{ "source_type": "knesset", "source_id": "plenum", "source_entry_id": "10387", "quality_score": 0.877, "per_segment_quality_scores": [ { "start": 44.76, "end": 46.66, "probability": 0.5726 }, { "start": 47.22, "end": 47.42, "probability": 0.8066 }, { "start": 49.1, "end": 52.44, "probability": 0.8322 }, { "start": 53.6, "end": 54.06, "probability": 0.6226 }, { "start": 57.02, "end": 59.36, "probability": 0.374 }, { "start": 60.74, "end": 63.26, "probability": 0.4405 }, { "start": 64.26, "end": 65.5, "probability": 0.7398 }, { "start": 66.42, "end": 69.14, "probability": 0.9944 }, { "start": 70.46, "end": 73.11, "probability": 0.7515 }, { "start": 74.12, "end": 78.28, "probability": 0.9854 }, { "start": 79.06, "end": 81.24, "probability": 0.8538 }, { "start": 82.18, "end": 86.06, "probability": 0.694 }, { "start": 87.4, "end": 91.22, "probability": 0.8955 }, { "start": 91.76, "end": 94.14, "probability": 0.8992 }, { "start": 106.31, "end": 107.92, "probability": 0.1286 }, { "start": 114.72, "end": 117.22, "probability": 0.1521 }, { "start": 251.12, "end": 254.94, "probability": 0.9277 }, { "start": 255.56, "end": 258.78, "probability": 0.7302 }, { "start": 259.14, "end": 260.86, "probability": 0.8652 }, { "start": 261.32, "end": 262.64, "probability": 0.979 }, { "start": 262.92, "end": 263.64, "probability": 0.8285 }, { "start": 263.68, "end": 264.52, "probability": 0.8403 }, { "start": 264.88, "end": 267.58, "probability": 0.9926 }, { "start": 267.58, "end": 271.1, "probability": 0.6791 }, { "start": 271.56, "end": 275.1, "probability": 0.998 }, { "start": 275.54, "end": 278.78, "probability": 0.8138 }, { "start": 279.26, "end": 283.92, "probability": 0.9827 }, { "start": 284.26, "end": 287.42, "probability": 0.7833 }, { "start": 287.6, "end": 290.11, "probability": 0.6349 }, { "start": 291.22, "end": 291.56, "probability": 0.5166 }, { "start": 292.4, "end": 295.64, "probability": 0.9307 }, { "start": 296.08, "end": 299.4, "probability": 0.0236 }, { "start": 300.12, "end": 301.4, "probability": 0.0119 }, { "start": 301.4, "end": 301.74, "probability": 0.2725 }, { "start": 301.74, "end": 302.2, "probability": 0.5981 }, { "start": 303.24, "end": 304.36, "probability": 0.8552 }, { "start": 305.18, "end": 306.02, "probability": 0.6744 }, { "start": 307.14, "end": 307.84, "probability": 0.8845 }, { "start": 308.56, "end": 310.92, "probability": 0.985 }, { "start": 312.14, "end": 314.38, "probability": 0.9829 }, { "start": 314.92, "end": 315.64, "probability": 0.9731 }, { "start": 319.0, "end": 319.82, "probability": 0.1648 }, { "start": 319.82, "end": 322.9, "probability": 0.6916 }, { "start": 323.64, "end": 324.44, "probability": 0.9145 }, { "start": 326.74, "end": 330.0, "probability": 0.9431 }, { "start": 330.52, "end": 333.16, "probability": 0.9918 }, { "start": 333.9, "end": 334.82, "probability": 0.9274 }, { "start": 338.52, "end": 339.5, "probability": 0.8607 }, { "start": 341.76, "end": 343.12, "probability": 0.9665 }, { "start": 343.76, "end": 344.52, "probability": 0.7343 }, { "start": 344.64, "end": 345.46, "probability": 0.8862 }, { "start": 345.48, "end": 345.84, "probability": 0.6272 }, { "start": 346.23, "end": 347.56, "probability": 0.957 }, { "start": 349.82, "end": 351.66, "probability": 0.9569 }, { "start": 352.24, "end": 353.13, "probability": 0.9969 }, { "start": 354.44, "end": 354.46, "probability": 0.502 }, { "start": 357.3, "end": 363.02, "probability": 0.9846 }, { "start": 363.42, "end": 366.05, "probability": 0.5098 }, { "start": 366.64, "end": 366.8, "probability": 0.6383 }, { "start": 366.88, "end": 368.46, "probability": 0.9937 }, { "start": 368.88, "end": 370.5, "probability": 0.9502 }, { "start": 370.64, "end": 371.78, "probability": 0.4335 }, { "start": 371.82, "end": 373.62, "probability": 0.5779 }, { "start": 374.06, "end": 376.7, "probability": 0.1772 }, { "start": 377.86, "end": 379.52, "probability": 0.7316 }, { "start": 379.64, "end": 381.78, "probability": 0.9634 }, { "start": 383.3, "end": 386.76, "probability": 0.8257 }, { "start": 388.56, "end": 389.58, "probability": 0.8437 }, { "start": 390.02, "end": 393.34, "probability": 0.7526 }, { "start": 393.72, "end": 395.24, "probability": 0.2262 }, { "start": 395.24, "end": 400.04, "probability": 0.2058 }, { "start": 400.16, "end": 400.34, "probability": 0.2424 }, { "start": 400.34, "end": 400.74, "probability": 0.3091 }, { "start": 400.98, "end": 406.12, "probability": 0.495 }, { "start": 407.18, "end": 408.18, "probability": 0.9739 }, { "start": 408.42, "end": 409.18, "probability": 0.8411 }, { "start": 409.34, "end": 410.94, "probability": 0.9878 }, { "start": 411.58, "end": 413.7, "probability": 0.9995 }, { "start": 414.02, "end": 418.28, "probability": 0.9987 }, { "start": 419.0, "end": 420.18, "probability": 0.5954 }, { "start": 420.74, "end": 424.38, "probability": 0.7148 }, { "start": 425.26, "end": 428.22, "probability": 0.8766 }, { "start": 429.02, "end": 433.76, "probability": 0.8643 }, { "start": 434.06, "end": 435.93, "probability": 0.9752 }, { "start": 436.9, "end": 437.96, "probability": 0.917 }, { "start": 439.2, "end": 440.04, "probability": 0.7263 }, { "start": 440.82, "end": 442.4, "probability": 0.991 }, { "start": 443.1, "end": 443.72, "probability": 0.4419 }, { "start": 445.0, "end": 449.85, "probability": 0.8971 }, { "start": 451.4, "end": 452.76, "probability": 0.7888 }, { "start": 454.02, "end": 454.34, "probability": 0.9405 }, { "start": 455.7, "end": 458.24, "probability": 0.6069 }, { "start": 466.86, "end": 469.18, "probability": 0.9716 }, { "start": 469.42, "end": 470.44, "probability": 0.814 }, { "start": 470.56, "end": 471.38, "probability": 0.9055 }, { "start": 472.2, "end": 476.88, "probability": 0.8801 }, { "start": 477.5, "end": 479.94, "probability": 0.9656 }, { "start": 481.04, "end": 482.04, "probability": 0.4418 }, { "start": 482.58, "end": 485.72, "probability": 0.9873 }, { "start": 486.9, "end": 487.16, "probability": 0.804 }, { "start": 489.08, "end": 493.54, "probability": 0.9806 }, { "start": 494.26, "end": 498.58, "probability": 0.7723 }, { "start": 500.54, "end": 501.94, "probability": 0.9902 }, { "start": 502.3, "end": 504.0, "probability": 0.8443 }, { "start": 504.6, "end": 508.84, "probability": 0.8911 }, { "start": 510.4, "end": 510.44, "probability": 0.14 }, { "start": 510.6, "end": 511.06, "probability": 0.7965 }, { "start": 511.92, "end": 516.82, "probability": 0.9668 }, { "start": 517.92, "end": 518.93, "probability": 0.9169 }, { "start": 520.76, "end": 522.22, "probability": 0.82 }, { "start": 523.76, "end": 524.04, "probability": 0.0732 }, { "start": 525.2, "end": 525.94, "probability": 0.7263 }, { "start": 526.24, "end": 527.34, "probability": 0.7862 }, { "start": 527.78, "end": 529.64, "probability": 0.7089 }, { "start": 530.1, "end": 532.36, "probability": 0.655 }, { "start": 533.19, "end": 536.29, "probability": 0.9388 }, { "start": 536.94, "end": 542.28, "probability": 0.2709 }, { "start": 543.8, "end": 544.08, "probability": 0.6522 }, { "start": 544.82, "end": 545.44, "probability": 0.834 }, { "start": 546.06, "end": 548.02, "probability": 0.9979 }, { "start": 548.5, "end": 548.95, "probability": 0.7008 }, { "start": 549.3, "end": 550.8, "probability": 0.7943 }, { "start": 550.9, "end": 552.54, "probability": 0.1781 }, { "start": 553.06, "end": 554.62, "probability": 0.6808 }, { "start": 555.16, "end": 555.9, "probability": 0.9792 }, { "start": 556.66, "end": 558.36, "probability": 0.7513 }, { "start": 558.7, "end": 560.14, "probability": 0.6503 }, { "start": 560.64, "end": 561.54, "probability": 0.9521 }, { "start": 562.34, "end": 563.76, "probability": 0.6627 }, { "start": 564.34, "end": 565.2, "probability": 0.9506 }, { "start": 565.8, "end": 567.24, "probability": 0.9304 }, { "start": 567.96, "end": 571.2, "probability": 0.9914 }, { "start": 571.38, "end": 572.16, "probability": 0.7603 }, { "start": 572.7, "end": 574.6, "probability": 0.8479 }, { "start": 575.22, "end": 575.66, "probability": 0.5792 }, { "start": 576.26, "end": 577.94, "probability": 0.8971 }, { "start": 578.82, "end": 578.91, "probability": 0.1586 }, { "start": 579.48, "end": 582.44, "probability": 0.9022 }, { "start": 583.34, "end": 585.1, "probability": 0.9569 }, { "start": 586.52, "end": 587.82, "probability": 0.972 }, { "start": 589.04, "end": 589.28, "probability": 0.9549 }, { "start": 589.96, "end": 592.66, "probability": 0.9924 }, { "start": 593.66, "end": 595.22, "probability": 0.6663 }, { "start": 596.18, "end": 599.16, "probability": 0.6944 }, { "start": 599.7, "end": 601.34, "probability": 0.8271 }, { "start": 602.18, "end": 602.78, "probability": 0.7819 }, { "start": 603.16, "end": 606.52, "probability": 0.9699 }, { "start": 607.22, "end": 607.52, "probability": 0.6763 }, { "start": 607.9, "end": 610.7, "probability": 0.792 }, { "start": 611.56, "end": 613.58, "probability": 0.6956 }, { "start": 615.38, "end": 615.86, "probability": 0.8722 }, { "start": 616.72, "end": 618.88, "probability": 0.8834 }, { "start": 621.52, "end": 621.6, "probability": 0.067 }, { "start": 621.6, "end": 623.18, "probability": 0.3912 }, { "start": 623.72, "end": 627.24, "probability": 0.8595 }, { "start": 627.9, "end": 632.38, "probability": 0.661 }, { "start": 632.88, "end": 635.06, "probability": 0.9407 }, { "start": 635.14, "end": 638.0, "probability": 0.851 }, { "start": 638.76, "end": 641.64, "probability": 0.8636 }, { "start": 642.02, "end": 644.54, "probability": 0.9777 }, { "start": 645.2, "end": 648.59, "probability": 0.9863 }, { "start": 649.7, "end": 650.6, "probability": 0.6671 }, { "start": 651.02, "end": 656.6, "probability": 0.9869 }, { "start": 657.3, "end": 659.48, "probability": 0.7473 }, { "start": 659.92, "end": 661.8, "probability": 0.9851 }, { "start": 662.64, "end": 663.74, "probability": 0.7726 }, { "start": 664.42, "end": 665.24, "probability": 0.8567 }, { "start": 665.26, "end": 666.42, "probability": 0.6045 }, { "start": 667.08, "end": 668.32, "probability": 0.9414 }, { "start": 668.56, "end": 668.98, "probability": 0.0065 }, { "start": 669.7, "end": 671.72, "probability": 0.1608 }, { "start": 671.74, "end": 672.26, "probability": 0.1384 }, { "start": 673.95, "end": 675.75, "probability": 0.2542 }, { "start": 677.22, "end": 677.22, "probability": 0.24 }, { "start": 677.22, "end": 678.78, "probability": 0.9083 }, { "start": 679.82, "end": 680.28, "probability": 0.6191 }, { "start": 680.4, "end": 683.24, "probability": 0.6572 }, { "start": 683.68, "end": 686.64, "probability": 0.7569 }, { "start": 687.06, "end": 688.94, "probability": 0.8663 }, { "start": 689.16, "end": 689.7, "probability": 0.9423 }, { "start": 690.18, "end": 692.05, "probability": 0.8975 }, { "start": 692.76, "end": 694.96, "probability": 0.9598 }, { "start": 695.8, "end": 696.12, "probability": 0.1004 }, { "start": 696.65, "end": 699.47, "probability": 0.9896 }, { "start": 700.18, "end": 701.32, "probability": 0.9982 }, { "start": 701.86, "end": 702.14, "probability": 0.3336 }, { "start": 702.96, "end": 706.68, "probability": 0.8512 }, { "start": 707.1, "end": 708.06, "probability": 0.9915 }, { "start": 708.42, "end": 710.9, "probability": 0.9721 }, { "start": 711.78, "end": 714.76, "probability": 0.9855 }, { "start": 714.88, "end": 715.04, "probability": 0.6638 }, { "start": 715.46, "end": 716.69, "probability": 0.8009 }, { "start": 717.4, "end": 720.28, "probability": 0.8203 }, { "start": 720.56, "end": 723.64, "probability": 0.8842 }, { "start": 723.72, "end": 724.34, "probability": 0.6228 }, { "start": 724.74, "end": 725.68, "probability": 0.9601 }, { "start": 726.14, "end": 728.87, "probability": 0.8234 }, { "start": 728.98, "end": 729.28, "probability": 0.7139 }, { "start": 730.0, "end": 731.57, "probability": 0.9219 }, { "start": 733.08, "end": 733.38, "probability": 0.5843 }, { "start": 734.14, "end": 738.6, "probability": 0.7551 }, { "start": 740.12, "end": 741.48, "probability": 0.8733 }, { "start": 743.58, "end": 744.18, "probability": 0.9539 }, { "start": 744.72, "end": 747.06, "probability": 0.9316 }, { "start": 747.86, "end": 749.94, "probability": 0.8603 }, { "start": 752.64, "end": 753.22, "probability": 0.0324 }, { "start": 753.22, "end": 754.22, "probability": 0.0876 }, { "start": 754.86, "end": 755.9, "probability": 0.6578 }, { "start": 756.88, "end": 759.3, "probability": 0.8807 }, { "start": 760.38, "end": 760.93, "probability": 0.5886 }, { "start": 761.62, "end": 766.64, "probability": 0.9848 }, { "start": 767.6, "end": 768.66, "probability": 0.9874 }, { "start": 769.38, "end": 769.72, "probability": 0.9927 }, { "start": 770.3, "end": 771.06, "probability": 0.8605 }, { "start": 771.88, "end": 773.8, "probability": 0.6814 }, { "start": 773.94, "end": 774.5, "probability": 0.6089 }, { "start": 777.2, "end": 779.12, "probability": 0.7603 }, { "start": 780.1, "end": 780.88, "probability": 0.908 }, { "start": 781.5, "end": 783.5, "probability": 0.9441 }, { "start": 784.02, "end": 785.3, "probability": 0.8253 }, { "start": 786.26, "end": 788.6, "probability": 0.9904 }, { "start": 789.12, "end": 793.94, "probability": 0.9966 }, { "start": 794.9, "end": 798.56, "probability": 0.9884 }, { "start": 798.78, "end": 799.28, "probability": 0.7876 }, { "start": 800.72, "end": 801.62, "probability": 0.9021 }, { "start": 802.2, "end": 802.82, "probability": 0.9076 }, { "start": 803.96, "end": 805.76, "probability": 0.8533 }, { "start": 809.12, "end": 809.84, "probability": 0.2103 }, { "start": 810.22, "end": 812.4, "probability": 0.9099 }, { "start": 812.4, "end": 813.3, "probability": 0.5367 }, { "start": 813.46, "end": 813.82, "probability": 0.4613 }, { "start": 813.84, "end": 814.28, "probability": 0.9779 }, { "start": 814.62, "end": 816.36, "probability": 0.9963 }, { "start": 816.4, "end": 818.17, "probability": 0.9985 }, { "start": 818.4, "end": 819.1, "probability": 0.6708 }, { "start": 819.32, "end": 820.02, "probability": 0.8289 }, { "start": 820.62, "end": 822.3, "probability": 0.3397 }, { "start": 822.32, "end": 825.84, "probability": 0.8932 }, { "start": 826.26, "end": 827.18, "probability": 0.9796 }, { "start": 827.26, "end": 827.8, "probability": 0.944 }, { "start": 827.94, "end": 830.84, "probability": 0.9956 }, { "start": 830.9, "end": 831.58, "probability": 0.9102 }, { "start": 832.64, "end": 833.48, "probability": 0.0571 }, { "start": 833.48, "end": 833.48, "probability": 0.37 }, { "start": 833.48, "end": 833.83, "probability": 0.2006 }, { "start": 834.4, "end": 835.7, "probability": 0.6397 }, { "start": 836.24, "end": 837.9, "probability": 0.6567 }, { "start": 838.76, "end": 840.52, "probability": 0.9564 }, { "start": 841.22, "end": 842.62, "probability": 0.9969 }, { "start": 842.96, "end": 844.0, "probability": 0.9281 }, { "start": 844.44, "end": 844.82, "probability": 0.8255 }, { "start": 845.24, "end": 846.54, "probability": 0.9739 }, { "start": 846.6, "end": 847.54, "probability": 0.9531 }, { "start": 848.2, "end": 849.1, "probability": 0.8338 }, { "start": 849.96, "end": 850.86, "probability": 0.9818 }, { "start": 851.9, "end": 853.0, "probability": 0.9025 }, { "start": 853.52, "end": 854.72, "probability": 0.911 }, { "start": 855.26, "end": 856.0, "probability": 0.7566 }, { "start": 856.48, "end": 859.44, "probability": 0.9794 }, { "start": 860.38, "end": 861.3, "probability": 0.8833 }, { "start": 861.84, "end": 863.18, "probability": 0.8531 }, { "start": 863.8, "end": 865.0, "probability": 0.1826 }, { "start": 865.62, "end": 869.04, "probability": 0.6973 }, { "start": 869.32, "end": 872.76, "probability": 0.8428 }, { "start": 873.04, "end": 873.94, "probability": 0.6095 }, { "start": 874.48, "end": 875.28, "probability": 0.8431 }, { "start": 876.34, "end": 878.98, "probability": 0.887 }, { "start": 878.98, "end": 879.86, "probability": 0.5881 }, { "start": 879.94, "end": 880.48, "probability": 0.2978 }, { "start": 880.54, "end": 881.58, "probability": 0.5806 }, { "start": 881.72, "end": 882.04, "probability": 0.7814 }, { "start": 882.66, "end": 884.52, "probability": 0.9391 }, { "start": 885.2, "end": 885.82, "probability": 0.7453 }, { "start": 886.58, "end": 891.52, "probability": 0.9437 }, { "start": 892.26, "end": 894.64, "probability": 0.9027 }, { "start": 896.06, "end": 896.72, "probability": 0.8599 }, { "start": 897.08, "end": 898.06, "probability": 0.9042 }, { "start": 898.38, "end": 899.39, "probability": 