.9732 }, { "start": 21456.14, "end": 21457.04, "probability": 0.6482 }, { "start": 21457.76, "end": 21459.5, "probability": 0.9496 }, { "start": 21459.58, "end": 21461.56, "probability": 0.9476 }, { "start": 21461.66, "end": 21462.06, "probability": 0.9654 }, { "start": 21462.54, "end": 21464.86, "probability": 0.9893 }, { "start": 21465.76, "end": 21468.14, "probability": 0.9692 }, { "start": 21468.3, "end": 21469.04, "probability": 0.7356 }, { "start": 21469.68, "end": 21473.32, "probability": 0.8037 }, { "start": 21474.8, "end": 21477.1, "probability": 0.9763 }, { "start": 21477.46, "end": 21480.36, "probability": 0.9491 }, { "start": 21481.32, "end": 21483.38, "probability": 0.9973 }, { "start": 21484.34, "end": 21485.98, "probability": 0.9921 }, { "start": 21487.82, "end": 21487.82, "probability": 0.1641 }, { "start": 21487.82, "end": 21487.96, "probability": 0.3794 }, { "start": 21488.02, "end": 21488.7, "probability": 0.7268 }, { "start": 21489.74, "end": 21492.54, "probability": 0.8693 }, { "start": 21493.16, "end": 21494.32, "probability": 0.8552 }, { "start": 21494.46, "end": 21494.9, "probability": 0.5378 }, { "start": 21495.7, "end": 21496.24, "probability": 0.6369 }, { "start": 21497.3, "end": 21498.58, "probability": 0.9912 }, { "start": 21499.96, "end": 21503.4, "probability": 0.871 }, { "start": 21503.46, "end": 21503.92, "probability": 0.7489 }, { "start": 21504.16, "end": 21507.9, "probability": 0.6755 }, { "start": 21508.24, "end": 21508.72, "probability": 0.6615 }, { "start": 21508.8, "end": 21509.2, "probability": 0.753 }, { "start": 21509.26, "end": 21509.68, "probability": 0.8541 }, { "start": 21510.1, "end": 21510.76, "probability": 0.4913 }, { "start": 21510.78, "end": 21514.08, "probability": 0.9267 }, { "start": 21514.52, "end": 21514.84, "probability": 0.5834 }, { "start": 21515.22, "end": 21517.0, "probability": 0.9359 }, { "start": 21517.2, "end": 21518.28, "probability": 0.9015 }, { "start": 21518.4, "end": 21521.28, "probability": 0.9904 }, { "start": 21521.8, "end": 21524.58, "probability": 0.9938 }, { "start": 21525.74, "end": 21529.12, "probability": 0.7755 }, { "start": 21529.24, "end": 21532.28, "probability": 0.7993 }, { "start": 21532.92, "end": 21533.6, "probability": 0.3913 }, { "start": 21533.82, "end": 21535.08, "probability": 0.9648 }, { "start": 21535.2, "end": 21535.54, "probability": 0.6103 }, { "start": 21535.54, "end": 21536.74, "probability": 0.9932 }, { "start": 21537.48, "end": 21539.46, "probability": 0.7629 }, { "start": 21540.06, "end": 21542.64, "probability": 0.7193 }, { "start": 21543.66, "end": 21544.66, "probability": 0.7548 }, { "start": 21544.66, "end": 21545.68, "probability": 0.798 }, { "start": 21546.64, "end": 21550.98, "probability": 0.8046 }, { "start": 21551.24, "end": 21554.26, "probability": 0.7837 }, { "start": 21554.84, "end": 21558.02, "probability": 0.9701 }, { "start": 21558.56, "end": 21560.0, "probability": 0.7295 }, { "start": 21560.75, "end": 21562.92, "probability": 0.8594 }, { "start": 21563.88, "end": 21565.5, "probability": 0.8836 }, { "start": 21566.28, "end": 21567.1, "probability": 0.6685 }, { "start": 21567.22, "end": 21568.89, "probability": 0.5383 }, { "start": 21569.1, "end": 21569.76, "probability": 0.5231 }, { "start": 21570.22, "end": 21573.84, "probability": 0.801 }, { "start": 21574.62, "end": 21575.72, "probability": 0.9036 }, { "start": 21576.4, "end": 21577.54, "probability": 0.7695 }, { "start": 21577.64, "end": 21578.0, "probability": 0.4331 }, { "start": 21578.04, "end": 21578.92, "probability": 0.8702 }, { "start": 21579.02, "end": 21583.86, "probability": 0.9752 }, { "start": 21584.26, "end": 21585.0, "probability": 0.9386 }, { "start": 21586.0, "end": 21588.54, "probability": 0.5133 }, { "start": 21589.14, "end": 21592.92, "probability": 0.8295 }, { "start": 21593.78, "end": 21597.36, "probability": 0.9958 }, { "start": 21598.32, "end": 21601.4, "probability": 0.998 }, { "start": 21602.86, "end": 21603.66, "probability": 0.8766 }, { "start": 21603.88, "end": 21604.48, "probability": 0.6255 }, { "start": 21605.26, "end": 21606.14, "probability": 0.5696 }, { "start": 21606.34, "end": 21610.52, "probability": 0.9845 }, { "start": 21610.62, "end": 21611.38, "probability": 0.7218 }, { "start": 21612.22, "end": 21613.5, "probability": 0.7173 }, { "start": 21614.52, "end": 21615.8, "probability": 0.9748 }, { "start": 21616.36, "end": 21620.54, "probability": 0.9246 }, { "start": 21620.7, "end": 21623.2, "probability": 0.9268 }, { "start": 21624.54, "end": 21625.98, "probability": 0.9349 }, { "start": 21626.46, "end": 21629.24, "probability": 0.8525 }, { "start": 21629.74, "end": 21633.76, "probability": 0.6654 }, { "start": 21634.32, "end": 21639.42, "probability": 0.9946 }, { "start": 21639.76, "end": 21642.38, "probability": 0.8411 }, { "start": 21644.28, "end": 21646.2, "probability": 0.7449 }, { "start": 21646.9, "end": 21651.74, "probability": 0.9816 }, { "start": 21653.0, "end": 21654.52, "probability": 0.9987 }, { "start": 21655.18, "end": 21656.12, "probability": 0.739 }, { "start": 21656.24, "end": 21656.92, "probability": 0.9731 }, { "start": 21657.0, "end": 21657.42, "probability": 0.8014 }, { "start": 21657.96, "end": 21658.5, "probability": 0.7186 }, { "start": 21659.64, "end": 21661.64, "probability": 0.9681 }, { "start": 21662.06, "end": 21663.46, "probability": 0.9346 }, { "start": 21664.1, "end": 21665.68, "probability": 0.7372 }, { "start": 21665.8, "end": 21668.16, "probability": 0.9861 }, { "start": 21670.02, "end": 21671.52, "probability": 0.9155 }, { "start": 21671.6, "end": 21673.34, "probability": 0.6659 }, { "start": 21673.98, "end": 21676.18, "probability": 0.9956 }, { "start": 21676.5, "end": 21677.92, "probability": 0.8967 }, { "start": 21678.04, "end": 21678.2, "probability": 0.5093 }, { "start": 21678.46, "end": 21678.85, "probability": 0.7574 }, { "start": 21679.5, "end": 21682.42, "probability": 0.6055 }, { "start": 21682.72, "end": 21689.36, "probability": 0.5997 }, { "start": 21689.36, "end": 21690.52, "probability": 0.2021 }, { "start": 21690.92, "end": 21692.41, "probability": 0.6616 }, { "start": 21693.6, "end": 21694.46, "probability": 0.6597 }, { "start": 21697.58, "end": 21702.86, "probability": 0.9297 }, { "start": 21702.94, "end": 21703.66, "probability": 0.9351 }, { "start": 21703.86, "end": 21704.42, "probability": 0.3799 }, { "start": 21704.52, "end": 21704.98, "probability": 0.4867 }, { "start": 21707.56, "end": 21708.54, "probability": 0.0993 }, { "start": 21708.54, "end": 21708.54, "probability": 0.3389 }, { "start": 21708.7, "end": 21713.84, "probability": 0.9465 }, { "start": 21713.84, "end": 21718.84, "probability": 0.9811 }, { "start": 21719.38, "end": 21721.42, "probability": 0.8504 }, { "start": 21721.66, "end": 21724.62, "probability": 0.9751 }, { "start": 21724.7, "end": 21725.88, "probability": 0.7575 }, { "start": 21726.3, "end": 21727.04, "probability": 0.5818 }, { "start": 21727.96, "end": 21728.36, "probability": 0.0621 }, { "start": 21728.58, "end": 21731.34, "probability": 0.8572 }, { "start": 21731.92, "end": 21734.68, "probability": 0.975 }, { "start": 21735.26, "end": 21736.4, "probability": 0.5475 }, { "start": 21737.12, "end": 21739.32, "probability": 0.9285 }, { "start": 21740.36, "end": 21741.8, "probability": 0.6953 }, { "start": 21743.44, "end": 21746.7, "probability": 0.9404 }, { "start": 21747.06, "end": 21748.26, "probability": 0.9038 }, { "start": 21749.1, "end": 21751.6, "probability": 0.8864 }, { "start": 21752.54, "end": 21759.26, "probability": 0.8667 }, { "start": 21759.96, "end": 21763.56, "probability": 0.5962 }, { "start": 21763.82, "end": 21764.46, "probability": 0.4303 }, { "start": 21764.56, "end": 21764.66, "probability": 0.3679 }, { "start": 21764.66, "end": 21765.56, "probability": 0.7307 }, { "start": 21765.76, "end": 21766.7, "probability": 0.6412 }, { "start": 21767.28, "end": 21769.96, "probability": 0.9707 }, { "start": 21773.52, "end": 21774.62, "probability": 0.0328 }, { "start": 21774.62, "end": 21774.62, "probability": 0.1245 }, { "start": 21774.62, "end": 21775.11, "probability": 0.181 }, { "start": 21776.06, "end": 21776.64, "probability": 0.6476 }, { "start": 21776.9, "end": 21777.96, "probability": 0.8513 }, { "start": 21778.4, "end": 21779.5, "probability": 0.5576 }, { "start": 21781.63, "end": 21787.3, "probability": 0.9861 }, { "start": 21787.46, "end": 21790.28, "probability": 0.9858 }, { "start": 21791.32, "end": 21792.8, "probability": 0.3276 }, { "start": 21793.72, "end": 21796.56, "probability": 0.6176 }, { "start": 21796.62, "end": 21797.92, "probability": 0.6653 }, { "start": 21798.64, "end": 21801.56, "probability": 0.7236 }, { "start": 21802.22, "end": 21806.16, "probability": 0.9705 }, { "start": 21806.48, "end": 21808.92, "probability": 0.7035 }, { "start": 21809.22, "end": 21809.66, "probability": 0.863 }, { "start": 21809.78, "end": 21810.46, "probability": 0.7153 }, { "start": 21810.6, "end": 21812.02, "probability": 0.7114 }, { "start": 21812.48, "end": 21813.82, "probability": 0.7268 }, { "start": 21814.16, "end": 21817.06, "probability": 0.939 }, { "start": 21817.24, "end": 21818.7, "probability": 0.9271 }, { "start": 21819.6, "end": 21821.38, "probability": 0.9829 }, { "start": 21822.24, "end": 21822.71, "probability": 0.9248 }, { "start": 21823.22, "end": 21824.48, "probability": 0.9915 }, { "start": 21825.3, "end": 21827.07, "probability": 0.9902 }, { "start": 21827.3, "end": 21828.54, "probability": 0.9844 }, { "start": 21829.04, "end": 21831.38, "probability": 0.7719 }, { "start": 21831.9, "end": 21837.24, "probability": 0.9594 }, { "start": 21837.34, "end": 21837.52, "probability": 0.477 }, { "start": 21837.62, "end": 21837.92, "probability": 0.4834 }, { "start": 21839.0, "end": 21840.4, "probability": 0.9087 }, { "start": 21841.54, "end": 21845.74, "probability": 0.9888 }, { "start": 21846.6, "end": 21848.4, "probability": 0.9539 }, { "start": 21848.92, "end": 21849.8, "probability": 0.9718 }, { "start": 21851.04, "end": 21853.94, "probability": 0.9985 }, { "start": 21854.68, "end": 21855.31, "probability": 0.6874 }, { "start": 21855.64, "end": 21859.36, "probability": 0.9912 }, { "start": 21860.14, "end": 21861.52, "probability": 0.9462 }, { "start": 21862.56, "end": 21864.16, "probability": 0.9629 }, { "start": 21865.64, "end": 21867.64, "probability": 0.9543 }, { "start": 21869.46, "end": 21870.96, "probability": 0.6195 }, { "start": 21871.58, "end": 21873.08, "probability": 0.9829 }, { "start": 21873.9, "end": 21878.02, "probability": 0.8867 }, { "start": 21878.6, "end": 21880.13, "probability": 0.9385 }, { "start": 21880.88, "end": 21882.46, "probability": 0.952 }, { "start": 21882.94, "end": 21883.7, "probability": 0.396 }, { "start": 21883.98, "end": 21887.14, "probability": 0.9188 }, { "start": 21888.44, "end": 21890.26, "probability": 0.8276 }, { "start": 21891.22, "end": 21892.16, "probability": 0.4526 }, { "start": 21892.84, "end": 21895.12, "probability": 0.8678 }, { "start": 21895.94, "end": 21900.48, "probability": 0.9954 }, { "start": 21900.76, "end": 21901.02, "probability": 0.6915 }, { "start": 21901.14, "end": 21902.48, "probability": 0.7877 }, { "start": 21902.58, "end": 21904.82, "probability": 0.9943 }, { "start": 21905.36, "end": 21906.44, "probability": 0.8188 }, { "start": 21907.68, "end": 21908.18, "probability": 0.8973 }, { "start": 21910.38, "end": 21911.94, "probability": 0.7079 }, { "start": 21913.76, "end": 21914.66, "probability": 0.9016 }, { "start": 21918.64, "end": 21923.24, "probability": 0.5699 }, { "start": 21923.24, "end": 21928.82, "probability": 0.7268 }, { "start": 21928.9, "end": 21929.53, "probability": 0.609 }, { "start": 21930.36, "end": 21931.84, "probability": 0.3216 }, { "start": 21931.88, "end": 21932.52, "probability": 0.7646 }, { "start": 21932.52, "end": 21934.2, "probability": 0.4222 }, { "start": 21934.96, "end": 21942.32, "probability": 0.6911 }, { "start": 21943.32, "end": 21944.06, "probability": 0.7765 }, { "start": 21945.38, "end": 21947.76, "probability": 0.9606 }, { "start": 21948.88, "end": 21949.58, "probability": 0.8181 }, { "start": 21951.22, "end": 21954.66, "probability": 0.9973 }, { "start": 21955.8, "end": 21959.58, "probability": 0.9869 }, { "start": 21961.08, "end": 21962.22, "probability": 0.7157 }, { "start": 21962.98, "end": 21963.8, "probability": 0.8734 }, { "start": 21963.92, "end": 21967.28, "probability": 0.9495 }, { "start": 21968.06, "end": 21970.66, "probability": 0.9936 }, { "start": 21971.2, "end": 21973.24, "probability": 0.8003 }, { "start": 21973.58, "end": 21974.4, "probability": 0.4819 }, { "start": 21975.4, "end": 21980.52, "probability": 0.8271 }, { "start": 21982.46, "end": 21986.02, "probability": 0.9089 }, { "start": 21988.4, "end": 21990.58, "probability": 0.865 }, { "start": 21991.42, "end": 21993.72, "probability": 0.6593 }, { "start": 21993.74, "end": 21994.78, "probability": 0.9065 }, { "start": 21994.82, "end": 21996.44, "probability": 0.7845 }, { "start": 21996.72, "end": 21997.94, "probability": 0.7705 }, { "start": 21998.44, "end": 21999.4, "probability": 0.6913 }, { "start": 22000.24, "end": 22000.64, "probability": 0.5161 }, { "start": 22000.7, "end": 22001.8, "probability": 0.9221 }, { "start": 22001.9, "end": 22002.95, "probability": 0.7495 }, { "start": 22003.02, "end": 22004.32, "probability": 0.8631 }, { "start": 22004.34, "end": 22006.88, "probability": 0.9752 }, { "start": 22007.44, "end": 22011.28, "probability": 0.989 }, { "start": 22011.28, "end": 22014.28, "probability": 0.9669 }, { "start": 22014.4, "end": 22015.02, "probability": 0.457 }, { "start": 22015.86, "end": 22019.24, "probability": 0.8385 }, { "start": 22019.92, "end": 22021.44, "probability": 0.9961 }, { "start": 22022.48, "end": 22026.1, "probability": 0.9666 }, { "start": 22026.18, "end": 22027.48, "probability": 0.9644 }, { "start": 22028.08, "end": 22031.66, "probability": 0.9904 }, { "start": 22032.9, "end": 22038.96, "probability": 0.6215 }, { "start": 22039.96, "end": 22043.54, "probability": 0.9769 }, { "start": 22044.5, "end": 22047.06, "probability": 0.9721 }, { "start": 22047.66, "end": 22050.46, "probability": 0.9239 }, { "start": 22051.06, "end": 22053.52, "probability": 0.9952 }, { "start": 22054.24, "end": 22056.16, "probability": 0.7393 }, { "start": 22057.36, "end": 22062.32, "probability": 0.9224 }, { "start": 22063.0, "end": 22063.48, "probability": 0.9836 }, { "start": 22063.86, "end": 22065.44, "probability": 0.9878 }, { "start": 22065.96, "end": 22067.36, "probability": 0.9711 }, { "start": 22067.92, "end": 22069.56, "probability": 0.8638 }, { "start": 22070.38, "end": 22072.8, "probability": 0.9915 }, { "start": 22072.8, "end": 22077.32, "probability": 0.9547 }, { "start": 22077.92, "end": 22079.18, "probability": 0.9746 }, { "start": 22079.98, "end": 22081.78, "probability": 0.752 }, { "start": 22082.4, "end": 22084.84, "probability": 0.9286 }, { "start": 22085.94, "end": 22090.32, "probability": 0.7457 }, { "start": 22090.66, "end": 22093.86, "probability": 0.8904 }, { "start": 22094.2, "end": 22096.36, "probability": 0.9946 }, { "start": 22098.9, "end": 22100.88, "probability": 0.9967 }, { "start": 22103.74, "end": 22105.8, "probability": 0.9501 }, { "start": 22106.54, "end": 22107.05, "probability": 0.8906 }, { "start": 22107.64, "end": 22108.26, "probability": 0.6465 }, { "start": 22108.78, "end": 22110.66, "probability": 0.9716 }, { "start": 22111.82, "end": 22112.72, "probability": 0.8981 }, { "start": 22113.46, "end": 22114.5, "probability": 0.9692 }, { "start": 22114.9, "end": 22117.18, "probability": 0.9071 }, { "start": 22117.8, "end": 22119.6, "probability": 0.867 }, { "start": 22120.24, "end": 22123.14, "probability": 0.6932 }, { "start": 22123.3, "end": 22127.24, "probability": 0.9661 }, { "start": 22128.0, "end": 22131.46, "probability": 0.9482 }, { "start": 22131.98, "end": 22132.96, "probability": 0.8986 }, { "start": 22133.56, "end": 22136.56, "probability": 0.9932 }, { "start": 22136.62, "end": 22137.48, "probability": 0.9839 }, { "start": 22138.36, "end": 22140.8, "probability": 0.9954 }, { "start": 22141.74, "end": 22143.18, "probability": 0.6576 }, { "start": 22143.24, "end": 22144.04, "probability": 0.8791 }, { "start": 22144.48, "end": 22144.96, "probability": 0.8854 }, { "start": 22145.38, "end": 22146.12, "probability": 0.9472 }, { "start": 22146.22, "end": 22148.3, "probability": 0.7339 }, { "start": 22148.46, "end": 22149.8, "probability": 0.948 }, { "start": 22150.0, "end": 22151.7, "probability": 0.937 }, { "start": 22151.96, "end": 22152.67, "probability": 0.488 }, { "start": 22153.34, "end": 22157.08, "probability": 0.7293 }, { "start": 22158.66, "end": 22162.06, "probability": 0.9383 }, { "start": 22162.46, "end": 22163.22, "probability": 0.8472 }, { "start": 22163.26, "end": 22164.86, "probability": 0.7885 }, { "start": 22165.78, "end": 22166.34, "probability": 0.4664 }, { "start": 22166.98, "end": 22168.46, "probability": 0.9639 }, { "start": 22169.22, "end": 22171.94, "probability": 0.972 }, { "start": 22171.94, "end": 22175.16, "probability": 0.9977 }, { "start": 22175.22, "end": 22176.9, "probability": 0.5165 }, { "start": 22177.7, "end": 22180.94, "probability": 0.9361 }, { "start": 22181.08, "end": 22184.82, "probability": 0.8768 }, { "start": 22185.8, "end": 22188.16, "probability": 0.7456 }, { "start": 22191.38, "end": 22194.38, "probability": 0.9933 }, { "start": 22194.5, "end": 22195.68, "probability": 0.7828 }, { "start": 22196.18, "end": 22197.08, "probability": 0.4037 }, { "start": 22197.3, "end": 22199.58, "probability": 0.9448 }, { "start": 22200.48, "end": 22205.48, "probability": 0.9276 }, { "start": 22206.74, "end": 22208.6, "probability": 0.9888 }, { "start": 22208.64, "end": 22211.96, "probability": 0.9707 }, { "start": 22213.68, "end": 22215.36, "probability": 0.9989 }, { "start": 22216.44, "end": 22218.8, "probability": 0.9992 }, { "start": 22219.62, "end": 22222.5, "probability": 0.7918 }, { "start": 22223.54, "end": 22225.82, "probability": 0.0775 }, { "start": 22227.64, "end": 22230.74, "probability": 0.0151 }, { "start": 22231.54, "end": 22231.54, "probability": 0.1151 }, { "start": 22231.54, "end": 22232.08, "probability": 0.4684 }, { "start": 22232.08, "end": 22234.54, "probability": 0.9271 }, { "start": 22236.34, "end": 22238.7, "probability": 0.8887 }, { "start": 22240.32, "end": 22241.56, "probability": 0.9087 }, { "start": 22242.5, "end": 22245.04, "probability": 0.996 }, { "start": 22245.14, "end": 22247.48, "probability": 0.932 }, { "start": 22247.88, "end": 22249.74, "probability": 0.9968 }, { "start": 22250.4, "end": 22250.7, "probability": 0.4597 }, { "start": 22251.64, "end": 22254.74, "probability": 0.9713 }, { "start": 22255.36, "end": 22258.38, "probability": 0.2863 }, { "start": 22258.38, "end": 22258.38, "probability": 0.0285 }, { "start": 22258.38, "end": 22260.18, "probability": 0.4904 }, { "start": 22260.26, "end": 22261.3, "probability": 0.9583 }, { "start": 22261.8, "end": 22263.0, "probability": 0.807 }, { "start": 22263.34, "end": 22264.66, "probability": 0.96 }, { "start": 22264.82, "end": 22265.28, "probability": 0.2246 }, { "start": 22265.62, "end": 22266.96, "probability": 0.9114 }, { "start": 22267.36, "end": 22270.34, "probability": 0.8093 }, { "start": 22270.68, "end": 22271.3, "probability": 0.7595 }, { "start": 22271.82, "end": 22272.84, "probability": 0.8836 }, { "start": 22273.38, "end": 22275.44, "probability": 0.9462 }, { "start": 22276.54, "end": 22279.64, "probability": 0.766 }, { "start": 22279.84, "end": 22282.82, "probability": 0.9596 }, { "start": 22283.34, "end": 22285.58, "probability": 0.4577 }, { "start": 22285.58, "end": 22287.2, "probability": 0.3774 }, { "start": 22287.5, "end": 22292.04, "probability": 0.3962 }, { "start": 22292.5, "end": 22296.58, "probability": 0.8608 }, { "start": 22297.54, "end": 22297.94, "probability": 0.073 }, { "start": 22297.98, "end": 22298.1, "probability": 0.0466 }, { "start": 22298.1, "end": 22298.1, "probability": 0.258 }, { "start": 22298.1, "end": 22300.54, "probability": 0.3169 }, { "start": 22301.52, "end": 22302.96, "probability": 0.5074 }, { "start": 22303.5, "end": 22304.58, "probability": 0.012 }, { "start": 22305.52, "end": 22306.4, "probability": 0.0048 }, { "start": 22306.84, "end": 22309.62, "probability": 0.1049 }, { "start": 22309.62, "end": 22309.62, "probability": 0.2069 }, { "start": 22309.62, "end": 22310.3, "probability": 0.0966 }, { "start": 22310.4, "end": 22312.08, "probability": 0.9574 }, { "start": 22313.88, "end": 22316.86, "probability": 0.9641 }, { "start": 22317.58, "end": 22318.8, "probability": 0.9619 }, { "start": 22319.62, "end": 22323.0, "probability": 0.9847 }, { "start": 22323.4, "end": 22326.0, "probability": 0.7374 }, { "start": 22327.14, "end": 22331.42, "probability": 0.9937 }, { "start": 22332.94, "end": 22335.14, "probability": 0.9937 }, { "start": 22335.32, "end": 22336.72, "probability": 0.9485 }, { "start": 22337.42, "end": 22340.28, "probability": 0.8289 }, { "start": 22341.82, "end": 22342.96, "probability": 0.5075 }, { "start": 22344.16, "end": 22345.76, "probability": 0.9861 }, { "start": 22346.44, "end": 22347.38, "probability": 0.9604 }, { "start": 22348.32, "end": 22351.44, "probability": 0.9945 }, { "start": 22351.44, "end": 22354.64, "probability": 0.6671 }, { "start": 22355.82, "end": 22358.0, "probability": 0.8325 }, { "start": 22358.04, "end": 22359.52, "probability": 0.8266 }, { "start": 22359.76, "end": 22361.56, "probability": 0.8506 }, { "start": 22361.8, "end": 22364.68, "probability": 0.9678 }, { "start": 22365.24, "end": 22367.36, "probability": 0.8623 }, { "start": 22370.94, "end": 22373.88, "probability": 0.9351 }, { "start": 22377.42, "end": 22379.74, "probability": 0.9543 }, { "start": 22381.04, "end": 22383.04, "probability": 0.9934 }, { "start": 22384.46, "end": 22387.56, "probability": 0.976 }, { "start": 22388.38, "end": 22391.62, "probability": 0.9722 }, { "start": 22392.2, "end": 22393.34, "probability": 0.9989 }, { "start": 22394.1, "end": 22395.32, "probability": 0.7707 }, { "start": 22396.12, "end": 22397.42, "probability": 0.9681 }, { "start": 22398.08, "end": 22399.04, "probability": 0.8909 }, { "start": 22399.74, "end": 22401.62, "probability": 0.9459 }, { "start": 22401.74, "end": 22402.92, "probability": 0.9824 }, { "start": 22403.36, "end": 22405.88, "probability": 0.6944 }, { "start": 22406.38, "end": 22407.32, "probability": 0.8903 }, { "start": 22407.6, "end": 22409.4, "probability": 0.9552 }, { "start": 22410.08, "end": 22412.34, "probability": 0.926 }, { "start": 22414.26, "end": 22414.56, "probability": 0.0137 }, { "start": 22414.84, "end": 22418.6, "probability": 0.9479 }, { "start": 22418.78, "end": 22419.06, "probability": 0.5111 }, { "start": 22419.52, "end": 22422.12, "probability": 0.1252 }, { "start": 22423.18, "end": 22425.06, "probability": 0.1181 }, { "start": 22425.2, "end": 22426.55, "probability": 0.1125 }, { "start": 22429.34, "end": 22429.34, "probability": 0.4885 }, { "start": 22429.34, "end": 22430.32, "probability": 0.1671 }, { "start": 22431.34, "end": 22433.1, "probability": 0.4475 }, { "start": 22434.0, "end": 22437.74, "probability": 0.7167 }, { "start": 22437.74, "end": 22442.14, "probability": 0.5904 }, { "start": 22442.14, "end": 22444.06, "probability": 0.5817 }, { "start": 22444.92, "end": 22445.22, "probability": 0.0387 }, { "start": 22445.92, "end": 22447.34, "probability": 0.2698 }, { "start": 22447.48, "end": 22448.14, "probability": 0.8422 }, { "start": 22455.88, "end": 22457.06, "probability": 0.6445 }, { "start": 22457.1, "end": 22457.86, "probability": 0.8243 }, { "start": 22457.98, "end": 22459.18, "probability": 0.8359 }, { "start": 22459.36, "end": 22460.28, "probability": 0.6902 }, { "start": 22460.4, "end": 22461.13, "probability": 0.8569 }, { "start": 22462.34, "end": 22465.98, "probability": 0.9902 }, { "start": 22466.04, "end": 22467.46, "probability": 0.9231 }, { "start": 22467.48, "end": 22467.8, "probability": 0.9801 }, { "start": 22468.34, "end": 22470.08, "probability": 0.9182 }, { "start": 22470.83, "end": 22471.08, "probability": 0.6797 }, { "start": 22471.64, "end": 22473.64, "probability": 0.4163 }, { "start": 22474.34, "end": 22475.86, "probability": 0.6363 }, { "start": 22476.24, "end": 22478.07, "probability": 0.9886 }, { "start": 22478.6, "end": 22480.74, "probability": 0.7501 }, { "start": 22480.88, "end": 22485.24, "probability": 0.6895 }, { "start": 22485.86, "end": 22489.04, "probability": 0.9744 }, { "start": 22489.64, "end": 22491.18, "probability": 0.8148 }, { "start": 22491.44, "end": 22495.9, "probability": 0.9929 }, { "start": 22495.9, "end": 22499.62, "probability": 0.9914 }, { "start": 22500.26, "end": 22501.8, "probability": 0.9202 }, { "start": 22502.58, "end": 22504.45, "probability": 0.9574 }, { "start": 22505.38, "end": 22509.88, "probability": 0.9521 }, { "start": 22509.94, "end": 22511.28, "probability": 0.9249 }, { "start": 22511.8, "end": 22514.42, "probability": 0.3291 }, { "start": 22514.42, "end": 22519.14, "probability": 0.5884 }, { "start": 22519.52, "end": 22523.98, "probability": 0.4602 }, { "start": 22525.0, "end": 22528.0, "probability": 0.2116 }, { "start": 22528.56, "end": 22531.26, "probability": 0.0566 }, { "start": 22531.56, "end": 22533.36, "probability": 0.1524 }, { "start": 22535.28, "end": 22536.38, "probability": 0.0306 }, { "start": 22536.62, "end": 22538.72, "probability": 0.0397 }, { "start": 22541.33, "end": 22543.1, "probability": 0.1392 }, { "start": 22543.1, "end": 22543.66, "probability": 0.1294 }, { "start": 22547.6, "end": 22548.26, "probability": 0.0098 }, { "start": 22555.2, "end": 22557.88, "probability": 0.0966 }, { "start": 22560.8, "end": 22561.06, "probability": 0.1658 }, { "start": 22571.0, "end": 22571.92, "probability": 0.1909 }, { "start": 22571.92, "end": 22572.96, "probability": 0.0754 }, { "start": 22572.96, "end": 22574.22, "probability": 0.0086 }, { "start": 22576.02, "end": 22584.78, "probability": 0.11 }, { "start": 22585.64, "end": 22588.04, "probability": 0.028 }, { "start": 22588.74, "end": 22592.0, "probability": 0.0104 }, { "start": 22592.18, "end": 22592.84, "probability": 0.0628 }, { "start": 22592.92, "end": 22593.62, "probability": 0.0243 }, { "start": 22593.62, "end": 22593.98, "probability": 0.1105 }, { "start": 22594.14, "end": 22594.9, "probability": 0.0856 }, { "start": 22595.46, "end": 22596.0, "probability": 0.15 }, { "start": 22598.8, "end": 22600.4, "probability": 0.1449 }, { "start": 22600.64, "end": 22602.98, "probability": 0.0697 }, { "start": 22603.0, "end": 22603.0, "probability": 0.0 }, { "start": 22603.0, "end": 22603.0, "probability": 0.0 }, { "start": 22603.0, "end": 22603.0, "probability": 0.0 }, { "start": 22603.0, "end": 22603.0, "probability": 0.0 }, { "start": 22603.0, "end": 22603.0, "probability": 0.0 }, { "start": 22603.0, "end": 22603.0, "probability": 0.0 }, { "start": 22603.0, "end": 22603.0, "probability": 0.0 }, { "start": 22603.0, "end": 22603.0, "probability": 0.0 }, { "start": 22603.0, "end": 22603.0, "probability": 0.0 }, { "start": 22603.0, "end": 22603.0, "probability": 0.0 }, { "start": 22603.0, "end": 22603.0, "probability": 0.0 }, { "start": 22603.0, "end": 22603.0, "probability": 0.0 }, { "start": 22603.0, "end": 22603.0, "probability": 0.0 }, { "start": 22603.0, "end": 22603.0, "probability": 0.0 }, { "start": 22603.0, "end": 22603.0, "probability": 0.0 }, { "start": 22603.0, "end": 22603.0, "probability": 0.0 }, { "start": 22603.0, "end": 22603.0, "probability": 0.0 }, { "start": 22603.6, "end": 22606.3, "probability": 0.1096 }, { "start": 22606.86, "end": 22611.08, "probability": 0.1466 }, { "start": 22611.08, "end": 22614.92, "probability": 0.1391 }, { "start": 22617.06, "end": 22622.76, "probability": 0.5767 }, { "start": 22623.68, "end": 22625.0, "probability": 0.3605 }, { "start": 22626.16, "end": 22626.8, "probability": 0.5726 }, { "start": 22724.0, "end": 22724.0, "probability": 0.0 }, { "start": 22724.0, "end": 22724.0, "probability": 0.0 }, { "start": 22724.0, "end": 22724.0, "probability": 0.0 }, { "start": 22724.0, "end": 22724.0, "probability": 0.0 }, { "start": 22724.0, "end": 22724.0, "probability": 0.0 }, { "start": 22724.0, "end": 22724.0, "probability": 0.0 }, { "start": 22724.0, "end": 22724.0, "probability": 0.0 }, { "start": 22724.0, "end": 22724.0, "probability": 0.0 }, { "start": 22724.0, "end": 22724.0, "probability": 0.0 }, { "start": 22724.0, "end": 22724.0, "probability": 0.0 }, { "start": 22724.0, "end": 22724.0, "probability": 0.0 }, { "start": 22724.0, "end": 22724.0, "probability": 0.0 }, { "start": 22724.0, "end": 22724.0, "probability": 0.0 }, { "start": 22724.0, "end": 22724.0, "probability": 0.0 }, { "start": 22724.0, "end": 22724.0, "probability": 0.0 }, { "start": 22724.0, "end": 22724.0, "probability": 0.0 }, { "start": 22724.0, "end": 22724.0, "probability": 0.0 }, { "start": 22724.0, "end": 22724.0, "probability": 0.0 }, { "start": 22724.0, "end": 22724.0, "probability": 0.0 }, { "start": 22724.0, "end": 22724.0, "probability": 0.0 }, { "start": 22724.0, "end": 22724.0, "probability": 0.0 }, { "start": 22724.0, "end": 22724.0, "probability": 0.0 }, { "start": 22724.0, "end": 22724.0, "probability": 0.0 }, { "start": 22724.0, "end": 22724.0, "probability": 0.0 }, { "start": 22724.0, "end": 22724.0, "probability": 0.0 }, { "start": 22724.0, "end": 22724.0, "probability": 0.0 }, { "start": 22724.0, "end": 22724.0, "probability": 0.0 }, { "start": 22724.0, "end": 22724.0, "probability": 0.0 }, { "start": 22724.0, "end": 22724.0, "probability": 0.0 }, { "start": 22724.0, "end": 22724.0, "probability": 0.0 }, { "start": 22724.0, "end": 22724.0, "probability": 0.0 }, { "start": 22724.0, "end": 22724.0, "probability": 0.0 }, { "start": 22724.0, "end": 22724.0, "probability": 0.0 }, { "start": 22724.0, "end": 22724.0, "probability": 0.0 }, { "start": 22724.0, "end": 22724.0, "probability": 0.0 }, { "start": 22724.0, "end": 22724.0, "probability": 0.0 }, { "start": 22724.0, "end": 22724.0, "probability": 0.0 }, { "start": 22724.0, "end": 22724.0, "probability": 0.0 }, { "start": 22724.0, "end": 22724.0, "probability": 0.0 }, { "start": 22724.0, "end": 22724.0, "probability": 0.0 }, { "start": 22724.0, "end": 22724.0, "probability": 0.0 }, { "start": 22724.0, "end": 22724.0, "probability": 0.0 }, { "start": 22724.0, "end": 22724.0, "probability": 0.0 }, { "start": 22724.0, "end": 22724.0, "probability": 0.0 }, { "start": 22724.0, "end": 22724.0, "probability": 0.0 }, { "start": 22724.0, "end": 22724.0, "probability": 0.0 }, { "start": 22724.0, "end": 22724.0, "probability": 0.0 }, { "start": 22724.0, "end": 22724.0, "probability": 0.0 }, { "start": 22724.0, "end": 22724.0, "probability": 0.0 }, { "start": 22724.0, "end": 22724.0, "probability": 0.0 }, { "start": 22724.0, "end": 22724.0, "probability": 0.0 }, { "start": 22724.0, "end": 22724.0, "probability": 0.0 }, { "start": 22724.0, "end": 22724.0, "probability": 0.0 }, { "start": 22724.28, "end": 22725.34, "probability": 0.0087 }, { "start": 22725.5, "end": 22726.62, "probability": 0.6193 }, { "start": 22726.72, "end": 22730.56, "probability": 0.0259 }, { "start": 22730.58, "end": 22730.76, "probability": 0.1087 }, { "start": 22731.22, "end": 22732.76, "probability": 0.0916 }, { "start": 22732.76, "end": 22735.1, "probability": 0.7722 }, { "start": 22735.26, "end": 22735.88, "probability": 0.3015 }, { "start": 22736.06, "end": 22736.9, "probability": 0.538 }, { "start": 22737.36, "end": 22738.18, "probability": 0.1737 }, { "start": 22738.26, "end": 22738.86, "probability": 0.0684 }, { "start": 22739.64, "end": 22741.06, "probability": 0.4003 }, { "start": 22741.7, "end": 22742.24, "probability": 0.0465 }, { "start": 22742.24, "end": 22742.46, "probability": 0.3366 }, { "start": 22742.46, "end": 22742.5, "probability": 0.5601 }, { "start": 22742.54, "end": 22742.68, "probability": 0.5408 }, { "start": 22742.68, "end": 22743.36, "probability": 0.1273 }, { "start": 22847.0, "end": 22847.0, "probability": 0.0 }, { "start": 22847.0, "end": 22847.0, "probability": 0.0 }, { "start": 22847.0, "end": 22847.0, "probability": 0.0 }, { "start": 22847.0, "end": 22847.0, "probability": 0.0 }, { "start": 22847.0, "end": 22847.0, "probability": 0.0 }, { "start": 22847.0, "end": 22847.0, "probability": 0.0 }, { "start": 22847.0, "end": 22847.0, "probability": 0.0 }, { "start": 22847.0, "end": 22847.0, "probability": 0.0 }, { "start": 22847.0, "end": 22847.0, "probability": 0.0 }, { "start": 22847.0, "end": 22847.0, "probability": 0.0 }, { "start": 22847.0, "end": 22847.0, "probability": 0.0 }, { "start": 22847.0, "end": 22847.0, "probability": 0.0 }, { "start": 22847.0, "end": 22847.0, "probability": 0.0 }, { "start": 22847.0, "end": 22847.0, "probability": 0.0 }, { "start": 22847.0, "end": 22847.0, "probability": 0.0 }, { "start": 22847.0, "end": 22847.0, "probability": 0.0 }, { "start": 22847.0, "end": 22847.0, "probability": 0.0 }, { "start": 22847.0, "end": 22847.0, "probability": 0.0 }, { "start": 22847.0, "end": 22847.0, "probability": 0.0 }, { "start": 22847.0, "end": 22847.0, "probability": 0.0 }, { "start": 22847.0, "end": 22847.0, "probability": 0.0 }, { "start": 22847.32, "end": 22853.94, "probability": 0.7556 }, { "start": 22855.14, "end": 22857.8, "probability": 0.6523 }, { "start": 22863.04, "end": 22864.6, "probability": 0.5943 }, { "start": 22864.66, "end": 22865.18, "probability": 0.7288 }, { "start": 22866.46, "end": 22871.46, "probability": 0.6867 }, { "start": 22872.18, "end": 22874.72, "probability": 0.9266 }, { "start": 22876.26, "end": 22880.1, "probability": 0.9927 }, { "start": 22882.38, "end": 22888.54, "probability": 0.9951 }, { "start": 22890.28, "end": 22893.82, "probability": 0.9937 }, { "start": 22895.94, "end": 22896.04, "probability": 0.0279 }, { "start": 22896.04, "end": 22899.78, "probability": 0.8866 }, { "start": 22900.5, "end": 22905.1, "probability": 0.6973 }, { "start": 22905.72, "end": 22909.08, "probability": 0.989 }, { "start": 22910.66, "end": 22917.82, "probability": 0.9792 }, { "start": 22917.82, "end": 22930.28, "probability": 0.9809 }, { "start": 22932.66, "end": 22939.9, "probability": 0.998 }, { "start": 22942.5, "end": 22946.04, "probability": 0.9976 }, { "start": 22947.8, "end": 22948.72, "probability": 0.6596 }, { "start": 22949.86, "end": 22951.26, "probability": 0.8235 }, { "start": 22952.48, "end": 22959.4, "probability": 0.9888 }, { "start": 22960.18, "end": 22963.04, "probability": 0.9946 }, { "start": 22963.26, "end": 22965.88, "probability": 0.9774 }, { "start": 22966.22, "end": 22969.86, "probability": 0.9965 }, { "start": 22971.22, "end": 22974.42, "probability": 0.8659 }, { "start": 22976.08, "end": 22977.08, "probability": 0.958 }, { "start": 22978.78, "end": 22984.8, "probability": 0.9255 }, { "start": 22985.64, "end": 22986.23, "probability": 0.9678 }, { "start": 22987.28, "end": 22989.6, "probability": 0.8618 }, { "start": 22991.46, "end": 22992.18, "probability": 0.7944 }, { "start": 22992.74, "end": 22993.82, "probability": 0.6179 }, { "start": 22994.52, "end": 22995.44, "probability": 0.5995 }, { "start": 22996.32, "end": 22997.38, "probability": 0.891 }, { "start": 22999.6, "end": 23001.62, "probability": 0.9771 }, { "start": 23002.86, "end": 23006.16, "probability": 0.8628 }, { "start": 23006.9, "end": 23007.9, "probability": 0.7442 }, { "start": 23008.12, "end": 23010.94, "probability": 0.929 }, { "start": 23011.44, "end": 23011.8, "probability": 0.3898 }, { "start": 23012.62, "end": 23013.0, "probability": 0.4301 }, { "start": 23014.46, "end": 23017.9, "probability": 0.7803 }, { "start": 23019.38, "end": 23023.64, "probability": 0.9287 }, { "start": 23024.36, "end": 23027.64, "probability": 0.9042 }, { "start": 23029.48, "end": 23032.6, "probability": 0.9899 }, { "start": 23033.2, "end": 23036.0, "probability": 0.9467 }, { "start": 23036.52, "end": 23037.58, "probability": 0.7024 }, { "start": 23038.8, "end": 23040.22, "probability": 0.7251 }, { "start": 23040.96, "end": 23042.78, "probability": 0.9036 }, { "start": 23043.8, "end": 23045.76, "probability": 0.9901 }, { "start": 23046.0, "end": 23046.74, "probability": 0.876 }, { "start": 23048.8, "end": 23052.34, "probability": 0.8834 }, { "start": 23053.26, "end": 23056.14, "probability": 0.7521 }, { "start": 23057.2, "end": 23061.08, "probability": 0.8821 }, { "start": 23062.34, "end": 23064.6, "probability": 0.6832 }, { "start": 23066.2, "end": 23069.72, "probability": 0.647 }, { "start": 23070.78, "end": 23076.86, "probability": 0.9176 }, { "start": 23078.18, "end": 23081.38, "probability": 0.9896 }, { "start": 23082.16, "end": 23082.94, "probability": 0.7341 }, { "start": 23085.48, "end": 23089.4, "probability": 0.9939 }, { "start": 23089.48, "end": 23090.8, "probability": 0.8369 }, { "start": 23091.96, "end": 23094.68, "probability": 0.9929 }, { "start": 23095.28, "end": 23099.92, "probability": 0.9534 }, { "start": 23100.66, "end": 23108.42, "probability": 0.9808 }, { "start": 23109.52, "end": 23111.32, "probability": 0.5274 }, { "start": 23111.52, "end": 23113.16, "probability": 0.9771 }, { "start": 23113.92, "end": 23114.42, "probability": 0.875 }, { "start": 23115.22, "end": 23117.54, "probability": 0.9854 }, { "start": 23119.36, "end": 23122.82, "probability": 0.9906 }, { "start": 23122.92, "end": 23127.4, "probability": 0.8885 }, { "start": 23128.6, "end": 23130.1, "probability": 0.5045 }, { "start": 23130.62, "end": 23132.24, "probability": 0.9932 }, { "start": 23132.46, "end": 23134.04, "probability": 0.9667 }, { "start": 23134.16, "end": 23135.1, "probability": 0.9955 }, { "start": 23136.54, "end": 23139.52, "probability": 0.9774 }, { "start": 23140.76, "end": 23142.12, "probability": 0.9922 }, { "start": 23142.8, "end": 23147.24, "probability": 0.9738 }, { "start": 23147.92, "end": 23151.6, "probability": 0.6294 }, { "start": 23151.78, "end": 23155.54, "probability": 0.975 }, { "start": 23156.08, "end": 23157.2, "probability": 0.9185 }, { "start": 23157.96, "end": 23159.84, "probability": 0.8447 }, { "start": 23160.06, "end": 23163.8, "probability": 0.2334 }, { "start": 23165.14, "end": 23168.4, "probability": 0.7603 }, { "start": 23171.82, "end": 23176.88, "probability": 0.8069 }, { "start": 23178.5, "end": 23182.74, "probability": 0.5903 }, { "start": 23183.46, "end": 23185.48, "probability": 0.6465 }, { "start": 23186.7, "end": 23189.34, "probability": 0.9782 }, { "start": 23189.94, "end": 23190.22, "probability": 0.4544 }, { "start": 23190.7, "end": 23193.6, "probability": 0.7253 }, { "start": 23193.78, "end": 23199.54, "probability": 0.9074 }, { "start": 23199.6, "end": 23202.68, "probability": 0.9912 }, { "start": 23203.32, "end": 23208.58, "probability": 0.6105 }, { "start": 23209.16, "end": 23211.36, "probability": 0.6418 }, { "start": 23211.62, "end": 23212.62, "probability": 0.1239 }, { "start": 23212.62, "end": 23214.53, "probability": 0.873 }, { "start": 23215.2, "end": 23215.26, "probability": 0.0098 }, { "start": 23216.46, "end": 23219.92, "probability": 0.3734 }, { "start": 23220.04, "end": 23226.72, "probability": 0.6852 }, { "start": 23226.72, "end": 23231.5, "probability": 0.9255 }, { "start": 23232.48, "end": 23234.16, "probability": 0.6746 }, { "start": 23234.72, "end": 23234.96, "probability": 0.1485 }, { "start": 23236.3, "end": 23237.0, "probability": 0.0151 }, { "start": 23238.5, "end": 23243.62, "probability": 0.9277 }, { "start": 23243.62, "end": 23246.9, "probability": 0.9857 }, { "start": 23249.58, "end": 23254.14, "probability": 0.8363 }, { "start": 23254.76, "end": 23256.06, "probability": 0.8867 }, { "start": 23257.16, "end": 23260.4, "probability": 0.6801 }, { "start": 23261.5, "end": 23261.66, "probability": 0.172 }, { "start": 23261.66, "end": 23263.08, "probability": 0.9968 }, { "start": 23265.44, "end": 23271.04, "probability": 0.9959 }, { "start": 23271.68, "end": 23273.62, "probability": 0.9146 }, { "start": 23275.08, "end": 23277.76, "probability": 0.9697 }, { "start": 23278.04, "end": 23279.6, "probability": 0.5492 }, { "start": 23279.86, "end": 23279.96, "probability": 0.8285 }, { "start": 23280.9, "end": 23282.56, "probability": 0.9194 }, { "start": 23282.56, "end": 23284.08, "probability": 0.2283 }, { "start": 23284.08, "end": 23287.22, "probability": 0.9337 }, { "start": 23287.52, "end": 23288.84, "probability": 0.3447 }, { "start": 23289.44, "end": 23291.62, "probability": 0.4942 }, { "start": 23292.46, "end": 23295.56, "probability": 0.9877 }, { "start": 23296.44, "end": 23300.6, "probability": 0.9092 }, { "start": 23302.0, "end": 23305.52, "probability": 0.3823 }, { "start": 23305.52, "end": 23306.84, "probability": 0.465 }, { "start": 23307.0, "end": 23310.71, "probability": 0.947 }, { "start": 23311.84, "end": 23312.94, "probability": 0.6618 }, { "start": 23314.0, "end": 23317.88, "probability": 0.7473 }, { "start": 23317.96, "end": 23318.8, "probability": 0.8174 }, { "start": 23318.98, "end": 23323.5, "probability": 0.917 }, { "start": 23324.5, "end": 23325.74, "probability": 0.6773 }, { "start": 23326.44, "end": 23326.62, "probability": 0.6268 }, { "start": 23327.34, "end": 23328.5, "probability": 0.9295 }, { "start": 23329.6, "end": 23331.68, "probability": 0.9556 }, { "start": 23331.92, "end": 23333.58, "probability": 0.9432 }, { "start": 23333.6, "end": 23335.3, "probability": 0.9071 }, { "start": 23335.44, "end": 23336.32, "probability": 0.9646 }, { "start": 23336.72, "end": 23340.76, "probability": 0.9329 }, { "start": 23340.82, "end": 23341.48, "probability": 0.7355 }, { "start": 23342.19, "end": 23343.3, "probability": 0.0979 }, { "start": 23343.42, "end": 23344.02, "probability": 0.3089 }, { "start": 23344.02, "end": 23344.02, "probability": 0.5862 }, { "start": 23344.2, "end": 23345.18, "probability": 0.7686 }, { "start": 23345.48, "end": 23345.96, "probability": 0.9604 }, { "start": 23346.14, "end": 23346.14, "probability": 0.0001 }, { "start": 23350.62, "end": 23354.46, "probability": 0.7832 }, { "start": 23355.19, "end": 23356.92, "probability": 0.0385 }, { "start": 23358.82, "end": 23361.38, "probability": 0.3688 }, { "start": 23361.38, "end": 23362.9, "probability": 0.4767 }, { "start": 23363.56, "end": 23365.04, "probability": 0.5815 }, { "start": 23365.8, "end": 23368.3, "probability": 0.9448 }, { "start": 23368.62, "end": 23369.58, "probability": 0.8812 }, { "start": 23370.66, "end": 23372.34, "probability": 0.1377 }, { "start": 23372.34, "end": 23374.24, "probability": 0.3642 }, { "start": 23374.24, "end": 23374.34, "probability": 0.2653 }, { "start": 23376.04, "end": 23377.54, "probability": 0.2937 }, { "start": 23377.54, "end": 23378.02, "probability": 0.0652 }, { "start": 23378.42, "end": 23378.84, "probability": 0.5007 }, { "start": 23382.22, "end": 23383.4, "probability": 0.233 }, { "start": 23383.4, "end": 23384.98, "probability": 0.0864 }, { "start": 23385.22, "end": 23385.36, "probability": 0.1002 }, { "start": 23386.44, "end": 23386.44, "probability": 0.3129 }, { "start": 23386.44, "end": 23387.52, "probability": 0.2082 }, { "start": 23388.56, "end": 23389.22, "probability": 0.4179 }, { "start": 23389.86, "end": 23390.82, "probability": 0.0204 }, { "start": 23391.08, "end": 23392.02, "probability": 0.1586 }, { "start": 23392.02, "end": 23394.33, "probability": 0.0335 }, { "start": 23394.7, "end": 23397.1, "probability": 0.0913 }, { "start": 23406.08, "end": 23406.88, "probability": 0.1208 }, { "start": 23406.88, "end": 23407.76, "probability": 0.0432 }, { "start": 23407.76, "end": 23407.76, "probability": 0.1243 }, { "start": 23407.76, "end": 23407.76, "probability": 0.0855 }, { "start": 23407.76, "end": 23408.32, "probability": 0.0373 }, { "start": 23409.02, "end": 23409.72, "probability": 0.0828 }, { "start": 23413.1, "end": 23414.26, "probability": 0.2373 }, { "start": 23414.98, "end": 23415.92, "probability": 0.0732 }, { "start": 23450.0, "end": 23450.0, "probability": 0.0 }, { "start": 23450.0, "end": 23450.0, "probability": 0.0 }, { "start": 23450.0, "end": 23450.0, "probability": 0.0 }, { "start": 23450.0, "end": 23450.0, "probability": 0.0 }, { "start": 23450.0, "end": 23450.0, "probability": 0.0 }, { "start": 23450.0, "end": 23450.0, "probability": 0.0 }, { "start": 23450.0, "end": 23450.0, "probability": 0.0 }, { "start": 23450.0, "end": 23450.0, "probability": 0.0 }, { "start": 23450.0, "end": 23450.0, "probability": 0.0 }, { "start": 23450.0, "end": 23450.0, "probability": 0.0 }, { "start": 23450.0, "end": 23450.0, "probability": 0.0 }, { "start": 23450.0, "end": 23450.0, "probability": 0.0 }, { "start": 23450.0, "end": 23450.0, "probability": 0.0 }, { "start": 23450.0, "end": 23450.0, "probability": 0.0 }, { "start": 23450.0, "end": 23450.0, "probability": 0.0 }, { "start": 23450.0, "end": 23450.0, "probability": 0.0 }, { "start": 23450.0, "end": 23450.0, "probability": 0.0 }, { "start": 23450.0, "end": 23450.0, "probability": 0.0 }, { "start": 23450.0, "end": 23450.0, "probability": 0.0 }, { "start": 23450.36, "end": 23451.24, "probability": 0.3193 }, { "start": 23451.24, "end": 23453.74, "probability": 0.7817 }, { "start": 23453.86, "end": 23454.48, "probability": 0.4131 }, { "start": 23454.9, "end": 23456.12, "probability": 0.7968 }, { "start": 23456.76, "end": 23458.6, "probability": 0.7437 }, { "start": 23458.82, "end": 23459.26, "probability": 0.7817 }, { "start": 23460.32, "end": 23461.6, "probability": 0.5702 }, { "start": 23461.82, "end": 23462.06, "probability": 0.4447 }, { "start": 23462.06, "end": 23463.1, "probability": 0.4811 }, { "start": 23463.22, "end": 23465.64, "probability": 0.4673 }, { "start": 23466.78, "end": 23468.2, "probability": 0.5135 }, { "start": 23468.96, "end": 23470.36, "probability": 0.1653 }, { "start": 23471.24, "end": 23471.76, "probability": 0.732 }, { "start": 23472.08, "end": 23473.35, "probability": 0.3372 }, { "start": 23474.92, "end": 23475.32, "probability": 0.4498 }, { "start": 23476.02, "end": 23478.46, "probability": 0.9753 }, { "start": 23479.36, "end": 23479.78, "probability": 0.9709 }, { "start": 23479.98, "end": 23482.2, "probability": 0.7996 }, { "start": 23482.64, "end": 23486.2, "probability": 0.769 }, { "start": 23486.98, "end": 23490.14, "probability": 0.8936 }, { "start": 23490.94, "end": 23491.62, "probability": 0.4102 }, { "start": 23491.7, "end": 23492.86, "probability": 0.8147 }, { "start": 23493.28, "end": 23494.52, "probability": 0.6297 }, { "start": 23494.84, "end": 23496.14, "probability": 0.4977 }, { "start": 23496.32, "end": 23497.38, "probability": 0.6763 }, { "start": 23498.22, "end": 23500.76, "probability": 0.9115 }, { "start": 23501.28, "end": 23506.56, "probability": 0.8075 }, { "start": 23506.6, "end": 23507.18, "probability": 0.1994 }, { "start": 23507.18, "end": 23507.74, "probability": 0.2711 }, { "start": 23507.86, "end": 23508.6, "probability": 0.89 }, { "start": 23509.32, "end": 23510.04, "probability": 0.6576 }, { "start": 23510.08, "end": 23511.2, "probability": 0.9715 }, { "start": 23511.28, "end": 23512.32, "probability": 0.9787 }, { "start": 23512.72, "end": 23514.28, "probability": 0.9349 }, { "start": 23514.48, "end": 23516.94, "probability": 0.8418 }, { "start": 23517.0, "end": 23518.92, "probability": 0.9792 }, { "start": 23519.28, "end": 23520.2, "probability": 0.8452 }, { "start": 23520.52, "end": 23521.34, "probability": 0.5965 }, { "start": 23522.04, "end": 23522.14, "probability": 0.7577 }, { "start": 23523.54, "end": 23524.52, "probability": 0.53 }, { "start": 23524.6, "end": 23528.18, "probability": 0.7486 }, { "start": 23528.54, "end": 23529.52, "probability": 0.3272 }, { "start": 23529.8, "end": 23532.18, "probability": 0.9365 }, { "start": 23532.5, "end": 23533.96, "probability": 0.8877 }, { "start": 23534.38, "end": 23535.48, "probability": 0.9882 }, { "start": 23535.94, "end": 23537.0, "probability": 0.9365 }, { "start": 23537.44, "end": 23538.18, "probability": 0.9452 }, { "start": 23538.4, "end": 23539.14, "probability": 0.9298 }, { "start": 23539.46, "end": 23541.66, "probability": 0.6744 }, { "start": 23541.7, "end": 23541.96, "probability": 0.3082 }, { "start": 23542.0, "end": 23543.1, "probability": 0.8758 }, { "start": 23543.2, "end": 23543.48, "probability": 0.6254 }, { "start": 23544.12, "end": 23544.22, "probability": 0.6969 }, { "start": 23544.28, "end": 23544.82, "probability": 0.8632 }, { "start": 23545.22, "end": 23547.26, "probability": 0.9505 }, { "start": 23547.26, "end": 23549.08, "probability": 0.671 }, { "start": 23549.6, "end": 23553.26, "probability": 0.9826 }, { "start": 23553.84, "end": 23558.64, "probability": 0.9989 }, { "start": 23559.12, "end": 23562.74, "probability": 0.7058 }, { "start": 23563.1, "end": 23564.12, "probability": 0.476 }, { "start": 23564.96, "end": 23566.16, "probability": 0.7099 }, { "start": 23566.66, "end": 23570.16, "probability": 0.9941 }, { "start": 23570.16, "end": 23573.9, "probability": 0.7241 }, { "start": 23574.98, "end": 23575.33, "probability": 0.439 }, { "start": 23575.56, "end": 23579.86, "probability": 0.9124 }, { "start": 23580.3, "end": 23582.82, "probability": 0.9815 }, { "start": 23583.46, "end": 23584.16, "probability": 0.8316 }, { "start": 23584.26, "end": 23585.16, "probability": 0.9692 }, { "start": 23585.28, "end": 23590.4, "probability": 0.9514 }, { "start": 23590.82, "end": 23592.06, "probability": 0.9234 }, { "start": 23592.24, "end": 23592.62, "probability": 0.6298 }, { "start": 23592.62, "end": 23594.28, "probability": 0.499 }, { "start": 23594.3, "end": 23596.84, "probability": 0.6107 }, { "start": 23596.9, "end": 23597.44, "probability": 0.6886 }, { "start": 23606.44, "end": 23607.8, "probability": 0.0922 }, { "start": 23608.38, "end": 23612.84, "probability": 0.1205 }, { "start": 23614.64, "end": 23615.78, "probability": 0.0302 }, { "start": 23616.32, "end": 23617.78, "probability": 0.0442 }, { "start": 23619.62, "end": 23620.24, "probability": 0.1353 }, { "start": 23620.58, "end": 23621.72, "probability": 0.7921 }, { "start": 23622.44, "end": 23623.22, "probability": 0.0072 }, { "start": 23625.8, "end": 23628.26, "probability": 0.7456 }, { "start": 23630.54, "end": 23634.64, "probability": 0.994 }, { "start": 23635.54, "end": 23637.64, "probability": 0.5893 }, { "start": 23637.86, "end": 23638.9, "probability": 0.2012 }, { "start": 23639.48, "end": 23639.76, "probability": 0.0644 }, { "start": 23639.76, "end": 23639.76, "probability": 0.4983 }, { "start": 23639.76, "end": 23649.64, "probability": 0.4014 }, { "start": 23650.14, "end": 23653.0, "probability": 0.6338 }, { "start": 23653.38, "end": 23654.4, "probability": 0.674 }, { "start": 23655.1, "end": 23656.36, "probability": 0.3209 }, { "start": 23656.94, "end": 23659.64, "probability": 0.5235 }, { "start": 23659.64, "end": 23664.72, "probability": 0.5995 }, { "start": 23665.44, "end": 23667.52, "probability": 0.5731 }, { "start": 23667.84, "end": 23670.1, "probability": 0.7786 }, { "start": 23670.26, "end": 23671.0, "probability": 0.3023 }, { "start": 23671.36, "end": 23672.76, "probability": 0.5519 }, { "start": 23673.84, "end": 23673.9, "probability": 0.0079 }, { "start": 23673.9, "end": 23673.9, "probability": 0.0535 }, { "start": 23673.9, "end": 23673.94, "probability": 0.2 }, { "start": 23674.28, "end": 23674.58, "probability": 0.2175 }, { "start": 23674.9, "end": 23675.84, "probability": 0.9656 }, { "start": 23675.9, "end": 23680.04, "probability": 0.8159 }, { "start": 23683.07, "end": 23687.44, "probability": 0.5916 }, { "start": 23688.92, "end": 23692.98, "probability": 0.9893 }, { "start": 23693.18, "end": 23694.26, "probability": 0.9941 }, { "start": 23700.2, "end": 23703.46, "probability": 0.0463 }, { "start": 23703.92, "end": 23703.92, "probability": 0.2168 }, { "start": 23703.92, "end": 23705.04, "probability": 0.49 }, { "start": 23705.06, "end": 23706.48, "probability": 0.7123 }, { "start": 23706.7, "end": 23712.18, "probability": 0.3626 }, { "start": 23713.32, "end": 23714.4, "probability": 0.2446 }, { "start": 23714.4, "end": 23719.68, "probability": 0.5565 }, { "start": 23719.78, "end": 23722.94, "probability": 0.9644 }, { "start": 23723.28, "end": 23729.64, "probability": 0.9446 }, { "start": 23730.24, "end": 23732.38, "probability": 0.5314 }, { "start": 23733.52, "end": 23734.12, "probability": 0.3219 }, { "start": 23734.27, "end": 23736.02, "probability": 0.0661 }, { "start": 23736.06, "end": 23739.96, "probability": 0.7147 }, { "start": 23740.14, "end": 23741.26, "probability": 0.9223 }, { "start": 23741.86, "end": 23744.38, "probability": 0.9282 }, { "start": 23744.62, "end": 23747.16, "probability": 0.7476 }, { "start": 23747.64, "end": 23753.2, "probability": 0.9928 }, { "start": 23753.72, "end": 23757.28, "probability": 0.9943 }, { "start": 23757.58, "end": 23762.34, "probability": 0.9763 }, { "start": 23762.86, "end": 23764.77, "probability": 0.9179 }, { "start": 23765.72, "end": 23769.72, "probability": 0.9393 }, { "start": 23770.26, "end": 23773.92, "probability": 0.9122 }, { "start": 23773.92, "end": 23776.74, "probability": 0.9965 }, { "start": 23776.94, "end": 23777.76, "probability": 0.4462 }, { "start": 23778.04, "end": 23778.58, "probability": 0.7946 }, { "start": 23779.14, "end": 23779.68, "probability": 0.6948 }, { "start": 23779.82, "end": 23780.54, "probability": 0.703 }, { "start": 23780.76, "end": 23782.06, "probability": 0.0982 }, { "start": 23782.24, "end": 23787.88, "probability": 0.9875 }, { "start": 23789.88, "end": 23795.38, "probability": 0.9674 }, { "start": 23795.44, "end": 23797.56, "probability": 0.8833 }, { "start": 23798.2, "end": 23798.9, "probability": 0.126 }, { "start": 23798.96, "end": 23799.84, "probability": 0.6442 }, { "start": 23800.58, "end": 23805.96, "probability": 0.9772 }, { "start": 23806.04, "end": 23811.0, "probability": 0.9923 }, { "start": 23811.2, "end": 23812.34, "probability": 0.0604 }, { "start": 23812.54, "end": 23813.44, "probability": 0.7975 }, { "start": 23814.76, "end": 23815.92, "probability": 0.0717 }, { "start": 23826.88, "end": 23830.72, "probability": 0.1778 }, { "start": 23830.72, "end": 23832.93, "probability": 0.0257 }, { "start": 23833.42, "end": 23839.94, "probability": 0.1324 }, { "start": 23842.0, "end": 23842.68, "probability": 0.0235 }, { "start": 23847.3, "end": 23847.94, "probability": 0.0235 }, { "start": 23848.58, "end": 23850.6, "probability": 0.0877 }, { "start": 23851.04, "end": 23851.46, "probability": 0.0386 }, { "start": 23851.46, "end": 23851.74, "probability": 0.0701 }, { "start": 23851.74, "end": 23851.9, "probability": 0.0639 }, { "start": 23851.9, "end": 23852.0, "probability": 0.0416 }, { "start": 23852.0, "end": 23852.86, "probability": 0.0539 }, { "start": 23853.04, "end": 23853.94, "probability": 0.1047 }, { "start": 23854.52, "end": 23855.92, "probability": 0.0641 }, { "start": 23855.92, "end": 23857.24, "probability": 0.0898 }, { "start": 23859.39, "end": 23860.82, "probability": 0.1201 }, { "start": 23860.82, "end": 23864.48, "probability": 0.4254 }, { "start": 23864.7, "end": 23867.84, "probability": 0.153 }, { "start": 23868.7, "end": 23869.42, "probability": 0.0406 }, { "start": 23869.42, "end": 23871.2, "probability": 0.0537 }, { "start": 23872.18, "end": 23872.18, "probability": 0.1545 }, { "start": 23872.18, "end": 23873.66, "probability": 0.1323 }, { "start": 23873.66, "end": 23873.66, "probability": 0.3192 }, { "start": 23873.66, "end": 23874.14, "probability": 0.0311 }, { "start": 23874.14, "end": 