{ "source_type": "knesset", "source_id": "plenum", "source_entry_id": "103370", "quality_score": 0.8608, "per_segment_quality_scores": [ { "start": 1952.91, "end": 1955.48, "probability": 0.8019 }, { "start": 1956.46, "end": 1959.32, "probability": 0.5073 }, { "start": 1959.44, "end": 1960.72, "probability": 0.8336 }, { "start": 1961.94, "end": 1963.9, "probability": 0.7192 }, { "start": 1964.86, "end": 1968.5, "probability": 0.9976 }, { "start": 1969.02, "end": 1976.52, "probability": 0.8605 }, { "start": 1976.52, "end": 1981.14, "probability": 0.9521 }, { "start": 1981.94, "end": 1982.9, "probability": 0.6412 }, { "start": 1983.46, "end": 1984.26, "probability": 0.7173 }, { "start": 1984.8, "end": 1988.64, "probability": 0.8384 }, { "start": 1989.94, "end": 1991.26, "probability": 0.8819 }, { "start": 1992.12, "end": 1993.1, "probability": 0.7432 }, { "start": 1997.38, "end": 2000.96, "probability": 0.4729 }, { "start": 2001.5, "end": 2003.84, "probability": 0.3711 }, { "start": 2004.62, "end": 2007.74, "probability": 0.2648 }, { "start": 2008.46, "end": 2010.72, "probability": 0.9495 }, { "start": 2011.8, "end": 2013.44, "probability": 0.4909 }, { "start": 2015.36, "end": 2018.42, "probability": 0.0704 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7241.0, "end": 7241.0, "probability": 0.0 }, { "start": 7245.76, "end": 7248.88, "probability": 0.5389 }, { "start": 7249.78, "end": 7251.54, "probability": 0.8038 }, { "start": 7268.96, "end": 7272.24, "probability": 0.8745 }, { "start": 7273.62, "end": 7273.9, "probability": 0.024 }, { "start": 7273.9, "end": 7274.84, "probability": 0.5308 }, { "start": 7281.38, "end": 7282.02, "probability": 0.505 }, { "start": 7282.88, "end": 7283.8, "probability": 0.7663 }, { "start": 7283.98, "end": 7284.2, "probability": 0.8746 }, { "start": 7284.54, "end": 7285.57, "probability": 0.6433 }, { "start": 7286.08, "end": 7286.6, "probability": 0.9305 }, { "start": 7286.92, "end": 7287.12, "probability": 0.8826 }, { "start": 7287.2, "end": 7295.52, "probability": 0.9785 }, { "start": 7295.52, "end": 7302.14, "probability": 0.9839 }, { "start": 7302.64, "end": 7303.9, "probability": 0.9985 }, { "start": 7304.62, "end": 7305.22, "probability": 0.9338 }, { "start": 7305.24, "end": 7305.54, "probability": 0.8579 }, { "start": 7305.64, "end": 7308.6, "probability": 0.9338 }, { "start": 7308.7, "end": 7311.0, "probability": 0.9557 }, { "start": 7311.94, "end": 7316.8, "probability": 0.9836 }, { "start": 7317.8, "end": 7322.48, "probability": 0.9851 }, { "start": 7323.14, "end": 7328.02, "probability": 0.9628 }, { "start": 7328.02, "end": 7330.6, "probability": 0.9751 }, { "start": 7330.7, "end": 7333.18, "probability": 0.9605 }, { "start": 7333.9, "end": 7340.0, "probability": 0.9756 }, { "start": 7341.42, "end": 7343.36, "probability": 0.9841 }, { "start": 7344.04, "end": 7347.3, "probability": 0.9956 }, { "start": 7347.4, "end": 7348.46, "probability": 0.9706 }, { "start": 7348.48, "end": 7350.14, "probability": 0.7013 }, { "start": 7350.22, "end": 7351.8, "probability": 0.9741 }, { "start": 7352.2, "end": 7353.2, "probability": 0.4837 }, { "start": 7353.3, "end": 7355.42, "probability": 0.9641 }, { "start": 7355.56, "end": 7357.6, "probability": 0.9719 }, { "start": 7358.14, "end": 7361.0, "probability": 0.9854 }, { "start": 7361.0, "end": 7364.42, "probability": 0.9806 }, { "start": 7365.26, "end": 7366.06, "probability": 0.715 }, { "start": 7366.3, "end": 7367.86, "probability": 0.9395 }, { "start": 7367.92, "end": 7369.26, "probability": 0.7285 }, { "start": 7369.52, "end": 7371.9, "probability": 0.9216 }, { "start": 7372.42, "end": 7375.44, "probability": 0.9307 }, { "start": 7375.44, "end": 7376.06, "probability": 0.4595 }, { "start": 7376.3, "end": 7379.16, "probability": 0.875 }, { "start": 7379.62, "end": 7383.04, "probability": 0.9979 }, { "start": 7384.26, "end": 7384.6, "probability": 0.7949 }, { "start": 7384.68, "end": 7385.04, "probability": 0.8735 }, { "start": 7385.14, "end": 7388.94, "probability": 0.9893 }, { "start": 7388.94, "end": 7391.46, "probability": 0.9805 }, { "start": 7392.4, "end": 7395.96, "probability": 0.9466 }, { "start": 7396.0, "end": 7400.08, "probability": 0.8481 }, { "start": 7400.68, "end": 7406.66, "probability": 0.9963 }, { "start": 7406.92, "end": 7407.14, "probability": 0.8322 }, { "start": 7408.64, "end": 7410.94, "probability": 0.9969 }, { "start": 7411.48, "end": 7412.5, "probability": 0.9399 }, { "start": 7412.74, "end": 7414.06, "probability": 0.853 }, { "start": 7414.24, "end": 7416.9, "probability": 0.865 }, { "start": 7417.14, "end": 7419.52, "probability": 0.9675 }, { "start": 7420.2, "end": 7423.9, "probability": 0.938 }, { "start": 7424.54, "end": 7428.48, "probability": 0.974 }, { "start": 7428.48, "end": 7432.12, "probability": 0.9924 }, { "start": 7432.24, "end": 7432.56, "probability": 0.5234 }, { "start": 7432.86, "end": 7436.26, "probability": 0.8632 }, { "start": 7437.9, "end": 7438.78, "probability": 0.4352 }, { "start": 7438.86, "end": 7443.51, "probability": 0.8849 }, { "start": 7444.58, "end": 7446.82, "probability": 0.8457 }, { "start": 7447.86, "end": 7449.14, "probability": 0.9453 }, { "start": 7457.86, "end": 7457.86, "probability": 0.2063 }, { "start": 7457.86, "end": 7460.34, "probability": 0.9544 }, { "start": 7461.7, "end": 7463.02, "probability": 0.8982 }, { "start": 7465.68, "end": 7468.24, "probability": 0.9983 }, { "start": 7468.26, "end": 7469.72, "probability": 0.9754 }, { "start": 7470.62, "end": 7471.3, "probability": 0.9591 }, { "start": 7471.42, "end": 7472.8, "probability": 0.9483 }, { "start": 7473.18, "end": 7473.66, "probability": 0.8138 }, { "start": 7473.82, "end": 7474.52, "probability": 0.9307 }, { "start": 7474.88, "end": 7475.26, "probability": 0.9008 }, { "start": 7475.76, "end": 7476.32, "probability": 0.7984 }, { "start": 7477.08, "end": 7477.96, "probability": 0.8391 }, { "start": 7478.06, "end": 7479.08, "probability": 0.9954 }, { "start": 7479.2, "end": 7480.06, "probability": 0.9637 }, { "start": 7480.82, "end": 7481.9, "probability": 0.8958 }, { "start": 7482.0, "end": 7482.74, "probability": 0.9521 }, { "start": 7484.26, "end": 7486.12, "probability": 0.861 }, { "start": 7486.48, "end": 7486.88, "probability": 0.9017 }, { "start": 7487.48, "end": 7489.73, "probability": 0.9907 }, { "start": 7490.2, "end": 7491.16, "probability": 0.4817 }, { "start": 7492.06, "end": 7495.6, "probability": 0.8967 }, { "start": 7496.18, "end": 7500.72, "probability": 0.9713 }, { "start": 7501.68, "end": 7503.04, "probability": 0.6454 }, { "start": 7503.82, "end": 7504.9, "probability": 0.7213 }, { "start": 7505.52, "end": 7507.23, "probability": 0.8954 }, { "start": 7508.2, "end": 7509.94, "probability": 0.9901 }, { "start": 7510.92, "end": 7514.74, "probability": 0.9624 }, { "start": 7515.44, "end": 7517.62, "probability": 0.8438 }, { "start": 7517.62, "end": 7518.96, "probability": 0.8055 }, { "start": 7520.34, "end": 7521.96, "probability": 0.9637 }, { "start": 7522.02, "end": 7523.42, "probability": 0.5193 }, { "start": 7523.42, "end": 7525.82, "probability": 0.9592 }, { "start": 7527.3, "end": 7528.78, "probability": 0.9785 }, { "start": 7529.38, "end": 7531.44, "probability": 0.9756 }, { "start": 7531.48, "end": 7534.16, "probability": 0.98 }, { "start": 7534.56, "end": 7535.56, "probability": 0.9937 }, { "start": 7536.2, "end": 7537.32, "probability": 0.6582 }, { "start": 7538.18, "end": 7539.78, "probability": 0.9824 }, { "start": 7540.64, "end": 7543.74, "probability": 0.9937 }, { "start": 7544.44, "end": 7547.54, "probability": 0.9678 }, { "start": 7548.18, "end": 7552.22, "probability": 0.978 }, { "start": 7552.46, "end": 7553.12, "probability": 0.6187 }, { "start": 7553.68, "end": 7557.62, "probability": 0.7129 }, { "start": 7558.38, "end": 7559.27, "probability": 0.9263 }, { "start": 7560.14, "end": 7562.68, "probability": 0.9969 }, { "start": 7562.8, "end": 7563.84, "probability": 0.9927 }, { "start": 7564.42, "end": 7566.46, "probability": 0.8168 }, { "start": 7567.64, "end": 7568.62, "probability": 0.8809 }, { "start": 7569.5, "end": 7573.76, "probability": 0.9112 }, { "start": 7574.72, "end": 7576.62, "probability": 0.9665 }, { "start": 7577.32, "end": 7587.12, "probability": 0.9303 }, { "start": 7587.84, "end": 7590.2, "probability": 0.9424 }, { "start": 7591.0, "end": 7592.94, "probability": 0.5407 }, { "start": 7593.42, "end": 7594.32, "probability": 0.7906 }, { "start": 7594.48, "end": 7596.14, "probability": 0.7727 }, { "start": 7597.12, "end": 7598.86, "probability": 0.9478 }, { "start": 7599.46, "end": 7600.28, "probability": 0.7787 }, { "start": 7600.4, "end": 7600.89, "probability": 0.9412 }, { "start": 7601.14, "end": 7601.56, "probability": 0.9409 }, { "start": 7601.92, "end": 7607.84, "probability": 0.7535 }, { "start": 7607.84, "end": 7608.14, "probability": 0.6925 }, { "start": 7608.94, "end": 7610.82, "probability": 0.7952 }, { "start": 7611.44, "end": 7613.7, "probability": 0.9924 }, { "start": 7613.98, "end": 7614.42, "probability": 0.833 }, { "start": 7614.7, "end": 7616.28, "probability": 0.9928 }, { "start": 7616.44, "end": 7619.04, "probability": 0.9375 }, { "start": 7619.64, "end": 7621.68, "probability": 0.8955 }, { "start": 7622.26, "end": 7625.62, "probability": 0.7993 }, { "start": 7625.62, "end": 7628.5, "probability": 0.9956 }, { "start": 7629.66, "end": 7630.3, "probability": 0.5766 }, { "start": 7630.64, "end": 7635.42, "probability": 0.9878 }, { "start": 7635.74, "end": 7637.06, "probability": 0.9351 }, { "start": 7637.2, "end": 7638.32, "probability": 0.8493 }, { "start": 7638.38, "end": 7639.22, "probability": 0.9854 }, { "start": 7640.1, "end": 7640.82, "probability": 0.659 }, { "start": 7641.68, "end": 7643.08, "probability": 0.5798 }, { "start": 7643.34, "end": 7644.86, "probability": 0.9252 }, { "start": 7644.98, "end": 7645.76, "probability": 0.9296 }, { "start": 7646.28, "end": 7647.96, "probability": 0.8877 }, { "start": 7648.2, "end": 7649.98, "probability": 0.8906 }, { "start": 7650.5, "end": 7650.64, "probability": 0.0272 }, { "start": 7650.64, "end": 7651.04, "probability": 0.6626 }, { "start": 7652.25, "end": 7654.94, "probability": 0.2283 }, { "start": 7655.72, "end": 7656.16, "probability": 0.0007 }, { "start": 7656.16, "end": 7656.16, "probability": 0.1899 }, { "start": 7656.16, "end": 7656.16, "probability": 0.2773 }, { "start": 7656.16, "end": 7656.16, "probability": 0.0765 }, { "start": 7656.16, "end": 7657.2, "probability": 0.4541 }, { "start": 7657.2, "end": 7657.2, "probability": 0.0731 }, { "start": 7657.2, "end": 7660.22, "probability": 0.8379 }, { "start": 7660.22, "end": 7661.27, "probability": 0.4513 }, { "start": 7661.62, "end": 7664.56, "probability": 0.8535 }, { "start": 7665.8, "end": 7666.82, "probability": 0.5343 }, { "start": 7668.24, "end": 7668.42, "probability": 0.3063 }, { "start": 7668.42, "end": 7669.28, "probability": 0.7133 }, { "start": 7669.44, "end": 7672.06, "probability": 0.6068 }, { "start": 7673.52, "end": 7673.68, "probability": 0.0132 }, { "start": 7673.68, "end": 7675.5, "probability": 0.4548 }, { "start": 7676.04, "end": 7677.62, "probability": 0.8359 }, { "start": 7677.94, "end": 7677.94, "probability": 0.0498 }, { "start": 7678.12, "end": 7683.6, "probability": 0.9681 }, { "start": 7683.78, "end": 7684.36, "probability": 0.6278 }, { "start": 7684.54, "end": 7685.26, "probability": 0.8982 }, { "start": 7686.08, "end": 7687.5, "probability": 0.9692 }, { "start": 7687.84, "end": 7688.18, "probability": 0.5081 }, { "start": 7688.46, "end": 7689.6, "probability": 0.7753 }, { "start": 7689.78, "end": 7693.24, "probability": 0.9196 }, { "start": 7704.84, "end": 7705.66, "probability": 0.8431 }, { "start": 7707.66, "end": 7709.76, "probability": 0.745 }, { "start": 7711.68, "end": 7718.46, "probability": 0.9211 }, { "start": 7720.04, "end": 7721.12, "probability": 0.9277 }, { "start": 7722.4, "end": 7727.08, "probability": 0.8627 }, { "start": 7728.24, "end": 7730.96, "probability": 0.0285 }, { "start": 7730.96, "end": 7731.4, "probability": 0.2447 }, { "start": 7732.64, "end": 7733.38, "probability": 0.7553 }, { "start": 7734.18, "end": 7736.62, "probability": 0.9927 }, { "start": 7738.66, "end": 7740.34, "probability": 0.9956 }, { "start": 7741.6, "end": 7742.54, "probability": 0.753 }, { "start": 7743.9, "end": 7745.04, "probability": 0.6354 }, { "start": 7745.82, "end": 7747.12, "probability": 0.8292 }, { "start": 7748.4, "end": 7749.06, "probability": 0.5712 }, { "start": 7749.7, "end": 7754.52, "probability": 0.9449 }, { "start": 7756.08, "end": 7756.84, "probability": 0.7745 }, { "start": 7757.76, "end": 7764.74, "probability": 0.9359 }, { "start": 7765.9, "end": 7767.54, "probability": 0.8455 }, { "start": 7770.58, "end": 7774.68, "probability": 0.9814 }, { "start": 7776.5, "end": 7779.84, "probability": 0.9723 }, { "start": 7780.84, "end": 7782.54, "probability": 0.8778 }, { "start": 7783.88, "end": 7784.7, "probability": 0.9978 }, { "start": 7785.42, "end": 7787.84, "probability": 0.9459 }, { "start": 7789.12, "end": 7789.62, "probability": 0.762 }, { "start": 7790.64, "end": 7793.52, "probability": 0.9895 }, { "start": 7794.42, "end": 7795.06, "probability": 0.7028 }, { "start": 7795.76, "end": 7801.7, "probability": 0.9988 }, { "start": 7803.36, "end": 7805.96, "probability": 0.8104 }, { "start": 7806.88, "end": 7808.46, "probability": 0.9618 }, { "start": 7809.54, "end": 7813.04, "probability": 0.9052 }, { "start": 7813.64, "end": 7816.3, "probability": 0.9425 }, { "start": 7817.58, "end": 7825.38, "probability": 0.8134 }, { "start": 7826.58, "end": 7831.98, "probability": 0.6216 }, { "start": 7833.4, "end": 7837.24, "probability": 0.9591 }, { "start": 7838.22, "end": 7843.32, "probability": 0.9976 }, { "start": 7844.64, "end": 7853.18, "probability": 0.9947 }, { "start": 7853.86, "end": 7856.14, "probability": 0.9555 }, { "start": 7856.96, "end": 7857.32, "probability": 0.7979 }, { "start": 7861.06, "end": 7861.6, "probability": 0.6377 }, { "start": 7861.68, "end": 7863.44, "probability": 0.8894 }, { "start": 7881.32, "end": 7882.14, "probability": 0.6604 }, { "start": 7882.9, "end": 7886.56, "probability": 0.988 }, { "start": 7886.56, "end": 7888.76, "probability": 0.9961 }, { "start": 7889.86, "end": 7892.78, "probability": 0.9518 }, { "start": 7893.32, "end": 7894.86, "probability": 0.9706 }, { "start": 7895.62, "end": 7897.2, "probability": 0.9858 }, { "start": 7897.28, "end": 7898.0, "probability": 0.9873 }, { "start": 7898.02, "end": 7898.48, "probability": 0.6997 }, { "start": 7899.04, "end": 7901.16, "probability": 0.9788 }, { "start": 7901.84, "end": 7903.22, "probability": 0.837 }, { "start": 7903.32, "end": 7904.68, "probability": 0.9866 }, { "start": 7905.1, "end": 7906.84, "probability": 0.8948 }, { "start": 7906.98, "end": 7908.24, "probability": 0.8992 }, { "start": 7909.34, "end": 7911.9, "probability": 0.9946 }, { "start": 7912.12, "end": 7915.03, "probability": 0.9359 }, { "start": 7915.54, "end": 7919.56, "probability": 0.9948 }, { "start": 7920.1, "end": 7920.76, "probability": 0.9874 }, { "start": 7920.8, "end": 7922.7, "probability": 0.9934 }, { "start": 7922.96, "end": 7923.86, "probability": 0.8311 }, { "start": 7923.92, "end": 7924.78, "probability": 0.9434 }, { "start": 7925.18, "end": 7926.58, "probability": 0.9296 }, { "start": 7926.88, "end": 7927.62, "probability": 0.9441 }, { "start": 7927.68, "end": 7928.12, "probability": 0.941 }, { "start": 7928.7, "end": 7929.14, "probability": 0.8149 }, { "start": 7929.3, "end": 7929.83, "probability": 0.9697 }, { "start": 7930.4, "end": 7933.84, "probability": 0.9683 }, { "start": 7933.94, "end": 7934.3, "probability": 0.8896 }, { "start": 7934.42, "end": 7934.66, "probability": 0.531 }, { "start": 7934.7, "end": 7935.04, "probability": 0.8193 }, { "start": 7935.22, "end": 7936.26, "probability": 0.979 }, { "start": 7936.76, "end": 7938.44, "probability": 0.517 }, { "start": 7939.02, "end": 7940.68, "probability": 0.9913 }, { "start": 7940.74, "end": 7941.92, "probability": 0.9811 }, { "start": 7942.0, "end": 7942.99, "probability": 0.8428 }, { "start": 7943.58, "end": 7946.2, "probability": 0.9954 }, { "start": 7946.56, "end": 7951.78, "probability": 0.9774 }, { "start": 7951.78, "end": 7955.54, "probability": 0.9514 }, { "start": 7955.9, "end": 7957.4, "probability": 0.9905 }, { "start": 7957.9, "end": 7960.26, "probability": 0.9617 }, { "start": 7960.72, "end": 7963.5, "probability": 0.987 }, { "start": 7963.86, "end": 7966.7, "probability": 0.8816 }, { "start": 7966.76, "end": 7968.46, "probability": 0.9389 }, { "start": 7968.92, "end": 7970.14, "probability": 0.989 }, { "start": 7970.52, "end": 7971.5, "probability": 0.938 }, { "start": 7971.82, "end": 7974.76, "probability": 0.9807 }, { "start": 7974.82, "end": 7976.02, "probability": 0.873 }, { "start": 7976.3, "end": 7976.94, "probability": 0.6051 }, { "start": 7977.6, "end": 7977.92, "probability": 0.9285 }, { "start": 7978.54, "end": 7982.28, "probability": 0.9752 }, { "start": 7982.56, "end": 7984.68, "probability": 0.963 }, { "start": 7984.76, "end": 7987.46, "probability": 0.9785 }, { "start": 7987.8, "end": 7990.56, "probability": 0.9959 }, { "start": 7990.56, "end": 7993.1, "probability": 0.997 }, { "start": 7993.54, "end": 7994.34, "probability": 0.7769 }, { "start": 7994.66, "end": 7996.48, "probability": 0.9979 }, { "start": 7996.86, "end": 7998.82, "probability": 0.9979 }, { "start": 7999.14, "end": 8000.46, "probability": 0.8703 }, { "start": 8000.82, "end": 8003.22, "probability": 0.9854 }, { "start": 8004.98, "end": 8005.56, "probability": 0.5827 }, { "start": 8005.86, "end": 8006.68, "probability": 0.9932 }, { "start": 8007.34, "end": 8008.0, "probability": 0.7928 }, { "start": 8008.26, "end": 8010.26, "probability": 0.959 }, { "start": 8010.26, "end": 8012.88, "probability": 0.9762 }, { "start": 8014.04, "end": 8014.84, "probability": 0.7966 }, { "start": 8015.16, "end": 8017.36, "probability": 0.9718 }, { "start": 8017.84, "end": 8019.36, "probability": 0.8049 }, { "start": 8019.44, "end": 8021.0, "probability": 0.8844 }, { "start": 8028.4, "end": 8029.9, "probability": 0.6867 }, { "start": 8030.9, "end": 8031.72, "probability": 0.7347 }, { "start": 8033.06, "end": 8035.52, "probability": 0.8247 }, { "start": 8035.54, "end": 8037.62, "probability": 0.9606 }, { "start": 8039.02, "end": 8041.38, "probability": 0.9943 }, { "start": 8041.38, "end": 8045.76, "probability": 0.9063 }, { "start": 8046.68, "end": 8048.38, "probability": 0.9839 }, { "start": 8049.36, "end": 8049.92, "probability": 0.793 }, { "start": 8050.08, "end": 8050.96, "probability": 0.7924 }, { "start": 8051.0, "end": 8053.28, "probability": 0.8774 }, { "start": 8054.24, "end": 8055.12, "probability": 0.852 }, { "start": 8056.18, "end": 8058.72, "probability": 0.7714 }, { "start": 8059.36, "end": 8062.56, "probability": 0.9844 }, { "start": 8063.22, "end": 8065.06, "probability": 0.8298 }, { "start": 8065.94, "end": 8069.2, "probability": 0.9958 }, { "start": 8069.84, "end": 8071.3, "probability": 0.9863 }, { "start": 8072.2, "end": 8074.76, "probability": 0.766 }, { "start": 8075.7, "end": 8081.28, "probability": 0.9963 }, { "start": 8082.12, "end": 8088.0, "probability": 0.9596 }, { "start": 8088.84, "end": 8095.48, "probability": 0.9837 }, { "start": 8096.44, "end": 8102.26, "probability": 0.9969 }, { "start": 8103.76, "end": 8105.9, "probability": 0.8174 }, { "start": 8106.32, "end": 8106.62, "probability": 0.7309 }, { "start": 8107.94, "end": 8108.5, "probability": 0.8016 }, { "start": 8109.64, "end": 8112.02, "probability": 0.9423 }, { "start": 8112.72, "end": 8113.44, "probability": 0.4253 }, { "start": 8114.34, "end": 8115.94, "probability": 0.4435 }, { "start": 8118.66, "end": 8121.66, "probability": 0.9342 }, { "start": 8122.12, "end": 8123.92, "probability": 0.2332 }, { "start": 8124.16, "end": 8125.6, "probability": 0.9129 }, { "start": 8126.34, "end": 8128.43, "probability": 0.0073 }, { "start": 8145.72, "end": 8145.96, "probability": 0.6105 }, { "start": 8146.5, "end": 8146.5, "probability": 0.3306 }, { "start": 8146.56, "end": 8146.66, "probability": 0.1193 }, { "start": 8146.9, "end": 8147.64, "probability": 0.6564 }, { "start": 8147.94, "end": 8148.88, "probability": 0.8735 }, { "start": 8148.96, "end": 8154.28, "probability": 0.9655 }, { "start": 8154.78, "end": 8158.3, "probability": 0.8865 }, { "start": 8159.32, "end": 8161.12, "probability": 0.9763 }, { "start": 8161.9, "end": 8167.92, "probability": 0.9896 }, { "start": 8168.02, "end": 8170.48, "probability": 0.9922 }, { "start": 8171.12, "end": 8176.04, "probability": 0.9973 }, { "start": 8176.04, "end": 8179.16, "probability": 0.9961 }, { "start": 8179.66, "end": 8185.28, "probability": 0.995 }, { "start": 8186.16, "end": 8191.18, "probability": 0.9727 }, { "start": 8191.18, "end": 8196.42, "probability": 0.9523 }, { "start": 8196.88, "end": 8198.9, "probability": 0.9962 }, { "start": 8199.9, "end": 8202.24, "probability": 0.9873 }, { "start": 8202.38, "end": 8203.42, "probability": 0.9735 }, { "start": 8204.06, "end": 8208.54, "probability": 0.9753 }, { "start": 8208.54, "end": 8212.92, "probability": 0.971 }, { "start": 8213.06, "end": 8213.28, "probability": 0.7966 }, { "start": 8213.96, "end": 8214.48, "probability": 0.4606 }, { "start": 8214.56, "end": 8216.36, "probability": 0.7628 }, { "start": 8217.53, "end": 8219.74, "probability": 0.5916 }, { "start": 8220.62, "end": 8222.32, "probability": 0.5158 }, { "start": 8224.18, "end": 8225.38, "probability": 0.3996 }, { "start": 8225.48, "end": 8226.82, "probability": 0.8055 }, { "start": 8227.36, "end": 8231.64, "probability": 0.5969 }, { "start": 8232.06, "end": 8233.86, "probability": 0.9788 }, { "start": 8234.34, "end": 8234.82, "probability": 0.8654 }, { "start": 8236.96, "end": 8238.14, "probability": 0.7051 }, { "start": 8238.24, "end": 8238.72, "probability": 0.6707 }, { "start": 8238.82, "end": 8240.36, "probability": 0.9358 }, { "start": 8240.68, "end": 8249.38, "probability": 0.8916 }, { "start": 8249.58, "end": 8253.5, "probability": 0.9954 }, { "start": 8253.5, "end": 8259.18, "probability": 0.9166 }, { "start": 8259.82, "end": 8268.86, "probability": 0.8863 }, { "start": 8269.02, "end": 8269.38, "probability": 0.4333 }, { "start": 8269.5, "end": 8273.04, "probability": 0.9673 }, { "start": 8273.72, "end": 8275.4, "probability": 0.9533 }, { "start": 8275.54, "end": 8276.76, "probability": 0.9443 }, { "start": 8276.96, "end": 8277.28, "probability": 0.715 }, { "start": 8277.56, "end": 8281.52, "probability": 0.8111 }, { "start": 8282.26, "end": 8285.58, "probability": 0.9477 }, { "start": 8285.74, "end": 8286.8, "probability": 0.9176 }, { "start": 8286.86, "end": 8291.68, "probability": 0.9586 }, { "start": 8291.68, "end": 8294.86, "probability": 0.8413 }, { "start": 8295.46, "end": 8297.3, "probability": 0.6983 }, { "start": 8298.04, "end": 8299.04, "probability": 0.7636 }, { "start": 8299.6, "end": 8308.3, "probability": 0.9756 }, { "start": 8308.32, "end": 8314.6, "probability": 0.9957 }, { "start": 8315.04, "end": 8315.62, "probability": 0.8594 }, { "start": 8315.74, "end": 8316.26, "probability": 0.956 }, { "start": 8316.68, "end": 8322.64, "probability": 0.9974 }, { "start": 8323.0, "end": 8325.06, "probability": 0.9093 }, { "start": 8325.5, "end": 8325.94, "probability": 0.6182 }, { "start": 8326.28, "end": 8327.0, "probability": 0.8613 }, { "start": 8327.04, "end": 8327.9, "probability": 0.9806 }, { "start": 8327.92, "end": 8328.46, "probability": 0.8777 }, { "start": 8328.54, "end": 8331.74, "probability": 0.9512 }, { "start": 8332.54, "end": 8335.68, "probability": 0.9082 }, { "start": 8336.26, "end": 8339.34, "probability": 0.809 }, { "start": 8339.98, "end": 8342.28, "probability": 0.66 }, { "start": 8342.82, "end": 8346.38, "probability": 0.6743 }, { "start": 8347.38, "end": 8351.58, "probability": 0.9704 }, { "start": 8351.58, "end": 8355.04, "probability": 0.9972 }, { "start": 8362.0, "end": 8362.9, "probability": 0.6466 }, { "start": 8363.06, "end": 8364.52, "probability": 0.584 }, { "start": 8365.36, "end": 8366.52, "probability": 0.835 }, { "start": 8366.56, "end": 8367.06, "probability": 0.9285 }, { "start": 8370.02, "end": 8371.28, "probability": 0.8632 }, { "start": 8373.46, "end": 8374.32, "probability": 0.7598 }, { "start": 8374.9, "end": 8376.5, "probability": 0.838 }, { "start": 8377.32, "end": 8379.68, "probability": 0.8149 }, { "start": 8381.06, "end": 8383.2, "probability": 0.9341 }, { "start": 8383.64, "end": 8387.22, "probability": 0.9838 }, { "start": 8387.98, "end": 8389.02, "probability": 0.8142 }, { "start": 8392.04, "end": 8393.58, "probability": 0.649 }, { "start": 8394.22, "end": 8397.16, "probability": 0.8319 }, { "start": 8397.9, "end": 8401.22, "probability": 0.833 }, { "start": 8401.54, "end": 8404.08, "probability": 0.9042 }, { "start": 8404.7, "end": 8405.74, "probability": 0.5781 }, { "start": 8406.5, "end": 8409.02, "probability": 0.6696 }, { "start": 8409.72, "end": 8410.42, "probability": 0.9097 }, { "start": 8410.94, "end": 8411.48, "probability": 0.962 }, { "start": 8411.58, "end": 8412.34, "probability": 0.736 }, { "start": 8412.6, "end": 8415.74, "probability": 0.8923 }, { "start": 8415.98, "end": 8418.74, "probability": 0.895 }, { "start": 8419.16, "end": 8421.32, "probability": 0.8518 }, { "start": 8421.84, "end": 8423.48, "probability": 0.9736 }, { "start": 8424.3, "end": 8426.28, "probability": 0.9805 }, { "start": 8426.84, "end": 8429.96, "probability": 0.9934 }, { "start": 8430.64, "end": 8431.64, "probability": 0.6493 }, { "start": 8432.96, "end": 8436.74, "probability": 0.9678 }, { "start": 8437.8, "end": 8438.26, "probability": 0.7826 }, { "start": 8438.4, "end": 8438.62, "probability": 0.6701 }, { "start": 8438.66, "end": 8441.84, "probability": 0.9851 }, { "start": 8442.46, "end": 8443.24, "probability": 0.7732 }, { "start": 8443.3, "end": 8443.82, "probability": 0.9329 }, { "start": 8444.08, "end": 8447.6, "probability": 0.9711 }, { "start": 8447.82, "end": 8448.85, "probability": 0.9653 }, { "start": 8449.7, "end": 8451.12, "probability": 0.7686 }, { "start": 8451.92, "end": 8454.4, "probability": 0.8979 }, { "start": 8454.94, "end": 8461.46, "probability": 0.9793 }, { "start": 8462.06, "end": 8464.42, "probability": 0.9989 }, { "start": 8465.24, "end": 8467.22, "probability": 0.921 }, { "start": 8467.6, "end": 8471.56, "probability": 0.8037 }, { "start": 8472.32, "end": 8472.96, "probability": 0.7326 }, { "start": 8473.12, "end": 8478.76, "probability": 0.9292 }, { "start": 8479.6, "end": 8480.36, "probability": 0.9254 }, { "start": 8480.62, "end": 8481.38, "probability": 0.8814 }, { "start": 8481.66, "end": 8484.04, "probability": 0.9836 }, { "start": 8484.36, "end": 8484.56, "probability": 0.7671 }, { "start": 8485.82, "end": 8487.94, "probability": 0.8608 }, { "start": 8488.9, "end": 8489.8, "probability": 0.8993 }, { "start": 8490.14, "end": 8493.36, "probability": 0.8843 }, { "start": 8493.92, "end": 8494.42, "probability": 0.7435 }, { "start": 8494.92, "end": 8495.68, "probability": 0.5294 }, { "start": 8495.98, "end": 8498.02, "probability": 0.7802 }, { "start": 8498.26, "end": 8498.64, "probability": 0.8566 }, { "start": 8498.64, "end": 8499.7, "probability": 0.6244 }, { "start": 8499.92, "end": 8501.6, "probability": 0.28 }, { "start": 8502.64, "end": 8504.7, "probability": 0.0235 }, { "start": 8506.48, "end": 8508.4, "probability": 0.0026 }, { "start": 8509.39, "end": 8510.16, "probability": 0.0819 }, { "start": 8510.16, "end": 8510.16, "probability": 0.5921 }, { "start": 8510.16, "end": 8515.78, "probability": 0.0463 }, { "start": 8517.56, "end": 8520.04, "probability": 0.0102 }, { "start": 8520.34, "end": 8522.6, "probability": 0.4951 }, { "start": 8523.78, "end": 8526.46, "probability": 0.5381 }, { "start": 8531.56, "end": 8532.62, "probability": 0.0929 }, { "start": 8533.1, "end": 8535.94, "probability": 0.4845 }, { "start": 8536.0, "end": 8536.44, "probability": 0.1291 }, { "start": 8536.44, "end": 8539.24, "probability": 0.0206 }, { "start": 8539.56, "end": 8539.98, "probability": 0.0985 }, { "start": 8553.8, "end": 8553.94, "probability": 0.0525 }, { "start": 8553.94, "end": 8554.72, "probability": 0.0476 }, { "start": 8662.0, "end": 8662.0, "probability": 0.0 }, { "start": 8662.0, "end": 8662.0, "probability": 0.0 }, { "start": 8662.0, "end": 8662.0, "probability": 0.0 }, { "start": 8662.0, "end": 8662.0, "probability": 0.0 }, { "start": 8662.0, "end": 8662.0, "probability": 0.0 }, { "start": 8662.0, "end": 8662.0, "probability": 0.0 }, { "start": 8662.0, "end": 8662.0, "probability": 0.0 }, { "start": 8662.0, "end": 8662.0, "probability": 0.0 }, { "start": 8662.0, "end": 8662.0, "probability": 0.0 }, { "start": 8662.0, "end": 8662.0, "probability": 0.0 }, { "start": 8662.0, "end": 8662.0, "probability": 0.0 }, { "start": 8662.0, "end": 8662.0, "probability": 0.0 }, { "start": 8662.0, "end": 8662.0, "probability": 0.0 }, { "start": 8662.0, "end": 8662.0, "probability": 0.0 }, { "start": 8662.0, "end": 8662.0, "probability": 0.0 }, { "start": 8662.0, "end": 8662.0, "probability": 0.0 }, { "start": 8662.0, "end": 8662.0, "probability": 0.0 }, { "start": 8662.0, "end": 8662.0, "probability": 0.0 }, { "start": 8662.0, "end": 8662.0, "probability": 0.0 }, { "start": 8662.0, "end": 8662.0, "probability": 0.0 }, { "start": 8662.0, "end": 8662.0, "probability": 0.0 }, { "start": 8662.0, "end": 8662.0, "probability": 0.0 }, { "start": 8662.0, "end": 8662.0, "probability": 0.0 }, { "start": 8662.0, "end": 8662.0, "probability": 0.0 }, { "start": 8662.0, "end": 8662.0, "probability": 0.0 }, { "start": 8662.0, "end": 8662.0, "probability": 0.0 }, { "start": 8662.0, "end": 8662.0, "probability": 0.0 }, { "start": 8662.0, "end": 8662.0, "probability": 0.0 }, { "start": 8662.0, "end": 8662.0, "probability": 0.0 }, { "start": 8662.0, "end": 8662.0, "probability": 0.0 }, { "start": 8662.0, "end": 8662.0, "probability": 0.0 }, { "start": 8662.0, "end": 8662.0, "probability": 0.0 }, { "start": 8662.0, "end": 8662.0, "probability": 0.0 }, { "start": 8662.16, "end": 8663.1, "probability": 0.351 }, { "start": 8663.32, "end": 8663.92, "probability": 0.7202 }, { "start": 8663.92, "end": 8664.18, "probability": 0.9092 }, { "start": 8664.18, "end": 8664.36, "probability": 0.0752 }, { "start": 8842.12, "end": 8842.2, "probability": 0.4653 }, { "start": 8842.2, "end": 8842.74, "probability": 0.1421 }, { "start": 8844.64, "end": 8845.68, "probability": 0.6579 }, { "start": 8847.16, "end": 8847.6, "probability": 0.836 }, { "start": 8869.16, "end": 8871.84, "probability": 0.772 }, { "start": 8873.9, "end": 8876.18, "probability": 0.9597 }, { "start": 8876.94, "end": 8877.46, "probability": 0.7541 }, { "start": 8879.08, "end": 8881.32, "probability": 0.9948 }, { "start": 8882.74, "end": 8883.66, "probability": 0.9931 }, { "start": 8884.76, "end": 8885.74, "probability": 0.957 }, { "start": 8887.16, "end": 8890.72, "probability": 0.9919 }, { "start": 8892.16, "end": 8894.48, "probability": 0.6435 }, { "start": 8895.68, "end": 8898.48, "probability": 0.8752 }, { "start": 8900.78, "end": 8901.2, "probability": 0.9839 }, { "start": 8902.52, "end": 8904.58, "probability": 0.992 }, { "start": 8904.66, "end": 8906.6, "probability": 0.8521 }, { "start": 8907.74, "end": 8910.3, "probability": 0.9126 }, { "start": 8911.5, "end": 8919.38, "probability": 0.999 }, { "start": 8920.62, "end": 8923.4, "probability": 0.9978 }, { "start": 8925.5, "end": 8926.18, "probability": 0.5175 }, { "start": 8927.68, "end": 8929.04, "probability": 0.9041 }, { "start": 8930.94, "end": 8932.54, "probability": 0.9581 }, { "start": 8934.0, "end": 8937.42, "probability": 0.9938 }, { "start": 8939.18, "end": 8940.52, "probability": 0.9199 }, { "start": 8941.92, "end": 8942.48, "probability": 0.9155 }, { "start": 8943.8, "end": 8945.16, "probability": 0.9988 }, { "start": 8946.16, "end": 8952.78, "probability": 0.9985 }, { "start": 8953.58, "end": 8955.34, "probability": 0.9992 }, { "start": 8956.64, "end": 8962.22, "probability": 0.9988 }, { "start": 8964.82, "end": 8965.58, "probability": 0.7967 }, { "start": 8967.9, "end": 8970.44, "probability": 0.9754 }, { "start": 8971.78, "end": 8972.64, "probability": 0.9937 }, { "start": 8973.9, "end": 8974.4, "probability": 0.7811 }, { "start": 8975.46, "end": 8977.64, "probability": 0.9769 }, { "start": 8979.42, "end": 8980.6, "probability": 0.6653 }, { "start": 8982.1, "end": 8986.76, "probability": 0.9978 }, { "start": 8987.82, "end": 8988.52, "probability": 0.9418 }, { "start": 8990.9, "end": 8994.06, "probability": 0.932 }, { "start": 8994.9, "end": 8996.26, "probability": 0.9686 }, { "start": 8997.22, "end": 8999.92, "probability": 0.9963 }, { "start": 9001.26, "end": 9004.88, "probability": 0.9956 }, { "start": 9005.9, "end": 9010.76, "probability": 0.9215 }, { "start": 9012.58, "end": 9013.76, "probability": 0.6414 }, { "start": 9014.48, "end": 9015.66, "probability": 0.9491 }, { "start": 9016.56, "end": 9017.46, "probability": 0.8242 }, { "start": 9018.68, "end": 9022.18, "probability": 0.9805 }, { "start": 9023.46, "end": 9027.1, "probability": 0.9028 }, { "start": 9028.7, "end": 9031.98, "probability": 0.9827 }, { "start": 9035.06, "end": 9036.9, "probability": 0.9461 }, { "start": 9038.26, "end": 9044.38, "probability": 0.99 }, { "start": 9045.28, "end": 9049.68, "probability": 0.9918 }, { "start": 9050.36, "end": 9053.04, "probability": 0.9985 }, { "start": 9053.84, "end": 9056.26, "probability": 0.9966 }, { "start": 9057.6, "end": 9058.56, "probability": 0.9928 }, { "start": 9059.58, "end": 9061.9, "probability": 0.9624 }, { "start": 9063.24, "end": 9064.3, "probability": 0.9829 }, { "start": 9066.04, "end": 9070.06, "probability": 0.9797 }, { "start": 9070.96, "end": 9075.6, "probability": 0.9955 }, { "start": 9076.3, "end": 9077.4, "probability": 0.9976 }, { "start": 9078.52, "end": 9080.52, "probability": 0.9528 }, { "start": 9082.98, "end": 9083.88, "probability": 0.9096 }, { "start": 9084.96, "end": 9086.94, "probability": 0.9839 }, { "start": 9087.74, "end": 9088.72, "probability": 0.909 }, { "start": 9090.54, "end": 9091.24, "probability": 0.9589 }, { "start": 9092.6, "end": 9098.26, "probability": 0.995 }, { "start": 9100.68, "end": 9101.12, "probability": 0.5599 }, { "start": 9102.46, "end": 9103.62, "probability": 0.9197 }, { "start": 9104.7, "end": 9109.76, "probability": 0.9985 }, { "start": 9111.82, "end": 9114.38, "probability": 0.8186 }, { "start": 9116.16, "end": 9118.94, "probability": 0.9932 }, { "start": 9119.9, "end": 9122.04, "probability": 0.9807 }, { "start": 9124.8, "end": 9126.0, "probability": 0.9973 }, { "start": 9127.18, "end": 9130.14, "probability": 0.9552 }, { "start": 9130.7, "end": 9132.22, "probability": 0.9423 }, { "start": 9134.16, "end": 9134.48, "probability": 0.6882 }, { "start": 9135.84, "end": 9138.98, "probability": 0.9971 }, { "start": 9139.42, "end": 9140.68, "probability": 0.7485 }, { "start": 9142.28, "end": 9147.44, "probability": 0.9906 }, { "start": 9148.94, "end": 9151.4, "probability": 0.9438 }, { "start": 9152.68, "end": 9155.16, "probability": 0.9614 }, { "start": 9157.28, "end": 9158.98, "probability": 0.9867 }, { "start": 9159.8, "end": 9164.26, "probability": 0.999 }, { "start": 9166.46, "end": 9168.9, "probability": 0.8637 }, { "start": 9170.8, "end": 9171.52, "probability": 0.9025 }, { "start": 9173.96, "end": 9176.74, "probability": 0.9978 }, { "start": 9179.02, "end": 9181.98, "probability": 0.9948 }, { "start": 9182.72, "end": 9184.56, "probability": 0.9862 }, { "start": 9185.32, "end": 9188.08, "probability": 0.9783 }, { "start": 9190.04, "end": 9191.2, "probability": 0.8076 }, { "start": 9192.0, "end": 9194.04, "probability": 0.8423 }, { "start": 9195.24, "end": 9196.84, "probability": 0.9917 }, { "start": 9199.64, "end": 9202.24, "probability": 0.9903 }, { "start": 9203.26, "end": 9204.56, "probability": 0.9938 }, { "start": 9205.82, "end": 9207.22, "probability": 0.8533 }, { "start": 9209.16, "end": 9211.68, "probability": 0.9985 }, { "start": 9211.68, "end": 9216.94, "probability": 0.9824 }, { "start": 9218.02, "end": 9220.58, "probability": 0.998 }, { "start": 9222.06, "end": 9228.16, "probability": 0.9944 }, { "start": 9229.88, "end": 9230.14, "probability": 0.1958 }, { "start": 9231.28, "end": 9233.58, "probability": 0.9979 }, { "start": 9236.0, "end": 9238.32, "probability": 0.9971 }, { "start": 9240.76, "end": 9241.86, "probability": 0.9934 }, { "start": 9243.16, "end": 9245.62, "probability": 0.998 }, { "start": 9247.56, "end": 9249.26, "probability": 0.9979 }, { "start": 9250.2, "end": 9252.74, "probability": 0.998 }, { "start": 9255.46, "end": 9256.36, "probability": 0.8149 }, { "start": 9258.22, "end": 9259.06, "probability": 0.8228 }, { "start": 9259.96, "end": 9261.1, "probability": 0.9977 }, { "start": 9262.62, "end": 9267.22, "probability": 0.7357 }, { "start": 9268.38, "end": 9269.32, "probability": 0.9932 }, { "start": 9270.48, "end": 9271.18, "probability": 0.9175 }, { "start": 9272.28, "end": 9273.22, "probability": 0.8188 }, { "start": 9275.04, "end": 9275.64, "probability": 0.9423 }, { "start": 9276.5, "end": 9277.38, "probability": 0.6444 }, { "start": 9278.44, "end": 9280.86, "probability": 0.9701 }, { "start": 9283.02, "end": 9284.08, "probability": 0.9976 }, { "start": 9285.68, "end": 9290.2, "probability": 0.9438 }, { "start": 9291.16, "end": 9291.5, "probability": 0.7331 }, { "start": 9293.24, "end": 9296.76, "probability": 0.9842 }, { "start": 9296.76, "end": 9299.52, "probability": 0.9957 }, { "start": 9301.34, "end": 9301.72, "probability": 0.4004 }, { "start": 9302.56, "end": 9303.42, "probability": 0.9044 }, { "start": 9304.6, "end": 9305.2, "probability": 0.979 }, { "start": 9307.2, "end": 9307.74, "probability": 0.9512 }, { "start": 9308.86, "end": 9311.54, "probability": 0.9785 }, { "start": 9313.16, "end": 9319.84, "probability": 0.9965 }, { "start": 9323.52, "end": 9327.1, "probability": 0.9657 }, { "start": 9329.24, "end": 9332.2, "probability": 0.9963 }, { "start": 9332.44, "end": 9335.72, "probability": 0.9771 }, { "start": 9338.36, "end": 9339.56, "probability": 0.9801 }, { "start": 9340.6, "end": 9341.02, "probability": 0.69 }, { "start": 9343.3, "end": 9344.02, "probability": 0.7496 }, { "start": 9345.68, "end": 9346.56, "probability": 0.9556 }, { "start": 9347.5, "end": 9350.62, "probability": 0.9969 }, { "start": 9351.42, "end": 9357.74, "probability": 0.9824 }, { "start": 9359.5, "end": 9361.26, "probability": 0.97 }, { "start": 9363.32, "end": 9363.76, "probability": 0.3321 }, { "start": 9363.82, "end": 9364.1, "probability": 0.812 }, { "start": 9364.14, "end": 9367.74, "probability": 0.9966 }, { "start": 9368.86, "end": 9371.75, "probability": 0.8088 }, { "start": 9373.34, "end": 9374.26, "probability": 0.9075 }, { "start": 9375.28, "end": 9377.66, "probability": 0.9496 }, { "start": 9378.28, "end": 9379.3, "probability": 0.9316 }, { "start": 9381.06, "end": 9383.52, "probability": 0.997 }, { "start": 9383.52, "end": 9385.69, "probability": 0.9958 }, { "start": 9387.42, "end": 9389.42, "probability": 0.9292 }, { "start": 9391.08, "end": 9394.92, "probability": 0.889 }, { "start": 9397.4, "end": 9398.28, "probability": 0.8386 }, { "start": 9401.62, "end": 9404.22, "probability": 0.9972 }, { "start": 9406.36, "end": 9406.98, "probability": 0.5992 }, { "start": 9409.84, "end": 9411.0, "probability": 0.9964 }, { "start": 9412.64, "end": 9414.26, "probability": 0.991 }, { "start": 9416.46, "end": 9417.66, "probability": 0.9971 }, { "start": 9418.84, "end": 9420.84, "probability": 0.8809 }, { "start": 9423.02, "end": 9425.24, "probability": 0.7954 }, { "start": 9425.24, "end": 9428.66, "probability": 0.9962 }, { "start": 9429.98, "end": 9431.68, "probability": 0.9989 }, { "start": 9432.34, "end": 9433.52, "probability": 0.9254 }, { "start": 9434.42, "end": 9436.46, "probability": 0.9939 }, { "start": 9437.22, "end": 9437.54, "probability": 0.9988 }, { "start": 9439.16, "end": 9440.38, "probability": 0.8608 }, { "start": 9441.76, "end": 9443.62, "probability": 0.8166 }, { "start": 9445.56, "end": 9446.16, "probability": 0.9951 }, { "start": 9447.32, "end": 9448.58, "probability": 0.9618 }, { "start": 9450.06, "end": 9451.94, "probability": 0.9971 }, { "start": 9453.74, "end": 9461.06, "probability": 0.9663 }, { "start": 9462.84, "end": 9463.34, "probability": 0.5457 }, { "start": 9464.04, "end": 9464.32, "probability": 0.6111 }, { "start": 9465.2, "end": 9466.22, "probability": 0.9525 }, { "start": 9467.32, "end": 9468.34, "probability": 0.998 }, { "start": 9469.4, "end": 9470.86, "probability": 0.9566 }, { "start": 9472.68, "end": 9476.44, "probability": 0.9714 }, { "start": 9477.68, "end": 9478.98, "probability": 0.9907 }, { "start": 9480.26, "end": 9483.52, "probability": 0.9868 }, { "start": 9484.24, "end": 9484.9, "probability": 0.8084 }, { "start": 9485.6, "end": 9491.24, "probability": 0.993 }, { "start": 9491.72, "end": 9492.66, "probability": 0.7082 }, { "start": 9507.0, "end": 9508.12, "probability": 0.8899 }, { "start": 9530.88, "end": 9532.9, "probability": 0.3404 }, { "start": 9534.14, "end": 9535.36, "probability": 0.6669 }, { "start": 9537.98, "end": 9538.78, "probability": 0.8164 }, { "start": 9539.44, "end": 9539.96, "probability": 0.792 }, { "start": 9540.52, "end": 9541.44, "probability": 0.9221 }, { "start": 9541.48, "end": 9542.7, "probability": 0.7512 }, { "start": 9543.1, "end": 9544.02, "probability": 0.6948 }, { "start": 9545.68, "end": 9549.64, "probability": 0.9976 }, { "start": 9555.3, "end": 9556.56, "probability": 0.8335 }, { "start": 9557.2, "end": 9562.86, "probability": 0.9996 }, { "start": 9562.86, "end": 9567.38, "probability": 0.9977 }, { "start": 9568.7, "end": 9574.48, "probability": 0.9954 }, { "start": 9576.84, "end": 9578.26, "probability": 0.3612 }, { "start": 9579.48, "end": 9580.44, "probability": 0.6059 }, { "start": 9582.95, "end": 9586.46, "probability": 0.7452 }, { "start": 9587.16, "end": 9590.48, "probability": 0.9749 }, { "start": 9591.8, "end": 9596.7, "probability": 0.9785 }, { "start": 9598.38, "end": 9600.6, "probability": 0.9694 }, { "start": 9601.32, "end": 9603.5, "probability": 0.9957 }, { "start": 9604.62, "end": 9607.36, "probability": 0.9426 }, { "start": 9607.94, "end": 9612.56, "probability": 0.9702 }, { "start": 9614.24, "end": 9615.52, "probability": 0.9538 }, { "start": 9616.48, "end": 9618.44, "probability": 0.9325 }, { "start": 9621.7, "end": 9623.02, "probability": 0.3526 }, { "start": 9624.28, "end": 9626.86, "probability": 0.8757 }, { "start": 9629.74, "end": 9630.48, "probability": 0.5412 }, { "start": 9631.66, "end": 9633.98, "probability": 0.9951 }, { "start": 9635.24, "end": 9639.6, "probability": 0.9813 }, { "start": 9641.42, "end": 9642.78, "probability": 0.8821 }, { "start": 9642.82, "end": 9643.86, "probability": 0.9823 }, { "start": 9644.0, "end": 9645.48, "probability": 0.962 }, { "start": 9646.72, "end": 9647.86, "probability": 0.9701 }, { "start": 9648.52, "end": 9655.48, "probability": 0.9933 }, { "start": 9656.16, "end": 9660.04, "probability": 0.9993 }, { "start": 9662.82, "end": 9665.6, "probability": 0.9963 }, { "start": 9666.58, "end": 9667.98, "probability": 0.9956 }, { "start": 9668.58, "end": 9669.5, "probability": 0.9769 }, { "start": 9671.18, "end": 9672.42, "probability": 0.9977 }, { "start": 9673.6, "end": 9676.76, "probability": 0.9963 }, { "start": 9679.3, "end": 9682.06, "probability": 0.9933 }, { "start": 9683.7, "end": 9686.64, "probability": 0.9603 }, { "start": 9687.46, "end": 9692.48, "probability": 0.9844 }, { "start": 9694.58, "end": 9695.26, "probability": 0.8205 }, { "start": 9695.58, "end": 9695.82, "probability": 0.7864 }, { "start": 9695.88, "end": 9699.62, "probability": 0.9936 }, { "start": 9700.4, "end": 9701.16, "probability": 0.6477 }, { "start": 9702.3, "end": 9706.06, "probability": 0.9616 }, { "start": 9706.76, "end": 9708.52, "probability": 0.9765 }, { "start": 9710.02, "end": 9712.36, "probability": 0.768 }, { "start": 9716.02, "end": 9717.46, "probability": 0.6331 }, { "start": 9719.16, "end": 9719.18, "probability": 0.4349 }, { "start": 9719.18, "end": 9723.58, "probability": 0.9638 }, { "start": 9724.74, "end": 9725.46, "probability": 0.9954 }, { "start": 9727.82, "end": 9730.44, "probability": 0.996 }, { "start": 9731.9, "end": 9734.68, "probability": 0.8586 }, { "start": 9736.64, "end": 9737.8, "probability": 0.8243 }, { "start": 9738.76, "end": 9743.74, "probability": 0.9976 }, { "start": 9746.04, "end": 9747.54, "probability": 0.8545 }, { "start": 9749.48, "end": 9751.1, "probability": 0.9891 }, { "start": 9752.44, "end": 9756.91, "probability": 0.9919 }, { "start": 9757.78, "end": 9758.98, "probability": 0.8391 }, { "start": 9760.96, "end": 9764.72, "probability": 0.9209 }, { "start": 9767.22, "end": 9770.2, "probability": 0.9888 }, { "start": 9770.22, "end": 9771.12, "probability": 0.7696 }, { "start": 9771.68, "end": 9772.62, "probability": 0.9214 }, { "start": 9774.26, "end": 9778.38, "probability": 0.9868 }, { "start": 9779.16, "end": 9781.04, "probability": 0.8574 }, { "start": 9782.66, "end": 9785.76, "probability": 0.9863 }, { "start": 9786.6, "end": 9790.64, "probability": 0.9902 }, { "start": 9791.6, "end": 9794.28, "probability": 0.9919 }, { "start": 9794.84, "end": 9795.6, "probability": 0.9674 }, { "start": 9796.3, "end": 9798.9, "probability": 0.9869 }, { "start": 9799.76, "end": 9801.06, "probability": 0.9989 }, { "start": 9801.58, "end": 9807.68, "probability": 0.9928 }, { "start": 9811.8, "end": 9816.08, "probability": 0.7245 }, { "start": 9817.48, "end": 9818.2, "probability": 0.924 }, { "start": 9819.14, "end": 9823.0, "probability": 0.9854 }, { "start": 9824.4, "end": 9825.19, "probability": 0.9813 }, { "start": 9826.74, "end": 9830.34, "probability": 0.9831 }, { "start": 9830.5, "end": 9831.22, "probability": 0.7474 }, { "start": 9831.76, "end": 9832.72, "probability": 0.9205 }, { "start": 9835.32, "end": 9837.04, "probability": 0.9836 }, { "start": 9838.16, "end": 9840.48, "probability": 0.9492 }, { "start": 9842.58, "end": 9846.64, "probability": 0.9955 }, { "start": 9847.76, "end": 9849.9, "probability": 0.9854 }, { "start": 9851.04, "end": 9856.72, "probability": 0.9988 }, { "start": 9857.62, "end": 9858.64, "probability": 0.6729 }, { "start": 9859.82, "end": 9860.78, "probability": 0.9646 }, { "start": 9861.52, "end": 9867.04, "probability": 0.7406 }, { "start": 9867.68, "end": 9870.84, "probability": 0.9893 }, { "start": 9871.32, "end": 9872.06, "probability": 0.9484 }, { "start": 9872.48, "end": 9876.64, "probability": 0.9922 }, { "start": 9877.5, "end": 9878.66, "probability": 0.9221 }, { "start": 9879.34, "end": 9883.0, "probability": 0.9783 }, { "start": 9885.16, "end": 9890.24, "probability": 0.998 }, { "start": 9891.18, "end": 9893.12, "probability": 0.9955 }, { "start": 9894.02, "end": 9895.78, "probability": 0.9355 }, { "start": 9896.68, "end": 9898.48, "probability": 0.9663 }, { "start": 9901.56, "end": 9904.36, "probability": 0.999 }, { "start": 9905.76, "end": 9907.48, "probability": 0.5621 }, { "start": 9908.22, "end": 9912.28, "probability": 0.9048 }, { "start": 9912.28, "end": 9914.32, "probability": 0.9604 }, { "start": 9916.12, "end": 9918.66, "probability": 0.797 }, { "start": 9919.82, "end": 9922.76, "probability": 0.9547 }, { "start": 9923.68, "end": 9925.7, "probability": 0.973 }, { "start": 9926.94, "end": 9929.09, "probability": 0.9682 }, { "start": 9929.88, "end": 9931.42, "probability": 0.9637 }, { "start": 9931.5, "end": 9933.92, "probability": 0.994 }, { "start": 9934.64, "end": 9939.08, "probability": 0.9917 }, { "start": 9939.86, "end": 9943.8, "probability": 0.9963 }, { "start": 9945.2, "end": 9945.6, "probability": 0.9241 }, { "start": 9946.12, "end": 9947.64, "probability": 0.9046 }, { "start": 9948.6, "end": 9950.6, "probability": 0.9948 }, { "start": 9951.58, "end": 9952.36, "probability": 0.8781 }, { "start": 9953.68, "end": 9955.48, "probability": 0.9764 }, { "start": 9956.18, "end": 9957.9, "probability": 0.8212 }, { "start": 9958.5, "end": 9961.94, "probability": 0.9951 }, { "start": 9962.46, "end": 9965.1, "probability": 0.9847 }, { "start": 9965.54, "end": 9966.3, "probability": 0.5917 }, { "start": 9966.7, "end": 9967.74, "probability": 0.9867 }, { "start": 9968.42, "end": 9968.86, "probability": 0.7734 }, { "start": 9969.46, "end": 9970.3, "probability": 0.7537 }, { "start": 9973.21, "end": 9976.88, "probability": 0.7222 }, { "start": 9977.86, "end": 9979.86, "probability": 0.0094 }, { "start": 9981.3, "end": 9981.46, "probability": 0.041 }, { "start": 9981.46, "end": 9981.46, "probability": 0.1891 }, { "start": 9981.46, "end": 9981.78, "probability": 0.2523 }, { "start": 9981.96, "end": 9982.66, "probability": 0.769 }, { "start": 10006.84, "end": 10008.3, "probability": 0.7948 }, { "start": 10009.64, "end": 10013.6, "probability": 0.762 }, { "start": 10014.72, "end": 10020.56, "probability": 0.9871 }, { "start": 10021.54, "end": 10023.06, "probability": 0.8801 }, { "start": 10023.82, "end": 10027.2, "probability": 0.9891 }, { "start": 10028.16, "end": 10035.0, "probability": 0.9821 }, { "start": 10036.28, "end": 10037.56, "probability": 0.9771 }, { "start": 10038.1, "end": 10040.22, "probability": 0.9811 }, { "start": 10041.14, "end": 10042.3, "probability": 0.9182 }, { "start": 10042.88, "end": 10045.0, "probability": 0.9973 }, { "start": 10045.46, "end": 10048.14, "probability": 0.994 }, { "start": 10048.72, "end": 10050.58, "probability": 0.9185 }, { "start": 10051.14, "end": 10053.88, "probability": 0.8986 }, { "start": 10054.64, "end": 10055.7, "probability": 0.9108 }, { "start": 10056.84, "end": 10060.08, "probability": 0.9894 }, { "start": 10060.9, "end": 10064.88, "probability": 0.9885 }, { "start": 10065.56, "end": 10068.08, "probability": 0.9953 }, { "start": 10068.84, "end": 10070.4, "probability": 0.9915 }, { "start": 10071.34, "end": 10072.16, "probability": 0.8868 }, { "start": 10072.88, "end": 10073.62, "probability": 0.9848 }, { "start": 10074.16, "end": 10075.48, "probability": 0.5893 }, { "start": 10076.32, "end": 10077.14, "probability": 0.8483 }, { "start": 10078.26, "end": 10078.8, "probability": 0.9722 }, { "start": 10079.94, "end": 10080.5, "probability": 0.9541 }, { "start": 10081.3, "end": 10085.22, "probability": 0.9767 }, { "start": 10086.32, "end": 10087.8, "probability": 0.9844 }, { "start": 10088.7, "end": 10092.06, "probability": 0.6763 }, { "start": 10093.0, "end": 10094.9, "probability": 0.9683 }, { "start": 10095.54, "end": 10095.96, "probability": 0.8803 }, { "start": 10097.08, "end": 10099.94, "probability": 0.9954 }, { "start": 10100.56, "end": 10102.2, "probability": 0.9149 }, { "start": 10102.88, "end": 10107.7, "probability": 0.9808 }, { "start": 10107.7, "end": 10111.84, "probability": 0.7443 }, { "start": 10112.46, "end": 10115.02, "probability": 0.8836 }, { "start": 10115.56, "end": 10116.08, "probability": 0.8945 }, { "start": 10116.78, "end": 10120.52, "probability": 0.9852 }, { "start": 10121.2, "end": 10124.02, "probability": 0.9893 }, { "start": 10124.8, "end": 10127.9, "probability": 0.7859 }, { "start": 10128.54, "end": 10130.62, "probability": 0.8129 }, { "start": 10131.18, "end": 10134.64, "probability": 0.9459 }, { "start": 10135.44, "end": 10137.58, "probability": 0.9175 }, { "start": 10138.12, "end": 10142.1, "probability": 0.9729 }, { "start": 10142.66, "end": 10146.38, "probability": 0.9954 }, { "start": 10147.04, "end": 10150.56, "probability": 0.9976 }, { "start": 10151.2, "end": 10155.76, "probability": 0.9847 }, { "start": 10156.24, "end": 10157.74, "probability": 0.9945 }, { "start": 10158.54, "end": 10159.62, "probability": 0.684 }, { "start": 10160.18, "end": 10162.12, "probability": 0.8506 }, { "start": 10162.72, "end": 10165.88, "probability": 0.9897 }, { "start": 10166.64, "end": 10171.5, "probability": 0.9844 }, { "start": 10172.22, "end": 10173.06, "probability": 0.6837 }, { "start": 10173.82, "end": 10175.8, "probability": 0.7475 }, { "start": 10176.18, "end": 10178.62, "probability": 0.9929 }, { "start": 10179.24, "end": 10182.24, "probability": 0.7591 }, { "start": 10182.92, "end": 10185.48, "probability": 0.9662 }, { "start": 10186.26, "end": 10187.96, "probability": 0.998 }, { "start": 10188.64, "end": 10191.0, "probability": 0.9228 }, { "start": 10191.64, "end": 10194.0, "probability": 0.9847 }, { "start": 10195.0, "end": 10197.9, "probability": 0.9395 }, { "start": 10199.24, "end": 10200.44, "probability": 0.8191 }, { "start": 10201.28, "end": 10203.82, "probability": 0.9778 }, { "start": 10204.42, "end": 10206.64, "probability": 0.8131 }, { "start": 10207.3, "end": 10207.7, "probability": 0.6666 }, { "start": 10208.38, "end": 10209.9, "probability": 0.998 }, { "start": 10210.8, "end": 10212.84, "probability": 0.9888 }, { "start": 10213.58, "end": 10217.22, "probability": 0.9314 }, { "start": 10218.0, "end": 10219.7, "probability": 0.7616 }, { "start": 10219.92, "end": 10222.48, "probability": 0.976 }, { "start": 10223.28, "end": 10225.02, "probability": 0.9978 }, { "start": 10225.66, "end": 10228.22, "probability": 0.9824 }, { "start": 10228.66, "end": 10231.16, "probability": 0.9668 }, { "start": 10231.64, "end": 10234.44, "probability": 0.5449 }, { "start": 10235.14, "end": 10236.04, "probability": 0.6009 }, { "start": 10236.08, "end": 10240.52, "probability": 0.9055 }, { "start": 10241.54, "end": 10243.66, "probability": 0.9687 }, { "start": 10244.26, "end": 10245.56, "probability": 0.7616 }, { "start": 10246.38, "end": 10248.38, "probability": 0.8022 }, { "start": 10249.04, "end": 10249.64, "probability": 0.6882 }, { "start": 10249.8, "end": 10253.3, "probability": 0.9425 }, { "start": 10253.3, "end": 10256.22, "probability": 0.9833 }, { "start": 10256.94, "end": 10258.67, "probability": 0.8433 }, { "start": 10259.72, "end": 10261.36, "probability": 0.9935 }, { "start": 10261.76, "end": 10266.38, "probability": 0.9855 }, { "start": 10266.76, "end": 10267.72, "probability": 0.9925 }, { "start": 10268.56, "end": 10270.5, "probability": 0.9937 }, { "start": 10270.56, "end": 10271.9, "probability": 0.9551 }, { "start": 10272.42, "end": 10275.98, "probability": 0.912 }, { "start": 10276.1, "end": 10276.48, "probability": 0.3973 }, { "start": 10276.62, "end": 10278.86, "probability": 0.8084 }, { "start": 10279.28, "end": 10281.42, "probability": 0.9797 }, { "start": 10282.1, "end": 10282.62, "probability": 0.9683 }, { "start": 10283.2, "end": 10286.94, "probability": 0.9695 }, { "start": 10287.36, "end": 10288.36, "probability": 0.9922 }, { "start": 10289.12, "end": 10290.42, "probability": 0.591 }, { "start": 10291.2, "end": 10295.1, "probability": 0.9929 }, { "start": 10295.14, "end": 10299.04, "probability": 0.9899 }, { "start": 10299.48, "end": 10302.38, "probability": 0.9833 }, { "start": 10303.3, "end": 10305.46, "probability": 0.7205 }, { "start": 10306.1, "end": 10308.62, "probability": 0.9646 }, { "start": 10308.7, "end": 10309.66, "probability": 0.7766 }, { "start": 10310.3, "end": 10311.58, "probability": 0.9388 }, { "start": 10312.4, "end": 10313.76, "probability": 0.9933 }, { "start": 10314.2, "end": 10314.58, "probability": 0.746 }, { "start": 10315.14, "end": 10318.28, "probability": 0.8034 }, { "start": 10318.98, "end": 10321.32, "probability": 0.9827 }, { "start": 10322.44, "end": 10323.24, "probability": 0.7042 }, { "start": 10324.22, "end": 10325.82, "probability": 0.9458 }, { "start": 10333.4, "end": 10333.62, "probability": 0.055 }, { "start": 10335.88, "end": 10336.92, "probability": 0.5453 }, { "start": 10337.18, "end": 10337.34, "probability": 0.1159 }, { "start": 10340.3, "end": 10342.1, "probability": 0.0025 }, { "start": 10350.64, "end": 10357.78, "probability": 0.0588 }, { "start": 10358.4, "end": 10358.4, "probability": 0.0669 }, { "start": 10358.4, "end": 10358.4, "probability": 0.0348 }, { "start": 10358.94, "end": 10360.2, "probability": 0.1488 }, { "start": 10360.2, "end": 10360.69, "probability": 0.1661 }, { "start": 10361.71, "end": 10361.8, "probability": 0.0712 }, { "start": 10365.88, "end": 10366.54, "probability": 0.0878 }, { "start": 10386.08, "end": 10389.08, "probability": 0.5277 }, { "start": 10390.26, "end": 10391.12, "probability": 0.1361 }, { "start": 10391.12, "end": 10392.14, "probability": 0.4006 }, { "start": 10393.9, "end": 10394.02, "probability": 0.0958 }, { "start": 10394.02, "end": 10396.4, "probability": 0.2941 }, { "start": 10396.4, "end": 10397.4, "probability": 0.7363 }, { "start": 10398.58, "end": 10403.5, "probability": 0.9716 }, { "start": 10403.66, "end": 10404.48, "probability": 0.955 }, { "start": 10404.76, "end": 10407.84, "probability": 0.78 }, { "start": 10407.84, "end": 10408.0, "probability": 0.021 }, { "start": 10408.0, "end": 10408.38, "probability": 0.2155 }, { "start": 10409.0, "end": 10411.84, "probability": 0.975 }, { "start": 10412.12, "end": 10412.12, "probability": 0.0451 }, { "start": 10412.12, "end": 10413.12, "probability": 0.6657 }, { "start": 10413.34, "end": 10414.42, "probability": 0.8839 }, { "start": 10414.86, "end": 10415.9, "probability": 0.9845 }, { "start": 10417.22, "end": 10418.92, "probability": 0.8941 }, { "start": 10421.02, "end": 10421.82, "probability": 0.084 }, { "start": 10421.82, "end": 10423.04, "probability": 0.9637 }, { "start": 10423.3, "end": 10423.86, "probability": 0.1637 }, { "start": 10423.88, "end": 10424.2, "probability": 0.0533 }, { "start": 10424.48, "end": 10425.36, "probability": 0.6757 }, { "start": 10426.42, "end": 10428.0, "probability": 0.0619 }, { "start": 10428.79, "end": 10430.66, "probability": 0.1439 }, { "start": 10430.82, "end": 10439.5, "probability": 0.6916 }, { "start": 10439.56, "end": 10439.58, "probability": 0.3631 }, { "start": 10439.58, "end": 10439.58, "probability": 0.0582 }, { "start": 10439.58, "end": 10440.54, "probability": 0.8068 }, { "start": 10440.54, "end": 10441.94, "probability": 0.5764 }, { "start": 10442.46, "end": 10442.48, "probability": 0.4705 }, { "start": 10444.54, "end": 10446.14, "probability": 0.026 }, { "start": 10446.14, "end": 10446.14, "probability": 0.0508 }, { "start": 10446.14, "end": 10446.72, "probability": 0.0464 }, { "start": 10446.82, "end": 10449.26, "probability": 0.7296 }, { "start": 10450.24, "end": 10452.38, "probability": 0.2291 }, { "start": 10454.28, "end": 10455.02, "probability": 0.008 }, { "start": 10455.48, "end": 10455.48, "probability": 0.0682 }, { "start": 10455.48, "end": 10455.48, "probability": 0.0723 }, { "start": 10455.48, "end": 10455.48, "probability": 0.0219 }, { "start": 10455.48, "end": 10455.48, "probability": 0.0935 }, { "start": 10455.48, "end": 10460.96, "probability": 0.8346 }, { "start": 10462.58, "end": 10463.02, "probability": 0.2387 }, { "start": 10463.02, "end": 10463.02, "probability": 0.1239 }, { "start": 10463.02, "end": 10463.02, "probability": 0.0825 }, { "start": 10463.02, "end": 10464.7, "probability": 0.6156 }, { "start": 10465.1, "end": 10465.84, "probability": 0.049 }, { "start": 10465.96, "end": 10465.96, "probability": 0.0614 }, { "start": 10465.96, "end": 10465.96, "probability": 0.002 }, { "start": 10465.96, "end": 10466.82, "probability": 0.6223 }, { "start": 10466.82, "end": 10468.76, "probability": 0.7837 }, { "start": 10469.32, "end": 10472.1, "probability": 0.9907 }, { "start": 10472.76, "end": 10474.58, "probability": 0.0086 }, { "start": 10536.0, "end": 10536.0, "probability": 0.0 }, { "start": 10536.0, "end": 10536.0, "probability": 0.0 }, { "start": 10536.0, "end": 10536.0, "probability": 0.0 }, { "start": 10536.0, "end": 10536.0, "probability": 0.0 }, { "start": 10536.0, "end": 10536.0, "probability": 0.0 }, { "start": 10536.0, "end": 10536.0, "probability": 0.0 }, { "start": 10536.0, "end": 10536.0, "probability": 0.0 }, { "start": 10536.0, "end": 10536.0, "probability": 0.0 }, { "start": 10536.0, "end": 10536.0, "probability": 0.0 }, { "start": 10536.0, "end": 10536.0, "probability": 0.0 }, { "start": 10536.0, "end": 10536.0, "probability": 0.0 }, { "start": 10536.0, "end": 10536.0, "probability": 0.0 }, { "start": 10536.0, "end": 10536.0, "probability": 0.0 }, { "start": 10536.0, "end": 10536.0, "probability": 0.0 }, { "start": 10536.0, "end": 10536.0, "probability": 0.0 }, { "start": 10536.0, "end": 10536.0, "probability": 0.0 }, { "start": 10536.0, "end": 10536.0, "probability": 0.0 }, { "start": 10536.0, "end": 10536.0, "probability": 0.0 }, { "start": 10536.0, "end": 10536.0, "probability": 0.0 }, { "start": 10536.0, "end": 10536.0, "probability": 0.0 }, { "start": 10536.0, "end": 10536.0, "probability": 0.0 }, { "start": 10536.0, "end": 10536.0, "probability": 0.0 }, { "start": 10536.0, "end": 10536.0, "probability": 0.0 }, { "start": 10536.0, "end": 10536.0, "probability": 0.0 }, { "start": 10536.0, "end": 10536.0, "probability": 0.0 }, { "start": 10536.0, "end": 10536.0, "probability": 0.0 }, { "start": 10536.0, "end": 10536.0, "probability": 0.0 }, { "start": 10536.0, "end": 10536.0, "probability": 0.0 }, { "start": 10536.0, "end": 10536.0, "probability": 0.0 }, { "start": 10536.0, "end": 10536.0, "probability": 0.0 }, { "start": 10536.0, "end": 10536.0, "probability": 0.0 }, { "start": 10536.0, "end": 10536.0, "probability": 0.0 }, { "start": 10536.0, "end": 10536.0, "probability": 0.0 }, { "start": 10536.0, "end": 10536.0, "probability": 0.0 }, { "start": 10536.0, "end": 10536.0, "probability": 0.0 }, { "start": 10536.0, "end": 10536.0, "probability": 0.0 }, { "start": 10536.0, "end": 10536.0, "probability": 0.0 }, { "start": 10536.0, "end": 10536.0, "probability": 0.0 }, { "start": 10536.0, "end": 10536.0, "probability": 0.0 }, { "start": 10536.0, "end": 10536.0, "probability": 0.0 }, { "start": 10536.0, "end": 10536.0, "probability": 0.0 }, { "start": 10536.0, "end": 10536.0, "probability": 0.0 }, { "start": 10536.0, "end": 10536.0, "probability": 0.0 }, { "start": 10536.0, "end": 10536.0, "probability": 0.0 }, { "start": 10536.0, "end": 10536.0, "probability": 0.0 }, { "start": 10536.0, "end": 10536.0, "probability": 0.0 }, { "start": 10536.0, "end": 10536.0, "probability": 0.0 }, { "start": 10536.08, "end": 10536.87, "probability": 0.1153 }, { "start": 10537.92, "end": 10543.68, "probability": 0.8378 }, { "start": 10543.88, "end": 10544.28, "probability": 0.0579 }, { "start": 10544.28, "end": 10544.92, "probability": 0.3578 }, { "start": 10545.4, "end": 10547.42, "probability": 0.8435 }, { "start": 10547.96, "end": 10554.24, "probability": 0.0579 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.0, "end": 10657.0, "probability": 0.0 }, { "start": 10657.34, "end": 10657.34, "probability": 0.1003 }, { "start": 10657.34, "end": 10660.76, "probability": 0.6569 }, { "start": 10660.78, "end": 10662.24, "probability": 0.3971 }, { "start": 10662.84, "end": 10663.7, "probability": 0.5495 }, { "start": 10663.7, "end": 10667.78, "probability": 0.9565 }, { "start": 10667.92, "end": 10668.94, "probability": 0.5846 }, { "start": 10669.26, "end": 10673.72, "probability": 0.9427 }, { "start": 10674.08, "end": 10674.08, "probability": 0.0143 }, { "start": 10674.08, "end": 10676.52, "probability": 0.7646 }, { "start": 10676.52, "end": 10679.78, "probability": 0.7232 }, { "start": 10679.78, "end": 10682.64, "probability": 0.9806 }, { "start": 10683.28, "end": 10687.8, "probability": 0.8703 }, { "start": 10688.14, "end": 10688.14, "probability": 0.0178 }, { "start": 10688.14, "end": 10688.14, "probability": 0.0894 }, { "start": 10688.14, "end": 10689.42, "probability": 0.8102 }, { "start": 10689.68, "end": 10689.82, "probability": 0.3534 }, { "start": 10689.82, "end": 10690.62, "probability": 0.4749 }, { "start": 10690.72, "end": 10691.58, "probability": 0.793 }, { "start": 10691.62, "end": 10693.66, "probability": 0.9968 }, { "start": 10694.44, "end": 10694.64, "probability": 0.0917 }, { "start": 10694.64, "end": 10694.64, "probability": 0.128 }, { "start": 10694.64, "end": 10695.0, "probability": 0.0301 }, { "start": 10695.0, "end": 10695.77, "probability": 0.3014 }, { "start": 10696.56, "end": 10697.66, "probability": 0.6856 }, { "start": 10697.78, "end": 10700.42, "probability": 0.9058 }, { "start": 10700.88, "end": 10702.26, "probability": 0.186 }, { "start": 10702.48, "end": 10703.82, "probability": 0.178 }, { "start": 10704.64, "end": 10705.12, "probability": 0.0213 }, { "start": 10706.5, "end": 10707.0, "probability": 0.1063 }, { "start": 10707.22, "end": 10707.44, "probability": 0.0668 }, { "start": 10707.44, "end": 10707.44, "probability": 0.1855 }, { "start": 10707.44, "end": 10709.1, "probability": 0.4974 }, { "start": 10709.36, "end": 10709.36, "probability": 0.1246 }, { "start": 10709.36, "end": 10710.44, "probability": 0.759 }, { "start": 10711.48, "end": 10712.56, "probability": 0.7933 }, { "start": 10713.44, "end": 10715.06, "probability": 0.1829 }, { "start": 10715.18, "end": 10717.04, "probability": 0.9141 }, { "start": 10717.1, "end": 10721.42, "probability": 0.9384 }, { "start": 10721.76, "end": 10722.96, "probability": 0.4936 }, { "start": 10723.5, "end": 10723.68, "probability": 0.109 }, { "start": 10723.68, "end": 10724.02, "probability": 0.3268 }, { "start": 10724.02, "end": 10724.68, "probability": 0.5965 }, { "start": 10724.74, "end": 10725.94, "probability": 0.6843 }, { "start": 10726.02, "end": 10727.22, "probability": 0.5934 }, { "start": 10727.58, "end": 10728.2, "probability": 0.7779 }, { "start": 10728.36, "end": 10729.46, "probability": 0.7837 }, { "start": 10729.72, "end": 10729.74, "probability": 0.1404 }, { "start": 10729.74, "end": 10729.74, "probability": 0.1819 }, { "start": 10729.74, "end": 10732.58, "probability": 0.5808 }, { "start": 10733.0, "end": 10736.6, "probability": 0.8688 }, { "start": 10737.16, "end": 10738.02, "probability": 0.0918 }, { "start": 10740.64, "end": 10742.24, "probability": 0.1693 }, { "start": 10803.0, "end": 10803.0, "probability": 0.0 }, { "start": 10803.0, "end": 10803.0, "probability": 0.0 }, { "start": 10803.0, "end": 10803.0, "probability": 0.0 }, { "start": 10803.0, "end": 10803.0, "probability": 0.0 }, { "start": 10803.0, "end": 10803.0, "probability": 0.0 }, { "start": 10803.0, "end": 10803.0, "probability": 0.0 }, { "start": 10803.0, "end": 10803.0, "probability": 0.0 }, { "start": 10803.0, "end": 10803.0, "probability": 0.0 }, { "start": 10803.0, "end": 10803.0, "probability": 0.0 }, { "start": 10803.0, "end": 10803.0, "probability": 0.0 }, { "start": 10803.0, "end": 10803.0, "probability": 0.0 }, { "start": 10803.0, "end": 10803.0, "probability": 0.0 }, { "start": 10803.0, "end": 10803.0, "probability": 0.0 }, { "start": 10803.0, "end": 10803.0, "probability": 0.0 }, { "start": 10803.0, "end": 10803.0, "probability": 0.0 }, { "start": 10803.0, "end": 10803.0, "probability": 0.0 }, { "start": 10803.0, "end": 10803.0, "probability": 0.0 }, { "start": 10803.0, "end": 10803.0, "probability": 0.0 }, { "start": 10803.0, "end": 10803.0, "probability": 0.0 }, { "start": 10803.0, "end": 10803.0, "probability": 0.0 }, { "start": 10803.0, "end": 10803.0, "probability": 0.0 }, { "start": 10803.0, "end": 10803.0, "probability": 0.0 }, { "start": 10803.0, "end": 10803.0, "probability": 0.0 }, { "start": 10803.0, "end": 10803.0, "probability": 0.0 }, { "start": 10803.0, "end": 10803.0, "probability": 0.0 }, { "start": 10803.0, "end": 10803.0, "probability": 0.0 }, { "start": 10803.0, "end": 10803.0, "probability": 0.0 }, { "start": 10803.0, "end": 10803.0, "probability": 0.0 }, { "start": 10803.0, "end": 10803.0, "probability": 0.0 }, { "start": 10803.0, "end": 10803.0, "probability": 0.0 }, { "start": 10803.0, "end": 10803.0, "probability": 0.0 }, { "start": 10803.18, "end": 10806.36, "probability": 0.4637 }, { "start": 10806.36, "end": 10806.52, "probability": 0.0648 }, { "start": 10806.52, "end": 10806.56, "probability": 0.0797 }, { "start": 10806.56, "end": 10807.6, "probability": 0.2982 }, { "start": 10807.64, "end": 10812.06, "probability": 0.5697 }, { "start": 10812.4, "end": 10817.1, "probability": 0.6117 }, { "start": 10819.43, "end": 10823.58, "probability": 0.4928 }, { "start": 10824.22, "end": 10825.64, "probability": 0.2273 }, { "start": 10826.5, "end": 10827.42, "probability": 0.0112 }, { "start": 10827.7, "end": 10828.77, "probability": 0.0946 }, { "start": 10829.34, "end": 10830.76, "probability": 0.1141 }, { "start": 10831.3, "end": 10831.46, "probability": 0.008 }, { "start": 10831.62, "end": 10832.18, "probability": 0.3598 }, { "start": 10832.58, "end": 10834.42, "probability": 0.0161 }, { "start": 10837.46, "end": 10838.4, "probability": 0.1731 }, { "start": 10925.0, "end": 10925.0, "probability": 0.0 }, { "start": 10925.0, "end": 10925.0, "probability": 0.0 }, { "start": 10925.0, "end": 10925.0, "probability": 0.0 }, { "start": 10925.0, "end": 10925.0, "probability": 0.0 }, { "start": 10925.0, "end": 10925.0, "probability": 0.0 }, { "start": 10925.0, "end": 10925.0, "probability": 0.0 }, { "start": 10925.0, "end": 10925.0, "probability": 0.0 }, { "start": 10925.0, "end": 10925.0, "probability": 0.0 }, { "start": 10925.0, "end": 10925.0, "probability": 0.0 }, { "start": 10925.0, "end": 10925.0, "probability": 0.0 }, { "start": 10925.0, "end": 10925.0, "probability": 0.0 }, { "start": 10925.0, "end": 10925.0, "probability": 0.0 }, { "start": 10925.0, "end": 10925.0, "probability": 0.0 }, { "start": 10925.0, "end": 10925.0, "probability": 0.0 }, { "start": 10925.0, "end": 10925.0, "probability": 0.0 }, { "start": 10925.0, "end": 10925.0, "probability": 0.0 }, { "start": 10925.0, "end": 10925.0, "probability": 0.0 }, { "start": 10925.0, "end": 10925.0, "probability": 0.0 }, { "start": 10925.0, "end": 10925.0, "probability": 0.0 }, { "start": 10925.0, "end": 10925.0, "probability": 0.0 }, { "start": 10925.0, "end": 10925.0, "probability": 0.0 }, { "start": 10925.0, "end": 10925.0, "probability": 0.0 }, { "start": 10925.0, "end": 10925.0, "probability": 0.0 }, { "start": 10925.0, "end": 10925.0, "probability": 0.0 }, { "start": 10925.0, "end": 10925.0, "probability": 0.0 }, { "start": 10925.0, "end": 10925.0, "probability": 0.0 }, { "start": 10925.0, "end": 10925.0, "probability": 0.0 }, { "start": 10925.0, "end": 10925.0, "probability": 0.0 }, { "start": 10925.0, "end": 10925.0, "probability": 0.0 }, { "start": 10925.0, "end": 10925.0, "probability": 0.0 }, { "start": 10925.0, "end": 10925.0, "probability": 0.0 }, { "start": 10925.0, "end": 10925.0, "probability": 0.0 }, { "start": 10925.0, "end": 10925.0, "probability": 0.0 }, { "start": 10925.0, "end": 10925.0, "probability": 0.0 }, { "start": 10925.0, "end": 10925.0, "probability": 0.0 }, { "start": 10925.0, "end": 10925.0, "probability": 0.0 }, { "start": 10925.0, "end": 10925.0, "probability": 0.0 }, { "start": 10925.0, "end": 10925.0, "probability": 0.0 }, { "start": 10925.0, "end": 10925.0, "probability": 0.0 }, { "start": 10925.0, "end": 10925.0, "probability": 0.0 }, { "start": 10925.0, "end": 10925.0, "probability": 0.0 }, { "start": 10925.0, "end": 10925.0, "probability": 0.0 }, { "start": 10925.2, "end": 10925.3, "probability": 0.0094 }, { "start": 10925.94, "end": 10926.84, "probability": 0.4388 }, { "start": 10927.9, "end": 10928.46, "probability": 0.4487 }, { "start": 10929.2, "end": 10933.67, "probability": 0.7859 }, { "start": 10935.02, "end": 10936.18, "probability": 0.7966 }, { "start": 10937.2, "end": 10940.5, "probability": 0.7637 }, { "start": 10941.1, "end": 10945.65, "probability": 0.7275 }, { "start": 10946.18, "end": 10948.88, "probability": 0.8004 }, { "start": 10949.46, "end": 10951.6, "probability": 0.8997 }, { "start": 10952.18, "end": 10954.64, "probability": 0.7381 }, { "start": 10955.22, "end": 10957.64, "probability": 0.9365 }, { "start": 10958.44, "end": 10961.54, "probability": 0.6072 }, { "start": 10961.72, "end": 10962.3, "probability": 0.5021 }, { "start": 10962.36, "end": 10963.02, "probability": 0.6223 }, { "start": 10963.1, "end": 10964.82, "probability": 0.6739 }, { "start": 10964.94, "end": 10966.14, "probability": 0.7929 }, { "start": 10967.26, "end": 10969.18, "probability": 0.7979 }, { "start": 10969.98, "end": 10973.12, "probability": 0.9153 }, { "start": 10973.72, "end": 10974.76, "probability": 0.4885 }, { "start": 10975.56, "end": 10977.74, "probability": 0.657 }, { "start": 10977.92, "end": 10978.5, "probability": 0.9012 }, { "start": 10979.62, "end": 10981.42, "probability": 0.6615 }, { "start": 10982.04, "end": 10985.96, "probability": 0.6592 }, { "start": 10985.96, "end": 10990.8, "probability": 0.9734 }, { "start": 10991.84, "end": 10994.7, "probability": 0.6446 }, { "start": 10994.98, "end": 10998.64, "probability": 0.7352 }, { "start": 10999.32, "end": 11000.54, "probability": 0.4851 }, { "start": 11000.7, "end": 11003.46, "probability": 0.8977 }, { "start": 11004.44, "end": 11006.32, "probability": 0.8373 }, { "start": 11007.18, "end": 11010.36, "probability": 0.8008 }, { "start": 11011.26, "end": 11012.84, "probability": 0.8435 }, { "start": 11013.08, "end": 11016.78, "probability": 0.7828 }, { "start": 11017.32, "end": 11019.16, "probability": 0.9484 }, { "start": 11019.5, "end": 11026.38, "probability": 0.9934 }, { "start": 11026.84, "end": 11029.22, "probability": 0.5389 }, { "start": 11029.32, "end": 11029.7, "probability": 0.6744 }, { "start": 11029.74, "end": 11032.06, "probability": 0.7195 }, { "start": 11032.7, "end": 11034.22, "probability": 0.4655 }, { "start": 11034.26, "end": 11034.86, "probability": 0.3484 }, { "start": 11035.2, "end": 11036.4, "probability": 0.8174 }, { "start": 11037.1, "end": 11039.2, "probability": 0.9338 }, { "start": 11039.46, "end": 11041.84, "probability": 0.9922 }, { "start": 11042.2, "end": 11044.5, "probability": 0.8665 }, { "start": 11044.64, "end": 11047.86, "probability": 0.4918 }, { "start": 11047.98, "end": 11050.08, "probability": 0.8932 }, { "start": 11050.22, "end": 11052.88, "probability": 0.6502 }, { "start": 11052.92, "end": 11053.26, "probability": 0.6899 }, { "start": 11053.3, "end": 11054.82, "probability": 0.9907 }, { "start": 11055.4, "end": 11055.88, "probability": 0.6053 }, { "start": 11056.12, "end": 11057.28, "probability": 0.988 }, { "start": 11057.3, "end": 11061.85, "probability": 0.8321 }, { "start": 11062.26, "end": 11062.82, "probability": 0.8103 }, { "start": 11062.9, "end": 11063.46, "probability": 0.8099 }, { "start": 11063.7, "end": 11064.22, "probability": 0.9733 }, { "start": 11064.3, "end": 11065.52, "probability": 0.87 }, { "start": 11065.64, "end": 11066.56, "probability": 0.5941 }, { "start": 11067.78, "end": 11069.42, "probability": 0.645 }, { "start": 11069.72, "end": 11071.34, "probability": 0.8241 }, { "start": 11071.94, "end": 11073.22, "probability": 0.9622 }, { "start": 11073.96, "end": 11074.84, "probability": 0.8043 }, { "start": 11075.52, "end": 11076.28, "probability": 0.7607 }, { "start": 11076.92, "end": 11077.92, "probability": 0.989 }, { "start": 11078.64, "end": 11081.32, "probability": 0.9896 }, { "start": 11081.62, "end": 11083.04, "probability": 0.8639 }, { "start": 11083.16, "end": 11083.78, "probability": 0.4771 }, { "start": 11084.14, "end": 11085.08, "probability": 0.832 }, { "start": 11085.12, "end": 11086.64, "probability": 0.4684 }, { "start": 11087.02, "end": 11088.36, "probability": 0.9932 }, { "start": 11088.88, "end": 11089.46, "probability": 0.7908 }, { "start": 11089.66, "end": 11090.34, "probability": 0.5826 }, { "start": 11090.6, "end": 11092.38, "probability": 0.8234 }, { "start": 11092.8, "end": 11093.61, "probability": 0.9632 }, { "start": 11094.14, "end": 11096.46, "probability": 0.9506 }, { "start": 11096.8, "end": 11097.88, "probability": 0.9849 }, { "start": 11100.82, "end": 11101.24, "probability": 0.9888 }, { "start": 11101.24, "end": 11102.74, "probability": 0.4813 }, { "start": 11103.42, "end": 11105.5, "probability": 0.8722 }, { "start": 11105.6, "end": 11106.84, "probability": 0.873 }, { "start": 11106.88, "end": 11109.8, "probability": 0.9634 }, { "start": 11109.8, "end": 11111.7, "probability": 0.9844 }, { "start": 11111.86, "end": 11112.06, "probability": 0.6033 }, { "start": 11112.12, "end": 11112.4, "probability": 0.6134 }, { "start": 11112.68, "end": 11113.98, "probability": 0.5232 }, { "start": 11114.88, "end": 11115.7, "probability": 0.5983 }, { "start": 11116.3, "end": 11117.58, "probability": 0.9447 }, { "start": 11117.98, "end": 11120.84, "probability": 0.9778 }, { "start": 11121.5, "end": 11125.44, "probability": 0.9086 }, { "start": 11125.84, "end": 11127.84, "probability": 0.5266 }, { "start": 11128.22, "end": 11129.42, "probability": 0.6663 }, { "start": 11130.18, "end": 11131.08, "probability": 0.7491 }, { "start": 11131.14, "end": 11132.71, "probability": 0.8679 }, { "start": 11132.84, "end": 11135.56, "probability": 0.9932 }, { "start": 11136.04, "end": 11140.68, "probability": 0.909 }, { "start": 11141.5, "end": 11143.88, "probability": 0.9793 }, { "start": 11144.48, "end": 11146.2, "probability": 0.6881 }, { "start": 11146.76, "end": 11148.82, "probability": 0.9858 }, { "start": 11148.94, "end": 11149.86, "probability": 0.7916 }, { "start": 11150.38, "end": 11150.58, "probability": 0.8734 }, { "start": 11151.98, "end": 11153.06, "probability": 0.7578 }, { "start": 11154.4, "end": 11155.46, "probability": 0.9159 }, { "start": 11155.5, "end": 11155.94, "probability": 0.9453 }, { "start": 11175.34, "end": 11177.41, "probability": 0.8377 }, { "start": 11178.24, "end": 11179.27, "probability": 0.9723 }, { "start": 11180.24, "end": 11180.8, "probability": 0.8837 }, { "start": 11181.8, "end": 11182.72, "probability": 0.6585 }, { "start": 11183.78, "end": 11186.51, "probability": 0.9771 }, { "start": 11187.36, "end": 11189.84, "probability": 0.9837 }, { "start": 11190.04, "end": 11190.04, "probability": 0.7627 }, { "start": 11190.9, "end": 11195.16, "probability": 0.9753 }, { "start": 11196.04, "end": 11199.78, "probability": 0.9136 }, { "start": 11200.46, "end": 11203.54, "probability": 0.8134 }, { "start": 11203.86, "end": 11203.86, "probability": 0.065 }, { "start": 11203.86, "end": 11205.88, "probability": 0.621 }, { "start": 11207.6, "end": 11208.16, "probability": 0.0372 }, { "start": 11208.16, "end": 11210.76, "probability": 0.7837 }, { "start": 11210.8, "end": 11211.68, "probability": 0.6369 }, { "start": 11212.56, "end": 11213.82, "probability": 0.7346 }, { "start": 11213.96, "end": 11216.18, "probability": 0.9728 }, { "start": 11216.28, "end": 11218.3, "probability": 0.0259 }, { "start": 11219.68, "end": 11219.86, "probability": 0.0271 }, { "start": 11219.86, "end": 11222.64, "probability": 0.0187 }, { "start": 11224.84, "end": 11229.22, "probability": 0.0524 }, { "start": 11234.38, "end": 11237.16, "probability": 0.0346 }, { "start": 11237.16, "end": 11241.54, "probability": 0.099 }, { "start": 11242.18, "end": 11242.64, "probability": 0.0964 }, { "start": 11249.36, "end": 11250.32, "probability": 0.1083 }, { "start": 11250.42, "end": 11253.35, "probability": 0.0469 }, { "start": 11254.12, "end": 11254.16, "probability": 0.0289 }, { "start": 11255.16, "end": 11255.92, "probability": 0.023 }, { "start": 11257.27, "end": 11258.24, "probability": 0.0748 }, { "start": 11260.56, "end": 11261.8, "probability": 0.0214 }, { "start": 11261.8, "end": 11263.08, "probability": 0.0108 }, { "start": 11263.16, "end": 11266.12, "probability": 0.1642 }, { "start": 11267.11, "end": 11267.92, "probability": 0.0736 }, { "start": 11268.0, "end": 11268.0, "probability": 0.0 }, { "start": 11268.0, "end": 11268.0, "probability": 0.0 }, { "start": 11268.0, "end": 11268.0, "probability": 0.0 }, { "start": 11268.0, "end": 11268.0, "probability": 0.0 }, { "start": 11268.0, "end": 11268.0, "probability": 0.0 }, { "start": 11268.0, "end": 11268.0, "probability": 0.0 }, { "start": 11268.0, "end": 11268.0, "probability": 0.0 }, { "start": 11268.0, "end": 11268.0, "probability": 0.0 }, { "start": 11268.0, "end": 11268.0, "probability": 0.0 }, { "start": 11268.0, "end": 11268.0, "probability": 0.0 }, { "start": 11268.0, "end": 11268.0, "probability": 0.0 }, { "start": 11268.0, "end": 11268.0, "probability": 0.0 }, { "start": 11268.0, "end": 11268.0, "probability": 0.0 }, { "start": 11268.0, "end": 11268.0, "probability": 0.0 }, { "start": 11269.42, "end": 11272.46, "probability": 0.0407 }, { "start": 11273.06, "end": 11273.68, "probability": 0.0314 }, { "start": 11274.88, "end": 11275.5, "probability": 0.099 }, { "start": 11276.62, "end": 11277.52, "probability": 0.0335 }, { "start": 11277.52, "end": 11278.5, "probability": 0.1684 }, { "start": 11278.94, "end": 11279.52, "probability": 0.0081 }, { "start": 11279.77, "end": 11283.42, "probability": 0.0487 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.0, "end": 11409.0, "probability": 0.0 }, { "start": 11409.1, "end": 11409.1, "probability": 0.0234 }, { "start": 11409.1, "end": 11409.1, "probability": 0.0217 }, { "start": 11409.1, "end": 11411.01, "probability": 0.7329 }, { "start": 11411.56, "end": 11413.38, "probability": 0.9779 }, { "start": 11415.32, "end": 11419.64, "probability": 0.8118 }, { "start": 11421.28, "end": 11423.46, "probability": 0.9961 }, { "start": 11424.44, "end": 11428.5, "probability": 0.7904 }, { "start": 11428.5, "end": 11433.04, "probability": 0.4065 }, { "start": 11433.08, "end": 11434.12, "probability": 0.0218 }, { "start": 11434.12, "end": 11434.76, "probability": 0.4601 }, { "start": 11434.76, "end": 11436.47, "probability": 0.7834 }, { "start": 11437.58, "end": 11437.58, "probability": 0.4421 }, { "start": 11439.06, "end": 11443.56, "probability": 0.9731 }, { "start": 11444.38, "end": 11445.25, "probability": 0.5204 }, { "start": 11445.92, "end": 11447.42, "probability": 0.9765 }, { "start": 11448.58, "end": 11455.22, "probability": 0.9816 }, { "start": 11455.22, "end": 11460.48, "probability": 0.9985 }, { "start": 11461.62, "end": 11465.4, "probability": 0.9946 }, { "start": 11465.4, "end": 11467.9, "probability": 0.9863 }, { "start": 11468.6, "end": 11470.98, "probability": 0.9033 }, { "start": 11471.04, "end": 11471.7, "probability": 0.7361 }, { "start": 11471.76, "end": 11474.7, "probability": 0.9841 }, { "start": 11474.8, "end": 11474.8, "probability": 0.1199 }, { "start": 11474.8, "end": 11474.8, "probability": 0.3634 }, { "start": 11474.8, "end": 11475.86, "probability": 0.5857 }, { "start": 11477.04, "end": 11485.12, "probability": 0.9222 }, { "start": 11485.74, "end": 11486.0, "probability": 0.7893 }, { "start": 11487.1, "end": 11487.98, "probability": 0.638 }, { "start": 11488.4, "end": 11489.4, "probability": 0.1848 }, { "start": 11490.12, "end": 11491.45, "probability": 0.9551 }, { "start": 11493.4, "end": 11500.0, "probability": 0.7486 }, { "start": 11501.1, "end": 11502.72, "probability": 0.8413 }, { "start": 11503.42, "end": 11506.02, "probability": 0.5463 }, { "start": 11506.28, "end": 11506.9, "probability": 0.443 }, { "start": 11506.9, "end": 11507.56, "probability": 0.4152 }, { "start": 11507.7, "end": 11509.36, "probability": 0.5729 }, { "start": 11509.36, "end": 11510.48, "probability": 0.3445 }, { "start": 11510.68, "end": 11513.5, "probability": 0.901 }, { "start": 11514.42, "end": 11514.54, "probability": 0.6543 }, { "start": 11514.54, "end": 11515.56, "probability": 0.6287 }, { "start": 11516.94, "end": 11519.3, "probability": 0.8265 }, { "start": 11519.7, "end": 11520.22, "probability": 0.6681 }, { "start": 11520.4, "end": 11522.0, "probability": 0.8525 }, { "start": 11522.14, "end": 11523.56, "probability": 0.9863 }, { "start": 11523.66, "end": 11524.22, "probability": 0.7861 }, { "start": 11525.0, "end": 11526.58, "probability": 0.7588 }, { "start": 11526.58, "end": 11527.8, "probability": 0.1926 }, { "start": 11527.8, "end": 11527.8, "probability": 0.0708 }, { "start": 11527.8, "end": 11534.9, "probability": 0.9451 }, { "start": 11534.98, "end": 11536.03, "probability": 0.8671 }, { "start": 11536.14, "end": 11537.94, "probability": 0.7196 }, { "start": 11538.6, "end": 11539.12, "probability": 0.489 }, { "start": 11539.12, "end": 11540.49, "probability": 0.6456 }, { "start": 11541.5, "end": 11542.14, "probability": 0.0806 }, { "start": 11542.28, "end": 11542.28, "probability": 0.2866 }, { "start": 11542.28, "end": 11542.66, "probability": 0.8162 }, { "start": 11542.68, "end": 11547.72, "probability": 0.9629 }, { "start": 11547.9, "end": 11548.76, "probability": 0.8708 }, { "start": 11549.28, "end": 11549.63, "probability": 0.1048 }, { "start": 11551.16, "end": 11552.6, "probability": 0.4108 }, { "start": 11552.78, "end": 11553.52, "probability": 0.0154 }, { "start": 11553.52, "end": 11554.76, "probability": 0.6135 }, { "start": 11556.16, "end": 11559.3, "probability": 0.5914 }, { "start": 11559.48, "end": 11560.2, "probability": 0.6217 }, { "start": 11561.88, "end": 11561.96, "probability": 0.1866 }, { "start": 11561.96, "end": 11562.93, "probability": 0.4602 }, { "start": 11563.38, "end": 11564.02, "probability": 0.1891 }, { "start": 11565.1, "end": 11565.98, "probability": 0.2345 }, { "start": 11567.3, "end": 11569.46, "probability": 0.7447 }, { "start": 11570.06, "end": 11571.62, "probability": 0.9744 }, { "start": 11571.62, "end": 11571.85, "probability": 0.0185 }, { "start": 11572.48, "end": 11572.48, "probability": 0.2021 }, { "start": 11572.48, "end": 11573.9, "probability": 0.9902 }, { "start": 11573.96, "end": 11573.96, "probability": 0.2339 }, { "start": 11574.04, "end": 11574.9, "probability": 0.3397 }, { "start": 11576.34, "end": 11576.96, "probability": 0.0375 }, { "start": 11577.74, "end": 11577.92, "probability": 0.5293 }, { "start": 11577.92, "end": 11579.48, "probability": 0.0405 }, { "start": 11580.04, "end": 11582.5, "probability": 0.2356 }, { "start": 11582.85, "end": 11582.92, "probability": 0.216 }, { "start": 11582.96, "end": 11583.02, "probability": 0.0292 }, { "start": 11583.02, "end": 11583.74, "probability": 0.5167 }, { "start": 11584.42, "end": 11585.5, "probability": 0.6357 }, { "start": 11585.54, "end": 11589.4, "probability": 0.8886 }, { "start": 11589.76, "end": 11590.84, "probability": 0.1248 }, { "start": 11591.1, "end": 11591.98, "probability": 0.7148 }, { "start": 11592.22, "end": 11593.94, "probability": 0.8589 }, { "start": 11594.28, "end": 11595.04, "probability": 0.1806 }, { "start": 11595.82, "end": 11597.62, "probability": 0.0072 }, { "start": 11599.8, "end": 11599.8, "probability": 0.0206 }, { "start": 11599.8, "end": 11599.82, "probability": 0.1554 }, { "start": 11599.82, "end": 11599.86, "probability": 0.005 }, { "start": 11599.86, "end": 11599.86, "probability": 0.0911 }, { "start": 11599.86, "end": 11599.86, "probability": 0.0049 }, { "start": 11599.86, "end": 11601.62, "probability": 0.586 }, { "start": 11601.64, "end": 11601.74, "probability": 0.18 }, { "start": 11603.22, "end": 11604.18, "probability": 0.5352 }, { "start": 11605.16, "end": 11606.14, "probability": 0.5842 }, { "start": 11608.06, "end": 11608.6, "probability": 0.8664 }, { "start": 11609.36, "end": 11610.9, "probability": 0.8251 }, { "start": 11612.44, "end": 11615.1, "probability": 0.9979 }, { "start": 11615.92, "end": 11617.86, "probability": 0.998 }, { "start": 11619.32, "end": 11621.44, "probability": 0.7891 }, { "start": 11622.12, "end": 11623.98, "probability": 0.9934 }, { "start": 11624.92, "end": 11626.06, "probability": 0.9967 }, { "start": 11626.6, "end": 11629.0, "probability": 0.9813 }, { "start": 11630.12, "end": 11632.1, "probability": 0.9912 }, { "start": 11633.12, "end": 11638.04, "probability": 0.9382 }, { "start": 11638.74, "end": 11640.3, "probability": 0.9482 }, { "start": 11640.96, "end": 11641.54, "probability": 0.9373 }, { "start": 11642.6, "end": 11643.66, "probability": 0.9191 }, { "start": 11644.24, "end": 11644.56, "probability": 0.7351 }, { "start": 11646.32, "end": 11646.72, "probability": 0.677 }, { "start": 11647.38, "end": 11650.72, "probability": 0.9741 }, { "start": 11650.72, "end": 11653.96, "probability": 0.9921 }, { "start": 11654.9, "end": 11656.13, "probability": 0.875 }, { "start": 11656.76, "end": 11658.84, "probability": 0.9927 }, { "start": 11658.84, "end": 11661.0, "probability": 0.9821 }, { "start": 11661.06, "end": 11662.56, "probability": 0.7099 }, { "start": 11662.7, "end": 11667.4, "probability": 0.9871 }, { "start": 11668.14, "end": 11668.8, "probability": 0.9661 }, { "start": 11670.34, "end": 11671.16, "probability": 0.9806 }, { "start": 11672.38, "end": 11673.98, "probability": 0.8736 }, { "start": 11675.2, "end": 11675.64, "probability": 0.9055 }, { "start": 11675.88, "end": 11676.34, "probability": 0.9783 }, { "start": 11676.54, "end": 11677.06, "probability": 0.9865 }, { "start": 11677.12, "end": 11678.04, "probability": 0.9446 }, { "start": 11678.36, "end": 11679.3, "probability": 0.6808 }, { "start": 11679.96, "end": 11680.46, "probability": 0.9341 }, { "start": 11681.36, "end": 11684.34, "probability": 0.9912 }, { "start": 11685.72, "end": 11687.9, "probability": 0.9584 }, { "start": 11689.48, "end": 11691.54, "probability": 0.7782 }, { "start": 11691.64, "end": 11691.96, "probability": 0.8344 }, { "start": 11692.44, "end": 11693.3, "probability": 0.8899 }, { "start": 11693.7, "end": 11694.08, "probability": 0.764 }, { "start": 11694.9, "end": 11697.46, "probability": 0.9885 }, { "start": 11697.48, "end": 11699.64, "probability": 0.9977 }, { "start": 11700.32, "end": 11703.08, "probability": 0.8006 }, { "start": 11703.7, "end": 11706.4, "probability": 0.7112 }, { "start": 11707.02, "end": 11708.36, "probability": 0.9636 }, { "start": 11708.94, "end": 11711.57, "probability": 0.9927 }, { "start": 11712.6, "end": 11715.08, "probability": 0.9869 }, { "start": 11716.2, "end": 11716.52, "probability": 0.832 }, { "start": 11716.62, "end": 11721.0, "probability": 0.9917 }, { "start": 11721.24, "end": 11722.92, "probability": 0.7974 }, { "start": 11724.1, "end": 11726.38, "probability": 0.9937 }, { "start": 11726.44, "end": 11728.34, "probability": 0.9986 }, { "start": 11729.22, "end": 11729.68, "probability": 0.9186 }, { "start": 11730.6, "end": 11731.64, "probability": 0.9882 }, { "start": 11732.2, "end": 11734.35, "probability": 0.9188 }, { "start": 11735.08, "end": 11738.58, "probability": 0.9952 }, { "start": 11739.18, "end": 11741.08, "probability": 0.934 }, { "start": 11741.08, "end": 11743.92, "probability": 0.9954 }, { "start": 11744.52, "end": 11746.28, "probability": 0.9978 }, { "start": 11747.78, "end": 11747.78, "probability": 0.2491 }, { "start": 11747.98, "end": 11752.22, "probability": 0.9894 }, { "start": 11752.98, "end": 11755.82, "probability": 0.8804 }, { "start": 11755.82, "end": 11756.36, "probability": 0.3415 }, { "start": 11756.52, "end": 11759.34, "probability": 0.9494 }, { "start": 11759.58, "end": 11762.06, "probability": 0.976 }, { "start": 11762.52, "end": 11765.66, "probability": 0.9929 }, { "start": 11766.12, "end": 11766.84, "probability": 0.0849 }, { "start": 11767.0, "end": 11769.76, "probability": 0.6649 }, { "start": 11769.76, "end": 11772.4, "probability": 0.9731 }, { "start": 11773.88, "end": 11777.58, "probability": 0.9912 }, { "start": 11778.06, "end": 11780.32, "probability": 0.9982 }, { "start": 11781.7, "end": 11783.54, "probability": 0.8601 }, { "start": 11784.08, "end": 11786.18, "probability": 0.915 }, { "start": 11786.64, "end": 11788.04, "probability": 0.9956 }, { "start": 11788.36, "end": 11788.76, "probability": 0.5241 }, { "start": 11788.9, "end": 11789.54, "probability": 0.9922 }, { "start": 11789.78, "end": 11791.7, "probability": 0.9982 }, { "start": 11791.72, "end": 11792.48, "probability": 0.8577 }, { "start": 11792.5, "end": 11795.0, "probability": 0.7374 }, { "start": 11795.28, "end": 11796.6, "probability": 0.6473 }, { "start": 11796.8, "end": 11797.94, "probability": 0.878 }, { "start": 11798.48, "end": 11800.02, "probability": 0.9941 }, { "start": 11800.16, "end": 11801.46, "probability": 0.9733 }, { "start": 11801.88, "end": 11802.52, "probability": 0.8553 }, { "start": 11803.46, "end": 11803.64, "probability": 0.2081 }, { "start": 11803.68, "end": 11804.62, "probability": 0.8701 }, { "start": 11804.72, "end": 11804.72, "probability": 0.2946 }, { "start": 11804.72, "end": 11806.94, "probability": 0.9467 }, { "start": 11807.02, "end": 11808.08, "probability": 0.9761 }, { "start": 11808.94, "end": 11809.76, "probability": 0.8796 }, { "start": 11809.84, "end": 11813.42, "probability": 0.9937 }, { "start": 11813.64, "end": 11815.1, "probability": 0.8992 }, { "start": 11815.7, "end": 11819.4, "probability": 0.9966 }, { "start": 11820.02, "end": 11821.44, "probability": 0.9709 }, { "start": 11823.68, "end": 11823.96, "probability": 0.306 }, { "start": 11823.98, "end": 11824.02, "probability": 0.3088 }, { "start": 11824.02, "end": 11825.82, "probability": 0.8562 }, { "start": 11826.26, "end": 11827.22, "probability": 0.8768 }, { "start": 11827.8, "end": 11828.2, "probability": 0.8019 }, { "start": 11828.32, "end": 11828.6, "probability": 0.5513 }, { "start": 11828.6, "end": 11829.16, "probability": 0.7016 }, { "start": 11832.76, "end": 11834.82, "probability": 0.9602 }, { "start": 11861.5, "end": 11863.5, "probability": 0.7424 }, { "start": 11864.9, "end": 11865.72, "probability": 0.9662 }, { "start": 11867.38, "end": 11868.26, "probability": 0.7399 }, { "start": 11870.12, "end": 11871.28, "probability": 0.9645 }, { "start": 11873.06, "end": 11874.78, "probability": 0.9735 }, { "start": 11876.1, "end": 11881.34, "probability": 0.9903 }, { "start": 11882.18, "end": 11884.54, "probability": 0.974 }, { "start": 11885.36, "end": 11891.82, "probability": 0.8518 }, { "start": 11894.68, "end": 11898.94, "probability": 0.9866 }, { "start": 11899.02, "end": 11900.74, "probability": 0.7624 }, { "start": 11901.96, "end": 11903.8, "probability": 0.8198 }, { "start": 11904.54, "end": 11905.34, "probability": 0.968 }, { "start": 11906.34, "end": 11911.54, "probability": 0.8391 }, { "start": 11912.42, "end": 11916.86, "probability": 0.9903 }, { "start": 11916.86, "end": 11919.18, "probability": 0.9693 }, { "start": 11921.3, "end": 11921.88, "probability": 0.8113 }, { "start": 11922.4, "end": 11924.16, "probability": 0.9937 }, { "start": 11924.92, "end": 11928.46, "probability": 0.6295 }, { "start": 11929.76, "end": 11933.72, "probability": 0.9003 }, { "start": 11935.56, "end": 11939.26, "probability": 0.9425 }, { "start": 11940.2, "end": 11941.32, "probability": 0.9881 }, { "start": 11941.8, "end": 11943.08, "probability": 0.9492 }, { "start": 11943.4, "end": 11943.84, "probability": 0.7718 }, { "start": 11944.4, "end": 11945.08, "probability": 0.7288 }, { "start": 11945.96, "end": 11946.44, "probability": 0.7772 }, { "start": 11947.52, "end": 11948.76, "probability": 0.6626 }, { "start": 11949.86, "end": 11950.52, "probability": 0.5921 }, { "start": 11951.72, "end": 11952.4, "probability": 0.835 }, { "start": 11953.08, "end": 11954.28, "probability": 0.9521 }, { "start": 11954.42, "end": 11955.78, "probability": 0.9407 }, { "start": 11956.2, "end": 11956.74, "probability": 0.9307 }, { "start": 11956.84, "end": 11958.16, "probability": 0.4144 }, { "start": 11958.32, "end": 11960.48, "probability": 0.5005 }, { "start": 11960.66, "end": 11961.5, "probability": 0.6157 }, { "start": 11962.16, "end": 11963.6, "probability": 0.799 }, { "start": 11965.3, "end": 11969.1, "probability": 0.9011 }, { "start": 11970.0, "end": 11972.74, "probability": 0.8921 }, { "start": 11973.22, "end": 11974.16, "probability": 0.7744 }, { "start": 11974.26, "end": 11978.04, "probability": 0.9185 }, { "start": 11978.7, "end": 11978.7, "probability": 0.2869 }, { "start": 11978.9, "end": 11980.96, "probability": 0.7912 }, { "start": 11981.16, "end": 11986.75, "probability": 0.9466 }, { "start": 11988.94, "end": 11991.08, "probability": 0.8167 }, { "start": 11992.08, "end": 11995.32, "probability": 0.8623 }, { "start": 11995.84, "end": 11998.02, "probability": 0.8086 }, { "start": 11998.96, "end": 12000.18, "probability": 0.9585 }, { "start": 12000.66, "end": 12003.02, "probability": 0.9751 }, { "start": 12003.34, "end": 12003.76, "probability": 0.5313 }, { "start": 12003.84, "end": 12005.3, "probability": 0.9185 }, { "start": 12006.22, "end": 12007.16, "probability": 0.9458 }, { "start": 12007.78, "end": 12010.82, "probability": 0.9902 }, { "start": 12011.4, "end": 12012.5, "probability": 0.9927 }, { "start": 12014.2, "end": 12014.98, "probability": 0.8779 }, { "start": 12015.18, "end": 12015.88, "probability": 0.8875 }, { "start": 12016.06, "end": 12019.32, "probability": 0.7784 }, { "start": 12019.66, "end": 12020.32, "probability": 0.8702 }, { "start": 12020.48, "end": 12021.46, "probability": 0.9861 }, { "start": 12022.8, "end": 12023.7, "probability": 0.9954 }, { "start": 12024.82, "end": 12025.0, "probability": 0.8577 }, { "start": 12025.14, "end": 12026.18, "probability": 0.9745 }, { "start": 12026.28, "end": 12029.52, "probability": 0.6639 }, { "start": 12029.64, "end": 12030.94, "probability": 0.6639 }, { "start": 12031.88, "end": 12033.13, "probability": 0.8882 }, { "start": 12033.9, "end": 12035.52, "probability": 0.9897 }, { "start": 12036.34, "end": 12038.86, "probability": 0.9595 }, { "start": 12039.56, "end": 12042.28, "probability": 0.9802 }, { "start": 12043.04, "end": 12048.38, "probability": 0.8804 }, { "start": 12048.78, "end": 12050.12, "probability": 0.7892 }, { "start": 12050.2, "end": 12050.66, "probability": 0.4199 }, { "start": 12050.7, "end": 12052.44, "probability": 0.747 }, { "start": 12052.7, "end": 12053.66, "probability": 0.8493 }, { "start": 12054.89, "end": 12056.84, "probability": 0.9867 }, { "start": 12057.3, "end": 12058.28, "probability": 0.9768 }, { "start": 12058.78, "end": 12061.46, "probability": 0.9719 }, { "start": 12062.18, "end": 12065.4, "probability": 0.9699 }, { "start": 12065.92, "end": 12068.77, "probability": 0.9893 }, { "start": 12069.5, "end": 12070.22, "probability": 0.5207 }, { "start": 12070.34, "end": 12071.94, "probability": 0.8085 }, { "start": 12072.8, "end": 12074.04, "probability": 0.8853 }, { "start": 12074.14, "end": 12075.42, "probability": 0.9849 }, { "start": 12075.5, "end": 12076.74, "probability": 0.9155 }, { "start": 12076.92, "end": 12078.12, "probability": 0.8752 }, { "start": 12079.2, "end": 12081.26, "probability": 0.4838 }, { "start": 12081.36, "end": 12081.38, "probability": 0.5403 }, { "start": 12081.38, "end": 12083.54, "probability": 0.9612 }, { "start": 12083.54, "end": 12084.42, "probability": 0.467 }, { "start": 12084.78, "end": 12085.94, "probability": 0.9001 }, { "start": 12086.52, "end": 12091.04, "probability": 0.8237 }, { "start": 12091.5, "end": 12092.08, "probability": 0.809 }, { "start": 12092.24, "end": 12093.08, "probability": 0.9818 }, { "start": 12093.14, "end": 12096.8, "probability": 0.9854 }, { "start": 12096.8, "end": 12099.78, "probability": 0.3798 }, { "start": 12100.1, "end": 12101.38, "probability": 0.0171 }, { "start": 12101.66, "end": 12102.88, "probability": 0.3417 }, { "start": 12103.14, "end": 12104.64, "probability": 0.5043 }, { "start": 12104.98, "end": 12105.86, "probability": 0.75 }, { "start": 12107.38, "end": 12108.72, "probability": 0.5484 }, { "start": 12108.84, "end": 12111.94, "probability": 0.1886 }, { "start": 12113.18, "end": 12114.88, "probability": 0.0655 }, { "start": 12115.46, "end": 12116.84, "probability": 0.2681 }, { "start": 12118.08, "end": 12118.54, "probability": 0.1382 }, { "start": 12122.08, "end": 12123.78, "probability": 0.0414 }, { "start": 12124.22, "end": 12128.14, "probability": 0.7955 }, { "start": 12131.4, "end": 12134.68, "probability": 0.5788 }, { "start": 12134.8, "end": 12135.9, "probability": 0.7456 }, { "start": 12135.96, "end": 12136.8, "probability": 0.9841 }, { "start": 12137.02, "end": 12138.14, "probability": 0.7465 }, { "start": 12138.86, "end": 12138.86, "probability": 0.1392 }, { "start": 12138.86, "end": 12140.22, "probability": 0.8007 }, { "start": 12140.22, "end": 12140.63, "probability": 0.9053 }, { "start": 12141.78, "end": 12145.97, "probability": 0.7734 }, { "start": 12146.5, "end": 12148.66, "probability": 0.9968 }, { "start": 12149.38, "end": 12151.12, "probability": 0.9598 }, { "start": 12151.32, "end": 12153.06, "probability": 0.9015 }, { "start": 12153.12, "end": 12153.92, "probability": 0.5554 }, { "start": 12154.0, "end": 12154.52, "probability": 0.486 }, { "start": 12154.66, "end": 12156.72, "probability": 0.9258 }, { "start": 12156.72, "end": 12158.12, "probability": 0.728 }, { "start": 12158.5, "end": 12159.13, "probability": 0.1184 }, { "start": 12159.38, "end": 12162.34, "probability": 0.6674 }, { "start": 12162.36, "end": 12163.5, "probability": 0.6055 }, { "start": 12164.92, "end": 12164.92, "probability": 0.5392 }, { "start": 12167.28, "end": 12168.9, "probability": 0.2762 }, { "start": 12169.18, "end": 12169.62, "probability": 0.1735 }, { "start": 12169.74, "end": 12170.54, "probability": 0.1307 }, { "start": 12170.54, "end": 12170.66, "probability": 0.0768 }, { "start": 12170.68, "end": 12170.84, "probability": 0.1169 }, { "start": 12170.86, "end": 12172.48, "probability": 0.5558 }, { "start": 12172.84, "end": 12172.84, "probability": 0.1485 }, { "start": 12172.84, "end": 12173.44, "probability": 0.3665 }, { "start": 12173.94, "end": 12175.66, "probability": 0.6797 }, { "start": 12176.14, "end": 12177.88, "probability": 0.8392 }, { "start": 12178.4, "end": 12183.58, "probability": 0.9601 }, { "start": 12184.24, "end": 12189.26, "probability": 0.9983 }, { "start": 12189.26, "end": 12193.36, "probability": 0.9963 }, { "start": 12193.82, "end": 12196.74, "probability": 0.9963 }, { "start": 12197.72, "end": 12205.98, "probability": 0.929 }, { "start": 12206.76, "end": 12209.06, "probability": 0.7999 }, { "start": 12209.06, "end": 12212.84, "probability": 0.9671 }, { "start": 12212.94, "end": 12212.94, "probability": 0.0375 }, { "start": 12212.94, "end": 12213.16, "probability": 0.1542 }, { "start": 12213.16, "end": 12213.58, "probability": 0.053 }, { "start": 12213.78, "end": 12219.8, "probability": 0.9849 }, { "start": 12219.84, "end": 12219.98, "probability": 0.1303 }, { "start": 12220.0, "end": 12220.34, "probability": 0.4231 }, { "start": 12220.48, "end": 12221.12, "probability": 0.5713 }, { "start": 12221.14, "end": 12223.94, "probability": 0.9535 }, { "start": 12224.48, "end": 12224.48, "probability": 0.3942 }, { "start": 12224.48, "end": 12226.18, "probability": 0.5414 }, { "start": 12226.7, "end": 12231.12, "probability": 0.7986 }, { "start": 12231.18, "end": 12233.36, "probability": 0.0836 }, { "start": 12233.36, "end": 12237.96, "probability": 0.5168 }, { "start": 12238.52, "end": 12238.52, "probability": 0.1821 }, { "start": 12238.52, "end": 12240.18, "probability": 0.5964 }, { "start": 12244.04, "end": 12244.18, "probability": 0.0163 }, { "start": 12244.94, "end": 12245.64, "probability": 0.1099 }, { "start": 12245.64, "end": 12246.44, "probability": 0.3361 }, { "start": 12246.44, "end": 12246.86, "probability": 0.2509 }, { "start": 12247.56, "end": 12248.06, "probability": 0.5068 }, { "start": 12250.36, "end": 12252.84, "probability": 0.1318 }, { "start": 12253.88, "end": 12255.72, "probability": 0.3475 }, { "start": 12257.24, "end": 12258.8, "probability": 0.3394 }, { "start": 12262.66, "end": 12263.66, "probability": 0.0702 }, { "start": 12263.66, "end": 12263.66, "probability": 0.0764 }, { "start": 12263.66, "end": 12263.66, "probability": 0.2204 }, { "start": 12263.66, "end": 12263.66, "probability": 0.1611 }, { "start": 12263.66, "end": 12263.66, "probability": 0.0713 }, { "start": 12263.66, "end": 12264.46, "probability": 0.0864 }, { "start": 12264.54, "end": 12270.02, "probability": 0.9692 }, { "start": 12270.52, "end": 12270.94, "probability": 0.2306 }, { "start": 12271.0, "end": 12276.42, "probability": 0.8054 }, { "start": 12276.66, "end": 12278.22, "probability": 0.9252 }, { "start": 12278.76, "end": 12282.2, "probability": 0.2111 }, { "start": 12283.54, "end": 12283.54, "probability": 0.0723 }, { "start": 12283.54, "end": 12283.54, "probability": 0.1435 }, { "start": 12283.54, "end": 12287.32, "probability": 0.8439 }, { "start": 12287.36, "end": 12289.42, "probability": 0.8359 }, { "start": 12289.64, "end": 12291.4, "probability": 0.5909 }, { "start": 12292.44, "end": 12294.32, "probability": 0.4495 }, { "start": 12294.86, "end": 12297.54, "probability": 0.1996 }, { "start": 12297.54, "end": 12297.54, "probability": 0.0208 }, { "start": 12297.54, "end": 12298.08, "probability": 0.0693 }, { "start": 12299.26, "end": 12303.02, "probability": 0.9084 }, { "start": 12303.42, "end": 12309.34, "probability": 0.8391 }, { "start": 12309.78, "end": 12313.84, "probability": 0.9946 }, { "start": 12314.84, "end": 12317.2, "probability": 0.5975 }, { "start": 12317.4, "end": 12318.78, "probability": 0.7026 }, { "start": 12319.3, "end": 12320.7, "probability": 0.3406 }, { "start": 12321.14, "end": 12322.16, "probability": 0.8096 }, { "start": 12322.58, "end": 12326.48, "probability": 0.9805 }, { "start": 12326.88, "end": 12329.02, "probability": 0.9938 }, { "start": 12329.34, "end": 12329.84, "probability": 0.6876 }, { "start": 12329.9, "end": 12331.46, "probability": 0.6749 }, { "start": 12332.08, "end": 12333.58, "probability": 0.8514 }, { "start": 12334.22, "end": 12337.26, "probability": 0.8241 }, { "start": 12337.8, "end": 12341.12, "probability": 0.7117 }, { "start": 12341.42, "end": 12345.28, "probability": 0.8047 }, { "start": 12345.56, "end": 12346.74, "probability": 0.769 }, { "start": 12346.88, "end": 12347.98, "probability": 0.7492 }, { "start": 12349.06, "end": 12351.76, "probability": 0.9736 }, { "start": 12352.5, "end": 12356.48, "probability": 0.9877 }, { "start": 12356.9, "end": 12358.34, "probability": 0.9678 }, { "start": 12359.12, "end": 12363.14, "probability": 0.9778 }, { "start": 12363.18, "end": 12366.38, "probability": 0.8743 }, { "start": 12366.38, "end": 12368.68, "probability": 0.9937 }, { "start": 12369.56, "end": 12373.32, "probability": 0.9967 }, { "start": 12373.7, "end": 12375.14, "probability": 0.5731 }, { "start": 12376.82, "end": 12376.84, "probability": 0.2436 }, { "start": 12376.84, "end": 12378.0, "probability": 0.3183 }, { "start": 12378.66, "end": 12378.84, "probability": 0.5956 }, { "start": 12379.26, "end": 12384.12, "probability": 0.9888 }, { "start": 12384.16, "end": 12387.4, "probability": 0.9472 }, { "start": 12387.44, "end": 12387.46, "probability": 0.6255 }, { "start": 12387.58, "end": 12388.76, "probability": 0.4054 }, { "start": 12388.76, "end": 12389.6, "probability": 0.3522 }, { "start": 12389.62, "end": 12395.36, "probability": 0.854 }, { "start": 12395.82, "end": 12400.96, "probability": 0.9859 }, { "start": 12401.34, "end": 12404.04, "probability": 0.9501 }, { "start": 12404.26, "end": 12404.34, "probability": 0.5091 }, { "start": 12404.46, "end": 12407.36, "probability": 0.8464 }, { "start": 12407.38, "end": 12407.96, "probability": 0.921 }, { "start": 12407.96, "end": 12408.06, "probability": 0.6892 }, { "start": 12408.8, "end": 12410.84, "probability": 0.9565 }, { "start": 12411.88, "end": 12411.88, "probability": 0.1522 }, { "start": 12411.88, "end": 12414.7, "probability": 0.8379 }, { "start": 12415.42, "end": 12415.78, "probability": 0.7042 }, { "start": 12416.08, "end": 12416.74, "probability": 0.6385 }, { "start": 12419.2, "end": 12422.52, "probability": 0.8721 }, { "start": 12422.52, "end": 12424.68, "probability": 0.6603 }, { "start": 12424.84, "end": 12426.92, "probability": 0.6947 }, { "start": 12428.16, "end": 12431.28, "probability": 0.5066 }, { "start": 12431.72, "end": 12433.57, "probability": 0.6363 }, { "start": 12433.68, "end": 12436.46, "probability": 0.8169 }, { "start": 12437.66, "end": 12448.62, "probability": 0.8986 }, { "start": 12451.38, "end": 12451.56, "probability": 0.4144 }, { "start": 12453.1, "end": 12454.86, "probability": 0.6166 }, { "start": 12456.1, "end": 12457.64, "probability": 0.9982 }, { "start": 12459.34, "end": 12463.9, "probability": 0.9451 }, { "start": 12464.64, "end": 12467.66, "probability": 0.8826 }, { "start": 12468.94, "end": 12472.34, "probability": 0.9242 }, { "start": 12472.9, "end": 12473.1, "probability": 0.1044 }, { "start": 12473.1, "end": 12476.68, "probability": 0.7374 }, { "start": 12477.98, "end": 12480.56, "probability": 0.9463 }, { "start": 12482.02, "end": 12483.14, "probability": 0.8753 }, { "start": 12483.84, "end": 12487.0, "probability": 0.9958 }, { "start": 12487.8, "end": 12490.06, "probability": 0.9966 }, { "start": 12490.72, "end": 12493.0, "probability": 0.9968 }, { "start": 12493.66, "end": 12497.42, "probability": 0.9944 }, { "start": 12497.92, "end": 12498.6, "probability": 0.1534 }, { "start": 12498.9, "end": 12503.84, "probability": 0.9702 }, { "start": 12504.58, "end": 12506.96, "probability": 0.9278 }, { "start": 12507.6, "end": 12515.68, "probability": 0.7452 }, { "start": 12516.88, "end": 12517.86, "probability": 0.1275 }, { "start": 12518.34, "end": 12521.6, "probability": 0.9727 }, { "start": 12522.52, "end": 12523.24, "probability": 0.1479 }, { "start": 12523.24, "end": 12523.56, "probability": 0.3056 }, { "start": 12523.62, "end": 12525.92, "probability": 0.635 }, { "start": 12526.0, "end": 12527.22, "probability": 0.8171 }, { "start": 12527.88, "end": 12527.88, "probability": 0.1059 }, { "start": 12527.92, "end": 12530.28, "probability": 0.5733 }, { "start": 12530.5, "end": 12530.98, "probability": 0.6222 }, { "start": 12531.9, "end": 12532.48, "probability": 0.5032 }, { "start": 12532.48, "end": 12535.14, "probability": 0.7331 }, { "start": 12535.7, "end": 12535.84, "probability": 0.1246 }, { "start": 12535.84, "end": 12542.64, "probability": 0.9304 }, { "start": 12542.7, "end": 12544.4, "probability": 0.987 }, { "start": 12544.72, "end": 12546.46, "probability": 0.3558 }, { "start": 12546.89, "end": 12547.01, "probability": 0.4983 }, { "start": 12548.52, "end": 12548.52, "probability": 0.1486 }, { "start": 12548.52, "end": 12549.9, "probability": 0.402 }, { "start": 12550.76, "end": 12556.16, "probability": 0.9334 }, { "start": 12556.62, "end": 12556.7, "probability": 0.1679 }, { "start": 12556.7, "end": 12556.7, "probability": 0.2473 }, { "start": 12556.7, "end": 12562.1, "probability": 0.9301 }, { "start": 12562.32, "end": 12564.35, "probability": 0.1712 }, { "start": 12566.68, "end": 12567.7, "probability": 0.0874 }, { "start": 12568.08, "end": 12568.42, "probability": 0.0805 }, { "start": 12568.42, "end": 12570.1, "probability": 0.1722 }, { "start": 12572.14, "end": 12573.4, "probability": 0.1945 }, { "start": 12573.42, "end": 12575.6, "probability": 0.0971 }, { "start": 12576.74, "end": 12577.36, "probability": 0.7251 }, { "start": 12577.36, "end": 12581.62, "probability": 0.2697 }, { "start": 12581.68, "end": 12583.58, "probability": 0.3462 }, { "start": 12584.96, "end": 12586.08, "probability": 0.2418 }, { "start": 12586.24, "end": 12589.67, "probability": 0.0607 }, { "start": 12590.22, "end": 12590.22, "probability": 0.0281 }, { "start": 12590.22, "end": 12590.22, "probability": 0.064 }, { "start": 12590.4, "end": 12590.4, "probability": 0.0656 }, { "start": 12590.4, "end": 12592.34, "probability": 0.0592 }, { "start": 12592.72, "end": 12594.86, "probability": 0.2075 }, { "start": 12595.62, "end": 12597.64, "probability": 0.0855 }, { "start": 12599.22, "end": 12600.02, "probability": 0.008 }, { "start": 12600.08, "end": 12601.82, "probability": 0.0912 }, { "start": 12601.82, "end": 12603.62, "probability": 0.2342 }, { "start": 12603.62, "end": 12605.75, "probability": 0.1532 }, { "start": 12606.88, "end": 12606.98, "probability": 0.4037 }, { "start": 12607.0, "end": 12607.0, "probability": 0.0 }, { "start": 12607.0, "end": 12607.0, "probability": 0.0 }, { "start": 12607.0, "end": 12607.0, "probability": 0.0 }, { "start": 12607.0, "end": 12607.0, "probability": 0.0 }, { "start": 12607.0, "end": 12607.0, "probability": 0.0 }, { "start": 12607.0, "end": 12607.0, "probability": 0.0 }, { "start": 12607.0, "end": 12607.0, "probability": 0.0 }, { "start": 12607.0, "end": 12607.0, "probability": 0.0 }, { "start": 12607.0, "end": 12607.0, "probability": 0.0 }, { "start": 12607.0, "end": 12607.0, "probability": 0.0 }, { "start": 12607.0, "end": 12607.0, "probability": 0.0 }, { "start": 12607.0, "end": 12607.0, "probability": 0.0 }, { "start": 12608.25, "end": 12608.3, "probability": 0.1125 }, { "start": 12608.3, "end": 12612.4, "probability": 0.7192 }, { "start": 12613.42, "end": 12614.46, "probability": 0.7421 }, { "start": 12615.46, "end": 12617.54, "probability": 0.9064 }, { "start": 12618.24, "end": 12619.36, "probability": 0.7386 }, { "start": 12620.42, "end": 12623.66, "probability": 0.8576 }, { "start": 12624.18, "end": 12626.96, "probability": 0.9604 }, { "start": 12627.78, "end": 12629.8, "probability": 0.8047 }, { "start": 12630.64, "end": 12632.82, "probability": 0.9777 }, { "start": 12633.5, "end": 12634.42, "probability": 0.0229 }, { "start": 12634.42, "end": 12639.08, "probability": 0.9302 }, { "start": 12639.08, "end": 12642.6, "probability": 0.9945 }, { "start": 12643.16, "end": 12648.94, "probability": 0.9972 }, { "start": 12649.94, "end": 12650.76, "probability": 0.7471 }, { "start": 12651.42, "end": 12652.76, "probability": 0.8543 }, { "start": 12653.62, "end": 12655.58, "probability": 0.6818 }, { "start": 12656.22, "end": 12658.38, "probability": 0.0355 }, { "start": 12658.38, "end": 12660.88, "probability": 0.0714 }, { "start": 12660.88, "end": 12661.44, "probability": 0.1818 }, { "start": 12664.08, "end": 12666.15, "probability": 0.1454 }, { "start": 12667.68, "end": 12670.92, "probability": 0.0772 }, { "start": 12671.32, "end": 12674.68, "probability": 0.5494 }, { "start": 12675.34, "end": 12677.44, "probability": 0.0888 }, { "start": 12678.33, "end": 12679.75, "probability": 0.1213 }, { "start": 12682.66, "end": 12684.04, "probability": 0.2089 }, { "start": 12684.04, "end": 12686.5, "probability": 0.1635 }, { "start": 12687.48, "end": 12688.82, "probability": 0.0497 }, { "start": 12688.84, "end": 12691.44, "probability": 0.0737 }, { "start": 12692.54, "end": 12693.88, "probability": 0.0429 }, { "start": 12696.28, "end": 12697.67, "probability": 0.2753 }, { "start": 12698.96, "end": 12702.6, "probability": 0.1687 }, { "start": 12705.28, "end": 12705.6, "probability": 0.0626 }, { "start": 12705.6, "end": 12706.32, "probability": 0.0111 }, { "start": 12706.32, "end": 12706.7, "probability": 0.2485 }, { "start": 12707.2, "end": 12709.38, "probability": 0.0574 }, { "start": 12713.95, "end": 12714.83, "probability": 0.0405 }, { "start": 12728.0, "end": 12728.0, "probability": 0.0 }, { "start": 12728.0, "end": 12728.0, "probability": 0.0 }, { "start": 12728.0, "end": 12728.0, "probability": 0.0 }, { "start": 12728.0, "end": 12728.0, "probability": 0.0 }, { "start": 12728.0, "end": 12728.0, "probability": 0.0 }, { "start": 12728.0, "end": 12728.0, "probability": 0.0 }, { "start": 12728.0, "end": 12728.0, "probability": 0.0 }, { "start": 12728.0, "end": 12728.0, "probability": 0.0 }, { "start": 12728.0, "end": 12728.0, "probability": 0.0 }, { "start": 12728.0, "end": 12728.0, "probability": 0.0 }, { "start": 12728.0, "end": 12728.0, "probability": 0.0 }, { "start": 12728.0, "end": 12728.0, "probability": 0.0 }, { "start": 12728.0, "end": 12728.0, "probability": 0.0 }, { "start": 12728.0, "end": 12728.0, "probability": 0.0 }, { "start": 12728.0, "end": 12728.0, "probability": 0.0 }, { "start": 12728.0, "end": 12728.0, "probability": 0.0 }, { "start": 12728.0, "end": 12728.0, "probability": 0.0 }, { "start": 12728.4, "end": 12730.4, "probability": 0.3662 }, { "start": 12730.5, "end": 12732.83, "probability": 0.7225 }, { "start": 12733.52, "end": 12733.68, "probability": 0.0816 }, { "start": 12733.68, "end": 12735.34, "probability": 0.9422 }, { "start": 12735.71, "end": 12735.78, "probability": 0.1673 }, { "start": 12735.82, "end": 12736.38, "probability": 0.4148 }, { "start": 12736.52, "end": 12738.62, "probability": 0.873 }, { "start": 12741.14, "end": 12744.32, "probability": 0.8939 }, { "start": 12745.34, "end": 12746.04, "probability": 0.2531 }, { "start": 12748.96, "end": 12751.46, "probability": 0.8458 }, { "start": 12752.38, "end": 12754.28, "probability": 0.5013 }, { "start": 12758.38, "end": 12758.83, "probability": 0.5479 }, { "start": 12759.52, "end": 12759.82, "probability": 0.5617 }, { "start": 12760.36, "end": 12761.02, "probability": 0.9454 }, { "start": 12763.12, "end": 12764.7, "probability": 0.8176 }, { "start": 12765.08, "end": 12766.62, "probability": 0.3526 }, { "start": 12767.86, "end": 12768.92, "probability": 0.0188 }, { "start": 12770.8, "end": 12772.54, "probability": 0.023 }, { "start": 12774.52, "end": 12774.82, "probability": 0.1215 }, { "start": 12774.82, "end": 12775.22, "probability": 0.1129 }, { "start": 12775.8, "end": 12776.38, "probability": 0.0185 }, { "start": 12776.86, "end": 12777.24, "probability": 0.0888 }, { "start": 12777.24, "end": 12782.48, "probability": 0.0612 }, { "start": 12784.24, "end": 12784.84, "probability": 0.244 }, { "start": 12787.4, "end": 12788.1, "probability": 0.6944 }, { "start": 12788.84, "end": 12789.54, "probability": 0.1429 }, { "start": 12792.32, "end": 12792.32, "probability": 0.0094 }, { "start": 12792.58, "end": 12795.48, "probability": 0.0039 }, { "start": 12795.48, "end": 12796.52, "probability": 0.0844 }, { "start": 12796.52, "end": 12799.38, "probability": 0.2041 }, { "start": 12799.52, "end": 12799.52, "probability": 0.0428 }, { "start": 12799.52, "end": 12799.52, "probability": 0.2849 }, { "start": 12800.98, "end": 12801.48, "probability": 0.0919 }, { "start": 12804.06, "end": 12805.1, "probability": 0.0229 }, { "start": 12855.0, "end": 12855.0, "probability": 0.0 }, { "start": 12855.0, "end": 12855.0, "probability": 0.0 }, { "start": 12855.0, "end": 12855.0, "probability": 0.0 }, { "start": 12855.0, "end": 12855.0, "probability": 0.0 }, { "start": 12855.0, "end": 12855.0, "probability": 0.0 }, { "start": 12855.0, "end": 12855.0, "probability": 0.0 }, { "start": 12855.0, "end": 12855.0, "probability": 0.0 }, { "start": 12855.0, "end": 12855.0, "probability": 0.0 }, { "start": 12855.0, "end": 12855.0, "probability": 0.0 }, { "start": 12855.0, "end": 12855.0, "probability": 0.0 }, { "start": 12855.0, "end": 12855.0, "probability": 0.0 }, { "start": 12855.0, "end": 12855.0, "probability": 0.0 }, { "start": 12855.0, "end": 12855.0, "probability": 0.0 }, { "start": 12855.0, "end": 12855.0, "probability": 0.0 }, { "start": 12855.0, "end": 12855.0, "probability": 0.0 }, { "start": 12855.0, "end": 12855.0, "probability": 0.0 }, { "start": 12855.0, "end": 12855.0, "probability": 0.0 }, { "start": 12855.0, "end": 12855.0, "probability": 0.0 }, { "start": 12855.0, "end": 12855.0, "probability": 0.0 }, { "start": 12855.0, "end": 12855.0, "probability": 0.0 }, { "start": 12855.0, "end": 12855.0, "probability": 0.0 }, { "start": 12855.0, "end": 12855.0, "probability": 0.0 }, { "start": 12855.0, "end": 12855.0, "probability": 0.0 }, { "start": 12855.0, "end": 12855.0, "probability": 0.0 }, { "start": 12855.0, "end": 12855.0, "probability": 0.0 }, { "start": 12855.0, "end": 12855.0, "probability": 0.0 }, { "start": 12855.0, "end": 12855.0, "probability": 0.0 }, { "start": 12855.0, "end": 12855.0, "probability": 0.0 }, { "start": 12855.0, "end": 12855.0, "probability": 0.0 }, { "start": 12855.0, "end": 12855.0, "probability": 0.0 }, { "start": 12855.0, "end": 12855.0, "probability": 0.0 }, { "start": 12855.0, "end": 12855.0, "probability": 0.0 }, { "start": 12855.08, "end": 12860.34, "probability": 0.9262 }, { "start": 12861.58, "end": 12862.64, "probability": 0.9337 }, { "start": 12862.76, "end": 12865.58, "probability": 0.7981 }, { "start": 12865.9, "end": 12867.22, "probability": 0.6016 }, { "start": 12867.78, "end": 12869.2, "probability": 0.9824 }, { "start": 12869.64, "end": 12871.96, "probability": 0.9049 }, { "start": 12872.4, "end": 12873.6, "probability": 0.8207 }, { "start": 12873.62, "end": 12874.18, "probability": 0.5154 }, { "start": 12874.74, "end": 12876.62, "probability": 0.8508 }, { "start": 12877.26, "end": 12878.48, "probability": 0.9622 }, { "start": 12878.72, "end": 12881.76, "probability": 0.9878 }, { "start": 12882.2, "end": 12883.28, "probability": 0.9976 }, { "start": 12884.14, "end": 12884.48, "probability": 0.8238 }, { "start": 12884.76, "end": 12886.82, "probability": 0.7681 }, { "start": 12887.78, "end": 12887.8, "probability": 0.5752 }, { "start": 12888.32, "end": 12889.4, "probability": 0.9505 }, { "start": 12889.68, "end": 12892.42, "probability": 0.7746 }, { "start": 12892.76, "end": 12893.54, "probability": 0.9075 }, { "start": 12894.14, "end": 12894.14, "probability": 0.7432 }, { "start": 12895.34, "end": 12897.62, "probability": 0.5946 }, { "start": 12898.18, "end": 12899.36, "probability": 0.988 }, { "start": 12899.56, "end": 12901.28, "probability": 0.9906 }, { "start": 12901.76, "end": 12903.94, "probability": 0.9508 }, { "start": 12904.42, "end": 12904.92, "probability": 0.4535 }, { "start": 12905.16, "end": 12905.4, "probability": 0.7482 }, { "start": 12905.8, "end": 12906.88, "probability": 0.8618 }, { "start": 12907.16, "end": 12908.48, "probability": 0.8651 }, { "start": 12909.2, "end": 12912.04, "probability": 0.9901 }, { "start": 12912.6, "end": 12913.1, "probability": 0.8009 }, { "start": 12913.48, "end": 12914.28, "probability": 0.6376 }, { "start": 12914.54, "end": 12915.44, "probability": 0.9072 }, { "start": 12915.86, "end": 12916.82, "probability": 0.937 }, { "start": 12917.14, "end": 12918.71, "probability": 0.9924 }, { "start": 12919.46, "end": 12920.42, "probability": 0.9819 }, { "start": 12920.96, "end": 12922.28, "probability": 0.8359 }, { "start": 12923.18, "end": 12926.62, "probability": 0.9006 }, { "start": 12926.94, "end": 12933.46, "probability": 0.9891 }, { "start": 12934.9, "end": 12936.2, "probability": 0.023 }, { "start": 12936.38, "end": 12938.52, "probability": 0.4225 }, { "start": 12938.9, "end": 12940.62, "probability": 0.8762 }, { "start": 12941.1, "end": 12941.1, "probability": 0.0487 }, { "start": 12941.1, "end": 12946.62, "probability": 0.6413 }, { "start": 12946.86, "end": 12947.86, "probability": 0.8825 }, { "start": 12947.94, "end": 12950.68, "probability": 0.9961 }, { "start": 12950.94, "end": 12951.44, "probability": 0.4261 }, { "start": 12951.96, "end": 12953.66, "probability": 0.8067 }, { "start": 12954.52, "end": 12955.36, "probability": 0.9655 }, { "start": 12956.02, "end": 12958.64, "probability": 0.9585 }, { "start": 12958.96, "end": 12963.02, "probability": 0.9506 }, { "start": 12963.64, "end": 12965.36, "probability": 0.8867 }, { "start": 12965.5, "end": 12968.24, "probability": 0.9937 }, { "start": 12968.64, "end": 12971.5, "probability": 0.991 }, { "start": 12973.14, "end": 12977.0, "probability": 0.9604 }, { "start": 12977.82, "end": 12979.8, "probability": 0.9407 }, { "start": 12980.34, "end": 12981.36, "probability": 0.8787 }, { "start": 12981.46, "end": 12982.62, "probability": 0.9307 }, { "start": 12982.78, "end": 12985.92, "probability": 0.9954 }, { "start": 12986.56, "end": 12990.78, "probability": 0.9028 }, { "start": 12990.86, "end": 12993.02, "probability": 0.998 }, { "start": 12993.42, "end": 12995.7, "probability": 0.9451 }, { "start": 12996.22, "end": 12996.98, "probability": 0.9605 }, { "start": 12997.62, "end": 12999.94, "probability": 0.9926 }, { "start": 13001.0, "end": 13006.34, "probability": 0.9899 }, { "start": 13007.2, "end": 13011.64, "probability": 0.9865 }, { "start": 13012.06, "end": 13017.22, "probability": 0.8787 }, { "start": 13017.74, "end": 13019.4, "probability": 0.8107 }, { "start": 13019.4, "end": 13020.96, "probability": 0.7923 }, { "start": 13021.2, "end": 13023.18, "probability": 0.9662 }, { "start": 13024.42, "end": 13025.69, "probability": 0.16 }, { "start": 13026.0, "end": 13028.13, "probability": 0.4739 }, { "start": 13028.28, "end": 13029.88, "probability": 0.6802 }, { "start": 13030.24, "end": 13030.62, "probability": 0.1971 }, { "start": 13030.62, "end": 13030.62, "probability": 0.2257 }, { "start": 13030.62, "end": 13035.0, "probability": 0.4776 }, { "start": 13035.5, "end": 13036.76, "probability": 0.8964 }, { "start": 13037.08, "end": 13041.12, "probability": 0.9933 }, { "start": 13041.6, "end": 13041.6, "probability": 0.1361 }, { "start": 13041.6, "end": 13041.6, "probability": 0.0417 }, { "start": 13041.6, "end": 13043.98, "probability": 0.8259 }, { "start": 13044.8, "end": 13048.86, "probability": 0.9941 }, { "start": 13049.32, "end": 13050.28, "probability": 0.7352 }, { "start": 13050.46, "end": 13051.2, "probability": 0.7312 }, { "start": 13051.46, "end": 13052.76, "probability": 0.9722 }, { "start": 13053.1, "end": 13054.5, "probability": 0.8628 }, { "start": 13054.9, "end": 13059.64, "probability": 0.9609 }, { "start": 13059.64, "end": 13061.92, "probability": 0.9526 }, { "start": 13062.6, "end": 13063.44, "probability": 0.5729 }, { "start": 13063.7, "end": 13065.86, "probability": 0.007 }, { "start": 13066.96, "end": 13066.96, "probability": 0.0014 }, { "start": 13066.96, "end": 13066.96, "probability": 0.1384 }, { "start": 13066.96, "end": 13070.5, "probability": 0.8929 }, { "start": 13071.0, "end": 13072.96, "probability": 0.4646 }, { "start": 13073.0, "end": 13075.5, "probability": 0.9231 }, { "start": 13075.94, "end": 13077.06, "probability": 0.9868 }, { "start": 13077.36, "end": 13079.8, "probability": 0.7184 }, { "start": 13079.84, "end": 13082.56, "probability": 0.973 }, { "start": 13082.9, "end": 13084.04, "probability": 0.9358 }, { "start": 13084.64, "end": 13085.48, "probability": 0.7271 }, { "start": 13085.68, "end": 13086.49, "probability": 0.9492 }, { "start": 13087.34, "end": 13088.9, "probability": 0.8623 }, { "start": 13089.08, "end": 13090.36, "probability": 0.0516 }, { "start": 13090.48, "end": 13091.58, "probability": 0.8113 }, { "start": 13091.66, "end": 13092.18, "probability": 0.8779 }, { "start": 13092.62, "end": 13094.6, "probability": 0.9894 }, { "start": 13095.2, "end": 13096.82, "probability": 0.9982 }, { "start": 13096.82, "end": 13097.4, "probability": 0.0094 }, { "start": 13099.83, "end": 13103.33, "probability": 0.0825 }, { "start": 13111.5, "end": 13113.58, "probability": 0.3756 }, { "start": 13114.34, "end": 13118.08, "probability": 0.6498 }, { "start": 13119.09, "end": 13119.58, "probability": 0.0353 }, { "start": 13120.52, "end": 13120.52, "probability": 0.2112 }, { "start": 13123.0, "end": 13124.86, "probability": 0.1013 }, { "start": 13124.86, "end": 13124.98, "probability": 0.069 }, { "start": 13126.08, "end": 13127.42, "probability": 0.1333 }, { "start": 13127.46, "end": 13127.92, "probability": 0.1301 }, { "start": 13129.34, "end": 13130.84, "probability": 0.191 }, { "start": 13130.84, "end": 13130.84, "probability": 0.166 }, { "start": 13130.84, "end": 13134.32, "probability": 0.0774 }, { "start": 13136.0, "end": 13139.2, "probability": 0.0376 }, { "start": 13139.2, "end": 13139.28, "probability": 0.0995 }, { "start": 13139.4, "end": 13141.18, "probability": 0.1325 }, { "start": 13141.18, "end": 13141.18, "probability": 0.1302 }, { "start": 13142.24, "end": 13142.98, "probability": 0.0734 }, { "start": 13143.0, "end": 13143.78, "probability": 0.0549 }, { "start": 13146.68, "end": 13147.04, "probability": 0.2377 }, { "start": 13154.86, "end": 13155.54, "probability": 0.3132 }, { "start": 13155.75, "end": 13156.04, "probability": 0.1399 }, { "start": 13156.04, "end": 13157.7, "probability": 0.172 }, { "start": 13157.9, "end": 13158.04, "probability": 0.0175 }, { "start": 13158.04, "end": 13158.46, "probability": 0.1503 }, { "start": 13158.46, "end": 13160.8, "probability": 0.0264 }, { "start": 13160.86, "end": 13161.7, "probability": 0.1437 }, { "start": 13162.14, "end": 13162.56, "probability": 0.2482 }, { "start": 13163.18, "end": 13166.92, "probability": 0.274 }, { "start": 13166.92, "end": 13167.0, "probability": 0.0109 }, { "start": 13174.0, "end": 13174.0, "probability": 0.0 }, { "start": 13174.0, "end": 13174.0, "probability": 0.0 }, { "start": 13174.0, "end": 13174.0, "probability": 0.0 }, { "start": 13174.0, "end": 13174.0, "probability": 0.0 }, { "start": 13174.0, "end": 13174.0, "probability": 0.0 }, { "start": 13174.0, "end": 13174.0, "probability": 0.0 }, { "start": 13174.0, "end": 13174.0, "probability": 0.0 }, { "start": 13174.0, "end": 13174.0, "probability": 0.0 }, { "start": 13174.0, "end": 13174.0, "probability": 0.0 }, { "start": 13174.0, "end": 13174.0, "probability": 0.0 }, { "start": 13174.0, "end": 13174.0, "probability": 0.0 }, { "start": 13174.0, "end": 13174.0, "probability": 0.0 }, { "start": 13174.0, "end": 13174.0, "probability": 0.0 }, { "start": 13174.0, "end": 13174.0, "probability": 0.0 }, { "start": 13174.0, "end": 13174.0, "probability": 0.0 }, { "start": 13174.0, "end": 13174.0, "probability": 0.0 }, { "start": 13174.0, "end": 13174.0, "probability": 0.0 }, { "start": 13174.0, "end": 13174.0, "probability": 0.0 }, { "start": 13174.0, "end": 13174.0, "probability": 0.0 }, { "start": 13174.0, "end": 13174.0, "probability": 0.0 }, { "start": 13174.0, "end": 13174.0, "probability": 0.0 }, { "start": 13174.0, "end": 13174.0, "probability": 0.0 }, { "start": 13174.0, "end": 13174.0, "probability": 0.0 }, { "start": 13174.0, "end": 13174.0, "probability": 0.0 }, { "start": 13174.0, "end": 13174.0, "probability": 0.0 }, { "start": 13174.0, "end": 13174.0, "probability": 0.0 }, { "start": 13174.0, "end": 13174.0, "probability": 0.0 }, { "start": 13174.0, "end": 13174.0, "probability": 0.0 }, { "start": 13174.0, "end": 13174.0, "probability": 0.0 }, { "start": 13174.0, "end": 13174.0, "probability": 0.0 }, { "start": 13174.0, "end": 13174.0, "probability": 0.0 }, { "start": 13174.0, "end": 13174.0, "probability": 0.0 }, { "start": 13174.0, "end": 13174.0, "probability": 0.0 }, { "start": 13174.0, "end": 13174.0, "probability": 0.0 }, { "start": 13174.0, "end": 13174.0, "probability": 0.0 }, { "start": 13174.0, "end": 13174.0, "probability": 0.0 }, { "start": 13174.0, "end": 13174.0, "probability": 0.0 }, { "start": 13174.0, "end": 13174.0, "probability": 0.0 }, { "start": 13174.0, "end": 13174.0, "probability": 0.0 }, { "start": 13174.12, "end": 13174.94, "probability": 0.0111 }, { "start": 13175.22, "end": 13175.22, "probability": 0.0693 }, { "start": 13175.24, "end": 13180.48, "probability": 0.7933 }, { "start": 13180.74, "end": 13181.0, "probability": 0.2131 }, { "start": 13181.96, "end": 13183.32, "probability": 0.8174 }, { "start": 13185.22, "end": 13187.72, "probability": 0.0542 }, { "start": 13187.72, "end": 13187.72, "probability": 0.071 }, { "start": 13187.72, "end": 13187.84, "probability": 0.0247 }, { "start": 13187.84, "end": 13188.82, "probability": 0.7254 }, { "start": 13189.14, "end": 13190.5, "probability": 0.98 }, { "start": 13191.32, "end": 13195.42, "probability": 0.9374 }, { "start": 13195.98, "end": 13197.98, "probability": 0.1178 }, { "start": 13198.04, "end": 13199.0, "probability": 0.6591 }, { "start": 13199.68, "end": 13200.46, "probability": 0.7491 }, { "start": 13200.46, "end": 13202.62, "probability": 0.1137 }, { "start": 13202.62, "end": 13204.16, "probability": 0.0343 }, { "start": 13204.36, "end": 13208.9, "probability": 0.9886 }, { "start": 13209.7, "end": 13211.58, "probability": 0.0151 }, { "start": 13212.12, "end": 13213.14, "probability": 0.004 }, { "start": 13213.14, "end": 13214.1, "probability": 0.0649 }, { "start": 13214.96, "end": 13218.1, "probability": 0.9795 }, { "start": 13218.86, "end": 13221.8, "probability": 0.8726 }, { "start": 13224.52, "end": 13225.2, "probability": 0.0469 }, { "start": 13225.2, "end": 13229.06, "probability": 0.7676 }, { "start": 13229.62, "end": 13229.64, "probability": 0.0932 }, { "start": 13229.64, "end": 13231.56, "probability": 0.8466 }, { "start": 13231.8, "end": 13236.42, "probability": 0.0199 }, { "start": 13237.06, "end": 13238.02, "probability": 0.0436 }, { "start": 13238.2, "end": 13238.2, "probability": 0.3244 }, { "start": 13238.28, "end": 13238.28, "probability": 0.4405 }, { "start": 13238.32, "end": 13239.34, "probability": 0.0277 }, { "start": 13239.34, "end": 13240.4, "probability": 0.0851 }, { "start": 13241.02, "end": 13241.32, "probability": 0.5076 }, { "start": 13241.78, "end": 13242.67, "probability": 0.456 }, { "start": 13243.4, "end": 13245.48, "probability": 0.9246 }, { "start": 13245.88, "end": 13247.24, "probability": 0.6754 }, { "start": 13247.44, "end": 13247.99, "probability": 0.5003 }, { "start": 13248.36, "end": 13251.22, "probability": 0.7247 }, { "start": 13251.36, "end": 13252.52, "probability": 0.8104 }, { "start": 13253.54, "end": 13254.19, "probability": 0.8701 }, { "start": 13254.62, "end": 13255.3, "probability": 0.9536 }, { "start": 13255.4, "end": 13257.32, "probability": 0.5054 }, { "start": 13257.84, "end": 13259.28, "probability": 0.5579 }, { "start": 13259.44, "end": 13260.82, "probability": 0.6919 }, { "start": 13261.3, "end": 13262.12, "probability": 0.9341 }, { "start": 13262.2, "end": 13262.76, "probability": 0.691 }, { "start": 13262.84, "end": 13263.34, "probability": 0.7236 }, { "start": 13263.36, "end": 13264.96, "probability": 0.687 }, { "start": 13264.96, "end": 13266.22, "probability": 0.6671 }, { "start": 13266.64, "end": 13270.74, "probability": 0.6465 }, { "start": 13271.7, "end": 13275.18, "probability": 0.3557 }, { "start": 13275.18, "end": 13275.74, "probability": 0.0534 }, { "start": 13276.32, "end": 13277.53, "probability": 0.0143 }, { "start": 13279.58, "end": 13279.92, "probability": 0.6056 }, { "start": 13280.62, "end": 13280.62, "probability": 0.4085 }, { "start": 13280.62, "end": 13280.62, "probability": 0.024 }, { "start": 13280.62, "end": 13281.02, "probability": 0.1631 }, { "start": 13281.3, "end": 13281.94, "probability": 0.1415 }, { "start": 13283.6, "end": 13284.11, "probability": 0.1353 }, { "start": 13284.66, "end": 13284.66, "probability": 0.0434 }, { "start": 13285.44, "end": 13285.58, "probability": 0.0029 }, { "start": 13285.58, "end": 13285.78, "probability": 0.695 }, { "start": 13285.84, "end": 13285.94, "probability": 0.3283 }, { "start": 13286.9, "end": 13289.84, "probability": 0.6156 }, { "start": 13290.1, "end": 13291.02, "probability": 0.6958 }, { "start": 13291.38, "end": 13291.54, "probability": 0.9343 }, { "start": 13293.08, "end": 13294.64, "probability": 0.8201 }, { "start": 13294.86, "end": 13295.83, "probability": 0.9856 }, { "start": 13296.46, "end": 13297.02, "probability": 0.7139 }, { "start": 13297.12, "end": 13298.06, "probability": 0.6982 }, { "start": 13299.6, "end": 13304.74, "probability": 0.9963 }, { "start": 13305.9, "end": 13307.84, "probability": 0.8197 }, { "start": 13308.04, "end": 13310.74, "probability": 0.9839 }, { "start": 13311.2, "end": 13313.78, "probability": 0.9924 }, { "start": 13315.24, "end": 13315.64, "probability": 0.6367 }, { "start": 13316.2, "end": 13318.2, "probability": 0.8639 }, { "start": 13319.18, "end": 13322.54, "probability": 0.8713 }, { "start": 13323.24, "end": 13325.46, "probability": 0.8975 }, { "start": 13326.04, "end": 13327.66, "probability": 0.9517 }, { "start": 13328.42, "end": 13328.78, "probability": 0.3049 }, { "start": 13329.48, "end": 13334.66, "probability": 0.9978 }, { "start": 13335.98, "end": 13336.98, "probability": 0.8216 }, { "start": 13337.9, "end": 13339.44, "probability": 0.9862 }, { "start": 13340.7, "end": 13341.32, "probability": 0.9897 }, { "start": 13342.54, "end": 13344.7, "probability": 0.9852 }, { "start": 13345.96, "end": 13348.68, "probability": 0.9716 }, { "start": 13349.58, "end": 13352.36, "probability": 0.988 }, { "start": 13353.66, "end": 13354.24, "probability": 0.8474 }, { "start": 13355.12, "end": 13358.12, "probability": 0.9991 }, { "start": 13359.18, "end": 13366.0, "probability": 0.9542 }, { "start": 13366.54, "end": 13367.82, "probability": 0.9968 }, { "start": 13368.02, "end": 13369.46, "probability": 0.9772 }, { "start": 13370.16, "end": 13371.48, "probability": 0.9414 }, { "start": 13372.42, "end": 13374.68, "probability": 0.9966 }, { "start": 13375.5, "end": 13375.96, "probability": 0.5609 }, { "start": 13376.76, "end": 13378.18, "probability": 0.9836 }, { "start": 13378.8, "end": 13381.64, "probability": 0.9577 }, { "start": 13382.58, "end": 13386.98, "probability": 0.9958 }, { "start": 13387.64, "end": 13389.23, "probability": 0.8161 }, { "start": 13390.78, "end": 13392.6, "probability": 0.9795 }, { "start": 13393.26, "end": 13394.26, "probability": 0.5922 }, { "start": 13394.92, "end": 13395.48, "probability": 0.9519 }, { "start": 13396.2, "end": 13398.22, "probability": 0.9519 }, { "start": 13399.06, "end": 13400.4, "probability": 0.9685 }, { "start": 13401.08, "end": 13402.26, "probability": 0.9647 }, { "start": 13403.56, "end": 13405.94, "probability": 0.9812 }, { "start": 13406.64, "end": 13408.3, "probability": 0.9971 }, { "start": 13408.42, "end": 13409.88, "probability": 0.9961 }, { "start": 13410.28, "end": 13411.66, "probability": 0.9497 }, { "start": 13412.24, "end": 13415.12, "probability": 0.94 }, { "start": 13416.2, "end": 13419.36, "probability": 0.9628 }, { "start": 13419.96, "end": 13422.42, "probability": 0.8065 }, { "start": 13423.34, "end": 13423.82, "probability": 0.9106 }, { "start": 13424.78, "end": 13425.68, "probability": 0.8243 }, { "start": 13425.94, "end": 13426.34, "probability": 0.9516 }, { "start": 13426.9, "end": 13429.5, "probability": 0.9328 }, { "start": 13429.84, "end": 13431.6, "probability": 0.9979 }, { "start": 13432.32, "end": 13435.08, "probability": 0.9853 }, { "start": 13436.42, "end": 13437.74, "probability": 0.9751 }, { "start": 13438.8, "end": 13441.36, "probability": 0.9913 }, { "start": 13441.46, "end": 13442.48, "probability": 0.8309 }, { "start": 13443.2, "end": 13445.68, "probability": 0.9418 }, { "start": 13446.84, "end": 13447.38, "probability": 0.9069 }, { "start": 13448.06, "end": 13449.08, "probability": 0.9597 }, { "start": 13450.32, "end": 13454.28, "probability": 0.9787 }, { "start": 13456.26, "end": 13459.52, "probability": 0.993 }, { "start": 13460.38, "end": 13465.4, "probability": 0.9953 }, { "start": 13466.02, "end": 13469.16, "probability": 0.9679 }, { "start": 13469.56, "end": 13471.9, "probability": 0.9741 }, { "start": 13472.5, "end": 13474.42, "probability": 0.9987 }, { "start": 13474.6, "end": 13477.52, "probability": 0.9707 }, { "start": 13477.96, "end": 13480.18, "probability": 0.9724 }, { "start": 13480.74, "end": 13481.46, "probability": 0.9747 }, { "start": 13482.28, "end": 13484.12, "probability": 0.8572 }, { "start": 13484.82, "end": 13486.28, "probability": 0.9797 }, { "start": 13486.36, "end": 13491.4, "probability": 0.9946 }, { "start": 13492.2, "end": 13495.5, "probability": 0.7826 }, { "start": 13496.84, "end": 13497.9, "probability": 0.9893 }, { "start": 13498.78, "end": 13502.76, "probability": 0.9809 }, { "start": 13503.88, "end": 13504.96, "probability": 0.9314 }, { "start": 13506.66, "end": 13508.8, "probability": 0.7222 }, { "start": 13509.34, "end": 13510.24, "probability": 0.7544 }, { "start": 13510.56, "end": 13513.92, "probability": 0.9932 }, { "start": 13514.0, "end": 13514.72, "probability": 0.8955 }, { "start": 13515.8, "end": 13517.28, "probability": 0.9336 }, { "start": 13518.1, "end": 13518.5, "probability": 0.7511 }, { "start": 13520.0, "end": 13520.82, "probability": 0.8778 }, { "start": 13521.48, "end": 13522.7, "probability": 0.9707 }, { "start": 13522.76, "end": 13523.6, "probability": 0.9553 }, { "start": 13523.76, "end": 13525.02, "probability": 0.7432 }, { "start": 13525.08, "end": 13526.54, "probability": 0.8578 }, { "start": 13527.16, "end": 13527.84, "probability": 0.936 }, { "start": 13528.48, "end": 13529.06, "probability": 0.7492 }, { "start": 13529.2, "end": 13530.76, "probability": 0.9641 }, { "start": 13530.9, "end": 13532.48, "probability": 0.8567 }, { "start": 13532.58, "end": 13533.46, "probability": 0.7463 }, { "start": 13534.02, "end": 13534.86, "probability": 0.9714 }, { "start": 13535.54, "end": 13542.4, "probability": 0.9995 }, { "start": 13542.8, "end": 13544.74, "probability": 0.9648 }, { "start": 13545.38, "end": 13550.48, "probability": 0.9917 }, { "start": 13551.02, "end": 13554.64, "probability": 0.9933 }, { "start": 13555.44, "end": 13561.48, "probability": 0.9696 }, { "start": 13561.86, "end": 13562.28, "probability": 0.6018 }, { "start": 13562.78, "end": 13568.9, "probability": 0.9736 }, { "start": 13570.4, "end": 13575.62, "probability": 0.9849 }, { "start": 13576.36, "end": 13582.9, "probability": 0.996 }, { "start": 13583.14, "end": 13583.54, "probability": 0.7288 }, { "start": 13586.1, "end": 13586.6, "probability": 0.6265 }, { "start": 13586.6, "end": 13588.2, "probability": 0.8784 }, { "start": 13593.66, "end": 13595.8, "probability": 0.1411 }, { "start": 13596.04, "end": 13597.52, "probability": 0.4484 }, { "start": 13597.9, "end": 13599.3, "probability": 0.3943 }, { "start": 13599.98, "end": 13604.38, "probability": 0.1273 }, { "start": 13605.58, "end": 13605.58, "probability": 0.0104 }, { "start": 13607.0, "end": 13608.8, "probability": 0.1663 }, { "start": 13609.0, "end": 13609.54, "probability": 0.4587 }, { "start": 13609.86, "end": 13611.16, "probability": 0.2972 }, { "start": 13612.46, "end": 13613.22, "probability": 0.1546 }, { "start": 13613.22, "end": 13613.94, "probability": 0.5921 }, { "start": 13614.77, "end": 13615.76, "probability": 0.0691 }, { "start": 13615.86, "end": 13616.84, "probability": 0.8109 }, { "start": 13617.48, "end": 13618.4, "probability": 0.6808 }, { "start": 13618.5, "end": 13619.26, "probability": 0.8371 }, { "start": 13619.44, "end": 13620.16, "probability": 0.9776 }, { "start": 13620.36, "end": 13621.46, "probability": 0.701 }, { "start": 13621.56, "end": 13621.84, "probability": 0.4988 }, { "start": 13621.96, "end": 13622.76, "probability": 0.9666 }, { "start": 13622.92, "end": 13626.98, "probability": 0.9345 }, { "start": 13627.58, "end": 13630.08, "probability": 0.9828 }, { "start": 13631.22, "end": 13639.48, "probability": 0.6926 }, { "start": 13639.68, "end": 13641.44, "probability": 0.3923 }, { "start": 13642.16, "end": 13644.16, "probability": 0.8239 }, { "start": 13645.04, "end": 13647.12, "probability": 0.9827 }, { "start": 13647.38, "end": 13647.9, "probability": 0.0268 }, { "start": 13648.2, "end": 13649.04, "probability": 0.2414 }, { "start": 13649.04, "end": 13650.14, "probability": 0.8281 }, { "start": 13650.18, "end": 13652.06, "probability": 0.7644 }, { "start": 13653.36, "end": 13654.78, "probability": 0.066 }, { "start": 13655.28, "end": 13656.28, "probability": 0.1801 }, { "start": 13656.58, "end": 13658.68, "probability": 0.5509 }, { "start": 13659.46, "end": 13663.84, "probability": 0.9238 }, { "start": 13664.98, "end": 13668.36, "probability": 0.8164 }, { "start": 13669.68, "end": 13672.9, "probability": 0.93 }, { "start": 13674.18, "end": 13678.44, "probability": 0.031 }, { "start": 13678.44, "end": 13678.44, "probability": 0.028 }, { "start": 13678.44, "end": 13678.64, "probability": 0.4941 }, { "start": 13678.92, "end": 13683.24, "probability": 0.91 }, { "start": 13684.52, "end": 13688.12, "probability": 0.797 }, { "start": 13688.56, "end": 13691.12, "probability": 0.9886 }, { "start": 13692.1, "end": 13694.04, "probability": 0.0185 }, { "start": 13694.04, "end": 13695.66, "probability": 0.8091 }, { "start": 13696.42, "end": 13700.12, "probability": 0.9926 }, { "start": 13700.12, "end": 13703.86, "probability": 0.9995 }, { "start": 13704.52, "end": 13710.8, "probability": 0.9878 }, { "start": 13711.28, "end": 13712.02, "probability": 0.5632 }, { "start": 13712.18, "end": 13712.34, "probability": 0.0772 }, { "start": 13712.92, "end": 13713.24, "probability": 0.5285 }, { "start": 13714.92, "end": 13718.58, "probability": 0.936 }, { "start": 13718.58, "end": 13724.4, "probability": 0.9744 }, { "start": 13725.1, "end": 13725.72, "probability": 0.542 }, { "start": 13725.78, "end": 13729.16, "probability": 0.5952 }, { "start": 13729.28, "end": 13729.92, "probability": 0.6646 }, { "start": 13729.96, "end": 13732.16, "probability": 0.9948 }, { "start": 13733.02, "end": 13735.08, "probability": 0.1128 }, { "start": 13735.64, "end": 13738.46, "probability": 0.3067 }, { "start": 13738.46, "end": 13738.46, "probability": 0.2754 }, { "start": 13738.5, "end": 13738.5, "probability": 0.1994 }, { "start": 13738.56, "end": 13742.08, "probability": 0.8499 }, { "start": 13742.24, "end": 13742.94, "probability": 0.4774 }, { "start": 13745.92, "end": 13747.96, "probability": 0.0424 }, { "start": 13748.0, "end": 13748.04, "probability": 0.1671 }, { "start": 13748.04, "end": 13750.44, "probability": 0.9132 }, { "start": 13751.32, "end": 13752.56, "probability": 0.957 }, { "start": 13752.66, "end": 13753.22, "probability": 0.8391 }, { "start": 13753.58, "end": 13753.94, "probability": 0.7961 }, { "start": 13754.38, "end": 13756.2, "probability": 0.996 }, { "start": 13756.8, "end": 13757.38, "probability": 0.999 }, { "start": 13757.9, "end": 13758.76, "probability": 0.7989 }, { "start": 13759.44, "end": 13761.36, "probability": 0.9993 }, { "start": 13761.78, "end": 13764.28, "probability": 0.9993 }, { "start": 13765.04, "end": 13765.88, "probability": 0.959 }, { "start": 13766.24, "end": 13766.76, "probability": 0.7147 }, { "start": 13766.88, "end": 13769.54, "probability": 0.9758 }, { "start": 13769.68, "end": 13770.79, "probability": 0.9906 }, { "start": 13771.66, "end": 13772.08, "probability": 0.0902 }, { "start": 13772.08, "end": 13773.85, "probability": 0.8219 }, { "start": 13774.8, "end": 13775.72, "probability": 0.9966 }, { "start": 13776.28, "end": 13779.86, "probability": 0.9629 }, { "start": 13780.42, "end": 13781.0, "probability": 0.6417 }, { "start": 13781.76, "end": 13783.26, "probability": 0.95 }, { "start": 13784.96, "end": 13788.04, "probability": 0.9015 }, { "start": 13789.38, "end": 13789.38, "probability": 0.0041 }, { "start": 13789.38, "end": 13790.15, "probability": 0.1431 }, { "start": 13790.46, "end": 13791.04, "probability": 0.5559 }, { "start": 13791.74, "end": 13792.46, "probability": 0.8913 }, { "start": 13793.36, "end": 13794.66, "probability": 0.9167 }, { "start": 13795.42, "end": 13797.26, "probability": 0.8936 }, { "start": 13797.64, "end": 13798.44, "probability": 0.9213 }, { "start": 13798.56, "end": 13799.32, "probability": 0.8091 }, { "start": 13799.36, "end": 13800.19, "probability": 0.882 }, { "start": 13800.8, "end": 13801.86, "probability": 0.9694 }, { "start": 13801.94, "end": 13802.78, "probability": 0.5181 }, { "start": 13803.2, "end": 13804.02, "probability": 0.9976 }, { "start": 13804.78, "end": 13807.12, "probability": 0.9578 }, { "start": 13807.68, "end": 13808.68, "probability": 0.8843 }, { "start": 13808.74, "end": 13808.74, "probability": 0.1045 }, { "start": 13808.74, "end": 13808.74, "probability": 0.0582 }, { "start": 13808.74, "end": 13810.35, "probability": 0.9003 }, { "start": 13810.38, "end": 13812.18, "probability": 0.928 }, { "start": 13812.88, "end": 13816.54, "probability": 0.8659 }, { "start": 13817.08, "end": 13820.08, "probability": 0.9942 }, { "start": 13820.08, "end": 13823.1, "probability": 0.9946 }, { "start": 13823.38, "end": 13824.78, "probability": 0.9028 }, { "start": 13825.24, "end": 13825.92, "probability": 0.9459 }, { "start": 13825.98, "end": 13826.72, "probability": 0.968 }, { "start": 13826.78, "end": 13827.62, "probability": 0.8038 }, { "start": 13828.08, "end": 13828.92, "probability": 0.5552 }, { "start": 13829.24, "end": 13830.28, "probability": 0.8405 }, { "start": 13830.9, "end": 13833.72, "probability": 0.8784 }, { "start": 13834.16, "end": 13835.98, "probability": 0.9832 }, { "start": 13836.42, "end": 13838.64, "probability": 0.8999 }, { "start": 13839.0, "end": 13844.0, "probability": 0.9965 }, { "start": 13844.44, "end": 13845.22, "probability": 0.6479 }, { "start": 13845.78, "end": 13850.38, "probability": 0.935 }, { "start": 13850.82, "end": 13855.0, "probability": 0.9817 }, { "start": 13855.0, "end": 13857.86, "probability": 0.9993 }, { "start": 13858.86, "end": 13860.98, "probability": 0.9813 }, { "start": 13861.38, "end": 13864.36, "probability": 0.8787 }, { "start": 13864.72, "end": 13868.46, "probability": 0.9874 }, { "start": 13868.92, "end": 13870.4, "probability": 0.9658 }, { "start": 13871.18, "end": 13874.58, "probability": 0.9429 }, { "start": 13874.98, "end": 13876.48, "probability": 0.9793 }, { "start": 13877.22, "end": 13880.64, "probability": 0.996 }, { "start": 13881.24, "end": 13883.58, "probability": 0.9991 }, { "start": 13884.1, "end": 13886.4, "probability": 0.999 }, { "start": 13887.18, "end": 13889.3, "probability": 0.0546 }, { "start": 13890.02, "end": 13890.02, "probability": 0.0431 }, { "start": 13890.02, "end": 13890.02, "probability": 0.2729 }, { "start": 13890.02, "end": 13891.05, "probability": 0.7019 }, { "start": 13893.32, "end": 13893.78, "probability": 0.2403 }, { "start": 13893.8, "end": 13893.8, "probability": 0.5203 }, { "start": 13893.94, "end": 13896.99, "probability": 0.7878 }, { "start": 13898.68, "end": 13899.0, "probability": 0.476 }, { "start": 13901.8, "end": 13904.9, "probability": 0.2014 }, { "start": 13908.62, "end": 13909.62, "probability": 0.1708 }, { "start": 13916.4, "end": 13917.92, "probability": 0.1193 }, { "start": 13918.8, "end": 13920.3, "probability": 0.1354 }, { "start": 13920.52, "end": 13921.46, "probability": 0.0589 }, { "start": 13921.62, "end": 13924.76, "probability": 0.1724 }, { "start": 13926.64, "end": 13928.32, "probability": 0.0096 }, { "start": 13928.86, "end": 13931.4, "probability": 0.0797 }, { "start": 13931.98, "end": 13933.4, "probability": 0.0077 }, { "start": 13934.34, "end": 13944.62, "probability": 0.1904 }, { "start": 13944.92, "end": 13945.3, "probability": 0.2392 }, { "start": 13945.3, "end": 13946.28, "probability": 0.2485 }, { "start": 13946.98, "end": 13953.28, "probability": 0.0628 }, { "start": 13966.0, "end": 13966.0, "probability": 0.0 }, { "start": 13966.0, "end": 13966.0, "probability": 0.0 }, { "start": 13966.0, "end": 13966.0, "probability": 0.0 }, { "start": 13966.0, "end": 13966.0, "probability": 0.0 }, { "start": 13966.0, "end": 13966.0, "probability": 0.0 }, { "start": 13966.0, "end": 13966.0, "probability": 0.0 }, { "start": 13966.0, "end": 13966.0, "probability": 0.0 }, { "start": 13966.0, "end": 13966.0, "probability": 0.0 }, { "start": 13966.0, "end": 13966.0, "probability": 0.0 }, { "start": 13966.0, "end": 13966.0, "probability": 0.0 }, { "start": 13966.0, "end": 13966.0, "probability": 0.0 }, { "start": 13966.0, "end": 13966.0, "probability": 0.0 }, { "start": 13966.0, "end": 13966.0, "probability": 0.0 }, { "start": 13966.0, "end": 13966.0, "probability": 0.0 }, { "start": 13966.0, "end": 13966.0, "probability": 0.0 }, { "start": 13966.0, "end": 13966.0, "probability": 0.0 }, { "start": 13966.0, "end": 13966.0, "probability": 0.0 }, { "start": 13966.0, "end": 13966.0, "probability": 0.0 }, { "start": 13966.0, "end": 13966.0, "probability": 0.0 }, { "start": 13966.0, "end": 13966.0, "probability": 0.0 }, { "start": 13966.0, "end": 13966.0, "probability": 0.0 }, { "start": 13966.0, "end": 13966.0, "probability": 0.0 }, { "start": 13966.0, "end": 13966.0, "probability": 0.0 }, { "start": 13966.0, "end": 13966.0, "probability": 0.0 }, { "start": 13966.0, "end": 13966.0, "probability": 0.0 }, { "start": 13966.0, "end": 13966.0, "probability": 0.0 }, { "start": 13966.0, "end": 13966.0, "probability": 0.0 }, { "start": 13966.0, "end": 13966.0, "probability": 0.0 }, { "start": 13966.7, "end": 13969.09, "probability": 0.3324 }, { "start": 13969.32, "end": 13969.32, "probability": 0.0775 }, { "start": 13969.42, "end": 13970.9, "probability": 0.63 }, { "start": 13971.36, "end": 13971.56, "probability": 0.0192 }, { "start": 13972.42, "end": 13972.54, "probability": 0.0871 }, { "start": 13972.54, "end": 13972.54, "probability": 0.1152 }, { "start": 13972.54, "end": 13972.54, "probability": 0.3345 }, { "start": 13972.54, "end": 13972.54, "probability": 0.0796 }, { "start": 13972.54, "end": 13972.54, "probability": 0.253 }, { "start": 13972.54, "end": 13972.92, "probability": 0.2409 }, { "start": 13973.34, "end": 13978.36, "probability": 0.854 }, { "start": 13978.68, "end": 13981.44, "probability": 0.9556 }, { "start": 13981.44, "end": 13984.58, "probability": 0.9655 }, { "start": 13984.58, "end": 13986.1, "probability": 0.7275 }, { "start": 13986.48, "end": 13988.48, "probability": 0.7034 }, { "start": 13988.56, "end": 13989.52, "probability": 0.1376 }, { "start": 13989.6, "end": 13990.18, "probability": 0.3508 }, { "start": 13990.2, "end": 13992.26, "probability": 0.9236 }, { "start": 13992.78, "end": 13994.76, "probability": 0.7802 }, { "start": 13994.76, "end": 13996.6, "probability": 0.4815 }, { "start": 13996.88, "end": 13996.88, "probability": 0.0543 }, { "start": 13996.88, "end": 13999.64, "probability": 0.9205 }, { "start": 13999.94, "end": 14000.06, "probability": 0.2561 }, { "start": 14000.06, "end": 14000.4, "probability": 0.1277 }, { "start": 14000.56, "end": 14003.26, "probability": 0.9719 }, { "start": 14003.66, "end": 14007.5, "probability": 0.5407 }, { "start": 14009.12, "end": 14009.12, "probability": 0.0153 }, { "start": 14009.12, "end": 14009.12, "probability": 0.2401 }, { "start": 14009.12, "end": 14011.84, "probability": 0.4691 }, { "start": 14012.2, "end": 14014.04, "probability": 0.8215 }, { "start": 14014.04, "end": 14014.97, "probability": 0.5398 }, { "start": 14015.42, "end": 14018.96, "probability": 0.0314 }, { "start": 14019.24, "end": 14019.52, "probability": 0.0135 }, { "start": 14019.52, "end": 14019.52, "probability": 0.1048 }, { "start": 14019.52, "end": 14019.52, "probability": 0.0761 }, { "start": 14019.52, "end": 14020.0, "probability": 0.0661 }, { "start": 14020.18, "end": 14023.02, "probability": 0.8118 }, { "start": 14023.62, "end": 14025.72, "probability": 0.0256 }, { "start": 14026.84, "end": 14027.94, "probability": 0.1189 }, { "start": 14027.94, "end": 14028.0, "probability": 0.0231 }, { "start": 14028.0, "end": 14028.3, "probability": 0.1861 }, { "start": 14028.74, "end": 14032.26, "probability": 0.126 }, { "start": 14032.98, "end": 14035.66, "probability": 0.6816 }, { "start": 14036.0, "end": 14036.16, "probability": 0.0876 }, { "start": 14036.16, "end": 14036.16, "probability": 0.0824 }, { "start": 14036.16, "end": 14039.38, "probability": 0.8469 }, { "start": 14039.48, "end": 14040.32, "probability": 0.8334 }, { "start": 14040.61, "end": 14042.4, "probability": 0.2549 }, { "start": 14042.6, "end": 14044.44, "probability": 0.038 }, { "start": 14045.14, "end": 14047.2, "probability": 0.2969 }, { "start": 14047.78, "end": 14049.06, "probability": 0.6855 }, { "start": 14049.22, "end": 14050.24, "probability": 0.6618 }, { "start": 14050.38, "end": 14051.22, "probability": 0.5569 }, { "start": 14051.58, "end": 14053.62, "probability": 0.3266 }, { "start": 14053.78, "end": 