{ "source_type": "knesset", "source_id": "plenum", "source_entry_id": "102413", "quality_score": 0.8917, "per_segment_quality_scores": [ { "start": 77.26, "end": 77.26, "probability": 0.3274 }, { "start": 77.26, "end": 80.32, "probability": 0.6882 }, { "start": 83.08, "end": 87.26, "probability": 0.9653 }, { "start": 88.16, "end": 92.3, "probability": 0.8833 }, { "start": 92.98, "end": 97.92, "probability": 0.9974 }, { "start": 98.76, "end": 99.44, "probability": 0.7564 }, { "start": 100.32, "end": 101.7, "probability": 0.7918 }, { "start": 102.68, "end": 105.14, "probability": 0.8259 }, { "start": 106.4, "end": 109.42, "probability": 0.9529 }, { "start": 111.48, "end": 113.3, "probability": 0.8285 }, { "start": 113.44, "end": 114.4, "probability": 0.7169 }, { "start": 114.46, "end": 116.9, "probability": 0.917 }, { "start": 117.16, "end": 118.74, "probability": 0.9705 }, { "start": 133.1, "end": 133.12, "probability": 0.0866 }, { "start": 133.14, "end": 133.24, "probability": 0.0315 }, { "start": 133.24, "end": 133.24, "probability": 0.0332 }, { "start": 133.24, "end": 133.24, "probability": 0.1062 }, { "start": 133.24, "end": 133.86, "probability": 0.2475 }, { "start": 134.78, "end": 139.22, "probability": 0.324 }, { "start": 139.58, "end": 140.4, "probability": 0.4104 }, { "start": 140.82, "end": 142.26, "probability": 0.7628 }, { "start": 142.32, "end": 142.66, "probability": 0.9043 }, { "start": 142.96, "end": 145.76, "probability": 0.9961 }, { "start": 146.26, "end": 150.06, "probability": 0.9758 }, { "start": 150.46, "end": 153.28, "probability": 0.9716 }, { "start": 153.28, "end": 156.7, "probability": 0.9978 }, { "start": 156.76, "end": 157.22, "probability": 0.8228 }, { "start": 157.28, "end": 159.64, "probability": 0.7785 }, { "start": 159.72, "end": 164.72, "probability": 0.9728 }, { "start": 164.9, "end": 165.82, "probability": 0.8759 }, { "start": 166.58, "end": 169.94, "probability": 0.9781 }, { "start": 170.56, "end": 175.92, "probability": 0.9961 }, { "start": 175.94, "end": 179.56, "probability": 0.991 }, { "start": 180.1, "end": 181.26, "probability": 0.716 }, { "start": 181.84, "end": 184.28, "probability": 0.99 }, { "start": 185.2, "end": 188.82, "probability": 0.957 }, { "start": 188.96, "end": 191.62, "probability": 0.8297 }, { "start": 192.38, "end": 196.48, "probability": 0.9763 }, { "start": 196.94, "end": 199.82, "probability": 0.993 }, { "start": 199.92, "end": 203.5, "probability": 0.9575 }, { "start": 203.74, "end": 205.08, "probability": 0.9887 }, { "start": 205.16, "end": 207.47, "probability": 0.993 }, { "start": 208.02, "end": 210.3, "probability": 0.9944 }, { "start": 210.46, "end": 216.18, "probability": 0.9624 }, { "start": 216.98, "end": 217.78, "probability": 0.7809 }, { "start": 217.8, "end": 218.02, "probability": 0.8328 }, { "start": 218.12, "end": 219.72, "probability": 0.9148 }, { "start": 219.82, "end": 220.83, "probability": 0.9683 }, { "start": 221.6, "end": 222.54, "probability": 0.8878 }, { "start": 222.64, "end": 225.4, "probability": 0.9924 }, { "start": 225.88, "end": 227.52, "probability": 0.7681 }, { "start": 228.26, "end": 231.2, "probability": 0.6074 }, { "start": 231.7, "end": 232.3, "probability": 0.2282 }, { "start": 232.3, "end": 237.74, "probability": 0.8735 }, { "start": 237.9, "end": 238.82, "probability": 0.9478 }, { "start": 238.9, "end": 239.3, "probability": 0.944 }, { "start": 239.84, "end": 240.6, "probability": 0.8667 }, { "start": 241.38, "end": 245.92, "probability": 0.9928 }, { "start": 246.56, "end": 248.39, "probability": 0.778 }, { "start": 248.46, "end": 250.64, "probability": 0.9717 }, { "start": 251.1, "end": 255.1, "probability": 0.8193 }, { "start": 255.48, "end": 258.1, "probability": 0.985 }, { "start": 258.16, "end": 260.24, "probability": 0.9764 }, { "start": 260.72, "end": 264.74, "probability": 0.996 }, { "start": 265.02, "end": 265.52, "probability": 0.749 }, { "start": 266.44, "end": 267.22, "probability": 0.7547 }, { "start": 267.36, "end": 267.74, "probability": 0.7065 }, { "start": 268.0, "end": 271.12, "probability": 0.998 }, { "start": 271.54, "end": 271.94, "probability": 0.7258 }, { "start": 272.17, "end": 274.82, "probability": 0.9668 }, { "start": 275.18, "end": 277.36, "probability": 0.988 }, { "start": 277.58, "end": 278.76, "probability": 0.7036 }, { "start": 278.84, "end": 282.74, "probability": 0.9902 }, { "start": 283.12, "end": 284.94, "probability": 0.7561 }, { "start": 285.12, "end": 287.5, "probability": 0.937 }, { "start": 287.56, "end": 289.38, "probability": 0.8417 }, { "start": 291.08, "end": 291.18, "probability": 0.262 }, { "start": 291.18, "end": 292.26, "probability": 0.9891 }, { "start": 292.32, "end": 294.66, "probability": 0.9961 }, { "start": 295.34, "end": 297.06, "probability": 0.2396 }, { "start": 297.16, "end": 297.5, "probability": 0.4169 }, { "start": 297.72, "end": 297.98, "probability": 0.4633 }, { "start": 298.12, "end": 302.22, "probability": 0.9956 }, { "start": 302.92, "end": 303.62, "probability": 0.528 }, { "start": 303.7, "end": 308.0, "probability": 0.9601 }, { "start": 308.66, "end": 310.84, "probability": 0.8494 }, { "start": 313.5, "end": 315.82, "probability": 0.6812 }, { "start": 317.36, "end": 320.81, "probability": 0.8813 }, { "start": 321.7, "end": 322.94, "probability": 0.9118 }, { "start": 323.04, "end": 325.82, "probability": 0.9832 }, { "start": 326.62, "end": 329.1, "probability": 0.8735 }, { "start": 329.98, "end": 332.02, "probability": 0.9238 }, { "start": 332.22, "end": 333.74, "probability": 0.7154 }, { "start": 333.74, "end": 335.3, "probability": 0.9773 }, { "start": 335.52, "end": 341.02, "probability": 0.7002 }, { "start": 341.7, "end": 344.33, "probability": 0.9402 }, { "start": 344.9, "end": 348.34, "probability": 0.9934 }, { "start": 348.34, "end": 348.34, "probability": 0.5033 }, { "start": 348.34, "end": 351.76, "probability": 0.1415 }, { "start": 352.0, "end": 354.9, "probability": 0.8843 }, { "start": 354.98, "end": 355.36, "probability": 0.8408 }, { "start": 356.18, "end": 356.78, "probability": 0.8438 }, { "start": 356.86, "end": 359.24, "probability": 0.832 }, { "start": 359.56, "end": 360.72, "probability": 0.9233 }, { "start": 360.8, "end": 362.32, "probability": 0.9844 }, { "start": 362.32, "end": 365.7, "probability": 0.9908 }, { "start": 365.7, "end": 369.86, "probability": 0.9954 }, { "start": 370.5, "end": 373.02, "probability": 0.9982 }, { "start": 373.66, "end": 377.32, "probability": 0.9916 }, { "start": 377.5, "end": 380.96, "probability": 0.998 }, { "start": 381.52, "end": 385.56, "probability": 0.9958 }, { "start": 386.0, "end": 388.72, "probability": 0.9926 }, { "start": 389.24, "end": 390.3, "probability": 0.8689 }, { "start": 393.54, "end": 397.04, "probability": 0.5986 }, { "start": 397.4, "end": 399.98, "probability": 0.9614 }, { "start": 402.28, "end": 402.8, "probability": 0.8911 }, { "start": 411.54, "end": 412.24, "probability": 0.7312 }, { "start": 413.38, "end": 414.68, "probability": 0.9951 }, { "start": 419.78, "end": 422.26, "probability": 0.9916 }, { "start": 422.98, "end": 425.54, "probability": 0.9736 }, { "start": 436.66, "end": 440.1, "probability": 0.0999 }, { "start": 441.2, "end": 441.2, "probability": 0.0601 }, { "start": 456.36, "end": 456.76, "probability": 0.0303 }, { "start": 457.68, "end": 460.64, "probability": 0.1407 }, { "start": 464.72, "end": 471.68, "probability": 0.0464 }, { "start": 471.68, "end": 475.02, "probability": 0.0238 }, { "start": 881.0, "end": 881.0, "probability": 0.0 }, { "start": 881.0, "end": 881.0, "probability": 0.0 }, { "start": 881.0, "end": 881.0, "probability": 0.0 }, { "start": 881.0, "end": 881.0, "probability": 0.0 }, { "start": 901.3, "end": 903.66, "probability": 0.1977 }, { "start": 908.6, "end": 910.76, "probability": 0.0961 }, { "start": 914.88, "end": 916.34, "probability": 0.2877 }, { "start": 944.2, "end": 945.02, "probability": 0.4575 }, { "start": 945.14, "end": 945.4, "probability": 0.7381 }, { "start": 945.5, "end": 946.02, "probability": 0.6267 }, { "start": 946.04, "end": 947.92, "probability": 0.9042 }, { "start": 948.0, "end": 956.48, "probability": 0.8169 }, { "start": 956.56, "end": 959.5, "probability": 0.9011 }, { "start": 960.76, "end": 963.52, "probability": 0.9688 }, { "start": 965.06, "end": 968.06, "probability": 0.5613 }, { "start": 969.1, "end": 971.82, "probability": 0.9785 }, { "start": 972.72, "end": 976.13, "probability": 0.9744 }, { "start": 978.16, "end": 980.68, "probability": 0.8958 }, { "start": 980.74, "end": 982.92, "probability": 0.9467 }, { "start": 983.84, "end": 984.68, "probability": 0.6798 }, { "start": 985.24, "end": 991.12, "probability": 0.8894 }, { "start": 991.12, "end": 993.84, "probability": 0.9911 }, { "start": 995.58, "end": 996.08, "probability": 0.7211 }, { "start": 996.64, "end": 997.1, "probability": 0.7791 }, { "start": 997.38, "end": 998.36, "probability": 0.8448 }, { "start": 998.46, "end": 999.24, "probability": 0.6726 }, { "start": 999.58, "end": 1000.5, "probability": 0.8837 }, { "start": 1000.62, "end": 1003.44, "probability": 0.9477 }, { "start": 1003.68, "end": 1006.22, "probability": 0.8849 }, { "start": 1006.9, "end": 1009.16, "probability": 0.9807 }, { "start": 1009.4, "end": 1011.62, "probability": 0.94 }, { "start": 1012.48, "end": 1016.88, "probability": 0.8665 }, { "start": 1017.98, "end": 1019.98, "probability": 0.9707 }, { "start": 1020.24, "end": 1022.64, "probability": 0.9325 }, { "start": 1023.36, "end": 1024.88, "probability": 0.9811 }, { "start": 1026.96, "end": 1033.46, "probability": 0.9678 }, { "start": 1034.38, "end": 1038.68, "probability": 0.9872 }, { "start": 1040.38, "end": 1044.48, "probability": 0.95 }, { "start": 1044.72, "end": 1045.82, "probability": 0.6972 }, { "start": 1045.96, "end": 1046.54, "probability": 0.8443 }, { "start": 1047.3, "end": 1050.78, "probability": 0.9624 }, { "start": 1050.78, "end": 1055.94, "probability": 0.9959 }, { "start": 1056.02, "end": 1059.24, "probability": 0.9914 }, { "start": 1059.98, "end": 1063.82, "probability": 0.9968 }, { "start": 1064.14, "end": 1065.64, "probability": 0.7564 }, { "start": 1065.78, "end": 1066.58, "probability": 0.7947 }, { "start": 1066.74, "end": 1069.52, "probability": 0.9211 }, { "start": 1070.1, "end": 1070.98, "probability": 0.8409 }, { "start": 1071.0, "end": 1071.32, "probability": 0.9612 }, { "start": 1071.68, "end": 1073.82, "probability": 0.9809 }, { "start": 1073.88, "end": 1076.84, "probability": 0.9316 }, { "start": 1077.88, "end": 1081.52, "probability": 0.9992 }, { "start": 1081.52, "end": 1085.52, "probability": 0.9997 }, { "start": 1086.54, "end": 1092.56, "probability": 0.9352 }, { "start": 1093.26, "end": 1095.94, "probability": 0.9646 }, { "start": 1095.94, "end": 1101.12, "probability": 0.9993 }, { "start": 1101.28, "end": 1101.64, "probability": 0.7751 }, { "start": 1102.3, "end": 1106.54, "probability": 0.9792 }, { "start": 1106.7, "end": 1110.5, "probability": 0.9745 }, { "start": 1110.84, "end": 1113.74, "probability": 0.7943 }, { "start": 1113.9, "end": 1114.8, "probability": 0.9904 }, { "start": 1116.46, "end": 1120.88, "probability": 0.9879 }, { "start": 1120.88, "end": 1126.22, "probability": 0.9368 }, { "start": 1127.44, "end": 1127.54, "probability": 0.2761 }, { "start": 1127.54, "end": 1130.94, "probability": 0.928 }, { "start": 1131.22, "end": 1137.94, "probability": 0.9956 }, { "start": 1137.94, "end": 1145.78, "probability": 0.9932 }, { "start": 1146.5, "end": 1150.22, "probability": 0.9915 }, { "start": 1150.28, "end": 1156.06, "probability": 0.9805 }, { "start": 1156.3, "end": 1160.71, "probability": 0.9579 }, { "start": 1161.42, "end": 1166.28, "probability": 0.9941 }, { "start": 1167.1, "end": 1167.38, "probability": 0.7286 }, { "start": 1168.52, "end": 1169.52, "probability": 0.9462 }, { "start": 1169.58, "end": 1174.02, "probability": 0.9736 }, { "start": 1174.66, "end": 1178.92, "probability": 0.96 }, { "start": 1178.92, "end": 1181.2, "probability": 0.9446 }, { "start": 1181.34, "end": 1182.98, "probability": 0.9963 }, { "start": 1183.5, "end": 1186.79, "probability": 0.8408 }, { "start": 1187.42, "end": 1191.26, "probability": 0.9268 }, { "start": 1193.08, "end": 1200.72, "probability": 0.9427 }, { "start": 1202.98, "end": 1203.36, "probability": 0.575 }, { "start": 1203.96, "end": 1205.68, "probability": 0.9264 }, { "start": 1206.8, "end": 1208.96, "probability": 0.8609 }, { "start": 1209.62, "end": 1216.8, "probability": 0.942 }, { "start": 1218.04, "end": 1218.86, "probability": 0.7864 }, { "start": 1219.22, "end": 1221.94, "probability": 0.9977 }, { "start": 1221.94, "end": 1226.12, "probability": 0.7551 }, { "start": 1229.9, "end": 1231.12, "probability": 0.9016 }, { "start": 1232.44, "end": 1235.62, "probability": 0.9585 }, { "start": 1235.62, "end": 1237.66, "probability": 0.9044 }, { "start": 1237.9, "end": 1239.4, "probability": 0.5852 }, { "start": 1239.46, "end": 1245.38, "probability": 0.9958 }, { "start": 1246.14, "end": 1246.54, "probability": 0.6416 }, { "start": 1246.6, "end": 1248.22, "probability": 0.9473 }, { "start": 1248.6, "end": 1250.62, "probability": 0.9711 }, { "start": 1251.62, "end": 1255.82, "probability": 0.9887 }, { "start": 1256.02, "end": 1258.96, "probability": 0.9159 }, { "start": 1259.32, "end": 1261.64, "probability": 0.9992 }, { "start": 1262.3, "end": 1263.64, "probability": 0.7015 }, { "start": 1263.68, "end": 1266.12, "probability": 0.9007 }, { "start": 1270.3, "end": 1273.24, "probability": 0.926 }, { "start": 1274.18, "end": 1275.78, "probability": 0.8781 }, { "start": 1277.6, "end": 1280.84, "probability": 0.6997 }, { "start": 1283.68, "end": 1284.58, "probability": 0.9694 }, { "start": 1284.7, "end": 1285.73, "probability": 0.998 }, { "start": 1286.08, "end": 1288.08, "probability": 0.9948 }, { "start": 1288.44, "end": 1289.56, "probability": 0.9485 }, { "start": 1290.22, "end": 1291.58, "probability": 0.7766 }, { "start": 1291.7, "end": 1295.54, "probability": 0.9866 }, { "start": 1295.64, "end": 1296.64, "probability": 0.6791 }, { "start": 1297.2, "end": 1301.34, "probability": 0.9477 }, { "start": 1301.76, "end": 1309.72, "probability": 0.9306 }, { "start": 1309.9, "end": 1311.16, "probability": 0.4397 }, { "start": 1311.2, "end": 1311.8, "probability": 0.9196 }, { "start": 1312.0, "end": 1317.82, "probability": 0.9714 }, { "start": 1319.7, "end": 1322.98, "probability": 0.9922 }, { "start": 1323.31, "end": 1327.02, "probability": 0.9968 }, { "start": 1327.1, "end": 1328.02, "probability": 0.8286 }, { "start": 1328.12, "end": 1328.26, "probability": 0.8779 }, { "start": 1328.4, "end": 1330.36, "probability": 0.6511 }, { "start": 1330.44, "end": 1333.89, "probability": 0.9783 }, { "start": 1334.72, "end": 1335.88, "probability": 0.6918 }, { "start": 1337.48, "end": 1338.94, "probability": 0.964 }, { "start": 1339.1, "end": 1341.08, "probability": 0.9801 }, { "start": 1341.18, "end": 1342.2, "probability": 0.588 }, { "start": 1342.34, "end": 1342.84, "probability": 0.743 }, { "start": 1343.02, "end": 1345.26, "probability": 0.6745 }, { "start": 1345.38, "end": 1347.12, "probability": 0.9232 }, { "start": 1348.6, "end": 1355.04, "probability": 0.9944 }, { "start": 1356.34, "end": 1357.38, "probability": 0.5433 }, { "start": 1358.08, "end": 1363.9, "probability": 0.9341 }, { "start": 1365.42, "end": 1365.62, "probability": 0.0067 }, { "start": 1365.88, "end": 1368.06, "probability": 0.9482 }, { "start": 1368.22, "end": 1368.56, "probability": 0.1911 }, { "start": 1368.56, "end": 1371.88, "probability": 0.998 }, { "start": 1372.4, "end": 1373.44, "probability": 0.9232 }, { "start": 1373.5, "end": 1376.38, "probability": 0.9049 }, { "start": 1376.7, "end": 1378.36, "probability": 0.8317 }, { "start": 1379.6, "end": 1382.58, "probability": 0.9602 }, { "start": 1382.9, "end": 1386.08, "probability": 0.9548 }, { "start": 1386.78, "end": 1388.26, "probability": 0.5722 }, { "start": 1388.7, "end": 1389.08, "probability": 0.7319 }, { "start": 1390.06, "end": 1390.56, "probability": 0.9407 }, { "start": 1390.6, "end": 1395.36, "probability": 0.9019 }, { "start": 1395.42, "end": 1396.44, "probability": 0.5196 }, { "start": 1396.86, "end": 1397.52, "probability": 0.8777 }, { "start": 1397.6, "end": 1399.25, "probability": 0.9454 }, { "start": 1399.6, "end": 1404.61, "probability": 0.8574 }, { "start": 1405.26, "end": 1408.0, "probability": 0.9976 }, { "start": 1408.72, "end": 1409.82, "probability": 0.7473 }, { "start": 1409.98, "end": 1413.08, "probability": 0.9653 }, { "start": 1413.08, "end": 1413.86, "probability": 0.3884 }, { "start": 1413.86, "end": 1413.86, "probability": 0.5833 }, { "start": 1413.86, "end": 1415.94, "probability": 0.9915 }, { "start": 1416.04, "end": 1417.64, "probability": 0.9912 }, { "start": 1418.06, "end": 1419.46, "probability": 0.8697 }, { "start": 1420.64, "end": 1425.76, "probability": 0.9929 }, { "start": 1425.82, "end": 1425.86, "probability": 0.0875 }, { "start": 1425.86, "end": 1426.96, "probability": 0.6996 }, { "start": 1426.96, "end": 1427.14, "probability": 0.1311 }, { "start": 1427.28, "end": 1428.1, "probability": 0.8655 }, { "start": 1428.22, "end": 1433.58, "probability": 0.9587 }, { "start": 1433.62, "end": 1435.1, "probability": 0.9287 }, { "start": 1435.18, "end": 1435.68, "probability": 0.957 }, { "start": 1435.86, "end": 1436.54, "probability": 0.7434 }, { "start": 1436.68, "end": 1437.48, "probability": 0.6268 }, { "start": 1437.58, "end": 1441.36, "probability": 0.8285 }, { "start": 1441.42, "end": 1442.36, "probability": 0.9883 }, { "start": 1442.94, "end": 1443.78, "probability": 0.62 }, { "start": 1446.12, "end": 1446.82, "probability": 0.755 }, { "start": 1446.88, "end": 1448.94, "probability": 0.9351 }, { "start": 1459.5, "end": 1462.48, "probability": 0.7267 }, { "start": 1463.58, "end": 1465.92, "probability": 0.6935 }, { "start": 1467.24, "end": 1473.86, "probability": 0.9709 }, { "start": 1474.42, "end": 1478.18, "probability": 0.886 }, { "start": 1479.67, "end": 1481.56, "probability": 0.4196 }, { "start": 1483.14, "end": 1485.3, "probability": 0.7488 }, { "start": 1486.18, "end": 1489.38, "probability": 0.954 }, { "start": 1490.78, "end": 1493.72, "probability": 0.8776 }, { "start": 1494.7, "end": 1498.38, "probability": 0.8964 }, { "start": 1499.4, "end": 1502.24, "probability": 0.9347 }, { "start": 1502.24, "end": 1507.36, "probability": 0.8257 }, { "start": 1508.22, "end": 1511.76, "probability": 0.6434 }, { "start": 1512.68, "end": 1515.08, "probability": 0.1009 }, { "start": 1515.08, "end": 1515.54, "probability": 0.4874 }, { "start": 1516.05, "end": 1521.94, "probability": 0.7451 }, { "start": 1523.63, "end": 1526.82, "probability": 0.6075 }, { "start": 1527.34, "end": 1527.98, "probability": 0.8474 }, { "start": 1528.18, "end": 1528.98, "probability": 0.5496 }, { "start": 1529.14, "end": 1529.9, "probability": 0.8694 }, { "start": 1530.04, "end": 1530.84, "probability": 0.2315 }, { "start": 1531.12, "end": 1531.54, "probability": 0.5854 }, { "start": 1532.08, "end": 1533.4, "probability": 0.7005 }, { "start": 1534.2, "end": 1538.7, "probability": 0.9185 }, { "start": 1538.86, "end": 1539.86, "probability": 0.875 }, { "start": 1540.02, "end": 1540.82, "probability": 0.8158 }, { "start": 1541.2, "end": 1541.54, "probability": 0.6616 }, { "start": 1541.62, "end": 1544.32, "probability": 0.9899 }, { "start": 1545.04, "end": 1546.94, "probability": 0.5473 }, { "start": 1547.54, "end": 1549.4, "probability": 0.9736 }, { "start": 1551.86, "end": 1552.92, "probability": 0.9678 }, { "start": 1553.04, "end": 1553.94, "probability": 0.7962 }, { "start": 1554.02, "end": 1560.66, "probability": 0.8274 }, { "start": 1562.4, "end": 1564.86, "probability": 0.583 }, { "start": 1565.5, "end": 1568.86, "probability": 0.9948 }, { "start": 1569.36, "end": 1570.36, "probability": 0.9785 }, { "start": 1571.52, "end": 1573.5, "probability": 0.7649 }, { "start": 1573.5, "end": 1576.0, "probability": 0.9444 }, { "start": 1576.2, "end": 1577.74, "probability": 0.9863 }, { "start": 1578.32, "end": 1580.98, "probability": 0.9363 }, { "start": 1581.58, "end": 1586.08, "probability": 0.6167 }, { "start": 1586.3, "end": 1589.0, "probability": 0.6381 }, { "start": 1592.02, "end": 1596.76, "probability": 0.9938 }, { "start": 1596.8, "end": 1598.7, "probability": 0.7934 }, { "start": 1599.18, "end": 1599.66, "probability": 0.0537 }, { "start": 1601.16, "end": 1602.72, "probability": 0.4308 }, { "start": 1604.6, "end": 1607.5, "probability": 0.542 }, { "start": 1608.9, "end": 1611.92, "probability": 0.3577 }, { "start": 1613.9, "end": 1615.88, "probability": 0.8635 }, { "start": 1616.46, "end": 1618.42, "probability": 0.9278 }, { "start": 1622.02, "end": 1624.12, "probability": 0.9974 }, { "start": 1626.56, "end": 1630.04, "probability": 0.9746 }, { "start": 1630.34, "end": 1632.22, "probability": 0.8421 }, { "start": 1632.28, "end": 1636.0, "probability": 0.8618 }, { "start": 1636.86, "end": 1639.96, "probability": 0.9679 }, { "start": 1647.74, "end": 1648.18, "probability": 0.4883 }, { "start": 1648.26, "end": 1651.56, "probability": 0.9161 }, { "start": 1662.52, "end": 1663.24, "probability": 0.4819 }, { "start": 1663.62, "end": 1665.04, "probability": 0.7705 }, { "start": 1665.18, "end": 1665.84, "probability": 0.8497 }, { "start": 1665.96, "end": 1667.12, "probability": 0.8501 }, { "start": 1667.46, "end": 1667.74, "probability": 0.9539 }, { "start": 1667.82, "end": 1673.04, "probability": 0.9944 }, { "start": 1673.18, "end": 1676.46, "probability": 0.7927 }, { "start": 1677.3, "end": 1682.18, "probability": 0.9746 }, { "start": 1683.58, "end": 1687.08, "probability": 0.8568 }, { "start": 1687.08, "end": 1690.44, "probability": 0.999 }, { "start": 1691.04, "end": 1693.9, "probability": 0.9181 }, { "start": 1694.78, "end": 1698.92, "probability": 0.824 }, { "start": 1699.6, "end": 1703.25, "probability": 0.824 }, { "start": 1704.06, "end": 1706.58, "probability": 0.835 }, { "start": 1707.02, "end": 1710.54, "probability": 0.7098 }, { "start": 1710.66, "end": 1710.72, "probability": 0.1308 }, { "start": 1710.72, "end": 1711.28, "probability": 0.3981 }, { "start": 1711.52, "end": 1713.13, "probability": 0.9849 }, { "start": 1713.48, "end": 1713.62, "probability": 0.3301 }, { "start": 1713.88, "end": 1715.06, "probability": 0.9723 }, { "start": 1715.46, "end": 1715.72, "probability": 0.79 }, { "start": 1716.24, "end": 1718.44, "probability": 0.7595 }, { "start": 1719.44, "end": 1720.84, "probability": 0.5325 }, { "start": 1721.18, "end": 1721.68, "probability": 0.4714 }, { "start": 1721.7, "end": 1723.96, "probability": 0.9861 }, { "start": 1724.14, "end": 1725.62, "probability": 0.8617 }, { "start": 1725.68, "end": 1727.8, "probability": 0.9534 }, { "start": 1729.12, "end": 1733.2, "probability": 0.9443 }, { "start": 1733.6, "end": 1734.44, "probability": 0.3476 }, { "start": 1734.7, "end": 1735.82, "probability": 0.8 }, { "start": 1735.92, "end": 1736.56, "probability": 0.6881 }, { "start": 1737.1, "end": 1737.7, "probability": 0.649 }, { "start": 1737.8, "end": 1738.56, "probability": 0.7214 }, { "start": 1738.62, "end": 1739.22, "probability": 0.7976 }, { "start": 1739.68, "end": 1740.38, "probability": 0.9081 }, { "start": 1740.88, "end": 1742.44, "probability": 0.7334 }, { "start": 1742.58, "end": 1742.94, "probability": 0.2627 }, { "start": 1743.08, "end": 1743.6, "probability": 0.8607 }, { "start": 1743.72, "end": 1746.7, "probability": 0.8418 }, { "start": 1746.84, "end": 1747.32, "probability": 0.3893 }, { "start": 1747.46, "end": 1749.92, "probability": 0.8765 }, { "start": 1750.1, "end": 1751.46, "probability": 0.9918 }, { "start": 1752.58, "end": 1753.22, "probability": 0.6372 }, { "start": 1753.62, "end": 1755.0, "probability": 0.6974 }, { "start": 1755.1, "end": 1756.46, "probability": 0.5684 }, { "start": 1757.44, "end": 1760.92, "probability": 0.8214 }, { "start": 1761.16, "end": 1761.92, "probability": 0.7171 }, { "start": 1762.56, "end": 1763.52, "probability": 0.6336 }, { "start": 1763.6, "end": 1764.36, "probability": 0.4893 }, { "start": 1764.36, "end": 1764.72, "probability": 0.7833 }, { "start": 1764.86, "end": 1765.8, "probability": 0.9252 }, { "start": 1766.14, "end": 1767.04, "probability": 0.9373 }, { "start": 1767.6, "end": 1774.72, "probability": 0.945 }, { "start": 1775.52, "end": 1780.36, "probability": 0.9275 }, { "start": 1780.96, "end": 1783.32, "probability": 0.7813 }, { "start": 1784.22, "end": 1784.78, "probability": 0.9842 }, { "start": 1785.4, "end": 1786.64, "probability": 0.8937 }, { "start": 1786.8, "end": 1787.38, "probability": 0.5277 }, { "start": 1787.44, "end": 1787.94, "probability": 0.9797 }, { "start": 1788.02, "end": 1788.82, "probability": 0.759 }, { "start": 1788.86, "end": 1789.36, "probability": 0.9803 }, { "start": 1789.48, "end": 1790.92, "probability": 0.7286 }, { "start": 1792.36, "end": 1792.88, "probability": 0.725 }, { "start": 1794.56, "end": 1794.92, "probability": 0.5738 }, { "start": 1795.56, "end": 1796.32, "probability": 0.7802 }, { "start": 1796.38, "end": 1796.86, "probability": 0.8117 }, { "start": 1797.26, "end": 1798.68, "probability": 0.925 }, { "start": 1798.84, "end": 1799.72, "probability": 0.9581 }, { "start": 1800.28, "end": 1801.42, "probability": 0.8876 }, { "start": 1802.22, "end": 1802.52, "probability": 0.6327 }, { "start": 1803.34, "end": 1803.84, "probability": 0.7879 }, { "start": 1804.0, "end": 1805.02, "probability": 0.6609 }, { "start": 1805.26, "end": 1806.18, "probability": 0.8676 }, { "start": 1806.64, "end": 1807.56, "probability": 0.8355 }, { "start": 1807.66, "end": 1808.16, "probability": 0.679 }, { "start": 1808.22, "end": 1810.42, "probability": 0.8962 }, { "start": 1810.44, "end": 1811.08, "probability": 0.8835 }, { "start": 1811.62, "end": 1812.42, "probability": 0.9573 }, { "start": 1812.64, "end": 1814.9, "probability": 0.9683 }, { "start": 1815.02, "end": 1816.22, "probability": 0.8113 }, { "start": 1816.78, "end": 1819.48, "probability": 0.9093 }, { "start": 1820.64, "end": 1822.58, "probability": 0.9495 }, { "start": 1822.6, "end": 1824.0, "probability": 0.2934 }, { "start": 1824.14, "end": 1825.82, "probability": 0.7859 }, { "start": 1825.9, "end": 1829.22, "probability": 0.9126 }, { "start": 1830.78, "end": 1834.3, "probability": 0.8289 }, { "start": 1834.32, "end": 1838.76, "probability": 0.97 }, { "start": 1838.8, "end": 1839.0, "probability": 0.8313 }, { "start": 1839.1, "end": 1839.48, "probability": 0.7567 }, { "start": 1839.56, "end": 1844.29, "probability": 0.9961 }, { "start": 1844.78, "end": 1845.2, "probability": 0.7101 }, { "start": 1845.36, "end": 1847.86, "probability": 0.8726 }, { "start": 1848.58, "end": 1849.9, "probability": 0.6615 }, { "start": 1850.38, "end": 1851.18, "probability": 0.1067 }, { "start": 1851.18, "end": 1853.52, "probability": 0.4 }, { "start": 1853.94, "end": 1854.52, "probability": 0.6168 }, { "start": 1854.52, "end": 1858.86, "probability": 0.6566 }, { "start": 1859.06, "end": 1861.6, "probability": 0.9737 }, { "start": 1861.74, "end": 1862.76, "probability": 0.3335 }, { "start": 1863.02, "end": 1866.0, "probability": 0.9844 }, { "start": 1866.5, "end": 1867.38, "probability": 0.638 }, { "start": 1867.4, "end": 1868.72, "probability": 0.4482 }, { "start": 1869.2, "end": 1869.46, "probability": 0.4477 }, { "start": 1869.46, "end": 1872.28, "probability": 0.6888 }, { "start": 1873.14, "end": 1875.14, "probability": 0.4884 }, { "start": 1875.38, "end": 1876.64, "probability": 0.1466 }, { "start": 1876.86, "end": 1879.42, "probability": 0.5702 }, { "start": 1880.34, "end": 1882.04, "probability": 0.4646 }, { "start": 1882.04, "end": 1882.72, "probability": 0.0291 }, { "start": 1882.72, "end": 1884.26, "probability": 0.8084 }, { "start": 1884.28, "end": 1886.04, "probability": 0.9814 }, { "start": 1886.36, "end": 1887.1, "probability": 0.6739 }, { "start": 1888.12, "end": 1891.06, "probability": 0.3496 }, { "start": 1891.18, "end": 1891.74, "probability": 0.9784 }, { "start": 1892.22, "end": 1894.08, "probability": 0.1549 }, { "start": 1894.86, "end": 1895.82, "probability": 0.085 }, { "start": 1897.18, "end": 1903.64, "probability": 0.9495 }, { "start": 1903.7, "end": 1904.56, "probability": 0.9105 }, { "start": 1905.97, "end": 1907.58, "probability": 0.1979 }, { "start": 1907.58, "end": 1907.58, "probability": 0.1067 }, { "start": 1907.58, "end": 1908.0, "probability": 0.5387 }, { "start": 1908.84, "end": 1910.44, "probability": 0.8159 }, { "start": 1915.1, "end": 1916.3, "probability": 0.1654 }, { "start": 1917.24, "end": 1918.22, "probability": 0.1377 }, { "start": 1920.26, "end": 1921.56, "probability": 0.4585 }, { "start": 1922.47, "end": 1930.7, "probability": 0.9829 }, { "start": 1930.92, "end": 1933.92, "probability": 0.9004 }, { "start": 1935.3, "end": 1937.56, "probability": 0.9946 }, { "start": 1937.7, "end": 1938.14, "probability": 0.7464 }, { "start": 1938.18, "end": 1942.38, "probability": 0.6647 }, { "start": 1943.16, "end": 1947.98, "probability": 0.9629 }, { "start": 1949.28, "end": 1949.96, "probability": 0.813 }, { "start": 1950.28, "end": 1954.08, "probability": 0.9493 }, { "start": 1954.66, "end": 1958.64, "probability": 0.9943 }, { "start": 1960.36, "end": 1962.18, "probability": 0.7747 }, { "start": 1967.34, "end": 1967.58, "probability": 0.0011 }, { "start": 1968.54, "end": 1970.0, "probability": 0.0916 }, { "start": 1971.4, "end": 1974.94, "probability": 0.7328 }, { "start": 1975.52, "end": 1979.06, "probability": 0.7797 }, { "start": 1979.44, "end": 1980.68, "probability": 0.9464 }, { "start": 1982.56, "end": 1985.8, "probability": 0.9969 }, { "start": 1986.02, "end": 1988.8, "probability": 0.9913 }, { "start": 1988.8, "end": 1991.78, "probability": 0.9948 }, { "start": 1992.12, "end": 1998.7, "probability": 0.9873 }, { "start": 1998.92, "end": 2001.34, "probability": 0.7848 }, { "start": 2002.12, "end": 2004.96, "probability": 0.9978 }, { "start": 2005.7, "end": 2011.68, "probability": 0.9893 }, { "start": 2012.32, "end": 2016.12, "probability": 0.9454 }, { "start": 2016.22, "end": 2016.64, "probability": 0.8508 }, { "start": 2016.64, "end": 2020.3, "probability": 0.946 }, { "start": 2020.32, "end": 2023.96, "probability": 0.9849 }, { "start": 2024.14, "end": 2027.42, "probability": 0.9834 }, { "start": 2028.08, "end": 2030.96, "probability": 0.8942 }, { "start": 2030.96, "end": 2033.36, "probability": 0.9789 }, { "start": 2033.52, "end": 2036.16, "probability": 0.9094 }, { "start": 2036.46, "end": 2040.04, "probability": 0.5156 }, { "start": 2042.01, "end": 2045.06, "probability": 0.7964 }, { "start": 2045.34, "end": 2047.88, "probability": 0.9541 }, { "start": 2048.18, "end": 2051.54, "probability": 0.9886 }, { "start": 2052.38, "end": 2054.08, "probability": 0.9019 }, { "start": 2054.54, "end": 2056.8, "probability": 0.9979 }, { "start": 2057.06, "end": 2058.96, "probability": 0.8385 }, { "start": 2059.34, "end": 2062.92, "probability": 0.9879 }, { "start": 2062.98, "end": 2064.52, "probability": 0.9086 }, { "start": 2064.98, "end": 2066.52, "probability": 0.7516 }, { "start": 2066.64, "end": 2071.66, "probability": 0.9796 }, { "start": 2071.88, "end": 2073.4, "probability": 0.881 }, { "start": 2084.24, "end": 2085.0, "probability": 0.6467 }, { "start": 2085.0, "end": 2087.94, "probability": 0.6508 }, { "start": 2087.94, "end": 2087.94, "probability": 0.1421 }, { "start": 2087.94, "end": 2087.94, "probability": 0.1216 }, { "start": 2087.94, "end": 2087.94, "probability": 0.3069 }, { "start": 2087.94, "end": 2088.53, "probability": 0.1759 }, { "start": 2089.08, "end": 2090.88, "probability": 0.9528 }, { "start": 2090.9, "end": 2091.64, "probability": 0.9364 }, { "start": 2092.2, "end": 2094.68, "probability": 0.2874 }, { "start": 2095.5, "end": 2096.08, "probability": 0.0057 }, { "start": 2096.08, "end": 2096.08, "probability": 0.4431 }, { "start": 2096.08, "end": 2097.98, "probability": 0.5385 }, { "start": 2098.22, "end": 2099.88, "probability": 0.5689 }, { "start": 2099.88, "end": 2101.8, "probability": 0.3172 }, { "start": 2101.8, "end": 2102.16, "probability": 0.0285 }, { "start": 2102.16, "end": 2102.43, "probability": 0.5776 }, { "start": 2103.1, "end": 2105.0, "probability": 0.9905 }, { "start": 2105.06, "end": 2105.52, "probability": 0.8163 }, { "start": 2105.6, "end": 2105.88, "probability": 0.9659 }, { "start": 2106.82, "end": 2108.58, "probability": 0.5804 }, { "start": 2108.78, "end": 2110.02, "probability": 0.8969 }, { "start": 2110.06, "end": 2110.54, "probability": 0.9662 }, { "start": 2111.9, "end": 2112.28, "probability": 0.2601 }, { "start": 2112.32, "end": 2112.98, "probability": 0.3109 }, { "start": 2113.3, "end": 2115.18, "probability": 0.9641 }, { "start": 2115.28, "end": 2116.02, "probability": 0.9264 }, { "start": 2116.22, "end": 2118.3, "probability": 0.8548 }, { "start": 2120.14, "end": 2121.44, "probability": 0.3404 }, { "start": 2121.66, "end": 2121.7, "probability": 0.4489 }, { "start": 2121.7, "end": 2122.3, "probability": 0.2225 }, { "start": 2122.5, "end": 2123.58, "probability": 0.8774 }, { "start": 2123.7, "end": 2125.06, "probability": 0.8538 }, { "start": 2125.36, "end": 2127.74, "probability": 0.9899 }, { "start": 2127.94, "end": 2127.94, "probability": 0.6502 }, { "start": 2128.02, "end": 2129.16, "probability": 0.763 }, { "start": 2129.22, "end": 2133.84, "probability": 0.9902 }, { "start": 2133.84, "end": 2133.94, "probability": 0.0397 }, { "start": 2135.74, "end": 2135.76, "probability": 0.2693 }, { "start": 2135.76, "end": 2137.16, "probability": 0.5817 }, { "start": 2137.7, "end": 2139.08, "probability": 0.9795 }, { "start": 2140.4, "end": 2144.13, "probability": 0.0322 }, { "start": 2144.38, "end": 2148.24, "probability": 0.3109 }, { "start": 2149.06, "end": 2150.26, "probability": 0.552 }, { "start": 2151.04, "end": 2152.66, "probability": 0.7218 }, { "start": 2152.76, "end": 2153.56, "probability": 0.4219 }, { "start": 2153.72, "end": 2156.36, "probability": 0.7139 }, { "start": 2156.66, "end": 2159.02, "probability": 0.7343 }, { "start": 2159.54, "end": 2161.72, "probability": 0.8663 }, { "start": 2162.78, "end": 2166.2, "probability": 0.743 }, { "start": 2167.26, "end": 2169.42, "probability": 0.9972 }, { "start": 2170.0, "end": 2170.56, "probability": 0.2122 }, { "start": 2171.04, "end": 2171.9, "probability": 0.9421 }, { "start": 2172.06, "end": 2172.76, "probability": 0.6952 }, { "start": 2173.96, "end": 2174.72, "probability": 0.8097 }, { "start": 2174.88, "end": 2177.82, "probability": 0.5452 }, { "start": 2178.54, "end": 2179.24, "probability": 0.7217 }, { "start": 2179.26, "end": 2181.58, "probability": 0.9574 }, { "start": 2181.6, "end": 2181.84, "probability": 0.1207 }, { "start": 2181.88, "end": 2182.36, "probability": 0.5797 }, { "start": 2183.04, "end": 2187.22, "probability": 0.7746 }, { "start": 2187.54, "end": 2187.78, "probability": 0.5629 }, { "start": 2187.78, "end": 2188.42, "probability": 0.7273 }, { "start": 2188.61, "end": 2193.58, "probability": 0.3958 }, { "start": 2193.58, "end": 2193.96, "probability": 0.6187 }, { "start": 2194.12, "end": 2195.06, "probability": 0.7913 }, { "start": 2195.94, "end": 2196.88, "probability": 0.9503 }, { "start": 2196.9, "end": 2199.0, "probability": 0.3668 }, { "start": 2199.02, "end": 2199.32, "probability": 0.6175 }, { "start": 2199.54, "end": 2200.56, "probability": 0.9191 }, { "start": 2200.9, "end": 2201.56, "probability": 0.6602 }, { "start": 2201.68, "end": 2202.28, "probability": 0.465 }, { "start": 2202.78, "end": 2206.08, "probability": 0.5901 }, { "start": 2206.2, "end": 2206.78, "probability": 0.9263 }, { "start": 2208.32, "end": 2210.79, "probability": 0.8903 }, { "start": 2212.75, "end": 2214.86, "probability": 0.6065 }, { "start": 2216.32, "end": 2217.38, "probability": 0.5118 }, { "start": 2217.44, "end": 2218.16, "probability": 0.9238 }, { "start": 2218.3, "end": 2220.64, "probability": 0.7771 }, { "start": 2221.83, "end": 2226.28, "probability": 0.9036 }, { "start": 2227.1, "end": 2229.14, "probability": 0.9594 }, { "start": 2229.36, "end": 2229.74, "probability": 0.6678 }, { "start": 2229.84, "end": 2231.06, "probability": 0.9547 }, { "start": 2231.22, "end": 2234.72, "probability": 0.8824 }, { "start": 2235.0, "end": 2237.26, "probability": 0.9799 }, { "start": 2237.62, "end": 2239.64, "probability": 0.5015 }, { "start": 2239.7, "end": 2242.92, "probability": 0.9751 }, { "start": 2243.06, "end": 2244.56, "probability": 0.6007 }, { "start": 2245.36, "end": 2246.1, "probability": 0.8032 }, { "start": 2246.46, "end": 2247.46, "probability": 0.6937 }, { "start": 2247.88, "end": 2251.06, "probability": 0.9344 }, { "start": 2251.88, "end": 2254.88, "probability": 0.7494 }, { "start": 2254.94, "end": 2256.06, "probability": 0.8277 }, { "start": 2256.16, "end": 2257.58, "probability": 0.9199 }, { "start": 2257.86, "end": 2259.98, "probability": 0.9607 }, { "start": 2260.38, "end": 2263.9, "probability": 0.9717 }, { "start": 2264.4, "end": 2268.16, "probability": 0.9651 }, { "start": 2268.88, "end": 2269.1, "probability": 0.9303 }, { "start": 2272.66, "end": 2273.06, "probability": 0.4321 }, { "start": 2277.34, "end": 2278.48, "probability": 0.5016 }, { "start": 2278.62, "end": 2283.52, "probability": 0.9951 }, { "start": 2284.04, "end": 2288.58, "probability": 0.9968 }, { "start": 2289.08, "end": 2292.36, "probability": 0.986 }, { "start": 2293.36, "end": 2298.8, "probability": 0.9562 }, { "start": 2299.14, "end": 2299.62, "probability": 0.7967 }, { "start": 2300.2, "end": 2303.36, "probability": 0.9653 }, { "start": 2303.48, "end": 2307.26, "probability": 0.9954 }, { "start": 2307.68, "end": 2310.04, "probability": 0.9982 }, { "start": 2310.14, "end": 2315.02, "probability": 0.9983 }, { "start": 2315.68, "end": 2317.42, "probability": 0.9156 }, { "start": 2317.6, "end": 2319.32, "probability": 0.994 }, { "start": 2319.54, "end": 2319.96, "probability": 0.0038 }, { "start": 2320.62, "end": 2321.92, "probability": 0.6779 }, { "start": 2324.72, "end": 2328.76, "probability": 0.9492 }, { "start": 2328.82, "end": 2333.02, "probability": 0.9434 }, { "start": 2333.08, "end": 2338.0, "probability": 0.9933 }, { "start": 2338.06, "end": 2338.46, "probability": 0.8301 }, { "start": 2338.6, "end": 2340.25, "probability": 0.9849 }, { "start": 2340.7, "end": 2343.6, "probability": 0.9895 }, { "start": 2344.12, "end": 2348.34, "probability": 0.9921 }, { "start": 2348.4, "end": 2353.16, "probability": 0.9915 }, { "start": 2353.22, "end": 2358.72, "probability": 0.9906 }, { "start": 2359.92, "end": 2364.16, "probability": 0.9861 }, { "start": 2364.22, "end": 2367.44, "probability": 0.9819 }, { "start": 2367.84, "end": 2370.3, "probability": 0.9941 }, { "start": 2371.4, "end": 2374.36, "probability": 0.7631 }, { "start": 2376.48, "end": 2378.48, "probability": 0.5444 }, { "start": 2378.5, "end": 2379.68, "probability": 0.9087 }, { "start": 2379.78, "end": 2383.04, "probability": 0.9828 }, { "start": 2383.42, "end": 2384.84, "probability": 0.9928 }, { "start": 2385.04, "end": 2391.96, "probability": 0.9868 }, { "start": 2392.28, "end": 2394.66, "probability": 0.9594 }, { "start": 2394.72, "end": 2395.46, "probability": 0.7298 }, { "start": 2396.18, "end": 2397.4, "probability": 0.7428 }, { "start": 2398.18, "end": 2399.36, "probability": 0.7624 }, { "start": 2399.42, "end": 2401.38, "probability": 0.9741 }, { "start": 2401.6, "end": 2406.02, "probability": 0.9937 }, { "start": 2406.98, "end": 2409.68, "probability": 0.8638 }, { "start": 2409.84, "end": 2410.48, "probability": 0.9384 }, { "start": 2410.66, "end": 2411.38, "probability": 0.991 }, { "start": 2411.5, "end": 2412.12, "probability": 0.955 }, { "start": 2412.84, "end": 2415.16, "probability": 0.9922 }, { "start": 2415.26, "end": 2417.96, "probability": 0.8535 }, { "start": 2418.22, "end": 2419.5, "probability": 0.9845 }, { "start": 2420.18, "end": 2422.28, "probability": 0.9673 }, { "start": 2422.64, "end": 2428.56, "probability": 0.978 }, { "start": 2428.56, "end": 2432.66, "probability": 0.9996 }, { "start": 2433.2, "end": 2437.22, "probability": 0.9922 }, { "start": 2437.82, "end": 2442.06, "probability": 0.8643 }, { "start": 2442.98, "end": 2448.24, "probability": 0.9838 }, { "start": 2448.6, "end": 2449.66, "probability": 0.9014 }, { "start": 2450.42, "end": 2453.22, "probability": 0.9977 }, { "start": 2453.54, "end": 2455.7, "probability": 0.9949 }, { "start": 2456.4, "end": 2457.94, "probability": 0.5849 }, { "start": 2458.16, "end": 2461.72, "probability": 0.9927 }, { "start": 2461.84, "end": 2462.2, "probability": 0.537 }, { "start": 2462.34, "end": 2463.92, "probability": 0.7708 }, { "start": 2464.58, "end": 2470.08, "probability": 0.9946 }, { "start": 2471.82, "end": 2472.6, "probability": 0.6858 }, { "start": 2473.66, "end": 2474.7, "probability": 0.8495 }, { "start": 2474.7, "end": 2475.64, "probability": 0.6934 }, { "start": 2476.24, "end": 2477.24, "probability": 0.8087 }, { "start": 2477.34, "end": 2478.68, "probability": 0.9779 }, { "start": 2478.72, "end": 2483.28, "probability": 0.9984 }, { "start": 2484.64, "end": 2484.64, "probability": 0.2853 }, { "start": 2484.64, "end": 2484.92, "probability": 0.4596 }, { "start": 2484.96, "end": 2489.24, "probability": 0.8896 }, { "start": 2489.54, "end": 2493.5, "probability": 0.9966 }, { "start": 2494.06, "end": 2494.72, "probability": 0.7676 }, { "start": 2495.82, "end": 2497.52, "probability": 0.8312 }, { "start": 2497.88, "end": 2499.66, "probability": 0.6742 }, { "start": 2499.72, "end": 2499.82, "probability": 0.6621 }, { "start": 2499.82, "end": 2504.3, "probability": 0.6651 }, { "start": 2504.86, "end": 2506.78, "probability": 0.9866 }, { "start": 2506.94, "end": 2508.58, "probability": 0.969 }, { "start": 2509.06, "end": 2511.28, "probability": 0.9642 }, { "start": 2511.48, "end": 2512.41, "probability": 0.3872 }, { "start": 2512.94, "end": 2515.12, "probability": 0.9883 }, { "start": 2515.24, "end": 2516.22, "probability": 0.7861 }, { "start": 2516.58, "end": 2520.0, "probability": 0.8709 }, { "start": 2520.2, "end": 2522.92, "probability": 0.9976 }, { "start": 2524.88, "end": 2525.12, "probability": 0.9554 }, { "start": 2525.66, "end": 2526.6, "probability": 0.9491 }, { "start": 2526.72, "end": 2532.34, "probability": 0.9625 }, { "start": 2532.44, "end": 2534.3, "probability": 0.9301 }, { "start": 2534.86, "end": 2535.84, "probability": 0.9291 }, { "start": 2536.0, "end": 2536.9, "probability": 0.9579 }, { "start": 2537.4, "end": 2540.88, "probability": 0.9504 }, { "start": 2541.46, "end": 2542.92, "probability": 0.7691 }, { "start": 2543.22, "end": 2548.08, "probability": 0.8455 }, { "start": 2548.08, "end": 2553.6, "probability": 0.9779 }, { "start": 2553.66, "end": 2553.9, "probability": 0.434 }, { "start": 2553.96, "end": 2554.06, "probability": 0.7338 }, { "start": 2554.54, "end": 2558.72, "probability": 0.7312 }, { "start": 2559.12, "end": 2561.1, "probability": 0.6832 }, { "start": 2561.16, "end": 2563.12, "probability": 0.7464 }, { "start": 2563.12, "end": 2563.62, "probability": 0.138 }, { "start": 2563.62, "end": 2563.62, "probability": 0.5465 }, { "start": 2563.72, "end": 2564.28, "probability": 0.9736 }, { "start": 2564.6, "end": 2570.74, "probability": 0.8975 }, { "start": 2570.82, "end": 2572.06, "probability": 0.9716 }, { "start": 2572.56, "end": 2575.08, "probability": 0.921 }, { "start": 2575.26, "end": 2576.8, "probability": 0.9776 }, { "start": 2576.98, "end": 2580.82, "probability": 0.873 }, { "start": 2580.82, "end": 2580.88, "probability": 0.0017 }, { "start": 2580.88, "end": 2583.24, "probability": 0.9422 }, { "start": 2583.32, "end": 2584.1, "probability": 0.3392 }, { "start": 2585.12, "end": 2586.82, "probability": 0.9369 }, { "start": 2588.58, "end": 2589.72, "probability": 0.7562 }, { "start": 2589.74, "end": 2592.18, "probability": 0.5872 }, { "start": 2592.96, "end": 2593.3, "probability": 0.9612 }, { "start": 2593.72, "end": 2596.62, "probability": 0.997 }, { "start": 2596.98, "end": 2599.14, "probability": 0.9961 }, { "start": 2600.12, "end": 2601.92, "probability": 0.6805 }, { "start": 2602.1, "end": 2603.7, "probability": 0.5519 }, { "start": 2603.94, "end": 2604.68, "probability": 0.7227 }, { "start": 2604.7, "end": 2605.28, "probability": 0.726 }, { "start": 2605.72, "end": 2608.27, "probability": 0.9724 }, { "start": 2609.0, "end": 2610.56, "probability": 0.9778 }, { "start": 2611.08, "end": 2613.08, "probability": 0.8892 }, { "start": 2613.16, "end": 2615.5, "probability": 0.9753 }, { "start": 2615.96, "end": 2616.46, "probability": 0.8915 }, { "start": 2626.92, "end": 2627.18, "probability": 0.362 }, { "start": 2627.54, "end": 2628.1, "probability": 0.5673 }, { "start": 2628.2, "end": 2631.14, "probability": 0.802 }, { "start": 2631.22, "end": 2635.94, "probability": 0.8657 }, { "start": 2636.26, "end": 2636.8, "probability": 0.8708 }, { "start": 2636.96, "end": 2637.88, "probability": 0.8358 }, { "start": 2638.04, "end": 2638.8, "probability": 0.6776 }, { "start": 2639.76, "end": 2641.72, "probability": 0.9887 }, { "start": 2641.72, "end": 2644.6, "probability": 0.999 }, { "start": 2645.32, "end": 2649.62, "probability": 0.928 }, { "start": 2650.68, "end": 2651.72, "probability": 0.6548 }, { "start": 2651.9, "end": 2654.76, "probability": 0.8017 }, { "start": 2657.3, "end": 2658.1, "probability": 0.8252 }, { "start": 2658.76, "end": 2660.22, "probability": 0.9062 }, { "start": 2660.38, "end": 2664.82, "probability": 0.9624 }, { "start": 2666.1, "end": 2666.72, "probability": 0.883 }, { "start": 2667.46, "end": 2668.38, "probability": 0.9219 }, { "start": 2668.48, "end": 2670.82, "probability": 0.9918 }, { "start": 2670.9, "end": 2671.42, "probability": 0.9762 }, { "start": 2671.5, "end": 2672.24, "probability": 0.9665 }, { "start": 2672.52, "end": 2679.08, "probability": 0.998 }, { "start": 2679.32, "end": 2686.99, "probability": 0.9893 }, { "start": 2687.96, "end": 2691.46, "probability": 0.9709 }, { "start": 2692.44, "end": 2696.32, "probability": 0.998 }, { "start": 2696.78, "end": 2700.66, "probability": 0.9746 }, { "start": 2700.76, "end": 2701.68, "probability": 0.9352 }, { "start": 2702.08, "end": 2703.02, "probability": 0.9378 }, { "start": 2703.26, "end": 2704.26, "probability": 0.9609 }, { "start": 2705.04, "end": 2705.68, "probability": 0.4952 }, { "start": 2708.42, "end": 2709.5, "probability": 0.0486 }, { "start": 2710.04, "end": 2710.94, "probability": 0.6169 }, { "start": 2711.98, "end": 2713.34, "probability": 0.6955 }, { "start": 2713.84, "end": 2716.2, "probability": 0.8937 }, { "start": 2716.74, "end": 2718.1, "probability": 0.8474 }, { "start": 2718.14, "end": 2719.18, "probability": 0.7079 }, { "start": 2720.86, "end": 2721.26, "probability": 0.0775 }, { "start": 2722.42, "end": 2723.38, "probability": 0.6144 }, { "start": 2723.66, "end": 2724.34, "probability": 0.7895 }, { "start": 2724.42, "end": 2729.82, "probability": 0.9907 }, { "start": 2730.52, "end": 2732.22, "probability": 0.4858 }, { "start": 2732.34, "end": 2732.78, "probability": 0.582 }, { "start": 2732.84, "end": 2734.68, "probability": 0.9948 }, { "start": 2735.56, "end": 2737.48, "probability": 0.9709 }, { "start": 2737.66, "end": 2739.06, "probability": 0.9307 }, { "start": 2739.46, "end": 2740.38, "probability": 0.9833 }, { "start": 2740.96, "end": 2742.8, "probability": 0.9652 }, { "start": 2742.98, "end": 2746.42, "probability": 0.9702 }, { "start": 2746.42, "end": 2752.22, "probability": 0.9935 }, { "start": 2752.8, "end": 2757.12, "probability": 0.6974 }, { "start": 2757.86, "end": 2762.32, "probability": 0.979 }, { "start": 2762.52, "end": 2763.18, "probability": 0.7526 }, { "start": 2763.6, "end": 2767.14, "probability": 0.9983 }, { "start": 2767.66, "end": 2769.8, "probability": 0.998 }, { "start": 2770.04, "end": 2775.2, "probability": 0.9976 }, { "start": 2775.74, "end": 2780.04, "probability": 0.7861 }, { "start": 2780.1, "end": 2781.88, "probability": 0.8519 }, { "start": 2781.94, "end": 2784.26, "probability": 0.9924 }, { "start": 2785.28, "end": 2785.88, "probability": 0.7751 }, { "start": 2786.68, "end": 2790.98, "probability": 0.9957 }, { "start": 2790.98, "end": 2795.3, "probability": 0.9993 }, { "start": 2795.72, "end": 2795.9, "probability": 0.7363 }, { "start": 2796.22, "end": 2799.02, "probability": 0.9956 }, { "start": 2799.02, "end": 2801.7, "probability": 0.9974 }, { "start": 2802.58, "end": 2806.6, "probability": 0.9415 }, { "start": 2807.34, "end": 2808.24, "probability": 0.6332 }, { "start": 2808.82, "end": 2812.62, "probability": 0.983 }, { "start": 2813.0, "end": 2815.42, "probability": 0.9136 }, { "start": 2816.5, "end": 2818.5, "probability": 0.8349 }, { "start": 2818.64, "end": 2820.6, "probability": 0.9702 }, { "start": 2821.02, "end": 2824.12, "probability": 0.9974 }, { "start": 2824.76, "end": 2828.9, "probability": 0.9543 }, { "start": 2829.5, "end": 2833.14, "probability": 0.9839 }, { "start": 2834.45, "end": 2836.54, "probability": 0.9475 }, { "start": 2837.3, "end": 2837.7, "probability": 0.7502 }, { "start": 2837.78, "end": 2838.42, "probability": 0.6748 }, { "start": 2838.76, "end": 2843.43, "probability": 0.9956 }, { "start": 2844.22, "end": 2845.42, "probability": 0.9838 }, { "start": 2846.0, "end": 2848.32, "probability": 0.9976 }, { "start": 2848.32, "end": 2850.9, "probability": 0.9991 }, { "start": 2851.18, "end": 2851.6, "probability": 0.7216 }, { "start": 2851.74, "end": 2857.06, "probability": 0.9896 }, { "start": 2857.18, "end": 2857.92, "probability": 0.7646 }, { "start": 2858.44, "end": 2862.18, "probability": 0.9724 }, { "start": 2862.82, "end": 2866.04, "probability": 0.9853 }, { "start": 2866.2, "end": 2870.12, "probability": 0.9833 }, { "start": 2870.4, "end": 2871.5, "probability": 0.835 }, { "start": 2872.22, "end": 2874.16, "probability": 0.4999 }, { "start": 2874.38, "end": 2876.26, "probability": 0.9912 }, { "start": 2876.74, "end": 2877.16, "probability": 0.625 }, { "start": 2877.7, "end": 2879.82, "probability": 0.9887 }, { "start": 2879.88, "end": 2881.56, "probability": 0.9961 }, { "start": 2883.06, "end": 2883.7, "probability": 0.6831 }, { "start": 2883.86, "end": 2888.26, "probability": 0.9917 }, { "start": 2888.44, "end": 2891.46, "probability": 0.9976 }, { "start": 2891.46, "end": 2892.94, "probability": 0.8675 }, { "start": 2892.94, "end": 2892.94, "probability": 0.6645 }, { "start": 2892.94, "end": 2892.94, "probability": 0.7993 }, { "start": 2893.02, "end": 2895.48, "probability": 0.852 }, { "start": 2896.02, "end": 2900.43, "probability": 0.9401 }, { "start": 2900.9, "end": 2901.36, "probability": 0.5696 }, { "start": 2901.78, "end": 2902.88, "probability": 0.9829 }, { "start": 2902.98, "end": 2904.76, "probability": 0.9166 }, { "start": 2904.8, "end": 2905.74, "probability": 0.9014 }, { "start": 2905.82, "end": 2906.32, "probability": 0.9407 }, { "start": 2906.9, "end": 2910.66, "probability": 0.9375 }, { "start": 2911.1, "end": 2911.1, "probability": 0.2196 }, { "start": 2911.1, "end": 2915.0, "probability": 0.8376 }, { "start": 2915.16, "end": 2917.54, "probability": 0.8683 }, { "start": 2917.54, "end": 2919.0, "probability": 0.5313 }, { "start": 2919.34, "end": 2920.98, "probability": 0.9252 }, { "start": 2921.74, "end": 2923.92, "probability": 0.6302 }, { "start": 2924.0, "end": 2928.26, "probability": 0.6054 }, { "start": 2928.26, "end": 2928.34, "probability": 0.0431 }, { "start": 2928.34, "end": 2928.76, "probability": 0.4507 }, { "start": 2929.02, "end": 2929.5, "probability": 0.2873 }, { "start": 2929.72, "end": 2930.18, "probability": 0.6365 }, { "start": 2930.56, "end": 2931.56, "probability": 0.4078 }, { "start": 2935.18, "end": 2935.18, "probability": 0.0636 }, { "start": 2935.18, "end": 2935.18, "probability": 0.016 }, { "start": 2935.18, "end": 2938.46, "probability": 0.9648 }, { "start": 2939.56, "end": 2940.34, "probability": 0.9875 }, { "start": 2941.76, "end": 2943.3, "probability": 0.7381 }, { "start": 2943.3, "end": 2943.3, "probability": 0.3349 }, { "start": 2943.3, "end": 2945.34, "probability": 0.4238 }, { "start": 2945.96, "end": 2946.94, "probability": 0.9003 }, { "start": 2947.0, "end": 2948.63, "probability": 0.7054 }, { "start": 2951.72, "end": 2953.04, "probability": 0.2523 }, { "start": 2953.36, "end": 2953.46, "probability": 0.0558 }, { "start": 2953.46, "end": 2953.64, "probability": 0.0626 }, { "start": 2953.64, "end": 2953.64, "probability": 0.0324 }, { "start": 2953.64, "end": 2958.78, "probability": 0.9609 }, { "start": 2958.78, "end": 2963.96, "probability": 0.9802 }, { "start": 2964.0, "end": 2965.94, "probability": 0.6127 }, { "start": 2966.46, "end": 2967.24, "probability": 0.9723 }, { "start": 2967.36, "end": 2968.0, "probability": 0.9188 }, { "start": 2968.22, "end": 2968.84, "probability": 0.3583 }, { "start": 2969.02, "end": 2971.96, "probability": 0.864 }, { "start": 2972.0, "end": 2972.92, "probability": 0.4881 }, { "start": 2973.02, "end": 2976.56, "probability": 0.9957 }, { "start": 2976.64, "end": 2979.8, "probability": 0.9025 }, { "start": 2980.58, "end": 2984.68, "probability": 0.9792 }, { "start": 2984.9, "end": 2988.6, "probability": 0.9741 }, { "start": 2989.16, "end": 2989.74, "probability": 0.8522 }, { "start": 2989.86, "end": 2994.98, "probability": 0.9836 }, { "start": 2995.46, "end": 2995.96, "probability": 0.7147 }, { "start": 2996.54, "end": 3001.94, "probability": 0.9964 }, { "start": 3002.08, "end": 3003.7, "probability": 0.9826 }, { "start": 3004.1, "end": 3006.46, "probability": 0.9873 }, { "start": 3006.86, "end": 3010.1, "probability": 0.9987 }, { "start": 3010.6, "end": 3013.0, "probability": 0.9882 }, { "start": 3013.1, "end": 3015.46, "probability": 0.9449 }, { "start": 3015.88, "end": 3018.5, "probability": 0.9928 }, { "start": 3018.7, "end": 3019.42, "probability": 0.7134 }, { "start": 3019.56, "end": 3019.7, "probability": 0.569 }, { "start": 3020.16, "end": 3022.64, "probability": 0.9683 }, { "start": 3023.16, "end": 3027.7, "probability": 0.9968 }, { "start": 3027.76, "end": 3031.28, "probability": 0.9779 }, { "start": 3031.98, "end": 3034.66, "probability": 0.999 }, { "start": 3034.66, "end": 3037.06, "probability": 0.9986 }, { "start": 3037.54, "end": 3039.68, "probability": 0.9288 }, { "start": 3040.36, "end": 3042.78, "probability": 0.9774 }, { "start": 3042.78, "end": 3045.96, "probability": 0.8633 }, { "start": 3046.85, "end": 3052.3, "probability": 0.9354 }, { "start": 3052.76, "end": 3053.26, "probability": 0.4015 }, { "start": 3053.42, "end": 3056.76, "probability": 0.9912 }, { "start": 3057.08, "end": 3059.04, "probability": 0.998 }, { "start": 3059.34, "end": 3061.38, "probability": 0.9956 }, { "start": 3062.24, "end": 3062.6, "probability": 0.9019 }, { "start": 3062.78, "end": 3063.12, "probability": 0.4742 }, { "start": 3063.18, "end": 3064.56, "probability": 0.8817 }, { "start": 3064.66, "end": 3065.78, "probability": 0.6079 }, { "start": 3065.88, "end": 3066.44, "probability": 0.6666 }, { "start": 3066.76, "end": 3067.6, "probability": 0.9854 }, { "start": 3069.66, "end": 3070.66, "probability": 0.677 }, { "start": 3070.74, "end": 3071.46, "probability": 0.9811 }, { "start": 3071.56, "end": 3074.12, "probability": 0.9919 }, { "start": 3074.12, "end": 3075.96, "probability": 0.9897 }, { "start": 3076.2, "end": 3078.54, "probability": 0.999 }, { "start": 3078.54, "end": 3081.08, "probability": 0.9977 }, { "start": 3081.2, "end": 3083.12, "probability": 0.885 }, { "start": 3083.16, "end": 3084.22, "probability": 0.8679 }, { "start": 3084.34, "end": 3085.26, "probability": 0.9618 }, { "start": 3085.5, "end": 3086.18, "probability": 0.7188 }, { "start": 3086.38, "end": 3086.99, "probability": 0.9707 }, { "start": 3087.08, "end": 3087.78, "probability": 0.9766 }, { "start": 3087.94, "end": 3088.92, "probability": 0.9626 }, { "start": 3089.0, "end": 3089.9, "probability": 0.9306 }, { "start": 3090.9, "end": 3094.8, "probability": 0.9396 }, { "start": 3095.2, "end": 3096.16, "probability": 0.9698 }, { "start": 3096.54, "end": 3098.62, "probability": 0.9932 }, { "start": 3098.74, "end": 3100.08, "probability": 0.9756 }, { "start": 3100.5, "end": 3102.84, "probability": 0.9851 }, { "start": 3102.96, "end": 3105.8, "probability": 0.9822 }, { "start": 3106.62, "end": 3109.48, "probability": 0.9928 }, { "start": 3109.54, "end": 3111.64, "probability": 0.9733 }, { "start": 3111.74, "end": 3116.28, "probability": 0.9912 }, { "start": 3116.88, "end": 3119.16, "probability": 0.9706 }, { "start": 3119.84, "end": 3122.22, "probability": 0.9963 }, { "start": 3123.58, "end": 3127.45, "probability": 0.8336 }, { "start": 3128.14, "end": 3128.9, "probability": 0.8514 }, { "start": 3129.36, "end": 3134.5, "probability": 0.8083 }, { "start": 3135.73, "end": 3135.82, "probability": 0.0649 }, { "start": 3135.82, "end": 3135.82, "probability": 0.1534 }, { "start": 3135.82, "end": 3136.18, "probability": 0.3453 }, { "start": 3136.4, "end": 3137.7, "probability": 0.3126 }, { "start": 3137.78, "end": 3138.5, "probability": 0.24 }, { "start": 3138.52, "end": 3140.82, "probability": 0.9101 }, { "start": 3140.88, "end": 3143.0, "probability": 0.7011 }, { "start": 3143.34, "end": 3146.2, "probability": 0.9712 }, { "start": 3146.66, "end": 3147.3, "probability": 0.6919 }, { "start": 3147.72, "end": 3148.24, "probability": 0.502 }, { "start": 3148.36, "end": 3149.86, "probability": 0.9891 }, { "start": 3150.88, "end": 3152.24, "probability": 0.6967 }, { "start": 3152.46, "end": 3153.85, "probability": 0.9087 }, { "start": 3158.0, "end": 3158.92, "probability": 0.2134 }, { "start": 3158.92, "end": 3160.46, "probability": 0.3783 }, { "start": 3160.76, "end": 3164.32, "probability": 0.9927 }, { "start": 3164.9, "end": 3165.98, "probability": 0.5231 }, { "start": 3167.46, "end": 3168.96, "probability": 0.3059 }, { "start": 3169.96, "end": 3173.56, "probability": 0.9871 }, { "start": 3174.26, "end": 3175.66, "probability": 0.7857 }, { "start": 3176.36, "end": 3177.0, "probability": 0.858 }, { "start": 3191.06, "end": 3191.06, "probability": 0.164 }, { "start": 3191.06, "end": 3191.06, "probability": 0.0381 }, { "start": 3191.06, "end": 3191.06, "probability": 0.2074 }, { "start": 3191.06, "end": 3191.12, "probability": 0.0184 }, { "start": 3191.12, "end": 3191.18, "probability": 0.0249 }, { "start": 3191.18, "end": 3192.32, "probability": 0.1338 }, { "start": 3192.92, "end": 3193.48, "probability": 0.0316 }, { "start": 3212.26, "end": 3213.74, "probability": 0.8556 }, { "start": 3214.34, "end": 3216.14, "probability": 0.9563 }, { "start": 3217.06, "end": 3220.58, "probability": 0.9897 }, { "start": 3221.12, "end": 3224.56, "probability": 0.9761 }, { "start": 3226.65, "end": 3230.08, "probability": 0.8565 }, { "start": 3230.94, "end": 3233.48, "probability": 0.9965 }, { "start": 3234.26, "end": 3235.0, "probability": 0.9785 }, { "start": 3235.68, "end": 3236.52, "probability": 0.834 }, { "start": 3237.08, "end": 3238.26, "probability": 0.8733 }, { "start": 3239.32, "end": 3240.26, "probability": 0.9306 }, { "start": 3240.9, "end": 3246.06, "probability": 0.9937 }, { "start": 3246.3, "end": 3247.92, "probability": 0.9725 }, { "start": 3248.44, "end": 3249.5, "probability": 0.9827 }, { "start": 3250.84, "end": 3251.38, "probability": 0.9443 }, { "start": 3251.96, "end": 3252.58, "probability": 0.8482 }, { "start": 3253.1, "end": 3255.28, "probability": 0.9844 }, { "start": 3256.84, "end": 3260.76, "probability": 0.9067 }, { "start": 3261.6, "end": 3263.7, "probability": 0.9948 }, { "start": 3264.84, "end": 3266.6, "probability": 0.9242 }, { "start": 3267.18, "end": 3271.96, "probability": 0.9746 }, { "start": 3272.52, "end": 3273.08, "probability": 0.8861 }, { "start": 3274.02, "end": 3275.26, "probability": 0.9168 }, { "start": 3275.66, "end": 3277.9, "probability": 0.9528 }, { "start": 3278.4, "end": 3279.44, "probability": 0.964 }, { "start": 3280.0, "end": 3281.08, "probability": 0.995 }, { "start": 3281.76, "end": 3282.66, "probability": 0.9544 }, { "start": 3283.38, "end": 3286.4, "probability": 0.9978 }, { "start": 3287.04, "end": 3287.84, "probability": 0.5698 }, { "start": 3288.1, "end": 3289.5, "probability": 0.4079 }, { "start": 3289.6, "end": 3292.5, "probability": 0.8118 }, { "start": 3293.64, "end": 3294.72, "probability": 0.9974 }, { "start": 3295.42, "end": 3298.08, "probability": 0.9889 }, { "start": 3298.72, "end": 3305.68, "probability": 0.993 }, { "start": 3306.24, "end": 3307.62, "probability": 0.9746 }, { "start": 3308.32, "end": 3308.98, "probability": 0.6533 }, { "start": 3309.64, "end": 3310.76, "probability": 0.9643 }, { "start": 3311.78, "end": 3313.46, "probability": 0.9292 }, { "start": 3314.1, "end": 3317.9, "probability": 0.995 }, { "start": 3318.5, "end": 3319.42, "probability": 0.9878 }, { "start": 3320.02, "end": 3327.32, "probability": 0.9922 }, { "start": 3327.9, "end": 3334.24, "probability": 0.9897 }, { "start": 3335.18, "end": 3337.88, "probability": 0.9961 }, { "start": 3338.96, "end": 3343.52, "probability": 0.9933 }, { "start": 3344.32, "end": 3346.62, "probability": 0.9989 }, { "start": 3347.16, "end": 3351.08, "probability": 0.8947 }, { "start": 3351.28, "end": 3352.16, "probability": 0.9787 }, { "start": 3352.52, "end": 3353.14, "probability": 0.7655 }, { "start": 3353.26, "end": 3353.88, "probability": 0.9451 }, { "start": 3354.5, "end": 3355.06, "probability": 0.9491 }, { "start": 3355.82, "end": 3356.46, "probability": 0.8482 }, { "start": 3357.08, "end": 3360.38, "probability": 0.9941 }, { "start": 3361.38, "end": 3361.68, "probability": 0.4986 }, { "start": 3362.46, "end": 3363.94, "probability": 0.9653 }, { "start": 3364.46, "end": 3368.36, "probability": 0.9996 }, { "start": 3369.86, "end": 3373.14, "probability": 0.7622 }, { "start": 3373.72, "end": 3374.62, "probability": 0.9022 }, { "start": 3375.16, "end": 3380.36, "probability": 0.9355 }, { "start": 3381.36, "end": 3382.92, "probability": 0.9403 }, { "start": 3383.66, "end": 3388.58, "probability": 0.6449 }, { "start": 3389.24, "end": 3391.96, "probability": 0.9933 }, { "start": 3392.52, "end": 3395.82, "probability": 0.9836 }, { "start": 3396.0, "end": 3397.24, "probability": 0.86 }, { "start": 3397.76, "end": 3399.54, "probability": 0.9474 }, { "start": 3399.98, "end": 3404.38, "probability": 0.9927 }, { "start": 3404.54, "end": 3405.02, "probability": 0.8937 }, { "start": 3405.46, "end": 3406.3, "probability": 0.8729 }, { "start": 3407.06, "end": 3409.6, "probability": 0.9847 }, { "start": 3410.12, "end": 3411.16, "probability": 0.9454 }, { "start": 3411.58, "end": 3412.64, "probability": 0.9877 }, { "start": 3413.08, "end": 3415.3, "probability": 0.9899 }, { "start": 3416.56, "end": 3421.82, "probability": 0.984 }, { "start": 3421.92, "end": 3425.46, "probability": 0.9983 }, { "start": 3425.94, "end": 3427.24, "probability": 0.6704 }, { "start": 3427.86, "end": 3430.82, "probability": 0.5216 }, { "start": 3431.22, "end": 3431.99, "probability": 0.4204 }, { "start": 3433.58, "end": 3436.4, "probability": 0.5802 }, { "start": 3437.12, "end": 3439.42, "probability": 0.9828 }, { "start": 3440.32, "end": 3447.68, "probability": 0.9466 }, { "start": 3448.38, "end": 3449.02, "probability": 0.8419 }, { "start": 3449.52, "end": 3454.76, "probability": 0.9987 }, { "start": 3455.44, "end": 3458.48, "probability": 0.9917 }, { "start": 3458.96, "end": 3462.34, "probability": 0.9021 }, { "start": 3463.0, "end": 3464.82, "probability": 0.771 }, { "start": 3464.84, "end": 3466.46, "probability": 0.8296 }, { "start": 3467.24, "end": 3469.14, "probability": 0.9979 }, { "start": 3470.32, "end": 3471.05, "probability": 0.6777 }, { "start": 3473.54, "end": 3476.48, "probability": 0.6424 }, { "start": 3476.8, "end": 3477.06, "probability": 0.808 }, { "start": 3477.18, "end": 3477.64, "probability": 0.567 }, { "start": 3478.04, "end": 3479.5, "probability": 0.6078 }, { "start": 3480.44, "end": 3484.22, "probability": 0.9548 }, { "start": 3484.38, "end": 3486.0, "probability": 0.4863 }, { "start": 3486.74, "end": 3487.66, "probability": 0.3948 }, { "start": 3487.92, "end": 3491.68, "probability": 0.7322 }, { "start": 3492.46, "end": 3494.34, "probability": 0.9893 }, { "start": 3495.26, "end": 3498.82, "probability": 0.9667 }, { "start": 3499.9, "end": 3500.46, "probability": 0.4624 }, { "start": 3500.86, "end": 3501.7, "probability": 0.9415 }, { "start": 3501.78, "end": 3503.2, "probability": 0.8935 }, { "start": 3503.3, "end": 3504.35, "probability": 0.4971 }, { "start": 3504.86, "end": 3507.68, "probability": 0.7964 }, { "start": 3507.76, "end": 3508.82, "probability": 0.9092 }, { "start": 3509.36, "end": 3512.34, "probability": 0.7744 }, { "start": 3512.42, "end": 3513.44, "probability": 0.9721 }, { "start": 3515.0, "end": 3516.48, "probability": 0.8997 }, { "start": 3517.72, "end": 3518.7, "probability": 0.9845 }, { "start": 3519.16, "end": 3520.14, "probability": 0.9785 }, { "start": 3520.62, "end": 3522.74, "probability": 0.9914 }, { "start": 3523.32, "end": 3524.1, "probability": 0.7508 }, { "start": 3524.14, "end": 3527.34, "probability": 0.9812 }, { "start": 3529.02, "end": 3530.6, "probability": 0.8219 }, { "start": 3531.08, "end": 3533.42, "probability": 0.9591 }, { "start": 3533.76, "end": 3534.68, "probability": 0.9062 }, { "start": 3534.86, "end": 3536.16, "probability": 0.9823 }, { "start": 3537.75, "end": 3539.9, "probability": 0.7037 }, { "start": 3541.52, "end": 3545.28, "probability": 0.877 }, { "start": 3545.8, "end": 3549.16, "probability": 0.9153 }, { "start": 3549.16, "end": 3553.86, "probability": 0.9896 }, { "start": 3554.42, "end": 3555.34, "probability": 0.8476 }, { "start": 3555.88, "end": 3556.9, "probability": 0.9929 }, { "start": 3558.5, "end": 3564.26, "probability": 0.8389 }, { "start": 3564.32, "end": 3564.64, "probability": 0.8759 }, { "start": 3564.7, "end": 3565.06, "probability": 0.8529 }, { "start": 3565.64, "end": 3568.4, "probability": 0.9658 }, { "start": 3569.42, "end": 3572.24, "probability": 0.8412 }, { "start": 3572.78, "end": 3576.5, "probability": 0.9908 }, { "start": 3576.5, "end": 3580.98, "probability": 0.98 }, { "start": 3581.52, "end": 3584.87, "probability": 0.9863 }, { "start": 3585.4, "end": 3589.6, "probability": 0.8552 }, { "start": 3590.1, "end": 3593.52, "probability": 0.9769 }, { "start": 3594.1, "end": 3597.24, "probability": 0.9221 }, { "start": 3598.14, "end": 3601.8, "probability": 0.7167 }, { "start": 3603.06, "end": 3603.76, "probability": 0.6904 }, { "start": 3603.96, "end": 3605.26, "probability": 0.7012 }, { "start": 3605.38, "end": 3605.98, "probability": 0.6947 }, { "start": 3606.7, "end": 3611.66, "probability": 0.9643 }, { "start": 3612.04, "end": 3612.64, "probability": 0.6265 }, { "start": 3613.48, "end": 3615.22, "probability": 0.9517 }, { "start": 3616.26, "end": 3620.14, "probability": 0.8608 }, { "start": 3620.44, "end": 3622.82, "probability": 0.8459 }, { "start": 3623.12, "end": 3623.54, "probability": 0.5724 }, { "start": 3623.62, "end": 3624.04, "probability": 0.5754 }, { "start": 3624.5, "end": 3628.56, "probability": 0.9873 }, { "start": 3628.56, "end": 3632.8, "probability": 0.9976 }, { "start": 3633.38, "end": 3634.02, "probability": 0.7092 }, { "start": 3634.06, "end": 3635.08, "probability": 0.8403 }, { "start": 3635.14, "end": 3638.94, "probability": 0.9745 }, { "start": 3639.02, "end": 3641.72, "probability": 0.717 }, { "start": 3642.36, "end": 3644.94, "probability": 0.9834 }, { "start": 3644.94, "end": 3647.38, "probability": 0.9941 }, { "start": 3647.62, "end": 3648.32, "probability": 0.8394 }, { "start": 3648.44, "end": 3649.24, "probability": 0.9351 }, { "start": 3650.04, "end": 3652.46, "probability": 0.9353 }, { "start": 3652.94, "end": 3654.48, "probability": 0.9744 }, { "start": 3655.2, "end": 3658.32, "probability": 0.7733 }, { "start": 3658.86, "end": 3661.09, "probability": 0.9525 }, { "start": 3661.48, "end": 3661.82, "probability": 0.4699 }, { "start": 3662.3, "end": 3664.2, "probability": 0.9686 }, { "start": 3664.22, "end": 3665.34, "probability": 0.6075 }, { "start": 3665.84, "end": 3668.72, "probability": 0.9634 }, { "start": 3669.18, "end": 3670.16, "probability": 0.7462 }, { "start": 3670.48, "end": 3671.54, "probability": 0.4635 }, { "start": 3671.66, "end": 3672.74, "probability": 0.7728 }, { "start": 3673.36, "end": 3674.98, "probability": 0.9207 }, { "start": 3675.48, "end": 3677.52, "probability": 0.9556 }, { "start": 3678.08, "end": 3678.72, "probability": 0.9567 }, { "start": 3679.62, "end": 3681.82, "probability": 0.9215 }, { "start": 3682.42, "end": 3684.14, "probability": 0.838 }, { "start": 3684.56, "end": 3687.78, "probability": 0.9858 }, { "start": 3688.26, "end": 3691.24, "probability": 0.9862 }, { "start": 3691.84, "end": 3692.68, "probability": 0.5026 }, { "start": 3693.22, "end": 3696.06, "probability": 0.9724 }, { "start": 3696.14, "end": 3698.12, "probability": 0.986 }, { "start": 3698.12, "end": 3701.06, "probability": 0.9897 }, { "start": 3701.46, "end": 3702.64, "probability": 0.7194 }, { "start": 3702.98, "end": 3703.46, "probability": 0.9265 }, { "start": 3703.52, "end": 3704.86, "probability": 0.6663 }, { "start": 3705.48, "end": 3707.18, "probability": 0.681 }, { "start": 3707.28, "end": 3711.8, "probability": 0.9753 }, { "start": 3711.8, "end": 3715.44, "probability": 0.9799 }, { "start": 3715.64, "end": 3718.58, "probability": 0.6326 }, { "start": 3718.94, "end": 3722.58, "probability": 0.786 }, { "start": 3722.58, "end": 3724.42, "probability": 0.8972 }, { "start": 3724.94, "end": 3728.64, "probability": 0.9771 }, { "start": 3728.7, "end": 3730.1, "probability": 0.9684 }, { "start": 3730.68, "end": 3732.08, "probability": 0.9083 }, { "start": 3732.6, "end": 3733.9, "probability": 0.8352 }, { "start": 3734.04, "end": 3737.86, "probability": 0.9794 }, { "start": 3738.58, "end": 3740.44, "probability": 0.9982 }, { "start": 3740.56, "end": 3744.62, "probability": 0.9923 }, { "start": 3745.14, "end": 3747.0, "probability": 0.9918 }, { "start": 3747.52, "end": 3749.4, "probability": 0.9385 }, { "start": 3750.06, "end": 3750.5, "probability": 0.6396 }, { "start": 3750.98, "end": 3753.42, "probability": 0.9832 }, { "start": 3753.46, "end": 3754.76, "probability": 0.9908 }, { "start": 3755.38, "end": 3760.24, "probability": 0.962 }, { "start": 3760.98, "end": 3761.28, "probability": 0.4583 }, { "start": 3761.86, "end": 3765.82, "probability": 0.8503 }, { "start": 3766.48, "end": 3768.74, "probability": 0.3517 }, { "start": 3769.52, "end": 3774.52, "probability": 0.8857 }, { "start": 3775.0, "end": 3778.82, "probability": 0.9762 }, { "start": 3778.9, "end": 3780.26, "probability": 0.5045 }, { "start": 3780.34, "end": 3782.32, "probability": 0.9779 }, { "start": 3782.8, "end": 3786.84, "probability": 0.9904 }, { "start": 3787.68, "end": 3789.94, "probability": 0.9834 }, { "start": 3790.58, "end": 3795.56, "probability": 0.9944 }, { "start": 3796.38, "end": 3801.08, "probability": 0.9966 }, { "start": 3801.24, "end": 3801.7, "probability": 0.6442 }, { "start": 3807.08, "end": 3807.08, "probability": 0.3095 }, { "start": 3807.08, "end": 3807.08, "probability": 0.1228 }, { "start": 3807.08, "end": 3807.08, "probability": 0.0017 }, { "start": 3818.82, "end": 3819.76, "probability": 0.6597 }, { "start": 3821.16, "end": 3821.86, "probability": 0.1598 }, { "start": 3822.3, "end": 3822.96, "probability": 0.2584 }, { "start": 3823.14, "end": 3823.24, "probability": 0.0297 }, { "start": 3823.3, "end": 3823.52, "probability": 0.0147 }, { "start": 3823.52, "end": 3823.82, "probability": 0.4256 }, { "start": 3824.26, "end": 3825.94, "probability": 0.0913 }, { "start": 3831.86, "end": 3832.06, "probability": 0.0228 }, { "start": 3834.02, "end": 3835.78, "probability": 0.4218 }, { "start": 3836.38, "end": 3838.12, "probability": 0.1336 }, { "start": 3866.8, "end": 3870.62, "probability": 0.7439 }, { "start": 3870.82, "end": 3872.02, "probability": 0.9902 }, { "start": 3873.14, "end": 3874.34, "probability": 0.899 }, { "start": 3875.86, "end": 3877.98, "probability": 0.9067 }, { "start": 3878.08, "end": 3879.78, "probability": 0.9687 }, { "start": 3880.34, "end": 3881.26, "probability": 0.7484 }, { "start": 3882.16, "end": 3884.68, "probability": 0.9708 }, { "start": 3885.6, "end": 3888.66, "probability": 0.9696 }, { "start": 3889.42, "end": 3890.74, "probability": 0.9278 }, { "start": 3891.74, "end": 3893.28, "probability": 0.9182 }, { "start": 3893.84, "end": 3898.16, "probability": 0.9976 }, { "start": 3899.58, "end": 3904.02, "probability": 0.9985 }, { "start": 3904.96, "end": 3906.04, "probability": 0.753 }, { "start": 3906.72, "end": 3909.3, "probability": 0.9988 }, { "start": 3909.84, "end": 3911.2, "probability": 0.999 }, { "start": 3911.92, "end": 3913.28, "probability": 0.8054 }, { "start": 3913.92, "end": 3916.08, "probability": 0.9965 }, { "start": 3916.68, "end": 3917.7, "probability": 0.7457 }, { "start": 3918.64, "end": 3923.46, "probability": 0.8975 }, { "start": 3923.68, "end": 3927.44, "probability": 0.9984 }, { "start": 3928.28, "end": 3930.76, "probability": 0.8763 }, { "start": 3931.82, "end": 3936.36, "probability": 0.912 }, { "start": 3937.06, "end": 3940.44, "probability": 0.9787 }, { "start": 3940.96, "end": 3942.46, "probability": 0.971 }, { "start": 3943.06, "end": 3944.38, "probability": 0.9989 }, { "start": 3945.16, "end": 3946.62, "probability": 0.9841 }, { "start": 3947.24, "end": 3951.76, "probability": 0.9957 }, { "start": 3953.16, "end": 3954.26, "probability": 0.7648 }, { "start": 3955.04, "end": 3956.24, "probability": 0.9976 }, { "start": 3956.86, "end": 3958.4, "probability": 0.9762 }, { "start": 3959.28, "end": 3960.78, "probability": 0.8763 }, { "start": 3961.38, "end": 3964.16, "probability": 0.7685 }, { "start": 3964.84, "end": 3967.35, "probability": 0.9987 }, { "start": 3968.1, "end": 3968.88, "probability": 0.9145 }, { "start": 3969.68, "end": 3971.22, "probability": 0.9956 }, { "start": 3971.74, "end": 3973.1, "probability": 0.7098 }, { "start": 3981.0, "end": 3983.0, "probability": 0.9945 }, { "start": 3984.3, "end": 3989.84, "probability": 0.9928 }, { "start": 3990.54, "end": 3994.64, "probability": 0.9741 }, { "start": 3995.24, "end": 3997.74, "probability": 0.9857 }, { "start": 3998.5, "end": 3999.34, "probability": 0.9266 }, { "start": 4000.22, "end": 4001.32, "probability": 0.8888 }, { "start": 4002.0, "end": 4003.98, "probability": 0.9973 }, { "start": 4004.68, "end": 4007.98, "probability": 0.9889 }, { "start": 4009.18, "end": 4009.94, "probability": 0.889 }, { "start": 4010.66, "end": 4015.62, "probability": 0.994 }, { "start": 4016.24, "end": 4017.62, "probability": 0.9762 }, { "start": 4018.2, "end": 4018.5, "probability": 0.7235 }, { "start": 4020.44, "end": 4023.16, "probability": 0.5607 }, { "start": 4023.28, "end": 4026.39, "probability": 0.972 }, { "start": 4027.84, "end": 4030.52, "probability": 0.8132 }, { "start": 4032.06, "end": 4035.68, "probability": 0.4944 }, { "start": 4035.68, "end": 4036.66, "probability": 0.566 }, { "start": 4043.62, "end": 4044.9, "probability": 0.6688 }, { "start": 4045.04, "end": 4046.22, "probability": 0.9863 }, { "start": 4046.98, "end": 4048.38, "probability": 0.9292 }, { "start": 4050.42, "end": 4050.42, "probability": 0.5143 }, { "start": 4055.8, "end": 4056.08, "probability": 0.7234 }, { "start": 4057.1, "end": 4057.93, "probability": 0.7864 }, { "start": 4058.1, "end": 4060.96, "probability": 0.993 }, { "start": 4061.8, "end": 4066.14, "probability": 0.9769 }, { "start": 4066.14, "end": 4071.46, "probability": 0.9953 }, { "start": 4071.82, "end": 4074.24, "probability": 0.8254 }, { "start": 4075.28, "end": 4075.96, "probability": 0.3607 }, { "start": 4076.38, "end": 4078.92, "probability": 0.9756 }, { "start": 4079.8, "end": 4079.9, "probability": 0.9647 }, { "start": 4080.46, "end": 4080.9, "probability": 0.7642 }, { "start": 4081.0, "end": 4081.76, "probability": 0.7688 }, { "start": 4082.22, "end": 4083.88, "probability": 0.9868 }, { "start": 4084.1, "end": 4088.62, "probability": 0.9634 }, { "start": 4088.76, "end": 4089.24, "probability": 0.9528 }, { "start": 4090.28, "end": 4091.64, "probability": 0.6416 }, { "start": 4091.68, "end": 4093.36, "probability": 0.9486 }, { "start": 4094.4, "end": 4097.06, "probability": 0.8535 }, { "start": 4097.28, "end": 4098.3, "probability": 0.7683 }, { "start": 4098.32, "end": 4100.62, "probability": 0.9798 }, { "start": 4100.9, "end": 4101.68, "probability": 0.7345 }, { "start": 4101.68, "end": 4107.96, "probability": 0.9565 }, { "start": 4108.02, "end": 4109.28, "probability": 0.9963 }, { "start": 4109.58, "end": 4110.92, "probability": 0.8972 }, { "start": 4111.1, "end": 4113.54, "probability": 0.9897 }, { "start": 4113.9, "end": 4114.76, "probability": 0.9661 }, { "start": 4115.0, "end": 4115.66, "probability": 0.9916 }, { "start": 4115.74, "end": 4117.22, "probability": 0.9766 }, { "start": 4117.38, "end": 4118.78, "probability": 0.998 }, { "start": 4119.6, "end": 4121.78, "probability": 0.9707 }, { "start": 4122.34, "end": 4126.32, "probability": 0.9977 }, { "start": 4126.74, "end": 4129.3, "probability": 0.9907 }, { "start": 4129.48, "end": 4131.52, "probability": 0.7624 }, { "start": 4131.9, "end": 4133.74, "probability": 0.9744 }, { "start": 4133.76, "end": 4135.26, "probability": 0.9519 }, { "start": 4135.26, "end": 4138.28, "probability": 0.9784 }, { "start": 4139.02, "end": 4142.96, "probability": 0.9073 }, { "start": 4143.04, "end": 4144.6, "probability": 0.845 }, { "start": 4145.02, "end": 4145.8, "probability": 0.662 }, { "start": 4145.9, "end": 4146.86, "probability": 0.7544 }, { "start": 4147.12, "end": 4150.24, "probability": 0.9917 }, { "start": 4150.24, "end": 4153.62, "probability": 0.954 }, { "start": 4153.64, "end": 4155.36, "probability": 0.861 }, { "start": 4155.44, "end": 4156.5, "probability": 0.9798 }, { "start": 4156.58, "end": 4157.56, "probability": 0.9966 }, { "start": 4158.48, "end": 4162.36, "probability": 0.8018 }, { "start": 4163.04, "end": 4167.62, "probability": 0.9863 }, { "start": 4167.72, "end": 4170.2, "probability": 0.7683 }, { "start": 4170.96, "end": 4173.36, "probability": 0.9867 }, { "start": 4173.56, "end": 4175.26, "probability": 0.7593 }, { "start": 4175.66, "end": 4178.62, "probability": 0.9462 }, { "start": 4178.7, "end": 4180.42, "probability": 0.8743 }, { "start": 4180.48, "end": 4181.88, "probability": 0.9119 }, { "start": 4181.92, "end": 4185.74, "probability": 0.7606 }, { "start": 4186.16, "end": 4186.84, "probability": 0.8206 }, { "start": 4186.84, "end": 4189.3, "probability": 0.9921 }, { "start": 4190.22, "end": 4193.42, "probability": 0.581 }, { "start": 4193.92, "end": 4198.58, "probability": 0.9932 }, { "start": 4199.16, "end": 4203.3, "probability": 0.9973 }, { "start": 4203.62, "end": 4205.4, "probability": 0.9531 }, { "start": 4205.44, "end": 4208.98, "probability": 0.9828 }, { "start": 4209.08, "end": 4211.02, "probability": 0.9377 }, { "start": 4211.12, "end": 4211.76, "probability": 0.6749 }, { "start": 4211.9, "end": 4213.4, "probability": 0.9263 }, { "start": 4213.7, "end": 4214.66, "probability": 0.6909 }, { "start": 4214.76, "end": 4216.18, "probability": 0.9504 }, { "start": 4216.28, "end": 4219.48, "probability": 0.9961 }, { "start": 4220.04, "end": 4221.04, "probability": 0.8199 }, { "start": 4221.46, "end": 4226.38, "probability": 0.9945 }, { "start": 4226.6, "end": 4228.96, "probability": 0.9447 }, { "start": 4229.12, "end": 4232.8, "probability": 0.9978 }, { "start": 4232.9, "end": 4234.02, "probability": 0.98 }, { "start": 4234.6, "end": 4235.76, "probability": 0.7926 }, { "start": 4236.18, "end": 4236.34, "probability": 0.4695 }, { "start": 4236.44, "end": 4236.72, "probability": 0.4598 }, { "start": 4237.06, "end": 4238.78, "probability": 0.9659 }, { "start": 4239.12, "end": 4240.96, "probability": 0.9812 }, { "start": 4241.58, "end": 4247.08, "probability": 0.9948 }, { "start": 4247.1, "end": 4251.16, "probability": 0.9979 }, { "start": 4251.3, "end": 4252.42, "probability": 0.8329 }, { "start": 4252.52, "end": 4258.66, "probability": 0.9958 }, { "start": 4259.1, "end": 4260.48, "probability": 0.8201 }, { "start": 4260.62, "end": 4263.86, "probability": 0.761 }, { "start": 4263.86, "end": 4265.52, "probability": 0.9587 }, { "start": 4266.14, "end": 4269.26, "probability": 0.9313 }, { "start": 4269.36, "end": 4270.14, "probability": 0.498 }, { "start": 4270.34, "end": 4271.22, "probability": 0.5003 }, { "start": 4271.32, "end": 4272.14, "probability": 0.7077 }, { "start": 4272.18, "end": 4273.78, "probability": 0.8962 }, { "start": 4273.94, "end": 4275.52, "probability": 0.9302 }, { "start": 4276.02, "end": 4277.64, "probability": 0.7906 }, { "start": 4278.16, "end": 4280.2, "probability": 0.6498 }, { "start": 4280.5, "end": 4282.16, "probability": 0.8441 }, { "start": 4282.44, "end": 4284.96, "probability": 0.8766 }, { "start": 4285.3, "end": 4285.72, "probability": 0.8363 }, { "start": 4285.76, "end": 4286.84, "probability": 0.7221 }, { "start": 4287.08, "end": 4289.5, "probability": 0.8977 }, { "start": 4289.58, "end": 4291.22, "probability": 0.7902 }, { "start": 4291.24, "end": 4293.18, "probability": 0.7534 }, { "start": 4293.26, "end": 4293.26, "probability": 0.5143 }, { "start": 4293.26, "end": 4294.08, "probability": 0.8372 }, { "start": 4294.4, "end": 4298.3, "probability": 0.968 }, { "start": 4298.3, "end": 4300.38, "probability": 0.9966 }, { "start": 4300.7, "end": 4302.14, "probability": 0.9938 }, { "start": 4302.6, "end": 4302.6, "probability": 0.4549 }, { "start": 4302.9, "end": 4303.78, "probability": 0.6697 }, { "start": 4304.02, "end": 4307.58, "probability": 0.8262 }, { "start": 4307.98, "end": 4307.98, "probability": 0.0009 }, { "start": 4309.88, "end": 4310.1, "probability": 0.2616 }, { "start": 4316.74, "end": 4317.42, "probability": 0.0124 }, { "start": 4318.4, "end": 4319.1, "probability": 0.4122 }, { "start": 4320.6, "end": 4321.86, "probability": 0.9637 }, { "start": 4322.16, "end": 4322.72, "probability": 0.7473 }, { "start": 4322.8, "end": 4323.08, "probability": 0.393 }, { "start": 4324.33, "end": 4329.83, "probability": 0.9895 }, { "start": 4330.53, "end": 4333.5, "probability": 0.981 }, { "start": 4333.5, "end": 4337.08, "probability": 0.9456 }, { "start": 4337.36, "end": 4339.76, "probability": 0.588 }, { "start": 4339.8, "end": 4345.86, "probability": 0.9954 }, { "start": 4346.56, "end": 4347.66, "probability": 0.9402 }, { "start": 4347.86, "end": 4350.32, "probability": 0.9712 }, { "start": 4350.34, "end": 4353.48, "probability": 0.9475 }, { "start": 4353.62, "end": 4354.66, "probability": 0.9235 }, { "start": 4354.66, "end": 4355.38, "probability": 0.4236 }, { "start": 4355.72, "end": 4357.12, "probability": 0.7467 }, { "start": 4357.14, "end": 4357.96, "probability": 0.7296 }, { "start": 4358.18, "end": 4359.68, "probability": 0.7564 }, { "start": 4359.68, "end": 4361.1, "probability": 0.9021 }, { "start": 4361.22, "end": 4366.24, "probability": 0.9577 }, { "start": 4366.44, "end": 4373.44, "probability": 0.9834 }, { "start": 4374.26, "end": 4379.88, "probability": 0.9573 }, { "start": 4379.94, "end": 4380.96, "probability": 0.5642 }, { "start": 4381.02, "end": 4382.82, "probability": 0.9031 }, { "start": 4383.7, "end": 4384.88, "probability": 0.5736 }, { "start": 4385.14, "end": 4388.0, "probability": 0.9889 }, { "start": 4388.54, "end": 4392.04, "probability": 0.8511 }, { "start": 4392.18, "end": 4393.72, "probability": 0.988 }, { "start": 4394.14, "end": 4395.84, "probability": 0.9834 }, { "start": 4396.46, "end": 4399.14, "probability": 0.9862 }, { "start": 4400.22, "end": 4402.44, "probability": 0.9816 }, { "start": 4402.58, "end": 4404.02, "probability": 0.9761 }, { "start": 4404.12, "end": 4407.74, "probability": 0.6905 }, { "start": 4408.66, "end": 4410.62, "probability": 0.9906 }, { "start": 4412.44, "end": 4417.56, "probability": 0.5256 }, { "start": 4417.86, "end": 4425.36, "probability": 0.9958 }, { "start": 4425.44, "end": 4430.4, "probability": 0.8169 }, { "start": 4431.2, "end": 4433.04, "probability": 0.6793 }, { "start": 4433.12, "end": 4434.92, "probability": 0.8399 }, { "start": 4435.0, "end": 4435.8, "probability": 0.8231 }, { "start": 4435.9, "end": 4439.36, "probability": 0.9429 }, { "start": 4439.8, "end": 4442.86, "probability": 0.9009 }, { "start": 4443.4, "end": 4445.06, "probability": 0.9109 }, { "start": 4445.26, "end": 4446.38, "probability": 0.869 }, { "start": 4446.8, "end": 4448.04, "probability": 0.9403 }, { "start": 4448.34, "end": 4450.16, "probability": 0.959 }, { "start": 4450.18, "end": 4451.44, "probability": 0.9642 }, { "start": 4451.84, "end": 4453.54, "probability": 0.9976 }, { "start": 4453.78, "end": 4455.31, "probability": 0.9927 }, { "start": 4455.84, "end": 4458.98, "probability": 0.9686 }, { "start": 4459.6, "end": 4460.46, "probability": 0.8944 }, { "start": 4460.54, "end": 4463.78, "probability": 0.9935 }, { "start": 4464.06, "end": 4466.14, "probability": 0.9962 }, { "start": 4466.98, "end": 4466.98, "probability": 0.9258 }, { "start": 4468.36, "end": 4471.66, "probability": 0.9978 }, { "start": 4471.86, "end": 4474.8, "probability": 0.7995 }, { "start": 4475.32, "end": 4475.98, "probability": 0.7526 }, { "start": 4477.46, "end": 4478.41, "probability": 0.7045 }, { "start": 4478.56, "end": 4481.1, "probability": 0.7812 }, { "start": 4481.96, "end": 4484.98, "probability": 0.794 }, { "start": 4485.06, "end": 4485.58, "probability": 0.6473 }, { "start": 4486.02, "end": 4487.02, "probability": 0.4056 }, { "start": 4487.22, "end": 4490.5, "probability": 0.9445 }, { "start": 4491.32, "end": 4493.86, "probability": 0.1252 }, { "start": 4494.18, "end": 4495.14, "probability": 0.5281 }, { "start": 4495.64, "end": 4500.96, "probability": 0.5814 }, { "start": 4501.1, "end": 4501.22, "probability": 0.2287 }, { "start": 4502.12, "end": 4502.12, "probability": 0.2967 }, { "start": 4502.12, "end": 4502.6, "probability": 0.6658 }, { "start": 4503.54, "end": 4507.18, "probability": 0.9952 }, { "start": 4507.28, "end": 4507.48, "probability": 0.4204 }, { "start": 4511.93, "end": 4515.14, "probability": 0.4947 }, { "start": 4515.14, "end": 4515.72, "probability": 0.3461 }, { "start": 4515.72, "end": 4516.04, "probability": 0.6564 }, { "start": 4516.12, "end": 4519.64, "probability": 0.9915 }, { "start": 4520.02, "end": 4521.4, "probability": 0.9467 }, { "start": 4521.48, "end": 4523.08, "probability": 0.404 }, { "start": 4523.1, "end": 4524.12, "probability": 0.5342 }, { "start": 4526.71, "end": 4529.18, "probability": 0.1878 }, { "start": 4529.18, "end": 4530.84, "probability": 0.6569 }, { "start": 4530.84, "end": 4531.07, "probability": 0.7555 }, { "start": 4532.38, "end": 4535.72, "probability": 0.1442 }, { "start": 4535.72, "end": 4538.94, "probability": 0.0232 }, { "start": 4539.5, "end": 4540.18, "probability": 0.0489 }, { "start": 4540.6, "end": 4540.74, "probability": 0.2092 }, { "start": 4540.74, "end": 4542.9, "probability": 0.9848 }, { "start": 4542.94, "end": 4543.62, "probability": 0.5523 }, { "start": 4543.92, "end": 4544.68, "probability": 0.168 }, { "start": 4545.52, "end": 4549.56, "probability": 0.059 }, { "start": 4549.8, "end": 4550.34, "probability": 0.2367 }, { "start": 4550.38, "end": 4553.32, "probability": 0.7415 }, { "start": 4553.88, "end": 4557.72, "probability": 0.8406 }, { "start": 4557.8, "end": 4558.82, "probability": 0.7845 }, { "start": 4559.0, "end": 4559.68, "probability": 0.3136 }, { "start": 4560.24, "end": 4560.24, "probability": 0.6634 }, { "start": 4560.24, "end": 4561.14, "probability": 0.2709 }, { "start": 4561.28, "end": 4565.82, "probability": 0.6857 }, { "start": 4566.34, "end": 4567.06, "probability": 0.8789 }, { "start": 4567.88, "end": 4568.94, "probability": 0.261 }, { "start": 4569.5, "end": 4570.08, "probability": 0.7691 }, { "start": 4571.48, "end": 4572.34, "probability": 0.7715 }, { "start": 4573.0, "end": 4573.64, "probability": 0.9365 }, { "start": 4574.84, "end": 4576.6, "probability": 0.9019 }, { "start": 4577.28, "end": 4578.3, "probability": 0.6895 }, { "start": 4579.52, "end": 4582.36, "probability": 0.9817 }, { "start": 4583.1, "end": 4585.78, "probability": 0.959 }, { "start": 4586.94, "end": 4589.38, "probability": 0.6798 }, { "start": 4590.3, "end": 4591.2, "probability": 0.0375 }, { "start": 4594.68, "end": 4595.06, "probability": 0.0154 }, { "start": 4595.06, "end": 4595.06, "probability": 0.0485 }, { "start": 4595.18, "end": 4595.6, "probability": 0.0921 }, { "start": 4595.66, "end": 4597.46, "probability": 0.1751 }, { "start": 4598.28, "end": 4598.94, "probability": 0.5966 }, { "start": 4599.56, "end": 4601.06, "probability": 0.6057 }, { "start": 4601.06, "end": 4602.48, "probability": 0.8573 }, { "start": 4602.88, "end": 4603.38, "probability": 0.2238 }, { "start": 4603.38, "end": 4604.12, "probability": 0.5601 }, { "start": 4604.14, "end": 4605.96, "probability": 0.7 }, { "start": 4606.64, "end": 4607.14, "probability": 0.4673 }, { "start": 4608.0, "end": 4609.52, "probability": 0.6083 }, { "start": 4610.08, "end": 4610.48, "probability": 0.7361 }, { "start": 4611.68, "end": 4612.46, "probability": 0.0184 }, { "start": 4612.48, "end": 4614.3, "probability": 0.4607 }, { "start": 4615.02, "end": 4617.18, "probability": 0.8479 }, { "start": 4618.3, "end": 4618.74, "probability": 0.9027 }, { "start": 4619.92, "end": 4620.76, "probability": 0.8089 }, { "start": 4621.62, "end": 4621.9, "probability": 0.8088 }, { "start": 4622.96, "end": 4623.84, "probability": 0.9069 }, { "start": 4626.44, "end": 4626.98, "probability": 0.959 }, { "start": 4628.92, "end": 4629.92, "probability": 0.6546 }, { "start": 4631.18, "end": 4632.12, "probability": 0.767 }, { "start": 4632.94, "end": 4633.9, "probability": 0.7492 }, { "start": 4635.7, "end": 4636.5, "probability": 0.9314 }, { "start": 4637.04, "end": 4637.94, "probability": 0.8817 }, { "start": 4638.72, "end": 4640.48, "probability": 0.9762 }, { "start": 4641.92, "end": 4642.4, "probability": 0.9851 }, { "start": 4643.12, "end": 4643.84, "probability": 0.988 }, { "start": 4645.2, "end": 4645.72, "probability": 0.9714 }, { "start": 4646.84, "end": 4647.98, "probability": 0.9867 }, { "start": 4648.66, "end": 4649.2, "probability": 0.9777 }, { "start": 4650.86, "end": 4651.9, "probability": 0.9616 }, { "start": 4653.64, "end": 4654.26, "probability": 0.9904 }, { "start": 4656.52, "end": 4657.42, "probability": 0.904 }, { "start": 4658.72, "end": 4661.88, "probability": 0.6154 }, { "start": 4663.94, "end": 4666.88, "probability": 0.7704 }, { "start": 4667.72, "end": 4669.76, "probability": 0.8931 }, { "start": 4670.94, "end": 4673.8, "probability": 0.9205 }, { "start": 4675.44, "end": 4676.58, "probability": 0.96 }, { "start": 4677.14, "end": 4678.0, "probability": 0.7843 }, { "start": 4684.22, "end": 4685.06, "probability": 0.6718 }, { "start": 4686.78, "end": 4687.12, "probability": 0.6959 }, { "start": 4689.7, "end": 4692.9, "probability": 0.5982 }, { "start": 4694.7, "end": 4697.52, "probability": 0.7892 }, { "start": 4702.02, "end": 4702.92, "probability": 0.6855 }, { "start": 4704.72, "end": 4705.74, "probability": 0.5153 }, { "start": 4706.6, "end": 4706.92, "probability": 0.5876 }, { "start": 4707.64, "end": 4708.5, "probability": 0.9176 }, { "start": 4709.2, "end": 4711.36, "probability": 0.8445 }, { "start": 4712.42, "end": 4713.04, "probability": 0.9868 }, { "start": 4714.18, "end": 4715.18, "probability": 0.9386 }, { "start": 4716.12, "end": 4716.48, "probability": 0.9856 }, { "start": 4717.38, "end": 4718.28, "probability": 0.9849 }, { "start": 4718.92, "end": 4719.48, "probability": 0.9525 }, { "start": 4720.2, "end": 4721.52, "probability": 0.846 }, { "start": 4722.22, "end": 4724.06, "probability": 0.349 }, { "start": 4724.06, "end": 4724.72, "probability": 0.0276 }, { "start": 4726.1, "end": 4726.54, "probability": 0.8927 }, { "start": 4728.08, "end": 4728.98, "probability": 0.7764 }, { "start": 4729.56, "end": 4729.9, "probability": 0.8945 }, { "start": 4731.02, "end": 4731.96, "probability": 0.9016 }, { "start": 4733.3, "end": 4736.02, "probability": 0.569 }, { "start": 4737.22, "end": 4737.5, "probability": 0.7656 }, { "start": 4738.56, "end": 4739.78, "probability": 0.8419 }, { "start": 4742.14, "end": 4742.74, "probability": 0.9399 }, { "start": 4744.72, "end": 4746.82, "probability": 0.7077 }, { "start": 4747.74, "end": 4749.1, "probability": 0.6923 }, { "start": 4750.98, "end": 4753.86, "probability": 0.7337 }, { "start": 4757.12, "end": 4757.58, "probability": 0.9578 }, { "start": 4758.42, "end": 4759.18, "probability": 0.3969 }, { "start": 4760.02, "end": 4761.84, "probability": 0.9081 }, { "start": 4762.82, "end": 4763.08, "probability": 0.9824 }, { "start": 4763.98, "end": 4764.86, "probability": 0.7308 }, { "start": 4766.52, "end": 4766.88, "probability": 0.9912 }, { "start": 4768.68, "end": 4769.52, "probability": 0.9873 }, { "start": 4770.58, "end": 4772.72, "probability": 0.9561 }, { "start": 4774.18, "end": 4774.72, "probability": 0.575 }, { "start": 4779.32, "end": 4781.9, "probability": 0.6244 }, { "start": 4783.58, "end": 4785.46, "probability": 0.7852 }, { "start": 4786.32, "end": 4787.22, "probability": 0.9021 }, { "start": 4788.59, "end": 4790.76, "probability": 0.9898 }, { "start": 4793.11, "end": 4795.26, "probability": 0.9524 }, { "start": 4795.98, "end": 4798.02, "probability": 0.9612 }, { "start": 4799.84, "end": 4800.76, "probability": 0.6843 }, { "start": 4801.54, "end": 4802.04, "probability": 0.9652 }, { "start": 4802.84, "end": 4803.34, "probability": 0.9756 }, { "start": 4804.88, "end": 4805.74, "probability": 0.9467 }, { "start": 4808.48, "end": 4809.28, "probability": 0.7049 }, { "start": 4812.04, "end": 4814.54, "probability": 0.8433 }, { "start": 4816.46, "end": 4816.98, "probability": 0.8521 }, { "start": 4819.1, "end": 4821.32, "probability": 0.7695 }, { "start": 4822.0, "end": 4823.58, "probability": 0.939 }, { "start": 4824.38, "end": 4825.5, "probability": 0.9085 }, { "start": 4827.7, "end": 4829.18, "probability": 0.9091 }, { "start": 4830.3, "end": 4831.14, "probability": 0.9019 }, { "start": 4832.94, "end": 4834.98, "probability": 0.2641 }, { "start": 4838.54, "end": 4839.56, "probability": 0.5818 }, { "start": 4840.38, "end": 4840.78, "probability": 0.7456 }, { "start": 4841.38, "end": 4842.34, "probability": 0.8406 }, { "start": 4843.89, "end": 4845.84, "probability": 0.8966 }, { "start": 4847.43, "end": 4849.98, "probability": 0.9316 }, { "start": 4850.62, "end": 4852.98, "probability": 0.8295 }, { "start": 4856.84, "end": 4858.98, "probability": 0.7638 }, { "start": 4861.54, "end": 4862.74, "probability": 0.4965 }, { "start": 4864.86, "end": 4866.24, "probability": 0.4166 }, { "start": 4866.82, "end": 4869.06, "probability": 0.5347 }, { "start": 4870.96, "end": 4871.52, "probability": 0.9617 }, { "start": 4872.5, "end": 4873.56, "probability": 0.7224 }, { "start": 4874.6, "end": 4874.9, "probability": 0.9856 }, { "start": 4875.88, "end": 4877.04, "probability": 0.8986 }, { "start": 4879.76, "end": 4880.3, "probability": 0.953 }, { "start": 4881.5, "end": 4882.24, "probability": 0.9245 }, { "start": 4883.5, "end": 4884.12, "probability": 0.9901 }, { "start": 4885.14, "end": 4885.9, "probability": 0.9059 }, { "start": 4887.68, "end": 4888.26, "probability": 0.979 }, { "start": 4889.26, "end": 4890.58, "probability": 0.607 }, { "start": 4891.46, "end": 4893.74, "probability": 0.9803 }, { "start": 4895.28, "end": 4904.6, "probability": 0.7389 }, { "start": 4906.02, "end": 4908.88, "probability": 0.6642 }, { "start": 4911.7, "end": 4913.98, "probability": 0.6782 }, { "start": 4914.68, "end": 4917.98, "probability": 0.5739 }, { "start": 4918.96, "end": 4921.4, "probability": 0.8533 }, { "start": 4923.94, "end": 4926.58, "probability": 0.6724 }, { "start": 4930.63, "end": 4931.4, "probability": 0.4377 }, { "start": 4931.4, "end": 4931.75, "probability": 0.1126 }, { "start": 4931.78, "end": 4933.9, "probability": 0.3829 }, { "start": 4950.34, "end": 4951.42, "probability": 0.4323 }, { "start": 4952.68, "end": 4952.94, "probability": 0.5055 }, { "start": 4953.84, "end": 4954.84, "probability": 0.8664 }, { "start": 4956.32, "end": 4958.7, "probability": 0.9044 }, { "start": 4959.54, "end": 4961.48, "probability": 0.6316 }, { "start": 4962.48, "end": 4964.46, "probability": 0.5285 }, { "start": 4969.94, "end": 4971.1, "probability": 0.5628 }, { "start": 4972.98, "end": 4974.76, "probability": 0.6223 }, { "start": 4976.7, "end": 4978.78, "probability": 0.7103 }, { "start": 4980.12, "end": 4981.16, "probability": 0.8572 }, { "start": 4982.58, "end": 4984.64, "probability": 0.8548 }, { "start": 4986.12, "end": 4988.78, "probability": 0.9186 }, { "start": 4992.64, "end": 4994.08, "probability": 0.6198 }, { "start": 4994.94, "end": 4995.5, "probability": 0.8133 }, { "start": 4996.86, "end": 4997.76, "probability": 0.6378 }, { "start": 5000.48, "end": 5001.62, "probability": 0.5957 }, { "start": 5002.96, "end": 5003.6, "probability": 0.9914 }, { "start": 5007.62, "end": 5008.42, "probability": 0.4274 }, { "start": 5011.28, "end": 5012.72, "probability": 0.6749 }, { "start": 5013.78, "end": 5014.66, "probability": 0.7746 }, { "start": 5015.66, "end": 5016.88, "probability": 0.7294 }, { "start": 5020.61, "end": 5023.06, "probability": 0.7468 }, { "start": 5023.76, "end": 5024.1, "probability": 0.6287 }, { "start": 5026.12, "end": 5027.3, "probability": 0.9437 }, { "start": 5028.14, "end": 5028.64, "probability": 0.8525 }, { "start": 5029.4, "end": 5030.08, "probability": 0.9324 }, { "start": 5031.06, "end": 5032.74, "probability": 0.929 }, { "start": 5038.3, "end": 5040.06, "probability": 0.4714 }, { "start": 5041.64, "end": 5042.98, "probability": 0.4709 }, { "start": 5044.34, "end": 5044.88, "probability": 0.64 }, { "start": 5048.46, "end": 5050.24, "probability": 0.6924 }, { "start": 5051.94, "end": 5052.98, "probability": 0.7139 }, { "start": 5055.86, "end": 5057.88, "probability": 0.8589 }, { "start": 5064.7, "end": 5065.0, "probability": 0.755 }, { "start": 5065.62, "end": 5066.32, "probability": 0.5858 }, { "start": 5067.89, "end": 5070.32, "probability": 0.8214 }, { "start": 5071.02, "end": 5071.54, "probability": 0.5967 }, { "start": 5072.36, "end": 5073.4, "probability": 0.7134 }, { "start": 5079.5, "end": 5081.12, "probability": 0.5806 }, { "start": 5082.2, "end": 5083.24, "probability": 0.6945 }, { "start": 5084.52, "end": 5086.72, "probability": 0.8365 }, { "start": 5088.3, "end": 5090.64, "probability": 0.9331 }, { "start": 5091.86, "end": 5092.42, "probability": 0.9817 }, { "start": 5094.06, "end": 5097.26, "probability": 0.8693 }, { "start": 5099.0, "end": 5099.9, "probability": 0.9596 }, { "start": 5102.1, "end": 5103.84, "probability": 0.8839 }, { "start": 5104.98, "end": 5105.66, "probability": 0.1938 }, { "start": 5106.82, "end": 5107.4, "probability": 0.9709 }, { "start": 5111.24, "end": 5113.32, "probability": 0.4635 }, { "start": 5113.96, "end": 5114.98, "probability": 0.7251 }, { "start": 5117.78, "end": 5121.28, "probability": 0.9817 }, { "start": 5123.16, "end": 5123.94, "probability": 0.927 }, { "start": 5125.04, "end": 5125.94, "probability": 0.9872 }, { "start": 5127.64, "end": 5128.62, "probability": 0.9599 }, { "start": 5129.28, "end": 5130.08, "probability": 0.939 }, { "start": 5131.46, "end": 5132.26, "probability": 0.9851 }, { "start": 5132.9, "end": 5134.52, "probability": 0.9162 }, { "start": 5136.48, "end": 5137.4, "probability": 0.9885 }, { "start": 5138.18, "end": 5139.31, "probability": 0.785 }, { "start": 5140.17, "end": 5141.89, "probability": 0.5049 }, { "start": 5143.67, "end": 5145.11, "probability": 0.9202 }, { "start": 5145.93, "end": 5147.55, "probability": 0.4986 }, { "start": 5149.31, "end": 5150.07, "probability": 0.9906 }, { "start": 5151.47, "end": 5152.97, "probability": 0.8962 }, { "start": 5154.23, "end": 5155.19, "probability": 0.8663 }, { "start": 5158.51, "end": 5159.57, "probability": 0.4131 }, { "start": 5160.29, "end": 5162.61, "probability": 0.7643 }, { "start": 5164.13, "end": 5164.85, "probability": 0.7175 }, { "start": 5165.39, "end": 5166.37, "probability": 0.9232 }, { "start": 5168.03, "end": 5169.87, "probability": 0.8694 }, { "start": 5170.65, "end": 5172.41, "probability": 0.9716 }, { "start": 5172.55, "end": 5175.07, "probability": 0.8508 }, { "start": 5176.11, "end": 5176.81, "probability": 0.5718 }, { "start": 5178.45, "end": 5183.03, "probability": 0.9698 }, { "start": 5183.43, "end": 5186.07, "probability": 0.6304 }, { "start": 5186.19, "end": 5186.89, "probability": 0.2453 }, { "start": 5187.93, "end": 5192.89, "probability": 0.9756 }, { "start": 5193.01, "end": 5194.63, "probability": 0.6241 }, { "start": 5194.63, "end": 5195.59, "probability": 0.8809 }, { "start": 5210.83, "end": 5215.65, "probability": 0.0643 }, { "start": 5215.65, "end": 5215.73, "probability": 0.1208 }, { "start": 5219.29, "end": 5220.23, "probability": 0.0264 }, { "start": 5222.01, "end": 5224.19, "probability": 0.0184 }, { "start": 5227.29, "end": 5228.71, "probability": 0.2557 }, { "start": 5300.5, "end": 5300.6, "probability": 0.015 }, { "start": 5300.6, "end": 5306.7, "probability": 0.7994 }, { "start": 5306.82, "end": 5308.24, "probability": 0.2085 }, { "start": 5308.52, "end": 5309.71, "probability": 0.0772 }, { "start": 5310.14, "end": 5310.46, "probability": 0.1434 }, { "start": 5310.46, "end": 5312.14, "probability": 0.9854 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.02, "end": 5437.92, "probability": 0.9278 }, { "start": 5437.98, "end": 5440.52, "probability": 0.6603 }, { "start": 5440.6, "end": 5441.12, "probability": 0.4635 }, { "start": 5442.18, "end": 5444.08, "probability": 0.9758 }, { "start": 5444.28, "end": 5444.28, "probability": 0.4315 }, { "start": 5444.28, "end": 5444.92, "probability": 0.7407 }, { "start": 5445.06, "end": 5448.5, "probability": 0.9917 }, { "start": 5449.34, "end": 5451.32, "probability": 0.9597 }, { "start": 5452.28, "end": 5454.8, "probability": 0.978 }, { "start": 5455.64, "end": 5460.18, "probability": 0.9964 }, { "start": 5461.3, "end": 5464.4, "probability": 0.9849 }, { "start": 5465.24, "end": 5468.68, "probability": 0.988 }, { "start": 5469.34, "end": 5470.74, "probability": 0.9692 }, { "start": 5471.42, "end": 5473.34, "probability": 0.6189 }, { "start": 5473.5, "end": 5475.6, "probability": 0.7534 }, { "start": 5475.64, "end": 5477.66, "probability": 0.7513 }, { "start": 5478.66, "end": 5481.78, "probability": 0.9424 }, { "start": 5481.78, "end": 5485.98, "probability": 0.988 }, { "start": 5486.48, "end": 5489.94, "probability": 0.8327 }, { "start": 5490.26, "end": 5492.12, "probability": 0.7629 }, { "start": 5493.18, "end": 5494.64, "probability": 0.9445 }, { "start": 5495.2, "end": 5497.6, "probability": 0.959 }, { "start": 5499.02, "end": 5503.04, "probability": 0.9952 }, { "start": 5503.98, "end": 5507.02, "probability": 0.958 }, { "start": 5508.02, "end": 5509.5, "probability": 0.9903 }, { "start": 5510.18, "end": 5510.86, "probability": 0.4024 }, { "start": 5511.88, "end": 5518.24, "probability": 0.776 }, { "start": 5518.58, "end": 5521.34, "probability": 0.8157 }, { "start": 5521.42, "end": 5524.42, "probability": 0.9947 }, { "start": 5527.02, "end": 5530.1, "probability": 0.7614 }, { "start": 5531.2, "end": 5535.74, "probability": 0.9846 }, { "start": 5536.4, "end": 5538.9, "probability": 0.9779 }, { "start": 5540.36, "end": 5540.74, "probability": 0.4945 }, { "start": 5540.82, "end": 5541.94, "probability": 0.4125 }, { "start": 5541.98, "end": 5544.44, "probability": 0.9937 }, { "start": 5545.1, "end": 5546.07, "probability": 0.6558 }, { "start": 5546.18, "end": 5546.54, "probability": 0.4081 }, { "start": 5547.28, "end": 5548.34, "probability": 0.7778 }, { "start": 5549.3, "end": 5556.22, "probability": 0.8079 }, { "start": 5556.32, "end": 5561.96, "probability": 0.8199 }, { "start": 5562.04, "end": 5565.52, "probability": 0.6404 }, { "start": 5566.98, "end": 5572.0, "probability": 0.9976 }, { "start": 5573.94, "end": 5577.66, "probability": 0.989 }, { "start": 5577.8, "end": 5580.64, "probability": 0.9556 }, { "start": 5580.68, "end": 5582.68, "probability": 0.9841 }, { "start": 5582.78, "end": 5583.36, "probability": 0.3982 }, { "start": 5584.14, "end": 5587.42, "probability": 0.9502 }, { "start": 5588.04, "end": 5589.94, "probability": 0.9054 }, { "start": 5591.24, "end": 5593.94, "probability": 0.8194 }, { "start": 5594.94, "end": 5595.76, "probability": 0.9052 }, { "start": 5596.64, "end": 5602.32, "probability": 0.9808 }, { "start": 5602.94, "end": 5604.96, "probability": 0.9715 }, { "start": 5605.58, "end": 5606.68, "probability": 0.6878 }, { "start": 5607.32, "end": 5610.88, "probability": 0.7486 }, { "start": 5611.8, "end": 5615.78, "probability": 0.9829 }, { "start": 5616.62, "end": 5619.86, "probability": 0.998 }, { "start": 5621.16, "end": 5621.98, "probability": 0.8358 }, { "start": 5622.54, "end": 5624.24, "probability": 0.9897 }, { "start": 5625.24, "end": 5628.34, "probability": 0.9973 }, { "start": 5629.7, "end": 5631.91, "probability": 0.7305 }, { "start": 5633.12, "end": 5634.56, "probability": 0.9719 }, { "start": 5634.62, "end": 5637.34, "probability": 0.9985 }, { "start": 5637.84, "end": 5640.88, "probability": 0.9341 }, { "start": 5641.88, "end": 5642.6, "probability": 0.7505 }, { "start": 5643.34, "end": 5648.32, "probability": 0.9705 }, { "start": 5649.22, "end": 5653.96, "probability": 0.9288 }, { "start": 5654.62, "end": 5658.58, "probability": 0.6341 }, { "start": 5658.7, "end": 5661.0, "probability": 0.8439 }, { "start": 5661.14, "end": 5661.96, "probability": 0.9557 }, { "start": 5663.32, "end": 5667.24, "probability": 0.7943 }, { "start": 5668.34, "end": 5671.34, "probability": 0.9935 }, { "start": 5671.34, "end": 5675.24, "probability": 0.9911 }, { "start": 5675.48, "end": 5679.62, "probability": 0.99 }, { "start": 5682.44, "end": 5685.64, "probability": 0.9626 }, { "start": 5687.08, "end": 5689.33, "probability": 0.9585 }, { "start": 5689.44, "end": 5689.46, "probability": 0.8892 }, { "start": 5692.94, "end": 5693.74, "probability": 0.4907 }, { "start": 5694.7, "end": 5694.7, "probability": 0.3217 }, { "start": 5694.7, "end": 5695.54, "probability": 0.6457 }, { "start": 5696.36, "end": 5697.79, "probability": 0.9604 }, { "start": 5699.88, "end": 5702.52, "probability": 0.7007 }, { "start": 5703.2, "end": 5706.58, "probability": 0.9987 }, { "start": 5707.52, "end": 5710.3, "probability": 0.9989 }, { "start": 5710.96, "end": 5712.02, "probability": 0.9765 }, { "start": 5712.1, "end": 5714.86, "probability": 0.984 }, { "start": 5716.18, "end": 5716.88, "probability": 0.8373 }, { "start": 5717.5, "end": 5718.44, "probability": 0.7393 }, { "start": 5718.64, "end": 5721.22, "probability": 0.5319 }, { "start": 5722.34, "end": 5724.06, "probability": 0.9863 }, { "start": 5724.56, "end": 5725.72, "probability": 0.8843 }, { "start": 5726.58, "end": 5730.74, "probability": 0.9834 }, { "start": 5731.3, "end": 5735.56, "probability": 0.9943 }, { "start": 5735.56, "end": 5739.08, "probability": 0.9995 }, { "start": 5740.0, "end": 5743.76, "probability": 0.9937 }, { "start": 5744.92, "end": 5746.81, "probability": 0.8923 }, { "start": 5747.2, "end": 5751.86, "probability": 0.9681 }, { "start": 5752.16, "end": 5755.06, "probability": 0.5987 }, { "start": 5755.28, "end": 5756.4, "probability": 0.7802 }, { "start": 5756.92, "end": 5760.96, "probability": 0.8439 }, { "start": 5761.52, "end": 5762.46, "probability": 0.9924 }, { "start": 5762.98, "end": 5763.82, "probability": 0.6833 }, { "start": 5763.94, "end": 5766.82, "probability": 0.8962 }, { "start": 5766.96, "end": 5767.14, "probability": 0.6874 }, { "start": 5767.5, "end": 5767.92, "probability": 0.6744 }, { "start": 5768.12, "end": 5769.28, "probability": 0.6923 }, { "start": 5769.5, "end": 5770.18, "probability": 0.6701 }, { "start": 5770.86, "end": 5774.24, "probability": 0.9927 }, { "start": 5774.56, "end": 5777.36, "probability": 0.9911 }, { "start": 5777.36, "end": 5781.14, "probability": 0.8005 }, { "start": 5781.34, "end": 5784.92, "probability": 0.6992 }, { "start": 5784.98, "end": 5785.8, "probability": 0.3196 }, { "start": 5785.84, "end": 5786.7, "probability": 0.0002 }, { "start": 5788.16, "end": 5790.94, "probability": 0.9375 }, { "start": 5793.67, "end": 5798.16, "probability": 0.9694 }, { "start": 