23874.14, "probability": 0.0428 }, { "start": 23874.14, "end": 23874.14, "probability": 0.1208 }, { "start": 23874.14, "end": 23875.54, "probability": 0.1582 }, { "start": 23875.8, "end": 23877.32, "probability": 0.9316 }, { "start": 23877.48, "end": 23879.0, "probability": 0.671 }, { "start": 23880.56, "end": 23880.56, "probability": 0.0018 }, { "start": 23880.56, "end": 23880.56, "probability": 0.066 }, { "start": 23880.56, "end": 23884.66, "probability": 0.9372 }, { "start": 23884.66, "end": 23887.7, "probability": 0.993 }, { "start": 23887.98, "end": 23892.74, "probability": 0.9917 }, { "start": 23892.9, "end": 23897.3, "probability": 0.9663 }, { "start": 23897.3, "end": 23898.32, "probability": 0.0326 }, { "start": 23898.42, "end": 23898.42, "probability": 0.2787 }, { "start": 23898.42, "end": 23902.4, "probability": 0.9952 }, { "start": 23902.96, "end": 23907.84, "probability": 0.9829 }, { "start": 23908.64, "end": 23909.2, "probability": 0.8793 }, { "start": 23910.22, "end": 23910.8, "probability": 0.8649 }, { "start": 23911.78, "end": 23916.0, "probability": 0.8945 }, { "start": 23916.46, "end": 23918.8, "probability": 0.9078 }, { "start": 23919.48, "end": 23922.46, "probability": 0.9902 }, { "start": 23922.46, "end": 23926.88, "probability": 0.6622 }, { "start": 23927.06, "end": 23928.7, "probability": 0.0099 }, { "start": 23928.7, "end": 23930.09, "probability": 0.047 }, { "start": 23931.28, "end": 23933.18, "probability": 0.0445 }, { "start": 23933.18, "end": 23933.18, "probability": 0.1064 }, { "start": 23933.18, "end": 23934.23, "probability": 0.1458 }, { "start": 23934.86, "end": 23935.2, "probability": 0.0909 }, { "start": 23936.34, "end": 23938.24, "probability": 0.0041 }, { "start": 23938.42, "end": 23940.6, "probability": 0.0748 }, { "start": 23940.6, "end": 23941.38, "probability": 0.0868 }, { "start": 23941.38, "end": 23941.38, "probability": 0.0658 }, { "start": 23941.38, "end": 23941.38, "probability": 0.0519 }, { "start": 23941.38, "end": 23941.38, "probability": 0.0315 }, { "start": 23941.38, "end": 23944.08, "probability": 0.3022 }, { "start": 23945.28, "end": 23950.74, "probability": 0.9676 }, { "start": 23950.82, "end": 23952.08, "probability": 0.3912 }, { "start": 23952.5, "end": 23954.78, "probability": 0.998 }, { "start": 23955.3, "end": 23957.7, "probability": 0.9906 }, { "start": 23958.32, "end": 23961.58, "probability": 0.9444 }, { "start": 23963.9, "end": 23965.36, "probability": 0.8318 }, { "start": 23965.48, "end": 23966.38, "probability": 0.8758 }, { "start": 23966.56, "end": 23967.66, "probability": 0.8508 }, { "start": 23968.5, "end": 23971.6, "probability": 0.9655 }, { "start": 23972.3, "end": 23973.8, "probability": 0.9954 }, { "start": 23974.74, "end": 23978.34, "probability": 0.9557 }, { "start": 23978.56, "end": 23980.6, "probability": 0.9472 }, { "start": 23980.9, "end": 23983.08, "probability": 0.0078 }, { "start": 23983.3, "end": 23983.4, "probability": 0.3306 }, { "start": 23984.6, "end": 23985.72, "probability": 0.046 }, { "start": 23985.84, "end": 23986.02, "probability": 0.1006 }, { "start": 23986.14, "end": 23989.58, "probability": 0.8998 }, { "start": 23990.44, "end": 23991.41, "probability": 0.0132 }, { "start": 23991.74, "end": 23992.38, "probability": 0.0877 }, { "start": 23992.38, "end": 23992.84, "probability": 0.068 }, { "start": 23993.82, "end": 23994.24, "probability": 0.0586 }, { "start": 23994.28, "end": 23994.42, "probability": 0.0199 }, { "start": 23994.42, "end": 23995.98, "probability": 0.3201 }, { "start": 23995.98, "end": 23999.92, "probability": 0.9956 }, { "start": 24001.28, "end": 24002.28, "probability": 0.9121 }, { "start": 24002.28, "end": 24008.66, "probability": 0.9925 }, { "start": 24009.2, "end": 24012.38, "probability": 0.9996 }, { "start": 24013.94, "end": 24019.52, "probability": 0.5231 }, { "start": 24020.46, "end": 24024.56, "probability": 0.8952 }, { "start": 24024.86, "end": 24025.56, "probability": 0.9338 }, { "start": 24025.86, "end": 24028.82, "probability": 0.6393 }, { "start": 24029.62, "end": 24032.6, "probability": 0.9814 }, { "start": 24033.1, "end": 24035.52, "probability": 0.8615 }, { "start": 24035.58, "end": 24037.64, "probability": 0.9459 }, { "start": 24037.68, "end": 24039.1, "probability": 0.9957 }, { "start": 24039.66, "end": 24041.66, "probability": 0.966 }, { "start": 24041.96, "end": 24042.94, "probability": 0.7373 }, { "start": 24043.06, "end": 24048.1, "probability": 0.9935 }, { "start": 24048.58, "end": 24049.64, "probability": 0.9113 }, { "start": 24050.04, "end": 24054.28, "probability": 0.7414 }, { "start": 24054.36, "end": 24056.58, "probability": 0.9101 }, { "start": 24056.76, "end": 24058.2, "probability": 0.914 }, { "start": 24059.42, "end": 24060.1, "probability": 0.1817 }, { "start": 24060.1, "end": 24061.5, "probability": 0.8216 }, { "start": 24061.54, "end": 24063.88, "probability": 0.9941 }, { "start": 24064.1, "end": 24066.64, "probability": 0.9973 }, { "start": 24067.4, "end": 24071.42, "probability": 0.9888 }, { "start": 24072.0, "end": 24075.48, "probability": 0.9983 }, { "start": 24076.14, "end": 24079.56, "probability": 0.7468 }, { "start": 24079.68, "end": 24082.02, "probability": 0.9969 }, { "start": 24083.4, "end": 24086.94, "probability": 0.791 }, { "start": 24087.52, "end": 24091.32, "probability": 0.9063 }, { "start": 24092.58, "end": 24097.28, "probability": 0.7141 }, { "start": 24098.0, "end": 24100.82, "probability": 0.9944 }, { "start": 24101.02, "end": 24104.5, "probability": 0.9716 }, { "start": 24104.66, "end": 24105.82, "probability": 0.906 }, { "start": 24105.9, "end": 24106.76, "probability": 0.8674 }, { "start": 24106.9, "end": 24109.08, "probability": 0.9431 }, { "start": 24109.9, "end": 24115.54, "probability": 0.9961 }, { "start": 24116.22, "end": 24118.5, "probability": 0.7838 }, { "start": 24118.72, "end": 24119.68, "probability": 0.3313 }, { "start": 24120.18, "end": 24121.36, "probability": 0.1506 }, { "start": 24121.6, "end": 24123.08, "probability": 0.2892 }, { "start": 24123.2, "end": 24127.14, "probability": 0.5494 }, { "start": 24127.24, "end": 24127.84, "probability": 0.0963 }, { "start": 24128.08, "end": 24128.6, "probability": 0.6199 }, { "start": 24128.72, "end": 24129.46, "probability": 0.3629 }, { "start": 24129.6, "end": 24131.22, "probability": 0.0586 }, { "start": 24131.22, "end": 24132.58, "probability": 0.5285 }, { "start": 24132.94, "end": 24134.66, "probability": 0.5209 }, { "start": 24134.66, "end": 24134.92, "probability": 0.3916 }, { "start": 24135.34, "end": 24136.16, "probability": 0.8251 }, { "start": 24136.3, "end": 24139.42, "probability": 0.7969 }, { "start": 24139.42, "end": 24143.2, "probability": 0.9883 }, { "start": 24143.66, "end": 24144.52, "probability": 0.6429 }, { "start": 24144.54, "end": 24145.86, "probability": 0.4012 }, { "start": 24145.88, "end": 24145.88, "probability": 0.762 }, { "start": 24145.88, "end": 24146.7, "probability": 0.3184 }, { "start": 24146.88, "end": 24149.28, "probability": 0.6922 }, { "start": 24149.38, "end": 24149.94, "probability": 0.9111 }, { "start": 24150.22, "end": 24152.6, "probability": 0.9929 }, { "start": 24152.62, "end": 24153.68, "probability": 0.9708 }, { "start": 24153.8, "end": 24155.9, "probability": 0.9117 }, { "start": 24156.1, "end": 24157.12, "probability": 0.1302 }, { "start": 24158.02, "end": 24161.12, "probability": 0.1302 }, { "start": 24161.22, "end": 24165.34, "probability": 0.3651 }, { "start": 24165.78, "end": 24170.87, "probability": 0.8169 }, { "start": 24181.68, "end": 24189.56, "probability": 0.2313 }, { "start": 24189.64, "end": 24190.52, "probability": 0.0216 }, { "start": 24192.3, "end": 24193.32, "probability": 0.1492 }, { "start": 24194.38, "end": 24196.92, "probability": 0.1299 }, { "start": 24198.78, "end": 24200.08, "probability": 0.0748 }, { "start": 24200.94, "end": 24201.9, "probability": 0.1817 }, { "start": 24204.16, "end": 24207.16, "probability": 0.0088 }, { "start": 24208.6, "end": 24209.43, "probability": 0.0064 }, { "start": 24212.32, "end": 24213.1, "probability": 0.0269 }, { "start": 24213.1, "end": 24214.58, "probability": 0.2393 }, { "start": 24214.58, "end": 24216.56, "probability": 0.0434 }, { "start": 24216.9, "end": 24217.2, "probability": 0.2573 }, { "start": 24217.2, "end": 24219.73, "probability": 0.1022 }, { "start": 24220.64, "end": 24225.16, "probability": 0.074 }, { "start": 24225.38, "end": 24226.18, "probability": 0.11 }, { "start": 24235.0, "end": 24235.0, "probability": 0.0 }, { "start": 24235.0, "end": 24235.0, "probability": 0.0 }, { "start": 24235.0, "end": 24235.0, "probability": 0.0 }, { "start": 24235.0, "end": 24235.0, "probability": 0.0 }, { "start": 24235.0, "end": 24235.0, "probability": 0.0 }, { "start": 24235.0, "end": 24235.0, "probability": 0.0 }, { "start": 24235.0, "end": 24235.0, "probability": 0.0 }, { "start": 24235.0, "end": 24235.0, "probability": 0.0 }, { "start": 24235.0, "end": 24235.0, "probability": 0.0 }, { "start": 24235.0, "end": 24235.0, "probability": 0.0 }, { "start": 24235.0, "end": 24235.0, "probability": 0.0 }, { "start": 24235.0, "end": 24235.0, "probability": 0.0 }, { "start": 24235.0, "end": 24235.0, "probability": 0.0 }, { "start": 24235.0, "end": 24235.0, "probability": 0.0 }, { "start": 24235.0, "end": 24235.0, "probability": 0.0 }, { "start": 24235.0, "end": 24235.0, "probability": 0.0 }, { "start": 24235.0, "end": 24235.0, "probability": 0.0 }, { "start": 24235.0, "end": 24235.0, "probability": 0.0 }, { "start": 24235.0, "end": 24235.0, "probability": 0.0 }, { "start": 24235.0, "end": 24235.0, "probability": 0.0 }, { "start": 24235.0, "end": 24235.0, "probability": 0.0 }, { "start": 24235.0, "end": 24235.0, "probability": 0.0 }, { "start": 24235.0, "end": 24235.0, "probability": 0.0 }, { "start": 24236.96, "end": 24241.2, "probability": 0.0185 }, { "start": 24241.28, "end": 24241.96, "probability": 0.1861 }, { "start": 24242.56, "end": 24244.7, "probability": 0.1031 }, { "start": 24245.44, "end": 24245.44, "probability": 0.1152 }, { "start": 24245.44, "end": 24248.04, "probability": 0.5681 }, { "start": 24368.0, "end": 24368.0, "probability": 0.0 }, { "start": 24368.0, "end": 24368.0, "probability": 0.0 }, { "start": 24368.0, "end": 24368.0, "probability": 0.0 }, { "start": 24368.0, "end": 24368.0, "probability": 0.0 }, { "start": 24368.0, "end": 24368.0, "probability": 0.0 }, { "start": 24368.0, "end": 24368.0, "probability": 0.0 }, { "start": 24368.0, "end": 24368.0, "probability": 0.0 }, { "start": 24368.0, "end": 24368.0, "probability": 0.0 }, { "start": 24368.0, "end": 24368.0, "probability": 0.0 }, { "start": 24368.0, "end": 24368.0, "probability": 0.0 }, { "start": 24368.0, "end": 24368.0, "probability": 0.0 }, { "start": 24368.0, "end": 24368.0, "probability": 0.0 }, { "start": 24368.0, "end": 24368.0, "probability": 0.0 }, { "start": 24368.0, "end": 24368.0, "probability": 0.0 }, { "start": 24368.0, "end": 24368.0, "probability": 0.0 }, { "start": 24368.0, "end": 24368.0, "probability": 0.0 }, { "start": 24368.0, "end": 24368.0, "probability": 0.0 }, { "start": 24368.0, "end": 24368.0, "probability": 0.0 }, { "start": 24368.0, "end": 24368.0, "probability": 0.0 }, { "start": 24368.0, "end": 24368.0, "probability": 0.0 }, { "start": 24368.0, "end": 24368.0, "probability": 0.0 }, { "start": 24368.0, "end": 24368.0, "probability": 0.0 }, { "start": 24368.0, "end": 24368.0, "probability": 0.0 }, { "start": 24368.0, "end": 24368.0, "probability": 0.0 }, { "start": 24368.0, "end": 24368.0, "probability": 0.0 }, { "start": 24368.0, "end": 24368.0, "probability": 0.0 }, { "start": 24368.0, "end": 24368.0, "probability": 0.0 }, { "start": 24368.0, "end": 24368.0, "probability": 0.0 }, { "start": 24368.0, "end": 24368.0, "probability": 0.0 }, { "start": 24368.0, "end": 24368.0, "probability": 0.0 }, { "start": 24368.0, "end": 24368.0, "probability": 0.0 }, { "start": 24368.0, "end": 24368.0, "probability": 0.0 }, { "start": 24368.0, "end": 24368.0, "probability": 0.0 }, { "start": 24368.0, "end": 24368.0, "probability": 0.0 }, { "start": 24368.0, "end": 24368.0, "probability": 0.0 }, { "start": 24368.0, "end": 24368.0, "probability": 0.0 }, { "start": 24368.0, "end": 24368.0, "probability": 0.0 }, { "start": 24368.0, "end": 24368.0, "probability": 0.0 }, { "start": 24368.0, "end": 24368.0, "probability": 0.0 }, { "start": 24368.0, "end": 24368.0, "probability": 0.0 }, { "start": 24368.0, "end": 24368.0, "probability": 0.0 }, { "start": 24368.0, "end": 24368.0, "probability": 0.0 }, { "start": 24368.0, "end": 24368.0, "probability": 0.0 }, { "start": 24368.0, "end": 24368.0, "probability": 0.0 }, { "start": 24368.0, "end": 24368.0, "probability": 0.0 }, { "start": 24368.0, "end": 24368.0, "probability": 0.0 }, { "start": 24368.0, "end": 24368.0, "probability": 0.0 }, { "start": 24368.0, "end": 24368.0, "probability": 0.0 }, { "start": 24368.0, "end": 24368.0, "probability": 0.0 }, { "start": 24368.0, "end": 24368.0, "probability": 0.0 }, { "start": 24368.0, "end": 24368.0, "probability": 0.0 }, { "start": 24368.0, "end": 24368.0, "probability": 0.0 }, { "start": 24368.0, "end": 24368.0, "probability": 0.0 }, { "start": 24368.0, "end": 24368.0, "probability": 0.0 }, { "start": 24368.0, "end": 24368.0, "probability": 0.0 }, { "start": 24368.0, "end": 24368.0, "probability": 0.0 }, { "start": 24368.0, "end": 24368.0, "probability": 0.0 }, { "start": 24368.0, "end": 24368.0, "probability": 0.0 }, { "start": 24368.88, "end": 24369.4, "probability": 0.0264 }, { "start": 24369.6, "end": 24372.5, "probability": 0.139 }, { "start": 24373.7, "end": 24374.66, "probability": 0.075 }, { "start": 24375.74, "end": 24376.82, "probability": 0.102 }, { "start": 24377.91, "end": 24379.76, "probability": 0.0485 }, { "start": 24379.76, "end": 24381.28, "probability": 0.0613 }, { "start": 24501.0, "end": 24501.0, "probability": 0.0 }, { "start": 24501.0, "end": 24501.0, "probability": 0.0 }, { "start": 24501.0, "end": 24501.0, "probability": 0.0 }, { "start": 24501.0, "end": 24501.0, "probability": 0.0 }, { "start": 24501.0, "end": 24501.0, "probability": 0.0 }, { "start": 24501.0, "end": 24501.0, "probability": 0.0 }, { "start": 24501.0, "end": 24501.0, "probability": 0.0 }, { "start": 24501.0, "end": 24501.0, "probability": 0.0 }, { "start": 24501.0, "end": 24501.0, "probability": 0.0 }, { "start": 24501.0, "end": 24501.0, "probability": 0.0 }, { "start": 24501.0, "end": 24501.0, "probability": 0.0 }, { "start": 24501.0, "end": 24501.0, "probability": 0.0 }, { "start": 24501.0, "end": 24501.0, "probability": 0.0 }, { "start": 24501.0, "end": 24501.0, "probability": 0.0 }, { "start": 24501.0, "end": 24501.0, "probability": 0.0 }, { "start": 24501.0, "end": 24501.0, "probability": 0.0 }, { "start": 24501.0, "end": 24501.0, "probability": 0.0 }, { "start": 24501.0, "end": 24501.0, "probability": 0.0 }, { "start": 24501.0, "end": 24501.0, "probability": 0.0 }, { "start": 24501.0, "end": 24501.0, "probability": 0.0 }, { "start": 24501.0, "end": 24501.0, "probability": 0.0 }, { "start": 24501.0, "end": 24501.0, "probability": 0.0 }, { "start": 24501.0, "end": 24501.0, "probability": 0.0 }, { "start": 24501.0, "end": 24501.0, "probability": 0.0 }, { "start": 24501.0, "end": 24501.0, "probability": 0.0 }, { "start": 24501.0, "end": 24501.0, "probability": 0.0 }, { "start": 24501.0, "end": 24501.0, "probability": 0.0 }, { "start": 24501.0, "end": 24501.0, "probability": 0.0 }, { "start": 24501.0, "end": 24501.0, "probability": 0.0 }, { "start": 24501.0, "end": 24501.0, "probability": 0.0 }, { "start": 24501.0, "end": 24501.0, "probability": 0.0 }, { "start": 24501.0, "end": 24501.0, "probability": 0.0 }, { "start": 24501.0, "end": 24501.0, "probability": 0.0 }, { "start": 24501.0, "end": 24501.0, "probability": 0.0 }, { "start": 24501.0, "end": 24501.0, "probability": 0.0 }, { "start": 24501.0, "end": 24501.0, "probability": 0.0 }, { "start": 24501.0, "end": 24501.0, "probability": 0.0 }, { "start": 24501.0, "end": 24501.0, "probability": 0.0 }, { "start": 24501.0, "end": 24501.0, "probability": 0.0 }, { "start": 24501.0, "end": 24501.0, "probability": 0.0 }, { "start": 24501.0, "end": 24501.0, "probability": 0.0 }, { "start": 24501.0, "end": 24501.0, "probability": 0.0 }, { "start": 24501.0, "end": 24501.0, "probability": 0.0 }, { "start": 24501.0, "end": 24501.0, "probability": 0.0 }, { "start": 24501.0, "end": 24501.0, "probability": 0.0 }, { "start": 24501.0, "end": 24501.0, "probability": 0.0 }, { "start": 24501.0, "end": 24501.0, "probability": 0.0 }, { "start": 24501.0, "end": 24501.0, "probability": 0.0 }, { "start": 24501.18, "end": 24501.26, "probability": 0.0663 }, { "start": 24501.26, "end": 24501.26, "probability": 0.3271 }, { "start": 24501.26, "end": 24501.26, "probability": 0.0625 }, { "start": 24501.26, "end": 24501.26, "probability": 0.21 }, { "start": 24501.26, "end": 24501.62, "probability": 0.3151 }, { "start": 24502.06, "end": 24503.26, "probability": 0.4364 }, { "start": 24503.88, "end": 24505.18, "probability": 0.8711 }, { "start": 24505.76, "end": 24509.2, "probability": 0.6333 }, { "start": 24509.76, "end": 24510.7, "probability": 0.8359 }, { "start": 24511.32, "end": 24512.36, "probability": 0.8463 }, { "start": 24512.42, "end": 24514.19, "probability": 0.6599 }, { "start": 24514.82, "end": 24520.42, "probability": 0.6632 }, { "start": 24520.7, "end": 24521.61, "probability": 0.8885 }, { "start": 24522.12, "end": 24527.94, "probability": 0.8496 }, { "start": 24528.28, "end": 24530.52, "probability": 0.8311 }, { "start": 24531.18, "end": 24532.38, "probability": 0.6501 }, { "start": 24532.78, "end": 24535.44, "probability": 0.8451 }, { "start": 24535.58, "end": 24536.14, "probability": 0.8673 }, { "start": 24536.24, "end": 24536.44, "probability": 0.6819 }, { "start": 24536.92, "end": 24538.26, "probability": 0.9297 }, { "start": 24538.62, "end": 24540.74, "probability": 0.9744 }, { "start": 24541.28, "end": 24542.28, "probability": 0.8867 }, { "start": 24542.96, "end": 24545.08, "probability": 0.6721 }, { "start": 24545.64, "end": 24547.66, "probability": 0.9741 }, { "start": 24547.9, "end": 24548.42, "probability": 0.8193 }, { "start": 24548.56, "end": 24550.38, "probability": 0.7546 }, { "start": 24550.7, "end": 24550.86, "probability": 0.7759 }, { "start": 24550.88, "end": 24551.34, "probability": 0.8676 }, { "start": 24551.82, "end": 24552.92, "probability": 0.9434 }, { "start": 24553.38, "end": 24554.68, "probability": 0.9545 }, { "start": 24556.76, "end": 24558.5, "probability": 0.7865 }, { "start": 24559.14, "end": 24559.82, "probability": 0.0099 }, { "start": 24560.5, "end": 24562.36, "probability": 0.5303 }, { "start": 24570.9, "end": 24571.88, "probability": 0.2276 }, { "start": 24572.44, "end": 24573.12, "probability": 0.5475 }, { "start": 24574.34, "end": 24575.26, "probability": 0.7861 }, { "start": 24576.1, "end": 24577.84, "probability": 0.7627 }, { "start": 24578.68, "end": 24579.14, "probability": 0.9751 }, { "start": 24580.0, "end": 24580.86, "probability": 0.8412 }, { "start": 24585.78, "end": 24586.02, "probability": 0.5792 }, { "start": 24586.7, "end": 24587.32, "probability": 0.5292 }, { "start": 24591.56, "end": 24592.6, "probability": 0.7708 }, { "start": 24594.48, "end": 24595.42, "probability": 0.5187 }, { "start": 24596.44, "end": 24596.84, "probability": 0.7737 }, { "start": 24597.58, "end": 24598.52, "probability": 0.8535 }, { "start": 24599.22, "end": 24601.26, "probability": 0.9153 }, { "start": 24602.12, "end": 24604.14, "probability": 0.976 }, { "start": 24604.8, "end": 24605.08, "probability": 0.9612 }, { "start": 24605.84, "end": 24606.64, "probability": 0.9319 }, { "start": 24609.82, "end": 24612.1, "probability": 0.4993 }, { "start": 24613.28, "end": 24614.3, "probability": 0.8615 }, { "start": 24615.32, "end": 24617.9, "probability": 0.9342 }, { "start": 24618.94, "end": 24619.44, "probability": 0.867 }, { "start": 24620.12, "end": 24621.08, "probability": 0.8908 }, { "start": 24621.92, "end": 24623.82, "probability": 0.9792 }, { "start": 24624.92, "end": 24625.28, "probability": 0.9416 }, { "start": 24626.18, "end": 24627.04, "probability": 0.9794 }, { "start": 24628.02, "end": 24630.06, "probability": 0.8931 }, { "start": 24632.04, "end": 24634.7, "probability": 0.7878 }, { "start": 24635.74, "end": 24636.16, "probability": 0.9917 }, { "start": 24637.5, "end": 24638.38, "probability": 0.6347 }, { "start": 24639.16, "end": 24639.5, "probability": 0.9001 }, { "start": 24640.42, "end": 24641.32, "probability": 0.8765 }, { "start": 24642.84, "end": 24643.78, "probability": 0.8096 }, { "start": 24644.3, "end": 24645.04, "probability": 0.9342 }, { "start": 24645.96, "end": 24648.48, "probability": 0.957 }, { "start": 24650.04, "end": 24650.86, "probability": 0.9477 }, { "start": 24652.14, "end": 24653.1, "probability": 0.9279 }, { "start": 24658.58, "end": 24658.94, "probability": 0.5571 }, { "start": 24661.34, "end": 24662.14, "probability": 0.6815 }, { "start": 24663.12, "end": 24666.32, "probability": 0.6005 }, { "start": 24667.48, "end": 24667.94, "probability": 0.7794 }, { "start": 24669.88, "end": 24670.6, "probability": 0.9483 }, { "start": 24671.84, "end": 24673.32, "probability": 0.8333 }, { "start": 24674.04, "end": 24676.16, "probability": 0.885 }, { "start": 24677.42, "end": 24681.22, "probability": 0.9733 }, { "start": 24681.88, "end": 24682.88, "probability": 0.8611 }, { "start": 24684.09, "end": 24686.66, "probability": 0.9497 }, { "start": 24687.56, "end": 24687.76, "probability": 0.5106 }, { "start": 24688.56, "end": 24689.4, "probability": 0.6605 }, { "start": 24690.56, "end": 24691.06, "probability": 0.9238 }, { "start": 24691.92, "end": 24692.84, "probability": 0.4364 }, { "start": 24695.06, "end": 24696.94, "probability": 0.4948 }, { "start": 24701.96, "end": 24702.68, "probability": 0.1648 }, { "start": 24704.52, "end": 24705.24, "probability": 0.2164 }, { "start": 24707.47, "end": 24709.92, "probability": 0.073 }, { "start": 24709.92, "end": 24710.48, "probability": 0.0495 }, { "start": 24710.86, "end": 24711.76, "probability": 0.1874 }, { "start": 24712.6, "end": 24713.36, "probability": 0.1242 }, { "start": 24724.3, "end": 24725.62, "probability": 0.5139 }, { "start": 24726.64, "end": 24729.0, "probability": 0.0279 }, { "start": 24730.48, "end": 24734.32, "probability": 0.1954 }, { "start": 24736.28, "end": 24738.06, "probability": 0.0783 }, { "start": 24738.84, "end": 24741.0, "probability": 0.0353 }, { "start": 24741.24, "end": 24741.7, "probability": 0.2376 }, { "start": 24742.36, "end": 24743.68, "probability": 0.5637 }, { "start": 24744.68, "end": 24746.38, "probability": 0.1384 }, { "start": 24747.3, "end": 24749.16, "probability": 0.5075 }, { "start": 24750.92, "end": 24751.44, "probability": 0.0827 }, { "start": 24755.38, "end": 24759.02, "probability": 0.4226 }, { "start": 24760.3, "end": 24765.02, "probability": 0.6432 }, { "start": 24765.78, "end": 24769.28, "probability": 0.4114 }, { "start": 24770.26, "end": 24774.0, "probability": 0.1182 }, { "start": 24776.37, "end": 24776.72, "probability": 0.0721 }, { "start": 24776.78, "end": 24777.8, "probability": 0.0705 }, { "start": 24777.8, "end": 24778.98, "probability": 0.1783 }, { "start": 24778.98, "end": 24778.98, "probability": 0.0231 }, { "start": 24778.98, "end": 24779.94, "probability": 0.1917 }, { "start": 24779.96, "end": 24779.96, "probability": 0.0882 }, { "start": 24779.96, "end": 24779.96, "probability": 0.2785 }, { "start": 24780.0, "end": 24780.0, "probability": 0.0 }, { "start": 24780.0, "end": 24780.0, "probability": 0.0 }, { "start": 24780.52, "end": 24784.48, "probability": 0.3979 }, { "start": 24788.58, "end": 24790.87, "probability": 0.7025 }, { "start": 24792.0, "end": 24793.98, "probability": 0.0793 }, { "start": 24801.46, "end": 24804.16, "probability": 0.0463 }, { "start": 24804.97, "end": 24805.7, "probability": 0.0786 }, { "start": 24805.7, "end": 24807.42, "probability": 0.1959 }, { "start": 24807.56, "end": 24808.84, "probability": 0.3865 }, { "start": 24809.52, "end": 24811.18, "probability": 0.0366 }, { "start": 24812.5, "end": 24813.02, "probability": 0.1141 }, { "start": 24907.0, "end": 24907.0, "probability": 0.0 }, { "start": 24907.0, "end": 24907.0, "probability": 0.0 }, { "start": 24907.0, "end": 24907.0, "probability": 0.0 }, { "start": 24907.0, "end": 24907.0, "probability": 0.0 }, { "start": 24907.0, "end": 24907.0, "probability": 0.0 }, { "start": 24907.0, "end": 24907.0, "probability": 0.0 }, { "start": 24907.0, "end": 24907.0, "probability": 0.0 }, { "start": 24907.0, "end": 24907.0, "probability": 0.0 }, { "start": 24907.0, "end": 24907.0, "probability": 0.0 }, { "start": 24907.0, "end": 24907.0, "probability": 0.0 }, { "start": 24907.0, "end": 24907.0, "probability": 0.0 }, { "start": 24907.0, "end": 24907.0, "probability": 0.0 }, { "start": 24907.0, "end": 24907.0, "probability": 0.0 }, { "start": 24907.0, "end": 24907.0, "probability": 0.0 }, { "start": 24907.0, "end": 24907.0, "probability": 0.0 }, { "start": 24907.0, "end": 24907.0, "probability": 0.0 }, { "start": 24907.0, "end": 24907.0, "probability": 0.0 }, { "start": 24907.0, "end": 24907.0, "probability": 0.0 }, { "start": 24907.0, "end": 24907.0, "probability": 0.0 }, { "start": 24907.0, "end": 24907.0, "probability": 0.0 }, { "start": 24907.34, "end": 24909.0, "probability": 0.0329 }, { "start": 24910.0, "end": 24911.26, "probability": 0.1308 }, { "start": 24912.02, "end": 24912.88, "probability": 0.6653 }, { "start": 24913.06, "end": 24913.7, "probability": 0.7817 }, { "start": 24917.4, "end": 24919.04, "probability": 0.1866 }, { "start": 24919.28, "end": 24920.7, "probability": 0.637 }, { "start": 24921.18, "end": 24921.64, "probability": 0.896 }, { "start": 24929.38, "end": 24933.9, "probability": 0.7516 }, { "start": 24934.42, "end": 24943.08, "probability": 0.0557 }, { "start": 24943.4, "end": 24944.44, "probability": 0.3493 }, { "start": 24944.54, "end": 24949.3, "probability": 0.8631 }, { "start": 24950.46, "end": 24951.84, "probability": 0.0287 }, { "start": 25083.0, "end": 25083.0, "probability": 0.0 }, { "start": 25083.0, "end": 25083.0, "probability": 0.0 }, { "start": 25083.0, "end": 25083.0, "probability": 0.0 }, { "start": 25083.0, "end": 25083.0, "probability": 0.0 }, { "start": 25083.0, "end": 25083.0, "probability": 0.0 }, { "start": 25083.0, "end": 25083.0, "probability": 0.0 }, { "start": 25083.0, "end": 25083.0, "probability": 0.0 }, { "start": 25083.0, "end": 25083.0, "probability": 0.0 }, { "start": 25083.0, "end": 25083.0, "probability": 0.0 }, { "start": 25083.0, "end": 25083.0, "probability": 0.0 }, { "start": 25083.0, "end": 25083.0, "probability": 0.0 }, { "start": 25083.0, "end": 25083.0, "probability": 0.0 }, { "start": 25083.0, "end": 25083.0, "probability": 0.0 }, { "start": 25083.0, "end": 25083.0, "probability": 0.0 }, { "start": 25083.0, "end": 25083.0, "probability": 0.0 }, { "start": 25083.0, "end": 25083.0, "probability": 0.0 }, { "start": 25083.0, "end": 25083.0, "probability": 0.0 }, { "start": 25083.0, "end": 25083.0, "probability": 0.0 }, { "start": 25083.0, "end": 25083.0, "probability": 0.0 }, { "start": 25083.0, "end": 25083.0, "probability": 0.0 }, { "start": 25083.0, "end": 25083.0, "probability": 0.0 }, { "start": 25083.0, "end": 25083.0, "probability": 0.0 }, { "start": 25083.0, "end": 25083.0, "probability": 0.0 }, { "start": 25083.0, "end": 25083.0, "probability": 0.0 }, { "start": 25083.0, "end": 25083.0, "probability": 0.0 }, { "start": 25083.26, "end": 25086.84, "probability": 0.0263 }, { "start": 25087.52, "end": 25088.8, "probability": 0.036 }, { "start": 25090.58, "end": 25092.08, "probability": 0.0185 }, { "start": 25093.54, "end": 25095.22, "probability": 0.4794 }, { "start": 25096.04, "end": 25098.6, "probability": 0.6951 }, { "start": 25099.74, "end": 25102.18, "probability": 0.9614 }, { "start": 25103.48, "end": 25104.0, "probability": 0.9725 }, { "start": 25104.76, "end": 25106.96, "probability": 0.9694 }, { "start": 25107.78, "end": 25109.0, "probability": 0.7032 }, { "start": 25110.92, "end": 25113.68, "probability": 0.7282 }, { "start": 25115.24, "end": 25117.84, "probability": 0.9446 }, { "start": 25120.7, "end": 25125.68, "probability": 0.9349 }, { "start": 25127.18, "end": 25133.92, "probability": 0.9442 }, { "start": 25134.58, "end": 25136.4, "probability": 0.9766 }, { "start": 25137.5, "end": 25140.54, "probability": 0.4066 }, { "start": 25141.74, "end": 25147.08, "probability": 0.4532 }, { "start": 25148.28, "end": 25151.48, "probability": 0.9017 }, { "start": 25153.01, "end": 25155.94, "probability": 0.6611 }, { "start": 25156.66, "end": 25159.18, "probability": 0.9606 }, { "start": 25159.7, "end": 25166.56, "probability": 0.9212 }, { "start": 25169.7, "end": 25171.56, "probability": 0.7492 }, { "start": 25174.3, "end": 25174.4, "probability": 0.4772 }, { "start": 25178.9, "end": 25179.86, "probability": 0.3216 }, { "start": 25181.09, "end": 25183.84, "probability": 0.8908 }, { "start": 25185.02, "end": 25185.54, "probability": 0.9751 }, { "start": 25186.52, "end": 25187.56, "probability": 0.4885 }, { "start": 25188.22, "end": 25188.8, "probability": 0.8805 }, { "start": 25189.42, "end": 25190.38, "probability": 0.8127 }, { "start": 25191.54, "end": 25192.84, "probability": 0.8638 }, { "start": 25193.9, "end": 25194.88, "probability": 0.7893 }, { "start": 25195.5, "end": 25198.12, "probability": 0.8286 }, { "start": 25198.84, "end": 25200.12, "probability": 0.6043 }, { "start": 25201.02, "end": 25202.28, "probability": 0.4445 }, { "start": 25202.44, "end": 25207.28, "probability": 0.0574 }, { "start": 25207.92, "end": 25211.14, "probability": 0.3964 }, { "start": 25211.14, "end": 25212.04, "probability": 0.7222 }, { "start": 25212.04, "end": 25212.04, "probability": 0.1502 }, { "start": 25212.04, "end": 25212.32, "probability": 0.3288 }, { "start": 25214.56, "end": 25214.6, "probability": 0.2383 }, { "start": 25214.6, "end": 25215.88, "probability": 0.3043 }, { "start": 25217.64, "end": 25218.1, "probability": 0.1241 }, { "start": 25220.16, "end": 25223.14, "probability": 0.1264 }, { "start": 25223.64, "end": 25225.12, "probability": 0.6569 }, { "start": 25225.94, "end": 25227.24, "probability": 0.7005 }, { "start": 25227.5, "end": 25229.88, "probability": 0.4892 }, { "start": 25238.12, "end": 25240.84, "probability": 0.6064 }, { "start": 25240.9, "end": 25241.46, "probability": 0.7521 }, { "start": 25245.24, "end": 25247.98, "probability": 0.5968 }, { "start": 25248.06, "end": 25250.08, "probability": 0.7754 }, { "start": 25250.12, "end": 25250.42, "probability": 0.5557 }, { "start": 25250.54, "end": 25251.09, "probability": 0.8594 }, { "start": 25251.92, "end": 25255.2, "probability": 0.062 }, { "start": 25255.88, "end": 25262.46, "probability": 0.6353 }, { "start": 25263.74, "end": 25266.9, "probability": 0.3079 }, { "start": 25267.46, "end": 25273.68, "probability": 0.7766 }, { "start": 25274.98, "end": 25278.26, "probability": 0.9816 }, { "start": 25280.16, "end": 25288.1, "probability": 0.9464 }, { "start": 25291.9, "end": 25295.38, "probability": 0.8413 }, { "start": 25298.54, "end": 25305.3, "probability": 0.543 }, { "start": 25306.7, "end": 25309.78, "probability": 0.9221 }, { "start": 25310.44, "end": 25313.04, "probability": 0.9424 }, { "start": 25314.1, "end": 25319.72, "probability": 0.9613 }, { "start": 25320.32, "end": 25322.42, "probability": 0.8894 }, { "start": 25322.92, "end": 25325.46, "probability": 0.7987 }, { "start": 25325.78, "end": 25328.44, "probability": 0.8155 }, { "start": 25328.98, "end": 25329.46, "probability": 0.9189 }, { "start": 25330.0, "end": 25334.4, "probability": 0.8876 }, { "start": 25335.0, "end": 25337.32, "probability": 0.9218 }, { "start": 25339.18, "end": 25341.38, "probability": 0.7751 }, { "start": 25342.9, "end": 25346.0, "probability": 0.7804 }, { "start": 25347.1, "end": 25350.28, "probability": 0.7509 }, { "start": 25351.22, "end": 25354.56, "probability": 0.906 }, { "start": 25354.88, "end": 25359.14, "probability": 0.602 }, { "start": 25361.92, "end": 25367.26, "probability": 0.4218 }, { "start": 25367.9, "end": 25372.62, "probability": 0.6576 }, { "start": 25373.14, "end": 25377.54, "probability": 0.8267 }, { "start": 25378.18, "end": 25380.04, "probability": 0.3413 }, { "start": 25381.35, "end": 25384.16, "probability": 0.8256 }, { "start": 25384.36, "end": 25385.46, "probability": 0.4666 }, { "start": 25385.48, "end": 25388.08, "probability": 0.7364 }, { "start": 25388.82, "end": 25390.6, "probability": 0.9679 }, { "start": 25391.74, "end": 25393.9, "probability": 0.9899 }, { "start": 25393.94, "end": 25394.96, "probability": 0.8281 }, { "start": 25397.94, "end": 25400.32, "probability": 0.0093 }, { "start": 25401.28, "end": 25403.52, "probability": 0.2968 }, { "start": 25404.98, "end": 25408.3, "probability": 0.6773 }, { "start": 25419.5, "end": 25422.48, "probability": 0.6173 }, { "start": 25422.88, "end": 25423.16, "probability": 0.0292 }, { "start": 25423.72, "end": 25425.37, "probability": 0.3743 }, { "start": 25427.9, "end": 25428.32, "probability": 0.8857 }, { "start": 25430.22, "end": 25431.66, "probability": 0.4463 }, { "start": 25434.56, "end": 25440.98, "probability": 0.4085 }, { "start": 25445.16, "end": 25446.04, "probability": 0.6271 }, { "start": 25447.12, "end": 25451.04, "probability": 0.6381 }, { "start": 25451.18, "end": 25454.76, "probability": 0.7469 }, { "start": 25454.88, "end": 25456.9, "probability": 0.0883 }, { "start": 25456.9, "end": 25459.85, "probability": 0.0947 }, { "start": 25460.36, "end": 25463.62, "probability": 0.0815 }, { "start": 25464.62, "end": 25467.8, "probability": 0.1393 }, { "start": 25476.06, "end": 25480.86, "probability": 0.3518 }, { "start": 25492.7, "end": 25494.64, "probability": 0.277 }, { "start": 25496.6, "end": 25504.78, "probability": 0.5921 }, { "start": 25504.82, "end": 25508.56, "probability": 0.6935 }, { "start": 25509.8, "end": 25510.2, "probability": 0.2848 }, { "start": 25541.6, "end": 25541.6, "probability": 0.0319 }, { "start": 25541.6, "end": 25541.6, "probability": 0.1348 }, { "start": 25541.6, "end": 25542.44, "probability": 0.6166 }, { "start": 25542.6, "end": 25546.2, "probability": 0.6641 }, { "start": 25546.32, "end": 25549.02, "probability": 0.9354 }, { "start": 25549.26, "end": 25552.42, "probability": 0.9248 }, { "start": 25552.84, "end": 25554.66, "probability": 0.83 }, { "start": 25555.62, "end": 25557.7, "probability": 0.7994 }, { "start": 25558.72, "end": 25561.32, "probability": 0.7298 }, { "start": 25562.46, "end": 25563.32, "probability": 0.743 }, { "start": 25564.86, "end": 25567.5, "probability": 0.9517 }, { "start": 25570.5, "end": 25572.88, "probability": 0.6613 }, { "start": 25574.94, "end": 25576.26, "probability": 0.3858 }, { "start": 25576.62, "end": 25578.76, "probability": 0.552 }, { "start": 25580.76, "end": 25581.74, "probability": 0.1076 }, { "start": 25586.84, "end": 25590.54, "probability": 0.104 }, { "start": 25593.66, "end": 25597.5, "probability": 0.098 }, { "start": 25611.78, "end": 25614.24, "probability": 0.0198 }, { "start": 25615.18, "end": 25619.22, "probability": 0.03 }, { "start": 25626.3, "end": 25628.51, "probability": 0.1338 }, { "start": 25669.4, "end": 25670.16, "probability": 0.0494 }, { "start": 25670.16, "end": 25671.88, "probability": 0.5384 }, { "start": 25673.02, "end": 25675.68, "probability": 0.7896 }, { "start": 25678.24, "end": 25680.08, "probability": 0.1529 }, { "start": 25682.7, "end": 25682.92, "probability": 0.5983 }, { "start": 25685.34, "end": 25685.42, "probability": 0.001 }, { "start": 25694.08, "end": 25695.42, "probability": 0.0438 }, { "start": 25697.04, "end": 25699.14, "probability": 0.1106 }, { "start": 25812.0, "end": 25812.0, "probability": 0.0 }, { "start": 25812.0, "end": 25812.0, "probability": 0.0 }, { "start": 25812.0, "end": 25812.0, "probability": 0.0 }, { "start": 25812.0, "end": 25812.0, "probability": 0.0 }, { "start": 25812.0, "end": 25812.0, "probability": 0.0 }, { "start": 25812.0, "end": 25812.0, "probability": 0.0 }, { "start": 25812.0, "end": 25812.0, "probability": 0.0 }, { "start": 25812.0, "end": 25812.0, "probability": 0.0 }, { "start": 25812.0, "end": 25812.0, "probability": 0.0 }, { "start": 25812.0, "end": 25812.0, "probability": 0.0 }, { "start": 25812.0, "end": 25812.0, "probability": 0.0 }, { "start": 25812.0, "end": 25812.0, "probability": 0.0 }, { "start": 25812.32, "end": 25813.92, "probability": 0.6681 }, { "start": 25820.46, "end": 25821.82, "probability": 0.4784 }, { "start": 25822.18, "end": 25823.88, "probability": 0.5765 }, { "start": 25824.86, "end": 25828.46, "probability": 0.9136 }, { "start": 25828.56, "end": 25829.44, "probability": 0.6407 }, { "start": 25829.58, "end": 25832.76, "probability": 0.2302 }, { "start": 25833.18, "end": 25835.74, "probability": 0.937 }, { "start": 25835.84, "end": 25836.48, "probability": 0.873 }, { "start": 25837.58, "end": 25840.34, "probability": 0.6982 }, { "start": 25840.88, "end": 25841.44, "probability": 0.8267 }, { "start": 25843.76, "end": 25846.68, "probability": 0.9954 }, { "start": 25848.08, "end": 25849.12, "probability": 0.8809 }, { "start": 25849.2, "end": 25851.04, "probability": 0.9972 }, { "start": 25855.36, "end": 25856.54, "probability": 0.7945 }, { "start": 25857.98, "end": 25861.78, "probability": 0.9975 }, { "start": 25863.8, "end": 25866.18, "probability": 0.9906 }, { "start": 25867.62, "end": 25868.66, "probability": 0.9265 }, { "start": 25869.86, "end": 25871.36, "probability": 0.924 }, { "start": 25872.04, "end": 25874.8, "probability": 0.9216 }, { "start": 25876.82, "end": 25879.78, "probability": 0.988 }, { "start": 25880.46, "end": 25880.87, "probability": 0.9152 }, { "start": 25881.72, "end": 25884.88, "probability": 0.9312 }, { "start": 25885.72, "end": 25890.82, "probability": 0.9113 }, { "start": 25891.98, "end": 25896.18, "probability": 0.7573 }, { "start": 25896.7, "end": 25898.98, "probability": 0.9051 }, { "start": 25899.62, "end": 25901.8, "probability": 0.9821 }, { "start": 25902.38, "end": 25904.4, "probability": 0.9957 }, { "start": 25904.48, "end": 25905.6, "probability": 0.9418 }, { "start": 25907.58, "end": 25909.48, "probability": 0.9357 }, { "start": 25909.48, "end": 25912.62, "probability": 0.9697 }, { "start": 25914.3, "end": 25914.64, "probability": 0.2588 }, { "start": 25915.68, "end": 25918.56, "probability": 0.9557 }, { "start": 25919.2, "end": 25922.16, "probability": 0.0119 }, { "start": 25922.68, "end": 25924.44, "probability": 0.8371 }, { "start": 25924.76, "end": 25924.86, "probability": 0.0642 }, { "start": 25926.96, "end": 25927.55, "probability": 0.6802 }, { "start": 25927.74, "end": 25929.32, "probability": 0.9657 }, { "start": 25929.6, "end": 25930.48, "probability": 0.4642 }, { "start": 25931.3, "end": 25932.5, "probability": 0.9971 }, { "start": 25932.56, "end": 25933.24, "probability": 0.9343 }, { "start": 25933.42, "end": 25933.98, "probability": 0.9775 }, { "start": 25934.18, "end": 25936.34, "probability": 0.9624 }, { "start": 25936.38, "end": 25937.36, "probability": 0.9785 }, { "start": 25938.02, "end": 25938.6, "probability": 0.5097 }, { "start": 25938.72, "end": 25939.9, "probability": 0.981 }, { "start": 25939.92, "end": 25943.98, "probability": 0.998 }, { "start": 25944.28, "end": 25945.24, "probability": 0.7998 }, { "start": 25945.88, "end": 25949.16, "probability": 0.9744 }, { "start": 25949.24, "end": 25949.5, "probability": 0.8512 }, { "start": 25949.6, "end": 25951.26, "probability": 0.9793 }, { "start": 25951.52, "end": 25951.68, "probability": 0.9282 }, { "start": 25952.38, "end": 25954.96, "probability": 0.9766 }, { "start": 25955.9, "end": 25957.26, "probability": 0.9888 }, { "start": 25957.36, "end": 25959.34, "probability": 0.9978 }, { "start": 25960.42, "end": 25962.44, "probability": 0.8621 }, { "start": 25962.58, "end": 25963.22, "probability": 0.9485 }, { "start": 25963.52, "end": 25964.42, "probability": 0.8143 }, { "start": 25965.6, "end": 25967.84, "probability": 0.9862 }, { "start": 25967.98, "end": 25969.98, "probability": 0.6925 }, { "start": 25970.62, "end": 25972.22, "probability": 0.941 }, { "start": 25974.3, "end": 25977.32, "probability": 0.9753 }, { "start": 25978.02, "end": 25984.64, "probability": 0.9188 }, { "start": 25985.38, "end": 25988.46, "probability": 0.9983 }, { "start": 25989.08, "end": 25994.58, "probability": 0.9985 }, { "start": 25994.7, "end": 25998.18, "probability": 0.9928 }, { "start": 25998.36, "end": 25998.79, "probability": 0.9985 }, { "start": 25999.72, "end": 26000.46, "probability": 0.7691 }, { "start": 26001.36, "end": 26003.52, "probability": 0.991 }, { "start": 26004.26, "end": 26009.32, "probability": 0.994 }, { "start": 26009.58, "end": 26010.54, "probability": 0.9956 }, { "start": 26011.28, "end": 26012.4, "probability": 0.8331 }, { "start": 26013.16, "end": 26014.76, "probability": 0.9835 }, { "start": 26016.4, "end": 26020.32, "probability": 0.9794 }, { "start": 26020.32, "end": 26023.18, "probability": 0.9889 }, { "start": 26024.12, "end": 26027.3, "probability": 0.9492 }, { "start": 26027.66, "end": 26028.36, "probability": 0.9708 }, { "start": 26030.52, "end": 26033.14, "probability": 0.9397 }, { "start": 26033.32, "end": 26035.1, "probability": 0.9659 }, { "start": 26035.18, "end": 26035.68, "probability": 0.8779 }, { "start": 26036.4, "end": 26037.4, "probability": 0.8567 }, { "start": 26037.62, "end": 26039.44, "probability": 0.9891 }, { "start": 26039.96, "end": 26042.32, "probability": 0.8522 }, { "start": 26042.74, "end": 26044.16, "probability": 0.999 }, { "start": 26045.3, "end": 26045.92, "probability": 0.585 }, { "start": 26046.24, "end": 26046.78, "probability": 0.4844 }, { "start": 26046.82, "end": 26048.52, "probability": 0.835 }, { "start": 26049.14, "end": 26050.94, "probability": 0.925 }, { "start": 26052.78, "end": 26053.38, "probability": 0.9199 }, { "start": 26053.68, "end": 26054.26, "probability": 0.8472 }, { "start": 26054.38, "end": 26059.0, "probability": 0.9403 }, { "start": 26059.08, "end": 26060.48, "probability": 0.6538 }, { "start": 26060.6, "end": 26060.92, "probability": 0.9163 }, { "start": 26062.06, "end": 26064.22, "probability": 0.9949 }, { "start": 26064.72, "end": 26065.02, "probability": 0.8728 }, { "start": 26065.14, "end": 26065.38, "probability": 0.9471 }, { "start": 26065.46, "end": 26067.14, "probability": 0.8333 }, { "start": 26067.18, "end": 26068.08, "probability": 0.8202 }, { "start": 26068.16, "end": 26068.74, "probability": 0.6709 }, { "start": 26069.22, "end": 26071.44, "probability": 0.9922 }, { "start": 26072.28, "end": 26072.6, "probability": 0.8225 }, { "start": 26072.68, "end": 26076.14, "probability": 0.9871 }, { "start": 26076.9, "end": 26077.22, "probability": 0.9133 }, { "start": 26077.9, "end": 26078.52, "probability": 0.9869 }, { "start": 26079.1, "end": 26080.38, "probability": 0.9518 }, { "start": 26081.12, "end": 26082.18, "probability": 0.9546 }, { "start": 26082.48, "end": 26085.8, "probability": 0.896 }, { "start": 26086.16, "end": 26087.82, "probability": 0.9966 }, { "start": 26088.22, "end": 26090.3, "probability": 0.9702 }, { "start": 26090.36, "end": 26092.6, "probability": 0.9774 }, { "start": 26093.1, "end": 26095.94, "probability": 0.9924 }, { "start": 26096.94, "end": 26097.08, "probability": 0.7729 }, { "start": 26097.14, "end": 26097.98, "probability": 0.9721 }, { "start": 26098.1, "end": 26101.28, "probability": 0.7436 }, { "start": 26101.42, "end": 26102.0, "probability": 0.9619 }, { "start": 26102.3, "end": 26103.16, "probability": 0.9771 }, { "start": 26103.22, "end": 26103.82, "probability": 0.5003 }, { "start": 26104.48, "end": 26105.02, "probability": 0.6981 }, { "start": 26105.64, "end": 26109.72, "probability": 0.9629 }, { "start": 26109.88, "end": 26111.36, "probability": 0.9884 }, { "start": 26111.88, "end": 26115.42, "probability": 0.9808 }, { "start": 26116.2, "end": 26119.96, "probability": 0.8567 }, { "start": 26120.34, "end": 26120.4, "probability": 0.5867 }, { "start": 26120.68, "end": 26120.72, "probability": 0.0456 }, { "start": 26120.76, "end": 26121.18, "probability": 0.4857 }, { "start": 26122.5, "end": 26123.72, "probability": 0.9525 }, { "start": 26123.82, "end": 26126.92, "probability": 0.9817 }, { "start": 26127.8, "end": 26130.24, "probability": 0.9301 }, { "start": 26130.52, "end": 26134.26, "probability": 0.9842 }, { "start": 26134.76, "end": 26137.6, "probability": 0.8441 }, { "start": 26137.88, "end": 26141.9, "probability": 0.7908 }, { "start": 26142.84, "end": 26143.16, "probability": 0.6696 }, { "start": 26143.2, "end": 26145.16, "probability": 0.9977 }, { "start": 26145.82, "end": 26147.9, "probability": 0.9588 }, { "start": 26148.66, "end": 26152.38, "probability": 0.9852 }, { "start": 26152.38, "end": 26156.08, "probability": 0.9877 }, { "start": 26156.78, "end": 26159.06, "probability": 0.9143 }, { "start": 26160.07, "end": 26162.36, "probability": 0.9859 }, { "start": 26162.36, "end": 26164.46, "probability": 0.7925 }, { "start": 26165.24, "end": 26168.36, "probability": 0.9868 }, { "start": 26168.5, "end": 26170.42, "probability": 0.9969 }, { "start": 26171.04, "end": 26171.94, "probability": 0.8683 }, { "start": 26172.32, "end": 26174.12, "probability": 0.9723 }, { "start": 26174.2, "end": 26176.24, "probability": 0.9773 }, { "start": 26176.5, "end": 26179.16, "probability": 0.9958 }, { "start": 26179.8, "end": 26180.82, "probability": 0.9595 }, { "start": 26181.4, "end": 26183.68, "probability": 0.9821 }, { "start": 26186.02, "end": 26188.06, "probability": 0.9683 }, { "start": 26188.36, "end": 26189.45, "probability": 0.9971 }, { "start": 26191.84, "end": 26195.04, "probability": 0.6501 }, { "start": 26195.48, "end": 26195.72, "probability": 0.8029 }, { "start": 26195.78, "end": 26200.9, "probability": 0.9918 }, { "start": 26201.68, "end": 26203.38, "probability": 0.972 }, { "start": 26203.6, "end": 26205.44, "probability": 0.9968 }, { "start": 26205.74, "end": 26208.6, "probability": 0.9404 }, { "start": 26209.38, "end": 26210.22, "probability": 0.379 }, { "start": 26210.72, "end": 26211.28, "probability": 0.9176 }, { "start": 26211.44, "end": 26213.7, "probability": 0.981 }, { "start": 26214.3, "end": 26215.2, "probability": 0.9787 }, { "start": 26215.66, "end": 26216.12, "probability": 0.713 }, { "start": 26216.24, "end": 26218.98, "probability": 0.9817 }, { "start": 26219.44, "end": 26221.62, "probability": 0.9381 }, { "start": 26222.04, "end": 26222.92, "probability": 0.7943 }, { "start": 26223.68, "end": 26228.74, "probability": 0.9681 }, { "start": 26228.74, "end": 26232.2, "probability": 0.9967 }, { "start": 26233.24, "end": 26235.56, "probability": 0.9895 }, { "start": 26236.42, "end": 26239.16, "probability": 0.968 }, { "start": 26239.6, "end": 26239.7, "probability": 0.1163 }, { "start": 26239.7, "end": 26239.7, "probability": 0.0926 }, { "start": 26239.7, "end": 26241.62, "probability": 0.9481 }, { "start": 26242.28, "end": 26242.92, "probability": 0.8205 }, { "start": 26243.02, "end": 26243.8, "probability": 0.6686 }, { "start": 26244.26, "end": 26245.32, "probability": 0.935 }, { "start": 26245.4, "end": 26246.16, "probability": 0.9098 }, { "start": 26247.56, "end": 26250.28, "probability": 0.986 }, { "start": 26252.35, "end": 26255.06, "probability": 0.618 }, { "start": 26255.18, "end": 26258.64, "probability": 0.9956 }, { "start": 26259.58, "end": 26261.06, "probability": 0.998 }, { "start": 26261.2, "end": 26262.2, "probability": 0.9993 }, { "start": 26262.66, "end": 26264.98, "probability": 0.7121 }, { "start": 26265.4, "end": 26266.72, "probability": 0.968 }, { "start": 26267.12, "end": 26267.36, "probability": 0.8422 }, { "start": 26267.38, "end": 26270.8, "probability": 0.9916 }, { "start": 26270.8, "end": 26274.56, "probability": 0.7251 }, { "start": 26274.78, "end": 26275.24, "probability": 0.4959 }, { "start": 26275.96, "end": 26277.78, "probability": 0.813 }, { "start": 26278.48, "end": 26280.7, "probability": 0.9807 }, { "start": 26281.18, "end": 26283.76, "probability": 0.9956 }, { "start": 26284.26, "end": 26286.64, "probability": 0.8708 }, { "start": 26287.02, "end": 26287.72, "probability": 0.9718 }, { "start": 26287.76, "end": 26289.68, "probability": 0.9748 }, { "start": 26290.08, "end": 26290.98, "probability": 0.9648 }, { "start": 26291.42, "end": 26295.22, "probability": 0.8135 }, { "start": 26295.86, "end": 26299.06, "probability": 0.9785 }, { "start": 26299.72, "end": 26301.3, "probability": 0.9977 }, { "start": 26302.0, "end": 26305.12, "probability": 0.8517 }, { "start": 26305.76, "end": 26309.9, "probability": 0.9882 }, { "start": 26310.1, "end": 26310.94, "probability": 0.625 }, { "start": 26322.12, "end": 26329.04, "probability": 0.0748 }, { "start": 26329.74, "end": 26330.3, "probability": 0.0745 }, { "start": 26330.86, "end": 26331.22, "probability": 0.2539 }, { "start": 26331.24, "end": 26332.6, "probability": 0.1471 }, { "start": 26332.6, "end": 26336.18, "probability": 0.4915 }, { "start": 26336.48, "end": 26336.48, "probability": 0.0794 }, { "start": 26342.12, "end": 26343.08, "probability": 0.3091 }, { "start": 26348.9, "end": 26350.76, "probability": 0.0188 }, { "start": 26350.76, "end": 26350.76, "probability": 0.0501 }, { "start": 26350.76, "end": 26350.76, "probability": 0.177 }, { "start": 26350.76, "end": 26350.76, "probability": 0.2045 }, { "start": 26350.76, "end": 26351.92, "probability": 0.7005 }, { "start": 26353.88, "end": 26355.32, "probability": 0.5418 }, { "start": 26355.62, "end": 26356.06, "probability": 0.3551 }, { "start": 26359.68, "end": 26360.2, "probability": 0.2499 }, { "start": 26360.44, "end": 26361.44, "probability": 0.821 }, { "start": 26361.96, "end": 26365.34, "probability": 0.895 }, { "start": 26365.64, "end": 26368.05, "probability": 0.9963 }, { "start": 26368.2, "end": 26370.06, "probability": 0.9883 }, { "start": 26370.24, "end": 26370.24, "probability": 0.4093 }, { "start": 26370.24, "end": 26370.66, "probability": 0.5951 }, { "start": 26373.46, "end": 26373.56, "probability": 0.169 }, { "start": 26374.79, "end": 26376.16, "probability": 0.1174 }, { "start": 26376.84, "end": 26376.98, "probability": 0.0798 }, { "start": 26376.98, "end": 26376.98, "probability": 0.1404 }, { "start": 26376.98, "end": 26376.98, "probability": 0.4645 }, { "start": 26377.1, "end": 26378.12, "probability": 0.7442 }, { "start": 26378.3, "end": 26381.12, "probability": 0.6979 }, { "start": 26381.12, "end": 26382.9, "probability": 0.8247 }, { "start": 26396.6, "end": 26397.16, "probability": 0.7721 }, { "start": 26399.78, "end": 26401.14, "probability": 0.8777 }, { "start": 26401.96, "end": 26406.92, "probability": 0.9795 }, { "start": 26406.98, "end": 26409.48, "probability": 0.9962 }, { "start": 26411.38, "end": 26413.82, "probability": 0.8537 }, { "start": 26414.1, "end": 26415.02, "probability": 0.8657 }, { "start": 26415.18, "end": 26418.86, "probability": 0.8137 }, { "start": 26420.72, "end": 26422.54, "probability": 0.852 }, { "start": 26422.64, "end": 26423.02, "probability": 0.9101 }, { "start": 26423.12, "end": 26428.16, "probability": 0.9777 }, { "start": 26428.16, "end": 26431.74, "probability": 0.9797 }, { "start": 26431.9, "end": 26435.22, "probability": 0.9951 }, { "start": 26435.68, "end": 26439.62, "probability": 0.8809 }, { "start": 26440.34, "end": 26443.42, "probability": 0.7304 }, { "start": 26444.52, "end": 26446.9, "probability": 0.9922 }, { "start": 26447.38, "end": 26448.94, "probability": 0.9768 }, { "start": 26449.06, "end": 26449.92, "probability": 0.9589 }, { "start": 26450.12, "end": 26452.52, "probability": 0.9916 }, { "start": 26453.77, "end": 26458.04, "probability": 0.9224 }, { "start": 26459.32, "end": 26462.62, "probability": 0.9231 }, { "start": 26462.82, "end": 26463.86, "probability": 0.8743 }, { "start": 26464.02, "end": 26465.3, "probability": 0.5281 }, { "start": 26465.38, "end": 26467.04, "probability": 0.9354 }, { "start": 26468.36, "end": 26469.96, "probability": 0.8633 }, { "start": 26470.52, "end": 26472.98, "probability": 0.6901 }, { "start": 26473.72, "end": 26476.9, "probability": 0.8448 }, { "start": 26477.5, "end": 26483.08, "probability": 0.7983 }, { "start": 26483.82, "end": 26487.12, "probability": 0.9061 }, { "start": 26487.92, "end": 26490.44, "probability": 0.9458 }, { "start": 26490.94, "end": 26493.12, "probability": 0.9041 }, { "start": 26493.54, "end": 26494.98, "probability": 0.7619 }, { "start": 26495.06, "end": 26500.58, "probability": 0.9787 }, { "start": 26500.8, "end": 26501.14, "probability": 0.8965 }, { "start": 26501.98, "end": 26502.08, "probability": 0.1992 }, { "start": 26502.76, "end": 26505.56, "probability": 0.3311 }, { "start": 26506.14, "end": 26507.9, "probability": 0.3885 }, { "start": 26508.9, "end": 26511.28, "probability": 0.9119 }, { "start": 26511.36, "end": 26512.06, "probability": 0.2716 }, { "start": 26512.22, "end": 26512.42, "probability": 0.0663 }, { "start": 26512.46, "end": 26513.44, "probability": 0.7667 }, { "start": 26514.08, "end": 26514.82, "probability": 0.6427 }, { "start": 26515.3, "end": 26517.04, "probability": 0.6415 }, { "start": 26517.22, "end": 26517.98, "probability": 0.0812 }, { "start": 26518.68, "end": 26521.16, "probability": 0.9672 }, { "start": 26521.24, "end": 26523.26, "probability": 0.8786 }, { "start": 26523.32, "end": 26524.22, "probability": 0.6428 }, { "start": 26524.5, "end": 26528.14, "probability": 0.2621 }, { "start": 26528.52, "end": 26531.84, "probability": 0.9878 }, { "start": 26535.44, "end": 26538.06, "probability": 0.9772 }, { "start": 26538.62, "end": 26541.64, "probability": 0.7735 }, { "start": 26543.52, "end": 26545.5, "probability": 0.766 }, { "start": 26571.24, "end": 26572.34, "probability": 0.568 }, { "start": 26572.94, "end": 26573.52, "probability": 0.7068 }, { "start": 26575.28, "end": 26576.56, "probability": 0.9426 }, { "start": 26577.62, "end": 26578.34, "probability": 0.8114 }, { "start": 26578.56, "end": 26582.26, "probability": 0.9769 }, { "start": 26583.12, "end": 26590.24, "probability": 0.9798 }, { "start": 26591.3, "end": 26592.24, "probability": 0.2587 }, { "start": 26592.38, "end": 26598.5, "probability": 0.883 }, { "start": 26599.62, "end": 26602.44, "probability": 0.9387 }, { "start": 26604.16, "end": 26605.62, "probability": 0.9649 }, { "start": 26606.24, "end": 26610.96, "probability": 0.9907 }, { "start": 26611.9, "end": 26614.22, "probability": 0.9993 }, { "start": 26614.86, "end": 26616.64, "probability": 0.9848 }, { "start": 26617.68, "end": 26622.24, "probability": 0.5627 }, { "start": 26623.5, "end": 26626.7, "probability": 0.7975 }, { "start": 26627.36, "end": 26628.52, "probability": 0.8879 }, { "start": 26629.84, "end": 26634.44, "probability": 0.9961 }, { "start": 26635.84, "end": 26636.77, "probability": 0.2106 }, { "start": 26637.68, "end": 26641.04, "probability": 0.929 }, { "start": 26641.44, "end": 26646.98, "probability": 0.9943 }, { "start": 26647.18, "end": 26651.92, "probability": 0.988 }, { "start": 26652.16, "end": 26654.2, "probability": 0.5106 }, { "start": 26655.02, "end": 26655.84, "probability": 0.9072 }, { "start": 26656.0, "end": 26657.2, "probability": 0.9341 }, { "start": 26657.26, "end": 26659.54, "probability": 0.9966 }, { "start": 26661.12, "end": 26665.98, "probability": 0.9851 }, { "start": 26665.98, "end": 26671.14, "probability": 0.9995 }, { "start": 26671.66, "end": 26677.0, "probability": 0.9826 }, { "start": 26677.18, "end": 26678.02, "probability": 0.832 }, { "start": 26679.06, "end": 26681.42, "probability": 0.9744 }, { "start": 26682.22, "end": 26683.96, "probability": 0.4936 }, { "start": 26684.48, "end": 26686.88, "probability": 0.9919 }, { "start": 26686.98, "end": 26687.54, "probability": 0.9185 }, { "start": 26687.68, "end": 26691.02, "probability": 0.8607 }, { "start": 26691.24, "end": 26693.54, "probability": 0.6425 }, { "start": 26694.44, "end": 26699.14, "probability": 0.9791 }, { "start": 26699.96, "end": 26702.6, "probability": 0.7374 }, { "start": 26703.12, "end": 26703.18, "probability": 0.0345 }, { "start": 26703.18, "end": 26704.14, "probability": 0.7017 }, { "start": 26705.18, "end": 26706.64, "probability": 0.7692 }, { "start": 26707.78, "end": 26710.37, "probability": 0.7086 }, { "start": 26711.42, "end": 26713.24, "probability": 0.8276 }, { "start": 26713.64, "end": 26717.04, "probability": 0.9733 }, { "start": 26717.04, "end": 26719.52, "probability": 0.9997 }, { "start": 26722.06, "end": 26725.42, "probability": 0.5614 }, { "start": 26726.1, "end": 26727.26, "probability": 0.9812 }, { "start": 26727.7, "end": 26730.44, "probability": 0.9083 }, { "start": 26732.28, "end": 26734.56, "probability": 0.8949 }, { "start": 26736.02, "end": 26739.7, "probability": 0.973 }, { "start": 26739.78, "end": 26741.66, "probability": 0.9388 }, { "start": 26741.78, "end": 26742.1, "probability": 0.6407 }, { "start": 26742.58, "end": 26743.44, "probability": 0.8802 }, { "start": 26744.12, "end": 26745.82, "probability": 0.9066 }, { "start": 26746.02, "end": 26746.72, "probability": 0.4962 }, { "start": 26747.08, "end": 26749.14, "probability": 0.7166 }, { "start": 26750.32, "end": 26751.24, "probability": 0.4866 }, { "start": 26751.56, "end": 26752.25, "probability": 0.5197 }, { "start": 26753.28, "end": 26754.7, "probability": 0.9677 }, { "start": 26754.8, "end": 26756.56, "probability": 0.7993 }, { "start": 26756.96, "end": 26759.46, "probability": 0.6471 }, { "start": 26759.94, "end": 26761.5, "probability": 0.6243 }, { "start": 26761.5, "end": 26764.0, "probability": 0.701 }, { "start": 26764.96, "end": 26767.94, "probability": 0.9645 }, { "start": 26769.54, "end": 26773.28, "probability": 0.9907 }, { "start": 26774.04, "end": 26775.11, "probability": 0.8577 }, { "start": 26775.56, "end": 26779.2, "probability": 0.9892 }, { "start": 26779.66, "end": 26787.15, "probability": 0.9966 }, { "start": 26787.84, "end": 26789.32, "probability": 0.6843 }, { "start": 26789.46, "end": 26790.69, "probability": 0.885 }, { "start": 26791.0, "end": 26792.82, "probability": 0.7458 }, { "start": 26792.94, "end": 26793.88, "probability": 0.8059 }, { "start": 26794.28, "end": 26796.16, "probability": 0.9907 }, { "start": 26796.62, "end": 26798.84, "probability": 0.6945 }, { "start": 26798.94, "end": 26799.36, "probability": 0.653 }, { "start": 26799.58, "end": 26804.6, "probability": 0.7247 }, { "start": 26804.98, "end": 26806.44, "probability": 0.7497 }, { "start": 26806.78, "end": 26808.66, "probability": 0.8008 }, { "start": 26808.66, "end": 26811.38, "probability": 0.7554 }, { "start": 26812.88, "end": 26814.54, "probability": 0.4735 }, { "start": 26814.86, "end": 26815.86, "probability": 0.9177 }, { "start": 26816.66, "end": 26820.09, "probability": 0.8885 }, { "start": 26821.16, "end": 26822.0, "probability": 0.9951 }, { "start": 26822.6, "end": 26823.2, "probability": 0.5934 }, { "start": 26823.32, "end": 26825.5, "probability": 0.9539 }, { "start": 26825.72, "end": 26826.8, "probability": 0.9836 }, { "start": 26827.48, "end": 26829.74, "probability": 0.7659 }, { "start": 26829.98, "end": 26830.97, "probability": 0.9766 }, { "start": 26831.46, "end": 26832.66, "probability": 0.6504 }, { "start": 26832.78, "end": 26833.41, "probability": 0.6345 }, { "start": 26833.54, "end": 26841.12, "probability": 0.9845 }, { "start": 26842.0, "end": 26843.22, "probability": 0.6548 }, { "start": 26844.18, "end": 26846.5, "probability": 0.9904 }, { "start": 26846.6, "end": 26848.78, "probability": 0.9584 }, { "start": 26848.86, "end": 26850.22, "probability": 0.9977 }, { "start": 26850.64, "end": 26852.94, "probability": 0.9734 }, { "start": 26853.5, "end": 26856.2, "probability": 0.994 }, { "start": 26858.32, "end": 26862.32, "probability": 0.9705 }, { "start": 26864.55, "end": 26866.68, "probability": 0.995 }, { "start": 26866.82, "end": 26868.86, "probability": 0.89 }, { "start": 26869.78, "end": 26873.82, "probability": 0.7612 }, { "start": 26874.38, "end": 26877.42, "probability": 0.8193 }, { "start": 26877.5, "end": 26880.8, "probability": 0.91 }, { "start": 26881.22, "end": 26885.98, "probability": 0.9917 }, { "start": 26886.1, "end": 26890.58, "probability": 0.9844 }, { "start": 26890.7, "end": 26890.94, "probability": 0.4129 }, { "start": 26890.98, "end": 26891.88, "probability": 0.3125 }, { "start": 26891.94, "end": 26892.29, "probability": 0.8257 }, { "start": 26893.4, "end": 26899.14, "probability": 0.914 }, { "start": 26899.4, "end": 26903.26, "probability": 0.8262 }, { "start": 26903.4, "end": 26905.2, "probability": 0.9677 }, { "start": 26906.22, "end": 26909.92, "probability": 0.9864 }, { "start": 26910.4, "end": 26911.68, "probability": 0.4996 }, { "start": 26912.52, "end": 26913.32, "probability": 0.8531 }, { "start": 26913.48, "end": 26914.78, "probability": 0.9722 }, { "start": 26915.2, "end": 26917.4, "probability": 0.9664 }, { "start": 26917.42, "end": 26920.92, "probability": 0.9424 }, { "start": 26922.22, "end": 26923.84, "probability": 0.9246 }, { "start": 26924.28, "end": 26925.4, "probability": 0.7648 }, { "start": 26925.5, "end": 26928.94, "probability": 0.9312 }, { "start": 26929.6, "end": 26931.12, "probability": 0.955 }, { "start": 26931.52, "end": 26935.42, "probability": 0.9693 }, { "start": 26936.24, "end": 26940.68, "probability": 0.9854 }, { "start": 26941.68, "end": 26947.12, "probability": 0.9982 }, { "start": 26947.36, "end": 26948.48, "probability": 0.8224 }, { "start": 26949.06, "end": 26950.32, "probability": 0.9645 }, { "start": 26950.86, "end": 26951.76, "probability": 0.8188 }, { "start": 26952.38, "end": 26956.04, "probability": 0.6937 }, { "start": 26958.44, "end": 26963.24, "probability": 0.7214 }, { "start": 26963.82, "end": 26966.54, "probability": 0.7085 }, { "start": 26966.6, "end": 26968.94, "probability": 0.9558 }, { "start": 26969.64, "end": 26971.6, "probability": 0.8972 }, { "start": 26971.92, "end": 26973.14, "probability": 0.994 }, { "start": 26974.16, "end": 26974.64, "probability": 0.6269 }, { "start": 26974.86, "end": 26977.6, "probability": 0.6804 }, { "start": 26978.44, "end": 26979.68, "probability": 0.9548 }, { "start": 26981.4, "end": 26983.82, "probability": 0.5563 }, { "start": 26984.06, "end": 26984.88, "probability": 0.8964 }, { "start": 26985.16, "end": 26987.58, "probability": 0.9289 }, { "start": 26987.74, "end": 26988.3, "probability": 0.8312 }, { "start": 26988.76, "end": 26989.5, "probability": 0.8338 }, { "start": 26989.54, "end": 26990.96, "probability": 0.9849 }, { "start": 26991.8, "end": 26994.64, "probability": 0.9967 }, { "start": 26995.24, "end": 26997.4, "probability": 0.9917 }, { "start": 26998.4, "end": 27002.86, "probability": 0.8631 }, { "start": 27003.16, "end": 27004.06, "probability": 0.9541 }, { "start": 27004.08, "end": 27005.32, "probability": 0.758 }, { "start": 27005.44, "end": 27007.5, "probability": 0.9138 }, { "start": 27008.18, "end": 27009.4, "probability": 0.7398 }, { "start": 27009.9, "end": 27011.12, "probability": 0.9409 }, { "start": 27011.9, "end": 27014.38, "probability": 0.9497 }, { "start": 27014.44, "end": 27015.12, "probability": 0.4251 }, { "start": 27015.64, "end": 27016.22, "probability": 0.6405 }, { "start": 27016.34, "end": 27018.63, "probability": 0.6791 }, { "start": 27021.12, "end": 27024.82, "probability": 0.7301 }, { "start": 27025.06, "end": 27026.92, "probability": 0.6784 }, { "start": 27027.36, "end": 27027.8, "probability": 0.8003 }, { "start": 27028.52, "end": 27030.8, "probability": 0.7627 }, { "start": 27031.02, "end": 27032.62, "probability": 0.7354 }, { "start": 27033.1, "end": 27035.32, "probability": 0.9875 }, { "start": 27035.48, "end": 27038.62, "probability": 0.9728 }, { "start": 27039.04, "end": 27039.9, "probability": 0.99 }, { "start": 27040.16, "end": 27041.02, "probability": 0.9602 }, { "start": 27041.22, "end": 27043.04, "probability": 0.9407 }, { "start": 27043.22, "end": 27046.4, "probability": 0.8834 }, { "start": 27046.5, "end": 27050.62, "probability": 0.9587 }, { "start": 27051.32, "end": 27053.18, "probability": 0.7313 }, { "start": 27053.34, "end": 27053.78, "probability": 0.5805 }, { "start": 27054.1, "end": 27056.52, "probability": 0.8273 }, { "start": 27057.3, "end": 27058.02, "probability": 0.8892 }, { "start": 27058.12, "end": 27060.92, "probability": 0.9664 }, { "start": 27060.92, "end": 27063.72, "probability": 0.9773 }, { "start": 27063.84, "end": 27066.18, "probability": 0.9643 }, { "start": 27066.72, "end": 27068.66, "probability": 0.3618 }, { "start": 27068.92, "end": 27071.04, "probability": 0.605 }, { "start": 27071.58, "end": 27072.56, "probability": 0.0353 }, { "start": 27072.56, "end": 27074.56, "probability": 0.8811 }, { "start": 27074.68, "end": 27075.59, "probability": 0.969 }, { "start": 27076.22, "end": 27077.38, "probability": 0.175 }, { "start": 27077.4, "end": 27078.7, "probability": 0.8931 }, { "start": 27079.24, "end": 27082.12, "probability": 0.4967 }, { "start": 27082.12, "end": 27082.21, "probability": 0.2316 }, { "start": 27082.86, "end": 27084.58, "probability": 0.9215 }, { "start": 27084.72, "end": 27086.98, "probability": 0.7861 }, { "start": 27087.04, "end": 27087.74, "probability": 0.7211 }, { "start": 27087.74, "end": 27091.2, "probability": 0.5851 }, { "start": 27092.4, "end": 27093.08, "probability": 0.3464 }, { "start": 27093.08, "end": 27094.08, "probability": 0.2548 }, { "start": 27094.6, "end": 27095.54, "probability": 0.1274 }, { "start": 27095.78, "end": 27096.9, "probability": 0.8025 }, { "start": 27096.96, "end": 27100.33, "probability": 0.9771 }, { "start": 27101.22, "end": 27102.08, "probability": 0.6886 }, { "start": 27102.18, "end": 27103.27, "probability": 0.9932 }, { "start": 27103.48, "end": 27104.72, "probability": 0.7104 }, { "start": 27105.42, "end": 27106.3, "probability": 0.1186 }, { "start": 27106.3, "end": 27106.3, "probability": 0.3572 }, { "start": 27106.3, "end": 27108.5, "probability": 0.5003 }, { "start": 27108.7, "end": 27111.56, "probability": 0.518 }, { "start": 27111.61, "end": 27111.98, "probability": 0.3935 }, { "start": 27112.04, "end": 27113.66, "probability": 0.6055 }, { "start": 27113.9, "end": 27115.6, "probability": 0.7483 }, { "start": 27115.62, "end": 27117.66, "probability": 0.7612 }, { "start": 27117.66, "end": 27119.84, "probability": 0.3574 }, { "start": 27119.88, "end": 27122.04, "probability": 0.677 }, { "start": 27122.12, "end": 27122.18, "probability": 0.3568 }, { "start": 27122.18, "end": 27124.2, "probability": 0.5451 }, { "start": 27125.86, "end": 27127.42, "probability": 0.7102 }, { "start": 27129.14, "end": 27131.72, "probability": 0.991 }, { "start": 27133.76, "end": 27137.66, "probability": 0.9966 }, { "start": 27137.82, "end": 27140.54, "probability": 0.9951 }, { "start": 27140.54, "end": 27143.9, "probability": 0.9993 }, { "start": 27144.2, "end": 27146.62, "probability": 0.985 }, { "start": 27147.64, "end": 27150.38, "probability": 0.955 }, { "start": 27151.0, "end": 27156.32, "probability": 0.9917 }, { "start": 27157.06, "end": 27158.84, "probability": 0.8652 }, { "start": 27160.42, "end": 27163.1, "probability": 0.9541 }, { "start": 27163.6, "end": 27167.88, "probability": 0.9781 }, { "start": 27169.42, "end": 27173.66, "probability": 0.9702 }, { "start": 27173.66, "end": 27177.9, "probability": 0.9961 }, { "start": 27179.0, "end": 27182.72, "probability": 0.9841 }, { "start": 27183.0, "end": 27184.8, "probability": 0.6063 }, { "start": 27185.54, "end": 27187.36, "probability": 0.9644 }, { "start": 27188.14, "end": 27190.83, "probability": 0.9714 }, { "start": 27190.96, "end": 27194.88, "probability": 0.9901 }, { "start": 27197.32, "end": 27202.82, "probability": 0.7688 }, { "start": 27203.58, "end": 27204.0, "probability": 0.4853 }, { "start": 27204.2, "end": 27206.28, "probability": 0.9713 }, { "start": 27206.54, "end": 27208.96, "probability": 0.9403 }, { "start": 27209.42, "end": 27212.84, "probability": 0.9849 }, { "start": 27213.74, "end": 27217.78, "probability": 0.929 }, { "start": 27217.86, "end": 27221.72, "probability": 0.9866 }, { "start": 27222.3, "end": 27225.1, "probability": 0.9666 }, { "start": 27225.5, "end": 27226.48, "probability": 0.8648 }, { "start": 27226.62, "end": 27227.34, "probability": 0.9401 }, { "start": 27227.44, "end": 27229.68, "probability": 0.9587 }, { "start": 27230.56, "end": 27236.26, "probability": 0.9885 }, { "start": 27236.5, "end": 27239.34, "probability": 0.9922 }, { "start": 27239.38, "end": 27242.02, "probability": 0.9971 }, { "start": 27242.64, "end": 27244.46, "probability": 0.8988 }, { "start": 27244.56, "end": 27245.57, "probability": 0.4988 }, { "start": 27246.04, "end": 27249.44, "probability": 0.9821 }, { "start": 27249.82, "end": 27252.58, "probability": 0.9946 }, { "start": 27252.92, "end": 27255.74, "probability": 0.9884 }, { "start": 27255.74, "end": 27259.04, "probability": 0.9388 }, { "start": 27260.02, "end": 27260.36, "probability": 0.4706 }, { "start": 27261.68, "end": 27264.1, "probability": 0.8629 }, { "start": 27264.76, "end": 27268.6, "probability": 0.8926 }, { "start": 27268.6, "end": 27271.8, "probability": 0.9961 }, { "start": 27272.4, "end": 27272.86, "probability": 0.493 }, { "start": 27273.38, "end": 27276.16, "probability": 0.9963 }, { "start": 27276.2, "end": 27279.14, "probability": 0.9842 }, { "start": 27280.32, "end": 27283.04, "probability": 0.9914 }, { "start": 27283.04, "end": 27286.5, "probability": 0.8608 }, { "start": 27286.98, "end": 27288.06, "probability": 0.934 }, { "start": 27288.82, "end": 27293.5, "probability": 0.984 }, { "start": 27293.88, "end": 27298.82, "probability": 0.9961 }, { "start": 27304.04, "end": 27305.9, "probability": 0.1587 }, { "start": 27306.12, "end": 27306.85, "probability": 0.0992 }, { "start": 27306.96, "end": 27311.41, "probability": 0.3708 }, { "start": 27312.9, "end": 27315.88, "probability": 0.8995 }, { "start": 27316.16, "end": 27320.14, "probability": 0.5461 }, { "start": 27320.14, "end": 27321.76, "probability": 0.8223 }, { "start": 27322.16, "end": 27324.94, "probability": 0.748 }, { "start": 27325.08, "end": 27326.48, "probability": 0.3235 }, { "start": 27326.66, "end": 27326.8, "probability": 0.5608 }, { "start": 27326.8, "end": 27330.42, "probability": 0.9451 }, { "start": 27331.42, "end": 27332.66, "probability": 0.3066 }, { "start": 27332.66, "end": 27332.74, "probability": 0.2768 }, { "start": 27332.74, "end": 27334.44, "probability": 0.8224 }, { "start": 27334.5, "end": 27335.5, "probability": 0.6301 }, { "start": 27336.28, "end": 27337.7, "probability": 0.7969 }, { "start": 27337.92, "end": 27339.02, "probability": 0.9866 }, { "start": 27339.04, "end": 27339.86, "probability": 0.722 }, { "start": 27340.06, "end": 27341.23, "probability": 0.927 }, { "start": 27342.76, "end": 27344.8, "probability": 0.8456 }, { "start": 27348.23, "end": 27352.12, "probability": 0.1522 }, { "start": 27352.32, "end": 27353.6, "probability": 0.0192 }, { "start": 27354.06, "end": 27356.66, "probability": 0.5972 }, { "start": 27357.06, "end": 27358.18, "probability": 0.0615 }, { "start": 27358.36, "end": 27362.14, "probability": 0.4726 }, { "start": 27363.04, "end": 27363.14, "probability": 0.1497 }, { "start": 27367.06, "end": 27370.26, "probability": 0.6636 }, { "start": 27371.22, "end": 27371.66, "probability": 0.3349 }, { "start": 27371.74, "end": 27372.02, "probability": 0.6849 }, { "start": 27372.02, "end": 27372.64, "probability": 0.6166 }, { "start": 27372.72, "end": 27375.94, "probability": 0.2678 }, { "start": 27376.68, "end": 27378.62, "probability": 0.175 }, { "start": 27378.84, "end": 27379.54, "probability": 0.5126 }, { "start": 27379.54, "end": 27382.36, "probability": 0.0311 }, { "start": 27382.68, "end": 27383.68, "probability": 0.2429 }, { "start": 27384.08, "end": 27386.08, "probability": 0.3074 }, { "start": 27386.28, "end": 27387.18, "probability": 0.1152 }, { "start": 27387.18, "end": 27387.3, "probability": 0.2087 }, { "start": 27387.3, "end": 27387.52, "probability": 0.1832 }, { "start": 27387.52, "end": 27388.7, "probability": 0.0383 }, { "start": 27388.76, "end": 27389.76, "probability": 0.7672 }, { "start": 27391.44, "end": 27392.17, "probability": 0.881 }, { "start": 27392.54, "end": 27393.26, "probability": 0.1841 }, { "start": 27393.62, "end": 27393.8, "probability": 0.4469 }, { "start": 27393.88, "end": 27394.82, "probability": 0.5755 }, { "start": 27394.9, "end": 27398.62, "probability": 0.1263 }, { "start": 27398.62, "end": 27399.88, "probability": 0.9147 }, { "start": 27400.6, "end": 27401.2, "probability": 0.6731 }, { "start": 27401.82, "end": 27402.32, "probability": 0.1264 }, { "start": 27402.72, "end": 27407.82, "probability": 0.8676 }, { "start": 27407.88, "end": 27409.62, "probability": 0.7354 }, { "start": 27410.62, "end": 27413.02, "probability": 0.4505 }, { "start": 27413.1, "end": 27413.1, "probability": 0.0287 }, { "start": 27413.34, "end": 27415.46, "probability": 0.0736 }, { "start": 27415.72, "end": 27415.72, "probability": 0.067 }, { "start": 27415.72, "end": 27415.92, "probability": 0.2346 }, { "start": 27416.06, "end": 27417.52, "probability": 0.1631 }, { "start": 27418.06, "end": 27419.72, "probability": 0.3124 }, { "start": 27420.66, "end": 27421.12, "probability": 0.2543 }, { "start": 27421.12, "end": 27421.78, "probability": 0.3284 }, { "start": 27421.92, "end": 27426.04, "probability": 0.95 }, { "start": 27426.84, "end": 27428.9, "probability": 0.3055 }, { "start": 27429.16, "end": 27432.1, "probability": 0.402 }, { "start": 27432.76, "end": 27437.0, "probability": 0.729 }, { "start": 27439.52, "end": 27440.9, "probability": 0.8659 }, { "start": 27441.48, "end": 27447.56, "probability": 0.2514 }, { "start": 27448.42, "end": 27451.68, "probability": 0.7707 }, { "start": 27454.14, "end": 27454.82, "probability": 0.2025 }, { "start": 27454.82, "end": 27455.52, "probability": 0.0884 }, { "start": 27455.52, "end": 27455.52, "probability": 0.0309 }, { "start": 27455.52, "end": 27457.26, "probability": 0.5713 }, { "start": 27457.72, "end": 27460.0, "probability": 0.3925 }, { "start": 27460.38, "end": 27463.46, "probability": 0.532 }, { "start": 27463.74, "end": 27465.22, "probability": 0.5907 }, { "start": 27466.5, "end": 27468.2, "probability": 0.8727 }, { "start": 27468.8, "end": 27473.56, "probability": 0.9976 }, { "start": 27474.04, "end": 27475.94, "probability": 0.9602 }, { "start": 27476.04, "end": 27476.44, "probability": 0.1004 }, { "start": 27476.74, "end": 27477.68, "probability": 0.9214 }, { "start": 27479.28, "end": 27480.24, "probability": 0.4445 }, { "start": 27481.26, "end": 27481.92, "probability": 0.1323 }, { "start": 27482.02, "end": 27482.96, "probability": 0.0366 }, { "start": 27482.96, "end": 27482.96, "probability": 0.1113 }, { "start": 27482.96, "end": 27485.2, "probability": 0.385 }, { "start": 27485.74, "end": 27491.12, "probability": 0.945 }, { "start": 27491.12, "end": 27492.24, "probability": 0.8431 }, { "start": 27492.4, "end": 27493.5, "probability": 0.8205 }, { "start": 27495.5, "end": 27495.52, "probability": 0.2516 }, { "start": 27496.62, "end": 27496.8, "probability": 0.0817 }, { "start": 27496.8, "end": 27496.8, "probability": 0.1678 }, { "start": 27496.8, "end": 27499.47, "probability": 0.9265 }, { "start": 27499.6, "end": 27503.12, "probability": 0.9823 }, { "start": 27503.56, "end": 27508.12, "probability": 0.9888 }, { "start": 27508.12, "end": 27511.48, "probability": 0.986 }, { "start": 27512.64, "end": 27517.14, "probability": 0.9951 }, { "start": 27517.68, "end": 27521.04, "probability": 0.7311 }, { "start": 27521.34, "end": 27522.96, "probability": 0.6963 }, { "start": 27523.42, "end": 27524.64, "probability": 0.7619 }, { "start": 27524.78, "end": 27531.96, "probability": 0.9881 }, { "start": 27532.02, "end": 27532.7, "probability": 0.6567 }, { "start": 27533.02, "end": 27534.22, "probability": 0.9075 }, { "start": 27534.32, "end": 27536.46, "probability": 0.9137 }, { "start": 27537.72, "end": 27541.74, "probability": 0.1341 }, { "start": 27541.74, "end": 27541.74, "probability": 0.1208 }, { "start": 27541.74, "end": 27542.1, "probability": 0.4737 }, { "start": 27542.2, "end": 27544.0, "probability": 0.5406 }, { "start": 27544.16, "end": 27545.82, "probability": 0.804 }, { "start": 27546.3, "end": 27549.6, "probability": 0.0339 }, { "start": 27549.6, "end": 27549.78, "probability": 0.3562 }, { "start": 27549.78, "end": 27550.42, "probability": 0.141 }, { "start": 27550.66, "end": 27551.88, "probability": 0.023 }, { "start": 27552.02, "end": 27552.8, "probability": 0.0959 }, { "start": 27552.8, "end": 27556.76, "probability": 0.8651 }, { "start": 27557.12, "end": 27557.46, "probability": 0.0273 }, { "start": 27557.46, "end": 27562.12, "probability": 0.9431 }, { "start": 27563.06, "end": 27565.04, "probability": 0.5908 }, { "start": 27565.5, "end": 27569.88, "probability": 0.9398 }, { "start": 27570.02, "end": 27572.14, "probability": 0.897 }, { "start": 27572.48, "end": 27575.96, "probability": 0.9892 }, { "start": 27576.0, "end": 27577.78, "probability": 0.9129 }, { "start": 27577.96, "end": 27578.92, "probability": 0.688 }, { "start": 27579.06, "end": 27580.64, "probability": 0.9834 }, { "start": 27580.7, "end": 27583.74, "probability": 0.9044 }, { "start": 27584.16, "end": 27585.12, "probability": 0.3844 }, { "start": 27585.66, "end": 27586.52, "probability": 0.6808 }, { "start": 27586.78, "end": 27591.2, "probability": 0.41 }, { "start": 27591.34, "end": 27591.42, "probability": 0.1416 }, { "start": 27591.42, "end": 27591.42, "probability": 0.2213 }, { "start": 27591.42, "end": 27591.42, "probability": 0.2423 }, { "start": 27591.42, "end": 27591.52, "probability": 0.2212 }, { "start": 27591.76, "end": 27591.92, "probability": 0.2441 }, { "start": 27591.92, "end": 27592.04, "probability": 0.0979 }, { "start": 27592.04, "end": 27593.54, "probability": 0.3372 }, { "start": 27594.38, "end": 27595.65, "probability": 0.0271 }, { "start": 27611.96, "end": 27614.16, "probability": 0.1661 }, { "start": 27615.8, "end": 27615.8, "probability": 0.0739 }, { "start": 27617.42, "end": 27622.36, "probability": 0.2742 }, { "start": 27622.36, "end": 27622.72, "probability": 0.0592 }, { "start": 27622.72, "end": 27623.14, "probability": 0.0322 }, { "start": 27624.33, "end": 27625.26, "probability": 0.0424 }, { "start": 27625.86, "end": 27627.9, "probability": 0.0475 }, { "start": 27629.96, "end": 27634.92, "probability": 0.0458 }, { "start": 27635.22, "end": 27635.22, "probability": 0.0325 }, { "start": 27635.22, "end": 27635.66, "probability": 0.0483 }, { "start": 27635.66, "end": 27637.5, "probability": 0.0283 }, { "start": 27637.52, "end": 27637.74, "probability": 0.4749 }, { "start": 27637.74, "end": 27639.32, "probability": 0.0843 }, { "start": 27640.46, "end": 27641.72, "probability": 0.0731 }, { "start": 27643.14, "end": 27643.98, "probability": 0.1912 }, { "start": 27644.3, "end": 27645.06, "probability": 0.0143 }, { "start": 27645.72, "end": 27646.42, "probability": 0.0329 }, { "start": 27647.92, "end": 27650.32, "probability": 0.0386 }, { "start": 27650.32, "end": 27651.34, "probability": 0.0727 }, { "start": 27651.9, "end": 27652.26, "probability": 0.1005 }, { "start": 27652.26, "end": 27652.4, "probability": 0.0744 }, { "start": 27652.4, "end": 27654.56, "probability": 0.1164 }, { "start": 27681.0, "end": 27681.0, "probability": 0.0 }, { "start": 27681.0, "end": 27681.0, "probability": 0.0 }, { "start": 27681.0, "end": 27681.0, "probability": 0.0 }, { "start": 27681.0, "end": 27681.0, "probability": 0.0 }, { "start": 27681.0, "end": 27681.0, "probability": 0.0 }, { "start": 27681.0, "end": 27681.0, "probability": 0.0 }, { "start": 27681.0, "end": 27681.0, "probability": 0.0 }, { "start": 27681.0, "end": 27681.0, "probability": 0.0 }, { "start": 27681.0, "end": 27681.0, "probability": 0.0 }, { "start": 27681.0, "end": 27681.0, "probability": 0.0 }, { "start": 27681.0, "end": 27681.0, "probability": 0.0 }, { "start": 27681.0, "end": 27681.0, "probability": 0.0 }, { "start": 27681.0, "end": 27681.0, "probability": 0.0 }, { "start": 27681.0, "end": 27681.0, "probability": 0.0 }, { "start": 27681.0, "end": 27681.0, "probability": 0.0 }, { "start": 27681.0, "end": 27681.0, "probability": 0.0 }, { "start": 27681.0, "end": 27681.0, "probability": 0.0 }, { "start": 27681.0, "end": 27681.0, "probability": 0.0 }, { "start": 27681.0, "end": 27681.0, "probability": 0.0 }, { "start": 27681.0, "end": 27681.0, "probability": 0.0 }, { "start": 27681.0, "end": 27681.0, "probability": 0.0 }, { "start": 27681.0, "end": 27681.0, "probability": 0.0 }, { "start": 27681.0, "end": 27681.0, "probability": 0.0 }, { "start": 27681.0, "end": 27681.0, "probability": 0.0 }, { "start": 27681.0, "end": 27681.0, "probability": 0.0 }, { "start": 27682.34, "end": 27683.9, "probability": 0.3205 }, { "start": 27684.53, "end": 27685.72, "probability": 0.1506 }, { "start": 27685.72, "end": 27689.3, "probability": 0.0402 }, { "start": 27689.3, "end": 27692.02, "probability": 0.0213 }, { "start": 27692.02, "end": 27695.44, "probability": 0.2603 }, { "start": 27697.62, "end": 27701.74, "probability": 0.1702 }, { "start": 27702.98, "end": 27704.8, "probability": 0.0796 }, { "start": 27801.0, "end": 27801.0, "probability": 0.0 }, { "start": 27801.0, "end": 27801.0, "probability": 0.0 }, { "start": 27801.0, "end": 27801.0, "probability": 0.0 }, { "start": 27801.0, "end": 27801.0, "probability": 0.0 }, { "start": 27801.0, "end": 27801.0, "probability": 0.0 }, { "start": 27801.0, "end": 27801.0, "probability": 0.0 }, { "start": 27801.0, "end": 27801.0, "probability": 0.0 }, { "start": 27801.0, "end": 27801.0, "probability": 0.0 }, { "start": 27801.0, "end": 27801.0, "probability": 0.0 }, { "start": 27801.0, "end": 27801.0, "probability": 0.0 }, { "start": 27801.0, "end": 27801.0, "probability": 0.0 }, { "start": 27801.0, "end": 27801.0, "probability": 0.0 }, { "start": 27801.0, "end": 27801.0, "probability": 0.0 }, { "start": 27801.0, "end": 27801.0, "probability": 0.0 }, { "start": 27801.0, "end": 27801.0, "probability": 0.0 }, { "start": 27801.0, "end": 27801.0, "probability": 0.0 }, { "start": 27801.0, "end": 27801.0, "probability": 0.0 }, { "start": 27801.0, "end": 27801.0, "probability": 0.0 }, { "start": 27801.0, "end": 27801.0, "probability": 0.0 }, { "start": 27801.0, "end": 27801.0, "probability": 0.0 }, { "start": 27801.0, "end": 27801.0, "probability": 0.0 }, { "start": 27801.0, "end": 27801.0, "probability": 0.0 }, { "start": 27801.0, "end": 27801.0, "probability": 0.0 }, { "start": 27801.0, "end": 27801.0, "probability": 0.0 }, { "start": 27801.0, "end": 27801.0, "probability": 0.0 }, { "start": 27801.0, "end": 27801.0, "probability": 0.0 }, { "start": 27801.0, "end": 27801.0, "probability": 0.0 }, { "start": 27801.0, "end": 27801.0, "probability": 0.0 }, { "start": 27801.0, "end": 27801.0, "probability": 0.0 }, { "start": 27801.0, "end": 27801.0, "probability": 0.0 }, { "start": 27801.0, "end": 27801.0, "probability": 0.0 }, { "start": 27801.0, "end": 27801.0, "probability": 0.0 }, { "start": 27801.0, "end": 27801.0, "probability": 0.0 }, { "start": 27801.0, "end": 27801.0, "probability": 0.0 }, { "start": 27801.0, "end": 27801.0, "probability": 0.0 }, { "start": 27801.0, "end": 27801.0, "probability": 0.0 }, { "start": 27801.0, "end": 27801.0, "probability": 0.0 }, { "start": 27801.0, "end": 27801.0, "probability": 0.0 }, { "start": 27801.0, "end": 27801.0, "probability": 0.0 }, { "start": 27801.0, "end": 27801.0, "probability": 0.0 }, { "start": 27801.0, "end": 27801.0, "probability": 0.0 }, { "start": 27801.0, "end": 27801.0, "probability": 0.0 }, { "start": 27801.0, "end": 27801.0, "probability": 0.0 }, { "start": 27801.0, "end": 27801.0, "probability": 0.0 }, { "start": 27801.0, "end": 27801.0, "probability": 0.0 }, { "start": 27801.0, "end": 27801.0, "probability": 0.0 }, { "start": 27801.0, "end": 27801.0, "probability": 0.0 }, { "start": 27801.0, "end": 27801.0, "probability": 0.0 }, { "start": 27801.0, "end": 27801.0, "probability": 0.0 }, { "start": 27801.0, "end": 27801.0, "probability": 0.0 }, { "start": 27801.0, "end": 27801.0, "probability": 0.0 }, { "start": 27801.0, "end": 27801.0, "probability": 0.0 }, { "start": 27801.78, "end": 27802.12, "probability": 0.0832 }, { "start": 27802.12, "end": 27802.12, "probability": 0.0457 }, { "start": 27802.12, "end": 27802.12, "probability": 0.0331 }, { "start": 27802.9, "end": 27808.36, "probability": 0.8486 }, { "start": 27809.08, "end": 27812.21, "probability": 0.0729 }, { "start": 27814.92, "end": 27815.02, "probability": 0.1632 }, { "start": 27923.0, "end": 27923.0, "probability": 0.0 }, { "start": 27923.0, "end": 27923.0, "probability": 0.0 }, { "start": 27923.0, "end": 27923.0, "probability": 0.0 }, { "start": 27923.0, "end": 27923.0, "probability": 0.0 }, { "start": 27923.0, "end": 27923.0, "probability": 0.0 }, { "start": 27923.0, "end": 27923.0, "probability": 0.0 }, { "start": 27923.0, "end": 27923.0, "probability": 0.0 }, { "start": 27923.0, "end": 27923.0, "probability": 0.0 }, { "start": 27923.0, "end": 27923.0, "probability": 0.0 }, { "start": 27923.0, "end": 27923.0, "probability": 0.0 }, { "start": 27923.0, "end": 27923.0, "probability": 0.0 }, { "start": 27923.0, "end": 27923.0, "probability": 0.0 }, { "start": 27923.0, "end": 27923.0, "probability": 0.0 }, { "start": 27923.0, "end": 27923.0, "probability": 0.0 }, { "start": 27923.0, "end": 27923.0, "probability": 0.0 }, { "start": 27923.0, "end": 27923.0, "probability": 0.0 }, { "start": 27923.0, "end": 27923.0, "probability": 0.0 }, { "start": 27923.0, "end": 27923.0, "probability": 0.0 }, { "start": 27923.0, "end": 27923.0, "probability": 0.0 }, { "start": 27923.0, "end": 27923.0, "probability": 0.0 }, { "start": 27923.0, "end": 27923.0, "probability": 0.0 }, { "start": 27923.0, "end": 27923.0, "probability": 0.0 }, { "start": 27923.0, "end": 27923.0, "probability": 0.0 }, { "start": 27923.0, "end": 27923.0, "probability": 0.0 }, { "start": 27923.0, "end": 27923.0, "probability": 0.0 }, { "start": 27923.0, "end": 27923.0, "probability": 0.0 }, { "start": 27923.0, "end": 27923.0, "probability": 0.0 }, { "start": 27923.0, "end": 27923.0, "probability": 0.0 }, { "start": 27923.0, "end": 27923.0, "probability": 0.0 }, { "start": 27923.0, "end": 27923.0, "probability": 0.0 }, { "start": 27923.0, "end": 27923.0, "probability": 0.0 }, { "start": 27923.0, "end": 27923.0, "probability": 0.0 }, { "start": 27923.0, "end": 27923.0, "probability": 0.0 }, { "start": 27923.0, "end": 27923.0, "probability": 0.0 }, { "start": 27923.0, "end": 27923.0, "probability": 0.0 }, { "start": 27923.0, "end": 27923.0, "probability": 0.0 }, { "start": 27923.0, "end": 27923.0, "probability": 0.0 }, { "start": 27923.0, "end": 27923.0, "probability": 0.0 }, { "start": 27923.0, "end": 27923.0, "probability": 0.0 }, { "start": 27923.0, "end": 27923.0, "probability": 0.0 }, { "start": 27923.0, "end": 27923.0, "probability": 0.0 }, { "start": 27923.0, "end": 27923.0, "probability": 0.0 }, { "start": 27923.0, "end": 27923.0, "probability": 0.0 }, { "start": 27923.0, "end": 27923.0, "probability": 0.0 }, { "start": 27923.0, "end": 27923.0, "probability": 0.0 }, { "start": 27923.0, "end": 27923.0, "probability": 0.0 }, { "start": 27923.0, "end": 27923.0, "probability": 0.0 }, { "start": 27923.0, "end": 27923.0, "probability": 0.0 }, { "start": 27923.0, "end": 27923.0, "probability": 0.0 }, { "start": 27923.0, "end": 27923.0, "probability": 0.0 }, { "start": 27923.0, "end": 27923.0, "probability": 0.0 }, { "start": 27923.0, "end": 27923.0, "probability": 0.0 }, { "start": 27923.0, "end": 27923.0, "probability": 0.0 }, { "start": 27923.0, "end": 27923.0, "probability": 0.0 }, { "start": 27923.0, "end": 27923.0, "probability": 0.0 }, { "start": 27923.0, "end": 27923.0, "probability": 0.0 }, { "start": 27923.0, "end": 27923.0, "probability": 0.0 }, { "start": 27923.0, "end": 27923.0, "probability": 0.0 }, { "start": 27923.44, "end": 27923.92, "probability": 0.1641 }, { "start": 27923.92, "end": 27923.92, "probability": 0.0332 }, { "start": 27923.92, "end": 27923.92, "probability": 0.2815 }, { "start": 27923.92, "end": 27925.18, "probability": 0.6118 }, { "start": 27926.7, "end": 27930.87, "probability": 0.8934 }, { "start": 27932.46, "end": 27935.46, "probability": 0.652 }, { "start": 27935.9, "end": 27937.96, "probability": 0.2863 }, { "start": 28059.0, "end": 28059.0, "probability": 0.0 }, { "start": 28059.0, "end": 28059.0, "probability": 0.0 }, { "start": 28059.0, "end": 28059.0, "probability": 0.0 }, { "start": 28059.0, "end": 28059.0, "probability": 0.0 }, { "start": 28059.0, "end": 28059.0, "probability": 0.0 }, { "start": 28059.0, "end": 28059.0, "probability": 0.0 }, { "start": 28059.0, "end": 28059.0, "probability": 0.0 }, { "start": 28059.0, "end": 28059.0, "probability": 0.0 }, { "start": 28059.0, "end": 28059.0, "probability": 0.0 }, { "start": 28059.0, "end": 28059.0, "probability": 0.0 }, { "start": 28059.0, "end": 28059.0, "probability": 0.0 }, { "start": 28059.0, "end": 28059.0, "probability": 0.0 }, { "start": 28059.0, "end": 28059.0, "probability": 0.0 }, { "start": 28059.0, "end": 28059.0, "probability": 0.0 }, { "start": 28059.0, "end": 28059.0, "probability": 0.0 }, { "start": 28059.0, "end": 28059.0, "probability": 0.0 }, { "start": 28059.0, "end": 28059.0, "probability": 0.0 }, { "start": 28059.0, "end": 28059.0, "probability": 0.0 }, { "start": 28059.0, "end": 28059.0, "probability": 0.0 }, { "start": 28059.0, "end": 28059.0, "probability": 0.0 }, { "start": 28059.0, "end": 28059.0, "probability": 0.0 }, { "start": 28059.0, "end": 28059.0, "probability": 0.0 }, { "start": 28059.0, "end": 28059.0, "probability": 0.0 }, { "start": 28059.0, "end": 28059.0, "probability": 0.0 }, { "start": 28059.0, "end": 28059.0, "probability": 0.0 }, { "start": 28059.0, "end": 28059.0, "probability": 0.0 }, { "start": 28059.0, "end": 28059.0, "probability": 0.0 }, { "start": 28059.0, "end": 28059.0, "probability": 0.0 }, { "start": 28059.0, "end": 28059.0, "probability": 0.0 }, { "start": 28059.0, "end": 28059.0, "probability": 0.0 }, { "start": 28059.0, "end": 28059.0, "probability": 0.0 }, { "start": 28059.0, "end": 28059.0, "probability": 0.0 }, { "start": 28059.0, "end": 28059.0, "probability": 0.0 }, { "start": 28059.0, "end": 28059.0, "probability": 0.0 }, { "start": 28059.14, "end": 28059.67, "probability": 0.0912 }, { "start": 28060.24, "end": 28061.22, "probability": 0.4379 }, { "start": 28061.5, "end": 28063.89, "probability": 0.3728 }, { "start": 28064.26, "end": 28066.57, "probability": 0.7949 }, { "start": 28066.96, "end": 28067.12, "probability": 0.5483 }, { "start": 28069.02, "end": 28071.98, "probability": 0.094 }, { "start": 28072.74, "end": 28073.62, "probability": 0.426 }, { "start": 28075.56, "end": 28076.26, "probability": 0.9683 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28349.0, "end": 28349.0, "probability": 0.0 }, { "start": 28350.14, "end": 28351.74, "probability": 0.5991 }, { "start": 28355.46, "end": 28355.9, "probability": 0.1632 }, { "start": 28357.5, "end": 28359.48, "probability": 0.7927 }, { "start": 28360.0, "end": 28360.76, "probability": 0.1 }, { "start": 28361.76, "end": 28361.84, "probability": 0.0177 }, { "start": 28361.84, "end": 28361.84, "probability": 0.2363 }, { "start": 28361.84, "end": 28363.88, "probability": 0.0768 }, { "start": 28364.88, "end": 28365.34, "probability": 0.6863 }, { "start": 28366.46, "end": 28367.46, "probability": 0.1962 }, { "start": 28370.74, "end": 28371.3, "probability": 0.0348 }, { "start": 28869.0, "end": 28869.0, "probability": 0.0 }, { "start": 28869.0, "end": 28869.0, "probability": 0.0 }, { "start": 28869.0, "end": 28869.0, "probability": 0.0 }, { "start": 28869.0, "end": 28869.0, "probability": 0.0 }, { "start": 28869.0, "end": 28869.0, "probability": 0.0 }, { "start": 28869.0, "end": 28869.0, "probability": 0.0 }, { "start": 28869.0, "end": 28869.0, "probability": 0.0 }, { "start": 28869.0, "end": 28869.0, "probability": 0.0 }, { "start": 28869.0, "end": 28869.0, "probability": 0.0 }, { "start": 28869.0, "end": 28869.0, "probability": 0.0 }, { "start": 28869.0, "end": 28869.0, "probability": 0.0 }, { "start": 28869.0, "end": 28869.0, "probability": 0.0 }, { "start": 28869.0, "end": 28869.0, "probability": 0.0 }, { "start": 28869.0, "end": 28869.0, "probability": 0.0 }, { "start": 28869.0, "end": 28869.0, "probability": 0.0 }, { "start": 28869.0, "end": 28869.0, "probability": 0.0 }, { "start": 28869.0, "end": 28869.0, "probability": 0.0 }, { "start": 28869.0, "end": 28869.0, "probability": 0.0 }, { "start": 28869.0, "end": 28869.0, "probability": 0.0 }, { "start": 28869.0, "end": 28869.0, "probability": 0.0 }, { "start": 28869.0, "end": 28869.0, "probability": 0.0 }, { "start": 28869.0, "end": 28869.0, "probability": 0.0 }, { "start": 28869.0, "end": 28869.0, "probability": 0.0 }, { "start": 28869.0, "end": 28869.0, "probability": 0.0 }, { "start": 28869.0, "end": 28869.0, "probability": 0.0 }, { "start": 28869.0, "end": 28869.0, "probability": 0.0 }, { "start": 28869.0, "end": 28869.0, "probability": 0.0 }, { "start": 28869.0, "end": 28869.0, "probability": 0.0 }, { "start": 28869.0, "end": 28869.0, "probability": 0.0 }, { "start": 28869.0, "end": 28869.0, "probability": 0.0 }, { "start": 28869.0, "end": 28869.0, "probability": 0.0 }, { "start": 28869.0, "end": 28869.0, "probability": 0.0 }, { "start": 28869.0, "end": 28869.0, "probability": 0.0 }, { "start": 28869.0, "end": 28869.0, "probability": 0.0 }, { "start": 28869.0, "end": 28869.0, "probability": 0.0 }, { "start": 28869.0, "end": 28869.0, "probability": 0.0 }, { "start": 28869.0, "end": 28869.0, "probability": 0.0 }, { "start": 28869.0, "end": 28869.0, "probability": 0.0 }, { "start": 28869.0, "end": 28869.0, "probability": 0.0 }, { "start": 28869.0, "end": 28869.0, "probability": 0.0 }, { "start": 28869.0, "end": 28869.0, "probability": 0.0 }, { "start": 28869.0, "end": 28869.0, "probability": 0.0 }, { "start": 28869.0, "end": 28869.0, "probability": 0.0 }, { "start": 28869.0, "end": 28869.0, "probability": 0.0 }, { "start": 28869.0, "end": 28869.0, "probability": 0.0 }, { "start": 28869.0, "end": 28869.0, "probability": 0.0 }, { "start": 28869.0, "end": 28869.0, "probability": 0.0 }, { "start": 28869.0, "end": 28869.0, "probability": 0.0 }, { "start": 28869.0, "end": 28869.0, "probability": 0.0 }, { "start": 28869.0, "end": 28869.0, "probability": 0.0 }, { "start": 28869.0, "end": 28869.0, "probability": 0.0 }, { "start": 28869.0, "end": 28869.0, "probability": 0.0 }, { "start": 28869.0, "end": 28869.0, "probability": 0.0 }, { "start": 28869.0, "end": 28869.0, "probability": 0.0 }, { "start": 28869.0, "end": 28869.0, "probability": 0.0 }, { "start": 28869.0, "end": 28869.0, "probability": 0.0 }, { "start": 28869.0, "end": 28869.0, "probability": 0.0 }, { "start": 28869.0, "end": 28869.0, "probability": 0.0 }, { "start": 28869.0, "end": 28869.0, "probability": 0.0 }, { "start": 28869.0, "end": 28869.0, "probability": 0.0 }, { "start": 28869.0, "end": 28869.0, "probability": 0.0 }, { "start": 28869.0, "end": 28869.0, "probability": 0.0 }, { "start": 28869.0, "end": 28869.0, "probability": 0.0 }, { "start": 28869.0, "end": 28869.0, "probability": 0.0 }, { "start": 28869.0, "end": 28869.0, "probability": 0.0 }, { "start": 28869.0, "end": 28869.0, "probability": 0.0 }, { "start": 28869.04, "end": 28875.2, "probability": 0.0585 }, { "start": 28876.46, "end": 28878.5, "probability": 0.2454 }, { "start": 28878.5, "end": 28880.32, "probability": 0.1224 }, { "start": 28880.46, "end": 28882.52, "probability": 0.1538 }, { "start": 28882.54, "end": 28883.28, "probability": 0.1245 }, { "start": 28884.68, "end": 28886.72, "probability": 0.161 }, { "start": 28888.04, "end": 28888.16, "probability": 0.3995 }, { "start": 29115.0, "end": 29115.0, "probability": 0.0 }, { "start": 29115.0, "end": 29115.0, "probability": 0.0 }, { "start": 29115.0, "end": 29115.0, "probability": 0.0 }, { "start": 29115.0, "end": 29115.0, "probability": 0.0 }, { "start": 29115.0, "end": 29115.0, "probability": 0.0 }, { "start": 29115.0, "end": 29115.0, "probability": 0.0 }, { "start": 29115.0, "end": 29115.0, "probability": 0.0 }, { "start": 29115.0, "end": 29115.0, "probability": 0.0 }, { "start": 29115.0, "end": 29115.0, "probability": 0.0 }, { "start": 29115.0, "end": 29115.0, "probability": 0.0 }, { "start": 29115.0, "end": 29115.0, "probability": 0.0 }, { "start": 29115.0, "end": 29115.0, "probability": 0.0 }, { "start": 29115.0, "end": 29115.0, "probability": 0.0 }, { "start": 29115.0, "end": 29115.0, "probability": 0.0 }, { "start": 29115.0, "end": 29115.0, "probability": 0.0 }, { "start": 29115.0, "end": 29115.0, "probability": 0.0 }, { "start": 29115.0, "end": 29115.0, "probability": 0.0 }, { "start": 29115.0, "end": 29115.0, "probability": 0.0 }, { "start": 29115.0, "end": 29115.0, "probability": 0.0 }, { "start": 29115.0, "end": 29115.0, "probability": 0.0 }, { "start": 29115.0, "end": 29115.0, "probability": 0.0 }, { "start": 29115.0, "end": 29115.0, "probability": 0.0 }, { "start": 29115.0, "end": 29115.0, "probability": 0.0 }, { "start": 29115.0, "end": 29115.0, "probability": 0.0 }, { "start": 29115.0, "end": 29115.0, "probability": 0.0 }, { "start": 29115.0, "end": 29115.0, "probability": 0.0 }, { "start": 29115.0, "end": 29115.0, "probability": 0.0 }, { "start": 29115.0, "end": 29115.0, "probability": 0.0 }, { "start": 29115.0, "end": 29115.0, "probability": 0.0 }, { "start": 29115.0, "end": 29115.0, "probability": 0.0 }, { "start": 29115.0, "end": 29115.0, "probability": 0.0 }, { "start": 29115.0, "end": 29115.0, "probability": 0.0 }, { "start": 29115.0, "end": 29115.0, "probability": 0.0 }, { "start": 29115.0, "end": 29115.0, "probability": 0.0 }, { "start": 29115.0, "end": 29115.0, "probability": 0.0 }, { "start": 29115.0, "end": 29115.0, "probability": 0.0 }, { "start": 29115.0, "end": 29115.0, "probability": 0.0 }, { "start": 29115.0, "end": 29115.0, "probability": 0.0 }, { "start": 29115.0, "end": 29115.0, "probability": 0.0 }, { "start": 29115.0, "end": 29115.0, "probability": 0.0 }, { "start": 29115.0, "end": 29115.0, "probability": 0.0 }, { "start": 29115.0, "end": 29115.0, "probability": 0.0 }, { "start": 29115.0, "end": 29115.0, "probability": 0.0 }, { "start": 29115.0, "end": 29115.0, "probability": 0.0 }, { "start": 29115.0, "end": 29115.0, "probability": 0.0 }, { "start": 29115.0, "end": 29115.0, "probability": 0.0 }, { "start": 29115.0, "end": 29115.0, "probability": 0.0 }, { "start": 29115.0, "end": 29115.0, "probability": 0.0 }, { "start": 29115.0, "end": 29115.0, "probability": 0.0 }, { "start": 29115.0, "end": 29115.0, "probability": 0.0 }, { "start": 29115.0, "end": 29115.0, "probability": 0.0 }, { "start": 29115.0, "end": 29115.0, "probability": 0.0 }, { "start": 29115.0, "end": 29115.0, "probability": 0.0 }, { "start": 29115.0, "end": 29115.0, "probability": 0.0 }, { "start": 29115.0, "end": 29115.0, "probability": 0.0 }, { "start": 29115.0, "end": 29115.0, "probability": 0.0 }, { "start": 29115.0, "end": 29115.0, "probability": 0.0 }, { "start": 29115.0, "end": 29115.0, "probability": 0.0 }, { "start": 29115.0, "end": 29115.0, "probability": 0.0 }, { "start": 29115.0, "end": 29115.0, "probability": 0.0 }, { "start": 29115.0, "end": 29115.0, "probability": 0.0 }, { "start": 29115.0, "end": 29115.0, "probability": 0.0 }, { "start": 29124.91, "end": 29127.32, "probability": 0.7214 }, { "start": 29128.48, "end": 29129.98, "probability": 0.7188 }, { "start": 29131.34, "end": 29132.52, "probability": 0.7467 }, { "start": 29133.22, "end": 29135.2, "probability": 0.6002 }, { "start": 29135.44, "end": 29135.96, "probability": 0.8359 }, { "start": 29137.14, "end": 29139.5, "probability": 0.9855 }, { "start": 29140.04, "end": 29144.38, "probability": 0.8892 }, { "start": 29145.86, "end": 29148.24, "probability": 0.7019 }, { "start": 29149.02, "end": 29151.28, "probability": 0.9657 }, { "start": 29152.42, "end": 29155.6, "probability": 0.6736 }, { "start": 29155.62, "end": 29158.94, "probability": 0.9147 }, { "start": 29159.44, "end": 29162.32, "probability": 0.9944 }, { "start": 29162.9, "end": 29165.98, "probability": 0.7837 }, { "start": 29167.0, "end": 29168.96, "probability": 0.782 }, { "start": 29169.2, "end": 29171.18, "probability": 0.8789 }, { "start": 29171.8, "end": 29173.94, "probability": 0.9528 }, { "start": 29174.6, "end": 29183.24, "probability": 0.9058 }, { "start": 29183.26, "end": 29184.1, "probability": 0.9985 }, { "start": 29184.26, "end": 29185.1, "probability": 0.9985 }, { "start": 29185.7, "end": 29189.26, "probability": 0.7944 }, { "start": 29190.06, "end": 29191.3, "probability": 0.8782 }, { "start": 29191.38, "end": 29192.02, "probability": 0.7769 }, { "start": 29192.16, "end": 29193.14, "probability": 0.9604 }, { "start": 29193.54, "end": 29196.78, "probability": 0.9567 }, { "start": 29196.98, "end": 29196.98, "probability": 0.0131 }, { "start": 29196.98, "end": 29197.76, "probability": 0.4626 }, { "start": 29198.26, "end": 29201.86, "probability": 0.4138 }, { "start": 29202.36, "end": 29202.8, "probability": 0.5508 }, { "start": 29203.06, "end": 29204.0, "probability": 0.7378 }, { "start": 29204.14, "end": 29207.56, "probability": 0.9399 }, { "start": 29208.06, "end": 29208.78, "probability": 0.7655 }, { "start": 29209.32, "end": 29210.88, "probability": 0.5221 }, { "start": 29211.72, "end": 29212.18, "probability": 0.1881 }, { "start": 29212.28, "end": 29214.94, "probability": 0.7352 }, { "start": 29215.0, "end": 29217.88, "probability": 0.9226 }, { "start": 29218.48, "end": 29221.56, "probability": 0.8104 }, { "start": 29221.92, "end": 29222.6, "probability": 0.7941 }, { "start": 29222.78, "end": 29225.06, "probability": 0.9202 }, { "start": 29225.24, "end": 29228.94, "probability": 0.947 }, { "start": 29229.32, "end": 29230.62, "probability": 0.4889 }, { "start": 29230.66, "end": 29233.34, "probability": 0.9699 }, { "start": 29233.94, "end": 29235.8, "probability": 0.9488 }, { "start": 29237.58, "end": 29237.64, "probability": 0.0022 }, { "start": 29239.72, "end": 29240.24, "probability": 0.0785 }, { "start": 29240.24, "end": 29240.72, "probability": 0.2563 }, { "start": 29240.72, "end": 29240.72, "probability": 0.0799 }, { "start": 29240.72, "end": 29243.08, "probability": 0.6973 }, { "start": 29243.44, "end": 29249.82, "probability": 0.7511 }, { "start": 29250.12, "end": 29251.94, "probability": 0.3021 }, { "start": 29252.62, "end": 29252.7, "probability": 0.0676 }, { "start": 29252.7, "end": 29254.42, "probability": 0.6395 }, { "start": 29254.78, "end": 29262.86, "probability": 0.6894 }, { "start": 29263.26, "end": 29264.9, "probability": 0.7223 }, { "start": 29265.66, "end": 29271.52, "probability": 0.5387 }, { "start": 29271.78, "end": 29273.1, "probability": 0.5846 }, { "start": 29273.96, "end": 29277.12, "probability": 0.8989 }, { "start": 29277.8, "end": 29280.18, "probability": 0.4708 }, { "start": 29281.02, "end": 29282.76, "probability": 0.8765 }, { "start": 29283.1, "end": 29285.16, "probability": 0.5635 }, { "start": 29285.64, "end": 29287.04, "probability": 0.0454 }, { "start": 29287.04, "end": 29287.64, "probability": 0.1615 }, { "start": 29288.68, "end": 29292.46, "probability": 0.1581 }, { "start": 29296.42, "end": 29298.26, "probability": 0.5774 }, { "start": 29298.56, "end": 29299.88, "probability": 0.4803 }, { "start": 29300.02, "end": 29301.32, "probability": 0.8294 }, { "start": 29302.0, "end": 29304.02, "probability": 0.5285 }, { "start": 29305.06, "end": 29306.96, "probability": 0.5699 }, { "start": 29307.38, "end": 29309.88, "probability": 0.729 }, { "start": 29310.3, "end": 29313.2, "probability": 0.4191 }, { "start": 29313.56, "end": 29316.82, "probability": 0.5002 }, { "start": 29316.96, "end": 29318.89, "probability": 0.9078 }, { "start": 29320.42, "end": 29321.48, "probability": 0.491 }, { "start": 29321.7, "end": 29322.94, "probability": 0.817 }, { "start": 29323.32, "end": 29323.9, "probability": 0.329 }, { "start": 29324.28, "end": 29327.28, "probability": 0.2188 }, { "start": 29327.28, "end": 29327.3, "probability": 0.717 }, { "start": 29327.3, "end": 29330.76, "probability": 0.611 }, { "start": 29330.88, "end": 29332.78, "probability": 0.7891 }, { "start": 29334.2, "end": 29334.54, "probability": 0.2842 }, { "start": 29334.66, "end": 29334.7, "probability": 0.5007 }, { "start": 29334.7, "end": 29335.84, "probability": 0.2067 }, { "start": 29335.84, "end": 29337.64, "probability": 0.4036 }, { "start": 29338.1, "end": 29338.85, "probability": 0.5579 }, { "start": 29340.24, "end": 29341.32, "probability": 0.4891 }, { "start": 29341.56, "end": 29344.81, "probability": 0.2288 }, { "start": 29347.4, "end": 29351.7, "probability": 0.4289 }, { "start": 29351.82, "end": 29351.82, "probability": 0.3744 }, { "start": 29351.82, "end": 29351.82, "probability": 0.3005 }, { "start": 29351.82, "end": 29351.82, "probability": 0.1625 }, { "start": 29352.02, "end": 29352.24, "probability": 0.0306 }, { "start": 29352.62, "end": 29353.62, "probability": 0.2084 }, { "start": 29353.92, "end": 29357.18, "probability": 0.1293 }, { "start": 29357.28, "end": 29364.08, "probability": 0.2503 }, { "start": 29403.0, "end": 29403.0, "probability": 0.0 }, { "start": 29403.0, "end": 29403.0, "probability": 0.0 }, { "start": 29403.0, "end": 29403.0, "probability": 0.0 }, { "start": 29403.0, "end": 29403.0, "probability": 0.0 }, { "start": 29403.0, "end": 29403.0, "probability": 0.0 }, { "start": 29403.0, "end": 29403.0, "probability": 0.0 }, { "start": 29403.0, "end": 29403.0, "probability": 0.0 }, { "start": 29403.0, "end": 29403.0, "probability": 0.0 }, { "start": 29403.0, "end": 29403.0, "probability": 0.0 }, { "start": 29403.0, "end": 29403.0, "probability": 0.0 }, { "start": 29403.0, "end": 29403.0, "probability": 0.0 }, { "start": 29403.0, "end": 29403.0, "probability": 0.0 }, { "start": 29403.0, "end": 29403.0, "probability": 0.0 }, { "start": 29403.0, "end": 29403.0, "probability": 0.0 }, { "start": 29403.0, "end": 29403.0, "probability": 0.0 }, { "start": 29403.0, "end": 29403.0, "probability": 0.0 }, { "start": 29403.0, "end": 29403.0, "probability": 0.0 }, { "start": 29403.0, "end": 29403.0, "probability": 0.0 }, { "start": 29403.0, "end": 29403.0, "probability": 0.0 }, { "start": 29403.0, "end": 29403.0, "probability": 0.0 }, { "start": 29403.0, "end": 29403.0, "probability": 0.0 }, { "start": 29403.0, "end": 29403.0, "probability": 0.0 }, { "start": 29403.0, "end": 29403.0, "probability": 0.0 }, { "start": 29403.0, "end": 29403.0, "probability": 0.0 }, { "start": 29403.0, "end": 29403.0, "probability": 0.0 }, { "start": 29403.0, "end": 29403.0, "probability": 0.0 }, { "start": 29403.0, "end": 29403.0, "probability": 0.0 }, { "start": 29403.0, "end": 29403.0, "probability": 0.0 }, { "start": 29403.0, "end": 29403.0, "probability": 0.0 }, { "start": 29403.0, "end": 29403.0, "probability": 0.0 }, { "start": 29403.0, "end": 29403.0, "probability": 0.0 }, { "start": 29403.0, "end": 29403.0, "probability": 0.0 }, { "start": 29403.0, "end": 29403.0, "probability": 0.0 }, { "start": 29403.0, "end": 29403.0, "probability": 0.0 }, { "start": 29403.0, "end": 29403.0, "probability": 0.0 }, { "start": 29403.0, "end": 29403.0, "probability": 0.0 }, { "start": 29403.0, "end": 29403.0, "probability": 0.0 }, { "start": 29403.0, "end": 29403.0, "probability": 0.0 }, { "start": 29403.0, "end": 29403.0, "probability": 0.0 }, { "start": 29403.0, "end": 29403.0, "probability": 0.0 }, { "start": 29403.0, "end": 29403.0, "probability": 0.0 }, { "start": 29403.0, "end": 29403.0, "probability": 0.0 }, { "start": 29403.0, "end": 29403.0, "probability": 0.0 }, { "start": 29403.0, "end": 29403.0, "probability": 0.0 }, { "start": 29403.0, "end": 29403.0, "probability": 0.0 }, { "start": 29403.0, "end": 29403.0, "probability": 0.0 }, { "start": 29403.0, "end": 29403.0, "probability": 0.0 }, { "start": 29403.28, "end": 29404.88, "probability": 0.1372 }, { "start": 29405.36, "end": 29406.26, "probability": 0.4526 }, { "start": 29406.58, "end": 29408.08, "probability": 0.1722 }, { "start": 29408.82, "end": 29411.72, "probability": 0.2903 }, { "start": 29411.84, "end": 29411.9, "probability": 0.1424 }, { "start": 29411.9, "end": 29413.34, "probability": 0.4008 }, { "start": 29414.54, "end": 29419.9, "probability": 0.2959 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29638.0, "end": 29638.0, "probability": 0.0 }, { "start": 29649.64, "end": 29651.04, "probability": 0.4634 }, { "start": 29651.58, "end": 29652.64, "probability": 0.5157 }, { "start": 29795.88, "end": 29797.64, "probability": 0.6651 }, { "start": 29798.48, "end": 29798.92, "probability": 0.877 }, { "start": 29800.02, "end": 29801.08, "probability": 0.5112 }, { "start": 29803.32, "end": 29803.9, "probability": 0.9888 }, { "start": 29805.38, "end": 29806.02, "probability": 0.7175 }, { "start": 29806.82, "end": 29807.3, "probability": 0.7137 }, { "start": 29807.98, "end": 29809.22, "probability": 0.8921 }, { "start": 29809.98, "end": 29810.46, "probability": 0.7447 }, { "start": 29811.2, "end": 29812.24, "probability": 0.7041 }, { "start": 29813.2, "end": 29814.06, "probability": 0.9321 }, { "start": 29814.98, "end": 29816.0, "probability": 0.737 }, { "start": 29817.18, "end": 29819.2, "probability": 0.8852 }, { "start": 29820.78, "end": 29821.16, "probability": 0.5342 }, { "start": 29822.24, "end": 29822.92, "probability": 0.6407 }, { "start": 29824.2, "end": 29824.64, "probability": 0.9114 }, { "start": 29825.22, "end": 29825.94, "probability": 0.7951 }, { "start": 29827.5, "end": 29830.3, "probability": 0.4973 }, { "start": 29831.84, "end": 29832.7, "probability": 0.905 }, { "start": 29833.52, "end": 29834.46, "probability": 0.942 }, { "start": 29835.48, "end": 29837.5, "probability": 0.9256 }, { "start": 29838.64, "end": 29839.12, "probability": 0.9784 }, { "start": 29840.18, "end": 29841.26, "probability": 0.9288 }, { "start": 29845.36, "end": 29845.74, "probability": 0.8074 }, { "start": 29846.88, "end": 29848.06, "probability": 0.7192 }, { "start": 29849.3, "end": 29850.04, "probability": 0.9001 }, { "start": 29851.04, "end": 29852.0, "probability": 0.6178 }, { "start": 29852.88, "end": 29853.18, "probability": 0.8025 }, { "start": 29859.2, "end": 29860.22, "probability": 0.5457 }, { "start": 29861.48, "end": 29861.78, "probability": 0.6597 }, { "start": 29863.34, "end": 29864.62, "probability": 0.7707 }, { "start": 29866.12, "end": 29866.36, "probability": 0.5068 }, { "start": 29870.02, "end": 29870.7, "probability": 0.5171 }, { "start": 29871.98, "end": 29872.38, "probability": 0.9269 }, { "start": 29873.26, "end": 29876.06, "probability": 0.4154 }, { "start": 29877.38, "end": 29880.06, "probability": 0.7152 }, { "start": 29880.96, "end": 29881.36, "probability": 0.8901 }, { "start": 29885.1, "end": 29887.04, "probability": 0.5838 }, { "start": 29887.82, "end": 