0.9822 }, { "start": 899.92, "end": 901.18, "probability": 0.933 }, { "start": 902.06, "end": 902.78, "probability": 0.8653 }, { "start": 903.56, "end": 904.36, "probability": 0.7234 }, { "start": 904.96, "end": 906.14, "probability": 0.7546 }, { "start": 906.5, "end": 907.5, "probability": 0.9473 }, { "start": 907.86, "end": 908.65, "probability": 0.6256 }, { "start": 909.32, "end": 912.48, "probability": 0.9561 }, { "start": 912.5, "end": 913.5, "probability": 0.941 }, { "start": 913.68, "end": 914.62, "probability": 0.9485 }, { "start": 914.7, "end": 915.38, "probability": 0.5822 }, { "start": 916.06, "end": 917.98, "probability": 0.9715 }, { "start": 918.7, "end": 920.02, "probability": 0.7142 }, { "start": 920.48, "end": 923.26, "probability": 0.7467 }, { "start": 923.32, "end": 923.82, "probability": 0.5401 }, { "start": 924.78, "end": 926.26, "probability": 0.1373 }, { "start": 926.94, "end": 927.32, "probability": 0.4272 }, { "start": 927.56, "end": 928.28, "probability": 0.9582 }, { "start": 929.22, "end": 932.48, "probability": 0.6539 }, { "start": 933.54, "end": 934.24, "probability": 0.7933 }, { "start": 934.36, "end": 934.76, "probability": 0.5335 }, { "start": 935.46, "end": 936.2, "probability": 0.59 }, { "start": 936.74, "end": 938.52, "probability": 0.9451 }, { "start": 939.24, "end": 941.7, "probability": 0.658 }, { "start": 942.14, "end": 942.52, "probability": 0.8775 }, { "start": 943.32, "end": 945.62, "probability": 0.2083 }, { "start": 946.18, "end": 949.84, "probability": 0.5722 }, { "start": 950.02, "end": 954.98, "probability": 0.5995 }, { "start": 955.0, "end": 955.5, "probability": 0.0044 }, { "start": 955.5, "end": 955.72, "probability": 0.0945 }, { "start": 955.72, "end": 956.56, "probability": 0.0117 }, { "start": 956.56, "end": 956.56, "probability": 0.123 }, { "start": 956.64, "end": 958.68, "probability": 0.1802 }, { "start": 959.74, "end": 960.48, "probability": 0.4209 }, { "start": 960.81, "end": 962.78, "probability": 0.9416 }, { "start": 963.24, "end": 964.3, "probability": 0.8616 }, { "start": 964.76, "end": 967.2, "probability": 0.9822 }, { "start": 969.18, "end": 969.38, "probability": 0.8915 }, { "start": 970.07, "end": 970.92, "probability": 0.7955 }, { "start": 971.88, "end": 972.64, "probability": 0.7874 }, { "start": 973.48, "end": 975.16, "probability": 0.7768 }, { "start": 975.44, "end": 975.72, "probability": 0.655 }, { "start": 976.54, "end": 977.96, "probability": 0.9578 }, { "start": 978.54, "end": 979.3, "probability": 0.7542 }, { "start": 979.62, "end": 980.8, "probability": 0.9933 }, { "start": 981.06, "end": 982.78, "probability": 0.8691 }, { "start": 982.96, "end": 984.1, "probability": 0.4518 }, { "start": 984.46, "end": 985.24, "probability": 0.5403 }, { "start": 985.88, "end": 986.46, "probability": 0.869 }, { "start": 987.12, "end": 988.6, "probability": 0.8693 }, { "start": 989.7, "end": 993.44, "probability": 0.9295 }, { "start": 993.64, "end": 994.96, "probability": 0.8457 }, { "start": 995.68, "end": 996.22, "probability": 0.412 }, { "start": 996.32, "end": 996.94, "probability": 0.9215 }, { "start": 997.64, "end": 999.02, "probability": 0.9961 }, { "start": 999.36, "end": 1002.26, "probability": 0.9346 }, { "start": 1003.16, "end": 1007.5, "probability": 0.9979 }, { "start": 1007.92, "end": 1008.6, "probability": 0.9456 }, { "start": 1009.26, "end": 1010.58, "probability": 0.8818 }, { "start": 1010.7, "end": 1011.17, "probability": 0.6421 }, { "start": 1011.74, "end": 1012.16, "probability": 0.9321 }, { "start": 1012.26, "end": 1012.9, "probability": 0.7835 }, { "start": 1013.06, "end": 1013.9, "probability": 0.8993 }, { "start": 1014.28, "end": 1015.28, "probability": 0.9839 }, { "start": 1015.82, "end": 1018.84, "probability": 0.9426 }, { "start": 1018.94, "end": 1019.56, "probability": 0.9361 }, { "start": 1020.42, "end": 1020.96, "probability": 0.9155 }, { "start": 1021.1, "end": 1021.94, "probability": 0.9607 }, { "start": 1022.54, "end": 1025.26, "probability": 0.7489 }, { "start": 1025.88, "end": 1026.46, "probability": 0.918 }, { "start": 1027.1, "end": 1028.16, "probability": 0.9824 }, { "start": 1028.2, "end": 1029.64, "probability": 0.8802 }, { "start": 1031.66, "end": 1032.44, "probability": 0.3997 }, { "start": 1032.9, "end": 1033.62, "probability": 0.6753 }, { "start": 1033.9, "end": 1034.0, "probability": 0.6829 }, { "start": 1034.12, "end": 1034.76, "probability": 0.6221 }, { "start": 1034.88, "end": 1036.4, "probability": 0.9795 }, { "start": 1037.12, "end": 1039.54, "probability": 0.8217 }, { "start": 1040.44, "end": 1043.64, "probability": 0.4477 }, { "start": 1044.08, "end": 1045.3, "probability": 0.9639 }, { "start": 1046.2, "end": 1046.76, "probability": 0.2968 }, { "start": 1047.12, "end": 1047.78, "probability": 0.7585 }, { "start": 1047.92, "end": 1048.7, "probability": 0.5983 }, { "start": 1048.86, "end": 1050.18, "probability": 0.6945 }, { "start": 1050.28, "end": 1051.04, "probability": 0.5249 }, { "start": 1051.18, "end": 1052.22, "probability": 0.6938 }, { "start": 1052.86, "end": 1053.74, "probability": 0.9595 }, { "start": 1054.16, "end": 1055.62, "probability": 0.8971 }, { "start": 1056.02, "end": 1059.06, "probability": 0.9769 }, { "start": 1060.16, "end": 1060.5, "probability": 0.958 }, { "start": 1060.98, "end": 1061.92, "probability": 0.9915 }, { "start": 1062.84, "end": 1064.28, "probability": 0.6635 }, { "start": 1065.1, "end": 1065.88, "probability": 0.4172 }, { "start": 1066.26, "end": 1067.3, "probability": 0.8645 }, { "start": 1068.56, "end": 1070.5, "probability": 0.8713 }, { "start": 1071.14, "end": 1071.34, "probability": 0.8596 }, { "start": 1072.18, "end": 1073.53, "probability": 0.9952 }, { "start": 1073.68, "end": 1074.1, "probability": 0.944 }, { "start": 1074.32, "end": 1075.56, "probability": 0.9772 }, { "start": 1075.66, "end": 1076.0, "probability": 0.5646 }, { "start": 1076.06, "end": 1077.98, "probability": 0.9888 }, { "start": 1078.56, "end": 1081.24, "probability": 0.0005 }, { "start": 1081.24, "end": 1082.8, "probability": 0.4993 }, { "start": 1083.56, "end": 1085.88, "probability": 0.8277 }, { "start": 1086.14, "end": 1086.36, "probability": 0.9803 }, { "start": 1086.98, "end": 1087.48, "probability": 0.8877 }, { "start": 1088.0, "end": 1088.1, "probability": 0.2512 }, { "start": 1088.52, "end": 1091.1, "probability": 0.6869 }, { "start": 1091.62, "end": 1092.26, "probability": 0.7513 }, { "start": 1092.32, "end": 1093.02, "probability": 0.8784 }, { "start": 1093.5, "end": 1094.64, "probability": 0.8545 }, { "start": 1094.8, "end": 1095.28, "probability": 0.8445 }, { "start": 1095.86, "end": 1096.36, "probability": 0.5946 }, { "start": 1096.5, "end": 1099.3, "probability": 0.9345 }, { "start": 1099.48, "end": 1101.24, "probability": 0.946 }, { "start": 1101.3, "end": 1102.02, "probability": 0.5309 }, { "start": 1102.22, "end": 1103.14, "probability": 0.4456 }, { "start": 1104.54, "end": 1104.54, "probability": 0.0152 }, { "start": 1104.54, "end": 1106.14, "probability": 0.5847 }, { "start": 1106.68, "end": 1108.64, "probability": 0.9802 }, { "start": 1109.18, "end": 1110.26, "probability": 0.468 }, { "start": 1110.56, "end": 1110.92, "probability": 0.7301 }, { "start": 1111.44, "end": 1112.06, "probability": 0.7139 }, { "start": 1114.16, "end": 1114.74, "probability": 0.2629 }, { "start": 1115.96, "end": 1117.26, "probability": 0.6057 }, { "start": 1118.04, "end": 1120.47, "probability": 0.9282 }, { "start": 1120.64, "end": 1122.08, "probability": 0.3891 }, { "start": 1122.1, "end": 1122.2, "probability": 0.3801 }, { "start": 1122.26, "end": 1122.56, "probability": 0.4655 }, { "start": 1122.64, "end": 1122.64, "probability": 0.5028 }, { "start": 1122.64, "end": 1122.8, "probability": 0.5464 }, { "start": 1122.88, "end": 1124.14, "probability": 0.8533 }, { "start": 1125.08, "end": 1126.96, "probability": 0.5838 }, { "start": 1126.96, "end": 1128.54, "probability": 0.4771 }, { "start": 1128.6, "end": 1128.96, "probability": 0.5093 }, { "start": 1129.14, "end": 1129.3, "probability": 0.339 }, { "start": 1130.34, "end": 1132.42, "probability": 0.694 }, { "start": 1134.08, "end": 1134.84, "probability": 0.7335 }, { "start": 1136.02, "end": 1142.2, "probability": 0.9871 }, { "start": 1142.94, "end": 1144.16, "probability": 0.8918 }, { "start": 1144.22, "end": 1145.22, "probability": 0.9438 }, { "start": 1145.44, "end": 1147.12, "probability": 0.9932 }, { "start": 1147.3, "end": 1147.8, "probability": 0.9012 }, { "start": 1148.46, "end": 1150.0, "probability": 0.9736 }, { "start": 1151.06, "end": 1152.3, "probability": 0.9821 }, { "start": 1152.46, "end": 1153.89, "probability": 0.8733 }, { "start": 1154.2, "end": 1156.65, "probability": 0.744 }, { "start": 1157.94, "end": 1159.44, "probability": 0.9951 }, { "start": 1159.86, "end": 1160.88, "probability": 0.8518 }, { "start": 1161.8, "end": 1166.34, "probability": 0.9956 }, { "start": 1167.04, "end": 1168.2, "probability": 0.9385 }, { "start": 1169.22, "end": 1171.74, "probability": 0.9863 }, { "start": 1172.14, "end": 1173.6, "probability": 0.8697 }, { "start": 1174.58, "end": 1177.22, "probability": 0.9561 }, { "start": 1177.4, "end": 1180.64, "probability": 0.8515 }, { "start": 1180.84, "end": 1181.62, "probability": 0.9425 }, { "start": 1182.3, "end": 1183.08, "probability": 0.9873 }, { "start": 1184.46, "end": 1188.0, "probability": 0.9547 }, { "start": 1188.9, "end": 1189.67, "probability": 0.9249 }, { "start": 1190.08, "end": 1190.71, "probability": 0.3188 }, { "start": 1191.48, "end": 1191.9, "probability": 0.9839 }, { "start": 1192.46, "end": 1193.7, "probability": 0.9347 }, { "start": 1194.46, "end": 1196.86, "probability": 0.7983 }, { "start": 1197.58, "end": 1198.48, "probability": 0.9248 }, { "start": 1198.58, "end": 1199.92, "probability": 0.8621 }, { "start": 1201.83, "end": 1203.74, "probability": 0.856 }, { "start": 1205.12, "end": 1208.08, "probability": 0.9293 }, { "start": 1209.02, "end": 1209.46, "probability": 0.7441 }, { "start": 1209.48, "end": 1209.8, "probability": 0.7523 }, { "start": 1209.92, "end": 1210.76, "probability": 0.5424 }, { "start": 1210.98, "end": 1214.3, "probability": 0.9056 }, { "start": 1215.02, "end": 1215.66, "probability": 0.7986 }, { "start": 1216.34, "end": 1217.88, "probability": 0.622 }, { "start": 1217.98, "end": 1220.57, "probability": 0.8524 }, { "start": 1221.74, "end": 1225.88, "probability": 0.9725 }, { "start": 1225.88, "end": 1227.84, "probability": 0.6148 }, { "start": 1227.84, "end": 1228.28, "probability": 0.4078 }, { "start": 1228.46, "end": 1230.32, "probability": 0.7039 }, { "start": 1231.72, "end": 1233.62, "probability": 0.8888 }, { "start": 1234.02, "end": 1236.98, "probability": 0.9717 }, { "start": 1237.78, "end": 1239.26, "probability": 0.9924 }, { "start": 1240.94, "end": 1242.68, "probability": 0.8944 }, { "start": 1244.54, "end": 1246.6, "probability": 0.9686 }, { "start": 1248.26, "end": 1250.0, "probability": 0.9822 }, { "start": 1250.84, "end": 1252.34, "probability": 0.9184 }, { "start": 1252.94, "end": 1254.96, "probability": 0.7799 }, { "start": 1255.2, "end": 1256.62, "probability": 0.8351 }, { "start": 1257.06, "end": 1257.84, "probability": 0.9635 }, { "start": 1258.06, "end": 1262.78, "probability": 0.927 }, { "start": 1262.9, "end": 1263.6, "probability": 0.6867 }, { "start": 1263.66, "end": 1266.56, "probability": 0.9993 }, { "start": 1267.64, "end": 1269.06, "probability": 0.8569 }, { "start": 1269.16, "end": 1272.62, "probability": 0.9736 }, { "start": 1273.1, "end": 1275.56, "probability": 0.9358 }, { "start": 1275.78, "end": 1277.57, "probability": 0.6701 }, { "start": 1278.36, "end": 1281.08, "probability": 0.9945 }, { "start": 1281.54, "end": 1283.24, "probability": 0.8944 }, { "start": 1283.8, "end": 1285.52, "probability": 0.8718 }, { "start": 1285.62, "end": 1286.16, "probability": 0.8949 }, { "start": 1286.44, "end": 1287.56, "probability": 0.969 }, { "start": 1287.66, "end": 1288.64, "probability": 0.8521 }, { "start": 1289.62, "end": 1297.78, "probability": 0.8008 }, { "start": 1298.78, "end": 1300.88, "probability": 0.9514 }, { "start": 1301.42, "end": 1301.78, "probability": 0.5523 }, { "start": 1301.8, "end": 1304.86, "probability": 0.8194 }, { "start": 1305.74, "end": 1308.46, "probability": 0.9061 }, { "start": 1309.22, "end": 1311.95, "probability": 0.8748 }, { "start": 1312.58, "end": 1313.18, "probability": 0.8606 }, { "start": 1313.7, "end": 1314.84, "probability": 0.5632 }, { "start": 1314.98, "end": 1316.66, "probability": 0.8792 }, { "start": 1317.26, "end": 1317.7, "probability": 0.7969 }, { "start": 1319.28, "end": 1320.67, "probability": 0.9721 }, { "start": 1321.12, "end": 1323.74, "probability": 0.874 }, { "start": 1324.38, "end": 1327.12, "probability": 0.6154 }, { "start": 1328.68, "end": 1328.92, "probability": 0.0234 }, { "start": 1328.92, "end": 1330.27, "probability": 0.5825 }, { "start": 1330.52, "end": 1333.12, "probability": 0.9807 }, { "start": 1334.8, "end": 1335.84, "probability": 0.9818 }, { "start": 1336.96, "end": 1339.94, "probability": 0.8677 }, { "start": 1340.68, "end": 1343.16, "probability": 0.9968 }, { "start": 1343.16, "end": 1345.36, "probability": 0.9891 }, { "start": 1346.26, "end": 1347.9, "probability": 0.9811 }, { "start": 1349.38, "end": 1350.66, "probability": 0.5763 }, { "start": 1351.44, "end": 1352.1, "probability": 0.6322 }, { "start": 1352.7, "end": 1354.68, "probability": 0.8983 }, { "start": 1355.54, "end": 1356.8, "probability": 0.9519 }, { "start": 1357.66, "end": 1358.64, "probability": 0.8198 }, { "start": 1359.78, "end": 1361.9, "probability": 0.9053 }, { "start": 1363.66, "end": 1366.66, "probability": 0.9937 }, { "start": 1367.34, "end": 1368.06, "probability": 0.9552 }, { "start": 1370.36, "end": 1372.36, "probability": 0.9652 }, { "start": 1374.04, "end": 1376.82, "probability": 0.8468 }, { "start": 1377.02, "end": 1378.2, "probability": 0.6234 }, { "start": 1379.22, "end": 1379.64, "probability": 0.73 }, { "start": 1381.13, "end": 1381.76, "probability": 0.6331 }, { "start": 1381.92, "end": 1383.44, "probability": 0.9846 }, { "start": 1383.52, "end": 1385.18, "probability": 0.8796 }, { "start": 1385.18, "end": 1386.26, "probability": 0.8773 }, { "start": 1386.44, "end": 1387.08, "probability": 0.9877 }, { "start": 1388.7, "end": 1390.7, "probability": 0.9526 }, { "start": 1390.92, "end": 1392.06, "probability": 0.9618 }, { "start": 1392.42, "end": 1392.92, "probability": 0.6984 }, { "start": 1393.52, "end": 1395.58, "probability": 0.7026 }, { "start": 1395.64, "end": 1397.88, "probability": 0.9189 }, { "start": 1398.42, "end": 1399.58, "probability": 0.9131 }, { "start": 1400.68, "end": 1401.82, "probability": 0.7006 }, { "start": 1402.14, "end": 1403.64, "probability": 0.8265 }, { "start": 1403.82, "end": 1404.32, "probability": 0.0803 }, { "start": 1404.98, "end": 1406.28, "probability": 0.809 }, { "start": 1407.06, "end": 1409.24, "probability": 0.9763 }, { "start": 1410.52, "end": 1413.32, "probability": 0.9312 }, { "start": 1413.48, "end": 1414.48, "probability": 0.9851 }, { "start": 1414.8, "end": 1415.68, "probability": 0.9497 }, { "start": 1416.5, "end": 1417.94, "probability": 0.9977 }, { "start": 1418.52, "end": 1420.14, "probability": 0.9122 }, { "start": 1421.34, "end": 1423.14, "probability": 0.6806 }, { "start": 1427.82, "end": 1429.7, "probability": 0.3227 }, { "start": 1429.82, "end": 1432.14, "probability": 0.0721 }, { "start": 1432.26, "end": 1434.04, "probability": 0.074 }, { "start": 1434.72, "end": 1435.18, "probability": 0.8669 }, { "start": 1435.64, "end": 1436.36, "probability": 0.6008 }, { "start": 1436.48, "end": 1440.72, "probability": 0.6818 }, { "start": 1440.72, "end": 1441.74, "probability": 0.0875 }, { "start": 1442.72, "end": 1443.36, "probability": 0.9414 }, { "start": 1443.98, "end": 1446.0, "probability": 0.8153 }, { "start": 1446.94, "end": 1447.04, "probability": 0.9114 }, { "start": 1447.36, "end": 1447.78, "probability": 0.9434 }, { "start": 1448.46, "end": 1448.72, "probability": 0.6467 }, { "start": 1452.19, "end": 1454.2, "probability": 0.9471 }, { "start": 1455.12, "end": 1456.12, "probability": 0.8896 }, { "start": 1457.38, "end": 1459.32, "probability": 0.8921 }, { "start": 1460.12, "end": 1462.9, "probability": 0.9976 }, { "start": 1463.68, "end": 