14054.76, "probability": 0.5762 }, { "start": 14055.3, "end": 14055.54, "probability": 0.494 }, { "start": 14055.54, "end": 14058.1, "probability": 0.4414 }, { "start": 14058.48, "end": 14060.04, "probability": 0.659 }, { "start": 14060.58, "end": 14060.58, "probability": 0.0997 }, { "start": 14060.58, "end": 14062.2, "probability": 0.7542 }, { "start": 14063.6, "end": 14065.08, "probability": 0.5716 }, { "start": 14065.08, "end": 14065.08, "probability": 0.6418 }, { "start": 14065.08, "end": 14065.24, "probability": 0.0234 }, { "start": 14065.26, "end": 14065.26, "probability": 0.5723 }, { "start": 14065.26, "end": 14066.04, "probability": 0.3399 }, { "start": 14066.14, "end": 14068.0, "probability": 0.703 }, { "start": 14068.04, "end": 14068.44, "probability": 0.528 }, { "start": 14068.44, "end": 14068.74, "probability": 0.2945 }, { "start": 14068.84, "end": 14069.26, "probability": 0.6759 }, { "start": 14071.06, "end": 14072.84, "probability": 0.4626 }, { "start": 14073.24, "end": 14073.66, "probability": 0.3357 }, { "start": 14073.66, "end": 14075.94, "probability": 0.2199 }, { "start": 14077.2, "end": 14077.3, "probability": 0.419 }, { "start": 14077.3, "end": 14077.3, "probability": 0.0152 }, { "start": 14077.3, "end": 14077.3, "probability": 0.7288 }, { "start": 14077.3, "end": 14078.56, "probability": 0.7335 }, { "start": 14078.64, "end": 14080.44, "probability": 0.9836 }, { "start": 14081.02, "end": 14081.9, "probability": 0.9917 }, { "start": 14083.74, "end": 14084.28, "probability": 0.7029 }, { "start": 14084.36, "end": 14086.44, "probability": 0.9053 }, { "start": 14086.56, "end": 14089.32, "probability": 0.9955 }, { "start": 14090.58, "end": 14092.6, "probability": 0.9976 }, { "start": 14093.16, "end": 14093.8, "probability": 0.9061 }, { "start": 14095.44, "end": 14097.1, "probability": 0.1955 }, { "start": 14107.56, "end": 14107.86, "probability": 0.0091 }, { "start": 14107.86, "end": 14107.86, "probability": 0.0498 }, { "start": 14107.86, "end": 14107.86, "probability": 0.1487 }, { "start": 14107.86, "end": 14108.7, "probability": 0.8371 }, { "start": 14109.94, "end": 14111.34, "probability": 0.8865 }, { "start": 14111.56, "end": 14112.08, "probability": 0.8936 }, { "start": 14112.22, "end": 14112.86, "probability": 0.9081 }, { "start": 14113.0, "end": 14113.62, "probability": 0.8745 }, { "start": 14113.68, "end": 14114.84, "probability": 0.8693 }, { "start": 14114.84, "end": 14117.3, "probability": 0.9405 }, { "start": 14119.36, "end": 14120.6, "probability": 0.7124 }, { "start": 14121.36, "end": 14123.12, "probability": 0.8689 }, { "start": 14124.38, "end": 14125.82, "probability": 0.8683 }, { "start": 14129.2, "end": 14130.54, "probability": 0.6004 }, { "start": 14130.78, "end": 14132.48, "probability": 0.7515 }, { "start": 14134.62, "end": 14136.32, "probability": 0.9941 }, { "start": 14137.24, "end": 14141.72, "probability": 0.9575 }, { "start": 14142.48, "end": 14147.56, "probability": 0.9782 }, { "start": 14148.96, "end": 14150.0, "probability": 0.5765 }, { "start": 14150.86, "end": 14151.92, "probability": 0.8506 }, { "start": 14152.78, "end": 14154.26, "probability": 0.897 }, { "start": 14154.94, "end": 14161.42, "probability": 0.9847 }, { "start": 14162.38, "end": 14163.72, "probability": 0.9759 }, { "start": 14164.48, "end": 14165.14, "probability": 0.9197 }, { "start": 14167.32, "end": 14168.6, "probability": 0.0063 }, { "start": 14168.74, "end": 14170.36, "probability": 0.0219 }, { "start": 14170.42, "end": 14172.38, "probability": 0.1379 }, { "start": 14172.38, "end": 14172.38, "probability": 0.0077 }, { "start": 14172.38, "end": 14173.26, "probability": 0.2897 }, { "start": 14173.6, "end": 14175.04, "probability": 0.5746 }, { "start": 14175.22, "end": 14177.82, "probability": 0.0722 }, { "start": 14177.84, "end": 14177.84, "probability": 0.3588 }, { "start": 14178.26, "end": 14180.1, "probability": 0.6925 }, { "start": 14181.34, "end": 14181.86, "probability": 0.5357 }, { "start": 14195.2, "end": 14199.26, "probability": 0.4768 }, { "start": 14199.84, "end": 14202.04, "probability": 0.5113 }, { "start": 14205.71, "end": 14205.83, "probability": 0.0042 }, { "start": 14218.02, "end": 14218.86, "probability": 0.0548 }, { "start": 14219.06, "end": 14219.16, "probability": 0.1079 }, { "start": 14219.16, "end": 14219.65, "probability": 0.4467 }, { "start": 14222.4, "end": 14224.38, "probability": 0.046 }, { "start": 14225.2, "end": 14228.72, "probability": 0.0473 }, { "start": 14233.34, "end": 14234.88, "probability": 0.3066 }, { "start": 14236.86, "end": 14236.86, "probability": 0.0222 }, { "start": 14237.68, "end": 14246.12, "probability": 0.1772 }, { "start": 14246.52, "end": 14246.9, "probability": 0.2611 }, { "start": 14246.9, "end": 14247.26, "probability": 0.0912 }, { "start": 14247.26, "end": 14247.26, "probability": 0.0766 }, { "start": 14247.26, "end": 14247.26, "probability": 0.0296 }, { "start": 14247.26, "end": 14247.26, "probability": 0.045 }, { "start": 14247.26, "end": 14247.9, "probability": 0.1528 }, { "start": 14248.0, "end": 14248.0, "probability": 0.0 }, { "start": 14248.0, "end": 14248.0, "probability": 0.0 }, { "start": 14248.0, "end": 14248.0, "probability": 0.0 }, { "start": 14248.0, "end": 14248.0, "probability": 0.0 }, { "start": 14248.0, "end": 14248.0, "probability": 0.0 }, { "start": 14248.0, "end": 14248.0, "probability": 0.0 }, { "start": 14248.0, "end": 14248.0, "probability": 0.0 }, { "start": 14248.0, "end": 14248.0, "probability": 0.0 }, { "start": 14248.0, "end": 14248.0, "probability": 0.0 }, { "start": 14248.0, "end": 14248.0, "probability": 0.0 }, { "start": 14248.0, "end": 14248.0, "probability": 0.0 }, { "start": 14248.0, "end": 14248.0, "probability": 0.0 }, { "start": 14248.0, "end": 14248.0, "probability": 0.0 }, { "start": 14248.0, "end": 14248.0, "probability": 0.0 }, { "start": 14248.0, "end": 14248.0, "probability": 0.0 }, { "start": 14248.0, "end": 14248.0, "probability": 0.0 }, { "start": 14248.0, "end": 14248.0, "probability": 0.0 }, { "start": 14248.0, "end": 14248.0, "probability": 0.0 }, { "start": 14248.0, "end": 14248.0, "probability": 0.0 }, { "start": 14248.0, "end": 14248.0, "probability": 0.0 }, { "start": 14248.3, "end": 14248.46, "probability": 0.1045 }, { "start": 14249.4, "end": 14250.38, "probability": 0.5607 }, { "start": 14251.2, "end": 14253.8, "probability": 0.9805 }, { "start": 14254.68, "end": 14254.68, "probability": 0.0557 }, { "start": 14254.68, "end": 14256.32, "probability": 0.8645 }, { "start": 14256.4, "end": 14257.14, "probability": 0.6747 }, { "start": 14257.36, "end": 14257.74, "probability": 0.9075 }, { "start": 14258.42, "end": 14264.6, "probability": 0.9911 }, { "start": 14265.62, "end": 14269.18, "probability": 0.906 }, { "start": 14269.94, "end": 14272.6, "probability": 0.7402 }, { "start": 14273.66, "end": 14274.94, "probability": 0.9812 }, { "start": 14276.2, "end": 14276.66, "probability": 0.8339 }, { "start": 14277.58, "end": 14280.0, "probability": 0.9805 }, { "start": 14282.14, "end": 14286.52, "probability": 0.9908 }, { "start": 14287.16, "end": 14291.46, "probability": 0.7591 }, { "start": 14292.28, "end": 14292.68, "probability": 0.0337 }, { "start": 14292.68, "end": 14296.58, "probability": 0.9749 }, { "start": 14298.1, "end": 14300.76, "probability": 0.0747 }, { "start": 14301.44, "end": 14301.44, "probability": 0.0008 }, { "start": 14301.44, "end": 14301.44, "probability": 0.1686 }, { "start": 14301.44, "end": 14301.44, "probability": 0.1295 }, { "start": 14301.44, "end": 14301.44, "probability": 0.2749 }, { "start": 14301.44, "end": 14301.44, "probability": 0.0513 }, { "start": 14301.44, "end": 14301.44, "probability": 0.0072 }, { "start": 14301.44, "end": 14301.86, "probability": 0.1644 }, { "start": 14302.4, "end": 14303.62, "probability": 0.6973 }, { "start": 14304.38, "end": 14304.98, "probability": 0.5958 }, { "start": 14305.1, "end": 14307.68, "probability": 0.7769 }, { "start": 14309.34, "end": 14310.84, "probability": 0.9174 }, { "start": 14311.98, "end": 14313.12, "probability": 0.9421 }, { "start": 14315.88, "end": 14318.56, "probability": 0.9846 }, { "start": 14320.28, "end": 14324.94, "probability": 0.9213 }, { "start": 14326.0, "end": 14329.32, "probability": 0.0844 }, { "start": 14329.32, "end": 14331.5, "probability": 0.5205 }, { "start": 14331.64, "end": 14331.9, "probability": 0.3152 }, { "start": 14331.9, "end": 14332.3, "probability": 0.4492 }, { "start": 14332.86, "end": 14334.12, "probability": 0.8172 }, { "start": 14334.12, "end": 14337.28, "probability": 0.6246 }, { "start": 14337.38, "end": 14339.38, "probability": 0.6738 }, { "start": 14340.28, "end": 14342.28, "probability": 0.7013 }, { "start": 14342.78, "end": 14343.4, "probability": 0.7976 }, { "start": 14344.1, "end": 14345.84, "probability": 0.8569 }, { "start": 14345.84, "end": 14347.76, "probability": 0.8699 }, { "start": 14347.84, "end": 14348.26, "probability": 0.7242 }, { "start": 14350.3, "end": 14350.64, "probability": 0.033 }, { "start": 14352.04, "end": 14352.92, "probability": 0.5182 }, { "start": 14353.06, "end": 14361.22, "probability": 0.9908 }, { "start": 14361.4, "end": 14362.17, "probability": 0.9478 }, { "start": 14362.54, "end": 14364.78, "probability": 0.7493 }, { "start": 14365.94, "end": 14368.02, "probability": 0.8086 }, { "start": 14369.24, "end": 14369.42, "probability": 0.6606 }, { "start": 14370.54, "end": 14372.08, "probability": 0.6992 }, { "start": 14372.44, "end": 14374.3, "probability": 0.895 }, { "start": 14375.48, "end": 14378.04, "probability": 0.9631 }, { "start": 14379.36, "end": 14381.72, "probability": 0.9935 }, { "start": 14382.46, "end": 14384.38, "probability": 0.9829 }, { "start": 14386.12, "end": 14389.34, "probability": 0.9948 }, { "start": 14390.28, "end": 14394.58, "probability": 0.859 }, { "start": 14395.9, "end": 14397.52, "probability": 0.9869 }, { "start": 14398.46, "end": 14402.98, "probability": 0.972 }, { "start": 14403.7, "end": 14406.16, "probability": 0.9927 }, { "start": 14407.44, "end": 14407.9, "probability": 0.5683 }, { "start": 14410.04, "end": 14414.14, "probability": 0.9985 }, { "start": 14415.78, "end": 14416.1, "probability": 0.6033 }, { "start": 14417.08, "end": 14419.42, "probability": 0.999 }, { "start": 14421.4, "end": 14424.02, "probability": 0.9987 }, { "start": 14424.98, "end": 14425.78, "probability": 0.9786 }, { "start": 14426.3, "end": 14427.54, "probability": 0.8373 }, { "start": 14428.08, "end": 14428.5, "probability": 0.7442 }, { "start": 14429.14, "end": 14431.16, "probability": 0.9495 }, { "start": 14432.34, "end": 14432.6, "probability": 0.6711 }, { "start": 14432.7, "end": 14437.0, "probability": 0.9976 }, { "start": 14437.92, "end": 14440.52, "probability": 0.9365 }, { "start": 14441.62, "end": 14445.02, "probability": 0.9736 }, { "start": 14445.7, "end": 14447.0, "probability": 0.9083 }, { "start": 14447.64, "end": 14449.28, "probability": 0.9004 }, { "start": 14449.76, "end": 14450.26, "probability": 0.8295 }, { "start": 14451.16, "end": 14454.48, "probability": 0.9685 }, { "start": 14455.18, "end": 14457.1, "probability": 0.7934 }, { "start": 14457.62, "end": 14459.66, "probability": 0.9824 }, { "start": 14460.28, "end": 14463.64, "probability": 0.9301 }, { "start": 14464.44, "end": 14465.32, "probability": 0.8577 }, { "start": 14466.24, "end": 14467.2, "probability": 0.3463 }, { "start": 14468.26, "end": 14469.1, "probability": 0.9233 }, { "start": 14470.42, "end": 14471.42, "probability": 0.9092 }, { "start": 14472.34, "end": 14473.58, "probability": 0.2227 }, { "start": 14473.88, "end": 14478.68, "probability": 0.9943 }, { "start": 14479.38, "end": 14483.36, "probability": 0.9691 }, { "start": 14484.42, "end": 14487.22, "probability": 0.9629 }, { "start": 14488.06, "end": 14489.3, "probability": 0.8841 }, { "start": 14489.84, "end": 14490.26, "probability": 0.811 }, { "start": 14492.24, "end": 14493.84, "probability": 0.9974 }, { "start": 14494.96, "end": 14495.8, "probability": 0.9771 }, { "start": 14496.94, "end": 14499.64, "probability": 0.9896 }, { "start": 14501.72, "end": 14503.62, "probability": 0.7037 }, { "start": 14504.7, "end": 14506.12, "probability": 0.9954 }, { "start": 14506.98, "end": 14510.28, "probability": 0.9946 }, { "start": 14511.22, "end": 14516.66, "probability": 0.9929 }, { "start": 14518.14, "end": 14520.74, "probability": 0.9977 }, { "start": 14521.8, "end": 14522.82, "probability": 0.4909 }, { "start": 14524.14, "end": 14528.24, "probability": 0.8936 }, { "start": 14529.68, "end": 14532.54, "probability": 0.9932 }, { "start": 14533.86, "end": 14534.78, "probability": 0.8752 }, { "start": 14535.64, "end": 14536.24, "probability": 0.8115 }, { "start": 14536.84, "end": 14538.46, "probability": 0.8698 }, { "start": 14539.16, "end": 14543.36, "probability": 0.9958 }, { "start": 14544.06, "end": 14547.26, "probability": 0.988 }, { "start": 14547.96, "end": 14548.38, "probability": 0.8713 }, { "start": 14549.38, "end": 14551.16, "probability": 0.9965 }, { "start": 14551.72, "end": 14553.08, "probability": 0.9781 }, { "start": 14554.06, "end": 14555.94, "probability": 0.8984 }, { "start": 14556.72, "end": 14558.36, "probability": 0.9497 }, { "start": 14559.56, "end": 14561.06, "probability": 0.9989 }, { "start": 14561.96, "end": 14562.06, "probability": 0.6748 }, { "start": 14563.1, "end": 14566.24, "probability": 0.8138 }, { "start": 14567.94, "end": 14570.06, "probability": 0.9543 }, { "start": 14570.16, "end": 14573.84, "probability": 0.9968 }, { "start": 14574.94, "end": 14577.84, "probability": 0.9917 }, { "start": 14578.72, "end": 14579.6, "probability": 0.7223 }, { "start": 14580.72, "end": 14582.36, "probability": 0.9318 }, { "start": 14583.58, "end": 14585.84, "probability": 0.825 }, { "start": 14587.72, "end": 14590.2, "probability": 0.9814 }, { "start": 14591.06, "end": 14591.96, "probability": 0.6232 }, { "start": 14592.76, "end": 14594.84, "probability": 0.8338 }, { "start": 14596.8, "end": 14597.43, "probability": 0.9741 }, { "start": 14599.0, "end": 14601.86, "probability": 0.998 }, { "start": 14602.62, "end": 14609.12, "probability": 0.9775 }, { "start": 14610.12, "end": 14614.38, "probability": 0.9969 }, { "start": 14615.56, "end": 14619.06, "probability": 0.9953 }, { "start": 14620.12, "end": 14621.42, "probability": 0.7489 }, { "start": 14622.66, "end": 14623.56, "probability": 0.7022 }, { "start": 14623.64, "end": 14625.16, "probability": 0.7638 }, { "start": 14626.72, "end": 14627.32, "probability": 0.8357 }, { "start": 14628.1, "end": 14631.02, "probability": 0.9583 }, { "start": 14631.44, "end": 14632.6, "probability": 0.9983 }, { "start": 14632.86, "end": 14634.12, "probability": 0.9792 }, { "start": 14634.66, "end": 14637.82, "probability": 0.9968 }, { "start": 14638.42, "end": 14639.36, "probability": 0.5296 }, { "start": 14639.38, "end": 14639.84, "probability": 0.8185 }, { "start": 14641.14, "end": 14641.14, "probability": 0.0548 }, { "start": 14641.14, "end": 14643.36, "probability": 0.8711 }, { "start": 14644.18, "end": 14645.68, "probability": 0.978 }, { "start": 14647.2, "end": 14649.84, "probability": 0.9474 }, { "start": 14650.84, "end": 14652.28, "probability": 0.968 }, { "start": 14653.76, "end": 14653.9, "probability": 0.9612 }, { "start": 14655.76, "end": 14656.98, "probability": 0.9985 }, { "start": 14658.3, "end": 14660.98, "probability": 0.9938 }, { "start": 14661.78, "end": 14663.44, "probability": 0.9972 }, { "start": 14664.9, "end": 14666.96, "probability": 0.9985 }, { "start": 14669.36, "end": 14672.64, "probability": 0.9965 }, { "start": 14673.28, "end": 14674.46, "probability": 0.8389 }, { "start": 14675.98, "end": 14677.36, "probability": 0.721 }, { "start": 14678.34, "end": 14682.16, "probability": 0.988 }, { "start": 14682.82, "end": 14683.84, "probability": 0.5939 }, { "start": 14684.94, "end": 14686.52, "probability": 0.9647 }, { "start": 14687.26, "end": 14688.32, "probability": 0.924 }, { "start": 14689.52, "end": 14695.94, "probability": 0.9875 }, { "start": 14696.92, "end": 14698.69, "probability": 0.9985 }, { "start": 14699.82, "end": 14700.32, "probability": 0.6735 }, { "start": 14700.9, "end": 14703.78, "probability": 0.9781 }, { "start": 14706.14, "end": 14707.5, "probability": 0.8706 }, { "start": 14708.38, "end": 14711.82, "probability": 0.9744 }, { "start": 14712.9, "end": 14715.04, "probability": 0.0658 }, { "start": 14716.9, "end": 14723.98, "probability": 0.954 }, { "start": 14724.66, "end": 14724.86, "probability": 0.3035 }, { "start": 14724.86, "end": 14729.42, "probability": 0.6634 }, { "start": 14729.42, "end": 14729.76, "probability": 0.4777 }, { "start": 14729.76, "end": 14731.06, "probability": 0.5391 }, { "start": 14731.68, "end": 14732.83, "probability": 0.1683 }, { "start": 14733.86, "end": 14735.44, "probability": 0.7196 }, { "start": 14735.86, "end": 14738.66, "probability": 0.9763 }, { "start": 14739.06, "end": 14740.6, "probability": 0.1613 }, { "start": 14740.82, "end": 14741.68, "probability": 0.015 }, { "start": 14742.1, "end": 14744.22, "probability": 0.6413 }, { "start": 14744.26, "end": 14745.14, "probability": 0.5545 }, { "start": 14745.14, "end": 14746.5, "probability": 0.8681 }, { "start": 14746.58, "end": 14747.66, "probability": 0.9642 }, { "start": 14748.92, "end": 14749.0, "probability": 0.0493 }, { "start": 14749.0, "end": 14749.0, "probability": 0.2355 }, { "start": 14749.0, "end": 14749.0, "probability": 0.2359 }, { "start": 14749.0, "end": 14749.88, "probability": 0.5073 }, { "start": 14749.88, "end": 14750.76, "probability": 0.8658 }, { "start": 14751.04, "end": 14754.4, "probability": 0.7634 }, { "start": 14754.56, "end": 14758.82, "probability": 0.6719 }, { "start": 14759.68, "end": 14763.3, "probability": 0.8055 }, { "start": 14763.42, "end": 14764.12, "probability": 0.8977 }, { "start": 14764.74, "end": 14765.78, "probability": 0.8347 }, { "start": 14767.12, "end": 14768.3, "probability": 0.8769 }, { "start": 14769.34, "end": 14771.24, "probability": 0.9729 }, { "start": 14771.82, "end": 14772.82, "probability": 0.6858 }, { "start": 14774.7, "end": 14775.74, "probability": 0.6417 }, { "start": 14776.44, "end": 14781.08, "probability": 0.9964 }, { "start": 14781.66, "end": 14783.14, "probability": 0.6969 }, { "start": 14783.18, "end": 14786.12, "probability": 0.992 }, { "start": 14787.34, "end": 14789.84, "probability": 0.6719 }, { "start": 14791.06, "end": 14794.1, "probability": 0.9824 }, { "start": 14794.46, "end": 14799.82, "probability": 0.992 }, { "start": 14800.64, "end": 14803.0, "probability": 0.9773 }, { "start": 14804.24, "end": 14804.24, "probability": 0.0031 }, { "start": 14806.28, "end": 14808.38, "probability": 0.172 }, { "start": 14808.96, "end": 14811.44, "probability": 0.8228 }, { "start": 14812.12, "end": 14813.8, "probability": 0.8322 }, { "start": 14814.24, "end": 14817.12, "probability": 0.8477 }, { "start": 14819.76, "end": 14820.3, "probability": 0.7721 }, { "start": 14821.26, "end": 14822.68, "probability": 0.1396 }, { "start": 14822.78, "end": 14822.88, "probability": 0.0889 }, { "start": 14822.88, "end": 14828.6, "probability": 0.7257 }, { "start": 14828.66, "end": 14829.26, "probability": 0.2702 }, { "start": 14829.3, "end": 14829.48, "probability": 0.8492 }, { "start": 14831.96, "end": 14832.12, "probability": 0.2954 }, { "start": 14832.12, "end": 14832.12, "probability": 0.413 }, { "start": 14832.12, "end": 14833.66, "probability": 0.5487 }, { "start": 14834.34, "end": 14837.1, "probability": 0.5273 }, { "start": 14838.0, "end": 14841.3, "probability": 0.7578 }, { "start": 14841.54, "end": 14846.44, "probability": 0.9954 }, { "start": 14849.32, "end": 14851.74, "probability": 0.894 }, { "start": 14852.44, "end": 14855.26, "probability": 0.9965 }, { "start": 14855.5, "end": 14857.12, "probability": 0.8952 }, { "start": 14857.62, "end": 14860.06, "probability": 0.968 }, { "start": 14861.0, "end": 14863.14, "probability": 0.6993 }, { "start": 14864.42, "end": 14866.4, "probability": 0.8026 }, { "start": 14866.64, "end": 14868.12, "probability": 0.948 }, { "start": 14868.14, "end": 14868.72, "probability": 0.4584 }, { "start": 14870.46, "end": 14870.72, "probability": 0.0073 }, { "start": 14871.5, "end": 14871.5, "probability": 0.1511 }, { "start": 14871.54, "end": 14873.2, "probability": 0.5215 }, { "start": 14873.4, "end": 14875.9, "probability": 0.9297 }, { "start": 14875.98, "end": 14876.62, "probability": 0.8092 }, { "start": 14876.86, "end": 14879.84, "probability": 0.9063 }, { "start": 14880.22, "end": 14880.74, "probability": 0.1127 }, { "start": 14881.82, "end": 14882.36, "probability": 0.4663 }, { "start": 14882.36, "end": 14883.22, "probability": 0.9539 }, { "start": 14884.47, "end": 14888.48, "probability": 0.4505 }, { "start": 14890.52, "end": 14891.16, "probability": 0.3413 }, { "start": 14892.04, "end": 14893.68, "probability": 0.9675 }, { "start": 14894.32, "end": 14896.38, "probability": 0.9229 }, { "start": 14897.5, "end": 14901.24, "probability": 0.9873 }, { "start": 14901.34, "end": 14901.72, "probability": 0.7961 }, { "start": 14902.5, "end": 14903.14, "probability": 0.093 }, { "start": 14904.88, "end": 14905.32, "probability": 0.038 }, { "start": 14905.32, "end": 14905.4, "probability": 0.138 }, { "start": 14905.4, "end": 14907.66, "probability": 0.8929 }, { "start": 14908.28, "end": 14910.94, "probability": 0.159 }, { "start": 14911.12, "end": 14912.64, "probability": 0.7595 }, { "start": 14916.52, "end": 14918.34, "probability": 0.6821 }, { "start": 14919.92, "end": 14921.52, "probability": 0.9897 }, { "start": 14922.88, "end": 14923.54, "probability": 0.8054 }, { "start": 14924.64, "end": 14925.92, "probability": 0.7154 }, { "start": 14928.32, "end": 14931.26, "probability": 0.9067 }, { "start": 14932.04, "end": 14933.58, "probability": 0.9891 }, { "start": 14934.4, "end": 14938.12, "probability": 0.991 }, { "start": 14938.74, "end": 14939.62, "probability": 0.9467 }, { "start": 14940.7, "end": 14943.37, "probability": 0.9971 }, { "start": 14945.76, "end": 14949.28, "probability": 0.7279 }, { "start": 14950.56, "end": 14951.74, "probability": 0.9566 }, { "start": 14952.6, "end": 14954.7, "probability": 0.9937 }, { "start": 14955.3, "end": 14959.26, "probability": 0.9932 }, { "start": 14959.26, "end": 14959.82, "probability": 0.9456 }, { "start": 14960.24, "end": 14965.7, "probability": 0.9771 }, { "start": 14966.28, "end": 14967.54, "probability": 0.9617 }, { "start": 14968.3, "end": 14970.84, "probability": 0.9856 }, { "start": 14972.44, "end": 14972.94, "probability": 0.7843 }, { "start": 14973.86, "end": 14975.55, "probability": 0.925 }, { "start": 14976.26, "end": 14979.96, "probability": 0.984 }, { "start": 14980.52, "end": 14981.3, "probability": 0.9219 }, { "start": 14984.0, "end": 14987.22, "probability": 0.9831 }, { "start": 14988.38, "end": 14988.4, "probability": 0.0603 }, { "start": 14988.4, "end": 14988.72, "probability": 0.2911 }, { "start": 14988.86, "end": 14990.16, "probability": 0.9575 }, { "start": 14990.58, "end": 14990.7, "probability": 0.021 }, { "start": 14990.7, "end": 14992.84, "probability": 0.7979 }, { "start": 14993.56, "end": 14994.44, "probability": 0.1086 }, { "start": 15006.32, "end": 15007.02, "probability": 0.0225 }, { "start": 15007.1, "end": 15007.1, "probability": 0.0879 }, { "start": 15007.1, "end": 15007.1, "probability": 0.1423 }, { "start": 15007.1, "end": 15007.1, "probability": 0.1309 }, { "start": 15007.1, "end": 15007.1, "probability": 0.1954 }, { "start": 15007.1, "end": 15007.1, "probability": 0.0197 }, { "start": 15007.1, "end": 15008.31, "probability": 0.1517 }, { "start": 15008.76, "end": 15009.78, "probability": 0.5723 }, { "start": 15011.62, "end": 15012.28, "probability": 0.2186 }, { "start": 15013.0, "end": 15013.12, "probability": 0.1278 }, { "start": 15013.12, "end": 15013.12, "probability": 0.1904 }, { "start": 15013.12, "end": 15013.12, "probability": 0.1942 }, { "start": 15013.12, "end": 15014.34, "probability": 0.6993 }, { "start": 15014.8, "end": 15015.7, "probability": 0.6709 }, { "start": 15016.32, "end": 15019.4, "probability": 0.9854 }, { "start": 15020.9, "end": 15021.76, "probability": 0.4915 }, { "start": 15022.56, "end": 15024.58, "probability": 0.2375 }, { "start": 15025.28, "end": 15026.94, "probability": 0.9634 }, { "start": 15028.24, "end": 15033.62, "probability": 0.9539 }, { "start": 15034.14, "end": 15035.06, "probability": 0.8853 }, { "start": 15035.94, "end": 15036.62, "probability": 0.7705 }, { "start": 15037.32, "end": 15039.1, "probability": 0.8433 }, { "start": 15040.34, "end": 15043.3, "probability": 0.0306 }, { "start": 15044.8, "end": 15044.8, "probability": 0.055 }, { "start": 15044.8, "end": 15044.8, "probability": 0.0854 }, { "start": 15044.8, "end": 15045.32, "probability": 0.4228 }, { "start": 15045.32, "end": 15046.16, "probability": 0.8095 }, { "start": 15047.42, "end": 15052.61, "probability": 0.9492 }, { "start": 15053.52, "end": 15056.18, "probability": 0.9863 }, { "start": 15056.84, "end": 15059.28, "probability": 0.8995 }, { "start": 15059.86, "end": 15061.16, "probability": 0.9919 }, { "start": 15061.36, "end": 15061.64, "probability": 0.7736 }, { "start": 15062.0, "end": 15063.62, "probability": 0.1146 }, { "start": 15064.2, "end": 15066.18, "probability": 0.4951 }, { "start": 15066.5, "end": 15068.54, "probability": 0.9273 }, { "start": 15068.62, "end": 15069.8, "probability": 0.1244 }, { "start": 15077.12, "end": 15079.82, "probability": 0.4853 }, { "start": 15083.94, "end": 15084.94, "probability": 0.6579 }, { "start": 15085.86, "end": 15086.9, "probability": 0.8236 }, { "start": 15089.26, "end": 15092.82, "probability": 0.9992 }, { "start": 15093.9, "end": 15095.12, "probability": 0.8666 }, { "start": 15095.88, "end": 15097.82, "probability": 0.9983 }, { "start": 15099.3, "end": 15100.8, "probability": 0.9349 }, { "start": 15101.86, "end": 15103.16, "probability": 0.973 }, { "start": 15104.32, "end": 15105.92, "probability": 0.975 }, { "start": 15107.62, "end": 15111.26, "probability": 0.9993 }, { "start": 15111.26, "end": 15116.24, "probability": 0.999 }, { "start": 15117.3, "end": 15117.76, "probability": 0.9027 }, { "start": 15120.1, "end": 15121.28, "probability": 0.999 }, { "start": 15122.72, "end": 15124.42, "probability": 0.9849 }, { "start": 15125.0, "end": 15125.86, "probability": 0.9988 }, { "start": 15127.02, "end": 15128.44, "probability": 0.9968 }, { "start": 15129.16, "end": 15130.1, "probability": 0.785 }, { "start": 15131.28, "end": 15132.37, "probability": 0.5044 }, { "start": 15133.62, "end": 15133.92, "probability": 0.9629 }, { "start": 15134.62, "end": 15135.42, "probability": 0.9237 }, { "start": 15136.5, "end": 15141.04, "probability": 0.9932 }, { "start": 15141.96, "end": 15145.14, "probability": 0.8085 }, { "start": 15145.28, "end": 15147.74, "probability": 0.7075 }, { "start": 15148.46, "end": 15150.02, "probability": 0.3358 }, { "start": 15150.1, "end": 15151.64, "probability": 0.0241 }, { "start": 15152.04, "end": 15154.4, "probability": 0.643 }, { "start": 15155.64, "end": 15155.98, "probability": 0.7808 }, { "start": 15156.94, "end": 15158.34, "probability": 0.9366 }, { "start": 15159.44, "end": 15161.48, "probability": 0.98 }, { "start": 15162.16, "end": 15165.06, "probability": 0.9636 }, { "start": 15166.16, "end": 15166.76, "probability": 0.6449 }, { "start": 15167.68, "end": 15169.86, "probability": 0.9973 }, { "start": 15170.4, "end": 15172.32, "probability": 0.995 }, { "start": 15173.58, "end": 15176.24, "probability": 0.9854 }, { "start": 15177.48, "end": 15179.02, "probability": 0.9829 }, { "start": 15180.14, "end": 15180.88, "probability": 0.9525 }, { "start": 15182.14, "end": 15183.38, "probability": 0.9895 }, { "start": 15184.48, "end": 15185.7, "probability": 0.8286 }, { "start": 15185.72, "end": 15187.96, "probability": 0.782 }, { "start": 15189.1, "end": 15189.98, "probability": 0.965 }, { "start": 15191.1, "end": 15192.26, "probability": 0.8598 }, { "start": 15193.12, "end": 15196.44, "probability": 0.8033 }, { "start": 15197.94, "end": 15201.42, "probability": 0.9434 }, { "start": 15201.52, "end": 15202.42, "probability": 0.9896 }, { "start": 15202.6, "end": 15203.7, "probability": 0.9644 }, { "start": 15204.12, "end": 15204.88, "probability": 0.9897 }, { "start": 15204.96, "end": 15205.62, "probability": 0.9389 }, { "start": 15205.64, "end": 15206.78, "probability": 0.8195 }, { "start": 15207.78, "end": 15208.22, "probability": 0.8814 }, { "start": 15209.8, "end": 15213.57, "probability": 0.9951 }, { "start": 15214.8, "end": 15217.24, "probability": 0.9008 }, { "start": 15218.44, "end": 15221.7, "probability": 0.9054 }, { "start": 15222.56, "end": 15227.98, "probability": 0.9786 }, { "start": 15229.42, "end": 15230.33, "probability": 0.9995 }, { "start": 15231.24, "end": 15233.28, "probability": 0.9705 }, { "start": 15234.76, "end": 15238.6, "probability": 0.9891 }, { "start": 15239.78, "end": 15243.78, "probability": 0.9966 }, { "start": 15244.82, "end": 15246.78, "probability": 0.9434 }, { "start": 15247.76, "end": 15249.3, "probability": 0.9612 }, { "start": 15250.44, "end": 15256.42, "probability": 0.9988 }, { "start": 15257.38, "end": 15262.8, "probability": 0.9945 }, { "start": 15263.38, "end": 15265.12, "probability": 0.9953 }, { "start": 15265.36, "end": 15265.94, "probability": 0.7749 }, { "start": 15265.94, "end": 15266.61, "probability": 0.4634 }, { "start": 15267.48, "end": 15272.86, "probability": 0.998 }, { "start": 15273.72, "end": 15275.24, "probability": 0.9943 }, { "start": 15276.62, "end": 15279.6, "probability": 0.997 }, { "start": 15280.88, "end": 15281.94, "probability": 0.9658 }, { "start": 15283.02, "end": 15284.66, "probability": 0.9938 }, { "start": 15285.38, "end": 15286.32, "probability": 0.9399 }, { "start": 15286.96, "end": 15289.68, "probability": 0.989 }, { "start": 15290.48, "end": 15294.26, "probability": 0.9798 }, { "start": 15295.88, "end": 15298.18, "probability": 0.9976 }, { "start": 15299.24, "end": 15303.64, "probability": 0.9874 }, { "start": 15304.26, "end": 15305.28, "probability": 0.9301 }, { "start": 15306.4, "end": 15307.3, "probability": 0.9691 }, { "start": 15307.48, "end": 15310.78, "probability": 0.9952 }, { "start": 15311.06, "end": 15311.9, "probability": 0.9746 }, { "start": 15313.08, "end": 15315.24, "probability": 0.9968 }, { "start": 15316.5, "end": 15317.32, "probability": 0.8568 }, { "start": 15318.42, "end": 15319.68, "probability": 0.8604 }, { "start": 15320.5, "end": 15321.54, "probability": 0.6581 }, { "start": 15321.64, "end": 15322.28, "probability": 0.984 }, { "start": 15322.38, "end": 15322.7, "probability": 0.9649 }, { "start": 15322.88, "end": 15323.06, "probability": 0.792 }, { "start": 15323.9, "end": 15324.62, "probability": 0.998 }, { "start": 15325.72, "end": 15326.8, "probability": 0.8819 }, { "start": 15328.32, "end": 15332.58, "probability": 0.9933 }, { "start": 15334.0, "end": 15336.5, "probability": 0.9364 }, { "start": 15337.8, "end": 15342.52, "probability": 0.9946 }, { "start": 15343.94, "end": 15345.54, "probability": 0.9705 }, { "start": 15346.76, "end": 15347.56, "probability": 0.8824 }, { "start": 15348.18, "end": 15351.16, "probability": 0.9434 }, { "start": 15352.46, "end": 15354.42, "probability": 0.9984 }, { "start": 15355.36, "end": 15356.66, "probability": 0.9758 }, { "start": 15358.4, "end": 15358.72, "probability": 0.7132 }, { "start": 15359.7, "end": 15360.36, "probability": 0.8277 }, { "start": 15360.98, "end": 15364.9, "probability": 0.9759 }, { "start": 15368.0, "end": 15369.6, "probability": 0.8448 }, { "start": 15370.64, "end": 15371.94, "probability": 0.9974 }, { "start": 15372.94, "end": 15374.3, "probability": 0.9837 }, { "start": 15374.84, "end": 15379.2, "probability": 0.991 }, { "start": 15380.2, "end": 15382.68, "probability": 0.9954 }, { "start": 15382.68, "end": 15385.58, "probability": 0.9983 }, { "start": 15387.34, "end": 15388.08, "probability": 0.7443 }, { "start": 15388.14, "end": 15388.64, "probability": 0.9242 }, { "start": 15389.0, "end": 15390.6, "probability": 0.9635 }, { "start": 15390.7, "end": 15391.7, "probability": 0.9832 }, { "start": 15392.56, "end": 15396.42, "probability": 0.9965 }, { "start": 15399.36, "end": 15400.5, "probability": 0.9826 }, { "start": 15401.74, "end": 15405.48, "probability": 0.998 }, { "start": 15406.38, "end": 15408.06, "probability": 0.999 }, { "start": 15408.94, "end": 15413.84, "probability": 0.7868 }, { "start": 15414.36, "end": 15415.66, "probability": 0.3374 }, { "start": 15416.32, "end": 15419.24, "probability": 0.8488 }, { "start": 15419.24, "end": 15423.3, "probability": 0.9971 }, { "start": 15424.5, "end": 15425.72, "probability": 0.4643 }, { "start": 15426.76, "end": 15430.1, "probability": 0.8554 }, { "start": 15433.22, "end": 15433.57, "probability": 0.7285 }, { "start": 15434.76, "end": 15436.42, "probability": 0.9709 }, { "start": 15437.1, "end": 15439.23, "probability": 0.964 }, { "start": 15440.44, "end": 15444.54, "probability": 0.9298 }, { "start": 15445.44, "end": 15447.58, "probability": 0.8339 }, { "start": 15447.64, "end": 15448.84, "probability": 0.8042 }, { "start": 15449.82, "end": 15450.64, "probability": 0.0344 }, { "start": 15451.1, "end": 15455.48, "probability": 0.9888 }, { "start": 15456.84, "end": 15457.88, "probability": 0.998 }, { "start": 15459.16, "end": 15460.84, "probability": 0.7301 }, { "start": 15461.88, "end": 15463.08, "probability": 0.9965 }, { "start": 15464.02, "end": 15466.2, "probability": 0.9668 }, { "start": 15467.46, "end": 15467.7, "probability": 0.8032 }, { "start": 15467.72, "end": 15472.88, "probability": 0.9182 }, { "start": 15473.54, "end": 15474.36, "probability": 0.9919 }, { "start": 15475.7, "end": 15477.64, "probability": 0.9645 }, { "start": 15477.84, "end": 15477.84, "probability": 0.026 }, { "start": 15478.46, "end": 15481.42, "probability": 0.1774 }, { "start": 15481.42, "end": 15482.0, "probability": 0.3392 }, { "start": 15482.4, "end": 15482.58, "probability": 0.721 }, { "start": 15482.58, "end": 15482.58, "probability": 0.3214 }, { "start": 15482.58, "end": 15484.03, "probability": 0.5639 }, { "start": 15485.22, "end": 15487.7, "probability": 0.9153 }, { "start": 15488.62, "end": 15490.16, "probability": 0.8647 }, { "start": 15491.2, "end": 15494.0, "probability": 0.9984 }, { "start": 15495.8, "end": 15497.7, "probability": 0.99 }, { "start": 15498.88, "end": 15499.1, "probability": 0.6444 }, { "start": 15500.34, "end": 15502.42, "probability": 0.9973 }, { "start": 15503.06, "end": 15505.62, "probability": 0.9951 }, { "start": 15506.44, "end": 15506.62, "probability": 0.9695 }, { "start": 15508.02, "end": 15508.9, "probability": 0.9013 }, { "start": 15509.6, "end": 15510.18, "probability": 0.9287 }, { "start": 15510.9, "end": 15518.58, "probability": 0.9833 }, { "start": 15519.68, "end": 15520.52, "probability": 0.8855 }, { "start": 15522.02, "end": 15523.12, "probability": 0.6164 }, { "start": 15524.28, "end": 15529.64, "probability": 0.8341 }, { "start": 15530.16, "end": 15532.14, "probability": 0.4336 }, { "start": 15533.22, "end": 15533.42, "probability": 0.3008 }, { "start": 15534.28, "end": 15535.36, "probability": 0.7421 }, { "start": 15535.9, "end": 15536.18, "probability": 0.5294 }, { "start": 15536.34, "end": 15537.2, "probability": 0.987 }, { "start": 15537.3, "end": 15540.94, "probability": 0.8495 }, { "start": 15541.0, "end": 15542.28, "probability": 0.7806 }, { "start": 15542.86, "end": 15546.44, "probability": 0.8535 }, { "start": 15547.08, "end": 15548.26, "probability": 0.8795 }, { "start": 15549.92, "end": 15550.56, "probability": 0.7643 }, { "start": 15551.54, "end": 15552.24, "probability": 0.8846 }, { "start": 15553.12, "end": 15554.22, "probability": 0.9496 }, { "start": 15554.88, "end": 15559.46, "probability": 0.9874 }, { "start": 15560.14, "end": 15562.22, "probability": 0.8835 }, { "start": 15563.2, "end": 15566.06, "probability": 0.9927 }, { "start": 15566.66, "end": 15568.36, "probability": 0.8018 }, { "start": 15569.6, "end": 15569.82, "probability": 0.4521 }, { "start": 15569.88, "end": 15571.0, "probability": 0.9679 }, { "start": 15571.12, "end": 15576.0, "probability": 0.9925 }, { "start": 15580.16, "end": 15580.72, "probability": 0.195 }, { "start": 15580.72, "end": 15581.98, "probability": 0.5913 }, { "start": 15582.44, "end": 15583.14, "probability": 0.7653 }, { "start": 15583.32, "end": 15584.38, "probability": 0.9432 }, { "start": 15584.56, "end": 15585.28, "probability": 0.967 }, { "start": 15585.5, "end": 15586.12, "probability": 0.6831 }, { "start": 15586.9, "end": 15588.06, "probability": 0.5395 }, { "start": 15588.06, "end": 15589.4, "probability": 0.8698 }, { "start": 15589.52, "end": 15590.28, "probability": 0.7258 }, { "start": 15590.4, "end": 15590.4, "probability": 0.1529 }, { "start": 15590.4, "end": 15592.54, "probability": 0.7377 }, { "start": 15592.56, "end": 15592.56, "probability": 0.1252 }, { "start": 15592.6, "end": 15595.14, "probability": 0.8816 }, { "start": 15595.68, "end": 15595.74, "probability": 0.7605 }, { "start": 15595.74, "end": 15596.74, "probability": 0.9679 }, { "start": 15597.56, "end": 15598.4, "probability": 0.9704 }, { "start": 15599.06, "end": 15599.26, "probability": 0.336 }, { "start": 15600.14, "end": 15600.36, "probability": 0.7366 }, { "start": 15603.7, "end": 15607.24, "probability": 0.7399 }, { "start": 15607.56, "end": 15608.84, "probability": 0.8795 }, { "start": 15609.04, "end": 15610.26, "probability": 0.502 }, { "start": 15610.37, "end": 15610.44, "probability": 0.2175 }, { "start": 15610.44, "end": 15610.98, "probability": 0.5092 }, { "start": 15611.1, "end": 15611.74, "probability": 0.6916 }, { "start": 15612.08, "end": 15612.26, "probability": 0.7409 }, { "start": 15612.64, "end": 15614.02, "probability": 0.3856 }, { "start": 15614.34, "end": 15615.62, "probability": 0.9098 }, { "start": 15616.54, "end": 15617.72, "probability": 0.9873 }, { "start": 15618.82, "end": 15622.7, "probability": 0.9988 }, { "start": 15624.24, "end": 15624.76, "probability": 0.816 }, { "start": 15626.12, "end": 15627.42, "probability": 0.8845 }, { "start": 15628.86, "end": 15629.84, "probability": 0.9746 }, { "start": 15630.98, "end": 15633.16, "probability": 0.9843 }, { "start": 15634.08, "end": 15636.04, "probability": 0.9956 }, { "start": 15637.1, "end": 15638.48, "probability": 0.9854 }, { "start": 15639.32, "end": 15640.48, "probability": 0.8072 }, { "start": 15641.08, "end": 15642.28, "probability": 0.9269 }, { "start": 15643.46, "end": 15645.58, "probability": 0.9761 }, { "start": 15646.24, "end": 15650.38, "probability": 0.9843 }, { "start": 15651.56, "end": 15654.62, "probability": 0.995 }, { "start": 15655.62, "end": 15658.66, "probability": 0.9779 }, { "start": 15658.82, "end": 15662.0, "probability": 0.9502 }, { "start": 15663.66, "end": 15665.12, "probability": 0.9917 }, { "start": 15666.38, "end": 15669.26, "probability": 0.9895 }, { "start": 15670.12, "end": 15670.54, "probability": 0.9537 }, { "start": 15671.7, "end": 15671.98, "probability": 0.9658 }, { "start": 15673.18, "end": 15673.94, "probability": 0.8912 }, { "start": 15674.78, "end": 15675.72, "probability": 0.9965 }, { "start": 15676.8, "end": 15677.76, "probability": 0.9917 }, { "start": 15679.18, "end": 15680.76, "probability": 0.7771 }, { "start": 15681.84, "end": 15684.7, "probability": 0.9966 }, { "start": 15685.56, "end": 15687.38, "probability": 0.9693 }, { "start": 15688.78, "end": 15690.34, "probability": 0.9571 }, { "start": 15691.5, "end": 15692.9, "probability": 0.8055 }, { "start": 15695.2, "end": 15699.04, "probability": 0.9913 }, { "start": 15700.6, "end": 15701.48, "probability": 0.7855 }, { "start": 15702.48, "end": 15703.42, "probability": 0.7708 }, { "start": 15704.72, "end": 15706.98, "probability": 0.9833 }, { "start": 15708.36, "end": 15713.44, "probability": 0.8606 }, { "start": 15714.94, "end": 15716.04, "probability": 0.9927 }, { "start": 15717.32, "end": 15721.44, "probability": 0.8719 }, { "start": 15722.34, "end": 15724.8, "probability": 0.9912 }, { "start": 15725.68, "end": 15726.95, "probability": 0.9492 }, { "start": 15728.12, "end": 15729.12, "probability": 0.8545 }, { "start": 15730.5, "end": 15732.21, "probability": 0.7285 }, { "start": 15733.38, "end": 15734.5, "probability": 0.7507 }, { "start": 15735.68, "end": 15737.42, "probability": 0.9813 }, { "start": 15738.46, "end": 15740.54, "probability": 0.967 }, { "start": 15741.86, "end": 15743.32, "probability": 0.9477 }, { "start": 15744.52, "end": 15750.56, "probability": 0.998 }, { "start": 15751.38, "end": 15757.01, "probability": 0.7882 }, { "start": 15757.34, "end": 15758.98, "probability": 0.9543 }, { "start": 15759.84, "end": 15761.02, "probability": 0.8765 }, { "start": 15762.26, "end": 15767.6, "probability": 0.9893 }, { "start": 15768.38, "end": 15768.8, "probability": 0.7124 }, { "start": 15769.32, "end": 15771.02, "probability": 0.5356 }, { "start": 15771.62, "end": 15774.1, "probability": 0.7101 }, { "start": 15774.4, "end": 15775.3, "probability": 0.8776 }, { "start": 15775.56, "end": 15777.6, "probability": 0.7392 }, { "start": 15777.88, "end": 15779.6, "probability": 0.8479 }, { "start": 15780.05, "end": 15783.46, "probability": 0.981 }, { "start": 15784.62, "end": 15784.92, "probability": 0.1052 }, { "start": 15784.92, "end": 15785.56, "probability": 0.8795 }, { "start": 15787.72, "end": 15791.3, "probability": 0.9956 }, { "start": 15792.22, "end": 15794.2, "probability": 0.999 }, { "start": 15795.18, "end": 15798.76, "probability": 0.9924 }, { "start": 15799.74, "end": 15801.76, "probability": 0.7235 }, { "start": 15802.66, "end": 15805.0, "probability": 0.8831 }, { "start": 15805.56, "end": 15806.68, "probability": 0.8892 }, { "start": 15807.6, "end": 15808.6, "probability": 0.9526 }, { "start": 15809.54, "end": 15811.76, "probability": 0.981 }, { "start": 15812.44, "end": 15812.9, "probability": 0.8912 }, { "start": 15814.3, "end": 15817.2, "probability": 0.9102 }, { "start": 15817.96, "end": 15820.26, "probability": 0.9225 }, { "start": 15822.64, "end": 15823.9, "probability": 0.7378 }, { "start": 15824.86, "end": 15830.08, "probability": 0.9935 }, { "start": 15832.24, "end": 15832.72, "probability": 0.5166 }, { "start": 15834.08, "end": 15838.66, "probability": 0.9971 }, { "start": 15838.66, "end": 15842.84, "probability": 0.9995 }, { "start": 15844.08, "end": 15847.08, "probability": 0.9968 }, { "start": 15848.5, "end": 15849.28, "probability": 0.9781 }, { "start": 15850.22, "end": 15852.96, "probability": 0.4133 }, { "start": 15852.96, "end": 15856.5, "probability": 0.8054 }, { "start": 15857.5, "end": 15859.46, "probability": 0.9691 }, { "start": 15860.54, "end": 15866.36, "probability": 0.9944 }, { "start": 15867.84, "end": 15874.28, "probability": 0.9976 }, { "start": 15875.22, "end": 15876.58, "probability": 0.9979 }, { "start": 15877.26, "end": 15878.3, "probability": 0.8633 }, { "start": 15879.26, "end": 15879.84, "probability": 0.897 }, { "start": 15880.48, "end": 15881.24, "probability": 0.9849 }, { "start": 15882.64, "end": 15886.08, "probability": 0.9987 }, { "start": 15887.02, "end": 15889.08, "probability": 0.9977 }, { "start": 15889.92, "end": 15892.07, "probability": 0.9427 }, { "start": 15892.17, "end": 15892.41, "probability": 0.1126 }, { "start": 15893.75, "end": 15895.55, "probability": 0.6351 }, { "start": 15895.55, "end": 15898.29, "probability": 0.8 }, { "start": 15898.29, "end": 15900.53, "probability": 0.9937 }, { "start": 15900.53, "end": 15900.91, "probability": 0.7214 }, { "start": 15901.79, "end": 15902.97, "probability": 0.9855 }, { "start": 15904.25, "end": 15909.87, "probability": 0.9992 }, { "start": 15910.69, "end": 15911.63, "probability": 0.9749 }, { "start": 15912.65, "end": 15915.17, "probability": 0.6558 }, { "start": 15915.53, "end": 15918.87, "probability": 0.9849 }, { "start": 15922.87, "end": 15923.63, "probability": 0.5471 }, { "start": 15923.73, "end": 15924.69, "probability": 0.0113 }, { "start": 15924.69, "end": 15926.45, "probability": 0.4457 }, { "start": 15926.45, "end": 15928.63, "probability": 0.0319 }, { "start": 15929.39, "end": 15929.39, "probability": 0.1958 }, { "start": 15929.43, "end": 15932.51, "probability": 0.8351 }, { "start": 15933.71, "end": 15935.55, "probability": 0.983 }, { "start": 15936.57, "end": 15938.27, "probability": 0.8798 }, { "start": 15939.75, "end": 15942.87, "probability": 0.9874 }, { "start": 15943.29, "end": 15943.69, "probability": 0.8614 }, { "start": 15944.65, "end": 15944.89, "probability": 0.5994 }, { "start": 15946.35, "end": 15946.45, "probability": 0.0057 }, { "start": 15946.45, "end": 15949.35, "probability": 0.6333 }, { "start": 15950.59, "end": 15951.15, "probability": 0.2323 }, { "start": 15951.65, "end": 15955.13, "probability": 0.0493 }, { "start": 15955.13, "end": 15955.99, "probability": 0.0734 }, { "start": 15956.01, "end": 15956.23, "probability": 0.1973 }, { "start": 15956.26, "end": 15957.13, "probability": 0.0469 }, { "start": 15957.13, "end": 15958.43, "probability": 0.3304 }, { "start": 15958.63, "end": 15959.83, "probability": 0.7415 }, { "start": 15959.91, "end": 15959.91, "probability": 0.7447 }, { "start": 15959.91, "end": 15961.01, "probability": 0.8459 }, { "start": 15961.15, "end": 15961.89, "probability": 0.8669 }, { "start": 15961.89, "end": 15961.99, "probability": 0.1444 }, { "start": 15963.35, "end": 15963.47, "probability": 0.0196 }, { "start": 15963.47, "end": 15963.47, "probability": 0.0714 }, { "start": 15963.47, "end": 15963.95, "probability": 0.3512 }, { "start": 15966.43, "end": 15967.75, "probability": 0.8083 }, { "start": 15968.65, "end": 15970.03, "probability": 0.8555 }, { "start": 15970.49, "end": 15971.7, "probability": 0.7014 }, { "start": 15972.95, "end": 15972.95, "probability": 0.1865 }, { "start": 15972.95, "end": 15976.33, "probability": 0.9657 }, { "start": 15977.69, "end": 15978.55, "probability": 0.999 }, { "start": 15979.25, "end": 15984.01, "probability": 0.9878 }, { "start": 15984.01, "end": 15987.27, "probability": 0.9993 }, { "start": 16020.0, "end": 16020.0, "probability": 0.0 }, { "start": 16020.0, "end": 16020.0, "probability": 0.0 }, { "start": 16020.0, "end": 16020.0, "probability": 0.0 }, { "start": 16020.0, "end": 16020.0, "probability": 0.0 }, { "start": 16020.0, "end": 16020.0, "probability": 0.0 }, { "start": 16020.0, "end": 16020.0, "probability": 0.0 }, { "start": 16020.0, "end": 16020.0, "probability": 0.0 }, { "start": 16020.0, "end": 16020.0, "probability": 0.0 }, { "start": 16020.0, "end": 16020.0, "probability": 0.0 }, { "start": 16020.14, "end": 16020.7, "probability": 0.0731 }, { "start": 16020.7, "end": 16021.32, "probability": 0.1451 }, { "start": 16022.06, "end": 16022.3, "probability": 0.3849 }, { "start": 16022.82, "end": 16023.76, "probability": 0.4494 }, { "start": 16023.78, "end": 16026.36, "probability": 0.6504 }, { "start": 16027.16, "end": 16027.16, "probability": 0.2632 }, { "start": 16027.16, "end": 16027.16, "probability": 0.259 }, { "start": 16027.16, "end": 16027.6, "probability": 0.1067 }, { "start": 16028.48, "end": 16030.58, "probability": 0.6904 }, { "start": 16031.34, "end": 16033.0, "probability": 0.8357 }, { "start": 16033.94, "end": 16034.08, "probability": 0.0246 }, { "start": 16034.62, "end": 16035.52, "probability": 0.0092 }, { "start": 16035.52, "end": 16036.14, "probability": 0.3732 }, { "start": 16036.24, "end": 16037.86, "probability": 0.8699 }, { "start": 16038.64, "end": 16038.64, "probability": 0.023 }, { "start": 16038.64, "end": 16041.88, "probability": 0.7148 }, { "start": 16044.92, "end": 16047.06, "probability": 0.1944 }, { "start": 16052.74, "end": 16055.04, "probability": 0.6528 }, { "start": 16055.76, "end": 16057.92, "probability": 0.5798 }, { "start": 16058.32, "end": 16060.44, "probability": 0.0301 }, { "start": 16060.76, "end": 16060.76, "probability": 0.0492 }, { "start": 16060.76, "end": 16061.76, "probability": 0.0418 }, { "start": 16061.98, "end": 16062.58, "probability": 0.0706 }, { "start": 16063.06, "end": 16065.5, "probability": 0.1057 }, { "start": 16066.82, "end": 16067.1, "probability": 0.1342 }, { "start": 16067.76, "end": 16068.18, "probability": 0.2534 }, { "start": 16068.84, "end": 16069.8, "probability": 0.0057 }, { "start": 16070.04, "end": 16071.7, "probability": 0.1895 }, { "start": 16143.0, "end": 16143.0, "probability": 0.0 }, { "start": 16143.0, "end": 16143.0, "probability": 0.0 }, { "start": 16143.0, "end": 16143.0, "probability": 0.0 }, { "start": 16143.0, "end": 16143.0, "probability": 0.0 }, { "start": 16143.0, "end": 16143.0, "probability": 0.0 }, { "start": 16143.0, "end": 16143.0, "probability": 0.0 }, { "start": 16143.0, "end": 16143.0, "probability": 0.0 }, { "start": 16143.0, "end": 16143.0, "probability": 0.0 }, { "start": 16143.0, "end": 16143.0, "probability": 0.0 }, { "start": 16143.0, "end": 16143.0, "probability": 0.0 }, { "start": 16143.0, "end": 16143.0, "probability": 0.0 }, { "start": 16143.0, "end": 16143.0, "probability": 0.0 }, { "start": 16143.0, "end": 16143.0, "probability": 0.0 }, { "start": 16143.0, "end": 16143.0, "probability": 0.0 }, { "start": 16143.0, "end": 16143.0, "probability": 0.0 }, { "start": 16143.0, "end": 16143.0, "probability": 0.0 }, { "start": 16143.0, "end": 16143.0, "probability": 0.0 }, { "start": 16143.0, "end": 16143.0, "probability": 0.0 }, { "start": 16143.0, "end": 16143.0, "probability": 0.0 }, { "start": 16143.0, "end": 16143.0, "probability": 0.0 }, { "start": 16143.0, "end": 16143.0, "probability": 0.0 }, { "start": 16143.0, "end": 16143.0, "probability": 0.0 }, { "start": 16143.0, "end": 16143.0, "probability": 0.0 }, { "start": 16143.0, "end": 16143.0, "probability": 0.0 }, { "start": 16143.0, "end": 16143.0, "probability": 0.0 }, { "start": 16143.0, "end": 16143.0, "probability": 0.0 }, { "start": 16143.0, "end": 16143.0, "probability": 0.0 }, { "start": 16143.0, "end": 16143.0, "probability": 0.0 }, { "start": 16143.0, "end": 16143.0, "probability": 0.0 }, { "start": 16143.0, "end": 16143.0, "probability": 0.0 }, { "start": 16143.0, "end": 16143.0, "probability": 0.0 }, { "start": 16143.0, "end": 16143.0, "probability": 0.0 }, { "start": 16143.0, "end": 16143.0, "probability": 0.0 }, { "start": 16143.0, "end": 16143.0, "probability": 0.0 }, { "start": 16143.0, "end": 16143.0, "probability": 0.0 }, { "start": 16143.0, "end": 16143.0, "probability": 0.0 }, { "start": 16143.0, "end": 16143.0, "probability": 0.0 }, { "start": 16143.0, "end": 16143.0, "probability": 0.0 }, { "start": 16143.0, "end": 16143.0, "probability": 0.0 }, { "start": 16143.0, "end": 16143.0, "probability": 0.0 }, { "start": 16143.0, "end": 16143.0, "probability": 0.0 }, { "start": 16143.0, "end": 16143.0, "probability": 0.0 }, { "start": 16143.0, "end": 16143.0, "probability": 0.0 }, { "start": 16143.0, "end": 16143.0, "probability": 0.0 }, { "start": 16143.0, "end": 16143.0, "probability": 0.0 }, { "start": 16143.0, "end": 16143.0, "probability": 0.0 }, { "start": 16143.0, "end": 16143.0, "probability": 0.0 }, { "start": 16143.0, "end": 16143.0, "probability": 0.0 }, { "start": 16143.0, "end": 16143.0, "probability": 0.0 }, { "start": 16143.0, "end": 16143.0, "probability": 0.0 }, { "start": 16143.0, "end": 16143.0, "probability": 0.0 }, { "start": 16143.0, "end": 16143.0, "probability": 0.0 }, { "start": 16143.0, "end": 16143.0, "probability": 0.0 }, { "start": 16143.26, "end": 16145.18, "probability": 0.4113 }, { "start": 16146.16, "end": 16146.7, "probability": 0.1158 }, { "start": 16146.7, "end": 16148.12, "probability": 0.1144 }, { "start": 16148.22, "end": 16148.98, "probability": 0.7186 }, { "start": 16149.22, "end": 16149.76, "probability": 0.4966 }, { "start": 16150.08, "end": 16150.24, "probability": 0.0235 }, { "start": 16150.24, "end": 16151.92, "probability": 0.8724 }, { "start": 16154.02, "end": 16154.02, "probability": 0.0424 }, { "start": 16154.02, "end": 16155.6, "probability": 0.6966 }, { "start": 16156.36, "end": 16157.94, "probability": 0.6105 }, { "start": 16158.36, "end": 16158.66, "probability": 0.3 }, { "start": 16158.82, "end": 16160.1, "probability": 0.6688 }, { "start": 16161.24, "end": 16161.3, "probability": 0.3717 }, { "start": 16161.3, "end": 16161.86, "probability": 0.8586 }, { "start": 16161.94, "end": 16162.55, "probability": 0.0875 }, { "start": 16162.62, "end": 16164.02, "probability": 0.7873 }, { "start": 16164.08, "end": 16164.66, "probability": 0.7378 }, { "start": 16165.48, "end": 16165.48, "probability": 0.105 }, { "start": 16165.48, "end": 16166.98, "probability": 0.5019 }, { "start": 16176.8, "end": 16177.6, "probability": 0.8181 }, { "start": 16179.46, "end": 16180.64, "probability": 0.2069 }, { "start": 16182.1, "end": 16184.56, "probability": 0.0354 }, { "start": 16184.56, "end": 16184.88, "probability": 0.1121 }, { "start": 16186.02, "end": 16188.2, "probability": 0.1093 }, { "start": 16188.78, "end": 16189.22, "probability": 0.0985 }, { "start": 16270.0, "end": 16270.0, "probability": 0.0 }, { "start": 16270.0, "end": 16270.0, "probability": 0.0 }, { "start": 16270.0, "end": 16270.0, "probability": 0.0 }, { "start": 16270.0, "end": 16270.0, "probability": 0.0 }, { "start": 16270.0, "end": 16270.0, "probability": 0.0 }, { "start": 16270.0, "end": 16270.0, "probability": 0.0 }, { "start": 16270.0, "end": 16270.0, "probability": 0.0 }, { "start": 16270.0, "end": 16270.0, "probability": 0.0 }, { "start": 16270.0, "end": 16270.0, "probability": 0.0 }, { "start": 16270.0, "end": 16270.0, "probability": 0.0 }, { "start": 16270.0, "end": 16270.0, "probability": 0.0 }, { "start": 16270.0, "end": 16270.0, "probability": 0.0 }, { "start": 16270.0, "end": 16270.0, "probability": 0.0 }, { "start": 16270.0, "end": 16270.0, "probability": 0.0 }, { "start": 16270.0, "end": 16270.0, "probability": 0.0 }, { "start": 16270.0, "end": 16270.0, "probability": 0.0 }, { "start": 16270.0, "end": 16270.0, "probability": 0.0 }, { "start": 16270.0, "end": 16270.0, "probability": 0.0 }, { "start": 16270.0, "end": 16270.0, "probability": 0.0 }, { "start": 16270.0, "end": 16270.0, "probability": 0.0 }, { "start": 16270.0, "end": 16270.0, "probability": 0.0 }, { "start": 16270.0, "end": 16270.0, "probability": 0.0 }, { "start": 16270.0, "end": 16270.0, "probability": 0.0 }, { "start": 16270.0, "end": 16270.0, "probability": 0.0 }, { "start": 16270.0, "end": 16270.0, "probability": 0.0 }, { "start": 16270.0, "end": 16270.0, "probability": 0.0 }, { "start": 16270.0, "end": 16270.0, "probability": 0.0 }, { "start": 16270.0, "end": 16270.0, "probability": 0.0 }, { "start": 16270.0, "end": 16270.0, "probability": 0.0 }, { "start": 16270.0, "end": 16270.0, "probability": 0.0 }, { "start": 16270.0, "end": 16270.0, "probability": 0.0 }, { "start": 16270.0, "end": 16270.0, "probability": 0.0 }, { "start": 16270.0, "end": 16270.0, "probability": 0.0 }, { "start": 16270.0, "end": 16270.0, "probability": 0.0 }, { "start": 16270.0, "end": 16270.0, "probability": 0.0 }, { "start": 16270.0, "end": 16270.0, "probability": 0.0 }, { "start": 16270.0, "end": 16270.0, "probability": 0.0 }, { "start": 16270.4, "end": 16270.62, "probability": 0.087 }, { "start": 16270.62, "end": 16271.2, "probability": 0.2691 }, { "start": 16271.76, "end": 16274.72, "probability": 0.9265 }, { "start": 16275.98, "end": 16278.86, "probability": 0.8414 }, { "start": 16279.68, "end": 16284.6, "probability": 0.9936 }, { "start": 16285.42, "end": 16285.68, "probability": 0.4582 }, { "start": 16285.9, "end": 16290.14, "probability": 0.931 }, { "start": 16291.04, "end": 16295.84, "probability": 0.9903 }, { "start": 16296.16, "end": 16297.96, "probability": 0.9381 }, { "start": 16298.82, "end": 16302.3, "probability": 0.9547 }, { "start": 16302.3, "end": 16305.34, "probability": 0.998 }, { "start": 16305.94, "end": 16308.12, "probability": 0.9956 }, { "start": 16308.74, "end": 16309.9, "probability": 0.9953 }, { "start": 16310.44, "end": 16313.32, "probability": 0.9993 }, { "start": 16314.04, "end": 16316.22, "probability": 0.9994 }, { "start": 16316.98, "end": 16318.74, "probability": 0.9843 }, { "start": 16320.64, "end": 16322.46, "probability": 0.8442 }, { "start": 16323.98, "end": 16326.44, "probability": 0.8918 }, { "start": 16326.44, "end": 16328.76, "probability": 0.8132 }, { "start": 16328.98, "end": 16329.88, "probability": 0.6045 }, { "start": 16330.2, "end": 16330.94, "probability": 0.8231 }, { "start": 16331.74, "end": 16333.1, "probability": 0.8687 }, { "start": 16333.32, "end": 16334.42, "probability": 0.9544 }, { "start": 16335.0, "end": 16337.46, "probability": 0.9819 }, { "start": 16338.04, "end": 16340.52, "probability": 0.9966 }, { "start": 16341.02, "end": 16341.68, "probability": 0.5016 }, { "start": 16342.44, "end": 16345.06, "probability": 0.97 }, { "start": 16345.86, "end": 16352.52, "probability": 0.9495 }, { "start": 16352.52, "end": 16359.62, "probability": 0.9961 }, { "start": 16361.38, "end": 16366.28, "probability": 0.998 }, { "start": 16367.02, "end": 16368.3, "probability": 0.9923 }, { "start": 16369.14, "end": 16371.42, "probability": 0.9023 }, { "start": 16372.26, "end": 16374.76, "probability": 0.999 }, { "start": 16375.42, "end": 16378.12, "probability": 0.9873 }, { "start": 16378.56, "end": 16380.16, "probability": 0.8971 }, { "start": 16380.58, "end": 16384.76, "probability": 0.9619 }, { "start": 16385.62, "end": 16387.18, "probability": 0.8047 }, { "start": 16387.84, "end": 16389.28, "probability": 0.6062 }, { "start": 16390.26, "end": 16392.42, "probability": 0.8909 }, { "start": 16392.86, "end": 16394.97, "probability": 0.9529 }, { "start": 16395.64, "end": 16398.98, "probability": 0.852 }, { "start": 16399.74, "end": 16402.26, "probability": 0.1224 }, { "start": 16402.26, "end": 16403.14, "probability": 0.6258 }, { "start": 16403.28, "end": 16407.0, "probability": 0.8426 }, { "start": 16407.86, "end": 16410.74, "probability": 0.9721 }, { "start": 16412.3, "end": 16413.1, "probability": 0.9722 }, { "start": 16413.16, "end": 16413.46, "probability": 0.5219 }, { "start": 16414.0, "end": 16414.08, "probability": 0.7324 }, { "start": 16414.28, "end": 16416.42, "probability": 0.8747 }, { "start": 16416.54, "end": 16417.82, "probability": 0.9679 }, { "start": 16418.14, "end": 16419.8, "probability": 0.9959 }, { "start": 16420.0, "end": 16420.72, "probability": 0.8066 }, { "start": 16420.78, "end": 16421.42, "probability": 0.7657 }, { "start": 16421.56, "end": 16423.26, "probability": 0.9602 }, { "start": 16423.28, "end": 16424.36, "probability": 0.9066 }, { "start": 16424.62, "end": 16426.64, "probability": 0.9766 }, { "start": 16427.18, "end": 16429.32, "probability": 0.8029 }, { "start": 16430.32, "end": 16433.12, "probability": 0.8461 }, { "start": 16433.64, "end": 16433.9, "probability": 0.7867 }, { "start": 16434.54, "end": 16437.34, "probability": 0.8895 }, { "start": 16437.42, "end": 16439.62, "probability": 0.9294 }, { "start": 16440.0, "end": 16440.56, "probability": 0.8429 }, { "start": 16440.78, "end": 16441.38, "probability": 0.6087 }, { "start": 16441.46, "end": 16442.2, "probability": 0.8531 }, { "start": 16442.28, "end": 16443.14, "probability": 0.6828 }, { "start": 16444.06, "end": 16444.36, "probability": 0.3772 }, { "start": 16444.36, "end": 16445.84, "probability": 0.5632 }, { "start": 16446.5, "end": 16448.66, "probability": 0.9225 }, { "start": 16448.72, "end": 16451.66, "probability": 0.8937 }, { "start": 16452.06, "end": 16453.75, "probability": 0.9641 }, { "start": 16453.86, "end": 16455.98, "probability": 0.7293 }, { "start": 16456.28, "end": 16460.86, "probability": 0.8823 }, { "start": 16461.14, "end": 16462.06, "probability": 0.6066 }, { "start": 16462.18, "end": 16463.18, "probability": 0.2765 }, { "start": 16463.84, "end": 16465.31, "probability": 0.657 }, { "start": 16465.7, "end": 16468.28, "probability": 0.3856 }, { "start": 16469.06, "end": 16473.44, "probability": 0.7459 }, { "start": 16473.9, "end": 16474.5, "probability": 0.7543 }, { "start": 16474.5, "end": 16476.44, "probability": 0.471 }, { "start": 16478.08, "end": 16480.96, "probability": 0.7584 }, { "start": 16481.08, "end": 16481.78, "probability": 0.5363 }, { "start": 16482.08, "end": 16483.78, "probability": 0.6793 }, { "start": 16483.82, "end": 16484.08, "probability": 0.4897 }, { "start": 16484.22, "end": 16484.48, "probability": 0.2586 }, { "start": 16484.66, "end": 16485.58, "probability": 0.707 }, { "start": 16485.82, "end": 16487.58, "probability": 0.978 }, { "start": 16487.7, "end": 16490.18, "probability": 0.5853 }, { "start": 16490.38, "end": 16491.94, "probability": 0.9979 }, { "start": 16492.08, "end": 16492.38, "probability": 0.904 }, { "start": 16505.88, "end": 16506.12, "probability": 0.0289 }, { "start": 16506.12, "end": 16506.12, "probability": 0.1072 }, { "start": 16506.12, "end": 16506.12, "probability": 0.4712 }, { "start": 16506.12, "end": 16506.12, "probability": 0.3322 }, { "start": 16506.12, "end": 16509.61, "probability": 0.3527 }, { "start": 16510.94, "end": 16513.56, "probability": 0.8848 }, { "start": 16514.32, "end": 16517.08, "probability": 0.6595 }, { "start": 16517.8, "end": 16518.22, "probability": 0.8655 }, { "start": 16519.14, "end": 16520.72, "probability": 0.7836 }, { "start": 16521.98, "end": 16523.28, "probability": 0.9901 }, { "start": 16523.92, "end": 16525.24, "probability": 0.9338 }, { "start": 16526.02, "end": 16528.04, "probability": 0.9948 }, { "start": 16528.64, "end": 16530.52, "probability": 0.9961 }, { "start": 16531.24, "end": 16534.02, "probability": 0.9979 }, { "start": 16534.76, "end": 16536.42, "probability": 0.9977 }, { "start": 16537.3, "end": 16540.96, "probability": 0.8411 }, { "start": 16541.42, "end": 16543.04, "probability": 0.861 }, { "start": 16543.7, "end": 16545.16, "probability": 0.8906 }, { "start": 16545.74, "end": 16546.06, "probability": 0.8395 }, { "start": 16546.16, "end": 16546.92, "probability": 0.9258 }, { "start": 16547.0, "end": 16548.52, "probability": 0.8907 }, { "start": 16549.36, "end": 16551.96, "probability": 0.8801 }, { "start": 16552.78, "end": 16555.42, "probability": 0.9951 }, { "start": 16556.18, "end": 16560.98, "probability": 0.9907 }, { "start": 16562.04, "end": 16566.64, "probability": 0.9983 }, { "start": 16566.64, "end": 16572.42, "probability": 0.999 }, { "start": 16572.54, "end": 16576.36, "probability": 0.9982 }, { "start": 16577.08, "end": 16580.66, "probability": 0.978 }, { "start": 16581.28, "end": 16585.96, "probability": 0.9969 }, { "start": 16586.04, "end": 16586.9, "probability": 0.9646 }, { "start": 16587.54, "end": 16588.24, "probability": 0.9829 }, { "start": 16589.12, "end": 16591.22, "probability": 0.9797 }, { "start": 16591.6, "end": 16592.48, "probability": 0.8411 }, { "start": 16592.92, "end": 16596.58, "probability": 0.9956 }, { "start": 16596.76, "end": 16597.32, "probability": 0.8792 }, { "start": 16597.64, "end": 16597.88, "probability": 0.4812 }, { "start": 16597.88, "end": 16598.24, "probability": 0.4197 }, { "start": 16598.6, "end": 16599.28, "probability": 0.0113 }, { "start": 16599.5, "end": 16600.9, "probability": 0.8359 }, { "start": 16601.22, "end": 16603.22, "probability": 0.6044 }, { "start": 16603.86, "end": 16604.92, "probability": 0.7542 }, { "start": 16605.62, "end": 16606.96, "probability": 0.5991 }, { "start": 16606.98, "end": 16607.72, "probability": 0.8511 }, { "start": 16608.74, "end": 16608.74, "probability": 0.0495 }, { "start": 16608.74, "end": 16608.74, "probability": 0.3142 }, { "start": 16608.74, "end": 16609.66, "probability": 0.7829 }, { "start": 16610.16, "end": 16611.58, "probability": 0.9451 }, { "start": 16612.34, "end": 16614.34, "probability": 0.1413 }, { "start": 16614.72, "end": 16615.12, "probability": 0.178 }, { "start": 16615.12, "end": 16617.2, "probability": 0.5837 }, { "start": 16617.54, "end": 16619.98, "probability": 0.677 }, { "start": 16621.28, "end": 16621.78, "probability": 0.7986 }, { "start": 16622.82, "end": 16623.86, "probability": 0.6378 }, { "start": 16624.1, "end": 16624.1, "probability": 0.3733 }, { "start": 16624.1, "end": 16624.1, "probability": 0.744 }, { "start": 16624.1, "end": 16624.1, "probability": 0.4098 }, { "start": 16624.1, "end": 16624.8, "probability": 0.6187 }, { "start": 16625.04, "end": 16626.24, "probability": 0.7978 }, { "start": 16626.26, "end": 16626.7, "probability": 0.451 }, { "start": 16626.78, "end": 16628.04, "probability": 0.9553 }, { "start": 16628.14, "end": 16629.22, "probability": 0.9058 }, { "start": 16629.3, "end": 16629.82, "probability": 0.7515 }, { "start": 16630.52, "end": 16631.1, "probability": 0.8427 }, { "start": 16632.22, "end": 16632.38, "probability": 0.4937 }, { "start": 16632.54, "end": 16633.44, "probability": 0.0202 }, { "start": 16633.46, "end": 16635.38, "probability": 0.8281 }, { "start": 16635.5, "end": 16636.51, "probability": 0.8654 }, { "start": 16636.66, "end": 16638.48, "probability": 0.7316 }, { "start": 16643.74, "end": 16645.92, "probability": 0.7662 }, { "start": 16649.86, "end": 16651.46, "probability": 0.8827 }, { "start": 16651.52, "end": 16653.08, "probability": 0.9255 }, { "start": 16653.24, "end": 16655.02, "probability": 0.892 }, { "start": 16657.56, "end": 16659.62, "probability": 0.0873 }, { "start": 16659.62, "end": 16659.62, "probability": 0.0109 }, { "start": 16659.62, "end": 16660.92, "probability": 0.5773 }, { "start": 16662.33, "end": 16666.0, "probability": 0.9439 }, { "start": 16668.24, "end": 16671.86, "probability": 0.9473 }, { "start": 16673.48, "end": 16678.91, "probability": 0.1428 }, { "start": 16680.84, "end": 16683.78, "probability": 0.0443 }, { "start": 16699.9, "end": 16700.48, "probability": 0.399 }, { "start": 16701.56, "end": 16703.2, "probability": 0.7015 }, { "start": 16703.82, "end": 16704.7, "probability": 0.0979 }, { "start": 16704.96, "end": 16707.56, "probability": 0.9609 }, { "start": 16707.8, "end": 16707.96, "probability": 0.7728 }, { "start": 16708.92, "end": 16709.14, "probability": 0.1458 }, { "start": 16709.14, "end": 16709.78, "probability": 0.53 }, { "start": 16709.78, "end": 16710.84, "probability": 0.7877 }, { "start": 16710.88, "end": 16711.04, "probability": 0.3488 }, { "start": 16711.82, "end": 16714.92, "probability": 0.7604 }, { "start": 16715.4, "end": 16716.7, "probability": 0.9359 }, { "start": 16716.8, "end": 16718.64, "probability": 0.8221 }, { "start": 16718.74, "end": 16719.54, "probability": 0.7617 }, { "start": 16720.12, "end": 16720.9, "probability": 0.7599 }, { "start": 16726.6, "end": 16727.26, "probability": 0.6367 }, { "start": 16729.06, "end": 16732.06, "probability": 0.9581 }, { "start": 16732.3, "end": 16734.44, "probability": 0.9355 }, { "start": 16740.78, "end": 16741.66, "probability": 0.6746 }, { "start": 16741.82, "end": 16747.86, "probability": 0.9832 }, { "start": 16747.88, "end": 16752.32, "probability": 0.8616 }, { "start": 16752.82, "end": 16754.32, "probability": 0.934 }, { "start": 16754.9, "end": 16755.98, "probability": 0.0645 }, { "start": 16757.12, "end": 16761.58, "probability": 0.7774 }, { "start": 16762.88, "end": 16763.32, "probability": 0.9349 }, { "start": 16764.58, "end": 16766.06, "probability": 0.6331 }, { "start": 16766.88, "end": 16767.32, "probability": 0.9829 }, { "start": 16768.38, "end": 16769.32, "probability": 0.8325 }, { "start": 16770.14, "end": 16770.58, "probability": 0.9922 }, { "start": 16771.74, "end": 16772.7, "probability": 0.7444 }, { "start": 16773.7, "end": 16773.98, "probability": 0.5377 }, { "start": 16775.28, "end": 16776.36, "probability": 0.5966 }, { "start": 16777.5, "end": 16778.12, "probability": 0.9717 }, { "start": 16779.84, "end": 16781.08, "probability": 0.8947 }, { "start": 16781.92, "end": 16784.62, "probability": 0.925 }, { "start": 16785.66, "end": 16786.86, "probability": 0.978 }, { "start": 16787.4, "end": 16788.36, "probability": 0.9563 }, { "start": 16789.34, "end": 16789.88, "probability": 0.9941 }, { "start": 16790.72, "end": 16791.66, "probability": 0.9719 }, { "start": 16792.5, "end": 16793.0, "probability": 0.9888 }, { "start": 16793.96, "end": 16794.9, "probability": 0.9924 }, { "start": 16796.12, "end": 16799.0, "probability": 0.9902 }, { "start": 16800.16, "end": 16800.64, "probability": 0.991 }, { "start": 16801.6, "end": 16801.7, "probability": 0.1419 }, { "start": 16808.1, "end": 16810.02, "probability": 0.5455 }, { "start": 16811.82, "end": 16813.1, "probability": 0.7729 }, { "start": 16814.34, "end": 16816.98, "probability": 0.5224 }, { "start": 16821.08, "end": 16821.86, "probability": 0.6381 }, { "start": 16822.8, "end": 16823.24, "probability": 0.7852 }, { "start": 16824.26, "end": 16825.28, "probability": 0.6706 }, { "start": 16825.98, "end": 16826.28, "probability": 0.5105 }, { "start": 16827.58, "end": 16829.78, "probability": 0.8137 }, { "start": 16830.64, "end": 16831.7, "probability": 0.8844 }, { "start": 16832.94, "end": 16833.38, "probability": 0.7639 }, { "start": 16834.6, "end": 16835.36, "probability": 0.9902 }, { "start": 16836.14, "end": 16836.6, "probability": 0.9841 }, { "start": 16837.66, "end": 16838.42, "probability": 0.9583 }, { "start": 16839.77, "end": 16842.02, "probability": 0.9954 }, { "start": 16842.72, "end": 16843.1, "probability": 0.9113 }, { "start": 16844.08, "end": 16844.98, "probability": 0.9924 }, { "start": 16846.14, "end": 16846.5, "probability": 0.9924 }, { "start": 16847.48, "end": 16848.38, "probability": 0.9239 }, { "start": 16849.42, "end": 16849.7, "probability": 0.5973 }, { "start": 16851.64, "end": 16852.96, "probability": 0.5457 }, { "start": 16854.0, "end": 16855.88, "probability": 0.9327 }, { "start": 16856.84, "end": 16857.28, "probability": 0.9884 }, { "start": 16858.06, "end": 16858.84, "probability": 0.961 }, { "start": 16859.76, "end": 16861.86, "probability": 0.9811 }, { "start": 16863.46, "end": 16865.82, "probability": 0.9744 }, { "start": 16867.14, "end": 16867.64, "probability": 0.9827 }, { "start": 16869.22, "end": 16870.38, "probability": 0.9524 }, { "start": 16871.14, "end": 16871.62, "probability": 0.9668 }, { "start": 16872.58, "end": 16873.02, "probability": 0.9628 }, { "start": 16874.98, "end": 16876.53, "probability": 0.5075 }, { "start": 16883.66, "end": 16884.18, "probability": 0.7088 }, { "start": 16886.44, "end": 16887.54, "probability": 0.628 }, { "start": 16888.94, "end": 16889.7, "probability": 0.8739 }, { "start": 16890.56, "end": 16891.26, "probability": 0.8606 }, { "start": 16894.36, "end": 16896.52, "probability": 0.4955 }, { "start": 16903.62, "end": 16904.76, "probability": 0.5367 }, { "start": 16907.06, "end": 16908.82, "probability": 0.8617 }, { "start": 16910.38, "end": 16911.78, "probability": 0.7669 }, { "start": 16912.84, "end": 16914.04, "probability": 0.9414 }, { "start": 16914.66, "end": 16915.54, "probability": 0.9544 }, { "start": 16916.56, "end": 16917.26, "probability": 0.9417 }, { "start": 16917.84, "end": 16919.18, "probability": 0.8306 }, { "start": 16920.26, "end": 16920.68, "probability": 0.9263 }, { "start": 16922.06, "end": 16923.34, "probability": 0.9435 }, { "start": 16925.42, "end": 16925.94, "probability": 0.9919 }, { "start": 16926.9, "end": 16927.74, "probability": 0.9867 }, { "start": 16928.4, "end": 16928.84, "probability": 0.9939 }, { "start": 16929.88, "end": 16930.82, "probability": 0.6772 }, { "start": 16931.72, "end": 16932.3, "probability": 0.7402 }, { "start": 16933.4, "end": 16934.3, "probability": 0.3005 }, { "start": 16935.82, "end": 16936.22, "probability": 0.7393 }, { "start": 16937.14, "end": 16938.36, "probability": 0.8624 }, { "start": 16940.18, "end": 16940.68, "probability": 0.9414 }, { "start": 16941.7, "end": 16943.24, "probability": 0.8532 }, { "start": 16944.21, "end": 16946.82, "probability": 0.7182 }, { "start": 16951.68, "end": 16959.82, "probability": 0.5989 }, { "start": 16963.7, "end": 16966.88, "probability": 0.3214 }, { "start": 16967.6, "end": 16968.06, "probability": 0.6879 }, { "start": 16970.28, "end": 16971.36, "probability": 0.7019 }, { "start": 16973.01, "end": 16974.28, "probability": 0.8299 }, { "start": 16976.06, "end": 16977.88, "probability": 0.985 }, { "start": 16979.46, "end": 16979.94, "probability": 0.9417 }, { "start": 16981.24, "end": 16981.72, "probability": 0.7881 }, { "start": 16983.2, "end": 16983.84, "probability": 0.99 }, { "start": 16985.12, "end": 16985.67, "probability": 0.6571 }, { "start": 16989.44, "end": 16990.74, "probability": 0.0606 }, { "start": 17003.38, "end": 17007.64, "probability": 0.5001 }, { "start": 17009.64, "end": 17010.04, "probability": 0.6916 }, { "start": 17011.6, "end": 17012.58, "probability": 0.7427 }, { "start": 17016.82, "end": 17017.94, "probability": 0.521 }, { "start": 17020.48, "end": 17021.72, "probability": 0.8829 }, { "start": 17022.78, "end": 17025.32, "probability": 0.8835 }, { "start": 17027.42, "end": 17027.78, "probability": 0.8988 }, { "start": 17029.08, "end": 17029.9, "probability": 0.7853 }, { "start": 17032.82, "end": 17036.26, "probability": 0.8778 }, { "start": 17040.18, "end": 17040.68, "probability": 0.9873 }, { "start": 17042.23, "end": 17042.74, "probability": 0.8538 }, { "start": 17045.88, "end": 17046.64, "probability": 0.7468 }, { "start": 17047.66, "end": 17048.42, "probability": 0.6954 }, { "start": 17049.88, "end": 17051.1, "probability": 0.7466 }, { "start": 17051.72, "end": 17052.14, "probability": 0.9749 }, { "start": 17052.92, "end": 17053.8, "probability": 0.956 }, { "start": 17054.7, "end": 17057.36, "probability": 0.961 }, { "start": 17058.6, "end": 17059.1, "probability": 0.9811 }, { "start": 17060.0, "end": 17060.86, "probability": 0.9657 }, { "start": 17062.2, "end": 17062.68, "probability": 0.9858 }, { "start": 17063.88, "end": 17064.92, "probability": 0.8502 }, { "start": 17066.26, "end": 17066.66, "probability": 0.968 }, { "start": 17067.52, "end": 17069.2, "probability": 0.9139 }, { "start": 17070.7, "end": 17072.3, "probability": 0.4084 }, { "start": 17075.66, "end": 17077.06, "probability": 0.2436 }, { "start": 17077.98, "end": 17078.36, "probability": 0.5079 }, { "start": 17079.4, "end": 17080.22, "probability": 0.8293 }, { "start": 17081.24, "end": 17083.66, "probability": 0.9314 }, { "start": 17084.98, "end": 17087.34, "probability": 0.8887 }, { "start": 17088.86, "end": 17089.36, "probability": 0.978 }, { "start": 17090.5, "end": 17091.32, "probability": 0.8436 }, { "start": 17092.78, "end": 17093.24, "probability": 0.9372 }, { "start": 17094.28, "end": 17095.76, "probability": 0.9088 }, { "start": 17097.04, "end": 17097.44, "probability": 0.9626 }, { "start": 17098.36, "end": 17099.44, "probability": 0.7201 }, { "start": 17102.22, "end": 17102.92, "probability": 0.7324 }, { "start": 17106.7, "end": 17106.96, "probability": 0.5033 }, { "start": 17107.92, "end": 17109.36, "probability": 0.7981 }, { "start": 17110.08, "end": 17110.46, "probability": 0.8757 }, { "start": 17111.48, "end": 17112.22, "probability": 0.9439 }, { "start": 17113.77, "end": 17115.92, "probability": 0.938 }, { "start": 17120.06, "end": 17120.58, "probability": 0.9637 }, { "start": 17123.52, "end": 17124.24, "probability": 0.3107 }, { "start": 17127.86, "end": 17129.28, "probability": 0.1661 }, { "start": 17130.66, "end": 17131.56, "probability": 0.7792 }, { "start": 17133.34, "end": 17134.6, "probability": 0.7834 }, { "start": 17135.76, "end": 17136.16, "probability": 0.9185 }, { "start": 17137.76, "end": 17138.38, "probability": 0.8992 }, { "start": 17140.84, "end": 17141.66, "probability": 0.8647 }, { "start": 17143.18, "end": 17144.32, "probability": 0.8466 }, { "start": 17146.64, "end": 17148.68, "probability": 0.8245 }, { "start": 17150.24, "end": 17152.12, "probability": 0.8975 }, { "start": 17153.34, "end": 17154.28, "probability": 0.8581 }, { "start": 17154.98, "end": 17155.08, "probability": 0.9856 }, { "start": 17155.86, "end": 17157.4, "probability": 0.7688 }, { "start": 17158.38, "end": 17158.84, "probability": 0.8305 }, { "start": 17159.72, "end": 17160.52, "probability": 0.8039 }, { "start": 17162.38, "end": 17162.92, "probability": 0.9759 }, { "start": 17164.0, "end": 17165.32, "probability": 0.8519 }, { "start": 17166.56, "end": 17167.06, "probability": 0.9812 }, { "start": 17169.34, "end": 17170.34, "probability": 0.5448 }, { "start": 17171.18, "end": 17171.66, "probability": 0.9897 }, { "start": 17172.52, "end": 17173.76, "probability": 0.8338 }, { "start": 17174.78, "end": 17175.18, "probability": 0.9922 }, { "start": 17176.24, "end": 17177.6, "probability": 0.6968 }, { "start": 17183.62, "end": 17184.48, "probability": 0.8048 }, { "start": 17186.1, "end": 17187.16, "probability": 0.8553 }, { "start": 17188.32, "end": 17188.82, "probability": 0.7013 }, { "start": 17190.48, "end": 17191.44, "probability": 0.8294 }, { "start": 17194.52, "end": 17195.44, "probability": 0.9549 }, { "start": 17197.6, "end": 17198.19, "probability": 0.4906 }, { "start": 17199.34, "end": 17199.8, "probability": 0.9788 }, { "start": 17201.76, "end": 17202.24, "probability": 0.9819 }, { "start": 17204.36, "end": 17204.84, "probability": 0.9798 }, { "start": 17205.82, "end": 17207.12, "probability": 0.9191 }, { "start": 17211.16, "end": 17212.26, "probability": 0.5008 }, { "start": 17213.7, "end": 17215.46, "probability": 0.5001 }, { "start": 17219.52, "end": 17220.74, "probability": 0.5464 }, { "start": 17221.68, "end": 17222.06, "probability": 0.7964 }, { "start": 17223.38, "end": 17224.32, "probability": 0.7162 }, { "start": 17228.08, "end": 17229.66, "probability": 0.4969 }, { "start": 17230.64, "end": 17231.62, "probability": 0.597 }, { "start": 17234.06, "end": 17234.52, "probability": 0.7184 }, { "start": 17235.76, "end": 17236.62, "probability": 0.7958 }, { "start": 17243.18, "end": 17243.62, "probability": 0.6995 }, { "start": 17246.66, "end": 17247.42, "probability": 0.6203 }, { "start": 17248.38, "end": 17248.82, "probability": 0.6615 }, { "start": 17250.04, "end": 17250.9, "probability": 0.8753 }, { "start": 17252.24, "end": 17252.76, "probability": 0.9759 }, { "start": 17253.74, "end": 17254.54, "probability": 0.9648 }, { "start": 17256.48, "end": 17258.96, "probability": 0.8968 }, { "start": 17260.44, "end": 17263.14, "probability": 0.9801 }, { "start": 17264.44, "end": 17267.22, "probability": 0.9924 }, { "start": 17267.74, "end": 17268.2, "probability": 0.9529 }, { "start": 17269.16, "end": 17270.62, "probability": 0.9884 }, { "start": 17271.46, "end": 17271.74, "probability": 0.9795 }, { "start": 17272.84, "end": 17273.38, "probability": 0.8738 }, { "start": 17274.58, "end": 17274.9, "probability": 0.5289 }, { "start": 17275.96, "end": 17277.34, "probability": 0.7762 }, { "start": 17278.16, "end": 17278.5, "probability": 0.9521 }, { "start": 17279.56, "end": 17281.1, "probability": 0.9127 }, { "start": 17281.94, "end": 17285.24, "probability": 0.8713 }, { "start": 17289.12, "end": 17290.06, "probability": 0.8809 }, { "start": 17291.2, "end": 17292.22, "probability": 0.9057 }, { "start": 17293.84, "end": 17294.24, "probability": 0.9893 }, { "start": 17295.62, "end": 17296.92, "probability": 0.9608 }, { "start": 17298.22, "end": 17298.64, "probability": 0.9743 }, { "start": 17299.82, "end": 17300.68, "probability": 0.7636 }, { "start": 17303.72, "end": 17304.22, "probability": 0.7539 }, { "start": 17305.66, "end": 17306.7, "probability": 0.7767 }, { "start": 17307.82, "end": 17309.88, "probability": 0.6981 }, { "start": 17312.34, "end": 17314.84, "probability": 0.98 }, { "start": 17315.74, "end": 17316.18, "probability": 0.8752 }, { "start": 17317.4, "end": 17318.92, "probability": 0.9514 }, { "start": 17319.84, "end": 17320.32, "probability": 0.9929 }, { "start": 17321.32, "end": 17322.26, "probability": 0.8578 }, { "start": 17323.16, "end": 17323.62, "probability": 0.5332 }, { "start": 17324.58, "end": 17325.24, "probability": 0.4369 }, { "start": 17326.02, "end": 17328.32, "probability": 0.6275 }, { "start": 17329.78, "end": 17330.26, "probability": 0.9102 }, { "start": 17333.4, "end": 17337.1, "probability": 0.9909 }, { "start": 17339.13, "end": 17341.81, "probability": 0.5339 }, { "start": 17342.98, "end": 17344.0, "probability": 0.6609 }, { "start": 17344.68, "end": 17345.44, "probability": 0.9807 }, { "start": 17346.1, "end": 17347.42, "probability": 0.7843 }, { "start": 17348.24, "end": 17349.04, "probability": 0.9639 }, { "start": 17349.9, "end": 17350.98, "probability": 0.0352 }, { "start": 17352.0, "end": 17352.68, "probability": 0.9524 }, { "start": 17357.9, "end": 17359.28, "probability": 0.3346 }, { "start": 17361.14, "end": 17362.42, "probability": 0.5044 }, { "start": 17363.48, "end": 17364.58, "probability": 0.5092 }, { "start": 17366.44, "end": 17369.2, "probability": 0.7044 }, { "start": 17371.26, "end": 17372.39, "probability": 0.5589 }, { "start": 17373.44, "end": 17374.34, "probability": 0.9701 }, { "start": 17375.47, "end": 17380.7, "probability": 0.9872 }, { "start": 17382.32, "end": 17383.9, "probability": 0.6276 }, { "start": 17383.94, "end": 17384.54, "probability": 0.7215 }, { "start": 17385.6, "end": 17387.08, "probability": 0.0824 }, { "start": 17415.58, "end": 17419.72, "probability": 0.1309 }, { "start": 17420.38, "end": 17420.54, "probability": 0.012 }, { "start": 17422.66, "end": 17423.86, "probability": 0.0985 }, { "start": 17424.88, "end": 17433.64, "probability": 0.1572 }, { "start": 17439.16, "end": 17440.78, "probability": 0.0375 }, { "start": 17441.64, "end": 17443.26, "probability": 0.1007 }, { "start": 17490.62, "end": 17490.98, "probability": 0.0328 }, { "start": 17491.0, "end": 17491.0, "probability": 0.0 }, { "start": 17491.0, "end": 17492.92, "probability": 0.8075 }, { "start": 17493.32, "end": 17496.26, "probability": 0.9795 }, { "start": 17496.26, "end": 17500.38, "probability": 0.7532 }, { "start": 17501.1, "end": 17508.3, "probability": 0.8341 }, { "start": 17508.38, "end": 17509.18, "probability": 0.8169 }, { "start": 17509.36, "end": 17511.24, "probability": 0.528 }, { "start": 17511.28, "end": 17511.72, "probability": 0.2793 }, { "start": 17512.48, "end": 17513.48, "probability": 0.7192 }, { "start": 17515.88, "end": 17518.18, "probability": 0.8642 }, { "start": 17518.88, "end": 17521.84, "probability": 0.9954 }, { "start": 17522.82, "end": 17523.66, "probability": 0.9611 }, { "start": 17523.74, "end": 17524.42, "probability": 0.8723 }, { "start": 17524.48, "end": 17526.13, "probability": 0.9474 }, { "start": 17526.62, "end": 17528.3, "probability": 0.9749 }, { "start": 17528.38, "end": 17529.26, "probability": 0.989 }, { "start": 17529.48, "end": 17529.84, "probability": 0.4281 }, { "start": 17530.08, "end": 17530.48, "probability": 0.7605 }, { "start": 17531.16, "end": 17531.6, "probability": 0.7676 }, { "start": 17535.34, "end": 17538.02, "probability": 0.7042 }, { "start": 17539.3, "end": 17540.26, "probability": 0.9863 }, { "start": 17540.3, "end": 17541.74, "probability": 0.8702 }, { "start": 17542.42, "end": 17543.0, "probability": 0.6719 }, { "start": 17543.1, "end": 17543.48, "probability": 0.7847 }, { "start": 17543.56, "end": 17544.74, "probability": 0.9421 }, { "start": 17544.84, "end": 17545.28, "probability": 0.7104 }, { "start": 17546.38, "end": 17546.96, "probability": 0.9321 }, { "start": 17547.08, "end": 17548.23, "probability": 0.3672 }, { "start": 17548.3, "end": 17549.62, "probability": 0.5836 }, { "start": 17550.24, "end": 17551.75, "probability": 0.6702 }, { "start": 17554.02, "end": 17556.84, "probability": 0.3485 }, { "start": 17559.0, "end": 17561.28, "probability": 0.6766 }, { "start": 17562.48, "end": 17564.62, "probability": 0.9977 }, { "start": 17566.42, "end": 17569.86, "probability": 0.9879 }, { "start": 17571.0, "end": 17572.22, "probability": 0.8912 }, { "start": 17573.76, "end": 17575.08, "probability": 0.6384 }, { "start": 17575.84, "end": 17578.34, "probability": 0.9943 }, { "start": 17579.78, "end": 17581.74, "probability": 0.9539 }, { "start": 17582.56, "end": 17584.78, "probability": 0.9932 }, { "start": 17586.0, "end": 17591.08, "probability": 0.9957 }, { "start": 17593.22, "end": 17596.64, "probability": 0.9956 }, { "start": 17597.26, "end": 17599.52, "probability": 0.8856 }, { "start": 17600.14, "end": 17602.0, "probability": 0.5797 }, { "start": 17602.44, "end": 17603.26, "probability": 0.8716 }, { "start": 17603.58, "end": 17604.72, "probability": 0.9875 }, { "start": 17606.84, "end": 17611.78, "probability": 0.9909 }, { "start": 17612.96, "end": 17614.06, "probability": 0.8665 }, { "start": 17615.18, "end": 17617.16, "probability": 0.9943 }, { "start": 17618.04, "end": 17621.36, "probability": 0.8376 }, { "start": 17622.44, "end": 17623.08, "probability": 0.9683 }, { "start": 17624.0, "end": 17626.32, "probability": 0.9885 }, { "start": 17627.52, "end": 17629.98, "probability": 0.9856 }, { "start": 17631.18, "end": 17634.66, "probability": 0.9924 }, { "start": 17635.76, "end": 17639.9, "probability": 0.9198 }, { "start": 17641.28, "end": 17642.16, "probability": 0.7729 }, { "start": 17643.28, "end": 17647.38, "probability": 0.9852 }, { "start": 17648.04, "end": 17648.5, "probability": 0.96 }, { "start": 17649.44, "end": 17649.84, "probability": 0.9634 }, { "start": 17650.46, "end": 17652.4, "probability": 0.8745 }, { "start": 17653.6, "end": 17655.94, "probability": 0.7538 }, { "start": 17656.6, "end": 17660.12, "probability": 0.9688 }, { "start": 17661.4, "end": 17664.02, "probability": 0.9872 }, { "start": 17665.16, "end": 17667.12, "probability": 0.9951 }, { "start": 17669.72, "end": 17670.78, "probability": 0.9584 }, { "start": 17672.18, "end": 17675.76, "probability": 0.9966 }, { "start": 17676.82, "end": 17682.6, "probability": 0.9827 }, { "start": 17683.68, "end": 17684.7, "probability": 0.9562 }, { "start": 17685.96, "end": 17686.84, "probability": 0.932 }, { "start": 17687.4, "end": 17688.3, "probability": 0.8226 }, { "start": 17688.78, "end": 17693.32, "probability": 0.9788 }, { "start": 17694.4, "end": 17695.88, "probability": 0.8381 }, { "start": 17696.56, "end": 17697.44, "probability": 0.7982 }, { "start": 17698.16, "end": 17700.26, "probability": 0.963 }, { "start": 17702.1, "end": 17706.84, "probability": 0.9985 }, { "start": 17707.6, "end": 17710.5, "probability": 0.9994 }, { "start": 17711.16, "end": 17711.98, "probability": 0.9844 }, { "start": 17713.46, "end": 17714.22, "probability": 0.8433 }, { "start": 17715.24, "end": 17718.22, "probability": 0.9993 }, { "start": 17719.18, "end": 17721.44, "probability": 0.882 }, { "start": 17722.24, "end": 17723.32, "probability": 0.8979 }, { "start": 17724.32, "end": 17728.56, "probability": 0.9706 }, { "start": 17729.56, "end": 17730.88, "probability": 0.9971 }, { "start": 17731.68, "end": 17735.88, "probability": 0.9963 }, { "start": 17737.86, "end": 17740.08, "probability": 0.9403 }, { "start": 17741.3, "end": 17742.72, "probability": 0.8358 }, { "start": 17743.92, "end": 17745.86, "probability": 0.8429 }, { "start": 17746.76, "end": 17747.38, "probability": 0.2268 }, { "start": 17747.38, "end": 17750.44, "probability": 0.9375 }, { "start": 17750.52, "end": 17752.3, "probability": 0.6958 }, { "start": 17753.1, "end": 17757.22, "probability": 0.9732 }, { "start": 17758.7, "end": 17762.28, "probability": 0.9888 }, { "start": 17762.74, "end": 17764.8, "probability": 0.9238 }, { "start": 17765.64, "end": 17769.46, "probability": 0.9692 }, { "start": 17771.88, "end": 17774.6, "probability": 0.9922 }, { "start": 17774.6, "end": 17778.08, "probability": 0.9966 }, { "start": 17778.84, "end": 17779.56, "probability": 0.796 }, { "start": 17780.24, "end": 17781.6, "probability": 0.9717 }, { "start": 17782.24, "end": 17783.18, "probability": 0.0266 }, { "start": 17784.02, "end": 17787.92, "probability": 0.9227 }, { "start": 17789.04, "end": 17792.06, "probability": 0.9782 }, { "start": 17792.78, "end": 17796.42, "probability": 0.9919 }, { "start": 17797.06, "end": 17799.08, "probability": 0.5086 }, { "start": 17800.26, "end": 17805.58, "probability": 0.9939 }, { "start": 17806.52, "end": 17811.8, "probability": 0.9828 }, { "start": 17813.28, "end": 17817.74, "probability": 0.9925 }, { "start": 17818.28, "end": 17821.14, "probability": 0.9982 }, { "start": 17821.76, "end": 17824.72, "probability": 0.9479 }, { "start": 17825.5, "end": 17828.22, "probability": 0.9985 }, { "start": 17829.42, "end": 17829.86, "probability": 0.7755 }, { "start": 17831.24, "end": 17832.7, "probability": 0.9836 }, { "start": 17836.62, "end": 17837.18, "probability": 0.1486 }, { "start": 17837.18, "end": 17840.14, "probability": 0.9935 }, { "start": 17840.24, "end": 17840.82, "probability": 0.9838 }, { "start": 17841.2, "end": 17841.84, "probability": 0.5705 }, { "start": 17842.8, "end": 17845.28, "probability": 0.9756 }, { "start": 17846.14, "end": 17849.1, "probability": 0.9976 }, { "start": 17850.38, "end": 17853.04, "probability": 0.9966 }, { "start": 17854.02, "end": 17854.84, "probability": 0.9573 }, { "start": 17855.4, "end": 17857.72, "probability": 0.9697 }, { "start": 17858.46, "end": 17860.14, "probability": 0.9931 }, { "start": 17860.94, "end": 17861.8, "probability": 0.9288 }, { "start": 17862.6, "end": 17863.58, "probability": 0.891 }, { "start": 17864.36, "end": 17867.62, "probability": 0.9903 }, { "start": 17868.34, "end": 17870.74, "probability": 0.9934 }, { "start": 17871.3, "end": 17871.96, "probability": 0.9014 }, { "start": 17872.6, "end": 17872.96, "probability": 0.7668 }, { "start": 17873.5, "end": 17875.46, "probability": 0.7331 }, { "start": 17875.78, "end": 17877.64, "probability": 0.8991 }, { "start": 17878.62, "end": 17881.32, "probability": 0.9233 }, { "start": 17884.66, "end": 17888.48, "probability": 0.9732 }, { "start": 17889.7, "end": 17889.84, "probability": 0.0287 }, { "start": 17904.4, "end": 17906.48, "probability": 0.3176 }, { "start": 17909.44, "end": 17911.3, "probability": 0.7378 }, { "start": 17912.32, "end": 17914.52, "probability": 0.9786 }, { "start": 17914.54, "end": 17916.62, "probability": 0.9956 }, { "start": 17917.28, "end": 17918.88, "probability": 0.9967 }, { "start": 17919.0, "end": 17920.86, "probability": 0.9734 }, { "start": 17921.6, "end": 17923.42, "probability": 0.9145 }, { "start": 17924.16, "end": 17928.86, "probability": 0.8798 }, { "start": 17929.64, "end": 17932.41, "probability": 0.9966 }, { "start": 17933.26, "end": 17934.12, "probability": 0.6078 }, { "start": 17934.24, "end": 17935.46, "probability": 0.811 }, { "start": 17936.48, "end": 17937.64, "probability": 0.9989 }, { "start": 17938.26, "end": 17942.58, "probability": 0.9986 }, { "start": 17942.58, "end": 17947.08, "probability": 0.9976 }, { "start": 17947.12, "end": 17950.62, "probability": 0.9944 }, { "start": 17950.62, "end": 17953.66, "probability": 0.9977 }, { "start": 17954.28, "end": 17955.74, "probability": 0.5866 }, { "start": 17956.26, "end": 17957.12, "probability": 0.8485 }, { "start": 17957.26, "end": 17959.84, "probability": 0.9346 }, { "start": 17959.92, "end": 17961.28, "probability": 0.9969 }, { "start": 17961.66, "end": 17965.06, "probability": 0.9506 }, { "start": 17965.26, "end": 17969.08, "probability": 0.9292 }, { "start": 17969.32, "end": 17970.86, "probability": 0.8344 }, { "start": 17971.32, "end": 17975.5, "probability": 0.8723 }, { "start": 17975.54, "end": 17977.04, "probability": 0.9468 }, { "start": 17977.64, "end": 17979.38, "probability": 0.9854 }, { "start": 17979.48, "end": 17980.7, "probability": 0.9582 }, { "start": 17981.28, "end": 17982.42, "probability": 0.881 }, { "start": 17983.1, "end": 17984.96, "probability": 0.9925 }, { "start": 17985.56, "end": 17988.04, "probability": 0.9998 }, { "start": 17988.74, "end": 17990.62, "probability": 0.8132 }, { "start": 17991.5, "end": 17994.3, "probability": 0.9807 }, { "start": 17995.16, "end": 17995.86, "probability": 0.5967 }, { "start": 17995.98, "end": 18000.32, "probability": 0.9399 }, { "start": 18000.44, "end": 18002.02, "probability": 0.8308 }, { "start": 18002.54, "end": 18007.06, "probability": 0.9993 }, { "start": 18007.07, "end": 18012.38, "probability": 0.9944 }, { "start": 18012.54, "end": 18018.32, "probability": 0.9868 }, { "start": 18018.8, "end": 18020.96, "probability": 0.9187 }, { "start": 18021.5, "end": 18022.31, "probability": 0.9458 }, { "start": 18023.86, "end": 18026.06, "probability": 0.613 }, { "start": 18027.16, "end": 18030.58, "probability": 0.9941 }, { "start": 18031.16, "end": 18033.69, "probability": 0.9933 }, { "start": 18034.62, "end": 18037.54, "probability": 0.9054 }, { "start": 18038.14, "end": 18043.94, "probability": 0.9048 }, { "start": 18044.34, "end": 18046.92, "probability": 0.9896 }, { "start": 18047.58, "end": 18048.3, "probability": 0.9712 }, { "start": 18048.36, "end": 18049.18, "probability": 0.3884 }, { "start": 18050.16, "end": 18053.14, "probability": 0.7504 }, { "start": 18053.72, "end": 18055.82, "probability": 0.6898 }, { "start": 18056.36, "end": 18059.72, "probability": 0.9038 }, { "start": 18060.7, "end": 18063.42, "probability": 0.9077 }, { "start": 18063.42, "end": 18066.48, "probability": 0.9749 }, { "start": 18067.64, "end": 18072.76, "probability": 0.8482 }, { "start": 18073.22, "end": 18074.96, "probability": 0.9155 }, { "start": 18075.62, "end": 18076.62, "probability": 0.7397 }, { "start": 18077.14, "end": 18078.1, "probability": 0.9706 }, { "start": 18078.18, "end": 18080.4, "probability": 0.9635 }, { "start": 18080.88, "end": 18082.38, "probability": 0.7103 }, { "start": 18082.92, "end": 18084.28, "probability": 0.9833 }, { "start": 18085.08, "end": 18089.18, "probability": 0.9689 }, { "start": 18089.78, "end": 18091.34, "probability": 0.9208 }, { "start": 18092.44, "end": 18093.32, "probability": 0.8705 }, { "start": 18093.96, "end": 18094.92, "probability": 0.925 }, { "start": 18095.96, "end": 18100.3, "probability": 0.9877 }, { "start": 18100.6, "end": 18103.82, "probability": 0.9594 }, { "start": 18104.62, "end": 18107.26, "probability": 0.8341 }, { "start": 18107.36, "end": 18112.68, "probability": 0.991 }, { "start": 18113.12, "end": 18115.66, "probability": 0.8994 }, { "start": 18116.68, "end": 18120.02, "probability": 0.7452 }, { "start": 18120.72, "end": 18122.14, "probability": 0.6499 }, { "start": 18122.26, "end": 18123.54, "probability": 0.7456 }, { "start": 18123.74, "end": 18126.98, "probability": 0.9678 }, { "start": 18127.42, "end": 18130.24, "probability": 0.9931 }, { "start": 18130.94, "end": 18130.94, "probability": 0.4401 }, { "start": 18131.14, "end": 18131.18, "probability": 0.41 }, { "start": 18131.3, "end": 18132.2, "probability": 0.9672 }, { "start": 18132.86, "end": 18134.4, "probability": 0.7346 }, { "start": 18134.44, "end": 18135.8, "probability": 0.9805 }, { "start": 18136.08, "end": 18137.82, "probability": 0.7659 }, { "start": 18137.98, "end": 18138.68, "probability": 0.998 }, { "start": 18139.34, "end": 18140.34, "probability": 0.9488 }, { "start": 18143.2, "end": 18145.44, "probability": 0.995 }, { "start": 18178.64, "end": 18180.96, "probability": 0.6963 }, { "start": 18181.88, "end": 18184.08, "probability": 0.9627 }, { "start": 18187.02, "end": 18192.78, "probability": 0.9981 }, { "start": 18193.72, "end": 18194.96, "probability": 0.9656 }, { "start": 18195.88, "end": 18198.7, "probability": 0.7355 }, { "start": 18200.0, "end": 18201.68, "probability": 0.9915 }, { "start": 18202.92, "end": 18203.71, "probability": 0.9779 }, { "start": 18206.08, "end": 18208.66, "probability": 0.2178 }, { "start": 18209.3, "end": 18210.64, "probability": 0.7542 }, { "start": 18214.06, "end": 18216.14, "probability": 0.8892 }, { "start": 18217.92, "end": 18218.4, "probability": 0.973 }, { "start": 18218.92, "end": 18219.02, "probability": 0.9987 }, { "start": 18220.48, "end": 18223.72, "probability": 0.9869 }, { "start": 18225.0, "end": 18227.14, "probability": 0.9963 }, { "start": 18227.68, "end": 18231.88, "probability": 0.9261 }, { "start": 18232.78, "end": 18234.56, "probability": 0.8475 }, { "start": 18235.22, "end": 18235.66, "probability": 0.4867 }, { "start": 18238.0, "end": 18239.4, "probability": 0.9768 }, { "start": 18240.28, "end": 18240.98, "probability": 0.6342 }, { "start": 18243.5, "end": 18245.44, "probability": 0.9285 }, { "start": 18246.52, "end": 18249.68, "probability": 0.978 }, { "start": 18250.86, "end": 18252.1, "probability": 0.3843 }, { "start": 18254.78, "end": 18255.27, "probability": 0.9951 }, { "start": 18256.84, "end": 18258.34, "probability": 0.9634 }, { "start": 18259.94, "end": 18263.1, "probability": 0.9985 }, { "start": 18263.36, "end": 18264.7, "probability": 0.9956 }, { "start": 18266.16, "end": 18267.42, "probability": 0.7495 }, { "start": 18268.0, "end": 18269.18, "probability": 0.9896 }, { "start": 18271.2, "end": 18275.52, "probability": 0.9965 }, { "start": 18276.22, "end": 18279.02, "probability": 0.9953 }, { "start": 18281.54, "end": 18283.72, "probability": 0.9924 }, { "start": 18283.74, "end": 18284.25, "probability": 0.8787 }, { "start": 18285.84, "end": 18288.45, "probability": 0.7769 }, { "start": 18289.74, "end": 18291.84, "probability": 0.9812 }, { "start": 18292.94, "end": 18295.38, "probability": 0.9892 }, { "start": 18296.26, "end": 18299.42, "probability": 0.886 }, { "start": 18300.34, "end": 18301.86, "probability": 0.9298 }, { "start": 18303.06, "end": 18304.02, "probability": 0.9046 }, { "start": 18304.36, "end": 18306.42, "probability": 0.8403 }, { "start": 18306.54, "end": 18307.42, "probability": 0.6843 }, { "start": 18308.48, "end": 18310.42, "probability": 0.939 }, { "start": 18311.42, "end": 18312.94, "probability": 0.8947 }, { "start": 18314.42, "end": 18315.46, "probability": 0.848 }, { "start": 18316.74, "end": 18318.42, "probability": 0.9985 }, { "start": 18318.6, "end": 18319.9, "probability": 0.957 }, { "start": 18321.42, "end": 18322.7, "probability": 0.9896 }, { "start": 18323.72, "end": 18325.86, "probability": 0.7886 }, { "start": 18326.44, "end": 18327.37, "probability": 0.4541 }, { "start": 18329.96, "end": 18330.82, "probability": 0.9834 }, { "start": 18331.72, "end": 18334.22, "probability": 0.9294 }, { "start": 18335.56, "end": 18336.89, "probability": 0.9844 }, { "start": 18339.68, "end": 18340.6, "probability": 0.7148 }, { "start": 18341.62, "end": 18343.6, "probability": 0.9673 }, { "start": 18345.16, "end": 18345.92, "probability": 0.9274 }, { "start": 18347.72, "end": 18348.04, "probability": 0.7497 }, { "start": 18349.2, "end": 18351.02, "probability": 0.936 }, { "start": 18351.92, "end": 18353.6, "probability": 0.9967 }, { "start": 18355.2, "end": 18357.68, "probability": 0.977 }, { "start": 18358.52, "end": 18360.24, "probability": 0.9977 }, { "start": 18360.84, "end": 18363.28, "probability": 0.4348 }, { "start": 18364.76, "end": 18366.06, "probability": 0.5258 }, { "start": 18366.98, "end": 18369.16, "probability": 0.9915 }, { "start": 18370.72, "end": 18371.52, "probability": 0.946 }, { "start": 18373.06, "end": 18374.34, "probability": 0.9233 }, { "start": 18375.9, "end": 18377.6, "probability": 0.9618 }, { "start": 18378.32, "end": 18379.78, "probability": 0.9844 }, { "start": 18380.42, "end": 18382.86, "probability": 0.9736 }, { "start": 18383.62, "end": 18384.8, "probability": 0.9854 }, { "start": 18386.26, "end": 18390.14, "probability": 0.9885 }, { "start": 18390.76, "end": 18393.44, "probability": 0.8331 }, { "start": 18396.94, "end": 18397.24, "probability": 0.4638 }, { "start": 18397.38, "end": 18398.6, "probability": 0.999 }, { "start": 18399.64, "end": 18401.88, "probability": 0.9904 }, { "start": 18402.8, "end": 18403.06, "probability": 0.228 }, { "start": 18403.16, "end": 18404.76, "probability": 0.8735 }, { "start": 18404.76, "end": 18405.12, "probability": 0.795 }, { "start": 18405.8, "end": 18406.0, "probability": 0.408 }, { "start": 18406.24, "end": 18407.92, "probability": 0.6651 }, { "start": 18408.68, "end": 18409.78, "probability": 0.9011 }, { "start": 18410.56, "end": 18411.98, "probability": 0.9232 }, { "start": 18412.4, "end": 18413.68, "probability": 0.5877 }, { "start": 18413.74, "end": 18417.58, "probability": 0.9612 }, { "start": 18417.66, "end": 18417.7, "probability": 0.1654 }, { "start": 18418.38, "end": 18418.38, "probability": 0.3846 }, { "start": 18418.38, "end": 18419.58, "probability": 0.9756 }, { "start": 18419.86, "end": 18421.32, "probability": 0.8828 }, { "start": 18423.34, "end": 18424.32, "probability": 0.0414 }, { "start": 18428.98, "end": 18430.08, "probability": 0.2197 }, { "start": 18444.36, "end": 18445.46, "probability": 0.7399 }, { "start": 18449.36, "end": 18449.6, "probability": 0.5437 }, { "start": 18450.36, "end": 18451.38, "probability": 0.7074 }, { "start": 18453.16, "end": 18458.21, "probability": 0.8041 }, { "start": 18459.52, "end": 18461.22, "probability": 0.7676 }, { "start": 18462.0, "end": 18464.42, "probability": 0.9843 }, { "start": 18465.9, "end": 18468.28, "probability": 0.9785 }, { "start": 18469.54, "end": 18471.42, "probability": 0.8268 }, { "start": 18471.86, "end": 18475.61, "probability": 0.9568 }, { "start": 18476.62, "end": 18480.14, "probability": 0.9971 }, { "start": 18480.76, "end": 18483.16, "probability": 0.9778 }, { "start": 18483.9, "end": 18484.48, "probability": 0.9385 }, { "start": 18485.4, "end": 18485.54, "probability": 0.498 }, { "start": 18487.2, "end": 18489.86, "probability": 0.8425 }, { "start": 18490.44, "end": 18492.48, "probability": 0.9941 }, { "start": 18492.52, "end": 18494.64, "probability": 0.6654 }, { "start": 18495.9, "end": 18497.2, "probability": 0.9681 }, { "start": 18498.86, "end": 18500.36, "probability": 0.6315 }, { "start": 18502.32, "end": 18504.68, "probability": 0.8665 }, { "start": 18506.64, "end": 18509.36, "probability": 0.6917 }, { "start": 18510.88, "end": 18511.74, "probability": 0.9903 }, { "start": 18513.3, "end": 18519.8, "probability": 0.7395 }, { "start": 18521.7, "end": 18527.64, "probability": 0.963 }, { "start": 18527.66, "end": 18529.5, "probability": 0.9054 }, { "start": 18530.76, "end": 18532.74, "probability": 0.9918 }, { "start": 18532.8, "end": 18533.76, "probability": 0.7054 }, { "start": 18533.88, "end": 18537.28, "probability": 0.8297 }, { "start": 18537.34, "end": 18538.8, "probability": 0.9724 }, { "start": 18540.12, "end": 18542.06, "probability": 0.6596 }, { "start": 18542.82, "end": 18545.62, "probability": 0.9646 }, { "start": 18547.54, "end": 18549.62, "probability": 0.723 }, { "start": 18549.72, "end": 18550.48, "probability": 0.9466 }, { "start": 18550.72, "end": 18551.68, "probability": 0.9155 }, { "start": 18552.36, "end": 18553.86, "probability": 0.6419 }, { "start": 18554.26, "end": 18556.4, "probability": 0.9956 }, { "start": 18557.9, "end": 18559.2, "probability": 0.985 }, { "start": 18560.82, "end": 18561.94, "probability": 0.7356 }, { "start": 18562.66, "end": 18566.1, "probability": 0.9881 }, { "start": 18567.56, "end": 18571.94, "probability": 0.9963 }, { "start": 18573.06, "end": 18576.46, "probability": 0.9795 }, { "start": 18577.02, "end": 18580.22, "probability": 0.9731 }, { "start": 18581.56, "end": 18582.2, "probability": 0.994 }, { "start": 18583.3, "end": 18585.66, "probability": 0.9955 }, { "start": 18587.06, "end": 18587.84, "probability": 0.7433 }, { "start": 18588.92, "end": 18590.12, "probability": 0.7833 }, { "start": 18590.72, "end": 18594.32, "probability": 0.9377 }, { "start": 18595.68, "end": 18596.04, "probability": 0.4127 }, { "start": 18596.52, "end": 18598.32, "probability": 0.4335 }, { "start": 18598.4, "end": 18599.24, "probability": 0.9341 }, { "start": 18606.3, "end": 18607.24, "probability": 0.4956 }, { "start": 18608.14, "end": 18609.18, "probability": 0.7371 }, { "start": 18611.14, "end": 18611.92, "probability": 0.8406 }, { "start": 18612.54, "end": 18613.46, "probability": 0.8441 }, { "start": 18613.56, "end": 18614.54, "probability": 0.6963 }, { "start": 18614.68, "end": 18615.18, "probability": 0.906 }, { "start": 18615.26, "end": 18616.5, "probability": 0.939 }, { "start": 18617.3, "end": 18620.88, "probability": 0.9092 }, { "start": 18621.0, "end": 18624.06, "probability": 0.9981 }, { "start": 18624.68, "end": 18628.84, "probability": 0.9995 }, { "start": 18630.04, "end": 18634.78, "probability": 0.9747 }, { "start": 18634.94, "end": 18636.25, "probability": 0.998 }, { "start": 18637.24, "end": 18638.74, "probability": 0.9924 }, { "start": 18639.44, "end": 18642.36, "probability": 0.9858 }, { "start": 18643.02, "end": 18643.52, "probability": 0.9274 }, { "start": 18644.06, "end": 18646.66, "probability": 0.9702 }, { "start": 18646.74, "end": 18650.78, "probability": 0.9959 }, { "start": 18651.48, "end": 18652.88, "probability": 0.993 }, { "start": 18653.68, "end": 18655.03, "probability": 0.496 }, { "start": 18655.8, "end": 18658.08, "probability": 0.9606 }, { "start": 18659.14, "end": 18660.94, "probability": 0.7682 }, { "start": 18665.64, "end": 18666.64, "probability": 0.9106 }, { "start": 18667.76, "end": 18668.6, "probability": 0.9899 }, { "start": 18670.24, "end": 18670.7, "probability": 0.9392 }, { "start": 18671.68, "end": 18672.52, "probability": 0.9964 }, { "start": 18673.2, "end": 18674.22, "probability": 0.998 }, { "start": 18675.04, "end": 18677.58, "probability": 0.9541 }, { "start": 18678.42, "end": 18681.18, "probability": 0.9902 }, { "start": 18682.62, "end": 18683.52, "probability": 0.7541 }, { "start": 18684.48, "end": 18686.68, "probability": 0.9438 }, { "start": 18687.52, "end": 18688.48, "probability": 0.2601 }, { "start": 18688.48, "end": 18688.68, "probability": 0.3022 }, { "start": 18688.68, "end": 18689.84, "probability": 0.927 }, { "start": 18690.36, "end": 18691.91, "probability": 0.9788 }, { "start": 18692.3, "end": 18695.46, "probability": 0.9944 }, { "start": 18695.46, "end": 18697.52, "probability": 0.9937 }, { "start": 18699.88, "end": 18700.92, "probability": 0.9738 }, { "start": 18701.6, "end": 18702.22, "probability": 0.9902 }, { "start": 18702.9, "end": 18706.58, "probability": 0.9923 }, { "start": 18707.42, "end": 18708.24, "probability": 0.9827 }, { "start": 18710.1, "end": 18712.82, "probability": 0.8464 }, { "start": 18714.02, "end": 18714.4, "probability": 0.4281 }, { "start": 18715.36, "end": 18716.78, "probability": 0.9211 }, { "start": 18717.1, "end": 18717.94, "probability": 0.9156 }, { "start": 18718.16, "end": 18718.78, "probability": 0.7343 }, { "start": 18718.96, "end": 18720.4, "probability": 0.9194 }, { "start": 18720.54, "end": 18721.9, "probability": 0.993 }, { "start": 18723.06, "end": 18726.74, "probability": 0.969 }, { "start": 18726.82, "end": 18728.4, "probability": 0.9941 }, { "start": 18729.72, "end": 18731.74, "probability": 0.689 }, { "start": 18731.82, "end": 18733.3, "probability": 0.9756 }, { "start": 18733.38, "end": 18737.06, "probability": 0.9846 }, { "start": 18737.48, "end": 18739.94, "probability": 0.9618 }, { "start": 18740.36, "end": 18743.6, "probability": 0.9976 }, { "start": 18744.26, "end": 18745.24, "probability": 0.9807 }, { "start": 18745.42, "end": 18746.08, "probability": 0.7557 }, { "start": 18746.56, "end": 18748.12, "probability": 0.9899 }, { "start": 18748.78, "end": 18749.66, "probability": 0.9944 }, { "start": 18750.44, "end": 18752.12, "probability": 0.9646 }, { "start": 18752.64, "end": 18754.38, "probability": 0.9939 }, { "start": 18754.54, "end": 18757.5, "probability": 0.9965 }, { "start": 18757.56, "end": 18760.4, "probability": 0.998 }, { "start": 18762.1, "end": 18764.58, "probability": 0.9905 }, { "start": 18765.81, "end": 18767.41, "probability": 0.9751 }, { "start": 18769.76, "end": 18774.52, "probability": 0.9975 }, { "start": 18774.9, "end": 18778.04, "probability": 0.9771 }, { "start": 18778.62, "end": 18779.0, "probability": 0.5136 }, { "start": 18779.0, "end": 18781.04, "probability": 0.5112 }, { "start": 18781.56, "end": 18781.76, "probability": 0.727 }, { "start": 18782.92, "end": 18784.52, "probability": 0.5588 }, { "start": 18784.52, "end": 18784.52, "probability": 0.0072 }, { "start": 18784.52, "end": 18784.52, "probability": 0.1752 }, { "start": 18784.52, "end": 18786.28, "probability": 0.9395 }, { "start": 18786.6, "end": 18786.86, "probability": 0.5432 }, { "start": 18787.28, "end": 18787.72, "probability": 0.5506 }, { "start": 18788.24, "end": 18788.82, "probability": 0.9395 }, { "start": 18788.82, "end": 18788.96, "probability": 0.4657 }, { "start": 18789.4, "end": 18790.08, "probability": 0.9672 }, { "start": 18790.12, "end": 18790.36, "probability": 0.4924 }, { "start": 18790.48, "end": 18791.36, "probability": 0.4488 }, { "start": 18791.42, "end": 18791.8, "probability": 0.8792 }, { "start": 18793.28, "end": 18793.84, "probability": 0.6161 }, { "start": 18794.67, "end": 18795.2, "probability": 0.5363 }, { "start": 18795.24, "end": 18796.44, "probability": 0.7809 }, { "start": 18796.52, "end": 18797.1, "probability": 0.9476 }, { "start": 18797.1, "end": 18797.86, "probability": 0.3565 }, { "start": 18797.94, "end": 18799.82, "probability": 0.9272 }, { "start": 18799.94, "end": 18801.56, "probability": 0.5014 }, { "start": 18801.64, "end": 18802.08, "probability": 0.5599 }, { "start": 18803.12, "end": 18803.22, "probability": 0.1789 }, { "start": 18803.22, "end": 18803.22, "probability": 0.3079 }, { "start": 18803.4, "end": 18804.46, "probability": 0.7874 }, { "start": 18805.75, "end": 18813.6, "probability": 0.7472 }, { "start": 18813.6, "end": 18817.5, "probability": 0.9921 }, { "start": 18819.06, "end": 18821.16, "probability": 0.9944 }, { "start": 18821.54, "end": 18821.88, "probability": 0.2805 }, { "start": 18821.88, "end": 18826.48, "probability": 0.996 }, { "start": 18827.32, "end": 18830.1, "probability": 0.9482 }, { "start": 18830.42, "end": 18831.46, "probability": 0.6057 }, { "start": 18831.52, "end": 18832.1, "probability": 0.2553 }, { "start": 18833.06, "end": 18834.18, "probability": 0.7764 }, { "start": 18835.58, "end": 18836.68, "probability": 0.0151 }, { "start": 18845.72, "end": 18846.16, "probability": 0.0229 }, { "start": 18846.8, "end": 18847.58, "probability": 0.2188 }, { "start": 18867.98, "end": 18870.22, "probability": 0.7251 }, { "start": 18871.5, "end": 18874.78, "probability": 0.7504 }, { "start": 18876.22, "end": 18877.88, "probability": 0.9774 }, { "start": 18879.04, "end": 18883.1, "probability": 0.9968 }, { "start": 18884.14, "end": 18887.08, "probability": 0.994 }, { "start": 18887.84, "end": 18890.64, "probability": 0.9808 }, { "start": 18892.34, "end": 18895.02, "probability": 0.9954 }, { "start": 18895.88, "end": 18900.22, "probability": 0.9969 }, { "start": 18901.32, "end": 18903.31, "probability": 0.6936 }, { "start": 18904.56, "end": 18908.08, "probability": 0.9964 }, { "start": 18908.92, "end": 18913.0, "probability": 0.9831 }, { "start": 18913.66, "end": 18917.8, "probability": 0.9977 }, { "start": 18918.66, "end": 18919.3, "probability": 0.662 }, { "start": 18919.42, "end": 18923.74, "probability": 0.9932 }, { "start": 18923.74, "end": 18928.76, "probability": 0.9756 }, { "start": 18928.9, "end": 18931.26, "probability": 0.868 }, { "start": 18932.14, "end": 18933.92, "probability": 0.8579 }, { "start": 18935.7, "end": 18938.52, "probability": 0.9942 }, { "start": 18939.26, "end": 18942.06, "probability": 0.9832 }, { "start": 18942.7, "end": 18945.12, "probability": 0.9831 }, { "start": 18945.86, "end": 18948.72, "probability": 0.993 }, { "start": 18948.72, "end": 18951.3, "probability": 0.9984 }, { "start": 18951.96, "end": 18953.36, "probability": 0.9492 }, { "start": 18953.9, "end": 18957.96, "probability": 0.9961 }, { "start": 18958.38, "end": 18961.4, "probability": 0.9939 }, { "start": 18962.44, "end": 18964.62, "probability": 0.9529 }, { "start": 18964.8, "end": 18967.18, "probability": 0.9988 }, { "start": 18967.78, "end": 18969.82, "probability": 0.9944 }, { "start": 18970.32, "end": 18973.94, "probability": 0.9827 }, { "start": 18974.18, "end": 18977.1, "probability": 0.9888 }, { "start": 18977.98, "end": 18980.24, "probability": 0.9642 }, { "start": 18981.0, "end": 18984.36, "probability": 0.9731 }, { "start": 18984.96, "end": 18986.6, "probability": 0.9874 }, { "start": 18987.28, "end": 18989.82, "probability": 0.9897 }, { "start": 18990.44, "end": 18994.16, "probability": 0.9935 }, { "start": 18994.82, "end": 18997.44, "probability": 0.9967 }, { "start": 18998.0, "end": 19003.24, "probability": 0.9927 }, { "start": 19004.12, "end": 19008.54, "probability": 0.994 }, { "start": 19009.64, "end": 19011.98, "probability": 0.8462 }, { "start": 19012.82, "end": 19015.62, "probability": 0.8657 }, { "start": 19016.52, "end": 19018.66, "probability": 0.9537 }, { "start": 19019.48, "end": 19020.66, "probability": 0.9964 }, { "start": 19021.24, "end": 19022.84, "probability": 0.983 }, { "start": 19023.58, "end": 19027.48, "probability": 0.958 }, { "start": 19028.4, "end": 19034.92, "probability": 0.9628 }, { "start": 19035.98, "end": 19037.24, "probability": 0.4713 }, { "start": 19037.84, "end": 19039.04, "probability": 0.6483 }, { "start": 19039.18, "end": 19039.82, "probability": 0.9223 }, { "start": 19040.0, "end": 19043.32, "probability": 0.9806 }, { "start": 19043.92, "end": 19046.18, "probability": 0.6792 }, { "start": 19046.84, "end": 19052.46, "probability": 0.9565 }, { "start": 19053.12, "end": 19054.24, "probability": 0.842 }, { "start": 19055.04, "end": 19055.24, "probability": 0.7263 }, { "start": 19055.24, "end": 19055.34, "probability": 0.6655 }, { "start": 19055.58, "end": 19057.08, "probability": 0.8049 }, { "start": 19057.12, "end": 19058.12, "probability": 0.8577 }, { "start": 19071.3, "end": 19072.68, "probability": 0.1564 }, { "start": 19072.68, "end": 19074.06, "probability": 0.1542 }, { "start": 19074.08, "end": 19074.18, "probability": 0.1028 }, { "start": 19074.18, "end": 19074.18, "probability": 0.0338 }, { "start": 19093.88, "end": 19096.7, "probability": 0.5256 }, { "start": 19097.4, "end": 19098.78, "probability": 0.7905 }, { "start": 19099.76, "end": 19102.38, "probability": 0.9274 }, { "start": 19103.22, "end": 19106.54, "probability": 0.8927 }, { "start": 19107.24, "end": 19110.02, "probability": 0.9569 }, { "start": 19110.28, "end": 19110.38, "probability": 0.1316 }, { "start": 19111.14, "end": 19113.36, "probability": 0.7966 }, { "start": 19113.5, "end": 19114.04, "probability": 0.8788 }, { "start": 19114.2, "end": 19114.82, "probability": 0.7316 }, { "start": 19115.22, "end": 19116.18, "probability": 0.7952 }, { "start": 19116.46, "end": 19116.86, "probability": 0.7451 }, { "start": 19117.52, "end": 19120.32, "probability": 0.9456 }, { "start": 19121.14, "end": 19122.26, "probability": 0.6605 }, { "start": 19122.84, "end": 19122.84, "probability": 0.64 }, { "start": 19122.84, "end": 19123.48, "probability": 0.4581 }, { "start": 19124.0, "end": 19124.52, "probability": 0.9299 }, { "start": 19125.06, "end": 19126.44, "probability": 0.8757 }, { "start": 19126.54, "end": 19128.76, "probability": 0.8976 }, { "start": 19129.02, "end": 19129.46, "probability": 0.822 }, { "start": 19129.64, "end": 19130.72, "probability": 0.9614 }, { "start": 19131.88, "end": 19131.88, "probability": 0.3161 }, { "start": 19131.88, "end": 19133.36, "probability": 0.6087 }, { "start": 19134.1, "end": 19134.68, "probability": 0.9628 }, { "start": 19135.3, "end": 19136.8, "probability": 0.9434 }, { "start": 19138.08, "end": 19140.1, "probability": 0.8812 }, { "start": 19140.42, "end": 19144.48, "probability": 0.9589 }, { "start": 19145.28, "end": 19145.5, "probability": 0.985 }, { "start": 19146.06, "end": 19146.45, "probability": 0.4653 }, { "start": 19147.54, "end": 19149.04, "probability": 0.9485 }, { "start": 19149.56, "end": 19151.12, "probability": 0.9773 }, { "start": 19151.74, "end": 19152.98, "probability": 0.9976 }, { "start": 19153.64, "end": 19155.58, "probability": 0.985 }, { "start": 19156.42, "end": 19158.58, "probability": 0.9843 }, { "start": 19159.58, "end": 19159.96, "probability": 0.7793 }, { "start": 19160.4, "end": 19161.48, "probability": 0.8759 }, { "start": 19161.5, "end": 19162.64, "probability": 0.3111 }, { "start": 19162.64, "end": 19163.54, "probability": 0.6431 }, { "start": 19164.3, "end": 19165.34, "probability": 0.8807 }, { "start": 19165.4, "end": 19167.04, "probability": 0.6942 }, { "start": 19167.36, "end": 19167.9, "probability": 0.9336 }, { "start": 19168.74, "end": 19171.38, "probability": 0.9546 }, { "start": 19171.86, "end": 19172.74, "probability": 0.9664 }, { "start": 19174.85, "end": 19176.68, "probability": 0.562 }, { "start": 19177.02, "end": 19179.44, "probability": 0.9698 }, { "start": 19179.74, "end": 19181.5, "probability": 0.9932 }, { "start": 19181.92, "end": 19185.06, "probability": 0.9332 }, { "start": 19185.46, "end": 19186.38, "probability": 0.7094 }, { "start": 19186.68, "end": 19187.92, "probability": 0.7395 }, { "start": 19188.22, "end": 19189.39, "probability": 0.9622 }, { "start": 19189.8, "end": 19190.48, "probability": 0.7971 }, { "start": 19190.74, "end": 19193.32, "probability": 0.7454 }, { "start": 19194.38, "end": 19195.14, "probability": 0.9438 }, { "start": 19195.94, "end": 19196.86, "probability": 0.8658 }, { "start": 19197.16, "end": 19198.42, "probability": 0.814 }, { "start": 19198.72, "end": 19199.74, "probability": 0.9171 }, { "start": 19200.08, "end": 19200.96, "probability": 0.7471 }, { "start": 19201.38, "end": 19203.34, "probability": 0.9492 }, { "start": 19203.86, "end": 19206.28, "probability": 0.8896 }, { "start": 19206.78, "end": 19207.64, "probability": 0.7366 }, { "start": 19207.94, "end": 19209.76, "probability": 0.978 }, { "start": 19210.24, "end": 19211.48, "probability": 0.8319 }, { "start": 19212.32, "end": 19213.6, "probability": 0.7681 }, { "start": 19214.3, "end": 19218.46, "probability": 0.9803 }, { "start": 19219.08, "end": 19223.34, "probability": 0.8003 }, { "start": 19224.44, "end": 19225.16, "probability": 0.9132 }, { "start": 19225.38, "end": 19227.75, "probability": 0.7983 }, { "start": 19227.84, "end": 19229.4, "probability": 0.6749 }, { "start": 19229.72, "end": 19231.84, "probability": 0.894 }, { "start": 19232.14, "end": 19232.92, "probability": 0.8452 }, { "start": 19233.32, "end": 19237.12, "probability": 0.9323 }, { "start": 19237.72, "end": 19239.08, "probability": 0.8466 }, { "start": 19239.72, "end": 19241.16, "probability": 0.6789 }, { "start": 19241.46, "end": 19243.32, "probability": 0.7107 }, { "start": 19243.76, "end": 19246.16, "probability": 0.9215 }, { "start": 19246.28, "end": 19247.54, "probability": 0.9426 }, { "start": 19248.26, "end": 19251.32, "probability": 0.8728 }, { "start": 19251.92, "end": 19255.24, "probability": 0.9267 }, { "start": 19255.34, "end": 19255.96, "probability": 0.8387 }, { "start": 19256.3, "end": 19257.16, "probability": 0.9247 }, { "start": 19257.3, "end": 19258.24, "probability": 0.8612 }, { "start": 19258.78, "end": 19259.18, "probability": 0.7257 }, { "start": 19259.48, "end": 19262.06, "probability": 0.967 }, { "start": 19262.68, "end": 19265.3, "probability": 0.8909 }, { "start": 19265.3, "end": 19267.64, "probability": 0.886 }, { "start": 19267.96, "end": 19269.12, "probability": 0.4808 }, { "start": 19269.14, "end": 19269.78, "probability": 0.7319 }, { "start": 19270.1, "end": 19271.28, "probability": 0.8572 }, { "start": 19272.44, "end": 19273.67, "probability": 0.9674 }, { "start": 19274.28, "end": 19275.92, "probability": 0.6665 }, { "start": 19275.92, "end": 19277.34, "probability": 0.5781 }, { "start": 19277.38, "end": 19277.88, "probability": 0.8237 }, { "start": 19278.48, "end": 19279.14, "probability": 0.396 }, { "start": 19279.14, "end": 19279.56, "probability": 0.9046 }, { "start": 19289.76, "end": 19289.86, "probability": 0.4323 }, { "start": 19290.56, "end": 19291.52, "probability": 0.3369 }, { "start": 19292.84, "end": 19300.26, "probability": 0.8115 }, { "start": 19300.46, "end": 19304.57, "probability": 0.9771 }, { "start": 19305.02, "end": 19307.64, "probability": 0.787 }, { "start": 19307.88, "end": 19312.04, "probability": 0.8746 }, { "start": 19312.78, "end": 19315.14, "probability": 0.7544 }, { "start": 19315.24, "end": 19315.68, "probability": 0.8795 }, { "start": 19315.76, "end": 19316.36, "probability": 0.6398 }, { "start": 19316.82, "end": 19320.22, "probability": 0.9535 }, { "start": 19320.98, "end": 19322.94, "probability": 0.8016 }, { "start": 19323.22, "end": 19325.28, "probability": 0.8682 }, { "start": 19325.82, "end": 19330.32, "probability": 0.961 }, { "start": 19330.4, "end": 19332.1, "probability": 0.5838 }, { "start": 19332.62, "end": 19335.02, "probability": 0.9949 }, { "start": 19335.64, "end": 19341.78, "probability": 0.9112 }, { "start": 19341.88, "end": 19343.48, "probability": 0.6448 }, { "start": 19343.92, "end": 19345.74, "probability": 0.8566 }, { "start": 19345.86, "end": 19348.26, "probability": 0.9664 }, { "start": 19348.68, "end": 19352.02, "probability": 0.9933 }, { "start": 19352.76, "end": 19356.7, "probability": 0.8953 }, { "start": 19357.24, "end": 19358.68, "probability": 0.7367 }, { "start": 19358.74, "end": 19361.48, "probability": 0.9348 }, { "start": 19362.0, "end": 19363.44, "probability": 0.7624 }, { "start": 19363.96, "end": 19366.86, "probability": 0.8115 }, { "start": 19367.1, "end": 19369.34, "probability": 0.7531 }, { "start": 19369.58, "end": 19373.74, "probability": 0.6751 }, { "start": 19374.16, "end": 19375.84, "probability": 0.9486 }, { "start": 19376.38, "end": 19378.91, "probability": 0.9707 }, { "start": 19379.6, "end": 19383.3, "probability": 0.9204 }, { "start": 19383.76, "end": 19389.66, "probability": 0.9429 }, { "start": 19390.18, "end": 19392.72, "probability": 0.9609 }, { "start": 19393.48, "end": 19399.36, "probability": 0.9608 }, { "start": 19399.82, "end": 19401.94, "probability": 0.9155 }, { "start": 19402.42, "end": 19406.28, "probability": 0.8843 }, { "start": 19406.38, "end": 19406.86, "probability": 0.8224 }, { "start": 19406.96, "end": 19407.86, "probability": 0.766 }, { "start": 19408.36, "end": 19413.18, "probability": 0.9321 }, { "start": 19413.4, "end": 19415.02, "probability": 0.9348 }, { "start": 19415.64, "end": 19416.02, "probability": 0.46 }, { "start": 19416.44, "end": 19421.56, "probability": 0.8631 }, { "start": 19422.12, "end": 19428.48, "probability": 0.9674 }, { "start": 19428.94, "end": 19433.36, "probability": 0.9185 }, { "start": 19433.9, "end": 19437.36, "probability": 0.9968 }, { "start": 19438.14, "end": 19441.58, "probability": 0.9971 }, { "start": 19441.58, "end": 19445.8, "probability": 0.9992 }, { "start": 19446.02, "end": 19449.6, "probability": 0.9707 }, { "start": 19449.62, "end": 19450.14, "probability": 0.7132 }, { "start": 19450.24, "end": 19451.82, "probability": 0.7934 }, { "start": 19452.14, "end": 19454.46, "probability": 0.724 }, { "start": 19455.2, "end": 19455.56, "probability": 0.3951 }, { "start": 19455.66, "end": 19460.48, "probability": 0.928 }, { "start": 19461.22, "end": 19464.06, "probability": 0.9587 }, { "start": 19464.4, "end": 19467.34, "probability": 0.9837 }, { "start": 19467.42, "end": 19468.5, "probability": 0.8305 }, { "start": 19469.0, "end": 19473.64, "probability": 0.903 }, { "start": 19473.64, "end": 19478.6, "probability": 0.8178 }, { "start": 19478.76, "end": 19478.8, "probability": 0.3057 }, { "start": 19478.8, "end": 19478.9, "probability": 0.3097 }, { "start": 19478.92, "end": 19481.38, "probability": 0.5789 }, { "start": 19481.52, "end": 19486.16, "probability": 0.9344 }, { "start": 19486.16, "end": 19486.74, "probability": 0.0275 }, { "start": 19486.82, "end": 19486.96, "probability": 0.3071 }, { "start": 19487.22, "end": 19487.24, "probability": 0.4374 }, { "start": 19487.24, "end": 19487.72, "probability": 0.7595 }, { "start": 19487.78, "end": 19489.24, "probability": 0.7564 }, { "start": 19489.38, "end": 19489.64, "probability": 0.3261 }, { "start": 19489.64, "end": 19489.64, "probability": 0.3055 }, { "start": 19489.64, "end": 19489.64, "probability": 0.181 }, { "start": 19489.64, "end": 19489.64, "probability": 0.2448 }, { "start": 19489.64, "end": 19489.64, "probability": 0.2229 }, { "start": 19489.64, "end": 19490.52, "probability": 0.3243 }, { "start": 19490.52, "end": 19493.72, "probability": 0.6391 }, { "start": 19494.14, "end": 19495.54, "probability": 0.9556 }, { "start": 19495.62, "end": 19497.0, "probability": 0.5426 }, { "start": 19497.08, "end": 19499.62, "probability": 0.9639 }, { "start": 19500.12, "end": 19501.44, "probability": 0.8715 }, { "start": 19501.96, "end": 19506.6, "probability": 0.974 }, { "start": 19506.72, "end": 19508.78, "probability": 0.9908 }, { "start": 19509.2, "end": 19512.68, "probability": 0.8871 }, { "start": 19512.68, "end": 19515.7, "probability": 0.8542 }, { "start": 19516.04, "end": 19518.2, "probability": 0.7224 }, { "start": 19518.32, "end": 19520.4, "probability": 0.8994 }, { "start": 19520.44, "end": 19520.56, "probability": 0.4266 }, { "start": 19520.56, "end": 19524.16, "probability": 0.4324 }, { "start": 19524.16, "end": 19524.72, "probability": 0.6527 }, { "start": 19532.18, "end": 19533.66, "probability": 0.8169 }, { "start": 19544.0, "end": 19546.58, "probability": 0.6496 }, { "start": 19547.3, "end": 19548.48, "probability": 0.9671 }, { "start": 19549.42, "end": 19551.84, "probability": 0.971 }, { "start": 19552.64, "end": 19554.5, "probability": 0.9956 }, { "start": 19555.44, "end": 19558.82, "probability": 0.9516 }, { "start": 19559.3, "end": 19563.74, "probability": 0.9884 }, { "start": 19564.48, "end": 19565.26, "probability": 0.7079 }, { "start": 19565.9, "end": 19567.66, "probability": 0.9975 }, { "start": 19568.2, "end": 19571.5, "probability": 0.9786 }, { "start": 19572.3, "end": 19576.16, "probability": 0.959 }, { "start": 19577.08, "end": 19578.8, "probability": 0.9879 }, { "start": 19579.46, "end": 19582.88, "probability": 0.9938 }, { "start": 19583.38, "end": 19587.1, "probability": 0.9862 }, { "start": 19588.24, "end": 19589.92, "probability": 0.854 }, { "start": 19591.4, "end": 19593.28, "probability": 0.9631 }, { "start": 19594.28, "end": 19597.72, "probability": 0.9959 }, { "start": 19598.66, "end": 19599.24, "probability": 0.9494 }, { "start": 19601.26, "end": 19604.4, "probability": 0.9269 }, { "start": 19604.4, "end": 19607.68, "probability": 0.9987 }, { "start": 19608.78, "end": 19609.6, "probability": 0.8256 }, { "start": 19610.68, "end": 19615.92, "probability": 0.9263 }, { "start": 19616.5, "end": 19617.92, "probability": 0.9866 }, { "start": 19619.02, "end": 19620.58, "probability": 0.9919 }, { "start": 19621.16, "end": 19623.88, "probability": 0.921 }, { "start": 19624.28, "end": 19624.72, "probability": 0.7959 }, { "start": 19625.16, "end": 19625.7, "probability": 0.6365 }, { "start": 19626.08, "end": 19627.27, "probability": 0.8253 }, { "start": 19628.92, "end": 19629.64, "probability": 0.7299 }, { "start": 19630.94, "end": 19631.34, "probability": 0.7308 }, { "start": 19631.88, "end": 19632.32, "probability": 0.8176 }, { "start": 19634.1, "end": 19637.1, "probability": 0.8387 }, { "start": 19638.64, "end": 19639.66, "probability": 0.8291 }, { "start": 19640.4, "end": 19643.58, "probability": 0.9872 }, { "start": 19643.84, "end": 19644.12, "probability": 0.8044 }, { "start": 19644.9, "end": 19646.96, "probability": 0.8326 }, { "start": 19647.02, "end": 19649.46, "probability": 0.8667 }, { "start": 19649.86, "end": 19651.3, "probability": 0.9565 }, { "start": 19652.42, "end": 19653.14, "probability": 0.6364 }, { "start": 19654.08, "end": 19655.34, "probability": 0.9843 }, { "start": 19656.62, "end": 19657.82, "probability": 0.9228 }, { "start": 19658.76, "end": 19660.18, "probability": 0.8159 }, { "start": 19660.44, "end": 19662.94, "probability": 0.9186 }, { "start": 19664.12, "end": 19667.56, "probability": 0.9907 }, { "start": 19668.4, "end": 19670.98, "probability": 0.9824 }, { "start": 19671.5, "end": 19672.76, "probability": 0.9326 }, { "start": 19673.02, "end": 19676.64, "probability": 0.9958 }, { "start": 19676.7, "end": 19681.44, "probability": 0.9447 }, { "start": 19683.18, "end": 19686.08, "probability": 0.9937 }, { "start": 19686.6, "end": 19688.14, "probability": 0.8959 }, { "start": 19689.3, "end": 19691.88, "probability": 0.9954 }, { "start": 19692.76, "end": 19693.98, "probability": 0.981 }, { "start": 19694.62, "end": 19697.14, "probability": 0.9966 }, { "start": 19698.16, "end": 19700.18, "probability": 0.998 }, { "start": 19700.82, "end": 19702.6, "probability": 0.9726 }, { "start": 19703.24, "end": 19704.9, "probability": 0.9933 }, { "start": 19705.72, "end": 19708.24, "probability": 0.9822 }, { "start": 19708.8, "end": 19714.04, "probability": 0.9939 }, { "start": 19715.4, "end": 19719.06, "probability": 0.9968 }, { "start": 19719.9, "end": 19720.7, "probability": 0.7623 }, { "start": 19721.44, "end": 19722.94, "probability": 0.9727 }, { "start": 19723.54, "end": 19725.24, "probability": 0.7573 }, { "start": 19726.0, "end": 19728.7, "probability": 0.9979 }, { "start": 19729.3, "end": 19730.28, "probability": 0.8996 }, { "start": 19730.92, "end": 19732.26, "probability": 0.9318 }, { "start": 19732.76, "end": 19734.16, "probability": 0.9661 }, { "start": 19734.66, "end": 19738.38, "probability": 0.9878 }, { "start": 19738.94, "end": 19745.04, "probability": 0.8381 }, { "start": 19746.02, "end": 19748.84, "probability": 0.9839 }, { "start": 19749.32, "end": 19751.4, "probability": 0.9951 }, { "start": 19752.14, "end": 19753.16, "probability": 0.8812 }, { "start": 19754.68, "end": 19756.3, "probability": 0.9705 }, { "start": 19756.76, "end": 19758.98, "probability": 0.9912 }, { "start": 19759.4, "end": 19765.86, "probability": 0.9621 }, { "start": 19766.76, "end": 19769.58, "probability": 0.9938 }, { "start": 19770.18, "end": 19771.46, "probability": 0.8229 }, { "start": 19772.16, "end": 19774.86, "probability": 0.8672 }, { "start": 19775.12, "end": 19775.26, "probability": 0.41 }, { "start": 19775.36, "end": 19775.58, "probability": 0.2672 }, { "start": 19776.96, "end": 19778.14, "probability": 0.6239 }, { "start": 19789.54, "end": 19789.62, "probability": 0.0227 }, { "start": 19790.62, "end": 19790.72, "probability": 0.37 }, { "start": 19803.12, "end": 19803.16, "probability": 0.0233 }, { "start": 19803.16, "end": 19803.74, "probability": 0.506 }, { "start": 19804.5, "end": 19806.64, "probability": 0.8601 }, { "start": 19807.67, "end": 19808.76, "probability": 0.9141 }, { "start": 19810.14, "end": 19810.48, "probability": 0.3303 }, { "start": 19810.48, "end": 19811.62, "probability": 0.7134 }, { "start": 19813.74, "end": 19815.16, "probability": 0.9169 }, { "start": 19816.32, "end": 19816.62, "probability": 0.0952 }, { "start": 19816.62, "end": 19816.72, "probability": 0.3498 }, { "start": 19817.84, "end": 19819.93, "probability": 0.8255 }, { "start": 19820.82, "end": 19821.88, "probability": 0.0241 }, { "start": 19822.24, "end": 19824.42, "probability": 0.7915 }, { "start": 19824.5, "end": 19825.72, "probability": 0.6992 }, { "start": 19826.86, "end": 19828.54, "probability": 0.9956 }, { "start": 19828.62, "end": 19829.14, "probability": 0.8046 }, { "start": 19830.06, "end": 19835.32, "probability": 0.5947 }, { "start": 19836.08, "end": 19837.53, "probability": 0.9092 }, { "start": 19838.38, "end": 19840.4, "probability": 0.9615 }, { "start": 19840.4, "end": 19841.98, "probability": 0.3404 }, { "start": 19842.16, "end": 19842.65, "probability": 0.6541 }, { "start": 19843.5, "end": 19844.86, "probability": 0.9873 }, { "start": 19845.22, "end": 19847.82, "probability": 0.8316 }, { "start": 19847.84, "end": 19849.38, "probability": 0.973 }, { "start": 19850.3, "end": 19851.36, "probability": 0.7544 }, { "start": 19851.38, "end": 19854.5, "probability": 0.8317 }, { "start": 19854.58, "end": 19858.44, "probability": 0.7029 }, { "start": 19858.72, "end": 19861.12, "probability": 0.5824 }, { "start": 19862.56, "end": 19863.7, "probability": 0.6899 }, { "start": 19864.44, "end": 19865.48, "probability": 0.5654 }, { "start": 19865.68, "end": 19867.04, "probability": 0.9028 }, { "start": 19867.24, "end": 19869.08, "probability": 0.8656 }, { "start": 19869.24, "end": 19870.92, "probability": 0.9888 }, { "start": 19871.36, "end": 19872.18, "probability": 0.7793 }, { "start": 19872.38, "end": 19873.58, "probability": 0.9761 }, { "start": 19873.78, "end": 19875.92, "probability": 0.5191 }, { "start": 19875.98, "end": 19877.44, "probability": 0.7278 }, { "start": 19878.1, "end": 19879.84, "probability": 0.9805 }, { "start": 19880.1, "end": 19883.48, "probability": 0.9507 }, { "start": 19883.58, "end": 19884.02, "probability": 0.6987 }, { "start": 19884.04, "end": 19884.76, "probability": 0.9772 }, { "start": 19885.1, "end": 19885.4, "probability": 0.9641 }, { "start": 19886.1, "end": 19886.48, "probability": 0.4068 }, { "start": 19887.1, "end": 19891.16, "probability": 0.9525 }, { "start": 19891.24, "end": 19893.96, "probability": 0.9795 }, { "start": 19894.7, "end": 19899.36, "probability": 0.8496 }, { "start": 19900.1, "end": 19901.8, "probability": 0.9691 }, { "start": 19901.82, "end": 19903.6, "probability": 0.5771 }, { "start": 19904.02, "end": 19905.84, "probability": 0.7137 }, { "start": 19906.04, "end": 19908.0, "probability": 0.882 }, { "start": 19908.12, "end": 19909.94, "probability": 0.7711 }, { "start": 19910.02, "end": 19910.6, "probability": 0.6814 }, { "start": 19911.34, "end": 19914.42, "probability": 0.6499 }, { "start": 19914.8, "end": 19916.38, "probability": 0.6611 }, { "start": 19916.6, "end": 19916.97, "probability": 0.8994 }, { "start": 19917.1, "end": 19917.6, "probability": 0.655 }, { "start": 19918.08, "end": 19920.48, "probability": 0.9907 }, { "start": 19921.12, "end": 19922.1, "probability": 0.5698 }, { "start": 19922.22, "end": 19925.98, "probability": 0.8313 }, { "start": 19926.02, "end": 19928.3, "probability": 0.9222 }, { "start": 19928.82, "end": 19930.12, "probability": 0.8933 }, { "start": 19930.98, "end": 19931.64, "probability": 0.6674 }, { "start": 19932.4, "end": 19933.46, "probability": 0.854 }, { "start": 19933.76, "end": 19937.62, "probability": 0.8368 }, { "start": 19938.04, "end": 19939.18, "probability": 0.8941 }, { "start": 19939.24, "end": 19939.62, "probability": 0.6849 }, { "start": 19939.78, "end": 19939.94, "probability": 0.4253 }, { "start": 19939.94, "end": 19940.56, "probability": 0.7669 }, { "start": 19940.56, "end": 19942.04, "probability": 0.9836 }, { "start": 19942.4, "end": 19943.18, "probability": 0.5808 }, { "start": 19943.42, "end": 19943.8, "probability": 0.2647 }, { "start": 19944.6, "end": 19945.04, "probability": 0.3936 }, { "start": 19945.12, "end": 19946.0, "probability": 0.6619 }, { "start": 19946.12, "end": 19947.26, "probability": 0.6339 }, { "start": 19947.46, "end": 19948.14, "probability": 0.7336 }, { "start": 19948.26, "end": 19950.22, "probability": 0.4914 }, { "start": 19950.36, "end": 19951.38, "probability": 0.9102 }, { "start": 19951.46, "end": 19952.18, "probability": 0.9487 }, { "start": 19952.82, "end": 19953.6, "probability": 0.5426 }, { "start": 19953.68, "end": 19956.82, "probability": 0.6526 }, { "start": 19957.34, "end": 19959.78, "probability": 0.8664 }, { "start": 19960.08, "end": 19961.8, "probability": 0.9731 }, { "start": 19961.92, "end": 19962.98, "probability": 0.9856 }, { "start": 19963.0, "end": 19968.88, "probability": 0.9055 }, { "start": 19968.9, "end": 19969.36, "probability": 0.4844 }, { "start": 19969.42, "end": 19969.78, "probability": 0.8045 }, { "start": 19969.84, "end": 19970.93, "probability": 0.7971 }, { "start": 19971.32, "end": 19972.76, "probability": 0.6528 }, { "start": 19972.76, "end": 19974.78, "probability": 0.9219 }, { "start": 19974.88, "end": 19975.34, "probability": 0.9326 }, { "start": 19975.38, "end": 19978.8, "probability": 0.8243 }, { "start": 19979.0, "end": 19980.34, "probability": 0.7059 }, { "start": 19980.5, "end": 19981.92, "probability": 0.7641 }, { "start": 19982.97, "end": 19983.87, "probability": 0.8135 }, { "start": 19985.08, "end": 19986.66, "probability": 0.6014 }, { "start": 19986.84, "end": 19989.62, "probability": 0.7803 }, { "start": 19990.08, "end": 19990.24, "probability": 0.4165 }, { "start": 19990.24, "end": 19991.96, "probability": 0.6812 }, { "start": 19992.14, "end": 19992.96, "probability": 0.9731 }, { "start": 19993.32, "end": 19994.42, "probability": 0.9883 }, { "start": 19995.1, "end": 19996.43, "probability": 0.998 }, { "start": 19996.98, "end": 19998.03, "probability": 0.6504 }, { "start": 19998.26, "end": 19998.68, "probability": 0.4891 }, { "start": 19998.72, "end": 20001.42, "probability": 0.7838 }, { "start": 20001.56, "end": 20002.12, "probability": 0.5497 }, { "start": 20002.2, "end": 20002.2, "probability": 0.0535 }, { "start": 20002.2, "end": 20002.2, "probability": 0.5249 }, { "start": 20002.26, "end": 20005.34, "probability": 0.6245 }, { "start": 20005.46, "end": 20006.72, "probability": 0.8266 }, { "start": 20007.0, "end": 20008.22, "probability": 0.9447 }, { "start": 20008.92, "end": 20008.99, "probability": 0.077 }, { "start": 20009.76, "end": 20010.31, "probability": 0.9637 }, { "start": 20010.44, "end": 20011.14, "probability": 0.9506 }, { "start": 20011.6, "end": 20012.98, "probability": 0.5127 }, { "start": 20013.08, "end": 20015.18, "probability": 0.7148 }, { "start": 20015.34, "end": 20015.58, "probability": 0.8278 }, { "start": 20015.72, "end": 20016.44, "probability": 0.9611 }, { "start": 20016.62, "end": 20016.82, "probability": 0.513 }, { "start": 20017.0, "end": 20017.72, "probability": 0.6315 }, { "start": 20018.24, "end": 20018.76, "probability": 0.7067 }, { "start": 20019.5, "end": 20021.28, "probability": 0.7899 }, { "start": 20021.36, "end": 20024.36, "probability": 0.9185 }, { "start": 20024.9, "end": 20026.56, "probability": 0.7711 }, { "start": 20027.28, "end": 20028.24, "probability": 0.7917 }, { "start": 20028.26, "end": 20028.8, "probability": 0.7072 }, { "start": 20029.22, "end": 20031.36, "probability": 0.9077 }, { "start": 20032.3, "end": 20035.98, "probability": 0.3031 }, { "start": 20037.76, "end": 20037.94, "probability": 0.1883 }, { "start": 20037.94, "end": 20037.94, "probability": 0.074 }, { "start": 20037.94, "end": 20038.9, "probability": 0.6445 }, { "start": 20039.34, "end": 20044.2, "probability": 0.5959 }, { "start": 20044.86, "end": 20046.02, "probability": 0.2099 }, { "start": 20046.06, "end": 20046.9, "probability": 0.5466 }, { "start": 20047.36, "end": 20047.78, "probability": 0.5003 }, { "start": 20047.8, "end": 20048.2, "probability": 0.6657 }, { "start": 20048.44, "end": 20049.46, "probability": 0.9819 }, { "start": 20050.04, "end": 20050.92, "probability": 0.6863 }, { "start": 20051.54, "end": 20052.2, "probability": 0.4972 }, { "start": 20052.3, "end": 20053.4, "probability": 0.9655 }, { "start": 20054.06, "end": 20055.72, "probability": 0.7667 }, { "start": 20055.8, "end": 20057.12, "probability": 0.6654 }, { "start": 20058.38, "end": 20058.6, "probability": 0.4582 }, { "start": 20058.72, "end": 20059.12, "probability": 0.7883 }, { "start": 20059.24, "end": 20060.28, "probability": 0.8661 }, { "start": 20062.59, "end": 20063.42, "probability": 0.0963 }, { "start": 20063.54, "end": 20065.72, "probability": 0.9883 }, { "start": 20066.32, "end": 20066.52, "probability": 0.4232 }, { "start": 20066.7, "end": 20067.54, "probability": 0.5737 }, { "start": 20067.68, "end": 20068.0, "probability": 0.962 }, { "start": 20068.56, "end": 20071.1, "probability": 0.8389 }, { "start": 20072.02, "end": 20074.06, "probability": 0.9901 }, { "start": 20074.62, "end": 20075.22, "probability": 0.3888 }, { "start": 20076.16, "end": 20077.36, "probability": 0.9629 }, { "start": 20078.4, "end": 20082.1, "probability": 0.8391 }, { "start": 20082.1, "end": 20086.9, "probability": 0.9464 }, { "start": 20087.2, "end": 20087.7, "probability": 0.8103 }, { "start": 20087.82, "end": 20089.62, "probability": 0.7806 }, { "start": 20090.14, "end": 20095.78, "probability": 0.9688 }, { "start": 20095.86, "end": 20099.42, "probability": 0.9972 }, { "start": 20100.22, "end": 20102.97, "probability": 0.8688 }, { "start": 20103.7, "end": 20106.7, "probability": 0.6778 }, { "start": 20107.38, "end": 20111.66, "probability": 0.8459 }, { "start": 20112.9, "end": 20113.46, "probability": 0.5401 }, { "start": 20113.56, "end": 20116.44, "probability": 0.9696 }, { "start": 20116.52, "end": 20117.58, "probability": 0.9907 }, { "start": 20118.44, "end": 20120.34, "probability": 0.9739 }, { "start": 20120.84, "end": 20122.18, "probability": 0.9923 }, { "start": 20123.16, "end": 20124.56, "probability": 0.922 }, { "start": 20124.64, "end": 20128.34, "probability": 0.7634 }, { "start": 20128.44, "end": 20133.04, "probability": 0.9801 }, { "start": 20134.3, "end": 20135.4, "probability": 0.6153 }, { "start": 20136.5, "end": 20138.12, "probability": 0.8037 }, { "start": 20139.0, "end": 20141.3, "probability": 0.5374 }, { "start": 20142.26, "end": 20144.2, "probability": 0.8353 }, { "start": 20144.78, "end": 20148.18, "probability": 0.9844 }, { "start": 20148.74, "end": 20149.46, "probability": 0.7784 }, { "start": 20149.98, "end": 20154.76, "probability": 0.6513 }, { "start": 20155.4, "end": 20156.16, "probability": 0.7062 }, { "start": 20156.22, "end": 20157.58, "probability": 0.7422 }, { "start": 20158.21, "end": 20160.08, "probability": 0.6261 }, { "start": 20160.38, "end": 20160.86, "probability": 0.664 }, { "start": 20162.74, "end": 20163.52, "probability": 0.9943 }, { "start": 20164.04, "end": 20166.62, "probability": 0.6609 }, { "start": 20167.24, "end": 20168.58, "probability": 0.9891 }, { "start": 20169.3, "end": 20171.86, "probability": 0.8392 }, { "start": 20173.16, "end": 20176.66, "probability": 0.7747 }, { "start": 20176.86, "end": 20178.0, "probability": 0.9411 }, { "start": 20178.38, "end": 20180.33, "probability": 0.3675 }, { "start": 20181.6, "end": 20185.48, "probability": 0.911 }, { "start": 20185.92, "end": 20189.88, "probability": 0.6123 }, { "start": 20190.68, "end": 20194.1, "probability": 0.9207 }, { "start": 20194.86, "end": 20197.28, "probability": 0.8859 }, { "start": 20198.4, "end": 20201.2, "probability": 0.7596 }, { "start": 20201.22, "end": 20205.18, "probability": 0.9964 }, { "start": 20205.72, "end": 20206.94, "probability": 0.8969 }, { "start": 20207.74, "end": 20212.18, "probability": 0.9722 }, { "start": 20212.24, "end": 20213.14, "probability": 0.9988 }, { "start": 20214.56, "end": 20216.88, "probability": 0.9585 }, { "start": 20216.88, "end": 20220.36, "probability": 0.9541 }, { "start": 20221.4, "end": 20223.88, "probability": 0.7285 }, { "start": 20224.06, "end": 20228.18, "probability": 0.9989 }, { "start": 20229.1, "end": 20230.28, "probability": 0.9663 }, { "start": 20230.42, "end": 20231.96, "probability": 0.7958 }, { "start": 20232.98, "end": 20236.2, "probability": 0.9745 }, { "start": 20236.94, "end": 20238.96, "probability": 0.9608 }, { "start": 20239.7, "end": 20241.44, "probability": 0.9852 }, { "start": 20242.22, "end": 20244.78, "probability": 0.9937 }, { "start": 20245.54, "end": 20246.96, "probability": 0.9424 }, { "start": 20248.3, "end": 20254.36, "probability": 0.9711 }, { "start": 20254.42, "end": 20256.12, "probability": 0.9456 }, { "start": 20256.2, "end": 20259.0, "probability": 0.765 }, { "start": 20259.02, "end": 20260.3, "probability": 0.5472 }, { "start": 20261.06, "end": 20265.24, "probability": 0.9712 }, { "start": 20265.56, "end": 20268.16, "probability": 0.9536 }, { "start": 20268.24, "end": 20269.6, "probability": 0.5239 }, { "start": 20269.72, "end": 20270.92, "probability": 0.8777 }, { "start": 20287.5, "end": 20287.72, "probability": 0.6873 }, { "start": 20290.78, "end": 20292.12, "probability": 0.7154 }, { "start": 20293.82, "end": 20294.3, "probability": 0.5337 }, { "start": 20294.6, "end": 20295.96, "probability": 0.4296 }, { "start": 20296.5, "end": 20296.78, "probability": 0.7549 }, { "start": 20298.88, "end": 20299.4, "probability": 0.471 }, { "start": 20300.68, "end": 20301.48, "probability": 0.9106 }, { "start": 20302.64, "end": 20304.34, "probability": 0.9483 }, { "start": 20306.0, "end": 20307.7, "probability": 0.8528 }, { "start": 20307.81, "end": 20309.84, "probability": 0.8635 }, { "start": 20310.72, "end": 20313.48, "probability": 0.5115 }, { "start": 20313.48, "end": 20314.3, "probability": 0.1431 }, { "start": 20322.4, "end": 20323.96, "probability": 0.67 }, { "start": 20326.96, "end": 20330.88, "probability": 0.6189 }, { "start": 20331.02, "end": 20333.9, "probability": 0.9766 }, { "start": 20334.72, "end": 20337.28, "probability": 0.9968 }, { "start": 20339.8, "end": 20341.02, "probability": 0.856 }, { "start": 20341.86, "end": 20343.28, "probability": 0.6213 }, { "start": 20344.16, "end": 20344.88, "probability": 0.9066 }, { "start": 20345.52, "end": 20348.0, "probability": 0.8985 }, { "start": 20349.52, "end": 20351.54, "probability": 0.9188 }, { "start": 20352.9, "end": 20356.1, "probability": 0.8054 }, { "start": 20357.44, "end": 20360.16, "probability": 0.9973 }, { "start": 20360.96, "end": 20362.76, "probability": 0.9749 }, { "start": 20363.68, "end": 20366.02, "probability": 0.9565 }, { "start": 20367.02, "end": 20368.84, "probability": 0.9991 }, { "start": 20369.78, "end": 20372.22, "probability": 0.9761 }, { "start": 20373.42, "end": 20374.46, "probability": 0.7517 }, { "start": 20375.38, "end": 20376.99, "probability": 0.9874 }, { "start": 20378.0, "end": 20386.3, "probability": 0.9897 }, { "start": 20386.82, "end": 20388.76, "probability": 0.7594 }, { "start": 20389.44, "end": 20390.52, "probability": 0.7377 }, { "start": 20391.48, "end": 20392.78, "probability": 0.9207 }, { "start": 20394.96, "end": 20396.28, "probability": 0.8269 }, { "start": 20397.44, "end": 20398.7, "probability": 0.9657 }, { "start": 20399.4, "end": 20400.64, "probability": 0.8989 }, { "start": 20401.78, "end": 20403.07, "probability": 0.96 }, { "start": 20403.42, "end": 20404.64, "probability": 0.114 }, { "start": 20404.94, "end": 20405.48, "probability": 0.4646 }, { "start": 20405.54, "end": 20406.56, "probability": 0.9429 }, { "start": 20407.4, "end": 20411.1, "probability": 0.9816 }, { "start": 20412.32, "end": 20415.78, "probability": 0.6858 }, { "start": 20416.78, "end": 20421.42, "probability": 0.7588 }, { "start": 20422.34, "end": 20424.32, "probability": 0.8225 }, { "start": 20425.2, "end": 20426.24, "probability": 0.8443 }, { "start": 20426.76, "end": 20429.36, "probability": 0.8118 }, { "start": 20430.74, "end": 20432.18, "probability": 0.7554 }, { "start": 20433.42, "end": 20435.34, "probability": 0.9756 }, { "start": 20436.1, "end": 20436.83, "probability": 1.0 }, { "start": 20437.58, "end": 20440.52, "probability": 0.9988 }, { "start": 20441.32, "end": 20445.9, "probability": 0.9145 }, { "start": 20447.12, "end": 20448.7, "probability": 0.7998 }, { "start": 20449.06, "end": 20453.9, "probability": 0.9868 }, { "start": 20455.38, "end": 20457.22, "probability": 0.2633 }, { "start": 20459.18, "end": 20460.12, "probability": 0.686 }, { "start": 20461.06, "end": 20461.8, "probability": 0.6598 }, { "start": 20464.22, "end": 20465.46, "probability": 0.8809 }, { "start": 20466.52, "end": 20467.78, "probability": 0.7975 }, { "start": 20468.98, "end": 20470.97, "probability": 0.8907 }, { "start": 20471.16, "end": 20471.68, "probability": 0.6694 }, { "start": 20471.74, "end": 20472.76, "probability": 0.9818 }, { "start": 20472.84, "end": 20472.94, "probability": 0.4822 }, { "start": 20474.6, "end": 20475.49, "probability": 0.9888 }, { "start": 20476.66, "end": 20478.48, "probability": 0.9829 }, { "start": 20479.78, "end": 20481.58, "probability": 0.5606 }, { "start": 20482.66, "end": 20483.44, "probability": 0.6831 }, { "start": 20483.64, "end": 20484.2, "probability": 0.9019 }, { "start": 20484.52, "end": 20484.9, "probability": 0.4417 }, { "start": 20484.94, "end": 20485.18, "probability": 0.937 }, { "start": 20485.52, "end": 20488.16, "probability": 0.6618 }, { "start": 20488.26, "end": 20489.08, "probability": 0.5921 }, { "start": 20489.18, "end": 20490.1, "probability": 0.8534 }, { "start": 20490.74, "end": 20491.86, "probability": 0.9175 }, { "start": 20492.48, "end": 20493.08, "probability": 0.6217 }, { "start": 20493.7, "end": 20497.68, "probability": 0.2469 }, { "start": 20498.54, "end": 20498.98, "probability": 0.5038 }, { "start": 20499.18, "end": 20500.16, "probability": 0.5308 }, { "start": 20501.16, "end": 20504.54, "probability": 0.9458 }, { "start": 20504.58, "end": 20510.6, "probability": 0.9938 }, { "start": 20510.94, "end": 20511.14, "probability": 0.7004 }, { "start": 20511.32, "end": 20511.84, "probability": 0.6803 }, { "start": 20512.42, "end": 20514.62, "probability": 0.9134 }, { "start": 20526.64, "end": 20527.08, "probability": 0.6806 }, { "start": 20527.88, "end": 20532.18, "probability": 0.2299 }, { "start": 20532.98, "end": 20535.18, "probability": 0.2888 }, { "start": 20536.16, "end": 20537.42, "probability": 0.8363 }, { "start": 20538.06, "end": 20538.06, "probability": 0.5453 }, { "start": 20538.18, "end": 20539.18, "probability": 0.7956 }, { "start": 20539.26, "end": 20543.1, "probability": 0.9964 }, { "start": 20543.14, "end": 20543.67, "probability": 0.8721 }, { "start": 20543.84, "end": 20544.88, "probability": 0.476 }, { "start": 20544.96, "end": 20545.54, "probability": 0.7947 }, { "start": 20546.44, "end": 20549.02, "probability": 0.8393 }, { "start": 20549.72, "end": 20551.4, "probability": 0.6807 }, { "start": 20552.16, "end": 20553.06, "probability": 0.9467 }, { "start": 20553.18, "end": 20556.5, "probability": 0.979 }, { "start": 20556.66, "end": 20559.16, "probability": 0.9468 }, { "start": 20560.48, "end": 20565.22, "probability": 0.6814 }, { "start": 20565.22, "end": 20566.72, "probability": 0.2399 }, { "start": 20567.42, "end": 20570.27, "probability": 0.9976 }, { "start": 20570.4, "end": 20571.41, "probability": 0.9473 }, { "start": 20574.26, "end": 20576.92, "probability": 0.3155 }, { "start": 20576.92, "end": 20577.1, "probability": 0.1421 }, { "start": 20577.1, "end": 20577.1, "probability": 0.0603 }, { "start": 20577.1, "end": 20577.1, "probability": 0.0214 }, { "start": 20577.1, "end": 20578.26, "probability": 0.5776 }, { "start": 20579.2, "end": 20580.44, "probability": 0.2291 }, { "start": 20580.94, "end": 20583.28, "probability": 0.8787 }, { "start": 20584.22, "end": 20591.16, "probability": 0.9903 }, { "start": 20591.7, "end": 20593.74, "probability": 0.8081 }, { "start": 20594.02, "end": 20596.11, "probability": 0.9429 }, { "start": 20596.98, "end": 20597.14, "probability": 0.4601 }, { "start": 20597.22, "end": 20597.64, "probability": 0.632 }, { "start": 20597.78, "end": 20601.32, "probability": 0.9971 }, { "start": 20602.72, "end": 20603.22, "probability": 0.2369 }, { "start": 20603.32, "end": 20603.84, "probability": 0.5898 }, { "start": 20604.0, "end": 20607.06, "probability": 0.9885 }, { "start": 20607.1, "end": 20607.74, "probability": 0.9156 }, { "start": 20609.94, "end": 20611.52, "probability": 0.3254 }, { "start": 20611.7, "end": 20612.42, "probability": 0.933 }, { "start": 20613.58, "end": 20616.78, "probability": 0.9918 }, { "start": 20617.34, "end": 20623.02, "probability": 0.9882 }, { "start": 20623.02, "end": 20629.14, "probability": 0.9966 }, { "start": 20629.9, "end": 20631.36, "probability": 0.5509 }, { "start": 20631.62, "end": 20634.14, "probability": 0.9456 }, { "start": 20634.2, "end": 20638.53, "probability": 0.9376 }, { "start": 20638.84, "end": 20639.06, "probability": 0.5937 }, { "start": 20639.3, "end": 20639.54, "probability": 0.7507 }, { "start": 20639.62, "end": 20640.14, "probability": 0.5799 }, { "start": 20640.24, "end": 20640.95, "probability": 0.9706 }, { "start": 20641.5, "end": 20642.04, "probability": 0.7568 }, { "start": 20642.72, "end": 20645.34, "probability": 0.8452 }, { "start": 20645.42, "end": 20646.4, "probability": 0.9866 }, { "start": 20646.7, "end": 20650.9, "probability": 0.7032 }, { "start": 20651.5, "end": 20654.85, "probability": 0.9935 }, { "start": 20655.26, "end": 20657.76, "probability": 0.8421 }, { "start": 20657.76, "end": 20660.32, "probability": 0.9961 }, { "start": 20660.48, "end": 20665.1, "probability": 0.982 }, { "start": 20665.18, "end": 20667.88, "probability": 0.9543 }, { "start": 20668.4, "end": 20670.42, "probability": 0.5751 }, { "start": 20671.22, "end": 20674.5, "probability": 0.9626 }, { "start": 20675.06, "end": 20677.5, "probability": 0.9811 }, { "start": 20678.16, "end": 20680.58, "probability": 0.6353 }, { "start": 20681.72, "end": 20682.9, "probability": 0.6668 }, { "start": 20684.3, "end": 20690.08, "probability": 0.9642 }, { "start": 20690.28, "end": 20691.08, "probability": 0.9621 }, { "start": 20691.72, "end": 20695.61, "probability": 0.9912 }, { "start": 20696.46, "end": 20701.32, "probability": 0.9951 }, { "start": 20701.48, "end": 20702.04, "probability": 0.9702 }, { "start": 20702.18, "end": 20704.0, "probability": 0.8257 }, { "start": 20704.02, "end": 20704.64, "probability": 0.9712 }, { "start": 20704.8, "end": 20706.7, "probability": 0.3549 }, { "start": 20706.76, "end": 20707.6, "probability": 0.877 }, { "start": 20707.72, "end": 20708.26, "probability": 0.2754 }, { "start": 20708.46, "end": 20709.22, "probability": 0.7598 }, { "start": 20709.68, "end": 20710.21, "probability": 0.9605 }, { "start": 20712.34, "end": 20714.02, "probability": 0.9683 }, { "start": 20715.0, "end": 20718.05, "probability": 0.9556 }, { "start": 20718.18, "end": 20718.56, "probability": 0.4827 }, { "start": 20718.7, "end": 20721.52, "probability": 0.8062 }, { "start": 20722.08, "end": 20724.3, "probability": 0.9097 }, { "start": 20725.16, "end": 20726.8, "probability": 0.8667 }, { "start": 20726.86, "end": 20727.5, "probability": 0.0782 }, { "start": 20727.56, "end": 20728.8, "probability": 0.974 }, { "start": 20728.86, "end": 20730.32, "probability": 0.5626 }, { "start": 20730.32, "end": 20731.06, "probability": 0.528 }, { "start": 20731.1, "end": 20732.61, "probability": 0.985 }, { "start": 20732.82, "end": 20733.83, "probability": 0.7507 }, { "start": 20735.8, "end": 20737.54, "probability": 0.8843 }, { "start": 20737.9, "end": 20738.46, "probability": 0.9338 }, { "start": 20739.06, "end": 20739.94, "probability": 0.8932 }, { "start": 20740.14, "end": 20740.78, "probability": 0.6752 }, { "start": 20740.8, "end": 20741.56, "probability": 0.7122 }, { "start": 20741.62, "end": 20742.9, "probability": 0.9701 }, { "start": 20742.9, "end": 20743.72, "probability": 0.9268 }, { "start": 20744.28, "end": 20744.52, "probability": 0.5874 }, { "start": 20745.28, "end": 20746.96, "probability": 0.9312 }, { "start": 20747.06, "end": 20747.16, "probability": 0.3808 }, { "start": 20747.22, "end": 20747.64, "probability": 0.9433 }, { "start": 20750.0, "end": 20751.78, "probability": 0.9304 }, { "start": 20759.04, "end": 20760.5, "probability": 0.1454 }, { "start": 20760.5, "end": 20760.58, "probability": 0.2207 }, { "start": 20760.58, "end": 20760.6, "probability": 0.0258 }, { "start": 20760.6, "end": 20760.64, "probability": 0.066 }, { "start": 