29888.86, "probability": 0.7655 }, { "start": 29893.26, "end": 29894.12, "probability": 0.9818 }, { "start": 29895.22, "end": 29896.0, "probability": 0.8927 }, { "start": 29896.78, "end": 29897.26, "probability": 0.814 }, { "start": 29898.18, "end": 29899.0, "probability": 0.4928 }, { "start": 29900.18, "end": 29901.1, "probability": 0.9949 }, { "start": 29901.94, "end": 29902.92, "probability": 0.972 }, { "start": 29903.76, "end": 29904.56, "probability": 0.9639 }, { "start": 29905.34, "end": 29907.02, "probability": 0.979 }, { "start": 29909.75, "end": 29910.44, "probability": 0.1431 }, { "start": 29919.44, "end": 29920.64, "probability": 0.4969 }, { "start": 29922.34, "end": 29923.34, "probability": 0.6544 }, { "start": 29924.56, "end": 29926.8, "probability": 0.8075 }, { "start": 29928.48, "end": 29930.76, "probability": 0.9497 }, { "start": 29932.12, "end": 29932.88, "probability": 0.4324 }, { "start": 29934.94, "end": 29937.54, "probability": 0.344 }, { "start": 29943.46, "end": 29946.62, "probability": 0.2644 }, { "start": 29950.2, "end": 29952.2, "probability": 0.2139 }, { "start": 29953.56, "end": 29954.76, "probability": 0.6841 }, { "start": 29955.94, "end": 29957.0, "probability": 0.4682 }, { "start": 29958.44, "end": 29960.88, "probability": 0.6558 }, { "start": 29962.02, "end": 29964.18, "probability": 0.8534 }, { "start": 29966.62, "end": 29969.18, "probability": 0.9058 }, { "start": 29970.18, "end": 29972.46, "probability": 0.9369 }, { "start": 29974.08, "end": 29975.98, "probability": 0.9377 }, { "start": 29976.82, "end": 29978.3, "probability": 0.9572 }, { "start": 29979.22, "end": 29981.66, "probability": 0.687 }, { "start": 29982.4, "end": 29984.52, "probability": 0.6285 }, { "start": 29985.76, "end": 29986.38, "probability": 0.959 }, { "start": 29987.94, "end": 29989.18, "probability": 0.6678 }, { "start": 29990.24, "end": 29994.36, "probability": 0.9373 }, { "start": 29996.1, "end": 29998.62, "probability": 0.921 }, { "start": 29999.9, "end": 30003.12, "probability": 0.8444 }, { "start": 30003.74, "end": 30006.26, "probability": 0.7858 }, { "start": 30007.1, "end": 30010.12, "probability": 0.829 }, { "start": 30011.36, "end": 30012.44, "probability": 0.9134 }, { "start": 30013.22, "end": 30014.26, "probability": 0.7261 }, { "start": 30015.26, "end": 30016.1, "probability": 0.9444 }, { "start": 30017.44, "end": 30018.72, "probability": 0.9072 }, { "start": 30022.02, "end": 30022.92, "probability": 0.9038 }, { "start": 30023.56, "end": 30024.38, "probability": 0.8883 }, { "start": 30025.38, "end": 30026.56, "probability": 0.9847 }, { "start": 30028.16, "end": 30029.02, "probability": 0.6406 }, { "start": 30033.14, "end": 30033.48, "probability": 0.7052 }, { "start": 30034.66, "end": 30035.88, "probability": 0.4573 }, { "start": 30038.96, "end": 30040.34, "probability": 0.5637 }, { "start": 30043.86, "end": 30047.3, "probability": 0.9061 }, { "start": 30049.32, "end": 30049.79, "probability": 0.6546 }, { "start": 30051.1, "end": 30053.92, "probability": 0.9752 }, { "start": 30054.44, "end": 30055.24, "probability": 0.7783 }, { "start": 30056.72, "end": 30062.16, "probability": 0.722 }, { "start": 30063.12, "end": 30064.64, "probability": 0.8236 }, { "start": 30065.62, "end": 30067.46, "probability": 0.926 }, { "start": 30068.88, "end": 30069.66, "probability": 0.5228 }, { "start": 30073.22, "end": 30074.94, "probability": 0.5918 }, { "start": 30075.78, "end": 30077.32, "probability": 0.8611 }, { "start": 30078.46, "end": 30080.8, "probability": 0.9846 }, { "start": 30083.06, "end": 30086.52, "probability": 0.9506 }, { "start": 30087.34, "end": 30090.02, "probability": 0.9713 }, { "start": 30091.94, "end": 30092.94, "probability": 0.9829 }, { "start": 30094.38, "end": 30096.76, "probability": 0.5816 }, { "start": 30097.42, "end": 30098.7, "probability": 0.9066 }, { "start": 30099.18, "end": 30100.58, "probability": 0.9647 }, { "start": 30100.7, "end": 30102.46, "probability": 0.8749 }, { "start": 30103.28, "end": 30105.06, "probability": 0.9444 }, { "start": 30106.96, "end": 30107.86, "probability": 0.8548 }, { "start": 30108.52, "end": 30110.54, "probability": 0.9316 }, { "start": 30112.06, "end": 30112.13, "probability": 0.0406 }, { "start": 30113.36, "end": 30114.16, "probability": 0.6668 }, { "start": 30115.16, "end": 30117.72, "probability": 0.6127 }, { "start": 30118.88, "end": 30119.72, "probability": 0.9912 }, { "start": 30120.34, "end": 30121.68, "probability": 0.8529 }, { "start": 30123.08, "end": 30126.16, "probability": 0.9272 }, { "start": 30127.96, "end": 30129.7, "probability": 0.9641 }, { "start": 30130.62, "end": 30131.16, "probability": 0.5443 }, { "start": 30132.24, "end": 30133.58, "probability": 0.448 }, { "start": 30134.62, "end": 30136.7, "probability": 0.7858 }, { "start": 30138.02, "end": 30141.8, "probability": 0.9105 }, { "start": 30142.36, "end": 30144.6, "probability": 0.7999 }, { "start": 30145.16, "end": 30147.8, "probability": 0.7996 }, { "start": 30148.5, "end": 30149.58, "probability": 0.9316 }, { "start": 30150.88, "end": 30151.54, "probability": 0.7825 }, { "start": 30152.46, "end": 30155.24, "probability": 0.4872 }, { "start": 30156.02, "end": 30157.56, "probability": 0.8855 }, { "start": 30159.14, "end": 30162.12, "probability": 0.9062 }, { "start": 30163.2, "end": 30166.98, "probability": 0.9016 }, { "start": 30167.98, "end": 30168.84, "probability": 0.9942 }, { "start": 30169.6, "end": 30170.72, "probability": 0.9253 }, { "start": 30175.65, "end": 30179.02, "probability": 0.3095 }, { "start": 30180.46, "end": 30181.52, "probability": 0.97 }, { "start": 30182.72, "end": 30186.1, "probability": 0.949 }, { "start": 30187.04, "end": 30189.04, "probability": 0.526 }, { "start": 30190.48, "end": 30191.76, "probability": 0.7487 }, { "start": 30194.34, "end": 30195.26, "probability": 0.7992 }, { "start": 30196.02, "end": 30198.76, "probability": 0.8276 }, { "start": 30199.7, "end": 30200.94, "probability": 0.8127 }, { "start": 30201.96, "end": 30203.76, "probability": 0.8599 }, { "start": 30203.88, "end": 30206.36, "probability": 0.6243 }, { "start": 30206.36, "end": 30207.76, "probability": 0.5993 }, { "start": 30207.84, "end": 30209.86, "probability": 0.7883 }, { "start": 30209.88, "end": 30211.4, "probability": 0.8078 }, { "start": 30214.18, "end": 30216.66, "probability": 0.8835 }, { "start": 30218.34, "end": 30219.9, "probability": 0.7847 }, { "start": 30220.46, "end": 30222.36, "probability": 0.7225 }, { "start": 30223.4, "end": 30224.4, "probability": 0.7599 }, { "start": 30226.34, "end": 30227.22, "probability": 0.6477 }, { "start": 30228.82, "end": 30230.18, "probability": 0.8438 }, { "start": 30232.16, "end": 30241.28, "probability": 0.8971 }, { "start": 30241.36, "end": 30242.5, "probability": 0.6742 }, { "start": 30242.8, "end": 30245.7, "probability": 0.1065 }, { "start": 30258.58, "end": 30259.14, "probability": 0.1835 }, { "start": 30260.24, "end": 30262.17, "probability": 0.9841 }, { "start": 30263.06, "end": 30265.04, "probability": 0.5072 }, { "start": 30265.52, "end": 30268.72, "probability": 0.9966 }, { "start": 30268.88, "end": 30269.37, "probability": 0.7476 }, { "start": 30270.62, "end": 30275.44, "probability": 0.0819 }, { "start": 30276.18, "end": 30276.44, "probability": 0.0746 }, { "start": 30276.44, "end": 30278.86, "probability": 0.8022 }, { "start": 30279.38, "end": 30280.32, "probability": 0.0097 }, { "start": 30280.98, "end": 30282.8, "probability": 0.0114 }, { "start": 30283.02, "end": 30288.13, "probability": 0.1196 }, { "start": 30289.08, "end": 30289.4, "probability": 0.3391 }, { "start": 30289.76, "end": 30290.22, "probability": 0.1135 }, { "start": 30415.64, "end": 30419.18, "probability": 0.1954 }, { "start": 30420.26, "end": 30424.58, "probability": 0.8963 }, { "start": 30425.0, "end": 30428.14, "probability": 0.8781 }, { "start": 30428.72, "end": 30430.9, "probability": 0.9391 }, { "start": 30439.08, "end": 30440.14, "probability": 0.529 }, { "start": 30440.18, "end": 30440.18, "probability": 0.5529 }, { "start": 30440.18, "end": 30441.5, "probability": 0.8021 }, { "start": 30441.76, "end": 30442.92, "probability": 0.8634 }, { "start": 30442.98, "end": 30443.86, "probability": 0.1372 }, { "start": 30443.98, "end": 30445.78, "probability": 0.773 }, { "start": 30445.96, "end": 30450.84, "probability": 0.901 }, { "start": 30451.34, "end": 30452.9, "probability": 0.8223 }, { "start": 30453.72, "end": 30458.52, "probability": 0.8722 }, { "start": 30458.84, "end": 30460.6, "probability": 0.1184 }, { "start": 30460.78, "end": 30463.02, "probability": 0.8084 }, { "start": 30463.74, "end": 30464.16, "probability": 0.8274 }, { "start": 30464.98, "end": 30466.76, "probability": 0.8789 }, { "start": 30467.24, "end": 30470.32, "probability": 0.9819 }, { "start": 30470.5, "end": 30472.12, "probability": 0.9915 }, { "start": 30472.48, "end": 30475.56, "probability": 0.9956 }, { "start": 30475.84, "end": 30479.56, "probability": 0.9732 }, { "start": 30480.2, "end": 30481.0, "probability": 0.3623 }, { "start": 30481.06, "end": 30484.5, "probability": 0.6853 }, { "start": 30484.94, "end": 30492.26, "probability": 0.9411 }, { "start": 30493.0, "end": 30494.84, "probability": 0.4629 }, { "start": 30494.92, "end": 30495.92, "probability": 0.669 }, { "start": 30495.95, "end": 30499.3, "probability": 0.6248 }, { "start": 30501.48, "end": 30504.32, "probability": 0.7115 }, { "start": 30504.38, "end": 30506.84, "probability": 0.7071 }, { "start": 30512.94, "end": 30514.3, "probability": 0.4855 }, { "start": 30514.42, "end": 30518.36, "probability": 0.8192 }, { "start": 30518.62, "end": 30519.26, "probability": 0.4946 }, { "start": 30519.6, "end": 30520.22, "probability": 0.9294 }, { "start": 30521.68, "end": 30526.98, "probability": 0.1348 }, { "start": 30527.36, "end": 30530.6, "probability": 0.0294 }, { "start": 30531.24, "end": 30531.24, "probability": 0.5128 }, { "start": 30531.56, "end": 30533.88, "probability": 0.6152 }, { "start": 30535.16, "end": 30535.22, "probability": 0.3407 }, { "start": 30535.22, "end": 30538.04, "probability": 0.7724 }, { "start": 30538.48, "end": 30539.26, "probability": 0.6712 }, { "start": 30539.62, "end": 30539.9, "probability": 0.0334 }, { "start": 30540.14, "end": 30540.96, "probability": 0.256 }, { "start": 30540.96, "end": 30544.8, "probability": 0.8142 }, { "start": 30544.9, "end": 30548.26, "probability": 0.9367 }, { "start": 30548.32, "end": 30548.98, "probability": 0.3194 }, { "start": 30548.98, "end": 30549.08, "probability": 0.6203 }, { "start": 30549.08, "end": 30550.74, "probability": 0.9868 }, { "start": 30554.31, "end": 30560.93, "probability": 0.9963 }, { "start": 30560.93, "end": 30565.12, "probability": 0.9954 }, { "start": 30565.96, "end": 30568.2, "probability": 0.9814 }, { "start": 30568.85, "end": 30569.95, "probability": 0.6611 }, { "start": 30570.49, "end": 30571.37, "probability": 0.9036 }, { "start": 30571.53, "end": 30576.69, "probability": 0.9043 }, { "start": 30577.29, "end": 30579.18, "probability": 0.8379 }, { "start": 30581.01, "end": 30585.49, "probability": 0.7352 }, { "start": 30586.03, "end": 30587.19, "probability": 0.9686 }, { "start": 30587.89, "end": 30593.07, "probability": 0.98 }, { "start": 30593.29, "end": 30595.39, "probability": 0.9445 }, { "start": 30596.39, "end": 30600.05, "probability": 0.6719 }, { "start": 30600.57, "end": 30602.14, "probability": 0.9961 }, { "start": 30602.89, "end": 30609.69, "probability": 0.9951 }, { "start": 30609.69, "end": 30612.75, "probability": 0.9908 }, { "start": 30612.81, "end": 30614.35, "probability": 0.8795 }, { "start": 30615.51, "end": 30622.25, "probability": 0.8597 }, { "start": 30622.49, "end": 30625.27, "probability": 0.9536 }, { "start": 30625.33, "end": 30626.11, "probability": 0.8446 }, { "start": 30626.19, "end": 30629.71, "probability": 0.9092 }, { "start": 30630.03, "end": 30631.79, "probability": 0.9568 }, { "start": 30632.9, "end": 30640.63, "probability": 0.9511 }, { "start": 30640.69, "end": 30641.79, "probability": 0.9613 }, { "start": 30641.89, "end": 30644.4, "probability": 0.8953 }, { "start": 30646.39, "end": 30646.45, "probability": 0.0971 }, { "start": 30646.45, "end": 30650.51, "probability": 0.9898 }, { "start": 30650.69, "end": 30650.93, "probability": 0.7909 }, { "start": 30653.43, "end": 30656.25, "probability": 0.746 }, { "start": 30657.59, "end": 30658.91, "probability": 0.8997 }, { "start": 30659.13, "end": 30660.91, "probability": 0.9775 }, { "start": 30661.35, "end": 30664.69, "probability": 0.995 }, { "start": 30664.77, "end": 30667.01, "probability": 0.8965 }, { "start": 30667.91, "end": 30671.59, "probability": 0.9836 }, { "start": 30671.59, "end": 30677.53, "probability": 0.9792 }, { "start": 30677.95, "end": 30679.51, "probability": 0.8369 }, { "start": 30679.61, "end": 30681.29, "probability": 0.8319 }, { "start": 30681.41, "end": 30682.87, "probability": 0.9834 }, { "start": 30683.43, "end": 30683.99, "probability": 0.7343 }, { "start": 30684.03, "end": 30688.13, "probability": 0.9934 }, { "start": 30689.27, "end": 30690.67, "probability": 0.2034 }, { "start": 30691.33, "end": 30692.69, "probability": 0.7838 }, { "start": 30692.81, "end": 30695.15, "probability": 0.981 }, { "start": 30695.19, "end": 30695.87, "probability": 0.6326 }, { "start": 30695.97, "end": 30696.75, "probability": 0.8541 }, { "start": 30697.09, "end": 30697.95, "probability": 0.801 }, { "start": 30698.37, "end": 30699.15, "probability": 0.9672 }, { "start": 30699.71, "end": 30701.31, "probability": 0.835 }, { "start": 30701.35, "end": 30701.81, "probability": 0.5282 }, { "start": 30702.73, "end": 30705.81, "probability": 0.9085 }, { "start": 30706.39, "end": 30709.85, "probability": 0.9819 }, { "start": 30710.69, "end": 30713.26, "probability": 0.9961 }, { "start": 30713.35, "end": 30714.49, "probability": 0.7147 }, { "start": 30714.49, "end": 30715.07, "probability": 0.1576 }, { "start": 30715.09, "end": 30717.97, "probability": 0.7487 }, { "start": 30717.99, "end": 30718.01, "probability": 0.7073 }, { "start": 30718.01, "end": 30720.25, "probability": 0.27 }, { "start": 30721.15, "end": 30721.59, "probability": 0.0092 }, { "start": 30721.59, "end": 30723.77, "probability": 0.2346 }, { "start": 30723.77, "end": 30723.99, "probability": 0.1615 }, { "start": 30723.99, "end": 30725.47, "probability": 0.636 }, { "start": 30725.47, "end": 30725.51, "probability": 0.2263 }, { "start": 30725.51, "end": 30725.55, "probability": 0.5461 }, { "start": 30725.55, "end": 30726.11, "probability": 0.6972 }, { "start": 30726.11, "end": 30728.37, "probability": 0.82 }, { "start": 30728.41, "end": 30729.73, "probability": 0.5074 }, { "start": 30731.34, "end": 30737.73, "probability": 0.956 }, { "start": 30738.87, "end": 30739.85, "probability": 0.9388 }, { "start": 30740.01, "end": 30741.15, "probability": 0.7982 }, { "start": 30741.47, "end": 30744.19, "probability": 0.986 }, { "start": 30745.11, "end": 30747.09, "probability": 0.9668 }, { "start": 30747.21, "end": 30747.69, "probability": 0.8045 }, { "start": 30748.07, "end": 30750.33, "probability": 0.9953 }, { "start": 30750.43, "end": 30751.87, "probability": 0.971 }, { "start": 30751.95, "end": 30752.81, "probability": 0.7531 }, { "start": 30753.37, "end": 30756.51, "probability": 0.9973 }, { "start": 30756.61, "end": 30757.97, "probability": 0.9482 }, { "start": 30758.59, "end": 30763.13, "probability": 0.9976 }, { "start": 30763.35, "end": 30766.35, "probability": 0.9251 }, { "start": 30767.09, "end": 30767.43, "probability": 0.7435 }, { "start": 30767.55, "end": 30772.89, "probability": 0.9954 }, { "start": 30773.39, "end": 30775.09, "probability": 0.8206 }, { "start": 30775.69, "end": 30777.69, "probability": 0.6785 }, { "start": 30777.81, "end": 30778.29, "probability": 0.8606 }, { "start": 30778.33, "end": 30778.93, "probability": 0.631 }, { "start": 30779.05, "end": 30779.99, "probability": 0.5287 }, { "start": 30780.05, "end": 30783.69, "probability": 0.8291 }, { "start": 30783.79, "end": 30784.93, "probability": 0.8128 }, { "start": 30785.71, "end": 30785.73, "probability": 0.493 }, { "start": 30785.73, "end": 30785.73, "probability": 0.0415 }, { "start": 30785.73, "end": 30787.19, "probability": 0.0443 }, { "start": 30787.99, "end": 30789.57, "probability": 0.6126 }, { "start": 30789.83, "end": 30793.49, "probability": 0.2918 }, { "start": 30794.43, "end": 30795.55, "probability": 0.0738 }, { "start": 30795.61, "end": 30796.21, "probability": 0.0906 }, { "start": 30797.06, "end": 30799.73, "probability": 0.6685 }, { "start": 30799.93, "end": 30800.57, "probability": 0.5274 }, { "start": 30800.73, "end": 30800.77, "probability": 0.7412 }, { "start": 30801.79, "end": 30802.69, "probability": 0.1772 }, { "start": 30802.69, "end": 30803.89, "probability": 0.0394 }, { "start": 30805.35, "end": 30807.15, "probability": 0.9712 }, { "start": 30807.35, "end": 30809.03, "probability": 0.7718 }, { "start": 30809.27, "end": 30812.77, "probability": 0.3531 }, { "start": 30816.61, "end": 30820.25, "probability": 0.9448 }, { "start": 30820.87, "end": 30821.93, "probability": 0.5917 }, { "start": 30821.95, "end": 30824.77, "probability": 0.8674 }, { "start": 30825.15, "end": 30827.03, "probability": 0.7833 }, { "start": 30827.09, "end": 30828.45, "probability": 0.9351 }, { "start": 30836.11, "end": 30837.21, "probability": 0.044 }, { "start": 30839.97, "end": 30843.23, "probability": 0.7497 }, { "start": 30843.51, "end": 30847.17, "probability": 0.3464 }, { "start": 30847.61, "end": 30850.25, "probability": 0.829 }, { "start": 30850.29, "end": 30851.25, "probability": 0.9063 }, { "start": 30851.59, "end": 30851.59, "probability": 0.0129 }, { "start": 30852.11, "end": 30855.43, "probability": 0.6686 }, { "start": 30857.29, "end": 30861.05, "probability": 0.2333 }, { "start": 30861.77, "end": 30862.65, "probability": 0.8381 }, { "start": 30865.43, "end": 30866.35, "probability": 0.8597 }, { "start": 30867.69, "end": 30869.51, "probability": 0.8516 }, { "start": 30870.65, "end": 30872.31, "probability": 0.9714 }, { "start": 30873.35, "end": 30874.95, "probability": 0.971 }, { "start": 30876.29, "end": 30877.03, "probability": 0.9823 }, { "start": 30877.65, "end": 30878.51, "probability": 0.5009 }, { "start": 30879.53, "end": 30880.53, "probability": 0.6146 }, { "start": 30881.13, "end": 30881.83, "probability": 0.646 }, { "start": 30882.61, "end": 30882.89, "probability": 0.9712 }, { "start": 30883.57, "end": 30884.39, "probability": 0.8151 }, { "start": 30885.19, "end": 30887.45, "probability": 0.9731 }, { "start": 30888.47, "end": 30889.17, "probability": 0.9178 }, { "start": 30889.73, "end": 30890.45, "probability": 0.8873 }, { "start": 30891.49, "end": 30891.93, "probability": 0.9868 }, { "start": 30892.73, "end": 30893.55, "probability": 0.9592 }, { "start": 30895.95, "end": 30902.55, "probability": 0.6896 }, { "start": 30904.59, "end": 30906.37, "probability": 0.6076 }, { "start": 30918.33, "end": 30919.69, "probability": 0.1075 }, { "start": 30921.89, "end": 30926.79, "probability": 0.4415 }, { "start": 30927.79, "end": 30930.01, "probability": 0.7225 }, { "start": 30932.63, "end": 30938.25, "probability": 0.6374 }, { "start": 30939.01, "end": 30942.27, "probability": 0.9181 }, { "start": 30943.43, "end": 30947.29, "probability": 0.592 }, { "start": 30947.95, "end": 30951.83, "probability": 0.9713 }, { "start": 30952.67, "end": 30953.65, "probability": 0.9867 }, { "start": 30954.17, "end": 30955.11, "probability": 0.9603 }, { "start": 30956.37, "end": 30957.51, "probability": 0.9931 }, { "start": 30958.41, "end": 30959.65, "probability": 0.9745 }, { "start": 30967.39, "end": 30970.87, "probability": 0.5146 }, { "start": 30971.63, "end": 30975.03, "probability": 0.7064 }, { "start": 30975.03, "end": 30977.99, "probability": 0.6719 }, { "start": 30978.65, "end": 30984.21, "probability": 0.8689 }, { "start": 30984.99, "end": 30985.79, "probability": 0.9053 }, { "start": 30986.59, "end": 30988.81, "probability": 0.5763 }, { "start": 30990.99, "end": 30991.49, "probability": 0.2608 }, { "start": 30995.47, "end": 31000.29, "probability": 0.3733 }, { "start": 31001.21, "end": 31001.53, "probability": 0.8405 }, { "start": 31002.43, "end": 31003.19, "probability": 0.661 }, { "start": 31006.43, "end": 31007.17, "probability": 0.7633 }, { "start": 31008.01, "end": 31008.99, "probability": 0.8133 }, { "start": 31009.65, "end": 31011.73, "probability": 0.7119 }, { "start": 31012.83, "end": 31013.35, "probability": 0.9829 }, { "start": 31014.41, "end": 31015.29, "probability": 0.9443 }, { "start": 31016.09, "end": 31019.21, "probability": 0.8574 }, { "start": 31019.91, "end": 31024.33, "probability": 0.7059 }, { "start": 31025.55, "end": 31029.51, "probability": 0.7878 }, { "start": 31030.35, "end": 31030.75, "probability": 0.939 }, { "start": 31031.93, "end": 31033.03, "probability": 0.8853 }, { "start": 31033.89, "end": 31034.61, "probability": 0.9339 }, { "start": 31035.23, "end": 31036.11, "probability": 0.9305 }, { "start": 31036.83, "end": 31038.05, "probability": 0.9886 }, { "start": 31038.83, "end": 31040.03, "probability": 0.8143 }, { "start": 31040.69, "end": 31045.35, "probability": 0.7913 }, { "start": 31046.25, "end": 31049.13, "probability": 0.8682 }, { "start": 31052.67, "end": 31061.03, "probability": 0.5586 }, { "start": 31061.79, "end": 31064.61, "probability": 0.641 }, { "start": 31066.03, "end": 31066.87, "probability": 0.7395 }, { "start": 31068.27, "end": 31069.57, "probability": 0.7501 }, { "start": 31070.77, "end": 31071.23, "probability": 0.971 }, { "start": 31072.43, "end": 31073.29, "probability": 0.4858 }, { "start": 31076.65, "end": 31077.15, "probability": 0.9727 }, { "start": 31078.63, "end": 31079.67, "probability": 0.7219 }, { "start": 31080.51, "end": 31082.45, "probability": 0.4999 }, { "start": 31083.69, "end": 31084.41, "probability": 0.9727 }, { "start": 31085.05, "end": 31085.91, "probability": 0.8916 }, { "start": 31086.59, "end": 31087.67, "probability": 0.8296 }, { "start": 31088.29, "end": 31090.49, "probability": 0.6943 }, { "start": 31091.57, "end": 31094.45, "probability": 0.4523 }, { "start": 31095.23, "end": 31102.63, "probability": 0.8822 }, { "start": 31103.85, "end": 31104.91, "probability": 0.7128 }, { "start": 31106.71, "end": 31107.53, "probability": 0.9477 }, { "start": 31108.17, "end": 31108.83, "probability": 0.9857 }, { "start": 31109.59, "end": 31110.59, "probability": 0.631 }, { "start": 31114.77, "end": 31115.47, "probability": 0.8418 }, { "start": 31116.55, "end": 31117.51, "probability": 0.778 }, { "start": 31118.61, "end": 31119.97, "probability": 0.5558 }, { "start": 31120.73, "end": 31121.79, "probability": 0.6643 }, { "start": 31122.57, "end": 31125.15, "probability": 0.8951 }, { "start": 31126.25, "end": 31129.33, "probability": 0.9274 }, { "start": 31130.03, "end": 31132.55, "probability": 0.8899 }, { "start": 31133.77, "end": 31134.53, "probability": 0.976 }, { "start": 31135.73, "end": 31137.37, "probability": 0.6701 }, { "start": 31138.63, "end": 31139.41, "probability": 0.9731 }, { "start": 31140.11, "end": 31140.93, "probability": 0.8497 }, { "start": 31141.65, "end": 31142.61, "probability": 0.5151 }, { "start": 31143.33, "end": 31144.65, "probability": 0.6858 }, { "start": 31146.31, "end": 31149.75, "probability": 0.8128 }, { "start": 31150.67, "end": 31151.75, "probability": 0.5263 }, { "start": 31152.29, "end": 31152.97, "probability": 0.7359 }, { "start": 31154.53, "end": 31155.41, "probability": 0.8179 }, { "start": 31155.95, "end": 31156.97, "probability": 0.9668 }, { "start": 31157.71, "end": 31158.23, "probability": 0.9785 }, { "start": 31159.31, "end": 31160.19, "probability": 0.9597 }, { "start": 31161.11, "end": 31161.99, "probability": 0.9878 }, { "start": 31163.05, "end": 31163.77, "probability": 0.9814 }, { "start": 31164.79, "end": 31165.53, "probability": 0.9627 }, { "start": 31166.29, "end": 31167.21, "probability": 0.8086 }, { "start": 31169.07, "end": 31172.41, "probability": 0.5588 }, { "start": 31175.39, "end": 31178.49, "probability": 0.7205 }, { "start": 31179.53, "end": 31180.03, "probability": 0.907 }, { "start": 31181.09, "end": 31182.37, "probability": 0.9043 }, { "start": 31183.13, "end": 31183.47, "probability": 0.8561 }, { "start": 31184.25, "end": 31185.27, "probability": 0.6993 }, { "start": 31186.37, "end": 31188.67, "probability": 0.8462 }, { "start": 31189.91, "end": 31192.55, "probability": 0.9573 }, { "start": 31193.41, "end": 31193.85, "probability": 0.9912 }, { "start": 31195.03, "end": 31195.79, "probability": 0.6687 }, { "start": 31197.23, "end": 31199.63, "probability": 0.574 }, { "start": 31200.77, "end": 31202.89, "probability": 0.9623 }, { "start": 31203.43, "end": 31204.81, "probability": 0.5876 }, { "start": 31206.35, "end": 31207.27, "probability": 0.9674 }, { "start": 31208.03, "end": 31209.01, "probability": 0.9696 }, { "start": 31210.55, "end": 31211.77, "probability": 0.9828 }, { "start": 31212.73, "end": 31213.73, "probability": 0.9118 }, { "start": 31214.55, "end": 31215.03, "probability": 0.9572 }, { "start": 31216.35, "end": 31217.49, "probability": 0.9574 }, { "start": 31220.65, "end": 31225.33, "probability": 0.8257 }, { "start": 31226.69, "end": 31229.23, "probability": 0.6785 }, { "start": 31230.25, "end": 31230.57, "probability": 0.9629 }, { "start": 31231.91, "end": 31233.01, "probability": 0.8904 }, { "start": 31233.89, "end": 31234.35, "probability": 0.8569 }, { "start": 31235.39, "end": 31236.19, "probability": 0.8342 }, { "start": 31237.07, "end": 31237.47, "probability": 0.9827 }, { "start": 31238.59, "end": 31239.71, "probability": 0.8251 }, { "start": 31240.51, "end": 31243.11, "probability": 0.4818 }, { "start": 31243.21, "end": 31244.55, "probability": 0.2279 }, { "start": 31244.61, "end": 31247.75, "probability": 0.7045 }, { "start": 31248.09, "end": 31251.47, "probability": 0.5144 }, { "start": 31251.73, "end": 31254.17, "probability": 0.6708 }, { "start": 31254.23, "end": 31257.21, "probability": 0.7042 }, { "start": 31257.21, "end": 31258.13, "probability": 0.7072 }, { "start": 31258.85, "end": 31259.51, "probability": 0.8961 }, { "start": 31260.25, "end": 31260.87, "probability": 0.9199 }, { "start": 31260.99, "end": 31262.69, "probability": 0.4226 }, { "start": 31262.81, "end": 31263.79, "probability": 0.7638 }, { "start": 31263.83, "end": 31264.39, "probability": 0.7566 }, { "start": 31265.13, "end": 31265.13, "probability": 0.6689 }, { "start": 31265.13, "end": 31267.53, "probability": 0.0371 }, { "start": 31267.65, "end": 31274.33, "probability": 0.5297 }, { "start": 31276.73, "end": 31281.21, "probability": 0.6403 }, { "start": 31282.25, "end": 31283.35, "probability": 0.6011 }, { "start": 31284.29, "end": 31286.31, "probability": 0.1666 }, { "start": 31287.47, "end": 31293.83, "probability": 0.7862 }, { "start": 31295.41, "end": 31298.11, "probability": 0.8633 }, { "start": 31298.71, "end": 31299.19, "probability": 0.9725 }, { "start": 31299.85, "end": 31301.11, "probability": 0.7262 }, { "start": 31301.77, "end": 31304.33, "probability": 0.9074 }, { "start": 31305.09, "end": 31307.49, "probability": 0.9409 }, { "start": 31310.09, "end": 31313.31, "probability": 0.5215 }, { "start": 31319.91, "end": 31320.79, "probability": 0.7034 }, { "start": 31321.73, "end": 31325.15, "probability": 0.6615 }, { "start": 31325.91, "end": 31326.35, "probability": 0.9062 }, { "start": 31327.25, "end": 31331.61, "probability": 0.698 }, { "start": 31332.51, "end": 31334.95, "probability": 0.9306 }, { "start": 31336.27, "end": 31339.09, "probability": 0.9683 }, { "start": 31340.09, "end": 31343.07, "probability": 0.9593 }, { "start": 31344.03, "end": 31348.05, "probability": 0.9769 }, { "start": 31348.97, "end": 31350.75, "probability": 0.9726 }, { "start": 31351.37, "end": 31353.29, "probability": 0.9176 }, { "start": 31354.03, "end": 31355.05, "probability": 0.947 }, { "start": 31355.59, "end": 31355.99, "probability": 0.0431 }, { "start": 31357.29, "end": 31361.13, "probability": 0.5859 }, { "start": 31362.17, "end": 31362.57, "probability": 0.924 }, { "start": 31364.73, "end": 31373.71, "probability": 0.2295 }, { "start": 31374.53, "end": 31377.63, "probability": 0.386 }, { "start": 31379.61, "end": 31380.49, "probability": 0.1862 }, { "start": 31381.73, "end": 31385.09, "probability": 0.5942 }, { "start": 31385.23, "end": 31386.01, "probability": 0.1188 }, { "start": 31386.83, "end": 31388.27, "probability": 0.0809 }, { "start": 31394.45, "end": 31397.63, "probability": 0.4605 }, { "start": 31398.31, "end": 31398.97, "probability": 0.4457 }, { "start": 31400.99, "end": 31401.09, "probability": 0.3326 }, { "start": 31401.09, "end": 31402.37, "probability": 0.0466 }, { "start": 31402.46, "end": 31403.29, "probability": 0.2181 }, { "start": 31403.61, "end": 31404.99, "probability": 0.2829 }, { "start": 31408.43, "end": 31410.17, "probability": 0.1102 }, { "start": 31418.99, "end": 31420.75, "probability": 0.462 }, { "start": 31421.27, "end": 31424.21, "probability": 0.2822 }, { "start": 31426.04, "end": 31428.57, "probability": 0.4678 }, { "start": 31430.5, "end": 31438.97, "probability": 0.4307 }, { "start": 31438.97, "end": 31439.41, "probability": 0.3518 }, { "start": 31462.62, "end": 31462.62, "probability": 0.0264 }, { "start": 31462.62, "end": 31463.52, "probability": 0.3308 }, { "start": 31463.8, "end": 31466.38, "probability": 0.8075 }, { "start": 31467.58, "end": 31467.78, "probability": 0.0284 }, { "start": 31468.64, "end": 31470.65, "probability": 0.0627 }, { "start": 31472.18, "end": 31472.38, "probability": 0.071 }, { "start": 31473.72, "end": 31475.64, "probability": 0.0395 }, { "start": 31476.35, "end": 31480.94, "probability": 0.2327 }, { "start": 31480.94, "end": 31481.04, "probability": 0.1342 }, { "start": 31743.0, "end": 31743.0, "probability": 0.0 }, { "start": 31743.0, "end": 31743.0, "probability": 0.0 }, { "start": 31743.0, "end": 31743.0, "probability": 0.0 }, { "start": 31743.0, "end": 31743.0, "probability": 0.0 }, { "start": 31743.0, "end": 31743.0, "probability": 0.0 }, { "start": 31743.0, "end": 31743.0, "probability": 0.0 }, { "start": 31743.0, "end": 31743.0, "probability": 0.0 }, { "start": 31743.0, "end": 31743.0, "probability": 0.0 }, { "start": 31743.0, "end": 31743.0, "probability": 0.0 }, { "start": 31743.0, "end": 31743.0, "probability": 0.0 }, { "start": 31743.0, "end": 31743.0, "probability": 0.0 }, { "start": 31743.0, "end": 31743.0, "probability": 0.0 }, { "start": 31743.0, "end": 31743.0, "probability": 0.0 }, { "start": 31743.0, "end": 31743.0, "probability": 0.0 }, { "start": 31743.0, "end": 31743.0, "probability": 0.0 }, { "start": 31743.0, "end": 31743.0, "probability": 0.0 }, { "start": 31743.0, "end": 31743.0, "probability": 0.0 }, { "start": 31743.0, "end": 31743.0, "probability": 0.0 }, { "start": 31743.0, "end": 31743.0, "probability": 0.0 }, { "start": 31743.0, "end": 31743.0, "probability": 0.0 }, { "start": 31743.0, "end": 31743.0, "probability": 0.0 }, { "start": 31743.0, "end": 31743.0, "probability": 0.0 }, { "start": 31743.0, "end": 31743.0, "probability": 0.0 }, { "start": 31743.0, "end": 31743.0, "probability": 0.0 }, { "start": 31743.0, "end": 31743.0, "probability": 0.0 }, { "start": 31743.0, "end": 31743.0, "probability": 0.0 }, { "start": 31743.0, "end": 31743.0, "probability": 0.0 }, { "start": 31743.0, "end": 31743.0, "probability": 0.0 }, { "start": 31743.0, "end": 31743.0, "probability": 0.0 }, { "start": 31743.0, "end": 31743.0, "probability": 0.0 }, { "start": 31743.0, "end": 31743.0, "probability": 0.0 }, { "start": 31743.0, "end": 31743.0, "probability": 0.0 }, { "start": 31743.0, "end": 31743.0, "probability": 0.0 }, { "start": 31743.0, "end": 31743.0, "probability": 0.0 }, { "start": 31743.0, "end": 31743.0, "probability": 0.0 }, { "start": 31743.0, "end": 31743.0, "probability": 0.0 }, { "start": 31743.0, "end": 31743.0, "probability": 0.0 }, { "start": 31743.0, "end": 31743.0, "probability": 0.0 }, { "start": 31743.0, "end": 31743.0, "probability": 0.0 }, { "start": 31743.0, "end": 31743.0, "probability": 0.0 }, { "start": 31743.0, "end": 31743.0, "probability": 0.0 }, { "start": 31743.0, "end": 31743.0, "probability": 0.0 }, { "start": 31743.0, "end": 31743.0, "probability": 0.0 }, { "start": 31743.0, "end": 31743.0, "probability": 0.0 }, { "start": 31743.0, "end": 31743.0, "probability": 0.0 }, { "start": 31743.0, "end": 31743.0, "probability": 0.0 }, { "start": 31743.0, "end": 31743.0, "probability": 0.0 }, { "start": 31743.0, "end": 31743.0, "probability": 0.0 }, { "start": 31743.0, "end": 31743.0, "probability": 0.0 }, { "start": 31743.0, "end": 31743.0, "probability": 0.0 }, { "start": 31743.0, "end": 31743.0, "probability": 0.0 }, { "start": 31743.0, "end": 31743.0, "probability": 0.0 }, { "start": 31743.0, "end": 31743.0, "probability": 0.0 }, { "start": 31743.0, "end": 31743.0, "probability": 0.0 }, { "start": 31743.0, "end": 31743.0, "probability": 0.0 }, { "start": 31743.0, "end": 31743.0, "probability": 0.0 }, { "start": 31743.0, "end": 31743.0, "probability": 0.0 }, { "start": 31743.0, "end": 31743.0, "probability": 0.0 }, { "start": 31743.0, "end": 31743.0, "probability": 0.0 }, { "start": 31743.0, "end": 31743.0, "probability": 0.0 }, { "start": 31743.14, "end": 31745.12, "probability": 0.6509 }, { "start": 31746.35, "end": 31748.86, "probability": 0.4171 }, { "start": 31749.54, "end": 31752.72, "probability": 0.8284 }, { "start": 31753.5, "end": 31754.34, "probability": 0.7524 }, { "start": 31755.74, "end": 31760.96, "probability": 0.8237 }, { "start": 31761.4, "end": 31761.64, "probability": 0.1662 }, { "start": 31762.06, "end": 31763.02, "probability": 0.7097 }, { "start": 31763.04, "end": 31766.52, "probability": 0.9411 }, { "start": 31766.52, "end": 31769.58, "probability": 0.7147 }, { "start": 31769.76, "end": 31770.76, "probability": 0.6563 }, { "start": 31770.78, "end": 31772.58, "probability": 0.8459 }, { "start": 31772.84, "end": 31774.34, "probability": 0.0076 }, { "start": 31788.88, "end": 31789.14, "probability": 0.2549 }, { "start": 31790.02, "end": 31790.3, "probability": 0.0415 }, { "start": 31792.14, "end": 31792.64, "probability": 0.5502 }, { "start": 31793.94, "end": 31794.8, "probability": 0.0457 }, { "start": 31795.36, "end": 31796.46, "probability": 0.0563 }, { "start": 31797.34, "end": 31799.14, "probability": 0.0536 }, { "start": 31799.72, "end": 31801.04, "probability": 0.0987 }, { "start": 31801.94, "end": 31803.3, "probability": 0.1508 }, { "start": 31805.28, "end": 31805.3, "probability": 0.2832 }, { "start": 31823.76, "end": 31826.04, "probability": 0.1294 }, { "start": 31826.96, "end": 31827.28, "probability": 0.1306 }, { "start": 31827.28, "end": 31827.96, "probability": 0.2449 }, { "start": 31835.94, "end": 31837.06, "probability": 0.1053 }, { "start": 31837.84, "end": 31840.52, "probability": 0.0256 }, { "start": 31841.88, "end": 31844.36, "probability": 0.1241 }, { "start": 31846.9, "end": 31849.52, "probability": 0.0848 }, { "start": 31874.0, "end": 31874.0, "probability": 0.0 }, { "start": 31874.0, "end": 31874.0, "probability": 0.0 }, { "start": 31874.0, "end": 31874.0, "probability": 0.0 }, { "start": 31874.0, "end": 31874.0, "probability": 0.0 }, { "start": 31874.0, "end": 31874.0, "probability": 0.0 }, { "start": 31874.0, "end": 31874.0, "probability": 0.0 }, { "start": 31874.0, "end": 31874.0, "probability": 0.0 }, { "start": 31874.0, "end": 31874.0, "probability": 0.0 }, { "start": 31874.4, "end": 31876.82, "probability": 0.5639 }, { "start": 31877.26, "end": 31878.9, "probability": 0.3343 }, { "start": 31879.2, "end": 31880.76, "probability": 0.6978 }, { "start": 31880.82, "end": 31881.62, "probability": 0.7033 }, { "start": 31881.62, "end": 31882.4, "probability": 0.0048 }, { "start": 31885.3, "end": 31887.76, "probability": 0.4742 }, { "start": 31888.06, "end": 31889.66, "probability": 0.9673 }, { "start": 31889.9, "end": 31891.82, "probability": 0.7604 }, { "start": 31896.74, "end": 31898.24, "probability": 0.2583 }, { "start": 31898.24, "end": 31901.1, "probability": 0.0936 }, { "start": 31901.1, "end": 31903.1, "probability": 0.2661 }, { "start": 31903.1, "end": 31903.16, "probability": 0.2296 }, { "start": 31903.72, "end": 31909.2, "probability": 0.8462 }, { "start": 31909.32, "end": 31910.24, "probability": 0.7687 }, { "start": 31910.88, "end": 31911.66, "probability": 0.0643 }, { "start": 31911.66, "end": 31912.32, "probability": 0.3043 }, { "start": 31912.36, "end": 31913.28, "probability": 0.9591 }, { "start": 31913.94, "end": 31918.76, "probability": 0.9363 }, { "start": 31919.12, "end": 31921.76, "probability": 0.8644 }, { "start": 31921.76, "end": 31924.28, "probability": 0.142 }, { "start": 31924.28, "end": 31925.12, "probability": 0.0751 }, { "start": 31925.24, "end": 31925.48, "probability": 0.1686 }, { "start": 31925.48, "end": 31926.34, "probability": 0.2491 }, { "start": 31926.6, "end": 31928.38, "probability": 0.4583 }, { "start": 31928.46, "end": 31930.0, "probability": 0.9915 }, { "start": 31930.14, "end": 31932.04, "probability": 0.6717 }, { "start": 31932.14, "end": 31934.78, "probability": 0.5524 }, { "start": 31934.96, "end": 31935.9, "probability": 0.6695 }, { "start": 31936.2, "end": 31939.84, "probability": 0.683 }, { "start": 31939.84, "end": 31943.0, "probability": 0.8042 }, { "start": 31943.44, "end": 31945.4, "probability": 0.9714 }, { "start": 31945.7, "end": 31950.44, "probability": 0.7448 }, { "start": 31950.76, "end": 31953.82, "probability": 0.0903 }, { "start": 31953.94, "end": 31955.48, "probability": 0.7345 }, { "start": 31955.48, "end": 31956.5, "probability": 0.516 }, { "start": 31963.18, "end": 31967.84, "probability": 0.8622 }, { "start": 31968.88, "end": 31971.47, "probability": 0.9431 }, { "start": 31972.36, "end": 31973.82, "probability": 0.8731 }, { "start": 31975.06, "end": 31978.34, "probability": 0.9504 }, { "start": 31979.02, "end": 31981.5, "probability": 0.9943 }, { "start": 31982.0, "end": 31983.54, "probability": 0.9049 }, { "start": 31984.48, "end": 31987.62, "probability": 0.9413 }, { "start": 31987.76, "end": 31990.7, "probability": 0.6333 }, { "start": 31991.32, "end": 31994.86, "probability": 0.9593 }, { "start": 31995.4, "end": 31995.52, "probability": 0.2 }, { "start": 31995.52, "end": 31996.58, "probability": 0.8436 }, { "start": 31996.92, "end": 31997.78, "probability": 0.5219 }, { "start": 31997.88, "end": 31999.96, "probability": 0.5976 }, { "start": 32000.38, "end": 32003.26, "probability": 0.9612 }, { "start": 32003.26, "end": 32004.16, "probability": 0.8834 }, { "start": 32004.18, "end": 32006.48, "probability": 0.9838 }, { "start": 32007.26, "end": 32008.9, "probability": 0.6708 }, { "start": 32009.76, "end": 32011.12, "probability": 0.848 }, { "start": 32011.44, "end": 32014.46, "probability": 0.9854 }, { "start": 32015.0, "end": 32016.2, "probability": 0.912 }, { "start": 32016.52, "end": 32017.94, "probability": 0.87 }, { "start": 32018.36, "end": 32023.55, "probability": 0.986 }, { "start": 32025.26, "end": 32025.86, "probability": 0.972 }, { "start": 32027.54, "end": 32030.4, "probability": 0.988 }, { "start": 32031.94, "end": 32033.12, "probability": 0.9407 }, { "start": 32034.04, "end": 32035.16, "probability": 0.794 }, { "start": 32037.06, "end": 32038.68, "probability": 0.8949 }, { "start": 32041.52, "end": 32044.82, "probability": 0.9944 }, { "start": 32045.36, "end": 32047.1, "probability": 0.8264 }, { "start": 32047.18, "end": 32047.7, "probability": 0.978 }, { "start": 32048.8, "end": 32050.26, "probability": 0.9963 }, { "start": 32050.92, "end": 32052.2, "probability": 0.8745 }, { "start": 32052.4, "end": 32053.78, "probability": 0.8528 }, { "start": 32055.04, "end": 32057.0, "probability": 0.9158 }, { "start": 32057.06, "end": 32058.88, "probability": 0.934 }, { "start": 32059.78, "end": 32061.64, "probability": 0.7513 }, { "start": 32062.26, "end": 32063.3, "probability": 0.8286 }, { "start": 32064.04, "end": 32065.64, "probability": 0.7507 }, { "start": 32066.26, "end": 32067.2, "probability": 0.9688 }, { "start": 32068.82, "end": 32071.6, "probability": 0.9812 }, { "start": 32073.34, "end": 32074.24, "probability": 0.9683 }, { "start": 32076.24, "end": 32078.8, "probability": 0.6794 }, { "start": 32078.92, "end": 32079.6, "probability": 0.6105 }, { "start": 32080.18, "end": 32081.8, "probability": 0.3854 }, { "start": 32082.76, "end": 32083.86, "probability": 0.8456 }, { "start": 32084.1, "end": 32086.06, "probability": 0.9946 }, { "start": 32086.12, "end": 32087.42, "probability": 0.8764 }, { "start": 32088.44, "end": 32089.46, "probability": 0.6908 }, { "start": 32090.56, "end": 32092.04, "probability": 0.5126 }, { "start": 32092.88, "end": 32093.1, "probability": 0.0832 }, { "start": 32093.1, "end": 32093.1, "probability": 0.0877 }, { "start": 32093.1, "end": 32093.78, "probability": 0.5682 }, { "start": 32093.82, "end": 32094.74, "probability": 0.8779 }, { "start": 32095.84, "end": 32098.7, "probability": 0.6089 }, { "start": 32098.9, "end": 32099.74, "probability": 0.9548 }, { "start": 32100.3, "end": 32102.96, "probability": 0.9546 }, { "start": 32104.02, "end": 32104.68, "probability": 0.6233 }, { "start": 32105.26, "end": 32106.96, "probability": 0.7711 }, { "start": 32107.8, "end": 32110.32, "probability": 0.4445 }, { "start": 32111.1, "end": 32114.5, "probability": 0.9697 }, { "start": 32114.64, "end": 32117.1, "probability": 0.997 }, { "start": 32118.07, "end": 32120.38, "probability": 0.9917 }, { "start": 32120.56, "end": 32120.98, "probability": 0.8976 }, { "start": 32121.78, "end": 32123.94, "probability": 0.7927 }, { "start": 32124.2, "end": 32125.04, "probability": 0.5598 }, { "start": 32125.06, "end": 32129.3, "probability": 0.9252 }, { "start": 32129.34, "end": 32130.14, "probability": 0.9811 }, { "start": 32130.28, "end": 32130.88, "probability": 0.5735 }, { "start": 32130.96, "end": 32134.54, "probability": 0.9759 }, { "start": 32135.14, "end": 32136.62, "probability": 0.9507 }, { "start": 32137.22, "end": 32138.26, "probability": 0.7784 }, { "start": 32138.44, "end": 32141.24, "probability": 0.6327 }, { "start": 32141.78, "end": 32145.84, "probability": 0.9801 }, { "start": 32146.52, "end": 32148.5, "probability": 0.6908 }, { "start": 32149.6, "end": 32151.58, "probability": 0.9854 }, { "start": 32152.14, "end": 32152.5, "probability": 0.9731 }, { "start": 32153.02, "end": 32155.98, "probability": 0.0274 }, { "start": 32155.98, "end": 32158.72, "probability": 0.9797 }, { "start": 32159.6, "end": 32162.22, "probability": 0.8316 }, { "start": 32163.18, "end": 32165.26, "probability": 0.7798 }, { "start": 32167.62, "end": 32167.82, "probability": 0.0568 }, { "start": 32169.32, "end": 32170.04, "probability": 0.0921 }, { "start": 32171.36, "end": 32175.42, "probability": 0.2952 }, { "start": 32176.14, "end": 32176.56, "probability": 0.0632 }, { "start": 32176.56, "end": 32176.66, "probability": 0.0069 }, { "start": 32177.96, "end": 32179.48, "probability": 0.0516 }, { "start": 32179.5, "end": 32179.94, "probability": 0.068 }, { "start": 32179.94, "end": 32180.22, "probability": 0.0561 }, { "start": 32182.54, "end": 32183.02, "probability": 0.1326 }, { "start": 32183.02, "end": 32185.52, "probability": 0.2232 }, { "start": 32186.46, "end": 32186.6, "probability": 0.0175 }, { "start": 32186.84, "end": 32188.0, "probability": 0.083 }, { "start": 32188.0, "end": 32191.1, "probability": 0.0413 }, { "start": 32191.1, "end": 32191.16, "probability": 0.166 }, { "start": 32191.16, "end": 32193.94, "probability": 0.6494 }, { "start": 32194.96, "end": 32195.24, "probability": 0.1571 }, { "start": 32197.25, "end": 32198.0, "probability": 0.0958 }, { "start": 32198.4, "end": 32200.03, "probability": 0.0423 }, { "start": 32200.82, "end": 32202.38, "probability": 0.044 }, { "start": 32205.54, "end": 32205.56, "probability": 0.3897 }, { "start": 32205.56, "end": 32209.04, "probability": 0.09 }, { "start": 32213.86, "end": 32217.16, "probability": 0.0747 }, { "start": 32242.0, "end": 32242.0, "probability": 0.0 }, { "start": 32242.0, "end": 32242.0, "probability": 0.0 }, { "start": 32242.0, "end": 32242.0, "probability": 0.0 }, { "start": 32242.0, "end": 32242.0, "probability": 0.0 }, { "start": 32242.0, "end": 32242.0, "probability": 0.0 }, { "start": 32242.0, "end": 32242.0, "probability": 0.0 }, { "start": 32242.0, "end": 32242.0, "probability": 0.0 }, { "start": 32242.0, "end": 32242.0, "probability": 0.0 }, { "start": 32242.0, "end": 32242.0, "probability": 0.0 }, { "start": 32242.0, "end": 32242.0, "probability": 0.0 }, { "start": 32242.0, "end": 32242.0, "probability": 0.0 }, { "start": 32242.0, "end": 32242.0, "probability": 0.0 }, { "start": 32242.0, "end": 32242.0, "probability": 0.0 }, { "start": 32242.0, "end": 32242.0, "probability": 0.0 }, { "start": 32242.0, "end": 32242.0, "probability": 0.0 }, { "start": 32242.0, "end": 32242.0, "probability": 0.0 }, { "start": 32242.0, "end": 32242.0, "probability": 0.0 }, { "start": 32242.0, "end": 32242.0, "probability": 0.0 }, { "start": 32242.0, "end": 32242.0, "probability": 0.0 }, { "start": 32242.0, "end": 32242.0, "probability": 0.0 }, { "start": 32242.0, "end": 32242.0, "probability": 0.0 }, { "start": 32242.0, "end": 32242.0, "probability": 0.0 }, { "start": 32242.0, "end": 32242.0, "probability": 0.0 }, { "start": 32242.0, "end": 32242.0, "probability": 0.0 }, { "start": 32242.0, "end": 32242.0, "probability": 0.0 }, { "start": 32242.0, "end": 32242.0, "probability": 0.0 }, { "start": 32242.0, "end": 32242.0, "probability": 0.0 }, { "start": 32242.0, "end": 32242.0, "probability": 0.0 }, { "start": 32242.0, "end": 32242.0, "probability": 0.0 }, { "start": 32242.0, "end": 32242.0, "probability": 0.0 }, { "start": 32242.56, "end": 32246.42, "probability": 0.4469 }, { "start": 32246.44, "end": 32246.98, "probability": 0.5462 }, { "start": 32247.91, "end": 32253.48, "probability": 0.9597 }, { "start": 32254.12, "end": 32254.12, "probability": 0.1384 }, { "start": 32254.12, "end": 32254.12, "probability": 0.2193 }, { "start": 32254.12, "end": 32254.12, "probability": 0.0716 }, { "start": 32254.12, "end": 32258.86, "probability": 0.9594 }, { "start": 32259.16, "end": 32261.4, "probability": 0.9849 }, { "start": 32261.7, "end": 32264.39, "probability": 0.0641 }, { "start": 32264.62, "end": 32267.72, "probability": 0.8743 }, { "start": 32267.72, "end": 32269.05, "probability": 0.8164 }, { "start": 32269.98, "end": 32271.38, "probability": 0.6243 }, { "start": 32271.42, "end": 32274.24, "probability": 0.3425 }, { "start": 32274.24, "end": 32275.14, "probability": 0.3145 }, { "start": 32275.2, "end": 32277.0, "probability": 0.7623 }, { "start": 32277.3, "end": 32278.04, "probability": 0.8089 }, { "start": 32278.1, "end": 32279.94, "probability": 0.9358 }, { "start": 32280.14, "end": 32281.74, "probability": 0.9678 }, { "start": 32281.96, "end": 32282.54, "probability": 0.7493 }, { "start": 32282.89, "end": 32285.52, "probability": 0.9866 }, { "start": 32285.96, "end": 32286.98, "probability": 0.548 }, { "start": 32287.12, "end": 32288.12, "probability": 0.7436 }, { "start": 32288.14, "end": 32292.24, "probability": 0.4741 }, { "start": 32292.38, "end": 32292.52, "probability": 0.0541 }, { "start": 32292.52, "end": 32293.4, "probability": 0.2207 }, { "start": 32293.58, "end": 32296.86, "probability": 0.7209 }, { "start": 32297.04, "end": 32300.98, "probability": 0.5423 }, { "start": 32300.98, "end": 32303.58, "probability": 0.6781 }, { "start": 32303.64, "end": 32305.38, "probability": 0.8605 }, { "start": 32305.46, "end": 32308.2, "probability": 0.8996 }, { "start": 32308.2, "end": 32312.54, "probability": 0.2508 }, { "start": 32318.68, "end": 32319.14, "probability": 0.1774 }, { "start": 32319.14, "end": 32320.74, "probability": 0.0186 }, { "start": 32320.74, "end": 32320.86, "probability": 0.3969 }, { "start": 32321.82, "end": 32322.9, "probability": 0.158 }, { "start": 32323.16, "end": 32325.82, "probability": 0.2312 }, { "start": 32327.7, "end": 32328.08, "probability": 0.0272 }, { "start": 32328.08, "end": 32330.11, "probability": 0.0563 }, { "start": 32330.4, "end": 32331.32, "probability": 0.1725 }, { "start": 32333.47, "end": 32333.83, "probability": 0.0196 }, { "start": 32334.52, "end": 32334.8, "probability": 0.0519 }, { "start": 32334.8, "end": 32334.88, "probability": 0.1639 }, { "start": 32334.88, "end": 32335.78, "probability": 0.1147 }, { "start": 32336.5, "end": 32337.24, "probability": 0.1133 }, { "start": 32338.32, "end": 32343.46, "probability": 0.0477 }, { "start": 32343.8, "end": 32344.28, "probability": 0.2647 }, { "start": 32389.0, "end": 32389.0, "probability": 0.0 }, { "start": 32389.0, "end": 32389.0, "probability": 0.0 }, { "start": 32389.0, "end": 32389.0, "probability": 0.0 }, { "start": 32389.0, "end": 32389.0, "probability": 0.0 }, { "start": 32389.0, "end": 32389.0, "probability": 0.0 }, { "start": 32389.0, "end": 32389.0, "probability": 0.0 }, { "start": 32389.0, "end": 32389.0, "probability": 0.0 }, { "start": 32389.0, "end": 32389.0, "probability": 0.0 }, { "start": 32389.0, "end": 32389.0, "probability": 0.0 }, { "start": 32389.0, "end": 32389.0, "probability": 0.0 }, { "start": 32389.0, "end": 32389.0, "probability": 0.0 }, { "start": 32389.0, "end": 32389.0, "probability": 0.0 }, { "start": 32389.0, "end": 32389.0, "probability": 0.0 }, { "start": 32389.0, "end": 32389.0, "probability": 0.0 }, { "start": 32389.0, "end": 32389.0, "probability": 0.0 }, { "start": 32389.0, "end": 32389.0, "probability": 0.0 }, { "start": 32389.0, "end": 32389.0, "probability": 0.0 }, { "start": 32389.0, "end": 32389.0, "probability": 0.0 }, { "start": 32389.0, "end": 32389.0, "probability": 0.0 }, { "start": 32389.0, "end": 32389.0, "probability": 0.0 }, { "start": 32389.0, "end": 32389.0, "probability": 0.0 }, { "start": 32389.0, "end": 32389.0, "probability": 0.0 }, { "start": 32389.0, "end": 32389.0, "probability": 0.0 }, { "start": 32389.0, "end": 32389.0, "probability": 0.0 }, { "start": 32389.0, "end": 32389.0, "probability": 0.0 }, { "start": 32389.0, "end": 32389.0, "probability": 0.0 }, { "start": 32389.0, "end": 32389.0, "probability": 0.0 }, { "start": 32389.0, "end": 32389.0, "probability": 0.0 }, { "start": 32389.0, "end": 32389.0, "probability": 0.0 }, { "start": 32389.0, "end": 32389.0, "probability": 0.0 }, { "start": 32400.16, "end": 32400.26, "probability": 0.0018 }, { "start": 32400.84, "end": 32405.66, "probability": 0.0448 }, { "start": 32406.6, "end": 32408.6, "probability": 0.027 }, { "start": 32408.82, "end": 32408.82, "probability": 0.0702 }, { "start": 32409.3, "end": 32410.13, "probability": 0.0485 }, { "start": 32410.88, "end": 32411.56, "probability": 0.2268 }, { "start": 32411.56, "end": 32411.82, "probability": 0.109 }, { "start": 32412.38, "end": 32418.54, "probability": 0.0264 }, { "start": 32509.0, "end": 32509.0, "probability": 0.0 }, { "start": 32509.0, "end": 32509.0, "probability": 0.0 }, { "start": 32509.0, "end": 32509.0, "probability": 0.0 }, { "start": 32509.0, "end": 32509.0, "probability": 0.0 }, { "start": 32509.0, "end": 32509.0, "probability": 0.0 }, { "start": 32509.0, "end": 32509.0, "probability": 0.0 }, { "start": 32509.0, "end": 32509.0, "probability": 0.0 }, { "start": 32509.0, "end": 32509.0, "probability": 0.0 }, { "start": 32509.0, "end": 32509.0, "probability": 0.0 }, { "start": 32509.0, "end": 32509.0, "probability": 0.0 }, { "start": 32509.0, "end": 32509.0, "probability": 0.0 }, { "start": 32509.0, "end": 32509.0, "probability": 0.0 }, { "start": 32509.0, "end": 32509.0, "probability": 0.0 }, { "start": 32509.0, "end": 32509.0, "probability": 0.0 }, { "start": 32509.0, "end": 32509.0, "probability": 0.0 }, { "start": 32509.0, "end": 32509.0, "probability": 0.0 }, { "start": 32509.0, "end": 32509.0, "probability": 0.0 }, { "start": 32509.0, "end": 32509.0, "probability": 0.0 }, { "start": 32509.0, "end": 32509.0, "probability": 0.0 }, { "start": 32509.0, "end": 32509.0, "probability": 0.0 }, { "start": 32509.0, "end": 32509.0, "probability": 0.0 }, { "start": 32509.0, "end": 32509.0, "probability": 0.0 }, { "start": 32509.0, "end": 32509.0, "probability": 0.0 }, { "start": 32509.0, "end": 32509.0, "probability": 0.0 }, { "start": 32509.0, "end": 32509.0, "probability": 0.0 }, { "start": 32509.0, "end": 32509.0, "probability": 0.0 }, { "start": 32509.0, "end": 32509.0, "probability": 0.0 }, { "start": 32509.0, "end": 32509.0, "probability": 0.0 }, { "start": 32509.0, "end": 32509.0, "probability": 0.0 }, { "start": 32509.0, "end": 32509.0, "probability": 0.0 }, { "start": 32509.0, "end": 32509.0, "probability": 0.0 }, { "start": 32509.0, "end": 32509.0, "probability": 0.0 }, { "start": 32509.0, "end": 32509.0, "probability": 0.0 }, { "start": 32509.0, "end": 32509.0, "probability": 0.0 }, { "start": 32509.0, "end": 32509.0, "probability": 0.0 }, { "start": 32509.0, "end": 32509.0, "probability": 0.0 }, { "start": 32509.0, "end": 32509.0, "probability": 0.0 }, { "start": 32509.0, "end": 32509.0, "probability": 0.0 }, { "start": 32509.0, "end": 32509.0, "probability": 0.0 }, { "start": 32509.0, "end": 32509.0, "probability": 0.0 }, { "start": 32509.0, "end": 32509.0, "probability": 0.0 }, { "start": 32509.0, "end": 32509.0, "probability": 0.0 }, { "start": 32509.0, "end": 32509.0, "probability": 0.0 }, { "start": 32509.0, "end": 32509.0, "probability": 0.0 }, { "start": 32509.0, "end": 32509.0, "probability": 0.0 }, { "start": 32509.0, "end": 32509.0, "probability": 0.0 }, { "start": 32509.0, "end": 32509.0, "probability": 0.0 }, { "start": 32509.0, "end": 32509.0, "probability": 0.0 }, { "start": 32518.07, "end": 32518.56, "probability": 0.0147 }, { "start": 32519.1, "end": 32520.4, "probability": 0.2456 }, { "start": 32520.46, "end": 32520.94, "probability": 0.107 }, { "start": 32520.98, "end": 32522.06, "probability": 0.0759 }, { "start": 32525.36, "end": 32526.9, "probability": 0.0823 }, { "start": 32526.9, "end": 32530.04, "probability": 0.0835 }, { "start": 32530.04, "end": 32535.02, "probability": 0.1184 }, { "start": 32536.12, "end": 32538.04, "probability": 0.0727 }, { "start": 32541.42, "end": 32542.23, "probability": 0.0552 }, { "start": 32630.0, "end": 32630.0, "probability": 0.0 }, { "start": 32630.0, "end": 32630.0, "probability": 0.0 }, { "start": 32630.0, "end": 32630.0, "probability": 0.0 }, { "start": 32630.0, "end": 32630.0, "probability": 0.0 }, { "start": 32630.0, "end": 32630.0, "probability": 0.0 }, { "start": 32630.0, "end": 32630.0, "probability": 0.0 }, { "start": 32630.0, "end": 32630.0, "probability": 0.0 }, { "start": 32630.0, "end": 32630.0, "probability": 0.0 }, { "start": 32630.0, "end": 32630.0, "probability": 0.0 }, { "start": 32630.0, "end": 32630.0, "probability": 0.0 }, { "start": 32630.0, "end": 32630.0, "probability": 0.0 }, { "start": 32630.0, "end": 32630.0, "probability": 0.0 }, { "start": 32630.0, "end": 32630.0, "probability": 0.0 }, { "start": 32630.0, "end": 32630.0, "probability": 0.0 }, { "start": 32630.0, "end": 32630.0, "probability": 0.0 }, { "start": 32630.0, "end": 32630.0, "probability": 0.0 }, { "start": 32630.0, "end": 32630.0, "probability": 0.0 }, { "start": 32630.0, "end": 32630.0, "probability": 0.0 }, { "start": 32630.0, "end": 32630.0, "probability": 0.0 }, { "start": 32630.0, "end": 32630.0, "probability": 0.0 }, { "start": 32630.0, "end": 32630.0, "probability": 0.0 }, { "start": 32630.0, "end": 32630.0, "probability": 0.0 }, { "start": 32630.0, "end": 32630.0, "probability": 0.0 }, { "start": 32630.0, "end": 32630.0, "probability": 0.0 }, { "start": 32630.0, "end": 32630.0, "probability": 0.0 }, { "start": 32630.0, "end": 32630.0, "probability": 0.0 }, { "start": 32630.0, "end": 32630.0, "probability": 0.0 }, { "start": 32630.0, "end": 32630.0, "probability": 0.0 }, { "start": 32630.0, "end": 32630.0, "probability": 0.0 }, { "start": 32630.0, "end": 32630.0, "probability": 0.0 }, { "start": 32630.0, "end": 32630.0, "probability": 0.0 }, { "start": 32630.0, "end": 32630.0, "probability": 0.0 }, { "start": 32630.0, "end": 32630.0, "probability": 0.0 }, { "start": 32630.0, "end": 32630.0, "probability": 0.0 }, { "start": 32630.0, "end": 32630.0, "probability": 0.0 }, { "start": 32630.0, "end": 32630.0, "probability": 0.0 }, { "start": 32630.0, "end": 32630.0, "probability": 0.0 }, { "start": 32630.0, "end": 32630.0, "probability": 0.0 }, { "start": 32630.0, "end": 32630.0, "probability": 0.0 }, { "start": 32630.0, "end": 32630.0, "probability": 0.0 }, { "start": 32630.0, "end": 32630.0, "probability": 0.0 }, { "start": 32630.0, "end": 32630.0, "probability": 0.0 }, { "start": 32630.0, "end": 32630.0, "probability": 0.0 }, { "start": 32630.0, "end": 32630.0, "probability": 0.0 }, { "start": 32630.0, "end": 32630.0, "probability": 0.0 }, { "start": 32630.0, "end": 32630.0, "probability": 0.0 }, { "start": 32630.0, "end": 32630.0, "probability": 0.0 }, { "start": 32638.0, "end": 32638.46, "probability": 0.5015 }, { "start": 32639.14, "end": 32643.74, "probability": 0.0532 }, { "start": 32644.18, "end": 32646.98, "probability": 0.7452 }, { "start": 32648.52, "end": 32649.54, "probability": 0.59 }, { "start": 32650.12, "end": 32652.04, "probability": 0.9721 }, { "start": 32653.16, "end": 32655.88, "probability": 0.9948 }, { "start": 32656.72, "end": 32656.78, "probability": 0.0101 }, { "start": 32656.78, "end": 32656.78, "probability": 0.01 }, { "start": 32656.78, "end": 32656.78, "probability": 0.0831 }, { "start": 32656.78, "end": 32659.26, "probability": 0.8838 }, { "start": 32659.76, "end": 32661.14, "probability": 0.7175 }, { "start": 32661.54, "end": 32664.32, "probability": 0.6875 }, { "start": 32665.22, "end": 32665.96, "probability": 0.0959 }, { "start": 32665.96, "end": 32665.96, "probability": 0.0872 }, { "start": 32665.96, "end": 32665.96, "probability": 0.2494 }, { "start": 32665.96, "end": 32668.22, "probability": 0.9414 }, { "start": 32668.66, "end": 32669.52, "probability": 0.8493 }, { "start": 32670.16, "end": 32671.06, "probability": 0.8517 }, { "start": 32675.27, "end": 32676.0, "probability": 0.5055 }, { "start": 32676.12, "end": 32677.2, "probability": 0.8226 }, { "start": 32678.14, "end": 32682.82, "probability": 0.9312 }, { "start": 32683.48, "end": 32686.42, "probability": 0.7517 }, { "start": 32687.28, "end": 32690.9, "probability": 0.8627 }, { "start": 32691.48, "end": 32693.66, "probability": 0.9834 }, { "start": 32694.68, "end": 32695.5, "probability": 0.6412 }, { "start": 32696.16, "end": 32698.5, "probability": 0.922 }, { "start": 32699.06, "end": 32702.2, "probability": 0.9797 }, { "start": 32702.88, "end": 32705.8, "probability": 0.9957 }, { "start": 32706.5, "end": 32707.28, "probability": 0.9263 }, { "start": 32708.06, "end": 32708.82, "probability": 0.9795 }, { "start": 32709.94, "end": 32711.42, "probability": 0.8623 }, { "start": 32712.36, "end": 32713.56, "probability": 0.7756 }, { "start": 32714.3, "end": 32716.62, "probability": 0.9761 }, { "start": 32717.24, "end": 32720.52, "probability": 0.9922 }, { "start": 32721.58, "end": 32722.36, "probability": 0.6873 }, { "start": 32723.08, "end": 32726.76, "probability": 0.9951 }, { "start": 32727.46, "end": 32728.14, "probability": 0.9076 }, { "start": 32729.04, "end": 32732.0, "probability": 0.9943 }, { "start": 32732.8, "end": 32738.16, "probability": 0.9888 }, { "start": 32740.82, "end": 32741.6, "probability": 0.7244 }, { "start": 32741.7, "end": 32742.34, "probability": 0.9013 }, { "start": 32742.54, "end": 32744.36, "probability": 0.963 }, { "start": 32744.52, "end": 32748.88, "probability": 0.9967 }, { "start": 32749.76, "end": 32755.44, "probability": 0.9631 }, { "start": 32756.22, "end": 32760.28, "probability": 0.9907 }, { "start": 32761.1, "end": 32764.16, "probability": 0.9873 }, { "start": 32764.94, "end": 32766.9, "probability": 0.7605 }, { "start": 32766.9, "end": 32769.12, "probability": 0.9933 }, { "start": 32769.84, "end": 32771.36, "probability": 0.9146 }, { "start": 32772.64, "end": 32775.44, "probability": 0.9922 }, { "start": 32775.44, "end": 32779.74, "probability": 0.9448 }, { "start": 32779.92, "end": 32781.34, "probability": 0.911 }, { "start": 32781.86, "end": 32785.12, "probability": 0.994 }, { "start": 32786.12, "end": 32787.82, "probability": 0.8642 }, { "start": 32787.96, "end": 32790.34, "probability": 0.5481 }, { "start": 32791.78, "end": 32796.56, "probability": 0.9918 }, { "start": 32797.14, "end": 32798.56, "probability": 0.842 }, { "start": 32799.1, "end": 32802.02, "probability": 0.999 }, { "start": 32802.86, "end": 32805.04, "probability": 0.9868 }, { "start": 32805.72, "end": 32808.46, "probability": 0.9984 }, { "start": 32808.82, "end": 32810.76, "probability": 0.9947 }, { "start": 32811.58, "end": 32814.52, "probability": 0.9904 }, { "start": 32815.08, "end": 32816.34, "probability": 0.9566 }, { "start": 32816.96, "end": 32818.06, "probability": 0.6734 }, { "start": 32818.12, "end": 32821.16, "probability": 0.9368 }, { "start": 32821.8, "end": 32824.4, "probability": 0.9873 }, { "start": 32825.78, "end": 32829.36, "probability": 0.9786 }, { "start": 32829.48, "end": 32833.48, "probability": 0.9944 }, { "start": 32834.32, "end": 32839.06, "probability": 0.9976 }, { "start": 32839.14, "end": 32841.76, "probability": 0.9989 }, { "start": 32842.7, "end": 32843.4, "probability": 0.7349 }, { "start": 32843.92, "end": 32845.52, "probability": 0.8917 }, { "start": 32846.1, "end": 32847.76, "probability": 0.9924 }, { "start": 32848.28, "end": 32848.92, "probability": 0.5835 }, { "start": 32848.92, "end": 32850.38, "probability": 0.9254 }, { "start": 32850.86, "end": 32852.08, "probability": 0.6617 }, { "start": 32852.18, "end": 32853.74, "probability": 0.9888 }, { "start": 32854.72, "end": 32859.9, "probability": 0.9917 }, { "start": 32859.94, "end": 32860.8, "probability": 0.7222 }, { "start": 32861.68, "end": 32865.44, "probability": 0.998 }, { "start": 32865.44, "end": 32869.64, "probability": 0.9982 }, { "start": 32870.6, "end": 32872.96, "probability": 0.8959 }, { "start": 32873.5, "end": 32875.18, "probability": 0.9697 }, { "start": 32876.34, "end": 32880.32, "probability": 0.9951 }, { "start": 32880.32, "end": 32883.06, "probability": 0.9765 }, { "start": 32883.72, "end": 32889.02, "probability": 0.9982 }, { "start": 32889.02, "end": 32893.54, "probability": 0.9919 }, { "start": 32894.34, "end": 32899.9, "probability": 0.9987 }, { "start": 32900.58, "end": 32905.12, "probability": 0.987 }, { "start": 32905.82, "end": 32909.84, "probability": 0.9891 }, { "start": 32909.94, "end": 32910.44, "probability": 0.8649 }, { "start": 32910.92, "end": 32912.18, "probability": 0.9855 }, { "start": 32912.96, "end": 32913.62, "probability": 0.9449 }, { "start": 32914.22, "end": 32917.62, "probability": 0.9986 }, { "start": 32918.28, "end": 32921.94, "probability": 0.9976 }, { "start": 32922.42, "end": 32924.6, "probability": 0.9985 }, { "start": 32925.2, "end": 32928.62, "probability": 0.9961 }, { "start": 32929.06, "end": 32931.62, "probability": 0.7139 }, { "start": 32931.7, "end": 32933.7, "probability": 0.9778 }, { "start": 32935.1, "end": 32939.22, "probability": 0.9715 }, { "start": 32939.22, "end": 32942.28, "probability": 0.9828 }, { "start": 32943.06, "end": 32947.06, "probability": 0.9977 }, { "start": 32947.5, "end": 32948.22, "probability": 0.9847 }, { "start": 32949.16, "end": 32953.82, "probability": 0.9966 }, { "start": 32954.39, "end": 32959.66, "probability": 0.9985 }, { "start": 32959.66, "end": 32967.18, "probability": 0.9922 }, { "start": 32968.06, "end": 32971.98, "probability": 0.9962 }, { "start": 32972.78, "end": 32973.36, "probability": 0.4808 }, { "start": 32974.02, "end": 32977.96, "probability": 0.998 }, { "start": 32978.78, "end": 32979.98, "probability": 0.9359 }, { "start": 32981.18, "end": 32985.44, "probability": 0.988 }, { "start": 32986.16, "end": 32987.22, "probability": 0.9335 }, { "start": 32987.76, "end": 32989.2, "probability": 0.9804 }, { "start": 32989.8, "end": 32992.0, "probability": 0.8487 }, { "start": 32992.66, "end": 32994.44, "probability": 0.9959 }, { "start": 32995.3, "end": 32996.84, "probability": 0.9941 }, { "start": 32997.38, "end": 32997.99, "probability": 0.8755 }, { "start": 32998.42, "end": 33000.48, "probability": 0.9135 }, { "start": 33000.48, "end": 33003.8, "probability": 0.9941 }, { "start": 33004.38, "end": 33006.3, "probability": 0.9359 }, { "start": 33007.02, "end": 33010.14, "probability": 0.9946 }, { "start": 33010.92, "end": 33013.68, "probability": 0.9088 }, { "start": 33014.52, "end": 33016.4, "probability": 0.9985 }, { "start": 33018.0, "end": 33019.24, "probability": 0.9761 }, { "start": 33019.8, "end": 33021.84, "probability": 0.9627 }, { "start": 33022.7, "end": 33024.16, "probability": 0.9992 }, { "start": 33024.9, "end": 33026.7, "probability": 0.9198 }, { "start": 33027.36, "end": 33028.68, "probability": 0.4255 }, { "start": 33029.24, "end": 33030.32, "probability": 0.7814 }, { "start": 33030.84, "end": 33031.62, "probability": 0.9774 }, { "start": 33032.5, "end": 33033.88, "probability": 0.9562 }, { "start": 33034.42, "end": 33038.46, "probability": 0.9513 }, { "start": 33039.04, "end": 33042.36, "probability": 0.992 }, { "start": 33042.94, "end": 33043.2, "probability": 0.3379 }, { "start": 33043.28, "end": 33045.06, "probability": 0.8529 }, { "start": 33045.52, "end": 33047.9, "probability": 0.6667 }, { "start": 33048.56, "end": 33050.76, "probability": 0.8124 }, { "start": 33051.3, "end": 33054.74, "probability": 0.9613 }, { "start": 33055.24, "end": 33055.62, "probability": 0.8047 }, { "start": 33055.74, "end": 33058.16, "probability": 0.9968 }, { "start": 33058.72, "end": 33060.34, "probability": 0.9991 }, { "start": 33060.86, "end": 33061.92, "probability": 0.9686 }, { "start": 33062.72, "end": 33065.72, "probability": 0.9972 }, { "start": 33066.38, "end": 33070.26, "probability": 0.9985 }, { "start": 33070.72, "end": 33072.68, "probability": 0.9179 }, { "start": 33073.28, "end": 33074.82, "probability": 0.7614 }, { "start": 33075.5, "end": 33077.68, "probability": 0.9441 }, { "start": 33078.44, "end": 33079.56, "probability": 0.8387 }, { "start": 33080.46, "end": 33084.54, "probability": 0.9903 }, { "start": 33085.12, "end": 33087.46, "probability": 0.9994 }, { "start": 33088.0, "end": 33089.9, "probability": 0.9957 }, { "start": 33089.9, "end": 33092.32, "probability": 0.9989 }, { "start": 33092.96, "end": 33096.38, "probability": 0.9929 }, { "start": 33097.38, "end": 33099.78, "probability": 0.9879 }, { "start": 33100.22, "end": 33102.74, "probability": 0.991 }, { "start": 33103.52, "end": 33108.74, "probability": 0.9943 }, { "start": 33109.24, "end": 33114.38, "probability": 0.9979 }, { "start": 33114.38, "end": 33117.98, "probability": 0.9642 }, { "start": 33118.52, "end": 33120.35, "probability": 0.9842 }, { "start": 33121.16, "end": 33122.14, "probability": 0.878 }, { "start": 33122.68, "end": 33124.78, "probability": 0.9855 }, { "start": 33125.36, "end": 33127.1, "probability": 0.9946 }, { "start": 33127.18, "end": 33130.34, "probability": 0.999 }, { "start": 33130.72, "end": 33133.5, "probability": 0.9964 }, { "start": 33134.0, "end": 33138.64, "probability": 0.9797 }, { "start": 33139.42, "end": 33141.26, "probability": 0.9637 }, { "start": 33141.9, "end": 33142.5, "probability": 0.4612 }, { "start": 33143.93, "end": 33149.88, "probability": 0.802 }, { "start": 33150.64, "end": 33152.56, "probability": 0.7538 }, { "start": 33153.24, "end": 33154.98, "probability": 0.974 }, { "start": 33155.7, "end": 33161.12, "probability": 0.9697 }, { "start": 33161.78, "end": 33165.34, "probability": 0.9936 }, { "start": 33165.34, "end": 33169.46, "probability": 0.9995 }, { "start": 33170.22, "end": 33173.02, "probability": 0.9995 }, { "start": 33173.68, "end": 33178.3, "probability": 0.993 }, { "start": 33179.9, "end": 33184.42, "probability": 0.9508 }, { "start": 33184.84, "end": 33185.74, "probability": 0.5572 }, { "start": 33186.2, "end": 33187.56, "probability": 0.9427 }, { "start": 33187.96, "end": 33188.96, "probability": 0.8773 }, { "start": 33189.2, "end": 33190.94, "probability": 0.9976 }, { "start": 33191.36, "end": 33193.02, "probability": 0.9703 }, { "start": 33193.78, "end": 33195.56, "probability": 0.6512 }, { "start": 33195.7, "end": 33197.06, "probability": 0.7933 }, { "start": 33197.52, "end": 33202.24, "probability": 0.8267 }, { "start": 33202.72, "end": 33205.32, "probability": 0.8895 }, { "start": 33205.98, "end": 33209.72, "probability": 0.9893 }, { "start": 33210.2, "end": 33212.08, "probability": 0.7517 }, { "start": 33212.18, "end": 33217.0, "probability": 0.9819 }, { "start": 33217.0, "end": 33220.88, "probability": 0.9613 }, { "start": 33221.48, "end": 33223.1, "probability": 0.9473 }, { "start": 33223.58, "end": 33226.42, "probability": 0.9984 }, { "start": 33226.88, "end": 33227.4, "probability": 0.7321 }, { "start": 33229.9, "end": 33233.12, "probability": 0.9865 }, { "start": 33234.44, "end": 33234.7, "probability": 0.8289 }, { "start": 33235.58, "end": 33242.84, "probability": 0.9404 }, { "start": 33243.08, "end": 33245.46, "probability": 0.9525 }, { "start": 33246.6, "end": 33248.52, "probability": 0.9455 }, { "start": 33249.12, "end": 33249.6, "probability": 0.4802 }, { "start": 33249.7, "end": 33252.88, "probability": 0.8698 }, { "start": 33253.82, "end": 33254.02, "probability": 0.0778 }, { "start": 33254.02, "end": 33254.23, "probability": 0.4095 }, { "start": 33255.36, "end": 33258.74, "probability": 0.0342 }, { "start": 33258.78, "end": 33259.52, "probability": 0.7784 }, { "start": 33259.76, "end": 33261.7, "probability": 0.0013 }, { "start": 33262.86, "end": 33263.56, "probability": 0.0585 }, { "start": 33263.56, "end": 33264.34, "probability": 0.0979 }, { "start": 33265.68, "end": 33266.22, "probability": 0.4195 }, { "start": 33266.22, "end": 33270.16, "probability": 0.343 }, { "start": 33271.04, "end": 33274.52, "probability": 0.6234 }, { "start": 33274.62, "end": 33277.92, "probability": 0.5124 }, { "start": 33279.1, "end": 33279.34, "probability": 0.1375 }, { "start": 33279.34, "end": 33279.34, "probability": 0.1694 }, { "start": 33279.34, "end": 33279.34, "probability": 0.3004 }, { "start": 33279.34, "end": 33280.14, "probability": 0.8096 }, { "start": 33283.0, "end": 33284.4, "probability": 0.998 }, { "start": 33286.12, "end": 33287.55, "probability": 0.9992 }, { "start": 33289.5, "end": 33290.1, "probability": 0.6988 }, { "start": 33291.98, "end": 33295.06, "probability": 0.2468 }, { "start": 33295.1, "end": 33299.52, "probability": 0.3128 }, { "start": 33299.92, "end": 33300.96, "probability": 0.8859 }, { "start": 33300.98, "end": 33301.88, "probability": 0.938 }, { "start": 33301.98, "end": 33302.42, "probability": 0.1459 }, { "start": 33302.54, "end": 33305.52, "probability": 0.9803 }, { "start": 33306.39, "end": 33309.18, "probability": 0.9715 }, { "start": 33309.3, "end": 33310.62, "probability": 0.1324 }, { "start": 33310.72, "end": 33311.0, "probability": 0.0 }, { "start": 33312.42, "end": 33314.48, "probability": 0.0419 }, { "start": 33315.7, "end": 33316.84, "probability": 0.051 }, { "start": 33317.86, "end": 33318.2, "probability": 0.7264 }, { "start": 33318.26, "end": 33320.14, "probability": 0.514 }, { "start": 33320.28, "end": 33320.9, "probability": 0.5156 }, { "start": 33320.98, "end": 33323.22, "probability": 0.8386 }, { "start": 33324.06, "end": 33325.24, "probability": 0.9664 }, { "start": 33325.34, "end": 33329.24, "probability": 0.9114 }, { "start": 33329.42, "end": 33333.56, "probability": 0.8955 }, { "start": 33333.8, "end": 33335.04, "probability": 0.4233 }, { "start": 33335.76, "end": 33336.36, "probability": 0.4562 }, { "start": 33336.54, "end": 33338.02, "probability": 0.9614 }, { "start": 33338.86, "end": 33339.54, "probability": 0.9875 }, { "start": 33341.58, "end": 33344.88, "probability": 0.8577 }, { "start": 33345.0, "end": 33345.66, "probability": 0.7631 }, { "start": 33345.72, "end": 33346.84, "probability": 0.5765 }, { "start": 33348.64, "end": 33350.18, "probability": 0.6888 }, { "start": 33351.18, "end": 33351.7, "probability": 0.8679 }, { "start": 33353.24, "end": 33353.73, "probability": 0.8856 }, { "start": 33355.56, "end": 33358.64, "probability": 0.9483 }, { "start": 33358.78, "end": 33359.27, "probability": 0.9131 }, { "start": 33360.34, "end": 33361.59, "probability": 0.8641 }, { "start": 33362.62, "end": 33363.96, "probability": 0.8341 }, { "start": 33364.08, "end": 33366.24, "probability": 0.8909 }, { "start": 33366.36, "end": 33367.48, "probability": 0.8003 }, { "start": 33368.28, "end": 33373.34, "probability": 0.9507 }, { "start": 33373.94, "end": 33375.62, "probability": 0.3417 }, { "start": 33376.3, "end": 33376.44, "probability": 0.0039 }, { "start": 33376.82, "end": 33376.82, "probability": 0.1572 }, { "start": 33376.82, "end": 33377.04, "probability": 0.7415 }, { "start": 33377.1, "end": 33378.18, "probability": 0.5348 }, { "start": 33378.32, "end": 33380.62, "probability": 0.7925 }, { "start": 33380.62, "end": 33383.2, "probability": 0.261 }, { "start": 33383.52, "end": 33385.0, "probability": 0.1626 }, { "start": 33385.5, "end": 33387.01, "probability": 0.792 }, { "start": 33387.56, "end": 33389.56, "probability": 0.0656 }, { "start": 33389.56, "end": 33390.92, "probability": 0.3842 }, { "start": 33392.16, "end": 33394.58, "probability": 0.856 }, { "start": 33394.82, "end": 33395.92, "probability": 0.8308 }, { "start": 33397.28, "end": 33398.02, "probability": 0.1072 }, { "start": 33398.02, "end": 33398.4, "probability": 0.0801 }, { "start": 33398.4, "end": 33399.2, "probability": 0.4684 }, { "start": 33399.3, "end": 33400.24, "probability": 0.3714 }, { "start": 33400.82, "end": 33403.26, "probability": 0.6326 }, { "start": 33403.38, "end": 33403.56, "probability": 0.198 }, { "start": 33403.76, "end": 33404.93, "probability": 0.8328 }, { "start": 33405.42, "end": 33406.26, "probability": 0.9812 }, { "start": 33407.68, "end": 33408.98, "probability": 0.8545 }, { "start": 33409.08, "end": 33410.86, "probability": 0.0416 }, { "start": 33410.86, "end": 33410.86, "probability": 0.0368 }, { "start": 33410.86, "end": 33412.97, "probability": 0.4957 }, { "start": 33414.74, "end": 33415.64, "probability": 0.8401 }, { "start": 33417.02, "end": 33423.26, "probability": 0.9149 }, { "start": 33423.34, "end": 33424.07, "probability": 0.7488 }, { "start": 33425.6, "end": 33426.82, "probability": 0.8352 }, { "start": 33427.76, "end": 33429.8, "probability": 0.9948 }, { "start": 33430.4, "end": 33433.76, "probability": 0.9333 }, { "start": 33433.82, "end": 33434.32, "probability": 0.6649 }, { "start": 33434.44, "end": 33435.78, "probability": 0.8511 }, { "start": 33436.76, "end": 33437.94, "probability": 0.9188 }, { "start": 33438.74, "end": 33439.86, "probability": 0.5923 }, { "start": 33440.38, "end": 33440.38, "probability": 0.045 }, { "start": 33440.38, "end": 33440.38, "probability": 0.0841 }, { "start": 33440.38, "end": 33444.68, "probability": 0.861 }, { "start": 33444.7, "end": 33446.84, "probability": 0.9961 }, { "start": 33447.04, "end": 33447.86, "probability": 0.502 }, { "start": 33448.9, "end": 33450.82, "probability": 0.9229 }, { "start": 33451.1, "end": 33451.52, "probability": 0.6932 }, { "start": 33451.66, "end": 33454.56, "probability": 0.9806 }, { "start": 33454.7, "end": 33457.84, "probability": 0.908 }, { "start": 33458.52, "end": 33460.02, "probability": 0.5105 }, { "start": 33460.06, "end": 33460.82, "probability": 0.8667 }, { "start": 33460.94, "end": 33461.96, "probability": 0.8795 }, { "start": 33462.0, "end": 33462.62, "probability": 0.8861 }, { "start": 33462.68, "end": 33464.76, "probability": 0.9879 }, { "start": 33464.94, "end": 33467.9, "probability": 0.9772 }, { "start": 33468.04, "end": 33469.48, "probability": 0.5003 }, { "start": 33470.82, "end": 33471.34, "probability": 0.4116 }, { "start": 33471.34, "end": 33471.9, "probability": 0.8341 }, { "start": 33472.14, "end": 33473.68, "probability": 0.1408 }, { "start": 33473.74, "end": 33474.92, "probability": 0.9922 }, { "start": 33475.26, "end": 33477.09, "probability": 0.4497 }, { "start": 33477.24, "end": 33477.76, "probability": 0.5687 }, { "start": 33478.5, "end": 33480.46, "probability": 0.9355 }, { "start": 33480.58, "end": 33481.21, "probability": 0.4514 }, { "start": 33481.6, "end": 33482.4, "probability": 0.5595 }, { "start": 33482.58, "end": 33484.3, "probability": 0.6518 }, { "start": 33484.9, "end": 33485.5, "probability": 0.9626 }, { "start": 33486.24, "end": 33487.98, "probability": 0.9735 }, { "start": 33488.54, "end": 33490.28, "probability": 0.8696 }, { "start": 33490.52, "end": 33491.66, "probability": 0.5257 }, { "start": 33491.94, "end": 33492.62, "probability": 0.1679 }, { "start": 33493.08, "end": 33494.88, "probability": 0.4531 }, { "start": 33495.81, "end": 33500.58, "probability": 0.7399 }, { "start": 33501.24, "end": 33505.26, "probability": 0.709 }, { "start": 33505.32, "end": 33506.62, "probability": 0.6053 }, { "start": 33506.92, "end": 33507.74, "probability": 0.0316 }, { "start": 33507.74, "end": 33508.5, "probability": 0.4293 }, { "start": 33508.58, "end": 33509.3, "probability": 0.5395 }, { "start": 33509.44, "end": 33511.56, "probability": 0.9915 }, { "start": 33511.6, "end": 33512.1, "probability": 0.8197 }, { "start": 33512.16, "end": 33512.9, "probability": 0.7305 }, { "start": 33513.48, "end": 33515.18, "probability": 0.8224 }, { "start": 33515.4, "end": 33516.03, "probability": 0.3694 }, { "start": 33516.3, "end": 33517.96, "probability": 0.6677 }, { "start": 33518.2, "end": 33518.84, "probability": 0.6193 }, { "start": 33519.14, "end": 33520.0, "probability": 0.0979 }, { "start": 33521.6, "end": 33523.18, "probability": 0.1467 }, { "start": 33523.3, "end": 33523.3, "probability": 0.5309 }, { "start": 33523.38, "end": 33523.38, "probability": 0.0838 }, { "start": 33523.38, "end": 33523.96, "probability": 0.7085 }, { "start": 33524.1, "end": 33524.69, "probability": 0.843 }, { "start": 33525.14, "end": 33529.9, "probability": 0.789 }, { "start": 33530.5, "end": 33532.48, "probability": 0.7305 }, { "start": 33532.96, "end": 33539.24, "probability": 0.9683 }, { "start": 33539.34, "end": 33539.88, "probability": 0.5397 }, { "start": 33540.34, "end": 33541.15, "probability": 0.5433 }, { "start": 33541.8, "end": 33545.82, "probability": 0.5906 }, { "start": 33546.14, "end": 33546.58, "probability": 0.0407 }, { "start": 33546.62, "end": 33548.0, "probability": 0.5604 }, { "start": 33548.0, "end": 33548.0, "probability": 0.501 }, { "start": 33548.08, "end": 33550.34, "probability": 0.5895 }, { "start": 33550.34, "end": 33552.76, "probability": 0.9781 }, { "start": 33553.46, "end": 33555.72, "probability": 0.4439 }, { "start": 33555.74, "end": 33556.5, "probability": 0.6368 }, { "start": 33556.58, "end": 33557.96, "probability": 0.9624 }, { "start": 33558.32, "end": 33559.48, "probability": 0.4108 }, { "start": 33560.02, "end": 33560.72, "probability": 0.4621 }, { "start": 33561.18, "end": 33564.0, "probability": 0.77 }, { "start": 33564.56, "end": 33567.68, "probability": 0.238 }, { "start": 33567.68, "end": 33567.88, "probability": 0.3868 }, { "start": 33567.88, "end": 33568.28, "probability": 0.1791 }, { "start": 33568.94, "end": 33570.3, "probability": 0.4011 }, { "start": 33570.4, "end": 33570.7, "probability": 0.527 }, { "start": 33570.8, "end": 33571.71, "probability": 0.6793 }, { "start": 33572.36, "end": 33574.81, "probability": 0.74 }, { "start": 33575.7, "end": 33576.05, "probability": 0.6709 }, { "start": 33578.37, "end": 33583.28, "probability": 0.5818 }, { "start": 33583.28, "end": 33585.94, "probability": 0.9846 }, { "start": 33586.96, "end": 33588.82, "probability": 0.9861 }, { "start": 33589.94, "end": 33592.62, "probability": 0.7456 }, { "start": 33592.76, "end": 33593.48, "probability": 0.8591 }, { "start": 33593.72, "end": 33596.42, "probability": 0.8591 }, { "start": 33596.96, "end": 33598.13, "probability": 0.9883 }, { "start": 33599.1, "end": 33600.91, "probability": 0.733 }, { "start": 33601.44, "end": 33602.26, "probability": 0.998 }, { "start": 33603.0, "end": 33604.72, "probability": 0.9432 }, { "start": 33605.68, "end": 33606.92, "probability": 0.9863 }, { "start": 33607.84, "end": 33608.6, "probability": 0.4741 }, { "start": 33608.68, "end": 33609.5, "probability": 0.9819 }, { "start": 33609.68, "end": 33611.26, "probability": 0.9311 }, { "start": 33611.44, "end": 33611.92, "probability": 0.238 }, { "start": 33612.0, "end": 33612.76, "probability": 0.8815 }, { "start": 33613.9, "end": 33614.83, "probability": 0.9958 }, { "start": 33615.6, "end": 33617.9, "probability": 0.8489 }, { "start": 33618.12, "end": 33622.08, "probability": 0.9688 }, { "start": 33622.14, "end": 33622.91, "probability": 0.6555 }, { "start": 33624.94, "end": 33625.04, "probability": 0.1259 }, { "start": 33625.18, "end": 33629.0, "probability": 0.9951 }, { "start": 33629.28, "end": 33630.08, "probability": 0.6341 }, { "start": 33631.1, "end": 33633.84, "probability": 0.9219 }, { "start": 33634.68, "end": 33635.3, "probability": 0.4271 }, { "start": 33635.5, "end": 33635.71, "probability": 0.5703 }, { "start": 33636.58, "end": 33637.5, "probability": 0.7762 }, { "start": 33637.6, "end": 33639.5, "probability": 0.9555 }, { "start": 33639.62, "end": 33640.34, "probability": 0.4264 }, { "start": 33640.88, "end": 33643.02, "probability": 0.9868 }, { "start": 33643.2, "end": 33643.96, "probability": 0.765 }, { "start": 33644.36, "end": 33645.44, "probability": 0.6274 }, { "start": 33645.92, "end": 33647.44, "probability": 0.7125 }, { "start": 33647.56, "end": 33648.58, "probability": 0.4017 }, { "start": 33648.66, "end": 33651.76, "probability": 0.391 }, { "start": 33653.76, "end": 33653.9, "probability": 0.0158 }, { "start": 33653.98, "end": 33654.12, "probability": 0.117 }, { "start": 33654.12, "end": 33655.66, "probability": 0.384 }, { "start": 33656.22, "end": 33656.58, "probability": 0.0961 }, { "start": 33656.6, "end": 33657.62, "probability": 0.2848 }, { "start": 33658.08, "end": 33659.94, "probability": 0.8512 }, { "start": 33660.16, "end": 33661.1, "probability": 0.5245 }, { "start": 33662.08, "end": 33662.08, "probability": 0.1318 }, { "start": 33662.08, "end": 33665.78, "probability": 0.9636 }, { "start": 33665.78, "end": 33665.92, "probability": 0.0063 }, { "start": 33667.12, "end": 33668.62, "probability": 0.7644 }, { "start": 33668.62, "end": 33673.52, "probability": 0.7381 }, { "start": 33676.52, "end": 33680.3, "probability": 0.5283 }, { "start": 33680.9, "end": 33683.04, "probability": 0.7687 }, { "start": 33683.88, "end": 33685.24, "probability": 0.6838 }, { "start": 33685.88, "end": 33689.08, "probability": 0.9698 }, { "start": 33689.6, "end": 33693.66, "probability": 0.9912 }, { "start": 33694.22, "end": 33694.42, "probability": 0.4288 }, { "start": 33696.8, "end": 33697.94, "probability": 0.6688 }, { "start": 33698.06, "end": 33699.02, "probability": 0.1411 }, { "start": 33699.16, "end": 33701.3, "probability": 0.6959 }, { "start": 33701.86, "end": 33703.28, "probability": 0.6903 }, { "start": 33703.54, "end": 33705.32, "probability": 0.6427 }, { "start": 33706.32, "end": 33710.52, "probability": 0.8905 }, { "start": 33710.82, "end": 33711.48, "probability": 0.2624 }, { "start": 33711.48, "end": 33712.6, "probability": 0.4462 }, { "start": 33712.66, "end": 33712.66, "probability": 0.013 }, { "start": 33712.66, "end": 33713.02, "probability": 0.0605 }, { "start": 33713.02, "end": 33715.36, "probability": 0.8858 }, { "start": 33715.48, "end": 33716.58, "probability": 0.7568 }, { "start": 33716.58, "end": 33718.0, "probability": 0.9971 }, { "start": 33718.12, "end": 33718.98, "probability": 0.9128 }, { "start": 33720.4, "end": 33722.08, "probability": 0.9335 }, { "start": 33722.24, "end": 33724.62, "probability": 0.2478 }, { "start": 33725.0, "end": 33727.84, "probability": 0.8931 }, { "start": 33727.9, "end": 33729.94, "probability": 0.9877 }, { "start": 33730.7, "end": 33734.86, "probability": 0.9946 }, { "start": 33734.94, "end": 33735.56, "probability": 0.8947 }, { "start": 33736.2, "end": 33737.4, "probability": 0.8222 }, { "start": 33737.62, "end": 33739.68, "probability": 0.9417 }, { "start": 33739.74, "end": 33740.4, "probability": 0.9533 }, { "start": 33740.96, "end": 33744.28, "probability": 0.9767 }, { "start": 33744.38, "end": 33745.33, "probability": 0.8308 }, { "start": 33747.02, "end": 33751.44, "probability": 0.9062 }, { "start": 33751.46, "end": 33752.93, "probability": 0.9316 }, { "start": 33753.0, "end": 33753.28, "probability": 0.7432 }, { "start": 33753.44, "end": 33756.42, "probability": 0.0839 }, { "start": 33756.42, "end": 33758.07, "probability": 0.2019 }, { "start": 33758.48, "end": 33759.38, "probability": 0.2765 }, { "start": 33759.38, "end": 33761.13, "probability": 0.9431 }, { "start": 33762.12, "end": 33764.56, "probability": 0.7326 }, { "start": 33765.36, "end": 33768.94, "probability": 0.968 }, { "start": 33769.0, "end": 33769.3, "probability": 0.8442 }, { "start": 33770.12, "end": 33770.98, "probability": 0.2292 }, { "start": 33781.34, "end": 33785.04, "probability": 0.4927 }, { "start": 33785.14, "end": 33788.62, "probability": 0.6885 }, { "start": 33789.06, "end": 33791.74, "probability": 0.9077 }, { "start": 33792.26, "end": 33796.9, "probability": 0.98 }, { "start": 33798.1, "end": 33798.32, "probability": 0.9734 }, { "start": 33801.0, "end": 33801.76, "probability": 0.7493 }, { "start": 33804.84, "end": 33806.9, "probability": 0.2342 }, { "start": 33807.88, "end": 33811.6, "probability": 0.5926 }, { "start": 33813.22, "end": 33813.94, "probability": 0.8188 }, { "start": 33814.48, "end": 33815.42, "probability": 0.8019 }, { "start": 33816.22, "end": 33816.52, "probability": 0.9475 }, { "start": 33818.1, "end": 33819.8, "probability": 0.9704 }, { "start": 33820.48, "end": 33821.14, "probability": 0.9355 }, { "start": 33822.36, "end": 33822.74, "probability": 0.9746 }, { "start": 33823.58, "end": 33824.4, "probability": 0.9564 }, { "start": 33826.18, "end": 33829.14, "probability": 0.7406 }, { "start": 33830.8, "end": 33833.42, "probability": 0.684 }, { "start": 33834.5, "end": 33836.52, "probability": 0.8779 }, { "start": 33837.74, "end": 33838.26, "probability": 0.9826 }, { "start": 33839.24, "end": 33840.04, "probability": 0.9822 }, { "start": 33840.86, "end": 33841.74, "probability": 0.9817 }, { "start": 33842.62, "end": 33843.54, "probability": 0.8047 }, { "start": 33844.96, "end": 33845.68, "probability": 0.8949 }, { "start": 33847.64, "end": 33848.72, "probability": 0.9154 }, { "start": 33851.1, "end": 33852.58, "probability": 0.735 }, { "start": 33853.42, "end": 33854.4, "probability": 0.8749 }, { "start": 33855.6, "end": 33856.04, "probability": 0.9022 }, { "start": 33857.5, "end": 33858.42, "probability": 0.9633 }, { "start": 33858.9, "end": 33860.58, "probability": 0.5573 }, { "start": 33860.92, "end": 33863.0, "probability": 0.9023 }, { "start": 33863.94, "end": 33867.98, "probability": 0.8156 }, { "start": 33869.44, "end": 33871.38, "probability": 0.9656 }, { "start": 33871.9, "end": 33873.88, "probability": 0.7941 }, { "start": 33875.58, "end": 33875.98, "probability": 0.9937 }, { "start": 33877.54, "end": 33878.14, "probability": 0.9204 }, { "start": 33878.9, "end": 33881.54, "probability": 0.9481 }, { "start": 33882.2, "end": 33883.14, "probability": 0.8535 }, { "start": 33884.08, "end": 33885.2, "probability": 0.7273 }, { "start": 33885.74, "end": 33886.52, "probability": 0.7417 }, { "start": 33889.52, "end": 33890.52, "probability": 0.9411 }, { "start": 33894.38, "end": 33895.18, "probability": 0.592 }, { "start": 33895.88, "end": 33897.26, "probability": 0.7436 }, { "start": 33897.98, "end": 33901.3, "probability": 0.8625 }, { "start": 33902.26, "end": 33902.86, "probability": 0.9893 }, { "start": 33903.9, "end": 33906.24, "probability": 0.9111 }, { "start": 33907.42, "end": 33908.48, "probability": 0.5014 }, { "start": 33909.12, "end": 33910.04, "probability": 0.8488 }, { "start": 33910.66, "end": 33911.16, "probability": 0.9753 }, { "start": 33911.88, "end": 33912.78, "probability": 0.8031 }, { "start": 33913.44, "end": 33916.69, "probability": 0.674 }, { "start": 33918.86, "end": 33920.68, "probability": 0.9071 }, { "start": 33921.38, "end": 33922.24, "probability": 0.9323 }, { "start": 33922.86, "end": 33923.58, "probability": 0.9471 }, { "start": 33925.92, "end": 33929.26, "probability": 0.6646 }, { "start": 33930.06, "end": 33930.54, "probability": 0.9915 }, { "start": 33931.38, "end": 33932.56, "probability": 0.9156 }, { "start": 33934.04, "end": 33934.48, "probability": 0.9126 }, { "start": 33935.08, "end": 33936.38, "probability": 0.905 }, { "start": 33937.4, "end": 33937.86, "probability": 0.8584 }, { "start": 33938.76, "end": 33939.7, "probability": 0.7647 }, { "start": 33940.84, "end": 33941.64, "probability": 0.9148 }, { "start": 33942.18, "end": 33943.28, "probability": 0.7301 }, { "start": 33945.52, "end": 33946.02, "probability": 0.9899 }, { "start": 33947.6, "end": 33948.4, "probability": 0.661 }, { "start": 33949.52, "end": 33949.98, "probability": 0.9951 }, { "start": 33950.78, "end": 33953.78, "probability": 0.7903 }, { "start": 33954.8, "end": 33956.88, "probability": 0.9842 }, { "start": 33957.98, "end": 33960.04, "probability": 0.4996 }, { "start": 33961.6, "end": 33964.36, "probability": 0.5009 }, { "start": 33966.34, "end": 33967.18, "probability": 0.9237 }, { "start": 33967.96, "end": 33970.72, "probability": 0.9611 }, { "start": 33973.88, "end": 33974.9, "probability": 0.9594 }, { "start": 33975.48, "end": 33978.52, "probability": 0.9608 }, { "start": 33979.6, "end": 33980.58, "probability": 0.9931 }, { "start": 33981.54, "end": 33982.46, "probability": 0.9193 }, { "start": 33983.7, "end": 33984.1, "probability": 0.9829 }, { "start": 33985.4, "end": 33986.2, "probability": 0.6332 }, { "start": 33987.16, "end": 33987.56, "probability": 0.5504 }, { "start": 33988.38, "end": 33988.78, "probability": 0.7018 }, { "start": 33989.78, "end": 33991.34, "probability": 0.8585 }, { "start": 33993.74, "end": 33994.5, "probability": 0.7945 }, { "start": 33995.42, "end": 33996.08, "probability": 0.8554 }, { "start": 33996.74, "end": 33997.46, "probability": 0.9665 }, { "start": 33998.8, "end": 34001.64, "probability": 0.8969 }, { "start": 34002.42, "end": 34003.32, "probability": 0.9924 }, { "start": 34004.06, "end": 34007.2, "probability": 0.8929 }, { "start": 34008.04, "end": 34010.44, "probability": 0.5304 }, { "start": 34011.46, "end": 34013.84, "probability": 0.8211 }, { "start": 34017.02, "end": 34017.76, "probability": 0.5738 }, { "start": 34018.64, "end": 34019.5, "probability": 0.8552 }, { "start": 34020.3, "end": 34024.08, "probability": 0.9412 }, { "start": 34024.8, "end": 34025.26, "probability": 0.9837 }, { "start": 34026.64, "end": 34028.0, "probability": 0.8679 }, { "start": 34029.2, "end": 34030.38, "probability": 0.9748 }, { "start": 34031.64, "end": 34032.48, "probability": 0.8649 }, { "start": 34033.76, "end": 34034.56, "probability": 0.9902 }, { "start": 34035.18, "end": 34036.32, "probability": 0.8294 }, { "start": 34037.0, "end": 34037.34, "probability": 0.8594 }, { "start": 34038.46, "end": 34039.44, "probability": 0.4769 }, { "start": 34040.52, "end": 34041.44, "probability": 0.9628 }, { "start": 34042.04, "end": 34045.14, "probability": 0.906 }, { "start": 34045.96, "end": 34046.44, "probability": 0.9658 }, { "start": 34047.18, "end": 34047.94, "probability": 0.9793 }, { "start": 34048.78, "end": 34049.24, "probability": 0.9934 }, { "start": 34049.92, "end": 34050.7, "probability": 0.9213 }, { "start": 34051.96, "end": 34054.92, "probability": 0.8345 }, { "start": 34055.46, "end": 34057.42, "probability": 0.8286 }, { "start": 34058.58, "end": 34060.4, "probability": 0.7528 }, { "start": 34061.58, "end": 34062.0, "probability": 0.9663 }, { "start": 34063.26, "end": 34064.32, "probability": 0.9353 }, { "start": 34065.16, "end": 34066.06, "probability": 0.927 }, { "start": 34067.2, "end": 34067.44, "probability": 0.8612 }, { "start": 34069.92, "end": 34071.02, "probability": 0.4894 }, { "start": 34072.06, "end": 34072.26, "probability": 0.0046 }, { "start": 34073.08, "end": 34073.88, "probability": 0.8175 }, { "start": 34074.5, "end": 34076.88, "probability": 0.3781 }, { "start": 34078.02, "end": 34078.5, "probability": 0.9245 }, { "start": 34079.68, "end": 34080.54, "probability": 0.7393 }, { "start": 34082.46, "end": 34085.46, "probability": 0.7035 }, { "start": 34086.08, "end": 34086.5, "probability": 0.9695 }, { "start": 34087.2, "end": 34087.6, "probability": 0.9104 }, { "start": 34089.14, "end": 34092.24, "probability": 0.7163 }, { "start": 34094.44, "end": 34094.92, "probability": 0.908 }, { "start": 34096.22, "end": 34098.34, "probability": 0.8739 }, { "start": 34099.36, "end": 34100.2, "probability": 0.4359 }, { "start": 34101.12, "end": 34101.82, "probability": 0.7955 }, { "start": 34102.74, "end": 34103.62, "probability": 0.7746 }, { "start": 34105.52, "end": 34109.48, "probability": 0.8438 }, { "start": 34110.58, "end": 34111.04, "probability": 0.957 }, { "start": 34112.26, "end": 34114.17, "probability": 0.4462 }, { "start": 34115.0, "end": 34118.12, "probability": 0.8787 }, { "start": 34119.96, "end": 34120.44, "probability": 0.9769 }, { "start": 34121.94, "end": 34123.66, "probability": 0.8282 }, { "start": 34124.34, "end": 34124.78, "probability": 0.839 }, { "start": 34125.92, "end": 34128.06, "probability": 0.717 }, { "start": 34129.62, "end": 34132.74, "probability": 0.8523 }, { "start": 34133.64, "end": 34134.64, "probability": 0.8531 }, { "start": 34136.26, "end": 34137.08, "probability": 0.9911 }, { "start": 34137.78, "end": 34138.6, "probability": 0.9476 }, { "start": 34142.18, "end": 34143.04, "probability": 0.9328 }, { "start": 34143.88, "end": 34144.62, "probability": 0.8732 }, { "start": 34145.8, "end": 34146.32, "probability": 0.9738 }, { "start": 34147.8, "end": 34148.68, "probability": 0.8129 }, { "start": 34152.26, "end": 34155.89, "probability": 0.4911 }, { "start": 34157.89, "end": 34162.46, "probability": 0.7983 }, { "start": 34163.68, "end": 34164.26, "probability": 0.957 }, { "start": 34165.58, "end": 34168.22, "probability": 0.927 }, { "start": 34169.16, "end": 34169.66, "probability": 0.9912 }, { "start": 34170.62, "end": 34174.48, "probability": 0.7245 }, { "start": 34175.24, "end": 34175.7, "probability": 0.7264 }, { "start": 34176.42, "end": 34177.38, "probability": 0.5026 }, { "start": 34177.48, "end": 34178.96, "probability": 0.6514 }, { "start": 34178.96, "end": 34180.54, "probability": 0.7797 }, { "start": 34183.2, "end": 34185.36, "probability": 0.8369 }, { "start": 34186.08, "end": 34188.7, "probability": 0.8383 }, { "start": 34193.62, "end": 34194.1, "probability": 0.8971 }, { "start": 34195.3, "end": 34196.3, "probability": 0.7566 }, { "start": 34199.12, "end": 34201.56, "probability": 0.7131 }, { "start": 34202.3, "end": 34203.46, "probability": 0.8417 }, { "start": 34205.64, "end": 34207.94, "probability": 0.8628 }, { "start": 34208.94, "end": 34209.4, "probability": 0.9544 }, { "start": 34210.1, "end": 34211.26, "probability": 0.6624 }, { "start": 34212.34, "end": 34212.64, "probability": 0.9355 }, { "start": 34213.42, "end": 34217.4, "probability": 0.6763 }, { "start": 34217.82, "end": 34218.74, "probability": 0.5945 }, { "start": 34219.26, "end": 34221.02, "probability": 0.6517 }, { "start": 34221.1, "end": 34223.24, "probability": 0.8 }, { "start": 34223.92, "end": 34225.58, "probability": 0.8663 }, { "start": 34226.28, "end": 34227.56, "probability": 0.7245 }, { "start": 34227.68, "end": 34229.34, "probability": 0.8464 }, { "start": 34229.98, "end": 34234.4, "probability": 0.8602 }, { "start": 34235.06, "end": 34238.54, "probability": 0.8837 }, { "start": 34239.42, "end": 34240.88, "probability": 0.8392 }, { "start": 34241.04, "end": 34241.94, "probability": 0.6667 }, { "start": 34242.14, "end": 34243.04, "probability": 0.7107 }, { "start": 34243.42, "end": 34243.84, "probability": 0.7515 }, { "start": 34244.4, "end": 34245.2, "probability": 0.6452 }, { "start": 34246.66, "end": 34250.44, "probability": 0.8587 }, { "start": 34251.58, "end": 34253.88, "probability": 0.8735 }, { "start": 34254.44, "end": 34256.0, "probability": 0.9146 }, { "start": 34256.08, "end": 34257.38, "probability": 0.9607 }, { "start": 34257.38, "end": 34259.52, "probability": 0.6616 }, { "start": 34260.6, "end": 34261.58, "probability": 0.9769 }, { "start": 34262.3, "end": 34263.16, "probability": 0.5617 }, { "start": 34263.48, "end": 34264.96, "probability": 0.6986 }, { "start": 34265.02, "end": 34266.2, "probability": 0.812 }, { "start": 34267.14, "end": 34267.92, "probability": 0.9362 }, { "start": 34268.46, "end": 34269.36, "probability": 0.8103 }, { "start": 34269.42, "end": 34271.42, "probability": 0.0688 }, { "start": 34271.42, "end": 34272.18, "probability": 0.1336 }, { "start": 34272.86, "end": 34273.7, "probability": 0.8787 }, { "start": 34274.76, "end": 34276.88, "probability": 0.7937 }, { "start": 34278.12, "end": 34281.3, "probability": 0.8927 }, { "start": 34282.3, "end": 34283.92, "probability": 0.9277 }, { "start": 34284.84, "end": 34288.28, "probability": 0.9319 }, { "start": 34289.28, "end": 34290.54, "probability": 0.632 }, { "start": 34291.22, "end": 34292.5, "probability": 0.8426 }, { "start": 34292.54, "end": 34294.02, "probability": 0.8564 }, { "start": 34294.16, "end": 34294.84, "probability": 0.9616 }, { "start": 34295.38, "end": 34296.24, "probability": 0.8318 }, { "start": 34297.18, "end": 34298.64, "probability": 0.9538 }, { "start": 34300.24, "end": 34301.88, "probability": 0.2326 }, { "start": 34301.88, "end": 34302.37, "probability": 0.5888 }, { "start": 34302.54, "end": 34303.98, "probability": 0.5725 }, { "start": 34304.8, "end": 34305.58, "probability": 0.8929 }, { "start": 34306.4, "end": 34306.94, "probability": 0.7208 }, { "start": 34307.66, "end": 34309.12, "probability": 0.6908 }, { "start": 34309.2, "end": 34310.2, "probability": 0.8118 }, { "start": 34310.32, "end": 34311.3, "probability": 0.3486 }, { "start": 34312.06, "end": 34313.62, "probability": 0.7634 }, { "start": 34315.06, "end": 34315.78, "probability": 0.304 }, { "start": 34316.14, "end": 34317.68, "probability": 0.8852 }, { "start": 34317.76, "end": 34319.12, "probability": 0.6527 }, { "start": 34320.46, "end": 34321.4, "probability": 0.538 }, { "start": 34323.06, "end": 34324.1, "probability": 0.5862 }, { "start": 34325.1, "end": 34326.7, "probability": 0.8624 }, { "start": 34327.96, "end": 34329.76, "probability": 0.5124 }, { "start": 34330.76, "end": 34331.52, "probability": 0.6787 }, { "start": 34332.12, "end": 34332.6, "probability": 0.289 }, { "start": 34332.74, "end": 34334.16, "probability": 0.8271 }, { "start": 34334.26, "end": 34335.42, "probability": 0.858 }, { "start": 34336.54, "end": 34338.74, "probability": 0.8729 }, { "start": 34339.92, "end": 34341.62, "probability": 0.9364 }, { "start": 34344.42, "end": 34345.24, "probability": 0.9642 }, { "start": 34345.86, "end": 34346.7, "probability": 0.9421 }, { "start": 34347.86, "end": 34351.18, "probability": 0.7902 }, { "start": 34352.84, "end": 34354.78, "probability": 0.8459 }, { "start": 34354.84, "end": 34356.48, "probability": 0.9569 }, { "start": 34356.6, "end": 34358.04, "probability": 0.9312 }, { "start": 34358.28, "end": 34358.88, "probability": 0.9449 }, { "start": 34359.64, "end": 34360.86, "probability": 0.9109 }, { "start": 34361.78, "end": 34364.5, "probability": 0.7894 }, { "start": 34365.76, "end": 34366.82, "probability": 0.9322 }, { "start": 34367.52, "end": 34368.13, "probability": 0.4719 }, { "start": 34369.56, "end": 34371.48, "probability": 0.8461 }, { "start": 34372.58, "end": 34374.38, "probability": 0.9552 }, { "start": 34374.82, "end": 34377.64, "probability": 0.7265 }, { "start": 34377.98, "end": 34378.68, "probability": 0.9353 }, { "start": 34381.72, "end": 34383.94, "probability": 0.9136 }, { "start": 34385.86, "end": 34386.12, "probability": 0.3215 }, { "start": 34386.18, "end": 34388.08, "probability": 0.5812 }, { "start": 34440.32, "end": 34440.7, "probability": 0.2751 }, { "start": 34440.86, "end": 34441.94, "probability": 0.2408 }, { "start": 34441.98, "end": 34442.84, "probability": 0.6892 }, { "start": 34443.04, "end": 34443.3, "probability": 0.8964 }, { "start": 34443.3, "end": 34444.22, "probability": 0.9446 }, { "start": 34444.32, "end": 34444.9, "probability": 0.6129 }, { "start": 34445.08, "end": 34447.4, "probability": 0.9794 }, { "start": 34448.24, "end": 34450.16, "probability": 0.1225 }, { "start": 34455.26, "end": 34458.68, "probability": 0.8347 }, { "start": 34460.12, "end": 34460.86, "probability": 0.0862 }, { "start": 34460.9, "end": 34463.1, "probability": 0.8139 }, { "start": 34463.1, "end": 34463.38, "probability": 0.0163 }, { "start": 34463.74, "end": 34464.36, "probability": 0.2834 }, { "start": 34464.48, "end": 34465.32, "probability": 0.0522 }, { "start": 34479.42, "end": 34480.5, "probability": 0.7452 }, { "start": 34482.48, "end": 34482.8, "probability": 0.1517 }, { "start": 34482.8, "end": 34482.8, "probability": 0.2125 }, { "start": 34482.8, "end": 34482.8, "probability": 0.2523 }, { "start": 34482.8, "end": 34483.19, "probability": 0.3607 }, { "start": 34484.74, "end": 34486.68, "probability": 0.8286 }, { "start": 34487.24, "end": 34488.44, "probability": 0.7133 }, { "start": 34489.1, "end": 34489.52, "probability": 0.7635 }, { "start": 34489.88, "end": 34490.08, "probability": 0.6342 }, { "start": 34490.48, "end": 34491.46, "probability": 0.7485 }, { "start": 34491.86, "end": 34494.24, "probability": 0.8787 }, { "start": 34495.3, "end": 34496.72, "probability": 0.9834 }, { "start": 34496.9, "end": 34497.68, "probability": 0.7073 }, { "start": 34497.72, "end": 34498.54, "probability": 0.9961 }, { "start": 34501.4, "end": 34504.22, "probability": 0.8864 }, { "start": 34505.34, "end": 34509.98, "probability": 0.6733 }, { "start": 34511.14, "end": 34512.1, "probability": 0.8299 }, { "start": 34512.74, "end": 34514.62, "probability": 0.9587 }, { "start": 34515.6, "end": 34518.48, "probability": 0.9545 }, { "start": 34519.72, "end": 34524.3, "probability": 0.8118 }, { "start": 34524.5, "end": 34526.16, "probability": 0.6867 }, { "start": 34526.44, "end": 34527.48, "probability": 0.4813 }, { "start": 34527.58, "end": 34527.96, "probability": 0.5243 }, { "start": 34528.06, "end": 34529.42, "probability": 0.9456 }, { "start": 34529.5, "end": 34530.96, "probability": 0.7837 }, { "start": 34532.02, "end": 34533.94, "probability": 0.7148 }, { "start": 34535.66, "end": 34537.44, "probability": 0.99 }, { "start": 34537.64, "end": 34541.76, "probability": 0.998 }, { "start": 34542.48, "end": 34547.9, "probability": 0.9743 }, { "start": 34548.02, "end": 34549.08, "probability": 0.9766 }, { "start": 34549.18, "end": 34549.45, "probability": 0.0179 }, { "start": 34550.02, "end": 34551.44, "probability": 0.6501 }, { "start": 34551.52, "end": 34552.12, "probability": 0.5149 }, { "start": 34552.18, "end": 34553.65, "probability": 0.9856 }, { "start": 34555.78, "end": 34560.92, "probability": 0.9943 }, { "start": 34562.1, "end": 34566.96, "probability": 0.9843 }, { "start": 34568.02, "end": 34570.92, "probability": 0.7732 }, { "start": 34571.54, "end": 34573.87, "probability": 0.998 }, { "start": 34574.36, "end": 34575.34, "probability": 0.8672 }, { "start": 34577.34, "end": 34582.16, "probability": 0.9866 }, { "start": 34583.14, "end": 34584.3, "probability": 0.8999 }, { "start": 34585.26, "end": 34587.88, "probability": 0.9341 }, { "start": 34588.92, "end": 34592.44, "probability": 0.9647 }, { "start": 34593.0, "end": 34594.12, "probability": 0.7515 }, { "start": 34594.82, "end": 34598.28, "probability": 0.994 }, { "start": 34598.84, "end": 34599.4, "probability": 0.6828 }, { "start": 34599.46, "end": 34603.74, "probability": 0.9629 }, { "start": 34603.98, "end": 34605.04, "probability": 0.6083 }, { "start": 34606.18, "end": 34607.84, "probability": 0.9089 }, { "start": 34608.68, "end": 34611.61, "probability": 0.6728 }, { "start": 34613.48, "end": 34616.5, "probability": 0.8833 }, { "start": 34617.56, "end": 34620.75, "probability": 0.993 }, { "start": 34624.26, "end": 34626.48, "probability": 0.7336 }, { "start": 34627.24, "end": 34630.22, "probability": 0.7993 }, { "start": 34630.96, "end": 34634.08, "probability": 0.6281 }, { "start": 34635.14, "end": 34637.16, "probability": 0.8848 }, { "start": 34637.82, "end": 34639.28, "probability": 0.9724 }, { "start": 34640.1, "end": 34641.98, "probability": 0.9968 }, { "start": 34642.04, "end": 34642.6, "probability": 0.7439 }, { "start": 34643.5, "end": 34645.98, "probability": 0.7355 }, { "start": 34647.02, "end": 34649.22, "probability": 0.9193 }, { "start": 34649.54, "end": 34651.64, "probability": 0.9158 }, { "start": 34654.57, "end": 34656.78, "probability": 0.1684 }, { "start": 34656.78, "end": 34661.32, "probability": 0.886 }, { "start": 34661.96, "end": 34663.96, "probability": 0.6279 }, { "start": 34664.88, "end": 34668.38, "probability": 0.9779 }, { "start": 34668.94, "end": 34669.74, "probability": 0.7407 }, { "start": 34670.3, "end": 34670.96, "probability": 0.8844 }, { "start": 34671.56, "end": 34672.06, "probability": 0.4322 }, { "start": 34672.6, "end": 34674.54, "probability": 0.9774 }, { "start": 34675.22, "end": 34676.28, "probability": 0.7168 }, { "start": 34678.17, "end": 34680.72, "probability": 0.9105 }, { "start": 34681.26, "end": 34685.02, "probability": 0.9863 }, { "start": 34685.08, "end": 34686.14, "probability": 0.9479 }, { "start": 34686.6, "end": 34687.58, "probability": 0.9949 }, { "start": 34688.32, "end": 34689.9, "probability": 0.9375 }, { "start": 34690.4, "end": 34691.78, "probability": 0.5339 }, { "start": 34692.74, "end": 34695.14, "probability": 0.666 }, { "start": 34695.96, "end": 34696.54, "probability": 0.8254 }, { "start": 34696.66, "end": 34699.66, "probability": 0.9766 }, { "start": 34699.72, "end": 34701.52, "probability": 0.9809 }, { "start": 34702.06, "end": 34702.8, "probability": 0.9712 }, { "start": 34703.8, "end": 34705.92, "probability": 0.9893 }, { "start": 34706.48, "end": 34710.98, "probability": 0.6454 }, { "start": 34711.5, "end": 34712.78, "probability": 0.5567 }, { "start": 34713.14, "end": 34714.74, "probability": 0.7723 }, { "start": 34714.84, "end": 34718.34, "probability": 0.9631 }, { "start": 34718.76, "end": 34720.29, "probability": 0.9805 }, { "start": 34721.28, "end": 34723.04, "probability": 0.9133 }, { "start": 34723.2, "end": 34726.54, "probability": 0.9915 }, { "start": 34727.0, "end": 34730.64, "probability": 0.957 }, { "start": 34730.72, "end": 34731.24, "probability": 0.6929 }, { "start": 34731.3, "end": 34731.96, "probability": 0.8523 }, { "start": 34732.54, "end": 34736.06, "probability": 0.88 }, { "start": 34754.34, "end": 34754.7, "probability": 0.716 }, { "start": 34755.66, "end": 34757.28, "probability": 0.936 }, { "start": 34758.78, "end": 34759.72, "probability": 0.6955 }, { "start": 34760.02, "end": 34766.72, "probability": 0.8779 }, { "start": 34768.08, "end": 34770.18, "probability": 0.8593 }, { "start": 34771.02, "end": 34773.7, "probability": 0.9591 }, { "start": 34774.66, "end": 34777.24, "probability": 0.8704 }, { "start": 34777.46, "end": 34778.19, "probability": 0.8641 }, { "start": 34778.42, "end": 34782.04, "probability": 0.8714 }, { "start": 34782.56, "end": 34784.36, "probability": 0.9414 }, { "start": 34787.0, "end": 34794.92, "probability": 0.9834 }, { "start": 34795.0, "end": 34796.46, "probability": 0.8965 }, { "start": 34796.6, "end": 34798.14, "probability": 0.8459 }, { "start": 34799.16, "end": 34800.3, "probability": 0.8046 }, { "start": 34800.9, "end": 34801.6, "probability": 0.9643 }, { "start": 34802.6, "end": 34803.86, "probability": 0.8337 }, { "start": 34803.98, "end": 34804.38, "probability": 0.4843 }, { "start": 34804.46, "end": 34804.8, "probability": 0.6273 }, { "start": 34804.94, "end": 34805.32, "probability": 0.4302 }, { "start": 34805.48, "end": 34808.26, "probability": 0.7947 }, { "start": 34809.3, "end": 34811.96, "probability": 0.7822 }, { "start": 34813.06, "end": 34817.08, "probability": 0.8687 }, { "start": 34818.04, "end": 34819.14, "probability": 0.6144 }, { "start": 34820.54, "end": 34821.62, "probability": 0.9722 }, { "start": 34822.42, "end": 34827.98, "probability": 0.9509 }, { "start": 34828.66, "end": 34832.74, "probability": 0.9848 }, { "start": 34833.54, "end": 34835.54, "probability": 0.9043 }, { "start": 34836.24, "end": 34838.1, "probability": 0.9453 }, { "start": 34839.1, "end": 34840.84, "probability": 0.8382 }, { "start": 34842.1, "end": 34845.44, "probability": 0.3494 }, { "start": 34846.0, "end": 34850.6, "probability": 0.9529 }, { "start": 34850.64, "end": 34853.86, "probability": 0.998 }, { "start": 34855.2, "end": 34856.42, "probability": 0.9838 }, { "start": 34857.54, "end": 34857.98, "probability": 0.9386 }, { "start": 34858.7, "end": 34861.3, "probability": 0.827 }, { "start": 34862.84, "end": 34863.72, "probability": 0.5609 }, { "start": 34864.38, "end": 34865.44, "probability": 0.8947 }, { "start": 34866.04, "end": 34866.66, "probability": 0.7458 }, { "start": 34867.98, "end": 34869.8, "probability": 0.9823 }, { "start": 34869.84, "end": 34872.64, "probability": 0.9414 }, { "start": 34874.08, "end": 34876.76, "probability": 0.6247 }, { "start": 34877.98, "end": 34881.94, "probability": 0.9827 }, { "start": 34882.5, "end": 34883.26, "probability": 0.9223 }, { "start": 34885.0, "end": 34885.98, "probability": 0.741 }, { "start": 34886.64, "end": 34888.26, "probability": 0.9457 }, { "start": 34889.5, "end": 34890.34, "probability": 0.8051 }, { "start": 34891.38, "end": 34897.72, "probability": 0.9955 }, { "start": 34899.44, "end": 34907.36, "probability": 0.9939 }, { "start": 34908.2, "end": 34910.64, "probability": 0.7956 }, { "start": 34911.46, "end": 34914.64, "probability": 0.8348 }, { "start": 34915.16, "end": 34920.34, "probability": 0.9366 }, { "start": 34921.54, "end": 34923.46, "probability": 0.8669 }, { "start": 34924.72, "end": 34926.92, "probability": 0.9824 }, { "start": 34927.7, "end": 34932.78, "probability": 0.9926 }, { "start": 34933.6, "end": 34939.98, "probability": 0.992 }, { "start": 34940.92, "end": 34942.68, "probability": 0.6873 }, { "start": 34943.2, "end": 34946.9, "probability": 0.8011 }, { "start": 34947.24, "end": 34947.6, "probability": 0.8136 }, { "start": 34948.32, "end": 34949.98, "probability": 0.7336 }, { "start": 34950.58, "end": 34952.34, "probability": 0.8027 }, { "start": 34961.12, "end": 34962.86, "probability": 0.1629 }, { "start": 34963.14, "end": 34963.32, "probability": 0.1265 }, { "start": 34963.32, "end": 34963.46, "probability": 0.0635 }, { "start": 34963.54, "end": 34963.6, "probability": 0.0366 }, { "start": 34963.6, "end": 34963.6, "probability": 