1467.5, "probability": 0.9888 }, { "start": 1468.1, "end": 1469.26, "probability": 0.8148 }, { "start": 1470.7, "end": 1471.54, "probability": 0.8409 }, { "start": 1472.84, "end": 1474.58, "probability": 0.8473 }, { "start": 1474.68, "end": 1477.66, "probability": 0.7869 }, { "start": 1478.36, "end": 1478.54, "probability": 0.7071 }, { "start": 1478.74, "end": 1480.2, "probability": 0.6872 }, { "start": 1480.32, "end": 1482.98, "probability": 0.9593 }, { "start": 1483.8, "end": 1484.62, "probability": 0.7825 }, { "start": 1484.88, "end": 1489.08, "probability": 0.9119 }, { "start": 1489.66, "end": 1491.48, "probability": 0.7755 }, { "start": 1492.06, "end": 1492.82, "probability": 0.9021 }, { "start": 1493.44, "end": 1496.24, "probability": 0.4132 }, { "start": 1496.48, "end": 1497.0, "probability": 0.8015 }, { "start": 1497.96, "end": 1501.34, "probability": 0.9091 }, { "start": 1502.02, "end": 1504.56, "probability": 0.9084 }, { "start": 1505.7, "end": 1507.12, "probability": 0.9648 }, { "start": 1508.36, "end": 1508.92, "probability": 0.9806 }, { "start": 1509.5, "end": 1510.68, "probability": 0.9899 }, { "start": 1511.3, "end": 1512.06, "probability": 0.8699 }, { "start": 1513.14, "end": 1514.48, "probability": 0.7503 }, { "start": 1515.37, "end": 1517.56, "probability": 0.7466 }, { "start": 1518.42, "end": 1520.22, "probability": 0.8922 }, { "start": 1520.42, "end": 1521.44, "probability": 0.7864 }, { "start": 1522.28, "end": 1524.28, "probability": 0.9785 }, { "start": 1524.72, "end": 1528.44, "probability": 0.9835 }, { "start": 1529.7, "end": 1530.18, "probability": 0.3335 }, { "start": 1530.28, "end": 1531.22, "probability": 0.8992 }, { "start": 1531.34, "end": 1532.28, "probability": 0.9495 }, { "start": 1532.78, "end": 1533.86, "probability": 0.7451 }, { "start": 1534.54, "end": 1535.16, "probability": 0.7696 }, { "start": 1535.28, "end": 1538.26, "probability": 0.9812 }, { "start": 1538.42, "end": 1539.78, "probability": 0.9072 }, { "start": 1540.22, "end": 1540.8, "probability": 0.4922 }, { "start": 1541.44, "end": 1542.42, "probability": 0.6106 }, { "start": 1542.48, "end": 1543.66, "probability": 0.947 }, { "start": 1543.78, "end": 1544.78, "probability": 0.899 }, { "start": 1545.44, "end": 1546.45, "probability": 0.8982 }, { "start": 1546.94, "end": 1549.48, "probability": 0.991 }, { "start": 1550.44, "end": 1550.78, "probability": 0.508 }, { "start": 1551.34, "end": 1552.44, "probability": 0.9182 }, { "start": 1553.22, "end": 1555.1, "probability": 0.9897 }, { "start": 1555.9, "end": 1557.4, "probability": 0.99 }, { "start": 1557.88, "end": 1559.8, "probability": 0.99 }, { "start": 1560.94, "end": 1562.52, "probability": 0.9588 }, { "start": 1565.26, "end": 1566.14, "probability": 0.9256 }, { "start": 1566.42, "end": 1569.18, "probability": 0.9863 }, { "start": 1569.32, "end": 1571.84, "probability": 0.913 }, { "start": 1572.44, "end": 1574.64, "probability": 0.9054 }, { "start": 1574.8, "end": 1576.54, "probability": 0.8532 }, { "start": 1577.46, "end": 1578.28, "probability": 0.9974 }, { "start": 1578.88, "end": 1581.08, "probability": 0.8436 }, { "start": 1581.78, "end": 1584.7, "probability": 0.884 }, { "start": 1585.7, "end": 1589.14, "probability": 0.9925 }, { "start": 1590.08, "end": 1590.4, "probability": 0.6073 }, { "start": 1591.08, "end": 1594.94, "probability": 0.998 }, { "start": 1595.48, "end": 1598.12, "probability": 0.9835 }, { "start": 1599.1, "end": 1600.3, "probability": 0.9829 }, { "start": 1600.48, "end": 1601.16, "probability": 0.9503 }, { "start": 1601.52, "end": 1605.82, "probability": 0.9836 }, { "start": 1606.24, "end": 1607.28, "probability": 0.9501 }, { "start": 1608.8, "end": 1608.9, "probability": 0.9709 }, { "start": 1609.44, "end": 1610.54, "probability": 0.701 }, { "start": 1611.44, "end": 1613.66, "probability": 0.9829 }, { "start": 1614.34, "end": 1617.16, "probability": 0.9951 }, { "start": 1618.3, "end": 1621.96, "probability": 0.9176 }, { "start": 1622.72, "end": 1623.84, "probability": 0.9762 }, { "start": 1624.46, "end": 1626.16, "probability": 0.9355 }, { "start": 1626.8, "end": 1631.26, "probability": 0.9958 }, { "start": 1632.22, "end": 1634.32, "probability": 0.946 }, { "start": 1635.18, "end": 1637.68, "probability": 0.7796 }, { "start": 1637.92, "end": 1638.5, "probability": 0.1365 }, { "start": 1638.5, "end": 1640.4, "probability": 0.6749 }, { "start": 1641.1, "end": 1643.54, "probability": 0.3988 }, { "start": 1650.03, "end": 1650.96, "probability": 0.0325 }, { "start": 1650.96, "end": 1650.96, "probability": 0.0178 }, { "start": 1650.96, "end": 1652.96, "probability": 0.2333 }, { "start": 1653.12, "end": 1654.14, "probability": 0.688 }, { "start": 1654.92, "end": 1656.34, "probability": 0.9797 }, { "start": 1657.18, "end": 1659.36, "probability": 0.9862 }, { "start": 1659.42, "end": 1659.88, "probability": 0.0919 }, { "start": 1660.78, "end": 1661.14, "probability": 0.7656 }, { "start": 1661.34, "end": 1662.56, "probability": 0.4751 }, { "start": 1664.04, "end": 1665.24, "probability": 0.2439 }, { "start": 1665.58, "end": 1667.88, "probability": 0.9873 }, { "start": 1669.9, "end": 1670.91, "probability": 0.8964 }, { "start": 1671.36, "end": 1673.34, "probability": 0.9976 }, { "start": 1673.98, "end": 1674.8, "probability": 0.3347 }, { "start": 1674.9, "end": 1677.48, "probability": 0.866 }, { "start": 1677.92, "end": 1680.74, "probability": 0.9706 }, { "start": 1682.28, "end": 1683.22, "probability": 0.4991 }, { "start": 1683.58, "end": 1685.1, "probability": 0.6481 }, { "start": 1685.3, "end": 1685.81, "probability": 0.8188 }, { "start": 1687.46, "end": 1688.88, "probability": 0.2976 }, { "start": 1688.96, "end": 1688.98, "probability": 0.2985 }, { "start": 1688.98, "end": 1690.36, "probability": 0.9435 }, { "start": 1691.38, "end": 1692.54, "probability": 0.8414 }, { "start": 1693.46, "end": 1695.07, "probability": 0.9973 }, { "start": 1696.24, "end": 1698.16, "probability": 0.9124 }, { "start": 1698.22, "end": 1701.86, "probability": 0.9862 }, { "start": 1702.04, "end": 1702.04, "probability": 0.0028 }, { "start": 1702.58, "end": 1706.12, "probability": 0.9937 }, { "start": 1706.24, "end": 1707.83, "probability": 0.9907 }, { "start": 1708.74, "end": 1710.42, "probability": 0.9906 }, { "start": 1711.12, "end": 1711.86, "probability": 0.842 }, { "start": 1712.92, "end": 1714.41, "probability": 0.9666 }, { "start": 1715.22, "end": 1716.08, "probability": 0.9573 }, { "start": 1716.68, "end": 1717.22, "probability": 0.7784 }, { "start": 1717.32, "end": 1718.24, "probability": 0.6578 }, { "start": 1718.76, "end": 1723.08, "probability": 0.9945 }, { "start": 1723.64, "end": 1724.76, "probability": 0.6148 }, { "start": 1725.22, "end": 1725.86, "probability": 0.7053 }, { "start": 1725.88, "end": 1727.0, "probability": 0.7446 }, { "start": 1727.12, "end": 1729.44, "probability": 0.8729 }, { "start": 1730.42, "end": 1735.18, "probability": 0.8583 }, { "start": 1735.42, "end": 1735.42, "probability": 0.0009 }, { "start": 1735.42, "end": 1736.16, "probability": 0.5618 }, { "start": 1736.18, "end": 1737.44, "probability": 0.0789 }, { "start": 1737.74, "end": 1738.52, "probability": 0.4714 }, { "start": 1738.6, "end": 1740.26, "probability": 0.9983 }, { "start": 1741.04, "end": 1741.7, "probability": 0.6105 }, { "start": 1741.8, "end": 1742.94, "probability": 0.9496 }, { "start": 1743.14, "end": 1744.41, "probability": 0.8162 }, { "start": 1744.82, "end": 1748.46, "probability": 0.8397 }, { "start": 1748.86, "end": 1751.34, "probability": 0.9043 }, { "start": 1752.0, "end": 1752.52, "probability": 0.6074 }, { "start": 1753.24, "end": 1753.7, "probability": 0.965 }, { "start": 1754.52, "end": 1755.92, "probability": 0.9923 }, { "start": 1756.48, "end": 1756.94, "probability": 0.7137 }, { "start": 1757.88, "end": 1760.06, "probability": 0.9971 }, { "start": 1760.8, "end": 1763.4, "probability": 0.9499 }, { "start": 1764.66, "end": 1766.98, "probability": 0.8081 }, { "start": 1767.42, "end": 1768.56, "probability": 0.9698 }, { "start": 1769.16, "end": 1771.5, "probability": 0.9873 }, { "start": 1771.5, "end": 1774.18, "probability": 0.9849 }, { "start": 1774.22, "end": 1774.82, "probability": 0.6791 }, { "start": 1775.76, "end": 1777.26, "probability": 0.7465 }, { "start": 1781.5, "end": 1782.2, "probability": 0.114 }, { "start": 1782.2, "end": 1784.57, "probability": 0.1433 }, { "start": 1785.2, "end": 1786.1, "probability": 0.1493 }, { "start": 1786.38, "end": 1786.8, "probability": 0.056 }, { "start": 1787.48, "end": 1787.48, "probability": 0.2316 }, { "start": 1787.48, "end": 1788.95, "probability": 0.6583 }, { "start": 1791.8, "end": 1792.68, "probability": 0.8671 }, { "start": 1792.86, "end": 1793.66, "probability": 0.9818 }, { "start": 1794.06, "end": 1795.68, "probability": 0.9709 }, { "start": 1796.56, "end": 1800.14, "probability": 0.9702 }, { "start": 1800.16, "end": 1800.78, "probability": 0.4829 }, { "start": 1800.78, "end": 1803.84, "probability": 0.9056 }, { "start": 1804.38, "end": 1805.92, "probability": 0.9943 }, { "start": 1806.72, "end": 1811.82, "probability": 0.9936 }, { "start": 1811.88, "end": 1812.92, "probability": 0.4886 }, { "start": 1813.04, "end": 1814.54, "probability": 0.8296 }, { "start": 1815.64, "end": 1816.52, "probability": 0.5341 }, { "start": 1817.16, "end": 1817.58, "probability": 0.9467 }, { "start": 1818.12, "end": 1819.48, "probability": 0.9984 }, { "start": 1820.32, "end": 1825.38, "probability": 0.8913 }, { "start": 1825.6, "end": 1828.28, "probability": 0.998 }, { "start": 1828.28, "end": 1834.08, "probability": 0.9953 }, { "start": 1834.14, "end": 1837.04, "probability": 0.9917 }, { "start": 1837.58, "end": 1838.74, "probability": 0.8516 }, { "start": 1839.52, "end": 1841.92, "probability": 0.7622 }, { "start": 1842.08, "end": 1843.28, "probability": 0.8698 }, { "start": 1843.92, "end": 1845.32, "probability": 0.9626 }, { "start": 1846.3, "end": 1850.68, "probability": 0.9546 }, { "start": 1850.76, "end": 1851.4, "probability": 0.8461 }, { "start": 1852.82, "end": 1852.98, "probability": 0.0469 }, { "start": 1852.98, "end": 1854.17, "probability": 0.8531 }, { "start": 1855.2, "end": 1855.54, "probability": 0.7585 }, { "start": 1855.64, "end": 1856.16, "probability": 0.8237 }, { "start": 1856.38, "end": 1857.14, "probability": 0.896 }, { "start": 1857.22, "end": 1858.88, "probability": 0.8403 }, { "start": 1858.92, "end": 1860.14, "probability": 0.6364 }, { "start": 1861.74, "end": 1867.3, "probability": 0.9739 }, { "start": 1867.58, "end": 1869.32, "probability": 0.816 }, { "start": 1870.2, "end": 1872.78, "probability": 0.8498 }, { "start": 1873.44, "end": 1873.58, "probability": 0.2656 }, { "start": 1874.42, "end": 1876.7, "probability": 0.8752 }, { "start": 1876.86, "end": 1879.5, "probability": 0.4083 }, { "start": 1879.88, "end": 1880.78, "probability": 0.8991 }, { "start": 1881.12, "end": 1883.06, "probability": 0.9783 }, { "start": 1884.06, "end": 1885.6, "probability": 0.603 }, { "start": 1886.48, "end": 1887.66, "probability": 0.8881 }, { "start": 1888.66, "end": 1890.84, "probability": 0.9182 }, { "start": 1891.56, "end": 1892.84, "probability": 0.9776 }, { "start": 1893.04, "end": 1894.44, "probability": 0.9673 }, { "start": 1894.8, "end": 1896.5, "probability": 0.7412 }, { "start": 1897.12, "end": 1899.84, "probability": 0.8983 }, { "start": 1900.64, "end": 1904.8, "probability": 0.8501 }, { "start": 1906.3, "end": 1907.46, "probability": 0.7538 }, { "start": 1907.46, "end": 1907.5, "probability": 0.4903 }, { "start": 1907.62, "end": 1908.62, "probability": 0.9747 }, { "start": 1908.98, "end": 1909.68, "probability": 0.3284 }, { "start": 1909.8, "end": 1911.12, "probability": 0.0682 }, { "start": 1911.12, "end": 1912.24, "probability": 0.3986 }, { "start": 1912.66, "end": 1915.94, "probability": 0.3376 }, { "start": 1915.98, "end": 1917.8, "probability": 0.1817 }, { "start": 1919.06, "end": 1919.93, "probability": 0.2904 }, { "start": 1922.1, "end": 1922.38, "probability": 0.0719 }, { "start": 1922.64, "end": 1924.1, "probability": 0.762 }, { "start": 1924.7, "end": 1927.45, "probability": 0.9838 }, { "start": 1929.06, "end": 1930.52, "probability": 0.4431 }, { "start": 1930.56, "end": 1932.44, "probability": 0.8866 }, { "start": 1933.1, "end": 1933.78, "probability": 0.6995 }, { "start": 1934.42, "end": 1934.94, "probability": 0.3758 }, { "start": 1936.24, "end": 1937.07, "probability": 0.97 }, { "start": 1937.46, "end": 1938.52, "probability": 0.8766 }, { "start": 1938.88, "end": 1940.46, "probability": 0.8945 }, { "start": 1941.06, "end": 1941.8, "probability": 0.5177 }, { "start": 1943.86, "end": 1944.16, "probability": 0.6152 }, { "start": 1945.84, "end": 1947.2, "probability": 0.1364 }, { "start": 1947.36, "end": 1948.74, "probability": 0.019 }, { "start": 1949.06, "end": 1949.06, "probability": 0.0353 }, { "start": 1949.1, "end": 1952.04, "probability": 0.9917 }, { "start": 1952.72, "end": 1954.28, "probability": 0.8862 }, { "start": 1954.28, "end": 1956.26, "probability": 0.9954 }, { "start": 1956.84, "end": 1957.94, "probability": 0.9933 }, { "start": 1958.76, "end": 1961.84, "probability": 0.6598 }, { "start": 1962.0, "end": 1962.0, "probability": 0.0023 }, { "start": 1962.0, "end": 1964.0, "probability": 0.9932 }, { "start": 1964.5, "end": 1965.84, "probability": 0.3604 }, { "start": 1966.64, "end": 1966.84, "probability": 0.3833 }, { "start": 1966.84, "end": 1967.52, "probability": 0.2067 }, { "start": 1968.48, "end": 1971.82, "probability": 0.3615 }, { "start": 1972.44, "end": 1975.1, "probability": 0.0403 }, { "start": 1977.24, "end": 1977.24, "probability": 0.1066 }, { "start": 1977.24, "end": 1977.76, "probability": 0.2509 }, { "start": 1978.72, "end": 1979.86, "probability": 0.25 }, { "start": 1980.92, "end": 1983.62, "probability": 0.1452 }, { "start": 1984.24, "end": 1986.45, "probability": 0.6625 }, { "start": 1987.26, "end": 1988.5, "probability": 0.508 }, { "start": 1988.8, "end": 1992.1, "probability": 0.0115 }, { "start": 1992.38, "end": 1993.1, "probability": 0.2189 }, { "start": 1993.14, "end": 1994.36, "probability": 0.424 }, { "start": 1994.66, "end": 1995.46, "probability": 0.242 }, { "start": 1995.56, "end": 1997.22, "probability": 0.0086 }, { "start": 1998.08, "end": 1999.4, "probability": 0.1628 }, { "start": 2000.26, "end": 2000.76, "probability": 0.6389 }, { "start": 2001.38, "end": 2003.3, "probability": 0.0258 }, { "start": 2003.82, "end": 2004.8, "probability": 0.7386 }, { "start": 2005.2, "end": 2005.59, "probability": 0.8636 }, { "start": 2006.03, "end": 2007.37, "probability": 0.9948 }, { "start": 2007.83, "end": 2010.49, "probability": 0.6914 }, { "start": 2010.55, "end": 2013.05, "probability": 0.9508 }, { "start": 2013.35, "end": 2014.69, "probability": 0.7849 }, { "start": 2014.77, "end": 2015.51, "probability": 0.7302 }, { "start": 2015.93, "end": 2020.01, "probability": 0.8931 }, { "start": 2020.89, "end": 2022.91, "probability": 0.9012 }, { "start": 2023.45, "end": 2024.43, "probability": 0.735 }, { "start": 2024.71, "end": 2026.05, "probability": 0.8313 }, { "start": 2026.11, "end": 2027.17, "probability": 0.9297 }, { "start": 2027.73, "end": 2029.23, "probability": 0.935 }, { "start": 2029.87, "end": 2032.35, "probability": 0.6066 }, { "start": 2032.95, "end": 2034.55, "probability": 0.4363 }, { "start": 2034.93, "end": 2035.87, "probability": 0.9737 }, { "start": 2035.97, "end": 2036.79, "probability": 0.82 }, { "start": 2037.59, "end": 2038.21, "probability": 0.6906 }, { "start": 2038.25, "end": 2040.79, "probability": 0.9322 }, { "start": 2041.41, "end": 2045.19, "probability": 0.9645 }, { "start": 2046.23, "end": 2047.23, "probability": 0.3775 }, { "start": 2047.39, "end": 2050.35, "probability": 0.5535 }, { "start": 2050.39, "end": 2052.67, "probability": 0.804 }, { "start": 2053.29, "end": 2056.97, "probability": 0.9824 }, { "start": 2057.49, "end": 2058.73, "probability": 0.9937 }, { "start": 2059.19, "end": 2060.45, "probability": 0.4448 }, { "start": 2060.95, "end": 2062.47, "probability": 0.998 }, { "start": 2062.85, "end": 2065.03, "probability": 0.9417 }, { "start": 2066.29, "end": 2069.11, "probability": 0.4301 }, { "start": 2069.11, "end": 2071.74, "probability": 0.7717 }, { "start": 2072.17, "end": 2076.73, "probability": 0.9956 }, { "start": 2077.49, "end": 