20776.42, "end": 20776.52, "probability": 0.1254 }, { "start": 20778.82, "end": 20783.2, "probability": 0.8773 }, { "start": 20783.2, "end": 20787.08, "probability": 0.998 }, { "start": 20787.78, "end": 20788.22, "probability": 0.3682 }, { "start": 20788.42, "end": 20791.44, "probability": 0.9871 }, { "start": 20792.28, "end": 20793.5, "probability": 0.9813 }, { "start": 20793.7, "end": 20794.96, "probability": 0.6516 }, { "start": 20795.38, "end": 20796.74, "probability": 0.9508 }, { "start": 20797.72, "end": 20803.0, "probability": 0.9954 }, { "start": 20803.0, "end": 20807.98, "probability": 0.9966 }, { "start": 20809.69, "end": 20812.4, "probability": 0.9644 }, { "start": 20813.02, "end": 20814.68, "probability": 0.943 }, { "start": 20815.3, "end": 20816.9, "probability": 0.9977 }, { "start": 20817.7, "end": 20819.46, "probability": 0.8955 }, { "start": 20820.9, "end": 20823.4, "probability": 0.9932 }, { "start": 20824.12, "end": 20827.74, "probability": 0.9974 }, { "start": 20828.62, "end": 20832.66, "probability": 0.9679 }, { "start": 20833.68, "end": 20838.66, "probability": 0.998 }, { "start": 20839.14, "end": 20839.88, "probability": 0.6801 }, { "start": 20840.58, "end": 20841.56, "probability": 0.9111 }, { "start": 20842.56, "end": 20847.02, "probability": 0.9868 }, { "start": 20847.62, "end": 20850.6, "probability": 0.9808 }, { "start": 20851.54, "end": 20852.54, "probability": 0.8441 }, { "start": 20853.36, "end": 20856.56, "probability": 0.9632 }, { "start": 20857.4, "end": 20859.92, "probability": 0.938 }, { "start": 20860.08, "end": 20860.96, "probability": 0.8624 }, { "start": 20861.42, "end": 20861.94, "probability": 0.8963 }, { "start": 20862.08, "end": 20863.19, "probability": 0.9825 }, { "start": 20863.3, "end": 20864.88, "probability": 0.9487 }, { "start": 20865.58, "end": 20868.3, "probability": 0.9473 }, { "start": 20869.2, "end": 20870.44, "probability": 0.7945 }, { "start": 20870.8, "end": 20874.32, "probability": 0.99 }, { "start": 20874.48, "end": 20878.96, "probability": 0.9856 }, { "start": 20879.6, "end": 20885.3, "probability": 0.9854 }, { "start": 20886.46, "end": 20889.38, "probability": 0.9608 }, { "start": 20890.14, "end": 20893.06, "probability": 0.7313 }, { "start": 20893.98, "end": 20896.24, "probability": 0.9685 }, { "start": 20896.24, "end": 20901.44, "probability": 0.9976 }, { "start": 20902.3, "end": 20906.14, "probability": 0.999 }, { "start": 20906.14, "end": 20910.82, "probability": 0.998 }, { "start": 20911.68, "end": 20913.78, "probability": 0.931 }, { "start": 20914.34, "end": 20917.72, "probability": 0.9932 }, { "start": 20918.28, "end": 20923.9, "probability": 0.9988 }, { "start": 20923.9, "end": 20929.08, "probability": 0.9771 }, { "start": 20929.8, "end": 20932.38, "probability": 0.9946 }, { "start": 20932.92, "end": 20936.76, "probability": 0.9064 }, { "start": 20937.44, "end": 20938.54, "probability": 0.847 }, { "start": 20939.32, "end": 20943.72, "probability": 0.9884 }, { "start": 20944.6, "end": 20947.4, "probability": 0.981 }, { "start": 20948.38, "end": 20948.6, "probability": 0.7004 }, { "start": 20949.16, "end": 20950.43, "probability": 0.7642 }, { "start": 20951.26, "end": 20952.86, "probability": 0.9437 }, { "start": 20958.36, "end": 20959.96, "probability": 0.5993 }, { "start": 20972.28, "end": 20972.94, "probability": 0.4903 }, { "start": 20973.6, "end": 20974.68, "probability": 0.5913 }, { "start": 20975.88, "end": 20977.26, "probability": 0.9189 }, { "start": 20977.6, "end": 20978.22, "probability": 0.939 }, { "start": 20978.36, "end": 20980.5, "probability": 0.9841 }, { "start": 20981.6, "end": 20989.6, "probability": 0.8717 }, { "start": 20990.2, "end": 20993.32, "probability": 0.9567 }, { "start": 20994.62, "end": 20997.82, "probability": 0.9164 }, { "start": 20998.34, "end": 21001.84, "probability": 0.9846 }, { "start": 21002.26, "end": 21002.58, "probability": 0.8755 }, { "start": 21004.1, "end": 21005.8, "probability": 0.9451 }, { "start": 21006.8, "end": 21008.82, "probability": 0.8364 }, { "start": 21010.54, "end": 21013.74, "probability": 0.866 }, { "start": 21014.44, "end": 21016.1, "probability": 0.9521 }, { "start": 21017.4, "end": 21020.38, "probability": 0.8348 }, { "start": 21020.64, "end": 21021.2, "probability": 0.7605 }, { "start": 21021.42, "end": 21026.08, "probability": 0.9804 }, { "start": 21026.24, "end": 21030.04, "probability": 0.8899 }, { "start": 21030.6, "end": 21031.18, "probability": 0.875 }, { "start": 21032.22, "end": 21033.82, "probability": 0.9941 }, { "start": 21033.94, "end": 21034.4, "probability": 0.9525 }, { "start": 21035.46, "end": 21037.12, "probability": 0.9623 }, { "start": 21038.22, "end": 21039.3, "probability": 0.9854 }, { "start": 21039.76, "end": 21041.04, "probability": 0.9889 }, { "start": 21041.4, "end": 21042.9, "probability": 0.9711 }, { "start": 21043.0, "end": 21043.78, "probability": 0.6284 }, { "start": 21044.42, "end": 21045.58, "probability": 0.6531 }, { "start": 21045.74, "end": 21046.34, "probability": 0.8948 }, { "start": 21046.8, "end": 21047.32, "probability": 0.9056 }, { "start": 21047.38, "end": 21048.78, "probability": 0.7517 }, { "start": 21049.18, "end": 21050.28, "probability": 0.9203 }, { "start": 21050.34, "end": 21051.16, "probability": 0.9731 }, { "start": 21051.2, "end": 21055.38, "probability": 0.9836 }, { "start": 21055.38, "end": 21059.84, "probability": 0.9222 }, { "start": 21061.1, "end": 21062.74, "probability": 0.9803 }, { "start": 21063.44, "end": 21064.36, "probability": 0.7307 }, { "start": 21065.09, "end": 21065.52, "probability": 0.762 }, { "start": 21065.6, "end": 21066.06, "probability": 0.5857 }, { "start": 21066.2, "end": 21069.86, "probability": 0.9591 }, { "start": 21070.3, "end": 21070.66, "probability": 0.2501 }, { "start": 21070.84, "end": 21070.94, "probability": 0.1315 }, { "start": 21071.48, "end": 21073.74, "probability": 0.9698 }, { "start": 21078.34, "end": 21079.44, "probability": 0.5855 }, { "start": 21080.02, "end": 21084.46, "probability": 0.896 }, { "start": 21085.58, "end": 21090.3, "probability": 0.9889 }, { "start": 21090.52, "end": 21095.04, "probability": 0.9363 }, { "start": 21095.56, "end": 21096.36, "probability": 0.6967 }, { "start": 21096.46, "end": 21101.36, "probability": 0.7524 }, { "start": 21101.76, "end": 21102.26, "probability": 0.8601 }, { "start": 21104.34, "end": 21106.0, "probability": 0.5893 }, { "start": 21106.18, "end": 21108.28, "probability": 0.9341 }, { "start": 21108.44, "end": 21112.42, "probability": 0.9328 }, { "start": 21113.28, "end": 21115.81, "probability": 0.9929 }, { "start": 21116.66, "end": 21119.16, "probability": 0.9919 }, { "start": 21119.16, "end": 21123.66, "probability": 0.9949 }, { "start": 21123.8, "end": 21124.64, "probability": 0.8369 }, { "start": 21125.32, "end": 21127.58, "probability": 0.9928 }, { "start": 21128.18, "end": 21132.6, "probability": 0.9413 }, { "start": 21133.44, "end": 21134.08, "probability": 0.4565 }, { "start": 21134.83, "end": 21137.08, "probability": 0.9826 }, { "start": 21137.52, "end": 21140.76, "probability": 0.9932 }, { "start": 21142.66, "end": 21145.52, "probability": 0.9505 }, { "start": 21145.52, "end": 21147.74, "probability": 0.8811 }, { "start": 21147.84, "end": 21150.9, "probability": 0.9934 }, { "start": 21151.14, "end": 21152.58, "probability": 0.8257 }, { "start": 21153.42, "end": 21156.64, "probability": 0.9517 }, { "start": 21156.84, "end": 21158.52, "probability": 0.991 }, { "start": 21160.6, "end": 21161.76, "probability": 0.9922 }, { "start": 21162.48, "end": 21163.16, "probability": 0.6564 }, { "start": 21164.08, "end": 21164.68, "probability": 0.9772 }, { "start": 21165.04, "end": 21165.7, "probability": 0.6086 }, { "start": 21165.98, "end": 21167.41, "probability": 0.9979 }, { "start": 21167.6, "end": 21170.9, "probability": 0.972 }, { "start": 21171.04, "end": 21172.12, "probability": 0.728 }, { "start": 21172.5, "end": 21176.44, "probability": 0.9753 }, { "start": 21176.58, "end": 21178.06, "probability": 0.6997 }, { "start": 21178.88, "end": 21181.04, "probability": 0.6797 }, { "start": 21181.84, "end": 21183.12, "probability": 0.6668 }, { "start": 21183.44, "end": 21186.78, "probability": 0.9547 }, { "start": 21187.08, "end": 21189.7, "probability": 0.9035 }, { "start": 21189.78, "end": 21189.92, "probability": 0.6894 }, { "start": 21190.2, "end": 21192.14, "probability": 0.78 }, { "start": 21192.18, "end": 21192.98, "probability": 0.8183 }, { "start": 21193.74, "end": 21196.96, "probability": 0.853 }, { "start": 21197.12, "end": 21199.0, "probability": 0.9793 }, { "start": 21200.14, "end": 21204.48, "probability": 0.9449 }, { "start": 21204.6, "end": 21204.76, "probability": 0.5608 }, { "start": 21204.78, "end": 21206.08, "probability": 0.6299 }, { "start": 21207.4, "end": 21209.56, "probability": 0.9019 }, { "start": 21236.98, "end": 21238.8, "probability": 0.6677 }, { "start": 21239.7, "end": 21240.82, "probability": 0.9094 }, { "start": 21241.8, "end": 21242.83, "probability": 0.8525 }, { "start": 21243.02, "end": 21246.6, "probability": 0.8915 }, { "start": 21247.28, "end": 21247.78, "probability": 0.9776 }, { "start": 21247.84, "end": 21248.29, "probability": 0.9937 }, { "start": 21248.54, "end": 21250.25, "probability": 0.9567 }, { "start": 21251.1, "end": 21251.66, "probability": 0.5736 }, { "start": 21252.74, "end": 21254.42, "probability": 0.4937 }, { "start": 21255.8, "end": 21256.86, "probability": 0.8704 }, { "start": 21258.04, "end": 21258.22, "probability": 0.7736 }, { "start": 21258.36, "end": 21259.88, "probability": 0.9355 }, { "start": 21259.9, "end": 21260.42, "probability": 0.7556 }, { "start": 21260.66, "end": 21261.86, "probability": 0.865 }, { "start": 21262.54, "end": 21263.81, "probability": 0.6342 }, { "start": 21264.78, "end": 21267.62, "probability": 0.566 }, { "start": 21267.72, "end": 21270.42, "probability": 0.822 }, { "start": 21270.68, "end": 21271.24, "probability": 0.7432 }, { "start": 21272.5, "end": 21274.15, "probability": 0.9802 }, { "start": 21276.34, "end": 21281.1, "probability": 0.8838 }, { "start": 21281.28, "end": 21283.24, "probability": 0.9117 }, { "start": 21283.62, "end": 21288.16, "probability": 0.907 }, { "start": 21289.6, "end": 21292.26, "probability": 0.8636 }, { "start": 21292.34, "end": 21292.88, "probability": 0.5649 }, { "start": 21292.9, "end": 21293.72, "probability": 0.9932 }, { "start": 21293.92, "end": 21295.32, "probability": 0.9941 }, { "start": 21296.12, "end": 21297.1, "probability": 0.9047 }, { "start": 21298.64, "end": 21299.72, "probability": 0.9954 }, { "start": 21300.72, "end": 21304.9, "probability": 0.9363 }, { "start": 21305.52, "end": 21306.22, "probability": 0.8463 }, { "start": 21306.88, "end": 21313.0, "probability": 0.9956 }, { "start": 21314.08, "end": 21314.08, "probability": 0.9346 }, { "start": 21315.5, "end": 21318.1, "probability": 0.9719 }, { "start": 21318.84, "end": 21321.14, "probability": 0.971 }, { "start": 21322.18, "end": 21322.88, "probability": 0.7533 }, { "start": 21324.6, "end": 21326.32, "probability": 0.9361 }, { "start": 21326.88, "end": 21330.64, "probability": 0.8406 }, { "start": 21331.52, "end": 21332.39, "probability": 0.9577 }, { "start": 21334.32, "end": 21338.16, "probability": 0.9878 }, { "start": 21341.02, "end": 21343.26, "probability": 0.8867 }, { "start": 21343.68, "end": 21343.91, "probability": 0.8145 }, { "start": 21344.14, "end": 21346.11, "probability": 0.0351 }, { "start": 21346.78, "end": 21347.98, "probability": 0.0543 }, { "start": 21347.98, "end": 21352.3, "probability": 0.3371 }, { "start": 21352.3, "end": 21356.8, "probability": 0.4253 }, { "start": 21357.02, "end": 21357.58, "probability": 0.4155 }, { "start": 21358.23, "end": 21360.16, "probability": 0.1938 }, { "start": 21361.06, "end": 21362.94, "probability": 0.451 }, { "start": 21363.1, "end": 21363.14, "probability": 0.7234 }, { "start": 21363.14, "end": 21363.62, "probability": 0.6484 }, { "start": 21363.68, "end": 21364.84, "probability": 0.6693 }, { "start": 21365.68, "end": 21367.26, "probability": 0.0041 }, { "start": 21373.14, "end": 21374.74, "probability": 0.6292 }, { "start": 21375.42, "end": 21378.56, "probability": 0.9102 }, { "start": 21379.28, "end": 21379.85, "probability": 0.5371 }, { "start": 21381.28, "end": 21383.4, "probability": 0.917 }, { "start": 21384.26, "end": 21384.94, "probability": 0.515 }, { "start": 21385.72, "end": 21393.11, "probability": 0.941 }, { "start": 21393.82, "end": 21394.5, "probability": 0.6614 }, { "start": 21395.68, "end": 21398.42, "probability": 0.7331 }, { "start": 21399.52, "end": 21403.3, "probability": 0.9969 }, { "start": 21404.5, "end": 21407.26, "probability": 0.9151 }, { "start": 21408.68, "end": 21413.08, "probability": 0.7258 }, { "start": 21413.6, "end": 21414.02, "probability": 0.6747 }, { "start": 21415.22, "end": 21416.4, "probability": 0.949 }, { "start": 21417.82, "end": 21420.48, "probability": 0.9878 }, { "start": 21420.64, "end": 21421.95, "probability": 0.9757 }, { "start": 21422.86, "end": 21425.62, "probability": 0.8154 }, { "start": 21426.5, "end": 21429.16, "probability": 0.9937 }, { "start": 21430.34, "end": 21433.82, "probability": 0.8034 }, { "start": 21434.78, "end": 21437.98, "probability": 0.9496 }, { "start": 21439.14, "end": 21439.48, "probability": 0.8655 }, { "start": 21440.02, "end": 21441.04, "probability": 0.9541 }, { "start": 21441.58, "end": 21441.82, "probability": 0.7391 }, { "start": 21441.98, "end": 21442.92, "probability": 0.9735 }, { "start": 21443.08, "end": 21443.9, "probability": 0.89 }, { "start": 21443.98, "end": 21444.82, "probability": 0.8408 }, { "start": 21445.36, "end": 21449.46, "probability": 0.8341 }, { "start": 21450.44, "end": 21451.19, "probability": 0.7452 }, { "start": 21452.38, "end": 21453.04, "probability": 0.7787 }, { "start": 21453.26, "end": 21453.88, "probability": 0.718 }, { "start": 21453.94, "end": 21455.92, "probability": 0.9573 }, { "start": 21456.84, "end": 21458.28, "probability": 0.9943 }, { "start": 21459.44, "end": 21460.2, "probability": 0.8682 }, { "start": 21461.46, "end": 21462.28, "probability": 0.286 }, { "start": 21462.28, "end": 21463.18, "probability": 0.8975 }, { "start": 21463.28, "end": 21468.38, "probability": 0.9824 }, { "start": 21469.4, "end": 21471.24, "probability": 0.9878 }, { "start": 21473.24, "end": 21474.02, "probability": 0.7497 }, { "start": 21474.16, "end": 21477.28, "probability": 0.7978 }, { "start": 21477.56, "end": 21478.18, "probability": 0.1628 }, { "start": 21478.34, "end": 21479.6, "probability": 0.363 }, { "start": 21481.78, "end": 21482.56, "probability": 0.2313 }, { "start": 21482.56, "end": 21482.84, "probability": 0.2225 }, { "start": 21483.04, "end": 21483.52, "probability": 0.6884 }, { "start": 21484.46, "end": 21486.22, "probability": 0.7227 }, { "start": 21488.04, "end": 21490.26, "probability": 0.9696 }, { "start": 21490.26, "end": 21492.2, "probability": 0.9678 }, { "start": 21492.26, "end": 21492.92, "probability": 0.475 }, { "start": 21494.35, "end": 21500.86, "probability": 0.9664 }, { "start": 21501.44, "end": 21502.08, "probability": 0.3266 }, { "start": 21503.82, "end": 21505.32, "probability": 0.7129 }, { "start": 21505.48, "end": 21510.08, "probability": 0.8813 }, { "start": 21510.42, "end": 21511.92, "probability": 0.9412 }, { "start": 21512.76, "end": 21514.18, "probability": 0.7061 }, { "start": 21515.18, "end": 21518.04, "probability": 0.9678 }, { "start": 21518.3, "end": 21519.56, "probability": 0.976 }, { "start": 21519.98, "end": 21523.56, "probability": 0.9866 }, { "start": 21524.32, "end": 21526.62, "probability": 0.7924 }, { "start": 21527.14, "end": 21529.8, "probability": 0.8919 }, { "start": 21530.42, "end": 21530.56, "probability": 0.4381 }, { "start": 21530.56, "end": 21533.12, "probability": 0.8078 }, { "start": 21533.34, "end": 21536.32, "probability": 0.0332 }, { "start": 21537.32, "end": 21537.32, "probability": 0.2822 }, { "start": 21537.32, "end": 21537.32, "probability": 0.4386 }, { "start": 21537.32, "end": 21537.32, "probability": 0.0549 }, { "start": 21537.32, "end": 21539.85, "probability": 0.5003 }, { "start": 21540.2, "end": 21541.42, "probability": 0.4846 }, { "start": 21541.42, "end": 21541.7, "probability": 0.8349 }, { "start": 21544.44, "end": 21547.26, "probability": 0.8905 }, { "start": 21564.14, "end": 21564.98, "probability": 0.6819 }, { "start": 21566.58, "end": 21567.82, "probability": 0.9529 }, { "start": 21569.02, "end": 21569.88, "probability": 0.4734 }, { "start": 21571.44, "end": 21574.72, "probability": 0.9733 }, { "start": 21575.7, "end": 21577.72, "probability": 0.979 }, { "start": 21579.22, "end": 21584.08, "probability": 0.9967 }, { "start": 21585.32, "end": 21588.82, "probability": 0.9917 }, { "start": 21589.66, "end": 21594.26, "probability": 0.943 }, { "start": 21595.78, "end": 21596.7, "probability": 0.9174 }, { "start": 21596.98, "end": 21597.84, "probability": 0.028 }, { "start": 21597.96, "end": 21598.06, "probability": 0.5251 }, { "start": 21598.52, "end": 21602.22, "probability": 0.9961 }, { "start": 21603.56, "end": 21604.7, "probability": 0.741 }, { "start": 21605.24, "end": 21607.56, "probability": 0.6832 }, { "start": 21609.2, "end": 21612.74, "probability": 0.9546 }, { "start": 21613.46, "end": 21615.72, "probability": 0.818 }, { "start": 21617.56, "end": 21622.72, "probability": 0.992 }, { "start": 21624.28, "end": 21627.84, "probability": 0.839 }, { "start": 21629.02, "end": 21630.68, "probability": 0.9878 }, { "start": 21631.64, "end": 21633.22, "probability": 0.9686 }, { "start": 21634.24, "end": 21635.52, "probability": 0.9896 }, { "start": 21637.22, "end": 21637.74, "probability": 0.6607 }, { "start": 21638.36, "end": 21639.58, "probability": 0.9046 }, { "start": 21640.6, "end": 21641.34, "probability": 0.845 }, { "start": 21641.46, "end": 21644.36, "probability": 0.8307 }, { "start": 21644.56, "end": 21645.36, "probability": 0.9816 }, { "start": 21645.72, "end": 21648.02, "probability": 0.9837 }, { "start": 21648.98, "end": 21649.69, "probability": 0.8626 }, { "start": 21650.58, "end": 21651.96, "probability": 0.9666 }, { "start": 21652.96, "end": 21656.5, "probability": 0.9679 }, { "start": 21658.04, "end": 21660.22, "probability": 0.9283 }, { "start": 21660.92, "end": 21661.78, "probability": 0.9869 }, { "start": 21661.84, "end": 21662.78, "probability": 0.9934 }, { "start": 21663.0, "end": 21663.49, "probability": 0.9604 }, { "start": 21664.02, "end": 21664.64, "probability": 0.8545 }, { "start": 21666.28, "end": 21668.92, "probability": 0.9667 }, { "start": 21669.96, "end": 21673.26, "probability": 0.8729 }, { "start": 21674.16, "end": 21677.61, "probability": 0.8659 }, { "start": 21677.68, "end": 21678.92, "probability": 0.8693 }, { "start": 21679.06, "end": 21679.74, "probability": 0.9861 }, { "start": 21681.12, "end": 21683.5, "probability": 0.8889 }, { "start": 21684.34, "end": 21686.46, "probability": 0.945 }, { "start": 21687.86, "end": 21689.36, "probability": 0.9725 }, { "start": 21690.4, "end": 21692.08, "probability": 0.9825 }, { "start": 21692.5, "end": 21695.62, "probability": 0.9885 }, { "start": 21696.98, "end": 21698.28, "probability": 0.9728 }, { "start": 21698.92, "end": 21699.0, "probability": 0.2839 }, { "start": 21699.0, "end": 21700.32, "probability": 0.7185 }, { "start": 21701.46, "end": 21704.6, "probability": 0.8752 }, { "start": 21705.96, "end": 21706.76, "probability": 0.8958 }, { "start": 21707.74, "end": 21709.0, "probability": 0.9893 }, { "start": 21709.94, "end": 21711.36, "probability": 0.959 }, { "start": 21712.08, "end": 21713.86, "probability": 0.9258 }, { "start": 21725.0, "end": 21727.92, "probability": 0.2626 }, { "start": 21727.92, "end": 21727.92, "probability": 0.2586 }, { "start": 21727.92, "end": 21727.92, "probability": 0.0392 }, { "start": 21727.92, "end": 21728.6, "probability": 0.0575 }, { "start": 21728.7, "end": 21729.9, "probability": 0.3826 }, { "start": 21730.08, "end": 21732.04, "probability": 0.5885 }, { "start": 21733.2, "end": 21734.73, "probability": 0.975 }, { "start": 21735.56, "end": 21736.86, "probability": 0.9752 }, { "start": 21737.32, "end": 21738.4, "probability": 0.6699 }, { "start": 21738.44, "end": 21741.5, "probability": 0.8604 }, { "start": 21741.82, "end": 21743.34, "probability": 0.9471 }, { "start": 21744.38, "end": 21745.74, "probability": 0.9363 }, { "start": 21746.24, "end": 21751.7, "probability": 0.9867 }, { "start": 21751.8, "end": 21752.14, "probability": 0.3106 }, { "start": 21752.24, "end": 21753.08, "probability": 0.2222 }, { "start": 21753.08, "end": 21753.08, "probability": 0.3012 }, { "start": 21753.08, "end": 21754.25, "probability": 0.3476 }, { "start": 21754.72, "end": 21755.6, "probability": 0.7646 }, { "start": 21755.74, "end": 21756.92, "probability": 0.6878 }, { "start": 21757.52, "end": 21758.34, "probability": 0.5028 }, { "start": 21758.34, "end": 21760.18, "probability": 0.7534 }, { "start": 21761.48, "end": 21761.9, "probability": 0.3049 }, { "start": 21762.1, "end": 21763.4, "probability": 0.6689 }, { "start": 21763.66, "end": 21764.14, "probability": 0.1087 }, { "start": 21764.14, "end": 21765.04, "probability": 0.1023 }, { "start": 21765.14, "end": 21766.16, "probability": 0.322 }, { "start": 21767.24, "end": 21767.91, "probability": 0.0344 }, { "start": 21768.74, "end": 21769.88, "probability": 0.1473 }, { "start": 21770.02, "end": 21770.14, "probability": 0.0672 }, { "start": 21770.14, "end": 21772.0, "probability": 0.8115 }, { "start": 21772.24, "end": 21772.54, "probability": 0.769 }, { "start": 21772.86, "end": 21774.4, "probability": 0.3872 }, { "start": 21774.5, "end": 21775.4, "probability": 0.728 }, { "start": 21775.74, "end": 21776.0, "probability": 0.2216 }, { "start": 21776.0, "end": 21777.0, "probability": 0.5833 }, { "start": 21777.1, "end": 21779.0, "probability": 0.0788 }, { "start": 21779.24, "end": 21781.68, "probability": 0.2898 }, { "start": 21782.37, "end": 21784.16, "probability": 0.3957 }, { "start": 21784.7, "end": 21785.36, "probability": 0.3836 }, { "start": 21785.38, "end": 21786.7, "probability": 0.4826 }, { "start": 21787.22, "end": 21788.02, "probability": 0.5457 }, { "start": 21791.28, "end": 21791.63, "probability": 0.019 }, { "start": 21792.64, "end": 21793.4, "probability": 0.1463 }, { "start": 21799.68, "end": 21800.6, "probability": 0.5659 }, { "start": 21801.06, "end": 21802.94, "probability": 0.8105 }, { "start": 21803.14, "end": 21803.94, "probability": 0.5914 }, { "start": 21804.06, "end": 21804.44, "probability": 0.7329 }, { "start": 21804.74, "end": 21804.84, "probability": 0.7007 }, { "start": 21805.56, "end": 21806.32, "probability": 0.9582 }, { "start": 21807.1, "end": 21810.42, "probability": 0.9924 }, { "start": 21811.28, "end": 21814.42, "probability": 0.9613 }, { "start": 21815.18, "end": 21816.38, "probability": 0.8862 }, { "start": 21817.18, "end": 21820.1, "probability": 0.9941 }, { "start": 21820.86, "end": 21822.94, "probability": 0.9351 }, { "start": 21823.92, "end": 21824.62, "probability": 0.998 }, { "start": 21825.66, "end": 21826.8, "probability": 0.9755 }, { "start": 21827.96, "end": 21830.6, "probability": 0.9849 }, { "start": 21830.8, "end": 21836.34, "probability": 0.9976 }, { "start": 21837.24, "end": 21839.26, "probability": 0.9922 }, { "start": 21840.04, "end": 21844.38, "probability": 0.9882 }, { "start": 21845.02, "end": 21846.6, "probability": 0.9908 }, { "start": 21848.24, "end": 21850.54, "probability": 0.9956 }, { "start": 21850.54, "end": 21854.26, "probability": 0.2813 }, { "start": 21855.94, "end": 21858.8, "probability": 0.7224 }, { "start": 21859.8, "end": 21860.3, "probability": 0.8288 }, { "start": 21861.16, "end": 21862.7, "probability": 0.9453 }, { "start": 21863.24, "end": 21863.58, "probability": 0.9779 }, { "start": 21864.7, "end": 21865.72, "probability": 0.8353 }, { "start": 21866.4, "end": 21868.78, "probability": 0.8677 }, { "start": 21869.66, "end": 21870.48, "probability": 0.8988 }, { "start": 21871.12, "end": 21874.08, "probability": 0.8538 }, { "start": 21875.2, "end": 21877.68, "probability": 0.8949 }, { "start": 21878.24, "end": 21883.12, "probability": 0.987 }, { "start": 21883.74, "end": 21889.64, "probability": 0.959 }, { "start": 21890.26, "end": 21893.28, "probability": 0.8731 }, { "start": 21894.02, "end": 21894.88, "probability": 0.7602 }, { "start": 21895.48, "end": 21898.42, "probability": 0.9811 }, { "start": 21899.72, "end": 21901.84, "probability": 0.9578 }, { "start": 21902.58, "end": 21903.88, "probability": 0.6644 }, { "start": 21904.62, "end": 21907.94, "probability": 0.9044 }, { "start": 21908.94, "end": 21914.34, "probability": 0.9959 }, { "start": 21915.26, "end": 21920.82, "probability": 0.9965 }, { "start": 21921.38, "end": 21923.02, "probability": 0.8322 }, { "start": 21923.66, "end": 21925.16, "probability": 0.9879 }, { "start": 21926.24, "end": 21930.58, "probability": 0.914 }, { "start": 21931.28, "end": 21934.42, "probability": 0.9556 }, { "start": 21935.16, "end": 21939.3, "probability": 0.9175 }, { "start": 21940.08, "end": 21943.22, "probability": 0.9863 }, { "start": 21943.86, "end": 21946.76, "probability": 0.724 }, { "start": 21947.42, "end": 21949.38, "probability": 0.9512 }, { "start": 21950.26, "end": 21955.46, "probability": 0.994 }, { "start": 21956.0, "end": 21961.58, "probability": 0.9914 }, { "start": 21961.78, "end": 21962.76, "probability": 0.7454 }, { "start": 21962.8, "end": 21966.24, "probability": 0.9436 }, { "start": 21967.68, "end": 21969.16, "probability": 0.7717 }, { "start": 21969.24, "end": 21970.92, "probability": 0.8773 }, { "start": 21972.84, "end": 21975.06, "probability": 0.0607 }, { "start": 21977.88, "end": 21978.34, "probability": 0.1884 }, { "start": 21978.42, "end": 21983.94, "probability": 0.8571 }, { "start": 21984.18, "end": 21985.52, "probability": 0.739 }, { "start": 21985.68, "end": 21988.12, "probability": 0.6868 }, { "start": 21988.16, "end": 21989.5, "probability": 0.8669 }, { "start": 21991.94, "end": 21995.38, "probability": 0.7689 }, { "start": 21995.44, "end": 21996.26, "probability": 0.6909 }, { "start": 21996.42, "end": 21997.22, "probability": 0.7733 }, { "start": 21997.44, "end": 21999.6, "probability": 0.7065 }, { "start": 21999.7, "end": 22000.08, "probability": 0.547 }, { "start": 22000.26, "end": 22001.22, "probability": 0.4652 }, { "start": 22001.22, "end": 22001.78, "probability": 0.3825 }, { "start": 22002.56, "end": 22003.24, "probability": 0.5741 }, { "start": 22003.5, "end": 22003.74, "probability": 0.5322 }, { "start": 22003.76, "end": 22005.18, "probability": 0.7937 }, { "start": 22005.18, "end": 22006.72, "probability": 0.6673 }, { "start": 22007.28, "end": 22007.8, "probability": 0.6847 }, { "start": 22009.34, "end": 22010.26, "probability": 0.9055 }, { "start": 22010.42, "end": 22012.54, "probability": 0.9676 }, { "start": 22012.74, "end": 22013.24, "probability": 0.5305 }, { "start": 22013.66, "end": 22014.1, "probability": 0.3072 }, { "start": 22014.1, "end": 22014.48, "probability": 0.4113 }, { "start": 22014.58, "end": 22015.82, "probability": 0.5094 }, { "start": 22015.98, "end": 22016.78, "probability": 0.5892 }, { "start": 22017.14, "end": 22017.94, "probability": 0.6591 }, { "start": 22018.04, "end": 22019.82, "probability": 0.2759 }, { "start": 22019.86, "end": 22020.24, "probability": 0.121 }, { "start": 22020.24, "end": 22021.36, "probability": 0.6182 }, { "start": 22022.36, "end": 22024.18, "probability": 0.5494 }, { "start": 22025.16, "end": 22026.02, "probability": 0.6773 }, { "start": 22028.7, "end": 22031.86, "probability": 0.84 }, { "start": 22032.38, "end": 22033.98, "probability": 0.7241 }, { "start": 22034.12, "end": 22035.3, "probability": 0.5934 }, { "start": 22035.52, "end": 22036.26, "probability": 0.5271 }, { "start": 22036.5, "end": 22037.1, "probability": 0.2633 }, { "start": 22037.56, "end": 22038.24, "probability": 0.3307 }, { "start": 22038.52, "end": 22039.12, "probability": 0.3796 }, { "start": 22041.82, "end": 22042.56, "probability": 0.0783 }, { "start": 22042.56, "end": 22042.56, "probability": 0.0185 }, { "start": 22042.56, "end": 22042.7, "probability": 0.0936 }, { "start": 22042.8, "end": 22045.54, "probability": 0.6965 }, { "start": 22046.38, "end": 22048.14, "probability": 0.5984 }, { "start": 22048.8, "end": 22049.21, "probability": 0.814 }, { "start": 22051.98, "end": 22052.46, "probability": 0.6167 }, { "start": 22052.46, "end": 22052.84, "probability": 0.0059 }, { "start": 22052.84, "end": 22053.1, "probability": 0.3084 }, { "start": 22053.16, "end": 22053.8, "probability": 0.2924 }, { "start": 22053.92, "end": 22053.92, "probability": 0.0729 }, { "start": 22053.92, "end": 22054.36, "probability": 0.6126 }, { "start": 22054.82, "end": 22056.72, "probability": 0.3707 }, { "start": 22057.02, "end": 22058.48, "probability": 0.9175 }, { "start": 22058.48, "end": 22059.32, "probability": 0.5634 }, { "start": 22059.36, "end": 22059.36, "probability": 0.0006 }, { "start": 22061.02, "end": 22061.36, "probability": 0.0657 }, { "start": 22061.36, "end": 22061.36, "probability": 0.0682 }, { "start": 22061.36, "end": 22064.04, "probability": 0.8198 }, { "start": 22064.18, "end": 22066.14, "probability": 0.6994 }, { "start": 22066.62, "end": 22071.61, "probability": 0.8237 }, { "start": 22072.32, "end": 22073.4, "probability": 0.6401 }, { "start": 22073.68, "end": 22073.68, "probability": 0.2681 }, { "start": 22073.68, "end": 22077.08, "probability": 0.3153 }, { "start": 22077.7, "end": 22080.76, "probability": 0.9904 }, { "start": 22080.96, "end": 22081.7, "probability": 0.8318 }, { "start": 22081.72, "end": 22082.38, "probability": 0.9062 }, { "start": 22082.5, "end": 22084.42, "probability": 0.8149 }, { "start": 22084.58, "end": 22085.12, "probability": 0.6965 }, { "start": 22086.26, "end": 22086.32, "probability": 0.2158 }, { "start": 22086.32, "end": 22088.88, "probability": 0.8263 }, { "start": 22089.14, "end": 22090.54, "probability": 0.4465 }, { "start": 22091.1, "end": 22091.34, "probability": 0.2532 }, { "start": 22091.34, "end": 22091.34, "probability": 0.3483 }, { "start": 22091.34, "end": 22091.83, "probability": 0.493 }, { "start": 22092.76, "end": 22093.44, "probability": 0.4309 }, { "start": 22093.96, "end": 22095.88, "probability": 0.7563 }, { "start": 22096.56, "end": 22099.7, "probability": 0.9829 }, { "start": 22099.7, "end": 22100.08, "probability": 0.2848 }, { "start": 22100.46, "end": 22101.82, "probability": 0.3832 }, { "start": 22102.06, "end": 22103.42, "probability": 0.5773 }, { "start": 22103.79, "end": 22107.18, "probability": 0.9161 }, { "start": 22107.74, "end": 22109.78, "probability": 0.0444 }, { "start": 22111.24, "end": 22111.82, "probability": 0.0312 }, { "start": 22111.82, "end": 22111.84, "probability": 0.0613 }, { "start": 22111.84, "end": 22112.92, "probability": 0.6137 }, { "start": 22113.52, "end": 22115.28, "probability": 0.7206 }, { "start": 22115.44, "end": 22115.78, "probability": 0.7263 }, { "start": 22115.8, "end": 22116.1, "probability": 0.0904 }, { "start": 22116.74, "end": 22116.94, "probability": 0.1733 }, { "start": 22116.94, "end": 22117.82, "probability": 0.5445 }, { "start": 22118.36, "end": 22118.94, "probability": 0.1747 }, { "start": 22119.54, "end": 22119.76, "probability": 0.0414 }, { "start": 22120.28, "end": 22120.3, "probability": 0.094 }, { "start": 22120.3, "end": 22120.38, "probability": 0.1036 }, { "start": 22120.38, "end": 22121.8, "probability": 0.491 }, { "start": 22122.28, "end": 22122.64, "probability": 0.0227 }, { "start": 22123.74, "end": 22124.26, "probability": 0.3202 }, { "start": 22124.54, "end": 22126.7, "probability": 0.8571 }, { "start": 22127.26, "end": 22130.76, "probability": 0.8111 }, { "start": 22131.52, "end": 22133.54, "probability": 0.9768 }, { "start": 22134.06, "end": 22137.26, "probability": 0.4451 }, { "start": 22137.26, "end": 22142.84, "probability": 0.7518 }, { "start": 22143.12, "end": 22145.62, "probability": 0.9404 }, { "start": 22146.06, "end": 22149.18, "probability": 0.9758 }, { "start": 22150.06, "end": 22151.5, "probability": 0.8686 }, { "start": 22151.62, "end": 22152.94, "probability": 0.625 }, { "start": 22153.06, "end": 22158.52, "probability": 0.8471 }, { "start": 22159.4, "end": 22160.5, "probability": 0.9287 }, { "start": 22161.12, "end": 22163.22, "probability": 0.8714 }, { "start": 22163.6, "end": 22169.3, "probability": 0.9399 }, { "start": 22169.3, "end": 22173.88, "probability": 0.9331 }, { "start": 22174.08, "end": 22175.16, "probability": 0.9624 }, { "start": 22175.66, "end": 22177.12, "probability": 0.969 }, { "start": 22179.84, "end": 22184.24, "probability": 0.998 }, { "start": 22185.26, "end": 22190.56, "probability": 0.9974 }, { "start": 22191.03, "end": 22194.76, "probability": 0.9539 }, { "start": 22195.32, "end": 22198.5, "probability": 0.7078 }, { "start": 22198.62, "end": 22199.8, "probability": 0.9116 }, { "start": 22200.42, "end": 22207.64, "probability": 0.9622 }, { "start": 22208.14, "end": 22209.12, "probability": 0.8593 }, { "start": 22209.32, "end": 22210.18, "probability": 0.8413 }, { "start": 22210.58, "end": 22212.54, "probability": 0.9971 }, { "start": 22212.58, "end": 22216.22, "probability": 0.929 }, { "start": 22217.65, "end": 22220.36, "probability": 0.7443 }, { "start": 22221.3, "end": 22221.3, "probability": 0.4773 }, { "start": 22221.96, "end": 22227.4, "probability": 0.9873 }, { "start": 22227.4, "end": 22233.36, "probability": 0.9881 }, { "start": 22233.98, "end": 22237.2, "probability": 0.941 }, { "start": 22237.92, "end": 22242.26, "probability": 0.413 }, { "start": 22242.84, "end": 22246.9, "probability": 0.9858 }, { "start": 22247.46, "end": 22249.02, "probability": 0.5016 }, { "start": 22249.24, "end": 22254.36, "probability": 0.9199 }, { "start": 22254.88, "end": 22257.76, "probability": 0.9956 }, { "start": 22258.38, "end": 22259.54, "probability": 0.9914 }, { "start": 22260.1, "end": 22262.82, "probability": 0.9943 }, { "start": 22262.96, "end": 22263.82, "probability": 0.959 }, { "start": 22264.22, "end": 22269.16, "probability": 0.9645 }, { "start": 22270.2, "end": 22272.52, "probability": 0.8857 }, { "start": 22273.36, "end": 22277.32, "probability": 0.9873 }, { "start": 22278.36, "end": 22278.72, "probability": 0.3355 }, { "start": 22278.72, "end": 22281.68, "probability": 0.6677 }, { "start": 22281.8, "end": 22282.98, "probability": 0.5157 }, { "start": 22283.62, "end": 22288.42, "probability": 0.9296 }, { "start": 22288.44, "end": 22296.04, "probability": 0.9957 }, { "start": 22296.16, "end": 22298.14, "probability": 0.9734 }, { "start": 22298.64, "end": 22302.46, "probability": 0.9698 }, { "start": 22303.2, "end": 22309.94, "probability": 0.9856 }, { "start": 22309.94, "end": 22315.92, "probability": 0.9975 }, { "start": 22316.58, "end": 22322.02, "probability": 0.9824 }, { "start": 22322.02, "end": 22326.04, "probability": 0.9963 }, { "start": 22326.24, "end": 22326.34, "probability": 0.5497 }, { "start": 22326.56, "end": 22328.16, "probability": 0.9245 }, { "start": 22328.68, "end": 22330.96, "probability": 0.4764 }, { "start": 22331.38, "end": 22337.26, "probability": 0.9521 }, { "start": 22337.36, "end": 22339.4, "probability": 0.7925 }, { "start": 22340.64, "end": 22342.16, "probability": 0.9858 }, { "start": 22342.88, "end": 22343.66, "probability": 0.0177 }, { "start": 22344.02, "end": 22346.08, "probability": 0.9668 }, { "start": 22349.1, "end": 22349.74, "probability": 0.0364 }, { "start": 22362.14, "end": 22364.12, "probability": 0.3075 }, { "start": 22366.92, "end": 22367.78, "probability": 0.6787 }, { "start": 22369.06, "end": 22370.28, "probability": 0.7408 }, { "start": 22373.0, "end": 22374.96, "probability": 0.9684 }, { "start": 22375.06, "end": 22377.8, "probability": 0.9643 }, { "start": 22379.26, "end": 22379.73, "probability": 0.9893 }, { "start": 22380.92, "end": 22381.22, "probability": 0.9773 }, { "start": 22381.8, "end": 22382.44, "probability": 0.7596 }, { "start": 22382.52, "end": 22383.6, "probability": 0.8317 }, { "start": 22384.44, "end": 22386.32, "probability": 0.989 }, { "start": 22386.58, "end": 22392.35, "probability": 0.9176 }, { "start": 22392.52, "end": 22393.52, "probability": 0.9117 }, { "start": 22394.12, "end": 22397.36, "probability": 0.9197 }, { "start": 22397.96, "end": 22399.28, "probability": 0.4085 }, { "start": 22400.08, "end": 22401.24, "probability": 0.852 }, { "start": 22401.26, "end": 22401.72, "probability": 0.7318 }, { "start": 22402.08, "end": 22403.06, "probability": 0.7843 }, { "start": 22403.14, "end": 22403.38, "probability": 0.8774 }, { "start": 22403.5, "end": 22405.5, "probability": 0.8625 }, { "start": 22407.48, "end": 22410.86, "probability": 0.9579 }, { "start": 22410.94, "end": 22412.3, "probability": 0.6895 }, { "start": 22413.24, "end": 22415.2, "probability": 0.8818 }, { "start": 22415.32, "end": 22416.23, "probability": 0.8081 }, { "start": 22417.7, "end": 22418.61, "probability": 0.8652 }, { "start": 22419.0, "end": 22420.36, "probability": 0.9963 }, { "start": 22420.56, "end": 22422.24, "probability": 0.9933 }, { "start": 22422.3, "end": 22424.48, "probability": 0.9971 }, { "start": 22425.18, "end": 22427.96, "probability": 0.7723 }, { "start": 22428.88, "end": 22430.22, "probability": 0.7957 }, { "start": 22432.52, "end": 22434.25, "probability": 0.8882 }, { "start": 22435.38, "end": 22435.84, "probability": 0.9104 }, { "start": 22436.72, "end": 22439.98, "probability": 0.803 }, { "start": 22440.0, "end": 22442.74, "probability": 0.9067 }, { "start": 22444.39, "end": 22445.44, "probability": 0.1258 }, { "start": 22445.44, "end": 22445.44, "probability": 0.0857 }, { "start": 22445.44, "end": 22447.04, "probability": 0.3916 }, { "start": 22447.7, "end": 22448.12, "probability": 0.903 }, { "start": 22449.32, "end": 22451.24, "probability": 0.9499 }, { "start": 22451.46, "end": 22451.68, "probability": 0.556 }, { "start": 22452.28, "end": 22452.92, "probability": 0.5923 }, { "start": 22453.42, "end": 22455.24, "probability": 0.895 }, { "start": 22456.16, "end": 22458.68, "probability": 0.9778 }, { "start": 22458.8, "end": 22459.62, "probability": 0.5069 }, { "start": 22461.54, "end": 22464.08, "probability": 0.9874 }, { "start": 22464.94, "end": 22466.94, "probability": 0.981 }, { "start": 22467.88, "end": 22468.9, "probability": 0.938 }, { "start": 22470.36, "end": 22472.16, "probability": 0.8536 }, { "start": 22472.76, "end": 22473.86, "probability": 0.8444 }, { "start": 22474.02, "end": 22474.88, "probability": 0.949 }, { "start": 22474.98, "end": 22476.26, "probability": 0.7882 }, { "start": 22476.34, "end": 22478.12, "probability": 0.8582 }, { "start": 22478.12, "end": 22480.16, "probability": 0.9941 }, { "start": 22480.52, "end": 22481.28, "probability": 0.9733 }, { "start": 22481.34, "end": 22481.88, "probability": 0.4955 }, { "start": 22481.98, "end": 22484.68, "probability": 0.8914 }, { "start": 22486.66, "end": 22491.1, "probability": 0.9936 }, { "start": 22491.46, "end": 22491.8, "probability": 0.8498 }, { "start": 22492.24, "end": 22493.26, "probability": 0.9378 }, { "start": 22493.82, "end": 22494.9, "probability": 0.9142 }, { "start": 22495.3, "end": 22496.62, "probability": 0.9263 }, { "start": 22497.56, "end": 22497.98, "probability": 0.9647 }, { "start": 22498.08, "end": 22498.92, "probability": 0.9585 }, { "start": 22499.04, "end": 22502.12, "probability": 0.99 }, { "start": 22503.32, "end": 22503.98, "probability": 0.514 }, { "start": 22504.02, "end": 22505.46, "probability": 0.9258 }, { "start": 22505.62, "end": 22507.54, "probability": 0.9229 }, { "start": 22508.06, "end": 22509.66, "probability": 0.625 }, { "start": 22510.34, "end": 22511.46, "probability": 0.9784 }, { "start": 22511.84, "end": 22512.18, "probability": 0.8658 }, { "start": 22512.24, "end": 22515.68, "probability": 0.6925 }, { "start": 22515.84, "end": 22518.96, "probability": 0.0502 }, { "start": 22518.96, "end": 22518.96, "probability": 0.0155 }, { "start": 22518.96, "end": 22519.82, "probability": 0.2451 }, { "start": 22520.16, "end": 22521.48, "probability": 0.7689 }, { "start": 22522.2, "end": 22523.6, "probability": 0.9945 }, { "start": 22524.16, "end": 22526.38, "probability": 0.9734 }, { "start": 22527.12, "end": 22527.74, "probability": 0.9697 }, { "start": 22527.88, "end": 22529.62, "probability": 0.955 }, { "start": 22530.08, "end": 22531.05, "probability": 0.9712 }, { "start": 22531.62, "end": 22533.44, "probability": 0.9979 }, { "start": 22533.52, "end": 22535.18, "probability": 0.5942 }, { "start": 22535.18, "end": 22537.06, "probability": 0.9974 }, { "start": 22537.26, "end": 22539.16, "probability": 0.9944 }, { "start": 22539.6, "end": 22541.44, "probability": 0.8893 }, { "start": 22542.08, "end": 22543.54, "probability": 0.9805 }, { "start": 22544.12, "end": 22545.55, "probability": 0.8615 }, { "start": 22546.18, "end": 22547.6, "probability": 0.9869 }, { "start": 22547.74, "end": 22550.3, "probability": 0.9937 }, { "start": 22550.6, "end": 22552.62, "probability": 0.907 }, { "start": 22552.64, "end": 22554.74, "probability": 0.8857 }, { "start": 22554.74, "end": 22554.78, "probability": 0.4725 }, { "start": 22554.78, "end": 22556.42, "probability": 0.6678 }, { "start": 22556.6, "end": 22557.82, "probability": 0.903 }, { "start": 22558.38, "end": 22559.68, "probability": 0.9784 }, { "start": 22560.76, "end": 22560.98, "probability": 0.9199 }, { "start": 22561.08, "end": 22563.04, "probability": 0.9864 }, { "start": 22563.26, "end": 22564.02, "probability": 0.4929 }, { "start": 22564.26, "end": 22566.24, "probability": 0.6659 }, { "start": 22566.94, "end": 22568.16, "probability": 0.9012 }, { "start": 22568.74, "end": 22570.78, "probability": 0.9244 }, { "start": 22571.16, "end": 22572.7, "probability": 0.6963 }, { "start": 22572.82, "end": 22573.46, "probability": 0.6858 }, { "start": 22573.84, "end": 22575.62, "probability": 0.9426 }, { "start": 22575.72, "end": 22577.22, "probability": 0.758 }, { "start": 22578.56, "end": 22580.64, "probability": 0.959 }, { "start": 22581.72, "end": 22584.08, "probability": 0.9563 }, { "start": 22585.48, "end": 22588.74, "probability": 0.9449 }, { "start": 22592.86, "end": 22596.04, "probability": 0.1431 }, { "start": 22609.88, "end": 22610.7, "probability": 0.1472 }, { "start": 22611.9, "end": 22612.02, "probability": 0.0067 }, { "start": 22612.12, "end": 22612.7, "probability": 0.3323 }, { "start": 22613.1, "end": 22613.28, "probability": 0.7253 }, { "start": 22622.44, "end": 22623.64, "probability": 0.4513 }, { "start": 22623.64, "end": 22624.5, "probability": 0.7825 }, { "start": 22624.56, "end": 22625.22, "probability": 0.6966 }, { "start": 22625.42, "end": 22627.3, "probability": 0.9902 }, { "start": 22627.54, "end": 22627.8, "probability": 0.3905 }, { "start": 22628.5, "end": 22629.84, "probability": 0.8354 }, { "start": 22630.5, "end": 22633.4, "probability": 0.9491 }, { "start": 22633.84, "end": 22634.82, "probability": 0.6696 }, { "start": 22635.08, "end": 22636.44, "probability": 0.9869 }, { "start": 22637.38, "end": 22637.66, "probability": 0.7781 }, { "start": 22638.62, "end": 22639.72, "probability": 0.4999 }, { "start": 22639.98, "end": 22643.28, "probability": 0.8274 }, { "start": 22643.34, "end": 22643.85, "probability": 0.9724 }, { "start": 22644.12, "end": 22644.86, "probability": 0.5602 }, { "start": 22645.8, "end": 22646.16, "probability": 0.4633 }, { "start": 22647.21, "end": 22647.66, "probability": 0.9852 }, { "start": 22648.78, "end": 22649.78, "probability": 0.9748 }, { "start": 22650.3, "end": 22651.78, "probability": 0.7325 }, { "start": 22651.8, "end": 22653.36, "probability": 0.475 }, { "start": 22653.74, "end": 22655.62, "probability": 0.9189 }, { "start": 22655.88, "end": 22656.86, "probability": 0.8826 }, { "start": 22657.0, "end": 22659.44, "probability": 0.9116 }, { "start": 22659.54, "end": 22660.2, "probability": 0.7218 }, { "start": 22661.24, "end": 22661.61, "probability": 0.7036 }, { "start": 22662.32, "end": 22662.38, "probability": 0.0388 }, { "start": 22662.38, "end": 22662.96, "probability": 0.0157 }, { "start": 22662.96, "end": 22663.6, "probability": 0.1794 }, { "start": 22663.84, "end": 22664.34, "probability": 0.3362 }, { "start": 22664.42, "end": 22665.2, "probability": 0.901 }, { "start": 22666.08, "end": 22666.62, "probability": 0.5457 }, { "start": 22667.54, "end": 22667.72, "probability": 0.4698 }, { "start": 22667.9, "end": 22668.32, "probability": 0.6983 }, { "start": 22669.22, "end": 22669.98, "probability": 0.7472 }, { "start": 22670.38, "end": 22671.17, "probability": 0.5262 }, { "start": 22671.24, "end": 22671.94, "probability": 0.2783 }, { "start": 22672.44, "end": 22675.64, "probability": 0.9556 }, { "start": 22676.66, "end": 22679.08, "probability": 0.9946 }, { "start": 22679.1, "end": 22679.42, "probability": 0.4387 }, { "start": 22679.48, "end": 22680.26, "probability": 0.9202 }, { "start": 22682.2, "end": 22682.65, "probability": 0.9478 }, { "start": 22683.62, "end": 22684.04, "probability": 0.4287 }, { "start": 22684.38, "end": 22684.7, "probability": 0.928 }, { "start": 22685.18, "end": 22685.63, "probability": 0.7365 }, { "start": 22686.18, "end": 22688.59, "probability": 0.9646 }, { "start": 22688.7, "end": 22689.2, "probability": 0.5935 }, { "start": 22690.8, "end": 22691.76, "probability": 0.6449 }, { "start": 22691.9, "end": 22697.12, "probability": 0.7739 }, { "start": 22697.12, "end": 22702.14, "probability": 0.8773 }, { "start": 22704.12, "end": 22704.72, "probability": 0.8857 }, { "start": 22705.7, "end": 22707.62, "probability": 0.735 }, { "start": 22708.24, "end": 22709.14, "probability": 0.8272 }, { "start": 22709.26, "end": 22710.58, "probability": 0.7076 }, { "start": 22710.58, "end": 22712.16, "probability": 0.7845 }, { "start": 22714.22, "end": 22716.52, "probability": 0.9148 }, { "start": 22717.84, "end": 22720.48, "probability": 0.9448 }, { "start": 22720.54, "end": 22721.46, "probability": 0.875 }, { "start": 22721.5, "end": 22722.3, "probability": 0.6005 }, { "start": 22724.48, "end": 22727.1, "probability": 0.8631 }, { "start": 22727.22, "end": 22727.42, "probability": 0.9766 }, { "start": 22727.96, "end": 22730.4, "probability": 0.8687 }, { "start": 22730.92, "end": 22731.22, "probability": 0.7257 }, { "start": 22731.44, "end": 22731.7, "probability": 0.6661 }, { "start": 22732.26, "end": 22733.12, "probability": 0.7423 }, { "start": 22733.12, "end": 22733.86, "probability": 0.8494 }, { "start": 22736.54, "end": 22738.48, "probability": 0.9869 }, { "start": 22738.64, "end": 22741.6, "probability": 0.9624 }, { "start": 22743.0, "end": 22744.06, "probability": 0.8392 }, { "start": 22744.78, "end": 22745.58, "probability": 0.5097 }, { "start": 22746.06, "end": 22747.44, "probability": 0.874 }, { "start": 22747.62, "end": 22748.05, "probability": 0.8535 }, { "start": 22749.56, "end": 22751.52, "probability": 0.5202 }, { "start": 22752.42, "end": 22753.59, "probability": 0.7802 }, { "start": 22755.0, "end": 22756.22, "probability": 0.9292 }, { "start": 22757.48, "end": 22759.58, "probability": 0.7598 }, { "start": 22759.84, "end": 22760.28, "probability": 0.8925 }, { "start": 22760.42, "end": 22762.36, "probability": 0.9282 }, { "start": 22763.78, "end": 22765.06, "probability": 0.9778 }, { "start": 22766.24, "end": 22767.28, "probability": 0.9397 }, { "start": 22768.38, "end": 22769.87, "probability": 0.8344 }, { "start": 22770.54, "end": 22771.1, "probability": 0.485 }, { "start": 22771.66, "end": 22773.33, "probability": 0.869 }, { "start": 22773.66, "end": 22775.14, "probability": 0.9803 }, { "start": 22776.48, "end": 22779.42, "probability": 0.9617 }, { "start": 22780.28, "end": 22782.06, "probability": 0.9715 }, { "start": 22782.62, "end": 22783.38, "probability": 0.6494 }, { "start": 22784.44, "end": 22784.88, "probability": 0.3203 }, { "start": 22785.34, "end": 22787.9, "probability": 0.8638 }, { "start": 22788.24, "end": 22788.86, "probability": 0.9736 }, { "start": 22789.6, "end": 22792.28, "probability": 0.9573 }, { "start": 22793.0, "end": 22793.96, "probability": 0.9695 }, { "start": 22794.78, "end": 22796.36, "probability": 0.9877 }, { "start": 22796.78, "end": 22797.58, "probability": 0.5275 }, { "start": 22797.66, "end": 22798.16, "probability": 0.6556 }, { "start": 22798.24, "end": 22799.48, "probability": 0.5835 }, { "start": 22801.04, "end": 22802.3, "probability": 0.8319 }, { "start": 22802.78, "end": 22804.62, "probability": 0.9766 }, { "start": 22804.82, "end": 22809.7, "probability": 0.9895 }, { "start": 22810.26, "end": 22812.02, "probability": 0.8255 }, { "start": 22812.76, "end": 22813.9, "probability": 0.6226 }, { "start": 22813.9, "end": 22817.0, "probability": 0.9034 }, { "start": 22817.14, "end": 22817.82, "probability": 0.6212 }, { "start": 22818.5, "end": 22819.14, "probability": 0.4471 }, { "start": 22819.66, "end": 22820.98, "probability": 0.8738 }, { "start": 22822.42, "end": 22826.42, "probability": 0.8672 }, { "start": 22827.08, "end": 22830.98, "probability": 0.8271 }, { "start": 22831.12, "end": 22831.12, "probability": 0.3336 }, { "start": 22831.12, "end": 22832.73, "probability": 0.7253 }, { "start": 22833.42, "end": 22836.0, "probability": 0.9327 }, { "start": 22837.0, "end": 22837.74, "probability": 0.6075 }, { "start": 22837.88, "end": 22839.18, "probability": 0.9388 }, { "start": 22839.42, "end": 22840.06, "probability": 0.3585 }, { "start": 22840.52, "end": 22841.18, "probability": 0.7504 }, { "start": 22841.2, "end": 22841.78, "probability": 0.7275 }, { "start": 22842.5, "end": 22846.98, "probability": 0.9281 }, { "start": 22847.94, "end": 22849.62, "probability": 0.3029 }, { "start": 22849.62, "end": 22849.62, "probability": 0.4653 }, { "start": 22849.62, "end": 22849.62, "probability": 0.0738 }, { "start": 22849.62, "end": 22850.11, "probability": 0.5694 }, { "start": 22850.68, "end": 22851.38, "probability": 0.4121 }, { "start": 22851.96, "end": 22853.28, "probability": 0.8287 }, { "start": 22854.14, "end": 22855.02, "probability": 0.5289 }, { "start": 22855.18, "end": 22857.2, "probability": 0.9584 }, { "start": 22859.68, "end": 22860.56, "probability": 0.1991 }, { "start": 22861.78, "end": 22862.38, "probability": 0.8145 }, { "start": 22862.94, "end": 22863.7, "probability": 0.229 }, { "start": 22863.8, "end": 22864.48, "probability": 0.1361 }, { "start": 22864.86, "end": 22865.92, "probability": 0.0077 }, { "start": 22866.94, "end": 22868.78, "probability": 0.7569 }, { "start": 22870.08, "end": 22870.26, "probability": 0.9083 }, { "start": 22870.26, "end": 22870.86, "probability": 0.8787 }, { "start": 22876.04, "end": 22876.86, "probability": 0.7543 }, { "start": 22876.96, "end": 22877.82, "probability": 0.9642 }, { "start": 22877.92, "end": 22878.72, "probability": 0.6891 }, { "start": 22880.56, "end": 22882.18, "probability": 0.9565 }, { "start": 22882.22, "end": 22882.96, "probability": 0.8284 }, { "start": 22883.32, "end": 22883.82, "probability": 0.8644 }, { "start": 22884.64, "end": 22888.6, "probability": 0.9453 }, { "start": 22889.62, "end": 22891.74, "probability": 0.9542 }, { "start": 22893.58, "end": 22895.14, "probability": 0.823 }, { "start": 22896.56, "end": 22897.02, "probability": 0.9272 }, { "start": 22897.72, "end": 22904.78, "probability": 0.9496 }, { "start": 22904.94, "end": 22905.92, "probability": 0.8396 }, { "start": 22907.66, "end": 22909.22, "probability": 0.9341 }, { "start": 22910.24, "end": 22913.48, "probability": 0.9291 }, { "start": 22915.02, "end": 22920.84, "probability": 0.9554 }, { "start": 22921.8, "end": 22924.59, "probability": 0.796 }, { "start": 22925.32, "end": 22930.16, "probability": 0.9977 }, { "start": 22931.16, "end": 22936.16, "probability": 0.9812 }, { "start": 22936.16, "end": 22937.72, "probability": 0.8005 }, { "start": 22938.24, "end": 22939.48, "probability": 0.7362 }, { "start": 22940.36, "end": 22943.86, "probability": 0.9953 }, { "start": 22944.8, "end": 22949.32, "probability": 0.9874 }, { "start": 22949.32, "end": 22954.18, "probability": 0.9686 }, { "start": 22955.62, "end": 22956.38, "probability": 0.6965 }, { "start": 22956.52, "end": 22961.38, "probability": 0.976 }, { "start": 22961.54, "end": 22968.02, "probability": 0.9934 }, { "start": 22968.02, "end": 22974.94, "probability": 0.9922 }, { "start": 22976.3, "end": 22977.88, "probability": 0.6007 }, { "start": 22978.82, "end": 22979.26, "probability": 0.6095 }, { "start": 22980.5, "end": 22981.94, "probability": 0.9497 }, { "start": 22982.46, "end": 22985.46, "probability": 0.9974 }, { "start": 22986.34, "end": 22991.84, "probability": 0.9981 }, { "start": 22992.6, "end": 22995.88, "probability": 0.9974 }, { "start": 22996.7, "end": 22999.78, "probability": 0.9831 }, { "start": 23000.62, "end": 23005.36, "probability": 0.9978 }, { "start": 23006.08, "end": 23008.94, "probability": 0.9897 }, { "start": 23009.88, "end": 23010.48, "probability": 0.6958 }, { "start": 23011.24, "end": 23011.94, "probability": 0.9384 }, { "start": 23012.6, "end": 23017.92, "probability": 0.8147 }, { "start": 23017.92, "end": 23020.94, "probability": 0.9912 }, { "start": 23021.18, "end": 23021.28, "probability": 0.4882 }, { "start": 23021.38, "end": 23021.92, "probability": 0.4616 }, { "start": 23022.66, "end": 23023.78, "probability": 0.8678 }, { "start": 23024.4, "end": 23030.58, "probability": 0.9938 }, { "start": 23031.7, "end": 23032.32, "probability": 0.9497 }, { "start": 23032.96, "end": 23035.22, "probability": 0.9937 }, { "start": 23036.92, "end": 23039.26, "probability": 0.9495 }, { "start": 23040.38, "end": 23045.34, "probability": 0.984 }, { "start": 23046.14, "end": 23047.78, "probability": 0.8822 }, { "start": 23049.1, "end": 23052.7, "probability": 0.7992 }, { "start": 23053.18, "end": 23053.92, "probability": 0.6884 }, { "start": 23055.0, "end": 23056.06, "probability": 0.9906 }, { "start": 23057.06, "end": 23059.66, "probability": 0.8537 }, { "start": 23060.52, "end": 23063.9, "probability": 0.9861 }, { "start": 23064.48, "end": 23067.78, "probability": 0.6723 }, { "start": 23068.34, "end": 23071.28, "probability": 0.953 }, { "start": 23071.92, "end": 23073.0, "probability": 0.9548 }, { "start": 23074.52, "end": 23076.32, "probability": 0.2678 }, { "start": 23076.98, "end": 23080.48, "probability": 0.9389 }, { "start": 23081.28, "end": 23082.12, "probability": 0.7387 }, { "start": 23082.62, "end": 23083.58, "probability": 0.9728 }, { "start": 23084.0, "end": 23084.46, "probability": 0.8368 }, { "start": 23084.72, "end": 23086.22, "probability": 0.845 }, { "start": 23086.32, "end": 23087.4, "probability": 0.9441 }, { "start": 23099.6, "end": 23100.48, "probability": 0.0796 }, { "start": 23108.1, "end": 23108.1, "probability": 0.0224 }, { "start": 23108.1, "end": 23109.72, "probability": 0.6026 }, { "start": 23111.0, "end": 23116.88, "probability": 0.9954 }, { "start": 23117.68, "end": 23119.44, "probability": 0.9521 }, { "start": 23120.58, "end": 23126.36, "probability": 0.9746 }, { "start": 23127.68, "end": 23135.52, "probability": 0.9908 }, { "start": 23136.64, "end": 23140.5, "probability": 0.9972 }, { "start": 23141.02, "end": 23144.04, "probability": 0.9796 }, { "start": 23145.18, "end": 23149.16, "probability": 0.9988 }, { "start": 23149.16, "end": 23153.92, "probability": 0.9969 }, { "start": 23154.84, "end": 23161.0, "probability": 0.9902 }, { "start": 23161.96, "end": 23162.96, "probability": 0.9441 }, { "start": 23164.32, "end": 23167.58, "probability": 0.9841 }, { "start": 23168.96, "end": 23170.9, "probability": 0.9161 }, { "start": 23171.5, "end": 23172.22, "probability": 0.9081 }, { "start": 23172.92, "end": 23173.98, "probability": 0.868 }, { "start": 23174.68, "end": 23179.32, "probability": 0.8864 }, { "start": 23179.38, "end": 23179.66, "probability": 0.9657 }, { "start": 23180.88, "end": 23183.3, "probability": 0.8911 }, { "start": 23184.02, "end": 23187.74, "probability": 0.9976 }, { "start": 23188.92, "end": 23189.72, "probability": 0.8751 }, { "start": 23190.34, "end": 23192.04, "probability": 0.9985 }, { "start": 23192.88, "end": 23195.46, "probability": 0.999 }, { "start": 23196.54, "end": 23199.42, "probability": 0.9971 }, { "start": 23200.1, "end": 23202.87, "probability": 0.9964 }, { "start": 23203.92, "end": 23207.1, "probability": 0.9919 }, { "start": 23207.72, "end": 23208.6, "probability": 0.9273 }, { "start": 23209.4, "end": 23214.78, "probability": 0.9547 }, { "start": 23215.42, "end": 23216.44, "probability": 0.739 }, { "start": 23217.06, "end": 23218.86, "probability": 0.84 }, { "start": 23219.74, "end": 23223.36, "probability": 0.9929 }, { "start": 23224.4, "end": 23230.0, "probability": 0.9868 }, { "start": 23230.16, "end": 23230.74, "probability": 0.7119 }, { "start": 23231.72, "end": 23232.92, "probability": 0.8332 }, { "start": 23233.8, "end": 23238.42, "probability": 0.9952 }, { "start": 23239.68, "end": 23240.44, "probability": 0.9506 }, { "start": 23241.12, "end": 23245.82, "probability": 0.9985 }, { "start": 23246.22, "end": 23247.12, "probability": 0.9866 }, { "start": 23247.98, "end": 23249.66, "probability": 0.8006 }, { "start": 23250.4, "end": 23251.72, "probability": 0.9155 }, { "start": 23252.5, "end": 23253.84, "probability": 0.4705 }, { "start": 23254.56, "end": 23255.23, "probability": 0.875 }, { "start": 23255.96, "end": 23258.06, "probability": 0.9718 }, { "start": 23258.88, "end": 23260.64, "probability": 0.7474 }, { "start": 23260.64, "end": 23262.2, "probability": 0.8259 }, { "start": 23262.3, "end": 23263.6, "probability": 0.9221 }, { "start": 23263.72, "end": 23264.34, "probability": 0.9443 }, { "start": 23265.04, "end": 23266.26, "probability": 0.9984 }, { "start": 23267.12, "end": 23271.76, "probability": 0.9915 }, { "start": 23272.4, "end": 23275.74, "probability": 0.9756 }, { "start": 23276.32, "end": 23277.22, "probability": 0.7732 }, { "start": 23278.0, "end": 23281.02, "probability": 0.976 }, { "start": 23281.74, "end": 23283.84, "probability": 0.9897 }, { "start": 23286.08, "end": 23289.28, "probability": 0.3291 }, { "start": 23290.42, "end": 23292.92, "probability": 0.9362 }, { "start": 23293.06, "end": 23294.96, "probability": 0.8593 }, { "start": 23295.68, "end": 23296.66, "probability": 0.8943 }, { "start": 23296.76, "end": 23299.04, "probability": 0.991 }, { "start": 23299.62, "end": 23300.82, "probability": 0.7635 }, { "start": 23301.6, "end": 23303.16, "probability": 0.9874 }, { "start": 23303.74, "end": 23305.92, "probability": 0.989 }, { "start": 23306.7, "end": 23308.3, "probability": 0.9893 }, { "start": 23309.18, "end": 23309.44, "probability": 0.9852 }, { "start": 23310.1, "end": 23310.78, "probability": 0.9277 }, { "start": 23311.06, "end": 23311.98, "probability": 0.9753 }, { "start": 23312.44, "end": 23314.38, "probability": 0.9888 }, { "start": 23315.88, "end": 23317.86, "probability": 0.9935 }, { "start": 23318.42, "end": 23321.26, "probability": 0.9478 }, { "start": 23321.82, "end": 23325.92, "probability": 0.9946 }, { "start": 23326.36, "end": 23328.66, "probability": 0.9757 }, { "start": 23328.76, "end": 23329.28, "probability": 0.9919 }, { "start": 23330.32, "end": 23330.42, "probability": 0.2327 }, { "start": 23330.6, "end": 23331.32, "probability": 0.7699 }, { "start": 23331.46, "end": 23334.02, "probability": 0.8386 }, { "start": 23334.42, "end": 23336.46, "probability": 0.9049 }, { "start": 23337.02, "end": 23341.44, "probability": 0.9827 }, { "start": 23342.14, "end": 23343.69, "probability": 0.7988 }, { "start": 23343.82, "end": 23345.0, "probability": 0.6571 }, { "start": 23345.82, "end": 23350.86, "probability": 0.8542 }, { "start": 23351.48, "end": 23353.16, "probability": 0.9609 }, { "start": 23354.16, "end": 23355.68, "probability": 0.9878 }, { "start": 23356.34, "end": 23358.48, "probability": 0.7592 }, { "start": 23359.04, "end": 23363.18, "probability": 0.9945 }, { "start": 23365.1, "end": 23366.48, "probability": 0.9244 }, { "start": 23366.48, "end": 23369.36, "probability": 0.9993 }, { "start": 23369.78, "end": 23373.46, "probability": 0.9982 }, { "start": 23373.46, "end": 23376.52, "probability": 0.6811 }, { "start": 23377.4, "end": 23379.94, "probability": 0.9961 }, { "start": 23380.46, "end": 23381.14, "probability": 0.6763 }, { "start": 23381.46, "end": 23383.81, "probability": 0.8395 }, { "start": 23384.66, "end": 23386.52, "probability": 0.9832 }, { "start": 23387.14, "end": 23389.08, "probability": 0.9234 }, { "start": 23389.78, "end": 23395.12, "probability": 0.7489 }, { "start": 23395.74, "end": 23396.38, "probability": 0.4138 }, { "start": 23397.18, "end": 23399.26, "probability": 0.9331 }, { "start": 23399.36, "end": 23400.77, "probability": 0.8232 }, { "start": 23401.56, "end": 23403.98, "probability": 0.9082 }, { "start": 23404.44, "end": 23405.06, "probability": 0.535 }, { "start": 23405.32, "end": 23405.78, "probability": 0.4584 }, { "start": 23406.1, "end": 23407.68, "probability": 0.6642 }, { "start": 23408.92, "end": 23409.38, "probability": 0.4718 }, { "start": 23409.6, "end": 23411.22, "probability": 0.9349 }, { "start": 23428.3, "end": 23429.01, "probability": 0.4926 }, { "start": 23429.5, "end": 23429.9, "probability": 0.6394 }, { "start": 23432.2, "end": 23435.2, "probability": 0.9549 }, { "start": 23436.08, "end": 23440.22, "probability": 0.9927 }, { "start": 23441.18, "end": 23443.82, "probability": 0.8587 }, { "start": 23444.88, "end": 23446.1, "probability": 0.9513 }, { "start": 23446.72, "end": 23447.08, "probability": 0.9343 }, { "start": 23447.72, "end": 23448.58, "probability": 0.972 }, { "start": 23449.92, "end": 23450.58, "probability": 0.9699 }, { "start": 23451.34, "end": 23452.46, "probability": 0.9579 }, { "start": 23453.46, "end": 23458.04, "probability": 0.6651 }, { "start": 23462.32, "end": 23466.98, "probability": 0.9961 }, { "start": 23468.06, "end": 23471.91, "probability": 0.989 }, { "start": 23473.78, "end": 23474.56, "probability": 0.6797 }, { "start": 23475.12, "end": 23476.28, "probability": 0.8138 }, { "start": 23476.32, "end": 23477.44, "probability": 0.7911 }, { "start": 23477.56, "end": 23480.02, "probability": 0.9702 }, { "start": 23480.1, "end": 23480.88, "probability": 0.8821 }, { "start": 23481.64, "end": 23482.3, "probability": 0.5768 }, { "start": 23483.32, "end": 23485.36, "probability": 0.9034 }, { "start": 23486.28, "end": 23487.28, "probability": 0.9867 }, { "start": 23488.62, "end": 23490.58, "probability": 0.9468 }, { "start": 23493.2, "end": 23494.66, "probability": 0.9922 }, { "start": 23496.16, "end": 23499.76, "probability": 0.9931 }, { "start": 23500.34, "end": 23501.86, "probability": 0.9856 }, { "start": 23503.08, "end": 23504.4, "probability": 0.7502 }, { "start": 23504.44, "end": 23505.16, "probability": 0.8587 }, { "start": 23506.32, "end": 23510.98, "probability": 0.9879 }, { "start": 23512.02, "end": 23514.38, "probability": 0.9809 }, { "start": 23515.82, "end": 23519.42, "probability": 0.9697 }, { "start": 23520.28, "end": 23523.32, "probability": 0.9049 }, { "start": 23523.5, "end": 23525.98, "probability": 0.7898 }, { "start": 23526.58, "end": 23527.54, "probability": 0.7904 }, { "start": 23528.84, "end": 23530.56, "probability": 0.9995 }, { "start": 23531.28, "end": 23533.25, "probability": 0.226 }, { "start": 23533.82, "end": 23536.86, "probability": 0.7825 }, { "start": 23538.76, "end": 23542.06, "probability": 0.5548 }, { "start": 23543.22, "end": 23544.48, "probability": 0.9098 }, { "start": 23544.92, "end": 23548.08, "probability": 0.9958 }, { "start": 23549.18, "end": 23550.08, "probability": 0.9696 }, { "start": 23550.46, "end": 23554.7, "probability": 0.9956 }, { "start": 23554.98, "end": 23556.48, "probability": 0.8878 }, { "start": 23557.06, "end": 23558.16, "probability": 0.9858 }, { "start": 23558.76, "end": 23559.44, "probability": 0.9281 }, { "start": 23559.78, "end": 23560.12, "probability": 0.6217 }, { "start": 23560.26, "end": 23561.22, "probability": 0.9543 }, { "start": 23561.46, "end": 23563.48, "probability": 0.9966 }, { "start": 23564.46, "end": 23565.18, "probability": 0.9458 }, { "start": 23565.66, "end": 23566.94, "probability": 0.9891 }, { "start": 23567.42, "end": 23568.14, "probability": 0.6997 }, { "start": 23568.18, "end": 23569.04, "probability": 0.515 }, { "start": 23569.06, "end": 23570.3, "probability": 0.1208 }, { "start": 23570.54, "end": 23571.1, "probability": 0.1353 }, { "start": 23571.66, "end": 23576.22, "probability": 0.6931 }, { "start": 23576.6, "end": 23577.5, "probability": 0.8455 }, { "start": 23577.9, "end": 23582.2, "probability": 0.9219 }, { "start": 23583.62, "end": 23585.3, "probability": 0.9789 }, { "start": 23586.32, "end": 23587.66, "probability": 0.9909 }, { "start": 23588.58, "end": 23590.6, "probability": 0.8324 }, { "start": 23591.44, "end": 23593.42, "probability": 0.9639 }, { "start": 23594.0, "end": 23595.98, "probability": 0.988 }, { "start": 23597.16, "end": 23599.26, "probability": 0.9827 }, { "start": 23599.96, "end": 23601.12, "probability": 0.7963 }, { "start": 23601.82, "end": 23605.04, "probability": 0.9084 }, { "start": 23605.6, "end": 23606.4, "probability": 0.9438 }, { "start": 23607.28, "end": 23608.9, "probability": 0.9541 }, { "start": 23610.32, "end": 23610.76, "probability": 0.539 }, { "start": 23614.24, "end": 23615.14, "probability": 0.498 }, { "start": 23615.2, "end": 23616.8, "probability": 0.2156 }, { "start": 23617.94, "end": 23619.02, "probability": 0.772 }, { "start": 23619.26, "end": 23619.48, "probability": 0.5997 }, { "start": 23620.34, "end": 23623.56, "probability": 0.8381 }, { "start": 23627.28, "end": 23631.32, "probability": 0.4447 }, { "start": 23636.54, "end": 23636.54, "probability": 0.1901 }, { "start": 23636.54, "end": 23636.54, "probability": 0.0672 }, { "start": 23636.54, "end": 23636.54, "probability": 0.015 }, { "start": 23644.65, "end": 23645.42, "probability": 0.701 }, { "start": 23662.62, "end": 23663.01, "probability": 0.5614 }, { "start": 23663.32, "end": 23664.7, "probability": 0.7505 }, { "start": 23665.34, "end": 23667.28, "probability": 0.4344 }, { "start": 23667.76, "end": 23669.34, "probability": 0.2623 }, { "start": 23669.48, "end": 23670.54, "probability": 0.7664 }, { "start": 23670.92, "end": 23671.98, "probability": 0.8341 }, { "start": 23672.12, "end": 23673.22, "probability": 0.9556 }, { "start": 23673.3, "end": 23673.56, "probability": 0.4781 }, { "start": 23673.84, "end": 23674.78, "probability": 0.878 }, { "start": 23675.54, "end": 23676.46, "probability": 0.9802 }, { "start": 23676.7, "end": 23679.22, "probability": 0.1955 }, { "start": 23679.22, "end": 23680.0, "probability": 0.1748 }, { "start": 23680.22, "end": 23681.76, "probability": 0.1017 }, { "start": 23681.92, "end": 23686.08, "probability": 0.4643 }, { "start": 23686.92, "end": 23687.62, "probability": 0.7032 }, { "start": 23688.22, "end": 23689.48, "probability": 0.9873 }, { "start": 23689.98, "end": 23691.74, "probability": 0.8215 }, { "start": 23692.3, "end": 23692.76, "probability": 0.9473 }, { "start": 23693.72, "end": 23694.31, "probability": 0.4255 }, { "start": 23694.58, "end": 23694.8, "probability": 0.5509 }, { "start": 23695.48, "end": 23696.06, "probability": 0.0515 }, { "start": 23696.22, "end": 23698.28, "probability": 0.9629 }, { "start": 23698.52, "end": 23700.52, "probability": 0.5834 }, { "start": 23701.2, "end": 23702.12, "probability": 0.984 }, { "start": 23702.28, "end": 23703.56, "probability": 0.0406 }, { "start": 23703.58, "end": 23705.1, "probability": 0.1749 }, { "start": 23705.18, "end": 23706.22, "probability": 0.0933 }, { "start": 23706.42, "end": 23706.88, "probability": 0.0974 }, { "start": 23707.54, "end": 23710.2, "probability": 0.8394 }, { "start": 23710.88, "end": 23713.12, "probability": 0.3615 }, { "start": 23713.16, "end": 23714.4, "probability": 0.9932 }, { "start": 23714.4, "end": 23714.52, "probability": 0.9598 }, { "start": 23714.52, "end": 23715.02, "probability": 0.0421 }, { "start": 23715.66, "end": 23716.72, "probability": 0.3795 }, { "start": 23719.18, "end": 23721.08, "probability": 0.67 }, { "start": 23721.14, "end": 23722.84, "probability": 0.8868 }, { "start": 23723.72, "end": 23724.6, "probability": 0.7605 }, { "start": 23725.16, "end": 23725.65, "probability": 0.4905 }, { "start": 23726.56, "end": 23726.63, "probability": 0.0146 }, { "start": 23727.08, "end": 23727.92, "probability": 0.8678 }, { "start": 23728.14, "end": 23728.6, "probability": 0.9591 }, { "start": 23728.68, "end": 23729.14, "probability": 0.8487 }, { "start": 23729.22, "end": 23729.68, "probability": 0.9722 }, { "start": 23729.76, "end": 23730.64, "probability": 0.9312 }, { "start": 23730.7, "end": 23735.06, "probability": 0.9836 }, { "start": 23735.58, "end": 23736.36, "probability": 0.3095 }, { "start": 23736.56, "end": 23737.82, "probability": 0.7275 }, { "start": 23738.68, "end": 23739.66, "probability": 0.6973 }, { "start": 23740.32, "end": 23742.76, "probability": 0.9817 }, { "start": 23743.36, "end": 23747.5, "probability": 0.966 }, { "start": 23747.72, "end": 23749.04, "probability": 0.917 }, { "start": 23751.59, "end": 23753.56, "probability": 0.7268 }, { "start": 23753.66, "end": 23754.2, "probability": 0.613 }, { "start": 23755.28, "end": 23757.18, "probability": 0.9913 }, { "start": 23758.78, "end": 23762.06, "probability": 0.9552 }, { "start": 23762.48, "end": 23765.48, "probability": 0.8944 }, { "start": 23766.38, "end": 23768.54, "probability": 0.9067 }, { "start": 23769.12, "end": 23770.98, "probability": 0.8765 }, { "start": 23771.38, "end": 23774.06, "probability": 0.9137 }, { "start": 23774.58, "end": 23776.14, "probability": 0.5511 }, { "start": 23776.16, "end": 23776.86, "probability": 0.7178 }, { "start": 23776.92, "end": 23777.96, "probability": 0.687 }, { "start": 23778.68, "end": 23781.42, "probability": 0.8353 }, { "start": 23782.06, "end": 23784.16, "probability": 0.9953 }, { "start": 23786.78, "end": 23788.12, "probability": 0.7445 }, { "start": 23788.58, "end": 23793.26, "probability": 0.8165 }, { "start": 23793.46, "end": 23797.0, "probability": 0.4783 }, { "start": 23797.98, "end": 23800.52, "probability": 0.8862 }, { "start": 23801.22, "end": 23805.78, "probability": 0.6228 }, { "start": 23806.38, "end": 23808.88, "probability": 0.6893 }, { "start": 23809.44, "end": 23809.58, "probability": 0.2599 }, { "start": 23809.6, "end": 23810.56, "probability": 0.6997 }, { "start": 23810.72, "end": 23811.9, "probability": 0.7979 }, { "start": 23812.1, "end": 23813.66, "probability": 0.9177 }, { "start": 23814.08, "end": 23815.46, "probability": 0.8887 }, { "start": 23816.89, "end": 23820.2, "probability": 0.7888 }, { "start": 23820.84, "end": 23822.42, "probability": 0.8429 }, { "start": 23822.56, "end": 23825.62, "probability": 0.9922 }, { "start": 23825.62, "end": 23829.19, "probability": 0.9854 }, { "start": 23829.8, "end": 23831.88, "probability": 0.9658 }, { "start": 23833.48, "end": 23835.32, "probability": 0.9304 }, { "start": 23835.72, "end": 23836.86, "probability": 0.492 }, { "start": 23837.0, "end": 23838.56, "probability": 0.6034 }, { "start": 23839.76, "end": 23841.6, "probability": 0.8448 }, { "start": 23842.24, "end": 23845.2, "probability": 0.8877 }, { "start": 23845.8, "end": 23848.42, "probability": 0.7287 }, { "start": 23848.72, "end": 23851.26, "probability": 0.6716 }, { "start": 23851.34, "end": 23852.62, "probability": 0.0791 }, { "start": 23853.04, "end": 23860.06, "probability": 0.9139 }, { "start": 23860.34, "end": 23861.64, "probability": 0.2192 }, { "start": 23861.74, "end": 23864.21, "probability": 0.5921 }, { "start": 23864.8, "end": 23866.05, "probability": 0.9673 }, { "start": 23866.82, "end": 23869.08, "probability": 0.9675 }, { "start": 23869.46, "end": 23872.28, "probability": 0.916 }, { "start": 23872.48, "end": 23873.1, "probability": 0.7994 }, { "start": 23873.72, "end": 23877.4, "probability": 0.7726 }, { "start": 23877.8, "end": 23879.78, "probability": 0.9813 }, { "start": 23880.1, "end": 23883.96, "probability": 0.9777 }, { "start": 23884.46, "end": 23885.34, "probability": 0.7415 }, { "start": 23885.52, "end": 23885.52, "probability": 0.4466 }, { "start": 23885.82, "end": 23886.76, "probability": 0.7059 }, { "start": 23886.86, "end": 23888.3, "probability": 0.5055 }, { "start": 23888.54, "end": 23890.66, "probability": 0.9733 }, { "start": 23891.6, "end": 23895.94, "probability": 0.3126 }, { "start": 23898.36, "end": 23898.66, "probability": 0.3336 }, { "start": 23899.86, "end": 23900.5, "probability": 0.3328 }, { "start": 23901.22, "end": 23902.52, "probability": 0.6142 }, { "start": 23906.74, "end": 23908.98, "probability": 0.6357 }, { "start": 23909.74, "end": 23913.26, "probability": 0.9803 }, { "start": 23913.36, "end": 23915.34, "probability": 0.9414 }, { "start": 23915.4, "end": 23917.28, "probability": 0.9858 }, { "start": 23917.9, "end": 23921.94, "probability": 0.7967 }, { "start": 23922.42, "end": 23924.12, "probability": 0.5028 }, { "start": 23925.08, "end": 23929.94, "probability": 0.7295 }, { "start": 23930.12, "end": 23933.34, "probability": 0.7929 }, { "start": 23934.38, "end": 23934.38, "probability": 0.1534 }, { "start": 23934.38, "end": 23934.98, "probability": 0.5416 }, { "start": 23935.12, "end": 23935.98, "probability": 0.6094 }, { "start": 23936.44, "end": 23940.66, "probability": 0.7935 }, { "start": 23940.78, "end": 23941.28, "probability": 0.8759 }, { "start": 23941.78, "end": 23942.66, "probability": 0.686 }, { "start": 23942.68, "end": 23943.9, "probability": 0.6128 }, { "start": 23944.0, "end": 23944.38, "probability": 0.9117 }, { "start": 23944.46, "end": 23945.14, "probability": 0.7548 }, { "start": 23945.28, "end": 23948.0, "probability": 0.8988 }, { "start": 23948.12, "end": 23948.76, "probability": 0.8466 }, { "start": 23948.84, "end": 23951.04, "probability": 0.8997 }, { "start": 23951.6, "end": 23953.8, "probability": 0.9847 }, { "start": 23953.88, "end": 23954.31, "probability": 0.8777 }, { "start": 23955.26, "end": 23955.96, "probability": 0.9946 }, { "start": 23956.18, "end": 23957.02, "probability": 0.9976 }, { "start": 23957.6, "end": 23959.14, "probability": 0.9679 }, { "start": 23959.3, "end": 23962.3, "probability": 0.6994 }, { "start": 23962.86, "end": 23963.42, "probability": 0.9885 }, { "start": 23964.62, "end": 23966.42, "probability": 0.9802 }, { "start": 23966.48, "end": 23967.48, "probability": 0.5546 }, { "start": 23967.82, "end": 23968.4, "probability": 0.6361 }, { "start": 23969.24, "end": 23970.82, "probability": 0.0837 }, { "start": 23971.15, "end": 23971.22, "probability": 0.0706 }, { "start": 23971.22, "end": 23971.22, "probability": 0.0776 }, { "start": 23971.22, "end": 23971.22, "probability": 0.1245 }, { "start": 23971.22, "end": 23975.12, "probability": 0.7355 }, { "start": 23976.16, "end": 23978.3, "probability": 0.9917 }, { "start": 23978.94, "end": 23981.24, "probability": 0.9961 }, { "start": 23982.54, "end": 23984.36, "probability": 0.992 }, { "start": 23984.52, "end": 23985.82, "probability": 0.7661 }, { "start": 23986.76, "end": 23988.6, "probability": 0.9705 }, { "start": 23989.46, "end": 23991.0, "probability": 0.9551 }, { "start": 23991.92, "end": 23992.88, "probability": 0.9121 }, { "start": 23993.8, "end": 23993.84, "probability": 0.2306 }, { "start": 23993.92, "end": 23996.14, "probability": 0.905 }, { "start": 23997.52, "end": 23999.98, "probability": 0.9971 }, { "start": 24000.78, "end": 24002.3, "probability": 0.9832 }, { "start": 24003.08, "end": 24005.58, "probability": 0.9972 }, { "start": 24006.54, "end": 24009.08, "probability": 0.9945 }, { "start": 24010.14, "end": 24012.82, "probability": 0.9812 }, { "start": 24013.56, "end": 24015.22, "probability": 0.9965 }, { "start": 24015.94, "end": 24017.26, "probability": 0.8315 }, { "start": 24017.8, "end": 24018.88, "probability": 0.8431 }, { "start": 24019.58, "end": 24022.0, "probability": 0.8506 }, { "start": 24022.28, "end": 24022.6, "probability": 0.6555 }, { "start": 24022.68, "end": 24022.98, "probability": 0.5458 }, { "start": 24023.88, "end": 24025.9, "probability": 0.9976 }, { "start": 24026.68, "end": 24029.18, "probability": 0.9626 }, { "start": 24029.6, "end": 24030.04, "probability": 0.6604 }, { "start": 24030.1, "end": 24031.06, "probability": 0.9318 }, { "start": 24032.28, "end": 24033.9, "probability": 0.9736 }, { "start": 24034.59, "end": 24038.76, "probability": 0.9182 }, { "start": 24039.06, "end": 24041.78, "probability": 0.9599 }, { "start": 24042.54, "end": 24042.96, "probability": 0.796 }, { "start": 24044.0, "end": 24046.96, "probability": 0.8536 }, { "start": 24047.7, "end": 24048.48, "probability": 0.439 }, { "start": 24049.08, "end": 24050.07, "probability": 0.953 }, { "start": 24050.84, "end": 24052.84, "probability": 0.813 }, { "start": 24053.6, "end": 24055.3, "probability": 0.9702 }, { "start": 24056.06, "end": 24056.52, "probability": 0.7529 }, { "start": 24056.78, "end": 24057.52, "probability": 0.759 }, { "start": 24058.2, "end": 24063.4, "probability": 0.9482 }, { "start": 24063.54, "end": 24066.26, "probability": 0.9794 }, { "start": 24067.04, "end": 24070.06, "probability": 0.9072 }, { "start": 24071.0, "end": 24073.04, "probability": 0.8976 }, { "start": 24073.72, "end": 24076.6, "probability": 0.7884 }, { "start": 24077.22, "end": 24078.72, "probability": 0.9879 }, { "start": 24078.82, "end": 24079.66, "probability": 0.4349 }, { "start": 24080.12, "end": 24081.5, "probability": 0.9901 }, { "start": 24082.32, "end": 24086.56, "probability": 0.9771 }, { "start": 24087.0, "end": 24088.8, "probability": 0.737 }, { "start": 24089.46, "end": 24089.46, "probability": 0.1563 }, { "start": 24089.46, "end": 24090.66, "probability": 0.7533 }, { "start": 24091.5, "end": 24093.02, "probability": 0.9759 }, { "start": 24093.88, "end": 24095.78, "probability": 0.9023 }, { "start": 24095.94, "end": 24099.0, "probability": 0.992 }, { "start": 24099.64, "end": 24106.12, "probability": 0.904 }, { "start": 24106.54, "end": 24107.48, "probability": 0.9961 }, { "start": 24107.82, "end": 24111.28, "probability": 0.9184 }, { "start": 24111.88, "end": 24115.16, "probability": 0.5527 }, { "start": 24115.36, "end": 24117.48, "probability": 0.6108 }, { "start": 24117.52, "end": 24117.78, "probability": 0.7363 }, { "start": 24118.1, "end": 24119.5, "probability": 0.9878 }, { "start": 24119.94, "end": 24121.54, "probability": 0.5578 }, { "start": 24122.06, "end": 24122.78, "probability": 0.8122 }, { "start": 24123.28, "end": 24124.94, "probability": 0.978 }, { "start": 24125.16, "end": 24126.1, "probability": 0.7512 }, { "start": 24126.54, "end": 24130.08, "probability": 0.9726 }, { "start": 24130.72, "end": 24132.82, "probability": 0.9509 }, { "start": 24133.08, "end": 24135.64, "probability": 0.9897 }, { "start": 24135.66, "end": 24137.34, "probability": 0.8 }, { "start": 24138.2, "end": 24140.34, "probability": 0.9731 }, { "start": 24141.56, "end": 24144.96, "probability": 0.0736 }, { "start": 24153.96, "end": 24154.3, "probability": 0.005 }, { "start": 24156.2, "end": 24157.08, "probability": 0.1833 }, { "start": 24158.84, "end": 24162.0, "probability": 0.0709 }, { "start": 24162.27, "end": 24162.34, "probability": 0.0628 }, { "start": 24162.34, "end": 24162.84, "probability": 0.0332 }, { "start": 24164.96, "end": 24165.68, "probability": 0.1039 }, { "start": 24166.64, "end": 24166.64, "probability": 0.1962 }, { "start": 24166.64, "end": 24166.64, "probability": 0.0113 }, { "start": 24166.64, "end": 24166.64, "probability": 0.1827 }, { "start": 24166.64, "end": 24166.64, "probability": 0.0337 }, { "start": 24166.64, "end": 24167.6, "probability": 0.3354 }, { "start": 24171.78, "end": 24173.09, "probability": 0.716 }, { "start": 24180.26, "end": 24180.26, "probability": 0.0932 }, { "start": 24180.26, "end": 24182.48, "probability": 0.5905 }, { "start": 24184.2, "end": 24186.44, "probability": 0.9649 }, { "start": 24186.58, "end": 24187.62, "probability": 0.9782 }, { "start": 24187.66, "end": 24189.0, "probability": 0.9812 }, { "start": 24189.58, "end": 24191.9, "probability": 0.7773 }, { "start": 24191.92, "end": 24192.84, "probability": 0.9909 }, { "start": 24192.96, "end": 24196.12, "probability": 0.994 }, { "start": 24197.06, "end": 24198.76, "probability": 0.9238 }, { "start": 24199.36, "end": 24201.88, "probability": 0.9985 }, { "start": 24202.5, "end": 24203.76, "probability": 0.9974 }, { "start": 24204.18, "end": 24206.78, "probability": 0.9974 }, { "start": 24207.52, "end": 24208.68, "probability": 0.8441 }, { "start": 24209.74, "end": 24211.08, "probability": 0.936 }, { "start": 24211.18, "end": 24217.03, "probability": 0.9948 }, { "start": 24217.21, "end": 24219.73, "probability": 0.9816 }, { "start": 24220.53, "end": 24221.33, "probability": 0.8278 }, { "start": 24221.91, "end": 24222.75, "probability": 0.8809 }, { "start": 24223.37, "end": 24224.51, "probability": 0.9609 }, { "start": 24225.75, "end": 24226.5, "probability": 0.9657 }, { "start": 24226.83, "end": 24227.61, "probability": 0.7315 }, { "start": 24227.61, "end": 24228.85, "probability": 0.9568 }, { "start": 24229.47, "end": 24232.35, "probability": 0.9969 }, { "start": 24232.91, "end": 24234.41, "probability": 0.9937 }, { "start": 24235.79, "end": 24235.85, "probability": 0.0133 }, { "start": 24235.85, "end": 24237.03, "probability": 0.6081 }, { "start": 24237.99, "end": 24241.05, "probability": 0.989 }, { "start": 24241.99, "end": 24243.99, "probability": 0.9785 }, { "start": 24245.31, "end": 24248.87, "probability": 0.9944 }, { "start": 24249.45, "end": 24251.73, "probability": 0.9832 }, { "start": 24252.39, "end": 24253.49, "probability": 0.9364 }, { "start": 24254.85, "end": 24257.97, "probability": 0.954 }, { "start": 24258.83, "end": 24262.81, "probability": 0.8914 }, { "start": 24263.93, "end": 24263.99, "probability": 0.0481 }, { "start": 24263.99, "end": 24264.05, "probability": 0.5249 }, { "start": 24264.17, "end": 24264.63, "probability": 0.8589 }, { "start": 24264.73, "end": 24268.25, "probability": 0.9445 }, { "start": 24268.85, "end": 24269.11, "probability": 0.0097 }, { "start": 24269.11, "end": 24269.41, "probability": 0.0838 }, { "start": 24269.41, "end": 24271.65, "probability": 0.7215 }, { "start": 24272.23, "end": 24272.27, "probability": 0.0225 }, { "start": 24272.27, "end": 24275.81, "probability": 0.8861 }, { "start": 24275.81, "end": 24276.37, "probability": 0.1134 }, { "start": 24276.39, "end": 24279.03, "probability": 0.7475 }, { "start": 24279.35, "end": 24282.77, "probability": 0.9082 }, { "start": 24283.51, "end": 24285.61, "probability": 0.4014 }, { "start": 24285.65, "end": 24290.69, "probability": 0.2814 }, { "start": 24290.83, "end": 24292.17, "probability": 0.7126 }, { "start": 24292.43, "end": 24292.49, "probability": 0.0566 }, { "start": 24292.65, "end": 24294.15, "probability": 0.0625 }, { "start": 24295.01, "end": 24296.15, "probability": 0.1191 }, { "start": 24296.19, "end": 24299.75, "probability": 0.0484 }, { "start": 24302.11, "end": 24304.69, "probability": 0.0903 }, { "start": 24306.69, "end": 24310.35, "probability": 0.4106 }, { "start": 24310.85, "end": 24313.39, "probability": 0.3241 }, { "start": 24313.39, "end": 24314.07, "probability": 0.0797 }, { "start": 24317.21, "end": 24322.87, "probability": 0.0211 }, { "start": 24322.87, "end": 24323.57, "probability": 0.3718 }, { "start": 24325.01, "end": 24326.51, "probability": 0.0271 }, { "start": 24330.33, "end": 24330.55, "probability": 0.2096 }, { "start": 24331.39, "end": 24333.63, "probability": 0.1038 }, { "start": 24334.68, "end": 24335.93, "probability": 0.0457 }, { "start": 24373.0, "end": 24373.0, "probability": 0.0 }, { "start": 24373.0, "end": 24373.0, "probability": 0.0 }, { "start": 24373.0, "end": 24373.0, "probability": 0.0 }, { "start": 24373.0, "end": 24373.0, "probability": 0.0 }, { "start": 24373.0, "end": 24373.0, "probability": 0.0 }, { "start": 24373.0, "end": 24373.0, "probability": 0.0 }, { "start": 24373.0, "end": 24373.0, "probability": 0.0 }, { "start": 24373.0, "end": 24373.0, "probability": 0.0 }, { "start": 24373.0, "end": 24373.0, "probability": 0.0 }, { "start": 24373.0, "end": 24373.0, "probability": 0.0 }, { "start": 24373.0, "end": 24373.0, "probability": 0.0 }, { "start": 24373.0, "end": 24373.0, "probability": 0.0 }, { "start": 24373.0, "end": 24373.0, "probability": 0.0 }, { "start": 24373.0, "end": 24373.0, "probability": 0.0 }, { "start": 24373.0, "end": 24373.0, "probability": 0.0 }, { "start": 24373.0, "end": 24373.0, "probability": 0.0 }, { "start": 24373.0, "end": 24373.0, "probability": 0.0 }, { "start": 24373.0, "end": 24373.0, "probability": 0.0 }, { "start": 24373.0, "end": 24373.0, "probability": 0.0 }, { "start": 24373.0, "end": 24373.0, "probability": 0.0 }, { "start": 24373.0, "end": 24373.0, "probability": 0.0 }, { "start": 24373.0, "end": 24373.0, "probability": 0.0 }, { "start": 24373.0, "end": 24373.0, "probability": 0.0 }, { "start": 24373.0, "end": 24373.0, "probability": 0.0 }, { "start": 24373.0, "end": 24373.0, "probability": 0.0 }, { "start": 24373.0, "end": 24373.0, "probability": 0.0 }, { "start": 24373.0, "end": 24373.0, "probability": 0.0 }, { "start": 24373.0, "end": 24373.0, "probability": 0.0 }, { "start": 24373.0, "end": 24373.0, "probability": 0.0 }, { "start": 24373.0, "end": 24373.0, "probability": 0.0 }, { "start": 24373.0, "end": 24373.0, "probability": 0.0 }, { "start": 24373.0, "end": 24373.0, "probability": 0.0 }, { "start": 24373.0, "end": 24373.0, "probability": 0.0 }, { "start": 24373.0, "end": 24373.0, "probability": 0.0 }, { "start": 24373.0, "end": 24373.0, "probability": 0.0 }, { "start": 24373.0, "end": 24373.0, "probability": 0.0 }, { "start": 24373.0, "end": 24373.0, "probability": 0.0 }, { "start": 24373.0, "end": 24373.0, "probability": 0.0 }, { "start": 24373.0, "end": 24373.0, "probability": 0.0 }, { "start": 24373.0, "end": 24373.0, "probability": 0.0 }, { "start": 24373.0, "end": 24373.0, "probability": 0.0 }, { "start": 24373.0, "end": 24373.0, "probability": 0.0 }, { "start": 24373.0, "end": 24373.0, "probability": 0.0 }, { "start": 24373.0, "end": 24373.0, "probability": 0.0 }, { "start": 24373.0, "end": 24373.0, "probability": 0.0 }, { "start": 24373.0, "end": 24373.0, "probability": 0.0 }, { "start": 24373.0, "end": 24373.0, "probability": 0.0 }, { "start": 24373.0, "end": 24373.0, "probability": 0.0 }, { "start": 24373.0, "end": 24373.0, "probability": 0.0 }, { "start": 24373.0, "end": 24373.0, "probability": 0.0 }, { "start": 24373.48, "end": 24373.72, "probability": 0.4659 }, { "start": 24373.72, "end": 24374.64, "probability": 0.1852 }, { "start": 24375.58, "end": 24377.86, "probability": 0.8562 }, { "start": 24378.48, "end": 24378.86, "probability": 0.003 }, { "start": 24381.88, "end": 24382.56, "probability": 0.1259 }, { "start": 24382.56, "end": 24383.52, "probability": 0.0889 }, { "start": 24383.98, "end": 24384.5, "probability": 0.0542 }, { "start": 24385.92, "end": 24386.46, "probability": 0.1374 }, { "start": 24387.54, "end": 24389.54, "probability": 0.162 }, { "start": 24389.54, "end": 24396.08, "probability": 0.251 }, { "start": 24396.44, "end": 24399.12, "probability": 0.9878 }, { "start": 24404.12, "end": 24405.72, "probability": 0.064 }, { "start": 24406.06, "end": 24406.96, "probability": 0.1255 }, { "start": 24409.9, "end": 24410.44, "probability": 0.4143 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.0, "end": 24495.0, "probability": 0.0 }, { "start": 24495.4, "end": 24499.4, "probability": 0.8466 }, { "start": 24499.52, "end": 24500.8, "probability": 0.2906 }, { "start": 24501.52, "end": 24504.18, "probability": 0.2822 }, { "start": 24504.22, "end": 24508.12, "probability": 0.4773 }, { "start": 24508.8, "end": 24508.9, "probability": 0.0474 }, { "start": 24508.9, "end": 24508.9, "probability": 0.0889 }, { "start": 24508.9, "end": 24508.9, "probability": 0.0302 }, { "start": 24508.9, "end": 24508.9, "probability": 0.2063 }, { "start": 24508.9, "end": 24513.12, "probability": 0.8247 }, { "start": 24516.52, "end": 24516.72, "probability": 0.0796 }, { "start": 24516.72, "end": 24516.72, "probability": 0.1016 }, { "start": 24516.72, "end": 24517.72, "probability": 0.3782 }, { "start": 24517.96, "end": 24517.96, "probability": 0.0141 }, { "start": 24517.96, "end": 24519.31, "probability": 0.1781 }, { "start": 24520.52, "end": 24523.74, "probability": 0.9039 }, { "start": 24523.78, "end": 24526.94, "probability": 0.1803 }, { "start": 24526.94, "end": 24531.6, "probability": 0.0562 }, { "start": 24615.0, "end": 24615.0, "probability": 0.0 }, { "start": 24615.0, "end": 24615.0, "probability": 0.0 }, { "start": 24615.0, "end": 24615.0, "probability": 0.0 }, { "start": 24615.0, "end": 24615.0, "probability": 0.0 }, { "start": 24615.0, "end": 24615.0, "probability": 0.0 }, { "start": 24615.0, "end": 24615.0, "probability": 0.0 }, { "start": 24615.0, "end": 24615.0, "probability": 0.0 }, { "start": 24615.0, "end": 24615.0, "probability": 0.0 }, { "start": 24615.0, "end": 24615.0, "probability": 0.0 }, { "start": 24615.0, "end": 24615.0, "probability": 0.0 }, { "start": 24615.0, "end": 24615.0, "probability": 0.0 }, { "start": 24615.0, "end": 24615.0, "probability": 0.0 }, { "start": 24615.0, "end": 24615.0, "probability": 0.0 }, { "start": 24615.0, "end": 24615.0, "probability": 0.0 }, { "start": 24615.0, "end": 24615.0, "probability": 0.0 }, { "start": 24615.0, "end": 24615.0, "probability": 0.0 }, { "start": 24615.0, "end": 24615.0, "probability": 0.0 }, { "start": 24615.0, "end": 24615.0, "probability": 0.0 }, { "start": 24615.0, "end": 24615.0, "probability": 0.0 }, { "start": 24615.0, "end": 24615.0, "probability": 0.0 }, { "start": 24615.0, "end": 24615.0, "probability": 0.0 }, { "start": 24615.0, "end": 24615.0, "probability": 0.0 }, { "start": 24615.0, "end": 24615.0, "probability": 0.0 }, { "start": 24615.0, "end": 24615.0, "probability": 0.0 }, { "start": 24615.0, "end": 24615.0, "probability": 0.0 }, { "start": 24615.0, "end": 24615.0, "probability": 0.0 }, { "start": 24615.0, "end": 24615.0, "probability": 0.0 }, { "start": 24615.0, "end": 24615.0, "probability": 0.0 }, { "start": 24615.0, "end": 24615.0, "probability": 0.0 }, { "start": 24615.0, "end": 24615.0, "probability": 0.0 }, { "start": 24615.0, "end": 24615.0, "probability": 0.0 }, { "start": 24615.0, "end": 24615.0, "probability": 0.0 }, { "start": 24615.0, "end": 24615.0, "probability": 0.0 }, { "start": 24615.0, "end": 24615.0, "probability": 0.0 }, { "start": 24615.0, "end": 24615.0, "probability": 0.0 }, { "start": 24615.0, "end": 24615.0, "probability": 0.0 }, { "start": 24615.0, "end": 24615.0, "probability": 0.0 }, { "start": 24615.0, "end": 24615.0, "probability": 0.0 }, { "start": 24615.0, "end": 24615.0, "probability": 0.0 }, { "start": 24615.0, "end": 24615.0, "probability": 0.0 }, { "start": 24615.0, "end": 24615.0, "probability": 0.0 }, { "start": 24615.0, "end": 24615.0, "probability": 0.0 }, { "start": 24615.0, "end": 24615.0, "probability": 0.0 }, { "start": 24615.0, "end": 24615.0, "probability": 0.0 }, { "start": 24615.0, "end": 24615.0, "probability": 0.0 }, { "start": 24615.0, "end": 24615.0, "probability": 0.0 }, { "start": 24615.0, "end": 24615.0, "probability": 0.0 }, { "start": 24615.0, "end": 24615.0, "probability": 0.0 }, { "start": 24615.0, "end": 24615.0, "probability": 0.0 }, { "start": 24615.0, "end": 24615.0, "probability": 0.0 }, { "start": 24615.0, "end": 24615.0, "probability": 0.0 }, { "start": 24615.0, "end": 24615.0, "probability": 0.0 }, { "start": 24615.0, "end": 24615.0, "probability": 0.0 }, { "start": 24615.0, "end": 24615.0, "probability": 0.0 }, { "start": 24615.0, "end": 24615.0, "probability": 0.0 }, { "start": 24615.08, "end": 24617.48, "probability": 0.8465 }, { "start": 24618.14, "end": 24619.52, "probability": 0.563 }, { "start": 24619.7, "end": 24621.64, "probability": 0.4928 }, { "start": 24622.38, "end": 24625.12, "probability": 0.8281 }, { "start": 24625.82, "end": 24628.32, "probability": 0.9681 }, { "start": 24628.7, "end": 24629.38, "probability": 0.0402 }, { "start": 24629.68, "end": 24631.92, "probability": 0.9896 }, { "start": 24632.1, "end": 24635.68, "probability": 0.9196 }, { "start": 24636.08, "end": 24637.2, "probability": 0.8303 }, { "start": 24637.78, "end": 24638.72, "probability": 0.4519 }, { "start": 24638.72, "end": 24641.9, "probability": 0.0928 }, { "start": 24642.7, "end": 24643.8, "probability": 0.8882 }, { "start": 24645.04, "end": 24645.8, "probability": 0.9111 }, { "start": 24648.3, "end": 24649.84, "probability": 0.9274 }, { "start": 24649.92, "end": 24650.7, "probability": 0.8852 }, { "start": 24650.8, "end": 24651.8, "probability": 0.8977 }, { "start": 24651.88, "end": 24652.68, "probability": 0.9274 }, { "start": 24653.44, "end": 24653.9, "probability": 0.8561 }, { "start": 24654.34, "end": 24657.57, "probability": 0.8989 }, { "start": 24658.3, "end": 24659.32, "probability": 0.7067 }, { "start": 24660.26, "end": 24662.82, "probability": 0.9869 }, { "start": 24663.58, "end": 24666.46, "probability": 0.953 }, { "start": 24667.4, "end": 24668.52, "probability": 0.9883 }, { "start": 24669.42, "end": 24674.33, "probability": 0.9132 }, { "start": 24674.88, "end": 24677.22, "probability": 0.7763 }, { "start": 24677.8, "end": 24682.26, "probability": 0.9885 }, { "start": 24683.16, "end": 24686.78, "probability": 0.9819 }, { "start": 24687.3, "end": 24689.78, "probability": 0.93 }, { "start": 24690.62, "end": 24690.82, "probability": 0.9797 }, { "start": 24691.38, "end": 24693.52, "probability": 0.9848 }, { "start": 24693.78, "end": 24695.22, "probability": 0.9603 }, { "start": 24695.4, "end": 24697.06, "probability": 0.9124 }, { "start": 24697.3, "end": 24699.18, "probability": 0.8862 }, { "start": 24699.38, "end": 24700.14, "probability": 0.8055 }, { "start": 24700.6, "end": 24701.58, "probability": 0.9617 }, { "start": 24701.66, "end": 24702.74, "probability": 0.9137 }, { "start": 24702.96, "end": 24708.36, "probability": 0.9949 }, { "start": 24709.28, "end": 24711.74, "probability": 0.8735 }, { "start": 24712.24, "end": 24713.02, "probability": 0.8712 }, { "start": 24713.06, "end": 24716.58, "probability": 0.9563 }, { "start": 24717.36, "end": 24720.56, "probability": 0.946 }, { "start": 24721.88, "end": 24723.93, "probability": 0.6542 }, { "start": 24724.86, "end": 24728.28, "probability": 0.8889 }, { "start": 24728.52, "end": 24729.86, "probability": 0.8439 }, { "start": 24730.3, "end": 24731.2, "probability": 0.8788 }, { "start": 24731.34, "end": 24735.46, "probability": 0.9406 }, { "start": 24736.22, "end": 24738.0, "probability": 0.6398 }, { "start": 24738.08, "end": 24739.55, "probability": 0.9062 }, { "start": 24740.52, "end": 24743.52, "probability": 0.9596 }, { "start": 24743.84, "end": 24747.1, "probability": 0.9847 }, { "start": 24747.76, "end": 24751.26, "probability": 0.965 }, { "start": 24751.64, "end": 24751.74, "probability": 0.6906 }, { "start": 24751.88, "end": 24755.8, "probability": 0.9624 }, { "start": 24756.56, "end": 24758.66, "probability": 0.9856 }, { "start": 24758.98, "end": 24759.88, "probability": 0.9762 }, { "start": 24759.92, "end": 24760.6, "probability": 0.5815 }, { "start": 24760.66, "end": 24764.64, "probability": 0.9948 }, { "start": 24765.1, "end": 24768.3, "probability": 0.9585 }, { "start": 24768.82, "end": 24770.48, "probability": 0.8867 }, { "start": 24770.54, "end": 24771.74, "probability": 0.8754 }, { "start": 24772.18, "end": 24773.46, "probability": 0.8582 }, { "start": 24773.78, "end": 24777.46, "probability": 0.9727 }, { "start": 24778.04, "end": 24783.84, "probability": 0.9825 }, { "start": 24784.36, "end": 24786.36, "probability": 0.9834 }, { "start": 24786.74, "end": 24788.42, "probability": 0.7777 }, { "start": 24788.5, "end": 24791.66, "probability": 0.9311 }, { "start": 24792.04, "end": 24793.24, "probability": 0.9686 }, { "start": 24793.86, "end": 24800.66, "probability": 0.991 }, { "start": 24800.8, "end": 24800.9, "probability": 0.1235 }, { "start": 24801.26, "end": 24803.14, "probability": 0.9966 }, { "start": 24803.14, "end": 24805.86, "probability": 0.697 }, { "start": 24806.26, "end": 24809.7, "probability": 0.9907 }, { "start": 24810.2, "end": 24812.36, "probability": 0.9684 }, { "start": 24813.76, "end": 24815.34, "probability": 0.1226 }, { "start": 24816.42, "end": 24816.86, "probability": 0.2523 }, { "start": 24817.04, "end": 24819.26, "probability": 0.5824 }, { "start": 24820.64, "end": 24821.22, "probability": 0.8656 }, { "start": 24821.98, "end": 24822.28, "probability": 0.8236 }, { "start": 24823.0, "end": 24823.76, "probability": 0.8135 }, { "start": 24823.96, "end": 24825.2, "probability": 0.8862 }, { "start": 24831.56, "end": 24831.56, "probability": 0.9604 }, { "start": 24831.6, "end": 24834.22, "probability": 0.6393 }, { "start": 24834.68, "end": 24835.16, "probability": 0.1114 }, { "start": 24838.18, "end": 24839.88, "probability": 0.2525 }, { "start": 24839.88, "end": 24840.36, "probability": 0.0684 }, { "start": 24841.38, "end": 24841.8, "probability": 0.2048 }, { "start": 24844.06, "end": 24845.12, "probability": 0.747 }, { "start": 24845.24, "end": 24846.64, "probability": 0.9851 }, { "start": 24846.72, "end": 24848.94, "probability": 0.8757 }, { "start": 24848.94, "end": 24850.58, "probability": 0.4518 }, { "start": 24850.88, "end": 24851.58, "probability": 0.6419 }, { "start": 24851.68, "end": 24852.2, "probability": 0.7405 }, { "start": 24852.54, "end": 24854.26, "probability": 0.8456 }, { "start": 24855.02, "end": 24857.7, "probability": 0.794 }, { "start": 24858.12, "end": 24859.18, "probability": 0.6157 }, { "start": 24859.68, "end": 24861.46, "probability": 0.7764 }, { "start": 24861.48, "end": 24861.52, "probability": 0.0161 }, { "start": 24861.58, "end": 24863.44, "probability": 0.9731 }, { "start": 24863.84, "end": 24864.32, "probability": 0.7901 }, { "start": 24864.32, "end": 24864.94, "probability": 0.7276 }, { "start": 24864.94, "end": 24865.44, "probability": 0.9589 }, { "start": 24865.92, "end": 24866.64, "probability": 0.9093 }, { "start": 24867.86, "end": 24868.88, "probability": 0.9419 }, { "start": 24869.2, "end": 24870.62, "probability": 0.8169 }, { "start": 24871.02, "end": 24873.36, "probability": 0.9808 }, { "start": 24873.94, "end": 24875.64, "probability": 0.9116 }, { "start": 24875.86, "end": 24876.18, "probability": 0.6971 }, { "start": 24876.32, "end": 24877.84, "probability": 0.8784 }, { "start": 24878.34, "end": 24881.98, "probability": 0.9916 }, { "start": 24882.1, "end": 24883.19, "probability": 0.9891 }, { "start": 24883.36, "end": 24884.53, "probability": 0.9961 }, { "start": 24884.98, "end": 24887.42, "probability": 0.966 }, { "start": 24887.78, "end": 24888.92, "probability": 0.9557 }, { "start": 24889.2, "end": 24891.24, "probability": 0.9888 }, { "start": 24891.66, "end": 24893.16, "probability": 0.7986 }, { "start": 24893.2, "end": 24894.44, "probability": 0.8231 }, { "start": 24894.84, "end": 24896.66, "probability": 0.9627 }, { "start": 24897.1, "end": 24899.46, "probability": 0.8428 }, { "start": 24900.5, "end": 24904.22, "probability": 0.9807 }, { "start": 24904.76, "end": 24907.16, "probability": 0.9941 }, { "start": 24907.16, "end": 24909.98, "probability": 0.9138 }, { "start": 24910.38, "end": 24912.22, "probability": 0.979 }, { "start": 24912.64, "end": 24915.34, "probability": 0.942 }, { "start": 24915.44, "end": 24916.08, "probability": 0.8679 }, { "start": 24916.28, "end": 24917.18, "probability": 0.9259 }, { "start": 24917.7, "end": 24918.34, "probability": 0.9976 }, { "start": 24919.84, "end": 24921.04, "probability": 0.4101 }, { "start": 24921.74, "end": 24922.0, "probability": 0.7754 }, { "start": 24922.36, "end": 24922.64, "probability": 0.7207 }, { "start": 24922.94, "end": 24923.48, "probability": 0.9383 }, { "start": 24923.84, "end": 24924.78, "probability": 0.983 }, { "start": 24925.38, "end": 24926.26, "probability": 0.9786 }, { "start": 24926.32, "end": 24927.18, "probability": 0.8948 }, { "start": 24927.66, "end": 24929.96, "probability": 0.9673 }, { "start": 24930.16, "end": 24930.16, "probability": 0.6441 }, { "start": 24930.32, "end": 24934.48, "probability": 0.9297 }, { "start": 24934.48, "end": 24937.68, "probability": 0.9993 }, { "start": 24938.4, "end": 24938.4, "probability": 0.3459 }, { "start": 24938.5, "end": 24939.39, "probability": 0.7345 }, { "start": 24939.68, "end": 24942.58, "probability": 0.9868 }, { "start": 24942.6, "end": 24942.62, "probability": 0.3889 }, { "start": 24942.64, "end": 24945.59, "probability": 0.9954 }, { "start": 24945.68, "end": 24947.26, "probability": 0.647 }, { "start": 24947.38, "end": 24947.46, "probability": 0.0946 }, { "start": 24947.46, "end": 24949.06, "probability": 0.7971 }, { "start": 24949.06, "end": 24949.06, "probability": 0.6975 }, { "start": 24949.2, "end": 24951.58, "probability": 0.9748 }, { "start": 24951.58, "end": 24952.96, "probability": 0.925 }, { "start": 24953.22, "end": 24954.52, "probability": 0.9872 }, { "start": 24960.14, "end": 24960.96, "probability": 0.5662 }, { "start": 24968.38, "end": 24970.05, "probability": 0.8158 }, { "start": 24982.7, "end": 24984.06, "probability": 0.5394 }, { "start": 24985.18, "end": 24987.94, "probability": 0.6922 }, { "start": 24988.82, "end": 24989.33, "probability": 0.8917 }, { "start": 24990.32, "end": 24990.6, "probability": 0.9005 }, { "start": 24990.72, "end": 24991.52, "probability": 0.9805 }, { "start": 24991.56, "end": 24993.76, "probability": 0.9844 }, { "start": 24994.36, "end": 24995.4, "probability": 0.9828 }, { "start": 24996.56, "end": 24997.16, "probability": 0.9226 }, { "start": 24998.0, "end": 24998.68, "probability": 0.5901 }, { "start": 25000.02, "end": 25005.44, "probability": 0.9966 }, { "start": 25006.3, "end": 25007.36, "probability": 0.9589 }, { "start": 25007.82, "end": 25009.24, "probability": 0.9666 }, { "start": 25009.36, "end": 25010.12, "probability": 0.9045 }, { "start": 25010.42, "end": 25011.64, "probability": 0.7997 }, { "start": 25012.26, "end": 25013.59, "probability": 0.667 }, { "start": 25014.08, "end": 25015.18, "probability": 0.8804 }, { "start": 25016.12, "end": 25017.04, "probability": 0.9714 }, { "start": 25017.38, "end": 25018.2, "probability": 0.1188 }, { "start": 25018.34, "end": 25018.86, "probability": 0.0745 }, { "start": 25018.88, "end": 25019.56, "probability": 0.9746 }, { "start": 25019.64, "end": 25020.16, "probability": 0.9282 }, { "start": 25020.2, "end": 25021.5, "probability": 0.7791 }, { "start": 25022.1, "end": 25023.84, "probability": 0.9604 }, { "start": 25023.94, "end": 25027.28, "probability": 0.9141 }, { "start": 25027.94, "end": 25028.6, "probability": 0.9091 }, { "start": 25028.82, "end": 25030.31, "probability": 0.8442 }, { "start": 25030.4, "end": 25031.1, "probability": 0.862 }, { "start": 25031.48, "end": 25033.82, "probability": 0.9912 }, { "start": 25033.88, "end": 25036.14, "probability": 0.9923 }, { "start": 25036.68, "end": 25037.32, "probability": 0.7441 }, { "start": 25037.74, "end": 25039.5, "probability": 0.957 }, { "start": 25040.08, "end": 25042.76, "probability": 0.9177 }, { "start": 25042.82, "end": 25043.16, "probability": 0.2071 }, { "start": 25043.24, "end": 25044.5, "probability": 0.9963 }, { "start": 25045.02, "end": 25045.92, "probability": 0.7607 }, { "start": 25046.32, "end": 25046.98, "probability": 0.866 }, { "start": 25047.98, "end": 25050.92, "probability": 0.9632 }, { "start": 25050.98, "end": 25054.04, "probability": 0.9807 }, { "start": 25054.84, "end": 25057.38, "probability": 0.7908 }, { "start": 25057.64, "end": 25058.86, "probability": 0.7783 }, { "start": 25059.26, "end": 25061.38, "probability": 0.9974 }, { "start": 25061.76, "end": 25064.88, "probability": 0.9272 }, { "start": 25065.0, "end": 25065.32, "probability": 0.954 }, { "start": 25065.72, "end": 25068.27, "probability": 0.9874 }, { "start": 25068.78, "end": 25069.6, "probability": 0.9237 }, { "start": 25070.0, "end": 25070.48, "probability": 0.9182 }, { "start": 25070.72, "end": 25070.9, "probability": 0.7231 }, { "start": 25071.42, "end": 25072.56, "probability": 0.8848 }, { "start": 25072.88, "end": 25074.24, "probability": 0.8646 }, { "start": 25074.72, "end": 25077.0, "probability": 0.9745 }, { "start": 25078.06, "end": 25080.32, "probability": 0.9083 }, { "start": 25081.0, "end": 25083.12, "probability": 0.8281 }, { "start": 25084.44, "end": 25087.96, "probability": 0.9994 }, { "start": 25088.5, "end": 25089.34, "probability": 0.8379 }, { "start": 25089.82, "end": 25091.7, "probability": 0.9907 }, { "start": 25092.1, "end": 25094.58, "probability": 0.9957 }, { "start": 25094.68, "end": 25095.36, "probability": 0.9855 }, { "start": 25097.86, "end": 25098.52, "probability": 0.0353 }, { "start": 25099.7, "end": 25105.28, "probability": 0.9668 }, { "start": 25105.96, "end": 25106.96, "probability": 0.8892 }, { "start": 25107.1, "end": 25109.4, "probability": 0.859 }, { "start": 25109.96, "end": 25113.66, "probability": 0.9604 }, { "start": 25114.64, "end": 25116.66, "probability": 0.7613 }, { "start": 25116.68, "end": 25120.7, "probability": 0.9349 }, { "start": 25121.42, "end": 25124.62, "probability": 0.9974 }, { "start": 25125.16, "end": 25125.8, "probability": 0.9677 }, { "start": 25125.92, "end": 25128.96, "probability": 0.8706 }, { "start": 25128.96, "end": 25131.26, "probability": 0.9966 }, { "start": 25131.38, "end": 25132.0, "probability": 0.8357 }, { "start": 25132.3, "end": 25133.51, "probability": 0.988 }, { "start": 25133.96, "end": 25136.7, "probability": 0.8529 }, { "start": 25137.54, "end": 25138.96, "probability": 0.5149 }, { "start": 25139.8, "end": 25142.48, "probability": 0.7468 }, { "start": 25143.0, "end": 25143.92, "probability": 0.9595 }, { "start": 25144.22, "end": 25145.98, "probability": 0.9846 }, { "start": 25146.24, "end": 25148.82, "probability": 0.9277 }, { "start": 25149.24, "end": 25150.08, "probability": 0.9653 }, { "start": 25150.9, "end": 25152.26, "probability": 0.9912 }, { "start": 25152.66, "end": 25154.38, "probability": 0.7969 }, { "start": 25154.48, "end": 25156.75, "probability": 0.687 }, { "start": 25157.18, "end": 25159.04, "probability": 0.8785 }, { "start": 25161.58, "end": 25162.18, "probability": 0.506 }, { "start": 25164.94, "end": 25165.68, "probability": 0.0282 }, { "start": 25169.84, "end": 25172.36, "probability": 0.6029 }, { "start": 25173.6, "end": 25176.66, "probability": 0.0209 }, { "start": 25177.36, "end": 25186.6, "probability": 0.1107 }, { "start": 25187.64, "end": 25189.2, "probability": 0.2667 }, { "start": 25283.0, "end": 25283.0, "probability": 0.0 }, { "start": 25283.0, "end": 25283.0, "probability": 0.0 }, { "start": 25283.0, "end": 25283.0, "probability": 0.0 }, { "start": 25283.0, "end": 25283.0, "probability": 0.0 }, { "start": 25283.0, "end": 25283.0, "probability": 0.0 }, { "start": 25283.0, "end": 25283.0, "probability": 0.0 }, { "start": 25283.0, "end": 25283.0, "probability": 0.0 }, { "start": 25283.0, "end": 25283.0, "probability": 0.0 }, { "start": 25283.0, "end": 25283.0, "probability": 0.0 }, { "start": 25283.0, "end": 25283.0, "probability": 0.0 }, { "start": 25283.0, "end": 25283.0, "probability": 0.0 }, { "start": 25283.0, "end": 25283.0, "probability": 0.0 }, { "start": 25283.0, "end": 25283.0, "probability": 0.0 }, { "start": 25283.0, "end": 25283.0, "probability": 0.0 }, { "start": 25283.0, "end": 25283.0, "probability": 0.0 }, { "start": 25283.0, "end": 25283.0, "probability": 0.0 }, { "start": 25283.0, "end": 25283.0, "probability": 0.0 }, { "start": 25283.0, "end": 25283.0, "probability": 0.0 }, { "start": 25283.0, "end": 25283.0, "probability": 0.0 }, { "start": 25283.0, "end": 25283.0, "probability": 0.0 }, { "start": 25283.0, "end": 25283.0, "probability": 0.0 }, { "start": 25283.0, "end": 25283.0, "probability": 0.0 }, { "start": 25283.32, "end": 25285.28, "probability": 0.0075 }, { "start": 25285.28, "end": 25285.46, "probability": 0.0716 }, { "start": 25285.7, "end": 25287.32, "probability": 0.5086 }, { "start": 25287.54, "end": 25288.4, "probability": 0.2993 }, { "start": 25288.76, "end": 25289.64, "probability": 0.2776 }, { "start": 25291.24, "end": 25292.4, "probability": 0.4683 }, { "start": 25292.52, "end": 25292.92, "probability": 0.2013 }, { "start": 25292.92, "end": 25294.56, "probability": 0.0963 }, { "start": 25295.92, "end": 25298.76, "probability": 0.7078 }, { "start": 25299.26, "end": 25301.86, "probability": 0.1854 }, { "start": 25407.0, "end": 25407.0, "probability": 0.0 }, { "start": 25407.0, "end": 25407.0, "probability": 0.0 }, { "start": 25407.0, "end": 25407.0, "probability": 0.0 }, { "start": 25407.0, "end": 25407.0, "probability": 0.0 }, { "start": 25407.0, "end": 25407.0, "probability": 0.0 }, { "start": 25407.0, "end": 25407.0, "probability": 0.0 }, { "start": 25407.0, "end": 25407.0, "probability": 0.0 }, { "start": 25407.0, "end": 25407.0, "probability": 0.0 }, { "start": 25407.0, "end": 25407.0, "probability": 0.0 }, { "start": 25407.0, "end": 25407.0, "probability": 0.0 }, { "start": 25407.0, "end": 25407.0, "probability": 0.0 }, { "start": 25407.0, "end": 25407.0, "probability": 0.0 }, { "start": 25407.0, "end": 25407.0, "probability": 0.0 }, { "start": 25407.0, "end": 25407.0, "probability": 0.0 }, { "start": 25407.0, "end": 25407.0, "probability": 0.0 }, { "start": 25407.0, "end": 25407.0, "probability": 0.0 }, { "start": 25407.0, "end": 25407.0, "probability": 0.0 }, { "start": 25407.0, "end": 25407.0, "probability": 0.0 }, { "start": 25407.0, "end": 25407.0, "probability": 0.0 }, { "start": 25407.0, "end": 25407.0, "probability": 0.0 }, { "start": 25407.0, "end": 25407.0, "probability": 0.0 }, { "start": 25407.0, "end": 25407.0, "probability": 0.0 }, { "start": 25407.0, "end": 25407.0, "probability": 0.0 }, { "start": 25407.0, "end": 25407.0, "probability": 0.0 }, { "start": 25407.0, "end": 25407.0, "probability": 0.0 }, { "start": 25407.0, "end": 25407.0, "probability": 0.0 }, { "start": 25407.0, "end": 25407.0, "probability": 0.0 }, { "start": 25407.0, "end": 25407.0, "probability": 0.0 }, { "start": 25407.0, "end": 25407.0, "probability": 0.0 }, { "start": 25407.0, "end": 25407.0, "probability": 0.0 }, { "start": 25407.0, "end": 25407.0, "probability": 0.0 }, { "start": 25407.0, "end": 25407.0, "probability": 0.0 }, { "start": 25407.0, "end": 25407.0, "probability": 0.0 }, { "start": 25407.0, "end": 25407.0, "probability": 0.0 }, { "start": 25407.0, "end": 25407.0, "probability": 0.0 }, { "start": 25407.0, "end": 25407.0, "probability": 0.0 }, { "start": 25407.0, "end": 25407.0, "probability": 0.0 }, { "start": 25407.0, "end": 25407.0, "probability": 0.0 }, { "start": 25407.0, "end": 25407.0, "probability": 0.0 }, { "start": 25407.0, "end": 25407.0, "probability": 0.0 }, { "start": 25408.5, "end": 25411.26, "probability": 0.0538 }, { "start": 25418.95, "end": 25419.02, "probability": 0.0174 }, { "start": 25419.02, "end": 25419.8, "probability": 0.3729 }, { "start": 25437.6, "end": 25438.84, "probability": 0.0253 }, { "start": 25440.2, "end": 25440.36, "probability": 0.0832 }, { "start": 25440.82, "end": 25441.62, "probability": 0.0748 }, { "start": 25441.64, "end": 25442.46, "probability": 0.3163 }, { "start": 25442.64, "end": 25444.16, "probability": 0.4457 }, { "start": 25444.26, "end": 25444.7, "probability": 0.1581 }, { "start": 25533.0, "end": 25533.0, "probability": 0.0 }, { "start": 25533.0, "end": 25533.0, "probability": 0.0 }, { "start": 25533.0, "end": 25533.0, "probability": 0.0 }, { "start": 25533.0, "end": 25533.0, "probability": 0.0 }, { "start": 25533.0, "end": 25533.0, "probability": 0.0 }, { "start": 25533.0, "end": 25533.0, "probability": 0.0 }, { "start": 25533.0, "end": 25533.0, "probability": 0.0 }, { "start": 25533.0, "end": 25533.0, "probability": 0.0 }, { "start": 25533.0, "end": 25533.0, "probability": 0.0 }, { "start": 25533.0, "end": 25533.0, "probability": 0.0 }, { "start": 25533.0, "end": 25533.0, "probability": 0.0 }, { "start": 25533.0, "end": 25533.0, "probability": 0.0 }, { "start": 25533.0, "end": 25533.0, "probability": 0.0 }, { "start": 25533.0, "end": 25533.0, "probability": 0.0 }, { "start": 25533.0, "end": 25533.0, "probability": 0.0 }, { "start": 25533.0, "end": 25533.0, "probability": 0.0 }, { "start": 25533.0, "end": 25533.0, "probability": 0.0 }, { "start": 25533.0, "end": 25533.0, "probability": 0.0 }, { "start": 25533.0, "end": 25533.0, "probability": 0.0 }, { "start": 25533.0, "end": 25533.0, "probability": 0.0 }, { "start": 25533.0, "end": 25533.0, "probability": 0.0 }, { "start": 25533.0, "end": 25533.0, "probability": 0.0 }, { "start": 25533.0, "end": 25533.0, "probability": 0.0 }, { "start": 25533.0, "end": 25533.0, "probability": 0.0 }, { "start": 25533.0, "end": 25533.0, "probability": 0.0 }, { "start": 25533.0, "end": 25533.0, "probability": 0.0 }, { "start": 25533.0, "end": 25533.0, "probability": 0.0 }, { "start": 25533.0, "end": 25533.0, "probability": 0.0 }, { "start": 25533.0, "end": 25533.0, "probability": 0.0 }, { "start": 25533.08, "end": 25536.06, "probability": 0.6 }, { "start": 25536.22, "end": 25537.24, "probability": 0.7393 }, { "start": 25537.98, "end": 25539.96, "probability": 0.9681 }, { "start": 25540.76, "end": 25541.66, "probability": 0.9624 }, { "start": 25542.4, "end": 25543.42, "probability": 0.9893 }, { "start": 25544.54, "end": 25545.6, "probability": 0.9912 }, { "start": 25547.78, "end": 25548.54, "probability": 0.9532 }, { "start": 25549.06, "end": 25553.22, "probability": 0.9631 }, { "start": 25554.38, "end": 25557.42, "probability": 0.9789 }, { "start": 25558.4, "end": 25560.88, "probability": 0.9912 }, { "start": 25561.7, "end": 25565.54, "probability": 0.9146 }, { "start": 25566.18, "end": 25567.58, "probability": 0.9717 }, { "start": 25568.12, "end": 25570.36, "probability": 0.9897 }, { "start": 25572.0, "end": 25573.62, "probability": 0.9158 }, { "start": 25574.14, "end": 25576.84, "probability": 0.9639 }, { "start": 25577.82, "end": 25580.8, "probability": 0.8826 }, { "start": 25581.4, "end": 25584.8, "probability": 0.9876 }, { "start": 25585.5, "end": 25587.28, "probability": 0.0724 }, { "start": 25587.36, "end": 25588.14, "probability": 0.7907 }, { "start": 25588.28, "end": 25588.73, "probability": 0.9805 }, { "start": 25588.92, "end": 25589.3, "probability": 0.5744 }, { "start": 25589.34, "end": 25590.06, "probability": 0.7909 }, { "start": 25590.44, "end": 25592.32, "probability": 0.9692 }, { "start": 25593.08, "end": 25594.78, "probability": 0.7383 }, { "start": 25595.4, "end": 25599.56, "probability": 0.7771 }, { "start": 25600.1, "end": 25601.22, "probability": 0.4805 }, { "start": 25602.14, "end": 25603.42, "probability": 0.9434 }, { "start": 25603.82, "end": 25607.48, "probability": 0.9417 }, { "start": 25607.88, "end": 25609.3, "probability": 0.671 }, { "start": 25609.8, "end": 25615.56, "probability": 0.8095 }, { "start": 25616.32, "end": 25623.04, "probability": 0.9352 }, { "start": 25623.4, "end": 25624.44, "probability": 0.8671 }, { "start": 25624.86, "end": 25626.16, "probability": 0.9307 }, { "start": 25626.62, "end": 25627.24, "probability": 0.7457 }, { "start": 25627.8, "end": 25629.78, "probability": 0.96 }, { "start": 25630.48, "end": 25632.66, "probability": 0.893 }, { "start": 25633.16, "end": 25635.84, "probability": 0.8934 }, { "start": 25636.42, "end": 25636.42, "probability": 0.4159 }, { "start": 25636.74, "end": 25638.36, "probability": 0.4992 }, { "start": 25638.58, "end": 25638.58, "probability": 0.4077 }, { "start": 25638.68, "end": 25642.7, "probability": 0.9867 }, { "start": 25642.7, "end": 25648.32, "probability": 0.998 }, { "start": 25649.04, "end": 25651.96, "probability": 0.9976 }, { "start": 25653.06, "end": 25653.3, "probability": 0.4062 }, { "start": 25653.3, "end": 25654.8, "probability": 0.5301 }, { "start": 25654.86, "end": 25659.3, "probability": 0.9823 }, { "start": 25659.5, "end": 25663.34, "probability": 0.9531 }, { "start": 25663.64, "end": 25664.54, "probability": 0.7352 }, { "start": 25665.08, "end": 25666.42, "probability": 0.9867 }, { "start": 25669.48, "end": 25670.06, "probability": 0.7509 }, { "start": 25670.14, "end": 25673.02, "probability": 0.8981 }, { "start": 25683.24, "end": 25684.92, "probability": 0.6023 }, { "start": 25684.92, "end": 25684.92, "probability": 0.2742 }, { "start": 25684.92, "end": 25684.99, "probability": 0.15 }, { "start": 25685.06, "end": 25685.22, "probability": 0.3709 }, { "start": 25686.66, "end": 25689.88, "probability": 0.096 }, { "start": 25691.52, "end": 25694.18, "probability": 0.0148 }, { "start": 25698.97, "end": 25700.74, "probability": 0.0855 }, { "start": 25700.76, "end": 25702.36, "probability": 0.0393 }, { "start": 25709.2, "end": 25710.44, "probability": 0.1468 }, { "start": 25727.4, "end": 25731.48, "probability": 0.9771 }, { "start": 25732.32, "end": 25734.44, "probability": 0.9951 }, { "start": 25735.28, "end": 25736.24, "probability": 0.9624 }, { "start": 25737.42, "end": 25738.34, "probability": 0.6169 }, { "start": 25739.3, "end": 25742.7, "probability": 0.9912 }, { "start": 25743.36, "end": 25743.94, "probability": 0.7307 }, { "start": 25745.16, "end": 25747.58, "probability": 0.9873 }, { "start": 25748.56, "end": 25750.2, "probability": 0.9747 }, { "start": 25750.88, "end": 25752.18, "probability": 0.9929 }, { "start": 25758.96, "end": 25761.08, "probability": 0.8318 }, { "start": 25762.32, "end": 25764.42, "probability": 0.9976 }, { "start": 25765.54, "end": 25768.1, "probability": 0.9985 }, { "start": 25769.22, "end": 25769.24, "probability": 0.1893 }, { "start": 25769.24, "end": 25770.3, "probability": 0.935 }, { "start": 25771.5, "end": 25772.88, "probability": 0.9985 }, { "start": 25774.6, "end": 25776.34, "probability": 0.9966 }, { "start": 25777.72, "end": 25778.68, "probability": 0.8856 }, { "start": 25779.72, "end": 25779.76, "probability": 0.3681 }, { "start": 25779.76, "end": 25779.76, "probability": 0.0185 }, { "start": 25779.76, "end": 25779.78, "probability": 0.5623 }, { "start": 25779.78, "end": 25783.46, "probability": 0.9586 }, { "start": 25784.46, "end": 25785.35, "probability": 0.7669 }, { "start": 25786.08, "end": 25786.72, "probability": 0.9727 }, { "start": 25787.3, "end": 25794.48, "probability": 0.9086 }, { "start": 25795.32, "end": 25797.46, "probability": 0.7065 }, { "start": 25798.77, "end": 25800.8, "probability": 0.941 }, { "start": 25801.66, "end": 25801.66, "probability": 0.0575 }, { "start": 25801.66, "end": 25803.7, "probability": 0.9718 }, { "start": 25804.32, "end": 25807.86, "probability": 0.9904 }, { "start": 25807.98, "end": 25808.8, "probability": 0.6445 }, { "start": 25809.48, "end": 25811.84, "probability": 0.0295 }, { "start": 25811.84, "end": 25812.02, "probability": 0.5324 }, { "start": 25812.02, "end": 25812.4, "probability": 0.6692 }, { "start": 25812.44, "end": 25813.84, "probability": 0.7858 }, { "start": 25813.9, "end": 25816.94, "probability": 0.9181 }, { "start": 25817.16, "end": 25818.76, "probability": 0.9229 }, { "start": 25819.64, "end": 25819.64, "probability": 0.0085 }, { "start": 25819.64, "end": 25821.07, "probability": 0.9813 }, { "start": 25821.76, "end": 25824.1, "probability": 0.9303 }, { "start": 25824.2, "end": 25825.0, "probability": 0.67 }, { "start": 25825.25, "end": 25825.32, "probability": 0.0018 }, { "start": 25825.54, "end": 25826.38, "probability": 0.6588 }, { "start": 25826.76, "end": 25828.06, "probability": 0.9083 }, { "start": 25828.12, "end": 25830.14, "probability": 0.7869 }, { "start": 25830.18, "end": 25830.86, "probability": 0.896 }, { "start": 25830.92, "end": 25831.68, "probability": 0.5177 }, { "start": 25831.68, "end": 25832.06, "probability": 0.0605 }, { "start": 25832.3, "end": 25833.28, "probability": 0.8506 }, { "start": 25833.48, "end": 25839.52, "probability": 0.9338 }, { "start": 25840.4, "end": 25844.12, "probability": 0.4741 }, { "start": 25845.92, "end": 25847.48, "probability": 0.0097 }, { "start": 25848.04, "end": 25848.58, "probability": 0.0623 }, { "start": 25848.58, "end": 25849.46, "probability": 0.1303 }, { "start": 25849.6, "end": 25852.06, "probability": 0.0364 }, { "start": 25853.34, "end": 25857.48, "probability": 0.7464 }, { "start": 25860.38, "end": 25861.28, "probability": 0.5671 }, { "start": 25862.48, "end": 25863.0, "probability": 0.9792 }, { "start": 25864.74, "end": 25865.7, "probability": 0.8782 }, { "start": 25866.68, "end": 25868.66, "probability": 0.9714 }, { "start": 25869.6, "end": 25870.0, "probability": 0.7942 }, { "start": 25871.08, "end": 25872.06, "probability": 0.6531 }, { "start": 25873.0, "end": 25873.48, "probability": 0.9979 }, { "start": 25874.44, "end": 25875.46, "probability": 0.9807 }, { "start": 25876.36, "end": 25878.86, "probability": 0.9724 }, { "start": 25879.7, "end": 25880.28, "probability": 0.9951 }, { "start": 25881.3, "end": 25882.26, "probability": 0.9511 }, { "start": 25884.64, "end": 25885.22, "probability": 0.9969 }, { "start": 25886.58, "end": 25887.48, "probability": 0.9679 }, { "start": 25888.54, "end": 25888.9, "probability": 0.7073 }, { "start": 25889.98, "end": 25891.0, "probability": 0.6426 }, { "start": 25891.64, "end": 25892.62, "probability": 0.9512 }, { "start": 25893.58, "end": 25894.86, "probability": 0.8714 }, { "start": 25895.84, "end": 25896.14, "probability": 0.7322 }, { "start": 25897.22, "end": 25898.54, "probability": 0.9197 }, { "start": 25899.48, "end": 25900.16, "probability": 0.9572 }, { "start": 25901.2, "end": 25902.4, "probability": 0.912 }, { "start": 25904.26, "end": 25905.8, "probability": 0.5522 }, { "start": 25907.34, "end": 25908.28, "probability": 0.5068 }, { "start": 25912.5, "end": 25914.58, "probability": 0.834 }, { "start": 25916.26, "end": 25917.28, "probability": 0.6652 }, { "start": 25918.22, "end": 25918.54, "probability": 0.5745 }, { "start": 25919.5, "end": 25921.78, "probability": 0.7665 }, { "start": 25922.5, "end": 25923.74, "probability": 0.6367 }, { "start": 25924.36, "end": 25924.82, "probability": 0.8416 }, { "start": 25926.02, "end": 25926.88, "probability": 0.9743 }, { "start": 25927.48, "end": 25928.42, "probability": 0.9758 }, { "start": 25929.48, "end": 25930.24, "probability": 0.9749 }, { "start": 25931.34, "end": 25934.0, "probability": 0.9847 }, { "start": 25934.92, "end": 25935.34, "probability": 0.9481 }, { "start": 25936.34, "end": 25937.5, "probability": 0.9584 }, { "start": 25939.98, "end": 25940.3, "probability": 0.7664 }, { "start": 25941.3, "end": 25942.04, "probability": 0.7267 }, { "start": 25943.44, "end": 25943.92, "probability": 0.7524 }, { "start": 25945.52, "end": 25946.84, "probability": 0.7566 }, { "start": 25947.8, "end": 25948.3, "probability": 0.6388 }, { "start": 25949.06, "end": 25949.78, "probability": 0.88 }, { "start": 25954.04, "end": 25955.06, "probability": 0.951 }, { "start": 25956.12, "end": 25957.08, "probability": 0.9414 }, { "start": 25957.66, "end": 25958.62, "probability": 0.9854 }, { "start": 25960.1, "end": 25961.08, "probability": 0.9388 }, { "start": 25961.98, "end": 25962.4, "probability": 0.8816 }, { "start": 25963.82, "end": 25964.68, "probability": 0.9151 }, { "start": 25965.78, "end": 25969.52, "probability": 0.1665 }, { "start": 25970.42, "end": 25970.86, "probability": 0.5568 }, { "start": 25972.0, "end": 25972.4, "probability": 0.7256 }, { "start": 25977.62, "end": 25978.48, "probability": 0.7698 }, { "start": 25979.74, "end": 25980.62, "probability": 0.7995 }, { "start": 25985.2, "end": 25985.72, "probability": 0.9396 }, { "start": 25988.0, "end": 25988.92, "probability": 0.6974 }, { "start": 25990.68, "end": 25991.56, "probability": 0.9143 }, { "start": 25992.08, "end": 25992.86, "probability": 0.9271 }, { "start": 25993.84, "end": 25996.36, "probability": 0.9238 }, { "start": 25997.3, "end": 25997.34, "probability": 0.1658 }, { "start": 26002.54, "end": 26003.74, "probability": 0.2423 }, { "start": 26004.48, "end": 26005.08, "probability": 0.7248 }, { "start": 26006.08, "end": 26007.48, "probability": 0.7333 }, { "start": 26008.58, "end": 26011.02, "probability": 0.9072 }, { "start": 26014.44, "end": 26014.98, "probability": 0.98 }, { "start": 26017.26, "end": 26018.06, "probability": 0.9679 }, { "start": 26019.04, "end": 26019.58, "probability": 0.5047 }, { "start": 26020.34, "end": 26021.36, "probability": 0.8555 }, { "start": 26022.4, "end": 26022.92, "probability": 0.9072 }, { "start": 26023.76, "end": 26024.72, "probability": 0.5788 }, { "start": 26025.98, "end": 26026.42, "probability": 0.9595 }, { "start": 26027.48, "end": 26028.78, "probability": 0.7954 }, { "start": 26029.82, "end": 26030.38, "probability": 0.7251 }, { "start": 26031.2, "end": 26032.52, "probability": 0.8794 }, { "start": 26033.26, "end": 26033.76, "probability": 0.9243 }, { "start": 26034.62, "end": 26035.88, "probability": 0.9676 }, { "start": 26037.4, "end": 26037.96, "probability": 0.9917 }, { "start": 26038.96, "end": 26040.4, "probability": 0.7553 }, { "start": 26041.02, "end": 26041.92, "probability": 0.9483 }, { "start": 26042.44, "end": 26042.98, "probability": 0.6828 }, { "start": 26044.68, "end": 26045.12, "probability": 0.9846 }, { "start": 26046.64, "end": 26047.82, "probability": 0.7387 }, { "start": 26048.36, "end": 26048.8, "probability": 0.9841 }, { "start": 26049.62, "end": 26050.28, "probability": 0.8887 }, { "start": 26058.62, "end": 26059.82, "probability": 0.5214 }, { "start": 26062.22, "end": 26063.14, "probability": 0.6514 }, { "start": 26064.7, "end": 26065.28, "probability": 0.8372 }, { "start": 26066.84, "end": 26067.66, "probability": 0.9211 }, { "start": 26069.14, "end": 26071.64, "probability": 0.5898 }, { "start": 26073.28, "end": 26074.12, "probability": 0.9141 }, { "start": 26075.08, "end": 26076.36, "probability": 0.944 }, { "start": 26077.32, "end": 26077.84, "probability": 0.9812 }, { "start": 26080.22, "end": 26080.98, "probability": 0.9791 }, { "start": 26083.02, "end": 26083.56, "probability": 0.9697 }, { "start": 26084.44, "end": 26085.32, "probability": 0.9436 }, { "start": 26086.28, "end": 26087.02, "probability": 0.023 }, { "start": 26091.54, "end": 26092.46, "probability": 0.2586 }, { "start": 26093.94, "end": 26094.32, "probability": 0.6824 }, { "start": 26095.16, "end": 26095.72, "probability": 0.7953 }, { "start": 26097.57, "end": 26099.16, "probability": 0.8203 }, { "start": 26100.08, "end": 26102.0, "probability": 0.888 }, { "start": 26102.9, "end": 26104.44, "probability": 0.9189 }, { "start": 26105.97, "end": 26108.96, "probability": 0.7246 }, { "start": 26110.2, "end": 26110.64, "probability": 0.9666 }, { "start": 26111.54, "end": 26112.42, "probability": 0.9771 }, { "start": 26114.12, "end": 26114.42, "probability": 0.8179 }, { "start": 26115.3, "end": 26116.56, "probability": 0.8892 }, { "start": 26118.44, "end": 26119.0, "probability": 0.7353 }, { "start": 26119.8, "end": 26120.7, "probability": 0.5953 }, { "start": 26122.2, "end": 26122.64, "probability": 0.9886 }, { "start": 26123.72, "end": 26124.78, "probability": 0.814 }, { "start": 26126.14, "end": 26128.28, "probability": 0.8912 }, { "start": 26129.46, "end": 26129.9, "probability": 0.8075 }, { "start": 26130.66, "end": 26131.58, "probability": 0.8786 }, { "start": 26135.94, "end": 26136.38, "probability": 0.6076 }, { "start": 26137.42, "end": 26138.22, "probability": 0.9381 }, { "start": 26140.75, "end": 26143.6, "probability": 0.9779 }, { "start": 26144.82, "end": 26145.08, "probability": 0.9834 }, { "start": 26145.86, "end": 26146.86, "probability": 0.8093 }, { "start": 26151.04, "end": 26151.5, "probability": 0.5566 }, { "start": 26153.26, "end": 26154.0, "probability": 0.6106 }, { "start": 26155.44, "end": 26155.88, "probability": 0.9072 }, { "start": 26157.0, "end": 26158.22, "probability": 0.8911 }, { "start": 26159.44, "end": 26161.88, "probability": 0.8967 }, { "start": 26164.34, "end": 26167.24, "probability": 0.9612 }, { "start": 26168.1, "end": 26168.42, "probability": 0.9617 }, { "start": 26169.38, "end": 26170.9, "probability": 0.9631 }, { "start": 26172.04, "end": 26172.48, "probability": 0.9906 }, { "start": 26173.3, "end": 26174.06, "probability": 0.9478 }, { "start": 26175.3, "end": 26175.64, "probability": 0.9969 }, { "start": 26176.34, "end": 26176.74, "probability": 0.195 }, { "start": 26181.3, "end": 26182.22, "probability": 0.2667 }, { "start": 26183.4, "end": 26183.68, "probability": 0.5329 }, { "start": 26184.56, "end": 26185.62, "probability": 0.8762 }, { "start": 26187.1, "end": 26187.6, "probability": 0.7372 }, { "start": 26188.62, "end": 26188.88, "probability": 0.933 }, { "start": 26190.5, "end": 26192.8, "probability": 0.9817 }, { "start": 26193.78, "end": 26194.28, "probability": 0.8778 }, { "start": 26195.36, "end": 26196.26, "probability": 0.4656 }, { "start": 26197.02, "end": 26197.5, "probability": 0.9854 }, { "start": 26198.14, "end": 26199.1, "probability": 0.8658 }, { "start": 26199.98, "end": 26200.42, "probability": 0.9895 }, { "start": 26201.26, "end": 26202.24, "probability": 0.9833 }, { "start": 26204.06, "end": 26204.6, "probability": 0.9741 }, { "start": 26205.54, "end": 26206.34, "probability": 0.4085 }, { "start": 26208.58, "end": 26212.46, "probability": 0.7576 }, { "start": 26213.0, "end": 26214.56, "probability": 0.7064 }, { "start": 26216.62, "end": 26217.06, "probability": 0.8083 }, { "start": 26219.5, "end": 26221.88, "probability": 0.5423 }, { "start": 26223.04, "end": 26230.34, "probability": 0.7535 }, { "start": 26231.12, "end": 26231.66, "probability": 0.9258 }, { "start": 26232.7, "end": 26233.58, "probability": 0.5422 }, { "start": 26235.58, "end": 26238.2, "probability": 0.7261 }, { "start": 26239.36, "end": 26240.16, "probability": 0.6797 }, { "start": 26242.44, "end": 26245.56, "probability": 0.81 }, { "start": 26247.0, "end": 26249.24, "probability": 0.9821 }, { "start": 26254.26, "end": 26255.42, "probability": 0.2597 }, { "start": 26257.62, "end": 26258.16, "probability": 0.7716 }, { "start": 26260.76, "end": 26261.08, "probability": 0.8851 }, { "start": 26263.52, "end": 26264.06, "probability": 0.9116 }, { "start": 26264.7, "end": 26266.9, "probability": 0.8516 }, { "start": 26267.84, "end": 26272.64, "probability": 0.8105 }, { "start": 26273.64, "end": 26273.94, "probability": 0.8452 }, { "start": 26274.92, "end": 26275.8, "probability": 0.9352 }, { "start": 26278.4, "end": 26279.38, "probability": 0.9924 }, { "start": 26280.7, "end": 26281.48, "probability": 0.6464 }, { "start": 26282.3, "end": 26282.78, "probability": 0.9316 }, { "start": 26283.62, "end": 26284.48, "probability": 0.7946 }, { "start": 26286.52, "end": 26290.78, "probability": 0.8421 }, { "start": 26292.48, "end": 26294.72, "probability": 0.9004 }, { "start": 26295.86, "end": 26298.08, "probability": 0.8708 }, { "start": 26300.58, "end": 26303.18, "probability": 0.9922 }, { "start": 26304.52, "end": 26304.98, "probability": 0.9878 }, { "start": 26305.94, "end": 26307.1, "probability": 0.9804 }, { "start": 26309.52, "end": 26309.9, "probability": 0.7077 }, { "start": 26310.82, "end": 26312.18, "probability": 0.7703 }, { "start": 26313.0, "end": 26313.44, "probability": 0.8245 }, { "start": 26314.4, "end": 26315.64, "probability": 0.934 }, { "start": 26317.32, "end": 26317.74, "probability": 0.9448 }, { "start": 26318.54, "end": 26319.64, "probability": 0.8816 }, { "start": 26320.22, "end": 26322.76, "probability": 0.9077 }, { "start": 26323.98, "end": 26324.72, "probability": 0.9722 }, { "start": 26325.68, "end": 26327.08, "probability": 0.8884 }, { "start": 26327.72, "end": 26330.34, "probability": 0.8706 }, { "start": 26331.32, "end": 26332.96, "probability": 0.8977 }, { "start": 26333.56, "end": 26334.5, "probability": 0.8137 }, { "start": 26336.0, "end": 26336.42, "probability": 0.9861 }, { "start": 26337.3, "end": 26337.66, "probability": 0.8231 }, { "start": 26340.78, "end": 26341.44, "probability": 0.3016 }, { "start": 26342.66, "end": 26346.78, "probability": 0.5979 }, { "start": 26348.38, "end": 26351.28, "probability": 0.8215 }, { "start": 26352.44, "end": 26354.4, "probability": 0.5661 }, { "start": 26359.85, "end": 26362.76, "probability": 0.9404 }, { "start": 26363.56, "end": 26364.18, "probability": 0.9704 }, { "start": 26365.64, "end": 26367.08, "probability": 0.6877 }, { "start": 26367.86, "end": 26368.28, "probability": 0.9702 }, { "start": 26369.2, "end": 26370.26, "probability": 0.7075 }, { "start": 26372.4, "end": 26372.8, "probability": 0.5839 }, { "start": 26374.34, "end": 26375.1, "probability": 0.6545 }, { "start": 26376.04, "end": 26378.52, "probability": 0.7735 }, { "start": 26379.88, "end": 26380.36, "probability": 0.9627 }, { "start": 26384.52, "end": 26387.58, "probability": 0.809 }, { "start": 26388.86, "end": 26389.68, "probability": 0.4538 }, { "start": 26392.12, "end": 26397.2, "probability": 0.842 }, { "start": 26398.64, "end": 26399.42, "probability": 0.8248 }, { "start": 26402.46, "end": 26406.26, "probability": 0.6574 }, { "start": 26406.78, "end": 26407.5, "probability": 0.8919 }, { "start": 26408.54, "end": 26409.8, "probability": 0.7301 }, { "start": 26410.56, "end": 26413.42, "probability": 0.7271 }, { "start": 26415.18, "end": 26416.1, "probability": 0.9956 }, { "start": 26420.32, "end": 26421.1, "probability": 0.3756 }, { "start": 26424.86, "end": 26425.92, "probability": 0.6463 }, { "start": 26427.7, "end": 26431.38, "probability": 0.6557 }, { "start": 26435.44, "end": 26436.45, "probability": 0.5441 }, { "start": 26437.18, "end": 26438.1, "probability": 0.8575 }, { "start": 26439.92, "end": 26442.76, "probability": 0.9057 }, { "start": 26442.92, "end": 26443.8, "probability": 0.6307 }, { "start": 26444.08, "end": 26446.66, "probability": 0.6875 }, { "start": 26449.0, "end": 26450.54, "probability": 0.6341 }, { "start": 26464.86, "end": 26465.52, "probability": 0.147 }, { "start": 26466.06, "end": 26467.13, "probability": 0.1188 }, { "start": 26469.82, "end": 26470.52, "probability": 0.0526 }, { "start": 26472.06, "end": 26472.96, "probability": 0.001 }, { "start": 26474.64, "end": 26476.78, "probability": 0.0727 }, { "start": 26480.54, "end": 26481.96, "probability": 0.0988 }, { "start": 26490.02, "end": 26490.62, "probability": 0.0957 }, { "start": 26494.74, "end": 26495.14, "probability": 0.0571 }, { "start": 26495.16, "end": 26495.18, "probability": 0.0175 }, { "start": 26556.18, "end": 26556.18, "probability": 0.0666 }, { "start": 26556.18, "end": 26560.16, "probability": 0.3381 }, { "start": 26561.22, "end": 26564.26, "probability": 0.6397 }, { "start": 26565.24, "end": 26566.06, "probability": 0.9554 }, { "start": 26566.54, "end": 26570.36, "probability": 0.9034 }, { "start": 26570.76, "end": 26572.76, "probability": 0.84 }, { "start": 26572.92, "end": 26573.28, "probability": 0.9066 }, { "start": 26589.66, "end": 26593.42, "probability": 0.8473 }, { "start": 26594.18, "end": 26594.9, "probability": 0.8504 }, { "start": 26595.76, "end": 26600.46, "probability": 0.9811 }, { "start": 26600.98, "end": 26601.94, "probability": 0.8451 }, { "start": 26602.86, "end": 26612.18, "probability": 0.9871 }, { "start": 26613.16, "end": 26615.14, "probability": 0.76 }, { "start": 26616.26, "end": 26620.52, "probability": 0.9907 }, { "start": 26620.54, "end": 26626.72, "probability": 0.9932 }, { "start": 26627.3, "end": 26630.76, "probability": 0.9948 }, { "start": 26631.56, "end": 26632.02, "probability": 0.6428 }, { "start": 26632.02, "end": 26635.0, "probability": 0.9798 }, { "start": 26635.0, "end": 26640.34, "probability": 0.9887 }, { "start": 26641.3, "end": 26647.9, "probability": 0.9595 }, { "start": 26647.9, "end": 26655.16, "probability": 0.9935 }, { "start": 26655.74, "end": 26658.0, "probability": 0.9868 }, { "start": 26658.88, "end": 26664.62, "probability": 0.9979 }, { "start": 26664.62, "end": 26671.18, "probability": 0.9991 }, { "start": 26671.78, "end": 26673.8, "probability": 0.9064 }, { "start": 26674.36, "end": 26677.0, "probability": 0.9839 }, { "start": 26677.26, "end": 26679.86, "probability": 0.9863 }, { "start": 26680.78, "end": 26684.38, "probability": 0.9374 }, { "start": 26684.38, "end": 26688.4, "probability": 0.9771 }, { "start": 26689.36, "end": 26691.82, "probability": 0.9827 }, { "start": 26691.84, "end": 26695.94, "probability": 0.9967 }, { "start": 26696.5, "end": 26700.7, "probability": 0.9901 }, { "start": 26701.3, "end": 26705.64, "probability": 0.9985 }, { "start": 26705.64, "end": 26709.84, "probability": 0.9955 }, { "start": 26710.84, "end": 26718.24, "probability": 0.9797 }, { "start": 26718.24, "end": 26723.36, "probability": 0.986 }, { "start": 26724.28, "end": 26724.72, "probability": 0.4914 }, { "start": 26724.82, "end": 26729.6, "probability": 0.9931 }, { "start": 26729.6, "end": 26736.77, "probability": 0.9199 }, { "start": 26737.56, "end": 26739.92, "probability": 0.9901 }, { "start": 26741.32, "end": 26745.2, "probability": 0.9938 }, { "start": 26745.66, "end": 26747.12, "probability": 0.8441 }, { "start": 26747.46, "end": 26753.26, "probability": 0.9705 }, { "start": 26754.44, "end": 26758.77, "probability": 0.8527 }, { "start": 26759.7, "end": 26760.98, "probability": 0.8243 }, { "start": 26761.56, "end": 26766.58, "probability": 0.9301 }, { "start": 26767.36, "end": 26768.12, "probability": 0.7788 }, { "start": 26768.52, "end": 26776.28, "probability": 0.997 }, { "start": 26777.28, "end": 26778.08, "probability": 0.8366 }, { "start": 26778.26, "end": 26783.7, "probability": 0.9383 }, { "start": 26783.7, "end": 26788.92, "probability": 0.9909 }, { "start": 26789.6, "end": 26794.24, "probability": 0.9213 }, { "start": 26794.78, "end": 26797.42, "probability": 0.9504 }, { "start": 26798.56, "end": 26801.24, "probability": 0.9796 }, { "start": 26801.9, "end": 26806.16, "probability": 0.9686 }, { "start": 26806.92, "end": 26812.64, "probability": 0.9889 }, { "start": 26812.82, "end": 26814.16, "probability": 0.9636 }, { "start": 26814.3, "end": 26815.1, "probability": 0.6252 }, { "start": 26815.76, "end": 26818.64, "probability": 0.9719 }, { "start": 26818.64, "end": 26826.84, "probability": 0.8483 }, { "start": 26826.86, "end": 26827.94, "probability": 0.8908 }, { "start": 26828.72, "end": 26831.58, "probability": 0.8662 }, { "start": 26832.5, "end": 26837.46, "probability": 0.9943 }, { "start": 26837.46, "end": 26844.6, "probability": 0.9139 }, { "start": 26845.36, "end": 26849.14, "probability": 0.9977 }, { "start": 26849.14, "end": 26853.54, "probability": 0.9697 }, { "start": 26854.26, "end": 26859.66, "probability": 0.9911 }, { "start": 26860.66, "end": 26861.16, "probability": 0.8216 }, { "start": 26862.65, "end": 26865.3, "probability": 0.7096 }, { "start": 26865.44, "end": 26868.5, "probability": 0.9374 }, { "start": 26869.36, "end": 26872.14, "probability": 0.9876 }, { "start": 26872.84, "end": 26874.52, "probability": 0.9845 }, { "start": 26876.84, "end": 26878.14, "probability": 0.365 }, { "start": 26879.62, "end": 26880.82, "probability": 0.9963 }, { "start": 26882.1, "end": 26884.26, "probability": 0.7287 }, { "start": 26886.33, "end": 26887.48, "probability": 0.611 }, { "start": 26888.64, "end": 26891.06, "probability": 0.983 }, { "start": 26892.52, "end": 26895.62, "probability": 0.9771 }, { "start": 26895.86, "end": 26900.02, "probability": 0.9969 }, { "start": 26900.98, "end": 26903.74, "probability": 0.9976 }, { "start": 26906.44, "end": 26912.16, "probability": 0.9496 }, { "start": 26914.62, "end": 26915.26, "probability": 0.5938 }, { "start": 26916.48, "end": 26920.78, "probability": 0.9899 }, { "start": 26920.92, "end": 26921.32, "probability": 0.9133 }, { "start": 26922.72, "end": 26924.5, "probability": 0.9963 }, { "start": 26926.0, "end": 26927.16, "probability": 0.9468 }, { "start": 26928.46, "end": 26929.84, "probability": 0.7656 }, { "start": 26931.88, "end": 26932.46, "probability": 0.6399 }, { "start": 26932.52, "end": 26933.72, "probability": 0.924 }, { "start": 26934.12, "end": 26935.38, "probability": 0.9846 }, { "start": 26936.88, "end": 26938.04, "probability": 0.8618 }, { "start": 26939.06, "end": 26940.96, "probability": 0.9385 }, { "start": 26942.88, "end": 26943.94, "probability": 0.947 }, { "start": 26944.04, "end": 26950.14, "probability": 0.9561 }, { "start": 26951.54, "end": 26955.32, "probability": 0.9835 }, { "start": 26956.14, "end": 26956.76, "probability": 0.7849 }, { "start": 26958.0, "end": 26959.72, "probability": 0.9846 }, { "start": 26961.58, "end": 26963.62, "probability": 0.8317 }, { "start": 26964.84, "end": 26966.5, "probability": 0.9729 }, { "start": 26968.56, "end": 26970.12, "probability": 0.5158 }, { "start": 26971.2, "end": 26974.34, "probability": 0.9762 }, { "start": 26975.02, "end": 26976.08, "probability": 0.8142 }, { "start": 26977.66, "end": 26978.12, "probability": 0.489 }, { "start": 26978.24, "end": 26981.22, "probability": 0.9543 }, { "start": 26982.54, "end": 26982.88, "probability": 0.2324 }, { "start": 26983.06, "end": 26989.7, "probability": 0.9818 }, { "start": 26990.52, "end": 26990.82, "probability": 0.3548 }, { "start": 26990.9, "end": 26993.06, "probability": 0.9285 }, { "start": 26993.06, "end": 26995.88, "probability": 0.9944 }, { "start": 26996.22, "end": 26999.04, "probability": 0.9424 }, { "start": 27000.16, "end": 27002.84, "probability": 0.9984 }, { "start": 27004.0, "end": 27005.3, "probability": 0.9995 }, { "start": 27006.4, "end": 27009.16, "probability": 0.9106 }, { "start": 27009.34, "end": 27010.52, "probability": 0.9985 }, { "start": 27011.6, "end": 27013.51, "probability": 0.8579 }, { "start": 27016.34, "end": 27019.82, "probability": 0.7373 }, { "start": 27019.98, "end": 27023.6, "probability": 0.9938 }, { "start": 27024.4, "end": 27025.36, "probability": 0.927 }, { "start": 27025.9, "end": 27028.22, "probability": 0.9985 }, { "start": 27028.74, "end": 27031.5, "probability": 0.9961 }, { "start": 27032.5, "end": 27033.9, "probability": 0.4933 }, { "start": 27034.06, "end": 27035.48, "probability": 0.8595 }, { "start": 27035.62, "end": 27036.24, "probability": 0.8716 }, { "start": 27037.44, "end": 27038.96, "probability": 0.9557 }, { "start": 27039.18, "end": 27040.34, "probability": 0.7474 }, { "start": 27040.4, "end": 27041.02, "probability": 0.7124 }, { "start": 27041.22, "end": 27043.74, "probability": 0.9893 }, { "start": 27045.0, "end": 27047.74, "probability": 0.9888 }, { "start": 27047.74, "end": 27050.78, "probability": 0.998 }, { "start": 27051.74, "end": 27053.34, "probability": 0.999 }, { "start": 27053.7, "end": 27054.64, "probability": 0.5418 }, { "start": 27055.58, "end": 27058.02, "probability": 0.9926 }, { "start": 27058.4, "end": 27061.28, "probability": 0.6505 }, { "start": 27061.68, "end": 27064.44, "probability": 0.7635 }, { "start": 27064.94, "end": 27066.28, "probability": 0.9616 }, { "start": 27067.0, "end": 27070.02, "probability": 0.769 }, { "start": 27070.3, "end": 27070.73, "probability": 0.9184 }, { "start": 27071.8, "end": 27074.74, "probability": 0.929 }, { "start": 27074.88, "end": 27075.54, "probability": 0.8899 }, { "start": 27075.88, "end": 27076.2, "probability": 0.771 }, { "start": 27077.44, "end": 27078.2, "probability": 0.6745 }, { "start": 27078.32, "end": 27079.41, "probability": 0.9438 }, { "start": 27080.46, "end": 27084.46, "probability": 0.9927 }, { "start": 27084.82, "end": 27085.86, "probability": 0.7667 }, { "start": 27086.56, "end": 27087.26, "probability": 0.9596 }, { "start": 27087.92, "end": 27090.54, "probability": 0.9771 }, { "start": 27090.62, "end": 27090.9, "probability": 0.8347 }, { "start": 27090.92, "end": 27091.1, "probability": 0.9727 }, { "start": 27091.28, "end": 27091.54, "probability": 0.811 }, { "start": 27092.2, "end": 27093.96, "probability": 0.9015 }, { "start": 27094.44, "end": 27095.7, "probability": 0.8668 }, { "start": 27096.06, "end": 27096.94, "probability": 0.9985 }, { "start": 27097.56, "end": 27098.79, "probability": 0.8333 }, { "start": 27099.38, "end": 27100.68, "probability": 0.8602 }, { "start": 27101.32, "end": 27104.52, "probability": 0.9718 }, { "start": 27105.34, "end": 27106.92, "probability": 0.9891 }, { "start": 27108.18, "end": 27109.32, "probability": 0.942 }, { "start": 27109.92, "end": 27112.34, "probability": 0.8618 }, { "start": 27112.74, "end": 27115.06, "probability": 0.9625 }, { "start": 27123.46, "end": 27124.72, "probability": 0.6272 }, { "start": 27125.14, "end": 27125.96, "probability": 0.8377 }, { "start": 27126.6, "end": 27127.94, "probability": 0.944 }, { "start": 27155.6, "end": 27157.48, "probability": 0.7462 }, { "start": 27158.78, "end": 27162.7, "probability": 0.9906 }, { "start": 27162.7, "end": 27167.48, "probability": 0.9965 }, { "start": 27169.28, "end": 27171.28, "probability": 0.896 }, { "start": 27171.82, "end": 27175.78, "probability": 0.9114 }, { "start": 27176.4, "end": 27176.56, "probability": 0.1006 }, { "start": 27176.64, "end": 27176.88, "probability": 0.889 }, { "start": 27178.08, "end": 27182.5, "probability": 0.8153 }, { "start": 27182.58, "end": 27182.84, "probability": 0.5499 }, { "start": 27183.62, "end": 27183.62, "probability": 0.1573 }, { "start": 27183.74, "end": 27184.32, "probability": 0.918 }, { "start": 27184.9, "end": 27186.56, "probability": 0.9834 }, { "start": 27188.22, "end": 27188.22, "probability": 0.0866 }, { "start": 27188.28, "end": 27191.7, "probability": 0.9727 }, { "start": 27197.8, "end": 27204.58, "probability": 0.9476 }, { "start": 27206.24, "end": 27206.3, "probability": 0.0346 }, { "start": 27206.54, "end": 27206.9, "probability": 0.87 }, { "start": 27208.02, "end": 27209.18, "probability": 0.6475 }, { "start": 27209.98, "end": 27213.04, "probability": 0.9957 }, { "start": 27215.58, "end": 27220.52, "probability": 0.9001 }, { "start": 27222.68, "end": 27225.08, "probability": 0.9404 }, { "start": 27226.68, "end": 27231.53, "probability": 0.9805 }, { "start": 27233.2, "end": 27233.96, "probability": 0.876 }, { "start": 27235.26, "end": 27237.14, "probability": 0.9987 }, { "start": 27238.64, "end": 27240.1, "probability": 0.7031 }, { "start": 27241.76, "end": 27242.4, "probability": 0.8062 }, { "start": 27243.02, "end": 27250.14, "probability": 0.9829 }, { "start": 27250.5, "end": 27254.96, "probability": 0.9987 }, { "start": 27256.5, "end": 27259.34, "probability": 0.9962 }, { "start": 27260.54, "end": 27265.22, "probability": 0.9839 }, { "start": 27266.14, "end": 27268.76, "probability": 0.9976 }, { "start": 27269.28, "end": 27272.66, "probability": 0.9816 }, { "start": 27272.66, "end": 27277.84, "probability": 0.8982 }, { "start": 27278.28, "end": 27280.84, "probability": 0.9305 }, { "start": 27281.96, "end": 27287.64, "probability": 0.9558 }, { "start": 27288.14, "end": 27293.06, "probability": 0.9985 }, { "start": 27293.98, "end": 27295.68, "probability": 0.6777 }, { "start": 27296.22, "end": 27299.38, "probability": 0.8628 }, { "start": 27299.98, "end": 27303.58, "probability": 0.9729 }, { "start": 27304.66, "end": 27305.52, "probability": 0.7474 }, { "start": 27306.14, "end": 27308.44, "probability": 0.9861 }, { "start": 27308.96, "end": 27315.98, "probability": 0.9758 }, { "start": 27316.98, "end": 27319.66, "probability": 0.9331 }, { "start": 27319.86, "end": 27322.36, "probability": 0.6127 }, { "start": 27323.32, "end": 27324.24, "probability": 0.552 }, { "start": 27324.7, "end": 27326.42, "probability": 0.7021 }, { "start": 27326.54, "end": 27328.12, "probability": 0.8086 }, { "start": 27329.24, "end": 27331.64, "probability": 0.864 }, { "start": 27335.48, "end": 27337.54, "probability": 0.2839 }, { "start": 27357.05, "end": 27358.44, "probability": 0.6272 }, { "start": 27363.52, "end": 27367.74, "probability": 0.9867 }, { "start": 27368.1, "end": 27369.48, "probability": 0.9788 }, { "start": 27370.62, "end": 27374.44, "probability": 0.9495 }, { "start": 27374.56, "end": 27375.42, "probability": 0.9438 }, { "start": 27375.54, "end": 27376.68, "probability": 0.7678 }, { "start": 27377.76, "end": 27378.7, "probability": 0.9815 }, { "start": 27379.28, "end": 27380.88, "probability": 0.999 }, { "start": 27381.62, "end": 27382.18, "probability": 0.9963 }, { "start": 27382.82, "end": 27384.58, "probability": 0.7938 }, { "start": 27384.84, "end": 27387.14, "probability": 0.9388 }, { "start": 27387.52, "end": 27388.35, "probability": 0.4183 }, { "start": 27389.3, "end": 27392.02, "probability": 0.998 }, { "start": 27392.02, "end": 27394.5, "probability": 0.8867 }, { "start": 27395.64, "end": 27399.88, "probability": 0.907 }, { "start": 27400.7, "end": 27406.56, "probability": 0.9819 }, { "start": 27407.24, "end": 27409.58, "probability": 0.9937 }, { "start": 27409.58, "end": 27411.76, "probability": 0.9798 }, { "start": 27413.08, "end": 27420.0, "probability": 0.963 }, { "start": 27421.32, "end": 27424.32, "probability": 0.9709 }, { "start": 27424.66, "end": 27425.77, "probability": 0.9653 }, { "start": 27428.12, "end": 27431.68, "probability": 0.9339 }, { "start": 27431.88, "end": 27432.18, "probability": 0.5929 }, { "start": 27433.38, "end": 27437.02, "probability": 0.7365 }, { "start": 27437.56, "end": 27439.2, "probability": 0.8911 }, { "start": 27440.1, "end": 27442.9, "probability": 0.8389 }, { "start": 27443.7, "end": 27444.46, "probability": 0.8208 }, { "start": 27445.46, "end": 27446.74, "probability": 0.9551 }, { "start": 27447.0, "end": 27450.72, "probability": 0.9234 }, { "start": 27451.46, "end": 27453.36, "probability": 0.9749 }, { "start": 27454.6, "end": 27456.1, "probability": 0.9977 }, { "start": 27457.2, "end": 27458.94, "probability": 0.7312 }, { "start": 27460.16, "end": 27464.38, "probability": 0.9314 }, { "start": 27464.72, "end": 27466.0, "probability": 0.9584 }, { "start": 27466.72, "end": 27468.52, "probability": 0.9407 }, { "start": 27469.34, "end": 27473.2, "probability": 0.9433 }, { "start": 27473.38, "end": 27473.8, "probability": 0.6247 }, { "start": 27473.86, "end": 27474.42, "probability": 0.9377 }, { "start": 27476.1, "end": 27479.48, "probability": 0.7727 }, { "start": 27480.86, "end": 27484.38, "probability": 0.969 }, { "start": 27485.04, "end": 27488.3, "probability": 0.931 }, { "start": 27489.34, "end": 27492.6, "probability": 0.804 }, { "start": 27493.12, "end": 27497.12, "probability": 0.974 }, { "start": 27498.0, "end": 27501.52, "probability": 0.937 }, { "start": 27501.92, "end": 27504.4, "probability": 0.9835 }, { "start": 27505.18, "end": 27506.86, "probability": 0.8828 }, { "start": 27507.1, "end": 27511.16, "probability": 0.7483 }, { "start": 27512.5, "end": 27514.26, "probability": 0.7339 }, { "start": 27514.48, "end": 27518.82, "probability": 0.9893 }, { "start": 27520.28, "end": 27524.58, "probability": 0.9932 }, { "start": 27525.48, "end": 27528.1, "probability": 0.8386 }, { "start": 27528.74, "end": 27530.8, "probability": 0.981 }, { "start": 27530.8, "end": 27532.4, "probability": 0.9626 }, { "start": 27532.8, "end": 27534.36, "probability": 0.7458 }, { "start": 27534.46, "end": 27536.1, "probability": 0.6148 }, { "start": 27536.7, "end": 27539.88, "probability": 0.9633 }, { "start": 27539.98, "end": 27540.22, "probability": 0.327 }, { "start": 27540.44, "end": 27541.58, "probability": 0.853 }, { "start": 27541.68, "end": 27543.42, "probability": 0.7094 }, { "start": 27543.9, "end": 27544.58, "probability": 0.79 }, { "start": 27545.16, "end": 27548.84, "probability": 0.8247 }, { "start": 27548.88, "end": 27553.1, "probability": 0.9922 }, { "start": 27553.2, "end": 27553.56, "probability": 0.2622 }, { "start": 27553.56, "end": 27554.86, "probability": 0.5005 }, { "start": 27554.96, "end": 27556.18, "probability": 0.8714 }, { "start": 27557.44, "end": 27557.86, "probability": 0.2761 }, { "start": 27558.06, "end": 27559.92, "probability": 0.7914 }, { "start": 27560.08, "end": 27560.62, "probability": 0.2545 }, { "start": 27561.1, "end": 27561.96, "probability": 0.8587 }, { "start": 27578.26, "end": 27579.08, "probability": 0.5927 }, { "start": 27579.74, "end": 27580.84, "probability": 0.8687 }, { "start": 27581.68, "end": 27582.62, "probability": 0.172 }, { "start": 27584.24, "end": 27586.38, "probability": 0.8022 }, { "start": 27587.88, "end": 27587.88, "probability": 0.0345 }, { "start": 27587.88, "end": 27587.88, "probability": 0.0766 }, { "start": 27587.88, "end": 27590.12, "probability": 0.8648 }, { "start": 27590.96, "end": 27591.9, "probability": 0.783 }, { "start": 27594.28, "end": 27598.21, "probability": 0.9371 }, { "start": 27599.96, "end": 27605.38, "probability": 0.988 }, { "start": 27606.18, "end": 27607.08, "probability": 0.985 }, { "start": 27608.9, "end": 27613.3, "probability": 0.9417 }, { "start": 27613.44, "end": 27616.7, "probability": 0.9929 }, { "start": 27617.72, "end": 27619.42, "probability": 0.9996 }, { "start": 27619.56, "end": 27621.76, "probability": 0.7777 }, { "start": 27622.84, "end": 27624.24, "probability": 0.9421 }, { "start": 27624.94, "end": 27627.98, "probability": 0.9493 }, { "start": 27628.08, "end": 27629.4, "probability": 0.7473 }, { "start": 27629.4, "end": 27631.86, "probability": 0.8803 }, { "start": 27633.86, "end": 27634.1, "probability": 0.0942 }, { "start": 27634.1, "end": 27637.86, "probability": 0.967 }, { "start": 27638.38, "end": 27640.84, "probability": 0.7561 }, { "start": 27642.52, "end": 27644.82, "probability": 0.9382 }, { "start": 27645.94, "end": 27648.58, "probability": 0.9497 }, { "start": 27649.84, "end": 27653.84, "probability": 0.9637 }, { "start": 27656.3, "end": 27658.56, "probability": 0.9961 }, { "start": 27659.34, "end": 27662.28, "probability": 0.9127 }, { "start": 27662.28, "end": 27665.06, "probability": 0.8952 }, { "start": 27666.98, "end": 27669.36, "probability": 0.7005 }, { "start": 27670.22, "end": 27670.88, "probability": 0.6366 }, { "start": 27671.4, "end": 27674.6, "probability": 0.9261 }, { "start": 27675.9, "end": 27680.74, "probability": 0.8825 }, { "start": 27680.74, "end": 27683.6, "probability": 0.9862 }, { "start": 27684.38, "end": 27686.64, "probability": 0.7145 }, { "start": 27688.66, "end": 27689.8, "probability": 0.8665 }, { "start": 27690.42, "end": 27691.12, "probability": 0.9474 }, { "start": 27691.72, "end": 27692.7, "probability": 0.6247 }, { "start": 27692.92, "end": 27693.68, "probability": 0.9259 }, { "start": 27693.82, "end": 27694.48, "probability": 0.9477 }, { "start": 27694.72, "end": 27695.42, "probability": 0.9102 }, { "start": 27695.6, "end": 27698.24, "probability": 0.9821 }, { "start": 27700.72, "end": 27702.34, "probability": 0.5508 }, { "start": 27703.44, "end": 27704.72, "probability": 0.8327 }, { "start": 27705.92, "end": 27707.04, "probability": 0.9738 }, { "start": 27707.8, "end": 27708.87, "probability": 0.9868 }, { "start": 27711.06, "end": 27712.04, "probability": 0.9724 }, { "start": 27712.9, "end": 27714.16, "probability": 0.821 }, { "start": 27714.38, "end": 27714.78, "probability": 0.9638 }, { "start": 27715.52, "end": 27717.52, "probability": 0.9641 }, { "start": 27718.16, "end": 27720.06, "probability": 0.8633 }, { "start": 27720.18, "end": 27722.36, "probability": 0.8924 }, { "start": 27722.46, "end": 27723.96, "probability": 0.9885 }, { "start": 27724.04, "end": 27727.34, "probability": 0.965 }, { "start": 27728.4, "end": 27731.04, "probability": 0.9655 }, { "start": 27731.18, "end": 27732.78, "probability": 0.5298 }, { "start": 27733.58, "end": 27734.24, "probability": 0.8835 }, { "start": 27734.46, "end": 27735.06, "probability": 0.894 }, { "start": 27735.32, "end": 27735.84, "probability": 0.8396 }, { "start": 27735.98, "end": 27736.42, "probability": 0.6417 }, { "start": 27736.56, "end": 27737.72, "probability": 0.9431 }, { "start": 27737.84, "end": 27738.9, "probability": 0.8154 }, { "start": 27738.94, "end": 27739.62, "probability": 0.9205 }, { "start": 27739.7, "end": 27740.52, "probability": 0.9147 }, { "start": 27741.5, "end": 27745.24, "probability": 0.9865 }, { "start": 27745.94, "end": 27747.74, "probability": 0.9878 }, { "start": 27747.76, "end": 27749.28, "probability": 0.7325 }, { "start": 27749.38, "end": 27750.28, "probability": 0.9515 }, { "start": 27750.52, "end": 27751.5, "probability": 0.9459 }, { "start": 27751.66, "end": 27752.72, "probability": 0.7297 }, { "start": 27753.3, "end": 27756.58, "probability": 0.8241 }, { "start": 27757.74, "end": 27765.32, "probability": 0.9664 }, { "start": 27766.08, "end": 27766.08, "probability": 0.1781 }, { "start": 27766.08, "end": 27767.82, "probability": 0.8617 }, { "start": 27768.0, "end": 27768.18, "probability": 0.4942 }, { "start": 27768.22, "end": 27768.9, "probability": 0.9555 }, { "start": 27769.0, "end": 27769.64, "probability": 0.9648 }, { "start": 27769.84, "end": 27769.94, "probability": 0.8543 }, { "start": 27771.88, "end": 27773.24, "probability": 0.8727 }, { "start": 27773.32, "end": 27774.1, "probability": 0.3275 }, { "start": 27774.22, "end": 27775.37, "probability": 0.9819 }, { "start": 27775.86, "end": 27776.96, "probability": 0.3072 }, { "start": 27776.96, "end": 27777.06, "probability": 0.1416 }, { "start": 27777.06, "end": 27777.72, "probability": 0.0998 }, { "start": 27777.92, "end": 27779.02, "probability": 0.5717 }, { "start": 27779.08, "end": 27780.78, "probability": 0.7601 }, { "start": 27781.56, "end": 27783.29, "probability": 0.9858 }, { "start": 27783.9, "end": 27784.6, "probability": 0.9095 }, { "start": 27785.04, "end": 27787.94, "probability": 0.7627 }, { "start": 27788.34, "end": 27788.64, "probability": 0.7576 }, { "start": 27788.94, "end": 27789.7, "probability": 0.985 }, { "start": 27789.76, "end": 27790.82, "probability": 0.9714 }, { "start": 27790.88, "end": 27791.96, "probability": 0.9847 }, { "start": 27792.02, "end": 27794.46, "probability": 0.9767 }, { "start": 27794.58, "end": 27795.72, "probability": 0.9373 }, { "start": 27796.6, "end": 27799.26, "probability": 0.6682 }, { "start": 27799.5, "end": 27801.0, "probability": 0.3889 }, { "start": 27801.08, "end": 27801.92, "probability": 0.8033 }, { "start": 27802.06, "end": 27803.9, "probability": 0.9847 }, { "start": 27803.9, "end": 27803.9, "probability": 0.1844 }, { "start": 27803.9, "end": 27803.9, "probability": 0.0244 }, { "start": 27803.9, "end": 27804.22, "probability": 0.5838 }, { "start": 27804.24, "end": 27805.1, "probability": 0.629 }, { "start": 27805.24, "end": 27807.08, "probability": 0.795 }, { "start": 27807.54, "end": 27808.5, "probability": 0.496 }, { "start": 27808.72, "end": 27810.08, "probability": 0.5556 }, { "start": 27810.08, "end": 27810.08, "probability": 0.4493 }, { "start": 27810.08, "end": 27810.08, "probability": 0.3712 }, { "start": 27810.08, "end": 27812.1, "probability": 0.8478 }, { "start": 27834.78, "end": 27838.06, "probability": 0.7386 }, { "start": 27840.18, "end": 27841.36, "probability": 0.9833 }, { "start": 27842.86, "end": 27846.22, "probability": 0.9881 }, { "start": 27848.08, "end": 27848.94, "probability": 0.9617 }, { "start": 27850.14, "end": 27850.8, "probability": 0.8676 }, { "start": 27852.26, "end": 27854.14, "probability": 0.996 }, { "start": 27855.52, "end": 27858.46, "probability": 0.9785 }, { "start": 27859.74, "end": 27863.0, "probability": 0.9614 }, { "start": 27865.76, "end": 27869.14, "probability": 0.9762 }, { "start": 27869.66, "end": 27871.02, "probability": 0.7492 }, { "start": 27873.62, "end": 27875.86, "probability": 0.9604 }, { "start": 27876.46, "end": 27877.32, "probability": 0.8041 }, { "start": 27877.9, "end": 27879.42, "probability": 0.9556 }, { "start": 27880.42, "end": 27883.48, "probability": 0.9131 }, { "start": 27884.64, "end": 27887.04, "probability": 0.8447 }, { "start": 27887.48, "end": 27888.84, "probability": 0.4844 }, { "start": 27890.04, "end": 27891.16, "probability": 0.9521 }, { "start": 27892.88, "end": 27893.82, "probability": 0.5813 }, { "start": 27894.92, "end": 27897.46, "probability": 0.9943 }, { "start": 27898.98, "end": 27900.92, "probability": 0.7413 }, { "start": 27901.6, "end": 27902.56, "probability": 0.7788 }, { "start": 27903.04, "end": 27905.36, "probability": 0.758 }, { "start": 27907.78, "end": 27910.72, "probability": 0.8953 }, { "start": 27911.72, "end": 27913.52, "probability": 0.9636 }, { "start": 27914.44, "end": 27915.2, "probability": 0.3775 }, { "start": 27916.96, "end": 27917.99, "probability": 0.8332 }, { "start": 27919.09, "end": 27921.12, "probability": 0.9688 }, { "start": 27921.68, "end": 27922.98, "probability": 0.6827 }, { "start": 27923.9, "end": 27924.53, "probability": 0.9629 }, { "start": 27924.98, "end": 27926.32, "probability": 0.584 }, { "start": 27927.54, "end": 27928.08, "probability": 0.5982 }, { "start": 27929.36, "end": 27930.16, "probability": 0.9322 }, { "start": 27932.2, "end": 27934.68, "probability": 0.9688 }, { "start": 27935.46, "end": 27936.02, "probability": 0.9707 }, { "start": 27937.7, "end": 27939.26, "probability": 0.9966 }, { "start": 27940.84, "end": 27944.84, "probability": 0.7556 }, { "start": 27945.96, "end": 27947.34, "probability": 0.9949 }, { "start": 27949.5, "end": 27952.0, "probability": 0.9697 }, { "start": 27952.82, "end": 27955.64, "probability": 0.9652 }, { "start": 27956.68, "end": 27959.1, "probability": 0.991 }, { "start": 27959.44, "end": 27959.97, "probability": 0.8551 }, { "start": 27960.48, "end": 27961.56, "probability": 0.9909 }, { "start": 27962.1, "end": 27964.04, "probability": 0.8192 }, { "start": 27964.24, "end": 27965.66, "probability": 0.4958 }, { "start": 27965.74, "end": 27965.82, "probability": 0.3895 }, { "start": 27965.94, "end": 27966.7, "probability": 0.741 }, { "start": 27966.74, "end": 27967.34, "probability": 0.9819 }, { "start": 27967.8, "end": 27969.26, "probability": 0.9606 }, { "start": 27969.3, "end": 27971.78, "probability": 0.595 }, { "start": 27972.32, "end": 27972.9, "probability": 0.2288 }, { "start": 27972.9, "end": 27973.58, "probability": 0.9004 }, { "start": 27975.62, "end": 27976.22, "probability": 0.4472 }, { "start": 27976.5, "end": 27977.24, "probability": 0.6633 }, { "start": 27978.46, "end": 27978.48, "probability": 0.1338 }, { "start": 27978.48, "end": 27978.48, "probability": 0.0146 }, { "start": 27978.48, "end": 27980.4, "probability": 0.6748 }, { "start": 27980.56, "end": 27984.06, "probability": 0.7522 }, { "start": 27984.86, "end": 27985.88, "probability": 0.8643 }, { "start": 27986.62, "end": 27988.56, "probability": 0.9445 }, { "start": 27988.64, "end": 27990.58, "probability": 0.959 }, { "start": 27990.98, "end": 27993.88, "probability": 0.9916 }, { "start": 27994.48, "end": 27997.94, "probability": 0.9715 }, { "start": 27998.58, "end": 28001.66, "probability": 0.973 }, { "start": 28001.8, "end": 28001.8, "probability": 0.6995 }, { "start": 28001.8, "end": 28003.2, "probability": 0.7433 }, { "start": 28003.94, "end": 28005.48, "probability": 0.9811 }, { "start": 28008.74, "end": 28011.52, "probability": 0.1539 }, { "start": 28011.8, "end": 28013.26, "probability": 0.6155 }, { "start": 28013.4, "end": 28013.98, "probability": 0.8481 }, { "start": 28019.62, "end": 28020.5, "probability": 0.9402 }, { "start": 28020.72, "end": 28022.6, "probability": 0.6828 }, { "start": 28023.22, "end": 28029.12, "probability": 0.984 }, { "start": 28029.74, "end": 28032.68, "probability": 0.9897 }, { "start": 28033.9, "end": 28039.36, "probability": 0.9804 }, { "start": 28040.1, "end": 28041.14, "probability": 0.8357 }, { "start": 28041.58, "end": 28044.16, "probability": 0.9985 }, { "start": 28044.72, "end": 28047.86, "probability": 0.9697 }, { "start": 28048.52, "end": 28051.3, "probability": 0.9591 }, { "start": 28052.08, "end": 28057.58, "probability": 0.8868 }, { "start": 28057.58, "end": 28062.54, "probability": 0.978 }, { "start": 28063.12, "end": 28066.72, "probability": 0.9752 }, { "start": 28067.08, "end": 28068.46, "probability": 0.9767 }, { "start": 28069.02, "end": 28071.52, "probability": 0.9558 }, { "start": 28072.2, "end": 28072.2, "probability": 0.0069 }, { "start": 28072.2, "end": 28073.81, "probability": 0.6703 }, { "start": 28074.22, "end": 28076.5, "probability": 0.9816 }, { "start": 28077.2, "end": 28078.9, "probability": 0.9371 }, { "start": 28079.76, "end": 28080.88, "probability": 0.8024 }, { "start": 28081.44, "end": 28082.1, "probability": 0.8322 }, { "start": 28082.72, "end": 28087.02, "probability": 0.9882 }, { "start": 28087.02, "end": 28090.24, "probability": 0.9634 }, { "start": 28091.12, "end": 28095.38, "probability": 0.9956 }, { "start": 28095.96, "end": 28098.98, "probability": 0.9977 }, { "start": 28098.98, "end": 28104.98, "probability": 0.9924 }, { "start": 28105.5, "end": 28107.4, "probability": 0.8481 }, { "start": 28107.82, "end": 28112.42, "probability": 0.9438 }, { "start": 28113.2, "end": 28114.06, "probability": 0.7844 }, { "start": 28114.56, "end": 28120.4, "probability": 0.9624 }, { "start": 28121.1, "end": 28122.04, "probability": 0.896 }, { "start": 28122.6, "end": 28125.72, "probability": 0.9827 }, { "start": 28126.06, "end": 28127.02, "probability": 0.9306 }, { "start": 28127.54, "end": 28128.54, "probability": 0.9937 }, { "start": 28128.96, "end": 28130.44, "probability": 0.8364 }, { "start": 28130.96, "end": 28133.62, "probability": 0.7701 }, { "start": 28134.56, "end": 28137.96, "probability": 0.8818 }, { "start": 28138.6, "end": 28138.6, "probability": 0.333 }, { "start": 28138.6, "end": 28139.8, "probability": 0.8617 }, { "start": 28140.48, "end": 28141.7, "probability": 0.9084 }, { "start": 28142.58, "end": 28143.8, "probability": 0.7106 }, { "start": 28144.86, "end": 28146.6, "probability": 0.9817 }, { "start": 28146.66, "end": 28147.4, "probability": 0.8057 }, { "start": 28147.54, "end": 28147.72, "probability": 0.9352 }, { "start": 28147.84, "end": 28149.14, "probability": 0.6487 }, { "start": 28150.2, "end": 28154.86, "probability": 0.9895 }, { "start": 28155.48, "end": 28156.74, "probability": 0.9503 }, { "start": 28157.38, "end": 28159.44, "probability": 0.9443 }, { "start": 28159.9, "end": 28160.2, "probability": 0.7495 }, { "start": 28160.22, "end": 28161.47, "probability": 0.8792 }, { "start": 28162.16, "end": 28162.8, "probability": 0.4601 }, { "start": 28163.16, "end": 28165.84, "probability": 0.6649 }, { "start": 28166.7, "end": 28172.74, "probability": 0.9501 }, { "start": 28172.9, "end": 28174.08, "probability": 0.9372 }, { "start": 28174.44, "end": 28175.52, "probability": 0.8983 }, { "start": 28175.92, "end": 28179.5, "probability": 0.9066 }, { "start": 28183.08, "end": 28184.16, "probability": 0.5973 }, { "start": 28184.18, "end": 28185.06, "probability": 0.0991 }, { "start": 28185.14, "end": 28185.14, "probability": 0.1493 }, { "start": 28185.14, "end": 28185.14, "probability": 0.0367 }, { "start": 28185.14, "end": 28186.9, "probability": 0.6522 }, { "start": 28186.98, "end": 28189.68, "probability": 0.4014 }, { "start": 28190.32, "end": 28190.32, "probability": 0.4103 }, { "start": 28190.32, "end": 28190.96, "probability": 0.5239 }, { "start": 28191.0, "end": 28192.5, "probability": 0.6867 }, { "start": 28192.66, "end": 28194.0, "probability": 0.9846 }, { "start": 28194.18, "end": 28195.94, "probability": 0.9761 }, { "start": 28196.28, "end": 28197.2, "probability": 0.903 }, { "start": 28197.76, "end": 28199.94, "probability": 0.7759 }, { "start": 28200.32, "end": 28200.95, "probability": 0.936 }, { "start": 28201.72, "end": 28208.98, "probability": 0.9828 }, { "start": 28209.48, "end": 28212.58, "probability": 0.9814 }, { "start": 28212.64, "end": 28215.52, "probability": 0.8418 }, { "start": 28216.42, "end": 28217.8, "probability": 0.7333 }, { "start": 28225.81, "end": 28227.02, "probability": 0.48 }, { "start": 28242.72, "end": 28242.74, "probability": 0.2108 }, { "start": 28242.74, "end": 28245.08, "probability": 0.7568 }, { "start": 28246.86, "end": 28251.6, "probability": 0.9938 }, { "start": 28252.94, "end": 28255.24, "probability": 0.9994 }, { "start": 28257.0, "end": 28258.4, "probability": 0.877 }, { "start": 28260.46, "end": 28262.86, "probability": 0.9482 }, { "start": 28263.98, "end": 28266.5, "probability": 0.977 }, { "start": 28267.68, "end": 28270.68, "probability": 0.999 }, { "start": 28272.14, "end": 28273.06, "probability": 0.9084 }, { "start": 28275.1, "end": 28276.88, "probability": 0.962 }, { "start": 28278.24, "end": 28279.42, "probability": 0.2866 }, { "start": 28279.52, "end": 28282.18, "probability": 0.9915 }, { "start": 28284.26, "end": 28286.7, "probability": 0.9014 }, { "start": 28287.89, "end": 28291.22, "probability": 0.8143 }, { "start": 28292.3, "end": 28293.98, "probability": 0.9778 }, { "start": 28295.76, "end": 28299.24, "probability": 0.9971 }, { "start": 28299.84, "end": 28303.16, "probability": 0.9974 }, { "start": 28304.06, "end": 28309.2, "probability": 0.9932 }, { "start": 28309.45, "end": 28312.22, "probability": 0.9989 }, { "start": 28313.3, "end": 28314.18, "probability": 0.9907 }, { "start": 28315.74, "end": 28321.4, "probability": 0.9613 }, { "start": 28322.58, "end": 28323.9, "probability": 0.9683 }, { "start": 28325.36, "end": 28329.3, "probability": 0.9644 }, { "start": 28330.4, "end": 28332.86, "probability": 0.9875 }, { "start": 28334.38, "end": 28336.8, "probability": 0.9403 }, { "start": 28337.64, "end": 28341.4, "probability": 0.9728 }, { "start": 28343.06, "end": 28345.8, "probability": 0.9952 }, { "start": 28345.81, "end": 28349.3, "probability": 0.9334 }, { "start": 28349.44, "end": 28350.34, "probability": 0.3521 }, { "start": 28351.48, "end": 28356.2, "probability": 0.9966 }, { "start": 28357.58, "end": 28359.57, "probability": 0.992 }, { "start": 28360.64, "end": 28363.04, "probability": 0.8296 }, { "start": 28363.64, "end": 28365.36, "probability": 0.9599 }, { "start": 28365.56, "end": 28367.4, "probability": 0.9308 }, { "start": 28367.94, "end": 28370.6, "probability": 0.9756 }, { "start": 28371.62, "end": 28375.5, "probability": 0.982 }, { "start": 28376.26, "end": 28379.04, "probability": 0.9968 }, { "start": 28379.8, "end": 28380.58, "probability": 0.9679 }, { "start": 28381.32, "end": 28383.22, "probability": 0.9937 }, { "start": 28384.28, "end": 28387.14, "probability": 0.6646 }, { "start": 28387.2, "end": 28388.47, "probability": 0.9891 }, { "start": 28390.24, "end": 28391.16, "probability": 0.7963 }, { "start": 28391.64, "end": 28393.2, "probability": 0.9971 }, { "start": 28393.32, "end": 28395.66, "probability": 0.9324 }, { "start": 28396.64, "end": 28397.6, "probability": 0.9882 }, { "start": 28397.96, "end": 28402.3, "probability": 0.9919 }, { "start": 28403.34, "end": 28405.0, "probability": 0.9395 }, { "start": 28405.6, "end": 28407.34, "probability": 0.9368 }, { "start": 28407.98, "end": 28410.04, "probability": 0.9927 }, { "start": 28410.14, "end": 28411.76, "probability": 0.9307 }, { "start": 28412.54, "end": 28414.38, "probability": 0.9975 }, { "start": 28415.84, "end": 28418.02, "probability": 0.9748 }, { "start": 28419.1, "end": 28421.38, "probability": 0.9763 }, { "start": 28422.64, "end": 28426.14, "probability": 0.9983 }, { "start": 28427.34, "end": 28430.6, "probability": 0.998 }, { "start": 28431.62, "end": 28431.94, "probability": 0.7603 }, { "start": 28432.82, "end": 28435.84, "probability": 0.9995 }, { "start": 28436.84, "end": 28440.26, "probability": 0.885 }, { "start": 28440.92, "end": 28443.22, "probability": 0.9937 }, { "start": 28443.24, "end": 28444.18, "probability": 0.8785 }, { "start": 28444.54, "end": 28444.64, "probability": 0.2104 }, { "start": 28444.76, "end": 28445.38, "probability": 0.8605 }, { "start": 28445.4, "end": 28446.61, "probability": 0.7093 }, { "start": 28447.02, "end": 28450.5, "probability": 0.988 }, { "start": 28451.68, "end": 28454.0, "probability": 0.3469 }, { "start": 28454.0, "end": 28455.86, "probability": 0.5975 }, { "start": 28455.92, "end": 28456.18, "probability": 0.3131 }, { "start": 28456.3, "end": 28458.77, "probability": 0.8199 }, { "start": 28459.24, "end": 28462.62, "probability": 0.9875 }, { "start": 28462.7, "end": 28468.08, "probability": 0.792 }, { "start": 28468.22, "end": 28468.98, "probability": 0.5769 }, { "start": 28468.98, "end": 28469.52, "probability": 0.5561 }, { "start": 28469.86, "end": 28471.34, "probability": 0.7915 }, { "start": 28493.14, "end": 28494.1, "probability": 0.7721 }, { "start": 28495.12, "end": 28496.16, "probability": 0.8485 }, { "start": 28497.2, "end": 28497.9, "probability": 0.6892 }, { "start": 28501.35, "end": 28504.52, "probability": 0.9195 }, { "start": 28506.22, "end": 28509.58, "probability": 0.9946 }, { "start": 28511.18, "end": 28512.32, "probability": 0.7947 }, { "start": 28515.26, "end": 28515.96, "probability": 0.8491 }, { "start": 28517.0, "end": 28523.06, "probability": 0.9907 }, { "start": 28523.88, "end": 28526.2, "probability": 0.9838 }, { "start": 28526.98, "end": 28533.3, "probability": 0.9849 }, { "start": 28535.1, "end": 28538.4, "probability": 0.4904 }, { "start": 28540.02, "end": 28545.26, "probability": 0.9378 }, { "start": 28546.12, "end": 28549.84, "probability": 0.9331 }, { "start": 28550.9, "end": 28553.54, "probability": 0.6959 }, { "start": 28555.01, "end": 28556.94, "probability": 0.8752 }, { "start": 28557.66, "end": 28558.26, "probability": 0.9936 }, { "start": 28558.88, "end": 28561.44, "probability": 0.9946 }, { "start": 28562.14, "end": 28564.56, "probability": 0.9905 }, { "start": 28565.14, "end": 28566.16, "probability": 0.9939 }, { "start": 28566.78, "end": 28567.54, "probability": 0.9581 }, { "start": 28568.16, "end": 28571.16, "probability": 0.999 }, { "start": 28571.46, "end": 28572.98, "probability": 0.9419 }, { "start": 28573.62, "end": 28574.02, "probability": 0.5703 }, { "start": 28574.86, "end": 28576.44, "probability": 0.8908 }, { "start": 28576.92, "end": 28579.58, "probability": 0.9531 }, { "start": 28580.78, "end": 28583.32, "probability": 0.9834 }, { "start": 28583.34, "end": 28589.44, "probability": 0.9193 }, { "start": 28589.62, "end": 28594.62, "probability": 0.9911 }, { "start": 28595.28, "end": 28596.12, "probability": 0.9323 }, { "start": 28596.88, "end": 28598.96, "probability": 0.7753 }, { "start": 28600.3, "end": 28600.52, "probability": 0.89 }, { "start": 28601.06, "end": 28602.56, "probability": 0.9847 }, { "start": 28603.06, "end": 28604.26, "probability": 0.6547 }, { "start": 28605.26, "end": 28608.78, "probability": 0.9873 }, { "start": 28609.52, "end": 28611.62, "probability": 0.0114 }, { "start": 28614.7, "end": 28617.58, "probability": 0.1112 }, { "start": 28621.02, "end": 28622.42, "probability": 0.1673 }, { "start": 28622.42, "end": 28622.9, "probability": 0.1054 }, { "start": 28622.9, "end": 28622.9, "probability": 0.1071 }, { "start": 28622.9, "end": 28623.28, "probability": 0.2118 }, { "start": 28625.04, "end": 28628.16, "probability": 0.0282 }, { "start": 28628.18, "end": 28628.88, "probability": 0.0858 }, { "start": 28628.88, "end": 28628.88, "probability": 0.0421 }, { "start": 28628.88, "end": 28628.88, "probability": 0.1444 }, { "start": 28628.88, "end": 28628.88, "probability": 0.3831 }, { "start": 28628.88, "end": 28628.88, "probability": 0.2778 }, { "start": 28628.88, "end": 28628.88, "probability": 0.1099 }, { "start": 28628.88, "end": 28632.96, "probability": 0.2539 }, { "start": 28633.88, "end": 28636.32, "probability": 0.9881 }, { "start": 28636.84, "end": 28641.2, "probability": 0.9985 }, { "start": 28642.3, "end": 28642.88, "probability": 0.832 }, { "start": 28643.09, "end": 28647.72, "probability": 0.9067 }, { "start": 28647.8, "end": 28649.08, "probability": 0.4893 }, { "start": 28649.22, "end": 28650.48, "probability": 0.7199 }, { "start": 28650.58, "end": 28651.9, "probability": 0.9946 }, { "start": 28652.3, "end": 28653.72, "probability": 0.9325 }, { "start": 28653.9, "end": 28654.64, "probability": 0.9676 }, { "start": 28655.2, "end": 28657.49, "probability": 0.249 }, { "start": 28659.18, "end": 28664.86, "probability": 0.6538 }, { "start": 28665.08, "end": 28665.1, "probability": 0.0761 }, { "start": 28665.1, "end": 28666.47, "probability": 0.9381 }, { "start": 28667.06, "end": 28670.98, "probability": 0.9721 }, { "start": 28671.38, "end": 28674.52, "probability": 0.9948 }, { "start": 28675.42, "end": 28678.9, "probability": 0.9923 }, { "start": 28679.96, "end": 28685.6, "probability": 0.9986 }, { "start": 28686.42, "end": 28689.06, "probability": 0.9851 }, { "start": 28689.92, "end": 28691.12, "probability": 0.9163 }, { "start": 28691.28, "end": 28693.62, "probability": 0.9038 }, { "start": 28694.58, "end": 28697.0, "probability": 0.7658 }, { "start": 28698.78, "end": 28700.38, "probability": 0.4109 }, { "start": 28700.48, "end": 28700.68, "probability": 0.5363 }, { "start": 28700.74, "end": 28701.54, "probability": 0.9377 }, { "start": 28702.3, "end": 28703.76, "probability": 0.9865 }, { "start": 28704.14, "end": 28705.48, "probability": 0.9917 }, { "start": 28707.48, "end": 28710.12, "probability": 0.4985 }, { "start": 28711.28, "end": 28711.82, "probability": 0.4694 }, { "start": 28711.82, "end": 28711.82, "probability": 0.0784 }, { "start": 28711.82, "end": 28711.82, "probability": 0.1996 }, { "start": 28711.82, "end": 28711.92, "probability": 0.4104 }, { "start": 28712.82, "end": 28715.62, "probability": 0.7367 }, { "start": 28716.44, "end": 28717.34, "probability": 0.916 }, { "start": 28718.3, "end": 28720.74, "probability": 0.9827 }, { "start": 28721.56, "end": 28721.96, "probability": 0.937 }, { "start": 28722.26, "end": 28723.06, "probability": 0.7075 }, { "start": 28723.06, "end": 28725.9, "probability": 0.5748 }, { "start": 28726.94, "end": 28728.96, "probability": 0.9689 }, { "start": 28730.16, "end": 28730.88, "probability": 0.5246 }, { "start": 28732.56, "end": 28734.58, "probability": 0.9778 }, { "start": 28747.1, "end": 28748.06, "probability": 0.7342 }, { "start": 28748.8, "end": 28750.72, "probability": 0.7546 }, { "start": 28751.3, "end": 28752.38, "probability": 0.5626 }, { "start": 28754.24, "end": 28754.64, "probability": 0.0799 }, { "start": 28756.52, "end": 28757.48, "probability": 0.1691 }, { "start": 28758.68, "end": 28759.38, "probability": 0.2889 }, { "start": 28759.42, "end": 28762.07, "probability": 0.9297 }, { "start": 28762.68, "end": 28763.3, "probability": 0.4215 }, { "start": 28763.46, "end": 28764.62, "probability": 0.8196 }, { "start": 28765.04, "end": 28767.28, "probability": 0.9548 }, { "start": 28767.28, "end": 28768.72, "probability": 0.5241 }, { "start": 28769.02, "end": 28772.32, "probability": 0.5189 }, { "start": 28772.4, "end": 28774.72, "probability": 0.7668 }, { "start": 28775.26, "end": 28775.4, "probability": 0.4347 }, { "start": 28775.5, "end": 28777.22, "probability": 0.9267 }, { "start": 28777.42, "end": 28778.82, "probability": 0.9473 }, { "start": 28779.42, "end": 28780.38, "probability": 0.0963 }, { "start": 28780.7, "end": 28780.84, "probability": 0.1123 }, { "start": 28780.84, "end": 28781.68, "probability": 0.9683 }, { "start": 28782.56, "end": 28782.94, "probability": 0.9499 }, { "start": 28783.7, "end": 28784.9, "probability": 0.9704 }, { "start": 28785.46, "end": 28788.58, "probability": 0.9931 }, { "start": 28789.2, "end": 28791.3, "probability": 0.9837 }, { "start": 28792.54, "end": 28793.84, "probability": 0.9364 }, { "start": 28795.12, "end": 28797.32, "probability": 0.9443 }, { "start": 28797.42, "end": 28802.32, "probability": 0.928 }, { "start": 28802.4, "end": 28804.04, "probability": 0.3373 }, { "start": 28804.48, "end": 28805.02, "probability": 0.3036 }, { "start": 28805.54, "end": 28808.16, "probability": 0.898 }, { "start": 28809.44, "end": 28810.48, "probability": 0.998 }, { "start": 28811.88, "end": 28813.04, "probability": 0.7058 }, { "start": 28814.42, "end": 28817.08, "probability": 0.9548 }, { "start": 28819.38, "end": 28825.18, "probability": 0.9749 }, { "start": 28825.72, "end": 28826.98, "probability": 0.9133 }, { "start": 28828.26, "end": 28833.66, "probability": 0.9801 }, { "start": 28834.88, "end": 28837.12, "probability": 0.9321 }, { "start": 28838.06, "end": 28840.52, "probability": 0.9685 }, { "start": 28841.02, "end": 28841.34, "probability": 0.2199 }, { "start": 28841.94, "end": 28844.54, "probability": 0.1292 }, { "start": 28853.66, "end": 28854.78, "probability": 0.0999 }, { "start": 28854.98, "end": 28854.98, "probability": 0.1323 }, { "start": 28854.98, "end": 28854.98, "probability": 0.0282 }, { "start": 28854.98, "end": 28855.84, "probability": 0.1618 }, { "start": 28856.16, "end": 28856.86, "probability": 0.4917 }, { "start": 28861.06, "end": 28862.28, "probability": 0.8115 }, { "start": 28862.98, "end": 28863.9, "probability": 0.9694 }, { "start": 28864.04, "end": 28865.88, "probability": 0.8863 }, { "start": 28866.48, "end": 28868.26, "probability": 0.7811 }, { "start": 28868.26, "end": 28868.68, "probability": 0.759 }, { "start": 28868.68, "end": 28869.04, "probability": 0.7831 }, { "start": 28869.1, "end": 28869.68, "probability": 0.6666 }, { "start": 28869.72, "end": 28872.56, "probability": 0.9633 }, { "start": 28872.98, "end": 28873.7, "probability": 0.7292 }, { "start": 28874.14, "end": 28874.86, "probability": 0.9178 }, { "start": 28875.24, "end": 28876.12, "probability": 0.9297 }, { "start": 28876.68, "end": 28877.42, "probability": 0.8838 }, { "start": 28877.9, "end": 28879.0, "probability": 0.0272 }, { "start": 28879.0, "end": 28879.52, "probability": 0.2801 }, { "start": 28879.86, "end": 28885.82, "probability": 0.9587 }, { "start": 28887.3, "end": 28889.02, "probability": 0.9792 }, { "start": 28891.14, "end": 28891.66, "probability": 0.9609 }, { "start": 28893.14, "end": 28894.42, "probability": 0.9954 }, { "start": 28895.44, "end": 28897.6, "probability": 0.9873 }, { "start": 28897.76, "end": 28901.14, "probability": 0.9849 }, { "start": 28902.02, "end": 28904.2, "probability": 0.9883 }, { "start": 28905.14, "end": 28906.98, "probability": 0.8995 }, { "start": 28908.14, "end": 28910.56, "probability": 0.9872 }, { "start": 28911.08, "end": 28911.84, "probability": 0.8585 }, { "start": 28912.92, "end": 28913.64, "probability": 0.963 }, { "start": 28914.22, "end": 28915.72, "probability": 0.9253 }, { "start": 28916.24, "end": 28919.4, "probability": 0.9855 }, { "start": 28919.5, "end": 28920.44, "probability": 0.7338 }, { "start": 28922.64, "end": 28925.5, "probability": 0.9961 }, { "start": 28926.56, "end": 28930.72, "probability": 0.9656 }, { "start": 28931.26, "end": 28933.21, "probability": 0.9833 }, { "start": 28934.12, "end": 28935.34, "probability": 0.8996 }, { "start": 28935.92, "end": 28938.36, "probability": 0.8432 }, { "start": 28939.8, "end": 28940.6, "probability": 0.7873 }, { "start": 28942.48, "end": 28945.79, "probability": 0.9702 }, { "start": 28946.94, "end": 28948.12, "probability": 0.8853 }, { "start": 28948.32, "end": 28950.16, "probability": 0.9779 }, { "start": 28951.46, "end": 28952.86, "probability": 0.9845 }, { "start": 28955.56, "end": 28959.94, "probability": 0.9835 }, { "start": 28960.0, "end": 28962.08, "probability": 0.9302 }, { "start": 28962.48, "end": 28964.1, "probability": 0.9948 }, { "start": 28965.8, "end": 28968.1, "probability": 0.9498 }, { "start": 28969.74, "end": 28971.4, "probability": 0.9679 }, { "start": 28972.66, "end": 28974.95, "probability": 0.9974 }, { "start": 28975.82, "end": 28978.0, "probability": 0.9539 }, { "start": 28978.54, "end": 28979.78, "probability": 0.8535 }, { "start": 28980.5, "end": 28982.98, "probability": 0.988 }, { "start": 28984.02, "end": 28984.6, "probability": 0.9554 }, { "start": 28985.14, "end": 28985.78, "probability": 0.9307 }, { "start": 28986.66, "end": 28988.92, "probability": 0.9605 }, { "start": 28990.14, "end": 28991.32, "probability": 0.7897 }, { "start": 28992.32, "end": 28993.3, "probability": 0.7247 }, { "start": 28994.22, "end": 28994.5, "probability": 0.7365 }, { "start": 28995.32, "end": 28996.42, "probability": 0.8702 }, { "start": 28996.96, "end": 28999.6, "probability": 0.9628 }, { "start": 29000.34, "end": 29003.08, "probability": 0.9762 }, { "start": 29004.46, "end": 29005.06, "probability": 0.8961 }, { "start": 29006.14, "end": 29007.26, "probability": 0.9637 }, { "start": 29007.36, "end": 29008.22, "probability": 0.8812 }, { "start": 29008.26, "end": 29009.11, "probability": 0.8418 }, { "start": 29010.0, "end": 29011.6, "probability": 0.8286 }, { "start": 29012.46, "end": 29014.06, "probability": 0.9092 }, { "start": 29016.04, "end": 29018.28, "probability": 0.9956 }, { "start": 29019.4, "end": 29020.14, "probability": 0.877 }, { "start": 29021.08, "end": 29025.16, "probability": 0.881 }, { "start": 29025.9, "end": 29025.9, "probability": 0.3327 }, { "start": 29025.92, "end": 29027.38, "probability": 0.7759 }, { "start": 29027.44, "end": 29028.3, "probability": 0.9355 }, { "start": 29028.48, "end": 29029.24, "probability": 0.9712 }, { "start": 29029.26, "end": 29029.88, "probability": 0.9941 }, { "start": 29033.5, "end": 29034.46, "probability": 0.7414 }, { "start": 29036.46, "end": 29040.14, "probability": 0.7529 }, { "start": 29040.96, "end": 29042.5, "probability": 0.9973 }, { "start": 29043.14, "end": 29044.48, "probability": 0.9134 }, { "start": 29044.64, "end": 29045.44, "probability": 0.7747 }, { "start": 29045.66, "end": 29046.32, "probability": 0.6886 }, { "start": 29046.44, "end": 29047.0, "probability": 0.9579 }, { "start": 29047.52, "end": 29048.52, "probability": 0.9352 }, { "start": 29048.6, "end": 29049.06, "probability": 0.9771 }, { "start": 29049.5, "end": 29052.18, "probability": 0.9844 }, { "start": 29052.48, "end": 29053.08, "probability": 0.6199 }, { "start": 29054.4, "end": 29055.26, "probability": 0.9948 }, { "start": 29055.36, "end": 29056.24, "probability": 0.991 }, { "start": 29056.34, "end": 29057.04, "probability": 0.9969 }, { "start": 29057.18, "end": 29058.14, "probability": 0.9969 }, { "start": 29058.4, "end": 29059.18, "probability": 0.9954 }, { "start": 29059.24, "end": 29059.82, "probability": 0.9832 }, { "start": 29060.9, "end": 29061.12, "probability": 0.7889 }, { "start": 29062.6, "end": 29065.04, "probability": 0.7214 }, { "start": 29066.0, "end": 29067.8, "probability": 0.8971 }, { "start": 29067.92, "end": 29069.36, "probability": 0.9976 }, { "start": 29070.48, "end": 29072.92, "probability": 0.6752 }, { "start": 29072.98, "end": 29076.0, "probability": 0.9943 }, { "start": 29076.4, "end": 29076.82, "probability": 0.7334 }, { "start": 29077.7, "end": 29080.7, "probability": 0.9951 }, { "start": 29081.58, "end": 29082.6, "probability": 0.9544 }, { "start": 29083.16, "end": 29083.98, "probability": 0.9692 }, { "start": 29084.1, "end": 29086.05, "probability": 0.9605 }, { "start": 29087.02, "end": 29090.6, "probability": 0.9795 }, { "start": 29091.22, "end": 29092.81, "probability": 0.8343 }, { "start": 29093.38, "end": 29094.72, "probability": 0.7609 }, { "start": 29095.88, "end": 29096.98, "probability": 0.9017 }, { "start": 29097.7, "end": 29100.42, "probability": 0.9814 }, { "start": 29100.86, "end": 29101.1, "probability": 0.6231 }, { "start": 29101.18, "end": 29104.38, "probability": 0.9982 }, { "start": 29104.92, "end": 29106.6, "probability": 0.8828 }, { "start": 29106.7, "end": 29107.14, "probability": 0.5102 }, { "start": 29107.84, "end": 29109.88, "probability": 0.9964 }, { "start": 29110.52, "end": 29112.6, "probability": 0.9668 }, { "start": 29113.92, "end": 29115.0, "probability": 0.9007 }, { "start": 29116.62, "end": 29117.74, "probability": 0.8021 }, { "start": 29117.92, "end": 29122.58, "probability": 0.9696 }, { "start": 29123.66, "end": 29124.14, "probability": 0.0025 }, { "start": 29124.22, "end": 29124.36, "probability": 0.3848 }, { "start": 29124.36, "end": 29124.82, "probability": 0.6004 }, { "start": 29125.86, "end": 29127.32, "probability": 0.6669 }, { "start": 29127.42, "end": 29130.0, "probability": 0.9513 }, { "start": 29130.34, "end": 29130.6, "probability": 0.7166 }, { "start": 29130.76, "end": 29132.04, "probability": 0.7913 }, { "start": 29132.84, "end": 29134.78, "probability": 0.4909 }, { "start": 29137.94, "end": 29138.84, "probability": 0.201 }, { "start": 29138.84, "end": 29139.54, "probability": 0.255 }, { "start": 29140.58, "end": 29141.56, "probability": 0.4165 }, { "start": 29141.74, "end": 29144.04, "probability": 0.8932 }, { "start": 29145.28, "end": 29146.3, "probability": 0.9668 }, { "start": 29146.48, "end": 29147.2, "probability": 0.5825 }, { "start": 29147.66, "end": 29150.24, "probability": 0.647 }, { "start": 29150.66, "end": 29151.74, "probability": 0.649 }, { "start": 29151.84, "end": 29153.14, "probability": 0.7887 }, { "start": 29155.06, "end": 29158.1, "probability": 0.7976 }, { "start": 29159.96, "end": 29160.84, "probability": 0.5144 }, { "start": 29160.84, "end": 29162.66, "probability": 0.9137 }, { "start": 29163.66, "end": 29166.42, "probability": 0.8717 }, { "start": 29166.46, "end": 29167.64, "probability": 0.8845 }, { "start": 29167.76, "end": 29170.66, "probability": 0.9937 }, { "start": 29172.02, "end": 29172.88, "probability": 0.7545 }, { "start": 29174.16, "end": 29175.78, "probability": 0.9374 }, { "start": 29175.94, "end": 29178.7, "probability": 0.9811 }, { "start": 29179.72, "end": 29181.5, "probability": 0.9971 }, { "start": 29181.66, "end": 29184.2, "probability": 0.97 }, { "start": 29185.0, "end": 29187.66, "probability": 0.9715 }, { "start": 29187.78, "end": 29188.36, "probability": 0.3174 }, { "start": 29189.44, "end": 29190.28, "probability": 0.9044 }, { "start": 29192.36, "end": 29194.28, "probability": 0.7497 }, { "start": 29195.54, "end": 29201.94, "probability": 0.9883 }, { "start": 29203.18, "end": 29205.98, "probability": 0.9482 }, { "start": 29207.14, "end": 29208.52, "probability": 0.758 }, { "start": 29209.44, "end": 29214.76, "probability": 0.9982 }, { "start": 29218.74, "end": 29220.66, "probability": 0.9837 }, { "start": 29221.46, "end": 29224.52, "probability": 0.9728 }, { "start": 29225.06, "end": 29227.33, "probability": 0.5206 }, { "start": 29229.2, "end": 29229.94, "probability": 0.8228 }, { "start": 29230.04, "end": 29230.76, "probability": 0.7358 }, { "start": 29231.76, "end": 29234.66, "probability": 0.9268 }, { "start": 29236.22, "end": 29239.88, "probability": 0.9678 }, { "start": 29239.88, "end": 29244.1, "probability": 0.9226 }, { "start": 29244.88, "end": 29249.44, "probability": 0.7999 }, { "start": 29250.12, "end": 29254.8, "probability": 0.6778 }, { "start": 29255.32, "end": 29257.66, "probability": 0.7923 }, { "start": 29258.7, "end": 29259.36, "probability": 0.859 }, { "start": 29259.6, "end": 29264.3, "probability": 0.9362 }, { "start": 29265.14, "end": 29266.82, "probability": 0.9652 }, { "start": 29267.4, "end": 29267.98, "probability": 0.9874 }, { "start": 29268.56, "end": 29270.7, "probability": 0.9937 }, { "start": 29270.84, "end": 29273.68, "probability": 0.9009 }, { "start": 29273.74, "end": 29275.56, "probability": 0.9937 }, { "start": 29276.94, "end": 29278.04, "probability": 0.8192 }, { "start": 29278.28, "end": 29278.88, "probability": 0.8743 }, { "start": 29280.22, "end": 29281.16, "probability": 0.7702 }, { "start": 29281.64, "end": 29283.0, "probability": 0.9943 }, { "start": 29283.54, "end": 29284.44, "probability": 0.6996 }, { "start": 29284.96, "end": 29285.78, "probability": 0.9069 }, { "start": 29287.06, "end": 29290.14, "probability": 0.7578 }, { "start": 29290.86, "end": 29291.58, "probability": 0.9735 }, { "start": 29292.2, "end": 29297.22, "probability": 0.9353 }, { "start": 29297.34, "end": 29298.18, "probability": 0.7197 }, { "start": 29299.72, "end": 29300.86, "probability": 0.8877 }, { "start": 29301.98, "end": 29305.22, "probability": 0.9353 }, { "start": 29305.84, "end": 29308.84, "probability": 0.6741 }, { "start": 29309.08, "end": 29309.24, "probability": 0.2592 }, { "start": 29310.06, "end": 29311.54, "probability": 0.9296 }, { "start": 29312.22, "end": 29316.66, "probability": 0.9924 }, { "start": 29317.0, "end": 29317.65, "probability": 0.0157 }, { "start": 29319.36, "end": 29322.9, "probability": 0.0083 }, { "start": 29323.54, "end": 29323.54, "probability": 0.0181 }, { "start": 29323.54, "end": 29323.54, "probability": 0.0299 }, { "start": 29323.54, "end": 29323.54, "probability": 0.1137 }, { "start": 29323.54, "end": 29323.7, "probability": 0.455 }, { "start": 29323.88, "end": 29329.42, "probability": 0.709 }, { "start": 29329.52, "end": 29329.82, "probability": 0.4688 }, { "start": 29329.9, "end": 29334.9, "probability": 0.9922 }, { "start": 29335.48, "end": 29336.86, "probability": 0.9199 }, { "start": 29337.4, "end": 29338.04, "probability": 0.9572 }, { "start": 29339.14, "end": 29341.8, "probability": 0.744 }, { "start": 29342.34, "end": 29345.3, "probability": 0.9854 }, { "start": 29346.84, "end": 29348.44, "probability": 0.9318 }, { "start": 29348.68, "end": 29348.86, "probability": 0.6684 }, { "start": 29348.88, "end": 29350.5, "probability": 0.9595 }, { "start": 29351.08, "end": 29356.46, "probability": 0.9875 }, { "start": 29356.58, "end": 29357.22, "probability": 0.7385 }, { "start": 29358.42, "end": 29359.52, "probability": 0.8037 }, { "start": 29360.38, "end": 29361.14, "probability": 0.9368 }, { "start": 29361.64, "end": 29362.54, "probability": 0.968 }, { "start": 29362.62, "end": 29363.48, "probability": 0.9936 }, { "start": 29363.6, "end": 29365.09, "probability": 0.7815 }, { "start": 29365.26, "end": 29365.94, "probability": 0.8801 }, { "start": 29366.88, "end": 29367.28, "probability": 0.8266 }, { "start": 29368.1, "end": 29370.04, "probability": 0.8098 }, { "start": 29370.16, "end": 29371.72, "probability": 0.9813 }, { "start": 29373.06, "end": 29373.52, "probability": 0.8066 }, { "start": 29373.76, "end": 29375.06, "probability": 0.9933 }, { "start": 29375.82, "end": 29376.58, "probability": 0.8768 }, { "start": 29400.0, "end": 29401.78, "probability": 0.5331 }, { "start": 29404.62, "end": 29405.62, "probability": 0.8477 }, { "start": 29406.02, "end": 29406.78, "probability": 0.6431 }, { "start": 29407.08, "end": 29410.08, "probability": 0.9679 }, { "start": 29411.42, "end": 29413.3, "probability": 0.9189 }, { "start": 29414.84, "end": 29415.52, "probability": 0.932 }, { "start": 29416.82, "end": 29417.82, "probability": 0.9062 }, { "start": 29419.34, "end": 29421.62, "probability": 0.9788 }, { "start": 29423.02, "end": 29424.03, "probability": 0.8804 }, { "start": 29425.14, "end": 29428.46, "probability": 0.9456 }, { "start": 29429.26, "end": 29431.7, "probability": 0.9694 }, { "start": 29433.18, "end": 29437.12, "probability": 0.6488 }, { "start": 29437.7, "end": 29439.6, "probability": 0.9783 }, { "start": 29442.08, "end": 29444.36, "probability": 0.7276 }, { "start": 29445.2, "end": 29447.14, "probability": 0.9893 }, { "start": 29448.16, "end": 29448.8, "probability": 0.7546 }, { "start": 29449.88, "end": 29453.02, "probability": 0.9921 }, { "start": 29453.74, "end": 29455.02, "probability": 0.718 }, { "start": 29456.22, "end": 29458.48, "probability": 0.8474 }, { "start": 29459.24, "end": 29460.04, "probability": 0.7276 }, { "start": 29461.52, "end": 29462.24, "probability": 0.8823 }, { "start": 29463.28, "end": 29466.3, "probability": 0.7305 }, { "start": 29467.06, "end": 29469.78, "probability": 0.9978 }, { "start": 29471.68, "end": 29474.7, "probability": 0.912 }, { "start": 29477.16, "end": 29477.82, "probability": 0.6442 }, { "start": 29478.72, "end": 29480.16, "probability": 0.7664 }, { "start": 29481.54, "end": 29483.22, "probability": 0.9069 }, { "start": 29484.6, "end": 29488.14, "probability": 0.8958 }, { "start": 29488.74, "end": 29489.38, "probability": 0.3544 }, { "start": 29490.12, "end": 29491.62, "probability": 0.8496 }, { "start": 29493.54, "end": 29495.22, "probability": 0.9004 }, { "start": 29495.32, "end": 29496.7, "probability": 0.8193 }, { "start": 29498.92, "end": 29501.04, "probability": 0.975 }, { "start": 29502.18, "end": 29503.42, "probability": 0.9507 }, { "start": 29504.06, "end": 29506.44, "probability": 0.9943 }, { "start": 29507.1, "end": 29507.7, "probability": 0.6338 }, { "start": 29508.1, "end": 29510.38, "probability": 0.6936 }, { "start": 29511.28, "end": 29512.04, "probability": 0.6734 }, { "start": 29513.88, "end": 29516.12, "probability": 0.9564 }, { "start": 29518.64, "end": 29519.0, "probability": 0.8213 }, { "start": 29520.54, "end": 29521.34, "probability": 0.7031 }, { "start": 29522.84, "end": 29524.66, "probability": 0.9977 }, { "start": 29525.7, "end": 29527.4, "probability": 0.9524 }, { "start": 29528.54, "end": 29528.78, "probability": 0.8579 }, { "start": 29530.02, "end": 29531.38, "probability": 0.7529 }, { "start": 29535.26, "end": 29535.7, "probability": 0.8547 }, { "start": 29537.02, "end": 29539.7, "probability": 0.9604 }, { "start": 29539.7, "end": 29540.2, "probability": 0.2668 }, { "start": 29541.54, "end": 29542.14, "probability": 0.3898 }, { "start": 29543.88, "end": 29545.88, "probability": 0.9355 }, { "start": 29547.56, "end": 29548.9, "probability": 0.8643 }, { "start": 29549.84, "end": 29551.14, "probability": 0.9673 }, { "start": 29551.82, "end": 29552.82, "probability": 0.9763 }, { "start": 29553.46, "end": 29555.28, "probability": 0.8498 }, { "start": 29556.1, "end": 29557.24, "probability": 0.918 }, { "start": 29557.94, "end": 29558.9, "probability": 0.7253 }, { "start": 29559.7, "end": 29561.16, "probability": 0.6383 }, { "start": 29561.34, "end": 29561.9, "probability": 0.7725 }, { "start": 29561.98, "end": 29563.64, "probability": 0.6282 }, { "start": 29564.22, "end": 29565.22, "probability": 0.6625 }, { "start": 29566.08, "end": 29567.6, "probability": 0.991 }, { "start": 29568.7, "end": 29569.48, "probability": 0.8286 }, { "start": 29570.68, "end": 29575.56, "probability": 0.9687 }, { "start": 29575.56, "end": 29578.9, "probability": 0.9941 }, { "start": 29580.02, "end": 29581.34, "probability": 0.9932 }, { "start": 29582.18, "end": 29584.14, "probability": 0.999 }, { "start": 29584.74, "end": 29586.14, "probability": 0.964 }, { "start": 29587.16, "end": 29588.08, "probability": 0.8331 }, { "start": 29588.98, "end": 29592.02, "probability": 0.4923 }, { "start": 29592.02, "end": 29592.02, "probability": 0.1591 }, { "start": 29592.02, "end": 29594.47, "probability": 0.7382 }, { "start": 29594.66, "end": 29595.52, "probability": 0.6215 }, { "start": 29596.44, "end": 29597.18, "probability": 0.8103 }, { "start": 29597.66, "end": 29598.44, "probability": 0.7725 }, { "start": 29598.56, "end": 29599.48, "probability": 0.7349 }, { "start": 29599.72, "end": 29601.56, "probability": 0.8271 }, { "start": 29602.08, "end": 29603.6, "probability": 0.9814 }, { "start": 29603.96, "end": 29605.36, "probability": 0.993 }, { "start": 29605.42, "end": 29606.54, "probability": 0.9933 }, { "start": 29606.82, "end": 29608.28, "probability": 0.9868 }, { "start": 29608.28, "end": 29608.28, "probability": 0.2261 }, { "start": 29608.5, "end": 29610.14, "probability": 0.9897 }, { "start": 29610.7, "end": 29611.98, "probability": 0.9055 }, { "start": 29612.38, "end": 29613.36, "probability": 0.7209 }, { "start": 29613.44, "end": 29616.54, "probability": 0.5918 }, { "start": 29616.92, "end": 29617.02, "probability": 0.1074 }, { "start": 29617.04, "end": 29617.12, "probability": 0.1964 }, { "start": 29617.3, "end": 29619.54, "probability": 0.9351 }, { "start": 29619.84, "end": 29619.84, "probability": 0.1971 }, { "start": 29620.06, "end": 29622.0, "probability": 0.7954 }, { "start": 29622.2, "end": 29623.68, "probability": 0.9178 }, { "start": 29623.82, "end": 29624.04, "probability": 0.0166 }, { "start": 29624.08, "end": 29627.04, "probability": 0.9817 }, { "start": 29627.18, "end": 29627.56, "probability": 0.7404 }, { "start": 29627.82, "end": 29628.14, "probability": 0.8301 }, { "start": 29640.06, "end": 29641.34, "probability": 0.8723 }, { "start": 29642.12, "end": 29643.46, "probability": 0.747 }, { "start": 29654.36, "end": 29655.3, "probability": 0.6719 }, { "start": 29655.76, "end": 29656.56, "probability": 0.9207 }, { "start": 29656.62, "end": 29657.3, "probability": 0.7131 }, { "start": 29658.62, "end": 29663.38, "probability": 0.974 }, { "start": 29664.48, "end": 29666.6, "probability": 0.8445 }, { "start": 29666.7, "end": 29668.78, "probability": 0.9747 }, { "start": 29669.56, "end": 29670.38, "probability": 0.8204 }, { "start": 29671.1, "end": 29673.1, "probability": 0.7632 }, { "start": 29674.08, "end": 29678.86, "probability": 0.9839 }, { "start": 29679.88, "end": 29680.76, "probability": 0.9509 }, { "start": 29681.42, "end": 29685.14, "probability": 0.9828 }, { "start": 29685.86, "end": 29689.26, "probability": 0.9993 }, { "start": 29689.62, "end": 29691.04, "probability": 0.9668 }, { "start": 29691.64, "end": 29692.4, "probability": 0.6884 }, { "start": 29693.8, "end": 29697.52, "probability": 0.9727 }, { "start": 29698.08, "end": 29698.94, "probability": 0.8483 }, { "start": 29699.76, "end": 29700.34, "probability": 0.3521 }, { "start": 29701.14, "end": 29706.22, "probability": 0.9731 }, { "start": 29707.08, "end": 29708.36, "probability": 0.8749 }, { "start": 29709.06, "end": 29710.3, "probability": 0.9882 }, { "start": 29710.94, "end": 29711.82, "probability": 0.8654 }, { "start": 29712.68, "end": 29715.82, "probability": 0.8126 }, { "start": 29716.34, "end": 29719.38, "probability": 0.9624 }, { "start": 29720.5, "end": 29721.3, "probability": 0.7295 }, { "start": 29721.54, "end": 29723.24, "probability": 0.8152 }, { "start": 29723.24, "end": 29725.42, "probability": 0.9847 }, { "start": 29725.94, "end": 29727.76, "probability": 0.998 }, { "start": 29727.88, "end": 29728.64, "probability": 0.8364 }, { "start": 29728.72, "end": 29729.2, "probability": 0.5378 }, { "start": 29729.3, "end": 29730.4, "probability": 0.228 }, { "start": 29730.62, "end": 29731.98, "probability": 0.9751 }, { "start": 29732.6, "end": 29733.84, "probability": 0.958 }, { "start": 29734.44, "end": 29737.04, "probability": 0.9106 }, { "start": 29737.18, "end": 29739.98, "probability": 0.8677 }, { "start": 29740.26, "end": 29743.18, "probability": 0.9904 }, { "start": 29743.3, "end": 29744.56, "probability": 0.9541 }, { "start": 29745.18, "end": 29749.66, "probability": 0.9901 }, { "start": 29750.52, "end": 29754.74, "probability": 0.9979 }, { "start": 29755.34, "end": 29756.2, "probability": 0.85 }, { "start": 29757.2, "end": 29760.2, "probability": 0.9907 }, { "start": 29760.88, "end": 29764.82, "probability": 0.9891 }, { "start": 29765.58, "end": 29766.92, "probability": 0.9852 }, { "start": 29767.74, "end": 29768.5, "probability": 0.7296 }, { "start": 29769.1, "end": 29772.42, "probability": 0.9942 }, { "start": 29773.12, "end": 29775.22, "probability": 0.9995 }, { "start": 29775.76, "end": 29779.76, "probability": 0.9978 }, { "start": 29780.06, "end": 29783.04, "probability": 0.8436 }, { "start": 29783.84, "end": 29785.48, "probability": 0.9317 }, { "start": 29787.76, "end": 29789.12, "probability": 0.966 }, { "start": 29790.41, "end": 29795.8, "probability": 0.7517 }, { "start": 29796.56, "end": 29797.49, "probability": 0.9176 }, { "start": 29797.94, "end": 29800.6, "probability": 0.9133 }, { "start": 29801.68, "end": 29804.72, "probability": 0.9935 }, { "start": 29805.58, "end": 29806.58, "probability": 0.8706 }, { "start": 29806.68, "end": 29807.24, "probability": 0.6462 }, { "start": 29807.38, "end": 29808.44, "probability": 0.9225 }, { "start": 29809.24, "end": 29814.34, "probability": 0.9932 }, { "start": 29815.8, "end": 29818.7, "probability": 0.9193 }, { "start": 29819.38, "end": 29822.54, "probability": 0.883 }, { "start": 29823.98, "end": 29827.16, "probability": 0.97 }, { "start": 29827.68, "end": 29829.54, "probability": 0.878 }, { "start": 29830.36, "end": 29831.7, "probability": 0.9127 }, { "start": 29832.4, "end": 29833.28, "probability": 0.9622 }, { "start": 29833.92, "end": 29840.68, "probability": 0.9893 }, { "start": 29841.3, "end": 29842.9, "probability": 0.8527 }, { "start": 29843.04, "end": 29843.64, "probability": 0.6108 }, { "start": 29844.1, "end": 29846.98, "probability": 0.9909 }, { "start": 29847.04, "end": 29847.64, "probability": 0.933 }, { "start": 29848.28, "end": 29851.96, "probability": 0.9914 }, { "start": 29851.96, "end": 29855.2, "probability": 0.784 }, { "start": 29855.36, "end": 29858.34, "probability": 0.9967 }, { "start": 29858.54, "end": 29859.12, "probability": 0.6657 }, { "start": 29859.18, "end": 29861.22, "probability": 0.9583 }, { "start": 29861.56, "end": 29864.08, "probability": 0.9977 }, { "start": 29864.6, "end": 29865.86, "probability": 0.952 }, { "start": 29866.26, "end": 29867.26, "probability": 0.9768 }, { "start": 29868.12, "end": 29872.4, "probability": 0.9985 }, { "start": 29873.08, "end": 29875.28, "probability": 0.7736 }, { "start": 29875.84, "end": 29877.22, "probability": 0.9922 }, { "start": 29877.78, "end": 29881.46, "probability": 0.9342 }, { "start": 29882.1, "end": 29886.16, "probability": 0.9894 }, { "start": 29886.16, "end": 29890.22, "probability": 0.9658 }, { "start": 29890.66, "end": 29892.52, "probability": 0.9721 }, { "start": 29892.64, "end": 29893.02, "probability": 0.7563 }, { "start": 29893.4, "end": 29894.06, "probability": 0.7303 }, { "start": 29894.54, "end": 29896.9, "probability": 0.7559 }, { "start": 29899.36, "end": 29900.8, "probability": 0.9861 }, { "start": 29901.82, "end": 29902.76, "probability": 0.8527 }, { "start": 29903.68, "end": 29904.12, "probability": 0.0006 }, { "start": 29931.32, "end": 29931.96, "probability": 0.3689 }, { "start": 29932.3, "end": 29932.78, "probability": 0.8192 }, { "start": 29933.2, "end": 29933.76, "probability": 0.704 }, { "start": 29934.56, "end": 29934.56, "probability": 0.4795 }, { "start": 29935.28, "end": 29936.2, "probability": 0.9388 }, { "start": 29936.5, "end": 29937.1, "probability": 0.619 }, { "start": 29937.86, "end": 29938.64, "probability": 0.8369 }, { "start": 29939.7, "end": 29943.78, "probability": 0.739 }, { "start": 29944.94, "end": 29947.8, "probability": 0.8067 }, { "start": 29947.94, "end": 29949.3, "probability": 0.814 }, { "start": 29950.56, "end": 29959.68, "probability": 0.9816 }, { "start": 29960.18, "end": 29961.94, "probability": 0.9873 }, { "start": 29965.48, "end": 29967.54, "probability": 0.8612 }, { "start": 29967.8, "end": 29969.8, "probability": 0.9873 }, { "start": 29969.96, "end": 29972.36, "probability": 0.9592 }, { "start": 29972.88, "end": 29974.26, "probability": 0.9129 }, { "start": 29975.98, "end": 29978.16, "probability": 0.9705 }, { "start": 29978.24, "end": 29978.96, "probability": 0.5699 }, { "start": 29979.16, "end": 29979.66, "probability": 0.923 }, { "start": 29979.72, "end": 29980.66, "probability": 0.7304 }, { "start": 29981.26, "end": 29984.88, "probability": 0.9556 }, { "start": 29985.46, "end": 29986.58, "probability": 0.8042 }, { "start": 29987.22, "end": 29991.36, "probability": 0.7845 }, { "start": 29992.6, "end": 29994.08, "probability": 0.6919 }, { "start": 29994.22, "end": 29996.22, "probability": 0.8715 }, { "start": 29996.24, "end": 29997.54, "probability": 0.7905 }, { "start": 29998.74, "end": 30000.36, "probability": 0.8274 }, { "start": 30000.58, "end": 30002.7, "probability": 0.9355 }, { "start": 30003.16, "end": 30004.66, "probability": 0.965 }, { "start": 30004.78, "end": 30006.08, "probability": 0.9147 }, { "start": 30006.84, "end": 30011.34, "probability": 0.9937 }, { "start": 30011.34, "end": 30014.9, "probability": 0.9772 }, { "start": 30015.6, "end": 30018.38, "probability": 0.9966 }, { "start": 30019.62, "end": 30020.92, "probability": 0.7698 }, { "start": 30022.32, "end": 30025.78, "probability": 0.5528 }, { "start": 30026.6, "end": 30030.16, "probability": 0.9418 }, { "start": 30030.22, "end": 30033.78, "probability": 0.9992 }, { "start": 30033.86, "end": 30035.76, "probability": 0.9655 }, { "start": 30036.64, "end": 30038.66, "probability": 0.9664 }, { "start": 30038.76, "end": 30039.9, "probability": 0.7773 }, { "start": 30039.94, "end": 30040.48, "probability": 0.9856 }, { "start": 30041.7, "end": 30042.84, "probability": 0.9009 }, { "start": 30043.54, "end": 30045.54, "probability": 0.9611 }, { "start": 30046.92, "end": 30050.2, "probability": 0.9893 }, { "start": 30052.0, "end": 30052.94, "probability": 0.982 }, { "start": 30056.76, "end": 30060.93, "probability": 0.7498 }, { "start": 30061.9, "end": 30062.51, "probability": 0.1016 }, { "start": 30062.9, "end": 30065.23, "probability": 0.9062 }, { "start": 30066.4, "end": 30067.6, "probability": 0.9854 }, { "start": 30068.68, "end": 30073.3, "probability": 0.9952 }, { "start": 30074.26, "end": 30075.76, "probability": 0.8933 }, { "start": 30076.66, "end": 30077.16, "probability": 0.9605 }, { "start": 30077.6, "end": 30078.86, "probability": 0.9847 }, { "start": 30079.06, "end": 30079.94, "probability": 0.8211 }, { "start": 30080.06, "end": 30081.12, "probability": 0.9367 }, { "start": 30081.56, "end": 30082.22, "probability": 0.7389 }, { "start": 30083.54, "end": 30084.76, "probability": 0.8341 }, { "start": 30085.18, "end": 30086.7, "probability": 0.916 }, { "start": 30087.12, "end": 30088.34, "probability": 0.4583 }, { "start": 30088.84, "end": 30089.78, "probability": 0.8219 }, { "start": 30090.16, "end": 30091.63, "probability": 0.9856 }, { "start": 30093.12, "end": 30095.24, "probability": 0.8574 }, { "start": 30095.88, "end": 30099.1, "probability": 0.9864 }, { "start": 30099.82, "end": 30102.24, "probability": 0.8773 }, { "start": 30102.92, "end": 30106.26, "probability": 0.9941 }, { "start": 30107.26, "end": 30113.14, "probability": 0.9694 }, { "start": 30114.14, "end": 30114.84, "probability": 0.5605 }, { "start": 30114.84, "end": 30115.92, "probability": 0.7916 }, { "start": 30116.28, "end": 30117.46, "probability": 0.7495 }, { "start": 30117.62, "end": 30119.9, "probability": 0.9956 }, { "start": 30120.38, "end": 30122.92, "probability": 0.9806 }, { "start": 30123.52, "end": 30125.05, "probability": 0.9454 }, { "start": 30126.42, "end": 30128.2, "probability": 0.8851 }, { "start": 30128.9, "end": 30131.4, "probability": 0.9047 }, { "start": 30131.4, "end": 30132.14, "probability": 0.9675 }, { "start": 30132.4, "end": 30132.68, "probability": 0.7619 }, { "start": 30133.54, "end": 30134.78, "probability": 0.9874 }, { "start": 30135.08, "end": 30136.12, "probability": 0.8151 }, { "start": 30136.28, "end": 30137.1, "probability": 0.9363 }, { "start": 30137.56, "end": 30139.7, "probability": 0.9932 }, { "start": 30140.64, "end": 30142.34, "probability": 0.9995 }, { "start": 30143.2, "end": 30145.78, "probability": 0.8523 }, { "start": 30146.28, "end": 30146.6, "probability": 0.4167 }, { "start": 30146.76, "end": 30149.61, "probability": 0.9492 }, { "start": 30150.54, "end": 30155.3, "probability": 0.9788 }, { "start": 30155.3, "end": 30155.86, "probability": 0.8227 }, { "start": 30157.04, "end": 30158.08, "probability": 0.6376 }, { "start": 30158.62, "end": 30160.49, "probability": 0.8669 }, { "start": 30160.78, "end": 30161.3, "probability": 0.6763 }, { "start": 30162.64, "end": 30163.8, "probability": 0.9328 }, { "start": 30165.2, "end": 30167.88, "probability": 0.9561 }, { "start": 30169.78, "end": 30170.38, "probability": 0.0423 }, { "start": 30172.62, "end": 30176.52, "probability": 0.0743 }, { "start": 30177.4, "end": 30177.54, "probability": 0.0696 }, { "start": 30177.54, "end": 30177.54, "probability": 0.087 }, { "start": 30177.54, "end": 30177.54, "probability": 0.0316 }, { "start": 30177.54, "end": 30178.14, "probability": 0.3871 }, { "start": 30178.76, "end": 30181.82, "probability": 0.916 }, { "start": 30182.42, "end": 30184.54, "probability": 0.6102 }, { "start": 30185.2, "end": 30187.7, "probability": 0.9481 }, { "start": 30188.38, "end": 30188.72, "probability": 0.9032 }, { "start": 30189.2, "end": 30190.26, "probability": 0.9907 }, { "start": 30190.28, "end": 30190.38, "probability": 0.9402 }, { "start": 30190.66, "end": 30191.72, "probability": 0.9949 }, { "start": 30191.78, "end": 30193.48, "probability": 0.9197 }, { "start": 30194.8, "end": 30197.08, "probability": 0.6236 }, { "start": 30197.82, "end": 30198.9, "probability": 0.479 }, { "start": 30199.04, "end": 30199.04, "probability": 0.8232 }, { "start": 30199.04, "end": 30199.46, "probability": 0.7179 }, { "start": 30199.48, "end": 30199.76, "probability": 0.7549 }, { "start": 30199.9, "end": 30200.74, "probability": 0.9341 }, { "start": 30200.82, "end": 30201.12, "probability": 0.2992 }, { "start": 30201.62, "end": 30204.0, "probability": 0.9464 }, { "start": 30207.82, "end": 30207.96, "probability": 0.2114 }, { "start": 30218.37, "end": 30225.32, "probability": 0.2496 }, { "start": 30228.08, "end": 30229.06, "probability": 0.0466 }, { "start": 30231.92, "end": 30233.5, "probability": 0.7675 }, { "start": 30235.86, "end": 30239.2, "probability": 0.8459 }, { "start": 30240.2, "end": 30242.68, "probability": 0.8499 }, { "start": 30244.14, "end": 30249.02, "probability": 0.8144 }, { "start": 30250.44, "end": 30251.14, "probability": 0.8579 }, { "start": 30252.7, "end": 30252.82, "probability": 0.0146 }, { "start": 30252.82, "end": 30254.5, "probability": 0.955 }, { "start": 30255.72, "end": 30257.0, "probability": 0.7596 }, { "start": 30257.88, "end": 30259.86, "probability": 0.7749 }, { "start": 30261.32, "end": 30266.22, "probability": 0.9407 }, { "start": 30267.44, "end": 30271.02, "probability": 0.9944 }, { "start": 30272.28, "end": 30278.02, "probability": 0.9925 }, { "start": 30280.22, "end": 30281.02, "probability": 0.5879 }, { "start": 30281.72, "end": 30283.58, "probability": 0.9438 }, { "start": 30283.82, "end": 30287.12, "probability": 0.8458 }, { "start": 30287.18, "end": 30288.0, "probability": 0.7876 }, { "start": 30288.08, "end": 30288.78, "probability": 0.9243 }, { "start": 30288.84, "end": 30289.96, "probability": 0.7366 }, { "start": 30291.74, "end": 30293.24, "probability": 0.9375 }, { "start": 30293.4, "end": 30295.52, "probability": 0.8238 }, { "start": 30296.08, "end": 30297.1, "probability": 0.9467 }, { "start": 30297.64, "end": 30298.28, "probability": 0.4485 }, { "start": 30298.46, "end": 30298.78, "probability": 0.5583 }, { "start": 30299.28, "end": 30302.02, "probability": 0.9875 }, { "start": 30302.58, "end": 30305.32, "probability": 0.9912 }, { "start": 30306.44, "end": 30307.38, "probability": 0.9868 }, { "start": 30308.26, "end": 30309.4, "probability": 0.6131 }, { "start": 30309.58, "end": 30310.4, "probability": 0.9895 }, { "start": 30311.16, "end": 30312.24, "probability": 0.9558 }, { "start": 30313.0, "end": 30314.72, "probability": 0.9373 }, { "start": 30315.32, "end": 30316.7, "probability": 0.5719 }, { "start": 30316.7, "end": 30320.26, "probability": 0.8728 }, { "start": 30321.44, "end": 30322.17, "probability": 0.4084 }, { "start": 30322.38, "end": 30327.37, "probability": 0.8855 }, { "start": 30328.34, "end": 30331.46, "probability": 0.9952 }, { "start": 30332.06, "end": 30333.22, "probability": 0.7656 }, { "start": 30334.42, "end": 30338.38, "probability": 0.9918 }, { "start": 30339.18, "end": 30341.1, "probability": 0.9678 }, { "start": 30342.58, "end": 30346.34, "probability": 0.8572 }, { "start": 30347.14, "end": 30348.04, "probability": 0.879 }, { "start": 30348.62, "end": 30350.58, "probability": 0.9475 }, { "start": 30350.8, "end": 30351.94, "probability": 0.8407 }, { "start": 30352.06, "end": 30354.49, "probability": 0.912 }, { "start": 30355.18, "end": 30356.08, "probability": 0.8633 }, { "start": 30356.2, "end": 30357.26, "probability": 0.9819 }, { "start": 30357.66, "end": 30362.37, "probability": 0.9661 }, { "start": 30363.82, "end": 30364.9, "probability": 0.8315 }, { "start": 30364.92, "end": 30367.5, "probability": 0.7876 }, { "start": 30367.62, "end": 30367.72, "probability": 0.8733 }, { "start": 30368.02, "end": 30369.4, "probability": 0.8964 }, { "start": 30369.5, "end": 30371.48, "probability": 0.8678 }, { "start": 30372.0, "end": 30373.15, "probability": 0.3578 }, { "start": 30374.08, "end": 30375.84, "probability": 0.9565 }, { "start": 30376.26, "end": 30377.64, "probability": 0.8298 }, { "start": 30377.8, "end": 30378.12, "probability": 0.5622 }, { "start": 30379.42, "end": 30382.38, "probability": 0.8677 }, { "start": 30382.92, "end": 30384.76, "probability": 0.7467 }, { "start": 30384.9, "end": 30386.78, "probability": 0.7625 }, { "start": 30387.7, "end": 30388.98, "probability": 0.6118 }, { "start": 30390.12, "end": 30393.26, "probability": 0.9963 }, { "start": 30393.26, "end": 30397.28, "probability": 0.9734 }, { "start": 30398.28, "end": 30400.39, "probability": 0.8861 }, { "start": 30401.84, "end": 30403.6, "probability": 0.9718 }, { "start": 30403.84, "end": 30404.8, "probability": 0.8965 }, { "start": 30405.5, "end": 30408.88, "probability": 0.995 }, { "start": 30409.78, "end": 30410.88, "probability": 0.973 }, { "start": 30411.16, "end": 30415.0, "probability": 0.9819 }, { "start": 30415.0, "end": 30416.84, "probability": 0.9807 }, { "start": 30416.94, "end": 30417.32, "probability": 0.8884 }, { "start": 30417.4, "end": 30421.02, "probability": 0.962 }, { "start": 30421.1, "end": 30424.42, "probability": 0.9858 }, { "start": 30425.28, "end": 30425.98, "probability": 0.6963 }, { "start": 30426.06, "end": 30427.86, "probability": 0.8039 }, { "start": 30428.6, "end": 30430.04, "probability": 0.8244 }, { "start": 30430.4, "end": 30431.7, "probability": 0.9342 }, { "start": 30433.6, "end": 30435.36, "probability": 0.2239 }, { "start": 30437.78, "end": 30438.84, "probability": 0.1031 }, { "start": 30438.84, "end": 30439.3, "probability": 0.6048 }, { "start": 30442.52, "end": 30443.02, "probability": 0.0343 }, { "start": 30444.04, "end": 30445.72, "probability": 0.0053 }, { "start": 30450.72, "end": 30451.64, "probability": 0.0008 }, { "start": 30454.4, "end": 30455.88, "probability": 0.8325 }, { "start": 30464.42, "end": 30465.4, "probability": 0.6536 }, { "start": 30465.5, "end": 30466.54, "probability": 0.818 }, { "start": 30466.64, "end": 30468.2, "probability": 0.9954 }, { "start": 30468.6, "end": 30468.92, "probability": 0.5354 }, { "start": 30469.12, "end": 30469.7, "probability": 0.9544 }, { "start": 30469.8, "end": 30470.28, "probability": 0.4928 }, { "start": 30470.28, "end": 30470.9, "probability": 0.4836 }, { "start": 30471.16, "end": 30472.02, "probability": 0.8842 }, { "start": 30472.66, "end": 30472.98, "probability": 0.6393 }, { "start": 30473.68, "end": 30476.4, "probability": 0.8594 }, { "start": 30477.86, "end": 30480.04, "probability": 0.7277 }, { "start": 30480.78, "end": 30482.08, "probability": 0.3431 }, { "start": 30482.5, "end": 30482.96, "probability": 0.4643 }, { "start": 30483.0, "end": 30483.58, "probability": 0.5884 }, { "start": 30483.88, "end": 30484.08, "probability": 0.6541 }, { "start": 30484.26, "end": 30487.26, "probability": 0.9258 }, { "start": 30488.36, "end": 30488.9, "probability": 0.9643 }, { "start": 30490.46, "end": 30494.72, "probability": 0.7457 }, { "start": 30495.54, "end": 30497.82, "probability": 0.9825 }, { "start": 30499.64, "end": 30499.82, "probability": 0.0038 }, { "start": 30499.82, "end": 30504.18, "probability": 0.988 }, { "start": 30505.02, "end": 30506.7, "probability": 0.7747 }, { "start": 30508.2, "end": 30514.74, "probability": 0.9937 }, { "start": 30514.99, "end": 30520.1, "probability": 0.998 }, { "start": 30521.34, "end": 30523.16, "probability": 0.9053 }, { "start": 30524.08, "end": 30529.98, "probability": 0.8196 }, { "start": 30531.14, "end": 30532.2, "probability": 0.9971 }, { "start": 30533.98, "end": 30538.94, "probability": 0.9919 }, { "start": 30540.06, "end": 30540.94, "probability": 0.8172 }, { "start": 30541.28, "end": 30542.62, "probability": 0.746 }, { "start": 30543.76, "end": 30550.2, "probability": 0.949 }, { "start": 30550.56, "end": 30550.86, "probability": 0.7146 }, { "start": 30552.4, "end": 30556.3, "probability": 0.9988 }, { "start": 30557.16, "end": 30558.12, "probability": 0.628 }, { "start": 30558.84, "end": 30559.98, "probability": 0.5557 }, { "start": 30561.57, "end": 30564.68, "probability": 0.5004 }, { "start": 30565.22, "end": 30568.14, "probability": 0.9619 }, { "start": 30569.32, "end": 30572.04, "probability": 0.7017 }, { "start": 30572.66, "end": 30575.32, "probability": 0.9174 }, { "start": 30575.92, "end": 30579.42, "probability": 0.9593 }, { "start": 30580.18, "end": 30582.18, "probability": 0.9311 }, { "start": 30582.6, "end": 30586.68, "probability": 0.9949 }, { "start": 30587.3, "end": 30588.5, "probability": 0.755 }, { "start": 30589.2, "end": 30595.16, "probability": 0.9975 }, { "start": 30595.58, "end": 30596.07, "probability": 0.8823 }, { "start": 30596.88, "end": 30599.34, "probability": 0.9395 }, { "start": 30601.02, "end": 30603.52, "probability": 0.9675 }, { "start": 30604.43, "end": 30606.73, "probability": 0.2216 }, { "start": 30608.04, "end": 30609.18, "probability": 0.7467 }, { "start": 30609.56, "end": 30616.82, "probability": 0.9894 }, { "start": 30617.66, "end": 30622.39, "probability": 0.998 }, { "start": 30622.86, "end": 30626.88, "probability": 0.9949 }, { "start": 30627.66, "end": 30628.48, "probability": 0.7072 }, { "start": 30629.26, "end": 30632.22, "probability": 0.9763 }, { "start": 30632.72, "end": 30633.52, "probability": 0.9893 }, { "start": 30634.04, "end": 30637.46, "probability": 0.8905 }, { "start": 30638.38, "end": 30639.67, "probability": 0.9841 }, { "start": 30640.74, "end": 30645.08, "probability": 0.9076 }, { "start": 30645.16, "end": 30650.52, "probability": 0.9332 }, { "start": 30650.96, "end": 30653.36, "probability": 0.9878 }, { "start": 30654.02, "end": 30656.14, "probability": 0.9966 }, { "start": 30656.84, "end": 30658.06, "probability": 0.685 }, { "start": 30658.4, "end": 30659.74, "probability": 0.7991 }, { "start": 30659.92, "end": 30662.48, "probability": 0.9128 }, { "start": 30663.26, "end": 30665.58, "probability": 0.9406 }, { "start": 30665.84, "end": 30666.3, "probability": 0.8344 }, { "start": 30667.46, "end": 30668.86, "probability": 0.7109 }, { "start": 30668.94, "end": 30670.1, "probability": 0.9637 }, { "start": 30704.88, "end": 30707.2, "probability": 0.739 }, { "start": 30709.08, "end": 30712.62, "probability": 0.8805 }, { "start": 30714.1, "end": 30714.8, "probability": 0.4675 }, { "start": 30715.84, "end": 30722.64, "probability": 0.9642 }, { "start": 30723.7, "end": 30724.98, "probability": 0.9945 }, { "start": 30726.02, "end": 30728.72, "probability": 0.9881 }, { "start": 30728.94, "end": 30730.32, "probability": 0.9227 }, { "start": 30731.4, "end": 30734.58, "probability": 0.9386 }, { "start": 30735.4, "end": 30740.48, "probability": 0.9639 }, { "start": 30740.6, "end": 30745.9, "probability": 0.9914 }, { "start": 30747.5, "end": 30748.0, "probability": 0.5039 }, { "start": 30750.08, "end": 30751.92, "probability": 0.7364 }, { "start": 30751.98, "end": 30757.14, "probability": 0.8555 }, { "start": 30757.82, "end": 30762.08, "probability": 0.9797 }, { "start": 30762.8, "end": 30766.38, "probability": 0.998 }, { "start": 30767.12, "end": 30771.62, "probability": 0.8825 }, { "start": 30772.56, "end": 30777.76, "probability": 0.9956 }, { "start": 30777.76, "end": 30783.54, "probability": 0.9976 }, { "start": 30784.08, "end": 30787.16, "probability": 0.9994 }, { "start": 30787.68, "end": 30790.42, "probability": 0.9997 }, { "start": 30791.36, "end": 30794.06, "probability": 0.9244 }, { "start": 30794.58, "end": 30800.2, "probability": 0.9846 }, { "start": 30800.98, "end": 30801.8, "probability": 0.4927 }, { "start": 30802.52, "end": 30803.62, "probability": 0.8317 }, { "start": 30804.34, "end": 30810.68, "probability": 0.9639 }, { "start": 30811.28, "end": 30814.84, "probability": 0.998 }, { "start": 30815.36, "end": 30821.28, "probability": 0.9955 }, { "start": 30822.24, "end": 30823.94, "probability": 0.9339 }, { "start": 30824.78, "end": 30827.56, "probability": 0.9951 }, { "start": 30828.06, "end": 30831.26, "probability": 0.7207 }, { "start": 30831.92, "end": 30836.34, "probability": 0.9501 }, { "start": 30836.74, "end": 30837.6, "probability": 0.9476 }, { "start": 30837.64, "end": 30838.42, "probability": 0.9662 }, { "start": 30839.34, "end": 30843.34, "probability": 0.999 }, { "start": 30843.86, "end": 30847.26, "probability": 0.7896 }, { "start": 30848.28, "end": 30849.88, "probability": 0.931 }, { "start": 30850.88, "end": 30855.54, "probability": 0.9866 }, { "start": 30855.98, "end": 30858.18, "probability": 0.9961 }, { "start": 30858.82, "end": 30860.04, "probability": 0.3862 }, { "start": 30860.28, "end": 30864.1, "probability": 0.9893 }, { "start": 30865.02, "end": 30870.76, "probability": 0.9694 }, { "start": 30871.3, "end": 30871.88, "probability": 0.9174 }, { "start": 30872.6, "end": 30877.52, "probability": 0.9963 }, { "start": 30878.06, "end": 30879.94, "probability": 0.9797 }, { "start": 30880.82, "end": 30883.24, "probability": 0.9127 }, { "start": 30884.12, "end": 30888.56, "probability": 0.9958 }, { "start": 30888.72, "end": 30890.24, "probability": 0.9828 }, { "start": 30890.88, "end": 30897.24, "probability": 0.9938 }, { "start": 30898.12, "end": 30899.22, "probability": 0.8307 }, { "start": 30899.9, "end": 30901.74, "probability": 0.7585 }, { "start": 30901.98, "end": 30902.28, "probability": 0.8491 }, { "start": 30903.72, "end": 30904.54, "probability": 0.6981 }, { "start": 30907.36, "end": 30908.4, "probability": 0.8752 }, { "start": 30909.12, "end": 30909.66, "probability": 0.5626 }, { "start": 30909.74, "end": 30911.64, "probability": 0.9542 }, { "start": 30931.84, "end": 30932.68, "probability": 0.5637 }, { "start": 30933.24, "end": 30933.94, "probability": 0.8262 }, { "start": 30938.32, "end": 30939.1, "probability": 0.6549 }, { "start": 30940.08, "end": 30943.22, "probability": 0.6667 }, { "start": 30943.88, "end": 30946.16, "probability": 0.9746 }, { "start": 30947.04, "end": 30947.83, "probability": 0.8998 }, { "start": 30948.54, "end": 30950.3, "probability": 0.939 }, { "start": 30951.34, "end": 30953.98, "probability": 0.9204 }, { "start": 30954.86, "end": 30956.8, "probability": 0.9781 }, { "start": 30957.68, "end": 30959.44, "probability": 0.9746 }, { "start": 30960.26, "end": 30964.92, "probability": 0.999 }, { "start": 30965.72, "end": 30965.96, "probability": 0.39 }, { "start": 30966.58, "end": 30969.1, "probability": 0.9849 }, { "start": 30970.4, "end": 30973.16, "probability": 0.8977 }, { "start": 30973.88, "end": 30974.4, "probability": 0.8787 }, { "start": 30975.04, "end": 30975.74, "probability": 0.9911 }, { "start": 30976.36, "end": 30977.0, "probability": 0.9874 }, { "start": 30977.62, "end": 30978.12, "probability": 0.8188 }, { "start": 30979.26, "end": 30985.52, "probability": 0.9269 }, { "start": 30986.56, "end": 30988.74, "probability": 0.9738 }, { "start": 30989.68, "end": 30993.5, "probability": 0.9971 }, { "start": 30994.5, "end": 30997.24, "probability": 0.8813 }, { "start": 30997.86, "end": 30999.98, "probability": 0.9881 }, { "start": 31001.3, "end": 31004.9, "probability": 0.9798 }, { "start": 31006.04, "end": 31009.1, "probability": 0.9691 }, { "start": 31009.66, "end": 31011.4, "probability": 0.7257 }, { "start": 31012.22, "end": 31014.68, "probability": 0.9994 }, { "start": 31015.46, "end": 31018.54, "probability": 0.9973 }, { "start": 31018.54, "end": 31023.04, "probability": 0.6171 }, { "start": 31023.58, "end": 31025.2, "probability": 0.927 }, { "start": 31025.98, "end": 31028.74, "probability": 0.8912 }, { "start": 31029.92, "end": 31030.76, "probability": 0.7864 }, { "start": 31031.48, "end": 31033.9, "probability": 0.9263 }, { "start": 31034.32, "end": 31035.64, "probability": 0.9801 }, { "start": 31036.24, "end": 31037.38, "probability": 0.8893 }, { "start": 31037.76, "end": 31039.1, "probability": 0.994 }, { "start": 31039.46, "end": 31040.28, "probability": 0.729 }, { "start": 31040.72, "end": 31041.68, "probability": 0.9243 }, { "start": 31042.02, "end": 31043.12, "probability": 0.8256 }, { "start": 31044.1, "end": 31047.06, "probability": 0.987 }, { "start": 31047.6, "end": 31049.14, "probability": 0.8566 }, { "start": 31049.82, "end": 31052.18, "probability": 0.9932 }, { "start": 31053.64, "end": 31057.76, "probability": 0.9652 }, { "start": 31058.62, "end": 31061.32, "probability": 0.8181 }, { "start": 31062.38, "end": 31064.5, "probability": 0.9714 }, { "start": 31064.98, "end": 31067.1, "probability": 0.7887 }, { "start": 31068.08, "end": 31068.84, "probability": 0.771 }, { "start": 31069.36, "end": 31070.1, "probability": 0.7107 }, { "start": 31070.9, "end": 31072.94, "probability": 0.9771 }, { "start": 31073.84, "end": 31076.18, "probability": 0.9938 }, { "start": 31077.06, "end": 31077.56, "probability": 0.7882 }, { "start": 31078.42, "end": 31080.09, "probability": 0.8589 }, { "start": 31081.32, "end": 31083.22, "probability": 0.9883 }, { "start": 31084.0, "end": 31084.67, "probability": 0.9885 }, { "start": 31085.42, "end": 31088.6, "probability": 0.9455 }, { "start": 31089.24, "end": 31089.86, "probability": 0.9464 }, { "start": 31090.56, "end": 31093.86, "probability": 0.9672 }, { "start": 31094.44, "end": 31096.08, "probability": 0.864 }, { "start": 31096.62, "end": 31097.58, "probability": 0.9421 }, { "start": 31099.52, "end": 31104.36, "probability": 0.9649 }, { "start": 31105.98, "end": 31108.88, "probability": 0.9924 }, { "start": 31110.24, "end": 31111.1, "probability": 0.9163 }, { "start": 31111.62, "end": 31112.42, "probability": 0.8768 }, { "start": 31113.02, "end": 31114.84, "probability": 0.9717 }, { "start": 31116.34, "end": 31117.42, "probability": 0.9757 }, { "start": 31117.94, "end": 31118.32, "probability": 0.8663 }, { "start": 31119.24, "end": 31120.36, "probability": 0.9493 }, { "start": 31120.86, "end": 31123.3, "probability": 0.9698 }, { "start": 31123.84, "end": 31124.58, "probability": 0.8936 }, { "start": 31125.12, "end": 31126.22, "probability": 0.7887 }, { "start": 31126.74, "end": 31131.04, "probability": 0.7793 }, { "start": 31131.8, "end": 31132.26, "probability": 0.668 }, { "start": 31133.52, "end": 31135.48, "probability": 0.9316 }, { "start": 31136.36, "end": 31137.76, "probability": 0.9915 }, { "start": 31138.52, "end": 31139.5, "probability": 0.7158 }, { "start": 31139.82, "end": 31143.7, "probability": 0.9932 }, { "start": 31144.16, "end": 31146.4, "probability": 0.7269 }, { "start": 31147.2, "end": 31149.94, "probability": 0.9794 }, { "start": 31150.66, "end": 31151.7, "probability": 0.8889 }, { "start": 31152.9, "end": 31156.26, "probability": 0.7711 }, { "start": 31156.9, "end": 31164.02, "probability": 0.8803 }, { "start": 31164.06, "end": 31164.54, "probability": 0.509 }, { "start": 31164.78, "end": 31165.08, "probability": 0.657 }, { "start": 31165.4, "end": 31167.34, "probability": 0.8002 }, { "start": 31167.88, "end": 31169.84, "probability": 0.9272 }, { "start": 31170.52, "end": 31170.94, "probability": 0.8985 }, { "start": 31171.44, "end": 31171.66, "probability": 0.771 }, { "start": 31172.88, "end": 31173.48, "probability": 0.7506 }, { "start": 31173.84, "end": 31176.28, "probability": 0.9839 }, { "start": 31176.88, "end": 31178.38, "probability": 0.8988 }, { "start": 31178.42, "end": 31180.56, "probability": 0.7858 }, { "start": 31201.82, "end": 31202.86, "probability": 0.7526 }, { "start": 31203.44, "end": 31204.08, "probability": 0.8401 }, { "start": 31204.42, "end": 31205.48, "probability": 0.8441 }, { "start": 31205.52, "end": 31206.95, "probability": 0.9678 }, { "start": 31208.82, "end": 31210.3, "probability": 0.9995 }, { "start": 31212.0, "end": 31214.46, "probability": 0.9172 }, { "start": 31216.06, "end": 31217.46, "probability": 0.9474 }, { "start": 31218.28, "end": 31219.34, "probability": 0.3508 }, { "start": 31220.14, "end": 31220.22, "probability": 0.1717 }, { "start": 31220.22, "end": 31221.49, "probability": 0.5812 }, { "start": 31221.6, "end": 31222.02, "probability": 0.6653 }, { "start": 31223.54, "end": 31224.1, "probability": 0.6377 }, { "start": 31224.22, "end": 31225.1, "probability": 0.6703 }, { "start": 31225.18, "end": 31226.74, "probability": 0.9331 }, { "start": 31228.6, "end": 31231.12, "probability": 0.3133 }, { "start": 31232.1, "end": 31233.72, "probability": 0.815 }, { "start": 31236.16, "end": 31239.3, "probability": 0.8713 }, { "start": 31241.7, "end": 31244.72, "probability": 0.9053 }, { "start": 31245.47, "end": 31246.45, "probability": 0.9595 }, { "start": 31248.18, "end": 31251.2, "probability": 0.9956 }, { "start": 31252.46, "end": 31254.82, "probability": 0.8749 }, { "start": 31255.58, "end": 31256.74, "probability": 0.8911 }, { "start": 31257.46, "end": 31259.63, "probability": 0.9474 }, { "start": 31260.58, "end": 31261.36, "probability": 0.6181 }, { "start": 31262.48, "end": 31263.68, "probability": 0.7112 }, { "start": 31263.8, "end": 31265.44, "probability": 0.9524 }, { "start": 31266.88, "end": 31268.54, "probability": 0.9491 }, { "start": 31269.98, "end": 31270.61, "probability": 0.9863 }, { "start": 31270.72, "end": 31272.72, "probability": 0.8142 }, { "start": 31272.94, "end": 31274.22, "probability": 0.5431 }, { "start": 31276.18, "end": 31277.08, "probability": 0.7885 }, { "start": 31278.12, "end": 31282.2, "probability": 0.9285 }, { "start": 31282.2, "end": 31285.32, "probability": 0.8574 }, { "start": 31285.38, "end": 31291.9, "probability": 0.9645 }, { "start": 31294.06, "end": 31296.5, "probability": 0.9325 }, { "start": 31297.82, "end": 31299.36, "probability": 0.9913 }, { "start": 31299.4, "end": 31301.22, "probability": 0.8578 }, { "start": 31301.76, "end": 31302.92, "probability": 0.928 }, { "start": 31303.64, "end": 31304.94, "probability": 0.9966 }, { "start": 31305.9, "end": 31306.78, "probability": 0.5876 }, { "start": 31308.34, "end": 31309.62, "probability": 0.7697 }, { "start": 31309.76, "end": 31311.36, "probability": 0.8281 }, { "start": 31313.1, "end": 31314.68, "probability": 0.7637 }, { "start": 31314.72, "end": 31317.32, "probability": 0.4381 }, { "start": 31318.8, "end": 31319.58, "probability": 0.7268 }, { "start": 31320.88, "end": 31321.04, "probability": 0.722 }, { "start": 31321.06, "end": 31323.42, "probability": 0.9932 }, { "start": 31323.44, "end": 31323.81, "probability": 0.9675 }, { "start": 31324.8, "end": 31325.0, "probability": 0.1957 }, { "start": 31325.02, "end": 31328.96, "probability": 0.8449 }, { "start": 31329.52, "end": 31331.54, "probability": 0.9792 }, { "start": 31332.78, "end": 31334.42, "probability": 0.7964 }, { "start": 31334.5, "end": 31337.85, "probability": 0.8389 }, { "start": 31338.68, "end": 31340.8, "probability": 0.6895 }, { "start": 31342.54, "end": 31344.2, "probability": 0.9902 }, { "start": 31344.9, "end": 31346.18, "probability": 0.9824 }, { "start": 31346.26, "end": 31347.96, "probability": 0.8303 }, { "start": 31349.38, "end": 31351.56, "probability": 0.9979 }, { "start": 31353.68, "end": 31354.71, "probability": 0.4719 }, { "start": 31354.92, "end": 31355.96, "probability": 0.9463 }, { "start": 31356.08, "end": 31356.78, "probability": 0.5801 }, { "start": 31357.42, "end": 31357.64, "probability": 0.5194 }, { "start": 31357.78, "end": 31359.56, "probability": 0.5424 }, { "start": 31359.72, "end": 31362.0, "probability": 0.9514 }, { "start": 31363.32, "end": 31365.5, "probability": 0.8726 }, { "start": 31366.6, "end": 31367.72, "probability": 0.7414 }, { "start": 31368.06, "end": 31369.1, "probability": 0.9047 }, { "start": 31369.58, "end": 31372.72, "probability": 0.6675 }, { "start": 31373.7, "end": 31374.34, "probability": 0.9341 }, { "start": 31374.4, "end": 31374.68, "probability": 0.7529 }, { "start": 31375.28, "end": 31375.84, "probability": 0.7409 }, { "start": 31375.86, "end": 31378.86, "probability": 0.8305 }, { "start": 31379.5, "end": 31380.96, "probability": 0.9834 }, { "start": 31382.24, "end": 31384.12, "probability": 0.7484 }, { "start": 31385.32, "end": 31386.88, "probability": 0.9658 }, { "start": 31387.9, "end": 31389.7, "probability": 0.9771 }, { "start": 31389.8, "end": 31393.22, "probability": 0.9884 }, { "start": 31394.54, "end": 31395.88, "probability": 0.9641 }, { "start": 31396.62, "end": 31397.04, "probability": 0.5092 }, { "start": 31397.24, "end": 31399.38, "probability": 0.9779 }, { "start": 31399.4, "end": 31400.22, "probability": 0.8644 }, { "start": 31400.78, "end": 31401.3, "probability": 0.8574 }, { "start": 31401.38, "end": 31402.66, "probability": 0.9221 }, { "start": 31402.72, "end": 31404.6, "probability": 0.7907 }, { "start": 31404.7, "end": 31406.6, "probability": 0.9683 }, { "start": 31407.14, "end": 31409.82, "probability": 0.9987 }, { "start": 31409.86, "end": 31412.84, "probability": 0.8179 }, { "start": 31413.42, "end": 31414.82, "probability": 0.9492 }, { "start": 31415.07, "end": 31415.82, "probability": 0.946 }, { "start": 31416.26, "end": 31417.88, "probability": 0.9847 }, { "start": 31418.0, "end": 31420.28, "probability": 0.8745 }, { "start": 31420.86, "end": 31423.66, "probability": 0.915 }, { "start": 31423.9, "end": 31424.2, "probability": 0.7452 }, { "start": 31424.5, "end": 31424.98, "probability": 0.766 }, { "start": 31425.32, "end": 31426.72, "probability": 0.9863 }, { "start": 31426.9, "end": 31430.12, "probability": 0.7571 }, { "start": 31431.78, "end": 31433.46, "probability": 0.5471 }, { "start": 31434.14, "end": 31434.34, "probability": 0.5042 }, { "start": 31435.02, "end": 31438.68, "probability": 0.9934 }, { "start": 31439.26, "end": 31441.62, "probability": 0.8339 }, { "start": 31442.46, "end": 31443.36, "probability": 0.649 }, { "start": 31443.44, "end": 31447.62, "probability": 0.747 }, { "start": 31447.88, "end": 31449.46, "probability": 0.9893 }, { "start": 31449.48, "end": 31449.58, "probability": 0.8612 }, { "start": 31450.18, "end": 31452.2, "probability": 0.0606 }, { "start": 31452.4, "end": 31454.48, "probability": 0.9512 }, { "start": 31475.42, "end": 31477.46, "probability": 0.6518 }, { "start": 31478.7, "end": 31479.66, "probability": 0.7155 }, { "start": 31480.7, "end": 31490.48, "probability": 0.9856 }, { "start": 31492.12, "end": 31493.99, "probability": 0.9803 }, { "start": 31494.76, "end": 31497.26, "probability": 0.9961 }, { "start": 31498.84, "end": 31501.12, "probability": 0.9887 }, { "start": 31501.98, "end": 31503.14, "probability": 0.9087 }, { "start": 31503.78, "end": 31505.12, "probability": 0.972 }, { "start": 31506.02, "end": 31507.48, "probability": 0.9402 }, { "start": 31508.02, "end": 31509.6, "probability": 0.898 }, { "start": 31510.68, "end": 31513.72, "probability": 0.9976 }, { "start": 31514.3, "end": 31517.94, "probability": 0.9359 }, { "start": 31518.98, "end": 31519.62, "probability": 0.8726 }, { "start": 31520.34, "end": 31522.76, "probability": 0.9836 }, { "start": 31524.08, "end": 31528.34, "probability": 0.9891 }, { "start": 31529.28, "end": 31530.94, "probability": 0.825 }, { "start": 31531.88, "end": 31532.24, "probability": 0.391 }, { "start": 31532.38, "end": 31535.4, "probability": 0.9984 }, { "start": 31535.46, "end": 31539.74, "probability": 0.995 }, { "start": 31541.14, "end": 31543.14, "probability": 0.9985 }, { "start": 31544.64, "end": 31546.94, "probability": 0.9934 }, { "start": 31548.12, "end": 31548.92, "probability": 0.6584 }, { "start": 31550.0, "end": 31555.0, "probability": 0.9557 }, { "start": 31555.98, "end": 31563.72, "probability": 0.9889 }, { "start": 31565.44, "end": 31567.2, "probability": 0.999 }, { "start": 31568.18, "end": 31570.22, "probability": 0.9585 }, { "start": 31571.1, "end": 31574.58, "probability": 0.9963 }, { "start": 31575.58, "end": 31580.66, "probability": 0.9968 }, { "start": 31581.24, "end": 31585.8, "probability": 0.9957 }, { "start": 31586.42, "end": 31587.86, "probability": 0.9937 }, { "start": 31588.4, "end": 31592.6, "probability": 0.9977 }, { "start": 31593.54, "end": 31599.44, "probability": 0.9907 }, { "start": 31600.18, "end": 31600.94, "probability": 0.9626 }, { "start": 31601.66, "end": 31602.98, "probability": 0.9871 }, { "start": 31603.92, "end": 31607.86, "probability": 0.9552 }, { "start": 31608.56, "end": 31612.56, "probability": 0.995 }, { "start": 31613.26, "end": 31616.94, "probability": 0.9941 }, { "start": 31617.8, "end": 31618.82, "probability": 0.6219 }, { "start": 31619.62, "end": 31626.04, "probability": 0.9974 }, { "start": 31626.28, "end": 31627.2, "probability": 0.8992 }, { "start": 31627.3, "end": 31628.84, "probability": 0.9726 }, { "start": 31628.98, "end": 31629.94, "probability": 0.6957 }, { "start": 31630.72, "end": 31634.64, "probability": 0.938 }, { "start": 31635.26, "end": 31639.2, "probability": 0.9961 }, { "start": 31639.78, "end": 31644.08, "probability": 0.9907 }, { "start": 31645.44, "end": 31646.32, "probability": 0.7199 }, { "start": 31646.56, "end": 31650.34, "probability": 0.9922 }, { "start": 31651.02, "end": 31651.68, "probability": 0.8138 }, { "start": 31651.82, "end": 31653.24, "probability": 0.9472 }, { "start": 31653.66, "end": 31657.18, "probability": 0.9866 }, { "start": 31657.64, "end": 31657.9, "probability": 0.7625 }, { "start": 31658.9, "end": 31659.5, "probability": 0.7806 }, { "start": 31659.62, "end": 31664.26, "probability": 0.997 }, { "start": 31664.84, "end": 31666.66, "probability": 0.9568 }, { "start": 31667.18, "end": 31669.38, "probability": 0.9056 }, { "start": 31670.32, "end": 31670.82, "probability": 0.7928 }, { "start": 31670.86, "end": 31672.38, "probability": 0.9268 }, { "start": 31676.88, "end": 31683.0, "probability": 0.174 }, { "start": 31716.57, "end": 31719.09, "probability": 0.9846 }, { "start": 31720.71, "end": 31723.27, "probability": 0.9946 }, { "start": 31723.45, "end": 31725.77, "probability": 0.6778 }, { "start": 31727.73, "end": 31728.83, "probability": 0.8556 }, { "start": 31731.21, "end": 31734.99, "probability": 0.7156 }, { "start": 31735.83, "end": 31740.87, "probability": 0.8553 }, { "start": 31741.67, "end": 31742.92, "probability": 0.9949 }, { "start": 31744.45, "end": 31746.87, "probability": 0.9933 }, { "start": 31747.85, "end": 31748.57, "probability": 0.9109 }, { "start": 31749.13, "end": 31750.71, "probability": 0.9604 }, { "start": 31751.63, "end": 31755.95, "probability": 0.9536 }, { "start": 31756.43, "end": 31759.28, "probability": 0.8269 }, { "start": 31760.51, "end": 31761.05, "probability": 0.7058 }, { "start": 31761.71, "end": 31765.31, "probability": 0.9985 }, { "start": 31766.09, "end": 31766.57, "probability": 0.4141 }, { "start": 31768.81, "end": 31769.4, "probability": 0.3968 }, { "start": 31769.53, "end": 31770.67, "probability": 0.8267 }, { "start": 31771.11, "end": 31773.05, "probability": 0.979 }, { "start": 31773.45, "end": 31777.15, "probability": 0.9842 }, { "start": 31777.67, "end": 31780.83, "probability": 0.9098 }, { "start": 31781.45, "end": 31784.01, "probability": 0.956 }, { "start": 31784.67, "end": 31785.99, "probability": 0.9444 }, { "start": 31786.11, "end": 31786.55, "probability": 0.7855 }, { "start": 31787.09, "end": 31788.69, "probability": 0.9782 }, { "start": 31788.87, "end": 31789.49, "probability": 0.9507 }, { "start": 31790.73, "end": 31792.77, "probability": 0.9955 }, { "start": 31794.47, "end": 31795.29, "probability": 0.4941 }, { "start": 31795.35, "end": 31796.03, "probability": 0.2676 }, { "start": 31796.69, "end": 31797.43, "probability": 0.9849 }, { "start": 31798.83, "end": 31799.11, "probability": 0.9917 }, { "start": 31800.09, "end": 31803.15, "probability": 0.9858 }, { "start": 31807.27, "end": 31809.89, "probability": 0.9969 }, { "start": 31809.89, "end": 31813.51, "probability": 0.6586 }, { "start": 31813.89, "end": 31815.21, "probability": 0.9172 }, { "start": 31816.37, "end": 31818.83, "probability": 0.9637 }, { "start": 31821.43, "end": 31822.11, "probability": 0.9649 }, { "start": 31822.67, "end": 31823.63, "probability": 0.9785 }, { "start": 31823.73, "end": 31825.99, "probability": 0.988 }, { "start": 31827.37, "end": 31828.21, "probability": 0.3375 }, { "start": 31828.31, "end": 31830.51, "probability": 0.9633 }, { "start": 31831.17, "end": 31832.05, "probability": 0.9971 }, { "start": 31833.09, "end": 31834.21, "probability": 0.6032 }, { "start": 31835.05, "end": 31836.65, "probability": 0.5571 }, { "start": 31837.47, "end": 31840.21, "probability": 0.958 }, { "start": 31840.81, "end": 31842.95, "probability": 0.9971 }, { "start": 31844.13, "end": 31844.95, "probability": 0.0995 }, { "start": 31845.03, "end": 31845.83, "probability": 0.6533 }, { "start": 31847.03, "end": 31851.17, "probability": 0.9785 }, { "start": 31851.37, "end": 31853.13, "probability": 0.6783 }, { "start": 31853.15, "end": 31855.78, "probability": 0.97 }, { "start": 31856.73, "end": 31860.53, "probability": 0.9429 }, { "start": 31861.15, "end": 31863.79, "probability": 0.9827 }, { "start": 31864.21, "end": 31864.97, "probability": 0.5827 }, { "start": 31865.25, "end": 31867.09, "probability": 0.9917 }, { "start": 31867.09, "end": 31869.37, "probability": 0.9924 }, { "start": 31870.19, "end": 31870.7, "probability": 0.7099 }, { "start": 31871.31, "end": 31874.23, "probability": 0.9028 }, { "start": 31874.27, "end": 31874.65, "probability": 0.9572 }, { "start": 31876.09, "end": 31876.95, "probability": 0.9612 }, { "start": 31878.17, "end": 31880.25, "probability": 0.9573 }, { "start": 31881.71, "end": 31882.53, "probability": 0.9054 }, { "start": 31883.19, "end": 31884.59, "probability": 0.9328 }, { "start": 31884.97, "end": 31888.79, "probability": 0.9011 }, { "start": 31888.79, "end": 31893.09, "probability": 0.9761 }, { "start": 31893.43, "end": 31894.71, "probability": 0.9301 }, { "start": 31895.27, "end": 31898.55, "probability": 0.851 }, { "start": 31898.87, "end": 31899.33, "probability": 0.9515 }, { "start": 31899.39, "end": 31900.87, "probability": 0.9532 }, { "start": 31901.43, "end": 31904.49, "probability": 0.9822 }, { "start": 31904.49, "end": 31904.51, "probability": 0.2527 }, { "start": 31904.59, "end": 31905.71, "probability": 0.8105 }, { "start": 31905.71, "end": 31906.79, "probability": 0.9779 }, { "start": 31906.95, "end": 31909.09, "probability": 0.7693 }, { "start": 31909.09, "end": 31910.73, "probability": 0.936 }, { "start": 31912.69, "end": 31913.45, "probability": 0.8279 }, { "start": 31913.45, "end": 31913.91, "probability": 0.8481 }, { "start": 31913.95, "end": 31916.47, "probability": 0.5437 }, { "start": 31917.09, "end": 31921.63, "probability": 0.9932 }, { "start": 31922.81, "end": 31923.33, "probability": 0.3655 }, { "start": 31924.69, "end": 31925.45, "probability": 0.0594 }, { "start": 31925.45, "end": 31925.59, "probability": 0.1034 }, { "start": 31925.59, "end": 31925.59, "probability": 0.1068 }, { "start": 31925.59, "end": 31925.59, "probability": 0.0746 }, { "start": 31925.59, "end": 31927.97, "probability": 0.8677 }, { "start": 31928.85, "end": 31931.09, "probability": 0.9823 }, { "start": 31931.17, "end": 31931.85, "probability": 0.9863 }, { "start": 31932.61, "end": 31932.77, "probability": 0.7552 }, { "start": 31932.93, "end": 31933.45, "probability": 0.6853 }, { "start": 31934.67, "end": 31934.99, "probability": 0.5599 }, { "start": 31935.09, "end": 31935.65, "probability": 0.2641 }, { "start": 31935.67, "end": 31936.77, "probability": 0.6481 }, { "start": 31936.87, "end": 31938.51, "probability": 0.9409 }, { "start": 31939.83, "end": 31940.97, "probability": 0.8768 }, { "start": 31950.22, "end": 31951.55, "probability": 0.1851 }, { "start": 31951.55, "end": 31951.59, "probability": 0.0397 }, { "start": 31951.59, "end": 31953.48, "probability": 0.5543 }, { "start": 31957.23, "end": 31957.39, "probability": 0.8195 }, { "start": 31961.79, "end": 31963.07, "probability": 0.7785 }, { "start": 31963.83, "end": 31965.09, "probability": 0.8137 }, { "start": 31966.05, "end": 31969.57, "probability": 0.978 }, { "start": 31970.31, "end": 31973.63, "probability": 0.9277 }, { "start": 31974.41, "end": 31977.01, "probability": 0.9849 }, { "start": 31977.55, "end": 31978.65, "probability": 0.9694 }, { "start": 31979.73, "end": 31981.07, "probability": 0.9102 }, { "start": 31981.35, "end": 31984.31, "probability": 0.9961 }, { "start": 31985.21, "end": 31990.23, "probability": 0.9918 }, { "start": 31991.33, "end": 31994.97, "probability": 0.9942 }, { "start": 31995.73, "end": 31998.99, "probability": 0.9977 }, { "start": 32000.13, "end": 32003.21, "probability": 0.715 }, { "start": 32003.89, "end": 32007.69, "probability": 0.9838 }, { "start": 32007.69, "end": 32012.43, "probability": 0.9897 }, { "start": 32013.41, "end": 32019.27, "probability": 0.9738 }, { "start": 32020.19, "end": 32022.87, "probability": 0.9819 }, { "start": 32023.93, "end": 32030.27, "probability": 0.981 }, { "start": 32031.09, "end": 32033.81, "probability": 0.8516 }, { "start": 32034.37, "end": 32035.33, "probability": 0.8765 }, { "start": 32035.85, "end": 32039.67, "probability": 0.9934 }, { "start": 32040.41, "end": 32046.53, "probability": 0.9916 }, { "start": 32046.69, "end": 32049.03, "probability": 0.7057 }, { "start": 32049.51, "end": 32050.25, "probability": 0.9309 }, { "start": 32050.87, "end": 32052.05, "probability": 0.9373 }, { "start": 32052.79, "end": 32057.85, "probability": 0.9928 }, { "start": 32059.09, "end": 32063.73, "probability": 0.9819 }, { "start": 32063.73, "end": 32067.51, "probability": 0.9993 }, { "start": 32068.05, "end": 32071.47, "probability": 0.9967 }, { "start": 32072.23, "end": 32073.47, "probability": 0.8805 }, { "start": 32074.15, "end": 32080.29, "probability": 0.9991 }, { "start": 32080.29, "end": 32087.13, "probability": 0.9951 }, { "start": 32088.01, "end": 32088.97, "probability": 0.5884 }, { "start": 32089.07, "end": 32090.27, "probability": 0.6461 }, { "start": 32090.45, "end": 32096.47, "probability": 0.9343 }, { "start": 32097.25, "end": 32103.23, "probability": 0.9368 }, { "start": 32104.05, "end": 32108.85, "probability": 0.9913 }, { "start": 32109.77, "end": 32115.63, "probability": 0.9979 }, { "start": 32115.63, "end": 32121.47, "probability": 0.9995 }, { "start": 32122.43, "end": 32127.39, "probability": 0.9746 }, { "start": 32128.07, "end": 32131.87, "probability": 0.9926 }, { "start": 32133.21, "end": 32136.61, "probability": 0.9933 }, { "start": 32137.01, "end": 32137.15, "probability": 0.0618 }, { "start": 32137.15, "end": 32142.81, "probability": 0.9897 }, { "start": 32143.91, "end": 32147.97, "probability": 0.9978 }, { "start": 32148.55, "end": 32155.31, "probability": 0.9967 }, { "start": 32155.81, "end": 32162.41, "probability": 0.9963 }, { "start": 32163.05, "end": 32165.45, "probability": 0.7785 }, { "start": 32165.61, "end": 32167.41, "probability": 0.967 }, { "start": 32167.93, "end": 32171.31, "probability": 0.9876 }, { "start": 32171.89, "end": 32173.53, "probability": 0.8764 }, { "start": 32173.85, "end": 32177.59, "probability": 0.9041 }, { "start": 32178.19, "end": 32183.73, "probability": 0.9097 }, { "start": 32183.83, "end": 32185.41, "probability": 0.9013 }, { "start": 32185.91, "end": 32186.53, "probability": 0.4887 }, { "start": 32186.61, "end": 32189.25, "probability": 0.8622 }, { "start": 32189.43, "end": 32190.62, "probability": 0.5785 }, { "start": 32191.29, "end": 32198.21, "probability": 0.9476 }, { "start": 32198.81, "end": 32203.03, "probability": 0.6316 }, { "start": 32203.57, "end": 32203.57, "probability": 0.016 }, { "start": 32203.57, "end": 32206.01, "probability": 0.7987 }, { "start": 32206.23, "end": 32207.53, "probability": 0.7598 }, { "start": 32207.85, "end": 32209.59, "probability": 0.2856 }, { "start": 32209.75, "end": 32210.87, "probability": 0.5843 }, { "start": 32210.95, "end": 32214.17, "probability": 0.7591 }, { "start": 32214.19, "end": 32215.37, "probability": 0.3347 }, { "start": 32215.45, "end": 32216.59, "probability": 0.6004 }, { "start": 32217.65, "end": 32220.05, "probability": 0.9512 }, { "start": 32220.41, "end": 32220.41, "probability": 0.1422 }, { "start": 32220.41, "end": 32220.41, "probability": 0.0237 }, { "start": 32220.41, "end": 32222.64, "probability": 0.4487 }, { "start": 32222.75, "end": 32223.11, "probability": 0.0148 }, { "start": 32223.13, "end": 32224.75, "probability": 0.3849 }, { "start": 32224.75, "end": 32227.53, "probability": 0.7913 }, { "start": 32227.89, "end": 32229.24, "probability": 0.2263 }, { "start": 32230.55, "end": 32231.03, "probability": 0.9733 }, { "start": 32232.29, "end": 32233.31, "probability": 0.8095 }, { "start": 32234.17, "end": 32234.79, "probability": 0.9808 }, { "start": 32235.57, "end": 32236.47, "probability": 0.7088 }, { "start": 32237.23, "end": 32237.77, "probability": 0.9951 }, { "start": 32238.63, "end": 32239.55, "probability": 0.7833 }, { "start": 32241.71, "end": 32245.01, "probability": 0.8335 }, { "start": 32245.63, "end": 32246.13, "probability": 0.9585 }, { "start": 32247.05, "end": 32248.01, "probability": 0.5992 }, { "start": 32249.97, "end": 32252.99, "probability": 0.5759 }, { "start": 32254.91, "end": 32255.73, "probability": 0.9119 }, { "start": 32256.51, "end": 32257.59, "probability": 0.6766 }, { "start": 32258.87, "end": 32259.43, "probability": 0.9954 }, { "start": 32260.39, "end": 32261.19, "probability": 0.9143 }, { "start": 32262.15, "end": 32262.69, "probability": 0.9953 }, { "start": 32263.45, "end": 32264.39, "probability": 0.905 }, { "start": 32265.33, "end": 32266.29, "probability": 0.9886 }, { "start": 32267.13, "end": 32268.09, "probability": 0.9647 }, { "start": 32269.03, "end": 32273.07, "probability": 0.9781 }, { "start": 32274.61, "end": 32275.45, "probability": 0.9483 }, { "start": 32278.21, "end": 32278.98, "probability": 0.5117 }, { "start": 32280.17, "end": 32283.23, "probability": 0.7029 }, { "start": 32284.61, "end": 32285.19, "probability": 0.9813 }, { "start": 32285.81, "end": 32286.83, "probability": 0.7567 }, { "start": 32288.25, "end": 32293.03, "probability": 0.9142 }, { "start": 32294.07, "end": 32294.67, "probability": 0.9734 }, { "start": 32296.13, "end": 32300.05, "probability": 0.9812 }, { "start": 32300.77, "end": 32302.81, "probability": 0.9565 }, { "start": 32306.43, "end": 32308.01, "probability": 0.5168 }, { "start": 32308.63, "end": 32309.63, "probability": 0.6681 }, { "start": 32312.33, "end": 32313.79, "probability": 0.767 }, { "start": 32315.09, "end": 32316.01, "probability": 0.7557 }, { "start": 32317.51, "end": 32318.35, "probability": 0.9811 }, { "start": 32318.87, "end": 32320.03, "probability": 0.676 }, { "start": 32321.87, "end": 32322.39, "probability": 0.9043 }, { "start": 32323.49, "end": 32324.29, "probability": 0.8038 }, { "start": 32325.67, "end": 32327.57, "probability": 0.8671 }, { "start": 32331.01, "end": 32332.35, "probability": 0.6476 }, { "start": 32333.63, "end": 32334.17, "probability": 0.6782 }, { "start": 32335.43, "end": 32336.25, "probability": 0.6836 }, { "start": 32338.61, "end": 32341.93, "probability": 0.8841 }, { "start": 32344.45, "end": 32346.77, "probability": 0.9593 }, { "start": 32348.95, "end": 32350.89, "probability": 0.9257 }, { "start": 32352.89, "end": 32356.25, "probability": 0.9646 }, { "start": 32356.89, "end": 32357.71, "probability": 0.8582 }, { "start": 32359.31, "end": 32360.17, "probability": 0.739 }, { "start": 32360.73, "end": 32361.53, "probability": 0.7182 }, { "start": 32363.07, "end": 32366.75, "probability": 0.9163 }, { "start": 32367.37, "end": 32367.89, "probability": 0.9058 }, { "start": 32368.49, "end": 32369.43, "probability": 0.953 }, { "start": 32370.31, "end": 32372.81, "probability": 0.8726 }, { "start": 32373.79, "end": 32374.41, "probability": 0.9881 }, { "start": 32375.63, "end": 32376.71, "probability": 0.9355 }, { "start": 32379.15, "end": 32380.15, "probability": 0.9794 }, { "start": 32381.19, "end": 32382.15, "probability": 0.9701 }, { "start": 32383.15, "end": 32383.71, "probability": 0.9771 }, { "start": 32384.73, "end": 32385.69, "probability": 0.7365 }, { "start": 32387.75, "end": 32389.79, "probability": 0.4504 }, { "start": 32390.91, "end": 32393.47, "probability": 0.8022 }, { "start": 32394.69, "end": 32395.31, "probability": 0.9621 }, { "start": 32396.19, "end": 32397.51, "probability": 0.6008 }, { "start": 32398.83, "end": 32401.65, "probability": 0.8929 }, { "start": 32402.37, "end": 32403.03, "probability": 0.9837 }, { "start": 32403.83, "end": 32407.01, "probability": 0.7494 }, { "start": 32409.85, "end": 32411.93, "probability": 0.4959 }, { "start": 32412.89, "end": 32414.01, "probability": 0.681 }, { "start": 32414.75, "end": 32415.29, "probability": 0.7386 }, { "start": 32416.39, "end": 32417.31, "probability": 0.75 }, { "start": 32418.69, "end": 32421.75, "probability": 0.7686 }, { "start": 32423.05, "end": 32425.55, "probability": 0.9609 }, { "start": 32426.55, "end": 32429.31, "probability": 0.8469 }, { "start": 32431.19, "end": 32432.29, "probability": 0.972 }, { "start": 32432.91, "end": 32436.85, "probability": 0.9648 }, { "start": 32440.15, "end": 32442.31, "probability": 0.5858 }, { "start": 32443.33, "end": 32443.89, "probability": 0.6021 }, { "start": 32445.21, "end": 32446.5, "probability": 0.928 }, { "start": 32447.71, "end": 32448.25, "probability": 0.936 }, { "start": 32449.47, "end": 32450.25, "probability": 0.8294 }, { "start": 32452.95, "end": 32454.77, "probability": 0.8473 }, { "start": 32457.39, "end": 32459.27, "probability": 0.689 }, { "start": 32460.45, "end": 32461.33, "probability": 0.9167 }, { "start": 32465.43, "end": 32466.77, "probability": 0.2945 }, { "start": 32468.75, "end": 32469.71, "probability": 0.1632 }, { "start": 32470.39, "end": 32472.91, "probability": 0.4993 }, { "start": 32474.49, "end": 32475.73, "probability": 0.6538 }, { "start": 32477.43, "end": 32478.09, "probability": 0.9475 }, { "start": 32478.97, "end": 32482.83, "probability": 0.9409 }, { "start": 32484.33, "end": 32484.97, "probability": 0.9245 }, { "start": 32485.91, "end": 32486.79, "probability": 0.932 }, { "start": 32488.67, "end": 32491.39, "probability": 0.9865 }, { "start": 32492.55, "end": 32493.07, "probability": 0.9751 }, { "start": 32493.75, "end": 32494.81, "probability": 0.954 }, { "start": 32495.85, "end": 32497.42, "probability": 0.0878 }, { "start": 32500.85, "end": 32504.33, "probability": 0.5108 }, { "start": 32506.27, "end": 32508.35, "probability": 0.9599 }, { "start": 32509.41, "end": 32511.27, "probability": 0.7519 }, { "start": 32513.01, "end": 32514.95, "probability": 0.7547 }, { "start": 32517.35, "end": 32518.05, "probability": 0.9813 }, { "start": 32519.49, "end": 32520.77, "probability": 0.8811 }, { "start": 32521.35, "end": 32521.91, "probability": 0.7888 }, { "start": 32522.49, "end": 32523.51, "probability": 0.7269 }, { "start": 32524.91, "end": 32525.91, "probability": 0.9105 }, { "start": 32526.65, "end": 32527.65, "probability": 0.452 }, { "start": 32528.61, "end": 32529.15, "probability": 0.5893 }, { "start": 32530.55, "end": 32531.71, "probability": 0.7872 }, { "start": 32532.51, "end": 32533.01, "probability": 0.9359 }, { "start": 32533.83, "end": 32534.57, "probability": 0.8741 }, { "start": 32536.73, "end": 32537.45, "probability": 0.9854 }, { "start": 32538.75, "end": 32539.57, "probability": 0.8257 }, { "start": 32542.21, "end": 32546.49, "probability": 0.5762 }, { "start": 32548.39, "end": 32548.99, "probability": 0.9761 }, { "start": 32551.41, "end": 32552.31, "probability": 0.9822 }, { "start": 32553.75, "end": 32554.41, "probability": 0.9937 }, { "start": 32555.33, "end": 32555.89, "probability": 0.6859 }, { "start": 32558.63, "end": 32559.19, "probability": 0.5723 }, { "start": 32560.05, "end": 32561.15, "probability": 0.8191 }, { "start": 32562.93, "end": 32564.79, "probability": 0.7263 }, { "start": 32566.07, "end": 32566.57, "probability": 0.9509 }, { "start": 32567.09, "end": 32568.03, "probability": 0.7718 }, { "start": 32570.65, "end": 32573.21, "probability": 0.6911 }, { "start": 32573.77, "end": 32577.13, "probability": 0.301 }, { "start": 32577.77, "end": 32577.91, "probability": 0.1563 }, { "start": 32591.13, "end": 32591.61, "probability": 0.6475 }, { "start": 32592.45, "end": 32593.43, "probability": 0.3376 }, { "start": 32594.79, "end": 32595.15, "probability": 0.9385 }, { "start": 32595.81, "end": 32596.83, "probability": 0.6238 }, { "start": 32599.37, "end": 32601.49, "probability": 0.7786 }, { "start": 32603.59, "end": 32605.43, "probability": 0.9424 }, { "start": 32607.31, "end": 32607.87, "probability": 0.9927 }, { "start": 32609.11, "end": 32610.03, "probability": 0.8755 }, { "start": 32612.09, "end": 32614.19, "probability": 0.6564 }, { "start": 32615.09, "end": 32615.65, "probability": 0.9943 }, { "start": 32617.95, "end": 32618.87, "probability": 0.9308 }, { "start": 32622.23, "end": 32625.73, "probability": 0.6411 }, { "start": 32626.71, "end": 32628.01, "probability": 0.5213 }, { "start": 32633.23, "end": 32633.87, "probability": 0.5971 }, { "start": 32634.87, "end": 32634.97, "probability": 0.4532 }, { "start": 32634.97, "end": 32636.01, "probability": 0.5861 }, { "start": 32636.67, "end": 32637.13, "probability": 0.9246 }, { "start": 32638.37, "end": 32645.13, "probability": 0.6488 }, { "start": 32648.24, "end": 32650.07, "probability": 0.927 }, { "start": 32651.65, "end": 32652.27, "probability": 0.8953 }, { "start": 32653.59, "end": 32654.41, "probability": 0.7616 }, { "start": 32655.41, "end": 32657.33, "probability": 0.9254 }, { "start": 32658.63, "end": 32660.69, "probability": 0.8835 }, { "start": 32662.45, "end": 32663.53, "probability": 0.9271 }, { "start": 32664.19, "end": 32665.03, "probability": 0.8693 }, { "start": 32666.05, "end": 32668.43, "probability": 0.9795 }, { "start": 32671.55, "end": 32675.67, "probability": 0.5229 }, { "start": 32676.37, "end": 32676.69, "probability": 0.7413 }, { "start": 32677.35, "end": 32678.47, "probability": 0.9451 }, { "start": 32679.21, "end": 32679.71, "probability": 0.8203 }, { "start": 32680.51, "end": 32681.21, "probability": 0.9211 }, { "start": 32682.77, "end": 32685.25, "probability": 0.9439 }, { "start": 32686.61, "end": 32688.77, "probability": 0.8622 }, { "start": 32689.51, "end": 32692.99, "probability": 0.8537 }, { "start": 32693.89, "end": 32694.79, "probability": 0.8547 }, { "start": 32695.37, "end": 32697.01, "probability": 0.9757 }, { "start": 32698.25, "end": 32698.81, "probability": 0.7232 }, { "start": 32699.65, "end": 32700.41, "probability": 0.6333 }, { "start": 32702.27, "end": 32704.63, "probability": 0.8794 }, { "start": 32705.53, "end": 32707.99, "probability": 0.7137 }, { "start": 32708.91, "end": 32711.31, "probability": 0.9672 }, { "start": 32713.61, "end": 32715.83, "probability": 0.8558 }, { "start": 32717.47, "end": 32719.81, "probability": 0.8389 }, { "start": 32721.09, "end": 32721.59, "probability": 0.9775 }, { "start": 32722.47, "end": 32723.23, "probability": 0.7496 }, { "start": 32723.99, "end": 32724.53, "probability": 0.9915 }, { "start": 32725.13, "end": 32727.67, "probability": 0.6183 }, { "start": 32729.47, "end": 32731.51, "probability": 0.553 }, { "start": 32732.33, "end": 32732.76, "probability": 0.2432 }, { "start": 32734.95, "end": 32737.45, "probability": 0.807 }, { "start": 32738.91, "end": 32740.79, "probability": 0.8315 }, { "start": 32741.81, "end": 32746.01, "probability": 0.907 }, { "start": 32747.07, "end": 32747.67, "probability": 0.9157 }, { "start": 32750.21, "end": 32751.17, "probability": 0.8547 }, { "start": 32752.89, "end": 32755.03, "probability": 0.9399 }, { "start": 32756.65, "end": 32758.17, "probability": 0.8233 }, { "start": 32759.99, "end": 32760.95, "probability": 0.9939 }, { "start": 32762.41, "end": 32763.37, "probability": 0.9301 }, { "start": 32765.15, "end": 32766.89, "probability": 0.9745 }, { "start": 32768.69, "end": 32770.25, "probability": 0.7595 }, { "start": 32771.83, "end": 32775.85, "probability": 0.8179 }, { "start": 32776.77, "end": 32778.89, "probability": 0.8911 }, { "start": 32780.39, "end": 32780.99, "probability": 0.9847 }, { "start": 32782.93, "end": 32783.87, "probability": 0.9257 }, { "start": 32785.23, "end": 32787.31, "probability": 0.8494 }, { "start": 32787.35, "end": 32788.95, "probability": 0.6871 }, { "start": 32790.75, "end": 32792.85, "probability": 0.8359 }, { "start": 32793.89, "end": 32795.88, "probability": 0.8555 }, { "start": 32796.93, "end": 32798.45, "probability": 0.971 }, { "start": 32800.67, "end": 32802.73, "probability": 0.8973 }, { "start": 32803.45, "end": 32805.03, "probability": 0.8748 }, { "start": 32805.97, "end": 32806.51, "probability": 0.9897 }, { "start": 32809.37, "end": 32810.39, "probability": 0.6842 }, { "start": 32811.39, "end": 32813.23, "probability": 0.8278 }, { "start": 32814.53, "end": 32816.89, "probability": 0.899 }, { "start": 32818.15, "end": 32820.65, "probability": 0.6428 }, { "start": 32822.71, "end": 32825.05, "probability": 0.7744 }, { "start": 32826.35, "end": 32827.01, "probability": 0.9854 }, { "start": 32828.67, "end": 32829.73, "probability": 0.8693 }, { "start": 32831.39, "end": 32833.53, "probability": 0.7147 }, { "start": 32838.09, "end": 32838.97, "probability": 0.6962 }, { "start": 32840.61, "end": 32841.57, "probability": 0.7228 }, { "start": 32843.41, "end": 32845.21, "probability": 0.521 }, { "start": 32846.85, "end": 32848.31, "probability": 0.9071 }, { "start": 32849.61, "end": 32850.57, "probability": 0.6559 }, { "start": 32852.15, "end": 32853.19, "probability": 0.6634 }, { "start": 32854.93, "end": 32856.57, "probability": 0.8379 }, { "start": 32857.69, "end": 32859.21, "probability": 0.4544 }, { "start": 32860.01, "end": 32860.99, "probability": 0.9736 }, { "start": 32861.89, "end": 32862.77, "probability": 0.6993 }, { "start": 32864.71, "end": 32867.93, "probability": 0.8836 }, { "start": 32868.69, "end": 32869.51, "probability": 0.4709 }, { "start": 32871.01, "end": 32872.05, "probability": 0.994 }, { "start": 32872.73, "end": 32873.75, "probability": 0.9501 }, { "start": 32874.59, "end": 32876.83, "probability": 0.7947 }, { "start": 32877.59, "end": 32878.41, "probability": 0.5453 }, { "start": 32881.97, "end": 32887.25, "probability": 0.9211 }, { "start": 32887.99, "end": 32889.43, "probability": 0.5033 }, { "start": 32889.49, "end": 32890.75, "probability": 0.8957 }, { "start": 32911.73, "end": 32912.57, "probability": 0.0123 }, { "start": 32913.27, "end": 32913.29, "probability": 0.1633 }, { "start": 32915.31, "end": 32916.07, "probability": 0.1273 }, { "start": 32928.07, "end": 32928.25, "probability": 0.0192 }, { "start": 32933.69, "end": 32935.75, "probability": 0.0104 }, { "start": 32937.51, "end": 32939.15, "probability": 0.0805 }, { "start": 32939.71, "end": 32943.57, "probability": 0.0641 }, { "start": 32943.71, "end": 32945.75, "probability": 0.3547 }, { "start": 32945.75, "end": 32949.57, "probability": 0.0591 }, { "start": 32979.71, "end": 32980.41, "probability": 0.784 }, { "start": 32981.31, "end": 32983.25, "probability": 0.3187 }, { "start": 32983.97, "end": 32985.81, "probability": 0.0334 }, { "start": 33012.0, "end": 33012.0, "probability": 0.0 }, { "start": 33012.16, "end": 33013.48, "probability": 0.649 }, { "start": 33014.14, "end": 33019.16, "probability": 0.9376 }, { "start": 33019.3, "end": 33019.5, "probability": 0.8436 }, { "start": 33020.74, "end": 33021.14, "probability": 0.2788 }, { "start": 33042.87, "end": 33046.12, "probability": 0.7235 }, { "start": 33047.76, "end": 33052.4, "probability": 0.988 }, { "start": 33052.58, "end": 33057.68, "probability": 0.9917 }, { "start": 33057.68, "end": 33060.96, "probability": 0.8011 }, { "start": 33062.36, "end": 33065.3, "probability": 0.8436 }, { "start": 33066.52, "end": 33068.82, "probability": 0.9836 }, { "start": 33069.76, "end": 33070.32, "probability": 0.8866 }, { "start": 33071.06, "end": 33074.2, "probability": 0.9814 }, { "start": 33074.76, "end": 33077.86, "probability": 0.988 }, { "start": 33078.42, "end": 33078.76, "probability": 0.6853 }, { "start": 33080.54, "end": 33085.86, "probability": 0.978 }, { "start": 33085.9, "end": 33087.36, "probability": 0.901 }, { "start": 33088.02, "end": 33090.82, "probability": 0.8895 }, { "start": 33091.42, "end": 33093.06, "probability": 0.9635 }, { "start": 33094.2, "end": 33096.76, "probability": 0.9832 }, { "start": 33096.76, "end": 33099.26, "probability": 0.9968 }, { "start": 33100.0, "end": 33104.98, "probability": 0.9938 }, { "start": 33106.52, "end": 33108.98, "probability": 0.9712 }, { "start": 33109.72, "end": 33112.0, "probability": 0.8007 }, { "start": 33113.1, "end": 33113.58, "probability": 0.9781 }, { "start": 33114.38, "end": 33118.18, "probability": 0.9788 }, { "start": 33119.03, "end": 33121.96, "probability": 0.9944 }, { "start": 33122.8, "end": 33125.42, "probability": 0.4265 }, { "start": 33125.44, "end": 33131.68, "probability": 0.9954 }, { "start": 33131.68, "end": 33136.9, "probability": 0.9942 }, { "start": 33137.84, "end": 33138.34, "probability": 0.7304 }, { "start": 33138.98, "end": 33142.78, "probability": 0.9837 }, { "start": 33143.62, "end": 33149.98, "probability": 0.9809 }, { "start": 33151.0, "end": 33152.36, "probability": 0.9399 }, { "start": 33153.68, "end": 33157.26, "probability": 0.9849 }, { "start": 33157.26, "end": 33162.02, "probability": 0.9535 }, { "start": 33162.02, "end": 33165.36, "probability": 0.9966 }, { "start": 33166.48, "end": 33167.9, "probability": 0.9878 }, { "start": 33168.54, "end": 33173.38, "probability": 0.9968 }, { "start": 33175.38, "end": 33178.84, "probability": 0.9226 }, { "start": 33180.14, "end": 33181.02, "probability": 0.9622 }, { "start": 33181.66, "end": 33184.74, "probability": 0.9976 }, { "start": 33185.9, "end": 33188.2, "probability": 0.131 }, { "start": 33212.88, "end": 33214.08, "probability": 0.1606 }, { "start": 33214.74, "end": 33218.08, "probability": 0.9827 }, { "start": 33218.36, "end": 33222.76, "probability": 0.9956 }, { "start": 33222.81, "end": 33228.7, "probability": 0.99 }, { "start": 33229.38, "end": 33234.0, "probability": 0.9938 }, { "start": 33234.7, "end": 33237.06, "probability": 0.9798 }, { "start": 33237.62, "end": 33239.1, "probability": 0.8113 }, { "start": 33240.0, "end": 33244.81, "probability": 0.8659 }, { "start": 33245.02, "end": 33249.74, "probability": 0.9969 }, { "start": 33250.96, "end": 33253.14, "probability": 0.4763 }, { "start": 33253.3, "end": 33255.42, "probability": 0.7195 }, { "start": 33256.06, "end": 33259.64, "probability": 0.9785 }, { "start": 33259.64, "end": 33263.18, "probability": 0.9958 }, { "start": 33264.06, "end": 33266.7, "probability": 0.9962 }, { "start": 33268.32, "end": 33272.72, "probability": 0.9655 }, { "start": 33273.59, "end": 33275.56, "probability": 0.9907 }, { "start": 33276.56, "end": 33280.22, "probability": 0.6717 }, { "start": 33281.26, "end": 33281.54, "probability": 0.364 }, { "start": 33281.8, "end": 33286.32, "probability": 0.9518 }, { "start": 33286.32, "end": 33292.18, "probability": 0.989 }, { "start": 33292.92, "end": 33293.22, "probability": 0.3683 }, { "start": 33293.34, "end": 33297.4, "probability": 0.9924 }, { "start": 33297.4, "end": 33301.02, "probability": 0.9939 }, { "start": 33301.66, "end": 33304.54, "probability": 0.9893 }, { "start": 33306.2, "end": 33307.78, "probability": 0.9348 }, { "start": 33308.36, "end": 33311.86, "probability": 0.9968 }, { "start": 33312.44, "end": 33317.32, "probability": 0.9966 }, { "start": 33318.02, "end": 33318.6, "probability": 0.7428 }, { "start": 33319.26, "end": 33323.9, "probability": 0.9976 }, { "start": 33324.42, "end": 33327.36, "probability": 0.9958 }, { "start": 33328.34, "end": 33331.0, "probability": 0.9473 }, { "start": 33331.62, "end": 33332.5, "probability": 0.7892 }, { "start": 33333.04, "end": 33334.86, "probability": 0.8185 }, { "start": 33335.78, "end": 33336.27, "probability": 0.7803 }, { "start": 33337.02, "end": 33340.6, "probability": 0.8689 }, { "start": 33341.62, "end": 33345.9, "probability": 0.9867 }, { "start": 33345.9, "end": 33348.84, "probability": 0.9738 }, { "start": 33350.5, "end": 33352.52, "probability": 0.9819 }, { "start": 33353.46, "end": 33356.72, "probability": 0.9922 }, { "start": 33357.32, "end": 33359.64, "probability": 0.9758 }, { "start": 33360.22, "end": 33362.12, "probability": 0.9566 }, { "start": 33362.92, "end": 33365.9, "probability": 0.9954 }, { "start": 33366.56, "end": 33371.4, "probability": 0.7572 }, { "start": 33371.4, "end": 33374.52, "probability": 0.9983 }, { "start": 33376.16, "end": 33378.06, "probability": 0.573 }, { "start": 33378.9, "end": 33383.56, "probability": 0.9876 }, { "start": 33384.84, "end": 33387.84, "probability": 0.936 }, { "start": 33389.18, "end": 33390.26, "probability": 0.9761 }, { "start": 33391.1, "end": 33392.52, "probability": 0.9734 }, { "start": 33393.1, "end": 33395.08, "probability": 0.9975 }, { "start": 33395.68, "end": 33397.26, "probability": 0.9556 }, { "start": 33398.06, "end": 33401.34, "probability": 0.9919 }, { "start": 33401.82, "end": 33405.2, "probability": 0.9391 }, { "start": 33405.2, "end": 33407.76, "probability": 0.998 }, { "start": 33408.36, "end": 33410.0, "probability": 0.8602 }, { "start": 33410.18, "end": 33410.44, "probability": 0.7088 }, { "start": 33412.02, "end": 33412.52, "probability": 0.6419 }, { "start": 33412.54, "end": 33414.34, "probability": 0.9265 }, { "start": 33444.0, "end": 33444.8, "probability": 0.671 }, { "start": 33445.4, "end": 33446.52, "probability": 0.7723 }, { "start": 33447.7, "end": 33448.56, "probability": 0.9412 }, { "start": 33449.5, "end": 33450.16, "probability": 0.8092 }, { "start": 33451.84, "end": 33455.78, "probability": 0.9894 }, { "start": 33457.22, "end": 33457.72, "probability": 0.7401 }, { "start": 33458.74, "end": 33460.0, "probability": 0.9951 }, { "start": 33461.38, "end": 33461.84, "probability": 0.8573 }, { "start": 33463.24, "end": 33464.42, "probability": 0.9566 }, { "start": 33466.5, "end": 33469.3, "probability": 0.8065 }, { "start": 33470.42, "end": 33474.3, "probability": 0.9401 }, { "start": 33475.66, "end": 33478.62, "probability": 0.9495 }, { "start": 33481.02, "end": 33484.87, "probability": 0.9402 }, { "start": 33486.04, "end": 33489.94, "probability": 0.1383 }, { "start": 33490.64, "end": 33492.42, "probability": 0.405 }, { "start": 33492.62, "end": 33495.0, "probability": 0.3493 }, { "start": 33495.2, "end": 33497.0, "probability": 0.0482 }, { "start": 33498.3, "end": 33499.68, "probability": 0.005 }, { "start": 33499.98, "end": 33502.4, "probability": 0.9214 }, { "start": 33502.86, "end": 33503.12, "probability": 0.487 }, { "start": 33503.3, "end": 33504.68, "probability": 0.9257 }, { "start": 33506.1, "end": 33506.76, "probability": 0.6537 }, { "start": 33506.84, "end": 33509.95, "probability": 0.9334 }, { "start": 33510.18, "end": 33510.9, "probability": 0.6763 }, { "start": 33511.62, "end": 33512.6, "probability": 0.9875 }, { "start": 33514.02, "end": 33514.8, "probability": 0.7957 }, { "start": 33515.6, "end": 33516.13, "probability": 0.8724 }, { "start": 33516.38, "end": 33518.34, "probability": 0.7231 }, { "start": 33519.06, "end": 33521.86, "probability": 0.9146 }, { "start": 33522.82, "end": 33523.04, "probability": 0.9383 }, { "start": 33525.1, "end": 33528.6, "probability": 0.9753 }, { "start": 33529.62, "end": 33530.66, "probability": 0.6088 }, { "start": 33531.72, "end": 33532.62, "probability": 0.8869 }, { "start": 33533.34, "end": 33533.98, "probability": 0.7176 }, { "start": 33536.02, "end": 33536.74, "probability": 0.9929 }, { "start": 33537.9, "end": 33541.42, "probability": 0.9767 }, { "start": 33542.96, "end": 33545.24, "probability": 0.8905 }, { "start": 33545.94, "end": 33546.88, "probability": 0.9834 }, { "start": 33548.34, "end": 33549.32, "probability": 0.9094 }, { "start": 33550.04, "end": 33550.6, "probability": 0.827 }, { "start": 33552.74, "end": 33555.0, "probability": 0.9976 }, { "start": 33556.3, "end": 33557.34, "probability": 0.5963 }, { "start": 33558.84, "end": 33561.32, "probability": 0.7677 }, { "start": 33562.02, "end": 33565.3, "probability": 0.9777 }, { "start": 33567.14, "end": 33569.32, "probability": 0.9805 }, { "start": 33569.36, "end": 33569.96, "probability": 0.9461 }, { "start": 33571.76, "end": 33572.58, "probability": 0.8725 }, { "start": 33574.46, "end": 33576.92, "probability": 0.9601 }, { "start": 33578.08, "end": 33580.36, "probability": 0.9854 }, { "start": 33582.34, "end": 33583.46, "probability": 0.9834 }, { "start": 33583.82, "end": 33584.56, "probability": 0.9971 }, { "start": 33584.76, "end": 33585.4, "probability": 0.797 }, { "start": 33586.74, "end": 33589.3, "probability": 0.8678 }, { "start": 33590.76, "end": 33592.12, "probability": 0.9669 }, { "start": 33593.2, "end": 33594.16, "probability": 0.9943 }, { "start": 33596.84, "end": 33598.06, "probability": 0.8701 }, { "start": 33598.36, "end": 33600.48, "probability": 0.8837 }, { "start": 33600.62, "end": 33601.06, "probability": 0.701 }, { "start": 33601.62, "end": 33602.36, "probability": 0.5203 }, { "start": 33602.64, "end": 33602.8, "probability": 0.1621 }, { "start": 33603.26, "end": 33604.8, "probability": 0.9032 }, { "start": 33605.58, "end": 33608.52, "probability": 0.9457 }, { "start": 33609.5, "end": 33610.54, "probability": 0.9654 }, { "start": 33611.1, "end": 33612.06, "probability": 0.9072 }, { "start": 33612.97, "end": 33613.7, "probability": 0.9832 }, { "start": 33615.66, "end": 33616.38, "probability": 0.0106 }, { "start": 33616.38, "end": 33617.38, "probability": 0.8013 }, { "start": 33618.28, "end": 33618.9, "probability": 0.8914 }, { "start": 33619.2, "end": 33619.7, "probability": 0.6279 }, { "start": 33620.46, "end": 33622.38, "probability": 0.5591 }, { "start": 33622.88, "end": 33627.52, "probability": 0.9415 }, { "start": 33629.06, "end": 33629.82, "probability": 0.7678 }, { "start": 33630.02, "end": 33636.36, "probability": 0.8936 }, { "start": 33636.86, "end": 33637.59, "probability": 0.7204 }, { "start": 33638.68, "end": 33639.2, "probability": 0.6033 }, { "start": 33641.94, "end": 33645.0, "probability": 0.7714 }, { "start": 33646.4, "end": 33648.54, "probability": 0.6347 }, { "start": 33650.78, "end": 33651.94, "probability": 0.9912 }, { "start": 33652.52, "end": 33653.56, "probability": 0.8204 }, { "start": 33654.54, "end": 33656.78, "probability": 0.9858 }, { "start": 33657.32, "end": 33657.7, "probability": 0.8476 }, { "start": 33660.28, "end": 33662.58, "probability": 0.9608 }, { "start": 33662.74, "end": 33663.6, "probability": 0.9777 }, { "start": 33664.58, "end": 33665.3, "probability": 0.9282 }, { "start": 33667.78, "end": 33668.84, "probability": 0.8782 }, { "start": 33670.62, "end": 33671.36, "probability": 0.7509 }, { "start": 33671.98, "end": 33674.14, "probability": 0.6851 }, { "start": 33674.76, "end": 33677.22, "probability": 0.8979 }, { "start": 33677.56, "end": 33678.82, "probability": 0.7851 }, { "start": 33679.7, "end": 33680.5, "probability": 0.9036 }, { "start": 33681.52, "end": 33684.78, "probability": 0.9801 }, { "start": 33685.72, "end": 33688.96, "probability": 0.9824 }, { "start": 33691.64, "end": 33695.22, "probability": 0.7944 }, { "start": 33695.4, "end": 33698.0, "probability": 0.6663 }, { "start": 33698.32, "end": 33703.3, "probability": 0.9226 }, { "start": 33704.42, "end": 33705.72, "probability": 0.5369 }, { "start": 33707.36, "end": 33709.74, "probability": 0.8684 }, { "start": 33711.91, "end": 33713.9, "probability": 0.8176 }, { "start": 33715.0, "end": 33718.1, "probability": 0.6691 }, { "start": 33719.24, "end": 33721.26, "probability": 0.5402 }, { "start": 33722.02, "end": 33724.24, "probability": 0.8831 }, { "start": 33725.04, "end": 33725.34, "probability": 0.7896 }, { "start": 33727.58, "end": 33728.52, "probability": 0.8136 }, { "start": 33728.74, "end": 33729.3, "probability": 0.9038 }, { "start": 33729.4, "end": 33731.94, "probability": 0.8491 }, { "start": 33733.36, "end": 33734.84, "probability": 0.1672 }, { "start": 33737.33, "end": 33739.2, "probability": 0.9563 }, { "start": 33739.36, "end": 33740.9, "probability": 0.8247 }, { "start": 33741.56, "end": 33742.16, "probability": 0.9307 }, { "start": 33743.04, "end": 33743.88, "probability": 0.9868 }, { "start": 33744.66, "end": 33746.66, "probability": 0.9764 }, { "start": 33747.68, "end": 33750.82, "probability": 0.9907 }, { "start": 33752.1, "end": 33752.8, "probability": 0.758 }, { "start": 33752.94, "end": 33754.2, "probability": 0.7986 }, { "start": 33754.28, "end": 33754.7, "probability": 0.887 }, { "start": 33755.08, "end": 33755.52, "probability": 0.9617 }, { "start": 33758.26, "end": 33759.32, "probability": 0.9337 }, { "start": 33760.78, "end": 33763.2, "probability": 0.8354 }, { "start": 33764.64, "end": 33766.32, "probability": 0.9979 }, { "start": 33767.92, "end": 33770.32, "probability": 0.9539 }, { "start": 33770.88, "end": 33771.5, "probability": 0.8835 }, { "start": 33772.74, "end": 33773.48, "probability": 0.6778 }, { "start": 33774.5, "end": 33774.72, "probability": 0.9667 }, { "start": 33776.82, "end": 33782.14, "probability": 0.9658 }, { "start": 33782.44, "end": 33785.42, "probability": 0.9056 }, { "start": 33787.26, "end": 33788.28, "probability": 0.8163 }, { "start": 33788.34, "end": 33788.46, "probability": 0.8826 }, { "start": 33789.08, "end": 33789.58, "probability": 0.6011 }, { "start": 33789.64, "end": 33789.74, "probability": 0.9787 }, { "start": 33791.1, "end": 33791.58, "probability": 0.8335 }, { "start": 33792.46, "end": 33794.78, "probability": 0.8056 }, { "start": 33795.46, "end": 33796.0, "probability": 0.8113 }, { "start": 33796.74, "end": 33797.5, "probability": 0.6477 }, { "start": 33800.08, "end": 33800.78, "probability": 0.9128 }, { "start": 33801.9, "end": 33802.94, "probability": 0.6877 }, { "start": 33804.54, "end": 33806.08, "probability": 0.7951 }, { "start": 33807.5, "end": 33808.24, "probability": 0.5743 }, { "start": 33810.16, "end": 33811.22, "probability": 0.7071 }, { "start": 33812.38, "end": 33813.52, "probability": 0.939 }, { "start": 33814.38, "end": 33814.92, "probability": 0.7482 }, { "start": 33815.84, "end": 33818.26, "probability": 0.7579 }, { "start": 33819.38, "end": 33821.6, "probability": 0.855 }, { "start": 33824.9, "end": 33826.06, "probability": 0.7607 }, { "start": 33828.04, "end": 33828.62, "probability": 0.7255 }, { "start": 33829.86, "end": 33830.64, "probability": 0.978 }, { "start": 33831.38, "end": 33832.88, "probability": 0.9522 }, { "start": 33833.46, "end": 33834.6, "probability": 0.8733 }, { "start": 33835.44, "end": 33837.14, "probability": 0.8824 }, { "start": 33838.26, "end": 33838.58, "probability": 0.9812 }, { "start": 33839.3, "end": 33840.46, "probability": 0.939 }, { "start": 33841.78, "end": 33842.56, "probability": 0.6682 }, { "start": 33843.5, "end": 33845.12, "probability": 0.8784 }, { "start": 33845.98, "end": 33846.94, "probability": 0.9976 }, { "start": 33847.52, "end": 33848.74, "probability": 0.9124 }, { "start": 33849.74, "end": 33851.3, "probability": 0.9662 }, { "start": 33852.06, "end": 33852.82, "probability": 0.962 }, { "start": 33853.46, "end": 33854.4, "probability": 0.7878 }, { "start": 33854.98, "end": 33857.92, "probability": 0.9494 }, { "start": 33858.04, "end": 33861.42, "probability": 0.8141 }, { "start": 33862.26, "end": 33864.04, "probability": 0.9938 }, { "start": 33864.7, "end": 33865.96, "probability": 0.9853 }, { "start": 33866.34, "end": 33867.08, "probability": 0.6104 }, { "start": 33867.98, "end": 33868.08, "probability": 0.5786 }, { "start": 33868.16, "end": 33868.8, "probability": 0.923 }, { "start": 33869.14, "end": 33871.82, "probability": 0.9253 }, { "start": 33872.2, "end": 33874.72, "probability": 0.9544 }, { "start": 33875.62, "end": 33876.9, "probability": 0.7144 }, { "start": 33877.3, "end": 33878.49, "probability": 0.9564 }, { "start": 33879.26, "end": 33880.84, "probability": 0.8535 }, { "start": 33881.38, "end": 33883.58, "probability": 0.8052 }, { "start": 33885.52, "end": 33888.62, "probability": 0.9897 }, { "start": 33890.64, "end": 33891.04, "probability": 0.964 }, { "start": 33891.92, "end": 33892.52, "probability": 0.7725 }, { "start": 33893.64, "end": 33893.96, "probability": 0.3409 }, { "start": 33895.4, "end": 33896.24, "probability": 0.837 }, { "start": 33897.84, "end": 33898.36, "probability": 0.623 }, { "start": 33899.24, "end": 33900.64, "probability": 0.9857 }, { "start": 33901.44, "end": 33904.64, "probability": 0.7582 }, { "start": 33905.04, "end": 33906.24, "probability": 0.1385 }, { "start": 33906.76, "end": 33907.98, "probability": 0.7954 }, { "start": 33908.2, "end": 33908.68, "probability": 0.2739 }, { "start": 33909.38, "end": 33910.08, "probability": 0.8074 }, { "start": 33911.02, "end": 33912.2, "probability": 0.2358 }, { "start": 33913.81, "end": 33917.02, "probability": 0.875 }, { "start": 33919.02, "end": 33921.36, "probability": 0.7526 }, { "start": 33922.12, "end": 33923.1, "probability": 0.2546 }, { "start": 33923.1, "end": 33923.98, "probability": 0.6649 }, { "start": 33924.6, "end": 33925.84, "probability": 0.9679 }, { "start": 33926.92, "end": 33927.84, "probability": 0.9695 }, { "start": 33929.56, "end": 33930.56, "probability": 0.5853 }, { "start": 33931.12, "end": 33932.56, "probability": 0.9564 }, { "start": 33933.26, "end": 33934.54, "probability": 0.9422 }, { "start": 33936.16, "end": 33937.16, "probability": 0.7731 }, { "start": 33937.82, "end": 33939.02, "probability": 0.7834 }, { "start": 33939.78, "end": 33942.18, "probability": 0.9822 }, { "start": 33943.88, "end": 33945.97, "probability": 0.8618 }, { "start": 33947.64, "end": 33947.8, "probability": 0.8933 }, { "start": 33948.52, "end": 33949.58, "probability": 0.6821 }, { "start": 33951.0, "end": 33951.84, "probability": 0.8687 }, { "start": 33952.52, "end": 33952.82, "probability": 0.9233 }, { "start": 33954.46, "end": 33954.94, "probability": 0.8693 }, { "start": 33957.05, "end": 33959.52, "probability": 0.7158 }, { "start": 33960.1, "end": 33964.86, "probability": 0.819 }, { "start": 33964.98, "end": 33966.18, "probability": 0.8296 }, { "start": 33966.78, "end": 33967.16, "probability": 0.5281 }, { "start": 33968.14, "end": 33968.82, "probability": 0.7124 }, { "start": 33969.38, "end": 33971.18, "probability": 0.8777 }, { "start": 33972.9, "end": 33972.92, "probability": 0.752 }, { "start": 33973.84, "end": 33975.02, "probability": 0.9589 }, { "start": 33975.94, "end": 33976.48, "probability": 0.6609 }, { "start": 33979.56, "end": 33980.94, "probability": 0.9763 }, { "start": 33981.52, "end": 33985.02, "probability": 0.9238 }, { "start": 33986.08, "end": 33986.5, "probability": 0.9912 }, { "start": 33987.3, "end": 33990.34, "probability": 0.8891 }, { "start": 33990.74, "end": 33994.82, "probability": 0.8726 }, { "start": 33996.62, "end": 33997.44, "probability": 0.4921 }, { "start": 33998.4, "end": 34000.77, "probability": 0.8593 }, { "start": 34001.44, "end": 34002.8, "probability": 0.9209 }, { "start": 34002.96, "end": 34003.36, "probability": 0.9117 }, { "start": 34003.48, "end": 34004.66, "probability": 0.897 }, { "start": 34005.28, "end": 34006.18, "probability": 0.7497 }, { "start": 34007.78, "end": 34009.12, "probability": 0.8487 }, { "start": 34009.64, "end": 34010.16, "probability": 0.6392 }, { "start": 34010.9, "end": 34011.34, "probability": 0.894 }, { "start": 34013.04, "end": 34015.3, "probability": 0.8114 }, { "start": 34017.14, "end": 34019.56, "probability": 0.9841 }, { "start": 34022.04, "end": 34024.2, "probability": 0.8855 }, { "start": 34026.42, "end": 34027.3, "probability": 0.9944 }, { "start": 34028.18, "end": 34029.28, "probability": 0.9939 }, { "start": 34031.74, "end": 34032.22, "probability": 0.9861 }, { "start": 34032.28, "end": 34032.7, "probability": 0.9684 }, { "start": 34033.12, "end": 34035.36, "probability": 0.998 }, { "start": 34036.32, "end": 34037.46, "probability": 0.803 }, { "start": 34037.82, "end": 34040.18, "probability": 0.9562 }, { "start": 34040.72, "end": 34041.98, "probability": 0.8459 }, { "start": 34043.18, "end": 34043.68, "probability": 0.7926 }, { "start": 34044.32, "end": 34046.04, "probability": 0.8217 }, { "start": 34046.38, "end": 34049.0, "probability": 0.9847 }, { "start": 34049.34, "end": 34053.14, "probability": 0.9777 }, { "start": 34054.58, "end": 34055.24, "probability": 0.8557 }, { "start": 34055.78, "end": 34056.16, "probability": 0.9215 }, { "start": 34057.18, "end": 34057.42, "probability": 0.7003 }, { "start": 34058.48, "end": 34059.32, "probability": 0.9093 }, { "start": 34060.1, "end": 34062.84, "probability": 0.7786 }, { "start": 34062.98, "end": 34064.29, "probability": 0.9639 }, { "start": 34064.54, "end": 34065.9, "probability": 0.9272 }, { "start": 34066.48, "end": 34068.08, "probability": 0.7255 }, { "start": 34068.94, "end": 34070.57, "probability": 0.6202 }, { "start": 34071.88, "end": 34076.1, "probability": 0.9377 }, { "start": 34077.4, "end": 34080.52, "probability": 0.8236 }, { "start": 34080.62, "end": 34081.28, "probability": 0.9158 }, { "start": 34082.08, "end": 34084.34, "probability": 0.9346 }, { "start": 34085.14, "end": 34085.66, "probability": 0.6558 }, { "start": 34085.78, "end": 34086.56, "probability": 0.5884 }, { "start": 34086.78, "end": 34088.82, "probability": 0.9355 }, { "start": 34090.54, "end": 34091.35, "probability": 0.5942 }, { "start": 34092.06, "end": 34093.05, "probability": 0.8631 }, { "start": 34093.7, "end": 34096.22, "probability": 0.8065 }, { "start": 34096.88, "end": 34097.2, "probability": 0.5465 }, { "start": 34097.28, "end": 34098.14, "probability": 0.6937 }, { "start": 34098.24, "end": 34099.7, "probability": 0.8105 }, { "start": 34099.88, "end": 34100.16, "probability": 0.6968 }, { "start": 34100.68, "end": 34102.42, "probability": 0.7471 }, { "start": 34104.08, "end": 34105.94, "probability": 0.9491 }, { "start": 34106.36, "end": 34108.64, "probability": 0.7639 }, { "start": 34109.2, "end": 34110.34, "probability": 0.9146 }, { "start": 34111.18, "end": 34112.78, "probability": 0.9663 }, { "start": 34112.92, "end": 34113.22, "probability": 0.8518 }, { "start": 34113.28, "end": 34113.7, "probability": 0.8375 }, { "start": 34114.1, "end": 34115.06, "probability": 0.9352 }, { "start": 34115.34, "end": 34118.82, "probability": 0.9371 }, { "start": 34118.92, "end": 34119.96, "probability": 0.7172 }, { "start": 34121.04, "end": 34122.08, "probability": 0.1081 }, { "start": 34122.3, "end": 34124.66, "probability": 0.7008 }, { "start": 34126.18, "end": 34127.78, "probability": 0.9576 }, { "start": 34127.86, "end": 34128.82, "probability": 0.8516 }, { "start": 34138.46, "end": 34139.06, "probability": 0.4888 }, { "start": 34139.2, "end": 34139.62, "probability": 0.1577 }, { "start": 34139.96, "end": 34140.24, "probability": 0.1844 }, { "start": 34140.4, "end": 34140.9, "probability": 0.1118 }, { "start": 34141.07, "end": 34141.64, "probability": 0.0686 }, { "start": 34141.64, "end": 34141.64, "probability": 0.0097 }, { "start": 34150.38, "end": 34150.38, "probability": 0.1149 }, { "start": 34150.38, "end": 34150.38, "probability": 0.0859 }, { "start": 34150.38, "end": 34150.38, "probability": 0.0784 }, { "start": 34198.58, "end": 34203.2, "probability": 0.9443 }, { "start": 34204.3, "end": 34205.76, "probability": 0.9792 }, { "start": 34206.96, "end": 34209.07, "probability": 0.9952 }, { "start": 34211.16, "end": 34212.0, "probability": 0.7232 }, { "start": 34213.2, "end": 34215.76, "probability": 0.9899 }, { "start": 34217.66, "end": 34220.52, "probability": 0.9395 }, { "start": 34221.88, "end": 34223.7, "probability": 0.8855 }, { "start": 34225.2, "end": 34227.16, "probability": 0.8233 }, { "start": 34228.18, "end": 34230.18, "probability": 0.9201 }, { "start": 34231.06, "end": 34231.72, "probability": 0.9604 }, { "start": 34233.92, "end": 34238.38, "probability": 0.9978 }, { "start": 34239.64, "end": 34243.88, "probability": 0.9186 }, { "start": 34244.94, "end": 34248.26, "probability": 0.9541 }, { "start": 34249.4, "end": 34251.88, "probability": 0.9483 }, { "start": 34252.44, "end": 34253.48, "probability": 0.8074 }, { "start": 34254.2, "end": 34259.62, "probability": 0.9897 }, { "start": 34261.38, "end": 34265.94, "probability": 0.9966 }, { "start": 34267.12, "end": 34273.04, "probability": 0.9873 }, { "start": 34275.08, "end": 34277.04, "probability": 0.9992 }, { "start": 34278.18, "end": 34280.9, "probability": 0.9864 }, { "start": 34281.88, "end": 34285.62, "probability": 0.9819 }, { "start": 34286.36, "end": 34292.68, "probability": 0.9967 }, { "start": 34293.34, "end": 34294.76, "probability": 0.9929 }, { "start": 34296.38, "end": 34299.04, "probability": 0.8374 }, { "start": 34300.04, "end": 34303.9, "probability": 0.9864 }, { "start": 34305.1, "end": 34308.16, "probability": 0.9981 }, { "start": 34308.96, "end": 34312.56, "probability": 0.9525 }, { "start": 34313.94, "end": 34314.76, "probability": 0.7455 }, { "start": 34315.82, "end": 34321.36, "probability": 0.973 }, { "start": 34322.38, "end": 34326.02, "probability": 0.693 }, { "start": 34326.84, "end": 34329.08, "probability": 0.91 }, { "start": 34330.16, "end": 34334.98, "probability": 0.9731 }, { "start": 34334.98, "end": 34342.7, "probability": 0.9803 }, { "start": 34343.88, "end": 34346.52, "probability": 0.9932 }, { "start": 34347.34, "end": 34352.82, "probability": 0.8374 }, { "start": 34354.04, "end": 34356.94, "probability": 0.9944 }, { "start": 34356.94, "end": 34361.56, "probability": 0.9948 }, { "start": 34362.24, "end": 34363.76, "probability": 0.7704 }, { "start": 34364.64, "end": 34369.12, "probability": 0.9624 }, { "start": 34369.78, "end": 34370.96, "probability": 0.9977 }, { "start": 34372.3, "end": 34372.86, "probability": 0.6724 }, { "start": 34373.26, "end": 34377.34, "probability": 0.9889 }, { "start": 34378.4, "end": 34379.16, "probability": 0.9892 }, { "start": 34379.98, "end": 34380.7, "probability": 0.9949 }, { "start": 34381.48, "end": 34383.84, "probability": 0.9052 }, { "start": 34384.48, "end": 34385.48, "probability": 0.9412 }, { "start": 34386.22, "end": 34390.3, "probability": 0.9928 }, { "start": 34391.22, "end": 34396.0, "probability": 0.9552 }, { "start": 34396.78, "end": 34398.16, "probability": 0.9543 }, { "start": 34399.18, "end": 34402.28, "probability": 0.9863 }, { "start": 34403.08, "end": 34404.94, "probability": 0.9292 }, { "start": 34405.82, "end": 34408.82, "probability": 0.9712 }, { "start": 34409.48, "end": 34410.32, "probability": 0.9867 }, { "start": 34410.84, "end": 34412.18, "probability": 0.9867 }, { "start": 34412.78, "end": 34413.78, "probability": 0.9878 }, { "start": 34414.42, "end": 34415.58, "probability": 0.9231 }, { "start": 34417.1, "end": 34420.38, "probability": 0.9735 }, { "start": 34421.9, "end": 34422.96, "probability": 0.9087 }, { "start": 34423.98, "end": 34424.98, "probability": 0.7762 }, { "start": 34426.2, "end": 34427.2, "probability": 0.9668 }, { "start": 34427.78, "end": 34429.72, "probability": 0.8042 }, { "start": 34430.56, "end": 34431.36, "probability": 0.9332 }, { "start": 34432.26, "end": 34434.34, "probability": 0.9663 }, { "start": 34435.2, "end": 34436.8, "probability": 0.7943 }, { "start": 34436.96, "end": 34438.64, "probability": 0.9295 }, { "start": 34438.68, "end": 34439.66, "probability": 0.757 }, { "start": 34440.92, "end": 34440.92, "probability": 0.0001 }, { "start": 34440.92, "end": 34443.14, "probability": 0.7991 }, { "start": 34444.24, "end": 34446.72, "probability": 0.9844 }, { "start": 34447.38, "end": 34449.94, "probability": 0.9939 }, { "start": 34451.36, "end": 34453.16, "probability": 0.8526 }, { "start": 34454.48, "end": 34457.56, "probability": 0.9909 }, { "start": 34458.7, "end": 34461.04, "probability": 0.9372 }, { "start": 34461.88, "end": 34465.88, "probability": 0.9659 }, { "start": 34465.88, "end": 34469.58, "probability": 0.9998 }, { "start": 34470.24, "end": 34472.04, "probability": 0.8267 }, { "start": 34473.14, "end": 34476.86, "probability": 0.9609 }, { "start": 34477.7, "end": 34478.86, "probability": 0.6893 }, { "start": 34479.74, "end": 34480.58, "probability": 0.966 }, { "start": 34481.32, "end": 34483.12, "probability": 0.6217 }, { "start": 34484.04, "end": 34489.82, "probability": 0.9966 }, { "start": 34490.34, "end": 34493.72, "probability": 0.998 }, { "start": 34495.28, "end": 34499.6, "probability": 0.7005 }, { "start": 34500.46, "end": 34503.28, "probability": 0.9982 }, { "start": 34504.08, "end": 34508.8, "probability": 0.9888 }, { "start": 34509.66, "end": 34510.54, "probability": 0.9411 }, { "start": 34511.4, "end": 34512.08, "probability": 0.9039 }, { "start": 34512.78, "end": 34513.56, "probability": 0.6997 }, { "start": 34515.56, "end": 34517.52, "probability": 0.9963 }, { "start": 34518.04, "end": 34519.46, "probability": 0.8962 }, { "start": 34520.08, "end": 34524.6, "probability": 0.998 }, { "start": 34525.42, "end": 34530.68, "probability": 0.9893 }, { "start": 34534.37, "end": 34537.56, "probability": 0.6363 }, { "start": 34538.56, "end": 34541.54, "probability": 0.999 }, { "start": 34542.24, "end": 34545.48, "probability": 0.8298 }, { "start": 34546.14, "end": 34547.6, "probability": 0.9792 }, { "start": 34548.88, "end": 34553.4, "probability": 0.976 }, { "start": 34553.4, "end": 34557.36, "probability": 0.9983 }, { "start": 34558.2, "end": 34561.54, "probability": 0.9673 }, { "start": 34562.74, "end": 34563.92, "probability": 0.8467 }, { "start": 34564.54, "end": 34569.92, "probability": 0.983 }, { "start": 34571.36, "end": 34573.98, "probability": 0.8324 }, { "start": 34575.7, "end": 34577.62, "probability": 0.9381 }, { "start": 34579.53, "end": 34581.58, "probability": 0.6866 }, { "start": 34582.24, "end": 34583.52, "probability": 0.8965 }, { "start": 34584.8, "end": 34585.43, "probability": 0.959 }, { "start": 34588.06, "end": 34589.0, "probability": 0.9724 }, { "start": 34589.32, "end": 34592.58, "probability": 0.9924 }, { "start": 34592.58, "end": 34597.54, "probability": 0.989 }, { "start": 34599.08, "end": 34602.62, "probability": 0.9383 }, { "start": 34603.56, "end": 34606.68, "probability": 0.9837 }, { "start": 34608.32, "end": 34609.64, "probability": 0.5893 }, { "start": 34610.5, "end": 34614.28, "probability": 0.9015 }, { "start": 34615.3, "end": 34617.08, "probability": 0.937 }, { "start": 34618.34, "end": 34622.66, "probability": 0.7788 }, { "start": 34623.98, "end": 34625.7, "probability": 0.8053 }, { "start": 34626.94, "end": 34629.4, "probability": 0.9799 }, { "start": 34631.18, "end": 34631.46, "probability": 0.9277 }, { "start": 34632.8, "end": 34636.06, "probability": 0.9865 }, { "start": 34637.06, "end": 34640.12, "probability": 0.931 }, { "start": 34643.21, "end": 34645.06, "probability": 0.9777 }, { "start": 34645.7, "end": 34647.0, "probability": 0.5516 }, { "start": 34648.4, "end": 34649.8, "probability": 0.5867 }, { "start": 34651.34, "end": 34652.94, "probability": 0.9899 }, { "start": 34653.84, "end": 34660.12, "probability": 0.9955 }, { "start": 34661.48, "end": 34661.94, "probability": 0.9135 }, { "start": 34662.86, "end": 34668.14, "probability": 0.9976 }, { "start": 34669.36, "end": 34672.56, "probability": 0.9909 }, { "start": 34672.7, "end": 34673.77, "probability": 0.998 }, { "start": 34675.02, "end": 34677.06, "probability": 0.9785 }, { "start": 34678.14, "end": 34680.7, "probability": 0.9972 }, { "start": 34680.72, "end": 34684.12, "probability": 0.9985 }, { "start": 34685.46, "end": 34688.16, "probability": 0.9707 }, { "start": 34689.26, "end": 34689.8, "probability": 0.7939 }, { "start": 34690.84, "end": 34692.7, "probability": 0.9532 }, { "start": 34694.04, "end": 34699.38, "probability": 0.9729 }, { "start": 34700.16, "end": 34704.68, "probability": 0.9734 }, { "start": 34704.68, "end": 34708.76, "probability": 0.9693 }, { "start": 34710.26, "end": 34713.82, "probability": 0.9974 }, { "start": 34714.58, "end": 34719.49, "probability": 0.9958 }, { "start": 34720.22, "end": 34725.07, "probability": 0.9976 }, { "start": 34726.9, "end": 34730.32, "probability": 0.805 }, { "start": 34731.36, "end": 34731.84, "probability": 0.8835 }, { "start": 34733.2, "end": 34737.06, "probability": 0.9808 }, { "start": 34737.7, "end": 34741.42, "probability": 0.9873 }, { "start": 34741.8, "end": 34747.86, "probability": 0.9558 }, { "start": 34748.76, "end": 34750.0, "probability": 0.6566 }, { "start": 34751.1, "end": 34752.62, "probability": 0.79 }, { "start": 34753.66, "end": 34754.6, "probability": 0.8745 }, { "start": 34755.58, "end": 34760.92, "probability": 0.9906 }, { "start": 34760.92, "end": 34768.24, "probability": 0.9946 }, { "start": 34770.26, "end": 34770.94, "probability": 0.6911 }, { "start": 34772.06, "end": 34776.58, "probability": 0.9973 }, { "start": 34777.2, "end": 34778.86, "probability": 0.981 }, { "start": 34779.96, "end": 34782.66, "probability": 0.8706 }, { "start": 34783.72, "end": 34789.42, "probability": 0.9951 }, { "start": 34790.62, "end": 34793.14, "probability": 0.764 }, { "start": 34794.22, "end": 34794.84, "probability": 0.7267 }, { "start": 34795.72, "end": 34798.62, "probability": 0.995 }, { "start": 34800.0, "end": 34801.46, "probability": 0.9933 }, { "start": 34803.34, "end": 34804.28, "probability": 0.3855 }, { "start": 34805.04, "end": 34806.78, "probability": 0.9807 }, { "start": 34807.54, "end": 34810.66, "probability": 0.9959 }, { "start": 34811.58, "end": 34815.22, "probability": 0.9956 }, { "start": 34816.12, "end": 34818.34, "probability": 0.9058 }, { "start": 34819.58, "end": 34820.44, "probability": 0.7361 }, { "start": 34822.1, "end": 34823.78, "probability": 0.9474 }, { "start": 34824.98, "end": 34827.52, "probability": 0.9973 }, { "start": 34828.2, "end": 34830.44, "probability": 0.8592 }, { "start": 34831.08, "end": 34833.88, "probability": 0.9342 }, { "start": 34834.96, "end": 34838.38, "probability": 0.9929 }, { "start": 34838.38, "end": 34841.96, "probability": 0.9978 }, { "start": 34842.92, "end": 34846.72, "probability": 0.9951 }, { "start": 34847.56, "end": 34852.3, "probability": 0.9942 }, { "start": 34853.52, "end": 34855.9, "probability": 0.9395 }, { "start": 34856.74, "end": 34858.62, "probability": 0.9117 }, { "start": 34859.14, "end": 34860.78, "probability": 0.8477 }, { "start": 34861.54, "end": 34864.94, "probability": 0.9717 }, { "start": 34865.7, "end": 34869.16, "probability": 0.9927 }, { "start": 34869.7, "end": 34871.68, "probability": 0.9964 }, { "start": 34874.14, "end": 34875.94, "probability": 0.9912 }, { "start": 34877.94, "end": 34880.78, "probability": 0.8933 }, { "start": 34881.84, "end": 34882.2, "probability": 0.5905 }, { "start": 34882.96, "end": 34885.96, "probability": 0.9328 }, { "start": 34886.84, "end": 34889.3, "probability": 0.9947 }, { "start": 34889.92, "end": 34893.36, "probability": 0.9993 }, { "start": 34894.24, "end": 34900.28, "probability": 0.9587 }, { "start": 34900.88, "end": 34901.44, "probability": 0.8302 }, { "start": 34902.12, "end": 34903.0, "probability": 0.8193 }, { "start": 34903.56, "end": 34907.32, "probability": 0.9949 }, { "start": 34907.94, "end": 34908.74, "probability": 0.9319 }, { "start": 34910.02, "end": 34911.02, "probability": 0.9478 }, { "start": 34912.48, "end": 34915.0, "probability": 0.9902 }, { "start": 34916.64, "end": 34918.26, "probability": 0.9548 }, { "start": 34919.08, "end": 34921.16, "probability": 0.9664 }, { "start": 34922.26, "end": 34922.68, "probability": 0.994 }, { "start": 34924.28, "end": 34926.32, "probability": 0.999 }, { "start": 34927.12, "end": 34928.98, "probability": 0.9991 }, { "start": 34929.58, "end": 34930.58, "probability": 0.9621 }, { "start": 34931.42, "end": 34932.68, "probability": 0.804 }, { "start": 34933.66, "end": 34937.34, "probability": 0.6821 }, { "start": 34938.16, "end": 34943.9, "probability": 0.9846 }, { "start": 34944.6, "end": 34945.94, "probability": 0.9905 }, { "start": 34946.72, "end": 34947.44, "probability": 0.9334 }, { "start": 34949.24, "end": 34949.84, "probability": 0.8422 }, { "start": 34950.42, "end": 34954.38, "probability": 0.9624 }, { "start": 34955.72, "end": 34957.46, "probability": 0.9351 }, { "start": 34958.12, "end": 34959.42, "probability": 0.8236 }, { "start": 34960.48, "end": 34962.38, "probability": 0.8375 }, { "start": 34963.4, "end": 34964.36, "probability": 0.9575 }, { "start": 34966.38, "end": 34966.78, "probability": 0.8112 }, { "start": 34968.7, "end": 34974.04, "probability": 0.9862 }, { "start": 34974.62, "end": 34978.04, "probability": 0.9827 }, { "start": 34979.4, "end": 34980.84, "probability": 0.907 }, { "start": 34983.4, "end": 34986.28, "probability": 0.9316 }, { "start": 34987.28, "end": 34990.4, "probability": 0.4968 }, { "start": 34991.62, "end": 34993.14, "probability": 0.4733 }, { "start": 34994.18, "end": 34996.16, "probability": 0.7432 }, { "start": 34997.4, "end": 34998.72, "probability": 0.8171 }, { "start": 34999.76, "end": 35001.36, "probability": 0.8103 }, { "start": 35002.28, "end": 35003.64, "probability": 0.9576 }, { "start": 35004.74, "end": 35005.26, "probability": 0.6967 }, { "start": 35005.78, "end": 35007.82, "probability": 0.9885 }, { "start": 35008.52, "end": 35008.94, "probability": 0.6459 }, { "start": 35011.22, "end": 35016.7, "probability": 0.9384 }, { "start": 35018.76, "end": 35019.26, "probability": 0.7142 }, { "start": 35019.94, "end": 35024.46, "probability": 0.9968 }, { "start": 35025.76, "end": 35027.18, "probability": 0.9409 }, { "start": 35028.24, "end": 35034.92, "probability": 0.993 }, { "start": 35035.54, "end": 35036.54, "probability": 0.9772 }, { "start": 35038.66, "end": 35042.72, "probability": 0.9637 }, { "start": 35042.72, "end": 35047.52, "probability": 0.9677 }, { "start": 35048.14, "end": 35049.28, "probability": 0.8579 }, { "start": 35053.1, "end": 35054.22, "probability": 0.6844 }, { "start": 35055.22, "end": 35059.18, "probability": 0.9972 }, { "start": 35060.0, "end": 35063.1, "probability": 0.9605 }, { "start": 35064.14, "end": 35065.64, "probability": 0.9932 }, { "start": 35066.26, "end": 35068.38, "probability": 0.9672 }, { "start": 35069.48, "end": 35070.77, "probability": 0.9111 }, { "start": 35073.48, "end": 35074.08, "probability": 0.7872 }, { "start": 35074.68, "end": 35076.48, "probability": 0.9594 }, { "start": 35077.56, "end": 35081.34, "probability": 0.9728 }, { "start": 35082.84, "end": 35084.58, "probability": 0.988 }, { "start": 35086.78, "end": 35088.8, "probability": 0.9969 }, { "start": 35089.68, "end": 35092.2, "probability": 0.9966 }, { "start": 35092.52, "end": 35094.14, "probability": 0.7995 }, { "start": 35094.96, "end": 35097.38, "probability": 0.9928 }, { "start": 35098.1, "end": 35098.92, "probability": 0.7438 }, { "start": 35101.66, "end": 35104.7, "probability": 0.9559 }, { "start": 35105.56, "end": 35106.98, "probability": 0.9188 }, { "start": 35107.78, "end": 35108.28, "probability": 0.7073 }, { "start": 35109.4, "end": 35110.38, "probability": 0.6272 }, { "start": 35110.98, "end": 35111.66, "probability": 0.6775 }, { "start": 35112.44, "end": 35115.22, "probability": 0.9977 }, { "start": 35116.04, "end": 35118.22, "probability": 0.9885 }, { "start": 35120.68, "end": 35123.32, "probability": 0.9979 }, { "start": 35123.56, "end": 35126.02, "probability": 0.7179 }, { "start": 35127.04, "end": 35130.12, "probability": 0.8465 }, { "start": 35131.28, "end": 35132.14, "probability": 0.5461 }, { "start": 35133.48, "end": 35135.62, "probability": 0.9931 }, { "start": 35136.48, "end": 35138.6, "probability": 0.9104 }, { "start": 35139.28, "end": 35144.78, "probability": 0.9409 }, { "start": 35148.45, "end": 35150.58, "probability": 0.7367 }, { "start": 35152.06, "end": 35154.32, "probability": 0.9341 }, { "start": 35157.4, "end": 35159.48, "probability": 0.7202 }, { "start": 35159.72, "end": 35160.42, "probability": 0.9431 }, { "start": 35162.0, "end": 35166.84, "probability": 0.9124 }, { "start": 35169.4, "end": 35172.82, "probability": 0.9799 }, { "start": 35173.5, "end": 35174.46, "probability": 0.6977 }, { "start": 35175.32, "end": 35176.54, "probability": 0.9551 }, { "start": 35178.1, "end": 35181.96, "probability": 0.9895 }, { "start": 35184.1, "end": 35185.9, "probability": 0.5204 }, { "start": 35186.5, "end": 35189.6, "probability": 0.958 }, { "start": 35190.48, "end": 35193.28, "probability": 0.9653 }, { "start": 35193.86, "end": 35196.08, "probability": 0.7377 }, { "start": 35197.8, "end": 35198.72, "probability": 0.9791 }, { "start": 35199.74, "end": 35201.0, "probability": 0.7683 }, { "start": 35201.86, "end": 35203.94, "probability": 0.9914 }, { "start": 35204.9, "end": 35209.6, "probability": 0.9696 }, { "start": 35212.56, "end": 35213.2, "probability": 0.4994 }, { "start": 35213.92, "end": 35217.48, "probability": 0.9011 }, { "start": 35219.0, "end": 35221.7, "probability": 0.8584 }, { "start": 35223.0, "end": 35224.74, "probability": 0.9805 }, { "start": 35225.78, "end": 35230.44, "probability": 0.954 }, { "start": 35231.64, "end": 35232.66, "probability": 0.3588 }, { "start": 35233.24, "end": 35234.42, "probability": 0.8255 }, { "start": 35235.34, "end": 35237.28, "probability": 0.708 }, { "start": 35240.38, "end": 35244.33, "probability": 0.9873 }, { "start": 35249.5, "end": 35250.64, "probability": 0.7634 }, { "start": 35252.12, "end": 35253.64, "probability": 0.5468 }, { "start": 35254.58, "end": 35258.18, "probability": 0.8439 }, { "start": 35258.84, "end": 35261.88, "probability": 0.8473 }, { "start": 35262.76, "end": 35263.8, "probability": 0.7066 }, { "start": 35265.2, "end": 35267.2, "probability": 0.6834 }, { "start": 35268.04, "end": 35270.38, "probability": 0.9602 }, { "start": 35272.66, "end": 35279.42, "probability": 0.9974 }, { "start": 35280.22, "end": 35288.14, "probability": 0.9985 }, { "start": 35289.34, "end": 35293.7, "probability": 0.9988 }, { "start": 35294.36, "end": 35294.58, "probability": 0.4342 }, { "start": 35295.42, "end": 35295.66, "probability": 0.9943 }, { "start": 35296.46, "end": 35298.06, "probability": 0.626 }, { "start": 35299.12, "end": 35300.14, "probability": 0.8503 }, { "start": 35300.9, "end": 35303.7, "probability": 0.9716 }, { "start": 35304.4, "end": 35305.6, "probability": 0.8964 }, { "start": 35306.14, "end": 35307.2, "probability": 0.8936 }, { "start": 35307.64, "end": 35309.14, "probability": 0.9728 }, { "start": 35309.98, "end": 35314.16, "probability": 0.9971 }, { "start": 35314.9, "end": 35319.14, "probability": 0.9993 }, { "start": 35319.96, "end": 35325.72, "probability": 