5799.08, "end": 5801.2, "probability": 0.9542 }, { "start": 5801.84, "end": 5806.1, "probability": 0.965 }, { "start": 5806.32, "end": 5809.66, "probability": 0.9893 }, { "start": 5809.74, "end": 5812.06, "probability": 0.7835 }, { "start": 5812.76, "end": 5817.78, "probability": 0.9792 }, { "start": 5817.96, "end": 5824.06, "probability": 0.997 }, { "start": 5824.78, "end": 5826.64, "probability": 0.9942 }, { "start": 5827.82, "end": 5830.36, "probability": 0.9974 }, { "start": 5830.98, "end": 5832.92, "probability": 0.9699 }, { "start": 5833.04, "end": 5833.66, "probability": 0.5889 }, { "start": 5833.74, "end": 5835.82, "probability": 0.8581 }, { "start": 5835.92, "end": 5841.98, "probability": 0.9391 }, { "start": 5842.64, "end": 5844.88, "probability": 0.995 }, { "start": 5845.9, "end": 5846.7, "probability": 0.7512 }, { "start": 5846.88, "end": 5847.42, "probability": 0.9589 }, { "start": 5847.92, "end": 5849.94, "probability": 0.9932 }, { "start": 5850.28, "end": 5852.88, "probability": 0.9981 }, { "start": 5852.88, "end": 5857.58, "probability": 0.9827 }, { "start": 5858.14, "end": 5858.92, "probability": 0.9404 }, { "start": 5859.32, "end": 5859.92, "probability": 0.6273 }, { "start": 5860.06, "end": 5863.12, "probability": 0.9932 }, { "start": 5863.18, "end": 5864.38, "probability": 0.963 }, { "start": 5864.48, "end": 5865.06, "probability": 0.7473 }, { "start": 5865.96, "end": 5869.32, "probability": 0.9751 }, { "start": 5869.48, "end": 5871.46, "probability": 0.8608 }, { "start": 5871.66, "end": 5875.8, "probability": 0.7391 }, { "start": 5875.8, "end": 5876.15, "probability": 0.482 }, { "start": 5877.1, "end": 5878.32, "probability": 0.447 }, { "start": 5879.02, "end": 5882.86, "probability": 0.8125 }, { "start": 5882.86, "end": 5885.6, "probability": 0.9936 }, { "start": 5886.42, "end": 5887.96, "probability": 0.998 }, { "start": 5889.1, "end": 5892.0, "probability": 0.9937 }, { "start": 5892.06, "end": 5894.0, "probability": 0.9565 }, { "start": 5894.36, "end": 5895.16, "probability": 0.7312 }, { "start": 5895.76, "end": 5896.56, "probability": 0.8501 }, { "start": 5897.1, "end": 5898.4, "probability": 0.8796 }, { "start": 5898.68, "end": 5900.8, "probability": 0.831 }, { "start": 5901.38, "end": 5903.46, "probability": 0.6847 }, { "start": 5903.86, "end": 5908.9, "probability": 0.9177 }, { "start": 5908.98, "end": 5911.1, "probability": 0.0292 }, { "start": 5911.1, "end": 5912.26, "probability": 0.4366 }, { "start": 5912.76, "end": 5914.22, "probability": 0.7891 }, { "start": 5924.06, "end": 5925.39, "probability": 0.3397 }, { "start": 5927.02, "end": 5928.26, "probability": 0.808 }, { "start": 5928.28, "end": 5930.24, "probability": 0.6683 }, { "start": 5930.5, "end": 5932.6, "probability": 0.6696 }, { "start": 5933.12, "end": 5933.64, "probability": 0.7247 }, { "start": 5934.12, "end": 5934.86, "probability": 0.8543 }, { "start": 5940.11, "end": 5941.24, "probability": 0.7206 }, { "start": 5942.58, "end": 5943.16, "probability": 0.4226 }, { "start": 5943.2, "end": 5945.68, "probability": 0.7346 }, { "start": 5948.44, "end": 5949.7, "probability": 0.9971 }, { "start": 5951.64, "end": 5955.02, "probability": 0.9966 }, { "start": 5955.64, "end": 5962.14, "probability": 0.9971 }, { "start": 5962.84, "end": 5964.0, "probability": 0.995 }, { "start": 5965.36, "end": 5965.64, "probability": 0.8673 }, { "start": 5965.76, "end": 5969.36, "probability": 0.9891 }, { "start": 5969.48, "end": 5970.56, "probability": 0.7653 }, { "start": 5970.66, "end": 5975.28, "probability": 0.9904 }, { "start": 5976.22, "end": 5978.78, "probability": 0.9963 }, { "start": 5978.78, "end": 5982.36, "probability": 0.9874 }, { "start": 5983.16, "end": 5985.5, "probability": 0.9788 }, { "start": 5985.62, "end": 5988.4, "probability": 0.9931 }, { "start": 5988.4, "end": 5991.24, "probability": 0.9946 }, { "start": 5991.52, "end": 5991.92, "probability": 0.5013 }, { "start": 5992.5, "end": 5997.94, "probability": 0.9951 }, { "start": 5998.56, "end": 6002.38, "probability": 0.9961 }, { "start": 6003.02, "end": 6006.1, "probability": 0.9401 }, { "start": 6006.88, "end": 6008.46, "probability": 0.9378 }, { "start": 6009.42, "end": 6012.14, "probability": 0.9289 }, { "start": 6012.14, "end": 6015.0, "probability": 0.9962 }, { "start": 6015.5, "end": 6020.04, "probability": 0.987 }, { "start": 6021.08, "end": 6026.52, "probability": 0.8999 }, { "start": 6026.52, "end": 6030.58, "probability": 0.9978 }, { "start": 6030.76, "end": 6031.94, "probability": 0.9089 }, { "start": 6032.12, "end": 6035.62, "probability": 0.9826 }, { "start": 6035.62, "end": 6039.8, "probability": 0.9981 }, { "start": 6040.96, "end": 6044.78, "probability": 0.9883 }, { "start": 6045.72, "end": 6048.96, "probability": 0.9983 }, { "start": 6048.96, "end": 6052.26, "probability": 0.9946 }, { "start": 6052.82, "end": 6054.34, "probability": 0.9978 }, { "start": 6055.08, "end": 6057.98, "probability": 0.9954 }, { "start": 6057.98, "end": 6062.24, "probability": 0.9979 }, { "start": 6062.24, "end": 6066.5, "probability": 0.9967 }, { "start": 6068.44, "end": 6072.76, "probability": 0.992 }, { "start": 6072.76, "end": 6078.5, "probability": 0.9971 }, { "start": 6078.66, "end": 6080.94, "probability": 0.9839 }, { "start": 6081.74, "end": 6082.2, "probability": 0.8443 }, { "start": 6082.96, "end": 6084.34, "probability": 0.9899 }, { "start": 6085.18, "end": 6089.32, "probability": 0.9734 }, { "start": 6090.14, "end": 6092.06, "probability": 0.9424 }, { "start": 6092.58, "end": 6096.04, "probability": 0.9862 }, { "start": 6098.12, "end": 6098.9, "probability": 0.7758 }, { "start": 6099.12, "end": 6104.22, "probability": 0.9539 }, { "start": 6104.4, "end": 6105.2, "probability": 0.7789 }, { "start": 6106.18, "end": 6108.0, "probability": 0.9863 }, { "start": 6108.74, "end": 6112.7, "probability": 0.9814 }, { "start": 6112.7, "end": 6116.26, "probability": 0.9544 }, { "start": 6116.7, "end": 6121.0, "probability": 0.9615 }, { "start": 6121.18, "end": 6123.96, "probability": 0.9923 }, { "start": 6125.96, "end": 6130.89, "probability": 0.8988 }, { "start": 6133.0, "end": 6137.1, "probability": 0.9508 }, { "start": 6139.28, "end": 6140.64, "probability": 0.9486 }, { "start": 6141.54, "end": 6145.68, "probability": 0.9819 }, { "start": 6147.02, "end": 6147.84, "probability": 0.8707 }, { "start": 6150.88, "end": 6152.32, "probability": 0.8806 }, { "start": 6152.38, "end": 6154.52, "probability": 0.8744 }, { "start": 6154.7, "end": 6159.06, "probability": 0.9939 }, { "start": 6159.92, "end": 6161.82, "probability": 0.9805 }, { "start": 6162.06, "end": 6165.72, "probability": 0.9251 }, { "start": 6166.56, "end": 6171.38, "probability": 0.9959 }, { "start": 6172.08, "end": 6175.6, "probability": 0.9989 }, { "start": 6176.48, "end": 6177.62, "probability": 0.746 }, { "start": 6177.94, "end": 6180.74, "probability": 0.9141 }, { "start": 6180.82, "end": 6182.44, "probability": 0.9365 }, { "start": 6183.34, "end": 6185.52, "probability": 0.9949 }, { "start": 6185.52, "end": 6188.36, "probability": 0.9935 }, { "start": 6189.26, "end": 6192.32, "probability": 0.9904 }, { "start": 6193.54, "end": 6197.4, "probability": 0.9764 }, { "start": 6197.4, "end": 6201.54, "probability": 0.8425 }, { "start": 6201.64, "end": 6202.42, "probability": 0.6884 }, { "start": 6203.32, "end": 6203.92, "probability": 0.6156 }, { "start": 6204.04, "end": 6207.94, "probability": 0.998 }, { "start": 6208.88, "end": 6209.68, "probability": 0.412 }, { "start": 6209.96, "end": 6211.82, "probability": 0.6458 }, { "start": 6211.9, "end": 6215.08, "probability": 0.9802 }, { "start": 6216.08, "end": 6217.14, "probability": 0.8202 }, { "start": 6217.4, "end": 6218.5, "probability": 0.8293 }, { "start": 6218.62, "end": 6221.92, "probability": 0.9964 }, { "start": 6222.9, "end": 6225.78, "probability": 0.8163 }, { "start": 6226.3, "end": 6229.8, "probability": 0.7803 }, { "start": 6229.96, "end": 6231.36, "probability": 0.8875 }, { "start": 6232.46, "end": 6234.54, "probability": 0.9624 }, { "start": 6235.24, "end": 6238.24, "probability": 0.9773 }, { "start": 6240.3, "end": 6243.2, "probability": 0.9985 }, { "start": 6243.7, "end": 6248.0, "probability": 0.9782 }, { "start": 6249.36, "end": 6252.8, "probability": 0.7583 }, { "start": 6253.5, "end": 6256.46, "probability": 0.977 }, { "start": 6256.46, "end": 6259.42, "probability": 0.9985 }, { "start": 6260.06, "end": 6262.34, "probability": 0.9555 }, { "start": 6263.12, "end": 6263.5, "probability": 0.8328 }, { "start": 6264.22, "end": 6269.24, "probability": 0.9958 }, { "start": 6270.26, "end": 6271.06, "probability": 0.8535 }, { "start": 6271.8, "end": 6274.62, "probability": 0.9966 }, { "start": 6275.2, "end": 6277.34, "probability": 0.7217 }, { "start": 6277.44, "end": 6279.7, "probability": 0.9321 }, { "start": 6280.56, "end": 6287.12, "probability": 0.9856 }, { "start": 6288.2, "end": 6290.64, "probability": 0.8218 }, { "start": 6291.2, "end": 6292.56, "probability": 0.9409 }, { "start": 6293.4, "end": 6296.8, "probability": 0.9979 }, { "start": 6297.54, "end": 6299.26, "probability": 0.969 }, { "start": 6299.74, "end": 6303.44, "probability": 0.9927 }, { "start": 6304.0, "end": 6305.78, "probability": 0.9897 }, { "start": 6306.22, "end": 6309.7, "probability": 0.998 }, { "start": 6309.7, "end": 6313.34, "probability": 0.9866 }, { "start": 6314.2, "end": 6317.88, "probability": 0.9873 }, { "start": 6318.66, "end": 6321.28, "probability": 0.9879 }, { "start": 6321.96, "end": 6325.5, "probability": 0.9899 }, { "start": 6326.34, "end": 6328.84, "probability": 0.9988 }, { "start": 6329.6, "end": 6331.81, "probability": 0.9851 }, { "start": 6333.74, "end": 6335.38, "probability": 0.9969 }, { "start": 6335.66, "end": 6336.5, "probability": 0.7953 }, { "start": 6336.66, "end": 6337.6, "probability": 0.9199 }, { "start": 6338.86, "end": 6339.5, "probability": 0.9773 }, { "start": 6340.58, "end": 6342.32, "probability": 0.9565 }, { "start": 6343.76, "end": 6346.84, "probability": 0.998 }, { "start": 6349.88, "end": 6351.32, "probability": 0.7107 }, { "start": 6352.74, "end": 6354.74, "probability": 0.6617 }, { "start": 6356.51, "end": 6361.98, "probability": 0.9984 }, { "start": 6362.16, "end": 6362.48, "probability": 0.5605 }, { "start": 6362.52, "end": 6363.3, "probability": 0.7875 }, { "start": 6364.7, "end": 6369.6, "probability": 0.9877 }, { "start": 6370.54, "end": 6371.7, "probability": 0.4922 }, { "start": 6372.28, "end": 6373.42, "probability": 0.7478 }, { "start": 6374.5, "end": 6376.16, "probability": 0.9372 }, { "start": 6377.36, "end": 6381.88, "probability": 0.9901 }, { "start": 6383.06, "end": 6383.18, "probability": 0.0345 }, { "start": 6383.18, "end": 6383.18, "probability": 0.112 }, { "start": 6383.18, "end": 6383.4, "probability": 0.5139 }, { "start": 6384.32, "end": 6385.48, "probability": 0.806 }, { "start": 6387.13, "end": 6387.72, "probability": 0.0669 }, { "start": 6387.72, "end": 6388.78, "probability": 0.8815 }, { "start": 6389.9, "end": 6393.48, "probability": 0.9781 }, { "start": 6393.66, "end": 6398.3, "probability": 0.9641 }, { "start": 6398.42, "end": 6401.04, "probability": 0.5609 }, { "start": 6401.04, "end": 6402.84, "probability": 0.9385 }, { "start": 6403.56, "end": 6404.38, "probability": 0.8197 }, { "start": 6405.08, "end": 6406.2, "probability": 0.8534 }, { "start": 6406.28, "end": 6407.53, "probability": 0.915 }, { "start": 6408.48, "end": 6412.4, "probability": 0.9653 }, { "start": 6413.62, "end": 6414.34, "probability": 0.9121 }, { "start": 6415.12, "end": 6416.46, "probability": 0.9943 }, { "start": 6417.82, "end": 6422.1, "probability": 0.9454 }, { "start": 6422.4, "end": 6423.5, "probability": 0.8148 }, { "start": 6425.4, "end": 6425.68, "probability": 0.1618 }, { "start": 6425.68, "end": 6425.98, "probability": 0.8083 }, { "start": 6426.68, "end": 6427.22, "probability": 0.293 }, { "start": 6428.52, "end": 6429.48, "probability": 0.7607 }, { "start": 6430.36, "end": 6431.42, "probability": 0.7871 }, { "start": 6433.48, "end": 6434.26, "probability": 0.8039 }, { "start": 6434.26, "end": 6434.28, "probability": 0.6419 }, { "start": 6434.36, "end": 6435.52, "probability": 0.9526 }, { "start": 6436.1, "end": 6437.7, "probability": 0.9944 }, { "start": 6438.02, "end": 6440.02, "probability": 0.9951 }, { "start": 6440.42, "end": 6443.26, "probability": 0.9964 }, { "start": 6443.92, "end": 6446.46, "probability": 0.8323 }, { "start": 6447.64, "end": 6449.92, "probability": 0.3271 }, { "start": 6450.82, "end": 6451.4, "probability": 0.4195 }, { "start": 6451.5, "end": 6452.62, "probability": 0.7846 }, { "start": 6452.74, "end": 6455.81, "probability": 0.1754 }, { "start": 6456.4, "end": 6456.6, "probability": 0.0636 }, { "start": 6456.64, "end": 6456.64, "probability": 0.3713 }, { "start": 6456.64, "end": 6457.45, "probability": 0.2316 }, { "start": 6457.76, "end": 6458.94, "probability": 0.3042 }, { "start": 6459.54, "end": 6462.44, "probability": 0.9789 }, { "start": 6463.22, "end": 6464.56, "probability": 0.8794 }, { "start": 6465.36, "end": 6467.52, "probability": 0.9979 }, { "start": 6468.46, "end": 6471.64, "probability": 0.9785 }, { "start": 6472.36, "end": 6474.96, "probability": 0.9876 }, { "start": 6475.04, "end": 6475.52, "probability": 0.8455 }, { "start": 6476.58, "end": 6478.22, "probability": 0.9051 }, { "start": 6478.86, "end": 6481.84, "probability": 0.7284 }, { "start": 6482.58, "end": 6483.3, "probability": 0.8802 }, { "start": 6483.88, "end": 6484.68, "probability": 0.8179 }, { "start": 6485.54, "end": 6487.6, "probability": 0.9949 }, { "start": 6487.62, "end": 6488.02, "probability": 0.8491 }, { "start": 6488.16, "end": 6488.82, "probability": 0.7484 }, { "start": 6501.78, "end": 6503.66, "probability": 0.8119 }, { "start": 6504.74, "end": 6505.7, "probability": 0.8145 }, { "start": 6508.42, "end": 6509.22, "probability": 0.9367 }, { "start": 6510.38, "end": 6514.54, "probability": 0.9629 }, { "start": 6515.12, "end": 6516.04, "probability": 0.937 }, { "start": 6517.12, "end": 6519.1, "probability": 0.4231 }, { "start": 6520.68, "end": 6524.14, "probability": 0.8906 }, { "start": 6524.9, "end": 6525.96, "probability": 0.9082 }, { "start": 6526.04, "end": 6527.1, "probability": 0.8811 }, { "start": 6527.36, "end": 6528.58, "probability": 0.7847 }, { "start": 6529.3, "end": 6529.7, "probability": 0.8123 }, { "start": 6529.9, "end": 6530.6, "probability": 0.7048 }, { "start": 6530.6, "end": 6532.7, "probability": 0.9086 }, { "start": 6535.68, "end": 6538.26, "probability": 0.9117 }, { "start": 6538.46, "end": 6539.9, "probability": 0.9961 }, { "start": 6540.58, "end": 6542.28, "probability": 0.1531 }, { "start": 6543.46, "end": 6544.48, "probability": 0.5532 }, { "start": 6545.76, "end": 6547.04, "probability": 0.6322 }, { "start": 6547.36, "end": 6549.2, "probability": 0.8461 }, { "start": 6550.24, "end": 6551.88, "probability": 0.9929 }, { "start": 6552.96, "end": 6554.72, "probability": 0.9814 }, { "start": 6555.46, "end": 6558.82, "probability": 0.9819 }, { "start": 6559.09, "end": 6562.5, "probability": 0.9902 }, { "start": 6562.98, "end": 6563.41, "probability": 0.4988 }, { "start": 6563.86, "end": 6568.3, "probability": 0.9956 }, { "start": 6568.4, "end": 6573.4, "probability": 0.998 }, { "start": 6574.02, "end": 6574.64, "probability": 0.8175 }, { "start": 6575.58, "end": 6580.92, "probability": 0.9807 }, { "start": 6581.54, "end": 6583.2, "probability": 0.9559 }, { "start": 6583.44, "end": 6584.48, "probability": 0.5861 }, { "start": 6584.82, "end": 6587.88, "probability": 0.8983 }, { "start": 6588.64, "end": 6590.48, "probability": 0.9717 }, { "start": 6591.24, "end": 6593.96, "probability": 0.9537 }, { "start": 6594.2, "end": 6597.68, "probability": 0.7209 }, { "start": 6599.2, "end": 6601.74, "probability": 0.7075 }, { "start": 6602.48, "end": 6605.72, "probability": 0.9969 }, { "start": 6606.52, "end": 6611.88, "probability": 0.9426 }, { "start": 6612.54, "end": 6615.6, "probability": 0.9346 }, { "start": 6618.03, "end": 6620.72, "probability": 0.9812 }, { "start": 6620.72, "end": 6621.24, "probability": 0.1477 }, { "start": 6621.3, "end": 6622.0, "probability": 0.6038 }, { "start": 6623.17, "end": 6626.98, "probability": 0.9843 }, { "start": 6628.62, "end": 6631.5, "probability": 0.92 }, { "start": 6632.58, "end": 6633.64, "probability": 0.5832 }, { "start": 6633.76, "end": 6634.86, "probability": 0.8297 }, { "start": 6634.9, "end": 6635.98, "probability": 0.7162 }, { "start": 6636.1, "end": 6637.54, "probability": 0.9653 }, { "start": 6638.14, "end": 6642.65, "probability": 0.9731 }, { "start": 6642.88, "end": 6646.24, "probability": 0.9857 }, { "start": 6646.98, "end": 6650.8, "probability": 0.9866 }, { "start": 6650.86, "end": 6652.4, "probability": 0.9299 }, { "start": 6653.02, "end": 6658.06, "probability": 0.7566 }, { "start": 6659.12, "end": 6662.1, "probability": 0.9028 }, { "start": 6662.2, "end": 6664.8, "probability": 0.8833 }, { "start": 6665.42, "end": 6666.36, "probability": 0.7792 }, { "start": 6667.26, "end": 6670.98, "probability": 0.9003 }, { "start": 6671.68, "end": 6675.86, "probability": 0.9759 }, { "start": 6676.44, "end": 6679.08, "probability": 0.9564 }, { "start": 6680.06, "end": 6682.84, "probability": 0.9775 }, { "start": 6683.72, "end": 6684.16, "probability": 0.5688 }, { "start": 6684.66, "end": 6686.56, "probability": 0.9604 }, { "start": 6686.96, "end": 6688.31, "probability": 0.9907 }, { "start": 6689.26, "end": 6690.76, "probability": 0.9199 }, { "start": 6692.02, "end": 6693.04, "probability": 0.9826 }, { "start": 6694.3, "end": 6696.04, "probability": 0.9063 }, { "start": 6698.74, "end": 6699.96, "probability": 0.8623 }, { "start": 6700.14, "end": 6703.9, "probability": 0.9798 }, { "start": 6704.74, "end": 6708.1, "probability": 0.9968 }, { "start": 6708.86, "end": 6710.1, "probability": 0.9621 }, { "start": 6711.02, "end": 6711.98, "probability": 0.998 }, { "start": 6712.08, "end": 6713.81, "probability": 0.9858 }, { "start": 6714.68, "end": 6717.18, "probability": 0.9813 }, { "start": 6717.26, "end": 6717.78, "probability": 0.9756 }, { "start": 6718.08, "end": 6720.14, "probability": 0.9871 }, { "start": 6720.16, "end": 6720.4, "probability": 0.6671 }, { "start": 6721.14, "end": 6722.12, "probability": 0.5669 }, { "start": 6722.84, "end": 6724.36, "probability": 0.79 }, { "start": 6724.56, "end": 6726.5, "probability": 0.9749 }, { "start": 6726.6, "end": 6727.92, "probability": 0.9026 }, { "start": 6728.58, "end": 6733.24, "probability": 0.9886 }, { "start": 6733.4, "end": 6734.32, "probability": 0.9917 }, { "start": 6735.4, "end": 6737.32, "probability": 0.9971 }, { "start": 6738.9, "end": 6739.96, "probability": 0.5225 }, { "start": 6741.04, "end": 6744.86, "probability": 0.776 }, { "start": 6745.1, "end": 6745.54, "probability": 0.3873 }, { "start": 6746.08, "end": 6746.56, "probability": 0.5516 }, { "start": 6746.7, "end": 6748.68, "probability": 0.9929 }, { "start": 6748.76, "end": 6749.08, "probability": 0.9521 }, { "start": 6749.76, "end": 6754.02, "probability": 0.9902 }, { "start": 6754.34, "end": 6754.8, "probability": 0.9515 }, { "start": 6755.56, "end": 6756.16, "probability": 0.6657 }, { "start": 6756.68, "end": 6759.24, "probability": 0.8099 }, { "start": 6759.68, "end": 6761.92, "probability": 0.981 }, { "start": 6762.9, "end": 6763.78, "probability": 0.7576 }, { "start": 6765.2, "end": 6767.2, "probability": 0.4309 }, { "start": 6770.3, "end": 6772.04, "probability": 0.4051 }, { "start": 6772.78, "end": 6773.94, "probability": 0.724 }, { "start": 6774.67, "end": 6775.96, "probability": 0.7724 }, { "start": 6794.14, "end": 6796.52, "probability": 0.6918 }, { "start": 6797.44, "end": 6798.68, "probability": 0.6047 }, { "start": 6799.66, "end": 6801.18, "probability": 0.958 }, { "start": 6802.26, "end": 6803.04, "probability": 0.9606 }, { "start": 6805.34, "end": 6809.04, "probability": 0.998 }, { "start": 6809.04, "end": 6812.68, "probability": 0.9978 }, { "start": 6813.5, "end": 6816.72, "probability": 0.9873 }, { "start": 6816.72, "end": 6819.66, "probability": 0.9983 }, { "start": 6821.14, "end": 6823.64, "probability": 0.8675 }, { "start": 6824.24, "end": 6826.22, "probability": 0.9805 }, { "start": 6826.74, "end": 6830.56, "probability": 0.9423 }, { "start": 6831.16, "end": 6834.5, "probability": 0.9991 }, { "start": 6835.1, "end": 6836.06, "probability": 0.7617 }, { "start": 6836.6, "end": 6838.26, "probability": 0.9647 }, { "start": 6839.58, "end": 6840.48, "probability": 0.8931 }, { "start": 6841.16, "end": 6842.84, "probability": 0.9756 }, { "start": 6843.54, "end": 6845.38, "probability": 0.9547 }, { "start": 6846.2, "end": 6852.1, "probability": 0.9934 }, { "start": 6852.68, "end": 6853.6, "probability": 0.9872 }, { "start": 6854.74, "end": 6856.1, "probability": 0.7584 }, { "start": 6856.8, "end": 6860.42, "probability": 0.9993 }, { "start": 6860.9, "end": 6865.4, "probability": 0.9993 }, { "start": 6866.52, "end": 6869.18, "probability": 0.9988 }, { "start": 6869.9, "end": 6874.54, "probability": 0.9595 }, { "start": 6875.22, "end": 6876.18, "probability": 0.9922 }, { "start": 6877.78, "end": 6882.1, "probability": 0.9929 }, { "start": 6882.64, "end": 6885.1, "probability": 0.9995 }, { "start": 6885.74, "end": 6889.86, "probability": 0.9534 }, { "start": 6890.56, "end": 6893.54, "probability": 0.9963 }, { "start": 6893.69, "end": 6897.49, "probability": 0.9996 }, { "start": 6898.4, "end": 6901.02, "probability": 0.9888 }, { "start": 6901.94, "end": 6903.04, "probability": 0.8892 }, { "start": 6903.7, "end": 6905.4, "probability": 0.9872 }, { "start": 6906.06, "end": 6911.72, "probability": 0.7437 }, { "start": 6912.96, "end": 6914.18, "probability": 0.5378 }, { "start": 6914.46, "end": 6914.92, "probability": 0.0173 }, { "start": 6915.02, "end": 6915.44, "probability": 0.2466 }, { "start": 6915.44, "end": 6917.74, "probability": 0.4725 }, { "start": 6917.92, "end": 6919.4, "probability": 0.7308 }, { "start": 6920.9, "end": 6923.42, "probability": 0.2135 }, { "start": 6924.98, "end": 6925.02, "probability": 0.0691 }, { "start": 6925.02, "end": 6925.92, "probability": 0.2597 }, { "start": 6926.7, "end": 6928.64, "probability": 0.7709 }, { "start": 6929.34, "end": 6931.44, "probability": 0.917 }, { "start": 6933.6, "end": 6934.24, "probability": 0.7648 }, { "start": 6937.12, "end": 6937.12, "probability": 0.0115 }, { "start": 6937.12, "end": 6937.12, "probability": 0.2251 }, { "start": 6937.12, "end": 6939.02, "probability": 0.5359 }, { "start": 6939.18, "end": 6939.46, "probability": 0.9115 }, { "start": 6940.46, "end": 6941.8, "probability": 0.0141 }, { "start": 6941.8, "end": 6943.56, "probability": 0.7992 }, { "start": 6945.0, "end": 6945.48, "probability": 0.4228 }, { "start": 6947.02, "end": 6950.64, "probability": 0.997 }, { "start": 6951.5, "end": 6953.78, "probability": 0.9752 }, { "start": 6954.56, "end": 6956.48, "probability": 0.8792 }, { "start": 6957.32, "end": 6960.34, "probability": 0.999 }, { "start": 6961.04, "end": 6961.24, "probability": 0.9372 }, { "start": 6962.96, "end": 6964.5, "probability": 0.7812 }, { "start": 6965.18, "end": 6966.6, "probability": 0.5595 }, { "start": 6967.2, "end": 6968.8, "probability": 0.9021 }, { "start": 6969.76, "end": 6970.56, "probability": 0.9256 }, { "start": 6971.4, "end": 6975.56, "probability": 0.9485 }, { "start": 6976.42, "end": 6978.24, "probability": 0.9909 }, { "start": 6979.56, "end": 6979.82, "probability": 0.7816 }, { "start": 6980.88, "end": 6982.92, "probability": 0.1438 }, { "start": 6983.4, "end": 6986.56, "probability": 0.2078 }, { "start": 6987.0, "end": 6989.32, "probability": 0.134 }, { "start": 6990.02, "end": 6991.98, "probability": 0.6878 }, { "start": 6991.98, "end": 6993.26, "probability": 0.241 }, { "start": 6993.3, "end": 6995.96, "probability": 0.7187 }, { "start": 6996.04, "end": 6996.5, "probability": 0.1919 }, { "start": 6996.5, "end": 7000.12, "probability": 0.5186 }, { "start": 7000.3, "end": 7002.18, "probability": 0.6578 }, { "start": 7002.78, "end": 7003.84, "probability": 0.7516 }, { "start": 7004.36, "end": 7005.72, "probability": 0.0815 }, { "start": 7007.0, "end": 7008.26, "probability": 0.0788 }, { "start": 7008.26, "end": 7011.05, "probability": 0.0325 }, { "start": 7011.72, "end": 7013.24, "probability": 0.0818 }, { "start": 7013.42, "end": 7014.26, "probability": 0.0119 }, { "start": 7014.26, "end": 7014.34, "probability": 0.0877 }, { "start": 7014.34, "end": 7014.34, "probability": 0.0105 }, { "start": 7014.34, "end": 7015.82, "probability": 0.1569 }, { "start": 7016.66, "end": 7018.46, "probability": 0.287 }, { "start": 7018.46, "end": 7018.46, "probability": 0.1906 }, { "start": 7018.46, "end": 7019.8, "probability": 0.6222 }, { "start": 7019.8, "end": 7027.24, "probability": 0.981 }, { "start": 7028.3, "end": 7032.46, "probability": 0.9985 }, { "start": 7033.78, "end": 7033.9, "probability": 0.013 }, { "start": 7033.9, "end": 7035.28, "probability": 0.9451 }, { "start": 7035.85, "end": 7036.18, "probability": 0.2583 }, { "start": 7036.2, "end": 7036.96, "probability": 0.8696 }, { "start": 7037.0, "end": 7038.76, "probability": 0.4217 }, { "start": 7039.12, "end": 7043.3, "probability": 0.6875 }, { "start": 7043.46, "end": 7043.74, "probability": 0.5341 }, { "start": 7044.32, "end": 7044.84, "probability": 0.8358 }, { "start": 7045.26, "end": 7046.18, "probability": 0.4817 }, { "start": 7046.58, "end": 7047.58, "probability": 0.8793 }, { "start": 7047.7, "end": 7049.38, "probability": 0.2402 }, { "start": 7049.88, "end": 7051.32, "probability": 0.5485 }, { "start": 7051.92, "end": 7054.0, "probability": 0.9408 }, { "start": 7056.68, "end": 7057.98, "probability": 0.9034 }, { "start": 7060.92, "end": 7061.92, "probability": 0.6299 }, { "start": 7070.38, "end": 7073.32, "probability": 0.6785 }, { "start": 7074.54, "end": 7077.2, "probability": 0.7625 }, { "start": 7078.97, "end": 7082.54, "probability": 0.9251 }, { "start": 7083.3, "end": 7085.6, "probability": 0.7492 }, { "start": 7086.6, "end": 7088.9, "probability": 0.8241 }, { "start": 7089.7, "end": 7090.77, "probability": 0.9116 }, { "start": 7093.36, "end": 7095.84, "probability": 0.747 }, { "start": 7104.72, "end": 7106.9, "probability": 0.7354 }, { "start": 7108.25, "end": 7111.42, "probability": 0.8256 }, { "start": 7111.86, "end": 7113.64, "probability": 0.8084 }, { "start": 7114.3, "end": 7117.84, "probability": 0.9745 }, { "start": 7118.44, "end": 7123.9, "probability": 0.9724 }, { "start": 7124.7, "end": 7129.34, "probability": 0.9971 }, { "start": 7129.42, "end": 7139.14, "probability": 0.9506 }, { "start": 7139.24, "end": 7140.1, "probability": 0.946 }, { "start": 7141.18, "end": 7143.26, "probability": 0.9654 }, { "start": 7143.48, "end": 7144.84, "probability": 0.9434 }, { "start": 7145.36, "end": 7149.0, "probability": 0.8241 }, { "start": 7150.6, "end": 7153.28, "probability": 0.8853 }, { "start": 7154.04, "end": 7155.0, "probability": 0.7618 }, { "start": 7157.24, "end": 7160.18, "probability": 0.9964 }, { "start": 7161.16, "end": 7164.51, "probability": 0.981 }, { "start": 7165.82, "end": 7170.3, "probability": 0.9988 }, { "start": 7170.88, "end": 7172.24, "probability": 0.9876 }, { "start": 7172.48, "end": 7174.42, "probability": 0.9986 }, { "start": 7174.64, "end": 7176.16, "probability": 0.4298 }, { "start": 7177.62, "end": 7177.94, "probability": 0.8254 }, { "start": 7178.94, "end": 7180.68, "probability": 0.7388 }, { "start": 7182.08, "end": 7182.98, "probability": 0.8917 }, { "start": 7183.44, "end": 7184.52, "probability": 0.1478 }, { "start": 7184.8, "end": 7185.5, "probability": 0.7451 }, { "start": 7185.5, "end": 7187.8, "probability": 0.9644 }, { "start": 7188.42, "end": 7189.48, "probability": 0.9528 }, { "start": 7190.3, "end": 7190.34, "probability": 0.6172 }, { "start": 7190.34, "end": 7191.26, "probability": 0.8553 }, { "start": 7191.28, "end": 7191.98, "probability": 0.3747 }, { "start": 7192.14, "end": 7196.42, "probability": 0.9647 }, { "start": 7196.48, "end": 7197.32, "probability": 0.8547 }, { "start": 7197.44, "end": 7199.48, "probability": 0.9974 }, { "start": 7200.16, "end": 7201.96, "probability": 0.9757 }, { "start": 7202.82, "end": 7206.1, "probability": 0.9742 }, { "start": 7206.72, "end": 7208.18, "probability": 0.7407 }, { "start": 7208.3, "end": 7209.55, "probability": 0.6591 }, { "start": 7210.52, "end": 7212.08, "probability": 0.9618 }, { "start": 7212.66, "end": 7213.92, "probability": 0.6229 }, { "start": 7214.62, "end": 7218.1, "probability": 0.7817 }, { "start": 7218.12, "end": 7218.52, "probability": 0.8109 }, { "start": 7219.02, "end": 7222.66, "probability": 0.2123 }, { "start": 7224.72, "end": 7225.6, "probability": 0.8839 }, { "start": 7227.12, "end": 7228.2, "probability": 0.7823 }, { "start": 7229.94, "end": 7232.06, "probability": 0.8756 }, { "start": 7232.84, "end": 7233.32, "probability": 0.9365 }, { "start": 7234.58, "end": 7235.46, "probability": 0.8656 }, { "start": 7235.98, "end": 7236.38, "probability": 0.9763 }, { "start": 7236.94, "end": 7237.64, "probability": 0.8711 }, { "start": 7239.26, "end": 7239.84, "probability": 0.985 }, { "start": 7240.96, "end": 7242.02, "probability": 0.43 }, { "start": 7243.1, "end": 7245.52, "probability": 0.572 }, { "start": 7246.3, "end": 7246.64, "probability": 0.9839 }, { "start": 7247.26, "end": 7248.28, "probability": 0.808 }, { "start": 7251.54, "end": 7252.08, "probability": 0.9917 }, { "start": 7252.82, "end": 7253.7, "probability": 0.9083 }, { "start": 7254.64, "end": 7254.94, "probability": 0.9885 }, { "start": 7255.86, "end": 7256.74, "probability": 0.9103 }, { "start": 7257.88, "end": 7260.02, "probability": 0.9937 }, { "start": 7260.64, "end": 7263.2, "probability": 0.9837 }, { "start": 7264.04, "end": 7270.08, "probability": 0.9014 }, { "start": 7271.06, "end": 7271.48, "probability": 0.7125 }, { "start": 7272.78, "end": 7273.66, "probability": 0.762 }, { "start": 7274.44, "end": 7276.96, "probability": 0.8317 }, { "start": 7277.62, "end": 7280.36, "probability": 0.8768 }, { "start": 7282.68, "end": 7284.22, "probability": 0.7131 }, { "start": 7285.16, "end": 7286.28, "probability": 0.8867 }, { "start": 7293.1, "end": 7293.82, "probability": 0.6539 }, { "start": 7294.82, "end": 7296.26, "probability": 0.9328 }, { "start": 7297.06, "end": 7297.64, "probability": 0.9857 }, { "start": 7298.28, "end": 7299.38, "probability": 0.9688 }, { "start": 7300.8, "end": 7301.54, "probability": 0.8457 }, { "start": 7305.22, "end": 7306.02, "probability": 0.5706 }, { "start": 7307.16, "end": 7307.64, "probability": 0.6437 }, { "start": 7309.44, "end": 7310.24, "probability": 0.8797 }, { "start": 7310.98, "end": 7311.72, "probability": 0.8064 }, { "start": 7312.64, "end": 7313.78, "probability": 0.6046 }, { "start": 7315.5, "end": 7316.08, "probability": 0.988 }, { "start": 7317.52, "end": 7318.2, "probability": 0.9725 }, { "start": 7319.26, "end": 7319.74, "probability": 0.9731 }, { "start": 7320.46, "end": 7321.4, "probability": 0.9397 }, { "start": 7322.66, "end": 7324.76, "probability": 0.9329 }, { "start": 7325.98, "end": 7326.56, "probability": 0.9943 }, { "start": 7329.08, "end": 7329.9, "probability": 0.8153 }, { "start": 7330.66, "end": 7330.86, "probability": 0.2897 }, { "start": 7335.72, "end": 7337.88, "probability": 0.4585 }, { "start": 7338.92, "end": 7339.9, "probability": 0.7887 }, { "start": 7340.74, "end": 7341.66, "probability": 0.7495 }, { "start": 7345.3, "end": 7346.1, "probability": 0.5493 }, { "start": 7347.52, "end": 7348.02, "probability": 0.6901 }, { "start": 7348.84, "end": 7349.88, "probability": 0.6951 }, { "start": 7350.58, "end": 7351.16, "probability": 0.9123 }, { "start": 7351.8, "end": 7352.64, "probability": 0.9364 }, { "start": 7353.98, "end": 7354.84, "probability": 0.7789 }, { "start": 7355.72, "end": 7356.6, "probability": 0.9118 }, { "start": 7357.32, "end": 7357.88, "probability": 0.9851 }, { "start": 7362.82, "end": 7363.72, "probability": 0.5342 }, { "start": 7364.34, "end": 7364.86, "probability": 0.8372 }, { "start": 7366.0, "end": 7366.76, "probability": 0.8316 }, { "start": 7367.56, "end": 7368.04, "probability": 0.9871 }, { "start": 7369.02, "end": 7370.22, "probability": 0.8182 }, { "start": 7370.84, "end": 7373.08, "probability": 0.9695 }, { "start": 7375.12, "end": 7377.42, "probability": 0.9874 }, { "start": 7378.08, "end": 7378.66, "probability": 0.9826 }, { "start": 7379.58, "end": 7380.44, "probability": 0.9396 }, { "start": 7381.08, "end": 7381.68, "probability": 0.9927 }, { "start": 7382.44, "end": 7382.96, "probability": 0.6182 }, { "start": 7384.12, "end": 7384.74, "probability": 0.9714 }, { "start": 7385.26, "end": 7386.34, "probability": 0.6629 }, { "start": 7387.9, "end": 7390.44, "probability": 0.7354 }, { "start": 7391.32, "end": 7391.88, "probability": 0.957 }, { "start": 7393.0, "end": 7394.01, "probability": 0.6953 }, { "start": 7394.72, "end": 7395.26, "probability": 0.9731 }, { "start": 7396.04, "end": 7397.24, "probability": 0.7297 }, { "start": 7400.0, "end": 7402.06, "probability": 0.4949 }, { "start": 7403.14, "end": 7403.72, "probability": 0.988 }, { "start": 7406.06, "end": 7407.14, "probability": 0.8955 }, { "start": 7408.08, "end": 7408.6, "probability": 0.9888 }, { "start": 7409.4, "end": 7410.5, "probability": 0.7812 }, { "start": 7411.46, "end": 7412.08, "probability": 0.9967 }, { "start": 7413.02, "end": 7413.82, "probability": 0.6797 }, { "start": 7416.1, "end": 7417.96, "probability": 0.7267 }, { "start": 7419.16, "end": 7420.16, "probability": 0.9215 }, { "start": 7420.7, "end": 7422.04, "probability": 0.7739 }, { "start": 7422.64, "end": 7423.18, "probability": 0.7257 }, { "start": 7424.84, "end": 7426.02, "probability": 0.8945 }, { "start": 7426.76, "end": 7427.22, "probability": 0.9601 }, { "start": 7428.22, "end": 7429.14, "probability": 0.8494 }, { "start": 7430.94, "end": 7431.2, "probability": 0.5095 }, { "start": 7434.32, "end": 7434.46, "probability": 0.5045 }, { "start": 7437.52, "end": 7439.76, "probability": 0.4961 }, { "start": 7441.38, "end": 7442.66, "probability": 0.8225 }, { "start": 7443.56, "end": 7444.02, "probability": 0.9543 }, { "start": 7444.96, "end": 7445.68, "probability": 0.8688 }, { "start": 7446.32, "end": 7448.52, "probability": 0.8784 }, { "start": 7449.6, "end": 7450.1, "probability": 0.6015 }, { "start": 7451.34, "end": 7451.96, "probability": 0.9609 }, { "start": 7453.62, "end": 7454.18, "probability": 0.9839 }, { "start": 7455.06, "end": 7455.84, "probability": 0.983 }, { "start": 7457.52, "end": 7457.82, "probability": 0.9802 }, { "start": 7458.52, "end": 7459.1, "probability": 0.9669 }, { "start": 7460.28, "end": 7460.8, "probability": 0.9701 }, { "start": 7462.42, "end": 7463.64, "probability": 0.6929 }, { "start": 7464.78, "end": 7465.02, "probability": 0.6704 }, { "start": 7467.52, "end": 7468.26, "probability": 0.6087 }, { "start": 7472.32, "end": 7472.94, "probability": 0.818 }, { "start": 7474.08, "end": 7475.26, "probability": 0.7976 }, { "start": 7476.42, "end": 7478.56, "probability": 0.8711 }, { "start": 7480.44, "end": 7481.0, "probability": 0.8162 }, { "start": 7483.04, "end": 7484.02, "probability": 0.9058 }, { "start": 7486.22, "end": 7487.14, "probability": 0.866 }, { "start": 7487.86, "end": 7488.9, "probability": 0.9732 }, { "start": 7489.44, "end": 7489.96, "probability": 0.9678 }, { "start": 7490.8, "end": 7491.7, "probability": 0.9751 }, { "start": 7492.6, "end": 7493.1, "probability": 0.9902 }, { "start": 7494.52, "end": 7495.2, "probability": 0.672 }, { "start": 7496.2, "end": 7496.58, "probability": 0.7345 }, { "start": 7497.46, "end": 7498.64, "probability": 0.9775 }, { "start": 7499.26, "end": 7500.08, "probability": 0.9771 }, { "start": 7500.72, "end": 7501.78, "probability": 0.7767 }, { "start": 7502.5, "end": 7503.76, "probability": 0.6835 }, { "start": 7504.7, "end": 7505.56, "probability": 0.7973 }, { "start": 7506.36, "end": 7508.52, "probability": 0.8372 }, { "start": 7509.28, "end": 7509.86, "probability": 0.9725 }, { "start": 7510.5, "end": 7511.44, "probability": 0.6798 }, { "start": 7514.08, "end": 7514.68, "probability": 0.9919 }, { "start": 7515.72, "end": 7517.7, "probability": 0.9874 }, { "start": 7518.64, "end": 7519.68, "probability": 0.6881 }, { "start": 7520.74, "end": 7521.18, "probability": 0.527 }, { "start": 7521.92, "end": 7522.68, "probability": 0.7345 }, { "start": 7526.62, "end": 7527.8, "probability": 0.9519 }, { "start": 7529.12, "end": 7529.96, "probability": 0.9087 }, { "start": 7531.22, "end": 7533.7, "probability": 0.766 }, { "start": 7534.32, "end": 7534.88, "probability": 0.9751 }, { "start": 7535.76, "end": 7536.74, "probability": 0.9624 }, { "start": 7537.48, "end": 7538.86, "probability": 0.9773 }, { "start": 7539.76, "end": 7540.64, "probability": 0.927 }, { "start": 7543.76, "end": 7543.98, "probability": 0.7033 }, { "start": 7544.66, "end": 7547.36, "probability": 0.6292 }, { "start": 7548.34, "end": 7548.86, "probability": 0.7922 }, { "start": 7549.96, "end": 7550.86, "probability": 0.6617 }, { "start": 7551.64, "end": 7552.22, "probability": 0.9857 }, { "start": 7552.86, "end": 7555.4, "probability": 0.7763 }, { "start": 7556.4, "end": 7557.38, "probability": 0.756 }, { "start": 7560.22, "end": 7564.94, "probability": 0.4245 }, { "start": 7566.66, "end": 7567.28, "probability": 0.8638 }, { "start": 7568.42, "end": 7569.34, "probability": 0.9311 }, { "start": 7570.44, "end": 7570.98, "probability": 0.9899 }, { "start": 7572.46, "end": 7573.28, "probability": 0.2837 }, { "start": 7574.66, "end": 7575.16, "probability": 0.9728 }, { "start": 7576.42, "end": 7577.42, "probability": 0.7209 }, { "start": 7579.02, "end": 7582.14, "probability": 0.6048 }, { "start": 7584.48, "end": 7585.42, "probability": 0.972 }, { "start": 7586.64, "end": 7587.48, "probability": 0.8807 }, { "start": 7589.76, "end": 7590.32, "probability": 0.9933 }, { "start": 7592.44, "end": 7593.3, "probability": 0.892 }, { "start": 7595.7, "end": 7597.84, "probability": 0.7077 }, { "start": 7598.88, "end": 7600.54, "probability": 0.1047 }, { "start": 7602.86, "end": 7604.32, "probability": 0.5667 }, { "start": 7605.26, "end": 7606.24, "probability": 0.6583 }, { "start": 7607.08, "end": 7607.92, "probability": 0.5338 }, { "start": 7608.98, "end": 7609.84, "probability": 0.6449 }, { "start": 7610.98, "end": 7613.04, "probability": 0.9202 }, { "start": 7614.54, "end": 7615.1, "probability": 0.937 }, { "start": 7615.86, "end": 7616.7, "probability": 0.8517 }, { "start": 7619.86, "end": 7620.42, "probability": 0.9897 }, { "start": 7621.5, "end": 7622.26, "probability": 0.8623 }, { "start": 7624.22, "end": 7626.34, "probability": 0.9074 }, { "start": 7627.88, "end": 7628.36, "probability": 0.9795 }, { "start": 7629.88, "end": 7630.7, "probability": 0.8185 }, { "start": 7631.84, "end": 7633.84, "probability": 0.1321 }, { "start": 7635.68, "end": 7636.18, "probability": 0.5584 }, { "start": 7637.16, "end": 7637.9, "probability": 0.6783 }, { "start": 7639.26, "end": 7641.48, "probability": 0.848 }, { "start": 7647.46, "end": 7647.94, "probability": 0.7829 }, { "start": 7648.98, "end": 7649.92, "probability": 0.7985 }, { "start": 7651.52, "end": 7653.24, "probability": 0.9336 }, { "start": 7653.8, "end": 7654.3, "probability": 0.9757 }, { "start": 7655.04, "end": 7656.26, "probability": 0.9521 }, { "start": 7657.36, "end": 7657.98, "probability": 0.9897 }, { "start": 7658.78, "end": 7659.64, "probability": 0.9438 }, { "start": 7660.44, "end": 7660.9, "probability": 0.9907 }, { "start": 7661.78, "end": 7663.16, "probability": 0.801 }, { "start": 7664.14, "end": 7669.76, "probability": 0.8374 }, { "start": 7670.58, "end": 7671.76, "probability": 0.8934 }, { "start": 7675.2, "end": 7678.48, "probability": 0.7321 }, { "start": 7681.72, "end": 7684.32, "probability": 0.7686 }, { "start": 7685.18, "end": 7687.84, "probability": 0.8064 }, { "start": 7690.72, "end": 7691.64, "probability": 0.9734 }, { "start": 7693.08, "end": 7694.06, "probability": 0.6871 }, { "start": 7694.94, "end": 7698.66, "probability": 0.7318 }, { "start": 7703.94, "end": 7704.52, "probability": 0.7515 }, { "start": 7706.04, "end": 7707.08, "probability": 0.802 }, { "start": 7707.62, "end": 7710.96, "probability": 0.7642 }, { "start": 7712.7, "end": 7713.78, "probability": 0.9583 }, { "start": 7715.22, "end": 7716.06, "probability": 0.8011 }, { "start": 7716.87, "end": 7718.98, "probability": 0.8803 }, { "start": 7719.56, "end": 7721.68, "probability": 0.8561 }, { "start": 7722.54, "end": 7723.4, "probability": 0.7429 }, { "start": 7724.38, "end": 7726.47, "probability": 0.552 }, { "start": 7727.52, "end": 7728.07, "probability": 0.2544 }, { "start": 7729.64, "end": 7730.16, "probability": 0.7727 }, { "start": 7733.0, "end": 7733.99, "probability": 0.6658 }, { "start": 7735.78, "end": 7736.56, "probability": 0.8627 }, { "start": 7738.04, "end": 7739.04, "probability": 0.6779 }, { "start": 7739.76, "end": 7740.72, "probability": 0.977 }, { "start": 7741.5, "end": 7742.56, "probability": 0.9678 }, { "start": 7743.36, "end": 7743.88, "probability": 0.9307 }, { "start": 7745.88, "end": 7746.62, "probability": 0.9513 }, { "start": 7747.56, "end": 7748.32, "probability": 0.7591 }, { "start": 7748.96, "end": 7749.88, "probability": 0.5043 }, { "start": 7750.86, "end": 7753.94, "probability": 0.9648 }, { "start": 7755.04, "end": 7756.88, "probability": 0.9684 }, { "start": 7758.0, "end": 7758.76, "probability": 0.9814 }, { "start": 7759.38, "end": 7760.6, "probability": 0.7834 }, { "start": 7762.52, "end": 7764.26, "probability": 0.9834 }, { "start": 7765.86, "end": 7767.88, "probability": 0.9816 }, { "start": 7768.88, "end": 7770.92, "probability": 0.9839 }, { "start": 7772.42, "end": 7775.48, "probability": 0.7316 }, { "start": 7776.8, "end": 7777.74, "probability": 0.9711 }, { "start": 7778.6, "end": 7779.46, "probability": 0.4536 }, { "start": 7780.26, "end": 7780.86, "probability": 0.9564 }, { "start": 7784.64, "end": 7785.52, "probability": 0.5714 }, { "start": 7787.04, "end": 7789.02, "probability": 0.8258 }, { "start": 7790.4, "end": 7791.24, "probability": 0.9141 }, { "start": 7792.22, "end": 7793.18, "probability": 0.9224 }, { "start": 7794.0, "end": 7794.92, "probability": 0.9285 }, { "start": 7796.46, "end": 7797.38, "probability": 0.8593 }, { "start": 7799.0, "end": 7801.1, "probability": 0.9662 }, { "start": 7802.46, "end": 7804.44, "probability": 0.9537 }, { "start": 7808.04, "end": 7810.52, "probability": 0.6604 }, { "start": 7812.72, "end": 7814.48, "probability": 0.8414 }, { "start": 7815.32, "end": 7817.24, "probability": 0.7841 }, { "start": 7818.1, "end": 7821.68, "probability": 0.8367 }, { "start": 7822.4, "end": 7824.06, "probability": 0.5677 }, { "start": 7824.78, "end": 7826.84, "probability": 0.0044 }, { "start": 7829.32, "end": 7831.54, "probability": 0.4929 }, { "start": 7831.98, "end": 7833.16, "probability": 0.8137 }, { "start": 7872.12, "end": 7873.1, "probability": 0.024 }, { "start": 7925.58, "end": 7928.22, "probability": 0.4696 }, { "start": 7928.7, "end": 7929.58, "probability": 0.5858 }, { "start": 7929.7, "end": 7929.96, "probability": 0.7344 }, { "start": 7930.0, "end": 7930.66, "probability": 0.9146 }, { "start": 7930.84, "end": 7931.36, "probability": 0.5544 }, { "start": 7931.44, "end": 7933.59, "probability": 0.9342 }, { "start": 7934.14, "end": 7936.56, "probability": 0.9753 }, { "start": 7936.56, "end": 7940.14, "probability": 0.8486 }, { "start": 7940.78, "end": 7942.8, "probability": 0.102 }, { "start": 7942.8, "end": 7942.8, "probability": 0.0161 }, { "start": 7942.8, "end": 7942.8, "probability": 0.0134 }, { "start": 7942.8, "end": 7943.84, "probability": 0.4344 }, { "start": 7943.84, "end": 7943.96, "probability": 0.2864 }, { "start": 7947.84, "end": 7948.52, "probability": 0.3038 }, { "start": 7950.52, "end": 7951.42, "probability": 0.1843 }, { "start": 7951.42, "end": 7952.16, "probability": 0.1872 }, { "start": 7952.7, "end": 7954.16, "probability": 0.1605 }, { "start": 7957.54, "end": 7962.0, "probability": 0.0204 }, { "start": 7962.9, "end": 7962.9, "probability": 0.0346 }, { "start": 7962.9, "end": 7966.42, "probability": 0.5129 }, { "start": 7966.56, "end": 7969.46, "probability": 0.9734 }, { "start": 7969.94, "end": 7971.52, "probability": 0.8189 }, { "start": 7972.12, "end": 7973.78, "probability": 0.6615 }, { "start": 7974.16, "end": 7977.48, "probability": 0.8558 }, { "start": 7978.16, "end": 7978.26, "probability": 0.0687 }, { "start": 7978.26, "end": 7979.76, "probability": 0.4788 }, { "start": 7979.88, "end": 7981.66, "probability": 0.9767 }, { "start": 7982.06, "end": 7984.38, "probability": 0.6888 }, { "start": 7998.28, "end": 8000.06, "probability": 0.544 }, { "start": 8000.5, "end": 8000.96, "probability": 0.5945 }, { "start": 8001.02, "end": 8003.8, "probability": 0.7216 }, { "start": 8006.28, "end": 8010.28, "probability": 0.9692 }, { "start": 8011.3, "end": 8012.78, "probability": 0.6423 }, { "start": 8015.24, "end": 8016.28, "probability": 0.4806 }, { "start": 8016.28, "end": 8016.68, "probability": 0.389 }, { "start": 8019.96, "end": 8022.48, "probability": 0.8436 }, { "start": 8024.04, "end": 8026.86, "probability": 0.8201 }, { "start": 8027.78, "end": 8029.12, "probability": 0.8692 }, { "start": 8030.64, "end": 8034.76, "probability": 0.8309 }, { "start": 8034.76, "end": 8038.42, "probability": 0.9808 }, { "start": 8039.64, "end": 8040.38, "probability": 0.8576 }, { "start": 8040.94, "end": 8042.78, "probability": 0.9719 }, { "start": 8043.38, "end": 8044.1, "probability": 0.5084 }, { "start": 8044.76, "end": 8046.92, "probability": 0.5689 }, { "start": 8048.05, "end": 8049.9, "probability": 0.8928 }, { "start": 8049.96, "end": 8050.84, "probability": 0.8869 }, { "start": 8051.36, "end": 8052.52, "probability": 0.9881 }, { "start": 8052.6, "end": 8053.72, "probability": 0.9972 }, { "start": 8054.52, "end": 8055.68, "probability": 0.4406 }, { "start": 8056.82, "end": 8059.22, "probability": 0.8428 }, { "start": 8059.88, "end": 8061.4, "probability": 0.6442 }, { "start": 8062.3, "end": 8063.22, "probability": 0.7835 }, { "start": 8065.3, "end": 8067.01, "probability": 0.8802 }, { "start": 8067.92, "end": 8069.92, "probability": 0.991 }, { "start": 8070.64, "end": 8072.86, "probability": 0.2073 }, { "start": 8073.74, "end": 8074.36, "probability": 0.6631 }, { "start": 8074.44, "end": 8076.52, "probability": 0.3257 }, { "start": 8076.7, "end": 8076.98, "probability": 0.9003 }, { "start": 8077.44, "end": 8078.62, "probability": 0.8423 }, { "start": 8079.34, "end": 8081.22, "probability": 0.3963 }, { "start": 8081.72, "end": 8086.64, "probability": 0.9728 }, { "start": 8087.16, "end": 8088.8, "probability": 0.9727 }, { "start": 8089.4, "end": 8091.0, "probability": 0.9888 }, { "start": 8091.92, "end": 8093.71, "probability": 0.7754 }, { "start": 8094.2, "end": 8096.04, "probability": 0.9719 }, { "start": 8096.1, "end": 8096.94, "probability": 0.5924 }, { "start": 8097.68, "end": 8099.64, "probability": 0.976 }, { "start": 8100.26, "end": 8101.58, "probability": 0.9771 }, { "start": 8102.16, "end": 8103.42, "probability": 0.8577 }, { "start": 8104.18, "end": 8106.86, "probability": 0.9043 }, { "start": 8107.52, "end": 8108.61, "probability": 0.7461 }, { "start": 8109.62, "end": 8110.24, "probability": 0.6804 }, { "start": 8110.24, "end": 8112.02, "probability": 0.9455 }, { "start": 8112.28, "end": 8113.84, "probability": 0.9632 }, { "start": 8114.42, "end": 8116.22, "probability": 0.7241 }, { "start": 8116.9, "end": 8119.18, "probability": 0.5327 }, { "start": 8120.28, "end": 8123.38, "probability": 0.9814 }, { "start": 8124.34, "end": 8125.84, "probability": 0.6303 }, { "start": 8126.98, "end": 8128.26, "probability": 0.988 }, { "start": 8128.38, "end": 8129.68, "probability": 0.9978 }, { "start": 8130.46, "end": 8132.02, "probability": 0.953 }, { "start": 8132.64, "end": 8135.34, "probability": 0.9915 }, { "start": 8135.62, "end": 8135.64, "probability": 0.3139 }, { "start": 8135.8, "end": 8137.18, "probability": 0.7775 }, { "start": 8137.84, "end": 8142.86, "probability": 0.9934 }, { "start": 8143.52, "end": 8146.92, "probability": 0.9979 }, { "start": 8147.6, "end": 8148.26, "probability": 0.6673 }, { "start": 8148.74, "end": 8150.14, "probability": 0.9886 }, { "start": 8150.5, "end": 8151.36, "probability": 0.9961 }, { "start": 8152.46, "end": 8154.24, "probability": 0.992 }, { "start": 8154.92, "end": 8160.22, "probability": 0.9731 }, { "start": 8160.32, "end": 8161.08, "probability": 0.6466 }, { "start": 8162.0, "end": 8164.16, "probability": 0.979 }, { "start": 8165.02, "end": 8169.04, "probability": 0.8535 }, { "start": 8169.76, "end": 8171.85, "probability": 0.9704 }, { "start": 8172.68, "end": 8176.98, "probability": 0.9746 }, { "start": 8177.36, "end": 8179.46, "probability": 0.131 }, { "start": 8179.46, "end": 8181.24, "probability": 0.854 }, { "start": 8181.36, "end": 8184.12, "probability": 0.9883 }, { "start": 8185.12, "end": 8186.42, "probability": 0.9788 }, { "start": 8187.34, "end": 8188.0, "probability": 0.8498 }, { "start": 8188.72, "end": 8191.56, "probability": 0.9922 }, { "start": 8192.28, "end": 8193.6, "probability": 0.7393 }, { "start": 8194.28, "end": 8195.92, "probability": 0.9995 }, { "start": 8196.44, "end": 8197.18, "probability": 0.8301 }, { "start": 8197.68, "end": 8202.72, "probability": 0.9237 }, { "start": 8203.1, "end": 8203.5, "probability": 0.388 }, { "start": 8203.66, "end": 8204.84, "probability": 0.6827 }, { "start": 8205.86, "end": 8208.1, "probability": 0.9906 }, { "start": 8208.92, "end": 8209.94, "probability": 0.6235 }, { "start": 8210.0, "end": 8213.96, "probability": 0.937 }, { "start": 8214.62, "end": 8216.72, "probability": 0.9912 }, { "start": 8217.6, "end": 8220.2, "probability": 0.9238 }, { "start": 8220.52, "end": 8221.5, "probability": 0.9087 }, { "start": 8223.1, "end": 8230.22, "probability": 0.9717 }, { "start": 8230.28, "end": 8231.31, "probability": 0.9696 }, { "start": 8231.72, "end": 8231.92, "probability": 0.3192 }, { "start": 8232.68, "end": 8234.54, "probability": 0.9185 }, { "start": 8235.3, "end": 8238.36, "probability": 0.8406 }, { "start": 8239.04, "end": 8241.36, "probability": 0.662 }, { "start": 8242.06, "end": 8243.98, "probability": 0.7649 }, { "start": 8244.58, "end": 8245.24, "probability": 0.9772 }, { "start": 8245.68, "end": 8248.14, "probability": 0.7689 }, { "start": 8248.56, "end": 8249.78, "probability": 0.9929 }, { "start": 8250.64, "end": 8251.54, "probability": 0.8374 }, { "start": 8251.64, "end": 8253.72, "probability": 0.8736 }, { "start": 8255.03, "end": 8257.25, "probability": 0.7227 }, { "start": 8258.06, "end": 8260.86, "probability": 0.9039 }, { "start": 8262.44, "end": 8263.84, "probability": 0.939 }, { "start": 8264.56, "end": 8264.98, "probability": 0.8421 }, { "start": 8265.56, "end": 8270.82, "probability": 0.9749 }, { "start": 8271.32, "end": 8272.1, "probability": 0.2584 }, { "start": 8272.7, "end": 8276.74, "probability": 0.9885 }, { "start": 8276.96, "end": 8280.0, "probability": 0.732 }, { "start": 8280.08, "end": 8281.44, "probability": 0.8014 }, { "start": 8282.0, "end": 8286.38, "probability": 0.95 }, { "start": 8287.28, "end": 8289.76, "probability": 0.9912 }, { "start": 8289.76, "end": 8293.86, "probability": 0.9795 }, { "start": 8294.6, "end": 8295.3, "probability": 0.659 }, { "start": 8295.32, "end": 8295.54, "probability": 0.7812 }, { "start": 8295.88, "end": 8299.44, "probability": 0.9339 }, { "start": 8300.0, "end": 8303.4, "probability": 0.8561 }, { "start": 8303.8, "end": 8304.94, "probability": 0.8499 }, { "start": 8305.58, "end": 8307.52, "probability": 0.9613 }, { "start": 8308.74, "end": 8313.46, "probability": 0.9463 }, { "start": 8313.88, "end": 8314.48, "probability": 0.9326 }, { "start": 8315.14, "end": 8316.12, "probability": 0.7856 }, { "start": 8316.74, "end": 8317.66, "probability": 0.9782 }, { "start": 8318.0, "end": 8319.0, "probability": 0.9306 }, { "start": 8319.28, "end": 8323.78, "probability": 0.7328 }, { "start": 8324.32, "end": 8325.7, "probability": 0.9451 }, { "start": 8326.44, "end": 8328.18, "probability": 0.9868 }, { "start": 8328.26, "end": 8329.16, "probability": 0.6831 }, { "start": 8329.88, "end": 8333.48, "probability": 0.9932 }, { "start": 8333.68, "end": 8334.94, "probability": 0.7579 }, { "start": 8335.66, "end": 8338.2, "probability": 0.8242 }, { "start": 8338.56, "end": 8339.9, "probability": 0.9163 }, { "start": 8340.76, "end": 8342.06, "probability": 0.825 }, { "start": 8342.62, "end": 8344.98, "probability": 0.7913 }, { "start": 8345.36, "end": 8347.52, "probability": 0.7014 }, { "start": 8348.78, "end": 8349.36, "probability": 0.6947 }, { "start": 8349.52, "end": 8353.0, "probability": 0.9907 }, { "start": 8353.1, "end": 8356.24, "probability": 0.8272 }, { "start": 8356.36, "end": 8356.76, "probability": 0.2718 }, { "start": 8357.42, "end": 8358.62, "probability": 0.9912 }, { "start": 8358.72, "end": 8363.14, "probability": 0.9802 }, { "start": 8363.22, "end": 8363.94, "probability": 0.9479 }, { "start": 8364.52, "end": 8366.56, "probability": 0.991 }, { "start": 8367.2, "end": 8370.44, "probability": 0.9724 }, { "start": 8371.0, "end": 8371.76, "probability": 0.5408 }, { "start": 8372.12, "end": 8374.3, "probability": 0.8378 }, { "start": 8375.28, "end": 8375.88, "probability": 0.9634 }, { "start": 8376.06, "end": 8376.5, "probability": 0.2749 }, { "start": 8376.58, "end": 8378.42, "probability": 0.9372 }, { "start": 8378.84, "end": 8379.8, "probability": 0.6921 }, { "start": 8380.32, "end": 8384.5, "probability": 0.897 }, { "start": 8385.36, "end": 8385.8, "probability": 0.9254 }, { "start": 8385.84, "end": 8387.5, "probability": 0.7887 }, { "start": 8387.98, "end": 8390.88, "probability": 0.8164 }, { "start": 8391.7, "end": 8395.48, "probability": 0.997 }, { "start": 8395.62, "end": 8396.9, "probability": 0.8975 }, { "start": 8396.98, "end": 8399.1, "probability": 0.995 }, { "start": 8399.72, "end": 8401.19, "probability": 0.6807 }, { "start": 8402.88, "end": 8403.42, "probability": 0.916 }, { "start": 8403.56, "end": 8405.83, "probability": 0.937 }, { "start": 8406.7, "end": 8407.8, "probability": 0.7243 }, { "start": 8408.64, "end": 8414.3, "probability": 0.9766 }, { "start": 8414.42, "end": 8415.56, "probability": 0.8621 }, { "start": 8416.19, "end": 8419.66, "probability": 0.9536 }, { "start": 8420.8, "end": 8428.42, "probability": 0.9868 }, { "start": 8428.42, "end": 8434.84, "probability": 0.9929 }, { "start": 8435.2, "end": 8436.08, "probability": 0.4897 }, { "start": 8436.28, "end": 8437.04, "probability": 0.953 }, { "start": 8437.56, "end": 8439.14, "probability": 0.9968 }, { "start": 8439.7, "end": 8439.78, "probability": 0.8223 }, { "start": 8439.92, "end": 8442.22, "probability": 0.5812 }, { "start": 8442.72, "end": 8444.2, "probability": 0.6781 }, { "start": 8444.24, "end": 8446.54, "probability": 0.9619 }, { "start": 8446.84, "end": 8447.7, "probability": 0.9729 }, { "start": 8448.44, "end": 8451.0, "probability": 0.8105 }, { "start": 8451.76, "end": 8452.26, "probability": 0.8124 }, { "start": 8452.36, "end": 8457.06, "probability": 0.9707 }, { "start": 8457.9, "end": 8460.22, "probability": 0.9102 }, { "start": 8460.3, "end": 8461.1, "probability": 0.9309 }, { "start": 8461.92, "end": 8462.5, "probability": 0.9309 }, { "start": 8463.02, "end": 8463.34, "probability": 0.6583 }, { "start": 8463.92, "end": 8465.88, "probability": 0.9818 }, { "start": 8466.44, "end": 8469.92, "probability": 0.9045 }, { "start": 8471.73, "end": 8474.14, "probability": 0.9648 }, { "start": 8474.52, "end": 8476.92, "probability": 0.9922 }, { "start": 8477.5, "end": 8478.96, "probability": 0.6461 }, { "start": 8479.12, "end": 8483.28, "probability": 0.9949 }, { "start": 8483.88, "end": 8483.88, "probability": 0.4005 }, { "start": 8484.12, "end": 8484.32, "probability": 0.4467 }, { "start": 8484.38, "end": 8485.52, "probability": 0.7314 }, { "start": 8485.58, "end": 8487.3, "probability": 0.9633 }, { "start": 8487.62, "end": 8488.8, "probability": 0.9907 }, { "start": 8489.94, "end": 8491.28, "probability": 0.9873 }, { "start": 8491.62, "end": 8493.46, "probability": 0.9237 }, { "start": 8493.98, "end": 8496.02, "probability": 0.9978 }, { "start": 8497.36, "end": 8498.34, "probability": 0.6657 }, { "start": 8498.92, "end": 8501.62, "probability": 0.9934 }, { "start": 8502.58, "end": 8503.52, "probability": 0.7189 }, { "start": 8503.78, "end": 8505.5, "probability": 0.7672 }, { "start": 8505.88, "end": 8507.56, "probability": 0.9194 }, { "start": 8508.1, "end": 8510.08, "probability": 0.9567 }, { "start": 8510.18, "end": 8511.16, "probability": 0.865 }, { "start": 8511.64, "end": 8513.18, "probability": 0.7287 }, { "start": 8513.96, "end": 8514.66, "probability": 0.9072 }, { "start": 8515.14, "end": 8517.38, "probability": 0.9683 }, { "start": 8517.82, "end": 8518.18, "probability": 0.339 }, { "start": 8518.37, "end": 8520.24, "probability": 0.9524 }, { "start": 8520.3, "end": 8521.38, "probability": 0.9158 }, { "start": 8521.6, "end": 8523.12, "probability": 0.9612 }, { "start": 8523.58, "end": 8528.02, "probability": 0.9926 }, { "start": 8528.6, "end": 8529.96, "probability": 0.4458 }, { "start": 8531.82, "end": 8533.38, "probability": 0.8664 }, { "start": 8533.48, "end": 8535.02, "probability": 0.8735 }, { "start": 8535.46, "end": 8536.62, "probability": 0.7992 }, { "start": 8537.22, "end": 8540.42, "probability": 0.9935 }, { "start": 8540.56, "end": 8541.46, "probability": 0.824 }, { "start": 8542.06, "end": 8544.74, "probability": 0.9833 }, { "start": 8545.1, "end": 8547.88, "probability": 0.6579 }, { "start": 8548.42, "end": 8552.42, "probability": 0.7835 }, { "start": 8552.82, "end": 8554.24, "probability": 0.7917 }, { "start": 8554.34, "end": 8555.02, "probability": 0.9579 }, { "start": 8555.4, "end": 8557.66, "probability": 0.8801 }, { "start": 8558.24, "end": 8558.88, "probability": 0.8538 }, { "start": 8559.16, "end": 8560.7, "probability": 0.5879 }, { "start": 8561.06, "end": 8562.9, "probability": 0.8273 }, { "start": 8563.04, "end": 8563.8, "probability": 0.8947 }, { "start": 8564.36, "end": 8566.84, "probability": 0.9796 }, { "start": 8567.36, "end": 8569.4, "probability": 0.9255 }, { "start": 8569.92, "end": 8572.22, "probability": 0.9763 }, { "start": 8572.68, "end": 8575.98, "probability": 0.9972 }, { "start": 8575.98, "end": 8578.78, "probability": 0.9956 }, { "start": 8579.14, "end": 8580.76, "probability": 0.9895 }, { "start": 8581.2, "end": 8582.96, "probability": 0.999 }, { "start": 8583.5, "end": 8585.14, "probability": 0.5963 }, { "start": 8585.72, "end": 8590.18, "probability": 0.8102 }, { "start": 8590.66, "end": 8593.1, "probability": 0.7744 }, { "start": 8594.8, "end": 8599.78, "probability": 0.9521 }, { "start": 8599.8, "end": 8601.16, "probability": 0.6101 }, { "start": 8601.28, "end": 8601.8, "probability": 0.9014 }, { "start": 8601.8, "end": 8607.28, "probability": 0.9602 }, { "start": 8607.34, "end": 8607.76, "probability": 0.5667 }, { "start": 8607.94, "end": 8608.5, "probability": 0.7548 }, { "start": 8608.58, "end": 8609.52, "probability": 0.9497 }, { "start": 8609.82, "end": 8615.14, "probability": 0.9965 }, { "start": 8615.66, "end": 8618.16, "probability": 0.9982 }, { "start": 8618.7, "end": 8620.44, "probability": 0.6659 }, { "start": 8620.8, "end": 8624.66, "probability": 0.922 }, { "start": 8624.8, "end": 8624.92, "probability": 0.6696 }, { "start": 8625.18, "end": 8629.6, "probability": 0.8331 }, { "start": 8630.06, "end": 8631.36, "probability": 0.7929 }, { "start": 8632.0, "end": 8634.86, "probability": 0.9465 }, { "start": 8635.14, "end": 8635.84, "probability": 0.7641 }, { "start": 8636.8, "end": 8637.48, "probability": 0.51 }, { "start": 8637.48, "end": 8639.02, "probability": 0.599 }, { "start": 8639.52, "end": 8640.31, "probability": 0.3424 }, { "start": 8640.56, "end": 8643.56, "probability": 0.8298 }, { "start": 8643.96, "end": 8646.36, "probability": 0.7338 }, { "start": 8646.46, "end": 8647.4, "probability": 0.4641 }, { "start": 8647.72, "end": 8650.64, "probability": 0.9715 }, { "start": 8650.94, "end": 8651.7, "probability": 0.9727 }, { "start": 8652.04, "end": 8653.2, "probability": 0.8964 }, { "start": 8653.24, "end": 8653.9, "probability": 0.4326 }, { "start": 8654.4, "end": 8655.2, "probability": 0.8632 }, { "start": 8656.36, "end": 8663.1, "probability": 0.5712 }, { "start": 8675.84, "end": 8676.02, "probability": 0.0222 }, { "start": 8676.02, "end": 8676.48, "probability": 0.4766 }, { "start": 8677.1, "end": 8677.72, "probability": 0.959 }, { "start": 8680.6, "end": 8681.92, "probability": 0.7061 }, { "start": 8682.22, "end": 8683.3, "probability": 0.8194 }, { "start": 8683.56, "end": 8686.74, "probability": 0.997 }, { "start": 8686.88, "end": 8693.64, "probability": 0.9254 }, { "start": 8694.08, "end": 8697.94, "probability": 0.9956 }, { "start": 8697.94, "end": 8700.9, "probability": 0.8995 }, { "start": 8701.0, "end": 8702.88, "probability": 0.9922 }, { "start": 8703.94, "end": 8708.22, "probability": 0.9866 }, { "start": 8709.04, "end": 8714.16, "probability": 0.9891 }, { "start": 8715.28, "end": 8718.6, "probability": 0.9939 }, { "start": 8719.14, "end": 8720.78, "probability": 0.771 }, { "start": 8721.34, "end": 8721.86, "probability": 0.5048 }, { "start": 8722.48, "end": 8722.48, "probability": 0.3792 }, { "start": 8724.59, "end": 8725.36, "probability": 0.6316 }, { "start": 8726.26, "end": 8727.3, "probability": 0.2035 }, { "start": 8727.44, "end": 8733.96, "probability": 0.9271 }, { "start": 8734.22, "end": 8734.8, "probability": 0.0702 }, { "start": 8735.1, "end": 8735.16, "probability": 0.2131 }, { "start": 8735.16, "end": 8736.27, "probability": 0.5584 }, { "start": 8737.26, "end": 8738.63, "probability": 0.7752 }, { "start": 8740.7, "end": 8746.9, "probability": 0.7778 }, { "start": 8747.3, "end": 8749.01, "probability": 0.9307 }, { "start": 8750.29, "end": 8754.71, "probability": 0.8773 }, { "start": 8755.17, "end": 8759.03, "probability": 0.9472 }, { "start": 8759.13, "end": 8763.79, "probability": 0.6787 }, { "start": 8763.79, "end": 8765.93, "probability": 0.5371 }, { "start": 8765.93, "end": 8766.25, "probability": 0.2435 }, { "start": 8766.45, "end": 8768.19, "probability": 0.2835 }, { "start": 8769.35, "end": 8774.11, "probability": 0.1148 }, { "start": 8778.51, "end": 8778.79, "probability": 0.3528 }, { "start": 8780.95, "end": 8780.95, "probability": 0.0015 }, { "start": 8799.24, "end": 8802.27, "probability": 0.1211 }, { "start": 8802.29, "end": 8804.45, "probability": 0.0793 }, { "start": 8806.65, "end": 8807.29, "probability": 0.3 }, { "start": 8812.26, "end": 8814.2, "probability": 0.1179 }, { "start": 8872.0, "end": 8872.0, "probability": 0.0 }, { "start": 8872.0, "end": 8872.0, "probability": 0.0 }, { "start": 8872.0, "end": 8872.0, "probability": 0.0 }, { "start": 8872.0, "end": 8872.0, "probability": 0.0 }, { "start": 8872.0, "end": 8872.0, "probability": 0.0 }, { "start": 8872.0, "end": 8872.0, "probability": 0.0 }, { "start": 8872.0, "end": 8872.0, "probability": 0.0 }, { "start": 8872.0, "end": 8872.0, "probability": 0.0 }, { "start": 8872.0, "end": 8872.0, "probability": 0.0 }, { "start": 8872.0, "end": 8872.0, "probability": 0.0 }, { "start": 8872.0, "end": 8872.0, "probability": 0.0 }, { "start": 8872.0, "end": 8872.0, "probability": 0.0 }, { "start": 8872.0, "end": 8872.0, "probability": 0.0 }, { "start": 8872.0, "end": 8872.0, "probability": 0.0 }, { "start": 8872.0, "end": 8872.0, "probability": 0.0 }, { "start": 8872.0, "end": 8872.0, "probability": 0.0 }, { "start": 8872.0, "end": 8872.0, "probability": 0.0 }, { "start": 8872.0, "end": 8872.0, "probability": 0.0 }, { "start": 8872.0, "end": 8872.0, "probability": 0.0 }, { "start": 8872.0, "end": 8872.0, "probability": 0.0 }, { "start": 8872.0, "end": 8872.0, "probability": 0.0 }, { "start": 8872.0, "end": 8872.0, "probability": 0.0 }, { "start": 8872.0, "end": 8872.0, "probability": 0.0 }, { "start": 8872.0, "end": 8872.0, "probability": 0.0 }, { "start": 8872.0, "end": 8872.0, "probability": 0.0 }, { "start": 8872.0, "end": 8872.0, "probability": 0.0 }, { "start": 8872.0, "end": 8872.0, "probability": 0.0 }, { "start": 8872.0, "end": 8872.0, "probability": 0.0 }, { "start": 8872.0, "end": 8872.0, "probability": 0.0 }, { "start": 8872.0, "end": 8872.0, "probability": 0.0 }, { "start": 8872.0, "end": 8872.0, "probability": 0.0 }, { "start": 8872.0, "end": 8872.0, "probability": 0.0 }, { "start": 8872.0, "end": 8872.0, "probability": 0.0 }, { "start": 8872.0, "end": 8872.0, "probability": 0.0 }, { "start": 8872.0, "end": 8872.0, "probability": 0.0 }, { "start": 8872.0, "end": 8872.0, "probability": 0.0 }, { "start": 8872.0, "end": 8872.0, "probability": 0.0 }, { "start": 8872.0, "end": 8872.0, "probability": 0.0 }, { "start": 8872.0, "end": 8872.0, "probability": 0.0 }, { "start": 8872.14, "end": 8872.22, "probability": 0.1182 }, { "start": 8872.22, "end": 8873.46, "probability": 0.1217 }, { "start": 8873.54, "end": 8875.8, "probability": 0.9017 }, { "start": 8876.16, "end": 8879.6, "probability": 0.5726 }, { "start": 8880.12, "end": 8882.5, "probability": 0.1949 }, { "start": 8883.14, "end": 8884.08, "probability": 0.1016 }, { "start": 8884.26, "end": 8885.26, "probability": 0.587 }, { "start": 8885.4, "end": 8886.38, "probability": 0.5248 }, { "start": 8886.69, "end": 8889.08, "probability": 0.9849 }, { "start": 8889.34, "end": 8890.98, "probability": 0.9724 }, { "start": 8891.1, "end": 8895.52, "probability": 0.4915 }, { "start": 8895.58, "end": 8896.86, "probability": 0.4735 }, { "start": 8897.52, "end": 8897.64, "probability": 0.0006 }, { "start": 8897.64, "end": 8899.71, "probability": 0.4244 }, { "start": 8900.08, "end": 8902.8, "probability": 0.8852 }, { "start": 8902.86, "end": 8904.3, "probability": 0.8231 }, { "start": 8904.52, "end": 8910.47, "probability": 0.9795 }, { "start": 8911.82, "end": 8912.04, "probability": 0.1734 }, { "start": 8912.04, "end": 8912.24, "probability": 0.025 }, { "start": 8912.46, "end": 8916.74, "probability": 0.6697 }, { "start": 8916.74, "end": 8919.29, "probability": 0.8549 }, { "start": 8920.3, "end": 8921.21, "probability": 0.8387 }, { "start": 8923.74, "end": 8927.87, "probability": 0.8322 }, { "start": 8928.0, "end": 8930.72, "probability": 0.1527 }, { "start": 8931.15, "end": 8931.22, "probability": 0.3089 }, { "start": 8931.22, "end": 8934.74, "probability": 0.9465 }, { "start": 8935.88, "end": 8937.0, "probability": 0.4944 }, { "start": 8937.0, "end": 8937.0, "probability": 0.634 }, { "start": 8937.04, "end": 8938.34, "probability": 0.9639 }, { "start": 8938.66, "end": 8941.1, "probability": 0.9744 }, { "start": 8941.2, "end": 8945.32, "probability": 0.9919 }, { "start": 8945.92, "end": 8946.58, "probability": 0.8094 }, { "start": 8948.32, "end": 8952.86, "probability": 0.6547 }, { "start": 8952.98, "end": 8955.78, "probability": 0.0267 }, { "start": 8956.72, "end": 8957.78, "probability": 0.3382 }, { "start": 8957.82, "end": 8957.88, "probability": 0.0692 }, { "start": 8958.84, "end": 8961.84, "probability": 0.2519 }, { "start": 8962.44, "end": 8964.52, "probability": 0.3188 }, { "start": 8964.98, "end": 8964.98, "probability": 0.0263 }, { "start": 8964.98, "end": 8965.7, "probability": 0.5726 }, { "start": 8965.7, "end": 8965.98, "probability": 0.6576 }, { "start": 8966.38, "end": 8969.2, "probability": 0.4068 }, { "start": 8969.68, "end": 8970.66, "probability": 0.4621 }, { "start": 8970.88, "end": 8971.37, "probability": 0.3224 }, { "start": 8972.44, "end": 8976.1, "probability": 0.7724 }, { "start": 8976.48, "end": 8981.38, "probability": 0.9771 }, { "start": 8982.0, "end": 8985.57, "probability": 0.8525 }, { "start": 8985.76, "end": 8986.46, "probability": 0.9927 }, { "start": 8987.74, "end": 8988.48, "probability": 0.0323 }, { "start": 8988.48, "end": 8989.76, "probability": 0.2298 }, { "start": 8989.94, "end": 8990.06, "probability": 0.0081 }, { "start": 8991.68, "end": 8994.6, "probability": 0.4311 }, { "start": 8994.98, "end": 8995.92, "probability": 0.7584 }, { "start": 8996.02, "end": 8997.02, "probability": 0.5013 }, { "start": 8997.42, "end": 8999.38, "probability": 0.6266 }, { "start": 8999.62, "end": 9000.38, "probability": 0.3458 }, { "start": 9000.66, "end": 9001.04, "probability": 0.6458 }, { "start": 9001.42, "end": 9004.5, "probability": 0.3811 }, { "start": 9004.5, "end": 9007.3, "probability": 0.7647 }, { "start": 9007.68, "end": 9009.96, "probability": 0.5664 }, { "start": 9011.64, "end": 9012.6, "probability": 0.2166 }, { "start": 9012.6, "end": 9013.64, "probability": 0.0514 }, { "start": 9014.48, "end": 9015.16, "probability": 0.2617 }, { "start": 9015.64, "end": 9016.7, "probability": 0.7693 }, { "start": 9016.86, "end": 9020.94, "probability": 0.9933 }, { "start": 9023.72, "end": 9023.72, "probability": 0.026 }, { "start": 9023.72, "end": 9024.86, "probability": 0.719 }, { "start": 9024.96, "end": 9026.2, "probability": 0.8465 }, { "start": 9026.62, "end": 9027.66, "probability": 0.7275 }, { "start": 9028.0, "end": 9029.34, "probability": 0.8662 }, { "start": 9029.34, "end": 9029.68, "probability": 0.0776 }, { "start": 9030.0, "end": 9032.46, "probability": 0.7167 }, { "start": 9033.6, "end": 9040.9, "probability": 0.9253 }, { "start": 9041.32, "end": 9043.54, "probability": 0.8174 }, { "start": 9046.9, "end": 9050.88, "probability": 0.8731 }, { "start": 9052.0, "end": 9054.38, "probability": 0.9427 }, { "start": 9054.64, "end": 9056.29, "probability": 0.9963 }, { "start": 9057.82, "end": 9063.2, "probability": 0.9982 }, { "start": 9063.78, "end": 9065.6, "probability": 0.9411 }, { "start": 9066.26, "end": 9069.98, "probability": 0.8324 }, { "start": 9070.54, "end": 9073.26, "probability": 0.9351 }, { "start": 9074.54, "end": 9075.12, "probability": 0.7019 }, { "start": 9075.44, "end": 9080.88, "probability": 0.9677 }, { "start": 9081.72, "end": 9082.49, "probability": 0.9775 }, { "start": 9083.34, "end": 9085.84, "probability": 0.9931 }, { "start": 9086.26, "end": 9086.5, "probability": 0.6747 }, { "start": 9088.16, "end": 9089.88, "probability": 0.9794 }, { "start": 9091.64, "end": 9093.07, "probability": 0.9875 }, { "start": 9094.2, "end": 9095.08, "probability": 0.7393 }, { "start": 9096.36, "end": 9101.66, "probability": 0.9958 }, { "start": 9103.22, "end": 9107.28, "probability": 0.9594 }, { "start": 9107.44, "end": 9110.3, "probability": 0.9774 }, { "start": 9110.86, "end": 9115.58, "probability": 0.9951 }, { "start": 9123.32, "end": 9126.44, "probability": 0.8127 }, { "start": 9127.38, "end": 9128.32, "probability": 0.925 }, { "start": 9128.42, "end": 9135.64, "probability": 0.9336 }, { "start": 9136.34, "end": 9136.43, "probability": 0.0373 }, { "start": 9136.5, "end": 9136.64, "probability": 0.2122 }, { "start": 9136.64, "end": 9141.7, "probability": 0.7882 }, { "start": 9142.5, "end": 9142.6, "probability": 0.1462 }, { "start": 9142.62, "end": 9146.34, "probability": 0.9902 }, { "start": 9146.52, "end": 9149.12, "probability": 0.7535 }, { "start": 9149.24, "end": 9149.36, "probability": 0.1126 }, { "start": 9149.36, "end": 9150.4, "probability": 0.7822 }, { "start": 9151.18, "end": 9152.56, "probability": 0.4927 }, { "start": 9153.36, "end": 9153.36, "probability": 0.0153 }, { "start": 9154.57, "end": 9155.5, "probability": 0.2844 }, { "start": 9155.58, "end": 9155.58, "probability": 0.4692 }, { "start": 9155.64, "end": 9157.08, "probability": 0.0783 }, { "start": 9157.74, "end": 9157.74, "probability": 0.2094 }, { "start": 9157.74, "end": 9159.82, "probability": 0.7155 }, { "start": 9161.12, "end": 9164.56, "probability": 0.9941 }, { "start": 9165.28, "end": 9167.86, "probability": 0.959 }, { "start": 9168.46, "end": 9169.16, "probability": 0.9796 }, { "start": 9170.5, "end": 9171.64, "probability": 0.8855 }, { "start": 9172.58, "end": 9177.48, "probability": 0.9383 }, { "start": 9178.1, "end": 9180.64, "probability": 0.9985 }, { "start": 9181.4, "end": 9182.96, "probability": 0.9941 }, { "start": 9184.8, "end": 9186.68, "probability": 0.7425 }, { "start": 9187.28, "end": 9190.62, "probability": 0.9971 }, { "start": 9191.44, "end": 9194.9, "probability": 0.9956 }, { "start": 9195.28, "end": 9201.44, "probability": 0.9606 }, { "start": 9202.2, "end": 9204.82, "probability": 0.9593 }, { "start": 9210.12, "end": 9210.64, "probability": 0.225 }, { "start": 9213.4, "end": 9214.26, "probability": 0.5815 }, { "start": 9220.46, "end": 9225.04, "probability": 0.9795 }, { "start": 9225.16, "end": 9226.93, "probability": 0.9734 }, { "start": 9227.68, "end": 9230.76, "probability": 0.9958 }, { "start": 9231.3, "end": 9233.6, "probability": 0.9702 }, { "start": 9234.16, "end": 9234.78, "probability": 0.9277 }, { "start": 9235.34, "end": 9236.3, "probability": 0.7753 }, { "start": 9236.48, "end": 9239.32, "probability": 0.9942 }, { "start": 9240.04, "end": 9240.52, "probability": 0.7481 }, { "start": 9241.12, "end": 9241.88, "probability": 0.6475 }, { "start": 9242.16, "end": 9243.5, "probability": 0.7551 }, { "start": 9251.68, "end": 9251.78, "probability": 0.282 }, { "start": 9251.78, "end": 9251.9, "probability": 0.3066 }, { "start": 9251.9, "end": 9251.9, "probability": 0.3599 }, { "start": 9251.9, "end": 9251.9, "probability": 0.1419 }, { "start": 9251.9, "end": 9252.94, "probability": 0.0594 }, { "start": 9253.56, "end": 9254.22, "probability": 0.0742 }, { "start": 9254.22, "end": 9254.22, "probability": 0.1061 }, { "start": 9254.22, "end": 9258.04, "probability": 0.015 }, { "start": 9258.16, "end": 9258.16, "probability": 0.0032 }, { "start": 9264.84, "end": 9265.2, "probability": 0.0325 }, { "start": 9265.6, "end": 9265.88, "probability": 0.139 }, { "start": 9266.06, "end": 9266.26, "probability": 0.0387 }, { "start": 9266.26, "end": 9266.26, "probability": 0.5612 }, { "start": 9266.26, "end": 9266.26, "probability": 0.0427 }, { "start": 9266.26, "end": 9266.26, "probability": 0.2318 }, { "start": 9266.92, "end": 9267.18, "probability": 0.0562 }, { "start": 9267.18, "end": 9267.48, "probability": 0.1377 }, { "start": 9274.0, "end": 9274.02, "probability": 0.2725 }, { "start": 9282.1, "end": 9283.04, "probability": 0.2258 }, { "start": 9302.66, "end": 9306.82, "probability": 0.3543 }, { "start": 9307.58, "end": 9310.3, "probability": 0.6982 }, { "start": 9310.92, "end": 9311.68, "probability": 0.9404 }, { "start": 9312.1, "end": 9316.2, "probability": 0.8111 }, { "start": 9317.78, "end": 9317.96, "probability": 0.2661 }, { "start": 9318.44, "end": 9319.64, "probability": 0.9907 }, { "start": 9320.38, "end": 9321.02, "probability": 0.4612 }, { "start": 9321.02, "end": 9321.02, "probability": 0.3902 }, { "start": 9321.02, "end": 9322.63, "probability": 0.8584 }, { "start": 9322.9, "end": 9325.42, "probability": 0.7279 }, { "start": 9326.1, "end": 9329.08, "probability": 0.9285 }, { "start": 9329.2, "end": 9329.74, "probability": 0.7678 }, { "start": 9330.71, "end": 9332.32, "probability": 0.8097 }, { "start": 9332.42, "end": 9333.4, "probability": 0.756 }, { "start": 9333.82, "end": 9335.26, "probability": 0.9418 }, { "start": 9335.82, "end": 9338.4, "probability": 0.9655 }, { "start": 9338.6, "end": 9342.62, "probability": 0.9866 }, { "start": 9343.4, "end": 9344.78, "probability": 0.9818 }, { "start": 9345.38, "end": 9349.92, "probability": 0.8477 }, { "start": 9350.48, "end": 9352.0, "probability": 0.9077 }, { "start": 9352.56, "end": 9355.66, "probability": 0.8702 }, { "start": 9356.32, "end": 9360.06, "probability": 0.9426 }, { "start": 9361.08, "end": 9364.74, "probability": 0.9691 }, { "start": 9365.58, "end": 9366.26, "probability": 0.5877 }, { "start": 9366.38, "end": 9367.15, "probability": 0.8684 }, { "start": 9367.56, "end": 9367.7, "probability": 0.1847 }, { "start": 9367.88, "end": 9370.78, "probability": 0.809 }, { "start": 9371.3, "end": 9374.08, "probability": 0.7184 }, { "start": 9374.16, "end": 9374.86, "probability": 0.7515 }, { "start": 9375.7, "end": 9380.74, "probability": 0.9675 }, { "start": 9381.38, "end": 9384.16, "probability": 0.6286 }, { "start": 9384.88, "end": 9386.22, "probability": 0.8669 }, { "start": 9386.32, "end": 9386.78, "probability": 0.9018 }, { "start": 9387.2, "end": 9391.32, "probability": 0.9402 }, { "start": 9391.58, "end": 9392.5, "probability": 0.9521 }, { "start": 9393.46, "end": 9396.82, "probability": 0.9453 }, { "start": 9397.34, "end": 9399.2, "probability": 0.9979 }, { "start": 9400.04, "end": 9404.32, "probability": 0.875 }, { "start": 9404.7, "end": 9405.26, "probability": 0.9323 }, { "start": 9405.66, "end": 9406.68, "probability": 0.993 }, { "start": 9407.08, "end": 9409.66, "probability": 0.9704 }, { "start": 9410.12, "end": 9411.88, "probability": 0.9856 }, { "start": 9412.26, "end": 9414.04, "probability": 0.9773 }, { "start": 9414.5, "end": 9415.13, "probability": 0.7488 }, { "start": 9415.6, "end": 9416.34, "probability": 0.8188 }, { "start": 9416.74, "end": 9419.12, "probability": 0.9728 }, { "start": 9419.44, "end": 9420.54, "probability": 0.7994 }, { "start": 9420.88, "end": 9422.52, "probability": 0.9915 }, { "start": 9422.98, "end": 9424.6, "probability": 0.9971 }, { "start": 9425.14, "end": 9426.6, "probability": 0.8577 }, { "start": 9427.12, "end": 9429.78, "probability": 0.3862 }, { "start": 9429.78, "end": 9430.68, "probability": 0.5621 }, { "start": 9431.08, "end": 9433.64, "probability": 0.9076 }, { "start": 9433.82, "end": 9436.22, "probability": 0.925 }, { "start": 9436.62, "end": 9438.5, "probability": 0.9557 }, { "start": 9438.94, "end": 9440.66, "probability": 0.985 }, { "start": 9441.06, "end": 9441.9, "probability": 0.9932 }, { "start": 9442.22, "end": 9443.06, "probability": 0.8252 }, { "start": 9443.54, "end": 9448.7, "probability": 0.9827 }, { "start": 9449.32, "end": 9452.56, "probability": 0.9671 }, { "start": 9453.6, "end": 9456.38, "probability": 0.8783 }, { "start": 9456.46, "end": 9457.95, "probability": 0.7518 }, { "start": 9459.16, "end": 9460.66, "probability": 0.9746 }, { "start": 9460.88, "end": 9461.99, "probability": 0.4195 }, { "start": 9463.28, "end": 9465.86, "probability": 0.9046 }, { "start": 9465.98, "end": 9467.92, "probability": 0.5577 }, { "start": 9468.04, "end": 9468.66, "probability": 0.5652 }, { "start": 9469.02, "end": 9469.92, "probability": 0.7016 }, { "start": 9470.12, "end": 9470.66, "probability": 0.5042 }, { "start": 9485.13, "end": 9486.91, "probability": 0.0842 }, { "start": 9487.6, "end": 9488.34, "probability": 0.0289 }, { "start": 9489.32, "end": 9489.32, "probability": 0.0344 }, { "start": 9489.32, "end": 9489.92, "probability": 0.2841 }, { "start": 9493.02, "end": 9493.82, "probability": 0.4157 }, { "start": 9493.94, "end": 9494.26, "probability": 0.4262 }, { "start": 9494.44, "end": 9498.24, "probability": 0.8997 }, { "start": 9498.8, "end": 9501.42, "probability": 0.8707 }, { "start": 9502.3, "end": 9503.48, "probability": 0.1959 }, { "start": 9503.66, "end": 9505.81, "probability": 0.5324 }, { "start": 9506.22, "end": 9506.5, "probability": 0.3169 }, { "start": 9506.5, "end": 9507.34, "probability": 0.6541 }, { "start": 9507.46, "end": 9508.2, "probability": 0.6622 }, { "start": 9508.3, "end": 9509.72, "probability": 0.9182 }, { "start": 9510.1, "end": 9513.6, "probability": 0.0751 }, { "start": 9514.44, "end": 9515.46, "probability": 0.0014 }, { "start": 9515.46, "end": 9515.46, "probability": 0.0663 }, { "start": 9515.46, "end": 9515.52, "probability": 0.1645 }, { "start": 9515.52, "end": 9517.14, "probability": 0.0286 }, { "start": 9517.24, "end": 9518.4, "probability": 0.6351 }, { "start": 9518.84, "end": 9519.7, "probability": 0.7368 }, { "start": 9540.88, "end": 9542.04, "probability": 0.9038 }, { "start": 9548.74, "end": 9550.38, "probability": 0.7031 }, { "start": 9553.06, "end": 9555.36, "probability": 0.7982 }, { "start": 9556.68, "end": 9560.74, "probability": 0.8994 }, { "start": 9562.1, "end": 9565.5, "probability": 0.8716 }, { "start": 9566.38, "end": 9568.3, "probability": 0.8417 }, { "start": 9568.8, "end": 9569.62, "probability": 0.9561 }, { "start": 9569.74, "end": 9570.36, "probability": 0.9099 }, { "start": 9571.14, "end": 9572.1, "probability": 0.8222 }, { "start": 9573.7, "end": 9574.34, "probability": 0.7964 }, { "start": 9577.36, "end": 9577.98, "probability": 0.7915 }, { "start": 9578.5, "end": 9583.44, "probability": 0.9896 }, { "start": 9583.5, "end": 9583.76, "probability": 0.8864 }, { "start": 9584.1, "end": 9585.52, "probability": 0.4333 }, { "start": 9585.52, "end": 9590.06, "probability": 0.9154 }, { "start": 9590.74, "end": 9596.12, "probability": 0.9502 }, { "start": 9597.24, "end": 9598.64, "probability": 0.9561 }, { "start": 9604.06, "end": 9605.78, "probability": 0.8841 }, { "start": 9606.9, "end": 9608.68, "probability": 0.8434 }, { "start": 9608.8, "end": 9610.38, "probability": 0.6901 }, { "start": 9611.04, "end": 9617.12, "probability": 0.9909 }, { "start": 9617.96, "end": 9621.16, "probability": 0.9553 }, { "start": 9623.92, "end": 9629.56, "probability": 0.984 }, { "start": 9631.08, "end": 9632.24, "probability": 0.9192 }, { "start": 9633.44, "end": 9636.74, "probability": 0.8983 }, { "start": 9637.4, "end": 9638.7, "probability": 0.6321 }, { "start": 9639.74, "end": 9644.18, "probability": 0.9913 }, { "start": 9645.58, "end": 9651.0, "probability": 0.9988 }, { "start": 9651.18, "end": 9654.58, "probability": 0.9969 }, { "start": 9655.44, "end": 9662.54, "probability": 0.9973 }, { "start": 9663.2, "end": 9666.04, "probability": 0.993 }, { "start": 9666.58, "end": 9668.82, "probability": 0.9847 }, { "start": 9669.4, "end": 9672.44, "probability": 0.992 }, { "start": 9673.16, "end": 9674.8, "probability": 0.9431 }, { "start": 9675.82, "end": 9677.71, "probability": 0.897 }, { "start": 9680.84, "end": 9681.72, "probability": 0.9552 }, { "start": 9682.46, "end": 9684.0, "probability": 0.998 }, { "start": 9684.72, "end": 9688.24, "probability": 0.7896 }, { "start": 9689.82, "end": 9694.42, "probability": 0.9779 }, { "start": 9696.02, "end": 9698.94, "probability": 0.8783 }, { "start": 9700.4, "end": 9701.58, "probability": 0.9985 }, { "start": 9702.8, "end": 9709.36, "probability": 0.8875 }, { "start": 9710.2, "end": 9712.38, "probability": 0.8896 }, { "start": 9713.32, "end": 9717.54, "probability": 0.8743 }, { "start": 9718.38, "end": 9721.12, "probability": 0.8874 }, { "start": 9723.68, "end": 9728.86, "probability": 0.8391 }, { "start": 9729.8, "end": 9735.48, "probability": 0.9961 }, { "start": 9736.44, "end": 9740.36, "probability": 0.8693 }, { "start": 9741.2, "end": 9741.88, "probability": 0.576 }, { "start": 9742.4, "end": 9748.2, "probability": 0.9889 }, { "start": 9749.02, "end": 9750.74, "probability": 0.9506 }, { "start": 9751.76, "end": 9755.66, "probability": 0.996 }, { "start": 9756.02, "end": 9757.0, "probability": 0.9925 }, { "start": 9757.44, "end": 9759.06, "probability": 0.9899 }, { "start": 9759.62, "end": 9761.24, "probability": 0.9921 }, { "start": 9761.78, "end": 9762.94, "probability": 0.9881 }, { "start": 9764.24, "end": 9766.26, "probability": 0.9995 }, { "start": 9767.06, "end": 9768.12, "probability": 0.8849 }, { "start": 9768.96, "end": 9769.54, "probability": 0.9046 }, { "start": 9770.12, "end": 9774.34, "probability": 0.9817 }, { "start": 9774.86, "end": 9776.46, "probability": 0.9795 }, { "start": 9777.2, "end": 9778.62, "probability": 0.6903 }, { "start": 9779.36, "end": 9782.52, "probability": 0.9688 }, { "start": 9783.6, "end": 9787.36, "probability": 0.8831 }, { "start": 9788.14, "end": 9789.46, "probability": 0.9785 }, { "start": 9790.12, "end": 9792.2, "probability": 0.8711 }, { "start": 9793.08, "end": 9796.74, "probability": 0.9935 }, { "start": 9796.82, "end": 9798.74, "probability": 0.9763 }, { "start": 9799.46, "end": 9803.6, "probability": 0.8605 }, { "start": 9805.2, "end": 9808.08, "probability": 0.9956 }, { "start": 9808.8, "end": 9809.9, "probability": 0.6001 }, { "start": 9810.1, "end": 9812.18, "probability": 0.9175 }, { "start": 9812.64, "end": 9816.12, "probability": 0.9536 }, { "start": 9817.1, "end": 9820.72, "probability": 0.8758 }, { "start": 9821.32, "end": 9823.9, "probability": 0.9839 }, { "start": 9824.92, "end": 9825.36, "probability": 0.7176 }, { "start": 9828.94, "end": 9831.32, "probability": 0.9108 }, { "start": 9831.94, "end": 9832.8, "probability": 0.8469 }, { "start": 9833.54, "end": 9835.96, "probability": 0.9868 }, { "start": 9837.0, "end": 9839.9, "probability": 0.8826 }, { "start": 9841.74, "end": 9843.32, "probability": 0.862 }, { "start": 9845.06, "end": 9846.26, "probability": 0.9982 }, { "start": 9847.48, "end": 9851.54, "probability": 0.9434 }, { "start": 9852.2, "end": 9853.64, "probability": 0.8234 }, { "start": 9854.48, "end": 9857.38, "probability": 0.8142 }, { "start": 9858.0, "end": 9858.94, "probability": 0.9211 }, { "start": 9859.1, "end": 9862.42, "probability": 0.9946 }, { "start": 9863.54, "end": 9867.08, "probability": 0.9919 }, { "start": 9867.08, "end": 9871.1, "probability": 0.9763 }, { "start": 9871.34, "end": 9877.54, "probability": 0.9891 }, { "start": 9878.38, "end": 9882.12, "probability": 0.9814 }, { "start": 9882.18, "end": 9885.14, "probability": 0.9998 }, { "start": 9886.1, "end": 9887.26, "probability": 0.8457 }, { "start": 9887.8, "end": 9889.82, "probability": 0.9924 }, { "start": 9891.3, "end": 9892.78, "probability": 0.899 }, { "start": 9893.42, "end": 9894.18, "probability": 0.9794 }, { "start": 9895.36, "end": 9900.46, "probability": 0.9879 }, { "start": 9900.46, "end": 9904.28, "probability": 0.9081 }, { "start": 9905.24, "end": 9906.39, "probability": 0.7447 }, { "start": 9906.66, "end": 9908.62, "probability": 0.9976 }, { "start": 9909.8, "end": 9911.1, "probability": 0.9329 }, { "start": 9912.16, "end": 9913.34, "probability": 0.9802 }, { "start": 9915.78, "end": 9919.42, "probability": 0.8558 }, { "start": 9920.12, "end": 9922.18, "probability": 0.8193 }, { "start": 9922.3, "end": 9923.96, "probability": 0.6619 }, { "start": 9924.64, "end": 9927.46, "probability": 0.9472 }, { "start": 9928.88, "end": 9932.36, "probability": 0.9863 }, { "start": 9932.36, "end": 9936.98, "probability": 0.9021 }, { "start": 9937.96, "end": 9942.3, "probability": 0.973 }, { "start": 9944.42, "end": 9945.44, "probability": 0.5931 }, { "start": 9946.18, "end": 9949.62, "probability": 0.9134 }, { "start": 9949.62, "end": 9954.14, "probability": 0.889 }, { "start": 9955.6, "end": 9957.74, "probability": 0.9231 }, { "start": 9958.12, "end": 9959.17, "probability": 0.9568 }, { "start": 9959.3, "end": 9962.0, "probability": 0.8583 }, { "start": 9962.66, "end": 9965.98, "probability": 0.8947 }, { "start": 9966.76, "end": 9967.9, "probability": 0.9407 }, { "start": 9969.44, "end": 9970.32, "probability": 0.4998 }, { "start": 9972.26, "end": 9973.83, "probability": 0.6618 }, { "start": 9974.02, "end": 9976.82, "probability": 0.9882 }, { "start": 9977.98, "end": 9979.26, "probability": 0.5779 }, { "start": 9980.54, "end": 9981.52, "probability": 0.9159 }, { "start": 9982.32, "end": 9983.88, "probability": 0.9709 }, { "start": 9984.0, "end": 9985.46, "probability": 0.9133 }, { "start": 9985.5, "end": 9986.74, "probability": 0.7826 }, { "start": 9989.12, "end": 9991.66, "probability": 0.9819 }, { "start": 9992.66, "end": 9993.86, "probability": 0.9263 }, { "start": 9995.32, "end": 9996.34, "probability": 0.9158 }, { "start": 9997.42, "end": 9998.96, "probability": 0.6783 }, { "start": 9999.5, "end": 10001.8, "probability": 0.5611 }, { "start": 10002.86, "end": 10004.58, "probability": 0.6925 }, { "start": 10005.14, "end": 10007.56, "probability": 0.8715 }, { "start": 10008.08, "end": 10011.88, "probability": 0.98 }, { "start": 10012.1, "end": 10013.02, "probability": 0.8998 }, { "start": 10013.1, "end": 10014.37, "probability": 0.9871 }, { "start": 10015.6, "end": 10016.32, "probability": 0.9811 }, { "start": 10016.42, "end": 10019.26, "probability": 0.9468 }, { "start": 10019.72, "end": 10021.1, "probability": 0.8011 }, { "start": 10021.2, "end": 10023.23, "probability": 0.9566 }, { "start": 10023.4, "end": 10026.14, "probability": 0.8766 }, { "start": 10026.98, "end": 10030.2, "probability": 0.8268 }, { "start": 10031.02, "end": 10032.14, "probability": 0.7758 }, { "start": 10033.32, "end": 10033.74, "probability": 0.865 }, { "start": 10033.86, "end": 10034.7, "probability": 0.9459 }, { "start": 10035.1, "end": 10035.48, "probability": 0.5428 }, { "start": 10035.82, "end": 10035.88, "probability": 0.028 }, { "start": 10035.88, "end": 10037.06, "probability": 0.0485 }, { "start": 10037.24, "end": 10038.48, "probability": 0.8839 }, { "start": 10041.41, "end": 10045.72, "probability": 0.0897 }, { "start": 10046.24, "end": 10048.72, "probability": 0.7536 }, { "start": 10049.12, "end": 10050.65, "probability": 0.8972 }, { "start": 10050.84, "end": 10054.02, "probability": 0.6206 }, { "start": 10054.12, "end": 10055.56, "probability": 0.4988 }, { "start": 10056.52, "end": 10059.48, "probability": 0.7351 }, { "start": 10059.72, "end": 10060.38, "probability": 0.1355 }, { "start": 10061.78, "end": 10064.52, "probability": 0.7444 }, { "start": 10064.58, "end": 10067.76, "probability": 0.8939 }, { "start": 10068.16, "end": 10071.4, "probability": 0.1203 }, { "start": 10071.66, "end": 10076.26, "probability": 0.2287 }, { "start": 10076.26, "end": 10079.08, "probability": 0.2099 }, { "start": 10079.22, "end": 10081.06, "probability": 0.8449 }, { "start": 10081.62, "end": 10083.3, "probability": 0.9224 }, { "start": 10084.06, "end": 10087.02, "probability": 0.9927 }, { "start": 10087.66, "end": 10090.32, "probability": 0.998 }, { "start": 10090.48, "end": 10091.2, "probability": 0.8989 }, { "start": 10091.58, "end": 10092.98, "probability": 0.8711 }, { "start": 10093.86, "end": 10097.08, "probability": 0.8724 }, { "start": 10097.66, "end": 10098.58, "probability": 0.9845 }, { "start": 10099.42, "end": 10099.74, "probability": 0.9661 }, { "start": 10100.88, "end": 10102.44, "probability": 0.8255 }, { "start": 10103.44, "end": 10105.66, "probability": 0.9681 }, { "start": 10106.64, "end": 10110.02, "probability": 0.9674 }, { "start": 10110.88, "end": 10115.94, "probability": 0.9684 }, { "start": 10117.64, "end": 10119.32, "probability": 0.9982 }, { "start": 10120.94, "end": 10122.25, "probability": 0.5124 }, { "start": 10122.48, "end": 10123.56, "probability": 0.5801 }, { "start": 10124.66, "end": 10127.38, "probability": 0.942 }, { "start": 10128.38, "end": 10130.96, "probability": 0.9949 }, { "start": 10131.8, "end": 10135.8, "probability": 0.9678 }, { "start": 10135.94, "end": 10136.7, "probability": 0.9487 }, { "start": 10137.54, "end": 10140.64, "probability": 0.0139 }, { "start": 10140.64, "end": 10141.24, "probability": 0.227 }, { "start": 10141.82, "end": 10143.34, "probability": 0.8591 }, { "start": 10143.44, "end": 10144.26, "probability": 0.635 }, { "start": 10144.56, "end": 10146.94, "probability": 0.9944 }, { "start": 10147.06, "end": 10148.12, "probability": 0.7699 }, { "start": 10149.14, "end": 10151.44, "probability": 0.9823 }, { "start": 10152.8, "end": 10155.9, "probability": 0.9958 }, { "start": 10156.94, "end": 10159.3, "probability": 0.9561 }, { "start": 10160.2, "end": 10163.04, "probability": 0.9945 }, { "start": 10165.58, "end": 10166.68, "probability": 0.9225 }, { "start": 10167.9, "end": 10168.22, "probability": 0.8939 }, { "start": 10168.92, "end": 10171.7, "probability": 0.8156 }, { "start": 10172.22, "end": 10175.47, "probability": 0.9722 }, { "start": 10176.48, "end": 10179.38, "probability": 0.9375 }, { "start": 10179.38, "end": 10182.78, "probability": 0.9974 }, { "start": 10182.92, "end": 10183.52, "probability": 0.8936 }, { "start": 10183.64, "end": 10184.42, "probability": 0.9159 }, { "start": 10186.24, "end": 10187.26, "probability": 0.9144 }, { "start": 10187.92, "end": 10192.78, "probability": 0.9299 }, { "start": 10192.9, "end": 10194.36, "probability": 0.6201 }, { "start": 10194.98, "end": 10198.68, "probability": 0.9926 }, { "start": 10200.08, "end": 10202.4, "probability": 0.9982 }, { "start": 10202.96, "end": 10204.74, "probability": 0.8931 }, { "start": 10206.44, "end": 10206.82, "probability": 0.8004 }, { "start": 10206.86, "end": 10208.52, "probability": 0.9238 }, { "start": 10208.72, "end": 10213.14, "probability": 0.9816 }, { "start": 10214.48, "end": 10217.88, "probability": 0.9806 }, { "start": 10219.74, "end": 10222.0, "probability": 0.7559 }, { "start": 10222.62, "end": 10225.24, "probability": 0.9957 }, { "start": 10225.8, "end": 10226.42, "probability": 0.6299 }, { "start": 10227.08, "end": 10230.88, "probability": 0.9946 }, { "start": 10231.62, "end": 10233.06, "probability": 0.8395 }, { "start": 10234.06, "end": 10236.5, "probability": 0.9507 }, { "start": 10236.6, "end": 10237.1, "probability": 0.7853 }, { "start": 10238.02, "end": 10239.59, "probability": 0.9546 }, { "start": 10240.3, "end": 10244.18, "probability": 0.9822 }, { "start": 10245.24, "end": 10249.54, "probability": 0.9938 }, { "start": 10250.9, "end": 10255.74, "probability": 0.9604 }, { "start": 10256.8, "end": 10259.44, "probability": 0.9995 }, { "start": 10262.3, "end": 10264.48, "probability": 0.9952 }, { "start": 10265.12, "end": 10267.72, "probability": 0.8672 }, { "start": 10268.28, "end": 10271.36, "probability": 0.4019 }, { "start": 10272.16, "end": 10272.22, "probability": 0.0607 }, { "start": 10272.22, "end": 10275.9, "probability": 0.9742 }, { "start": 10275.9, "end": 10278.82, "probability": 0.9913 }, { "start": 10279.92, "end": 10284.24, "probability": 0.996 }, { "start": 10284.84, "end": 10287.4, "probability": 0.9807 }, { "start": 10288.06, "end": 10290.5, "probability": 0.9075 }, { "start": 10290.72, "end": 10291.24, "probability": 0.7648 }, { "start": 10291.42, "end": 10293.16, "probability": 0.5964 }, { "start": 10293.38, "end": 10295.44, "probability": 0.8426 }, { "start": 10296.88, "end": 10297.64, "probability": 0.5613 }, { "start": 10300.6, "end": 10302.88, "probability": 0.7073 }, { "start": 10303.62, "end": 10304.68, "probability": 0.7826 }, { "start": 10307.66, "end": 10308.52, "probability": 0.5055 }, { "start": 10316.82, "end": 10317.76, "probability": 0.4444 }, { "start": 10318.76, "end": 10320.9, "probability": 0.5747 }, { "start": 10320.92, "end": 10324.16, "probability": 0.8232 }, { "start": 10324.24, "end": 10324.34, "probability": 0.7472 }, { "start": 10324.86, "end": 10326.28, "probability": 0.9711 }, { "start": 10326.44, "end": 10326.8, "probability": 0.4063 }, { "start": 10326.98, "end": 10327.34, "probability": 0.8911 }, { "start": 10327.42, "end": 10329.1, "probability": 0.9554 }, { "start": 10329.28, "end": 10331.08, "probability": 0.9822 }, { "start": 10331.76, "end": 10333.76, "probability": 0.9619 }, { "start": 10333.76, "end": 10333.9, "probability": 0.074 }, { "start": 10333.98, "end": 10334.36, "probability": 0.1571 }, { "start": 10334.54, "end": 10337.15, "probability": 0.6964 }, { "start": 10337.86, "end": 10341.42, "probability": 0.8459 }, { "start": 10341.54, "end": 10344.78, "probability": 0.3835 }, { "start": 10345.26, "end": 10347.2, "probability": 0.9064 }, { "start": 10347.64, "end": 10350.28, "probability": 0.9347 }, { "start": 10350.3, "end": 10351.24, "probability": 0.7229 }, { "start": 10354.45, "end": 10355.92, "probability": 0.0262 }, { "start": 10367.68, "end": 10367.8, "probability": 0.0412 }, { "start": 10367.92, "end": 10368.62, "probability": 0.7487 }, { "start": 10372.5, "end": 10374.88, "probability": 0.6187 }, { "start": 10375.84, "end": 10376.1, "probability": 0.0765 }, { "start": 10376.1, "end": 10376.24, "probability": 0.1215 }, { "start": 10376.24, "end": 10376.24, "probability": 0.0819 }, { "start": 10376.24, "end": 10376.24, "probability": 0.2095 }, { "start": 10376.24, "end": 10376.24, "probability": 0.0043 }, { "start": 10384.58, "end": 10386.82, "probability": 0.2338 }, { "start": 10390.28, "end": 10391.88, "probability": 0.4074 }, { "start": 10391.88, "end": 10392.96, "probability": 0.6538 }, { "start": 10393.98, "end": 10397.02, "probability": 0.6241 }, { "start": 10397.12, "end": 10397.92, "probability": 0.7727 }, { "start": 10400.59, "end": 10403.44, "probability": 0.993 }, { "start": 10403.68, "end": 10405.14, "probability": 0.8816 }, { "start": 10406.08, "end": 10410.7, "probability": 0.9253 }, { "start": 10412.58, "end": 10417.94, "probability": 0.9966 }, { "start": 10417.94, "end": 10422.12, "probability": 0.9769 }, { "start": 10422.48, "end": 10426.14, "probability": 0.9967 }, { "start": 10427.1, "end": 10429.34, "probability": 0.7398 }, { "start": 10430.52, "end": 10432.8, "probability": 0.9561 }, { "start": 10433.68, "end": 10435.92, "probability": 0.9818 }, { "start": 10436.96, "end": 10441.72, "probability": 0.9878 }, { "start": 10443.1, "end": 10443.78, "probability": 0.8918 }, { "start": 10444.86, "end": 10449.38, "probability": 0.9739 }, { "start": 10450.18, "end": 10456.76, "probability": 0.9944 }, { "start": 10457.5, "end": 10459.26, "probability": 0.9906 }, { "start": 10461.5, "end": 10462.98, "probability": 0.7475 }, { "start": 10465.56, "end": 10472.46, "probability": 0.9927 }, { "start": 10473.32, "end": 10475.02, "probability": 0.8221 }, { "start": 10475.82, "end": 10479.38, "probability": 0.998 }, { "start": 10480.22, "end": 10480.68, "probability": 0.6563 }, { "start": 10481.48, "end": 10483.24, "probability": 0.7609 }, { "start": 10484.16, "end": 10487.64, "probability": 0.9756 }, { "start": 10488.6, "end": 10490.34, "probability": 0.9694 }, { "start": 10491.32, "end": 10493.42, "probability": 0.9344 }, { "start": 10493.62, "end": 10495.62, "probability": 0.9457 }, { "start": 10496.2, "end": 10497.94, "probability": 0.899 }, { "start": 10498.96, "end": 10499.88, "probability": 0.9085 }, { "start": 10501.76, "end": 10505.46, "probability": 0.706 }, { "start": 10508.52, "end": 10514.16, "probability": 0.9478 }, { "start": 10517.54, "end": 10519.78, "probability": 0.6994 }, { "start": 10522.02, "end": 10526.88, "probability": 0.8135 }, { "start": 10527.72, "end": 10533.08, "probability": 0.9619 }, { "start": 10534.02, "end": 10538.74, "probability": 0.7449 }, { "start": 10539.8, "end": 10544.96, "probability": 0.8131 }, { "start": 10546.99, "end": 10550.15, "probability": 0.8824 }, { "start": 10551.96, "end": 10554.44, "probability": 0.5719 }, { "start": 10554.66, "end": 10558.1, "probability": 0.96 }, { "start": 10558.3, "end": 10563.84, "probability": 0.9821 }, { "start": 10565.74, "end": 10566.9, "probability": 0.9867 }, { "start": 10567.0, "end": 10569.26, "probability": 0.8052 }, { "start": 10570.42, "end": 10573.41, "probability": 0.9946 }, { "start": 10575.26, "end": 10579.56, "probability": 0.9518 }, { "start": 10580.36, "end": 10581.54, "probability": 0.8665 }, { "start": 10583.0, "end": 10584.14, "probability": 0.8454 }, { "start": 10585.06, "end": 10591.56, "probability": 0.9475 }, { "start": 10591.72, "end": 10592.58, "probability": 0.776 }, { "start": 10593.3, "end": 10594.6, "probability": 0.9575 }, { "start": 10595.18, "end": 10601.38, "probability": 0.9835 }, { "start": 10602.74, "end": 10604.94, "probability": 0.9958 }, { "start": 10605.08, "end": 10606.62, "probability": 0.9788 }, { "start": 10608.38, "end": 10609.6, "probability": 0.9497 }, { "start": 10610.56, "end": 10613.82, "probability": 0.9963 }, { "start": 10614.68, "end": 10617.26, "probability": 0.9818 }, { "start": 10617.34, "end": 10620.6, "probability": 0.9907 }, { "start": 10622.5, "end": 10625.96, "probability": 0.9972 }, { "start": 10627.04, "end": 10631.42, "probability": 0.8508 }, { "start": 10631.88, "end": 10633.04, "probability": 0.9168 }, { "start": 10633.14, "end": 10633.62, "probability": 0.5921 }, { "start": 10633.92, "end": 10637.98, "probability": 0.9981 }, { "start": 10639.64, "end": 10642.54, "probability": 0.9575 }, { "start": 10643.52, "end": 10653.52, "probability": 0.9811 }, { "start": 10655.02, "end": 10657.26, "probability": 0.9818 }, { "start": 10657.42, "end": 10658.38, "probability": 0.8856 }, { "start": 10658.5, "end": 10662.3, "probability": 0.9847 }, { "start": 10663.52, "end": 10667.68, "probability": 0.9617 }, { "start": 10668.38, "end": 10672.12, "probability": 0.9288 }, { "start": 10672.48, "end": 10674.8, "probability": 0.7618 }, { "start": 10675.62, "end": 10679.2, "probability": 0.9967 }, { "start": 10679.44, "end": 10681.06, "probability": 0.9917 }, { "start": 10681.32, "end": 10681.85, "probability": 0.9564 }, { "start": 10682.16, "end": 10683.08, "probability": 0.5678 }, { "start": 10683.52, "end": 10684.28, "probability": 0.9563 }, { "start": 10684.42, "end": 10687.94, "probability": 0.7939 }, { "start": 10692.47, "end": 10695.41, "probability": 0.9965 }, { "start": 10698.6, "end": 10701.46, "probability": 0.9759 }, { "start": 10701.98, "end": 10704.94, "probability": 0.9943 }, { "start": 10706.76, "end": 10711.28, "probability": 0.9959 }, { "start": 10711.28, "end": 10716.56, "probability": 0.9198 }, { "start": 10717.68, "end": 10722.46, "probability": 0.9926 }, { "start": 10723.82, "end": 10726.48, "probability": 0.9504 }, { "start": 10727.64, "end": 10728.68, "probability": 0.9961 }, { "start": 10729.46, "end": 10733.32, "probability": 0.9904 }, { "start": 10733.32, "end": 10737.9, "probability": 0.9984 }, { "start": 10738.12, "end": 10742.84, "probability": 0.9859 }, { "start": 10742.96, "end": 10744.86, "probability": 0.9051 }, { "start": 10744.94, "end": 10745.44, "probability": 0.478 }, { "start": 10745.96, "end": 10748.98, "probability": 0.9574 }, { "start": 10748.98, "end": 10752.62, "probability": 0.8811 }, { "start": 10753.0, "end": 10755.68, "probability": 0.9251 }, { "start": 10757.42, "end": 10761.6, "probability": 0.9988 }, { "start": 10761.6, "end": 10764.88, "probability": 0.9978 }, { "start": 10765.7, "end": 10770.34, "probability": 0.9375 }, { "start": 10770.34, "end": 10774.36, "probability": 0.9875 }, { "start": 10774.36, "end": 10777.52, "probability": 0.9947 }, { "start": 10778.98, "end": 10785.9, "probability": 0.9578 }, { "start": 10788.28, "end": 10790.8, "probability": 0.8297 }, { "start": 10792.16, "end": 10792.9, "probability": 0.8239 }, { "start": 10793.06, "end": 10797.68, "probability": 0.7639 }, { "start": 10800.36, "end": 10803.74, "probability": 0.9931 }, { "start": 10803.74, "end": 10806.8, "probability": 0.965 }, { "start": 10807.34, "end": 10810.56, "probability": 0.9237 }, { "start": 10811.38, "end": 10812.82, "probability": 0.884 }, { "start": 10814.34, "end": 10816.92, "probability": 0.5158 }, { "start": 10817.96, "end": 10819.46, "probability": 0.9993 }, { "start": 10820.08, "end": 10821.34, "probability": 0.9904 }, { "start": 10822.84, "end": 10824.0, "probability": 0.9039 }, { "start": 10824.96, "end": 10829.96, "probability": 0.814 }, { "start": 10830.08, "end": 10831.46, "probability": 0.9904 }, { "start": 10831.46, "end": 10832.34, "probability": 0.3621 }, { "start": 10834.47, "end": 10837.94, "probability": 0.9515 }, { "start": 10838.78, "end": 10839.58, "probability": 0.9599 }, { "start": 10840.16, "end": 10841.32, "probability": 0.7657 }, { "start": 10843.64, "end": 10844.48, "probability": 0.42 }, { "start": 10845.68, "end": 10846.3, "probability": 0.7052 }, { "start": 10846.32, "end": 10847.3, "probability": 0.7465 }, { "start": 10847.4, "end": 10850.12, "probability": 0.6899 }, { "start": 10850.3, "end": 10851.36, "probability": 0.6786 }, { "start": 10851.58, "end": 10853.02, "probability": 0.536 }, { "start": 10856.35, "end": 10859.55, "probability": 0.7644 }, { "start": 10860.24, "end": 10864.2, "probability": 0.995 }, { "start": 10864.74, "end": 10868.56, "probability": 0.9668 }, { "start": 10868.64, "end": 10870.27, "probability": 0.8468 }, { "start": 10871.3, "end": 10872.44, "probability": 0.9732 }, { "start": 10872.78, "end": 10877.18, "probability": 0.9667 }, { "start": 10877.7, "end": 10883.92, "probability": 0.9985 }, { "start": 10884.12, "end": 10885.17, "probability": 0.5848 }, { "start": 10885.92, "end": 10886.54, "probability": 0.6973 }, { "start": 10887.12, "end": 10887.79, "probability": 0.8652 }, { "start": 10888.48, "end": 10890.32, "probability": 0.9418 }, { "start": 10893.4, "end": 10895.32, "probability": 0.7405 }, { "start": 10896.02, "end": 10899.86, "probability": 0.936 }, { "start": 10900.1, "end": 10905.86, "probability": 0.9867 }, { "start": 10907.14, "end": 10909.52, "probability": 0.8361 }, { "start": 10909.54, "end": 10915.74, "probability": 0.996 }, { "start": 10916.02, "end": 10916.66, "probability": 0.411 }, { "start": 10917.4, "end": 10919.78, "probability": 0.9618 }, { "start": 10920.42, "end": 10926.18, "probability": 0.9939 }, { "start": 10926.92, "end": 10930.0, "probability": 0.9942 }, { "start": 10930.8, "end": 10932.94, "probability": 0.5348 }, { "start": 10933.02, "end": 10933.7, "probability": 0.0128 }, { "start": 10934.02, "end": 10934.84, "probability": 0.9797 }, { "start": 10934.9, "end": 10935.52, "probability": 0.5308 }, { "start": 10935.54, "end": 10936.22, "probability": 0.4028 }, { "start": 10936.34, "end": 10937.96, "probability": 0.9902 }, { "start": 10938.44, "end": 10941.08, "probability": 0.8543 }, { "start": 10942.24, "end": 10943.3, "probability": 0.9792 }, { "start": 10943.78, "end": 10945.24, "probability": 0.9877 }, { "start": 10946.76, "end": 10947.55, "probability": 0.9783 }, { "start": 10949.28, "end": 10953.94, "probability": 0.9971 }, { "start": 10954.68, "end": 10955.68, "probability": 0.5612 }, { "start": 10956.72, "end": 10957.54, "probability": 0.5733 }, { "start": 10958.32, "end": 10959.78, "probability": 0.6473 }, { "start": 10959.96, "end": 10961.64, "probability": 0.8213 }, { "start": 10961.74, "end": 10963.54, "probability": 0.9772 }, { "start": 10963.92, "end": 10965.74, "probability": 0.9355 }, { "start": 10965.8, "end": 10966.96, "probability": 0.7877 }, { "start": 10967.54, "end": 10968.26, "probability": 0.8828 }, { "start": 10968.38, "end": 10971.32, "probability": 0.9894 }, { "start": 10972.62, "end": 10976.02, "probability": 0.8851 }, { "start": 10976.54, "end": 10980.4, "probability": 0.9907 }, { "start": 10980.98, "end": 10984.0, "probability": 0.9944 }, { "start": 10984.96, "end": 10987.1, "probability": 0.8436 }, { "start": 10987.62, "end": 10988.8, "probability": 0.9712 }, { "start": 10989.52, "end": 10992.36, "probability": 0.9971 }, { "start": 10992.92, "end": 10995.76, "probability": 0.9973 }, { "start": 10997.72, "end": 11004.1, "probability": 0.9825 }, { "start": 11004.62, "end": 11006.16, "probability": 0.9911 }, { "start": 11006.92, "end": 11010.62, "probability": 0.719 }, { "start": 11011.18, "end": 11014.12, "probability": 0.9775 }, { "start": 11014.4, "end": 11016.22, "probability": 0.9512 }, { "start": 11016.8, "end": 11019.92, "probability": 0.9747 }, { "start": 11020.52, "end": 11021.55, "probability": 0.8567 }, { "start": 11022.38, "end": 11024.2, "probability": 0.9984 }, { "start": 11024.48, "end": 11025.22, "probability": 0.9335 }, { "start": 11025.66, "end": 11027.48, "probability": 0.9133 }, { "start": 11027.88, "end": 11032.16, "probability": 0.9713 }, { "start": 11032.44, "end": 11032.98, "probability": 0.6857 }, { "start": 11033.36, "end": 11034.98, "probability": 0.7897 }, { "start": 11036.32, "end": 11039.12, "probability": 0.7856 }, { "start": 11041.1, "end": 11042.34, "probability": 0.2996 }, { "start": 11042.62, "end": 11045.34, "probability": 0.0435 }, { "start": 11047.0, "end": 11048.46, "probability": 0.1962 }, { "start": 11052.08, "end": 11052.1, "probability": 0.0279 }, { "start": 11057.02, "end": 11059.1, "probability": 0.276 }, { "start": 11062.96, "end": 11064.2, "probability": 0.0909 }, { "start": 11066.3, "end": 11069.26, "probability": 0.0294 }, { "start": 11102.58, "end": 11107.28, "probability": 0.9613 }, { "start": 11107.68, "end": 11109.24, "probability": 0.4254 }, { "start": 11109.82, "end": 11112.42, "probability": 0.987 }, { "start": 11113.46, "end": 11115.92, "probability": 0.7147 }, { "start": 11116.54, "end": 11117.74, "probability": 0.5178 }, { "start": 11118.64, "end": 11119.86, "probability": 0.5374 }, { "start": 11120.06, "end": 11124.12, "probability": 0.4835 }, { "start": 11125.29, "end": 11126.6, "probability": 0.8001 }, { "start": 11129.43, "end": 11133.08, "probability": 0.9422 }, { "start": 11133.2, "end": 11135.1, "probability": 0.9091 }, { "start": 