2079.13, "probability": 0.4056 }, { "start": 2079.79, "end": 2084.59, "probability": 0.3059 }, { "start": 2087.81, "end": 2091.11, "probability": 0.0519 }, { "start": 2091.11, "end": 2091.33, "probability": 0.1652 }, { "start": 2091.61, "end": 2091.91, "probability": 0.1109 }, { "start": 2091.97, "end": 2092.09, "probability": 0.1041 }, { "start": 2092.25, "end": 2092.25, "probability": 0.0294 }, { "start": 2092.35, "end": 2094.3, "probability": 0.1685 }, { "start": 2096.53, "end": 2096.73, "probability": 0.0204 }, { "start": 2096.95, "end": 2098.79, "probability": 0.153 }, { "start": 2099.29, "end": 2101.7, "probability": 0.2293 }, { "start": 2102.53, "end": 2103.13, "probability": 0.1074 }, { "start": 2103.13, "end": 2103.37, "probability": 0.1368 }, { "start": 2103.63, "end": 2103.71, "probability": 0.1009 }, { "start": 2103.71, "end": 2107.39, "probability": 0.0326 }, { "start": 2108.25, "end": 2111.59, "probability": 0.0624 }, { "start": 2111.59, "end": 2113.67, "probability": 0.1171 }, { "start": 2115.31, "end": 2118.59, "probability": 0.3425 }, { "start": 2119.31, "end": 2122.01, "probability": 0.0843 }, { "start": 2122.23, "end": 2123.71, "probability": 0.0512 }, { "start": 2123.71, "end": 2123.79, "probability": 0.0398 }, { "start": 2127.47, "end": 2131.61, "probability": 0.0456 }, { "start": 2139.0, "end": 2139.0, "probability": 0.0 }, { "start": 2139.0, "end": 2139.0, "probability": 0.0 }, { "start": 2139.0, "end": 2139.0, "probability": 0.0 }, { "start": 2139.0, "end": 2139.0, "probability": 0.0 }, { "start": 2139.0, "end": 2139.0, "probability": 0.0 }, { "start": 2139.0, "end": 2139.0, "probability": 0.0 }, { "start": 2139.0, "end": 2139.0, "probability": 0.0 }, { "start": 2139.0, "end": 2139.0, "probability": 0.0 }, { "start": 2139.0, "end": 2139.0, "probability": 0.0 }, { "start": 2139.0, "end": 2139.0, "probability": 0.0 }, { "start": 2139.0, "end": 2139.0, "probability": 0.0 }, { "start": 2139.0, "end": 2139.0, "probability": 0.0 }, { "start": 2139.0, "end": 2139.0, "probability": 0.0 }, { "start": 2139.0, "end": 2139.0, "probability": 0.0 }, { "start": 2139.0, "end": 2139.0, "probability": 0.0 }, { "start": 2139.0, "end": 2139.0, "probability": 0.0 }, { "start": 2139.0, "end": 2139.0, "probability": 0.0 }, { "start": 2139.0, "end": 2139.0, "probability": 0.0 }, { "start": 2139.0, "end": 2139.0, "probability": 0.0 }, { "start": 2139.0, "end": 2139.0, "probability": 0.0 }, { "start": 2139.0, "end": 2139.0, "probability": 0.0 }, { "start": 2139.0, "end": 2139.0, "probability": 0.0 }, { "start": 2139.0, "end": 2139.0, "probability": 0.0 }, { "start": 2139.0, "end": 2139.0, "probability": 0.0 }, { "start": 2139.0, "end": 2139.0, "probability": 0.0 }, { "start": 2139.0, "end": 2139.0, "probability": 0.0 }, { "start": 2139.0, "end": 2139.0, "probability": 0.0 }, { "start": 2139.0, "end": 2139.0, "probability": 0.0 }, { "start": 2139.0, "end": 2139.0, "probability": 0.0 }, { "start": 2139.0, "end": 2139.0, "probability": 0.0 }, { "start": 2139.0, "end": 2139.0, "probability": 0.0 }, { "start": 2139.0, "end": 2139.0, "probability": 0.0 }, { "start": 2139.0, "end": 2139.0, "probability": 0.0 }, { "start": 2139.0, "end": 2139.0, "probability": 0.0 }, { "start": 2139.0, "end": 2139.0, "probability": 0.0 }, { "start": 2139.0, "end": 2139.0, "probability": 0.0 }, { "start": 2139.0, "end": 2139.0, "probability": 0.0 }, { "start": 2139.24, "end": 2139.86, "probability": 0.2148 }, { "start": 2140.98, "end": 2145.94, "probability": 0.9867 }, { "start": 2145.94, "end": 2147.5, "probability": 0.4479 }, { "start": 2148.14, "end": 2151.06, "probability": 0.9509 }, { "start": 2151.06, "end": 2153.66, "probability": 0.9874 }, { "start": 2153.98, "end": 2155.74, "probability": 0.8413 }, { "start": 2155.84, "end": 2156.16, "probability": 0.7005 }, { "start": 2156.6, "end": 2157.0, "probability": 0.5034 }, { "start": 2157.1, "end": 2163.06, "probability": 0.8286 }, { "start": 2163.66, "end": 2168.22, "probability": 0.8091 }, { "start": 2168.24, "end": 2176.78, "probability": 0.9024 }, { "start": 2177.12, "end": 2178.5, "probability": 0.5911 }, { "start": 2178.7, "end": 2178.94, "probability": 0.8219 }, { "start": 2179.38, "end": 2180.1, "probability": 0.6312 }, { "start": 2183.4, "end": 2185.72, "probability": 0.7817 }, { "start": 2186.94, "end": 2188.0, "probability": 0.833 }, { "start": 2188.48, "end": 2189.2, "probability": 0.7241 }, { "start": 2189.44, "end": 2192.18, "probability": 0.9792 }, { "start": 2192.72, "end": 2194.04, "probability": 0.9376 }, { "start": 2194.62, "end": 2197.98, "probability": 0.745 }, { "start": 2198.1, "end": 2199.02, "probability": 0.7713 }, { "start": 2199.68, "end": 2200.06, "probability": 0.3207 }, { "start": 2200.58, "end": 2200.98, "probability": 0.8793 }, { "start": 2203.04, "end": 2205.48, "probability": 0.9948 }, { "start": 2207.02, "end": 2214.42, "probability": 0.9885 }, { "start": 2214.72, "end": 2218.95, "probability": 0.996 }, { "start": 2219.38, "end": 2222.86, "probability": 0.9009 }, { "start": 2222.96, "end": 2223.66, "probability": 0.6333 }, { "start": 2224.24, "end": 2225.4, "probability": 0.2381 }, { "start": 2225.42, "end": 2226.76, "probability": 0.4658 }, { "start": 2227.36, "end": 2229.68, "probability": 0.9985 }, { "start": 2230.22, "end": 2231.64, "probability": 0.9578 }, { "start": 2232.62, "end": 2235.36, "probability": 0.0651 }, { "start": 2235.36, "end": 2237.88, "probability": 0.1479 }, { "start": 2238.28, "end": 2241.28, "probability": 0.3121 }, { "start": 2241.52, "end": 2242.94, "probability": 0.5456 }, { "start": 2243.42, "end": 2243.64, "probability": 0.0039 }, { "start": 2244.58, "end": 2246.94, "probability": 0.9606 }, { "start": 2247.12, "end": 2248.2, "probability": 0.1306 }, { "start": 2248.6, "end": 2249.82, "probability": 0.8944 }, { "start": 2250.04, "end": 2250.54, "probability": 0.7957 }, { "start": 2251.12, "end": 2252.6, "probability": 0.8472 }, { "start": 2252.79, "end": 2254.24, "probability": 0.8662 }, { "start": 2254.92, "end": 2256.36, "probability": 0.71 }, { "start": 2256.8, "end": 2257.1, "probability": 0.1991 }, { "start": 2257.22, "end": 2258.26, "probability": 0.2432 }, { "start": 2258.7, "end": 2259.42, "probability": 0.0959 }, { "start": 2259.58, "end": 2262.2, "probability": 0.9347 }, { "start": 2262.6, "end": 2264.06, "probability": 0.7959 }, { "start": 2264.54, "end": 2267.4, "probability": 0.6914 }, { "start": 2268.1, "end": 2268.68, "probability": 0.6054 }, { "start": 2270.72, "end": 2271.18, "probability": 0.9801 }, { "start": 2272.62, "end": 2274.32, "probability": 0.9793 }, { "start": 2275.28, "end": 2278.0, "probability": 0.9904 }, { "start": 2278.24, "end": 2280.56, "probability": 0.728 }, { "start": 2281.08, "end": 2282.04, "probability": 0.8991 }, { "start": 2285.82, "end": 2287.46, "probability": 0.591 }, { "start": 2288.62, "end": 2291.78, "probability": 0.6134 }, { "start": 2292.06, "end": 2293.06, "probability": 0.1176 }, { "start": 2293.12, "end": 2294.16, "probability": 0.5706 }, { "start": 2294.18, "end": 2298.08, "probability": 0.9298 }, { "start": 2298.7, "end": 2303.85, "probability": 0.9376 }, { "start": 2304.98, "end": 2309.68, "probability": 0.9821 }, { "start": 2311.27, "end": 2318.62, "probability": 0.9722 }, { "start": 2319.14, "end": 2321.46, "probability": 0.8142 }, { "start": 2321.62, "end": 2326.34, "probability": 0.9375 }, { "start": 2326.6, "end": 2328.32, "probability": 0.9852 }, { "start": 2328.92, "end": 2329.06, "probability": 0.9988 }, { "start": 2329.74, "end": 2332.66, "probability": 0.7992 }, { "start": 2333.62, "end": 2334.48, "probability": 0.7554 }, { "start": 2335.2, "end": 2339.7, "probability": 0.9784 }, { "start": 2341.94, "end": 2344.82, "probability": 0.9838 }, { "start": 2346.4, "end": 2347.9, "probability": 0.6664 }, { "start": 2348.36, "end": 2349.34, "probability": 0.4074 }, { "start": 2349.74, "end": 2351.06, "probability": 0.8859 }, { "start": 2351.78, "end": 2352.56, "probability": 0.6329 }, { "start": 2353.12, "end": 2354.02, "probability": 0.9399 }, { "start": 2354.88, "end": 2356.86, "probability": 0.9902 }, { "start": 2357.44, "end": 2363.35, "probability": 0.8777 }, { "start": 2364.12, "end": 2365.96, "probability": 0.8493 }, { "start": 2366.14, "end": 2368.18, "probability": 0.7352 }, { "start": 2368.62, "end": 2369.12, "probability": 0.897 }, { "start": 2369.64, "end": 2371.33, "probability": 0.8145 }, { "start": 2372.7, "end": 2378.04, "probability": 0.7246 }, { "start": 2378.14, "end": 2378.36, "probability": 0.719 }, { "start": 2378.52, "end": 2379.66, "probability": 0.8711 }, { "start": 2379.66, "end": 2380.92, "probability": 0.5969 }, { "start": 2381.14, "end": 2382.56, "probability": 0.6689 }, { "start": 2382.56, "end": 2383.04, "probability": 0.3168 }, { "start": 2383.44, "end": 2385.2, "probability": 0.9518 }, { "start": 2385.42, "end": 2387.0, "probability": 0.7928 }, { "start": 2387.3, "end": 2390.52, "probability": 0.9911 }, { "start": 2391.48, "end": 2395.56, "probability": 0.7978 }, { "start": 2395.9, "end": 2402.06, "probability": 0.9871 }, { "start": 2403.18, "end": 2404.86, "probability": 0.9193 }, { "start": 2405.62, "end": 2410.22, "probability": 0.9465 }, { "start": 2410.74, "end": 2411.76, "probability": 0.9453 }, { "start": 2412.76, "end": 2416.38, "probability": 0.9849 }, { "start": 2416.96, "end": 2423.36, "probability": 0.9598 }, { "start": 2424.08, "end": 2426.92, "probability": 0.9821 }, { "start": 2427.12, "end": 2429.76, "probability": 0.9042 }, { "start": 2430.1, "end": 2437.86, "probability": 0.9967 }, { "start": 2438.5, "end": 2442.52, "probability": 0.9385 }, { "start": 2442.88, "end": 2444.46, "probability": 0.7647 }, { "start": 2444.94, "end": 2446.92, "probability": 0.9658 }, { "start": 2447.42, "end": 2448.02, "probability": 0.9185 }, { "start": 2448.66, "end": 2451.18, "probability": 0.9635 }, { "start": 2451.7, "end": 2452.4, "probability": 0.8622 }, { "start": 2452.66, "end": 2453.1, "probability": 0.6811 }, { "start": 2453.18, "end": 2458.7, "probability": 0.856 }, { "start": 2459.8, "end": 2460.7, "probability": 0.6556 }, { "start": 2461.04, "end": 2463.06, "probability": 0.9281 }, { "start": 2463.24, "end": 2464.18, "probability": 0.9678 }, { "start": 2464.38, "end": 2467.74, "probability": 0.9082 }, { "start": 2468.86, "end": 2470.82, "probability": 0.7042 }, { "start": 2471.04, "end": 2473.42, "probability": 0.8451 }, { "start": 2473.5, "end": 2479.56, "probability": 0.9925 }, { "start": 2481.0, "end": 2484.88, "probability": 0.9972 }, { "start": 2485.44, "end": 2490.66, "probability": 0.972 }, { "start": 2491.0, "end": 2497.74, "probability": 0.9445 }, { "start": 2498.84, "end": 2499.81, "probability": 0.9842 }, { "start": 2501.32, "end": 2503.32, "probability": 0.7852 }, { "start": 2503.6, "end": 2504.78, "probability": 0.8099 }, { "start": 2505.08, "end": 2506.64, "probability": 0.8584 }, { "start": 2507.3, "end": 2510.88, "probability": 0.8813 }, { "start": 2511.82, "end": 2515.5, "probability": 0.8797 }, { "start": 2515.7, "end": 2517.12, "probability": 0.9002 }, { "start": 2517.48, "end": 2519.42, "probability": 0.9727 }, { "start": 2519.8, "end": 2522.42, "probability": 0.9993 }, { "start": 2522.9, "end": 2524.5, "probability": 0.9426 }, { "start": 2525.74, "end": 2529.44, "probability": 0.999 }, { "start": 2530.0, "end": 2533.28, "probability": 0.9948 }, { "start": 2534.4, "end": 2538.78, "probability": 0.9926 }, { "start": 2539.2, "end": 2540.02, "probability": 0.8575 }, { "start": 2540.14, "end": 2545.32, "probability": 0.9756 }, { "start": 2545.9, "end": 2546.54, "probability": 0.9902 }, { "start": 2547.36, "end": 2547.82, "probability": 0.6864 }, { "start": 2548.86, "end": 2552.0, "probability": 0.7985 }, { "start": 2552.6, "end": 2556.14, "probability": 0.7938 }, { "start": 2556.74, "end": 2561.36, "probability": 0.9925 }, { "start": 2561.5, "end": 2564.14, "probability": 0.9979 }, { "start": 2564.32, "end": 2567.0, "probability": 0.8531 }, { "start": 2567.6, "end": 2568.0, "probability": 0.8257 }, { "start": 2568.82, "end": 2571.58, "probability": 0.9991 }, { "start": 2571.68, "end": 2572.96, "probability": 0.9893 }, { "start": 2573.5, "end": 2579.72, "probability": 0.9363 }, { "start": 2580.36, "end": 2582.24, "probability": 0.9815 }, { "start": 2583.16, "end": 2584.5, "probability": 0.9945 }, { "start": 2585.02, "end": 2590.98, "probability": 0.9886 }, { "start": 2592.3, "end": 2595.0, "probability": 0.9677 }, { "start": 2595.54, "end": 2597.2, "probability": 0.9297 }, { "start": 2598.24, "end": 2602.8, "probability": 0.9961 }, { "start": 2603.0, "end": 2605.32, "probability": 0.9492 }, { "start": 2605.84, "end": 2607.2, "probability": 0.9725 }, { "start": 2607.64, "end": 2609.28, "probability": 0.7791 }, { "start": 2609.72, "end": 2611.0, "probability": 0.6651 }, { "start": 2611.24, "end": 2611.76, "probability": 0.9272 }, { "start": 2612.52, "end": 2617.36, "probability": 0.8 }, { "start": 2617.92, "end": 2619.5, "probability": 0.9502 }, { "start": 2620.08, "end": 2624.76, "probability": 0.9204 }, { "start": 2625.42, "end": 2626.32, "probability": 0.9341 }, { "start": 2626.46, "end": 2627.32, "probability": 0.5951 }, { "start": 2627.56, "end": 2630.62, "probability": 0.9906 }, { "start": 2631.08, "end": 2633.0, "probability": 0.9932 }, { "start": 2633.6, "end": 2638.4, "probability": 0.8555 }, { "start": 2638.72, "end": 2639.46, "probability": 0.6674 }, { "start": 2639.82, "end": 2641.74, "probability": 0.9965 }, { "start": 2642.34, "end": 2644.04, "probability": 0.8735 }, { "start": 2644.6, "end": 2647.36, "probability": 0.9913 }, { "start": 2648.76, "end": 2653.22, "probability": 0.6407 }, { "start": 2654.33, "end": 2657.64, "probability": 0.5525 }, { "start": 2657.64, "end": 2660.2, "probability": 0.7617 }, { "start": 2660.84, "end": 2663.6, "probability": 0.973 }, { "start": 2663.8, "end": 2668.0, "probability": 0.9801 }, { "start": 2668.14, "end": 2669.84, "probability": 0.984 }, { "start": 2670.8, "end": 2673.26, "probability": 0.9257 }, { "start": 2673.88, "end": 2676.42, "probability": 0.993 }, { "start": 2676.68, "end": 2678.88, "probability": 0.8345 }, { "start": 2679.46, "end": 2680.84, "probability": 0.9915 }, { "start": 2681.42, "end": 2682.48, "probability": 0.9704 }, { "start": 2683.18, "end": 2688.24, "probability": 0.819 }, { "start": 2688.7, "end": 2692.96, "probability": 0.9928 }, { "start": 2693.22, "end": 2693.32, "probability": 0.3733 }, { "start": 2694.2, "end": 2695.04, "probability": 0.85 }, { "start": 2695.16, "end": 2697.28, "probability": 0.9935 }, { "start": 2697.84, "end": 2698.48, "probability": 0.6807 }, { "start": 2699.08, "end": 2700.08, "probability": 0.8027 }, { "start": 2701.0, "end": 2702.0, "probability": 0.7345 }, { "start": 2702.16, "end": 2704.72, "probability": 0.9108 }, { "start": 2704.86, "end": 2706.66, "probability": 0.989 }, { "start": 2707.74, "end": 2708.96, "probability": 0.9838 }, { "start": 2709.62, "end": 2711.12, "probability": 0.9893 }, { "start": 2711.66, "end": 2714.86, "probability": 0.9835 }, { "start": 2715.62, "end": 2715.92, "probability": 0.7001 }, { "start": 2716.7, "end": 2718.44, "probability": 0.9084 }, { "start": 2718.96, "end": 2720.32, "probability": 0.9036 }, { "start": 2720.9, "end": 2722.32, "probability": 0.9726 }, { "start": 2722.64, "end": 2724.48, "probability": 0.9115 }, { "start": 2724.76, "end": 2726.68, "probability": 0.3977 }, { "start": 2726.68, "end": 2727.4, "probability": 0.3553 }, { "start": 2727.92, "end": 2728.56, "probability": 0.6011 }, { "start": 2729.26, "end": 2738.38, "probability": 0.9819 }, { "start": 2738.9, "end": 2740.96, "probability": 0.9889 }, { "start": 2742.88, "end": 2744.42, "probability": 0.5707 }, { "start": 2744.84, "end": 2746.1, "probability": 0.758 }, { "start": 2746.44, "end": 2747.68, "probability": 0.9805 }, { "start": 2747.98, "end": 2749.52, "probability": 0.9989 }, { "start": 2749.84, "end": 2754.94, "probability": 0.9939 }, { "start": 2756.22, "end": 2757.78, "probability": 0.7891 }, { "start": 2758.22, "end": 2760.54, "probability": 0.9402 }, { "start": 2761.18, "end": 2763.82, "probability": 0.9954 }, { "start": 2763.96, "end": 2764.12, "probability": 0.8057 }, { "start": 2764.34, "end": 2768.56, "probability": 0.999 }, { "start": 2769.66, "end": 2773.22, "probability": 0.8672 }, { "start": 2773.62, "end": 