0.998 }, { "start": 35326.9, "end": 35328.26, "probability": 0.887 }, { "start": 35329.12, "end": 35329.94, "probability": 0.9712 }, { "start": 35330.48, "end": 35335.62, "probability": 0.9122 }, { "start": 35337.38, "end": 35339.1, "probability": 0.3919 }, { "start": 35339.98, "end": 35341.6, "probability": 0.9403 }, { "start": 35342.44, "end": 35344.22, "probability": 0.8789 }, { "start": 35344.88, "end": 35352.0, "probability": 0.973 }, { "start": 35352.38, "end": 35354.1, "probability": 0.9136 }, { "start": 35354.54, "end": 35358.0, "probability": 0.9945 }, { "start": 35358.54, "end": 35361.06, "probability": 0.9888 }, { "start": 35361.48, "end": 35367.0, "probability": 0.9968 }, { "start": 35367.68, "end": 35375.04, "probability": 0.9893 }, { "start": 35375.7, "end": 35378.22, "probability": 0.9937 }, { "start": 35379.98, "end": 35382.86, "probability": 0.8784 }, { "start": 35384.06, "end": 35384.26, "probability": 0.123 }, { "start": 35385.4, "end": 35387.68, "probability": 0.8967 }, { "start": 35388.54, "end": 35390.18, "probability": 0.9773 }, { "start": 35391.74, "end": 35394.8, "probability": 0.9858 }, { "start": 35395.82, "end": 35397.5, "probability": 0.9419 }, { "start": 35399.08, "end": 35401.03, "probability": 0.9961 }, { "start": 35402.84, "end": 35405.62, "probability": 0.9108 }, { "start": 35406.6, "end": 35408.66, "probability": 0.7457 }, { "start": 35410.0, "end": 35412.0, "probability": 0.9655 }, { "start": 35413.16, "end": 35418.54, "probability": 0.9976 }, { "start": 35419.78, "end": 35424.18, "probability": 0.9896 }, { "start": 35424.98, "end": 35428.22, "probability": 0.9995 }, { "start": 35429.1, "end": 35429.68, "probability": 0.8683 }, { "start": 35430.7, "end": 35431.86, "probability": 0.9587 }, { "start": 35433.52, "end": 35437.06, "probability": 0.9974 }, { "start": 35438.12, "end": 35439.54, "probability": 0.9467 }, { "start": 35441.54, "end": 35445.32, "probability": 0.9937 }, { "start": 35445.94, "end": 35447.94, "probability": 0.9744 }, { "start": 35448.7, "end": 35451.38, "probability": 0.9993 }, { "start": 35452.5, "end": 35453.3, "probability": 0.8455 }, { "start": 35456.2, "end": 35457.62, "probability": 0.6489 }, { "start": 35458.92, "end": 35462.44, "probability": 0.9872 }, { "start": 35464.06, "end": 35464.92, "probability": 0.9469 }, { "start": 35465.9, "end": 35466.72, "probability": 0.9248 }, { "start": 35467.44, "end": 35468.64, "probability": 0.9868 }, { "start": 35470.08, "end": 35472.86, "probability": 0.9921 }, { "start": 35475.02, "end": 35475.58, "probability": 0.6475 }, { "start": 35476.44, "end": 35477.12, "probability": 0.8799 }, { "start": 35478.02, "end": 35483.12, "probability": 0.9203 }, { "start": 35483.12, "end": 35488.48, "probability": 0.9943 }, { "start": 35489.02, "end": 35490.36, "probability": 0.6935 }, { "start": 35493.06, "end": 35494.84, "probability": 0.9871 }, { "start": 35495.44, "end": 35500.14, "probability": 0.9446 }, { "start": 35501.12, "end": 35507.2, "probability": 0.9832 }, { "start": 35508.22, "end": 35508.76, "probability": 0.881 }, { "start": 35509.96, "end": 35514.14, "probability": 0.9943 }, { "start": 35514.96, "end": 35516.08, "probability": 0.999 }, { "start": 35516.92, "end": 35517.26, "probability": 0.6221 }, { "start": 35518.78, "end": 35523.78, "probability": 0.9813 }, { "start": 35524.56, "end": 35526.74, "probability": 0.946 }, { "start": 35527.4, "end": 35528.92, "probability": 0.9605 }, { "start": 35529.54, "end": 35533.58, "probability": 0.958 }, { "start": 35535.48, "end": 35536.98, "probability": 0.6975 }, { "start": 35538.02, "end": 35543.2, "probability": 0.8841 }, { "start": 35543.7, "end": 35546.74, "probability": 0.9665 }, { "start": 35547.66, "end": 35548.2, "probability": 0.4343 }, { "start": 35549.28, "end": 35552.0, "probability": 0.9885 }, { "start": 35552.66, "end": 35555.84, "probability": 0.9938 }, { "start": 35556.36, "end": 35558.76, "probability": 0.9972 }, { "start": 35559.82, "end": 35561.38, "probability": 0.9755 }, { "start": 35564.1, "end": 35565.8, "probability": 0.9461 }, { "start": 35566.82, "end": 35567.42, "probability": 0.8681 }, { "start": 35568.8, "end": 35570.94, "probability": 0.9984 }, { "start": 35571.82, "end": 35574.44, "probability": 0.9995 }, { "start": 35575.48, "end": 35579.08, "probability": 0.9615 }, { "start": 35579.3, "end": 35580.5, "probability": 0.8203 }, { "start": 35582.62, "end": 35582.9, "probability": 0.7168 }, { "start": 35584.1, "end": 35584.82, "probability": 0.8791 }, { "start": 35585.98, "end": 35586.74, "probability": 0.8916 }, { "start": 35587.72, "end": 35591.2, "probability": 0.9878 }, { "start": 35592.06, "end": 35593.94, "probability": 0.9961 }, { "start": 35594.8, "end": 35597.2, "probability": 0.9736 }, { "start": 35598.04, "end": 35601.36, "probability": 0.8335 }, { "start": 35602.94, "end": 35606.7, "probability": 0.9803 }, { "start": 35607.92, "end": 35610.14, "probability": 0.7443 }, { "start": 35611.06, "end": 35612.62, "probability": 0.9884 }, { "start": 35613.38, "end": 35615.58, "probability": 0.9803 }, { "start": 35616.54, "end": 35619.03, "probability": 0.9956 }, { "start": 35619.92, "end": 35621.74, "probability": 0.9685 }, { "start": 35621.82, "end": 35624.48, "probability": 0.9404 }, { "start": 35625.16, "end": 35628.6, "probability": 0.9945 }, { "start": 35628.78, "end": 35630.46, "probability": 0.9993 }, { "start": 35631.04, "end": 35633.4, "probability": 0.9971 }, { "start": 35634.02, "end": 35636.16, "probability": 0.9949 }, { "start": 35636.98, "end": 35638.72, "probability": 0.9782 }, { "start": 35640.54, "end": 35641.86, "probability": 0.9578 }, { "start": 35643.34, "end": 35643.64, "probability": 0.8986 }, { "start": 35645.74, "end": 35650.94, "probability": 0.9951 }, { "start": 35651.6, "end": 35652.42, "probability": 0.9714 }, { "start": 35653.36, "end": 35656.92, "probability": 0.9079 }, { "start": 35657.6, "end": 35660.08, "probability": 0.9946 }, { "start": 35660.68, "end": 35663.44, "probability": 0.9783 }, { "start": 35664.22, "end": 35665.04, "probability": 0.9882 }, { "start": 35665.84, "end": 35666.64, "probability": 0.7548 }, { "start": 35668.66, "end": 35673.56, "probability": 0.999 }, { "start": 35675.12, "end": 35678.7, "probability": 0.9661 }, { "start": 35679.88, "end": 35682.78, "probability": 0.9097 }, { "start": 35683.98, "end": 35685.0, "probability": 0.746 }, { "start": 35687.08, "end": 35691.66, "probability": 0.9683 }, { "start": 35693.78, "end": 35697.28, "probability": 0.9446 }, { "start": 35697.92, "end": 35701.76, "probability": 0.9956 }, { "start": 35704.36, "end": 35706.32, "probability": 0.962 }, { "start": 35707.16, "end": 35708.6, "probability": 0.998 }, { "start": 35710.0, "end": 35711.72, "probability": 0.8607 }, { "start": 35712.48, "end": 35716.44, "probability": 0.9673 }, { "start": 35717.3, "end": 35717.98, "probability": 0.8872 }, { "start": 35719.18, "end": 35721.58, "probability": 0.995 }, { "start": 35722.72, "end": 35729.16, "probability": 0.9942 }, { "start": 35729.7, "end": 35732.52, "probability": 0.9985 }, { "start": 35733.36, "end": 35734.48, "probability": 0.8035 }, { "start": 35735.7, "end": 35737.28, "probability": 0.9619 }, { "start": 35738.1, "end": 35740.2, "probability": 0.9912 }, { "start": 35740.86, "end": 35744.26, "probability": 0.9637 }, { "start": 35749.08, "end": 35752.0, "probability": 0.9846 }, { "start": 35753.18, "end": 35754.72, "probability": 0.9853 }, { "start": 35756.6, "end": 35759.78, "probability": 0.9893 }, { "start": 35760.82, "end": 35761.78, "probability": 0.9971 }, { "start": 35762.98, "end": 35765.9, "probability": 0.9911 }, { "start": 35768.44, "end": 35770.98, "probability": 0.907 }, { "start": 35772.2, "end": 35774.34, "probability": 0.9458 }, { "start": 35776.48, "end": 35777.5, "probability": 0.9831 }, { "start": 35778.06, "end": 35778.87, "probability": 0.5483 }, { "start": 35779.72, "end": 35781.18, "probability": 0.8398 }, { "start": 35782.06, "end": 35783.74, "probability": 0.9425 }, { "start": 35784.88, "end": 35788.7, "probability": 0.9337 }, { "start": 35788.78, "end": 35791.62, "probability": 0.2525 }, { "start": 35792.76, "end": 35795.36, "probability": 0.8389 }, { "start": 35795.5, "end": 35797.16, "probability": 0.9907 }, { "start": 35797.36, "end": 35798.14, "probability": 0.9114 }, { "start": 35798.94, "end": 35801.68, "probability": 0.6839 }, { "start": 35803.4, "end": 35805.3, "probability": 0.9734 }, { "start": 35806.02, "end": 35806.74, "probability": 0.8994 }, { "start": 35807.42, "end": 35808.02, "probability": 0.2748 }, { "start": 35808.88, "end": 35809.6, "probability": 0.9647 }, { "start": 35810.9, "end": 35812.76, "probability": 0.919 }, { "start": 35813.36, "end": 35814.78, "probability": 0.9958 }, { "start": 35816.06, "end": 35818.18, "probability": 0.9261 }, { "start": 35818.3, "end": 35819.2, "probability": 0.8839 }, { "start": 35819.58, "end": 35820.12, "probability": 0.5386 }, { "start": 35821.08, "end": 35823.24, "probability": 0.9666 }, { "start": 35824.42, "end": 35826.88, "probability": 0.9644 }, { "start": 35827.46, "end": 35831.1, "probability": 0.9919 }, { "start": 35833.18, "end": 35837.34, "probability": 0.9766 }, { "start": 35843.46, "end": 35846.01, "probability": 0.8446 }, { "start": 35846.96, "end": 35847.66, "probability": 0.8761 }, { "start": 35848.76, "end": 35851.04, "probability": 0.988 }, { "start": 35851.66, "end": 35853.78, "probability": 0.9303 }, { "start": 35854.68, "end": 35855.76, "probability": 0.9487 }, { "start": 35857.46, "end": 35858.54, "probability": 0.8177 }, { "start": 35860.38, "end": 35860.58, "probability": 0.538 }, { "start": 35861.82, "end": 35862.82, "probability": 0.9201 }, { "start": 35863.56, "end": 35865.72, "probability": 0.9616 }, { "start": 35866.26, "end": 35872.64, "probability": 0.9783 }, { "start": 35876.13, "end": 35878.18, "probability": 0.9785 }, { "start": 35882.32, "end": 35884.5, "probability": 0.9856 }, { "start": 35885.4, "end": 35887.2, "probability": 0.9836 }, { "start": 35888.3, "end": 35894.96, "probability": 0.9944 }, { "start": 35896.6, "end": 35897.6, "probability": 0.7244 }, { "start": 35899.02, "end": 35901.64, "probability": 0.9461 }, { "start": 35903.96, "end": 35905.62, "probability": 0.9907 }, { "start": 35907.52, "end": 35908.9, "probability": 0.8118 }, { "start": 35909.56, "end": 35912.5, "probability": 0.9494 }, { "start": 35913.06, "end": 35913.74, "probability": 0.98 }, { "start": 35915.0, "end": 35916.44, "probability": 0.7115 }, { "start": 35918.06, "end": 35920.9, "probability": 0.8335 }, { "start": 35921.54, "end": 35922.04, "probability": 0.9282 }, { "start": 35923.88, "end": 35925.18, "probability": 0.8113 }, { "start": 35925.82, "end": 35926.98, "probability": 0.9251 }, { "start": 35927.64, "end": 35928.3, "probability": 0.4633 }, { "start": 35929.26, "end": 35934.68, "probability": 0.9985 }, { "start": 35935.94, "end": 35937.26, "probability": 0.9868 }, { "start": 35938.3, "end": 35939.26, "probability": 0.6827 }, { "start": 35940.12, "end": 35944.66, "probability": 0.9929 }, { "start": 35946.24, "end": 35947.0, "probability": 0.5788 }, { "start": 35947.34, "end": 35952.6, "probability": 0.9962 }, { "start": 35953.26, "end": 35954.58, "probability": 0.9901 }, { "start": 35955.48, "end": 35956.46, "probability": 0.7536 }, { "start": 35957.98, "end": 35960.78, "probability": 0.999 }, { "start": 35961.58, "end": 35963.32, "probability": 0.9178 }, { "start": 35964.04, "end": 35969.26, "probability": 0.9976 }, { "start": 35970.06, "end": 35971.98, "probability": 0.9868 }, { "start": 35972.46, "end": 35972.74, "probability": 0.7941 }, { "start": 35973.2, "end": 35973.7, "probability": 0.5069 }, { "start": 35973.74, "end": 35974.96, "probability": 0.8455 }, { "start": 35990.52, "end": 35990.86, "probability": 0.5634 }, { "start": 35990.86, "end": 35990.86, "probability": 0.1036 }, { "start": 35990.86, "end": 35990.86, "probability": 0.0498 }, { "start": 36008.52, "end": 36008.62, "probability": 0.1205 }, { "start": 36008.76, "end": 36008.86, "probability": 0.1557 }, { "start": 36008.86, "end": 36008.86, "probability": 0.1734 }, { "start": 36008.86, "end": 36008.96, "probability": 0.1171 }, { "start": 36008.96, "end": 36009.02, "probability": 0.0245 }, { "start": 36009.02, "end": 36009.02, "probability": 0.0735 }, { "start": 36039.66, "end": 36043.42, "probability": 0.8709 }, { "start": 36044.36, "end": 36044.68, "probability": 0.7722 }, { "start": 36045.34, "end": 36046.5, "probability": 0.7388 }, { "start": 36047.84, "end": 36050.88, "probability": 0.986 }, { "start": 36052.28, "end": 36052.38, "probability": 0.8542 }, { "start": 36052.94, "end": 36053.64, "probability": 0.8132 }, { "start": 36054.24, "end": 36055.58, "probability": 0.9696 }, { "start": 36056.46, "end": 36057.52, "probability": 0.9636 }, { "start": 36058.76, "end": 36060.4, "probability": 0.8514 }, { "start": 36061.18, "end": 36062.56, "probability": 0.95 }, { "start": 36064.02, "end": 36066.64, "probability": 0.9844 }, { "start": 36067.24, "end": 36067.78, "probability": 0.5146 }, { "start": 36068.38, "end": 36070.06, "probability": 0.9604 }, { "start": 36070.82, "end": 36072.94, "probability": 0.9922 }, { "start": 36074.56, "end": 36077.44, "probability": 0.9966 }, { "start": 36077.84, "end": 36079.58, "probability": 0.9849 }, { "start": 36080.3, "end": 36081.56, "probability": 0.7291 }, { "start": 36082.34, "end": 36083.56, "probability": 0.7835 }, { "start": 36084.1, "end": 36085.72, "probability": 0.994 }, { "start": 36086.34, "end": 36089.61, "probability": 0.9927 }, { "start": 36091.02, "end": 36093.04, "probability": 0.9773 }, { "start": 36093.66, "end": 36097.24, "probability": 0.9858 }, { "start": 36097.24, "end": 36100.78, "probability": 0.9917 }, { "start": 36101.48, "end": 36105.24, "probability": 0.9778 }, { "start": 36106.08, "end": 36107.06, "probability": 0.8835 }, { "start": 36108.6, "end": 36109.02, "probability": 0.8098 }, { "start": 36110.02, "end": 36112.3, "probability": 0.9914 }, { "start": 36112.98, "end": 36114.08, "probability": 0.9075 }, { "start": 36114.78, "end": 36116.15, "probability": 0.9778 }, { "start": 36117.02, "end": 36118.28, "probability": 0.8302 }, { "start": 36119.12, "end": 36121.34, "probability": 0.8716 }, { "start": 36122.24, "end": 36128.7, "probability": 0.9521 }, { "start": 36128.78, "end": 36129.42, "probability": 0.8344 }, { "start": 36130.2, "end": 36132.56, "probability": 0.8788 }, { "start": 36133.4, "end": 36133.66, "probability": 0.4451 }, { "start": 36133.66, "end": 36136.79, "probability": 0.8005 }, { "start": 36137.44, "end": 36138.18, "probability": 0.6129 }, { "start": 36139.38, "end": 36139.9, "probability": 0.7139 }, { "start": 36140.74, "end": 36141.3, "probability": 0.9637 }, { "start": 36141.86, "end": 36145.42, "probability": 0.9854 }, { "start": 36146.32, "end": 36146.44, "probability": 0.6879 }, { "start": 36147.9, "end": 36149.9, "probability": 0.9674 }, { "start": 36150.54, "end": 36152.36, "probability": 0.9124 }, { "start": 36153.48, "end": 36156.84, "probability": 0.9893 }, { "start": 36157.72, "end": 36161.36, "probability": 0.9559 }, { "start": 36161.44, "end": 36162.38, "probability": 0.9043 }, { "start": 36162.94, "end": 36166.08, "probability": 0.9645 }, { "start": 36166.8, "end": 36169.12, "probability": 0.9441 }, { "start": 36169.72, "end": 36171.6, "probability": 0.9453 }, { "start": 36172.06, "end": 36176.74, "probability": 0.9929 }, { "start": 36177.94, "end": 36178.57, "probability": 0.8657 }, { "start": 36179.24, "end": 36180.66, "probability": 0.9574 }, { "start": 36181.42, "end": 36185.54, "probability": 0.9706 }, { "start": 36186.1, "end": 36189.52, "probability": 0.9751 }, { "start": 36190.5, "end": 36190.92, "probability": 0.9379 }, { "start": 36191.02, "end": 36191.5, "probability": 0.7497 }, { "start": 36191.62, "end": 36195.1, "probability": 0.9961 }, { "start": 36195.1, "end": 36197.52, "probability": 0.9941 }, { "start": 36198.72, "end": 36199.83, "probability": 0.998 }, { "start": 36200.84, "end": 36200.96, "probability": 0.6001 }, { "start": 36201.42, "end": 36202.86, "probability": 0.7137 }, { "start": 36203.22, "end": 36208.26, "probability": 0.9929 }, { "start": 36209.5, "end": 36211.5, "probability": 0.9573 }, { "start": 36212.9, "end": 36214.18, "probability": 0.8368 }, { "start": 36215.28, "end": 36220.42, "probability": 0.9941 }, { "start": 36220.64, "end": 36221.54, "probability": 0.7599 }, { "start": 36222.18, "end": 36226.6, "probability": 0.9858 }, { "start": 36227.12, "end": 36228.12, "probability": 0.9799 }, { "start": 36229.08, "end": 36235.86, "probability": 0.9925 }, { "start": 36236.02, "end": 36236.8, "probability": 0.6136 }, { "start": 36236.94, "end": 36237.04, "probability": 0.8339 }, { "start": 36237.8, "end": 36239.36, "probability": 0.9656 }, { "start": 36240.1, "end": 36240.86, "probability": 0.9696 }, { "start": 36241.5, "end": 36244.78, "probability": 0.9915 }, { "start": 36245.38, "end": 36246.66, "probability": 0.7743 }, { "start": 36246.84, "end": 36247.74, "probability": 0.4872 }, { "start": 36248.02, "end": 36249.26, "probability": 0.902 }, { "start": 36249.98, "end": 36252.28, "probability": 0.9592 }, { "start": 36252.6, "end": 36253.78, "probability": 0.9437 }, { "start": 36253.94, "end": 36254.14, "probability": 0.7196 }, { "start": 36255.32, "end": 36257.48, "probability": 0.9958 }, { "start": 36258.38, "end": 36260.88, "probability": 0.9451 }, { "start": 36262.1, "end": 36263.1, "probability": 0.9858 }, { "start": 36263.98, "end": 36267.38, "probability": 0.9967 }, { "start": 36268.2, "end": 36268.56, "probability": 0.9421 }, { "start": 36268.62, "end": 36273.76, "probability": 0.9815 }, { "start": 36274.66, "end": 36275.08, "probability": 0.5625 }, { "start": 36276.0, "end": 36276.5, "probability": 0.6607 }, { "start": 36276.6, "end": 36278.37, "probability": 0.9827 }, { "start": 36278.64, "end": 36280.04, "probability": 0.9885 }, { "start": 36280.5, "end": 36282.6, "probability": 0.9831 }, { "start": 36283.6, "end": 36287.86, "probability": 0.9888 }, { "start": 36287.94, "end": 36288.2, "probability": 0.8239 }, { "start": 36289.36, "end": 36294.48, "probability": 0.9979 }, { "start": 36295.5, "end": 36296.44, "probability": 0.7516 }, { "start": 36298.44, "end": 36300.1, "probability": 0.9937 }, { "start": 36301.44, "end": 36302.5, "probability": 0.9988 }, { "start": 36303.64, "end": 36306.56, "probability": 0.9264 }, { "start": 36307.12, "end": 36307.56, "probability": 0.9281 }, { "start": 36308.6, "end": 36310.4, "probability": 0.8058 }, { "start": 36311.22, "end": 36312.82, "probability": 0.9751 }, { "start": 36313.94, "end": 36316.46, "probability": 0.9789 }, { "start": 36317.0, "end": 36319.24, "probability": 0.9496 }, { "start": 36320.04, "end": 36322.16, "probability": 0.9757 }, { "start": 36323.24, "end": 36324.14, "probability": 0.939 }, { "start": 36325.16, "end": 36327.4, "probability": 0.9355 }, { "start": 36328.26, "end": 36328.82, "probability": 0.6884 }, { "start": 36330.22, "end": 36333.24, "probability": 0.8767 }, { "start": 36334.12, "end": 36336.42, "probability": 0.9297 }, { "start": 36337.14, "end": 36338.51, "probability": 0.9912 }, { "start": 36339.68, "end": 36342.46, "probability": 0.6742 }, { "start": 36344.6, "end": 36347.64, "probability": 0.9906 }, { "start": 36349.2, "end": 36350.2, "probability": 0.7526 }, { "start": 36350.52, "end": 36352.7, "probability": 0.9107 }, { "start": 36352.82, "end": 36353.78, "probability": 0.6653 }, { "start": 36353.94, "end": 36354.82, "probability": 0.8165 }, { "start": 36355.54, "end": 36357.0, "probability": 0.9504 }, { "start": 36357.76, "end": 36359.72, "probability": 0.8009 }, { "start": 36360.32, "end": 36361.28, "probability": 0.9349 }, { "start": 36362.0, "end": 36363.16, "probability": 0.8402 }, { "start": 36364.02, "end": 36364.48, "probability": 0.564 }, { "start": 36364.58, "end": 36364.88, "probability": 0.9436 }, { "start": 36365.28, "end": 36367.1, "probability": 0.986 }, { "start": 36367.32, "end": 36369.04, "probability": 0.9378 }, { "start": 36369.72, "end": 36374.92, "probability": 0.9897 }, { "start": 36376.1, "end": 36376.87, "probability": 0.9229 }, { "start": 36377.78, "end": 36380.18, "probability": 0.9812 }, { "start": 36380.78, "end": 36381.56, "probability": 0.6158 }, { "start": 36382.58, "end": 36384.3, "probability": 0.9733 }, { "start": 36385.38, "end": 36387.12, "probability": 0.8193 }, { "start": 36387.8, "end": 36389.52, "probability": 0.9453 }, { "start": 36390.38, "end": 36397.1, "probability": 0.9933 }, { "start": 36398.02, "end": 36400.24, "probability": 0.999 }, { "start": 36401.1, "end": 36405.1, "probability": 0.995 }, { "start": 36405.24, "end": 36408.76, "probability": 0.9787 }, { "start": 36409.7, "end": 36412.56, "probability": 0.9319 }, { "start": 36413.8, "end": 36415.62, "probability": 0.9708 }, { "start": 36416.42, "end": 36416.64, "probability": 0.0957 }, { "start": 36417.38, "end": 36421.08, "probability": 0.9979 }, { "start": 36421.16, "end": 36424.0, "probability": 0.9989 }, { "start": 36424.9, "end": 36426.1, "probability": 0.9946 }, { "start": 36426.34, "end": 36427.84, "probability": 0.999 }, { "start": 36427.96, "end": 36429.16, "probability": 0.9154 }, { "start": 36429.98, "end": 36432.12, "probability": 0.9915 }, { "start": 36433.08, "end": 36434.83, "probability": 0.9873 }, { "start": 36435.58, "end": 36438.74, "probability": 0.8631 }, { "start": 36439.26, "end": 36440.0, "probability": 0.9063 }, { "start": 36440.78, "end": 36443.44, "probability": 0.9898 }, { "start": 36443.68, "end": 36446.0, "probability": 0.9904 }, { "start": 36446.72, "end": 36447.5, "probability": 0.6887 }, { "start": 36448.58, "end": 36449.4, "probability": 0.6043 }, { "start": 36450.44, "end": 36450.58, "probability": 0.7114 }, { "start": 36451.14, "end": 36453.8, "probability": 0.984 }, { "start": 36454.55, "end": 36456.26, "probability": 0.7673 }, { "start": 36457.3, "end": 36458.74, "probability": 0.9966 }, { "start": 36459.52, "end": 36462.3, "probability": 0.9563 }, { "start": 36462.82, "end": 36463.72, "probability": 0.7879 }, { "start": 36464.4, "end": 36464.98, "probability": 0.8866 }, { "start": 36465.78, "end": 36466.6, "probability": 0.8561 }, { "start": 36467.34, "end": 36470.88, "probability": 0.8806 }, { "start": 36471.52, "end": 36474.56, "probability": 0.9528 }, { "start": 36475.08, "end": 36480.26, "probability": 0.9956 }, { "start": 36481.08, "end": 36483.94, "probability": 0.8656 }, { "start": 36485.26, "end": 36486.06, "probability": 0.8709 }, { "start": 36486.32, "end": 36486.8, "probability": 0.6039 }, { "start": 36486.9, "end": 36489.78, "probability": 0.9291 }, { "start": 36490.34, "end": 36491.36, "probability": 0.7111 }, { "start": 36492.2, "end": 36493.86, "probability": 0.6144 }, { "start": 36494.68, "end": 36496.98, "probability": 0.7953 }, { "start": 36497.56, "end": 36498.96, "probability": 0.967 }, { "start": 36499.46, "end": 36499.76, "probability": 0.7082 }, { "start": 36500.44, "end": 36501.1, "probability": 0.9448 }, { "start": 36501.92, "end": 36502.5, "probability": 0.973 }, { "start": 36503.44, "end": 36504.46, "probability": 0.9606 }, { "start": 36505.36, "end": 36506.62, "probability": 0.6458 }, { "start": 36507.24, "end": 36509.48, "probability": 0.9719 }, { "start": 36509.66, "end": 36511.26, "probability": 0.9722 }, { "start": 36512.5, "end": 36516.76, "probability": 0.8612 }, { "start": 36517.32, "end": 36521.86, "probability": 0.9158 }, { "start": 36523.2, "end": 36526.42, "probability": 0.9626 }, { "start": 36527.04, "end": 36529.0, "probability": 0.8331 }, { "start": 36530.26, "end": 36532.16, "probability": 0.9331 }, { "start": 36532.8, "end": 36534.72, "probability": 0.9919 }, { "start": 36535.18, "end": 36537.22, "probability": 0.995 }, { "start": 36537.88, "end": 36543.3, "probability": 0.9926 }, { "start": 36543.94, "end": 36544.9, "probability": 0.7408 }, { "start": 36545.36, "end": 36547.26, "probability": 0.9009 }, { "start": 36548.34, "end": 36553.04, "probability": 0.9744 }, { "start": 36553.04, "end": 36559.4, "probability": 0.9988 }, { "start": 36559.96, "end": 36561.32, "probability": 0.9946 }, { "start": 36562.42, "end": 36563.74, "probability": 0.9926 }, { "start": 36564.68, "end": 36567.28, "probability": 0.9509 }, { "start": 36568.24, "end": 36568.88, "probability": 0.7588 }, { "start": 36569.9, "end": 36570.72, "probability": 0.8746 }, { "start": 36570.86, "end": 36571.24, "probability": 0.6691 }, { "start": 36571.32, "end": 36573.2, "probability": 0.9326 }, { "start": 36573.78, "end": 36576.74, "probability": 0.9197 }, { "start": 36577.4, "end": 36578.84, "probability": 0.9963 }, { "start": 36579.8, "end": 36580.5, "probability": 0.8599 }, { "start": 36581.42, "end": 36582.42, "probability": 0.8498 }, { "start": 36583.5, "end": 36586.76, "probability": 0.9768 }, { "start": 36587.34, "end": 36588.08, "probability": 0.8719 }, { "start": 36589.1, "end": 36592.08, "probability": 0.9734 }, { "start": 36592.18, "end": 36592.98, "probability": 0.8025 }, { "start": 36593.42, "end": 36594.36, "probability": 0.9837 }, { "start": 36595.4, "end": 36600.72, "probability": 0.9925 }, { "start": 36601.62, "end": 36601.9, "probability": 0.4565 }, { "start": 36602.52, "end": 36604.96, "probability": 0.998 }, { "start": 36606.12, "end": 36606.6, "probability": 0.9206 }, { "start": 36607.74, "end": 36611.8, "probability": 0.9878 }, { "start": 36611.8, "end": 36613.24, "probability": 0.9985 }, { "start": 36613.92, "end": 36618.22, "probability": 0.842 }, { "start": 36618.74, "end": 36625.62, "probability": 0.9686 }, { "start": 36626.16, "end": 36627.44, "probability": 0.9536 }, { "start": 36627.9, "end": 36628.64, "probability": 0.9477 }, { "start": 36629.06, "end": 36631.62, "probability": 0.9823 }, { "start": 36632.24, "end": 36633.74, "probability": 0.9852 }, { "start": 36634.3, "end": 36635.42, "probability": 0.927 }, { "start": 36636.68, "end": 36636.78, "probability": 0.5085 }, { "start": 36637.42, "end": 36641.28, "probability": 0.9863 }, { "start": 36642.46, "end": 36643.4, "probability": 0.9633 }, { "start": 36644.74, "end": 36645.06, "probability": 0.8324 }, { "start": 36645.64, "end": 36645.82, "probability": 0.5182 }, { "start": 36646.04, "end": 36649.48, "probability": 0.7947 }, { "start": 36650.14, "end": 36650.56, "probability": 0.9401 }, { "start": 36651.24, "end": 36652.1, "probability": 0.6394 }, { "start": 36652.92, "end": 36657.98, "probability": 0.9967 }, { "start": 36658.88, "end": 36659.7, "probability": 0.8075 }, { "start": 36660.3, "end": 36661.08, "probability": 0.8948 }, { "start": 36661.82, "end": 36663.16, "probability": 0.9756 }, { "start": 36664.26, "end": 36670.38, "probability": 0.9829 }, { "start": 36671.42, "end": 36672.0, "probability": 0.7482 }, { "start": 36672.6, "end": 36674.96, "probability": 0.7768 }, { "start": 36674.96, "end": 36677.86, "probability": 0.8022 }, { "start": 36678.58, "end": 36680.68, "probability": 0.8983 }, { "start": 36681.1, "end": 36682.58, "probability": 0.9901 }, { "start": 36683.92, "end": 36685.64, "probability": 0.9152 }, { "start": 36686.72, "end": 36692.86, "probability": 0.9984 }, { "start": 36694.0, "end": 36694.42, "probability": 0.8893 }, { "start": 36695.14, "end": 36699.04, "probability": 0.9582 }, { "start": 36700.0, "end": 36700.1, "probability": 0.7108 }, { "start": 36700.92, "end": 36702.02, "probability": 0.9205 }, { "start": 36702.9, "end": 36706.08, "probability": 0.9652 }, { "start": 36706.74, "end": 36709.26, "probability": 0.9149 }, { "start": 36710.08, "end": 36712.32, "probability": 0.9945 }, { "start": 36713.32, "end": 36716.16, "probability": 0.7812 }, { "start": 36716.8, "end": 36718.06, "probability": 0.993 }, { "start": 36718.36, "end": 36718.92, "probability": 0.4468 }, { "start": 36719.38, "end": 36720.62, "probability": 0.996 }, { "start": 36721.04, "end": 36722.88, "probability": 0.9649 }, { "start": 36723.8, "end": 36726.54, "probability": 0.8481 }, { "start": 36727.1, "end": 36730.82, "probability": 0.9517 }, { "start": 36731.24, "end": 36731.8, "probability": 0.8608 }, { "start": 36731.88, "end": 36732.56, "probability": 0.9884 }, { "start": 36733.12, "end": 36735.86, "probability": 0.9936 }, { "start": 36736.88, "end": 36737.48, "probability": 0.6751 }, { "start": 36738.26, "end": 36741.2, "probability": 0.9903 }, { "start": 36742.28, "end": 36744.28, "probability": 0.958 }, { "start": 36744.92, "end": 36747.5, "probability": 0.9867 }, { "start": 36748.22, "end": 36750.18, "probability": 0.8589 }, { "start": 36750.98, "end": 36753.9, "probability": 0.7585 }, { "start": 36754.38, "end": 36757.18, "probability": 0.9902 }, { "start": 36757.78, "end": 36761.04, "probability": 0.9345 }, { "start": 36761.92, "end": 36763.02, "probability": 0.9826 }, { "start": 36763.16, "end": 36764.05, "probability": 0.9907 }, { "start": 36764.86, "end": 36765.98, "probability": 0.9897 }, { "start": 36766.64, "end": 36771.1, "probability": 0.9283 }, { "start": 36771.26, "end": 36772.26, "probability": 0.5125 }, { "start": 36772.94, "end": 36774.8, "probability": 0.897 }, { "start": 36775.88, "end": 36776.89, "probability": 0.7808 }, { "start": 36777.86, "end": 36780.2, "probability": 0.9962 }, { "start": 36780.88, "end": 36786.12, "probability": 0.9526 }, { "start": 36786.3, "end": 36789.96, "probability": 0.977 }, { "start": 36790.6, "end": 36792.76, "probability": 0.7193 }, { "start": 36793.56, "end": 36795.48, "probability": 0.8806 }, { "start": 36795.9, "end": 36800.46, "probability": 0.9434 }, { "start": 36801.38, "end": 36801.62, "probability": 0.4337 }, { "start": 36802.58, "end": 36803.98, "probability": 0.9764 }, { "start": 36804.62, "end": 36805.96, "probability": 0.9622 }, { "start": 36806.72, "end": 36810.64, "probability": 0.9851 }, { "start": 36812.0, "end": 36812.12, "probability": 0.5843 }, { "start": 36813.18, "end": 36815.14, "probability": 0.9637 }, { "start": 36815.74, "end": 36818.0, "probability": 0.749 }, { "start": 36818.72, "end": 36820.76, "probability": 0.979 }, { "start": 36821.36, "end": 36823.48, "probability": 0.8636 }, { "start": 36824.4, "end": 36824.94, "probability": 0.5093 }, { "start": 36825.96, "end": 36827.92, "probability": 0.9552 }, { "start": 36828.66, "end": 36829.5, "probability": 0.9181 }, { "start": 36829.72, "end": 36829.9, "probability": 0.7629 }, { "start": 36830.08, "end": 36831.52, "probability": 0.9604 }, { "start": 36831.58, "end": 36832.73, "probability": 0.9956 }, { "start": 36833.52, "end": 36836.58, "probability": 0.9956 }, { "start": 36836.58, "end": 36841.76, "probability": 0.726 }, { "start": 36841.94, "end": 36842.28, "probability": 0.5656 }, { "start": 36843.18, "end": 36844.04, "probability": 0.8304 }, { "start": 36846.36, "end": 36850.06, "probability": 0.8768 }, { "start": 36850.72, "end": 36853.02, "probability": 0.9907 }, { "start": 36853.86, "end": 36854.36, "probability": 0.7687 }, { "start": 36855.06, "end": 36855.8, "probability": 0.8812 }, { "start": 36857.14, "end": 36858.04, "probability": 0.7639 }, { "start": 36859.02, "end": 36859.9, "probability": 0.928 }, { "start": 36860.9, "end": 36863.94, "probability": 0.9851 }, { "start": 36864.06, "end": 36864.76, "probability": 0.8302 }, { "start": 36864.9, "end": 36865.22, "probability": 0.6019 }, { "start": 36865.9, "end": 36870.16, "probability": 0.9955 }, { "start": 36870.68, "end": 36871.46, "probability": 0.7618 }, { "start": 36872.42, "end": 36874.84, "probability": 0.9656 }, { "start": 36875.6, "end": 36878.06, "probability": 0.9875 }, { "start": 36878.64, "end": 36881.84, "probability": 0.98 }, { "start": 36883.9, "end": 36884.08, "probability": 0.3922 }, { "start": 36884.9, "end": 36885.7, "probability": 0.4228 }, { "start": 36887.18, "end": 36891.42, "probability": 0.998 }, { "start": 36891.64, "end": 36892.58, "probability": 0.9858 }, { "start": 36893.16, "end": 36896.02, "probability": 0.9757 }, { "start": 36896.6, "end": 36898.06, "probability": 0.8604 }, { "start": 36899.26, "end": 36900.68, "probability": 0.7865 }, { "start": 36901.4, "end": 36902.26, "probability": 0.9636 }, { "start": 36902.9, "end": 36903.68, "probability": 0.7549 }, { "start": 36904.28, "end": 36907.3, "probability": 0.9707 }, { "start": 36907.44, "end": 36908.34, "probability": 0.6675 }, { "start": 36908.64, "end": 36909.14, "probability": 0.8172 }, { "start": 36909.54, "end": 36909.84, "probability": 0.7995 }, { "start": 36910.3, "end": 36911.3, "probability": 0.8679 }, { "start": 36912.24, "end": 36914.98, "probability": 0.9914 }, { "start": 36915.24, "end": 36919.06, "probability": 0.9788 }, { "start": 36920.1, "end": 36920.34, "probability": 0.8264 }, { "start": 36920.54, "end": 36922.04, "probability": 0.7005 }, { "start": 36922.5, "end": 36927.32, "probability": 0.9905 }, { "start": 36928.1, "end": 36933.4, "probability": 0.9958 }, { "start": 36934.3, "end": 36935.94, "probability": 0.5633 }, { "start": 36936.06, "end": 36939.18, "probability": 0.9679 }, { "start": 36939.84, "end": 36940.36, "probability": 0.9439 }, { "start": 36941.16, "end": 36943.08, "probability": 0.939 }, { "start": 36943.86, "end": 36944.4, "probability": 0.8994 }, { "start": 36945.16, "end": 36946.34, "probability": 0.4598 }, { "start": 36947.42, "end": 36948.8, "probability": 0.9836 }, { "start": 36949.34, "end": 36949.54, "probability": 0.4827 }, { "start": 36950.84, "end": 36953.06, "probability": 0.9922 }, { "start": 36954.32, "end": 36956.3, "probability": 0.9678 }, { "start": 36956.46, "end": 36956.76, "probability": 0.9513 }, { "start": 36957.48, "end": 36961.08, "probability": 0.9977 }, { "start": 36961.88, "end": 36966.94, "probability": 0.9673 }, { "start": 36967.2, "end": 36967.44, "probability": 0.8564 }, { "start": 36968.76, "end": 36969.25, "probability": 0.9647 }, { "start": 36970.98, "end": 36971.82, "probability": 0.936 }, { "start": 36972.62, "end": 36976.46, "probability": 0.9784 }, { "start": 36976.46, "end": 36979.78, "probability": 0.9984 }, { "start": 36980.64, "end": 36980.94, "probability": 0.8307 }, { "start": 36981.78, "end": 36983.46, "probability": 0.955 }, { "start": 36983.9, "end": 36987.88, "probability": 0.998 }, { "start": 36987.94, "end": 36989.0, "probability": 0.9751 }, { "start": 36989.52, "end": 36992.04, "probability": 0.99 }, { "start": 36992.18, "end": 36992.67, "probability": 0.7849 }, { "start": 36993.58, "end": 36994.98, "probability": 0.9159 }, { "start": 36995.92, "end": 36997.7, "probability": 0.9536 }, { "start": 36998.42, "end": 36999.48, "probability": 0.7728 }, { "start": 36999.54, "end": 37000.7, "probability": 0.9875 }, { "start": 37001.42, "end": 37003.94, "probability": 0.9841 }, { "start": 37004.72, "end": 37005.3, "probability": 0.9728 }, { "start": 37005.86, "end": 37008.64, "probability": 0.9998 }, { "start": 37009.36, "end": 37010.1, "probability": 0.9425 }, { "start": 37010.96, "end": 37012.3, "probability": 0.9109 }, { "start": 37012.4, "end": 37016.18, "probability": 0.8352 }, { "start": 37017.0, "end": 37018.28, "probability": 0.8638 }, { "start": 37020.0, "end": 37021.56, "probability": 0.9904 }, { "start": 37023.0, "end": 37025.48, "probability": 0.8133 }, { "start": 37026.26, "end": 37028.69, "probability": 0.9963 }, { "start": 37029.36, "end": 37031.98, "probability": 0.9568 }, { "start": 37032.76, "end": 37035.2, "probability": 0.9655 }, { "start": 37035.9, "end": 37036.82, "probability": 0.918 }, { "start": 37037.28, "end": 37038.9, "probability": 0.998 }, { "start": 37039.9, "end": 37043.98, "probability": 0.9958 }, { "start": 37044.6, "end": 37045.14, "probability": 0.6054 }, { "start": 37046.04, "end": 37048.0, "probability": 0.8243 }, { "start": 37048.9, "end": 37049.16, "probability": 0.6378 }, { "start": 37049.76, "end": 37051.82, "probability": 0.8792 }, { "start": 37052.42, "end": 37053.34, "probability": 0.7582 }, { "start": 37053.78, "end": 37056.18, "probability": 0.9378 }, { "start": 37056.62, "end": 37059.24, "probability": 0.9622 }, { "start": 37059.98, "end": 37062.6, "probability": 0.9608 }, { "start": 37063.48, "end": 37064.56, "probability": 0.496 }, { "start": 37065.04, "end": 37066.52, "probability": 0.9985 }, { "start": 37067.08, "end": 37072.98, "probability": 0.994 }, { "start": 37073.46, "end": 37074.48, "probability": 0.8452 }, { "start": 37075.5, "end": 37077.68, "probability": 0.9678 }, { "start": 37078.68, "end": 37079.62, "probability": 0.9209 }, { "start": 37079.82, "end": 37080.28, "probability": 0.9526 }, { "start": 37081.36, "end": 37082.7, "probability": 0.6116 }, { "start": 37083.4, "end": 37083.92, "probability": 0.9347 }, { "start": 37084.76, "end": 37086.86, "probability": 0.5749 }, { "start": 37087.76, "end": 37088.16, "probability": 0.9063 }, { "start": 37090.26, "end": 37091.2, "probability": 0.7387 }, { "start": 37091.42, "end": 37093.98, "probability": 0.9207 }, { "start": 37094.14, "end": 37095.06, "probability": 0.9654 }, { "start": 37096.42, "end": 37096.98, "probability": 0.9639 }, { "start": 37097.9, "end": 37103.98, "probability": 0.9769 }, { "start": 37104.08, "end": 37105.46, "probability": 0.7998 }, { "start": 37106.02, "end": 37108.08, "probability": 0.991 }, { "start": 37108.76, "end": 37111.82, "probability": 0.9922 }, { "start": 37112.36, "end": 37113.3, "probability": 0.9795 }, { "start": 37114.04, "end": 37114.4, "probability": 0.9435 }, { "start": 37115.36, "end": 37120.1, "probability": 0.9815 }, { "start": 37120.9, "end": 37122.08, "probability": 0.8354 }, { "start": 37122.72, "end": 37124.06, "probability": 0.8979 }, { "start": 37124.52, "end": 37127.08, "probability": 0.9886 }, { "start": 37127.54, "end": 37129.82, "probability": 0.9863 }, { "start": 37130.16, "end": 37130.7, "probability": 0.988 }, { "start": 37131.0, "end": 37131.96, "probability": 0.9082 }, { "start": 37132.56, "end": 37133.43, "probability": 0.9778 }, { "start": 37134.32, "end": 37139.16, "probability": 0.9946 }, { "start": 37139.7, "end": 37139.8, "probability": 0.8488 }, { "start": 37140.34, "end": 37141.46, "probability": 0.7128 }, { "start": 37142.52, "end": 37145.42, "probability": 0.9855 }, { "start": 37145.62, "end": 37149.32, "probability": 0.9968 }, { "start": 37150.18, "end": 37150.88, "probability": 0.5822 }, { "start": 37151.56, "end": 37153.82, "probability": 0.9896 }, { "start": 37154.36, "end": 37157.38, "probability": 0.988 }, { "start": 37157.48, "end": 37157.74, "probability": 0.8404 }, { "start": 37158.3, "end": 37161.84, "probability": 0.993 }, { "start": 37163.7, "end": 37165.92, "probability": 0.9966 }, { "start": 37166.88, "end": 37168.44, "probability": 0.999 }, { "start": 37168.78, "end": 37168.98, "probability": 0.986 }, { "start": 37169.92, "end": 37175.28, "probability": 0.9508 }, { "start": 37175.8, "end": 37179.42, "probability": 0.9962 }, { "start": 37179.8, "end": 37180.38, "probability": 0.8803 }, { "start": 37181.32, "end": 37184.98, "probability": 0.9976 }, { "start": 37185.1, "end": 37185.38, "probability": 0.8119 }, { "start": 37186.04, "end": 37186.53, "probability": 0.983 }, { "start": 37187.32, "end": 37188.54, "probability": 0.5177 }, { "start": 37189.38, "end": 37190.64, "probability": 0.9284 }, { "start": 37191.46, "end": 37192.88, "probability": 0.9459 }, { "start": 37194.52, "end": 37195.04, "probability": 0.9927 }, { "start": 37196.26, "end": 37198.06, "probability": 0.9918 }, { "start": 37199.36, "end": 37200.96, "probability": 0.9499 }, { "start": 37201.08, "end": 37202.74, "probability": 0.9956 }, { "start": 37203.54, "end": 37205.8, "probability": 0.7545 }, { "start": 37206.68, "end": 37207.52, "probability": 0.9883 }, { "start": 37208.42, "end": 37209.36, "probability": 0.7229 }, { "start": 37210.44, "end": 37211.14, "probability": 0.5436 }, { "start": 37212.06, "end": 37213.82, "probability": 0.983 }, { "start": 37214.64, "end": 37215.7, "probability": 0.9749 }, { "start": 37216.66, "end": 37218.84, "probability": 0.9944 }, { "start": 37218.84, "end": 37221.86, "probability": 0.8546 }, { "start": 37221.94, "end": 37222.74, "probability": 0.9674 }, { "start": 37224.22, "end": 37226.54, "probability": 0.8412 }, { "start": 37227.32, "end": 37230.2, "probability": 0.9826 }, { "start": 37231.06, "end": 37235.12, "probability": 0.9958 }, { "start": 37235.9, "end": 37237.04, "probability": 0.9674 }, { "start": 37238.48, "end": 37239.9, "probability": 0.6843 }, { "start": 37240.54, "end": 37240.94, "probability": 0.7936 }, { "start": 37241.36, "end": 37243.12, "probability": 0.9858 }, { "start": 37243.8, "end": 37245.9, "probability": 0.8815 }, { "start": 37246.62, "end": 37250.64, "probability": 0.9949 }, { "start": 37250.64, "end": 37255.16, "probability": 0.9964 }, { "start": 37255.6, "end": 37256.16, "probability": 0.9267 }, { "start": 37257.0, "end": 37258.9, "probability": 0.9939 }, { "start": 37259.48, "end": 37260.07, "probability": 0.9851 }, { "start": 37262.4, "end": 37264.66, "probability": 0.9986 }, { "start": 37265.64, "end": 37267.44, "probability": 0.9989 }, { "start": 37268.28, "end": 37269.2, "probability": 0.9983 }, { "start": 37269.8, "end": 37272.36, "probability": 0.9997 }, { "start": 37273.2, "end": 37275.06, "probability": 0.6644 }, { "start": 37275.72, "end": 37278.1, "probability": 0.9832 }, { "start": 37278.9, "end": 37279.96, "probability": 0.9598 }, { "start": 37280.52, "end": 37280.68, "probability": 0.7046 }, { "start": 37280.9, "end": 37281.74, "probability": 0.9568 }, { "start": 37282.74, "end": 37285.1, "probability": 0.9897 }, { "start": 37285.72, "end": 37288.46, "probability": 0.9981 }, { "start": 37289.22, "end": 37290.56, "probability": 0.9554 }, { "start": 37291.1, "end": 37294.0, "probability": 0.9957 }, { "start": 37295.32, "end": 37300.14, "probability": 0.9896 }, { "start": 37300.84, "end": 37302.58, "probability": 0.9844 }, { "start": 37303.28, "end": 37305.56, "probability": 0.9963 }, { "start": 37306.24, "end": 37310.26, "probability": 0.9705 }, { "start": 37310.84, "end": 37311.62, "probability": 0.9591 }, { "start": 37312.5, "end": 37315.98, "probability": 0.9976 }, { "start": 37317.3, "end": 37317.66, "probability": 0.7621 }, { "start": 37318.28, "end": 37322.32, "probability": 0.9617 }, { "start": 37323.14, "end": 37325.68, "probability": 0.9875 }, { "start": 37327.24, "end": 37328.02, "probability": 0.8807 }, { "start": 37328.26, "end": 37328.76, "probability": 0.9673 }, { "start": 37329.24, "end": 37333.22, "probability": 0.9951 }, { "start": 37333.8, "end": 37335.26, "probability": 0.9746 }, { "start": 37335.42, "end": 37336.12, "probability": 0.5742 }, { "start": 37336.78, "end": 37341.0, "probability": 0.9976 }, { "start": 37341.14, "end": 37342.36, "probability": 0.9711 }, { "start": 37343.2, "end": 37344.7, "probability": 0.8814 }, { "start": 37345.52, "end": 37348.84, "probability": 0.951 }, { "start": 37349.3, "end": 37349.74, "probability": 0.8566 }, { "start": 37350.22, "end": 37351.56, "probability": 0.8971 }, { "start": 37351.68, "end": 37352.18, "probability": 0.7396 }, { "start": 37352.3, "end": 37353.86, "probability": 0.9807 }, { "start": 37355.58, "end": 37359.46, "probability": 0.9851 }, { "start": 37360.36, "end": 37362.38, "probability": 0.9552 }, { "start": 37363.22, "end": 37364.34, "probability": 0.9824 }, { "start": 37365.26, "end": 37368.5, "probability": 0.9751 }, { "start": 37368.84, "end": 37371.88, "probability": 0.9456 }, { "start": 37372.42, "end": 37374.18, "probability": 0.9927 }, { "start": 37375.44, "end": 37376.86, "probability": 0.9734 }, { "start": 37377.6, "end": 37379.9, "probability": 0.9197 }, { "start": 37380.96, "end": 37384.54, "probability": 0.7615 }, { "start": 37385.58, "end": 37387.5, "probability": 0.9155 }, { "start": 37388.2, "end": 37390.24, "probability": 0.995 }, { "start": 37390.32, "end": 37392.81, "probability": 0.9934 }, { "start": 37393.4, "end": 37395.6, "probability": 0.9863 }, { "start": 37396.8, "end": 37400.72, "probability": 0.9839 }, { "start": 37402.42, "end": 37402.52, "probability": 0.7688 }, { "start": 37403.38, "end": 37405.82, "probability": 0.9985 }, { "start": 37406.48, "end": 37411.46, "probability": 0.9945 }, { "start": 37412.26, "end": 37413.44, "probability": 0.729 }, { "start": 37414.52, "end": 37415.02, "probability": 0.7766 }, { "start": 37415.8, "end": 37416.58, "probability": 0.9705 }, { "start": 37417.4, "end": 37419.52, "probability": 0.7087 }, { "start": 37421.22, "end": 37422.36, "probability": 0.9783 }, { "start": 37423.12, "end": 37423.72, "probability": 0.9088 }, { "start": 37424.02, "end": 37424.66, "probability": 0.9161 }, { "start": 37424.84, "end": 37428.18, "probability": 0.9761 }, { "start": 37428.84, "end": 37430.22, "probability": 0.9922 }, { "start": 37430.9, "end": 37432.68, "probability": 0.8942 }, { "start": 37433.22, "end": 37433.72, "probability": 0.6923 }, { "start": 37434.34, "end": 37434.96, "probability": 0.59 }, { "start": 37435.24, "end": 37437.36, "probability": 0.9635 }, { "start": 37438.2, "end": 37439.78, "probability": 0.9607 }, { "start": 37440.56, "end": 37442.58, "probability": 0.9851 }, { "start": 37443.36, "end": 37445.48, "probability": 0.9932 }, { "start": 37447.12, "end": 37451.48, "probability": 0.9798 }, { "start": 37451.48, "end": 37455.36, "probability": 0.9943 }, { "start": 37456.0, "end": 37457.07, "probability": 0.8731 }, { "start": 37457.8, "end": 37460.28, "probability": 0.998 }, { "start": 37460.84, "end": 37462.14, "probability": 0.8445 }, { "start": 37462.86, "end": 37463.49, "probability": 0.9351 }, { "start": 37464.44, "end": 37467.98, "probability": 0.9923 }, { "start": 37468.96, "end": 37472.66, "probability": 0.99 }, { "start": 37473.2, "end": 37474.28, "probability": 0.9741 }, { "start": 37475.78, "end": 37477.08, "probability": 0.9927 }, { "start": 37477.54, "end": 37478.98, "probability": 0.9836 }, { "start": 37479.58, "end": 37480.72, "probability": 0.9233 }, { "start": 37481.58, "end": 37483.98, "probability": 0.9568 }, { "start": 37485.14, "end": 37486.22, "probability": 0.9649 }, { "start": 37487.08, "end": 37490.74, "probability": 0.9326 }, { "start": 37490.82, "end": 37492.36, "probability": 0.9389 }, { "start": 37493.54, "end": 37495.12, "probability": 0.9967 }, { "start": 37496.68, "end": 37499.36, "probability": 0.8173 }, { "start": 37499.9, "end": 37502.24, "probability": 0.9175 }, { "start": 37502.42, "end": 37503.26, "probability": 0.5442 }, { "start": 37503.74, "end": 37504.7, "probability": 0.9363 }, { "start": 37504.8, "end": 37505.4, "probability": 0.7236 }, { "start": 37505.9, "end": 37506.82, "probability": 0.9329 }, { "start": 37507.44, "end": 37509.14, "probability": 0.9109 }, { "start": 37510.32, "end": 37513.68, "probability": 0.9991 }, { "start": 37514.36, "end": 37516.5, "probability": 0.9954 }, { "start": 37517.46, "end": 37519.78, "probability": 0.9897 }, { "start": 37520.58, "end": 37522.76, "probability": 0.9826 }, { "start": 37523.38, "end": 37527.78, "probability": 0.9331 }, { "start": 37528.6, "end": 37529.17, "probability": 0.8896 }, { "start": 37530.28, "end": 37531.64, "probability": 0.9671 }, { "start": 37532.44, "end": 37533.92, "probability": 0.8589 }, { "start": 37533.96, "end": 37534.32, "probability": 0.8264 }, { "start": 37534.42, "end": 37534.76, "probability": 0.825 }, { "start": 37534.8, "end": 37535.9, "probability": 0.9637 }, { "start": 37536.52, "end": 37543.08, "probability": 0.9937 }, { "start": 37543.42, "end": 37544.94, "probability": 0.9971 }, { "start": 37545.46, "end": 37547.48, "probability": 0.8437 }, { "start": 37548.28, "end": 37550.02, "probability": 0.8372 }, { "start": 37550.6, "end": 37553.22, "probability": 0.9973 }, { "start": 37554.24, "end": 37554.92, "probability": 0.8835 }, { "start": 37555.04, "end": 37555.28, "probability": 0.9386 }, { "start": 37555.36, "end": 37559.04, "probability": 0.9953 }, { "start": 37559.98, "end": 37562.18, "probability": 0.9381 }, { "start": 37562.7, "end": 37566.06, "probability": 0.9978 }, { "start": 37566.68, "end": 37569.0, "probability": 0.8758 }, { "start": 37569.42, "end": 37572.86, "probability": 0.9673 }, { "start": 37573.7, "end": 37574.46, "probability": 0.8953 }, { "start": 37575.78, "end": 37578.08, "probability": 0.8716 }, { "start": 37578.72, "end": 37581.58, "probability": 0.9875 }, { "start": 37581.66, "end": 37582.34, "probability": 0.9619 }, { "start": 37582.82, "end": 37586.48, "probability": 0.986 }, { "start": 37587.3, "end": 37590.74, "probability": 0.9007 }, { "start": 37590.9, "end": 37591.94, "probability": 0.8224 }, { "start": 37592.58, "end": 37593.66, "probability": 0.8195 }, { "start": 37594.2, "end": 37595.54, "probability": 0.9902 }, { "start": 37596.3, "end": 37596.38, "probability": 0.4772 }, { "start": 37596.42, "end": 37596.76, "probability": 0.9249 }, { "start": 37596.94, "end": 37598.88, "probability": 0.9883 }, { "start": 37599.02, "end": 37599.44, "probability": 0.9604 }, { "start": 37599.86, "end": 37600.06, "probability": 0.906 }, { "start": 37600.56, "end": 37605.66, "probability": 0.9766 }, { "start": 37606.46, "end": 37607.94, "probability": 0.7197 }, { "start": 37609.18, "end": 37610.78, "probability": 0.8815 }, { "start": 37611.38, "end": 37612.68, "probability": 0.9746 }, { "start": 37613.42, "end": 37615.88, "probability": 0.6177 }, { "start": 37615.98, "end": 37617.56, "probability": 0.8736 }, { "start": 37618.84, "end": 37623.14, "probability": 0.9893 }, { "start": 37623.14, "end": 37627.8, "probability": 0.9963 }, { "start": 37628.52, "end": 37632.56, "probability": 0.8994 }, { "start": 37632.62, "end": 37633.5, "probability": 0.9165 }, { "start": 37634.24, "end": 37634.74, "probability": 0.6312 }, { "start": 37635.72, "end": 37635.86, "probability": 0.4993 }, { "start": 37636.84, "end": 37637.63, "probability": 0.9849 }, { "start": 37638.62, "end": 37639.84, "probability": 0.937 }, { "start": 37639.9, "end": 37640.4, "probability": 0.813 }, { "start": 37640.5, "end": 37640.72, "probability": 0.2258 }, { "start": 37640.78, "end": 37641.24, "probability": 0.4977 }, { "start": 37641.9, "end": 37642.86, "probability": 0.7416 }, { "start": 37643.42, "end": 37647.74, "probability": 0.9971 }, { "start": 37648.38, "end": 37653.74, "probability": 0.9367 }, { "start": 37654.4, "end": 37655.34, "probability": 0.9456 }, { "start": 37655.56, "end": 37658.52, "probability": 0.9935 }, { "start": 37658.92, "end": 37661.78, "probability": 0.9774 }, { "start": 37662.24, "end": 37664.54, "probability": 0.9964 }, { "start": 37664.54, "end": 37667.84, "probability": 0.9973 }, { "start": 37668.6, "end": 37671.94, "probability": 0.9993 }, { "start": 37671.94, "end": 37674.76, "probability": 0.9937 }, { "start": 37675.38, "end": 37678.68, "probability": 0.9889 }, { "start": 37679.06, "end": 37681.34, "probability": 0.9974 }, { "start": 37681.38, "end": 37683.94, "probability": 0.9316 }, { "start": 37684.78, "end": 37685.94, "probability": 0.9917 }, { "start": 37686.6, "end": 37687.48, "probability": 0.6741 }, { "start": 37688.1, "end": 37694.38, "probability": 0.9178 }, { "start": 37694.82, "end": 37696.28, "probability": 0.8196 }, { "start": 37696.72, "end": 37700.38, "probability": 0.9796 }, { "start": 37700.38, "end": 37704.34, "probability": 0.672 }, { "start": 37705.3, "end": 37707.02, "probability": 0.8526 }, { "start": 37707.64, "end": 37709.56, "probability": 0.9581 }, { "start": 37710.38, "end": 37712.78, "probability": 0.9473 }, { "start": 37713.34, "end": 37714.48, "probability": 0.9956 }, { "start": 37715.34, "end": 37719.04, "probability": 0.9342 }, { "start": 37719.04, "end": 37722.06, "probability": 0.9995 }, { "start": 37722.66, "end": 37724.74, "probability": 0.9951 }, { "start": 37725.18, "end": 37728.72, "probability": 0.9867 }, { "start": 37729.4, "end": 37730.66, "probability": 0.9832 }, { "start": 37730.82, "end": 37731.38, "probability": 0.6429 }, { "start": 37731.74, "end": 37733.8, "probability": 0.9973 }, { "start": 37734.36, "end": 37735.08, "probability": 0.926 }, { "start": 37735.82, "end": 37736.18, "probability": 0.6448 }, { "start": 37736.7, "end": 37739.3, "probability": 0.7953 }, { "start": 37739.4, "end": 37741.14, "probability": 0.9878 }, { "start": 37741.72, "end": 37743.66, "probability": 0.7197 }, { "start": 37744.26, "end": 37746.1, "probability": 0.9854 }, { "start": 37746.68, "end": 37747.6, "probability": 0.6889 }, { "start": 37747.98, "end": 37749.84, "probability": 0.9157 }, { "start": 37750.34, "end": 37752.58, "probability": 0.9966 }, { "start": 37753.2, "end": 37753.52, "probability": 0.9214 }, { "start": 37754.56, "end": 37755.64, "probability": 0.811 }, { "start": 37756.32, "end": 37761.22, "probability": 0.9519 }, { "start": 37761.74, "end": 37762.48, "probability": 0.9595 }, { "start": 37763.38, "end": 37767.68, "probability": 0.9692 }, { "start": 37768.66, "end": 37771.66, "probability": 0.9854 }, { "start": 37772.38, "end": 37772.92, "probability": 0.8501 }, { "start": 37773.7, "end": 37776.06, "probability": 0.9866 }, { "start": 37776.88, "end": 37777.36, "probability": 0.8006 }, { "start": 37778.54, "end": 37779.36, "probability": 0.4829 }, { "start": 37779.92, "end": 37781.12, "probability": 0.9873 }, { "start": 37781.86, "end": 37785.32, "probability": 0.9355 }, { "start": 37786.1, "end": 37786.69, "probability": 0.9321 }, { "start": 37787.34, "end": 37790.98, "probability": 0.9849 }, { "start": 37791.5, "end": 37793.38, "probability": 0.9561 }, { "start": 37793.74, "end": 37794.44, "probability": 0.6574 }, { "start": 37795.52, "end": 37796.22, "probability": 0.769 }, { "start": 37796.76, "end": 37798.98, "probability": 0.9971 }, { "start": 37799.54, "end": 37800.56, "probability": 0.8036 }, { "start": 37801.18, "end": 37804.54, "probability": 0.9639 }, { "start": 37805.28, "end": 37805.92, "probability": 0.9528 }, { "start": 37806.5, "end": 37810.74, "probability": 0.9913 }, { "start": 37812.0, "end": 37814.1, "probability": 0.9415 }, { "start": 37815.08, "end": 37817.84, "probability": 0.8676 }, { "start": 37818.56, "end": 37818.86, "probability": 0.7355 }, { "start": 37819.46, "end": 37821.12, "probability": 0.9307 }, { "start": 37821.88, "end": 37823.09, "probability": 0.9498 }, { "start": 37823.82, "end": 37825.98, "probability": 0.8965 }, { "start": 37827.22, "end": 37827.86, "probability": 0.6642 }, { "start": 37828.14, "end": 37829.44, "probability": 0.8858 }, { "start": 37830.74, "end": 37832.28, "probability": 0.8327 }, { "start": 37832.56, "end": 37833.6, "probability": 0.6782 }, { "start": 37850.52, "end": 37852.7, "probability": 0.1272 }, { "start": 37863.44, "end": 37866.44, "probability": 0.7935 }, { "start": 37869.82, "end": 37872.44, "probability": 0.8511 }, { "start": 37873.12, "end": 37874.96, "probability": 0.9958 }, { "start": 37876.22, "end": 37881.64, "probability": 0.9403 }, { "start": 37883.04, "end": 37883.5, "probability": 0.7117 }, { "start": 37884.46, "end": 37885.5, "probability": 0.7477 }, { "start": 37887.34, "end": 37888.32, "probability": 0.7748 }, { "start": 37888.9, "end": 37891.28, "probability": 0.895 }, { "start": 37893.1, "end": 37893.56, "probability": 0.7563 }, { "start": 37897.41, "end": 37900.44, "probability": 0.8986 }, { "start": 37900.52, "end": 37901.94, "probability": 0.9331 }, { "start": 37903.24, "end": 37904.58, "probability": 0.9961 }, { "start": 37906.02, "end": 37907.4, "probability": 0.3712 }, { "start": 37907.48, "end": 37908.2, "probability": 0.7111 }, { "start": 37908.36, "end": 37908.86, "probability": 0.3583 }, { "start": 37910.86, "end": 37915.26, "probability": 0.9202 }, { "start": 37915.66, "end": 37917.34, "probability": 0.6813 }, { "start": 37917.66, "end": 37920.54, "probability": 0.7115 }, { "start": 37920.8, "end": 37922.12, "probability": 0.8032 }, { "start": 37924.08, "end": 37924.95, "probability": 0.8823 }, { "start": 37926.32, "end": 37929.84, "probability": 0.9929 }, { "start": 37930.06, "end": 37930.76, "probability": 0.883 }, { "start": 37933.22, "end": 37935.64, "probability": 0.8202 }, { "start": 37936.18, "end": 37939.34, "probability": 0.9651 }, { "start": 37941.6, "end": 37943.18, "probability": 0.9941 }, { "start": 37944.28, "end": 37946.1, "probability": 0.8945 }, { "start": 37946.76, "end": 37948.26, "probability": 0.9321 }, { "start": 37950.24, "end": 37952.62, "probability": 0.903 }, { "start": 37953.66, "end": 37954.72, "probability": 0.5296 }, { "start": 37955.96, "end": 37960.28, "probability": 0.9925 }, { "start": 37961.3, "end": 37961.88, "probability": 0.76 }, { "start": 37963.12, "end": 37965.58, "probability": 0.9972 }, { "start": 37966.34, "end": 37967.14, "probability": 0.8799 }, { "start": 37967.68, "end": 37971.66, "probability": 0.9836 }, { "start": 37972.94, "end": 37973.46, "probability": 0.8456 }, { "start": 37975.2, "end": 37977.72, "probability": 0.9798 }, { "start": 37978.42, "end": 37980.4, "probability": 0.9982 }, { "start": 37980.5, "end": 37980.98, "probability": 0.6814 }, { "start": 37981.68, "end": 37982.74, "probability": 0.9881 }, { "start": 37985.2, "end": 37986.14, "probability": 0.8144 }, { "start": 37987.72, "end": 37988.2, "probability": 0.4864 }, { "start": 37988.2, "end": 37989.65, "probability": 0.9763 }, { "start": 37991.32, "end": 37991.76, "probability": 0.9775 }, { "start": 37992.81, "end": 37996.34, "probability": 0.8074 }, { "start": 37997.62, "end": 37998.04, "probability": 0.3327 }, { "start": 37998.52, "end": 37999.24, "probability": 0.6252 }, { "start": 37999.5, "end": 38002.34, "probability": 0.9173 }, { "start": 38005.18, "end": 38006.44, "probability": 0.5053 }, { "start": 38007.6, "end": 38008.09, "probability": 0.1872 }, { "start": 38008.78, "end": 38009.61, "probability": 0.4815 }, { "start": 38010.66, "end": 38011.12, "probability": 0.1861 }, { "start": 38012.62, "end": 38014.12, "probability": 0.6856 }, { "start": 38015.9, "end": 38017.42, "probability": 0.6371 }, { "start": 38017.52, "end": 38018.82, "probability": 0.9067 }, { "start": 38018.82, "end": 38019.68, "probability": 0.5998 }, { "start": 38020.58, "end": 38021.61, "probability": 0.8817 }, { "start": 38021.74, "end": 38022.6, "probability": 0.9784 }, { "start": 38022.76, "end": 38023.34, "probability": 0.7737 }, { "start": 38025.84, "end": 38027.3, "probability": 0.9803 }, { "start": 38027.82, "end": 38029.88, "probability": 0.9984 }, { "start": 38030.02, "end": 38030.38, "probability": 0.8334 }, { "start": 38030.5, "end": 38034.28, "probability": 0.9515 }, { "start": 38034.98, "end": 38035.76, "probability": 0.7725 }, { "start": 38035.92, "end": 38036.9, "probability": 0.9475 }, { "start": 38038.76, "end": 38040.9, "probability": 0.7829 }, { "start": 38042.31, "end": 38043.14, "probability": 0.8691 }, { "start": 38044.1, "end": 38045.66, "probability": 0.7894 }, { "start": 38045.92, "end": 38046.32, "probability": 0.7522 }, { "start": 38046.38, "end": 38048.4, "probability": 0.8228 }, { "start": 38048.58, "end": 38049.32, "probability": 0.7743 }, { "start": 38049.98, "end": 38051.96, "probability": 0.9938 }, { "start": 38052.96, "end": 38054.6, "probability": 0.8628 }, { "start": 38055.06, "end": 38057.24, "probability": 0.9681 }, { "start": 38057.36, "end": 38058.0, "probability": 0.6189 }, { "start": 38058.08, "end": 38059.05, "probability": 0.9245 }, { "start": 38062.14, "end": 38063.46, "probability": 0.3587 }, { "start": 38063.58, "end": 38065.29, "probability": 0.975 }, { "start": 38065.78, "end": 38066.28, "probability": 0.9955 }, { "start": 38066.68, "end": 38067.2, "probability": 0.8735 }, { "start": 38068.66, "end": 38070.38, "probability": 0.6198 }, { "start": 38071.42, "end": 38072.1, "probability": 0.8438 }, { "start": 38074.2, "end": 38074.64, "probability": 0.4626 }, { "start": 38076.64, "end": 38079.1, "probability": 0.7232 }, { "start": 38081.32, "end": 38082.84, "probability": 0.6722 }, { "start": 38084.98, "end": 38085.54, "probability": 0.9292 }, { "start": 38085.66, "end": 38085.74, "probability": 0.6294 }, { "start": 38085.9, "end": 38086.46, "probability": 0.9352 }, { "start": 38086.58, "end": 38086.96, "probability": 0.8103 }, { "start": 38087.28, "end": 38087.54, "probability": 0.8992 }, { "start": 38087.8, "end": 38088.58, "probability": 0.8651 }, { "start": 38089.32, "end": 38091.46, "probability": 0.8374 }, { "start": 38092.06, "end": 38092.98, "probability": 0.9095 }, { "start": 38093.08, "end": 38094.88, "probability": 0.905 }, { "start": 38095.08, "end": 38097.32, "probability": 0.991 }, { "start": 38099.14, "end": 38100.44, "probability": 0.8163 }, { "start": 38102.0, "end": 38103.47, "probability": 0.8565 }, { "start": 38104.6, "end": 38106.82, "probability": 0.9604 }, { "start": 38106.88, "end": 38107.22, "probability": 0.7703 }, { "start": 38108.56, "end": 38109.04, "probability": 0.8362 }, { "start": 38110.16, "end": 38112.52, "probability": 0.6788 }, { "start": 38112.8, "end": 38113.74, "probability": 0.7285 }, { "start": 38114.62, "end": 38115.12, "probability": 0.9033 }, { "start": 38115.66, "end": 38115.96, "probability": 0.7375 }, { "start": 38117.46, "end": 38118.82, "probability": 0.7735 }, { "start": 38119.6, "end": 38121.82, "probability": 0.9718 }, { "start": 38122.02, "end": 38122.34, "probability": 0.7305 }, { "start": 38122.4, "end": 38123.94, "probability": 0.7021 }, { "start": 38123.94, "end": 38124.6, "probability": 0.8767 }, { "start": 38127.62, "end": 38128.54, "probability": 0.715 }, { "start": 38129.36, "end": 38130.52, "probability": 0.8108 }, { "start": 38130.98, "end": 38132.4, "probability": 0.8733 }, { "start": 38133.14, "end": 38134.64, "probability": 0.9954 }, { "start": 38137.0, "end": 38137.62, "probability": 0.7046 }, { "start": 38137.76, "end": 38138.2, "probability": 0.4404 }, { "start": 38138.26, "end": 38138.79, "probability": 0.8979 }, { "start": 38139.14, "end": 38140.04, "probability": 0.7261 }, { "start": 38140.26, "end": 38141.66, "probability": 0.7793 }, { "start": 38142.78, "end": 38143.92, "probability": 0.808 }, { "start": 38145.68, "end": 38148.14, "probability": 0.6116 }, { "start": 38148.28, "end": 38148.7, "probability": 0.6287 }, { "start": 38149.84, "end": 38153.22, "probability": 0.9531 }, { "start": 38153.36, "end": 38154.74, "probability": 0.7227 }, { "start": 38156.62, "end": 38157.18, "probability": 0.9787 }, { "start": 38158.62, "end": 38159.58, "probability": 0.9186 }, { "start": 38162.38, "end": 38162.86, "probability": 0.7284 }, { "start": 38164.98, "end": 38165.08, "probability": 0.8951 }, { "start": 38165.08, "end": 38166.12, "probability": 0.9506 }, { "start": 38166.16, "end": 38166.92, "probability": 0.9181 }, { "start": 38167.4, "end": 38169.56, "probability": 0.9877 }, { "start": 38170.66, "end": 38171.22, "probability": 0.9137 }, { "start": 38173.28, "end": 38173.92, "probability": 0.7863 }, { "start": 38177.04, "end": 38177.68, "probability": 0.7535 }, { "start": 38179.18, "end": 38180.84, "probability": 0.8996 }, { "start": 38180.98, "end": 38183.08, "probability": 0.9226 }, { "start": 38183.18, "end": 38183.83, "probability": 0.8711 }, { "start": 38183.92, "end": 38187.18, "probability": 0.9751 }, { "start": 38187.3, "end": 38188.82, "probability": 0.8325 }, { "start": 38189.86, "end": 38190.88, "probability": 0.921 }, { "start": 38191.42, "end": 38193.84, "probability": 0.9799 }, { "start": 38194.82, "end": 38198.72, "probability": 0.9837 }, { "start": 38199.14, "end": 38199.74, "probability": 0.7947 }, { "start": 38202.9, "end": 38204.26, "probability": 0.9917 }, { "start": 38204.34, "end": 38205.62, "probability": 0.854 }, { "start": 38206.38, "end": 38208.86, "probability": 0.7705 }, { "start": 38210.64, "end": 38211.76, "probability": 0.9692 }, { "start": 38213.14, "end": 38215.54, "probability": 0.9691 }, { "start": 38217.1, "end": 38220.9, "probability": 0.9888 }, { "start": 38222.46, "end": 38223.68, "probability": 0.728 }, { "start": 38225.88, "end": 38226.68, "probability": 0.7589 }, { "start": 38227.16, "end": 38230.3, "probability": 0.9909 }, { "start": 38230.4, "end": 38232.0, "probability": 0.8121 }, { "start": 38232.34, "end": 38233.44, "probability": 0.7822 }, { "start": 38234.98, "end": 38237.1, "probability": 0.9278 }, { "start": 38237.46, "end": 38241.02, "probability": 0.9641 }, { "start": 38242.72, "end": 38245.66, "probability": 0.6304 }, { "start": 38245.7, "end": 38249.94, "probability": 0.9248 }, { "start": 38250.12, "end": 38251.3, "probability": 0.8222 }, { "start": 38251.88, "end": 38253.62, "probability": 0.8506 }, { "start": 38255.44, "end": 38257.98, "probability": 0.9082 }, { "start": 38259.12, "end": 38259.58, "probability": 0.4939 }, { "start": 38259.6, "end": 38262.46, "probability": 0.6166 }, { "start": 38262.9, "end": 38264.3, "probability": 0.9244 }, { "start": 38264.92, "end": 38268.66, "probability": 0.9803 }, { "start": 38269.3, "end": 38269.44, "probability": 0.6448 }, { "start": 38269.98, "end": 38273.92, "probability": 0.7031 }, { "start": 38275.12, "end": 38278.72, "probability": 0.9662 }, { "start": 38279.52, "end": 38281.68, "probability": 0.9971 }, { "start": 38282.44, "end": 38284.82, "probability": 0.7044 }, { "start": 38284.9, "end": 38285.34, "probability": 0.7969 }, { "start": 38285.96, "end": 38288.06, "probability": 0.9676 }, { "start": 38288.16, "end": 38288.62, "probability": 0.6094 }, { "start": 38289.0, "end": 38291.02, "probability": 0.8879 }, { "start": 38291.08, "end": 38291.98, "probability": 0.6779 }, { "start": 38292.94, "end": 38293.54, "probability": 0.9614 }, { "start": 38294.16, "end": 38296.1, "probability": 0.9292 }, { "start": 38296.38, "end": 38297.32, "probability": 0.558 }, { "start": 38297.56, "end": 38299.1, "probability": 0.9185 }, { "start": 38300.88, "end": 38302.38, "probability": 0.7006 }, { "start": 38302.9, "end": 38303.84, "probability": 0.6558 }, { "start": 38304.98, "end": 38306.76, "probability": 0.8998 }, { "start": 38309.08, "end": 38312.26, "probability": 0.9854 }, { "start": 38312.88, "end": 38313.3, "probability": 0.7437 }, { "start": 38313.4, "end": 38314.18, "probability": 0.6969 }, { "start": 38314.34, "end": 38317.38, "probability": 0.8796 }, { "start": 38317.54, "end": 38319.13, "probability": 0.9785 }, { "start": 38319.58, "end": 38320.0, "probability": 0.5616 }, { "start": 38320.66, "end": 38321.98, "probability": 0.9758 }, { "start": 38322.22, "end": 38323.44, "probability": 0.9963 }, { "start": 38324.02, "end": 38325.02, "probability": 0.5317 }, { "start": 38325.48, "end": 38326.48, "probability": 0.9275 }, { "start": 38326.6, "end": 38327.02, "probability": 0.874 }, { "start": 38327.38, "end": 38328.74, "probability": 0.6635 }, { "start": 38328.98, "end": 38329.58, "probability": 0.9838 }, { "start": 38330.0, "end": 38331.44, "probability": 0.8654 }, { "start": 38331.56, "end": 38331.96, "probability": 0.7244 }, { "start": 38332.5, "end": 38333.5, "probability": 0.6715 }, { "start": 38333.56, "end": 38336.74, "probability": 0.5911 }, { "start": 38337.56, "end": 38339.42, "probability": 0.6495 }, { "start": 38340.42, "end": 38341.96, "probability": 0.8589 }, { "start": 38343.78, "end": 38347.02, "probability": 0.7296 }, { "start": 38348.1, "end": 38349.64, "probability": 0.8531 }, { "start": 38350.08, "end": 38353.64, "probability": 0.944 }, { "start": 38354.86, "end": 38357.4, "probability": 0.7479 }, { "start": 38358.06, "end": 38359.76, "probability": 0.8688 }, { "start": 38361.5, "end": 38365.86, "probability": 0.8418 }, { "start": 38366.04, "end": 38366.92, "probability": 0.4892 }, { "start": 38368.8, "end": 38373.16, "probability": 0.9173 }, { "start": 38373.76, "end": 38376.42, "probability": 0.8272 }, { "start": 38377.02, "end": 38378.12, "probability": 0.7778 }, { "start": 38379.48, "end": 38380.98, "probability": 0.7396 }, { "start": 38382.22, "end": 38383.56, "probability": 0.4993 }, { "start": 38384.44, "end": 38388.86, "probability": 0.9954 }, { "start": 38388.98, "end": 38389.56, "probability": 0.9597 }, { "start": 38390.84, "end": 38391.94, "probability": 0.9768 }, { "start": 38392.58, "end": 38394.48, "probability": 0.8688 }, { "start": 38395.24, "end": 38400.8, "probability": 0.9961 }, { "start": 38401.2, "end": 38405.48, "probability": 0.9888 }, { "start": 38405.6, "end": 38408.34, "probability": 0.6996 }, { "start": 38408.56, "end": 38409.98, "probability": 0.8351 }, { "start": 38411.96, "end": 38413.06, "probability": 0.8971 }, { "start": 38413.74, "end": 38416.76, "probability": 0.9852 }, { "start": 38416.88, "end": 38418.06, "probability": 0.9961 }, { "start": 38418.16, "end": 38419.42, "probability": 0.9505 }, { "start": 38419.52, "end": 38421.02, "probability": 0.9624 }, { "start": 38424.7, "end": 38426.04, "probability": 0.8208 }, { "start": 38426.14, "end": 38427.62, "probability": 0.2797 }, { "start": 38428.06, "end": 38429.64, "probability": 0.6929 }, { "start": 38430.78, "end": 38430.86, "probability": 0.7235 }, { "start": 38430.86, "end": 38433.16, "probability": 0.8798 }, { "start": 38433.56, "end": 38435.72, "probability": 0.9923 }, { "start": 38436.18, "end": 38437.9, "probability": 0.8934 }, { "start": 38438.08, "end": 38438.76, "probability": 0.8458 }, { "start": 38438.86, "end": 38439.22, "probability": 0.3447 }, { "start": 38439.32, "end": 38440.86, "probability": 0.7521 }, { "start": 38440.98, "end": 38444.9, "probability": 0.7916 }, { "start": 38445.16, "end": 38446.82, "probability": 0.9158 }, { "start": 38447.24, "end": 38451.56, "probability": 0.9683 }, { "start": 38453.42, "end": 38455.06, "probability": 0.6422 }, { "start": 38455.42, "end": 38457.74, "probability": 0.7521 }, { "start": 38458.42, "end": 38463.54, "probability": 0.8682 }, { "start": 38464.56, "end": 38466.06, "probability": 0.9801 }, { "start": 38466.68, "end": 38469.54, "probability": 0.9858 }, { "start": 38469.98, "end": 38470.42, "probability": 0.6388 }, { "start": 38472.12, "end": 38473.62, "probability": 0.911 }, { "start": 38475.1, "end": 38477.68, "probability": 0.9938 }, { "start": 38479.16, "end": 38480.72, "probability": 0.5997 }, { "start": 38480.82, "end": 38483.14, "probability": 0.9744 }, { "start": 38483.96, "end": 38485.68, "probability": 0.7041 }, { "start": 38486.42, "end": 38489.62, "probability": 0.99 }, { "start": 38491.58, "end": 38492.73, "probability": 0.8833 }, { "start": 38493.64, "end": 38500.82, "probability": 0.9825 }, { "start": 38501.28, "end": 38504.92, "probability": 0.9377 }, { "start": 38505.02, "end": 38505.38, "probability": 0.6833 }, { "start": 38506.5, "end": 38509.48, "probability": 0.9365 }, { "start": 38510.26, "end": 38513.38, "probability": 0.9181 }, { "start": 38514.66, "end": 38515.36, "probability": 0.8795 }, { "start": 38515.42, "end": 38515.98, "probability": 0.8681 }, { "start": 38516.12, "end": 38517.33, "probability": 0.8113 }, { "start": 38517.66, "end": 38518.4, "probability": 0.9527 }, { "start": 38520.19, "end": 38522.54, "probability": 0.9033 }, { "start": 38523.22, "end": 38524.22, "probability": 0.9067 }, { "start": 38525.08, "end": 38528.18, "probability": 0.748 }, { "start": 38528.6, "end": 38529.8, "probability": 0.9682 }, { "start": 38530.28, "end": 38531.5, "probability": 0.8202 }, { "start": 38531.72, "end": 38532.62, "probability": 0.6287 }, { "start": 38532.97, "end": 38534.94, "probability": 0.9668 }, { "start": 38535.08, "end": 38539.4, "probability": 0.974 }, { "start": 38539.5, "end": 38543.5, "probability": 0.9456 }, { "start": 38543.86, "end": 38545.34, "probability": 0.6132 }, { "start": 38546.38, "end": 38548.38, "probability": 0.8579 }, { "start": 38549.7, "end": 38551.04, "probability": 0.9034 }, { "start": 38551.58, "end": 38552.63, "probability": 0.8694 }, { "start": 38553.06, "end": 38554.2, "probability": 0.9885 }, { "start": 38555.74, "end": 38558.02, "probability": 0.9106 }, { "start": 38558.62, "end": 38561.08, "probability": 0.9447 }, { "start": 38561.96, "end": 38562.8, "probability": 0.9871 }, { "start": 38563.52, "end": 38565.4, "probability": 0.8937 }, { "start": 38566.76, "end": 38568.88, "probability": 0.9469 }, { "start": 38571.72, "end": 38573.46, "probability": 0.9976 }, { "start": 38575.66, "end": 38578.56, "probability": 0.9863 }, { "start": 38580.6, "end": 38585.0, "probability": 0.6711 }, { "start": 38585.54, "end": 38586.14, "probability": 0.6354 }, { "start": 38586.2, "end": 38586.6, "probability": 0.4918 }, { "start": 38586.68, "end": 38589.82, "probability": 0.9277 }, { "start": 38592.18, "end": 38598.36, "probability": 0.8845 }, { "start": 38599.34, "end": 38601.14, "probability": 0.4993 }, { "start": 38601.44, "end": 38605.68, "probability": 0.9897 }, { "start": 38605.94, "end": 38606.32, "probability": 0.4429 }, { "start": 38606.38, "end": 38606.96, "probability": 0.9269 }, { "start": 38607.7, "end": 38610.28, "probability": 0.9928 }, { "start": 38611.36, "end": 38615.28, "probability": 0.4047 }, { "start": 38615.9, "end": 38615.9, "probability": 0.0774 }, { "start": 38617.04, "end": 38618.62, "probability": 0.9922 }, { "start": 38618.7, "end": 38620.96, "probability": 0.7786 }, { "start": 38621.3, "end": 38622.04, "probability": 0.6915 }, { "start": 38622.12, "end": 38623.46, "probability": 0.8883 }, { "start": 38623.72, "end": 38624.16, "probability": 0.9373 }, { "start": 38625.3, "end": 38625.78, "probability": 0.5382 }, { "start": 38626.98, "end": 38628.62, "probability": 0.8504 }, { "start": 38630.46, "end": 38630.66, "probability": 0.4836 }, { "start": 38634.62, "end": 38636.26, "probability": 0.0052 }, { "start": 38636.32, "end": 38637.06, "probability": 0.5536 }, { "start": 38639.4, "end": 38643.14, "probability": 0.7997 }, { "start": 38643.52, "end": 38644.8, "probability": 0.9204 }, { "start": 38645.0, "end": 38645.72, "probability": 0.7773 }, { "start": 38648.0, "end": 38652.46, "probability": 0.9656 }, { "start": 38652.88, "end": 38653.24, "probability": 0.7229 }, { "start": 38653.34, "end": 38656.86, "probability": 0.9406 }, { "start": 38657.12, "end": 38657.54, "probability": 0.802 }, { "start": 38658.12, "end": 38661.87, "probability": 0.9692 }, { "start": 38662.26, "end": 38662.68, "probability": 0.5983 }, { "start": 38662.82, "end": 38663.7, "probability": 0.8328 }, { "start": 38664.3, "end": 38665.33, "probability": 0.9102 }, { "start": 38666.56, "end": 38666.7, "probability": 0.845 }, { "start": 38668.12, "end": 38669.06, "probability": 0.6709 }, { "start": 38669.68, "end": 38671.48, "probability": 0.9595 }, { "start": 38672.66, "end": 38678.06, "probability": 0.6859 }, { "start": 38681.02, "end": 38682.4, "probability": 0.8962 }, { "start": 38683.1, "end": 38684.9, "probability": 0.9253 }, { "start": 38687.26, "end": 38688.48, "probability": 0.9881 }, { "start": 38689.06, "end": 38692.44, "probability": 0.9424 }, { "start": 38692.46, "end": 38692.78, "probability": 0.6428 }, { "start": 38692.94, "end": 38694.75, "probability": 0.9082 }, { "start": 38696.46, "end": 38697.4, "probability": 0.6195 }, { "start": 38701.76, "end": 38702.62, "probability": 0.3684 }, { "start": 38703.4, "end": 38703.72, "probability": 0.4675 }, { "start": 38705.06, "end": 38705.6, "probability": 0.4651 }, { "start": 38709.56, "end": 38709.82, "probability": 0.708 }, { "start": 38711.4, "end": 38711.74, "probability": 0.5273 }, { "start": 38711.76, "end": 38715.12, "probability": 0.8909 }, { "start": 38715.18, "end": 38715.88, "probability": 0.8997 }, { "start": 38717.08, "end": 38717.86, "probability": 0.9274 }, { "start": 38718.84, "end": 38720.94, "probability": 0.9354 }, { "start": 38722.1, "end": 38723.92, "probability": 0.4709 }, { "start": 38724.0, "end": 38724.34, "probability": 0.3822 }, { "start": 38724.92, "end": 38726.94, "probability": 0.9344 }, { "start": 38728.24, "end": 38729.62, "probability": 0.8926 }, { "start": 38730.5, "end": 38731.44, "probability": 0.8405 }, { "start": 38733.38, "end": 38734.98, "probability": 0.7439 }, { "start": 38735.06, "end": 38736.6, "probability": 0.9529 }, { "start": 38738.64, "end": 38739.6, "probability": 0.7668 }, { "start": 38740.92, "end": 38743.12, "probability": 0.7008 }, { "start": 38744.14, "end": 38745.6, "probability": 0.8708 }, { "start": 38746.98, "end": 38748.9, "probability": 0.6107 }, { "start": 38749.04, "end": 38749.26, "probability": 0.7873 }, { "start": 38750.08, "end": 38750.88, "probability": 0.9663 }, { "start": 38750.96, "end": 38752.56, "probability": 0.661 }, { "start": 38752.7, "end": 38753.55, "probability": 0.8867 }, { "start": 38754.82, "end": 38756.14, "probability": 0.8284 }, { "start": 38757.6, "end": 38759.82, "probability": 0.9261 }, { "start": 38759.94, "end": 38760.5, "probability": 0.9023 }, { "start": 38761.28, "end": 38762.22, "probability": 0.926 }, { "start": 38762.54, "end": 38762.82, "probability": 0.9229 }, { "start": 38763.3, "end": 38764.2, "probability": 0.9019 }, { "start": 38765.08, "end": 38766.66, "probability": 0.8959 }, { "start": 38767.7, "end": 38770.14, "probability": 0.8947 }, { "start": 38771.0, "end": 38771.7, "probability": 0.9043 }, { "start": 38772.66, "end": 38773.8, "probability": 0.7929 }, { "start": 38774.16, "end": 38774.54, "probability": 0.9444 }, { "start": 38774.94, "end": 38775.4, "probability": 0.9171 }, { "start": 38777.2, "end": 38778.28, "probability": 0.9976 }, { "start": 38778.34, "end": 38779.36, "probability": 0.9839 }, { "start": 38781.42, "end": 38782.04, "probability": 0.3057 }, { "start": 38782.04, "end": 38783.01, "probability": 0.8279 }, { "start": 38783.18, "end": 38783.99, "probability": 0.9734 }, { "start": 38786.5, "end": 38786.88, "probability": 0.8129 }, { "start": 38787.52, "end": 38788.98, "probability": 0.8422 }, { "start": 38790.72, "end": 38792.62, "probability": 0.8867 }, { "start": 38793.62, "end": 38803.78, "probability": 0.9763 }, { "start": 38804.6, "end": 38806.78, "probability": 0.8862 }, { "start": 38808.38, "end": 38809.96, "probability": 0.901 }, { "start": 38811.38, "end": 38813.54, "probability": 0.9423 }, { "start": 38817.02, "end": 38820.2, "probability": 0.9766 }, { "start": 38821.82, "end": 38824.58, "probability": 0.9289 }, { "start": 38826.76, "end": 38827.16, "probability": 0.9641 }, { "start": 38828.46, "end": 38833.88, "probability": 0.9967 }, { "start": 38834.32, "end": 38835.04, "probability": 0.8735 }, { "start": 38835.12, "end": 38836.1, "probability": 0.9258 }, { "start": 38838.02, "end": 38839.24, "probability": 0.9946 }, { "start": 38839.9, "end": 38840.74, "probability": 0.8757 }, { "start": 38841.46, "end": 38841.74, "probability": 0.9007 }, { "start": 38843.2, "end": 38843.54, "probability": 0.9167 }, { "start": 38843.96, "end": 38844.2, "probability": 0.8003 }, { "start": 38845.32, "end": 38847.8, "probability": 0.667 }, { "start": 38848.54, "end": 38848.96, "probability": 0.148 }, { "start": 38850.54, "end": 38852.12, "probability": 0.8053 }, { "start": 38853.22, "end": 38854.06, "probability": 0.6467 }, { "start": 38855.56, "end": 38856.14, "probability": 0.5013 }, { "start": 38856.64, "end": 38857.44, "probability": 0.988 }, { "start": 38857.58, "end": 38858.8, "probability": 0.9556 }, { "start": 38860.18, "end": 38861.5, "probability": 0.5746 }, { "start": 38861.7, "end": 38863.35, "probability": 0.8025 }, { "start": 38863.8, "end": 38864.56, "probability": 0.9723 }, { "start": 38864.82, "end": 38865.52, "probability": 0.575 }, { "start": 38866.68, "end": 38867.84, "probability": 0.9896 }, { "start": 38868.7, "end": 38871.2, "probability": 0.8352 }, { "start": 38871.8, "end": 38872.22, "probability": 0.9545 }, { "start": 38872.76, "end": 38875.12, "probability": 0.9291 }, { "start": 38875.24, "end": 38876.28, "probability": 0.92 }, { "start": 38876.46, "end": 38876.78, "probability": 0.3847 }, { "start": 38877.3, "end": 38881.46, "probability": 0.9811 }, { "start": 38881.84, "end": 38882.8, "probability": 0.7977 }, { "start": 38884.54, "end": 38888.36, "probability": 0.9974 }, { "start": 38889.46, "end": 38891.24, "probability": 0.934 }, { "start": 38893.52, "end": 38896.12, "probability": 0.9028 }, { "start": 38897.22, "end": 38898.46, "probability": 0.8958 }, { "start": 38898.7, "end": 38899.0, "probability": 0.6406 }, { "start": 38899.16, "end": 38901.11, "probability": 0.9514 }, { "start": 38901.8, "end": 38902.6, "probability": 0.9675 }, { "start": 38903.34, "end": 38904.3, "probability": 0.9991 }, { "start": 38904.92, "end": 38905.88, "probability": 0.9844 }, { "start": 38907.28, "end": 38908.4, "probability": 0.9944 }, { "start": 38908.4, "end": 38909.14, "probability": 0.8462 }, { "start": 38909.82, "end": 38911.42, "probability": 0.9983 }, { "start": 38911.98, "end": 38913.84, "probability": 0.9962 }, { "start": 38915.02, "end": 38919.42, "probability": 0.9925 }, { "start": 38921.52, "end": 38923.34, "probability": 0.9532 }, { "start": 38925.32, "end": 38927.34, "probability": 0.9634 }, { "start": 38927.58, "end": 38931.88, "probability": 0.9941 }, { "start": 38932.68, "end": 38933.04, "probability": 0.9045 }, { "start": 38933.74, "end": 38935.56, "probability": 0.9854 }, { "start": 38935.64, "end": 38937.3, "probability": 0.8127 }, { "start": 38938.84, "end": 38939.72, "probability": 0.9978 }, { "start": 38940.7, "end": 38943.32, "probability": 0.9646 }, { "start": 38943.86, "end": 38944.6, "probability": 0.7997 }, { "start": 38945.9, "end": 38948.22, "probability": 0.9912 }, { "start": 38948.82, "end": 38952.06, "probability": 0.9082 }, { "start": 38954.18, "end": 38955.96, "probability": 0.6812 }, { "start": 38956.72, "end": 38958.78, "probability": 0.6877 }, { "start": 38959.04, "end": 38960.7, "probability": 0.6271 }, { "start": 38963.76, "end": 38965.14, "probability": 0.3084 }, { "start": 38965.42, "end": 38965.8, "probability": 0.9149 }, { "start": 38966.04, "end": 38967.44, "probability": 0.936 }, { "start": 38968.04, "end": 38968.56, "probability": 0.8938 }, { "start": 38969.82, "end": 38971.04, "probability": 0.9938 }, { "start": 38972.42, "end": 38974.71, "probability": 0.9568 }, { "start": 38975.4, "end": 38979.06, "probability": 0.9465 }, { "start": 38980.46, "end": 38983.12, "probability": 0.9854 }, { "start": 38983.26, "end": 38986.27, "probability": 0.9793 }, { "start": 38987.16, "end": 38988.62, "probability": 0.9995 }, { "start": 38989.8, "end": 38991.9, "probability": 0.9924 }, { "start": 38992.26, "end": 38993.8, "probability": 0.6361 }, { "start": 38993.96, "end": 38995.84, "probability": 0.8586 }, { "start": 38996.26, "end": 38997.08, "probability": 0.7862 }, { "start": 38997.54, "end": 38997.9, "probability": 0.626 }, { "start": 38999.22, "end": 39001.22, "probability": 0.8844 }, { "start": 39001.82, "end": 39003.12, "probability": 0.9452 }, { "start": 39004.8, "end": 39005.64, "probability": 0.8432 }, { "start": 39005.76, "end": 39006.58, "probability": 0.984 }, { "start": 39006.68, "end": 39007.44, "probability": 0.7623 }, { "start": 39007.86, "end": 39009.14, "probability": 0.6344 }, { "start": 39009.96, "end": 39011.38, "probability": 0.9875 }, { "start": 39011.9, "end": 39012.9, "probability": 0.998 }, { "start": 39013.94, "end": 39015.12, "probability": 0.8458 }, { "start": 39015.38, "end": 39016.94, "probability": 0.9849 }, { "start": 39019.66, "end": 39020.96, "probability": 0.7975 }, { "start": 39021.36, "end": 39022.1, "probability": 0.8911 }, { "start": 39022.14, "end": 39023.1, "probability": 0.8744 }, { "start": 39023.62, "end": 39027.38, "probability": 0.9691 }, { "start": 39029.34, "end": 39030.42, "probability": 0.9783 }, { "start": 39032.24, "end": 39036.58, "probability": 0.8758 }, { "start": 39037.22, "end": 39037.88, "probability": 0.9612 }, { "start": 39039.56, "end": 39040.52, "probability": 0.9055 }, { "start": 39041.36, "end": 39042.3, "probability": 0.7009 }, { "start": 39044.28, "end": 39045.96, "probability": 0.976 }, { "start": 39046.1, "end": 39046.74, "probability": 0.8592 }, { "start": 39048.26, "end": 39049.18, "probability": 0.8095 }, { "start": 39049.88, "end": 39050.5, "probability": 0.8532 }, { "start": 39051.78, "end": 39052.62, "probability": 0.998 }, { "start": 39053.62, "end": 39054.72, "probability": 0.9664 }, { "start": 39055.2, "end": 39057.88, "probability": 0.7383 }, { "start": 39059.12, "end": 39060.85, "probability": 0.6569 }, { "start": 39065.78, "end": 39066.84, "probability": 0.9609 }, { "start": 39070.22, "end": 39073.28, "probability": 0.999 }, { "start": 39074.04, "end": 39075.24, "probability": 0.9395 }, { "start": 39076.8, "end": 39077.3, "probability": 0.7373 }, { "start": 39078.24, "end": 39078.52, "probability": 0.9856 }, { "start": 39079.32, "end": 39084.84, "probability": 0.8481 }, { "start": 39087.48, "end": 39089.9, "probability": 0.6043 }, { "start": 39090.98, "end": 39091.78, "probability": 0.5167 }, { "start": 39093.94, "end": 39096.14, "probability": 0.8236 }, { "start": 39098.08, "end": 39099.2, "probability": 0.9592 }, { "start": 39100.28, "end": 39101.72, "probability": 0.7836 }, { "start": 39102.56, "end": 39104.18, "probability": 0.9549 }, { "start": 39105.88, "end": 39109.06, "probability": 0.9527 }, { "start": 39109.26, "end": 39110.5, "probability": 0.8633 }, { "start": 39111.52, "end": 39112.58, "probability": 0.9944 }, { "start": 39114.14, "end": 39115.18, "probability": 0.6615 }, { "start": 39115.78, "end": 39116.82, "probability": 0.9627 }, { "start": 39117.48, "end": 39119.86, "probability": 0.8345 }, { "start": 39121.36, "end": 39122.74, "probability": 0.7655 }, { "start": 39122.96, "end": 39123.44, "probability": 0.8873 }, { "start": 39123.88, "end": 39125.3, "probability": 0.7487 }, { "start": 39126.48, "end": 39130.28, "probability": 0.8687 }, { "start": 39131.02, "end": 39131.98, "probability": 0.7988 }, { "start": 39132.42, "end": 39132.74, "probability": 0.8202 }, { "start": 39133.1, "end": 39136.26, "probability": 0.9783 }, { "start": 39136.26, "end": 39136.9, "probability": 0.3696 }, { "start": 39138.4, "end": 39140.54, "probability": 0.4989 }, { "start": 39141.52, "end": 39142.72, "probability": 0.9727 }, { "start": 39143.4, "end": 39144.63, "probability": 0.9873 }, { "start": 39144.78, "end": 39146.27, "probability": 0.9716 }, { "start": 39147.9, "end": 39149.04, "probability": 0.7436 }, { "start": 39149.6, "end": 39150.84, "probability": 0.9163 }, { "start": 39151.18, "end": 39151.9, "probability": 0.5681 }, { "start": 39153.04, "end": 39155.2, "probability": 0.8775 }, { "start": 39156.14, "end": 39158.88, "probability": 0.9976 }, { "start": 39159.14, "end": 39159.74, "probability": 0.9511 }, { "start": 39161.32, "end": 39162.8, "probability": 0.8542 }, { "start": 39164.4, "end": 39168.08, "probability": 0.7722 }, { "start": 39169.54, "end": 39170.1, "probability": 0.9164 }, { "start": 39171.24, "end": 39173.6, "probability": 0.6727 }, { "start": 39174.36, "end": 39176.92, "probability": 0.9559 }, { "start": 39177.3, "end": 39179.26, "probability": 0.9495 }, { "start": 39179.32, "end": 39180.78, "probability": 0.7759 }, { "start": 39180.86, "end": 39182.52, "probability": 0.9788 }, { "start": 39183.26, "end": 39184.5, "probability": 0.9642 }, { "start": 39184.66, "end": 39184.92, "probability": 0.8647 }, { "start": 39185.44, "end": 39185.98, "probability": 0.6085 }, { "start": 39186.9, "end": 39190.44, "probability": 0.9966 }, { "start": 39191.1, "end": 39192.64, "probability": 0.9976 }, { "start": 39193.96, "end": 39194.9, "probability": 0.8911 }, { "start": 39199.06, "end": 39199.9, "probability": 0.8571 }, { "start": 39202.72, "end": 39204.14, "probability": 0.6849 }, { "start": 39205.02, "end": 39205.7, "probability": 0.7149 }, { "start": 39206.88, "end": 39209.4, "probability": 0.9778 }, { "start": 39210.14, "end": 39211.36, "probability": 0.9992 }, { "start": 39212.28, "end": 39212.64, "probability": 0.9837 }, { "start": 39213.5, "end": 39215.28, "probability": 0.967 }, { "start": 39216.8, "end": 39218.42, "probability": 0.9929 }, { "start": 39219.56, "end": 39220.72, "probability": 0.8958 }, { "start": 39221.3, "end": 39222.32, "probability": 0.79 }, { "start": 39223.88, "end": 39225.18, "probability": 0.5653 }, { "start": 39227.48, "end": 39229.18, "probability": 0.7516 }, { "start": 39230.08, "end": 39232.78, "probability": 0.9339 }, { "start": 39233.88, "end": 39238.0, "probability": 0.8255 }, { "start": 39240.08, "end": 39241.62, "probability": 0.9937 }, { "start": 39242.16, "end": 39246.0, "probability": 0.6647 }, { "start": 39247.48, "end": 39252.38, "probability": 0.8997 }, { "start": 39254.46, "end": 39255.32, "probability": 0.7365 }, { "start": 39256.12, "end": 39259.52, "probability": 0.9313 }, { "start": 39260.96, "end": 39263.84, "probability": 0.92 }, { "start": 39265.04, "end": 39273.16, "probability": 0.9976 }, { "start": 39273.3, "end": 39275.43, "probability": 0.9544 }, { "start": 39276.16, "end": 39278.16, "probability": 0.9072 }, { "start": 39278.86, "end": 39281.02, "probability": 0.9137 }, { "start": 39283.7, "end": 39283.84, "probability": 0.048 }, { "start": 39283.84, "end": 39286.58, "probability": 0.9121 }, { "start": 39286.94, "end": 39287.68, "probability": 0.6141 }, { "start": 39289.52, "end": 39291.94, "probability": 0.9901 }, { "start": 39293.26, "end": 39294.9, "probability": 0.8855 }, { "start": 39295.2, "end": 39295.86, "probability": 0.97 }, { "start": 39297.12, "end": 39298.96, "probability": 0.9854 }, { "start": 39299.06, "end": 39299.4, "probability": 0.7667 }, { "start": 39299.56, "end": 39302.74, "probability": 0.9307 }, { "start": 39303.56, "end": 39304.3, "probability": 0.7487 }, { "start": 39305.32, "end": 39309.12, "probability": 0.9843 }, { "start": 39310.18, "end": 39313.2, "probability": 0.9938 }, { "start": 39313.94, "end": 39317.5, "probability": 0.8536 }, { "start": 39319.8, "end": 39320.56, "probability": 0.9564 }, { "start": 39322.4, "end": 39326.64, "probability": 0.9984 }, { "start": 39326.64, "end": 39331.44, "probability": 0.7837 }, { "start": 39331.72, "end": 39332.12, "probability": 0.8388 }, { "start": 39332.5, "end": 39333.6, "probability": 0.9976 }, { "start": 39335.44, "end": 39338.22, "probability": 0.8508 }, { "start": 39339.48, "end": 39343.16, "probability": 0.9941 }, { "start": 39343.78, "end": 39345.16, "probability": 0.7557 }, { "start": 39345.88, "end": 39346.96, "probability": 0.9493 }, { "start": 39348.26, "end": 39351.1, "probability": 0.9774 }, { "start": 39351.1, "end": 39352.82, "probability": 0.9871 }, { "start": 39353.82, "end": 39354.64, "probability": 0.9934 }, { "start": 39355.5, "end": 39359.66, "probability": 0.9645 }, { "start": 39360.54, "end": 39362.18, "probability": 0.8738 }, { "start": 39362.84, "end": 39364.98, "probability": 0.9895 }, { "start": 39365.72, "end": 39367.22, "probability": 0.9551 }, { "start": 39367.34, "end": 39368.67, "probability": 0.751 }, { "start": 39370.54, "end": 39372.77, "probability": 0.9541 }, { "start": 39373.9, "end": 39375.64, "probability": 0.3918 }, { "start": 39376.18, "end": 39378.82, "probability": 0.8026 }, { "start": 39378.92, "end": 39381.18, "probability": 0.811 }, { "start": 39382.34, "end": 39384.32, "probability": 0.9995 }, { "start": 39384.86, "end": 39386.14, "probability": 0.8364 }, { "start": 39387.68, "end": 39391.0, "probability": 0.8634 }, { "start": 39391.92, "end": 39397.72, "probability": 0.9474 }, { "start": 39399.38, "end": 39401.34, "probability": 0.987 }, { "start": 39401.5, "end": 39401.96, "probability": 0.8559 }, { "start": 39402.04, "end": 39403.08, "probability": 0.9678 }, { "start": 39403.1, "end": 39403.84, "probability": 0.2617 }, { "start": 39403.88, "end": 39404.82, "probability": 0.9626 }, { "start": 39406.38, "end": 39411.3, "probability": 0.9937 }, { "start": 39411.38, "end": 39412.6, "probability": 0.9565 }, { "start": 39412.7, "end": 39413.76, "probability": 0.701 }, { "start": 39414.74, "end": 39416.9, "probability": 0.8738 }, { "start": 39418.44, "end": 39419.55, "probability": 0.4928 }, { "start": 39420.46, "end": 39421.56, "probability": 0.9868 }, { "start": 39422.68, "end": 39423.0, "probability": 0.1736 }, { "start": 39423.8, "end": 39427.0, "probability": 0.9393 }, { "start": 39427.08, "end": 39429.28, "probability": 0.8774 }, { "start": 39430.26, "end": 39432.2, "probability": 0.8901 }, { "start": 39432.62, "end": 39433.26, "probability": 0.8531 }, { "start": 39433.52, "end": 39434.62, "probability": 0.8481 }, { "start": 39435.54, "end": 39440.04, "probability": 0.3594 }, { "start": 39440.04, "end": 39440.04, "probability": 0.2131 }, { "start": 39440.04, "end": 39442.87, "probability": 0.7152 }, { "start": 39445.28, "end": 39446.18, "probability": 0.9888 }, { "start": 39447.08, "end": 39447.7, "probability": 0.941 }, { "start": 39448.38, "end": 39450.3, "probability": 0.9972 }, { "start": 39451.45, "end": 39454.62, "probability": 0.849 }, { "start": 39454.74, "end": 39455.24, "probability": 0.5735 }, { "start": 39456.66, "end": 39457.72, "probability": 0.8346 }, { "start": 39458.56, "end": 39460.28, "probability": 0.9018 }, { "start": 39462.44, "end": 39465.66, "probability": 0.9295 }, { "start": 39466.52, "end": 39468.7, "probability": 0.9128 }, { "start": 39469.5, "end": 39472.0, "probability": 0.995 }, { "start": 39472.64, "end": 39474.66, "probability": 0.564 }, { "start": 39475.46, "end": 39477.14, "probability": 0.7146 }, { "start": 39478.94, "end": 39479.5, "probability": 0.4999 }, { "start": 39480.24, "end": 39483.56, "probability": 0.9774 }, { "start": 39484.42, "end": 39486.1, "probability": 0.9523 }, { "start": 39487.02, "end": 39488.88, "probability": 0.9844 }, { "start": 39489.64, "end": 39494.58, "probability": 0.8872 }, { "start": 39496.46, "end": 39499.12, "probability": 0.9936 }, { "start": 39500.1, "end": 39500.74, "probability": 0.8545 }, { "start": 39501.56, "end": 39503.16, "probability": 0.9839 }, { "start": 39503.32, "end": 39506.04, "probability": 0.9966 }, { "start": 39507.14, "end": 39509.0, "probability": 0.9323 }, { "start": 39509.86, "end": 39512.38, "probability": 0.9358 }, { "start": 39513.24, "end": 39513.84, "probability": 0.9733 }, { "start": 39513.88, "end": 39515.3, "probability": 0.9712 }, { "start": 39515.54, "end": 39515.76, "probability": 0.8957 }, { "start": 39516.06, "end": 39516.94, "probability": 0.9074 }, { "start": 39517.98, "end": 39520.9, "probability": 0.9557 }, { "start": 39522.0, "end": 39525.38, "probability": 0.9967 }, { "start": 39525.62, "end": 39528.3, "probability": 0.9722 }, { "start": 39528.88, "end": 39530.83, "probability": 0.9855 }, { "start": 39530.98, "end": 39532.52, "probability": 0.665 }, { "start": 39533.88, "end": 39535.52, "probability": 0.82 }, { "start": 39535.54, "end": 39536.84, "probability": 0.9897 }, { "start": 39536.96, "end": 39537.56, "probability": 0.8604 }, { "start": 39537.7, "end": 39538.68, "probability": 0.9399 }, { "start": 39538.82, "end": 39540.02, "probability": 0.9766 }, { "start": 39540.86, "end": 39541.36, "probability": 0.6425 }, { "start": 39541.58, "end": 39543.36, "probability": 0.8745 }, { "start": 39545.48, "end": 39547.82, "probability": 0.9944 }, { "start": 39548.96, "end": 39551.02, "probability": 0.9282 }, { "start": 39552.54, "end": 39554.88, "probability": 0.8367 }, { "start": 39556.32, "end": 39557.5, "probability": 0.8941 }, { "start": 39559.52, "end": 39562.5, "probability": 0.7466 }, { "start": 39562.96, "end": 39564.22, "probability": 0.9561 }, { "start": 39565.28, "end": 39567.86, "probability": 0.9021 }, { "start": 39567.98, "end": 39570.92, "probability": 0.5803 }, { "start": 39571.12, "end": 39571.85, "probability": 0.9552 }, { "start": 39574.66, "end": 39576.8, "probability": 0.9354 }, { "start": 39577.62, "end": 39580.02, "probability": 0.9547 }, { "start": 39581.04, "end": 39581.63, "probability": 0.9326 }, { "start": 39582.3, "end": 39586.04, "probability": 0.9722 }, { "start": 39586.58, "end": 39588.8, "probability": 0.8726 }, { "start": 39589.98, "end": 39591.58, "probability": 0.8698 }, { "start": 39592.54, "end": 39593.84, "probability": 0.9968 }, { "start": 39594.14, "end": 39595.0, "probability": 0.8109 }, { "start": 39595.64, "end": 39596.85, "probability": 0.9977 }, { "start": 39597.48, "end": 39599.38, "probability": 0.9977 }, { "start": 39600.16, "end": 39602.76, "probability": 0.9741 }, { "start": 39603.68, "end": 39604.5, "probability": 0.9919 }, { "start": 39605.6, "end": 39607.18, "probability": 0.8899 }, { "start": 39607.58, "end": 39609.02, "probability": 0.9983 }, { "start": 39609.08, "end": 39610.68, "probability": 0.9604 }, { "start": 39610.76, "end": 39611.94, "probability": 0.9912 }, { "start": 39612.02, "end": 39612.3, "probability": 0.7289 }, { "start": 39612.36, "end": 39612.82, "probability": 0.7371 }, { "start": 39613.2, "end": 39613.62, "probability": 0.9809 }, { "start": 39616.0, "end": 39616.94, "probability": 0.6906 }, { "start": 39617.46, "end": 39618.02, "probability": 0.6349 }, { "start": 39618.06, "end": 39620.28, "probability": 0.9175 }, { "start": 39621.18, "end": 39622.14, "probability": 0.8279 }, { "start": 39624.02, "end": 39624.86, "probability": 0.8533 }, { "start": 39625.68, "end": 39627.0, "probability": 0.5599 }, { "start": 39627.06, "end": 39627.78, "probability": 0.9 }, { "start": 39628.86, "end": 39631.74, "probability": 0.9727 }, { "start": 39632.48, "end": 39633.66, "probability": 0.8448 }, { "start": 39635.42, "end": 39638.82, "probability": 0.7377 }, { "start": 39639.5, "end": 39640.68, "probability": 0.9531 }, { "start": 39641.64, "end": 39642.66, "probability": 0.8319 }, { "start": 39643.64, "end": 39644.44, "probability": 0.6602 }, { "start": 39644.5, "end": 39645.14, "probability": 0.915 }, { "start": 39645.92, "end": 39647.2, "probability": 0.9734 }, { "start": 39647.9, "end": 39650.54, "probability": 0.5225 }, { "start": 39651.74, "end": 39653.12, "probability": 0.9859 }, { "start": 39654.28, "end": 39655.64, "probability": 0.7247 }, { "start": 39657.82, "end": 39659.08, "probability": 0.7588 }, { "start": 39659.66, "end": 39661.08, "probability": 0.8309 }, { "start": 39661.82, "end": 39665.96, "probability": 0.9763 }, { "start": 39666.94, "end": 39669.1, "probability": 0.9909 }, { "start": 39670.38, "end": 39672.38, "probability": 0.9881 }, { "start": 39673.0, "end": 39674.15, "probability": 0.7749 }, { "start": 39675.94, "end": 39676.98, "probability": 0.9222 }, { "start": 39677.74, "end": 39678.39, "probability": 0.5034 }, { "start": 39678.78, "end": 39680.24, "probability": 0.988 }, { "start": 39680.88, "end": 39683.86, "probability": 0.9338 }, { "start": 39684.44, "end": 39688.54, "probability": 0.9976 }, { "start": 39689.22, "end": 39690.38, "probability": 0.7725 }, { "start": 39691.28, "end": 39692.82, "probability": 0.999 }, { "start": 39693.44, "end": 39694.76, "probability": 0.6829 }, { "start": 39694.94, "end": 39696.66, "probability": 0.9692 }, { "start": 39697.88, "end": 39702.48, "probability": 0.9951 }, { "start": 39703.66, "end": 39704.42, "probability": 0.702 }, { "start": 39704.56, "end": 39705.94, "probability": 0.6253 }, { "start": 39706.64, "end": 39709.0, "probability": 0.978 }, { "start": 39710.1, "end": 39710.66, "probability": 0.8997 }, { "start": 39711.1, "end": 39712.8, "probability": 0.8289 }, { "start": 39713.46, "end": 39715.02, "probability": 0.9802 }, { "start": 39715.12, "end": 39716.1, "probability": 0.7197 }, { "start": 39727.82, "end": 39729.28, "probability": 0.0974 }, { "start": 39729.28, "end": 39729.28, "probability": 0.0902 }, { "start": 39729.28, "end": 39729.28, "probability": 0.0567 }, { "start": 39729.28, "end": 39729.28, "probability": 0.0133 }, { "start": 39743.14, "end": 39744.94, "probability": 0.52 }, { "start": 39746.58, "end": 39747.22, "probability": 0.5211 }, { "start": 39747.64, "end": 39747.72, "probability": 0.3522 }, { "start": 39747.72, "end": 39748.63, "probability": 0.2268 }, { "start": 39751.68, "end": 39752.34, "probability": 0.3429 }, { "start": 39752.34, "end": 39752.44, "probability": 0.7616 }, { "start": 39753.12, "end": 39753.9, "probability": 0.2526 }, { "start": 39754.98, "end": 39757.02, "probability": 0.06 }, { "start": 39758.74, "end": 39759.66, "probability": 0.7061 }, { "start": 39760.94, "end": 39761.12, "probability": 0.2243 }, { "start": 39764.74, "end": 39765.68, "probability": 0.1427 }, { "start": 39765.86, "end": 39765.96, "probability": 0.2866 }, { "start": 39765.96, "end": 39766.02, "probability": 0.4461 }, { "start": 39766.16, "end": 39769.14, "probability": 0.9194 }, { "start": 39769.14, "end": 39769.94, "probability": 0.5545 }, { "start": 39770.1, "end": 39772.22, "probability": 0.0315 }, { "start": 39773.26, "end": 39776.58, "probability": 0.193 }, { "start": 39780.24, "end": 39782.24, "probability": 0.7859 }, { "start": 39787.92, "end": 39788.97, "probability": 0.1244 }, { "start": 39792.44, "end": 39793.86, "probability": 0.1159 }, { "start": 39794.36, "end": 39795.26, "probability": 0.3739 }, { "start": 39795.3, "end": 39795.46, "probability": 0.1734 }, { "start": 39795.54, "end": 39795.78, "probability": 0.1235 }, { "start": 39795.78, "end": 39803.08, "probability": 0.1538 }, { "start": 39803.08, "end": 39803.86, "probability": 0.0562 }, { "start": 39803.86, "end": 39803.86, "probability": 0.0233 }, { "start": 39803.86, "end": 39803.86, "probability": 0.3029 }, { "start": 39804.84, "end": 39805.82, "probability": 0.3574 }, { "start": 39806.0, "end": 39806.0, "probability": 0.0 }, { "start": 39806.0, "end": 39806.0, "probability": 0.0 }, { "start": 39806.0, "end": 39806.0, "probability": 0.0 }, { "start": 39806.0, "end": 39806.0, "probability": 0.0 }, { "start": 39806.0, "end": 39806.0, "probability": 0.0 }, { "start": 39806.18, "end": 39806.18, "probability": 0.076 }, { "start": 39806.18, "end": 39806.58, "probability": 0.2501 }, { "start": 39807.38, "end": 39810.04, "probability": 0.9784 }, { "start": 39810.04, "end": 39812.7, "probability": 0.9963 }, { "start": 39813.26, "end": 39814.58, "probability": 0.8849 }, { "start": 39815.6, "end": 39815.96, "probability": 0.5809 }, { "start": 39817.16, "end": 39822.18, "probability": 0.9584 }, { "start": 39823.16, "end": 39823.6, "probability": 0.7756 }, { "start": 39824.56, "end": 39825.22, "probability": 0.8781 }, { "start": 39825.86, "end": 39826.66, "probability": 0.9883 }, { "start": 39827.4, "end": 39828.78, "probability": 0.9352 }, { "start": 39829.72, "end": 39832.46, "probability": 0.8495 }, { "start": 39833.5, "end": 39834.44, "probability": 0.5721 }, { "start": 39835.32, "end": 39836.86, "probability": 0.8795 }, { "start": 39837.74, "end": 39840.64, "probability": 0.9631 }, { "start": 39841.32, "end": 39842.96, "probability": 0.9979 }, { "start": 39843.74, "end": 39845.18, "probability": 0.7649 }, { "start": 39847.52, "end": 39850.92, "probability": 0.9585 }, { "start": 39851.02, "end": 39854.26, "probability": 0.9967 }, { "start": 39855.14, "end": 39855.86, "probability": 0.721 }, { "start": 39856.02, "end": 39856.86, "probability": 0.9863 }, { "start": 39857.36, "end": 39861.24, "probability": 0.9795 }, { "start": 39861.52, "end": 39862.54, "probability": 0.9844 }, { "start": 39863.38, "end": 39864.82, "probability": 0.8459 }, { "start": 39865.28, "end": 39867.3, "probability": 0.988 }, { "start": 39868.44, "end": 39871.16, "probability": 0.9954 }, { "start": 39871.72, "end": 39872.96, "probability": 0.9883 }, { "start": 39873.76, "end": 39875.34, "probability": 0.9052 }, { "start": 39875.86, "end": 39876.68, "probability": 0.9732 }, { "start": 39878.12, "end": 39882.8, "probability": 0.988 }, { "start": 39883.4, "end": 39884.9, "probability": 0.915 }, { "start": 39886.02, "end": 39887.04, "probability": 0.9881 }, { "start": 39887.8, "end": 39890.34, "probability": 0.9803 }, { "start": 39891.9, "end": 39895.08, "probability": 0.9965 }, { "start": 39895.6, "end": 39899.46, "probability": 0.9911 }, { "start": 39902.48, "end": 39906.0, "probability": 0.9058 }, { "start": 39906.66, "end": 39908.92, "probability": 0.9881 }, { "start": 39910.14, "end": 39910.62, "probability": 0.666 }, { "start": 39911.3, "end": 39912.54, "probability": 0.8201 }, { "start": 39913.36, "end": 39914.3, "probability": 0.9522 }, { "start": 39916.18, "end": 39921.2, "probability": 0.9219 }, { "start": 39921.2, "end": 39926.18, "probability": 0.9928 }, { "start": 39927.46, "end": 39932.52, "probability": 0.9973 }, { "start": 39933.88, "end": 39938.42, "probability": 0.9841 }, { "start": 39938.66, "end": 39942.54, "probability": 0.9787 }, { "start": 39944.32, "end": 39945.92, "probability": 0.9106 }, { "start": 39946.54, "end": 39948.4, "probability": 0.9353 }, { "start": 39948.88, "end": 39949.38, "probability": 0.2186 }, { "start": 39949.8, "end": 39952.04, "probability": 0.9873 }, { "start": 39952.48, "end": 39955.22, "probability": 0.8332 }, { "start": 39957.66, "end": 39958.78, "probability": 0.8951 }, { "start": 39959.92, "end": 39960.84, "probability": 0.974 }, { "start": 39961.64, "end": 39962.26, "probability": 0.8689 }, { "start": 39963.06, "end": 39967.36, "probability": 0.9904 }, { "start": 39968.48, "end": 39971.6, "probability": 0.8875 }, { "start": 39972.22, "end": 39974.44, "probability": 0.9577 }, { "start": 39976.26, "end": 39979.49, "probability": 0.9974 }, { "start": 39979.96, "end": 39984.25, "probability": 0.7879 }, { "start": 39985.26, "end": 39987.46, "probability": 0.9988 }, { "start": 39988.56, "end": 39991.38, "probability": 0.986 }, { "start": 39991.82, "end": 39994.92, "probability": 0.9762 }, { "start": 39996.8, "end": 40001.4, "probability": 0.9668 }, { "start": 40001.4, "end": 40005.74, "probability": 0.9943 }, { "start": 40006.54, "end": 40007.94, "probability": 0.9823 }, { "start": 40008.6, "end": 40012.4, "probability": 0.983 }, { "start": 40013.02, "end": 40015.8, "probability": 0.9273 }, { "start": 40015.8, "end": 40018.86, "probability": 0.9844 }, { "start": 40020.86, "end": 40024.24, "probability": 0.9982 }, { "start": 40025.06, "end": 40029.24, "probability": 0.9907 }, { "start": 40030.84, "end": 40033.64, "probability": 0.9824 }, { "start": 40033.68, "end": 40037.2, "probability": 0.9779 }, { "start": 40037.2, "end": 40037.38, "probability": 0.739 }, { "start": 40037.9, "end": 40040.76, "probability": 0.9854 }, { "start": 40041.96, "end": 40047.82, "probability": 0.9971 }, { "start": 40047.82, "end": 40053.0, "probability": 0.9994 }, { "start": 40053.56, "end": 40055.48, "probability": 0.981 }, { "start": 40059.4, "end": 40063.98, "probability": 0.924 }, { "start": 40064.62, "end": 40066.8, "probability": 0.9985 }, { "start": 40067.4, "end": 40070.72, "probability": 0.9912 }, { "start": 40071.72, "end": 40073.74, "probability": 0.999 }, { "start": 40074.48, "end": 40075.68, "probability": 0.8923 }, { "start": 40076.32, "end": 40077.06, "probability": 0.8344 }, { "start": 40077.64, "end": 40078.14, "probability": 0.8843 }, { "start": 40079.75, "end": 40084.9, "probability": 0.9625 }, { "start": 40085.48, "end": 40086.9, "probability": 0.8735 }, { "start": 40089.38, "end": 40091.18, "probability": 0.9985 }, { "start": 40092.38, "end": 40094.32, "probability": 0.6142 }, { "start": 40096.14, "end": 40097.46, "probability": 0.9915 }, { "start": 40099.32, "end": 40100.42, "probability": 0.8873 }, { "start": 40101.9, "end": 40103.8, "probability": 0.9893 }, { "start": 40105.52, "end": 40106.74, "probability": 0.9634 }, { "start": 40107.86, "end": 40109.08, "probability": 0.9985 }, { "start": 40110.36, "end": 40111.88, "probability": 0.9092 }, { "start": 40114.3, "end": 40114.9, "probability": 0.8331 }, { "start": 40115.68, "end": 40117.74, "probability": 0.7614 }, { "start": 40118.3, "end": 40119.86, "probability": 0.9932 }, { "start": 40120.7, "end": 40121.26, "probability": 0.9566 }, { "start": 40124.84, "end": 40127.56, "probability": 0.9971 }, { "start": 40128.0, "end": 40132.72, "probability": 0.9765 }, { "start": 40133.74, "end": 40137.52, "probability": 0.9854 }, { "start": 40138.08, "end": 40142.6, "probability": 0.9961 }, { "start": 40144.04, "end": 40146.8, "probability": 0.9559 }, { "start": 40147.52, "end": 40150.84, "probability": 0.9955 }, { "start": 40151.47, "end": 40152.04, "probability": 0.9836 }, { "start": 40155.24, "end": 40156.72, "probability": 0.999 }, { "start": 40157.8, "end": 40160.02, "probability": 0.8701 }, { "start": 40161.06, "end": 40161.46, "probability": 0.4162 }, { "start": 40162.34, "end": 40164.36, "probability": 0.9329 }, { "start": 40165.5, "end": 40166.8, "probability": 0.6667 }, { "start": 40167.74, "end": 40168.4, "probability": 0.9233 }, { "start": 40170.14, "end": 40172.5, "probability": 0.9846 }, { "start": 40173.24, "end": 40177.98, "probability": 0.988 }, { "start": 40179.2, "end": 40180.26, "probability": 0.7614 }, { "start": 40182.6, "end": 40184.95, "probability": 0.9982 }, { "start": 40186.24, "end": 40186.7, "probability": 0.9545 }, { "start": 40188.16, "end": 40188.61, "probability": 0.9497 }, { "start": 40192.1, "end": 40196.6, "probability": 0.8946 }, { "start": 40197.14, "end": 40199.26, "probability": 0.9787 }, { "start": 40200.04, "end": 40200.92, "probability": 0.7744 }, { "start": 40202.64, "end": 40204.36, "probability": 0.9451 }, { "start": 40204.4, "end": 40205.82, "probability": 0.5914 }, { "start": 40207.98, "end": 40209.07, "probability": 0.9912 }, { "start": 40212.14, "end": 40213.15, "probability": 0.9814 }, { "start": 40213.86, "end": 40214.54, "probability": 0.8666 }, { "start": 40216.54, "end": 40217.2, "probability": 0.8521 }, { "start": 40219.54, "end": 40222.54, "probability": 0.996 }, { "start": 40224.1, "end": 40224.5, "probability": 0.6778 }, { "start": 40225.34, "end": 40226.76, "probability": 0.9939 }, { "start": 40228.7, "end": 40231.06, "probability": 0.9863 }, { "start": 40233.66, "end": 40234.2, "probability": 0.9769 }, { "start": 40236.94, "end": 40237.52, "probability": 0.5844 }, { "start": 40238.6, "end": 40240.16, "probability": 0.9654 }, { "start": 40241.6, "end": 40243.25, "probability": 0.9725 }, { "start": 40245.36, "end": 40246.3, "probability": 0.9451 }, { "start": 40247.44, "end": 40248.68, "probability": 0.9189 }, { "start": 40250.6, "end": 40252.28, "probability": 0.9098 }, { "start": 40254.66, "end": 40255.38, "probability": 0.7924 }, { "start": 40257.12, "end": 40258.54, "probability": 0.9629 }, { "start": 40259.3, "end": 40259.32, "probability": 0.1147 }, { "start": 40259.88, "end": 40261.7, "probability": 0.9988 }, { "start": 40262.72, "end": 40263.44, "probability": 0.9689 }, { "start": 40267.06, "end": 40268.34, "probability": 0.9892 }, { "start": 40270.6, "end": 40271.76, "probability": 0.9994 }, { "start": 40273.26, "end": 40273.95, "probability": 0.9838 }, { "start": 40274.06, "end": 40274.68, "probability": 0.9666 }, { "start": 40276.28, "end": 40276.96, "probability": 0.9724 }, { "start": 40279.16, "end": 40280.98, "probability": 0.8679 }, { "start": 40283.48, "end": 40284.72, "probability": 0.9727 }, { "start": 40285.44, "end": 40285.9, "probability": 0.9492 }, { "start": 40286.68, "end": 40287.92, "probability": 0.7418 }, { "start": 40288.8, "end": 40290.7, "probability": 0.9858 }, { "start": 40292.96, "end": 40293.7, "probability": 0.98 }, { "start": 40295.56, "end": 40296.32, "probability": 0.6594 }, { "start": 40298.76, "end": 40299.5, "probability": 0.9054 }, { "start": 40300.64, "end": 40302.08, "probability": 0.8767 }, { "start": 40302.52, "end": 40303.4, "probability": 0.9499 }, { "start": 40307.48, "end": 40309.26, "probability": 0.9126 }, { "start": 40309.88, "end": 40311.18, "probability": 0.8914 }, { "start": 40311.36, "end": 40312.96, "probability": 0.9423 }, { "start": 40313.04, "end": 40313.8, "probability": 0.853 }, { "start": 40315.2, "end": 40316.2, "probability": 0.8145 }, { "start": 40316.92, "end": 40317.56, "probability": 0.4149 }, { "start": 40318.68, "end": 40321.17, "probability": 0.9932 }, { "start": 40322.2, "end": 40323.3, "probability": 0.7754 }, { "start": 40324.6, "end": 40325.72, "probability": 0.2898 }, { "start": 40325.82, "end": 40326.58, "probability": 0.9371 }, { "start": 40327.72, "end": 40328.02, "probability": 0.9164 }, { "start": 40328.48, "end": 40329.0, "probability": 0.5266 }, { "start": 40329.02, "end": 40329.62, "probability": 0.9461 }, { "start": 40330.16, "end": 40331.44, "probability": 0.9609 }, { "start": 40331.72, "end": 40333.02, "probability": 0.7726 }, { "start": 40333.16, "end": 40334.08, "probability": 0.8047 }, { "start": 40334.44, "end": 40335.17, "probability": 0.7576 }, { "start": 40335.88, "end": 40337.08, "probability": 0.9807 }, { "start": 40337.82, "end": 40338.31, "probability": 0.9824 }, { "start": 40339.46, "end": 40340.15, "probability": 0.9636 }, { "start": 40340.96, "end": 40342.04, "probability": 0.6484 }, { "start": 40342.28, "end": 40347.08, "probability": 0.0963 }, { "start": 40347.08, "end": 40347.08, "probability": 0.0551 }, { "start": 40347.08, "end": 40347.08, "probability": 0.2309 }, { "start": 40347.08, "end": 40347.18, "probability": 0.1708 }, { "start": 40347.86, "end": 40350.12, "probability": 0.3684 }, { "start": 40350.28, "end": 40352.44, "probability": 0.8135 }, { "start": 40353.6, "end": 40355.66, "probability": 0.9204 }, { "start": 40356.22, "end": 40356.48, "probability": 0.141 }, { "start": 40356.56, "end": 40359.68, "probability": 0.9052 }, { "start": 40359.68, "end": 40360.42, "probability": 0.6743 }, { "start": 40360.46, "end": 40361.36, "probability": 0.7349 }, { "start": 40362.6, "end": 40365.08, "probability": 0.9836 }, { "start": 40365.6, "end": 40366.12, "probability": 0.8209 }, { "start": 40366.48, "end": 40367.62, "probability": 0.9697 }, { "start": 40369.24, "end": 40370.9, "probability": 0.998 }, { "start": 40374.04, "end": 40375.16, "probability": 0.9108 }, { "start": 40377.2, "end": 40379.84, "probability": 0.9988 }, { "start": 40380.94, "end": 40382.32, "probability": 0.8577 }, { "start": 40382.96, "end": 40384.02, "probability": 0.9851 }, { "start": 40384.46, "end": 40386.6, "probability": 0.9987 }, { "start": 40387.52, "end": 40388.46, "probability": 0.7921 }, { "start": 40389.96, "end": 40393.0, "probability": 0.8569 }, { "start": 40394.46, "end": 40395.26, "probability": 0.9613 }, { "start": 40395.34, "end": 40396.16, "probability": 0.9811 }, { "start": 40396.34, "end": 40396.86, "probability": 0.9242 }, { "start": 40398.72, "end": 40399.72, "probability": 0.9824 }, { "start": 40401.08, "end": 40402.34, "probability": 0.9868 }, { "start": 40403.96, "end": 40404.84, "probability": 0.8438 }, { "start": 40408.38, "end": 40410.48, "probability": 0.9602 }, { "start": 40411.3, "end": 40412.06, "probability": 0.7816 }, { "start": 40413.7, "end": 40415.42, "probability": 0.9853 }, { "start": 40416.24, "end": 40417.92, "probability": 0.9361 }, { "start": 40418.86, "end": 40420.76, "probability": 0.8677 }, { "start": 40420.9, "end": 40421.9, "probability": 0.8888 }, { "start": 40422.92, "end": 40424.44, "probability": 0.9475 }, { "start": 40425.92, "end": 40427.28, "probability": 0.9487 }, { "start": 40427.34, "end": 40428.02, "probability": 0.6739 }, { "start": 40429.58, "end": 40430.54, "probability": 0.8556 }, { "start": 40433.02, "end": 40436.9, "probability": 0.9714 }, { "start": 40439.08, "end": 40442.96, "probability": 0.9579 }, { "start": 40443.54, "end": 40444.98, "probability": 0.9458 }, { "start": 40447.02, "end": 40448.36, "probability": 0.9946 }, { "start": 40448.52, "end": 40449.38, "probability": 0.9921 }, { "start": 40453.12, "end": 40454.08, "probability": 0.9867 }, { "start": 40454.9, "end": 40456.54, "probability": 0.9871 }, { "start": 40460.12, "end": 40464.92, "probability": 0.9985 }, { "start": 40466.04, "end": 40470.76, "probability": 0.9878 }, { "start": 40470.76, "end": 40479.3, "probability": 0.9727 }, { "start": 40481.26, "end": 40484.28, "probability": 0.991 }, { "start": 40484.44, "end": 40485.12, "probability": 0.8516 }, { "start": 40485.44, "end": 40486.4, "probability": 0.9309 }, { "start": 40487.18, "end": 40487.74, "probability": 0.5519 }, { "start": 40488.72, "end": 40490.1, "probability": 0.642 }, { "start": 40490.14, "end": 40491.32, "probability": 0.9882 }, { "start": 40491.42, "end": 40491.84, "probability": 0.9342 }, { "start": 40492.18, "end": 40493.06, "probability": 0.9719 }, { "start": 40493.14, "end": 40493.34, "probability": 0.8986 }, { "start": 40495.8, "end": 40499.72, "probability": 0.9959 }, { "start": 40499.82, "end": 40504.7, "probability": 0.9943 }, { "start": 40506.88, "end": 40509.86, "probability": 0.9552 }, { "start": 40510.66, "end": 40511.28, "probability": 0.8879 }, { "start": 40512.58, "end": 40513.92, "probability": 0.9839 }, { "start": 40515.89, "end": 40519.24, "probability": 0.9906 }, { "start": 40519.78, "end": 40520.86, "probability": 0.9683 }, { "start": 40520.96, "end": 40522.92, "probability": 0.9938 }, { "start": 40523.38, "end": 40524.52, "probability": 0.9963 }, { "start": 40524.98, "end": 40529.06, "probability": 0.9951 }, { "start": 40529.54, "end": 40534.58, "probability": 0.9987 }, { "start": 40536.78, "end": 40538.74, "probability": 0.9995 }, { "start": 40540.16, "end": 40540.66, "probability": 0.7888 }, { "start": 40540.72, "end": 40543.04, "probability": 0.7623 }, { "start": 40543.44, "end": 40543.56, "probability": 0.6475 }, { "start": 40543.64, "end": 40544.06, "probability": 0.8308 }, { "start": 40544.14, "end": 40545.96, "probability": 0.9976 }, { "start": 40548.78, "end": 40548.88, "probability": 0.9542 }, { "start": 40549.74, "end": 40555.64, "probability": 0.9971 }, { "start": 40556.12, "end": 40557.22, "probability": 0.7054 }, { "start": 40557.36, "end": 40558.12, "probability": 0.9739 }, { "start": 40558.14, "end": 40559.38, "probability": 0.9875 }, { "start": 40559.48, "end": 40560.48, "probability": 0.7592 }, { "start": 40560.6, "end": 40561.16, "probability": 0.7647 }, { "start": 40561.26, "end": 40561.84, "probability": 0.8934 }, { "start": 40562.3, "end": 40562.84, "probability": 0.2424 }, { "start": 40562.96, "end": 40563.26, "probability": 0.6087 }, { "start": 40565.16, "end": 40566.44, "probability": 0.6677 }, { "start": 40566.86, "end": 40567.34, "probability": 0.8123 }, { "start": 40567.38, "end": 40568.9, "probability": 0.7516 }, { "start": 40569.44, "end": 40569.64, "probability": 0.8225 }, { "start": 40570.8, "end": 40572.72, "probability": 0.9785 }, { "start": 40573.52, "end": 40575.6, "probability": 0.9082 }, { "start": 40575.72, "end": 40576.89, "probability": 0.9015 }, { "start": 40577.66, "end": 40583.82, "probability": 0.9684 }, { "start": 40584.64, "end": 40586.8, "probability": 0.8982 }, { "start": 40586.8, "end": 40588.04, "probability": 0.9918 }, { "start": 40588.08, "end": 40589.36, "probability": 0.9452 }, { "start": 40589.62, "end": 40590.39, "probability": 0.9655 }, { "start": 40590.72, "end": 40591.39, "probability": 0.5635 }, { "start": 40591.88, "end": 40595.04, "probability": 0.8048 }, { "start": 40595.6, "end": 40597.56, "probability": 0.9659 }, { "start": 40597.68, "end": 40598.68, "probability": 0.8231 }, { "start": 40599.18, "end": 40600.26, "probability": 0.9966 }, { "start": 40600.84, "end": 40604.26, "probability": 0.9794 }, { "start": 40604.42, "end": 40605.88, "probability": 0.9151 }, { "start": 40606.28, "end": 40607.7, "probability": 0.8672 }, { "start": 40607.86, "end": 40609.52, "probability": 0.9785 }, { "start": 40611.94, "end": 40612.52, "probability": 0.9632 }, { "start": 40612.58, "end": 40615.36, "probability": 0.9985 }, { "start": 40617.28, "end": 40618.32, "probability": 0.9893 }, { "start": 40619.06, "end": 40620.7, "probability": 0.9471 }, { "start": 40621.2, "end": 40623.08, "probability": 0.9859 }, { "start": 40623.46, "end": 40625.52, "probability": 0.9749 }, { "start": 40626.52, "end": 40627.14, "probability": 0.7502 }, { "start": 40627.22, "end": 40627.8, "probability": 0.9683 }, { "start": 40627.98, "end": 40628.18, "probability": 0.8236 }, { "start": 40628.24, "end": 40628.72, "probability": 0.9368 }, { "start": 40628.88, "end": 40629.28, "probability": 0.3367 }, { "start": 40629.48, "end": 40630.58, "probability": 0.6494 }, { "start": 40631.64, "end": 40635.94, "probability": 0.9673 }, { "start": 40636.78, "end": 40638.66, "probability": 0.9897 }, { "start": 40638.74, "end": 40639.28, "probability": 0.9047 }, { "start": 40639.4, "end": 40639.64, "probability": 0.6354 }, { "start": 40639.68, "end": 40640.44, "probability": 0.8777 }, { "start": 40640.56, "end": 40642.08, "probability": 0.0135 }, { "start": 40642.08, "end": 40642.86, "probability": 0.8682 }, { "start": 40643.5, "end": 40645.36, "probability": 0.9961 }, { "start": 40645.5, "end": 40646.9, "probability": 0.9501 }, { "start": 40647.74, "end": 40648.28, "probability": 0.5025 }, { "start": 40649.22, "end": 40650.88, "probability": 0.9684 }, { "start": 40651.06, "end": 40652.92, "probability": 0.9296 }, { "start": 40653.38, "end": 40656.42, "probability": 0.9912 }, { "start": 40657.3, "end": 40658.24, "probability": 0.7932 }, { "start": 40659.02, "end": 40662.36, "probability": 0.9956 }, { "start": 40662.44, "end": 40662.76, "probability": 0.9135 }, { "start": 40663.38, "end": 40666.03, "probability": 0.9661 }, { "start": 40667.08, "end": 40670.24, "probability": 0.9624 }, { "start": 40670.76, "end": 40671.4, "probability": 0.7166 }, { "start": 40672.76, "end": 40675.01, "probability": 0.9766 }, { "start": 40675.8, "end": 40675.94, "probability": 0.9893 }, { "start": 40676.68, "end": 40679.54, "probability": 0.9513 }, { "start": 40680.9, "end": 40681.14, "probability": 0.7643 }, { "start": 40681.58, "end": 40682.18, "probability": 0.6051 }, { "start": 40683.06, "end": 40684.32, "probability": 0.6003 }, { "start": 40685.22, "end": 40686.4, "probability": 0.7307 }, { "start": 40687.36, "end": 40688.2, "probability": 0.8531 }, { "start": 40688.92, "end": 40691.3, "probability": 0.9472 }, { "start": 40700.24, "end": 40702.3, "probability": 0.7189 }, { "start": 40703.74, "end": 40709.56, "probability": 0.9976 }, { "start": 40711.3, "end": 40714.02, "probability": 0.9973 }, { "start": 40716.46, "end": 40718.36, "probability": 0.9926 }, { "start": 40718.54, "end": 40720.7, "probability": 0.9824 }, { "start": 40722.18, "end": 40723.3, "probability": 0.5926 }, { "start": 40725.12, "end": 40727.22, "probability": 0.8109 }, { "start": 40728.38, "end": 40730.36, "probability": 0.9897 }, { "start": 40733.02, "end": 40736.7, "probability": 0.9391 }, { "start": 40738.08, "end": 40740.66, "probability": 0.7181 }, { "start": 40742.66, "end": 40743.84, "probability": 0.7608 }, { "start": 40743.96, "end": 40744.62, "probability": 0.7729 }, { "start": 40744.78, "end": 40747.94, "probability": 0.9714 }, { "start": 40748.94, "end": 40749.58, "probability": 0.9749 }, { "start": 40750.68, "end": 40754.38, "probability": 0.9959 }, { "start": 40754.54, "end": 40758.34, "probability": 0.9854 }, { "start": 40760.7, "end": 40763.44, "probability": 0.8707 }, { "start": 40764.04, "end": 40767.04, "probability": 0.9021 }, { "start": 40768.1, "end": 40769.02, "probability": 0.9604 }, { "start": 40769.96, "end": 40772.44, "probability": 0.9709 }, { "start": 40774.82, "end": 40778.52, "probability": 0.9909 }, { "start": 40779.26, "end": 40780.46, "probability": 0.9382 }, { "start": 40781.74, "end": 40783.98, "probability": 0.7566 }, { "start": 40784.28, "end": 40785.58, "probability": 0.9865 }, { "start": 40786.74, "end": 40788.68, "probability": 0.9829 }, { "start": 40789.24, "end": 40794.72, "probability": 0.8409 }, { "start": 40795.9, "end": 40799.2, "probability": 0.9765 }, { "start": 40799.86, "end": 40800.4, "probability": 0.5838 }, { "start": 40800.54, "end": 40801.52, "probability": 0.807 }, { "start": 40803.34, "end": 40804.88, "probability": 0.9443 }, { "start": 40805.52, "end": 40806.04, "probability": 0.492 }, { "start": 40807.36, "end": 40812.26, "probability": 0.9597 }, { "start": 40812.96, "end": 40813.68, "probability": 0.8824 }, { "start": 40814.34, "end": 40816.02, "probability": 0.6786 }, { "start": 40817.48, "end": 40822.2, "probability": 0.9925 }, { "start": 40823.68, "end": 40825.82, "probability": 0.9755 }, { "start": 40826.0, "end": 40829.22, "probability": 0.8716 }, { "start": 40829.98, "end": 40834.2, "probability": 0.9878 }, { "start": 40835.06, "end": 40837.64, "probability": 0.9901 }, { "start": 40839.04, "end": 40843.26, "probability": 0.9852 }, { "start": 40843.26, "end": 40847.44, "probability": 0.9512 }, { "start": 40848.34, "end": 40850.42, "probability": 0.994 }, { "start": 40852.22, "end": 40858.08, "probability": 0.9827 }, { "start": 40858.43, "end": 40865.2, "probability": 0.978 }, { "start": 40866.08, "end": 40868.52, "probability": 0.9653 }, { "start": 40870.84, "end": 40871.7, "probability": 0.9971 }, { "start": 40873.3, "end": 40876.86, "probability": 0.9958 }, { "start": 40877.9, "end": 40881.76, "probability": 0.9987 }, { "start": 40882.5, "end": 40883.42, "probability": 0.9993 }, { "start": 40885.18, "end": 40886.7, "probability": 0.9199 }, { "start": 40886.86, "end": 40893.24, "probability": 0.9971 }, { "start": 40894.62, "end": 40898.1, "probability": 0.8767 }, { "start": 40899.24, "end": 40905.32, "probability": 0.9482 }, { "start": 40907.26, "end": 40907.54, "probability": 0.8018 }, { "start": 40908.54, "end": 40913.12, "probability": 0.9782 }, { "start": 40913.2, "end": 40915.22, "probability": 0.9637 }, { "start": 40916.1, "end": 40918.06, "probability": 0.8524 }, { "start": 40918.12, "end": 40919.6, "probability": 0.969 }, { "start": 40920.3, "end": 40922.1, "probability": 0.9573 }, { "start": 40922.72, "end": 40924.04, "probability": 0.9951 }, { "start": 40924.22, "end": 40925.64, "probability": 0.9852 }, { "start": 40926.58, "end": 40928.22, "probability": 0.9361 }, { "start": 40928.32, "end": 40929.9, "probability": 0.6145 }, { "start": 40930.56, "end": 40933.1, "probability": 0.9972 }, { "start": 40933.86, "end": 40935.52, "probability": 0.721 }, { "start": 40936.36, "end": 40938.72, "probability": 0.9443 }, { "start": 40938.84, "end": 40944.26, "probability": 0.9922 }, { "start": 40944.9, "end": 40945.64, "probability": 0.953 }, { "start": 40946.76, "end": 40947.42, "probability": 0.6714 }, { "start": 40948.2, "end": 40951.64, "probability": 0.9419 }, { "start": 40953.3, "end": 40953.74, "probability": 0.4251 }, { "start": 40954.56, "end": 40955.57, "probability": 0.9339 }, { "start": 40957.6, "end": 40961.96, "probability": 0.9971 }, { "start": 40962.64, "end": 40963.88, "probability": 0.984 }, { "start": 40964.58, "end": 40966.3, "probability": 0.78 }, { "start": 40967.14, "end": 40971.66, "probability": 0.9619 }, { "start": 40973.02, "end": 40975.12, "probability": 0.9401 }, { "start": 40977.04, "end": 40981.58, "probability": 0.9912 }, { "start": 40982.42, "end": 40983.2, "probability": 0.9877 }, { "start": 40984.84, "end": 40987.66, "probability": 0.9875 }, { "start": 40987.66, "end": 40991.12, "probability": 0.9984 }, { "start": 40992.16, "end": 40993.82, "probability": 0.8519 }, { "start": 40995.48, "end": 40999.58, "probability": 0.9932 }, { "start": 41000.56, "end": 41002.84, "probability": 0.8979 }, { "start": 41003.66, "end": 41005.24, "probability": 0.8892 }, { "start": 41006.78, "end": 41012.62, "probability": 0.9918 }, { "start": 41013.84, "end": 41016.0, "probability": 0.9932 }, { "start": 41018.02, "end": 41020.32, "probability": 0.9383 }, { "start": 41021.28, "end": 41022.3, "probability": 0.7877 }, { "start": 41023.2, "end": 41026.02, "probability": 0.9044 }, { "start": 41026.58, "end": 41027.48, "probability": 0.9839 }, { "start": 41028.28, "end": 41029.8, "probability": 0.9467 }, { "start": 41030.6, "end": 41034.04, "probability": 0.8153 }, { "start": 41036.26, "end": 41040.2, "probability": 0.9966 }, { "start": 41040.2, "end": 41045.62, "probability": 0.9966 }, { "start": 41046.84, "end": 41048.72, "probability": 0.9536 }, { "start": 41049.38, "end": 41050.26, "probability": 0.989 }, { "start": 41051.24, "end": 41051.98, "probability": 0.9955 }, { "start": 41053.16, "end": 41054.1, "probability": 0.874 }, { "start": 41054.74, "end": 41055.72, "probability": 0.7297 }, { "start": 41057.52, "end": 41060.84, "probability": 0.9944 }, { "start": 41060.92, "end": 41061.58, "probability": 0.7957 }, { "start": 41062.48, "end": 41066.34, "probability": 0.9922 }, { "start": 41068.34, "end": 41070.68, "probability": 0.8991 }, { "start": 41071.92, "end": 41075.0, "probability": 0.9978 }, { "start": 41076.46, "end": 41078.62, "probability": 0.5612 }, { "start": 41079.26, "end": 41081.36, "probability": 0.9946 }, { "start": 41082.3, "end": 41083.74, "probability": 0.8633 }, { "start": 41084.4, "end": 41086.1, "probability": 0.995 }, { "start": 41088.32, "end": 41090.4, "probability": 0.7163 }, { "start": 41091.56, "end": 41095.64, "probability": 0.9952 }, { "start": 41095.78, "end": 41098.26, "probability": 0.9968 }, { "start": 41099.06, "end": 41099.66, "probability": 0.9933 }, { "start": 41101.84, "end": 41106.24, "probability": 0.9451 }, { "start": 41107.2, "end": 41109.58, "probability": 0.6177 }, { "start": 41110.34, "end": 41112.42, "probability": 0.8806 }, { "start": 41113.24, "end": 41114.96, "probability": 0.9932 }, { "start": 41116.64, "end": 41118.46, "probability": 0.9838 }, { "start": 41119.2, "end": 41120.72, "probability": 0.9887 }, { "start": 41121.3, "end": 41123.3, "probability": 0.9932 }, { "start": 41125.56, "end": 41128.08, "probability": 0.9761 }, { "start": 41129.44, "end": 41130.58, "probability": 0.6537 }, { "start": 41131.28, "end": 41131.94, "probability": 0.9609 }, { "start": 41132.86, "end": 41133.58, "probability": 0.6823 }, { "start": 41134.28, "end": 41135.64, "probability": 0.9961 }, { "start": 41136.46, "end": 41141.48, "probability": 0.9952 }, { "start": 41143.18, "end": 41147.2, "probability": 0.9831 }, { "start": 41148.36, "end": 41152.32, "probability": 0.9528 }, { "start": 41153.08, "end": 41153.8, "probability": 0.8476 }, { "start": 41155.54, "end": 41157.54, "probability": 0.859 }, { "start": 41158.9, "end": 41161.28, "probability": 0.9707 }, { "start": 41162.66, "end": 41165.04, "probability": 0.7704 }, { "start": 41165.16, "end": 41166.2, "probability": 0.9608 }, { "start": 41166.36, "end": 41167.2, "probability": 0.9706 }, { "start": 41167.84, "end": 41171.9, "probability": 0.9907 }, { "start": 41172.46, "end": 41174.32, "probability": 0.7245 }, { "start": 41175.2, "end": 41177.82, "probability": 0.9946 }, { "start": 41177.88, "end": 41181.02, "probability": 0.9238 }, { "start": 41182.96, "end": 41185.98, "probability": 0.9014 }, { "start": 41185.98, "end": 41189.42, "probability": 0.9993 }, { "start": 41190.76, "end": 41193.94, "probability": 0.9949 }, { "start": 41194.82, "end": 41195.76, "probability": 0.9122 }, { "start": 41196.94, "end": 41198.7, "probability": 0.9689 }, { "start": 41199.44, "end": 41201.18, "probability": 0.9917 }, { "start": 41202.22, "end": 41206.06, "probability": 0.9574 }, { "start": 41209.3, "end": 41212.32, "probability": 0.9864 }, { "start": 41214.12, "end": 41216.04, "probability": 0.9207 }, { "start": 41217.52, "end": 41221.56, "probability": 0.866 }, { "start": 41221.56, "end": 41225.86, "probability": 0.9609 }, { "start": 41227.54, "end": 41229.21, "probability": 0.7257 }, { "start": 41230.12, "end": 41231.95, "probability": 0.8708 }, { "start": 41233.3, "end": 41235.12, "probability": 0.9597 }, { "start": 41235.74, "end": 41238.66, "probability": 0.7796 }, { "start": 41239.2, "end": 41242.14, "probability": 0.8602 }, { "start": 41242.86, "end": 41244.3, "probability": 0.8338 }, { "start": 41245.36, "end": 41247.78, "probability": 0.9373 }, { "start": 41250.5, "end": 41252.2, "probability": 0.9929 }, { "start": 41252.96, "end": 41254.28, "probability": 0.9954 }, { "start": 41254.8, "end": 41258.46, "probability": 0.8545 }, { "start": 41259.28, "end": 41261.26, "probability": 0.9917 }, { "start": 41262.56, "end": 41264.24, "probability": 0.8879 }, { "start": 41264.5, "end": 41269.18, "probability": 0.9622 }, { "start": 41269.18, "end": 41275.3, "probability": 0.9834 }, { "start": 41276.38, "end": 41282.53, "probability": 0.9199 }, { "start": 41284.02, "end": 41284.92, "probability": 0.3167 }, { "start": 41285.72, "end": 41289.12, "probability": 0.7498 }, { "start": 41290.5, "end": 41292.48, "probability": 0.9405 }, { "start": 41294.26, "end": 41297.3, "probability": 0.9749 }, { "start": 41298.48, "end": 41303.12, "probability": 0.9852 }, { "start": 41304.86, "end": 41307.4, "probability": 0.963 }, { "start": 41307.94, "end": 41309.6, "probability": 0.8596 }, { "start": 41310.44, "end": 41314.52, "probability": 0.965 }, { "start": 41315.44, "end": 41316.98, "probability": 0.9947 }, { "start": 41317.88, "end": 41318.7, "probability": 0.9077 }, { "start": 41319.44, "end": 41321.04, "probability": 0.9639 }, { "start": 41321.82, "end": 41324.5, "probability": 0.9741 }, { "start": 41325.24, "end": 41327.38, "probability": 0.9937 }, { "start": 41328.1, "end": 41329.2, "probability": 0.9601 }, { "start": 41329.66, "end": 41331.9, "probability": 0.769 }, { "start": 41332.24, "end": 41333.79, "probability": 0.8911 }, { "start": 41335.04, "end": 41337.58, "probability": 0.9574 }, { "start": 41338.5, "end": 41339.2, "probability": 0.963 }, { "start": 41341.36, "end": 41342.92, "probability": 0.9715 }, { "start": 41343.26, "end": 41343.88, "probability": 0.6965 }, { "start": 41343.96, "end": 41345.82, "probability": 0.974 }, { "start": 41346.9, "end": 41349.14, "probability": 0.8845 }, { "start": 41349.88, "end": 41352.0, "probability": 0.9081 }, { "start": 41353.48, "end": 41355.14, "probability": 0.9058 }, { "start": 41356.14, "end": 41359.1, "probability": 0.9922 }, { "start": 41361.16, "end": 41363.66, "probability": 0.9904 }, { "start": 41364.72, "end": 41370.2, "probability": 0.9789 }, { "start": 41371.1, "end": 41372.56, "probability": 0.9355 }, { "start": 41372.6, "end": 41374.14, "probability": 0.7449 }, { "start": 41374.34, "end": 41375.66, "probability": 0.8014 }, { "start": 41376.32, "end": 41377.46, "probability": 0.8069 }, { "start": 41378.98, "end": 41381.34, "probability": 0.9027 }, { "start": 41382.58, "end": 41383.62, "probability": 0.9899 }, { "start": 41384.14, "end": 41386.0, "probability": 0.9846 }, { "start": 41387.9, "end": 41388.18, "probability": 0.9382 }, { "start": 41389.52, "end": 41390.62, "probability": 0.9286 }, { "start": 41392.16, "end": 41395.94, "probability": 0.9907 }, { "start": 41397.6, "end": 41400.46, "probability": 0.9946 }, { "start": 41402.04, "end": 41405.36, "probability": 0.8292 }, { "start": 41406.38, "end": 41407.68, "probability": 0.9546 }, { "start": 41408.7, "end": 41409.58, "probability": 0.9589 }, { "start": 41409.92, "end": 41410.22, "probability": 0.9119 }, { "start": 41411.6, "end": 41413.2, "probability": 0.9647 }, { "start": 41413.6, "end": 41414.66, "probability": 0.9728 }, { "start": 41416.88, "end": 41417.58, "probability": 0.6094 }, { "start": 41419.6, "end": 41420.84, "probability": 0.8851 }, { "start": 41423.44, "end": 41423.64, "probability": 0.6929 }, { "start": 41425.32, "end": 41426.44, "probability": 0.9823 }, { "start": 41428.38, "end": 41428.98, "probability": 0.9843 }, { "start": 41430.48, "end": 41431.82, "probability": 0.9799 }, { "start": 41433.64, "end": 41434.44, "probability": 0.9747 }, { "start": 41435.92, "end": 41436.82, "probability": 0.9811 }, { "start": 41438.18, "end": 41438.9, "probability": 0.9947 }, { "start": 41440.08, "end": 41441.38, "probability": 0.6508 }, { "start": 41442.56, "end": 41443.1, "probability": 0.8568 }, { "start": 41444.12, "end": 41445.8, "probability": 0.9109 }, { "start": 41447.18, "end": 41447.66, "probability": 0.9773 }, { "start": 41448.6, "end": 41449.62, "probability": 0.8635 }, { "start": 41450.66, "end": 41451.24, "probability": 0.8397 }, { "start": 41451.6, "end": 41453.34, "probability": 0.6801 }, { "start": 41455.9, "end": 41456.49, "probability": 0.1767 }, { "start": 41457.12, "end": 41459.02, "probability": 0.8986 }, { "start": 41461.09, "end": 41465.96, "probability": 0.3112 }, { "start": 41466.74, "end": 41468.06, "probability": 0.0137 }, { "start": 41468.68, "end": 41469.72, "probability": 0.6271 }, { "start": 41470.14, "end": 41470.74, "probability": 0.0858 }, { "start": 41471.42, "end": 41471.78, "probability": 0.6347 }, { "start": 41472.38, "end": 41472.68, "probability": 0.6226 }, { "start": 41473.12, "end": 41473.48, "probability": 0.1341 }, { "start": 41473.48, "end": 41475.22, "probability": 0.6378 }, { "start": 41475.62, "end": 41476.52, "probability": 0.4586 }, { "start": 41477.84, "end": 41478.0, "probability": 0.0002 }, { "start": 41479.56, "end": 41480.56, "probability": 0.7332 }, { "start": 41482.56, "end": 41484.36, "probability": 0.862 }, { "start": 41484.64, "end": 41485.18, "probability": 0.2523 }, { "start": 41485.26, "end": 41485.84, "probability": 0.5013 }, { "start": 41487.72, "end": 41489.56, "probability": 0.0822 }, { "start": 41490.68, "end": 41490.98, "probability": 0.0135 }, { "start": 41490.98, "end": 41491.4, "probability": 0.0033 }, { "start": 41491.4, "end": 41491.44, "probability": 0.1208 }, { "start": 41491.82, "end": 41494.48, "probability": 0.3761 }, { "start": 41494.58, "end": 41495.24, "probability": 0.6125 }, { "start": 41495.94, "end": 41496.32, "probability": 0.6318 }, { "start": 41499.92, "end": 41500.42, "probability": 0.6065 }, { "start": 41510.52, "end": 41510.52, "probability": 0.7845 }, { "start": 41510.52, "end": 41510.78, "probability": 0.1738 }, { "start": 41510.78, "end": 41511.56, "probability": 0.0487 }, { "start": 41511.9, "end": 41513.12, "probability": 0.0204 }, { "start": 41513.12, "end": 41513.26, "probability": 0.0472 }, { "start": 41513.66, "end": 41514.54, "probability": 0.0189 }, { "start": 41516.32, "end": 41516.7, "probability": 0.3425 }, { "start": 41525.38, "end": 41525.88, "probability": 0.2222 }, { "start": 41531.98, "end": 41532.68, "probability": 0.0438 }, { "start": 41534.1, "end": 41538.34, "probability": 0.5774 }, { "start": 41539.2, "end": 41539.98, "probability": 0.6215 }, { "start": 41540.02, "end": 41541.48, "probability": 0.8549 }, { "start": 41541.56, "end": 41544.8, "probability": 0.7748 }, { "start": 41545.08, "end": 41545.62, "probability": 0.819 }, { "start": 41545.78, "end": 41547.08, "probability": 0.9834 }, { "start": 41548.18, "end": 41549.96, "probability": 0.8062 }, { "start": 41550.94, "end": 41554.38, "probability": 0.9766 }, { "start": 41555.26, "end": 41556.44, "probability": 0.9965 }, { "start": 41557.39, "end": 41564.06, "probability": 0.9679 }, { "start": 41565.34, "end": 41569.46, "probability": 0.9976 }, { "start": 41569.46, "end": 41575.44, "probability": 0.8538 }, { "start": 41575.82, "end": 41577.34, "probability": 0.8593 }, { "start": 41578.08, "end": 41579.62, "probability": 0.5956 }, { "start": 41580.64, "end": 41581.4, "probability": 0.5033 }, { "start": 41582.12, "end": 41584.21, "probability": 0.9932 }, { "start": 41585.56, "end": 41587.18, "probability": 0.9421 }, { "start": 41587.9, "end": 41588.1, "probability": 0.877 }, { "start": 41588.8, "end": 41589.94, "probability": 0.7501 }, { "start": 41590.8, "end": 41593.14, "probability": 0.9585 }, { "start": 41594.12, "end": 41596.26, "probability": 0.9271 }, { "start": 41597.06, "end": 41599.48, "probability": 0.7363 }, { "start": 41600.6, "end": 41601.48, "probability": 0.9053 }, { "start": 41602.08, "end": 41602.36, "probability": 0.4803 }, { "start": 41603.26, "end": 41605.4, "probability": 0.9376 }, { "start": 41607.62, "end": 41610.12, "probability": 0.0796 }, { "start": 41610.64, "end": 41611.58, "probability": 0.4648 }, { "start": 41612.48, "end": 41615.66, "probability": 0.9578 }, { "start": 41616.14, "end": 41616.26, "probability": 0.7259 }, { "start": 41616.66, "end": 41617.56, "probability": 0.8799 }, { "start": 41617.78, "end": 41617.96, "probability": 0.5903 }, { "start": 41618.46, "end": 41620.44, "probability": 0.5258 }, { "start": 41620.98, "end": 41621.94, "probability": 0.981 }, { "start": 41625.45, "end": 41628.12, "probability": 0.8435 }, { "start": 41629.12, "end": 41630.14, "probability": 0.9674 }, { "start": 41630.66, "end": 41632.22, "probability": 0.6327 }, { "start": 41632.62, "end": 41633.44, "probability": 0.7115 }, { "start": 41634.8, "end": 41636.12, "probability": 0.5921 }, { "start": 41636.12, "end": 41644.54, "probability": 0.6191 }, { "start": 41644.84, "end": 41646.61, "probability": 0.9956 }, { "start": 41649.01, "end": 41650.05, "probability": 0.9989 }, { "start": 41651.13, "end": 41654.31, "probability": 0.9663 }, { "start": 41657.91, "end": 41658.79, "probability": 0.8742 }, { "start": 41660.43, "end": 41662.21, "probability": 0.8539 }, { "start": 41664.45, "end": 41665.85, "probability": 0.9739 }, { "start": 41668.05, "end": 41669.43, "probability": 0.9055 }, { "start": 41670.01, "end": 41670.85, "probability": 0.6677 }, { "start": 41671.77, "end": 41674.97, "probability": 0.8875 }, { "start": 41675.85, "end": 41677.49, "probability": 0.9856 }, { "start": 41678.27, "end": 41678.87, "probability": 0.9493 }, { "start": 41680.51, "end": 41684.37, "probability": 0.8527 }, { "start": 41685.51, "end": 41686.39, "probability": 0.97 }, { "start": 41687.87, "end": 41693.77, "probability": 0.9022 }, { "start": 41695.17, "end": 41695.61, "probability": 0.8127 }, { "start": 41696.75, "end": 41698.69, "probability": 0.968 }, { "start": 41700.51, "end": 41703.87, "probability": 0.9445 }, { "start": 41706.67, "end": 41707.73, "probability": 0.9878 }, { "start": 41708.21, "end": 41712.61, "probability": 0.9864 }, { "start": 41716.29, "end": 41716.69, "probability": 0.6267 }, { "start": 41721.57, "end": 41722.29, "probability": 0.9131 }, { "start": 41723.03, "end": 41724.49, "probability": 0.8212 }, { "start": 41731.47, "end": 41731.61, "probability": 0.0686 }, { "start": 41731.61, "end": 41735.13, "probability": 0.1614 }, { "start": 41736.09, "end": 41741.79, "probability": 0.0425 }, { "start": 41743.31, "end": 41745.79, "probability": 0.0702 }, { "start": 41745.95, "end": 41751.97, "probability": 0.1509 }, { "start": 41752.17, "end": 41752.91, "probability": 0.1219 }, { "start": 41753.79, "end": 41756.95, "probability": 0.0858 }, { "start": 41758.13, "end": 41759.89, "probability": 0.2738 }, { "start": 41760.45, "end": 41760.61, "probability": 0.1527 }, { "start": 41761.81, "end": 41764.26, "probability": 0.0317 }, { "start": 41765.25, "end": 41768.43, "probability": 0.2445 }, { "start": 41769.63, "end": 41769.93, "probability": 0.2299 }, { "start": 41771.39, "end": 41773.41, "probability": 0.3878 }, { "start": 41774.43, "end": 41779.03, "probability": 0.1542 }, { "start": 41780.95, "end": 41782.23, "probability": 0.1025 }, { "start": 41784.05, "end": 41786.95, "probability": 0.3059 }, { "start": 41787.82, "end": 41790.47, "probability": 0.1865 }, { "start": 41790.69, "end": 41791.88, "probability": 0.0657 }, { "start": 41792.23, "end": 41795.25, "probability": 0.2377 }, { "start": 41807.0, "end": 41807.0, "probability": 0.0 }, { "start": 41807.0, "end": 41807.0, "probability": 0.0 }, { "start": 41807.0, "end": 41807.0, "probability": 0.0 }, { "start": 41807.18, "end": 41808.5, "probability": 0.9895 }, { "start": 41808.64, "end": 41808.82, "probability": 0.9675 }, { "start": 41809.36, "end": 41810.48, "probability": 0.7653 }, { "start": 41812.28, "end": 41812.88, "probability": 0.8262 }, { "start": 41813.46, "end": 41814.32, "probability": 0.8017 }, { "start": 41815.6, "end": 41817.96, "probability": 0.8333 }, { "start": 41818.74, "end": 41819.8, "probability": 0.6499 }, { "start": 41820.76, "end": 41821.62, "probability": 0.9692 }, { "start": 41823.16, "end": 41823.74, "probability": 0.6972 }, { "start": 41824.56, "end": 41825.12, "probability": 0.459 }, { "start": 41825.88, "end": 41826.44, "probability": 0.8908 }, { "start": 41827.4, "end": 41827.84, "probability": 0.9519 }, { "start": 41828.94, "end": 41831.24, "probability": 0.8916 }, { "start": 41831.72, "end": 41834.19, "probability": 0.7671 }, { "start": 41836.14, "end": 41837.96, "probability": 0.5044 }, { "start": 41838.2, "end": 41841.52, "probability": 0.5394 }, { "start": 41841.6, "end": 41841.6, "probability": 0.3376 }, { "start": 41841.6, "end": 41844.26, "probability": 0.7853 }, { "start": 41846.92, "end": 41847.78, "probability": 0.9478 }, { "start": 41848.32, "end": 41850.62, "probability": 0.0694 }, { "start": 41851.84, "end": 41852.76, "probability": 0.6197 }, { "start": 41853.34, "end": 41853.6, "probability": 0.6051 }, { "start": 41855.03, "end": 41857.72, "probability": 0.8293 }, { "start": 41858.54, "end": 41859.84, "probability": 0.9067 }, { "start": 41860.12, "end": 41865.4, "probability": 0.905 }, { "start": 41865.46, "end": 41866.74, "probability": 0.9949 }, { "start": 41866.84, "end": 41867.18, "probability": 0.5339 }, { "start": 41867.26, "end": 41867.96, "probability": 0.4355 }, { "start": 41868.04, "end": 41868.3, "probability": 0.5666 }, { "start": 41869.22, "end": 41869.68, "probability": 0.3457 }, { "start": 41869.74, "end": 41871.34, "probability": 0.3998 }, { "start": 41872.0, "end": 41872.9, "probability": 0.5009 }, { "start": 41873.12, "end": 41873.48, "probability": 0.8323 }, { "start": 41874.2, "end": 41877.8, "probability": 0.3196 }, { "start": 41877.8, "end": 41880.84, "probability": 0.9707 }, { "start": 41881.66, "end": 41884.3, "probability": 0.958 }, { "start": 41885.1, "end": 41887.34, "probability": 0.9961 }, { "start": 41887.46, "end": 41889.34, "probability": 0.8865 }, { "start": 41890.04, "end": 41890.8, "probability": 0.8554 }, { "start": 41892.97, "end": 41894.86, "probability": 0.9897 }, { "start": 41895.22, "end": 41896.52, "probability": 0.9288 }, { "start": 41896.96, "end": 41900.58, "probability": 0.7999 }, { "start": 41900.66, "end": 41901.42, "probability": 0.7725 }, { "start": 41901.96, "end": 41903.49, "probability": 0.9659 }, { "start": 41904.68, "end": 41905.26, "probability": 0.624 }, { "start": 41906.2, "end": 41906.68, "probability": 0.574 }, { "start": 41906.72, "end": 41911.12, "probability": 0.9667 }, { "start": 41911.28, "end": 41911.9, "probability": 0.9961 }, { "start": 41912.46, "end": 41914.3, "probability": 0.3904 }, { "start": 41915.16, "end": 41917.78, "probability": 0.9546 }, { "start": 41918.82, "end": 41920.02, "probability": 0.9781 }, { "start": 41920.66, "end": 41923.46, "probability": 0.9576 }, { "start": 41924.26, "end": 41926.44, "probability": 0.9946 }, { "start": 41927.18, "end": 41929.92, "probability": 0.9779 }, { "start": 41930.72, "end": 41934.13, "probability": 0.9871 }, { "start": 41935.04, "end": 41938.4, "probability": 0.9433 }, { "start": 41939.18, "end": 41942.08, "probability": 0.9925 }, { "start": 41942.42, "end": 41946.4, "probability": 0.9085 }, { "start": 41946.86, "end": 41950.18, "probability": 0.9974 }, { "start": 41950.18, "end": 41953.46, "probability": 0.9966 }, { "start": 41954.4, "end": 41956.94, "probability": 0.9808 }, { "start": 41957.2, "end": 41958.01, "probability": 0.8081 }, { "start": 41959.12, "end": 41964.7, "probability": 0.9738 }, { "start": 41965.44, "end": 41969.8, "probability": 0.9715 }, { "start": 41970.54, "end": 41973.86, "probability": 0.9877 }, { "start": 41974.98, "end": 41976.72, "probability": 0.9799 }, { "start": 41976.72, "end": 41978.46, "probability": 0.979 }, { "start": 41979.8, "end": 41982.9, "probability": 0.9849 }, { "start": 41983.74, "end": 41986.84, "probability": 0.7879 }, { "start": 41986.92, "end": 41989.38, "probability": 0.7473 }, { "start": 41989.38, "end": 41992.26, "probability": 0.9116 }, { "start": 41993.0, "end": 41994.4, "probability": 0.8983 }, { "start": 41994.42, "end": 41996.2, "probability": 0.9632 }, { "start": 41996.56, "end": 41996.96, "probability": 0.4125 }, { "start": 41997.1, "end": 41998.38, "probability": 0.7111 }, { "start": 41998.52, "end": 41999.54, "probability": 0.9351 }, { "start": 42000.74, "end": 42003.36, "probability": 0.8906 }, { "start": 42003.44, "end": 42006.38, "probability": 0.9197 }, { "start": 42007.1, "end": 42009.44, "probability": 0.9893 }, { "start": 42011.86, "end": 42012.52, "probability": 0.8376 }, { "start": 42013.86, "end": 42016.36, "probability": 0.9743 }, { "start": 42016.76, "end": 42021.82, "probability": 0.9653 }, { "start": 42022.68, "end": 42025.08, "probability": 0.8569 }, { "start": 42025.96, "end": 42026.28, "probability": 0.9144 }, { "start": 42027.04, "end": 42028.95, "probability": 0.9474 }, { "start": 42030.72, "end": 42032.52, "probability": 0.8497 }, { "start": 42033.2, "end": 42034.5, "probability": 0.9759 }, { "start": 42034.88, "end": 42035.14, "probability": 0.7197 }, { "start": 42036.54, "end": 42039.64, "probability": 0.9473 }, { "start": 42040.24, "end": 42044.54, "probability": 0.8777 }, { "start": 42045.4, "end": 42047.22, "probability": 0.1855 }, { "start": 42047.22, "end": 42047.46, "probability": 0.2139 }, { "start": 42048.88, "end": 42050.37, "probability": 0.9893 }, { "start": 42050.58, "end": 42054.78, "probability": 0.0567 }, { "start": 42054.9, "end": 42057.42, "probability": 0.3488 }, { "start": 42058.22, "end": 42058.5, "probability": 0.821 }, { "start": 42059.02, "end": 42061.11, "probability": 0.9523 }, { "start": 42061.66, "end": 42062.56, "probability": 0.3583 }, { "start": 42062.76, "end": 42065.54, "probability": 0.2378 }, { "start": 42071.86, "end": 42073.62, "probability": 0.8853 }, { "start": 42074.62, "end": 42076.22, "probability": 0.5642 }, { "start": 42080.29, "end": 42083.37, "probability": 0.9297 }, { "start": 42085.24, "end": 42088.58, "probability": 0.8506 }, { "start": 42089.9, "end": 42091.4, "probability": 0.9087 }, { "start": 42094.24, "end": 42096.74, "probability": 0.9829 }, { "start": 42097.84, "end": 42100.86, "probability": 0.9941 }, { "start": 42102.04, "end": 42103.78, "probability": 0.8198 }, { "start": 42104.44, "end": 42106.24, "probability": 0.873 }, { "start": 42107.4, "end": 42108.92, "probability": 0.9664 }, { "start": 42111.2, "end": 42112.6, "probability": 0.978 }, { "start": 42115.02, "end": 42118.09, "probability": 0.9957 }, { "start": 42119.64, "end": 42121.84, "probability": 0.9849 }, { "start": 42123.54, "end": 42127.52, "probability": 0.5971 }, { "start": 42130.38, "end": 42132.08, "probability": 0.9414 }, { "start": 42137.12, "end": 42138.0, "probability": 0.5338 }, { "start": 42140.26, "end": 42140.56, "probability": 0.7871 }, { "start": 42140.96, "end": 42141.52, "probability": 0.5483 }, { "start": 42142.52, "end": 42148.42, "probability": 0.8808 }, { "start": 42149.6, "end": 42153.6, "probability": 0.7868 }, { "start": 42154.54, "end": 42155.68, "probability": 0.2149 }, { "start": 42156.3, "end": 42157.86, "probability": 0.6652 }, { "start": 42158.46, "end": 42158.76, "probability": 0.8184 }, { "start": 42159.14, "end": 42160.28, "probability": 0.2566 }, { "start": 42160.38, "end": 42162.02, "probability": 0.9028 }, { "start": 42162.2, "end": 42164.14, "probability": 0.0155 }, { "start": 42164.42, "end": 42164.86, "probability": 0.4911 }, { "start": 42164.88, "end": 42168.56, "probability": 0.7111 }, { "start": 42169.66, "end": 42172.28, "probability": 0.7739 }, { "start": 42173.66, "end": 42176.66, "probability": 0.9584 }, { "start": 42176.7, "end": 42177.52, "probability": 0.9629 }, { "start": 42178.2, "end": 42182.2, "probability": 0.9596 }, { "start": 42183.22, "end": 42183.96, "probability": 0.6355 }, { "start": 42185.22, "end": 42186.94, "probability": 0.6205 }, { "start": 42187.74, "end": 42190.6, "probability": 0.9963 }, { "start": 42193.34, "end": 42197.68, "probability": 0.8953 }, { "start": 42198.24, "end": 42202.64, "probability": 0.8845 }, { "start": 42203.4, "end": 42205.72, "probability": 0.9874 }, { "start": 42207.2, "end": 42208.38, "probability": 0.9987 }, { "start": 42211.75, "end": 42213.44, "probability": 0.8906 }, { "start": 42214.41, "end": 42215.08, "probability": 0.8704 }, { "start": 42216.12, "end": 42218.14, "probability": 0.835 }, { "start": 42220.7, "end": 42222.23, "probability": 0.9471 }, { "start": 42222.58, "end": 42226.2, "probability": 0.9846 }, { "start": 42227.85, "end": 42228.95, "probability": 0.8849 }, { "start": 42229.05, "end": 42230.79, "probability": 0.6786 }, { "start": 42230.87, "end": 42231.39, "probability": 0.7259 }, { "start": 42231.59, "end": 42232.39, "probability": 0.8687 }, { "start": 42232.49, "end": 42233.02, "probability": 0.8446 }, { "start": 42233.37, "end": 42236.01, "probability": 0.8846 }, { "start": 42236.23, "end": 42240.35, "probability": 0.9666 }, { "start": 42241.63, "end": 42245.85, "probability": 0.7904 }, { "start": 42247.63, "end": 42249.17, "probability": 0.6606 }, { "start": 42250.85, "end": 42252.63, "probability": 0.7491 }, { "start": 42253.83, "end": 42255.22, "probability": 0.9293 }, { "start": 42256.57, "end": 42257.63, "probability": 0.5927 }, { "start": 42258.05, "end": 42263.67, "probability": 0.8279 }, { "start": 42265.33, "end": 42268.07, "probability": 0.9233 }, { "start": 42269.73, "end": 42272.61, "probability": 0.598 }, { "start": 42273.77, "end": 42274.85, "probability": 0.2318 }, { "start": 42275.83, "end": 42276.17, "probability": 0.5634 }, { "start": 42277.23, "end": 42279.69, "probability": 0.98 }, { "start": 42281.73, "end": 42283.03, "probability": 0.9873 }, { "start": 42284.13, "end": 42285.35, "probability": 0.8562 }, { "start": 42285.99, "end": 42286.75, "probability": 0.1545 }, { "start": 42287.07, "end": 42288.71, "probability": 0.7505 }, { "start": 42289.23, "end": 42290.67, "probability": 0.4318 }, { "start": 42291.41, "end": 42293.45, "probability": 0.7718 }, { "start": 42294.01, "end": 42295.57, "probability": 0.5873 }, { "start": 42295.99, "end": 42297.09, "probability": 0.5663 }, { "start": 42297.19, "end": 42299.77, "probability": 0.9858 }, { "start": 42299.91, "end": 42300.57, "probability": 0.7343 }, { "start": 42300.75, "end": 42302.13, "probability": 0.9795 }, { "start": 42303.89, "end": 42305.39, "probability": 0.9814 }, { "start": 42307.21, "end": 42310.91, "probability": 0.4814 }, { "start": 42311.03, "end": 42312.81, "probability": 0.7457 }, { "start": 42314.51, "end": 42317.33, "probability": 0.9907 }, { "start": 42318.39, "end": 42321.52, "probability": 0.74 }, { "start": 42322.91, "end": 42326.59, "probability": 0.8219 }, { "start": 42327.55, "end": 42328.39, "probability": 0.4504 }, { "start": 42329.61, "end": 42332.31, "probability": 0.967 }, { "start": 42332.87, "end": 42334.55, "probability": 0.9929 }, { "start": 42335.15, "end": 42335.93, "probability": 0.9714 }, { "start": 42336.03, "end": 42339.39, "probability": 0.9764 }, { "start": 42340.45, "end": 42340.87, "probability": 0.7738 }, { "start": 42341.95, "end": 42342.19, "probability": 0.3044 }, { "start": 42342.23, "end": 42345.49, "probability": 0.8817 }, { "start": 42347.61, "end": 42348.93, "probability": 0.5017 }, { "start": 42349.67, "end": 42350.27, "probability": 0.8633 }, { "start": 42352.67, "end": 42354.72, "probability": 0.8298 }, { "start": 42356.27, "end": 42361.01, "probability": 0.9893 }, { "start": 42361.07, "end": 42361.75, "probability": 0.8682 }, { "start": 42361.83, "end": 42363.67, "probability": 0.9474 }, { "start": 42364.31, "end": 42365.63, "probability": 0.8599 }, { "start": 42366.95, "end": 42370.67, "probability": 0.7707 }, { "start": 42371.31, "end": 42373.87, "probability": 0.8805 }, { "start": 42374.51, "end": 42376.87, "probability": 0.9938 }, { "start": 42377.41, "end": 42378.72, "probability": 0.9643 }, { "start": 42380.46, "end": 42383.11, "probability": 0.988 }, { "start": 42385.05, "end": 42385.33, "probability": 0.9673 }, { "start": 42387.81, "end": 42391.89, "probability": 0.9495 }, { "start": 42392.85, "end": 42393.93, "probability": 0.4123 }, { "start": 42393.99, "end": 42395.11, "probability": 0.822 }, { "start": 42395.35, "end": 42396.87, "probability": 0.8482 }, { "start": 42397.39, "end": 42401.19, "probability": 0.9582 }, { "start": 42401.87, "end": 42405.03, "probability": 0.9882 }, { "start": 42405.21, "end": 42406.51, "probability": 0.8113 }, { "start": 42407.73, "end": 42409.72, "probability": 0.9855 }, { "start": 42410.39, "end": 42416.02, "probability": 0.8575 }, { "start": 42417.13, "end": 42418.31, "probability": 0.8101 }, { "start": 42419.15, "end": 42419.89, "probability": 0.9956 }, { "start": 42419.95, "end": 42422.77, "probability": 0.9596 }, { "start": 42424.99, "end": 42426.87, "probability": 0.9456 }, { "start": 42427.55, "end": 42428.47, "probability": 0.9043 }, { "start": 42428.49, "end": 42429.43, "probability": 0.5948 }, { "start": 42431.11, "end": 42437.41, "probability": 0.9433 }, { "start": 42438.29, "end": 42442.39, "probability": 0.9819 }, { "start": 42443.29, "end": 42445.23, "probability": 0.8604 }, { "start": 42445.27, "end": 42446.41, "probability": 0.8141 }, { "start": 42447.25, "end": 42449.11, "probability": 0.79 }, { "start": 42451.85, "end": 42453.39, "probability": 0.8877 }, { "start": 42453.81, "end": 42455.05, "probability": 0.4361 }, { "start": 42455.63, "end": 42457.55, "probability": 0.8203 }, { "start": 42458.63, "end": 42467.03, "probability": 0.9508 }, { "start": 42469.39, "end": 42473.75, "probability": 0.9825 }, { "start": 42474.71, "end": 42475.41, "probability": 0.9904 }, { "start": 42478.39, "end": 42484.99, "probability": 0.904 }, { "start": 42485.91, "end": 42488.47, "probability": 0.9985 }, { "start": 42490.25, "end": 42492.31, "probability": 0.9852 }, { "start": 42493.07, "end": 42495.11, "probability": 0.9279 }, { "start": 42496.23, "end": 42499.31, "probability": 0.9206 }, { "start": 42500.65, "end": 42502.35, "probability": 0.9173 }, { "start": 42504.59, "end": 42506.17, "probability": 0.9319 }, { "start": 42506.79, "end": 42508.71, "probability": 0.9653 }, { "start": 42509.97, "end": 42515.59, "probability": 0.9014 }, { "start": 42516.35, "end": 42518.27, "probability": 0.9919 }, { "start": 42520.43, "end": 42525.15, "probability": 0.9507 }, { "start": 42525.25, "end": 42531.67, "probability": 0.4382 }, { "start": 42533.17, "end": 42536.99, "probability": 0.9495 }, { "start": 42537.21, "end": 42538.11, "probability": 0.9479 }, { "start": 42539.13, "end": 42541.0, "probability": 0.7756 }, { "start": 42542.69, "end": 42544.27, "probability": 0.9562 }, { "start": 42545.15, "end": 42549.31, "probability": 0.9629 }, { "start": 42550.07, "end": 42551.27, "probability": 0.5792 }, { "start": 42551.99, "end": 42555.11, "probability": 0.9807 }, { "start": 42556.29, "end": 42558.61, "probability": 0.5809 }, { "start": 42560.65, "end": 42561.69, "probability": 0.8049 }, { "start": 42561.75, "end": 42562.85, "probability": 0.8965 }, { "start": 42562.95, "end": 42566.77, "probability": 0.9737 }, { "start": 42567.33, "end": 42568.08, "probability": 0.7875 }, { "start": 42568.51, "end": 42570.35, "probability": 0.8882 }, { "start": 42570.47, "end": 42574.49, "probability": 0.9733 }, { "start": 42575.05, "end": 42576.83, "probability": 0.7669 }, { "start": 42578.03, "end": 42578.63, "probability": 0.6209 }, { "start": 42580.29, "end": 42583.21, "probability": 0.9346 }, { "start": 42585.47, "end": 42588.57, "probability": 0.8613 }, { "start": 42591.53, "end": 42594.23, "probability": 0.9741 }, { "start": 42594.55, "end": 42596.97, "probability": 0.8848 }, { "start": 42599.09, "end": 42601.45, "probability": 0.9423 }, { "start": 42603.01, "end": 42605.67, "probability": 0.991 }, { "start": 42606.77, "end": 42607.75, "probability": 0.6721 }, { "start": 42608.49, "end": 42611.57, "probability": 0.7561 }, { "start": 42612.77, "end": 42613.7, "probability": 0.8858 }, { "start": 42614.63, "end": 42615.44, "probability": 0.9814 }, { "start": 42615.69, "end": 42616.31, "probability": 0.9163 }, { "start": 42617.21, "end": 42618.79, "probability": 0.7618 }, { "start": 42619.33, "end": 42623.37, "probability": 0.9294 }, { "start": 42624.05, "end": 42624.27, "probability": 0.9387 }, { "start": 42626.68, "end": 42628.63, "probability": 0.6228 }, { "start": 42628.77, "end": 42629.57, "probability": 0.8305 }, { "start": 42629.67, "end": 42631.25, "probability": 0.8667 }, { "start": 42631.63, "end": 42633.93, "probability": 0.6792 }, { "start": 42634.09, "end": 42636.85, "probability": 0.8677 }, { "start": 42637.19, "end": 42640.29, "probability": 0.9666 }, { "start": 42641.15, "end": 42642.13, "probability": 0.9363 }, { "start": 42642.21, "end": 42645.65, "probability": 0.9967 }, { "start": 42646.33, "end": 42652.47, "probability": 0.9989 }, { "start": 42652.79, "end": 42654.27, "probability": 0.9419 }, { "start": 42654.49, "end": 42656.41, "probability": 0.9756 }, { "start": 42657.27, "end": 42658.49, "probability": 0.8254 }, { "start": 42658.55, "end": 42660.15, "probability": 0.9302 }, { "start": 42660.19, "end": 42662.35, "probability": 0.9573 }, { "start": 42663.21, "end": 42665.21, "probability": 0.9922 }, { "start": 42665.21, "end": 42667.89, "probability": 0.642 }, { "start": 42668.11, "end": 42669.17, "probability": 0.9938 }, { "start": 42670.23, "end": 42672.39, "probability": 0.9691 }, { "start": 42673.33, "end": 42673.77, "probability": 0.4418 }, { "start": 42673.81, "end": 42680.27, "probability": 0.9927 }, { "start": 42681.27, "end": 42682.17, "probability": 0.1111 }, { "start": 42684.01, "end": 42685.17, "probability": 0.958 }, { "start": 42685.69, "end": 42691.17, "probability": 0.9469 }, { "start": 42692.01, "end": 42693.69, "probability": 0.8875 }, { "start": 42694.91, "end": 42699.79, "probability": 0.6711 }, { "start": 42700.51, "end": 42701.29, "probability": 0.9941 }, { "start": 42701.53, "end": 42702.83, "probability": 0.8295 }, { "start": 42703.47, "end": 42705.45, "probability": 0.8338 }, { "start": 42707.14, "end": 42708.27, "probability": 0.5035 }, { "start": 42710.31, "end": 42712.97, "probability": 0.5238 }, { "start": 42713.39, "end": 42713.8, "probability": 0.9121 }, { "start": 42715.19, "end": 42718.95, "probability": 0.806 }, { "start": 42719.31, "end": 42719.88, "probability": 0.4463 }, { "start": 42720.61, "end": 42725.83, "probability": 0.8022 }, { "start": 42726.51, "end": 42727.66, "probability": 0.9158 }, { "start": 42729.09, "end": 42732.45, "probability": 0.5205 }, { "start": 42732.75, "end": 42735.55, "probability": 0.9427 }, { "start": 42735.97, "end": 42738.21, "probability": 0.8376 }, { "start": 42739.39, "end": 42742.25, "probability": 0.8838 }, { "start": 42743.75, "end": 42746.45, "probability": 0.7302 }, { "start": 42746.93, "end": 42749.21, "probability": 0.9951 }, { "start": 42749.41, "end": 42750.41, "probability": 0.6762 }, { "start": 42751.53, "end": 42752.23, "probability": 0.7249 }, { "start": 42753.13, "end": 42754.78, "probability": 0.905 }, { "start": 42757.91, "end": 42758.91, "probability": 0.8312 }, { "start": 42759.47, "end": 42762.41, "probability": 0.7592 }, { "start": 42762.75, "end": 42762.85, "probability": 0.3762 }, { "start": 42763.13, "end": 42763.71, "probability": 0.878 }, { "start": 42763.95, "end": 42767.65, "probability": 0.9722 }, { "start": 42767.65, "end": 42770.55, "probability": 0.6968 }, { "start": 42770.65, "end": 42771.03, "probability": 0.0536 }, { "start": 42771.49, "end": 42771.99, "probability": 0.7163 }, { "start": 42772.47, "end": 42775.55, "probability": 0.9165 }, { "start": 42775.71, "end": 42778.39, "probability": 0.8264 }, { "start": 42778.49, "end": 42780.85, "probability": 0.8923 }, { "start": 42781.45, "end": 42782.33, "probability": 0.9885 }, { "start": 42782.91, "end": 42783.59, "probability": 0.9676 }, { "start": 42784.43, "end": 42786.23, "probability": 0.8989 }, { "start": 42786.73, "end": 42788.14, "probability": 0.9807 }, { "start": 42789.74, "end": 42793.76, "probability": 0.9475 }, { "start": 42795.83, "end": 42797.13, "probability": 0.4385 }, { "start": 42797.67, "end": 42798.89, "probability": 0.9836 }, { "start": 42799.03, "end": 42799.72, "probability": 0.8466 }, { "start": 42800.53, "end": 42803.41, "probability": 0.8894 }, { "start": 42804.39, "end": 42806.37, "probability": 0.8262 }, { "start": 42806.49, "end": 42808.43, "probability": 0.9971 }, { "start": 42809.73, "end": 42815.75, "probability": 0.9786 }, { "start": 42815.79, "end": 42817.53, "probability": 0.9766 }, { "start": 42818.01, "end": 42819.17, "probability": 0.9832 }, { "start": 42819.19, "end": 42820.17, "probability": 0.858 }, { "start": 42820.79, "end": 42822.27, "probability": 0.6986 }, { "start": 42823.17, "end": 42826.0, "probability": 0.9916 }, { "start": 42827.39, "end": 42831.71, "probability": 0.9688 }, { "start": 42832.25, "end": 42834.38, "probability": 0.6026 }, { "start": 42835.77, "end": 42837.63, "probability": 0.8512 }, { "start": 42838.51, "end": 42839.99, "probability": 0.7834 }, { "start": 42840.65, "end": 42843.77, "probability": 0.9519 }, { "start": 42845.05, "end": 42849.87, "probability": 0.897 }, { "start": 42850.63, "end": 42852.25, "probability": 0.7415 }, { "start": 42852.37, "end": 42853.77, "probability": 0.9976 }, { "start": 42854.11, "end": 42854.83, "probability": 0.2452 }, { "start": 42854.83, "end": 42857.17, "probability": 0.7333 }, { "start": 42858.05, "end": 42861.17, "probability": 0.8844 }, { "start": 42861.29, "end": 42862.57, "probability": 0.9788 }, { "start": 42863.51, "end": 42865.67, "probability": 0.994 }, { "start": 42866.63, "end": 42867.99, "probability": 0.4451 }, { "start": 42868.67, "end": 42871.13, "probability": 0.8438 }, { "start": 42871.55, "end": 42872.55, "probability": 0.8104 }, { "start": 42872.73, "end": 42874.83, "probability": 0.6538 }, { "start": 42875.43, "end": 42877.65, "probability": 0.9752 }, { "start": 42878.15, "end": 42879.99, "probability": 0.9639 }, { "start": 42880.45, "end": 42883.03, "probability": 0.7007 }, { "start": 42883.57, "end": 42889.05, "probability": 0.9746 }, { "start": 42889.37, "end": 42890.29, "probability": 0.7048 }, { "start": 42890.95, "end": 42895.57, "probability": 0.907 }, { "start": 42896.19, "end": 42897.31, "probability": 0.9072 }, { "start": 42898.29, "end": 42899.01, "probability": 0.8545 }, { "start": 42899.89, "end": 42901.33, "probability": 0.8904 }, { "start": 42902.33, "end": 42906.31, "probability": 0.75 }, { "start": 42907.31, "end": 42910.52, "probability": 0.1189 }, { "start": 42914.17, "end": 42920.83, "probability": 0.9269 }, { "start": 42921.07, "end": 42924.83, "probability": 0.8789 }, { "start": 42925.87, "end": 42929.81, "probability": 0.9453 }, { "start": 42929.81, "end": 42932.79, "probability": 0.9995 }, { "start": 42932.85, "end": 42933.13, "probability": 0.2956 }, { "start": 42933.13, "end": 42933.48, "probability": 0.7865 }, { "start": 42934.31, "end": 42935.73, "probability": 0.9761 }, { "start": 42935.83, "end": 42937.69, "probability": 0.9821 }, { "start": 42937.77, "end": 42938.85, "probability": 0.9984 }, { "start": 42939.63, "end": 42940.75, "probability": 0.6724 }, { "start": 42941.29, "end": 42943.61, "probability": 0.8801 }, { "start": 42944.43, "end": 42946.75, "probability": 0.9472 }, { "start": 42947.03, "end": 42949.27, "probability": 0.9949 }, { "start": 42949.63, "end": 42950.19, "probability": 0.7009 }, { "start": 42950.27, "end": 42951.57, "probability": 0.9695 }, { "start": 42953.08, "end": 42957.57, "probability": 0.8335 }, { "start": 42957.63, "end": 42958.07, "probability": 0.7615 }, { "start": 42958.17, "end": 42958.71, "probability": 0.3825 }, { "start": 42959.75, "end": 42961.29, "probability": 0.9564 }, { "start": 42961.59, "end": 42962.51, "probability": 0.8174 }, { "start": 42962.61, "end": 42964.11, "probability": 0.6749 }, { "start": 42965.03, "end": 42966.51, "probability": 0.9132 }, { "start": 42967.63, "end": 42968.61, "probability": 0.9682 }, { "start": 42969.58, "end": 42970.45, "probability": 0.6804 }, { "start": 42971.01, "end": 42972.11, "probability": 0.9993 }, { "start": 42973.29, "end": 42976.55, "probability": 0.976 }, { "start": 42976.67, "end": 42977.55, "probability": 0.821 }, { "start": 42978.61, "end": 42981.17, "probability": 0.9944 }, { "start": 42981.73, "end": 42984.55, "probability": 0.7169 }, { "start": 42985.83, "end": 42988.69, "probability": 0.2765 }, { "start": 42988.69, "end": 42988.69, "probability": 0.0481 }, { "start": 42988.69, "end": 42989.37, "probability": 0.0909 }, { "start": 42990.19, "end": 42994.04, "probability": 0.1615 }, { "start": 42996.13, "end": 42998.05, "probability": 0.0478 }, { "start": 42998.05, "end": 43001.69, "probability": 0.0873 }, { "start": 43001.69, "end": 43003.16, "probability": 0.2591 }, { "start": 43003.93, "end": 43003.97, "probability": 0.1208 }, { "start": 43003.97, "end": 43005.6, "probability": 0.922 }, { "start": 43009.99, "end": 43013.63, "probability": 0.4507 }, { "start": 43013.63, "end": 43014.37, "probability": 0.1825 }, { "start": 43019.41, "end": 43020.59, "probability": 0.2236 }, { "start": 43025.65, "end": 43027.77, "probability": 0.6406 }, { "start": 43030.15, "end": 43031.19, "probability": 0.1122 }, { "start": 43033.35, "end": 43033.67, "probability": 0.3181 }, { "start": 43033.67, "end": 43036.27, "probability": 0.1243 }, { "start": 43036.27, "end": 43036.27, "probability": 0.0334 }, { "start": 43036.27, "end": 43036.27, "probability": 0.0232 }, { "start": 43037.33, "end": 43038.83, "probability": 0.0506 }, { "start": 43039.71, "end": 43042.57, "probability": 0.7505 }, { "start": 43043.91, "end": 43046.75, "probability": 0.829 }, { "start": 43047.47, "end": 43049.05, "probability": 0.7862 }, { "start": 43049.05, "end": 43049.42, "probability": 0.9657 }, { "start": 43049.85, "end": 43051.47, "probability": 0.9868 }, { "start": 43052.47, "end": 43053.98, "probability": 0.9878 }, { "start": 43054.39, "end": 43055.85, "probability": 0.9754 }, { "start": 43056.03, "end": 43056.65, "probability": 0.9651 }, { "start": 43057.49, "end": 43058.79, "probability": 0.9409 }, { "start": 43060.85, "end": 43062.33, "probability": 0.4839 }, { "start": 43063.13, "end": 43063.73, "probability": 0.0494 }, { "start": 43063.75, "end": 43064.83, "probability": 0.2516 }, { "start": 43065.13, "end": 43067.81, "probability": 0.7568 }, { "start": 43068.93, "end": 43069.53, "probability": 0.8488 }, { "start": 43070.21, "end": 43070.65, "probability": 0.5443 }, { "start": 43070.83, "end": 43071.69, "probability": 0.8481 }, { "start": 43071.93, "end": 43072.64, "probability": 0.3199 }, { "start": 43072.85, "end": 43075.87, "probability": 0.7683 }, { "start": 43075.95, "end": 43080.33, "probability": 0.7551 }, { "start": 43080.53, "end": 43085.29, "probability": 0.3119 }, { "start": 43087.67, "end": 43089.89, "probability": 0.8662 }, { "start": 43089.93, "end": 43090.03, "probability": 0.2526 }, { "start": 43090.03, "end": 43090.45, "probability": 0.4051 }, { "start": 43090.45, "end": 43093.77, "probability": 0.8145 }, { "start": 43094.35, "end": 43098.37, "probability": 0.7926 }, { "start": 43098.55, "end": 43098.55, "probability": 0.0707 }, { "start": 43098.55, "end": 43098.55, "probability": 0.0249 }, { "start": 43098.55, "end": 43098.65, "probability": 0.1304 }, { "start": 43098.65, "end": 43100.31, "probability": 0.0236 }, { "start": 43101.15, "end": 43102.75, "probability": 0.7694 }, { "start": 43104.11, "end": 43104.69, "probability": 0.2198 }, { "start": 43105.03, "end": 43105.65, "probability": 0.2424 }, { "start": 43105.97, "end": 43108.17, "probability": 0.9919 }, { "start": 43109.27, "end": 43112.81, "probability": 0.8543 }, { "start": 43113.69, "end": 43115.09, "probability": 0.8173 }, { "start": 43116.49, "end": 43118.73, "probability": 0.8521 }, { "start": 43119.47, "end": 43121.27, "probability": 0.9866 }, { "start": 43122.63, "end": 43124.21, "probability": 0.9979 }, { "start": 43125.01, "end": 43125.73, "probability": 0.8064 }, { "start": 43125.87, "end": 43126.03, "probability": 0.3585 }, { "start": 43126.75, "end": 43127.69, "probability": 0.6525 }, { "start": 43128.17, "end": 43130.03, "probability": 0.4541 }, { "start": 43130.03, "end": 43131.65, "probability": 0.9973 }, { "start": 43131.85, "end": 43133.29, "probability": 0.5346 }, { "start": 43133.77, "end": 43135.68, "probability": 0.9182 }, { "start": 43138.89, "end": 43140.17, "probability": 0.9938 }, { "start": 43142.15, "end": 43142.53, "probability": 0.925 }, { "start": 43143.53, "end": 43144.09, "probability": 0.9468 }, { "start": 43144.71, "end": 43145.51, "probability": 0.9179 }, { "start": 43146.63, "end": 43148.19, "probability": 0.8195 }, { "start": 43149.19, "end": 43150.27, "probability": 0.4439 }, { "start": 43151.53, "end": 43152.73, "probability": 0.9594 }, { "start": 43153.81, "end": 43156.07, "probability": 0.8119 }, { "start": 43156.85, "end": 43158.21, "probability": 0.248 }, { "start": 43159.65, "end": 43160.99, "probability": 0.9395 }, { "start": 43161.51, "end": 43162.63, "probability": 0.7675 }, { "start": 43163.21, "end": 43166.95, "probability": 0.6922 }, { "start": 43167.37, "end": 43170.07, "probability": 0.655 }, { "start": 43171.97, "end": 43172.63, "probability": 0.7552 }, { "start": 43173.83, "end": 43176.01, "probability": 0.9152 }, { "start": 43177.09, "end": 43179.51, "probability": 0.9785 }, { "start": 43180.33, "end": 43182.11, "probability": 0.9497 }, { "start": 43183.19, "end": 43186.85, "probability": 0.9352 }, { "start": 43187.25, "end": 43187.69, "probability": 0.4276 }, { "start": 43188.39, "end": 43188.75, "probability": 0.8037 }, { "start": 43189.55, "end": 43191.57, "probability": 0.8254 }, { "start": 43192.83, "end": 43197.13, "probability": 0.6193 }, { "start": 43197.35, "end": 43198.89, "probability": 0.642 }, { "start": 43198.99, "end": 43202.05, "probability": 0.9772 }, { "start": 43202.55, "end": 43203.03, "probability": 0.7924 }, { "start": 43203.91, "end": 43205.05, "probability": 0.9207 }, { "start": 43205.63, "end": 43208.71, "probability": 0.9724 }, { "start": 43209.57, "end": 43214.95, "probability": 0.9855 }, { "start": 43215.63, "end": 43217.25, "probability": 0.7871 }, { "start": 43217.69, "end": 43219.11, "probability": 0.7198 }, { "start": 43219.27, "end": 43220.39, "probability": 0.8189 }, { "start": 43220.96, "end": 43222.85, "probability": 0.9505 }, { "start": 43222.93, "end": 43224.19, "probability": 0.9686 }, { "start": 43224.21, "end": 43225.29, "probability": 0.67 }, { "start": 43226.29, "end": 43228.31, "probability": 0.8177 }, { "start": 43229.71, "end": 43231.74, "probability": 0.9972 }, { "start": 43233.03, "end": 43233.61, "probability": 0.4912 }, { "start": 43233.67, "end": 43234.19, "probability": 0.9521 }, { "start": 43234.23, "end": 43235.63, "probability": 0.9355 }, { "start": 43235.85, "end": 43239.87, "probability": 0.72 }, { "start": 43240.59, "end": 43241.67, "probability": 0.6065 }, { "start": 43241.71, "end": 43241.73, "probability": 0.0022 }, { "start": 43243.23, "end": 43244.37, "probability": 0.2678 }, { "start": 43245.05, "end": 43250.81, "probability": 0.5484 }, { "start": 43250.93, "end": 43252.45, "probability": 0.5967 }, { "start": 43252.81, "end": 43254.85, "probability": 0.7436 }, { "start": 43254.97, "end": 43254.97, "probability": 0.665 }, { "start": 43254.97, "end": 43257.07, "probability": 0.8203 }, { "start": 43260.19, "end": 43263.49, "probability": 0.9911 }, { "start": 43264.17, "end": 43265.33, "probability": 0.9878 }, { "start": 43266.41, "end": 43267.99, "probability": 0.622 }, { "start": 43268.93, "end": 43269.95, "probability": 0.9743 }, { "start": 43270.01, "end": 43271.77, "probability": 0.7048 }, { "start": 43272.11, "end": 43275.93, "probability": 0.8028 }, { "start": 43275.99, "end": 43276.45, "probability": 0.6199 }, { "start": 43277.35, "end": 43279.93, "probability": 0.883 }, { "start": 43280.83, "end": 43282.31, "probability": 0.7337 }, { "start": 43282.83, "end": 43286.45, "probability": 0.975 }, { "start": 43286.61, "end": 43288.83, "probability": 0.9408 }, { "start": 43289.85, "end": 43294.85, "probability": 0.9897 }, { "start": 43294.93, "end": 43295.93, "probability": 0.9594 }, { "start": 43296.29, "end": 43296.93, "probability": 0.5268 }, { "start": 43297.51, "end": 43299.73, "probability": 0.8753 }, { "start": 43300.33, "end": 43301.01, "probability": 0.9454 }, { "start": 43301.55, "end": 43307.35, "probability": 0.9938 }, { "start": 43307.97, "end": 43312.71, "probability": 0.9994 }, { "start": 43312.95, "end": 43316.33, "probability": 0.996 }, { "start": 43316.51, "end": 43318.09, "probability": 0.9983 }, { "start": 43318.65, "end": 43318.67, "probability": 0.1466 }, { "start": 43318.67, "end": 43318.67, "probability": 0.189 }, { "start": 43318.67, "end": 43323.87, "probability": 0.943 }, { "start": 43324.39, "end": 43326.69, "probability": 0.6991 }, { "start": 43326.83, "end": 43331.92, "probability": 0.6698 }, { "start": 43332.55, "end": 43332.85, "probability": 0.4372 }, { "start": 43332.91, "end": 43334.25, "probability": 0.544 }, { "start": 43334.73, "end": 43335.51, "probability": 0.6004 }, { "start": 43336.73, "end": 43338.87, "probability": 0.0954 }, { "start": 43340.77, "end": 43341.12, "probability": 0.1859 }, { "start": 43342.29, "end": 43346.99, "probability": 0.1636 }, { "start": 43347.51, "end": 43348.49, "probability": 0.7542 }, { "start": 43349.21, "end": 43350.05, "probability": 0.7756 }, { "start": 43350.49, "end": 43354.01, "probability": 0.5033 }, { "start": 43354.37, "end": 43358.67, "probability": 0.9971 }, { "start": 43358.67, "end": 43363.97, "probability": 0.9576 }, { "start": 43364.55, "end": 43365.35, "probability": 0.7866 }, { "start": 43365.49, "end": 43366.97, "probability": 0.9917 }, { "start": 43367.69, "end": 43369.91, "probability": 0.5386 }, { "start": 43371.09, "end": 43372.27, "probability": 0.1039 }, { "start": 43372.35, "end": 43375.23, "probability": 0.5138 }, { "start": 43375.23, "end": 43375.81, "probability": 0.7028 }, { "start": 43376.09, "end": 43377.39, "probability": 0.9487 }, { "start": 43378.45, "end": 43382.29, "probability": 0.993 }, { "start": 43382.31, "end": 43382.33, "probability": 0.0249 }, { "start": 43382.71, "end": 43386.89, "probability": 0.9468 }, { "start": 43387.87, "end": 43388.55, "probability": 0.2946 }, { "start": 43388.83, "end": 43390.31, "probability": 0.0599 }, { "start": 43390.63, "end": 43395.79, "probability": 0.945 }, { "start": 43397.47, "end": 43398.03, "probability": 0.1086 }, { "start": 43398.03, "end": 43401.47, "probability": 0.9914 }, { "start": 43401.63, "end": 43402.63, "probability": 0.8876 }, { "start": 43404.93, "end": 43406.07, "probability": 0.0805 }, { "start": 43407.11, "end": 43410.27, "probability": 0.8642 }, { "start": 43410.37, "end": 43411.93, "probability": 0.9319 }, { "start": 43411.96, "end": 43415.67, "probability": 0.0562 }, { "start": 43415.79, "end": 43419.15, "probability": 0.0523 }, { "start": 43420.33, "end": 43420.43, "probability": 0.0238 }, { "start": 43420.43, "end": 43421.49, "probability": 0.7154 }, { "start": 43421.93, "end": 43423.95, "probability": 0.7479 }, { "start": 43424.23, "end": 43425.15, "probability": 0.9917 }, { "start": 43425.85, "end": 43427.71, "probability": 0.9867 }, { "start": 43428.09, "end": 43430.29, "probability": 0.9946 }, { "start": 43430.59, "end": 43433.65, "probability": 0.5562 }, { "start": 43434.67, "end": 43436.35, "probability": 0.6042 }, { "start": 43436.49, "end": 43436.85, "probability": 0.6445 }, { "start": 43437.45, "end": 43441.03, "probability": 0.9559 }, { "start": 43441.57, "end": 43441.93, "probability": 0.0221 }, { "start": 43441.93, "end": 43441.93, "probability": 0.3824 }, { "start": 43441.93, "end": 43443.45, "probability": 0.7256 }, { "start": 43445.87, "end": 43447.15, "probability": 0.0069 }, { "start": 43447.21, "end": 43451.29, "probability": 0.973 }, { "start": 43451.55, "end": 43452.83, "probability": 0.6136 }, { "start": 43453.59, "end": 43455.01, "probability": 0.8908 }, { "start": 43455.61, "end": 43456.93, "probability": 0.9688 }, { "start": 43457.03, "end": 43458.51, "probability": 0.9951 }, { "start": 43459.35, "end": 43460.61, "probability": 0.8641 }, { "start": 43461.19, "end": 43463.91, "probability": 0.9474 }, { "start": 43464.99, "end": 43467.39, "probability": 0.756 }, { "start": 43468.05, "end": 43470.33, "probability": 0.5823 }, { "start": 43470.61, "end": 43471.79, "probability": 0.5602 }, { "start": 43471.81, "end": 43473.29, "probability": 0.8232 }, { "start": 43473.29, "end": 43474.97, "probability": 0.9814 }, { "start": 43475.11, "end": 43477.05, "probability": 0.8809 }, { "start": 43478.39, "end": 43479.83, "probability": 0.7502 }, { "start": 43483.9, "end": 43485.07, "probability": 0.9215 }, { "start": 43485.51, "end": 43485.91, "probability": 0.527 }, { "start": 43486.67, "end": 43486.67, "probability": 0.3165 }, { "start": 43486.67, "end": 43489.99, "probability": 0.7558 }, { "start": 43491.91, "end": 43497.86, "probability": 0.9878 }, { "start": 43497.93, "end": 43503.13, "probability": 0.9716 }, { "start": 43503.81, "end": 43506.37, "probability": 0.5084 }, { "start": 43510.35, "end": 43512.93, "probability": 0.3772 }, { "start": 43514.19, "end": 43514.97, "probability": 0.7771 }, { "start": 43515.13, "end": 43516.13, "probability": 0.1705 }, { "start": 43516.93, "end": 43517.81, "probability": 0.5014 }, { "start": 43521.29, "end": 43522.73, "probability": 0.3591 }, { "start": 43524.79, "end": 43524.85, "probability": 0.2873 }, { "start": 43524.85, "end": 43527.71, "probability": 0.6568 }, { "start": 43534.01, "end": 43536.25, "probability": 0.596 }, { "start": 43536.59, "end": 43539.21, "probability": 0.2851 }, { "start": 43539.79, "end": 43541.43, "probability": 0.068 }, { "start": 43542.49, "end": 43542.49, "probability": 0.6379 }, { "start": 43542.73, "end": 43546.17, "probability": 0.2589 }, { "start": 43548.59, "end": 43549.59, "probability": 0.0322 }, { "start": 43551.4, "end": 43552.77, "probability": 0.5015 }, { "start": 43556.47, "end": 43557.59, "probability": 0.0887 }, { "start": 43557.59, "end": 43558.95, "probability": 0.1438 }, { "start": 43559.67, "end": 43561.46, "probability": 0.2349 }, { "start": 43561.97, "end": 43562.13, "probability": 0.0842 }, { "start": 43562.89, "end": 43562.89, "probability": 0.1491 }, { "start": 43562.89, "end": 43562.89, "probability": 0.1822 }, { "start": 43562.89, "end": 43562.89, "probability": 0.0637 }, { "start": 43562.89, "end": 43562.89, "probability": 0.1678 }, { "start": 43562.89, "end": 43564.49, "probability": 0.9375 }, { "start": 43565.49, "end": 43567.67, "probability": 0.9255 }, { "start": 43569.17, "end": 43573.91, "probability": 0.6882 }, { "start": 43574.51, "end": 43574.63, "probability": 0.4403 }, { "start": 43574.63, "end": 43574.63, "probability": 0.3763 }, { "start": 43574.63, "end": 43578.59, "probability": 0.5704 }, { "start": 43578.79, "end": 43580.87, "probability": 0.9561 }, { "start": 43582.27, "end": 43582.43, "probability": 0.2353 }, { "start": 43586.37, "end": 43586.69, "probability": 0.0898 }, { "start": 43587.65, "end": 43590.05, "probability": 0.6169 }, { "start": 43590.55, "end": 43590.73, "probability": 0.8072 }, { "start": 43591.19, "end": 43593.53, "probability": 0.7182 }, { "start": 43594.17, "end": 43596.11, "probability": 0.897 }, { "start": 43600.05, "end": 43600.49, "probability": 0.7838 }, { "start": 43601.12, "end": 43605.59, "probability": 0.8682 }, { "start": 43605.67, "end": 43606.58, "probability": 0.7959 }, { "start": 43606.71, "end": 43607.07, "probability": 0.4795 }, { "start": 43607.17, "end": 43608.91, "probability": 0.8728 }, { "start": 43609.35, "end": 43610.01, "probability": 0.9437 }, { "start": 43610.63, "end": 43611.95, "probability": 0.9977 }, { "start": 43613.09, "end": 43615.69, "probability": 0.9922 }, { "start": 43616.79, "end": 43617.93, "probability": 0.8297 }, { "start": 43618.37, "end": 43622.05, "probability": 0.8727 }, { "start": 43623.07, "end": 43624.79, "probability": 0.9956 }, { "start": 43625.35, "end": 43627.77, "probability": 0.9743 }, { "start": 43629.29, "end": 43632.03, "probability": 0.7397 }, { "start": 43632.59, "end": 43633.31, "probability": 0.7674 }, { "start": 43633.99, "end": 43635.37, "probability": 0.9694 }, { "start": 43635.65, "end": 43639.21, "probability": 0.9606 }, { "start": 43639.31, "end": 43639.98, "probability": 0.7852 }, { "start": 43640.89, "end": 43642.35, "probability": 0.9941 }, { "start": 43642.57, "end": 43644.69, "probability": 0.8361 }, { "start": 43645.29, "end": 43649.41, "probability": 0.9539 }, { "start": 43650.63, "end": 43652.79, "probability": 0.6742 }, { "start": 43653.67, "end": 43654.55, "probability": 0.718 }, { "start": 43654.61, "end": 43657.71, "probability": 0.9945 }, { "start": 43658.23, "end": 43660.07, "probability": 0.9863 }, { "start": 43660.51, "end": 43662.33, "probability": 0.9949 }, { "start": 43663.13, "end": 43664.75, "probability": 0.9873 }, { "start": 43665.47, "end": 43669.37, "probability": 0.9452 }, { "start": 43669.43, "end": 43671.79, "probability": 0.9018 }, { "start": 43672.21, "end": 43672.39, "probability": 0.5566 }, { "start": 43672.39, "end": 43676.87, "probability": 0.9409 }, { "start": 43677.41, "end": 43679.61, "probability": 0.9441 }, { "start": 43680.29, "end": 43681.19, "probability": 0.9626 }, { "start": 43681.49, "end": 43683.23, "probability": 0.8265 }, { "start": 43683.29, "end": 43684.95, "probability": 0.8978 }, { "start": 43685.27, "end": 43685.27, "probability": 0.5596 }, { "start": 43685.27, "end": 43686.67, "probability": 0.9268 }, { "start": 43687.31, "end": 43688.87, "probability": 0.8413 }, { "start": 43689.21, "end": 43689.39, "probability": 0.6538 }, { "start": 43689.39, "end": 43690.61, "probability": 0.7489 }, { "start": 43691.77, "end": 43694.31, "probability": 0.7441 }, { "start": 43694.89, "end": 43695.39, "probability": 0.5605 }, { "start": 43695.53, "end": 43696.27, "probability": 0.8467 }, { "start": 43696.31, "end": 43701.47, "probability": 0.9878 }, { "start": 43702.43, "end": 43703.95, "probability": 0.7099 }, { "start": 43704.01, "end": 43709.39, "probability": 0.9969 }, { "start": 43709.47, "end": 43710.54, "probability": 0.8985 }, { "start": 43710.97, "end": 43711.21, "probability": 0.7499 }, { "start": 43711.83, "end": 43713.89, "probability": 0.6266 }, { "start": 43713.99, "end": 43716.55, "probability": 0.9811 }, { "start": 43717.99, "end": 43719.47, "probability": 0.3813 }, { "start": 43721.53, "end": 43724.51, "probability": 0.8668 }, { "start": 43724.65, "end": 43725.59, "probability": 0.5345 }, { "start": 43726.17, "end": 43727.41, "probability": 0.6717 }, { "start": 43727.51, "end": 43729.33, "probability": 0.6458 }, { "start": 43729.96, "end": 43736.21, "probability": 0.8843 }, { "start": 43736.39, "end": 43737.43, "probability": 0.7863 }, { "start": 43744.37, "end": 43746.57, "probability": 0.4525 }, { "start": 43748.37, "end": 43750.83, "probability": 0.9463 }, { "start": 43752.49, "end": 43753.95, "probability": 0.8696 }, { "start": 43754.47, "end": 43758.71, "probability": 0.9769 }, { "start": 43759.55, "end": 43760.31, "probability": 0.4124 }, { "start": 43760.91, "end": 43762.09, "probability": 0.5914 }, { "start": 43762.21, "end": 43762.75, "probability": 0.1591 }, { "start": 43763.25, "end": 43763.91, "probability": 0.7014 }, { "start": 43764.07, "end": 43764.14, "probability": 0.0669 }, { "start": 43764.51, "end": 43764.91, "probability": 0.2438 }, { "start": 43765.33, "end": 43765.77, "probability": 0.2933 }, { "start": 43765.89, "end": 43766.27, "probability": 0.2316 }, { "start": 43766.35, "end": 43766.89, "probability": 0.2464 }, { "start": 43766.89, "end": 43767.37, "probability": 0.2859 }, { "start": 43767.89, "end": 43768.52, "probability": 0.1483 }, { "start": 43769.91, "end": 43770.41, "probability": 0.7065 }, { "start": 43771.13, "end": 43771.37, "probability": 0.7936 }, { "start": 43771.79, "end": 43772.31, "probability": 0.3778 }, { "start": 43772.39, "end": 43772.77, "probability": 0.4488 }, { "start": 43772.95, "end": 43773.33, "probability": 0.3323 }, { "start": 43773.51, "end": 43773.61, "probability": 0.3314 }, { "start": 43774.53, "end": 43777.43, "probability": 0.6194 }, { "start": 43777.95, "end": 43778.45, "probability": 0.2393 }, { "start": 43779.49, "end": 43779.67, "probability": 0.3739 }, { "start": 43780.33, "end": 43781.15, "probability": 0.0381 }, { "start": 43781.75, "end": 43781.89, "probability": 0.2696 }, { "start": 43783.19, "end": 43785.33, "probability": 0.0368 }, { "start": 43785.99, "end": 43786.73, "probability": 0.2405 }, { "start": 43787.55, "end": 43788.01, "probability": 0.2187 }, { "start": 43788.01, "end": 43788.69, "probability": 0.6256 }, { "start": 43788.89, "end": 43792.13, "probability": 0.8792 }, { "start": 43792.13, "end": 43794.15, "probability": 0.9321 }, { "start": 43794.15, "end": 43794.81, "probability": 0.3995 }, { "start": 43794.81, "end": 43796.97, "probability": 0.9664 }, { "start": 43798.55, "end": 43800.87, "probability": 0.4613 }, { "start": 43801.41, "end": 43803.19, "probability": 0.8823 }, { "start": 43804.81, "end": 43805.73, "probability": 0.7936 }, { "start": 43807.69, "end": 43808.41, "probability": 0.5221 }, { "start": 43808.57, "end": 43809.69, "probability": 0.3287 }, { "start": 43809.81, "end": 43810.29, "probability": 0.1505 }, { "start": 43810.63, "end": 43810.93, "probability": 0.3777 }, { "start": 43811.35, "end": 43811.97, "probability": 0.626 }, { "start": 43812.15, "end": 43812.49, "probability": 0.3216 }, { "start": 43812.75, "end": 43813.17, "probability": 0.4308 }, { "start": 43813.31, "end": 43813.77, "probability": 0.3948 }, { "start": 43813.93, "end": 43815.65, "probability": 0.4628 }, { "start": 43815.71, "end": 43816.81, "probability": 0.6944 }, { "start": 43817.23, "end": 43818.31, "probability": 0.4739 }, { "start": 43818.33, "end": 43818.85, "probability": 0.3494 }, { "start": 43818.95, "end": 43819.35, "probability": 0.2684 }, { "start": 43819.55, "end": 43819.81, "probability": 0.2024 }, { "start": 43820.61, "end": 43822.47, "probability": 0.1832 }, { "start": 43823.05, "end": 43824.37, "probability": 0.6199 }, { "start": 43824.99, "end": 43826.31, "probability": 0.608 }, { "start": 43826.43, "end": 43827.07, "probability": 0.3782 }, { "start": 43827.51, "end": 43827.81, "probability": 0.4963 }, { "start": 43828.37, "end": 43830.13, "probability": 0.1131 }, { "start": 43830.13, "end": 43830.13, "probability": 0.0183 }, { "start": 43830.13, "end": 43831.17, "probability": 0.1364 }, { "start": 43831.93, "end": 43832.51, "probability": 0.6694 }, { "start": 43832.91, "end": 43834.47, "probability": 0.5295 }, { "start": 43834.83, "end": 43836.55, "probability": 0.0426 }, { "start": 43836.55, "end": 43836.83, "probability": 0.0649 }, { "start": 43837.81, "end": 43838.13, "probability": 0.4719 }, { "start": 43838.97, "end": 43840.03, "probability": 0.7426 }, { "start": 43842.43, "end": 43844.69, "probability": 0.957 }, { "start": 43845.39, "end": 43849.55, "probability": 0.9312 }, { "start": 43850.45, "end": 43853.93, "probability": 0.7834 }, { "start": 43853.99, "end": 43854.49, "probability": 0.6891 }, { "start": 43854.81, "end": 43855.25, "probability": 0.9327 }, { "start": 43871.86, "end": 43872.45, "probability": 0.0121 }, { "start": 43872.71, "end": 43874.99, "probability": 0.2073 }, { "start": 43875.11, "end": 43878.75, "probability": 0.6221 }, { "start": 43879.23, "end": 43881.45, "probability": 0.9772 }, { "start": 43881.65, "end": 43882.33, "probability": 0.9245 }, { "start": 43980.0, "end": 43980.0, "probability": 0.0 }, { "start": 43980.0, "end": 43980.0, "probability": 0.0 }, { "start": 43980.0, "end": 43980.0, "probability": 0.0 }, { "start": 43980.0, "end": 43980.0, "probability": 0.0 }, { "start": 43980.0, "end": 43980.0, "probability": 0.0 }, { "start": 43980.0, "end": 43980.0, "probability": 0.0 }, { "start": 43980.0, "end": 43980.0, "probability": 0.0 }, { "start": 43980.0, "end": 43980.0, "probability": 0.0 }, { "start": 43980.0, "end": 43980.0, "probability": 0.0 }, { "start": 43980.0, "end": 43980.0, "probability": 0.0 }, { "start": 43980.0, "end": 43980.0, "probability": 0.0 }, { "start": 43980.0, "end": 43980.0, "probability": 0.0 }, { "start": 43980.0, "end": 43980.0, "probability": 0.0 }, { "start": 43980.0, "end": 43980.0, "probability": 0.0 }, { "start": 43980.0, "end": 43980.0, "probability": 0.0 }, { "start": 43980.0, "end": 43980.0, "probability": 0.0 }, { "start": 43980.0, "end": 43980.0, "probability": 0.0 }, { "start": 43980.0, "end": 43980.0, "probability": 0.0 }, { "start": 43980.0, "end": 43980.0, "probability": 0.0 }, { "start": 43980.0, "end": 43980.0, "probability": 0.0 }, { "start": 43980.0, "end": 43980.0, "probability": 0.0 }, { "start": 43980.0, "end": 43980.0, "probability": 0.0 }, { "start": 43980.0, "end": 43980.0, "probability": 0.0 }, { "start": 43980.0, "end": 43980.0, "probability": 0.0 }, { "start": 43980.0, "end": 43980.0, "probability": 0.0 }, { "start": 43980.0, "end": 43980.0, "probability": 0.0 }, { "start": 43980.0, "end": 43980.0, "probability": 0.0 }, { "start": 43980.0, "end": 43980.0, "probability": 0.0 }, { "start": 43980.0, "end": 43980.0, "probability": 0.0 }, { "start": 43980.0, "end": 43980.0, "probability": 0.0 }, { "start": 43980.0, "end": 43980.0, "probability": 0.0 }, { "start": 43980.0, "end": 43980.0, "probability": 0.0 }, { "start": 43980.0, "end": 43980.0, "probability": 0.0 }, { "start": 43980.0, "end": 43980.0, "probability": 0.0 }, { "start": 43980.0, "end": 43980.0, "probability": 0.0 }, { "start": 43980.0, "end": 43980.0, "probability": 0.0 }, { "start": 43980.0, "end": 43980.0, "probability": 0.0 }, { "start": 43980.0, "end": 43980.0, "probability": 0.0 }, { "start": 43980.0, "end": 43980.0, "probability": 0.0 }, { "start": 43980.0, "end": 43980.0, "probability": 0.0 }, { "start": 43980.0, "end": 43980.0, "probability": 0.0 }, { "start": 43980.0, "end": 43980.0, "probability": 0.0 }, { "start": 43980.0, "end": 43980.0, "probability": 0.0 }, { "start": 43980.16, "end": 43980.38, "probability": 0.034 }, { "start": 43980.38, "end": 43980.38, "probability": 0.0239 }, { "start": 43980.38, "end": 43980.38, "probability": 0.2074 }, { "start": 43980.38, "end": 43980.38, "probability": 0.0575 }, { "start": 43980.38, "end": 43980.46, "probability": 0.4176 }, { "start": 43980.58, "end": 43982.02, "probability": 0.4442 }, { "start": 43982.1, "end": 43983.96, "probability": 0.3296 }, { "start": 43983.96, "end": 43984.48, "probability": 0.4273 }, { "start": 43984.54, "end": 43984.98, "probability": 0.3881 }, { "start": 43986.94, "end": 43988.92, "probability": 0.0474 }, { "start": 43990.3, "end": 43990.48, "probability": 0.0054 }, { "start": 43991.38, "end": 43991.88, "probability": 0.0732 }, { "start": 43993.8, "end": 43994.68, "probability": 0.0361 }, { "start": 43994.68, "end": 43994.68, "probability": 0.2886 }, { "start": 43994.68, "end": 43996.22, "probability": 0.0154 }, { "start": 43996.22, "end": 43996.28, "probability": 0.1417 }, { "start": 43998.54, "end": 43998.69, "probability": 0.1518 }, { "start": 44000.22, "end": 44001.74, "probability": 0.4309 }, { "start": 44005.26, "end": 44007.82, "probability": 0.6146 }, { "start": 44109.0, "end": 44109.0, "probability": 0.0 }, { "start": 44109.0, "end": 44109.0, "probability": 0.0 }, { "start": 44109.0, "end": 44109.0, "probability": 0.0 }, { "start": 44109.0, "end": 44109.0, "probability": 0.0 }, { "start": 44109.0, "end": 44109.0, "probability": 0.0 }, { "start": 44109.0, "end": 44109.0, "probability": 0.0 }, { "start": 44109.0, "end": 44109.0, "probability": 0.0 }, { "start": 44109.0, "end": 44109.0, "probability": 0.0 }, { "start": 44109.0, "end": 44109.0, "probability": 0.0 }, { "start": 44109.0, "end": 44109.0, "probability": 0.0 }, { "start": 44109.0, "end": 44109.0, "probability": 0.0 }, { "start": 44109.0, "end": 44109.0, "probability": 0.0 }, { "start": 44109.0, "end": 44109.0, "probability": 0.0 }, { "start": 44109.0, "end": 44109.0, "probability": 0.0 }, { "start": 44109.0, "end": 44109.0, "probability": 0.0 }, { "start": 44109.0, "end": 44109.0, "probability": 0.0 }, { "start": 44109.0, "end": 44109.0, "probability": 0.0 }, { "start": 44109.0, "end": 44109.0, "probability": 0.0 }, { "start": 44109.0, "end": 44109.0, "probability": 0.0 }, { "start": 44109.0, "end": 44109.0, "probability": 0.0 }, { "start": 44109.0, "end": 44109.0, "probability": 0.0 }, { "start": 44109.0, "end": 44109.0, "probability": 0.0 }, { "start": 44109.0, "end": 44109.0, "probability": 0.0 }, { "start": 44109.0, "end": 44109.0, "probability": 0.0 }, { "start": 44109.0, "end": 44109.0, "probability": 0.0 }, { "start": 44109.0, "end": 44109.0, "probability": 0.0 }, { "start": 44109.0, "end": 44109.0, "probability": 0.0 }, { "start": 44109.0, "end": 44109.0, "probability": 0.0 }, { "start": 44109.0, "end": 44109.0, "probability": 0.0 }, { "start": 44109.0, "end": 44109.0, "probability": 0.0 }, { "start": 44109.0, "end": 44109.0, "probability": 0.0 }, { "start": 44109.0, "end": 44109.0, "probability": 0.0 }, { "start": 44109.0, "end": 44109.0, "probability": 0.0 }, { "start": 44109.0, "end": 44109.0, "probability": 0.0 }, { "start": 44109.0, "end": 44109.0, "probability": 0.0 }, { "start": 44109.0, "end": 44109.0, "probability": 0.0 }, { "start": 44109.0, "end": 44109.0, "probability": 0.0 }, { "start": 44109.0, "end": 44109.0, "probability": 0.0 }, { "start": 44109.0, "end": 44109.0, "probability": 0.0 }, { "start": 44109.0, "end": 44109.0, "probability": 0.0 }, { "start": 44109.0, "end": 44109.0, "probability": 0.0 }, { "start": 44109.0, "end": 44109.0, "probability": 0.0 }, { "start": 44109.38, "end": 44110.0, "probability": 0.4564 }, { "start": 44110.16, "end": 44111.61, "probability": 0.6599 }, { "start": 44111.86, "end": 44114.5, "probability": 0.5411 }, { "start": 44114.66, "end": 44115.54, "probability": 0.4751 }, { "start": 44133.28, "end": 44133.52, "probability": 0.5914 }, { "start": 44133.52, "end": 44133.52, "probability": 0.0173 }, { "start": 44133.52, "end": 44133.52, "probability": 0.0228 }, { "start": 44133.52, "end": 44133.64, "probability": 0.1397 }, { "start": 44133.64, "end": 44137.2, "probability": 0.0128 }, { "start": 44138.45, "end": 44139.5, "probability": 0.4405 }, { "start": 44246.0, "end": 44246.0, "probability": 0.0 }, { "start": 44246.0, "end": 44246.0, "probability": 0.0 }, { "start": 44246.0, "end": 44246.0, "probability": 0.0 }, { "start": 44246.0, "end": 44246.0, "probability": 0.0 }, { "start": 44246.0, "end": 44246.0, "probability": 0.0 }, { "start": 44246.0, "end": 44246.0, "probability": 0.0 }, { "start": 44246.0, "end": 44246.0, "probability": 0.0 }, { "start": 44246.0, "end": 44246.0, "probability": 0.0 }, { "start": 44246.0, "end": 44246.0, "probability": 0.0 }, { "start": 44246.0, "end": 44246.0, "probability": 0.0 }, { "start": 44246.0, "end": 44246.0, "probability": 0.0 }, { "start": 44246.0, "end": 44246.0, "probability": 0.0 }, { "start": 44246.0, "end": 44246.0, "probability": 0.0 }, { "start": 44246.0, "end": 44246.0, "probability": 0.0 }, { "start": 44246.0, "end": 44246.0, "probability": 0.0 }, { "start": 44246.0, "end": 44246.0, "probability": 0.0 }, { "start": 44246.0, "end": 44246.0, "probability": 0.0 }, { "start": 44246.0, "end": 44246.0, "probability": 0.0 }, { "start": 44246.0, "end": 44246.0, "probability": 0.0 }, { "start": 44246.0, "end": 44246.0, "probability": 0.0 }, { "start": 44246.0, "end": 44246.0, "probability": 0.0 }, { "start": 44246.0, "end": 44246.0, "probability": 0.0 }, { "start": 44246.0, "end": 44246.0, "probability": 0.0 }, { "start": 44246.0, "end": 44246.0, "probability": 0.0 }, { "start": 44246.0, "end": 44246.0, "probability": 0.0 }, { "start": 44246.0, "end": 44246.0, "probability": 0.0 }, { "start": 44246.0, "end": 44246.0, "probability": 0.0 }, { "start": 44246.0, "end": 44246.0, "probability": 0.0 }, { "start": 44246.0, "end": 44246.0, "probability": 0.0 }, { "start": 44246.0, "end": 44246.0, "probability": 0.0 }, { "start": 44246.0, "end": 44246.0, "probability": 0.0 }, { "start": 44246.0, "end": 44246.0, "probability": 0.0 }, { "start": 44246.0, "end": 44246.0, "probability": 0.0 }, { "start": 44246.0, "end": 44246.0, "probability": 0.0 }, { "start": 44246.0, "end": 44246.0, "probability": 0.0 }, { "start": 44246.0, "end": 44246.0, "probability": 0.0 }, { "start": 44246.0, "end": 44246.0, "probability": 0.0 }, { "start": 44246.0, "end": 44246.0, "probability": 0.0 }, { "start": 44246.0, "end": 44246.0, "probability": 0.0 }, { "start": 44246.0, "end": 44246.0, "probability": 0.0 }, { "start": 44246.36, "end": 44246.36, "probability": 0.0421 }, { "start": 44246.36, "end": 44247.4, "probability": 0.3378 }, { "start": 44248.24, "end": 44250.3, "probability": 0.4845 }, { "start": 44250.76, "end": 44253.58, "probability": 0.5158 }, { "start": 44253.82, "end": 44253.9, "probability": 0.146 }, { "start": 44254.26, "end": 44254.88, "probability": 0.2539 }, { "start": 44255.2, "end": 44255.96, "probability": 0.5254 }, { "start": 44256.12, "end": 44259.68, "probability": 0.8641 }, { "start": 44260.08, "end": 44263.38, "probability": 0.4929 }, { "start": 44263.6, "end": 44264.12, "probability": 0.3561 }, { "start": 44264.16, "end": 44264.88, "probability": 0.3074 }, { "start": 44293.52, "end": 44293.84, "probability": 0.4828 }, { "start": 44295.78, "end": 44297.76, "probability": 0.0261 }, { "start": 44297.76, "end": 44301.46, "probability": 0.0266 }, { "start": 44305.6, "end": 44308.74, "probability": 0.1688 }, { "start": 44310.66, "end": 44316.3, "probability": 0.0122 }, { "start": 44317.85, "end": 44319.64, "probability": 0.3701 }, { "start": 44369.0, "end": 44369.0, "probability": 0.0 }, { "start": 44369.0, "end": 44369.0, "probability": 0.0 }, { "start": 44369.0, "end": 44369.0, "probability": 0.0 }, { "start": 44369.0, "end": 44369.0, "probability": 0.0 }, { "start": 44369.0, "end": 44369.0, "probability": 0.0 }, { "start": 44369.0, "end": 44369.0, "probability": 0.0 }, { "start": 44369.0, "end": 44369.0, "probability": 0.0 }, { "start": 44369.0, "end": 44369.0, "probability": 0.0 }, { "start": 44369.0, "end": 44369.0, "probability": 0.0 }, { "start": 44369.0, "end": 44369.0, "probability": 0.0 }, { "start": 44369.0, "end": 44369.0, "probability": 0.0 }, { "start": 44369.0, "end": 44369.0, "probability": 0.0 }, { "start": 44369.0, "end": 44369.0, "probability": 0.0 }, { "start": 44369.0, "end": 44369.0, "probability": 0.0 }, { "start": 44369.0, "end": 44369.0, "probability": 0.0 }, { "start": 44369.0, "end": 44369.0, "probability": 0.0 }, { "start": 44369.0, "end": 44369.0, "probability": 0.0 }, { "start": 44369.0, "end": 44369.0, "probability": 0.0 }, { "start": 44369.0, "end": 44369.0, "probability": 0.0 }, { "start": 44369.0, "end": 44369.0, "probability": 0.0 }, { "start": 44369.0, "end": 44369.0, "probability": 0.0 }, { "start": 44369.0, "end": 44369.0, "probability": 0.0 }, { "start": 44369.0, "end": 44369.0, "probability": 0.0 }, { "start": 44369.0, "end": 44369.0, "probability": 0.0 }, { "start": 44369.0, "end": 44369.0, "probability": 0.0 }, { "start": 44369.0, "end": 44369.0, "probability": 0.0 }, { "start": 44369.0, "end": 44369.0, "probability": 0.0 }, { "start": 44369.0, "end": 44369.0, "probability": 0.0 }, { "start": 44369.0, "end": 44369.0, "probability": 0.0 }, { "start": 44369.0, "end": 44369.0, "probability": 0.0 }, { "start": 44369.0, "end": 44369.0, "probability": 0.0 }, { "start": 44389.42, "end": 44393.44, "probability": 0.3736 }, { "start": 44393.98, "end": 44394.48, "probability": 0.0152 }, { "start": 44394.48, "end": 44395.74, "probability": 0.5828 }, { "start": 44395.78, "end": 44396.4, "probability": 0.7451 }, { "start": 44396.52, "end": 44397.46, "probability": 0.298 }, { "start": 44415.91, "end": 44416.64, "probability": 0.1666 }, { "start": 44416.64, "end": 44416.64, "probability": 0.0195 }, { "start": 44416.64, "end": 44416.78, "probability": 0.1608 }, { "start": 44416.92, "end": 44417.02, "probability": 0.2477 }, { "start": 44489.0, "end": 44489.0, "probability": 0.0 }, { "start": 44489.0, "end": 44489.0, "probability": 0.0 }, { "start": 44489.0, "end": 44489.0, "probability": 0.0 }, { "start": 44489.0, "end": 44489.0, "probability": 0.0 }, { "start": 44489.0, "end": 44489.0, "probability": 0.0 }, { "start": 44489.0, "end": 44489.0, "probability": 0.0 }, { "start": 44489.0, "end": 44489.0, "probability": 0.0 }, { "start": 44489.0, "end": 44489.0, "probability": 0.0 }, { "start": 44489.0, "end": 44489.0, "probability": 0.0 }, { "start": 44489.0, "end": 44489.0, "probability": 0.0 }, { "start": 44489.0, "end": 44489.0, "probability": 0.0 }, { "start": 44489.0, "end": 44489.0, "probability": 0.0 }, { "start": 44489.0, "end": 44489.0, "probability": 0.0 }, { "start": 44489.0, "end": 44489.0, "probability": 0.0 }, { "start": 44489.0, "end": 44489.0, "probability": 0.0 }, { "start": 44489.0, "end": 44489.0, "probability": 0.0 }, { "start": 44489.0, "end": 44489.0, "probability": 0.0 }, { "start": 44489.0, "end": 44489.0, "probability": 0.0 }, { "start": 44489.0, "end": 44489.0, "probability": 0.0 }, { "start": 44489.0, "end": 44489.0, "probability": 0.0 }, { "start": 44489.0, "end": 44489.0, "probability": 0.0 }, { "start": 44489.0, "end": 44489.0, "probability": 0.0 }, { "start": 44489.0, "end": 44489.0, "probability": 0.0 }, { "start": 44489.0, "end": 44489.0, "probability": 0.0 }, { "start": 44489.0, "end": 44489.0, "probability": 0.0 }, { "start": 44489.0, "end": 44489.0, "probability": 0.0 }, { "start": 44489.0, "end": 44489.0, "probability": 0.0 }, { "start": 44489.0, "end": 44489.0, "probability": 0.0 }, { "start": 44489.0, "end": 44489.0, "probability": 0.0 }, { "start": 44489.0, "end": 44489.0, "probability": 0.0 }, { "start": 44489.0, "end": 44489.0, "probability": 0.0 }, { "start": 44489.0, "end": 44489.0, "probability": 0.0 }, { "start": 44489.0, "end": 44489.0, "probability": 0.0 }, { "start": 44489.0, "end": 44489.0, "probability": 0.0 }, { "start": 44489.0, "end": 44489.0, "probability": 0.0 }, { "start": 44489.0, "end": 44489.0, "probability": 0.0 }, { "start": 44489.0, "end": 44489.0, "probability": 0.0 }, { "start": 44489.0, "end": 44489.0, "probability": 0.0 }, { "start": 44489.0, "end": 44489.0, "probability": 0.0 }, { "start": 44489.0, "end": 44489.0, "probability": 0.0 }, { "start": 44489.0, "end": 44489.0, "probability": 0.0 }, { "start": 44489.0, "end": 44489.0, "probability": 0.0 }, { "start": 44493.12, "end": 44495.76, "probability": 0.5567 }, { "start": 44495.9, "end": 44496.88, "probability": 0.9699 }, { "start": 44497.0, "end": 44499.0, "probability": 0.6449 }, { "start": 44499.66, "end": 44500.38, "probability": 0.7188 }, { "start": 44500.46, "end": 44501.2, "probability": 0.4652 }, { "start": 44501.2, "end": 44501.66, "probability": 0.5541 }, { "start": 44519.14, "end": 44519.94, "probability": 0.0363 }, { "start": 44519.94, "end": 44519.94, "probability": 0.0219 }, { "start": 44519.94, "end": 44520.02, "probability": 0.1728 }, { "start": 44520.02, "end": 44522.66, "probability": 0.0131 }, { "start": 44524.14, "end": 44525.64, "probability": 0.3893 }, { "start": 44527.2, "end": 44527.7, "probability": 0.3323 }, { "start": 44546.08, "end": 44547.76, "probability": 0.4117 }, { "start": 44547.86, "end": 44548.6, "probability": 0.5387 }, { "start": 44548.86, "end": 44550.6, "probability": 0.1587 }, { "start": 44550.6, "end": 44551.92, "probability": 0.5227 }, { "start": 44552.02, "end": 44552.42, "probability": 0.6549 }, { "start": 44553.9, "end": 44555.5, "probability": 0.5979 }, { "start": 44556.58, "end": 44557.82, "probability": 0.5054 }, { "start": 44558.52, "end": 44559.44, "probability": 0.0096 }, { "start": 44570.3, "end": 44570.82, "probability": 0.0211 }, { "start": 44570.82, "end": 44570.82, "probability": 0.2001 }, { "start": 44570.82, "end": 44570.96, "probability": 0.0199 }, { "start": 44570.96, "end": 44573.0, "probability": 0.4111 }, { "start": 44573.06, "end": 44574.02, "probability": 0.8966 }, { "start": 44574.16, "end": 44574.34, "probability": 0.5423 }, { "start": 44630.0, "end": 44630.0, "probability": 0.0 }, { "start": 44630.0, "end": 44630.0, "probability": 0.0 }, { "start": 44630.0, "end": 44630.0, "probability": 0.0 }, { "start": 44630.0, "end": 44630.0, "probability": 0.0 }, { "start": 44630.0, "end": 44630.0, "probability": 0.0 }, { "start": 44630.0, "end": 44630.0, "probability": 0.0 }, { "start": 44630.0, "end": 44630.0, "probability": 0.0 }, { "start": 44630.0, "end": 44630.0, "probability": 0.0 }, { "start": 44630.0, "end": 44630.0, "probability": 0.0 }, { "start": 44630.0, "end": 44630.0, "probability": 0.0 }, { "start": 44630.0, "end": 44630.0, "probability": 0.0 }, { "start": 44630.0, "end": 44630.0, "probability": 0.0 }, { "start": 44630.0, "end": 44630.0, "probability": 0.0 }, { "start": 44630.0, "end": 44630.0, "probability": 0.0 }, { "start": 44630.0, "end": 44630.0, "probability": 0.0 }, { "start": 44630.0, "end": 44630.0, "probability": 0.0 }, { "start": 44630.0, "end": 44630.0, "probability": 0.0 }, { "start": 44630.0, "end": 44630.0, "probability": 0.0 }, { "start": 44630.0, "end": 44630.0, "probability": 0.0 }, { "start": 44630.0, "end": 44630.0, "probability": 0.0 }, { "start": 44630.0, "end": 44630.0, "probability": 0.0 }, { "start": 44630.0, "end": 44630.0, "probability": 0.0 }, { "start": 44630.0, "end": 44630.0, "probability": 0.0 }, { "start": 44630.0, "end": 44630.0, "probability": 0.0 }, { "start": 44630.0, "end": 44630.0, "probability": 0.0 }, { "start": 44630.0, "end": 44630.0, "probability": 0.0 }, { "start": 44630.0, "end": 44630.0, "probability": 0.0 }, { "start": 44630.0, "end": 44630.0, "probability": 0.0 }, { "start": 44630.0, "end": 44630.0, "probability": 0.0 }, { "start": 44630.0, "end": 44630.0, "probability": 0.0 }, { "start": 44630.0, "end": 44630.0, "probability": 0.0 }, { "start": 44630.0, "end": 44630.0, "probability": 0.0 }, { "start": 44630.0, "end": 44630.0, "probability": 0.0 }, { "start": 44630.0, "end": 44630.0, "probability": 0.0 }, { "start": 44630.0, "end": 44630.0, "probability": 0.0 }, { "start": 44646.86, "end": 44649.64, "probability": 0.4615 }, { "start": 44649.7, "end": 44650.8, "probability": 0.9362 }, { "start": 44651.04, "end": 44654.15, "probability": 0.566 }, { "start": 44654.3, "end": 44655.14, "probability": 0.3301 }, { "start": 44673.48, "end": 44676.3, "probability": 0.3969 }, { "start": 44677.38, "end": 44680.3, "probability": 0.602 }, { "start": 44681.97, "end": 44683.99, "probability": 0.0195 }, { "start": 44785.0, "end": 44785.0, "probability": 0.0 }, { "start": 44785.0, "end": 44785.0, "probability": 0.0 }, { "start": 44785.0, "end": 44785.0, "probability": 0.0 }, { "start": 44785.0, "end": 44785.0, "probability": 0.0 }, { "start": 44785.0, "end": 44785.0, "probability": 0.0 }, { "start": 44785.0, "end": 44785.0, "probability": 0.0 }, { "start": 44785.0, "end": 44785.0, "probability": 0.0 }, { "start": 44785.0, "end": 44785.0, "probability": 0.0 }, { "start": 44785.0, "end": 44785.0, "probability": 0.0 }, { "start": 44785.0, "end": 44785.0, "probability": 0.0 }, { "start": 44785.0, "end": 44785.0, "probability": 0.0 }, { "start": 44785.0, "end": 44785.0, "probability": 0.0 }, { "start": 44785.0, "end": 44785.0, "probability": 0.0 }, { "start": 44785.0, "end": 44785.0, "probability": 0.0 }, { "start": 44785.0, "end": 44785.0, "probability": 0.0 }, { "start": 44785.0, "end": 44785.0, "probability": 0.0 }, { "start": 44785.0, "end": 44785.0, "probability": 0.0 }, { "start": 44785.0, "end": 44785.0, "probability": 0.0 }, { "start": 44785.0, "end": 44785.0, "probability": 0.0 }, { "start": 44785.0, "end": 44785.0, "probability": 0.0 }, { "start": 44785.0, "end": 44785.0, "probability": 0.0 }, { "start": 44785.0, "end": 44785.0, "probability": 0.0 }, { "start": 44785.0, "end": 44785.0, "probability": 0.0 }, { "start": 44785.0, "end": 44785.0, "probability": 0.0 }, { "start": 44785.0, "end": 44785.0, "probability": 0.0 }, { "start": 44785.0, "end": 44785.0, "probability": 0.0 }, { "start": 44785.0, "end": 44785.0, "probability": 0.0 }, { "start": 44785.0, "end": 44785.0, "probability": 0.0 }, { "start": 44785.0, "end": 44785.0, "probability": 0.0 }, { "start": 44785.0, "end": 44785.0, "probability": 0.0 }, { "start": 44785.0, "end": 44785.0, "probability": 0.0 }, { "start": 44785.0, "end": 44785.0, "probability": 0.0 }, { "start": 44785.0, "end": 44785.0, "probability": 0.0 }, { "start": 44785.0, "end": 44785.0, "probability": 0.0 }, { "start": 44785.0, "end": 44785.0, "probability": 0.0 }, { "start": 44785.0, "end": 44785.0, "probability": 0.0 }, { "start": 44785.0, "end": 44785.0, "probability": 0.0 }, { "start": 44785.0, "end": 44785.0, "probability": 0.0 }, { "start": 44785.0, "end": 44785.0, "probability": 0.0 }, { "start": 44785.0, "end": 44785.0, "probability": 0.0 }, { "start": 44785.0, "end": 44785.0, "probability": 0.0 }, { "start": 44785.0, "end": 44785.0, "probability": 0.0 }, { "start": 44785.0, "end": 44785.0, "probability": 0.0 }, { "start": 44785.0, "end": 44785.0, "probability": 0.0 }, { "start": 44785.0, "end": 44785.0, "probability": 0.0 }, { "start": 44785.0, "end": 44785.0, "probability": 0.0 }, { "start": 44785.0, "end": 44785.0, "probability": 0.0 }, { "start": 44785.0, "end": 44785.0, "probability": 0.0 }, { "start": 44785.16, "end": 44787.38, "probability": 0.5378 }, { "start": 44787.86, "end": 44789.2, "probability": 0.7243 }, { "start": 44789.32, "end": 44792.18, "probability": 0.6403 }, { "start": 44792.18, "end": 44792.76, "probability": 0.5728 }, { "start": 44792.8, "end": 44793.32, "probability": 0.6885 }, { "start": 44816.4, "end": 44816.84, "probability": 0.3598 }, { "start": 44816.96, "end": 44818.4, "probability": 0.6235 }, { "start": 44821.72, "end": 44821.72, "probability": 0.0263 }, { "start": 44821.72, "end": 44821.74, "probability": 0.0202 }, { "start": 44821.74, "end": 44821.74, "probability": 0.2203 }, { "start": 44821.94, "end": 44822.66, "probability": 0.1846 }, { "start": 44838.68, "end": 44839.54, "probability": 0.0131 }, { "start": 44839.54, "end": 44841.49, "probability": 0.5395 }, { "start": 44841.58, "end": 44842.62, "probability": 0.9229 }, { "start": 44842.84, "end": 44846.8, "probability": 0.7542 }, { "start": 44846.92, "end": 44847.44, "probability": 0.5107 }, { "start": 44864.68, "end": 44867.34, "probability": 0.3536 }, { "start": 44867.8, "end": 44869.46, "probability": 0.7893 }, { "start": 44870.64, "end": 44872.28, "probability": 0.0315 }, { "start": 44872.38, "end": 44874.66, "probability": 0.0217 }, { "start": 44874.66, "end": 44874.94, "probability": 0.2222 }, { "start": 44874.96, "end": 44877.84, "probability": 0.0142 }, { "start": 44906.0, "end": 44906.0, "probability": 0.0 }, { "start": 44906.0, "end": 44906.0, "probability": 0.0 }, { "start": 44906.0, "end": 44906.0, "probability": 0.0 }, { "start": 44906.0, "end": 44906.0, "probability": 0.0 }, { "start": 44906.0, "end": 44906.0, "probability": 0.0 }, { "start": 44906.0, "end": 44906.0, "probability": 0.0 }, { "start": 44906.0, "end": 44906.0, "probability": 0.0 }, { "start": 44906.0, "end": 44906.0, "probability": 0.0 }, { "start": 44906.0, "end": 44906.0, "probability": 0.0 }, { "start": 44906.0, "end": 44906.0, "probability": 0.0 }, { "start": 44906.0, "end": 44906.0, "probability": 0.0 }, { "start": 44906.0, "end": 44906.0, "probability": 0.0 }, { "start": 44906.0, "end": 44906.0, "probability": 0.0 }, { "start": 44906.0, "end": 44906.0, "probability": 0.0 }, { "start": 44906.0, "end": 44906.0, "probability": 0.0 }, { "start": 44906.0, "end": 44906.0, "probability": 0.0 }, { "start": 44906.0, "end": 44906.0, "probability": 0.0 }, { "start": 44906.0, "end": 44906.0, "probability": 0.0 }, { "start": 44906.0, "end": 44906.0, "probability": 0.0 }, { "start": 44906.0, "end": 44906.0, "probability": 0.0 }, { "start": 44918.2, "end": 44920.84, "probability": 0.6109 }, { "start": 44920.96, "end": 44922.61, "probability": 0.7381 }, { "start": 44923.0, "end": 44924.76, "probability": 0.8519 }, { "start": 44925.88, "end": 44927.12, "probability": 0.6346 }, { "start": 44927.74, "end": 44928.28, "probability": 0.4977 }, { "start": 44928.28, "end": 44928.92, "probability": 0.8735 }, { "start": 44929.9, "end": 44931.3, "probability": 0.419 }, { "start": 44931.86, "end": 44932.86, "probability": 0.02 }, { "start": 44945.8, "end": 44946.22, "probability": 0.0118 }, { "start": 44946.22, "end": 44946.22, "probability": 0.1933 }, { "start": 44946.22, "end": 44946.4, "probability": 0.0279 }, { "start": 44946.4, "end": 44948.34, "probability": 0.4618 }, { "start": 44948.84, "end": 44950.38, "probability": 0.8833 }, { "start": 44950.58, "end": 44954.02, "probability": 0.5269 }, { "start": 44954.14, "end": 44954.88, "probability": 0.5325 }, { "start": 44955.06, "end": 44955.66, "probability": 0.5136 }, { "start": 44956.2, "end": 44958.34, "probability": 0.5589 }, { "start": 44972.08, "end": 44976.0, "probability": 0.0375 }, { "start": 44976.06, "end": 44977.16, "probability": 0.0199 }, { "start": 44977.34, "end": 44978.26, "probability": 0.1797 }, { "start": 44978.26, "end": 44979.06, "probability": 0.0289 }, { "start": 44979.14, "end": 44979.62, "probability": 0.2534 }, { "start": 44980.5, "end": 44981.0, "probability": 0.4008 }, { "start": 45053.0, "end": 45053.0, "probability": 0.0 }, { "start": 45053.0, "end": 45053.0, "probability": 0.0 }, { "start": 45053.0, "end": 45053.0, "probability": 0.0 }, { "start": 45053.0, "end": 45053.0, "probability": 0.0 }, { "start": 45053.0, "end": 45053.0, "probability": 0.0 }, { "start": 45053.0, "end": 45053.0, "probability": 0.0 }, { "start": 45053.0, "end": 45053.0, "probability": 0.0 }, { "start": 45053.0, "end": 45053.0, "probability": 0.0 }, { "start": 45053.0, "end": 45053.0, "probability": 0.0 }, { "start": 45053.0, "end": 45053.0, "probability": 0.0 }, { "start": 45053.0, "end": 45053.0, "probability": 0.0 }, { "start": 45053.0, "end": 45053.0, "probability": 0.0 }, { "start": 45053.0, "end": 45053.0, "probability": 0.0 }, { "start": 45053.0, "end": 45053.0, "probability": 0.0 }, { "start": 45053.0, "end": 45053.0, "probability": 0.0 }, { "start": 45053.0, "end": 45053.0, "probability": 0.0 }, { "start": 45053.0, "end": 45053.0, "probability": 0.0 }, { "start": 45053.0, "end": 45053.0, "probability": 0.0 }, { "start": 45053.0, "end": 45053.0, "probability": 0.0 }, { "start": 45053.0, "end": 45053.0, "probability": 0.0 }, { "start": 45053.0, "end": 45053.0, "probability": 0.0 }, { "start": 45053.0, "end": 45053.0, "probability": 0.0 }, { "start": 45053.0, "end": 45053.0, "probability": 0.0 }, { "start": 45053.0, "end": 45053.0, "probability": 0.0 }, { "start": 45053.0, "end": 45053.0, "probability": 0.0 }, { "start": 45053.0, "end": 45053.0, "probability": 0.0 }, { "start": 45053.0, "end": 45053.0, "probability": 0.0 }, { "start": 45053.0, "end": 45053.0, "probability": 0.0 }, { "start": 45053.0, "end": 45053.0, "probability": 0.0 }, { "start": 45073.12, "end": 45075.92, "probability": 0.0956 }, { "start": 45076.02, "end": 45077.4, "probability": 0.9058 }, { "start": 45077.72, "end": 45081.8, "probability": 0.9023 }, { "start": 45081.84, "end": 45082.52, "probability": 0.7149 }, { "start": 45082.68, "end": 45083.3, "probability": 0.504 }, { "start": 45084.74, "end": 45087.42, "probability": 0.2762 }, { "start": 45099.84, "end": 45100.16, "probability": 0.0136 }, { "start": 45100.16, "end": 45100.52, "probability": 0.0201 }, { "start": 45100.52, "end": 45100.52, "probability": 0.1834 }, { "start": 45100.52, "end": 45104.4, "probability": 0.0235 }, { "start": 45104.92, "end": 45107.02, "probability": 0.2241 }, { "start": 45108.34, "end": 45109.56, "probability": 0.4753 }, { "start": 45181.0, "end": 45181.0, "probability": 0.0 }, { "start": 45181.0, "end": 45181.0, "probability": 0.0 }, { "start": 45181.0, "end": 45181.0, "probability": 0.0 }, { "start": 45181.0, "end": 45181.0, "probability": 0.0 }, { "start": 45181.0, "end": 45181.0, "probability": 0.0 }, { "start": 45181.0, "end": 45181.0, "probability": 0.0 }, { "start": 45181.0, "end": 45181.0, "probability": 0.0 }, { "start": 45181.0, "end": 45181.0, "probability": 0.0 }, { "start": 45181.0, "end": 45181.0, "probability": 0.0 }, { "start": 45181.0, "end": 45181.0, "probability": 0.0 }, { "start": 45181.0, "end": 45181.0, "probability": 0.0 }, { "start": 45181.0, "end": 45181.0, "probability": 0.0 }, { "start": 45181.0, "end": 45181.0, "probability": 0.0 }, { "start": 45181.0, "end": 45181.0, "probability": 0.0 }, { "start": 45181.0, "end": 45181.0, "probability": 0.0 }, { "start": 45181.0, "end": 45181.0, "probability": 0.0 }, { "start": 45181.0, "end": 45181.0, "probability": 0.0 }, { "start": 45181.0, "end": 45181.0, "probability": 0.0 }, { "start": 45181.0, "end": 45181.0, "probability": 0.0 }, { "start": 45181.0, "end": 45181.0, "probability": 0.0 }, { "start": 45181.0, "end": 45181.0, "probability": 0.0 }, { "start": 45181.0, "end": 45181.0, "probability": 0.0 }, { "start": 45181.0, "end": 45181.0, "probability": 0.0 }, { "start": 45181.0, "end": 45181.0, "probability": 0.0 }, { "start": 45181.0, "end": 45181.0, "probability": 0.0 }, { "start": 45181.0, "end": 45181.0, "probability": 0.0 }, { "start": 45181.0, "end": 45181.0, "probability": 0.0 }, { "start": 45181.0, "end": 45181.0, "probability": 0.0 }, { "start": 45181.0, "end": 45181.0, "probability": 0.0 }, { "start": 45181.0, "end": 45181.0, "probability": 0.0 }, { "start": 45181.0, "end": 45181.0, "probability": 0.0 }, { "start": 45181.0, "end": 45181.0, "probability": 0.0 }, { "start": 45181.0, "end": 45181.0, "probability": 0.0 }, { "start": 45181.0, "end": 45181.0, "probability": 0.0 }, { "start": 45181.0, "end": 45181.0, "probability": 0.0 }, { "start": 45181.0, "end": 45181.0, "probability": 0.0 }, { "start": 45181.0, "end": 45181.0, "probability": 0.0 }, { "start": 45193.16, "end": 45193.94, "probability": 0.0008 }, { "start": 45196.0, "end": 45198.7, "probability": 0.809 }, { "start": 45198.9, "end": 45200.78, "probability": 0.7592 }, { "start": 45201.8, "end": 45203.24, "probability": 0.5737 }, { "start": 45203.28, "end": 45203.9, "probability": 0.4981 }, { "start": 45205.24, "end": 45207.22, "probability": 0.5607 }, { "start": 45209.54, "end": 45209.54, "probability": 0.1455 }, { "start": 45209.54, "end": 45209.54, "probability": 0.0822 }, { "start": 45209.54, "end": 45209.7, "probability": 0.3526 }, { "start": 45209.7, "end": 45216.3, "probability": 0.493 }, { "start": 45230.66, "end": 45231.28, "probability": 0.7729 }, { "start": 45248.94, "end": 45251.82, "probability": 0.4222 }, { "start": 45251.92, "end": 45252.7, "probability": 0.5008 }, { "start": 45253.7, "end": 45254.64, "probability": 0.254 }, { "start": 45255.24, "end": 45255.86, "probability": 0.6027 }, { "start": 45255.94, "end": 45256.4, "probability": 0.5431 }, { "start": 45256.48, "end": 45257.68, "probability": 0.2127 }, { "start": 45258.08, "end": 45258.52, "probability": 0.8216 }, { "start": 45259.94, "end": 45265.34, "probability": 0.0161 }, { "start": 45273.94, "end": 45274.48, "probability": 0.0128 }, { "start": 45274.48, "end": 45274.48, "probability": 0.2161 }, { "start": 45274.48, "end": 45274.82, "probability": 0.0156 }, { "start": 45274.82, "end": 45277.0, "probability": 0.4582 }, { "start": 45277.82, "end": 45278.96, "probability": 0.3824 }, { "start": 45279.1, "end": 45280.44, "probability": 0.0235 }, { "start": 45281.6, "end": 45283.3, "probability": 0.3214 }, { "start": 45283.3, "end": 45283.78, "probability": 0.4705 }, { "start": 45284.42, "end": 45285.9, "probability": 0.4176 }, { "start": 45302.04, "end": 45302.3, "probability": 0.0271 }, { "start": 45302.3, "end": 45302.36, "probability": 0.0587 }, { "start": 45302.36, "end": 45302.36, "probability": 0.218 }, { "start": 45302.36, "end": 45302.82, "probability": 0.0289 }, { "start": 45302.82, "end": 45303.98, "probability": 0.3311 }, { "start": 45304.0, "end": 45304.0, "probability": 0.0 }, { "start": 45304.0, "end": 45304.0, "probability": 0.0 }, { "start": 45304.0, "end": 45304.0, "probability": 0.0 }, { "start": 45304.0, "end": 45304.0, "probability": 0.0 }, { "start": 45304.0, "end": 45304.0, "probability": 0.0 }, { "start": 45304.0, "end": 45304.0, "probability": 0.0 }, { "start": 45304.0, "end": 45304.0, "probability": 0.0 }, { "start": 45304.0, "end": 45304.0, "probability": 0.0 }, { "start": 45304.0, "end": 45304.0, "probability": 0.0 }, { "start": 45304.0, "end": 45304.0, "probability": 0.0 }, { "start": 45304.0, "end": 45304.0, "probability": 0.0 }, { "start": 45304.0, "end": 45304.0, "probability": 0.0 }, { "start": 45304.0, "end": 45304.0, "probability": 0.0 }, { "start": 45304.0, "end": 45304.0, "probability": 0.0 }, { "start": 45304.0, "end": 45304.0, "probability": 0.0 }, { "start": 45304.0, "end": 45304.0, "probability": 0.0 }, { "start": 45304.0, "end": 45304.0, "probability": 0.0 }, { "start": 45304.0, "end": 45304.0, "probability": 0.0 }, { "start": 45304.0, "end": 45304.0, "probability": 0.0 }, { "start": 45304.0, "end": 45304.0, "probability": 0.0 }, { "start": 45304.18, "end": 45304.36, "probability": 0.5597 }, { "start": 45304.36, "end": 45305.68, "probability": 0.8515 }, { "start": 45305.78, "end": 45307.42, "probability": 0.0214 }, { "start": 45308.31, "end": 45312.12, "probability": 0.0348 }, { "start": 45339.04, "end": 45339.48, "probability": 0.2683 }, { "start": 45339.98, "end": 45341.92, "probability": 0.4509 }, { "start": 45426.0, "end": 45426.0, "probability": 0.0 }, { "start": 45426.0, "end": 45426.0, "probability": 0.0 }, { "start": 45426.0, "end": 45426.0, "probability": 0.0 }, { "start": 45426.0, "end": 45426.0, "probability": 0.0 }, { "start": 45426.0, "end": 45426.0, "probability": 0.0 }, { "start": 45426.0, "end": 45426.0, "probability": 0.0 }, { "start": 45426.0, "end": 45426.0, "probability": 0.0 }, { "start": 45426.0, "end": 45426.0, "probability": 0.0 }, { "start": 45426.0, "end": 45426.0, "probability": 0.0 }, { "start": 45426.0, "end": 45426.0, "probability": 0.0 }, { "start": 45426.0, "end": 45426.0, "probability": 0.0 }, { "start": 45426.0, "end": 45426.0, "probability": 0.0 }, { "start": 45426.0, "end": 45426.0, "probability": 0.0 }, { "start": 45426.0, "end": 45426.0, "probability": 0.0 }, { "start": 45426.0, "end": 45426.0, "probability": 0.0 }, { "start": 45426.0, "end": 45426.0, "probability": 0.0 }, { "start": 45426.0, "end": 45426.0, "probability": 0.0 }, { "start": 45426.0, "end": 45426.0, "probability": 0.0 }, { "start": 45426.0, "end": 45426.0, "probability": 0.0 }, { "start": 45426.0, "end": 45426.0, "probability": 0.0 }, { "start": 45426.0, "end": 45426.0, "probability": 0.0 }, { "start": 45426.0, "end": 45426.0, "probability": 0.0 }, { "start": 45439.44, "end": 45439.64, "probability": 0.2706 }, { "start": 45439.84, "end": 45440.68, "probability": 0.5243 }, { "start": 45441.1, "end": 45441.58, "probability": 0.5598 }, { "start": 45442.54, "end": 45443.6, "probability": 0.0361 }, { "start": 45443.6, "end": 45443.6, "probability": 0.0369 }, { "start": 45443.6, "end": 45443.6, "probability": 0.1243 }, { "start": 45443.6, "end": 45444.26, "probability": 0.0144 }, { "start": 45444.84, "end": 45445.08, "probability": 0.0333 }, { "start": 45446.78, "end": 45448.76, "probability": 0.06 }, { "start": 45455.54, "end": 45457.52, "probability": 0.1486 }, { "start": 45466.44, "end": 45467.56, "probability": 0.0669 }, { "start": 45467.56, "end": 45467.92, "probability": 0.2137 }, { "start": 45467.94, "end": 45470.12, "probability": 0.4487 }, { "start": 45470.26, "end": 45472.21, "probability": 0.963 }, { "start": 45472.5, "end": 45474.12, "probability": 0.2296 }, { "start": 45474.98, "end": 45475.94, "probability": 0.5246 }, { "start": 45546.0, "end": 45546.0, "probability": 0.0 }, { "start": 45546.0, "end": 45546.0, "probability": 0.0 }, { "start": 45546.0, "end": 45546.0, "probability": 0.0 }, { "start": 45546.0, "end": 45546.0, "probability": 0.0 }, { "start": 45546.0, "end": 45546.0, "probability": 0.0 }, { "start": 45546.0, "end": 45546.0, "probability": 0.0 }, { "start": 45546.0, "end": 45546.0, "probability": 0.0 }, { "start": 45546.0, "end": 45546.0, "probability": 0.0 }, { "start": 45546.0, "end": 45546.0, "probability": 0.0 }, { "start": 45546.0, "end": 45546.0, "probability": 0.0 }, { "start": 45546.0, "end": 45546.0, "probability": 0.0 }, { "start": 45546.0, "end": 45546.0, "probability": 0.0 }, { "start": 45546.0, "end": 45546.0, "probability": 0.0 }, { "start": 45546.0, "end": 45546.0, "probability": 0.0 }, { "start": 45546.0, "end": 45546.0, "probability": 0.0 }, { "start": 45546.0, "end": 45546.0, "probability": 0.0 }, { "start": 45546.0, "end": 45546.0, "probability": 0.0 }, { "start": 45546.0, "end": 45546.0, "probability": 0.0 }, { "start": 45546.0, "end": 45546.0, "probability": 0.0 }, { "start": 45546.0, "end": 45546.0, "probability": 0.0 }, { "start": 45546.0, "end": 45546.0, "probability": 0.0 }, { "start": 45546.0, "end": 45546.0, "probability": 0.0 }, { "start": 45546.0, "end": 45546.0, "probability": 0.0 }, { "start": 45546.0, "end": 45546.0, "probability": 0.0 }, { "start": 45546.0, "end": 45546.0, "probability": 0.0 }, { "start": 45546.0, "end": 45546.0, "probability": 0.0 }, { "start": 45546.0, "end": 45546.0, "probability": 0.0 }, { "start": 45546.0, "end": 45546.0, "probability": 0.0 }, { "start": 45546.0, "end": 45546.0, "probability": 0.0 }, { "start": 45546.0, "end": 45546.0, "probability": 0.0 }, { "start": 45546.0, "end": 45546.0, "probability": 0.0 }, { "start": 45546.0, "end": 45546.0, "probability": 0.0 }, { "start": 45546.0, "end": 45546.0, "probability": 0.0 }, { "start": 45546.0, "end": 45546.0, "probability": 0.0 }, { "start": 45546.0, "end": 45546.0, "probability": 0.0 }, { "start": 45546.0, "end": 45546.0, "probability": 0.0 }, { "start": 45546.0, "end": 45546.0, "probability": 0.0 }, { "start": 45546.0, "end": 45546.0, "probability": 0.0 }, { "start": 45546.22, "end": 45547.28, "probability": 0.2642 }, { "start": 45547.5, "end": 45549.56, "probability": 0.3609 }, { "start": 45549.64, "end": 45549.92, "probability": 0.5774 }, { "start": 45550.14, "end": 45550.84, "probability": 0.4289 }, { "start": 45551.0, "end": 45551.26, "probability": 0.5706 }, { "start": 45551.48, "end": 45552.18, "probability": 0.9668 }, { "start": 45552.24, "end": 45552.96, "probability": 0.5771 }, { "start": 45553.02, "end": 45554.33, "probability": 0.907 }, { "start": 45555.16, "end": 45558.5, "probability": 0.7566 }, { "start": 45558.54, "end": 45558.66, "probability": 0.6321 }, { "start": 45559.5, "end": 45559.62, "probability": 0.3222 }, { "start": 45559.7, "end": 45560.26, "probability": 0.6499 }, { "start": 45563.09, "end": 45564.08, "probability": 0.1245 }, { "start": 45575.94, "end": 45576.34, "probability": 0.0604 }, { "start": 45576.42, "end": 45576.7, "probability": 0.0325 }, { "start": 45576.7, "end": 45576.7, "probability": 0.2246 }, { "start": 45576.7, "end": 45577.0, "probability": 0.0266 }, { "start": 45577.0, "end": 45579.36, "probability": 0.4275 }, { "start": 45579.44, "end": 45580.99, "probability": 0.8419 }, { "start": 45581.72, "end": 45584.28, "probability": 0.4902 }, { "start": 45584.36, "end": 45584.98, "probability": 0.4562 }, { "start": 45623.96, "end": 45623.96, "probability": 0.6415 }, { "start": 45623.96, "end": 45624.7, "probability": 0.0487 }, { "start": 45625.57, "end": 45625.92, "probability": 0.0254 }, { "start": 45628.46, "end": 45628.54, "probability": 0.1275 }, { "start": 45629.48, "end": 45635.24, "probability": 0.0183 }, { "start": 45637.94, "end": 45639.32, "probability": 0.6147 }, { "start": 45666.0, "end": 45666.0, "probability": 0.0 }, { "start": 45666.0, "end": 45666.0, "probability": 0.0 }, { "start": 45666.0, "end": 45666.0, "probability": 0.0 }, { "start": 45666.0, "end": 45666.0, "probability": 0.0 }, { "start": 45666.0, "end": 45666.0, "probability": 0.0 }, { "start": 45666.0, "end": 45666.0, "probability": 0.0 }, { "start": 45666.0, "end": 45666.0, "probability": 0.0 }, { "start": 45666.0, "end": 45666.0, "probability": 0.0 }, { "start": 45666.0, "end": 45666.0, "probability": 0.0 }, { "start": 45666.0, "end": 45666.0, "probability": 0.0 }, { "start": 45666.0, "end": 45666.0, "probability": 0.0 }, { "start": 45666.0, "end": 45666.0, "probability": 0.0 }, { "start": 45666.0, "end": 45666.0, "probability": 0.0 }, { "start": 45666.0, "end": 45666.0, "probability": 0.0 }, { "start": 45666.0, "end": 45666.0, "probability": 0.0 }, { "start": 45666.0, "end": 45666.0, "probability": 0.0 }, { "start": 45666.0, "end": 45666.0, "probability": 0.0 }, { "start": 45666.0, "end": 45666.0, "probability": 0.0 }, { "start": 45666.0, "end": 45666.0, "probability": 0.0 }, { "start": 45666.0, "end": 45666.0, "probability": 0.0 }, { "start": 45666.0, "end": 45666.0, "probability": 0.0 }, { "start": 45666.0, "end": 45666.0, "probability": 0.0 }, { "start": 45666.0, "end": 45666.0, "probability": 0.0 }, { "start": 45666.0, "end": 45666.0, "probability": 0.0 }, { "start": 45695.9, "end": 45696.2, "probability": 0.3347 }, { "start": 45696.36, "end": 45696.9, "probability": 0.5612 }, { "start": 45697.33, "end": 45701.25, "probability": 0.0274 }, { "start": 45714.2, "end": 45714.74, "probability": 0.0282 }, { "start": 45714.74, "end": 45714.74, "probability": 0.2072 }, { "start": 45714.74, "end": 45714.88, "probability": 0.0193 }, { "start": 45714.88, "end": 45717.26, "probability": 0.426 }, { "start": 45717.38, "end": 45718.72, "probability": 0.9325 }, { "start": 45719.34, "end": 45719.62, "probability": 0.8122 }, { "start": 45798.0, "end": 45798.0, "probability": 0.0 }, { "start": 45798.0, "end": 45798.0, "probability": 0.0 }, { "start": 45798.0, "end": 45798.0, "probability": 0.0 }, { "start": 45798.0, "end": 45798.0, "probability": 0.0 }, { "start": 45798.0, "end": 45798.0, "probability": 0.0 }, { "start": 45798.0, "end": 45798.0, "probability": 0.0 }, { "start": 45798.0, "end": 45798.0, "probability": 0.0 }, { "start": 45798.0, "end": 45798.0, "probability": 0.0 }, { "start": 45798.0, "end": 45798.0, "probability": 0.0 }, { "start": 45798.0, "end": 45798.0, "probability": 0.0 }, { "start": 45798.0, "end": 45798.0, "probability": 0.0 }, { "start": 45798.0, "end": 45798.0, "probability": 0.0 }, { "start": 45798.0, "end": 45798.0, "probability": 0.0 }, { "start": 45798.0, "end": 45798.0, "probability": 0.0 }, { "start": 45798.0, "end": 45798.0, "probability": 0.0 }, { "start": 45798.0, "end": 45798.0, "probability": 0.0 }, { "start": 45798.0, "end": 45798.0, "probability": 0.0 }, { "start": 45798.0, "end": 45798.0, "probability": 0.0 }, { "start": 45798.0, "end": 45798.0, "probability": 0.0 }, { "start": 45798.0, "end": 45798.0, "probability": 0.0 }, { "start": 45798.0, "end": 45798.0, "probability": 0.0 }, { "start": 45798.0, "end": 45798.0, "probability": 0.0 }, { "start": 45798.0, "end": 45798.0, "probability": 0.0 }, { "start": 45798.0, "end": 45798.0, "probability": 0.0 }, { "start": 45798.0, "end": 45798.0, "probability": 0.0 }, { "start": 45798.0, "end": 45798.0, "probability": 0.0 }, { "start": 45798.0, "end": 45798.0, "probability": 0.0 }, { "start": 45798.0, "end": 45798.0, "probability": 0.0 }, { "start": 45798.0, "end": 45798.0, "probability": 0.0 }, { "start": 45798.0, "end": 45798.0, "probability": 0.0 }, { "start": 45798.0, "end": 45798.0, "probability": 0.0 }, { "start": 45798.0, "end": 45798.0, "probability": 0.0 }, { "start": 45798.0, "end": 45798.0, "probability": 0.0 }, { "start": 45798.0, "end": 45798.0, "probability": 0.0 }, { "start": 45798.0, "end": 45798.0, "probability": 0.0 }, { "start": 45798.0, "end": 45798.0, "probability": 0.0 }, { "start": 45798.16, "end": 45798.3, "probability": 0.3281 }, { "start": 45799.06, "end": 45804.36, "probability": 0.4884 }, { "start": 45804.92, "end": 45805.6, "probability": 0.5957 }, { "start": 45805.66, "end": 45806.24, "probability": 0.3097 }, { "start": 45821.68, "end": 45824.62, "probability": 0.4401 }, { "start": 45824.88, "end": 45829.42, "probability": 0.2426 }, { "start": 45829.58, "end": 45829.6, "probability": 0.0265 }, { "start": 45829.6, "end": 45829.6, "probability": 0.1882 }, { "start": 45829.6, "end": 45830.36, "probability": 0.0145 }, { "start": 45830.94, "end": 45830.94, "probability": 0.3741 }, { "start": 45830.94, "end": 45830.94, "probability": 0.1153 }, { "start": 45830.94, "end": 45832.34, "probability": 0.1112 }, { "start": 45833.12, "end": 45834.48, "probability": 0.4794 }, { "start": 45834.48, "end": 45835.26, "probability": 0.577 }, { "start": 45853.84, "end": 45854.76, "probability": 0.3492 }, { "start": 45856.84, "end": 45858.0, "probability": 0.0683 }, { "start": 45858.2, "end": 45858.59, "probability": 0.026 }, { "start": 45859.02, "end": 45859.02, "probability": 0.1934 }, { "start": 45859.06, "end": 45860.32, "probability": 0.1019 }, { "start": 45861.04, "end": 45861.46, "probability": 0.0139 }, { "start": 45861.98, "end": 45862.32, "probability": 0.193 }, { "start": 45863.52, "end": 45864.38, "probability": 0.2145 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.0, "end": 46130.0, "probability": 0.0 }, { "start": 46130.8, "end": 46131.71, "probability": 0.2341 }, { "start": 46133.64, "end": 46134.18, "probability": 0.9375 }, { "start": 46135.28, "end": 46136.1, "probability": 0.8148 }, { "start": 46138.6, "end": 46141.5, "probability": 0.9335 }, { "start": 46142.74, "end": 46143.16, "probability": 0.9629 }, { "start": 46143.82, "end": 46144.72, "probability": 0.8519 }, { "start": 46145.5, "end": 46145.96, "probability": 0.9899 }, { "start": 46146.86, "end": 46147.86, "probability": 0.9161 }, { "start": 46148.68, "end": 46149.1, "probability": 0.9846 }, { "start": 46149.98, "end": 46151.02, "probability": 0.9816 }, { "start": 46151.82, "end": 46152.38, "probability": 0.9857 }, { "start": 46153.7, "end": 46154.64, "probability": 0.9225 }, { "start": 46157.82, "end": 46161.14, "probability": 0.4647 }, { "start": 46161.74, "end": 46162.46, "probability": 0.5901 }, { "start": 46163.42, "end": 46164.1, "probability": 0.6107 }, { "start": 46166.02, "end": 46167.18, "probability": 0.9535 }, { "start": 46168.18, "end": 46169.74, "probability": 0.8332 }, { "start": 46171.34, "end": 46173.42, "probability": 0.8245 }, { "start": 46176.86, "end": 46180.08, "probability": 0.9323 }, { "start": 46180.66, "end": 46181.0, "probability": 0.9858 }, { "start": 46181.9, "end": 46182.88, "probability": 0.7708 }, { "start": 46184.8, "end": 46187.78, "probability": 0.9863 }, { "start": 46188.52, "end": 46188.8, "probability": 0.989 }, { "start": 46189.62, "end": 46190.72, "probability": 0.6796 }, { "start": 46191.66, "end": 46192.22, "probability": 0.8864 }, { "start": 46194.22, "end": 46195.02, "probability": 0.8019 }, { "start": 46195.92, "end": 46196.62, "probability": 0.9779 }, { "start": 46197.2, "end": 46197.98, "probability": 0.8349 }, { "start": 46200.0, "end": 46201.16, "probability": 0.8033 }, { "start": 46202.28, "end": 46204.26, "probability": 0.4013 }, { "start": 46205.5, "end": 46207.76, "probability": 0.9777 }, { "start": 46209.2, "end": 46209.8, "probability": 0.9839 }, { "start": 46210.6, "end": 46211.54, "probability": 0.9388 }, { "start": 46215.02, "end": 46218.88, "probability": 0.5792 }, { "start": 46223.3, "end": 46223.92, "probability": 0.8199 }, { "start": 46225.08, "end": 46225.9, "probability": 0.6672 }, { "start": 46226.72, "end": 46227.16, "probability": 0.7583 }, { "start": 46227.7, "end": 46228.6, "probability": 0.8093 }, { "start": 46229.36, "end": 46231.56, "probability": 0.9611 }, { "start": 46232.5, "end": 46233.2, "probability": 0.9888 }, { "start": 46233.82, "end": 46234.5, "probability": 0.7817 }, { "start": 46236.54, "end": 46237.18, "probability": 0.9902 }, { "start": 46238.16, "end": 46239.04, "probability": 0.9573 }, { "start": 46240.42, "end": 46242.7, "probability": 0.6961 }, { "start": 46243.86, "end": 46246.22, "probability": 0.9506 }, { "start": 46246.86, "end": 46247.36, "probability": 0.9928 }, { "start": 46248.36, "end": 46249.36, "probability": 0.6436 }, { "start": 46250.84, "end": 46252.88, "probability": 0.8397 }, { "start": 46254.18, "end": 46254.7, "probability": 0.8428 }, { "start": 46256.88, "end": 46257.68, "probability": 0.8778 }, { "start": 46261.16, "end": 46264.08, "probability": 0.6739 }, { "start": 46265.14, "end": 46265.89, "probability": 0.456 }, { "start": 46266.52, "end": 46267.14, "probability": 0.9717 }, { "start": 46268.78, "end": 46269.68, "probability": 0.7426 }, { "start": 46273.0, "end": 46277.24, "probability": 0.9251 }, { "start": 46278.44, "end": 46278.96, "probability": 0.823 }, { "start": 46279.78, "end": 46284.42, "probability": 0.7751 }, { "start": 46285.56, "end": 46285.88, "probability": 0.9622 }, { "start": 46286.88, "end": 46287.6, "probability": 0.8493 }, { "start": 46290.3, "end": 46290.66, "probability": 0.5789 }, { "start": 46291.68, "end": 46292.64, "probability": 0.7498 }, { "start": 46293.84, "end": 46294.28, "probability": 0.9277 }, { "start": 46295.18, "end": 46295.92, "probability": 0.8751 }, { "start": 46298.02, "end": 46298.62, "probability": 0.9382 }, { "start": 46299.32, "end": 46300.16, "probability": 0.8135 }, { "start": 46301.24, "end": 46303.14, "probability": 0.9309 }, { "start": 46304.38, "end": 46304.94, "probability": 0.9878 }, { "start": 46305.64, "end": 46306.46, "probability": 0.9497 }, { "start": 46307.76, "end": 46308.4, "probability": 0.9891 }, { "start": 46309.18, "end": 46310.08, "probability": 0.9544 }, { "start": 46311.62, "end": 46312.08, "probability": 0.9734 }, { "start": 46312.84, "end": 46313.76, "probability": 0.9138 }, { "start": 46316.52, "end": 46317.84, "probability": 0.0148 }, { "start": 46319.88, "end": 46321.06, "probability": 0.2803 }, { "start": 46321.64, "end": 46322.1, "probability": 0.5556 }, { "start": 46323.46, "end": 46324.5, "probability": 0.9419 }, { "start": 46325.34, "end": 46325.62, "probability": 0.8992 }, { "start": 46326.34, "end": 46326.98, "probability": 0.8433 }, { "start": 46329.12, "end": 46329.9, "probability": 0.9216 }, { "start": 46330.96, "end": 46332.0, "probability": 0.8737 }, { "start": 46332.8, "end": 46333.54, "probability": 0.9734 }, { "start": 46334.06, "end": 46335.16, "probability": 0.8041 }, { "start": 46336.04, "end": 46338.82, "probability": 0.8067 }, { "start": 46339.46, "end": 46340.36, "probability": 0.8566 }, { "start": 46341.36, "end": 46342.42, "probability": 0.9834 }, { "start": 46343.1, "end": 46343.92, "probability": 0.8584 }, { "start": 46347.02, "end": 46347.6, "probability": 0.9839 }, { "start": 46348.68, "end": 46349.38, "probability": 0.2496 }, { "start": 46350.34, "end": 46350.98, "probability": 0.758 }, { "start": 46351.5, "end": 46352.38, "probability": 0.8371 }, { "start": 46353.22, "end": 46354.0, "probability": 0.8523 }, { "start": 46355.42, "end": 46356.28, "probability": 0.7072 }, { "start": 46357.06, "end": 46359.36, "probability": 0.956 }, { "start": 46360.28, "end": 46360.88, "probability": 0.9652 }, { "start": 46362.4, "end": 46363.64, "probability": 0.9005 }, { "start": 46364.66, "end": 46365.12, "probability": 0.9783 }, { "start": 46366.0, "end": 46366.78, "probability": 0.8753 }, { "start": 46368.19, "end": 46370.18, "probability": 0.8923 }, { "start": 46374.28, "end": 46376.26, "probability": 0.9778 }, { "start": 46377.34, "end": 46378.52, "probability": 0.5263 }, { "start": 46379.22, "end": 46383.14, "probability": 0.803 }, { "start": 46384.26, "end": 46385.26, "probability": 0.5945 }, { "start": 46386.48, "end": 46389.76, "probability": 0.92 }, { "start": 46390.48, "end": 46391.32, "probability": 0.796 }, { "start": 46392.3, "end": 46393.14, "probability": 0.9021 }, { "start": 46394.76, "end": 46395.58, "probability": 0.6359 }, { "start": 46397.44, "end": 46399.34, "probability": 0.7895 }, { "start": 46400.36, "end": 46403.9, "probability": 0.8707 }, { "start": 46404.64, "end": 46405.58, "probability": 0.6108 }, { "start": 46406.34, "end": 46408.76, "probability": 0.8711 }, { "start": 46409.5, "end": 46411.0, "probability": 0.9634 }, { "start": 46412.32, "end": 46412.84, "probability": 0.9844 }, { "start": 46416.4, "end": 46417.22, "probability": 0.6444 }, { "start": 46417.98, "end": 46418.3, "probability": 0.7437 }, { "start": 46421.34, "end": 46422.22, "probability": 0.5488 }, { "start": 46423.62, "end": 46424.5, "probability": 0.8476 }, { "start": 46426.3, "end": 46426.74, "probability": 0.8168 }, { "start": 46428.52, "end": 46429.1, "probability": 0.9731 }, { "start": 46432.0, "end": 46432.84, "probability": 0.5899 }, { "start": 46438.32, "end": 46439.92, "probability": 0.6657 }, { "start": 46441.96, "end": 46443.68, "probability": 0.5952 }, { "start": 46444.7, "end": 46446.8, "probability": 0.9675 }, { "start": 46447.64, "end": 46450.24, "probability": 0.294 }, { "start": 46450.72, "end": 46452.46, "probability": 0.6325 }, { "start": 46452.58, "end": 46453.42, "probability": 0.8187 }, { "start": 46454.2, "end": 46456.12, "probability": 0.1564 }, { "start": 46459.24, "end": 46461.04, "probability": 0.1627 }, { "start": 46467.12, "end": 46467.9, "probability": 0.0734 }, { "start": 46469.8, "end": 46469.92, "probability": 0.1243 }, { "start": 46472.42, "end": 46474.88, "probability": 0.3692 }, { "start": 46475.5, "end": 46476.4, "probability": 0.0706 }, { "start": 46481.74, "end": 46485.58, "probability": 0.0245 }, { "start": 46485.58, "end": 46488.85, "probability": 0.2042 }, { "start": 46495.02, "end": 46495.22, "probability": 0.0543 }, { "start": 46512.94, "end": 46513.26, "probability": 0.246 }, { "start": 46513.26, "end": 46514.82, "probability": 0.0162 }, { "start": 46514.86, "end": 46515.36, "probability": 0.1129 }, { "start": 46515.36, "end": 46516.22, "probability": 0.0137 }, { "start": 46516.64, "end": 46518.24, "probability": 0.0773 }, { "start": 46521.3, "end": 46523.52, "probability": 0.0331 }, { "start": 46580.0, "end": 46581.78, "probability": 0.1334 }, { "start": 46582.34, "end": 46584.52, "probability": 0.9379 }, { "start": 46584.52, "end": 46585.82, "probability": 0.565 }, { "start": 46586.02, "end": 46588.34, "probability": 0.324 }, { "start": 46588.66, "end": 46589.54, "probability": 0.6002 }, { "start": 46590.12, "end": 46593.4, "probability": 0.973 }, { "start": 46606.4, "end": 46607.0, "probability": 0.582 }, { "start": 46607.64, "end": 46609.88, "probability": 0.9173 }, { "start": 46611.42, "end": 46613.7, "probability": 0.9884 }, { "start": 46614.54, "end": 46616.88, "probability": 0.8287 }, { "start": 46616.98, "end": 46619.88, "probability": 0.2249 }, { "start": 46620.94, "end": 46621.42, "probability": 0.0569 }, { "start": 46621.5, "end": 46623.42, "probability": 0.6776 }, { "start": 46623.42, "end": 46623.44, "probability": 0.1834 }, { "start": 46623.44, "end": 46628.06, "probability": 0.7876 }, { "start": 46629.74, "end": 46630.82, "probability": 0.1257 }, { "start": 46633.36, "end": 46634.65, "probability": 0.6273 }, { "start": 46634.8, "end": 46636.86, "probability": 0.8056 }, { "start": 46637.54, "end": 46642.9, "probability": 0.9697 }, { "start": 46642.9, "end": 46645.92, "probability": 0.8476 }, { "start": 46646.9, "end": 46653.8, "probability": 0.8896 }, { "start": 46653.8, "end": 46654.34, "probability": 0.5737 }, { "start": 46654.34, "end": 46655.88, "probability": 0.2257 }, { "start": 46656.04, "end": 46656.4, "probability": 0.2674 }, { "start": 46656.48, "end": 46656.66, "probability": 0.0189 }, { "start": 46656.68, "end": 46658.68, "probability": 0.7062 }, { "start": 46659.12, "end": 46660.96, "probability": 0.6844 }, { "start": 46661.94, "end": 46665.21, "probability": 0.819 }, { "start": 46667.38, "end": 46670.2, "probability": 0.9439 }, { "start": 46670.2, "end": 46673.86, "probability": 0.9859 }, { "start": 46674.48, "end": 46676.38, "probability": 0.9636 }, { "start": 46676.84, "end": 46678.6, "probability": 0.8123 }, { "start": 46678.72, "end": 46679.98, "probability": 0.8643 }, { "start": 46681.48, "end": 46682.36, "probability": 0.6255 }, { "start": 46682.46, "end": 46687.68, "probability": 0.9783 }, { "start": 46688.08, "end": 46688.3, "probability": 0.5903 }, { "start": 46688.4, "end": 46693.0, "probability": 0.9623 }, { "start": 46694.0, "end": 46697.22, "probability": 0.9644 }, { "start": 46697.22, "end": 46701.02, "probability": 0.9926 }, { "start": 46701.56, "end": 46704.58, "probability": 0.8995 }, { "start": 46705.04, "end": 46706.32, "probability": 0.6932 }, { "start": 46707.08, "end": 46711.74, "probability": 0.9758 }, { "start": 46712.24, "end": 46716.52, "probability": 0.9106 }, { "start": 46716.52, "end": 46719.9, "probability": 0.9462 }, { "start": 46720.04, "end": 46720.26, "probability": 0.7219 }, { "start": 46724.68, "end": 46725.28, "probability": 0.6661 }, { "start": 46725.84, "end": 46727.24, "probability": 0.677 }, { "start": 46727.76, "end": 46729.46, "probability": 0.7868 }, { "start": 46730.96, "end": 46734.92, "probability": 0.8869 }, { "start": 46736.18, "end": 46738.12, "probability": 0.9193 }, { "start": 46739.74, "end": 46740.02, "probability": 0.6868 }, { "start": 46741.54, "end": 46742.3, "probability": 0.4166 }, { "start": 46743.32, "end": 46744.44, "probability": 0.9846 }, { "start": 46745.02, "end": 46745.5, "probability": 0.7217 }, { "start": 46754.26, "end": 46754.92, "probability": 0.3151 }, { "start": 46755.04, "end": 46756.12, "probability": 0.921 }, { "start": 46756.82, "end": 46758.88, "probability": 0.695 }, { "start": 46760.44, "end": 46764.44, "probability": 0.9889 }, { "start": 46765.94, "end": 46766.9, "probability": 0.5057 }, { "start": 46766.98, "end": 46769.18, "probability": 0.9888 }, { "start": 46769.18, "end": 46770.12, "probability": 0.8633 }, { "start": 46770.24, "end": 46770.34, "probability": 0.5805 }, { "start": 46771.3, "end": 46772.16, "probability": 0.5396 }, { "start": 46772.22, "end": 46773.6, "probability": 0.7491 }, { "start": 46774.84, "end": 46782.32, "probability": 0.9636 }, { "start": 46783.7, "end": 46787.72, "probability": 0.9731 }, { "start": 46788.5, "end": 46791.54, "probability": 0.9243 }, { "start": 46793.42, "end": 46796.48, "probability": 0.9689 }, { "start": 46797.94, "end": 46801.7, "probability": 0.939 }, { "start": 46803.28, "end": 46807.44, "probability": 0.8676 }, { "start": 46808.3, "end": 46811.9, "probability": 0.9868 }, { "start": 46813.38, "end": 46816.36, "probability": 0.7173 }, { "start": 46817.12, "end": 46817.9, "probability": 0.5117 }, { "start": 46818.08, "end": 46820.02, "probability": 0.9598 }, { "start": 46820.66, "end": 46821.62, "probability": 0.8326 }, { "start": 46822.72, "end": 46830.84, "probability": 0.9642 }, { "start": 46831.66, "end": 46834.4, "probability": 0.9793 }, { "start": 46835.7, "end": 46839.19, "probability": 0.9458 }, { "start": 46842.16, "end": 46843.54, "probability": 0.8154 }, { "start": 46844.74, "end": 46848.98, "probability": 0.9854 }, { "start": 46849.7, "end": 46850.5, "probability": 0.9607 }, { "start": 46851.14, "end": 46854.66, "probability": 0.7905 }, { "start": 46854.86, "end": 46856.58, "probability": 0.9655 }, { "start": 46857.22, "end": 46859.54, "probability": 0.9291 }, { "start": 46860.28, "end": 46862.52, "probability": 0.7782 }, { "start": 46863.56, "end": 46865.7, "probability": 0.8316 }, { "start": 46866.48, "end": 46871.54, "probability": 0.9827 }, { "start": 46872.48, "end": 46873.78, "probability": 0.7986 }, { "start": 46874.78, "end": 46875.64, "probability": 0.8258 }, { "start": 46875.82, "end": 46876.82, "probability": 0.8439 }, { "start": 46877.22, "end": 46879.93, "probability": 0.8332 }, { "start": 46881.16, "end": 46885.4, "probability": 0.5211 }, { "start": 46887.98, "end": 46892.42, "probability": 0.6652 }, { "start": 46892.94, "end": 46894.9, "probability": 0.6851 }, { "start": 46895.5, "end": 46899.68, "probability": 0.9613 }, { "start": 46899.74, "end": 46900.82, "probability": 0.9961 }, { "start": 46901.52, "end": 46904.74, "probability": 0.8335 }, { "start": 46904.76, "end": 46905.2, "probability": 0.7921 }, { "start": 46907.42, "end": 46909.0, "probability": 0.9673 }, { "start": 46909.16, "end": 46910.88, "probability": 0.6581 }, { "start": 46913.04, "end": 46913.82, "probability": 0.7888 }, { "start": 46914.54, "end": 46915.92, "probability": 0.8548 }, { "start": 46917.8, "end": 46918.48, "probability": 0.8478 }, { "start": 46919.08, "end": 46920.18, "probability": 0.9709 }, { "start": 46920.9, "end": 46921.42, "probability": 0.8766 }, { "start": 46922.5, "end": 46923.97, "probability": 0.665 }, { "start": 46925.58, "end": 46926.3, "probability": 0.9536 }, { "start": 46927.44, "end": 46928.96, "probability": 0.9881 }, { "start": 46933.37, "end": 46935.66, "probability": 0.7427 }, { "start": 46936.26, "end": 46936.64, "probability": 0.5246 }, { "start": 46937.9, "end": 46939.28, "probability": 0.9082 }, { "start": 46940.76, "end": 46942.48, "probability": 0.6753 }, { "start": 46961.64, "end": 46963.14, "probability": 0.8867 }, { "start": 46964.36, "end": 46966.7, "probability": 0.8047 }, { "start": 46968.22, "end": 46968.72, "probability": 0.9539 }, { "start": 46969.68, "end": 46971.32, "probability": 0.9249 }, { "start": 46972.28, "end": 46973.0, "probability": 0.663 }, { "start": 46974.4, "end": 46976.94, "probability": 0.991 }, { "start": 46978.42, "end": 46979.54, "probability": 0.9718 }, { "start": 46980.24, "end": 46983.8, "probability": 0.981 }, { "start": 46986.94, "end": 46993.24, "probability": 0.8536 }, { "start": 46994.0, "end": 46996.88, "probability": 0.8471 }, { "start": 46996.92, "end": 46997.98, "probability": 0.6879 }, { "start": 46999.48, "end": 46999.94, "probability": 0.4463 }, { "start": 47000.6, "end": 47001.2, "probability": 0.7435 }, { "start": 47001.92, "end": 47002.38, "probability": 0.9305 }, { "start": 47003.74, "end": 47005.68, "probability": 0.9968 }, { "start": 47006.5, "end": 47012.14, "probability": 0.9914 }, { "start": 47014.13, "end": 47016.96, "probability": 0.8156 }, { "start": 47019.28, "end": 47019.58, "probability": 0.9673 }, { "start": 47020.98, "end": 47021.67, "probability": 0.9933 }, { "start": 47023.12, "end": 47025.9, "probability": 0.9912 }, { "start": 47026.88, "end": 47028.44, "probability": 0.9163 }, { "start": 47029.24, "end": 47031.72, "probability": 0.9205 }, { "start": 47032.62, "end": 47033.78, "probability": 0.9995 }, { "start": 47034.42, "end": 47038.54, "probability": 0.9635 }, { "start": 47039.28, "end": 47043.98, "probability": 0.8975 }, { "start": 47044.66, "end": 47046.34, "probability": 0.9985 }, { "start": 47047.22, "end": 47051.8, "probability": 0.9958 }, { "start": 47052.56, "end": 47055.88, "probability": 0.9952 }, { "start": 47057.24, "end": 47058.94, "probability": 0.8754 }, { "start": 47059.86, "end": 47061.4, "probability": 0.9206 }, { "start": 47062.1, "end": 47066.02, "probability": 0.9938 }, { "start": 47066.54, "end": 47068.22, "probability": 0.9619 }, { "start": 47069.58, "end": 47071.1, "probability": 0.9258 }, { "start": 47072.18, "end": 47073.36, "probability": 0.9938 }, { "start": 47074.34, "end": 47075.16, "probability": 0.8506 }, { "start": 47075.96, "end": 47079.8, "probability": 0.9951 }, { "start": 47081.33, "end": 47085.1, "probability": 0.8923 }, { "start": 47085.84, "end": 47086.04, "probability": 0.7501 }, { "start": 47087.4, "end": 47088.76, "probability": 0.9167 }, { "start": 47089.06, "end": 47090.6, "probability": 0.9852 }, { "start": 47091.0, "end": 47093.06, "probability": 0.9966 }, { "start": 47094.76, "end": 47096.66, "probability": 0.9897 }, { "start": 47097.1, "end": 47101.24, "probability": 0.9768 }, { "start": 47102.32, "end": 47102.84, "probability": 0.6314 }, { "start": 47103.7, "end": 47105.34, "probability": 0.8031 }, { "start": 47106.16, "end": 47108.3, "probability": 0.832 }, { "start": 47109.26, "end": 47113.76, "probability": 0.9079 }, { "start": 47113.96, "end": 47114.3, "probability": 0.9954 }, { "start": 47115.34, "end": 47117.02, "probability": 0.8101 }, { "start": 47117.2, "end": 47118.16, "probability": 0.9038 }, { "start": 47119.04, "end": 47122.36, "probability": 0.98 }, { "start": 47123.02, "end": 47124.14, "probability": 0.9861 }, { "start": 47124.84, "end": 47127.98, "probability": 0.986 }, { "start": 47128.5, "end": 47130.04, "probability": 0.9893 }, { "start": 47130.8, "end": 47131.78, "probability": 0.6676 }, { "start": 47132.4, "end": 47133.11, "probability": 0.9992 }, { "start": 47133.64, "end": 47136.34, "probability": 0.9069 }, { "start": 47136.86, "end": 47137.4, "probability": 0.5563 }, { "start": 47137.96, "end": 47140.1, "probability": 0.9935 }, { "start": 47141.04, "end": 47143.22, "probability": 0.9924 }, { "start": 47143.82, "end": 47146.16, "probability": 0.9883 }, { "start": 47146.82, "end": 47147.12, "probability": 0.7491 }, { "start": 47147.38, "end": 47147.84, "probability": 0.7619 }, { "start": 47148.52, "end": 47149.72, "probability": 0.9551 }, { "start": 47150.26, "end": 47151.5, "probability": 0.9349 }, { "start": 47153.2, "end": 47153.88, "probability": 0.7746 }, { "start": 47154.4, "end": 47155.68, "probability": 0.7356 }, { "start": 47172.6, "end": 47173.02, "probability": 0.3727 }, { "start": 47173.1, "end": 47174.74, "probability": 0.8312 }, { "start": 47175.9, "end": 47177.88, "probability": 0.6121 }, { "start": 47179.47, "end": 47186.54, "probability": 0.8955 }, { "start": 47187.28, "end": 47191.64, "probability": 0.9107 }, { "start": 47192.22, "end": 47195.02, "probability": 0.7744 }, { "start": 47195.62, "end": 47197.66, "probability": 0.7994 }, { "start": 47198.36, "end": 47203.02, "probability": 0.9874 }, { "start": 47203.02, "end": 47207.58, "probability": 0.9878 }, { "start": 47208.42, "end": 47211.34, "probability": 0.8542 }, { "start": 47212.04, "end": 47213.8, "probability": 0.6066 }, { "start": 47214.46, "end": 47214.86, "probability": 0.6665 }, { "start": 47215.0, "end": 47215.76, "probability": 0.9417 }, { "start": 47216.12, "end": 47220.04, "probability": 0.9609 }, { "start": 47220.62, "end": 47222.72, "probability": 0.9338 }, { "start": 47224.68, "end": 47227.9, "probability": 0.5729 }, { "start": 47228.04, "end": 47229.1, "probability": 0.656 }, { "start": 47229.62, "end": 47231.0, "probability": 0.9608 }, { "start": 47231.5, "end": 47237.24, "probability": 0.963 }, { "start": 47237.24, "end": 47242.5, "probability": 0.9257 }, { "start": 47243.14, "end": 47246.44, "probability": 0.9334 }, { "start": 47246.94, "end": 47251.82, "probability": 0.9869 }, { "start": 47251.9, "end": 47252.62, "probability": 0.5052 }, { "start": 47253.34, "end": 47254.14, "probability": 0.9887 }, { "start": 47254.66, "end": 47256.76, "probability": 0.9808 }, { "start": 47257.22, "end": 47262.64, "probability": 0.9907 }, { "start": 47262.68, "end": 47268.0, "probability": 0.9937 }, { "start": 47268.44, "end": 47272.86, "probability": 0.861 }, { "start": 47272.96, "end": 47275.38, "probability": 0.7502 }, { "start": 47275.64, "end": 47278.4, "probability": 0.5835 }, { "start": 47278.82, "end": 47280.34, "probability": 0.8121 }, { "start": 47280.98, "end": 47281.42, "probability": 0.5844 }, { "start": 47281.54, "end": 47286.02, "probability": 0.9826 }, { "start": 47286.44, "end": 47287.48, "probability": 0.7535 }, { "start": 47287.6, "end": 47288.36, "probability": 0.7935 }, { "start": 47288.48, "end": 47290.82, "probability": 0.98 }, { "start": 47291.34, "end": 47295.56, "probability": 0.9116 }, { "start": 47296.18, "end": 47298.36, "probability": 0.9724 }, { "start": 47298.78, "end": 47302.08, "probability": 0.979 }, { "start": 47302.24, "end": 47302.44, "probability": 0.7934 }, { "start": 47303.68, "end": 47305.86, "probability": 0.9974 }, { "start": 47306.34, "end": 47307.66, "probability": 0.6309 }, { "start": 47307.72, "end": 47310.84, "probability": 0.8441 }, { "start": 47311.44, "end": 47315.52, "probability": 0.9974 }, { "start": 47315.96, "end": 47318.86, "probability": 0.6064 }, { "start": 47319.26, "end": 47322.72, "probability": 0.9923 }, { "start": 47323.16, "end": 47325.4, "probability": 0.9958 }, { "start": 47326.02, "end": 47328.62, "probability": 0.9985 }, { "start": 47329.22, "end": 47335.18, "probability": 0.9896 }, { "start": 47335.64, "end": 47339.36, "probability": 0.9658 }, { "start": 47339.84, "end": 47341.76, "probability": 0.8274 }, { "start": 47342.48, "end": 47345.64, "probability": 0.8913 }, { "start": 47345.64, "end": 47349.46, "probability": 0.9712 }, { "start": 47350.06, "end": 47357.06, "probability": 0.9606 }, { "start": 47357.1, "end": 47361.52, "probability": 0.9514 }, { "start": 47361.52, "end": 47365.72, "probability": 0.8781 }, { "start": 47366.26, "end": 47370.04, "probability": 0.7071 }, { "start": 47370.22, "end": 47371.58, "probability": 0.8324 }, { "start": 47372.04, "end": 47374.32, "probability": 0.9977 }, { "start": 47376.83, "end": 47377.44, "probability": 0.4644 }, { "start": 47377.84, "end": 47381.02, "probability": 0.9455 }, { "start": 47381.14, "end": 47383.28, "probability": 0.9111 }, { "start": 47383.86, "end": 47386.4, "probability": 0.8319 }, { "start": 47387.0, "end": 47389.36, "probability": 0.7952 }, { "start": 47390.04, "end": 47390.08, "probability": 0.155 }, { "start": 47390.08, "end": 47392.18, "probability": 0.8311 }, { "start": 47392.78, "end": 47393.06, "probability": 0.0001 }, { "start": 47394.06, "end": 47399.2, "probability": 0.8821 }, { "start": 47399.36, "end": 47400.8, "probability": 0.9856 }, { "start": 47401.46, "end": 47403.52, "probability": 0.9771 }, { "start": 47403.62, "end": 47403.9, "probability": 0.6937 }, { "start": 47403.98, "end": 47405.66, "probability": 0.912 }, { "start": 47405.94, "end": 47406.26, "probability": 0.8821 }, { "start": 47406.46, "end": 47406.76, "probability": 0.8569 }, { "start": 47407.76, "end": 47409.24, "probability": 0.9053 }, { "start": 47410.04, "end": 47411.38, "probability": 0.8064 }, { "start": 47412.94, "end": 47413.58, "probability": 0.65 }, { "start": 47413.72, "end": 47414.34, "probability": 0.0388 }, { "start": 47414.42, "end": 47414.48, "probability": 0.0672 }, { "start": 47414.48, "end": 47415.12, "probability": 0.7448 }, { "start": 47417.78, "end": 47419.96, "probability": 0.8638 }, { "start": 47420.06, "end": 47421.07, "probability": 0.7351 }, { "start": 47422.16, "end": 47425.44, "probability": 0.9764 }, { "start": 47428.32, "end": 47429.28, "probability": 0.8245 }, { "start": 47430.66, "end": 47432.82, "probability": 0.9438 }, { "start": 47433.9, "end": 47436.74, "probability": 0.8798 }, { "start": 47437.18, "end": 47438.28, "probability": 0.4433 }, { "start": 47438.6, "end": 47439.18, "probability": 0.3788 }, { "start": 47440.48, "end": 47442.56, "probability": 0.7787 }, { "start": 47444.36, "end": 47446.18, "probability": 0.6874 }, { "start": 47447.18, "end": 47447.66, "probability": 0.9646 }, { "start": 47447.82, "end": 47450.62, "probability": 0.8813 }, { "start": 47451.6, "end": 47452.46, "probability": 0.9895 }, { "start": 47453.26, "end": 47455.4, "probability": 0.9409 }, { "start": 47456.08, "end": 47460.98, "probability": 0.7325 }, { "start": 47461.62, "end": 47462.66, "probability": 0.8765 }, { "start": 47463.04, "end": 47464.32, "probability": 0.6711 }, { "start": 47464.54, "end": 47466.31, "probability": 0.9692 }, { "start": 47466.4, "end": 47467.08, "probability": 0.8296 }, { "start": 47468.7, "end": 47469.5, "probability": 0.1394 }, { "start": 47469.74, "end": 47471.21, "probability": 0.5872 }, { "start": 47472.06, "end": 47474.42, "probability": 0.995 }, { "start": 47474.56, "end": 47475.08, "probability": 0.6709 }, { "start": 47475.98, "end": 47478.48, "probability": 0.8335 }, { "start": 47479.16, "end": 47480.36, "probability": 0.8079 }, { "start": 47481.04, "end": 47482.28, "probability": 0.6797 }, { "start": 47483.1, "end": 47484.6, "probability": 0.6115 }, { "start": 47485.3, "end": 47489.18, "probability": 0.9055 }, { "start": 47489.9, "end": 47493.12, "probability": 0.9316 }, { "start": 47493.66, "end": 47496.46, "probability": 0.9272 }, { "start": 47497.14, "end": 47498.6, "probability": 0.981 }, { "start": 47499.56, "end": 47500.1, "probability": 0.4887 }, { "start": 47500.7, "end": 47505.36, "probability": 0.9443 }, { "start": 47506.42, "end": 47508.4, "probability": 0.8287 }, { "start": 47509.02, "end": 47511.02, "probability": 0.8704 }, { "start": 47511.3, "end": 47512.84, "probability": 0.9546 }, { "start": 47513.56, "end": 47517.54, "probability": 0.9846 }, { "start": 47517.62, "end": 47518.04, "probability": 0.6911 }, { "start": 47518.94, "end": 47522.07, "probability": 0.8891 }, { "start": 47522.82, "end": 47525.1, "probability": 0.7823 }, { "start": 47525.48, "end": 47526.52, "probability": 0.9595 }, { "start": 47526.64, "end": 47527.06, "probability": 0.6919 }, { "start": 47527.14, "end": 47532.38, "probability": 0.959 }, { "start": 47532.52, "end": 47532.96, "probability": 0.6203 }, { "start": 47533.38, "end": 47534.53, "probability": 0.5116 }, { "start": 47534.98, "end": 47537.16, "probability": 0.962 }, { "start": 47537.24, "end": 47538.04, "probability": 0.9353 }, { "start": 47538.68, "end": 47540.34, "probability": 0.9961 }, { "start": 47543.06, "end": 47543.16, "probability": 0.1106 }, { "start": 47543.16, "end": 47543.16, "probability": 0.0928 }, { "start": 47543.16, "end": 47548.66, "probability": 0.8604 }, { "start": 47549.18, "end": 47551.5, "probability": 0.8768 }, { "start": 47551.78, "end": 47552.22, "probability": 0.9234 }, { "start": 47553.24, "end": 47553.64, "probability": 0.8611 }, { "start": 47554.68, "end": 47555.46, "probability": 0.7567 }, { "start": 47556.08, "end": 47560.58, "probability": 0.9272 }, { "start": 47561.22, "end": 47564.44, "probability": 0.9209 }, { "start": 47564.78, "end": 47565.08, "probability": 0.8685 }, { "start": 47565.44, "end": 47568.62, "probability": 0.9901 }, { "start": 47569.14, "end": 47571.03, "probability": 0.9592 }, { "start": 47571.16, "end": 47573.48, "probability": 0.645 }, { "start": 47573.86, "end": 47574.94, "probability": 0.9111 }, { "start": 47575.74, "end": 47577.3, "probability": 0.7308 }, { "start": 47577.38, "end": 47580.5, "probability": 0.679 }, { "start": 47581.14, "end": 47582.01, "probability": 0.7316 }, { "start": 47582.9, "end": 47584.86, "probability": 0.6829 }, { "start": 47585.86, "end": 47588.07, "probability": 0.8706 }, { "start": 47588.82, "end": 47590.6, "probability": 0.9938 }, { "start": 47590.84, "end": 47593.02, "probability": 0.7581 }, { "start": 47593.68, "end": 47596.02, "probability": 0.7168 }, { "start": 47597.2, "end": 47598.62, "probability": 0.9567 }, { "start": 47598.7, "end": 47599.42, "probability": 0.9597 }, { "start": 47599.58, "end": 47600.06, "probability": 0.9646 }, { "start": 47600.8, "end": 47602.31, "probability": 0.979 }, { "start": 47603.04, "end": 47606.8, "probability": 0.9963 }, { "start": 47607.08, "end": 47609.48, "probability": 0.9858 }, { "start": 47609.92, "end": 47611.8, "probability": 0.5773 }, { "start": 47612.58, "end": 47613.88, "probability": 0.9155 }, { "start": 47614.62, "end": 47615.8, "probability": 0.9148 }, { "start": 47616.02, "end": 47618.92, "probability": 0.986 }, { "start": 47619.24, "end": 47619.82, "probability": 0.9761 }, { "start": 47620.86, "end": 47623.1, "probability": 0.8634 }, { "start": 47623.24, "end": 47624.76, "probability": 0.9345 }, { "start": 47643.22, "end": 47643.9, "probability": 0.4784 }, { "start": 47644.76, "end": 47645.14, "probability": 0.087 }, { "start": 47649.98, "end": 47652.08, "probability": 0.4626 }, { "start": 47652.08, "end": 47654.69, "probability": 0.7349 }, { "start": 47664.0, "end": 47666.07, "probability": 0.8648 }, { "start": 47666.52, "end": 47666.88, "probability": 0.3828 }, { "start": 47667.04, "end": 47669.12, "probability": 0.7879 }, { "start": 47670.68, "end": 47676.24, "probability": 0.998 }, { "start": 47677.2, "end": 47678.36, "probability": 0.904 }, { "start": 47679.0, "end": 47680.76, "probability": 0.6659 }, { "start": 47681.38, "end": 47684.74, "probability": 0.8931 }, { "start": 47685.72, "end": 47686.92, "probability": 0.9792 }, { "start": 47687.54, "end": 47689.74, "probability": 0.6208 }, { "start": 47690.2, "end": 47690.78, "probability": 0.8584 }, { "start": 47690.9, "end": 47691.86, "probability": 0.9515 }, { "start": 47704.06, "end": 47705.14, "probability": 0.1421 }, { "start": 47706.16, "end": 47707.06, "probability": 0.1413 }, { "start": 47707.06, "end": 47707.06, "probability": 0.0312 }, { "start": 47708.12, "end": 47708.12, "probability": 0.0404 }, { "start": 47708.12, "end": 47708.12, "probability": 0.1848 }, { "start": 47708.12, "end": 47709.16, "probability": 0.0362 }, { "start": 47711.13, "end": 47713.68, "probability": 0.0384 }, { "start": 47713.68, "end": 47713.68, "probability": 0.0105 }, { "start": 47713.68, "end": 47713.68, "probability": 0.0072 }, { "start": 47713.68, "end": 47713.68, "probability": 0.1104 }, { "start": 47713.68, "end": 47713.68, "probability": 0.1765 }, { "start": 47713.68, "end": 47714.48, "probability": 0.204 }, { "start": 47715.0, "end": 47717.8, "probability": 0.8262 }, { "start": 47718.92, "end": 47720.52, "probability": 0.8161 }, { "start": 47721.08, "end": 47724.58, "probability": 0.9595 }, { "start": 47725.66, "end": 47729.77, "probability": 0.8743 }, { "start": 47731.12, "end": 47731.51, "probability": 0.8999 }, { "start": 47732.2, "end": 47733.12, "probability": 0.9842 }, { "start": 47735.34, "end": 47737.48, "probability": 0.99 }, { "start": 47737.86, "end": 47740.76, "probability": 0.9689 }, { "start": 47741.44, "end": 47743.1, "probability": 0.9946 }, { "start": 47743.42, "end": 47746.46, "probability": 0.8188 }, { "start": 47746.98, "end": 47748.02, "probability": 0.9672 }, { "start": 47748.82, "end": 47752.26, "probability": 0.8527 }, { "start": 47752.9, "end": 47753.22, "probability": 0.4681 }, { "start": 47753.24, "end": 47754.06, "probability": 0.6978 }, { "start": 47754.12, "end": 47756.96, "probability": 0.9114 }, { "start": 47757.0, "end": 47757.96, "probability": 0.8958 }, { "start": 47758.74, "end": 47764.38, "probability": 0.9525 }, { "start": 47765.26, "end": 47767.41, "probability": 0.9328 }, { "start": 47768.22, "end": 47769.62, "probability": 0.4613 }, { "start": 47769.98, "end": 47774.44, "probability": 0.9927 }, { "start": 47774.96, "end": 47776.84, "probability": 0.9985 }, { "start": 47777.66, "end": 47778.82, "probability": 0.9033 }, { "start": 47779.34, "end": 47782.42, "probability": 0.5529 }, { "start": 47782.86, "end": 47784.52, "probability": 0.8346 }, { "start": 47785.14, "end": 47788.08, "probability": 0.973 }, { "start": 47789.4, "end": 47791.12, "probability": 0.8929 }, { "start": 47791.26, "end": 47793.16, "probability": 0.9897 }, { "start": 47793.72, "end": 47795.4, "probability": 0.9756 }, { "start": 47797.14, "end": 47800.4, "probability": 0.7868 }, { "start": 47800.44, "end": 47801.4, "probability": 0.9818 }, { "start": 47802.06, "end": 47805.14, "probability": 0.9956 }, { "start": 47806.12, "end": 47807.4, "probability": 0.9941 }, { "start": 47807.6, "end": 47808.34, "probability": 0.8435 }, { "start": 47808.7, "end": 47809.52, "probability": 0.9883 }, { "start": 47810.46, "end": 47813.94, "probability": 0.8302 }, { "start": 47814.64, "end": 47815.26, "probability": 0.9556 }, { "start": 47815.82, "end": 47816.52, "probability": 0.8963 }, { "start": 47816.66, "end": 47817.66, "probability": 0.6374 }, { "start": 47817.82, "end": 47819.82, "probability": 0.7495 }, { "start": 47820.38, "end": 47821.9, "probability": 0.4761 }, { "start": 47824.54, "end": 47828.6, "probability": 0.9685 }, { "start": 47829.9, "end": 47832.26, "probability": 0.9345 }, { "start": 47833.38, "end": 47836.54, "probability": 0.9636 }, { "start": 47837.2, "end": 47839.6, "probability": 0.9967 }, { "start": 47839.6, "end": 47844.16, "probability": 0.9531 }, { "start": 47845.3, "end": 47847.24, "probability": 0.8171 }, { "start": 47847.92, "end": 47849.84, "probability": 0.9882 }, { "start": 47850.66, "end": 47853.3, "probability": 0.9987 }, { "start": 47854.66, "end": 47856.4, "probability": 0.8449 }, { "start": 47856.78, "end": 47858.28, "probability": 0.655 }, { "start": 47859.14, "end": 47861.5, "probability": 0.7899 }, { "start": 47863.04, "end": 47863.72, "probability": 0.9244 }, { "start": 47864.96, "end": 47866.26, "probability": 0.8804 }, { "start": 47867.84, "end": 47868.46, "probability": 0.9757 }, { "start": 47869.46, "end": 47870.42, "probability": 0.9918 }, { "start": 47871.34, "end": 47873.84, "probability": 0.9514 }, { "start": 47875.04, "end": 47875.82, "probability": 0.8565 }, { "start": 47876.54, "end": 47877.66, "probability": 0.8339 }, { "start": 47878.22, "end": 47879.64, "probability": 0.7946 }, { "start": 47886.1, "end": 47887.14, "probability": 0.4691 }, { "start": 47889.02, "end": 47889.66, "probability": 0.4946 }, { "start": 47890.38, "end": 47891.26, "probability": 0.9046 }, { "start": 47891.9, "end": 47893.78, "probability": 0.7784 }, { "start": 47894.42, "end": 47896.68, "probability": 0.2395 }, { "start": 47896.88, "end": 47896.88, "probability": 0.2045 }, { "start": 47896.88, "end": 47897.58, "probability": 0.6037 }, { "start": 47898.29, "end": 47901.58, "probability": 0.6602 }, { "start": 47901.76, "end": 47901.76, "probability": 0.3016 }, { "start": 47902.68, "end": 47902.82, "probability": 0.0602 }, { "start": 47902.82, "end": 47905.06, "probability": 0.0952 }, { "start": 47905.2, "end": 47905.69, "probability": 0.1712 }, { "start": 47908.4, "end": 47909.3, "probability": 0.1058 }, { "start": 47911.18, "end": 47912.98, "probability": 0.7692 }, { "start": 47914.04, "end": 47915.68, "probability": 0.9592 }, { "start": 47917.02, "end": 47917.7, "probability": 0.8548 }, { "start": 47918.5, "end": 47919.56, "probability": 0.7858 }, { "start": 47919.9, "end": 47923.18, "probability": 0.8547 }, { "start": 47924.54, "end": 47927.06, "probability": 0.7954 }, { "start": 47927.68, "end": 47928.68, "probability": 0.9805 }, { "start": 47928.84, "end": 47930.48, "probability": 0.9814 }, { "start": 47930.62, "end": 47931.72, "probability": 0.6736 }, { "start": 47931.88, "end": 47932.96, "probability": 0.8555 }, { "start": 47933.54, "end": 47934.22, "probability": 0.8799 }, { "start": 47934.32, "end": 47936.36, "probability": 0.9432 }, { "start": 47937.12, "end": 47937.94, "probability": 0.7719 }, { "start": 47938.54, "end": 47940.56, "probability": 0.489 }, { "start": 47941.62, "end": 47942.8, "probability": 0.8386 }, { "start": 47943.72, "end": 47945.42, "probability": 0.4841 }, { "start": 47947.22, "end": 47947.6, "probability": 0.5 }, { "start": 47950.37, "end": 47951.62, "probability": 0.2643 }, { "start": 47952.58, "end": 47953.24, "probability": 0.4983 }, { "start": 47953.54, "end": 47954.3, "probability": 0.9209 }, { "start": 47955.28, "end": 47958.5, "probability": 0.4359 }, { "start": 47959.36, "end": 47961.26, "probability": 0.8813 }, { "start": 47962.34, "end": 47968.5, "probability": 0.8794 }, { "start": 47970.48, "end": 47971.8, "probability": 0.8783 }, { "start": 47971.92, "end": 47973.72, "probability": 0.9461 }, { "start": 47974.08, "end": 47976.28, "probability": 0.9032 }, { "start": 47976.74, "end": 47979.48, "probability": 0.9812 }, { "start": 47980.08, "end": 47981.4, "probability": 0.8887 }, { "start": 47982.44, "end": 47984.62, "probability": 0.6733 }, { "start": 47984.64, "end": 47987.52, "probability": 0.9592 }, { "start": 47987.86, "end": 47988.8, "probability": 0.9289 }, { "start": 47989.32, "end": 47990.29, "probability": 0.9734 }, { "start": 47991.62, "end": 47992.58, "probability": 0.8427 }, { "start": 47992.9, "end": 47995.88, "probability": 0.8803 }, { "start": 47996.28, "end": 47998.18, "probability": 0.9643 }, { "start": 47998.54, "end": 48000.82, "probability": 0.7637 }, { "start": 48001.42, "end": 48004.54, "probability": 0.7615 }, { "start": 48004.92, "end": 48008.1, "probability": 0.9363 }, { "start": 48008.68, "end": 48009.44, "probability": 0.9182 }, { "start": 48009.5, "end": 48010.46, "probability": 0.9043 }, { "start": 48010.62, "end": 48013.5, "probability": 0.9189 }, { "start": 48013.68, "end": 48014.42, "probability": 0.6723 }, { "start": 48014.54, "end": 48016.6, "probability": 0.9698 }, { "start": 48017.0, "end": 48019.6, "probability": 0.9569 }, { "start": 48020.0, "end": 48021.36, "probability": 0.9806 }, { "start": 48021.42, "end": 48022.7, "probability": 0.874 }, { "start": 48023.32, "end": 48025.64, "probability": 0.5902 }, { "start": 48025.82, "end": 48025.98, "probability": 0.4923 }, { "start": 48026.1, "end": 48028.71, "probability": 0.9934 }, { "start": 48029.54, "end": 48032.3, "probability": 0.3756 }, { "start": 48032.52, "end": 48035.24, "probability": 0.7595 }, { "start": 48035.66, "end": 48036.78, "probability": 0.6307 }, { "start": 48037.22, "end": 48040.04, "probability": 0.9751 }, { "start": 48040.76, "end": 48043.58, "probability": 0.9946 }, { "start": 48044.02, "end": 48046.76, "probability": 0.9561 }, { "start": 48048.36, "end": 48051.2, "probability": 0.9202 }, { "start": 48051.78, "end": 48052.18, "probability": 0.9968 }, { "start": 48052.9, "end": 48054.24, "probability": 0.647 }, { "start": 48054.52, "end": 48054.82, "probability": 0.7432 }, { "start": 48056.08, "end": 48058.06, "probability": 0.9223 }, { "start": 48058.78, "end": 48060.12, "probability": 0.9826 }, { "start": 48061.9, "end": 48064.1, "probability": 0.6846 }, { "start": 48064.88, "end": 48065.06, "probability": 0.3632 }, { "start": 48065.86, "end": 48067.28, "probability": 0.9409 }, { "start": 48068.44, "end": 48070.28, "probability": 0.965 }, { "start": 48071.54, "end": 48071.8, "probability": 0.3671 }, { "start": 48072.7, "end": 48073.86, "probability": 0.8653 }, { "start": 48075.28, "end": 48075.94, "probability": 0.9375 }, { "start": 48076.82, "end": 48078.56, "probability": 0.8113 }, { "start": 48078.7, "end": 48080.28, "probability": 0.9836 }, { "start": 48081.66, "end": 48082.28, "probability": 0.749 }, { "start": 48083.05, "end": 48086.42, "probability": 0.29 }, { "start": 48086.5, "end": 48087.64, "probability": 0.7175 }, { "start": 48089.36, "end": 48091.58, "probability": 0.8271 }, { "start": 48092.0, "end": 48094.04, "probability": 0.7226 }, { "start": 48095.06, "end": 48096.04, "probability": 0.8906 }, { "start": 48096.18, "end": 48097.04, "probability": 0.8469 }, { "start": 48097.24, "end": 48097.38, "probability": 0.2992 }, { "start": 48097.5, "end": 48097.98, "probability": 0.8807 }, { "start": 48098.1, "end": 48098.68, "probability": 0.7011 }, { "start": 48099.84, "end": 48100.76, "probability": 0.7476 }, { "start": 48101.4, "end": 48104.12, "probability": 0.6765 }, { "start": 48104.26, "end": 48104.56, "probability": 0.7561 }, { "start": 48105.1, "end": 48105.38, "probability": 0.4513 }, { "start": 48106.6, "end": 48108.14, "probability": 0.9421 }, { "start": 48110.28, "end": 48111.93, "probability": 0.6605 }, { "start": 48112.64, "end": 48114.4, "probability": 0.5635 }, { "start": 48117.7, "end": 48118.08, "probability": 0.9819 }, { "start": 48119.48, "end": 48120.4, "probability": 0.6648 }, { "start": 48122.26, "end": 48126.76, "probability": 0.988 }, { "start": 48126.8, "end": 48127.38, "probability": 0.9609 }, { "start": 48129.08, "end": 48129.94, "probability": 0.6451 }, { "start": 48133.58, "end": 48135.4, "probability": 0.9246 }, { "start": 48137.36, "end": 48139.94, "probability": 0.6946 }, { "start": 48143.48, "end": 48145.04, "probability": 0.9609 }, { "start": 48146.16, "end": 48148.16, "probability": 0.795 }, { "start": 48148.86, "end": 48149.54, "probability": 0.902 }, { "start": 48149.7, "end": 48150.2, "probability": 0.7112 }, { "start": 48150.36, "end": 48152.56, "probability": 0.5158 }, { "start": 48153.88, "end": 48154.52, "probability": 0.6395 }, { "start": 48154.66, "end": 48155.64, "probability": 0.9147 }, { "start": 48155.7, "end": 48156.18, "probability": 0.9528 }, { "start": 48157.94, "end": 48160.26, "probability": 0.8989 }, { "start": 48160.6, "end": 48163.98, "probability": 0.9814 }, { "start": 48164.84, "end": 48167.2, "probability": 0.615 }, { "start": 48168.06, "end": 48169.18, "probability": 0.8985 }, { "start": 48169.86, "end": 48170.5, "probability": 0.6314 }, { "start": 48172.02, "end": 48173.96, "probability": 0.9832 }, { "start": 48173.98, "end": 48174.42, "probability": 0.8562 }, { "start": 48176.78, "end": 48177.62, "probability": 0.757 }, { "start": 48184.08, "end": 48184.46, "probability": 0.803 }, { "start": 48185.16, "end": 48185.7, "probability": 0.7128 }, { "start": 48186.4, "end": 48188.42, "probability": 0.9526 }, { "start": 48192.46, "end": 48193.98, "probability": 0.8379 }, { "start": 48199.04, "end": 48199.7, "probability": 0.577 }, { "start": 48200.28, "end": 48202.56, "probability": 0.9772 }, { "start": 48203.78, "end": 48204.82, "probability": 0.9086 }, { "start": 48206.56, "end": 48208.64, "probability": 0.2373 }, { "start": 48208.78, "end": 48210.18, "probability": 0.8283 }, { "start": 48210.82, "end": 48212.58, "probability": 0.8862 }, { "start": 48213.78, "end": 48214.1, "probability": 0.9424 }, { "start": 48215.22, "end": 48220.72, "probability": 0.8731 }, { "start": 48221.52, "end": 48225.16, "probability": 0.7957 }, { "start": 48226.14, "end": 48227.16, "probability": 0.8979 }, { "start": 48227.96, "end": 48228.62, "probability": 0.8384 }, { "start": 48229.46, "end": 48232.5, "probability": 0.9585 }, { "start": 48233.34, "end": 48234.02, "probability": 0.9299 }, { "start": 48234.1, "end": 48234.64, "probability": 0.9868 }, { "start": 48234.76, "end": 48235.3, "probability": 0.4432 }, { "start": 48235.36, "end": 48235.98, "probability": 0.8326 }, { "start": 48236.04, "end": 48236.6, "probability": 0.8202 }, { "start": 48237.34, "end": 48238.06, "probability": 0.6546 }, { "start": 48240.12, "end": 48240.12, "probability": 0.8384 }, { "start": 48240.84, "end": 48243.88, "probability": 0.8479 }, { "start": 48244.9, "end": 48245.74, "probability": 0.6392 }, { "start": 48245.82, "end": 48247.22, "probability": 0.5792 }, { "start": 48248.52, "end": 48249.44, "probability": 0.6065 }, { "start": 48249.54, "end": 48249.98, "probability": 0.8823 }, { "start": 48250.28, "end": 48251.03, "probability": 0.4821 }, { "start": 48251.96, "end": 48253.88, "probability": 0.6688 }, { "start": 48254.6, "end": 48255.98, "probability": 0.8174 }, { "start": 48256.12, "end": 48257.72, "probability": 0.924 }, { "start": 48258.66, "end": 48260.18, "probability": 0.603 }, { "start": 48261.18, "end": 48263.76, "probability": 0.867 }, { "start": 48264.64, "end": 48266.94, "probability": 0.9056 }, { "start": 48267.38, "end": 48268.18, "probability": 0.7697 }, { "start": 48269.56, "end": 48271.26, "probability": 0.9023 }, { "start": 48271.32, "end": 48272.12, "probability": 0.8303 }, { "start": 48272.42, "end": 48274.3, "probability": 0.9515 }, { "start": 48274.7, "end": 48276.46, "probability": 0.833 }, { "start": 48276.92, "end": 48279.08, "probability": 0.8492 }, { "start": 48279.38, "end": 48280.16, "probability": 0.7411 }, { "start": 48280.76, "end": 48281.42, "probability": 0.7493 }, { "start": 48281.86, "end": 48282.24, "probability": 0.5993 }, { "start": 48283.02, "end": 48284.16, "probability": 0.7979 }, { "start": 48285.32, "end": 48285.84, "probability": 0.8413 }, { "start": 48288.02, "end": 48290.92, "probability": 0.8657 }, { "start": 48292.64, "end": 48293.28, "probability": 0.0198 }, { "start": 48309.74, "end": 48313.26, "probability": 0.659 }, { "start": 48314.94, "end": 48316.3, "probability": 0.5927 }, { "start": 48317.34, "end": 48318.66, "probability": 0.7384 }, { "start": 48319.0, "end": 48319.42, "probability": 0.4159 }, { "start": 48319.54, "end": 48320.52, "probability": 0.722 }, { "start": 48320.52, "end": 48323.92, "probability": 0.5004 }, { "start": 48324.42, "end": 48325.48, "probability": 0.2101 }, { "start": 48325.48, "end": 48325.54, "probability": 0.2116 }, { "start": 48325.54, "end": 48325.54, "probability": 0.1017 }, { "start": 48325.54, "end": 48326.84, "probability": 0.8975 }, { "start": 48327.64, "end": 48329.66, "probability": 0.6464 }, { "start": 48330.54, "end": 48332.72, "probability": 0.8293 }, { "start": 48333.38, "end": 48334.88, "probability": 0.6901 }, { "start": 48335.5, "end": 48337.36, "probability": 0.8872 }, { "start": 48337.92, "end": 48340.18, "probability": 0.9375 }, { "start": 48343.81, "end": 48345.07, "probability": 0.5675 }, { "start": 48345.76, "end": 48348.3, "probability": 0.966 }, { "start": 48349.04, "end": 48350.26, "probability": 0.9128 }, { "start": 48350.92, "end": 48352.02, "probability": 0.9318 }, { "start": 48352.62, "end": 48353.24, "probability": 0.8413 }, { "start": 48353.8, "end": 48355.14, "probability": 0.8624 }, { "start": 48355.32, "end": 48357.24, "probability": 0.0521 }, { "start": 48357.24, "end": 48357.8, "probability": 0.7961 }, { "start": 48358.48, "end": 48360.08, "probability": 0.981 }, { "start": 48361.28, "end": 48362.86, "probability": 0.9959 }, { "start": 48363.58, "end": 48365.06, "probability": 0.9897 }, { "start": 48365.86, "end": 48368.1, "probability": 0.9849 }, { "start": 48369.04, "end": 48370.58, "probability": 0.7916 }, { "start": 48371.5, "end": 48371.94, "probability": 0.6826 }, { "start": 48372.5, "end": 48376.4, "probability": 0.9446 }, { "start": 48376.68, "end": 48379.42, "probability": 0.9517 }, { "start": 48379.48, "end": 48380.42, "probability": 0.6688 }, { "start": 48381.06, "end": 48382.58, "probability": 0.9938 }, { "start": 48382.78, "end": 48383.9, "probability": 0.7765 }, { "start": 48384.16, "end": 48388.02, "probability": 0.783 }, { "start": 48388.64, "end": 48390.62, "probability": 0.7126 }, { "start": 48391.08, "end": 48392.24, "probability": 0.9431 }, { "start": 48393.28, "end": 48394.24, "probability": 0.6823 }, { "start": 48394.76, "end": 48396.88, "probability": 0.9941 }, { "start": 48398.02, "end": 48402.84, "probability": 0.9627 }, { "start": 48403.56, "end": 48404.34, "probability": 0.6721 }, { "start": 48404.5, "end": 48409.36, "probability": 0.7082 }, { "start": 48409.86, "end": 48414.98, "probability": 0.9966 }, { "start": 48415.46, "end": 48419.06, "probability": 0.9957 }, { "start": 48419.62, "end": 48420.98, "probability": 0.3527 }, { "start": 48421.76, "end": 48422.5, "probability": 0.3649 }, { "start": 48423.24, "end": 48425.88, "probability": 0.8095 }, { "start": 48427.02, "end": 48429.02, "probability": 0.9562 }, { "start": 48430.14, "end": 48431.8, "probability": 0.8785 }, { "start": 48432.78, "end": 48434.12, "probability": 0.9364 }, { "start": 48434.82, "end": 48435.36, "probability": 0.7493 }, { "start": 48436.48, "end": 48439.9, "probability": 0.7842 }, { "start": 48440.96, "end": 48442.8, "probability": 0.9965 }, { "start": 48443.46, "end": 48444.58, "probability": 0.6648 }, { "start": 48444.92, "end": 48446.08, "probability": 0.9873 }, { "start": 48446.88, "end": 48447.66, "probability": 0.8503 }, { "start": 48447.76, "end": 48452.94, "probability": 0.9922 }, { "start": 48454.7, "end": 48456.86, "probability": 0.5748 }, { "start": 48457.96, "end": 48458.98, "probability": 0.913 }, { "start": 48459.14, "end": 48462.56, "probability": 0.9029 }, { "start": 48463.24, "end": 48465.22, "probability": 0.9958 }, { "start": 48465.62, "end": 48466.6, "probability": 0.4765 }, { "start": 48467.62, "end": 48470.32, "probability": 0.8286 }, { "start": 48471.16, "end": 48472.62, "probability": 0.9675 }, { "start": 48473.16, "end": 48477.54, "probability": 0.9244 }, { "start": 48478.96, "end": 48479.85, "probability": 0.9976 }, { "start": 48480.26, "end": 48482.52, "probability": 0.9332 }, { "start": 48483.38, "end": 48485.28, "probability": 0.8204 }, { "start": 48485.44, "end": 48487.52, "probability": 0.9895 }, { "start": 48487.96, "end": 48491.48, "probability": 0.9558 }, { "start": 48491.56, "end": 48495.42, "probability": 0.9891 }, { "start": 48495.8, "end": 48497.68, "probability": 0.9604 }, { "start": 48498.74, "end": 48499.36, "probability": 0.8599 }, { "start": 48500.36, "end": 48503.3, "probability": 0.9861 }, { "start": 48503.98, "end": 48505.88, "probability": 0.9852 }, { "start": 48506.8, "end": 48510.5, "probability": 0.9456 }, { "start": 48511.86, "end": 48513.82, "probability": 0.9878 }, { "start": 48514.36, "end": 48514.6, "probability": 0.4556 }, { "start": 48514.66, "end": 48516.56, "probability": 0.969 }, { "start": 48516.88, "end": 48518.26, "probability": 0.9885 }, { "start": 48519.6, "end": 48520.14, "probability": 0.938 }, { "start": 48521.02, "end": 48523.18, "probability": 0.8586 }, { "start": 48524.06, "end": 48525.08, "probability": 0.4582 }, { "start": 48525.44, "end": 48528.34, "probability": 0.9959 }, { "start": 48528.52, "end": 48531.36, "probability": 0.816 }, { "start": 48531.98, "end": 48534.94, "probability": 0.9917 }, { "start": 48535.66, "end": 48536.7, "probability": 0.9529 }, { "start": 48536.8, "end": 48537.66, "probability": 0.9836 }, { "start": 48537.76, "end": 48538.14, "probability": 0.9314 }, { "start": 48538.6, "end": 48541.2, "probability": 0.7026 }, { "start": 48541.74, "end": 48542.8, "probability": 0.9364 }, { "start": 48544.18, "end": 48544.84, "probability": 0.7154 }, { "start": 48545.82, "end": 48547.92, "probability": 0.9914 }, { "start": 48548.76, "end": 48551.2, "probability": 0.9554 }, { "start": 48551.98, "end": 48552.2, "probability": 0.9293 }, { "start": 48552.74, "end": 48553.72, "probability": 0.9933 }, { "start": 48557.84, "end": 48558.42, "probability": 0.4897 }, { "start": 48559.86, "end": 48560.94, "probability": 0.8894 }, { "start": 48563.6, "end": 48565.06, "probability": 0.9759 }, { "start": 48567.12, "end": 48569.56, "probability": 0.972 }, { "start": 48570.86, "end": 48571.54, "probability": 0.946 }, { "start": 48572.36, "end": 48574.04, "probability": 0.9643 }, { "start": 48574.98, "end": 48578.18, "probability": 0.7578 }, { "start": 48578.8, "end": 48579.84, "probability": 0.7762 }, { "start": 48580.6, "end": 48581.22, "probability": 0.4936 }, { "start": 48581.64, "end": 48582.6, "probability": 0.8848 }, { "start": 48583.5, "end": 48583.9, "probability": 0.8424 }, { "start": 48604.76, "end": 48605.3, "probability": 0.7004 }, { "start": 48605.38, "end": 48606.24, "probability": 0.9139 }, { "start": 48606.8, "end": 48609.56, "probability": 0.6841 }, { "start": 48610.56, "end": 48612.48, "probability": 0.9021 }, { "start": 48613.66, "end": 48616.24, "probability": 0.8732 }, { "start": 48616.82, "end": 48621.08, "probability": 0.9976 }, { "start": 48621.6, "end": 48623.82, "probability": 0.7016 }, { "start": 48624.92, "end": 48626.34, "probability": 0.8422 }, { "start": 48626.94, "end": 48627.18, "probability": 0.5557 }, { "start": 48627.26, "end": 48628.4, "probability": 0.8674 }, { "start": 48628.52, "end": 48631.56, "probability": 0.9426 }, { "start": 48632.7, "end": 48635.12, "probability": 0.9967 }, { "start": 48636.3, "end": 48642.62, "probability": 0.8672 }, { "start": 48643.4, "end": 48645.08, "probability": 0.5852 }, { "start": 48645.8, "end": 48648.34, "probability": 0.9653 }, { "start": 48649.18, "end": 48650.12, "probability": 0.9982 }, { "start": 48651.41, "end": 48653.44, "probability": 0.7419 }, { "start": 48654.14, "end": 48658.92, "probability": 0.9067 }, { "start": 48661.0, "end": 48661.66, "probability": 0.2028 }, { "start": 48661.66, "end": 48667.02, "probability": 0.9685 }, { "start": 48667.48, "end": 48670.08, "probability": 0.9102 }, { "start": 48671.04, "end": 48674.42, "probability": 0.8678 }, { "start": 48675.38, "end": 48678.06, "probability": 0.9972 }, { "start": 48678.84, "end": 48679.48, "probability": 0.6264 }, { "start": 48679.54, "end": 48680.76, "probability": 0.6669 }, { "start": 48682.08, "end": 48685.76, "probability": 0.5486 }, { "start": 48686.62, "end": 48687.94, "probability": 0.6259 }, { "start": 48688.54, "end": 48689.92, "probability": 0.9283 }, { "start": 48690.16, "end": 48690.68, "probability": 0.7356 }, { "start": 48690.68, "end": 48691.9, "probability": 0.9039 }, { "start": 48692.02, "end": 48692.68, "probability": 0.9727 }, { "start": 48693.34, "end": 48694.34, "probability": 0.9233 }, { "start": 48695.22, "end": 48696.14, "probability": 0.9888 }, { "start": 48696.46, "end": 48697.6, "probability": 0.9785 }, { "start": 48697.7, "end": 48699.98, "probability": 0.9191 }, { "start": 48700.9, "end": 48702.28, "probability": 0.5273 }, { "start": 48702.82, "end": 48703.6, "probability": 0.6954 }, { "start": 48704.36, "end": 48705.08, "probability": 0.937 }, { "start": 48706.34, "end": 48708.4, "probability": 0.9663 }, { "start": 48709.27, "end": 48714.76, "probability": 0.9894 }, { "start": 48714.86, "end": 48715.83, "probability": 0.7837 }, { "start": 48717.06, "end": 48720.96, "probability": 0.6437 }, { "start": 48721.86, "end": 48722.8, "probability": 0.7931 }, { "start": 48722.98, "end": 48726.2, "probability": 0.7273 }, { "start": 48726.52, "end": 48726.9, "probability": 0.7316 }, { "start": 48727.82, "end": 48728.51, "probability": 0.5449 }, { "start": 48729.28, "end": 48731.38, "probability": 0.7173 }, { "start": 48731.84, "end": 48733.8, "probability": 0.9443 }, { "start": 48734.72, "end": 48736.35, "probability": 0.7602 }, { "start": 48737.56, "end": 48738.74, "probability": 0.8007 }, { "start": 48739.4, "end": 48742.0, "probability": 0.9852 }, { "start": 48742.62, "end": 48743.6, "probability": 0.917 }, { "start": 48743.8, "end": 48745.52, "probability": 0.9675 }, { "start": 48745.58, "end": 48746.58, "probability": 0.9085 }, { "start": 48746.8, "end": 48747.6, "probability": 0.6109 }, { "start": 48748.04, "end": 48748.56, "probability": 0.8155 }, { "start": 48749.2, "end": 48752.52, "probability": 0.7791 }, { "start": 48752.98, "end": 48754.72, "probability": 0.973 }, { "start": 48755.9, "end": 48759.64, "probability": 0.922 }, { "start": 48761.08, "end": 48763.3, "probability": 0.9942 }, { "start": 48764.26, "end": 48773.9, "probability": 0.9741 }, { "start": 48774.14, "end": 48779.1, "probability": 0.9982 }, { "start": 48779.18, "end": 48781.71, "probability": 0.9898 }, { "start": 48783.64, "end": 48786.44, "probability": 0.9903 }, { "start": 48786.58, "end": 48789.02, "probability": 0.893 }, { "start": 48789.96, "end": 48790.44, "probability": 0.5285 }, { "start": 48790.56, "end": 48791.9, "probability": 0.4498 }, { "start": 48792.34, "end": 48793.48, "probability": 0.4948 }, { "start": 48793.6, "end": 48794.3, "probability": 0.7804 }, { "start": 48794.36, "end": 48794.62, "probability": 0.8801 }, { "start": 48794.68, "end": 48794.68, "probability": 0.3934 }, { "start": 48794.72, "end": 48795.5, "probability": 0.3179 }, { "start": 48795.56, "end": 48796.2, "probability": 0.6658 }, { "start": 48796.44, "end": 48797.36, "probability": 0.2309 }, { "start": 48798.16, "end": 48800.08, "probability": 0.9408 }, { "start": 48801.08, "end": 48806.66, "probability": 0.7559 }, { "start": 48806.82, "end": 48807.04, "probability": 0.3154 }, { "start": 48807.32, "end": 48812.78, "probability": 0.9877 }, { "start": 48812.82, "end": 48813.72, "probability": 0.4733 }, { "start": 48813.9, "end": 48814.36, "probability": 0.6985 }, { "start": 48815.48, "end": 48820.5, "probability": 0.9302 }, { "start": 48820.62, "end": 48823.48, "probability": 0.5497 }, { "start": 48824.9, "end": 48827.38, "probability": 0.962 }, { "start": 48827.88, "end": 48828.22, "probability": 0.6607 }, { "start": 48828.52, "end": 48829.34, "probability": 0.8617 }, { "start": 48830.2, "end": 48830.5, "probability": 0.762 }, { "start": 48831.32, "end": 48832.68, "probability": 0.6875 }, { "start": 48832.78, "end": 48833.96, "probability": 0.9134 }, { "start": 48834.84, "end": 48837.0, "probability": 0.8738 }, { "start": 48837.8, "end": 48840.52, "probability": 0.9667 }, { "start": 48841.32, "end": 48842.0, "probability": 0.5614 }, { "start": 48842.5, "end": 48844.07, "probability": 0.5735 }, { "start": 48844.64, "end": 48850.38, "probability": 0.9127 }, { "start": 48850.44, "end": 48851.18, "probability": 0.8013 }, { "start": 48852.72, "end": 48853.9, "probability": 0.8088 }, { "start": 48855.36, "end": 48857.9, "probability": 0.7844 }, { "start": 48864.84, "end": 48865.92, "probability": 0.8062 }, { "start": 48866.46, "end": 48867.58, "probability": 0.8226 }, { "start": 48870.02, "end": 48875.6, "probability": 0.9938 }, { "start": 48877.44, "end": 48879.04, "probability": 0.8827 }, { "start": 48879.12, "end": 48883.52, "probability": 0.9448 }, { "start": 48884.66, "end": 48886.24, "probability": 0.9977 }, { "start": 48887.3, "end": 48888.9, "probability": 0.9922 }, { "start": 48890.62, "end": 48892.66, "probability": 0.3285 }, { "start": 48893.56, "end": 48893.7, "probability": 0.8633 }, { "start": 48894.48, "end": 48895.1, "probability": 0.9904 }, { "start": 48895.2, "end": 48895.69, "probability": 0.8523 }, { "start": 48895.94, "end": 48900.44, "probability": 0.9575 }, { "start": 48901.5, "end": 48907.34, "probability": 0.9331 }, { "start": 48907.44, "end": 48908.06, "probability": 0.8343 }, { "start": 48908.34, "end": 48909.0, "probability": 0.763 }, { "start": 48909.14, "end": 48913.1, "probability": 0.9666 }, { "start": 48915.78, "end": 48917.7, "probability": 0.8268 }, { "start": 48917.82, "end": 48924.64, "probability": 0.7262 }, { "start": 48925.86, "end": 48929.48, "probability": 0.915 }, { "start": 48930.88, "end": 48931.4, "probability": 0.6048 }, { "start": 48931.76, "end": 48937.36, "probability": 0.9652 }, { "start": 48937.44, "end": 48942.5, "probability": 0.5806 }, { "start": 48944.13, "end": 48948.9, "probability": 0.9668 }, { "start": 48949.08, "end": 48951.6, "probability": 0.8834 }, { "start": 48952.06, "end": 48954.76, "probability": 0.875 }, { "start": 48955.36, "end": 48955.78, "probability": 0.8322 }, { "start": 48956.4, "end": 48957.96, "probability": 0.9496 }, { "start": 48958.62, "end": 48962.92, "probability": 0.9467 }, { "start": 48963.0, "end": 48964.26, "probability": 0.9821 }, { "start": 48966.16, "end": 48966.88, "probability": 0.7437 }, { "start": 48968.04, "end": 48972.82, "probability": 0.6633 }, { "start": 48974.2, "end": 48978.24, "probability": 0.9196 }, { "start": 48979.1, "end": 48980.28, "probability": 0.8176 }, { "start": 48980.54, "end": 48987.7, "probability": 0.9578 }, { "start": 48988.26, "end": 48993.21, "probability": 0.9439 }, { "start": 48995.04, "end": 48997.82, "probability": 0.9941 }, { "start": 48998.86, "end": 49004.46, "probability": 0.9502 }, { "start": 49005.38, "end": 49008.26, "probability": 0.8703 }, { "start": 49008.86, "end": 49011.26, "probability": 0.9915 }, { "start": 49011.38, "end": 49013.02, "probability": 0.9937 }, { "start": 49013.08, "end": 49015.8, "probability": 0.7534 }, { "start": 49016.06, "end": 49016.7, "probability": 0.7511 }, { "start": 49017.62, "end": 49024.14, "probability": 0.9563 }, { "start": 49025.14, "end": 49027.9, "probability": 0.7025 }, { "start": 49028.92, "end": 49034.18, "probability": 0.9953 }, { "start": 49034.3, "end": 49035.1, "probability": 0.5416 }, { "start": 49035.58, "end": 49040.97, "probability": 0.9808 }, { "start": 49042.68, "end": 49044.43, "probability": 0.8835 }, { "start": 49044.68, "end": 49046.2, "probability": 0.7973 }, { "start": 49046.24, "end": 49048.04, "probability": 0.913 }, { "start": 49048.1, "end": 49048.72, "probability": 0.6394 }, { "start": 49049.06, "end": 49050.8, "probability": 0.9106 }, { "start": 49050.84, "end": 49051.24, "probability": 0.4872 }, { "start": 49052.26, "end": 49056.22, "probability": 0.8311 }, { "start": 49057.2, "end": 49060.76, "probability": 0.832 }, { "start": 49061.44, "end": 49066.44, "probability": 0.9217 }, { "start": 49067.26, "end": 49072.12, "probability": 0.8739 }, { "start": 49073.52, "end": 49075.18, "probability": 0.7737 }, { "start": 49076.3, "end": 49076.62, "probability": 0.3473 }, { "start": 49076.62, "end": 49083.3, "probability": 0.9876 }, { "start": 49083.34, "end": 49084.22, "probability": 0.6402 }, { "start": 49086.06, "end": 49087.66, "probability": 0.684 }, { "start": 49093.08, "end": 49093.58, "probability": 0.6564 }, { "start": 49093.82, "end": 49097.34, "probability": 0.2494 }, { "start": 49097.64, "end": 49097.94, "probability": 0.5655 }, { "start": 49097.94, "end": 49098.36, "probability": 0.968 }, { "start": 49099.96, "end": 49101.64, "probability": 0.9791 }, { "start": 49101.88, "end": 49103.64, "probability": 0.6391 }, { "start": 49103.72, "end": 49104.35, "probability": 0.9854 }, { "start": 49107.74, "end": 49108.14, "probability": 0.8124 }, { "start": 49108.68, "end": 49110.32, "probability": 0.9293 }, { "start": 49111.16, "end": 49111.78, "probability": 0.7664 }, { "start": 49112.38, "end": 49114.82, "probability": 0.5852 }, { "start": 49116.94, "end": 49118.56, "probability": 0.9902 }, { "start": 49120.56, "end": 49122.56, "probability": 0.9299 }, { "start": 49124.14, "end": 49124.82, "probability": 0.3341 }, { "start": 49124.92, "end": 49124.94, "probability": 0.9801 }, { "start": 49130.85, "end": 49133.72, "probability": 0.492 }, { "start": 49134.38, "end": 49135.18, "probability": 0.9941 }, { "start": 49135.96, "end": 49137.78, "probability": 0.7793 }, { "start": 49137.78, "end": 49138.8, "probability": 0.5294 }, { "start": 49138.8, "end": 49139.7, "probability": 0.1504 }, { "start": 49140.06, "end": 49142.16, "probability": 0.6193 }, { "start": 49142.34, "end": 49142.98, "probability": 0.73 }, { "start": 49143.0, "end": 49143.66, "probability": 0.5703 }, { "start": 49143.84, "end": 49144.56, "probability": 0.4251 }, { "start": 49155.32, "end": 49155.62, "probability": 0.1096 }, { "start": 49155.62, "end": 49155.62, "probability": 0.0419 }, { "start": 49157.72, "end": 49157.84, "probability": 0.2498 }, { "start": 49159.96, "end": 49160.76, "probability": 0.0261 }, { "start": 49162.1, "end": 49164.4, "probability": 0.262 }, { "start": 49164.66, "end": 49167.56, "probability": 0.4441 }, { "start": 49167.66, "end": 49171.0, "probability": 0.7881 }, { "start": 49171.1, "end": 49173.32, "probability": 0.8757 }, { "start": 49174.02, "end": 49174.9, "probability": 0.1637 }, { "start": 49178.68, "end": 49180.72, "probability": 0.3406 }, { "start": 49182.0, "end": 49183.16, "probability": 0.3033 }, { "start": 49183.16, "end": 49183.16, "probability": 0.0545 }, { "start": 49183.16, "end": 49183.16, "probability": 0.1199 }, { "start": 49183.16, "end": 49183.16, "probability": 0.0637 }, { "start": 49183.16, "end": 49183.16, "probability": 0.019 }, { "start": 49183.16, "end": 49185.3, "probability": 0.7771 }, { "start": 49185.5, "end": 49187.14, "probability": 0.6128 }, { "start": 49190.68, "end": 49191.32, "probability": 0.3837 }, { "start": 49192.0, "end": 49197.74, "probability": 0.8043 }, { "start": 49198.08, "end": 49199.14, "probability": 0.9907 }, { "start": 49207.58, "end": 49207.58, "probability": 0.0662 }, { "start": 49209.7, "end": 49213.6, "probability": 0.1235 }, { "start": 49214.3, "end": 49215.56, "probability": 0.4809 }, { "start": 49216.0, "end": 49216.44, "probability": 0.5586 }, { "start": 49218.13, "end": 49219.54, "probability": 0.418 }, { "start": 49221.54, "end": 49222.5, "probability": 0.5097 }, { "start": 49222.96, "end": 49225.04, "probability": 0.9576 }, { "start": 49226.58, "end": 49229.28, "probability": 0.5219 }, { "start": 49240.54, "end": 49241.96, "probability": 0.6883 }, { "start": 49242.1, "end": 49244.1, "probability": 0.8688 }, { "start": 49245.36, "end": 49246.28, "probability": 0.2918 }, { "start": 49246.94, "end": 49250.3, "probability": 0.3574 }, { "start": 49251.14, "end": 49253.24, "probability": 0.9552 }, { "start": 49253.46, "end": 49254.5, "probability": 0.9994 }, { "start": 49258.38, "end": 49261.02, "probability": 0.4667 }, { "start": 49261.14, "end": 49261.68, "probability": 0.7462 }, { "start": 49264.72, "end": 49266.5, "probability": 0.6438 }, { "start": 49267.14, "end": 49269.28, "probability": 0.3065 }, { "start": 49269.8, "end": 49273.38, "probability": 0.7641 }, { "start": 49274.1, "end": 49277.44, "probability": 0.8519 }, { "start": 49278.14, "end": 49280.16, "probability": 0.1977 }, { "start": 49281.02, "end": 49281.82, "probability": 0.6402 }, { "start": 49282.42, "end": 49283.98, "probability": 0.915 }, { "start": 49284.62, "end": 49287.04, "probability": 0.3699 }, { "start": 49287.12, "end": 49289.98, "probability": 0.901 }, { "start": 49291.5, "end": 49298.29, "probability": 0.9646 }, { "start": 49299.78, "end": 49300.66, "probability": 0.9952 }, { "start": 49300.72, "end": 49302.3, "probability": 0.8994 }, { "start": 49302.48, "end": 49306.44, "probability": 0.9623 }, { "start": 49306.9, "end": 49308.14, "probability": 0.939 }, { "start": 49308.86, "end": 49314.28, "probability": 0.941 }, { "start": 49314.28, "end": 49319.24, "probability": 0.9897 }, { "start": 49320.02, "end": 49323.86, "probability": 0.9963 }, { "start": 49324.67, "end": 49328.78, "probability": 0.8817 }, { "start": 49329.4, "end": 49331.22, "probability": 0.7421 }, { "start": 49331.76, "end": 49335.54, "probability": 0.9828 }, { "start": 49336.2, "end": 49338.5, "probability": 0.978 }, { "start": 49338.5, "end": 49342.24, "probability": 0.9958 }, { "start": 49343.52, "end": 49346.8, "probability": 0.819 }, { "start": 49347.24, "end": 49351.44, "probability": 0.8116 }, { "start": 49351.44, "end": 49356.86, "probability": 0.9901 }, { "start": 49358.14, "end": 49361.58, "probability": 0.9932 }, { "start": 49362.14, "end": 49364.8, "probability": 0.8479 }, { "start": 49365.34, "end": 49369.16, "probability": 0.9954 }, { "start": 49370.9, "end": 49374.4, "probability": 0.9878 }, { "start": 49374.4, "end": 49376.7, "probability": 0.9652 }, { "start": 49376.9, "end": 49377.86, "probability": 0.8421 }, { "start": 49378.48, "end": 49383.6, "probability": 0.9468 }, { "start": 49384.34, "end": 49386.6, "probability": 0.8692 }, { "start": 49386.72, "end": 49389.62, "probability": 0.8691 }, { "start": 49390.02, "end": 49394.7, "probability": 0.96 }, { "start": 49395.26, "end": 49398.32, "probability": 0.9955 }, { "start": 49398.94, "end": 49399.38, "probability": 0.5168 }, { "start": 49399.48, "end": 49403.66, "probability": 0.9304 }, { "start": 49404.44, "end": 49407.2, "probability": 0.9834 }, { "start": 49407.28, "end": 49407.94, "probability": 0.7652 }, { "start": 49408.64, "end": 49410.06, "probability": 0.8682 }, { "start": 49410.38, "end": 49412.04, "probability": 0.986 }, { "start": 49412.72, "end": 49413.08, "probability": 0.6286 }, { "start": 49413.12, "end": 49418.92, "probability": 0.9366 }, { "start": 49419.74, "end": 49421.54, "probability": 0.9476 }, { "start": 49421.54, "end": 49424.28, "probability": 0.9701 }, { "start": 49425.76, "end": 49429.74, "probability": 0.9934 }, { "start": 49430.2, "end": 49433.1, "probability": 0.9812 }, { "start": 49433.1, "end": 49437.76, "probability": 0.9955 }, { "start": 49437.76, "end": 49441.16, "probability": 0.9888 }, { "start": 49442.14, "end": 49445.4, "probability": 0.9944 }, { "start": 49445.4, "end": 49448.68, "probability": 0.9865 }, { "start": 49449.28, "end": 49452.48, "probability": 0.9966 }, { "start": 49453.16, "end": 49456.94, "probability": 0.9834 }, { "start": 49456.94, "end": 49462.04, "probability": 0.981 }, { "start": 49462.06, "end": 49465.16, "probability": 0.9957 }, { "start": 49465.16, "end": 49469.08, "probability": 0.9544 }, { "start": 49470.1, "end": 49471.58, "probability": 0.9927 }, { "start": 49472.54, "end": 49475.44, "probability": 0.9923 }, { "start": 49475.44, "end": 49477.8, "probability": 0.8523 }, { "start": 49478.4, "end": 49480.36, "probability": 0.9722 }, { "start": 49480.84, "end": 49482.92, "probability": 0.9885 }, { "start": 49483.82, "end": 49487.1, "probability": 0.9744 }, { "start": 49487.1, "end": 49490.88, "probability": 0.9943 }, { "start": 49490.88, "end": 49494.5, "probability": 0.9871 }, { "start": 49495.2, "end": 49500.1, "probability": 0.9833 }, { "start": 49500.1, "end": 49504.86, "probability": 0.9485 }, { "start": 49505.28, "end": 49509.84, "probability": 0.9662 }, { "start": 49510.58, "end": 49513.18, "probability": 0.7015 }, { "start": 49513.74, "end": 49517.56, "probability": 0.936 }, { "start": 49517.56, "end": 49521.42, "probability": 0.9904 }, { "start": 49521.78, "end": 49522.28, "probability": 0.9454 }, { "start": 49525.02, "end": 49527.34, "probability": 0.9861 }, { "start": 49527.66, "end": 49530.5, "probability": 0.9141 }, { "start": 49544.76, "end": 49544.8, "probability": 0.4481 }, { "start": 49544.8, "end": 49544.92, "probability": 0.166 }, { "start": 49544.92, "end": 49544.92, "probability": 0.1864 }, { "start": 49544.92, "end": 49544.92, "probability": 0.1136 }, { "start": 49567.88, "end": 49568.32, "probability": 0.8377 }, { "start": 49569.5, "end": 49571.56, "probability": 0.9962 }, { "start": 49573.42, "end": 49574.1, "probability": 0.9601 }, { "start": 49575.2, "end": 49577.42, "probability": 0.901 }, { "start": 49579.36, "end": 49580.16, "probability": 0.7892 }, { "start": 49581.54, "end": 49582.82, "probability": 0.9711 }, { "start": 49583.5, "end": 49585.72, "probability": 0.9655 }, { "start": 49586.64, "end": 49589.06, "probability": 0.9936 }, { "start": 49589.86, "end": 49591.38, "probability": 0.9977 }, { "start": 49591.94, "end": 49593.48, "probability": 0.9786 }, { "start": 49594.06, "end": 49599.82, "probability": 0.9796 }, { "start": 49601.16, "end": 49602.5, "probability": 0.6995 }, { "start": 49603.04, "end": 49604.06, "probability": 0.8558 }, { "start": 49604.68, "end": 49608.4, "probability": 0.7946 }, { "start": 49608.94, "end": 49610.66, "probability": 0.9269 }, { "start": 49611.18, "end": 49616.16, "probability": 0.7459 }, { "start": 49617.12, "end": 49618.44, "probability": 0.5802 }, { "start": 49619.1, "end": 49621.3, "probability": 0.769 }, { "start": 49623.5, "end": 49624.84, "probability": 0.9014 }, { "start": 49624.94, "end": 49625.46, "probability": 0.9251 }, { "start": 49626.1, "end": 49627.36, "probability": 0.9442 }, { "start": 49627.46, "end": 49628.52, "probability": 0.6979 }, { "start": 49628.9, "end": 49631.92, "probability": 0.7694 }, { "start": 49632.94, "end": 49635.4, "probability": 0.9884 }, { "start": 49635.94, "end": 49637.84, "probability": 0.905 }, { "start": 49639.36, "end": 49641.54, "probability": 0.8673 }, { "start": 49642.1, "end": 49644.0, "probability": 0.9951 }, { "start": 49644.04, "end": 49644.84, "probability": 0.9264 }, { "start": 49644.94, "end": 49650.24, "probability": 0.9779 }, { "start": 49650.78, "end": 49652.9, "probability": 0.5584 }, { "start": 49653.4, "end": 49654.06, "probability": 0.647 }, { "start": 49654.58, "end": 49655.88, "probability": 0.9588 }, { "start": 49655.98, "end": 49657.12, "probability": 0.8799 }, { "start": 49657.24, "end": 49658.08, "probability": 0.6531 }, { "start": 49658.8, "end": 49659.7, "probability": 0.9624 }, { "start": 49660.64, "end": 49662.08, "probability": 0.9556 }, { "start": 49674.4, "end": 