11135.68, "end": 11137.92, "probability": 0.4392 }, { "start": 11138.48, "end": 11140.9, "probability": 0.9561 }, { "start": 11141.62, "end": 11144.48, "probability": 0.9647 }, { "start": 11144.76, "end": 11146.2, "probability": 0.3603 }, { "start": 11146.44, "end": 11146.72, "probability": 0.6996 }, { "start": 11147.24, "end": 11150.68, "probability": 0.9715 }, { "start": 11151.3, "end": 11152.94, "probability": 0.9941 }, { "start": 11153.84, "end": 11155.72, "probability": 0.9326 }, { "start": 11156.28, "end": 11158.42, "probability": 0.9569 }, { "start": 11159.34, "end": 11159.8, "probability": 0.5883 }, { "start": 11159.82, "end": 11162.5, "probability": 0.9736 }, { "start": 11162.5, "end": 11166.04, "probability": 0.9923 }, { "start": 11166.64, "end": 11167.18, "probability": 0.1818 }, { "start": 11167.34, "end": 11167.89, "probability": 0.9225 }, { "start": 11168.66, "end": 11170.06, "probability": 0.8411 }, { "start": 11171.5, "end": 11172.12, "probability": 0.4888 }, { "start": 11173.21, "end": 11174.99, "probability": 0.4269 }, { "start": 11175.26, "end": 11175.94, "probability": 0.3606 }, { "start": 11175.98, "end": 11178.17, "probability": 0.2901 }, { "start": 11179.06, "end": 11182.0, "probability": 0.2205 }, { "start": 11183.72, "end": 11184.3, "probability": 0.1099 }, { "start": 11184.3, "end": 11185.12, "probability": 0.0707 }, { "start": 11185.12, "end": 11188.04, "probability": 0.3391 }, { "start": 11190.94, "end": 11192.3, "probability": 0.7676 }, { "start": 11194.0, "end": 11197.04, "probability": 0.2339 }, { "start": 11197.7, "end": 11199.33, "probability": 0.469 }, { "start": 11200.94, "end": 11201.1, "probability": 0.0213 }, { "start": 11202.8, "end": 11203.64, "probability": 0.2087 }, { "start": 11203.86, "end": 11203.96, "probability": 0.0213 }, { "start": 11203.96, "end": 11204.28, "probability": 0.532 }, { "start": 11205.62, "end": 11206.32, "probability": 0.4255 }, { "start": 11207.32, "end": 11208.08, "probability": 0.5764 }, { "start": 11208.14, "end": 11209.04, "probability": 0.8676 }, { "start": 11209.62, "end": 11210.14, "probability": 0.9139 }, { "start": 11210.64, "end": 11211.58, "probability": 0.5156 }, { "start": 11213.2, "end": 11215.86, "probability": 0.9846 }, { "start": 11217.82, "end": 11220.58, "probability": 0.8899 }, { "start": 11220.98, "end": 11223.92, "probability": 0.7621 }, { "start": 11230.7, "end": 11234.62, "probability": 0.8458 }, { "start": 11234.62, "end": 11237.32, "probability": 0.9491 }, { "start": 11238.42, "end": 11239.32, "probability": 0.8912 }, { "start": 11240.24, "end": 11241.56, "probability": 0.9991 }, { "start": 11242.08, "end": 11244.76, "probability": 0.985 }, { "start": 11245.64, "end": 11249.86, "probability": 0.9767 }, { "start": 11249.86, "end": 11255.42, "probability": 0.9984 }, { "start": 11255.82, "end": 11260.28, "probability": 0.8285 }, { "start": 11261.48, "end": 11261.84, "probability": 0.5348 }, { "start": 11262.04, "end": 11262.6, "probability": 0.7016 }, { "start": 11262.78, "end": 11266.16, "probability": 0.7007 }, { "start": 11266.16, "end": 11268.7, "probability": 0.9813 }, { "start": 11269.24, "end": 11272.94, "probability": 0.9923 }, { "start": 11273.4, "end": 11274.22, "probability": 0.8855 }, { "start": 11286.62, "end": 11287.26, "probability": 0.0369 }, { "start": 11287.26, "end": 11287.26, "probability": 0.114 }, { "start": 11287.26, "end": 11288.74, "probability": 0.0396 }, { "start": 11288.74, "end": 11294.56, "probability": 0.8831 }, { "start": 11294.72, "end": 11296.38, "probability": 0.9779 }, { "start": 11297.0, "end": 11298.16, "probability": 0.7373 }, { "start": 11301.58, "end": 11304.04, "probability": 0.9948 }, { "start": 11304.92, "end": 11305.02, "probability": 0.9027 }, { "start": 11306.12, "end": 11306.38, "probability": 0.5871 }, { "start": 11306.94, "end": 11309.04, "probability": 0.8853 }, { "start": 11309.1, "end": 11314.1, "probability": 0.962 }, { "start": 11315.64, "end": 11316.38, "probability": 0.822 }, { "start": 11316.86, "end": 11317.0, "probability": 0.032 }, { "start": 11317.0, "end": 11317.93, "probability": 0.3162 }, { "start": 11318.2, "end": 11318.42, "probability": 0.1331 }, { "start": 11318.42, "end": 11318.96, "probability": 0.6409 }, { "start": 11319.6, "end": 11323.62, "probability": 0.9929 }, { "start": 11323.92, "end": 11325.28, "probability": 0.9162 }, { "start": 11326.06, "end": 11329.98, "probability": 0.9618 }, { "start": 11330.48, "end": 11333.28, "probability": 0.9108 }, { "start": 11333.8, "end": 11334.42, "probability": 0.736 }, { "start": 11334.68, "end": 11338.42, "probability": 0.9966 }, { "start": 11338.42, "end": 11342.56, "probability": 0.9794 }, { "start": 11343.32, "end": 11345.06, "probability": 0.9993 }, { "start": 11346.28, "end": 11350.12, "probability": 0.9752 }, { "start": 11350.12, "end": 11354.54, "probability": 0.9985 }, { "start": 11355.24, "end": 11355.4, "probability": 0.2943 }, { "start": 11355.52, "end": 11360.3, "probability": 0.9866 }, { "start": 11361.8, "end": 11365.72, "probability": 0.9584 }, { "start": 11365.72, "end": 11370.84, "probability": 0.9989 }, { "start": 11372.06, "end": 11379.06, "probability": 0.9972 }, { "start": 11379.06, "end": 11382.6, "probability": 0.9987 }, { "start": 11382.66, "end": 11385.12, "probability": 0.8605 }, { "start": 11386.12, "end": 11388.38, "probability": 0.8799 }, { "start": 11388.76, "end": 11392.6, "probability": 0.9905 }, { "start": 11392.6, "end": 11396.26, "probability": 0.9968 }, { "start": 11397.22, "end": 11400.18, "probability": 0.9453 }, { "start": 11401.14, "end": 11403.12, "probability": 0.9587 }, { "start": 11403.7, "end": 11406.38, "probability": 0.9951 }, { "start": 11407.12, "end": 11408.9, "probability": 0.7484 }, { "start": 11409.6, "end": 11415.26, "probability": 0.9863 }, { "start": 11416.7, "end": 11417.25, "probability": 0.9039 }, { "start": 11422.04, "end": 11423.93, "probability": 0.9871 }, { "start": 11424.36, "end": 11425.84, "probability": 0.3117 }, { "start": 11426.28, "end": 11429.46, "probability": 0.2905 }, { "start": 11429.6, "end": 11429.74, "probability": 0.1758 }, { "start": 11430.08, "end": 11432.42, "probability": 0.4265 }, { "start": 11432.48, "end": 11434.84, "probability": 0.8986 }, { "start": 11435.5, "end": 11438.02, "probability": 0.7388 }, { "start": 11438.38, "end": 11440.1, "probability": 0.6249 }, { "start": 11441.15, "end": 11443.1, "probability": 0.7302 }, { "start": 11443.14, "end": 11445.1, "probability": 0.4993 }, { "start": 11446.04, "end": 11447.74, "probability": 0.8677 }, { "start": 11448.32, "end": 11451.1, "probability": 0.4864 }, { "start": 11451.24, "end": 11452.42, "probability": 0.6242 }, { "start": 11452.91, "end": 11454.6, "probability": 0.5184 }, { "start": 11455.12, "end": 11458.08, "probability": 0.5883 }, { "start": 11458.2, "end": 11461.9, "probability": 0.9976 }, { "start": 11462.52, "end": 11462.88, "probability": 0.2635 }, { "start": 11462.88, "end": 11464.0, "probability": 0.7041 }, { "start": 11464.48, "end": 11464.9, "probability": 0.392 }, { "start": 11465.0, "end": 11465.2, "probability": 0.4866 }, { "start": 11465.2, "end": 11467.64, "probability": 0.7798 }, { "start": 11467.7, "end": 11468.32, "probability": 0.1805 }, { "start": 11468.52, "end": 11469.28, "probability": 0.8254 }, { "start": 11469.44, "end": 11472.24, "probability": 0.2395 }, { "start": 11472.44, "end": 11472.93, "probability": 0.1285 }, { "start": 11473.34, "end": 11474.0, "probability": 0.9664 }, { "start": 11474.72, "end": 11475.0, "probability": 0.7972 }, { "start": 11475.06, "end": 11477.5, "probability": 0.9934 }, { "start": 11477.68, "end": 11477.82, "probability": 0.0411 }, { "start": 11477.82, "end": 11478.22, "probability": 0.2956 }, { "start": 11478.3, "end": 11479.54, "probability": 0.2211 }, { "start": 11479.54, "end": 11479.62, "probability": 0.0334 }, { "start": 11479.62, "end": 11480.48, "probability": 0.2757 }, { "start": 11480.5, "end": 11481.1, "probability": 0.6103 }, { "start": 11481.1, "end": 11482.58, "probability": 0.5311 }, { "start": 11482.92, "end": 11488.34, "probability": 0.9312 }, { "start": 11488.98, "end": 11490.94, "probability": 0.998 }, { "start": 11491.62, "end": 11494.74, "probability": 0.6276 }, { "start": 11494.82, "end": 11498.72, "probability": 0.9955 }, { "start": 11499.74, "end": 11503.42, "probability": 0.9003 }, { "start": 11503.58, "end": 11504.39, "probability": 0.9285 }, { "start": 11504.68, "end": 11507.86, "probability": 0.9884 }, { "start": 11508.94, "end": 11511.5, "probability": 0.6509 }, { "start": 11511.64, "end": 11512.5, "probability": 0.7982 }, { "start": 11512.64, "end": 11516.98, "probability": 0.9375 }, { "start": 11517.26, "end": 11518.88, "probability": 0.9766 }, { "start": 11521.04, "end": 11521.98, "probability": 0.5274 }, { "start": 11522.4, "end": 11524.5, "probability": 0.2691 }, { "start": 11524.76, "end": 11525.76, "probability": 0.564 }, { "start": 11525.9, "end": 11526.04, "probability": 0.2666 }, { "start": 11526.1, "end": 11528.12, "probability": 0.8075 }, { "start": 11528.48, "end": 11532.3, "probability": 0.0391 }, { "start": 11532.3, "end": 11532.88, "probability": 0.1202 }, { "start": 11532.92, "end": 11534.46, "probability": 0.4979 }, { "start": 11535.18, "end": 11536.72, "probability": 0.1007 }, { "start": 11538.18, "end": 11539.46, "probability": 0.7241 }, { "start": 11540.02, "end": 11542.06, "probability": 0.8927 }, { "start": 11542.76, "end": 11543.62, "probability": 0.6169 }, { "start": 11544.0, "end": 11545.54, "probability": 0.922 }, { "start": 11545.84, "end": 11549.46, "probability": 0.4609 }, { "start": 11549.46, "end": 11551.04, "probability": 0.4837 }, { "start": 11551.16, "end": 11555.76, "probability": 0.3011 }, { "start": 11556.14, "end": 11557.12, "probability": 0.1936 }, { "start": 11557.12, "end": 11557.12, "probability": 0.0925 }, { "start": 11557.12, "end": 11557.12, "probability": 0.2603 }, { "start": 11557.12, "end": 11558.42, "probability": 0.9047 }, { "start": 11559.5, "end": 11561.62, "probability": 0.9312 }, { "start": 11562.75, "end": 11567.52, "probability": 0.8912 }, { "start": 11567.66, "end": 11568.44, "probability": 0.7021 }, { "start": 11568.74, "end": 11575.84, "probability": 0.7503 }, { "start": 11576.66, "end": 11578.28, "probability": 0.9453 }, { "start": 11578.34, "end": 11580.12, "probability": 0.8944 }, { "start": 11580.24, "end": 11581.08, "probability": 0.8447 }, { "start": 11581.84, "end": 11582.77, "probability": 0.863 }, { "start": 11584.36, "end": 11588.88, "probability": 0.9879 }, { "start": 11589.62, "end": 11592.14, "probability": 0.9648 }, { "start": 11592.34, "end": 11592.94, "probability": 0.7728 }, { "start": 11593.36, "end": 11593.94, "probability": 0.8816 }, { "start": 11594.48, "end": 11596.76, "probability": 0.9951 }, { "start": 11598.02, "end": 11601.16, "probability": 0.995 }, { "start": 11601.68, "end": 11602.6, "probability": 0.9832 }, { "start": 11603.32, "end": 11604.4, "probability": 0.4999 }, { "start": 11605.04, "end": 11608.72, "probability": 0.9295 }, { "start": 11609.32, "end": 11610.64, "probability": 0.9231 }, { "start": 11610.94, "end": 11613.46, "probability": 0.9958 }, { "start": 11614.44, "end": 11618.06, "probability": 0.9934 }, { "start": 11618.92, "end": 11620.1, "probability": 0.9902 }, { "start": 11621.02, "end": 11621.86, "probability": 0.6694 }, { "start": 11622.8, "end": 11629.34, "probability": 0.9977 }, { "start": 11629.88, "end": 11632.0, "probability": 0.999 }, { "start": 11635.52, "end": 11636.32, "probability": 0.6762 }, { "start": 11636.7, "end": 11637.78, "probability": 0.609 }, { "start": 11637.86, "end": 11638.96, "probability": 0.7453 }, { "start": 11639.1, "end": 11639.58, "probability": 0.0391 }, { "start": 11640.04, "end": 11643.08, "probability": 0.9456 }, { "start": 11643.12, "end": 11646.98, "probability": 0.8647 }, { "start": 11647.08, "end": 11647.7, "probability": 0.1227 }, { "start": 11647.7, "end": 11648.3, "probability": 0.0028 }, { "start": 11648.3, "end": 11653.6, "probability": 0.7773 }, { "start": 11653.84, "end": 11654.7, "probability": 0.5905 }, { "start": 11655.38, "end": 11655.38, "probability": 0.0962 }, { "start": 11655.38, "end": 11656.5, "probability": 0.7194 }, { "start": 11656.82, "end": 11658.6, "probability": 0.4956 }, { "start": 11659.76, "end": 11662.12, "probability": 0.4539 }, { "start": 11663.2, "end": 11664.2, "probability": 0.2011 }, { "start": 11664.44, "end": 11664.66, "probability": 0.036 }, { "start": 11664.66, "end": 11670.14, "probability": 0.9872 }, { "start": 11670.14, "end": 11676.06, "probability": 0.995 }, { "start": 11676.66, "end": 11680.64, "probability": 0.9974 }, { "start": 11681.1, "end": 11685.04, "probability": 0.9855 }, { "start": 11686.1, "end": 11687.0, "probability": 0.9292 }, { "start": 11687.06, "end": 11692.16, "probability": 0.9444 }, { "start": 11692.68, "end": 11695.28, "probability": 0.9104 }, { "start": 11695.3, "end": 11699.16, "probability": 0.8147 }, { "start": 11700.14, "end": 11701.78, "probability": 0.527 }, { "start": 11701.78, "end": 11704.12, "probability": 0.5859 }, { "start": 11704.5, "end": 11704.62, "probability": 0.821 }, { "start": 11704.7, "end": 11704.94, "probability": 0.8095 }, { "start": 11705.0, "end": 11708.9, "probability": 0.9872 }, { "start": 11709.58, "end": 11713.3, "probability": 0.9971 }, { "start": 11713.86, "end": 11715.58, "probability": 0.9507 }, { "start": 11716.12, "end": 11720.72, "probability": 0.9907 }, { "start": 11720.72, "end": 11723.68, "probability": 0.9827 }, { "start": 11724.54, "end": 11726.84, "probability": 0.9851 }, { "start": 11727.5, "end": 11734.66, "probability": 0.994 }, { "start": 11734.66, "end": 11740.1, "probability": 0.9912 }, { "start": 11741.46, "end": 11744.96, "probability": 0.6497 }, { "start": 11746.31, "end": 11748.1, "probability": 0.0937 }, { "start": 11748.34, "end": 11748.44, "probability": 0.1941 }, { "start": 11748.73, "end": 11751.0, "probability": 0.0164 }, { "start": 11751.04, "end": 11754.86, "probability": 0.0341 }, { "start": 11765.44, "end": 11769.56, "probability": 0.1855 }, { "start": 11769.56, "end": 11774.07, "probability": 0.0288 }, { "start": 11776.85, "end": 11778.12, "probability": 0.0604 }, { "start": 11779.72, "end": 11780.34, "probability": 0.1166 }, { "start": 11780.92, "end": 11786.28, "probability": 0.0397 }, { "start": 11786.7, "end": 11789.28, "probability": 0.0764 }, { "start": 11793.64, "end": 11795.44, "probability": 0.0269 }, { "start": 11801.21, "end": 11801.84, "probability": 0.0286 }, { "start": 11801.84, "end": 11805.3, "probability": 0.0532 }, { "start": 11828.0, "end": 11828.0, "probability": 0.0 }, { "start": 11828.0, "end": 11828.0, "probability": 0.0 }, { "start": 11828.0, "end": 11828.0, "probability": 0.0 }, { "start": 11828.0, "end": 11828.0, "probability": 0.0 }, { "start": 11828.0, "end": 11828.0, "probability": 0.0 }, { "start": 11828.0, "end": 11828.0, "probability": 0.0 }, { "start": 11828.0, "end": 11828.0, "probability": 0.0 }, { "start": 11828.0, "end": 11828.0, "probability": 0.0 }, { "start": 11828.0, "end": 11828.0, "probability": 0.0 }, { "start": 11828.0, "end": 11828.0, "probability": 0.0 }, { "start": 11828.0, "end": 11828.0, "probability": 0.0 }, { "start": 11828.0, "end": 11828.0, "probability": 0.0 }, { "start": 11828.0, "end": 11828.0, "probability": 0.0 }, { "start": 11828.0, "end": 11828.0, "probability": 0.0 }, { "start": 11828.0, "end": 11828.0, "probability": 0.0 }, { "start": 11828.0, "end": 11828.0, "probability": 0.0 }, { "start": 11828.0, "end": 11828.0, "probability": 0.0 }, { "start": 11828.24, "end": 11828.66, "probability": 0.1066 }, { "start": 11828.66, "end": 11828.66, "probability": 0.0294 }, { "start": 11828.66, "end": 11828.66, "probability": 0.1628 }, { "start": 11828.66, "end": 11828.66, "probability": 0.0319 }, { "start": 11828.66, "end": 11828.66, "probability": 0.0913 }, { "start": 11828.66, "end": 11829.04, "probability": 0.2546 }, { "start": 11829.14, "end": 11831.18, "probability": 0.8049 }, { "start": 11831.68, "end": 11833.82, "probability": 0.7918 }, { "start": 11834.34, "end": 11836.97, "probability": 0.8462 }, { "start": 11837.08, "end": 11837.52, "probability": 0.4863 }, { "start": 11837.52, "end": 11838.12, "probability": 0.8485 }, { "start": 11838.2, "end": 11841.06, "probability": 0.9692 }, { "start": 11841.44, "end": 11842.3, "probability": 0.8814 }, { "start": 11842.86, "end": 11845.52, "probability": 0.9749 }, { "start": 11845.62, "end": 11847.27, "probability": 0.9625 }, { "start": 11847.78, "end": 11848.44, "probability": 0.8748 }, { "start": 11849.04, "end": 11850.78, "probability": 0.9719 }, { "start": 11851.0, "end": 11851.4, "probability": 0.7923 }, { "start": 11851.52, "end": 11852.26, "probability": 0.8442 }, { "start": 11853.38, "end": 11854.64, "probability": 0.6335 }, { "start": 11854.74, "end": 11858.44, "probability": 0.9736 }, { "start": 11859.02, "end": 11860.26, "probability": 0.9593 }, { "start": 11860.54, "end": 11864.98, "probability": 0.9852 }, { "start": 11865.42, "end": 11867.44, "probability": 0.8948 }, { "start": 11867.44, "end": 11870.12, "probability": 0.7367 }, { "start": 11870.2, "end": 11872.84, "probability": 0.9617 }, { "start": 11872.94, "end": 11877.07, "probability": 0.9518 }, { "start": 11877.12, "end": 11879.92, "probability": 0.8548 }, { "start": 11880.38, "end": 11883.7, "probability": 0.97 }, { "start": 11883.7, "end": 11887.28, "probability": 0.999 }, { "start": 11887.6, "end": 11888.5, "probability": 0.663 }, { "start": 11889.06, "end": 11893.64, "probability": 0.9701 }, { "start": 11894.1, "end": 11895.32, "probability": 0.8187 }, { "start": 11895.88, "end": 11898.6, "probability": 0.999 }, { "start": 11899.12, "end": 11901.96, "probability": 0.8713 }, { "start": 11902.36, "end": 11904.32, "probability": 0.9771 }, { "start": 11905.1, "end": 11909.86, "probability": 0.9854 }, { "start": 11910.08, "end": 11912.88, "probability": 0.9982 }, { "start": 11913.34, "end": 11914.72, "probability": 0.9946 }, { "start": 11915.14, "end": 11920.44, "probability": 0.9963 }, { "start": 11920.9, "end": 11925.92, "probability": 0.9944 }, { "start": 11926.54, "end": 11930.92, "probability": 0.9839 }, { "start": 11930.92, "end": 11934.64, "probability": 0.9655 }, { "start": 11934.88, "end": 11939.84, "probability": 0.7786 }, { "start": 11939.84, "end": 11939.84, "probability": 0.1926 }, { "start": 11939.84, "end": 11943.58, "probability": 0.9783 }, { "start": 11943.92, "end": 11947.36, "probability": 0.9924 }, { "start": 11947.86, "end": 11948.24, "probability": 0.8692 }, { "start": 11948.5, "end": 11950.9, "probability": 0.9511 }, { "start": 11951.82, "end": 11954.2, "probability": 0.9904 }, { "start": 11954.28, "end": 11957.8, "probability": 0.9888 }, { "start": 11958.24, "end": 11963.18, "probability": 0.9885 }, { "start": 11963.8, "end": 11967.14, "probability": 0.9153 }, { "start": 11967.48, "end": 11971.18, "probability": 0.9966 }, { "start": 11973.96, "end": 11978.38, "probability": 0.8007 }, { "start": 11978.6, "end": 11980.0, "probability": 0.6055 }, { "start": 11980.22, "end": 11983.64, "probability": 0.9132 }, { "start": 11983.9, "end": 11985.4, "probability": 0.9985 }, { "start": 11985.46, "end": 11991.32, "probability": 0.9857 }, { "start": 11991.78, "end": 11994.44, "probability": 0.7649 }, { "start": 11994.82, "end": 11995.74, "probability": 0.9341 }, { "start": 11996.06, "end": 11997.72, "probability": 0.8529 }, { "start": 11998.28, "end": 11999.0, "probability": 0.943 }, { "start": 11999.14, "end": 12000.42, "probability": 0.9321 }, { "start": 12000.56, "end": 12002.55, "probability": 0.8998 }, { "start": 12003.04, "end": 12005.22, "probability": 0.8782 }, { "start": 12008.3, "end": 12012.26, "probability": 0.3046 }, { "start": 12012.34, "end": 12014.2, "probability": 0.3395 }, { "start": 12014.2, "end": 12015.5, "probability": 0.1758 }, { "start": 12018.82, "end": 12020.9, "probability": 0.1186 }, { "start": 12024.6, "end": 12027.52, "probability": 0.0377 }, { "start": 12027.52, "end": 12030.72, "probability": 0.5508 }, { "start": 12030.8, "end": 12032.02, "probability": 0.9395 }, { "start": 12032.54, "end": 12033.24, "probability": 0.8938 }, { "start": 12033.92, "end": 12036.52, "probability": 0.5581 }, { "start": 12037.08, "end": 12040.18, "probability": 0.8674 }, { "start": 12040.26, "end": 12040.84, "probability": 0.8745 }, { "start": 12045.68, "end": 12046.14, "probability": 0.38 }, { "start": 12046.18, "end": 12048.02, "probability": 0.9054 }, { "start": 12048.64, "end": 12050.14, "probability": 0.8603 }, { "start": 12056.46, "end": 12056.84, "probability": 0.5952 }, { "start": 12057.14, "end": 12064.46, "probability": 0.9595 }, { "start": 12064.88, "end": 12065.6, "probability": 0.8527 }, { "start": 12065.96, "end": 12066.8, "probability": 0.8781 }, { "start": 12067.06, "end": 12068.74, "probability": 0.7184 }, { "start": 12069.12, "end": 12073.12, "probability": 0.9955 }, { "start": 12073.12, "end": 12075.64, "probability": 0.7394 }, { "start": 12076.48, "end": 12078.3, "probability": 0.9822 }, { "start": 12078.6, "end": 12079.22, "probability": 0.7019 }, { "start": 12079.84, "end": 12082.02, "probability": 0.7576 }, { "start": 12082.9, "end": 12088.32, "probability": 0.9899 }, { "start": 12089.0, "end": 12091.4, "probability": 0.9993 }, { "start": 12092.4, "end": 12096.02, "probability": 0.9991 }, { "start": 12097.14, "end": 12103.12, "probability": 0.9639 }, { "start": 12103.7, "end": 12107.24, "probability": 0.9823 }, { "start": 12108.12, "end": 12109.54, "probability": 0.999 }, { "start": 12110.62, "end": 12113.44, "probability": 0.9927 }, { "start": 12114.46, "end": 12121.0, "probability": 0.9937 }, { "start": 12122.08, "end": 12123.2, "probability": 0.9731 }, { "start": 12124.18, "end": 12127.7, "probability": 0.9982 }, { "start": 12128.86, "end": 12134.96, "probability": 0.9919 }, { "start": 12136.0, "end": 12139.92, "probability": 0.9094 }, { "start": 12140.44, "end": 12145.04, "probability": 0.9781 }, { "start": 12146.72, "end": 12149.42, "probability": 0.9753 }, { "start": 12150.34, "end": 12154.18, "probability": 0.9971 }, { "start": 12154.92, "end": 12156.0, "probability": 0.8772 }, { "start": 12156.56, "end": 12163.96, "probability": 0.985 }, { "start": 12165.06, "end": 12168.72, "probability": 0.9882 }, { "start": 12169.24, "end": 12173.02, "probability": 0.9995 }, { "start": 12173.54, "end": 12174.8, "probability": 0.7467 }, { "start": 12175.92, "end": 12177.86, "probability": 0.9985 }, { "start": 12177.88, "end": 12180.58, "probability": 0.9871 }, { "start": 12180.98, "end": 12183.0, "probability": 0.9812 }, { "start": 12184.0, "end": 12186.0, "probability": 0.8921 }, { "start": 12186.62, "end": 12190.82, "probability": 0.9954 }, { "start": 12191.36, "end": 12192.8, "probability": 0.9872 }, { "start": 12194.2, "end": 12194.8, "probability": 0.6603 }, { "start": 12195.36, "end": 12198.32, "probability": 0.9954 }, { "start": 12198.96, "end": 12200.0, "probability": 0.9544 }, { "start": 12200.82, "end": 12201.16, "probability": 0.6224 }, { "start": 12201.68, "end": 12205.68, "probability": 0.9582 }, { "start": 12206.4, "end": 12207.36, "probability": 0.1856 }, { "start": 12207.96, "end": 12209.4, "probability": 0.9702 }, { "start": 12210.92, "end": 12212.92, "probability": 0.9758 }, { "start": 12213.52, "end": 12216.26, "probability": 0.9928 }, { "start": 12216.8, "end": 12219.36, "probability": 0.9529 }, { "start": 12219.96, "end": 12221.18, "probability": 0.6661 }, { "start": 12222.18, "end": 12223.0, "probability": 0.9679 }, { "start": 12224.32, "end": 12225.52, "probability": 0.6696 }, { "start": 12225.58, "end": 12226.52, "probability": 0.8331 }, { "start": 12226.9, "end": 12228.87, "probability": 0.9902 }, { "start": 12229.54, "end": 12231.74, "probability": 0.9883 }, { "start": 12232.3, "end": 12235.72, "probability": 0.9784 }, { "start": 12237.22, "end": 12240.54, "probability": 0.9764 }, { "start": 12241.5, "end": 12244.54, "probability": 0.9974 }, { "start": 12245.1, "end": 12246.34, "probability": 0.604 }, { "start": 12246.78, "end": 12247.88, "probability": 0.9504 }, { "start": 12248.4, "end": 12251.72, "probability": 0.9871 }, { "start": 12252.32, "end": 12254.9, "probability": 0.9944 }, { "start": 12255.92, "end": 12256.58, "probability": 0.7509 }, { "start": 12257.14, "end": 12261.5, "probability": 0.9519 }, { "start": 12262.16, "end": 12263.26, "probability": 0.8408 }, { "start": 12265.34, "end": 12269.2, "probability": 0.9816 }, { "start": 12269.68, "end": 12271.24, "probability": 0.9897 }, { "start": 12271.6, "end": 12273.22, "probability": 0.995 }, { "start": 12274.38, "end": 12275.72, "probability": 0.6148 }, { "start": 12276.26, "end": 12280.86, "probability": 0.9941 }, { "start": 12281.68, "end": 12288.48, "probability": 0.9864 }, { "start": 12289.0, "end": 12292.7, "probability": 0.9553 }, { "start": 12293.14, "end": 12294.76, "probability": 0.8611 }, { "start": 12296.8, "end": 12298.2, "probability": 0.9552 }, { "start": 12299.02, "end": 12301.23, "probability": 0.998 }, { "start": 12302.04, "end": 12303.9, "probability": 0.9961 }, { "start": 12304.52, "end": 12305.26, "probability": 0.6318 }, { "start": 12305.4, "end": 12306.72, "probability": 0.991 }, { "start": 12307.56, "end": 12310.66, "probability": 0.9932 }, { "start": 12311.54, "end": 12313.44, "probability": 0.509 }, { "start": 12314.12, "end": 12318.64, "probability": 0.9744 }, { "start": 12319.5, "end": 12324.0, "probability": 0.7821 }, { "start": 12324.78, "end": 12325.2, "probability": 0.8987 }, { "start": 12325.92, "end": 12329.82, "probability": 0.973 }, { "start": 12330.42, "end": 12331.34, "probability": 0.8248 }, { "start": 12331.9, "end": 12336.54, "probability": 0.991 }, { "start": 12337.16, "end": 12338.6, "probability": 0.6606 }, { "start": 12338.72, "end": 12344.44, "probability": 0.9976 }, { "start": 12344.9, "end": 12346.64, "probability": 0.9937 }, { "start": 12347.56, "end": 12351.6, "probability": 0.9959 }, { "start": 12353.78, "end": 12354.62, "probability": 0.7057 }, { "start": 12355.42, "end": 12358.76, "probability": 0.9916 }, { "start": 12359.3, "end": 12359.64, "probability": 0.8617 }, { "start": 12360.2, "end": 12361.88, "probability": 0.9934 }, { "start": 12363.2, "end": 12366.26, "probability": 0.9926 }, { "start": 12366.82, "end": 12367.52, "probability": 0.9919 }, { "start": 12368.06, "end": 12368.94, "probability": 0.9195 }, { "start": 12369.54, "end": 12371.4, "probability": 0.9947 }, { "start": 12371.88, "end": 12374.94, "probability": 0.9967 }, { "start": 12375.5, "end": 12376.6, "probability": 0.8116 }, { "start": 12377.08, "end": 12381.82, "probability": 0.999 }, { "start": 12382.28, "end": 12386.5, "probability": 0.999 }, { "start": 12389.82, "end": 12390.26, "probability": 0.5194 }, { "start": 12391.24, "end": 12394.06, "probability": 0.9767 }, { "start": 12395.64, "end": 12398.86, "probability": 0.9307 }, { "start": 12400.04, "end": 12405.54, "probability": 0.9888 }, { "start": 12407.8, "end": 12410.82, "probability": 0.9984 }, { "start": 12411.5, "end": 12412.85, "probability": 0.6094 }, { "start": 12413.12, "end": 12417.44, "probability": 0.5795 }, { "start": 12418.18, "end": 12422.88, "probability": 0.9764 }, { "start": 12423.52, "end": 12425.08, "probability": 0.9973 }, { "start": 12425.58, "end": 12428.54, "probability": 0.9536 }, { "start": 12429.62, "end": 12431.52, "probability": 0.8784 }, { "start": 12432.12, "end": 12435.18, "probability": 0.9965 }, { "start": 12435.26, "end": 12439.2, "probability": 0.5481 }, { "start": 12439.74, "end": 12442.04, "probability": 0.9497 }, { "start": 12442.44, "end": 12444.08, "probability": 0.993 }, { "start": 12444.68, "end": 12449.84, "probability": 0.9954 }, { "start": 12450.26, "end": 12450.86, "probability": 0.7544 }, { "start": 12451.3, "end": 12456.68, "probability": 0.964 }, { "start": 12457.02, "end": 12459.08, "probability": 0.9966 }, { "start": 12461.29, "end": 12462.46, "probability": 0.8984 }, { "start": 12462.46, "end": 12463.03, "probability": 0.8006 }, { "start": 12463.76, "end": 12465.09, "probability": 0.8661 }, { "start": 12465.96, "end": 12467.28, "probability": 0.9434 }, { "start": 12467.7, "end": 12472.94, "probability": 0.9884 }, { "start": 12473.5, "end": 12477.3, "probability": 0.9686 }, { "start": 12477.38, "end": 12479.08, "probability": 0.9462 }, { "start": 12479.66, "end": 12483.42, "probability": 0.9633 }, { "start": 12483.98, "end": 12487.22, "probability": 0.7386 }, { "start": 12487.7, "end": 12490.8, "probability": 0.9912 }, { "start": 12491.24, "end": 12495.72, "probability": 0.9991 }, { "start": 12496.24, "end": 12498.7, "probability": 0.9969 }, { "start": 12498.88, "end": 12499.52, "probability": 0.6624 }, { "start": 12499.94, "end": 12503.12, "probability": 0.9779 }, { "start": 12503.62, "end": 12504.56, "probability": 0.8071 }, { "start": 12504.86, "end": 12508.98, "probability": 0.9899 }, { "start": 12509.42, "end": 12510.16, "probability": 0.6769 }, { "start": 12510.16, "end": 12511.9, "probability": 0.9771 }, { "start": 12513.56, "end": 12521.04, "probability": 0.955 }, { "start": 12521.88, "end": 12522.56, "probability": 0.9158 }, { "start": 12523.1, "end": 12524.8, "probability": 0.8794 }, { "start": 12525.38, "end": 12529.22, "probability": 0.9274 }, { "start": 12529.72, "end": 12531.54, "probability": 0.9867 }, { "start": 12533.44, "end": 12534.5, "probability": 0.8374 }, { "start": 12535.14, "end": 12539.18, "probability": 0.9856 }, { "start": 12539.18, "end": 12543.18, "probability": 0.9963 }, { "start": 12543.9, "end": 12546.78, "probability": 0.9882 }, { "start": 12547.5, "end": 12550.98, "probability": 0.9594 }, { "start": 12551.54, "end": 12552.8, "probability": 0.7476 }, { "start": 12553.38, "end": 12556.24, "probability": 0.6785 }, { "start": 12557.12, "end": 12562.6, "probability": 0.9899 }, { "start": 12563.48, "end": 12567.05, "probability": 0.8979 }, { "start": 12567.62, "end": 12571.72, "probability": 0.9658 }, { "start": 12572.02, "end": 12575.28, "probability": 0.9851 }, { "start": 12577.18, "end": 12581.42, "probability": 0.9303 }, { "start": 12582.1, "end": 12585.44, "probability": 0.9476 }, { "start": 12585.96, "end": 12591.66, "probability": 0.9849 }, { "start": 12592.66, "end": 12596.76, "probability": 0.9128 }, { "start": 12597.56, "end": 12600.34, "probability": 0.9709 }, { "start": 12601.2, "end": 12605.12, "probability": 0.9928 }, { "start": 12605.78, "end": 12609.72, "probability": 0.9934 }, { "start": 12609.72, "end": 12613.62, "probability": 0.9963 }, { "start": 12614.14, "end": 12616.2, "probability": 0.9922 }, { "start": 12616.72, "end": 12618.32, "probability": 0.9028 }, { "start": 12618.92, "end": 12620.74, "probability": 0.9767 }, { "start": 12620.86, "end": 12622.06, "probability": 0.9799 }, { "start": 12623.7, "end": 12625.92, "probability": 0.9889 }, { "start": 12626.32, "end": 12629.18, "probability": 0.9331 }, { "start": 12629.74, "end": 12632.26, "probability": 0.9763 }, { "start": 12632.8, "end": 12638.4, "probability": 0.9972 }, { "start": 12639.37, "end": 12641.08, "probability": 0.5541 }, { "start": 12641.44, "end": 12645.74, "probability": 0.9893 }, { "start": 12646.18, "end": 12646.54, "probability": 0.5663 }, { "start": 12647.14, "end": 12648.06, "probability": 0.5872 }, { "start": 12648.54, "end": 12653.02, "probability": 0.9946 }, { "start": 12653.34, "end": 12655.66, "probability": 0.9976 }, { "start": 12656.48, "end": 12659.66, "probability": 0.9951 }, { "start": 12660.94, "end": 12663.82, "probability": 0.8193 }, { "start": 12664.36, "end": 12668.1, "probability": 0.9771 }, { "start": 12669.02, "end": 12674.08, "probability": 0.9866 }, { "start": 12674.66, "end": 12678.41, "probability": 0.9897 }, { "start": 12678.64, "end": 12682.2, "probability": 0.9723 }, { "start": 12682.56, "end": 12685.92, "probability": 0.9952 }, { "start": 12686.52, "end": 12688.94, "probability": 0.94 }, { "start": 12689.38, "end": 12691.24, "probability": 0.9617 }, { "start": 12691.6, "end": 12694.84, "probability": 0.9956 }, { "start": 12695.16, "end": 12697.7, "probability": 0.9976 }, { "start": 12699.84, "end": 12701.88, "probability": 0.7254 }, { "start": 12702.5, "end": 12704.1, "probability": 0.9395 }, { "start": 12704.84, "end": 12708.16, "probability": 0.9045 }, { "start": 12708.44, "end": 12709.58, "probability": 0.311 }, { "start": 12717.86, "end": 12718.46, "probability": 0.0544 }, { "start": 12738.08, "end": 12738.66, "probability": 0.5501 }, { "start": 12738.66, "end": 12739.7, "probability": 0.9215 }, { "start": 12740.06, "end": 12741.06, "probability": 0.7895 }, { "start": 12742.74, "end": 12746.02, "probability": 0.7988 }, { "start": 12747.38, "end": 12750.98, "probability": 0.8898 }, { "start": 12752.12, "end": 12755.98, "probability": 0.9939 }, { "start": 12755.98, "end": 12759.16, "probability": 0.9971 }, { "start": 12759.92, "end": 12762.3, "probability": 0.9929 }, { "start": 12763.64, "end": 12767.15, "probability": 0.999 }, { "start": 12768.02, "end": 12768.02, "probability": 0.099 }, { "start": 12768.02, "end": 12768.9, "probability": 0.5598 }, { "start": 12769.36, "end": 12769.94, "probability": 0.6998 }, { "start": 12771.08, "end": 12771.1, "probability": 0.039 }, { "start": 12771.1, "end": 12771.1, "probability": 0.0466 }, { "start": 12771.1, "end": 12771.46, "probability": 0.0671 }, { "start": 12771.84, "end": 12772.26, "probability": 0.0061 }, { "start": 12773.3, "end": 12773.3, "probability": 0.104 }, { "start": 12773.38, "end": 12775.66, "probability": 0.8874 }, { "start": 12776.02, "end": 12779.48, "probability": 0.1844 }, { "start": 12779.86, "end": 12780.18, "probability": 0.0267 }, { "start": 12780.98, "end": 12783.24, "probability": 0.5996 }, { "start": 12783.26, "end": 12784.22, "probability": 0.6018 }, { "start": 12784.93, "end": 12786.92, "probability": 0.8087 }, { "start": 12787.36, "end": 12789.04, "probability": 0.9537 }, { "start": 12789.34, "end": 12790.3, "probability": 0.8916 }, { "start": 12790.44, "end": 12792.98, "probability": 0.4736 }, { "start": 12793.22, "end": 12793.78, "probability": 0.5002 }, { "start": 12794.16, "end": 12794.7, "probability": 0.8289 }, { "start": 12794.92, "end": 12796.05, "probability": 0.0844 }, { "start": 12796.6, "end": 12800.16, "probability": 0.7511 }, { "start": 12800.56, "end": 12801.98, "probability": 0.6376 }, { "start": 12802.04, "end": 12804.84, "probability": 0.9239 }, { "start": 12805.04, "end": 12808.52, "probability": 0.5836 }, { "start": 12808.86, "end": 12809.44, "probability": 0.0435 }, { "start": 12810.28, "end": 12812.68, "probability": 0.4263 }, { "start": 12812.78, "end": 12814.46, "probability": 0.3298 }, { "start": 12815.54, "end": 12823.92, "probability": 0.7894 }, { "start": 12824.54, "end": 12826.38, "probability": 0.9738 }, { "start": 12826.38, "end": 12828.32, "probability": 0.606 }, { "start": 12828.46, "end": 12830.54, "probability": 0.9861 }, { "start": 12831.04, "end": 12833.44, "probability": 0.9595 }, { "start": 12833.88, "end": 12834.49, "probability": 0.9001 }, { "start": 12835.12, "end": 12840.2, "probability": 0.9878 }, { "start": 12840.3, "end": 12842.62, "probability": 0.9238 }, { "start": 12845.06, "end": 12845.26, "probability": 0.0513 }, { "start": 12845.26, "end": 12845.74, "probability": 0.7147 }, { "start": 12846.24, "end": 12850.62, "probability": 0.9678 }, { "start": 12850.84, "end": 12852.44, "probability": 0.8284 }, { "start": 12852.56, "end": 12854.26, "probability": 0.9587 }, { "start": 12854.82, "end": 12856.64, "probability": 0.9902 }, { "start": 12857.22, "end": 12857.98, "probability": 0.5757 }, { "start": 12858.86, "end": 12861.4, "probability": 0.2988 }, { "start": 12862.0, "end": 12863.88, "probability": 0.6693 }, { "start": 12865.02, "end": 12865.86, "probability": 0.8901 }, { "start": 12866.04, "end": 12867.54, "probability": 0.8623 }, { "start": 12867.72, "end": 12871.26, "probability": 0.9967 }, { "start": 12871.42, "end": 12871.52, "probability": 0.3808 }, { "start": 12871.98, "end": 12872.92, "probability": 0.9215 }, { "start": 12873.3, "end": 12877.84, "probability": 0.9819 }, { "start": 12878.08, "end": 12880.48, "probability": 0.7607 }, { "start": 12881.0, "end": 12882.19, "probability": 0.9667 }, { "start": 12882.88, "end": 12884.8, "probability": 0.9835 }, { "start": 12884.9, "end": 12885.74, "probability": 0.969 }, { "start": 12886.06, "end": 12890.0, "probability": 0.9873 }, { "start": 12890.52, "end": 12892.02, "probability": 0.6659 }, { "start": 12892.16, "end": 12895.18, "probability": 0.9186 }, { "start": 12896.12, "end": 12898.34, "probability": 0.7236 }, { "start": 12899.18, "end": 12901.18, "probability": 0.9108 }, { "start": 12902.02, "end": 12904.2, "probability": 0.9438 }, { "start": 12904.86, "end": 12906.5, "probability": 0.9894 }, { "start": 12907.12, "end": 12910.76, "probability": 0.897 }, { "start": 12911.18, "end": 12914.04, "probability": 0.9462 }, { "start": 12914.64, "end": 12919.14, "probability": 0.9014 }, { "start": 12919.96, "end": 12922.82, "probability": 0.9961 }, { "start": 12923.01, "end": 12926.45, "probability": 0.9985 }, { "start": 12926.66, "end": 12927.06, "probability": 0.4212 }, { "start": 12928.44, "end": 12929.96, "probability": 0.7628 }, { "start": 12931.24, "end": 12933.44, "probability": 0.0114 }, { "start": 12933.44, "end": 12936.12, "probability": 0.7184 }, { "start": 12936.88, "end": 12943.06, "probability": 0.9647 }, { "start": 12943.58, "end": 12948.28, "probability": 0.9683 }, { "start": 12949.16, "end": 12950.24, "probability": 0.8491 }, { "start": 12951.52, "end": 12956.92, "probability": 0.9818 }, { "start": 12957.06, "end": 12957.79, "probability": 0.9563 }, { "start": 12960.96, "end": 12961.88, "probability": 0.5895 }, { "start": 12962.28, "end": 12962.7, "probability": 0.3732 }, { "start": 12962.7, "end": 12963.24, "probability": 0.1369 }, { "start": 12963.4, "end": 12966.48, "probability": 0.9187 }, { "start": 12966.86, "end": 12971.36, "probability": 0.9686 }, { "start": 12971.4, "end": 12972.8, "probability": 0.7592 }, { "start": 12972.94, "end": 12974.46, "probability": 0.957 }, { "start": 12974.96, "end": 12977.26, "probability": 0.9485 }, { "start": 12977.8, "end": 12977.82, "probability": 0.3472 }, { "start": 12977.82, "end": 12980.44, "probability": 0.9189 }, { "start": 12981.96, "end": 12981.96, "probability": 0.2203 }, { "start": 12981.96, "end": 12984.36, "probability": 0.7158 }, { "start": 12984.44, "end": 12985.56, "probability": 0.6245 }, { "start": 12985.82, "end": 12988.54, "probability": 0.9191 }, { "start": 12988.68, "end": 12989.97, "probability": 0.0835 }, { "start": 12993.42, "end": 12993.42, "probability": 0.0968 }, { "start": 12993.42, "end": 12993.42, "probability": 0.038 }, { "start": 12993.42, "end": 12993.42, "probability": 0.1586 }, { "start": 12993.42, "end": 12995.18, "probability": 0.8557 }, { "start": 12995.26, "end": 12997.58, "probability": 0.5027 }, { "start": 12998.18, "end": 12999.48, "probability": 0.8472 }, { "start": 13000.78, "end": 13002.2, "probability": 0.733 }, { "start": 13002.76, "end": 13002.86, "probability": 0.3545 }, { "start": 13003.48, "end": 13005.52, "probability": 0.9956 }, { "start": 13005.52, "end": 13009.2, "probability": 0.996 }, { "start": 13009.3, "end": 13010.32, "probability": 0.6429 }, { "start": 13011.38, "end": 13014.92, "probability": 0.9078 }, { "start": 13015.16, "end": 13018.07, "probability": 0.9805 }, { "start": 13019.06, "end": 13021.2, "probability": 0.8823 }, { "start": 13021.36, "end": 13021.36, "probability": 0.236 }, { "start": 13021.5, "end": 13022.68, "probability": 0.4934 }, { "start": 13022.96, "end": 13024.14, "probability": 0.5425 }, { "start": 13024.44, "end": 13025.02, "probability": 0.0611 }, { "start": 13025.04, "end": 13025.32, "probability": 0.032 }, { "start": 13025.32, "end": 13028.5, "probability": 0.8602 }, { "start": 13028.62, "end": 13031.32, "probability": 0.6816 }, { "start": 13031.32, "end": 13031.6, "probability": 0.0272 }, { "start": 13031.6, "end": 13032.18, "probability": 0.4971 }, { "start": 13032.78, "end": 13034.9, "probability": 0.9633 }, { "start": 13034.9, "end": 13037.9, "probability": 0.9264 }, { "start": 13038.32, "end": 13039.14, "probability": 0.0381 }, { "start": 13040.18, "end": 13040.52, "probability": 0.001 }, { "start": 13040.52, "end": 13040.52, "probability": 0.05 }, { "start": 13040.52, "end": 13042.06, "probability": 0.0346 }, { "start": 13042.54, "end": 13043.5, "probability": 0.7013 }, { "start": 13043.5, "end": 13044.02, "probability": 0.6447 }, { "start": 13044.08, "end": 13045.18, "probability": 0.8373 }, { "start": 13045.24, "end": 13048.78, "probability": 0.9946 }, { "start": 13049.38, "end": 13049.94, "probability": 0.8291 }, { "start": 13049.94, "end": 13051.66, "probability": 0.9927 }, { "start": 13051.84, "end": 13053.9, "probability": 0.9614 }, { "start": 13054.12, "end": 13054.54, "probability": 0.6029 }, { "start": 13054.88, "end": 13056.58, "probability": 0.8159 }, { "start": 13056.78, "end": 13059.66, "probability": 0.3769 }, { "start": 13061.8, "end": 13061.8, "probability": 0.6395 }, { "start": 13061.8, "end": 13061.8, "probability": 0.0284 }, { "start": 13061.8, "end": 13061.8, "probability": 0.3967 }, { "start": 13061.8, "end": 13064.14, "probability": 0.7656 }, { "start": 13064.26, "end": 13067.44, "probability": 0.9092 }, { "start": 13067.9, "end": 13070.14, "probability": 0.8651 }, { "start": 13070.38, "end": 13073.24, "probability": 0.9963 }, { "start": 13073.62, "end": 13075.44, "probability": 0.121 }, { "start": 13076.39, "end": 13079.26, "probability": 0.7702 }, { "start": 13079.36, "end": 13084.02, "probability": 0.6092 }, { "start": 13085.21, "end": 13088.84, "probability": 0.8464 }, { "start": 13089.72, "end": 13090.58, "probability": 0.5166 }, { "start": 13091.4, "end": 13094.18, "probability": 0.1351 }, { "start": 13094.3, "end": 13096.6, "probability": 0.0069 }, { "start": 13097.2, "end": 13098.98, "probability": 0.1796 }, { "start": 13099.66, "end": 13103.96, "probability": 0.8611 }, { "start": 13104.08, "end": 13105.76, "probability": 0.9022 }, { "start": 13106.02, "end": 13107.39, "probability": 0.1219 }, { "start": 13107.86, "end": 13108.53, "probability": 0.2533 }, { "start": 13108.64, "end": 13109.08, "probability": 0.2294 }, { "start": 13109.08, "end": 13111.0, "probability": 0.0932 }, { "start": 13111.0, "end": 13111.94, "probability": 0.0785 }, { "start": 13112.08, "end": 13112.82, "probability": 0.8191 }, { "start": 13112.86, "end": 13114.0, "probability": 0.9552 }, { "start": 13114.38, "end": 13117.96, "probability": 0.9318 }, { "start": 13118.54, "end": 13121.68, "probability": 0.9711 }, { "start": 13122.04, "end": 13125.3, "probability": 0.9897 }, { "start": 13125.92, "end": 13128.44, "probability": 0.9318 }, { "start": 13128.62, "end": 13129.14, "probability": 0.822 }, { "start": 13129.34, "end": 13130.28, "probability": 0.2585 }, { "start": 13130.8, "end": 13133.54, "probability": 0.013 }, { "start": 13139.48, "end": 13139.64, "probability": 0.53 }, { "start": 13140.54, "end": 13143.12, "probability": 0.9951 }, { "start": 13143.2, "end": 13144.43, "probability": 0.9259 }, { "start": 13145.16, "end": 13147.2, "probability": 0.0723 }, { "start": 13147.22, "end": 13147.74, "probability": 0.1512 }, { "start": 13147.84, "end": 13149.94, "probability": 0.6359 }, { "start": 13150.04, "end": 13152.49, "probability": 0.7524 }, { "start": 13152.56, "end": 13153.48, "probability": 0.0027 }, { "start": 13153.48, "end": 13153.58, "probability": 0.2653 }, { "start": 13153.94, "end": 13156.74, "probability": 0.812 }, { "start": 13156.74, "end": 13158.38, "probability": 0.626 }, { "start": 13158.68, "end": 13158.84, "probability": 0.4538 }, { "start": 13158.84, "end": 13160.58, "probability": 0.3965 }, { "start": 13160.8, "end": 13161.56, "probability": 0.6272 }, { "start": 13161.84, "end": 13163.06, "probability": 0.7788 }, { "start": 13163.44, "end": 13165.39, "probability": 0.9883 }, { "start": 13165.54, "end": 13166.78, "probability": 0.978 }, { "start": 13167.56, "end": 13170.26, "probability": 0.8007 }, { "start": 13171.62, "end": 13173.58, "probability": 0.95 }, { "start": 13174.6, "end": 13177.54, "probability": 0.8976 }, { "start": 13178.68, "end": 13178.78, "probability": 0.2474 }, { "start": 13178.78, "end": 13179.82, "probability": 0.8898 }, { "start": 13180.22, "end": 13182.44, "probability": 0.9248 }, { "start": 13183.4, "end": 13186.0, "probability": 0.5817 }, { "start": 13186.14, "end": 13188.34, "probability": 0.9283 }, { "start": 13188.44, "end": 13189.42, "probability": 0.9702 }, { "start": 13190.08, "end": 13192.6, "probability": 0.9853 }, { "start": 13192.6, "end": 13195.46, "probability": 0.9964 }, { "start": 13196.14, "end": 13198.04, "probability": 0.9927 }, { "start": 13199.14, "end": 13202.38, "probability": 0.9712 }, { "start": 13203.38, "end": 13206.36, "probability": 0.973 }, { "start": 13207.52, "end": 13211.0, "probability": 0.9954 }, { "start": 13212.0, "end": 13215.96, "probability": 0.9823 }, { "start": 13215.96, "end": 13219.82, "probability": 0.9964 }, { "start": 13220.28, "end": 13220.46, "probability": 0.7824 }, { "start": 13220.54, "end": 13222.96, "probability": 0.9914 }, { "start": 13223.46, "end": 13226.7, "probability": 0.9659 }, { "start": 13228.7, "end": 13231.16, "probability": 0.5277 }, { "start": 13231.84, "end": 13233.86, "probability": 0.5849 }, { "start": 13234.3, "end": 13235.52, "probability": 0.8445 }, { "start": 13236.62, "end": 13238.34, "probability": 0.7306 }, { "start": 13239.52, "end": 13243.12, "probability": 0.9253 }, { "start": 13243.7, "end": 13245.54, "probability": 0.4003 }, { "start": 13245.58, "end": 13248.4, "probability": 0.45 }, { "start": 13248.96, "end": 13250.14, "probability": 0.4089 }, { "start": 13251.53, "end": 13256.92, "probability": 0.9939 }, { "start": 13257.02, "end": 13258.6, "probability": 0.9985 }, { "start": 13259.0, "end": 13262.84, "probability": 0.9511 }, { "start": 13263.52, "end": 13264.0, "probability": 0.4958 }, { "start": 13264.02, "end": 13269.08, "probability": 0.978 }, { "start": 13269.1, "end": 13271.34, "probability": 0.9985 }, { "start": 13272.44, "end": 13274.54, "probability": 0.9677 }, { "start": 13274.88, "end": 13277.38, "probability": 0.8992 }, { "start": 13278.48, "end": 13284.1, "probability": 0.9585 }, { "start": 13284.82, "end": 13288.04, "probability": 0.972 }, { "start": 13288.74, "end": 13291.76, "probability": 0.9782 }, { "start": 13293.96, "end": 13297.76, "probability": 0.9557 }, { "start": 13298.18, "end": 13300.9, "probability": 0.958 }, { "start": 13301.04, "end": 13303.6, "probability": 0.9725 }, { "start": 13303.9, "end": 13304.46, "probability": 0.5714 }, { "start": 13305.2, "end": 13306.06, "probability": 0.7004 }, { "start": 13306.18, "end": 13307.62, "probability": 0.9946 }, { "start": 13307.74, "end": 13308.56, "probability": 0.8669 }, { "start": 13308.9, "end": 13311.16, "probability": 0.9015 }, { "start": 13311.28, "end": 13314.95, "probability": 0.9915 }, { "start": 13316.06, "end": 13318.98, "probability": 0.9696 }, { "start": 13319.16, "end": 13321.0, "probability": 0.9869 }, { "start": 13321.1, "end": 13321.68, "probability": 0.4763 }, { "start": 13322.46, "end": 13325.2, "probability": 0.6405 }, { "start": 13326.42, "end": 13328.9, "probability": 0.9909 }, { "start": 13329.22, "end": 13332.5, "probability": 0.871 }, { "start": 13333.04, "end": 13335.26, "probability": 0.9597 }, { "start": 13335.96, "end": 13340.4, "probability": 0.9663 }, { "start": 13340.96, "end": 13343.34, "probability": 0.9944 }, { "start": 13344.8, "end": 13348.72, "probability": 0.9901 }, { "start": 13348.8, "end": 13351.38, "probability": 0.9661 }, { "start": 13351.9, "end": 13352.56, "probability": 0.7493 }, { "start": 13355.72, "end": 13358.16, "probability": 0.8188 }, { "start": 13358.34, "end": 13361.74, "probability": 0.9614 }, { "start": 13362.66, "end": 13363.8, "probability": 0.7108 }, { "start": 13363.86, "end": 13368.38, "probability": 0.9941 }, { "start": 13368.62, "end": 13368.62, "probability": 0.267 }, { "start": 13370.84, "end": 13370.94, "probability": 0.4593 }, { "start": 13371.42, "end": 13374.36, "probability": 0.3232 }, { "start": 13374.5, "end": 13377.34, "probability": 0.9168 }, { "start": 13377.86, "end": 13381.06, "probability": 0.895 }, { "start": 13381.64, "end": 13384.4, "probability": 0.8905 }, { "start": 13384.76, "end": 13386.28, "probability": 0.8459 }, { "start": 13386.3, "end": 13389.14, "probability": 0.9155 }, { "start": 13389.14, "end": 13393.5, "probability": 0.992 }, { "start": 13394.14, "end": 13396.08, "probability": 0.5738 }, { "start": 13396.36, "end": 13398.88, "probability": 0.8357 }, { "start": 13399.4, "end": 13400.06, "probability": 0.7663 }, { "start": 13400.42, "end": 13405.02, "probability": 0.8438 }, { "start": 13405.34, "end": 13405.88, "probability": 0.0481 }, { "start": 13405.88, "end": 13408.34, "probability": 0.9787 }, { "start": 13408.48, "end": 13409.08, "probability": 0.0035 }, { "start": 13409.6, "end": 13410.3, "probability": 0.1458 }, { "start": 13410.84, "end": 13411.91, "probability": 0.3249 }, { "start": 13414.14, "end": 13415.28, "probability": 0.5773 }, { "start": 13415.82, "end": 13416.66, "probability": 0.2725 }, { "start": 13417.62, "end": 13422.0, "probability": 0.7796 }, { "start": 13422.76, "end": 13423.86, "probability": 0.8213 }, { "start": 13424.34, "end": 13426.9, "probability": 0.9637 }, { "start": 13427.54, "end": 13434.24, "probability": 0.996 }, { "start": 13434.24, "end": 13439.06, "probability": 0.9995 }, { "start": 13439.72, "end": 13442.42, "probability": 0.9976 }, { "start": 13442.72, "end": 13445.38, "probability": 0.9477 }, { "start": 13445.5, "end": 13447.6, "probability": 0.9111 }, { "start": 13447.64, "end": 13448.7, "probability": 0.9119 }, { "start": 13449.06, "end": 13451.76, "probability": 0.9878 }, { "start": 13451.96, "end": 13454.12, "probability": 0.9538 }, { "start": 13454.6, "end": 13455.46, "probability": 0.9873 }, { "start": 13455.58, "end": 13459.76, "probability": 0.9903 }, { "start": 13460.06, "end": 13460.42, "probability": 0.8048 }, { "start": 13460.72, "end": 13463.32, "probability": 0.78 }, { "start": 13463.62, "end": 13464.96, "probability": 0.3705 }, { "start": 13466.32, "end": 13467.72, "probability": 0.7814 }, { "start": 13474.94, "end": 13474.94, "probability": 0.0543 }, { "start": 13474.94, "end": 13474.94, "probability": 0.0542 }, { "start": 13474.94, "end": 13474.98, "probability": 0.0713 }, { "start": 13474.98, "end": 13474.98, "probability": 0.0218 }, { "start": 13492.42, "end": 13493.78, "probability": 0.7627 }, { "start": 13494.4, "end": 13497.44, "probability": 0.9888 }, { "start": 13498.02, "end": 13500.84, "probability": 0.995 }, { "start": 13501.5, "end": 13502.96, "probability": 0.9099 }, { "start": 13502.96, "end": 13504.66, "probability": 0.9521 }, { "start": 13504.74, "end": 13504.86, "probability": 0.1131 }, { "start": 13504.86, "end": 13504.88, "probability": 0.1275 }, { "start": 13508.68, "end": 13512.4, "probability": 0.9985 }, { "start": 13512.84, "end": 13514.32, "probability": 0.689 }, { "start": 13514.88, "end": 13517.88, "probability": 0.9945 }, { "start": 13518.38, "end": 13519.18, "probability": 0.7362 }, { "start": 13519.64, "end": 13520.92, "probability": 0.9022 }, { "start": 13521.26, "end": 13525.02, "probability": 0.9913 }, { "start": 13525.42, "end": 13528.24, "probability": 0.9888 }, { "start": 13528.4, "end": 13529.72, "probability": 0.618 }, { "start": 13530.24, "end": 13531.72, "probability": 0.9671 }, { "start": 13532.14, "end": 13534.24, "probability": 0.9526 }, { "start": 13534.76, "end": 13536.06, "probability": 0.9744 }, { "start": 13536.1, "end": 13537.64, "probability": 0.7263 }, { "start": 13538.08, "end": 13541.74, "probability": 0.9585 }, { "start": 13541.74, "end": 13544.76, "probability": 0.9978 }, { "start": 13545.06, "end": 13547.32, "probability": 0.882 }, { "start": 13547.9, "end": 13549.16, "probability": 0.8727 }, { "start": 13549.9, "end": 13551.1, "probability": 0.9392 }, { "start": 13552.76, "end": 13554.21, "probability": 0.9713 }, { "start": 13554.86, "end": 13557.42, "probability": 0.9735 }, { "start": 13557.86, "end": 13558.8, "probability": 0.9451 }, { "start": 13559.12, "end": 13560.92, "probability": 0.9825 }, { "start": 13561.28, "end": 13562.88, "probability": 0.7697 }, { "start": 13563.0, "end": 13563.9, "probability": 0.8713 }, { "start": 13564.28, "end": 13566.44, "probability": 0.9536 }, { "start": 13566.76, "end": 13567.92, "probability": 0.9931 }, { "start": 13568.64, "end": 13571.92, "probability": 0.9216 }, { "start": 13572.2, "end": 13573.18, "probability": 0.6748 }, { "start": 13573.54, "end": 13575.02, "probability": 0.9832 }, { "start": 13575.42, "end": 13576.5, "probability": 0.9528 }, { "start": 13576.98, "end": 13578.62, "probability": 0.9751 }, { "start": 13579.14, "end": 13582.46, "probability": 0.9974 }, { "start": 13583.0, "end": 13586.0, "probability": 0.9957 }, { "start": 13586.04, "end": 13587.4, "probability": 0.8709 }, { "start": 13587.8, "end": 13590.6, "probability": 0.9689 }, { "start": 13591.06, "end": 13593.22, "probability": 0.9912 }, { "start": 13593.58, "end": 13593.88, "probability": 0.8791 }, { "start": 13593.94, "end": 13594.58, "probability": 0.8682 }, { "start": 13594.84, "end": 13595.5, "probability": 0.7189 }, { "start": 13595.54, "end": 13597.98, "probability": 0.8615 }, { "start": 13598.78, "end": 13601.32, "probability": 0.8098 }, { "start": 13601.8, "end": 13605.16, "probability": 0.9683 }, { "start": 13605.48, "end": 13607.18, "probability": 0.9851 }, { "start": 13607.56, "end": 13609.06, "probability": 0.9688 }, { "start": 13609.38, "end": 13611.18, "probability": 0.9424 }, { "start": 13611.5, "end": 13616.57, "probability": 0.9961 }, { "start": 13618.86, "end": 13619.66, "probability": 0.3823 }, { "start": 13619.9, "end": 13621.52, "probability": 0.9509 }, { "start": 13621.54, "end": 13623.22, "probability": 0.9058 }, { "start": 13623.52, "end": 13625.5, "probability": 0.9736 }, { "start": 13625.82, "end": 13627.7, "probability": 0.8789 }, { "start": 13628.14, "end": 13630.28, "probability": 0.6508 }, { "start": 13630.58, "end": 13635.84, "probability": 0.9924 }, { "start": 13636.42, "end": 13639.34, "probability": 0.7261 }, { "start": 13639.4, "end": 13639.58, "probability": 0.3997 }, { "start": 13639.66, "end": 13641.16, "probability": 0.9018 }, { "start": 13641.26, "end": 13642.96, "probability": 0.9985 }, { "start": 13643.3, "end": 13645.4, "probability": 0.9647 }, { "start": 13646.08, "end": 13650.78, "probability": 0.8849 }, { "start": 13651.2, "end": 13652.96, "probability": 0.9961 }, { "start": 13653.46, "end": 13655.46, "probability": 0.9985 }, { "start": 13655.86, "end": 13656.42, "probability": 0.7122 }, { "start": 13657.2, "end": 13659.92, "probability": 0.9971 }, { "start": 13660.28, "end": 13660.78, "probability": 0.9265 }, { "start": 13660.82, "end": 13662.5, "probability": 0.9955 }, { "start": 13662.72, "end": 13664.76, "probability": 0.9827 }, { "start": 13665.16, "end": 13666.06, "probability": 0.9566 }, { "start": 13666.6, "end": 13671.5, "probability": 0.9966 }, { "start": 13671.9, "end": 13677.06, "probability": 0.9984 }, { "start": 13677.6, "end": 13681.56, "probability": 0.9982 }, { "start": 13681.56, "end": 13685.0, "probability": 0.9932 }, { "start": 13685.34, "end": 13687.62, "probability": 0.9988 }, { "start": 13687.98, "end": 13690.46, "probability": 0.9947 }, { "start": 13690.8, "end": 13695.0, "probability": 0.9706 }, { "start": 13695.16, "end": 13698.6, "probability": 0.7012 }, { "start": 13698.66, "end": 13699.36, "probability": 0.7626 }, { "start": 13699.48, "end": 13699.48, "probability": 0.3426 }, { "start": 13699.74, "end": 13700.78, "probability": 0.9174 }, { "start": 13700.98, "end": 13702.5, "probability": 0.9243 }, { "start": 13703.06, "end": 13703.95, "probability": 0.4744 }, { "start": 13704.62, "end": 13712.3, "probability": 0.6325 }, { "start": 13712.88, "end": 13713.6, "probability": 0.5018 }, { "start": 13713.88, "end": 13714.44, "probability": 0.5476 }, { "start": 13714.94, "end": 13715.5, "probability": 0.3833 }, { "start": 13733.98, "end": 13739.22, "probability": 0.1096 }, { "start": 13739.3, "end": 13741.0, "probability": 0.7833 }, { "start": 13741.7, "end": 13745.2, "probability": 0.6062 }, { "start": 13745.22, "end": 13746.84, "probability": 0.7227 }, { "start": 13747.46, "end": 13748.59, "probability": 0.3857 }, { "start": 13748.78, "end": 13751.84, "probability": 0.8909 }, { "start": 13771.74, "end": 13773.24, "probability": 0.8509 }, { "start": 13774.06, "end": 13777.64, "probability": 0.8682 }, { "start": 13778.88, "end": 13782.9, "probability": 0.9929 }, { "start": 13783.52, "end": 13784.46, "probability": 0.9904 }, { "start": 13785.56, "end": 13789.94, "probability": 0.9857 }, { "start": 13790.84, "end": 13792.04, "probability": 0.8846 }, { "start": 13792.68, "end": 13797.22, "probability": 0.9514 }, { "start": 13798.6, "end": 13802.12, "probability": 0.9832 }, { "start": 13802.22, "end": 13805.64, "probability": 0.9985 }, { "start": 13805.64, "end": 13809.78, "probability": 0.9978 }, { "start": 13810.22, "end": 13813.12, "probability": 0.9595 }, { "start": 13813.26, "end": 13816.8, "probability": 0.9984 }, { "start": 13817.34, "end": 13821.22, "probability": 0.9603 }, { "start": 13822.18, "end": 13822.99, "probability": 0.9715 }, { "start": 13823.8, "end": 13826.54, "probability": 0.9272 }, { "start": 13826.88, "end": 13829.02, "probability": 0.9753 }, { "start": 13829.98, "end": 13835.06, "probability": 0.9946 }, { "start": 13835.86, "end": 13838.0, "probability": 0.9157 }, { "start": 13838.88, "end": 13841.56, "probability": 0.9819 }, { "start": 13842.48, "end": 13843.92, "probability": 0.9892 }, { "start": 13844.6, "end": 13848.18, "probability": 0.9956 }, { "start": 13848.78, "end": 13854.14, "probability": 0.8639 }, { "start": 13854.68, "end": 13856.54, "probability": 0.9201 }, { "start": 13857.24, "end": 13860.2, "probability": 0.9941 }, { "start": 13860.76, "end": 13861.92, "probability": 0.8939 }, { "start": 13862.06, "end": 13864.36, "probability": 0.9569 }, { "start": 13864.9, "end": 13865.78, "probability": 0.9244 }, { "start": 13867.16, "end": 13870.76, "probability": 0.8142 }, { "start": 13871.36, "end": 13873.02, "probability": 0.9183 }, { "start": 13873.68, "end": 13878.16, "probability": 0.9833 }, { "start": 13878.96, "end": 13882.72, "probability": 0.9966 }, { "start": 13883.44, "end": 13884.46, "probability": 0.9497 }, { "start": 13885.78, "end": 13891.96, "probability": 0.9919 }, { "start": 13894.18, "end": 13896.38, "probability": 0.9852 }, { "start": 13896.54, "end": 13896.8, "probability": 0.8148 }, { "start": 13897.0, "end": 13897.78, "probability": 0.704 }, { "start": 13897.8, "end": 13902.42, "probability": 0.8969 }, { "start": 13902.5, "end": 13903.24, "probability": 0.6958 }, { "start": 13903.28, "end": 13904.42, "probability": 0.8117 }, { "start": 13904.7, "end": 13905.72, "probability": 0.7184 }, { "start": 13906.62, "end": 13908.8, "probability": 0.8823 }, { "start": 13909.56, "end": 13914.42, "probability": 0.9813 }, { "start": 13915.62, "end": 13916.44, "probability": 0.8216 }, { "start": 13916.5, "end": 13919.16, "probability": 0.9473 }, { "start": 13920.02, "end": 13924.74, "probability": 0.9948 }, { "start": 13924.84, "end": 13927.8, "probability": 0.6954 }, { "start": 13928.42, "end": 13929.98, "probability": 0.9098 }, { "start": 13930.78, "end": 13934.84, "probability": 0.9885 }, { "start": 13935.98, "end": 13940.86, "probability": 0.9914 }, { "start": 13940.86, "end": 13945.28, "probability": 0.998 }, { "start": 13945.86, "end": 13946.92, "probability": 0.8099 }, { "start": 13947.98, "end": 13951.3, "probability": 0.8753 }, { "start": 13951.88, "end": 13953.88, "probability": 0.9155 }, { "start": 13954.62, "end": 13958.02, "probability": 0.9811 }, { "start": 13958.58, "end": 13959.66, "probability": 0.9769 }, { "start": 13960.64, "end": 13963.78, "probability": 0.9473 }, { "start": 13964.46, "end": 13968.44, "probability": 0.8195 }, { "start": 13969.34, "end": 13971.56, "probability": 0.7159 }, { "start": 13971.62, "end": 13973.8, "probability": 0.9933 }, { "start": 13973.94, "end": 13974.74, "probability": 0.8643 }, { "start": 13975.68, "end": 13980.66, "probability": 0.9897 }, { "start": 13981.06, "end": 13982.38, "probability": 0.9338 }, { "start": 13982.5, "end": 13983.73, "probability": 0.7426 }, { "start": 13984.64, "end": 13985.44, "probability": 0.9897 }, { "start": 13985.96, "end": 13989.86, "probability": 0.957 }, { "start": 13989.86, "end": 13993.9, "probability": 0.9885 }, { "start": 13994.4, "end": 13995.8, "probability": 0.7934 }, { "start": 13995.92, "end": 13997.84, "probability": 0.9871 }, { "start": 13998.52, "end": 14000.86, "probability": 0.8237 }, { "start": 14001.44, "end": 14005.94, "probability": 0.6374 }, { "start": 14006.32, "end": 14009.54, "probability": 0.9019 }, { "start": 14009.66, "end": 14012.96, "probability": 0.7928 }, { "start": 14012.98, "end": 14013.39, "probability": 0.6357 }, { "start": 14014.52, "end": 14015.72, "probability": 0.916 }, { "start": 14016.2, "end": 14016.78, "probability": 0.6778 }, { "start": 14016.86, "end": 14019.42, "probability": 0.9634 }, { "start": 14020.08, "end": 14021.88, "probability": 0.8483 }, { "start": 14022.26, "end": 14025.38, "probability": 0.9968 }, { "start": 14025.74, "end": 14027.68, "probability": 0.9743 }, { "start": 14028.06, "end": 14030.5, "probability": 0.9982 }, { "start": 14030.84, "end": 14032.7, "probability": 0.939 }, { "start": 14033.24, "end": 14034.98, "probability": 0.9863 }, { "start": 14036.0, "end": 14037.44, "probability": 0.929 }, { "start": 14038.13, "end": 14039.39, "probability": 0.7049 }, { "start": 14039.78, "end": 14045.91, "probability": 0.9963 }, { "start": 14046.28, "end": 14047.87, "probability": 0.4873 }, { "start": 14048.74, "end": 14051.68, "probability": 0.8809 }, { "start": 14052.3, "end": 14053.6, "probability": 0.9822 }, { "start": 14053.94, "end": 14056.86, "probability": 0.9862 }, { "start": 14057.96, "end": 14062.4, "probability": 0.9893 }, { "start": 14063.32, "end": 14064.52, "probability": 0.7808 }, { "start": 14064.72, "end": 14065.68, "probability": 0.6761 }, { "start": 14066.08, "end": 14068.2, "probability": 0.8857 }, { "start": 14068.6, "end": 14069.7, "probability": 0.9531 }, { "start": 14070.1, "end": 14071.5, "probability": 0.793 }, { "start": 14072.12, "end": 14076.28, "probability": 0.9855 }, { "start": 14076.4, "end": 14077.78, "probability": 0.8066 }, { "start": 14078.34, "end": 14081.9, "probability": 0.8893 }, { "start": 14082.38, "end": 14083.74, "probability": 0.7546 }, { "start": 14084.26, "end": 14087.15, "probability": 0.8484 }, { "start": 14087.24, "end": 14089.42, "probability": 0.9937 }, { "start": 14090.1, "end": 14092.88, "probability": 0.7523 }, { "start": 14093.44, "end": 14097.34, "probability": 0.8965 }, { "start": 14097.5, "end": 14098.46, "probability": 0.7836 }, { "start": 14098.6, "end": 14098.9, "probability": 0.7967 }, { "start": 14099.06, "end": 14100.06, "probability": 0.5154 }, { "start": 14100.46, "end": 14103.74, "probability": 0.9966 }, { "start": 14104.32, "end": 14105.04, "probability": 0.7012 }, { "start": 14105.36, "end": 14108.0, "probability": 0.9963 }, { "start": 14108.22, "end": 14109.84, "probability": 0.0418 }, { "start": 14110.08, "end": 14110.82, "probability": 0.0191 }, { "start": 14110.82, "end": 14112.88, "probability": 0.7548 }, { "start": 14113.18, "end": 14114.22, "probability": 0.9595 }, { "start": 14114.62, "end": 14117.64, "probability": 0.9757 }, { "start": 14117.96, "end": 14121.32, "probability": 0.0175 }, { "start": 14121.46, "end": 14121.56, "probability": 0.0624 }, { "start": 14121.56, "end": 14121.56, "probability": 0.0643 }, { "start": 14121.56, "end": 14121.56, "probability": 0.2789 }, { "start": 14121.56, "end": 14123.05, "probability": 0.2557 }, { "start": 14123.42, "end": 14126.74, "probability": 0.4898 }, { "start": 14127.04, "end": 14128.58, "probability": 0.4926 }, { "start": 14128.58, "end": 14129.6, "probability": 0.6549 }, { "start": 14130.0, "end": 14133.04, "probability": 0.5461 }, { "start": 14133.36, "end": 14134.34, "probability": 0.9913 }, { "start": 14134.88, "end": 14135.54, "probability": 0.9517 }, { "start": 14136.38, "end": 14139.24, "probability": 0.9763 }, { "start": 14139.34, "end": 14140.8, "probability": 0.8554 }, { "start": 14141.42, "end": 14144.78, "probability": 0.9239 }, { "start": 14145.58, "end": 14148.88, "probability": 0.9882 }, { "start": 14148.94, "end": 14150.13, "probability": 0.9043 }, { "start": 14150.66, "end": 14153.62, "probability": 0.6073 }, { "start": 14153.72, "end": 14153.98, "probability": 0.0185 }, { "start": 14153.98, "end": 14153.98, "probability": 0.1171 }, { "start": 14153.98, "end": 14153.98, "probability": 0.2251 }, { "start": 14153.98, "end": 14159.38, "probability": 0.9665 }, { "start": 14159.56, "end": 14160.24, "probability": 0.994 }, { "start": 14160.48, "end": 14161.48, "probability": 0.5951 }, { "start": 14161.84, "end": 14166.24, "probability": 0.9104 }, { "start": 14166.5, "end": 14168.57, "probability": 0.9824 }, { "start": 14168.94, "end": 14170.8, "probability": 0.9902 }, { "start": 14171.3, "end": 14173.48, "probability": 0.9868 }, { "start": 14173.54, "end": 14174.42, "probability": 0.6211 }, { "start": 14175.02, "end": 14175.42, "probability": 0.6093 }, { "start": 14176.82, "end": 14179.66, "probability": 0.7957 }, { "start": 14179.92, "end": 14181.48, "probability": 0.6633 }, { "start": 14182.28, "end": 14182.8, "probability": 0.0908 }, { "start": 14184.98, "end": 14186.8, "probability": 0.7396 }, { "start": 14186.86, "end": 14187.36, "probability": 0.8844 }, { "start": 14188.72, "end": 14191.26, "probability": 0.8286 }, { "start": 14191.96, "end": 14194.06, "probability": 0.4542 }, { "start": 14194.66, "end": 14195.64, "probability": 0.8304 }, { "start": 14196.1, "end": 14196.48, "probability": 0.0769 }, { "start": 14197.48, "end": 14198.48, "probability": 0.2296 }, { "start": 14198.54, "end": 14199.76, "probability": 0.3471 }, { "start": 14200.31, "end": 14203.34, "probability": 0.3692 }, { "start": 14223.12, "end": 14224.46, "probability": 0.6497 }, { "start": 14224.78, "end": 14226.4, "probability": 0.4716 }, { "start": 14226.54, "end": 14229.36, "probability": 0.7549 }, { "start": 14231.12, "end": 14231.12, "probability": 0.0746 }, { "start": 14231.12, "end": 14231.32, "probability": 0.6511 }, { "start": 14231.98, "end": 14232.44, "probability": 0.8086 }, { "start": 14232.6, "end": 14234.1, "probability": 0.935 }, { "start": 14234.42, "end": 14235.34, "probability": 0.345 }, { "start": 14235.78, "end": 14236.04, "probability": 0.5983 }, { "start": 14236.54, "end": 14238.2, "probability": 0.579 }, { "start": 14238.46, "end": 14239.08, "probability": 0.9505 }, { "start": 14240.16, "end": 14242.52, "probability": 0.7047 }, { "start": 14244.54, "end": 14247.82, "probability": 0.9805 }, { "start": 14247.9, "end": 14250.2, "probability": 0.8225 }, { "start": 14251.32, "end": 14254.7, "probability": 0.875 }, { "start": 14255.8, "end": 14261.2, "probability": 0.9593 }, { "start": 14262.52, "end": 14266.24, "probability": 0.9881 }, { "start": 14267.84, "end": 14272.7, "probability": 0.9914 }, { "start": 14273.48, "end": 14275.22, "probability": 0.9247 }, { "start": 14275.82, "end": 14276.38, "probability": 0.9755 }, { "start": 14277.56, "end": 14282.4, "probability": 0.9812 }, { "start": 14282.4, "end": 14288.8, "probability": 0.9382 }, { "start": 14289.04, "end": 14294.06, "probability": 0.997 }, { "start": 14296.16, "end": 14300.66, "probability": 0.9966 }, { "start": 14300.72, "end": 14305.46, "probability": 0.9941 }, { "start": 14306.7, "end": 14309.16, "probability": 0.7656 }, { "start": 14309.72, "end": 14310.4, "probability": 0.5187 }, { "start": 14316.6, "end": 14319.72, "probability": 0.7587 }, { "start": 14320.36, "end": 14322.52, "probability": 0.9849 }, { "start": 14323.3, "end": 14326.28, "probability": 0.9506 }, { "start": 14327.0, "end": 14328.6, "probability": 0.9133 }, { "start": 14329.42, "end": 14334.34, "probability": 0.9831 }, { "start": 14335.16, "end": 14337.22, "probability": 0.9357 }, { "start": 14338.36, "end": 14341.74, "probability": 0.9749 }, { "start": 14342.56, "end": 14343.26, "probability": 0.6407 }, { "start": 14343.52, "end": 14346.62, "probability": 0.9392 }, { "start": 14347.44, "end": 14348.28, "probability": 0.8194 }, { "start": 14348.76, "end": 14352.82, "probability": 0.9397 }, { "start": 14353.32, "end": 14356.14, "probability": 0.9447 }, { "start": 14356.7, "end": 14358.36, "probability": 0.9748 }, { "start": 14358.86, "end": 14363.22, "probability": 0.978 }, { "start": 14363.22, "end": 14365.78, "probability": 0.9932 }, { "start": 14367.12, "end": 14368.32, "probability": 0.9672 }, { "start": 14369.02, "end": 14374.56, "probability": 0.9608 }, { "start": 14375.62, "end": 14375.96, "probability": 0.7996 }, { "start": 14377.06, "end": 14379.32, "probability": 0.922 }, { "start": 14380.06, "end": 14382.99, "probability": 0.9878 }, { "start": 14384.4, "end": 14386.78, "probability": 0.9715 }, { "start": 14387.3, "end": 14388.7, "probability": 0.9817 }, { "start": 14389.28, "end": 14390.5, "probability": 0.7036 }, { "start": 14391.68, "end": 14394.7, "probability": 0.9838 }, { "start": 14395.76, "end": 14398.12, "probability": 0.8809 }, { "start": 14399.76, "end": 14402.8, "probability": 0.9643 }, { "start": 14404.1, "end": 14409.34, "probability": 0.9453 }, { "start": 14410.76, "end": 14412.98, "probability": 0.9976 }, { "start": 14413.02, "end": 14416.74, "probability": 0.9309 }, { "start": 14417.3, "end": 14421.54, "probability": 0.9476 }, { "start": 14423.06, "end": 14426.46, "probability": 0.8683 }, { "start": 14426.48, "end": 14427.78, "probability": 0.8632 }, { "start": 14428.9, "end": 14431.64, "probability": 0.8979 }, { "start": 14432.46, "end": 14433.88, "probability": 0.9799 }, { "start": 14434.58, "end": 14438.24, "probability": 0.9984 }, { "start": 14439.18, "end": 14440.76, "probability": 0.931 }, { "start": 14441.34, "end": 14443.96, "probability": 0.8409 }, { "start": 14444.66, "end": 14450.26, "probability": 0.9628 }, { "start": 14450.94, "end": 14451.26, "probability": 0.8229 }, { "start": 14452.6, "end": 14455.5, "probability": 0.6959 }, { "start": 14455.98, "end": 14456.92, "probability": 0.7574 }, { "start": 14457.46, "end": 14459.52, "probability": 0.8875 }, { "start": 14460.44, "end": 14461.48, "probability": 0.7143 }, { "start": 14483.98, "end": 14485.56, "probability": 0.6461 }, { "start": 14486.16, "end": 14487.52, "probability": 0.8896 }, { "start": 14488.5, "end": 14491.26, "probability": 0.3027 }, { "start": 14494.26, "end": 14496.66, "probability": 0.5863 }, { "start": 14497.54, "end": 14498.56, "probability": 0.9766 }, { "start": 14501.02, "end": 14505.3, "probability": 0.9933 }, { "start": 14506.14, "end": 14507.82, "probability": 0.8907 }, { "start": 14508.8, "end": 14512.24, "probability": 0.987 }, { "start": 14513.6, "end": 14514.34, "probability": 0.8777 }, { "start": 14515.06, "end": 14516.96, "probability": 0.9594 }, { "start": 14517.8, "end": 14520.64, "probability": 0.9856 }, { "start": 14521.64, "end": 14523.58, "probability": 0.7905 }, { "start": 14524.62, "end": 14529.34, "probability": 0.8473 }, { "start": 14529.64, "end": 14531.14, "probability": 0.998 }, { "start": 14533.2, "end": 14535.24, "probability": 0.8927 }, { "start": 14536.72, "end": 14538.34, "probability": 0.9712 }, { "start": 14539.24, "end": 14544.84, "probability": 0.8896 }, { "start": 14546.32, "end": 14549.06, "probability": 0.9932 }, { "start": 14549.88, "end": 14551.7, "probability": 0.9605 }, { "start": 14552.44, "end": 14554.98, "probability": 0.9979 }, { "start": 14555.4, "end": 14563.0, "probability": 0.9546 }, { "start": 14564.28, "end": 14567.52, "probability": 0.9379 }, { "start": 14567.74, "end": 14569.56, "probability": 0.9954 }, { "start": 14570.6, "end": 14576.06, "probability": 0.9933 }, { "start": 14576.16, "end": 14577.4, "probability": 0.7792 }, { "start": 14577.62, "end": 14580.34, "probability": 0.8853 }, { "start": 14580.84, "end": 14583.44, "probability": 0.9954 }, { "start": 14587.18, "end": 14592.3, "probability": 0.9966 }, { "start": 14593.22, "end": 14598.96, "probability": 0.999 }, { "start": 14600.0, "end": 14601.0, "probability": 0.8745 }, { "start": 14602.06, "end": 14605.22, "probability": 0.9843 }, { "start": 14605.66, "end": 14610.46, "probability": 0.7519 }, { "start": 14611.68, "end": 14613.98, "probability": 0.911 }, { "start": 14615.02, "end": 14621.18, "probability": 0.8414 }, { "start": 14623.38, "end": 14626.06, "probability": 0.9448 }, { "start": 14626.9, "end": 14631.48, "probability": 0.9864 }, { "start": 14632.06, "end": 14634.74, "probability": 0.7831 }, { "start": 14636.22, "end": 14636.9, "probability": 0.6659 }, { "start": 14637.62, "end": 14641.78, "probability": 0.9236 }, { "start": 14642.32, "end": 14644.48, "probability": 0.9937 }, { "start": 14645.18, "end": 14648.64, "probability": 0.9584 }, { "start": 14650.22, "end": 14655.22, "probability": 0.9845 }, { "start": 14655.48, "end": 14656.16, "probability": 0.6412 }, { "start": 14657.3, "end": 14662.47, "probability": 0.9953 }, { "start": 14662.9, "end": 14663.61, "probability": 0.9358 }, { "start": 14666.22, "end": 14672.36, "probability": 0.9971 }, { "start": 14674.22, "end": 14682.7, "probability": 0.9951 }, { "start": 14683.76, "end": 14685.9, "probability": 0.8237 }, { "start": 14687.3, "end": 14688.44, "probability": 0.833 }, { "start": 14688.6, "end": 14693.24, "probability": 0.97 }, { "start": 14693.24, "end": 14698.8, "probability": 0.9949 }, { "start": 14698.88, "end": 14699.82, "probability": 0.6349 }, { "start": 14700.58, "end": 14701.34, "probability": 0.6094 }, { "start": 14703.14, "end": 14703.8, "probability": 0.5705 }, { "start": 14706.2, "end": 14709.92, "probability": 0.9758 }, { "start": 14710.7, "end": 14712.34, "probability": 0.9966 }, { "start": 14712.44, "end": 14716.06, "probability": 0.9895 }, { "start": 14717.32, "end": 14719.12, "probability": 0.9868 }, { "start": 14720.42, "end": 14724.46, "probability": 0.9919 }, { "start": 14725.18, "end": 14727.38, "probability": 0.7123 }, { "start": 14727.46, "end": 14731.14, "probability": 0.8761 }, { "start": 14731.84, "end": 14737.18, "probability": 0.9851 }, { "start": 14738.36, "end": 14738.62, "probability": 0.0193 }, { "start": 14740.72, "end": 14746.46, "probability": 0.8407 }, { "start": 14747.16, "end": 14753.84, "probability": 0.9932 }, { "start": 14754.04, "end": 14754.48, "probability": 0.8328 }, { "start": 14754.58, "end": 14755.34, "probability": 0.9134 }, { "start": 14756.18, "end": 14760.24, "probability": 0.9962 }, { "start": 14761.16, "end": 14762.64, "probability": 0.6101 }, { "start": 14763.36, "end": 14768.0, "probability": 0.9906 }, { "start": 14770.53, "end": 14773.38, "probability": 0.999 }, { "start": 14774.04, "end": 14778.6, "probability": 0.9414 }, { "start": 14778.62, "end": 14782.8, "probability": 0.9951 }, { "start": 14783.96, "end": 14786.16, "probability": 0.8546 }, { "start": 14786.92, "end": 14790.72, "probability": 0.9672 }, { "start": 14791.48, "end": 14797.8, "probability": 0.9876 }, { "start": 14797.8, "end": 14802.28, "probability": 0.9842 }, { "start": 14803.66, "end": 14811.1, "probability": 0.9899 }, { "start": 14812.0, "end": 14815.14, "probability": 0.9927 }, { "start": 14815.82, "end": 14818.26, "probability": 0.9958 }, { "start": 14818.26, "end": 14821.84, "probability": 0.9773 }, { "start": 14822.22, "end": 14823.64, "probability": 0.9849 }, { "start": 14824.72, "end": 14825.14, "probability": 0.8231 }, { "start": 14826.54, "end": 14828.02, "probability": 0.939 }, { "start": 14828.88, "end": 14834.7, "probability": 0.9074 }, { "start": 14835.46, "end": 14842.26, "probability": 0.9556 }, { "start": 14843.82, "end": 14844.08, "probability": 0.6244 }, { "start": 14845.08, "end": 14846.9, "probability": 0.9212 }, { "start": 14847.52, "end": 14850.3, "probability": 0.9836 }, { "start": 14851.0, "end": 14853.42, "probability": 0.9915 }, { "start": 14854.42, "end": 14855.8, "probability": 0.9684 }, { "start": 14856.74, "end": 14860.84, "probability": 0.9407 }, { "start": 14861.02, "end": 14864.0, "probability": 0.9539 }, { "start": 14864.92, "end": 14867.76, "probability": 0.9896 }, { "start": 14868.62, "end": 14869.7, "probability": 0.6771 }, { "start": 14870.88, "end": 14873.4, "probability": 0.5735 }, { "start": 14873.72, "end": 14876.06, "probability": 0.8242 }, { "start": 14876.28, "end": 14877.14, "probability": 0.9889 }, { "start": 14877.38, "end": 14878.42, "probability": 0.8053 }, { "start": 14879.36, "end": 14881.34, "probability": 0.9719 }, { "start": 14882.4, "end": 14885.0, "probability": 0.9395 }, { "start": 14885.48, "end": 14887.4, "probability": 0.9919 }, { "start": 14887.64, "end": 14890.56, "probability": 0.8571 }, { "start": 14891.58, "end": 14894.75, "probability": 0.8663 }, { "start": 14895.56, "end": 14897.02, "probability": 0.9958 }, { "start": 14897.72, "end": 14900.2, "probability": 0.9015 }, { "start": 14900.74, "end": 14902.58, "probability": 0.9498 }, { "start": 14903.36, "end": 14907.88, "probability": 0.9438 }, { "start": 14908.04, "end": 14909.12, "probability": 0.7941 }, { "start": 14910.32, "end": 14910.44, "probability": 0.44 }, { "start": 14910.76, "end": 14911.22, "probability": 0.9303 }, { "start": 14911.6, "end": 14912.62, "probability": 0.9963 }, { "start": 14913.84, "end": 14916.4, "probability": 0.9996 }, { "start": 14918.02, "end": 14920.76, "probability": 0.9731 }, { "start": 14921.68, "end": 14926.44, "probability": 0.9939 }, { "start": 14927.64, "end": 14929.54, "probability": 0.9985 }, { "start": 14930.38, "end": 14933.98, "probability": 0.8893 }, { "start": 14934.1, "end": 14937.06, "probability": 0.9948 }, { "start": 14937.74, "end": 14941.08, "probability": 0.8896 }, { "start": 14942.1, "end": 14943.5, "probability": 0.985 }, { "start": 14944.12, "end": 14945.0, "probability": 0.8474 }, { "start": 14945.18, "end": 14946.8, "probability": 0.9915 }, { "start": 14947.28, "end": 14948.22, "probability": 0.7299 }, { "start": 14948.4, "end": 14951.32, "probability": 0.9878 }, { "start": 14951.96, "end": 14953.44, "probability": 0.9845 }, { "start": 14954.44, "end": 14955.44, "probability": 0.8354 }, { "start": 14956.1, "end": 14959.28, "probability": 0.9904 }, { "start": 14960.72, "end": 14962.24, "probability": 0.9832 }, { "start": 14962.4, "end": 14964.3, "probability": 0.9984 }, { "start": 14964.36, "end": 14965.67, "probability": 0.9854 }, { "start": 14966.24, "end": 14966.84, "probability": 0.9403 }, { "start": 14968.8, "end": 14974.84, "probability": 0.9837 }, { "start": 14975.62, "end": 14978.28, "probability": 0.9836 }, { "start": 14979.7, "end": 14980.8, "probability": 0.9551 }, { "start": 14981.72, "end": 14983.16, "probability": 0.7484 }, { "start": 14984.46, "end": 14984.94, "probability": 0.7437 }, { "start": 14985.64, "end": 14988.62, "probability": 0.9844 }, { "start": 14988.78, "end": 14991.18, "probability": 0.9728 }, { "start": 14992.28, "end": 14994.98, "probability": 0.9632 }, { "start": 14995.96, "end": 15003.18, "probability": 0.7226 }, { "start": 15004.02, "end": 15006.88, "probability": 0.9988 }, { "start": 15006.88, "end": 15011.58, "probability": 0.9995 }, { "start": 15012.68, "end": 15016.12, "probability": 0.6682 }, { "start": 15016.74, "end": 15019.02, "probability": 0.9888 }, { "start": 15019.64, "end": 15022.74, "probability": 0.982 }, { "start": 15023.38, "end": 15024.68, "probability": 0.9316 }, { "start": 15026.04, "end": 15027.02, "probability": 0.9509 }, { "start": 15028.58, "end": 15030.72, "probability": 0.9107 }, { "start": 15032.5, "end": 15037.84, "probability": 0.9945 }, { "start": 15038.32, "end": 15040.98, "probability": 0.9542 }, { "start": 15041.66, "end": 15042.88, "probability": 0.8563 }, { "start": 15043.64, "end": 15044.42, "probability": 0.8607 }, { "start": 15045.34, "end": 15047.2, "probability": 0.9782 }, { "start": 15047.84, "end": 15053.92, "probability": 0.988 }, { "start": 15054.46, "end": 15056.46, "probability": 0.7957 }, { "start": 15057.16, "end": 15059.74, "probability": 0.99 }, { "start": 15060.42, "end": 15062.3, "probability": 0.9311 }, { "start": 15063.06, "end": 15065.38, "probability": 0.8059 }, { "start": 15065.8, "end": 15066.04, "probability": 0.8698 }, { "start": 15066.24, "end": 15066.66, "probability": 0.925 }, { "start": 15066.84, "end": 15071.98, "probability": 0.9872 }, { "start": 15073.38, "end": 15073.72, "probability": 0.0268 }, { "start": 15073.72, "end": 15074.7, "probability": 0.9442 }, { "start": 15075.32, "end": 15078.52, "probability": 0.7562 }, { "start": 15079.66, "end": 15082.14, "probability": 0.8828 }, { "start": 15082.66, "end": 15085.5, "probability": 0.993 }, { "start": 15087.1, "end": 15087.38, "probability": 0.7852 }, { "start": 15087.8, "end": 15089.94, "probability": 0.8926 }, { "start": 15090.18, "end": 15092.46, "probability": 0.9968 }, { "start": 15092.88, "end": 15093.0, "probability": 0.2894 }, { "start": 15093.08, "end": 15094.56, "probability": 0.8172 }, { "start": 15095.02, "end": 15097.0, "probability": 0.9281 }, { "start": 15097.58, "end": 15100.7, "probability": 0.8219 }, { "start": 15101.26, "end": 15103.1, "probability": 0.9676 }, { "start": 15103.26, "end": 15104.52, "probability": 0.8459 }, { "start": 15104.88, "end": 15106.06, "probability": 0.8726 }, { "start": 15106.18, "end": 15107.18, "probability": 0.5444 }, { "start": 15120.04, "end": 15120.78, "probability": 0.5922 }, { "start": 15121.48, "end": 15121.62, "probability": 0.45 }, { "start": 15121.62, "end": 15123.96, "probability": 0.8428 }, { "start": 15127.9, "end": 15128.78, "probability": 0.7966 }, { "start": 15128.9, "end": 15129.86, "probability": 0.9589 }, { "start": 15130.02, "end": 15133.01, "probability": 0.8478 }, { "start": 15134.62, "end": 15135.34, "probability": 0.9908 }, { "start": 15136.36, "end": 15137.76, "probability": 0.7733 }, { "start": 15139.22, "end": 15143.04, "probability": 0.9993 }, { "start": 15143.98, "end": 15147.36, "probability": 0.9993 }, { "start": 15148.46, "end": 15150.62, "probability": 0.98 }, { "start": 15152.04, "end": 15154.36, "probability": 0.772 }, { "start": 15155.6, "end": 15158.1, "probability": 0.9993 }, { "start": 15158.8, "end": 15163.76, "probability": 0.5142 }, { "start": 15163.78, "end": 15164.56, "probability": 0.0364 }, { "start": 15164.58, "end": 15164.82, "probability": 0.0595 }, { "start": 15165.7, "end": 15165.7, "probability": 0.1305 }, { "start": 15165.7, "end": 15166.44, "probability": 0.2393 }, { "start": 15166.44, "end": 15167.62, "probability": 0.3079 }, { "start": 15167.78, "end": 15167.78, "probability": 0.1724 }, { "start": 15167.78, "end": 15167.78, "probability": 0.0299 }, { "start": 15167.78, "end": 15170.0, "probability": 0.7199 }, { "start": 15171.1, "end": 15171.64, "probability": 0.4685 }, { "start": 15173.32, "end": 15174.7, "probability": 0.0087 }, { "start": 15174.7, "end": 15178.88, "probability": 0.8559 }, { "start": 15179.7, "end": 15180.64, "probability": 0.1665 }, { "start": 15180.64, "end": 15181.84, "probability": 0.7487 }, { "start": 15182.04, "end": 15182.68, "probability": 0.7753 }, { "start": 15183.06, "end": 15184.42, "probability": 0.7722 }, { "start": 15184.48, "end": 15185.24, "probability": 0.2558 }, { "start": 15185.26, "end": 15187.3, "probability": 0.681 }, { "start": 15187.38, "end": 15187.48, "probability": 0.0272 }, { "start": 15187.54, "end": 15188.0, "probability": 0.5941 }, { "start": 15188.06, "end": 15188.14, "probability": 0.0622 }, { "start": 15188.14, "end": 15189.5, "probability": 0.7621 }, { "start": 15190.3, "end": 15196.26, "probability": 0.9578 }, { "start": 15197.16, "end": 15197.68, "probability": 0.9016 }, { "start": 15198.38, "end": 15200.72, "probability": 0.8991 }, { "start": 15201.08, "end": 15203.58, "probability": 0.0088 }, { "start": 15203.62, "end": 15203.72, "probability": 0.0483 }, { "start": 15203.72, "end": 15203.72, "probability": 0.2215 }, { "start": 15203.72, "end": 15203.72, "probability": 0.3023 }, { "start": 15203.72, "end": 15203.84, "probability": 0.1759 }, { "start": 15203.84, "end": 15204.5, "probability": 0.5244 }, { "start": 15204.6, "end": 15205.16, "probability": 0.5339 }, { "start": 15205.3, "end": 15207.29, "probability": 0.2792 }, { "start": 15207.84, "end": 15210.7, "probability": 0.6451 }, { "start": 15213.42, "end": 15213.78, "probability": 0.2551 }, { "start": 15213.78, "end": 15216.64, "probability": 0.2174 }, { "start": 15216.78, "end": 15217.56, "probability": 0.0019 }, { "start": 15217.56, "end": 15218.1, "probability": 0.1553 }, { "start": 15220.94, "end": 15223.12, "probability": 0.0043 }, { "start": 15223.12, "end": 15223.18, "probability": 0.0652 }, { "start": 15223.98, "end": 15225.7, "probability": 0.2021 }, { "start": 15225.78, "end": 15227.22, "probability": 0.015 }, { "start": 15229.2, "end": 15232.72, "probability": 0.0826 }, { "start": 15232.72, "end": 15234.83, "probability": 0.1908 }, { "start": 15236.2, "end": 15239.2, "probability": 0.4971 }, { "start": 15239.6, "end": 15242.78, "probability": 0.2465 }, { "start": 15242.78, "end": 15247.44, "probability": 0.1789 }, { "start": 15248.48, "end": 15250.68, "probability": 0.3024 }, { "start": 15251.49, "end": 15254.14, "probability": 0.0622 }, { "start": 15254.22, "end": 15254.22, "probability": 0.0432 }, { "start": 15254.22, "end": 15257.86, "probability": 0.0963 }, { "start": 15258.9, "end": 15260.46, "probability": 0.1141 }, { "start": 15260.46, "end": 15261.1, "probability": 0.1926 }, { "start": 15261.1, "end": 15261.1, "probability": 0.2911 }, { "start": 15261.33, "end": 15262.22, "probability": 0.1055 }, { "start": 15262.22, "end": 15263.36, "probability": 0.2483 }, { "start": 15263.62, "end": 15264.6, "probability": 0.0115 }, { "start": 15264.6, "end": 15265.38, "probability": 0.0758 }, { "start": 15268.0, "end": 15268.0, "probability": 0.0 }, { "start": 15268.0, "end": 15268.0, "probability": 0.0 }, { "start": 15268.0, "end": 15268.0, "probability": 0.0 }, { "start": 15268.0, "end": 15268.0, "probability": 0.0 }, { "start": 15268.0, "end": 15268.0, "probability": 0.0 }, { "start": 15268.0, "end": 15268.0, "probability": 0.0 }, { "start": 15268.0, "end": 15268.0, "probability": 0.0 }, { "start": 15268.0, "end": 15268.0, "probability": 0.0 }, { "start": 15268.0, "end": 15268.0, "probability": 0.0 }, { "start": 15268.0, "end": 15268.0, "probability": 0.0 }, { "start": 15268.0, "end": 15268.0, "probability": 0.0 }, { "start": 15268.0, "end": 15268.0, "probability": 0.0 }, { "start": 15268.0, "end": 15268.0, "probability": 0.0 }, { "start": 15268.14, "end": 15268.16, "probability": 0.3817 }, { "start": 15268.16, "end": 15268.16, "probability": 0.1482 }, { "start": 15268.16, "end": 15270.02, "probability": 0.8567 }, { "start": 15270.06, "end": 15272.44, "probability": 0.8794 }, { "start": 15273.02, "end": 15273.32, "probability": 0.0676 }, { "start": 15273.42, "end": 15274.8, "probability": 0.717 }, { "start": 15275.38, "end": 15277.26, "probability": 0.7085 }, { "start": 15277.26, "end": 15277.98, "probability": 0.0179 }, { "start": 15278.06, "end": 15279.62, "probability": 0.5799 }, { "start": 15280.82, "end": 15282.6, "probability": 0.7962 }, { "start": 15283.0, "end": 15285.34, "probability": 0.9746 }, { "start": 15285.68, "end": 15287.26, "probability": 0.9702 }, { "start": 15287.92, "end": 15288.82, "probability": 0.3496 }, { "start": 15289.36, "end": 15289.56, "probability": 0.5478 }, { "start": 15290.42, "end": 15291.28, "probability": 0.3216 }, { "start": 15291.82, "end": 15292.22, "probability": 0.4181 }, { "start": 15292.98, "end": 15294.84, "probability": 0.3209 }, { "start": 15294.92, "end": 15296.12, "probability": 0.075 }, { "start": 15296.26, "end": 15297.34, "probability": 0.4592 }, { "start": 15297.44, "end": 15298.04, "probability": 0.4449 }, { "start": 15298.12, "end": 15299.66, "probability": 0.798 }, { "start": 15300.8, "end": 15301.44, "probability": 0.2917 }, { "start": 15303.16, "end": 15303.4, "probability": 0.4561 }, { "start": 15304.08, "end": 15309.28, "probability": 0.4936 }, { "start": 15309.74, "end": 15310.06, "probability": 0.4933 }, { "start": 15310.06, "end": 15312.08, "probability": 0.7282 }, { "start": 15313.24, "end": 15313.72, "probability": 0.8428 }, { "start": 15313.94, "end": 15314.42, "probability": 0.0246 }, { "start": 15315.96, "end": 15316.58, "probability": 0.1817 }, { "start": 15316.66, "end": 15318.72, "probability": 0.5853 }, { "start": 15318.96, "end": 15319.98, "probability": 0.5972 }, { "start": 15320.8, "end": 15323.3, "probability": 0.9702 }, { "start": 15323.58, "end": 15326.46, "probability": 0.8631 }, { "start": 15326.46, "end": 15328.58, "probability": 0.5693 }, { "start": 15328.72, "end": 15329.56, "probability": 0.211 }, { "start": 15329.56, "end": 15331.82, "probability": 0.4676 }, { "start": 15333.36, "end": 15334.58, "probability": 0.9974 }, { "start": 15335.54, "end": 15336.3, "probability": 0.7737 }, { "start": 15337.52, "end": 15340.12, "probability": 0.994 }, { "start": 15340.92, "end": 15342.12, "probability": 0.8867 }, { "start": 15343.22, "end": 15343.84, "probability": 0.9276 }, { "start": 15344.84, "end": 15348.0, "probability": 0.9785 }, { "start": 15348.24, "end": 15352.86, "probability": 0.7932 }, { "start": 15353.54, "end": 15355.36, "probability": 0.4383 }, { "start": 15355.88, "end": 15355.95, "probability": 0.3859 }, { "start": 15357.34, "end": 15361.5, "probability": 0.9887 }, { "start": 15362.38, "end": 15362.44, "probability": 0.0787 }, { "start": 15362.44, "end": 15364.04, "probability": 0.9894 }, { "start": 15364.64, "end": 15365.36, "probability": 0.867 }, { "start": 15365.98, "end": 15368.24, "probability": 0.9895 }, { "start": 15369.06, "end": 15370.98, "probability": 0.9991 }, { "start": 15372.0, "end": 15376.48, "probability": 0.9966 }, { "start": 15377.82, "end": 15383.94, "probability": 0.9977 }, { "start": 15384.08, "end": 15387.28, "probability": 0.9387 }, { "start": 15387.8, "end": 15388.72, "probability": 0.965 }, { "start": 15389.14, "end": 15389.9, "probability": 0.8552 }, { "start": 15391.64, "end": 15392.42, "probability": 0.6838 }, { "start": 15392.46, "end": 15393.34, "probability": 0.8837 }, { "start": 15393.76, "end": 15394.14, "probability": 0.6436 }, { "start": 15394.22, "end": 15394.82, "probability": 0.994 }, { "start": 15394.84, "end": 15396.08, "probability": 0.9413 }, { "start": 15396.74, "end": 15399.25, "probability": 0.7727 }, { "start": 15400.52, "end": 15401.94, "probability": 0.9883 }, { "start": 15402.02, "end": 15403.66, "probability": 0.2589 }, { "start": 15403.98, "end": 15406.76, "probability": 0.6079 }, { "start": 15407.36, "end": 15409.26, "probability": 0.8248 }, { "start": 15409.66, "end": 15410.3, "probability": 0.0756 }, { "start": 15410.48, "end": 15411.42, "probability": 0.6923 }, { "start": 15411.56, "end": 15413.52, "probability": 0.7827 }, { "start": 15414.16, "end": 15416.06, "probability": 0.8164 }, { "start": 15416.7, "end": 15417.68, "probability": 0.7741 }, { "start": 15418.54, "end": 15419.82, "probability": 0.9687 }, { "start": 15420.62, "end": 15426.14, "probability": 0.9549 }, { "start": 15426.24, "end": 15427.22, "probability": 0.5339 }, { "start": 15427.42, "end": 15428.72, "probability": 0.2837 }, { "start": 15428.78, "end": 15428.96, "probability": 0.5269 }, { "start": 15429.06, "end": 15431.02, "probability": 0.9771 }, { "start": 15431.24, "end": 15431.48, "probability": 0.1541 }, { "start": 15431.48, "end": 15436.36, "probability": 0.9936 }, { "start": 15436.36, "end": 15436.8, "probability": 0.2972 }, { "start": 15436.86, "end": 15437.46, "probability": 0.2898 }, { "start": 15437.5, "end": 15437.66, "probability": 0.5747 }, { "start": 15437.8, "end": 15438.86, "probability": 0.8306 }, { "start": 15439.6, "end": 15442.66, "probability": 0.9968 }, { "start": 15443.48, "end": 15448.36, "probability": 0.9995 }, { "start": 15449.22, "end": 15451.56, "probability": 0.9824 }, { "start": 15451.66, "end": 15452.16, "probability": 0.543 }, { "start": 15452.42, "end": 15453.4, "probability": 0.9554 }, { "start": 15454.14, "end": 15458.24, "probability": 0.9956 }, { "start": 15458.82, "end": 15461.86, "probability": 0.9483 }, { "start": 15462.72, "end": 15466.66, "probability": 0.94 }, { "start": 15467.1, "end": 15470.36, "probability": 0.8376 }, { "start": 15470.48, "end": 15470.68, "probability": 0.5503 }, { "start": 15470.76, "end": 15473.1, "probability": 0.9589 }, { "start": 15473.82, "end": 15474.32, "probability": 0.3192 }, { "start": 15474.38, "end": 15475.26, "probability": 0.9767 }, { "start": 15475.86, "end": 15477.56, "probability": 0.9608 }, { "start": 15478.68, "end": 15480.2, "probability": 0.5165 }, { "start": 15480.6, "end": 15482.86, "probability": 0.9753 }, { "start": 15483.32, "end": 15486.74, "probability": 0.9845 }, { "start": 15487.16, "end": 15489.12, "probability": 0.7519 }, { "start": 15489.14, "end": 15489.8, "probability": 0.7597 }, { "start": 15489.96, "end": 15490.38, "probability": 0.7426 }, { "start": 15490.94, "end": 15490.94, "probability": 0.0199 }, { "start": 15490.94, "end": 15493.54, "probability": 0.4281 }, { "start": 15493.54, "end": 15498.26, "probability": 0.3637 }, { "start": 15500.62, "end": 15501.6, "probability": 0.0217 }, { "start": 15505.42, "end": 15509.7, "probability": 0.0762 }, { "start": 15511.04, "end": 15512.24, "probability": 0.0416 }, { "start": 15515.78, "end": 15521.18, "probability": 0.8429 }, { "start": 15521.52, "end": 15522.88, "probability": 0.5899 }, { "start": 15523.0, "end": 15525.44, "probability": 0.4962 }, { "start": 15525.74, "end": 15529.6, "probability": 0.7758 }, { "start": 15530.06, "end": 15534.38, "probability": 0.9161 }, { "start": 15534.38, "end": 15534.66, "probability": 0.1529 }, { "start": 15534.74, "end": 15536.12, "probability": 0.0326 }, { "start": 15536.12, "end": 15537.06, "probability": 0.3502 }, { "start": 15537.18, "end": 15538.54, "probability": 0.5886 }, { "start": 15538.74, "end": 15540.48, "probability": 0.6945 }, { "start": 15540.56, "end": 15541.54, "probability": 0.3912 }, { "start": 15541.68, "end": 15545.72, "probability": 0.5038 }, { "start": 15545.8, "end": 15547.46, "probability": 0.7487 }, { "start": 15547.78, "end": 15552.16, "probability": 0.6842 }, { "start": 15552.44, "end": 15555.4, "probability": 0.9452 }, { "start": 15555.68, "end": 15556.12, "probability": 0.8586 }, { "start": 15556.78, "end": 15557.3, "probability": 0.9664 }, { "start": 15557.54, "end": 15558.06, "probability": 0.9827 }, { "start": 15558.4, "end": 15559.32, "probability": 0.906 }, { "start": 15559.32, "end": 15560.52, "probability": 0.6299 }, { "start": 15560.62, "end": 15562.4, "probability": 0.9629 }, { "start": 15563.36, "end": 15566.12, "probability": 0.9397 }, { "start": 15566.24, "end": 15568.08, "probability": 0.9606 }, { "start": 15568.2, "end": 15570.18, "probability": 0.8796 }, { "start": 15570.3, "end": 15572.56, "probability": 0.934 }, { "start": 15572.9, "end": 15574.33, "probability": 0.6504 }, { "start": 15575.36, "end": 15578.26, "probability": 0.7236 }, { "start": 15578.26, "end": 15579.76, "probability": 0.3209 }, { "start": 15579.76, "end": 15581.66, "probability": 0.8632 }, { "start": 15581.84, "end": 15584.74, "probability": 0.947 }, { "start": 15585.3, "end": 15590.32, "probability": 0.9563 }, { "start": 15590.42, "end": 15591.9, "probability": 0.7985 }, { "start": 15592.56, "end": 15592.76, "probability": 0.5653 }, { "start": 15592.9, "end": 15593.69, "probability": 0.5663 }, { "start": 15594.3, "end": 15595.14, "probability": 0.637 }, { "start": 15595.24, "end": 15596.87, "probability": 0.9489 }, { "start": 15597.32, "end": 15600.4, "probability": 0.7443 }, { "start": 15600.82, "end": 15606.02, "probability": 0.9852 }, { "start": 15606.58, "end": 15607.16, "probability": 0.6852 }, { "start": 15607.9, "end": 15612.3, "probability": 0.953 }, { "start": 15613.04, "end": 15613.54, "probability": 0.7971 }, { "start": 15613.9, "end": 15614.9, "probability": 0.8486 }, { "start": 15615.82, "end": 15617.32, "probability": 0.9806 }, { "start": 15617.98, "end": 15621.48, "probability": 0.9373 }, { "start": 15622.14, "end": 15623.08, "probability": 0.7052 }, { "start": 15624.26, "end": 15629.3, "probability": 0.9832 }, { "start": 15629.88, "end": 15630.76, "probability": 0.8861 }, { "start": 15631.52, "end": 15634.47, "probability": 0.9067 }, { "start": 15635.5, "end": 15636.41, "probability": 0.4842 }, { "start": 15637.3, "end": 15639.56, "probability": 0.9465 }, { "start": 15640.62, "end": 15642.96, "probability": 0.952 }, { "start": 15643.08, "end": 15644.16, "probability": 0.5577 }, { "start": 15644.28, "end": 15645.12, "probability": 0.5815 }, { "start": 15646.06, "end": 15646.06, "probability": 0.017 }, { "start": 15646.06, "end": 15646.84, "probability": 0.918 }, { "start": 15647.02, "end": 15649.51, "probability": 0.9486 }, { "start": 15650.12, "end": 15651.37, "probability": 0.8413 }, { "start": 15651.92, "end": 15654.98, "probability": 0.9772 }, { "start": 15654.98, "end": 15657.1, "probability": 0.9888 }, { "start": 15657.84, "end": 15658.68, "probability": 0.937 }, { "start": 15659.14, "end": 15659.78, "probability": 0.8297 }, { "start": 15659.86, "end": 15660.84, "probability": 0.7868 }, { "start": 15661.34, "end": 15663.26, "probability": 0.985 }, { "start": 15663.42, "end": 15664.16, "probability": 0.6794 }, { "start": 15664.74, "end": 15666.92, "probability": 0.9556 }, { "start": 15667.26, "end": 15668.04, "probability": 0.9541 }, { "start": 15668.64, "end": 15671.84, "probability": 0.9606 }, { "start": 15671.84, "end": 15674.0, "probability": 0.7945 }, { "start": 15674.74, "end": 15676.78, "probability": 0.8973 }, { "start": 15677.54, "end": 15678.05, "probability": 0.9381 }, { "start": 15678.88, "end": 15679.88, "probability": 0.9167 }, { "start": 15680.14, "end": 15682.98, "probability": 0.987 }, { "start": 15683.04, "end": 15683.62, "probability": 0.8918 }, { "start": 15684.32, "end": 15685.12, "probability": 0.8518 }, { "start": 15685.8, "end": 15686.22, "probability": 0.2105 }, { "start": 15686.62, "end": 15688.22, "probability": 0.9727 }, { "start": 15688.36, "end": 15690.58, "probability": 0.9961 }, { "start": 15691.18, "end": 15694.42, "probability": 0.8716 }, { "start": 15695.42, "end": 15698.7, "probability": 0.986 }, { "start": 15698.82, "end": 15699.62, "probability": 0.7365 }, { "start": 15700.2, "end": 15702.86, "probability": 0.9437 }, { "start": 15702.96, "end": 15703.0, "probability": 0.7505 }, { "start": 15703.22, "end": 15708.02, "probability": 0.9813 }, { "start": 15708.2, "end": 15711.7, "probability": 0.867 }, { "start": 15711.72, "end": 15712.2, "probability": 0.7813 }, { "start": 15712.56, "end": 15713.12, "probability": 0.8452 }, { "start": 15714.32, "end": 15714.42, "probability": 0.193 }, { "start": 15714.42, "end": 15719.18, "probability": 0.791 }, { "start": 15719.94, "end": 15722.06, "probability": 0.9715 }, { "start": 15722.76, "end": 15726.32, "probability": 0.6828 }, { "start": 15726.78, "end": 15728.98, "probability": 0.4466 }, { "start": 15729.06, "end": 15729.6, "probability": 0.5678 }, { "start": 15729.64, "end": 15730.12, "probability": 0.6013 }, { "start": 15730.2, "end": 15730.82, "probability": 0.7744 }, { "start": 15738.9, "end": 15740.14, "probability": 0.22 }, { "start": 15740.32, "end": 15741.52, "probability": 0.2737 }, { "start": 15741.54, "end": 15741.99, "probability": 0.7358 }, { "start": 15746.02, "end": 15747.83, "probability": 0.0642 }, { "start": 15749.24, "end": 15751.02, "probability": 0.0057 }, { "start": 15751.02, "end": 15751.02, "probability": 0.0434 }, { "start": 15751.02, "end": 15751.02, "probability": 0.0357 }, { "start": 15751.02, "end": 15751.02, "probability": 0.1223 }, { "start": 15751.02, "end": 15753.56, "probability": 0.5566 }, { "start": 15753.7, "end": 15755.32, "probability": 0.5961 }, { "start": 15757.16, "end": 15762.6, "probability": 0.9334 }, { "start": 15762.82, "end": 15765.6, "probability": 0.6797 }, { "start": 15766.62, "end": 15767.32, "probability": 0.7237 }, { "start": 15767.6, "end": 15768.4, "probability": 0.822 }, { "start": 15768.68, "end": 15769.48, "probability": 0.7829 }, { "start": 15770.0, "end": 15774.36, "probability": 0.1432 }, { "start": 15779.64, "end": 15783.66, "probability": 0.0167 }, { "start": 15789.04, "end": 15790.44, "probability": 0.0057 }, { "start": 15790.44, "end": 15790.94, "probability": 0.0185 }, { "start": 15791.3, "end": 15791.42, "probability": 0.0448 }, { "start": 15791.6, "end": 15792.78, "probability": 0.513 }, { "start": 15793.22, "end": 15794.48, "probability": 0.1579 }, { "start": 15795.0, "end": 15797.04, "probability": 0.5288 }, { "start": 15797.22, "end": 15799.68, "probability": 0.905 }, { "start": 15801.46, "end": 15806.22, "probability": 0.974 }, { "start": 15807.28, "end": 15808.62, "probability": 0.8692 }, { "start": 15808.78, "end": 15811.16, "probability": 0.7045 }, { "start": 15812.62, "end": 15812.96, "probability": 0.037 }, { "start": 15812.96, "end": 15814.06, "probability": 0.3686 }, { "start": 15814.76, "end": 15815.98, "probability": 0.6477 }, { "start": 15826.86, "end": 15829.1, "probability": 0.782 }, { "start": 15830.24, "end": 15833.18, "probability": 0.9871 }, { "start": 15833.46, "end": 15835.84, "probability": 0.6716 }, { "start": 15837.74, "end": 15837.74, "probability": 0.0293 }, { "start": 15837.92, "end": 15840.2, "probability": 0.9717 }, { "start": 15840.52, "end": 15843.0, "probability": 0.9967 }, { "start": 15843.9, "end": 15846.4, "probability": 0.999 }, { "start": 15846.4, "end": 15848.9, "probability": 0.9988 }, { "start": 15850.12, "end": 15852.54, "probability": 0.5508 }, { "start": 15852.68, "end": 15853.72, "probability": 0.7431 }, { "start": 15853.9, "end": 15854.8, "probability": 0.8931 }, { "start": 15855.56, "end": 15857.06, "probability": 0.816 }, { "start": 15857.22, "end": 15859.98, "probability": 0.9897 }, { "start": 15861.7, "end": 15865.46, "probability": 0.9927 }, { "start": 15866.46, "end": 15869.36, "probability": 0.9876 }, { "start": 15870.24, "end": 15871.0, "probability": 0.8224 }, { "start": 15871.66, "end": 15873.84, "probability": 0.9694 }, { "start": 15874.56, "end": 15877.46, "probability": 0.9984 }, { "start": 15878.16, "end": 15880.18, "probability": 0.9762 }, { "start": 15881.78, "end": 15886.02, "probability": 0.9995 }, { "start": 15886.48, "end": 15888.22, "probability": 0.7573 }, { "start": 15889.12, "end": 15892.6, "probability": 0.9417 }, { "start": 15893.84, "end": 15897.8, "probability": 0.987 }, { "start": 15898.44, "end": 15900.8, "probability": 0.9333 }, { "start": 15902.0, "end": 15906.26, "probability": 0.9971 }, { "start": 15906.84, "end": 15907.88, "probability": 0.9247 }, { "start": 15908.5, "end": 15910.76, "probability": 0.9525 }, { "start": 15911.3, "end": 15917.38, "probability": 0.9891 }, { "start": 15918.2, "end": 15922.14, "probability": 0.9819 }, { "start": 15922.98, "end": 15923.58, "probability": 0.6451 }, { "start": 15924.22, "end": 15930.04, "probability": 0.9874 }, { "start": 15931.72, "end": 15935.66, "probability": 0.9972 }, { "start": 15936.18, "end": 15940.78, "probability": 0.998 }, { "start": 15941.66, "end": 15946.54, "probability": 0.9918 }, { "start": 15947.2, "end": 15950.7, "probability": 0.9894 }, { "start": 15950.92, "end": 15952.22, "probability": 0.7782 }, { "start": 15952.9, "end": 15957.88, "probability": 0.9856 }, { "start": 15958.42, "end": 15960.94, "probability": 0.8522 }, { "start": 15962.3, "end": 15965.22, "probability": 0.9396 }, { "start": 15965.22, "end": 15968.58, "probability": 0.9986 }, { "start": 15969.42, "end": 15972.3, "probability": 0.9979 }, { "start": 15972.3, "end": 15976.46, "probability": 0.9956 }, { "start": 15977.24, "end": 15981.28, "probability": 0.9985 }, { "start": 15981.28, "end": 15984.9, "probability": 0.9995 }, { "start": 15986.1, "end": 15990.2, "probability": 0.9985 }, { "start": 15990.94, "end": 15996.86, "probability": 0.9935 }, { "start": 15996.96, "end": 16002.54, "probability": 0.9556 }, { "start": 16003.26, "end": 16006.9, "probability": 0.9146 }, { "start": 16007.4, "end": 16009.18, "probability": 0.9975 }, { "start": 16010.28, "end": 16011.76, "probability": 0.9614 }, { "start": 16012.28, "end": 16013.46, "probability": 0.87 }, { "start": 16016.1, "end": 16017.16, "probability": 0.9614 }, { "start": 16017.82, "end": 16021.12, "probability": 0.9745 }, { "start": 16021.74, "end": 16026.42, "probability": 0.9905 }, { "start": 16027.32, "end": 16029.48, "probability": 0.9937 }, { "start": 16030.26, "end": 16031.94, "probability": 0.9688 }, { "start": 16032.56, "end": 16033.82, "probability": 0.8749 }, { "start": 16035.58, "end": 16039.2, "probability": 0.9941 }, { "start": 16039.88, "end": 16042.62, "probability": 0.868 }, { "start": 16043.82, "end": 16049.06, "probability": 0.9843 }, { "start": 16049.86, "end": 16053.14, "probability": 0.9706 }, { "start": 16054.08, "end": 16054.7, "probability": 0.8754 }, { "start": 16055.4, "end": 16056.18, "probability": 0.9698 }, { "start": 16056.96, "end": 16058.59, "probability": 0.992 }, { "start": 16059.7, "end": 16062.26, "probability": 0.9766 }, { "start": 16063.36, "end": 16065.2, "probability": 0.9126 }, { "start": 16065.5, "end": 16068.5, "probability": 0.9933 }, { "start": 16069.76, "end": 16072.48, "probability": 0.9427 }, { "start": 16072.84, "end": 16075.98, "probability": 0.9111 }, { "start": 16076.66, "end": 16077.16, "probability": 0.8597 }, { "start": 16077.28, "end": 16078.12, "probability": 0.979 }, { "start": 16078.26, "end": 16080.7, "probability": 0.9907 }, { "start": 16081.54, "end": 16084.18, "probability": 0.991 }, { "start": 16085.21, "end": 16087.18, "probability": 0.6012 }, { "start": 16089.04, "end": 16092.04, "probability": 0.9702 }, { "start": 16092.9, "end": 16096.54, "probability": 0.8871 }, { "start": 16097.6, "end": 16103.14, "probability": 0.9735 }, { "start": 16104.18, "end": 16108.26, "probability": 0.9395 }, { "start": 16108.48, "end": 16110.46, "probability": 0.9847 }, { "start": 16111.56, "end": 16115.4, "probability": 0.9747 }, { "start": 16116.2, "end": 16118.82, "probability": 0.9888 }, { "start": 16119.02, "end": 16122.92, "probability": 0.9984 }, { "start": 16123.58, "end": 16124.07, "probability": 0.9226 }, { "start": 16124.94, "end": 16125.68, "probability": 0.9163 }, { "start": 16125.84, "end": 16129.26, "probability": 0.9912 }, { "start": 16129.98, "end": 16133.82, "probability": 0.9734 }, { "start": 16134.62, "end": 16136.08, "probability": 0.9868 }, { "start": 16137.42, "end": 16138.64, "probability": 0.9658 }, { "start": 16138.82, "end": 16139.66, "probability": 0.5909 }, { "start": 16139.78, "end": 16141.9, "probability": 0.815 }, { "start": 16143.34, "end": 16151.06, "probability": 0.8823 }, { "start": 16151.74, "end": 16155.88, "probability": 0.932 }, { "start": 16156.5, "end": 16157.62, "probability": 0.7001 }, { "start": 16158.3, "end": 16160.5, "probability": 0.9795 }, { "start": 16161.02, "end": 16163.8, "probability": 0.9976 }, { "start": 16164.42, "end": 16166.88, "probability": 0.998 }, { "start": 16168.72, "end": 16171.36, "probability": 0.9304 }, { "start": 16171.94, "end": 16173.4, "probability": 0.876 }, { "start": 16174.1, "end": 16177.6, "probability": 0.8993 }, { "start": 16178.34, "end": 16180.6, "probability": 0.9694 }, { "start": 16181.6, "end": 16183.68, "probability": 0.9753 }, { "start": 16185.12, "end": 16187.78, "probability": 0.9673 }, { "start": 16189.32, "end": 16190.6, "probability": 0.7053 }, { "start": 16191.2, "end": 16192.46, "probability": 0.5916 }, { "start": 16193.37, "end": 16197.76, "probability": 0.9666 }, { "start": 16197.88, "end": 16200.94, "probability": 0.9606 }, { "start": 16201.56, "end": 16206.34, "probability": 0.9904 }, { "start": 16207.56, "end": 16210.48, "probability": 0.9912 }, { "start": 16210.68, "end": 16214.04, "probability": 0.672 }, { "start": 16214.04, "end": 16216.88, "probability": 0.9912 }, { "start": 16217.74, "end": 16218.7, "probability": 0.9487 }, { "start": 