2774.11, "probability": 0.8607 }, { "start": 2774.42, "end": 2776.66, "probability": 0.9697 }, { "start": 2777.94, "end": 2779.16, "probability": 0.9924 }, { "start": 2779.26, "end": 2780.64, "probability": 0.9966 }, { "start": 2781.08, "end": 2783.36, "probability": 0.9795 }, { "start": 2784.12, "end": 2786.84, "probability": 0.9728 }, { "start": 2787.76, "end": 2791.24, "probability": 0.9885 }, { "start": 2791.48, "end": 2792.26, "probability": 0.9354 }, { "start": 2793.0, "end": 2796.78, "probability": 0.8835 }, { "start": 2797.76, "end": 2800.96, "probability": 0.9653 }, { "start": 2802.14, "end": 2807.96, "probability": 0.9954 }, { "start": 2808.48, "end": 2809.96, "probability": 0.8951 }, { "start": 2811.0, "end": 2815.16, "probability": 0.8722 }, { "start": 2815.24, "end": 2819.16, "probability": 0.954 }, { "start": 2819.98, "end": 2821.12, "probability": 0.6062 }, { "start": 2821.68, "end": 2823.84, "probability": 0.8434 }, { "start": 2824.84, "end": 2828.44, "probability": 0.9383 }, { "start": 2829.4, "end": 2829.86, "probability": 0.8993 }, { "start": 2830.5, "end": 2832.8, "probability": 0.821 }, { "start": 2833.08, "end": 2837.18, "probability": 0.9688 }, { "start": 2837.88, "end": 2838.32, "probability": 0.8356 }, { "start": 2839.32, "end": 2842.12, "probability": 0.7424 }, { "start": 2842.28, "end": 2844.5, "probability": 0.8404 }, { "start": 2845.1, "end": 2847.32, "probability": 0.9224 }, { "start": 2848.14, "end": 2848.36, "probability": 0.6045 }, { "start": 2848.48, "end": 2849.92, "probability": 0.9974 }, { "start": 2850.32, "end": 2852.2, "probability": 0.9434 }, { "start": 2852.34, "end": 2853.28, "probability": 0.9894 }, { "start": 2853.86, "end": 2855.98, "probability": 0.9763 }, { "start": 2856.84, "end": 2862.2, "probability": 0.9427 }, { "start": 2863.08, "end": 2863.94, "probability": 0.945 }, { "start": 2864.58, "end": 2867.06, "probability": 0.9843 }, { "start": 2867.52, "end": 2869.98, "probability": 0.9968 }, { "start": 2870.4, "end": 2872.04, "probability": 0.763 }, { "start": 2875.74, "end": 2877.38, "probability": 0.8339 }, { "start": 2877.72, "end": 2879.08, "probability": 0.4569 }, { "start": 2879.36, "end": 2882.76, "probability": 0.9948 }, { "start": 2883.1, "end": 2883.28, "probability": 0.4204 }, { "start": 2883.6, "end": 2886.68, "probability": 0.9923 }, { "start": 2887.78, "end": 2888.46, "probability": 0.7638 }, { "start": 2888.58, "end": 2890.28, "probability": 0.7475 }, { "start": 2890.4, "end": 2891.76, "probability": 0.9226 }, { "start": 2891.94, "end": 2892.14, "probability": 0.5 }, { "start": 2892.24, "end": 2894.36, "probability": 0.7284 }, { "start": 2894.44, "end": 2900.28, "probability": 0.9644 }, { "start": 2900.54, "end": 2904.14, "probability": 0.9233 }, { "start": 2904.22, "end": 2906.06, "probability": 0.8947 }, { "start": 2907.1, "end": 2908.72, "probability": 0.7637 }, { "start": 2910.18, "end": 2911.02, "probability": 0.5526 }, { "start": 2911.26, "end": 2911.76, "probability": 0.4335 }, { "start": 2911.82, "end": 2914.17, "probability": 0.8544 }, { "start": 2920.3, "end": 2921.14, "probability": 0.5755 }, { "start": 2922.4, "end": 2923.56, "probability": 0.6679 }, { "start": 2924.4, "end": 2925.82, "probability": 0.7648 }, { "start": 2927.0, "end": 2928.38, "probability": 0.6743 }, { "start": 2929.44, "end": 2930.48, "probability": 0.9249 }, { "start": 2931.64, "end": 2933.02, "probability": 0.9429 }, { "start": 2934.76, "end": 2938.92, "probability": 0.9331 }, { "start": 2939.06, "end": 2941.16, "probability": 0.7998 }, { "start": 2942.42, "end": 2944.86, "probability": 0.9797 }, { "start": 2946.42, "end": 2949.06, "probability": 0.9581 }, { "start": 2949.28, "end": 2950.84, "probability": 0.8986 }, { "start": 2952.16, "end": 2952.9, "probability": 0.7203 }, { "start": 2953.38, "end": 2954.08, "probability": 0.6022 }, { "start": 2954.2, "end": 2956.37, "probability": 0.5114 }, { "start": 2958.12, "end": 2959.92, "probability": 0.8864 }, { "start": 2961.82, "end": 2964.5, "probability": 0.9946 }, { "start": 2966.54, "end": 2967.22, "probability": 0.7478 }, { "start": 2967.96, "end": 2969.86, "probability": 0.8053 }, { "start": 2971.14, "end": 2973.88, "probability": 0.9885 }, { "start": 2975.04, "end": 2977.3, "probability": 0.9697 }, { "start": 2978.3, "end": 2980.26, "probability": 0.9784 }, { "start": 2982.16, "end": 2989.62, "probability": 0.9883 }, { "start": 2989.92, "end": 2990.62, "probability": 0.4943 }, { "start": 2991.68, "end": 2994.6, "probability": 0.958 }, { "start": 2994.74, "end": 2995.98, "probability": 0.9946 }, { "start": 2997.12, "end": 2998.7, "probability": 0.9078 }, { "start": 2999.5, "end": 3001.14, "probability": 0.832 }, { "start": 3002.24, "end": 3002.64, "probability": 0.1174 }, { "start": 3002.64, "end": 3002.64, "probability": 0.1631 }, { "start": 3002.64, "end": 3003.94, "probability": 0.8412 }, { "start": 3005.38, "end": 3007.64, "probability": 0.7937 }, { "start": 3007.9, "end": 3009.76, "probability": 0.9823 }, { "start": 3009.86, "end": 3011.19, "probability": 0.9781 }, { "start": 3012.18, "end": 3018.0, "probability": 0.9766 }, { "start": 3018.94, "end": 3021.07, "probability": 0.5919 }, { "start": 3021.9, "end": 3024.32, "probability": 0.9656 }, { "start": 3024.36, "end": 3024.7, "probability": 0.427 }, { "start": 3025.32, "end": 3025.92, "probability": 0.9398 }, { "start": 3027.06, "end": 3029.26, "probability": 0.995 }, { "start": 3030.04, "end": 3031.79, "probability": 0.937 }, { "start": 3031.86, "end": 3034.18, "probability": 0.9839 }, { "start": 3035.3, "end": 3036.62, "probability": 0.5604 }, { "start": 3038.28, "end": 3041.64, "probability": 0.8243 }, { "start": 3041.72, "end": 3042.14, "probability": 0.6403 }, { "start": 3043.02, "end": 3044.88, "probability": 0.9929 }, { "start": 3045.86, "end": 3046.98, "probability": 0.9932 }, { "start": 3048.2, "end": 3050.28, "probability": 0.9622 }, { "start": 3050.84, "end": 3052.77, "probability": 0.8682 }, { "start": 3053.94, "end": 3055.8, "probability": 0.9897 }, { "start": 3055.88, "end": 3057.62, "probability": 0.903 }, { "start": 3059.24, "end": 3061.2, "probability": 0.9036 }, { "start": 3061.98, "end": 3063.54, "probability": 0.6619 }, { "start": 3064.12, "end": 3065.14, "probability": 0.9797 }, { "start": 3066.28, "end": 3068.54, "probability": 0.9952 }, { "start": 3069.42, "end": 3072.92, "probability": 0.8381 }, { "start": 3073.5, "end": 3074.4, "probability": 0.7488 }, { "start": 3075.2, "end": 3077.46, "probability": 0.9941 }, { "start": 3077.9, "end": 3079.48, "probability": 0.9919 }, { "start": 3080.64, "end": 3084.64, "probability": 0.9354 }, { "start": 3085.8, "end": 3088.04, "probability": 0.9791 }, { "start": 3089.02, "end": 3094.3, "probability": 0.9485 }, { "start": 3094.3, "end": 3097.22, "probability": 0.9983 }, { "start": 3099.68, "end": 3100.66, "probability": 0.9666 }, { "start": 3101.48, "end": 3104.28, "probability": 0.9308 }, { "start": 3105.48, "end": 3109.86, "probability": 0.9976 }, { "start": 3110.27, "end": 3113.2, "probability": 0.5657 }, { "start": 3113.98, "end": 3115.9, "probability": 0.958 }, { "start": 3116.54, "end": 3118.14, "probability": 0.9321 }, { "start": 3118.54, "end": 3120.42, "probability": 0.9937 }, { "start": 3120.92, "end": 3123.02, "probability": 0.9867 }, { "start": 3123.54, "end": 3125.32, "probability": 0.9667 }, { "start": 3125.46, "end": 3126.18, "probability": 0.8674 }, { "start": 3126.34, "end": 3127.01, "probability": 0.9909 }, { "start": 3127.94, "end": 3130.1, "probability": 0.9751 }, { "start": 3131.2, "end": 3131.82, "probability": 0.7339 }, { "start": 3132.5, "end": 3133.14, "probability": 0.4757 }, { "start": 3134.28, "end": 3135.24, "probability": 0.8275 }, { "start": 3136.24, "end": 3140.64, "probability": 0.9982 }, { "start": 3142.44, "end": 3145.6, "probability": 0.9816 }, { "start": 3146.76, "end": 3150.24, "probability": 0.8561 }, { "start": 3150.76, "end": 3151.76, "probability": 0.9414 }, { "start": 3151.9, "end": 3152.7, "probability": 0.969 }, { "start": 3153.46, "end": 3155.36, "probability": 0.9888 }, { "start": 3156.44, "end": 3159.16, "probability": 0.7352 }, { "start": 3159.24, "end": 3160.54, "probability": 0.9785 }, { "start": 3161.92, "end": 3162.68, "probability": 0.7235 }, { "start": 3163.56, "end": 3164.34, "probability": 0.9801 }, { "start": 3165.82, "end": 3166.54, "probability": 0.8294 }, { "start": 3168.02, "end": 3168.84, "probability": 0.9867 }, { "start": 3169.52, "end": 3172.26, "probability": 0.9362 }, { "start": 3173.46, "end": 3176.4, "probability": 0.8631 }, { "start": 3176.5, "end": 3178.08, "probability": 0.7653 }, { "start": 3178.62, "end": 3180.58, "probability": 0.7997 }, { "start": 3180.66, "end": 3184.18, "probability": 0.9231 }, { "start": 3186.36, "end": 3188.72, "probability": 0.9778 }, { "start": 3190.12, "end": 3195.74, "probability": 0.9284 }, { "start": 3195.98, "end": 3197.86, "probability": 0.9723 }, { "start": 3198.54, "end": 3200.44, "probability": 0.8257 }, { "start": 3201.18, "end": 3203.86, "probability": 0.9565 }, { "start": 3204.02, "end": 3204.74, "probability": 0.8768 }, { "start": 3204.86, "end": 3205.86, "probability": 0.7263 }, { "start": 3206.56, "end": 3209.16, "probability": 0.9236 }, { "start": 3209.68, "end": 3211.14, "probability": 0.9264 }, { "start": 3211.24, "end": 3213.42, "probability": 0.9906 }, { "start": 3213.64, "end": 3214.9, "probability": 0.7913 }, { "start": 3215.04, "end": 3216.28, "probability": 0.9834 }, { "start": 3217.2, "end": 3218.38, "probability": 0.9504 }, { "start": 3218.68, "end": 3221.0, "probability": 0.9691 }, { "start": 3222.52, "end": 3224.78, "probability": 0.9922 }, { "start": 3224.84, "end": 3228.28, "probability": 0.9236 }, { "start": 3228.78, "end": 3229.76, "probability": 0.7118 }, { "start": 3229.88, "end": 3230.88, "probability": 0.9978 }, { "start": 3231.42, "end": 3232.72, "probability": 0.9791 }, { "start": 3233.5, "end": 3234.39, "probability": 0.9487 }, { "start": 3235.48, "end": 3237.68, "probability": 0.8392 }, { "start": 3238.52, "end": 3239.12, "probability": 0.657 }, { "start": 3239.68, "end": 3242.5, "probability": 0.8825 }, { "start": 3243.06, "end": 3244.08, "probability": 0.9145 }, { "start": 3245.98, "end": 3248.72, "probability": 0.833 }, { "start": 3249.6, "end": 3253.16, "probability": 0.8987 }, { "start": 3253.76, "end": 3254.18, "probability": 0.9558 }, { "start": 3256.82, "end": 3257.52, "probability": 0.6287 }, { "start": 3258.58, "end": 3261.38, "probability": 0.7625 }, { "start": 3261.56, "end": 3264.04, "probability": 0.8221 }, { "start": 3265.04, "end": 3266.56, "probability": 0.8982 }, { "start": 3267.36, "end": 3271.82, "probability": 0.8335 }, { "start": 3271.88, "end": 3272.74, "probability": 0.5884 }, { "start": 3273.24, "end": 3274.72, "probability": 0.9133 }, { "start": 3276.16, "end": 3281.72, "probability": 0.8758 }, { "start": 3282.32, "end": 3283.62, "probability": 0.9971 }, { "start": 3284.42, "end": 3287.66, "probability": 0.9858 }, { "start": 3289.0, "end": 3291.58, "probability": 0.9551 }, { "start": 3292.34, "end": 3294.62, "probability": 0.9731 }, { "start": 3295.18, "end": 3297.14, "probability": 0.9133 }, { "start": 3298.28, "end": 3298.74, "probability": 0.7316 }, { "start": 3299.34, "end": 3300.0, "probability": 0.9956 }, { "start": 3300.08, "end": 3304.8, "probability": 0.9797 }, { "start": 3305.2, "end": 3308.7, "probability": 0.7263 }, { "start": 3309.26, "end": 3313.26, "probability": 0.8921 }, { "start": 3314.04, "end": 3316.74, "probability": 0.6573 }, { "start": 3317.72, "end": 3319.16, "probability": 0.9507 }, { "start": 3319.34, "end": 3321.21, "probability": 0.9703 }, { "start": 3321.52, "end": 3323.44, "probability": 0.9825 }, { "start": 3323.54, "end": 3324.22, "probability": 0.8582 }, { "start": 3325.32, "end": 3329.92, "probability": 0.957 }, { "start": 3330.04, "end": 3332.0, "probability": 0.999 }, { "start": 3332.88, "end": 3333.12, "probability": 0.9267 }, { "start": 3333.16, "end": 3337.86, "probability": 0.9666 }, { "start": 3337.96, "end": 3340.7, "probability": 0.0718 }, { "start": 3340.7, "end": 3346.42, "probability": 0.3524 }, { "start": 3346.96, "end": 3351.86, "probability": 0.9168 }, { "start": 3352.58, "end": 3354.34, "probability": 0.8756 }, { "start": 3354.42, "end": 3356.2, "probability": 0.8144 }, { "start": 3357.54, "end": 3357.94, "probability": 0.4972 }, { "start": 3358.08, "end": 3358.44, "probability": 0.6552 }, { "start": 3358.52, "end": 3359.49, "probability": 0.8169 }, { "start": 3359.62, "end": 3361.31, "probability": 0.5806 }, { "start": 3361.7, "end": 3363.54, "probability": 0.9871 }, { "start": 3364.12, "end": 3365.16, "probability": 0.9766 }, { "start": 3365.7, "end": 3368.76, "probability": 0.9427 }, { "start": 3369.38, "end": 3371.54, "probability": 0.9558 }, { "start": 3371.62, "end": 3372.56, "probability": 0.8375 }, { "start": 3372.74, "end": 3374.78, "probability": 0.9644 }, { "start": 3375.7, "end": 3377.07, "probability": 0.8359 }, { "start": 3377.96, "end": 3379.64, "probability": 0.9172 }, { "start": 3380.72, "end": 3382.82, "probability": 0.9597 }, { "start": 3383.48, "end": 3385.84, "probability": 0.9764 }, { "start": 3386.42, "end": 3386.9, "probability": 0.765 }, { "start": 3387.48, "end": 3388.94, "probability": 0.9567 }, { "start": 3389.4, "end": 3391.06, "probability": 0.9702 }, { "start": 3391.14, "end": 3394.3, "probability": 0.9834 }, { "start": 3394.9, "end": 3395.62, "probability": 0.8279 }, { "start": 3396.24, "end": 3396.78, "probability": 0.4946 }, { "start": 3397.4, "end": 3400.42, "probability": 0.9944 }, { "start": 3400.8, "end": 3401.42, "probability": 0.6338 }, { "start": 3401.78, "end": 3402.16, "probability": 0.2957 }, { "start": 3406.24, "end": 3409.96, "probability": 0.8006 }, { "start": 3411.74, "end": 3413.09, "probability": 0.8355 }, { "start": 3413.36, "end": 3415.6, "probability": 0.6414 }, { "start": 3416.94, "end": 3418.36, "probability": 0.6417 }, { "start": 3418.47, "end": 3422.2, "probability": 0.8486 }, { "start": 3422.34, "end": 3423.04, "probability": 0.0528 }, { "start": 3425.52, "end": 3426.36, "probability": 0.012 }, { "start": 3428.1, "end": 3429.72, "probability": 0.5433 }, { "start": 3432.58, "end": 3433.3, "probability": 0.5256 }, { "start": 3435.41, "end": 3439.58, "probability": 0.9399 }, { "start": 3440.28, "end": 3443.42, "probability": 0.9903 }, { "start": 3443.62, "end": 3445.38, "probability": 0.308 }, { "start": 3445.52, "end": 3447.42, "probability": 0.5166 }, { "start": 3448.42, "end": 3448.74, "probability": 0.811 }, { "start": 3449.38, "end": 3450.75, "probability": 0.9433 }, { "start": 3451.5, "end": 3455.2, "probability": 0.9373 }, { "start": 3456.3, "end": 3457.89, "probability": 0.9642 }, { "start": 3458.32, "end": 3460.32, "probability": 0.6735 }, { "start": 3460.4, "end": 3462.97, "probability": 0.855 }, { "start": 3463.78, "end": 3469.52, "probability": 0.8029 }, { "start": 3471.54, "end": 3473.74, "probability": 0.4006 }, { "start": 3474.22, "end": 3475.09, "probability": 0.9604 }, { "start": 3475.54, "end": 3476.44, "probability": 0.7967 }, { "start": 3476.52, "end": 3476.82, "probability": 0.5768 }, { "start": 3476.88, "end": 3477.72, "probability": 0.8983 }, { "start": 3478.08, "end": 3479.92, "probability": 0.9827 }, { "start": 3480.58, "end": 3483.25, "probability": 0.9629 }, { "start": 3483.6, "end": 3484.12, "probability": 0.6155 }, { "start": 3484.46, "end": 3487.84, "probability": 0.9526 }, { "start": 3488.42, "end": 3493.32, "probability": 0.7044 }, { "start": 3493.98, "end": 3494.24, "probability": 0.833 }, { "start": 3495.6, "end": 3497.16, "probability": 0.9672 }, { "start": 3497.96, "end": 3498.66, "probability": 0.6699 }, { "start": 3498.72, "end": 3498.82, "probability": 0.7965 }, { "start": 3499.0, "end": 3499.24, "probability": 0.712 }, { "start": 3499.48, "end": 3500.74, "probability": 0.7484 }, { "start": 3501.6, "end": 3502.2, "probability": 0.783 }, { "start": 3502.26, "end": 3506.38, "probability": 0.8519 }, { "start": 3507.24, "end": 3508.14, "probability": 0.7373 }, { "start": 3510.22, "end": 3512.16, "probability": 0.1213 }, { "start": 3512.9, "end": 3513.98, "probability": 0.7692 }, { "start": 3514.68, "end": 3519.04, "probability": 0.8328 }, { "start": 3519.2, "end": 3521.24, "probability": 0.5435 }, { "start": 