49674.86, "probability": 0.5928 }, { "start": 49675.88, "end": 49679.16, "probability": 0.9951 }, { "start": 49679.96, "end": 49684.12, "probability": 0.9941 }, { "start": 49684.84, "end": 49687.42, "probability": 0.9789 }, { "start": 49688.1, "end": 49689.3, "probability": 0.9517 }, { "start": 49689.82, "end": 49691.9, "probability": 0.9942 }, { "start": 49693.3, "end": 49694.68, "probability": 0.9175 }, { "start": 49695.36, "end": 49697.1, "probability": 0.844 }, { "start": 49698.26, "end": 49699.28, "probability": 0.999 }, { "start": 49700.06, "end": 49701.14, "probability": 0.6973 }, { "start": 49701.84, "end": 49705.96, "probability": 0.8944 }, { "start": 49706.46, "end": 49711.54, "probability": 0.9968 }, { "start": 49713.74, "end": 49716.82, "probability": 0.9949 }, { "start": 49718.22, "end": 49722.77, "probability": 0.9983 }, { "start": 49723.68, "end": 49726.84, "probability": 0.7781 }, { "start": 49728.06, "end": 49730.7, "probability": 0.9729 }, { "start": 49733.4, "end": 49737.28, "probability": 0.9951 }, { "start": 49737.74, "end": 49739.36, "probability": 0.9924 }, { "start": 49739.78, "end": 49741.4, "probability": 0.9829 }, { "start": 49741.98, "end": 49743.88, "probability": 0.9977 }, { "start": 49744.5, "end": 49748.28, "probability": 0.999 }, { "start": 49748.88, "end": 49750.02, "probability": 0.9722 }, { "start": 49750.48, "end": 49751.5, "probability": 0.822 }, { "start": 49751.52, "end": 49751.86, "probability": 0.8255 }, { "start": 49752.28, "end": 49754.4, "probability": 0.998 }, { "start": 49754.98, "end": 49756.02, "probability": 0.7957 }, { "start": 49756.18, "end": 49757.22, "probability": 0.8572 }, { "start": 49757.4, "end": 49759.36, "probability": 0.9441 }, { "start": 49759.86, "end": 49760.37, "probability": 0.9376 }, { "start": 49761.14, "end": 49761.94, "probability": 0.7851 }, { "start": 49762.56, "end": 49764.28, "probability": 0.8741 }, { "start": 49764.7, "end": 49765.5, "probability": 0.8734 }, { "start": 49768.86, "end": 49772.02, "probability": 0.9939 }, { "start": 49772.76, "end": 49775.42, "probability": 0.6729 }, { "start": 49777.5, "end": 49779.24, "probability": 0.9021 }, { "start": 49780.36, "end": 49786.32, "probability": 0.9485 }, { "start": 49786.74, "end": 49787.86, "probability": 0.9131 }, { "start": 49789.02, "end": 49790.38, "probability": 0.9832 }, { "start": 49790.9, "end": 49791.76, "probability": 0.9784 }, { "start": 49792.36, "end": 49792.74, "probability": 0.2481 }, { "start": 49793.42, "end": 49794.22, "probability": 0.5835 }, { "start": 49795.28, "end": 49798.2, "probability": 0.7974 }, { "start": 49799.24, "end": 49799.88, "probability": 0.9528 }, { "start": 49800.52, "end": 49801.84, "probability": 0.9797 }, { "start": 49802.58, "end": 49805.6, "probability": 0.9948 }, { "start": 49805.6, "end": 49808.8, "probability": 0.9719 }, { "start": 49810.62, "end": 49817.64, "probability": 0.978 }, { "start": 49818.9, "end": 49820.82, "probability": 0.8571 }, { "start": 49822.64, "end": 49827.12, "probability": 0.9629 }, { "start": 49828.1, "end": 49829.2, "probability": 0.9575 }, { "start": 49832.22, "end": 49833.4, "probability": 0.9969 }, { "start": 49834.18, "end": 49839.02, "probability": 0.9993 }, { "start": 49839.88, "end": 49840.98, "probability": 0.8442 }, { "start": 49841.56, "end": 49845.22, "probability": 0.907 }, { "start": 49846.02, "end": 49849.66, "probability": 0.9731 }, { "start": 49851.08, "end": 49853.8, "probability": 0.9934 }, { "start": 49854.42, "end": 49855.18, "probability": 0.7039 }, { "start": 49855.82, "end": 49856.76, "probability": 0.7748 }, { "start": 49856.94, "end": 49857.3, "probability": 0.8866 }, { "start": 49857.36, "end": 49858.48, "probability": 0.971 }, { "start": 49858.58, "end": 49859.32, "probability": 0.6194 }, { "start": 49859.76, "end": 49860.44, "probability": 0.8179 }, { "start": 49860.7, "end": 49862.98, "probability": 0.9868 }, { "start": 49864.1, "end": 49864.8, "probability": 0.7331 }, { "start": 49864.82, "end": 49867.2, "probability": 0.9838 }, { "start": 49869.0, "end": 49870.78, "probability": 0.9982 }, { "start": 49871.52, "end": 49873.58, "probability": 0.9525 }, { "start": 49874.2, "end": 49875.24, "probability": 0.9875 }, { "start": 49875.92, "end": 49877.92, "probability": 0.9929 }, { "start": 49879.34, "end": 49881.02, "probability": 0.9979 }, { "start": 49881.04, "end": 49881.94, "probability": 0.9244 }, { "start": 49882.88, "end": 49885.44, "probability": 0.9176 }, { "start": 49886.14, "end": 49886.91, "probability": 0.97 }, { "start": 49888.38, "end": 49891.46, "probability": 0.9941 }, { "start": 49892.9, "end": 49897.38, "probability": 0.9812 }, { "start": 49898.06, "end": 49902.12, "probability": 0.8466 }, { "start": 49903.38, "end": 49904.18, "probability": 0.5471 }, { "start": 49904.98, "end": 49909.04, "probability": 0.9109 }, { "start": 49910.18, "end": 49911.4, "probability": 0.8927 }, { "start": 49911.64, "end": 49913.88, "probability": 0.9647 }, { "start": 49914.32, "end": 49915.36, "probability": 0.8566 }, { "start": 49916.0, "end": 49916.36, "probability": 0.8494 }, { "start": 49916.4, "end": 49920.18, "probability": 0.9118 }, { "start": 49920.2, "end": 49921.34, "probability": 0.9394 }, { "start": 49922.56, "end": 49923.44, "probability": 0.9233 }, { "start": 49924.42, "end": 49928.86, "probability": 0.7446 }, { "start": 49931.06, "end": 49933.36, "probability": 0.9187 }, { "start": 49934.1, "end": 49936.7, "probability": 0.9896 }, { "start": 49937.12, "end": 49938.94, "probability": 0.9962 }, { "start": 49939.32, "end": 49943.72, "probability": 0.9482 }, { "start": 49944.58, "end": 49947.64, "probability": 0.8208 }, { "start": 49948.24, "end": 49953.6, "probability": 0.9504 }, { "start": 49965.78, "end": 49967.86, "probability": 0.6608 }, { "start": 49968.72, "end": 49970.72, "probability": 0.8955 }, { "start": 49973.46, "end": 49976.36, "probability": 0.9844 }, { "start": 49977.06, "end": 49978.52, "probability": 0.9264 }, { "start": 49979.2, "end": 49980.52, "probability": 0.9982 }, { "start": 49981.04, "end": 49985.34, "probability": 0.8928 }, { "start": 49985.86, "end": 49988.08, "probability": 0.9978 }, { "start": 49991.88, "end": 49994.42, "probability": 0.75 }, { "start": 49995.04, "end": 49996.82, "probability": 0.9945 }, { "start": 49997.6, "end": 49999.7, "probability": 0.9034 }, { "start": 50000.38, "end": 50003.62, "probability": 0.9684 }, { "start": 50003.62, "end": 50008.46, "probability": 0.9866 }, { "start": 50009.1, "end": 50011.9, "probability": 0.9965 }, { "start": 50012.11, "end": 50014.14, "probability": 0.9651 }, { "start": 50014.68, "end": 50017.84, "probability": 0.9935 }, { "start": 50018.2, "end": 50019.52, "probability": 0.7982 }, { "start": 50020.58, "end": 50021.76, "probability": 0.9429 }, { "start": 50021.84, "end": 50023.62, "probability": 0.9945 }, { "start": 50024.06, "end": 50026.5, "probability": 0.9956 }, { "start": 50028.24, "end": 50029.24, "probability": 0.7415 }, { "start": 50029.78, "end": 50032.26, "probability": 0.9291 }, { "start": 50034.38, "end": 50037.64, "probability": 0.9326 }, { "start": 50038.14, "end": 50040.42, "probability": 0.975 }, { "start": 50041.06, "end": 50042.34, "probability": 0.998 }, { "start": 50048.8, "end": 50049.12, "probability": 0.6073 }, { "start": 50051.52, "end": 50053.76, "probability": 0.895 }, { "start": 50055.04, "end": 50058.28, "probability": 0.9961 }, { "start": 50059.54, "end": 50060.7, "probability": 0.7408 }, { "start": 50061.48, "end": 50062.55, "probability": 0.9951 }, { "start": 50063.24, "end": 50065.74, "probability": 0.9861 }, { "start": 50066.42, "end": 50068.38, "probability": 0.8284 }, { "start": 50068.9, "end": 50075.04, "probability": 0.9975 }, { "start": 50076.36, "end": 50077.7, "probability": 0.8674 }, { "start": 50078.34, "end": 50078.92, "probability": 0.8256 }, { "start": 50080.64, "end": 50084.86, "probability": 0.9923 }, { "start": 50085.6, "end": 50086.7, "probability": 0.9718 }, { "start": 50087.16, "end": 50090.08, "probability": 0.9771 }, { "start": 50090.14, "end": 50091.68, "probability": 0.9927 }, { "start": 50092.18, "end": 50093.02, "probability": 0.9915 }, { "start": 50093.6, "end": 50096.02, "probability": 0.9644 }, { "start": 50097.76, "end": 50098.84, "probability": 0.9216 }, { "start": 50101.22, "end": 50104.66, "probability": 0.9612 }, { "start": 50105.38, "end": 50108.76, "probability": 0.9966 }, { "start": 50109.3, "end": 50109.8, "probability": 0.7388 }, { "start": 50111.12, "end": 50115.44, "probability": 0.9662 }, { "start": 50116.14, "end": 50117.5, "probability": 0.9634 }, { "start": 50117.7, "end": 50118.94, "probability": 0.8351 }, { "start": 50119.34, "end": 50122.0, "probability": 0.9926 }, { "start": 50123.42, "end": 50128.78, "probability": 0.9399 }, { "start": 50129.2, "end": 50130.4, "probability": 0.9672 }, { "start": 50131.24, "end": 50132.15, "probability": 0.8802 }, { "start": 50133.26, "end": 50134.1, "probability": 0.9954 }, { "start": 50134.82, "end": 50137.8, "probability": 0.9877 }, { "start": 50138.88, "end": 50141.12, "probability": 0.9992 }, { "start": 50142.0, "end": 50143.92, "probability": 0.9922 }, { "start": 50144.48, "end": 50150.06, "probability": 0.9922 }, { "start": 50150.06, "end": 50153.86, "probability": 0.9998 }, { "start": 50155.22, "end": 50156.24, "probability": 0.7748 }, { "start": 50157.84, "end": 50161.4, "probability": 0.9404 }, { "start": 50161.98, "end": 50163.54, "probability": 0.9784 }, { "start": 50164.16, "end": 50166.98, "probability": 0.9775 }, { "start": 50167.1, "end": 50168.98, "probability": 0.7056 }, { "start": 50169.12, "end": 50170.44, "probability": 0.829 }, { "start": 50170.86, "end": 50171.96, "probability": 0.7235 }, { "start": 50172.34, "end": 50175.22, "probability": 0.9951 }, { "start": 50175.22, "end": 50178.5, "probability": 0.9551 }, { "start": 50180.28, "end": 50180.56, "probability": 0.8328 }, { "start": 50181.3, "end": 50181.94, "probability": 0.5425 }, { "start": 50182.48, "end": 50184.34, "probability": 0.916 }, { "start": 50184.76, "end": 50189.04, "probability": 0.98 }, { "start": 50189.68, "end": 50192.16, "probability": 0.8939 }, { "start": 50192.94, "end": 50197.58, "probability": 0.9766 }, { "start": 50197.78, "end": 50198.82, "probability": 0.8511 }, { "start": 50200.56, "end": 50202.9, "probability": 0.9742 }, { "start": 50208.04, "end": 50209.14, "probability": 0.8934 }, { "start": 50211.3, "end": 50212.62, "probability": 0.8891 }, { "start": 50212.72, "end": 50213.36, "probability": 0.6824 }, { "start": 50213.98, "end": 50214.62, "probability": 0.5078 }, { "start": 50215.2, "end": 50216.8, "probability": 0.9562 }, { "start": 50217.32, "end": 50220.38, "probability": 0.7302 }, { "start": 50221.52, "end": 50222.26, "probability": 0.6643 }, { "start": 50222.9, "end": 50224.46, "probability": 0.8691 }, { "start": 50225.18, "end": 50226.14, "probability": 0.2962 }, { "start": 50226.88, "end": 50229.82, "probability": 0.993 }, { "start": 50230.76, "end": 50231.34, "probability": 0.9563 }, { "start": 50233.74, "end": 50233.84, "probability": 0.1171 }, { "start": 50233.84, "end": 50235.08, "probability": 0.555 }, { "start": 50235.5, "end": 50236.6, "probability": 0.4618 }, { "start": 50236.62, "end": 50237.92, "probability": 0.5723 }, { "start": 50240.12, "end": 50240.96, "probability": 0.8918 }, { "start": 50241.28, "end": 50242.38, "probability": 0.9679 }, { "start": 50242.7, "end": 50243.38, "probability": 0.4947 }, { "start": 50243.6, "end": 50243.84, "probability": 0.7767 }, { "start": 50244.42, "end": 50245.76, "probability": 0.8483 }, { "start": 50246.14, "end": 50250.38, "probability": 0.211 }, { "start": 50251.56, "end": 50252.46, "probability": 0.5596 }, { "start": 50253.76, "end": 50256.44, "probability": 0.6353 }, { "start": 50257.7, "end": 50261.66, "probability": 0.5067 }, { "start": 50261.84, "end": 50263.58, "probability": 0.8723 }, { "start": 50263.64, "end": 50264.27, "probability": 0.9882 }, { "start": 50265.02, "end": 50266.2, "probability": 0.8745 }, { "start": 50266.7, "end": 50268.02, "probability": 0.7408 }, { "start": 50268.6, "end": 50273.2, "probability": 0.7445 }, { "start": 50274.64, "end": 50278.66, "probability": 0.9974 }, { "start": 50278.66, "end": 50282.98, "probability": 0.9593 }, { "start": 50283.12, "end": 50283.44, "probability": 0.4728 }, { "start": 50284.2, "end": 50284.4, "probability": 0.0754 }, { "start": 50284.4, "end": 50285.1, "probability": 0.8174 }, { "start": 50285.44, "end": 50285.76, "probability": 0.7228 }, { "start": 50286.51, "end": 50287.48, "probability": 0.5358 }, { "start": 50287.86, "end": 50291.22, "probability": 0.988 }, { "start": 50291.22, "end": 50291.52, "probability": 0.3638 }, { "start": 50291.52, "end": 50291.62, "probability": 0.764 }, { "start": 50297.58, "end": 50298.52, "probability": 0.7391 }, { "start": 50299.14, "end": 50299.56, "probability": 0.0058 }, { "start": 50300.34, "end": 50303.7, "probability": 0.9879 }, { "start": 50304.22, "end": 50305.68, "probability": 0.9203 }, { "start": 50306.04, "end": 50308.04, "probability": 0.5313 }, { "start": 50310.32, "end": 50313.82, "probability": 0.9302 }, { "start": 50313.96, "end": 50314.8, "probability": 0.928 }, { "start": 50315.46, "end": 50317.58, "probability": 0.9932 }, { "start": 50317.76, "end": 50320.24, "probability": 0.6695 }, { "start": 50323.47, "end": 50325.44, "probability": 0.898 }, { "start": 50326.52, "end": 50328.42, "probability": 0.9623 }, { "start": 50328.42, "end": 50329.44, "probability": 0.7204 }, { "start": 50329.48, "end": 50329.96, "probability": 0.4373 }, { "start": 50330.1, "end": 50330.8, "probability": 0.9581 }, { "start": 50331.42, "end": 50332.71, "probability": 0.7568 }, { "start": 50333.4, "end": 50334.66, "probability": 0.8936 }, { "start": 50334.66, "end": 50335.42, "probability": 0.4448 }, { "start": 50337.26, "end": 50339.0, "probability": 0.97 }, { "start": 50339.02, "end": 50341.32, "probability": 0.7487 }, { "start": 50342.22, "end": 50344.06, "probability": 0.8804 }, { "start": 50344.92, "end": 50345.68, "probability": 0.8934 }, { "start": 50345.72, "end": 50347.4, "probability": 0.9961 }, { "start": 50347.86, "end": 50349.24, "probability": 0.8992 }, { "start": 50349.34, "end": 50349.62, "probability": 0.3435 }, { "start": 50351.24, "end": 50354.32, "probability": 0.9049 }, { "start": 50354.54, "end": 50355.86, "probability": 0.5806 }, { "start": 50356.12, "end": 50356.6, "probability": 0.9495 }, { "start": 50356.84, "end": 50357.26, "probability": 0.9698 }, { "start": 50359.4, "end": 50365.26, "probability": 0.9702 }, { "start": 50365.46, "end": 50366.48, "probability": 0.9647 }, { "start": 50366.56, "end": 50367.36, "probability": 0.8935 }, { "start": 50368.4, "end": 50369.16, "probability": 0.9831 }, { "start": 50369.86, "end": 50372.34, "probability": 0.9849 }, { "start": 50374.0, "end": 50375.66, "probability": 0.8209 }, { "start": 50376.54, "end": 50377.14, "probability": 0.7703 }, { "start": 50377.5, "end": 50378.19, "probability": 0.8321 }, { "start": 50378.7, "end": 50379.66, "probability": 0.9736 }, { "start": 50379.72, "end": 50380.72, "probability": 0.8807 }, { "start": 50380.76, "end": 50381.08, "probability": 0.8042 }, { "start": 50381.6, "end": 50381.66, "probability": 0.8206 }, { "start": 50381.86, "end": 50381.94, "probability": 0.5115 }, { "start": 50382.32, "end": 50382.94, "probability": 0.9392 }, { "start": 50383.02, "end": 50385.42, "probability": 0.9922 }, { "start": 50385.96, "end": 50387.74, "probability": 0.5407 }, { "start": 50388.52, "end": 50389.44, "probability": 0.934 }, { "start": 50389.9, "end": 50393.9, "probability": 0.9013 }, { "start": 50395.02, "end": 50396.02, "probability": 0.7187 }, { "start": 50396.62, "end": 50397.84, "probability": 0.8267 }, { "start": 50399.58, "end": 50400.7, "probability": 0.3634 }, { "start": 50401.08, "end": 50402.77, "probability": 0.7151 }, { "start": 50403.66, "end": 50403.82, "probability": 0.4686 }, { "start": 50404.58, "end": 50405.24, "probability": 0.8851 }, { "start": 50405.96, "end": 50408.8, "probability": 0.7563 }, { "start": 50409.56, "end": 50410.46, "probability": 0.8895 }, { "start": 50411.04, "end": 50413.78, "probability": 0.9908 }, { "start": 50414.5, "end": 50415.0, "probability": 0.0073 }, { "start": 50417.24, "end": 50422.24, "probability": 0.7168 }, { "start": 50424.02, "end": 50426.36, "probability": 0.9032 }, { "start": 50426.6, "end": 50427.98, "probability": 0.8536 }, { "start": 50428.04, "end": 50428.92, "probability": 0.8804 }, { "start": 50430.02, "end": 50436.28, "probability": 0.955 }, { "start": 50436.36, "end": 50438.61, "probability": 0.9929 }, { "start": 50438.82, "end": 50440.02, "probability": 0.7744 }, { "start": 50441.6, "end": 50442.2, "probability": 0.8404 }, { "start": 50443.24, "end": 50446.8, "probability": 0.8553 }, { "start": 50447.32, "end": 50449.36, "probability": 0.8804 }, { "start": 50449.58, "end": 50450.46, "probability": 0.9077 }, { "start": 50450.8, "end": 50451.84, "probability": 0.9857 }, { "start": 50452.0, "end": 50452.26, "probability": 0.8215 }, { "start": 50452.66, "end": 50454.7, "probability": 0.9884 }, { "start": 50455.44, "end": 50458.26, "probability": 0.9931 }, { "start": 50458.94, "end": 50460.24, "probability": 0.8529 }, { "start": 50460.6, "end": 50463.5, "probability": 0.8996 }, { "start": 50464.04, "end": 50465.82, "probability": 0.9315 }, { "start": 50466.56, "end": 50467.66, "probability": 0.9902 }, { "start": 50469.6, "end": 50471.34, "probability": 0.9977 }, { "start": 50472.34, "end": 50476.67, "probability": 0.9102 }, { "start": 50478.72, "end": 50481.16, "probability": 0.941 }, { "start": 50482.06, "end": 50482.62, "probability": 0.678 }, { "start": 50483.34, "end": 50484.32, "probability": 0.9501 }, { "start": 50484.9, "end": 50485.62, "probability": 0.7425 }, { "start": 50485.78, "end": 50486.52, "probability": 0.9698 }, { "start": 50486.86, "end": 50488.98, "probability": 0.9559 }, { "start": 50489.38, "end": 50490.2, "probability": 0.9202 }, { "start": 50491.34, "end": 50496.32, "probability": 0.9864 }, { "start": 50496.46, "end": 50497.22, "probability": 0.709 }, { "start": 50498.78, "end": 50499.16, "probability": 0.4436 }, { "start": 50499.82, "end": 50500.38, "probability": 0.9685 }, { "start": 50502.7, "end": 50503.78, "probability": 0.3648 }, { "start": 50504.0, "end": 50507.59, "probability": 0.5111 }, { "start": 50512.86, "end": 50512.96, "probability": 0.2366 }, { "start": 50514.6, "end": 50515.68, "probability": 0.5278 }, { "start": 50516.1, "end": 50519.42, "probability": 0.9788 }, { "start": 50520.34, "end": 50520.69, "probability": 0.6807 }, { "start": 50521.4, "end": 50522.68, "probability": 0.8521 }, { "start": 50524.28, "end": 50527.74, "probability": 0.996 }, { "start": 50527.74, "end": 50532.24, "probability": 0.9871 }, { "start": 50532.4, "end": 50533.02, "probability": 0.5251 }, { "start": 50533.66, "end": 50536.42, "probability": 0.1268 }, { "start": 50537.62, "end": 50540.34, "probability": 0.9808 }, { "start": 50540.94, "end": 50542.22, "probability": 0.4716 }, { "start": 50542.98, "end": 50543.58, "probability": 0.376 }, { "start": 50543.58, "end": 50544.66, "probability": 0.9895 }, { "start": 50544.86, "end": 50546.53, "probability": 0.9983 }, { "start": 50546.96, "end": 50548.14, "probability": 0.9939 }, { "start": 50548.78, "end": 50550.42, "probability": 0.966 }, { "start": 50551.54, "end": 50555.14, "probability": 0.9803 }, { "start": 50555.9, "end": 50557.68, "probability": 0.6105 }, { "start": 50558.24, "end": 50559.74, "probability": 0.8201 }, { "start": 50560.34, "end": 50562.74, "probability": 0.9813 }, { "start": 50563.38, "end": 50565.86, "probability": 0.917 }, { "start": 50566.36, "end": 50567.13, "probability": 0.9656 }, { "start": 50567.3, "end": 50568.16, "probability": 0.7338 }, { "start": 50568.64, "end": 50571.92, "probability": 0.7574 }, { "start": 50572.94, "end": 50573.64, "probability": 0.9399 }, { "start": 50574.24, "end": 50578.14, "probability": 0.9945 }, { "start": 50578.34, "end": 50578.58, "probability": 0.3136 }, { "start": 50578.94, "end": 50579.96, "probability": 0.9897 }, { "start": 50580.76, "end": 50581.18, "probability": 0.9424 }, { "start": 50582.1, "end": 50584.74, "probability": 0.9908 }, { "start": 50585.8, "end": 50589.72, "probability": 0.9753 }, { "start": 50590.08, "end": 50590.22, "probability": 0.4559 }, { "start": 50590.34, "end": 50590.54, "probability": 0.3412 }, { "start": 50591.8, "end": 50593.56, "probability": 0.8926 }, { "start": 50593.9, "end": 50596.14, "probability": 0.9787 }, { "start": 50596.94, "end": 50597.98, "probability": 0.9763 }, { "start": 50599.74, "end": 50601.32, "probability": 0.6434 }, { "start": 50601.86, "end": 50602.68, "probability": 0.4946 }, { "start": 50602.92, "end": 50603.36, "probability": 0.7554 }, { "start": 50603.48, "end": 50604.52, "probability": 0.6217 }, { "start": 50604.72, "end": 50606.12, "probability": 0.7326 }, { "start": 50607.0, "end": 50609.28, "probability": 0.8229 }, { "start": 50609.82, "end": 50611.54, "probability": 0.8101 }, { "start": 50613.76, "end": 50615.34, "probability": 0.8657 }, { "start": 50616.16, "end": 50621.8, "probability": 0.9762 }, { "start": 50624.26, "end": 50624.76, "probability": 0.7386 }, { "start": 50625.76, "end": 50629.6, "probability": 0.8545 }, { "start": 50630.36, "end": 50630.94, "probability": 0.6835 }, { "start": 50632.32, "end": 50635.44, "probability": 0.542 }, { "start": 50636.1, "end": 50637.04, "probability": 0.8086 }, { "start": 50637.88, "end": 50639.68, "probability": 0.9873 }, { "start": 50640.44, "end": 50641.7, "probability": 0.8299 }, { "start": 50643.68, "end": 50645.72, "probability": 0.9584 }, { "start": 50646.48, "end": 50647.21, "probability": 0.9705 }, { "start": 50648.02, "end": 50648.82, "probability": 0.9778 }, { "start": 50649.38, "end": 50650.26, "probability": 0.9397 }, { "start": 50650.78, "end": 50652.36, "probability": 0.99 }, { "start": 50653.98, "end": 50657.02, "probability": 0.9191 }, { "start": 50657.58, "end": 50660.44, "probability": 0.9885 }, { "start": 50660.86, "end": 50664.9, "probability": 0.9971 }, { "start": 50666.38, "end": 50671.18, "probability": 0.9908 }, { "start": 50671.86, "end": 50673.6, "probability": 0.8911 }, { "start": 50673.98, "end": 50676.04, "probability": 0.9273 }, { "start": 50676.28, "end": 50677.52, "probability": 0.8508 }, { "start": 50678.94, "end": 50682.7, "probability": 0.9914 }, { "start": 50682.7, "end": 50686.84, "probability": 0.9834 }, { "start": 50687.12, "end": 50688.26, "probability": 0.9277 }, { "start": 50688.66, "end": 50689.92, "probability": 0.8999 }, { "start": 50690.82, "end": 50692.11, "probability": 0.9712 }, { "start": 50692.94, "end": 50693.76, "probability": 0.8473 }, { "start": 50694.06, "end": 50695.08, "probability": 0.8207 }, { "start": 50695.6, "end": 50698.2, "probability": 0.9617 }, { "start": 50698.72, "end": 50700.2, "probability": 0.9678 }, { "start": 50700.54, "end": 50703.91, "probability": 0.9528 }, { "start": 50705.04, "end": 50706.38, "probability": 0.7669 }, { "start": 50707.14, "end": 50709.46, "probability": 0.9935 }, { "start": 50710.12, "end": 50711.06, "probability": 0.9805 }, { "start": 50712.49, "end": 50714.44, "probability": 0.986 }, { "start": 50715.16, "end": 50719.1, "probability": 0.9917 }, { "start": 50719.68, "end": 50721.88, "probability": 0.9924 }, { "start": 50722.08, "end": 50723.22, "probability": 0.8641 }, { "start": 50723.72, "end": 50725.44, "probability": 0.9954 }, { "start": 50727.4, "end": 50728.74, "probability": 0.8296 }, { "start": 50729.9, "end": 50732.14, "probability": 0.9737 }, { "start": 50743.68, "end": 50745.48, "probability": 0.9871 }, { "start": 50745.98, "end": 50746.12, "probability": 0.5916 }, { "start": 50746.74, "end": 50749.58, "probability": 0.9536 }, { "start": 50750.1, "end": 50750.42, "probability": 0.3587 }, { "start": 50750.46, "end": 50751.66, "probability": 0.9717 }, { "start": 50752.2, "end": 50754.4, "probability": 0.9948 }, { "start": 50754.5, "end": 50755.74, "probability": 0.9487 }, { "start": 50756.22, "end": 50759.24, "probability": 0.9954 }, { "start": 50759.34, "end": 50759.74, "probability": 0.5876 }, { "start": 50760.42, "end": 50761.72, "probability": 0.8787 }, { "start": 50763.6, "end": 50765.88, "probability": 0.9099 }, { "start": 50766.22, "end": 50768.1, "probability": 0.9795 }, { "start": 50768.68, "end": 50769.86, "probability": 0.8058 }, { "start": 50770.62, "end": 50771.58, "probability": 0.9304 }, { "start": 50772.6, "end": 50775.8, "probability": 0.9944 }, { "start": 50775.8, "end": 50778.76, "probability": 0.9991 }, { "start": 50778.9, "end": 50779.26, "probability": 0.5751 }, { "start": 50779.32, "end": 50780.22, "probability": 0.9436 }, { "start": 50780.8, "end": 50782.46, "probability": 0.9209 }, { "start": 50782.98, "end": 50786.32, "probability": 0.9497 }, { "start": 50786.9, "end": 50792.98, "probability": 0.9913 }, { "start": 50793.14, "end": 50794.38, "probability": 0.7353 }, { "start": 50794.82, "end": 50798.3, "probability": 0.8781 }, { "start": 50798.7, "end": 50799.91, "probability": 0.7748 }, { "start": 50801.4, "end": 50802.46, "probability": 0.91 }, { "start": 50803.16, "end": 50803.73, "probability": 0.7507 }, { "start": 50803.86, "end": 50804.94, "probability": 0.7477 }, { "start": 50805.08, "end": 50806.2, "probability": 0.8476 }, { "start": 50806.54, "end": 50807.72, "probability": 0.8242 }, { "start": 50807.84, "end": 50808.5, "probability": 0.9095 }, { "start": 50808.64, "end": 50808.84, "probability": 0.5251 }, { "start": 50808.9, "end": 50809.22, "probability": 0.8083 }, { "start": 50809.3, "end": 50810.62, "probability": 0.9864 }, { "start": 50810.8, "end": 50811.02, "probability": 0.8853 }, { "start": 50811.16, "end": 50811.98, "probability": 0.965 }, { "start": 50813.06, "end": 50815.32, "probability": 0.9137 }, { "start": 50815.38, "end": 50816.32, "probability": 0.9546 }, { "start": 50816.88, "end": 50820.02, "probability": 0.8087 }, { "start": 50820.46, "end": 50820.96, "probability": 0.7817 }, { "start": 50821.08, "end": 50822.36, "probability": 0.9606 }, { "start": 50822.78, "end": 50824.0, "probability": 0.9698 }, { "start": 50824.04, "end": 50825.32, "probability": 0.9677 }, { "start": 50826.18, "end": 50826.72, "probability": 0.7597 }, { "start": 50826.88, "end": 50829.06, "probability": 0.9255 }, { "start": 50829.24, "end": 50831.86, "probability": 0.9973 }, { "start": 50832.14, "end": 50834.58, "probability": 0.9186 }, { "start": 50835.18, "end": 50835.88, "probability": 0.6078 }, { "start": 50836.74, "end": 50838.36, "probability": 0.5509 }, { "start": 50838.76, "end": 50840.88, "probability": 0.9562 }, { "start": 50841.96, "end": 50844.44, "probability": 0.9326 }, { "start": 50844.8, "end": 50846.74, "probability": 0.8391 }, { "start": 50846.74, "end": 50849.66, "probability": 0.9323 }, { "start": 50850.14, "end": 50851.56, "probability": 0.7676 }, { "start": 50851.56, "end": 50854.22, "probability": 0.5323 }, { "start": 50854.76, "end": 50856.6, "probability": 0.9788 }, { "start": 50856.76, "end": 50858.36, "probability": 0.7147 }, { "start": 50858.36, "end": 50858.78, "probability": 0.8362 }, { "start": 50858.84, "end": 50860.86, "probability": 0.932 }, { "start": 50861.02, "end": 50862.44, "probability": 0.9851 }, { "start": 50862.98, "end": 50865.84, "probability": 0.8913 }, { "start": 50866.42, "end": 50868.66, "probability": 0.6445 }, { "start": 50869.22, "end": 50869.74, "probability": 0.7198 }, { "start": 50870.32, "end": 50871.86, "probability": 0.821 }, { "start": 50872.18, "end": 50873.62, "probability": 0.6998 }, { "start": 50873.64, "end": 50873.9, "probability": 0.9164 }, { "start": 50874.42, "end": 50875.12, "probability": 0.8799 }, { "start": 50875.18, "end": 50877.28, "probability": 0.9949 }, { "start": 50877.54, "end": 50879.18, "probability": 0.9521 }, { "start": 50879.28, "end": 50879.82, "probability": 0.9368 }, { "start": 50880.8, "end": 50881.43, "probability": 0.8917 }, { "start": 50882.92, "end": 50889.18, "probability": 0.9839 }, { "start": 50889.34, "end": 50889.76, "probability": 0.9731 }, { "start": 50890.46, "end": 50892.1, "probability": 0.9834 }, { "start": 50893.52, "end": 50894.14, "probability": 0.7168 }, { "start": 50894.8, "end": 50898.24, "probability": 0.9503 }, { "start": 50898.28, "end": 50900.22, "probability": 0.9364 }, { "start": 50901.42, "end": 50901.86, "probability": 0.9728 }, { "start": 50903.22, "end": 50906.86, "probability": 0.8533 }, { "start": 50907.52, "end": 50908.82, "probability": 0.6159 }, { "start": 50909.5, "end": 50909.96, "probability": 0.5313 }, { "start": 50910.52, "end": 50912.0, "probability": 0.9994 }, { "start": 50912.56, "end": 50914.7, "probability": 0.7496 }, { "start": 50914.7, "end": 50915.9, "probability": 0.6434 }, { "start": 50916.08, "end": 50916.72, "probability": 0.6885 }, { "start": 50916.82, "end": 50920.92, "probability": 0.998 }, { "start": 50921.52, "end": 50921.72, "probability": 0.5467 }, { "start": 50922.42, "end": 50923.55, "probability": 0.7465 }, { "start": 50924.2, "end": 50925.28, "probability": 0.8903 }, { "start": 50925.36, "end": 50928.02, "probability": 0.9945 }, { "start": 50928.12, "end": 50928.66, "probability": 0.9097 }, { "start": 50929.62, "end": 50932.54, "probability": 0.8106 }, { "start": 50932.64, "end": 50934.04, "probability": 0.8532 }, { "start": 50934.38, "end": 50936.22, "probability": 0.9955 }, { "start": 50938.26, "end": 50942.0, "probability": 0.99 }, { "start": 50943.08, "end": 50947.38, "probability": 0.9984 }, { "start": 50948.3, "end": 50949.4, "probability": 0.867 }, { "start": 50950.34, "end": 50954.08, "probability": 0.9331 }, { "start": 50954.82, "end": 50955.28, "probability": 0.9826 }, { "start": 50955.84, "end": 50956.62, "probability": 0.9849 }, { "start": 50957.34, "end": 50958.5, "probability": 0.9998 }, { "start": 50959.84, "end": 50960.52, "probability": 0.8371 }, { "start": 50961.68, "end": 50962.06, "probability": 0.6898 }, { "start": 50962.9, "end": 50963.62, "probability": 0.8502 }, { "start": 50964.42, "end": 50967.56, "probability": 0.9481 }, { "start": 50967.72, "end": 50968.82, "probability": 0.83 }, { "start": 50969.14, "end": 50969.34, "probability": 0.6096 }, { "start": 50969.54, "end": 50970.22, "probability": 0.9734 }, { "start": 50970.34, "end": 50970.9, "probability": 0.8518 }, { "start": 50971.74, "end": 50972.56, "probability": 0.7474 }, { "start": 50973.18, "end": 50974.7, "probability": 0.836 }, { "start": 50975.98, "end": 50977.66, "probability": 0.998 }, { "start": 50978.3, "end": 50979.9, "probability": 0.9985 }, { "start": 50980.02, "end": 50981.7, "probability": 0.8652 }, { "start": 50982.16, "end": 50983.54, "probability": 0.9939 }, { "start": 50984.86, "end": 50988.65, "probability": 0.9665 }, { "start": 50989.3, "end": 50991.36, "probability": 0.9185 }, { "start": 50992.28, "end": 50994.74, "probability": 0.1699 }, { "start": 50994.74, "end": 50996.14, "probability": 0.556 }, { "start": 50998.43, "end": 51000.18, "probability": 0.5625 }, { "start": 51000.44, "end": 51001.42, "probability": 0.9367 }, { "start": 51002.06, "end": 51002.94, "probability": 0.6879 }, { "start": 51003.64, "end": 51007.66, "probability": 0.9902 }, { "start": 51008.94, "end": 51010.12, "probability": 0.8611 }, { "start": 51010.62, "end": 51012.12, "probability": 0.7442 }, { "start": 51012.18, "end": 51013.67, "probability": 0.8204 }, { "start": 51014.12, "end": 51016.06, "probability": 0.9722 }, { "start": 51016.6, "end": 51016.9, "probability": 0.6919 }, { "start": 51017.16, "end": 51020.98, "probability": 0.6105 }, { "start": 51023.26, "end": 51023.26, "probability": 0.019 }, { "start": 51023.26, "end": 51023.26, "probability": 0.082 }, { "start": 51023.26, "end": 51025.54, "probability": 0.4453 }, { "start": 51025.94, "end": 51026.72, "probability": 0.9018 }, { "start": 51027.3, "end": 51027.58, "probability": 0.8573 }, { "start": 51028.14, "end": 51029.34, "probability": 0.9963 }, { "start": 51029.88, "end": 51030.82, "probability": 0.4937 }, { "start": 51030.98, "end": 51033.12, "probability": 0.9874 }, { "start": 51033.64, "end": 51037.26, "probability": 0.9982 }, { "start": 51037.58, "end": 51038.25, "probability": 0.9636 }, { "start": 51038.54, "end": 51039.06, "probability": 0.6953 }, { "start": 51040.04, "end": 51041.38, "probability": 0.9891 }, { "start": 51041.5, "end": 51044.68, "probability": 0.9563 }, { "start": 51045.16, "end": 51049.72, "probability": 0.9954 }, { "start": 51050.32, "end": 51052.98, "probability": 0.9047 }, { "start": 51053.02, "end": 51057.5, "probability": 0.9785 }, { "start": 51058.2, "end": 51058.84, "probability": 0.7886 }, { "start": 51059.0, "end": 51060.74, "probability": 0.7949 }, { "start": 51060.74, "end": 51062.9, "probability": 0.9749 }, { "start": 51063.18, "end": 51067.92, "probability": 0.6525 }, { "start": 51068.56, "end": 51071.54, "probability": 0.7987 }, { "start": 51072.1, "end": 51073.38, "probability": 0.7382 }, { "start": 51073.6, "end": 51074.2, "probability": 0.4272 }, { "start": 51074.3, "end": 51076.17, "probability": 0.8064 }, { "start": 51076.64, "end": 51079.76, "probability": 0.6978 }, { "start": 51080.34, "end": 51082.2, "probability": 0.9568 }, { "start": 51083.14, "end": 51087.0, "probability": 0.9922 }, { "start": 51087.6, "end": 51090.68, "probability": 0.9586 }, { "start": 51091.32, "end": 51092.67, "probability": 0.9966 }, { "start": 51094.85, "end": 51100.26, "probability": 0.9897 }, { "start": 51100.26, "end": 51104.46, "probability": 0.9971 }, { "start": 51104.98, "end": 51106.9, "probability": 0.8201 }, { "start": 51113.64, "end": 51114.4, "probability": 0.9152 }, { "start": 51116.0, "end": 51119.28, "probability": 0.9983 }, { "start": 51120.18, "end": 51122.16, "probability": 0.9531 }, { "start": 51122.92, "end": 51124.34, "probability": 0.9728 }, { "start": 51125.32, "end": 51128.1, "probability": 0.9123 }, { "start": 51128.96, "end": 51130.28, "probability": 0.9946 }, { "start": 51131.14, "end": 51131.92, "probability": 0.9569 }, { "start": 51132.5, "end": 51135.14, "probability": 0.9811 }, { "start": 51136.32, "end": 51137.92, "probability": 0.9781 }, { "start": 51140.2, "end": 51144.72, "probability": 0.9945 }, { "start": 51145.76, "end": 51146.3, "probability": 0.6864 }, { "start": 51146.86, "end": 51150.79, "probability": 0.9762 }, { "start": 51150.86, "end": 51154.02, "probability": 0.9998 }, { "start": 51158.48, "end": 51161.02, "probability": 0.9408 }, { "start": 51161.26, "end": 51161.94, "probability": 0.9977 }, { "start": 51163.66, "end": 51165.96, "probability": 0.7671 }, { "start": 51166.16, "end": 51167.86, "probability": 0.9615 }, { "start": 51168.32, "end": 51171.08, "probability": 0.9712 }, { "start": 51171.52, "end": 51172.24, "probability": 0.5007 }, { "start": 51172.54, "end": 51173.0, "probability": 0.3736 }, { "start": 51174.34, "end": 51175.44, "probability": 0.9124 }, { "start": 51175.82, "end": 51177.02, "probability": 0.9912 }, { "start": 51177.1, "end": 51178.04, "probability": 0.7764 }, { "start": 51179.44, "end": 51181.88, "probability": 0.7392 }, { "start": 51182.3, "end": 51183.58, "probability": 0.9855 }, { "start": 51183.6, "end": 51184.48, "probability": 0.8378 }, { "start": 51185.08, "end": 51188.86, "probability": 0.9834 }, { "start": 51189.84, "end": 51190.42, "probability": 0.7941 }, { "start": 51190.94, "end": 51194.04, "probability": 0.9931 }, { "start": 51194.62, "end": 51195.66, "probability": 0.7631 }, { "start": 51196.18, "end": 51198.8, "probability": 0.978 }, { "start": 51198.88, "end": 51199.81, "probability": 0.9414 }, { "start": 51200.46, "end": 51202.18, "probability": 0.9968 }, { "start": 51203.12, "end": 51205.84, "probability": 0.1531 }, { "start": 51205.96, "end": 51209.02, "probability": 0.6661 }, { "start": 51209.48, "end": 51210.86, "probability": 0.8909 }, { "start": 51211.02, "end": 51212.2, "probability": 0.9458 }, { "start": 51212.24, "end": 51214.9, "probability": 0.9527 }, { "start": 51215.56, "end": 51215.86, "probability": 0.4638 }, { "start": 51215.96, "end": 51216.3, "probability": 0.1831 }, { "start": 51217.26, "end": 51219.12, "probability": 0.5017 }, { "start": 51219.18, "end": 51219.74, "probability": 0.6171 }, { "start": 51219.78, "end": 51219.98, "probability": 0.6376 }, { "start": 51220.0, "end": 51220.0, "probability": 0.1497 }, { "start": 51220.0, "end": 51220.0, "probability": 0.1725 }, { "start": 51220.0, "end": 51220.0, "probability": 0.7144 }, { "start": 51220.0, "end": 51221.18, "probability": 0.4247 }, { "start": 51221.18, "end": 51222.75, "probability": 0.7827 }, { "start": 51225.18, "end": 51225.28, "probability": 0.0552 }, { "start": 51225.28, "end": 51225.28, "probability": 0.0836 }, { "start": 51225.28, "end": 51225.28, "probability": 0.005 }, { "start": 51225.28, "end": 51227.14, "probability": 0.4872 }, { "start": 51227.14, "end": 51230.72, "probability": 0.3019 }, { "start": 51231.56, "end": 51232.77, "probability": 0.0341 }, { "start": 51235.16, "end": 51235.16, "probability": 0.6692 }, { "start": 51235.16, "end": 51235.16, "probability": 0.0658 }, { "start": 51235.16, "end": 51235.16, "probability": 0.1113 }, { "start": 51235.16, "end": 51235.16, "probability": 0.2257 }, { "start": 51235.16, "end": 51235.16, "probability": 0.1689 }, { "start": 51235.16, "end": 51236.14, "probability": 0.1307 }, { "start": 51236.82, "end": 51240.1, "probability": 0.9722 }, { "start": 51240.44, "end": 51241.8, "probability": 0.7697 }, { "start": 51242.44, "end": 51243.58, "probability": 0.6045 }, { "start": 51244.14, "end": 51245.48, "probability": 0.4618 }, { "start": 51246.82, "end": 51247.44, "probability": 0.3768 }, { "start": 51247.46, "end": 51251.22, "probability": 0.8766 }, { "start": 51251.56, "end": 51255.58, "probability": 0.9839 }, { "start": 51256.1, "end": 51259.2, "probability": 0.9453 }, { "start": 51259.8, "end": 51261.58, "probability": 0.8749 }, { "start": 51263.88, "end": 51267.1, "probability": 0.9988 }, { "start": 51269.78, "end": 51271.04, "probability": 0.9882 }, { "start": 51272.64, "end": 51274.2, "probability": 0.9916 }, { "start": 51274.36, "end": 51274.92, "probability": 0.5173 }, { "start": 51277.52, "end": 51282.7, "probability": 0.9951 }, { "start": 51283.26, "end": 51287.56, "probability": 0.9892 }, { "start": 51289.16, "end": 51293.66, "probability": 0.9855 }, { "start": 51293.66, "end": 51297.4, "probability": 0.9796 }, { "start": 51298.18, "end": 51299.78, "probability": 0.9845 }, { "start": 51300.64, "end": 51301.64, "probability": 0.8391 }, { "start": 51301.74, "end": 51305.34, "probability": 0.941 }, { "start": 51306.82, "end": 51308.78, "probability": 0.7715 }, { "start": 51308.84, "end": 51311.38, "probability": 0.8821 }, { "start": 51312.02, "end": 51313.99, "probability": 0.9678 }, { "start": 51314.08, "end": 51314.44, "probability": 0.5474 }, { "start": 51314.56, "end": 51319.54, "probability": 0.9756 }, { "start": 51320.02, "end": 51320.62, "probability": 0.8288 }, { "start": 51320.96, "end": 51324.28, "probability": 0.9579 }, { "start": 51324.52, "end": 51326.4, "probability": 0.8156 }, { "start": 51326.5, "end": 51327.34, "probability": 0.983 }, { "start": 51328.12, "end": 51329.26, "probability": 0.7249 }, { "start": 51330.68, "end": 51333.62, "probability": 0.9883 }, { "start": 51334.48, "end": 51338.18, "probability": 0.8864 }, { "start": 51338.36, "end": 51342.54, "probability": 0.9699 }, { "start": 51343.13, "end": 51346.12, "probability": 0.9709 }, { "start": 51347.78, "end": 51349.34, "probability": 0.9927 }, { "start": 51349.74, "end": 51352.7, "probability": 0.9198 }, { "start": 51353.18, "end": 51353.9, "probability": 0.7377 }, { "start": 51355.12, "end": 51356.26, "probability": 0.3423 }, { "start": 51356.94, "end": 51359.03, "probability": 0.9898 }, { "start": 51361.48, "end": 51363.32, "probability": 0.9398 }, { "start": 51364.28, "end": 51365.4, "probability": 0.5625 }, { "start": 51366.82, "end": 51368.68, "probability": 0.8627 }, { "start": 51369.78, "end": 51371.33, "probability": 0.6427 }, { "start": 51371.98, "end": 51372.58, "probability": 0.8008 }, { "start": 51374.0, "end": 51379.34, "probability": 0.9652 }, { "start": 51380.4, "end": 51381.38, "probability": 0.8267 }, { "start": 51382.16, "end": 51384.03, "probability": 0.9897 }, { "start": 51384.78, "end": 51387.16, "probability": 0.9889 }, { "start": 51387.7, "end": 51390.34, "probability": 0.9751 }, { "start": 51390.78, "end": 51392.08, "probability": 0.9956 }, { "start": 51393.14, "end": 51396.5, "probability": 0.9967 }, { "start": 51397.1, "end": 51398.56, "probability": 0.8922 }, { "start": 51398.72, "end": 51400.78, "probability": 0.9465 }, { "start": 51402.9, "end": 51404.56, "probability": 0.993 }, { "start": 51405.0, "end": 51410.58, "probability": 0.942 }, { "start": 51410.6, "end": 51416.82, "probability": 0.9951 }, { "start": 51417.48, "end": 51417.82, "probability": 0.5833 }, { "start": 51419.68, "end": 51423.06, "probability": 0.9928 }, { "start": 51423.86, "end": 51427.3, "probability": 0.9839 }, { "start": 51427.84, "end": 51431.16, "probability": 0.9886 }, { "start": 51431.16, "end": 51434.22, "probability": 0.9257 }, { "start": 51434.7, "end": 51436.08, "probability": 0.8906 }, { "start": 51436.4, "end": 51439.0, "probability": 0.998 }, { "start": 51439.78, "end": 51445.56, "probability": 0.9946 }, { "start": 51445.64, "end": 51448.48, "probability": 0.9786 }, { "start": 51448.92, "end": 51452.58, "probability": 0.9591 }, { "start": 51452.68, "end": 51454.36, "probability": 0.9233 }, { "start": 51454.52, "end": 51454.92, "probability": 0.2703 }, { "start": 51455.98, "end": 51459.02, "probability": 0.6168 }, { "start": 51462.14, "end": 51463.78, "probability": 0.9105 }, { "start": 51464.52, "end": 51465.54, "probability": 0.8633 }, { "start": 51467.66, "end": 51469.52, "probability": 0.3022 }, { "start": 51483.74, "end": 51485.72, "probability": 0.1222 }, { "start": 51486.48, "end": 51489.8, "probability": 0.9905 }, { "start": 51493.58, "end": 51494.9, "probability": 0.6242 }, { "start": 51495.12, "end": 51496.72, "probability": 0.6401 }, { "start": 51497.84, "end": 51498.1, "probability": 0.3781 }, { "start": 51498.26, "end": 51498.5, "probability": 0.4399 }, { "start": 51498.93, "end": 51502.88, "probability": 0.4498 }, { "start": 51502.98, "end": 51503.9, "probability": 0.5064 }, { "start": 51504.44, "end": 51506.4, "probability": 0.3555 }, { "start": 51506.52, "end": 51507.14, "probability": 0.4102 }, { "start": 51507.74, "end": 51508.27, "probability": 0.7139 }, { "start": 51508.6, "end": 51509.24, "probability": 0.7754 }, { "start": 51509.4, "end": 51510.02, "probability": 0.1172 }, { "start": 51510.48, "end": 51511.76, "probability": 0.2001 }, { "start": 51511.76, "end": 51511.9, "probability": 0.453 }, { "start": 51512.34, "end": 51514.42, "probability": 0.8899 }, { "start": 51514.52, "end": 51514.66, "probability": 0.0017 }, { "start": 51515.66, "end": 51516.88, "probability": 0.6684 }, { "start": 51517.92, "end": 51518.72, "probability": 0.8972 }, { "start": 51518.74, "end": 51519.46, "probability": 0.5069 }, { "start": 51519.62, "end": 51520.02, "probability": 0.9518 }, { "start": 51520.12, "end": 51520.66, "probability": 0.8724 }, { "start": 51521.12, "end": 51521.62, "probability": 0.8789 }, { "start": 51522.28, "end": 51524.96, "probability": 0.2591 }, { "start": 51526.72, "end": 51526.84, "probability": 0.306 }, { "start": 51526.84, "end": 51527.6, "probability": 0.6807 }, { "start": 51527.9, "end": 51528.92, "probability": 0.4196 }, { "start": 51529.7, "end": 51531.46, "probability": 0.6066 }, { "start": 51531.46, "end": 51532.93, "probability": 0.9932 }, { "start": 51536.08, "end": 51536.15, "probability": 0.0657 }, { "start": 51537.15, "end": 51538.03, "probability": 0.1437 }, { "start": 51539.12, "end": 51541.42, "probability": 0.2292 }, { "start": 51542.72, "end": 51542.72, "probability": 0.185 }, { "start": 51542.72, "end": 51542.72, "probability": 0.1094 }, { "start": 51542.72, "end": 51542.72, "probability": 0.0251 }, { "start": 51542.72, "end": 51542.72, "probability": 0.2348 }, { "start": 51542.72, "end": 51542.72, "probability": 0.1189 }, { "start": 51542.72, "end": 51542.72, "probability": 0.2431 }, { "start": 51542.72, "end": 51542.72, "probability": 0.1065 }, { "start": 51542.72, "end": 51543.06, "probability": 0.2016 }, { "start": 51543.46, "end": 51546.92, "probability": 0.9083 }, { "start": 51547.76, "end": 51549.5, "probability": 0.8491 }, { "start": 51549.82, "end": 51551.1, "probability": 0.9973 }, { "start": 51551.82, "end": 51552.82, "probability": 0.9971 }, { "start": 51553.38, "end": 51553.92, "probability": 0.6987 }, { "start": 51554.0, "end": 51555.8, "probability": 0.7835 }, { "start": 51557.72, "end": 51560.36, "probability": 0.9598 }, { "start": 51561.72, "end": 51562.64, "probability": 0.6515 }, { "start": 51563.26, "end": 51564.56, "probability": 0.9983 }, { "start": 51565.16, "end": 51565.54, "probability": 0.9941 }, { "start": 51566.18, "end": 51567.34, "probability": 0.9147 }, { "start": 51568.52, "end": 51570.4, "probability": 0.9737 }, { "start": 51571.18, "end": 51572.88, "probability": 0.9757 }, { "start": 51573.06, "end": 51575.9, "probability": 0.9881 }, { "start": 51576.06, "end": 51580.62, "probability": 0.8473 }, { "start": 51580.62, "end": 51583.16, "probability": 0.4745 }, { "start": 51583.38, "end": 51585.58, "probability": 0.7977 }, { "start": 51586.32, "end": 51587.66, "probability": 0.7778 }, { "start": 51587.82, "end": 51588.04, "probability": 0.5575 }, { "start": 51588.88, "end": 51589.68, "probability": 0.844 }, { "start": 51592.18, "end": 51594.2, "probability": 0.5997 }, { "start": 51594.82, "end": 51595.46, "probability": 0.8065 }, { "start": 51595.6, "end": 51596.2, "probability": 0.7711 }, { "start": 51596.26, "end": 51597.34, "probability": 0.8065 }, { "start": 51597.88, "end": 51599.02, "probability": 0.412 }, { "start": 51599.58, "end": 51600.08, "probability": 0.2392 }, { "start": 51601.29, "end": 51602.48, "probability": 0.9423 }, { "start": 51602.52, "end": 51603.26, "probability": 0.8197 }, { "start": 51603.64, "end": 51604.16, "probability": 0.8424 }, { "start": 51604.38, "end": 51604.56, "probability": 0.8384 }, { "start": 51605.16, "end": 51607.0, "probability": 0.46 }, { "start": 51607.06, "end": 51609.28, "probability": 0.9869 }, { "start": 51609.76, "end": 51611.16, "probability": 0.7682 }, { "start": 51611.64, "end": 51615.46, "probability": 0.948 }, { "start": 51616.1, "end": 51618.56, "probability": 0.9841 }, { "start": 51619.26, "end": 51620.66, "probability": 0.894 }, { "start": 51621.42, "end": 51622.64, "probability": 0.9719 }, { "start": 51624.02, "end": 51626.92, "probability": 0.9581 }, { "start": 51627.6, "end": 51629.36, "probability": 0.987 }, { "start": 51629.76, "end": 51634.84, "probability": 0.924 }, { "start": 51635.36, "end": 51636.86, "probability": 0.6464 }, { "start": 51637.92, "end": 51640.52, "probability": 0.9882 }, { "start": 51641.34, "end": 51642.34, "probability": 0.6934 }, { "start": 51643.06, "end": 51646.32, "probability": 0.9744 }, { "start": 51646.64, "end": 51647.62, "probability": 0.6232 }, { "start": 51648.54, "end": 51651.7, "probability": 0.8511 }, { "start": 51652.12, "end": 51654.06, "probability": 0.9951 }, { "start": 51654.3, "end": 51659.12, "probability": 0.9557 }, { "start": 51659.48, "end": 51661.12, "probability": 0.8797 }, { "start": 51662.36, "end": 51662.76, "probability": 0.7245 }, { "start": 51663.42, "end": 51664.3, "probability": 0.8521 }, { "start": 51664.96, "end": 51669.06, "probability": 0.9752 }, { "start": 51669.76, "end": 51671.0, "probability": 0.9825 }, { "start": 51671.58, "end": 51675.02, "probability": 0.9916 }, { "start": 51676.52, "end": 51678.76, "probability": 0.8145 }, { "start": 51679.74, "end": 51682.02, "probability": 0.8988 }, { "start": 51682.62, "end": 51682.9, "probability": 0.7058 }, { "start": 51683.66, "end": 51687.98, "probability": 0.9806 }, { "start": 51689.82, "end": 51690.43, "probability": 0.5939 }, { "start": 51691.38, "end": 51695.62, "probability": 0.6667 }, { "start": 51695.62, "end": 51698.06, "probability": 0.9949 }, { "start": 51698.56, "end": 51699.18, "probability": 0.6503 }, { "start": 51700.44, "end": 51703.64, "probability": 0.7376 }, { "start": 51706.9, "end": 51709.16, "probability": 0.8811 }, { "start": 51709.9, "end": 51711.84, "probability": 0.8259 }, { "start": 51712.32, "end": 51716.55, "probability": 0.9787 }, { "start": 51718.1, "end": 51720.92, "probability": 0.9956 }, { "start": 51721.22, "end": 51724.52, "probability": 0.7113 }, { "start": 51725.04, "end": 51727.48, "probability": 0.9197 }, { "start": 51728.78, "end": 51730.42, "probability": 0.9883 }, { "start": 51731.26, "end": 51736.28, "probability": 0.9897 }, { "start": 51736.52, "end": 51740.1, "probability": 0.9972 }, { "start": 51740.88, "end": 51744.68, "probability": 0.9949 }, { "start": 51745.04, "end": 51746.16, "probability": 0.9888 }, { "start": 51746.74, "end": 51747.9, "probability": 0.8722 }, { "start": 51748.7, "end": 51749.54, "probability": 0.9976 }, { "start": 51751.14, "end": 51751.88, "probability": 0.6625 }, { "start": 51752.26, "end": 51755.5, "probability": 0.9463 }, { "start": 51756.06, "end": 51758.06, "probability": 0.8332 }, { "start": 51758.72, "end": 51760.8, "probability": 0.9812 }, { "start": 51762.6, "end": 51767.5, "probability": 0.9863 }, { "start": 51768.14, "end": 51770.48, "probability": 0.9907 }, { "start": 51771.44, "end": 51774.1, "probability": 0.9648 }, { "start": 51775.72, "end": 51776.42, "probability": 0.5316 }, { "start": 51776.96, "end": 51778.38, "probability": 0.9021 }, { "start": 51778.5, "end": 51778.78, "probability": 0.384 }, { "start": 51778.88, "end": 51779.81, "probability": 0.971 }, { "start": 51780.3, "end": 51785.28, "probability": 0.9915 }, { "start": 51785.96, "end": 51786.5, "probability": 0.9467 }, { "start": 51786.84, "end": 51790.0, "probability": 0.9683 }, { "start": 51790.5, "end": 51792.11, "probability": 0.9878 }, { "start": 51793.06, "end": 51796.18, "probability": 0.9943 }, { "start": 51796.9, "end": 51799.01, "probability": 0.7861 }, { "start": 51799.66, "end": 51801.22, "probability": 0.9894 }, { "start": 51802.58, "end": 51803.52, "probability": 0.9712 }, { "start": 51804.14, "end": 51809.58, "probability": 0.9708 }, { "start": 51810.1, "end": 51810.82, "probability": 0.9775 }, { "start": 51812.0, "end": 51816.66, "probability": 0.996 }, { "start": 51817.18, "end": 51820.28, "probability": 0.9963 }, { "start": 51821.08, "end": 51822.62, "probability": 0.75 }, { "start": 51823.34, "end": 51824.58, "probability": 0.861 }, { "start": 51825.34, "end": 51825.54, "probability": 0.7297 }, { "start": 51825.58, "end": 51829.0, "probability": 0.7269 }, { "start": 51831.16, "end": 51835.26, "probability": 0.9178 }, { "start": 51835.66, "end": 51838.68, "probability": 0.9658 }, { "start": 51839.2, "end": 51840.42, "probability": 0.6335 }, { "start": 51842.16, "end": 51843.66, "probability": 0.9963 }, { "start": 51844.32, "end": 51845.56, "probability": 0.955 }, { "start": 51845.68, "end": 51847.84, "probability": 0.741 }, { "start": 51848.66, "end": 51850.16, "probability": 0.9961 }, { "start": 51850.58, "end": 51854.06, "probability": 0.9348 }, { "start": 51855.16, "end": 51856.08, "probability": 0.9143 }, { "start": 51857.62, "end": 51858.48, "probability": 0.8927 }, { "start": 51859.62, "end": 51861.66, "probability": 0.9698 }, { "start": 51861.78, "end": 51866.08, "probability": 0.9922 }, { "start": 51868.22, "end": 51868.86, "probability": 0.9517 }, { "start": 51869.92, "end": 51874.62, "probability": 0.978 }, { "start": 51875.28, "end": 51876.9, "probability": 0.9978 }, { "start": 51877.42, "end": 51879.32, "probability": 0.777 }, { "start": 51879.88, "end": 51880.86, "probability": 0.7573 }, { "start": 51881.4, "end": 51883.48, "probability": 0.9475 }, { "start": 51883.96, "end": 51884.7, "probability": 0.9257 }, { "start": 51885.18, "end": 51885.84, "probability": 0.8309 }, { "start": 51886.26, "end": 51888.8, "probability": 0.9497 }, { "start": 51889.26, "end": 51890.34, "probability": 0.9049 }, { "start": 51890.94, "end": 51893.96, "probability": 0.9835 }, { "start": 51894.54, "end": 51895.98, "probability": 0.9924 }, { "start": 51896.2, "end": 51898.92, "probability": 0.9995 }, { "start": 51899.38, "end": 51902.56, "probability": 0.9969 }, { "start": 51903.38, "end": 51903.9, "probability": 0.619 }, { "start": 51904.46, "end": 51908.4, "probability": 0.8284 }, { "start": 51909.1, "end": 51913.08, "probability": 0.9742 }, { "start": 51914.34, "end": 51917.86, "probability": 0.9422 }, { "start": 51917.86, "end": 51921.74, "probability": 0.9979 }, { "start": 51922.56, "end": 51927.04, "probability": 0.9948 }, { "start": 51927.12, "end": 51927.96, "probability": 0.9673 }, { "start": 51928.18, "end": 51928.56, "probability": 0.9031 }, { "start": 51929.74, "end": 51932.66, "probability": 0.985 }, { "start": 51932.98, "end": 51933.64, "probability": 0.2038 }, { "start": 51935.06, "end": 51937.46, "probability": 0.6357 }, { "start": 51938.92, "end": 51942.42, "probability": 0.7767 }, { "start": 51943.4, "end": 51944.1, "probability": 0.9692 }, { "start": 51944.96, "end": 51946.58, "probability": 0.5818 }, { "start": 51946.96, "end": 51948.8, "probability": 0.9941 }, { "start": 51948.98, "end": 51951.64, "probability": 0.9717 }, { "start": 51952.7, "end": 51952.88, "probability": 0.7547 }, { "start": 51953.56, "end": 51954.02, "probability": 0.4666 }, { "start": 51954.74, "end": 51958.2, "probability": 0.8044 }, { "start": 51959.1, "end": 51962.56, "probability": 0.986 }, { "start": 51962.56, "end": 51967.3, "probability": 0.9927 }, { "start": 51967.74, "end": 51969.0, "probability": 0.5175 }, { "start": 51969.16, "end": 51969.54, "probability": 0.6237 }, { "start": 51970.24, "end": 51971.5, "probability": 0.9 }, { "start": 51971.82, "end": 51973.6, "probability": 0.8067 }, { "start": 51974.2, "end": 51975.46, "probability": 0.668 }, { "start": 51976.16, "end": 51977.46, "probability": 0.7245 }, { "start": 51977.52, "end": 51978.18, "probability": 0.6016 }, { "start": 51978.4, "end": 51979.08, "probability": 0.7588 }, { "start": 51979.54, "end": 51980.62, "probability": 0.9959 }, { "start": 51981.3, "end": 51983.58, "probability": 0.9836 }, { "start": 51983.62, "end": 51988.46, "probability": 0.8172 }, { "start": 51988.7, "end": 51989.44, "probability": 0.3947 }, { "start": 51989.54, "end": 51990.7, "probability": 0.7116 }, { "start": 51990.82, "end": 51993.22, "probability": 0.9836 }, { "start": 51993.54, "end": 51995.08, "probability": 0.5442 }, { "start": 51995.28, "end": 51995.8, "probability": 0.9086 }, { "start": 51995.82, "end": 51996.69, "probability": 0.9908 }, { "start": 51996.72, "end": 51996.82, "probability": 0.0456 }, { "start": 51996.82, "end": 51997.17, "probability": 0.3825 }, { "start": 51997.92, "end": 51999.12, "probability": 0.6873 }, { "start": 51999.24, "end": 52001.72, "probability": 0.4166 }, { "start": 52002.4, "end": 52002.92, "probability": 0.5704 }, { "start": 52004.48, "end": 52005.46, "probability": 0.0388 }, { "start": 52005.46, "end": 52006.06, "probability": 0.1825 }, { "start": 52007.1, "end": 52008.7, "probability": 0.7708 }, { "start": 52009.22, "end": 52010.0, "probability": 0.6936 }, { "start": 52010.87, "end": 52012.32, "probability": 0.776 }, { "start": 52012.44, "end": 52012.44, "probability": 0.6365 }, { "start": 52012.44, "end": 52012.8, "probability": 0.5378 }, { "start": 52013.0, "end": 52013.98, "probability": 0.9495 }, { "start": 52014.32, "end": 52017.26, "probability": 0.8684 }, { "start": 52017.94, "end": 52018.28, "probability": 0.4103 }, { "start": 52019.5, "end": 52019.62, "probability": 0.5674 }, { "start": 52019.62, "end": 52020.42, "probability": 0.5976 }, { "start": 52020.82, "end": 52022.32, "probability": 0.9873 }, { "start": 52022.34, "end": 52026.08, "probability": 0.9763 }, { "start": 52026.08, "end": 52026.6, "probability": 0.7719 }, { "start": 52027.16, "end": 52031.74, "probability": 0.9366 }, { "start": 52032.28, "end": 52034.1, "probability": 0.9697 }, { "start": 52035.02, "end": 52037.44, "probability": 0.967 }, { "start": 52037.8, "end": 52039.54, "probability": 0.9917 }, { "start": 52040.12, "end": 52041.0, "probability": 0.7885 }, { "start": 52041.38, "end": 52042.23, "probability": 0.99 }, { "start": 52042.74, "end": 52043.48, "probability": 0.9406 }, { "start": 52044.64, "end": 52045.94, "probability": 0.9103 }, { "start": 52046.02, "end": 52047.64, "probability": 0.7462 }, { "start": 52047.88, "end": 52049.68, "probability": 0.8623 }, { "start": 52050.06, "end": 52051.72, "probability": 0.7825 }, { "start": 52052.18, "end": 52053.52, "probability": 0.7196 }, { "start": 52054.38, "end": 52054.9, "probability": 0.4326 }, { "start": 52055.42, "end": 52058.42, "probability": 0.8824 }, { "start": 52059.08, "end": 52062.58, "probability": 0.9937 }, { "start": 52063.1, "end": 52066.1, "probability": 0.9928 }, { "start": 52066.52, "end": 52067.92, "probability": 0.9399 }, { "start": 52068.82, "end": 52071.5, "probability": 0.7129 }, { "start": 52072.1, "end": 52073.42, "probability": 0.8375 }, { "start": 52074.32, "end": 52077.08, "probability": 0.8318 }, { "start": 52082.24, "end": 52082.52, "probability": 0.6091 }, { "start": 52083.06, "end": 52086.34, "probability": 0.9655 }, { "start": 52087.14, "end": 52090.06, "probability": 0.9482 }, { "start": 52090.58, "end": 52092.84, "probability": 0.9776 }, { "start": 52094.28, "end": 52096.62, "probability": 0.9753 }, { "start": 52097.68, "end": 52100.12, "probability": 0.8264 }, { "start": 52100.76, "end": 52105.44, "probability": 0.9794 }, { "start": 52106.7, "end": 52109.86, "probability": 0.9888 }, { "start": 52109.86, "end": 52113.54, "probability": 0.9608 }, { "start": 52113.54, "end": 52118.64, "probability": 0.9978 }, { "start": 52119.9, "end": 52120.98, "probability": 0.9263 }, { "start": 52121.7, "end": 52123.78, "probability": 0.9703 }, { "start": 52124.6, "end": 52125.85, "probability": 0.8088 }, { "start": 52127.02, "end": 52130.54, "probability": 0.9988 }, { "start": 52131.46, "end": 52136.16, "probability": 0.9899 }, { "start": 52136.72, "end": 52137.84, "probability": 0.8933 }, { "start": 52139.18, "end": 52139.44, "probability": 0.9241 }, { "start": 52139.76, "end": 52145.12, "probability": 0.9173 }, { "start": 52145.16, "end": 52149.1, "probability": 0.9998 }, { "start": 52149.56, "end": 52153.28, "probability": 0.9932 }, { "start": 52153.78, "end": 52154.26, "probability": 0.7669 }, { "start": 52154.64, "end": 52155.46, "probability": 0.9976 }, { "start": 52156.2, "end": 52156.88, "probability": 0.4829 }, { "start": 52157.64, "end": 52161.5, "probability": 0.9935 }, { "start": 52162.52, "end": 52164.82, "probability": 0.7209 }, { "start": 52165.54, "end": 52167.26, "probability": 0.8809 }, { "start": 52168.12, "end": 52171.1, "probability": 0.6118 }, { "start": 52171.16, "end": 52172.7, "probability": 0.6515 }, { "start": 52173.34, "end": 52174.8, "probability": 0.9876 }, { "start": 52176.34, "end": 52178.32, "probability": 0.9706 }, { "start": 52178.66, "end": 52179.62, "probability": 0.4193 }, { "start": 52180.14, "end": 52182.84, "probability": 0.9751 }, { "start": 52184.16, "end": 52184.74, "probability": 0.9826 }, { "start": 52185.48, "end": 52188.16, "probability": 0.994 }, { "start": 52188.44, "end": 52191.56, "probability": 0.9938 }, { "start": 52192.16, "end": 52193.02, "probability": 0.8972 }, { "start": 52194.28, "end": 52195.3, "probability": 0.999 }, { "start": 52195.84, "end": 52196.96, "probability": 0.9912 }, { "start": 52197.68, "end": 52199.18, "probability": 0.8124 }, { "start": 52200.82, "end": 52204.62, "probability": 0.9961 }, { "start": 52205.22, "end": 52207.46, "probability": 0.9604 }, { "start": 52207.98, "end": 52210.62, "probability": 0.967 }, { "start": 52211.54, "end": 52213.04, "probability": 0.8821 }, { "start": 52213.78, "end": 52215.0, "probability": 0.8891 }, { "start": 52215.8, "end": 52216.96, "probability": 0.9128 }, { "start": 52217.62, "end": 52217.78, "probability": 0.6944 }, { "start": 52217.86, "end": 52220.78, "probability": 0.9896 }, { "start": 52221.14, "end": 52224.76, "probability": 0.9773 }, { "start": 52225.38, "end": 52228.0, "probability": 0.9966 }, { "start": 52228.68, "end": 52230.0, "probability": 0.7814 }, { "start": 52230.52, "end": 52235.72, "probability": 0.9957 }, { "start": 52236.24, "end": 52237.34, "probability": 0.9954 }, { "start": 52237.98, "end": 52238.73, "probability": 0.9673 }, { "start": 52240.04, "end": 52241.96, "probability": 0.9355 }, { "start": 52242.3, "end": 52242.52, "probability": 0.9438 }, { "start": 52242.76, "end": 52243.46, "probability": 0.7959 }, { "start": 52243.82, "end": 52248.5, "probability": 0.9918 }, { "start": 52250.62, "end": 52250.9, "probability": 0.9194 }, { "start": 52251.56, "end": 52254.76, "probability": 0.9855 }, { "start": 52254.76, "end": 52257.22, "probability": 0.9886 }, { "start": 52260.9, "end": 52261.56, "probability": 0.7164 }, { "start": 52263.76, "end": 52266.84, "probability": 0.9775 }, { "start": 52267.72, "end": 52268.62, "probability": 0.8567 }, { "start": 52269.3, "end": 52270.54, "probability": 0.9692 }, { "start": 52271.6, "end": 52273.38, "probability": 0.8417 }, { "start": 52274.34, "end": 52275.06, "probability": 0.9825 }, { "start": 52275.78, "end": 52277.64, "probability": 0.9653 }, { "start": 52278.4, "end": 52279.32, "probability": 0.9809 }, { "start": 52280.02, "end": 52282.82, "probability": 0.9683 }, { "start": 52283.5, "end": 52284.94, "probability": 0.8934 }, { "start": 52285.5, "end": 52286.6, "probability": 0.7922 }, { "start": 52287.64, "end": 52291.0, "probability": 0.9037 }, { "start": 52291.36, "end": 52291.88, "probability": 0.3331 }, { "start": 52292.8, "end": 52295.0, "probability": 0.9541 }, { "start": 52296.7, "end": 52299.04, "probability": 0.9762 }, { "start": 52300.16, "end": 52302.57, "probability": 0.8826 }, { "start": 52303.46, "end": 52303.96, "probability": 0.5986 }, { "start": 52305.4, "end": 52306.18, "probability": 0.7371 }, { "start": 52306.56, "end": 52307.14, "probability": 0.6229 }, { "start": 52307.28, "end": 52309.04, "probability": 0.9852 }, { "start": 52309.76, "end": 52311.38, "probability": 0.8632 }, { "start": 52311.84, "end": 52316.32, "probability": 0.9828 }, { "start": 52317.6, "end": 52322.58, "probability": 0.9415 }, { "start": 52323.24, "end": 52323.94, "probability": 0.5762 }, { "start": 52324.42, "end": 52327.58, "probability": 0.9604 }, { "start": 52328.06, "end": 52330.5, "probability": 0.8596 }, { "start": 52331.16, "end": 52333.68, "probability": 0.817 }, { "start": 52334.85, "end": 52339.78, "probability": 0.9829 }, { "start": 52340.52, "end": 52343.52, "probability": 0.9831 }, { "start": 52343.96, "end": 52344.68, "probability": 0.9739 }, { "start": 52345.24, "end": 52346.54, "probability": 0.9347 }, { "start": 52346.98, "end": 52347.88, "probability": 0.9941 }, { "start": 52348.2, "end": 52350.52, "probability": 0.7121 }, { "start": 52351.16, "end": 52353.12, "probability": 0.8201 }, { "start": 52353.72, "end": 52357.52, "probability": 0.9771 }, { "start": 52358.52, "end": 52359.54, "probability": 0.9464 }, { "start": 52359.58, "end": 52362.22, "probability": 0.9822 }, { "start": 52363.52, "end": 52364.7, "probability": 0.8845 }, { "start": 52364.84, "end": 52366.4, "probability": 0.8416 }, { "start": 52367.26, "end": 52372.18, "probability": 0.9926 }, { "start": 52372.56, "end": 52373.9, "probability": 0.8736 }, { "start": 52374.04, "end": 52375.54, "probability": 0.7761 }, { "start": 52376.04, "end": 52377.84, "probability": 0.9836 }, { "start": 52378.26, "end": 52380.08, "probability": 0.8575 }, { "start": 52380.54, "end": 52383.8, "probability": 0.8635 }, { "start": 52384.16, "end": 52384.58, "probability": 0.931 }, { "start": 52384.88, "end": 52387.18, "probability": 0.969 }, { "start": 52388.02, "end": 52388.32, "probability": 0.8837 }, { "start": 52388.7, "end": 52393.08, "probability": 0.9935 }, { "start": 52394.0, "end": 52396.84, "probability": 0.9937 }, { "start": 52397.3, "end": 52398.66, "probability": 0.9428 }, { "start": 52399.26, "end": 52401.46, "probability": 0.9033 }, { "start": 52402.82, "end": 52403.86, "probability": 0.9146 }, { "start": 52404.28, "end": 52407.02, "probability": 0.97 }, { "start": 52408.96, "end": 52410.98, "probability": 0.7402 }, { "start": 52411.5, "end": 52413.65, "probability": 0.9358 }, { "start": 52414.48, "end": 52415.58, "probability": 0.9722 }, { "start": 52415.88, "end": 52416.36, "probability": 0.9826 }, { "start": 52417.44, "end": 52418.26, "probability": 0.9976 }, { "start": 52418.78, "end": 52422.84, "probability": 0.8833 }, { "start": 52424.02, "end": 52426.0, "probability": 0.8757 }, { "start": 52426.56, "end": 52427.72, "probability": 0.9459 }, { "start": 52428.22, "end": 52430.8, "probability": 0.981 }, { "start": 52432.18, "end": 52435.46, "probability": 0.9456 }, { "start": 52436.58, "end": 52437.58, "probability": 0.9576 }, { "start": 52438.12, "end": 52440.0, "probability": 0.565 }, { "start": 52440.68, "end": 52442.82, "probability": 0.8658 }, { "start": 52444.3, "end": 52446.62, "probability": 0.9283 }, { "start": 52447.26, "end": 52450.04, "probability": 0.9932 }, { "start": 52450.48, "end": 52451.58, "probability": 0.9976 }, { "start": 52451.92, "end": 52453.74, "probability": 0.9949 }, { "start": 52453.74, "end": 52459.64, "probability": 0.9849 }, { "start": 52459.76, "end": 52460.54, "probability": 0.5568 }, { "start": 52460.88, "end": 52462.92, "probability": 0.8939 }, { "start": 52463.3, "end": 52466.02, "probability": 0.8296 }, { "start": 52467.0, "end": 52467.74, "probability": 0.7008 }, { "start": 52469.19, "end": 52471.18, "probability": 0.8155 }, { "start": 52471.94, "end": 52473.72, "probability": 0.9796 }, { "start": 52474.34, "end": 52476.0, "probability": 0.8049 }, { "start": 52476.8, "end": 52478.7, "probability": 0.0866 }, { "start": 52479.24, "end": 52480.52, "probability": 0.9409 }, { "start": 52480.84, "end": 52483.42, "probability": 0.8828 }, { "start": 52484.0, "end": 52490.0, "probability": 0.8271 }, { "start": 52490.5, "end": 52494.06, "probability": 0.916 }, { "start": 52494.5, "end": 52495.62, "probability": 0.5429 }, { "start": 52496.08, "end": 52497.34, "probability": 0.7314 }, { "start": 52497.96, "end": 52499.72, "probability": 0.6922 }, { "start": 52500.33, "end": 52503.62, "probability": 0.8777 }, { "start": 52504.06, "end": 52504.62, "probability": 0.0649 }, { "start": 52505.16, "end": 52506.26, "probability": 0.9646 }, { "start": 52506.6, "end": 52507.54, "probability": 0.9979 }, { "start": 52507.9, "end": 52510.38, "probability": 0.8167 }, { "start": 52510.7, "end": 52511.6, "probability": 0.8197 }, { "start": 52511.82, "end": 52514.02, "probability": 0.5155 }, { "start": 52514.7, "end": 52517.34, "probability": 0.4946 }, { "start": 52518.2, "end": 52522.62, "probability": 0.9232 }, { "start": 52523.56, "end": 52525.34, "probability": 0.9924 }, { "start": 52526.24, "end": 52528.48, "probability": 0.8733 }, { "start": 52529.26, "end": 52532.34, "probability": 0.8509 }, { "start": 52532.34, "end": 52535.44, "probability": 0.9955 }, { "start": 52536.76, "end": 52542.06, "probability": 0.9537 }, { "start": 52543.06, "end": 52543.66, "probability": 0.8598 }, { "start": 52544.02, "end": 52545.82, "probability": 0.9978 }, { "start": 52546.58, "end": 52550.56, "probability": 0.9498 }, { "start": 52550.82, "end": 52554.51, "probability": 0.7047 }, { "start": 52555.44, "end": 52555.44, "probability": 0.0006 }, { "start": 52556.56, "end": 52560.86, "probability": 0.9235 }, { "start": 52561.34, "end": 52562.08, "probability": 0.5438 }, { "start": 52563.02, "end": 52567.44, "probability": 0.9159 }, { "start": 52567.98, "end": 52570.64, "probability": 0.6298 }, { "start": 52571.36, "end": 52576.04, "probability": 0.7821 }, { "start": 52576.22, "end": 52579.12, "probability": 0.9607 }, { "start": 52579.12, "end": 52583.26, "probability": 0.7314 }, { "start": 52583.78, "end": 52586.58, "probability": 0.9966 }, { "start": 52586.86, "end": 52589.34, "probability": 0.9409 }, { "start": 52590.34, "end": 52593.21, "probability": 0.9232 }, { "start": 52593.88, "end": 52594.38, "probability": 0.6672 }, { "start": 52595.0, "end": 52595.52, "probability": 0.7787 }, { "start": 52595.64, "end": 52596.75, "probability": 0.9478 }, { "start": 52596.9, "end": 52598.34, "probability": 0.8947 }, { "start": 52598.34, "end": 52598.6, "probability": 0.6302 }, { "start": 52599.02, "end": 52602.18, "probability": 0.8717 }, { "start": 52602.2, "end": 52602.3, "probability": 0.3889 }, { "start": 52602.58, "end": 52603.03, "probability": 0.4118 }, { "start": 52603.56, "end": 52605.96, "probability": 0.9075 }, { "start": 52606.82, "end": 52610.04, "probability": 0.4996 }, { "start": 52611.82, "end": 52614.68, "probability": 0.6731 }, { "start": 52615.14, "end": 52617.74, "probability": 0.6407 }, { "start": 52618.04, "end": 52620.62, "probability": 0.6119 }, { "start": 52621.06, "end": 52622.76, "probability": 0.6289 }, { "start": 52624.22, "end": 52625.02, "probability": 0.0648 }, { "start": 52625.58, "end": 52626.3, "probability": 0.3522 }, { "start": 52627.72, "end": 52628.8, "probability": 0.9539 }, { "start": 52629.28, "end": 52630.26, "probability": 0.7676 }, { "start": 52630.5, "end": 52633.48, "probability": 0.8073 }, { "start": 52633.9, "end": 52634.42, "probability": 0.6705 }, { "start": 52634.92, "end": 52636.38, "probability": 0.9606 }, { "start": 52636.48, "end": 52637.98, "probability": 0.7806 }, { "start": 52638.04, "end": 52640.96, "probability": 0.6477 }, { "start": 52641.08, "end": 52641.84, "probability": 0.9937 }, { "start": 52643.3, "end": 52645.96, "probability": 0.7068 }, { "start": 52646.26, "end": 52647.72, "probability": 0.1206 }, { "start": 52649.98, "end": 52651.28, "probability": 0.3274 }, { "start": 52651.3, "end": 52651.76, "probability": 0.6355 }, { "start": 52652.16, "end": 52653.12, "probability": 0.8213 }, { "start": 52653.48, "end": 52656.5, "probability": 0.8013 }, { "start": 52658.1, "end": 52658.92, "probability": 0.0784 }, { "start": 52660.04, "end": 52661.18, "probability": 0.209 }, { "start": 52661.18, "end": 52661.92, "probability": 0.5773 }, { "start": 52662.42, "end": 52662.48, "probability": 0.6805 }, { "start": 52662.48, "end": 52663.86, "probability": 0.7673 }, { "start": 52664.22, "end": 52667.74, "probability": 0.9134 }, { "start": 52668.44, "end": 52669.56, "probability": 0.1822 }, { "start": 52669.92, "end": 52671.01, "probability": 0.3161 }, { "start": 52671.38, "end": 52673.2, "probability": 0.6635 }, { "start": 52673.66, "end": 52675.97, "probability": 0.3798 }, { "start": 52677.64, "end": 52677.96, "probability": 0.1092 }, { "start": 52678.24, "end": 52678.46, "probability": 0.5338 }, { "start": 52679.38, "end": 52680.62, "probability": 0.4165 }, { "start": 52681.52, "end": 52684.99, "probability": 0.7426 }, { "start": 52686.58, "end": 52687.86, "probability": 0.6782 }, { "start": 52688.5, "end": 52692.92, "probability": 0.9815 }, { "start": 52693.86, "end": 52699.2, "probability": 0.9976 }, { "start": 52699.2, "end": 52702.9, "probability": 0.9686 }, { "start": 52703.98, "end": 52705.26, "probability": 0.9963 }, { "start": 52705.64, "end": 52706.84, "probability": 0.8808 }, { "start": 52707.34, "end": 52713.26, "probability": 0.9768 }, { "start": 52714.22, "end": 52717.08, "probability": 0.8568 }, { "start": 52721.88, "end": 52725.76, "probability": 0.9899 }, { "start": 52726.1, "end": 52729.98, "probability": 0.9974 }, { "start": 52730.52, "end": 52732.08, "probability": 0.9731 }, { "start": 52732.52, "end": 52738.4, "probability": 0.8098 }, { "start": 52738.94, "end": 52741.37, "probability": 0.9956 }, { "start": 52742.3, "end": 52744.52, "probability": 0.9117 }, { "start": 52747.08, "end": 52749.26, "probability": 0.593 }, { "start": 52750.06, "end": 52752.39, "probability": 0.4071 }, { "start": 52753.3, "end": 52755.7, "probability": 0.9906 }, { "start": 52756.56, "end": 52757.7, "probability": 0.9491 }, { "start": 52758.36, "end": 52761.02, "probability": 0.8994 }, { "start": 52761.96, "end": 52764.3, "probability": 0.8288 }, { "start": 52764.88, "end": 52768.82, "probability": 0.8923 }, { "start": 52768.92, "end": 52771.41, "probability": 0.7586 }, { "start": 52772.36, "end": 52772.94, "probability": 0.6442 }, { "start": 52772.94, "end": 52773.88, "probability": 0.342 }, { "start": 52774.04, "end": 52774.44, "probability": 0.6676 }, { "start": 52774.46, "end": 52776.58, "probability": 0.9126 }, { "start": 52778.15, "end": 52781.6, "probability": 0.992 }, { "start": 52781.66, "end": 52781.7, "probability": 0.4843 }, { "start": 52781.7, "end": 52782.15, "probability": 0.861 }, { "start": 52783.12, "end": 52784.88, "probability": 0.978 }, { "start": 52784.9, "end": 52785.74, "probability": 0.8219 }, { "start": 52786.68, "end": 52790.0, "probability": 0.9014 }, { "start": 52790.4, "end": 52791.03, "probability": 0.8262 }, { "start": 52791.66, "end": 52792.39, "probability": 0.8127 }, { "start": 52792.72, "end": 52793.08, "probability": 0.5338 }, { "start": 52793.12, "end": 52795.48, "probability": 0.9751 }, { "start": 52795.6, "end": 52797.1, "probability": 0.5791 }, { "start": 52797.14, "end": 52797.49, "probability": 0.0367 }, { "start": 52797.94, "end": 52799.66, "probability": 0.7489 }, { "start": 52800.38, "end": 52801.56, "probability": 0.8952 }, { "start": 52801.74, "end": 52802.34, "probability": 0.8499 }, { "start": 52802.58, "end": 52803.4, "probability": 0.9614 }, { "start": 52804.38, "end": 52807.06, "probability": 0.9783 }, { "start": 52807.6, "end": 52810.56, "probability": 0.8418 }, { "start": 52811.08, "end": 52812.56, "probability": 0.9581 }, { "start": 52813.45, "end": 52815.26, "probability": 0.7337 }, { "start": 52815.64, "end": 52817.1, "probability": 0.436 }, { "start": 52819.44, "end": 52822.88, "probability": 0.8771 }, { "start": 52822.94, "end": 52823.62, "probability": 0.9866 }, { "start": 52824.0, "end": 52825.56, "probability": 0.9526 }, { "start": 52826.02, "end": 52829.36, "probability": 0.7679 }, { "start": 52829.36, "end": 52830.08, "probability": 0.9375 }, { "start": 52830.46, "end": 52831.08, "probability": 0.9167 }, { "start": 52831.24, "end": 52831.34, "probability": 0.6507 }, { "start": 52831.64, "end": 52834.42, "probability": 0.9171 }, { "start": 52835.08, "end": 52836.6, "probability": 0.9875 }, { "start": 52837.94, "end": 52839.26, "probability": 0.7155 }, { "start": 52839.36, "end": 52839.36, "probability": 0.485 }, { "start": 52839.36, "end": 52841.56, "probability": 0.9887 }, { "start": 52842.1, "end": 52843.18, "probability": 0.9927 }, { "start": 52844.24, "end": 52845.72, "probability": 0.6475 }, { "start": 52847.48, "end": 52850.6, "probability": 0.9359 }, { "start": 52851.18, "end": 52854.34, "probability": 0.9918 }, { "start": 52854.38, "end": 52856.88, "probability": 0.9888 }, { "start": 52857.82, "end": 52859.1, "probability": 0.9972 }, { "start": 52859.22, "end": 52859.68, "probability": 0.5173 }, { "start": 52860.08, "end": 52861.52, "probability": 0.9713 }, { "start": 52862.22, "end": 52864.0, "probability": 0.9243 }, { "start": 52866.16, "end": 52867.88, "probability": 0.9854 }, { "start": 52868.74, "end": 52870.12, "probability": 0.9215 }, { "start": 52871.3, "end": 52873.58, "probability": 0.876 }, { "start": 52874.54, "end": 52879.09, "probability": 0.964 }, { "start": 52879.58, "end": 52883.2, "probability": 0.99 }, { "start": 52884.38, "end": 52885.65, "probability": 0.9212 }, { "start": 52885.98, "end": 52887.3, "probability": 0.976 }, { "start": 52887.44, "end": 52889.5, "probability": 0.8311 }, { "start": 52890.02, "end": 52891.68, "probability": 0.9766 }, { "start": 52891.86, "end": 52893.3, "probability": 0.9927 }, { "start": 52893.3, "end": 52893.48, "probability": 0.3365 }, { "start": 52895.19, "end": 52896.7, "probability": 0.9667 }, { "start": 52896.82, "end": 52897.72, "probability": 0.9566 }, { "start": 52899.24, "end": 52900.08, "probability": 0.7221 }, { "start": 52900.26, "end": 52900.9, "probability": 0.3962 }, { "start": 52901.74, "end": 52902.72, "probability": 0.998 }, { "start": 52903.88, "end": 52904.52, "probability": 0.9699 }, { "start": 52905.26, "end": 52906.64, "probability": 0.991 }, { "start": 52907.28, "end": 52907.46, "probability": 0.3894 }, { "start": 52908.02, "end": 52909.24, "probability": 0.6905 }, { "start": 52910.18, "end": 52911.38, "probability": 0.9866 }, { "start": 52911.7, "end": 52913.92, "probability": 0.9643 }, { "start": 52914.58, "end": 52919.96, "probability": 0.9886 }, { "start": 52920.52, "end": 52921.5, "probability": 0.947 }, { "start": 52922.28, "end": 52924.66, "probability": 0.9756 }, { "start": 52926.68, "end": 52927.46, "probability": 0.7911 }, { "start": 52928.18, "end": 52930.72, "probability": 0.971 }, { "start": 52931.28, "end": 52934.5, "probability": 0.882 }, { "start": 52934.78, "end": 52935.56, "probability": 0.9897 }, { "start": 52936.64, "end": 52940.92, "probability": 0.9873 }, { "start": 52941.5, "end": 52942.66, "probability": 0.9651 }, { "start": 52943.48, "end": 52948.78, "probability": 0.8555 }, { "start": 52949.28, "end": 52950.08, "probability": 0.4376 }, { "start": 52950.08, "end": 52950.5, "probability": 0.5653 }, { "start": 52951.72, "end": 52952.62, "probability": 0.7766 }, { "start": 52953.58, "end": 52955.42, "probability": 0.9801 }, { "start": 52956.26, "end": 52956.78, "probability": 0.8266 }, { "start": 52957.04, "end": 52958.02, "probability": 0.9247 }, { "start": 52958.5, "end": 52962.14, "probability": 0.9263 }, { "start": 52962.14, "end": 52964.44, "probability": 0.9609 }, { "start": 52964.88, "end": 52965.98, "probability": 0.9706 }, { "start": 52966.64, "end": 52967.54, "probability": 0.1534 }, { "start": 52968.22, "end": 52968.78, "probability": 0.7386 }, { "start": 52969.42, "end": 52969.88, "probability": 0.8041 }, { "start": 52970.1, "end": 52970.66, "probability": 0.9818 }, { "start": 52971.22, "end": 52971.64, "probability": 0.8958 }, { "start": 52972.32, "end": 52974.18, "probability": 0.9569 }, { "start": 52976.56, "end": 52977.48, "probability": 0.9669 }, { "start": 52977.9, "end": 52979.02, "probability": 0.9897 }, { "start": 52979.34, "end": 52979.96, "probability": 0.8524 }, { "start": 52980.7, "end": 52984.52, "probability": 0.9674 }, { "start": 52985.08, "end": 52986.64, "probability": 0.9969 }, { "start": 52988.04, "end": 52988.78, "probability": 0.8225 }, { "start": 52990.36, "end": 52992.42, "probability": 0.9723 }, { "start": 52993.06, "end": 52995.26, "probability": 0.9808 }, { "start": 52995.72, "end": 52997.44, "probability": 0.898 }, { "start": 52997.96, "end": 52999.46, "probability": 0.8175 }, { "start": 53000.12, "end": 53003.46, "probability": 0.9744 }, { "start": 53003.94, "end": 53005.92, "probability": 0.9779 }, { "start": 53006.54, "end": 53007.98, "probability": 0.9682 }, { "start": 53008.62, "end": 53013.0, "probability": 0.9898 }, { "start": 53013.88, "end": 53015.24, "probability": 0.4866 }, { "start": 53016.0, "end": 53018.0, "probability": 0.9814 }, { "start": 53018.44, "end": 53019.68, "probability": 0.7054 }, { "start": 53020.12, "end": 53022.48, "probability": 0.8447 }, { "start": 53022.64, "end": 53024.8, "probability": 0.9836 }, { "start": 53025.58, "end": 53028.33, "probability": 0.998 }, { "start": 53029.66, "end": 53032.0, "probability": 0.8094 }, { "start": 53032.18, "end": 53033.32, "probability": 0.9722 }, { "start": 53033.56, "end": 53034.1, "probability": 0.1898 }, { "start": 53034.24, "end": 53034.24, "probability": 0.6469 }, { "start": 53034.26, "end": 53035.14, "probability": 0.7439 }, { "start": 53036.12, "end": 53037.04, "probability": 0.6948 }, { "start": 53037.26, "end": 53037.26, "probability": 0.2077 }, { "start": 53037.26, "end": 53037.26, "probability": 0.1056 }, { "start": 53037.26, "end": 53040.9, "probability": 0.8291 }, { "start": 53041.0, "end": 53045.94, "probability": 0.8153 }, { "start": 53046.02, "end": 53046.48, "probability": 0.6021 }, { "start": 53046.9, "end": 53051.16, "probability": 0.9973 }, { "start": 53051.56, "end": 53052.52, "probability": 0.9957 }, { "start": 53053.04, "end": 53055.2, "probability": 0.9912 }, { "start": 53055.84, "end": 53057.1, "probability": 0.8798 }, { "start": 53057.48, "end": 53057.58, "probability": 0.0153 }, { "start": 53060.52, "end": 53062.14, "probability": 0.7504 }, { "start": 53062.94, "end": 53065.38, "probability": 0.959 }, { "start": 53065.88, "end": 53067.46, "probability": 0.9385 }, { "start": 53067.72, "end": 53068.16, "probability": 0.8846 }, { "start": 53068.18, "end": 53069.24, "probability": 0.9707 }, { "start": 53069.32, "end": 53069.86, "probability": 0.9971 }, { "start": 53070.7, "end": 53073.58, "probability": 0.9962 }, { "start": 53074.22, "end": 53075.36, "probability": 0.689 }, { "start": 53076.38, "end": 53078.34, "probability": 0.946 }, { "start": 53078.98, "end": 53080.51, "probability": 0.9841 }, { "start": 53081.44, "end": 53082.14, "probability": 0.9486 }, { "start": 53083.06, "end": 53083.42, "probability": 0.9631 }, { "start": 53083.86, "end": 53084.88, "probability": 0.9272 }, { "start": 53085.0, "end": 53088.28, "probability": 0.99 }, { "start": 53088.64, "end": 53088.86, "probability": 0.5081 }, { "start": 53089.74, "end": 53090.45, "probability": 0.4696 }, { "start": 53093.0, "end": 53093.78, "probability": 0.6722 }, { "start": 53094.2, "end": 53095.76, "probability": 0.3881 }, { "start": 53095.76, "end": 53099.58, "probability": 0.9562 }, { "start": 53099.62, "end": 53100.6, "probability": 0.8579 }, { "start": 53101.08, "end": 53103.08, "probability": 0.6822 }, { "start": 53103.82, "end": 53105.2, "probability": 0.9556 }, { "start": 53105.6, "end": 53106.01, "probability": 0.9333 }, { "start": 53106.68, "end": 53107.89, "probability": 0.9963 }, { "start": 53108.86, "end": 53109.96, "probability": 0.9118 }, { "start": 53110.48, "end": 53113.21, "probability": 0.9659 }, { "start": 53114.18, "end": 53114.74, "probability": 0.407 }, { "start": 53115.63, "end": 53117.74, "probability": 0.9427 }, { "start": 53118.62, "end": 53120.18, "probability": 0.9744 }, { "start": 53120.72, "end": 53124.48, "probability": 0.8726 }, { "start": 53124.66, "end": 53125.08, "probability": 0.8066 }, { "start": 53125.64, "end": 53127.38, "probability": 0.9212 }, { "start": 53127.96, "end": 53128.76, "probability": 0.9014 }, { "start": 53129.32, "end": 53130.58, "probability": 0.9921 }, { "start": 53130.76, "end": 53131.5, "probability": 0.7267 }, { "start": 53131.86, "end": 53133.36, "probability": 0.9528 }, { "start": 53133.42, "end": 53135.52, "probability": 0.9133 }, { "start": 53135.56, "end": 53139.18, "probability": 0.999 }, { "start": 53139.32, "end": 53140.1, "probability": 0.7562 }, { "start": 53140.87, "end": 53144.64, "probability": 0.7705 }, { "start": 53145.12, "end": 53147.22, "probability": 0.9961 }, { "start": 53147.8, "end": 53151.0, "probability": 0.9898 }, { "start": 53151.44, "end": 53152.24, "probability": 0.8997 }, { "start": 53152.68, "end": 53153.28, "probability": 0.8952 }, { "start": 53153.5, "end": 53154.46, "probability": 0.7994 }, { "start": 53154.86, "end": 53157.86, "probability": 0.8095 }, { "start": 53158.36, "end": 53160.26, "probability": 0.9749 }, { "start": 53160.78, "end": 53164.82, "probability": 0.9359 }, { "start": 53165.9, "end": 53168.24, "probability": 0.9506 }, { "start": 53168.86, "end": 53171.44, "probability": 0.9219 }, { "start": 53171.74, "end": 53172.55, "probability": 0.9677 }, { "start": 53173.12, "end": 53174.42, "probability": 0.8143 }, { "start": 53174.86, "end": 53179.0, "probability": 0.964 }, { "start": 53179.82, "end": 53183.82, "probability": 0.9761 }, { "start": 53184.6, "end": 53186.62, "probability": 0.9807 }, { "start": 53187.04, "end": 53189.38, "probability": 0.987 }, { "start": 53189.4, "end": 53191.88, "probability": 0.9982 }, { "start": 53192.3, "end": 53193.36, "probability": 0.9029 }, { "start": 53193.48, "end": 53193.68, "probability": 0.8112 }, { "start": 53194.16, "end": 53194.8, "probability": 0.8373 }, { "start": 53196.63, "end": 53198.7, "probability": 0.0905 }, { "start": 53198.7, "end": 53201.8, "probability": 0.5149 }, { "start": 53202.52, "end": 53204.37, "probability": 0.9562 }, { "start": 53204.7, "end": 53205.22, "probability": 0.6431 }, { "start": 53205.66, "end": 53206.34, "probability": 0.9768 }, { "start": 53207.14, "end": 53209.38, "probability": 0.9139 }, { "start": 53209.82, "end": 53210.76, "probability": 0.5939 }, { "start": 53211.73, "end": 53214.18, "probability": 0.8332 }, { "start": 53214.72, "end": 53215.52, "probability": 0.8522 }, { "start": 53216.24, "end": 53220.46, "probability": 0.884 }, { "start": 53221.16, "end": 53222.92, "probability": 0.729 }, { "start": 53223.5, "end": 53225.22, "probability": 0.963 }, { "start": 53225.82, "end": 53228.54, "probability": 0.9897 }, { "start": 53228.9, "end": 53232.06, "probability": 0.9296 }, { "start": 53232.95, "end": 53235.82, "probability": 0.941 }, { "start": 53236.12, "end": 53238.8, "probability": 0.9895 }, { "start": 53239.36, "end": 53241.48, "probability": 0.6131 }, { "start": 53244.32, "end": 53247.54, "probability": 0.0843 }, { "start": 53247.54, "end": 53249.97, "probability": 0.995 }, { "start": 53250.82, "end": 53250.98, "probability": 0.3513 }, { "start": 53251.06, "end": 53252.32, "probability": 0.7792 }, { "start": 53252.82, "end": 53254.66, "probability": 0.8918 }, { "start": 53255.34, "end": 53257.36, "probability": 0.992 }, { "start": 53258.0, "end": 53259.46, "probability": 0.7911 }, { "start": 53260.0, "end": 53260.54, "probability": 0.5991 }, { "start": 53260.94, "end": 53262.04, "probability": 0.9539 }, { "start": 53262.16, "end": 53262.48, "probability": 0.5517 }, { "start": 53262.5, "end": 53265.08, "probability": 0.8451 }, { "start": 53265.5, "end": 53265.8, "probability": 0.627 }, { "start": 53266.1, "end": 53267.46, "probability": 0.9941 }, { "start": 53268.18, "end": 53269.42, "probability": 0.7828 }, { "start": 53269.94, "end": 53272.18, "probability": 0.9681 }, { "start": 53273.06, "end": 53273.92, "probability": 0.8398 }, { "start": 53274.5, "end": 53274.9, "probability": 0.6877 }, { "start": 53275.22, "end": 53276.4, "probability": 0.9852 }, { "start": 53276.68, "end": 53279.87, "probability": 0.5871 }, { "start": 53280.16, "end": 53282.46, "probability": 0.807 }, { "start": 53283.0, "end": 53285.74, "probability": 0.727 }, { "start": 53286.46, "end": 53290.37, "probability": 0.9736 }, { "start": 53290.88, "end": 53291.7, "probability": 0.9336 }, { "start": 53292.12, "end": 53292.22, "probability": 0.4941 }, { "start": 53292.22, "end": 53294.68, "probability": 0.9555 }, { "start": 53294.92, "end": 53298.04, "probability": 0.7745 }, { "start": 53298.76, "end": 53299.94, "probability": 0.9896 }, { "start": 53300.38, "end": 53302.94, "probability": 0.8226 }, { "start": 53303.3, "end": 53304.26, "probability": 0.9976 }, { "start": 53305.13, "end": 53306.16, "probability": 0.9902 }, { "start": 53306.68, "end": 53308.84, "probability": 0.9491 }, { "start": 53309.3, "end": 53311.48, "probability": 0.6481 }, { "start": 53312.08, "end": 53312.3, "probability": 0.7787 }, { "start": 53313.16, "end": 53314.14, "probability": 0.9146 }, { "start": 53314.6, "end": 53315.62, "probability": 0.5884 }, { "start": 53316.98, "end": 53318.22, "probability": 0.6378 }, { "start": 53318.92, "end": 53319.0, "probability": 0.4795 }, { "start": 53319.06, "end": 53320.99, "probability": 0.8048 }, { "start": 53321.7, "end": 53323.9, "probability": 0.8783 }, { "start": 53334.56, "end": 53335.4, "probability": 0.6855 }, { "start": 53335.6, "end": 53338.78, "probability": 0.9686 }, { "start": 53339.34, "end": 53340.66, "probability": 0.8506 }, { "start": 53341.32, "end": 53344.46, "probability": 0.6952 }, { "start": 53345.64, "end": 53346.0, "probability": 0.0797 }, { "start": 53346.9, "end": 53347.84, "probability": 0.4011 }, { "start": 53348.6, "end": 53349.32, "probability": 0.5229 }, { "start": 53349.84, "end": 53351.32, "probability": 0.4971 }, { "start": 53351.32, "end": 53352.73, "probability": 0.7449 }, { "start": 53352.8, "end": 53353.7, "probability": 0.0783 }, { "start": 53354.96, "end": 53355.78, "probability": 0.7616 }, { "start": 53357.24, "end": 53359.24, "probability": 0.8665 }, { "start": 53359.8, "end": 53360.04, "probability": 0.1667 }, { "start": 53360.2, "end": 53361.74, "probability": 0.3794 }, { "start": 53362.29, "end": 53367.06, "probability": 0.8403 }, { "start": 53367.88, "end": 53370.8, "probability": 0.2513 }, { "start": 53371.36, "end": 53373.76, "probability": 0.7402 }, { "start": 53376.52, "end": 53377.12, "probability": 0.708 }, { "start": 53384.7, "end": 53385.46, "probability": 0.0834 }, { "start": 53385.68, "end": 53385.74, "probability": 0.4112 }, { "start": 53385.74, "end": 53386.28, "probability": 0.4616 }, { "start": 53392.6, "end": 53395.3, "probability": 0.5054 }, { "start": 53396.78, "end": 53398.97, "probability": 0.9635 }, { "start": 53399.72, "end": 53401.96, "probability": 0.9792 }, { "start": 53403.06, "end": 53404.1, "probability": 0.8721 }, { "start": 53404.8, "end": 53405.56, "probability": 0.9951 }, { "start": 53406.28, "end": 53407.36, "probability": 0.7688 }, { "start": 53408.3, "end": 53409.26, "probability": 0.9121 }, { "start": 53412.2, "end": 53417.12, "probability": 0.9836 }, { "start": 53420.52, "end": 53422.6, "probability": 0.8829 }, { "start": 53423.56, "end": 53426.86, "probability": 0.6011 }, { "start": 53427.7, "end": 53428.64, "probability": 0.2505 }, { "start": 53429.9, "end": 53431.08, "probability": 0.7128 }, { "start": 53432.04, "end": 53436.48, "probability": 0.9882 }, { "start": 53437.0, "end": 53438.68, "probability": 0.7604 }, { "start": 53439.7, "end": 53443.98, "probability": 0.9836 }, { "start": 53444.34, "end": 53444.44, "probability": 0.6331 }, { "start": 53445.02, "end": 53445.56, "probability": 0.589 }, { "start": 53446.43, "end": 53446.96, "probability": 0.9517 }, { "start": 53448.42, "end": 53449.0, "probability": 0.8457 }, { "start": 53449.7, "end": 53451.37, "probability": 0.9985 }, { "start": 53451.76, "end": 53454.24, "probability": 0.9961 }, { "start": 53454.24, "end": 53457.16, "probability": 0.9802 }, { "start": 53458.06, "end": 53458.79, "probability": 0.9761 }, { "start": 53459.08, "end": 53460.96, "probability": 0.8899 }, { "start": 53461.38, "end": 53462.22, "probability": 0.2837 }, { "start": 53462.3, "end": 53465.29, "probability": 0.7336 }, { "start": 53465.82, "end": 53467.8, "probability": 0.9502 }, { "start": 53468.62, "end": 53471.82, "probability": 0.9876 }, { "start": 53472.68, "end": 53475.21, "probability": 0.5035 }, { "start": 53476.42, "end": 53479.08, "probability": 0.9966 }, { "start": 53479.58, "end": 53479.82, "probability": 0.3673 }, { "start": 53480.88, "end": 53483.78, "probability": 0.5339 }, { "start": 53484.08, "end": 53484.92, "probability": 0.9781 }, { "start": 53485.4, "end": 53486.68, "probability": 0.939 }, { "start": 53486.78, "end": 53487.66, "probability": 0.913 }, { "start": 53487.74, "end": 53488.38, "probability": 0.406 }, { "start": 53488.82, "end": 53489.38, "probability": 0.8076 }, { "start": 53490.28, "end": 53491.16, "probability": 0.6864 }, { "start": 53491.18, "end": 53491.5, "probability": 0.4773 }, { "start": 53491.6, "end": 53491.92, "probability": 0.6448 }, { "start": 53492.16, "end": 53493.24, "probability": 0.8781 }, { "start": 53493.26, "end": 53493.76, "probability": 0.4562 }, { "start": 53493.9, "end": 53496.74, "probability": 0.7694 }, { "start": 53496.78, "end": 53499.5, "probability": 0.5059 }, { "start": 53501.14, "end": 53502.76, "probability": 0.8636 }, { "start": 53503.44, "end": 53504.46, "probability": 0.7915 }, { "start": 53505.38, "end": 53506.14, "probability": 0.4435 }, { "start": 53506.88, "end": 53509.14, "probability": 0.3275 }, { "start": 53509.38, "end": 53509.8, "probability": 0.9473 }, { "start": 53510.72, "end": 53510.84, "probability": 0.2367 }, { "start": 53511.48, "end": 53512.54, "probability": 0.6306 }, { "start": 53512.84, "end": 53514.26, "probability": 0.9924 }, { "start": 53514.96, "end": 53517.1, "probability": 0.468 }, { "start": 53517.18, "end": 53520.0, "probability": 0.8654 }, { "start": 53520.9, "end": 53521.56, "probability": 0.3505 }, { "start": 53521.76, "end": 53522.76, "probability": 0.9224 }, { "start": 53523.02, "end": 53524.56, "probability": 0.8301 }, { "start": 53526.16, "end": 53528.2, "probability": 0.887 }, { "start": 53528.76, "end": 53530.37, "probability": 0.5317 }, { "start": 53530.6, "end": 53532.44, "probability": 0.9038 }, { "start": 53534.12, "end": 53535.7, "probability": 0.9823 }, { "start": 53536.4, "end": 53539.38, "probability": 0.9518 }, { "start": 53540.3, "end": 53542.22, "probability": 0.8318 }, { "start": 53542.72, "end": 53543.78, "probability": 0.8762 }, { "start": 53543.8, "end": 53543.84, "probability": 0.5227 }, { "start": 53543.94, "end": 53545.48, "probability": 0.044 }, { "start": 53545.98, "end": 53546.74, "probability": 0.7311 }, { "start": 53548.2, "end": 53549.28, "probability": 0.959 }, { "start": 53550.32, "end": 53553.7, "probability": 0.9932 }, { "start": 53553.96, "end": 53555.0, "probability": 0.9395 }, { "start": 53555.14, "end": 53555.59, "probability": 0.9641 }, { "start": 53556.44, "end": 53561.0, "probability": 0.7801 }, { "start": 53561.64, "end": 53562.0, "probability": 0.1071 }, { "start": 53562.0, "end": 53563.84, "probability": 0.6863 }, { "start": 53564.46, "end": 53567.4, "probability": 0.8799 }, { "start": 53568.04, "end": 53569.02, "probability": 0.9541 }, { "start": 53570.84, "end": 53572.84, "probability": 0.7457 }, { "start": 53577.06, "end": 53579.0, "probability": 0.8896 }, { "start": 53580.86, "end": 53584.14, "probability": 0.5922 }, { "start": 53584.78, "end": 53586.52, "probability": 0.9948 }, { "start": 53587.28, "end": 53587.68, "probability": 0.6527 }, { "start": 53588.36, "end": 53591.06, "probability": 0.8961 }, { "start": 53591.14, "end": 53591.78, "probability": 0.8344 }, { "start": 53593.66, "end": 53594.74, "probability": 0.6691 }, { "start": 53595.47, "end": 53597.14, "probability": 0.9521 }, { "start": 53597.36, "end": 53599.36, "probability": 0.8947 }, { "start": 53599.92, "end": 53602.0, "probability": 0.9198 }, { "start": 53602.32, "end": 53603.46, "probability": 0.9644 }, { "start": 53603.98, "end": 53607.12, "probability": 0.6514 }, { "start": 53607.66, "end": 53608.25, "probability": 0.4552 }, { "start": 53609.13, "end": 53610.92, "probability": 0.5082 }, { "start": 53611.92, "end": 53613.92, "probability": 0.8843 }, { "start": 53613.92, "end": 53615.08, "probability": 0.3804 }, { "start": 53615.24, "end": 53616.72, "probability": 0.9346 }, { "start": 53619.62, "end": 53621.58, "probability": 0.6831 }, { "start": 53621.82, "end": 53622.44, "probability": 0.9861 }, { "start": 53623.2, "end": 53623.28, "probability": 0.1488 }, { "start": 53624.46, "end": 53625.2, "probability": 0.9966 }, { "start": 53625.74, "end": 53626.86, "probability": 0.85 }, { "start": 53627.08, "end": 53627.78, "probability": 0.9805 }, { "start": 53628.24, "end": 53629.1, "probability": 0.9954 }, { "start": 53629.24, "end": 53629.7, "probability": 0.7368 }, { "start": 53630.32, "end": 53631.84, "probability": 0.938 }, { "start": 53631.92, "end": 53632.34, "probability": 0.9057 }, { "start": 53632.52, "end": 53635.74, "probability": 0.9538 }, { "start": 53636.62, "end": 53636.62, "probability": 0.119 }, { "start": 53637.14, "end": 53637.52, "probability": 0.9759 }, { "start": 53638.36, "end": 53640.8, "probability": 0.9873 }, { "start": 53641.8, "end": 53645.18, "probability": 0.9847 }, { "start": 53646.02, "end": 53648.82, "probability": 0.715 }, { "start": 53648.82, "end": 53652.46, "probability": 0.73 }, { "start": 53655.14, "end": 53657.0, "probability": 0.0257 }, { "start": 53657.52, "end": 53657.98, "probability": 0.0007 }, { "start": 53659.0, "end": 53659.98, "probability": 0.2135 }, { "start": 53660.58, "end": 53664.12, "probability": 0.9959 }, { "start": 53664.52, "end": 53665.14, "probability": 0.5222 }, { "start": 53665.94, "end": 53667.24, "probability": 0.7661 }, { "start": 53669.22, "end": 53671.04, "probability": 0.7955 }, { "start": 53671.26, "end": 53673.14, "probability": 0.9934 }, { "start": 53673.22, "end": 53674.68, "probability": 0.982 }, { "start": 53678.16, "end": 53679.18, "probability": 0.741 }, { "start": 53679.6, "end": 53680.18, "probability": 0.3812 }, { "start": 53680.26, "end": 53680.28, "probability": 0.4716 }, { "start": 53680.48, "end": 53682.14, "probability": 0.9465 }, { "start": 53682.78, "end": 53686.18, "probability": 0.9932 }, { "start": 53686.96, "end": 53689.2, "probability": 0.752 }, { "start": 53690.06, "end": 53692.3, "probability": 0.3723 }, { "start": 53693.16, "end": 53697.74, "probability": 0.8035 }, { "start": 53697.88, "end": 53698.44, "probability": 0.7999 }, { "start": 53698.5, "end": 53699.43, "probability": 0.9697 }, { "start": 53699.5, "end": 53700.38, "probability": 0.8672 }, { "start": 53700.5, "end": 53701.16, "probability": 0.6451 }, { "start": 53701.34, "end": 53701.82, "probability": 0.9391 }, { "start": 53703.44, "end": 53704.1, "probability": 0.8788 }, { "start": 53705.32, "end": 53707.72, "probability": 0.9645 }, { "start": 53708.44, "end": 53710.94, "probability": 0.9709 }, { "start": 53711.7, "end": 53712.6, "probability": 0.6657 }, { "start": 53713.12, "end": 53713.72, "probability": 0.932 }, { "start": 53715.92, "end": 53721.6, "probability": 0.9952 }, { "start": 53722.22, "end": 53727.51, "probability": 0.983 }, { "start": 53729.36, "end": 53730.7, "probability": 0.901 }, { "start": 53731.66, "end": 53733.26, "probability": 0.8096 }, { "start": 53734.14, "end": 53738.26, "probability": 0.9951 }, { "start": 53738.5, "end": 53739.72, "probability": 0.9686 }, { "start": 53740.82, "end": 53743.92, "probability": 0.8997 }, { "start": 53744.76, "end": 53746.69, "probability": 0.9729 }, { "start": 53747.26, "end": 53748.48, "probability": 0.9438 }, { "start": 53750.06, "end": 53751.96, "probability": 0.9846 }, { "start": 53752.08, "end": 53752.74, "probability": 0.8586 }, { "start": 53752.94, "end": 53754.7, "probability": 0.3496 }, { "start": 53755.48, "end": 53755.96, "probability": 0.7728 }, { "start": 53756.76, "end": 53758.86, "probability": 0.9631 }, { "start": 53759.42, "end": 53760.3, "probability": 0.7786 }, { "start": 53761.54, "end": 53762.52, "probability": 0.9812 }, { "start": 53763.34, "end": 53764.32, "probability": 0.9019 }, { "start": 53764.88, "end": 53766.27, "probability": 0.988 }, { "start": 53766.76, "end": 53766.98, "probability": 0.0781 }, { "start": 53767.68, "end": 53770.86, "probability": 0.9502 }, { "start": 53771.68, "end": 53772.82, "probability": 0.9403 }, { "start": 53773.22, "end": 53774.04, "probability": 0.9534 }, { "start": 53774.34, "end": 53775.16, "probability": 0.9062 }, { "start": 53775.36, "end": 53779.52, "probability": 0.9189 }, { "start": 53780.4, "end": 53782.04, "probability": 0.9752 }, { "start": 53782.46, "end": 53783.4, "probability": 0.9514 }, { "start": 53783.5, "end": 53786.62, "probability": 0.9994 }, { "start": 53786.72, "end": 53789.64, "probability": 0.9245 }, { "start": 53789.82, "end": 53791.8, "probability": 0.9867 }, { "start": 53792.76, "end": 53799.74, "probability": 0.9773 }, { "start": 53799.88, "end": 53802.98, "probability": 0.9351 }, { "start": 53803.26, "end": 53805.38, "probability": 0.9976 }, { "start": 53806.68, "end": 53807.74, "probability": 0.6652 }, { "start": 53808.04, "end": 53810.58, "probability": 0.9884 }, { "start": 53810.66, "end": 53811.34, "probability": 0.6875 }, { "start": 53811.52, "end": 53812.14, "probability": 0.8682 }, { "start": 53813.86, "end": 53816.22, "probability": 0.96 }, { "start": 53816.34, "end": 53817.28, "probability": 0.8333 }, { "start": 53818.12, "end": 53819.16, "probability": 0.8786 }, { "start": 53820.32, "end": 53823.78, "probability": 0.8347 }, { "start": 53824.88, "end": 53826.32, "probability": 0.9145 }, { "start": 53826.76, "end": 53828.42, "probability": 0.9327 }, { "start": 53830.9, "end": 53831.88, "probability": 0.6608 }, { "start": 53832.52, "end": 53833.9, "probability": 0.9092 }, { "start": 53834.68, "end": 53835.9, "probability": 0.9302 }, { "start": 53836.6, "end": 53839.12, "probability": 0.9966 }, { "start": 53839.78, "end": 53840.7, "probability": 0.9607 }, { "start": 53840.86, "end": 53844.1, "probability": 0.9813 }, { "start": 53844.42, "end": 53846.9, "probability": 0.7011 }, { "start": 53847.94, "end": 53852.14, "probability": 0.9641 }, { "start": 53852.94, "end": 53855.34, "probability": 0.9725 }, { "start": 53855.48, "end": 53857.48, "probability": 0.8764 }, { "start": 53858.64, "end": 53859.66, "probability": 0.9713 }, { "start": 53859.76, "end": 53864.58, "probability": 0.9987 }, { "start": 53866.18, "end": 53867.2, "probability": 0.8001 }, { "start": 53867.88, "end": 53868.34, "probability": 0.8118 }, { "start": 53868.98, "end": 53872.74, "probability": 0.9257 }, { "start": 53874.32, "end": 53875.22, "probability": 0.9111 }, { "start": 53875.96, "end": 53876.54, "probability": 0.528 }, { "start": 53877.19, "end": 53879.32, "probability": 0.6695 }, { "start": 53880.24, "end": 53882.82, "probability": 0.999 }, { "start": 53882.82, "end": 53885.3, "probability": 0.996 }, { "start": 53885.76, "end": 53888.44, "probability": 0.9482 }, { "start": 53889.26, "end": 53893.1, "probability": 0.6971 }, { "start": 53893.86, "end": 53896.94, "probability": 0.8642 }, { "start": 53897.84, "end": 53899.72, "probability": 0.9817 }, { "start": 53900.88, "end": 53902.62, "probability": 0.9937 }, { "start": 53903.36, "end": 53904.64, "probability": 0.8627 }, { "start": 53905.32, "end": 53908.81, "probability": 0.9824 }, { "start": 53909.4, "end": 53911.0, "probability": 0.9284 }, { "start": 53912.48, "end": 53912.94, "probability": 0.6182 }, { "start": 53913.88, "end": 53914.62, "probability": 0.0247 }, { "start": 53915.2, "end": 53915.6, "probability": 0.8577 }, { "start": 53916.66, "end": 53919.76, "probability": 0.9911 }, { "start": 53920.3, "end": 53920.74, "probability": 0.459 }, { "start": 53922.1, "end": 53924.1, "probability": 0.7039 }, { "start": 53924.3, "end": 53925.06, "probability": 0.705 }, { "start": 53925.26, "end": 53926.68, "probability": 0.2062 }, { "start": 53926.88, "end": 53927.22, "probability": 0.4943 }, { "start": 53927.5, "end": 53928.8, "probability": 0.9829 }, { "start": 53929.54, "end": 53933.58, "probability": 0.7725 }, { "start": 53933.84, "end": 53934.46, "probability": 0.8638 }, { "start": 53936.2, "end": 53937.65, "probability": 0.9922 }, { "start": 53937.96, "end": 53938.82, "probability": 0.7546 }, { "start": 53939.74, "end": 53940.58, "probability": 0.8394 }, { "start": 53940.88, "end": 53941.38, "probability": 0.5447 }, { "start": 53942.36, "end": 53943.76, "probability": 0.8291 }, { "start": 53943.92, "end": 53945.46, "probability": 0.999 }, { "start": 53945.82, "end": 53946.94, "probability": 0.374 }, { "start": 53947.18, "end": 53949.28, "probability": 0.7052 }, { "start": 53949.84, "end": 53950.66, "probability": 0.9545 }, { "start": 53951.66, "end": 53953.58, "probability": 0.8271 }, { "start": 53953.98, "end": 53955.44, "probability": 0.9463 }, { "start": 53957.0, "end": 53961.64, "probability": 0.9851 }, { "start": 53962.08, "end": 53962.46, "probability": 0.9338 }, { "start": 53964.62, "end": 53965.0, "probability": 0.915 }, { "start": 53965.66, "end": 53967.22, "probability": 0.9323 }, { "start": 53967.26, "end": 53967.88, "probability": 0.6951 }, { "start": 53968.96, "end": 53970.9, "probability": 0.5506 }, { "start": 53971.18, "end": 53973.8, "probability": 0.7071 }, { "start": 53973.9, "end": 53975.3, "probability": 0.5661 }, { "start": 53975.5, "end": 53976.2, "probability": 0.8291 }, { "start": 53977.9, "end": 53979.98, "probability": 0.8452 }, { "start": 53984.02, "end": 53984.1, "probability": 0.0874 }, { "start": 53984.1, "end": 53984.68, "probability": 0.5117 }, { "start": 53985.8, "end": 53989.68, "probability": 0.8682 }, { "start": 53989.82, "end": 53991.64, "probability": 0.9159 }, { "start": 53992.9, "end": 53994.42, "probability": 0.9544 }, { "start": 53995.04, "end": 53995.52, "probability": 0.9684 }, { "start": 53997.08, "end": 53999.94, "probability": 0.6992 }, { "start": 54001.18, "end": 54001.43, "probability": 0.5527 }, { "start": 54001.7, "end": 54002.42, "probability": 0.7469 }, { "start": 54003.24, "end": 54005.22, "probability": 0.9653 }, { "start": 54007.76, "end": 54008.28, "probability": 0.5641 }, { "start": 54008.66, "end": 54012.84, "probability": 0.9338 }, { "start": 54014.18, "end": 54015.2, "probability": 0.6943 }, { "start": 54015.3, "end": 54015.92, "probability": 0.6823 }, { "start": 54016.06, "end": 54017.38, "probability": 0.8066 }, { "start": 54018.62, "end": 54018.98, "probability": 0.8162 }, { "start": 54019.02, "end": 54019.86, "probability": 0.9436 }, { "start": 54020.26, "end": 54021.24, "probability": 0.8276 }, { "start": 54021.3, "end": 54022.74, "probability": 0.9536 }, { "start": 54023.66, "end": 54025.68, "probability": 0.9441 }, { "start": 54026.5, "end": 54027.74, "probability": 0.9844 }, { "start": 54029.48, "end": 54032.5, "probability": 0.9606 }, { "start": 54032.96, "end": 54033.9, "probability": 0.8546 }, { "start": 54034.5, "end": 54035.64, "probability": 0.9731 }, { "start": 54036.56, "end": 54038.52, "probability": 0.9115 }, { "start": 54039.84, "end": 54041.28, "probability": 0.9928 }, { "start": 54042.08, "end": 54044.8, "probability": 0.9097 }, { "start": 54046.83, "end": 54049.12, "probability": 0.6686 }, { "start": 54049.56, "end": 54049.58, "probability": 0.0328 }, { "start": 54049.58, "end": 54050.06, "probability": 0.7237 }, { "start": 54051.48, "end": 54053.6, "probability": 0.9243 }, { "start": 54054.38, "end": 54055.4, "probability": 0.8916 }, { "start": 54055.56, "end": 54057.13, "probability": 0.9407 }, { "start": 54057.7, "end": 54057.9, "probability": 0.5888 }, { "start": 54057.96, "end": 54059.1, "probability": 0.9835 }, { "start": 54059.62, "end": 54060.8, "probability": 0.7063 }, { "start": 54061.36, "end": 54062.06, "probability": 0.9873 }, { "start": 54063.39, "end": 54066.98, "probability": 0.9915 }, { "start": 54067.08, "end": 54067.96, "probability": 0.9519 }, { "start": 54068.18, "end": 54069.76, "probability": 0.9875 }, { "start": 54071.14, "end": 54073.58, "probability": 0.9851 }, { "start": 54074.1, "end": 54074.87, "probability": 0.847 }, { "start": 54075.48, "end": 54076.78, "probability": 0.791 }, { "start": 54077.04, "end": 54078.3, "probability": 0.896 }, { "start": 54078.62, "end": 54079.28, "probability": 0.6643 }, { "start": 54079.32, "end": 54080.32, "probability": 0.9387 }, { "start": 54080.72, "end": 54081.38, "probability": 0.9776 }, { "start": 54081.8, "end": 54082.84, "probability": 0.9962 }, { "start": 54083.42, "end": 54085.78, "probability": 0.8259 }, { "start": 54087.16, "end": 54087.68, "probability": 0.8521 }, { "start": 54089.24, "end": 54091.8, "probability": 0.998 }, { "start": 54092.62, "end": 54095.26, "probability": 0.9993 }, { "start": 54095.4, "end": 54098.34, "probability": 0.9967 }, { "start": 54098.6, "end": 54099.18, "probability": 0.3745 }, { "start": 54099.84, "end": 54102.78, "probability": 0.6415 }, { "start": 54102.96, "end": 54103.9, "probability": 0.5951 }, { "start": 54105.12, "end": 54105.5, "probability": 0.727 }, { "start": 54106.12, "end": 54108.32, "probability": 0.9949 }, { "start": 54108.88, "end": 54110.12, "probability": 0.8582 }, { "start": 54110.86, "end": 54112.18, "probability": 0.8733 }, { "start": 54112.22, "end": 54113.44, "probability": 0.6578 }, { "start": 54114.04, "end": 54115.44, "probability": 0.9443 }, { "start": 54115.48, "end": 54116.5, "probability": 0.5411 }, { "start": 54116.56, "end": 54117.32, "probability": 0.6816 }, { "start": 54117.94, "end": 54119.08, "probability": 0.9975 }, { "start": 54119.92, "end": 54121.44, "probability": 0.6816 }, { "start": 54121.7, "end": 54124.88, "probability": 0.7003 }, { "start": 54124.92, "end": 54125.14, "probability": 0.7365 }, { "start": 54125.22, "end": 54126.25, "probability": 0.9919 }, { "start": 54126.36, "end": 54127.81, "probability": 0.9688 }, { "start": 54128.56, "end": 54130.7, "probability": 0.9491 }, { "start": 54133.29, "end": 54134.28, "probability": 0.0309 }, { "start": 54134.3, "end": 54134.3, "probability": 0.0278 }, { "start": 54134.3, "end": 54134.3, "probability": 0.0153 }, { "start": 54134.3, "end": 54134.3, "probability": 0.0842 }, { "start": 54134.3, "end": 54134.3, "probability": 0.131 }, { "start": 54134.3, "end": 54134.78, "probability": 0.4322 }, { "start": 54135.86, "end": 54137.42, "probability": 0.8547 }, { "start": 54137.48, "end": 54137.69, "probability": 0.0058 }, { "start": 54139.6, "end": 54142.16, "probability": 0.9097 }, { "start": 54142.72, "end": 54144.94, "probability": 0.8593 }, { "start": 54145.72, "end": 54146.98, "probability": 0.7806 }, { "start": 54147.92, "end": 54149.9, "probability": 0.8018 }, { "start": 54150.12, "end": 54152.36, "probability": 0.9839 }, { "start": 54153.3, "end": 54153.7, "probability": 0.8638 }, { "start": 54153.74, "end": 54154.4, "probability": 0.9763 }, { "start": 54154.48, "end": 54156.7, "probability": 0.9907 }, { "start": 54157.1, "end": 54158.76, "probability": 0.9085 }, { "start": 54159.2, "end": 54160.7, "probability": 0.9504 }, { "start": 54160.82, "end": 54161.12, "probability": 0.7187 }, { "start": 54161.18, "end": 54161.8, "probability": 0.8936 }, { "start": 54162.4, "end": 54163.28, "probability": 0.7384 }, { "start": 54163.38, "end": 54163.72, "probability": 0.2545 }, { "start": 54163.88, "end": 54164.27, "probability": 0.4445 }, { "start": 54166.0, "end": 54167.96, "probability": 0.9138 }, { "start": 54168.62, "end": 54169.26, "probability": 0.9656 }, { "start": 54169.36, "end": 54169.84, "probability": 0.6624 }, { "start": 54170.02, "end": 54171.36, "probability": 0.9465 }, { "start": 54171.62, "end": 54172.58, "probability": 0.355 }, { "start": 54172.8, "end": 54176.68, "probability": 0.9889 }, { "start": 54176.8, "end": 54178.94, "probability": 0.8945 }, { "start": 54179.14, "end": 54181.54, "probability": 0.6916 }, { "start": 54181.6, "end": 54183.96, "probability": 0.8828 }, { "start": 54185.54, "end": 54187.1, "probability": 0.9159 }, { "start": 54187.64, "end": 54190.02, "probability": 0.7233 }, { "start": 54190.58, "end": 54193.45, "probability": 0.9646 }, { "start": 54193.66, "end": 54193.94, "probability": 0.8752 }, { "start": 54194.56, "end": 54194.84, "probability": 0.9742 }, { "start": 54195.74, "end": 54196.28, "probability": 0.9468 }, { "start": 54197.7, "end": 54198.9, "probability": 0.9064 }, { "start": 54200.14, "end": 54200.34, "probability": 0.5602 }, { "start": 54201.4, "end": 54203.14, "probability": 0.9911 }, { "start": 54203.66, "end": 54205.7, "probability": 0.9956 }, { "start": 54205.86, "end": 54206.58, "probability": 0.9547 }, { "start": 54207.14, "end": 54208.1, "probability": 0.7004 }, { "start": 54208.16, "end": 54208.3, "probability": 0.3885 }, { "start": 54208.48, "end": 54209.32, "probability": 0.8207 }, { "start": 54209.36, "end": 54209.52, "probability": 0.791 }, { "start": 54209.64, "end": 54210.17, "probability": 0.9233 }, { "start": 54210.28, "end": 54210.68, "probability": 0.991 }, { "start": 54211.64, "end": 54213.08, "probability": 0.9905 }, { "start": 54213.42, "end": 54214.48, "probability": 0.958 }, { "start": 54214.52, "end": 54214.76, "probability": 0.8047 }, { "start": 54214.86, "end": 54215.46, "probability": 0.6379 }, { "start": 54216.02, "end": 54218.22, "probability": 0.9201 }, { "start": 54218.54, "end": 54219.28, "probability": 0.9465 }, { "start": 54219.66, "end": 54222.0, "probability": 0.9902 }, { "start": 54222.94, "end": 54223.5, "probability": 0.8581 }, { "start": 54224.92, "end": 54226.5, "probability": 0.3398 }, { "start": 54227.12, "end": 54229.61, "probability": 0.7379 }, { "start": 54230.7, "end": 54231.7, "probability": 0.9846 }, { "start": 54232.7, "end": 54234.06, "probability": 0.742 }, { "start": 54234.14, "end": 54235.4, "probability": 0.912 }, { "start": 54235.84, "end": 54236.8, "probability": 0.9697 }, { "start": 54237.08, "end": 54238.26, "probability": 0.8162 }, { "start": 54238.6, "end": 54239.88, "probability": 0.454 }, { "start": 54241.4, "end": 54245.06, "probability": 0.6863 }, { "start": 54245.46, "end": 54246.1, "probability": 0.7543 }, { "start": 54246.84, "end": 54249.12, "probability": 0.7679 }, { "start": 54249.72, "end": 54253.84, "probability": 0.7748 }, { "start": 54254.32, "end": 54256.9, "probability": 0.7008 }, { "start": 54258.04, "end": 54258.52, "probability": 0.8414 }, { "start": 54259.72, "end": 54261.1, "probability": 0.5833 }, { "start": 54261.18, "end": 54262.74, "probability": 0.9658 }, { "start": 54262.82, "end": 54263.56, "probability": 0.9515 }, { "start": 54264.6, "end": 54267.32, "probability": 0.7681 }, { "start": 54267.46, "end": 54269.23, "probability": 0.9132 }, { "start": 54271.26, "end": 54274.66, "probability": 0.7893 }, { "start": 54276.32, "end": 54277.12, "probability": 0.4422 }, { "start": 54277.46, "end": 54279.3, "probability": 0.4976 }, { "start": 54279.3, "end": 54281.06, "probability": 0.5085 }, { "start": 54281.36, "end": 54283.66, "probability": 0.579 }, { "start": 54283.82, "end": 54284.48, "probability": 0.8854 }, { "start": 54284.6, "end": 54285.04, "probability": 0.7345 }, { "start": 54285.18, "end": 54286.12, "probability": 0.8842 }, { "start": 54286.22, "end": 54287.98, "probability": 0.5018 }, { "start": 54288.16, "end": 54289.62, "probability": 0.9865 }, { "start": 54290.34, "end": 54290.75, "probability": 0.7188 }, { "start": 54291.44, "end": 54296.0, "probability": 0.6376 }, { "start": 54296.0, "end": 54297.5, "probability": 0.9725 }, { "start": 54297.78, "end": 54300.12, "probability": 0.9708 }, { "start": 54300.12, "end": 54302.94, "probability": 0.6746 }, { "start": 54303.06, "end": 54303.54, "probability": 0.7802 }, { "start": 54303.86, "end": 54305.88, "probability": 0.9171 }, { "start": 54305.88, "end": 54307.78, "probability": 0.9479 }, { "start": 54308.46, "end": 54308.98, "probability": 0.2883 }, { "start": 54309.26, "end": 54312.98, "probability": 0.4301 }, { "start": 54313.66, "end": 54313.94, "probability": 0.7646 }, { "start": 54314.68, "end": 54316.74, "probability": 0.9909 }, { "start": 54317.24, "end": 54320.21, "probability": 0.7574 }, { "start": 54320.38, "end": 54320.76, "probability": 0.8408 }, { "start": 54321.24, "end": 54323.3, "probability": 0.9412 }, { "start": 54324.22, "end": 54325.12, "probability": 0.99 }, { "start": 54325.34, "end": 54325.93, "probability": 0.7599 }, { "start": 54326.64, "end": 54327.76, "probability": 0.8197 }, { "start": 54327.82, "end": 54328.92, "probability": 0.8101 }, { "start": 54329.82, "end": 54330.62, "probability": 0.2787 }, { "start": 54332.94, "end": 54335.96, "probability": 0.9958 }, { "start": 54336.16, "end": 54337.94, "probability": 0.8606 }, { "start": 54338.98, "end": 54339.96, "probability": 0.8976 }, { "start": 54340.06, "end": 54340.66, "probability": 0.6136 }, { "start": 54340.74, "end": 54341.36, "probability": 0.8682 }, { "start": 54341.46, "end": 54342.05, "probability": 0.9753 }, { "start": 54342.86, "end": 54344.9, "probability": 0.9885 }, { "start": 54346.0, "end": 54347.26, "probability": 0.4057 }, { "start": 54347.85, "end": 54348.58, "probability": 0.3583 }, { "start": 54348.9, "end": 54351.14, "probability": 0.36 }, { "start": 54351.56, "end": 54355.22, "probability": 0.9813 }, { "start": 54356.18, "end": 54357.06, "probability": 0.8517 }, { "start": 54357.7, "end": 54360.09, "probability": 0.9604 }, { "start": 54360.52, "end": 54361.04, "probability": 0.8852 }, { "start": 54361.82, "end": 54364.92, "probability": 0.9905 }, { "start": 54366.04, "end": 54367.56, "probability": 0.9971 }, { "start": 54367.66, "end": 54368.7, "probability": 0.9261 }, { "start": 54370.66, "end": 54372.62, "probability": 0.702 }, { "start": 54372.74, "end": 54373.35, "probability": 0.5009 }, { "start": 54373.72, "end": 54376.36, "probability": 0.9827 }, { "start": 54376.6, "end": 54378.84, "probability": 0.9437 }, { "start": 54380.0, "end": 54385.34, "probability": 0.7607 }, { "start": 54386.05, "end": 54388.28, "probability": 0.707 }, { "start": 54389.2, "end": 54389.6, "probability": 0.2785 }, { "start": 54389.66, "end": 54389.88, "probability": 0.2885 }, { "start": 54389.96, "end": 54391.44, "probability": 0.8222 }, { "start": 54391.74, "end": 54393.34, "probability": 0.9009 }, { "start": 54394.54, "end": 54399.7, "probability": 0.9955 }, { "start": 54399.82, "end": 54400.02, "probability": 0.5345 }, { "start": 54400.28, "end": 54401.48, "probability": 0.8201 }, { "start": 54401.7, "end": 54403.88, "probability": 0.95 }, { "start": 54405.09, "end": 54407.48, "probability": 0.9186 }, { "start": 54408.2, "end": 54409.6, "probability": 0.666 }, { "start": 54409.66, "end": 54413.46, "probability": 0.9747 }, { "start": 54413.48, "end": 54417.36, "probability": 0.7822 }, { "start": 54419.04, "end": 54421.62, "probability": 0.6227 }, { "start": 54421.62, "end": 54422.0, "probability": 0.8184 }, { "start": 54422.62, "end": 54423.88, "probability": 0.7169 }, { "start": 54425.44, "end": 54428.14, "probability": 0.7493 }, { "start": 54428.4, "end": 54428.54, "probability": 0.8536 }, { "start": 54429.38, "end": 54430.82, "probability": 0.8421 }, { "start": 54430.92, "end": 54431.68, "probability": 0.8469 }, { "start": 54432.2, "end": 54432.45, "probability": 0.5664 }, { "start": 54432.86, "end": 54436.5, "probability": 0.9802 }, { "start": 54437.22, "end": 54437.74, "probability": 0.4114 }, { "start": 54439.16, "end": 54441.4, "probability": 0.9755 }, { "start": 54441.58, "end": 54442.84, "probability": 0.7896 }, { "start": 54443.52, "end": 54443.72, "probability": 0.5729 }, { "start": 54444.06, "end": 54445.36, "probability": 0.9941 }, { "start": 54446.56, "end": 54448.68, "probability": 0.7173 }, { "start": 54448.68, "end": 54449.84, "probability": 0.7082 }, { "start": 54451.1, "end": 54454.78, "probability": 0.8149 }, { "start": 54454.84, "end": 54454.98, "probability": 0.4312 }, { "start": 54455.1, "end": 54456.5, "probability": 0.8914 }, { "start": 54456.96, "end": 54457.28, "probability": 0.7585 }, { "start": 54457.52, "end": 54460.0, "probability": 0.9011 }, { "start": 54461.96, "end": 54462.82, "probability": 0.5458 }, { "start": 54462.82, "end": 54464.44, "probability": 0.8532 }, { "start": 54465.3, "end": 54466.42, "probability": 0.9786 }, { "start": 54467.02, "end": 54468.38, "probability": 0.9137 }, { "start": 54469.08, "end": 54472.84, "probability": 0.9929 }, { "start": 54472.94, "end": 54474.44, "probability": 0.8809 }, { "start": 54474.58, "end": 54475.06, "probability": 0.8062 }, { "start": 54477.22, "end": 54477.4, "probability": 0.1179 }, { "start": 54477.4, "end": 54478.26, "probability": 0.5208 }, { "start": 54478.88, "end": 54480.1, "probability": 0.5787 }, { "start": 54480.68, "end": 54480.98, "probability": 0.6125 }, { "start": 54480.98, "end": 54483.06, "probability": 0.8966 }, { "start": 54483.8, "end": 54484.38, "probability": 0.6174 }, { "start": 54484.94, "end": 54485.48, "probability": 0.6211 }, { "start": 54486.16, "end": 54488.12, "probability": 0.9326 }, { "start": 54488.84, "end": 54489.86, "probability": 0.8018 }, { "start": 54490.14, "end": 54491.08, "probability": 0.9897 }, { "start": 54491.38, "end": 54491.46, "probability": 0.251 }, { "start": 54491.64, "end": 54493.62, "probability": 0.9546 }, { "start": 54493.68, "end": 54496.3, "probability": 0.7959 }, { "start": 54497.29, "end": 54500.72, "probability": 0.9854 }, { "start": 54502.9, "end": 54503.62, "probability": 0.9585 }, { "start": 54516.8, "end": 54517.62, "probability": 0.1211 }, { "start": 54517.62, "end": 54517.62, "probability": 0.157 }, { "start": 54517.62, "end": 54517.62, "probability": 0.115 }, { "start": 54517.62, "end": 54517.62, "probability": 0.0912 }, { "start": 54517.62, "end": 54517.62, "probability": 0.2744 }, { "start": 54517.62, "end": 54518.28, "probability": 0.159 }, { "start": 54518.28, "end": 54519.4, "probability": 0.9331 }, { "start": 54519.7, "end": 54520.68, "probability": 0.8513 }, { "start": 54520.9, "end": 54521.14, "probability": 0.7441 }, { "start": 54522.16, "end": 54524.18, "probability": 0.915 }, { "start": 54525.16, "end": 54525.56, "probability": 0.9207 }, { "start": 54526.66, "end": 54527.9, "probability": 0.9914 }, { "start": 54528.52, "end": 54529.34, "probability": 0.8623 }, { "start": 54530.7, "end": 54531.74, "probability": 0.8136 }, { "start": 54532.3, "end": 54533.46, "probability": 0.995 }, { "start": 54536.06, "end": 54537.8, "probability": 0.9725 }, { "start": 54538.9, "end": 54541.02, "probability": 0.9058 }, { "start": 54542.84, "end": 54545.58, "probability": 0.9444 }, { "start": 54546.04, "end": 54546.46, "probability": 0.4479 }, { "start": 54546.48, "end": 54547.92, "probability": 0.7227 }, { "start": 54548.26, "end": 54549.96, "probability": 0.9243 }, { "start": 54551.71, "end": 54553.92, "probability": 0.9625 }, { "start": 54554.52, "end": 54556.22, "probability": 0.8883 }, { "start": 54557.44, "end": 54558.4, "probability": 0.8926 }, { "start": 54559.08, "end": 54561.8, "probability": 0.9848 }, { "start": 54563.04, "end": 54566.68, "probability": 0.8373 }, { "start": 54567.66, "end": 54569.24, "probability": 0.9552 }, { "start": 54570.24, "end": 54572.2, "probability": 0.7747 }, { "start": 54573.96, "end": 54575.6, "probability": 0.991 }, { "start": 54575.66, "end": 54576.52, "probability": 0.9225 }, { "start": 54576.82, "end": 54577.9, "probability": 0.9166 }, { "start": 54578.12, "end": 54579.36, "probability": 0.8193 }, { "start": 54580.54, "end": 54581.66, "probability": 0.7852 }, { "start": 54581.74, "end": 54583.48, "probability": 0.8784 }, { "start": 54583.54, "end": 54584.22, "probability": 0.7492 }, { "start": 54584.96, "end": 54589.72, "probability": 0.9743 }, { "start": 54591.02, "end": 54592.14, "probability": 0.7759 }, { "start": 54592.22, "end": 54595.16, "probability": 0.6622 }, { "start": 54596.76, "end": 54598.02, "probability": 0.852 }, { "start": 54599.02, "end": 54601.42, "probability": 0.8169 }, { "start": 54601.6, "end": 54604.1, "probability": 0.9831 }, { "start": 54604.78, "end": 54605.06, "probability": 0.3164 }, { "start": 54606.36, "end": 54608.26, "probability": 0.9893 }, { "start": 54609.0, "end": 54609.63, "probability": 0.9352 }, { "start": 54610.14, "end": 54611.06, "probability": 0.9489 }, { "start": 54611.14, "end": 54611.93, "probability": 0.7856 }, { "start": 54612.46, "end": 54613.86, "probability": 0.9933 }, { "start": 54613.96, "end": 54614.62, "probability": 0.5487 }, { "start": 54614.82, "end": 54615.84, "probability": 0.6175 }, { "start": 54616.34, "end": 54617.74, "probability": 0.5369 }, { "start": 54618.82, "end": 54619.12, "probability": 0.7107 }, { "start": 54619.5, "end": 54622.04, "probability": 0.9495 }, { "start": 54624.08, "end": 54624.56, "probability": 0.9066 }, { "start": 54625.1, "end": 54626.08, "probability": 0.7531 }, { "start": 54626.16, "end": 54627.68, "probability": 0.068 }, { "start": 54627.72, "end": 54628.58, "probability": 0.4306 }, { "start": 54628.72, "end": 54630.14, "probability": 0.9182 }, { "start": 54631.64, "end": 54632.9, "probability": 0.6858 }, { "start": 54636.78, "end": 54638.86, "probability": 0.4461 }, { "start": 54639.56, "end": 54642.64, "probability": 0.8568 }, { "start": 54645.04, "end": 54646.36, "probability": 0.4921 }, { "start": 54647.0, "end": 54648.22, "probability": 0.9483 }, { "start": 54650.14, "end": 54650.34, "probability": 0.1393 }, { "start": 54650.46, "end": 54650.98, "probability": 0.4379 }, { "start": 54651.52, "end": 54653.72, "probability": 0.8193 }, { "start": 54654.12, "end": 54656.98, "probability": 0.9141 }, { "start": 54656.98, "end": 54659.08, "probability": 0.3439 }, { "start": 54659.22, "end": 54659.78, "probability": 0.4686 }, { "start": 54659.82, "end": 54661.1, "probability": 0.5166 }, { "start": 54661.12, "end": 54662.2, "probability": 0.9207 }, { "start": 54662.64, "end": 54663.8, "probability": 0.7663 }, { "start": 54664.02, "end": 54664.04, "probability": 0.3713 }, { "start": 54664.04, "end": 54664.96, "probability": 0.2182 }, { "start": 54666.12, "end": 54667.14, "probability": 0.7989 }, { "start": 54667.22, "end": 54668.74, "probability": 0.2385 }, { "start": 54668.74, "end": 54672.38, "probability": 0.5701 }, { "start": 54676.62, "end": 54677.5, "probability": 0.7076 }, { "start": 54677.66, "end": 54678.4, "probability": 0.6439 }, { "start": 54678.54, "end": 54679.24, "probability": 0.8542 }, { "start": 54679.28, "end": 54680.08, "probability": 0.6832 }, { "start": 54680.7, "end": 54681.96, "probability": 0.5236 }, { "start": 54682.36, "end": 54682.54, "probability": 0.4555 }, { "start": 54684.57, "end": 54686.2, "probability": 0.6532 }, { "start": 54686.56, "end": 54689.0, "probability": 0.439 }, { "start": 54689.3, "end": 54691.4, "probability": 0.5375 }, { "start": 54691.52, "end": 54692.56, "probability": 0.6845 }, { "start": 54692.6, "end": 54693.28, "probability": 0.5003 }, { "start": 54696.8, "end": 54698.32, "probability": 0.9613 }, { "start": 54698.64, "end": 54701.54, "probability": 0.7173 }, { "start": 54702.08, "end": 54704.12, "probability": 0.6389 }, { "start": 54704.96, "end": 54708.18, "probability": 0.9275 }, { "start": 54708.94, "end": 54709.22, "probability": 0.5144 }, { "start": 54709.84, "end": 54711.38, "probability": 0.8955 }, { "start": 54713.42, "end": 54715.22, "probability": 0.9839 }, { "start": 54715.38, "end": 54717.3, "probability": 0.9697 }, { "start": 54719.76, "end": 54721.68, "probability": 0.5331 }, { "start": 54722.3, "end": 54723.12, "probability": 0.577 }, { "start": 54724.32, "end": 54725.76, "probability": 0.1361 }, { "start": 54726.2, "end": 54728.5, "probability": 0.5772 }, { "start": 54730.34, "end": 54731.18, "probability": 0.0189 }, { "start": 54731.56, "end": 54731.7, "probability": 0.2682 }, { "start": 54732.0, "end": 54732.46, "probability": 0.2503 }, { "start": 54732.46, "end": 54734.58, "probability": 0.6548 }, { "start": 54734.78, "end": 54735.12, "probability": 0.338 }, { "start": 54735.5, "end": 54737.96, "probability": 0.9873 }, { "start": 54739.42, "end": 54741.86, "probability": 0.7445 }, { "start": 54742.98, "end": 54746.32, "probability": 0.9705 }, { "start": 54747.24, "end": 54748.08, "probability": 0.8261 }, { "start": 54748.48, "end": 54750.28, "probability": 0.7392 }, { "start": 54750.32, "end": 54750.6, "probability": 0.665 }, { "start": 54750.72, "end": 54752.34, "probability": 0.679 }, { "start": 54753.38, "end": 54756.4, "probability": 0.9912 }, { "start": 54756.56, "end": 54757.85, "probability": 0.9919 }, { "start": 54758.8, "end": 54762.96, "probability": 0.9644 }, { "start": 54763.04, "end": 54764.65, "probability": 0.8865 }, { "start": 54765.4, "end": 54765.78, "probability": 0.6434 }, { "start": 54765.78, "end": 54766.46, "probability": 0.3577 }, { "start": 54766.54, "end": 54766.98, "probability": 0.4555 }, { "start": 54767.0, "end": 54768.8, "probability": 0.9178 }, { "start": 54770.22, "end": 54771.48, "probability": 0.751 }, { "start": 54771.6, "end": 54777.18, "probability": 0.866 }, { "start": 54777.84, "end": 54779.04, "probability": 0.8868 }, { "start": 54779.5, "end": 54780.62, "probability": 0.9371 }, { "start": 54780.8, "end": 54781.6, "probability": 0.9995 }, { "start": 54782.36, "end": 54784.21, "probability": 0.6747 }, { "start": 54785.3, "end": 54786.48, "probability": 0.8222 }, { "start": 54786.56, "end": 54789.02, "probability": 0.9363 }, { "start": 54789.4, "end": 54790.18, "probability": 0.7905 }, { "start": 54790.28, "end": 54790.56, "probability": 0.9636 }, { "start": 54790.78, "end": 54791.68, "probability": 0.9559 }, { "start": 54792.16, "end": 54792.9, "probability": 0.7612 }, { "start": 54793.86, "end": 54795.27, "probability": 0.9937 }, { "start": 54795.68, "end": 54797.38, "probability": 0.6763 }, { "start": 54797.86, "end": 54799.16, "probability": 0.8243 }, { "start": 54799.24, "end": 54800.14, "probability": 0.8885 }, { "start": 54800.2, "end": 54801.08, "probability": 0.8896 }, { "start": 54801.28, "end": 54803.24, "probability": 0.9819 }, { "start": 54803.86, "end": 54805.74, "probability": 0.5692 }, { "start": 54806.7, "end": 54808.96, "probability": 0.7944 }, { "start": 54809.02, "end": 54810.48, "probability": 0.453 }, { "start": 54810.84, "end": 54813.6, "probability": 0.2548 }, { "start": 54813.6, "end": 54814.24, "probability": 0.4998 }, { "start": 54814.36, "end": 54816.36, "probability": 0.7432 }, { "start": 54816.54, "end": 54819.64, "probability": 0.8783 }, { "start": 54821.26, "end": 54822.86, "probability": 0.7703 }, { "start": 54823.24, "end": 54823.7, "probability": 0.0198 }, { "start": 54824.14, "end": 54824.3, "probability": 0.9119 }, { "start": 54825.18, "end": 54825.6, "probability": 0.7511 }, { "start": 54826.32, "end": 54827.46, "probability": 0.3818 }, { "start": 54827.66, "end": 54829.3, "probability": 0.7439 }, { "start": 54829.68, "end": 54830.48, "probability": 0.5938 }, { "start": 54830.7, "end": 54831.28, "probability": 0.747 }, { "start": 54831.34, "end": 54833.9, "probability": 0.7817 }, { "start": 54834.3, "end": 54834.7, "probability": 0.1777 }, { "start": 54834.82, "end": 54835.68, "probability": 0.7583 }, { "start": 54835.84, "end": 54837.06, "probability": 0.9526 }, { "start": 54839.42, "end": 54841.34, "probability": 0.7418 }, { "start": 54841.6, "end": 54842.69, "probability": 0.7987 }, { "start": 54843.02, "end": 54843.7, "probability": 0.823 }, { "start": 54844.36, "end": 54845.7, "probability": 0.6508 }, { "start": 54846.34, "end": 54850.4, "probability": 0.8992 }, { "start": 54850.64, "end": 54852.51, "probability": 0.6121 }, { "start": 54853.79, "end": 54856.98, "probability": 0.6744 }, { "start": 54857.7, "end": 54860.2, "probability": 0.7104 }, { "start": 54861.38, "end": 54864.34, "probability": 0.7855 }, { "start": 54864.8, "end": 54867.08, "probability": 0.8474 }, { "start": 54867.66, "end": 54869.48, "probability": 0.6952 }, { "start": 54872.6, "end": 54874.62, "probability": 0.9162 }, { "start": 54879.72, "end": 54880.74, "probability": 0.5157 }, { "start": 54880.84, "end": 54883.26, "probability": 0.626 }, { "start": 54883.82, "end": 54884.6, "probability": 0.8885 }, { "start": 54885.24, "end": 54885.92, "probability": 0.918 }, { "start": 54888.31, "end": 54889.47, "probability": 0.6036 }, { "start": 54890.18, "end": 54891.85, "probability": 0.9873 }, { "start": 54892.22, "end": 54894.88, "probability": 0.872 }, { "start": 54895.42, "end": 54896.36, "probability": 0.4692 }, { "start": 54896.96, "end": 54898.46, "probability": 0.9447 }, { "start": 54899.04, "end": 54900.78, "probability": 0.7278 }, { "start": 54901.2, "end": 54902.04, "probability": 0.9985 }, { "start": 54902.32, "end": 54905.86, "probability": 0.8981 }, { "start": 54905.96, "end": 54906.3, "probability": 0.7693 }, { "start": 54906.8, "end": 54907.76, "probability": 0.6497 }, { "start": 54908.1, "end": 54910.04, "probability": 0.501 }, { "start": 54910.84, "end": 54911.84, "probability": 0.6707 }, { "start": 54912.04, "end": 54912.44, "probability": 0.7094 }, { "start": 54912.6, "end": 54913.4, "probability": 0.9727 }, { "start": 54913.62, "end": 54914.24, "probability": 0.867 }, { "start": 54914.7, "end": 54916.7, "probability": 0.7563 }, { "start": 54916.88, "end": 54917.9, "probability": 0.9834 }, { "start": 54918.2, "end": 54919.64, "probability": 0.9961 }, { "start": 54919.64, "end": 54922.88, "probability": 0.9998 }, { "start": 54922.98, "end": 54923.36, "probability": 0.4975 }, { "start": 54923.46, "end": 54923.82, "probability": 0.55 }, { "start": 54923.86, "end": 54926.36, "probability": 0.5787 }, { "start": 54927.18, "end": 54928.8, "probability": 0.8188 }, { "start": 54936.66, "end": 54937.5, "probability": 0.7795 }, { "start": 54939.46, "end": 54941.72, "probability": 0.5188 }, { "start": 54941.72, "end": 54942.5, "probability": 0.6455 }, { "start": 54942.96, "end": 54944.34, "probability": 0.7656 }, { "start": 54945.5, "end": 54947.28, "probability": 0.9639 }, { "start": 54947.54, "end": 54948.15, "probability": 0.9882 }, { "start": 54950.18, "end": 54951.7, "probability": 0.9956 }, { "start": 54952.54, "end": 54953.0, "probability": 0.8654 }, { "start": 54953.14, "end": 54955.22, "probability": 0.9993 }, { "start": 54955.22, "end": 54957.86, "probability": 0.7506 }, { "start": 54958.74, "end": 54960.74, "probability": 0.8672 }, { "start": 54961.86, "end": 54963.08, "probability": 0.6862 }, { "start": 54963.24, "end": 54966.54, "probability": 0.9821 }, { "start": 54966.92, "end": 54970.28, "probability": 0.9315 }, { "start": 54970.74, "end": 54971.11, "probability": 0.9325 }, { "start": 54973.02, "end": 54975.24, "probability": 0.7437 }, { "start": 54975.32, "end": 54975.74, "probability": 0.8589 }, { "start": 54975.76, "end": 54978.94, "probability": 0.8252 }, { "start": 54979.02, "end": 54981.46, "probability": 0.7768 }, { "start": 54984.58, "end": 54985.98, "probability": 0.7129 }, { "start": 54994.5, "end": 54995.73, "probability": 0.7562 }, { "start": 54996.44, "end": 54997.26, "probability": 0.9907 }, { "start": 54998.24, "end": 55000.94, "probability": 0.9285 }, { "start": 55005.92, "end": 55007.64, "probability": 0.9871 }, { "start": 55009.2, "end": 55010.14, "probability": 0.7762 }, { "start": 55013.22, "end": 55018.0, "probability": 0.0293 }, { "start": 55018.14, "end": 55018.34, "probability": 0.0356 }, { "start": 55018.34, "end": 55020.92, "probability": 0.0956 }, { "start": 55034.92, "end": 55037.46, "probability": 0.0632 }, { "start": 55037.56, "end": 55037.92, "probability": 0.1484 }, { "start": 55040.35, "end": 55040.84, "probability": 0.0969 }, { "start": 55060.68, "end": 55061.28, "probability": 0.0517 }, { "start": 55066.08, "end": 55068.54, "probability": 0.6535 }, { "start": 55069.0, "end": 55069.48, "probability": 0.6251 }, { "start": 55069.72, "end": 55071.24, "probability": 0.7734 }, { "start": 55072.16, "end": 55073.54, "probability": 0.4622 }, { "start": 55073.6, "end": 55073.7, "probability": 0.6397 }, { "start": 55074.18, "end": 55076.06, "probability": 0.9647 }, { "start": 55076.18, "end": 55077.2, "probability": 0.992 }, { "start": 55077.42, "end": 55077.9, "probability": 0.1624 }, { "start": 55078.88, "end": 55080.47, "probability": 0.9871 }, { "start": 55080.94, "end": 55081.98, "probability": 0.439 }, { "start": 55082.76, "end": 55083.9, "probability": 0.9956 }, { "start": 55084.72, "end": 55087.36, "probability": 0.8474 }, { "start": 55088.34, "end": 55091.06, "probability": 0.6337 }, { "start": 55091.68, "end": 55092.28, "probability": 0.9362 }, { "start": 55093.1, "end": 55094.46, "probability": 0.9124 }, { "start": 55095.28, "end": 55096.46, "probability": 0.9771 }, { "start": 55096.9, "end": 55098.02, "probability": 0.9661 }, { "start": 55098.88, "end": 55099.56, "probability": 0.9798 }, { "start": 55100.36, "end": 55101.64, "probability": 0.2415 }, { "start": 55101.72, "end": 55102.4, "probability": 0.942 }, { "start": 55103.24, "end": 55104.2, "probability": 0.9598 }, { "start": 55105.8, "end": 55107.28, "probability": 0.4824 }, { "start": 55107.74, "end": 55109.15, "probability": 0.9359 }, { "start": 55109.66, "end": 55113.28, "probability": 0.8721 }, { "start": 55113.66, "end": 55115.06, "probability": 0.8384 }, { "start": 55115.08, "end": 55115.48, "probability": 0.9501 }, { "start": 55115.96, "end": 55118.24, "probability": 0.1938 }, { "start": 55118.46, "end": 55119.86, "probability": 0.2614 }, { "start": 55119.98, "end": 55121.68, "probability": 0.5563 }, { "start": 55121.7, "end": 55124.58, "probability": 0.5893 }, { "start": 55125.2, "end": 55127.56, "probability": 0.631 }, { "start": 55127.86, "end": 55128.96, "probability": 0.8 }, { "start": 55130.26, "end": 55130.98, "probability": 0.6522 }, { "start": 55131.72, "end": 55133.96, "probability": 0.6018 }, { "start": 55134.82, "end": 55135.1, "probability": 0.0274 }, { "start": 55135.1, "end": 55135.1, "probability": 0.0335 }, { "start": 55135.1, "end": 55135.5, "probability": 0.6167 }, { "start": 55135.5, "end": 55138.86, "probability": 0.59 }, { "start": 55138.94, "end": 55140.18, "probability": 0.9263 }, { "start": 55140.62, "end": 55141.03, "probability": 0.9665 }, { "start": 55142.06, "end": 55143.09, "probability": 0.4926 }, { "start": 55143.76, "end": 55144.69, "probability": 0.8175 }, { "start": 55145.66, "end": 55148.76, "probability": 0.9255 }, { "start": 55149.08, "end": 55149.64, "probability": 0.9681 }, { "start": 55149.72, "end": 55150.64, "probability": 0.973 }, { "start": 55150.66, "end": 55152.5, "probability": 0.9895 }, { "start": 55153.24, "end": 55156.1, "probability": 0.938 }, { "start": 55156.3, "end": 55157.06, "probability": 0.9486 }, { "start": 55157.42, "end": 55158.86, "probability": 0.9272 }, { "start": 55158.9, "end": 55159.9, "probability": 0.7192 }, { "start": 55160.08, "end": 55163.04, "probability": 0.7162 }, { "start": 55163.42, "end": 55163.54, "probability": 0.0835 }, { "start": 55164.14, "end": 55164.78, "probability": 0.7865 }, { "start": 55167.58, "end": 55169.86, "probability": 0.9648 }, { "start": 55169.92, "end": 55172.72, "probability": 0.5457 }, { "start": 55172.72, "end": 55172.72, "probability": 0.3358 }, { "start": 55172.72, "end": 55175.32, "probability": 0.8485 }, { "start": 55175.42, "end": 55175.82, "probability": 0.207 }, { "start": 55175.82, "end": 55176.32, "probability": 0.5902 }, { "start": 55177.32, "end": 55179.0, "probability": 0.7629 }, { "start": 55179.36, "end": 55180.0, "probability": 0.7994 }, { "start": 55180.26, "end": 55181.72, "probability": 0.6947 }, { "start": 55182.14, "end": 55183.0, "probability": 0.8126 }, { "start": 55183.83, "end": 55185.7, "probability": 0.9318 }, { "start": 55188.01, "end": 55189.98, "probability": 0.8367 }, { "start": 55189.98, "end": 55191.75, "probability": 0.9846 }, { "start": 55192.85, "end": 55196.32, "probability": 0.9705 }, { "start": 55196.66, "end": 55197.9, "probability": 0.7832 }, { "start": 55198.6, "end": 55202.36, "probability": 0.8835 }, { "start": 55202.74, "end": 55203.96, "probability": 0.8312 }, { "start": 55204.06, "end": 55207.76, "probability": 0.7967 }, { "start": 55208.7, "end": 55209.52, "probability": 0.8856 }, { "start": 55210.34, "end": 55211.0, "probability": 0.9868 }, { "start": 55211.6, "end": 55214.4, "probability": 0.9968 }, { "start": 55215.34, "end": 55217.74, "probability": 0.9466 }, { "start": 55218.16, "end": 55219.31, "probability": 0.999 }, { "start": 55219.72, "end": 55220.62, "probability": 0.7111 }, { "start": 55220.76, "end": 55222.82, "probability": 0.9948 }, { "start": 55223.04, "end": 55224.2, "probability": 0.9477 }, { "start": 55224.48, "end": 55227.0, "probability": 0.994 }, { "start": 55227.4, "end": 55229.32, "probability": 0.9625 }, { "start": 55230.2, "end": 55231.74, "probability": 0.9886 }, { "start": 55232.96, "end": 55233.68, "probability": 0.3622 }, { "start": 55233.68, "end": 55235.6, "probability": 0.832 }, { "start": 55235.88, "end": 55236.86, "probability": 0.5235 }, { "start": 55237.94, "end": 55243.53, "probability": 0.6565 }, { "start": 55243.78, "end": 55246.12, "probability": 0.4706 }, { "start": 55247.74, "end": 55247.84, "probability": 0.1118 }, { "start": 55248.46, "end": 55249.4, "probability": 0.4017 }, { "start": 55250.28, "end": 55251.44, "probability": 0.643 }, { "start": 55251.82, "end": 55253.14, "probability": 0.6189 }, { "start": 55253.6, "end": 55255.2, "probability": 0.8717 }, { "start": 55255.52, "end": 55256.28, "probability": 0.6029 }, { "start": 55256.5, "end": 55259.26, "probability": 0.9504 }, { "start": 55259.4, "end": 55259.84, "probability": 0.8498 }, { "start": 55259.88, "end": 55262.62, "probability": 0.9985 }, { "start": 55263.58, "end": 55264.7, "probability": 0.8541 }, { "start": 55265.6, "end": 55267.04, "probability": 0.8789 }, { "start": 55267.82, "end": 55270.3, "probability": 0.9948 }, { "start": 55270.4, "end": 55272.52, "probability": 0.9985 }, { "start": 55273.3, "end": 55275.16, "probability": 0.9702 }, { "start": 55276.32, "end": 55277.0, "probability": 0.8331 }, { "start": 55277.58, "end": 55281.74, "probability": 0.9972 }, { "start": 55282.6, "end": 55283.54, "probability": 0.7498 }, { "start": 55284.84, "end": 55286.9, "probability": 0.7885 }, { "start": 55287.18, "end": 55287.72, "probability": 0.9795 }, { "start": 55288.2, "end": 55290.42, "probability": 0.7678 }, { "start": 55290.96, "end": 55292.16, "probability": 0.8859 }, { "start": 55292.22, "end": 55295.24, "probability": 0.6749 }, { "start": 55295.38, "end": 55296.38, "probability": 0.9265 }, { "start": 55297.3, "end": 55300.34, "probability": 0.7627 }, { "start": 55300.46, "end": 55301.34, "probability": 0.96 }, { "start": 55301.4, "end": 55305.36, "probability": 0.9587 }, { "start": 55306.04, "end": 55309.52, "probability": 0.9609 }, { "start": 55310.04, "end": 55311.32, "probability": 0.9631 }, { "start": 55312.18, "end": 55313.38, "probability": 0.7256 }, { "start": 55313.92, "end": 55319.78, "probability": 0.9016 }, { "start": 55320.14, "end": 55322.44, "probability": 0.9846 }, { "start": 55323.24, "end": 55324.4, "probability": 0.9785 }, { "start": 55324.6, "end": 55325.82, "probability": 0.7841 }, { "start": 55325.9, "end": 55326.92, "probability": 0.9411 }, { "start": 55327.12, "end": 55327.64, "probability": 0.502 }, { "start": 55327.79, "end": 55330.58, "probability": 0.9729 }, { "start": 55330.64, "end": 55332.86, "probability": 0.8989 }, { "start": 55333.58, "end": 55336.28, "probability": 0.918 }, { "start": 55337.26, "end": 55337.6, "probability": 0.7969 }, { "start": 55337.78, "end": 55339.96, "probability": 0.6823 }, { "start": 55340.72, "end": 55342.32, "probability": 0.9199 }, { "start": 55342.54, "end": 55343.18, "probability": 0.8305 }, { "start": 55343.3, "end": 55344.28, "probability": 0.9835 }, { "start": 55344.84, "end": 55346.04, "probability": 0.9733 }, { "start": 55347.2, "end": 55348.34, "probability": 0.9105 }, { "start": 55348.62, "end": 55353.08, "probability": 0.9371 }, { "start": 55353.96, "end": 55356.36, "probability": 0.8925 }, { "start": 55357.2, "end": 55363.02, "probability": 0.8885 }, { "start": 55363.16, "end": 55364.98, "probability": 0.9904 }, { "start": 55365.02, "end": 55367.44, "probability": 0.9399 }, { "start": 55367.84, "end": 55371.7, "probability": 0.989 }, { "start": 55371.92, "end": 55376.06, "probability": 0.7638 }, { "start": 55376.22, "end": 55381.26, "probability": 0.9021 }, { "start": 55381.56, "end": 55385.48, "probability": 0.995 }, { "start": 55385.56, "end": 55387.0, "probability": 0.9352 }, { "start": 55387.18, "end": 55388.45, "probability": 0.9966 }, { "start": 55389.34, "end": 55393.24, "probability": 0.8584 }, { "start": 55393.72, "end": 55394.5, "probability": 0.2756 }, { "start": 55394.88, "end": 55395.74, "probability": 0.3456 }, { "start": 55395.8, "end": 55397.37, "probability": 0.8574 }, { "start": 55398.38, "end": 55399.6, "probability": 0.9879 }, { "start": 55400.72, "end": 55401.62, "probability": 0.6144 }, { "start": 55402.14, "end": 55404.82, "probability": 0.9902 }, { "start": 55405.4, "end": 55405.68, "probability": 0.5929 }, { "start": 55406.22, "end": 55407.88, "probability": 0.9904 }, { "start": 55408.1, "end": 55409.88, "probability": 0.9714 }, { "start": 55410.48, "end": 55411.26, "probability": 0.9844 }, { "start": 55411.78, "end": 55413.2, "probability": 0.9963 }, { "start": 55413.52, "end": 55416.02, "probability": 0.9485 }, { "start": 55416.12, "end": 55417.19, "probability": 0.999 }, { "start": 55417.88, "end": 55419.64, "probability": 0.9607 }, { "start": 55419.7, "end": 55420.06, "probability": 0.7931 }, { "start": 55420.4, "end": 55420.58, "probability": 0.7855 }, { "start": 55420.82, "end": 55422.28, "probability": 0.9163 }, { "start": 55422.36, "end": 55426.49, "probability": 0.9884 }, { "start": 55427.44, "end": 55428.14, "probability": 0.9296 }, { "start": 55429.98, "end": 55430.98, "probability": 0.9843 }, { "start": 55438.2, "end": 55439.9, "probability": 0.9648 }, { "start": 55440.0, "end": 55441.74, "probability": 0.9951 }, { "start": 55441.86, "end": 55444.16, "probability": 0.8328 }, { "start": 55444.3, "end": 55447.9, "probability": 0.7721 }, { "start": 55448.06, "end": 55449.28, "probability": 0.9873 }, { "start": 55449.6, "end": 55453.36, "probability": 0.9906 }, { "start": 55453.98, "end": 55455.76, "probability": 0.496 }, { "start": 55456.88, "end": 55458.3, "probability": 0.934 }, { "start": 55458.64, "end": 55458.64, "probability": 0.4136 }, { "start": 55459.32, "end": 55465.26, "probability": 0.9408 }, { "start": 55465.4, "end": 55470.46, "probability": 0.9839 }, { "start": 55471.22, "end": 55476.72, "probability": 0.9879 }, { "start": 55476.82, "end": 55478.42, "probability": 0.9047 }, { "start": 55479.08, "end": 55479.1, "probability": 0.4999 }, { "start": 55479.1, "end": 55480.46, "probability": 0.4486 }, { "start": 55480.56, "end": 55482.0, "probability": 0.8324 }, { "start": 55482.76, "end": 55484.62, "probability": 0.7092 }, { "start": 55485.32, "end": 55486.48, "probability": 0.9976 }, { "start": 55487.52, "end": 55490.14, "probability": 0.8704 }, { "start": 55490.5, "end": 55491.21, "probability": 0.9943 }, { "start": 55491.96, "end": 55494.84, "probability": 0.9331 }, { "start": 55494.96, "end": 55495.78, "probability": 0.825 }, { "start": 55496.32, "end": 55498.0, "probability": 0.8119 }, { "start": 55499.02, "end": 55501.34, "probability": 0.9486 }, { "start": 55501.52, "end": 55502.12, "probability": 0.6819 }, { "start": 55502.24, "end": 55503.71, "probability": 0.9119 }, { "start": 55504.9, "end": 55505.78, "probability": 0.9028 }, { "start": 55505.94, "end": 55506.54, "probability": 0.3258 }, { "start": 55506.62, "end": 55507.14, "probability": 0.5736 }, { "start": 55507.78, "end": 55509.74, "probability": 0.9905 }, { "start": 55509.98, "end": 55511.26, "probability": 0.8158 }, { "start": 55511.34, "end": 55512.28, "probability": 0.5018 }, { "start": 55512.32, "end": 55512.7, "probability": 0.5233 }, { "start": 55512.78, "end": 55515.24, "probability": 0.9966 }, { "start": 55515.88, "end": 55517.66, "probability": 0.8773 }, { "start": 55517.8, "end": 55521.06, "probability": 0.9376 }, { "start": 55521.6, "end": 55522.84, "probability": 0.5543 }, { "start": 55523.64, "end": 55524.62, "probability": 0.9981 }, { "start": 55525.22, "end": 55528.54, "probability": 0.7554 }, { "start": 55529.38, "end": 55533.0, "probability": 0.9761 }, { "start": 55533.78, "end": 55534.32, "probability": 0.894 }, { "start": 55534.38, "end": 55538.18, "probability": 0.9913 }, { "start": 55538.24, "end": 55539.12, "probability": 0.9961 }, { "start": 55539.96, "end": 55541.42, "probability": 0.9995 }, { "start": 55542.06, "end": 55544.94, "probability": 0.8829 }, { "start": 55545.6, "end": 55546.5, "probability": 0.7533 }, { "start": 55546.72, "end": 55547.46, "probability": 0.8958 }, { "start": 55547.7, "end": 55549.54, "probability": 0.9932 }, { "start": 55549.86, "end": 55551.04, "probability": 0.9655 }, { "start": 55551.18, "end": 55552.22, "probability": 0.9492 }, { "start": 55552.34, "end": 55552.78, "probability": 0.6191 }, { "start": 55552.86, "end": 55553.24, "probability": 0.5462 }, { "start": 55554.26, "end": 55555.69, "probability": 0.9019 }, { "start": 55556.52, "end": 55558.74, "probability": 0.9706 }, { "start": 55559.6, "end": 55560.62, "probability": 0.5434 }, { "start": 55560.7, "end": 55562.28, "probability": 0.7264 }, { "start": 55562.42, "end": 55566.24, "probability": 0.8177 }, { "start": 55566.9, "end": 55567.56, "probability": 0.5483 }, { "start": 55567.68, "end": 55569.23, "probability": 0.9396 }, { "start": 55569.96, "end": 55571.24, "probability": 0.9897 }, { "start": 55572.62, "end": 55574.24, "probability": 0.6846 }, { "start": 55574.32, "end": 55575.66, "probability": 0.8508 }, { "start": 55575.66, "end": 55575.96, "probability": 0.4774 }, { "start": 55576.14, "end": 55576.7, "probability": 0.7946 }, { "start": 55576.72, "end": 55577.84, "probability": 0.999 }, { "start": 55577.96, "end": 55581.64, "probability": 0.9952 }, { "start": 55581.78, "end": 55584.62, "probability": 0.9963 }, { "start": 55585.14, "end": 55586.22, "probability": 0.9441 }, { "start": 55586.8, "end": 55587.57, "probability": 0.9951 }, { "start": 55587.7, "end": 55591.04, "probability": 0.9766 }, { "start": 55591.44, "end": 55591.54, "probability": 0.5147 }, { "start": 55592.04, "end": 55592.76, "probability": 0.8883 }, { "start": 55593.28, "end": 55595.18, "probability": 0.9399 }, { "start": 55595.3, "end": 55596.02, "probability": 0.9827 }, { "start": 55596.66, "end": 55597.64, "probability": 0.9568 }, { "start": 55597.88, "end": 55598.98, "probability": 0.9883 }, { "start": 55599.06, "end": 55600.24, "probability": 0.6489 }, { "start": 55600.24, "end": 55600.5, "probability": 0.4801 }, { "start": 55600.54, "end": 55601.2, "probability": 0.7568 }, { "start": 55601.98, "end": 55602.2, "probability": 0.9756 }, { "start": 55602.78, "end": 55605.34, "probability": 0.9971 }, { "start": 55606.16, "end": 55609.04, "probability": 0.9659 }, { "start": 55609.84, "end": 55611.78, "probability": 0.7369 }, { "start": 55612.34, "end": 55613.14, "probability": 0.9481 }, { "start": 55614.3, "end": 55617.48, "probability": 0.9613 }, { "start": 55617.7, "end": 55619.74, "probability": 0.9964 }, { "start": 55619.82, "end": 55621.2, "probability": 0.8376 }, { "start": 55621.94, "end": 55623.42, "probability": 0.737 }, { "start": 55624.38, "end": 55625.92, "probability": 0.9082 }, { "start": 55625.96, "end": 55626.78, "probability": 0.8311 }, { "start": 55627.1, "end": 55627.99, "probability": 0.9688 }, { "start": 55628.96, "end": 55629.37, "probability": 0.8271 }, { "start": 55629.58, "end": 55630.52, "probability": 0.7658 }, { "start": 55630.94, "end": 55633.0, "probability": 0.9482 }, { "start": 55633.26, "end": 55634.58, "probability": 0.9224 }, { "start": 55634.58, "end": 55635.72, "probability": 0.925 }, { "start": 55635.8, "end": 55636.62, "probability": 0.8472 }, { "start": 55636.7, "end": 55637.84, "probability": 0.7915 }, { "start": 55637.92, "end": 55639.18, "probability": 0.9651 }, { "start": 55639.78, "end": 55642.4, "probability": 0.4919 }, { "start": 55643.14, "end": 55644.56, "probability": 0.9779 }, { "start": 55645.34, "end": 55647.34, "probability": 0.8787 }, { "start": 55647.62, "end": 55648.92, "probability": 0.9911 }, { "start": 55650.57, "end": 55655.86, "probability": 0.9489 }, { "start": 55657.38, "end": 55660.28, "probability": 0.5474 }, { "start": 55660.36, "end": 55660.64, "probability": 0.8903 }, { "start": 55660.72, "end": 55661.16, "probability": 0.7434 }, { "start": 55661.22, "end": 55661.8, "probability": 0.9121 }, { "start": 55662.72, "end": 55668.06, "probability": 0.9746 }, { "start": 55668.66, "end": 55669.78, "probability": 0.9426 }, { "start": 55669.84, "end": 55670.18, "probability": 0.645 }, { "start": 55670.6, "end": 55671.26, "probability": 0.8464 }, { "start": 55672.72, "end": 55673.72, "probability": 0.805 }, { "start": 55674.28, "end": 55675.88, "probability": 0.7833 }, { "start": 55676.72, "end": 55677.72, "probability": 0.8222 }, { "start": 55677.94, "end": 55678.38, "probability": 0.8902 }, { "start": 55678.58, "end": 55679.18, "probability": 0.7995 }, { "start": 55679.26, "end": 55680.06, "probability": 0.7717 }, { "start": 55680.54, "end": 55682.2, "probability": 0.5226 }, { "start": 55682.44, "end": 55683.1, "probability": 0.6392 }, { "start": 55684.22, "end": 55686.73, "probability": 0.8635 }, { "start": 55689.04, "end": 55693.28, "probability": 0.9283 }, { "start": 55693.54, "end": 55694.0, "probability": 0.6981 }, { "start": 55694.9, "end": 55697.58, "probability": 0.9984 }, { "start": 55698.22, "end": 55699.88, "probability": 0.9684 }, { "start": 55699.98, "end": 55700.48, "probability": 0.4603 }, { "start": 55701.06, "end": 55701.92, "probability": 0.9329 }, { "start": 55702.5, "end": 55704.25, "probability": 0.7769 }, { "start": 55704.54, "end": 55705.18, "probability": 0.9146 }, { "start": 55705.52, "end": 55705.8, "probability": 0.6212 }, { "start": 55706.04, "end": 55707.24, "probability": 0.9526 }, { "start": 55707.28, "end": 55709.04, "probability": 0.897 }, { "start": 55709.68, "end": 55710.98, "probability": 0.985 }, { "start": 55711.92, "end": 55713.06, "probability": 0.9117 }, { "start": 55714.36, "end": 55715.66, "probability": 0.9104 }, { "start": 55716.6, "end": 55718.22, "probability": 0.973 }, { "start": 55719.62, "end": 55721.26, "probability": 0.9492 }, { "start": 55721.42, "end": 55724.08, "probability": 0.9222 }, { "start": 55724.22, "end": 55724.8, "probability": 0.92 }, { "start": 55725.5, "end": 55728.16, "probability": 0.6523 }, { "start": 55728.42, "end": 55729.78, "probability": 0.6966 }, { "start": 55729.92, "end": 55730.72, "probability": 0.9068 }, { "start": 55730.82, "end": 55734.18, "probability": 0.7875 }, { "start": 55735.08, "end": 55738.16, "probability": 0.8343 }, { "start": 55738.84, "end": 55740.16, "probability": 0.9857 }, { "start": 55741.16, "end": 55742.02, "probability": 0.5433 }, { "start": 55742.16, "end": 55743.1, "probability": 0.9564 }, { "start": 55743.28, "end": 55744.54, "probability": 0.7179 }, { "start": 55745.22, "end": 55749.02, "probability": 0.7 }, { "start": 55749.38, "end": 55751.14, "probability": 0.8755 }, { "start": 55752.34, "end": 55753.8, "probability": 0.834 }, { "start": 55753.88, "end": 55755.14, "probability": 0.7581 }, { "start": 55755.26, "end": 55756.16, "probability": 0.9283 }, { "start": 55756.32, "end": 55759.16, "probability": 0.6404 }, { "start": 55759.84, "end": 55760.54, "probability": 0.8352 }, { "start": 55760.96, "end": 55764.24, "probability": 0.9714 }, { "start": 55764.82, "end": 55765.92, "probability": 0.5813 }, { "start": 55766.06, "end": 55768.92, "probability": 0.9958 }, { "start": 55769.62, "end": 55770.1, "probability": 0.8737 }, { "start": 55770.2, "end": 55771.0, "probability": 0.9413 }, { "start": 55771.04, "end": 55773.28, "probability": 0.9901 }, { "start": 55773.46, "end": 55775.0, "probability": 0.9937 }, { "start": 55775.0, "end": 55775.84, "probability": 0.5416 }, { "start": 55776.02, "end": 55777.16, "probability": 0.5026 }, { "start": 55778.18, "end": 55779.58, "probability": 0.9708 }, { "start": 55780.14, "end": 55781.8, "probability": 0.8845 }, { "start": 55781.92, "end": 55783.76, "probability": 0.7354 }, { "start": 55783.84, "end": 55785.75, "probability": 0.9966 }, { "start": 