0.0272 }, { "start": 34985.7, "end": 34986.54, "probability": 0.3398 }, { "start": 34987.74, "end": 34990.66, "probability": 0.9883 }, { "start": 34990.66, "end": 34993.0, "probability": 0.9191 }, { "start": 34994.1, "end": 34995.92, "probability": 0.8053 }, { "start": 34997.16, "end": 34998.58, "probability": 0.7321 }, { "start": 34998.92, "end": 35001.62, "probability": 0.9721 }, { "start": 35002.26, "end": 35003.87, "probability": 0.9568 }, { "start": 35005.34, "end": 35007.3, "probability": 0.928 }, { "start": 35008.82, "end": 35011.36, "probability": 0.5562 }, { "start": 35011.92, "end": 35013.32, "probability": 0.9077 }, { "start": 35013.78, "end": 35013.94, "probability": 0.8805 }, { "start": 35014.08, "end": 35017.5, "probability": 0.9961 }, { "start": 35017.62, "end": 35018.4, "probability": 0.972 }, { "start": 35020.36, "end": 35022.73, "probability": 0.9861 }, { "start": 35023.2, "end": 35025.34, "probability": 0.645 }, { "start": 35025.38, "end": 35026.4, "probability": 0.6304 }, { "start": 35026.56, "end": 35027.98, "probability": 0.7625 }, { "start": 35029.66, "end": 35029.74, "probability": 0.296 }, { "start": 35029.8, "end": 35029.92, "probability": 0.755 }, { "start": 35030.14, "end": 35032.02, "probability": 0.478 }, { "start": 35032.1, "end": 35034.26, "probability": 0.9659 }, { "start": 35034.38, "end": 35036.56, "probability": 0.9958 }, { "start": 35036.78, "end": 35037.58, "probability": 0.9597 }, { "start": 35038.0, "end": 35039.16, "probability": 0.7341 }, { "start": 35040.86, "end": 35043.22, "probability": 0.8634 }, { "start": 35043.22, "end": 35047.04, "probability": 0.9857 }, { "start": 35048.08, "end": 35049.78, "probability": 0.5616 }, { "start": 35050.66, "end": 35055.98, "probability": 0.9857 }, { "start": 35056.5, "end": 35058.7, "probability": 0.8706 }, { "start": 35058.94, "end": 35059.04, "probability": 0.8301 }, { "start": 35059.2, "end": 35059.54, "probability": 0.4332 }, { "start": 35059.54, "end": 35060.24, "probability": 0.7392 }, { "start": 35060.38, "end": 35062.96, "probability": 0.9966 }, { "start": 35065.08, "end": 35067.62, "probability": 0.8724 }, { "start": 35067.8, "end": 35069.4, "probability": 0.9855 }, { "start": 35070.94, "end": 35071.56, "probability": 0.8953 }, { "start": 35071.62, "end": 35073.84, "probability": 0.9922 }, { "start": 35073.84, "end": 35077.18, "probability": 0.9119 }, { "start": 35078.28, "end": 35080.98, "probability": 0.98 }, { "start": 35080.98, "end": 35084.76, "probability": 0.9299 }, { "start": 35086.9, "end": 35088.44, "probability": 0.9323 }, { "start": 35089.1, "end": 35091.02, "probability": 0.9238 }, { "start": 35092.96, "end": 35097.62, "probability": 0.9868 }, { "start": 35099.42, "end": 35100.52, "probability": 0.9524 }, { "start": 35101.9, "end": 35106.48, "probability": 0.9429 }, { "start": 35108.0, "end": 35109.48, "probability": 0.9197 }, { "start": 35110.78, "end": 35112.14, "probability": 0.9214 }, { "start": 35112.8, "end": 35114.14, "probability": 0.9509 }, { "start": 35116.6, "end": 35122.32, "probability": 0.9099 }, { "start": 35122.42, "end": 35123.12, "probability": 0.9349 }, { "start": 35124.86, "end": 35126.98, "probability": 0.4356 }, { "start": 35128.94, "end": 35131.28, "probability": 0.8672 }, { "start": 35132.0, "end": 35132.72, "probability": 0.9271 }, { "start": 35132.88, "end": 35133.56, "probability": 0.643 }, { "start": 35135.58, "end": 35137.78, "probability": 0.9874 }, { "start": 35139.26, "end": 35140.64, "probability": 0.9443 }, { "start": 35141.9, "end": 35143.06, "probability": 0.9119 }, { "start": 35144.16, "end": 35148.16, "probability": 0.9451 }, { "start": 35148.86, "end": 35150.86, "probability": 0.8093 }, { "start": 35153.14, "end": 35154.66, "probability": 0.6438 }, { "start": 35154.8, "end": 35155.78, "probability": 0.7534 }, { "start": 35156.58, "end": 35158.1, "probability": 0.9913 }, { "start": 35159.62, "end": 35160.48, "probability": 0.543 }, { "start": 35160.6, "end": 35162.18, "probability": 0.9814 }, { "start": 35162.26, "end": 35164.16, "probability": 0.9817 }, { "start": 35164.28, "end": 35165.6, "probability": 0.7595 }, { "start": 35166.44, "end": 35167.86, "probability": 0.9662 }, { "start": 35168.82, "end": 35169.46, "probability": 0.9529 }, { "start": 35169.64, "end": 35170.44, "probability": 0.9039 }, { "start": 35170.68, "end": 35174.86, "probability": 0.9903 }, { "start": 35175.56, "end": 35176.48, "probability": 0.9615 }, { "start": 35177.42, "end": 35178.7, "probability": 0.9143 }, { "start": 35178.84, "end": 35180.62, "probability": 0.9126 }, { "start": 35180.96, "end": 35181.9, "probability": 0.6086 }, { "start": 35182.34, "end": 35182.36, "probability": 0.1172 }, { "start": 35182.36, "end": 35183.16, "probability": 0.9741 }, { "start": 35183.24, "end": 35183.98, "probability": 0.906 }, { "start": 35184.32, "end": 35184.62, "probability": 0.7313 }, { "start": 35184.68, "end": 35186.78, "probability": 0.9973 }, { "start": 35187.52, "end": 35188.02, "probability": 0.7188 }, { "start": 35188.24, "end": 35188.98, "probability": 0.7362 }, { "start": 35189.4, "end": 35191.66, "probability": 0.8996 }, { "start": 35191.7, "end": 35195.74, "probability": 0.9917 }, { "start": 35195.86, "end": 35196.2, "probability": 0.8416 }, { "start": 35196.36, "end": 35197.94, "probability": 0.8938 }, { "start": 35198.0, "end": 35199.89, "probability": 0.7745 }, { "start": 35203.76, "end": 35206.26, "probability": 0.7546 }, { "start": 35215.7, "end": 35216.1, "probability": 0.2538 }, { "start": 35216.84, "end": 35217.32, "probability": 0.0992 }, { "start": 35217.32, "end": 35219.22, "probability": 0.1564 }, { "start": 35228.82, "end": 35229.92, "probability": 0.3114 }, { "start": 35234.02, "end": 35238.74, "probability": 0.9436 }, { "start": 35238.74, "end": 35242.68, "probability": 0.9936 }, { "start": 35243.34, "end": 35244.64, "probability": 0.9896 }, { "start": 35245.66, "end": 35248.96, "probability": 0.9644 }, { "start": 35249.66, "end": 35253.1, "probability": 0.9924 }, { "start": 35254.1, "end": 35256.64, "probability": 0.9749 }, { "start": 35258.54, "end": 35262.92, "probability": 0.9914 }, { "start": 35263.68, "end": 35266.94, "probability": 0.994 }, { "start": 35266.94, "end": 35271.06, "probability": 0.9995 }, { "start": 35272.04, "end": 35274.92, "probability": 0.9842 }, { "start": 35275.84, "end": 35277.92, "probability": 0.9639 }, { "start": 35278.14, "end": 35280.42, "probability": 0.9757 }, { "start": 35280.54, "end": 35280.78, "probability": 0.0079 }, { "start": 35280.96, "end": 35281.74, "probability": 0.7388 }, { "start": 35281.82, "end": 35282.12, "probability": 0.009 }, { "start": 35282.56, "end": 35283.4, "probability": 0.6224 }, { "start": 35284.04, "end": 35287.04, "probability": 0.9795 }, { "start": 35288.78, "end": 35289.74, "probability": 0.7014 }, { "start": 35290.42, "end": 35292.06, "probability": 0.8845 }, { "start": 35292.1, "end": 35297.58, "probability": 0.9573 }, { "start": 35298.1, "end": 35303.12, "probability": 0.8129 }, { "start": 35303.26, "end": 35304.64, "probability": 0.958 }, { "start": 35305.4, "end": 35310.18, "probability": 0.9912 }, { "start": 35310.78, "end": 35312.34, "probability": 0.8345 }, { "start": 35312.9, "end": 35314.44, "probability": 0.8567 }, { "start": 35315.38, "end": 35318.92, "probability": 0.9956 }, { "start": 35318.92, "end": 35321.9, "probability": 0.9699 }, { "start": 35323.04, "end": 35326.14, "probability": 0.9884 }, { "start": 35326.14, "end": 35329.08, "probability": 0.999 }, { "start": 35329.68, "end": 35333.46, "probability": 0.9943 }, { "start": 35335.28, "end": 35337.2, "probability": 0.7476 }, { "start": 35337.86, "end": 35341.52, "probability": 0.9325 }, { "start": 35342.34, "end": 35347.84, "probability": 0.9969 }, { "start": 35348.5, "end": 35352.54, "probability": 0.9988 }, { "start": 35353.56, "end": 35356.82, "probability": 0.9963 }, { "start": 35356.82, "end": 35362.44, "probability": 0.9893 }, { "start": 35363.32, "end": 35364.12, "probability": 0.5016 }, { "start": 35364.9, "end": 35366.0, "probability": 0.9408 }, { "start": 35366.7, "end": 35369.94, "probability": 0.9884 }, { "start": 35370.52, "end": 35373.32, "probability": 0.9859 }, { "start": 35374.18, "end": 35376.39, "probability": 0.9824 }, { "start": 35377.02, "end": 35377.68, "probability": 0.8116 }, { "start": 35377.92, "end": 35378.46, "probability": 0.5079 }, { "start": 35378.68, "end": 35381.24, "probability": 0.824 }, { "start": 35381.84, "end": 35386.78, "probability": 0.9241 }, { "start": 35387.46, "end": 35389.18, "probability": 0.8372 }, { "start": 35389.44, "end": 35390.18, "probability": 0.8688 }, { "start": 35390.92, "end": 35393.32, "probability": 0.9748 }, { "start": 35394.06, "end": 35397.28, "probability": 0.8609 }, { "start": 35414.92, "end": 35417.28, "probability": 0.7481 }, { "start": 35418.18, "end": 35419.77, "probability": 0.7092 }, { "start": 35423.04, "end": 35424.86, "probability": 0.9984 }, { "start": 35426.08, "end": 35426.48, "probability": 0.7756 }, { "start": 35428.2, "end": 35433.14, "probability": 0.7201 }, { "start": 35434.38, "end": 35436.68, "probability": 0.9827 }, { "start": 35438.8, "end": 35441.54, "probability": 0.979 }, { "start": 35442.06, "end": 35443.64, "probability": 0.989 }, { "start": 35445.16, "end": 35446.12, "probability": 0.7751 }, { "start": 35447.0, "end": 35448.38, "probability": 0.7401 }, { "start": 35449.5, "end": 35450.56, "probability": 0.836 }, { "start": 35451.34, "end": 35454.52, "probability": 0.9691 }, { "start": 35455.04, "end": 35456.24, "probability": 0.9508 }, { "start": 35457.28, "end": 35460.04, "probability": 0.6792 }, { "start": 35461.14, "end": 35461.82, "probability": 0.9661 }, { "start": 35462.86, "end": 35467.02, "probability": 0.9898 }, { "start": 35468.44, "end": 35473.96, "probability": 0.8898 }, { "start": 35474.6, "end": 35476.38, "probability": 0.9985 }, { "start": 35477.24, "end": 35480.76, "probability": 0.9769 }, { "start": 35481.28, "end": 35482.72, "probability": 0.9659 }, { "start": 35483.6, "end": 35486.3, "probability": 0.9619 }, { "start": 35487.02, "end": 35489.42, "probability": 0.8258 }, { "start": 35491.06, "end": 35495.8, "probability": 0.6195 }, { "start": 35496.32, "end": 35499.96, "probability": 0.9243 }, { "start": 35499.96, "end": 35501.42, "probability": 0.9932 }, { "start": 35501.52, "end": 35506.86, "probability": 0.9865 }, { "start": 35507.24, "end": 35508.46, "probability": 0.711 }, { "start": 35509.34, "end": 35510.42, "probability": 0.8711 }, { "start": 35511.24, "end": 35512.08, "probability": 0.9866 }, { "start": 35514.04, "end": 35515.3, "probability": 0.0829 }, { "start": 35516.5, "end": 35517.32, "probability": 0.7894 }, { "start": 35520.0, "end": 35520.6, "probability": 0.4913 }, { "start": 35521.0, "end": 35524.52, "probability": 0.905 }, { "start": 35524.92, "end": 35525.6, "probability": 0.5629 }, { "start": 35526.36, "end": 35526.91, "probability": 0.533 }, { "start": 35529.22, "end": 35532.0, "probability": 0.6355 }, { "start": 35532.68, "end": 35536.74, "probability": 0.9889 }, { "start": 35537.26, "end": 35538.18, "probability": 0.6115 }, { "start": 35539.08, "end": 35541.59, "probability": 0.8774 }, { "start": 35542.88, "end": 35545.06, "probability": 0.9924 }, { "start": 35545.14, "end": 35549.36, "probability": 0.9526 }, { "start": 35550.32, "end": 35552.5, "probability": 0.9706 }, { "start": 35553.6, "end": 35554.73, "probability": 0.9917 }, { "start": 35555.49, "end": 35556.87, "probability": 0.8911 }, { "start": 35557.3, "end": 35563.3, "probability": 0.6894 }, { "start": 35563.42, "end": 35564.44, "probability": 0.7872 }, { "start": 35564.96, "end": 35566.46, "probability": 0.9408 }, { "start": 35566.86, "end": 35568.26, "probability": 0.9432 }, { "start": 35568.6, "end": 35570.26, "probability": 0.9943 }, { "start": 35571.48, "end": 35578.1, "probability": 0.9663 }, { "start": 35578.76, "end": 35579.74, "probability": 0.9905 }, { "start": 35579.9, "end": 35582.06, "probability": 0.5776 }, { "start": 35582.64, "end": 35585.14, "probability": 0.8282 }, { "start": 35585.14, "end": 35588.78, "probability": 0.671 }, { "start": 35589.42, "end": 35591.02, "probability": 0.8384 }, { "start": 35591.48, "end": 35592.12, "probability": 0.2671 }, { "start": 35593.78, "end": 35597.84, "probability": 0.8341 }, { "start": 35598.1, "end": 35599.3, "probability": 0.9742 }, { "start": 35599.84, "end": 35599.9, "probability": 0.6006 }, { "start": 35599.9, "end": 35601.8, "probability": 0.7305 }, { "start": 35602.18, "end": 35604.16, "probability": 0.6007 }, { "start": 35604.8, "end": 35606.28, "probability": 0.8238 }, { "start": 35607.22, "end": 35610.92, "probability": 0.78 }, { "start": 35611.62, "end": 35612.32, "probability": 0.5025 }, { "start": 35612.98, "end": 35617.02, "probability": 0.973 }, { "start": 35617.96, "end": 35620.5, "probability": 0.9639 }, { "start": 35620.58, "end": 35621.54, "probability": 0.6187 }, { "start": 35621.62, "end": 35622.5, "probability": 0.9777 }, { "start": 35623.14, "end": 35624.48, "probability": 0.7943 }, { "start": 35625.68, "end": 35628.54, "probability": 0.7546 }, { "start": 35630.1, "end": 35630.82, "probability": 0.4504 }, { "start": 35631.84, "end": 35633.2, "probability": 0.6888 }, { "start": 35633.7, "end": 35634.9, "probability": 0.7665 }, { "start": 35635.86, "end": 35636.76, "probability": 0.7703 }, { "start": 35636.76, "end": 35639.82, "probability": 0.9888 }, { "start": 35640.66, "end": 35642.8, "probability": 0.7508 }, { "start": 35642.8, "end": 35644.96, "probability": 0.8394 }, { "start": 35645.26, "end": 35646.96, "probability": 0.9934 }, { "start": 35647.46, "end": 35649.13, "probability": 0.9324 }, { "start": 35649.22, "end": 35650.01, "probability": 0.028 }, { "start": 35650.2, "end": 35650.3, "probability": 0.0743 }, { "start": 35650.3, "end": 35651.4, "probability": 0.7554 }, { "start": 35651.58, "end": 35654.04, "probability": 0.9224 }, { "start": 35654.04, "end": 35654.48, "probability": 0.4536 }, { "start": 35654.84, "end": 35658.26, "probability": 0.875 }, { "start": 35658.26, "end": 35658.64, "probability": 0.1676 }, { "start": 35658.66, "end": 35661.64, "probability": 0.6276 }, { "start": 35661.78, "end": 35663.06, "probability": 0.7424 }, { "start": 35663.2, "end": 35663.42, "probability": 0.7178 }, { "start": 35663.5, "end": 35665.76, "probability": 0.6767 }, { "start": 35666.44, "end": 35666.6, "probability": 0.2112 }, { "start": 35666.72, "end": 35669.6, "probability": 0.9716 }, { "start": 35669.62, "end": 35670.96, "probability": 0.9988 }, { "start": 35671.88, "end": 35673.16, "probability": 0.7829 }, { "start": 35673.98, "end": 35674.06, "probability": 0.4746 }, { "start": 35674.06, "end": 35678.02, "probability": 0.9062 }, { "start": 35678.7, "end": 35679.64, "probability": 0.6305 }, { "start": 35679.8, "end": 35682.04, "probability": 0.6489 }, { "start": 35683.92, "end": 35683.92, "probability": 0.0523 }, { "start": 35683.92, "end": 35683.92, "probability": 0.0089 }, { "start": 35683.92, "end": 35687.04, "probability": 0.6281 }, { "start": 35687.26, "end": 35687.84, "probability": 0.7703 }, { "start": 35688.0, "end": 35688.52, "probability": 0.7587 }, { "start": 35689.06, "end": 35689.62, "probability": 0.8568 }, { "start": 35694.3, "end": 35695.6, "probability": 0.1863 }, { "start": 35705.54, "end": 35705.66, "probability": 0.3594 }, { "start": 35705.66, "end": 35708.06, "probability": 0.4763 }, { "start": 35708.14, "end": 35711.62, "probability": 0.7785 }, { "start": 35711.62, "end": 35714.5, "probability": 0.9871 }, { "start": 35715.66, "end": 35718.6, "probability": 0.6798 }, { "start": 35718.7, "end": 35719.72, "probability": 0.3765 }, { "start": 35720.44, "end": 35723.58, "probability": 0.8958 }, { "start": 35724.83, "end": 35726.86, "probability": 0.0961 }, { "start": 35744.94, "end": 35745.04, "probability": 0.0227 }, { "start": 35745.16, "end": 35745.22, "probability": 0.0518 }, { "start": 35745.22, "end": 35746.82, "probability": 0.6375 }, { "start": 35748.1, "end": 35752.38, "probability": 0.6708 }, { "start": 35753.58, "end": 35754.2, "probability": 0.9242 }, { "start": 35754.66, "end": 35760.7, "probability": 0.9933 }, { "start": 35762.34, "end": 35764.54, "probability": 0.9817 }, { "start": 35765.36, "end": 35766.82, "probability": 0.827 }, { "start": 35767.8, "end": 35769.02, "probability": 0.8257 }, { "start": 35770.02, "end": 35771.22, "probability": 0.9533 }, { "start": 35772.52, "end": 35773.54, "probability": 0.9169 }, { "start": 35774.1, "end": 35775.6, "probability": 0.8546 }, { "start": 35776.24, "end": 35778.96, "probability": 0.8177 }, { "start": 35779.96, "end": 35780.64, "probability": 0.5302 }, { "start": 35781.34, "end": 35782.04, "probability": 0.8803 }, { "start": 35783.18, "end": 35787.14, "probability": 0.9509 }, { "start": 35787.47, "end": 35791.38, "probability": 0.9919 }, { "start": 35792.04, "end": 35793.52, "probability": 0.8937 }, { "start": 35795.06, "end": 35796.72, "probability": 0.9962 }, { "start": 35797.8, "end": 35798.48, "probability": 0.95 }, { "start": 35799.88, "end": 35801.48, "probability": 0.3112 }, { "start": 35802.22, "end": 35803.62, "probability": 0.9203 }, { "start": 35804.3, "end": 35805.72, "probability": 0.8794 }, { "start": 35806.38, "end": 35810.52, "probability": 0.7953 }, { "start": 35811.12, "end": 35813.8, "probability": 0.9693 }, { "start": 35814.5, "end": 35816.98, "probability": 0.9951 }, { "start": 35817.64, "end": 35819.14, "probability": 0.5699 }, { "start": 35821.62, "end": 35822.86, "probability": 0.7759 }, { "start": 35823.22, "end": 35825.45, "probability": 0.8479 }, { "start": 35825.88, "end": 35826.26, "probability": 0.9139 }, { "start": 35827.28, "end": 35830.46, "probability": 0.975 }, { "start": 35831.28, "end": 35837.5, "probability": 0.953 }, { "start": 35837.9, "end": 35838.92, "probability": 0.8966 }, { "start": 35839.58, "end": 35842.7, "probability": 0.9897 }, { "start": 35843.84, "end": 35847.14, "probability": 0.9927 }, { "start": 35848.58, "end": 35850.12, "probability": 0.758 }, { "start": 35850.9, "end": 35855.24, "probability": 0.9689 }, { "start": 35856.02, "end": 35857.72, "probability": 0.6791 }, { "start": 35858.36, "end": 35861.64, "probability": 0.8263 }, { "start": 35861.64, "end": 35862.16, "probability": 0.7788 }, { "start": 35863.12, "end": 35864.0, "probability": 0.9966 }, { "start": 35864.52, "end": 35869.86, "probability": 0.8823 }, { "start": 35870.36, "end": 35871.28, "probability": 0.8858 }, { "start": 35874.51, "end": 35875.61, "probability": 0.5798 }, { "start": 35876.8, "end": 35880.1, "probability": 0.9797 }, { "start": 35880.72, "end": 35881.84, "probability": 0.9844 }, { "start": 35882.4, "end": 35885.46, "probability": 0.9531 }, { "start": 35886.34, "end": 35889.97, "probability": 0.9946 }, { "start": 35890.6, "end": 35893.66, "probability": 0.9869 }, { "start": 35895.78, "end": 35896.96, "probability": 0.9606 }, { "start": 35897.3, "end": 35898.16, "probability": 0.9866 }, { "start": 35898.56, "end": 35900.34, "probability": 0.8794 }, { "start": 35900.8, "end": 35902.02, "probability": 0.9669 }, { "start": 35902.6, "end": 35903.22, "probability": 0.8638 }, { "start": 35903.96, "end": 35905.45, "probability": 0.5003 }, { "start": 35906.04, "end": 35906.84, "probability": 0.8188 }, { "start": 35907.48, "end": 35911.76, "probability": 0.9797 }, { "start": 35912.28, "end": 35915.54, "probability": 0.9715 }, { "start": 35916.46, "end": 35918.0, "probability": 0.9893 }, { "start": 35919.08, "end": 35921.18, "probability": 0.9163 }, { "start": 35921.92, "end": 35922.9, "probability": 0.9977 }, { "start": 35923.14, "end": 35924.34, "probability": 0.9274 }, { "start": 35924.8, "end": 35925.64, "probability": 0.9806 }, { "start": 35926.82, "end": 35929.12, "probability": 0.9753 }, { "start": 35929.98, "end": 35932.06, "probability": 0.9928 }, { "start": 35932.6, "end": 35935.18, "probability": 0.8522 }, { "start": 35935.62, "end": 35937.46, "probability": 0.9689 }, { "start": 35938.6, "end": 35939.66, "probability": 0.9927 }, { "start": 35940.24, "end": 35943.08, "probability": 0.9744 }, { "start": 35943.88, "end": 35946.14, "probability": 0.9723 }, { "start": 35946.68, "end": 35947.34, "probability": 0.9984 }, { "start": 35949.14, "end": 35949.94, "probability": 0.9874 }, { "start": 35950.48, "end": 35951.1, "probability": 0.7854 }, { "start": 35952.24, "end": 35954.0, "probability": 0.9716 }, { "start": 35954.66, "end": 35956.62, "probability": 0.9976 }, { "start": 35957.36, "end": 35958.94, "probability": 0.9943 }, { "start": 35959.84, "end": 35961.64, "probability": 0.9477 }, { "start": 35961.96, "end": 35962.22, "probability": 0.7225 }, { "start": 35962.78, "end": 35963.92, "probability": 0.9419 }, { "start": 35964.26, "end": 35967.34, "probability": 0.9785 }, { "start": 35967.8, "end": 35971.38, "probability": 0.8594 }, { "start": 35971.74, "end": 35972.78, "probability": 0.9634 }, { "start": 35973.18, "end": 35974.4, "probability": 0.998 }, { "start": 35975.36, "end": 35977.78, "probability": 0.859 }, { "start": 35977.94, "end": 35980.06, "probability": 0.9948 }, { "start": 35980.38, "end": 35981.86, "probability": 0.9539 }, { "start": 35982.32, "end": 35983.14, "probability": 0.8749 }, { "start": 35983.62, "end": 35985.24, "probability": 0.915 }, { "start": 35985.3, "end": 35985.66, "probability": 0.3075 }, { "start": 35986.56, "end": 35988.42, "probability": 0.835 }, { "start": 35991.78, "end": 35994.38, "probability": 0.5227 }, { "start": 35994.38, "end": 35994.38, "probability": 0.4263 }, { "start": 35994.38, "end": 35995.06, "probability": 0.7659 }, { "start": 35995.82, "end": 35997.06, "probability": 0.7136 }, { "start": 35997.68, "end": 35998.24, "probability": 0.8315 }, { "start": 35999.04, "end": 35999.64, "probability": 0.6329 }, { "start": 35999.74, "end": 35999.98, "probability": 0.6488 }, { "start": 36000.66, "end": 36002.36, "probability": 0.6551 }, { "start": 36004.18, "end": 36004.6, "probability": 0.7778 }, { "start": 36005.4, "end": 36005.6, "probability": 0.8899 }, { "start": 36023.54, "end": 36026.46, "probability": 0.7666 }, { "start": 36027.61, "end": 36032.52, "probability": 0.9722 }, { "start": 36035.28, "end": 36038.0, "probability": 0.9465 }, { "start": 36039.28, "end": 36040.86, "probability": 0.8311 }, { "start": 36041.34, "end": 36049.48, "probability": 0.9917 }, { "start": 36049.48, "end": 36057.48, "probability": 0.9962 }, { "start": 36057.48, "end": 36062.42, "probability": 0.9795 }, { "start": 36064.26, "end": 36066.76, "probability": 0.9727 }, { "start": 36067.46, "end": 36070.02, "probability": 0.9891 }, { "start": 36071.74, "end": 36078.4, "probability": 0.9719 }, { "start": 36078.6, "end": 36082.54, "probability": 0.9982 }, { "start": 36083.3, "end": 36088.06, "probability": 0.9185 }, { "start": 36090.14, "end": 36090.14, "probability": 0.1498 }, { "start": 36090.14, "end": 36090.4, "probability": 0.4807 }, { "start": 36091.7, "end": 36096.6, "probability": 0.9836 }, { "start": 36096.86, "end": 36099.06, "probability": 0.9001 }, { "start": 36100.64, "end": 36105.68, "probability": 0.9941 }, { "start": 36107.1, "end": 36107.46, "probability": 0.6191 }, { "start": 36108.66, "end": 36111.36, "probability": 0.9907 }, { "start": 36112.38, "end": 36114.02, "probability": 0.9768 }, { "start": 36115.22, "end": 36120.74, "probability": 0.7966 }, { "start": 36122.7, "end": 36128.1, "probability": 0.9844 }, { "start": 36128.92, "end": 36129.96, "probability": 0.7376 }, { "start": 36131.54, "end": 36135.02, "probability": 0.9715 }, { "start": 36135.73, "end": 36139.89, "probability": 0.9756 }, { "start": 36140.58, "end": 36142.02, "probability": 0.9907 }, { "start": 36143.62, "end": 36146.32, "probability": 0.9143 }, { "start": 36147.4, "end": 36149.06, "probability": 0.6313 }, { "start": 36150.22, "end": 36154.52, "probability": 0.9225 }, { "start": 36155.56, "end": 36157.0, "probability": 0.9393 }, { "start": 36158.22, "end": 36161.56, "probability": 0.962 }, { "start": 36161.94, "end": 36162.94, "probability": 0.9308 }, { "start": 36163.2, "end": 36168.6, "probability": 0.9649 }, { "start": 36169.3, "end": 36174.05, "probability": 0.9972 }, { "start": 36175.02, "end": 36179.12, "probability": 0.9993 }, { "start": 36179.68, "end": 36181.48, "probability": 0.993 }, { "start": 36182.36, "end": 36182.72, "probability": 0.6756 }, { "start": 36182.76, "end": 36186.48, "probability": 0.9884 }, { "start": 36186.74, "end": 36188.94, "probability": 0.1293 }, { "start": 36189.53, "end": 36195.74, "probability": 0.9335 }, { "start": 36195.94, "end": 36197.56, "probability": 0.8929 }, { "start": 36197.68, "end": 36200.6, "probability": 0.9993 }, { "start": 36200.6, "end": 36203.72, "probability": 0.9969 }, { "start": 36206.84, "end": 36207.98, "probability": 0.8525 }, { "start": 36208.2, "end": 36208.24, "probability": 0.048 }, { "start": 36208.24, "end": 36208.24, "probability": 0.0574 }, { "start": 36208.24, "end": 36213.22, "probability": 0.9396 }, { "start": 36214.12, "end": 36217.12, "probability": 0.9127 }, { "start": 36217.66, "end": 36220.08, "probability": 0.9509 }, { "start": 36221.12, "end": 36226.86, "probability": 0.9922 }, { "start": 36226.86, "end": 36231.28, "probability": 0.9791 }, { "start": 36232.08, "end": 36236.22, "probability": 0.9989 }, { "start": 36237.88, "end": 36241.88, "probability": 0.8709 }, { "start": 36244.76, "end": 36249.28, "probability": 0.9959 }, { "start": 36250.56, "end": 36252.46, "probability": 0.9812 }, { "start": 36253.3, "end": 36255.6, "probability": 0.9015 }, { "start": 36256.58, "end": 36256.98, "probability": 0.8435 }, { "start": 36257.02, "end": 36257.62, "probability": 0.7434 }, { "start": 36257.86, "end": 36260.7, "probability": 0.8285 }, { "start": 36260.76, "end": 36264.26, "probability": 0.8306 }, { "start": 36265.02, "end": 36266.3, "probability": 0.9469 }, { "start": 36266.84, "end": 36273.54, "probability": 0.929 }, { "start": 36274.56, "end": 36277.56, "probability": 0.7778 }, { "start": 36277.72, "end": 36278.33, "probability": 0.8398 }, { "start": 36278.72, "end": 36280.56, "probability": 0.9758 }, { "start": 36281.26, "end": 36281.7, "probability": 0.8205 }, { "start": 36284.46, "end": 36288.6, "probability": 0.3013 }, { "start": 36289.84, "end": 36290.1, "probability": 0.1075 }, { "start": 36290.1, "end": 36290.1, "probability": 0.0857 }, { "start": 36290.1, "end": 36290.5, "probability": 0.7385 }, { "start": 36291.44, "end": 36292.36, "probability": 0.6966 }, { "start": 36292.64, "end": 36295.4, "probability": 0.8287 }, { "start": 36295.42, "end": 36296.72, "probability": 0.8157 }, { "start": 36296.86, "end": 36297.16, "probability": 0.4806 }, { "start": 36297.4, "end": 36299.92, "probability": 0.9674 }, { "start": 36300.48, "end": 36300.86, "probability": 0.5739 }, { "start": 36301.36, "end": 36303.42, "probability": 0.848 }, { "start": 36304.06, "end": 36305.56, "probability": 0.816 }, { "start": 36306.46, "end": 36309.67, "probability": 0.9565 }, { "start": 36309.8, "end": 36310.26, "probability": 0.8564 }, { "start": 36310.34, "end": 36310.76, "probability": 0.6569 }, { "start": 36310.76, "end": 36311.2, "probability": 0.6205 }, { "start": 36311.78, "end": 36312.89, "probability": 0.8381 }, { "start": 36313.06, "end": 36313.6, "probability": 0.6568 }, { "start": 36313.7, "end": 36314.18, "probability": 0.5907 }, { "start": 36314.22, "end": 36314.62, "probability": 0.6145 }, { "start": 36314.7, "end": 36317.06, "probability": 0.9145 }, { "start": 36317.32, "end": 36322.38, "probability": 0.8216 }, { "start": 36323.32, "end": 36324.62, "probability": 0.6955 }, { "start": 36324.72, "end": 36327.89, "probability": 0.9221 }, { "start": 36328.08, "end": 36328.58, "probability": 0.6281 }, { "start": 36328.64, "end": 36329.48, "probability": 0.5161 }, { "start": 36330.06, "end": 36331.5, "probability": 0.9514 }, { "start": 36331.76, "end": 36333.61, "probability": 0.9371 }, { "start": 36335.22, "end": 36335.38, "probability": 0.1754 }, { "start": 36335.38, "end": 36338.82, "probability": 0.6428 }, { "start": 36339.14, "end": 36340.22, "probability": 0.5322 }, { "start": 36340.34, "end": 36346.5, "probability": 0.7603 }, { "start": 36346.62, "end": 36346.94, "probability": 0.7054 }, { "start": 36347.48, "end": 36350.06, "probability": 0.9462 }, { "start": 36350.12, "end": 36353.22, "probability": 0.9784 }, { "start": 36353.94, "end": 36355.9, "probability": 0.9283 }, { "start": 36356.04, "end": 36360.68, "probability": 0.8898 }, { "start": 36360.84, "end": 36364.72, "probability": 0.9455 }, { "start": 36365.22, "end": 36366.86, "probability": 0.5611 }, { "start": 36367.02, "end": 36368.96, "probability": 0.9288 }, { "start": 36369.92, "end": 36371.9, "probability": 0.8022 }, { "start": 36372.04, "end": 36372.76, "probability": 0.7008 }, { "start": 36373.02, "end": 36374.02, "probability": 0.6736 }, { "start": 36374.36, "end": 36375.94, "probability": 0.9419 }, { "start": 36375.98, "end": 36378.18, "probability": 0.934 }, { "start": 36378.22, "end": 36378.36, "probability": 0.7388 }, { "start": 36380.28, "end": 36382.22, "probability": 0.7438 }, { "start": 36383.21, "end": 36386.8, "probability": 0.9692 }, { "start": 36387.5, "end": 36389.32, "probability": 0.795 }, { "start": 36390.6, "end": 36390.6, "probability": 0.2577 }, { "start": 36390.6, "end": 36390.72, "probability": 0.7181 }, { "start": 36390.82, "end": 36390.92, "probability": 0.6076 }, { "start": 36391.24, "end": 36393.02, "probability": 0.9465 }, { "start": 36393.14, "end": 36395.28, "probability": 0.7523 }, { "start": 36395.34, "end": 36395.62, "probability": 0.7479 }, { "start": 36396.2, "end": 36398.78, "probability": 0.6491 }, { "start": 36399.08, "end": 36400.3, "probability": 0.5499 }, { "start": 36407.24, "end": 36409.02, "probability": 0.2235 }, { "start": 36409.02, "end": 36409.02, "probability": 0.7206 }, { "start": 36409.02, "end": 36409.23, "probability": 0.687 }, { "start": 36410.54, "end": 36411.26, "probability": 0.9615 }, { "start": 36413.3, "end": 36414.2, "probability": 0.6254 }, { "start": 36415.7, "end": 36417.77, "probability": 0.1803 }, { "start": 36419.78, "end": 36421.14, "probability": 0.2922 }, { "start": 36423.39, "end": 36426.3, "probability": 0.287 }, { "start": 36427.83, "end": 36430.22, "probability": 0.604 }, { "start": 36431.28, "end": 36432.32, "probability": 0.4402 }, { "start": 36432.54, "end": 36433.4, "probability": 0.5132 }, { "start": 36433.62, "end": 36436.87, "probability": 0.5277 }, { "start": 36437.5, "end": 36440.16, "probability": 0.7585 }, { "start": 36440.86, "end": 36442.51, "probability": 0.9465 }, { "start": 36443.26, "end": 36448.86, "probability": 0.7877 }, { "start": 36449.32, "end": 36449.42, "probability": 0.1927 }, { "start": 36449.42, "end": 36450.88, "probability": 0.8639 }, { "start": 36450.9, "end": 36451.8, "probability": 0.7946 }, { "start": 36468.6, "end": 36468.9, "probability": 0.2713 }, { "start": 36468.94, "end": 36471.14, "probability": 0.7988 }, { "start": 36471.96, "end": 36472.34, "probability": 0.9529 }, { "start": 36472.4, "end": 36474.06, "probability": 0.9748 }, { "start": 36474.24, "end": 36475.86, "probability": 0.9853 }, { "start": 36476.22, "end": 36476.72, "probability": 0.9119 }, { "start": 36477.28, "end": 36477.46, "probability": 0.8746 }, { "start": 36477.52, "end": 36480.22, "probability": 0.9136 }, { "start": 36481.3, "end": 36482.4, "probability": 0.9618 }, { "start": 36483.22, "end": 36483.94, "probability": 0.1768 }, { "start": 36483.94, "end": 36484.15, "probability": 0.4123 }, { "start": 36484.22, "end": 36486.64, "probability": 0.7467 }, { "start": 36487.42, "end": 36490.46, "probability": 0.8191 }, { "start": 36490.54, "end": 36491.48, "probability": 0.9961 }, { "start": 36492.78, "end": 36493.44, "probability": 0.7842 }, { "start": 36494.34, "end": 36497.58, "probability": 0.9229 }, { "start": 36497.86, "end": 36498.96, "probability": 0.5977 }, { "start": 36499.3, "end": 36502.52, "probability": 0.7594 }, { "start": 36503.22, "end": 36504.0, "probability": 0.8623 }, { "start": 36504.28, "end": 36505.22, "probability": 0.6268 }, { "start": 36505.72, "end": 36507.32, "probability": 0.9972 }, { "start": 36507.74, "end": 36511.0, "probability": 0.9817 }, { "start": 36511.98, "end": 36515.1, "probability": 0.9802 }, { "start": 36516.38, "end": 36518.58, "probability": 0.9757 }, { "start": 36518.6, "end": 36523.12, "probability": 0.9644 }, { "start": 36523.94, "end": 36524.34, "probability": 0.7069 }, { "start": 36524.42, "end": 36526.8, "probability": 0.9543 }, { "start": 36527.84, "end": 36530.62, "probability": 0.9422 }, { "start": 36531.2, "end": 36534.6, "probability": 0.9572 }, { "start": 36535.16, "end": 36537.28, "probability": 0.955 }, { "start": 36537.34, "end": 36538.0, "probability": 0.5477 }, { "start": 36538.44, "end": 36542.1, "probability": 0.9803 }, { "start": 36542.46, "end": 36544.82, "probability": 0.9771 }, { "start": 36544.82, "end": 36545.5, "probability": 0.5365 }, { "start": 36546.58, "end": 36548.5, "probability": 0.9692 }, { "start": 36548.8, "end": 36549.6, "probability": 0.471 }, { "start": 36549.7, "end": 36550.18, "probability": 0.0266 }, { "start": 36550.92, "end": 36553.1, "probability": 0.8289 }, { "start": 36554.99, "end": 36558.34, "probability": 0.8758 }, { "start": 36558.66, "end": 36559.46, "probability": 0.9315 }, { "start": 36560.26, "end": 36565.38, "probability": 0.8923 }, { "start": 36565.5, "end": 36566.72, "probability": 0.6237 }, { "start": 36567.06, "end": 36568.22, "probability": 0.8933 }, { "start": 36568.38, "end": 36570.84, "probability": 0.904 }, { "start": 36571.64, "end": 36573.18, "probability": 0.9121 }, { "start": 36573.72, "end": 36575.58, "probability": 0.9259 }, { "start": 36576.26, "end": 36582.28, "probability": 0.9927 }, { "start": 36582.86, "end": 36586.94, "probability": 0.8563 }, { "start": 36587.8, "end": 36589.93, "probability": 0.8983 }, { "start": 36590.18, "end": 36592.38, "probability": 0.9924 }, { "start": 36593.02, "end": 36595.9, "probability": 0.8625 }, { "start": 36595.95, "end": 36598.18, "probability": 0.7832 }, { "start": 36598.78, "end": 36601.17, "probability": 0.7521 }, { "start": 36601.52, "end": 36603.12, "probability": 0.8925 }, { "start": 36603.32, "end": 36605.66, "probability": 0.6561 }, { "start": 36605.66, "end": 36608.64, "probability": 0.6412 }, { "start": 36608.96, "end": 36610.3, "probability": 0.4651 }, { "start": 36610.84, "end": 36611.46, "probability": 0.7558 }, { "start": 36611.74, "end": 36612.2, "probability": 0.4026 }, { "start": 36612.3, "end": 36612.88, "probability": 0.9743 }, { "start": 36613.26, "end": 36614.68, "probability": 0.8572 }, { "start": 36615.18, "end": 36617.62, "probability": 0.9329 }, { "start": 36618.06, "end": 36619.14, "probability": 0.7639 }, { "start": 36619.22, "end": 36619.3, "probability": 0.5248 }, { "start": 36619.44, "end": 36619.72, "probability": 0.8773 }, { "start": 36619.78, "end": 36620.18, "probability": 0.8688 }, { "start": 36620.28, "end": 36625.04, "probability": 0.9699 }, { "start": 36625.12, "end": 36625.3, "probability": 0.5768 }, { "start": 36625.36, "end": 36625.98, "probability": 0.8723 }, { "start": 36626.3, "end": 36629.26, "probability": 0.8639 }, { "start": 36629.58, "end": 36631.74, "probability": 0.9709 }, { "start": 36633.1, "end": 36634.94, "probability": 0.3096 }, { "start": 36635.12, "end": 36635.2, "probability": 0.1297 }, { "start": 36635.2, "end": 36635.36, "probability": 0.0822 }, { "start": 36635.66, "end": 36637.58, "probability": 0.8176 }, { "start": 36638.02, "end": 36642.4, "probability": 0.9875 }, { "start": 36642.4, "end": 36648.04, "probability": 0.973 }, { "start": 36648.12, "end": 36648.4, "probability": 0.4307 }, { "start": 36648.52, "end": 36648.62, "probability": 0.4988 }, { "start": 36648.74, "end": 36649.26, "probability": 0.6325 }, { "start": 36649.72, "end": 36652.64, "probability": 0.9839 }, { "start": 36653.18, "end": 36656.14, "probability": 0.7192 }, { "start": 36656.8, "end": 36660.04, "probability": 0.8448 }, { "start": 36660.38, "end": 36662.22, "probability": 0.9163 }, { "start": 36662.22, "end": 36665.96, "probability": 0.9438 }, { "start": 36666.24, "end": 36666.86, "probability": 0.5473 }, { "start": 36667.22, "end": 36667.74, "probability": 0.4218 }, { "start": 36668.38, "end": 36668.84, "probability": 0.5085 }, { "start": 36670.84, "end": 36672.46, "probability": 0.6898 }, { "start": 36673.88, "end": 36675.82, "probability": 0.9467 }, { "start": 36675.9, "end": 36678.08, "probability": 0.9214 }, { "start": 36678.1, "end": 36678.52, "probability": 0.9117 }, { "start": 36678.98, "end": 36681.92, "probability": 0.9642 }, { "start": 36682.18, "end": 36684.24, "probability": 0.9961 }, { "start": 36684.4, "end": 36685.44, "probability": 0.3513 }, { "start": 36685.94, "end": 36687.75, "probability": 0.8787 }, { "start": 36688.44, "end": 36689.72, "probability": 0.8624 }, { "start": 36690.3, "end": 36693.3, "probability": 0.9944 }, { "start": 36693.3, "end": 36697.2, "probability": 0.9898 }, { "start": 36698.54, "end": 36699.08, "probability": 0.7 }, { "start": 36699.22, "end": 36701.56, "probability": 0.9397 }, { "start": 36702.34, "end": 36704.54, "probability": 0.616 }, { "start": 36719.98, "end": 36720.68, "probability": 0.4212 }, { "start": 36726.08, "end": 36728.28, "probability": 0.6877 }, { "start": 36728.94, "end": 36729.64, "probability": 0.8509 }, { "start": 36730.36, "end": 36734.7, "probability": 0.9723 }, { "start": 36735.26, "end": 36737.6, "probability": 0.7534 }, { "start": 36738.28, "end": 36741.01, "probability": 0.7781 }, { "start": 36741.32, "end": 36742.4, "probability": 0.9641 }, { "start": 36743.4, "end": 36746.86, "probability": 0.781 }, { "start": 36747.68, "end": 36750.72, "probability": 0.8952 }, { "start": 36752.8, "end": 36756.16, "probability": 0.9007 }, { "start": 36756.82, "end": 36756.84, "probability": 0.7153 }, { "start": 36757.52, "end": 36758.82, "probability": 0.9309 }, { "start": 36759.7, "end": 36763.34, "probability": 0.9937 }, { "start": 36764.94, "end": 36769.78, "probability": 0.9766 }, { "start": 36771.26, "end": 36777.32, "probability": 0.9982 }, { "start": 36779.78, "end": 36782.7, "probability": 0.9397 }, { "start": 36783.62, "end": 36785.9, "probability": 0.9962 }, { "start": 36786.68, "end": 36786.78, "probability": 0.3967 }, { "start": 36786.94, "end": 36787.62, "probability": 0.833 }, { "start": 36787.94, "end": 36793.24, "probability": 0.9858 }, { "start": 36793.42, "end": 36796.32, "probability": 0.9806 }, { "start": 36796.46, "end": 36798.14, "probability": 0.9844 }, { "start": 36799.46, "end": 36802.4, "probability": 0.9843 }, { "start": 36802.4, "end": 36806.3, "probability": 0.9971 }, { "start": 36806.38, "end": 36811.12, "probability": 0.9956 }, { "start": 36811.26, "end": 36812.86, "probability": 0.9928 }, { "start": 36813.64, "end": 36813.86, "probability": 0.2773 }, { "start": 36814.04, "end": 36820.6, "probability": 0.9656 }, { "start": 36821.3, "end": 36823.62, "probability": 0.9938 }, { "start": 36824.42, "end": 36826.02, "probability": 0.9849 }, { "start": 36826.1, "end": 36830.4, "probability": 0.9649 }, { "start": 36830.96, "end": 36831.5, "probability": 0.8888 }, { "start": 36832.32, "end": 36835.78, "probability": 0.9943 }, { "start": 36835.96, "end": 36836.3, "probability": 0.6572 }, { "start": 36836.3, "end": 36836.76, "probability": 0.661 }, { "start": 36837.28, "end": 36841.12, "probability": 0.9893 }, { "start": 36842.28, "end": 36842.96, "probability": 0.8213 }, { "start": 36843.06, "end": 36843.8, "probability": 0.8467 }, { "start": 36843.88, "end": 36847.92, "probability": 0.9704 }, { "start": 36849.22, "end": 36854.5, "probability": 0.979 }, { "start": 36856.62, "end": 36860.54, "probability": 0.8324 }, { "start": 36860.62, "end": 36863.8, "probability": 0.9867 }, { "start": 36864.42, "end": 36866.54, "probability": 0.8936 }, { "start": 36867.54, "end": 36870.6, "probability": 0.9991 }, { "start": 36871.9, "end": 36873.82, "probability": 0.9292 }, { "start": 36875.24, "end": 36876.64, "probability": 0.9661 }, { "start": 36878.28, "end": 36883.32, "probability": 0.8318 }, { "start": 36883.6, "end": 36884.8, "probability": 0.8222 }, { "start": 36884.94, "end": 36885.18, "probability": 0.7313 }, { "start": 36886.18, "end": 36888.56, "probability": 0.7836 }, { "start": 36889.08, "end": 36893.27, "probability": 0.979 }, { "start": 36894.04, "end": 36898.12, "probability": 0.9971 }, { "start": 36899.16, "end": 36900.26, "probability": 0.9658 }, { "start": 36901.08, "end": 36903.54, "probability": 0.9563 }, { "start": 36903.7, "end": 36907.28, "probability": 0.9951 }, { "start": 36907.58, "end": 36911.28, "probability": 0.9904 }, { "start": 36911.86, "end": 36919.88, "probability": 0.9321 }, { "start": 36920.02, "end": 36920.8, "probability": 0.9493 }, { "start": 36922.18, "end": 36928.42, "probability": 0.8993 }, { "start": 36928.84, "end": 36929.42, "probability": 0.5305 }, { "start": 36930.98, "end": 36931.22, "probability": 0.9761 }, { "start": 36934.76, "end": 36937.72, "probability": 0.9836 }, { "start": 36937.88, "end": 36939.03, "probability": 0.9984 }, { "start": 36940.26, "end": 36943.86, "probability": 0.9593 }, { "start": 36943.96, "end": 36947.82, "probability": 0.7271 }, { "start": 36947.88, "end": 36949.39, "probability": 0.9746 }, { "start": 36951.0, "end": 36953.92, "probability": 0.9965 }, { "start": 36954.02, "end": 36956.1, "probability": 0.796 }, { "start": 36956.62, "end": 36958.66, "probability": 0.769 }, { "start": 36958.82, "end": 36959.18, "probability": 0.9468 }, { "start": 36960.42, "end": 36965.49, "probability": 0.9758 }, { "start": 36966.4, "end": 36967.82, "probability": 0.5618 }, { "start": 36969.92, "end": 36970.52, "probability": 0.61 }, { "start": 36970.88, "end": 36971.7, "probability": 0.8521 }, { "start": 36972.26, "end": 36972.64, "probability": 0.9678 }, { "start": 36972.7, "end": 36973.64, "probability": 0.7197 }, { "start": 36974.04, "end": 36974.92, "probability": 0.9637 }, { "start": 36975.94, "end": 36978.95, "probability": 0.9673 }, { "start": 36979.58, "end": 36980.19, "probability": 0.5032 }, { "start": 36981.34, "end": 36983.3, "probability": 0.9883 }, { "start": 36985.9, "end": 36994.04, "probability": 0.9626 }, { "start": 36995.48, "end": 36998.6, "probability": 0.996 }, { "start": 36999.48, "end": 37004.02, "probability": 0.9976 }, { "start": 37004.9, "end": 37008.08, "probability": 0.9873 }, { "start": 37008.38, "end": 37009.82, "probability": 0.9382 }, { "start": 37009.9, "end": 37010.62, "probability": 0.965 }, { "start": 37011.32, "end": 37012.68, "probability": 0.8676 }, { "start": 37013.6, "end": 37014.82, "probability": 0.9578 }, { "start": 37015.04, "end": 37016.26, "probability": 0.9518 }, { "start": 37016.66, "end": 37018.28, "probability": 0.9988 }, { "start": 37019.38, "end": 37020.92, "probability": 0.6639 }, { "start": 37022.44, "end": 37025.86, "probability": 0.602 }, { "start": 37026.32, "end": 37026.78, "probability": 0.2744 }, { "start": 37026.92, "end": 37029.16, "probability": 0.7036 }, { "start": 37029.66, "end": 37032.64, "probability": 0.6361 }, { "start": 37033.28, "end": 37035.24, "probability": 0.9408 }, { "start": 37037.03, "end": 37040.16, "probability": 0.9662 }, { "start": 37041.46, "end": 37042.92, "probability": 0.6021 }, { "start": 37043.6, "end": 37044.92, "probability": 0.8652 }, { "start": 37045.64, "end": 37049.72, "probability": 0.7811 }, { "start": 37050.44, "end": 37051.52, "probability": 0.5 }, { "start": 37051.68, "end": 37052.64, "probability": 0.6756 }, { "start": 37052.88, "end": 37054.06, "probability": 0.8608 }, { "start": 37054.12, "end": 37054.78, "probability": 0.5492 }, { "start": 37055.2, "end": 37056.2, "probability": 0.9487 }, { "start": 37059.46, "end": 37060.92, "probability": 0.6367 }, { "start": 37061.44, "end": 37061.88, "probability": 0.7277 }, { "start": 37062.22, "end": 37064.08, "probability": 0.9175 }, { "start": 37065.96, "end": 37067.28, "probability": 0.8348 }, { "start": 37067.4, "end": 37072.46, "probability": 0.9692 }, { "start": 37073.28, "end": 37075.84, "probability": 0.9049 }, { "start": 37075.84, "end": 37079.82, "probability": 0.9956 }, { "start": 37080.08, "end": 37082.2, "probability": 0.9757 }, { "start": 37083.52, "end": 37085.46, "probability": 0.6911 }, { "start": 37085.46, "end": 37087.98, "probability": 0.984 }, { "start": 37088.18, "end": 37091.4, "probability": 0.9967 }, { "start": 37091.4, "end": 37094.16, "probability": 0.9943 }, { "start": 37096.44, "end": 37097.22, "probability": 0.8183 }, { "start": 37109.4, "end": 37111.36, "probability": 0.5137 }, { "start": 37115.96, "end": 37117.24, "probability": 0.6139 }, { "start": 37118.42, "end": 37119.9, "probability": 0.3908 }, { "start": 37120.74, "end": 37123.82, "probability": 0.5184 }, { "start": 37123.88, "end": 37125.14, "probability": 0.5351 }, { "start": 37127.82, "end": 37128.54, "probability": 0.5608 }, { "start": 37132.46, "end": 37136.44, "probability": 0.9562 }, { "start": 37137.14, "end": 37139.8, "probability": 0.7867 }, { "start": 37140.52, "end": 37144.84, "probability": 0.9883 }, { "start": 37144.84, "end": 37148.24, "probability": 0.9886 }, { "start": 37148.98, "end": 37151.82, "probability": 0.9253 }, { "start": 37152.54, "end": 37157.3, "probability": 0.9574 }, { "start": 37157.84, "end": 37159.82, "probability": 0.6014 }, { "start": 37160.46, "end": 37162.3, "probability": 0.9656 }, { "start": 37162.88, "end": 37164.56, "probability": 0.9764 }, { "start": 37165.2, "end": 37168.68, "probability": 0.9519 }, { "start": 37169.1, "end": 37170.28, "probability": 0.9531 }, { "start": 37171.44, "end": 37171.8, "probability": 0.6127 }, { "start": 37171.92, "end": 37176.88, "probability": 0.9744 }, { "start": 37176.88, "end": 37180.1, "probability": 0.9934 }, { "start": 37180.88, "end": 37181.46, "probability": 0.7776 }, { "start": 37182.08, "end": 37185.54, "probability": 0.998 }, { "start": 37188.38, "end": 37189.84, "probability": 0.508 }, { "start": 37191.01, "end": 37192.42, "probability": 0.8258 }, { "start": 37192.6, "end": 37193.51, "probability": 0.935 }, { "start": 37193.52, "end": 37193.74, "probability": 0.8235 }, { "start": 37193.8, "end": 37197.98, "probability": 0.6825 }, { "start": 37198.3, "end": 37200.08, "probability": 0.9298 }, { "start": 37200.86, "end": 37201.94, "probability": 0.6424 }, { "start": 37202.16, "end": 37202.28, "probability": 0.3914 }, { "start": 37202.28, "end": 37204.12, "probability": 0.6255 }, { "start": 37204.28, "end": 37206.34, "probability": 0.8493 }, { "start": 37206.44, "end": 37206.54, "probability": 0.2379 }, { "start": 37206.64, "end": 37206.9, "probability": 0.855 }, { "start": 37206.98, "end": 37208.84, "probability": 0.9867 }, { "start": 37208.94, "end": 37209.32, "probability": 0.7541 }, { "start": 37209.36, "end": 37209.94, "probability": 0.9807 }, { "start": 37210.02, "end": 37213.54, "probability": 0.8244 }, { "start": 37214.14, "end": 37214.7, "probability": 0.3353 }, { "start": 37215.06, "end": 37215.72, "probability": 0.8424 }, { "start": 37215.8, "end": 37216.16, "probability": 0.9472 }, { "start": 37216.92, "end": 37222.42, "probability": 0.9594 }, { "start": 37222.48, "end": 37224.16, "probability": 0.9958 }, { "start": 37224.72, "end": 37225.36, "probability": 0.724 }, { "start": 37225.78, "end": 37226.47, "probability": 0.8015 }, { "start": 37227.06, "end": 37228.4, "probability": 0.8352 }, { "start": 37228.52, "end": 37228.84, "probability": 0.8108 }, { "start": 37228.94, "end": 37229.42, "probability": 0.8905 }, { "start": 37229.54, "end": 37229.86, "probability": 0.9439 }, { "start": 37229.98, "end": 37234.4, "probability": 0.9629 }, { "start": 37234.9, "end": 37236.97, "probability": 0.9692 }, { "start": 37236.97, "end": 37237.52, "probability": 0.1686 }, { "start": 37237.53, "end": 37238.01, "probability": 0.3317 }, { "start": 37238.07, "end": 37238.17, "probability": 0.5396 }, { "start": 37238.43, "end": 37238.91, "probability": 0.3928 }, { "start": 37238.93, "end": 37239.01, "probability": 0.309 }, { "start": 37239.01, "end": 37240.51, "probability": 0.6821 }, { "start": 37240.51, "end": 37240.85, "probability": 0.656 }, { "start": 37240.85, "end": 37241.2, "probability": 0.5696 }, { "start": 37241.43, "end": 37242.61, "probability": 0.4458 }, { "start": 37256.61, "end": 37256.95, "probability": 0.6323 }, { "start": 37257.07, "end": 37257.07, "probability": 0.1588 }, { "start": 37257.07, "end": 37257.07, "probability": 0.0363 }, { "start": 37257.07, "end": 37257.07, "probability": 0.0144 }, { "start": 37257.07, "end": 37257.87, "probability": 0.3664 }, { "start": 37265.45, "end": 37269.54, "probability": 0.2254 }, { "start": 37273.55, "end": 37276.23, "probability": 0.3046 }, { "start": 37276.23, "end": 37276.33, "probability": 0.4027 }, { "start": 37277.27, "end": 37280.17, "probability": 0.068 }, { "start": 37360.0, "end": 37360.0, "probability": 0.0 }, { "start": 37360.0, "end": 37360.0, "probability": 0.0 }, { "start": 37360.0, "end": 37360.0, "probability": 0.0 }, { "start": 37360.0, "end": 37360.0, "probability": 0.0 }, { "start": 37360.0, "end": 37360.0, "probability": 0.0 }, { "start": 37360.0, "end": 37360.0, "probability": 0.0 }, { "start": 37360.0, "end": 37360.0, "probability": 0.0 }, { "start": 37360.0, "end": 37360.0, "probability": 0.0 }, { "start": 37360.0, "end": 37360.0, "probability": 0.0 }, { "start": 37360.0, "end": 37360.0, "probability": 0.0 }, { "start": 37360.0, "end": 37360.0, "probability": 0.0 }, { "start": 37360.0, "end": 37360.0, "probability": 0.0 }, { "start": 37360.0, "end": 37360.0, "probability": 0.0 }, { "start": 37360.0, "end": 37360.0, "probability": 0.0 }, { "start": 37360.0, "end": 37360.0, "probability": 0.0 }, { "start": 37360.0, "end": 37360.0, "probability": 0.0 }, { "start": 37360.0, "end": 37360.0, "probability": 0.0 }, { "start": 37360.0, "end": 37360.0, "probability": 0.0 }, { "start": 37360.0, "end": 37360.0, "probability": 0.0 }, { "start": 37360.0, "end": 37360.0, "probability": 0.0 }, { "start": 37360.0, "end": 37360.0, "probability": 0.0 }, { "start": 37360.0, "end": 37360.0, "probability": 0.0 }, { "start": 37360.0, "end": 37360.0, "probability": 0.0 }, { "start": 37360.0, "end": 37360.0, "probability": 0.0 }, { "start": 37360.0, "end": 37360.0, "probability": 0.0 }, { "start": 37360.0, "end": 37360.0, "probability": 0.0 }, { "start": 37360.0, "end": 37360.0, "probability": 0.0 }, { "start": 37360.0, "end": 37360.0, "probability": 0.0 }, { "start": 37360.0, "end": 37360.0, "probability": 0.0 }, { "start": 37360.0, "end": 37360.0, "probability": 0.0 }, { "start": 37360.26, "end": 37360.28, "probability": 0.0769 }, { "start": 37360.28, "end": 37362.9, "probability": 0.5576 }, { "start": 37363.88, "end": 37365.3, "probability": 0.7677 }, { "start": 37366.36, "end": 37369.04, "probability": 0.9967 }, { "start": 37369.72, "end": 37370.46, "probability": 0.9897 }, { "start": 37371.74, "end": 37374.76, "probability": 0.8278 }, { "start": 37374.94, "end": 37374.94, "probability": 0.5211 }, { "start": 37374.94, "end": 37375.3, "probability": 0.7745 }, { "start": 37376.12, "end": 37378.76, "probability": 0.8212 }, { "start": 37379.82, "end": 37383.46, "probability": 0.7913 }, { "start": 37383.46, "end": 37383.6, "probability": 0.6781 }, { "start": 37385.12, "end": 37386.92, "probability": 0.8725 }, { "start": 37390.42, "end": 37394.96, "probability": 0.6305 }, { "start": 37395.18, "end": 37396.34, "probability": 0.9844 }, { "start": 37396.44, "end": 37399.14, "probability": 0.9968 }, { "start": 37399.22, "end": 37402.5, "probability": 0.9696 }, { "start": 37404.62, "end": 37405.8, "probability": 0.9194 }, { "start": 37407.13, "end": 37409.66, "probability": 0.9956 }, { "start": 37410.89, "end": 37416.64, "probability": 0.9106 }, { "start": 37417.2, "end": 37418.3, "probability": 0.6711 }, { "start": 37418.88, "end": 37421.28, "probability": 0.9817 }, { "start": 37421.74, "end": 37422.36, "probability": 0.7048 }, { "start": 37422.78, "end": 37424.22, "probability": 0.9769 }, { "start": 37425.02, "end": 37428.88, "probability": 0.6864 }, { "start": 37429.34, "end": 37430.72, "probability": 0.3333 }, { "start": 37431.22, "end": 37433.38, "probability": 0.9844 }, { "start": 37433.98, "end": 37434.56, "probability": 0.6598 }, { "start": 37436.92, "end": 37439.5, "probability": 0.7746 }, { "start": 37440.16, "end": 37442.26, "probability": 0.9679 }, { "start": 37444.52, "end": 37448.76, "probability": 0.9971 }, { "start": 37448.76, "end": 37454.16, "probability": 0.8748 }, { "start": 37455.26, "end": 37457.52, "probability": 0.9046 }, { "start": 37458.3, "end": 37459.22, "probability": 0.7253 }, { "start": 37461.1, "end": 37462.32, "probability": 0.1382 }, { "start": 37462.92, "end": 37463.9, "probability": 0.5751 }, { "start": 37465.0, "end": 37466.26, "probability": 0.8045 }, { "start": 37470.92, "end": 37477.82, "probability": 0.8037 }, { "start": 37480.08, "end": 37482.38, "probability": 0.8337 }, { "start": 37483.02, "end": 37484.8, "probability": 0.9857 }, { "start": 37485.4, "end": 37486.82, "probability": 0.9406 }, { "start": 37488.48, "end": 37489.6, "probability": 0.632 }, { "start": 37489.72, "end": 37490.04, "probability": 0.294 }, { "start": 37490.1, "end": 37493.86, "probability": 0.9939 }, { "start": 37495.12, "end": 37497.52, "probability": 0.9218 }, { "start": 37497.82, "end": 37499.9, "probability": 0.8108 }, { "start": 37499.92, "end": 37504.28, "probability": 0.9459 }, { "start": 37504.82, "end": 37507.2, "probability": 0.9815 }, { "start": 37508.42, "end": 37511.44, "probability": 0.9946 }, { "start": 37512.18, "end": 37515.56, "probability": 0.9937 }, { "start": 37516.1, "end": 37519.34, "probability": 0.9666 }, { "start": 37520.66, "end": 37523.46, "probability": 0.9683 }, { "start": 37523.78, "end": 37525.1, "probability": 0.7106 }, { "start": 37525.28, "end": 37526.54, "probability": 0.9874 }, { "start": 37526.7, "end": 37535.9, "probability": 0.8825 }, { "start": 37536.78, "end": 37540.34, "probability": 0.7124 }, { "start": 37540.76, "end": 37542.94, "probability": 0.9673 }, { "start": 37543.64, "end": 37544.86, "probability": 0.6442 }, { "start": 37545.04, "end": 37548.14, "probability": 0.831 }, { "start": 37548.94, "end": 37551.2, "probability": 0.8983 }, { "start": 37551.78, "end": 37555.99, "probability": 0.9086 }, { "start": 37557.06, "end": 37563.66, "probability": 0.9429 }, { "start": 37564.56, "end": 37567.04, "probability": 0.995 }, { "start": 37567.3, "end": 37567.8, "probability": 0.8944 }, { "start": 37568.34, "end": 37570.08, "probability": 0.9958 }, { "start": 37570.9, "end": 37573.9, "probability": 0.9846 }, { "start": 37573.9, "end": 37576.59, "probability": 0.9976 }, { "start": 37577.49, "end": 37582.78, "probability": 0.814 }, { "start": 37584.52, "end": 37587.3, "probability": 0.9786 }, { "start": 37587.94, "end": 37590.5, "probability": 0.9931 }, { "start": 37591.08, "end": 37593.96, "probability": 0.9357 }, { "start": 37594.58, "end": 37598.24, "probability": 0.996 }, { "start": 37598.96, "end": 37603.28, "probability": 0.9943 }, { "start": 37603.48, "end": 37604.74, "probability": 0.632 }, { "start": 37604.82, "end": 37607.98, "probability": 0.9782 }, { "start": 37608.66, "end": 37609.22, "probability": 0.9346 }, { "start": 37610.1, "end": 37613.58, "probability": 0.9985 }, { "start": 37613.76, "end": 37617.22, "probability": 0.9275 }, { "start": 37617.46, "end": 