16219.12, "end": 16219.86, "probability": 0.4824 }, { "start": 16219.92, "end": 16224.04, "probability": 0.8457 }, { "start": 16224.58, "end": 16229.14, "probability": 0.9396 }, { "start": 16229.96, "end": 16231.88, "probability": 0.8835 }, { "start": 16232.4, "end": 16235.96, "probability": 0.9924 }, { "start": 16236.62, "end": 16237.76, "probability": 0.9946 }, { "start": 16238.02, "end": 16239.72, "probability": 0.9162 }, { "start": 16240.32, "end": 16244.08, "probability": 0.9615 }, { "start": 16244.78, "end": 16247.24, "probability": 0.9846 }, { "start": 16247.68, "end": 16251.82, "probability": 0.9941 }, { "start": 16252.06, "end": 16252.5, "probability": 0.6388 }, { "start": 16253.9, "end": 16256.06, "probability": 0.9753 }, { "start": 16257.06, "end": 16258.6, "probability": 0.801 }, { "start": 16259.28, "end": 16259.56, "probability": 0.8494 }, { "start": 16262.62, "end": 16265.56, "probability": 0.1156 }, { "start": 16267.61, "end": 16271.1, "probability": 0.1462 }, { "start": 16280.54, "end": 16280.78, "probability": 0.1464 }, { "start": 16289.7, "end": 16293.1, "probability": 0.98 }, { "start": 16294.04, "end": 16294.72, "probability": 0.3943 }, { "start": 16296.06, "end": 16296.54, "probability": 0.7263 }, { "start": 16296.68, "end": 16301.12, "probability": 0.9308 }, { "start": 16302.46, "end": 16304.46, "probability": 0.5753 }, { "start": 16304.52, "end": 16305.76, "probability": 0.7977 }, { "start": 16305.9, "end": 16310.26, "probability": 0.939 }, { "start": 16310.6, "end": 16314.26, "probability": 0.7896 }, { "start": 16315.06, "end": 16316.1, "probability": 0.5239 }, { "start": 16317.0, "end": 16322.38, "probability": 0.986 }, { "start": 16324.02, "end": 16325.28, "probability": 0.9792 }, { "start": 16326.1, "end": 16329.79, "probability": 0.9932 }, { "start": 16330.2, "end": 16330.78, "probability": 0.7525 }, { "start": 16330.84, "end": 16332.08, "probability": 0.9231 }, { "start": 16332.6, "end": 16337.64, "probability": 0.9773 }, { "start": 16338.96, "end": 16342.78, "probability": 0.9753 }, { "start": 16342.86, "end": 16344.1, "probability": 0.7993 }, { "start": 16345.06, "end": 16347.94, "probability": 0.9884 }, { "start": 16348.72, "end": 16353.24, "probability": 0.9922 }, { "start": 16353.24, "end": 16358.2, "probability": 0.9968 }, { "start": 16359.58, "end": 16367.06, "probability": 0.9847 }, { "start": 16369.04, "end": 16376.1, "probability": 0.9948 }, { "start": 16377.0, "end": 16378.38, "probability": 0.9291 }, { "start": 16379.16, "end": 16381.94, "probability": 0.8825 }, { "start": 16383.5, "end": 16386.64, "probability": 0.9596 }, { "start": 16387.78, "end": 16392.18, "probability": 0.9961 }, { "start": 16392.94, "end": 16399.49, "probability": 0.9972 }, { "start": 16400.76, "end": 16403.88, "probability": 0.9749 }, { "start": 16404.36, "end": 16407.68, "probability": 0.9665 }, { "start": 16408.45, "end": 16408.9, "probability": 0.8494 }, { "start": 16409.44, "end": 16410.56, "probability": 0.8218 }, { "start": 16410.82, "end": 16412.14, "probability": 0.9693 }, { "start": 16412.24, "end": 16414.48, "probability": 0.9872 }, { "start": 16415.38, "end": 16419.66, "probability": 0.8416 }, { "start": 16419.66, "end": 16422.42, "probability": 0.9925 }, { "start": 16422.92, "end": 16425.24, "probability": 0.901 }, { "start": 16426.36, "end": 16429.74, "probability": 0.9866 }, { "start": 16429.74, "end": 16434.86, "probability": 0.9879 }, { "start": 16435.1, "end": 16437.84, "probability": 0.8668 }, { "start": 16438.74, "end": 16442.52, "probability": 0.9508 }, { "start": 16443.2, "end": 16446.26, "probability": 0.9778 }, { "start": 16447.08, "end": 16447.82, "probability": 0.7983 }, { "start": 16448.04, "end": 16451.6, "probability": 0.9824 }, { "start": 16452.61, "end": 16456.02, "probability": 0.9924 }, { "start": 16456.96, "end": 16460.06, "probability": 0.9842 }, { "start": 16460.7, "end": 16461.74, "probability": 0.8073 }, { "start": 16462.36, "end": 16464.02, "probability": 0.9956 }, { "start": 16464.96, "end": 16467.26, "probability": 0.8062 }, { "start": 16467.82, "end": 16468.64, "probability": 0.5757 }, { "start": 16469.2, "end": 16475.07, "probability": 0.9961 }, { "start": 16476.7, "end": 16483.54, "probability": 0.8481 }, { "start": 16484.68, "end": 16486.99, "probability": 0.7991 }, { "start": 16488.58, "end": 16492.46, "probability": 0.9941 }, { "start": 16493.22, "end": 16495.16, "probability": 0.9953 }, { "start": 16495.8, "end": 16498.18, "probability": 0.9087 }, { "start": 16498.7, "end": 16502.24, "probability": 0.9984 }, { "start": 16502.36, "end": 16502.56, "probability": 0.4246 }, { "start": 16502.64, "end": 16504.98, "probability": 0.9985 }, { "start": 16506.08, "end": 16508.96, "probability": 0.9486 }, { "start": 16511.3, "end": 16513.9, "probability": 0.9908 }, { "start": 16514.5, "end": 16515.96, "probability": 0.9888 }, { "start": 16516.74, "end": 16519.34, "probability": 0.9958 }, { "start": 16520.08, "end": 16520.96, "probability": 0.9839 }, { "start": 16523.44, "end": 16531.54, "probability": 0.9248 }, { "start": 16531.86, "end": 16532.84, "probability": 0.8751 }, { "start": 16533.98, "end": 16535.0, "probability": 0.5267 }, { "start": 16535.14, "end": 16535.38, "probability": 0.9002 }, { "start": 16535.42, "end": 16537.96, "probability": 0.9661 }, { "start": 16538.18, "end": 16542.64, "probability": 0.9951 }, { "start": 16544.14, "end": 16545.58, "probability": 0.9861 }, { "start": 16546.28, "end": 16547.2, "probability": 0.9705 }, { "start": 16548.02, "end": 16555.42, "probability": 0.9716 }, { "start": 16557.28, "end": 16558.98, "probability": 0.9937 }, { "start": 16559.3, "end": 16559.62, "probability": 0.9254 }, { "start": 16559.76, "end": 16561.08, "probability": 0.8851 }, { "start": 16561.72, "end": 16562.56, "probability": 0.8016 }, { "start": 16564.76, "end": 16569.0, "probability": 0.9891 }, { "start": 16569.06, "end": 16569.82, "probability": 0.745 }, { "start": 16570.58, "end": 16572.66, "probability": 0.854 }, { "start": 16573.38, "end": 16577.7, "probability": 0.9836 }, { "start": 16578.32, "end": 16579.78, "probability": 0.9688 }, { "start": 16580.48, "end": 16581.06, "probability": 0.9672 }, { "start": 16581.12, "end": 16584.36, "probability": 0.9282 }, { "start": 16584.86, "end": 16585.52, "probability": 0.9239 }, { "start": 16585.64, "end": 16587.04, "probability": 0.9517 }, { "start": 16587.62, "end": 16590.02, "probability": 0.7875 }, { "start": 16590.56, "end": 16593.1, "probability": 0.8434 }, { "start": 16593.46, "end": 16595.4, "probability": 0.7374 }, { "start": 16595.44, "end": 16595.58, "probability": 0.3641 }, { "start": 16595.76, "end": 16597.09, "probability": 0.4326 }, { "start": 16597.78, "end": 16599.68, "probability": 0.7826 }, { "start": 16599.78, "end": 16599.88, "probability": 0.5533 }, { "start": 16600.32, "end": 16601.35, "probability": 0.4804 }, { "start": 16609.02, "end": 16609.2, "probability": 0.0288 }, { "start": 16616.28, "end": 16616.58, "probability": 0.7043 }, { "start": 16616.98, "end": 16618.28, "probability": 0.5952 }, { "start": 16618.34, "end": 16619.04, "probability": 0.9604 }, { "start": 16619.44, "end": 16619.74, "probability": 0.595 }, { "start": 16619.82, "end": 16621.54, "probability": 0.7952 }, { "start": 16621.62, "end": 16622.6, "probability": 0.5444 }, { "start": 16623.22, "end": 16624.26, "probability": 0.9309 }, { "start": 16626.46, "end": 16628.68, "probability": 0.6549 }, { "start": 16630.88, "end": 16631.94, "probability": 0.6415 }, { "start": 16631.98, "end": 16632.34, "probability": 0.8162 }, { "start": 16632.7, "end": 16635.0, "probability": 0.7742 }, { "start": 16636.52, "end": 16639.94, "probability": 0.9738 }, { "start": 16640.94, "end": 16641.84, "probability": 0.8593 }, { "start": 16643.6, "end": 16646.06, "probability": 0.9951 }, { "start": 16646.84, "end": 16650.84, "probability": 0.9824 }, { "start": 16650.98, "end": 16654.28, "probability": 0.9875 }, { "start": 16655.9, "end": 16657.12, "probability": 0.7494 }, { "start": 16657.12, "end": 16659.01, "probability": 0.5965 }, { "start": 16659.22, "end": 16660.08, "probability": 0.3419 }, { "start": 16660.12, "end": 16661.53, "probability": 0.9634 }, { "start": 16661.7, "end": 16662.74, "probability": 0.5053 }, { "start": 16662.74, "end": 16664.48, "probability": 0.8551 }, { "start": 16664.54, "end": 16665.3, "probability": 0.9619 }, { "start": 16665.52, "end": 16666.02, "probability": 0.5541 }, { "start": 16666.1, "end": 16671.76, "probability": 0.8622 }, { "start": 16671.82, "end": 16672.1, "probability": 0.7691 }, { "start": 16672.14, "end": 16673.82, "probability": 0.9783 }, { "start": 16674.02, "end": 16674.56, "probability": 0.1647 }, { "start": 16674.56, "end": 16674.92, "probability": 0.0589 }, { "start": 16674.92, "end": 16675.26, "probability": 0.2589 }, { "start": 16675.4, "end": 16677.62, "probability": 0.4544 }, { "start": 16677.64, "end": 16678.06, "probability": 0.4915 }, { "start": 16678.06, "end": 16679.15, "probability": 0.7888 }, { "start": 16679.3, "end": 16680.04, "probability": 0.8965 }, { "start": 16681.12, "end": 16686.5, "probability": 0.0295 }, { "start": 16686.7, "end": 16689.04, "probability": 0.2323 }, { "start": 16689.46, "end": 16689.6, "probability": 0.221 }, { "start": 16689.68, "end": 16690.18, "probability": 0.0773 }, { "start": 16690.46, "end": 16691.72, "probability": 0.0283 }, { "start": 16692.13, "end": 16693.36, "probability": 0.0295 }, { "start": 16693.36, "end": 16695.34, "probability": 0.1622 }, { "start": 16695.52, "end": 16698.04, "probability": 0.1761 }, { "start": 16698.04, "end": 16699.48, "probability": 0.2281 }, { "start": 16702.28, "end": 16703.34, "probability": 0.0244 }, { "start": 16703.42, "end": 16705.62, "probability": 0.2615 }, { "start": 16709.1, "end": 16711.0, "probability": 0.1336 }, { "start": 16711.82, "end": 16713.46, "probability": 0.0752 }, { "start": 16714.3, "end": 16714.44, "probability": 0.0287 }, { "start": 16716.64, "end": 16717.68, "probability": 0.083 }, { "start": 16717.96, "end": 16718.7, "probability": 0.0611 }, { "start": 16720.09, "end": 16721.0, "probability": 0.1986 }, { "start": 16721.0, "end": 16721.0, "probability": 0.1132 }, { "start": 16721.0, "end": 16721.88, "probability": 0.0935 }, { "start": 16722.26, "end": 16723.79, "probability": 0.0714 }, { "start": 16723.98, "end": 16723.98, "probability": 0.0204 }, { "start": 16723.98, "end": 16723.98, "probability": 0.1325 }, { "start": 16725.1, "end": 16725.66, "probability": 0.0123 }, { "start": 16725.68, "end": 16726.6, "probability": 0.3428 }, { "start": 16740.0, "end": 16740.0, "probability": 0.0 }, { "start": 16740.0, "end": 16740.0, "probability": 0.0 }, { "start": 16740.0, "end": 16740.0, "probability": 0.0 }, { "start": 16740.0, "end": 16740.0, "probability": 0.0 }, { "start": 16740.0, "end": 16740.0, "probability": 0.0 }, { "start": 16740.0, "end": 16740.0, "probability": 0.0 }, { "start": 16740.0, "end": 16740.0, "probability": 0.0 }, { "start": 16740.0, "end": 16740.0, "probability": 0.0 }, { "start": 16740.0, "end": 16740.0, "probability": 0.0 }, { "start": 16740.0, "end": 16740.0, "probability": 0.0 }, { "start": 16740.24, "end": 16741.0, "probability": 0.1322 }, { "start": 16741.86, "end": 16743.92, "probability": 0.9095 }, { "start": 16744.0, "end": 16748.1, "probability": 0.8463 }, { "start": 16748.96, "end": 16749.98, "probability": 0.9556 }, { "start": 16750.16, "end": 16752.86, "probability": 0.7125 }, { "start": 16753.74, "end": 16755.33, "probability": 0.7308 }, { "start": 16756.56, "end": 16757.14, "probability": 0.8364 }, { "start": 16758.04, "end": 16759.24, "probability": 0.8984 }, { "start": 16759.84, "end": 16761.94, "probability": 0.978 }, { "start": 16762.66, "end": 16762.92, "probability": 0.9125 }, { "start": 16763.0, "end": 16765.59, "probability": 0.9984 }, { "start": 16766.2, "end": 16770.28, "probability": 0.9979 }, { "start": 16771.74, "end": 16773.7, "probability": 0.8882 }, { "start": 16774.28, "end": 16776.52, "probability": 0.9388 }, { "start": 16777.02, "end": 16780.98, "probability": 0.9817 }, { "start": 16781.08, "end": 16782.14, "probability": 0.5107 }, { "start": 16782.28, "end": 16783.48, "probability": 0.8828 }, { "start": 16784.04, "end": 16786.16, "probability": 0.9983 }, { "start": 16786.78, "end": 16788.4, "probability": 0.987 }, { "start": 16788.84, "end": 16790.26, "probability": 0.9585 }, { "start": 16790.6, "end": 16792.18, "probability": 0.9055 }, { "start": 16792.68, "end": 16793.6, "probability": 0.9084 }, { "start": 16793.78, "end": 16795.92, "probability": 0.9943 }, { "start": 16796.56, "end": 16797.08, "probability": 0.5649 }, { "start": 16797.5, "end": 16800.2, "probability": 0.8688 }, { "start": 16800.84, "end": 16801.47, "probability": 0.932 }, { "start": 16802.06, "end": 16803.02, "probability": 0.8813 }, { "start": 16803.4, "end": 16805.26, "probability": 0.964 }, { "start": 16805.64, "end": 16807.56, "probability": 0.9753 }, { "start": 16807.96, "end": 16813.18, "probability": 0.9019 }, { "start": 16813.6, "end": 16814.6, "probability": 0.8933 }, { "start": 16814.98, "end": 16816.36, "probability": 0.9822 }, { "start": 16816.72, "end": 16817.26, "probability": 0.7496 }, { "start": 16818.08, "end": 16819.14, "probability": 0.8577 }, { "start": 16819.22, "end": 16820.94, "probability": 0.4415 }, { "start": 16821.96, "end": 16825.68, "probability": 0.3091 }, { "start": 16825.94, "end": 16828.17, "probability": 0.3534 }, { "start": 16828.38, "end": 16828.88, "probability": 0.3702 }, { "start": 16831.2, "end": 16831.38, "probability": 0.3789 }, { "start": 16840.94, "end": 16844.14, "probability": 0.2088 }, { "start": 16846.42, "end": 16846.42, "probability": 0.2342 }, { "start": 16846.42, "end": 16849.14, "probability": 0.3528 }, { "start": 16849.3, "end": 16850.92, "probability": 0.8112 }, { "start": 16851.58, "end": 16854.76, "probability": 0.9925 }, { "start": 16855.98, "end": 16857.34, "probability": 0.5887 }, { "start": 16857.5, "end": 16860.38, "probability": 0.9569 }, { "start": 16860.92, "end": 16864.04, "probability": 0.6095 }, { "start": 16864.68, "end": 16866.4, "probability": 0.6341 }, { "start": 16893.56, "end": 16899.24, "probability": 0.676 }, { "start": 16899.7, "end": 16901.58, "probability": 0.7573 }, { "start": 16902.66, "end": 16903.94, "probability": 0.7315 }, { "start": 16905.72, "end": 16910.62, "probability": 0.9976 }, { "start": 16911.54, "end": 16912.8, "probability": 0.8153 }, { "start": 16913.86, "end": 16918.22, "probability": 0.9587 }, { "start": 16918.5, "end": 16919.46, "probability": 0.8268 }, { "start": 16919.94, "end": 16920.64, "probability": 0.9838 }, { "start": 16920.82, "end": 16922.52, "probability": 0.9364 }, { "start": 16923.64, "end": 16927.96, "probability": 0.9977 }, { "start": 16928.86, "end": 16934.12, "probability": 0.9945 }, { "start": 16935.28, "end": 16936.52, "probability": 0.9629 }, { "start": 16937.06, "end": 16938.0, "probability": 0.9958 }, { "start": 16938.62, "end": 16939.78, "probability": 0.7474 }, { "start": 16939.9, "end": 16945.58, "probability": 0.9373 }, { "start": 16946.28, "end": 16948.04, "probability": 0.983 }, { "start": 16949.12, "end": 16952.94, "probability": 0.9313 }, { "start": 16954.12, "end": 16959.12, "probability": 0.9785 }, { "start": 16959.72, "end": 16960.68, "probability": 0.8684 }, { "start": 16961.12, "end": 16966.3, "probability": 0.9705 }, { "start": 16966.3, "end": 16971.12, "probability": 0.9948 }, { "start": 16971.9, "end": 16973.56, "probability": 0.8796 }, { "start": 16974.22, "end": 16977.16, "probability": 0.7673 }, { "start": 16977.94, "end": 16979.1, "probability": 0.957 }, { "start": 16980.36, "end": 16985.5, "probability": 0.9929 }, { "start": 16986.46, "end": 16989.32, "probability": 0.9438 }, { "start": 16989.84, "end": 16996.46, "probability": 0.951 }, { "start": 16997.1, "end": 17000.18, "probability": 0.9752 }, { "start": 17001.4, "end": 17008.0, "probability": 0.9844 }, { "start": 17008.78, "end": 17010.26, "probability": 0.9832 }, { "start": 17010.86, "end": 17013.14, "probability": 0.9995 }, { "start": 17014.18, "end": 17016.82, "probability": 0.941 }, { "start": 17018.56, "end": 17022.49, "probability": 0.9529 }, { "start": 17022.62, "end": 17026.34, "probability": 0.9956 }, { "start": 17027.46, "end": 17030.98, "probability": 0.9969 }, { "start": 17031.62, "end": 17035.16, "probability": 0.9972 }, { "start": 17035.98, "end": 17038.5, "probability": 0.8222 }, { "start": 17039.22, "end": 17042.22, "probability": 0.9802 }, { "start": 17043.04, "end": 17050.1, "probability": 0.9502 }, { "start": 17051.26, "end": 17054.86, "probability": 0.9571 }, { "start": 17055.4, "end": 17060.8, "probability": 0.9984 }, { "start": 17062.02, "end": 17064.66, "probability": 0.996 }, { "start": 17064.66, "end": 17070.08, "probability": 0.9947 }, { "start": 17072.16, "end": 17075.22, "probability": 0.8401 }, { "start": 17076.72, "end": 17080.72, "probability": 0.8217 }, { "start": 17081.7, "end": 17089.04, "probability": 0.9925 }, { "start": 17089.62, "end": 17093.18, "probability": 0.9888 }, { "start": 17094.7, "end": 17100.32, "probability": 0.9301 }, { "start": 17100.92, "end": 17102.94, "probability": 0.9753 }, { "start": 17103.76, "end": 17107.32, "probability": 0.9966 }, { "start": 17107.32, "end": 17112.24, "probability": 0.9916 }, { "start": 17113.38, "end": 17115.0, "probability": 0.8734 }, { "start": 17115.64, "end": 17117.74, "probability": 0.8142 }, { "start": 17118.42, "end": 17125.34, "probability": 0.9729 }, { "start": 17126.02, "end": 17127.64, "probability": 0.6326 }, { "start": 17128.2, "end": 17130.76, "probability": 0.9419 }, { "start": 17131.52, "end": 17134.8, "probability": 0.9543 }, { "start": 17135.84, "end": 17141.06, "probability": 0.9458 }, { "start": 17141.6, "end": 17145.88, "probability": 0.9614 }, { "start": 17147.06, "end": 17148.62, "probability": 0.8405 }, { "start": 17149.26, "end": 17156.6, "probability": 0.9678 }, { "start": 17157.42, "end": 17159.4, "probability": 0.7511 }, { "start": 17159.9, "end": 17163.54, "probability": 0.9885 }, { "start": 17164.18, "end": 17172.36, "probability": 0.9849 }, { "start": 17172.96, "end": 17178.5, "probability": 0.9904 }, { "start": 17179.9, "end": 17183.08, "probability": 0.9933 }, { "start": 17183.8, "end": 17192.38, "probability": 0.9946 }, { "start": 17193.12, "end": 17197.28, "probability": 0.8814 }, { "start": 17198.34, "end": 17199.46, "probability": 0.7128 }, { "start": 17200.08, "end": 17201.74, "probability": 0.9004 }, { "start": 17202.12, "end": 17207.26, "probability": 0.8948 }, { "start": 17208.44, "end": 17210.02, "probability": 0.5538 }, { "start": 17210.7, "end": 17214.12, "probability": 0.5776 }, { "start": 17214.72, "end": 17215.78, "probability": 0.9095 }, { "start": 17216.46, "end": 17218.28, "probability": 0.9858 }, { "start": 17221.7, "end": 17225.08, "probability": 0.9336 }, { "start": 17225.88, "end": 17229.3, "probability": 0.9322 }, { "start": 17230.42, "end": 17233.42, "probability": 0.9814 }, { "start": 17234.52, "end": 17235.6, "probability": 0.9556 }, { "start": 17236.14, "end": 17238.58, "probability": 0.9834 }, { "start": 17239.16, "end": 17240.98, "probability": 0.7922 }, { "start": 17241.58, "end": 17246.16, "probability": 0.9862 }, { "start": 17246.16, "end": 17252.34, "probability": 0.8706 }, { "start": 17253.46, "end": 17261.3, "probability": 0.9869 }, { "start": 17262.28, "end": 17263.18, "probability": 0.5408 }, { "start": 17263.96, "end": 17265.18, "probability": 0.8274 }, { "start": 17265.96, "end": 17267.98, "probability": 0.9759 }, { "start": 17269.4, "end": 17270.94, "probability": 0.9336 }, { "start": 17272.1, "end": 17276.52, "probability": 0.9466 }, { "start": 17277.28, "end": 17281.16, "probability": 0.9109 }, { "start": 17281.74, "end": 17288.66, "probability": 0.9941 }, { "start": 17289.32, "end": 17292.88, "probability": 0.8291 }, { "start": 17293.44, "end": 17295.8, "probability": 0.994 }, { "start": 17296.4, "end": 17296.98, "probability": 0.85 }, { "start": 17298.16, "end": 17300.74, "probability": 0.663 }, { "start": 17301.4, "end": 17303.6, "probability": 0.6915 }, { "start": 17304.32, "end": 17305.84, "probability": 0.9524 }, { "start": 17332.5, "end": 17333.26, "probability": 0.806 }, { "start": 17333.88, "end": 17334.22, "probability": 0.8489 }, { "start": 17334.66, "end": 17334.7, "probability": 0.8866 }, { "start": 17334.7, "end": 17335.14, "probability": 0.7462 }, { "start": 17336.32, "end": 17337.44, "probability": 0.7902 }, { "start": 17341.89, "end": 17349.02, "probability": 0.9868 }, { "start": 17349.5, "end": 17351.48, "probability": 0.7612 }, { "start": 17351.48, "end": 17352.94, "probability": 0.7659 }, { "start": 17353.14, "end": 17354.37, "probability": 0.6362 }, { "start": 17356.12, "end": 17360.32, "probability": 0.8384 }, { "start": 17361.0, "end": 17363.72, "probability": 0.7318 }, { "start": 17364.28, "end": 17365.66, "probability": 0.8552 }, { "start": 17365.74, "end": 17369.84, "probability": 0.9878 }, { "start": 17370.92, "end": 17375.14, "probability": 0.9268 }, { "start": 17375.84, "end": 17378.14, "probability": 0.514 }, { "start": 17378.24, "end": 17380.96, "probability": 0.9582 }, { "start": 17381.6, "end": 17384.3, "probability": 0.956 }, { "start": 17384.9, "end": 17386.62, "probability": 0.991 }, { "start": 17386.62, "end": 17389.42, "probability": 0.9799 }, { "start": 17390.24, "end": 17391.02, "probability": 0.6744 }, { "start": 17391.1, "end": 17391.5, "probability": 0.9326 }, { "start": 17391.62, "end": 17394.24, "probability": 0.9834 }, { "start": 17394.24, "end": 17397.88, "probability": 0.8505 }, { "start": 17398.48, "end": 17401.76, "probability": 0.9969 }, { "start": 17402.52, "end": 17403.84, "probability": 0.9978 }, { "start": 17403.96, "end": 17407.32, "probability": 0.9954 }, { "start": 17408.02, "end": 17410.94, "probability": 0.963 }, { "start": 17411.54, "end": 17412.02, "probability": 0.9594 }, { "start": 17412.58, "end": 17414.88, "probability": 0.9945 }, { "start": 17415.62, "end": 17417.74, "probability": 0.7699 }, { "start": 17418.4, "end": 17420.5, "probability": 0.9968 }, { "start": 17420.5, "end": 17422.74, "probability": 0.9844 }, { "start": 17423.16, "end": 17426.6, "probability": 0.9809 }, { "start": 17426.74, "end": 17429.38, "probability": 0.9326 }, { "start": 17429.44, "end": 17432.56, "probability": 0.9698 }, { "start": 17433.44, "end": 17433.8, "probability": 0.6615 }, { "start": 17434.38, "end": 17438.2, "probability": 0.9813 }, { "start": 17438.26, "end": 17441.34, "probability": 0.9961 }, { "start": 17441.7, "end": 17445.76, "probability": 0.9693 }, { "start": 17445.9, "end": 17446.06, "probability": 0.5085 }, { "start": 17446.16, "end": 17446.62, "probability": 0.8499 }, { "start": 17447.02, "end": 17451.48, "probability": 0.9805 }, { "start": 17451.48, "end": 17455.98, "probability": 0.8394 }, { "start": 17456.84, "end": 17458.56, "probability": 0.4581 }, { "start": 17458.6, "end": 17463.98, "probability": 0.9564 }, { "start": 17465.0, "end": 17467.52, "probability": 0.9102 }, { "start": 17471.42, "end": 17473.5, "probability": 0.6743 }, { "start": 17474.06, "end": 17474.98, "probability": 0.7006 }, { "start": 17475.76, "end": 17475.82, "probability": 0.027 }, { "start": 17476.06, "end": 17478.36, "probability": 0.9935 }, { "start": 17478.62, "end": 17481.5, "probability": 0.977 }, { "start": 17481.72, "end": 17484.04, "probability": 0.9811 }, { "start": 17484.48, "end": 17488.32, "probability": 0.9494 }, { "start": 17488.32, "end": 17491.84, "probability": 0.9772 }, { "start": 17492.36, "end": 17494.84, "probability": 0.9927 }, { "start": 17495.28, "end": 17496.78, "probability": 0.7459 }, { "start": 17497.9, "end": 17498.29, "probability": 0.8634 }, { "start": 17499.32, "end": 17501.46, "probability": 0.5002 }, { "start": 17501.54, "end": 17502.62, "probability": 0.0564 }, { "start": 17502.84, "end": 17504.9, "probability": 0.3743 }, { "start": 17506.7, "end": 17510.08, "probability": 0.9266 }, { "start": 17510.7, "end": 17513.29, "probability": 0.9965 }, { "start": 17513.52, "end": 17514.16, "probability": 0.3237 }, { "start": 17514.68, "end": 17515.52, "probability": 0.9067 }, { "start": 17515.66, "end": 17519.92, "probability": 0.9704 }, { "start": 17519.92, "end": 17520.78, "probability": 0.7788 }, { "start": 17521.36, "end": 17523.3, "probability": 0.4325 }, { "start": 17523.54, "end": 17525.02, "probability": 0.4431 }, { "start": 17525.08, "end": 17525.52, "probability": 0.8477 }, { "start": 17525.94, "end": 17531.24, "probability": 0.8712 }, { "start": 17531.78, "end": 17536.38, "probability": 0.9947 }, { "start": 17536.98, "end": 17541.56, "probability": 0.952 }, { "start": 17541.58, "end": 17542.5, "probability": 0.6031 }, { "start": 17542.56, "end": 17544.52, "probability": 0.8854 }, { "start": 17545.36, "end": 17545.5, "probability": 0.9843 }, { "start": 17546.02, "end": 17548.02, "probability": 0.7673 }, { "start": 17548.02, "end": 17550.8, "probability": 0.8568 }, { "start": 17567.28, "end": 17569.54, "probability": 0.4563 }, { "start": 17569.54, "end": 17569.72, "probability": 0.0888 }, { "start": 17569.72, "end": 17570.04, "probability": 0.1421 }, { "start": 17570.04, "end": 17570.54, "probability": 0.0451 }, { "start": 17571.14, "end": 17571.66, "probability": 0.2679 }, { "start": 17600.2, "end": 17601.38, "probability": 0.7255 }, { "start": 17602.16, "end": 17602.72, "probability": 0.8373 }, { "start": 17602.88, "end": 17603.64, "probability": 0.8101 }, { "start": 17603.9, "end": 17605.06, "probability": 0.8921 }, { "start": 17605.24, "end": 17607.64, "probability": 0.9852 }, { "start": 17608.04, "end": 17608.86, "probability": 0.7822 }, { "start": 17609.46, "end": 17610.34, "probability": 0.6915 }, { "start": 17611.34, "end": 17611.72, "probability": 0.7319 }, { "start": 17612.28, "end": 17614.41, "probability": 0.9658 }, { "start": 17616.82, "end": 17617.4, "probability": 0.8661 }, { "start": 17618.2, "end": 17619.16, "probability": 0.8696 }, { "start": 17619.9, "end": 17621.24, "probability": 0.6776 }, { "start": 17623.28, "end": 17624.12, "probability": 0.7527 }, { "start": 17624.12, "end": 17624.46, "probability": 0.6457 }, { "start": 17626.78, "end": 17628.92, "probability": 0.8628 }, { "start": 17629.6, "end": 17631.08, "probability": 0.6461 }, { "start": 17631.86, "end": 17632.74, "probability": 0.8038 }, { "start": 17633.34, "end": 17634.44, "probability": 0.7874 }, { "start": 17635.28, "end": 17637.32, "probability": 0.9627 }, { "start": 17638.94, "end": 17639.1, "probability": 0.1802 }, { "start": 17639.7, "end": 17640.32, "probability": 0.7009 }, { "start": 17640.64, "end": 17641.6, "probability": 0.5797 }, { "start": 17641.7, "end": 17643.34, "probability": 0.8268 }, { "start": 17643.9, "end": 17645.68, "probability": 0.7322 }, { "start": 17645.68, "end": 17646.16, "probability": 0.6581 }, { "start": 17646.32, "end": 17648.86, "probability": 0.7641 }, { "start": 17648.94, "end": 17650.72, "probability": 0.6949 }, { "start": 17651.54, "end": 17651.75, "probability": 0.0565 }, { "start": 17652.38, "end": 17653.1, "probability": 0.3655 }, { "start": 17654.0, "end": 17656.8, "probability": 0.3735 }, { "start": 17657.42, "end": 17657.54, "probability": 0.0073 }, { "start": 17657.62, "end": 17658.3, "probability": 0.5469 }, { "start": 17658.4, "end": 17661.08, "probability": 0.5752 }, { "start": 17661.34, "end": 17663.14, "probability": 0.2269 }, { "start": 17663.36, "end": 17666.18, "probability": 0.8478 }, { "start": 17666.76, "end": 17669.28, "probability": 0.9715 }, { "start": 17669.8, "end": 17671.1, "probability": 0.2491 }, { "start": 17671.22, "end": 17672.0, "probability": 0.7281 }, { "start": 17672.06, "end": 17677.2, "probability": 0.8416 }, { "start": 17677.38, "end": 17677.72, "probability": 0.7376 }, { "start": 17677.78, "end": 17678.12, "probability": 0.7476 }, { "start": 17678.22, "end": 17678.42, "probability": 0.302 }, { "start": 17678.44, "end": 17679.34, "probability": 0.7208 }, { "start": 17679.4, "end": 17680.68, "probability": 0.6598 }, { "start": 17680.82, "end": 17681.2, "probability": 0.6861 }, { "start": 17681.78, "end": 17682.2, "probability": 0.2231 }, { "start": 17682.2, "end": 17682.52, "probability": 0.384 }, { "start": 17682.6, "end": 17683.13, "probability": 0.8001 }, { "start": 17684.54, "end": 17685.48, "probability": 0.899 }, { "start": 17685.52, "end": 17686.06, "probability": 0.7652 }, { "start": 17686.14, "end": 17686.82, "probability": 0.8518 }, { "start": 17687.04, "end": 17687.4, "probability": 0.7564 }, { "start": 17687.86, "end": 17688.26, "probability": 0.0243 }, { "start": 17688.26, "end": 17690.08, "probability": 0.9854 }, { "start": 17690.58, "end": 17692.1, "probability": 0.9437 }, { "start": 17692.68, "end": 17694.2, "probability": 0.9771 }, { "start": 17694.68, "end": 17695.64, "probability": 0.8679 }, { "start": 17695.76, "end": 17696.42, "probability": 0.5987 }, { "start": 17696.44, "end": 17701.2, "probability": 0.9829 }, { "start": 17701.62, "end": 17703.94, "probability": 0.9831 }, { "start": 17704.42, "end": 17707.92, "probability": 0.9834 }, { "start": 17708.06, "end": 17710.26, "probability": 0.9327 }, { "start": 17710.8, "end": 17711.7, "probability": 0.6938 }, { "start": 17712.08, "end": 17712.08, "probability": 0.0281 }, { "start": 17712.08, "end": 17718.54, "probability": 0.9851 }, { "start": 17718.74, "end": 17719.7, "probability": 0.8796 }, { "start": 17720.22, "end": 17720.22, "probability": 0.4126 }, { "start": 17720.3, "end": 17721.01, "probability": 0.9431 }, { "start": 17721.92, "end": 17726.8, "probability": 0.9917 }, { "start": 17727.06, "end": 17727.98, "probability": 0.6809 }, { "start": 17728.4, "end": 17729.78, "probability": 0.7675 }, { "start": 17730.76, "end": 17732.74, "probability": 0.3002 }, { "start": 17732.74, "end": 17732.98, "probability": 0.4928 }, { "start": 17732.98, "end": 17733.3, "probability": 0.7313 }, { "start": 17733.32, "end": 17735.68, "probability": 0.96 }, { "start": 17736.02, "end": 17736.74, "probability": 0.8842 }, { "start": 17738.16, "end": 17739.98, "probability": 0.947 }, { "start": 17740.06, "end": 17742.02, "probability": 0.6772 }, { "start": 17742.2, "end": 17742.36, "probability": 0.4703 }, { "start": 17742.56, "end": 17743.4, "probability": 0.7611 }, { "start": 17743.64, "end": 17745.98, "probability": 0.699 }, { "start": 17746.94, "end": 17747.76, "probability": 0.2415 }, { "start": 17748.0, "end": 17750.48, "probability": 0.3942 }, { "start": 17751.22, "end": 17751.79, "probability": 0.1412 }, { "start": 17752.82, "end": 17754.92, "probability": 0.9475 }, { "start": 17754.92, "end": 17757.28, "probability": 0.1551 }, { "start": 17757.84, "end": 17760.16, "probability": 0.6455 }, { "start": 17760.32, "end": 17761.32, "probability": 0.9685 }, { "start": 17761.38, "end": 17763.18, "probability": 0.9858 }, { "start": 17763.5, "end": 17767.04, "probability": 0.7344 }, { "start": 17768.08, "end": 17771.16, "probability": 0.2231 }, { "start": 17772.46, "end": 17773.2, "probability": 0.5049 }, { "start": 17779.98, "end": 17780.64, "probability": 0.8515 }, { "start": 17780.9, "end": 17782.94, "probability": 0.8766 }, { "start": 17784.18, "end": 17787.36, "probability": 0.7995 }, { "start": 17788.68, "end": 17789.66, "probability": 0.7759 }, { "start": 17789.7, "end": 17792.08, "probability": 0.7419 }, { "start": 17792.26, "end": 17793.0, "probability": 0.9022 }, { "start": 17793.98, "end": 17796.38, "probability": 0.9944 }, { "start": 17798.2, "end": 17799.16, "probability": 0.6012 }, { "start": 17799.32, "end": 17801.86, "probability": 0.9678 }, { "start": 17803.06, "end": 17804.76, "probability": 0.1217 }, { "start": 17804.76, "end": 17804.76, "probability": 0.0205 }, { "start": 17804.76, "end": 17804.76, "probability": 0.426 }, { "start": 17805.66, "end": 17805.66, "probability": 0.2564 }, { "start": 17805.66, "end": 17807.02, "probability": 0.8932 }, { "start": 17808.3, "end": 17810.24, "probability": 0.941 }, { "start": 17811.24, "end": 17811.58, "probability": 0.4399 }, { "start": 17811.58, "end": 17814.1, "probability": 0.9857 }, { "start": 17814.74, "end": 17815.4, "probability": 0.4902 }, { "start": 17815.56, "end": 17816.22, "probability": 0.9395 }, { "start": 17817.36, "end": 17818.02, "probability": 0.8931 }, { "start": 17818.16, "end": 17819.88, "probability": 0.95 }, { "start": 17820.82, "end": 17822.66, "probability": 0.9968 }, { "start": 17823.28, "end": 17824.9, "probability": 0.673 }, { "start": 17825.06, "end": 17827.87, "probability": 0.7126 }, { "start": 17828.36, "end": 17831.12, "probability": 0.9319 }, { "start": 17831.22, "end": 17832.4, "probability": 0.7282 }, { "start": 17833.38, "end": 17838.98, "probability": 0.924 }, { "start": 17841.22, "end": 17849.82, "probability": 0.096 }, { "start": 17851.4, "end": 17851.9, "probability": 0.1673 }, { "start": 17851.9, "end": 17853.16, "probability": 0.3172 }, { "start": 17853.26, "end": 17853.46, "probability": 0.0533 }, { "start": 17853.46, "end": 17855.58, "probability": 0.052 }, { "start": 17857.08, "end": 17859.88, "probability": 0.3267 }, { "start": 17860.64, "end": 17861.85, "probability": 0.0547 }, { "start": 17862.68, "end": 17865.28, "probability": 0.2535 }, { "start": 17866.12, "end": 17866.82, "probability": 0.2661 }, { "start": 17867.04, "end": 17868.85, "probability": 0.3138 }, { "start": 17868.9, "end": 17870.28, "probability": 0.8442 }, { "start": 17870.94, "end": 17872.78, "probability": 0.8501 }, { "start": 17872.8, "end": 17874.24, "probability": 0.9658 }, { "start": 17875.04, "end": 17878.72, "probability": 0.9646 }, { "start": 17879.34, "end": 17880.22, "probability": 0.5197 }, { "start": 17880.9, "end": 17884.94, "probability": 0.9717 }, { "start": 17885.84, "end": 17890.5, "probability": 0.988 }, { "start": 17896.1, "end": 17896.64, "probability": 0.4281 }, { "start": 17900.07, "end": 17902.48, "probability": 0.9535 }, { "start": 17904.82, "end": 17906.1, "probability": 0.63 }, { "start": 17907.8, "end": 17907.98, "probability": 0.4466 }, { "start": 17907.98, "end": 17908.5, "probability": 0.6272 }, { "start": 17908.6, "end": 17908.96, "probability": 0.9266 }, { "start": 17909.12, "end": 17911.44, "probability": 0.842 }, { "start": 17911.76, "end": 17912.42, "probability": 0.792 }, { "start": 17913.96, "end": 17916.42, "probability": 0.7107 }, { "start": 17918.36, "end": 17919.18, "probability": 0.6382 }, { "start": 17919.34, "end": 17920.04, "probability": 0.7414 }, { "start": 17920.38, "end": 17920.94, "probability": 0.5603 }, { "start": 17936.29, "end": 17937.42, "probability": 0.3006 }, { "start": 17937.42, "end": 17938.42, "probability": 0.0248 }, { "start": 17939.04, "end": 17939.04, "probability": 0.1799 }, { "start": 17939.04, "end": 17942.32, "probability": 0.5759 }, { "start": 17942.88, "end": 17948.06, "probability": 0.8887 }, { "start": 17948.06, "end": 17949.16, "probability": 0.1155 }, { "start": 17949.3, "end": 17951.94, "probability": 0.4514 }, { "start": 17952.48, "end": 17953.64, "probability": 0.5476 }, { "start": 17953.64, "end": 17954.58, "probability": 0.3791 }, { "start": 17954.58, "end": 17954.68, "probability": 0.1237 }, { "start": 17955.46, "end": 17955.94, "probability": 0.2159 }, { "start": 17956.14, "end": 17956.14, "probability": 0.1838 }, { "start": 17956.14, "end": 17957.2, "probability": 0.4408 }, { "start": 17957.34, "end": 17961.14, "probability": 0.5397 }, { "start": 17962.76, "end": 17968.9, "probability": 0.981 }, { "start": 17969.6, "end": 17971.32, "probability": 0.9509 }, { "start": 17972.02, "end": 17974.66, "probability": 0.9072 }, { "start": 17975.1, "end": 17977.57, "probability": 0.7245 }, { "start": 17978.38, "end": 17980.54, "probability": 0.3764 }, { "start": 17982.82, "end": 17984.44, "probability": 0.5717 }, { "start": 17984.48, "end": 17984.6, "probability": 0.0144 }, { "start": 17989.12, "end": 17989.96, "probability": 0.0598 }, { "start": 17994.82, "end": 17999.99, "probability": 0.9792 }, { "start": 18001.08, "end": 18003.78, "probability": 0.1996 }, { "start": 18003.86, "end": 18004.42, "probability": 0.5024 }, { "start": 18004.6, "end": 18004.88, "probability": 0.3406 }, { "start": 18005.44, "end": 18007.82, "probability": 0.9698 }, { "start": 18008.08, "end": 18008.72, "probability": 0.2743 }, { "start": 18013.5, "end": 18014.9, "probability": 0.3556 }, { "start": 18016.6, "end": 18019.43, "probability": 0.988 }, { "start": 18020.38, "end": 18022.78, "probability": 0.9249 }, { "start": 18023.38, "end": 18027.12, "probability": 0.8677 }, { "start": 18028.0, "end": 18029.74, "probability": 0.9718 }, { "start": 18030.72, "end": 18031.66, "probability": 0.4755 }, { "start": 18032.5, "end": 18034.6, "probability": 0.5852 }, { "start": 18036.16, "end": 18037.83, "probability": 0.9933 }, { "start": 18040.1, "end": 18041.48, "probability": 0.8132 }, { "start": 18042.9, "end": 18045.1, "probability": 0.8551 }, { "start": 18046.34, "end": 18049.7, "probability": 0.9966 }, { "start": 18050.6, "end": 18052.46, "probability": 0.9633 }, { "start": 18053.64, "end": 18058.98, "probability": 0.925 }, { "start": 18060.12, "end": 18062.9, "probability": 0.9983 }, { "start": 18063.66, "end": 18065.22, "probability": 0.9142 }, { "start": 18065.9, "end": 18069.76, "probability": 0.9866 }, { "start": 18071.5, "end": 18076.6, "probability": 0.9792 }, { "start": 18078.04, "end": 18079.84, "probability": 0.5418 }, { "start": 18080.98, "end": 18082.02, "probability": 0.7462 }, { "start": 18083.08, "end": 18083.82, "probability": 0.938 }, { "start": 18084.48, "end": 18086.48, "probability": 0.9941 }, { "start": 18087.18, "end": 18090.4, "probability": 0.9781 }, { "start": 18090.64, "end": 18096.54, "probability": 0.986 }, { "start": 18097.86, "end": 18099.14, "probability": 0.9952 }, { "start": 18099.86, "end": 18102.2, "probability": 0.9805 }, { "start": 18102.9, "end": 18104.58, "probability": 0.9592 }, { "start": 18105.12, "end": 18105.8, "probability": 0.9766 }, { "start": 18106.98, "end": 18107.3, "probability": 0.6221 }, { "start": 18108.06, "end": 18114.0, "probability": 0.9619 }, { "start": 18114.0, "end": 18119.56, "probability": 0.9922 }, { "start": 18119.82, "end": 18120.24, "probability": 0.8103 }, { "start": 18120.7, "end": 18123.12, "probability": 0.8965 }, { "start": 18123.62, "end": 18125.2, "probability": 0.9919 }, { "start": 18127.48, "end": 18128.34, "probability": 0.9187 }, { "start": 18129.02, "end": 18133.46, "probability": 0.8781 }, { "start": 18134.8, "end": 18135.54, "probability": 0.7287 }, { "start": 18135.7, "end": 18138.44, "probability": 0.9932 }, { "start": 18140.2, "end": 18145.6, "probability": 0.9179 }, { "start": 18146.28, "end": 18152.0, "probability": 0.9965 }, { "start": 18153.46, "end": 18157.94, "probability": 0.9928 }, { "start": 18158.62, "end": 18162.66, "probability": 0.984 }, { "start": 18164.48, "end": 18166.58, "probability": 0.8352 }, { "start": 18167.78, "end": 18169.54, "probability": 0.9482 }, { "start": 18170.06, "end": 18174.88, "probability": 0.7516 }, { "start": 18176.26, "end": 18177.46, "probability": 0.8521 }, { "start": 18178.86, "end": 18180.74, "probability": 0.916 }, { "start": 18182.02, "end": 18186.4, "probability": 0.9951 }, { "start": 18187.6, "end": 18190.82, "probability": 0.989 }, { "start": 18192.46, "end": 18193.82, "probability": 0.6098 }, { "start": 18194.52, "end": 18198.18, "probability": 0.97 }, { "start": 18198.18, "end": 18200.96, "probability": 0.9931 }, { "start": 18201.94, "end": 18202.44, "probability": 0.8108 }, { "start": 18203.5, "end": 18207.2, "probability": 0.9688 }, { "start": 18208.0, "end": 18209.46, "probability": 0.6873 }, { "start": 18210.84, "end": 18211.98, "probability": 0.978 }, { "start": 18213.04, "end": 18217.66, "probability": 0.9619 }, { "start": 18218.34, "end": 18222.52, "probability": 0.9857 }, { "start": 18225.14, "end": 18226.08, "probability": 0.8485 }, { "start": 18227.0, "end": 18230.7, "probability": 0.9307 }, { "start": 18231.34, "end": 18236.96, "probability": 0.9844 }, { "start": 18238.04, "end": 18239.7, "probability": 0.9581 }, { "start": 18240.24, "end": 18241.14, "probability": 0.7642 }, { "start": 18241.74, "end": 18242.24, "probability": 0.601 }, { "start": 18242.8, "end": 18250.68, "probability": 0.6608 }, { "start": 18251.77, "end": 18253.52, "probability": 0.7349 }, { "start": 18255.06, "end": 18257.72, "probability": 0.9663 }, { "start": 18257.76, "end": 18263.2, "probability": 0.9426 }, { "start": 18264.46, "end": 18268.52, "probability": 0.9634 }, { "start": 18269.04, "end": 18269.46, "probability": 0.9565 }, { "start": 18270.0, "end": 18272.34, "probability": 0.9878 }, { "start": 18274.6, "end": 18274.6, "probability": 0.3991 }, { "start": 18274.6, "end": 18278.96, "probability": 0.988 }, { "start": 18279.96, "end": 18283.24, "probability": 0.9795 }, { "start": 18284.66, "end": 18286.86, "probability": 0.8775 }, { "start": 18287.68, "end": 18288.96, "probability": 0.8425 }, { "start": 18290.68, "end": 18293.24, "probability": 0.9641 }, { "start": 18293.9, "end": 18298.06, "probability": 0.9619 }, { "start": 18298.56, "end": 18303.42, "probability": 0.9095 }, { "start": 18304.42, "end": 18304.7, "probability": 0.4677 }, { "start": 18305.58, "end": 18308.5, "probability": 0.8567 }, { "start": 18308.96, "end": 18311.74, "probability": 0.917 }, { "start": 18312.72, "end": 18316.66, "probability": 0.9937 }, { "start": 18317.24, "end": 18318.26, "probability": 0.3486 }, { "start": 18318.86, "end": 18321.1, "probability": 0.6838 }, { "start": 18321.9, "end": 18325.3, "probability": 0.7626 }, { "start": 18326.3, "end": 18329.9, "probability": 0.9756 }, { "start": 18330.58, "end": 18336.72, "probability": 0.9945 }, { "start": 18337.34, "end": 18338.36, "probability": 0.8633 }, { "start": 18339.62, "end": 18340.8, "probability": 0.8954 }, { "start": 18341.44, "end": 18342.6, "probability": 0.8583 }, { "start": 18343.36, "end": 18345.0, "probability": 0.965 }, { "start": 18345.94, "end": 18348.12, "probability": 0.9814 }, { "start": 18348.66, "end": 18350.82, "probability": 0.988 }, { "start": 18353.24, "end": 18356.94, "probability": 0.966 }, { "start": 18357.6, "end": 18359.68, "probability": 0.9316 }, { "start": 18360.5, "end": 18361.2, "probability": 0.8511 }, { "start": 18362.24, "end": 18364.86, "probability": 0.6846 }, { "start": 18365.74, "end": 18368.63, "probability": 0.9419 }, { "start": 18369.6, "end": 18372.14, "probability": 0.9532 }, { "start": 18372.88, "end": 18373.86, "probability": 0.9102 }, { "start": 18374.62, "end": 18376.04, "probability": 0.975 }, { "start": 18376.76, "end": 18378.48, "probability": 0.9845 }, { "start": 18379.54, "end": 18382.46, "probability": 0.9104 }, { "start": 18383.14, "end": 18385.18, "probability": 0.9692 }, { "start": 18386.82, "end": 18387.38, "probability": 0.8366 }, { "start": 18388.1, "end": 18389.9, "probability": 0.9983 }, { "start": 18390.78, "end": 18391.62, "probability": 0.9096 }, { "start": 18391.8, "end": 18395.16, "probability": 0.9902 }, { "start": 18396.24, "end": 18397.44, "probability": 0.8945 }, { "start": 18398.58, "end": 18401.42, "probability": 0.9619 }, { "start": 18401.6, "end": 18403.16, "probability": 0.8711 }, { "start": 18404.26, "end": 18406.86, "probability": 0.9421 }, { "start": 18407.46, "end": 18408.46, "probability": 0.9738 }, { "start": 18410.24, "end": 18414.74, "probability": 0.9021 }, { "start": 18415.48, "end": 18416.96, "probability": 0.8624 }, { "start": 18417.6, "end": 18419.16, "probability": 0.8132 }, { "start": 18420.56, "end": 18424.86, "probability": 0.4426 }, { "start": 18426.36, "end": 18428.52, "probability": 0.514 }, { "start": 18429.4, "end": 18432.42, "probability": 0.8278 }, { "start": 18432.78, "end": 18435.94, "probability": 0.9946 }, { "start": 18436.46, "end": 18440.32, "probability": 0.9777 }, { "start": 18443.26, "end": 18444.48, "probability": 0.8825 }, { "start": 18445.24, "end": 18446.8, "probability": 0.8856 }, { "start": 18447.36, "end": 18448.46, "probability": 0.859 }, { "start": 18448.98, "end": 18450.16, "probability": 0.9991 }, { "start": 18450.7, "end": 18451.68, "probability": 0.9992 }, { "start": 18452.76, "end": 18455.54, "probability": 0.998 }, { "start": 18456.14, "end": 18459.86, "probability": 0.967 }, { "start": 18461.3, "end": 18465.8, "probability": 0.9773 }, { "start": 18466.92, "end": 18470.72, "probability": 0.9346 }, { "start": 18470.72, "end": 18474.64, "probability": 0.9989 }, { "start": 18475.96, "end": 18480.29, "probability": 0.9048 }, { "start": 18480.58, "end": 18483.28, "probability": 0.9395 }, { "start": 18484.3, "end": 18488.76, "probability": 0.9727 }, { "start": 18489.04, "end": 18490.56, "probability": 0.9985 }, { "start": 18491.26, "end": 18492.62, "probability": 0.895 }, { "start": 18493.48, "end": 18496.76, "probability": 0.9875 }, { "start": 18497.36, "end": 18502.06, "probability": 0.9847 }, { "start": 18502.54, "end": 18502.74, "probability": 0.7379 }, { "start": 18504.54, "end": 18509.04, "probability": 0.6735 }, { "start": 18511.86, "end": 18512.86, "probability": 0.325 }, { "start": 18513.44, "end": 18513.86, "probability": 0.0967 }, { "start": 18514.94, "end": 18516.75, "probability": 0.442 }, { "start": 18517.48, "end": 18518.7, "probability": 0.6113 }, { "start": 18521.2, "end": 18523.15, "probability": 0.9222 }, { "start": 18523.68, "end": 18524.36, "probability": 0.751 }, { "start": 18524.9, "end": 18528.44, "probability": 0.9959 }, { "start": 18529.02, "end": 18531.7, "probability": 0.7912 }, { "start": 18532.1, "end": 18533.32, "probability": 0.8053 }, { "start": 18533.84, "end": 18538.14, "probability": 0.9637 }, { "start": 18538.74, "end": 18539.26, "probability": 0.8068 }, { "start": 18539.88, "end": 18540.78, "probability": 0.7036 }, { "start": 18541.66, "end": 18542.4, "probability": 0.9369 }, { "start": 18544.1, "end": 18547.38, "probability": 0.642 }, { "start": 18549.3, "end": 18555.0, "probability": 0.9922 }, { "start": 18555.18, "end": 18559.4, "probability": 0.996 }, { "start": 18559.92, "end": 18560.8, "probability": 0.7878 }, { "start": 18563.0, "end": 18567.0, "probability": 0.4611 }, { "start": 18567.24, "end": 18570.02, "probability": 0.6061 }, { "start": 18570.08, "end": 18573.12, "probability": 0.7575 }, { "start": 18573.34, "end": 18581.5, "probability": 0.8738 }, { "start": 18582.16, "end": 18583.5, "probability": 0.6992 }, { "start": 18583.74, "end": 18586.16, "probability": 0.8359 }, { "start": 18586.22, "end": 18589.54, "probability": 0.938 }, { "start": 18590.14, "end": 18591.68, "probability": 0.9734 }, { "start": 18592.06, "end": 18597.16, "probability": 0.7486 }, { "start": 18597.78, "end": 18601.7, "probability": 0.9263 }, { "start": 18601.98, "end": 18607.8, "probability": 0.9406 }, { "start": 18608.66, "end": 18614.74, "probability": 0.7524 }, { "start": 18614.98, "end": 18616.68, "probability": 0.9985 }, { "start": 18617.34, "end": 18621.42, "probability": 0.9831 }, { "start": 18621.98, "end": 18630.52, "probability": 0.9976 }, { "start": 18631.1, "end": 18635.52, "probability": 0.9651 }, { "start": 18635.8, "end": 18645.2, "probability": 0.9895 }, { "start": 18645.72, "end": 18648.4, "probability": 0.7931 }, { "start": 18648.64, "end": 18653.7, "probability": 0.9736 }, { "start": 18654.56, "end": 18659.4, "probability": 0.9155 }, { "start": 18659.66, "end": 18663.06, "probability": 0.9794 }, { "start": 18663.28, "end": 18664.08, "probability": 0.3945 }, { "start": 18664.34, "end": 18665.62, "probability": 0.915 }, { "start": 18666.16, "end": 18672.4, "probability": 0.9852 }, { "start": 18672.46, "end": 18677.9, "probability": 0.9482 }, { "start": 18677.92, "end": 18683.64, "probability": 0.989 }, { "start": 18684.04, "end": 18686.14, "probability": 0.7349 }, { "start": 18686.74, "end": 18688.24, "probability": 0.9326 }, { "start": 18688.44, "end": 18690.74, "probability": 0.9517 }, { "start": 18691.24, "end": 18698.2, "probability": 0.9497 }, { "start": 18698.82, "end": 18700.7, "probability": 0.9977 }, { "start": 18701.66, "end": 18705.16, "probability": 0.9985 }, { "start": 18705.24, "end": 18708.7, "probability": 0.8599 }, { "start": 18709.1, "end": 18711.48, "probability": 0.683 }, { "start": 18711.66, "end": 18713.34, "probability": 0.8386 }, { "start": 18713.6, "end": 18715.44, "probability": 0.9378 }, { "start": 18716.1, "end": 18719.28, "probability": 0.5476 }, { "start": 18720.22, "end": 18724.42, "probability": 0.9801 }, { "start": 18724.64, "end": 18729.58, "probability": 0.9799 }, { "start": 18729.58, "end": 18734.14, "probability": 0.9933 }, { "start": 18734.72, "end": 18738.86, "probability": 0.9376 }, { "start": 18738.88, "end": 18738.88, "probability": 0.3255 }, { "start": 18738.88, "end": 18745.74, "probability": 0.9886 }, { "start": 18745.94, "end": 18746.24, "probability": 0.8243 }, { "start": 18746.38, "end": 18748.98, "probability": 0.7625 }, { "start": 18749.54, "end": 18752.77, "probability": 0.7232 }, { "start": 18754.61, "end": 18755.34, "probability": 0.1574 }, { "start": 18755.34, "end": 18756.2, "probability": 0.2339 }, { "start": 18756.26, "end": 18756.36, "probability": 0.875 }, { "start": 18756.88, "end": 18757.24, "probability": 0.8011 }, { "start": 18777.06, "end": 18777.32, "probability": 0.2093 }, { "start": 18786.92, "end": 18787.96, "probability": 0.527 }, { "start": 18788.16, "end": 18791.86, "probability": 0.7487 }, { "start": 18793.28, "end": 18797.84, "probability": 0.9779 }, { "start": 18798.78, "end": 18803.18, "probability": 0.9957 }, { "start": 18803.8, "end": 18805.68, "probability": 0.8512 }, { "start": 18806.72, "end": 18809.42, "probability": 0.9884 }, { "start": 18810.48, "end": 18814.16, "probability": 0.9434 }, { "start": 18815.34, "end": 18818.74, "probability": 0.9324 }, { "start": 18819.34, "end": 18823.52, "probability": 0.911 }, { "start": 18824.56, "end": 18827.84, "probability": 0.9322 }, { "start": 18828.48, "end": 18831.14, "probability": 0.9563 }, { "start": 18831.8, "end": 18832.76, "probability": 0.7816 }, { "start": 18833.22, "end": 18837.92, "probability": 0.9775 }, { "start": 18838.44, "end": 18839.08, "probability": 0.9359 }, { "start": 18839.82, "end": 18843.2, "probability": 0.8563 }, { "start": 18843.84, "end": 18844.36, "probability": 0.6364 }, { "start": 18846.78, "end": 18850.34, "probability": 0.9969 }, { "start": 18851.14, "end": 18852.22, "probability": 0.9303 }, { "start": 18853.06, "end": 18860.14, "probability": 0.9901 }, { "start": 18862.26, "end": 18864.62, "probability": 0.9974 }, { "start": 18866.02, "end": 18872.28, "probability": 0.9744 }, { "start": 18873.86, "end": 18880.28, "probability": 0.9248 }, { "start": 18880.8, "end": 18885.66, "probability": 0.8563 }, { "start": 18887.52, "end": 18892.22, "probability": 0.9851 }, { "start": 18893.16, "end": 18895.98, "probability": 0.9924 }, { "start": 18897.22, "end": 18900.8, "probability": 0.9958 }, { "start": 18901.32, "end": 18902.36, "probability": 0.7225 }, { "start": 18903.06, "end": 18905.62, "probability": 0.9817 }, { "start": 18906.62, "end": 18908.82, "probability": 0.9766 }, { "start": 18910.5, "end": 18913.78, "probability": 0.9479 }, { "start": 18914.74, "end": 18918.66, "probability": 0.9409 }, { "start": 18918.66, "end": 18923.32, "probability": 0.9744 }, { "start": 18923.82, "end": 18924.7, "probability": 0.6361 }, { "start": 18925.68, "end": 18927.86, "probability": 0.932 }, { "start": 18929.0, "end": 18931.94, "probability": 0.8079 }, { "start": 18932.62, "end": 18938.58, "probability": 0.756 }, { "start": 18939.3, "end": 18942.98, "probability": 0.9946 }, { "start": 18942.98, "end": 18948.78, "probability": 0.9729 }, { "start": 18949.22, "end": 18957.2, "probability": 0.9651 }, { "start": 18957.34, "end": 18957.68, "probability": 0.7726 }, { "start": 18961.92, "end": 18962.7, "probability": 0.7304 }, { "start": 18964.14, "end": 18966.76, "probability": 0.7654 }, { "start": 18968.48, "end": 18969.56, "probability": 0.3449 }, { "start": 18970.44, "end": 18972.58, "probability": 0.0778 }, { "start": 18975.26, "end": 18976.66, "probability": 0.2459 }, { "start": 19003.06, "end": 19003.84, "probability": 0.105 }, { "start": 19004.44, "end": 19007.62, "probability": 0.5013 }, { "start": 19007.84, "end": 19011.18, "probability": 0.9269 }, { "start": 19011.9, "end": 19013.32, "probability": 0.8661 }, { "start": 19013.9, "end": 19018.14, "probability": 0.9907 }, { "start": 19018.22, "end": 19020.7, "probability": 0.9951 }, { "start": 19021.66, "end": 19024.66, "probability": 0.7736 }, { "start": 19025.28, "end": 19029.18, "probability": 0.8723 }, { "start": 19029.62, "end": 19031.34, "probability": 0.6966 }, { "start": 19032.22, "end": 19036.06, "probability": 0.9534 }, { "start": 19036.2, "end": 19036.64, "probability": 0.9406 }, { "start": 19037.24, "end": 19038.79, "probability": 0.9971 }, { "start": 19039.88, "end": 19041.86, "probability": 0.9949 }, { "start": 19042.5, "end": 19045.78, "probability": 0.9915 }, { "start": 19046.52, "end": 19051.3, "probability": 0.7844 }, { "start": 19052.52, "end": 19052.68, "probability": 0.1922 }, { "start": 19052.68, "end": 19054.72, "probability": 0.6257 }, { "start": 19055.24, "end": 19059.16, "probability": 0.994 }, { "start": 19059.8, "end": 19060.94, "probability": 0.8583 }, { "start": 19061.18, "end": 19062.36, "probability": 0.9657 }, { "start": 19063.46, "end": 19065.3, "probability": 0.8151 }, { "start": 19065.34, "end": 19068.56, "probability": 0.9887 }, { "start": 19069.06, "end": 19069.34, "probability": 0.8145 }, { "start": 19069.58, "end": 19069.88, "probability": 0.5973 }, { "start": 19070.18, "end": 19071.24, "probability": 0.7437 }, { "start": 19071.78, "end": 19072.9, "probability": 0.9385 }, { "start": 19073.04, "end": 19074.64, "probability": 0.9864 }, { "start": 19074.72, "end": 19075.54, "probability": 0.9932 }, { "start": 19075.98, "end": 19076.1, "probability": 0.7888 }, { "start": 19076.64, "end": 19079.92, "probability": 0.9948 }, { "start": 19080.7, "end": 19082.6, "probability": 0.8504 }, { "start": 19083.08, "end": 19086.0, "probability": 0.9771 }, { "start": 19086.24, "end": 19088.34, "probability": 0.9901 }, { "start": 19088.72, "end": 19090.88, "probability": 0.9777 }, { "start": 19090.94, "end": 19092.02, "probability": 0.8848 }, { "start": 19092.12, "end": 19092.82, "probability": 0.8066 }, { "start": 19093.3, "end": 19095.06, "probability": 0.9552 }, { "start": 19097.33, "end": 19097.82, "probability": 0.0039 }, { "start": 19097.82, "end": 19098.06, "probability": 0.1227 }, { "start": 19098.06, "end": 19098.62, "probability": 0.7332 }, { "start": 19099.72, "end": 19100.2, "probability": 0.0713 }, { "start": 19100.98, "end": 19101.08, "probability": 0.1823 }, { "start": 19101.08, "end": 19101.08, "probability": 0.0471 }, { "start": 19101.08, "end": 19101.42, "probability": 0.2061 }, { "start": 19101.56, "end": 19102.98, "probability": 0.24 }, { "start": 19103.36, "end": 19107.88, "probability": 0.5074 }, { "start": 19109.36, "end": 19115.62, "probability": 0.9801 }, { "start": 19117.1, "end": 19117.5, "probability": 0.4586 }, { "start": 19117.74, "end": 19120.34, "probability": 0.9645 }, { "start": 19120.98, "end": 19122.46, "probability": 0.918 }, { "start": 19123.04, "end": 19124.42, "probability": 0.9779 }, { "start": 19125.06, "end": 19125.16, "probability": 0.0002 }, { "start": 19126.72, "end": 19127.14, "probability": 0.0712 }, { "start": 19127.14, "end": 19132.0, "probability": 0.6643 }, { "start": 19134.74, "end": 19137.38, "probability": 0.9122 }, { "start": 19137.58, "end": 19138.98, "probability": 0.6888 }, { "start": 19139.08, "end": 19140.42, "probability": 0.9283 }, { "start": 19141.28, "end": 19142.34, "probability": 0.9344 }, { "start": 19142.4, "end": 19143.34, "probability": 0.9342 }, { "start": 19143.5, "end": 19144.44, "probability": 0.9639 }, { "start": 19145.3, "end": 19147.04, "probability": 0.939 }, { "start": 19147.18, "end": 19148.68, "probability": 0.9901 }, { "start": 19148.78, "end": 19150.04, "probability": 0.996 }, { "start": 19150.98, "end": 19152.34, "probability": 0.9449 }, { "start": 19152.54, "end": 19154.06, "probability": 0.9053 }, { "start": 19154.06, "end": 19157.44, "probability": 0.8929 }, { "start": 19157.54, "end": 19159.8, "probability": 0.9973 }, { "start": 19160.58, "end": 19165.42, "probability": 0.9883 }, { "start": 19166.18, "end": 19166.72, "probability": 0.4355 }, { "start": 19167.72, "end": 19170.8, "probability": 0.8852 }, { "start": 19170.88, "end": 19171.9, "probability": 0.9487 }, { "start": 19172.16, "end": 19173.2, "probability": 0.9819 }, { "start": 19173.76, "end": 19175.18, "probability": 0.9901 }, { "start": 19175.84, "end": 19179.08, "probability": 0.9095 }, { "start": 19180.12, "end": 19182.84, "probability": 0.9917 }, { "start": 19184.3, "end": 19187.38, "probability": 0.9022 }, { "start": 19187.52, "end": 19189.07, "probability": 0.8627 }, { "start": 19190.26, "end": 19191.96, "probability": 0.9805 }, { "start": 19192.58, "end": 19196.22, "probability": 0.999 }, { "start": 19196.44, "end": 19197.38, "probability": 0.8678 }, { "start": 19198.54, "end": 19200.52, "probability": 0.7423 }, { "start": 19201.16, "end": 19205.3, "probability": 0.9836 }, { "start": 19205.38, "end": 19205.78, "probability": 0.7479 }, { "start": 19206.38, "end": 19207.67, "probability": 0.6724 }, { "start": 19208.22, "end": 19209.16, "probability": 0.8424 }, { "start": 19211.34, "end": 19213.74, "probability": 0.633 }, { "start": 19213.78, "end": 19214.4, "probability": 0.8659 }, { "start": 19214.7, "end": 19216.24, "probability": 0.1805 }, { "start": 19238.94, "end": 19239.04, "probability": 0.0029 }, { "start": 19239.04, "end": 19241.18, "probability": 0.7407 }, { "start": 19242.34, "end": 19243.02, "probability": 0.5981 }, { "start": 19244.5, "end": 19247.32, "probability": 0.9965 }, { "start": 19248.12, "end": 19252.52, "probability": 0.9517 }, { "start": 19253.18, "end": 19256.08, "probability": 0.9866 }, { "start": 19256.52, "end": 19257.18, "probability": 0.8132 }, { "start": 19257.66, "end": 19259.22, "probability": 0.9205 }, { "start": 19260.22, "end": 19261.12, "probability": 0.6392 }, { "start": 19261.8, "end": 19264.21, "probability": 0.7638 }, { "start": 19265.94, "end": 19266.7, "probability": 0.998 }, { "start": 19267.76, "end": 19269.01, "probability": 0.8562 }, { "start": 19269.36, "end": 19271.43, "probability": 0.9604 }, { "start": 19272.68, "end": 19273.36, "probability": 0.9781 }, { "start": 19274.56, "end": 19276.94, "probability": 0.9937 }, { "start": 19277.58, "end": 19278.98, "probability": 0.9999 }, { "start": 19279.94, "end": 19280.74, "probability": 0.957 }, { "start": 19281.42, "end": 19282.66, "probability": 0.9985 }, { "start": 19282.84, "end": 19286.04, "probability": 0.9966 }, { "start": 19286.04, "end": 19288.8, "probability": 0.9973 }, { "start": 19289.5, "end": 19293.04, "probability": 0.9808 }, { "start": 19293.7, "end": 19296.74, "probability": 0.8971 }, { "start": 19297.38, "end": 19301.84, "probability": 0.9355 }, { "start": 19306.58, "end": 19307.74, "probability": 0.8029 }, { "start": 19308.24, "end": 19310.78, "probability": 0.5895 }, { "start": 19310.86, "end": 19311.8, "probability": 0.9085 }, { "start": 19312.7, "end": 19314.74, "probability": 0.8063 }, { "start": 19315.94, "end": 19321.24, "probability": 0.9966 }, { "start": 19321.32, "end": 19323.96, "probability": 0.999 }, { "start": 19325.12, "end": 19327.94, "probability": 0.9976 }, { "start": 19329.2, "end": 19331.48, "probability": 0.8393 }, { "start": 19331.68, "end": 19335.7, "probability": 0.9922 }, { "start": 19336.2, "end": 19336.56, "probability": 0.517 }, { "start": 19336.66, "end": 19337.32, "probability": 0.847 }, { "start": 19337.4, "end": 19339.08, "probability": 0.8515 }, { "start": 19339.94, "end": 19343.46, "probability": 0.8598 }, { "start": 19344.76, "end": 19346.76, "probability": 0.6279 }, { "start": 19348.46, "end": 19353.34, "probability": 0.941 }, { "start": 19354.7, "end": 19356.18, "probability": 0.9032 }, { "start": 19357.14, "end": 19359.3, "probability": 0.9752 }, { "start": 19359.86, "end": 19363.04, "probability": 0.9553 }, { "start": 19364.26, "end": 19366.72, "probability": 0.9839 }, { "start": 19367.38, "end": 19369.33, "probability": 0.984 }, { "start": 19370.46, "end": 19372.9, "probability": 0.9328 }, { "start": 19373.42, "end": 19375.2, "probability": 0.4228 }, { "start": 19375.7, "end": 19376.3, "probability": 0.0919 }, { "start": 19376.3, "end": 19376.9, "probability": 0.0121 }, { "start": 19377.6, "end": 19377.6, "probability": 0.0178 }, { "start": 19377.6, "end": 19378.94, "probability": 0.6078 }, { "start": 19380.21, "end": 19381.84, "probability": 0.8254 }, { "start": 19382.12, "end": 19384.94, "probability": 0.7565 }, { "start": 19385.1, "end": 19388.12, "probability": 0.9608 }, { "start": 19388.16, "end": 19389.36, "probability": 0.9242 }, { "start": 19389.56, "end": 19393.96, "probability": 0.9341 }, { "start": 19394.46, "end": 19399.34, "probability": 0.9989 }, { "start": 19399.44, "end": 19400.16, "probability": 0.8771 }, { "start": 19400.94, "end": 19401.58, "probability": 0.8879 }, { "start": 19402.06, "end": 19406.28, "probability": 0.9583 }, { "start": 19407.4, "end": 19408.44, "probability": 0.9336 }, { "start": 19409.88, "end": 19412.69, "probability": 0.9908 }, { "start": 19413.08, "end": 19415.3, "probability": 0.6369 }, { "start": 19416.28, "end": 19417.72, "probability": 0.9343 }, { "start": 19420.0, "end": 19421.18, "probability": 0.3892 }, { "start": 19421.3, "end": 19422.06, "probability": 0.9011 }, { "start": 19422.84, "end": 19423.98, "probability": 0.8403 }, { "start": 19424.8, "end": 19427.68, "probability": 0.8868 }, { "start": 19427.94, "end": 19432.22, "probability": 0.8958 }, { "start": 19432.22, "end": 19432.94, "probability": 0.7271 }, { "start": 19432.96, "end": 19434.94, "probability": 0.7591 }, { "start": 19435.2, "end": 19435.8, "probability": 0.909 }, { "start": 19436.04, "end": 19436.04, "probability": 0.2398 }, { "start": 19436.12, "end": 19436.8, "probability": 0.6291 }, { "start": 19437.72, "end": 19437.92, "probability": 0.8521 }, { "start": 19439.04, "end": 19442.12, "probability": 0.8337 }, { "start": 19442.62, "end": 19443.72, "probability": 0.9941 }, { "start": 19444.2, "end": 19445.38, "probability": 0.9951 }, { "start": 19446.48, "end": 19451.26, "probability": 0.9831 }, { "start": 19451.86, "end": 19453.54, "probability": 0.5047 }, { "start": 19453.84, "end": 19454.28, "probability": 0.7326 }, { "start": 19456.24, "end": 19456.86, "probability": 0.8903 }, { "start": 19458.94, "end": 19460.12, "probability": 0.1035 }, { "start": 19462.74, "end": 19463.8, "probability": 0.521 }, { "start": 19464.78, "end": 19465.06, "probability": 0.6736 }, { "start": 19468.16, "end": 19468.36, "probability": 0.2181 }, { "start": 19471.48, "end": 19472.02, "probability": 0.0032 }, { "start": 19473.96, "end": 19476.58, "probability": 0.6526 }, { "start": 19478.28, "end": 19480.22, "probability": 0.9985 }, { "start": 19480.86, "end": 19484.88, "probability": 0.9818 }, { "start": 19484.96, "end": 19486.02, "probability": 0.96 }, { "start": 19486.24, "end": 19486.84, "probability": 0.8957 }, { "start": 19486.94, "end": 19487.64, "probability": 0.9398 }, { "start": 19487.68, "end": 19488.38, "probability": 0.9336 }, { "start": 19488.4, "end": 19488.92, "probability": 0.7289 }, { "start": 19490.0, "end": 19496.14, "probability": 0.995 }, { "start": 19496.6, "end": 19497.32, "probability": 0.7278 }, { "start": 19498.28, "end": 19499.06, "probability": 0.741 }, { "start": 19499.72, "end": 19502.84, "probability": 0.909 }, { "start": 19503.66, "end": 19504.18, "probability": 0.7512 }, { "start": 19504.24, "end": 19505.3, "probability": 0.9004 }, { "start": 19505.48, "end": 19508.56, "probability": 0.9609 }, { "start": 19509.26, "end": 19511.8, "probability": 0.9965 }, { "start": 19511.9, "end": 19512.82, "probability": 0.9796 }, { "start": 19513.84, "end": 19518.26, "probability": 0.9958 }, { "start": 19519.7, "end": 19520.92, "probability": 0.9979 }, { "start": 19521.7, "end": 19524.67, "probability": 0.9671 }, { "start": 19524.86, "end": 19526.94, "probability": 0.9964 }, { "start": 19527.38, "end": 19530.48, "probability": 0.8443 }, { "start": 19531.14, "end": 19532.24, "probability": 0.6014 }, { "start": 19532.4, "end": 19533.92, "probability": 0.8735 }, { "start": 19534.88, "end": 19539.52, "probability": 0.9595 }, { "start": 19539.64, "end": 19540.7, "probability": 0.988 }, { "start": 19541.1, "end": 19544.58, "probability": 0.9124 }, { "start": 19545.26, "end": 19546.68, "probability": 0.9881 }, { "start": 19547.36, "end": 19548.65, "probability": 0.5271 }, { "start": 19549.3, "end": 19553.34, "probability": 0.9788 }, { "start": 19553.34, "end": 19558.64, "probability": 0.9957 }, { "start": 19559.18, "end": 19561.42, "probability": 0.9818 }, { "start": 19562.18, "end": 19568.96, "probability": 0.975 }, { "start": 19569.08, "end": 19572.68, "probability": 0.884 }, { "start": 19572.88, "end": 19573.04, "probability": 0.4739 }, { "start": 19573.16, "end": 19574.6, "probability": 0.7186 }, { "start": 19574.62, "end": 19575.86, "probability": 0.2566 }, { "start": 19576.34, "end": 19580.9, "probability": 0.4513 }, { "start": 19580.96, "end": 19581.9, "probability": 0.505 }, { "start": 19581.9, "end": 19582.32, "probability": 0.807 }, { "start": 19582.62, "end": 19583.0, "probability": 0.5301 }, { "start": 19583.0, "end": 19583.34, "probability": 0.7012 }, { "start": 19583.34, "end": 19583.34, "probability": 0.0018 }, { "start": 19583.34, "end": 19583.64, "probability": 0.3168 }, { "start": 19583.64, "end": 19584.06, "probability": 0.5629 }, { "start": 19584.22, "end": 19589.86, "probability": 0.9294 }, { "start": 19590.1, "end": 19592.24, "probability": 0.6019 }, { "start": 19592.46, "end": 19594.38, "probability": 0.7006 }, { "start": 19594.56, "end": 19594.6, "probability": 0.3099 }, { "start": 19594.6, "end": 19594.64, "probability": 0.3784 }, { "start": 19594.7, "end": 19596.76, "probability": 0.9756 }, { "start": 19597.12, "end": 19599.56, "probability": 0.9903 }, { "start": 19599.56, "end": 19600.72, "probability": 0.8098 }, { "start": 19600.78, "end": 19602.85, "probability": 0.8585 }, { "start": 19603.14, "end": 19607.76, "probability": 0.9982 }, { "start": 19607.9, "end": 19611.68, "probability": 0.5878 }, { "start": 19612.1, "end": 19612.56, "probability": 0.1099 }, { "start": 19612.66, "end": 19613.08, "probability": 0.0347 }, { "start": 19613.08, "end": 19613.92, "probability": 0.0994 }, { "start": 19615.5, "end": 19615.66, "probability": 0.0282 }, { "start": 19615.66, "end": 19618.82, "probability": 0.437 }, { "start": 19619.22, "end": 19621.38, "probability": 0.2431 }, { "start": 19621.38, "end": 19622.76, "probability": 0.0554 }, { "start": 19648.7, "end": 19651.24, "probability": 0.4126 }, { "start": 19651.34, "end": 19651.76, "probability": 0.0691 }, { "start": 19652.84, "end": 19657.36, "probability": 0.0459 }, { "start": 19657.38, "end": 19657.44, "probability": 0.0962 }, { "start": 19657.44, "end": 19657.64, "probability": 0.0543 }, { "start": 19657.64, "end": 19658.3, "probability": 0.158 }, { "start": 19658.3, "end": 19660.12, "probability": 0.1492 }, { "start": 19660.12, "end": 19667.76, "probability": 0.0556 }, { "start": 19667.89, "end": 19668.56, "probability": 0.1452 }, { "start": 19668.99, "end": 19671.54, "probability": 0.0351 }, { "start": 19720.0, "end": 19720.0, "probability": 0.0 }, { "start": 19720.0, "end": 19720.0, "probability": 0.0 }, { "start": 19720.0, "end": 19720.0, "probability": 0.0 }, { "start": 19720.0, "end": 19720.0, "probability": 0.0 }, { "start": 19720.0, "end": 19720.0, "probability": 0.0 }, { "start": 19720.0, "end": 19720.0, "probability": 0.0 }, { "start": 19720.0, "end": 19720.0, "probability": 0.0 }, { "start": 19720.0, "end": 19720.0, "probability": 0.0 }, { "start": 19720.0, "end": 19720.0, "probability": 0.0 }, { "start": 19720.0, "end": 19720.0, "probability": 0.0 }, { "start": 19720.0, "end": 19720.0, "probability": 0.0 }, { "start": 19720.0, "end": 19720.0, "probability": 0.0 }, { "start": 19720.0, "end": 19720.0, "probability": 0.0 }, { "start": 19720.0, "end": 19720.0, "probability": 0.0 }, { "start": 19720.0, "end": 19720.0, "probability": 0.0 }, { "start": 19720.0, "end": 19720.0, "probability": 0.0 }, { "start": 19720.0, "end": 19720.0, "probability": 0.0 }, { "start": 19720.0, "end": 19720.0, "probability": 0.0 }, { "start": 19720.0, "end": 19720.0, "probability": 0.0 }, { "start": 19720.0, "end": 19720.0, "probability": 0.0 }, { "start": 19720.0, "end": 19720.0, "probability": 0.0 }, { "start": 19720.0, "end": 19720.0, "probability": 0.0 }, { "start": 19720.0, "end": 19720.0, "probability": 0.0 }, { "start": 19720.0, "end": 19720.0, "probability": 0.0 }, { "start": 19720.0, "end": 19720.0, "probability": 0.0 }, { "start": 19720.0, "end": 19720.0, "probability": 0.0 }, { "start": 19720.0, "end": 19720.0, "probability": 0.0 }, { "start": 19720.0, "end": 19720.0, "probability": 0.0 }, { "start": 19720.0, "end": 19720.0, "probability": 0.0 }, { "start": 19720.0, "end": 19720.0, "probability": 0.0 }, { "start": 19720.0, "end": 19720.0, "probability": 0.0 }, { "start": 19720.0, "end": 19720.0, "probability": 0.0 }, { "start": 19720.0, "end": 19720.0, "probability": 0.0 }, { "start": 19720.0, "end": 19720.0, "probability": 0.0 }, { "start": 19720.0, "end": 19720.0, "probability": 0.0 }, { "start": 19720.0, "end": 19720.0, "probability": 0.0 }, { "start": 19720.0, "end": 19720.0, "probability": 0.0 }, { "start": 19720.0, "end": 19720.0, "probability": 0.0 }, { "start": 19720.0, "end": 19720.0, "probability": 0.0 }, { "start": 19720.0, "end": 19720.0, "probability": 0.0 }, { "start": 19720.0, "end": 19720.0, "probability": 0.0 }, { "start": 19720.0, "end": 19720.0, "probability": 0.0 }, { "start": 19720.0, "end": 19720.0, "probability": 0.0 }, { "start": 19720.0, "end": 19720.0, "probability": 0.0 }, { "start": 19720.0, "end": 19720.0, "probability": 0.0 }, { "start": 19720.0, "end": 19720.0, "probability": 0.0 }, { "start": 19720.0, "end": 19720.0, "probability": 0.0 }, { "start": 19720.0, "end": 19720.0, "probability": 0.0 }, { "start": 19720.0, "end": 19720.0, "probability": 0.0 }, { "start": 19720.0, "end": 19720.0, "probability": 0.0 }, { "start": 19720.0, "end": 19720.0, "probability": 0.0 }, { "start": 19720.0, "end": 19720.0, "probability": 0.0 }, { "start": 19720.0, "end": 19720.0, "probability": 0.0 }, { "start": 19720.0, "end": 19720.0, "probability": 0.0 }, { "start": 19720.0, "end": 19720.0, "probability": 0.0 }, { "start": 19720.0, "end": 19720.0, "probability": 0.0 }, { "start": 19720.0, "end": 19720.0, "probability": 0.0 }, { "start": 19720.04, "end": 19720.57, "probability": 0.5451 }, { "start": 19721.68, "end": 19723.04, "probability": 0.2005 }, { "start": 19723.38, "end": 19725.64, "probability": 0.8732 }, { "start": 19726.04, "end": 19726.98, "probability": 0.0973 }, { "start": 19726.98, "end": 19727.66, "probability": 0.1275 }, { "start": 19728.14, "end": 19730.6, "probability": 0.758 }, { "start": 19731.56, "end": 19734.66, "probability": 0.8167 }, { "start": 19735.72, "end": 19736.76, "probability": 0.6066 }, { "start": 19737.2, "end": 19737.74, "probability": 0.5446 }, { "start": 19738.3, "end": 19740.73, "probability": 0.5054 }, { "start": 19741.02, "end": 19742.96, "probability": 0.7769 }, { "start": 19743.26, "end": 19744.48, "probability": 0.1463 }, { "start": 19744.84, "end": 19746.38, "probability": 0.1521 }, { "start": 19747.4, "end": 19748.7, "probability": 0.4935 }, { "start": 19750.74, "end": 19751.96, "probability": 0.3001 }, { "start": 19754.3, "end": 19755.28, "probability": 0.0722 }, { "start": 19756.04, "end": 19760.34, "probability": 0.8069 }, { "start": 19760.56, "end": 19762.66, "probability": 0.866 }, { "start": 19763.42, "end": 19765.94, "probability": 0.819 }, { "start": 19767.3, "end": 19768.42, "probability": 0.8486 }, { "start": 19769.32, "end": 19771.02, "probability": 0.7458 }, { "start": 19771.04, "end": 19774.98, "probability": 0.9381 }, { "start": 19775.34, "end": 19781.64, "probability": 0.9968 }, { "start": 19781.82, "end": 19782.98, "probability": 0.98 }, { "start": 19783.14, "end": 19785.52, "probability": 0.9642 }, { "start": 19786.4, "end": 19787.2, "probability": 0.9839 }, { "start": 19788.39, "end": 19789.46, "probability": 0.8247 }, { "start": 19790.54, "end": 19794.38, "probability": 0.9285 }, { "start": 19794.48, "end": 19795.4, "probability": 0.96 }, { "start": 19796.46, "end": 19797.32, "probability": 0.6103 }, { "start": 19798.52, "end": 19801.16, "probability": 0.9523 }, { "start": 19802.78, "end": 19804.26, "probability": 0.9781 }, { "start": 19804.8, "end": 19805.38, "probability": 0.3903 }, { "start": 19806.36, "end": 19807.12, "probability": 0.7647 }, { "start": 19807.22, "end": 19808.22, "probability": 0.9971 }, { "start": 19808.95, "end": 19811.06, "probability": 0.9884 }, { "start": 19811.42, "end": 19814.78, "probability": 0.8767 }, { "start": 19815.96, "end": 19816.68, "probability": 0.9282 }, { "start": 19817.44, "end": 19818.08, "probability": 0.8029 }, { "start": 19819.4, "end": 19819.62, "probability": 0.2512 }, { "start": 19819.62, "end": 19821.02, "probability": 0.7214 }, { "start": 19821.18, "end": 19821.56, "probability": 0.1011 }, { "start": 19822.02, "end": 19822.76, "probability": 0.3135 }, { "start": 19822.88, "end": 19824.68, "probability": 0.3673 }, { "start": 19825.08, "end": 19826.1, "probability": 0.396 }, { "start": 19826.1, "end": 19826.62, "probability": 0.6115 }, { "start": 19827.16, "end": 19828.26, "probability": 0.1334 }, { "start": 19829.22, "end": 19829.32, "probability": 0.0328 }, { "start": 19829.32, "end": 19829.32, "probability": 0.1894 }, { "start": 19829.32, "end": 19829.89, "probability": 0.2524 }, { "start": 19830.1, "end": 19830.1, "probability": 0.219 }, { "start": 19830.1, "end": 19830.98, "probability": 0.7382 }, { "start": 19831.5, "end": 19831.7, "probability": 0.1048 }, { "start": 19831.7, "end": 19831.77, "probability": 0.3155 }, { "start": 19831.96, "end": 19832.26, "probability": 0.4229 }, { "start": 19832.62, "end": 19833.6, "probability": 0.7691 }, { "start": 19833.6, "end": 19834.1, "probability": 0.6952 }, { "start": 19834.18, "end": 19835.58, "probability": 0.947 }, { "start": 19836.12, "end": 19837.3, "probability": 0.8698 }, { "start": 19837.92, "end": 19839.02, "probability": 0.1512 }, { "start": 19839.76, "end": 19840.22, "probability": 0.2469 }, { "start": 19840.22, "end": 19840.22, "probability": 0.3363 }, { "start": 19840.22, "end": 19840.22, "probability": 0.0708 }, { "start": 19840.22, "end": 19840.22, "probability": 0.0669 }, { "start": 19840.22, "end": 19841.6, "probability": 0.4878 }, { "start": 19842.0, "end": 19842.0, "probability": 0.6846 }, { "start": 19842.0, "end": 19844.82, "probability": 0.4384 }, { "start": 19845.8, "end": 19846.24, "probability": 0.133 }, { "start": 19854.78, "end": 19856.44, "probability": 0.6178 }, { "start": 19857.0, "end": 19857.26, "probability": 0.0352 }, { "start": 19857.44, "end": 19862.1, "probability": 0.0613 }, { "start": 19862.22, "end": 19864.32, "probability": 0.5154 }, { "start": 19865.04, "end": 19865.1, "probability": 0.0928 }, { "start": 19865.1, "end": 19866.24, "probability": 0.0257 }, { "start": 19866.4, "end": 19868.94, "probability": 0.2233 }, { "start": 19878.34, "end": 19878.98, "probability": 0.1138 }, { "start": 19880.22, "end": 19880.72, "probability": 0.2959 }, { "start": 19880.94, "end": 19882.34, "probability": 0.6851 }, { "start": 19883.74, "end": 19884.4, "probability": 0.2568 }, { "start": 19884.4, "end": 19885.28, "probability": 0.5344 }, { "start": 19885.28, "end": 19885.28, "probability": 0.11 }, { "start": 19886.22, "end": 19887.81, "probability": 0.3414 }, { "start": 19889.08, "end": 19889.76, "probability": 0.1453 }, { "start": 19889.88, "end": 19891.16, "probability": 0.2026 }, { "start": 19891.66, "end": 19893.82, "probability": 0.0518 }, { "start": 19894.34, "end": 19895.66, "probability": 0.2079 }, { "start": 19896.52, "end": 19897.22, "probability": 0.2012 }, { "start": 19897.22, "end": 19898.86, "probability": 0.3009 }, { "start": 19900.3, "end": 19900.58, "probability": 0.3467 }, { "start": 19900.58, "end": 19902.84, "probability": 0.1895 }, { "start": 19903.56, "end": 19903.84, "probability": 0.5227 }, { "start": 19904.12, "end": 19904.8, "probability": 0.1734 }, { "start": 19905.18, "end": 19906.98, "probability": 0.6131 }, { "start": 19908.32, "end": 19909.44, "probability": 0.4995 }, { "start": 19909.53, "end": 19909.67, "probability": 0.0401 }, { "start": 19909.84, "end": 19910.12, "probability": 0.2186 }, { "start": 19910.12, "end": 19910.12, "probability": 0.6057 }, { "start": 19910.12, "end": 19910.28, "probability": 0.1705 }, { "start": 19910.38, "end": 19910.38, "probability": 0.399 }, { "start": 19910.38, "end": 19911.76, "probability": 0.1013 }, { "start": 19912.0, "end": 19912.0, "probability": 0.0 }, { "start": 19912.0, "end": 19912.0, "probability": 0.0 }, { "start": 19912.0, "end": 19912.0, "probability": 0.0 }, { "start": 19912.0, "end": 19912.0, "probability": 0.0 }, { "start": 19912.0, "end": 19912.0, "probability": 0.0 }, { "start": 19912.0, "end": 19912.0, "probability": 0.0 }, { "start": 19912.0, "end": 19912.0, "probability": 0.0 }, { "start": 19912.0, "end": 19912.0, "probability": 0.0 }, { "start": 19912.0, "end": 19912.0, "probability": 0.0 }, { "start": 19912.0, "end": 19912.0, "probability": 0.0 }, { "start": 19912.0, "end": 19912.0, "probability": 0.0 }, { "start": 19912.0, "end": 19912.0, "probability": 0.0 }, { "start": 19912.0, "end": 19912.0, "probability": 0.0 }, { "start": 19912.0, "end": 19912.0, "probability": 0.0 }, { "start": 19912.0, "end": 19912.0, "probability": 0.0 }, { "start": 19912.0, "end": 19912.0, "probability": 0.0 }, { "start": 19912.0, "end": 19912.0, "probability": 0.0 }, { "start": 19912.0, "end": 19912.0, "probability": 0.0 }, { "start": 19912.0, "end": 19912.0, "probability": 0.0 }, { "start": 19912.0, "end": 19912.0, "probability": 0.0 }, { "start": 19912.0, "end": 19912.0, "probability": 0.0 }, { "start": 19912.0, "end": 19912.0, "probability": 0.0 }, { "start": 19912.0, "end": 19912.0, "probability": 0.0 }, { "start": 19912.0, "end": 19912.0, "probability": 0.0 }, { "start": 19912.0, "end": 19912.0, "probability": 0.0 }, { "start": 19912.0, "end": 19912.0, "probability": 0.0 }, { "start": 19912.0, "end": 19912.0, "probability": 0.0 }, { "start": 19912.12, "end": 19912.28, "probability": 0.0 }, { "start": 19913.36, "end": 19914.42, "probability": 0.7049 }, { "start": 19927.56, "end": 19929.68, "probability": 0.7065 }, { "start": 19930.44, "end": 19931.48, "probability": 0.787 }, { "start": 19932.2, "end": 19932.92, "probability": 0.624 }, { "start": 19934.67, "end": 19939.94, "probability": 0.8804 }, { "start": 19941.26, "end": 19943.36, "probability": 0.8856 }, { "start": 19944.72, "end": 19948.56, "probability": 0.9031 }, { "start": 19949.36, "end": 19950.44, "probability": 0.4288 }, { "start": 19950.68, "end": 19952.43, "probability": 0.7617 }, { "start": 19953.34, "end": 19957.62, "probability": 0.9636 }, { "start": 19958.64, "end": 19961.72, "probability": 0.7608 }, { "start": 19962.3, "end": 19963.76, "probability": 0.7923 }, { "start": 19964.2, "end": 19965.38, "probability": 0.8378 }, { "start": 19966.06, "end": 19968.24, "probability": 0.9406 }, { "start": 19968.38, "end": 19969.83, "probability": 0.8762 }, { "start": 19970.1, "end": 19970.48, "probability": 0.4579 }, { "start": 19970.76, "end": 19972.4, "probability": 0.9673 }, { "start": 19972.54, "end": 19974.3, "probability": 0.7861 }, { "start": 19974.48, "end": 19974.8, "probability": 0.5834 }, { "start": 19975.0, "end": 19975.74, "probability": 0.4794 }, { "start": 19976.42, "end": 19979.68, "probability": 0.0918 }, { "start": 19979.72, "end": 19981.0, "probability": 0.6332 }, { "start": 19983.86, "end": 19984.84, "probability": 0.4135 }, { "start": 19985.2, "end": 19985.2, "probability": 0.1624 }, { "start": 19985.2, "end": 19986.86, "probability": 0.3553 }, { "start": 19988.83, "end": 19990.64, "probability": 0.5778 }, { "start": 19990.64, "end": 19990.74, "probability": 0.2551 }, { "start": 19995.44, "end": 19996.14, "probability": 0.4586 }, { "start": 19996.5, "end": 19996.94, "probability": 0.5138 }, { "start": 19997.5, "end": 19997.9, "probability": 0.1685 }, { "start": 19997.9, "end": 19997.9, "probability": 0.3455 }, { "start": 19997.9, "end": 19997.9, "probability": 0.195 }, { "start": 19997.9, "end": 19997.9, "probability": 0.3263 }, { "start": 19997.9, "end": 19997.9, "probability": 0.0879 }, { "start": 19997.9, "end": 19998.2, "probability": 0.0136 }, { "start": 19998.2, "end": 19998.2, "probability": 0.4103 }, { "start": 19998.2, "end": 19998.2, "probability": 0.1227 }, { "start": 19998.2, "end": 19998.2, "probability": 0.1873 }, { "start": 19998.2, "end": 20001.19, "probability": 0.1565 }, { "start": 20002.9, "end": 20003.9, "probability": 0.6703 }, { "start": 20003.9, "end": 20005.5, "probability": 0.0981 }, { "start": 20005.52, "end": 20005.52, "probability": 0.0633 }, { "start": 20005.62, "end": 20005.76, "probability": 0.0103 }, { "start": 20005.76, "end": 20007.28, "probability": 0.7769 }, { "start": 20007.42, "end": 20008.2, "probability": 0.1713 }, { "start": 20008.64, "end": 20010.08, "probability": 0.5865 }, { "start": 20010.08, "end": 20010.22, "probability": 0.0684 }, { "start": 20010.64, "end": 20012.19, "probability": 0.92 }, { "start": 20012.84, "end": 20014.78, "probability": 0.9683 }, { "start": 20015.12, "end": 20016.54, "probability": 0.6548 }, { "start": 20017.04, "end": 20019.26, "probability": 0.937 }, { "start": 20020.38, "end": 20021.26, "probability": 0.908 }, { "start": 20022.12, "end": 20023.84, "probability": 0.7732 }, { "start": 20024.68, "end": 20028.66, "probability": 0.9889 }, { "start": 20029.32, "end": 20032.24, "probability": 0.2938 }, { "start": 20032.54, "end": 20034.92, "probability": 0.5232 }, { "start": 20037.3, "end": 20040.4, "probability": 0.4464 }, { "start": 20040.4, "end": 20040.4, "probability": 0.1997 }, { "start": 20040.4, "end": 20041.29, "probability": 0.1724 }, { "start": 20041.8, "end": 20043.6, "probability": 0.5292 }, { "start": 20044.78, "end": 20045.9, "probability": 0.7458 }, { "start": 20045.96, "end": 20048.66, "probability": 0.9818 }, { "start": 20049.3, "end": 20050.22, "probability": 0.5256 }, { "start": 20050.22, "end": 20051.0, "probability": 0.0427 }, { "start": 20051.22, "end": 20051.56, "probability": 0.4865 }, { "start": 20051.58, "end": 20054.36, "probability": 0.4432 }, { "start": 20054.86, "end": 20055.8, "probability": 0.7251 }, { "start": 20056.78, "end": 20057.24, "probability": 0.2863 }, { "start": 20057.4, "end": 20058.36, "probability": 0.3885 }, { "start": 20082.0, "end": 20082.0, "probability": 0.0 }, { "start": 20082.0, "end": 20082.0, "probability": 0.0 }, { "start": 20082.0, "end": 20082.0, "probability": 0.0 }, { "start": 20082.0, "end": 20082.0, "probability": 0.0 }, { "start": 20082.0, "end": 20082.0, "probability": 0.0 }, { "start": 20082.0, "end": 20082.0, "probability": 0.0 }, { "start": 20082.0, "end": 20082.0, "probability": 0.0 }, { "start": 20082.0, "end": 20082.0, "probability": 0.0 }, { "start": 20082.0, "end": 20082.0, "probability": 0.0 }, { "start": 20082.0, "end": 20082.0, "probability": 0.0 }, { "start": 20082.0, "end": 20082.0, "probability": 0.0 }, { "start": 20082.0, "end": 20082.0, "probability": 0.0 }, { "start": 20082.0, "end": 20082.0, "probability": 0.0 }, { "start": 20082.0, "end": 20082.0, "probability": 0.0 }, { "start": 20082.0, "end": 20082.0, "probability": 0.0 }, { "start": 20082.0, "end": 20082.0, "probability": 0.0 }, { "start": 20082.0, "end": 20082.0, "probability": 0.0 }, { "start": 20082.0, "end": 20082.0, "probability": 0.0 }, { "start": 20082.0, "end": 20082.0, "probability": 0.0 }, { "start": 20082.0, "end": 20082.0, "probability": 0.0 }, { "start": 20082.52, "end": 20088.32, "probability": 0.725 }, { "start": 20088.4, "end": 20089.72, "probability": 0.4215 }, { "start": 20089.72, "end": 20091.01, "probability": 0.2952 }, { "start": 20093.04, "end": 20094.66, "probability": 0.3127 }, { "start": 20095.24, "end": 20096.28, "probability": 0.4985 }, { "start": 20096.82, "end": 20098.18, "probability": 0.5014 }, { "start": 20098.9, "end": 20099.78, "probability": 0.203 }, { "start": 20099.78, "end": 20100.0, "probability": 0.8481 }, { "start": 20100.22, "end": 20101.22, "probability": 0.6638 }, { "start": 20101.26, "end": 20102.02, "probability": 0.7742 }, { "start": 20102.02, "end": 20103.46, "probability": 0.9148 }, { "start": 20104.26, "end": 20107.74, "probability": 0.8737 }, { "start": 20108.98, "end": 20112.58, "probability": 0.9932 }, { "start": 20113.86, "end": 20115.98, "probability": 0.6654 }, { "start": 20117.12, "end": 20119.23, "probability": 0.9956 }, { "start": 20120.68, "end": 20121.34, "probability": 0.61 }, { "start": 20121.88, "end": 20125.26, "probability": 0.9395 }, { "start": 20126.91, "end": 20127.34, "probability": 0.1798 }, { "start": 20127.36, "end": 20128.98, "probability": 0.74 }, { "start": 20130.14, "end": 20132.78, "probability": 0.991 }, { "start": 20133.48, "end": 20134.9, "probability": 0.8358 }, { "start": 20136.04, "end": 20138.52, "probability": 0.8735 }, { "start": 20139.4, "end": 20141.59, "probability": 0.8638 }, { "start": 20141.78, "end": 20143.08, "probability": 0.7769 }, { "start": 20143.62, "end": 20144.6, "probability": 0.9312 }, { "start": 20145.07, "end": 20147.18, "probability": 0.8418 }, { "start": 20148.2, "end": 20150.29, "probability": 0.9961 }, { "start": 20151.01, "end": 20152.24, "probability": 0.9971 }, { "start": 20154.22, "end": 20155.01, "probability": 0.5244 }, { "start": 20156.4, "end": 20159.04, "probability": 0.9888 }, { "start": 20160.48, "end": 20162.2, "probability": 0.9601 }, { "start": 20163.0, "end": 20163.88, "probability": 0.9456 }, { "start": 20164.32, "end": 20166.22, "probability": 0.9864 }, { "start": 20166.64, "end": 20168.42, "probability": 0.5621 }, { "start": 20168.62, "end": 20168.98, "probability": 0.6077 }, { "start": 20169.48, "end": 20171.76, "probability": 0.9836 }, { "start": 20172.46, "end": 20173.42, "probability": 0.9839 }, { "start": 20174.18, "end": 20175.64, "probability": 0.9891 }, { "start": 20176.6, "end": 20178.12, "probability": 0.9984 }, { "start": 20178.74, "end": 20180.18, "probability": 0.9878 }, { "start": 20181.32, "end": 20183.84, "probability": 0.862 }, { "start": 20184.54, "end": 20186.38, "probability": 0.9116 }, { "start": 20186.92, "end": 20192.42, "probability": 0.9779 }, { "start": 20193.34, "end": 20196.5, "probability": 0.9969 }, { "start": 20197.18, "end": 20198.26, "probability": 0.9797 }, { "start": 20198.34, "end": 20198.74, "probability": 0.8932 }, { "start": 20198.96, "end": 20201.28, "probability": 0.8988 }, { "start": 20201.28, "end": 20204.31, "probability": 0.3162 }, { "start": 20204.65, "end": 20210.2, "probability": 0.2396 }, { "start": 20210.44, "end": 20210.44, "probability": 0.3496 }, { "start": 20220.22, "end": 20221.38, "probability": 0.1853 }, { "start": 20222.5, "end": 20224.18, "probability": 0.7441 }, { "start": 20228.06, "end": 20228.86, "probability": 0.4318 }, { "start": 20229.47, "end": 20230.64, "probability": 0.0257 }, { "start": 20231.18, "end": 20234.8, "probability": 0.0214 }, { "start": 20236.47, "end": 20239.12, "probability": 0.0725 }, { "start": 20239.12, "end": 20239.92, "probability": 0.1456 }, { "start": 20240.7, "end": 20242.8, "probability": 0.1762 }, { "start": 20242.96, "end": 20242.96, "probability": 0.296 }, { "start": 20242.96, "end": 20242.96, "probability": 0.2382 }, { "start": 20245.3, "end": 20245.3, "probability": 0.4212 }, { "start": 20245.3, "end": 20245.3, "probability": 0.2756 }, { "start": 20245.3, "end": 20245.3, "probability": 0.4886 }, { "start": 20245.3, "end": 20246.54, "probability": 0.0552 }, { "start": 20273.46, "end": 20273.46, "probability": 0.0114 }, { "start": 20273.98, "end": 20275.46, "probability": 0.0215 }, { "start": 20276.08, "end": 20277.1, "probability": 0.0944 }, { "start": 20278.86, "end": 20279.48, "probability": 0.0412 }, { "start": 20281.64, "end": 20284.54, "probability": 0.029 }, { "start": 20284.58, "end": 20284.64, "probability": 0.0675 }, { "start": 20284.72, "end": 20287.72, "probability": 0.1524 }, { "start": 20287.72, "end": 20287.86, "probability": 0.3223 }, { "start": 20287.92, "end": 20287.92, "probability": 0.2005 }, { "start": 20287.92, "end": 20287.92, "probability": 0.102 }, { "start": 20287.92, "end": 20287.92, "probability": 0.0639 }, { "start": 20287.92, "end": 20287.92, "probability": 0.0391 }, { "start": 20287.92, "end": 20287.92, "probability": 0.0304 }, { "start": 20287.92, "end": 20287.92, "probability": 0.4137 }, { "start": 20287.92, "end": 20287.94, "probability": 0.095 }, { "start": 20288.0, "end": 20288.0, "probability": 0.0 }, { "start": 20288.0, "end": 20288.0, "probability": 0.0 }, { "start": 20288.0, "end": 20288.0, "probability": 0.0 }, { "start": 20288.0, "end": 20288.0, "probability": 0.0 }, { "start": 20288.0, "end": 20288.0, "probability": 0.0 }, { "start": 20288.44, "end": 20288.76, "probability": 0.0965 }, { "start": 20288.76, "end": 20288.76, "probability": 0.1126 }, { "start": 20288.76, "end": 20290.12, "probability": 0.3874 }, { "start": 20310.02, "end": 20311.46, "probability": 0.5501 }, { "start": 20311.54, "end": 20319.54, "probability": 0.3555 }, { "start": 20319.74, "end": 20321.74, "probability": 0.012 }, { "start": 20322.96, "end": 20325.36, "probability": 0.0407 }, { "start": 20432.0, "end": 20432.0, "probability": 0.0 }, { "start": 20432.0, "end": 20432.0, "probability": 0.0 }, { "start": 20432.0, "end": 20432.0, "probability": 0.0 }, { "start": 20432.0, "end": 20432.0, "probability": 0.0 }, { "start": 20432.0, "end": 20432.0, "probability": 0.0 }, { "start": 20432.0, "end": 20432.0, "probability": 0.0 }, { "start": 20432.0, "end": 20432.0, "probability": 0.0 }, { "start": 20432.0, "end": 20432.0, "probability": 0.0 }, { "start": 20432.0, "end": 20432.0, "probability": 0.0 }, { "start": 20432.0, "end": 20432.0, "probability": 0.0 }, { "start": 20432.0, "end": 20432.0, "probability": 0.0 }, { "start": 20432.0, "end": 20432.0, "probability": 0.0 }, { "start": 20432.0, "end": 20432.0, "probability": 0.0 }, { "start": 20432.0, "end": 20432.0, "probability": 0.0 }, { "start": 20432.0, "end": 20432.0, "probability": 0.0 }, { "start": 20432.0, "end": 20432.0, "probability": 0.0 }, { "start": 20432.0, "end": 20432.0, "probability": 0.0 }, { "start": 20432.0, "end": 20432.0, "probability": 0.0 }, { "start": 20432.0, "end": 20432.0, "probability": 0.0 }, { "start": 20432.0, "end": 20432.0, "probability": 0.0 }, { "start": 20432.0, "end": 20432.0, "probability": 0.0 }, { "start": 20432.0, "end": 20432.0, "probability": 0.0 }, { "start": 20432.0, "end": 20432.0, "probability": 0.0 }, { "start": 20432.0, "end": 20432.0, "probability": 0.0 }, { "start": 20432.0, "end": 20432.0, "probability": 0.0 }, { "start": 20432.0, "end": 20432.0, "probability": 0.0 }, { "start": 20432.0, "end": 20432.0, "probability": 0.0 }, { "start": 20432.0, "end": 20432.0, "probability": 0.0 }, { "start": 20432.0, "end": 20432.0, "probability": 0.0 }, { "start": 20432.0, "end": 20432.0, "probability": 0.0 }, { "start": 20432.0, "end": 20432.0, "probability": 0.0 }, { "start": 20432.0, "end": 20432.0, "probability": 0.0 }, { "start": 20432.0, "end": 20432.0, "probability": 0.0 }, { "start": 20432.0, "end": 20432.0, "probability": 0.0 }, { "start": 20432.0, "end": 20432.0, "probability": 0.0 }, { "start": 20432.0, "end": 20432.0, "probability": 0.0 }, { "start": 20432.0, "end": 20432.0, "probability": 0.0 }, { "start": 20432.0, "end": 20432.0, "probability": 0.0 }, { "start": 20432.0, "end": 20432.0, "probability": 0.0 }, { "start": 20432.0, "end": 20432.0, "probability": 0.0 }, { "start": 20432.0, "end": 20432.0, "probability": 0.0 }, { "start": 20432.0, "end": 20432.0, "probability": 0.0 }, { "start": 20432.16, "end": 20434.7, "probability": 0.6003 }, { "start": 20435.52, "end": 20438.0, "probability": 0.8913 }, { "start": 20458.3, "end": 20458.3, "probability": 0.0832 }, { "start": 20458.3, "end": 20458.86, "probability": 0.3661 }, { "start": 20458.86, "end": 20460.06, "probability": 0.9224 }, { "start": 20460.18, "end": 20461.42, "probability": 0.9771 }, { "start": 20462.04, "end": 20464.48, "probability": 0.8109 }, { "start": 20468.38, "end": 20469.82, "probability": 0.5775 }, { "start": 20482.0, "end": 20483.14, "probability": 0.5591 }, { "start": 20486.0, "end": 20487.17, "probability": 0.7064 }, { "start": 20487.68, "end": 20490.7, "probability": 0.8519 }, { "start": 20491.24, "end": 20493.18, "probability": 0.9174 }, { "start": 20493.52, "end": 20495.28, "probability": 0.6843 }, { "start": 20495.94, "end": 20499.92, "probability": 0.8792 }, { "start": 20499.92, "end": 20503.28, "probability": 0.9957 }, { "start": 20503.8, "end": 20509.3, "probability": 0.969 }, { "start": 20510.08, "end": 20513.6, "probability": 0.917 }, { "start": 20514.14, "end": 20516.36, "probability": 0.9687 }, { "start": 20517.14, "end": 20518.5, "probability": 0.9771 }, { "start": 20518.96, "end": 20524.06, "probability": 0.9714 }, { "start": 20524.22, "end": 20525.88, "probability": 0.9958 }, { "start": 20526.48, "end": 20528.06, "probability": 0.959 }, { "start": 20528.72, "end": 20531.74, "probability": 0.9075 }, { "start": 20532.06, "end": 20532.62, "probability": 0.8907 }, { "start": 20533.04, "end": 20537.02, "probability": 0.9819 }, { "start": 20537.94, "end": 20540.42, "probability": 0.7785 }, { "start": 20541.02, "end": 20541.76, "probability": 0.7138 }, { "start": 20542.24, "end": 20546.04, "probability": 0.9902 }, { "start": 20546.72, "end": 20548.06, "probability": 0.9653 }, { "start": 20548.14, "end": 20551.18, "probability": 0.943 }, { "start": 20551.18, "end": 20555.0, "probability": 0.982 }, { "start": 20555.4, "end": 20556.5, "probability": 0.8325 }, { "start": 20556.64, "end": 20559.06, "probability": 0.9814 }, { "start": 20559.1, "end": 20560.37, "probability": 0.5911 }, { "start": 20561.14, "end": 20563.24, "probability": 0.8374 }, { "start": 20563.7, "end": 20565.28, "probability": 0.9795 }, { "start": 20565.5, "end": 20566.42, "probability": 0.8474 }, { "start": 20566.74, "end": 20567.42, "probability": 0.984 }, { "start": 20567.98, "end": 20569.26, "probability": 0.7613 }, { "start": 20569.38, "end": 20574.24, "probability": 0.9949 }, { "start": 20574.44, "end": 20575.38, "probability": 0.6629 }, { "start": 20575.44, "end": 20576.72, "probability": 0.9805 }, { "start": 20577.44, "end": 20578.64, "probability": 0.5942 }, { "start": 20579.46, "end": 20580.48, "probability": 0.9734 }, { "start": 20581.1, "end": 20583.0, "probability": 0.9875 }, { "start": 20583.08, "end": 20583.6, "probability": 0.8566 }, { "start": 20583.64, "end": 20584.22, "probability": 0.6551 }, { "start": 20584.38, "end": 20585.66, "probability": 0.8634 }, { "start": 20585.74, "end": 20589.75, "probability": 0.7434 }, { "start": 20590.68, "end": 20592.56, "probability": 0.8562 }, { "start": 20593.25, "end": 20595.53, "probability": 0.915 }, { "start": 20595.92, "end": 20599.08, "probability": 0.0825 }, { "start": 20599.08, "end": 20600.38, "probability": 0.5867 }, { "start": 20625.18, "end": 20628.72, "probability": 0.7489 }, { "start": 20630.83, "end": 20634.88, "probability": 0.9875 }, { "start": 20635.04, "end": 20635.86, "probability": 0.8965 }, { "start": 20636.18, "end": 20639.38, "probability": 0.9517 }, { "start": 20639.38, "end": 20641.74, "probability": 0.998 }, { "start": 20642.5, "end": 20644.31, "probability": 0.9982 }, { "start": 20646.72, "end": 20646.9, "probability": 0.0304 }, { "start": 20646.9, "end": 20647.06, "probability": 0.1462 }, { "start": 20647.06, "end": 20647.48, "probability": 0.0336 }, { "start": 20648.2, "end": 20649.9, "probability": 0.1391 }, { "start": 20651.84, "end": 20651.84, "probability": 0.2102 }, { "start": 20651.84, "end": 20652.08, "probability": 0.5272 }, { "start": 20652.22, "end": 20652.8, "probability": 0.4983 }, { "start": 20652.96, "end": 20653.72, "probability": 0.5349 }, { "start": 20653.72, "end": 20655.33, "probability": 0.3532 }, { "start": 20656.5, "end": 20657.22, "probability": 0.0601 }, { "start": 20657.44, "end": 20658.48, "probability": 0.2578 }, { "start": 20660.68, "end": 20663.94, "probability": 0.8732 }, { "start": 20664.88, "end": 20667.56, "probability": 0.9764 }, { "start": 20668.26, "end": 20671.9, "probability": 0.4235 }, { "start": 20672.62, "end": 20673.54, "probability": 0.5819 }, { "start": 20674.02, "end": 20676.22, "probability": 0.9683 }, { "start": 20676.3, "end": 20679.72, "probability": 0.0188 }, { "start": 20679.92, "end": 20679.92, "probability": 0.0794 }, { "start": 20679.92, "end": 20681.42, "probability": 0.5525 }, { "start": 20682.62, "end": 20682.92, "probability": 0.1391 }, { "start": 20685.98, "end": 20691.08, "probability": 0.194 }, { "start": 20691.28, "end": 20691.96, "probability": 0.0474 }, { "start": 20692.74, "end": 20693.24, "probability": 0.0621 }, { "start": 20693.34, "end": 20694.62, "probability": 0.4857 }, { "start": 20695.54, "end": 20695.6, "probability": 0.0549 }, { "start": 20695.6, "end": 20695.6, "probability": 0.0999 }, { "start": 20695.6, "end": 20695.6, "probability": 0.0121 }, { "start": 20695.6, "end": 20695.6, "probability": 0.278 }, { "start": 20695.6, "end": 20697.46, "probability": 0.5549 }, { "start": 20697.64, "end": 20699.4, "probability": 0.788 }, { "start": 20699.66, "end": 20699.82, "probability": 0.3888 }, { "start": 20699.86, "end": 20699.96, "probability": 0.6557 }, { "start": 20700.68, "end": 20701.06, "probability": 0.5667 }, { "start": 20702.04, "end": 20703.32, "probability": 0.6154 }, { "start": 20703.38, "end": 20703.94, "probability": 0.7974 }, { "start": 20704.02, "end": 20705.14, "probability": 0.6554 }, { "start": 20705.24, "end": 20705.62, "probability": 0.6352 }, { "start": 20706.7, "end": 20708.14, "probability": 0.8066 }, { "start": 20708.78, "end": 20711.0, "probability": 0.9563 }, { "start": 20711.94, "end": 20712.5, "probability": 0.9691 }, { "start": 20712.88, "end": 20714.04, "probability": 0.7233 }, { "start": 20714.14, "end": 20714.42, "probability": 0.9189 }, { "start": 20715.14, "end": 20716.62, "probability": 0.7592 }, { "start": 20716.64, "end": 20719.82, "probability": 0.7621 }, { "start": 20720.34, "end": 20725.84, "probability": 0.9236 }, { "start": 20726.8, "end": 20728.32, "probability": 0.9045 }, { "start": 20728.64, "end": 20729.86, "probability": 0.9531 }, { "start": 20730.18, "end": 20731.48, "probability": 0.5181 }, { "start": 20732.34, "end": 20734.96, "probability": 0.8352 }, { "start": 20735.06, "end": 20736.1, "probability": 0.5669 }, { "start": 20736.22, "end": 20739.96, "probability": 0.9753 }, { "start": 20740.42, "end": 20744.05, "probability": 0.714 }, { "start": 20744.34, "end": 20746.06, "probability": 0.8741 }, { "start": 20746.9, "end": 20749.35, "probability": 0.1328 }, { "start": 20749.36, "end": 20750.58, "probability": 0.2058 }, { "start": 20750.8, "end": 20750.96, "probability": 0.027 }, { "start": 20751.72, "end": 20753.58, "probability": 0.8231 }, { "start": 20753.82, "end": 20759.9, "probability": 0.9531 }, { "start": 20760.44, "end": 20761.42, "probability": 0.5053 }, { "start": 20761.46, "end": 20761.6, "probability": 0.4985 }, { "start": 20761.76, "end": 20762.44, "probability": 0.5708 }, { "start": 20762.62, "end": 20763.94, "probability": 0.8779 }, { "start": 20764.32, "end": 20767.78, "probability": 0.9014 }, { "start": 20767.88, "end": 20770.4, "probability": 0.9359 }, { "start": 20772.3, "end": 20773.98, "probability": 0.5995 }, { "start": 20774.0, "end": 20774.94, "probability": 0.2149 }, { "start": 20775.26, "end": 20776.26, "probability": 0.7675 }, { "start": 20776.26, "end": 20778.34, "probability": 0.7401 }, { "start": 20778.4, "end": 20779.98, "probability": 0.9093 }, { "start": 20779.98, "end": 20780.48, "probability": 0.4143 }, { "start": 20780.48, "end": 20781.24, "probability": 0.6639 }, { "start": 20781.8, "end": 20782.5, "probability": 0.6991 }, { "start": 20782.7, "end": 20783.3, "probability": 0.7004 }, { "start": 20783.3, "end": 20784.5, "probability": 0.9331 }, { "start": 20784.72, "end": 20787.28, "probability": 0.8262 }, { "start": 20788.26, "end": 20790.06, "probability": 0.8829 }, { "start": 20790.24, "end": 20791.36, "probability": 0.9534 }, { "start": 20792.12, "end": 20795.87, "probability": 0.4199 }, { "start": 20796.12, "end": 20797.74, "probability": 0.8499 }, { "start": 20799.28, "end": 20799.58, "probability": 0.5193 }, { "start": 20799.58, "end": 20802.54, "probability": 0.8499 }, { "start": 20802.66, "end": 20803.01, "probability": 0.844 }, { "start": 20803.52, "end": 20807.8, "probability": 0.8687 }, { "start": 20807.86, "end": 20810.6, "probability": 0.9971 }, { "start": 20811.52, "end": 20812.16, "probability": 0.374 }, { "start": 20815.68, "end": 20817.09, "probability": 0.1375 }, { "start": 20818.7, "end": 20823.88, "probability": 0.0768 }, { "start": 20824.46, "end": 20825.96, "probability": 0.1425 }, { "start": 20826.02, "end": 20826.96, "probability": 0.1127 }, { "start": 20828.24, "end": 20830.12, "probability": 0.0802 }, { "start": 20830.6, "end": 20833.62, "probability": 0.675 }, { "start": 20833.74, "end": 20835.04, "probability": 0.433 }, { "start": 20835.94, "end": 20838.6, "probability": 0.1334 }, { "start": 20838.98, "end": 20840.58, "probability": 0.5557 }, { "start": 20840.72, "end": 20840.72, "probability": 0.0814 }, { "start": 20840.96, "end": 20842.43, "probability": 0.2236 }, { "start": 20842.78, "end": 20843.72, "probability": 0.3018 }, { "start": 20844.58, "end": 20844.94, "probability": 0.0252 }, { "start": 20844.94, "end": 20845.43, "probability": 0.2789 }, { "start": 20845.78, "end": 20846.96, "probability": 0.4518 }, { "start": 20846.96, "end": 20847.86, "probability": 0.4439 }, { "start": 20848.1, "end": 20848.1, "probability": 0.0602 }, { "start": 20848.1, "end": 20848.1, "probability": 0.1724 }, { "start": 20848.1, "end": 20850.04, "probability": 0.1715 }, { "start": 20851.56, "end": 20851.56, "probability": 0.0241 }, { "start": 20851.56, "end": 20852.04, "probability": 0.3803 }, { "start": 20852.76, "end": 20854.56, "probability": 0.1364 }, { "start": 20855.17, "end": 20857.76, "probability": 0.1233 }, { "start": 20858.02, "end": 20858.6, "probability": 0.6893 }, { "start": 20859.72, "end": 20862.48, "probability": 0.3224 }, { "start": 20862.48, "end": 20863.62, "probability": 0.3226 }, { "start": 20865.88, "end": 20866.38, "probability": 0.0395 }, { "start": 20866.38, "end": 20867.84, "probability": 0.3075 }, { "start": 20868.92, "end": 20869.44, "probability": 0.5692 }, { "start": 20869.8, "end": 20870.68, "probability": 0.374 }, { "start": 20873.32, "end": 20873.48, "probability": 0.6417 }, { "start": 20873.6, "end": 20875.59, "probability": 0.8352 }, { "start": 20876.44, "end": 20876.8, "probability": 0.5986 }, { "start": 20877.02, "end": 20880.82, "probability": 0.9746 }, { "start": 20880.96, "end": 20882.44, "probability": 0.667 }, { "start": 20882.54, "end": 20883.86, "probability": 0.9705 }, { "start": 20884.6, "end": 20887.72, "probability": 0.9927 }, { "start": 20887.84, "end": 20889.86, "probability": 0.8698 }, { "start": 20890.06, "end": 20891.64, "probability": 0.5908 }, { "start": 20892.24, "end": 20893.12, "probability": 0.8407 }, { "start": 20893.32, "end": 20895.1, "probability": 0.9588 }, { "start": 20895.12, "end": 20898.92, "probability": 0.9932 }, { "start": 20899.48, "end": 20902.86, "probability": 0.9262 }, { "start": 20903.4, "end": 20907.18, "probability": 0.9889 }, { "start": 20915.12, "end": 20917.4, "probability": 0.7648 }, { "start": 20917.92, "end": 20921.96, "probability": 0.943 }, { "start": 20922.52, "end": 20926.1, "probability": 0.9821 }, { "start": 20926.16, "end": 20926.97, "probability": 0.521 }, { "start": 20927.8, "end": 20928.12, "probability": 0.5031 }, { "start": 20928.18, "end": 20929.0, "probability": 0.9004 }, { "start": 20929.56, "end": 20932.54, "probability": 0.9951 }, { "start": 20933.32, "end": 20934.66, "probability": 0.7653 }, { "start": 20935.28, "end": 20939.44, "probability": 0.9917 }, { "start": 20939.98, "end": 20943.72, "probability": 0.9796 }, { "start": 20944.88, "end": 20948.84, "probability": 0.8564 }, { "start": 20949.54, "end": 20954.96, "probability": 0.9714 }, { "start": 20955.02, "end": 20956.3, "probability": 0.9856 }, { "start": 20956.82, "end": 20961.41, "probability": 0.9933 }, { "start": 20962.18, "end": 20963.4, "probability": 0.6447 }, { "start": 20964.24, "end": 20966.54, "probability": 0.9951 }, { "start": 20966.54, "end": 20968.86, "probability": 0.9978 }, { "start": 20969.86, "end": 20970.74, "probability": 0.8603 }, { "start": 20971.12, "end": 20975.66, "probability": 0.9666 }, { "start": 20976.16, "end": 20978.84, "probability": 0.9723 }, { "start": 20978.88, "end": 20980.52, "probability": 0.9685 }, { "start": 20980.72, "end": 20981.34, "probability": 0.9735 }, { "start": 20982.36, "end": 20984.7, "probability": 0.7561 }, { "start": 20984.78, "end": 20988.3, "probability": 0.991 }, { "start": 20988.36, "end": 20996.48, "probability": 0.9819 }, { "start": 20996.56, "end": 20998.56, "probability": 0.9375 }, { "start": 20998.76, "end": 20999.22, "probability": 0.7399 }, { "start": 20999.3, "end": 21003.8, "probability": 0.9756 }, { "start": 21003.98, "end": 21005.14, "probability": 0.9152 }, { "start": 21005.82, "end": 21007.08, "probability": 0.9301 }, { "start": 21007.3, "end": 21007.5, "probability": 0.9006 }, { "start": 21007.76, "end": 21008.58, "probability": 0.8725 }, { "start": 21008.86, "end": 21010.28, "probability": 0.8911 }, { "start": 21010.52, "end": 21012.54, "probability": 0.5087 }, { "start": 21013.98, "end": 21017.34, "probability": 0.857 }, { "start": 21017.52, "end": 21021.88, "probability": 0.9457 }, { "start": 21022.3, "end": 21024.86, "probability": 0.9756 }, { "start": 21024.86, "end": 21027.3, "probability": 0.9331 }, { "start": 21027.5, "end": 21029.02, "probability": 0.998 }, { "start": 21029.8, "end": 21034.5, "probability": 0.9979 }, { "start": 21035.44, "end": 21036.36, "probability": 0.6656 }, { "start": 21039.66, "end": 21041.92, "probability": 0.6927 }, { "start": 21042.36, "end": 21043.78, "probability": 0.906 }, { "start": 21044.0, "end": 21044.91, "probability": 0.6851 }, { "start": 21045.96, "end": 21050.3, "probability": 0.9971 }, { "start": 21050.76, "end": 21055.08, "probability": 0.9763 }, { "start": 21055.24, "end": 21056.82, "probability": 0.9932 }, { "start": 21057.52, "end": 21058.08, "probability": 0.0582 }, { "start": 21060.66, "end": 21060.84, "probability": 0.0235 }, { "start": 21060.84, "end": 21064.18, "probability": 0.6921 }, { "start": 21064.42, "end": 21068.24, "probability": 0.9429 }, { "start": 21068.24, "end": 21072.34, "probability": 0.8503 }, { "start": 21073.08, "end": 21075.92, "probability": 0.967 }, { "start": 21076.32, "end": 21077.78, "probability": 0.287 }, { "start": 21079.84, "end": 21080.34, "probability": 0.5942 }, { "start": 21080.54, "end": 21083.22, "probability": 0.9415 }, { "start": 21083.28, "end": 21083.48, "probability": 0.8267 }, { "start": 21083.9, "end": 21085.06, "probability": 0.6215 }, { "start": 21085.52, "end": 21088.46, "probability": 0.9088 }, { "start": 21088.46, "end": 21089.76, "probability": 0.9629 }, { "start": 21093.76, "end": 21094.4, "probability": 0.3358 }, { "start": 21095.3, "end": 21095.92, "probability": 0.5499 }, { "start": 21098.44, "end": 21100.14, "probability": 0.0779 }, { "start": 21100.14, "end": 21102.22, "probability": 0.0715 }, { "start": 21112.58, "end": 21113.5, "probability": 0.0003 }, { "start": 21114.34, "end": 21114.34, "probability": 0.0871 }, { "start": 21114.34, "end": 21115.58, "probability": 0.3146 }, { "start": 21116.9, "end": 21117.78, "probability": 0.7465 }, { "start": 21118.2, "end": 21125.99, "probability": 0.9875 }, { "start": 21127.78, "end": 21131.34, "probability": 0.9596 }, { "start": 21132.52, "end": 21133.74, "probability": 0.6735 }, { "start": 21135.02, "end": 21136.82, "probability": 0.8234 }, { "start": 21137.08, "end": 21138.06, "probability": 0.6833 }, { "start": 21145.22, "end": 21146.36, "probability": 0.6737 }, { "start": 21148.28, "end": 21151.36, "probability": 0.9227 }, { "start": 21157.98, "end": 21157.98, "probability": 0.0788 }, { "start": 21157.98, "end": 21157.98, "probability": 0.1483 }, { "start": 21157.98, "end": 21157.98, "probability": 0.2338 }, { "start": 21157.98, "end": 21157.98, "probability": 0.0266 }, { "start": 21157.98, "end": 21157.98, "probability": 0.0129 }, { "start": 21157.98, "end": 21157.98, "probability": 0.123 }, { "start": 21157.98, "end": 21158.04, "probability": 0.1018 }, { "start": 21182.98, "end": 21183.82, "probability": 0.4851 }, { "start": 21185.2, "end": 21188.64, "probability": 0.9063 }, { "start": 21189.46, "end": 21191.24, "probability": 0.7264 }, { "start": 21191.34, "end": 21194.9, "probability": 0.8007 }, { "start": 21196.18, "end": 21198.34, "probability": 0.8781 }, { "start": 21199.22, "end": 21200.63, "probability": 0.7775 }, { "start": 21201.7, "end": 21205.52, "probability": 0.9897 }, { "start": 21206.78, "end": 21207.24, "probability": 0.7942 }, { "start": 21208.2, "end": 21209.08, "probability": 0.8111 }, { "start": 21210.18, "end": 21212.18, "probability": 0.9967 }, { "start": 21213.86, "end": 21215.96, "probability": 0.98 }, { "start": 21216.34, "end": 21217.64, "probability": 0.8556 }, { "start": 21218.66, "end": 21219.68, "probability": 0.8904 }, { "start": 21220.42, "end": 21221.54, "probability": 0.5557 }, { "start": 21223.26, "end": 21224.08, "probability": 0.9866 }, { "start": 21224.98, "end": 21229.96, "probability": 0.9067 }, { "start": 21230.28, "end": 21230.9, "probability": 0.9951 }, { "start": 21231.76, "end": 21232.5, "probability": 0.6045 }, { "start": 21233.46, "end": 21234.0, "probability": 0.8684 }, { "start": 21234.4, "end": 21237.28, "probability": 0.9266 }, { "start": 21238.3, "end": 21239.06, "probability": 0.813 }, { "start": 21239.16, "end": 21240.36, "probability": 0.9741 }, { "start": 21240.52, "end": 21241.98, "probability": 0.7313 }, { "start": 21242.1, "end": 21242.5, "probability": 0.8804 }, { "start": 21243.76, "end": 21245.4, "probability": 0.9285 }, { "start": 21245.56, "end": 21245.94, "probability": 0.8253 }, { "start": 21246.08, "end": 21247.7, "probability": 0.928 }, { "start": 21247.76, "end": 21248.2, "probability": 0.7948 }, { "start": 21249.74, "end": 21250.46, "probability": 0.9152 }, { "start": 21250.52, "end": 21250.88, "probability": 0.7581 }, { "start": 21250.92, "end": 21251.18, "probability": 0.7408 }, { "start": 21251.28, "end": 21252.16, "probability": 0.2648 }, { "start": 21252.16, "end": 21252.72, "probability": 0.6517 }, { "start": 21252.78, "end": 21254.72, "probability": 0.8656 }, { "start": 21256.22, "end": 21257.9, "probability": 0.5635 }, { "start": 21258.0, "end": 21260.32, "probability": 0.9146 }, { "start": 21261.72, "end": 21263.72, "probability": 0.9746 }, { "start": 21265.36, "end": 21267.6, "probability": 0.5738 }, { "start": 21268.8, "end": 21269.62, "probability": 0.4585 }, { "start": 21269.84, "end": 21270.64, "probability": 0.6215 }, { "start": 21271.76, "end": 21272.22, "probability": 0.4205 }, { "start": 21273.46, "end": 21274.96, "probability": 0.9739 }, { "start": 21275.84, "end": 21276.26, "probability": 0.8265 }, { "start": 21277.3, "end": 21279.88, "probability": 0.8486 }, { "start": 21280.84, "end": 21282.28, "probability": 0.8363 }, { "start": 21282.7, "end": 21283.68, "probability": 0.7563 }, { "start": 21284.64, "end": 21286.32, "probability": 0.4312 }, { "start": 21286.54, "end": 21287.86, "probability": 0.8837 }, { "start": 21288.42, "end": 21289.54, "probability": 0.5162 }, { "start": 21289.54, "end": 21290.1, "probability": 0.297 }, { "start": 21290.2, "end": 21290.6, "probability": 0.865 }, { "start": 21298.52, "end": 21300.06, "probability": 0.9628 }, { "start": 21300.68, "end": 21303.4, "probability": 0.7488 }, { "start": 21304.4, "end": 21306.08, "probability": 0.9808 }, { "start": 21307.56, "end": 21307.72, "probability": 0.5471 }, { "start": 21307.74, "end": 21308.96, "probability": 0.9156 }, { "start": 21309.06, "end": 21311.02, "probability": 0.9814 }, { "start": 21311.08, "end": 21312.82, "probability": 0.6629 }, { "start": 21313.9, "end": 21314.9, "probability": 0.8409 }, { "start": 21315.74, "end": 21317.62, "probability": 0.9227 }, { "start": 21317.72, "end": 21318.24, "probability": 0.5532 }, { "start": 21318.46, "end": 21318.94, "probability": 0.8086 }, { "start": 21319.02, "end": 21320.44, "probability": 0.6307 }, { "start": 21321.22, "end": 21323.46, "probability": 0.8462 }, { "start": 21323.82, "end": 21325.5, "probability": 0.9294 }, { "start": 21326.48, "end": 21327.74, "probability": 0.7543 }, { "start": 21328.74, "end": 21330.12, "probability": 0.9912 }, { "start": 21330.2, "end": 21332.63, "probability": 0.9576 }, { "start": 21333.5, "end": 21336.1, "probability": 0.9482 }, { "start": 21337.28, "end": 21338.34, "probability": 0.9257 }, { "start": 21338.78, "end": 21341.1, "probability": 0.9835 }, { "start": 21342.26, "end": 21343.1, "probability": 0.4802 }, { "start": 21344.14, "end": 21347.26, "probability": 0.9327 }, { "start": 21347.34, "end": 21348.52, "probability": 0.9735 }, { "start": 21348.66, "end": 21349.08, "probability": 0.3774 }, { "start": 21349.94, "end": 21351.38, "probability": 0.9307 }, { "start": 21351.4, "end": 21352.98, "probability": 0.9877 }, { "start": 21353.22, "end": 21354.6, "probability": 0.9756 }, { "start": 21354.64, "end": 21355.08, "probability": 0.9736 }, { "start": 21355.12, "end": 21355.54, "probability": 0.8963 }, { "start": 21356.16, "end": 21357.16, "probability": 0.7457 }, { "start": 21357.24, "end": 21357.94, "probability": 0.9907 }, { "start": 21357.98, "end": 21359.06, "probability": 0.9172 }, { "start": 21359.74, "end": 21360.6, "probability": 0.9675 }, { "start": 21361.12, "end": 21363.24, "probability": 0.9762 }, { "start": 21363.26, "end": 21364.08, "probability": 0.9541 }, { "start": 21365.08, "end": 21365.9, "probability": 0.9819 }, { "start": 21366.62, "end": 21368.28, "probability": 0.9852 }, { "start": 21369.0, "end": 21371.28, "probability": 0.757 }, { "start": 21371.54, "end": 21372.14, "probability": 0.943 }, { "start": 21372.48, "end": 21373.8, "probability": 0.9147 }, { "start": 21374.14, "end": 21375.3, "probability": 0.8289 }, { "start": 21375.8, "end": 21377.32, "probability": 0.958 }, { "start": 21378.16, "end": 21378.9, "probability": 0.9123 }, { "start": 21380.36, "end": 21380.36, "probability": 0.0229 }, { "start": 21380.36, "end": 21381.7, "probability": 0.9822 }, { "start": 21381.9, "end": 21384.78, "probability": 0.9476 }, { "start": 21385.54, "end": 21386.5, "probability": 0.9567 }, { "start": 21386.56, "end": 21388.0, "probability": 0.967 }, { "start": 21388.12, "end": 21389.92, "probability": 0.8913 }, { "start": 21390.24, "end": 21390.65, "probability": 0.873 }, { "start": 21390.82, "end": 21391.24, "probability": 0.6718 }, { "start": 21392.4, "end": 21392.9, "probability": 0.9408 }, { "start": 21394.32, "end": 21397.76, "probability": 0.9496 }, { "start": 21397.92, "end": 21398.7, "probability": 0.7893 }, { "start": 21398.88, "end": 21400.98, "probability": 0.9008 }, { "start": 21401.74, "end": 21403.66, "probability": 0.8849 }, { "start": 21404.64, "end": 21405.1, "probability": 0.5838 }, { "start": 21405.4, "end": 21405.88, "probability": 0.7115 }, { "start": 21406.76, "end": 21408.38, "probability": 0.966 }, { "start": 21409.42, "end": 21411.74, "probability": 0.7353 }, { "start": 21413.66, "end": 21415.28, "probability": 0.7558 }, { "start": 21415.6, "end": 21416.74, "probability": 0.9793 }, { "start": 21417.66, "end": 21417.66, "probability": 0.0129 }, { "start": 21417.66, "end": 21417.66, "probability": 0.2869 }, { "start": 21417.66, "end": 21417.98, "probability": 0.4353 }, { "start": 21418.22, "end": 21418.74, "probability": 0.5416 }, { "start": 21418.84, "end": 21420.28, "probability": 0.5033 }, { "start": 21420.88, "end": 21421.6, "probability": 0.403 }, { "start": 21422.1, "end": 21422.64, "probability": 0.5311 }, { "start": 21422.64, "end": 21422.64, "probability": 0.2442 }, { "start": 21422.64, "end": 21424.08, "probability": 0.0185 }, { "start": 21424.22, "end": 21424.66, "probability": 0.1847 }, { "start": 21427.93, "end": 21430.48, "probability": 0.1207 }, { "start": 21430.9, "end": 21431.52, "probability": 0.1101 }, { "start": 21431.7, "end": 21431.94, "probability": 0.0225 }, { "start": 21431.94, "end": 21431.98, "probability": 0.0804 }, { "start": 21431.98, "end": 21431.98, "probability": 0.0893 }, { "start": 21431.98, "end": 21432.24, "probability": 0.342 }, { "start": 21432.24, "end": 21433.06, "probability": 0.9092 }, { "start": 21434.3, "end": 21436.57, "probability": 0.8135 }, { "start": 21436.7, "end": 21437.71, "probability": 0.98 }, { "start": 21439.26, "end": 21439.64, "probability": 0.7932 }, { "start": 21439.64, "end": 21441.8, "probability": 0.9379 }, { "start": 21441.98, "end": 21442.53, "probability": 0.8992 }, { "start": 21443.0, "end": 21446.11, "probability": 0.7205 }, { "start": 21446.22, "end": 21446.78, "probability": 0.7321 }, { "start": 21446.82, "end": 21447.1, "probability": 0.0728 }, { "start": 21447.1, "end": 21447.42, "probability": 0.1991 }, { "start": 21447.62, "end": 21447.86, "probability": 0.5611 }, { "start": 21447.94, "end": 21448.66, "probability": 0.9541 }, { "start": 21449.04, "end": 21449.94, "probability": 0.4586 }, { "start": 21450.08, "end": 21450.36, "probability": 0.1482 }, { "start": 21450.48, "end": 21452.92, "probability": 0.691 }, { "start": 21453.12, "end": 21453.54, "probability": 0.8229 }, { "start": 21453.58, "end": 21454.41, "probability": 0.8884 }, { "start": 21454.68, "end": 21455.44, "probability": 0.9221 }, { "start": 21455.72, "end": 21456.16, "probability": 0.7027 }, { "start": 21456.22, "end": 21457.74, "probability": 0.6124 }, { "start": 21457.92, "end": 21458.06, "probability": 0.1307 }, { "start": 21458.06, "end": 21459.82, "probability": 0.572 }, { "start": 21460.52, "end": 21461.28, "probability": 0.8882 }, { "start": 21461.42, "end": 21463.16, "probability": 0.7537 }, { "start": 21463.94, "end": 21467.4, "probability": 0.1247 }, { "start": 21469.56, "end": 21469.78, "probability": 0.1949 }, { "start": 21469.78, "end": 21470.28, "probability": 0.0296 }, { "start": 21474.12, "end": 21476.04, "probability": 0.027 }, { "start": 21476.04, "end": 21476.68, "probability": 0.1129 }, { "start": 21476.7, "end": 21477.06, "probability": 0.0699 }, { "start": 21477.08, "end": 21477.32, "probability": 0.1189 }, { "start": 21478.38, "end": 21479.68, "probability": 0.1816 }, { "start": 21482.74, "end": 21486.12, "probability": 0.6494 }, { "start": 21487.82, "end": 21493.37, "probability": 0.9415 }, { "start": 21493.74, "end": 21494.62, "probability": 0.4713 }, { "start": 21494.62, "end": 21494.62, "probability": 0.3026 }, { "start": 21494.62, "end": 21495.97, "probability": 0.048 }, { "start": 21497.84, "end": 21498.28, "probability": 0.0638 }, { "start": 21498.28, "end": 21498.42, "probability": 0.0358 }, { "start": 21498.98, "end": 21499.54, "probability": 0.1657 }, { "start": 21502.72, "end": 21503.89, "probability": 0.1302 }, { "start": 21595.0, "end": 21595.0, "probability": 0.0 }, { "start": 21595.0, "end": 21595.0, "probability": 0.0 }, { "start": 21595.0, "end": 21595.0, "probability": 0.0 }, { "start": 21595.0, "end": 21595.0, "probability": 0.0 }, { "start": 21595.0, "end": 21595.0, "probability": 0.0 }, { "start": 21595.0, "end": 21595.0, "probability": 0.0 }, { "start": 21595.0, "end": 21595.0, "probability": 0.0 }, { "start": 21595.0, "end": 21595.0, "probability": 0.0 }, { "start": 21595.0, "end": 21595.0, "probability": 0.0 }, { "start": 21595.0, "end": 21595.0, "probability": 0.0 }, { "start": 21595.0, "end": 21595.0, "probability": 0.0 }, { "start": 21595.0, "end": 21595.0, "probability": 0.0 }, { "start": 21595.0, "end": 21595.0, "probability": 0.0 }, { "start": 21595.0, "end": 21595.0, "probability": 0.0 }, { "start": 21595.0, "end": 21595.0, "probability": 0.0 }, { "start": 21595.0, "end": 21595.0, "probability": 0.0 }, { "start": 21595.0, "end": 21595.0, "probability": 0.0 }, { "start": 21595.0, "end": 21595.0, "probability": 0.0 }, { "start": 21595.0, "end": 21595.0, "probability": 0.0 }, { "start": 21595.0, "end": 21595.0, "probability": 0.0 }, { "start": 21595.0, "end": 21595.0, "probability": 0.0 }, { "start": 21595.0, "end": 21595.0, "probability": 0.0 }, { "start": 21595.0, "end": 21595.0, "probability": 0.0 }, { "start": 21595.0, "end": 21595.0, "probability": 0.0 }, { "start": 21595.0, "end": 21595.0, "probability": 0.0 }, { "start": 21595.0, "end": 21595.0, "probability": 0.0 }, { "start": 21595.0, "end": 21595.0, "probability": 0.0 }, { "start": 21595.0, "end": 21595.0, "probability": 0.0 }, { "start": 21595.0, "end": 21595.0, "probability": 0.0 }, { "start": 21595.0, "end": 21595.0, "probability": 0.0 }, { "start": 21595.0, "end": 21595.0, "probability": 0.0 }, { "start": 21595.0, "end": 21595.0, "probability": 0.0 }, { "start": 21595.0, "end": 21595.0, "probability": 0.0 }, { "start": 21595.0, "end": 21595.0, "probability": 0.0 }, { "start": 21595.0, "end": 21595.0, "probability": 0.0 }, { "start": 21595.0, "end": 21595.0, "probability": 0.0 }, { "start": 21595.0, "end": 21595.0, "probability": 0.0 }, { "start": 21595.0, "end": 21595.0, "probability": 0.0 }, { "start": 21595.0, "end": 21595.0, "probability": 0.0 }, { "start": 21595.0, "end": 21595.0, "probability": 0.0 }, { "start": 21595.0, "end": 21595.0, "probability": 0.0 }, { "start": 21595.0, "end": 21595.0, "probability": 0.0 }, { "start": 21595.0, "end": 21595.0, "probability": 0.0 }, { "start": 21595.0, "end": 21595.0, "probability": 0.0 }, { "start": 21595.0, "end": 21595.0, "probability": 0.0 }, { "start": 21595.0, "end": 21595.0, "probability": 0.0 }, { "start": 21595.0, "end": 21595.0, "probability": 0.0 }, { "start": 21595.0, "end": 21595.0, "probability": 0.0 }, { "start": 21595.0, "end": 21595.0, "probability": 0.0 }, { "start": 21595.0, "end": 21595.0, "probability": 0.0 }, { "start": 21595.0, "end": 21595.0, "probability": 0.0 }, { "start": 21595.0, "end": 21595.0, "probability": 0.0 }, { "start": 21595.0, "end": 21595.0, "probability": 0.0 }, { "start": 21595.0, "end": 21595.0, "probability": 0.0 }, { "start": 21595.0, "end": 21595.0, "probability": 0.0 }, { "start": 21595.32, "end": 21597.24, "probability": 0.4628 }, { "start": 21597.62, "end": 21598.66, "probability": 0.4547 }, { "start": 21598.66, "end": 21598.9, "probability": 0.0567 }, { "start": 21598.9, "end": 21599.68, "probability": 0.6224 }, { "start": 21599.68, "end": 21602.36, "probability": 0.7936 }, { "start": 21603.08, "end": 21603.08, "probability": 0.2657 }, { "start": 21603.08, "end": 21605.74, "probability": 0.6203 }, { "start": 21606.06, "end": 21608.9, "probability": 0.9863 }, { "start": 21609.28, "end": 21610.72, "probability": 0.7331 }, { "start": 21610.92, "end": 21611.2, "probability": 0.8918 }, { "start": 21611.2, "end": 21612.86, "probability": 0.8083 }, { "start": 21612.96, "end": 21614.58, "probability": 0.5599 }, { "start": 21614.66, "end": 21616.32, "probability": 0.5867 }, { "start": 21616.56, "end": 21619.79, "probability": 0.992 }, { "start": 21620.48, "end": 21621.5, "probability": 0.7998 }, { "start": 21622.14, "end": 21622.32, "probability": 0.1397 }, { "start": 21622.44, "end": 21624.11, "probability": 0.258 }, { "start": 21624.46, "end": 21627.19, "probability": 0.6121 }, { "start": 21631.26, "end": 21631.74, "probability": 0.4371 }, { "start": 21631.82, "end": 21632.84, "probability": 0.0113 }, { "start": 21633.9, "end": 21634.56, "probability": 0.6324 }, { "start": 21634.7, "end": 21635.72, "probability": 0.31 }, { "start": 21635.74, "end": 21636.12, "probability": 0.6698 }, { "start": 21636.26, "end": 21638.58, "probability": 0.5379 }, { "start": 21639.06, "end": 21641.18, "probability": 0.1078 }, { "start": 21641.18, "end": 21641.98, "probability": 0.116 }, { "start": 21642.88, "end": 21644.9, "probability": 0.5003 }, { "start": 21645.6, "end": 21647.24, "probability": 0.3914 }, { "start": 21648.24, "end": 21649.2, "probability": 0.2463 }, { "start": 21649.2, "end": 21650.64, "probability": 0.0396 }, { "start": 21653.7, "end": 21656.18, "probability": 0.0031 }, { "start": 21657.7, "end": 21659.94, "probability": 0.0302 }, { "start": 21660.44, "end": 21661.72, "probability": 0.0401 }, { "start": 21663.58, "end": 21663.68, "probability": 0.6578 }, { "start": 21664.98, "end": 21666.18, "probability": 0.1276 }, { "start": 21677.58, "end": 21678.42, "probability": 0.0616 }, { "start": 21678.42, "end": 21678.78, "probability": 0.0879 }, { "start": 21678.78, "end": 21679.26, "probability": 0.0046 }, { "start": 21679.48, "end": 21680.66, "probability": 0.3735 }, { "start": 21680.74, "end": 21681.18, "probability": 0.039 }, { "start": 21684.62, "end": 21686.41, "probability": 0.1473 }, { "start": 21715.0, "end": 21715.0, "probability": 0.0 }, { "start": 21715.0, "end": 21715.0, "probability": 0.0 }, { "start": 21715.0, "end": 21715.0, "probability": 0.0 }, { "start": 21715.0, "end": 21715.0, "probability": 0.0 }, { "start": 21715.0, "end": 21715.0, "probability": 0.0 }, { "start": 21715.0, "end": 21715.0, "probability": 0.0 }, { "start": 21715.0, "end": 21715.0, "probability": 0.0 }, { "start": 21715.0, "end": 21715.0, "probability": 0.0 }, { "start": 21715.0, "end": 21715.0, "probability": 0.0 }, { "start": 21715.0, "end": 21715.0, "probability": 0.0 }, { "start": 21715.0, "end": 21715.0, "probability": 0.0 }, { "start": 21715.0, "end": 21715.0, "probability": 0.0 }, { "start": 21715.0, "end": 21715.0, "probability": 0.0 }, { "start": 21715.0, "end": 21715.0, "probability": 0.0 }, { "start": 21715.0, "end": 21715.0, "probability": 0.0 }, { "start": 21715.0, "end": 21715.0, "probability": 0.0 }, { "start": 21715.0, "end": 21715.0, "probability": 0.0 }, { "start": 21715.0, "end": 21715.0, "probability": 0.0 }, { "start": 21715.0, "end": 21715.0, "probability": 0.0 }, { "start": 21715.18, "end": 21715.64, "probability": 0.0076 }, { "start": 21715.8, "end": 21715.8, "probability": 0.0577 }, { "start": 21715.8, "end": 21715.96, "probability": 0.0688 }, { "start": 21715.96, "end": 21715.96, "probability": 0.0169 }, { "start": 21715.96, "end": 21716.16, "probability": 0.3278 }, { "start": 21716.16, "end": 21716.26, "probability": 0.6258 }, { "start": 21716.54, "end": 21716.82, "probability": 0.6429 }, { "start": 21717.32, "end": 21717.95, "probability": 0.4952 }, { "start": 21718.44, "end": 21720.08, "probability": 0.9541 }, { "start": 21720.74, "end": 21721.62, "probability": 0.7254 }, { "start": 21723.38, "end": 21725.18, "probability": 0.991 }, { "start": 21725.26, "end": 21725.84, "probability": 0.6673 }, { "start": 21725.9, "end": 21726.48, "probability": 0.8239 }, { "start": 21739.68, "end": 21740.6, "probability": 0.7953 }, { "start": 21742.22, "end": 21742.94, "probability": 0.6133 }, { "start": 21744.38, "end": 21746.2, "probability": 0.7659 }, { "start": 21747.06, "end": 21747.24, "probability": 0.4867 }, { "start": 21747.24, "end": 21749.24, "probability": 0.8783 }, { "start": 21749.6, "end": 21750.8, "probability": 0.9702 }, { "start": 21751.14, "end": 21751.52, "probability": 0.9491 }, { "start": 21752.62, "end": 21752.96, "probability": 0.9792 }, { "start": 21754.52, "end": 21755.52, "probability": 0.7729 }, { "start": 21756.54, "end": 21759.06, "probability": 0.256 }, { "start": 21759.62, "end": 21761.7, "probability": 0.7513 }, { "start": 21761.8, "end": 21762.46, "probability": 0.6388 }, { "start": 21762.66, "end": 21763.18, "probability": 0.8105 }, { "start": 21763.34, "end": 21764.28, "probability": 0.7069 }, { "start": 21769.34, "end": 21772.86, "probability": 0.6641 }, { "start": 21772.98, "end": 21773.5, "probability": 0.7732 }, { "start": 21774.54, "end": 21775.48, "probability": 0.6105 }, { "start": 21775.62, "end": 21776.55, "probability": 0.822 }, { "start": 21777.1, "end": 21779.22, "probability": 0.6686 }, { "start": 21779.68, "end": 21780.18, "probability": 0.0632 }, { "start": 21781.18, "end": 21781.38, "probability": 0.1509 }, { "start": 21783.14, "end": 21784.2, "probability": 0.8579 }, { "start": 21785.35, "end": 21786.36, "probability": 0.5631 }, { "start": 21787.04, "end": 21788.5, "probability": 0.8189 }, { "start": 21790.12, "end": 21791.46, "probability": 0.8798 }, { "start": 21792.08, "end": 21796.74, "probability": 0.5998 }, { "start": 21798.68, "end": 21799.86, "probability": 0.1561 }, { "start": 21799.92, "end": 21802.62, "probability": 0.6106 }, { "start": 21802.62, "end": 21805.34, "probability": 0.1354 }, { "start": 21807.06, "end": 21814.46, "probability": 0.7286 }, { "start": 21816.5, "end": 21818.24, "probability": 0.768 }, { "start": 21818.46, "end": 21819.08, "probability": 0.7161 }, { "start": 21821.68, "end": 21822.3, "probability": 0.9331 }, { "start": 21823.34, "end": 21825.83, "probability": 0.6938 }, { "start": 21827.14, "end": 21827.62, "probability": 0.9614 }, { "start": 21828.56, "end": 21829.1, "probability": 0.3947 }, { "start": 21829.82, "end": 21830.56, "probability": 0.602 }, { "start": 21831.06, "end": 21833.46, "probability": 0.667 }, { "start": 21833.7, "end": 21835.32, "probability": 0.7251 }, { "start": 21835.64, "end": 21836.64, "probability": 0.9176 }, { "start": 21837.04, "end": 21841.4, "probability": 0.7403 }, { "start": 21842.14, "end": 21843.78, "probability": 0.7234 }, { "start": 21849.88, "end": 21850.08, "probability": 0.2977 }, { "start": 21850.58, "end": 21853.18, "probability": 0.7836 }, { "start": 21853.24, "end": 21853.84, "probability": 0.8505 }, { "start": 21854.82, "end": 21856.68, "probability": 0.9007 }, { "start": 21857.36, "end": 21858.54, "probability": 0.0566 }, { "start": 21858.74, "end": 21861.12, "probability": 0.842 }, { "start": 21861.3, "end": 21864.4, "probability": 0.8761 }, { "start": 21865.0, "end": 21865.16, "probability": 0.0961 }, { "start": 21865.16, "end": 21866.85, "probability": 0.9656 }, { "start": 21866.96, "end": 21868.06, "probability": 0.6587 }, { "start": 21868.6, "end": 21869.74, "probability": 0.813 }, { "start": 21870.2, "end": 21871.36, "probability": 0.135 }, { "start": 21871.75, "end": 21874.36, "probability": 0.8971 }, { "start": 21877.78, "end": 21878.96, "probability": 0.6083 }, { "start": 21879.5, "end": 21880.9, "probability": 0.5343 }, { "start": 21880.92, "end": 21883.12, "probability": 0.5214 }, { "start": 21883.22, "end": 21883.78, "probability": 0.4586 }, { "start": 21884.68, "end": 21885.76, "probability": 0.6467 }, { "start": 21885.86, "end": 21888.04, "probability": 0.9944 }, { "start": 21888.3, "end": 21889.64, "probability": 0.6947 }, { "start": 21889.88, "end": 21904.08, "probability": 0.0642 }, { "start": 21904.08, "end": 21905.18, "probability": 0.166 }, { "start": 21906.32, "end": 21906.9, "probability": 0.1223 }, { "start": 21906.9, "end": 21907.72, "probability": 0.3282 }, { "start": 21907.76, "end": 21913.54, "probability": 0.5722 }, { "start": 21914.54, "end": 21918.92, "probability": 0.983 }, { "start": 21919.32, "end": 21921.48, "probability": 0.9501 }, { "start": 21921.86, "end": 21923.16, "probability": 0.9167 }, { "start": 21923.7, "end": 21925.68, "probability": 0.8901 }, { "start": 21926.02, "end": 21927.76, "probability": 0.7871 }, { "start": 21928.96, "end": 21931.84, "probability": 0.6663 }, { "start": 21932.0, "end": 21934.38, "probability": 0.5941 }, { "start": 21935.02, "end": 21935.56, "probability": 0.962 }, { "start": 21937.48, "end": 21937.78, "probability": 0.476 }, { "start": 21938.08, "end": 21940.84, "probability": 0.9306 }, { "start": 21940.84, "end": 21943.94, "probability": 0.9831 }, { "start": 21945.1, "end": 21947.5, "probability": 0.7424 }, { "start": 21947.5, "end": 21950.66, "probability": 0.7927 }, { "start": 21951.36, "end": 21953.52, "probability": 0.8828 }, { "start": 21954.1, "end": 21957.44, "probability": 0.5539 }, { "start": 21957.88, "end": 21958.38, "probability": 0.9073 }, { "start": 21958.56, "end": 21959.32, "probability": 0.9163 }, { "start": 21959.4, "end": 21963.98, "probability": 0.9078 }, { "start": 21965.28, "end": 21966.08, "probability": 0.9436 }, { "start": 21967.0, "end": 21967.54, "probability": 0.5309 }, { "start": 21969.56, "end": 21971.64, "probability": 0.8945 }, { "start": 21972.32, "end": 21973.36, "probability": 0.6942 }, { "start": 21974.64, "end": 21975.34, "probability": 0.9403 }, { "start": 21976.2, "end": 21977.14, "probability": 0.6827 }, { "start": 21978.06, "end": 21980.6, "probability": 0.9946 }, { "start": 21980.78, "end": 21981.34, "probability": 0.727 }, { "start": 21981.62, "end": 21982.88, "probability": 0.8362 }, { "start": 21983.04, "end": 21983.57, "probability": 0.5854 }, { "start": 21984.04, "end": 21986.56, "probability": 0.7465 }, { "start": 21986.6, "end": 21989.3, "probability": 0.8781 }, { "start": 21990.04, "end": 21993.66, "probability": 0.7767 }, { "start": 21994.8, "end": 21998.04, "probability": 0.6416 }, { "start": 21998.12, "end": 21998.68, "probability": 0.7708 }, { "start": 21998.72, "end": 21999.5, "probability": 0.9763 }, { "start": 21999.54, "end": 22000.3, "probability": 0.7026 }, { "start": 22000.52, "end": 22001.78, "probability": 0.6052 }, { "start": 22002.58, "end": 22004.8, "probability": 0.7589 }, { "start": 22005.08, "end": 22005.74, "probability": 0.8556 }, { "start": 22005.94, "end": 22007.28, "probability": 0.552 }, { "start": 22007.34, "end": 22008.66, "probability": 0.9458 }, { "start": 22009.32, "end": 22010.58, "probability": 0.6423 }, { "start": 22011.36, "end": 22016.78, "probability": 0.6415 }, { "start": 22016.84, "end": 22018.22, "probability": 0.9923 }, { "start": 22018.32, "end": 22018.62, "probability": 0.7512 }, { "start": 22019.88, "end": 22023.38, "probability": 0.9653 }, { "start": 22024.4, "end": 22027.4, "probability": 0.901 }, { "start": 22028.08, "end": 22028.78, "probability": 0.4299 }, { "start": 22029.56, "end": 22032.98, "probability": 0.877 }, { "start": 22034.52, "end": 22036.2, "probability": 0.9943 }, { "start": 22036.92, "end": 22037.62, "probability": 0.9695 }, { "start": 22038.62, "end": 22042.16, "probability": 0.9866 }, { "start": 22042.62, "end": 22043.82, "probability": 0.9631 }, { "start": 22044.76, "end": 22047.02, "probability": 0.9919 }, { "start": 22047.72, "end": 22050.1, "probability": 0.7121 }, { "start": 22051.5, "end": 22053.86, "probability": 0.9644 }, { "start": 22054.52, "end": 22056.2, "probability": 0.8708 }, { "start": 22057.1, "end": 22060.9, "probability": 0.9741 }, { "start": 22062.26, "end": 22062.82, "probability": 0.623 }, { "start": 22062.9, "end": 22066.1, "probability": 0.7655 }, { "start": 22066.22, "end": 22066.52, "probability": 0.523 }, { "start": 22066.6, "end": 22068.02, "probability": 0.8492 }, { "start": 22068.06, "end": 22069.55, "probability": 0.9795 }, { "start": 22070.66, "end": 22073.5, "probability": 0.7409 }, { "start": 22073.5, "end": 22075.11, "probability": 0.5926 }, { "start": 22076.3, "end": 22079.08, "probability": 0.7417 }, { "start": 22079.24, "end": 22082.36, "probability": 0.7959 }, { "start": 22083.2, "end": 22086.36, "probability": 0.97 }, { "start": 22087.66, "end": 22089.36, "probability": 0.4561 }, { "start": 22090.1, "end": 22092.26, "probability": 0.9363 }, { "start": 22093.38, "end": 22095.64, "probability": 0.6692 }, { "start": 22095.8, "end": 22098.32, "probability": 0.8085 }, { "start": 22099.76, "end": 22102.38, "probability": 0.9741 }, { "start": 22104.06, "end": 22104.8, "probability": 0.9736 }, { "start": 22105.58, "end": 22108.1, "probability": 0.9767 }, { "start": 22109.28, "end": 22112.88, "probability": 0.9467 }, { "start": 22112.9, "end": 22113.41, "probability": 0.7067 }, { "start": 22113.64, "end": 22114.46, "probability": 0.9847 }, { "start": 22114.84, "end": 22116.62, "probability": 0.9637 }, { "start": 22117.58, "end": 22118.86, "probability": 0.9854 }, { "start": 22119.4, "end": 22121.14, "probability": 0.9897 }, { "start": 22121.9, "end": 22123.36, "probability": 0.764 }, { "start": 22126.38, "end": 22128.34, "probability": 0.7134 }, { "start": 22129.06, "end": 22132.78, "probability": 0.9954 }, { "start": 22133.8, "end": 22135.78, "probability": 0.9875 }, { "start": 22136.04, "end": 22138.84, "probability": 0.9192 }, { "start": 22139.64, "end": 22141.1, "probability": 0.9865 }, { "start": 22143.02, "end": 22145.52, "probability": 0.998 }, { "start": 22146.44, "end": 22146.98, "probability": 0.6185 }, { "start": 22147.86, "end": 22148.52, "probability": 0.9454 }, { "start": 22149.22, "end": 22151.14, "probability": 0.9767 }, { "start": 22152.96, "end": 22154.54, "probability": 0.6907 }, { "start": 22154.66, "end": 22155.26, "probability": 0.6557 }, { "start": 22155.26, "end": 22157.1, "probability": 0.7142 }, { "start": 22157.28, "end": 22158.14, "probability": 0.1809 }, { "start": 22158.28, "end": 22160.62, "probability": 0.9674 }, { "start": 22161.24, "end": 22161.62, "probability": 0.1567 }, { "start": 22162.4, "end": 22164.66, "probability": 0.8617 }, { "start": 22165.84, "end": 22167.04, "probability": 0.4202 }, { "start": 22168.32, "end": 22169.08, "probability": 0.5058 }, { "start": 22169.5, "end": 22170.54, "probability": 0.9238 }, { "start": 22170.74, "end": 22170.9, "probability": 0.2351 }, { "start": 22173.48, "end": 22174.26, "probability": 0.7241 }, { "start": 22174.94, "end": 22176.04, "probability": 0.7421 }, { "start": 22176.08, "end": 22177.98, "probability": 0.5952 }, { "start": 22178.08, "end": 22179.26, "probability": 0.7965 }, { "start": 22179.3, "end": 22180.82, "probability": 0.5527 }, { "start": 22181.34, "end": 22182.94, "probability": 0.9497 }, { "start": 22183.56, "end": 22186.66, "probability": 0.9556 }, { "start": 22187.16, "end": 22188.58, "probability": 0.9941 }, { "start": 22189.2, "end": 22191.58, "probability": 0.7393 }, { "start": 22192.06, "end": 22193.04, "probability": 0.875 }, { "start": 22193.92, "end": 22196.24, "probability": 0.767 }, { "start": 22197.22, "end": 22198.58, "probability": 0.5195 }, { "start": 22199.64, "end": 22203.16, "probability": 0.7376 }, { "start": 22203.84, "end": 22204.58, "probability": 0.4082 }, { "start": 22205.68, "end": 22206.26, "probability": 0.6691 }, { "start": 22206.96, "end": 22211.67, "probability": 0.7385 }, { "start": 22211.96, "end": 22212.75, "probability": 0.8077 }, { "start": 22213.68, "end": 22215.24, "probability": 0.9882 }, { "start": 22215.64, "end": 22217.84, "probability": 0.7416 }, { "start": 22218.62, "end": 22219.86, "probability": 0.2756 }, { "start": 22220.66, "end": 22223.2, "probability": 0.9971 }, { "start": 22223.82, "end": 22224.9, "probability": 0.9624 }, { "start": 22225.52, "end": 22228.26, "probability": 0.7534 }, { "start": 22229.6, "end": 22233.52, "probability": 0.7324 }, { "start": 22234.38, "end": 22237.14, "probability": 0.6122 }, { "start": 22238.14, "end": 22240.1, "probability": 0.9355 }, { "start": 22240.94, "end": 22244.88, "probability": 0.8082 }, { "start": 22244.88, "end": 22245.44, "probability": 0.5015 }, { "start": 22245.48, "end": 22246.14, "probability": 0.828 }, { "start": 22246.98, "end": 22247.92, "probability": 0.958 }, { "start": 22248.84, "end": 22251.44, "probability": 0.7173 }, { "start": 22252.18, "end": 22253.14, "probability": 0.7916 }, { "start": 22253.88, "end": 22255.8, "probability": 0.9772 }, { "start": 22256.6, "end": 22258.78, "probability": 0.4889 }, { "start": 22259.16, "end": 22260.68, "probability": 0.909 }, { "start": 22260.88, "end": 22263.9, "probability": 0.9971 }, { "start": 22264.56, "end": 22266.6, "probability": 0.9894 }, { "start": 22267.14, "end": 22268.32, "probability": 0.8363 }, { "start": 22268.36, "end": 22269.1, "probability": 0.6375 }, { "start": 22269.1, "end": 22270.54, "probability": 0.7524 }, { "start": 22270.62, "end": 22271.5, "probability": 0.8032 }, { "start": 22271.6, "end": 22272.48, "probability": 0.6609 }, { "start": 22273.16, "end": 22274.24, "probability": 0.5365 }, { "start": 22274.76, "end": 22275.48, "probability": 0.7392 }, { "start": 22275.56, "end": 22276.91, "probability": 0.9209 }, { "start": 22277.08, "end": 22279.08, "probability": 0.9817 }, { "start": 22279.66, "end": 22281.06, "probability": 0.7213 }, { "start": 22281.1, "end": 22281.4, "probability": 0.9456 }, { "start": 22281.5, "end": 22282.59, "probability": 0.9072 }, { "start": 22283.4, "end": 22284.55, "probability": 0.8629 }, { "start": 22285.22, "end": 22286.08, "probability": 0.8207 }, { "start": 22286.12, "end": 22287.66, "probability": 0.8034 }, { "start": 22287.82, "end": 22288.46, "probability": 0.8015 }, { "start": 22288.8, "end": 22290.88, "probability": 0.6916 }, { "start": 22291.08, "end": 22292.2, "probability": 0.9482 }, { "start": 22294.36, "end": 22294.94, "probability": 0.6696 }, { "start": 22295.8, "end": 22299.04, "probability": 0.5074 }, { "start": 22318.08, "end": 22322.38, "probability": 0.8689 }, { "start": 22322.84, "end": 22326.16, "probability": 0.9301 }, { "start": 22326.84, "end": 22330.66, "probability": 0.9574 }, { "start": 22330.98, "end": 22335.18, "probability": 0.9956 }, { "start": 22336.62, "end": 22343.7, "probability": 0.9924 }, { "start": 22344.2, "end": 22348.08, "probability": 0.9941 }, { "start": 22348.36, "end": 22349.15, "probability": 0.9772 }, { "start": 22349.38, "end": 22350.22, "probability": 0.674 }, { "start": 22350.62, "end": 22352.74, "probability": 0.9821 }, { "start": 22352.88, "end": 22354.14, "probability": 0.8113 }, { "start": 22354.2, "end": 22355.58, "probability": 0.3223 }, { "start": 22356.06, "end": 22357.28, "probability": 0.9665 }, { "start": 22357.4, "end": 22358.36, "probability": 0.8833 }, { "start": 22358.76, "end": 22360.68, "probability": 0.9611 }, { "start": 22361.0, "end": 22361.92, "probability": 0.9202 }, { "start": 22362.76, "end": 22366.84, "probability": 0.9927 }, { "start": 22366.88, "end": 22370.42, "probability": 0.9928 }, { "start": 22371.0, "end": 22372.56, "probability": 0.7782 }, { "start": 22372.74, "end": 22375.68, "probability": 0.8222 }, { "start": 22376.48, "end": 22379.6, "probability": 0.9974 }, { "start": 22379.6, "end": 22382.76, "probability": 0.9984 }, { "start": 22383.98, "end": 22386.58, "probability": 0.9297 }, { "start": 22386.72, "end": 22387.27, "probability": 0.4781 }, { "start": 22388.16, "end": 22391.56, "probability": 0.9949 }, { "start": 22391.6, "end": 22393.1, "probability": 0.8844 }, { "start": 22393.68, "end": 22395.96, "probability": 0.9962 }, { "start": 22396.12, "end": 22400.8, "probability": 0.9946 }, { "start": 22402.18, "end": 22404.26, "probability": 0.9778 }, { "start": 22404.6, "end": 22405.28, "probability": 0.9689 }, { "start": 22405.44, "end": 22408.96, "probability": 0.9354 }, { "start": 22409.56, "end": 22410.4, "probability": 0.7786 }, { "start": 22411.74, "end": 22414.14, "probability": 0.9968 }, { "start": 22414.22, "end": 22418.44, "probability": 0.995 }, { "start": 22418.9, "end": 22419.9, "probability": 0.9932 }, { "start": 22421.0, "end": 22426.98, "probability": 0.9948 }, { "start": 22427.94, "end": 22428.76, "probability": 0.6333 }, { "start": 22428.96, "end": 22435.6, "probability": 0.9094 }, { "start": 22436.14, "end": 22436.48, "probability": 0.9538 }, { "start": 22437.54, "end": 22439.18, "probability": 0.6145 }, { "start": 22439.64, "end": 22441.16, "probability": 0.9296 }, { "start": 22441.22, "end": 22444.52, "probability": 0.9919 }, { "start": 22445.22, "end": 22446.25, "probability": 0.1219 }, { "start": 22448.14, "end": 22451.54, "probability": 0.9033 }, { "start": 22451.56, "end": 22456.52, "probability": 0.888 }, { "start": 22456.96, "end": 22458.54, "probability": 0.9775 }, { "start": 22458.58, "end": 22461.38, "probability": 0.9723 }, { "start": 22461.82, "end": 22463.48, "probability": 0.9967 }, { "start": 22463.72, "end": 22464.8, "probability": 0.7527 }, { "start": 22465.16, "end": 22466.72, "probability": 0.9973 }, { "start": 22467.5, "end": 22471.02, "probability": 0.937 }, { "start": 22471.58, "end": 22473.54, "probability": 0.8909 }, { "start": 22474.58, "end": 22479.12, "probability": 0.9939 }, { "start": 22479.32, "end": 22480.44, "probability": 0.5672 }, { "start": 22480.94, "end": 22482.32, "probability": 0.9717 }, { "start": 22482.8, "end": 22484.1, "probability": 0.9277 }, { "start": 22484.72, "end": 22488.84, "probability": 0.9918 }, { "start": 22489.58, "end": 22492.22, "probability": 0.9617 }, { "start": 22493.0, "end": 22500.74, "probability": 0.9805 }, { "start": 22501.26, "end": 22505.1, "probability": 0.9352 }, { "start": 22506.22, "end": 22510.6, "probability": 0.9943 }, { "start": 22510.8, "end": 22512.84, "probability": 0.7392 }, { "start": 22513.4, "end": 22515.2, "probability": 0.9907 }, { "start": 22516.06, "end": 22521.75, "probability": 0.9973 }, { "start": 22522.22, "end": 22522.74, "probability": 0.3708 }, { "start": 22522.88, "end": 22526.36, "probability": 0.9824 }, { "start": 22526.7, "end": 22529.48, "probability": 0.9867 }, { "start": 22529.68, "end": 22530.94, "probability": 0.9407 }, { "start": 22531.5, "end": 22532.18, "probability": 0.9852 }, { "start": 22533.4, "end": 22538.96, "probability": 0.9966 }, { "start": 22539.8, "end": 22543.32, "probability": 0.9697 }, { "start": 22543.96, "end": 22546.96, "probability": 0.8553 }, { "start": 22548.72, "end": 22552.8, "probability": 0.9878 }, { "start": 22552.9, "end": 22557.36, "probability": 0.9942 }, { "start": 22557.36, "end": 22560.7, "probability": 0.9985 }, { "start": 22561.48, "end": 22564.8, "probability": 0.9989 }, { "start": 22565.46, "end": 22566.94, "probability": 0.6946 }, { "start": 22567.72, "end": 22570.08, "probability": 0.9988 }, { "start": 22570.08, "end": 22573.38, "probability": 0.9846 }, { "start": 22573.68, "end": 22574.78, "probability": 0.7327 }, { "start": 22574.88, "end": 22575.7, "probability": 0.9521 }, { "start": 22576.36, "end": 22578.22, "probability": 0.8429 }, { "start": 22578.38, "end": 22578.74, "probability": 0.8658 }, { "start": 22579.18, "end": 22580.52, "probability": 0.8921 }, { "start": 22580.92, "end": 22583.38, "probability": 0.9896 }, { "start": 22584.08, "end": 22586.48, "probability": 0.9141 }, { "start": 22586.64, "end": 22589.02, "probability": 0.7719 }, { "start": 22589.88, "end": 22593.08, "probability": 0.9937 }, { "start": 22594.2, "end": 22597.66, "probability": 0.9989 }, { "start": 22598.58, "end": 22599.04, "probability": 0.8083 }, { "start": 22599.16, "end": 22600.48, "probability": 0.874 }, { "start": 22600.62, "end": 22602.74, "probability": 0.8452 }, { "start": 22602.94, "end": 22604.48, "probability": 0.7871 }, { "start": 22605.24, "end": 22607.76, "probability": 0.9312 }, { "start": 22609.04, "end": 22610.2, "probability": 0.3452 }, { "start": 22610.26, "end": 22611.3, "probability": 0.8313 }, { "start": 22611.32, "end": 22612.54, "probability": 0.9966 }, { "start": 22613.06, "end": 22614.56, "probability": 0.9701 }, { "start": 22615.14, "end": 22616.4, "probability": 0.9824 }, { "start": 22616.92, "end": 22617.32, "probability": 0.8239 }, { "start": 22619.12, "end": 22622.9, "probability": 0.7147 }, { "start": 22623.22, "end": 22627.54, "probability": 0.8501 }, { "start": 22628.54, "end": 22629.4, "probability": 0.3238 }, { "start": 22630.48, "end": 22630.48, "probability": 0.2133 }, { "start": 22647.2, "end": 22648.16, "probability": 0.2045 }, { "start": 22649.32, "end": 22652.71, "probability": 0.6984 }, { "start": 22655.48, "end": 22658.92, "probability": 0.6665 }, { "start": 22660.08, "end": 22662.78, "probability": 0.7046 }, { "start": 22662.82, "end": 22663.7, "probability": 0.7899 }, { "start": 22663.92, "end": 22665.76, "probability": 0.9242 }, { "start": 22666.2, "end": 22667.22, "probability": 0.7683 }, { "start": 22667.76, "end": 22668.4, "probability": 0.8831 }, { "start": 22669.6, "end": 22675.44, "probability": 0.9738 }, { "start": 22676.44, "end": 22677.24, "probability": 0.9971 }, { "start": 22677.98, "end": 22678.92, "probability": 0.5724 }, { "start": 22679.48, "end": 22682.28, "probability": 0.8779 }, { "start": 22683.04, "end": 22689.54, "probability": 0.9915 }, { "start": 22690.82, "end": 22691.42, "probability": 0.9501 }, { "start": 22691.94, "end": 22692.54, "probability": 0.5108 }, { "start": 22693.44, "end": 22698.18, "probability": 0.7314 }, { "start": 22699.32, "end": 22702.3, "probability": 0.9228 }, { "start": 22704.44, "end": 22707.82, "probability": 0.9844 }, { "start": 22708.72, "end": 22710.78, "probability": 0.9954 }, { "start": 22712.3, "end": 22713.86, "probability": 0.8944 }, { "start": 22714.62, "end": 22716.7, "probability": 0.8962 }, { "start": 22717.32, "end": 22721.36, "probability": 0.8179 }, { "start": 22722.06, "end": 22722.72, "probability": 0.8819 }, { "start": 22723.94, "end": 22725.16, "probability": 0.9056 }, { "start": 22725.7, "end": 22727.24, "probability": 0.9627 }, { "start": 22727.64, "end": 22730.56, "probability": 0.98 }, { "start": 22730.72, "end": 22732.08, "probability": 0.9744 }, { "start": 22732.2, "end": 22733.2, "probability": 0.5944 }, { "start": 22745.74, "end": 22747.6, "probability": 0.0365 }, { "start": 22748.26, "end": 22748.26, "probability": 0.0155 }, { "start": 22748.26, "end": 22748.26, "probability": 0.1359 }, { "start": 22748.26, "end": 22748.26, "probability": 0.2827 }, { "start": 22748.26, "end": 22748.26, "probability": 0.1083 }, { "start": 22748.26, "end": 22748.26, "probability": 0.2627 }, { "start": 22748.26, "end": 22748.26, "probability": 0.1817 }, { "start": 22748.26, "end": 22750.36, "probability": 0.6611 }, { "start": 22751.18, "end": 22753.48, "probability": 0.6013 }, { "start": 22753.9, "end": 22758.08, "probability": 0.7681 }, { "start": 22758.74, "end": 22762.52, "probability": 0.9659 }, { "start": 22763.1, "end": 22767.6, "probability": 0.8911 }, { "start": 22768.5, "end": 22770.46, "probability": 0.9746 }, { "start": 22770.94, "end": 22774.6, "probability": 0.8836 }, { "start": 22775.32, "end": 22776.42, "probability": 0.6442 }, { "start": 22776.74, "end": 22785.12, "probability": 0.9333 }, { "start": 22785.68, "end": 22787.18, "probability": 0.9517 }, { "start": 22788.36, "end": 22788.36, "probability": 0.0016 }, { "start": 22788.36, "end": 22789.7, "probability": 0.7847 }, { "start": 22790.18, "end": 22790.88, "probability": 0.844 }, { "start": 22791.22, "end": 22794.54, "probability": 0.9648 }, { "start": 22794.62, "end": 22795.54, "probability": 0.5204 }, { "start": 22796.72, "end": 22799.04, "probability": 0.7739 }, { "start": 22799.5, "end": 22800.32, "probability": 0.9551 }, { "start": 22801.56, "end": 22804.04, "probability": 0.7293 }, { "start": 22804.78, "end": 22805.9, "probability": 0.5701 }, { "start": 22806.94, "end": 22809.04, "probability": 0.9978 }, { "start": 22810.5, "end": 22815.08, "probability": 0.7522 }, { "start": 22815.62, "end": 22819.04, "probability": 0.9896 }, { "start": 22819.2, "end": 22819.86, "probability": 0.8802 }, { "start": 22820.0, "end": 22821.5, "probability": 0.6876 }, { "start": 22822.16, "end": 22825.9, "probability": 0.9559 }, { "start": 22826.36, "end": 22829.4, "probability": 0.5989 }, { "start": 22830.1, "end": 22831.48, "probability": 0.9879 }, { "start": 22832.26, "end": 22835.52, "probability": 0.8995 }, { "start": 22836.0, "end": 22841.58, "probability": 0.9934 }, { "start": 22842.42, "end": 22846.96, "probability": 0.9673 }, { "start": 22846.98, "end": 22851.82, "probability": 0.9006 }, { "start": 22852.36, "end": 22852.36, "probability": 0.0576 }, { "start": 22852.36, "end": 22853.4, "probability": 0.7207 }, { "start": 22853.58, "end": 22858.48, "probability": 0.8865 }, { "start": 22858.92, "end": 22860.68, "probability": 0.6098 }, { "start": 22861.38, "end": 22862.78, "probability": 0.9112 }, { "start": 22863.16, "end": 22865.52, "probability": 0.9806 }, { "start": 22865.92, "end": 22866.34, "probability": 0.0062 }, { "start": 22868.12, "end": 22869.24, "probability": 0.0323 }, { "start": 22869.46, "end": 22873.1, "probability": 0.144 }, { "start": 22873.48, "end": 22875.04, "probability": 0.3541 }, { "start": 22875.38, "end": 22875.96, "probability": 0.5839 }, { "start": 22884.46, "end": 22884.46, "probability": 0.4546 }, { "start": 22884.46, "end": 22885.4, "probability": 0.5378 }, { "start": 22885.86, "end": 22887.4, "probability": 0.0545 }, { "start": 22888.64, "end": 22890.02, "probability": 0.1238 }, { "start": 22892.0, "end": 22892.54, "probability": 0.6218 }, { "start": 22894.54, "end": 22895.91, "probability": 0.0227 }, { "start": 22900.5, "end": 22900.94, "probability": 0.1321 }, { "start": 22901.32, "end": 22902.26, "probability": 0.3136 }, { "start": 22902.26, "end": 22902.36, "probability": 0.5943 }, { "start": 22903.46, "end": 22904.02, "probability": 0.9734 }, { "start": 22905.52, "end": 22906.1, "probability": 0.4721 }, { "start": 22907.74, "end": 22909.9, "probability": 0.8182 }, { "start": 22910.12, "end": 22911.48, "probability": 0.6904 }, { "start": 22912.04, "end": 22913.56, "probability": 0.5095 }, { "start": 22913.88, "end": 22916.92, "probability": 0.9551 }, { "start": 22918.04, "end": 22919.48, "probability": 0.9832 }, { "start": 22919.7, "end": 22920.62, "probability": 0.906 }, { "start": 22921.52, "end": 22923.09, "probability": 0.8971 }, { "start": 22923.54, "end": 22923.89, "probability": 0.5053 }, { "start": 22924.06, "end": 22924.54, "probability": 0.7987 }, { "start": 22925.0, "end": 22925.7, "probability": 0.4517 }, { "start": 22925.7, "end": 22927.9, "probability": 0.6307 }, { "start": 22928.42, "end": 22930.58, "probability": 0.9551 }, { "start": 22930.94, "end": 22932.83, "probability": 0.9849 }, { "start": 22933.0, "end": 22933.84, "probability": 0.542 }, { "start": 22934.46, "end": 22934.96, "probability": 0.9648 }, { "start": 22935.02, "end": 22935.84, "probability": 0.8066 }, { "start": 22936.18, "end": 22936.94, "probability": 0.5229 }, { "start": 22936.94, "end": 22937.18, "probability": 0.5881 }, { "start": 22937.35, "end": 22939.74, "probability": 0.95 }, { "start": 22940.28, "end": 22942.12, "probability": 0.9692 }, { "start": 22942.7, "end": 22944.02, "probability": 0.9805 }, { "start": 22945.02, "end": 22949.54, "probability": 0.6741 }, { "start": 22950.16, "end": 22952.14, "probability": 0.9294 }, { "start": 22953.12, "end": 22954.94, "probability": 0.7511 }, { "start": 22955.18, "end": 22956.44, "probability": 0.7808 }, { "start": 22956.5, "end": 22960.7, "probability": 0.6179 }, { "start": 22960.9, "end": 22962.06, "probability": 0.6489 }, { "start": 22962.18, "end": 22964.96, "probability": 0.7526 }, { "start": 22965.72, "end": 22967.84, "probability": 0.8223 }, { "start": 22968.66, "end": 22970.1, "probability": 0.8742 }, { "start": 22970.24, "end": 22970.84, "probability": 0.8003 }, { "start": 22970.96, "end": 22972.78, "probability": 0.5679 }, { "start": 22973.48, "end": 22973.58, "probability": 0.8371 }, { "start": 22973.86, "end": 22974.27, "probability": 0.7427 }, { "start": 22974.44, "end": 22976.04, "probability": 0.9041 }, { "start": 22976.1, "end": 22976.6, "probability": 0.5998 }, { "start": 22976.64, "end": 22976.64, "probability": 0.5909 }, { "start": 22976.64, "end": 22978.0, "probability": 0.659 }, { "start": 22978.66, "end": 22979.96, "probability": 0.6681 }, { "start": 22980.7, "end": 22981.58, "probability": 0.8333 }, { "start": 22982.02, "end": 22983.6, "probability": 0.9719 }, { "start": 22983.72, "end": 22983.84, "probability": 0.6833 }, { "start": 22985.4, "end": 22988.46, "probability": 0.9313 }, { "start": 22988.94, "end": 22989.18, "probability": 0.122 }, { "start": 22989.2, "end": 22989.86, "probability": 0.8079 }, { "start": 22990.2, "end": 22990.88, "probability": 0.6694 }, { "start": 22991.06, "end": 22991.47, "probability": 0.8689 }, { "start": 22992.6, "end": 22993.22, "probability": 0.6128 }, { "start": 22993.22, "end": 22996.88, "probability": 0.8265 }, { "start": 22997.42, "end": 22998.0, "probability": 0.8972 }, { "start": 23000.04, "end": 23002.18, "probability": 0.1802 }, { "start": 23002.68, "end": 23003.96, "probability": 0.9961 }, { "start": 23004.48, "end": 23009.36, "probability": 0.8499 }, { "start": 23009.72, "end": 23014.48, "probability": 0.9941 }, { "start": 23014.74, "end": 23014.84, "probability": 0.4049 }, { "start": 23015.5, "end": 23016.48, "probability": 0.7018 }, { "start": 23017.08, "end": 23017.74, "probability": 0.9223 }, { "start": 23017.78, "end": 23019.22, "probability": 0.7792 }, { "start": 23019.68, "end": 23022.08, "probability": 0.978 }, { "start": 23023.12, "end": 23024.4, "probability": 0.9388 }, { "start": 23025.02, "end": 23027.32, "probability": 0.938 }, { "start": 23027.46, "end": 23028.12, "probability": 0.9663 }, { "start": 23030.16, "end": 23031.72, "probability": 0.6755 }, { "start": 23032.24, "end": 23033.86, "probability": 0.6583 }, { "start": 23035.18, "end": 23037.34, "probability": 0.6564 }, { "start": 23038.72, "end": 23039.76, "probability": 0.9967 }, { "start": 23040.6, "end": 23041.53, "probability": 0.6701 }, { "start": 23044.46, "end": 23048.16, "probability": 0.5347 }, { "start": 23049.98, "end": 23050.18, "probability": 0.065 }, { "start": 23050.18, "end": 23050.74, "probability": 0.0975 }, { "start": 23050.9, "end": 23052.64, "probability": 0.6757 }, { "start": 23052.78, "end": 23053.72, "probability": 0.8034 }, { "start": 23054.12, "end": 23054.28, "probability": 0.085 }, { "start": 23054.46, "end": 23056.22, "probability": 0.0725 }, { "start": 23056.28, "end": 23058.02, "probability": 0.4232 }, { "start": 23058.02, "end": 23059.38, "probability": 0.1432 }, { "start": 23059.46, "end": 23059.48, "probability": 0.1692 }, { "start": 23059.48, "end": 23062.12, "probability": 0.9704 }, { "start": 23062.34, "end": 23064.8, "probability": 0.7836 }, { "start": 23066.14, "end": 23068.46, "probability": 0.6907 }, { "start": 23068.96, "end": 23069.52, "probability": 0.5571 }, { "start": 23070.58, "end": 23071.68, "probability": 0.0201 }, { "start": 23072.66, "end": 23075.04, "probability": 0.7664 }, { "start": 23075.74, "end": 23077.84, "probability": 0.8418 }, { "start": 23077.96, "end": 23079.71, "probability": 0.9634 }, { "start": 23079.84, "end": 23080.42, "probability": 0.6968 }, { "start": 23080.52, "end": 23080.62, "probability": 0.3054 }, { "start": 23082.14, "end": 23082.38, "probability": 0.357 }, { "start": 23083.0, "end": 23084.78, "probability": 0.868 }, { "start": 23089.72, "end": 23091.46, "probability": 0.8031 }, { "start": 23091.62, "end": 23093.48, "probability": 0.7328 }, { "start": 23093.5, "end": 23095.08, "probability": 0.0497 }, { "start": 23095.28, "end": 23097.14, "probability": 0.8584 }, { "start": 23097.52, "end": 23098.24, "probability": 0.5452 }, { "start": 23098.68, "end": 23099.58, "probability": 0.3914 }, { "start": 23101.88, "end": 23105.08, "probability": 0.1738 }, { "start": 23116.22, "end": 23116.94, "probability": 0.0035 }, { "start": 23117.06, "end": 23118.12, "probability": 0.0228 }, { "start": 23118.12, "end": 23118.16, "probability": 0.045 }, { "start": 23118.16, "end": 23118.3, "probability": 0.7689 }, { "start": 23118.3, "end": 23118.62, "probability": 0.1382 }, { "start": 23119.16, "end": 23120.56, "probability": 0.7377 }, { "start": 23121.12, "end": 23127.8, "probability": 0.9046 }, { "start": 23128.7, "end": 23131.18, "probability": 0.5707 }, { "start": 23133.62, "end": 23135.24, "probability": 0.992 }, { "start": 23136.34, "end": 23138.24, "probability": 0.9451 }, { "start": 23138.24, "end": 23141.19, "probability": 0.8317 }, { "start": 23141.74, "end": 23142.58, "probability": 0.1633 }, { "start": 23144.44, "end": 23145.62, "probability": 0.9969 }, { "start": 23146.24, "end": 23148.14, "probability": 0.467 }, { "start": 23148.14, "end": 23149.6, "probability": 0.5919 }, { "start": 23150.7, "end": 23152.56, "probability": 0.8941 }, { "start": 23152.82, "end": 23155.74, "probability": 0.3841 }, { "start": 23155.74, "end": 23156.4, "probability": 0.0834 }, { "start": 23158.44, "end": 23158.58, "probability": 0.4717 }, { "start": 23184.14, "end": 23185.64, "probability": 0.6895 }, { "start": 23186.82, "end": 23188.18, "probability": 0.4548 }, { "start": 23188.18, "end": 23189.52, "probability": 0.0734 }, { "start": 23189.54, "end": 23189.54, "probability": 0.0497 }, { "start": 23189.54, "end": 23189.58, "probability": 0.1558 }, { "start": 23189.58, "end": 23190.14, "probability": 0.2399 }, { "start": 23190.24, "end": 23191.4, "probability": 0.6286 }, { "start": 23202.32, "end": 23203.44, "probability": 0.5449 }, { "start": 23204.16, "end": 23206.28, "probability": 0.829 }, { "start": 23207.0, "end": 23208.06, "probability": 0.7753 }, { "start": 23209.62, "end": 23210.9, "probability": 0.842 }, { "start": 23212.0, "end": 23212.64, "probability": 0.9982 }, { "start": 23213.22, "end": 23215.54, "probability": 0.9646 }, { "start": 23217.62, "end": 23219.98, "probability": 0.979 }, { "start": 23221.82, "end": 23227.94, "probability": 0.9495 }, { "start": 23229.0, "end": 23233.06, "probability": 0.991 }, { "start": 23233.84, "end": 23235.86, "probability": 0.9493 }, { "start": 23236.68, "end": 23240.04, "probability": 0.9794 }, { "start": 23240.74, "end": 23242.84, "probability": 0.9793 }, { "start": 23245.16, "end": 23245.94, "probability": 0.8366 }, { "start": 23246.82, "end": 23249.04, "probability": 0.9702 }, { "start": 23249.92, "end": 23250.36, "probability": 0.7907 }, { "start": 23251.02, "end": 23254.22, "probability": 0.9424 }, { "start": 23255.26, "end": 23256.0, "probability": 0.8868 }, { "start": 23256.56, "end": 23258.82, "probability": 0.7156 }, { "start": 23259.68, "end": 23264.76, "probability": 0.9883 }, { "start": 23266.02, "end": 23266.9, "probability": 0.691 }, { "start": 23267.92, "end": 23268.8, "probability": 0.8885 }, { "start": 23269.58, "end": 23273.7, "probability": 0.986 }, { "start": 23273.7, "end": 23277.12, "probability": 0.9903 }, { "start": 23278.48, "end": 23279.22, "probability": 0.9813 }, { "start": 23280.04, "end": 23281.32, "probability": 0.9943 }, { "start": 23281.94, "end": 23283.34, "probability": 0.9467 }, { "start": 23284.24, "end": 23291.9, "probability": 0.9967 }, { "start": 23292.94, "end": 23295.72, "probability": 0.9862 }, { "start": 23296.0, "end": 23298.5, "probability": 0.8646 }, { "start": 23299.9, "end": 23300.68, "probability": 0.6923 }, { "start": 23301.3, "end": 23303.04, "probability": 0.9984 }, { "start": 23303.84, "end": 23305.22, "probability": 0.7111 }, { "start": 23305.38, "end": 23308.78, "probability": 0.8281 }, { "start": 23309.46, "end": 23314.5, "probability": 0.9866 }, { "start": 23316.44, "end": 23318.58, "probability": 0.9892 }, { "start": 23318.96, "end": 23321.28, "probability": 0.9531 }, { "start": 23321.68, "end": 23322.66, "probability": 0.6861 }, { "start": 23324.1, "end": 23324.86, "probability": 0.7509 }, { "start": 23326.7, "end": 23330.32, "probability": 0.9893 }, { "start": 23331.62, "end": 23335.7, "probability": 0.9798 }, { "start": 23335.7, "end": 23339.32, "probability": 0.9775 }, { "start": 23340.54, "end": 23350.34, "probability": 0.9862 }, { "start": 23350.74, "end": 23356.9, "probability": 0.9863 }, { "start": 23358.2, "end": 23361.18, "probability": 0.9956 }, { "start": 23362.08, "end": 23366.66, "probability": 0.9823 }, { "start": 23368.86, "end": 23371.72, "probability": 0.9855 }, { "start": 23371.72, "end": 23375.06, "probability": 0.9957 }, { "start": 23375.76, "end": 23379.56, "probability": 0.9847 }, { "start": 23380.5, "end": 23381.58, "probability": 0.9472 }, { "start": 23383.16, "end": 23383.96, "probability": 0.9669 }, { "start": 23384.7, "end": 23386.18, "probability": 0.976 }, { "start": 23387.34, "end": 23390.06, "probability": 0.9248 }, { "start": 23391.32, "end": 23395.48, "probability": 0.9912 }, { "start": 23395.48, "end": 23400.06, "probability": 0.9972 }, { "start": 23401.34, "end": 23403.98, "probability": 0.9906 }, { "start": 23405.22, "end": 23407.96, "probability": 0.9983 }, { "start": 23407.96, "end": 23410.64, "probability": 0.9965 }, { "start": 23412.4, "end": 23416.12, "probability": 0.799 }, { "start": 23417.32, "end": 23421.98, "probability": 0.9949 }, { "start": 23423.94, "end": 23424.72, "probability": 0.9884 }, { "start": 23425.32, "end": 23430.84, "probability": 0.973 }, { "start": 23432.5, "end": 23433.3, "probability": 0.8428 }, { "start": 23433.82, "end": 23435.22, "probability": 0.9933 }, { "start": 23435.72, "end": 23440.44, "probability": 0.9808 }, { "start": 23440.44, "end": 23444.96, "probability": 0.998 }, { "start": 23445.84, "end": 23447.44, "probability": 0.9536 }, { "start": 23448.46, "end": 23452.38, "probability": 0.8954 }, { "start": 23452.94, "end": 23460.8, "probability": 0.9872 }, { "start": 23461.7, "end": 23462.63, "probability": 0.9941 }, { "start": 23464.4, "end": 23466.8, "probability": 0.686 }, { "start": 23467.94, "end": 23468.66, "probability": 0.9491 }, { "start": 23469.28, "end": 23472.5, "probability": 0.9967 }, { "start": 23473.62, "end": 23476.2, "probability": 0.9908 }, { "start": 23477.04, "end": 23477.9, "probability": 0.8006 }, { "start": 23478.54, "end": 23480.1, "probability": 0.7694 }, { "start": 23481.92, "end": 23486.28, "probability": 0.9835 }, { "start": 23487.92, "end": 23490.84, "probability": 0.9297 }, { "start": 23492.36, "end": 23495.14, "probability": 0.8679 }, { "start": 23496.56, "end": 23497.54, "probability": 0.9933 }, { "start": 23498.82, "end": 23503.84, "probability": 0.9714 }, { "start": 23505.36, "end": 23508.14, "probability": 0.9136 }, { "start": 23508.82, "end": 23510.92, "probability": 0.991 }, { "start": 23511.68, "end": 23515.34, "probability": 0.9983 }, { "start": 23516.64, "end": 23517.14, "probability": 0.5566 }, { "start": 23517.68, "end": 23520.0, "probability": 0.9645 }, { "start": 23520.52, "end": 23523.5, "probability": 0.9899 }, { "start": 23524.32, "end": 23526.64, "probability": 0.9847 }, { "start": 23528.18, "end": 23529.28, "probability": 0.7503 }, { "start": 23529.92, "end": 23535.7, "probability": 0.9957 }, { "start": 23536.24, "end": 23538.82, "probability": 0.3239 }, { "start": 23539.64, "end": 23541.48, "probability": 0.9639 }, { "start": 23543.16, "end": 23543.6, "probability": 0.2517 }, { "start": 23543.66, "end": 23544.42, "probability": 0.8491 }, { "start": 23544.76, "end": 23547.02, "probability": 0.8778 }, { "start": 23547.6, "end": 23548.66, "probability": 0.8646 }, { "start": 23549.04, "end": 23551.92, "probability": 0.974 }, { "start": 23552.32, "end": 23553.44, "probability": 0.6202 }, { "start": 23553.52, "end": 23554.34, "probability": 0.2521 }, { "start": 23556.31, "end": 23557.32, "probability": 0.1612 }, { "start": 23558.14, "end": 23559.48, "probability": 0.0842 }, { "start": 23559.48, "end": 23559.48, "probability": 0.3997 }, { "start": 23559.48, "end": 23561.78, "probability": 0.6948 }, { "start": 23562.44, "end": 23567.86, "probability": 0.3843 }, { "start": 23571.54, "end": 23572.44, "probability": 0.0478 }, { "start": 23574.1, "end": 23574.9, "probability": 0.0447 }, { "start": 23575.28, "end": 23576.22, "probability": 0.0904 }, { "start": 23576.26, "end": 23578.6, "probability": 0.1193 }, { "start": 23583.44, "end": 23584.9, "probability": 0.1803 }, { "start": 23584.9, "end": 23585.54, "probability": 0.2314 }, { "start": 23586.46, "end": 23587.5, "probability": 0.0037 }, { "start": 23590.78, "end": 23595.9, "probability": 0.0711 }, { "start": 23596.84, "end": 23597.0, "probability": 0.5786 }, { "start": 23605.82, "end": 23605.86, "probability": 0.0918 }, { "start": 23605.86, "end": 23606.75, "probability": 0.0187 }, { "start": 23607.92, "end": 23608.66, "probability": 0.0912 }, { "start": 23615.52, "end": 23615.58, "probability": 0.1018 }, { "start": 23615.58, "end": 23616.04, "probability": 0.4506 }, { "start": 23617.56, "end": 23618.32, "probability": 0.9319 }, { "start": 23618.76, "end": 23620.32, "probability": 0.7848 }, { "start": 23621.46, "end": 23622.48, "probability": 0.9317 }, { "start": 23622.62, "end": 23627.54, "probability": 0.9869 }, { "start": 23628.12, "end": 23632.7, "probability": 0.9972 }, { "start": 23633.4, "end": 23633.68, "probability": 0.6503 }, { "start": 23633.9, "end": 23635.6, "probability": 0.9087 }, { "start": 23636.08, "end": 23637.64, "probability": 0.9891 }, { "start": 23637.76, "end": 23638.78, "probability": 0.9403 }, { "start": 23639.16, "end": 23642.76, "probability": 0.9609 }, { "start": 23643.48, "end": 23646.98, "probability": 0.9956 }, { "start": 23647.6, "end": 23649.48, "probability": 0.7547 }, { "start": 23649.76, "end": 23656.92, "probability": 0.9672 }, { "start": 23657.16, "end": 23658.82, "probability": 0.737 }, { "start": 23659.56, "end": 23660.96, "probability": 0.9428 }, { "start": 23661.46, "end": 23667.16, "probability": 0.9661 }, { "start": 23667.16, "end": 23674.42, "probability": 0.9829 }, { "start": 23675.56, "end": 23677.48, "probability": 0.5299 }, { "start": 23678.6, "end": 23684.02, "probability": 0.9786 }, { "start": 23684.02, "end": 23689.0, "probability": 0.9786 }, { "start": 23689.72, "end": 23692.26, "probability": 0.6038 }, { "start": 23692.94, "end": 23699.04, "probability": 0.9933 }, { "start": 23699.16, "end": 23702.78, "probability": 0.9949 }, { "start": 23703.28, "end": 23704.1, "probability": 0.661 }, { "start": 23704.26, "end": 23711.66, "probability": 0.8844 }, { "start": 23713.24, "end": 23716.38, "probability": 0.915 }, { "start": 23716.78, "end": 23720.38, "probability": 0.9932 }, { "start": 23720.84, "end": 23721.68, "probability": 0.8588 }, { "start": 23721.92, "end": 23726.56, "probability": 0.9816 }, { "start": 23727.4, "end": 23735.42, "probability": 0.9556 }, { "start": 23737.15, "end": 23740.94, "probability": 0.9336 }, { "start": 23741.58, "end": 23744.48, "probability": 0.9744 }, { "start": 23744.76, "end": 23746.1, "probability": 0.9952 }, { "start": 23746.74, "end": 23749.6, "probability": 0.9924 }, { "start": 23749.96, "end": 23750.86, "probability": 0.7771 }, { "start": 23751.26, "end": 23752.94, "probability": 0.9937 }, { "start": 23753.44, "end": 23757.62, "probability": 0.9929 }, { "start": 23757.94, "end": 23760.02, "probability": 0.8389 }, { "start": 23760.78, "end": 23762.34, "probability": 0.9447 }, { "start": 23762.5, "end": 23764.72, "probability": 0.879 }, { "start": 23765.1, "end": 23769.22, "probability": 0.9907 }, { "start": 23769.28, "end": 23773.92, "probability": 0.9614 }, { "start": 23774.56, "end": 23776.22, "probability": 0.8594 }, { "start": 23776.98, "end": 23779.42, "probability": 0.8966 }, { "start": 23779.88, "end": 23781.08, "probability": 0.8918 }, { "start": 23781.4, "end": 23784.02, "probability": 0.845 }, { "start": 23785.0, "end": 23788.38, "probability": 0.9648 }, { "start": 23788.38, "end": 23793.34, "probability": 0.8276 }, { "start": 23794.12, "end": 23797.78, "probability": 0.8882 }, { "start": 23798.38, "end": 23798.9, "probability": 0.8758 }, { "start": 23799.08, "end": 23801.96, "probability": 0.8306 }, { "start": 23802.38, "end": 23803.84, "probability": 0.8613 }, { "start": 23803.92, "end": 23805.6, "probability": 0.7627 }, { "start": 23806.06, "end": 23808.72, "probability": 0.7618 }, { "start": 23809.22, "end": 23813.4, "probability": 0.9661 }, { "start": 23813.88, "end": 23815.42, "probability": 0.6751 }, { "start": 23816.24, "end": 23818.28, "probability": 0.9817 }, { "start": 23818.52, "end": 23818.82, "probability": 0.4819 }, { "start": 23818.94, "end": 23821.08, "probability": 0.9577 }, { "start": 23822.36, "end": 23825.6, "probability": 0.9941 }, { "start": 23825.74, "end": 23826.88, "probability": 0.9255 }, { "start": 23827.18, "end": 23828.4, "probability": 0.9873 }, { "start": 23828.78, "end": 23829.5, "probability": 0.8384 }, { "start": 23830.08, "end": 23832.86, "probability": 0.9941 }, { "start": 23832.98, "end": 23836.32, "probability": 0.9895 }, { "start": 23836.4, "end": 23838.34, "probability": 0.9578 }, { "start": 23839.24, "end": 23840.64, "probability": 0.9618 }, { "start": 23841.76, "end": 23843.04, "probability": 0.8079 }, { "start": 23845.78, "end": 23846.36, "probability": 0.7489 }, { "start": 23849.82, "end": 23850.7, "probability": 0.5172 }, { "start": 23851.76, "end": 23855.28, "probability": 0.2277 }, { "start": 23855.8, "end": 23856.98, "probability": 0.1481 }, { "start": 23856.98, "end": 23857.82, "probability": 0.692 }, { "start": 23857.88, "end": 23858.38, "probability": 0.7439 }, { "start": 23859.24, "end": 23861.82, "probability": 0.8876 }, { "start": 23862.24, "end": 23862.26, "probability": 0.6447 }, { "start": 23862.7, "end": 23863.44, "probability": 0.915 }, { "start": 23863.96, "end": 23863.96, "probability": 0.0311 }, { "start": 23864.66, "end": 23867.82, "probability": 0.975 }, { "start": 23867.98, "end": 23869.1, "probability": 0.5807 }, { "start": 23869.4, "end": 23870.9, "probability": 0.8748 }, { "start": 23872.22, "end": 23872.5, "probability": 0.7856 }, { "start": 23872.66, "end": 23873.12, "probability": 0.7377 }, { "start": 23873.22, "end": 23875.1, "probability": 0.7595 }, { "start": 23875.1, "end": 23876.66, "probability": 0.987 }, { "start": 23877.44, "end": 23878.88, "probability": 0.873 }, { "start": 23880.46, "end": 23881.44, "probability": 0.546 }, { "start": 23882.28, "end": 23884.34, "probability": 0.8026 }, { "start": 23885.48, "end": 23887.78, "probability": 0.9563 }, { "start": 23887.98, "end": 23888.82, "probability": 0.9948 }, { "start": 23891.9, "end": 23892.78, "probability": 0.9808 }, { "start": 23894.16, "end": 23894.94, "probability": 0.9278 }, { "start": 23895.68, "end": 23896.6, "probability": 0.8941 }, { "start": 23897.76, "end": 23898.54, "probability": 0.9175 }, { "start": 23899.14, "end": 23900.3, "probability": 0.9883 }, { "start": 23900.46, "end": 23902.8, "probability": 0.9922 }, { "start": 23904.12, "end": 23904.98, "probability": 0.998 }, { "start": 23906.4, "end": 23907.68, "probability": 0.9758 }, { "start": 23908.5, "end": 23910.62, "probability": 0.9951 }, { "start": 23910.68, "end": 23914.28, "probability": 0.8004 }, { "start": 23915.5, "end": 23917.86, "probability": 0.9952 }, { "start": 23918.54, "end": 23921.98, "probability": 0.9706 }, { "start": 23923.54, "end": 23924.32, "probability": 0.9612 }, { "start": 23925.84, "end": 23930.02, "probability": 0.6618 }, { "start": 23930.78, "end": 23933.82, "probability": 0.0932 }, { "start": 23934.38, "end": 23935.72, "probability": 0.3474 }, { "start": 23935.86, "end": 23938.66, "probability": 0.0824 }, { "start": 23938.66, "end": 23938.66, "probability": 0.0736 }, { "start": 23938.66, "end": 23938.66, "probability": 0.1933 }, { "start": 23938.66, "end": 23939.34, "probability": 0.0249 }, { "start": 23940.1, "end": 23940.1, "probability": 0.0347 }, { "start": 23940.1, "end": 23942.4, "probability": 0.5581 }, { "start": 23942.84, "end": 23943.22, "probability": 0.5281 }, { "start": 23943.22, "end": 23944.08, "probability": 0.6563 }, { "start": 23944.3, "end": 23944.93, "probability": 0.2128 }, { "start": 23945.4, "end": 23945.82, "probability": 0.7203 }, { "start": 23945.9, "end": 23947.44, "probability": 0.4581 }, { "start": 23947.72, "end": 23948.26, "probability": 0.8832 }, { "start": 23948.56, "end": 23952.3, "probability": 0.1509 }, { "start": 23955.82, "end": 23957.08, "probability": 0.2432 }, { "start": 23959.88, "end": 23961.2, "probability": 0.6679 }, { "start": 23962.78, "end": 23963.9, "probability": 0.4664 }, { "start": 23964.34, "end": 23965.02, "probability": 0.6961 }, { "start": 23965.38, "end": 23966.76, "probability": 0.862 }, { "start": 23966.8, "end": 23970.82, "probability": 0.9129 }, { "start": 23970.82, "end": 23975.14, "probability": 0.9565 }, { "start": 23975.34, "end": 23975.62, "probability": 0.6792 }, { "start": 23976.14, "end": 23977.38, "probability": 0.6827 }, { "start": 23977.46, "end": 23980.96, "probability": 0.9445 }, { "start": 23981.94, "end": 23982.66, "probability": 0.6779 }, { "start": 23982.82, "end": 23983.08, "probability": 0.8171 }, { "start": 23983.18, "end": 23985.98, "probability": 0.96 }, { "start": 23985.98, "end": 23989.7, "probability": 0.9849 }, { "start": 23990.58, "end": 23994.16, "probability": 0.9973 }, { "start": 23995.1, "end": 23999.32, "probability": 0.7817 }, { "start": 23999.84, "end": 24002.9, "probability": 0.9933 }, { "start": 24004.24, "end": 24006.44, "probability": 0.732 }, { "start": 24006.54, "end": 24007.22, "probability": 0.7578 }, { "start": 24007.66, "end": 24008.24, "probability": 0.672 }, { "start": 24008.48, "end": 24008.88, "probability": 0.1089 }, { "start": 24009.84, "end": 24012.92, "probability": 0.7586 }, { "start": 24013.64, "end": 24017.1, "probability": 0.9193 }, { "start": 24017.62, "end": 24018.06, "probability": 0.2794 }, { "start": 24018.18, "end": 24023.24, "probability": 0.9787 }, { "start": 24025.13, "end": 24028.56, "probability": 0.9831 }, { "start": 24031.28, "end": 24032.18, "probability": 0.0061 }, { "start": 24032.24, "end": 24032.88, "probability": 0.9861 }, { "start": 24033.7, "end": 24035.38, "probability": 0.9978 }, { "start": 24036.34, "end": 24041.26, "probability": 0.9473 }, { "start": 24042.08, "end": 24042.08, "probability": 0.3212 }, { "start": 24042.08, "end": 24045.96, "probability": 0.995 }, { "start": 24046.92, "end": 24047.6, "probability": 0.8506 }, { "start": 24048.28, "end": 24048.74, "probability": 0.8938 }, { "start": 24049.94, "end": 24050.64, "probability": 0.813 }, { "start": 24051.48, "end": 24053.56, "probability": 0.9855 }, { "start": 24054.12, "end": 24054.8, "probability": 0.9173 }, { "start": 24055.42, "end": 24059.38, "probability": 0.8851 }, { "start": 24060.1, "end": 24062.4, "probability": 0.9922 }, { "start": 24063.4, "end": 24063.9, "probability": 0.2881 }, { "start": 24063.9, "end": 24068.72, "probability": 0.9976 }, { "start": 24068.82, "end": 24070.58, "probability": 0.8652 }, { "start": 24071.12, "end": 24074.32, "probability": 0.9928 }, { "start": 24074.46, "end": 24075.12, "probability": 0.6443 }, { "start": 24075.4, "end": 24079.16, "probability": 0.4405 }, { "start": 24079.58, "end": 24081.22, "probability": 0.5078 }, { "start": 24081.42, "end": 24081.42, "probability": 0.0842 }, { "start": 24081.42, "end": 24081.42, "probability": 0.0142 }, { "start": 24081.42, "end": 24081.42, "probability": 0.4113 }, { "start": 24081.42, "end": 24082.48, "probability": 0.5231 }, { "start": 24082.7, "end": 24083.92, "probability": 0.9924 }, { "start": 24084.96, "end": 24085.84, "probability": 0.4474 }, { "start": 24085.9, "end": 24087.27, "probability": 0.1848 }, { "start": 24087.52, "end": 24089.5, "probability": 0.9105 }, { "start": 24090.16, "end": 24091.24, "probability": 0.8219 }, { "start": 24091.66, "end": 24093.96, "probability": 0.7185 }, { "start": 24094.84, "end": 24097.44, "probability": 0.7329 }, { "start": 24098.16, "end": 24099.44, "probability": 0.6453 }, { "start": 24100.24, "end": 24100.68, "probability": 0.9486 }, { "start": 24100.92, "end": 24103.04, "probability": 0.9333 }, { "start": 24103.22, "end": 24104.12, "probability": 0.4655 }, { "start": 24104.64, "end": 24105.5, "probability": 0.7228 }, { "start": 24105.98, "end": 24106.42, "probability": 0.7814 }, { "start": 24113.9, "end": 24117.48, "probability": 0.1787 }, { "start": 24137.8, "end": 24143.06, "probability": 0.9568 }, { "start": 24146.14, "end": 24147.52, "probability": 0.6075 }, { "start": 24150.1, "end": 24151.8, "probability": 0.8011 }, { "start": 24155.04, "end": 24157.9, "probability": 0.8912 }, { "start": 24159.16, "end": 24159.66, "probability": 0.8762 }, { "start": 24160.18, "end": 24166.94, "probability": 0.795 }, { "start": 24168.74, "end": 24168.94, "probability": 0.7693 }, { "start": 24169.64, "end": 24171.5, "probability": 0.9312 }, { "start": 24172.9, "end": 24173.82, "probability": 0.1914 }, { "start": 24174.16, "end": 24176.08, "probability": 0.8823 }, { "start": 24178.22, "end": 24178.84, "probability": 0.8535 }, { "start": 24181.36, "end": 24184.5, "probability": 0.952 }, { "start": 24185.14, "end": 24186.16, "probability": 0.8939 }, { "start": 24186.98, "end": 24188.64, "probability": 0.9506 }, { "start": 24188.76, "end": 24189.26, "probability": 0.7451 }, { "start": 24189.34, "end": 24192.36, "probability": 0.9003 }, { "start": 24193.74, "end": 24194.06, "probability": 0.4764 }, { "start": 24194.76, "end": 24195.04, "probability": 0.8569 }, { "start": 24196.12, "end": 24196.84, "probability": 0.6531 }, { "start": 24198.86, "end": 24203.04, "probability": 0.8254 }, { "start": 24205.16, "end": 24208.2, "probability": 0.9881 }, { "start": 24209.56, "end": 24211.54, "probability": 0.999 }, { "start": 24213.6, "end": 24214.34, "probability": 0.4336 }, { "start": 24214.68, "end": 24216.88, "probability": 0.6887 }, { "start": 24216.94, "end": 24217.74, "probability": 0.932 }, { "start": 24218.38, "end": 24219.56, "probability": 0.8353 }, { "start": 24220.4, "end": 24226.08, "probability": 0.9327 }, { "start": 24226.28, "end": 24227.66, "probability": 0.948 }, { "start": 24228.2, "end": 24229.94, "probability": 0.632 }, { "start": 24231.2, "end": 24233.64, "probability": 0.9531 }, { "start": 24233.9, "end": 24236.8, "probability": 0.8591 }, { "start": 24237.54, "end": 24238.96, "probability": 0.718 }, { "start": 24240.88, "end": 24245.42, "probability": 0.9897 }, { "start": 24245.86, "end": 24248.02, "probability": 0.8232 }, { "start": 24249.34, "end": 24251.02, "probability": 0.9148 }, { "start": 24252.1, "end": 24254.12, "probability": 0.7058 }, { "start": 24254.92, "end": 24257.62, "probability": 0.7932 }, { "start": 24258.14, "end": 24259.48, "probability": 0.9092 }, { "start": 24260.02, "end": 24263.42, "probability": 0.7871 }, { "start": 24264.94, "end": 24265.56, "probability": 0.7808 }, { "start": 24266.35, "end": 24269.84, "probability": 0.9964 }, { "start": 24271.02, "end": 24273.38, "probability": 0.8617 }, { "start": 24274.58, "end": 24276.64, "probability": 0.9235 }, { "start": 24277.74, "end": 24280.7, "probability": 0.9563 }, { "start": 24282.06, "end": 24284.59, "probability": 0.8713 }, { "start": 24285.18, "end": 24285.48, "probability": 0.8436 }, { "start": 24285.56, "end": 24286.06, "probability": 0.7504 }, { "start": 24286.16, "end": 24287.26, "probability": 0.96 }, { "start": 24287.98, "end": 24288.74, "probability": 0.9663 }, { "start": 24289.22, "end": 24289.76, "probability": 0.823 }, { "start": 24290.5, "end": 24291.32, "probability": 0.7143 }, { "start": 24292.14, "end": 24293.3, "probability": 0.9656 }, { "start": 24294.34, "end": 24299.12, "probability": 0.6882 }, { "start": 24299.24, "end": 24300.34, "probability": 0.9862 }, { "start": 24300.8, "end": 24301.54, "probability": 0.8178 }, { "start": 24306.1, "end": 24313.22, "probability": 0.9172 }, { "start": 24314.1, "end": 24315.56, "probability": 0.8943 }, { "start": 24317.28, "end": 24319.66, "probability": 0.9628 }, { "start": 24321.44, "end": 24324.02, "probability": 0.9886 }, { "start": 24325.1, "end": 24327.44, "probability": 0.5186 }, { "start": 24329.3, "end": 24333.64, "probability": 0.9203 }, { "start": 24334.84, "end": 24337.34, "probability": 0.9734 }, { "start": 24338.32, "end": 24339.24, "probability": 0.8268 }, { "start": 24339.78, "end": 24342.42, "probability": 0.6928 }, { "start": 24343.5, "end": 24346.38, "probability": 0.9572 }, { "start": 24347.52, "end": 24348.6, "probability": 0.8811 }, { "start": 24350.5, "end": 24351.88, "probability": 0.5885 }, { "start": 24352.64, "end": 24355.18, "probability": 0.9838 }, { "start": 24356.66, "end": 24357.12, "probability": 0.6349 }, { "start": 24357.26, "end": 24361.18, "probability": 0.9973 }, { "start": 24362.38, "end": 24363.54, "probability": 0.9761 }, { "start": 24364.84, "end": 24366.08, "probability": 0.9922 }, { "start": 24367.14, "end": 24368.34, "probability": 0.9939 }, { "start": 24369.16, "end": 24371.5, "probability": 0.9702 }, { "start": 24371.9, "end": 24374.18, "probability": 0.7497 }, { "start": 24374.68, "end": 24375.84, "probability": 0.914 }, { "start": 24377.64, "end": 24378.26, "probability": 0.7399 }, { "start": 24379.56, "end": 24381.78, "probability": 0.6364 }, { "start": 24382.02, "end": 24382.9, "probability": 0.9053 }, { "start": 24384.68, "end": 24387.06, "probability": 0.8156 }, { "start": 24387.06, "end": 24389.74, "probability": 0.9573 }, { "start": 24390.38, "end": 24391.46, "probability": 0.8608 }, { "start": 24392.18, "end": 24393.92, "probability": 0.8091 }, { "start": 24394.72, "end": 24396.76, "probability": 0.73 }, { "start": 24397.76, "end": 24399.22, "probability": 0.797 }, { "start": 24406.02, "end": 24407.54, "probability": 0.6751 }, { "start": 24407.6, "end": 24409.48, "probability": 0.6801 }, { "start": 24410.6, "end": 24411.16, "probability": 0.6915 }, { "start": 24412.8, "end": 24413.89, "probability": 0.9073 }, { "start": 24414.1, "end": 24416.1, "probability": 0.8442 }, { "start": 24416.3, "end": 24416.54, "probability": 0.5674 }, { "start": 24416.58, "end": 24417.52, "probability": 0.8877 }, { "start": 24418.6, "end": 24421.38, "probability": 0.9209 }, { "start": 24422.14, "end": 24425.2, "probability": 0.9766 }, { "start": 24426.18, "end": 24430.6, "probability": 0.9869 }, { "start": 24430.74, "end": 24432.34, "probability": 0.9325 }, { "start": 24432.52, "end": 24436.16, "probability": 0.9971 }, { "start": 24437.26, "end": 24440.8, "probability": 0.9934 }, { "start": 24440.8, "end": 24443.14, "probability": 0.9994 }, { "start": 24443.54, "end": 24444.44, "probability": 0.8828 }, { "start": 24445.42, "end": 24450.78, "probability": 0.8538 }, { "start": 24452.08, "end": 24454.06, "probability": 0.6867 }, { "start": 24454.76, "end": 24455.94, "probability": 0.9088 }, { "start": 24456.66, "end": 24459.5, "probability": 0.9692 }, { "start": 24459.52, "end": 24460.52, "probability": 0.828 }, { "start": 24460.6, "end": 24462.74, "probability": 0.9124 }, { "start": 24463.28, "end": 24465.66, "probability": 0.9945 }, { "start": 24465.78, "end": 24466.02, "probability": 0.6913 }, { "start": 24466.02, "end": 24467.6, "probability": 0.9427 }, { "start": 24467.72, "end": 24468.61, "probability": 0.9802 }, { "start": 24470.56, "end": 24472.46, "probability": 0.8764 }, { "start": 24472.54, "end": 24472.84, "probability": 0.9612 }, { "start": 24473.02, "end": 24474.5, "probability": 0.9451 }, { "start": 24474.94, "end": 24480.48, "probability": 0.9683 }, { "start": 24480.56, "end": 24482.06, "probability": 0.7981 }, { "start": 24482.76, "end": 24483.98, "probability": 0.8742 }, { "start": 24484.1, "end": 24486.09, "probability": 0.9971 }, { "start": 24486.3, "end": 24489.92, "probability": 0.9956 }, { "start": 24489.92, "end": 24493.82, "probability": 0.9904 }, { "start": 24494.48, "end": 24498.42, "probability": 0.9978 }, { "start": 24498.96, "end": 24500.0, "probability": 0.8381 }, { "start": 24500.38, "end": 24502.26, "probability": 0.8986 }, { "start": 24502.82, "end": 24504.42, "probability": 0.7647 }, { "start": 24504.58, "end": 24507.57, "probability": 0.9908 }, { "start": 24508.28, "end": 24511.04, "probability": 0.9668 }, { "start": 24511.84, "end": 24513.73, "probability": 0.7665 }, { "start": 24513.92, "end": 24516.34, "probability": 0.9607 }, { "start": 24516.78, "end": 24518.34, "probability": 0.9045 }, { "start": 24518.42, "end": 24518.82, "probability": 0.8763 }, { "start": 24518.96, "end": 24520.22, "probability": 0.7943 }, { "start": 24520.32, "end": 24521.52, "probability": 0.9702 }, { "start": 24521.78, "end": 24522.84, "probability": 0.9941 }, { "start": 24523.6, "end": 24528.22, "probability": 0.8955 }, { "start": 24528.82, "end": 24532.14, "probability": 0.9978 }, { "start": 24533.2, "end": 24537.3, "probability": 0.9824 }, { "start": 24537.42, "end": 24539.0, "probability": 0.8253 }, { "start": 24539.1, "end": 24542.6, "probability": 0.9553 }, { "start": 24543.24, "end": 24546.34, "probability": 0.7726 }, { "start": 24546.72, "end": 24546.72, "probability": 0.0569 }, { "start": 24546.72, "end": 24548.22, "probability": 0.5593 }, { "start": 24548.32, "end": 24548.48, "probability": 0.4315 }, { "start": 24548.56, "end": 24549.22, "probability": 0.3394 }, { "start": 24549.32, "end": 24551.58, "probability": 0.4655 }, { "start": 24551.6, "end": 24552.99, "probability": 0.993 }, { "start": 24553.39, "end": 24555.53, "probability": 0.8698 }, { "start": 24555.93, "end": 24557.13, "probability": 0.77 }, { "start": 24557.29, "end": 24561.43, "probability": 0.9946 }, { "start": 24561.57, "end": 24561.77, "probability": 0.8654 }, { "start": 24562.09, "end": 24564.11, "probability": 0.8175 }, { "start": 24564.53, "end": 24566.05, "probability": 0.7052 }, { "start": 24566.09, "end": 24566.99, "probability": 0.9764 }, { "start": 24567.69, "end": 24570.37, "probability": 0.9858 }, { "start": 24570.55, "end": 24572.81, "probability": 0.6685 }, { "start": 24572.81, "end": 24575.07, "probability": 0.7448 }, { "start": 24575.55, "end": 24577.75, "probability": 0.735 }, { "start": 24578.79, "end": 24580.73, "probability": 0.991 }, { "start": 24581.25, "end": 24581.51, "probability": 0.8026 }, { "start": 24581.59, "end": 24582.67, "probability": 0.9412 }, { "start": 24583.29, "end": 24585.79, "probability": 0.979 }, { "start": 24585.79, "end": 24588.39, "probability": 0.9906 }, { "start": 24588.57, "end": 24591.71, "probability": 0.773 }, { "start": 24592.35, "end": 24592.35, "probability": 0.089 }, { "start": 24592.35, "end": 24594.91, "probability": 0.6041 }, { "start": 24595.05, "end": 24595.77, "probability": 0.2771 }, { "start": 24596.17, "end": 24596.95, "probability": 0.5453 }, { "start": 24597.03, "end": 24597.45, "probability": 0.6658 }, { "start": 24597.67, "end": 24600.61, "probability": 0.7697 }, { "start": 24601.35, "end": 24604.67, "probability": 0.9021 }, { "start": 24604.81, "end": 24606.58, "probability": 0.7538 }, { "start": 24607.41, "end": 24611.51, "probability": 0.1305 }, { "start": 24614.53, "end": 24614.53, "probability": 0.0005 }, { "start": 24615.65, "end": 24618.39, "probability": 0.1416 }, { "start": 24636.43, "end": 24637.95, "probability": 0.0429 }, { "start": 24637.95, "end": 24640.47, "probability": 0.3149 }, { "start": 24641.15, "end": 24643.01, "probability": 0.2647 }, { "start": 24643.25, "end": 24646.87, "probability": 0.13 }, { "start": 24651.43, "end": 24653.11, "probability": 0.2276 }, { "start": 24663.03, "end": 24663.27, "probability": 0.0733 }, { "start": 24663.93, "end": 24667.11, "probability": 0.0546 }, { "start": 24667.11, "end": 24668.99, "probability": 0.6545 }, { "start": 24669.61, "end": 24671.05, "probability": 0.2545 }, { "start": 24672.21, "end": 24672.97, "probability": 0.0922 }, { "start": 24672.97, "end": 24676.29, "probability": 0.6058 }, { "start": 24676.71, "end": 24677.33, "probability": 0.0443 }, { "start": 24678.27, "end": 24680.41, "probability": 0.0417 }, { "start": 24700.0, "end": 24700.0, "probability": 0.0 }, { "start": 24700.0, "end": 24700.0, "probability": 0.0 }, { "start": 24700.0, "end": 24700.0, "probability": 0.0 }, { "start": 24700.0, "end": 24700.0, "probability": 0.0 }, { "start": 24700.0, "end": 24700.0, "probability": 0.0 }, { "start": 24700.0, "end": 24700.0, "probability": 0.0 }, { "start": 24700.0, "end": 24700.0, "probability": 0.0 }, { "start": 24700.0, "end": 24700.0, "probability": 0.0 }, { "start": 24700.0, "end": 24700.0, "probability": 0.0 }, { "start": 24700.0, "end": 24700.0, "probability": 0.0 }, { "start": 24700.0, "end": 24700.0, "probability": 0.0 }, { "start": 24700.0, "end": 24700.0, "probability": 0.0 }, { "start": 24700.0, "end": 24700.0, "probability": 0.0 }, { "start": 24700.0, "end": 24700.0, "probability": 0.0 }, { "start": 24700.0, "end": 24700.0, "probability": 0.0 }, { "start": 24700.0, "end": 24700.0, "probability": 0.0 }, { "start": 24700.08, "end": 24702.02, "probability": 0.1082 }, { "start": 24702.24, "end": 24703.8, "probability": 0.0685 }, { "start": 24703.8, "end": 24704.52, "probability": 0.3533 }, { "start": 24704.94, "end": 24704.94, "probability": 0.0822 }, { "start": 24704.94, "end": 24707.92, "probability": 0.6298 }, { "start": 24707.92, "end": 24709.18, "probability": 0.1451 }, { "start": 24710.4, "end": 24711.56, "probability": 0.9613 }, { "start": 24848.0, "end": 24848.0, "probability": 0.0 }, { "start": 24848.0, "end": 24848.0, "probability": 0.0 }, { "start": 24848.0, "end": 24848.0, "probability": 0.0 }, { "start": 24848.0, "end": 24848.0, "probability": 0.0 }, { "start": 24848.0, "end": 24848.0, "probability": 0.0 }, { "start": 24848.0, "end": 24848.0, "probability": 0.0 }, { "start": 24848.0, "end": 24848.0, "probability": 0.0 }, { "start": 24848.0, "end": 24848.0, "probability": 0.0 }, { "start": 24848.0, "end": 24848.0, "probability": 0.0 }, { "start": 24848.0, "end": 24848.0, "probability": 0.0 }, { "start": 24848.0, "end": 24848.0, "probability": 0.0 }, { "start": 24848.0, "end": 24848.0, "probability": 0.0 }, { "start": 24848.0, "end": 24848.0, "probability": 0.0 }, { "start": 24848.0, "end": 24848.0, "probability": 0.0 }, { "start": 24848.0, "end": 24848.0, "probability": 0.0 }, { "start": 24848.0, "end": 24848.0, "probability": 0.0 }, { "start": 24848.0, "end": 24848.0, "probability": 0.0 }, { "start": 24848.0, "end": 24848.0, "probability": 0.0 }, { "start": 24848.0, "end": 24848.0, "probability": 0.0 }, { "start": 24848.0, "end": 24848.0, "probability": 0.0 }, { "start": 24848.0, "end": 24848.0, "probability": 0.0 }, { "start": 24848.0, "end": 24848.0, "probability": 0.0 }, { "start": 24848.0, "end": 24848.0, "probability": 0.0 }, { "start": 24848.0, "end": 24848.0, "probability": 0.0 }, { "start": 24864.3, "end": 24865.98, "probability": 0.054 }, { "start": 24867.22, "end": 24868.5, "probability": 0.4345 }, { "start": 24869.14, "end": 24869.6, "probability": 0.0 }, { "start": 24883.7, "end": 24884.6, "probability": 0.1107 }, { "start": 24886.24, "end": 24888.12, "probability": 0.0274 }, { "start": 24888.36, "end": 24889.26, "probability": 0.0505 }, { "start": 24890.08, "end": 24891.58, "probability": 0.0153 }, { "start": 24893.14, "end": 24895.7, "probability": 0.064 }, { "start": 24972.0, "end": 24972.0, "probability": 0.0 }, { "start": 24972.0, "end": 24972.0, "probability": 0.0 }, { "start": 24972.0, "end": 24972.0, "probability": 0.0 }, { "start": 24972.0, "end": 24972.0, "probability": 0.0 }, { "start": 24972.0, "end": 24972.0, "probability": 0.0 }, { "start": 24972.0, "end": 24972.0, "probability": 0.0 }, { "start": 24972.0, "end": 24972.0, "probability": 0.0 }, { "start": 24972.0, "end": 24972.0, "probability": 0.0 }, { "start": 24972.0, "end": 24972.0, "probability": 0.0 }, { "start": 24972.0, "end": 24972.0, "probability": 0.0 }, { "start": 24972.0, "end": 24972.0, "probability": 0.0 }, { "start": 24972.0, "end": 24972.0, "probability": 0.0 }, { "start": 24972.0, "end": 24972.0, "probability": 0.0 }, { "start": 24972.0, "end": 24972.0, "probability": 0.0 }, { "start": 24972.0, "end": 24972.0, "probability": 0.0 }, { "start": 24972.0, "end": 24972.0, "probability": 0.0 }, { "start": 24972.0, "end": 24972.0, "probability": 0.0 }, { "start": 24972.0, "end": 24972.0, "probability": 0.0 }, { "start": 24972.0, "end": 24972.0, "probability": 0.0 }, { "start": 24972.0, "end": 24972.0, "probability": 0.0 }, { "start": 24972.0, "end": 24972.0, "probability": 0.0 }, { "start": 24972.0, "end": 24972.0, "probability": 0.0 }, { "start": 24972.0, "end": 24972.0, "probability": 0.0 }, { "start": 24972.0, "end": 24972.0, "probability": 0.0 }, { "start": 24972.0, "end": 24972.0, "probability": 0.0 }, { "start": 24972.0, "end": 24972.0, "probability": 0.0 }, { "start": 24972.0, "end": 24972.0, "probability": 0.0 }, { "start": 24972.0, "end": 24972.0, "probability": 0.0 }, { "start": 24972.0, "end": 24972.0, "probability": 0.0 }, { "start": 24972.0, "end": 24972.0, "probability": 0.0 }, { "start": 24972.0, "end": 24972.0, "probability": 0.0 }, { "start": 24972.0, "end": 24972.0, "probability": 0.0 }, { "start": 24972.2, "end": 24972.28, "probability": 0.0079 }, { "start": 24972.28, "end": 24972.28, "probability": 0.0231 }, { "start": 24972.28, "end": 24972.28, "probability": 0.1046 }, { "start": 24972.28, "end": 24975.5, "probability": 0.8474 }, { "start": 24976.42, "end": 24977.48, "probability": 0.4457 }, { "start": 24978.04, "end": 24979.88, "probability": 0.7236 }, { "start": 24980.4, "end": 24981.78, "probability": 0.9542 }, { "start": 24982.4, "end": 24985.84, "probability": 0.9985 }, { "start": 24986.42, "end": 24987.12, "probability": 0.8763 }, { "start": 24988.44, "end": 24991.78, "probability": 0.7427 }, { "start": 24992.32, "end": 24997.1, "probability": 0.9982 }, { "start": 24997.68, "end": 24999.1, "probability": 0.9988 }, { "start": 24999.64, "end": 25000.34, "probability": 0.8355 }, { "start": 25000.88, "end": 25002.1, "probability": 0.9983 }, { "start": 25002.68, "end": 25003.14, "probability": 0.9745 }, { "start": 25004.34, "end": 25004.58, "probability": 0.6415 }, { "start": 25005.44, "end": 25007.1, "probability": 0.3328 }, { "start": 25007.7, "end": 25011.8, "probability": 0.9992 }, { "start": 25012.5, "end": 25013.22, "probability": 0.5783 }, { "start": 25013.88, "end": 25015.84, "probability": 0.8023 }, { "start": 25016.36, "end": 25020.36, "probability": 0.9935 }, { "start": 25021.28, "end": 25022.38, "probability": 0.4202 }, { "start": 25023.0, "end": 25025.02, "probability": 0.9743 }, { "start": 25025.74, "end": 25029.14, "probability": 0.8579 }, { "start": 25029.76, "end": 25030.66, "probability": 0.8258 }, { "start": 25031.58, "end": 25034.36, "probability": 0.9065 }, { "start": 25034.68, "end": 25039.0, "probability": 0.8789 }, { "start": 25040.2, "end": 25043.42, "probability": 0.794 }, { "start": 25045.84, "end": 25046.38, "probability": 0.5822 }, { "start": 25047.36, "end": 25053.9, "probability": 0.9937 }, { "start": 25054.68, "end": 25056.8, "probability": 0.9659 }, { "start": 25057.98, "end": 25061.54, "probability": 0.9905 }, { "start": 25062.56, "end": 25063.48, "probability": 0.999 }, { "start": 25064.26, "end": 25065.34, "probability": 0.9907 }, { "start": 25065.94, "end": 25066.34, "probability": 0.9174 }, { "start": 25067.06, "end": 25068.86, "probability": 0.9821 }, { "start": 25069.78, "end": 25075.38, "probability": 0.9618 }, { "start": 25076.78, "end": 25080.08, "probability": 0.9984 }, { "start": 25080.88, "end": 25086.5, "probability": 0.9157 }, { "start": 25087.06, "end": 25088.34, "probability": 0.9906 }, { "start": 25089.0, "end": 25090.5, "probability": 0.9922 }, { "start": 25091.1, "end": 25091.34, "probability": 0.2798 }, { "start": 25091.4, "end": 25091.86, "probability": 0.8662 }, { "start": 25092.0, "end": 25093.92, "probability": 0.9241 }, { "start": 25095.18, "end": 25097.14, "probability": 0.6621 }, { "start": 25097.78, "end": 25098.72, "probability": 0.7069 }, { "start": 25099.54, "end": 25101.0, "probability": 0.5636 }, { "start": 25101.68, "end": 25103.06, "probability": 0.9255 }, { "start": 25105.46, "end": 25107.24, "probability": 0.6702 }, { "start": 25108.22, "end": 25112.66, "probability": 0.9951 }, { "start": 25113.28, "end": 25114.92, "probability": 0.7754 }, { "start": 25115.48, "end": 25117.72, "probability": 0.571 }, { "start": 25118.8, "end": 25119.94, "probability": 0.4278 }, { "start": 25120.26, "end": 25121.88, "probability": 0.8435 }, { "start": 25122.38, "end": 25124.16, "probability": 0.8094 }, { "start": 25124.3, "end": 25126.46, "probability": 0.812 }, { "start": 25126.74, "end": 25127.06, "probability": 0.9081 }, { "start": 25127.12, "end": 25128.18, "probability": 0.9014 }, { "start": 25128.38, "end": 25132.6, "probability": 0.9229 }, { "start": 25133.12, "end": 25136.86, "probability": 0.725 }, { "start": 25137.44, "end": 25138.98, "probability": 0.3674 }, { "start": 25139.06, "end": 25144.86, "probability": 0.8422 }, { "start": 25145.48, "end": 25146.42, "probability": 0.8278 }, { "start": 25146.86, "end": 25148.66, "probability": 0.8238 }, { "start": 25149.14, "end": 25152.32, "probability": 0.9475 }, { "start": 25152.34, "end": 25152.82, "probability": 0.7182 }, { "start": 25153.1, "end": 25154.3, "probability": 0.7851 }, { "start": 25154.5, "end": 25155.37, "probability": 0.8043 }, { "start": 25155.88, "end": 25158.68, "probability": 0.9917 }, { "start": 25158.98, "end": 25161.5, "probability": 0.732 }, { "start": 25162.0, "end": 25167.92, "probability": 0.9825 }, { "start": 25168.14, "end": 25168.77, "probability": 0.3808 }, { "start": 25168.94, "end": 25171.16, "probability": 0.7294 }, { "start": 25171.72, "end": 25173.26, "probability": 0.9615 }, { "start": 25173.7, "end": 25175.62, "probability": 0.9129 }, { "start": 25175.72, "end": 25179.14, "probability": 0.906 }, { "start": 25179.3, "end": 25179.94, "probability": 0.9222 }, { "start": 25180.5, "end": 25181.62, "probability": 0.9277 }, { "start": 25181.84, "end": 25182.4, "probability": 0.9917 }, { "start": 25182.84, "end": 25184.42, "probability": 0.7622 }, { "start": 25185.06, "end": 25186.58, "probability": 0.1872 }, { "start": 25186.58, "end": 25188.32, "probability": 0.9852 }, { "start": 25188.34, "end": 25188.34, "probability": 0.5021 }, { "start": 25188.5, "end": 25190.02, "probability": 0.5563 }, { "start": 25190.04, "end": 25190.47, "probability": 0.3007 }, { "start": 25191.36, "end": 25194.06, "probability": 0.7247 }, { "start": 25194.34, "end": 25195.32, "probability": 0.702 }, { "start": 25195.7, "end": 25198.58, "probability": 0.9473 }, { "start": 25199.2, "end": 25200.06, "probability": 0.9502 }, { "start": 25200.68, "end": 25205.08, "probability": 0.9844 }, { "start": 25205.96, "end": 25206.88, "probability": 0.9893 }, { "start": 25207.46, "end": 25208.08, "probability": 0.98 }, { "start": 25210.36, "end": 25210.74, "probability": 0.9829 }, { "start": 25212.42, "end": 25215.6, "probability": 0.8347 }, { "start": 25216.44, "end": 25218.54, "probability": 0.8934 }, { "start": 25219.24, "end": 25220.14, "probability": 0.5042 }, { "start": 25221.28, "end": 25223.88, "probability": 0.9509 }, { "start": 25224.8, "end": 25225.96, "probability": 0.5051 }, { "start": 25226.5, "end": 25232.48, "probability": 0.9876 }, { "start": 25232.48, "end": 25237.4, "probability": 0.978 }, { "start": 25238.16, "end": 25239.08, "probability": 0.7676 }, { "start": 25239.6, "end": 25240.78, "probability": 0.9635 }, { "start": 25241.4, "end": 25243.68, "probability": 0.9958 }, { "start": 25244.26, "end": 25247.22, "probability": 0.9945 }, { "start": 25247.8, "end": 25250.92, "probability": 0.5743 }, { "start": 25250.98, "end": 25251.18, "probability": 0.3517 }, { "start": 25251.18, "end": 25254.1, "probability": 0.9946 }, { "start": 25254.86, "end": 25256.98, "probability": 0.9104 }, { "start": 25258.08, "end": 25261.12, "probability": 0.9648 }, { "start": 25261.2, "end": 25262.46, "probability": 0.9231 }, { "start": 25262.5, "end": 25263.42, "probability": 0.6981 }, { "start": 25263.88, "end": 25264.78, "probability": 0.9121 }, { "start": 25265.12, "end": 25273.04, "probability": 0.9999 }, { "start": 25273.56, "end": 25274.64, "probability": 0.5502 }, { "start": 25274.74, "end": 25276.02, "probability": 0.6659 }, { "start": 25276.48, "end": 25276.94, "probability": 0.6873 }, { "start": 25277.1, "end": 25281.04, "probability": 0.9931 }, { "start": 25281.18, "end": 25284.48, "probability": 0.8608 }, { "start": 25284.86, "end": 25287.48, "probability": 0.994 }, { "start": 25288.48, "end": 25293.16, "probability": 0.9819 }, { "start": 25293.38, "end": 25293.66, "probability": 0.8508 }, { "start": 25293.96, "end": 25295.4, "probability": 0.9266 }, { "start": 25296.5, "end": 25301.64, "probability": 0.9401 }, { "start": 25308.48, "end": 25308.78, "probability": 0.0312 }, { "start": 25309.7, "end": 25313.32, "probability": 0.0265 }, { "start": 25314.5, "end": 25317.72, "probability": 0.6276 }, { "start": 25320.14, "end": 25321.54, "probability": 0.7223 }, { "start": 25328.1, "end": 25329.16, "probability": 0.4886 }, { "start": 25329.82, "end": 25330.96, "probability": 0.1472 }, { "start": 25331.54, "end": 25332.06, "probability": 0.1298 }, { "start": 25332.06, "end": 25332.06, "probability": 0.5163 }, { "start": 25332.06, "end": 25332.68, "probability": 0.6993 }, { "start": 25332.82, "end": 25334.34, "probability": 0.7641 }, { "start": 25334.34, "end": 25341.06, "probability": 0.7449 }, { "start": 25341.24, "end": 25344.14, "probability": 0.7008 }, { "start": 25344.3, "end": 25347.62, "probability": 0.9773 }, { "start": 25347.7, "end": 25350.02, "probability": 0.9995 }, { "start": 25350.8, "end": 25353.86, "probability": 0.9871 }, { "start": 25354.62, "end": 25355.82, "probability": 0.8217 }, { "start": 25356.74, "end": 25357.02, "probability": 0.9106 }, { "start": 25357.66, "end": 25358.64, "probability": 0.9977 }, { "start": 25359.18, "end": 25360.32, "probability": 0.9966 }, { "start": 25361.14, "end": 25363.84, "probability": 0.9969 }, { "start": 25364.66, "end": 25365.68, "probability": 0.9547 }, { "start": 25366.5, "end": 25369.42, "probability": 0.2077 }, { "start": 25369.84, "end": 25371.68, "probability": 0.6494 }, { "start": 25374.96, "end": 25377.06, "probability": 0.1101 }, { "start": 25380.16, "end": 25382.46, "probability": 0.6558 }, { "start": 25383.58, "end": 25385.14, "probability": 0.0252 }, { "start": 25385.16, "end": 25386.36, "probability": 0.408 }, { "start": 25387.16, "end": 25387.88, "probability": 0.2271 }, { "start": 25387.88, "end": 25388.22, "probability": 0.1834 }, { "start": 25389.12, "end": 25390.02, "probability": 0.2177 }, { "start": 25390.02, "end": 25393.48, "probability": 0.2584 }, { "start": 25393.74, "end": 25396.66, "probability": 0.0242 }, { "start": 25397.04, "end": 25397.77, "probability": 0.0627 }, { "start": 25397.84, "end": 25399.1, "probability": 0.11 }, { "start": 25399.1, "end": 25399.2, "probability": 0.08 }, { "start": 25399.2, "end": 25399.52, "probability": 0.1316 }, { "start": 25399.54, "end": 25399.58, "probability": 0.1546 }, { "start": 25399.58, "end": 25401.56, "probability": 0.0204 }, { "start": 25402.04, "end": 25402.27, "probability": 0.0886 }, { "start": 25404.18, "end": 25404.84, "probability": 0.0517 }, { "start": 25404.85, "end": 25404.98, "probability": 0.0804 }, { "start": 25405.0, "end": 25405.0, "probability": 0.0 }, { "start": 25405.0, "end": 25405.0, "probability": 0.0 }, { "start": 25405.0, "end": 25405.0, "probability": 0.0 }, { "start": 25405.0, "end": 25405.0, "probability": 0.0 }, { "start": 25405.0, "end": 25405.0, "probability": 0.0 }, { "start": 25405.0, "end": 25405.0, "probability": 0.0 }, { "start": 25405.0, "end": 25405.0, "probability": 0.0 }, { "start": 25405.0, "end": 25405.0, "probability": 0.0 }, { "start": 25405.0, "end": 25405.0, "probability": 0.0 }, { "start": 25405.0, "end": 25405.0, "probability": 0.0 }, { "start": 25405.0, "end": 25405.0, "probability": 0.0 }, { "start": 25405.0, "end": 25405.0, "probability": 0.0 }, { "start": 25405.0, "end": 25405.0, "probability": 0.0 }, { "start": 25405.65, "end": 25409.04, "probability": 0.5541 }, { "start": 25409.24, "end": 25410.0, "probability": 0.3503 }, { "start": 25410.06, "end": 25410.76, "probability": 0.8591 }, { "start": 25410.78, "end": 25411.36, "probability": 0.2084 }, { "start": 25411.54, "end": 25412.94, "probability": 0.5629 }, { "start": 25416.38, "end": 25417.78, "probability": 0.7775 }, { "start": 25418.64, "end": 25421.08, "probability": 0.9822 }, { "start": 25422.26, "end": 25424.38, "probability": 0.7808 }, { "start": 25424.98, "end": 25425.88, "probability": 0.6385 }, { "start": 25426.86, "end": 25428.26, "probability": 0.0913 }, { "start": 25428.54, "end": 25429.1, "probability": 0.8809 }, { "start": 25430.5, "end": 25431.06, "probability": 0.669 }, { "start": 25431.12, "end": 25432.48, "probability": 0.6691 }, { "start": 25433.26, "end": 25436.26, "probability": 0.9501 }, { "start": 25437.16, "end": 25439.0, "probability": 0.9117 }, { "start": 25439.48, "end": 25442.6, "probability": 0.9957 }, { "start": 25443.36, "end": 25444.08, "probability": 0.9592 }, { "start": 25444.76, "end": 25446.98, "probability": 0.9969 }, { "start": 25447.74, "end": 25450.52, "probability": 0.9464 }, { "start": 25451.12, "end": 25454.02, "probability": 0.999 }, { "start": 25454.66, "end": 25456.06, "probability": 0.9199 }, { "start": 25457.58, "end": 25458.08, "probability": 0.0553 }, { "start": 25459.75, "end": 25460.5, "probability": 0.0422 }, { "start": 25461.9, "end": 25462.12, "probability": 0.0408 }, { "start": 25462.12, "end": 25462.12, "probability": 0.0535 }, { "start": 25462.12, "end": 25462.12, "probability": 0.1028 }, { "start": 25462.12, "end": 25462.12, "probability": 0.0245 }, { "start": 25462.12, "end": 25466.99, "probability": 0.5542 }, { "start": 25468.14, "end": 25470.52, "probability": 0.0823 }, { "start": 25472.76, "end": 25473.72, "probability": 0.097 }, { "start": 25474.0, "end": 25475.1, "probability": 0.0212 }, { "start": 25476.22, "end": 25479.14, "probability": 0.0219 }, { "start": 25479.74, "end": 25479.85, "probability": 0.052 }, { "start": 25480.54, "end": 25481.62, "probability": 0.1149 }, { "start": 25481.66, "end": 25482.78, "probability": 0.5301 }, { "start": 25482.78, "end": 25485.42, "probability": 0.3438 }, { "start": 25487.44, "end": 25488.22, "probability": 0.3241 }, { "start": 25499.78, "end": 25501.61, "probability": 0.0974 }, { "start": 25503.7, "end": 25503.96, "probability": 0.301 }, { "start": 25504.02, "end": 25504.28, "probability": 0.0747 }, { "start": 25504.28, "end": 25504.71, "probability": 0.0152 }, { "start": 25505.0, "end": 25505.28, "probability": 0.259 }, { "start": 25505.92, "end": 25507.3, "probability": 0.0267 }, { "start": 25507.3, "end": 25508.08, "probability": 0.3691 }, { "start": 25508.74, "end": 25509.88, "probability": 0.0982 }, { "start": 25509.9, "end": 25511.18, "probability": 0.2039 }, { "start": 25514.08, "end": 25515.72, "probability": 0.0522 }, { "start": 25515.72, "end": 25519.6, "probability": 0.0374 }, { "start": 25519.6, "end": 25521.72, "probability": 0.0885 }, { "start": 25523.68, "end": 25523.92, "probability": 0.1251 }, { "start": 25533.0, "end": 25533.0, "probability": 0.0 }, { "start": 25533.0, "end": 25533.0, "probability": 0.0 }, { "start": 25533.0, "end": 25533.0, "probability": 0.0 }, { "start": 25533.0, "end": 25533.0, "probability": 0.0 }, { "start": 25533.0, "end": 25533.0, "probability": 0.0 }, { "start": 25533.0, "end": 25533.0, "probability": 0.0 }, { "start": 25533.0, "end": 25533.0, "probability": 0.0 }, { "start": 25533.0, "end": 25533.0, "probability": 0.0 }, { "start": 25533.0, "end": 25533.0, "probability": 0.0 }, { "start": 25533.0, "end": 25533.0, "probability": 0.0 }, { "start": 25533.0, "end": 25533.0, "probability": 0.0 }, { "start": 25533.0, "end": 25533.0, "probability": 0.0 }, { "start": 25533.0, "end": 25533.0, "probability": 0.0 }, { "start": 25533.0, "end": 25533.0, "probability": 0.0 }, { "start": 25533.0, "end": 25533.0, "probability": 0.0 }, { "start": 25533.0, "end": 25533.0, "probability": 0.0 }, { "start": 25533.0, "end": 25533.0, "probability": 0.0 }, { "start": 25533.0, "end": 25533.0, "probability": 0.0 }, { "start": 25533.0, "end": 25533.0, "probability": 0.0 }, { "start": 25533.0, "end": 25533.0, "probability": 0.0 }, { "start": 25533.0, "end": 25533.0, "probability": 0.0 }, { "start": 25533.0, "end": 25533.0, "probability": 0.0 }, { "start": 25533.0, "end": 25533.0, "probability": 0.0 }, { "start": 25533.0, "end": 25533.0, "probability": 0.0 }, { "start": 25533.0, "end": 25533.0, "probability": 0.0 }, { "start": 25533.08, "end": 25535.7, "probability": 0.1489 }, { "start": 25535.74, "end": 25536.88, "probability": 0.6693 }, { "start": 25537.44, "end": 25539.56, "probability": 0.0613 }, { "start": 25540.28, "end": 25542.58, "probability": 0.3535 }, { "start": 25545.21, "end": 25548.22, "probability": 0.4678 }, { "start": 25548.48, "end": 25550.52, "probability": 0.5474 }, { "start": 25550.52, "end": 25551.02, "probability": 0.4479 }, { "start": 25551.7, "end": 25552.98, "probability": 0.3902 }, { "start": 25553.12, "end": 25554.66, "probability": 0.2204 }, { "start": 25554.9, "end": 25557.66, "probability": 0.111 }, { "start": 25558.06, "end": 25560.76, "probability": 0.7351 }, { "start": 25561.44, "end": 25563.94, "probability": 0.9523 }, { "start": 25564.76, "end": 25566.2, "probability": 0.5583 }, { "start": 25566.56, "end": 25566.68, "probability": 0.2466 }, { "start": 25566.68, "end": 25566.96, "probability": 0.0082 }, { "start": 25567.08, "end": 25569.54, "probability": 0.2912 }, { "start": 25569.54, "end": 25570.54, "probability": 0.7516 }, { "start": 25570.7, "end": 25572.5, "probability": 0.6368 }, { "start": 25572.54, "end": 25573.74, "probability": 0.4164 }, { "start": 25573.86, "end": 25574.58, "probability": 0.1033 }, { "start": 25575.04, "end": 25575.66, "probability": 0.4743 }, { "start": 25575.82, "end": 25576.7, "probability": 0.4304 }, { "start": 25576.72, "end": 25576.94, "probability": 0.5808 }, { "start": 25577.08, "end": 25577.9, "probability": 0.48 }, { "start": 25578.02, "end": 25580.4, "probability": 0.7799 }, { "start": 25581.56, "end": 25582.1, "probability": 0.1595 }, { "start": 25586.4, "end": 25586.84, "probability": 0.4608 }, { "start": 25587.06, "end": 25587.72, "probability": 0.2377 }, { "start": 25588.32, "end": 25590.1, "probability": 0.4308 }, { "start": 25591.48, "end": 25594.5, "probability": 0.6489 }, { "start": 25595.34, "end": 25596.72, "probability": 0.8638 }, { "start": 25600.12, "end": 25600.44, "probability": 0.4096 }, { "start": 25601.1, "end": 25604.1, "probability": 0.7493 }, { "start": 25604.48, "end": 25605.48, "probability": 0.5534 }, { "start": 25605.48, "end": 25607.58, "probability": 0.0511 }, { "start": 25607.76, "end": 25608.84, "probability": 0.7052 }, { "start": 25608.96, "end": 25609.7, "probability": 0.8954 }, { "start": 25610.38, "end": 25612.48, "probability": 0.9626 }, { "start": 25613.32, "end": 25614.62, "probability": 0.9832 }, { "start": 25614.64, "end": 25619.32, "probability": 0.994 }, { "start": 25619.98, "end": 25619.98, "probability": 0.2015 }, { "start": 25619.98, "end": 25620.08, "probability": 0.256 }, { "start": 25620.3, "end": 25624.82, "probability": 0.9972 }, { "start": 25625.0, "end": 25626.62, "probability": 0.9756 }, { "start": 25627.22, "end": 25628.94, "probability": 0.8359 }, { "start": 25629.76, "end": 25631.68, "probability": 0.1064 }, { "start": 25631.68, "end": 25632.29, "probability": 0.6802 }, { "start": 25632.62, "end": 25635.98, "probability": 0.6414 }, { "start": 25636.22, "end": 25636.24, "probability": 0.3187 }, { "start": 25636.24, "end": 25637.02, "probability": 0.6144 }, { "start": 25637.42, "end": 25640.7, "probability": 0.7518 }, { "start": 25641.0, "end": 25641.06, "probability": 0.5609 }, { "start": 25641.06, "end": 25641.06, "probability": 0.0772 }, { "start": 25641.06, "end": 25641.06, "probability": 0.0397 }, { "start": 25641.06, "end": 25642.6, "probability": 0.5926 }, { "start": 25642.62, "end": 25643.7, "probability": 0.7203 }, { "start": 25645.26, "end": 25645.42, "probability": 0.6923 }, { "start": 25645.42, "end": 25646.75, "probability": 0.496 }, { "start": 25647.5, "end": 25647.98, "probability": 0.1002 }, { "start": 25650.9, "end": 25651.1, "probability": 0.0543 }, { "start": 25651.1, "end": 25651.26, "probability": 0.0697 }, { "start": 25651.42, "end": 25651.52, "probability": 0.3281 }, { "start": 25651.8, "end": 25652.88, "probability": 0.4401 }, { "start": 25653.08, "end": 25655.2, "probability": 0.5022 }, { "start": 25655.8, "end": 25660.32, "probability": 0.5109 }, { "start": 25660.78, "end": 25660.88, "probability": 0.1029 }, { "start": 25660.98, "end": 25662.38, "probability": 0.1474 }, { "start": 25662.38, "end": 25663.83, "probability": 0.1171 }, { "start": 25665.1, "end": 25667.5, "probability": 0.4387 }, { "start": 25667.5, "end": 25667.88, "probability": 0.4615 }, { "start": 25668.0, "end": 25673.32, "probability": 0.8601 }, { "start": 25673.32, "end": 25675.12, "probability": 0.0958 }, { "start": 25675.66, "end": 25675.86, "probability": 0.7483 }, { "start": 25675.96, "end": 25676.6, "probability": 0.7231 }, { "start": 25676.8, "end": 25678.59, "probability": 0.3206 }, { "start": 25679.74, "end": 25680.98, "probability": 0.7391 }, { "start": 25681.2, "end": 25681.2, "probability": 0.2404 }, { "start": 25681.2, "end": 25681.2, "probability": 0.0143 }, { "start": 25681.2, "end": 