3521.4, "end": 3522.28, "probability": 0.9288 }, { "start": 3523.9, "end": 3525.3, "probability": 0.8599 }, { "start": 3526.12, "end": 3527.84, "probability": 0.9893 }, { "start": 3528.38, "end": 3529.74, "probability": 0.6814 }, { "start": 3531.16, "end": 3533.62, "probability": 0.793 }, { "start": 3535.54, "end": 3538.32, "probability": 0.7973 }, { "start": 3538.82, "end": 3541.26, "probability": 0.959 }, { "start": 3543.1, "end": 3545.32, "probability": 0.7845 }, { "start": 3551.02, "end": 3554.94, "probability": 0.9922 }, { "start": 3556.12, "end": 3558.44, "probability": 0.9971 }, { "start": 3559.86, "end": 3563.62, "probability": 0.9666 }, { "start": 3565.36, "end": 3566.68, "probability": 0.8386 }, { "start": 3569.46, "end": 3570.42, "probability": 0.6628 }, { "start": 3571.76, "end": 3573.48, "probability": 0.6903 }, { "start": 3574.7, "end": 3575.94, "probability": 0.9811 }, { "start": 3577.06, "end": 3578.8, "probability": 0.8485 }, { "start": 3579.8, "end": 3580.8, "probability": 0.6849 }, { "start": 3582.32, "end": 3586.38, "probability": 0.6333 }, { "start": 3587.5, "end": 3588.48, "probability": 0.6275 }, { "start": 3590.64, "end": 3594.9, "probability": 0.9646 }, { "start": 3596.36, "end": 3597.52, "probability": 0.9784 }, { "start": 3598.96, "end": 3601.04, "probability": 0.9883 }, { "start": 3602.0, "end": 3604.34, "probability": 0.9991 }, { "start": 3605.9, "end": 3607.88, "probability": 0.9261 }, { "start": 3609.44, "end": 3612.46, "probability": 0.9985 }, { "start": 3612.55, "end": 3616.44, "probability": 0.9976 }, { "start": 3617.54, "end": 3620.75, "probability": 0.6195 }, { "start": 3621.98, "end": 3624.28, "probability": 0.9923 }, { "start": 3625.08, "end": 3626.36, "probability": 0.9359 }, { "start": 3627.0, "end": 3628.06, "probability": 0.7637 }, { "start": 3629.32, "end": 3632.38, "probability": 0.8077 }, { "start": 3633.1, "end": 3635.28, "probability": 0.9557 }, { "start": 3636.02, "end": 3638.68, "probability": 0.9919 }, { "start": 3639.48, "end": 3641.24, "probability": 0.9872 }, { "start": 3642.12, "end": 3643.78, "probability": 0.985 }, { "start": 3645.28, "end": 3646.22, "probability": 0.645 }, { "start": 3647.7, "end": 3650.46, "probability": 0.8224 }, { "start": 3652.02, "end": 3654.04, "probability": 0.9944 }, { "start": 3655.48, "end": 3657.04, "probability": 0.8447 }, { "start": 3658.3, "end": 3658.98, "probability": 0.8901 }, { "start": 3659.84, "end": 3662.42, "probability": 0.8817 }, { "start": 3663.54, "end": 3664.7, "probability": 0.9355 }, { "start": 3664.84, "end": 3667.7, "probability": 0.8444 }, { "start": 3668.64, "end": 3669.78, "probability": 0.7335 }, { "start": 3670.9, "end": 3672.36, "probability": 0.7552 }, { "start": 3674.62, "end": 3676.12, "probability": 0.8947 }, { "start": 3677.26, "end": 3679.54, "probability": 0.8241 }, { "start": 3680.66, "end": 3681.64, "probability": 0.9167 }, { "start": 3683.12, "end": 3683.88, "probability": 0.8859 }, { "start": 3684.2, "end": 3687.84, "probability": 0.9448 }, { "start": 3689.62, "end": 3692.12, "probability": 0.6065 }, { "start": 3693.82, "end": 3693.84, "probability": 0.4235 }, { "start": 3694.1, "end": 3695.12, "probability": 0.6359 }, { "start": 3695.18, "end": 3699.06, "probability": 0.6383 }, { "start": 3700.64, "end": 3703.22, "probability": 0.9771 }, { "start": 3704.1, "end": 3705.56, "probability": 0.7751 }, { "start": 3706.36, "end": 3708.08, "probability": 0.9316 }, { "start": 3709.02, "end": 3713.58, "probability": 0.628 }, { "start": 3714.32, "end": 3716.52, "probability": 0.8677 }, { "start": 3717.68, "end": 3719.1, "probability": 0.9846 }, { "start": 3719.2, "end": 3724.38, "probability": 0.7812 }, { "start": 3725.44, "end": 3727.84, "probability": 0.8235 }, { "start": 3728.64, "end": 3731.08, "probability": 0.9506 }, { "start": 3732.14, "end": 3733.4, "probability": 0.8601 }, { "start": 3734.2, "end": 3736.42, "probability": 0.9806 }, { "start": 3737.14, "end": 3738.36, "probability": 0.7384 }, { "start": 3738.9, "end": 3739.94, "probability": 0.4835 }, { "start": 3741.0, "end": 3743.72, "probability": 0.8213 }, { "start": 3744.54, "end": 3746.16, "probability": 0.9117 }, { "start": 3746.36, "end": 3746.78, "probability": 0.6756 }, { "start": 3746.84, "end": 3747.6, "probability": 0.8476 }, { "start": 3749.04, "end": 3753.52, "probability": 0.9634 }, { "start": 3754.0, "end": 3756.26, "probability": 0.9979 }, { "start": 3756.94, "end": 3758.24, "probability": 0.7696 }, { "start": 3759.04, "end": 3762.16, "probability": 0.9819 }, { "start": 3762.74, "end": 3765.1, "probability": 0.7607 }, { "start": 3765.68, "end": 3768.12, "probability": 0.9181 }, { "start": 3768.98, "end": 3773.9, "probability": 0.8472 }, { "start": 3775.22, "end": 3776.92, "probability": 0.6942 }, { "start": 3777.76, "end": 3779.42, "probability": 0.9577 }, { "start": 3780.5, "end": 3783.88, "probability": 0.9331 }, { "start": 3784.42, "end": 3788.38, "probability": 0.6943 }, { "start": 3789.34, "end": 3790.34, "probability": 0.7401 }, { "start": 3790.5, "end": 3791.12, "probability": 0.8571 }, { "start": 3791.88, "end": 3792.98, "probability": 0.7635 }, { "start": 3793.76, "end": 3796.58, "probability": 0.9818 }, { "start": 3797.1, "end": 3798.96, "probability": 0.7627 }, { "start": 3799.5, "end": 3805.34, "probability": 0.897 }, { "start": 3805.84, "end": 3808.54, "probability": 0.424 }, { "start": 3808.62, "end": 3808.62, "probability": 0.5061 }, { "start": 3808.66, "end": 3811.54, "probability": 0.9331 }, { "start": 3812.02, "end": 3813.62, "probability": 0.9956 }, { "start": 3814.32, "end": 3817.3, "probability": 0.9331 }, { "start": 3818.38, "end": 3820.2, "probability": 0.9851 }, { "start": 3820.34, "end": 3823.4, "probability": 0.9785 }, { "start": 3824.16, "end": 3825.12, "probability": 0.7719 }, { "start": 3826.0, "end": 3827.52, "probability": 0.6746 }, { "start": 3828.22, "end": 3829.14, "probability": 0.9482 }, { "start": 3830.18, "end": 3832.28, "probability": 0.623 }, { "start": 3832.28, "end": 3832.28, "probability": 0.5261 }, { "start": 3832.34, "end": 3833.08, "probability": 0.3718 }, { "start": 3833.76, "end": 3834.12, "probability": 0.6569 }, { "start": 3834.66, "end": 3835.74, "probability": 0.6937 }, { "start": 3836.44, "end": 3838.66, "probability": 0.8398 }, { "start": 3839.22, "end": 3839.92, "probability": 0.8587 }, { "start": 3840.58, "end": 3842.82, "probability": 0.915 }, { "start": 3842.94, "end": 3844.06, "probability": 0.8919 }, { "start": 3845.0, "end": 3845.2, "probability": 0.8002 }, { "start": 3846.56, "end": 3849.68, "probability": 0.6262 }, { "start": 3850.46, "end": 3850.7, "probability": 0.097 }, { "start": 3850.7, "end": 3850.7, "probability": 0.8957 }, { "start": 3850.7, "end": 3850.7, "probability": 0.7256 }, { "start": 3850.7, "end": 3851.32, "probability": 0.3262 }, { "start": 3851.34, "end": 3852.42, "probability": 0.3303 }, { "start": 3853.32, "end": 3853.56, "probability": 0.5184 }, { "start": 3853.56, "end": 3854.08, "probability": 0.853 }, { "start": 3854.22, "end": 3857.16, "probability": 0.6531 }, { "start": 3857.86, "end": 3859.2, "probability": 0.9515 }, { "start": 3859.3, "end": 3860.84, "probability": 0.9805 }, { "start": 3860.96, "end": 3863.6, "probability": 0.9825 }, { "start": 3864.1, "end": 3864.6, "probability": 0.9785 }, { "start": 3865.46, "end": 3867.64, "probability": 0.9466 }, { "start": 3868.16, "end": 3869.19, "probability": 0.9839 }, { "start": 3869.54, "end": 3871.78, "probability": 0.9966 }, { "start": 3871.78, "end": 3873.66, "probability": 0.9945 }, { "start": 3874.76, "end": 3878.1, "probability": 0.9831 }, { "start": 3878.6, "end": 3880.92, "probability": 0.8577 }, { "start": 3881.68, "end": 3883.22, "probability": 0.974 }, { "start": 3884.18, "end": 3884.56, "probability": 0.8624 }, { "start": 3884.72, "end": 3885.88, "probability": 0.6953 }, { "start": 3886.14, "end": 3888.84, "probability": 0.9766 }, { "start": 3889.26, "end": 3891.42, "probability": 0.9946 }, { "start": 3891.42, "end": 3893.58, "probability": 0.9918 }, { "start": 3895.04, "end": 3896.82, "probability": 0.9947 }, { "start": 3896.94, "end": 3899.38, "probability": 0.9953 }, { "start": 3899.9, "end": 3902.86, "probability": 0.9987 }, { "start": 3903.66, "end": 3905.74, "probability": 0.99 }, { "start": 3905.74, "end": 3907.86, "probability": 0.9662 }, { "start": 3909.52, "end": 3911.66, "probability": 0.998 }, { "start": 3911.66, "end": 3915.22, "probability": 0.9583 }, { "start": 3915.84, "end": 3916.96, "probability": 0.9362 }, { "start": 3917.34, "end": 3918.4, "probability": 0.7167 }, { "start": 3918.9, "end": 3921.12, "probability": 0.9915 }, { "start": 3922.06, "end": 3923.76, "probability": 0.9964 }, { "start": 3924.32, "end": 3925.5, "probability": 0.9823 }, { "start": 3926.04, "end": 3926.82, "probability": 0.9741 }, { "start": 3927.62, "end": 3929.88, "probability": 0.9728 }, { "start": 3930.5, "end": 3931.66, "probability": 0.8583 }, { "start": 3932.54, "end": 3933.96, "probability": 0.9703 }, { "start": 3934.52, "end": 3938.96, "probability": 0.9001 }, { "start": 3939.74, "end": 3940.28, "probability": 0.983 }, { "start": 3941.12, "end": 3941.36, "probability": 0.6721 }, { "start": 3941.48, "end": 3943.22, "probability": 0.9836 }, { "start": 3943.28, "end": 3944.88, "probability": 0.9246 }, { "start": 3945.66, "end": 3947.7, "probability": 0.9928 }, { "start": 3948.24, "end": 3951.52, "probability": 0.4997 }, { "start": 3952.54, "end": 3955.72, "probability": 0.9885 }, { "start": 3956.58, "end": 3958.65, "probability": 0.9753 }, { "start": 3958.94, "end": 3961.66, "probability": 0.8094 }, { "start": 3961.86, "end": 3963.04, "probability": 0.9906 }, { "start": 3963.94, "end": 3965.18, "probability": 0.7413 }, { "start": 3965.92, "end": 3968.26, "probability": 0.962 }, { "start": 3968.6, "end": 3970.16, "probability": 0.9865 }, { "start": 3970.88, "end": 3971.58, "probability": 0.9029 }, { "start": 3971.76, "end": 3974.26, "probability": 0.8207 }, { "start": 3974.33, "end": 3978.14, "probability": 0.9828 }, { "start": 3979.04, "end": 3981.58, "probability": 0.9583 }, { "start": 3982.1, "end": 3984.68, "probability": 0.9953 }, { "start": 3985.76, "end": 3987.86, "probability": 0.9803 }, { "start": 3988.44, "end": 3990.88, "probability": 0.9944 }, { "start": 3991.32, "end": 3991.98, "probability": 0.6225 }, { "start": 3992.02, "end": 3992.78, "probability": 0.6313 }, { "start": 3993.0, "end": 3993.94, "probability": 0.9163 }, { "start": 3994.02, "end": 3995.08, "probability": 0.9883 }, { "start": 3995.7, "end": 3997.58, "probability": 0.8506 }, { "start": 3998.16, "end": 4000.76, "probability": 0.9613 }, { "start": 4001.76, "end": 4004.24, "probability": 0.9092 }, { "start": 4004.78, "end": 4006.64, "probability": 0.938 }, { "start": 4007.3, "end": 4008.93, "probability": 0.9544 }, { "start": 4010.2, "end": 4012.84, "probability": 0.8845 }, { "start": 4013.46, "end": 4014.51, "probability": 0.9757 }, { "start": 4014.88, "end": 4015.56, "probability": 0.8277 }, { "start": 4015.84, "end": 4016.7, "probability": 0.7519 }, { "start": 4017.44, "end": 4019.14, "probability": 0.9977 }, { "start": 4020.06, "end": 4024.5, "probability": 0.8357 }, { "start": 4025.14, "end": 4028.98, "probability": 0.9938 }, { "start": 4029.76, "end": 4031.74, "probability": 0.9604 }, { "start": 4032.32, "end": 4033.64, "probability": 0.9885 }, { "start": 4035.02, "end": 4038.5, "probability": 0.9844 }, { "start": 4039.16, "end": 4041.66, "probability": 0.969 }, { "start": 4042.22, "end": 4045.34, "probability": 0.8944 }, { "start": 4046.26, "end": 4047.8, "probability": 0.9888 }, { "start": 4048.5, "end": 4050.3, "probability": 0.9995 }, { "start": 4051.2, "end": 4051.56, "probability": 0.9327 }, { "start": 4052.82, "end": 4055.62, "probability": 0.865 }, { "start": 4057.02, "end": 4061.62, "probability": 0.994 }, { "start": 4062.34, "end": 4064.56, "probability": 0.9831 }, { "start": 4064.56, "end": 4067.48, "probability": 0.9906 }, { "start": 4068.02, "end": 4070.62, "probability": 0.92 }, { "start": 4071.74, "end": 4072.4, "probability": 0.8449 }, { "start": 4072.6, "end": 4074.46, "probability": 0.956 }, { "start": 4074.78, "end": 4077.01, "probability": 0.9956 }, { "start": 4077.9, "end": 4080.4, "probability": 0.9624 }, { "start": 4081.0, "end": 4083.52, "probability": 0.9955 }, { "start": 4084.06, "end": 4085.56, "probability": 0.7445 }, { "start": 4086.9, "end": 4088.54, "probability": 0.9716 }, { "start": 4089.7, "end": 4093.0, "probability": 0.9476 }, { "start": 4093.74, "end": 4096.08, "probability": 0.896 }, { "start": 4096.7, "end": 4097.54, "probability": 0.912 }, { "start": 4098.02, "end": 4101.04, "probability": 0.8521 }, { "start": 4101.76, "end": 4102.8, "probability": 0.9957 }, { "start": 4103.98, "end": 4105.36, "probability": 0.6083 }, { "start": 4105.96, "end": 4106.58, "probability": 0.721 }, { "start": 4107.04, "end": 4108.01, "probability": 0.2378 }, { "start": 4108.36, "end": 4108.84, "probability": 0.3652 }, { "start": 4109.18, "end": 4112.54, "probability": 0.964 }, { "start": 4113.82, "end": 4117.36, "probability": 0.938 }, { "start": 4117.36, "end": 4121.1, "probability": 0.9245 }, { "start": 4121.48, "end": 4122.22, "probability": 0.8166 }, { "start": 4123.56, "end": 4126.68, "probability": 0.9777 }, { "start": 4127.72, "end": 4129.76, "probability": 0.9834 }, { "start": 4130.34, "end": 4131.48, "probability": 0.8421 }, { "start": 4132.16, "end": 4133.5, "probability": 0.9692 }, { "start": 4134.28, "end": 4136.64, "probability": 0.9521 }, { "start": 4137.3, "end": 4137.91, "probability": 0.9212 }, { "start": 4138.62, "end": 4141.0, "probability": 0.7973 }, { "start": 4141.16, "end": 4143.94, "probability": 0.9881 }, { "start": 4145.34, "end": 4147.18, "probability": 0.8525 }, { "start": 4148.28, "end": 4151.2, "probability": 0.8828 }, { "start": 4151.26, "end": 4151.62, "probability": 0.7327 }, { "start": 4151.7, "end": 4154.92, "probability": 0.9787 }, { "start": 4155.88, "end": 4157.4, "probability": 0.825 }, { "start": 4157.54, "end": 4158.34, "probability": 0.4472 }, { "start": 4158.76, "end": 4160.36, "probability": 0.9659 }, { "start": 4160.38, "end": 4160.94, "probability": 0.5013 }, { "start": 4161.1, "end": 4162.28, "probability": 0.9305 }, { "start": 4177.22, "end": 4177.74, "probability": 0.6592 }, { "start": 4179.4, "end": 4179.4, "probability": 0.0046 }, { "start": 4179.4, "end": 4179.87, "probability": 0.5673 }, { "start": 4181.92, "end": 4182.84, "probability": 0.955 }, { "start": 4185.1, "end": 4188.98, "probability": 0.8154 }, { "start": 4190.58, "end": 4191.8, "probability": 0.9134 }, { "start": 4193.08, "end": 4200.18, "probability": 0.9577 }, { "start": 4201.4, "end": 4205.66, "probability": 0.7396 }, { "start": 4206.98, "end": 4209.8, "probability": 0.701 }, { "start": 4210.42, "end": 4213.94, "probability": 0.9171 }, { "start": 4216.54, "end": 4222.72, "probability": 0.2824 }, { "start": 4223.44, "end": 4225.44, "probability": 0.8021 }, { "start": 4226.84, "end": 4226.96, "probability": 0.0533 }, { "start": 4226.98, "end": 4230.74, "probability": 0.8156 }, { "start": 4231.94, "end": 4233.26, "probability": 0.953 }, { "start": 4233.88, "end": 4233.98, "probability": 0.834 }, { "start": 4235.3, "end": 4238.62, "probability": 0.9163 }, { "start": 4239.3, "end": 4240.08, "probability": 0.6211 }, { "start": 4241.62, "end": 4243.7, "probability": 0.9301 }, { "start": 4244.74, "end": 4245.66, "probability": 0.0691 }, { "start": 4246.48, "end": 4246.87, "probability": 0.6704 }, { "start": 4250.06, "end": 4250.9, "probability": 0.9723 }, { "start": 4251.5, "end": 4255.7, "probability": 0.6729 }, { "start": 4256.0, "end": 4259.36, "probability": 0.8118 }, { "start": 4260.06, "end": 4261.43, "probability": 0.6592 }, { "start": 4262.58, "end": 4265.86, "probability": 0.8193 }, { "start": 4266.44, "end": 4269.34, "probability": 0.9639 }, { "start": 4271.26, "end": 4272.06, "probability": 0.7419 }, { "start": 4272.46, "end": 4275.2, "probability": 0.8008 }, { "start": 4276.14, "end": 4277.08, "probability": 0.2424 }, { "start": 4277.4, "end": 4279.02, "probability": 0.9382 }, { "start": 4280.12, "end": 4282.55, "probability": 0.0272 }, { "start": 4288.14, "end": 4289.54, "probability": 0.4406 }, { "start": 4290.76, "end": 4292.48, "probability": 0.8227 }, { "start": 4293.78, "end": 