37620.67, "probability": 0.8467 }, { "start": 37621.58, "end": 37628.0, "probability": 0.9777 }, { "start": 37628.14, "end": 37628.96, "probability": 0.6563 }, { "start": 37629.06, "end": 37629.48, "probability": 0.8338 }, { "start": 37630.4, "end": 37632.08, "probability": 0.8599 }, { "start": 37632.52, "end": 37634.96, "probability": 0.9649 }, { "start": 37635.64, "end": 37637.78, "probability": 0.9521 }, { "start": 37637.84, "end": 37639.14, "probability": 0.8334 }, { "start": 37639.76, "end": 37643.46, "probability": 0.9639 }, { "start": 37644.06, "end": 37646.96, "probability": 0.9607 }, { "start": 37647.18, "end": 37647.36, "probability": 0.7293 }, { "start": 37647.62, "end": 37647.96, "probability": 0.768 }, { "start": 37649.5, "end": 37655.62, "probability": 0.7369 }, { "start": 37656.24, "end": 37657.84, "probability": 0.7957 }, { "start": 37657.9, "end": 37660.46, "probability": 0.5442 }, { "start": 37661.5, "end": 37664.2, "probability": 0.5998 }, { "start": 37664.32, "end": 37668.4, "probability": 0.8657 }, { "start": 37668.46, "end": 37670.36, "probability": 0.8718 }, { "start": 37671.14, "end": 37674.32, "probability": 0.6115 }, { "start": 37674.42, "end": 37674.86, "probability": 0.5651 }, { "start": 37675.28, "end": 37678.36, "probability": 0.9591 }, { "start": 37678.88, "end": 37681.36, "probability": 0.9861 }, { "start": 37685.92, "end": 37686.4, "probability": 0.54 }, { "start": 37686.48, "end": 37689.92, "probability": 0.9927 }, { "start": 37689.92, "end": 37693.66, "probability": 0.9561 }, { "start": 37694.2, "end": 37697.0, "probability": 0.8627 }, { "start": 37697.0, "end": 37700.26, "probability": 0.9972 }, { "start": 37701.64, "end": 37703.18, "probability": 0.9708 }, { "start": 37704.16, "end": 37706.12, "probability": 0.9997 }, { "start": 37707.2, "end": 37710.86, "probability": 0.9 }, { "start": 37710.96, "end": 37714.14, "probability": 0.9845 }, { "start": 37714.68, "end": 37720.66, "probability": 0.9943 }, { "start": 37722.36, "end": 37724.7, "probability": 0.7027 }, { "start": 37725.04, "end": 37728.36, "probability": 0.9902 }, { "start": 37729.14, "end": 37731.72, "probability": 0.7198 }, { "start": 37732.7, "end": 37737.14, "probability": 0.9846 }, { "start": 37738.72, "end": 37740.24, "probability": 0.9477 }, { "start": 37740.26, "end": 37741.3, "probability": 0.7723 }, { "start": 37741.42, "end": 37743.44, "probability": 0.9475 }, { "start": 37745.14, "end": 37749.34, "probability": 0.9842 }, { "start": 37751.53, "end": 37758.4, "probability": 0.9854 }, { "start": 37758.64, "end": 37761.66, "probability": 0.9778 }, { "start": 37763.98, "end": 37767.2, "probability": 0.9647 }, { "start": 37767.36, "end": 37771.22, "probability": 0.9946 }, { "start": 37772.75, "end": 37775.08, "probability": 0.9917 }, { "start": 37775.24, "end": 37776.72, "probability": 0.9956 }, { "start": 37777.26, "end": 37777.88, "probability": 0.2707 }, { "start": 37778.48, "end": 37780.66, "probability": 0.9639 }, { "start": 37781.84, "end": 37782.98, "probability": 0.6115 }, { "start": 37783.02, "end": 37783.28, "probability": 0.6299 }, { "start": 37783.48, "end": 37787.42, "probability": 0.998 }, { "start": 37788.46, "end": 37791.26, "probability": 0.9871 }, { "start": 37791.98, "end": 37798.54, "probability": 0.9717 }, { "start": 37798.66, "end": 37802.12, "probability": 0.9881 }, { "start": 37802.26, "end": 37805.02, "probability": 0.9892 }, { "start": 37808.08, "end": 37808.38, "probability": 0.6754 }, { "start": 37811.12, "end": 37813.2, "probability": 0.8794 }, { "start": 37813.86, "end": 37816.92, "probability": 0.9673 }, { "start": 37817.42, "end": 37821.84, "probability": 0.9534 }, { "start": 37822.56, "end": 37824.24, "probability": 0.7595 }, { "start": 37824.7, "end": 37828.68, "probability": 0.9629 }, { "start": 37829.82, "end": 37833.12, "probability": 0.9719 }, { "start": 37834.44, "end": 37835.9, "probability": 0.8214 }, { "start": 37836.68, "end": 37839.14, "probability": 0.9963 }, { "start": 37841.09, "end": 37842.23, "probability": 0.6067 }, { "start": 37842.82, "end": 37843.98, "probability": 0.8459 }, { "start": 37844.36, "end": 37848.8, "probability": 0.9316 }, { "start": 37849.76, "end": 37854.52, "probability": 0.9801 }, { "start": 37855.12, "end": 37858.68, "probability": 0.9805 }, { "start": 37858.78, "end": 37860.18, "probability": 0.8914 }, { "start": 37860.26, "end": 37863.62, "probability": 0.9857 }, { "start": 37864.28, "end": 37865.4, "probability": 0.6806 }, { "start": 37867.24, "end": 37868.08, "probability": 0.6224 }, { "start": 37868.2, "end": 37871.64, "probability": 0.9689 }, { "start": 37871.7, "end": 37873.14, "probability": 0.4724 }, { "start": 37875.16, "end": 37878.16, "probability": 0.9041 }, { "start": 37878.16, "end": 37882.18, "probability": 0.977 }, { "start": 37882.7, "end": 37884.7, "probability": 0.8476 }, { "start": 37884.84, "end": 37887.78, "probability": 0.8597 }, { "start": 37888.44, "end": 37891.44, "probability": 0.9914 }, { "start": 37892.02, "end": 37894.78, "probability": 0.9708 }, { "start": 37897.88, "end": 37906.4, "probability": 0.9768 }, { "start": 37906.4, "end": 37912.14, "probability": 0.9873 }, { "start": 37912.96, "end": 37914.04, "probability": 0.5991 }, { "start": 37914.38, "end": 37915.98, "probability": 0.8801 }, { "start": 37916.14, "end": 37917.02, "probability": 0.771 }, { "start": 37917.54, "end": 37920.08, "probability": 0.9329 }, { "start": 37920.64, "end": 37922.48, "probability": 0.9093 }, { "start": 37924.16, "end": 37926.26, "probability": 0.9943 }, { "start": 37926.7, "end": 37932.22, "probability": 0.7421 }, { "start": 37933.45, "end": 37935.62, "probability": 0.9063 }, { "start": 37936.62, "end": 37937.66, "probability": 0.8755 }, { "start": 37937.94, "end": 37943.02, "probability": 0.9963 }, { "start": 37943.94, "end": 37946.28, "probability": 0.9815 }, { "start": 37946.44, "end": 37948.06, "probability": 0.9438 }, { "start": 37948.7, "end": 37949.36, "probability": 0.8804 }, { "start": 37949.98, "end": 37952.62, "probability": 0.9937 }, { "start": 37953.42, "end": 37956.72, "probability": 0.9622 }, { "start": 37957.1, "end": 37960.32, "probability": 0.9526 }, { "start": 37961.44, "end": 37966.48, "probability": 0.9143 }, { "start": 37967.86, "end": 37968.6, "probability": 0.7517 }, { "start": 37968.9, "end": 37973.45, "probability": 0.977 }, { "start": 37974.96, "end": 37976.84, "probability": 0.9014 }, { "start": 37976.96, "end": 37981.36, "probability": 0.761 }, { "start": 37982.14, "end": 37983.2, "probability": 0.9357 }, { "start": 37983.32, "end": 37986.48, "probability": 0.9551 }, { "start": 37986.48, "end": 37988.46, "probability": 0.9976 }, { "start": 37989.36, "end": 37994.12, "probability": 0.9967 }, { "start": 37994.12, "end": 37998.44, "probability": 0.9738 }, { "start": 37999.7, "end": 38002.2, "probability": 0.4789 }, { "start": 38003.02, "end": 38005.9, "probability": 0.6026 }, { "start": 38006.28, "end": 38008.08, "probability": 0.9935 }, { "start": 38008.84, "end": 38009.74, "probability": 0.9978 }, { "start": 38011.2, "end": 38014.48, "probability": 0.9977 }, { "start": 38014.48, "end": 38019.1, "probability": 0.9961 }, { "start": 38019.64, "end": 38021.28, "probability": 0.9518 }, { "start": 38021.38, "end": 38025.33, "probability": 0.8799 }, { "start": 38025.8, "end": 38027.22, "probability": 0.8523 }, { "start": 38027.84, "end": 38030.6, "probability": 0.9931 }, { "start": 38031.36, "end": 38036.62, "probability": 0.9795 }, { "start": 38037.22, "end": 38040.52, "probability": 0.9927 }, { "start": 38041.52, "end": 38043.86, "probability": 0.9699 }, { "start": 38045.26, "end": 38047.62, "probability": 0.8479 }, { "start": 38047.66, "end": 38048.9, "probability": 0.6194 }, { "start": 38049.3, "end": 38053.98, "probability": 0.958 }, { "start": 38054.86, "end": 38057.14, "probability": 0.876 }, { "start": 38058.3, "end": 38063.0, "probability": 0.9752 }, { "start": 38063.6, "end": 38066.92, "probability": 0.923 }, { "start": 38067.56, "end": 38069.74, "probability": 0.9737 }, { "start": 38070.36, "end": 38072.78, "probability": 0.9973 }, { "start": 38073.94, "end": 38077.3, "probability": 0.9951 }, { "start": 38077.76, "end": 38080.96, "probability": 0.952 }, { "start": 38081.46, "end": 38082.46, "probability": 0.3608 }, { "start": 38082.58, "end": 38083.24, "probability": 0.4167 }, { "start": 38083.76, "end": 38085.06, "probability": 0.9415 }, { "start": 38085.24, "end": 38087.9, "probability": 0.7963 }, { "start": 38087.96, "end": 38090.3, "probability": 0.9793 }, { "start": 38090.68, "end": 38093.16, "probability": 0.98 }, { "start": 38093.68, "end": 38094.72, "probability": 0.6747 }, { "start": 38097.28, "end": 38098.18, "probability": 0.4802 }, { "start": 38098.22, "end": 38100.28, "probability": 0.9861 }, { "start": 38100.52, "end": 38102.0, "probability": 0.2034 }, { "start": 38102.06, "end": 38103.8, "probability": 0.7434 }, { "start": 38103.9, "end": 38106.2, "probability": 0.9912 }, { "start": 38106.96, "end": 38111.96, "probability": 0.9788 }, { "start": 38112.7, "end": 38116.34, "probability": 0.9931 }, { "start": 38116.58, "end": 38118.16, "probability": 0.9688 }, { "start": 38118.64, "end": 38119.62, "probability": 0.9649 }, { "start": 38120.2, "end": 38123.72, "probability": 0.7646 }, { "start": 38124.5, "end": 38126.38, "probability": 0.9904 }, { "start": 38126.96, "end": 38127.9, "probability": 0.9958 }, { "start": 38128.56, "end": 38132.5, "probability": 0.95 }, { "start": 38133.6, "end": 38134.4, "probability": 0.9479 }, { "start": 38135.58, "end": 38139.86, "probability": 0.9075 }, { "start": 38139.92, "end": 38140.87, "probability": 0.9495 }, { "start": 38141.6, "end": 38142.26, "probability": 0.8643 }, { "start": 38142.36, "end": 38144.4, "probability": 0.7293 }, { "start": 38144.82, "end": 38147.68, "probability": 0.7696 }, { "start": 38150.6, "end": 38154.2, "probability": 0.99 }, { "start": 38154.84, "end": 38158.66, "probability": 0.9827 }, { "start": 38159.6, "end": 38162.94, "probability": 0.9952 }, { "start": 38163.54, "end": 38163.64, "probability": 0.6816 }, { "start": 38164.7, "end": 38165.38, "probability": 0.9456 }, { "start": 38165.9, "end": 38168.46, "probability": 0.9949 }, { "start": 38169.16, "end": 38170.44, "probability": 0.8384 }, { "start": 38170.48, "end": 38171.77, "probability": 0.9111 }, { "start": 38172.28, "end": 38172.82, "probability": 0.4932 }, { "start": 38173.24, "end": 38174.04, "probability": 0.8176 }, { "start": 38174.92, "end": 38178.08, "probability": 0.969 }, { "start": 38178.16, "end": 38182.54, "probability": 0.988 }, { "start": 38182.54, "end": 38189.72, "probability": 0.9912 }, { "start": 38189.76, "end": 38191.22, "probability": 0.9958 }, { "start": 38192.52, "end": 38194.8, "probability": 0.9956 }, { "start": 38194.94, "end": 38197.26, "probability": 0.9961 }, { "start": 38197.46, "end": 38199.38, "probability": 0.9791 }, { "start": 38199.46, "end": 38201.26, "probability": 0.9863 }, { "start": 38201.26, "end": 38205.2, "probability": 0.9607 }, { "start": 38205.9, "end": 38212.98, "probability": 0.9329 }, { "start": 38213.82, "end": 38216.88, "probability": 0.9919 }, { "start": 38217.58, "end": 38217.86, "probability": 0.5558 }, { "start": 38218.68, "end": 38220.46, "probability": 0.7416 }, { "start": 38220.98, "end": 38221.5, "probability": 0.5007 }, { "start": 38222.14, "end": 38223.32, "probability": 0.6047 }, { "start": 38223.48, "end": 38223.88, "probability": 0.6786 }, { "start": 38224.1, "end": 38224.44, "probability": 0.9225 }, { "start": 38225.14, "end": 38225.26, "probability": 0.2425 }, { "start": 38225.26, "end": 38226.0, "probability": 0.6577 }, { "start": 38226.4, "end": 38226.76, "probability": 0.6316 }, { "start": 38227.38, "end": 38229.02, "probability": 0.95 }, { "start": 38230.32, "end": 38230.92, "probability": 0.7219 }, { "start": 38231.04, "end": 38232.83, "probability": 0.9522 }, { "start": 38234.72, "end": 38238.62, "probability": 0.8628 }, { "start": 38238.76, "end": 38243.88, "probability": 0.809 }, { "start": 38243.88, "end": 38250.44, "probability": 0.8416 }, { "start": 38251.86, "end": 38252.48, "probability": 0.5226 }, { "start": 38253.72, "end": 38254.96, "probability": 0.8461 }, { "start": 38256.38, "end": 38256.68, "probability": 0.5561 }, { "start": 38258.06, "end": 38259.06, "probability": 0.8654 }, { "start": 38268.56, "end": 38271.18, "probability": 0.5363 }, { "start": 38274.6, "end": 38275.06, "probability": 0.4433 }, { "start": 38275.18, "end": 38275.88, "probability": 0.5858 }, { "start": 38275.94, "end": 38276.54, "probability": 0.7354 }, { "start": 38276.84, "end": 38277.66, "probability": 0.6265 }, { "start": 38277.98, "end": 38278.78, "probability": 0.879 }, { "start": 38279.84, "end": 38282.68, "probability": 0.9322 }, { "start": 38283.88, "end": 38284.94, "probability": 0.9819 }, { "start": 38285.62, "end": 38288.68, "probability": 0.8904 }, { "start": 38289.32, "end": 38290.22, "probability": 0.9913 }, { "start": 38290.9, "end": 38291.78, "probability": 0.9771 }, { "start": 38292.76, "end": 38294.74, "probability": 0.8317 }, { "start": 38295.3, "end": 38296.54, "probability": 0.6626 }, { "start": 38297.08, "end": 38299.56, "probability": 0.9945 }, { "start": 38300.4, "end": 38301.92, "probability": 0.766 }, { "start": 38302.44, "end": 38304.3, "probability": 0.8276 }, { "start": 38305.16, "end": 38308.62, "probability": 0.8125 }, { "start": 38308.68, "end": 38311.0, "probability": 0.9664 }, { "start": 38312.46, "end": 38313.36, "probability": 0.968 }, { "start": 38313.5, "end": 38313.9, "probability": 0.874 }, { "start": 38314.0, "end": 38316.86, "probability": 0.8301 }, { "start": 38317.04, "end": 38321.18, "probability": 0.9683 }, { "start": 38321.72, "end": 38323.82, "probability": 0.7996 }, { "start": 38324.64, "end": 38326.02, "probability": 0.9465 }, { "start": 38326.08, "end": 38326.9, "probability": 0.7608 }, { "start": 38327.28, "end": 38327.92, "probability": 0.3804 }, { "start": 38328.04, "end": 38329.76, "probability": 0.8763 }, { "start": 38330.34, "end": 38333.04, "probability": 0.9572 }, { "start": 38335.86, "end": 38336.4, "probability": 0.0462 }, { "start": 38338.18, "end": 38339.56, "probability": 0.7114 }, { "start": 38340.16, "end": 38341.94, "probability": 0.9583 }, { "start": 38342.9, "end": 38344.38, "probability": 0.6691 }, { "start": 38345.28, "end": 38347.74, "probability": 0.8661 }, { "start": 38348.54, "end": 38350.42, "probability": 0.9633 }, { "start": 38351.98, "end": 38353.2, "probability": 0.8189 }, { "start": 38353.24, "end": 38353.56, "probability": 0.6451 }, { "start": 38353.62, "end": 38353.94, "probability": 0.7278 }, { "start": 38353.96, "end": 38354.33, "probability": 0.7142 }, { "start": 38354.8, "end": 38356.14, "probability": 0.9557 }, { "start": 38356.76, "end": 38361.2, "probability": 0.9473 }, { "start": 38361.26, "end": 38362.08, "probability": 0.9052 }, { "start": 38362.42, "end": 38363.39, "probability": 0.6392 }, { "start": 38363.56, "end": 38366.26, "probability": 0.9871 }, { "start": 38367.04, "end": 38369.88, "probability": 0.9828 }, { "start": 38371.08, "end": 38375.06, "probability": 0.9971 }, { "start": 38375.18, "end": 38376.12, "probability": 0.9823 }, { "start": 38376.22, "end": 38378.74, "probability": 0.9984 }, { "start": 38378.82, "end": 38380.92, "probability": 0.8838 }, { "start": 38382.5, "end": 38384.32, "probability": 0.6016 }, { "start": 38384.72, "end": 38387.28, "probability": 0.8907 }, { "start": 38388.04, "end": 38389.52, "probability": 0.9715 }, { "start": 38390.34, "end": 38390.75, "probability": 0.7522 }, { "start": 38391.6, "end": 38394.32, "probability": 0.9878 }, { "start": 38394.32, "end": 38398.16, "probability": 0.9441 }, { "start": 38398.8, "end": 38399.7, "probability": 0.944 }, { "start": 38400.44, "end": 38400.81, "probability": 0.9307 }, { "start": 38401.72, "end": 38402.16, "probability": 0.9438 }, { "start": 38403.52, "end": 38403.82, "probability": 0.7463 }, { "start": 38404.48, "end": 38404.99, "probability": 0.9551 }, { "start": 38418.24, "end": 38418.7, "probability": 0.4851 }, { "start": 38418.84, "end": 38419.94, "probability": 0.0947 }, { "start": 38419.94, "end": 38419.94, "probability": 0.2516 }, { "start": 38419.94, "end": 38419.94, "probability": 0.2231 }, { "start": 38419.94, "end": 38419.94, "probability": 0.159 }, { "start": 38419.94, "end": 38419.94, "probability": 0.1912 }, { "start": 38419.94, "end": 38422.17, "probability": 0.1165 }, { "start": 38422.42, "end": 38423.18, "probability": 0.5024 }, { "start": 38423.36, "end": 38423.58, "probability": 0.2489 }, { "start": 38423.64, "end": 38424.46, "probability": 0.802 }, { "start": 38424.6, "end": 38426.24, "probability": 0.9411 }, { "start": 38426.78, "end": 38429.24, "probability": 0.9134 }, { "start": 38429.3, "end": 38431.48, "probability": 0.7432 }, { "start": 38434.31, "end": 38435.32, "probability": 0.7427 }, { "start": 38435.48, "end": 38437.08, "probability": 0.7877 }, { "start": 38437.32, "end": 38437.42, "probability": 0.6491 }, { "start": 38438.5, "end": 38440.6, "probability": 0.8215 }, { "start": 38441.36, "end": 38442.26, "probability": 0.937 }, { "start": 38442.4, "end": 38442.64, "probability": 0.3983 }, { "start": 38442.8, "end": 38445.06, "probability": 0.8312 }, { "start": 38445.94, "end": 38446.84, "probability": 0.8762 }, { "start": 38448.02, "end": 38448.46, "probability": 0.3655 }, { "start": 38448.46, "end": 38451.76, "probability": 0.394 }, { "start": 38452.06, "end": 38452.99, "probability": 0.9941 }, { "start": 38453.3, "end": 38454.54, "probability": 0.8769 }, { "start": 38455.52, "end": 38456.08, "probability": 0.8381 }, { "start": 38456.22, "end": 38457.63, "probability": 0.3629 }, { "start": 38459.36, "end": 38462.98, "probability": 0.532 }, { "start": 38463.2, "end": 38463.6, "probability": 0.1111 }, { "start": 38465.08, "end": 38466.18, "probability": 0.8994 }, { "start": 38467.34, "end": 38468.42, "probability": 0.3859 }, { "start": 38468.54, "end": 38469.54, "probability": 0.3955 }, { "start": 38470.72, "end": 38471.5, "probability": 0.9493 }, { "start": 38471.62, "end": 38473.78, "probability": 0.9946 }, { "start": 38475.08, "end": 38481.4, "probability": 0.8569 }, { "start": 38482.82, "end": 38484.24, "probability": 0.619 }, { "start": 38488.07, "end": 38490.32, "probability": 0.99 }, { "start": 38491.0, "end": 38492.28, "probability": 0.5959 }, { "start": 38493.46, "end": 38496.44, "probability": 0.9133 }, { "start": 38498.7, "end": 38501.22, "probability": 0.671 }, { "start": 38504.06, "end": 38505.2, "probability": 0.9399 }, { "start": 38506.52, "end": 38508.02, "probability": 0.7842 }, { "start": 38508.9, "end": 38509.72, "probability": 0.9139 }, { "start": 38510.9, "end": 38513.5, "probability": 0.9934 }, { "start": 38514.36, "end": 38517.84, "probability": 0.9266 }, { "start": 38518.2, "end": 38520.82, "probability": 0.9634 }, { "start": 38521.18, "end": 38521.5, "probability": 0.9042 }, { "start": 38523.08, "end": 38527.32, "probability": 0.8247 }, { "start": 38529.04, "end": 38531.04, "probability": 0.999 }, { "start": 38531.96, "end": 38532.9, "probability": 0.8616 }, { "start": 38533.8, "end": 38536.32, "probability": 0.9937 }, { "start": 38536.46, "end": 38537.66, "probability": 0.9814 }, { "start": 38537.74, "end": 38539.34, "probability": 0.6676 }, { "start": 38539.96, "end": 38541.04, "probability": 0.6977 }, { "start": 38541.2, "end": 38544.64, "probability": 0.8476 }, { "start": 38545.44, "end": 38547.15, "probability": 0.8865 }, { "start": 38548.2, "end": 38551.26, "probability": 0.966 }, { "start": 38551.94, "end": 38552.24, "probability": 0.7198 }, { "start": 38553.06, "end": 38553.94, "probability": 0.893 }, { "start": 38556.48, "end": 38557.3, "probability": 0.9983 }, { "start": 38558.0, "end": 38561.84, "probability": 0.9927 }, { "start": 38562.88, "end": 38567.2, "probability": 0.998 }, { "start": 38567.74, "end": 38571.08, "probability": 0.9889 }, { "start": 38571.5, "end": 38572.74, "probability": 0.9257 }, { "start": 38572.96, "end": 38573.62, "probability": 0.5497 }, { "start": 38574.3, "end": 38575.58, "probability": 0.9717 }, { "start": 38576.64, "end": 38580.72, "probability": 0.9239 }, { "start": 38581.38, "end": 38582.96, "probability": 0.7172 }, { "start": 38583.92, "end": 38589.08, "probability": 0.9908 }, { "start": 38591.22, "end": 38595.6, "probability": 0.9434 }, { "start": 38596.34, "end": 38601.9, "probability": 0.9961 }, { "start": 38602.68, "end": 38604.58, "probability": 0.8716 }, { "start": 38605.3, "end": 38606.74, "probability": 0.9661 }, { "start": 38607.32, "end": 38608.6, "probability": 0.9672 }, { "start": 38609.32, "end": 38610.9, "probability": 0.9151 }, { "start": 38612.56, "end": 38613.2, "probability": 0.7507 }, { "start": 38614.24, "end": 38618.51, "probability": 0.9863 }, { "start": 38620.38, "end": 38622.54, "probability": 0.9974 }, { "start": 38622.74, "end": 38627.18, "probability": 0.9539 }, { "start": 38627.82, "end": 38629.24, "probability": 0.9978 }, { "start": 38631.02, "end": 38632.64, "probability": 0.9691 }, { "start": 38633.36, "end": 38634.96, "probability": 0.8292 }, { "start": 38635.88, "end": 38640.42, "probability": 0.9978 }, { "start": 38641.2, "end": 38645.16, "probability": 0.9583 }, { "start": 38645.84, "end": 38648.02, "probability": 0.9651 }, { "start": 38648.54, "end": 38650.64, "probability": 0.8409 }, { "start": 38651.16, "end": 38652.08, "probability": 0.8816 }, { "start": 38652.58, "end": 38653.56, "probability": 0.9719 }, { "start": 38654.0, "end": 38657.3, "probability": 0.9597 }, { "start": 38658.5, "end": 38659.4, "probability": 0.9724 }, { "start": 38661.42, "end": 38664.7, "probability": 0.9963 }, { "start": 38665.92, "end": 38666.5, "probability": 0.9756 }, { "start": 38667.16, "end": 38667.84, "probability": 0.8483 }, { "start": 38668.4, "end": 38672.68, "probability": 0.9916 }, { "start": 38674.58, "end": 38675.46, "probability": 0.7862 }, { "start": 38676.5, "end": 38677.26, "probability": 0.958 }, { "start": 38678.04, "end": 38680.12, "probability": 0.9525 }, { "start": 38681.22, "end": 38684.1, "probability": 0.9915 }, { "start": 38685.74, "end": 38687.74, "probability": 0.892 }, { "start": 38687.9, "end": 38689.2, "probability": 0.7996 }, { "start": 38690.64, "end": 38690.76, "probability": 0.7907 }, { "start": 38692.56, "end": 38693.4, "probability": 0.7574 }, { "start": 38694.56, "end": 38695.66, "probability": 0.9916 }, { "start": 38695.8, "end": 38702.42, "probability": 0.9836 }, { "start": 38702.58, "end": 38703.46, "probability": 0.8062 }, { "start": 38704.02, "end": 38705.1, "probability": 0.9419 }, { "start": 38705.2, "end": 38705.72, "probability": 0.4825 }, { "start": 38705.78, "end": 38706.08, "probability": 0.7714 }, { "start": 38706.18, "end": 38706.32, "probability": 0.6464 }, { "start": 38706.38, "end": 38706.98, "probability": 0.5997 }, { "start": 38707.5, "end": 38709.0, "probability": 0.9881 }, { "start": 38710.92, "end": 38714.2, "probability": 0.913 }, { "start": 38714.82, "end": 38716.58, "probability": 0.8358 }, { "start": 38717.2, "end": 38718.2, "probability": 0.9297 }, { "start": 38719.04, "end": 38724.06, "probability": 0.7872 }, { "start": 38725.6, "end": 38727.59, "probability": 0.7445 }, { "start": 38728.2, "end": 38728.76, "probability": 0.7187 }, { "start": 38728.98, "end": 38731.42, "probability": 0.774 }, { "start": 38731.52, "end": 38732.22, "probability": 0.7119 }, { "start": 38732.28, "end": 38733.66, "probability": 0.7152 }, { "start": 38734.34, "end": 38737.38, "probability": 0.9923 }, { "start": 38737.6, "end": 38738.16, "probability": 0.8134 }, { "start": 38738.8, "end": 38740.26, "probability": 0.9348 }, { "start": 38741.32, "end": 38743.94, "probability": 0.8345 }, { "start": 38744.06, "end": 38745.3, "probability": 0.7163 }, { "start": 38745.56, "end": 38746.62, "probability": 0.36 }, { "start": 38747.28, "end": 38747.96, "probability": 0.9116 }, { "start": 38748.52, "end": 38751.14, "probability": 0.8675 }, { "start": 38751.2, "end": 38754.76, "probability": 0.9189 }, { "start": 38755.48, "end": 38756.74, "probability": 0.8976 }, { "start": 38759.06, "end": 38761.92, "probability": 0.9976 }, { "start": 38762.8, "end": 38763.86, "probability": 0.9577 }, { "start": 38764.62, "end": 38768.34, "probability": 0.8462 }, { "start": 38769.02, "end": 38771.78, "probability": 0.8255 }, { "start": 38772.64, "end": 38775.72, "probability": 0.999 }, { "start": 38776.34, "end": 38779.8, "probability": 0.981 }, { "start": 38779.88, "end": 38783.74, "probability": 0.9929 }, { "start": 38785.4, "end": 38788.14, "probability": 0.954 }, { "start": 38789.02, "end": 38791.76, "probability": 0.8983 }, { "start": 38792.9, "end": 38796.6, "probability": 0.9819 }, { "start": 38797.46, "end": 38802.82, "probability": 0.7497 }, { "start": 38804.06, "end": 38806.58, "probability": 0.3674 }, { "start": 38807.1, "end": 38809.38, "probability": 0.9742 }, { "start": 38809.38, "end": 38813.12, "probability": 0.9665 }, { "start": 38813.88, "end": 38814.48, "probability": 0.5816 }, { "start": 38814.8, "end": 38816.9, "probability": 0.8518 }, { "start": 38817.02, "end": 38819.38, "probability": 0.9951 }, { "start": 38820.0, "end": 38824.18, "probability": 0.9209 }, { "start": 38825.5, "end": 38827.1, "probability": 0.9533 }, { "start": 38827.62, "end": 38829.27, "probability": 0.88 }, { "start": 38830.18, "end": 38832.54, "probability": 0.6201 }, { "start": 38833.68, "end": 38838.22, "probability": 0.9646 }, { "start": 38838.32, "end": 38839.54, "probability": 0.9236 }, { "start": 38840.02, "end": 38841.16, "probability": 0.9878 }, { "start": 38841.32, "end": 38842.15, "probability": 0.5534 }, { "start": 38842.84, "end": 38846.1, "probability": 0.7185 }, { "start": 38846.12, "end": 38846.58, "probability": 0.4168 }, { "start": 38846.88, "end": 38847.62, "probability": 0.7599 }, { "start": 38848.4, "end": 38850.12, "probability": 0.8127 }, { "start": 38850.2, "end": 38850.98, "probability": 0.9406 }, { "start": 38851.38, "end": 38856.62, "probability": 0.9915 }, { "start": 38857.34, "end": 38857.9, "probability": 0.6226 }, { "start": 38858.22, "end": 38861.38, "probability": 0.9457 }, { "start": 38863.2, "end": 38865.68, "probability": 0.9072 }, { "start": 38866.64, "end": 38870.16, "probability": 0.9824 }, { "start": 38870.68, "end": 38874.56, "probability": 0.9973 }, { "start": 38875.08, "end": 38876.86, "probability": 0.9968 }, { "start": 38877.46, "end": 38880.76, "probability": 0.9845 }, { "start": 38881.26, "end": 38882.54, "probability": 0.9555 }, { "start": 38882.86, "end": 38883.74, "probability": 0.9585 }, { "start": 38884.04, "end": 38887.02, "probability": 0.9932 }, { "start": 38887.76, "end": 38888.2, "probability": 0.8722 }, { "start": 38889.2, "end": 38889.6, "probability": 0.7661 }, { "start": 38890.32, "end": 38892.19, "probability": 0.9927 }, { "start": 38893.3, "end": 38894.27, "probability": 0.9546 }, { "start": 38894.44, "end": 38897.6, "probability": 0.9505 }, { "start": 38899.06, "end": 38900.1, "probability": 0.9493 }, { "start": 38900.74, "end": 38903.16, "probability": 0.9729 }, { "start": 38903.82, "end": 38904.22, "probability": 0.9621 }, { "start": 38905.24, "end": 38906.4, "probability": 0.9482 }, { "start": 38907.12, "end": 38911.76, "probability": 0.711 }, { "start": 38912.76, "end": 38915.88, "probability": 0.7813 }, { "start": 38917.0, "end": 38920.26, "probability": 0.9546 }, { "start": 38920.34, "end": 38920.9, "probability": 0.6627 }, { "start": 38920.92, "end": 38921.2, "probability": 0.682 }, { "start": 38922.48, "end": 38925.16, "probability": 0.8126 }, { "start": 38926.16, "end": 38927.26, "probability": 0.9644 }, { "start": 38927.88, "end": 38929.24, "probability": 0.8984 }, { "start": 38929.8, "end": 38932.46, "probability": 0.8246 }, { "start": 38933.38, "end": 38934.76, "probability": 0.9814 }, { "start": 38935.62, "end": 38937.74, "probability": 0.9629 }, { "start": 38938.26, "end": 38938.9, "probability": 0.9877 }, { "start": 38939.96, "end": 38940.24, "probability": 0.8599 }, { "start": 38941.66, "end": 38943.02, "probability": 0.9976 }, { "start": 38943.7, "end": 38944.44, "probability": 0.7749 }, { "start": 38945.42, "end": 38946.48, "probability": 0.9937 }, { "start": 38946.72, "end": 38947.68, "probability": 0.9967 }, { "start": 38948.54, "end": 38951.1, "probability": 0.9987 }, { "start": 38952.12, "end": 38952.96, "probability": 0.8091 }, { "start": 38953.5, "end": 38954.72, "probability": 0.9743 }, { "start": 38955.2, "end": 38957.12, "probability": 0.9716 }, { "start": 38957.54, "end": 38958.64, "probability": 0.9958 }, { "start": 38959.18, "end": 38959.78, "probability": 0.9874 }, { "start": 38960.44, "end": 38965.22, "probability": 0.9727 }, { "start": 38965.92, "end": 38969.98, "probability": 0.9914 }, { "start": 38969.98, "end": 38975.4, "probability": 0.9982 }, { "start": 38976.18, "end": 38979.62, "probability": 0.998 }, { "start": 38981.0, "end": 38984.32, "probability": 0.9778 }, { "start": 38985.16, "end": 38985.92, "probability": 0.9973 }, { "start": 38986.64, "end": 38988.34, "probability": 0.9108 }, { "start": 38989.08, "end": 38990.02, "probability": 0.9981 }, { "start": 38991.04, "end": 38991.14, "probability": 0.9346 }, { "start": 38992.62, "end": 38994.44, "probability": 0.9735 }, { "start": 38997.72, "end": 39004.78, "probability": 0.9987 }, { "start": 39004.94, "end": 39005.52, "probability": 0.9795 }, { "start": 39005.54, "end": 39006.14, "probability": 0.9878 }, { "start": 39006.2, "end": 39009.44, "probability": 0.9124 }, { "start": 39010.06, "end": 39012.8, "probability": 0.9744 }, { "start": 39013.1, "end": 39013.8, "probability": 0.8317 }, { "start": 39014.54, "end": 39016.0, "probability": 0.7701 }, { "start": 39016.64, "end": 39018.34, "probability": 0.9952 }, { "start": 39019.12, "end": 39019.94, "probability": 0.9454 }, { "start": 39021.2, "end": 39027.52, "probability": 0.9815 }, { "start": 39027.92, "end": 39028.97, "probability": 0.5297 }, { "start": 39029.08, "end": 39030.24, "probability": 0.9937 }, { "start": 39030.34, "end": 39032.66, "probability": 0.9317 }, { "start": 39033.74, "end": 39037.48, "probability": 0.9573 }, { "start": 39038.4, "end": 39040.62, "probability": 0.9224 }, { "start": 39041.24, "end": 39043.32, "probability": 0.9691 }, { "start": 39044.46, "end": 39049.06, "probability": 0.9933 }, { "start": 39049.16, "end": 39050.44, "probability": 0.9785 }, { "start": 39050.98, "end": 39052.08, "probability": 0.8154 }, { "start": 39052.66, "end": 39052.94, "probability": 0.6699 }, { "start": 39053.26, "end": 39056.24, "probability": 0.9847 }, { "start": 39057.66, "end": 39059.86, "probability": 0.892 }, { "start": 39060.84, "end": 39063.32, "probability": 0.9971 }, { "start": 39064.36, "end": 39066.92, "probability": 0.826 }, { "start": 39067.92, "end": 39069.82, "probability": 0.7181 }, { "start": 39070.42, "end": 39072.94, "probability": 0.9979 }, { "start": 39073.72, "end": 39075.54, "probability": 0.9922 }, { "start": 39076.32, "end": 39077.98, "probability": 0.9619 }, { "start": 39078.4, "end": 39080.46, "probability": 0.9749 }, { "start": 39080.52, "end": 39081.22, "probability": 0.7948 }, { "start": 39081.94, "end": 39083.9, "probability": 0.7472 }, { "start": 39084.1, "end": 39085.38, "probability": 0.8788 }, { "start": 39085.84, "end": 39086.92, "probability": 0.9565 }, { "start": 39087.12, "end": 39088.26, "probability": 0.9152 }, { "start": 39088.86, "end": 39089.9, "probability": 0.9668 }, { "start": 39091.16, "end": 39093.02, "probability": 0.9842 }, { "start": 39094.05, "end": 39094.74, "probability": 0.2267 }, { "start": 39094.82, "end": 39098.54, "probability": 0.9444 }, { "start": 39099.3, "end": 39099.4, "probability": 0.0811 }, { "start": 39099.62, "end": 39100.1, "probability": 0.8933 }, { "start": 39100.9, "end": 39101.29, "probability": 0.4849 }, { "start": 39102.06, "end": 39102.52, "probability": 0.4978 }, { "start": 39103.22, "end": 39106.94, "probability": 0.9678 }, { "start": 39108.42, "end": 39114.8, "probability": 0.9678 }, { "start": 39115.4, "end": 39119.22, "probability": 0.9958 }, { "start": 39119.76, "end": 39127.82, "probability": 0.6164 }, { "start": 39128.42, "end": 39133.54, "probability": 0.9105 }, { "start": 39134.28, "end": 39137.3, "probability": 0.9581 }, { "start": 39137.92, "end": 39142.32, "probability": 0.9947 }, { "start": 39143.42, "end": 39146.02, "probability": 0.9788 }, { "start": 39147.02, "end": 39151.44, "probability": 0.8121 }, { "start": 39152.14, "end": 39154.4, "probability": 0.9951 }, { "start": 39154.4, "end": 39157.28, "probability": 0.9985 }, { "start": 39158.76, "end": 39160.08, "probability": 0.8469 }, { "start": 39160.64, "end": 39161.92, "probability": 0.7712 }, { "start": 39162.56, "end": 39164.04, "probability": 0.9841 }, { "start": 39165.2, "end": 39167.08, "probability": 0.8779 }, { "start": 39167.66, "end": 39169.72, "probability": 0.9591 }, { "start": 39170.54, "end": 39172.78, "probability": 0.9971 }, { "start": 39173.48, "end": 39175.72, "probability": 0.6733 }, { "start": 39176.28, "end": 39177.22, "probability": 0.7914 }, { "start": 39177.54, "end": 39178.58, "probability": 0.8449 }, { "start": 39178.82, "end": 39179.62, "probability": 0.9448 }, { "start": 39180.06, "end": 39181.3, "probability": 0.6844 }, { "start": 39182.8, "end": 39186.03, "probability": 0.7254 }, { "start": 39187.86, "end": 39188.46, "probability": 0.998 }, { "start": 39189.08, "end": 39189.7, "probability": 0.7901 }, { "start": 39190.26, "end": 39192.02, "probability": 0.7125 }, { "start": 39192.56, "end": 39193.56, "probability": 0.571 }, { "start": 39193.96, "end": 39194.3, "probability": 0.6517 }, { "start": 39194.4, "end": 39195.53, "probability": 0.9871 }, { "start": 39195.96, "end": 39196.2, "probability": 0.6412 }, { "start": 39197.56, "end": 39198.6, "probability": 0.4245 }, { "start": 39198.8, "end": 39200.92, "probability": 0.9814 }, { "start": 39201.46, "end": 39204.02, "probability": 0.8388 }, { "start": 39204.72, "end": 39205.2, "probability": 0.7674 }, { "start": 39205.94, "end": 39209.52, "probability": 0.9797 }, { "start": 39209.62, "end": 39210.86, "probability": 0.919 }, { "start": 39211.36, "end": 39212.83, "probability": 0.8616 }, { "start": 39213.38, "end": 39213.6, "probability": 0.507 }, { "start": 39214.36, "end": 39214.58, "probability": 0.6037 }, { "start": 39214.68, "end": 39216.4, "probability": 0.9917 }, { "start": 39218.7, "end": 39222.12, "probability": 0.9446 }, { "start": 39222.7, "end": 39224.38, "probability": 0.9457 }, { "start": 39224.48, "end": 39225.66, "probability": 0.9714 }, { "start": 39226.7, "end": 39227.26, "probability": 0.7031 }, { "start": 39229.04, "end": 39229.74, "probability": 0.9796 }, { "start": 39230.58, "end": 39232.18, "probability": 0.9601 }, { "start": 39233.42, "end": 39233.58, "probability": 0.5205 }, { "start": 39233.94, "end": 39237.28, "probability": 0.9817 }, { "start": 39237.36, "end": 39238.56, "probability": 0.9428 }, { "start": 39239.14, "end": 39241.58, "probability": 0.9704 }, { "start": 39242.16, "end": 39243.54, "probability": 0.9109 }, { "start": 39243.78, "end": 39245.16, "probability": 0.8783 }, { "start": 39245.78, "end": 39246.62, "probability": 0.9284 }, { "start": 39247.28, "end": 39247.88, "probability": 0.9714 }, { "start": 39248.56, "end": 39249.38, "probability": 0.8246 }, { "start": 39250.0, "end": 39254.06, "probability": 0.9497 }, { "start": 39254.42, "end": 39255.24, "probability": 0.6964 }, { "start": 39255.8, "end": 39258.4, "probability": 0.9807 }, { "start": 39259.02, "end": 39261.02, "probability": 0.9255 }, { "start": 39261.62, "end": 39262.78, "probability": 0.6961 }, { "start": 39263.0, "end": 39265.18, "probability": 0.7588 }, { "start": 39265.24, "end": 39267.1, "probability": 0.9386 }, { "start": 39290.2, "end": 39294.29, "probability": 0.745 }, { "start": 39295.48, "end": 39298.66, "probability": 0.9051 }, { "start": 39299.64, "end": 39301.42, "probability": 0.9524 }, { "start": 39302.6, "end": 39309.6, "probability": 0.9852 }, { "start": 39311.08, "end": 39313.16, "probability": 0.9369 }, { "start": 39313.26, "end": 39316.7, "probability": 0.8156 }, { "start": 39317.22, "end": 39319.18, "probability": 0.9417 }, { "start": 39319.26, "end": 39320.02, "probability": 0.9621 }, { "start": 39320.04, "end": 39321.36, "probability": 0.9747 }, { "start": 39321.46, "end": 39322.55, "probability": 0.9818 }, { "start": 39323.44, "end": 39325.04, "probability": 0.9932 }, { "start": 39325.1, "end": 39325.56, "probability": 0.8711 }, { "start": 39325.68, "end": 39326.62, "probability": 0.7917 }, { "start": 39326.76, "end": 39328.2, "probability": 0.9922 }, { "start": 39329.1, "end": 39329.92, "probability": 0.8859 }, { "start": 39330.9, "end": 39336.06, "probability": 0.9853 }, { "start": 39337.48, "end": 39340.58, "probability": 0.998 }, { "start": 39340.66, "end": 39341.63, "probability": 0.93 }, { "start": 39342.98, "end": 39345.38, "probability": 0.993 }, { "start": 39346.02, "end": 39348.86, "probability": 0.9886 }, { "start": 39349.88, "end": 39351.52, "probability": 0.8634 }, { "start": 39351.6, "end": 39351.84, "probability": 0.3359 }, { "start": 39351.96, "end": 39352.58, "probability": 0.736 }, { "start": 39352.62, "end": 39354.8, "probability": 0.9282 }, { "start": 39356.02, "end": 39360.44, "probability": 0.9583 }, { "start": 39361.92, "end": 39367.96, "probability": 0.9788 }, { "start": 39368.94, "end": 39372.32, "probability": 0.9587 }, { "start": 39372.96, "end": 39375.58, "probability": 0.8393 }, { "start": 39376.56, "end": 39378.94, "probability": 0.9951 }, { "start": 39379.78, "end": 39387.3, "probability": 0.805 }, { "start": 39387.68, "end": 39389.38, "probability": 0.6562 }, { "start": 39389.72, "end": 39391.2, "probability": 0.8859 }, { "start": 39394.0, "end": 39396.67, "probability": 0.9243 }, { "start": 39397.96, "end": 39401.94, "probability": 0.8902 }, { "start": 39402.9, "end": 39404.46, "probability": 0.9403 }, { "start": 39405.06, "end": 39408.22, "probability": 0.7747 }, { "start": 39408.8, "end": 39411.16, "probability": 0.9819 }, { "start": 39411.3, "end": 39412.84, "probability": 0.8438 }, { "start": 39413.74, "end": 39416.76, "probability": 0.9642 }, { "start": 39416.86, "end": 39423.0, "probability": 0.9774 }, { "start": 39423.06, "end": 39426.31, "probability": 0.8022 }, { "start": 39427.2, "end": 39431.0, "probability": 0.9612 }, { "start": 39436.06, "end": 39440.86, "probability": 0.9911 }, { "start": 39440.86, "end": 39443.78, "probability": 0.9353 }, { "start": 39444.0, "end": 39448.9, "probability": 0.8184 }, { "start": 39449.5, "end": 39451.32, "probability": 0.8141 }, { "start": 39451.66, "end": 39453.46, "probability": 0.9996 }, { "start": 39454.36, "end": 39454.52, "probability": 0.9395 }, { "start": 39456.16, "end": 39459.24, "probability": 0.7254 }, { "start": 39460.52, "end": 39468.26, "probability": 0.991 }, { "start": 39468.36, "end": 39469.48, "probability": 0.9245 }, { "start": 39470.28, "end": 39475.92, "probability": 0.8143 }, { "start": 39476.82, "end": 39478.2, "probability": 0.7279 }, { "start": 39479.12, "end": 39479.98, "probability": 0.5679 }, { "start": 39480.34, "end": 39481.4, "probability": 0.7691 }, { "start": 39482.02, "end": 39485.88, "probability": 0.9109 }, { "start": 39486.52, "end": 39488.02, "probability": 0.8948 }, { "start": 39488.54, "end": 39489.56, "probability": 0.9548 }, { "start": 39489.82, "end": 39489.98, "probability": 0.5933 }, { "start": 39490.0, "end": 39496.54, "probability": 0.9963 }, { "start": 39497.36, "end": 39498.98, "probability": 0.8464 }, { "start": 39499.38, "end": 39503.98, "probability": 0.9597 }, { "start": 39506.48, "end": 39509.56, "probability": 0.998 }, { "start": 39509.86, "end": 39513.54, "probability": 0.835 }, { "start": 39514.08, "end": 39514.1, "probability": 0.0639 }, { "start": 39514.1, "end": 39515.98, "probability": 0.9214 }, { "start": 39516.42, "end": 39523.12, "probability": 0.8973 }, { "start": 39523.26, "end": 39525.9, "probability": 0.9619 }, { "start": 39525.96, "end": 39527.46, "probability": 0.9163 }, { "start": 39527.54, "end": 39528.8, "probability": 0.9958 }, { "start": 39529.48, "end": 39532.26, "probability": 0.7529 }, { "start": 39532.32, "end": 39534.36, "probability": 0.818 }, { "start": 39534.88, "end": 39536.18, "probability": 0.9732 }, { "start": 39536.32, "end": 39538.88, "probability": 0.9582 }, { "start": 39539.42, "end": 39542.46, "probability": 0.9758 }, { "start": 39542.88, "end": 39543.74, "probability": 0.7545 }, { "start": 39544.16, "end": 39544.58, "probability": 0.7903 }, { "start": 39544.86, "end": 39545.26, "probability": 0.9069 }, { "start": 39545.38, "end": 39545.7, "probability": 0.8121 }, { "start": 39545.8, "end": 39547.9, "probability": 0.988 }, { "start": 39549.11, "end": 39552.56, "probability": 0.9958 }, { "start": 39552.56, "end": 39555.3, "probability": 0.9966 }, { "start": 39555.9, "end": 39558.66, "probability": 0.8002 }, { "start": 39559.3, "end": 39559.38, "probability": 0.524 }, { "start": 39559.48, "end": 39561.4, "probability": 0.9364 }, { "start": 39561.54, "end": 39562.2, "probability": 0.8785 }, { "start": 39563.32, "end": 39564.7, "probability": 0.8042 }, { "start": 39564.92, "end": 39566.76, "probability": 0.9567 }, { "start": 39567.26, "end": 39568.28, "probability": 0.7499 }, { "start": 39568.28, "end": 39568.88, "probability": 0.4288 }, { "start": 39569.56, "end": 39572.16, "probability": 0.9023 }, { "start": 39572.52, "end": 39574.24, "probability": 0.6012 }, { "start": 39574.8, "end": 39578.55, "probability": 0.979 }, { "start": 39579.24, "end": 39580.94, "probability": 0.9207 }, { "start": 39581.8, "end": 39585.38, "probability": 0.7822 }, { "start": 39586.42, "end": 39587.44, "probability": 0.819 }, { "start": 39587.48, "end": 39587.98, "probability": 0.8293 }, { "start": 39588.18, "end": 39588.36, "probability": 0.5718 }, { "start": 39588.46, "end": 39589.98, "probability": 0.9548 }, { "start": 39590.0, "end": 39590.86, "probability": 0.7954 }, { "start": 39590.96, "end": 39591.68, "probability": 0.6391 }, { "start": 39591.7, "end": 39592.48, "probability": 0.7874 }, { "start": 39592.86, "end": 39593.8, "probability": 0.984 }, { "start": 39594.2, "end": 39595.18, "probability": 0.5558 }, { "start": 39595.8, "end": 39597.94, "probability": 0.998 }, { "start": 39597.94, "end": 39600.34, "probability": 0.885 }, { "start": 39600.6, "end": 39601.14, "probability": 0.9079 }, { "start": 39601.44, "end": 39601.86, "probability": 0.6913 }, { "start": 39602.48, "end": 39603.36, "probability": 0.9302 }, { "start": 39603.54, "end": 39604.84, "probability": 0.9773 }, { "start": 39604.86, "end": 39605.26, "probability": 0.834 }, { "start": 39605.56, "end": 39607.0, "probability": 0.9921 }, { "start": 39607.34, "end": 39608.7, "probability": 0.709 }, { "start": 39609.08, "end": 39609.84, "probability": 0.9614 }, { "start": 39610.44, "end": 39615.6, "probability": 0.9639 }, { "start": 39615.8, "end": 39618.0, "probability": 0.9988 }, { "start": 39618.0, "end": 39620.41, "probability": 0.7099 }, { "start": 39621.36, "end": 39626.36, "probability": 0.9863 }, { "start": 39626.42, "end": 39630.61, "probability": 0.9907 }, { "start": 39630.8, "end": 39631.98, "probability": 0.7742 }, { "start": 39632.7, "end": 39635.84, "probability": 0.965 }, { "start": 39636.66, "end": 39640.38, "probability": 0.9932 }, { "start": 39640.44, "end": 39643.76, "probability": 0.9824 }, { "start": 39643.86, "end": 39644.44, "probability": 0.6992 }, { "start": 39644.56, "end": 39647.94, "probability": 0.9898 }, { "start": 39648.06, "end": 39649.46, "probability": 0.8857 }, { "start": 39649.66, "end": 39650.24, "probability": 0.4687 }, { "start": 39651.3, "end": 39655.34, "probability": 0.8893 }, { "start": 39655.34, "end": 39658.04, "probability": 0.9941 }, { "start": 39659.1, "end": 39664.3, "probability": 0.9883 }, { "start": 39665.84, "end": 39669.66, "probability": 0.9871 }, { "start": 39669.74, "end": 39670.0, "probability": 0.7811 }, { "start": 39670.42, "end": 39674.16, "probability": 0.8658 }, { "start": 39674.36, "end": 39677.74, "probability": 0.983 }, { "start": 39678.06, "end": 39680.32, "probability": 0.9948 }, { "start": 39680.6, "end": 39682.58, "probability": 0.9467 }, { "start": 39682.7, "end": 39683.54, "probability": 0.9657 }, { "start": 39684.3, "end": 39687.84, "probability": 0.9041 }, { "start": 39688.34, "end": 39691.92, "probability": 0.9182 }, { "start": 39692.42, "end": 39695.22, "probability": 0.8805 }, { "start": 39695.76, "end": 39698.08, "probability": 0.6336 }, { "start": 39698.12, "end": 39699.1, "probability": 0.9743 }, { "start": 39699.48, "end": 39700.5, "probability": 0.9905 }, { "start": 39700.7, "end": 39701.3, "probability": 0.8504 }, { "start": 39701.36, "end": 39702.44, "probability": 0.9488 }, { "start": 39702.96, "end": 39705.54, "probability": 0.9567 }, { "start": 39706.88, "end": 39708.02, "probability": 0.9395 }, { "start": 39708.12, "end": 39709.02, "probability": 0.98 }, { "start": 39709.46, "end": 39710.28, "probability": 0.6775 }, { "start": 39710.32, "end": 39710.88, "probability": 0.9501 }, { "start": 39711.3, "end": 39712.0, "probability": 0.7429 }, { "start": 39712.0, "end": 39713.52, "probability": 0.9813 }, { "start": 39714.26, "end": 39717.28, "probability": 0.9697 }, { "start": 39718.48, "end": 39719.5, "probability": 0.9144 }, { "start": 39720.14, "end": 39721.48, "probability": 0.7925 }, { "start": 39721.64, "end": 39723.01, "probability": 0.8801 }, { "start": 39723.76, "end": 39724.96, "probability": 0.9773 }, { "start": 39725.06, "end": 39726.0, "probability": 0.8778 }, { "start": 39726.06, "end": 39726.48, "probability": 0.6915 }, { "start": 39726.62, "end": 39726.94, "probability": 0.5426 }, { "start": 39727.2, "end": 39729.08, "probability": 0.9625 }, { "start": 39729.22, "end": 39729.8, "probability": 0.4933 }, { "start": 39729.88, "end": 39730.42, "probability": 0.6409 }, { "start": 39731.08, "end": 39732.62, "probability": 0.9471 }, { "start": 39733.04, "end": 39734.18, "probability": 0.9774 }, { "start": 39734.48, "end": 39735.42, "probability": 0.7773 }, { "start": 39735.5, "end": 39736.28, "probability": 0.9852 }, { "start": 39736.76, "end": 39737.26, "probability": 0.9708 }, { "start": 39737.94, "end": 39738.6, "probability": 0.9566 }, { "start": 39738.62, "end": 39740.64, "probability": 0.9255 }, { "start": 39740.78, "end": 39741.54, "probability": 0.9684 }, { "start": 39741.82, "end": 39742.52, "probability": 0.9706 }, { "start": 39742.86, "end": 39743.94, "probability": 0.1728 }, { "start": 39744.14, "end": 39744.75, "probability": 0.5322 }, { "start": 39745.3, "end": 39747.24, "probability": 0.623 }, { "start": 39747.28, "end": 39749.12, "probability": 0.86 }, { "start": 39749.22, "end": 39750.33, "probability": 0.9819 }, { "start": 39751.14, "end": 39754.7, "probability": 0.7962 }, { "start": 39754.82, "end": 39756.2, "probability": 0.9209 }, { "start": 39757.26, "end": 39764.16, "probability": 0.709 }, { "start": 39765.08, "end": 39766.53, "probability": 0.9204 }, { "start": 39767.88, "end": 39770.98, "probability": 0.4998 }, { "start": 39771.1, "end": 39776.14, "probability": 0.9159 }, { "start": 39776.84, "end": 39778.8, "probability": 0.9888 }, { "start": 39779.66, "end": 39785.04, "probability": 0.9162 }, { "start": 39785.1, "end": 39786.72, "probability": 0.9407 }, { "start": 39786.86, "end": 39789.2, "probability": 0.9993 }, { "start": 39792.36, "end": 39795.4, "probability": 0.9888 }, { "start": 39795.8, "end": 39797.1, "probability": 0.7058 }, { "start": 39797.2, "end": 39799.79, "probability": 0.9413 }, { "start": 39800.38, "end": 39803.04, "probability": 0.6138 }, { "start": 39803.34, "end": 39807.74, "probability": 0.9243 }, { "start": 39807.74, "end": 39812.08, "probability": 0.929 }, { "start": 39812.92, "end": 39816.9, "probability": 0.9403 }, { "start": 39817.06, "end": 39820.02, "probability": 0.8525 }, { "start": 39821.02, "end": 39823.42, "probability": 0.9917 }, { "start": 39823.5, "end": 39824.48, "probability": 0.868 }, { "start": 39824.82, "end": 39825.81, "probability": 0.3802 }, { "start": 39826.46, "end": 39827.28, "probability": 0.3131 }, { "start": 39828.06, "end": 39829.84, "probability": 0.8979 }, { "start": 39830.32, "end": 39833.74, "probability": 0.8995 }, { "start": 39834.76, "end": 39840.64, "probability": 0.973 }, { "start": 39840.76, "end": 39843.64, "probability": 0.4166 }, { "start": 39845.04, "end": 39851.14, "probability": 0.9976 }, { "start": 39851.14, "end": 39855.82, "probability": 0.9943 }, { "start": 39856.54, "end": 39860.56, "probability": 0.9972 }, { "start": 39860.78, "end": 39862.2, "probability": 0.9947 }, { "start": 39862.82, "end": 39864.18, "probability": 0.9507 }, { "start": 39864.42, "end": 39868.92, "probability": 0.9058 }, { "start": 39869.48, "end": 39874.02, "probability": 0.9212 }, { "start": 39874.38, "end": 39876.68, "probability": 0.9181 }, { "start": 39877.24, "end": 39878.92, "probability": 0.9729 }, { "start": 39879.54, "end": 39881.06, "probability": 0.9164 }, { "start": 39882.74, "end": 39883.94, "probability": 0.5214 }, { "start": 39884.0, "end": 39887.2, "probability": 0.9919 }, { "start": 39887.22, "end": 39890.56, "probability": 0.973 }, { "start": 39890.96, "end": 39893.1, "probability": 0.9746 }, { "start": 39893.26, "end": 39894.74, "probability": 0.9208 }, { "start": 39895.34, "end": 39897.1, "probability": 0.8879 }, { "start": 39906.28, "end": 39906.58, "probability": 0.7584 }, { "start": 39907.38, "end": 39907.38, "probability": 0.0391 }, { "start": 39907.38, "end": 39907.38, "probability": 0.0611 }, { "start": 39907.38, "end": 39907.92, "probability": 0.0841 }, { "start": 39908.06, "end": 39910.34, "probability": 0.7644 }, { "start": 39910.46, "end": 39911.08, "probability": 0.7967 }, { "start": 39911.3, "end": 39914.58, "probability": 0.8294 }, { "start": 39914.7, "end": 39919.08, "probability": 0.9782 }, { "start": 39919.8, "end": 39920.32, "probability": 0.5186 }, { "start": 39920.38, "end": 39921.12, "probability": 0.8074 }, { "start": 39921.52, "end": 39922.02, "probability": 0.9635 }, { "start": 39960.1, "end": 39961.76, "probability": 0.7922 }, { "start": 39963.74, "end": 39964.17, "probability": 0.8701 }, { "start": 39966.14, "end": 39969.36, "probability": 0.9644 }, { "start": 39970.5, "end": 39972.22, "probability": 0.9043 }, { "start": 39972.86, "end": 39973.54, "probability": 0.2068 }, { "start": 39974.5, "end": 39979.04, "probability": 0.8233 }, { "start": 39980.02, "end": 39980.98, "probability": 0.8408 }, { "start": 39981.1, "end": 39982.64, "probability": 0.9633 }, { "start": 39982.88, "end": 39984.92, "probability": 0.902 }, { "start": 39985.48, "end": 39989.44, "probability": 0.9661 }, { "start": 39991.44, "end": 39994.02, "probability": 0.8975 }, { "start": 39994.88, "end": 39998.98, "probability": 0.9871 }, { "start": 39999.8, "end": 40001.62, "probability": 0.8568 }, { "start": 40001.66, "end": 40006.36, "probability": 0.9977 }, { "start": 40006.58, "end": 40011.74, "probability": 0.9933 }, { "start": 40012.42, "end": 40012.9, "probability": 0.5372 }, { "start": 40014.94, "end": 40016.82, "probability": 0.9366 }, { "start": 40017.16, "end": 40019.16, "probability": 0.9656 }, { "start": 40019.88, "end": 40027.12, "probability": 0.9935 }, { "start": 40028.0, "end": 40032.7, "probability": 0.9956 }, { "start": 40032.7, "end": 40038.04, "probability": 0.9979 }, { "start": 40038.58, "end": 40041.78, "probability": 0.9793 }, { "start": 40042.82, "end": 40046.74, "probability": 0.9974 }, { "start": 40046.74, "end": 40050.12, "probability": 0.9977 }, { "start": 40050.82, "end": 40051.76, "probability": 0.6974 }, { "start": 40052.28, "end": 40054.92, "probability": 0.9978 }, { "start": 40055.64, "end": 40060.52, "probability": 0.9893 }, { "start": 40061.76, "end": 40064.8, "probability": 0.9722 }, { "start": 40065.66, "end": 40068.08, "probability": 0.9924 }, { "start": 40068.88, "end": 40071.22, "probability": 0.9626 }, { "start": 40071.5, "end": 40077.76, "probability": 0.9675 }, { "start": 40078.5, "end": 40084.5, "probability": 0.8315 }, { "start": 40085.36, "end": 40089.44, "probability": 0.9884 }, { "start": 40090.14, "end": 40095.98, "probability": 0.9775 }, { "start": 40096.6, "end": 40097.1, "probability": 0.9062 }, { "start": 40097.82, "end": 40099.48, "probability": 0.9818 }, { "start": 40101.18, "end": 40106.74, "probability": 0.9934 }, { "start": 40106.74, "end": 40110.84, "probability": 0.9974 }, { "start": 40111.6, "end": 40115.2, "probability": 0.9925 }, { "start": 40115.78, "end": 40120.24, "probability": 0.9968 }, { "start": 40120.74, "end": 40123.46, "probability": 0.9849 }, { "start": 40124.12, "end": 40125.04, "probability": 0.758 }, { "start": 40125.58, "end": 40128.68, "probability": 0.9984 }, { "start": 40130.46, "end": 40132.98, "probability": 0.801 }, { "start": 40133.64, "end": 40136.3, "probability": 0.9939 }, { "start": 40137.14, "end": 40138.72, "probability": 0.9838 }, { "start": 40139.4, "end": 40140.86, "probability": 0.978 }, { "start": 40141.52, "end": 40143.7, "probability": 0.9604 }, { "start": 40144.3, "end": 40147.6, "probability": 0.8437 }, { "start": 40148.72, "end": 40150.2, "probability": 0.51 }, { "start": 40150.92, "end": 40153.5, "probability": 0.85 }, { "start": 40154.42, "end": 40155.78, "probability": 0.9644 }, { "start": 40156.48, "end": 40157.9, "probability": 0.9869 }, { "start": 40158.46, "end": 40159.42, "probability": 0.769 }, { "start": 40159.92, "end": 40161.28, "probability": 0.9802 }, { "start": 40161.36, "end": 40162.2, "probability": 0.9378 }, { "start": 40162.28, "end": 40164.36, "probability": 0.9824 }, { "start": 40175.96, "end": 40176.3, "probability": 0.0549 }, { "start": 40176.3, "end": 40176.3, "probability": 0.025 }, { "start": 40176.3, "end": 40179.4, "probability": 0.9102 }, { "start": 40180.18, "end": 40182.62, "probability": 0.9487 }, { "start": 40183.14, "end": 40185.74, "probability": 0.9492 }, { "start": 40186.46, "end": 40189.04, "probability": 0.9908 }, { "start": 40189.84, "end": 40193.74, "probability": 0.9945 }, { "start": 40194.3, "end": 40195.92, "probability": 0.9936 }, { "start": 40196.76, "end": 40200.54, "probability": 0.9279 }, { "start": 40201.14, "end": 40203.72, "probability": 0.9659 }, { "start": 40204.76, "end": 40208.12, "probability": 0.9834 }, { "start": 40208.7, "end": 40210.96, "probability": 0.5877 }, { "start": 40211.96, "end": 40213.82, "probability": 0.9019 }, { "start": 40214.56, "end": 40217.82, "probability": 0.9836 }, { "start": 40218.54, "end": 40221.58, "probability": 0.9298 }, { "start": 40222.2, "end": 40224.94, "probability": 0.9964 }, { "start": 40225.6, "end": 40228.36, "probability": 0.958 }, { "start": 40228.98, "end": 40230.02, "probability": 0.9099 }, { "start": 40230.62, "end": 40234.56, "probability": 0.952 }, { "start": 40235.3, "end": 40237.58, "probability": 0.8421 }, { "start": 40238.16, "end": 40241.36, "probability": 0.9638 }, { "start": 40242.34, "end": 40245.36, "probability": 0.9419 }, { "start": 40245.66, "end": 40246.28, "probability": 0.3776 }, { "start": 40246.96, "end": 40250.96, "probability": 0.9668 }, { "start": 40251.68, "end": 40255.4, "probability": 0.9144 }, { "start": 40256.06, "end": 40259.36, "probability": 0.9957 }, { "start": 40260.12, "end": 40263.74, "probability": 0.9906 }, { "start": 40264.42, "end": 40265.66, "probability": 0.8967 }, { "start": 40266.26, "end": 40268.34, "probability": 