25683.24, "probability": 0.0706 }, { "start": 25683.24, "end": 25687.12, "probability": 0.9863 }, { "start": 25687.96, "end": 25690.92, "probability": 0.9956 }, { "start": 25691.52, "end": 25693.52, "probability": 0.912 }, { "start": 25693.52, "end": 25695.56, "probability": 0.97 }, { "start": 25696.16, "end": 25696.48, "probability": 0.7551 }, { "start": 25696.54, "end": 25701.72, "probability": 0.9562 }, { "start": 25701.94, "end": 25704.88, "probability": 0.8984 }, { "start": 25704.92, "end": 25705.2, "probability": 0.8588 }, { "start": 25705.44, "end": 25707.3, "probability": 0.8688 }, { "start": 25707.54, "end": 25708.32, "probability": 0.5968 }, { "start": 25708.5, "end": 25711.44, "probability": 0.1764 }, { "start": 25711.56, "end": 25715.02, "probability": 0.5039 }, { "start": 25715.02, "end": 25716.46, "probability": 0.1152 }, { "start": 25716.5, "end": 25718.08, "probability": 0.1805 }, { "start": 25718.5, "end": 25719.94, "probability": 0.2416 }, { "start": 25720.48, "end": 25721.52, "probability": 0.0271 }, { "start": 25721.92, "end": 25724.09, "probability": 0.2513 }, { "start": 25725.98, "end": 25727.02, "probability": 0.0514 }, { "start": 25727.12, "end": 25727.4, "probability": 0.0974 }, { "start": 25727.96, "end": 25730.48, "probability": 0.1229 }, { "start": 25731.6, "end": 25733.46, "probability": 0.0753 }, { "start": 25733.46, "end": 25734.34, "probability": 0.051 }, { "start": 25735.9, "end": 25735.94, "probability": 0.3386 }, { "start": 25735.94, "end": 25736.58, "probability": 0.2086 }, { "start": 25736.58, "end": 25736.68, "probability": 0.4522 }, { "start": 25737.54, "end": 25738.78, "probability": 0.8834 }, { "start": 25739.32, "end": 25739.64, "probability": 0.0367 }, { "start": 25739.64, "end": 25739.64, "probability": 0.0393 }, { "start": 25739.64, "end": 25739.64, "probability": 0.5131 }, { "start": 25739.64, "end": 25739.64, "probability": 0.0231 }, { "start": 25739.64, "end": 25739.64, "probability": 0.0327 }, { "start": 25739.64, "end": 25741.66, "probability": 0.6542 }, { "start": 25742.48, "end": 25744.12, "probability": 0.7644 }, { "start": 25744.92, "end": 25746.34, "probability": 0.6387 }, { "start": 25746.98, "end": 25748.32, "probability": 0.7947 }, { "start": 25748.84, "end": 25751.98, "probability": 0.9558 }, { "start": 25752.62, "end": 25755.3, "probability": 0.8006 }, { "start": 25756.0, "end": 25757.04, "probability": 0.974 }, { "start": 25757.58, "end": 25758.68, "probability": 0.6814 }, { "start": 25759.32, "end": 25760.72, "probability": 0.9872 }, { "start": 25761.36, "end": 25765.3, "probability": 0.9585 }, { "start": 25765.96, "end": 25766.76, "probability": 0.8031 }, { "start": 25767.04, "end": 25768.46, "probability": 0.9963 }, { "start": 25768.98, "end": 25770.44, "probability": 0.5154 }, { "start": 25772.08, "end": 25778.46, "probability": 0.9952 }, { "start": 25778.98, "end": 25781.14, "probability": 0.696 }, { "start": 25781.2, "end": 25781.3, "probability": 0.5078 }, { "start": 25781.66, "end": 25782.52, "probability": 0.9927 }, { "start": 25783.4, "end": 25784.3, "probability": 0.8257 }, { "start": 25785.7, "end": 25788.5, "probability": 0.899 }, { "start": 25789.16, "end": 25793.8, "probability": 0.8047 }, { "start": 25793.8, "end": 25797.38, "probability": 0.919 }, { "start": 25797.98, "end": 25800.04, "probability": 0.0101 }, { "start": 25800.04, "end": 25800.04, "probability": 0.1365 }, { "start": 25800.04, "end": 25804.1, "probability": 0.5206 }, { "start": 25804.12, "end": 25808.4, "probability": 0.8704 }, { "start": 25809.06, "end": 25809.3, "probability": 0.7949 }, { "start": 25809.94, "end": 25811.98, "probability": 0.9955 }, { "start": 25812.36, "end": 25813.26, "probability": 0.9107 }, { "start": 25814.32, "end": 25815.6, "probability": 0.8911 }, { "start": 25815.7, "end": 25816.22, "probability": 0.6038 }, { "start": 25817.08, "end": 25819.46, "probability": 0.9233 }, { "start": 25820.14, "end": 25823.76, "probability": 0.9806 }, { "start": 25824.26, "end": 25825.4, "probability": 0.9387 }, { "start": 25825.82, "end": 25827.26, "probability": 0.9976 }, { "start": 25828.08, "end": 25828.58, "probability": 0.5652 }, { "start": 25829.4, "end": 25830.38, "probability": 0.9935 }, { "start": 25830.9, "end": 25832.32, "probability": 0.8908 }, { "start": 25832.92, "end": 25834.64, "probability": 0.7494 }, { "start": 25835.26, "end": 25838.5, "probability": 0.7535 }, { "start": 25839.08, "end": 25840.42, "probability": 0.9763 }, { "start": 25841.0, "end": 25844.82, "probability": 0.8964 }, { "start": 25845.38, "end": 25846.72, "probability": 0.9541 }, { "start": 25846.74, "end": 25849.42, "probability": 0.6895 }, { "start": 25849.86, "end": 25851.18, "probability": 0.059 }, { "start": 25851.2, "end": 25852.62, "probability": 0.5349 }, { "start": 25852.72, "end": 25854.4, "probability": 0.5727 }, { "start": 25855.82, "end": 25858.6, "probability": 0.6294 }, { "start": 25859.26, "end": 25859.52, "probability": 0.1456 }, { "start": 25859.52, "end": 25862.5, "probability": 0.625 }, { "start": 25862.6, "end": 25867.08, "probability": 0.7264 }, { "start": 25868.37, "end": 25870.56, "probability": 0.8036 }, { "start": 25870.7, "end": 25872.82, "probability": 0.9161 }, { "start": 25873.32, "end": 25874.42, "probability": 0.9717 }, { "start": 25874.96, "end": 25878.16, "probability": 0.6179 }, { "start": 25879.72, "end": 25880.74, "probability": 0.8667 }, { "start": 25881.08, "end": 25883.81, "probability": 0.6676 }, { "start": 25884.04, "end": 25884.44, "probability": 0.4508 }, { "start": 25884.46, "end": 25887.98, "probability": 0.3109 }, { "start": 25887.98, "end": 25888.36, "probability": 0.5486 }, { "start": 25888.44, "end": 25890.86, "probability": 0.733 }, { "start": 25892.24, "end": 25895.24, "probability": 0.7043 }, { "start": 25895.48, "end": 25897.5, "probability": 0.9563 }, { "start": 25898.36, "end": 25899.28, "probability": 0.7837 }, { "start": 25899.85, "end": 25901.58, "probability": 0.6059 }, { "start": 25901.86, "end": 25902.98, "probability": 0.4245 }, { "start": 25904.12, "end": 25905.28, "probability": 0.7965 }, { "start": 25905.84, "end": 25907.66, "probability": 0.6427 }, { "start": 25908.02, "end": 25908.98, "probability": 0.8007 }, { "start": 25909.6, "end": 25909.82, "probability": 0.7996 }, { "start": 25909.92, "end": 25911.04, "probability": 0.8865 }, { "start": 25911.56, "end": 25912.94, "probability": 0.9839 }, { "start": 25913.56, "end": 25917.88, "probability": 0.991 }, { "start": 25918.42, "end": 25920.14, "probability": 0.9648 }, { "start": 25920.56, "end": 25921.4, "probability": 0.8178 }, { "start": 25921.46, "end": 25922.84, "probability": 0.9585 }, { "start": 25923.64, "end": 25924.42, "probability": 0.4957 }, { "start": 25924.44, "end": 25925.6, "probability": 0.7866 }, { "start": 25926.3, "end": 25929.74, "probability": 0.9647 }, { "start": 25929.9, "end": 25933.88, "probability": 0.3492 }, { "start": 25935.15, "end": 25936.72, "probability": 0.852 }, { "start": 25937.16, "end": 25937.74, "probability": 0.7503 }, { "start": 25939.58, "end": 25939.78, "probability": 0.2619 }, { "start": 25941.77, "end": 25944.44, "probability": 0.7516 }, { "start": 25944.54, "end": 25946.02, "probability": 0.9805 }, { "start": 25946.42, "end": 25948.86, "probability": 0.6871 }, { "start": 25948.92, "end": 25949.6, "probability": 0.9297 }, { "start": 25950.38, "end": 25951.86, "probability": 0.7219 }, { "start": 25952.02, "end": 25953.5, "probability": 0.9403 }, { "start": 25954.12, "end": 25956.1, "probability": 0.2703 }, { "start": 25956.3, "end": 25957.68, "probability": 0.3557 }, { "start": 25957.8, "end": 25960.02, "probability": 0.8132 }, { "start": 25961.15, "end": 25961.58, "probability": 0.838 }, { "start": 25961.98, "end": 25963.56, "probability": 0.4952 }, { "start": 25963.62, "end": 25966.22, "probability": 0.7884 }, { "start": 25966.8, "end": 25969.68, "probability": 0.9626 }, { "start": 25969.76, "end": 25972.56, "probability": 0.9941 }, { "start": 25972.8, "end": 25977.08, "probability": 0.9629 }, { "start": 25977.64, "end": 25980.56, "probability": 0.9862 }, { "start": 25980.96, "end": 25982.02, "probability": 0.9912 }, { "start": 25983.02, "end": 25983.23, "probability": 0.2355 }, { "start": 25984.06, "end": 25987.02, "probability": 0.8281 }, { "start": 25987.92, "end": 25990.3, "probability": 0.969 }, { "start": 25990.3, "end": 25994.22, "probability": 0.9429 }, { "start": 25994.22, "end": 25996.7, "probability": 0.7892 }, { "start": 25997.12, "end": 25999.68, "probability": 0.7787 }, { "start": 26000.1, "end": 26001.48, "probability": 0.763 }, { "start": 26001.88, "end": 26003.18, "probability": 0.6927 }, { "start": 26003.52, "end": 26005.3, "probability": 0.8007 }, { "start": 26005.86, "end": 26007.38, "probability": 0.9701 }, { "start": 26008.5, "end": 26010.22, "probability": 0.9813 }, { "start": 26010.88, "end": 26012.0, "probability": 0.881 }, { "start": 26012.76, "end": 26015.28, "probability": 0.4569 }, { "start": 26017.26, "end": 26018.46, "probability": 0.9056 }, { "start": 26019.12, "end": 26020.0, "probability": 0.7338 }, { "start": 26020.4, "end": 26021.44, "probability": 0.8501 }, { "start": 26021.86, "end": 26022.68, "probability": 0.9301 }, { "start": 26022.76, "end": 26023.96, "probability": 0.9682 }, { "start": 26024.52, "end": 26025.2, "probability": 0.8022 }, { "start": 26025.26, "end": 26025.44, "probability": 0.0652 }, { "start": 26025.52, "end": 26028.56, "probability": 0.9907 }, { "start": 26028.6, "end": 26029.14, "probability": 0.5052 }, { "start": 26029.24, "end": 26030.06, "probability": 0.6195 }, { "start": 26030.26, "end": 26031.66, "probability": 0.6684 }, { "start": 26031.66, "end": 26032.0, "probability": 0.2446 }, { "start": 26032.0, "end": 26034.32, "probability": 0.638 }, { "start": 26034.72, "end": 26039.66, "probability": 0.8133 }, { "start": 26039.66, "end": 26040.2, "probability": 0.5898 }, { "start": 26040.24, "end": 26040.52, "probability": 0.746 }, { "start": 26041.24, "end": 26042.2, "probability": 0.6884 }, { "start": 26042.36, "end": 26042.56, "probability": 0.7331 }, { "start": 26043.5, "end": 26047.82, "probability": 0.7314 }, { "start": 26048.86, "end": 26050.82, "probability": 0.6216 }, { "start": 26051.54, "end": 26051.74, "probability": 0.191 }, { "start": 26051.74, "end": 26051.74, "probability": 0.2114 }, { "start": 26051.74, "end": 26052.65, "probability": 0.6937 }, { "start": 26052.94, "end": 26054.88, "probability": 0.3031 }, { "start": 26055.04, "end": 26055.54, "probability": 0.1803 }, { "start": 26055.92, "end": 26058.78, "probability": 0.2145 }, { "start": 26060.04, "end": 26061.64, "probability": 0.3001 }, { "start": 26062.0, "end": 26065.43, "probability": 0.4458 }, { "start": 26065.82, "end": 26066.22, "probability": 0.3484 }, { "start": 26066.22, "end": 26066.54, "probability": 0.0437 }, { "start": 26066.72, "end": 26069.7, "probability": 0.5151 }, { "start": 26070.98, "end": 26071.47, "probability": 0.9362 }, { "start": 26071.62, "end": 26072.18, "probability": 0.6427 }, { "start": 26072.18, "end": 26073.16, "probability": 0.736 }, { "start": 26073.7, "end": 26075.44, "probability": 0.5103 }, { "start": 26076.64, "end": 26076.64, "probability": 0.1541 }, { "start": 26076.64, "end": 26077.9, "probability": 0.7554 }, { "start": 26077.9, "end": 26078.98, "probability": 0.7816 }, { "start": 26079.16, "end": 26080.36, "probability": 0.3843 }, { "start": 26081.1, "end": 26082.3, "probability": 0.3035 }, { "start": 26082.9, "end": 26083.92, "probability": 0.2583 }, { "start": 26084.32, "end": 26086.28, "probability": 0.6894 }, { "start": 26086.48, "end": 26088.04, "probability": 0.9355 }, { "start": 26088.12, "end": 26090.58, "probability": 0.0646 }, { "start": 26090.58, "end": 26094.1, "probability": 0.8984 }, { "start": 26094.6, "end": 26094.98, "probability": 0.5074 }, { "start": 26095.14, "end": 26100.82, "probability": 0.8926 }, { "start": 26101.56, "end": 26101.64, "probability": 0.0487 }, { "start": 26101.64, "end": 26101.78, "probability": 0.0351 }, { "start": 26101.78, "end": 26101.78, "probability": 0.235 }, { "start": 26101.78, "end": 26104.85, "probability": 0.4646 }, { "start": 26105.3, "end": 26108.44, "probability": 0.9976 }, { "start": 26108.44, "end": 26111.28, "probability": 0.972 }, { "start": 26111.72, "end": 26116.12, "probability": 0.92 }, { "start": 26116.2, "end": 26117.46, "probability": 0.76 }, { "start": 26117.5, "end": 26117.88, "probability": 0.7691 }, { "start": 26118.16, "end": 26118.4, "probability": 0.3688 }, { "start": 26118.4, "end": 26119.81, "probability": 0.6353 }, { "start": 26120.4, "end": 26120.83, "probability": 0.5791 }, { "start": 26121.74, "end": 26124.52, "probability": 0.0037 }, { "start": 26124.62, "end": 26125.08, "probability": 0.0262 }, { "start": 26125.14, "end": 26126.18, "probability": 0.2929 }, { "start": 26127.86, "end": 26129.88, "probability": 0.834 }, { "start": 26130.02, "end": 26133.88, "probability": 0.7524 }, { "start": 26133.98, "end": 26137.0, "probability": 0.4867 }, { "start": 26137.18, "end": 26137.54, "probability": 0.0149 }, { "start": 26139.64, "end": 26144.58, "probability": 0.5628 }, { "start": 26145.34, "end": 26146.3, "probability": 0.0819 }, { "start": 26146.52, "end": 26148.2, "probability": 0.6667 }, { "start": 26148.8, "end": 26150.62, "probability": 0.2994 }, { "start": 26150.88, "end": 26151.24, "probability": 0.114 }, { "start": 26170.88, "end": 26172.54, "probability": 0.6085 }, { "start": 26175.92, "end": 26178.72, "probability": 0.6871 }, { "start": 26178.88, "end": 26181.52, "probability": 0.2667 }, { "start": 26182.38, "end": 26185.26, "probability": 0.6624 }, { "start": 26188.44, "end": 26190.64, "probability": 0.6735 }, { "start": 26192.2, "end": 26192.64, "probability": 0.7798 }, { "start": 26194.72, "end": 26195.46, "probability": 0.6952 }, { "start": 26197.52, "end": 26200.46, "probability": 0.8505 }, { "start": 26201.48, "end": 26202.14, "probability": 0.94 }, { "start": 26203.64, "end": 26206.02, "probability": 0.2754 }, { "start": 26206.02, "end": 26206.02, "probability": 0.2387 }, { "start": 26206.02, "end": 26207.08, "probability": 0.1019 }, { "start": 26210.38, "end": 26212.96, "probability": 0.0165 }, { "start": 26213.4, "end": 26214.56, "probability": 0.0553 }, { "start": 26214.56, "end": 26215.54, "probability": 0.0245 }, { "start": 26215.72, "end": 26216.34, "probability": 0.2404 }, { "start": 26218.16, "end": 26219.64, "probability": 0.1066 }, { "start": 26220.16, "end": 26220.8, "probability": 0.1646 }, { "start": 26222.76, "end": 26223.04, "probability": 0.1313 }, { "start": 26297.58, "end": 26298.46, "probability": 0.1296 }, { "start": 26299.47, "end": 26300.1, "probability": 0.0288 }, { "start": 26300.34, "end": 26300.83, "probability": 0.6309 }, { "start": 26301.12, "end": 26303.02, "probability": 0.74 }, { "start": 26304.06, "end": 26304.78, "probability": 0.743 }, { "start": 26305.46, "end": 26306.44, "probability": 0.7518 }, { "start": 26309.94, "end": 26310.38, "probability": 0.7081 }, { "start": 26311.92, "end": 26312.9, "probability": 0.798 }, { "start": 26313.74, "end": 26314.24, "probability": 0.9876 }, { "start": 26315.26, "end": 26321.34, "probability": 0.6559 }, { "start": 26325.36, "end": 26334.34, "probability": 0.7489 }, { "start": 26334.96, "end": 26336.22, "probability": 0.9713 }, { "start": 26337.22, "end": 26339.91, "probability": 0.6715 }, { "start": 26341.62, "end": 26343.8, "probability": 0.239 }, { "start": 26355.42, "end": 26355.42, "probability": 0.3494 }, { "start": 26355.42, "end": 26360.12, "probability": 0.2615 }, { "start": 26360.46, "end": 26367.35, "probability": 0.1447 }, { "start": 26370.58, "end": 26371.36, "probability": 0.3928 }, { "start": 26371.36, "end": 26378.2, "probability": 0.0129 }, { "start": 26378.2, "end": 26378.2, "probability": 0.1668 }, { "start": 26378.58, "end": 26378.82, "probability": 0.0065 }, { "start": 26446.0, "end": 26446.0, "probability": 0.0 }, { "start": 26446.0, "end": 26446.0, "probability": 0.0 }, { "start": 26446.0, "end": 26446.0, "probability": 0.0 }, { "start": 26446.0, "end": 26446.0, "probability": 0.0 }, { "start": 26447.12, "end": 26447.74, "probability": 0.0178 }, { "start": 26448.0, "end": 26448.2, "probability": 0.2935 }, { "start": 26448.2, "end": 26448.2, "probability": 0.0358 }, { "start": 26448.2, "end": 26449.54, "probability": 0.1448 }, { "start": 26450.82, "end": 26451.0, "probability": 0.2861 }, { "start": 26451.0, "end": 26451.38, "probability": 0.3593 }, { "start": 26451.72, "end": 26451.97, "probability": 0.074 }, { "start": 26453.66, "end": 26457.42, "probability": 0.4489 }, { "start": 26463.86, "end": 26467.54, "probability": 0.2239 }, { "start": 26468.46, "end": 26470.98, "probability": 0.8119 }, { "start": 26473.44, "end": 26476.24, "probability": 0.6308 }, { "start": 26477.54, "end": 26479.96, "probability": 0.4933 }, { "start": 26480.66, "end": 26483.52, "probability": 0.8726 }, { "start": 26484.38, "end": 26491.57, "probability": 0.3576 }, { "start": 26501.84, "end": 26506.28, "probability": 0.5513 }, { "start": 26509.6, "end": 26511.28, "probability": 0.0592 }, { "start": 26518.92, "end": 26520.14, "probability": 0.1601 }, { "start": 26521.26, "end": 26522.46, "probability": 0.2115 }, { "start": 26523.32, "end": 26523.54, "probability": 0.8582 }, { "start": 26524.58, "end": 26525.68, "probability": 0.6653 }, { "start": 26526.36, "end": 26526.74, "probability": 0.7798 }, { "start": 26527.34, "end": 26528.6, "probability": 0.7298 }, { "start": 26531.68, "end": 26532.94, "probability": 0.2546 }, { "start": 26533.64, "end": 26540.54, "probability": 0.7001 }, { "start": 26541.48, "end": 26544.2, "probability": 0.8726 }, { "start": 26545.9, "end": 26548.8, "probability": 0.5219 }, { "start": 26550.8, "end": 26560.62, "probability": 0.7075 }, { "start": 26561.64, "end": 26564.66, "probability": 0.9723 }, { "start": 26565.49, "end": 26565.74, "probability": 0.6727 }, { "start": 26567.0, "end": 26568.48, "probability": 0.6101 }, { "start": 26575.14, "end": 26575.46, "probability": 0.7168 }, { "start": 26577.08, "end": 26577.88, "probability": 0.3113 }, { "start": 26579.94, "end": 26580.44, "probability": 0.9733 }, { "start": 26581.5, "end": 26582.22, "probability": 0.682 }, { "start": 26583.64, "end": 26584.1, "probability": 0.9928 }, { "start": 26584.96, "end": 26585.66, "probability": 0.7062 }, { "start": 26586.74, "end": 26588.94, "probability": 0.9816 }, { "start": 26589.96, "end": 26590.38, "probability": 0.9912 }, { "start": 26591.18, "end": 26591.66, "probability": 0.8792 }, { "start": 26594.42, "end": 26596.22, "probability": 0.8588 }, { "start": 26597.3, "end": 26598.64, "probability": 0.8953 }, { "start": 26599.74, "end": 26600.16, "probability": 0.9277 }, { "start": 26601.66, "end": 26602.42, "probability": 0.9679 }, { "start": 26603.82, "end": 26604.12, "probability": 0.7226 }, { "start": 26605.36, "end": 26606.1, "probability": 0.6218 }, { "start": 26607.4, "end": 26608.0, "probability": 0.8726 }, { "start": 26608.66, "end": 26609.58, "probability": 0.5835 }, { "start": 26614.6, "end": 26616.82, "probability": 0.5622 }, { "start": 26617.86, "end": 26619.76, "probability": 0.713 }, { "start": 26621.06, "end": 26622.1, "probability": 0.6598 }, { "start": 26622.14, "end": 26623.94, "probability": 0.9181 }, { "start": 26625.04, "end": 26626.62, "probability": 0.5889 }, { "start": 26637.66, "end": 26638.08, "probability": 0.3546 }, { "start": 26639.98, "end": 26644.44, "probability": 0.0403 }, { "start": 26644.98, "end": 26647.26, "probability": 0.3102 }, { "start": 26648.12, "end": 26652.32, "probability": 0.0643 }, { "start": 26654.36, "end": 26655.6, "probability": 0.2432 }, { "start": 26656.6, "end": 26659.34, "probability": 0.0611 }, { "start": 26660.5, "end": 26662.18, "probability": 0.0172 }, { "start": 26662.18, "end": 26662.68, "probability": 0.1209 }, { "start": 26662.68, "end": 26662.88, "probability": 0.1565 }, { "start": 26662.88, "end": 26663.24, "probability": 0.3162 }, { "start": 26663.8, "end": 26672.84, "probability": 0.0464 }, { "start": 26675.56, "end": 26679.64, "probability": 0.0456 }, { "start": 26680.36, "end": 26680.71, "probability": 0.0486 }, { "start": 26681.38, "end": 26682.9, "probability": 0.0351 }, { "start": 26683.02, "end": 26683.02, "probability": 0.1554 }, { "start": 26683.02, "end": 26684.2, "probability": 0.3087 }, { "start": 26684.88, "end": 26685.38, "probability": 0.3597 }, { "start": 26891.0, "end": 26891.0, "probability": 0.0 }, { "start": 26891.0, "end": 26891.0, "probability": 0.0 }, { "start": 26891.0, "end": 26891.0, "probability": 0.0 }, { "start": 26891.0, "end": 26891.0, "probability": 0.0 }, { "start": 26891.0, "end": 26891.0, "probability": 0.0 }, { "start": 26891.0, "end": 26891.0, "probability": 0.0 }, { "start": 26891.0, "end": 26891.0, "probability": 0.0 }, { "start": 26891.0, "end": 26891.0, "probability": 0.0 }, { "start": 26891.0, "end": 26891.0, "probability": 0.0 }, { "start": 26891.0, "end": 26891.0, "probability": 0.0 }, { "start": 26891.0, "end": 26891.0, "probability": 0.0 }, { "start": 26891.0, "end": 26891.0, "probability": 0.0 }, { "start": 26891.0, "end": 26891.0, "probability": 0.0 }, { "start": 26891.0, "end": 26891.0, "probability": 0.0 }, { "start": 26891.0, "end": 26891.0, "probability": 0.0 }, { "start": 26891.0, "end": 26891.0, "probability": 0.0 }, { "start": 26891.0, "end": 26891.0, "probability": 0.0 }, { "start": 26891.0, "end": 26891.0, "probability": 0.0 }, { "start": 26891.0, "end": 26891.0, "probability": 0.0 }, { "start": 26891.0, "end": 26891.0, "probability": 0.0 }, { "start": 26891.0, "end": 26891.0, "probability": 0.0 }, { "start": 26891.0, "end": 26891.0, "probability": 0.0 }, { "start": 26898.28, "end": 26904.0, "probability": 0.5041 }, { "start": 26909.62, "end": 26910.48, "probability": 0.6207 }, { "start": 26911.16, "end": 26912.44, "probability": 0.4982 }, { "start": 26913.24, "end": 26914.08, "probability": 0.7342 }, { "start": 26915.32, "end": 26915.8, "probability": 0.7929 }, { "start": 26917.18, "end": 26918.02, "probability": 0.5273 }, { "start": 26919.36, "end": 26921.92, "probability": 0.7558 }, { "start": 26922.72, "end": 26925.34, "probability": 0.8796 }, { "start": 26925.56, "end": 26930.46, "probability": 0.8724 }, { "start": 26930.46, "end": 26932.1, "probability": 0.0294 }, { "start": 26932.72, "end": 26933.18, "probability": 0.3315 }, { "start": 26941.44, "end": 26943.34, "probability": 0.4084 }, { "start": 26944.38, "end": 26949.32, "probability": 0.846 }, { "start": 26950.02, "end": 26952.74, "probability": 0.7076 }, { "start": 26955.8, "end": 26959.68, "probability": 0.8746 }, { "start": 26960.3, "end": 26962.68, "probability": 0.4774 }, { "start": 26967.26, "end": 26968.54, "probability": 0.0622 }, { "start": 26969.16, "end": 26971.84, "probability": 0.511 }, { "start": 26973.32, "end": 26979.04, "probability": 0.8111 }, { "start": 26980.52, "end": 26981.46, "probability": 0.6766 }, { "start": 26982.58, "end": 26986.9, "probability": 0.9015 }, { "start": 26988.7, "end": 26989.52, "probability": 0.5713 }, { "start": 26992.2, "end": 26994.55, "probability": 0.3401 }, { "start": 26995.8, "end": 26996.18, "probability": 0.2576 }, { "start": 26997.62, "end": 26999.06, "probability": 0.922 }, { "start": 26999.84, "end": 27000.2, "probability": 0.8063 }, { "start": 27001.5, "end": 27002.42, "probability": 0.6811 }, { "start": 27006.84, "end": 27007.32, "probability": 0.7706 }, { "start": 27008.32, "end": 27008.96, "probability": 0.5323 }, { "start": 27009.84, "end": 27012.6, "probability": 0.7471 }, { "start": 27013.68, "end": 27017.68, "probability": 0.9738 }, { "start": 27020.7, "end": 27021.1, "probability": 0.2073 }, { "start": 27023.93, "end": 27027.22, "probability": 0.7944 }, { "start": 27027.46, "end": 27028.56, "probability": 0.728 }, { "start": 27030.34, "end": 27031.14, "probability": 0.5055 }, { "start": 27032.02, "end": 27033.04, "probability": 0.6592 }, { "start": 27034.4, "end": 27034.84, "probability": 0.023 }, { "start": 27038.06, "end": 27038.18, "probability": 0.0055 }, { "start": 27038.96, "end": 27039.06, "probability": 0.0282 }, { "start": 27039.98, "end": 27041.22, "probability": 0.1244 }, { "start": 27041.26, "end": 27041.32, "probability": 0.4361 }, { "start": 27041.32, "end": 27041.32, "probability": 0.424 }, { "start": 27041.32, "end": 27042.36, "probability": 0.5745 }, { "start": 27043.38, "end": 27044.22, "probability": 0.9696 }, { "start": 27045.22, "end": 27046.08, "probability": 0.6495 }, { "start": 27048.16, "end": 27048.88, "probability": 0.889 }, { "start": 27051.14, "end": 27052.26, "probability": 0.6417 }, { "start": 27053.08, "end": 27056.1, "probability": 0.9022 }, { "start": 27056.74, "end": 27057.56, "probability": 0.6742 }, { "start": 27058.36, "end": 27059.08, "probability": 0.9804 }, { "start": 27059.82, "end": 27060.72, "probability": 0.955 }, { "start": 27063.1, "end": 27066.64, "probability": 0.9691 }, { "start": 27067.68, "end": 27069.74, "probability": 0.9871 }, { "start": 27070.36, "end": 27071.04, "probability": 0.9803 }, { "start": 27071.64, "end": 27072.86, "probability": 0.9285 }, { "start": 27073.86, "end": 27074.8, "probability": 0.9821 }, { "start": 27079.38, "end": 27080.46, "probability": 0.7594 }, { "start": 27081.18, "end": 27082.06, "probability": 0.8311 }, { "start": 27082.78, "end": 27083.7, "probability": 0.8177 }, { "start": 27084.6, "end": 27085.18, "probability": 0.9426 }, { "start": 27086.16, "end": 27086.82, "probability": 0.9153 }, { "start": 27087.44, "end": 27088.1, "probability": 0.9562 }, { "start": 27088.86, "end": 27089.94, "probability": 0.8785 }, { "start": 27090.76, "end": 27091.6, "probability": 0.9977 }, { "start": 27092.26, "end": 27093.28, "probability": 0.9259 }, { "start": 27094.38, "end": 27096.84, "probability": 0.9924 }, { "start": 27098.6, "end": 27101.36, "probability": 0.9722 }, { "start": 27101.46, "end": 27102.0, "probability": 0.4908 }, { "start": 27102.06, "end": 27103.0, "probability": 0.8594 }, { "start": 27104.34, "end": 27104.54, "probability": 0.8324 }, { "start": 27105.12, "end": 27106.56, "probability": 0.7704 }, { "start": 27107.82, "end": 27111.64, "probability": 0.9135 }, { "start": 27112.74, "end": 27114.94, "probability": 0.8475 }, { "start": 27115.04, "end": 27116.5, "probability": 0.9863 }, { "start": 27118.48, "end": 27119.3, "probability": 0.5876 }, { "start": 27120.9, "end": 27123.5, "probability": 0.9292 }, { "start": 27123.76, "end": 27126.71, "probability": 0.7511 }, { "start": 27126.98, "end": 27127.68, "probability": 0.8346 }, { "start": 27129.14, "end": 27129.52, "probability": 0.085 }, { "start": 27129.84, "end": 27131.42, "probability": 0.061 }, { "start": 27131.42, "end": 27132.17, "probability": 0.1515 }, { "start": 27134.98, "end": 27139.8, "probability": 0.0275 }, { "start": 27140.8, "end": 27143.74, "probability": 0.3052 }, { "start": 27144.04, "end": 27144.04, "probability": 0.0675 }, { "start": 27144.2, "end": 27147.06, "probability": 0.8627 }, { "start": 27147.56, "end": 27149.04, "probability": 0.5773 }, { "start": 27149.54, "end": 27150.88, "probability": 0.6569 }, { "start": 27151.56, "end": 27156.1, "probability": 0.1632 }, { "start": 27163.16, "end": 27163.16, "probability": 0.7159 }, { "start": 27163.16, "end": 27163.3, "probability": 0.2415 }, { "start": 27164.28, "end": 27168.74, "probability": 0.1148 }, { "start": 27169.74, "end": 27176.92, "probability": 0.5591 }, { "start": 27178.04, "end": 27178.88, "probability": 0.1052 }, { "start": 27179.36, "end": 27179.36, "probability": 0.0869 }, { "start": 27179.36, "end": 27181.4, "probability": 0.3544 }, { "start": 27181.48, "end": 27182.79, "probability": 0.1504 }, { "start": 27183.2, "end": 27183.64, "probability": 0.0175 }, { "start": 27189.48, "end": 27190.52, "probability": 0.537 }, { "start": 27192.72, "end": 27194.16, "probability": 0.5595 }, { "start": 27194.44, "end": 27195.16, "probability": 0.2937 }, { "start": 27195.38, "end": 27198.28, "probability": 0.8065 }, { "start": 27198.66, "end": 27198.98, "probability": 0.5933 }, { "start": 27199.0, "end": 27201.04, "probability": 0.8516 }, { "start": 27201.04, "end": 27203.58, "probability": 0.9242 }, { "start": 27204.3, "end": 27209.87, "probability": 0.9695 }, { "start": 27210.42, "end": 27211.6, "probability": 0.8924 }, { "start": 27212.54, "end": 27213.6, "probability": 0.2679 }, { "start": 27214.24, "end": 27215.98, "probability": 0.8126 }, { "start": 27217.54, "end": 27219.32, "probability": 0.9343 }, { "start": 27221.82, "end": 27222.32, "probability": 0.5487 }, { "start": 27225.94, "end": 27227.28, "probability": 0.1215 }, { "start": 27227.34, "end": 27228.67, "probability": 0.734 }, { "start": 27229.82, "end": 27230.7, "probability": 0.8762 }, { "start": 27232.08, "end": 27237.4, "probability": 0.9975 }, { "start": 27237.92, "end": 27240.6, "probability": 0.9951 }, { "start": 27241.68, "end": 27245.36, "probability": 0.9985 }, { "start": 27245.96, "end": 27248.56, "probability": 0.9963 }, { "start": 27249.54, "end": 27252.05, "probability": 0.9844 }, { "start": 27252.72, "end": 27253.68, "probability": 0.9988 }, { "start": 27254.2, "end": 27260.22, "probability": 0.9985 }, { "start": 27260.66, "end": 27261.44, "probability": 0.8283 }, { "start": 27261.98, "end": 27262.62, "probability": 0.9708 }, { "start": 27263.2, "end": 27264.14, "probability": 0.97 }, { "start": 27264.68, "end": 27266.04, "probability": 0.8828 }, { "start": 27266.6, "end": 27269.22, "probability": 0.5784 }, { "start": 27269.5, "end": 27270.94, "probability": 0.4323 }, { "start": 27270.96, "end": 27272.08, "probability": 0.9882 }, { "start": 27272.14, "end": 27276.64, "probability": 0.9901 }, { "start": 27278.02, "end": 27280.44, "probability": 0.9645 }, { "start": 27281.06, "end": 27285.86, "probability": 0.9332 }, { "start": 27286.5, "end": 27288.38, "probability": 0.979 }, { "start": 27289.36, "end": 27290.06, "probability": 0.6855 }, { "start": 27290.72, "end": 27293.46, "probability": 0.9565 }, { "start": 27293.98, "end": 27299.5, "probability": 0.9963 }, { "start": 27301.18, "end": 27302.14, "probability": 0.9185 }, { "start": 27303.32, "end": 27305.16, "probability": 0.7576 }, { "start": 27307.76, "end": 27311.7, "probability": 0.9821 }, { "start": 27312.2, "end": 27316.04, "probability": 0.7492 }, { "start": 27317.72, "end": 27322.66, "probability": 0.9979 }, { "start": 27323.48, "end": 27326.92, "probability": 0.9662 }, { "start": 27327.56, "end": 27329.98, "probability": 0.866 }, { "start": 27331.78, "end": 27335.36, "probability": 0.8363 }, { "start": 27336.06, "end": 27338.3, "probability": 0.9763 }, { "start": 27339.14, "end": 27340.4, "probability": 0.983 }, { "start": 27340.96, "end": 27343.72, "probability": 0.9774 }, { "start": 27344.22, "end": 27347.44, "probability": 0.9685 }, { "start": 27348.74, "end": 27349.96, "probability": 0.8467 }, { "start": 27350.62, "end": 27354.24, "probability": 0.9454 }, { "start": 27354.98, "end": 27361.5, "probability": 0.9875 }, { "start": 27362.52, "end": 27365.9, "probability": 0.833 }, { "start": 27366.42, "end": 27373.98, "probability": 0.9688 }, { "start": 27374.74, "end": 27375.0, "probability": 0.7371 }, { "start": 27375.56, "end": 27378.12, "probability": 0.9824 }, { "start": 27378.64, "end": 27379.16, "probability": 0.9753 }, { "start": 27379.8, "end": 27380.64, "probability": 0.7709 }, { "start": 27381.14, "end": 27384.1, "probability": 0.9851 }, { "start": 27384.6, "end": 27386.22, "probability": 0.8613 }, { "start": 27387.82, "end": 27388.52, "probability": 0.7593 }, { "start": 27389.12, "end": 27391.7, "probability": 0.9971 }, { "start": 27392.78, "end": 27397.58, "probability": 0.8995 }, { "start": 27398.28, "end": 27401.5, "probability": 0.9171 }, { "start": 27401.96, "end": 27403.4, "probability": 0.897 }, { "start": 27404.76, "end": 27406.84, "probability": 0.8151 }, { "start": 27407.28, "end": 27408.72, "probability": 0.9896 }, { "start": 27409.2, "end": 27412.24, "probability": 0.8807 }, { "start": 27412.84, "end": 27414.74, "probability": 0.9986 }, { "start": 27415.48, "end": 27417.32, "probability": 0.8599 }, { "start": 27417.9, "end": 27423.48, "probability": 0.9577 }, { "start": 27424.0, "end": 27425.74, "probability": 0.9552 }, { "start": 27426.92, "end": 27429.04, "probability": 0.8389 }, { "start": 27429.04, "end": 27432.26, "probability": 0.9976 }, { "start": 27432.78, "end": 27433.84, "probability": 0.8766 }, { "start": 27434.5, "end": 27437.4, "probability": 0.9537 }, { "start": 27437.68, "end": 27440.94, "probability": 0.9812 }, { "start": 27441.58, "end": 27442.0, "probability": 0.7769 }, { "start": 27442.54, "end": 27445.54, "probability": 0.993 }, { "start": 27446.48, "end": 27448.82, "probability": 0.9946 }, { "start": 27449.34, "end": 27453.14, "probability": 0.957 }, { "start": 27455.1, "end": 27455.82, "probability": 0.8196 }, { "start": 27456.42, "end": 27460.2, "probability": 0.9487 }, { "start": 27461.14, "end": 27465.94, "probability": 0.9709 }, { "start": 27467.3, "end": 27469.9, "probability": 0.7238 }, { "start": 27470.92, "end": 27474.94, "probability": 0.991 }, { "start": 27475.34, "end": 27478.7, "probability": 0.99 }, { "start": 27479.28, "end": 27482.26, "probability": 0.9889 }, { "start": 27483.36, "end": 27488.85, "probability": 0.8389 }, { "start": 27490.54, "end": 27495.98, "probability": 0.9928 }, { "start": 27496.36, "end": 27500.48, "probability": 0.9885 }, { "start": 27501.84, "end": 27502.76, "probability": 0.6826 }, { "start": 27503.7, "end": 27507.28, "probability": 0.962 }, { "start": 27507.46, "end": 27512.34, "probability": 0.9932 }, { "start": 27513.12, "end": 27518.34, "probability": 0.8693 }, { "start": 27518.34, "end": 27521.84, "probability": 0.9884 }, { "start": 27523.94, "end": 27527.52, "probability": 0.96 }, { "start": 27527.94, "end": 27530.78, "probability": 0.9943 }, { "start": 27531.62, "end": 27532.16, "probability": 0.7453 }, { "start": 27532.76, "end": 27536.02, "probability": 0.9295 }, { "start": 27536.44, "end": 27537.28, "probability": 0.9089 }, { "start": 27537.36, "end": 27539.5, "probability": 0.959 }, { "start": 27539.98, "end": 27541.06, "probability": 0.8228 }, { "start": 27541.64, "end": 27544.16, "probability": 0.7461 }, { "start": 27544.94, "end": 27548.76, "probability": 0.9922 }, { "start": 27549.32, "end": 27549.7, "probability": 0.9529 }, { "start": 27551.78, "end": 27556.74, "probability": 0.9924 }, { "start": 27557.54, "end": 27561.06, "probability": 0.9872 }, { "start": 27561.64, "end": 27562.18, "probability": 0.9011 }, { "start": 27562.72, "end": 27564.18, "probability": 0.9997 }, { "start": 27564.98, "end": 27566.96, "probability": 0.9818 }, { "start": 27567.28, "end": 27571.24, "probability": 0.8829 }, { "start": 27571.9, "end": 27577.56, "probability": 0.9508 }, { "start": 27578.2, "end": 27579.42, "probability": 0.9772 }, { "start": 27579.78, "end": 27580.3, "probability": 0.7196 }, { "start": 27580.58, "end": 27580.58, "probability": 0.2139 }, { "start": 27580.58, "end": 27582.24, "probability": 0.6056 }, { "start": 27582.32, "end": 27586.32, "probability": 0.7705 }, { "start": 27586.62, "end": 27588.16, "probability": 0.9618 }, { "start": 27588.8, "end": 27589.12, "probability": 0.6577 }, { "start": 27602.96, "end": 27603.28, "probability": 0.2454 }, { "start": 27604.0, "end": 27605.89, "probability": 0.5979 }, { "start": 27607.34, "end": 27611.0, "probability": 0.8238 }, { "start": 27611.66, "end": 27612.74, "probability": 0.967 }, { "start": 27613.4, "end": 27615.36, "probability": 0.9668 }, { "start": 27615.46, "end": 27617.09, "probability": 0.9886 }, { "start": 27618.5, "end": 27619.86, "probability": 0.9233 }, { "start": 27620.04, "end": 27623.92, "probability": 0.9922 }, { "start": 27624.34, "end": 27624.92, "probability": 0.9313 }, { "start": 27624.94, "end": 27625.54, "probability": 0.9311 }, { "start": 27625.56, "end": 27626.48, "probability": 0.9805 }, { "start": 27626.62, "end": 27626.96, "probability": 0.9374 }, { "start": 27627.02, "end": 27627.46, "probability": 0.9253 }, { "start": 27627.98, "end": 27629.44, "probability": 0.8185 }, { "start": 27630.76, "end": 27635.66, "probability": 0.9395 }, { "start": 27636.22, "end": 27637.66, "probability": 0.6809 }, { "start": 27638.26, "end": 27642.5, "probability": 0.9846 }, { "start": 27643.08, "end": 27643.88, "probability": 0.8047 }, { "start": 27644.82, "end": 27645.94, "probability": 0.9287 }, { "start": 27646.74, "end": 27649.08, "probability": 0.994 }, { "start": 27649.46, "end": 27654.6, "probability": 0.9926 }, { "start": 27655.72, "end": 27662.16, "probability": 0.9524 }, { "start": 27662.8, "end": 27663.4, "probability": 0.7258 }, { "start": 27663.88, "end": 27668.37, "probability": 0.9902 }, { "start": 27668.54, "end": 27674.24, "probability": 0.966 }, { "start": 27674.72, "end": 27676.7, "probability": 0.7045 }, { "start": 27676.8, "end": 27678.54, "probability": 0.8818 }, { "start": 27678.72, "end": 27680.28, "probability": 0.9883 }, { "start": 27680.98, "end": 27684.32, "probability": 0.9977 }, { "start": 27684.95, "end": 27692.34, "probability": 0.8429 }, { "start": 27692.56, "end": 27693.74, "probability": 0.9956 }, { "start": 27694.12, "end": 27695.68, "probability": 0.8918 }, { "start": 27695.76, "end": 27696.02, "probability": 0.3707 }, { "start": 27696.14, "end": 27696.34, "probability": 0.5823 }, { "start": 27697.24, "end": 27700.34, "probability": 0.998 }, { "start": 27700.88, "end": 27703.02, "probability": 0.9927 }, { "start": 27703.12, "end": 27703.6, "probability": 0.6789 }, { "start": 27703.78, "end": 27704.82, "probability": 0.8245 }, { "start": 27705.22, "end": 27707.42, "probability": 0.9895 }, { "start": 27708.08, "end": 27708.3, "probability": 0.8406 }, { "start": 27708.88, "end": 27710.17, "probability": 0.51 }, { "start": 27711.06, "end": 27711.28, "probability": 0.357 }, { "start": 27711.28, "end": 27711.5, "probability": 0.6955 }, { "start": 27711.58, "end": 27712.16, "probability": 0.8235 }, { "start": 27712.28, "end": 27714.76, "probability": 0.7485 }, { "start": 27714.88, "end": 27715.32, "probability": 0.8264 }, { "start": 27716.28, "end": 27717.34, "probability": 0.8824 }, { "start": 27717.54, "end": 27720.52, "probability": 0.9953 }, { "start": 27721.42, "end": 27723.76, "probability": 0.6427 }, { "start": 27724.46, "end": 27725.98, "probability": 0.9694 }, { "start": 27727.08, "end": 27727.58, "probability": 0.8078 }, { "start": 27729.76, "end": 27732.64, "probability": 0.9491 }, { "start": 27740.84, "end": 27741.46, "probability": 0.0183 }, { "start": 27743.42, "end": 27744.22, "probability": 0.6979 }, { "start": 27746.76, "end": 27747.54, "probability": 0.8871 }, { "start": 27749.55, "end": 27751.7, "probability": 0.715 }, { "start": 27753.57, "end": 27754.54, "probability": 0.9376 }, { "start": 27757.78, "end": 27758.82, "probability": 0.4366 }, { "start": 27759.24, "end": 27761.62, "probability": 0.9815 }, { "start": 27763.0, "end": 27764.14, "probability": 0.7517 }, { "start": 27765.24, "end": 27765.54, "probability": 0.5758 }, { "start": 27767.94, "end": 27769.9, "probability": 0.9765 }, { "start": 27777.08, "end": 27779.62, "probability": 0.4837 }, { "start": 27781.22, "end": 27783.1, "probability": 0.5354 }, { "start": 27783.8, "end": 27784.92, "probability": 0.6386 }, { "start": 27785.0, "end": 27785.34, "probability": 0.7379 }, { "start": 27786.04, "end": 27786.68, "probability": 0.9377 }, { "start": 27786.96, "end": 27788.62, "probability": 0.2531 }, { "start": 27789.16, "end": 27790.32, "probability": 0.4946 }, { "start": 27791.14, "end": 27791.92, "probability": 0.5733 }, { "start": 27792.06, "end": 27792.1, "probability": 0.2127 }, { "start": 27792.1, "end": 27792.46, "probability": 0.8399 }, { "start": 27792.82, "end": 27794.02, "probability": 0.789 }, { "start": 27795.16, "end": 27795.4, "probability": 0.5542 }, { "start": 27796.16, "end": 27796.62, "probability": 0.9025 }, { "start": 27797.0, "end": 27797.48, "probability": 0.7093 }, { "start": 27800.18, "end": 27800.46, "probability": 0.7805 }, { "start": 27801.04, "end": 27801.8, "probability": 0.8023 }, { "start": 27802.54, "end": 27804.72, "probability": 0.7314 }, { "start": 27806.22, "end": 27807.48, "probability": 0.9328 }, { "start": 27808.06, "end": 27809.1, "probability": 0.871 }, { "start": 27811.9, "end": 27812.22, "probability": 0.5555 }, { "start": 27813.12, "end": 27815.2, "probability": 0.9652 }, { "start": 27815.78, "end": 27817.68, "probability": 0.9763 }, { "start": 27818.56, "end": 27821.72, "probability": 0.9887 }, { "start": 27821.74, "end": 27824.98, "probability": 0.9993 }, { "start": 27826.44, "end": 27828.8, "probability": 0.999 }, { "start": 27829.42, "end": 27830.72, "probability": 0.9796 }, { "start": 27831.56, "end": 27832.94, "probability": 0.9247 }, { "start": 27833.84, "end": 27834.52, "probability": 0.8842 }, { "start": 27835.94, "end": 27838.24, "probability": 0.9917 }, { "start": 27838.76, "end": 27842.62, "probability": 0.9961 }, { "start": 27843.8, "end": 27847.12, "probability": 0.999 }, { "start": 27847.78, "end": 27849.02, "probability": 0.9451 }, { "start": 27849.44, "end": 27850.68, "probability": 0.9607 }, { "start": 27851.14, "end": 27852.42, "probability": 0.9915 }, { "start": 27852.94, "end": 27853.14, "probability": 0.9784 }, { "start": 27854.74, "end": 27855.18, "probability": 0.8203 }, { "start": 27855.7, "end": 27861.46, "probability": 0.9961 }, { "start": 27861.46, "end": 27867.22, "probability": 0.9994 }, { "start": 27869.88, "end": 27870.7, "probability": 0.6699 }, { "start": 27871.76, "end": 27873.78, "probability": 0.9871 }, { "start": 27874.38, "end": 27878.38, "probability": 0.9964 }, { "start": 27879.22, "end": 27879.66, "probability": 0.9799 }, { "start": 27881.3, "end": 27884.9, "probability": 0.9986 }, { "start": 27885.38, "end": 27890.98, "probability": 0.9925 }, { "start": 27892.8, "end": 27895.74, "probability": 0.9959 }, { "start": 27896.3, "end": 27897.58, "probability": 0.999 }, { "start": 27898.34, "end": 27900.06, "probability": 0.7773 }, { "start": 27900.22, "end": 27901.18, "probability": 0.9574 }, { "start": 27902.5, "end": 27905.56, "probability": 0.9885 }, { "start": 27906.4, "end": 27908.28, "probability": 0.9798 }, { "start": 27909.14, "end": 27911.84, "probability": 0.9661 }, { "start": 27913.1, "end": 27915.39, "probability": 0.9854 }, { "start": 27915.6, "end": 27918.42, "probability": 0.9938 }, { "start": 27918.84, "end": 27921.4, "probability": 0.9327 }, { "start": 27921.7, "end": 27925.02, "probability": 0.9951 }, { "start": 27925.64, "end": 27926.2, "probability": 0.8346 }, { "start": 27926.94, "end": 27929.72, "probability": 0.9389 }, { "start": 27930.32, "end": 27931.0, "probability": 0.8268 }, { "start": 27932.02, "end": 27936.94, "probability": 0.9979 }, { "start": 27937.48, "end": 27938.74, "probability": 0.9948 }, { "start": 27940.64, "end": 27941.96, "probability": 0.95 }, { "start": 27942.66, "end": 27946.36, "probability": 0.9956 }, { "start": 27947.42, "end": 27952.54, "probability": 0.9934 }, { "start": 27953.94, "end": 27956.98, "probability": 0.9971 }, { "start": 27957.48, "end": 27960.92, "probability": 0.9993 }, { "start": 27961.88, "end": 27965.88, "probability": 0.991 }, { "start": 27966.86, "end": 27967.08, "probability": 0.6843 }, { "start": 27967.64, "end": 27969.9, "probability": 0.9808 }, { "start": 27970.58, "end": 27971.78, "probability": 0.9628 }, { "start": 27972.34, "end": 27974.68, "probability": 0.9629 }, { "start": 27977.14, "end": 27980.18, "probability": 0.985 }, { "start": 27980.84, "end": 27983.62, "probability": 0.9881 }, { "start": 27984.4, "end": 27985.62, "probability": 0.844 }, { "start": 27986.56, "end": 27988.48, "probability": 0.9833 }, { "start": 27989.04, "end": 27989.32, "probability": 0.7586 }, { "start": 27990.76, "end": 27993.38, "probability": 0.9985 }, { "start": 27993.5, "end": 27997.0, "probability": 0.9994 }, { "start": 27998.06, "end": 27998.68, "probability": 0.322 }, { "start": 27999.84, "end": 28003.2, "probability": 0.8878 }, { "start": 28003.82, "end": 28007.36, "probability": 0.9756 }, { "start": 28008.0, "end": 28012.52, "probability": 0.9917 }, { "start": 28012.52, "end": 28018.26, "probability": 0.9995 }, { "start": 28018.64, "end": 28019.92, "probability": 0.8324 }, { "start": 28020.88, "end": 28025.34, "probability": 0.989 }, { "start": 28027.22, "end": 28028.14, "probability": 0.4854 }, { "start": 28028.64, "end": 28031.58, "probability": 0.9909 }, { "start": 28031.58, "end": 28034.14, "probability": 0.9983 }, { "start": 28035.22, "end": 28039.06, "probability": 0.8987 }, { "start": 28039.78, "end": 28040.16, "probability": 0.671 }, { "start": 28040.34, "end": 28043.9, "probability": 0.9625 }, { "start": 28044.42, "end": 28046.32, "probability": 0.9879 }, { "start": 28047.6, "end": 28051.24, "probability": 0.7867 }, { "start": 28051.68, "end": 28055.4, "probability": 0.9753 }, { "start": 28057.64, "end": 28062.24, "probability": 0.9932 }, { "start": 28063.24, "end": 28064.38, "probability": 0.8837 }, { "start": 28065.14, "end": 28067.3, "probability": 0.9331 }, { "start": 28070.42, "end": 28071.02, "probability": 0.7579 }, { "start": 28072.76, "end": 28073.94, "probability": 0.745 }, { "start": 28076.14, "end": 28078.58, "probability": 0.99 }, { "start": 28078.58, "end": 28082.76, "probability": 0.9983 }, { "start": 28083.24, "end": 28083.92, "probability": 0.8121 }, { "start": 28085.52, "end": 28087.44, "probability": 0.9757 }, { "start": 28087.84, "end": 28088.4, "probability": 0.9647 }, { "start": 28088.86, "end": 28091.9, "probability": 0.9906 }, { "start": 28092.3, "end": 28094.36, "probability": 0.9088 }, { "start": 28095.34, "end": 28097.48, "probability": 0.9976 }, { "start": 28099.64, "end": 28101.44, "probability": 0.9985 }, { "start": 28101.98, "end": 28102.86, "probability": 0.9056 }, { "start": 28103.6, "end": 28104.96, "probability": 0.9665 }, { "start": 28106.18, "end": 28108.64, "probability": 0.9526 }, { "start": 28110.62, "end": 28114.1, "probability": 0.9906 }, { "start": 28114.5, "end": 28117.4, "probability": 0.992 }, { "start": 28117.9, "end": 28120.14, "probability": 0.8408 }, { "start": 28120.7, "end": 28121.22, "probability": 0.9641 }, { "start": 28123.46, "end": 28124.72, "probability": 0.9927 }, { "start": 28125.36, "end": 28126.08, "probability": 0.9661 }, { "start": 28127.98, "end": 28130.6, "probability": 0.9819 }, { "start": 28131.44, "end": 28134.28, "probability": 0.97 }, { "start": 28134.8, "end": 28135.24, "probability": 0.8505 }, { "start": 28136.28, "end": 28136.78, "probability": 0.9833 }, { "start": 28137.3, "end": 28138.16, "probability": 0.9168 }, { "start": 28138.82, "end": 28141.16, "probability": 0.9937 }, { "start": 28141.82, "end": 28142.14, "probability": 0.9727 }, { "start": 28143.74, "end": 28145.96, "probability": 0.9984 }, { "start": 28146.66, "end": 28149.38, "probability": 0.9955 }, { "start": 28152.74, "end": 28155.38, "probability": 0.9743 }, { "start": 28155.96, "end": 28159.38, "probability": 0.9948 }, { "start": 28159.96, "end": 28160.8, "probability": 0.9565 }, { "start": 28162.72, "end": 28165.2, "probability": 0.9988 }, { "start": 28166.1, "end": 28166.66, "probability": 0.9321 }, { "start": 28167.56, "end": 28168.1, "probability": 0.985 }, { "start": 28168.34, "end": 28168.9, "probability": 0.9905 }, { "start": 28169.24, "end": 28169.82, "probability": 0.6597 }, { "start": 28170.22, "end": 28171.24, "probability": 0.7396 }, { "start": 28171.58, "end": 28173.66, "probability": 0.8533 }, { "start": 28173.94, "end": 28174.42, "probability": 0.7126 }, { "start": 28175.52, "end": 28176.72, "probability": 0.9845 }, { "start": 28177.24, "end": 28178.11, "probability": 0.994 }, { "start": 28178.64, "end": 28180.98, "probability": 0.9805 }, { "start": 28181.56, "end": 28185.34, "probability": 0.9963 }, { "start": 28185.86, "end": 28186.24, "probability": 0.9451 }, { "start": 28187.42, "end": 28188.58, "probability": 0.6254 }, { "start": 28188.74, "end": 28190.46, "probability": 0.944 }, { "start": 28191.08, "end": 28191.94, "probability": 0.8399 }, { "start": 28192.92, "end": 28194.88, "probability": 0.9055 }, { "start": 28195.08, "end": 28196.02, "probability": 0.828 }, { "start": 28198.1, "end": 28198.68, "probability": 0.4589 }, { "start": 28203.84, "end": 28207.7, "probability": 0.7749 }, { "start": 28208.34, "end": 28208.94, "probability": 0.3524 }, { "start": 28209.82, "end": 28212.06, "probability": 0.9374 }, { "start": 28213.36, "end": 28216.54, "probability": 0.7406 }, { "start": 28217.4, "end": 28218.64, "probability": 0.6347 }, { "start": 28218.8, "end": 28219.96, "probability": 0.6322 }, { "start": 28221.72, "end": 28222.88, "probability": 0.8171 }, { "start": 28223.58, "end": 28223.88, "probability": 0.2883 }, { "start": 28224.08, "end": 28224.08, "probability": 0.083 }, { "start": 28224.18, "end": 28225.04, "probability": 0.9829 }, { "start": 28230.34, "end": 28234.72, "probability": 0.8303 }, { "start": 28235.34, "end": 28237.36, "probability": 0.916 }, { "start": 28238.26, "end": 28241.18, "probability": 0.9868 }, { "start": 28241.6, "end": 28242.64, "probability": 0.9678 }, { "start": 28242.78, "end": 28243.18, "probability": 0.8899 }, { "start": 28244.06, "end": 28245.44, "probability": 0.9666 }, { "start": 28246.16, "end": 28248.4, "probability": 0.8757 }, { "start": 28249.42, "end": 28253.34, "probability": 0.999 }, { "start": 28253.92, "end": 28258.28, "probability": 0.9984 }, { "start": 28259.14, "end": 28263.38, "probability": 0.9934 }, { "start": 28264.12, "end": 28268.7, "probability": 0.9983 }, { "start": 28269.32, "end": 28275.14, "probability": 0.988 }, { "start": 28275.72, "end": 28277.26, "probability": 0.9634 }, { "start": 28278.26, "end": 28280.32, "probability": 0.9972 }, { "start": 28280.88, "end": 28281.74, "probability": 0.8139 }, { "start": 28282.44, "end": 28283.06, "probability": 0.774 }, { "start": 28283.66, "end": 28288.82, "probability": 0.9907 }, { "start": 28289.68, "end": 28291.48, "probability": 0.9979 }, { "start": 28292.02, "end": 28293.3, "probability": 0.9824 }, { "start": 28293.94, "end": 28295.5, "probability": 0.8595 }, { "start": 28296.04, "end": 28297.58, "probability": 0.9956 }, { "start": 28298.16, "end": 28305.12, "probability": 0.9974 }, { "start": 28306.04, "end": 28306.72, "probability": 0.8684 }, { "start": 28307.36, "end": 28311.54, "probability": 0.9723 }, { "start": 28312.1, "end": 28316.2, "probability": 0.9604 }, { "start": 28316.8, "end": 28320.1, "probability": 0.9909 }, { "start": 28321.72, "end": 28328.34, "probability": 0.9822 }, { "start": 28328.56, "end": 28330.08, "probability": 0.7418 }, { "start": 28330.5, "end": 28333.36, "probability": 0.7237 }, { "start": 28334.36, "end": 28335.16, "probability": 0.635 }, { "start": 28335.94, "end": 28337.44, "probability": 0.9034 }, { "start": 28337.68, "end": 28341.1, "probability": 0.4111 }, { "start": 28341.14, "end": 28342.22, "probability": 0.2347 }, { "start": 28342.26, "end": 28342.58, "probability": 0.6931 }, { "start": 28342.64, "end": 28344.12, "probability": 0.0548 }, { "start": 28344.32, "end": 28350.98, "probability": 0.9467 }, { "start": 28351.62, "end": 28352.14, "probability": 0.9994 }, { "start": 28352.88, "end": 28354.76, "probability": 0.9213 }, { "start": 28355.48, "end": 28358.18, "probability": 0.8149 }, { "start": 28358.8, "end": 28364.66, "probability": 0.9937 }, { "start": 28365.22, "end": 28370.86, "probability": 0.9689 }, { "start": 28371.38, "end": 28372.7, "probability": 0.9948 }, { "start": 28373.36, "end": 28374.52, "probability": 0.7695 }, { "start": 28375.14, "end": 28377.02, "probability": 0.786 }, { "start": 28377.5, "end": 28379.34, "probability": 0.9777 }, { "start": 28380.08, "end": 28386.0, "probability": 0.9794 }, { "start": 28386.0, "end": 28390.78, "probability": 0.998 }, { "start": 28391.94, "end": 28393.26, "probability": 0.8896 }, { "start": 28393.34, "end": 28397.3, "probability": 0.9878 }, { "start": 28398.02, "end": 28399.63, "probability": 0.4984 }, { "start": 28400.16, "end": 28403.26, "probability": 0.9867 }, { "start": 28403.84, "end": 28405.14, "probability": 0.7526 }, { "start": 28405.56, "end": 28410.52, "probability": 0.9967 }, { "start": 28411.12, "end": 28413.62, "probability": 0.9976 }, { "start": 28414.38, "end": 28415.98, "probability": 0.8696 }, { "start": 28416.56, "end": 28420.12, "probability": 0.9982 }, { "start": 28421.1, "end": 28426.12, "probability": 0.9958 }, { "start": 28426.12, "end": 28430.86, "probability": 0.9897 }, { "start": 28431.38, "end": 28432.48, "probability": 0.9875 }, { "start": 28433.78, "end": 28439.54, "probability": 0.9898 }, { "start": 28440.06, "end": 28442.6, "probability": 0.9788 }, { "start": 28443.44, "end": 28447.66, "probability": 0.9176 }, { "start": 28448.32, "end": 28450.64, "probability": 0.9751 }, { "start": 28451.38, "end": 28453.98, "probability": 0.9967 }, { "start": 28454.64, "end": 28458.0, "probability": 0.9211 }, { "start": 28458.52, "end": 28459.04, "probability": 0.4753 }, { "start": 28459.16, "end": 28460.62, "probability": 0.9497 }, { "start": 28461.0, "end": 28464.98, "probability": 0.9924 }, { "start": 28465.6, "end": 28466.74, "probability": 0.5173 }, { "start": 28467.46, "end": 28472.52, "probability": 0.8733 }, { "start": 28472.96, "end": 28476.13, "probability": 0.9761 }, { "start": 28476.86, "end": 28478.68, "probability": 0.9903 }, { "start": 28479.36, "end": 28480.76, "probability": 0.9871 }, { "start": 28481.74, "end": 28482.86, "probability": 0.6617 }, { "start": 28483.76, "end": 28490.94, "probability": 0.9891 }, { "start": 28491.52, "end": 28495.16, "probability": 0.9937 }, { "start": 28495.16, "end": 28499.92, "probability": 0.9941 }, { "start": 28500.38, "end": 28502.04, "probability": 0.9807 }, { "start": 28502.66, "end": 28506.1, "probability": 0.9927 }, { "start": 28506.16, "end": 28509.28, "probability": 0.9984 }, { "start": 28509.8, "end": 28514.92, "probability": 0.986 }, { "start": 28515.46, "end": 28519.6, "probability": 0.9969 }, { "start": 28519.86, "end": 28520.58, "probability": 0.807 }, { "start": 28521.14, "end": 28521.58, "probability": 0.8 }, { "start": 28522.12, "end": 28526.96, "probability": 0.8892 }, { "start": 28527.3, "end": 28528.24, "probability": 0.9839 }, { "start": 28528.3, "end": 28528.94, "probability": 0.7732 }, { "start": 28529.08, "end": 28530.13, "probability": 0.774 }, { "start": 28530.64, "end": 28535.32, "probability": 0.9951 }, { "start": 28536.04, "end": 28539.2, "probability": 0.9873 }, { "start": 28540.26, "end": 28543.04, "probability": 0.9273 }, { "start": 28543.72, "end": 28546.56, "probability": 0.9959 }, { "start": 28547.06, "end": 28548.05, "probability": 0.9897 }, { "start": 28548.58, "end": 28552.14, "probability": 0.9587 }, { "start": 28552.94, "end": 28554.14, "probability": 0.8576 }, { "start": 28554.52, "end": 28555.58, "probability": 0.9221 }, { "start": 28556.02, "end": 28557.46, "probability": 0.8821 }, { "start": 28557.88, "end": 28559.72, "probability": 0.4626 }, { "start": 28560.34, "end": 28562.42, "probability": 0.7111 }, { "start": 28562.98, "end": 28567.8, "probability": 0.9788 }, { "start": 28567.84, "end": 28568.4, "probability": 0.8503 }, { "start": 28568.9, "end": 28573.44, "probability": 0.9653 }, { "start": 28573.96, "end": 28574.96, "probability": 0.8062 }, { "start": 28575.18, "end": 28575.54, "probability": 0.6914 }, { "start": 28577.0, "end": 28579.72, "probability": 0.8304 }, { "start": 28580.58, "end": 28582.33, "probability": 0.998 }, { "start": 28583.28, "end": 28587.78, "probability": 0.9457 }, { "start": 28588.3, "end": 28591.78, "probability": 0.9957 }, { "start": 28592.36, "end": 28595.16, "probability": 0.9966 }, { "start": 28595.76, "end": 28597.72, "probability": 0.8499 }, { "start": 28599.04, "end": 28599.58, "probability": 0.6741 }, { "start": 28618.92, "end": 28619.96, "probability": 0.2592 }, { "start": 28620.5, "end": 28623.48, "probability": 0.0443 }, { "start": 28623.92, "end": 28626.32, "probability": 0.028 }, { "start": 28627.98, "end": 28631.66, "probability": 0.097 }, { "start": 28632.06, "end": 28633.36, "probability": 0.0952 }, { "start": 28634.36, "end": 28634.36, "probability": 0.3336 }, { "start": 28634.36, "end": 28634.62, "probability": 0.1044 }, { "start": 28634.68, "end": 28638.68, "probability": 0.0626 }, { "start": 28638.68, "end": 28638.78, "probability": 0.1145 }, { "start": 28639.94, "end": 28640.48, "probability": 0.1542 }, { "start": 28642.1, "end": 28642.4, "probability": 0.1569 }, { "start": 28642.58, "end": 28642.74, "probability": 0.0089 }, { "start": 28706.8, "end": 28709.42, "probability": 0.6509 }, { "start": 28710.1, "end": 28713.62, "probability": 0.8971 }, { "start": 28713.82, "end": 28716.12, "probability": 0.5028 }, { "start": 28716.6, "end": 28717.32, "probability": 0.6484 }, { "start": 28720.22, "end": 28722.48, "probability": 0.0545 }, { "start": 28738.94, "end": 28742.94, "probability": 0.9967 }, { "start": 28744.08, "end": 28745.94, "probability": 0.8286 }, { "start": 28746.4, "end": 28746.72, "probability": 0.2824 }, { "start": 28748.4, "end": 28749.26, "probability": 0.0719 }, { "start": 28750.26, "end": 28750.26, "probability": 0.1075 }, { "start": 28750.7, "end": 28750.84, "probability": 0.0061 }, { "start": 28828.26, "end": 28828.46, "probability": 0.0677 }, { "start": 28828.46, "end": 28828.46, "probability": 0.115 }, { "start": 28828.46, "end": 28828.46, "probability": 0.0172 }, { "start": 28828.46, "end": 28828.54, "probability": 0.0669 }, { "start": 28828.54, "end": 28831.14, "probability": 0.4783 }, { "start": 28831.32, "end": 28833.96, "probability": 0.321 }, { "start": 28834.78, "end": 28835.34, "probability": 0.0996 }, { "start": 28835.47, "end": 28835.86, "probability": 0.0909 }, { "start": 28836.54, "end": 28838.46, "probability": 0.7032 }, { "start": 28838.56, "end": 28839.0, "probability": 0.6971 }, { "start": 28842.24, "end": 28843.36, "probability": 0.9541 }, { "start": 28844.78, "end": 28844.88, "probability": 0.7034 }, { "start": 28848.34, "end": 28849.0, "probability": 0.601 }, { "start": 28849.34, "end": 28851.0, "probability": 0.4785 }, { "start": 28851.88, "end": 28852.66, "probability": 0.691 }, { "start": 28853.98, "end": 28856.36, "probability": 0.4703 }, { "start": 28857.28, "end": 28859.16, "probability": 0.9001 }, { "start": 28859.22, "end": 28860.4, "probability": 0.9716 }, { "start": 28860.4, "end": 28861.48, "probability": 0.6749 }, { "start": 28862.06, "end": 28863.4, "probability": 0.8424 }, { "start": 28863.6, "end": 28865.28, "probability": 0.6604 }, { "start": 28865.86, "end": 28869.14, "probability": 0.6315 }, { "start": 28869.14, "end": 28873.8, "probability": 0.9438 }, { "start": 28874.08, "end": 28876.44, "probability": 0.8088 }, { "start": 28876.88, "end": 28877.94, "probability": 0.7684 }, { "start": 28878.04, "end": 28879.36, "probability": 0.87 }, { "start": 28879.78, "end": 28880.52, "probability": 0.8495 }, { "start": 28880.62, "end": 28881.8, "probability": 0.7026 }, { "start": 28881.98, "end": 28883.13, "probability": 0.9837 }, { "start": 28883.48, "end": 28884.36, "probability": 0.4004 }, { "start": 28884.72, "end": 28885.7, "probability": 0.3786 }, { "start": 28885.7, "end": 28885.96, "probability": 0.3518 }, { "start": 28886.48, "end": 28887.16, "probability": 0.8684 }, { "start": 28887.7, "end": 28888.24, "probability": 0.9975 }, { "start": 28892.72, "end": 28893.82, "probability": 0.7378 }, { "start": 28894.72, "end": 28896.0, "probability": 0.7867 }, { "start": 28897.08, "end": 28897.74, "probability": 0.7076 }, { "start": 28898.3, "end": 28899.14, "probability": 0.8998 }, { "start": 28899.82, "end": 28901.7, "probability": 0.812 }, { "start": 28902.4, "end": 28906.32, "probability": 0.9863 }, { "start": 28907.68, "end": 28913.98, "probability": 0.993 }, { "start": 28915.34, "end": 28916.64, "probability": 0.9506 }, { "start": 28918.0, "end": 28919.98, "probability": 0.9973 }, { "start": 28921.08, "end": 28922.64, "probability": 0.9961 }, { "start": 28923.72, "end": 28929.04, "probability": 0.9944 }, { "start": 28931.84, "end": 28932.62, "probability": 0.954 }, { "start": 28934.28, "end": 28935.72, "probability": 0.9799 }, { "start": 28936.22, "end": 28939.28, "probability": 0.9912 }, { "start": 28940.22, "end": 28942.86, "probability": 0.7516 }, { "start": 28943.0, "end": 28948.12, "probability": 0.8809 }, { "start": 28948.74, "end": 28951.1, "probability": 0.9737 }, { "start": 28951.7, "end": 28954.5, "probability": 0.7769 }, { "start": 28957.64, "end": 28958.26, "probability": 0.927 }, { "start": 28960.2, "end": 28961.6, "probability": 0.9987 }, { "start": 28962.46, "end": 28965.1, "probability": 0.979 }, { "start": 28966.0, "end": 28970.88, "probability": 0.9968 }, { "start": 28973.1, "end": 28976.14, "probability": 0.9665 }, { "start": 28977.68, "end": 28978.58, "probability": 0.8811 }, { "start": 28979.8, "end": 28980.86, "probability": 0.9699 }, { "start": 28981.5, "end": 28983.46, "probability": 0.9346 }, { "start": 28984.8, "end": 28988.02, "probability": 0.9933 }, { "start": 28989.08, "end": 28992.28, "probability": 0.9987 }, { "start": 28996.8, "end": 28997.78, "probability": 0.8445 }, { "start": 28998.36, "end": 29000.72, "probability": 0.9785 }, { "start": 29002.3, "end": 29003.56, "probability": 0.9902 }, { "start": 29003.74, "end": 29004.52, "probability": 0.7259 }, { "start": 29004.62, "end": 29005.69, "probability": 0.8276 }, { "start": 29006.62, "end": 29010.46, "probability": 0.9958 }, { "start": 29010.6, "end": 29011.7, "probability": 0.9493 }, { "start": 29012.6, "end": 29014.34, "probability": 0.9712 }, { "start": 29014.86, "end": 29017.61, "probability": 0.8577 }, { "start": 29019.02, "end": 29020.7, "probability": 0.9873 }, { "start": 29025.02, "end": 29026.81, "probability": 0.5172 }, { "start": 29027.12, "end": 29027.76, "probability": 0.7456 }, { "start": 29028.86, "end": 29034.96, "probability": 0.9891 }, { "start": 29034.96, "end": 29039.36, "probability": 0.9985 }, { "start": 29039.38, "end": 29040.4, "probability": 0.9485 }, { "start": 29045.26, "end": 29046.75, "probability": 0.999 }, { "start": 29047.94, "end": 29049.72, "probability": 0.9057 }, { "start": 29050.82, "end": 29055.4, "probability": 0.9609 }, { "start": 29056.74, "end": 29057.72, "probability": 0.9286 }, { "start": 29058.2, "end": 29060.92, "probability": 0.9715 }, { "start": 29061.46, "end": 29065.56, "probability": 0.9893 }, { "start": 29066.48, "end": 29070.54, "probability": 0.9915 }, { "start": 29070.9, "end": 29073.1, "probability": 0.6693 }, { "start": 29073.88, "end": 29074.5, "probability": 0.7896 }, { "start": 29075.96, "end": 29076.92, "probability": 0.9972 }, { "start": 29077.86, "end": 29081.53, "probability": 0.7035 }, { "start": 29082.96, "end": 29085.82, "probability": 0.0184 }, { "start": 29085.82, "end": 29089.38, "probability": 0.342 }, { "start": 29089.38, "end": 29089.56, "probability": 0.6875 }, { "start": 29090.3, "end": 29091.92, "probability": 0.5848 }, { "start": 29092.86, "end": 29093.92, "probability": 0.964 }, { "start": 29095.2, "end": 29098.66, "probability": 0.6711 }, { "start": 29099.48, "end": 29101.52, "probability": 0.9324 }, { "start": 29101.7, "end": 29103.88, "probability": 0.4513 }, { "start": 29103.9, "end": 29106.78, "probability": 0.9876 }, { "start": 29108.42, "end": 29112.17, "probability": 0.956 }, { "start": 29112.9, "end": 29113.7, "probability": 0.8101 }, { "start": 29114.42, "end": 29116.22, "probability": 0.9698 }, { "start": 29116.8, "end": 29117.88, "probability": 0.876 }, { "start": 29118.38, "end": 29119.5, "probability": 0.9675 }, { "start": 29119.98, "end": 29120.58, "probability": 0.9636 }, { "start": 29120.66, "end": 29121.4, "probability": 0.7967 }, { "start": 29122.02, "end": 29124.88, "probability": 0.9321 }, { "start": 29125.58, "end": 29126.94, "probability": 0.8201 }, { "start": 29131.78, "end": 29132.94, "probability": 0.8014 }, { "start": 29134.42, "end": 29135.76, "probability": 0.7592 }, { "start": 29137.28, "end": 29142.02, "probability": 0.8428 }, { "start": 29142.92, "end": 29143.9, "probability": 0.7975 }, { "start": 29147.52, "end": 29148.16, "probability": 0.9762 }, { "start": 29148.84, "end": 29149.44, "probability": 0.9873 }, { "start": 29150.68, "end": 29153.44, "probability": 0.9144 }, { "start": 29156.06, "end": 29159.24, "probability": 0.9979 }, { "start": 29160.16, "end": 29163.84, "probability": 0.9868 }, { "start": 29166.46, "end": 29172.16, "probability": 0.9985 }, { "start": 29172.28, "end": 29174.2, "probability": 0.8839 }, { "start": 29174.38, "end": 29181.58, "probability": 0.8934 }, { "start": 29182.22, "end": 29183.4, "probability": 0.7688 }, { "start": 29189.26, "end": 29189.78, "probability": 0.5182 }, { "start": 29191.74, "end": 29194.64, "probability": 0.9976 }, { "start": 29196.4, "end": 29196.54, "probability": 0.1047 }, { "start": 29196.54, "end": 29196.98, "probability": 0.5322 }, { "start": 29207.78, "end": 29208.8, "probability": 0.9734 }, { "start": 29210.32, "end": 29211.22, "probability": 0.9767 }, { "start": 29212.26, "end": 29213.08, "probability": 0.9542 }, { "start": 29214.0, "end": 29216.3, "probability": 0.9795 }, { "start": 29217.84, "end": 29221.14, "probability": 0.9751 }, { "start": 29221.82, "end": 29224.47, "probability": 0.9937 }, { "start": 29225.36, "end": 29226.52, "probability": 0.836 }, { "start": 29229.64, "end": 29229.74, "probability": 0.3339 }, { "start": 29230.56, "end": 29233.44, "probability": 0.8868 }, { "start": 29234.4, "end": 29236.56, "probability": 0.8466 }, { "start": 29237.34, "end": 29237.74, "probability": 0.6686 }, { "start": 29239.14, "end": 29240.26, "probability": 0.9556 }, { "start": 29241.3, "end": 29243.87, "probability": 0.9927 }, { "start": 29244.4, "end": 29244.98, "probability": 0.8915 }, { "start": 29248.24, "end": 29249.92, "probability": 0.9638 }, { "start": 29250.52, "end": 29253.46, "probability": 0.9435 }, { "start": 29254.26, "end": 29254.7, "probability": 0.754 }, { "start": 29256.28, "end": 29257.4, "probability": 0.9506 }, { "start": 29258.54, "end": 29262.94, "probability": 0.9761 }, { "start": 29264.06, "end": 29265.36, "probability": 0.9121 }, { "start": 29266.54, "end": 29267.76, "probability": 0.9722 }, { "start": 29269.6, "end": 29273.84, "probability": 0.9841 }, { "start": 29274.02, "end": 29275.14, "probability": 0.0367 }, { "start": 29276.24, "end": 29276.94, "probability": 0.8517 }, { "start": 29277.42, "end": 29278.24, "probability": 0.6463 }, { "start": 29278.58, "end": 29280.73, "probability": 0.9824 }, { "start": 29287.12, "end": 29288.66, "probability": 0.6213 }, { "start": 29292.88, "end": 29293.96, "probability": 0.8751 }, { "start": 29297.8, "end": 29301.4, "probability": 0.7001 }, { "start": 29303.06, "end": 29303.86, "probability": 0.9266 }, { "start": 29305.42, "end": 29307.94, "probability": 0.5948 }, { "start": 29311.36, "end": 29311.74, "probability": 0.2557 }, { "start": 29314.08, "end": 29316.34, "probability": 0.9287 }, { "start": 29316.54, "end": 29318.82, "probability": 0.8728 }, { "start": 29319.56, "end": 29321.66, "probability": 0.5647 }, { "start": 29323.77, "end": 29325.64, "probability": 0.6288 }, { "start": 29327.4, "end": 29330.76, "probability": 0.9145 }, { "start": 29330.9, "end": 29331.68, "probability": 0.4317 }, { "start": 29331.86, "end": 29332.21, "probability": 0.2233 }, { "start": 29334.21, "end": 29336.46, "probability": 0.0285 }, { "start": 29342.84, "end": 29345.66, "probability": 0.8726 }, { "start": 29347.0, "end": 29348.74, "probability": 0.9424 }, { "start": 29350.4, "end": 29351.36, "probability": 0.9978 }, { "start": 29352.46, "end": 29352.88, "probability": 0.9773 }, { "start": 29353.78, "end": 29354.7, "probability": 0.9722 }, { "start": 29355.62, "end": 29356.58, "probability": 0.8694 }, { "start": 29357.62, "end": 29360.12, "probability": 0.9971 }, { "start": 29360.86, "end": 29362.32, "probability": 0.8636 }, { "start": 29364.2, "end": 29368.48, "probability": 0.9894 }, { "start": 29378.98, "end": 29379.2, "probability": 0.7198 }, { "start": 29379.2, "end": 29380.36, "probability": 0.7122 }, { "start": 29381.86, "end": 29383.74, "probability": 0.7877 }, { "start": 29384.86, "end": 29386.72, "probability": 0.8953 }, { "start": 29388.22, "end": 29389.0, "probability": 0.9093 }, { "start": 29393.08, "end": 29397.6, "probability": 0.9688 }, { "start": 29399.32, "end": 29400.12, "probability": 0.7769 }, { "start": 29402.22, "end": 29402.9, "probability": 0.5222 }, { "start": 29402.9, "end": 29404.0, "probability": 0.6831 }, { "start": 29405.2, "end": 29407.2, "probability": 0.9625 }, { "start": 29409.02, "end": 29411.26, "probability": 0.9806 }, { "start": 29412.6, "end": 29419.1, "probability": 0.9668 }, { "start": 29420.8, "end": 29421.22, "probability": 0.7918 }, { "start": 29421.54, "end": 29422.14, "probability": 0.6282 }, { "start": 29422.3, "end": 29424.6, "probability": 0.6977 }, { "start": 29428.46, "end": 29429.8, "probability": 0.4744 }, { "start": 29430.04, "end": 29431.8, "probability": 0.8138 }, { "start": 29431.9, "end": 29432.08, "probability": 0.5744 }, { "start": 29432.2, "end": 29432.44, "probability": 0.5749 }, { "start": 29432.68, "end": 29434.04, "probability": 0.3758 }, { "start": 29434.36, "end": 29435.13, "probability": 0.9599 }, { "start": 29438.1, "end": 29438.92, "probability": 0.6697 }, { "start": 29439.64, "end": 29440.12, "probability": 0.934 }, { "start": 29447.24, "end": 29447.24, "probability": 0.1251 }, { "start": 29447.24, "end": 29447.24, "probability": 0.1783 }, { "start": 29447.24, "end": 29447.24, "probability": 0.138 }, { "start": 29447.24, "end": 29447.24, "probability": 0.02 }, { "start": 29447.24, "end": 29447.24, "probability": 0.3637 }, { "start": 29447.24, "end": 29447.24, "probability": 0.0314 }, { "start": 29459.46, "end": 29459.46, "probability": 0.4092 }, { "start": 29459.5, "end": 29461.9, "probability": 0.7493 }, { "start": 29471.32, "end": 29475.38, "probability": 0.2581 }, { "start": 29475.82, "end": 29477.6, "probability": 0.0029 }, { "start": 29484.92, "end": 29490.3, "probability": 0.8753 }, { "start": 29492.06, "end": 29494.14, "probability": 0.5075 }, { "start": 29494.14, "end": 29495.36, "probability": 0.6786 }, { "start": 29495.42, "end": 29498.24, "probability": 0.9799 }, { "start": 29499.92, "end": 29500.9, "probability": 0.7795 }, { "start": 29503.22, "end": 29508.0, "probability": 0.9606 }, { "start": 29509.36, "end": 29512.28, "probability": 0.7809 }, { "start": 29514.1, "end": 29515.11, "probability": 0.8728 }, { "start": 29516.42, "end": 29518.26, "probability": 0.96 }, { "start": 29520.08, "end": 29523.06, "probability": 0.9956 }, { "start": 29524.16, "end": 29525.9, "probability": 0.9304 }, { "start": 29526.9, "end": 29528.38, "probability": 0.064 }, { "start": 29528.38, "end": 29528.9, "probability": 0.5133 }, { "start": 29529.76, "end": 29530.36, "probability": 0.2389 }, { "start": 29531.02, "end": 29531.6, "probability": 0.329 }, { "start": 29531.6, "end": 29532.46, "probability": 0.0289 }, { "start": 29534.55, "end": 29534.96, "probability": 0.0843 }, { "start": 29534.96, "end": 29535.12, "probability": 0.0803 }, { "start": 29535.12, "end": 29536.59, "probability": 0.7935 }, { "start": 29537.6, "end": 29538.8, "probability": 0.5054 }, { "start": 29541.49, "end": 29542.82, "probability": 0.0895 }, { "start": 29544.08, "end": 29546.74, "probability": 0.7169 }, { "start": 29546.82, "end": 29548.06, "probability": 0.2658 }, { "start": 29548.06, "end": 29551.5, "probability": 0.9395 }, { "start": 29551.62, "end": 29552.11, "probability": 0.8848 }, { "start": 29552.44, "end": 29553.04, "probability": 0.8824 }, { "start": 29553.7, "end": 29554.38, "probability": 0.9453 }, { "start": 29555.18, "end": 29556.84, "probability": 0.7994 }, { "start": 29557.42, "end": 29559.8, "probability": 0.5201 }, { "start": 29559.8, "end": 29560.0, "probability": 0.5812 }, { "start": 29560.14, "end": 29560.16, "probability": 0.2209 }, { "start": 29560.16, "end": 29562.14, "probability": 0.5688 }, { "start": 29563.16, "end": 29565.55, "probability": 0.5499 }, { "start": 29566.5, "end": 29568.09, "probability": 0.7499 }, { "start": 29570.0, "end": 29572.32, "probability": 0.9847 }, { "start": 29573.7, "end": 29575.38, "probability": 0.9989 }, { "start": 29577.32, "end": 29578.0, "probability": 0.5305 }, { "start": 29578.16, "end": 29582.6, "probability": 0.9774 }, { "start": 29585.12, "end": 29586.06, "probability": 0.7983 }, { "start": 29586.14, "end": 29588.84, "probability": 0.8956 }, { "start": 29590.3, "end": 29596.06, "probability": 0.7563 }, { "start": 29596.86, "end": 29598.18, "probability": 0.9789 }, { "start": 29600.9, "end": 29602.48, "probability": 0.8831 }, { "start": 29603.46, "end": 29605.68, "probability": 0.9956 }, { "start": 29606.18, "end": 29607.44, "probability": 0.913 }, { "start": 29607.66, "end": 29608.02, "probability": 0.7332 }, { "start": 29609.04, "end": 29609.52, "probability": 0.4947 }, { "start": 29609.58, "end": 29612.92, "probability": 0.9938 }, { "start": 29613.58, "end": 29615.52, "probability": 0.5493 }, { "start": 29615.56, "end": 29617.6, "probability": 0.5413 }, { "start": 29617.82, "end": 29619.24, "probability": 0.4496 }, { "start": 29619.48, "end": 29623.4, "probability": 0.2946 }, { "start": 29623.56, "end": 29624.76, "probability": 0.151 }, { "start": 29626.16, "end": 29630.46, "probability": 0.869 }, { "start": 29631.34, "end": 29633.72, "probability": 0.8937 }, { "start": 29634.24, "end": 29634.95, "probability": 0.9399 }, { "start": 29635.3, "end": 29637.87, "probability": 0.987 }, { "start": 29640.32, "end": 29641.04, "probability": 0.3054 }, { "start": 29641.04, "end": 29643.72, "probability": 0.7287 }, { "start": 29644.42, "end": 29645.78, "probability": 0.9007 }, { "start": 29646.34, "end": 29649.64, "probability": 0.9756 }, { "start": 29650.06, "end": 29651.26, "probability": 0.7271 }, { "start": 29651.4, "end": 29652.12, "probability": 0.6249 }, { "start": 29652.72, "end": 29656.44, "probability": 0.9685 }, { "start": 29657.4, "end": 29658.44, "probability": 0.5316 }, { "start": 29659.2, "end": 29662.1, "probability": 0.7224 }, { "start": 29662.88, "end": 29663.38, "probability": 0.9343 }, { "start": 29663.46, "end": 29665.92, "probability": 0.8683 }, { "start": 29667.84, "end": 29671.5, "probability": 0.1758 }, { "start": 29672.2, "end": 29675.24, "probability": 0.5659 }, { "start": 29675.26, "end": 29678.18, "probability": 0.6888 }, { "start": 29678.6, "end": 29680.72, "probability": 0.7542 }, { "start": 29680.92, "end": 29681.72, "probability": 0.4549 }, { "start": 29681.72, "end": 29682.76, "probability": 0.014 }, { "start": 29684.86, "end": 29687.14, "probability": 0.4685 }, { "start": 29687.26, "end": 29688.18, "probability": 0.4643 }, { "start": 29689.68, "end": 29692.12, "probability": 0.6974 }, { "start": 29692.24, "end": 29694.34, "probability": 0.8143 }, { "start": 29694.34, "end": 29694.76, "probability": 0.2999 }, { "start": 29694.96, "end": 29696.84, "probability": 0.9221 }, { "start": 29697.94, "end": 29698.86, "probability": 0.4701 }, { "start": 29709.82, "end": 29712.26, "probability": 0.5076 }, { "start": 29712.34, "end": 29713.26, "probability": 0.5449 }, { "start": 29713.36, "end": 29714.32, "probability": 0.9495 }, { "start": 29715.38, "end": 29718.1, "probability": 0.9688 }, { "start": 29718.94, "end": 29719.86, "probability": 0.7653 }, { "start": 29721.63, "end": 29723.7, "probability": 0.8798 }, { "start": 29723.92, "end": 29726.58, "probability": 0.0429 }, { "start": 29726.88, "end": 29728.06, "probability": 0.9821 }, { "start": 29728.24, "end": 29732.86, "probability": 0.9044 }, { "start": 29732.98, "end": 29736.53, "probability": 0.0895 }, { "start": 29739.08, "end": 29739.32, "probability": 0.1832 }, { "start": 29874.0, "end": 29874.0, "probability": 0.0 }, { "start": 29874.0, "end": 29874.0, "probability": 0.0 }, { "start": 29874.0, "end": 29874.0, "probability": 0.0 }, { "start": 29874.0, "end": 29874.0, "probability": 0.0 }, { "start": 29874.0, "end": 29874.0, "probability": 0.0 }, { "start": 29874.0, "end": 29874.0, "probability": 0.0 }, { "start": 29874.0, "end": 29874.0, "probability": 0.0 }, { "start": 29874.0, "end": 29874.0, "probability": 0.0 }, { "start": 29874.0, "end": 29874.0, "probability": 0.0 }, { "start": 29874.0, "end": 29874.0, "probability": 0.0 }, { "start": 29874.0, "end": 29874.0, "probability": 0.0 }, { "start": 29874.0, "end": 29874.0, "probability": 0.0 }, { "start": 29874.0, "end": 29874.0, "probability": 0.0 }, { "start": 29874.0, "end": 29874.0, "probability": 0.0 }, { "start": 29874.0, "end": 29874.0, "probability": 0.0 }, { "start": 29874.0, "end": 29874.0, "probability": 0.0 }, { "start": 29874.0, "end": 29874.0, "probability": 0.0 }, { "start": 29874.0, "end": 29874.0, "probability": 0.0 }, { "start": 29874.0, "end": 29874.0, "probability": 0.0 }, { "start": 29874.0, "end": 29874.0, "probability": 0.0 }, { "start": 29874.0, "end": 29874.0, "probability": 0.0 }, { "start": 29874.0, "end": 29874.0, "probability": 0.0 }, { "start": 29874.0, "end": 29874.0, "probability": 0.0 }, { "start": 29874.0, "end": 29874.0, "probability": 0.0 }, { "start": 29874.0, "end": 29874.0, "probability": 0.0 }, { "start": 29874.0, "end": 29874.0, "probability": 0.0 }, { "start": 29874.0, "end": 29874.0, "probability": 0.0 }, { "start": 29874.12, "end": 29874.72, "probability": 0.0334 }, { "start": 29875.7, "end": 29876.54, "probability": 0.066 }, { "start": 29876.66, "end": 29877.05, "probability": 0.0854 }, { "start": 29879.18, "end": 29879.3, "probability": 0.2157 }, { "start": 29880.3, "end": 29880.81, "probability": 0.3008 }, { "start": 29881.16, "end": 29881.86, "probability": 0.016 }, { "start": 29897.86, "end": 29901.24, "probability": 0.0825 }, { "start": 29902.7, "end": 29902.7, "probability": 0.137 }, { "start": 29902.7, "end": 29904.9, "probability": 0.7229 }, { "start": 29905.78, "end": 29907.08, "probability": 0.9032 }, { "start": 30005.0, "end": 30005.0, "probability": 0.0 }, { "start": 30005.0, "end": 30005.0, "probability": 0.0 }, { "start": 30005.0, "end": 30005.0, "probability": 0.0 }, { "start": 30005.0, "end": 30005.0, "probability": 0.0 }, { "start": 30005.0, "end": 30005.0, "probability": 0.0 }, { "start": 30005.0, "end": 30005.0, "probability": 0.0 }, { "start": 30005.0, "end": 30005.0, "probability": 0.0 }, { "start": 30005.0, "end": 30005.0, "probability": 0.0 }, { "start": 30005.0, "end": 30005.0, "probability": 0.0 }, { "start": 30005.0, "end": 30005.0, "probability": 0.0 }, { "start": 30005.0, "end": 30005.0, "probability": 0.0 }, { "start": 30005.0, "end": 30005.0, "probability": 0.0 }, { "start": 30005.0, "end": 30005.0, "probability": 0.0 }, { "start": 30005.0, "end": 30005.0, "probability": 0.0 }, { "start": 30005.0, "end": 30005.0, "probability": 0.0 }, { "start": 30005.0, "end": 30005.0, "probability": 0.0 }, { "start": 30005.0, "end": 30005.0, "probability": 0.0 }, { "start": 30005.0, "end": 30005.0, "probability": 0.0 }, { "start": 30005.0, "end": 30005.0, "probability": 0.0 }, { "start": 30005.0, "end": 30005.0, "probability": 0.0 }, { "start": 30005.0, "end": 30005.0, "probability": 0.0 }, { "start": 30005.0, "end": 30005.0, "probability": 0.0 }, { "start": 30005.0, "end": 30005.0, "probability": 0.0 }, { "start": 30005.0, "end": 30005.0, "probability": 0.0 }, { "start": 30005.0, "end": 30005.0, "probability": 0.0 }, { "start": 30005.0, "end": 30005.0, "probability": 0.0 }, { "start": 30005.0, "end": 30005.0, "probability": 0.0 }, { "start": 30005.0, "end": 30005.0, "probability": 0.0 }, { "start": 30005.0, "end": 30005.0, "probability": 0.0 }, { "start": 30005.16, "end": 30005.16, "probability": 0.0457 }, { "start": 30005.16, "end": 30005.16, "probability": 0.0949 }, { "start": 30005.16, "end": 30007.34, "probability": 0.6785 }, { "start": 30008.08, "end": 30012.18, "probability": 0.9533 }, { "start": 30012.18, "end": 30012.32, "probability": 0.3371 }, { "start": 30012.36, "end": 30012.82, "probability": 0.3949 }, { "start": 30012.9, "end": 30013.24, "probability": 0.4159 }, { "start": 30013.24, "end": 30014.12, "probability": 0.8794 }, { "start": 30014.54, "end": 30016.4, "probability": 0.9971 }, { "start": 30016.82, "end": 30020.9, "probability": 0.9945 }, { "start": 30021.76, "end": 30024.4, "probability": 0.9976 }, { "start": 30024.8, "end": 30026.7, "probability": 0.9198 }, { "start": 30027.84, "end": 30028.94, "probability": 0.7505 }, { "start": 30030.88, "end": 30033.8, "probability": 0.9517 }, { "start": 30034.54, "end": 30034.74, "probability": 0.5958 }, { "start": 30035.34, "end": 30037.02, "probability": 0.6063 }, { "start": 30037.64, "end": 30039.66, "probability": 0.3334 }, { "start": 30041.18, "end": 30041.54, "probability": 0.696 }, { "start": 30043.46, "end": 30043.99, "probability": 0.5104 }, { "start": 30045.36, "end": 30046.14, "probability": 0.9649 }, { "start": 30047.1, "end": 30048.08, "probability": 0.8521 }, { "start": 30048.66, "end": 30050.46, "probability": 0.7253 }, { "start": 30051.18, "end": 30051.64, "probability": 0.6545 }, { "start": 30052.66, "end": 30053.48, "probability": 0.7951 }, { "start": 30054.5, "end": 30054.86, "probability": 0.9824 }, { "start": 30055.74, "end": 30056.38, "probability": 0.8916 }, { "start": 30057.9, "end": 30060.98, "probability": 0.518 }, { "start": 30061.62, "end": 30062.82, "probability": 0.5443 }, { "start": 30063.58, "end": 30063.58, "probability": 0.7374 }, { "start": 30063.58, "end": 30063.58, "probability": 0.8191 }, { "start": 30063.58, "end": 30064.06, "probability": 0.358 }, { "start": 30065.9, "end": 30066.34, "probability": 0.7642 }, { "start": 30066.62, "end": 30067.02, "probability": 0.1263 }, { "start": 30067.42, "end": 30069.68, "probability": 0.8354 }, { "start": 30070.64, "end": 30072.14, "probability": 0.6876 }, { "start": 30073.26, "end": 30073.68, "probability": 0.8154 }, { "start": 30074.52, "end": 30075.3, "probability": 0.9002 }, { "start": 30076.02, "end": 30076.34, "probability": 0.991 }, { "start": 30077.12, "end": 30077.82, "probability": 0.899 }, { "start": 30078.68, "end": 30080.54, "probability": 0.9855 }, { "start": 30081.44, "end": 30083.7, "probability": 0.9675 }, { "start": 30084.46, "end": 30084.94, "probability": 0.9891 }, { "start": 30085.7, "end": 30086.72, "probability": 0.9808 }, { "start": 30087.42, "end": 30088.96, "probability": 0.9939 }, { "start": 30089.52, "end": 30090.32, "probability": 0.9769 }, { "start": 30091.42, "end": 30093.46, "probability": 0.5171 }, { "start": 30094.36, "end": 30095.6, "probability": 0.5311 }, { "start": 30096.36, "end": 30096.36, "probability": 0.6118 }, { "start": 30096.38, "end": 30097.68, "probability": 0.9946 }, { "start": 30099.36, "end": 30101.84, "probability": 0.7987 }, { "start": 30102.56, "end": 30104.24, "probability": 0.4643 }, { "start": 30104.34, "end": 30105.86, "probability": 0.2056 }, { "start": 30108.06, "end": 30108.44, "probability": 0.9602 }, { "start": 30109.28, "end": 30110.12, "probability": 0.6437 }, { "start": 30110.98, "end": 30113.04, "probability": 0.7402 }, { "start": 30114.54, "end": 30116.16, "probability": 0.8556 }, { "start": 30117.44, "end": 30117.92, "probability": 0.9845 }, { "start": 30119.2, "end": 30119.92, "probability": 0.9347 }, { "start": 30122.24, "end": 30123.22, "probability": 0.9451 }, { "start": 30124.0, "end": 30124.74, "probability": 0.9812 }, { "start": 30125.58, "end": 30126.12, "probability": 0.9837 }, { "start": 30127.02, "end": 30127.98, "probability": 0.9474 }, { "start": 30128.64, "end": 30129.74, "probability": 0.8228 }, { "start": 30131.1, "end": 30131.98, "probability": 0.9573 }, { "start": 30132.94, "end": 30133.36, "probability": 0.9707 }, { "start": 30134.3, "end": 30135.14, "probability": 0.8283 }, { "start": 30136.42, "end": 30138.56, "probability": 0.5118 }, { "start": 30141.44, "end": 30141.92, "probability": 0.9899 }, { "start": 30142.92, "end": 30143.64, "probability": 0.7564 }, { "start": 30147.5, "end": 30147.92, "probability": 0.5057 }, { "start": 30148.54, "end": 30149.3, "probability": 0.76 }, { "start": 30150.26, "end": 30150.92, "probability": 0.8185 }, { "start": 30151.44, "end": 30152.18, "probability": 0.8728 }, { "start": 30153.12, "end": 30153.66, "probability": 0.9891 }, { "start": 30154.26, "end": 30154.9, "probability": 0.8351 }, { "start": 30155.76, "end": 30157.74, "probability": 0.8499 }, { "start": 30158.6, "end": 30159.5, "probability": 0.9311 }, { "start": 30160.54, "end": 30160.98, "probability": 0.9699 }, { "start": 30161.9, "end": 30162.7, "probability": 0.9323 }, { "start": 30163.58, "end": 30164.86, "probability": 0.8534 }, { "start": 30165.7, "end": 30166.12, "probability": 0.5646 }, { "start": 30167.08, "end": 30168.08, "probability": 0.56 }, { "start": 30170.8, "end": 30175.26, "probability": 0.8871 }, { "start": 30178.02, "end": 30179.88, "probability": 0.9007 }, { "start": 30181.16, "end": 30181.62, "probability": 0.9863 }, { "start": 30183.74, "end": 30184.5, "probability": 0.9303 }, { "start": 30186.64, "end": 30187.14, "probability": 0.959 }, { "start": 30187.86, "end": 30191.54, "probability": 0.8118 }, { "start": 30193.24, "end": 30195.04, "probability": 0.5076 }, { "start": 30195.86, "end": 30196.56, "probability": 0.7894 }, { "start": 30197.3, "end": 30197.74, "probability": 0.8737 }, { "start": 30198.4, "end": 30199.3, "probability": 0.8038 }, { "start": 30200.28, "end": 30202.18, "probability": 0.7054 }, { "start": 30203.34, "end": 30203.72, "probability": 0.8778 }, { "start": 30204.7, "end": 30205.76, "probability": 0.8445 }, { "start": 30214.36, "end": 30214.64, "probability": 0.5049 }, { "start": 30216.04, "end": 30217.14, "probability": 0.5441 }, { "start": 30218.34, "end": 30218.88, "probability": 0.8926 }, { "start": 30220.44, "end": 30221.28, "probability": 0.6738 }, { "start": 30222.58, "end": 30225.06, "probability": 0.704 }, { "start": 30227.18, "end": 30227.78, "probability": 0.9855 }, { "start": 30228.88, "end": 30229.7, "probability": 0.4196 }, { "start": 30234.58, "end": 30236.15, "probability": 0.3794 }, { "start": 30238.64, "end": 30239.14, "probability": 0.9827 }, { "start": 30240.14, "end": 30240.96, "probability": 0.5779 }, { "start": 30243.0, "end": 30243.58, "probability": 0.9937 }, { "start": 30244.48, "end": 30244.98, "probability": 0.8778 }, { "start": 30246.68, "end": 30248.2, "probability": 0.5126 }, { "start": 30251.48, "end": 30254.38, "probability": 0.09 }, { "start": 30258.24, "end": 30261.38, "probability": 0.3835 }, { "start": 30276.38, "end": 30277.08, "probability": 0.2998 }, { "start": 30277.92, "end": 30278.32, "probability": 0.5067 }, { "start": 30279.66, "end": 30280.34, "probability": 0.737 }, { "start": 30281.16, "end": 30281.62, "probability": 0.7198 }, { "start": 30282.48, "end": 30283.59, "probability": 0.959 }, { "start": 30285.85, "end": 30286.29, "probability": 0.7227 }, { "start": 30287.45, "end": 30288.17, "probability": 0.5876 }, { "start": 30290.17, "end": 30291.83, "probability": 0.8385 }, { "start": 30292.59, "end": 30292.99, "probability": 0.7544 }, { "start": 30293.87, "end": 30294.47, "probability": 0.9637 }, { "start": 30296.53, "end": 30298.71, "probability": 0.9139 }, { "start": 30299.45, "end": 30300.75, "probability": 0.9531 }, { "start": 30302.29, "end": 30302.73, "probability": 0.995 }, { "start": 30304.73, "end": 30305.97, "probability": 0.8888 }, { "start": 30308.93, "end": 30309.49, "probability": 0.992 }, { "start": 30311.05, "end": 30311.79, "probability": 0.9513 }, { "start": 30312.85, "end": 30313.33, "probability": 0.9943 }, { "start": 30314.43, "end": 30317.31, "probability": 0.7526 }, { "start": 30317.83, "end": 30318.27, "probability": 0.8894 }, { "start": 30319.53, "end": 30320.47, "probability": 0.7349 }, { "start": 30322.27, "end": 30324.87, "probability": 0.5106 }, { "start": 30324.87, "end": 30325.05, "probability": 0.4048 }, { "start": 30325.05, "end": 30325.07, "probability": 0.0561 }, { "start": 30325.07, "end": 30325.61, "probability": 0.3447 }, { "start": 30326.45, "end": 30328.11, "probability": 0.8066 }, { "start": 30329.15, "end": 30329.51, "probability": 0.8868 }, { "start": 30329.81, "end": 30330.43, "probability": 0.019 }, { "start": 30332.01, "end": 30332.81, "probability": 0.0833 }, { "start": 30333.89, "end": 30334.71, "probability": 0.6474 }, { "start": 30336.45, "end": 30338.03, "probability": 0.7764 }, { "start": 30339.55, "end": 30342.97, "probability": 0.8643 }, { "start": 30343.81, "end": 30344.77, "probability": 0.7507 }, { "start": 30346.39, "end": 30347.89, "probability": 0.8046 }, { "start": 30348.85, "end": 30350.45, "probability": 0.8723 }, { "start": 30353.31, "end": 30354.21, "probability": 0.4528 }, { "start": 30355.25, "end": 30355.67, "probability": 0.7443 }, { "start": 30357.39, "end": 30358.25, "probability": 0.4319 }, { "start": 30361.07, "end": 30361.97, "probability": 0.874 }, { "start": 30362.69, "end": 30363.71, "probability": 0.6937 }, { "start": 30365.37, "end": 30366.45, "probability": 0.4971 }, { "start": 30367.23, "end": 30368.35, "probability": 0.0831 }, { "start": 30368.89, "end": 30369.69, "probability": 0.375 }, { "start": 30369.69, "end": 30370.07, "probability": 0.5445 }, { "start": 30371.03, "end": 30371.03, "probability": 0.5816 }, { "start": 30371.09, "end": 30372.71, "probability": 0.3465 }, { "start": 30373.11, "end": 30373.63, "probability": 0.2684 }, { "start": 30376.36, "end": 30378.55, "probability": 0.4583 }, { "start": 30379.29, "end": 30380.05, "probability": 0.3394 }, { "start": 30380.85, "end": 30380.97, "probability": 0.0823 }, { "start": 30381.0, "end": 30381.07, "probability": 0.0965 }, { "start": 30381.07, "end": 30382.21, "probability": 0.0676 }, { "start": 30382.57, "end": 30382.61, "probability": 0.2328 }, { "start": 30382.61, "end": 30382.61, "probability": 0.1553 }, { "start": 30382.61, "end": 30383.69, "probability": 0.1293 }, { "start": 30384.11, "end": 30388.05, "probability": 0.0761 }, { "start": 30388.73, "end": 30389.67, "probability": 0.0975 }, { "start": 30390.31, "end": 30391.11, "probability": 0.4738 }, { "start": 30391.23, "end": 30391.67, "probability": 0.0465 }, { "start": 30391.67, "end": 30391.95, "probability": 0.2794 }, { "start": 30392.07, "end": 30394.49, "probability": 0.5138 }, { "start": 30395.67, "end": 30398.73, "probability": 0.5385 }, { "start": 30399.27, "end": 30399.69, "probability": 0.1702 }, { "start": 30400.93, "end": 30402.21, "probability": 0.773 }, { "start": 30402.37, "end": 30403.13, "probability": 0.8516 }, { "start": 30403.29, "end": 30405.01, "probability": 0.9166 }, { "start": 30405.45, "end": 30406.75, "probability": 0.4935 }, { "start": 30407.27, "end": 30409.67, "probability": 0.4061 }, { "start": 30410.39, "end": 30411.95, "probability": 0.5031 }, { "start": 30412.49, "end": 30413.03, "probability": 0.6444 }, { "start": 30413.27, "end": 30413.87, "probability": 0.1797 }, { "start": 30415.11, "end": 30416.89, "probability": 0.4368 }, { "start": 30417.33, "end": 30418.29, "probability": 0.3629 }, { "start": 30420.11, "end": 30423.31, "probability": 0.5488 }, { "start": 30423.61, "end": 30425.11, "probability": 0.3557 }, { "start": 30425.19, "end": 30425.49, "probability": 0.3237 }, { "start": 30425.49, "end": 30425.81, "probability": 0.287 }, { "start": 30425.89, "end": 30427.19, "probability": 0.0913 }, { "start": 30427.63, "end": 30429.29, "probability": 0.5119 }, { "start": 30429.73, "end": 30432.09, "probability": 0.2135 }, { "start": 30432.93, "end": 30433.89, "probability": 0.137 }, { "start": 30434.23, "end": 30434.52, "probability": 0.2037 }, { "start": 30435.85, "end": 30436.17, "probability": 0.6108 }, { "start": 30437.33, "end": 30437.95, "probability": 0.6668 }, { "start": 30439.15, "end": 30439.59, "probability": 0.9873 }, { "start": 30440.29, "end": 30440.91, "probability": 0.6174 }, { "start": 30441.81, "end": 30442.05, "probability": 0.988 }, { "start": 30442.97, "end": 30443.71, "probability": 0.3295 }, { "start": 30444.87, "end": 30449.75, "probability": 0.7398 }, { "start": 30450.61, "end": 30450.89, "probability": 0.9211 }, { "start": 30452.11, "end": 30453.17, "probability": 0.6388 }, { "start": 30453.85, "end": 30457.95, "probability": 0.6802 }, { "start": 30458.67, "end": 30459.59, "probability": 0.701 }, { "start": 30460.37, "end": 30462.33, "probability": 0.8571 }, { "start": 30462.91, "end": 30467.35, "probability": 0.7309 }, { "start": 30468.77, "end": 30471.21, "probability": 0.9491 }, { "start": 30476.51, "end": 30479.69, "probability": 0.4334 }, { "start": 30485.95, "end": 30496.89, "probability": 0.4067 }, { "start": 30499.35, "end": 30499.35, "probability": 0.0114 }, { "start": 30499.87, "end": 30505.94, "probability": 0.1182 }, { "start": 30508.33, "end": 30508.83, "probability": 0.3102 }, { "start": 30509.49, "end": 30511.23, "probability": 0.0141 }, { "start": 30514.31, "end": 30517.19, "probability": 0.2023 }, { "start": 30517.39, "end": 30517.95, "probability": 0.6676 }, { "start": 30518.09, "end": 30519.19, "probability": 0.7577 }, { "start": 30519.25, "end": 30519.79, "probability": 0.0187 }, { "start": 30520.19, "end": 30520.51, "probability": 0.1434 }, { "start": 30520.51, "end": 30521.51, "probability": 0.1261 }, { "start": 30521.87, "end": 30522.45, "probability": 0.6085 }, { "start": 30522.51, "end": 30524.89, "probability": 0.9326 }, { "start": 30525.55, "end": 30526.39, "probability": 0.9033 }, { "start": 30526.59, "end": 30529.03, "probability": 0.8341 }, { "start": 30530.05, "end": 30530.36, "probability": 0.0928 }, { "start": 30530.85, "end": 30532.97, "probability": 0.5642 }, { "start": 30533.87, "end": 30535.61, "probability": 0.3047 }, { "start": 30535.61, "end": 30537.43, "probability": 0.2598 }, { "start": 30537.53, "end": 30539.79, "probability": 0.6499 }, { "start": 30540.61, "end": 30540.69, "probability": 0.0213 }, { "start": 30540.69, "end": 30543.17, "probability": 0.0508 }, { "start": 30544.39, "end": 30547.31, "probability": 0.7699 }, { "start": 30547.79, "end": 30551.23, "probability": 0.8892 }, { "start": 30551.47, "end": 30553.75, "probability": 0.6638 }, { "start": 30554.15, "end": 30557.09, "probability": 0.9074 }, { "start": 30557.95, "end": 30559.17, "probability": 0.9797 }, { "start": 30559.91, "end": 30560.63, "probability": 0.3746 }, { "start": 30564.27, "end": 30567.51, "probability": 0.6411 }, { "start": 30569.17, "end": 30572.31, "probability": 0.6779 }, { "start": 30574.61, "end": 30575.19, "probability": 0.7959 }, { "start": 30576.39, "end": 30578.09, "probability": 0.8464 }, { "start": 30579.31, "end": 30580.83, "probability": 0.7831 }, { "start": 30581.63, "end": 30583.61, "probability": 0.8933 }, { "start": 30586.19, "end": 30588.51, "probability": 0.9176 }, { "start": 30589.31, "end": 30591.49, "probability": 0.9657 }, { "start": 30596.13, "end": 30603.87, "probability": 0.6947 }, { "start": 30611.99, "end": 30614.41, "probability": 0.8008 }, { "start": 30615.45, "end": 30616.31, "probability": 0.8001 }, { "start": 30617.07, "end": 30618.21, "probability": 0.762 }, { "start": 30618.83, "end": 30621.29, "probability": 0.8952 }, { "start": 30623.67, "end": 30625.63, "probability": 0.5665 }, { "start": 30626.53, "end": 30626.91, "probability": 0.8659 }, { "start": 30627.53, "end": 30628.33, "probability": 0.7222 }, { "start": 30629.11, "end": 30630.85, "probability": 0.733 }, { "start": 30632.1, "end": 30634.07, "probability": 0.908 }, { "start": 30636.53, "end": 30638.07, "probability": 0.67 }, { "start": 30639.39, "end": 30641.49, "probability": 0.9403 }, { "start": 30644.45, "end": 30646.79, "probability": 0.8098 }, { "start": 30648.01, "end": 30650.05, "probability": 0.134 }, { "start": 30650.47, "end": 30651.41, "probability": 0.0772 }, { "start": 30651.69, "end": 30653.71, "probability": 0.2958 }, { "start": 30653.97, "end": 30655.76, "probability": 0.3525 }, { "start": 30659.83, "end": 30664.47, "probability": 0.7169 }, { "start": 30666.11, "end": 30668.97, "probability": 0.8173 }, { "start": 30669.83, "end": 30670.53, "probability": 0.4527 }, { "start": 30671.73, "end": 30673.55, "probability": 0.7713 }, { "start": 30674.11, "end": 30676.31, "probability": 0.9258 }, { "start": 30676.99, "end": 30678.99, "probability": 0.7038 }, { "start": 30680.55, "end": 30682.17, "probability": 0.6662 }, { "start": 30683.47, "end": 30685.03, "probability": 0.8406 }, { "start": 30690.89, "end": 30691.51, "probability": 0.799 }, { "start": 30692.11, "end": 30692.63, "probability": 0.5591 }, { "start": 30694.35, "end": 30695.93, "probability": 0.8864 }, { "start": 30697.01, "end": 30699.17, "probability": 0.9262 }, { "start": 30700.25, "end": 30701.11, "probability": 0.991 }, { "start": 30702.49, "end": 30704.27, "probability": 0.9797 }, { "start": 30704.79, "end": 30705.69, "probability": 0.7633 }, { "start": 30706.93, "end": 30708.69, "probability": 0.9823 }, { "start": 30709.27, "end": 30709.93, "probability": 0.8777 }, { "start": 30710.57, "end": 30711.41, "probability": 0.742 }, { "start": 30712.61, "end": 30713.51, "probability": 0.8048 }, { "start": 30714.53, "end": 30715.33, "probability": 0.7301 }, { "start": 30716.35, "end": 30717.95, "probability": 0.9054 }, { "start": 30719.87, "end": 30720.55, "probability": 0.4321 }, { "start": 30723.61, "end": 30725.05, "probability": 0.5335 }, { "start": 30726.87, "end": 30727.55, "probability": 0.766 }, { "start": 30730.45, "end": 30733.29, "probability": 0.6779 }, { "start": 30734.67, "end": 30736.29, "probability": 0.9118 }, { "start": 30738.07, "end": 30739.33, "probability": 0.9623 }, { "start": 30740.71, "end": 30743.55, "probability": 0.8906 }, { "start": 30744.25, "end": 30745.17, "probability": 0.7395 }, { "start": 30746.67, "end": 30747.55, "probability": 0.9897 }, { "start": 30748.19, "end": 30748.55, "probability": 0.7508 }, { "start": 30750.45, "end": 30751.73, "probability": 0.2985 }, { "start": 30752.33, "end": 30754.23, "probability": 0.1076 }, { "start": 30754.35, "end": 30755.31, "probability": 0.148 }, { "start": 30755.59, "end": 30756.03, "probability": 0.5259 }, { "start": 30756.59, "end": 30756.99, "probability": 0.5847 }, { "start": 30757.69, "end": 30759.97, "probability": 0.388 }, { "start": 30760.19, "end": 30761.75, "probability": 0.2326 }, { "start": 30762.95, "end": 30764.91, "probability": 0.8599 }, { "start": 30769.71, "end": 30770.87, "probability": 0.0266 }, { "start": 30770.87, "end": 30771.75, "probability": 0.5862 }, { "start": 30772.89, "end": 30774.73, "probability": 0.8441 }, { "start": 30776.27, "end": 30778.65, "probability": 0.8126 }, { "start": 30779.33, "end": 30780.13, "probability": 0.9534 }, { "start": 30781.31, "end": 30783.81, "probability": 0.9495 }, { "start": 30784.39, "end": 30786.45, "probability": 0.919 }, { "start": 30788.91, "end": 30790.01, "probability": 0.8408 }, { "start": 30790.91, "end": 30792.87, "probability": 0.8448 }, { "start": 30793.21, "end": 30797.45, "probability": 0.8901 }, { "start": 30798.33, "end": 30799.97, "probability": 0.4797 }, { "start": 30800.03, "end": 30801.57, "probability": 0.5147 }, { "start": 30802.23, "end": 30805.03, "probability": 0.7608 }, { "start": 30806.01, "end": 30808.91, "probability": 0.9246 }, { "start": 30811.02, "end": 30812.75, "probability": 0.7466 }, { "start": 30813.95, "end": 30818.35, "probability": 0.9945 }, { "start": 30818.35, "end": 30823.43, "probability": 0.9973 }, { "start": 30823.77, "end": 30824.51, "probability": 0.7571 }, { "start": 30824.95, "end": 30826.17, "probability": 0.1978 }, { "start": 30827.21, "end": 30828.35, "probability": 0.8663 }, { "start": 30830.14, "end": 30834.73, "probability": 0.8706 }, { "start": 30838.59, "end": 30841.45, "probability": 0.1883 }, { "start": 30842.45, "end": 30842.83, "probability": 0.1025 }, { "start": 30843.35, "end": 30845.01, "probability": 0.0911 }, { "start": 30848.98, "end": 30852.57, "probability": 0.0651 }, { "start": 30866.91, "end": 30867.99, "probability": 0.0645 }, { "start": 30867.99, "end": 30868.49, "probability": 0.0524 }, { "start": 30868.49, "end": 30868.49, "probability": 0.0977 }, { "start": 30869.45, "end": 30869.79, "probability": 0.3598 }, { "start": 30869.95, "end": 30870.09, "probability": 0.022 }, { "start": 30871.17, "end": 30871.57, "probability": 0.3138 }, { "start": 30871.57, "end": 30871.59, "probability": 0.0402 }, { "start": 30910.75, "end": 30911.45, "probability": 0.0986 }, { "start": 30911.71, "end": 30912.07, "probability": 0.0574 }, { "start": 30914.19, "end": 30915.05, "probability": 0.1497 }, { "start": 30916.0, "end": 30918.55, "probability": 0.5672 }, { "start": 30918.63, "end": 30920.63, "probability": 0.996 }, { "start": 30920.75, "end": 30925.53, "probability": 0.9492 }, { "start": 30925.85, "end": 30927.17, "probability": 0.9466 }, { "start": 30927.93, "end": 30930.57, "probability": 0.9749 }, { "start": 30930.57, "end": 30932.81, "probability": 0.9037 }, { "start": 30933.97, "end": 30935.71, "probability": 0.99 }, { "start": 30935.79, "end": 30939.95, "probability": 0.8516 }, { "start": 30940.01, "end": 30941.45, "probability": 0.7178 }, { "start": 30943.09, "end": 30946.17, "probability": 0.8862 }, { "start": 30947.37, "end": 30947.81, "probability": 0.2245 }, { "start": 30947.81, "end": 30953.27, "probability": 0.9236 }, { "start": 30953.31, "end": 30954.31, "probability": 0.6855 }, { "start": 30954.61, "end": 30954.61, "probability": 0.459 }, { "start": 30954.67, "end": 30955.69, "probability": 0.7114 }, { "start": 30955.71, "end": 30956.85, "probability": 0.6058 }, { "start": 30956.93, "end": 30958.09, "probability": 0.9432 }, { "start": 30958.43, "end": 30959.93, "probability": 0.6263 }, { "start": 30960.61, "end": 30962.83, "probability": 0.7301 }, { "start": 30963.41, "end": 30964.31, "probability": 0.76 }, { "start": 30965.05, "end": 30966.03, "probability": 0.3742 }, { "start": 30967.01, "end": 30970.63, "probability": 0.8394 }, { "start": 30971.21, "end": 30973.91, "probability": 0.9157 }, { "start": 30974.29, "end": 30977.41, "probability": 0.6503 }, { "start": 30977.51, "end": 30981.39, "probability": 0.6359 }, { "start": 30981.53, "end": 30982.53, "probability": 0.7023 }, { "start": 30983.43, "end": 30984.95, "probability": 0.9685 }, { "start": 30985.67, "end": 30989.37, "probability": 0.8867 }, { "start": 30989.47, "end": 30990.39, "probability": 0.872 }, { "start": 30990.91, "end": 30992.97, "probability": 0.5643 }, { "start": 30993.73, "end": 30994.37, "probability": 0.936 }, { "start": 30994.37, "end": 30996.97, "probability": 0.9934 }, { "start": 30996.97, "end": 31000.61, "probability": 0.9974 }, { "start": 31009.53, "end": 31011.97, "probability": 0.7789 }, { "start": 31012.05, "end": 31012.53, "probability": 0.7014 }, { "start": 31012.71, "end": 31013.41, "probability": 0.8392 }, { "start": 31013.99, "end": 31016.05, "probability": 0.9012 }, { "start": 31021.77, "end": 31022.91, "probability": 0.0912 }, { "start": 31022.91, "end": 31026.83, "probability": 0.0375 }, { "start": 31028.85, "end": 31033.43, "probability": 0.5706 }, { "start": 31038.01, "end": 31040.73, "probability": 0.1124 }, { "start": 31040.79, "end": 31041.42, "probability": 0.0923 }, { "start": 31047.51, "end": 31047.59, "probability": 0.0908 }, { "start": 31047.59, "end": 31048.37, "probability": 0.1991 }, { "start": 31051.52, "end": 31057.97, "probability": 0.0323 }, { "start": 31061.25, "end": 31062.39, "probability": 0.0397 }, { "start": 31062.61, "end": 31064.17, "probability": 0.0624 }, { "start": 31066.37, "end": 31068.19, "probability": 0.0985 }, { "start": 31068.21, "end": 31068.59, "probability": 0.5098 }, { "start": 31070.83, "end": 31071.93, "probability": 0.3191 }, { "start": 31075.07, "end": 31075.65, "probability": 0.2189 }, { "start": 31076.45, "end": 31078.7, "probability": 0.0672 }, { "start": 31090.0, "end": 31090.0, "probability": 0.0 }, { "start": 31090.0, "end": 31090.0, "probability": 0.0 }, { "start": 31090.0, "end": 31090.0, "probability": 0.0 }, { "start": 31090.0, "end": 31090.0, "probability": 0.0 }, { "start": 31090.0, "end": 31090.0, "probability": 0.0 }, { "start": 31090.0, "end": 31090.0, "probability": 0.0 }, { "start": 31090.0, "end": 31090.0, "probability": 0.0 }, { "start": 31090.0, "end": 31090.0, "probability": 0.0 }, { "start": 31090.0, "end": 31090.0, "probability": 0.0 }, { "start": 31090.0, "end": 31090.0, "probability": 0.0 }, { "start": 31090.0, "end": 31090.0, "probability": 0.0 }, { "start": 31090.0, "end": 31090.0, "probability": 0.0 }, { "start": 31090.0, "end": 31090.0, "probability": 0.0 }, { "start": 31090.0, "end": 31090.0, "probability": 0.0 }, { "start": 31090.0, "end": 31090.0, "probability": 0.0 }, { "start": 31090.0, "end": 31090.0, "probability": 0.0 }, { "start": 31090.0, "end": 31090.0, "probability": 0.0 }, { "start": 31132.36, "end": 31132.6, "probability": 0.0106 }, { "start": 31132.74, "end": 31135.64, "probability": 0.1299 }, { "start": 31135.66, "end": 31137.72, "probability": 0.066 }, { "start": 31137.72, "end": 31138.18, "probability": 0.0831 }, { "start": 31138.22, "end": 31138.9, "probability": 0.0076 }, { "start": 31139.7, "end": 31140.84, "probability": 0.0442 }, { "start": 31141.92, "end": 31143.12, "probability": 0.0212 }, { "start": 31212.0, "end": 31212.0, "probability": 0.0 }, { "start": 31212.0, "end": 31212.0, "probability": 0.0 }, { "start": 31212.0, "end": 31212.0, "probability": 0.0 }, { "start": 31212.0, "end": 31212.0, "probability": 0.0 }, { "start": 31212.0, "end": 31212.0, "probability": 0.0 }, { "start": 31212.0, "end": 31212.0, "probability": 0.0 }, { "start": 31212.0, "end": 31212.0, "probability": 0.0 }, { "start": 31212.0, "end": 31212.0, "probability": 0.0 }, { "start": 31212.0, "end": 31212.0, "probability": 0.0 }, { "start": 31212.0, "end": 31212.0, "probability": 0.0 }, { "start": 31212.0, "end": 31212.0, "probability": 0.0 }, { "start": 31212.0, "end": 31212.0, "probability": 0.0 }, { "start": 31212.0, "end": 31212.0, "probability": 0.0 }, { "start": 31212.0, "end": 31212.0, "probability": 0.0 }, { "start": 31212.0, "end": 31212.0, "probability": 0.0 }, { "start": 31212.0, "end": 31212.0, "probability": 0.0 }, { "start": 31212.0, "end": 31212.0, "probability": 0.0 }, { "start": 31212.0, "end": 31212.0, "probability": 0.0 }, { "start": 31212.0, "end": 31212.0, "probability": 0.0 }, { "start": 31212.0, "end": 31212.0, "probability": 0.0 }, { "start": 31212.0, "end": 31212.0, "probability": 0.0 }, { "start": 31212.0, "end": 31212.0, "probability": 0.0 }, { "start": 31212.0, "end": 31212.0, "probability": 0.0 }, { "start": 31212.0, "end": 31212.0, "probability": 0.0 }, { "start": 31212.0, "end": 31212.0, "probability": 0.0 }, { "start": 31212.0, "end": 31212.0, "probability": 0.0 }, { "start": 31212.0, "end": 31212.0, "probability": 0.0 }, { "start": 31212.0, "end": 31212.0, "probability": 0.0 }, { "start": 31212.0, "end": 31212.0, "probability": 0.0 }, { "start": 31212.0, "end": 31212.0, "probability": 0.0 }, { "start": 31212.0, "end": 31212.0, "probability": 0.0 }, { "start": 31212.0, "end": 31212.0, "probability": 0.0 }, { "start": 31212.0, "end": 31212.0, "probability": 0.0 }, { "start": 31212.0, "end": 31212.0, "probability": 0.0 }, { "start": 31212.0, "end": 31212.0, "probability": 0.0 }, { "start": 31212.0, "end": 31212.0, "probability": 0.0 }, { "start": 31212.0, "end": 31212.0, "probability": 0.0 }, { "start": 31212.0, "end": 31212.0, "probability": 0.0 }, { "start": 31212.0, "end": 31212.0, "probability": 0.0 }, { "start": 31212.0, "end": 31212.0, "probability": 0.0 }, { "start": 31226.34, "end": 31226.46, "probability": 0.0018 }, { "start": 31245.94, "end": 31246.76, "probability": 0.0035 }, { "start": 31248.58, "end": 31248.68, "probability": 0.1667 }, { "start": 31261.84, "end": 31263.74, "probability": 0.0169 }, { "start": 31263.82, "end": 31266.18, "probability": 0.2139 }, { "start": 31277.0, "end": 31278.5, "probability": 0.0492 }, { "start": 31278.5, "end": 31280.96, "probability": 0.0782 }, { "start": 31281.88, "end": 31282.8, "probability": 0.1185 }, { "start": 31332.0, "end": 31332.0, "probability": 0.0 }, { "start": 31332.0, "end": 31332.0, "probability": 0.0 }, { "start": 31332.0, "end": 31332.0, "probability": 0.0 }, { "start": 31332.0, "end": 31332.0, "probability": 0.0 }, { "start": 31332.0, "end": 31332.0, "probability": 0.0 }, { "start": 31332.0, "end": 31332.0, "probability": 0.0 }, { "start": 31332.0, "end": 31332.0, "probability": 0.0 }, { "start": 31332.0, "end": 31332.0, "probability": 0.0 }, { "start": 31332.0, "end": 31332.0, "probability": 0.0 }, { "start": 31332.0, "end": 31332.0, "probability": 0.0 }, { "start": 31332.0, "end": 31332.0, "probability": 0.0 }, { "start": 31332.0, "end": 31332.0, "probability": 0.0 }, { "start": 31332.0, "end": 31332.0, "probability": 0.0 }, { "start": 31332.0, "end": 31332.0, "probability": 0.0 }, { "start": 31332.0, "end": 31332.0, "probability": 0.0 }, { "start": 31332.0, "end": 31332.0, "probability": 0.0 }, { "start": 31332.0, "end": 31332.0, "probability": 0.0 }, { "start": 31332.0, "end": 31332.0, "probability": 0.0 }, { "start": 31332.0, "end": 31332.0, "probability": 0.0 }, { "start": 31332.0, "end": 31332.0, "probability": 0.0 }, { "start": 31332.0, "end": 31332.0, "probability": 0.0 }, { "start": 31332.0, "end": 31332.0, "probability": 0.0 }, { "start": 31332.0, "end": 31332.0, "probability": 0.0 }, { "start": 31332.0, "end": 31332.0, "probability": 0.0 }, { "start": 31332.0, "end": 31332.0, "probability": 0.0 }, { "start": 31332.0, "end": 31332.0, "probability": 0.0 }, { "start": 31332.0, "end": 31332.0, "probability": 0.0 }, { "start": 31332.0, "end": 31332.0, "probability": 0.0 }, { "start": 31332.0, "end": 31332.0, "probability": 0.0 }, { "start": 31332.0, "end": 31332.0, "probability": 0.0 }, { "start": 31332.0, "end": 31332.0, "probability": 0.0 }, { "start": 31332.0, "end": 31332.0, "probability": 0.0 }, { "start": 31332.0, "end": 31332.0, "probability": 0.0 }, { "start": 31332.0, "end": 31332.0, "probability": 0.0 }, { "start": 31332.0, "end": 31332.0, "probability": 0.0 }, { "start": 31332.0, "end": 31332.0, "probability": 0.0 }, { "start": 31332.0, "end": 31332.0, "probability": 0.0 }, { "start": 31332.0, "end": 31332.0, "probability": 0.0 }, { "start": 31332.0, "end": 31332.0, "probability": 0.0 }, { "start": 31332.0, "end": 31332.0, "probability": 0.0 }, { "start": 31332.0, "end": 31332.0, "probability": 0.0 }, { "start": 31332.0, "end": 31332.0, "probability": 0.0 }, { "start": 31332.0, "end": 31332.0, "probability": 0.0 }, { "start": 31332.0, "end": 31332.0, "probability": 0.0 }, { "start": 31332.0, "end": 31332.0, "probability": 0.0 }, { "start": 31332.0, "end": 31332.0, "probability": 0.0 }, { "start": 31332.0, "end": 31332.0, "probability": 0.0 }, { "start": 31332.0, "end": 31332.0, "probability": 0.0 }, { "start": 31332.02, "end": 31332.8, "probability": 0.016 }, { "start": 31332.8, "end": 31334.22, "probability": 0.3156 }, { "start": 31334.24, "end": 31338.84, "probability": 0.6734 }, { "start": 31339.12, "end": 31341.36, "probability": 0.4054 }, { "start": 31341.8, "end": 31342.76, "probability": 0.9376 }, { "start": 31343.82, "end": 31346.38, "probability": 0.5168 }, { "start": 31346.74, "end": 31349.52, "probability": 0.9647 }, { "start": 31350.86, "end": 31352.42, "probability": 0.5958 }, { "start": 31352.42, "end": 31355.48, "probability": 0.9826 }, { "start": 31355.8, "end": 31356.16, "probability": 0.7942 }, { "start": 31356.74, "end": 31359.12, "probability": 0.5356 }, { "start": 31359.14, "end": 31359.74, "probability": 0.7153 }, { "start": 31360.28, "end": 31361.62, "probability": 0.8909 }, { "start": 31362.3, "end": 31364.98, "probability": 0.9486 }, { "start": 31365.62, "end": 31368.32, "probability": 0.908 }, { "start": 31368.5, "end": 31371.12, "probability": 0.8896 }, { "start": 31372.68, "end": 31373.4, "probability": 0.8604 }, { "start": 31374.14, "end": 31375.18, "probability": 0.9574 }, { "start": 31375.98, "end": 31376.82, "probability": 0.6092 }, { "start": 31376.94, "end": 31381.24, "probability": 0.9147 }, { "start": 31381.88, "end": 31383.52, "probability": 0.9443 }, { "start": 31384.26, "end": 31385.36, "probability": 0.7221 }, { "start": 31385.58, "end": 31388.72, "probability": 0.9454 }, { "start": 31389.34, "end": 31391.16, "probability": 0.9152 }, { "start": 31391.64, "end": 31394.62, "probability": 0.8963 }, { "start": 31395.16, "end": 31396.06, "probability": 0.8979 }, { "start": 31396.26, "end": 31396.98, "probability": 0.8289 }, { "start": 31397.6, "end": 31398.76, "probability": 0.8293 }, { "start": 31399.28, "end": 31400.45, "probability": 0.895 }, { "start": 31400.8, "end": 31401.46, "probability": 0.9021 }, { "start": 31401.86, "end": 31402.06, "probability": 0.7281 }, { "start": 31403.2, "end": 31406.54, "probability": 0.9225 }, { "start": 31406.72, "end": 31411.13, "probability": 0.7642 }, { "start": 31412.26, "end": 31412.78, "probability": 0.4769 }, { "start": 31413.2, "end": 31413.34, "probability": 0.6872 }, { "start": 31414.06, "end": 31414.7, "probability": 0.8165 }, { "start": 31415.38, "end": 31416.98, "probability": 0.9398 }, { "start": 31418.04, "end": 31419.28, "probability": 0.554 }, { "start": 31420.0, "end": 31422.0, "probability": 0.4166 }, { "start": 31422.78, "end": 31423.88, "probability": 0.961 }, { "start": 31424.16, "end": 31425.54, "probability": 0.803 }, { "start": 31425.8, "end": 31426.33, "probability": 0.9038 }, { "start": 31427.24, "end": 31428.58, "probability": 0.6819 }, { "start": 31429.18, "end": 31430.7, "probability": 0.9766 }, { "start": 31431.68, "end": 31431.96, "probability": 0.9424 }, { "start": 31432.86, "end": 31433.21, "probability": 0.4022 }, { "start": 31433.6, "end": 31437.98, "probability": 0.9092 }, { "start": 31438.06, "end": 31440.32, "probability": 0.9576 }, { "start": 31440.54, "end": 31440.74, "probability": 0.9076 }, { "start": 31441.36, "end": 31443.36, "probability": 0.9941 }, { "start": 31444.2, "end": 31445.74, "probability": 0.8137 }, { "start": 31446.38, "end": 31447.06, "probability": 0.6336 }, { "start": 31447.58, "end": 31449.22, "probability": 0.9597 }, { "start": 31449.42, "end": 31451.06, "probability": 0.9861 }, { "start": 31451.66, "end": 31453.51, "probability": 0.9759 }, { "start": 31454.02, "end": 31457.48, "probability": 0.9759 }, { "start": 31457.96, "end": 31460.7, "probability": 0.968 }, { "start": 31461.24, "end": 31463.84, "probability": 0.987 }, { "start": 31464.14, "end": 31466.32, "probability": 0.966 }, { "start": 31466.88, "end": 31469.86, "probability": 0.9942 }, { "start": 31470.44, "end": 31471.58, "probability": 0.6775 }, { "start": 31472.18, "end": 31473.96, "probability": 0.9365 }, { "start": 31474.22, "end": 31475.62, "probability": 0.9729 }, { "start": 31476.14, "end": 31477.98, "probability": 0.7825 }, { "start": 31478.08, "end": 31481.2, "probability": 0.8017 }, { "start": 31481.82, "end": 31483.58, "probability": 0.931 }, { "start": 31483.76, "end": 31484.7, "probability": 0.691 }, { "start": 31485.5, "end": 31487.72, "probability": 0.8228 }, { "start": 31488.54, "end": 31489.52, "probability": 0.781 }, { "start": 31490.08, "end": 31493.85, "probability": 0.8863 }, { "start": 31494.22, "end": 31497.8, "probability": 0.9807 }, { "start": 31498.3, "end": 31502.32, "probability": 0.809 }, { "start": 31502.82, "end": 31503.68, "probability": 0.5804 }, { "start": 31504.52, "end": 31506.84, "probability": 0.8238 }, { "start": 31507.68, "end": 31509.28, "probability": 0.8836 }, { "start": 31509.28, "end": 31511.68, "probability": 0.5897 }, { "start": 31512.32, "end": 31514.26, "probability": 0.6256 }, { "start": 31514.74, "end": 31517.76, "probability": 0.8272 }, { "start": 31518.26, "end": 31520.88, "probability": 0.9972 }, { "start": 31522.18, "end": 31525.22, "probability": 0.7661 }, { "start": 31525.88, "end": 31526.38, "probability": 0.6183 }, { "start": 31527.42, "end": 31529.1, "probability": 0.993 }, { "start": 31529.78, "end": 31532.1, "probability": 0.9977 }, { "start": 31532.2, "end": 31534.2, "probability": 0.7407 }, { "start": 31534.82, "end": 31536.6, "probability": 0.9539 }, { "start": 31537.38, "end": 31538.26, "probability": 0.5494 }, { "start": 31539.48, "end": 31542.56, "probability": 0.9348 }, { "start": 31543.84, "end": 31546.46, "probability": 0.8994 }, { "start": 31547.34, "end": 31548.14, "probability": 0.9896 }, { "start": 31548.8, "end": 31550.3, "probability": 0.9569 }, { "start": 31550.82, "end": 31551.7, "probability": 0.742 }, { "start": 31552.46, "end": 31556.02, "probability": 0.9961 }, { "start": 31556.7, "end": 31557.94, "probability": 0.9919 }, { "start": 31558.96, "end": 31561.04, "probability": 0.9909 }, { "start": 31561.7, "end": 31563.46, "probability": 0.9914 }, { "start": 31563.74, "end": 31566.96, "probability": 0.9165 }, { "start": 31566.96, "end": 31569.08, "probability": 0.6532 }, { "start": 31570.08, "end": 31570.9, "probability": 0.8607 }, { "start": 31571.02, "end": 31571.34, "probability": 0.5277 }, { "start": 31571.42, "end": 31572.62, "probability": 0.9792 }, { "start": 31573.92, "end": 31577.58, "probability": 0.8634 }, { "start": 31577.7, "end": 31578.04, "probability": 0.9499 }, { "start": 31578.38, "end": 31580.56, "probability": 0.9684 }, { "start": 31581.22, "end": 31584.66, "probability": 0.9927 }, { "start": 31584.76, "end": 31585.58, "probability": 0.8188 }, { "start": 31586.54, "end": 31587.84, "probability": 0.97 }, { "start": 31588.42, "end": 31590.52, "probability": 0.7671 }, { "start": 31590.52, "end": 31594.44, "probability": 0.6247 }, { "start": 31595.0, "end": 31595.52, "probability": 0.4641 }, { "start": 31595.64, "end": 31598.14, "probability": 0.8522 }, { "start": 31598.2, "end": 31600.98, "probability": 0.899 }, { "start": 31601.1, "end": 31602.38, "probability": 0.9805 }, { "start": 31603.08, "end": 31605.04, "probability": 0.9604 }, { "start": 31605.4, "end": 31606.37, "probability": 0.9818 }, { "start": 31607.86, "end": 31609.98, "probability": 0.9613 }, { "start": 31609.98, "end": 31612.72, "probability": 0.8187 }, { "start": 31613.3, "end": 31613.74, "probability": 0.9316 }, { "start": 31614.26, "end": 31614.66, "probability": 0.9888 }, { "start": 31616.66, "end": 31616.82, "probability": 0.6578 }, { "start": 31617.64, "end": 31620.26, "probability": 0.4971 }, { "start": 31620.9, "end": 31623.18, "probability": 0.7688 }, { "start": 31623.82, "end": 31631.2, "probability": 0.7371 }, { "start": 31631.5, "end": 31633.1, "probability": 0.0505 }, { "start": 31633.1, "end": 31633.6, "probability": 0.2593 }, { "start": 31635.06, "end": 31635.16, "probability": 0.2759 }, { "start": 31636.04, "end": 31636.04, "probability": 0.2814 }, { "start": 31638.24, "end": 31638.24, "probability": 0.101 }, { "start": 31638.24, "end": 31638.56, "probability": 0.0586 }, { "start": 31638.56, "end": 31639.6, "probability": 0.4202 }, { "start": 31640.86, "end": 31642.22, "probability": 0.9611 }, { "start": 31643.82, "end": 31643.82, "probability": 0.0814 }, { "start": 31646.34, "end": 31648.78, "probability": 0.125 }, { "start": 31652.83, "end": 31653.22, "probability": 0.5453 }, { "start": 31653.8, "end": 31658.78, "probability": 0.9963 }, { "start": 31660.5, "end": 31662.6, "probability": 0.7834 }, { "start": 31665.72, "end": 31666.5, "probability": 0.7149 }, { "start": 31666.6, "end": 31667.84, "probability": 0.9084 }, { "start": 31667.94, "end": 31668.44, "probability": 0.8024 }, { "start": 31668.76, "end": 31669.82, "probability": 0.8636 }, { "start": 31670.62, "end": 31670.92, "probability": 0.7284 }, { "start": 31673.21, "end": 31678.12, "probability": 0.9243 }, { "start": 31678.66, "end": 31684.66, "probability": 0.9531 }, { "start": 31684.74, "end": 31685.62, "probability": 0.9554 }, { "start": 31685.62, "end": 31687.02, "probability": 0.9705 }, { "start": 31687.92, "end": 31690.1, "probability": 0.9139 }, { "start": 31691.34, "end": 31694.46, "probability": 0.8842 }, { "start": 31695.96, "end": 31699.4, "probability": 0.9956 }, { "start": 31701.16, "end": 31705.5, "probability": 0.9614 }, { "start": 31705.68, "end": 31708.24, "probability": 0.8493 }, { "start": 31708.84, "end": 31710.56, "probability": 0.9987 }, { "start": 31711.34, "end": 31716.36, "probability": 0.9985 }, { "start": 31717.8, "end": 31720.28, "probability": 0.9878 }, { "start": 31721.62, "end": 31724.48, "probability": 0.999 }, { "start": 31726.27, "end": 31730.84, "probability": 0.9976 }, { "start": 31730.96, "end": 31732.54, "probability": 0.673 }, { "start": 31732.64, "end": 31734.94, "probability": 0.885 }, { "start": 31735.0, "end": 31736.82, "probability": 0.9963 }, { "start": 31737.6, "end": 31743.12, "probability": 0.9896 }, { "start": 31743.94, "end": 31748.02, "probability": 0.9788 }, { "start": 31748.06, "end": 31752.68, "probability": 0.7656 }, { "start": 31753.42, "end": 31759.96, "probability": 0.9852 }, { "start": 31760.02, "end": 31762.38, "probability": 0.9221 }, { "start": 31763.86, "end": 31769.92, "probability": 0.5996 }, { "start": 31771.54, "end": 31776.32, "probability": 0.9651 }, { "start": 31776.54, "end": 31778.44, "probability": 0.9958 }, { "start": 31778.64, "end": 31783.76, "probability": 0.975 }, { "start": 31784.48, "end": 31786.52, "probability": 0.5972 }, { "start": 31787.02, "end": 31789.28, "probability": 0.9962 }, { "start": 31789.92, "end": 31795.92, "probability": 0.8444 }, { "start": 31796.52, "end": 31798.82, "probability": 0.9116 }, { "start": 31800.12, "end": 31802.7, "probability": 0.8724 }, { "start": 31803.2, "end": 31805.6, "probability": 0.9965 }, { "start": 31805.82, "end": 31808.86, "probability": 0.8975 }, { "start": 31808.96, "end": 31810.56, "probability": 0.9924 }, { "start": 31812.12, "end": 31813.78, "probability": 0.8907 }, { "start": 31814.46, "end": 31821.74, "probability": 0.9701 }, { "start": 31821.74, "end": 31822.04, "probability": 0.7056 }, { "start": 31822.54, "end": 31826.16, "probability": 0.9849 }, { "start": 31826.34, "end": 31827.12, "probability": 0.5975 }, { "start": 31827.2, "end": 31827.89, "probability": 0.9663 }, { "start": 31828.6, "end": 31829.34, "probability": 0.9478 }, { "start": 31829.86, "end": 31830.84, "probability": 0.7404 }, { "start": 31831.84, "end": 31833.0, "probability": 0.9471 }, { "start": 31833.48, "end": 31835.58, "probability": 0.9881 }, { "start": 31837.53, "end": 31844.74, "probability": 0.9937 }, { "start": 31845.38, "end": 31849.48, "probability": 0.9916 }, { "start": 31850.14, "end": 31853.2, "probability": 0.9953 }, { "start": 31853.22, "end": 31856.52, "probability": 0.9924 }, { "start": 31857.38, "end": 31857.8, "probability": 0.5991 }, { "start": 31858.48, "end": 31858.5, "probability": 0.6268 }, { "start": 31859.04, "end": 31860.28, "probability": 0.9863 }, { "start": 31860.98, "end": 31862.8, "probability": 0.6885 }, { "start": 31868.32, "end": 31870.24, "probability": 0.9277 }, { "start": 31872.6, "end": 31876.58, "probability": 0.1657 }, { "start": 31877.14, "end": 31878.92, "probability": 0.8988 }, { "start": 31880.1, "end": 31881.64, "probability": 0.8838 }, { "start": 31881.9, "end": 31885.72, "probability": 0.7473 }, { "start": 31887.32, "end": 31888.75, "probability": 0.9375 }, { "start": 31889.4, "end": 31890.0, "probability": 0.9399 }, { "start": 31890.66, "end": 31891.68, "probability": 0.4512 }, { "start": 31891.76, "end": 31892.72, "probability": 0.8546 }, { "start": 31893.72, "end": 31894.54, "probability": 0.9092 }, { "start": 31896.58, "end": 31900.7, "probability": 0.6399 }, { "start": 31901.68, "end": 31904.8, "probability": 0.9912 }, { "start": 31906.2, "end": 31908.2, "probability": 0.8824 }, { "start": 31910.32, "end": 31911.66, "probability": 0.9495 }, { "start": 31913.12, "end": 31913.94, "probability": 0.8735 }, { "start": 31914.02, "end": 31916.64, "probability": 0.9943 }, { "start": 31917.42, "end": 31918.97, "probability": 0.9976 }, { "start": 31919.28, "end": 31920.04, "probability": 0.9022 }, { "start": 31922.08, "end": 31924.74, "probability": 0.9988 }, { "start": 31925.78, "end": 31926.88, "probability": 0.9937 }, { "start": 31928.1, "end": 31928.7, "probability": 0.5996 }, { "start": 31929.64, "end": 31933.62, "probability": 0.9979 }, { "start": 31934.7, "end": 31935.58, "probability": 0.9425 }, { "start": 31937.12, "end": 31942.8, "probability": 0.9973 }, { "start": 31943.68, "end": 31948.72, "probability": 0.963 }, { "start": 31948.86, "end": 31952.46, "probability": 0.9951 }, { "start": 31953.38, "end": 31958.28, "probability": 0.9559 }, { "start": 31960.0, "end": 31963.63, "probability": 0.9937 }, { "start": 31965.04, "end": 31967.03, "probability": 0.748 }, { "start": 31967.56, "end": 31969.64, "probability": 0.9633 }, { "start": 31971.22, "end": 31972.08, "probability": 0.9804 }, { "start": 31973.3, "end": 31974.22, "probability": 0.8962 }, { "start": 31975.4, "end": 31976.42, "probability": 0.9075 }, { "start": 31976.86, "end": 31978.36, "probability": 0.9963 }, { "start": 31978.86, "end": 31979.68, "probability": 0.9235 }, { "start": 31980.42, "end": 31981.77, "probability": 0.9954 }, { "start": 31982.56, "end": 31986.04, "probability": 0.9971 }, { "start": 31986.14, "end": 31986.8, "probability": 0.998 }, { "start": 31987.58, "end": 31989.12, "probability": 0.8759 }, { "start": 31989.64, "end": 31991.1, "probability": 0.8192 }, { "start": 31991.2, "end": 31991.54, "probability": 0.7858 }, { "start": 31991.86, "end": 31992.56, "probability": 0.9553 }, { "start": 31992.92, "end": 31993.54, "probability": 0.9318 }, { "start": 31993.58, "end": 31994.02, "probability": 0.8738 }, { "start": 31994.06, "end": 31994.56, "probability": 0.7047 }, { "start": 31994.64, "end": 31995.6, "probability": 0.9707 }, { "start": 31995.72, "end": 31997.64, "probability": 0.9977 }, { "start": 31998.14, "end": 32000.7, "probability": 0.9849 }, { "start": 32000.82, "end": 32001.77, "probability": 0.9624 }, { "start": 32002.46, "end": 32005.02, "probability": 0.9471 }, { "start": 32005.18, "end": 32005.2, "probability": 0.7739 }, { "start": 32006.46, "end": 32008.14, "probability": 0.9144 }, { "start": 32009.14, "end": 32010.8, "probability": 0.9482 }, { "start": 32011.14, "end": 32012.5, "probability": 0.9976 }, { "start": 32013.18, "end": 32014.26, "probability": 0.998 }, { "start": 32014.48, "end": 32015.04, "probability": 0.649 }, { "start": 32015.46, "end": 32018.48, "probability": 0.9715 }, { "start": 32018.62, "end": 32019.88, "probability": 0.6945 }, { "start": 32020.32, "end": 32021.24, "probability": 0.9917 }, { "start": 32022.0, "end": 32024.78, "probability": 0.8578 }, { "start": 32025.18, "end": 32031.86, "probability": 0.9819 }, { "start": 32032.26, "end": 32032.94, "probability": 0.9644 }, { "start": 32033.2, "end": 32035.64, "probability": 0.8949 }, { "start": 32035.86, "end": 32037.19, "probability": 0.9194 }, { "start": 32037.96, "end": 32040.3, "probability": 0.8676 }, { "start": 32041.18, "end": 32041.94, "probability": 0.6709 }, { "start": 32042.14, "end": 32044.18, "probability": 0.9304 }, { "start": 32045.5, "end": 32047.6, "probability": 0.9978 }, { "start": 32048.0, "end": 32050.5, "probability": 0.996 }, { "start": 32052.3, "end": 32056.92, "probability": 0.9263 }, { "start": 32057.16, "end": 32060.08, "probability": 0.7363 }, { "start": 32060.14, "end": 32061.6, "probability": 0.9434 }, { "start": 32061.72, "end": 32063.54, "probability": 0.7273 }, { "start": 32064.26, "end": 32067.28, "probability": 0.9897 }, { "start": 32068.0, "end": 32072.24, "probability": 0.9831 }, { "start": 32072.62, "end": 32074.96, "probability": 0.9937 }, { "start": 32075.02, "end": 32076.25, "probability": 0.9499 }, { "start": 32076.62, "end": 32077.84, "probability": 0.9969 }, { "start": 32078.78, "end": 32080.08, "probability": 0.8726 }, { "start": 32082.16, "end": 32082.5, "probability": 0.9039 }, { "start": 32082.78, "end": 32083.48, "probability": 0.8234 }, { "start": 32083.8, "end": 32085.74, "probability": 0.9948 }, { "start": 32085.96, "end": 32088.18, "probability": 0.9941 }, { "start": 32088.64, "end": 32091.16, "probability": 0.9952 }, { "start": 32091.5, "end": 32092.14, "probability": 0.9755 }, { "start": 32092.24, "end": 32093.62, "probability": 0.9532 }, { "start": 32094.38, "end": 32095.38, "probability": 0.8525 }, { "start": 32095.54, "end": 32095.86, "probability": 0.88 }, { "start": 32096.12, "end": 32097.74, "probability": 0.8135 }, { "start": 32097.88, "end": 32099.16, "probability": 0.9785 }, { "start": 32099.22, "end": 32100.2, "probability": 0.9528 }, { "start": 32100.6, "end": 32101.52, "probability": 0.9901 }, { "start": 32101.76, "end": 32102.58, "probability": 0.8812 }, { "start": 32102.72, "end": 32103.2, "probability": 0.5695 }, { "start": 32103.58, "end": 32103.78, "probability": 0.897 }, { "start": 32104.3, "end": 32106.74, "probability": 0.9367 }, { "start": 32107.18, "end": 32109.61, "probability": 0.9399 }, { "start": 32110.44, "end": 32111.52, "probability": 0.6649 }, { "start": 32112.28, "end": 32113.6, "probability": 0.5133 }, { "start": 32113.6, "end": 32114.49, "probability": 0.9958 }, { "start": 32114.88, "end": 32117.58, "probability": 0.9661 }, { "start": 32118.32, "end": 32120.12, "probability": 0.9585 }, { "start": 32120.96, "end": 32121.14, "probability": 0.1633 }, { "start": 32121.14, "end": 32122.26, "probability": 0.0423 }, { "start": 32122.34, "end": 32123.22, "probability": 0.7769 }, { "start": 32123.24, "end": 32123.24, "probability": 0.1209 }, { "start": 32123.44, "end": 32124.66, "probability": 0.6358 }, { "start": 32125.96, "end": 32126.16, "probability": 0.4962 }, { "start": 32127.54, "end": 32128.58, "probability": 0.7667 }, { "start": 32130.0, "end": 32130.38, "probability": 0.0848 }, { "start": 32130.46, "end": 32131.32, "probability": 0.804 }, { "start": 32131.66, "end": 32132.26, "probability": 0.8337 }, { "start": 32133.66, "end": 32136.06, "probability": 0.65 }, { "start": 32153.44, "end": 32155.92, "probability": 0.7324 }, { "start": 32158.02, "end": 32161.57, "probability": 0.7754 }, { "start": 32162.48, "end": 32164.2, "probability": 0.7996 }, { "start": 32164.78, "end": 32165.02, "probability": 0.7641 }, { "start": 32165.18, "end": 32165.7, "probability": 0.7785 }, { "start": 32165.86, "end": 32166.12, "probability": 0.389 }, { "start": 32166.22, "end": 32166.78, "probability": 0.8716 }, { "start": 32167.12, "end": 32167.4, "probability": 0.3914 }, { "start": 32167.46, "end": 32167.83, "probability": 0.9827 }, { "start": 32168.52, "end": 32169.62, "probability": 0.8068 }, { "start": 32170.2, "end": 32170.84, "probability": 0.7887 }, { "start": 32171.08, "end": 32173.98, "probability": 0.9681 }, { "start": 32174.46, "end": 32175.04, "probability": 0.8916 }, { "start": 32177.42, "end": 32181.26, "probability": 0.6864 }, { "start": 32182.02, "end": 32182.76, "probability": 0.9747 }, { "start": 32183.72, "end": 32184.5, "probability": 0.8678 }, { "start": 32185.3, "end": 32186.59, "probability": 0.6147 }, { "start": 32187.42, "end": 32189.72, "probability": 0.7832 }, { "start": 32191.46, "end": 32196.9, "probability": 0.8233 }, { "start": 32198.24, "end": 32199.84, "probability": 0.7465 }, { "start": 32200.0, "end": 32201.24, "probability": 0.9533 }, { "start": 32203.65, "end": 32205.76, "probability": 0.6945 }, { "start": 32205.82, "end": 32206.19, "probability": 0.614 }, { "start": 32206.62, "end": 32206.97, "probability": 0.8442 }, { "start": 32207.38, "end": 32207.86, "probability": 0.6416 }, { "start": 32209.46, "end": 32212.48, "probability": 0.9747 }, { "start": 32213.38, "end": 32213.85, "probability": 0.9526 }, { "start": 32216.04, "end": 32217.08, "probability": 0.5182 }, { "start": 32219.44, "end": 32221.26, "probability": 0.6189 }, { "start": 32222.48, "end": 32223.3, "probability": 0.9963 }, { "start": 32224.12, "end": 32226.7, "probability": 0.8687 }, { "start": 32226.74, "end": 32227.16, "probability": 0.8394 }, { "start": 32227.5, "end": 32230.34, "probability": 0.8962 }, { "start": 32232.14, "end": 32233.16, "probability": 0.9715 }, { "start": 32233.24, "end": 32234.82, "probability": 0.9945 }, { "start": 32235.42, "end": 32236.44, "probability": 0.8418 }, { "start": 32237.12, "end": 32238.32, "probability": 0.9875 }, { "start": 32240.42, "end": 32240.84, "probability": 0.5874 }, { "start": 32242.16, "end": 32244.86, "probability": 0.7707 }, { "start": 32245.02, "end": 32248.04, "probability": 0.9396 }, { "start": 32248.64, "end": 32249.06, "probability": 0.765 }, { "start": 32249.26, "end": 32249.62, "probability": 0.658 }, { "start": 32249.98, "end": 32252.9, "probability": 0.8148 }, { "start": 32254.26, "end": 32255.9, "probability": 0.8254 }, { "start": 32256.38, "end": 32258.88, "probability": 0.9969 }, { "start": 32259.4, "end": 32260.92, "probability": 0.8608 }, { "start": 32261.0, "end": 32262.12, "probability": 0.8245 }, { "start": 32262.16, "end": 32266.0, "probability": 0.9628 }, { "start": 32266.18, "end": 32268.2, "probability": 0.9007 }, { "start": 32269.22, "end": 32270.14, "probability": 0.8832 }, { "start": 32270.38, "end": 32272.56, "probability": 0.9846 }, { "start": 32274.38, "end": 32278.38, "probability": 0.9858 }, { "start": 32279.54, "end": 32282.64, "probability": 0.9595 }, { "start": 32282.66, "end": 32283.94, "probability": 0.4024 }, { "start": 32284.0, "end": 32285.74, "probability": 0.6307 }, { "start": 32285.8, "end": 32286.06, "probability": 0.9011 }, { "start": 32286.86, "end": 32288.04, "probability": 0.9238 }, { "start": 32288.16, "end": 32289.12, "probability": 0.8034 }, { "start": 32291.3, "end": 32292.92, "probability": 0.9985 }, { "start": 32294.3, "end": 32296.26, "probability": 0.7909 }, { "start": 32296.66, "end": 32298.72, "probability": 0.8083 }, { "start": 32298.74, "end": 32299.76, "probability": 0.8813 }, { "start": 32300.96, "end": 32302.44, "probability": 0.9857 }, { "start": 32303.32, "end": 32304.16, "probability": 0.7045 }, { "start": 32304.2, "end": 32304.72, "probability": 0.8553 }, { "start": 32304.82, "end": 32305.8, "probability": 0.8564 }, { "start": 32307.5, "end": 32309.06, "probability": 0.9811 }, { "start": 32310.48, "end": 32312.22, "probability": 0.9268 }, { "start": 32313.1, "end": 32314.38, "probability": 0.6477 }, { "start": 32314.52, "end": 32315.48, "probability": 0.294 }, { "start": 32315.52, "end": 32318.16, "probability": 0.8075 }, { "start": 32319.14, "end": 32320.9, "probability": 0.9424 }, { "start": 32321.0, "end": 32322.32, "probability": 0.8907 }, { "start": 32323.46, "end": 32325.9, "probability": 0.9428 }, { "start": 32327.74, "end": 32328.74, "probability": 0.6921 }, { "start": 32328.84, "end": 32329.66, "probability": 0.78 }, { "start": 32329.76, "end": 32331.58, "probability": 0.8774 }, { "start": 32331.7, "end": 32332.06, "probability": 0.9733 }, { "start": 32333.02, "end": 32333.26, "probability": 0.3446 }, { "start": 32333.46, "end": 32336.14, "probability": 0.8205 }, { "start": 32337.2, "end": 32340.0, "probability": 0.9922 }, { "start": 32340.04, "end": 32344.86, "probability": 0.9941 }, { "start": 32344.9, "end": 32345.74, "probability": 0.6716 }, { "start": 32345.98, "end": 32348.62, "probability": 0.6787 }, { "start": 32349.28, "end": 32353.1, "probability": 0.6095 }, { "start": 32353.8, "end": 32357.02, "probability": 0.7915 }, { "start": 32357.58, "end": 32358.2, "probability": 0.3499 }, { "start": 32358.2, "end": 32359.3, "probability": 0.5611 }, { "start": 32359.9, "end": 32360.86, "probability": 0.9224 }, { "start": 32361.12, "end": 32363.84, "probability": 0.9568 }, { "start": 32364.08, "end": 32364.24, "probability": 0.9088 }, { "start": 32364.26, "end": 32364.36, "probability": 0.7016 }, { "start": 32365.16, "end": 32368.56, "probability": 0.8083 }, { "start": 32369.14, "end": 32371.38, "probability": 0.8821 }, { "start": 32371.98, "end": 32373.92, "probability": 0.5703 }, { "start": 32374.9, "end": 32376.88, "probability": 0.7273 }, { "start": 32393.04, "end": 32393.64, "probability": 0.477 }, { "start": 32394.18, "end": 32394.7, "probability": 0.6973 }, { "start": 32396.56, "end": 32400.9, "probability": 0.8457 }, { "start": 32401.74, "end": 32402.24, "probability": 0.8569 }, { "start": 32403.6, "end": 32404.02, "probability": 0.8585 }, { "start": 32404.06, "end": 32404.86, "probability": 0.9405 }, { "start": 32405.02, "end": 32405.76, "probability": 0.978 }, { "start": 32420.32, "end": 32420.78, "probability": 0.0558 }, { "start": 32420.78, "end": 32420.8, "probability": 0.0781 }, { "start": 32420.8, "end": 32420.8, "probability": 0.2048 }, { "start": 32420.8, "end": 32420.8, "probability": 0.0701 }, { "start": 32420.8, "end": 32421.42, "probability": 0.1131 }, { "start": 32423.96, "end": 32424.45, "probability": 0.2837 }, { "start": 32424.98, "end": 32425.8, "probability": 0.6396 }, { "start": 32425.86, "end": 32427.0, "probability": 0.7838 }, { "start": 32428.62, "end": 32431.5, "probability": 0.9633 }, { "start": 32433.24, "end": 32435.14, "probability": 0.8237 }, { "start": 32435.4, "end": 32436.44, "probability": 0.7501 }, { "start": 32440.9, "end": 32443.32, "probability": 0.9833 }, { "start": 32443.42, "end": 32443.88, "probability": 0.641 }, { "start": 32444.04, "end": 32445.94, "probability": 0.6703 }, { "start": 32447.08, "end": 32449.08, "probability": 0.991 }, { "start": 32449.08, "end": 32452.14, "probability": 0.9831 }, { "start": 32453.24, "end": 32454.2, "probability": 0.9961 }, { "start": 32456.6, "end": 32457.1, "probability": 0.874 }, { "start": 32458.12, "end": 32460.18, "probability": 0.9956 }, { "start": 32462.2, "end": 32463.66, "probability": 0.9646 }, { "start": 32463.86, "end": 32466.46, "probability": 0.7943 }, { "start": 32468.3, "end": 32472.08, "probability": 0.9743 }, { "start": 32472.98, "end": 32475.04, "probability": 0.9873 }, { "start": 32476.58, "end": 32479.01, "probability": 0.8418 }, { "start": 32480.12, "end": 32482.76, "probability": 0.989 }, { "start": 32482.86, "end": 32483.5, "probability": 0.9194 }, { "start": 32484.72, "end": 32487.12, "probability": 0.9168 }, { "start": 32488.18, "end": 32490.32, "probability": 0.7563 }, { "start": 32492.46, "end": 32493.08, "probability": 0.6136 }, { "start": 32493.72, "end": 32495.72, "probability": 0.988 }, { "start": 32496.44, "end": 32499.0, "probability": 0.9534 }, { "start": 32500.58, "end": 32502.76, "probability": 0.9976 }, { "start": 32502.84, "end": 32504.42, "probability": 0.7867 }, { "start": 32504.9, "end": 32505.14, "probability": 0.8041 }, { "start": 32505.82, "end": 32506.84, "probability": 0.5334 }, { "start": 32506.96, "end": 32508.38, "probability": 0.7265 }, { "start": 32510.5, "end": 32512.4, "probability": 0.987 }, { "start": 32512.48, "end": 32514.02, "probability": 0.9883 }, { "start": 32514.12, "end": 32515.36, "probability": 0.9224 }, { "start": 32517.0, "end": 32519.26, "probability": 0.952 }, { "start": 32520.78, "end": 32524.84, "probability": 0.9285 }, { "start": 32525.02, "end": 32527.5, "probability": 0.9836 }, { "start": 32527.78, "end": 32528.66, "probability": 0.9676 }, { "start": 32528.78, "end": 32530.32, "probability": 0.9675 }, { "start": 32530.9, "end": 32531.75, "probability": 0.7244 }, { "start": 32531.92, "end": 32532.7, "probability": 0.3407 }, { "start": 32533.96, "end": 32534.48, "probability": 0.9876 }, { "start": 32535.02, "end": 32537.58, "probability": 0.6563 }, { "start": 32537.84, "end": 32539.94, "probability": 0.9924 }, { "start": 32540.52, "end": 32543.48, "probability": 0.4207 }, { "start": 32544.06, "end": 32544.44, "probability": 0.1314 }, { "start": 32545.1, "end": 32547.88, "probability": 0.9829 }, { "start": 32547.96, "end": 32548.24, "probability": 0.64 }, { "start": 32548.32, "end": 32550.06, "probability": 0.8158 }, { "start": 32550.08, "end": 32550.88, "probability": 0.9661 }, { "start": 32551.04, "end": 32551.32, "probability": 0.7112 }, { "start": 32551.4, "end": 32551.64, "probability": 0.8445 }, { "start": 32551.74, "end": 32552.0, "probability": 0.3869 }, { "start": 32553.0, "end": 32557.26, "probability": 0.899 }, { "start": 32557.66, "end": 32559.6, "probability": 0.9131 }, { "start": 32560.26, "end": 32564.32, "probability": 0.526 }, { "start": 32564.34, "end": 32565.49, "probability": 0.8049 }, { "start": 32566.86, "end": 32569.1, "probability": 0.6868 }, { "start": 32569.24, "end": 32570.58, "probability": 0.9667 }, { "start": 32571.12, "end": 32572.6, "probability": 0.8091 }, { "start": 32574.26, "end": 32574.86, "probability": 0.7069 }, { "start": 32576.44, "end": 32578.26, "probability": 0.937 }, { "start": 32578.4, "end": 32579.72, "probability": 0.9748 }, { "start": 32580.6, "end": 32581.26, "probability": 0.8465 }, { "start": 32581.52, "end": 32583.28, "probability": 0.6709 }, { "start": 32583.28, "end": 32585.2, "probability": 0.818 }, { "start": 32585.32, "end": 32585.84, "probability": 0.5397 }, { "start": 32585.9, "end": 32586.3, "probability": 0.8762 }, { "start": 32586.52, "end": 32586.9, "probability": 0.4693 }, { "start": 32588.26, "end": 32590.01, "probability": 0.9915 }, { "start": 32590.2, "end": 32592.5, "probability": 0.9963 }, { "start": 32592.98, "end": 32594.43, "probability": 0.8808 }, { "start": 32595.48, "end": 32596.46, "probability": 0.9609 }, { "start": 32597.58, "end": 32599.05, "probability": 0.8384 }, { "start": 32599.62, "end": 32601.36, "probability": 0.6894 }, { "start": 32602.52, "end": 32605.7, "probability": 0.9661 }, { "start": 32605.8, "end": 32607.86, "probability": 0.7714 }, { "start": 32609.4, "end": 32611.26, "probability": 0.9961 }, { "start": 32611.42, "end": 32613.12, "probability": 0.9849 }, { "start": 32614.5, "end": 32615.46, "probability": 0.9294 }, { "start": 32615.84, "end": 32617.32, "probability": 0.998 }, { "start": 32617.52, "end": 32618.8, "probability": 0.8646 }, { "start": 32619.26, "end": 32621.18, "probability": 0.9001 }, { "start": 32621.52, "end": 32621.94, "probability": 0.9004 }, { "start": 32622.04, "end": 32622.32, "probability": 0.9334 }, { "start": 32622.48, "end": 32622.78, "probability": 0.5049 }, { "start": 32623.38, "end": 32625.44, "probability": 0.9348 }, { "start": 32627.0, "end": 32630.38, "probability": 0.9583 }, { "start": 32631.3, "end": 32631.7, "probability": 0.7974 }, { "start": 32632.38, "end": 32633.3, "probability": 0.7459 }, { "start": 32633.56, "end": 32635.28, "probability": 0.9613 }, { "start": 32636.32, "end": 32636.64, "probability": 0.84 }, { "start": 32637.42, "end": 32639.46, "probability": 0.8774 }, { "start": 32640.56, "end": 32644.78, "probability": 0.969 }, { "start": 32644.9, "end": 32646.58, "probability": 0.9862 }, { "start": 32647.14, "end": 32647.78, "probability": 0.7392 }, { "start": 32648.66, "end": 32649.98, "probability": 0.8507 }, { "start": 32651.64, "end": 32654.62, "probability": 0.9792 }, { "start": 32654.74, "end": 32655.6, "probability": 0.7157 }, { "start": 32655.68, "end": 32656.14, "probability": 0.7747 }, { "start": 32656.38, "end": 32659.24, "probability": 0.9676 }, { "start": 32659.32, "end": 32660.86, "probability": 0.954 }, { "start": 32661.52, "end": 32662.98, "probability": 0.6582 }, { "start": 32663.04, "end": 32664.82, "probability": 0.9884 }, { "start": 32665.42, "end": 32667.86, "probability": 0.9968 }, { "start": 32667.9, "end": 32668.62, "probability": 0.9855 }, { "start": 32669.56, "end": 32670.78, "probability": 0.96 }, { "start": 32671.72, "end": 32673.24, "probability": 0.5397 }, { "start": 32673.62, "end": 32677.38, "probability": 0.68 }, { "start": 32677.58, "end": 32678.16, "probability": 0.7036 }, { "start": 32678.48, "end": 32679.8, "probability": 0.6146 }, { "start": 32679.94, "end": 32680.36, "probability": 0.8003 }, { "start": 32680.48, "end": 32681.74, "probability": 0.8865 }, { "start": 32681.78, "end": 32682.62, "probability": 0.8975 }, { "start": 32683.52, "end": 32684.06, "probability": 0.9507 }, { "start": 32685.02, "end": 32686.12, "probability": 0.9496 }, { "start": 32687.68, "end": 32691.02, "probability": 0.9799 }, { "start": 32691.16, "end": 32693.18, "probability": 0.9748 }, { "start": 32693.36, "end": 32697.36, "probability": 0.685 }, { "start": 32697.38, "end": 32697.84, "probability": 0.8735 }, { "start": 32698.1, "end": 32702.2, "probability": 0.9906 }, { "start": 32702.8, "end": 32706.2, "probability": 0.9845 }, { "start": 32707.94, "end": 32709.8, "probability": 0.5579 }, { "start": 32715.98, "end": 32716.66, "probability": 0.8437 }, { "start": 32717.36, "end": 32718.04, "probability": 0.5839 }, { "start": 32718.48, "end": 32720.48, "probability": 0.8564 }, { "start": 32720.88, "end": 32725.28, "probability": 0.7909 }, { "start": 32726.92, "end": 32731.2, "probability": 0.8148 }, { "start": 32732.64, "end": 32733.66, "probability": 0.9852 }, { "start": 32734.66, "end": 32736.6, "probability": 0.9768 }, { "start": 32736.72, "end": 32738.32, "probability": 0.7128 }, { "start": 32738.56, "end": 32738.98, "probability": 0.4354 }, { "start": 32739.1, "end": 32739.54, "probability": 0.463 }, { "start": 32739.92, "end": 32741.1, "probability": 0.9539 }, { "start": 32741.76, "end": 32743.88, "probability": 0.8795 }, { "start": 32743.88, "end": 32745.26, "probability": 0.9125 }, { "start": 32745.7, "end": 32746.84, "probability": 0.7141 }, { "start": 32747.2, "end": 32749.24, "probability": 0.9842 }, { "start": 32749.46, "end": 32752.9, "probability": 0.9661 }, { "start": 32753.46, "end": 32757.38, "probability": 0.8024 }, { "start": 32757.4, "end": 32761.68, "probability": 0.8109 }, { "start": 32762.86, "end": 32763.96, "probability": 0.7656 }, { "start": 32764.54, "end": 32765.86, "probability": 0.9571 }, { "start": 32765.96, "end": 32768.48, "probability": 0.3645 }, { "start": 32768.9, "end": 32769.8, "probability": 0.6125 }, { "start": 32769.96, "end": 32771.78, "probability": 0.5134 }, { "start": 32771.92, "end": 32774.84, "probability": 0.9292 }, { "start": 32775.32, "end": 32776.68, "probability": 0.874 }, { "start": 32777.24, "end": 32778.34, "probability": 0.9692 }, { "start": 32778.81, "end": 32780.42, "probability": 0.9988 }, { "start": 32780.52, "end": 32781.25, "probability": 0.9632 }, { "start": 32781.84, "end": 32784.18, "probability": 0.8386 }, { "start": 32784.2, "end": 32785.04, "probability": 0.9626 }, { "start": 32785.6, "end": 32788.02, "probability": 0.9379 }, { "start": 32788.32, "end": 32789.5, "probability": 0.8892 }, { "start": 32791.22, "end": 32793.93, "probability": 0.8179 }, { "start": 32794.52, "end": 32798.56, "probability": 0.5823 }, { "start": 32799.18, "end": 32804.72, "probability": 0.9682 }, { "start": 32804.94, "end": 32805.54, "probability": 0.1082 }, { "start": 32805.54, "end": 32806.04, "probability": 0.415 }, { "start": 32806.08, "end": 32808.04, "probability": 0.8438 }, { "start": 32808.58, "end": 32810.12, "probability": 0.9084 }, { "start": 32810.22, "end": 32811.5, "probability": 0.9839 }, { "start": 32811.68, "end": 32811.98, "probability": 0.7562 }, { "start": 32812.02, "end": 32815.78, "probability": 0.9003 }, { "start": 32816.58, "end": 32820.56, "probability": 0.9976 }, { "start": 32821.2, "end": 32823.32, "probability": 0.818 }, { "start": 32823.32, "end": 32826.06, "probability": 0.9924 }, { "start": 32826.84, "end": 32829.38, "probability": 0.4958 }, { "start": 32830.42, "end": 32830.42, "probability": 0.051 }, { "start": 32830.42, "end": 32832.54, "probability": 0.9774 }, { "start": 32832.54, "end": 32835.36, "probability": 0.9884 }, { "start": 32835.48, "end": 32836.06, "probability": 0.5837 }, { "start": 32836.16, "end": 32836.92, "probability": 0.8008 }, { "start": 32838.04, "end": 32838.94, "probability": 0.8428 }, { "start": 32839.12, "end": 32840.84, "probability": 0.4862 }, { "start": 32840.9, "end": 32842.2, "probability": 0.9885 }, { "start": 32844.0, "end": 32847.72, "probability": 0.9741 }, { "start": 32848.52, "end": 32850.74, "probability": 0.8105 }, { "start": 32850.8, "end": 32851.92, "probability": 0.7352 }, { "start": 32852.02, "end": 32853.74, "probability": 0.9841 }, { "start": 32854.36, "end": 32856.86, "probability": 0.8413 }, { "start": 32857.42, "end": 32858.92, "probability": 0.5039 }, { "start": 32859.78, "end": 32860.63, "probability": 0.9973 }, { "start": 32861.3, "end": 32864.36, "probability": 0.9189 }, { "start": 32864.6, "end": 32864.82, "probability": 0.7346 }, { "start": 32865.34, "end": 32868.38, "probability": 0.9856 }, { "start": 32868.46, "end": 32870.4, "probability": 0.9454 }, { "start": 32871.26, "end": 32871.9, "probability": 0.9755 }, { "start": 32873.04, "end": 32875.08, "probability": 0.8868 }, { "start": 32875.6, "end": 32876.5, "probability": 0.5482 }, { "start": 32876.6, "end": 32878.76, "probability": 0.9534 }, { "start": 32878.82, "end": 32879.56, "probability": 0.6802 }, { "start": 32880.56, "end": 32883.45, "probability": 0.9963 }, { "start": 32884.06, "end": 32885.62, "probability": 0.9915 }, { "start": 32885.98, "end": 32886.68, "probability": 0.8993 }, { "start": 32887.46, "end": 32889.36, "probability": 0.8589 }, { "start": 32890.55, "end": 32893.0, "probability": 0.8148 }, { "start": 32894.0, "end": 32894.87, "probability": 0.8972 }, { "start": 32895.06, "end": 32898.08, "probability": 0.7765 }, { "start": 32898.14, "end": 32899.84, "probability": 0.9966 }, { "start": 32900.72, "end": 32902.52, "probability": 0.9949 }, { "start": 32903.54, "end": 32905.14, "probability": 0.7873 }, { "start": 32905.34, "end": 32906.8, "probability": 0.9336 }, { "start": 32906.96, "end": 32908.46, "probability": 0.9782 }, { "start": 32909.36, "end": 32910.48, "probability": 0.7495 }, { "start": 32910.74, "end": 32914.8, "probability": 0.6061 }, { "start": 32914.86, "end": 32917.12, "probability": 0.6474 }, { "start": 32917.66, "end": 32918.26, "probability": 0.8282 }, { "start": 32919.04, "end": 32923.08, "probability": 0.7257 }, { "start": 32923.6, "end": 32926.57, "probability": 0.988 }, { "start": 32927.48, "end": 32930.18, "probability": 0.9595 }, { "start": 32930.4, "end": 32932.05, "probability": 0.9087 }, { "start": 32933.32, "end": 32934.74, "probability": 0.4523 }, { "start": 32935.48, "end": 32936.42, "probability": 0.8542 }, { "start": 32936.62, "end": 32936.86, "probability": 0.7109 }, { "start": 32936.98, "end": 32937.92, "probability": 0.7266 }, { "start": 32938.14, "end": 32940.26, "probability": 0.8936 }, { "start": 32940.8, "end": 32941.02, "probability": 0.8008 }, { "start": 32941.52, "end": 32945.22, "probability": 0.9148 }, { "start": 32945.34, "end": 32945.82, "probability": 0.767 }, { "start": 32945.98, "end": 32947.54, "probability": 0.9888 }, { "start": 32947.68, "end": 32950.02, "probability": 0.9967 }, { "start": 32950.34, "end": 32952.44, "probability": 0.8886 }, { "start": 32953.0, "end": 32953.56, "probability": 0.7731 }, { "start": 32954.52, "end": 32955.14, "probability": 0.7679 }, { "start": 32955.64, "end": 32957.56, "probability": 0.8259 }, { "start": 32957.72, "end": 32960.18, "probability": 0.9728 }, { "start": 32960.26, "end": 32960.72, "probability": 0.5759 }, { "start": 32961.06, "end": 32963.01, "probability": 0.8804 }, { "start": 32963.38, "end": 32965.32, "probability": 0.7359 }, { "start": 32966.02, "end": 32966.8, "probability": 0.7737 }, { "start": 32966.82, "end": 32967.54, "probability": 0.8319 }, { "start": 32967.64, "end": 32969.26, "probability": 0.7896 }, { "start": 32969.4, "end": 32969.84, "probability": 0.7437 }, { "start": 32970.1, "end": 32970.64, "probability": 0.9686 }, { "start": 32970.68, "end": 32971.0, "probability": 0.7289 }, { "start": 32971.38, "end": 32973.05, "probability": 0.9736 }, { "start": 32973.34, "end": 32973.92, "probability": 0.7541 }, { "start": 32974.68, "end": 32978.2, "probability": 0.9941 }, { "start": 32978.74, "end": 32979.36, "probability": 0.7894 }, { "start": 32980.12, "end": 32981.14, "probability": 0.8473 }, { "start": 32981.28, "end": 32982.38, "probability": 0.9354 }, { "start": 32982.48, "end": 32985.52, "probability": 0.8674 }, { "start": 32985.52, "end": 32989.82, "probability": 0.9665 }, { "start": 32990.2, "end": 32993.08, "probability": 0.9715 }, { "start": 32993.12, "end": 32993.82, "probability": 0.862 }, { "start": 32994.0, "end": 32994.26, "probability": 0.8442 }, { "start": 32994.34, "end": 32994.6, "probability": 0.9312 }, { "start": 32994.68, "end": 32995.1, "probability": 0.9688 }, { "start": 32995.54, "end": 32996.16, "probability": 0.9095 }, { "start": 32996.28, "end": 32997.76, "probability": 0.9495 }, { "start": 32998.2, "end": 32998.68, "probability": 0.843 }, { "start": 32999.16, "end": 33001.34, "probability": 0.9868 }, { "start": 33001.8, "end": 33002.3, "probability": 0.9762 }, { "start": 33003.18, "end": 33005.48, "probability": 0.8185 }, { "start": 33006.43, "end": 33007.74, "probability": 0.8247 }, { "start": 33008.54, "end": 33009.12, "probability": 0.6741 }, { "start": 33009.68, "end": 33012.14, "probability": 0.9768 }, { "start": 33012.28, "end": 33013.3, "probability": 0.9573 }, { "start": 33013.46, "end": 33015.65, "probability": 0.9702 }, { "start": 33016.46, "end": 33019.32, "probability": 0.998 }, { "start": 33019.34, "end": 33020.32, "probability": 0.8467 }, { "start": 33020.38, "end": 33022.46, "probability": 0.8713 }, { "start": 33022.56, "end": 33023.78, "probability": 0.8874 }, { "start": 33024.32, "end": 33024.84, "probability": 0.9878 }, { "start": 33025.0, "end": 33026.32, "probability": 0.9626 }, { "start": 33027.08, "end": 33027.4, "probability": 0.7544 }, { "start": 33029.28, "end": 33031.08, "probability": 0.5836 }, { "start": 33031.25, "end": 33032.94, "probability": 0.8024 }, { "start": 33033.14, "end": 33033.44, "probability": 0.2724 }, { "start": 33033.5, "end": 33035.85, "probability": 0.4157 }, { "start": 33036.5, "end": 33038.78, "probability": 0.2715 }, { "start": 33039.34, "end": 33039.34, "probability": 0.4171 }, { "start": 33039.84, "end": 33041.76, "probability": 0.3957 }, { "start": 33041.76, "end": 33041.98, "probability": 0.182 }, { "start": 33042.22, "end": 33043.38, "probability": 0.3732 }, { "start": 33043.72, "end": 33047.02, "probability": 0.6756 }, { "start": 33047.56, "end": 33048.24, "probability": 0.2695 }, { "start": 33048.26, "end": 33049.39, "probability": 0.9036 }, { "start": 33049.56, "end": 33050.82, "probability": 0.6424 }, { "start": 33051.56, "end": 33053.0, "probability": 0.2718 }, { "start": 33054.22, "end": 33057.5, "probability": 0.6162 }, { "start": 33057.88, "end": 33058.82, "probability": 0.7403 }, { "start": 33059.52, "end": 33060.04, "probability": 0.7475 }, { "start": 33060.08, "end": 33062.1, "probability": 0.9067 }, { "start": 33062.92, "end": 33064.96, "probability": 0.7359 }, { "start": 33065.48, "end": 33065.68, "probability": 0.7213 }, { "start": 33066.28, "end": 33066.42, "probability": 0.0026 }, { "start": 33067.18, "end": 33067.48, "probability": 0.1011 }, { "start": 33067.54, "end": 33068.04, "probability": 0.3814 }, { "start": 33068.18, "end": 33069.8, "probability": 0.7192 }, { "start": 33070.22, "end": 33072.34, "probability": 0.8354 }, { "start": 33074.46, "end": 33075.44, "probability": 0.5698 }, { "start": 33077.4, "end": 33078.64, "probability": 0.5627 }, { "start": 33079.22, "end": 33079.82, "probability": 0.983 }, { "start": 33085.02, "end": 33085.54, "probability": 0.7397 }, { "start": 33086.12, "end": 33086.99, "probability": 0.3608 }, { "start": 33087.76, "end": 33088.52, "probability": 0.8352 }, { "start": 33090.16, "end": 33090.88, "probability": 0.6848 }, { "start": 33091.82, "end": 33092.06, "probability": 0.6859 }, { "start": 33092.14, "end": 33094.1, "probability": 0.9793 }, { "start": 33094.2, "end": 33096.02, "probability": 0.9568 }, { "start": 33096.02, "end": 33096.1, "probability": 0.4073 }, { "start": 33096.4, "end": 33096.84, "probability": 0.7387 }, { "start": 33097.06, "end": 33098.98, "probability": 0.8585 }, { "start": 33099.54, "end": 33100.58, "probability": 0.8317 }, { "start": 33101.48, "end": 33102.94, "probability": 0.9723 }, { "start": 33107.02, "end": 33110.12, "probability": 0.8352 }, { "start": 33112.44, "end": 33113.78, "probability": 0.734 }, { "start": 33114.36, "end": 33116.8, "probability": 0.9023 }, { "start": 33117.98, "end": 33120.3, "probability": 0.9341 }, { "start": 33120.6, "end": 33122.6, "probability": 0.9987 }, { "start": 33124.5, "end": 33126.66, "probability": 0.8759 }, { "start": 33127.5, "end": 33128.12, "probability": 0.8458 }, { "start": 33128.85, "end": 33130.92, "probability": 0.959 }, { "start": 33132.74, "end": 33135.22, "probability": 0.9749 }, { "start": 33137.02, "end": 33139.3, "probability": 0.9158 }, { "start": 33140.02, "end": 33142.77, "probability": 0.9686 }, { "start": 33143.56, "end": 33144.38, "probability": 0.9968 }, { "start": 33144.96, "end": 33146.06, "probability": 0.966 }, { "start": 33146.6, "end": 33147.34, "probability": 0.9186 }, { "start": 33147.88, "end": 33148.44, "probability": 0.8259 }, { "start": 33149.04, "end": 33153.26, "probability": 0.9564 }, { "start": 33154.52, "end": 33154.72, "probability": 0.8578 }, { "start": 33156.94, "end": 33158.34, "probability": 0.8231 }, { "start": 33159.34, "end": 33160.18, "probability": 0.9547 }, { "start": 33161.36, "end": 33163.46, "probability": 0.9663 }, { "start": 33164.96, "end": 33166.1, "probability": 0.9933 }, { "start": 33167.26, "end": 33169.08, "probability": 0.9854 }, { "start": 33169.72, "end": 33170.4, "probability": 0.9878 }, { "start": 33171.2, "end": 33171.42, "probability": 0.9919 }, { "start": 33174.46, "end": 33176.52, "probability": 0.9534 }, { "start": 33178.22, "end": 33180.38, "probability": 0.9953 }, { "start": 33181.52, "end": 33185.24, "probability": 0.9878 }, { "start": 33186.7, "end": 33189.4, "probability": 0.9792 }, { "start": 33190.14, "end": 33190.88, "probability": 0.767 }, { "start": 33192.22, "end": 33193.68, "probability": 0.9511 }, { "start": 33194.08, "end": 33195.46, "probability": 0.9304 }, { "start": 33195.94, "end": 33197.58, "probability": 0.8993 }, { "start": 33198.44, "end": 33204.14, "probability": 0.978 }, { "start": 33206.22, "end": 33208.28, "probability": 0.9961 }, { "start": 33208.72, "end": 33211.72, "probability": 0.998 }, { "start": 33212.26, "end": 33213.5, "probability": 0.9983 }, { "start": 33214.76, "end": 33215.08, "probability": 0.8431 }, { "start": 33215.64, "end": 33217.98, "probability": 0.868 }, { "start": 33219.06, "end": 33221.36, "probability": 0.9937 }, { "start": 33222.16, "end": 33223.48, "probability": 0.9516 }, { "start": 33224.18, "end": 33224.88, "probability": 0.8489 }, { "start": 33226.28, "end": 33228.28, "probability": 0.9976 }, { "start": 33230.22, "end": 33233.06, "probability": 0.8608 }, { "start": 33234.0, "end": 33236.78, "probability": 0.8076 }, { "start": 33237.5, "end": 33239.2, "probability": 0.9879 }, { "start": 33241.2, "end": 33243.98, "probability": 0.9895 }, { "start": 33244.6, "end": 33245.76, "probability": 0.9805 }, { "start": 33246.32, "end": 33248.02, "probability": 0.9248 }, { "start": 33248.64, "end": 33250.44, "probability": 0.9736 }, { "start": 33251.44, "end": 33252.88, "probability": 0.9946 }, { "start": 33254.18, "end": 33257.68, "probability": 0.98 }, { "start": 33258.44, "end": 33261.86, "probability": 0.8819 }, { "start": 33262.9, "end": 33265.06, "probability": 0.9473 }, { "start": 33266.24, "end": 33269.32, "probability": 0.976 }, { "start": 33270.48, "end": 33273.32, "probability": 0.9837 }, { "start": 33274.12, "end": 33275.74, "probability": 0.8679 }, { "start": 33276.28, "end": 33277.86, "probability": 0.9418 }, { "start": 33279.92, "end": 33282.38, "probability": 0.9944 }, { "start": 33283.04, "end": 33285.5, "probability": 0.9792 }, { "start": 33285.86, "end": 33286.52, "probability": 0.6555 }, { "start": 33287.18, "end": 33289.27, "probability": 0.9731 }, { "start": 33289.72, "end": 33290.0, "probability": 0.3262 }, { "start": 33291.32, "end": 33292.64, "probability": 0.998 }, { "start": 33294.36, "end": 33297.5, "probability": 0.9565 }, { "start": 33298.36, "end": 33299.34, "probability": 0.9453 }, { "start": 33301.22, "end": 33304.44, "probability": 0.9964 }, { "start": 33304.48, "end": 33307.48, "probability": 0.9736 }, { "start": 33308.12, "end": 33309.9, "probability": 0.9596 }, { "start": 33310.52, "end": 33314.12, "probability": 0.9948 }, { "start": 33314.64, "end": 33316.2, "probability": 0.9513 }, { "start": 33316.8, "end": 33319.49, "probability": 0.9979 }, { "start": 33320.16, "end": 33320.82, "probability": 0.847 }, { "start": 33321.36, "end": 33321.92, "probability": 0.7192 }, { "start": 33321.92, "end": 33321.92, "probability": 0.7163 }, { "start": 33322.06, "end": 33322.9, "probability": 0.8916 }, { "start": 33324.85, "end": 33327.24, "probability": 0.7032 }, { "start": 33346.16, "end": 33347.74, "probability": 0.526 }, { "start": 33347.74, "end": 33349.92, "probability": 0.838 }, { "start": 33353.02, "end": 33353.4, "probability": 0.8331 }, { "start": 33354.46, "end": 33354.9, "probability": 0.8691 }, { "start": 33356.24, "end": 33358.64, "probability": 0.993 }, { "start": 33359.78, "end": 33360.42, "probability": 0.9124 }, { "start": 33361.14, "end": 33364.05, "probability": 0.9683 }, { "start": 33364.84, "end": 33365.34, "probability": 0.4217 }, { "start": 33366.22, "end": 33367.08, "probability": 0.9169 }, { "start": 33367.5, "end": 33367.86, "probability": 0.9422 }, { "start": 33368.96, "end": 33370.62, "probability": 0.9657 }, { "start": 33371.68, "end": 33374.48, "probability": 0.9827 }, { "start": 33376.06, "end": 33377.12, "probability": 0.9956 }, { "start": 33377.86, "end": 33381.98, "probability": 0.9787 }, { "start": 33383.38, "end": 33385.4, "probability": 0.5724 }, { "start": 33386.56, "end": 33387.2, "probability": 0.9793 }, { "start": 33388.36, "end": 33389.42, "probability": 0.8502 }, { "start": 33390.9, "end": 33391.36, "probability": 0.7461 }, { "start": 33392.08, "end": 33393.94, "probability": 0.9995 }, { "start": 33395.06, "end": 33397.32, "probability": 0.7585 }, { "start": 33398.38, "end": 33398.78, "probability": 0.7794 }, { "start": 33399.46, "end": 33403.65, "probability": 0.7231 }, { "start": 33405.04, "end": 33410.48, "probability": 0.991 }, { "start": 33411.16, "end": 33415.06, "probability": 0.6652 }, { "start": 33416.08, "end": 33416.34, "probability": 0.6523 }, { "start": 33417.1, "end": 33418.02, "probability": 0.7172 }, { "start": 33419.64, "end": 33425.74, "probability": 0.9966 }, { "start": 33425.88, "end": 33427.06, "probability": 0.9994 }, { "start": 33429.02, "end": 33430.5, "probability": 0.9758 }, { "start": 33431.78, "end": 33434.98, "probability": 0.8102 }, { "start": 33435.14, "end": 33436.4, "probability": 0.9107 }, { "start": 33437.58, "end": 33438.92, "probability": 0.9899 }, { "start": 33439.04, "end": 33440.54, "probability": 0.9963 }, { "start": 33441.34, "end": 33445.42, "probability": 0.991 }, { "start": 33446.22, "end": 33446.96, "probability": 0.8939 }, { "start": 33447.84, "end": 33448.88, "probability": 0.9904 }, { "start": 33449.76, "end": 33450.38, "probability": 0.5211 }, { "start": 33450.44, "end": 33455.2, "probability": 0.9549 }, { "start": 33455.72, "end": 33457.38, "probability": 0.7977 }, { "start": 33458.04, "end": 33465.5, "probability": 0.9971 }, { "start": 33466.18, "end": 33466.38, "probability": 0.5848 }, { "start": 33466.52, "end": 33467.72, "probability": 0.9644 }, { "start": 33471.44, "end": 33472.66, "probability": 0.8459 }, { "start": 33473.54, "end": 33476.57, "probability": 0.8892 }, { "start": 33477.46, "end": 33478.5, "probability": 0.9833 }, { "start": 33479.02, "end": 33480.32, "probability": 0.9961 }, { "start": 33481.36, "end": 33481.82, "probability": 0.4816 }, { "start": 33482.34, "end": 33482.54, "probability": 0.7495 }, { "start": 33484.06, "end": 33484.54, "probability": 0.3878 }, { "start": 33485.58, "end": 33485.68, "probability": 0.5287 }, { "start": 33487.42, "end": 33489.3, "probability": 0.9605 }, { "start": 33490.9, "end": 33492.62, "probability": 0.869 }, { "start": 33493.28, "end": 33494.4, "probability": 0.9561 }, { "start": 33495.24, "end": 33496.68, "probability": 0.9193 }, { "start": 33497.66, "end": 33500.08, "probability": 0.9728 }, { "start": 33500.74, "end": 33501.34, "probability": 0.9853 }, { "start": 33501.88, "end": 33502.16, "probability": 0.604 }, { "start": 33503.18, "end": 33504.32, "probability": 0.8546 }, { "start": 33505.86, "end": 33506.1, "probability": 0.9314 }, { "start": 33507.48, "end": 33509.22, "probability": 0.9941 }, { "start": 33511.34, "end": 33512.22, "probability": 0.8324 }, { "start": 33513.48, "end": 33516.24, "probability": 0.9902 }, { "start": 33517.1, "end": 33517.61, "probability": 0.9679 }, { "start": 33518.78, "end": 33523.54, "probability": 0.9811 }, { "start": 33524.36, "end": 33528.18, "probability": 0.9995 }, { "start": 33529.32, "end": 33530.0, "probability": 0.4132 }, { "start": 33530.98, "end": 33532.22, "probability": 0.9044 }, { "start": 33533.42, "end": 33534.38, "probability": 0.9104 }, { "start": 33535.12, "end": 33536.18, "probability": 0.9246 }, { "start": 33537.08, "end": 33539.14, "probability": 0.3863 }, { "start": 33539.32, "end": 33541.72, "probability": 0.8618 }, { "start": 33542.34, "end": 33543.86, "probability": 0.5865 }, { "start": 33544.34, "end": 33546.38, "probability": 0.9412 }, { "start": 33547.0, "end": 33552.28, "probability": 0.9808 }, { "start": 33552.68, "end": 33553.96, "probability": 0.9258 }, { "start": 33554.26, "end": 33554.68, "probability": 0.4744 }, { "start": 33554.82, "end": 33554.82, "probability": 0.019 }, { "start": 33554.82, "end": 33555.04, "probability": 0.7887 }, { "start": 33555.44, "end": 33557.3, "probability": 0.9802 }, { "start": 33557.42, "end": 33557.89, "probability": 0.9037 }, { "start": 33558.14, "end": 33560.41, "probability": 0.8813 }, { "start": 33560.68, "end": 33561.3, "probability": 0.7301 }, { "start": 33561.4, "end": 33563.64, "probability": 0.9814 }, { "start": 33563.78, "end": 33568.12, "probability": 0.8388 }, { "start": 33568.22, "end": 33568.76, "probability": 0.3682 }, { "start": 33568.86, "end": 33569.57, "probability": 0.9399 }, { "start": 33570.24, "end": 33571.76, "probability": 0.8364 }, { "start": 33571.86, "end": 33573.06, "probability": 0.9363 }, { "start": 33574.78, "end": 33577.8, "probability": 0.9491 }, { "start": 33577.94, "end": 33578.5, "probability": 0.9926 }, { "start": 33579.34, "end": 33582.14, "probability": 0.9817 }, { "start": 33583.0, "end": 33583.2, "probability": 0.7864 }, { "start": 33583.96, "end": 33589.0, "probability": 0.9844 }, { "start": 33589.0, "end": 33589.06, "probability": 0.6946 }, { "start": 33589.06, "end": 33589.82, "probability": 0.7327 }, { "start": 33590.82, "end": 33591.74, "probability": 0.7708 }, { "start": 33592.36, "end": 33592.66, "probability": 0.6946 }, { "start": 33615.44, "end": 33615.46, "probability": 0.0935 }, { "start": 33615.46, "end": 33616.2, "probability": 0.5315 }, { "start": 33617.64, "end": 33618.36, "probability": 0.7174 }, { "start": 33620.08, "end": 33624.72, "probability": 0.8865 }, { "start": 33626.34, "end": 33632.44, "probability": 0.999 }, { "start": 33633.22, "end": 33634.5, "probability": 0.8068 }, { "start": 33635.38, "end": 33637.04, "probability": 0.486 }, { "start": 33637.64, "end": 33638.84, "probability": 0.9186 }, { "start": 33638.94, "end": 33640.95, "probability": 0.9127 }, { "start": 33641.26, "end": 33641.46, "probability": 0.5257 }, { "start": 33641.88, "end": 33642.34, "probability": 0.7128 }, { "start": 33642.4, "end": 33644.2, "probability": 0.4963 }, { "start": 33644.84, "end": 33650.38, "probability": 0.9677 }, { "start": 33651.5, "end": 33651.52, "probability": 0.1104 }, { "start": 33651.52, "end": 33654.2, "probability": 0.9675 }, { "start": 33654.74, "end": 33656.28, "probability": 0.7861 }, { "start": 33657.46, "end": 33659.22, "probability": 0.9757 }, { "start": 33659.8, "end": 33664.86, "probability": 0.9832 }, { "start": 33665.52, "end": 33667.52, "probability": 0.8085 }, { "start": 33669.14, "end": 33671.78, "probability": 0.8439 }, { "start": 33672.98, "end": 33675.66, "probability": 0.9788 }, { "start": 33676.52, "end": 33677.32, "probability": 0.9896 }, { "start": 33677.38, "end": 33678.08, "probability": 0.962 }, { "start": 33678.78, "end": 33679.42, "probability": 0.8717 }, { "start": 33681.02, "end": 33681.72, "probability": 0.8052 }, { "start": 33683.04, "end": 33685.23, "probability": 0.8462 }, { "start": 33686.0, "end": 33686.92, "probability": 0.9985 }, { "start": 33687.52, "end": 33689.18, "probability": 0.8527 }, { "start": 33690.08, "end": 33692.26, "probability": 0.7666 }, { "start": 33692.78, "end": 33695.04, "probability": 0.9974 }, { "start": 33695.76, "end": 33702.26, "probability": 0.9961 }, { "start": 33703.5, "end": 33705.96, "probability": 0.7312 }, { "start": 33706.52, "end": 33708.52, "probability": 0.9982 }, { "start": 33709.42, "end": 33711.96, "probability": 0.8267 }, { "start": 33712.52, "end": 33713.86, "probability": 0.8337 }, { "start": 33715.08, "end": 33716.02, "probability": 0.9075 }, { "start": 33716.7, "end": 33724.36, "probability": 0.959 }, { "start": 33726.1, "end": 33728.88, "probability": 0.9033 }, { "start": 33729.66, "end": 33733.34, "probability": 0.7724 }, { "start": 33733.46, "end": 33734.94, "probability": 0.8413 }, { "start": 33735.1, "end": 33735.82, "probability": 0.6444 }, { "start": 33736.46, "end": 33737.78, "probability": 0.935 }, { "start": 33738.3, "end": 33739.58, "probability": 0.9722 }, { "start": 33740.74, "end": 33742.48, "probability": 0.6584 }, { "start": 33743.26, "end": 33746.2, "probability": 0.7058 }, { "start": 33746.68, "end": 33750.78, "probability": 0.6747 }, { "start": 33751.42, "end": 33752.66, "probability": 0.6034 }, { "start": 33752.72, "end": 33759.7, "probability": 0.6097 }, { "start": 33759.7, "end": 33761.34, "probability": 0.5556 }, { "start": 33761.54, "end": 33762.74, "probability": 0.2655 }, { "start": 33762.98, "end": 33766.52, "probability": 0.9318 }, { "start": 33766.74, "end": 33770.96, "probability": 0.6899 }, { "start": 33771.2, "end": 33772.4, "probability": 0.9905 }, { "start": 33772.82, "end": 33775.02, "probability": 0.7464 }, { "start": 33775.54, "end": 33777.1, "probability": 0.7486 }, { "start": 33777.24, "end": 33784.25, "probability": 0.938 }, { "start": 33784.46, "end": 33784.56, "probability": 0.4034 }, { "start": 33784.56, "end": 33784.72, "probability": 0.0923 }, { "start": 33784.76, "end": 33785.16, "probability": 0.8594 }, { "start": 33785.5, "end": 33789.28, "probability": 0.6278 }, { "start": 33790.18, "end": 33791.56, "probability": 0.9155 }, { "start": 33792.2, "end": 33793.0, "probability": 0.9546 }, { "start": 33793.28, "end": 33795.26, "probability": 0.7029 }, { "start": 33795.6, "end": 33797.24, "probability": 0.439 }, { "start": 33797.8, "end": 33800.25, "probability": 0.8481 }, { "start": 33802.26, "end": 33805.18, "probability": 0.8896 }, { "start": 33817.82, "end": 33821.08, "probability": 0.9259 }, { "start": 33824.86, "end": 33827.0, "probability": 0.6751 }, { "start": 33828.82, "end": 33830.52, "probability": 0.8659 }, { "start": 33831.78, "end": 33835.46, "probability": 0.4528 }, { "start": 33836.54, "end": 33837.82, "probability": 0.8694 }, { "start": 33838.68, "end": 33840.88, "probability": 0.7958 }, { "start": 33841.84, "end": 33844.7, "probability": 0.7065 }, { "start": 33845.76, "end": 33848.3, "probability": 0.8407 }, { "start": 33850.36, "end": 33852.71, "probability": 0.9941 }, { "start": 33853.02, "end": 33856.52, "probability": 0.991 }, { "start": 33857.08, "end": 33859.48, "probability": 0.8766 }, { "start": 33860.68, "end": 33862.05, "probability": 0.8302 }, { "start": 33863.14, "end": 33865.96, "probability": 0.9706 }, { "start": 33866.92, "end": 33874.42, "probability": 0.9805 }, { "start": 33874.68, "end": 33875.29, "probability": 0.7396 }, { "start": 33876.1, "end": 33877.02, "probability": 0.0597 }, { "start": 33877.04, "end": 33878.16, "probability": 0.2948 }, { "start": 33878.56, "end": 33880.79, "probability": 0.9944 }, { "start": 33882.44, "end": 33883.16, "probability": 0.8449 }, { "start": 33884.9, "end": 33887.56, "probability": 0.9719 }, { "start": 33888.82, "end": 33890.82, "probability": 0.749 }, { "start": 33890.96, "end": 33892.3, "probability": 0.1104 }, { "start": 33894.16, "end": 33895.22, "probability": 0.6404 }, { "start": 33896.82, "end": 33898.96, "probability": 0.9942 }, { "start": 33900.32, "end": 33902.12, "probability": 0.5832 }, { "start": 33902.76, "end": 33903.95, "probability": 0.8081 }, { "start": 33905.84, "end": 33906.7, "probability": 0.9569 }, { "start": 33907.26, "end": 33911.12, "probability": 0.7888 }, { "start": 33912.24, "end": 33915.26, "probability": 0.5015 }, { "start": 33916.84, "end": 33925.32, "probability": 0.783 }, { "start": 33926.0, "end": 33926.82, "probability": 0.7633 }, { "start": 33926.96, "end": 33927.66, "probability": 0.7153 }, { "start": 33928.08, "end": 33930.1, "probability": 0.8698 }, { "start": 33930.66, "end": 33932.62, "probability": 0.9534 }, { "start": 33933.58, "end": 33935.78, "probability": 0.7678 }, { "start": 33936.34, "end": 33937.82, "probability": 0.9847 }, { "start": 33939.58, "end": 33942.0, "probability": 0.6084 }, { "start": 33943.92, "end": 33944.6, "probability": 0.574 }, { "start": 33944.68, "end": 33945.48, "probability": 0.9944 }, { "start": 33946.02, "end": 33950.38, "probability": 0.8759 }, { "start": 33951.0, "end": 33951.74, "probability": 0.6276 }, { "start": 33951.96, "end": 33956.6, "probability": 0.9519 }, { "start": 33957.82, "end": 33959.08, "probability": 0.7942 }, { "start": 33960.06, "end": 33961.74, "probability": 0.8768 }, { "start": 33961.94, "end": 33968.06, "probability": 0.9422 }, { "start": 33968.66, "end": 33970.74, "probability": 0.6811 }, { "start": 33971.32, "end": 33973.9, "probability": 0.0652 }, { "start": 33973.9, "end": 33975.62, "probability": 0.763 }, { "start": 33977.04, "end": 33979.02, "probability": 0.8 }, { "start": 33980.84, "end": 33984.44, "probability": 0.7247 }, { "start": 33984.98, "end": 33989.62, "probability": 0.9485 }, { "start": 33990.3, "end": 33992.27, "probability": 0.4566 }, { "start": 33993.68, "end": 33999.24, "probability": 0.9844 }, { "start": 33999.24, "end": 34002.48, "probability": 0.9804 }, { "start": 34002.74, "end": 34006.86, "probability": 0.8979 }, { "start": 34006.86, "end": 34009.98, "probability": 0.7026 }, { "start": 34010.86, "end": 34012.64, "probability": 0.4084 }, { "start": 34013.5, "end": 34013.88, "probability": 0.4406 }, { "start": 34014.56, "end": 34015.12, "probability": 0.3562 }, { "start": 34015.12, "end": 34017.9, "probability": 0.9972 }, { "start": 34019.06, "end": 34022.38, "probability": 0.9991 }, { "start": 34022.38, "end": 34026.1, "probability": 0.8945 }, { "start": 34026.94, "end": 34027.78, "probability": 0.9248 }, { "start": 34028.1, "end": 34030.76, "probability": 0.8207 }, { "start": 34031.88, "end": 34032.22, "probability": 0.743 }, { "start": 34032.9, "end": 34033.12, "probability": 0.8192 }, { "start": 34033.68, "end": 34034.86, "probability": 0.6373 }, { "start": 34035.1, "end": 34036.54, "probability": 0.7354 }, { "start": 34036.82, "end": 34037.94, "probability": 0.4131 }, { "start": 34038.58, "end": 34040.2, "probability": 0.6053 }, { "start": 34040.74, "end": 34041.78, "probability": 0.7759 }, { "start": 34042.03, "end": 34042.71, "probability": 0.8109 }, { "start": 34042.8, "end": 34043.02, "probability": 0.8483 }, { "start": 34043.94, "end": 34046.38, "probability": 0.554 }, { "start": 34057.16, "end": 34057.72, "probability": 0.2623 }, { "start": 34068.64, "end": 34071.42, "probability": 0.7671 }, { "start": 34072.92, "end": 34076.64, "probability": 0.9919 }, { "start": 34076.64, "end": 34080.34, "probability": 0.9666 }, { "start": 34081.26, "end": 34082.37, "probability": 0.9334 }, { "start": 34084.99, "end": 34087.38, "probability": 0.6296 }, { "start": 34089.08, "end": 34089.96, "probability": 0.8016 }, { "start": 34090.7, "end": 34092.1, "probability": 0.8485 }, { "start": 34093.17, "end": 34095.34, "probability": 0.9425 }, { "start": 34095.74, "end": 34096.52, "probability": 0.6315 }, { "start": 34097.74, "end": 34098.3, "probability": 0.9819 }, { "start": 34099.5, "end": 34104.2, "probability": 0.7979 }, { "start": 34104.42, "end": 34107.72, "probability": 0.5648 }, { "start": 34108.82, "end": 34110.58, "probability": 0.9907 }, { "start": 34110.78, "end": 34111.14, "probability": 0.563 }, { "start": 34111.26, "end": 34112.68, "probability": 0.9516 }, { "start": 34112.84, "end": 34113.36, "probability": 0.7666 }, { "start": 34113.86, "end": 34114.23, "probability": 0.5017 }, { "start": 34115.28, "end": 34117.0, "probability": 0.417 }, { "start": 34117.38, "end": 34117.98, "probability": 0.0465 }, { "start": 34117.98, "end": 34120.96, "probability": 0.8989 }, { "start": 34121.66, "end": 34124.84, "probability": 0.9714 }, { "start": 34124.9, "end": 34126.54, "probability": 0.9426 }, { "start": 34129.08, "end": 34130.53, "probability": 0.9292 }, { "start": 34130.62, "end": 34130.84, "probability": 0.1013 }, { "start": 34131.1, "end": 34132.2, "probability": 0.7231 }, { "start": 34132.36, "end": 34135.66, "probability": 0.9667 }, { "start": 34136.86, "end": 34140.7, "probability": 0.9423 }, { "start": 34140.78, "end": 34143.7, "probability": 0.9857 }, { "start": 34145.14, "end": 34147.24, "probability": 0.9803 }, { "start": 34148.26, "end": 34151.76, "probability": 0.9757 }, { "start": 34152.04, "end": 34154.04, "probability": 0.7697 }, { "start": 34154.94, "end": 34155.52, "probability": 0.7564 }, { "start": 34156.24, "end": 34159.32, "probability": 0.7754 }, { "start": 34159.92, "end": 34160.76, "probability": 0.8955 }, { "start": 34160.99, "end": 34164.26, "probability": 0.6308 }, { "start": 34164.98, "end": 34168.88, "probability": 0.986 }, { "start": 34169.3, "end": 34171.18, "probability": 0.9723 }, { "start": 34171.96, "end": 34174.6, "probability": 0.6634 }, { "start": 34175.14, "end": 34177.77, "probability": 0.9619 }, { "start": 34179.58, "end": 34180.12, "probability": 0.6202 }, { "start": 34180.14, "end": 34183.42, "probability": 0.9179 }, { "start": 34183.48, "end": 34183.92, "probability": 0.8878 }, { "start": 34183.96, "end": 34184.62, "probability": 0.8984 }, { "start": 34184.8, "end": 34185.44, "probability": 0.5082 }, { "start": 34186.64, "end": 34190.08, "probability": 0.0289 }, { "start": 34190.9, "end": 34191.88, "probability": 0.6493 }, { "start": 34192.82, "end": 34195.18, "probability": 0.485 }, { "start": 34195.24, "end": 34196.31, "probability": 0.2942 }, { "start": 34196.5, "end": 34197.44, "probability": 0.1161 }, { "start": 34200.08, "end": 34200.34, "probability": 0.0216 }, { "start": 34200.34, "end": 34201.12, "probability": 0.0223 }, { "start": 34201.12, "end": 34201.92, "probability": 0.8524 }, { "start": 34202.84, "end": 34209.47, "probability": 0.5297 }, { "start": 34210.02, "end": 34210.68, "probability": 0.576 }, { "start": 34211.2, "end": 34212.6, "probability": 0.8469 }, { "start": 34213.5, "end": 34215.78, "probability": 0.953 }, { "start": 34216.78, "end": 34222.82, "probability": 0.9772 }, { "start": 34224.32, "end": 34224.92, "probability": 0.6731 }, { "start": 34225.48, "end": 34227.66, "probability": 0.826 }, { "start": 34228.26, "end": 34232.5, "probability": 0.9971 }, { "start": 34233.16, "end": 34236.08, "probability": 0.9457 }, { "start": 34236.7, "end": 34237.92, "probability": 0.9429 }, { "start": 34238.66, "end": 34240.09, "probability": 0.7542 }, { "start": 34240.88, "end": 34244.3, "probability": 0.9362 }, { "start": 34244.3, "end": 34247.54, "probability": 0.9965 }, { "start": 34249.08, "end": 34250.74, "probability": 0.9866 }, { "start": 34251.58, "end": 34253.6, "probability": 0.9978 }, { "start": 34254.16, "end": 34256.68, "probability": 0.9399 }, { "start": 34257.3, "end": 34258.3, "probability": 0.9741 }, { "start": 34259.06, "end": 34261.44, "probability": 0.9974 }, { "start": 34262.18, "end": 34264.72, "probability": 0.9995 }, { "start": 34265.48, "end": 34265.64, "probability": 0.3528 }, { "start": 34266.12, "end": 34270.16, "probability": 0.9814 }, { "start": 34270.54, "end": 34271.02, "probability": 0.7119 }, { "start": 34271.6, "end": 34277.04, "probability": 0.9809 }, { "start": 34277.38, "end": 34277.66, "probability": 0.6517 }, { "start": 34278.14, "end": 34279.0, "probability": 0.8631 }, { "start": 34279.32, "end": 34281.68, "probability": 0.9637 }, { "start": 34282.2, "end": 34285.52, "probability": 0.9744 }, { "start": 34286.8, "end": 34287.96, "probability": 0.9971 }, { "start": 34288.52, "end": 34290.94, "probability": 0.6116 }, { "start": 34291.52, "end": 34293.8, "probability": 0.8838 }, { "start": 34294.7, "end": 34297.82, "probability": 0.9717 }, { "start": 34299.66, "end": 34300.3, "probability": 0.7602 }, { "start": 34300.96, "end": 34305.54, "probability": 0.9783 }, { "start": 34305.74, "end": 34307.8, "probability": 0.8176 }, { "start": 34308.24, "end": 34310.08, "probability": 0.7851 }, { "start": 34310.6, "end": 34310.98, "probability": 0.7709 }, { "start": 34311.38, "end": 34312.0, "probability": 0.8961 }, { "start": 34312.14, "end": 34313.32, "probability": 0.6881 }, { "start": 34313.44, "end": 34314.08, "probability": 0.8945 }, { "start": 34314.28, "end": 34315.57, "probability": 0.8234 }, { "start": 34315.76, "end": 34316.3, "probability": 0.6091 }, { "start": 34316.4, "end": 34319.12, "probability": 0.2519 }, { "start": 34319.62, "end": 34322.36, "probability": 0.3975 }, { "start": 34322.36, "end": 34322.86, "probability": 0.6875 }, { "start": 34323.18, "end": 34326.76, "probability": 0.0545 }, { "start": 34326.8, "end": 34326.8, "probability": 0.4338 }, { "start": 34327.78, "end": 34332.54, "probability": 0.9251 }, { "start": 34332.68, "end": 34334.98, "probability": 0.9763 }, { "start": 34336.4, "end": 34339.38, "probability": 0.7881 }, { "start": 34339.42, "end": 34340.08, "probability": 0.6606 }, { "start": 34340.08, "end": 34340.78, "probability": 0.6976 }, { "start": 34341.4, "end": 34344.02, "probability": 0.7078 }, { "start": 34344.68, "end": 34346.36, "probability": 0.7079 }, { "start": 34346.36, "end": 34346.92, "probability": 0.7099 }, { "start": 34347.26, "end": 34348.56, "probability": 0.7876 }, { "start": 34349.14, "end": 34352.66, "probability": 0.9893 }, { "start": 34352.74, "end": 34354.6, "probability": 0.9876 }, { "start": 34355.12, "end": 34355.62, "probability": 0.8984 }, { "start": 34356.6, "end": 34356.88, "probability": 0.96 }, { "start": 34357.6, "end": 34359.86, "probability": 0.9969 }, { "start": 34361.03, "end": 34362.02, "probability": 0.6305 }, { "start": 34362.04, "end": 34366.22, "probability": 0.941 }, { "start": 34366.42, "end": 34368.34, "probability": 0.9971 }, { "start": 34369.02, "end": 34371.1, "probability": 0.9559 }, { "start": 34371.52, "end": 34373.8, "probability": 0.9092 }, { "start": 34374.2, "end": 34379.48, "probability": 0.9977 }, { "start": 34379.86, "end": 34380.64, "probability": 0.8243 }, { "start": 34380.78, "end": 34381.06, "probability": 0.7118 }, { "start": 34381.2, "end": 34381.78, "probability": 0.6386 }, { "start": 34381.96, "end": 34382.9, "probability": 0.7939 }, { "start": 34382.96, "end": 34383.96, "probability": 0.9028 }, { "start": 34384.24, "end": 34388.2, "probability": 0.5608 }, { "start": 34388.54, "end": 34391.26, "probability": 0.7903 }, { "start": 34392.74, "end": 34393.0, "probability": 0.6874 }, { "start": 34413.08, "end": 34413.08, "probability": 0.2579 }, { "start": 34413.08, "end": 34414.32, "probability": 0.3559 }, { "start": 34414.68, "end": 34416.05, "probability": 0.8632 }, { "start": 34416.2, "end": 34416.76, "probability": 0.7321 }, { "start": 34417.74, "end": 34420.54, "probability": 0.6621 }, { "start": 34421.4, "end": 34421.84, "probability": 0.6737 }, { "start": 34421.96, "end": 34424.84, "probability": 0.7372 }, { "start": 34425.34, "end": 34425.76, "probability": 0.4158 }, { "start": 34426.62, "end": 34428.6, "probability": 0.8146 }, { "start": 34430.04, "end": 34431.94, "probability": 0.5768 }, { "start": 34432.16, "end": 34432.4, "probability": 0.0452 }, { "start": 34432.4, "end": 34433.32, "probability": 0.8692 }, { "start": 34433.72, "end": 34434.18, "probability": 0.744 }, { "start": 34435.58, "end": 34437.3, "probability": 0.8711 }, { "start": 34438.54, "end": 34440.0, "probability": 0.4641 }, { "start": 34440.08, "end": 34440.7, "probability": 0.0891 }, { "start": 34440.72, "end": 34441.56, "probability": 0.4554 }, { "start": 34455.98, "end": 34458.04, "probability": 0.7898 }, { "start": 34460.54, "end": 34461.62, "probability": 0.7746 }, { "start": 34463.36, "end": 34464.16, "probability": 0.8449 }, { "start": 34464.38, "end": 34465.3, "probability": 0.9763 }, { "start": 34465.58, "end": 34468.99, "probability": 0.5252 }, { "start": 34469.52, "end": 34470.66, "probability": 0.9108 }, { "start": 34471.1, "end": 34475.04, "probability": 0.7838 }, { "start": 34475.7, "end": 34478.84, "probability": 0.9096 }, { "start": 34478.88, "end": 34480.3, "probability": 0.8625 }, { "start": 34487.04, "end": 34487.66, "probability": 0.6929 }, { "start": 34488.32, "end": 34493.68, "probability": 0.9886 }, { "start": 34494.56, "end": 34497.26, "probability": 0.9938 }, { "start": 34497.98, "end": 34500.72, "probability": 0.992 }, { "start": 34500.72, "end": 34503.72, "probability": 0.8859 }, { "start": 34503.82, "end": 34504.42, "probability": 0.4397 }, { "start": 34504.62, "end": 34506.84, "probability": 0.9749 }, { "start": 34507.5, "end": 34510.24, "probability": 0.9268 }, { "start": 34510.36, "end": 34512.74, "probability": 0.9101 }, { "start": 34513.48, "end": 34514.46, "probability": 0.9053 }, { "start": 34515.4, "end": 34515.98, "probability": 0.9345 }, { "start": 34516.08, "end": 34519.24, "probability": 0.958 }, { "start": 34519.38, "end": 34522.44, "probability": 0.9706 }, { "start": 34525.41, "end": 34526.44, "probability": 0.7151 }, { "start": 34527.12, "end": 34528.97, "probability": 0.1651 }, { "start": 34535.2, "end": 34536.22, "probability": 0.509 }, { "start": 34539.94, "end": 34541.58, "probability": 0.8008 }, { "start": 34541.9, "end": 34542.38, "probability": 0.9285 }, { "start": 34543.66, "end": 34546.4, "probability": 0.9922 }, { "start": 34547.42, "end": 34551.78, "probability": 0.9974 }, { "start": 34552.88, "end": 34556.68, "probability": 0.9547 }, { "start": 34557.22, "end": 34558.42, "probability": 0.9868 }, { "start": 34559.52, "end": 34565.26, "probability": 0.9894 }, { "start": 34566.24, "end": 34570.0, "probability": 0.9734 }, { "start": 34571.06, "end": 34572.74, "probability": 0.9951 }, { "start": 34573.9, "end": 34576.02, "probability": 0.7097 }, { "start": 34576.08, "end": 34578.02, "probability": 0.9897 }, { "start": 34578.76, "end": 34579.12, "probability": 0.8664 }, { "start": 34580.24, "end": 34580.44, "probability": 0.7226 }, { "start": 34582.16, "end": 34587.26, "probability": 0.934 }, { "start": 34589.42, "end": 34590.0, "probability": 0.9666 }, { "start": 34591.72, "end": 34596.8, "probability": 0.994 }, { "start": 34597.0, "end": 34598.76, "probability": 0.9872 }, { "start": 34599.74, "end": 34603.46, "probability": 0.9912 }, { "start": 34603.54, "end": 34607.98, "probability": 0.9989 }, { "start": 34608.72, "end": 34613.0, "probability": 0.9976 }, { "start": 34613.74, "end": 34617.0, "probability": 0.9443 }, { "start": 34618.22, "end": 34621.1, "probability": 0.8484 }, { "start": 34622.04, "end": 34624.14, "probability": 0.9959 }, { "start": 34624.88, "end": 34630.34, "probability": 0.9706 }, { "start": 34632.18, "end": 34636.44, "probability": 0.9924 }, { "start": 34637.72, "end": 34640.12, "probability": 0.9519 }, { "start": 34640.98, "end": 34641.8, "probability": 0.7483 }, { "start": 34642.44, "end": 34643.76, "probability": 0.942 }, { "start": 34645.3, "end": 34646.5, "probability": 0.9756 }, { "start": 34647.18, "end": 34650.94, "probability": 0.9608 }, { "start": 34651.82, "end": 34654.06, "probability": 0.9766 }, { "start": 34654.84, "end": 34658.48, "probability": 0.9635 }, { "start": 34659.48, "end": 34661.68, "probability": 0.9827 }, { "start": 34662.1, "end": 34665.62, "probability": 0.9873 }, { "start": 34666.38, "end": 34669.04, "probability": 0.917 }, { "start": 34669.22, "end": 34672.64, "probability": 0.8379 }, { "start": 34672.9, "end": 34673.78, "probability": 0.6981 }, { "start": 34674.2, "end": 34674.74, "probability": 0.8453 }, { "start": 34675.58, "end": 34680.06, "probability": 0.9808 }, { "start": 34680.06, "end": 34680.26, "probability": 0.4941 }, { "start": 34680.54, "end": 34680.84, "probability": 0.7707 }, { "start": 34681.04, "end": 34681.46, "probability": 0.7888 }, { "start": 34681.94, "end": 34683.68, "probability": 0.6764 }, { "start": 34683.84, "end": 34685.0, "probability": 0.9547 }, { "start": 34685.16, "end": 34687.0, "probability": 0.9721 }, { "start": 34687.58, "end": 34689.04, "probability": 0.5701 }, { "start": 34690.96, "end": 34692.3, "probability": 0.8452 }, { "start": 34692.38, "end": 34693.04, "probability": 0.9096 }, { "start": 34693.86, "end": 34696.64, "probability": 0.9935 }, { "start": 34697.48, "end": 34700.72, "probability": 0.9924 }, { "start": 34701.12, "end": 34705.94, "probability": 0.9827 }, { "start": 34706.54, "end": 34708.65, "probability": 0.9739 }, { "start": 34709.72, "end": 34710.7, "probability": 0.9535 }, { "start": 34712.06, "end": 34713.64, "probability": 0.9995 }, { "start": 34714.38, "end": 34715.9, "probability": 0.9894 }, { "start": 34717.54, "end": 34722.74, "probability": 0.9819 }, { "start": 34722.88, "end": 34725.62, "probability": 0.9585 }, { "start": 34726.26, "end": 34728.3, "probability": 0.8392 }, { "start": 34728.72, "end": 34730.33, "probability": 0.3947 }, { "start": 34730.6, "end": 34735.56, "probability": 0.6722 }, { "start": 34735.56, "end": 34736.54, "probability": 0.6595 }, { "start": 34736.62, "end": 34738.2, "probability": 0.9617 }, { "start": 34739.61, "end": 34740.38, "probability": 0.4988 }, { "start": 34740.38, "end": 34742.32, "probability": 0.7496 }, { "start": 34742.52, "end": 34743.22, "probability": 0.6266 }, { "start": 34743.28, "end": 34743.98, "probability": 0.4696 }, { "start": 34744.88, "end": 34745.06, "probability": 0.7651 }, { "start": 34745.06, "end": 34747.41, "probability": 0.7279 }, { "start": 34753.42, "end": 34761.52, "probability": 0.95 }, { "start": 34767.14, "end": 34767.14, "probability": 0.1859 }, { "start": 34767.14, "end": 34769.84, "probability": 0.6608 }, { "start": 34770.94, "end": 34772.3, "probability": 0.6515 }, { "start": 34773.6, "end": 34774.44, "probability": 0.8217 }, { "start": 34775.48, "end": 34777.2, "probability": 0.983 }, { "start": 34777.36, "end": 34778.2, "probability": 0.953 }, { "start": 34778.54, "end": 34779.34, "probability": 0.6188 }, { "start": 34779.48, "end": 34780.0, "probability": 0.831 }, { "start": 34780.1, "end": 34781.34, "probability": 0.8077 }, { "start": 34781.9, "end": 34786.38, "probability": 0.9875 }, { "start": 34786.38, "end": 34790.1, "probability": 0.9829 }, { "start": 34790.2, "end": 34790.94, "probability": 0.7573 }, { "start": 34791.74, "end": 34792.3, "probability": 0.6845 }, { "start": 34792.88, "end": 34792.96, "probability": 0.0059 }, { "start": 34793.54, "end": 34794.3, "probability": 0.8391 }, { "start": 34795.14, "end": 34799.9, "probability": 0.9938 }, { "start": 34800.24, "end": 34800.64, "probability": 0.8318 }, { "start": 34801.44, "end": 34805.6, "probability": 0.9681 }, { "start": 34805.9, "end": 34807.6, "probability": 0.8979 }, { "start": 34807.74, "end": 34811.26, "probability": 0.9678 }, { "start": 34811.26, "end": 34814.12, "probability": 0.9773 }, { "start": 34815.0, "end": 34817.94, "probability": 0.9871 }, { "start": 34817.94, "end": 34822.04, "probability": 0.9932 }, { "start": 34823.24, "end": 34823.62, "probability": 0.5463 }, { "start": 34823.66, "end": 34825.76, "probability": 0.9766 }, { "start": 34825.86, "end": 34828.9, "probability": 0.962 }, { "start": 34829.32, "end": 34832.8, "probability": 0.9199 }, { "start": 34833.9, "end": 34837.28, "probability": 0.9985 }, { "start": 34837.7, "end": 34839.72, "probability": 0.9962 }, { "start": 34839.72, "end": 34842.18, "probability": 0.9795 }, { "start": 34842.96, "end": 34846.46, "probability": 0.993 }, { "start": 34846.58, "end": 34851.1, "probability": 0.9901 }, { "start": 34851.68, "end": 34852.72, "probability": 0.9706 }, { "start": 34854.06, "end": 34854.64, "probability": 0.6225 }, { "start": 34855.06, "end": 34855.78, "probability": 0.8359 }, { "start": 34855.84, "end": 34858.7, "probability": 0.887 }, { "start": 34859.08, "end": 34862.24, "probability": 0.6724 }, { "start": 34863.04, "end": 34863.78, "probability": 0.9604 }, { "start": 34864.4, "end": 34870.2, "probability": 0.9889 }, { "start": 34870.74, "end": 34871.36, "probability": 0.637 }, { "start": 34872.1, "end": 34873.06, "probability": 0.9837 }, { "start": 34873.58, "end": 34874.38, "probability": 0.9667 }, { "start": 34874.9, "end": 34878.32, "probability": 0.985 }, { "start": 34879.42, "end": 34882.34, "probability": 0.999 }, { "start": 34883.14, "end": 34886.9, "probability": 0.9756 }, { "start": 34888.92, "end": 34891.1, "probability": 0.9684 }, { "start": 34891.22, "end": 34895.62, "probability": 0.9936 }, { "start": 34895.84, "end": 34898.12, "probability": 0.9583 }, { "start": 34898.62, "end": 34899.24, "probability": 0.3718 }, { "start": 34899.24, "end": 34900.46, "probability": 0.9703 }, { "start": 34900.68, "end": 34904.24, "probability": 0.738 }, { "start": 34905.86, "end": 34906.48, "probability": 0.3193 }, { "start": 34907.4, "end": 34907.62, "probability": 0.1571 }, { "start": 34908.02, "end": 34909.12, "probability": 0.8477 }, { "start": 34909.28, "end": 34912.96, "probability": 0.7576 }, { "start": 34915.02, "end": 34915.22, "probability": 0.7816 }, { "start": 34933.62, "end": 34933.62, "probability": 0.2401 }, { "start": 34933.62, "end": 34935.13, "probability": 0.6889 }, { "start": 34936.1, "end": 34937.34, "probability": 0.7364 }, { "start": 34937.76, "end": 34939.74, "probability": 0.9693 }, { "start": 34940.76, "end": 34943.3, "probability": 0.7679 }, { "start": 34944.6, "end": 34947.04, "probability": 0.9561 }, { "start": 34948.02, "end": 34949.64, "probability": 0.6863 }, { "start": 34950.24, "end": 34950.84, "probability": 0.6559 }, { "start": 34950.96, "end": 34951.57, "probability": 0.5047 }, { "start": 34952.78, "end": 34955.16, "probability": 0.7075 }, { "start": 34955.24, "end": 34956.38, "probability": 0.75 }, { "start": 34962.48, "end": 34965.1, "probability": 0.6378 }, { "start": 34966.32, "end": 34974.36, "probability": 0.8209 }, { "start": 34974.62, "end": 34974.96, "probability": 0.9634 }, { "start": 34975.68, "end": 34982.2, "probability": 0.9777 }, { "start": 34982.7, "end": 34983.94, "probability": 0.8435 }, { "start": 34984.16, "end": 34984.59, "probability": 0.4095 }, { "start": 34984.62, "end": 34985.1, "probability": 0.7644 }, { "start": 34985.22, "end": 34986.46, "probability": 0.6144 }, { "start": 34987.38, "end": 34990.4, "probability": 0.9791 }, { "start": 34991.18, "end": 34995.74, "probability": 0.9531 }, { "start": 34997.0, "end": 35001.28, "probability": 0.9685 }, { "start": 35002.22, "end": 35004.64, "probability": 0.9116 }, { "start": 35004.7, "end": 35007.02, "probability": 0.575 }, { "start": 35007.12, "end": 35010.44, "probability": 0.9617 }, { "start": 35011.98, "end": 35012.66, "probability": 0.5582 }, { "start": 35012.72, "end": 35014.3, "probability": 0.7136 }, { "start": 35015.16, "end": 35018.04, "probability": 0.8544 }, { "start": 35018.08, "end": 35019.32, "probability": 0.6173 }, { "start": 35019.62, "end": 35019.74, "probability": 0.5179 }, { "start": 35019.84, "end": 35021.7, "probability": 0.9604 }, { "start": 35022.42, "end": 35023.07, "probability": 0.9954 }, { "start": 35023.9, "end": 35025.08, "probability": 0.9456 }, { "start": 35025.5, "end": 35027.32, "probability": 0.914 }, { "start": 35028.18, "end": 35029.53, "probability": 0.7856 }, { "start": 35029.92, "end": 35031.3, "probability": 0.897 }, { "start": 35031.32, "end": 35032.38, "probability": 0.6656 }, { "start": 35032.5, "end": 35033.46, "probability": 0.645 }, { "start": 35034.0, "end": 35035.54, "probability": 0.9757 }, { "start": 35035.84, "end": 35036.88, "probability": 0.9299 }, { "start": 35037.28, "end": 35038.26, "probability": 0.9713 }, { "start": 35038.36, "end": 35039.1, "probability": 0.9113 }, { "start": 35039.46, "end": 35040.22, "probability": 0.6797 }, { "start": 35040.82, "end": 35040.92, "probability": 0.1601 }, { "start": 35040.92, "end": 35041.4, "probability": 0.3427 }, { "start": 35043.79, "end": 35045.7, "probability": 0.639 }, { "start": 35045.7, "end": 35049.14, "probability": 0.7335 }, { "start": 35050.08, "end": 35052.42, "probability": 0.8749 }, { "start": 35052.88, "end": 35055.58, "probability": 0.8746 }, { "start": 35056.42, "end": 35056.62, "probability": 0.9601 }, { "start": 35057.46, "end": 35058.5, "probability": 0.6844 }, { "start": 35058.58, "end": 35059.58, "probability": 0.8545 }, { "start": 35059.8, "end": 35060.26, "probability": 0.2264 }, { "start": 35060.8, "end": 35063.04, "probability": 0.8864 }, { "start": 35065.84, "end": 35066.74, "probability": 0.832 }, { "start": 35066.76, "end": 35070.18, "probability": 0.9016 }, { "start": 35070.7, "end": 35071.94, "probability": 0.9754 }, { "start": 35073.14, "end": 35073.92, "probability": 0.7773 }, { "start": 35074.42, "end": 35076.24, "probability": 0.9633 }, { "start": 35076.7, "end": 35079.54, "probability": 0.9961 }, { "start": 35079.54, "end": 35085.84, "probability": 0.9796 }, { "start": 35086.54, "end": 35089.9, "probability": 0.9888 }, { "start": 35090.4, "end": 35093.44, "probability": 0.9948 }, { "start": 35094.12, "end": 35097.98, "probability": 0.9929 }, { "start": 35098.5, "end": 35099.82, "probability": 0.9997 }, { "start": 35100.44, "end": 35101.0, "probability": 0.9862 }, { "start": 35101.62, "end": 35104.14, "probability": 0.9741 }, { "start": 35104.58, "end": 35107.18, "probability": 0.9832 }, { "start": 35107.18, "end": 35109.14, "probability": 0.9905 }, { "start": 35109.7, "end": 35110.54, "probability": 0.9679 }, { "start": 35111.36, "end": 35114.06, "probability": 0.9979 }, { "start": 35114.24, "end": 35117.66, "probability": 0.999 }, { "start": 35118.12, "end": 35119.54, "probability": 0.8212 }, { "start": 35120.0, "end": 35121.04, "probability": 0.9573 }, { "start": 35123.3, "end": 35125.26, "probability": 0.9814 }, { "start": 35126.04, "end": 35129.32, "probability": 0.9077 }, { "start": 35129.94, "end": 35131.0, "probability": 0.9912 }, { "start": 35132.88, "end": 35133.16, "probability": 0.8678 }, { "start": 35134.12, "end": 35134.62, "probability": 0.4823 }, { "start": 35136.44, "end": 35137.98, "probability": 0.8039 }, { "start": 35142.86, "end": 35145.38, "probability": 0.9149 }, { "start": 35146.92, "end": 35148.86, "probability": 0.9985 }, { "start": 35148.94, "end": 35154.7, "probability": 0.9334 }, { "start": 35154.84, "end": 35157.08, "probability": 0.8069 }, { "start": 35157.84, "end": 35158.9, "probability": 0.8036 }, { "start": 35159.36, "end": 35161.1, "probability": 0.9365 }, { "start": 35161.22, "end": 35161.86, "probability": 0.8281 }, { "start": 35161.94, "end": 35162.36, "probability": 0.8772 }, { "start": 35162.46, "end": 35166.28, "probability": 0.747 }, { "start": 35166.54, "end": 35167.42, "probability": 0.7493 }, { "start": 35168.5, "end": 35171.66, "probability": 0.9611 }, { "start": 35172.42, "end": 35174.46, "probability": 0.8765 }, { "start": 35175.64, "end": 35176.94, "probability": 0.9668 }, { "start": 35177.2, "end": 35177.99, "probability": 0.9392 }, { "start": 35178.64, "end": 35179.44, "probability": 0.8967 }, { "start": 35179.72, "end": 35180.92, "probability": 0.8155 }, { "start": 35181.46, "end": 35184.08, "probability": 0.9171 }, { "start": 35185.06, "end": 35188.16, "probability": 0.9258 }, { "start": 35189.24, "end": 35190.8, "probability": 0.9387 }, { "start": 35191.38, "end": 35192.58, "probability": 0.9188 }, { "start": 35193.44, "end": 35194.76, "probability": 0.8253 }, { "start": 35195.3, "end": 35204.68, "probability": 0.9619 }, { "start": 35204.84, "end": 35211.52, "probability": 0.7964 }, { "start": 35212.38, "end": 35218.38, "probability": 0.9958 }, { "start": 35218.94, "end": 35219.5, "probability": 0.5679 }, { "start": 35219.74, "end": 35222.56, "probability": 0.9146 }, { "start": 35222.64, "end": 35223.88, "probability": 0.8049 }, { "start": 35224.22, "end": 35225.52, "probability": 0.6233 }, { "start": 35226.14, "end": 35229.48, "probability": 0.8525 }, { "start": 35229.48, "end": 35231.8, "probability": 0.9987 }, { "start": 35232.04, "end": 35232.04, "probability": 0.022 }, { "start": 35232.04, "end": 35232.48, "probability": 0.673 }, { "start": 35232.62, "end": 35234.28, "probability": 0.8375 }, { "start": 35234.52, "end": 35236.2, "probability": 0.9149 }, { "start": 35236.94, "end": 35237.62, "probability": 0.978 }, { "start": 35238.28, "end": 35243.83, "probability": 0.9938 }, { "start": 35244.98, "end": 35246.54, "probability": 0.9943 }, { "start": 35248.06, "end": 35248.6, "probability": 0.2767 }, { "start": 35248.6, "end": 35253.24, "probability": 0.3052 }, { "start": 35253.24, "end": 35253.24, "probability": 0.0263 }, { "start": 35253.24, "end": 35255.3, "probability": 0.6723 }, { "start": 35256.24, "end": 35260.3, "probability": 0.9058 }, { "start": 35260.44, "end": 35261.64, "probability": 0.9645 }, { "start": 35262.18, "end": 35265.65, "probability": 0.9991 }, { "start": 35266.34, "end": 35268.38, "probability": 0.9987 }, { "start": 35268.48, "end": 35270.18, "probability": 0.9399 }, { "start": 35271.02, "end": 35272.17, "probability": 0.3175 }, { "start": 35272.62, "end": 35273.1, "probability": 0.03 }, { "start": 35273.1, "end": 35273.26, "probability": 0.1984 }, { "start": 35273.6, "end": 35278.82, "probability": 0.9683 }, { "start": 35278.88, "end": 35280.98, "probability": 0.9902 }, { "start": 35281.34, "end": 35283.42, "probability": 0.99 }, { "start": 35284.44, "end": 35285.36, "probability": 0.9355 }, { "start": 35285.82, "end": 35288.96, "probability": 0.9688 }, { "start": 35289.54, "end": 35292.16, "probability": 0.7503 }, { "start": 35292.62, "end": 35297.3, "probability": 0.899 }, { "start": 35297.98, "end": 35300.12, "probability": 0.6091 }, { "start": 35300.7, "end": 35303.42, "probability": 0.9956 }, { "start": 35304.12, "end": 35308.78, "probability": 0.9468 }, { "start": 35308.78, "end": 35311.96, "probability": 0.9816 }, { "start": 35312.18, "end": 35312.44, "probability": 0.4781 }, { "start": 35312.98, "end": 35317.98, "probability": 0.9966 }, { "start": 35318.64, "end": 35320.35, "probability": 0.7748 }, { "start": 35321.4, "end": 35324.7, "probability": 0.9197 }, { "start": 35325.24, "end": 35325.7, "probability": 0.8271 }, { "start": 35326.24, "end": 35326.94, "probability": 0.8385 }, { "start": 35327.28, "end": 35330.04, "probability": 0.99 }, { "start": 35330.14, "end": 35333.2, "probability": 0.9203 }, { "start": 35333.54, "end": 35334.5, "probability": 0.9855 }, { "start": 35335.02, "end": 35336.6, "probability": 0.9935 }, { "start": 35337.86, "end": 35339.04, "probability": 0.9357 }, { "start": 35339.16, "end": 35339.44, "probability": 0.6072 }, { "start": 35340.1, "end": 35342.32, "probability": 0.6785 }, { "start": 35342.94, "end": 35345.42, "probability": 0.6849 }, { "start": 35349.68, "end": 35353.74, "probability": 0.6155 }, { "start": 35354.26, "end": 35354.9, "probability": 0.9056 }, { "start": 35355.12, "end": 35356.38, "probability": 0.9793 }, { "start": 35356.58, "end": 35358.9, "probability": 0.9489 }, { "start": 35360.84, "end": 35363.34, "probability": 0.9966 }, { "start": 35363.41, "end": 35368.65, "probability": 0.9917 }, { "start": 35369.14, "end": 35370.84, "probability": 0.9768 }, { "start": 35371.18, "end": 35371.82, "probability": 0.8286 }, { "start": 35372.6, "end": 35378.36, "probability": 0.7359 }, { "start": 35379.22, "end": 35380.82, "probability": 0.9915 }, { "start": 35381.42, "end": 35384.3, "probability": 0.9415 }, { "start": 35385.02, "end": 35385.78, "probability": 0.7686 }, { "start": 35386.52, "end": 35387.56, "probability": 0.3938 }, { "start": 35388.32, "end": 35388.76, "probability": 0.8436 }, { "start": 35389.72, "end": 35391.18, "probability": 0.9141 }, { "start": 35391.84, "end": 35395.94, "probability": 0.9808 }, { "start": 35395.96, "end": 35397.12, "probability": 0.8137 }, { "start": 35397.62, "end": 35398.22, "probability": 0.6903 }, { "start": 35398.26, "end": 35399.62, "probability": 0.941 }, { "start": 35399.78, "end": 35401.56, "probability": 0.8447 }, { "start": 35401.82, "end": 35405.74, "probability": 0.9902 }, { "start": 35405.74, "end": 35409.38, "probability": 0.9995 }, { "start": 35410.08, "end": 35414.6, "probability": 0.9937 }, { "start": 35415.88, "end": 35418.24, "probability": 0.9775 }, { "start": 35418.24, "end": 35421.5, "probability": 0.9946 }, { "start": 35422.0, "end": 35423.98, "probability": 0.9608 }, { "start": 35424.56, "end": 35428.98, "probability": 0.9902 }, { "start": 35429.42, "end": 35432.82, "probability": 0.9918 }, { "start": 35433.72, "end": 35434.52, "probability": 0.7769 }, { "start": 35434.62, "end": 35436.88, "probability": 0.5503 }, { "start": 35437.02, "end": 35438.92, "probability": 0.8863 }, { "start": 35440.0, "end": 35443.16, "probability": 0.51 }, { "start": 35443.36, "end": 35446.26, "probability": 0.9707 }, { "start": 35446.38, "end": 35449.4, "probability": 0.999 }, { "start": 35449.4, "end": 35452.1, "probability": 0.993 }, { "start": 35452.78, "end": 35456.26, "probability": 0.9922 }, { "start": 35456.78, "end": 35458.74, "probability": 0.995 }, { "start": 35461.87, "end": 35465.5, "probability": 0.7477 }, { "start": 35465.56, "end": 35466.2, "probability": 0.8423 }, { "start": 35467.2, "end": 35468.56, "probability": 0.9817 }, { "start": 35469.02, "end": 35471.6, "probability": 0.9639 }, { "start": 35472.1, "end": 35475.78, "probability": 0.9272 }, { "start": 35477.17, "end": 35481.8, "probability": 0.9915 }, { "start": 35481.86, "end": 35483.32, "probability": 0.8367 }, { "start": 35483.32, "end": 35485.06, "probability": 0.9949 }, { "start": 35485.74, "end": 35489.84, "probability": 0.944 }, { "start": 35490.48, "end": 35494.24, "probability": 0.9984 }, { "start": 35494.56, "end": 35495.2, "probability": 0.8276 }, { "start": 35495.76, "end": 35500.64, "probability": 0.9897 }, { "start": 35501.24, "end": 35504.44, "probability": 0.9452 }, { "start": 35504.7, "end": 35505.58, "probability": 0.9863 }, { "start": 35505.66, "end": 35510.22, "probability": 0.9697 }, { "start": 35511.58, "end": 35517.84, "probability": 0.9954 }, { "start": 35519.02, "end": 35519.82, "probability": 0.8146 }, { "start": 35520.2, "end": 35520.76, "probability": 0.9422 }, { "start": 35521.12, "end": 35522.56, "probability": 0.9565 }, { "start": 35523.38, "end": 35526.34, "probability": 0.8883 }, { "start": 35526.34, "end": 35529.52, "probability": 0.966 }, { "start": 35529.8, "end": 35530.3, "probability": 0.8573 }, { "start": 35531.08, "end": 35532.9, "probability": 0.9613 }, { "start": 35533.44, "end": 35536.5, "probability": 0.68 }, { "start": 35536.7, "end": 35538.8, "probability": 0.9875 }, { "start": 35539.24, "end": 35541.88, "probability": 0.6561 }, { "start": 35542.48, "end": 35543.98, "probability": 0.8674 }, { "start": 35544.68, "end": 35546.26, "probability": 0.9871 }, { "start": 35546.38, "end": 35547.5, "probability": 0.9819 }, { "start": 35547.98, "end": 35549.22, "probability": 0.905 }, { "start": 35549.3, "end": 35553.36, "probability": 0.9753 }, { "start": 35553.44, "end": 35554.62, "probability": 0.8269 }, { "start": 35555.28, "end": 35557.62, "probability": 0.9943 }, { "start": 35557.86, "end": 35560.84, "probability": 0.9752 }, { "start": 35561.34, "end": 35567.92, "probability": 0.9714 }, { "start": 35568.5, "end": 35570.08, "probability": 0.8077 }, { "start": 35571.02, "end": 35571.98, "probability": 0.5884 }, { "start": 35572.6, "end": 35574.68, "probability": 0.9758 }, { "start": 35575.4, "end": 35578.38, "probability": 0.9559 }, { "start": 35578.65, "end": 35580.18, "probability": 0.5916 }, { "start": 35580.2, "end": 35582.5, "probability": 0.9431 }, { "start": 35583.9, "end": 35585.06, "probability": 0.9648 }, { "start": 35585.12, "end": 35585.78, "probability": 0.9719 }, { "start": 35586.32, "end": 35587.24, "probability": 0.9967 }, { "start": 35588.12, "end": 35589.06, "probability": 0.9938 }, { "start": 35589.88, "end": 35590.5, "probability": 0.5391 }, { "start": 35591.66, "end": 35592.42, "probability": 0.2298 }, { "start": 35592.42, "end": 35592.42, "probability": 0.2272 }, { "start": 35592.42, "end": 35592.52, "probability": 0.3101 }, { "start": 35593.54, "end": 35597.42, "probability": 0.5011 }, { "start": 35598.1, "end": 35598.86, "probability": 0.9229 }, { "start": 35606.18, "end": 35607.4, "probability": 0.4986 }, { "start": 35607.4, "end": 35607.84, "probability": 0.5545 }, { "start": 35609.22, "end": 35611.86, "probability": 0.796 }, { "start": 35612.66, "end": 35618.84, "probability": 0.8216 }, { "start": 35619.5, "end": 35621.08, "probability": 0.9208 }, { "start": 35622.38, "end": 35626.02, "probability": 0.6049 }, { "start": 35626.5, "end": 35628.06, "probability": 0.7894 }, { "start": 35628.66, "end": 35630.86, "probability": 0.9652 }, { "start": 35631.52, "end": 35634.08, "probability": 0.9985 }, { "start": 35634.44, "end": 35634.68, "probability": 0.8486 }, { "start": 35635.74, "end": 35637.54, "probability": 0.745 }, { "start": 35638.54, "end": 35639.42, "probability": 0.6126 }, { "start": 35639.52, "end": 35639.7, "probability": 0.6521 }, { "start": 35639.78, "end": 35640.68, "probability": 0.7892 }, { "start": 35640.84, "end": 35643.66, "probability": 0.9928 }, { "start": 35643.76, "end": 35649.02, "probability": 0.9904 }, { "start": 35649.54, "end": 35653.16, "probability": 0.9952 }, { "start": 35653.4, "end": 35654.3, "probability": 0.7587 }, { "start": 35654.32, "end": 35655.26, "probability": 0.9292 }, { "start": 35655.44, "end": 35656.16, "probability": 0.8134 }, { "start": 35656.26, "end": 35659.82, "probability": 0.982 }, { "start": 35660.64, "end": 35663.72, "probability": 0.9971 }, { "start": 35664.39, "end": 35664.82, "probability": 0.9362 }, { "start": 35664.94, "end": 35669.4, "probability": 0.9893 }, { "start": 35670.08, "end": 35671.16, "probability": 0.9642 }, { "start": 35671.38, "end": 35673.2, "probability": 0.9888 }, { "start": 35674.1, "end": 35679.24, "probability": 0.9927 }, { "start": 35681.4, "end": 35682.72, "probability": 0.8742 }, { "start": 35682.96, "end": 35686.06, "probability": 0.9309 }, { "start": 35687.26, "end": 35687.96, "probability": 0.9607 }, { "start": 35688.1, "end": 35691.92, "probability": 0.8647 }, { "start": 35692.06, "end": 35692.92, "probability": 0.8139 }, { "start": 35693.6, "end": 35695.3, "probability": 0.7918 }, { "start": 35695.88, "end": 35699.24, "probability": 0.9397 }, { "start": 35699.34, "end": 35701.62, "probability": 0.8655 }, { "start": 35701.76, "end": 35703.92, "probability": 0.8779 }, { "start": 35705.44, "end": 35710.56, "probability": 0.7549 }, { "start": 35710.72, "end": 35713.58, "probability": 0.8481 }, { "start": 35713.94, "end": 35714.64, "probability": 0.7893 }, { "start": 35715.14, "end": 35717.26, "probability": 0.9846 }, { "start": 35718.21, "end": 35720.42, "probability": 0.8911 }, { "start": 35721.32, "end": 35723.72, "probability": 0.9673 }, { "start": 35724.98, "end": 35727.54, "probability": 0.9878 }, { "start": 35728.28, "end": 35731.32, "probability": 0.9792 }, { "start": 35732.14, "end": 35735.96, "probability": 0.9022 }, { "start": 35744.36, "end": 35744.36, "probability": 0.0034 }, { "start": 35744.36, "end": 35745.5, "probability": 0.6911 }, { "start": 35745.68, "end": 35748.48, "probability": 0.9163 }, { "start": 35749.8, "end": 35751.84, "probability": 0.9671 }, { "start": 35752.48, "end": 35754.16, "probability": 0.9628 }, { "start": 35754.9, "end": 35757.32, "probability": 0.9404 }, { "start": 35757.42, "end": 35759.54, "probability": 0.9847 }, { "start": 35759.68, "end": 35760.77, "probability": 0.9912 }, { "start": 35761.98, "end": 35764.06, "probability": 0.8047 }, { "start": 35764.6, "end": 35770.92, "probability": 0.9768 }, { "start": 35771.82, "end": 35772.62, "probability": 0.9426 }, { "start": 35773.74, "end": 35777.08, "probability": 0.9966 }, { "start": 35777.28, "end": 35779.3, "probability": 0.8778 }, { "start": 35779.38, "end": 35780.48, "probability": 0.8007 }, { "start": 35780.62, "end": 35784.86, "probability": 0.9927 }, { "start": 35785.6, "end": 35787.46, "probability": 0.9908 }, { "start": 35787.5, "end": 35789.42, "probability": 0.989 }, { "start": 35789.66, "end": 35790.44, "probability": 0.9162 }, { "start": 35790.58, "end": 35791.04, "probability": 0.861 }, { "start": 35791.16, "end": 35791.76, "probability": 0.539 }, { "start": 35792.22, "end": 35795.66, "probability": 0.941 }, { "start": 35796.2, "end": 35798.32, "probability": 0.9971 }, { "start": 35798.4, "end": 35802.22, "probability": 0.9902 }, { "start": 35802.22, "end": 35805.0, "probability": 0.7091 }, { "start": 35805.78, "end": 35806.3, "probability": 0.9183 }, { "start": 35806.74, "end": 35810.92, "probability": 0.9948 }, { "start": 35811.46, "end": 35811.98, "probability": 0.8827 }, { "start": 35811.98, "end": 35814.24, "probability": 0.9963 }, { "start": 35814.78, "end": 35815.64, "probability": 0.8372 }, { "start": 35815.8, "end": 35819.86, "probability": 0.9941 }, { "start": 35820.94, "end": 35824.92, "probability": 0.9962 }, { "start": 35825.58, "end": 35829.96, "probability": 0.9855 }, { "start": 35830.42, "end": 35831.44, "probability": 0.4705 }, { "start": 35831.98, "end": 35832.4, "probability": 0.5739 }, { "start": 35832.84, "end": 35836.72, "probability": 0.7828 }, { "start": 35836.92, "end": 35837.58, "probability": 0.7805 }, { "start": 35837.96, "end": 35838.68, "probability": 0.7326 }, { "start": 35839.72, "end": 35844.46, "probability": 0.9814 }, { "start": 35845.04, "end": 35847.86, "probability": 0.9595 }, { "start": 35847.86, "end": 35850.48, "probability": 0.9991 }, { "start": 35851.12, "end": 35856.26, "probability": 0.9897 }, { "start": 35856.4, "end": 35858.1, "probability": 0.9968 }, { "start": 35858.96, "end": 35861.78, "probability": 0.9352 }, { "start": 35862.44, "end": 35863.84, "probability": 0.653 }, { "start": 35864.38, "end": 35867.02, "probability": 0.8695 }, { "start": 35867.02, "end": 35869.46, "probability": 0.9989 }, { "start": 35870.38, "end": 35872.36, "probability": 0.9888 }, { "start": 35872.36, "end": 35874.34, "probability": 0.996 }, { "start": 35874.92, "end": 35878.58, "probability": 0.9752 }, { "start": 35879.3, "end": 35880.58, "probability": 0.8757 }, { "start": 35881.14, "end": 35884.76, "probability": 0.9746 }, { "start": 35884.84, "end": 35888.2, "probability": 0.9827 }, { "start": 35888.84, "end": 35890.14, "probability": 0.6051 }, { "start": 35890.68, "end": 35894.72, "probability": 0.9905 }, { "start": 35895.28, "end": 35896.44, "probability": 0.9987 }, { "start": 35896.98, "end": 35898.36, "probability": 0.9012 }, { "start": 35900.44, "end": 35900.96, "probability": 0.4904 }, { "start": 35901.2, "end": 35902.28, "probability": 0.577 }, { "start": 35903.44, "end": 35903.9, "probability": 0.7079 }, { "start": 35905.38, "end": 35907.14, "probability": 0.9947 }, { "start": 35907.2, "end": 35908.96, "probability": 0.994 }, { "start": 35910.08, "end": 35915.7, "probability": 0.9777 }, { "start": 35915.7, "end": 35921.48, "probability": 0.9954 }, { "start": 35922.14, "end": 35924.02, "probability": 0.885 }, { "start": 35924.72, "end": 35929.2, "probability": 0.994 }, { "start": 35930.12, "end": 35931.78, "probability": 0.747 }, { "start": 35932.64, "end": 35933.5, "probability": 0.8542 }, { "start": 35934.04, "end": 35934.74, "probability": 0.9927 }, { "start": 35935.48, "end": 35936.92, "probability": 0.9737 }, { "start": 35937.66, "end": 35938.5, "probability": 0.9019 }, { "start": 35938.64, "end": 35940.72, "probability": 0.9951 }, { "start": 35941.26, "end": 35943.22, "probability": 0.9203 }, { "start": 35943.84, "end": 35944.76, "probability": 0.7776 }, { "start": 35945.98, "end": 35947.88, "probability": 0.9873 }, { "start": 35948.46, "end": 35949.14, "probability": 0.8703 }, { "start": 35949.72, "end": 35951.1, "probability": 0.7989 }, { "start": 35951.16, "end": 35952.96, "probability": 0.9204 }, { "start": 35953.46, "end": 35956.34, "probability": 0.9901 }, { "start": 35957.0, "end": 35960.38, "probability": 0.5784 }, { "start": 35960.69, "end": 35963.64, "probability": 0.9573 }, { "start": 35963.64, "end": 