55786.02, "end": 55786.78, "probability": 0.6593 }, { "start": 55786.86, "end": 55787.74, "probability": 0.9482 }, { "start": 55789.12, "end": 55790.14, "probability": 0.9817 }, { "start": 55790.59, "end": 55792.06, "probability": 0.9335 }, { "start": 55792.14, "end": 55792.84, "probability": 0.9937 }, { "start": 55793.6, "end": 55794.8, "probability": 0.5717 }, { "start": 55795.88, "end": 55797.97, "probability": 0.7024 }, { "start": 55798.28, "end": 55800.64, "probability": 0.9761 }, { "start": 55801.32, "end": 55801.76, "probability": 0.7817 }, { "start": 55802.44, "end": 55804.14, "probability": 0.9717 }, { "start": 55804.22, "end": 55805.94, "probability": 0.5799 }, { "start": 55806.5, "end": 55807.3, "probability": 0.2321 }, { "start": 55807.3, "end": 55807.72, "probability": 0.4207 }, { "start": 55809.86, "end": 55811.1, "probability": 0.5783 }, { "start": 55811.2, "end": 55811.9, "probability": 0.7926 }, { "start": 55812.02, "end": 55813.98, "probability": 0.4393 }, { "start": 55814.66, "end": 55816.25, "probability": 0.6566 }, { "start": 55816.6, "end": 55817.1, "probability": 0.4603 }, { "start": 55817.92, "end": 55820.84, "probability": 0.9972 }, { "start": 55821.3, "end": 55822.7, "probability": 0.9807 }, { "start": 55823.46, "end": 55824.22, "probability": 0.9574 }, { "start": 55825.71, "end": 55830.18, "probability": 0.8987 }, { "start": 55830.44, "end": 55830.68, "probability": 0.9399 }, { "start": 55831.28, "end": 55834.12, "probability": 0.9859 }, { "start": 55835.64, "end": 55840.48, "probability": 0.9539 }, { "start": 55841.04, "end": 55843.82, "probability": 0.9967 }, { "start": 55844.54, "end": 55847.74, "probability": 0.5369 }, { "start": 55848.44, "end": 55849.68, "probability": 0.8937 }, { "start": 55849.8, "end": 55850.96, "probability": 0.9048 }, { "start": 55851.14, "end": 55852.94, "probability": 0.2749 }, { "start": 55852.94, "end": 55853.52, "probability": 0.2887 }, { "start": 55853.78, "end": 55855.92, "probability": 0.9392 }, { "start": 55856.28, "end": 55859.18, "probability": 0.918 }, { "start": 55859.22, "end": 55860.62, "probability": 0.9604 }, { "start": 55861.02, "end": 55862.4, "probability": 0.9489 }, { "start": 55863.0, "end": 55865.18, "probability": 0.8927 }, { "start": 55865.18, "end": 55867.06, "probability": 0.754 }, { "start": 55867.06, "end": 55867.46, "probability": 0.1791 }, { "start": 55867.48, "end": 55867.78, "probability": 0.2288 }, { "start": 55867.78, "end": 55867.8, "probability": 0.0192 }, { "start": 55867.8, "end": 55868.32, "probability": 0.9254 }, { "start": 55868.38, "end": 55869.18, "probability": 0.9199 }, { "start": 55869.42, "end": 55870.88, "probability": 0.8822 }, { "start": 55871.7, "end": 55872.4, "probability": 0.8981 }, { "start": 55873.34, "end": 55874.32, "probability": 0.9556 }, { "start": 55875.06, "end": 55875.18, "probability": 0.439 }, { "start": 55875.28, "end": 55875.44, "probability": 0.9461 }, { "start": 55875.8, "end": 55880.74, "probability": 0.9217 }, { "start": 55881.16, "end": 55882.12, "probability": 0.79 }, { "start": 55882.3, "end": 55885.5, "probability": 0.8745 }, { "start": 55885.74, "end": 55886.36, "probability": 0.353 }, { "start": 55887.66, "end": 55887.8, "probability": 0.0318 }, { "start": 55887.8, "end": 55888.24, "probability": 0.8432 }, { "start": 55889.52, "end": 55891.9, "probability": 0.1247 }, { "start": 55892.04, "end": 55892.06, "probability": 0.366 }, { "start": 55892.06, "end": 55893.72, "probability": 0.9878 }, { "start": 55893.84, "end": 55895.1, "probability": 0.7121 }, { "start": 55895.98, "end": 55896.24, "probability": 0.505 }, { "start": 55896.92, "end": 55898.58, "probability": 0.9954 }, { "start": 55898.76, "end": 55901.96, "probability": 0.824 }, { "start": 55902.04, "end": 55903.48, "probability": 0.5694 }, { "start": 55904.02, "end": 55906.62, "probability": 0.6649 }, { "start": 55906.7, "end": 55909.24, "probability": 0.906 }, { "start": 55911.21, "end": 55916.71, "probability": 0.8822 }, { "start": 55917.48, "end": 55918.1, "probability": 0.8414 }, { "start": 55918.18, "end": 55918.64, "probability": 0.5379 }, { "start": 55918.74, "end": 55919.16, "probability": 0.3447 }, { "start": 55920.08, "end": 55922.2, "probability": 0.7603 }, { "start": 55922.26, "end": 55926.18, "probability": 0.7385 }, { "start": 55926.34, "end": 55927.14, "probability": 0.8392 }, { "start": 55927.84, "end": 55928.58, "probability": 0.9284 }, { "start": 55928.74, "end": 55930.72, "probability": 0.7983 }, { "start": 55931.1, "end": 55932.34, "probability": 0.7655 }, { "start": 55932.8, "end": 55933.96, "probability": 0.9963 }, { "start": 55934.24, "end": 55935.76, "probability": 0.8838 }, { "start": 55936.14, "end": 55936.52, "probability": 0.7529 }, { "start": 55936.74, "end": 55938.9, "probability": 0.9014 }, { "start": 55939.24, "end": 55939.48, "probability": 0.9299 }, { "start": 55940.76, "end": 55943.92, "probability": 0.7844 }, { "start": 55944.38, "end": 55944.7, "probability": 0.5024 }, { "start": 55945.02, "end": 55946.97, "probability": 0.9548 }, { "start": 55948.08, "end": 55948.28, "probability": 0.6287 }, { "start": 55948.8, "end": 55950.7, "probability": 0.7636 }, { "start": 55951.46, "end": 55951.98, "probability": 0.8271 }, { "start": 55953.48, "end": 55955.44, "probability": 0.8859 }, { "start": 55955.5, "end": 55956.88, "probability": 0.9556 }, { "start": 55957.06, "end": 55957.38, "probability": 0.8709 }, { "start": 55957.56, "end": 55958.1, "probability": 0.9164 }, { "start": 55958.45, "end": 55961.66, "probability": 0.7462 }, { "start": 55961.74, "end": 55962.6, "probability": 0.9866 }, { "start": 55962.82, "end": 55963.32, "probability": 0.9656 }, { "start": 55963.54, "end": 55964.17, "probability": 0.9897 }, { "start": 55964.42, "end": 55965.66, "probability": 0.5236 }, { "start": 55965.96, "end": 55968.58, "probability": 0.9154 }, { "start": 55968.84, "end": 55970.74, "probability": 0.9653 }, { "start": 55970.9, "end": 55971.54, "probability": 0.6869 }, { "start": 55971.56, "end": 55972.22, "probability": 0.5475 }, { "start": 55972.28, "end": 55972.76, "probability": 0.8879 }, { "start": 55973.38, "end": 55973.84, "probability": 0.876 }, { "start": 55974.38, "end": 55976.1, "probability": 0.9066 }, { "start": 55976.78, "end": 55979.48, "probability": 0.9185 }, { "start": 55979.62, "end": 55980.44, "probability": 0.3418 }, { "start": 55980.5, "end": 55982.1, "probability": 0.9319 }, { "start": 55982.66, "end": 55986.82, "probability": 0.9517 }, { "start": 55987.8, "end": 55992.18, "probability": 0.8428 }, { "start": 55992.26, "end": 55994.14, "probability": 0.9828 }, { "start": 55994.26, "end": 55997.58, "probability": 0.9826 }, { "start": 55998.24, "end": 55999.02, "probability": 0.5278 }, { "start": 55999.02, "end": 55999.18, "probability": 0.8438 }, { "start": 55999.18, "end": 56000.04, "probability": 0.9821 }, { "start": 56000.64, "end": 56002.4, "probability": 0.9932 }, { "start": 56003.4, "end": 56004.24, "probability": 0.9513 }, { "start": 56004.42, "end": 56006.72, "probability": 0.9971 }, { "start": 56006.98, "end": 56008.36, "probability": 0.9512 }, { "start": 56008.86, "end": 56012.98, "probability": 0.8568 }, { "start": 56013.08, "end": 56016.56, "probability": 0.9968 }, { "start": 56017.44, "end": 56019.58, "probability": 0.9054 }, { "start": 56020.6, "end": 56021.33, "probability": 0.938 }, { "start": 56021.86, "end": 56022.98, "probability": 0.9934 }, { "start": 56023.12, "end": 56025.38, "probability": 0.6655 }, { "start": 56025.38, "end": 56026.68, "probability": 0.9778 }, { "start": 56027.38, "end": 56029.22, "probability": 0.971 }, { "start": 56030.14, "end": 56030.54, "probability": 0.8347 }, { "start": 56030.98, "end": 56032.44, "probability": 0.814 }, { "start": 56032.56, "end": 56035.0, "probability": 0.8269 }, { "start": 56035.08, "end": 56036.79, "probability": 0.9834 }, { "start": 56037.12, "end": 56039.18, "probability": 0.786 }, { "start": 56040.08, "end": 56040.6, "probability": 0.5045 }, { "start": 56040.74, "end": 56041.7, "probability": 0.9238 }, { "start": 56041.76, "end": 56042.6, "probability": 0.9786 }, { "start": 56042.68, "end": 56044.1, "probability": 0.6425 }, { "start": 56044.5, "end": 56044.98, "probability": 0.3333 }, { "start": 56044.98, "end": 56045.92, "probability": 0.6728 }, { "start": 56047.0, "end": 56047.84, "probability": 0.5754 }, { "start": 56047.92, "end": 56049.16, "probability": 0.8871 }, { "start": 56049.42, "end": 56050.68, "probability": 0.9419 }, { "start": 56050.84, "end": 56051.84, "probability": 0.9832 }, { "start": 56051.92, "end": 56053.29, "probability": 0.7597 }, { "start": 56054.22, "end": 56054.66, "probability": 0.8284 }, { "start": 56054.82, "end": 56056.18, "probability": 0.9873 }, { "start": 56056.42, "end": 56057.84, "probability": 0.9204 }, { "start": 56058.52, "end": 56062.24, "probability": 0.9724 }, { "start": 56062.44, "end": 56063.42, "probability": 0.7549 }, { "start": 56063.76, "end": 56064.1, "probability": 0.5009 }, { "start": 56064.24, "end": 56064.88, "probability": 0.8409 }, { "start": 56065.3, "end": 56067.24, "probability": 0.9958 }, { "start": 56067.3, "end": 56067.68, "probability": 0.9134 }, { "start": 56067.82, "end": 56070.21, "probability": 0.8854 }, { "start": 56071.28, "end": 56072.4, "probability": 0.9515 }, { "start": 56075.14, "end": 56076.9, "probability": 0.7415 }, { "start": 56078.26, "end": 56078.64, "probability": 0.705 }, { "start": 56079.4, "end": 56079.86, "probability": 0.2607 }, { "start": 56080.12, "end": 56080.32, "probability": 0.6101 }, { "start": 56080.42, "end": 56081.02, "probability": 0.8578 }, { "start": 56081.06, "end": 56081.58, "probability": 0.4472 }, { "start": 56081.84, "end": 56086.66, "probability": 0.3456 }, { "start": 56087.64, "end": 56088.52, "probability": 0.6001 }, { "start": 56089.46, "end": 56091.46, "probability": 0.8464 }, { "start": 56092.5, "end": 56092.64, "probability": 0.192 }, { "start": 56094.28, "end": 56095.6, "probability": 0.7157 }, { "start": 56095.7, "end": 56097.68, "probability": 0.9955 }, { "start": 56097.72, "end": 56098.58, "probability": 0.9728 }, { "start": 56098.68, "end": 56100.52, "probability": 0.9165 }, { "start": 56100.82, "end": 56103.52, "probability": 0.7893 }, { "start": 56104.8, "end": 56105.86, "probability": 0.9466 }, { "start": 56106.28, "end": 56106.87, "probability": 0.9634 }, { "start": 56107.28, "end": 56108.98, "probability": 0.9921 }, { "start": 56109.68, "end": 56112.82, "probability": 0.9125 }, { "start": 56113.54, "end": 56115.14, "probability": 0.8218 }, { "start": 56116.56, "end": 56118.64, "probability": 0.746 }, { "start": 56120.92, "end": 56121.02, "probability": 0.017 }, { "start": 56121.02, "end": 56122.33, "probability": 0.9414 }, { "start": 56123.18, "end": 56124.26, "probability": 0.9741 }, { "start": 56124.46, "end": 56126.54, "probability": 0.9977 }, { "start": 56127.12, "end": 56127.54, "probability": 0.7386 }, { "start": 56127.66, "end": 56129.8, "probability": 0.9916 }, { "start": 56129.8, "end": 56132.6, "probability": 0.9757 }, { "start": 56132.92, "end": 56133.42, "probability": 0.6772 }, { "start": 56133.52, "end": 56133.62, "probability": 0.227 }, { "start": 56135.12, "end": 56135.85, "probability": 0.7791 }, { "start": 56136.18, "end": 56137.88, "probability": 0.6337 }, { "start": 56137.9, "end": 56139.46, "probability": 0.9357 }, { "start": 56139.78, "end": 56142.2, "probability": 0.7391 }, { "start": 56142.32, "end": 56143.12, "probability": 0.7189 }, { "start": 56143.46, "end": 56143.88, "probability": 0.0148 }, { "start": 56144.52, "end": 56144.98, "probability": 0.1523 }, { "start": 56145.64, "end": 56147.28, "probability": 0.0104 }, { "start": 56147.86, "end": 56148.96, "probability": 0.9954 }, { "start": 56149.68, "end": 56150.5, "probability": 0.5817 }, { "start": 56150.58, "end": 56151.52, "probability": 0.9176 }, { "start": 56152.26, "end": 56154.54, "probability": 0.7378 }, { "start": 56154.54, "end": 56156.2, "probability": 0.5162 }, { "start": 56156.3, "end": 56157.74, "probability": 0.9535 }, { "start": 56158.1, "end": 56159.87, "probability": 0.4288 }, { "start": 56160.68, "end": 56161.54, "probability": 0.4784 }, { "start": 56163.9, "end": 56165.2, "probability": 0.9146 }, { "start": 56166.12, "end": 56167.12, "probability": 0.4115 }, { "start": 56168.1, "end": 56168.62, "probability": 0.6671 }, { "start": 56168.9, "end": 56169.14, "probability": 0.3503 }, { "start": 56169.44, "end": 56170.46, "probability": 0.8185 }, { "start": 56171.08, "end": 56171.42, "probability": 0.594 }, { "start": 56175.12, "end": 56175.84, "probability": 0.9773 }, { "start": 56177.23, "end": 56180.94, "probability": 0.3337 }, { "start": 56181.42, "end": 56182.96, "probability": 0.9982 }, { "start": 56186.7, "end": 56188.5, "probability": 0.8683 }, { "start": 56189.33, "end": 56190.96, "probability": 0.6686 }, { "start": 56191.0, "end": 56193.92, "probability": 0.5479 }, { "start": 56193.98, "end": 56194.98, "probability": 0.622 }, { "start": 56195.74, "end": 56198.86, "probability": 0.935 }, { "start": 56198.94, "end": 56203.14, "probability": 0.8834 }, { "start": 56203.54, "end": 56206.2, "probability": 0.995 }, { "start": 56206.94, "end": 56209.04, "probability": 0.986 }, { "start": 56209.04, "end": 56210.81, "probability": 0.9978 }, { "start": 56211.22, "end": 56211.86, "probability": 0.983 }, { "start": 56212.74, "end": 56213.06, "probability": 0.5713 }, { "start": 56213.18, "end": 56214.78, "probability": 0.5266 }, { "start": 56214.78, "end": 56216.22, "probability": 0.4855 }, { "start": 56216.26, "end": 56216.76, "probability": 0.5966 }, { "start": 56217.78, "end": 56218.86, "probability": 0.8904 }, { "start": 56218.96, "end": 56221.2, "probability": 0.7541 }, { "start": 56221.86, "end": 56222.94, "probability": 0.9545 }, { "start": 56223.38, "end": 56225.31, "probability": 0.9146 }, { "start": 56226.28, "end": 56228.3, "probability": 0.9712 }, { "start": 56228.58, "end": 56230.29, "probability": 0.9451 }, { "start": 56231.12, "end": 56232.63, "probability": 0.7745 }, { "start": 56233.86, "end": 56235.98, "probability": 0.5739 }, { "start": 56236.18, "end": 56236.24, "probability": 0.2028 }, { "start": 56236.44, "end": 56237.64, "probability": 0.6173 }, { "start": 56237.64, "end": 56238.5, "probability": 0.9778 }, { "start": 56239.32, "end": 56240.56, "probability": 0.7347 }, { "start": 56242.09, "end": 56243.84, "probability": 0.8859 }, { "start": 56245.12, "end": 56246.38, "probability": 0.8309 }, { "start": 56246.62, "end": 56248.14, "probability": 0.7585 }, { "start": 56248.16, "end": 56249.76, "probability": 0.892 }, { "start": 56249.84, "end": 56250.65, "probability": 0.9473 }, { "start": 56250.74, "end": 56251.6, "probability": 0.6117 }, { "start": 56252.4, "end": 56252.78, "probability": 0.4678 }, { "start": 56252.82, "end": 56253.65, "probability": 0.9858 }, { "start": 56254.46, "end": 56255.4, "probability": 0.9536 }, { "start": 56255.48, "end": 56256.08, "probability": 0.927 }, { "start": 56256.12, "end": 56256.7, "probability": 0.7943 }, { "start": 56256.8, "end": 56257.25, "probability": 0.5944 }, { "start": 56257.42, "end": 56258.28, "probability": 0.8477 }, { "start": 56259.28, "end": 56261.01, "probability": 0.9026 }, { "start": 56261.3, "end": 56263.02, "probability": 0.6588 }, { "start": 56266.56, "end": 56267.94, "probability": 0.3134 }, { "start": 56268.06, "end": 56269.74, "probability": 0.9382 }, { "start": 56269.8, "end": 56270.99, "probability": 0.9671 }, { "start": 56271.04, "end": 56271.54, "probability": 0.2926 }, { "start": 56271.56, "end": 56271.76, "probability": 0.4013 }, { "start": 56272.04, "end": 56274.34, "probability": 0.8341 }, { "start": 56274.82, "end": 56277.7, "probability": 0.7561 }, { "start": 56278.58, "end": 56280.24, "probability": 0.4597 }, { "start": 56280.74, "end": 56281.94, "probability": 0.4997 }, { "start": 56283.39, "end": 56284.68, "probability": 0.7208 }, { "start": 56284.74, "end": 56285.2, "probability": 0.7083 }, { "start": 56285.2, "end": 56286.5, "probability": 0.8448 }, { "start": 56286.68, "end": 56290.28, "probability": 0.8275 }, { "start": 56290.92, "end": 56291.18, "probability": 0.9087 }, { "start": 56291.27, "end": 56293.06, "probability": 0.9568 }, { "start": 56293.16, "end": 56294.1, "probability": 0.8336 }, { "start": 56294.58, "end": 56296.82, "probability": 0.7325 }, { "start": 56296.88, "end": 56298.64, "probability": 0.6371 }, { "start": 56298.64, "end": 56299.94, "probability": 0.6963 }, { "start": 56300.12, "end": 56300.74, "probability": 0.0054 }, { "start": 56305.21, "end": 56307.1, "probability": 0.2529 }, { "start": 56307.1, "end": 56307.1, "probability": 0.0805 }, { "start": 56307.1, "end": 56307.92, "probability": 0.0134 }, { "start": 56309.18, "end": 56310.88, "probability": 0.76 }, { "start": 56311.94, "end": 56314.62, "probability": 0.5374 }, { "start": 56315.32, "end": 56316.39, "probability": 0.7696 }, { "start": 56317.98, "end": 56322.82, "probability": 0.9385 }, { "start": 56322.82, "end": 56323.0, "probability": 0.1292 }, { "start": 56323.0, "end": 56323.74, "probability": 0.0114 }, { "start": 56323.78, "end": 56327.7, "probability": 0.9832 }, { "start": 56328.33, "end": 56330.42, "probability": 0.6261 }, { "start": 56330.88, "end": 56331.46, "probability": 0.9663 }, { "start": 56332.26, "end": 56332.55, "probability": 0.0073 }, { "start": 56334.08, "end": 56334.98, "probability": 0.8609 }, { "start": 56335.44, "end": 56337.46, "probability": 0.4715 }, { "start": 56337.46, "end": 56339.08, "probability": 0.7256 }, { "start": 56339.82, "end": 56340.64, "probability": 0.9834 }, { "start": 56340.68, "end": 56340.86, "probability": 0.9396 }, { "start": 56341.28, "end": 56343.14, "probability": 0.8091 }, { "start": 56343.98, "end": 56345.84, "probability": 0.9546 }, { "start": 56348.54, "end": 56350.52, "probability": 0.7214 }, { "start": 56352.34, "end": 56353.24, "probability": 0.009 }, { "start": 56353.9, "end": 56354.6, "probability": 0.8308 }, { "start": 56354.76, "end": 56357.06, "probability": 0.8716 }, { "start": 56358.16, "end": 56358.79, "probability": 0.955 }, { "start": 56359.12, "end": 56361.02, "probability": 0.9869 }, { "start": 56362.42, "end": 56364.3, "probability": 0.4008 }, { "start": 56364.88, "end": 56367.24, "probability": 0.6658 }, { "start": 56367.24, "end": 56368.84, "probability": 0.6482 }, { "start": 56369.8, "end": 56372.94, "probability": 0.7479 }, { "start": 56373.58, "end": 56375.02, "probability": 0.6307 }, { "start": 56375.66, "end": 56377.86, "probability": 0.9937 }, { "start": 56378.08, "end": 56379.39, "probability": 0.986 }, { "start": 56380.18, "end": 56381.5, "probability": 0.4251 }, { "start": 56381.52, "end": 56382.16, "probability": 0.8191 }, { "start": 56382.26, "end": 56382.82, "probability": 0.6836 }, { "start": 56382.88, "end": 56383.91, "probability": 0.9428 }, { "start": 56384.28, "end": 56386.48, "probability": 0.9614 }, { "start": 56386.88, "end": 56388.38, "probability": 0.4066 }, { "start": 56389.2, "end": 56389.8, "probability": 0.5703 }, { "start": 56390.24, "end": 56391.01, "probability": 0.6745 }, { "start": 56391.2, "end": 56392.94, "probability": 0.7398 }, { "start": 56393.68, "end": 56394.0, "probability": 0.9556 }, { "start": 56394.92, "end": 56396.3, "probability": 0.6604 }, { "start": 56397.16, "end": 56399.6, "probability": 0.922 }, { "start": 56399.66, "end": 56400.88, "probability": 0.9914 }, { "start": 56401.24, "end": 56405.28, "probability": 0.8858 }, { "start": 56405.38, "end": 56407.24, "probability": 0.8933 }, { "start": 56408.02, "end": 56411.34, "probability": 0.9346 }, { "start": 56411.7, "end": 56412.24, "probability": 0.9917 }, { "start": 56413.56, "end": 56414.32, "probability": 0.9819 }, { "start": 56414.94, "end": 56415.16, "probability": 0.981 }, { "start": 56415.72, "end": 56419.06, "probability": 0.7345 }, { "start": 56419.16, "end": 56419.6, "probability": 0.7269 }, { "start": 56420.7, "end": 56421.78, "probability": 0.8422 }, { "start": 56423.2, "end": 56425.4, "probability": 0.9951 }, { "start": 56426.06, "end": 56427.28, "probability": 0.9972 }, { "start": 56428.36, "end": 56430.98, "probability": 0.9927 }, { "start": 56431.58, "end": 56432.36, "probability": 0.5801 }, { "start": 56432.98, "end": 56433.32, "probability": 0.8818 }, { "start": 56433.64, "end": 56434.32, "probability": 0.5818 }, { "start": 56434.44, "end": 56439.88, "probability": 0.98 }, { "start": 56440.52, "end": 56441.66, "probability": 0.9712 }, { "start": 56443.02, "end": 56444.46, "probability": 0.6778 }, { "start": 56445.12, "end": 56445.98, "probability": 0.8958 }, { "start": 56447.78, "end": 56449.74, "probability": 0.9409 }, { "start": 56450.48, "end": 56450.96, "probability": 0.6034 }, { "start": 56451.9, "end": 56454.28, "probability": 0.9937 }, { "start": 56456.52, "end": 56457.64, "probability": 0.7038 }, { "start": 56457.92, "end": 56458.89, "probability": 0.9561 }, { "start": 56459.32, "end": 56459.66, "probability": 0.4024 }, { "start": 56460.08, "end": 56462.3, "probability": 0.6517 }, { "start": 56462.44, "end": 56462.68, "probability": 0.4982 }, { "start": 56462.72, "end": 56463.74, "probability": 0.9398 }, { "start": 56463.74, "end": 56465.0, "probability": 0.4489 }, { "start": 56465.0, "end": 56467.68, "probability": 0.8801 }, { "start": 56467.8, "end": 56467.9, "probability": 0.3012 }, { "start": 56467.9, "end": 56468.8, "probability": 0.6656 }, { "start": 56469.26, "end": 56469.8, "probability": 0.709 }, { "start": 56469.84, "end": 56470.42, "probability": 0.5124 }, { "start": 56471.18, "end": 56472.02, "probability": 0.9259 }, { "start": 56472.3, "end": 56472.5, "probability": 0.4105 }, { "start": 56472.64, "end": 56475.24, "probability": 0.9446 }, { "start": 56475.58, "end": 56476.86, "probability": 0.9238 }, { "start": 56476.9, "end": 56477.12, "probability": 0.9497 }, { "start": 56478.52, "end": 56478.64, "probability": 0.051 }, { "start": 56478.64, "end": 56479.78, "probability": 0.5231 }, { "start": 56480.04, "end": 56480.42, "probability": 0.9567 }, { "start": 56481.16, "end": 56483.34, "probability": 0.9402 }, { "start": 56484.22, "end": 56484.8, "probability": 0.5226 }, { "start": 56485.2, "end": 56487.18, "probability": 0.6455 }, { "start": 56487.9, "end": 56491.36, "probability": 0.9091 }, { "start": 56491.42, "end": 56493.56, "probability": 0.8787 }, { "start": 56493.64, "end": 56494.4, "probability": 0.8361 }, { "start": 56495.47, "end": 56496.65, "probability": 0.7291 }, { "start": 56496.74, "end": 56497.22, "probability": 0.4125 }, { "start": 56497.26, "end": 56499.3, "probability": 0.7185 }, { "start": 56499.66, "end": 56500.4, "probability": 0.4687 }, { "start": 56501.04, "end": 56502.82, "probability": 0.9393 }, { "start": 56502.88, "end": 56504.16, "probability": 0.9775 }, { "start": 56505.9, "end": 56508.24, "probability": 0.9735 }, { "start": 56509.86, "end": 56511.68, "probability": 0.9084 }, { "start": 56511.78, "end": 56512.4, "probability": 0.7734 }, { "start": 56513.12, "end": 56514.02, "probability": 0.7571 }, { "start": 56515.7, "end": 56516.82, "probability": 0.9002 }, { "start": 56517.4, "end": 56519.96, "probability": 0.8315 }, { "start": 56520.26, "end": 56522.32, "probability": 0.9697 }, { "start": 56522.42, "end": 56525.56, "probability": 0.9988 }, { "start": 56526.14, "end": 56529.34, "probability": 0.8613 }, { "start": 56529.34, "end": 56530.36, "probability": 0.2835 }, { "start": 56530.44, "end": 56530.88, "probability": 0.6169 }, { "start": 56531.0, "end": 56532.74, "probability": 0.6694 }, { "start": 56533.36, "end": 56535.05, "probability": 0.7771 }, { "start": 56536.0, "end": 56536.82, "probability": 0.6911 }, { "start": 56536.96, "end": 56539.38, "probability": 0.7299 }, { "start": 56539.72, "end": 56542.08, "probability": 0.7557 }, { "start": 56542.4, "end": 56543.54, "probability": 0.9025 }, { "start": 56543.56, "end": 56545.1, "probability": 0.6331 }, { "start": 56545.22, "end": 56545.98, "probability": 0.7795 }, { "start": 56546.52, "end": 56547.24, "probability": 0.9482 }, { "start": 56548.02, "end": 56549.64, "probability": 0.463 }, { "start": 56550.16, "end": 56553.0, "probability": 0.9739 }, { "start": 56553.46, "end": 56555.16, "probability": 0.9798 }, { "start": 56555.54, "end": 56556.07, "probability": 0.5175 }, { "start": 56556.7, "end": 56561.74, "probability": 0.9887 }, { "start": 56561.74, "end": 56565.4, "probability": 0.8486 }, { "start": 56565.46, "end": 56566.62, "probability": 0.9856 }, { "start": 56566.76, "end": 56567.54, "probability": 0.3193 }, { "start": 56568.04, "end": 56569.52, "probability": 0.8174 }, { "start": 56569.64, "end": 56573.14, "probability": 0.8643 }, { "start": 56573.14, "end": 56577.12, "probability": 0.9365 }, { "start": 56578.1, "end": 56579.34, "probability": 0.9421 }, { "start": 56581.4, "end": 56581.44, "probability": 0.0074 }, { "start": 56581.54, "end": 56582.06, "probability": 0.5818 }, { "start": 56582.06, "end": 56585.12, "probability": 0.7502 }, { "start": 56585.12, "end": 56586.52, "probability": 0.6389 }, { "start": 56586.52, "end": 56586.62, "probability": 0.0082 }, { "start": 56586.62, "end": 56587.68, "probability": 0.4504 }, { "start": 56587.98, "end": 56591.96, "probability": 0.8003 }, { "start": 56592.1, "end": 56593.16, "probability": 0.4266 }, { "start": 56593.16, "end": 56595.62, "probability": 0.1671 }, { "start": 56595.66, "end": 56596.5, "probability": 0.5131 }, { "start": 56596.62, "end": 56597.02, "probability": 0.4028 }, { "start": 56597.02, "end": 56598.64, "probability": 0.8409 }, { "start": 56598.74, "end": 56600.26, "probability": 0.7664 }, { "start": 56600.26, "end": 56601.19, "probability": 0.7999 }, { "start": 56601.78, "end": 56603.12, "probability": 0.9338 }, { "start": 56603.18, "end": 56603.92, "probability": 0.8276 }, { "start": 56603.94, "end": 56606.24, "probability": 0.9588 }, { "start": 56606.42, "end": 56606.96, "probability": 0.4756 }, { "start": 56607.32, "end": 56609.52, "probability": 0.6451 }, { "start": 56610.5, "end": 56612.66, "probability": 0.9983 }, { "start": 56612.74, "end": 56613.24, "probability": 0.6844 }, { "start": 56613.9, "end": 56615.3, "probability": 0.9048 }, { "start": 56615.72, "end": 56616.32, "probability": 0.8121 }, { "start": 56616.96, "end": 56617.46, "probability": 0.7237 }, { "start": 56617.92, "end": 56621.8, "probability": 0.8271 }, { "start": 56622.76, "end": 56625.69, "probability": 0.669 }, { "start": 56626.6, "end": 56629.44, "probability": 0.8745 }, { "start": 56629.66, "end": 56631.42, "probability": 0.9951 }, { "start": 56633.46, "end": 56635.54, "probability": 0.8184 }, { "start": 56635.64, "end": 56635.96, "probability": 0.2188 }, { "start": 56636.22, "end": 56636.45, "probability": 0.6727 }, { "start": 56636.54, "end": 56637.0, "probability": 0.5905 }, { "start": 56637.54, "end": 56637.91, "probability": 0.9016 }, { "start": 56638.04, "end": 56638.34, "probability": 0.9199 }, { "start": 56639.02, "end": 56640.86, "probability": 0.9969 }, { "start": 56640.96, "end": 56642.26, "probability": 0.7332 }, { "start": 56642.8, "end": 56645.06, "probability": 0.8246 }, { "start": 56645.16, "end": 56645.34, "probability": 0.8682 }, { "start": 56646.12, "end": 56647.52, "probability": 0.7998 }, { "start": 56647.76, "end": 56648.04, "probability": 0.9789 }, { "start": 56649.66, "end": 56650.35, "probability": 0.2537 }, { "start": 56650.8, "end": 56651.82, "probability": 0.686 }, { "start": 56652.12, "end": 56653.22, "probability": 0.7237 }, { "start": 56653.7, "end": 56655.48, "probability": 0.5908 }, { "start": 56655.92, "end": 56656.14, "probability": 0.0484 }, { "start": 56656.14, "end": 56656.14, "probability": 0.3392 }, { "start": 56656.66, "end": 56658.8, "probability": 0.5828 }, { "start": 56659.16, "end": 56661.2, "probability": 0.8185 }, { "start": 56662.02, "end": 56664.64, "probability": 0.9458 }, { "start": 56664.86, "end": 56667.36, "probability": 0.7648 }, { "start": 56668.1, "end": 56668.1, "probability": 0.0788 }, { "start": 56668.1, "end": 56668.1, "probability": 0.058 }, { "start": 56668.1, "end": 56668.1, "probability": 0.1582 }, { "start": 56668.1, "end": 56668.1, "probability": 0.2204 }, { "start": 56668.1, "end": 56669.0, "probability": 0.1742 }, { "start": 56669.14, "end": 56670.72, "probability": 0.7203 }, { "start": 56670.88, "end": 56673.3, "probability": 0.9595 }, { "start": 56674.56, "end": 56674.56, "probability": 0.0166 }, { "start": 56674.56, "end": 56675.54, "probability": 0.2365 }, { "start": 56675.78, "end": 56676.26, "probability": 0.5684 }, { "start": 56676.82, "end": 56677.68, "probability": 0.7729 }, { "start": 56677.78, "end": 56679.72, "probability": 0.7958 }, { "start": 56680.6, "end": 56681.06, "probability": 0.8029 }, { "start": 56681.18, "end": 56683.22, "probability": 0.8556 }, { "start": 56683.28, "end": 56683.68, "probability": 0.369 }, { "start": 56683.8, "end": 56684.48, "probability": 0.3322 }, { "start": 56684.58, "end": 56684.78, "probability": 0.8043 }, { "start": 56685.06, "end": 56686.16, "probability": 0.7703 }, { "start": 56687.42, "end": 56689.0, "probability": 0.9952 }, { "start": 56689.62, "end": 56690.86, "probability": 0.9807 }, { "start": 56691.0, "end": 56692.43, "probability": 0.9955 }, { "start": 56693.02, "end": 56693.54, "probability": 0.7231 }, { "start": 56694.64, "end": 56695.78, "probability": 0.7681 }, { "start": 56695.82, "end": 56699.62, "probability": 0.8597 }, { "start": 56699.76, "end": 56700.86, "probability": 0.9201 }, { "start": 56700.86, "end": 56704.2, "probability": 0.9549 }, { "start": 56705.62, "end": 56705.62, "probability": 0.0207 }, { "start": 56705.62, "end": 56706.17, "probability": 0.5587 }, { "start": 56707.04, "end": 56708.8, "probability": 0.7791 }, { "start": 56709.34, "end": 56712.6, "probability": 0.8648 }, { "start": 56713.42, "end": 56715.16, "probability": 0.8818 }, { "start": 56715.68, "end": 56717.33, "probability": 0.5128 }, { "start": 56720.02, "end": 56720.02, "probability": 0.0841 }, { "start": 56720.02, "end": 56720.02, "probability": 0.4507 }, { "start": 56720.02, "end": 56720.02, "probability": 0.0548 }, { "start": 56720.02, "end": 56721.07, "probability": 0.3809 }, { "start": 56721.26, "end": 56722.02, "probability": 0.3871 }, { "start": 56723.48, "end": 56724.06, "probability": 0.8278 }, { "start": 56724.86, "end": 56726.66, "probability": 0.2491 }, { "start": 56727.68, "end": 56727.9, "probability": 0.2039 }, { "start": 56727.9, "end": 56727.9, "probability": 0.0549 }, { "start": 56727.9, "end": 56729.38, "probability": 0.5928 }, { "start": 56730.34, "end": 56732.18, "probability": 0.9763 }, { "start": 56732.84, "end": 56734.02, "probability": 0.8037 }, { "start": 56734.02, "end": 56735.96, "probability": 0.8949 }, { "start": 56736.66, "end": 56737.46, "probability": 0.9076 }, { "start": 56738.14, "end": 56739.94, "probability": 0.6308 }, { "start": 56740.56, "end": 56741.51, "probability": 0.6299 }, { "start": 56741.65, "end": 56742.78, "probability": 0.9294 }, { "start": 56743.78, "end": 56747.66, "probability": 0.7285 }, { "start": 56748.72, "end": 56749.64, "probability": 0.9512 }, { "start": 56750.1, "end": 56753.62, "probability": 0.6877 }, { "start": 56753.66, "end": 56754.16, "probability": 0.7854 }, { "start": 56754.24, "end": 56755.24, "probability": 0.881 }, { "start": 56755.26, "end": 56758.06, "probability": 0.7891 }, { "start": 56758.7, "end": 56759.12, "probability": 0.3998 }, { "start": 56759.62, "end": 56759.96, "probability": 0.286 }, { "start": 56760.02, "end": 56760.46, "probability": 0.9581 }, { "start": 56761.8, "end": 56764.26, "probability": 0.8905 }, { "start": 56764.34, "end": 56768.96, "probability": 0.9447 }, { "start": 56769.1, "end": 56770.74, "probability": 0.8683 }, { "start": 56771.46, "end": 56773.78, "probability": 0.9538 }, { "start": 56774.42, "end": 56775.36, "probability": 0.786 }, { "start": 56775.44, "end": 56777.52, "probability": 0.9725 }, { "start": 56780.57, "end": 56783.74, "probability": 0.8619 }, { "start": 56784.7, "end": 56787.18, "probability": 0.9896 }, { "start": 56787.8, "end": 56788.8, "probability": 0.6656 }, { "start": 56789.58, "end": 56791.94, "probability": 0.9958 }, { "start": 56791.94, "end": 56794.66, "probability": 0.7953 }, { "start": 56794.82, "end": 56798.56, "probability": 0.9676 }, { "start": 56798.56, "end": 56801.42, "probability": 0.8958 }, { "start": 56802.28, "end": 56804.22, "probability": 0.9623 }, { "start": 56804.32, "end": 56804.34, "probability": 0.4668 }, { "start": 56804.34, "end": 56804.34, "probability": 0.4443 }, { "start": 56804.34, "end": 56805.56, "probability": 0.7594 }, { "start": 56806.38, "end": 56806.58, "probability": 0.483 }, { "start": 56806.58, "end": 56808.85, "probability": 0.9292 }, { "start": 56809.16, "end": 56809.2, "probability": 0.062 }, { "start": 56809.2, "end": 56811.7, "probability": 0.8109 }, { "start": 56811.76, "end": 56811.94, "probability": 0.8088 }, { "start": 56812.96, "end": 56816.04, "probability": 0.9972 }, { "start": 56816.4, "end": 56819.04, "probability": 0.7389 }, { "start": 56819.04, "end": 56821.98, "probability": 0.9362 }, { "start": 56822.9, "end": 56823.42, "probability": 0.9354 }, { "start": 56824.2, "end": 56826.54, "probability": 0.635 }, { "start": 56826.9, "end": 56827.38, "probability": 0.377 }, { "start": 56827.54, "end": 56829.88, "probability": 0.8628 }, { "start": 56830.12, "end": 56831.64, "probability": 0.8896 }, { "start": 56832.16, "end": 56835.14, "probability": 0.8877 }, { "start": 56835.2, "end": 56840.48, "probability": 0.8219 }, { "start": 56840.8, "end": 56841.08, "probability": 0.7569 }, { "start": 56842.95, "end": 56846.7, "probability": 0.7682 }, { "start": 56847.22, "end": 56849.1, "probability": 0.5868 }, { "start": 56849.22, "end": 56850.64, "probability": 0.7656 }, { "start": 56851.12, "end": 56852.0, "probability": 0.77 }, { "start": 56852.54, "end": 56854.58, "probability": 0.5213 }, { "start": 56855.22, "end": 56856.4, "probability": 0.9363 }, { "start": 56856.42, "end": 56857.56, "probability": 0.9898 }, { "start": 56857.78, "end": 56857.88, "probability": 0.7161 }, { "start": 56859.0, "end": 56859.06, "probability": 0.2869 }, { "start": 56859.06, "end": 56861.3, "probability": 0.8298 }, { "start": 56861.9, "end": 56864.08, "probability": 0.989 }, { "start": 56864.74, "end": 56865.18, "probability": 0.6303 }, { "start": 56865.22, "end": 56865.82, "probability": 0.9231 }, { "start": 56866.56, "end": 56868.52, "probability": 0.834 }, { "start": 56868.56, "end": 56870.38, "probability": 0.7729 }, { "start": 56871.22, "end": 56872.62, "probability": 0.9973 }, { "start": 56873.15, "end": 56873.74, "probability": 0.8201 }, { "start": 56873.82, "end": 56877.9, "probability": 0.9611 }, { "start": 56878.1, "end": 56878.34, "probability": 0.6055 }, { "start": 56879.06, "end": 56881.32, "probability": 0.9907 }, { "start": 56881.56, "end": 56884.58, "probability": 0.9933 }, { "start": 56884.68, "end": 56887.1, "probability": 0.9708 }, { "start": 56887.78, "end": 56888.6, "probability": 0.6719 }, { "start": 56889.68, "end": 56891.47, "probability": 0.939 }, { "start": 56894.0, "end": 56895.22, "probability": 0.9732 }, { "start": 56896.4, "end": 56896.52, "probability": 0.2044 }, { "start": 56896.6, "end": 56897.32, "probability": 0.9746 }, { "start": 56898.22, "end": 56900.9, "probability": 0.9541 }, { "start": 56901.46, "end": 56901.78, "probability": 0.587 }, { "start": 56901.9, "end": 56903.47, "probability": 0.6481 }, { "start": 56903.58, "end": 56904.92, "probability": 0.9791 }, { "start": 56904.98, "end": 56906.58, "probability": 0.7599 }, { "start": 56907.12, "end": 56910.48, "probability": 0.9738 }, { "start": 56910.84, "end": 56912.36, "probability": 0.9766 }, { "start": 56913.04, "end": 56915.52, "probability": 0.9559 }, { "start": 56916.1, "end": 56917.51, "probability": 0.9941 }, { "start": 56918.56, "end": 56918.88, "probability": 0.4402 }, { "start": 56918.96, "end": 56919.3, "probability": 0.6623 }, { "start": 56920.02, "end": 56920.88, "probability": 0.7529 }, { "start": 56921.64, "end": 56924.28, "probability": 0.9976 }, { "start": 56925.0, "end": 56926.6, "probability": 0.9969 }, { "start": 56927.64, "end": 56928.58, "probability": 0.8339 }, { "start": 56929.76, "end": 56929.97, "probability": 0.2816 }, { "start": 56930.82, "end": 56932.5, "probability": 0.7889 }, { "start": 56933.3, "end": 56935.48, "probability": 0.9168 }, { "start": 56936.1, "end": 56936.75, "probability": 0.7638 }, { "start": 56938.16, "end": 56940.56, "probability": 0.8022 }, { "start": 56940.58, "end": 56942.4, "probability": 0.9038 }, { "start": 56943.78, "end": 56945.58, "probability": 0.9452 }, { "start": 56946.44, "end": 56947.9, "probability": 0.6599 }, { "start": 56947.96, "end": 56949.22, "probability": 0.9047 }, { "start": 56949.28, "end": 56952.1, "probability": 0.9176 }, { "start": 56953.6, "end": 56955.7, "probability": 0.9653 }, { "start": 56955.84, "end": 56956.82, "probability": 0.651 }, { "start": 56957.24, "end": 56958.15, "probability": 0.9956 }, { "start": 56958.48, "end": 56959.6, "probability": 0.9983 }, { "start": 56959.64, "end": 56961.04, "probability": 0.9793 }, { "start": 56961.28, "end": 56962.36, "probability": 0.7776 }, { "start": 56962.36, "end": 56963.76, "probability": 0.8514 }, { "start": 56964.86, "end": 56966.18, "probability": 0.9821 }, { "start": 56966.7, "end": 56967.88, "probability": 0.7678 }, { "start": 56967.92, "end": 56969.1, "probability": 0.9983 }, { "start": 56969.22, "end": 56970.48, "probability": 0.7625 }, { "start": 56970.48, "end": 56971.6, "probability": 0.9457 }, { "start": 56971.6, "end": 56973.86, "probability": 0.9224 }, { "start": 56973.96, "end": 56973.98, "probability": 0.1117 }, { "start": 56973.98, "end": 56975.74, "probability": 0.7593 }, { "start": 56976.4, "end": 56978.44, "probability": 0.8429 }, { "start": 56978.5, "end": 56979.47, "probability": 0.7369 }, { "start": 56980.0, "end": 56981.3, "probability": 0.9151 }, { "start": 56981.76, "end": 56985.28, "probability": 0.9595 }, { "start": 56986.0, "end": 56986.24, "probability": 0.642 }, { "start": 56988.6, "end": 56989.44, "probability": 0.9708 }, { "start": 56990.06, "end": 56991.0, "probability": 0.7169 }, { "start": 56991.36, "end": 56994.38, "probability": 0.7144 }, { "start": 56994.7, "end": 56995.9, "probability": 0.9767 }, { "start": 56996.66, "end": 56998.32, "probability": 0.8511 }, { "start": 56999.5, "end": 56999.68, "probability": 0.4832 }, { "start": 56999.8, "end": 57000.24, "probability": 0.9629 }, { "start": 57000.28, "end": 57003.24, "probability": 0.9663 }, { "start": 57003.24, "end": 57005.65, "probability": 0.9615 }, { "start": 57006.16, "end": 57007.48, "probability": 0.7905 }, { "start": 57007.94, "end": 57008.46, "probability": 0.8414 }, { "start": 57009.02, "end": 57009.3, "probability": 0.8872 }, { "start": 57010.26, "end": 57014.02, "probability": 0.9932 }, { "start": 57015.49, "end": 57017.76, "probability": 0.6852 }, { "start": 57017.86, "end": 57018.14, "probability": 0.7573 }, { "start": 57018.56, "end": 57022.14, "probability": 0.9465 }, { "start": 57023.1, "end": 57023.7, "probability": 0.9748 }, { "start": 57024.36, "end": 57024.9, "probability": 0.8893 }, { "start": 57025.42, "end": 57025.86, "probability": 0.9727 }, { "start": 57026.72, "end": 57027.72, "probability": 0.9968 }, { "start": 57028.36, "end": 57028.6, "probability": 0.9139 }, { "start": 57029.26, "end": 57030.0, "probability": 0.9313 }, { "start": 57031.82, "end": 57033.34, "probability": 0.2786 }, { "start": 57050.84, "end": 57051.46, "probability": 0.8529 }, { "start": 57051.62, "end": 57053.18, "probability": 0.7049 }, { "start": 57053.34, "end": 57055.34, "probability": 0.8763 }, { "start": 57056.44, "end": 57057.5, "probability": 0.6527 }, { "start": 57058.02, "end": 57060.62, "probability": 0.8477 }, { "start": 57060.78, "end": 57061.06, "probability": 0.8011 }, { "start": 57061.22, "end": 57066.02, "probability": 0.9086 }, { "start": 57067.1, "end": 57070.0, "probability": 0.6408 }, { "start": 57070.5, "end": 57071.04, "probability": 0.6239 }, { "start": 57071.04, "end": 57074.26, "probability": 0.9864 }, { "start": 57074.68, "end": 57075.29, "probability": 0.6729 }, { "start": 57076.37, "end": 57079.12, "probability": 0.8293 }, { "start": 57079.74, "end": 57081.68, "probability": 0.894 }, { "start": 57082.14, "end": 57083.82, "probability": 0.7384 }, { "start": 57083.94, "end": 57084.5, "probability": 0.8477 }, { "start": 57084.86, "end": 57088.54, "probability": 0.1431 }, { "start": 57089.74, "end": 57092.4, "probability": 0.949 }, { "start": 57092.72, "end": 57093.04, "probability": 0.0213 }, { "start": 57093.8, "end": 57095.72, "probability": 0.9334 }, { "start": 57096.38, "end": 57096.48, "probability": 0.0218 }, { "start": 57097.41, "end": 57099.97, "probability": 0.8423 }, { "start": 57100.92, "end": 57102.74, "probability": 0.8767 }, { "start": 57104.65, "end": 57105.74, "probability": 0.1084 }, { "start": 57107.22, "end": 57109.06, "probability": 0.9793 }, { "start": 57109.78, "end": 57112.24, "probability": 0.7035 }, { "start": 57112.46, "end": 57113.44, "probability": 0.3931 }, { "start": 57113.52, "end": 57115.82, "probability": 0.8081 }, { "start": 57116.86, "end": 57119.58, "probability": 0.9863 }, { "start": 57120.74, "end": 57125.42, "probability": 0.8821 }, { "start": 57126.58, "end": 57127.78, "probability": 0.7162 }, { "start": 57128.3, "end": 57129.56, "probability": 0.8607 }, { "start": 57130.3, "end": 57130.84, "probability": 0.7577 }, { "start": 57131.5, "end": 57132.14, "probability": 0.5252 }, { "start": 57132.26, "end": 57132.64, "probability": 0.7886 }, { "start": 57132.8, "end": 57133.56, "probability": 0.6972 }, { "start": 57133.64, "end": 57133.9, "probability": 0.4428 }, { "start": 57133.98, "end": 57134.14, "probability": 0.9194 }, { "start": 57134.24, "end": 57135.82, "probability": 0.9663 }, { "start": 57136.8, "end": 57137.94, "probability": 0.8516 }, { "start": 57138.54, "end": 57141.0, "probability": 0.9956 }, { "start": 57141.54, "end": 57146.2, "probability": 0.7336 }, { "start": 57146.28, "end": 57146.78, "probability": 0.5593 }, { "start": 57146.8, "end": 57149.96, "probability": 0.9504 }, { "start": 57149.96, "end": 57152.72, "probability": 0.8395 }, { "start": 57153.12, "end": 57155.38, "probability": 0.8947 }, { "start": 57155.48, "end": 57155.6, "probability": 0.3101 }, { "start": 57156.56, "end": 57157.38, "probability": 0.0154 }, { "start": 57158.18, "end": 57159.62, "probability": 0.3449 }, { "start": 57162.46, "end": 57162.88, "probability": 0.0132 }, { "start": 57162.92, "end": 57163.02, "probability": 0.0216 }, { "start": 57163.02, "end": 57163.02, "probability": 0.1062 }, { "start": 57163.02, "end": 57163.02, "probability": 0.1531 }, { "start": 57163.02, "end": 57163.02, "probability": 0.0381 }, { "start": 57163.02, "end": 57163.54, "probability": 0.4381 }, { "start": 57163.98, "end": 57165.74, "probability": 0.7381 }, { "start": 57166.02, "end": 57166.88, "probability": 0.7275 }, { "start": 57166.98, "end": 57173.34, "probability": 0.6619 }, { "start": 57173.56, "end": 57173.78, "probability": 0.3845 }, { "start": 57173.84, "end": 57173.84, "probability": 0.4766 }, { "start": 57173.84, "end": 57175.19, "probability": 0.9367 }, { "start": 57175.68, "end": 57178.34, "probability": 0.9526 }, { "start": 57178.56, "end": 57179.2, "probability": 0.9342 }, { "start": 57180.14, "end": 57183.58, "probability": 0.9786 }, { "start": 57184.7, "end": 57186.02, "probability": 0.8798 }, { "start": 57186.94, "end": 57187.36, "probability": 0.5959 }, { "start": 57187.6, "end": 57188.62, "probability": 0.8649 }, { "start": 57188.86, "end": 57189.62, "probability": 0.901 }, { "start": 57189.78, "end": 57190.3, "probability": 0.6748 }, { "start": 57190.32, "end": 57195.16, "probability": 0.8472 }, { "start": 57195.38, "end": 57196.02, "probability": 0.8648 }, { "start": 57196.12, "end": 57198.24, "probability": 0.9365 }, { "start": 57198.96, "end": 57201.16, "probability": 0.9976 }, { "start": 57201.28, "end": 57202.9, "probability": 0.9888 }, { "start": 57203.3, "end": 57204.6, "probability": 0.988 }, { "start": 57204.78, "end": 57206.18, "probability": 0.9408 }, { "start": 57206.74, "end": 57206.76, "probability": 0.7388 }, { "start": 57207.34, "end": 57209.67, "probability": 0.9814 }, { "start": 57210.44, "end": 57213.04, "probability": 0.9803 }, { "start": 57213.86, "end": 57214.21, "probability": 0.854 }, { "start": 57214.64, "end": 57214.88, "probability": 0.6404 }, { "start": 57214.94, "end": 57215.1, "probability": 0.7651 }, { "start": 57215.16, "end": 57216.88, "probability": 0.9437 }, { "start": 57217.44, "end": 57219.74, "probability": 0.9954 }, { "start": 57220.36, "end": 57224.82, "probability": 0.1923 }, { "start": 57226.0, "end": 57227.82, "probability": 0.8472 }, { "start": 57228.1, "end": 57230.02, "probability": 0.2935 }, { "start": 57230.42, "end": 57235.64, "probability": 0.9829 }, { "start": 57235.82, "end": 57236.62, "probability": 0.8811 }, { "start": 57236.94, "end": 57238.44, "probability": 0.7964 }, { "start": 57239.02, "end": 57241.24, "probability": 0.2437 }, { "start": 57242.58, "end": 57243.14, "probability": 0.0845 }, { "start": 57243.14, "end": 57243.14, "probability": 0.0946 }, { "start": 57243.14, "end": 57243.14, "probability": 0.152 }, { "start": 57243.72, "end": 57244.5, "probability": 0.5816 }, { "start": 57245.08, "end": 57246.54, "probability": 0.542 }, { "start": 57247.48, "end": 57252.12, "probability": 0.969 }, { "start": 57252.64, "end": 57258.36, "probability": 0.9948 }, { "start": 57258.54, "end": 57259.88, "probability": 0.7237 }, { "start": 57259.96, "end": 57260.68, "probability": 0.8857 }, { "start": 57261.38, "end": 57264.16, "probability": 0.9624 }, { "start": 57264.56, "end": 57266.72, "probability": 0.9742 }, { "start": 57266.8, "end": 57268.02, "probability": 0.9749 }, { "start": 57268.56, "end": 57270.32, "probability": 0.8001 }, { "start": 57270.42, "end": 57270.74, "probability": 0.32 }, { "start": 57270.82, "end": 57271.4, "probability": 0.4904 }, { "start": 57272.02, "end": 57273.32, "probability": 0.5575 }, { "start": 57273.42, "end": 57273.92, "probability": 0.803 }, { "start": 57274.24, "end": 57276.82, "probability": 0.4011 }, { "start": 57276.94, "end": 57277.41, "probability": 0.6649 }, { "start": 57277.72, "end": 57278.86, "probability": 0.5495 }, { "start": 57279.54, "end": 57281.18, "probability": 0.7811 }, { "start": 57281.83, "end": 57286.46, "probability": 0.8941 }, { "start": 57286.7, "end": 57287.46, "probability": 0.7473 }, { "start": 57288.22, "end": 57291.28, "probability": 0.961 }, { "start": 57291.3, "end": 57292.9, "probability": 0.9946 }, { "start": 57293.56, "end": 57295.62, "probability": 0.9736 }, { "start": 57295.66, "end": 57298.02, "probability": 0.2809 }, { "start": 57298.04, "end": 57298.86, "probability": 0.2246 }, { "start": 57298.86, "end": 57299.44, "probability": 0.429 }, { "start": 57300.44, "end": 57301.66, "probability": 0.553 }, { "start": 57302.18, "end": 57304.32, "probability": 0.5938 }, { "start": 57304.36, "end": 57305.38, "probability": 0.4656 }, { "start": 57305.78, "end": 57305.8, "probability": 0.6519 }, { "start": 57306.3, "end": 57307.26, "probability": 0.9076 }, { "start": 57307.88, "end": 57308.65, "probability": 0.5023 }, { "start": 57308.8, "end": 57310.46, "probability": 0.9112 }, { "start": 57310.84, "end": 57311.1, "probability": 0.7388 }, { "start": 57311.52, "end": 57314.32, "probability": 0.896 }, { "start": 57314.52, "end": 57315.72, "probability": 0.64 }, { "start": 57315.74, "end": 57316.4, "probability": 0.5005 }, { "start": 57316.4, "end": 57317.38, "probability": 0.8453 }, { "start": 57317.74, "end": 57317.98, "probability": 0.8066 }, { "start": 57318.32, "end": 57318.42, "probability": 0.2162 }, { "start": 57318.42, "end": 57320.42, "probability": 0.9368 }, { "start": 57320.7, "end": 57321.76, "probability": 0.7522 }, { "start": 57322.1, "end": 57322.42, "probability": 0.7651 }, { "start": 57322.56, "end": 57323.4, "probability": 0.8889 }, { "start": 57324.34, "end": 57325.32, "probability": 0.1605 }, { "start": 57325.32, "end": 57327.12, "probability": 0.6656 }, { "start": 57327.8, "end": 57330.28, "probability": 0.7086 }, { "start": 57330.34, "end": 57331.5, "probability": 0.9871 }, { "start": 57332.78, "end": 57336.16, "probability": 0.7881 }, { "start": 57345.04, "end": 57347.94, "probability": 0.1669 }, { "start": 57349.04, "end": 57351.7, "probability": 0.0775 }, { "start": 57351.7, "end": 57351.7, "probability": 0.2033 }, { "start": 57351.7, "end": 57351.7, "probability": 0.1342 }, { "start": 57351.7, "end": 57352.0, "probability": 0.0416 }, { "start": 57352.04, "end": 57352.36, "probability": 0.6587 }, { "start": 57352.78, "end": 57353.48, "probability": 0.6143 }, { "start": 57353.78, "end": 57355.62, "probability": 0.9137 }, { "start": 57356.62, "end": 57358.32, "probability": 0.5402 }, { "start": 57358.74, "end": 57361.22, "probability": 0.8657 }, { "start": 57363.04, "end": 57364.34, "probability": 0.8609 }, { "start": 57364.76, "end": 57369.42, "probability": 0.8514 }, { "start": 57369.76, "end": 57369.88, "probability": 0.0162 }, { "start": 57369.88, "end": 57372.38, "probability": 0.9272 }, { "start": 57373.32, "end": 57374.52, "probability": 0.6155 }, { "start": 57376.64, "end": 57376.92, "probability": 0.8246 }, { "start": 57377.26, "end": 57378.42, "probability": 0.7717 }, { "start": 57378.48, "end": 57379.81, "probability": 0.9793 }, { "start": 57380.34, "end": 57381.2, "probability": 0.8966 }, { "start": 57381.5, "end": 57382.02, "probability": 0.7301 }, { "start": 57382.62, "end": 57384.86, "probability": 0.9858 }, { "start": 57388.4, "end": 57390.84, "probability": 0.8668 }, { "start": 57391.03, "end": 57392.04, "probability": 0.466 }, { "start": 57392.52, "end": 57393.79, "probability": 0.9922 }, { "start": 57394.56, "end": 57397.77, "probability": 0.9927 }, { "start": 57399.3, "end": 57404.94, "probability": 0.1266 }, { "start": 57405.66, "end": 57405.84, "probability": 0.0053 }, { "start": 57405.84, "end": 57405.84, "probability": 0.1312 }, { "start": 57405.84, "end": 57405.84, "probability": 0.115 }, { "start": 57405.84, "end": 57405.94, "probability": 0.6481 }, { "start": 57407.52, "end": 57408.24, "probability": 0.4593 }, { "start": 57408.26, "end": 57409.0, "probability": 0.9835 }, { "start": 57410.8, "end": 57416.24, "probability": 0.5403 }, { "start": 57417.56, "end": 57418.42, "probability": 0.7261 }, { "start": 57419.62, "end": 57423.56, "probability": 0.9572 }, { "start": 57424.24, "end": 57425.76, "probability": 0.9453 }, { "start": 57426.72, "end": 57427.12, "probability": 0.7375 }, { "start": 57427.92, "end": 57429.48, "probability": 0.998 }, { "start": 57430.66, "end": 57432.58, "probability": 0.7087 }, { "start": 57432.68, "end": 57436.52, "probability": 0.9907 }, { "start": 57437.36, "end": 57438.2, "probability": 0.6933 }, { "start": 57439.0, "end": 57439.7, "probability": 0.6418 }, { "start": 57441.1, "end": 57442.68, "probability": 0.9248 }, { "start": 57443.1, "end": 57444.14, "probability": 0.9942 }, { "start": 57445.76, "end": 57446.34, "probability": 0.8804 }, { "start": 57446.92, "end": 57448.56, "probability": 0.826 }, { "start": 57448.64, "end": 57449.06, "probability": 0.3567 }, { "start": 57449.54, "end": 57449.82, "probability": 0.1118 }, { "start": 57450.0, "end": 57452.02, "probability": 0.9902 }, { "start": 57452.4, "end": 57458.05, "probability": 0.6548 }, { "start": 57458.92, "end": 57459.87, "probability": 0.978 }, { "start": 57463.56, "end": 57465.16, "probability": 0.9976 }, { "start": 57465.26, "end": 57467.49, "probability": 0.9961 }, { "start": 57469.0, "end": 57472.54, "probability": 0.9932 }, { "start": 57473.0, "end": 57473.02, "probability": 0.0214 }, { "start": 57473.02, "end": 57474.8, "probability": 0.9511 }, { "start": 57475.08, "end": 57475.5, "probability": 0.6311 }, { "start": 57475.7, "end": 57477.18, "probability": 0.7889 }, { "start": 57477.34, "end": 57479.06, "probability": 0.9824 }, { "start": 57479.14, "end": 57480.02, "probability": 0.7272 }, { "start": 57480.12, "end": 57480.94, "probability": 0.4919 }, { "start": 57481.36, "end": 57484.16, "probability": 0.998 }, { "start": 57489.74, "end": 57490.44, "probability": 0.8816 }, { "start": 57491.5, "end": 57495.84, "probability": 0.9843 }, { "start": 57496.04, "end": 57498.12, "probability": 0.9858 }, { "start": 57498.9, "end": 57501.14, "probability": 0.9654 }, { "start": 57502.0, "end": 57503.95, "probability": 0.9451 }, { "start": 57504.26, "end": 57506.4, "probability": 0.9666 }, { "start": 57507.08, "end": 57509.36, "probability": 0.9465 }, { "start": 57509.66, "end": 57511.44, "probability": 0.7441 }, { "start": 57512.8, "end": 57517.34, "probability": 0.9134 }, { "start": 57517.48, "end": 57518.74, "probability": 0.9735 }, { "start": 57518.8, "end": 57519.48, "probability": 0.6944 }, { "start": 57519.74, "end": 57522.62, "probability": 0.9962 }, { "start": 57523.58, "end": 57524.44, "probability": 0.8357 }, { "start": 57525.18, "end": 57525.48, "probability": 0.5614 }, { "start": 57526.02, "end": 57528.04, "probability": 0.6791 }, { "start": 57528.36, "end": 57528.56, "probability": 0.6697 }, { "start": 57528.62, "end": 57529.44, "probability": 0.7947 }, { "start": 57530.06, "end": 57532.7, "probability": 0.5823 }, { "start": 57532.74, "end": 57533.74, "probability": 0.9741 }, { "start": 57534.37, "end": 57535.0, "probability": 0.7135 }, { "start": 57537.64, "end": 57539.5, "probability": 0.0464 }, { "start": 57539.84, "end": 57540.62, "probability": 0.367 }, { "start": 57540.66, "end": 57544.66, "probability": 0.5717 }, { "start": 57544.84, "end": 57544.88, "probability": 0.1022 }, { "start": 57544.88, "end": 57546.32, "probability": 0.8988 }, { "start": 57546.5, "end": 57547.24, "probability": 0.4371 }, { "start": 57547.34, "end": 57551.34, "probability": 0.9115 }, { "start": 57552.34, "end": 57554.94, "probability": 0.5019 }, { "start": 57555.52, "end": 57557.16, "probability": 0.5428 }, { "start": 57558.7, "end": 57558.94, "probability": 0.781 }, { "start": 57559.06, "end": 57559.92, "probability": 0.8993 }, { "start": 57560.02, "end": 57560.1, "probability": 0.0051 }, { "start": 57560.18, "end": 57560.48, "probability": 0.7995 }, { "start": 57560.68, "end": 57561.18, "probability": 0.891 }, { "start": 57562.4, "end": 57564.7, "probability": 0.4354 }, { "start": 57565.08, "end": 57565.08, "probability": 0.2318 }, { "start": 57565.78, "end": 57571.68, "probability": 0.6066 }, { "start": 57572.58, "end": 57573.91, "probability": 0.9963 }, { "start": 57575.28, "end": 57576.22, "probability": 0.9944 }, { "start": 57577.34, "end": 57579.16, "probability": 0.985 }, { "start": 57579.26, "end": 57580.19, "probability": 0.9877 }, { "start": 57580.54, "end": 57581.22, "probability": 0.5193 }, { "start": 57581.68, "end": 57584.98, "probability": 0.9419 }, { "start": 57585.08, "end": 57586.52, "probability": 0.9971 }, { "start": 57587.02, "end": 57587.86, "probability": 0.9211 }, { "start": 57587.92, "end": 57590.88, "probability": 0.7417 }, { "start": 57592.34, "end": 57593.86, "probability": 0.9937 }, { "start": 57594.58, "end": 57598.74, "probability": 0.9497 }, { "start": 57598.8, "end": 57600.64, "probability": 0.325 }, { "start": 57601.84, "end": 57603.82, "probability": 0.959 }, { "start": 57603.82, "end": 57606.88, "probability": 0.9973 }, { "start": 57606.88, "end": 57609.7, "probability": 0.9731 }, { "start": 57610.2, "end": 57612.32, "probability": 0.8217 }, { "start": 57612.38, "end": 57613.14, "probability": 0.7295 }, { "start": 57613.86, "end": 57614.56, "probability": 0.7391 }, { "start": 57615.18, "end": 57616.4, "probability": 0.9937 }, { "start": 57617.34, "end": 57622.08, "probability": 0.5781 }, { "start": 57622.08, "end": 57624.88, "probability": 0.8831 }, { "start": 57637.46, "end": 57638.6, "probability": 0.4551 }, { "start": 57638.6, "end": 57638.6, "probability": 0.069 }, { "start": 57638.6, "end": 57638.6, "probability": 0.0714 }, { "start": 57638.6, "end": 57639.78, "probability": 0.3745 }, { "start": 57639.78, "end": 57642.8, "probability": 0.7677 }, { "start": 57642.94, "end": 57645.26, "probability": 0.8817 }, { "start": 57645.34, "end": 57645.56, "probability": 0.7928 }, { "start": 57645.6, "end": 57649.0, "probability": 0.9553 }, { "start": 57649.46, "end": 57649.46, "probability": 0.362 }, { "start": 57649.52, "end": 57649.62, "probability": 0.4645 }, { "start": 57650.16, "end": 57650.84, "probability": 0.5005 }, { "start": 57650.94, "end": 57652.54, "probability": 0.835 }, { "start": 57652.6, "end": 57656.82, "probability": 0.9628 }, { "start": 57657.34, "end": 57658.64, "probability": 0.8822 }, { "start": 57659.43, "end": 57662.06, "probability": 0.9299 }, { "start": 57662.62, "end": 57662.99, "probability": 0.8271 }, { "start": 57663.82, "end": 57664.18, "probability": 0.3419 }, { "start": 57664.42, "end": 57665.07, "probability": 0.7351 }, { "start": 57665.58, "end": 57666.14, "probability": 0.4976 }, { "start": 57667.64, "end": 57673.88, "probability": 0.9931 }, { "start": 57676.86, "end": 57680.28, "probability": 0.6272 }, { "start": 57681.24, "end": 57682.72, "probability": 0.9266 }, { "start": 57683.38, "end": 57684.78, "probability": 0.6597 }, { "start": 57685.12, "end": 57686.36, "probability": 0.992 }, { "start": 57686.76, "end": 57688.68, "probability": 0.9941 }, { "start": 57688.92, "end": 57690.45, "probability": 0.9942 }, { "start": 57691.48, "end": 57693.1, "probability": 0.7452 }, { "start": 57693.46, "end": 57693.82, "probability": 0.6093 }, { "start": 57694.34, "end": 57697.1, "probability": 0.9624 }, { "start": 57697.8, "end": 57700.88, "probability": 0.858 }, { "start": 57701.34, "end": 57704.8, "probability": 0.9357 }, { "start": 57704.92, "end": 57706.48, "probability": 0.9787 }, { "start": 57706.94, "end": 57708.44, "probability": 0.7422 }, { "start": 57709.71, "end": 57710.12, "probability": 0.7975 }, { "start": 57710.7, "end": 57711.62, "probability": 0.8563 }, { "start": 57711.88, "end": 57713.84, "probability": 0.9412 }, { "start": 57714.28, "end": 57714.28, "probability": 0.4482 }, { "start": 57715.24, "end": 57717.08, "probability": 0.6866 }, { "start": 57717.3, "end": 57718.12, "probability": 0.8305 }, { "start": 57718.5, "end": 57719.16, "probability": 0.9108 }, { "start": 57719.32, "end": 57719.42, "probability": 0.8516 }, { "start": 57720.04, "end": 57720.7, "probability": 0.7712 }, { "start": 57721.28, "end": 57723.4, "probability": 0.8748 }, { "start": 57723.58, "end": 57725.9, "probability": 0.6067 }, { "start": 57726.38, "end": 57726.92, "probability": 0.8374 }, { "start": 57726.96, "end": 57727.98, "probability": 0.54 }, { "start": 57728.0, "end": 57729.56, "probability": 0.8365 }, { "start": 57729.78, "end": 57731.28, "probability": 0.7415 }, { "start": 57731.72, "end": 57734.06, "probability": 0.9485 }, { "start": 57734.64, "end": 57737.56, "probability": 0.993 }, { "start": 57738.2, "end": 57739.96, "probability": 0.7543 }, { "start": 57740.18, "end": 57741.1, "probability": 0.5292 }, { "start": 57741.91, "end": 57743.3, "probability": 0.894 }, { "start": 57743.44, "end": 57743.98, "probability": 0.7313 }, { "start": 57744.24, "end": 57744.42, "probability": 0.5264 }, { "start": 57747.56, "end": 57747.58, "probability": 0.0466 }, { "start": 57747.58, "end": 57750.34, "probability": 0.6065 }, { "start": 57751.28, "end": 57755.28, "probability": 0.8608 }, { "start": 57756.44, "end": 57758.6, "probability": 0.8022 }, { "start": 57758.8, "end": 57760.5, "probability": 0.9835 }, { "start": 57761.14, "end": 57761.66, "probability": 0.8337 }, { "start": 57762.36, "end": 57766.62, "probability": 0.9733 }, { "start": 57766.64, "end": 57766.76, "probability": 0.7449 }, { "start": 57767.52, "end": 57770.96, "probability": 0.5324 }, { "start": 57771.2, "end": 57774.0, "probability": 0.667 }, { "start": 57774.66, "end": 57776.04, "probability": 0.988 }, { "start": 57776.12, "end": 57776.58, "probability": 0.9159 }, { "start": 57777.1, "end": 57778.94, "probability": 0.7619 }, { "start": 57779.64, "end": 57781.38, "probability": 0.9865 }, { "start": 57781.52, "end": 57784.96, "probability": 0.9745 }, { "start": 57785.04, "end": 57786.52, "probability": 0.9792 }, { "start": 57788.66, "end": 57789.7, "probability": 0.9585 }, { "start": 57790.64, "end": 57793.3, "probability": 0.8371 }, { "start": 57793.48, "end": 57794.84, "probability": 0.8784 }, { "start": 57795.34, "end": 57795.9, "probability": 0.9457 }, { "start": 57797.52, "end": 57798.42, "probability": 0.9181 }, { "start": 57798.5, "end": 57800.12, "probability": 0.6977 }, { "start": 57800.56, "end": 57802.18, "probability": 0.848 }, { "start": 57802.82, "end": 57803.56, "probability": 0.9221 }, { "start": 57804.88, "end": 57805.78, "probability": 0.9372 }, { "start": 57807.1, "end": 57807.66, "probability": 0.847 }, { "start": 57807.94, "end": 57809.2, "probability": 0.7939 }, { "start": 57810.18, "end": 57811.74, "probability": 0.8901 }, { "start": 57812.38, "end": 57817.84, "probability": 0.9819 }, { "start": 57818.58, "end": 57824.22, "probability": 0.9694 }, { "start": 57824.96, "end": 57825.84, "probability": 0.3408 }, { "start": 57826.42, "end": 57827.98, "probability": 0.8881 }, { "start": 57828.72, "end": 57829.3, "probability": 0.9449 }, { "start": 57829.38, "end": 57829.9, "probability": 0.9818 }, { "start": 57830.02, "end": 57832.64, "probability": 0.9896 }, { "start": 57832.86, "end": 57833.34, "probability": 0.8674 }, { "start": 57833.66, "end": 57835.18, "probability": 0.9822 }, { "start": 57835.28, "end": 57836.62, "probability": 0.9976 }, { "start": 57837.4, "end": 57838.12, "probability": 0.9013 }, { "start": 57839.18, "end": 57840.46, "probability": 0.6451 }, { "start": 57842.14, "end": 57843.58, "probability": 0.6426 }, { "start": 57843.7, "end": 57845.08, "probability": 0.5736 }, { "start": 57845.72, "end": 57848.56, "probability": 0.838 }, { "start": 57850.7, "end": 57851.6, "probability": 0.9714 }, { "start": 57852.5, "end": 57853.8, "probability": 0.9964 }, { "start": 57854.36, "end": 57858.18, "probability": 0.9865 }, { "start": 57859.02, "end": 57860.0, "probability": 0.9873 }, { "start": 57860.08, "end": 57863.3, "probability": 0.9955 }, { "start": 57863.84, "end": 57867.42, "probability": 0.985 }, { "start": 57867.52, "end": 57868.6, "probability": 0.8599 }, { "start": 57869.58, "end": 57870.66, "probability": 0.7931 }, { "start": 57871.7, "end": 57874.68, "probability": 0.9929 }, { "start": 57875.58, "end": 57876.72, "probability": 0.9822 }, { "start": 57876.9, "end": 57880.12, "probability": 0.9908 }, { "start": 57880.54, "end": 57881.0, "probability": 0.8249 }, { "start": 57881.24, "end": 57883.74, "probability": 0.9417 }, { "start": 57884.04, "end": 57885.5, "probability": 0.9215 }, { "start": 57886.56, "end": 57890.02, "probability": 0.9928 }, { "start": 57890.68, "end": 57894.9, "probability": 0.8251 }, { "start": 57895.62, "end": 57896.4, "probability": 0.9346 }, { "start": 57897.38, "end": 57898.6, "probability": 0.9599 }, { "start": 57898.76, "end": 57899.24, "probability": 0.9858 }, { "start": 57899.72, "end": 57901.02, "probability": 0.6446 }, { "start": 57901.04, "end": 57901.62, "probability": 0.9529 }, { "start": 57902.1, "end": 57903.98, "probability": 0.9363 }, { "start": 57904.24, "end": 57904.7, "probability": 0.7256 }, { "start": 57904.92, "end": 57906.52, "probability": 0.8237 }, { "start": 57906.86, "end": 57907.46, "probability": 0.0397 }, { "start": 57907.84, "end": 57909.79, "probability": 0.8335 }, { "start": 57911.44, "end": 57912.46, "probability": 0.9954 }, { "start": 57913.62, "end": 57915.22, "probability": 0.9921 }, { "start": 57915.34, "end": 57915.7, "probability": 0.4772 }, { "start": 57915.74, "end": 57916.38, "probability": 0.9561 }, { "start": 57916.9, "end": 57918.62, "probability": 0.9043 }, { "start": 57919.42, "end": 57921.14, "probability": 0.8435 }, { "start": 57921.26, "end": 57923.58, "probability": 0.8583 }, { "start": 57924.82, "end": 57926.3, "probability": 0.9208 }, { "start": 57926.62, "end": 57932.74, "probability": 0.9733 }, { "start": 57933.34, "end": 57934.6, "probability": 0.905 }, { "start": 57935.56, "end": 57936.06, "probability": 0.7706 }, { "start": 57937.3, "end": 57938.68, "probability": 0.7758 }, { "start": 57938.7, "end": 57939.22, "probability": 0.8243 }, { "start": 57939.84, "end": 57942.5, "probability": 0.8719 }, { "start": 57942.54, "end": 57943.16, "probability": 0.7502 }, { "start": 57943.54, "end": 57943.7, "probability": 0.4964 }, { "start": 57944.48, "end": 57945.1, "probability": 0.75 }, { "start": 57945.34, "end": 57945.58, "probability": 0.501 }, { "start": 57946.9, "end": 57946.92, "probability": 0.7158 }, { "start": 57949.23, "end": 57952.06, "probability": 0.9967 }, { "start": 57953.06, "end": 57953.96, "probability": 0.896 }, { "start": 57954.8, "end": 57955.62, "probability": 0.6301 }, { "start": 57956.14, "end": 57956.76, "probability": 0.9229 }, { "start": 57957.12, "end": 57958.84, "probability": 0.9971 }, { "start": 57959.46, "end": 57960.16, "probability": 0.77 }, { "start": 57960.32, "end": 57962.08, "probability": 0.8165 }, { "start": 57965.28, "end": 57965.92, "probability": 0.5012 }, { "start": 57965.92, "end": 57965.92, "probability": 0.0887 }, { "start": 57965.92, "end": 57969.26, "probability": 0.87 }, { "start": 57969.26, "end": 57971.48, "probability": 0.9966 }, { "start": 57972.2, "end": 57974.04, "probability": 0.8871 }, { "start": 57975.52, "end": 57978.66, "probability": 0.9775 }, { "start": 57979.16, "end": 57980.06, "probability": 0.8839 }, { "start": 57980.34, "end": 57981.46, "probability": 0.9934 }, { "start": 57981.84, "end": 57984.59, "probability": 0.9834 }, { "start": 57984.82, "end": 57985.82, "probability": 0.9676 }, { "start": 57986.08, "end": 57987.16, "probability": 0.7953 }, { "start": 57987.28, "end": 57987.67, "probability": 0.642 }, { "start": 57988.36, "end": 57988.48, "probability": 0.8157 }, { "start": 57989.33, "end": 57991.54, "probability": 0.8859 }, { "start": 57991.6, "end": 57993.5, "probability": 0.9276 }, { "start": 57993.88, "end": 57994.08, "probability": 0.664 }, { "start": 57994.2, "end": 57998.79, "probability": 0.9886 }, { "start": 57999.7, "end": 58002.56, "probability": 0.8931 }, { "start": 58003.16, "end": 58003.64, "probability": 0.9603 }, { "start": 58003.76, "end": 58004.84, "probability": 0.9728 }, { "start": 58004.9, "end": 58005.36, "probability": 0.9625 }, { "start": 58006.28, "end": 58006.62, "probability": 0.9033 }, { "start": 58011.22, "end": 58011.9, "probability": 0.7523 }, { "start": 58012.44, "end": 58013.98, "probability": 0.9937 }, { "start": 58014.58, "end": 58016.61, "probability": 0.9905 }, { "start": 58017.68, "end": 58019.9, "probability": 0.9941 }, { "start": 58020.72, "end": 58022.8, "probability": 0.9773 }, { "start": 58023.6, "end": 58024.62, "probability": 0.9273 }, { "start": 58025.12, "end": 58027.81, "probability": 0.9346 }, { "start": 58028.82, "end": 58030.62, "probability": 0.9763 }, { "start": 58031.44, "end": 58034.26, "probability": 0.9829 }, { "start": 58034.94, "end": 58036.4, "probability": 0.8852 }, { "start": 58036.68, "end": 58037.6, "probability": 0.6313 }, { "start": 58037.68, "end": 58041.12, "probability": 0.9609 }, { "start": 58041.52, "end": 58042.66, "probability": 0.8251 }, { "start": 58042.84, "end": 58044.9, "probability": 0.8771 }, { "start": 58045.58, "end": 58048.12, "probability": 0.9882 }, { "start": 58049.4, "end": 58049.48, "probability": 0.0756 }, { "start": 58050.36, "end": 58052.54, "probability": 0.9187 }, { "start": 58052.78, "end": 58055.01, "probability": 0.8376 }, { "start": 58055.42, "end": 58060.22, "probability": 0.8647 }, { "start": 58060.78, "end": 58061.26, "probability": 0.9497 }, { "start": 58061.94, "end": 58063.06, "probability": 0.9644 }, { "start": 58063.94, "end": 58066.78, "probability": 0.925 }, { "start": 58068.2, "end": 58069.96, "probability": 0.8047 }, { "start": 58070.99, "end": 58078.32, "probability": 0.8777 }, { "start": 58078.42, "end": 58081.12, "probability": 0.8118 }, { "start": 58082.32, "end": 58082.68, "probability": 0.6239 }, { "start": 58083.12, "end": 58085.24, "probability": 0.9722 }, { "start": 58085.26, "end": 58086.1, "probability": 0.6177 }, { "start": 58087.36, "end": 58087.56, "probability": 0.7646 }, { "start": 58088.08, "end": 58090.56, "probability": 0.9971 }, { "start": 58090.56, "end": 58092.12, "probability": 0.7991 }, { "start": 58092.88, "end": 58098.08, "probability": 0.9654 }, { "start": 58098.12, "end": 58098.9, "probability": 0.7396 }, { "start": 58099.06, "end": 58099.22, "probability": 0.2346 }, { "start": 58099.28, "end": 58101.38, "probability": 0.973 }, { "start": 58101.84, "end": 58103.64, "probability": 0.9169 }, { "start": 58104.36, "end": 58107.02, "probability": 0.9961 }, { "start": 58107.76, "end": 58108.68, "probability": 0.6886 }, { "start": 58108.76, "end": 58110.5, "probability": 0.9524 }, { "start": 58110.68, "end": 58111.56, "probability": 0.9301 }, { "start": 58112.34, "end": 58114.48, "probability": 0.7881 }, { "start": 58115.0, "end": 58116.9, "probability": 0.8422 }, { "start": 58117.62, "end": 58122.08, "probability": 0.7443 }, { "start": 58122.68, "end": 58124.5, "probability": 0.6979 }, { "start": 58125.2, "end": 58128.78, "probability": 0.8254 }, { "start": 58129.42, "end": 58132.69, "probability": 0.9884 }, { "start": 58133.84, "end": 58134.48, "probability": 0.7462 }, { "start": 58135.28, "end": 58135.96, "probability": 0.0109 }, { "start": 58137.9, "end": 58140.58, "probability": 0.5246 }, { "start": 58141.34, "end": 58141.84, "probability": 0.5034 }, { "start": 58146.16, "end": 58146.62, "probability": 0.8211 }, { "start": 58147.86, "end": 58148.64, "probability": 0.9651 }, { "start": 58151.18, "end": 58152.12, "probability": 0.8972 }, { "start": 58154.4, "end": 58156.1, "probability": 0.9504 }, { "start": 58158.34, "end": 58160.94, "probability": 0.9661 }, { "start": 58172.6, "end": 58173.7, "probability": 0.5991 }, { "start": 58174.26, "end": 58174.64, "probability": 0.7766 }, { "start": 58178.7, "end": 58180.92, "probability": 0.9963 }, { "start": 58181.88, "end": 58184.92, "probability": 0.5426 }, { "start": 58187.02, "end": 58190.6, "probability": 0.7924 }, { "start": 58191.44, "end": 58192.86, "probability": 0.9607 }, { "start": 58195.1, "end": 58198.46, "probability": 0.9858 }, { "start": 58199.36, "end": 58199.66, "probability": 0.683 }, { "start": 58201.82, "end": 58204.24, "probability": 0.8641 }, { "start": 58205.06, "end": 58210.86, "probability": 0.9598 }, { "start": 58212.1, "end": 58216.06, "probability": 0.748 }, { "start": 58216.6, "end": 58218.56, "probability": 0.7378 }, { "start": 58219.6, "end": 58221.36, "probability": 0.5639 }, { "start": 58221.92, "end": 58222.82, "probability": 0.9446 }, { "start": 58224.3, "end": 58224.98, "probability": 0.8003 }, { "start": 58225.7, "end": 58227.78, "probability": 0.7456 }, { "start": 58228.82, "end": 58229.32, "probability": 0.8243 }, { "start": 58230.02, "end": 58230.6, "probability": 0.786 }, { "start": 58231.58, "end": 58232.8, "probability": 0.9611 }, { "start": 58233.7, "end": 58235.78, "probability": 0.8116 }, { "start": 58236.44, "end": 58238.6, "probability": 0.9644 }, { "start": 58239.28, "end": 58242.16, "probability": 0.9554 }, { "start": 58244.6, "end": 58247.12, "probability": 0.9316 }, { "start": 58247.82, "end": 58250.86, "probability": 0.9382 }, { "start": 58252.16, "end": 58254.4, "probability": 0.9604 }, { "start": 58254.54, "end": 58255.52, "probability": 0.8976 }, { "start": 58255.64, "end": 58256.44, "probability": 0.8547 }, { "start": 58256.9, "end": 58258.24, "probability": 0.9585 }, { "start": 58259.02, "end": 58260.18, "probability": 0.7348 }, { "start": 58261.34, "end": 58262.68, "probability": 0.9859 }, { "start": 58263.74, "end": 58264.32, "probability": 0.8838 }, { "start": 58264.98, "end": 58265.9, "probability": 0.968 }, { "start": 58267.08, "end": 58270.94, "probability": 0.9082 }, { "start": 58271.34, "end": 58272.08, "probability": 0.8627 }, { "start": 58273.0, "end": 58275.76, "probability": 0.8921 }, { "start": 58277.62, "end": 58281.22, "probability": 0.9613 }, { "start": 58281.92, "end": 58285.04, "probability": 0.9898 }, { "start": 58285.9, "end": 58286.36, "probability": 0.8662 }, { "start": 58287.1, "end": 58287.8, "probability": 0.7165 }, { "start": 58289.26, "end": 58291.22, "probability": 0.8861 }, { "start": 58291.95, "end": 58295.69, "probability": 0.7158 }, { "start": 58295.9, "end": 58296.89, "probability": 0.5051 }, { "start": 58297.66, "end": 58297.92, "probability": 0.0198 }, { "start": 58298.64, "end": 58299.28, "probability": 0.8461 }, { "start": 58300.43, "end": 58305.46, "probability": 0.7133 }, { "start": 58305.52, "end": 58306.02, "probability": 0.9244 }, { "start": 58307.96, "end": 58311.14, "probability": 0.9362 }, { "start": 58311.24, "end": 58314.7, "probability": 0.9946 }, { "start": 58318.18, "end": 58320.34, "probability": 0.976 }, { "start": 58320.88, "end": 58321.24, "probability": 0.8883 }, { "start": 58321.3, "end": 58325.78, "probability": 0.9858 }, { "start": 58325.9, "end": 58331.46, "probability": 0.9758 }, { "start": 58332.14, "end": 58332.92, "probability": 0.7438 }, { "start": 58335.14, "end": 58335.76, "probability": 0.6018 }, { "start": 58336.8, "end": 58339.92, "probability": 0.7709 }, { "start": 58340.65, "end": 58342.52, "probability": 0.8562 }, { "start": 58343.18, "end": 58344.72, "probability": 0.5139 }, { "start": 58346.16, "end": 58347.94, "probability": 0.6743 }, { "start": 58350.28, "end": 58351.68, "probability": 0.9858 }, { "start": 58352.42, "end": 58355.9, "probability": 0.8633 }, { "start": 58355.9, "end": 58358.28, "probability": 0.8606 }, { "start": 58360.84, "end": 58363.1, "probability": 0.832 }, { "start": 58363.68, "end": 58364.1, "probability": 0.0919 }, { "start": 58364.62, "end": 58365.48, "probability": 0.9412 }, { "start": 58367.5, "end": 58369.06, "probability": 0.8636 }, { "start": 58369.55, "end": 58373.2, "probability": 0.8086 }, { "start": 58373.62, "end": 58376.16, "probability": 0.7562 }, { "start": 58376.22, "end": 58376.94, "probability": 0.9503 }, { "start": 58377.1, "end": 58378.36, "probability": 0.9625 }, { "start": 58378.74, "end": 58382.0, "probability": 0.7329 }, { "start": 58382.06, "end": 58382.56, "probability": 0.9026 }, { "start": 58383.66, "end": 58384.46, "probability": 0.3658 }, { "start": 58385.8, "end": 58386.42, "probability": 0.6632 }, { "start": 58386.42, "end": 58386.78, "probability": 0.5274 }, { "start": 58387.08, "end": 58388.8, "probability": 0.9948 }, { "start": 58388.92, "end": 58389.84, "probability": 0.9775 }, { "start": 58389.9, "end": 58390.45, "probability": 0.9932 }, { "start": 58392.02, "end": 58392.83, "probability": 0.5348 }, { "start": 58393.82, "end": 58394.58, "probability": 0.9512 }, { "start": 58394.84, "end": 58395.64, "probability": 0.771 }, { "start": 58396.76, "end": 58398.56, "probability": 0.379 }, { "start": 58398.68, "end": 58400.16, "probability": 0.9105 }, { "start": 58400.62, "end": 58400.86, "probability": 0.6952 }, { "start": 58401.52, "end": 58402.84, "probability": 0.6611 }, { "start": 58404.18, "end": 58404.44, "probability": 0.256 }, { "start": 58405.12, "end": 58406.12, "probability": 0.8823 }, { "start": 58406.72, "end": 58408.4, "probability": 0.9629 }, { "start": 58409.38, "end": 58411.18, "probability": 0.8861 }, { "start": 58412.36, "end": 58415.2, "probability": 0.6857 }, { "start": 58415.86, "end": 58417.64, "probability": 0.96 }, { "start": 58417.8, "end": 58418.0, "probability": 0.7174 }, { "start": 58419.06, "end": 58420.46, "probability": 0.9498 }, { "start": 58420.62, "end": 58420.92, "probability": 0.8765 }, { "start": 58421.34, "end": 58422.68, "probability": 0.9095 }, { "start": 58422.84, "end": 58422.94, "probability": 0.1631 }, { "start": 58423.88, "end": 58424.34, "probability": 0.8138 }, { "start": 58424.9, "end": 58427.08, "probability": 0.4787 }, { "start": 58427.66, "end": 58429.08, "probability": 0.9981 }, { "start": 58429.44, "end": 58430.3, "probability": 0.9921 }, { "start": 58430.4, "end": 58431.24, "probability": 0.9942 }, { "start": 58431.34, "end": 58432.46, "probability": 0.9814 }, { "start": 58432.66, "end": 58433.62, "probability": 0.8183 }, { "start": 58434.26, "end": 58439.64, "probability": 0.8955 }, { "start": 58439.94, "end": 58440.96, "probability": 0.8056 }, { "start": 58441.7, "end": 58442.16, "probability": 0.5393 }, { "start": 58442.24, "end": 58442.64, "probability": 0.8919 }, { "start": 58442.72, "end": 58443.35, "probability": 0.9554 }, { "start": 58443.64, "end": 58445.24, "probability": 0.984 }, { "start": 58447.06, "end": 58448.32, "probability": 0.561 }, { "start": 58449.36, "end": 58450.34, "probability": 0.0742 }, { "start": 58450.38, "end": 58451.08, "probability": 0.9604 }, { "start": 58451.18, "end": 58452.4, "probability": 0.9844 }, { "start": 58454.08, "end": 58455.74, "probability": 0.8284 }, { "start": 58456.74, "end": 58459.16, "probability": 0.9947 }, { "start": 58460.6, "end": 58465.38, "probability": 0.9775 }, { "start": 58466.46, "end": 58469.12, "probability": 0.6559 }, { "start": 58469.8, "end": 58470.91, "probability": 0.8853 }, { "start": 58471.62, "end": 58476.74, "probability": 0.9875 }, { "start": 58477.64, "end": 58478.72, "probability": 0.9571 }, { "start": 58480.6, "end": 58486.24, "probability": 0.5895 }, { "start": 58486.24, "end": 58490.16, "probability": 0.9356 }, { "start": 58491.04, "end": 58492.68, "probability": 0.6618 }, { "start": 58493.18, "end": 58494.46, "probability": 0.9663 }, { "start": 58495.6, "end": 58498.54, "probability": 0.4653 }, { "start": 58498.69, "end": 58500.82, "probability": 0.7637 }, { "start": 58502.56, "end": 58504.64, "probability": 0.349 }, { "start": 58505.42, "end": 58506.64, "probability": 0.813 }, { "start": 58506.74, "end": 58508.34, "probability": 0.9829 }, { "start": 58510.22, "end": 58510.6, "probability": 0.0881 }, { "start": 58510.6, "end": 58513.58, "probability": 0.7745 }, { "start": 58513.76, "end": 58514.63, "probability": 0.7347 }, { "start": 58517.4, "end": 58517.96, "probability": 0.0191 }, { "start": 58517.96, "end": 58519.1, "probability": 0.4109 }, { "start": 58519.98, "end": 58521.66, "probability": 0.7998 }, { "start": 58522.84, "end": 58523.74, "probability": 0.2989 }, { "start": 58526.82, "end": 58529.14, "probability": 0.7907 }, { "start": 58529.58, "end": 58532.9, "probability": 0.7739 }, { "start": 58533.1, "end": 58534.36, "probability": 0.4613 }, { "start": 58535.0, "end": 58535.18, "probability": 0.6868 }, { "start": 58536.14, "end": 58536.92, "probability": 0.7039 }, { "start": 58537.74, "end": 58539.28, "probability": 0.7688 }, { "start": 58546.74, "end": 58551.3, "probability": 0.972 }, { "start": 58552.98, "end": 58554.32, "probability": 0.8613 }, { "start": 58554.54, "end": 58555.1, "probability": 0.5753 }, { "start": 58555.4, "end": 58560.62, "probability": 0.8827 }, { "start": 58560.62, "end": 58564.52, "probability": 0.7759 }, { "start": 58565.26, "end": 58568.12, "probability": 0.9767 }, { "start": 58568.82, "end": 58571.94, "probability": 0.9894 }, { "start": 58571.98, "end": 58573.85, "probability": 0.9012 }, { "start": 58574.4, "end": 58574.8, "probability": 0.3785 }, { "start": 58575.46, "end": 58579.62, "probability": 0.536 }, { "start": 58580.76, "end": 58584.72, "probability": 0.863 }, { "start": 58585.66, "end": 58588.08, "probability": 0.9922 }, { "start": 58588.74, "end": 58590.54, "probability": 0.9977 }, { "start": 58591.3, "end": 58593.84, "probability": 0.9738 }, { "start": 58595.44, "end": 58595.94, "probability": 0.3419 }, { "start": 58596.88, "end": 58597.26, "probability": 0.7301 }, { "start": 58597.8, "end": 58600.46, "probability": 0.9831 }, { "start": 58601.32, "end": 58602.88, "probability": 0.6503 }, { "start": 58603.4, "end": 58606.62, "probability": 0.9531 }, { "start": 58607.3, "end": 58608.18, "probability": 0.8999 }, { "start": 58611.22, "end": 58611.22, "probability": 0.3004 }, { "start": 58611.22, "end": 58611.52, "probability": 0.1987 }, { "start": 58611.66, "end": 58615.21, "probability": 0.9258 }, { "start": 58615.8, "end": 58616.72, "probability": 0.6594 }, { "start": 58616.86, "end": 58617.46, "probability": 0.4933 }, { "start": 58618.22, "end": 58619.16, "probability": 0.9719 }, { "start": 58620.88, "end": 58621.4, "probability": 0.4003 }, { "start": 58621.94, "end": 58624.6, "probability": 0.5806 }, { "start": 58625.22, "end": 58626.66, "probability": 0.9764 }, { "start": 58626.84, "end": 58628.64, "probability": 0.4886 }, { "start": 58629.34, "end": 58629.8, "probability": 0.4929 }, { "start": 58630.38, "end": 58634.82, "probability": 0.3543 }, { "start": 58634.82, "end": 58637.88, "probability": 0.3629 }, { "start": 58638.48, "end": 58639.62, "probability": 0.809 }, { "start": 58640.3, "end": 58641.72, "probability": 0.5511 }, { "start": 58641.78, "end": 58643.2, "probability": 0.8256 }, { "start": 58643.76, "end": 58644.74, "probability": 0.9111 }, { "start": 58645.06, "end": 58646.68, "probability": 0.936 }, { "start": 58649.54, "end": 58654.02, "probability": 0.5748 }, { "start": 58655.06, "end": 58655.58, "probability": 0.7702 }, { "start": 58655.82, "end": 58656.54, "probability": 0.7412 }, { "start": 58656.74, "end": 58658.16, "probability": 0.8784 }, { "start": 58658.46, "end": 58659.04, "probability": 0.866 }, { "start": 58659.12, "end": 58659.62, "probability": 0.6024 }, { "start": 58660.22, "end": 58664.82, "probability": 0.9065 }, { "start": 58665.22, "end": 58668.1, "probability": 0.8154 }, { "start": 58669.48, "end": 58674.42, "probability": 0.0353 }, { "start": 58675.22, "end": 58676.63, "probability": 0.69 }, { "start": 58676.7, "end": 58680.2, "probability": 0.8094 }, { "start": 58683.9, "end": 58684.9, "probability": 0.9012 }, { "start": 58685.68, "end": 58686.08, "probability": 0.8096 }, { "start": 58689.09, "end": 58691.59, "probability": 0.9766 }, { "start": 58692.48, "end": 58693.23, "probability": 0.9785 }, { "start": 58693.46, "end": 58694.66, "probability": 0.9856 }, { "start": 58695.08, "end": 58695.94, "probability": 0.9662 }, { "start": 58696.02, "end": 58696.26, "probability": 0.9526 }, { "start": 58697.94, "end": 58699.16, "probability": 0.4463 }, { "start": 58699.38, "end": 58699.38, "probability": 0.0035 }, { "start": 58699.38, "end": 58700.28, "probability": 0.2289 }, { "start": 58700.66, "end": 58701.72, "probability": 0.7599 }, { "start": 58705.32, "end": 58708.02, "probability": 0.9784 }, { "start": 58708.62, "end": 58711.72, "probability": 0.9928 }, { "start": 58712.0, "end": 58712.58, "probability": 0.8558 }, { "start": 58712.84, "end": 58713.9, "probability": 0.7544 }, { "start": 58714.96, "end": 58716.54, "probability": 0.7643 }, { "start": 58716.82, "end": 58721.64, "probability": 0.9568 }, { "start": 58722.46, "end": 58726.38, "probability": 0.9935 }, { "start": 58727.8, "end": 58730.74, "probability": 0.9758 }, { "start": 58731.9, "end": 58734.36, "probability": 0.6166 }, { "start": 58734.72, "end": 58735.2, "probability": 0.3121 }, { "start": 58735.32, "end": 58735.82, "probability": 0.6935 }, { "start": 58735.92, "end": 58736.72, "probability": 0.708 }, { "start": 58736.8, "end": 58737.84, "probability": 0.9637 }, { "start": 58737.88, "end": 58739.3, "probability": 0.8645 }, { "start": 58739.94, "end": 58740.46, "probability": 0.8904 }, { "start": 58740.76, "end": 58744.29, "probability": 0.3488 }, { "start": 58744.68, "end": 58748.64, "probability": 0.4672 }, { "start": 58748.74, "end": 58751.92, "probability": 0.6194 }, { "start": 58752.28, "end": 58755.72, "probability": 0.9718 }, { "start": 58756.0, "end": 58756.86, "probability": 0.839 }, { "start": 58757.7, "end": 58760.34, "probability": 0.959 }, { "start": 58761.28, "end": 58764.14, "probability": 0.6171 }, { "start": 58764.22, "end": 58764.36, "probability": 0.7893 }, { "start": 58764.72, "end": 58766.52, "probability": 0.9618 }, { "start": 58766.96, "end": 58767.66, "probability": 0.7575 }, { "start": 58767.8, "end": 58768.5, "probability": 0.8389 }, { "start": 58769.04, "end": 58771.92, "probability": 0.9648 }, { "start": 58773.62, "end": 58775.0, "probability": 0.9468 }, { "start": 58775.08, "end": 58776.56, "probability": 0.9854 }, { "start": 58776.66, "end": 58777.24, "probability": 0.6639 }, { "start": 58777.78, "end": 58779.46, "probability": 0.9331 }, { "start": 58779.54, "end": 58780.4, "probability": 0.9886 }, { "start": 58781.94, "end": 58782.4, "probability": 0.7629 }, { "start": 58784.12, "end": 58787.08, "probability": 0.5953 }, { "start": 58787.8, "end": 58790.7, "probability": 0.8411 }, { "start": 58791.22, "end": 58792.36, "probability": 0.3024 }, { "start": 58792.36, "end": 58795.92, "probability": 0.9836 }, { "start": 58796.82, "end": 58799.74, "probability": 0.4382 }, { "start": 58800.52, "end": 58801.58, "probability": 0.9684 }, { "start": 58801.64, "end": 58804.2, "probability": 0.8317 }, { "start": 58804.6, "end": 58805.32, "probability": 0.9873 }, { "start": 58806.52, "end": 58807.72, "probability": 0.8182 }, { "start": 58807.9, "end": 58808.32, "probability": 0.8706 }, { "start": 58808.36, "end": 58809.1, "probability": 0.9797 }, { "start": 58809.32, "end": 58809.62, "probability": 0.8978 }, { "start": 58811.24, "end": 58812.36, "probability": 0.6566 }, { "start": 58813.44, "end": 58814.88, "probability": 0.22 }, { "start": 58816.0, "end": 58816.0, "probability": 0.3984 }, { "start": 58816.56, "end": 58817.32, "probability": 0.7057 }, { "start": 58818.08, "end": 58819.24, "probability": 0.8917 }, { "start": 58820.58, "end": 58823.18, "probability": 0.9937 }, { "start": 58824.26, "end": 58825.42, "probability": 0.8691 }, { "start": 58825.52, "end": 58826.34, "probability": 0.7817 }, { "start": 58826.46, "end": 58830.92, "probability": 0.9848 }, { "start": 58830.96, "end": 58832.6, "probability": 0.9502 }, { "start": 58832.64, "end": 58833.72, "probability": 0.9971 }, { "start": 58833.8, "end": 58834.1, "probability": 0.9956 }, { "start": 58834.66, "end": 58835.5, "probability": 0.8347 }, { "start": 58837.12, "end": 58838.22, "probability": 0.7358 }, { "start": 58839.0, "end": 58843.2, "probability": 0.6015 }, { "start": 58844.02, "end": 58845.84, "probability": 0.9641 }, { "start": 58845.98, "end": 58848.64, "probability": 0.8498 }, { "start": 58849.32, "end": 58851.34, "probability": 0.9819 }, { "start": 58853.64, "end": 58854.22, "probability": 0.3724 }, { "start": 58855.24, "end": 58855.66, "probability": 0.8745 }, { "start": 58856.5, "end": 58858.06, "probability": 0.5028 }, { "start": 58858.74, "end": 58859.12, "probability": 0.7421 }, { "start": 58860.18, "end": 58861.16, "probability": 0.9924 }, { "start": 58861.82, "end": 58862.64, "probability": 0.9582 }, { "start": 58863.62, "end": 58865.4, "probability": 0.9167 }, { "start": 58866.1, "end": 58867.78, "probability": 0.9878 }, { "start": 58868.06, "end": 58868.97, "probability": 0.7423 }, { "start": 58869.7, "end": 58870.67, "probability": 0.8845 }, { "start": 58872.62, "end": 58874.96, "probability": 0.9464 }, { "start": 58875.0, "end": 58877.66, "probability": 0.9463 }, { "start": 58878.74, "end": 58879.67, "probability": 0.6914 }, { "start": 58880.8, "end": 58882.64, "probability": 0.6661 }, { "start": 58883.02, "end": 58885.74, "probability": 0.6872 }, { "start": 58886.22, "end": 58890.34, "probability": 0.99 }, { "start": 58891.72, "end": 58892.94, "probability": 0.9548 }, { "start": 58893.12, "end": 58893.2, "probability": 0.1946 }, { "start": 58893.2, "end": 58897.26, "probability": 0.9927 }, { "start": 58898.44, "end": 58900.64, "probability": 0.4855 }, { "start": 58901.22, "end": 58903.18, "probability": 0.8815 }, { "start": 58904.02, "end": 58904.54, "probability": 0.4226 }, { "start": 58904.7, "end": 58907.44, "probability": 0.9256 }, { "start": 58907.68, "end": 58908.36, "probability": 0.7477 }, { "start": 58908.94, "end": 58910.88, "probability": 0.7908 }, { "start": 58910.96, "end": 58911.6, "probability": 0.7612 }, { "start": 58911.68, "end": 58912.58, "probability": 0.9836 }, { "start": 58913.3, "end": 58915.76, "probability": 0.956 }, { "start": 58915.76, "end": 58918.24, "probability": 0.9993 }, { "start": 58918.68, "end": 58920.0, "probability": 0.998 }, { "start": 58920.82, "end": 58924.49, "probability": 0.9619 }, { "start": 58926.44, "end": 58929.5, "probability": 0.8918 }, { "start": 58930.4, "end": 58931.62, "probability": 0.7428 }, { "start": 58931.78, "end": 58934.66, "probability": 0.6653 }, { "start": 58934.76, "end": 58937.62, "probability": 0.8102 }, { "start": 58938.14, "end": 58941.02, "probability": 0.9836 }, { "start": 58941.72, "end": 58944.82, "probability": 0.4839 }, { "start": 58944.82, "end": 58947.9, "probability": 0.9886 }, { "start": 58948.52, "end": 58950.38, "probability": 0.7453 }, { "start": 58950.9, "end": 58951.86, "probability": 0.9827 }, { "start": 58952.42, "end": 58953.1, "probability": 0.4833 }, { "start": 58953.82, "end": 58956.86, "probability": 0.5321 }, { "start": 58958.26, "end": 58959.86, "probability": 0.8963 }, { "start": 58961.04, "end": 58962.76, "probability": 0.8342 }, { "start": 58964.42, "end": 58965.59, "probability": 0.9968 }, { "start": 58965.68, "end": 58968.58, "probability": 0.9844 }, { "start": 58969.7, "end": 58973.86, "probability": 0.718 }, { "start": 58974.86, "end": 58977.1, "probability": 0.6659 }, { "start": 58977.8, "end": 58981.32, "probability": 0.8503 }, { "start": 58982.04, "end": 58984.06, "probability": 0.9791 }, { "start": 58984.58, "end": 58985.32, "probability": 0.478 }, { "start": 58986.04, "end": 58990.06, "probability": 0.9912 }, { "start": 58992.12, "end": 58994.37, "probability": 0.8244 }, { "start": 58995.08, "end": 58997.36, "probability": 0.9971 }, { "start": 58998.96, "end": 59001.06, "probability": 0.8078 }, { "start": 59001.84, "end": 59003.8, "probability": 0.7386 }, { "start": 59004.04, "end": 59005.58, "probability": 0.9434 }, { "start": 59005.72, "end": 59006.35, "probability": 0.5171 }, { "start": 59007.02, "end": 59007.86, "probability": 0.9805 }, { "start": 59008.54, "end": 59009.3, "probability": 0.866 }, { "start": 59010.16, "end": 59013.8, "probability": 0.8408 }, { "start": 59015.04, "end": 59016.22, "probability": 0.6823 }, { "start": 59016.3, "end": 59016.66, "probability": 0.7775 }, { "start": 59016.76, "end": 59017.62, "probability": 0.938 }, { "start": 59017.72, "end": 59019.32, "probability": 0.809 }, { "start": 59020.46, "end": 59021.42, "probability": 0.962 }, { "start": 59021.76, "end": 59023.5, "probability": 0.8073 }, { "start": 59024.64, "end": 59027.46, "probability": 0.5518 }, { "start": 59027.62, "end": 59027.8, "probability": 0.7676 }, { "start": 59028.58, "end": 59029.22, "probability": 0.2369 }, { "start": 59029.46, "end": 59030.14, "probability": 0.8389 }, { "start": 59030.24, "end": 59030.96, "probability": 0.7334 }, { "start": 59031.7, "end": 59033.07, "probability": 0.8593 }, { "start": 59034.26, "end": 59036.4, "probability": 0.8051 }, { "start": 59037.22, "end": 59038.24, "probability": 0.5201 }, { "start": 59038.4, "end": 59041.24, "probability": 0.9807 }, { "start": 59042.88, "end": 59043.86, "probability": 0.9692 }, { "start": 59045.32, "end": 59045.7, "probability": 0.5183 }, { "start": 59046.16, "end": 59049.94, "probability": 0.7098 }, { "start": 59050.12, "end": 59050.82, "probability": 0.845 }, { "start": 59051.54, "end": 59052.16, "probability": 0.7725 }, { "start": 59053.24, "end": 59054.92, "probability": 0.7457 }, { "start": 59055.94, "end": 59058.92, "probability": 0.7002 }, { "start": 59059.56, "end": 59059.94, "probability": 0.9274 }, { "start": 59060.12, "end": 59063.14, "probability": 0.6655 }, { "start": 59064.56, "end": 59067.94, "probability": 0.7118 }, { "start": 59069.1, "end": 59070.4, "probability": 0.955 }, { "start": 59070.94, "end": 59071.66, "probability": 0.942 }, { "start": 59071.82, "end": 59074.06, "probability": 0.9171 }, { "start": 59074.96, "end": 59079.14, "probability": 0.9808 }, { "start": 59079.6, "end": 59080.34, "probability": 0.9985 }, { "start": 59081.64, "end": 59083.02, "probability": 0.8962 }, { "start": 59083.86, "end": 59084.18, "probability": 0.9382 }, { "start": 59084.24, "end": 59087.68, "probability": 0.9956 }, { "start": 59088.38, "end": 59090.22, "probability": 0.9986 }, { "start": 59091.06, "end": 59091.98, "probability": 0.9807 }, { "start": 59092.56, "end": 59094.36, "probability": 0.9738 }, { "start": 59094.78, "end": 59095.76, "probability": 0.8786 }, { "start": 59097.12, "end": 59099.26, "probability": 0.9279 }, { "start": 59100.96, "end": 59101.32, "probability": 0.8255 }, { "start": 59103.22, "end": 59105.18, "probability": 0.6072 }, { "start": 59105.28, "end": 59107.4, "probability": 0.972 }, { "start": 59107.52, "end": 59108.4, "probability": 0.8044 }, { "start": 59109.16, "end": 59110.94, "probability": 0.9445 }, { "start": 59111.4, "end": 59113.96, "probability": 0.6733 }, { "start": 59114.66, "end": 59116.06, "probability": 0.7232 }, { "start": 59116.74, "end": 59118.34, "probability": 0.749 }, { "start": 59118.92, "end": 59120.16, "probability": 0.6629 }, { "start": 59120.72, "end": 59121.56, "probability": 0.9005 }, { "start": 59124.46, "end": 59126.48, "probability": 0.6139 }, { "start": 59127.26, "end": 59128.54, "probability": 0.8107 }, { "start": 59130.34, "end": 59131.65, "probability": 0.964 }, { "start": 59132.76, "end": 59134.64, "probability": 0.9475 }, { "start": 59136.3, "end": 59137.0, "probability": 0.7557 }, { "start": 59137.82, "end": 59142.14, "probability": 0.7723 }, { "start": 59142.76, "end": 59144.74, "probability": 0.7742 }, { "start": 59145.02, "end": 59148.26, "probability": 0.7879 }, { "start": 59148.8, "end": 59149.04, "probability": 0.717 }, { "start": 59150.06, "end": 59151.52, "probability": 0.3375 }, { "start": 59152.52, "end": 59155.74, "probability": 0.6145 }, { "start": 59156.82, "end": 59158.46, "probability": 0.9349 }, { "start": 59159.48, "end": 59161.38, "probability": 0.9269 }, { "start": 59161.44, "end": 59163.0, "probability": 0.4269 }, { "start": 59163.36, "end": 59163.44, "probability": 0.5093 }, { "start": 59164.02, "end": 59164.74, "probability": 0.933 }, { "start": 59166.1, "end": 59167.7, "probability": 0.8083 }, { "start": 59168.8, "end": 59169.39, "probability": 0.6585 }, { "start": 59169.64, "end": 59172.82, "probability": 0.9873 }, { "start": 59172.96, "end": 59174.56, "probability": 0.9932 }, { "start": 59176.54, "end": 59177.56, "probability": 0.7223 }, { "start": 59177.68, "end": 59179.38, "probability": 0.6997 }, { "start": 59180.18, "end": 59182.7, "probability": 0.6911 }, { "start": 59184.0, "end": 59185.04, "probability": 0.8382 }, { "start": 59185.62, "end": 59186.2, "probability": 0.9126 }, { "start": 59186.96, "end": 59188.18, "probability": 0.8706 }, { "start": 59188.94, "end": 59189.48, "probability": 0.862 }, { "start": 59190.04, "end": 59190.64, "probability": 0.6304 }, { "start": 59190.7, "end": 59191.9, "probability": 0.9575 }, { "start": 59192.74, "end": 59193.54, "probability": 0.9548 }, { "start": 59194.0, "end": 59194.56, "probability": 0.7434 }, { "start": 59194.62, "end": 59195.63, "probability": 0.9907 }, { "start": 59195.8, "end": 59197.42, "probability": 0.8982 }, { "start": 59197.98, "end": 59199.0, "probability": 0.7308 }, { "start": 59200.04, "end": 59202.04, "probability": 0.6789 }, { "start": 59202.14, "end": 59205.36, "probability": 0.9765 }, { "start": 59207.12, "end": 59208.06, "probability": 0.5908 }, { "start": 59209.18, "end": 59212.4, "probability": 0.984 }, { "start": 59213.94, "end": 59214.18, "probability": 0.5091 }, { "start": 59215.2, "end": 59216.42, "probability": 0.7132 }, { "start": 59217.48, "end": 59219.0, "probability": 0.9561 }, { "start": 59219.32, "end": 59221.44, "probability": 0.9971 }, { "start": 59222.92, "end": 59224.6, "probability": 0.4821 }, { "start": 59225.02, "end": 59225.79, "probability": 0.832 }, { "start": 59226.22, "end": 59228.12, "probability": 0.9929 }, { "start": 59228.3, "end": 59229.9, "probability": 0.9957 }, { "start": 59230.7, "end": 59231.74, "probability": 0.9984 }, { "start": 59233.38, "end": 59234.94, "probability": 0.9846 }, { "start": 59236.46, "end": 59238.16, "probability": 0.5645 }, { "start": 59238.28, "end": 59239.52, "probability": 0.8785 }, { "start": 59239.58, "end": 59241.32, "probability": 0.9861 }, { "start": 59241.94, "end": 59243.24, "probability": 0.9917 }, { "start": 59243.92, "end": 59245.56, "probability": 0.9933 }, { "start": 59246.12, "end": 59246.82, "probability": 0.9919 }, { "start": 59247.34, "end": 59249.2, "probability": 0.9954 }, { "start": 59249.32, "end": 59249.68, "probability": 0.6506 }, { "start": 59249.74, "end": 59250.04, "probability": 0.7953 }, { "start": 59250.12, "end": 59250.98, "probability": 0.9948 }, { "start": 59251.26, "end": 59252.38, "probability": 0.9607 }, { "start": 59252.72, "end": 59253.42, "probability": 0.9961 }, { "start": 59253.5, "end": 59253.98, "probability": 0.3923 }, { "start": 59256.98, "end": 59257.56, "probability": 0.9141 }, { "start": 59269.28, "end": 59269.88, "probability": 0.7882 }, { "start": 59271.86, "end": 59274.46, "probability": 0.0358 }, { "start": 59275.02, "end": 59276.72, "probability": 0.0895 }, { "start": 59279.86, "end": 59280.12, "probability": 0.0488 }, { "start": 59282.04, "end": 59285.16, "probability": 0.1321 }, { "start": 59285.98, "end": 59287.42, "probability": 0.0046 }, { "start": 59290.84, "end": 59292.04, "probability": 0.0262 }, { "start": 59292.2, "end": 59293.6, "probability": 0.0129 }, { "start": 59294.7, "end": 59297.28, "probability": 0.0494 }, { "start": 59369.0, "end": 59369.0, "probability": 0.0 }, { "start": 59369.0, "end": 59369.0, "probability": 0.0 }, { "start": 59369.0, "end": 59369.0, "probability": 0.0 }, { "start": 59369.0, "end": 59369.0, "probability": 0.0 }, { "start": 59369.0, "end": 59369.0, "probability": 0.0 }, { "start": 59369.0, "end": 59369.0, "probability": 0.0 }, { "start": 59369.0, "end": 59369.0, "probability": 0.0 }, { "start": 59369.0, "end": 59369.0, "probability": 0.0 }, { "start": 59369.0, "end": 59369.0, "probability": 0.0 }, { "start": 59369.0, "end": 59369.0, "probability": 0.0 }, { "start": 59369.0, "end": 59369.0, "probability": 0.0 }, { "start": 59369.0, "end": 59369.0, "probability": 0.0 }, { "start": 59369.0, "end": 59369.0, "probability": 0.0 }, { "start": 59369.0, "end": 59369.0, "probability": 0.0 }, { "start": 59369.0, "end": 59369.0, "probability": 0.0 }, { "start": 59369.0, "end": 59369.0, "probability": 0.0 }, { "start": 59369.0, "end": 59369.0, "probability": 0.0 }, { "start": 59369.0, "end": 59369.0, "probability": 0.0 }, { "start": 59369.0, "end": 59369.0, "probability": 0.0 }, { "start": 59369.0, "end": 59369.0, "probability": 0.0 }, { "start": 59369.0, "end": 59369.0, "probability": 0.0 }, { "start": 59369.0, "end": 59369.0, "probability": 0.0 }, { "start": 59369.0, "end": 59369.0, "probability": 0.0 }, { "start": 59369.0, "end": 59369.0, "probability": 0.0 }, { "start": 59369.0, "end": 59369.0, "probability": 0.0 }, { "start": 59369.0, "end": 59369.0, "probability": 0.0 }, { "start": 59369.0, "end": 59369.0, "probability": 0.0 }, { "start": 59369.0, "end": 59369.0, "probability": 0.0 }, { "start": 59369.0, "end": 59369.0, "probability": 0.0 }, { "start": 59369.0, "end": 59369.0, "probability": 0.0 }, { "start": 59369.0, "end": 59369.0, "probability": 0.0 }, { "start": 59369.0, "end": 59369.0, "probability": 0.0 }, { "start": 59369.0, "end": 59369.0, "probability": 0.0 }, { "start": 59369.0, "end": 59369.0, "probability": 0.0 }, { "start": 59369.0, "end": 59369.0, "probability": 0.0 }, { "start": 59369.0, "end": 59369.0, "probability": 0.0 }, { "start": 59369.0, "end": 59369.0, "probability": 0.0 }, { "start": 59369.0, "end": 59369.0, "probability": 0.0 }, { "start": 59369.0, "end": 59369.0, "probability": 0.0 }, { "start": 59369.0, "end": 59369.0, "probability": 0.0 }, { "start": 59369.0, "end": 59369.0, "probability": 0.0 }, { "start": 59369.0, "end": 59369.0, "probability": 0.0 }, { "start": 59369.0, "end": 59369.0, "probability": 0.0 }, { "start": 59369.0, "end": 59369.0, "probability": 0.0 }, { "start": 59369.0, "end": 59369.0, "probability": 0.0 }, { "start": 59369.0, "end": 59369.0, "probability": 0.0 }, { "start": 59369.0, "end": 59369.0, "probability": 0.0 }, { "start": 59369.0, "end": 59369.0, "probability": 0.0 }, { "start": 59369.0, "end": 59369.0, "probability": 0.0 }, { "start": 59369.0, "end": 59369.0, "probability": 0.0 }, { "start": 59369.0, "end": 59369.0, "probability": 0.0 }, { "start": 59375.3, "end": 59377.62, "probability": 0.7886 }, { "start": 59378.6, "end": 59379.12, "probability": 0.3472 }, { "start": 59379.24, "end": 59379.91, "probability": 0.7306 }, { "start": 59380.1, "end": 59381.92, "probability": 0.7396 }, { "start": 59382.38, "end": 59383.08, "probability": 0.9689 }, { "start": 59383.14, "end": 59383.8, "probability": 0.2739 }, { "start": 59383.9, "end": 59384.54, "probability": 0.9961 }, { "start": 59385.4, "end": 59386.73, "probability": 0.7935 }, { "start": 59387.64, "end": 59389.28, "probability": 0.7419 }, { "start": 59389.86, "end": 59390.28, "probability": 0.5854 }, { "start": 59393.34, "end": 59395.2, "probability": 0.9386 }, { "start": 59395.42, "end": 59396.06, "probability": 0.1137 }, { "start": 59397.3, "end": 59397.7, "probability": 0.6631 }, { "start": 59400.64, "end": 59403.56, "probability": 0.8219 }, { "start": 59404.18, "end": 59405.16, "probability": 0.7167 }, { "start": 59405.96, "end": 59409.0, "probability": 0.8417 }, { "start": 59410.15, "end": 59413.4, "probability": 0.7882 }, { "start": 59415.14, "end": 59418.5, "probability": 0.8061 }, { "start": 59419.24, "end": 59421.02, "probability": 0.8628 }, { "start": 59423.56, "end": 59424.94, "probability": 0.9805 }, { "start": 59425.68, "end": 59426.52, "probability": 0.9911 }, { "start": 59428.2, "end": 59429.62, "probability": 0.0258 }, { "start": 59430.28, "end": 59430.28, "probability": 0.559 }, { "start": 59430.88, "end": 59432.3, "probability": 0.9743 }, { "start": 59432.74, "end": 59434.72, "probability": 0.8083 }, { "start": 59435.12, "end": 59436.28, "probability": 0.9349 }, { "start": 59436.84, "end": 59437.62, "probability": 0.0318 }, { "start": 59439.38, "end": 59440.8, "probability": 0.8765 }, { "start": 59440.86, "end": 59441.06, "probability": 0.7157 }, { "start": 59441.46, "end": 59442.64, "probability": 0.7735 }, { "start": 59442.66, "end": 59443.18, "probability": 0.8922 }, { "start": 59444.4, "end": 59445.94, "probability": 0.8628 }, { "start": 59445.98, "end": 59447.5, "probability": 0.7745 }, { "start": 59448.16, "end": 59448.38, "probability": 0.9976 }, { "start": 59449.04, "end": 59452.84, "probability": 0.9663 }, { "start": 59453.7, "end": 59454.38, "probability": 0.6413 }, { "start": 59456.26, "end": 59456.26, "probability": 0.9497 }, { "start": 59456.96, "end": 59459.08, "probability": 0.3284 }, { "start": 59459.26, "end": 59460.16, "probability": 0.9379 }, { "start": 59460.64, "end": 59463.98, "probability": 0.5009 }, { "start": 59463.98, "end": 59467.02, "probability": 0.1419 }, { "start": 59467.1, "end": 59467.76, "probability": 0.6316 }, { "start": 59469.04, "end": 59472.04, "probability": 0.8533 }, { "start": 59472.4, "end": 59473.02, "probability": 0.6368 }, { "start": 59473.34, "end": 59477.08, "probability": 0.9843 }, { "start": 59477.66, "end": 59479.02, "probability": 0.9772 }, { "start": 59479.56, "end": 59482.28, "probability": 0.8828 }, { "start": 59483.72, "end": 59483.84, "probability": 0.9048 }, { "start": 59485.66, "end": 59486.16, "probability": 0.5997 }, { "start": 59486.34, "end": 59486.68, "probability": 0.9028 }, { "start": 59489.11, "end": 59489.32, "probability": 0.0889 }, { "start": 59489.32, "end": 59492.56, "probability": 0.8009 }, { "start": 59493.34, "end": 59495.8, "probability": 0.9886 }, { "start": 59497.08, "end": 59500.06, "probability": 0.9075 }, { "start": 59500.96, "end": 59503.18, "probability": 0.8144 }, { "start": 59504.08, "end": 59508.98, "probability": 0.9425 }, { "start": 59509.08, "end": 59509.58, "probability": 0.9575 }, { "start": 59511.26, "end": 59514.7, "probability": 0.9413 }, { "start": 59514.8, "end": 59515.3, "probability": 0.5976 }, { "start": 59517.56, "end": 59520.92, "probability": 0.9321 }, { "start": 59521.02, "end": 59522.88, "probability": 0.9829 }, { "start": 59523.14, "end": 59524.08, "probability": 0.9304 }, { "start": 59525.16, "end": 59525.48, "probability": 0.9899 }, { "start": 59526.68, "end": 59529.68, "probability": 0.6698 }, { "start": 59530.74, "end": 59533.38, "probability": 0.9203 }, { "start": 59535.06, "end": 59537.5, "probability": 0.6357 }, { "start": 59539.32, "end": 59541.06, "probability": 0.8248 }, { "start": 59541.82, "end": 59542.4, "probability": 0.9414 }, { "start": 59543.64, "end": 59544.04, "probability": 0.4346 }, { "start": 59544.76, "end": 59545.84, "probability": 0.9912 }, { "start": 59546.74, "end": 59548.42, "probability": 0.6888 }, { "start": 59549.36, "end": 59552.06, "probability": 0.9823 }, { "start": 59552.26, "end": 59554.26, "probability": 0.9063 }, { "start": 59554.4, "end": 59554.94, "probability": 0.9279 }, { "start": 59554.96, "end": 59555.82, "probability": 0.6416 }, { "start": 59556.43, "end": 59556.88, "probability": 0.8796 }, { "start": 59557.8, "end": 59560.14, "probability": 0.6773 }, { "start": 59561.5, "end": 59563.78, "probability": 0.7188 }, { "start": 59564.34, "end": 59566.06, "probability": 0.4995 }, { "start": 59567.72, "end": 59570.72, "probability": 0.723 }, { "start": 59571.56, "end": 59573.11, "probability": 0.9961 }, { "start": 59574.6, "end": 59575.06, "probability": 0.949 }, { "start": 59575.6, "end": 59577.7, "probability": 0.8528 }, { "start": 59577.82, "end": 59579.14, "probability": 0.9248 }, { "start": 59579.86, "end": 59581.58, "probability": 0.9989 }, { "start": 59582.02, "end": 59584.34, "probability": 0.8877 }, { "start": 59584.38, "end": 59585.67, "probability": 0.9692 }, { "start": 59586.36, "end": 59588.5, "probability": 0.9837 }, { "start": 59589.48, "end": 59592.04, "probability": 0.9604 }, { "start": 59592.1, "end": 59594.32, "probability": 0.9714 }, { "start": 59595.24, "end": 59596.22, "probability": 0.9942 }, { "start": 59596.48, "end": 59597.37, "probability": 0.7928 }, { "start": 59598.33, "end": 59599.42, "probability": 0.1199 }, { "start": 59600.36, "end": 59602.6, "probability": 0.6355 }, { "start": 59603.62, "end": 59604.46, "probability": 0.3568 }, { "start": 59604.46, "end": 59606.98, "probability": 0.6479 }, { "start": 59607.54, "end": 59610.98, "probability": 0.9424 }, { "start": 59611.08, "end": 59613.48, "probability": 0.9966 }, { "start": 59613.48, "end": 59614.32, "probability": 0.8696 }, { "start": 59614.58, "end": 59616.36, "probability": 0.9993 }, { "start": 59616.82, "end": 59617.53, "probability": 0.9198 }, { "start": 59618.42, "end": 59620.64, "probability": 0.8569 }, { "start": 59621.79, "end": 59622.36, "probability": 0.6246 }, { "start": 59623.9, "end": 59624.58, "probability": 0.0914 }, { "start": 59625.14, "end": 59626.88, "probability": 0.7199 }, { "start": 59627.02, "end": 59628.46, "probability": 0.7191 }, { "start": 59630.3, "end": 59632.0, "probability": 0.8008 }, { "start": 59632.74, "end": 59634.9, "probability": 0.8629 }, { "start": 59636.0, "end": 59636.3, "probability": 0.5865 }, { "start": 59637.48, "end": 59641.54, "probability": 0.8896 }, { "start": 59642.84, "end": 59643.6, "probability": 0.851 }, { "start": 59644.2, "end": 59647.37, "probability": 0.9506 }, { "start": 59647.82, "end": 59649.0, "probability": 0.7212 }, { "start": 59649.52, "end": 59653.62, "probability": 0.8089 }, { "start": 59653.68, "end": 59656.44, "probability": 0.9557 }, { "start": 59659.16, "end": 59661.88, "probability": 0.8967 }, { "start": 59662.28, "end": 59664.62, "probability": 0.8931 }, { "start": 59665.14, "end": 59666.2, "probability": 0.9855 }, { "start": 59666.92, "end": 59669.26, "probability": 0.9141 }, { "start": 59670.96, "end": 59671.3, "probability": 0.2693 }, { "start": 59671.3, "end": 59673.32, "probability": 0.9627 }, { "start": 59673.32, "end": 59678.12, "probability": 0.9637 }, { "start": 59678.74, "end": 59679.98, "probability": 0.5711 }, { "start": 59681.38, "end": 59682.68, "probability": 0.96 }, { "start": 59684.78, "end": 59686.68, "probability": 0.983 }, { "start": 59689.18, "end": 59689.96, "probability": 0.5278 }, { "start": 59689.98, "end": 59693.68, "probability": 0.9904 }, { "start": 59694.92, "end": 59695.8, "probability": 0.9189 }, { "start": 59697.5, "end": 59698.02, "probability": 0.8755 }, { "start": 59700.26, "end": 59705.6, "probability": 0.6776 }, { "start": 59706.34, "end": 59708.1, "probability": 0.7981 }, { "start": 59709.58, "end": 59711.68, "probability": 0.9344 }, { "start": 59712.68, "end": 59713.58, "probability": 0.8842 }, { "start": 59714.14, "end": 59714.76, "probability": 0.9265 }, { "start": 59716.08, "end": 59718.5, "probability": 0.979 }, { "start": 59720.28, "end": 59720.92, "probability": 0.8973 }, { "start": 59721.4, "end": 59723.78, "probability": 0.7213 }, { "start": 59724.28, "end": 59725.3, "probability": 0.8381 }, { "start": 59727.2, "end": 59730.16, "probability": 0.7569 }, { "start": 59731.1, "end": 59731.5, "probability": 0.683 }, { "start": 59732.28, "end": 59735.36, "probability": 0.9915 }, { "start": 59735.4, "end": 59737.88, "probability": 0.9769 }, { "start": 59739.4, "end": 59742.92, "probability": 0.8475 }, { "start": 59742.92, "end": 59747.04, "probability": 0.8705 }, { "start": 59747.04, "end": 59752.14, "probability": 0.996 }, { "start": 59752.68, "end": 59755.24, "probability": 0.9945 }, { "start": 59755.52, "end": 59757.5, "probability": 0.9997 }, { "start": 59757.94, "end": 59759.3, "probability": 0.9977 }, { "start": 59760.02, "end": 59762.14, "probability": 0.9742 }, { "start": 59762.18, "end": 59763.24, "probability": 0.6444 }, { "start": 59763.68, "end": 59763.8, "probability": 0.9173 }, { "start": 59766.1, "end": 59768.46, "probability": 0.926 }, { "start": 59768.6, "end": 59774.38, "probability": 0.9082 }, { "start": 59775.16, "end": 59777.24, "probability": 0.7466 }, { "start": 59777.64, "end": 59778.52, "probability": 0.93 }, { "start": 59778.8, "end": 59781.48, "probability": 0.5407 }, { "start": 59782.18, "end": 59783.66, "probability": 0.8612 }, { "start": 59784.02, "end": 59787.56, "probability": 0.9308 }, { "start": 59789.32, "end": 59792.44, "probability": 0.6786 }, { "start": 59792.52, "end": 59793.81, "probability": 0.7819 }, { "start": 59794.6, "end": 59797.77, "probability": 0.755 }, { "start": 59797.92, "end": 59798.28, "probability": 0.7801 }, { "start": 59799.78, "end": 59800.71, "probability": 0.9603 }, { "start": 59800.82, "end": 59801.9, "probability": 0.9379 }, { "start": 59802.66, "end": 59804.26, "probability": 0.3365 }, { "start": 59804.44, "end": 59804.86, "probability": 0.7022 }, { "start": 59804.88, "end": 59805.36, "probability": 0.833 }, { "start": 59806.86, "end": 59809.12, "probability": 0.3788 }, { "start": 59809.74, "end": 59811.12, "probability": 0.9961 }, { "start": 59811.32, "end": 59812.92, "probability": 0.9415 }, { "start": 59812.92, "end": 59813.6, "probability": 0.5385 }, { "start": 59813.98, "end": 59814.68, "probability": 0.1557 }, { "start": 59814.74, "end": 59818.72, "probability": 0.7893 }, { "start": 59818.72, "end": 59821.86, "probability": 0.9982 }, { "start": 59822.76, "end": 59824.08, "probability": 0.8091 }, { "start": 59824.46, "end": 59828.12, "probability": 0.8906 }, { "start": 59830.08, "end": 59832.4, "probability": 0.9778 }, { "start": 59832.58, "end": 59833.7, "probability": 0.9293 }, { "start": 59834.12, "end": 59836.05, "probability": 0.9332 }, { "start": 59836.98, "end": 59838.96, "probability": 0.8972 }, { "start": 59839.72, "end": 59841.22, "probability": 0.9937 }, { "start": 59842.38, "end": 59845.06, "probability": 0.9808 }, { "start": 59845.06, "end": 59849.26, "probability": 0.979 }, { "start": 59850.56, "end": 59851.36, "probability": 0.988 }, { "start": 59852.94, "end": 59854.68, "probability": 0.9126 }, { "start": 59855.56, "end": 59856.78, "probability": 0.9888 }, { "start": 59858.32, "end": 59860.06, "probability": 0.4548 }, { "start": 59860.78, "end": 59861.09, "probability": 0.4011 }, { "start": 59862.52, "end": 59863.9, "probability": 0.6667 }, { "start": 59864.86, "end": 59865.72, "probability": 0.8328 }, { "start": 59865.98, "end": 59867.98, "probability": 0.9612 }, { "start": 59870.78, "end": 59871.64, "probability": 0.8831 }, { "start": 59871.92, "end": 59874.69, "probability": 0.7355 }, { "start": 59875.74, "end": 59878.1, "probability": 0.9947 }, { "start": 59879.14, "end": 59880.88, "probability": 0.9136 }, { "start": 59882.14, "end": 59887.5, "probability": 0.9165 }, { "start": 59888.14, "end": 59891.18, "probability": 0.9116 }, { "start": 59892.92, "end": 59894.76, "probability": 0.729 }, { "start": 59895.6, "end": 59899.48, "probability": 0.6936 }, { "start": 59900.16, "end": 59903.52, "probability": 0.2794 }, { "start": 59904.2, "end": 59910.84, "probability": 0.9989 }, { "start": 59911.52, "end": 59912.72, "probability": 0.6447 }, { "start": 59914.46, "end": 59915.22, "probability": 0.4998 }, { "start": 59915.96, "end": 59917.38, "probability": 0.3323 }, { "start": 59917.96, "end": 59921.47, "probability": 0.9773 }, { "start": 59921.98, "end": 59922.5, "probability": 0.7418 }, { "start": 59923.82, "end": 59924.96, "probability": 0.9222 }, { "start": 59925.42, "end": 59926.86, "probability": 0.5322 }, { "start": 59927.08, "end": 59929.18, "probability": 0.9354 }, { "start": 59929.66, "end": 59931.27, "probability": 0.9626 }, { "start": 59933.06, "end": 59934.24, "probability": 0.5008 }, { "start": 59934.3, "end": 59935.64, "probability": 0.9648 }, { "start": 59935.74, "end": 59937.1, "probability": 0.9387 }, { "start": 59937.18, "end": 59939.61, "probability": 0.5325 }, { "start": 59940.54, "end": 59942.88, "probability": 0.9622 }, { "start": 59943.6, "end": 59944.16, "probability": 0.6071 }, { "start": 59944.52, "end": 59944.76, "probability": 0.4846 }, { "start": 59944.8, "end": 59945.92, "probability": 0.7439 }, { "start": 59946.32, "end": 59947.26, "probability": 0.87 }, { "start": 59948.06, "end": 59949.22, "probability": 0.9317 }, { "start": 59949.26, "end": 59952.22, "probability": 0.7934 }, { "start": 59953.16, "end": 59954.36, "probability": 0.9454 }, { "start": 59956.7, "end": 59958.98, "probability": 0.8997 }, { "start": 59959.12, "end": 59959.76, "probability": 0.7139 }, { "start": 59960.88, "end": 59962.9, "probability": 0.9038 }, { "start": 59962.98, "end": 59965.52, "probability": 0.9629 }, { "start": 59966.08, "end": 59968.08, "probability": 0.9736 }, { "start": 59968.2, "end": 59970.34, "probability": 0.9678 }, { "start": 59971.5, "end": 59973.42, "probability": 0.1946 }, { "start": 59973.42, "end": 59973.9, "probability": 0.4215 }, { "start": 59973.92, "end": 59974.98, "probability": 0.6494 }, { "start": 59975.64, "end": 59978.3, "probability": 0.9023 }, { "start": 59979.28, "end": 59979.72, "probability": 0.2946 }, { "start": 59980.26, "end": 59980.86, "probability": 0.5736 }, { "start": 59981.32, "end": 59983.46, "probability": 0.9783 }, { "start": 59984.22, "end": 59984.82, "probability": 0.9531 }, { "start": 59986.22, "end": 59990.14, "probability": 0.9448 }, { "start": 59993.14, "end": 59994.2, "probability": 0.9793 }, { "start": 59994.28, "end": 59995.68, "probability": 0.9966 }, { "start": 59996.54, "end": 59998.16, "probability": 0.7945 }, { "start": 59998.74, "end": 60000.74, "probability": 0.7537 }, { "start": 60000.96, "end": 60001.55, "probability": 0.8444 }, { "start": 60001.7, "end": 60002.78, "probability": 0.5598 }, { "start": 60002.96, "end": 60003.56, "probability": 0.9241 }, { "start": 60003.96, "end": 60005.74, "probability": 0.8911 }, { "start": 60006.56, "end": 60008.76, "probability": 0.9951 }, { "start": 60009.62, "end": 60010.98, "probability": 0.8467 }, { "start": 60011.96, "end": 60012.48, "probability": 0.7651 }, { "start": 60013.38, "end": 60014.04, "probability": 0.8631 }, { "start": 60014.82, "end": 60016.22, "probability": 0.6905 }, { "start": 60017.34, "end": 60018.9, "probability": 0.6802 }, { "start": 60019.76, "end": 60021.36, "probability": 0.9341 }, { "start": 60023.34, "end": 60024.86, "probability": 0.6517 }, { "start": 60025.36, "end": 60028.76, "probability": 0.8566 }, { "start": 60030.6, "end": 60032.7, "probability": 0.7855 }, { "start": 60034.1, "end": 60034.12, "probability": 0.2406 }, { "start": 60034.7, "end": 60037.94, "probability": 0.9489 }, { "start": 60038.16, "end": 60038.94, "probability": 0.9653 }, { "start": 60039.08, "end": 60040.14, "probability": 0.9683 }, { "start": 60040.46, "end": 60040.76, "probability": 0.7514 }, { "start": 60041.44, "end": 60043.24, "probability": 0.9414 }, { "start": 60044.68, "end": 60045.12, "probability": 0.9196 }, { "start": 60047.16, "end": 60047.72, "probability": 0.9352 }, { "start": 60048.28, "end": 60049.02, "probability": 0.2392 }, { "start": 60050.42, "end": 60051.24, "probability": 0.7532 }, { "start": 60051.82, "end": 60053.31, "probability": 0.8206 }, { "start": 60054.1, "end": 60056.66, "probability": 0.8635 }, { "start": 60057.86, "end": 60060.0, "probability": 0.9122 }, { "start": 60060.48, "end": 60061.56, "probability": 0.9847 }, { "start": 60061.92, "end": 60062.4, "probability": 0.3075 }, { "start": 60063.58, "end": 60065.48, "probability": 0.7033 }, { "start": 60067.04, "end": 60068.7, "probability": 0.9632 }, { "start": 60068.92, "end": 60072.06, "probability": 0.961 }, { "start": 60072.74, "end": 60073.76, "probability": 0.9763 }, { "start": 60074.2, "end": 60074.52, "probability": 0.8868 }, { "start": 60075.36, "end": 60076.62, "probability": 0.9214 }, { "start": 60077.36, "end": 60078.16, "probability": 0.8389 }, { "start": 60078.28, "end": 60079.06, "probability": 0.7307 }, { "start": 60079.22, "end": 60080.57, "probability": 0.9604 }, { "start": 60083.12, "end": 60084.42, "probability": 0.6826 }, { "start": 60084.66, "end": 60085.18, "probability": 0.3556 }, { "start": 60085.82, "end": 60088.58, "probability": 0.7424 }, { "start": 60088.7, "end": 60090.28, "probability": 0.9941 }, { "start": 60090.54, "end": 60091.32, "probability": 0.5383 }, { "start": 60091.92, "end": 60095.56, "probability": 0.4984 }, { "start": 60096.14, "end": 60096.72, "probability": 0.6281 }, { "start": 60097.7, "end": 60099.14, "probability": 0.3954 }, { "start": 60099.96, "end": 60101.46, "probability": 0.691 }, { "start": 60102.1, "end": 60103.2, "probability": 0.8616 }, { "start": 60103.72, "end": 60104.22, "probability": 0.7716 }, { "start": 60105.18, "end": 60108.32, "probability": 0.6914 }, { "start": 60109.42, "end": 60110.68, "probability": 0.4889 }, { "start": 60111.54, "end": 60111.82, "probability": 0.8717 }, { "start": 60112.0, "end": 60115.76, "probability": 0.9971 }, { "start": 60117.6, "end": 60119.58, "probability": 0.9338 }, { "start": 60120.24, "end": 60120.96, "probability": 0.9285 }, { "start": 60121.54, "end": 60124.46, "probability": 0.5203 }, { "start": 60125.74, "end": 60127.71, "probability": 0.8489 }, { "start": 60129.77, "end": 60132.06, "probability": 0.8003 }, { "start": 60132.62, "end": 60134.72, "probability": 0.9209 }, { "start": 60135.22, "end": 60137.32, "probability": 0.9184 }, { "start": 60138.12, "end": 60139.44, "probability": 0.9661 }, { "start": 60140.56, "end": 60143.52, "probability": 0.9906 }, { "start": 60144.8, "end": 60151.1, "probability": 0.8783 }, { "start": 60152.44, "end": 60153.62, "probability": 0.8674 }, { "start": 60154.44, "end": 60154.78, "probability": 0.8617 }, { "start": 60156.3, "end": 60158.52, "probability": 0.9432 }, { "start": 60158.66, "end": 60159.18, "probability": 0.2896 }, { "start": 60159.66, "end": 60160.84, "probability": 0.8639 }, { "start": 60160.94, "end": 60164.62, "probability": 0.9818 }, { "start": 60165.3, "end": 60166.22, "probability": 0.8049 }, { "start": 60167.34, "end": 60170.14, "probability": 0.8107 }, { "start": 60170.26, "end": 60172.2, "probability": 0.9629 }, { "start": 60172.32, "end": 60172.66, "probability": 0.9514 }, { "start": 60174.08, "end": 60176.46, "probability": 0.9202 }, { "start": 60176.56, "end": 60177.22, "probability": 0.6348 }, { "start": 60178.42, "end": 60179.18, "probability": 0.8329 }, { "start": 60180.04, "end": 60180.94, "probability": 0.9679 }, { "start": 60181.56, "end": 60182.96, "probability": 0.7967 }, { "start": 60187.02, "end": 60189.38, "probability": 0.8611 }, { "start": 60190.6, "end": 60191.64, "probability": 0.738 }, { "start": 60192.56, "end": 60194.44, "probability": 0.6697 }, { "start": 60195.12, "end": 60197.24, "probability": 0.9881 }, { "start": 60197.86, "end": 60199.18, "probability": 0.964 }, { "start": 60200.68, "end": 60202.66, "probability": 0.9626 }, { "start": 60202.92, "end": 60203.88, "probability": 0.9296 }, { "start": 60204.32, "end": 60205.34, "probability": 0.176 }, { "start": 60205.5, "end": 60205.87, "probability": 0.8883 }, { "start": 60206.02, "end": 60206.84, "probability": 0.9581 }, { "start": 60206.94, "end": 60207.7, "probability": 0.8646 }, { "start": 60207.9, "end": 60208.02, "probability": 0.5799 }, { "start": 60208.5, "end": 60210.96, "probability": 0.6433 }, { "start": 60211.34, "end": 60212.46, "probability": 0.8906 }, { "start": 60213.01, "end": 60214.32, "probability": 0.4967 }, { "start": 60216.38, "end": 60217.32, "probability": 0.9371 }, { "start": 60218.72, "end": 60221.08, "probability": 0.6561 }, { "start": 60221.28, "end": 60222.36, "probability": 0.4598 }, { "start": 60222.44, "end": 60225.1, "probability": 0.9448 }, { "start": 60225.78, "end": 60226.54, "probability": 0.8984 }, { "start": 60227.42, "end": 60227.98, "probability": 0.9153 }, { "start": 60228.58, "end": 60231.22, "probability": 0.8713 }, { "start": 60232.7, "end": 60233.74, "probability": 0.7513 }, { "start": 60235.52, "end": 60238.68, "probability": 0.955 }, { "start": 60238.8, "end": 60241.17, "probability": 0.7326 }, { "start": 60241.56, "end": 60243.92, "probability": 0.8644 }, { "start": 60244.02, "end": 60245.88, "probability": 0.9717 }, { "start": 60246.02, "end": 60246.96, "probability": 0.4871 }, { "start": 60247.38, "end": 60248.32, "probability": 0.845 }, { "start": 60248.88, "end": 60252.04, "probability": 0.8984 }, { "start": 60252.16, "end": 60252.92, "probability": 0.9873 }, { "start": 60253.86, "end": 60258.02, "probability": 0.707 }, { "start": 60258.02, "end": 60260.66, "probability": 0.972 }, { "start": 60261.26, "end": 60261.5, "probability": 0.7896 }, { "start": 60262.14, "end": 60266.64, "probability": 0.7678 }, { "start": 60267.5, "end": 60269.67, "probability": 0.9839 }, { "start": 60270.76, "end": 60274.48, "probability": 0.7596 }, { "start": 60275.68, "end": 60277.46, "probability": 0.7974 }, { "start": 60278.52, "end": 60278.8, "probability": 0.6742 }, { "start": 60279.32, "end": 60280.1, "probability": 0.9946 }, { "start": 60281.12, "end": 60282.3, "probability": 0.9501 }, { "start": 60283.32, "end": 60284.19, "probability": 0.8487 }, { "start": 60285.12, "end": 60285.83, "probability": 0.9399 }, { "start": 60286.56, "end": 60287.8, "probability": 0.9834 }, { "start": 60289.08, "end": 60290.38, "probability": 0.9919 }, { "start": 60291.36, "end": 60293.02, "probability": 0.9951 }, { "start": 60293.86, "end": 60295.27, "probability": 0.8533 }, { "start": 60295.84, "end": 60297.1, "probability": 0.8641 }, { "start": 60298.68, "end": 60301.58, "probability": 0.995 }, { "start": 60302.4, "end": 60302.88, "probability": 0.6504 }, { "start": 60303.56, "end": 60304.2, "probability": 0.4713 }, { "start": 60305.34, "end": 60307.78, "probability": 0.9915 }, { "start": 60311.8, "end": 60316.6, "probability": 0.9484 }, { "start": 60318.46, "end": 60319.9, "probability": 0.8406 }, { "start": 60320.48, "end": 60324.82, "probability": 0.9842 }, { "start": 60325.56, "end": 60326.16, "probability": 0.9258 }, { "start": 60327.06, "end": 60327.84, "probability": 0.9181 }, { "start": 60328.44, "end": 60329.92, "probability": 0.998 }, { "start": 60329.98, "end": 60330.49, "probability": 0.9974 }, { "start": 60330.58, "end": 60331.02, "probability": 0.9929 }, { "start": 60331.24, "end": 60332.12, "probability": 0.9641 }, { "start": 60332.8, "end": 60333.38, "probability": 0.9192 }, { "start": 60333.98, "end": 60335.32, "probability": 0.8496 }, { "start": 60335.94, "end": 60336.78, "probability": 0.9958 }, { "start": 60337.36, "end": 60338.1, "probability": 0.5976 }, { "start": 60338.42, "end": 60341.26, "probability": 0.9821 }, { "start": 60341.94, "end": 60342.74, "probability": 0.9789 }, { "start": 60343.24, "end": 60344.22, "probability": 0.9521 }, { "start": 60344.9, "end": 60345.1, "probability": 0.9305 }, { "start": 60349.7, "end": 60354.5, "probability": 0.9944 }, { "start": 60354.62, "end": 60356.9, "probability": 0.9741 }, { "start": 60357.88, "end": 60358.12, "probability": 0.8148 }, { "start": 60358.94, "end": 60362.4, "probability": 0.799 }, { "start": 60362.92, "end": 60363.9, "probability": 0.9602 }, { "start": 60364.88, "end": 60367.16, "probability": 0.9731 }, { "start": 60367.56, "end": 60368.42, "probability": 0.9536 }, { "start": 60369.22, "end": 60373.94, "probability": 0.7596 }, { "start": 60374.36, "end": 60379.72, "probability": 0.9386 }, { "start": 60380.18, "end": 60381.52, "probability": 0.9001 }, { "start": 60382.28, "end": 60383.14, "probability": 0.9007 }, { "start": 60384.38, "end": 60387.22, "probability": 0.9702 }, { "start": 60387.22, "end": 60388.8, "probability": 0.6915 }, { "start": 60389.98, "end": 60391.6, "probability": 0.7543 }, { "start": 60391.68, "end": 60393.68, "probability": 0.957 }, { "start": 60394.42, "end": 60395.82, "probability": 0.9805 }, { "start": 60398.06, "end": 60400.18, "probability": 0.6316 }, { "start": 60400.18, "end": 60401.98, "probability": 0.9962 }, { "start": 60403.0, "end": 60404.9, "probability": 0.8191 }, { "start": 60406.36, "end": 60408.24, "probability": 0.953 }, { "start": 60408.8, "end": 60410.42, "probability": 0.5567 }, { "start": 60410.48, "end": 60411.55, "probability": 0.9968 }, { "start": 60411.78, "end": 60413.4, "probability": 0.9888 }, { "start": 60414.44, "end": 60416.78, "probability": 0.8545 }, { "start": 60417.02, "end": 60418.74, "probability": 0.9835 }, { "start": 60420.54, "end": 60422.24, "probability": 0.5952 }, { "start": 60422.3, "end": 60424.16, "probability": 0.9526 }, { "start": 60425.36, "end": 60426.28, "probability": 0.8042 }, { "start": 60426.92, "end": 60429.2, "probability": 0.9884 }, { "start": 60429.64, "end": 60432.46, "probability": 0.9893 }, { "start": 60434.58, "end": 60436.24, "probability": 0.969 }, { "start": 60438.36, "end": 60441.94, "probability": 0.9678 }, { "start": 60442.56, "end": 60444.28, "probability": 0.9965 }, { "start": 60444.94, "end": 60447.16, "probability": 0.8858 }, { "start": 60447.52, "end": 60448.42, "probability": 0.7906 }, { "start": 60449.2, "end": 60452.62, "probability": 0.9869 }, { "start": 60453.08, "end": 60454.44, "probability": 0.8715 }, { "start": 60455.08, "end": 60455.78, "probability": 0.8562 }, { "start": 60456.5, "end": 60458.56, "probability": 0.994 }, { "start": 60458.88, "end": 60459.08, "probability": 0.9356 }, { "start": 60459.2, "end": 60461.16, "probability": 0.9587 }, { "start": 60463.76, "end": 60464.72, "probability": 0.7955 }, { "start": 60464.94, "end": 60465.88, "probability": 0.7417 }, { "start": 60468.8, "end": 60469.0, "probability": 0.6535 }, { "start": 60477.68, "end": 60477.94, "probability": 0.0171 }, { "start": 60485.36, "end": 60485.72, "probability": 0.0177 }, { "start": 60486.72, "end": 60487.0, "probability": 0.795 }, { "start": 60488.08, "end": 60488.58, "probability": 0.4372 }, { "start": 60489.54, "end": 60490.14, "probability": 0.8798 }, { "start": 60490.24, "end": 60490.96, "probability": 0.8583 }, { "start": 60491.04, "end": 60491.78, "probability": 0.9349 }, { "start": 60493.22, "end": 60494.54, "probability": 0.8455 }, { "start": 60495.16, "end": 60496.46, "probability": 0.7915 }, { "start": 60497.02, "end": 60500.42, "probability": 0.7253 }, { "start": 60500.52, "end": 60503.96, "probability": 0.9663 }, { "start": 60504.72, "end": 60505.54, "probability": 0.665 }, { "start": 60508.86, "end": 60510.74, "probability": 0.8845 }, { "start": 60511.36, "end": 60512.48, "probability": 0.8866 }, { "start": 60513.4, "end": 60515.54, "probability": 0.9583 }, { "start": 60516.02, "end": 60516.92, "probability": 0.7881 }, { "start": 60517.02, "end": 60517.28, "probability": 0.4893 }, { "start": 60517.9, "end": 60520.32, "probability": 0.8932 }, { "start": 60521.18, "end": 60523.14, "probability": 0.799 }, { "start": 60523.94, "end": 60525.18, "probability": 0.8276 }, { "start": 60525.62, "end": 60528.0, "probability": 0.8784 }, { "start": 60528.0, "end": 60530.58, "probability": 0.7909 }, { "start": 60531.66, "end": 60531.66, "probability": 0.2537 }, { "start": 60532.38, "end": 60534.54, "probability": 0.876 }, { "start": 60535.06, "end": 60537.04, "probability": 0.8149 }, { "start": 60538.04, "end": 60538.88, "probability": 0.8679 }, { "start": 60539.56, "end": 60539.86, "probability": 0.8625 }, { "start": 60540.62, "end": 60541.3, "probability": 0.8866 }, { "start": 60541.78, "end": 60543.48, "probability": 0.9818 }, { "start": 60543.48, "end": 60547.6, "probability": 0.5588 }, { "start": 60548.2, "end": 60549.02, "probability": 0.5256 }, { "start": 60549.62, "end": 60550.8, "probability": 0.8308 }, { "start": 60550.9, "end": 60553.58, "probability": 0.8553 }, { "start": 60554.34, "end": 60554.64, "probability": 0.3465 }, { "start": 60555.28, "end": 60560.54, "probability": 0.8748 }, { "start": 60561.42, "end": 60565.08, "probability": 0.5326 }, { "start": 60565.08, "end": 60568.88, "probability": 0.8074 }, { "start": 60569.0, "end": 60571.62, "probability": 0.8522 }, { "start": 60571.72, "end": 60574.64, "probability": 0.9854 }, { "start": 60575.44, "end": 60578.5, "probability": 0.8806 }, { "start": 60579.48, "end": 60580.06, "probability": 0.7832 }, { "start": 60584.44, "end": 60588.82, "probability": 0.6812 }, { "start": 60588.82, "end": 60593.16, "probability": 0.632 }, { "start": 60593.16, "end": 60598.78, "probability": 0.8931 }, { "start": 60598.78, "end": 60603.14, "probability": 0.5942 }, { "start": 60604.08, "end": 60607.62, "probability": 0.8588 }, { "start": 60608.3, "end": 60610.54, "probability": 0.593 }, { "start": 60611.22, "end": 60615.12, "probability": 0.9929 }, { "start": 60616.0, "end": 60617.04, "probability": 0.8367 }, { "start": 60617.28, "end": 60618.24, "probability": 0.9236 }, { "start": 60618.34, "end": 60620.36, "probability": 0.9365 }, { "start": 60620.5, "end": 60623.44, "probability": 0.9728 }, { "start": 60624.62, "end": 60627.24, "probability": 0.6393 }, { "start": 60627.36, "end": 60629.9, "probability": 0.8025 }, { "start": 60630.68, "end": 60633.42, "probability": 0.8382 }, { "start": 60633.78, "end": 60635.18, "probability": 0.8069 }, { "start": 60635.2, "end": 60637.1, "probability": 0.9118 }, { "start": 60637.86, "end": 60640.64, "probability": 0.5358 }, { "start": 60641.28, "end": 60643.38, "probability": 0.8807 }, { "start": 60643.46, "end": 60645.22, "probability": 0.944 }, { "start": 60645.78, "end": 60647.02, "probability": 0.5096 }, { "start": 60647.12, "end": 60649.24, "probability": 0.6325 }, { "start": 60650.12, "end": 60652.34, "probability": 0.4314 }, { "start": 60652.48, "end": 60654.12, "probability": 0.5612 }, { "start": 60654.14, "end": 60656.56, "probability": 0.3508 }, { "start": 60656.98, "end": 60658.4, "probability": 0.9074 }, { "start": 60658.54, "end": 60661.32, "probability": 0.733 }, { "start": 60661.86, "end": 60664.22, "probability": 0.6952 }, { "start": 60665.16, "end": 60665.68, "probability": 0.6041 }, { "start": 60666.2, "end": 60668.38, "probability": 0.7868 }, { "start": 60669.06, "end": 60670.22, "probability": 0.8139 }, { "start": 60670.62, "end": 60671.22, "probability": 0.9667 }, { "start": 60673.36, "end": 60675.28, "probability": 0.7751 }, { "start": 60676.14, "end": 60677.4, "probability": 0.9282 }, { "start": 60678.02, "end": 60680.58, "probability": 0.9719 }, { "start": 60681.02, "end": 60684.02, "probability": 0.8822 }, { "start": 60684.68, "end": 60687.66, "probability": 0.9905 }, { "start": 60688.18, "end": 60689.26, "probability": 0.9596 }, { "start": 60689.78, "end": 60693.42, "probability": 0.8019 }, { "start": 60695.46, "end": 60696.06, "probability": 0.5436 }, { "start": 60697.76, "end": 60698.1, "probability": 0.1959 }, { "start": 60698.1, "end": 60698.1, "probability": 0.0346 }, { "start": 60698.1, "end": 60698.1, "probability": 0.0324 }, { "start": 60698.1, "end": 60698.1, "probability": 0.0166 }, { "start": 60698.1, "end": 60698.44, "probability": 0.3602 }, { "start": 60698.5, "end": 60701.68, "probability": 0.633 }, { "start": 60707.92, "end": 60708.02, "probability": 0.3368 }, { "start": 60709.0, "end": 60710.65, "probability": 0.9393 }, { "start": 60710.88, "end": 60711.72, "probability": 0.4871 }, { "start": 60711.82, "end": 60713.24, "probability": 0.3829 }, { "start": 60716.76, "end": 60718.82, "probability": 0.7137 }, { "start": 60718.96, "end": 60720.02, "probability": 0.7178 }, { "start": 60721.52, "end": 60724.98, "probability": 0.9465 }, { "start": 60726.72, "end": 60727.4, "probability": 0.9663 }, { "start": 60727.58, "end": 60727.8, "probability": 0.3845 }, { "start": 60727.8, "end": 60729.58, "probability": 0.6246 }, { "start": 60729.78, "end": 60730.82, "probability": 0.3423 }, { "start": 60731.2, "end": 60732.36, "probability": 0.9209 }, { "start": 60732.54, "end": 60733.24, "probability": 0.1952 }, { "start": 60733.42, "end": 60737.12, "probability": 0.8966 }, { "start": 60737.26, "end": 60737.7, "probability": 0.7017 }, { "start": 60737.8, "end": 60738.6, "probability": 0.597 }, { "start": 60740.18, "end": 60741.92, "probability": 0.6678 }, { "start": 60742.23, "end": 60744.4, "probability": 0.9198 }, { "start": 60744.52, "end": 60745.28, "probability": 0.1925 }, { "start": 60745.87, "end": 60747.08, "probability": 0.6506 }, { "start": 60747.2, "end": 60747.48, "probability": 0.7145 }, { "start": 60748.34, "end": 60749.46, "probability": 0.5697 }, { "start": 60751.28, "end": 60752.94, "probability": 0.8779 }, { "start": 60753.06, "end": 60753.28, "probability": 0.0546 }, { "start": 60753.28, "end": 60754.16, "probability": 0.0022 }, { "start": 60754.38, "end": 60754.59, "probability": 0.2072 }, { "start": 60754.82, "end": 60755.2, "probability": 0.8792 }, { "start": 60758.36, "end": 60762.54, "probability": 0.9749 }, { "start": 60763.46, "end": 60765.94, "probability": 0.4923 }, { "start": 60767.34, "end": 60768.78, "probability": 0.4928 }, { "start": 60769.32, "end": 60772.18, "probability": 0.1101 }, { "start": 60772.26, "end": 60773.36, "probability": 0.0433 }, { "start": 60776.6, "end": 60779.66, "probability": 0.0507 }, { "start": 60780.54, "end": 60783.5, "probability": 0.1032 }, { "start": 60784.46, "end": 60787.28, "probability": 0.0968 }, { "start": 60796.94, "end": 60800.98, "probability": 0.0808 }, { "start": 60801.0, "end": 60801.0, "probability": 0.0 }, { "start": 60801.0, "end": 60801.0, "probability": 0.0 }, { "start": 60801.0, "end": 60801.0, "probability": 0.0 }, { "start": 60801.0, "end": 60801.0, "probability": 0.0 }, { "start": 60801.0, "end": 60801.0, "probability": 0.0 }, { "start": 60801.0, "end": 60801.0, "probability": 0.0 }, { "start": 60801.0, "end": 60801.0, "probability": 0.0 }, { "start": 60801.0, "end": 60801.0, "probability": 0.0 }, { "start": 60801.0, "end": 60801.0, "probability": 0.0 }, { "start": 60801.0, "end": 60801.0, "probability": 0.0 }, { "start": 60801.0, "end": 60801.0, "probability": 0.0 }, { "start": 60801.0, "end": 60801.0, "probability": 0.0 }, { "start": 60801.0, "end": 60801.0, "probability": 0.0 }, { "start": 60801.0, "end": 60801.0, "probability": 0.0 }, { "start": 60801.0, "end": 60801.0, "probability": 0.0 }, { "start": 60801.0, "end": 60801.0, "probability": 0.0 }, { "start": 60801.0, "end": 60801.0, "probability": 0.0 }, { "start": 60801.0, "end": 60801.0, "probability": 0.0 }, { "start": 60801.0, "end": 60801.0, "probability": 0.0 }, { "start": 60801.0, "end": 60801.0, "probability": 0.0 }, { "start": 60801.0, "end": 60801.0, "probability": 0.0 }, { "start": 60801.0, "end": 60801.0, "probability": 0.0 }, { "start": 60801.0, "end": 60801.0, "probability": 0.0 }, { "start": 60801.0, "end": 60801.0, "probability": 0.0 }, { "start": 60801.0, "end": 60801.0, "probability": 0.0 }, { "start": 60801.0, "end": 60801.0, "probability": 0.0 }, { "start": 60801.0, "end": 60801.0, "probability": 0.0 }, { "start": 60801.0, "end": 60801.0, "probability": 0.0 }, { "start": 60801.0, "end": 60801.0, "probability": 0.0 }, { "start": 60801.0, "end": 60801.0, "probability": 0.0 }, { "start": 60801.0, "end": 60801.0, "probability": 0.0 }, { "start": 60801.0, "end": 60801.0, "probability": 0.0 }, { "start": 60801.0, "end": 60801.0, "probability": 0.0 }, { "start": 60801.0, "end": 60801.0, "probability": 0.0 }, { "start": 60801.0, "end": 60801.0, "probability": 0.0 }, { "start": 60801.0, "end": 60801.0, "probability": 0.0 }, { "start": 60801.0, "end": 60801.0, "probability": 0.0 }, { "start": 60801.0, "end": 60801.0, "probability": 0.0 }, { "start": 60801.0, "end": 60801.0, "probability": 0.0 }, { "start": 60801.0, "end": 60801.0, "probability": 0.0 }, { "start": 60801.0, "end": 60801.0, "probability": 0.0 }, { "start": 60801.0, "end": 60801.0, "probability": 0.0 }, { "start": 60801.0, "end": 60801.0, "probability": 0.0 }, { "start": 60801.0, "end": 60801.0, "probability": 0.0 }, { "start": 60801.0, "end": 60801.0, "probability": 0.0 }, { "start": 60801.0, "end": 60801.0, "probability": 0.0 }, { "start": 60801.0, "end": 60801.0, "probability": 0.0 }, { "start": 60801.0, "end": 60801.0, "probability": 0.0 }, { "start": 60801.0, "end": 60801.0, "probability": 0.0 }, { "start": 60802.92, "end": 60806.52, "probability": 0.8007 }, { "start": 60808.7, "end": 60809.92, "probability": 0.6689 }, { "start": 60810.76, "end": 60812.88, "probability": 0.8872 }, { "start": 60813.72, "end": 60816.08, "probability": 0.7448 }, { "start": 60819.5, "end": 60820.28, "probability": 0.0688 }, { "start": 60822.3, "end": 60823.08, "probability": 0.0374 }, { "start": 60824.85, "end": 60825.78, "probability": 0.0369 }, { "start": 60826.14, "end": 60827.46, "probability": 0.2356 }, { "start": 60827.46, "end": 60827.96, "probability": 0.3426 }, { "start": 60833.42, "end": 60836.14, "probability": 0.6259 }, { "start": 60848.84, "end": 60850.6, "probability": 0.1861 }, { "start": 60942.0, "end": 60942.0, "probability": 0.0 }, { "start": 60942.0, "end": 60942.0, "probability": 0.0 }, { "start": 60942.0, "end": 60942.0, "probability": 0.0 }, { "start": 60942.0, "end": 60942.0, "probability": 0.0 }, { "start": 60942.0, "end": 60942.0, "probability": 0.0 }, { "start": 60942.0, "end": 60942.0, "probability": 0.0 }, { "start": 60942.0, "end": 60942.0, "probability": 0.0 }, { "start": 60942.0, "end": 60942.0, "probability": 0.0 }, { "start": 60942.0, "end": 60942.0, "probability": 0.0 }, { "start": 60942.0, "end": 60942.0, "probability": 0.0 }, { "start": 60942.0, "end": 60942.0, "probability": 0.0 }, { "start": 60942.0, "end": 60942.0, "probability": 0.0 }, { "start": 60942.0, "end": 60942.0, "probability": 0.0 }, { "start": 60942.0, "end": 60942.0, "probability": 0.0 }, { "start": 60942.0, "end": 60942.0, "probability": 0.0 }, { "start": 60942.0, "end": 60942.0, "probability": 0.0 }, { "start": 60942.0, "end": 60942.0, "probability": 0.0 }, { "start": 60942.0, "end": 60942.0, "probability": 0.0 }, { "start": 60942.0, "end": 60942.0, "probability": 0.0 }, { "start": 60942.0, "end": 60942.0, "probability": 0.0 }, { "start": 60942.0, "end": 60942.0, "probability": 0.0 }, { "start": 60942.0, "end": 60942.0, "probability": 0.0 }, { "start": 60942.68, "end": 60947.34, "probability": 0.8279 }, { "start": 60947.84, "end": 60948.46, "probability": 0.8938 }, { "start": 60950.26, "end": 60952.6, "probability": 0.745 }, { "start": 60953.36, "end": 60955.62, "probability": 0.5147 }, { "start": 60974.0, "end": 60974.9, "probability": 0.334 }, { "start": 60974.92, "end": 60977.58, "probability": 0.5888 }, { "start": 60978.58, "end": 60978.78, "probability": 0.1283 }, { "start": 60979.68, "end": 60982.16, "probability": 0.0084 }, { "start": 60982.54, "end": 60985.0, "probability": 0.2831 }, { "start": 60985.08, "end": 60986.12, "probability": 0.4883 }, { "start": 61072.0, "end": 61072.0, "probability": 0.0 }, { "start": 61072.0, "end": 61072.0, "probability": 0.0 }, { "start": 61072.0, "end": 61072.0, "probability": 0.0 }, { "start": 61072.0, "end": 61072.0, "probability": 0.0 }, { "start": 61072.0, "end": 61072.0, "probability": 0.0 }, { "start": 61072.0, "end": 61072.0, "probability": 0.0 }, { "start": 61072.0, "end": 61072.0, "probability": 0.0 }, { "start": 61072.0, "end": 61072.0, "probability": 0.0 }, { "start": 61072.0, "end": 61072.0, "probability": 0.0 }, { "start": 61072.0, "end": 61072.0, "probability": 0.0 }, { "start": 61072.0, "end": 61072.0, "probability": 0.0 }, { "start": 61072.0, "end": 61072.0, "probability": 0.0 }, { "start": 61072.0, "end": 61072.0, "probability": 0.0 }, { "start": 61072.0, "end": 61072.0, "probability": 0.0 }, { "start": 61072.0, "end": 61072.0, "probability": 0.0 }, { "start": 61072.0, "end": 61072.0, "probability": 0.0 }, { "start": 61072.0, "end": 61072.0, "probability": 0.0 }, { "start": 61072.0, "end": 61072.0, "probability": 0.0 }, { "start": 61072.0, "end": 61072.0, "probability": 0.0 }, { "start": 61072.0, "end": 61072.0, "probability": 0.0 }, { "start": 61072.0, "end": 61072.0, "probability": 0.0 }, { "start": 61072.0, "end": 61072.0, "probability": 0.0 }, { "start": 61072.0, "end": 61072.0, "probability": 0.0 }, { "start": 61072.0, "end": 61072.0, "probability": 0.0 }, { "start": 61072.0, "end": 61072.0, "probability": 0.0 }, { "start": 61072.0, "end": 61072.0, "probability": 0.0 }, { "start": 61072.0, "end": 61072.0, "probability": 0.0 }, { "start": 61072.0, "end": 61072.0, "probability": 0.0 }, { "start": 61072.0, "end": 61072.0, "probability": 0.0 }, { "start": 61072.0, "end": 61072.0, "probability": 0.0 }, { "start": 61072.0, "end": 61072.0, "probability": 0.0 }, { "start": 61072.0, "end": 61072.0, "probability": 0.0 }, { "start": 61072.0, "end": 61072.0, "probability": 0.0 }, { "start": 61072.0, "end": 61072.0, "probability": 0.0 }, { "start": 61072.38, "end": 61074.18, "probability": 0.0913 }, { "start": 61074.72, "end": 61078.9, "probability": 0.93 }, { "start": 61079.4, "end": 61080.8, "probability": 0.8656 }, { "start": 61081.1, "end": 61081.16, "probability": 0.1017 }, { "start": 61083.04, "end": 61084.66, "probability": 0.2818 }, { "start": 61084.94, "end": 61085.66, "probability": 0.6198 }, { "start": 61086.04, "end": 61089.34, "probability": 0.0783 }, { "start": 61089.44, "end": 61090.58, "probability": 0.0583 }, { "start": 61090.58, "end": 61090.86, "probability": 0.1845 }, { "start": 61090.86, "end": 61097.16, "probability": 0.2177 }, { "start": 61097.28, "end": 61098.18, "probability": 0.6777 }, { "start": 61098.24, "end": 61102.1, "probability": 0.7525 }, { "start": 61103.1, "end": 61104.86, "probability": 0.2883 }, { "start": 61194.0, "end": 61194.0, "probability": 0.0 }, { "start": 61194.0, "end": 61194.0, "probability": 0.0 }, { "start": 61194.0, "end": 61194.0, "probability": 0.0 }, { "start": 61194.0, "end": 61194.0, "probability": 0.0 }, { "start": 61194.0, "end": 61194.0, "probability": 0.0 }, { "start": 61194.0, "end": 61194.0, "probability": 0.0 }, { "start": 61194.0, "end": 61194.0, "probability": 0.0 }, { "start": 61194.0, "end": 61194.0, "probability": 0.0 }, { "start": 61194.0, "end": 61194.0, "probability": 0.0 }, { "start": 61194.0, "end": 61194.0, "probability": 0.0 }, { "start": 61194.0, "end": 61194.0, "probability": 0.0 }, { "start": 61194.0, "end": 61194.0, "probability": 0.0 }, { "start": 61194.0, "end": 61194.0, "probability": 0.0 }, { "start": 61194.0, "end": 61194.0, "probability": 0.0 }, { "start": 61194.0, "end": 61194.0, "probability": 0.0 }, { "start": 61194.0, "end": 61194.0, "probability": 0.0 }, { "start": 61194.0, "end": 61194.0, "probability": 0.0 }, { "start": 61194.0, "end": 61194.0, "probability": 0.0 }, { "start": 61194.0, "end": 61194.0, "probability": 0.0 }, { "start": 61194.0, "end": 61194.0, "probability": 0.0 }, { "start": 61194.0, "end": 61194.0, "probability": 0.0 }, { "start": 61194.0, "end": 61194.0, "probability": 0.0 }, { "start": 61194.0, "end": 61194.0, "probability": 0.0 }, { "start": 61194.0, "end": 61194.0, "probability": 0.0 }, { "start": 61194.0, "end": 61194.0, "probability": 0.0 }, { "start": 61194.0, "end": 61194.0, "probability": 0.0 }, { "start": 61194.0, "end": 61194.0, "probability": 0.0 }, { "start": 61194.0, "end": 61194.0, "probability": 0.0 }, { "start": 61194.0, "end": 61194.0, "probability": 0.0 }, { "start": 61194.0, "end": 61194.0, "probability": 0.0 }, { "start": 61194.0, "end": 61194.0, "probability": 0.0 }, { "start": 61194.0, "end": 61194.0, "probability": 0.0 }, { "start": 61194.0, "end": 61194.0, "probability": 0.0 }, { "start": 61194.0, "end": 61194.0, "probability": 0.0 }, { "start": 61194.0, "end": 61194.0, "probability": 0.0 }, { "start": 61194.0, "end": 61194.0, "probability": 0.0 }, { "start": 61194.0, "end": 61194.0, "probability": 0.0 }, { "start": 61194.0, "end": 61194.0, "probability": 0.0 }, { "start": 61194.0, "end": 61194.0, "probability": 0.0 }, { "start": 61194.0, "end": 61194.0, "probability": 0.0 }, { "start": 61194.0, "end": 61194.0, "probability": 0.0 }, { "start": 61194.0, "end": 61194.0, "probability": 0.0 }, { "start": 61194.12, "end": 61194.9, "probability": 0.7024 }, { "start": 61198.79, "end": 61202.84, "probability": 0.1847 }, { "start": 61203.6, "end": 61206.16, "probability": 0.7553 }, { "start": 61206.64, "end": 61208.54, "probability": 0.7339 }, { "start": 61210.2, "end": 61210.5, "probability": 0.9312 }, { "start": 61212.6, "end": 61213.6, "probability": 0.8205 }, { "start": 61214.38, "end": 61215.98, "probability": 0.6653 }, { "start": 61216.1, "end": 61217.34, "probability": 0.8039 }, { "start": 61218.02, "end": 61219.68, "probability": 0.5651 }, { "start": 61221.9, "end": 61225.14, "probability": 0.5965 }, { "start": 61227.32, "end": 61228.06, "probability": 0.8368 }, { "start": 61228.74, "end": 61230.82, "probability": 0.8729 }, { "start": 61232.54, "end": 61232.88, "probability": 0.6519 }, { "start": 61233.42, "end": 61236.3, "probability": 0.9154 }, { "start": 61237.02, "end": 61239.54, "probability": 0.6951 }, { "start": 61240.38, "end": 61242.02, "probability": 0.8712 }, { "start": 61243.14, "end": 61245.22, "probability": 0.9088 }, { "start": 61245.28, "end": 61246.22, "probability": 0.8824 }, { "start": 61246.5, "end": 61247.48, "probability": 0.9686 }, { "start": 61247.52, "end": 61248.5, "probability": 0.7684 }, { "start": 61248.68, "end": 61250.2, "probability": 0.8953 }, { "start": 61251.2, "end": 61252.6, "probability": 0.7023 }, { "start": 61253.94, "end": 61255.58, "probability": 0.4633 }, { "start": 61256.5, "end": 61257.94, "probability": 0.8787 }, { "start": 61258.96, "end": 61261.38, "probability": 0.7856 }, { "start": 61261.98, "end": 61264.5, "probability": 0.8515 }, { "start": 61265.7, "end": 61266.08, "probability": 0.9553 }, { "start": 61267.02, "end": 61269.04, "probability": 0.923 }, { "start": 61269.72, "end": 61270.12, "probability": 0.9146 }, { "start": 61270.92, "end": 61271.5, "probability": 0.7971 }, { "start": 61272.38, "end": 61274.56, "probability": 0.9286 }, { "start": 61275.42, "end": 61276.94, "probability": 0.7786 }, { "start": 61278.08, "end": 61278.42, "probability": 0.6965 }, { "start": 61279.92, "end": 61282.8, "probability": 0.8777 }, { "start": 61283.88, "end": 61284.96, "probability": 0.9891 }, { "start": 61285.6, "end": 61287.92, "probability": 0.7021 }, { "start": 61288.62, "end": 61290.16, "probability": 0.8144 }, { "start": 61290.18, "end": 61293.12, "probability": 0.867 }, { "start": 61293.3, "end": 61293.82, "probability": 0.7708 }, { "start": 61294.64, "end": 61295.54, "probability": 0.4163 }, { "start": 61296.34, "end": 61300.9, "probability": 0.8673 }, { "start": 61301.7, "end": 61301.7, "probability": 0.0193 }, { "start": 61301.7, "end": 61302.4, "probability": 0.4997 }, { "start": 61302.52, "end": 61305.0, "probability": 0.7181 }, { "start": 61306.48, "end": 61306.9, "probability": 0.6638 }, { "start": 61307.72, "end": 61308.52, "probability": 0.7182 }, { "start": 61308.72, "end": 61310.4, "probability": 0.8434 }, { "start": 61310.48, "end": 61311.72, "probability": 0.7364 }, { "start": 61315.34, "end": 61315.9, "probability": 0.4897 }, { "start": 61317.28, "end": 61318.06, "probability": 0.2204 }, { "start": 61319.34, "end": 61319.96, "probability": 0.8351 }, { "start": 61321.4, "end": 61323.5, "probability": 0.6995 }, { "start": 61323.56, "end": 61324.7, "probability": 0.8856 }, { "start": 61325.0, "end": 61327.08, "probability": 0.9733 }, { "start": 61327.12, "end": 61328.24, "probability": 0.5221 }, { "start": 61328.42, "end": 61329.2, "probability": 0.9794 }, { "start": 61330.58, "end": 61331.02, "probability": 0.7966 }, { "start": 61332.2, "end": 61333.94, "probability": 0.6327 }, { "start": 61334.08, "end": 61335.54, "probability": 0.7619 }, { "start": 61337.26, "end": 61340.1, "probability": 0.9569 }, { "start": 61340.84, "end": 61343.96, "probability": 0.9119 }, { "start": 61344.88, "end": 61345.56, "probability": 0.9926 }, { "start": 61346.14, "end": 61346.62, "probability": 0.7926 }, { "start": 61346.99, "end": 61349.32, "probability": 0.3264 }, { "start": 61349.44, "end": 61349.93, "probability": 0.7614 }, { "start": 61350.92, "end": 61353.78, "probability": 0.8835 }, { "start": 61354.42, "end": 61355.32, "probability": 0.9232 }, { "start": 61355.96, "end": 61359.82, "probability": 0.8376 }, { "start": 61360.8, "end": 61362.68, "probability": 0.9259 }, { "start": 61363.32, "end": 61365.24, "probability": 0.6462 }, { "start": 61366.14, "end": 61368.64, "probability": 0.6775 }, { "start": 61369.42, "end": 61372.66, "probability": 0.8918 }, { "start": 61373.76, "end": 61376.16, "probability": 0.5714 }, { "start": 61377.1, "end": 61379.34, "probability": 0.756 }, { "start": 61379.52, "end": 61380.34, "probability": 0.3674 }, { "start": 61380.5, "end": 61381.34, "probability": 0.5609 }, { "start": 61382.14, "end": 61383.5, "probability": 0.9427 }, { "start": 61384.26, "end": 61384.9, "probability": 0.4871 }, { "start": 61386.1, "end": 61387.5, "probability": 0.9462 }, { "start": 61388.1, "end": 61388.9, "probability": 0.6737 }, { "start": 61388.94, "end": 61390.28, "probability": 0.8315 }, { "start": 61390.3, "end": 61391.64, "probability": 0.8564 }, { "start": 61393.28, "end": 61394.52, "probability": 0.6326 }, { "start": 61395.46, "end": 61398.1, "probability": 0.6459 }, { "start": 61399.58, "end": 61401.6, "probability": 0.915 }, { "start": 61402.74, "end": 61404.28, "probability": 0.3325 }, { "start": 61406.9, "end": 61412.9, "probability": 0.9723 }, { "start": 61414.22, "end": 61414.98, "probability": 0.653 }, { "start": 61415.04, "end": 61416.36, "probability": 0.4718 }, { "start": 61416.42, "end": 61416.94, "probability": 0.9224 }, { "start": 61443.96, "end": 61448.24, "probability": 0.7607 }, { "start": 61449.0, "end": 61450.04, "probability": 0.4317 }, { "start": 61450.24, "end": 61450.76, "probability": 0.7239 }, { "start": 61451.4, "end": 61454.5, "probability": 0.8905 }, { "start": 61455.28, "end": 61462.52, "probability": 0.2677 }, { "start": 61463.1, "end": 61463.26, "probability": 0.1973 }, { "start": 61463.26, "end": 61464.79, "probability": 0.8829 }, { "start": 61465.3, "end": 61466.94, "probability": 0.5973 }, { "start": 61467.28, "end": 61467.8, "probability": 0.6038 }, { "start": 61468.34, "end": 61470.08, "probability": 0.7478 }, { "start": 61470.98, "end": 61471.78, "probability": 0.9348 }, { "start": 61475.32, "end": 61475.32, "probability": 0.1346 }, { "start": 61475.32, "end": 61475.97, "probability": 0.7104 }, { "start": 61476.28, "end": 61477.54, "probability": 0.5929 }, { "start": 61477.6, "end": 61479.42, "probability": 0.7458 }, { "start": 61480.32, "end": 61481.78, "probability": 0.894 }, { "start": 61482.32, "end": 61485.66, "probability": 0.9272 }, { "start": 61485.86, "end": 61490.5, "probability": 0.8396 }, { "start": 61491.04, "end": 61494.52, "probability": 0.82 }, { "start": 61494.66, "end": 61495.4, "probability": 0.7379 }, { "start": 61495.54, "end": 61496.18, "probability": 0.9082 }, { "start": 61496.4, "end": 61497.18, "probability": 0.5362 }, { "start": 61497.62, "end": 61499.16, "probability": 0.9473 }, { "start": 61499.46, "end": 61502.72, "probability": 0.9971 }, { "start": 61502.72, "end": 61504.76, "probability": 0.9134 }, { "start": 61505.5, "end": 61508.48, "probability": 0.9857 }, { "start": 61508.48, "end": 61511.08, "probability": 0.9211 }, { "start": 61511.3, "end": 61511.76, "probability": 0.5169 }, { "start": 61512.3, "end": 61518.48, "probability": 0.6073 }, { "start": 61518.58, "end": 61522.58, "probability": 0.9795 }, { "start": 61522.64, "end": 61523.94, "probability": 0.834 }, { "start": 61524.22, "end": 61525.58, "probability": 0.9045 }, { "start": 61525.68, "end": 61527.38, "probability": 0.7607 }, { "start": 61528.22, "end": 61529.38, "probability": 0.9939 }, { "start": 61529.98, "end": 61532.72, "probability": 0.96 }, { "start": 61532.76, "end": 61537.12, "probability": 0.949 }, { "start": 61537.48, "end": 61540.16, "probability": 0.9729 }, { "start": 61540.16, "end": 61543.89, "probability": 0.8818 }, { "start": 61544.64, "end": 61546.9, "probability": 0.8028 }, { "start": 61547.98, "end": 61548.58, "probability": 0.4268 }, { "start": 61548.72, "end": 61549.22, "probability": 0.4229 }, { "start": 61549.42, "end": 61550.5, "probability": 0.7615 }, { "start": 61550.9, "end": 61551.64, "probability": 0.5807 }, { "start": 61551.86, "end": 61553.28, "probability": 0.8297 }, { "start": 61553.96, "end": 61554.16, "probability": 0.9486 }, { "start": 61554.56, "end": 61556.48, "probability": 0.9805 }, { "start": 61556.66, "end": 61557.48, "probability": 0.4989 }, { "start": 61557.52, "end": 61559.34, "probability": 0.941 }, { "start": 61560.08, "end": 61564.52, "probability": 0.588 } ], "segments_count": 20745, "words_count": 96261, "avg_words_per_segment": 4.6402, "avg_segment_duration": 1.6444, "avg_words_per_minute": 93.6181, "plenum_id": "103370", "duration": 61693.85, "title": null, "plenum_date": "2021-12-27" }