4295.5, "probability": 0.9563 }, { "start": 4296.38, "end": 4301.48, "probability": 0.972 }, { "start": 4302.04, "end": 4306.1, "probability": 0.7827 }, { "start": 4306.9, "end": 4311.34, "probability": 0.9406 }, { "start": 4311.98, "end": 4313.88, "probability": 0.7454 }, { "start": 4314.52, "end": 4314.62, "probability": 0.5156 }, { "start": 4315.2, "end": 4318.42, "probability": 0.9824 }, { "start": 4320.06, "end": 4321.6, "probability": 0.9624 }, { "start": 4321.98, "end": 4322.08, "probability": 0.6378 }, { "start": 4323.86, "end": 4324.48, "probability": 0.9517 }, { "start": 4325.34, "end": 4326.64, "probability": 0.5765 }, { "start": 4327.16, "end": 4328.3, "probability": 0.93 }, { "start": 4329.44, "end": 4330.87, "probability": 0.9902 }, { "start": 4331.88, "end": 4332.98, "probability": 0.7967 }, { "start": 4334.06, "end": 4335.54, "probability": 0.7857 }, { "start": 4337.1, "end": 4339.34, "probability": 0.9497 }, { "start": 4341.18, "end": 4342.06, "probability": 0.9515 }, { "start": 4342.86, "end": 4346.7, "probability": 0.9565 }, { "start": 4347.8, "end": 4350.18, "probability": 0.7923 }, { "start": 4351.16, "end": 4352.46, "probability": 0.8235 }, { "start": 4354.16, "end": 4354.75, "probability": 0.6885 }, { "start": 4355.54, "end": 4359.08, "probability": 0.9077 }, { "start": 4359.12, "end": 4360.22, "probability": 0.8076 }, { "start": 4361.08, "end": 4365.3, "probability": 0.9805 }, { "start": 4365.94, "end": 4368.2, "probability": 0.7765 }, { "start": 4369.22, "end": 4370.22, "probability": 0.8069 }, { "start": 4371.26, "end": 4372.42, "probability": 0.6468 }, { "start": 4373.54, "end": 4377.2, "probability": 0.8739 }, { "start": 4377.46, "end": 4378.02, "probability": 0.7557 }, { "start": 4379.52, "end": 4380.48, "probability": 0.946 }, { "start": 4380.94, "end": 4383.54, "probability": 0.9315 }, { "start": 4384.42, "end": 4387.49, "probability": 0.9561 }, { "start": 4389.34, "end": 4391.58, "probability": 0.9383 }, { "start": 4392.36, "end": 4395.28, "probability": 0.8792 }, { "start": 4396.66, "end": 4398.08, "probability": 0.7762 }, { "start": 4399.42, "end": 4399.87, "probability": 0.9663 }, { "start": 4400.92, "end": 4402.58, "probability": 0.765 }, { "start": 4403.56, "end": 4404.48, "probability": 0.8679 }, { "start": 4405.54, "end": 4406.88, "probability": 0.9639 }, { "start": 4409.82, "end": 4410.36, "probability": 0.5838 }, { "start": 4411.66, "end": 4418.3, "probability": 0.9937 }, { "start": 4419.7, "end": 4421.9, "probability": 0.9763 }, { "start": 4422.48, "end": 4426.66, "probability": 0.8157 }, { "start": 4427.66, "end": 4428.01, "probability": 0.4087 }, { "start": 4429.32, "end": 4430.24, "probability": 0.9565 }, { "start": 4431.2, "end": 4431.7, "probability": 0.8792 }, { "start": 4432.24, "end": 4433.52, "probability": 0.9233 }, { "start": 4434.3, "end": 4436.46, "probability": 0.8043 }, { "start": 4437.24, "end": 4438.02, "probability": 0.7135 }, { "start": 4438.9, "end": 4439.68, "probability": 0.3444 }, { "start": 4440.66, "end": 4441.72, "probability": 0.7192 }, { "start": 4442.12, "end": 4442.7, "probability": 0.8963 }, { "start": 4443.3, "end": 4448.04, "probability": 0.9658 }, { "start": 4448.96, "end": 4451.31, "probability": 0.7608 }, { "start": 4452.68, "end": 4454.0, "probability": 0.788 }, { "start": 4454.02, "end": 4455.42, "probability": 0.9977 }, { "start": 4455.66, "end": 4457.06, "probability": 0.6475 }, { "start": 4457.06, "end": 4457.78, "probability": 0.5527 }, { "start": 4458.36, "end": 4459.84, "probability": 0.7635 }, { "start": 4460.86, "end": 4461.94, "probability": 0.6582 }, { "start": 4462.54, "end": 4464.84, "probability": 0.9771 }, { "start": 4465.46, "end": 4468.46, "probability": 0.9848 }, { "start": 4468.76, "end": 4469.98, "probability": 0.9324 }, { "start": 4470.38, "end": 4471.42, "probability": 0.7929 }, { "start": 4472.1, "end": 4474.64, "probability": 0.8319 }, { "start": 4474.64, "end": 4475.24, "probability": 0.7492 }, { "start": 4475.9, "end": 4477.44, "probability": 0.8613 }, { "start": 4478.0, "end": 4482.72, "probability": 0.8533 }, { "start": 4483.12, "end": 4484.18, "probability": 0.4822 }, { "start": 4484.32, "end": 4486.34, "probability": 0.6362 }, { "start": 4486.88, "end": 4490.14, "probability": 0.385 }, { "start": 4490.58, "end": 4491.04, "probability": 0.6113 }, { "start": 4491.92, "end": 4493.84, "probability": 0.6497 }, { "start": 4493.94, "end": 4496.41, "probability": 0.7578 }, { "start": 4496.84, "end": 4501.26, "probability": 0.9382 }, { "start": 4502.06, "end": 4504.28, "probability": 0.9867 }, { "start": 4505.2, "end": 4507.46, "probability": 0.9123 }, { "start": 4508.14, "end": 4510.62, "probability": 0.7431 }, { "start": 4511.95, "end": 4517.76, "probability": 0.9921 }, { "start": 4518.1, "end": 4519.98, "probability": 0.8093 }, { "start": 4521.08, "end": 4522.66, "probability": 0.8667 }, { "start": 4522.78, "end": 4524.14, "probability": 0.9142 }, { "start": 4525.24, "end": 4526.82, "probability": 0.944 }, { "start": 4526.92, "end": 4527.52, "probability": 0.41 }, { "start": 4527.84, "end": 4529.52, "probability": 0.9202 }, { "start": 4529.62, "end": 4530.22, "probability": 0.4434 }, { "start": 4530.44, "end": 4531.74, "probability": 0.7864 }, { "start": 4534.86, "end": 4536.7, "probability": 0.7807 }, { "start": 4537.18, "end": 4538.4, "probability": 0.793 }, { "start": 4538.62, "end": 4540.0, "probability": 0.8972 }, { "start": 4541.7, "end": 4542.7, "probability": 0.7074 }, { "start": 4542.84, "end": 4543.84, "probability": 0.8276 }, { "start": 4544.14, "end": 4544.78, "probability": 0.8423 }, { "start": 4545.58, "end": 4547.26, "probability": 0.8964 }, { "start": 4547.28, "end": 4547.44, "probability": 0.2675 }, { "start": 4547.5, "end": 4548.13, "probability": 0.4802 }, { "start": 4548.54, "end": 4548.98, "probability": 0.6418 }, { "start": 4549.54, "end": 4552.74, "probability": 0.7628 }, { "start": 4552.84, "end": 4553.6, "probability": 0.6561 }, { "start": 4555.24, "end": 4555.84, "probability": 0.5963 }, { "start": 4556.08, "end": 4558.62, "probability": 0.025 }, { "start": 4558.8, "end": 4560.98, "probability": 0.959 }, { "start": 4561.18, "end": 4563.56, "probability": 0.8171 }, { "start": 4564.16, "end": 4566.04, "probability": 0.5401 }, { "start": 4566.1, "end": 4569.24, "probability": 0.1009 }, { "start": 4569.7, "end": 4570.02, "probability": 0.4231 }, { "start": 4570.94, "end": 4572.42, "probability": 0.9307 }, { "start": 4573.04, "end": 4576.18, "probability": 0.8337 }, { "start": 4576.72, "end": 4578.52, "probability": 0.9948 }, { "start": 4579.62, "end": 4583.16, "probability": 0.9938 }, { "start": 4583.3, "end": 4586.6, "probability": 0.9915 }, { "start": 4586.92, "end": 4589.12, "probability": 0.0001 }, { "start": 4591.36, "end": 4595.62, "probability": 0.998 }, { "start": 4595.68, "end": 4597.42, "probability": 0.9313 }, { "start": 4597.7, "end": 4602.32, "probability": 0.8895 }, { "start": 4602.88, "end": 4606.48, "probability": 0.9642 }, { "start": 4607.26, "end": 4610.04, "probability": 0.9795 }, { "start": 4610.9, "end": 4611.88, "probability": 0.9067 }, { "start": 4612.44, "end": 4615.7, "probability": 0.9799 }, { "start": 4616.3, "end": 4618.42, "probability": 0.8976 }, { "start": 4618.54, "end": 4620.44, "probability": 0.9985 }, { "start": 4621.24, "end": 4623.94, "probability": 0.9196 }, { "start": 4624.58, "end": 4625.84, "probability": 0.8833 }, { "start": 4626.32, "end": 4629.06, "probability": 0.9604 }, { "start": 4629.16, "end": 4630.68, "probability": 0.9526 }, { "start": 4631.28, "end": 4633.4, "probability": 0.9763 }, { "start": 4634.24, "end": 4635.82, "probability": 0.9725 }, { "start": 4636.7, "end": 4638.4, "probability": 0.942 }, { "start": 4639.12, "end": 4640.44, "probability": 0.8428 }, { "start": 4640.84, "end": 4642.64, "probability": 0.8679 }, { "start": 4642.7, "end": 4644.58, "probability": 0.9956 }, { "start": 4645.28, "end": 4648.26, "probability": 0.6334 }, { "start": 4649.32, "end": 4653.16, "probability": 0.6575 }, { "start": 4653.36, "end": 4655.96, "probability": 0.8728 }, { "start": 4656.72, "end": 4658.34, "probability": 0.8633 }, { "start": 4659.5, "end": 4660.48, "probability": 0.5351 }, { "start": 4660.77, "end": 4664.22, "probability": 0.9971 }, { "start": 4664.3, "end": 4669.58, "probability": 0.7282 }, { "start": 4669.66, "end": 4670.0, "probability": 0.6555 }, { "start": 4670.16, "end": 4671.1, "probability": 0.7926 }, { "start": 4671.5, "end": 4672.88, "probability": 0.8264 }, { "start": 4673.5, "end": 4674.76, "probability": 0.4596 }, { "start": 4675.52, "end": 4679.72, "probability": 0.9052 }, { "start": 4680.38, "end": 4682.36, "probability": 0.6938 }, { "start": 4682.54, "end": 4684.34, "probability": 0.8721 }, { "start": 4684.72, "end": 4685.04, "probability": 0.6172 }, { "start": 4685.16, "end": 4690.04, "probability": 0.8963 }, { "start": 4690.14, "end": 4690.88, "probability": 0.6729 }, { "start": 4690.96, "end": 4691.86, "probability": 0.5214 }, { "start": 4692.26, "end": 4693.9, "probability": 0.9536 }, { "start": 4693.98, "end": 4695.84, "probability": 0.9334 }, { "start": 4696.14, "end": 4696.78, "probability": 0.7915 }, { "start": 4697.12, "end": 4698.04, "probability": 0.8548 }, { "start": 4698.14, "end": 4700.8, "probability": 0.5242 }, { "start": 4700.98, "end": 4703.16, "probability": 0.9734 }, { "start": 4703.66, "end": 4706.84, "probability": 0.9556 }, { "start": 4707.14, "end": 4707.86, "probability": 0.9377 }, { "start": 4707.92, "end": 4710.17, "probability": 0.8513 }, { "start": 4710.54, "end": 4711.14, "probability": 0.3132 }, { "start": 4711.62, "end": 4716.4, "probability": 0.9956 }, { "start": 4716.44, "end": 4716.82, "probability": 0.8527 }, { "start": 4716.9, "end": 4718.42, "probability": 0.8851 }, { "start": 4718.58, "end": 4720.06, "probability": 0.5554 }, { "start": 4721.38, "end": 4723.78, "probability": 0.9766 }, { "start": 4723.98, "end": 4726.94, "probability": 0.986 }, { "start": 4727.21, "end": 4731.72, "probability": 0.4216 }, { "start": 4731.82, "end": 4735.78, "probability": 0.6221 }, { "start": 4736.18, "end": 4738.92, "probability": 0.0763 }, { "start": 4738.92, "end": 4740.12, "probability": 0.2757 }, { "start": 4740.82, "end": 4741.92, "probability": 0.7518 }, { "start": 4742.9, "end": 4746.06, "probability": 0.7472 }, { "start": 4746.7, "end": 4747.77, "probability": 0.9832 }, { "start": 4747.88, "end": 4749.06, "probability": 0.8774 }, { "start": 4749.14, "end": 4750.52, "probability": 0.6365 }, { "start": 4750.96, "end": 4751.96, "probability": 0.9873 }, { "start": 4752.74, "end": 4755.62, "probability": 0.5752 }, { "start": 4756.12, "end": 4757.78, "probability": 0.9249 }, { "start": 4758.78, "end": 4759.92, "probability": 0.9092 }, { "start": 4760.48, "end": 4762.34, "probability": 0.6009 }, { "start": 4762.68, "end": 4764.04, "probability": 0.9764 }, { "start": 4764.36, "end": 4767.94, "probability": 0.8712 }, { "start": 4768.4, "end": 4769.04, "probability": 0.7305 }, { "start": 4769.16, "end": 4769.32, "probability": 0.7275 }, { "start": 4769.42, "end": 4771.68, "probability": 0.947 }, { "start": 4772.06, "end": 4775.32, "probability": 0.9854 }, { "start": 4775.76, "end": 4780.24, "probability": 0.8433 }, { "start": 4781.08, "end": 4781.2, "probability": 0.2967 }, { "start": 4781.2, "end": 4782.96, "probability": 0.8666 }, { "start": 4783.22, "end": 4784.84, "probability": 0.9844 }, { "start": 4785.4, "end": 4786.67, "probability": 0.74 }, { "start": 4788.3, "end": 4789.68, "probability": 0.9849 }, { "start": 4791.2, "end": 4794.92, "probability": 0.9658 }, { "start": 4795.72, "end": 4796.72, "probability": 0.5202 }, { "start": 4798.24, "end": 4798.96, "probability": 0.2903 }, { "start": 4799.36, "end": 4801.98, "probability": 0.96 }, { "start": 4802.36, "end": 4806.32, "probability": 0.9749 }, { "start": 4806.58, "end": 4808.58, "probability": 0.8758 }, { "start": 4809.24, "end": 4812.96, "probability": 0.919 }, { "start": 4813.7, "end": 4815.18, "probability": 0.5364 }, { "start": 4815.26, "end": 4815.84, "probability": 0.7016 }, { "start": 4816.34, "end": 4817.44, "probability": 0.9199 }, { "start": 4817.5, "end": 4818.38, "probability": 0.8144 }, { "start": 4819.24, "end": 4821.46, "probability": 0.9833 }, { "start": 4821.98, "end": 4822.32, "probability": 0.4255 }, { "start": 4823.42, "end": 4823.94, "probability": 0.8932 }, { "start": 4824.2, "end": 4824.91, "probability": 0.8203 }, { "start": 4825.34, "end": 4827.3, "probability": 0.9206 }, { "start": 4827.4, "end": 4828.16, "probability": 0.9138 }, { "start": 4828.3, "end": 4830.18, "probability": 0.8842 }, { "start": 4830.5, "end": 4831.92, "probability": 0.9865 }, { "start": 4832.58, "end": 4832.68, "probability": 0.3258 }, { "start": 4832.68, "end": 4834.08, "probability": 0.9415 }, { "start": 4834.18, "end": 4836.56, "probability": 0.3594 }, { "start": 4836.56, "end": 4837.12, "probability": 0.0369 }, { "start": 4837.12, "end": 4838.06, "probability": 0.4344 }, { "start": 4838.9, "end": 4839.22, "probability": 0.5709 }, { "start": 4839.22, "end": 4839.34, "probability": 0.3942 }, { "start": 4839.34, "end": 4842.48, "probability": 0.6819 }, { "start": 4842.54, "end": 4844.48, "probability": 0.8899 }, { "start": 4844.62, "end": 4845.86, "probability": 0.764 }, { "start": 4846.2, "end": 4848.42, "probability": 0.8322 }, { "start": 4848.5, "end": 4850.24, "probability": 0.7379 }, { "start": 4851.12, "end": 4852.52, "probability": 0.8245 }, { "start": 4852.74, "end": 4853.02, "probability": 0.1593 }, { "start": 4853.16, "end": 4854.2, "probability": 0.9869 }, { "start": 4854.98, "end": 4856.53, "probability": 0.5882 }, { "start": 4857.98, "end": 4858.14, "probability": 0.9614 }, { "start": 4858.8, "end": 4859.57, "probability": 0.8762 }, { "start": 4859.78, "end": 4860.0, "probability": 0.7696 }, { "start": 4860.34, "end": 4862.46, "probability": 0.9604 }, { "start": 4862.64, "end": 4865.1, "probability": 0.9443 }, { "start": 4865.68, "end": 4866.66, "probability": 0.4935 }, { "start": 4867.38, "end": 4869.1, "probability": 0.9878 }, { "start": 4873.08, "end": 4873.84, "probability": 0.9277 }, { "start": 4878.54, "end": 4880.02, "probability": 0.6134 }, { "start": 4881.1, "end": 4884.72, "probability": 0.996 }, { "start": 4885.84, "end": 4888.54, "probability": 0.9609 }, { "start": 4890.1, "end": 4893.48, "probability": 0.971 }, { "start": 4894.8, "end": 4898.38, "probability": 0.817 }, { "start": 4899.46, "end": 4900.92, "probability": 0.9466 }, { "start": 4901.52, "end": 4903.0, "probability": 0.8486 }, { "start": 4904.58, "end": 4906.66, "probability": 0.8857 }, { "start": 4907.4, "end": 4910.32, "probability": 0.6772 }, { "start": 4911.34, "end": 4913.5, "probability": 0.9385 }, { "start": 4914.64, "end": 4916.46, "probability": 0.993 }, { "start": 4917.7, "end": 4918.38, "probability": 0.5634 }, { "start": 4918.82, "end": 4919.36, "probability": 0.8767 }, { "start": 4919.46, "end": 4923.44, "probability": 0.9396 }, { "start": 4925.78, "end": 4929.06, "probability": 0.6154 }, { "start": 4930.28, "end": 4932.48, "probability": 0.9768 }, { "start": 4933.82, "end": 4934.98, "probability": 0.9854 }, { "start": 4935.76, "end": 4937.6, "probability": 0.5546 }, { "start": 4938.92, "end": 4941.58, "probability": 0.5615 }, { "start": 4944.1, "end": 4948.88, "probability": 0.9042 }, { "start": 4950.02, "end": 4954.08, "probability": 0.9928 }, { "start": 4955.08, "end": 4956.32, "probability": 0.8439 }, { "start": 4957.26, "end": 4958.32, "probability": 0.9099 }, { "start": 4959.12, "end": 4960.42, "probability": 0.6205 }, { "start": 4961.16, "end": 4963.0, "probability": 0.9404 }, { "start": 4964.02, "end": 4965.84, "probability": 0.958 }, { "start": 4966.66, "end": 4969.12, "probability": 0.9635 }, { "start": 4970.12, "end": 4973.36, "probability": 0.7547 }, { "start": 4973.46, "end": 4974.24, "probability": 0.9492 }, { "start": 4974.26, "end": 4978.8, "probability": 0.9744 }, { "start": 4980.06, "end": 4982.82, "probability": 0.9669 }, { "start": 4983.78, "end": 4986.54, "probability": 0.8297 }, { "start": 4987.54, "end": 4989.62, "probability": 0.8928 }, { "start": 4991.12, "end": 5000.14, "probability": 0.9945 }, { "start": 5000.32, "end": 5001.4, "probability": 0.7741 }, { "start": 5002.7, "end": 5005.5, "probability": 0.9752 }, { "start": 5006.7, "end": 