35966.28, "probability": 0.9442 }, { "start": 35966.34, "end": 35970.28, "probability": 0.9784 }, { "start": 35970.82, "end": 35976.34, "probability": 0.9513 }, { "start": 35976.5, "end": 35977.44, "probability": 0.967 }, { "start": 35977.74, "end": 35979.1, "probability": 0.9853 }, { "start": 35979.5, "end": 35980.38, "probability": 0.9399 }, { "start": 35981.18, "end": 35984.22, "probability": 0.9627 }, { "start": 35986.16, "end": 35989.08, "probability": 0.9165 }, { "start": 35989.36, "end": 35993.09, "probability": 0.574 }, { "start": 35993.7, "end": 35995.18, "probability": 0.034 }, { "start": 35995.22, "end": 35996.54, "probability": 0.536 }, { "start": 35996.92, "end": 35999.68, "probability": 0.9463 }, { "start": 36000.2, "end": 36002.8, "probability": 0.9981 }, { "start": 36003.9, "end": 36006.04, "probability": 0.9349 }, { "start": 36007.14, "end": 36008.3, "probability": 0.8672 }, { "start": 36008.48, "end": 36009.74, "probability": 0.9858 }, { "start": 36010.2, "end": 36010.7, "probability": 0.3598 }, { "start": 36010.74, "end": 36011.94, "probability": 0.6346 }, { "start": 36012.04, "end": 36012.5, "probability": 0.8909 }, { "start": 36012.98, "end": 36015.4, "probability": 0.9957 }, { "start": 36015.78, "end": 36020.16, "probability": 0.9555 }, { "start": 36020.9, "end": 36023.4, "probability": 0.7122 }, { "start": 36023.56, "end": 36023.8, "probability": 0.4863 }, { "start": 36023.92, "end": 36027.82, "probability": 0.8144 }, { "start": 36028.69, "end": 36031.16, "probability": 0.9539 }, { "start": 36031.7, "end": 36033.31, "probability": 0.9779 }, { "start": 36033.54, "end": 36035.0, "probability": 0.6828 }, { "start": 36035.18, "end": 36036.62, "probability": 0.8948 }, { "start": 36036.72, "end": 36038.43, "probability": 0.9674 }, { "start": 36039.12, "end": 36042.06, "probability": 0.9626 }, { "start": 36042.2, "end": 36043.31, "probability": 0.8779 }, { "start": 36044.44, "end": 36046.42, "probability": 0.968 }, { "start": 36047.6, "end": 36050.7, "probability": 0.9971 }, { "start": 36051.36, "end": 36056.8, "probability": 0.9933 }, { "start": 36056.8, "end": 36061.57, "probability": 0.9995 }, { "start": 36062.68, "end": 36064.04, "probability": 0.9208 }, { "start": 36064.66, "end": 36067.63, "probability": 0.9987 }, { "start": 36068.86, "end": 36070.42, "probability": 0.9976 }, { "start": 36071.32, "end": 36073.74, "probability": 0.7261 }, { "start": 36073.92, "end": 36076.34, "probability": 0.5233 }, { "start": 36076.52, "end": 36077.02, "probability": 0.8811 }, { "start": 36078.29, "end": 36081.2, "probability": 0.9194 }, { "start": 36081.76, "end": 36082.3, "probability": 0.4556 }, { "start": 36082.96, "end": 36085.58, "probability": 0.9116 }, { "start": 36086.18, "end": 36086.86, "probability": 0.8817 }, { "start": 36087.7, "end": 36088.8, "probability": 0.7254 }, { "start": 36089.36, "end": 36093.46, "probability": 0.9922 }, { "start": 36094.38, "end": 36097.18, "probability": 0.8176 }, { "start": 36100.63, "end": 36101.18, "probability": 0.1552 }, { "start": 36101.18, "end": 36101.86, "probability": 0.9109 }, { "start": 36103.8, "end": 36105.74, "probability": 0.819 }, { "start": 36107.56, "end": 36108.42, "probability": 0.954 }, { "start": 36108.68, "end": 36109.02, "probability": 0.0764 }, { "start": 36109.02, "end": 36109.02, "probability": 0.9081 }, { "start": 36109.32, "end": 36110.32, "probability": 0.976 }, { "start": 36111.04, "end": 36111.66, "probability": 0.7829 }, { "start": 36112.26, "end": 36114.2, "probability": 0.9878 }, { "start": 36114.74, "end": 36118.26, "probability": 0.9336 }, { "start": 36118.8, "end": 36118.84, "probability": 0.0593 }, { "start": 36118.84, "end": 36120.12, "probability": 0.5875 }, { "start": 36120.6, "end": 36124.8, "probability": 0.9766 }, { "start": 36125.28, "end": 36127.24, "probability": 0.9719 }, { "start": 36127.82, "end": 36128.48, "probability": 0.973 }, { "start": 36128.94, "end": 36129.32, "probability": 0.2934 }, { "start": 36131.28, "end": 36135.16, "probability": 0.9946 }, { "start": 36135.36, "end": 36135.78, "probability": 0.4758 }, { "start": 36136.36, "end": 36136.92, "probability": 0.302 }, { "start": 36137.1, "end": 36139.84, "probability": 0.9934 }, { "start": 36140.0, "end": 36141.1, "probability": 0.9605 }, { "start": 36141.3, "end": 36141.44, "probability": 0.8068 }, { "start": 36141.46, "end": 36143.74, "probability": 0.9539 }, { "start": 36143.76, "end": 36146.12, "probability": 0.9795 }, { "start": 36146.32, "end": 36149.57, "probability": 0.9954 }, { "start": 36150.06, "end": 36152.74, "probability": 0.8337 }, { "start": 36152.92, "end": 36153.4, "probability": 0.7811 }, { "start": 36154.18, "end": 36154.98, "probability": 0.9053 }, { "start": 36155.68, "end": 36158.9, "probability": 0.8552 }, { "start": 36159.84, "end": 36162.0, "probability": 0.8278 }, { "start": 36162.2, "end": 36162.38, "probability": 0.3619 }, { "start": 36162.58, "end": 36164.2, "probability": 0.736 }, { "start": 36164.22, "end": 36164.22, "probability": 0.5199 }, { "start": 36164.22, "end": 36165.28, "probability": 0.3848 }, { "start": 36165.28, "end": 36169.08, "probability": 0.9734 }, { "start": 36169.08, "end": 36171.16, "probability": 0.9823 }, { "start": 36171.32, "end": 36172.14, "probability": 0.8692 }, { "start": 36172.6, "end": 36173.46, "probability": 0.4799 }, { "start": 36174.22, "end": 36174.22, "probability": 0.0001 }, { "start": 36175.74, "end": 36176.64, "probability": 0.5411 }, { "start": 36176.68, "end": 36177.2, "probability": 0.519 }, { "start": 36177.7, "end": 36180.58, "probability": 0.742 }, { "start": 36181.14, "end": 36181.34, "probability": 0.9302 }, { "start": 36190.46, "end": 36190.84, "probability": 0.236 }, { "start": 36191.38, "end": 36192.62, "probability": 0.7691 }, { "start": 36192.76, "end": 36193.04, "probability": 0.7 }, { "start": 36193.34, "end": 36194.64, "probability": 0.8892 }, { "start": 36194.68, "end": 36195.6, "probability": 0.8239 }, { "start": 36196.44, "end": 36197.38, "probability": 0.9556 }, { "start": 36197.56, "end": 36200.38, "probability": 0.9834 }, { "start": 36201.08, "end": 36206.68, "probability": 0.9672 }, { "start": 36207.84, "end": 36210.4, "probability": 0.9979 }, { "start": 36210.5, "end": 36212.65, "probability": 0.9451 }, { "start": 36213.12, "end": 36215.3, "probability": 0.6445 }, { "start": 36215.36, "end": 36216.38, "probability": 0.8697 }, { "start": 36216.52, "end": 36220.82, "probability": 0.4714 }, { "start": 36221.74, "end": 36221.74, "probability": 0.0341 }, { "start": 36221.74, "end": 36224.0, "probability": 0.9754 }, { "start": 36224.0, "end": 36226.34, "probability": 0.9971 }, { "start": 36226.72, "end": 36227.44, "probability": 0.8407 }, { "start": 36228.1, "end": 36230.18, "probability": 0.8427 }, { "start": 36230.42, "end": 36234.12, "probability": 0.9395 }, { "start": 36234.12, "end": 36236.52, "probability": 0.9937 }, { "start": 36237.36, "end": 36240.8, "probability": 0.9372 }, { "start": 36242.08, "end": 36242.62, "probability": 0.3905 }, { "start": 36242.98, "end": 36243.66, "probability": 0.8851 }, { "start": 36243.8, "end": 36246.42, "probability": 0.8833 }, { "start": 36246.42, "end": 36246.52, "probability": 0.5762 }, { "start": 36247.04, "end": 36249.32, "probability": 0.9308 }, { "start": 36250.18, "end": 36253.95, "probability": 0.9873 }, { "start": 36256.0, "end": 36258.12, "probability": 0.787 }, { "start": 36258.68, "end": 36260.02, "probability": 0.996 }, { "start": 36260.74, "end": 36261.94, "probability": 0.9853 }, { "start": 36262.46, "end": 36265.62, "probability": 0.9955 }, { "start": 36265.74, "end": 36267.56, "probability": 0.9719 }, { "start": 36268.0, "end": 36268.49, "probability": 0.8476 }, { "start": 36269.48, "end": 36271.32, "probability": 0.9746 }, { "start": 36273.18, "end": 36275.06, "probability": 0.7466 }, { "start": 36275.58, "end": 36277.06, "probability": 0.8615 }, { "start": 36277.74, "end": 36278.88, "probability": 0.9748 }, { "start": 36279.9, "end": 36283.12, "probability": 0.901 }, { "start": 36283.96, "end": 36286.86, "probability": 0.9893 }, { "start": 36287.84, "end": 36288.46, "probability": 0.9524 }, { "start": 36289.04, "end": 36290.72, "probability": 0.9967 }, { "start": 36292.52, "end": 36295.16, "probability": 0.8143 }, { "start": 36295.94, "end": 36298.43, "probability": 0.9197 }, { "start": 36299.74, "end": 36301.76, "probability": 0.88 }, { "start": 36302.5, "end": 36303.2, "probability": 0.9969 }, { "start": 36304.16, "end": 36307.64, "probability": 0.9507 }, { "start": 36308.58, "end": 36310.08, "probability": 0.98 }, { "start": 36310.08, "end": 36312.72, "probability": 0.9907 }, { "start": 36313.4, "end": 36315.04, "probability": 0.992 }, { "start": 36315.78, "end": 36317.44, "probability": 0.7851 }, { "start": 36318.26, "end": 36322.7, "probability": 0.9937 }, { "start": 36323.0, "end": 36323.86, "probability": 0.8261 }, { "start": 36325.12, "end": 36327.9, "probability": 0.9964 }, { "start": 36328.08, "end": 36328.34, "probability": 0.7511 }, { "start": 36328.42, "end": 36329.6, "probability": 0.9967 }, { "start": 36330.02, "end": 36330.94, "probability": 0.9412 }, { "start": 36331.0, "end": 36334.26, "probability": 0.9875 }, { "start": 36334.26, "end": 36334.62, "probability": 0.8595 }, { "start": 36335.18, "end": 36336.3, "probability": 0.7425 }, { "start": 36337.2, "end": 36339.76, "probability": 0.9996 }, { "start": 36340.54, "end": 36342.32, "probability": 0.8016 }, { "start": 36342.84, "end": 36345.52, "probability": 0.731 }, { "start": 36346.08, "end": 36347.12, "probability": 0.796 }, { "start": 36347.3, "end": 36350.06, "probability": 0.9947 }, { "start": 36350.62, "end": 36351.68, "probability": 0.9106 }, { "start": 36352.42, "end": 36355.06, "probability": 0.9531 }, { "start": 36356.2, "end": 36357.86, "probability": 0.997 }, { "start": 36357.94, "end": 36360.66, "probability": 0.9872 }, { "start": 36361.5, "end": 36363.66, "probability": 0.8885 }, { "start": 36364.95, "end": 36368.96, "probability": 0.9841 }, { "start": 36370.4, "end": 36370.68, "probability": 0.7477 }, { "start": 36371.52, "end": 36372.54, "probability": 0.9799 }, { "start": 36373.08, "end": 36375.98, "probability": 0.6017 }, { "start": 36377.36, "end": 36381.76, "probability": 0.9948 }, { "start": 36382.46, "end": 36384.21, "probability": 0.8086 }, { "start": 36386.64, "end": 36389.38, "probability": 0.9619 }, { "start": 36389.92, "end": 36392.47, "probability": 0.9478 }, { "start": 36394.26, "end": 36395.44, "probability": 0.5797 }, { "start": 36396.16, "end": 36398.56, "probability": 0.9982 }, { "start": 36399.82, "end": 36400.42, "probability": 0.7064 }, { "start": 36400.74, "end": 36401.42, "probability": 0.7397 }, { "start": 36401.52, "end": 36403.28, "probability": 0.9554 }, { "start": 36405.34, "end": 36407.02, "probability": 0.9956 }, { "start": 36407.06, "end": 36408.98, "probability": 0.9962 }, { "start": 36410.48, "end": 36410.72, "probability": 0.6641 }, { "start": 36411.42, "end": 36414.96, "probability": 0.988 }, { "start": 36416.56, "end": 36417.04, "probability": 0.9227 }, { "start": 36418.46, "end": 36420.48, "probability": 0.9564 }, { "start": 36422.16, "end": 36424.64, "probability": 0.9857 }, { "start": 36425.84, "end": 36427.98, "probability": 0.901 }, { "start": 36428.7, "end": 36429.32, "probability": 0.6316 }, { "start": 36429.48, "end": 36429.78, "probability": 0.7858 }, { "start": 36429.8, "end": 36431.24, "probability": 0.9565 }, { "start": 36431.82, "end": 36433.38, "probability": 0.7888 }, { "start": 36433.56, "end": 36433.92, "probability": 0.9747 }, { "start": 36434.62, "end": 36438.56, "probability": 0.9989 }, { "start": 36439.26, "end": 36439.42, "probability": 0.9982 }, { "start": 36440.51, "end": 36442.47, "probability": 0.7529 }, { "start": 36443.88, "end": 36445.18, "probability": 0.976 }, { "start": 36445.52, "end": 36448.64, "probability": 0.9855 }, { "start": 36448.76, "end": 36450.78, "probability": 0.9976 }, { "start": 36450.78, "end": 36453.61, "probability": 0.9836 }, { "start": 36454.28, "end": 36455.82, "probability": 0.9971 }, { "start": 36456.6, "end": 36457.3, "probability": 0.9511 }, { "start": 36458.7, "end": 36459.72, "probability": 0.998 }, { "start": 36461.02, "end": 36461.66, "probability": 0.9736 }, { "start": 36462.18, "end": 36462.66, "probability": 0.7018 }, { "start": 36463.74, "end": 36466.02, "probability": 0.9889 }, { "start": 36466.66, "end": 36470.1, "probability": 0.9793 }, { "start": 36470.78, "end": 36474.94, "probability": 0.986 }, { "start": 36475.26, "end": 36477.9, "probability": 0.9976 }, { "start": 36478.64, "end": 36480.16, "probability": 0.9922 }, { "start": 36480.18, "end": 36482.56, "probability": 0.6864 }, { "start": 36483.22, "end": 36484.42, "probability": 0.9221 }, { "start": 36484.64, "end": 36487.86, "probability": 0.7549 }, { "start": 36488.42, "end": 36495.16, "probability": 0.9781 }, { "start": 36495.24, "end": 36495.73, "probability": 0.9004 }, { "start": 36495.96, "end": 36497.48, "probability": 0.9609 }, { "start": 36498.02, "end": 36498.9, "probability": 0.8616 }, { "start": 36500.54, "end": 36500.54, "probability": 0.9648 }, { "start": 36501.16, "end": 36502.46, "probability": 0.9775 }, { "start": 36502.54, "end": 36504.72, "probability": 0.9213 }, { "start": 36504.74, "end": 36507.7, "probability": 0.991 }, { "start": 36507.96, "end": 36508.45, "probability": 0.9495 }, { "start": 36508.52, "end": 36509.18, "probability": 0.9019 }, { "start": 36509.9, "end": 36511.72, "probability": 0.9954 }, { "start": 36512.52, "end": 36515.22, "probability": 0.9997 }, { "start": 36515.44, "end": 36517.74, "probability": 0.999 }, { "start": 36519.04, "end": 36520.5, "probability": 0.9746 }, { "start": 36521.28, "end": 36521.78, "probability": 0.8728 }, { "start": 36522.96, "end": 36526.46, "probability": 0.9822 }, { "start": 36526.92, "end": 36530.98, "probability": 0.988 }, { "start": 36531.24, "end": 36534.74, "probability": 0.9984 }, { "start": 36535.4, "end": 36537.71, "probability": 0.9885 }, { "start": 36538.68, "end": 36542.86, "probability": 0.9795 }, { "start": 36542.98, "end": 36545.04, "probability": 0.979 }, { "start": 36545.8, "end": 36548.08, "probability": 0.9585 }, { "start": 36548.58, "end": 36550.24, "probability": 0.9598 }, { "start": 36550.76, "end": 36553.33, "probability": 0.7476 }, { "start": 36553.86, "end": 36554.84, "probability": 0.796 }, { "start": 36555.66, "end": 36557.62, "probability": 0.6382 }, { "start": 36558.04, "end": 36558.94, "probability": 0.9718 }, { "start": 36559.38, "end": 36564.0, "probability": 0.8214 }, { "start": 36564.68, "end": 36566.2, "probability": 0.9347 }, { "start": 36567.46, "end": 36568.76, "probability": 0.9971 }, { "start": 36569.36, "end": 36569.54, "probability": 0.2799 }, { "start": 36570.5, "end": 36571.04, "probability": 0.6799 }, { "start": 36572.84, "end": 36573.04, "probability": 0.6163 }, { "start": 36574.0, "end": 36575.08, "probability": 0.8641 }, { "start": 36576.04, "end": 36577.2, "probability": 0.9507 }, { "start": 36578.16, "end": 36578.67, "probability": 0.978 }, { "start": 36580.08, "end": 36584.5, "probability": 0.9934 }, { "start": 36585.3, "end": 36585.84, "probability": 0.9833 }, { "start": 36586.4, "end": 36590.0, "probability": 0.9777 }, { "start": 36591.04, "end": 36592.42, "probability": 0.9419 }, { "start": 36593.52, "end": 36595.66, "probability": 0.7669 }, { "start": 36595.74, "end": 36598.36, "probability": 0.9927 }, { "start": 36598.44, "end": 36599.0, "probability": 0.8779 }, { "start": 36599.48, "end": 36602.68, "probability": 0.9749 }, { "start": 36603.56, "end": 36607.42, "probability": 0.9955 }, { "start": 36607.98, "end": 36610.46, "probability": 0.9864 }, { "start": 36610.52, "end": 36614.22, "probability": 0.9633 }, { "start": 36616.34, "end": 36617.52, "probability": 0.9761 }, { "start": 36618.98, "end": 36620.1, "probability": 0.999 }, { "start": 36620.84, "end": 36622.94, "probability": 0.9885 }, { "start": 36623.32, "end": 36623.98, "probability": 0.3736 }, { "start": 36629.82, "end": 36630.34, "probability": 0.9982 }, { "start": 36631.4, "end": 36633.2, "probability": 0.8871 }, { "start": 36633.52, "end": 36633.64, "probability": 0.0212 }, { "start": 36633.64, "end": 36633.86, "probability": 0.1453 }, { "start": 36634.38, "end": 36636.66, "probability": 0.7985 }, { "start": 36637.52, "end": 36638.24, "probability": 0.8971 }, { "start": 36638.62, "end": 36640.46, "probability": 0.599 }, { "start": 36640.62, "end": 36642.06, "probability": 0.8817 }, { "start": 36642.42, "end": 36643.64, "probability": 0.9751 }, { "start": 36644.22, "end": 36644.22, "probability": 0.4091 }, { "start": 36644.28, "end": 36645.98, "probability": 0.8787 }, { "start": 36646.84, "end": 36648.02, "probability": 0.9659 }, { "start": 36648.1, "end": 36650.66, "probability": 0.992 }, { "start": 36650.88, "end": 36652.28, "probability": 0.9491 }, { "start": 36652.3, "end": 36653.96, "probability": 0.7969 }, { "start": 36654.46, "end": 36655.3, "probability": 0.9668 }, { "start": 36655.9, "end": 36656.54, "probability": 0.7171 }, { "start": 36656.6, "end": 36657.08, "probability": 0.6175 }, { "start": 36657.56, "end": 36660.28, "probability": 0.9788 }, { "start": 36660.68, "end": 36662.62, "probability": 0.9459 }, { "start": 36663.56, "end": 36665.56, "probability": 0.9973 }, { "start": 36666.12, "end": 36668.68, "probability": 0.9821 }, { "start": 36669.96, "end": 36670.54, "probability": 0.649 }, { "start": 36670.66, "end": 36676.24, "probability": 0.9927 }, { "start": 36676.36, "end": 36678.96, "probability": 0.998 }, { "start": 36679.48, "end": 36680.94, "probability": 0.9143 }, { "start": 36682.06, "end": 36683.3, "probability": 0.7533 }, { "start": 36683.68, "end": 36685.72, "probability": 0.9503 }, { "start": 36685.92, "end": 36689.41, "probability": 0.9977 }, { "start": 36689.5, "end": 36691.56, "probability": 0.9685 }, { "start": 36691.66, "end": 36693.84, "probability": 0.7901 }, { "start": 36694.48, "end": 36695.26, "probability": 0.8368 }, { "start": 36695.36, "end": 36695.64, "probability": 0.7696 }, { "start": 36695.86, "end": 36698.32, "probability": 0.9594 }, { "start": 36699.38, "end": 36701.48, "probability": 0.9346 }, { "start": 36702.06, "end": 36702.3, "probability": 0.7662 }, { "start": 36702.44, "end": 36705.98, "probability": 0.9358 }, { "start": 36706.42, "end": 36708.44, "probability": 0.9862 }, { "start": 36708.66, "end": 36711.74, "probability": 0.9976 }, { "start": 36711.78, "end": 36712.88, "probability": 0.7179 }, { "start": 36713.28, "end": 36714.5, "probability": 0.6634 }, { "start": 36714.58, "end": 36715.02, "probability": 0.5338 }, { "start": 36715.1, "end": 36717.6, "probability": 0.7242 }, { "start": 36717.98, "end": 36718.24, "probability": 0.6632 }, { "start": 36718.36, "end": 36718.56, "probability": 0.3264 }, { "start": 36718.84, "end": 36719.72, "probability": 0.7119 }, { "start": 36720.02, "end": 36720.24, "probability": 0.9002 }, { "start": 36721.42, "end": 36723.6, "probability": 0.7469 }, { "start": 36724.48, "end": 36724.76, "probability": 0.2643 }, { "start": 36725.08, "end": 36725.69, "probability": 0.7554 }, { "start": 36726.28, "end": 36729.94, "probability": 0.9792 }, { "start": 36730.88, "end": 36731.1, "probability": 0.6629 }, { "start": 36732.04, "end": 36732.26, "probability": 0.7823 }, { "start": 36732.38, "end": 36733.22, "probability": 0.677 }, { "start": 36734.0, "end": 36735.26, "probability": 0.6917 }, { "start": 36735.94, "end": 36737.5, "probability": 0.842 }, { "start": 36738.14, "end": 36740.48, "probability": 0.7006 }, { "start": 36740.54, "end": 36741.96, "probability": 0.9108 }, { "start": 36742.32, "end": 36744.35, "probability": 0.9821 }, { "start": 36745.14, "end": 36746.21, "probability": 0.9345 }, { "start": 36747.18, "end": 36748.4, "probability": 0.7865 }, { "start": 36748.48, "end": 36749.06, "probability": 0.675 }, { "start": 36749.1, "end": 36749.3, "probability": 0.7583 }, { "start": 36749.42, "end": 36749.52, "probability": 0.691 }, { "start": 36749.94, "end": 36750.3, "probability": 0.8995 }, { "start": 36750.38, "end": 36753.76, "probability": 0.9126 }, { "start": 36754.28, "end": 36754.78, "probability": 0.7278 }, { "start": 36755.34, "end": 36757.34, "probability": 0.8724 }, { "start": 36757.52, "end": 36759.36, "probability": 0.9272 }, { "start": 36759.76, "end": 36761.14, "probability": 0.9497 }, { "start": 36761.92, "end": 36764.4, "probability": 0.736 }, { "start": 36764.48, "end": 36767.02, "probability": 0.8724 }, { "start": 36767.7, "end": 36771.98, "probability": 0.9591 }, { "start": 36772.84, "end": 36773.38, "probability": 0.973 }, { "start": 36774.1, "end": 36775.3, "probability": 0.9984 }, { "start": 36775.92, "end": 36777.66, "probability": 0.9932 }, { "start": 36778.34, "end": 36781.86, "probability": 0.9568 }, { "start": 36782.62, "end": 36783.12, "probability": 0.8156 }, { "start": 36784.2, "end": 36785.2, "probability": 0.749 }, { "start": 36785.76, "end": 36786.3, "probability": 0.9465 }, { "start": 36787.34, "end": 36788.88, "probability": 0.9707 }, { "start": 36789.78, "end": 36791.54, "probability": 0.9913 }, { "start": 36792.24, "end": 36793.04, "probability": 0.9818 }, { "start": 36793.62, "end": 36794.88, "probability": 0.8534 }, { "start": 36794.98, "end": 36798.84, "probability": 0.9952 }, { "start": 36799.36, "end": 36801.1, "probability": 0.9963 }, { "start": 36801.56, "end": 36802.4, "probability": 0.9619 }, { "start": 36802.62, "end": 36806.3, "probability": 0.9926 }, { "start": 36807.88, "end": 36808.4, "probability": 0.7403 }, { "start": 36810.04, "end": 36812.46, "probability": 0.996 }, { "start": 36813.58, "end": 36814.0, "probability": 0.8757 }, { "start": 36814.04, "end": 36815.9, "probability": 0.8843 }, { "start": 36815.98, "end": 36817.02, "probability": 0.95 }, { "start": 36817.36, "end": 36822.66, "probability": 0.9784 }, { "start": 36823.02, "end": 36823.02, "probability": 0.2617 }, { "start": 36823.02, "end": 36823.02, "probability": 0.1138 }, { "start": 36823.02, "end": 36824.54, "probability": 0.5063 }, { "start": 36826.1, "end": 36827.29, "probability": 0.9883 }, { "start": 36827.78, "end": 36829.32, "probability": 0.9434 }, { "start": 36830.02, "end": 36831.1, "probability": 0.8759 }, { "start": 36832.1, "end": 36832.54, "probability": 0.6351 }, { "start": 36833.3, "end": 36834.96, "probability": 0.9891 }, { "start": 36836.39, "end": 36838.08, "probability": 0.9998 }, { "start": 36838.72, "end": 36842.14, "probability": 0.9981 }, { "start": 36842.34, "end": 36844.22, "probability": 0.9819 }, { "start": 36844.8, "end": 36845.18, "probability": 0.9112 }, { "start": 36846.02, "end": 36847.6, "probability": 0.9954 }, { "start": 36848.0, "end": 36849.65, "probability": 0.669 }, { "start": 36850.5, "end": 36853.72, "probability": 0.9939 }, { "start": 36854.12, "end": 36855.28, "probability": 0.9103 }, { "start": 36856.02, "end": 36858.34, "probability": 0.9274 }, { "start": 36859.8, "end": 36861.08, "probability": 0.9963 }, { "start": 36862.8, "end": 36865.76, "probability": 0.98 }, { "start": 36866.3, "end": 36866.54, "probability": 0.9336 }, { "start": 36866.65, "end": 36869.34, "probability": 0.9941 }, { "start": 36869.8, "end": 36870.8, "probability": 0.6745 }, { "start": 36871.38, "end": 36872.78, "probability": 0.9961 }, { "start": 36873.42, "end": 36875.26, "probability": 0.959 }, { "start": 36875.26, "end": 36878.1, "probability": 0.9925 }, { "start": 36878.54, "end": 36878.9, "probability": 0.7085 }, { "start": 36879.08, "end": 36881.28, "probability": 0.9944 }, { "start": 36881.44, "end": 36884.66, "probability": 0.9215 }, { "start": 36884.74, "end": 36886.94, "probability": 0.8252 }, { "start": 36888.08, "end": 36888.48, "probability": 0.8287 }, { "start": 36888.54, "end": 36890.2, "probability": 0.9904 }, { "start": 36890.3, "end": 36891.7, "probability": 0.8804 }, { "start": 36891.84, "end": 36892.59, "probability": 0.9836 }, { "start": 36893.54, "end": 36897.78, "probability": 0.9413 }, { "start": 36898.24, "end": 36899.06, "probability": 0.6678 }, { "start": 36899.88, "end": 36901.82, "probability": 0.8653 }, { "start": 36902.12, "end": 36903.52, "probability": 0.9543 }, { "start": 36904.44, "end": 36906.0, "probability": 0.9893 }, { "start": 36906.54, "end": 36907.52, "probability": 0.8483 }, { "start": 36908.04, "end": 36909.7, "probability": 0.9615 }, { "start": 36910.14, "end": 36911.7, "probability": 0.9984 }, { "start": 36912.22, "end": 36912.44, "probability": 0.6128 }, { "start": 36913.4, "end": 36914.38, "probability": 0.8368 }, { "start": 36915.16, "end": 36915.64, "probability": 0.8085 }, { "start": 36916.44, "end": 36918.66, "probability": 0.9978 }, { "start": 36919.2, "end": 36922.04, "probability": 0.7498 }, { "start": 36922.08, "end": 36922.98, "probability": 0.9599 }, { "start": 36923.56, "end": 36926.22, "probability": 0.9734 }, { "start": 36926.3, "end": 36927.24, "probability": 0.9985 }, { "start": 36927.94, "end": 36928.08, "probability": 0.4526 }, { "start": 36928.22, "end": 36929.1, "probability": 0.9133 }, { "start": 36929.22, "end": 36929.62, "probability": 0.8303 }, { "start": 36929.7, "end": 36931.54, "probability": 0.9817 }, { "start": 36931.54, "end": 36933.26, "probability": 0.9842 }, { "start": 36934.0, "end": 36934.68, "probability": 0.9382 }, { "start": 36934.78, "end": 36936.96, "probability": 0.9644 }, { "start": 36937.32, "end": 36938.8, "probability": 0.9851 }, { "start": 36939.2, "end": 36941.58, "probability": 0.9989 }, { "start": 36941.94, "end": 36942.54, "probability": 0.7574 }, { "start": 36943.4, "end": 36946.88, "probability": 0.9829 }, { "start": 36947.34, "end": 36948.74, "probability": 0.9404 }, { "start": 36949.54, "end": 36951.34, "probability": 0.9954 }, { "start": 36951.34, "end": 36953.04, "probability": 0.7949 }, { "start": 36953.46, "end": 36954.16, "probability": 0.6348 }, { "start": 36954.54, "end": 36955.81, "probability": 0.8773 }, { "start": 36955.94, "end": 36959.43, "probability": 0.9731 }, { "start": 36962.17, "end": 36962.76, "probability": 0.9736 }, { "start": 36963.58, "end": 36964.78, "probability": 0.9863 }, { "start": 36965.82, "end": 36966.3, "probability": 0.8731 }, { "start": 36966.42, "end": 36969.4, "probability": 0.9572 }, { "start": 36970.06, "end": 36973.16, "probability": 0.9954 }, { "start": 36974.48, "end": 36976.64, "probability": 0.9323 }, { "start": 36977.24, "end": 36978.06, "probability": 0.9954 }, { "start": 36978.9, "end": 36983.26, "probability": 0.9866 }, { "start": 36983.32, "end": 36984.17, "probability": 0.9939 }, { "start": 36984.86, "end": 36987.74, "probability": 0.9902 }, { "start": 36987.8, "end": 36990.32, "probability": 0.9547 }, { "start": 36991.52, "end": 36995.64, "probability": 0.9683 }, { "start": 36996.22, "end": 36999.7, "probability": 0.9177 }, { "start": 37000.3, "end": 37000.56, "probability": 0.3358 }, { "start": 37001.0, "end": 37002.44, "probability": 0.8354 }, { "start": 37002.44, "end": 37004.6, "probability": 0.55 }, { "start": 37004.78, "end": 37007.12, "probability": 0.5934 }, { "start": 37007.2, "end": 37009.64, "probability": 0.8304 }, { "start": 37009.78, "end": 37010.32, "probability": 0.8168 }, { "start": 37011.12, "end": 37013.54, "probability": 0.8635 }, { "start": 37014.24, "end": 37015.68, "probability": 0.8659 }, { "start": 37016.66, "end": 37018.92, "probability": 0.9716 }, { "start": 37019.24, "end": 37020.1, "probability": 0.8714 }, { "start": 37020.3, "end": 37021.5, "probability": 0.9937 }, { "start": 37022.6, "end": 37023.4, "probability": 0.9781 }, { "start": 37024.06, "end": 37024.88, "probability": 0.9955 }, { "start": 37025.42, "end": 37025.94, "probability": 0.8638 }, { "start": 37026.92, "end": 37029.34, "probability": 0.9861 }, { "start": 37029.34, "end": 37033.04, "probability": 0.9988 }, { "start": 37034.6, "end": 37036.34, "probability": 0.9917 }, { "start": 37036.44, "end": 37037.57, "probability": 0.7585 }, { "start": 37037.66, "end": 37038.3, "probability": 0.9105 }, { "start": 37038.96, "end": 37041.6, "probability": 0.876 }, { "start": 37041.96, "end": 37042.64, "probability": 0.8944 }, { "start": 37043.16, "end": 37044.78, "probability": 0.9961 }, { "start": 37044.8, "end": 37045.96, "probability": 0.9976 }, { "start": 37047.0, "end": 37048.66, "probability": 0.9858 }, { "start": 37049.14, "end": 37050.54, "probability": 0.9856 }, { "start": 37050.66, "end": 37051.78, "probability": 0.956 }, { "start": 37052.66, "end": 37054.98, "probability": 0.8841 }, { "start": 37055.48, "end": 37057.72, "probability": 0.7832 }, { "start": 37057.78, "end": 37058.96, "probability": 0.9161 }, { "start": 37059.64, "end": 37060.9, "probability": 0.8621 }, { "start": 37061.1, "end": 37061.5, "probability": 0.8908 }, { "start": 37061.76, "end": 37064.42, "probability": 0.8999 }, { "start": 37065.36, "end": 37065.88, "probability": 0.5322 }, { "start": 37065.88, "end": 37066.92, "probability": 0.6425 }, { "start": 37066.92, "end": 37068.38, "probability": 0.9334 }, { "start": 37068.74, "end": 37070.25, "probability": 0.5025 }, { "start": 37076.84, "end": 37079.38, "probability": 0.588 }, { "start": 37079.72, "end": 37083.36, "probability": 0.9175 }, { "start": 37083.46, "end": 37084.1, "probability": 0.8029 }, { "start": 37084.62, "end": 37087.48, "probability": 0.994 }, { "start": 37087.84, "end": 37088.54, "probability": 0.9015 }, { "start": 37088.9, "end": 37090.28, "probability": 0.6369 }, { "start": 37090.68, "end": 37096.36, "probability": 0.961 }, { "start": 37096.66, "end": 37101.34, "probability": 0.7503 }, { "start": 37101.76, "end": 37102.02, "probability": 0.5151 }, { "start": 37102.06, "end": 37103.3, "probability": 0.9882 }, { "start": 37103.48, "end": 37107.35, "probability": 0.9794 }, { "start": 37108.88, "end": 37111.34, "probability": 0.9805 }, { "start": 37111.42, "end": 37113.82, "probability": 0.9888 }, { "start": 37114.2, "end": 37118.06, "probability": 0.9976 }, { "start": 37118.06, "end": 37123.22, "probability": 0.8604 }, { "start": 37124.2, "end": 37126.24, "probability": 0.9077 }, { "start": 37128.77, "end": 37134.16, "probability": 0.9897 }, { "start": 37134.2, "end": 37137.76, "probability": 0.8986 }, { "start": 37137.96, "end": 37137.98, "probability": 0.0014 }, { "start": 37137.98, "end": 37139.12, "probability": 0.9125 }, { "start": 37139.22, "end": 37139.6, "probability": 0.7429 }, { "start": 37139.66, "end": 37142.42, "probability": 0.8958 }, { "start": 37142.56, "end": 37143.76, "probability": 0.9102 }, { "start": 37144.86, "end": 37147.12, "probability": 0.9905 }, { "start": 37147.34, "end": 37147.5, "probability": 0.8875 }, { "start": 37147.54, "end": 37152.12, "probability": 0.9727 }, { "start": 37152.88, "end": 37153.94, "probability": 0.5844 }, { "start": 37154.1, "end": 37155.08, "probability": 0.8057 }, { "start": 37155.4, "end": 37158.28, "probability": 0.9847 }, { "start": 37159.16, "end": 37165.34, "probability": 0.9961 }, { "start": 37166.34, "end": 37171.02, "probability": 0.9602 }, { "start": 37172.02, "end": 37173.68, "probability": 0.9015 }, { "start": 37173.72, "end": 37176.9, "probability": 0.8048 }, { "start": 37177.72, "end": 37184.72, "probability": 0.9932 }, { "start": 37186.04, "end": 37191.98, "probability": 0.9956 }, { "start": 37192.04, "end": 37193.02, "probability": 0.7222 }, { "start": 37193.22, "end": 37196.04, "probability": 0.9963 }, { "start": 37196.88, "end": 37200.06, "probability": 0.8958 }, { "start": 37201.24, "end": 37203.12, "probability": 0.9329 }, { "start": 37203.18, "end": 37206.94, "probability": 0.995 }, { "start": 37206.94, "end": 37208.3, "probability": 0.8786 }, { "start": 37208.5, "end": 37208.66, "probability": 0.6907 }, { "start": 37209.28, "end": 37210.54, "probability": 0.2333 }, { "start": 37210.68, "end": 37212.39, "probability": 0.9831 }, { "start": 37214.05, "end": 37215.34, "probability": 0.8054 }, { "start": 37215.84, "end": 37217.9, "probability": 0.8455 }, { "start": 37218.24, "end": 37218.95, "probability": 0.7148 }, { "start": 37220.0, "end": 37222.1, "probability": 0.9821 }, { "start": 37223.24, "end": 37225.9, "probability": 0.9023 }, { "start": 37226.56, "end": 37229.14, "probability": 0.8757 }, { "start": 37229.96, "end": 37232.18, "probability": 0.9886 }, { "start": 37232.34, "end": 37235.34, "probability": 0.6857 }, { "start": 37235.4, "end": 37240.71, "probability": 0.9666 }, { "start": 37241.5, "end": 37241.9, "probability": 0.9591 }, { "start": 37242.82, "end": 37244.14, "probability": 0.7927 }, { "start": 37245.0, "end": 37246.5, "probability": 0.9915 }, { "start": 37246.8, "end": 37247.92, "probability": 0.9257 }, { "start": 37247.98, "end": 37249.58, "probability": 0.6178 }, { "start": 37250.44, "end": 37251.72, "probability": 0.99 }, { "start": 37252.64, "end": 37253.14, "probability": 0.875 }, { "start": 37254.54, "end": 37255.82, "probability": 0.9973 }, { "start": 37257.04, "end": 37257.82, "probability": 0.8951 }, { "start": 37257.94, "end": 37261.38, "probability": 0.9973 }, { "start": 37262.86, "end": 37268.96, "probability": 0.7791 }, { "start": 37269.44, "end": 37271.28, "probability": 0.9421 }, { "start": 37272.16, "end": 37273.5, "probability": 0.6686 }, { "start": 37274.38, "end": 37275.32, "probability": 0.6595 }, { "start": 37275.64, "end": 37277.1, "probability": 0.9199 }, { "start": 37277.26, "end": 37278.32, "probability": 0.942 }, { "start": 37278.46, "end": 37278.6, "probability": 0.4901 }, { "start": 37278.92, "end": 37280.45, "probability": 0.9787 }, { "start": 37281.18, "end": 37282.38, "probability": 0.6351 }, { "start": 37282.48, "end": 37283.48, "probability": 0.9952 }, { "start": 37283.76, "end": 37285.78, "probability": 0.9043 }, { "start": 37285.92, "end": 37286.84, "probability": 0.9623 }, { "start": 37287.08, "end": 37289.4, "probability": 0.9976 }, { "start": 37289.4, "end": 37292.58, "probability": 0.9976 }, { "start": 37294.58, "end": 37296.0, "probability": 0.9741 }, { "start": 37296.26, "end": 37300.14, "probability": 0.9312 }, { "start": 37300.84, "end": 37301.62, "probability": 0.9328 }, { "start": 37301.72, "end": 37302.52, "probability": 0.7778 }, { "start": 37302.82, "end": 37304.0, "probability": 0.9945 }, { "start": 37305.06, "end": 37309.24, "probability": 0.9058 }, { "start": 37309.32, "end": 37309.64, "probability": 0.7974 }, { "start": 37310.57, "end": 37313.71, "probability": 0.4494 }, { "start": 37314.94, "end": 37315.52, "probability": 0.9615 }, { "start": 37315.64, "end": 37318.92, "probability": 0.9921 }, { "start": 37319.26, "end": 37319.56, "probability": 0.8022 }, { "start": 37320.06, "end": 37322.1, "probability": 0.8337 }, { "start": 37322.26, "end": 37325.32, "probability": 0.9935 }, { "start": 37326.18, "end": 37329.02, "probability": 0.997 }, { "start": 37329.56, "end": 37333.0, "probability": 0.9775 }, { "start": 37333.3, "end": 37335.62, "probability": 0.9197 }, { "start": 37336.24, "end": 37336.88, "probability": 0.6168 }, { "start": 37336.98, "end": 37340.0, "probability": 0.9972 }, { "start": 37342.08, "end": 37343.18, "probability": 0.8284 }, { "start": 37343.74, "end": 37344.6, "probability": 0.9203 }, { "start": 37345.06, "end": 37347.4, "probability": 0.9851 }, { "start": 37348.1, "end": 37348.8, "probability": 0.99 }, { "start": 37349.46, "end": 37350.8, "probability": 0.9224 }, { "start": 37351.5, "end": 37352.98, "probability": 0.8989 }, { "start": 37354.18, "end": 37354.78, "probability": 0.9966 }, { "start": 37358.26, "end": 37358.7, "probability": 0.9904 }, { "start": 37359.46, "end": 37362.96, "probability": 0.9982 }, { "start": 37363.48, "end": 37364.64, "probability": 0.8249 }, { "start": 37365.98, "end": 37368.74, "probability": 0.658 }, { "start": 37369.3, "end": 37370.06, "probability": 0.939 }, { "start": 37371.2, "end": 37372.34, "probability": 0.6231 }, { "start": 37373.02, "end": 37374.62, "probability": 0.5908 }, { "start": 37375.36, "end": 37376.62, "probability": 0.7492 }, { "start": 37377.52, "end": 37378.74, "probability": 0.8463 }, { "start": 37379.56, "end": 37381.82, "probability": 0.7729 }, { "start": 37382.68, "end": 37383.58, "probability": 0.9565 }, { "start": 37384.86, "end": 37385.94, "probability": 0.9982 }, { "start": 37386.84, "end": 37387.92, "probability": 0.6489 }, { "start": 37388.96, "end": 37390.32, "probability": 0.9883 }, { "start": 37391.02, "end": 37392.56, "probability": 0.768 }, { "start": 37392.7, "end": 37394.34, "probability": 0.9577 }, { "start": 37394.86, "end": 37395.44, "probability": 0.7578 }, { "start": 37396.36, "end": 37397.0, "probability": 0.8788 }, { "start": 37397.18, "end": 37397.3, "probability": 0.8948 }, { "start": 37398.3, "end": 37399.12, "probability": 0.9824 }, { "start": 37400.3, "end": 37401.07, "probability": 0.7681 }, { "start": 37402.7, "end": 37404.49, "probability": 0.9084 }, { "start": 37404.66, "end": 37404.94, "probability": 0.4661 }, { "start": 37405.02, "end": 37408.28, "probability": 0.9221 }, { "start": 37409.04, "end": 37409.34, "probability": 0.5754 }, { "start": 37409.88, "end": 37412.62, "probability": 0.9976 }, { "start": 37413.18, "end": 37414.1, "probability": 0.7657 }, { "start": 37414.68, "end": 37415.8, "probability": 0.9703 }, { "start": 37416.46, "end": 37417.04, "probability": 0.9001 }, { "start": 37417.78, "end": 37418.46, "probability": 0.9855 }, { "start": 37418.6, "end": 37422.06, "probability": 0.9812 }, { "start": 37422.5, "end": 37423.66, "probability": 0.9141 }, { "start": 37423.9, "end": 37425.28, "probability": 0.6809 }, { "start": 37426.05, "end": 37428.2, "probability": 0.9738 }, { "start": 37428.3, "end": 37429.62, "probability": 0.9868 }, { "start": 37429.84, "end": 37431.06, "probability": 0.5317 }, { "start": 37431.16, "end": 37433.58, "probability": 0.6213 }, { "start": 37434.36, "end": 37434.38, "probability": 0.1552 }, { "start": 37434.38, "end": 37434.74, "probability": 0.3926 }, { "start": 37434.82, "end": 37435.28, "probability": 0.829 }, { "start": 37435.38, "end": 37438.26, "probability": 0.8174 }, { "start": 37438.42, "end": 37439.46, "probability": 0.7847 }, { "start": 37439.58, "end": 37443.96, "probability": 0.5055 }, { "start": 37444.0, "end": 37444.58, "probability": 0.8504 }, { "start": 37445.18, "end": 37445.88, "probability": 0.9662 }, { "start": 37446.52, "end": 37448.3, "probability": 0.6722 }, { "start": 37448.6, "end": 37449.82, "probability": 0.6566 }, { "start": 37449.84, "end": 37450.8, "probability": 0.7255 }, { "start": 37450.8, "end": 37451.28, "probability": 0.6873 }, { "start": 37451.4, "end": 37451.75, "probability": 0.4112 }, { "start": 37452.22, "end": 37458.16, "probability": 0.9629 }, { "start": 37458.62, "end": 37461.0, "probability": 0.9613 }, { "start": 37461.08, "end": 37461.82, "probability": 0.5937 }, { "start": 37462.58, "end": 37463.2, "probability": 0.4568 }, { "start": 37463.24, "end": 37464.16, "probability": 0.9771 }, { "start": 37464.8, "end": 37465.84, "probability": 0.931 }, { "start": 37466.54, "end": 37469.24, "probability": 0.9885 }, { "start": 37469.36, "end": 37472.6, "probability": 0.7678 }, { "start": 37473.42, "end": 37474.88, "probability": 0.5894 }, { "start": 37475.52, "end": 37478.34, "probability": 0.9893 }, { "start": 37479.22, "end": 37479.48, "probability": 0.8635 }, { "start": 37480.04, "end": 37480.44, "probability": 0.9795 }, { "start": 37481.14, "end": 37481.96, "probability": 0.8374 }, { "start": 37482.06, "end": 37483.24, "probability": 0.7146 }, { "start": 37483.3, "end": 37483.8, "probability": 0.4278 }, { "start": 37483.82, "end": 37487.78, "probability": 0.1997 }, { "start": 37488.38, "end": 37488.8, "probability": 0.2059 }, { "start": 37489.64, "end": 37490.72, "probability": 0.8314 }, { "start": 37491.26, "end": 37493.22, "probability": 0.9689 }, { "start": 37494.08, "end": 37494.18, "probability": 0.4824 }, { "start": 37495.06, "end": 37495.74, "probability": 0.9252 }, { "start": 37496.98, "end": 37497.54, "probability": 0.9259 }, { "start": 37498.28, "end": 37501.76, "probability": 0.9523 }, { "start": 37502.48, "end": 37503.72, "probability": 0.5189 }, { "start": 37504.4, "end": 37505.44, "probability": 0.8599 }, { "start": 37505.8, "end": 37506.46, "probability": 0.6621 }, { "start": 37506.5, "end": 37507.82, "probability": 0.8289 }, { "start": 37508.04, "end": 37509.66, "probability": 0.9818 }, { "start": 37510.22, "end": 37513.1, "probability": 0.5001 }, { "start": 37513.42, "end": 37517.54, "probability": 0.9775 }, { "start": 37518.12, "end": 37519.68, "probability": 0.8679 }, { "start": 37519.7, "end": 37521.2, "probability": 0.9025 }, { "start": 37522.32, "end": 37524.12, "probability": 0.821 }, { "start": 37524.2, "end": 37525.28, "probability": 0.9818 }, { "start": 37526.32, "end": 37527.88, "probability": 0.9964 }, { "start": 37527.94, "end": 37531.0, "probability": 0.925 }, { "start": 37531.6, "end": 37534.8, "probability": 0.9111 }, { "start": 37535.44, "end": 37537.1, "probability": 0.9708 }, { "start": 37537.82, "end": 37538.42, "probability": 0.9398 }, { "start": 37538.74, "end": 37539.48, "probability": 0.7989 }, { "start": 37539.92, "end": 37541.91, "probability": 0.9775 }, { "start": 37542.4, "end": 37545.26, "probability": 0.5574 }, { "start": 37545.26, "end": 37548.88, "probability": 0.9484 }, { "start": 37549.96, "end": 37550.94, "probability": 0.7509 }, { "start": 37551.68, "end": 37554.18, "probability": 0.9194 }, { "start": 37554.74, "end": 37555.76, "probability": 0.998 }, { "start": 37556.22, "end": 37558.24, "probability": 0.949 }, { "start": 37559.22, "end": 37559.5, "probability": 0.835 }, { "start": 37559.54, "end": 37561.54, "probability": 0.9902 }, { "start": 37561.76, "end": 37562.9, "probability": 0.9012 }, { "start": 37563.64, "end": 37563.92, "probability": 0.7598 }, { "start": 37564.52, "end": 37566.12, "probability": 0.9821 }, { "start": 37567.32, "end": 37569.21, "probability": 0.5248 }, { "start": 37569.42, "end": 37573.24, "probability": 0.6013 }, { "start": 37573.86, "end": 37577.52, "probability": 0.8102 }, { "start": 37578.38, "end": 37579.8, "probability": 0.9379 }, { "start": 37579.96, "end": 37580.49, "probability": 0.6005 }, { "start": 37590.12, "end": 37591.06, "probability": 0.3592 }, { "start": 37591.26, "end": 37592.26, "probability": 0.4825 }, { "start": 37592.4, "end": 37593.02, "probability": 0.813 }, { "start": 37593.16, "end": 37594.4, "probability": 0.9503 }, { "start": 37595.36, "end": 37597.66, "probability": 0.8691 }, { "start": 37601.72, "end": 37602.88, "probability": 0.816 }, { "start": 37602.9, "end": 37603.92, "probability": 0.6908 }, { "start": 37605.38, "end": 37610.0, "probability": 0.9788 }, { "start": 37610.58, "end": 37612.02, "probability": 0.7953 }, { "start": 37612.76, "end": 37613.84, "probability": 0.6029 }, { "start": 37614.44, "end": 37618.5, "probability": 0.8994 }, { "start": 37619.64, "end": 37622.82, "probability": 0.9705 }, { "start": 37623.22, "end": 37625.38, "probability": 0.8894 }, { "start": 37626.5, "end": 37630.82, "probability": 0.9557 }, { "start": 37631.24, "end": 37631.78, "probability": 0.7887 }, { "start": 37631.9, "end": 37632.38, "probability": 0.8615 }, { "start": 37632.52, "end": 37635.34, "probability": 0.9827 }, { "start": 37635.96, "end": 37636.64, "probability": 0.861 }, { "start": 37637.68, "end": 37638.36, "probability": 0.6553 }, { "start": 37638.58, "end": 37640.42, "probability": 0.9966 }, { "start": 37640.96, "end": 37641.88, "probability": 0.8976 }, { "start": 37642.44, "end": 37644.52, "probability": 0.7582 }, { "start": 37644.68, "end": 37646.08, "probability": 0.73 }, { "start": 37646.12, "end": 37649.54, "probability": 0.8432 }, { "start": 37650.28, "end": 37651.28, "probability": 0.5565 }, { "start": 37651.32, "end": 37652.82, "probability": 0.8925 }, { "start": 37656.44, "end": 37657.34, "probability": 0.6688 }, { "start": 37657.44, "end": 37658.28, "probability": 0.4448 }, { "start": 37660.82, "end": 37661.42, "probability": 0.5778 }, { "start": 37662.5, "end": 37665.16, "probability": 0.9573 }, { "start": 37666.56, "end": 37667.98, "probability": 0.9429 }, { "start": 37668.14, "end": 37670.3, "probability": 0.971 }, { "start": 37671.18, "end": 37673.16, "probability": 0.9423 }, { "start": 37673.24, "end": 37673.86, "probability": 0.8363 }, { "start": 37673.9, "end": 37674.76, "probability": 0.8648 }, { "start": 37675.44, "end": 37677.4, "probability": 0.9539 }, { "start": 37678.48, "end": 37681.12, "probability": 0.864 }, { "start": 37682.02, "end": 37683.28, "probability": 0.9971 }, { "start": 37683.44, "end": 37685.75, "probability": 0.9878 }, { "start": 37686.94, "end": 37690.04, "probability": 0.9792 }, { "start": 37690.04, "end": 37693.84, "probability": 0.995 }, { "start": 37694.36, "end": 37697.06, "probability": 0.9029 }, { "start": 37697.28, "end": 37697.42, "probability": 0.6258 }, { "start": 37697.44, "end": 37697.82, "probability": 0.853 }, { "start": 37698.3, "end": 37700.46, "probability": 0.7549 }, { "start": 37700.56, "end": 37702.93, "probability": 0.9446 }, { "start": 37703.2, "end": 37705.26, "probability": 0.9907 }, { "start": 37706.38, "end": 37708.68, "probability": 0.98 }, { "start": 37708.98, "end": 37710.42, "probability": 0.7901 }, { "start": 37710.54, "end": 37712.92, "probability": 0.9937 }, { "start": 37713.18, "end": 37713.78, "probability": 0.967 }, { "start": 37714.36, "end": 37715.26, "probability": 0.9875 }, { "start": 37716.54, "end": 37718.52, "probability": 0.9818 }, { "start": 37720.12, "end": 37723.54, "probability": 0.7504 }, { "start": 37724.14, "end": 37725.14, "probability": 0.9951 }, { "start": 37725.3, "end": 37726.66, "probability": 0.9981 }, { "start": 37727.62, "end": 37730.36, "probability": 0.9678 }, { "start": 37730.88, "end": 37732.98, "probability": 0.7318 }, { "start": 37734.14, "end": 37738.38, "probability": 0.9811 }, { "start": 37739.26, "end": 37740.46, "probability": 0.9036 }, { "start": 37741.0, "end": 37741.54, "probability": 0.8408 }, { "start": 37742.08, "end": 37742.32, "probability": 0.8552 }, { "start": 37742.42, "end": 37744.68, "probability": 0.9836 }, { "start": 37745.06, "end": 37747.36, "probability": 0.9932 }, { "start": 37747.98, "end": 37749.96, "probability": 0.7484 }, { "start": 37750.4, "end": 37750.96, "probability": 0.8787 }, { "start": 37751.02, "end": 37754.06, "probability": 0.7749 }, { "start": 37754.26, "end": 37756.0, "probability": 0.7383 }, { "start": 37756.82, "end": 37759.2, "probability": 0.9683 }, { "start": 37759.82, "end": 37763.96, "probability": 0.9716 }, { "start": 37764.12, "end": 37764.32, "probability": 0.6797 }, { "start": 37765.18, "end": 37767.16, "probability": 0.3157 }, { "start": 37767.18, "end": 37767.6, "probability": 0.8671 }, { "start": 37768.3, "end": 37770.65, "probability": 0.8284 }, { "start": 37772.14, "end": 37773.0, "probability": 0.6279 }, { "start": 37774.22, "end": 37775.58, "probability": 0.879 }, { "start": 37775.68, "end": 37776.28, "probability": 0.9506 }, { "start": 37781.66, "end": 37783.16, "probability": 0.9692 }, { "start": 37783.3, "end": 37785.22, "probability": 0.9751 }, { "start": 37785.38, "end": 37786.98, "probability": 0.3755 }, { "start": 37786.98, "end": 37787.94, "probability": 0.998 }, { "start": 37788.2, "end": 37789.18, "probability": 0.9756 }, { "start": 37789.24, "end": 37790.44, "probability": 0.8085 }, { "start": 37790.74, "end": 37792.8, "probability": 0.9118 }, { "start": 37792.92, "end": 37794.78, "probability": 0.9756 }, { "start": 37795.82, "end": 37796.28, "probability": 0.6766 }, { "start": 37796.28, "end": 37797.04, "probability": 0.4973 }, { "start": 37797.1, "end": 37797.82, "probability": 0.9893 }, { "start": 37797.92, "end": 37799.78, "probability": 0.8467 }, { "start": 37800.52, "end": 37802.3, "probability": 0.672 }, { "start": 37802.88, "end": 37803.94, "probability": 0.9868 }, { "start": 37804.68, "end": 37804.84, "probability": 0.8362 }, { "start": 37804.98, "end": 37808.6, "probability": 0.9682 }, { "start": 37809.12, "end": 37811.96, "probability": 0.6512 }, { "start": 37812.68, "end": 37815.38, "probability": 0.7017 }, { "start": 37815.46, "end": 37816.02, "probability": 0.6146 }, { "start": 37816.12, "end": 37818.04, "probability": 0.733 }, { "start": 37818.84, "end": 37820.92, "probability": 0.4998 }, { "start": 37820.92, "end": 37822.79, "probability": 0.9868 }, { "start": 37823.38, "end": 37825.64, "probability": 0.9305 }, { "start": 37826.06, "end": 37826.58, "probability": 0.7776 }, { "start": 37827.66, "end": 37829.0, "probability": 0.4327 }, { "start": 37829.1, "end": 37829.28, "probability": 0.6959 }, { "start": 37829.5, "end": 37831.86, "probability": 0.8005 }, { "start": 37831.96, "end": 37833.24, "probability": 0.957 }, { "start": 37833.8, "end": 37835.22, "probability": 0.8998 }, { "start": 37835.48, "end": 37835.68, "probability": 0.3789 }, { "start": 37835.76, "end": 37837.64, "probability": 0.9292 }, { "start": 37838.3, "end": 37842.16, "probability": 0.9915 }, { "start": 37843.06, "end": 37845.2, "probability": 0.97 }, { "start": 37845.4, "end": 37848.98, "probability": 0.7661 }, { "start": 37849.46, "end": 37851.9, "probability": 0.9888 }, { "start": 37852.0, "end": 37853.32, "probability": 0.996 }, { "start": 37853.42, "end": 37854.0, "probability": 0.9475 }, { "start": 37854.38, "end": 37856.7, "probability": 0.9534 }, { "start": 37857.2, "end": 37859.48, "probability": 0.8216 }, { "start": 37859.9, "end": 37862.03, "probability": 0.9792 }, { "start": 37862.56, "end": 37865.05, "probability": 0.871 }, { "start": 37865.5, "end": 37868.02, "probability": 0.9337 }, { "start": 37868.74, "end": 37869.78, "probability": 0.8708 }, { "start": 37870.4, "end": 37872.62, "probability": 0.9966 }, { "start": 37872.74, "end": 37873.28, "probability": 0.6411 }, { "start": 37874.22, "end": 37875.08, "probability": 0.8993 }, { "start": 37875.74, "end": 37878.16, "probability": 0.6944 }, { "start": 37878.56, "end": 37880.46, "probability": 0.9644 }, { "start": 37881.18, "end": 37883.62, "probability": 0.9862 }, { "start": 37884.68, "end": 37886.28, "probability": 0.9948 }, { "start": 37886.98, "end": 37887.2, "probability": 0.5044 }, { "start": 37887.96, "end": 37888.92, "probability": 0.8091 }, { "start": 37889.48, "end": 37890.86, "probability": 0.9927 }, { "start": 37891.44, "end": 37892.58, "probability": 0.7298 }, { "start": 37893.32, "end": 37895.1, "probability": 0.9574 }, { "start": 37895.26, "end": 37895.58, "probability": 0.9438 }, { "start": 37895.66, "end": 37897.98, "probability": 0.9704 }, { "start": 37898.72, "end": 37900.06, "probability": 0.9588 }, { "start": 37900.22, "end": 37901.52, "probability": 0.6469 }, { "start": 37901.54, "end": 37902.14, "probability": 0.9022 }, { "start": 37902.66, "end": 37905.6, "probability": 0.9966 }, { "start": 37905.6, "end": 37909.14, "probability": 0.9878 }, { "start": 37910.36, "end": 37912.26, "probability": 0.9823 }, { "start": 37912.44, "end": 37914.0, "probability": 0.9318 }, { "start": 37914.56, "end": 37915.38, "probability": 0.959 }, { "start": 37916.92, "end": 37917.52, "probability": 0.6601 }, { "start": 37919.76, "end": 37921.38, "probability": 0.6917 }, { "start": 37921.6, "end": 37922.46, "probability": 0.5181 }, { "start": 37922.58, "end": 37924.88, "probability": 0.924 }, { "start": 37925.12, "end": 37926.17, "probability": 0.8912 }, { "start": 37927.0, "end": 37928.12, "probability": 0.7294 }, { "start": 37928.32, "end": 37929.9, "probability": 0.7097 }, { "start": 37931.72, "end": 37934.0, "probability": 0.9915 }, { "start": 37934.96, "end": 37936.92, "probability": 0.9978 }, { "start": 37938.12, "end": 37938.58, "probability": 0.7982 }, { "start": 37940.26, "end": 37941.02, "probability": 0.8655 }, { "start": 37941.8, "end": 37943.52, "probability": 0.9038 }, { "start": 37944.08, "end": 37944.56, "probability": 0.8412 }, { "start": 37944.74, "end": 37946.1, "probability": 0.9691 }, { "start": 37946.84, "end": 37950.56, "probability": 0.6379 }, { "start": 37951.72, "end": 37954.28, "probability": 0.8668 }, { "start": 37971.78, "end": 37972.24, "probability": 0.3997 }, { "start": 37972.32, "end": 37975.5, "probability": 0.6836 }, { "start": 37977.24, "end": 37978.46, "probability": 0.9199 }, { "start": 37979.6, "end": 37982.9, "probability": 0.9365 }, { "start": 37983.34, "end": 37988.22, "probability": 0.9771 }, { "start": 37988.42, "end": 37992.16, "probability": 0.9828 }, { "start": 37992.54, "end": 37993.88, "probability": 0.8716 }, { "start": 37993.94, "end": 37996.1, "probability": 0.9788 }, { "start": 37997.3, "end": 38003.46, "probability": 0.4201 }, { "start": 38003.46, "end": 38005.54, "probability": 0.4155 }, { "start": 38006.42, "end": 38007.84, "probability": 0.6883 }, { "start": 38008.88, "end": 38011.68, "probability": 0.9707 }, { "start": 38011.68, "end": 38015.28, "probability": 0.9775 }, { "start": 38016.0, "end": 38017.24, "probability": 0.552 }, { "start": 38017.28, "end": 38019.44, "probability": 0.9907 }, { "start": 38021.58, "end": 38026.24, "probability": 0.997 }, { "start": 38027.7, "end": 38028.32, "probability": 0.8874 }, { "start": 38028.74, "end": 38029.24, "probability": 0.929 }, { "start": 38029.7, "end": 38031.38, "probability": 0.9755 }, { "start": 38032.06, "end": 38032.98, "probability": 0.8675 }, { "start": 38033.26, "end": 38034.22, "probability": 0.7882 }, { "start": 38034.42, "end": 38034.84, "probability": 0.87 }, { "start": 38035.44, "end": 38037.12, "probability": 0.9387 }, { "start": 38037.98, "end": 38039.6, "probability": 0.607 }, { "start": 38040.18, "end": 38041.32, "probability": 0.6984 }, { "start": 38042.14, "end": 38045.02, "probability": 0.8247 }, { "start": 38045.54, "end": 38048.0, "probability": 0.9412 }, { "start": 38048.0, "end": 38051.22, "probability": 0.9109 }, { "start": 38052.12, "end": 38055.68, "probability": 0.9713 }, { "start": 38055.68, "end": 38058.04, "probability": 0.9476 }, { "start": 38058.12, "end": 38059.32, "probability": 0.856 }, { "start": 38059.46, "end": 38060.06, "probability": 0.8893 }, { "start": 38060.24, "end": 38060.86, "probability": 0.6237 }, { "start": 38061.7, "end": 38063.88, "probability": 0.9176 }, { "start": 38064.4, "end": 38064.74, "probability": 0.7631 }, { "start": 38065.98, "end": 38068.76, "probability": 0.9901 }, { "start": 38068.76, "end": 38071.94, "probability": 0.9982 }, { "start": 38072.6, "end": 38074.66, "probability": 0.9952 }, { "start": 38075.26, "end": 38078.14, "probability": 0.9906 }, { "start": 38078.8, "end": 38081.5, "probability": 0.8165 }, { "start": 38082.38, "end": 38086.92, "probability": 0.7779 }, { "start": 38087.54, "end": 38089.92, "probability": 0.971 }, { "start": 38090.4, "end": 38092.8, "probability": 0.9971 }, { "start": 38092.88, "end": 38096.38, "probability": 0.876 }, { "start": 38097.02, "end": 38097.82, "probability": 0.95 }, { "start": 38098.48, "end": 38098.9, "probability": 0.7679 }, { "start": 38099.52, "end": 38102.38, "probability": 0.995 }, { "start": 38103.46, "end": 38107.6, "probability": 0.9679 }, { "start": 38110.58, "end": 38111.16, "probability": 0.9834 }, { "start": 38111.88, "end": 38114.14, "probability": 0.8735 }, { "start": 38114.72, "end": 38118.28, "probability": 0.9944 }, { "start": 38118.28, "end": 38122.52, "probability": 0.9985 }, { "start": 38123.08, "end": 38125.38, "probability": 0.853 }, { "start": 38125.5, "end": 38126.94, "probability": 0.9022 }, { "start": 38128.14, "end": 38129.4, "probability": 0.9265 }, { "start": 38129.6, "end": 38132.5, "probability": 0.9159 }, { "start": 38132.58, "end": 38135.76, "probability": 0.9349 }, { "start": 38135.76, "end": 38138.96, "probability": 0.9932 }, { "start": 38139.94, "end": 38145.52, "probability": 0.9979 }, { "start": 38146.62, "end": 38149.64, "probability": 0.9909 }, { "start": 38150.28, "end": 38155.02, "probability": 0.9824 }, { "start": 38155.16, "end": 38155.46, "probability": 0.6403 }, { "start": 38156.02, "end": 38158.74, "probability": 0.9883 }, { "start": 38159.42, "end": 38159.72, "probability": 0.6366 }, { "start": 38159.78, "end": 38162.88, "probability": 0.9397 }, { "start": 38163.38, "end": 38167.29, "probability": 0.9659 }, { "start": 38169.4, "end": 38171.14, "probability": 0.9541 }, { "start": 38171.86, "end": 38172.3, "probability": 0.8513 }, { "start": 38173.32, "end": 38177.8, "probability": 0.9912 }, { "start": 38178.46, "end": 38181.18, "probability": 0.9804 }, { "start": 38182.76, "end": 38184.52, "probability": 0.9889 }, { "start": 38185.84, "end": 38189.64, "probability": 0.6802 }, { "start": 38190.44, "end": 38193.28, "probability": 0.7769 }, { "start": 38194.9, "end": 38199.41, "probability": 0.964 }, { "start": 38200.34, "end": 38202.88, "probability": 0.9944 }, { "start": 38202.88, "end": 38206.08, "probability": 0.9582 }, { "start": 38206.48, "end": 38211.38, "probability": 0.9871 }, { "start": 38212.3, "end": 38214.3, "probability": 0.993 }, { "start": 38214.9, "end": 38215.76, "probability": 0.8322 }, { "start": 38216.48, "end": 38218.08, "probability": 0.9894 }, { "start": 38230.92, "end": 38231.64, "probability": 0.6221 }, { "start": 38231.7, "end": 38232.54, "probability": 0.7774 }, { "start": 38232.58, "end": 38233.16, "probability": 0.7885 }, { "start": 38233.32, "end": 38239.28, "probability": 0.9788 }, { "start": 38239.28, "end": 38244.52, "probability": 0.9803 }, { "start": 38244.88, "end": 38246.86, "probability": 0.901 }, { "start": 38246.96, "end": 38248.88, "probability": 0.8124 }, { "start": 38249.66, "end": 38251.62, "probability": 0.9746 }, { "start": 38251.68, "end": 38254.04, "probability": 0.9928 }, { "start": 38254.14, "end": 38256.07, "probability": 0.9315 }, { "start": 38256.86, "end": 38262.08, "probability": 0.968 }, { "start": 38263.58, "end": 38264.58, "probability": 0.8086 }, { "start": 38264.66, "end": 38265.34, "probability": 0.7844 }, { "start": 38266.25, "end": 38267.26, "probability": 0.3652 }, { "start": 38267.6, "end": 38271.7, "probability": 0.9935 }, { "start": 38273.6, "end": 38277.68, "probability": 0.9882 }, { "start": 38278.92, "end": 38282.9, "probability": 0.9928 }, { "start": 38283.02, "end": 38283.86, "probability": 0.7964 }, { "start": 38284.84, "end": 38286.18, "probability": 0.996 }, { "start": 38287.08, "end": 38288.14, "probability": 0.8397 }, { "start": 38288.62, "end": 38290.85, "probability": 0.999 }, { "start": 38291.64, "end": 38293.46, "probability": 0.8511 }, { "start": 38294.16, "end": 38294.46, "probability": 0.7033 }, { "start": 38295.48, "end": 38296.14, "probability": 0.8379 }, { "start": 38297.42, "end": 38298.78, "probability": 0.967 }, { "start": 38299.86, "end": 38303.44, "probability": 0.9969 }, { "start": 38305.12, "end": 38308.5, "probability": 0.9961 }, { "start": 38308.5, "end": 38313.0, "probability": 0.9992 }, { "start": 38313.14, "end": 38313.36, "probability": 0.3995 }, { "start": 38313.8, "end": 38316.18, "probability": 0.9873 }, { "start": 38316.18, "end": 38321.16, "probability": 0.9801 }, { "start": 38322.42, "end": 38323.42, "probability": 0.9727 }, { "start": 38323.5, "end": 38324.8, "probability": 0.973 }, { "start": 38324.88, "end": 38329.08, "probability": 0.9885 }, { "start": 38330.36, "end": 38332.5, "probability": 0.9721 }, { "start": 38333.82, "end": 38337.02, "probability": 0.9942 }, { "start": 38337.16, "end": 38339.74, "probability": 0.9819 }, { "start": 38340.88, "end": 38342.26, "probability": 0.9886 }, { "start": 38342.44, "end": 38346.3, "probability": 0.9785 }, { "start": 38346.4, "end": 38348.82, "probability": 0.9957 }, { "start": 38350.26, "end": 38351.24, "probability": 0.8867 }, { "start": 38352.92, "end": 38354.84, "probability": 0.9067 }, { "start": 38356.44, "end": 38363.34, "probability": 0.9538 }, { "start": 38363.34, "end": 38368.54, "probability": 0.9882 }, { "start": 38369.96, "end": 38371.64, "probability": 0.9841 }, { "start": 38371.82, "end": 38376.14, "probability": 0.9902 }, { "start": 38376.43, "end": 38381.42, "probability": 0.9965 }, { "start": 38381.46, "end": 38382.72, "probability": 0.8489 }, { "start": 38383.4, "end": 38385.9, "probability": 0.9981 }, { "start": 38386.94, "end": 38392.12, "probability": 0.9897 }, { "start": 38392.18, "end": 38393.94, "probability": 0.9974 }, { "start": 38394.5, "end": 38396.24, "probability": 0.6422 }, { "start": 38396.38, "end": 38399.29, "probability": 0.9929 }, { "start": 38400.9, "end": 38406.12, "probability": 0.9521 }, { "start": 38406.22, "end": 38407.36, "probability": 0.9009 }, { "start": 38407.54, "end": 38410.12, "probability": 0.9976 }, { "start": 38410.12, "end": 38413.22, "probability": 0.9819 }, { "start": 38414.76, "end": 38416.52, "probability": 0.934 }, { "start": 38416.52, "end": 38419.78, "probability": 0.9932 }, { "start": 38420.26, "end": 38421.26, "probability": 0.6536 }, { "start": 38422.36, "end": 38427.54, "probability": 0.8333 }, { "start": 38428.9, "end": 38429.08, "probability": 0.8334 }, { "start": 38429.12, "end": 38431.84, "probability": 0.9546 }, { "start": 38431.84, "end": 38435.48, "probability": 0.9346 }, { "start": 38436.2, "end": 38442.02, "probability": 0.9809 }, { "start": 38442.9, "end": 38446.34, "probability": 0.8456 }, { "start": 38446.58, "end": 38451.64, "probability": 0.8029 }, { "start": 38452.12, "end": 38454.08, "probability": 0.9466 }, { "start": 38454.48, "end": 38458.34, "probability": 0.9937 }, { "start": 38459.14, "end": 38461.6, "probability": 0.8347 }, { "start": 38462.34, "end": 38470.96, "probability": 0.987 }, { "start": 38471.02, "end": 38471.92, "probability": 0.5138 }, { "start": 38472.46, "end": 38473.5, "probability": 0.9476 }, { "start": 38473.64, "end": 38473.88, "probability": 0.8676 }, { "start": 38474.12, "end": 38475.8, "probability": 0.9214 }, { "start": 38476.24, "end": 38479.63, "probability": 0.9883 }, { "start": 38480.78, "end": 38480.96, "probability": 0.9557 }, { "start": 38481.02, "end": 38481.72, "probability": 0.7021 }, { "start": 38483.14, "end": 38486.78, "probability": 0.9906 }, { "start": 38487.0, "end": 38488.46, "probability": 0.7904 }, { "start": 38488.68, "end": 38491.0, "probability": 0.9934 }, { "start": 38491.0, "end": 38493.2, "probability": 0.9971 }, { "start": 38493.86, "end": 38501.98, "probability": 0.998 }, { "start": 38502.38, "end": 38503.36, "probability": 0.9358 }, { "start": 38503.74, "end": 38509.54, "probability": 0.9482 }, { "start": 38509.76, "end": 38510.84, "probability": 0.8626 }, { "start": 38511.44, "end": 38513.52, "probability": 0.8125 }, { "start": 38513.62, "end": 38516.54, "probability": 0.8762 }, { "start": 38516.68, "end": 38518.02, "probability": 0.9578 }, { "start": 38519.02, "end": 38523.54, "probability": 0.9899 }, { "start": 38524.3, "end": 38525.69, "probability": 0.7648 }, { "start": 38525.88, "end": 38527.74, "probability": 0.9861 }, { "start": 38527.9, "end": 38528.76, "probability": 0.8417 }, { "start": 38530.56, "end": 38532.96, "probability": 0.9238 }, { "start": 38533.12, "end": 38534.08, "probability": 0.781 }, { "start": 38534.2, "end": 38534.6, "probability": 0.6509 }, { "start": 38534.66, "end": 38535.44, "probability": 0.859 }, { "start": 38535.86, "end": 38537.48, "probability": 0.991 }, { "start": 38539.8, "end": 38542.1, "probability": 0.9061 }, { "start": 38545.43, "end": 38547.12, "probability": 0.5496 }, { "start": 38547.64, "end": 38548.16, "probability": 0.6593 }, { "start": 38549.76, "end": 38551.24, "probability": 0.719 }, { "start": 38551.9, "end": 38553.34, "probability": 0.8849 }, { "start": 38556.92, "end": 38562.88, "probability": 0.9901 }, { "start": 38562.96, "end": 38565.24, "probability": 0.8901 }, { "start": 38566.4, "end": 38567.34, "probability": 0.6941 }, { "start": 38568.0, "end": 38569.98, "probability": 0.9862 }, { "start": 38569.98, "end": 38572.54, "probability": 0.9715 }, { "start": 38572.68, "end": 38575.98, "probability": 0.9507 }, { "start": 38576.48, "end": 38593.12, "probability": 0.4642 }, { "start": 38593.18, "end": 38593.88, "probability": 0.0975 }, { "start": 38593.88, "end": 38593.88, "probability": 0.024 }, { "start": 38593.88, "end": 38593.88, "probability": 0.0694 }, { "start": 38593.88, "end": 38594.96, "probability": 0.5232 }, { "start": 38595.24, "end": 38596.72, "probability": 0.6944 }, { "start": 38597.04, "end": 38600.12, "probability": 0.7344 }, { "start": 38600.48, "end": 38602.55, "probability": 0.7506 }, { "start": 38603.06, "end": 38605.8, "probability": 0.9688 }, { "start": 38605.8, "end": 38608.74, "probability": 0.8844 }, { "start": 38609.06, "end": 38611.1, "probability": 0.8543 }, { "start": 38611.82, "end": 38615.3, "probability": 0.4765 }, { "start": 38615.76, "end": 38620.64, "probability": 0.9873 }, { "start": 38622.76, "end": 38624.0, "probability": 0.7699 }, { "start": 38624.12, "end": 38626.88, "probability": 0.6986 }, { "start": 38627.6, "end": 38631.98, "probability": 0.8023 }, { "start": 38633.1, "end": 38635.06, "probability": 0.9939 }, { "start": 38635.06, "end": 38638.34, "probability": 0.9829 }, { "start": 38638.46, "end": 38639.62, "probability": 0.8463 }, { "start": 38640.44, "end": 38640.72, "probability": 0.5366 }, { "start": 38640.78, "end": 38643.68, "probability": 0.9927 }, { "start": 38643.68, "end": 38645.9, "probability": 0.9772 }, { "start": 38646.5, "end": 38646.9, "probability": 0.7999 }, { "start": 38647.62, "end": 38653.92, "probability": 0.9359 }, { "start": 38655.08, "end": 38658.3, "probability": 0.9659 }, { "start": 38659.06, "end": 38661.66, "probability": 0.9902 }, { "start": 38662.36, "end": 38670.16, "probability": 0.9008 }, { "start": 38671.4, "end": 38671.94, "probability": 0.79 }, { "start": 38672.16, "end": 38675.1, "probability": 0.9394 }, { "start": 38675.1, "end": 38678.66, "probability": 0.9784 }, { "start": 38679.12, "end": 38680.88, "probability": 0.8135 }, { "start": 38681.0, "end": 38681.4, "probability": 0.5672 }, { "start": 38682.32, "end": 38684.32, "probability": 0.799 }, { "start": 38684.32, "end": 38688.92, "probability": 0.9861 }, { "start": 38689.74, "end": 38694.0, "probability": 0.9453 }, { "start": 38694.2, "end": 38694.42, "probability": 0.6963 }, { "start": 38695.94, "end": 38698.32, "probability": 0.9928 }, { "start": 38698.84, "end": 38699.18, "probability": 0.8491 }, { "start": 38699.28, "end": 38701.86, "probability": 0.9521 }, { "start": 38702.5, "end": 38706.12, "probability": 0.9542 }, { "start": 38707.1, "end": 38709.78, "probability": 0.8966 }, { "start": 38710.96, "end": 38711.94, "probability": 0.912 }, { "start": 38712.7, "end": 38717.26, "probability": 0.9937 }, { "start": 38717.98, "end": 38722.44, "probability": 0.9733 }, { "start": 38723.84, "end": 38726.6, "probability": 0.9966 }, { "start": 38726.7, "end": 38730.38, "probability": 0.9954 }, { "start": 38730.96, "end": 38733.82, "probability": 0.8955 }, { "start": 38734.04, "end": 38735.29, "probability": 0.8511 }, { "start": 38735.8, "end": 38736.9, "probability": 0.622 }, { "start": 38737.22, "end": 38740.56, "probability": 0.979 }, { "start": 38741.34, "end": 38745.34, "probability": 0.9857 }, { "start": 38751.28, "end": 38752.38, "probability": 0.7535 }, { "start": 38753.23, "end": 38757.26, "probability": 0.9782 }, { "start": 38757.26, "end": 38760.24, "probability": 0.9744 }, { "start": 38760.44, "end": 38763.36, "probability": 0.9565 }, { "start": 38764.26, "end": 38765.9, "probability": 0.7113 }, { "start": 38765.96, "end": 38767.4, "probability": 0.3914 }, { "start": 38767.8, "end": 38768.66, "probability": 0.8365 }, { "start": 38768.8, "end": 38770.74, "probability": 0.9309 }, { "start": 38771.5, "end": 38772.28, "probability": 0.9896 }, { "start": 38772.8, "end": 38774.54, "probability": 0.8268 }, { "start": 38774.86, "end": 38776.1, "probability": 0.9854 }, { "start": 38776.16, "end": 38777.46, "probability": 0.9888 }, { "start": 38777.6, "end": 38778.88, "probability": 0.9702 }, { "start": 38778.96, "end": 38779.16, "probability": 0.579 }, { "start": 38779.24, "end": 38781.14, "probability": 0.8341 }, { "start": 38781.82, "end": 38784.08, "probability": 0.9567 }, { "start": 38787.96, "end": 38790.66, "probability": 0.9704 }, { "start": 38791.3, "end": 38793.2, "probability": 0.9908 }, { "start": 38793.8, "end": 38797.58, "probability": 0.9744 }, { "start": 38798.24, "end": 38800.16, "probability": 0.908 }, { "start": 38800.66, "end": 38803.16, "probability": 0.9954 }, { "start": 38803.7, "end": 38804.1, "probability": 0.515 }, { "start": 38804.2, "end": 38804.48, "probability": 0.8357 }, { "start": 38804.52, "end": 38806.38, "probability": 0.965 }, { "start": 38806.5, "end": 38807.22, "probability": 0.4943 }, { "start": 38807.84, "end": 38809.54, "probability": 0.994 }, { "start": 38809.62, "end": 38810.22, "probability": 0.9578 }, { "start": 38810.3, "end": 38811.28, "probability": 0.8816 }, { "start": 38811.72, "end": 38813.9, "probability": 0.9305 }, { "start": 38814.32, "end": 38816.66, "probability": 0.8582 }, { "start": 38816.78, "end": 38820.9, "probability": 0.9825 }, { "start": 38821.12, "end": 38824.98, "probability": 0.9902 }, { "start": 38825.12, "end": 38826.64, "probability": 0.8996 }, { "start": 38826.78, "end": 38828.06, "probability": 0.6829 }, { "start": 38828.18, "end": 38828.36, "probability": 0.9669 }, { "start": 38828.46, "end": 38829.56, "probability": 0.9875 }, { "start": 38830.08, "end": 38831.0, "probability": 0.7274 }, { "start": 38831.66, "end": 38834.34, "probability": 0.9893 }, { "start": 38834.48, "end": 38837.14, "probability": 0.9811 }, { "start": 38837.52, "end": 38839.34, "probability": 0.9961 }, { "start": 38839.34, "end": 38841.22, "probability": 0.9939 }, { "start": 38842.44, "end": 38847.54, "probability": 0.9866 }, { "start": 38847.58, "end": 38850.76, "probability": 0.9619 }, { "start": 38850.78, "end": 38854.46, "probability": 0.9988 }, { "start": 38855.22, "end": 38858.62, "probability": 0.937 }, { "start": 38859.42, "end": 38863.12, "probability": 0.9902 }, { "start": 38863.24, "end": 38868.5, "probability": 0.8836 }, { "start": 38869.16, "end": 38873.28, "probability": 0.9956 }, { "start": 38873.28, "end": 38878.72, "probability": 0.9958 }, { "start": 38878.88, "end": 38879.22, "probability": 0.25 }, { "start": 38879.24, "end": 38883.7, "probability": 0.9888 }, { "start": 38883.7, "end": 38888.82, "probability": 0.9902 }, { "start": 38889.64, "end": 38890.08, "probability": 0.3812 }, { "start": 38890.38, "end": 38890.74, "probability": 0.9326 }, { "start": 38890.82, "end": 38893.04, "probability": 0.9888 }, { "start": 38893.12, "end": 38893.74, "probability": 0.6757 }, { "start": 38893.94, "end": 38898.26, "probability": 0.9956 }, { "start": 38898.36, "end": 38901.11, "probability": 0.9695 }, { "start": 38901.52, "end": 38904.8, "probability": 0.9922 }, { "start": 38904.98, "end": 38909.26, "probability": 0.9941 }, { "start": 38911.54, "end": 38913.06, "probability": 0.7659 }, { "start": 38913.9, "end": 38920.65, "probability": 0.9922 }, { "start": 38920.92, "end": 38926.3, "probability": 0.9767 }, { "start": 38926.32, "end": 38929.11, "probability": 0.9923 }, { "start": 38930.92, "end": 38932.44, "probability": 0.1823 }, { "start": 38932.96, "end": 38932.96, "probability": 0.1705 }, { "start": 38932.96, "end": 38933.56, "probability": 0.4712 }, { "start": 38933.76, "end": 38936.82, "probability": 0.758 }, { "start": 38938.02, "end": 38938.44, "probability": 0.8027 }, { "start": 38938.5, "end": 38940.14, "probability": 0.9674 }, { "start": 38940.54, "end": 38942.22, "probability": 0.9806 }, { "start": 38942.48, "end": 38946.46, "probability": 0.9802 }, { "start": 38947.06, "end": 38948.36, "probability": 0.917 }, { "start": 38949.16, "end": 38952.46, "probability": 0.991 }, { "start": 38953.2, "end": 38954.26, "probability": 0.8837 }, { "start": 38954.32, "end": 38956.26, "probability": 0.9734 }, { "start": 38956.5, "end": 38959.04, "probability": 0.9919 }, { "start": 38960.04, "end": 38964.16, "probability": 0.9976 }, { "start": 38964.16, "end": 38967.42, "probability": 0.9934 }, { "start": 38967.92, "end": 38970.54, "probability": 0.9843 }, { "start": 38970.98, "end": 38972.66, "probability": 0.933 }, { "start": 38973.06, "end": 38974.18, "probability": 0.9451 }, { "start": 38974.9, "end": 38978.0, "probability": 0.8778 }, { "start": 38978.02, "end": 38983.48, "probability": 0.9286 }, { "start": 38985.0, "end": 38986.16, "probability": 0.9972 }, { "start": 38986.62, "end": 38987.72, "probability": 0.8226 }, { "start": 38988.9, "end": 38991.3, "probability": 0.9867 }, { "start": 38991.74, "end": 38992.44, "probability": 0.9152 }, { "start": 38992.78, "end": 38994.32, "probability": 0.9985 }, { "start": 38995.0, "end": 38997.84, "probability": 0.9421 }, { "start": 38999.0, "end": 39002.5, "probability": 0.9876 }, { "start": 39003.02, "end": 39005.8, "probability": 0.8723 }, { "start": 39006.58, "end": 39007.44, "probability": 0.5651 }, { "start": 39007.58, "end": 39010.32, "probability": 0.9956 }, { "start": 39012.5, "end": 39012.74, "probability": 0.5323 }, { "start": 39013.02, "end": 39014.24, "probability": 0.7884 }, { "start": 39015.74, "end": 39015.9, "probability": 0.7753 }, { "start": 39016.5, "end": 39016.88, "probability": 0.5731 }, { "start": 39019.16, "end": 39019.72, "probability": 0.9082 }, { "start": 39020.86, "end": 39023.42, "probability": 0.6761 }, { "start": 39024.36, "end": 39024.5, "probability": 0.0299 }, { "start": 39026.56, "end": 39028.72, "probability": 0.6709 }, { "start": 39031.96, "end": 39032.6, "probability": 0.8106 }, { "start": 39034.12, "end": 39037.98, "probability": 0.7364 }, { "start": 39041.28, "end": 39042.08, "probability": 0.6198 }, { "start": 39043.86, "end": 39044.48, "probability": 0.6275 }, { "start": 39045.62, "end": 39046.56, "probability": 0.6602 }, { "start": 39046.68, "end": 39047.14, "probability": 0.7808 }, { "start": 39047.44, "end": 39048.64, "probability": 0.9321 }, { "start": 39048.78, "end": 39051.3, "probability": 0.9727 }, { "start": 39052.12, "end": 39053.34, "probability": 0.3427 }, { "start": 39053.34, "end": 39054.57, "probability": 0.3777 }, { "start": 39055.62, "end": 39056.58, "probability": 0.1881 }, { "start": 39059.0, "end": 39060.86, "probability": 0.9558 }, { "start": 39066.54, "end": 39072.16, "probability": 0.9889 }, { "start": 39073.0, "end": 39075.73, "probability": 0.6067 }, { "start": 39076.42, "end": 39078.28, "probability": 0.9909 }, { "start": 39078.52, "end": 39079.64, "probability": 0.7947 }, { "start": 39080.38, "end": 39081.14, "probability": 0.7026 }, { "start": 39081.22, "end": 39082.18, "probability": 0.7357 }, { "start": 39082.2, "end": 39083.18, "probability": 0.6385 }, { "start": 39083.28, "end": 39083.82, "probability": 0.8172 }, { "start": 39083.88, "end": 39084.61, "probability": 0.991 }, { "start": 39085.96, "end": 39087.38, "probability": 0.9374 }, { "start": 39088.5, "end": 39088.9, "probability": 0.8318 }, { "start": 39089.76, "end": 39090.62, "probability": 0.9854 }, { "start": 39090.9, "end": 39094.16, "probability": 0.834 }, { "start": 39094.28, "end": 39094.98, "probability": 0.9521 }, { "start": 39095.18, "end": 39096.2, "probability": 0.803 }, { "start": 39096.38, "end": 39099.42, "probability": 0.951 }, { "start": 39100.1, "end": 39102.54, "probability": 0.7983 }, { "start": 39103.12, "end": 39108.08, "probability": 0.9659 }, { "start": 39109.36, "end": 39114.84, "probability": 0.7769 }, { "start": 39115.44, "end": 39121.12, "probability": 0.9931 }, { "start": 39121.82, "end": 39124.32, "probability": 0.9994 }, { "start": 39125.9, "end": 39127.14, "probability": 0.8022 }, { "start": 39127.7, "end": 39128.46, "probability": 0.933 }, { "start": 39129.3, "end": 39130.84, "probability": 0.9707 }, { "start": 39131.48, "end": 39132.64, "probability": 0.9904 }, { "start": 39133.06, "end": 39139.32, "probability": 0.9692 }, { "start": 39139.72, "end": 39140.0, "probability": 0.6899 }, { "start": 39140.8, "end": 39141.18, "probability": 0.686 }, { "start": 39141.68, "end": 39142.22, "probability": 0.7263 }, { "start": 39142.32, "end": 39143.94, "probability": 0.8213 }, { "start": 39144.2, "end": 39148.02, "probability": 0.9938 }, { "start": 39148.28, "end": 39153.34, "probability": 0.9817 }, { "start": 39154.14, "end": 39155.08, "probability": 0.8757 }, { "start": 39156.22, "end": 39157.54, "probability": 0.5583 }, { "start": 39157.6, "end": 39157.98, "probability": 0.8119 }, { "start": 39158.08, "end": 39162.02, "probability": 0.9723 }, { "start": 39162.02, "end": 39165.52, "probability": 0.9908 }, { "start": 39165.68, "end": 39166.52, "probability": 0.883 }, { "start": 39167.72, "end": 39168.38, "probability": 0.9708 }, { "start": 39168.44, "end": 39174.52, "probability": 0.9334 }, { "start": 39176.24, "end": 39180.28, "probability": 0.9331 }, { "start": 39180.3, "end": 39182.2, "probability": 0.7939 }, { "start": 39182.34, "end": 39184.04, "probability": 0.4178 }, { "start": 39184.06, "end": 39187.16, "probability": 0.9795 }, { "start": 39187.26, "end": 39187.92, "probability": 0.8901 }, { "start": 39188.46, "end": 39190.14, "probability": 0.8806 }, { "start": 39190.66, "end": 39198.62, "probability": 0.9831 }, { "start": 39198.62, "end": 39205.26, "probability": 0.9985 }, { "start": 39205.97, "end": 39212.08, "probability": 0.978 }, { "start": 39213.2, "end": 39214.58, "probability": 0.693 }, { "start": 39214.72, "end": 39215.54, "probability": 0.6722 }, { "start": 39216.48, "end": 39216.7, "probability": 0.1954 }, { "start": 39217.26, "end": 39221.58, "probability": 0.994 }, { "start": 39222.52, "end": 39226.9, "probability": 0.9979 }, { "start": 39228.2, "end": 39228.36, "probability": 0.4584 }, { "start": 39228.52, "end": 39232.62, "probability": 0.9932 }, { "start": 39233.88, "end": 39236.07, "probability": 0.9761 }, { "start": 39237.34, "end": 39246.08, "probability": 0.766 }, { "start": 39246.74, "end": 39248.64, "probability": 0.9677 }, { "start": 39248.9, "end": 39249.42, "probability": 0.5545 }, { "start": 39249.5, "end": 39250.5, "probability": 0.904 }, { "start": 39251.08, "end": 39253.82, "probability": 0.9615 }, { "start": 39254.88, "end": 39255.8, "probability": 0.8856 }, { "start": 39256.58, "end": 39260.06, "probability": 0.904 }, { "start": 39260.22, "end": 39263.28, "probability": 0.9233 }, { "start": 39263.84, "end": 39270.0, "probability": 0.8456 }, { "start": 39271.16, "end": 39271.58, "probability": 0.4105 }, { "start": 39272.68, "end": 39277.98, "probability": 0.8317 }, { "start": 39278.1, "end": 39279.02, "probability": 0.9313 }, { "start": 39279.7, "end": 39282.52, "probability": 0.9968 }, { "start": 39282.88, "end": 39285.24, "probability": 0.6908 }, { "start": 39285.7, "end": 39287.34, "probability": 0.9875 }, { "start": 39289.58, "end": 39290.7, "probability": 0.649 }, { "start": 39290.94, "end": 39291.82, "probability": 0.8658 }, { "start": 39294.18, "end": 39294.86, "probability": 0.7506 }, { "start": 39295.04, "end": 39298.94, "probability": 0.987 }, { "start": 39298.94, "end": 39302.6, "probability": 0.9982 }, { "start": 39302.74, "end": 39310.24, "probability": 0.7615 }, { "start": 39310.76, "end": 39311.86, "probability": 0.8174 }, { "start": 39311.92, "end": 39312.12, "probability": 0.8 }, { "start": 39312.2, "end": 39313.83, "probability": 0.9434 }, { "start": 39314.22, "end": 39315.3, "probability": 0.9221 }, { "start": 39315.34, "end": 39316.47, "probability": 0.9956 }, { "start": 39317.76, "end": 39323.58, "probability": 0.9849 }, { "start": 39324.6, "end": 39324.9, "probability": 0.6144 }, { "start": 39325.64, "end": 39329.86, "probability": 0.7961 }, { "start": 39331.04, "end": 39336.2, "probability": 0.9951 }, { "start": 39336.36, "end": 39340.66, "probability": 0.9906 }, { "start": 39341.16, "end": 39341.7, "probability": 0.8804 }, { "start": 39342.54, "end": 39343.64, "probability": 0.9013 }, { "start": 39344.04, "end": 39346.26, "probability": 0.9693 }, { "start": 39346.36, "end": 39347.44, "probability": 0.8965 }, { "start": 39348.44, "end": 39351.12, "probability": 0.9894 }, { "start": 39351.24, "end": 39357.44, "probability": 0.9928 }, { "start": 39358.22, "end": 39359.74, "probability": 0.5863 }, { "start": 39359.86, "end": 39364.08, "probability": 0.9883 }, { "start": 39364.1, "end": 39367.7, "probability": 0.99 }, { "start": 39368.08, "end": 39373.02, "probability": 0.9852 }, { "start": 39373.36, "end": 39374.57, "probability": 0.9114 }, { "start": 39375.54, "end": 39378.28, "probability": 0.9283 }, { "start": 39378.44, "end": 39379.56, "probability": 0.5906 }, { "start": 39379.56, "end": 39384.78, "probability": 0.9809 }, { "start": 39385.3, "end": 39386.76, "probability": 0.8315 }, { "start": 39386.96, "end": 39389.6, "probability": 0.958 }, { "start": 39390.0, "end": 39391.78, "probability": 0.9375 }, { "start": 39391.88, "end": 39393.04, "probability": 0.9639 }, { "start": 39393.74, "end": 39394.42, "probability": 0.8868 }, { "start": 39395.32, "end": 39396.5, "probability": 0.9336 }, { "start": 39397.2, "end": 39399.94, "probability": 0.9581 }, { "start": 39400.16, "end": 39400.72, "probability": 0.7172 }, { "start": 39401.8, "end": 39402.12, "probability": 0.3894 }, { "start": 39402.36, "end": 39403.64, "probability": 0.7847 }, { "start": 39403.66, "end": 39404.6, "probability": 0.6334 }, { "start": 39404.68, "end": 39406.06, "probability": 0.8528 }, { "start": 39406.24, "end": 39407.02, "probability": 0.6404 }, { "start": 39407.18, "end": 39407.9, "probability": 0.9253 }, { "start": 39408.12, "end": 39409.82, "probability": 0.8931 }, { "start": 39409.9, "end": 39411.02, "probability": 0.9314 }, { "start": 39411.12, "end": 39411.96, "probability": 0.9364 }, { "start": 39412.64, "end": 39414.76, "probability": 0.8722 }, { "start": 39414.86, "end": 39417.6, "probability": 0.9919 }, { "start": 39417.68, "end": 39424.38, "probability": 0.9802 }, { "start": 39424.78, "end": 39427.74, "probability": 0.9817 }, { "start": 39427.88, "end": 39429.12, "probability": 0.9961 }, { "start": 39429.2, "end": 39432.58, "probability": 0.9934 }, { "start": 39432.72, "end": 39433.44, "probability": 0.7146 }, { "start": 39433.58, "end": 39434.58, "probability": 0.9299 }, { "start": 39434.7, "end": 39435.46, "probability": 0.8086 }, { "start": 39435.5, "end": 39442.78, "probability": 0.9907 }, { "start": 39443.42, "end": 39446.58, "probability": 0.9259 }, { "start": 39447.14, "end": 39450.3, "probability": 0.9218 }, { "start": 39451.16, "end": 39451.9, "probability": 0.9554 }, { "start": 39451.9, "end": 39453.8, "probability": 0.9198 }, { "start": 39454.48, "end": 39456.89, "probability": 0.7837 }, { "start": 39457.24, "end": 39458.72, "probability": 0.707 }, { "start": 39459.1, "end": 39460.02, "probability": 0.8766 }, { "start": 39460.04, "end": 39462.12, "probability": 0.9779 }, { "start": 39462.62, "end": 39464.2, "probability": 0.9835 }, { "start": 39464.8, "end": 39466.74, "probability": 0.8157 }, { "start": 39467.08, "end": 39469.64, "probability": 0.7482 }, { "start": 39469.76, "end": 39473.48, "probability": 0.9962 }, { "start": 39473.92, "end": 39474.84, "probability": 0.8699 }, { "start": 39475.26, "end": 39476.07, "probability": 0.6616 }, { "start": 39476.54, "end": 39478.56, "probability": 0.9769 }, { "start": 39478.74, "end": 39480.92, "probability": 0.9961 }, { "start": 39481.3, "end": 39484.04, "probability": 0.9937 }, { "start": 39484.88, "end": 39487.14, "probability": 0.988 }, { "start": 39487.24, "end": 39490.36, "probability": 0.9244 }, { "start": 39490.86, "end": 39490.88, "probability": 0.3767 }, { "start": 39490.88, "end": 39491.42, "probability": 0.9177 }, { "start": 39491.8, "end": 39491.8, "probability": 0.5111 }, { "start": 39491.94, "end": 39493.82, "probability": 0.7623 }, { "start": 39494.98, "end": 39495.22, "probability": 0.7608 }, { "start": 39495.26, "end": 39495.94, "probability": 0.8535 }, { "start": 39496.06, "end": 39496.72, "probability": 0.904 }, { "start": 39496.76, "end": 39498.5, "probability": 0.9441 }, { "start": 39499.08, "end": 39499.34, "probability": 0.7386 }, { "start": 39500.46, "end": 39504.42, "probability": 0.9812 }, { "start": 39504.46, "end": 39505.88, "probability": 0.833 }, { "start": 39506.52, "end": 39508.14, "probability": 0.9697 }, { "start": 39508.72, "end": 39513.48, "probability": 0.8537 }, { "start": 39514.02, "end": 39515.14, "probability": 0.9985 }, { "start": 39515.7, "end": 39518.66, "probability": 0.8924 }, { "start": 39519.18, "end": 39522.26, "probability": 0.9384 }, { "start": 39522.92, "end": 39525.52, "probability": 0.9858 }, { "start": 39525.58, "end": 39529.86, "probability": 0.9373 }, { "start": 39530.4, "end": 39534.12, "probability": 0.941 }, { "start": 39534.6, "end": 39536.52, "probability": 0.9867 }, { "start": 39537.08, "end": 39540.14, "probability": 0.9074 }, { "start": 39540.3, "end": 39540.9, "probability": 0.9662 }, { "start": 39541.52, "end": 39541.9, "probability": 0.9414 }, { "start": 39541.98, "end": 39542.66, "probability": 0.7634 }, { "start": 39543.14, "end": 39546.2, "probability": 0.7684 }, { "start": 39546.34, "end": 39546.68, "probability": 0.7047 }, { "start": 39547.16, "end": 39547.86, "probability": 0.8394 }, { "start": 39547.9, "end": 39551.28, "probability": 0.9862 }, { "start": 39551.46, "end": 39551.9, "probability": 0.6136 }, { "start": 39551.98, "end": 39556.48, "probability": 0.9731 }, { "start": 39556.8, "end": 39561.06, "probability": 0.8789 }, { "start": 39562.74, "end": 39564.06, "probability": 0.2626 }, { "start": 39564.56, "end": 39566.16, "probability": 0.5748 }, { "start": 39566.3, "end": 39569.82, "probability": 0.9768 }, { "start": 39569.92, "end": 39572.9, "probability": 0.812 }, { "start": 39573.92, "end": 39577.94, "probability": 0.026 }, { "start": 39579.0, "end": 39580.1, "probability": 0.0774 }, { "start": 39580.1, "end": 39580.1, "probability": 0.0583 }, { "start": 39580.1, "end": 39580.1, "probability": 0.15 }, { "start": 39580.1, "end": 39580.1, "probability": 0.1102 }, { "start": 39580.1, "end": 39580.38, "probability": 0.1167 }, { "start": 39581.34, "end": 39582.78, "probability": 0.6518 }, { "start": 39582.92, "end": 39583.22, "probability": 0.6792 }, { "start": 39592.3, "end": 39593.34, "probability": 0.5133 }, { "start": 39594.46, "end": 39596.28, "probability": 0.9873 }, { "start": 39596.94, "end": 39599.18, "probability": 0.9924 }, { "start": 39599.8, "end": 39602.34, "probability": 0.9951 }, { "start": 39602.34, "end": 39606.82, "probability": 0.9921 }, { "start": 39607.6, "end": 39611.52, "probability": 0.8265 }, { "start": 39612.2, "end": 39616.32, "probability": 0.9956 }, { "start": 39616.64, "end": 39618.98, "probability": 0.9932 }, { "start": 39620.3, "end": 39624.26, "probability": 0.9194 }, { "start": 39624.26, "end": 39629.46, "probability": 0.9921 }, { "start": 39629.96, "end": 39635.2, "probability": 0.995 }, { "start": 39635.56, "end": 39635.82, "probability": 0.7388 }, { "start": 39636.74, "end": 39638.44, "probability": 0.7743 }, { "start": 39638.82, "end": 39642.08, "probability": 0.9961 }, { "start": 39642.08, "end": 39646.46, "probability": 0.9784 }, { "start": 39646.96, "end": 39648.92, "probability": 0.9673 }, { "start": 39650.06, "end": 39652.98, "probability": 0.8864 }, { "start": 39652.98, "end": 39657.22, "probability": 0.9929 }, { "start": 39658.36, "end": 39662.86, "probability": 0.9855 }, { "start": 39663.52, "end": 39666.56, "probability": 0.9627 }, { "start": 39667.7, "end": 39668.16, "probability": 0.7649 }, { "start": 39668.46, "end": 39671.28, "probability": 0.9949 }, { "start": 39671.6, "end": 39676.28, "probability": 0.9893 }, { "start": 39676.88, "end": 39678.26, "probability": 0.8641 }, { "start": 39678.82, "end": 39680.7, "probability": 0.991 }, { "start": 39688.98, "end": 39689.6, "probability": 0.8148 }, { "start": 39689.78, "end": 39693.62, "probability": 0.9905 }, { "start": 39693.86, "end": 39694.52, "probability": 0.9281 }, { "start": 39695.06, "end": 39695.72, "probability": 0.9946 }, { "start": 39696.36, "end": 39700.2, "probability": 0.9961 }, { "start": 39701.67, "end": 39705.38, "probability": 0.7357 }, { "start": 39705.52, "end": 39707.66, "probability": 0.9849 }, { "start": 39708.12, "end": 39710.82, "probability": 0.9907 }, { "start": 39711.32, "end": 39714.3, "probability": 0.6525 }, { "start": 39714.68, "end": 39716.94, "probability": 0.6621 }, { "start": 39717.34, "end": 39718.58, "probability": 0.9893 }, { "start": 39718.74, "end": 39719.3, "probability": 0.9908 }, { "start": 39719.78, "end": 39720.51, "probability": 0.9237 }, { "start": 39720.98, "end": 39721.96, "probability": 0.9978 }, { "start": 39722.42, "end": 39723.12, "probability": 0.3774 }, { "start": 39723.66, "end": 39727.8, "probability": 0.9832 }, { "start": 39728.24, "end": 39730.56, "probability": 0.9438 }, { "start": 39730.96, "end": 39733.16, "probability": 0.937 }, { "start": 39733.24, "end": 39735.3, "probability": 0.9676 }, { "start": 39735.38, "end": 39739.2, "probability": 0.876 }, { "start": 39740.22, "end": 39743.44, "probability": 0.73 }, { "start": 39743.56, "end": 39744.38, "probability": 0.7597 }, { "start": 39744.8, "end": 39745.26, "probability": 0.2714 }, { "start": 39745.5, "end": 39745.88, "probability": 0.4888 }, { "start": 39746.26, "end": 39748.52, "probability": 0.8605 }, { "start": 39748.94, "end": 39753.4, "probability": 0.9937 }, { "start": 39753.64, "end": 39758.36, "probability": 0.9862 }, { "start": 39758.54, "end": 39759.58, "probability": 0.826 }, { "start": 39759.72, "end": 39760.38, "probability": 0.5702 }, { "start": 39760.94, "end": 39761.94, "probability": 0.6849 }, { "start": 39761.94, "end": 39763.06, "probability": 0.8287 }, { "start": 39763.3, "end": 39765.66, "probability": 0.9748 }, { "start": 39765.74, "end": 39766.58, "probability": 0.5215 }, { "start": 39767.14, "end": 39767.93, "probability": 0.9075 }, { "start": 39768.28, "end": 39770.56, "probability": 0.905 }, { "start": 39771.18, "end": 39773.84, "probability": 0.9491 }, { "start": 39773.88, "end": 39776.38, "probability": 0.9233 }, { "start": 39776.68, "end": 39778.36, "probability": 0.9937 }, { "start": 39778.44, "end": 39780.12, "probability": 0.9868 }, { "start": 39780.38, "end": 39782.28, "probability": 0.958 }, { "start": 39782.46, "end": 39782.84, "probability": 0.5324 }, { "start": 39782.86, "end": 39784.82, "probability": 0.9648 }, { "start": 39784.82, "end": 39787.46, "probability": 0.9951 }, { "start": 39787.52, "end": 39788.02, "probability": 0.7475 }, { "start": 39788.14, "end": 39788.4, "probability": 0.8196 }, { "start": 39789.24, "end": 39791.76, "probability": 0.9946 }, { "start": 39792.64, "end": 39798.06, "probability": 0.3734 }, { "start": 39798.62, "end": 39799.12, "probability": 0.5126 }, { "start": 39799.56, "end": 39800.18, "probability": 0.0393 }, { "start": 39800.64, "end": 39800.64, "probability": 0.51 }, { "start": 39800.64, "end": 39804.0, "probability": 0.9975 }, { "start": 39804.32, "end": 39806.16, "probability": 0.9033 }, { "start": 39806.88, "end": 39808.12, "probability": 0.0681 }, { "start": 39808.42, "end": 39811.31, "probability": 0.9819 }, { "start": 39812.44, "end": 39814.02, "probability": 0.9537 }, { "start": 39814.22, "end": 39815.86, "probability": 0.6938 }, { "start": 39815.86, "end": 39816.0, "probability": 0.0797 }, { "start": 39817.28, "end": 39823.3, "probability": 0.9368 }, { "start": 39824.0, "end": 39824.48, "probability": 0.0647 }, { "start": 39824.54, "end": 39828.12, "probability": 0.5201 }, { "start": 39828.12, "end": 39829.16, "probability": 0.6436 }, { "start": 39829.56, "end": 39830.0, "probability": 0.5706 }, { "start": 39830.48, "end": 39831.24, "probability": 0.528 }, { "start": 39831.24, "end": 39833.38, "probability": 0.4726 }, { "start": 39834.14, "end": 39834.24, "probability": 0.6232 }, { "start": 39834.3, "end": 39837.73, "probability": 0.9529 }, { "start": 39838.02, "end": 39838.98, "probability": 0.9148 }, { "start": 39844.52, "end": 39844.88, "probability": 0.1585 }, { "start": 39845.64, "end": 39850.54, "probability": 0.9973 }, { "start": 39851.44, "end": 39857.04, "probability": 0.9858 }, { "start": 39857.2, "end": 39860.78, "probability": 0.9949 }, { "start": 39861.24, "end": 39861.64, "probability": 0.4548 }, { "start": 39861.8, "end": 39862.18, "probability": 0.8885 }, { "start": 39862.26, "end": 39863.24, "probability": 0.9846 }, { "start": 39863.4, "end": 39864.78, "probability": 0.9827 }, { "start": 39865.32, "end": 39869.46, "probability": 0.9159 }, { "start": 39869.72, "end": 39870.14, "probability": 0.9015 }, { "start": 39871.3, "end": 39871.86, "probability": 0.7161 }, { "start": 39871.92, "end": 39872.3, "probability": 0.8462 }, { "start": 39872.5, "end": 39873.22, "probability": 0.7598 }, { "start": 39873.26, "end": 39875.62, "probability": 0.7528 }, { "start": 39876.8, "end": 39880.1, "probability": 0.8711 }, { "start": 39880.72, "end": 39881.82, "probability": 0.8445 }, { "start": 39882.78, "end": 39884.14, "probability": 0.013 }, { "start": 39884.8, "end": 39886.3, "probability": 0.9949 }, { "start": 39887.28, "end": 39888.48, "probability": 0.9554 }, { "start": 39888.82, "end": 39889.52, "probability": 0.9332 }, { "start": 39889.52, "end": 39891.74, "probability": 0.8951 }, { "start": 39891.92, "end": 39896.86, "probability": 0.9828 }, { "start": 39897.72, "end": 39902.37, "probability": 0.9598 }, { "start": 39903.36, "end": 39905.64, "probability": 0.736 }, { "start": 39906.28, "end": 39908.94, "probability": 0.5595 }, { "start": 39909.48, "end": 39912.34, "probability": 0.9912 }, { "start": 39912.34, "end": 39915.68, "probability": 0.8908 }, { "start": 39916.2, "end": 39920.2, "probability": 0.9926 }, { "start": 39921.04, "end": 39921.72, "probability": 0.6957 }, { "start": 39921.82, "end": 39922.34, "probability": 0.6309 }, { "start": 39922.44, "end": 39924.02, "probability": 0.8207 }, { "start": 39924.44, "end": 39927.3, "probability": 0.9333 }, { "start": 39927.44, "end": 39928.62, "probability": 0.9651 }, { "start": 39929.32, "end": 39930.58, "probability": 0.8773 }, { "start": 39931.16, "end": 39931.48, "probability": 0.8725 }, { "start": 39932.22, "end": 39934.3, "probability": 0.9776 }, { "start": 39934.74, "end": 39935.78, "probability": 0.9951 }, { "start": 39935.88, "end": 39937.1, "probability": 0.9255 }, { "start": 39937.7, "end": 39941.24, "probability": 0.9971 }, { "start": 39942.74, "end": 39946.12, "probability": 0.9835 }, { "start": 39946.58, "end": 39948.08, "probability": 0.886 }, { "start": 39948.92, "end": 39953.88, "probability": 0.9795 }, { "start": 39955.92, "end": 39957.24, "probability": 0.9033 }, { "start": 39957.7, "end": 39966.44, "probability": 0.8184 }, { "start": 39966.96, "end": 39972.14, "probability": 0.8053 }, { "start": 39972.64, "end": 39974.7, "probability": 0.9062 }, { "start": 39975.26, "end": 39976.5, "probability": 0.9768 }, { "start": 39978.36, "end": 39981.92, "probability": 0.995 }, { "start": 39982.62, "end": 39984.48, "probability": 0.9458 }, { "start": 39984.74, "end": 39986.06, "probability": 0.9346 }, { "start": 39986.62, "end": 39988.36, "probability": 0.998 }, { "start": 39989.44, "end": 39992.92, "probability": 0.9484 }, { "start": 39993.62, "end": 39994.9, "probability": 0.9067 }, { "start": 39995.76, "end": 39996.42, "probability": 0.9857 }, { "start": 39996.59, "end": 39998.3, "probability": 0.9758 }, { "start": 39999.6, "end": 40001.94, "probability": 0.9719 }, { "start": 40002.86, "end": 40009.49, "probability": 0.7305 }, { "start": 40010.28, "end": 40012.5, "probability": 0.9929 }, { "start": 40013.12, "end": 40015.12, "probability": 0.7727 }, { "start": 40015.66, "end": 40017.22, "probability": 0.5036 }, { "start": 40020.62, "end": 40023.3, "probability": 0.9181 }, { "start": 40023.84, "end": 40025.04, "probability": 0.7624 }, { "start": 40027.2, "end": 40029.3, "probability": 0.9935 }, { "start": 40030.08, "end": 40034.26, "probability": 0.9877 }, { "start": 40035.28, "end": 40038.62, "probability": 0.9446 }, { "start": 40039.02, "end": 40042.58, "probability": 0.9912 }, { "start": 40043.32, "end": 40044.12, "probability": 0.731 }, { "start": 40045.22, "end": 40047.62, "probability": 0.8492 }, { "start": 40048.34, "end": 40051.04, "probability": 0.9937 }, { "start": 40051.5, "end": 40053.1, "probability": 0.9639 }, { "start": 40053.52, "end": 40055.48, "probability": 0.9543 }, { "start": 40056.26, "end": 40060.14, "probability": 0.9951 }, { "start": 40060.56, "end": 40064.9, "probability": 0.9958 }, { "start": 40066.64, "end": 40069.41, "probability": 0.6721 }, { "start": 40070.38, "end": 40072.32, "probability": 0.8832 }, { "start": 40072.62, "end": 40073.98, "probability": 0.9238 }, { "start": 40074.44, "end": 40078.29, "probability": 0.9818 }, { "start": 40078.84, "end": 40079.14, "probability": 0.9459 }, { "start": 40079.66, "end": 40080.62, "probability": 0.8464 }, { "start": 40081.88, "end": 40082.42, "probability": 0.5699 }, { "start": 40083.0, "end": 40083.64, "probability": 0.8602 }, { "start": 40084.62, "end": 40086.46, "probability": 0.746 }, { "start": 40087.64, "end": 40090.26, "probability": 0.9781 }, { "start": 40090.62, "end": 40091.06, "probability": 0.7081 }, { "start": 40091.26, "end": 40092.7, "probability": 0.9835 }, { "start": 40098.28, "end": 40100.72, "probability": 0.8965 }, { "start": 40101.42, "end": 40101.62, "probability": 0.9349 }, { "start": 40103.18, "end": 40106.18, "probability": 0.997 }, { "start": 40106.32, "end": 40107.31, "probability": 0.9375 }, { "start": 40107.72, "end": 40108.68, "probability": 0.9702 }, { "start": 40109.26, "end": 40111.48, "probability": 0.8367 }, { "start": 40112.08, "end": 40113.02, "probability": 0.9704 }, { "start": 40113.24, "end": 40113.64, "probability": 0.8457 }, { "start": 40113.74, "end": 40116.5, "probability": 0.9943 }, { "start": 40116.76, "end": 40117.78, "probability": 0.9675 }, { "start": 40118.22, "end": 40119.22, "probability": 0.9489 }, { "start": 40119.34, "end": 40120.7, "probability": 0.9426 }, { "start": 40120.8, "end": 40121.0, "probability": 0.934 }, { "start": 40121.38, "end": 40124.86, "probability": 0.9966 }, { "start": 40124.94, "end": 40125.96, "probability": 0.5865 }, { "start": 40126.6, "end": 40126.6, "probability": 0.3864 }, { "start": 40126.64, "end": 40129.02, "probability": 0.7518 }, { "start": 40129.12, "end": 40133.14, "probability": 0.9796 }, { "start": 40133.28, "end": 40138.7, "probability": 0.9929 }, { "start": 40138.88, "end": 40140.88, "probability": 0.9971 }, { "start": 40141.0, "end": 40144.56, "probability": 0.9282 }, { "start": 40144.56, "end": 40148.18, "probability": 0.9907 }, { "start": 40148.8, "end": 40150.38, "probability": 0.8295 }, { "start": 40150.68, "end": 40151.44, "probability": 0.989 }, { "start": 40151.58, "end": 40152.62, "probability": 0.8437 }, { "start": 40152.74, "end": 40156.66, "probability": 0.9616 }, { "start": 40156.84, "end": 40161.92, "probability": 0.9521 }, { "start": 40162.18, "end": 40162.94, "probability": 0.9746 }, { "start": 40163.34, "end": 40165.88, "probability": 0.9854 }, { "start": 40166.01, "end": 40168.38, "probability": 0.9956 }, { "start": 40168.76, "end": 40172.04, "probability": 0.9796 }, { "start": 40172.16, "end": 40172.82, "probability": 0.3023 }, { "start": 40172.94, "end": 40175.24, "probability": 0.9528 }, { "start": 40175.48, "end": 40178.06, "probability": 0.7006 }, { "start": 40179.1, "end": 40180.52, "probability": 0.9886 }, { "start": 40181.3, "end": 40181.82, "probability": 0.5657 }, { "start": 40182.4, "end": 40183.14, "probability": 0.4811 }, { "start": 40183.18, "end": 40183.38, "probability": 0.8675 }, { "start": 40183.58, "end": 40187.46, "probability": 0.9727 }, { "start": 40187.46, "end": 40190.5, "probability": 0.9933 }, { "start": 40191.94, "end": 40192.8, "probability": 0.7808 }, { "start": 40193.94, "end": 40197.62, "probability": 0.9435 }, { "start": 40197.66, "end": 40199.2, "probability": 0.987 }, { "start": 40199.38, "end": 40201.74, "probability": 0.7853 }, { "start": 40201.84, "end": 40203.92, "probability": 0.9414 }, { "start": 40204.04, "end": 40207.38, "probability": 0.9895 }, { "start": 40208.68, "end": 40209.34, "probability": 0.7245 }, { "start": 40209.72, "end": 40210.3, "probability": 0.9517 }, { "start": 40210.62, "end": 40213.7, "probability": 0.9759 }, { "start": 40213.7, "end": 40216.98, "probability": 0.9199 }, { "start": 40217.12, "end": 40221.28, "probability": 0.9837 }, { "start": 40222.1, "end": 40224.32, "probability": 0.7323 }, { "start": 40224.44, "end": 40228.2, "probability": 0.855 }, { "start": 40228.52, "end": 40233.06, "probability": 0.9451 }, { "start": 40233.06, "end": 40237.92, "probability": 0.9985 }, { "start": 40238.48, "end": 40240.96, "probability": 0.9979 }, { "start": 40241.06, "end": 40242.54, "probability": 0.8224 }, { "start": 40243.34, "end": 40244.8, "probability": 0.8264 }, { "start": 40245.26, "end": 40248.26, "probability": 0.9956 }, { "start": 40248.48, "end": 40250.26, "probability": 0.8764 }, { "start": 40250.38, "end": 40250.84, "probability": 0.904 }, { "start": 40251.5, "end": 40255.02, "probability": 0.772 }, { "start": 40255.32, "end": 40258.18, "probability": 0.9631 }, { "start": 40263.14, "end": 40265.58, "probability": 0.9377 }, { "start": 40267.2, "end": 40269.12, "probability": 0.241 }, { "start": 40269.34, "end": 40270.8, "probability": 0.7278 }, { "start": 40271.3, "end": 40272.22, "probability": 0.312 }, { "start": 40272.64, "end": 40274.46, "probability": 0.1702 }, { "start": 40274.78, "end": 40274.98, "probability": 0.0177 }, { "start": 40275.54, "end": 40275.99, "probability": 0.4048 }, { "start": 40276.96, "end": 40278.08, "probability": 0.2794 }, { "start": 40278.12, "end": 40279.04, "probability": 0.5962 }, { "start": 40279.34, "end": 40281.14, "probability": 0.862 }, { "start": 40282.0, "end": 40282.25, "probability": 0.0616 }, { "start": 40283.06, "end": 40283.7, "probability": 0.7562 }, { "start": 40285.7, "end": 40290.56, "probability": 0.9742 }, { "start": 40290.76, "end": 40290.88, "probability": 0.4926 }, { "start": 40292.5, "end": 40293.24, "probability": 0.7189 }, { "start": 40293.3, "end": 40295.08, "probability": 0.9608 }, { "start": 40302.8, "end": 40303.88, "probability": 0.6319 }, { "start": 40305.1, "end": 40307.74, "probability": 0.8248 }, { "start": 40308.86, "end": 40312.36, "probability": 0.9864 }, { "start": 40312.36, "end": 40316.7, "probability": 0.9715 }, { "start": 40317.06, "end": 40318.02, "probability": 0.8176 }, { "start": 40318.6, "end": 40319.24, "probability": 0.9142 }, { "start": 40320.64, "end": 40321.08, "probability": 0.6188 }, { "start": 40322.06, "end": 40324.98, "probability": 0.8905 }, { "start": 40325.74, "end": 40328.5, "probability": 0.9772 }, { "start": 40329.04, "end": 40329.4, "probability": 0.9586 }, { "start": 40331.08, "end": 40335.51, "probability": 0.7923 }, { "start": 40336.22, "end": 40338.26, "probability": 0.8982 }, { "start": 40339.96, "end": 40341.64, "probability": 0.9088 }, { "start": 40341.74, "end": 40345.6, "probability": 0.9728 }, { "start": 40345.74, "end": 40352.76, "probability": 0.9785 }, { "start": 40353.84, "end": 40356.07, "probability": 0.7492 }, { "start": 40356.4, "end": 40357.36, "probability": 0.9834 }, { "start": 40357.76, "end": 40359.2, "probability": 0.8727 }, { "start": 40359.76, "end": 40365.38, "probability": 0.9565 }, { "start": 40366.44, "end": 40366.88, "probability": 0.8071 }, { "start": 40368.3, "end": 40371.06, "probability": 0.9853 }, { "start": 40371.6, "end": 40373.5, "probability": 0.8191 }, { "start": 40373.78, "end": 40374.58, "probability": 0.7793 }, { "start": 40375.2, "end": 40380.1, "probability": 0.9891 }, { "start": 40380.56, "end": 40382.0, "probability": 0.7318 }, { "start": 40382.18, "end": 40382.68, "probability": 0.8297 }, { "start": 40383.1, "end": 40384.24, "probability": 0.9255 }, { "start": 40386.46, "end": 40388.0, "probability": 0.926 }, { "start": 40388.18, "end": 40390.88, "probability": 0.9409 }, { "start": 40391.7, "end": 40392.86, "probability": 0.7851 }, { "start": 40394.83, "end": 40396.9, "probability": 0.3298 }, { "start": 40396.9, "end": 40399.08, "probability": 0.9691 }, { "start": 40399.7, "end": 40400.28, "probability": 0.5898 }, { "start": 40400.86, "end": 40402.14, "probability": 0.8577 }, { "start": 40402.66, "end": 40403.46, "probability": 0.9831 }, { "start": 40404.4, "end": 40407.16, "probability": 0.9583 }, { "start": 40407.26, "end": 40409.38, "probability": 0.665 }, { "start": 40410.3, "end": 40411.32, "probability": 0.2897 }, { "start": 40412.1, "end": 40413.54, "probability": 0.9363 }, { "start": 40414.66, "end": 40416.74, "probability": 0.8794 }, { "start": 40417.36, "end": 40418.54, "probability": 0.9954 }, { "start": 40418.58, "end": 40420.44, "probability": 0.9868 }, { "start": 40421.22, "end": 40422.38, "probability": 0.7088 }, { "start": 40422.96, "end": 40423.6, "probability": 0.5422 }, { "start": 40425.4, "end": 40429.0, "probability": 0.9398 }, { "start": 40429.16, "end": 40431.88, "probability": 0.9774 }, { "start": 40431.98, "end": 40432.78, "probability": 0.8707 }, { "start": 40433.18, "end": 40435.9, "probability": 0.8907 }, { "start": 40436.4, "end": 40437.04, "probability": 0.5411 }, { "start": 40437.58, "end": 40439.86, "probability": 0.9575 }, { "start": 40439.96, "end": 40443.12, "probability": 0.8135 }, { "start": 40443.96, "end": 40444.42, "probability": 0.7092 }, { "start": 40444.98, "end": 40449.14, "probability": 0.9615 }, { "start": 40450.0, "end": 40450.34, "probability": 0.8313 }, { "start": 40450.4, "end": 40451.06, "probability": 0.8883 }, { "start": 40451.48, "end": 40452.68, "probability": 0.91 }, { "start": 40452.82, "end": 40454.48, "probability": 0.7974 }, { "start": 40454.86, "end": 40459.37, "probability": 0.9263 }, { "start": 40460.46, "end": 40464.36, "probability": 0.9672 }, { "start": 40465.1, "end": 40466.78, "probability": 0.921 }, { "start": 40468.12, "end": 40470.26, "probability": 0.8125 }, { "start": 40470.52, "end": 40472.88, "probability": 0.8408 }, { "start": 40473.02, "end": 40473.26, "probability": 0.765 }, { "start": 40473.94, "end": 40476.66, "probability": 0.8219 }, { "start": 40477.34, "end": 40478.88, "probability": 0.873 }, { "start": 40479.68, "end": 40480.64, "probability": 0.7832 }, { "start": 40480.72, "end": 40484.3, "probability": 0.9294 }, { "start": 40484.44, "end": 40486.34, "probability": 0.6561 }, { "start": 40487.06, "end": 40492.6, "probability": 0.8459 }, { "start": 40493.16, "end": 40495.9, "probability": 0.6265 }, { "start": 40496.48, "end": 40499.02, "probability": 0.8479 }, { "start": 40499.62, "end": 40501.08, "probability": 0.8121 }, { "start": 40501.82, "end": 40501.82, "probability": 0.4724 }, { "start": 40501.82, "end": 40507.24, "probability": 0.9057 }, { "start": 40508.01, "end": 40509.28, "probability": 0.799 }, { "start": 40509.5, "end": 40510.86, "probability": 0.9971 }, { "start": 40510.94, "end": 40513.8, "probability": 0.8283 }, { "start": 40513.8, "end": 40513.98, "probability": 0.7811 }, { "start": 40514.1, "end": 40516.7, "probability": 0.9897 }, { "start": 40517.24, "end": 40517.88, "probability": 0.9372 }, { "start": 40517.88, "end": 40519.02, "probability": 0.9801 }, { "start": 40519.08, "end": 40519.98, "probability": 0.9238 }, { "start": 40520.08, "end": 40521.42, "probability": 0.9507 }, { "start": 40522.72, "end": 40523.2, "probability": 0.9135 }, { "start": 40523.64, "end": 40525.02, "probability": 0.7904 }, { "start": 40525.32, "end": 40525.62, "probability": 0.9094 }, { "start": 40526.32, "end": 40527.58, "probability": 0.6536 }, { "start": 40527.74, "end": 40528.06, "probability": 0.6691 }, { "start": 40528.36, "end": 40529.52, "probability": 0.8033 }, { "start": 40529.66, "end": 40531.78, "probability": 0.9926 }, { "start": 40531.9, "end": 40532.5, "probability": 0.769 }, { "start": 40532.7, "end": 40533.38, "probability": 0.859 }, { "start": 40533.86, "end": 40534.02, "probability": 0.6844 }, { "start": 40534.02, "end": 40534.12, "probability": 0.4983 }, { "start": 40535.34, "end": 40535.98, "probability": 0.8798 }, { "start": 40538.88, "end": 40540.06, "probability": 0.3963 }, { "start": 40540.12, "end": 40543.58, "probability": 0.7883 }, { "start": 40545.04, "end": 40548.0, "probability": 0.9307 }, { "start": 40548.62, "end": 40549.86, "probability": 0.6409 } ], "segments_count": 14078, "words_count": 67393, "avg_words_per_segment": 4.7871, "avg_segment_duration": 1.9095, "avg_words_per_minute": 99.5517, "plenum_id": "102413", "duration": 40617.9, "title": null, "plenum_date": "2021-12-08" }