0.8594 }, { "start": 40269.22, "end": 40270.48, "probability": 0.8124 }, { "start": 40271.28, "end": 40272.44, "probability": 0.9567 }, { "start": 40272.88, "end": 40273.86, "probability": 0.6962 }, { "start": 40273.94, "end": 40276.7, "probability": 0.9673 }, { "start": 40277.34, "end": 40277.98, "probability": 0.6656 }, { "start": 40279.12, "end": 40281.68, "probability": 0.9541 }, { "start": 40281.96, "end": 40285.16, "probability": 0.8762 }, { "start": 40286.24, "end": 40290.96, "probability": 0.9917 }, { "start": 40291.5, "end": 40292.64, "probability": 0.8925 }, { "start": 40292.92, "end": 40294.84, "probability": 0.9489 }, { "start": 40295.54, "end": 40296.64, "probability": 0.965 }, { "start": 40297.72, "end": 40299.2, "probability": 0.7484 }, { "start": 40300.78, "end": 40301.42, "probability": 0.8086 }, { "start": 40302.18, "end": 40304.98, "probability": 0.9964 }, { "start": 40305.56, "end": 40309.64, "probability": 0.8841 }, { "start": 40310.62, "end": 40312.56, "probability": 0.9276 }, { "start": 40313.34, "end": 40315.58, "probability": 0.9199 }, { "start": 40316.82, "end": 40317.44, "probability": 0.7287 }, { "start": 40319.04, "end": 40324.14, "probability": 0.993 }, { "start": 40325.26, "end": 40327.68, "probability": 0.9944 }, { "start": 40327.68, "end": 40330.4, "probability": 0.9862 }, { "start": 40331.36, "end": 40333.58, "probability": 0.9958 }, { "start": 40333.7, "end": 40337.02, "probability": 0.9759 }, { "start": 40337.02, "end": 40341.18, "probability": 0.981 }, { "start": 40342.16, "end": 40345.88, "probability": 0.994 }, { "start": 40346.7, "end": 40349.06, "probability": 0.9623 }, { "start": 40349.82, "end": 40352.22, "probability": 0.9953 }, { "start": 40352.74, "end": 40353.7, "probability": 0.9233 }, { "start": 40354.92, "end": 40356.98, "probability": 0.9067 }, { "start": 40357.7, "end": 40358.94, "probability": 0.8639 }, { "start": 40359.72, "end": 40363.76, "probability": 0.9832 }, { "start": 40364.78, "end": 40368.54, "probability": 0.9414 }, { "start": 40368.54, "end": 40371.86, "probability": 0.9991 }, { "start": 40372.46, "end": 40376.06, "probability": 0.9751 }, { "start": 40376.66, "end": 40381.23, "probability": 0.9718 }, { "start": 40382.7, "end": 40385.74, "probability": 0.9631 }, { "start": 40386.36, "end": 40388.04, "probability": 0.9929 }, { "start": 40388.84, "end": 40389.8, "probability": 0.8681 }, { "start": 40390.46, "end": 40394.92, "probability": 0.9818 }, { "start": 40395.72, "end": 40398.3, "probability": 0.9687 }, { "start": 40399.12, "end": 40400.4, "probability": 0.935 }, { "start": 40401.04, "end": 40405.1, "probability": 0.9393 }, { "start": 40405.98, "end": 40407.08, "probability": 0.689 }, { "start": 40407.8, "end": 40408.62, "probability": 0.8252 }, { "start": 40409.82, "end": 40412.8, "probability": 0.9974 }, { "start": 40413.02, "end": 40414.06, "probability": 0.7307 }, { "start": 40414.24, "end": 40415.23, "probability": 0.9434 }, { "start": 40415.9, "end": 40419.6, "probability": 0.9787 }, { "start": 40420.46, "end": 40424.52, "probability": 0.9797 }, { "start": 40424.52, "end": 40428.04, "probability": 0.9978 }, { "start": 40429.06, "end": 40432.36, "probability": 0.9982 }, { "start": 40433.02, "end": 40435.94, "probability": 0.9961 }, { "start": 40436.92, "end": 40439.32, "probability": 0.9918 }, { "start": 40440.36, "end": 40441.46, "probability": 0.9964 }, { "start": 40442.18, "end": 40446.16, "probability": 0.972 }, { "start": 40446.92, "end": 40453.16, "probability": 0.9919 }, { "start": 40453.8, "end": 40458.92, "probability": 0.9962 }, { "start": 40459.88, "end": 40461.0, "probability": 0.8235 }, { "start": 40462.06, "end": 40463.32, "probability": 0.9749 }, { "start": 40463.98, "end": 40464.7, "probability": 0.9395 }, { "start": 40467.46, "end": 40469.26, "probability": 0.729 }, { "start": 40470.78, "end": 40476.36, "probability": 0.9969 }, { "start": 40478.16, "end": 40478.98, "probability": 0.9978 }, { "start": 40480.08, "end": 40482.4, "probability": 0.9602 }, { "start": 40484.04, "end": 40484.44, "probability": 0.8727 }, { "start": 40486.78, "end": 40490.96, "probability": 0.9727 }, { "start": 40491.82, "end": 40494.08, "probability": 0.8974 }, { "start": 40495.04, "end": 40499.28, "probability": 0.9948 }, { "start": 40499.28, "end": 40502.26, "probability": 0.9803 }, { "start": 40502.9, "end": 40504.06, "probability": 0.6576 }, { "start": 40505.28, "end": 40506.76, "probability": 0.9896 }, { "start": 40507.68, "end": 40511.16, "probability": 0.9876 }, { "start": 40511.78, "end": 40513.92, "probability": 0.9979 }, { "start": 40515.68, "end": 40518.74, "probability": 0.7473 }, { "start": 40520.16, "end": 40521.61, "probability": 0.7495 }, { "start": 40523.14, "end": 40530.62, "probability": 0.9908 }, { "start": 40533.1, "end": 40535.14, "probability": 0.282 }, { "start": 40535.14, "end": 40536.0, "probability": 0.915 }, { "start": 40536.16, "end": 40536.58, "probability": 0.6388 }, { "start": 40536.72, "end": 40539.36, "probability": 0.7896 }, { "start": 40539.44, "end": 40540.32, "probability": 0.75 }, { "start": 40540.86, "end": 40546.06, "probability": 0.9918 }, { "start": 40547.54, "end": 40550.24, "probability": 0.9955 }, { "start": 40550.92, "end": 40552.38, "probability": 0.4081 }, { "start": 40552.38, "end": 40553.02, "probability": 0.4644 }, { "start": 40553.82, "end": 40554.38, "probability": 0.96 }, { "start": 40554.94, "end": 40558.46, "probability": 0.9065 }, { "start": 40559.08, "end": 40560.84, "probability": 0.9974 }, { "start": 40560.84, "end": 40563.28, "probability": 0.9993 }, { "start": 40564.08, "end": 40566.52, "probability": 0.9976 }, { "start": 40566.82, "end": 40568.5, "probability": 0.867 }, { "start": 40569.56, "end": 40574.46, "probability": 0.9955 }, { "start": 40575.9, "end": 40576.5, "probability": 0.6571 }, { "start": 40577.18, "end": 40577.76, "probability": 0.8596 }, { "start": 40578.44, "end": 40579.58, "probability": 0.56 }, { "start": 40580.26, "end": 40581.6, "probability": 0.6232 }, { "start": 40581.6, "end": 40581.6, "probability": 0.1595 }, { "start": 40581.6, "end": 40582.38, "probability": 0.7275 }, { "start": 40582.68, "end": 40588.24, "probability": 0.9905 }, { "start": 40588.36, "end": 40588.8, "probability": 0.8885 }, { "start": 40590.0, "end": 40590.62, "probability": 0.7635 }, { "start": 40590.66, "end": 40591.78, "probability": 0.8723 }, { "start": 40593.7, "end": 40595.28, "probability": 0.7108 }, { "start": 40596.44, "end": 40597.84, "probability": 0.9819 }, { "start": 40600.04, "end": 40600.72, "probability": 0.0213 }, { "start": 40601.56, "end": 40605.9, "probability": 0.9647 }, { "start": 40606.44, "end": 40607.36, "probability": 0.7125 }, { "start": 40608.18, "end": 40611.8, "probability": 0.9469 }, { "start": 40612.06, "end": 40613.42, "probability": 0.8184 }, { "start": 40613.54, "end": 40614.26, "probability": 0.9426 }, { "start": 40614.46, "end": 40615.24, "probability": 0.0616 }, { "start": 40615.24, "end": 40619.86, "probability": 0.5708 }, { "start": 40620.26, "end": 40620.98, "probability": 0.351 }, { "start": 40621.52, "end": 40623.78, "probability": 0.5039 }, { "start": 40623.98, "end": 40625.9, "probability": 0.4449 }, { "start": 40644.14, "end": 40645.42, "probability": 0.8049 }, { "start": 40645.94, "end": 40647.46, "probability": 0.4997 }, { "start": 40648.86, "end": 40650.48, "probability": 0.4415 }, { "start": 40650.62, "end": 40653.88, "probability": 0.8162 }, { "start": 40655.02, "end": 40656.22, "probability": 0.0512 }, { "start": 40657.52, "end": 40659.72, "probability": 0.1961 }, { "start": 40659.78, "end": 40660.16, "probability": 0.3625 }, { "start": 40661.09, "end": 40661.92, "probability": 0.2936 }, { "start": 40661.92, "end": 40662.28, "probability": 0.0216 }, { "start": 40664.07, "end": 40664.52, "probability": 0.1181 }, { "start": 40664.52, "end": 40664.52, "probability": 0.0886 }, { "start": 40664.62, "end": 40664.62, "probability": 0.2054 }, { "start": 40664.62, "end": 40665.62, "probability": 0.5031 }, { "start": 40665.84, "end": 40671.14, "probability": 0.7004 }, { "start": 40673.22, "end": 40675.21, "probability": 0.8123 }, { "start": 40675.68, "end": 40679.9, "probability": 0.9905 }, { "start": 40680.0, "end": 40680.62, "probability": 0.1753 }, { "start": 40680.78, "end": 40680.88, "probability": 0.0659 }, { "start": 40680.96, "end": 40681.02, "probability": 0.1279 }, { "start": 40681.02, "end": 40682.04, "probability": 0.9688 }, { "start": 40682.1, "end": 40682.3, "probability": 0.295 }, { "start": 40682.34, "end": 40683.28, "probability": 0.5278 }, { "start": 40683.34, "end": 40685.62, "probability": 0.8942 }, { "start": 40685.72, "end": 40687.76, "probability": 0.7622 }, { "start": 40687.84, "end": 40688.34, "probability": 0.7972 }, { "start": 40688.72, "end": 40689.78, "probability": 0.6472 }, { "start": 40690.18, "end": 40690.88, "probability": 0.329 }, { "start": 40690.88, "end": 40692.8, "probability": 0.8357 }, { "start": 40693.52, "end": 40694.12, "probability": 0.9725 }, { "start": 40694.42, "end": 40694.82, "probability": 0.9415 }, { "start": 40696.8, "end": 40697.86, "probability": 0.9641 }, { "start": 40698.06, "end": 40699.2, "probability": 0.9725 }, { "start": 40699.3, "end": 40700.34, "probability": 0.8738 }, { "start": 40700.42, "end": 40702.26, "probability": 0.966 }, { "start": 40707.6, "end": 40710.48, "probability": 0.996 }, { "start": 40710.68, "end": 40714.66, "probability": 0.996 }, { "start": 40715.52, "end": 40720.82, "probability": 0.9895 }, { "start": 40723.28, "end": 40726.66, "probability": 0.9954 }, { "start": 40727.12, "end": 40728.54, "probability": 0.874 }, { "start": 40728.82, "end": 40730.66, "probability": 0.9596 }, { "start": 40731.58, "end": 40733.64, "probability": 0.9766 }, { "start": 40734.44, "end": 40736.04, "probability": 0.9511 }, { "start": 40737.12, "end": 40737.72, "probability": 0.7175 }, { "start": 40737.82, "end": 40741.38, "probability": 0.9867 }, { "start": 40742.24, "end": 40743.52, "probability": 0.7842 }, { "start": 40743.66, "end": 40745.18, "probability": 0.9721 }, { "start": 40745.94, "end": 40747.96, "probability": 0.9653 }, { "start": 40748.06, "end": 40750.08, "probability": 0.9324 }, { "start": 40750.72, "end": 40751.66, "probability": 0.8324 }, { "start": 40752.2, "end": 40753.38, "probability": 0.974 }, { "start": 40753.9, "end": 40754.88, "probability": 0.9639 }, { "start": 40755.58, "end": 40756.86, "probability": 0.9731 }, { "start": 40757.48, "end": 40759.56, "probability": 0.8378 }, { "start": 40760.46, "end": 40763.88, "probability": 0.9777 }, { "start": 40764.6, "end": 40766.7, "probability": 0.8975 }, { "start": 40766.88, "end": 40768.4, "probability": 0.8035 }, { "start": 40769.36, "end": 40770.67, "probability": 0.7839 }, { "start": 40771.48, "end": 40774.56, "probability": 0.9072 }, { "start": 40774.72, "end": 40775.85, "probability": 0.9961 }, { "start": 40777.08, "end": 40781.62, "probability": 0.9862 }, { "start": 40782.48, "end": 40782.98, "probability": 0.9941 }, { "start": 40783.6, "end": 40789.86, "probability": 0.972 }, { "start": 40790.12, "end": 40792.62, "probability": 0.9688 }, { "start": 40792.7, "end": 40793.98, "probability": 0.9485 }, { "start": 40794.18, "end": 40795.06, "probability": 0.585 }, { "start": 40795.76, "end": 40797.62, "probability": 0.7182 }, { "start": 40798.36, "end": 40801.7, "probability": 0.9944 }, { "start": 40802.78, "end": 40803.44, "probability": 0.6514 }, { "start": 40803.56, "end": 40806.16, "probability": 0.9941 }, { "start": 40806.86, "end": 40809.14, "probability": 0.8789 }, { "start": 40810.18, "end": 40811.14, "probability": 0.7393 }, { "start": 40811.34, "end": 40812.4, "probability": 0.9753 }, { "start": 40812.88, "end": 40815.52, "probability": 0.8311 }, { "start": 40816.76, "end": 40819.16, "probability": 0.8372 }, { "start": 40820.24, "end": 40821.82, "probability": 0.7748 }, { "start": 40823.16, "end": 40827.96, "probability": 0.9803 }, { "start": 40828.22, "end": 40831.06, "probability": 0.9824 }, { "start": 40831.56, "end": 40834.5, "probability": 0.9954 }, { "start": 40834.5, "end": 40838.56, "probability": 0.9975 }, { "start": 40838.78, "end": 40843.42, "probability": 0.9557 }, { "start": 40844.56, "end": 40847.8, "probability": 0.9176 }, { "start": 40848.46, "end": 40850.36, "probability": 0.9199 }, { "start": 40850.66, "end": 40852.38, "probability": 0.9282 }, { "start": 40852.52, "end": 40853.0, "probability": 0.5029 }, { "start": 40853.68, "end": 40857.52, "probability": 0.9949 }, { "start": 40858.2, "end": 40859.06, "probability": 0.9243 }, { "start": 40859.14, "end": 40861.54, "probability": 0.9881 }, { "start": 40862.1, "end": 40865.52, "probability": 0.9941 }, { "start": 40866.46, "end": 40868.56, "probability": 0.9678 }, { "start": 40868.76, "end": 40870.62, "probability": 0.9868 }, { "start": 40871.36, "end": 40874.75, "probability": 0.9799 }, { "start": 40875.74, "end": 40876.54, "probability": 0.8492 }, { "start": 40877.2, "end": 40879.22, "probability": 0.9909 }, { "start": 40879.22, "end": 40881.98, "probability": 0.9651 }, { "start": 40883.08, "end": 40885.94, "probability": 0.9531 }, { "start": 40886.58, "end": 40890.0, "probability": 0.9025 }, { "start": 40891.14, "end": 40894.1, "probability": 0.9981 }, { "start": 40894.1, "end": 40897.3, "probability": 0.9988 }, { "start": 40897.98, "end": 40900.65, "probability": 0.998 }, { "start": 40900.78, "end": 40902.26, "probability": 0.816 }, { "start": 40902.94, "end": 40904.06, "probability": 0.9592 }, { "start": 40904.18, "end": 40909.14, "probability": 0.9763 }, { "start": 40909.72, "end": 40911.92, "probability": 0.9238 }, { "start": 40912.74, "end": 40915.34, "probability": 0.9953 }, { "start": 40916.08, "end": 40917.48, "probability": 0.907 }, { "start": 40917.5, "end": 40919.64, "probability": 0.9826 }, { "start": 40920.3, "end": 40922.92, "probability": 0.9941 }, { "start": 40923.48, "end": 40926.52, "probability": 0.9805 }, { "start": 40927.7, "end": 40928.42, "probability": 0.8404 }, { "start": 40928.58, "end": 40929.54, "probability": 0.8455 }, { "start": 40929.62, "end": 40933.76, "probability": 0.9727 }, { "start": 40934.0, "end": 40934.16, "probability": 0.2619 }, { "start": 40935.04, "end": 40939.4, "probability": 0.9818 }, { "start": 40940.22, "end": 40941.92, "probability": 0.9736 }, { "start": 40942.94, "end": 40946.18, "probability": 0.9984 }, { "start": 40946.74, "end": 40948.46, "probability": 0.9741 }, { "start": 40948.8, "end": 40953.82, "probability": 0.939 }, { "start": 40953.98, "end": 40956.2, "probability": 0.9905 }, { "start": 40957.02, "end": 40959.38, "probability": 0.9854 }, { "start": 40960.06, "end": 40966.0, "probability": 0.9943 }, { "start": 40966.66, "end": 40968.82, "probability": 0.9932 }, { "start": 40969.3, "end": 40970.12, "probability": 0.8794 }, { "start": 40970.32, "end": 40971.52, "probability": 0.9367 }, { "start": 40972.1, "end": 40973.78, "probability": 0.9912 }, { "start": 40974.3, "end": 40975.64, "probability": 0.9945 }, { "start": 40976.42, "end": 40979.72, "probability": 0.995 }, { "start": 40980.7, "end": 40981.86, "probability": 0.9863 }, { "start": 40982.82, "end": 40984.38, "probability": 0.9984 }, { "start": 40985.88, "end": 40989.5, "probability": 0.9985 }, { "start": 40990.44, "end": 40993.16, "probability": 0.991 }, { "start": 40994.26, "end": 40994.76, "probability": 0.9767 }, { "start": 40995.46, "end": 40999.08, "probability": 0.9983 }, { "start": 40999.08, "end": 41002.96, "probability": 0.9968 }, { "start": 41003.7, "end": 41005.22, "probability": 0.9995 }, { "start": 41006.32, "end": 41008.44, "probability": 0.9558 }, { "start": 41008.74, "end": 41009.87, "probability": 0.0741 }, { "start": 41010.14, "end": 41010.96, "probability": 0.5838 }, { "start": 41011.18, "end": 41011.66, "probability": 0.7485 }, { "start": 41011.82, "end": 41012.92, "probability": 0.5995 }, { "start": 41013.08, "end": 41014.18, "probability": 0.7854 }, { "start": 41014.32, "end": 41017.82, "probability": 0.9539 }, { "start": 41017.9, "end": 41018.62, "probability": 0.814 }, { "start": 41018.7, "end": 41022.6, "probability": 0.9897 }, { "start": 41022.6, "end": 41026.72, "probability": 0.999 }, { "start": 41026.84, "end": 41028.16, "probability": 0.9341 }, { "start": 41029.22, "end": 41030.42, "probability": 0.7768 }, { "start": 41030.98, "end": 41032.36, "probability": 0.9877 }, { "start": 41032.56, "end": 41034.94, "probability": 0.5042 }, { "start": 41035.64, "end": 41036.06, "probability": 0.6018 }, { "start": 41036.14, "end": 41037.5, "probability": 0.9829 }, { "start": 41037.58, "end": 41038.92, "probability": 0.8204 }, { "start": 41039.02, "end": 41041.84, "probability": 0.9487 }, { "start": 41042.18, "end": 41045.94, "probability": 0.7948 }, { "start": 41046.2, "end": 41047.34, "probability": 0.294 }, { "start": 41047.7, "end": 41049.48, "probability": 0.0239 }, { "start": 41049.48, "end": 41050.58, "probability": 0.2828 }, { "start": 41050.6, "end": 41051.26, "probability": 0.4095 }, { "start": 41052.24, "end": 41057.8, "probability": 0.925 }, { "start": 41057.96, "end": 41059.0, "probability": 0.9684 }, { "start": 41059.62, "end": 41061.52, "probability": 0.9985 }, { "start": 41062.46, "end": 41064.14, "probability": 0.9953 }, { "start": 41064.72, "end": 41066.54, "probability": 0.998 }, { "start": 41067.36, "end": 41071.22, "probability": 0.9506 }, { "start": 41071.78, "end": 41072.94, "probability": 0.8857 }, { "start": 41073.32, "end": 41073.92, "probability": 0.8184 }, { "start": 41074.08, "end": 41076.96, "probability": 0.3453 }, { "start": 41077.12, "end": 41078.38, "probability": 0.162 }, { "start": 41078.62, "end": 41078.62, "probability": 0.2204 }, { "start": 41078.62, "end": 41079.06, "probability": 0.6108 }, { "start": 41079.26, "end": 41081.22, "probability": 0.7174 }, { "start": 41081.22, "end": 41083.74, "probability": 0.5974 }, { "start": 41084.4, "end": 41084.7, "probability": 0.3428 }, { "start": 41084.7, "end": 41088.48, "probability": 0.985 }, { "start": 41088.58, "end": 41092.02, "probability": 0.9946 }, { "start": 41092.62, "end": 41095.14, "probability": 0.2894 }, { "start": 41095.24, "end": 41095.24, "probability": 0.2836 }, { "start": 41095.24, "end": 41095.24, "probability": 0.1241 }, { "start": 41095.24, "end": 41096.5, "probability": 0.4983 }, { "start": 41096.56, "end": 41096.94, "probability": 0.2701 }, { "start": 41097.08, "end": 41100.3, "probability": 0.7243 }, { "start": 41100.82, "end": 41101.22, "probability": 0.2855 }, { "start": 41101.96, "end": 41102.96, "probability": 0.758 }, { "start": 41103.32, "end": 41104.08, "probability": 0.4481 }, { "start": 41104.42, "end": 41106.62, "probability": 0.9121 }, { "start": 41106.74, "end": 41107.86, "probability": 0.1381 }, { "start": 41107.9, "end": 41111.98, "probability": 0.8041 }, { "start": 41112.32, "end": 41117.25, "probability": 0.9519 }, { "start": 41117.82, "end": 41121.12, "probability": 0.2413 }, { "start": 41121.12, "end": 41121.12, "probability": 0.0356 }, { "start": 41121.12, "end": 41121.12, "probability": 0.1562 }, { "start": 41121.12, "end": 41121.68, "probability": 0.3396 }, { "start": 41122.04, "end": 41124.26, "probability": 0.896 }, { "start": 41124.28, "end": 41124.68, "probability": 0.1642 }, { "start": 41124.72, "end": 41126.02, "probability": 0.3511 }, { "start": 41126.1, "end": 41127.14, "probability": 0.5178 }, { "start": 41127.22, "end": 41128.28, "probability": 0.6986 }, { "start": 41128.42, "end": 41128.86, "probability": 0.7968 }, { "start": 41128.98, "end": 41130.2, "probability": 0.8224 }, { "start": 41130.62, "end": 41131.34, "probability": 0.7311 }, { "start": 41131.94, "end": 41133.1, "probability": 0.9131 }, { "start": 41133.16, "end": 41133.44, "probability": 0.3967 }, { "start": 41134.18, "end": 41136.07, "probability": 0.9607 }, { "start": 41136.36, "end": 41136.64, "probability": 0.3226 }, { "start": 41137.04, "end": 41139.08, "probability": 0.9758 }, { "start": 41139.76, "end": 41141.44, "probability": 0.9863 }, { "start": 41142.6, "end": 41145.0, "probability": 0.9711 }, { "start": 41145.56, "end": 41146.52, "probability": 0.8514 }, { "start": 41147.96, "end": 41150.42, "probability": 0.9187 }, { "start": 41150.96, "end": 41158.24, "probability": 0.7428 }, { "start": 41158.84, "end": 41160.18, "probability": 0.8684 }, { "start": 41160.6, "end": 41163.82, "probability": 0.988 }, { "start": 41163.94, "end": 41165.34, "probability": 0.8212 }, { "start": 41165.88, "end": 41167.04, "probability": 0.7813 }, { "start": 41167.18, "end": 41168.26, "probability": 0.8917 }, { "start": 41168.54, "end": 41168.78, "probability": 0.5821 }, { "start": 41169.44, "end": 41171.08, "probability": 0.9365 }, { "start": 41171.18, "end": 41173.8, "probability": 0.8995 }, { "start": 41174.44, "end": 41176.4, "probability": 0.9189 }, { "start": 41177.08, "end": 41178.98, "probability": 0.8066 }, { "start": 41179.02, "end": 41181.02, "probability": 0.9756 }, { "start": 41181.18, "end": 41182.3, "probability": 0.8872 }, { "start": 41182.84, "end": 41184.18, "probability": 0.7412 }, { "start": 41184.86, "end": 41185.52, "probability": 0.938 }, { "start": 41185.68, "end": 41187.94, "probability": 0.9909 }, { "start": 41188.44, "end": 41191.22, "probability": 0.9949 }, { "start": 41191.46, "end": 41192.82, "probability": 0.9966 }, { "start": 41193.5, "end": 41199.86, "probability": 0.9914 }, { "start": 41200.58, "end": 41202.96, "probability": 0.97 }, { "start": 41203.76, "end": 41204.4, "probability": 0.4171 }, { "start": 41205.04, "end": 41206.88, "probability": 0.9897 }, { "start": 41207.44, "end": 41209.6, "probability": 0.9975 }, { "start": 41209.76, "end": 41210.72, "probability": 0.9971 }, { "start": 41211.34, "end": 41212.81, "probability": 0.66 }, { "start": 41213.08, "end": 41217.62, "probability": 0.9581 }, { "start": 41217.84, "end": 41218.14, "probability": 0.7791 }, { "start": 41219.0, "end": 41221.5, "probability": 0.8552 }, { "start": 41223.06, "end": 41224.1, "probability": 0.5988 }, { "start": 41225.3, "end": 41226.62, "probability": 0.8691 }, { "start": 41227.9, "end": 41229.32, "probability": 0.7328 }, { "start": 41231.06, "end": 41231.2, "probability": 0.1594 }, { "start": 41231.2, "end": 41231.2, "probability": 0.1572 }, { "start": 41231.2, "end": 41231.77, "probability": 0.3101 }, { "start": 41233.68, "end": 41234.66, "probability": 0.8332 }, { "start": 41234.78, "end": 41234.94, "probability": 0.4243 }, { "start": 41235.36, "end": 41236.14, "probability": 0.4347 }, { "start": 41237.3, "end": 41237.48, "probability": 0.1028 }, { "start": 41242.14, "end": 41244.62, "probability": 0.6878 }, { "start": 41244.62, "end": 41245.9, "probability": 0.3573 }, { "start": 41246.42, "end": 41247.16, "probability": 0.9154 }, { "start": 41247.28, "end": 41249.34, "probability": 0.6667 }, { "start": 41249.88, "end": 41252.24, "probability": 0.9927 }, { "start": 41252.34, "end": 41255.3, "probability": 0.9009 }, { "start": 41255.76, "end": 41257.6, "probability": 0.9801 }, { "start": 41258.04, "end": 41259.3, "probability": 0.9102 }, { "start": 41259.66, "end": 41260.83, "probability": 0.9258 }, { "start": 41261.46, "end": 41262.74, "probability": 0.7454 }, { "start": 41263.74, "end": 41265.14, "probability": 0.6883 }, { "start": 41265.14, "end": 41265.7, "probability": 0.8064 }, { "start": 41266.06, "end": 41267.22, "probability": 0.842 }, { "start": 41268.48, "end": 41270.78, "probability": 0.4362 }, { "start": 41271.62, "end": 41272.5, "probability": 0.4428 }, { "start": 41272.7, "end": 41274.32, "probability": 0.7124 }, { "start": 41274.58, "end": 41278.91, "probability": 0.9888 }, { "start": 41280.02, "end": 41280.02, "probability": 0.5453 }, { "start": 41280.1, "end": 41280.9, "probability": 0.7933 }, { "start": 41281.64, "end": 41283.12, "probability": 0.7251 }, { "start": 41283.84, "end": 41286.52, "probability": 0.3823 }, { "start": 41286.64, "end": 41287.62, "probability": 0.1937 }, { "start": 41287.7, "end": 41288.67, "probability": 0.7143 }, { "start": 41289.08, "end": 41289.66, "probability": 0.3583 }, { "start": 41291.06, "end": 41294.01, "probability": 0.96 }, { "start": 41294.98, "end": 41297.8, "probability": 0.6842 }, { "start": 41298.7, "end": 41299.68, "probability": 0.7887 }, { "start": 41300.6, "end": 41305.22, "probability": 0.903 }, { "start": 41306.76, "end": 41308.52, "probability": 0.9617 }, { "start": 41308.62, "end": 41309.5, "probability": 0.9868 }, { "start": 41310.02, "end": 41313.14, "probability": 0.9557 }, { "start": 41314.12, "end": 41316.24, "probability": 0.7127 }, { "start": 41317.09, "end": 41319.0, "probability": 0.5967 }, { "start": 41319.78, "end": 41320.71, "probability": 0.9151 }, { "start": 41321.42, "end": 41322.64, "probability": 0.9246 }, { "start": 41323.32, "end": 41325.22, "probability": 0.991 }, { "start": 41325.9, "end": 41328.02, "probability": 0.8682 }, { "start": 41328.78, "end": 41331.26, "probability": 0.96 }, { "start": 41331.82, "end": 41334.0, "probability": 0.8561 }, { "start": 41334.5, "end": 41334.86, "probability": 0.9 }, { "start": 41335.02, "end": 41336.94, "probability": 0.9462 }, { "start": 41337.38, "end": 41339.74, "probability": 0.9039 }, { "start": 41340.24, "end": 41340.98, "probability": 0.7883 }, { "start": 41341.3, "end": 41342.58, "probability": 0.9648 }, { "start": 41343.22, "end": 41344.12, "probability": 0.9452 }, { "start": 41344.36, "end": 41346.18, "probability": 0.9939 }, { "start": 41346.9, "end": 41347.7, "probability": 0.6975 }, { "start": 41348.22, "end": 41352.54, "probability": 0.8235 }, { "start": 41352.82, "end": 41353.32, "probability": 0.9991 }, { "start": 41354.14, "end": 41355.86, "probability": 0.7667 }, { "start": 41356.0, "end": 41357.73, "probability": 0.9649 }, { "start": 41358.42, "end": 41359.26, "probability": 0.7598 }, { "start": 41359.42, "end": 41363.09, "probability": 0.6727 }, { "start": 41363.56, "end": 41364.77, "probability": 0.939 }, { "start": 41365.43, "end": 41366.92, "probability": 0.9155 }, { "start": 41367.66, "end": 41369.94, "probability": 0.999 }, { "start": 41370.46, "end": 41373.66, "probability": 0.9648 }, { "start": 41375.22, "end": 41376.66, "probability": 0.661 }, { "start": 41377.18, "end": 41377.7, "probability": 0.829 }, { "start": 41378.3, "end": 41380.36, "probability": 0.9993 }, { "start": 41380.84, "end": 41385.84, "probability": 0.9175 }, { "start": 41385.92, "end": 41386.8, "probability": 0.9263 }, { "start": 41387.32, "end": 41389.56, "probability": 0.7952 }, { "start": 41390.2, "end": 41393.58, "probability": 0.6743 }, { "start": 41393.96, "end": 41396.58, "probability": 0.8781 }, { "start": 41400.44, "end": 41402.52, "probability": 0.7924 }, { "start": 41403.32, "end": 41404.24, "probability": 0.6241 }, { "start": 41405.24, "end": 41406.86, "probability": 0.7028 }, { "start": 41407.64, "end": 41410.68, "probability": 0.682 }, { "start": 41411.2, "end": 41411.96, "probability": 0.8546 }, { "start": 41412.74, "end": 41413.38, "probability": 0.9329 }, { "start": 41414.26, "end": 41416.5, "probability": 0.9311 }, { "start": 41420.35, "end": 41421.9, "probability": 0.2637 }, { "start": 41421.94, "end": 41423.2, "probability": 0.6902 }, { "start": 41424.8, "end": 41426.38, "probability": 0.4441 }, { "start": 41426.48, "end": 41427.14, "probability": 0.8012 }, { "start": 41427.76, "end": 41428.52, "probability": 0.7572 }, { "start": 41428.78, "end": 41432.14, "probability": 0.858 }, { "start": 41432.72, "end": 41434.46, "probability": 0.8464 }, { "start": 41435.12, "end": 41439.22, "probability": 0.9911 }, { "start": 41440.2, "end": 41445.04, "probability": 0.9768 }, { "start": 41445.58, "end": 41447.66, "probability": 0.9983 }, { "start": 41448.28, "end": 41451.66, "probability": 0.6671 }, { "start": 41452.22, "end": 41453.9, "probability": 0.9982 }, { "start": 41454.74, "end": 41458.78, "probability": 0.947 }, { "start": 41460.28, "end": 41466.6, "probability": 0.9672 }, { "start": 41466.92, "end": 41468.76, "probability": 0.9502 }, { "start": 41469.34, "end": 41471.56, "probability": 0.9982 }, { "start": 41472.6, "end": 41474.38, "probability": 0.9116 }, { "start": 41475.44, "end": 41477.82, "probability": 0.9849 }, { "start": 41478.28, "end": 41479.98, "probability": 0.9712 }, { "start": 41480.7, "end": 41483.3, "probability": 0.9897 }, { "start": 41484.14, "end": 41484.96, "probability": 0.7902 }, { "start": 41485.5, "end": 41490.2, "probability": 0.8896 }, { "start": 41490.62, "end": 41492.74, "probability": 0.7448 }, { "start": 41493.16, "end": 41495.62, "probability": 0.9421 }, { "start": 41495.62, "end": 41497.94, "probability": 0.9968 }, { "start": 41499.12, "end": 41499.26, "probability": 0.0675 }, { "start": 41500.06, "end": 41502.1, "probability": 0.6653 }, { "start": 41502.8, "end": 41507.6, "probability": 0.9415 }, { "start": 41508.02, "end": 41508.58, "probability": 0.5251 }, { "start": 41509.32, "end": 41511.1, "probability": 0.9692 }, { "start": 41511.48, "end": 41513.38, "probability": 0.9944 }, { "start": 41513.74, "end": 41514.6, "probability": 0.9982 }, { "start": 41515.2, "end": 41516.4, "probability": 0.9992 }, { "start": 41517.02, "end": 41521.44, "probability": 0.9932 }, { "start": 41521.94, "end": 41523.8, "probability": 0.5737 }, { "start": 41524.78, "end": 41527.38, "probability": 0.9819 }, { "start": 41529.0, "end": 41530.42, "probability": 0.9902 }, { "start": 41530.76, "end": 41535.3, "probability": 0.9958 }, { "start": 41536.46, "end": 41539.1, "probability": 0.9231 }, { "start": 41539.92, "end": 41542.65, "probability": 0.9987 }, { "start": 41543.08, "end": 41546.41, "probability": 0.7451 }, { "start": 41546.78, "end": 41548.5, "probability": 0.793 }, { "start": 41549.02, "end": 41552.4, "probability": 0.9962 }, { "start": 41553.22, "end": 41554.3, "probability": 0.9513 }, { "start": 41554.98, "end": 41556.66, "probability": 0.9867 }, { "start": 41557.22, "end": 41559.32, "probability": 0.9405 }, { "start": 41560.2, "end": 41561.24, "probability": 0.9172 }, { "start": 41561.94, "end": 41564.92, "probability": 0.941 }, { "start": 41565.66, "end": 41567.66, "probability": 0.9577 }, { "start": 41568.16, "end": 41569.14, "probability": 0.8286 }, { "start": 41569.6, "end": 41572.04, "probability": 0.9961 }, { "start": 41572.74, "end": 41574.96, "probability": 0.9864 }, { "start": 41575.6, "end": 41577.46, "probability": 0.8034 }, { "start": 41578.1, "end": 41579.7, "probability": 0.9366 }, { "start": 41580.18, "end": 41582.58, "probability": 0.7869 }, { "start": 41583.9, "end": 41584.92, "probability": 0.6569 }, { "start": 41586.06, "end": 41587.64, "probability": 0.9581 }, { "start": 41588.74, "end": 41591.58, "probability": 0.9883 }, { "start": 41592.34, "end": 41593.94, "probability": 0.9861 }, { "start": 41594.78, "end": 41598.14, "probability": 0.9495 }, { "start": 41599.34, "end": 41604.48, "probability": 0.9756 }, { "start": 41604.94, "end": 41609.94, "probability": 0.9857 }, { "start": 41609.94, "end": 41615.66, "probability": 0.9622 }, { "start": 41616.3, "end": 41617.48, "probability": 0.9992 }, { "start": 41618.24, "end": 41618.62, "probability": 0.9587 }, { "start": 41620.24, "end": 41623.5, "probability": 0.9728 }, { "start": 41624.34, "end": 41627.06, "probability": 0.9988 }, { "start": 41627.88, "end": 41631.76, "probability": 0.996 }, { "start": 41632.74, "end": 41634.68, "probability": 0.985 }, { "start": 41635.26, "end": 41637.74, "probability": 0.9368 }, { "start": 41638.8, "end": 41643.86, "probability": 0.9587 }, { "start": 41644.64, "end": 41648.48, "probability": 0.9556 }, { "start": 41649.44, "end": 41651.33, "probability": 0.8205 }, { "start": 41652.34, "end": 41655.84, "probability": 0.9935 }, { "start": 41656.38, "end": 41657.24, "probability": 0.8718 }, { "start": 41657.66, "end": 41658.66, "probability": 0.6847 }, { "start": 41659.12, "end": 41660.72, "probability": 0.9933 }, { "start": 41661.58, "end": 41663.22, "probability": 0.9839 }, { "start": 41663.58, "end": 41665.34, "probability": 0.9984 }, { "start": 41666.44, "end": 41671.26, "probability": 0.9866 }, { "start": 41671.84, "end": 41673.54, "probability": 0.9792 }, { "start": 41675.4, "end": 41677.08, "probability": 0.9146 }, { "start": 41677.2, "end": 41678.88, "probability": 0.9949 }, { "start": 41679.42, "end": 41681.16, "probability": 0.9941 }, { "start": 41681.82, "end": 41685.4, "probability": 0.8145 }, { "start": 41685.5, "end": 41688.16, "probability": 0.7567 }, { "start": 41688.82, "end": 41689.5, "probability": 0.9395 }, { "start": 41689.54, "end": 41690.44, "probability": 0.954 }, { "start": 41690.86, "end": 41692.1, "probability": 0.9034 }, { "start": 41692.1, "end": 41692.7, "probability": 0.6927 }, { "start": 41693.6, "end": 41693.98, "probability": 0.4954 }, { "start": 41695.28, "end": 41699.84, "probability": 0.9761 }, { "start": 41700.14, "end": 41702.64, "probability": 0.8962 }, { "start": 41703.12, "end": 41704.11, "probability": 0.9976 }, { "start": 41704.78, "end": 41708.38, "probability": 0.8308 }, { "start": 41708.9, "end": 41710.94, "probability": 0.718 }, { "start": 41711.98, "end": 41713.5, "probability": 0.6982 }, { "start": 41713.9, "end": 41714.88, "probability": 0.8691 }, { "start": 41715.04, "end": 41715.68, "probability": 0.4515 }, { "start": 41716.3, "end": 41719.68, "probability": 0.972 }, { "start": 41720.4, "end": 41721.12, "probability": 0.9436 }, { "start": 41721.24, "end": 41723.08, "probability": 0.9426 }, { "start": 41723.72, "end": 41727.9, "probability": 0.9976 }, { "start": 41728.62, "end": 41730.38, "probability": 0.9996 }, { "start": 41730.86, "end": 41732.62, "probability": 0.9685 }, { "start": 41733.36, "end": 41734.38, "probability": 0.6793 }, { "start": 41735.0, "end": 41737.44, "probability": 0.9831 }, { "start": 41738.14, "end": 41739.93, "probability": 0.9653 }, { "start": 41740.6, "end": 41742.6, "probability": 0.6621 }, { "start": 41743.34, "end": 41744.9, "probability": 0.5186 }, { "start": 41745.24, "end": 41749.4, "probability": 0.979 }, { "start": 41749.4, "end": 41755.26, "probability": 0.994 }, { "start": 41755.26, "end": 41760.26, "probability": 0.9979 }, { "start": 41761.48, "end": 41764.26, "probability": 0.7656 }, { "start": 41764.48, "end": 41765.32, "probability": 0.884 }, { "start": 41765.56, "end": 41766.1, "probability": 0.8486 }, { "start": 41766.4, "end": 41768.14, "probability": 0.9766 }, { "start": 41769.16, "end": 41769.64, "probability": 0.7618 }, { "start": 41769.72, "end": 41771.72, "probability": 0.8409 }, { "start": 41771.72, "end": 41773.62, "probability": 0.9955 }, { "start": 41774.38, "end": 41774.81, "probability": 0.9678 }, { "start": 41775.5, "end": 41776.86, "probability": 0.9968 }, { "start": 41778.88, "end": 41779.44, "probability": 0.8903 }, { "start": 41779.98, "end": 41782.88, "probability": 0.9857 }, { "start": 41783.46, "end": 41786.14, "probability": 0.9819 }, { "start": 41786.68, "end": 41789.64, "probability": 0.9712 }, { "start": 41790.34, "end": 41792.1, "probability": 0.9945 }, { "start": 41792.42, "end": 41794.5, "probability": 0.9935 }, { "start": 41794.96, "end": 41798.2, "probability": 0.8528 }, { "start": 41799.02, "end": 41799.84, "probability": 0.7233 }, { "start": 41800.36, "end": 41803.36, "probability": 0.9864 }, { "start": 41803.42, "end": 41803.54, "probability": 0.7132 }, { "start": 41804.02, "end": 41806.06, "probability": 0.9639 }, { "start": 41806.62, "end": 41807.8, "probability": 0.6888 }, { "start": 41808.04, "end": 41810.24, "probability": 0.9885 }, { "start": 41810.52, "end": 41810.84, "probability": 0.8707 }, { "start": 41811.0, "end": 41811.98, "probability": 0.9014 }, { "start": 41812.58, "end": 41814.3, "probability": 0.9587 }, { "start": 41815.1, "end": 41817.04, "probability": 0.8632 }, { "start": 41820.48, "end": 41820.96, "probability": 0.032 }, { "start": 41820.96, "end": 41822.36, "probability": 0.9736 }, { "start": 41822.84, "end": 41824.14, "probability": 0.9919 }, { "start": 41824.46, "end": 41830.5, "probability": 0.9207 }, { "start": 41830.9, "end": 41834.56, "probability": 0.9235 }, { "start": 41834.78, "end": 41836.36, "probability": 0.973 }, { "start": 41836.86, "end": 41837.92, "probability": 0.9296 }, { "start": 41838.34, "end": 41838.6, "probability": 0.6297 }, { "start": 41839.06, "end": 41839.52, "probability": 0.6876 }, { "start": 41839.54, "end": 41840.78, "probability": 0.8651 }, { "start": 41841.12, "end": 41843.76, "probability": 0.9644 }, { "start": 41844.24, "end": 41847.62, "probability": 0.9328 }, { "start": 41848.46, "end": 41853.98, "probability": 0.9749 }, { "start": 41854.46, "end": 41855.54, "probability": 0.8787 }, { "start": 41855.88, "end": 41856.44, "probability": 0.7731 }, { "start": 41856.46, "end": 41858.42, "probability": 0.7005 }, { "start": 41859.28, "end": 41860.44, "probability": 0.9362 }, { "start": 41861.2, "end": 41864.22, "probability": 0.6798 }, { "start": 41864.36, "end": 41867.06, "probability": 0.3355 }, { "start": 41867.46, "end": 41867.7, "probability": 0.1537 }, { "start": 41867.7, "end": 41867.9, "probability": 0.0162 }, { "start": 41867.9, "end": 41868.31, "probability": 0.638 }, { "start": 41869.64, "end": 41871.06, "probability": 0.8473 }, { "start": 41872.02, "end": 41874.0, "probability": 0.9312 }, { "start": 41875.06, "end": 41877.5, "probability": 0.9597 }, { "start": 41878.26, "end": 41881.28, "probability": 0.9663 }, { "start": 41882.06, "end": 41883.28, "probability": 0.6808 }, { "start": 41884.04, "end": 41885.98, "probability": 0.9811 }, { "start": 41886.54, "end": 41887.44, "probability": 0.8775 }, { "start": 41888.16, "end": 41889.1, "probability": 0.993 }, { "start": 41890.3, "end": 41892.68, "probability": 0.8118 }, { "start": 41893.48, "end": 41894.44, "probability": 0.7803 }, { "start": 41895.32, "end": 41901.24, "probability": 0.9333 }, { "start": 41901.94, "end": 41905.94, "probability": 0.9962 }, { "start": 41906.94, "end": 41910.42, "probability": 0.6259 }, { "start": 41910.88, "end": 41913.48, "probability": 0.9854 }, { "start": 41914.06, "end": 41916.86, "probability": 0.9586 }, { "start": 41917.64, "end": 41920.72, "probability": 0.9958 }, { "start": 41921.34, "end": 41922.84, "probability": 0.997 }, { "start": 41923.26, "end": 41927.7, "probability": 0.9867 }, { "start": 41927.94, "end": 41932.22, "probability": 0.7973 }, { "start": 41932.62, "end": 41936.86, "probability": 0.7734 }, { "start": 41937.46, "end": 41938.92, "probability": 0.874 }, { "start": 41939.44, "end": 41941.02, "probability": 0.9683 }, { "start": 41941.16, "end": 41942.34, "probability": 0.9915 }, { "start": 41943.16, "end": 41944.32, "probability": 0.8828 }, { "start": 41945.64, "end": 41947.4, "probability": 0.8883 }, { "start": 41948.36, "end": 41952.6, "probability": 0.9873 }, { "start": 41953.26, "end": 41954.74, "probability": 0.9987 }, { "start": 41955.84, "end": 41958.08, "probability": 0.644 }, { "start": 41958.48, "end": 41960.7, "probability": 0.9075 }, { "start": 41961.12, "end": 41961.96, "probability": 0.9177 }, { "start": 41962.5, "end": 41966.08, "probability": 0.9902 }, { "start": 41966.62, "end": 41969.06, "probability": 0.7536 }, { "start": 41969.56, "end": 41972.08, "probability": 0.8434 }, { "start": 41972.28, "end": 41973.02, "probability": 0.5259 }, { "start": 41973.12, "end": 41973.72, "probability": 0.685 }, { "start": 41974.36, "end": 41976.56, "probability": 0.9609 }, { "start": 41976.62, "end": 41979.24, "probability": 0.9893 }, { "start": 41979.24, "end": 41980.92, "probability": 0.759 }, { "start": 41981.5, "end": 41983.12, "probability": 0.7065 }, { "start": 41986.88, "end": 41987.26, "probability": 0.4072 }, { "start": 41987.26, "end": 41987.26, "probability": 0.0128 }, { "start": 41987.26, "end": 41987.26, "probability": 0.0367 }, { "start": 41987.26, "end": 41987.26, "probability": 0.3471 }, { "start": 41987.26, "end": 41988.63, "probability": 0.2328 }, { "start": 41989.26, "end": 41993.94, "probability": 0.4848 }, { "start": 41994.9, "end": 41996.16, "probability": 0.6508 }, { "start": 41997.26, "end": 41999.42, "probability": 0.552 }, { "start": 41999.5, "end": 42001.12, "probability": 0.4997 }, { "start": 42001.74, "end": 42006.72, "probability": 0.7852 }, { "start": 42008.35, "end": 42009.64, "probability": 0.7904 }, { "start": 42010.58, "end": 42011.06, "probability": 0.8989 }, { "start": 42011.46, "end": 42011.9, "probability": 0.5636 }, { "start": 42026.88, "end": 42027.18, "probability": 0.1143 }, { "start": 42027.22, "end": 42027.48, "probability": 0.242 }, { "start": 42027.48, "end": 42027.94, "probability": 0.1761 }, { "start": 42027.94, "end": 42027.98, "probability": 0.0063 }, { "start": 42042.1, "end": 42043.42, "probability": 0.6482 }, { "start": 42044.32, "end": 42048.4, "probability": 0.9959 }, { "start": 42049.36, "end": 42050.6, "probability": 0.9783 }, { "start": 42051.7, "end": 42055.0, "probability": 0.9951 }, { "start": 42055.7, "end": 42058.8, "probability": 0.9956 }, { "start": 42058.8, "end": 42063.14, "probability": 0.9961 }, { "start": 42063.54, "end": 42066.9, "probability": 0.9926 }, { "start": 42067.9, "end": 42073.76, "probability": 0.9915 }, { "start": 42074.34, "end": 42077.4, "probability": 0.8342 }, { "start": 42077.92, "end": 42082.28, "probability": 0.8486 }, { "start": 42083.32, "end": 42086.72, "probability": 0.994 }, { "start": 42093.25, "end": 42095.88, "probability": 0.606 }, { "start": 42096.7, "end": 42098.54, "probability": 0.9711 }, { "start": 42099.52, "end": 42102.8, "probability": 0.9596 }, { "start": 42103.86, "end": 42107.28, "probability": 0.9984 }, { "start": 42107.98, "end": 42111.9, "probability": 0.9976 }, { "start": 42111.9, "end": 42116.74, "probability": 0.997 }, { "start": 42117.68, "end": 42119.78, "probability": 0.883 }, { "start": 42120.44, "end": 42122.6, "probability": 0.9865 }, { "start": 42123.02, "end": 42126.84, "probability": 0.9888 }, { "start": 42127.36, "end": 42127.68, "probability": 0.7601 }, { "start": 42127.82, "end": 42128.7, "probability": 0.6459 }, { "start": 42129.1, "end": 42133.44, "probability": 0.9886 }, { "start": 42134.32, "end": 42136.68, "probability": 0.9941 }, { "start": 42137.14, "end": 42138.74, "probability": 0.9556 }, { "start": 42139.26, "end": 42140.76, "probability": 0.9504 }, { "start": 42141.3, "end": 42146.98, "probability": 0.9891 }, { "start": 42147.74, "end": 42149.0, "probability": 0.3963 }, { "start": 42149.78, "end": 42153.08, "probability": 0.973 }, { "start": 42153.92, "end": 42156.24, "probability": 0.9814 }, { "start": 42157.32, "end": 42160.42, "probability": 0.7837 }, { "start": 42160.86, "end": 42164.52, "probability": 0.9971 }, { "start": 42164.9, "end": 42169.36, "probability": 0.9976 }, { "start": 42170.22, "end": 42170.9, "probability": 0.8965 }, { "start": 42171.6, "end": 42174.17, "probability": 0.9757 }, { "start": 42174.7, "end": 42176.0, "probability": 0.9604 }, { "start": 42176.46, "end": 42180.68, "probability": 0.9191 }, { "start": 42181.98, "end": 42186.56, "probability": 0.9956 }, { "start": 42187.7, "end": 42191.16, "probability": 0.9987 }, { "start": 42191.68, "end": 42196.3, "probability": 0.9641 }, { "start": 42196.3, "end": 42201.99, "probability": 0.9761 }, { "start": 42202.92, "end": 42208.98, "probability": 0.9873 }, { "start": 42209.7, "end": 42212.16, "probability": 0.9718 }, { "start": 42212.72, "end": 42215.18, "probability": 0.9357 }, { "start": 42215.18, "end": 42218.42, "probability": 0.9985 }, { "start": 42219.06, "end": 42222.94, "probability": 0.9258 }, { "start": 42224.02, "end": 42224.3, "probability": 0.6976 }, { "start": 42224.52, "end": 42225.54, "probability": 0.9359 }, { "start": 42225.64, "end": 42227.12, "probability": 0.9781 }, { "start": 42227.5, "end": 42229.08, "probability": 0.935 }, { "start": 42229.68, "end": 42231.12, "probability": 0.7842 }, { "start": 42231.7, "end": 42234.22, "probability": 0.9762 }, { "start": 42234.86, "end": 42235.78, "probability": 0.9185 }, { "start": 42236.44, "end": 42238.72, "probability": 0.9971 }, { "start": 42239.08, "end": 42242.7, "probability": 0.9975 }, { "start": 42243.7, "end": 42247.18, "probability": 0.9915 }, { "start": 42247.18, "end": 42250.84, "probability": 0.9888 }, { "start": 42251.86, "end": 42254.18, "probability": 0.9743 }, { "start": 42255.58, "end": 42258.92, "probability": 0.9713 }, { "start": 42258.92, "end": 42263.13, "probability": 0.9945 }, { "start": 42263.92, "end": 42265.22, "probability": 0.7402 }, { "start": 42265.78, "end": 42270.22, "probability": 0.83 }, { "start": 42271.55, "end": 42274.17, "probability": 0.5017 }, { "start": 42275.1, "end": 42277.06, "probability": 0.7461 }, { "start": 42277.78, "end": 42280.56, "probability": 0.9855 }, { "start": 42281.14, "end": 42283.66, "probability": 0.8877 }, { "start": 42284.64, "end": 42287.92, "probability": 0.8661 }, { "start": 42287.92, "end": 42290.2, "probability": 0.9943 }, { "start": 42291.02, "end": 42291.4, "probability": 0.5102 }, { "start": 42291.98, "end": 42295.84, "probability": 0.9768 }, { "start": 42296.92, "end": 42299.72, "probability": 0.9961 }, { "start": 42300.16, "end": 42303.08, "probability": 0.922 }, { "start": 42303.58, "end": 42306.22, "probability": 0.982 }, { "start": 42307.02, "end": 42311.72, "probability": 0.9929 }, { "start": 42312.2, "end": 42314.02, "probability": 0.9959 }, { "start": 42314.92, "end": 42317.28, "probability": 0.6616 }, { "start": 42317.86, "end": 42321.02, "probability": 0.9961 }, { "start": 42321.02, "end": 42323.76, "probability": 0.9939 }, { "start": 42324.36, "end": 42326.08, "probability": 0.9669 }, { "start": 42326.22, "end": 42329.64, "probability": 0.974 }, { "start": 42330.56, "end": 42335.14, "probability": 0.9966 }, { "start": 42335.66, "end": 42338.34, "probability": 0.971 }, { "start": 42339.06, "end": 42341.0, "probability": 0.9985 }, { "start": 42341.48, "end": 42344.48, "probability": 0.9978 }, { "start": 42344.48, "end": 42348.04, "probability": 0.9832 }, { "start": 42348.6, "end": 42350.24, "probability": 0.9845 }, { "start": 42351.46, "end": 42352.16, "probability": 0.7591 }, { "start": 42352.32, "end": 42356.44, "probability": 0.9741 }, { "start": 42357.12, "end": 42359.92, "probability": 0.9975 }, { "start": 42360.88, "end": 42364.3, "probability": 0.983 }, { "start": 42364.94, "end": 42368.88, "probability": 0.996 }, { "start": 42369.52, "end": 42371.36, "probability": 0.9839 }, { "start": 42371.44, "end": 42373.66, "probability": 0.9232 }, { "start": 42374.28, "end": 42375.5, "probability": 0.9375 }, { "start": 42375.8, "end": 42377.72, "probability": 0.9165 }, { "start": 42378.22, "end": 42379.8, "probability": 0.8915 }, { "start": 42380.32, "end": 42383.34, "probability": 0.9874 }, { "start": 42383.81, "end": 42384.88, "probability": 0.9982 }, { "start": 42386.0, "end": 42388.3, "probability": 0.9417 }, { "start": 42388.92, "end": 42389.76, "probability": 0.8862 }, { "start": 42390.32, "end": 42394.1, "probability": 0.9688 }, { "start": 42394.98, "end": 42399.46, "probability": 0.9185 }, { "start": 42400.2, "end": 42402.68, "probability": 0.862 }, { "start": 42404.4, "end": 42408.94, "probability": 0.9986 }, { "start": 42409.42, "end": 42411.4, "probability": 0.9951 }, { "start": 42412.12, "end": 42414.9, "probability": 0.9989 }, { "start": 42415.38, "end": 42416.4, "probability": 0.8393 }, { "start": 42416.48, "end": 42417.6, "probability": 0.9355 }, { "start": 42418.16, "end": 42419.06, "probability": 0.5302 }, { "start": 42419.42, "end": 42422.92, "probability": 0.9821 }, { "start": 42423.72, "end": 42424.48, "probability": 0.8192 }, { "start": 42424.74, "end": 42427.2, "probability": 0.9979 }, { "start": 42427.36, "end": 42427.94, "probability": 0.7478 }, { "start": 42428.36, "end": 42429.04, "probability": 0.9826 }, { "start": 42429.86, "end": 42432.12, "probability": 0.9956 }, { "start": 42433.04, "end": 42434.52, "probability": 0.9835 }, { "start": 42434.62, "end": 42437.68, "probability": 0.8845 }, { "start": 42438.38, "end": 42442.36, "probability": 0.9754 }, { "start": 42442.9, "end": 42444.12, "probability": 0.9175 }, { "start": 42444.6, "end": 42448.6, "probability": 0.9642 }, { "start": 42449.1, "end": 42452.0, "probability": 0.8473 }, { "start": 42452.8, "end": 42455.22, "probability": 0.9343 }, { "start": 42455.88, "end": 42458.28, "probability": 0.998 }, { "start": 42458.84, "end": 42461.74, "probability": 0.999 }, { "start": 42462.14, "end": 42463.72, "probability": 0.8189 }, { "start": 42464.36, "end": 42466.94, "probability": 0.7803 }, { "start": 42467.46, "end": 42472.96, "probability": 0.9971 }, { "start": 42473.52, "end": 42474.12, "probability": 0.7451 }, { "start": 42475.28, "end": 42479.48, "probability": 0.9104 }, { "start": 42480.64, "end": 42483.54, "probability": 0.911 }, { "start": 42485.04, "end": 42485.72, "probability": 0.5201 }, { "start": 42486.5, "end": 42487.38, "probability": 0.9919 }, { "start": 42488.98, "end": 42491.08, "probability": 0.9983 }, { "start": 42491.78, "end": 42492.35, "probability": 0.2898 }, { "start": 42493.55, "end": 42495.34, "probability": 0.7718 }, { "start": 42497.12, "end": 42499.1, "probability": 0.9412 }, { "start": 42499.68, "end": 42503.0, "probability": 0.5154 }, { "start": 42505.74, "end": 42507.28, "probability": 0.5137 }, { "start": 42508.1, "end": 42511.84, "probability": 0.7619 }, { "start": 42513.66, "end": 42519.2, "probability": 0.975 }, { "start": 42519.26, "end": 42521.9, "probability": 0.983 }, { "start": 42522.7, "end": 42524.26, "probability": 0.7992 }, { "start": 42524.38, "end": 42525.14, "probability": 0.9675 }, { "start": 42526.4, "end": 42526.78, "probability": 0.3846 }, { "start": 42526.96, "end": 42528.97, "probability": 0.8363 }, { "start": 42529.28, "end": 42532.52, "probability": 0.9447 }, { "start": 42533.06, "end": 42535.4, "probability": 0.9922 }, { "start": 42536.14, "end": 42539.38, "probability": 0.946 }, { "start": 42539.86, "end": 42540.88, "probability": 0.838 }, { "start": 42541.48, "end": 42543.54, "probability": 0.8835 }, { "start": 42544.1, "end": 42545.84, "probability": 0.9891 }, { "start": 42546.82, "end": 42548.16, "probability": 0.9263 }, { "start": 42548.9, "end": 42551.7, "probability": 0.7907 }, { "start": 42553.16, "end": 42555.66, "probability": 0.8251 }, { "start": 42557.1, "end": 42560.4, "probability": 0.9954 }, { "start": 42561.88, "end": 42566.58, "probability": 0.9873 }, { "start": 42567.94, "end": 42568.49, "probability": 0.9475 }, { "start": 42570.04, "end": 42571.76, "probability": 0.9957 }, { "start": 42573.12, "end": 42579.54, "probability": 0.996 }, { "start": 42580.56, "end": 42584.0, "probability": 0.6555 }, { "start": 42584.12, "end": 42585.06, "probability": 0.9421 }, { "start": 42585.24, "end": 42588.16, "probability": 0.9932 }, { "start": 42588.26, "end": 42588.74, "probability": 0.9064 }, { "start": 42589.42, "end": 42591.4, "probability": 0.9297 }, { "start": 42592.14, "end": 42595.32, "probability": 0.9526 }, { "start": 42595.94, "end": 42598.5, "probability": 0.9553 }, { "start": 42598.72, "end": 42599.68, "probability": 0.9941 }, { "start": 42600.38, "end": 42603.2, "probability": 0.9956 }, { "start": 42603.86, "end": 42604.8, "probability": 0.9316 }, { "start": 42605.46, "end": 42607.98, "probability": 0.8821 }, { "start": 42608.72, "end": 42609.2, "probability": 0.5446 }, { "start": 42609.8, "end": 42611.32, "probability": 0.998 }, { "start": 42611.9, "end": 42613.06, "probability": 0.7439 }, { "start": 42613.58, "end": 42615.96, "probability": 0.326 }, { "start": 42616.68, "end": 42618.48, "probability": 0.9949 }, { "start": 42618.66, "end": 42620.26, "probability": 0.9969 }, { "start": 42621.02, "end": 42624.36, "probability": 0.983 }, { "start": 42625.0, "end": 42626.42, "probability": 0.9759 }, { "start": 42626.68, "end": 42627.62, "probability": 0.9121 }, { "start": 42627.88, "end": 42628.36, "probability": 0.9202 }, { "start": 42628.76, "end": 42630.46, "probability": 0.9878 }, { "start": 42631.54, "end": 42632.67, "probability": 0.4175 }, { "start": 42633.56, "end": 42633.62, "probability": 0.3293 }, { "start": 42633.62, "end": 42634.7, "probability": 0.502 }, { "start": 42635.26, "end": 42636.26, "probability": 0.8367 }, { "start": 42636.42, "end": 42637.64, "probability": 0.6638 }, { "start": 42637.78, "end": 42638.48, "probability": 0.8303 }, { "start": 42638.64, "end": 42641.98, "probability": 0.9393 }, { "start": 42642.06, "end": 42642.2, "probability": 0.8035 }, { "start": 42643.72, "end": 42647.04, "probability": 0.6004 }, { "start": 42647.04, "end": 42649.82, "probability": 0.9141 }, { "start": 42650.24, "end": 42651.3, "probability": 0.658 }, { "start": 42651.82, "end": 42654.0, "probability": 0.9553 }, { "start": 42654.78, "end": 42657.43, "probability": 0.8927 }, { "start": 42657.68, "end": 42661.62, "probability": 0.9907 }, { "start": 42661.76, "end": 42662.16, "probability": 0.7162 }, { "start": 42662.58, "end": 42668.04, "probability": 0.9429 }, { "start": 42668.14, "end": 42668.62, "probability": 0.5325 }, { "start": 42668.72, "end": 42670.38, "probability": 0.9948 }, { "start": 42670.52, "end": 42671.1, "probability": 0.7408 }, { "start": 42672.4, "end": 42672.52, "probability": 0.6046 }, { "start": 42673.12, "end": 42673.68, "probability": 0.6813 }, { "start": 42674.7, "end": 42678.64, "probability": 0.7945 }, { "start": 42679.34, "end": 42681.26, "probability": 0.4942 }, { "start": 42681.9, "end": 42685.39, "probability": 0.8721 }, { "start": 42687.04, "end": 42688.26, "probability": 0.9699 }, { "start": 42688.84, "end": 42694.6, "probability": 0.9458 }, { "start": 42694.6, "end": 42697.88, "probability": 0.8488 }, { "start": 42698.32, "end": 42701.64, "probability": 0.4586 }, { "start": 42702.2, "end": 42702.72, "probability": 0.4647 }, { "start": 42703.24, "end": 42703.72, "probability": 0.7104 }, { "start": 42704.6, "end": 42705.14, "probability": 0.818 }, { "start": 42706.56, "end": 42706.88, "probability": 0.0035 }, { "start": 42709.8, "end": 42711.08, "probability": 0.0001 }, { "start": 42712.56, "end": 42713.62, "probability": 0.0897 }, { "start": 42723.16, "end": 42726.3, "probability": 0.777 }, { "start": 42726.48, "end": 42730.14, "probability": 0.9912 }, { "start": 42730.24, "end": 42733.9, "probability": 0.985 }, { "start": 42733.92, "end": 42738.61, "probability": 0.7829 }, { "start": 42739.32, "end": 42740.12, "probability": 0.7033 }, { "start": 42753.84, "end": 42755.44, "probability": 0.3746 }, { "start": 42755.44, "end": 42755.72, "probability": 0.188 }, { "start": 42756.16, "end": 42757.06, "probability": 0.0952 }, { "start": 42758.36, "end": 42760.5, "probability": 0.876 }, { "start": 42760.64, "end": 42761.12, "probability": 0.9254 }, { "start": 42762.16, "end": 42766.06, "probability": 0.6629 }, { "start": 42766.08, "end": 42768.32, "probability": 0.2883 }, { "start": 42769.02, "end": 42770.52, "probability": 0.9066 }, { "start": 42774.92, "end": 42779.22, "probability": 0.7846 }, { "start": 42779.62, "end": 42780.94, "probability": 0.678 }, { "start": 42781.68, "end": 42782.76, "probability": 0.3635 }, { "start": 42783.22, "end": 42785.52, "probability": 0.9891 }, { "start": 42785.92, "end": 42788.08, "probability": 0.4682 }, { "start": 42788.42, "end": 42790.72, "probability": 0.2844 }, { "start": 42792.34, "end": 42794.46, "probability": 0.2392 } ], "segments_count": 14544, "words_count": 66657, "avg_words_per_segment": 4.5831, "avg_segment_duration": 1.822, "avg_words_per_minute": 93.3908, "plenum_id": "101478", "duration": 42824.58, "title": null, "plenum_date": "2021-11-10" }