5007.46, "probability": 0.6599 }, { "start": 5008.32, "end": 5011.0, "probability": 0.9495 }, { "start": 5012.18, "end": 5016.82, "probability": 0.5914 }, { "start": 5017.9, "end": 5018.58, "probability": 0.8514 }, { "start": 5019.58, "end": 5021.68, "probability": 0.8637 }, { "start": 5022.84, "end": 5025.86, "probability": 0.9893 }, { "start": 5026.62, "end": 5027.3, "probability": 0.9315 }, { "start": 5028.24, "end": 5030.96, "probability": 0.8986 }, { "start": 5032.2, "end": 5033.3, "probability": 0.899 }, { "start": 5033.5, "end": 5034.94, "probability": 0.7617 }, { "start": 5035.04, "end": 5040.18, "probability": 0.9565 }, { "start": 5040.32, "end": 5041.36, "probability": 0.5514 }, { "start": 5041.62, "end": 5043.06, "probability": 0.7524 }, { "start": 5043.72, "end": 5046.04, "probability": 0.9448 }, { "start": 5046.24, "end": 5049.44, "probability": 0.907 }, { "start": 5050.16, "end": 5051.2, "probability": 0.8805 }, { "start": 5051.76, "end": 5056.64, "probability": 0.958 }, { "start": 5057.26, "end": 5058.5, "probability": 0.8369 }, { "start": 5059.08, "end": 5064.34, "probability": 0.9719 }, { "start": 5065.44, "end": 5068.96, "probability": 0.8244 }, { "start": 5069.58, "end": 5071.92, "probability": 0.8234 }, { "start": 5072.54, "end": 5073.36, "probability": 0.9287 }, { "start": 5073.92, "end": 5076.04, "probability": 0.944 }, { "start": 5076.7, "end": 5078.0, "probability": 0.6674 }, { "start": 5079.1, "end": 5080.27, "probability": 0.9704 }, { "start": 5080.54, "end": 5081.66, "probability": 0.9827 }, { "start": 5081.82, "end": 5083.36, "probability": 0.9643 }, { "start": 5083.96, "end": 5086.02, "probability": 0.9741 }, { "start": 5087.04, "end": 5088.55, "probability": 0.9912 }, { "start": 5089.66, "end": 5095.34, "probability": 0.9795 }, { "start": 5096.04, "end": 5100.49, "probability": 0.9791 }, { "start": 5102.74, "end": 5105.94, "probability": 0.7483 }, { "start": 5106.74, "end": 5106.88, "probability": 0.3248 }, { "start": 5106.88, "end": 5113.18, "probability": 0.9189 }, { "start": 5113.4, "end": 5116.14, "probability": 0.9762 }, { "start": 5117.2, "end": 5119.82, "probability": 0.9465 }, { "start": 5120.56, "end": 5125.28, "probability": 0.6874 }, { "start": 5125.94, "end": 5129.1, "probability": 0.897 }, { "start": 5129.68, "end": 5131.2, "probability": 0.8746 }, { "start": 5132.22, "end": 5135.02, "probability": 0.9392 }, { "start": 5135.84, "end": 5144.72, "probability": 0.9894 }, { "start": 5145.08, "end": 5145.46, "probability": 0.3434 }, { "start": 5145.98, "end": 5149.26, "probability": 0.9585 }, { "start": 5149.84, "end": 5150.84, "probability": 0.9663 }, { "start": 5153.72, "end": 5154.62, "probability": 0.7122 }, { "start": 5155.94, "end": 5156.18, "probability": 0.0836 }, { "start": 5156.18, "end": 5159.48, "probability": 0.5605 }, { "start": 5159.48, "end": 5161.3, "probability": 0.9034 }, { "start": 5161.44, "end": 5162.81, "probability": 0.5578 }, { "start": 5164.04, "end": 5166.54, "probability": 0.923 }, { "start": 5168.88, "end": 5169.52, "probability": 0.0107 }, { "start": 5169.52, "end": 5170.08, "probability": 0.171 }, { "start": 5172.86, "end": 5173.96, "probability": 0.0688 }, { "start": 5173.96, "end": 5173.96, "probability": 0.0197 }, { "start": 5173.96, "end": 5173.96, "probability": 0.065 }, { "start": 5173.96, "end": 5174.06, "probability": 0.2938 }, { "start": 5174.42, "end": 5183.88, "probability": 0.7887 }, { "start": 5184.4, "end": 5192.47, "probability": 0.983 }, { "start": 5192.88, "end": 5193.36, "probability": 0.6083 }, { "start": 5193.52, "end": 5194.2, "probability": 0.6179 }, { "start": 5194.38, "end": 5194.98, "probability": 0.4609 }, { "start": 5195.64, "end": 5196.36, "probability": 0.8578 }, { "start": 5196.58, "end": 5200.14, "probability": 0.9716 }, { "start": 5200.76, "end": 5204.28, "probability": 0.9788 }, { "start": 5205.36, "end": 5208.68, "probability": 0.6337 }, { "start": 5209.28, "end": 5210.96, "probability": 0.5109 }, { "start": 5211.56, "end": 5216.74, "probability": 0.8451 }, { "start": 5217.4, "end": 5219.84, "probability": 0.8352 }, { "start": 5219.92, "end": 5220.18, "probability": 0.9055 }, { "start": 5220.3, "end": 5222.4, "probability": 0.6935 }, { "start": 5223.12, "end": 5225.12, "probability": 0.8507 }, { "start": 5225.18, "end": 5230.1, "probability": 0.7431 }, { "start": 5230.82, "end": 5234.22, "probability": 0.9949 }, { "start": 5234.94, "end": 5236.07, "probability": 0.9162 }, { "start": 5236.38, "end": 5238.6, "probability": 0.9966 }, { "start": 5239.3, "end": 5240.58, "probability": 0.6858 }, { "start": 5241.54, "end": 5242.5, "probability": 0.6999 }, { "start": 5242.94, "end": 5245.56, "probability": 0.9897 }, { "start": 5245.82, "end": 5248.88, "probability": 0.9336 }, { "start": 5249.66, "end": 5250.74, "probability": 0.7662 }, { "start": 5251.3, "end": 5252.96, "probability": 0.9771 }, { "start": 5253.64, "end": 5259.5, "probability": 0.9727 }, { "start": 5260.44, "end": 5262.62, "probability": 0.9226 }, { "start": 5263.28, "end": 5265.78, "probability": 0.9836 }, { "start": 5266.42, "end": 5268.26, "probability": 0.8166 }, { "start": 5269.04, "end": 5275.72, "probability": 0.9795 }, { "start": 5275.82, "end": 5280.26, "probability": 0.9937 }, { "start": 5280.84, "end": 5281.56, "probability": 0.833 }, { "start": 5281.68, "end": 5284.78, "probability": 0.9666 }, { "start": 5285.42, "end": 5286.74, "probability": 0.6975 }, { "start": 5287.26, "end": 5288.72, "probability": 0.7744 }, { "start": 5289.32, "end": 5290.62, "probability": 0.9907 }, { "start": 5291.56, "end": 5293.44, "probability": 0.6771 }, { "start": 5294.04, "end": 5297.21, "probability": 0.6572 }, { "start": 5298.12, "end": 5299.14, "probability": 0.9333 }, { "start": 5299.84, "end": 5301.84, "probability": 0.9165 }, { "start": 5302.4, "end": 5305.98, "probability": 0.9886 }, { "start": 5306.52, "end": 5308.82, "probability": 0.6012 }, { "start": 5309.5, "end": 5313.52, "probability": 0.9793 }, { "start": 5313.52, "end": 5318.4, "probability": 0.994 }, { "start": 5319.2, "end": 5321.46, "probability": 0.9524 }, { "start": 5321.76, "end": 5322.78, "probability": 0.6271 }, { "start": 5322.96, "end": 5326.1, "probability": 0.9908 }, { "start": 5326.22, "end": 5328.72, "probability": 0.989 }, { "start": 5329.44, "end": 5330.52, "probability": 0.9658 }, { "start": 5331.24, "end": 5334.1, "probability": 0.998 }, { "start": 5334.56, "end": 5335.98, "probability": 0.9492 }, { "start": 5336.12, "end": 5336.68, "probability": 0.7482 }, { "start": 5338.2, "end": 5338.8, "probability": 0.6894 }, { "start": 5340.14, "end": 5340.48, "probability": 0.9938 }, { "start": 5342.92, "end": 5344.76, "probability": 0.9577 }, { "start": 5345.52, "end": 5345.94, "probability": 0.4046 }, { "start": 5346.86, "end": 5352.84, "probability": 0.9972 }, { "start": 5353.54, "end": 5355.8, "probability": 0.8738 }, { "start": 5356.38, "end": 5358.26, "probability": 0.9873 }, { "start": 5358.28, "end": 5361.04, "probability": 0.9914 }, { "start": 5361.14, "end": 5361.6, "probability": 0.4385 }, { "start": 5363.02, "end": 5364.18, "probability": 0.9912 }, { "start": 5364.64, "end": 5367.2, "probability": 0.697 }, { "start": 5367.34, "end": 5368.36, "probability": 0.8896 }, { "start": 5368.44, "end": 5369.05, "probability": 0.8979 }, { "start": 5369.58, "end": 5370.16, "probability": 0.6968 }, { "start": 5370.24, "end": 5374.42, "probability": 0.9926 }, { "start": 5375.74, "end": 5380.7, "probability": 0.9948 }, { "start": 5382.94, "end": 5385.84, "probability": 0.992 }, { "start": 5386.36, "end": 5387.42, "probability": 0.676 }, { "start": 5388.02, "end": 5388.64, "probability": 0.9578 }, { "start": 5388.78, "end": 5392.22, "probability": 0.9642 }, { "start": 5392.22, "end": 5395.78, "probability": 0.9956 }, { "start": 5396.82, "end": 5397.4, "probability": 0.9976 }, { "start": 5399.22, "end": 5399.77, "probability": 0.9082 }, { "start": 5401.08, "end": 5401.92, "probability": 0.9692 }, { "start": 5402.98, "end": 5405.16, "probability": 0.9946 }, { "start": 5406.42, "end": 5406.78, "probability": 0.904 }, { "start": 5407.38, "end": 5409.14, "probability": 0.9712 }, { "start": 5410.3, "end": 5415.56, "probability": 0.9993 }, { "start": 5416.4, "end": 5419.7, "probability": 0.9722 }, { "start": 5419.84, "end": 5423.72, "probability": 0.9495 }, { "start": 5424.3, "end": 5425.44, "probability": 0.7484 }, { "start": 5425.96, "end": 5428.6, "probability": 0.9902 }, { "start": 5429.22, "end": 5432.86, "probability": 0.9552 }, { "start": 5433.44, "end": 5435.46, "probability": 0.99 }, { "start": 5436.34, "end": 5437.66, "probability": 0.6859 }, { "start": 5438.76, "end": 5442.08, "probability": 0.9977 }, { "start": 5442.72, "end": 5447.12, "probability": 0.9869 }, { "start": 5447.52, "end": 5447.74, "probability": 0.764 }, { "start": 5448.34, "end": 5448.7, "probability": 0.3155 }, { "start": 5450.14, "end": 5453.72, "probability": 0.5745 }, { "start": 5454.68, "end": 5459.38, "probability": 0.9506 }, { "start": 5459.52, "end": 5461.0, "probability": 0.9922 }, { "start": 5461.82, "end": 5465.66, "probability": 0.986 }, { "start": 5466.26, "end": 5468.66, "probability": 0.9985 }, { "start": 5469.04, "end": 5471.48, "probability": 0.9994 }, { "start": 5472.7, "end": 5476.77, "probability": 0.994 }, { "start": 5477.14, "end": 5480.24, "probability": 0.9984 }, { "start": 5481.2, "end": 5483.54, "probability": 0.7942 }, { "start": 5484.62, "end": 5488.74, "probability": 0.8411 }, { "start": 5488.8, "end": 5491.56, "probability": 0.9962 }, { "start": 5492.3, "end": 5495.58, "probability": 0.9605 }, { "start": 5496.14, "end": 5499.12, "probability": 0.9691 }, { "start": 5499.7, "end": 5500.1, "probability": 0.7581 }, { "start": 5500.86, "end": 5503.02, "probability": 0.9404 }, { "start": 5503.18, "end": 5506.02, "probability": 0.8162 }, { "start": 5506.7, "end": 5508.8, "probability": 0.9883 }, { "start": 5513.6, "end": 5516.28, "probability": 0.7865 }, { "start": 5523.76, "end": 5524.52, "probability": 0.8135 }, { "start": 5525.3, "end": 5526.87, "probability": 0.5996 }, { "start": 5527.8, "end": 5530.78, "probability": 0.9242 }, { "start": 5531.94, "end": 5534.6, "probability": 0.9207 }, { "start": 5535.66, "end": 5537.52, "probability": 0.959 }, { "start": 5538.58, "end": 5540.14, "probability": 0.9918 }, { "start": 5541.14, "end": 5542.14, "probability": 0.9832 }, { "start": 5542.98, "end": 5545.5, "probability": 0.8563 }, { "start": 5547.94, "end": 5550.86, "probability": 0.9229 }, { "start": 5550.94, "end": 5551.88, "probability": 0.4977 }, { "start": 5551.96, "end": 5557.88, "probability": 0.8994 }, { "start": 5560.2, "end": 5561.76, "probability": 0.9844 }, { "start": 5562.34, "end": 5566.56, "probability": 0.9529 }, { "start": 5567.44, "end": 5570.48, "probability": 0.9668 }, { "start": 5570.96, "end": 5572.1, "probability": 0.9749 }, { "start": 5573.3, "end": 5574.08, "probability": 0.6703 }, { "start": 5574.82, "end": 5576.19, "probability": 0.9434 }, { "start": 5578.34, "end": 5580.36, "probability": 0.9939 }, { "start": 5581.14, "end": 5581.84, "probability": 0.6562 }, { "start": 5583.98, "end": 5585.14, "probability": 0.8621 }, { "start": 5585.68, "end": 5587.04, "probability": 0.9806 }, { "start": 5588.54, "end": 5591.6, "probability": 0.9692 }, { "start": 5592.5, "end": 5593.58, "probability": 0.5242 }, { "start": 5594.04, "end": 5595.48, "probability": 0.7247 }, { "start": 5595.64, "end": 5596.16, "probability": 0.6401 }, { "start": 5596.56, "end": 5597.68, "probability": 0.7635 }, { "start": 5598.8, "end": 5601.3, "probability": 0.9298 }, { "start": 5601.74, "end": 5602.66, "probability": 0.6807 }, { "start": 5602.76, "end": 5604.8, "probability": 0.9957 }, { "start": 5606.7, "end": 5610.34, "probability": 0.9893 }, { "start": 5610.94, "end": 5611.86, "probability": 0.9772 }, { "start": 5613.56, "end": 5616.6, "probability": 0.9344 }, { "start": 5617.72, "end": 5620.5, "probability": 0.9916 }, { "start": 5621.34, "end": 5623.88, "probability": 0.8122 }, { "start": 5624.6, "end": 5631.56, "probability": 0.9873 }, { "start": 5632.9, "end": 5637.0, "probability": 0.9923 }, { "start": 5638.0, "end": 5641.68, "probability": 0.9989 }, { "start": 5643.92, "end": 5647.6, "probability": 0.9982 }, { "start": 5650.72, "end": 5654.44, "probability": 0.9772 }, { "start": 5654.96, "end": 5656.38, "probability": 0.705 }, { "start": 5657.6, "end": 5659.24, "probability": 0.783 }, { "start": 5660.84, "end": 5662.48, "probability": 0.9357 }, { "start": 5663.46, "end": 5664.82, "probability": 0.9988 }, { "start": 5665.88, "end": 5667.2, "probability": 0.967 }, { "start": 5668.36, "end": 5671.64, "probability": 0.8775 }, { "start": 5671.8, "end": 5672.2, "probability": 0.792 }, { "start": 5672.92, "end": 5673.54, "probability": 0.8678 }, { "start": 5673.76, "end": 5677.26, "probability": 0.7575 }, { "start": 5677.26, "end": 5681.54, "probability": 0.991 }, { "start": 5681.96, "end": 5683.52, "probability": 0.5293 }, { "start": 5685.0, "end": 5685.76, "probability": 0.9426 }, { "start": 5686.7, "end": 5689.72, "probability": 0.9914 }, { "start": 5690.72, "end": 5692.52, "probability": 0.861 }, { "start": 5694.2, "end": 5696.52, "probability": 0.9824 }, { "start": 5697.52, "end": 5699.04, "probability": 0.887 }, { "start": 5699.2, "end": 5703.34, "probability": 0.9778 }, { "start": 5704.74, "end": 5707.34, "probability": 0.9712 }, { "start": 5708.46, "end": 5713.16, "probability": 0.9842 }, { "start": 5713.56, "end": 5715.0, "probability": 0.7483 }, { "start": 5715.38, "end": 5719.62, "probability": 0.989 }, { "start": 5721.0, "end": 5722.22, "probability": 0.9937 }, { "start": 5723.64, "end": 5728.08, "probability": 0.9946 }, { "start": 5728.86, "end": 5729.76, "probability": 0.9068 }, { "start": 5729.88, "end": 5730.56, "probability": 0.789 }, { "start": 5730.82, "end": 5733.15, "probability": 0.9624 }, { "start": 5734.9, "end": 5735.58, "probability": 0.8257 }, { "start": 5735.64, "end": 5739.94, "probability": 0.9316 }, { "start": 5741.14, "end": 5742.88, "probability": 0.9854 }, { "start": 5743.58, "end": 5747.54, "probability": 0.9468 }, { "start": 5748.52, "end": 5748.76, "probability": 0.129 }, { "start": 5748.88, "end": 5749.74, "probability": 0.9348 }, { "start": 5749.82, "end": 5751.46, "probability": 0.9069 }, { "start": 5752.92, "end": 5756.5, "probability": 0.9819 }, { "start": 5756.7, "end": 5759.26, "probability": 0.9862 }, { "start": 5761.12, "end": 5764.3, "probability": 0.998 }, { "start": 5764.8, "end": 5767.78, "probability": 0.9951 }, { "start": 5768.06, "end": 5769.04, "probability": 0.8957 }, { "start": 5769.74, "end": 5771.18, "probability": 0.9737 }, { "start": 5772.08, "end": 5777.28, "probability": 0.9336 }, { "start": 5777.3, "end": 5780.58, "probability": 0.9883 }, { "start": 5782.26, "end": 5782.36, "probability": 0.3842 }, { "start": 5782.46, "end": 5782.96, "probability": 0.87 }, { "start": 5783.14, "end": 5785.3, "probability": 0.8433 }, { "start": 5785.36, "end": 5786.02, "probability": 0.3606 }, { "start": 5786.2, "end": 5786.38, "probability": 0.5634 }, { "start": 5786.4, "end": 5786.72, "probability": 0.6724 }, { "start": 5787.32, "end": 5790.24, "probability": 0.9486 }, { "start": 5792.34, "end": 5796.3, "probability": 0.9006 }, { "start": 5796.44, "end": 5797.4, "probability": 0.9396 }, { "start": 5797.44, "end": 5797.94, "probability": 0.8673 }, { "start": 5798.46, "end": 5800.98, "probability": 0.978 }, { "start": 5801.98, "end": 5805.12, "probability": 0.9948 }, { "start": 5806.0, "end": 5808.56, "probability": 0.9966 }, { "start": 5809.5, "end": 5812.38, "probability": 0.6995 }, { "start": 5812.5, "end": 5814.7, "probability": 0.9871 }, { "start": 5815.04, "end": 5817.58, "probability": 0.9258 }, { "start": 5818.08, "end": 5819.7, "probability": 0.9614 }, { "start": 5819.8, "end": 5823.26, "probability": 0.7972 }, { "start": 5824.6, "end": 5826.98, "probability": 0.6706 }, { "start": 5827.5, "end": 5829.3, "probability": 0.668 }, { "start": 5831.05, "end": 5833.28, "probability": 0.7024 }, { "start": 5833.48, "end": 5835.94, "probability": 0.955 }, { "start": 5836.2, "end": 5837.56, "probability": 0.1483 }, { "start": 5838.0, "end": 5839.72, "probability": 0.957 }, { "start": 5842.17, "end": 5844.18, "probability": 0.7583 }, { "start": 5844.87, "end": 5845.56, "probability": 0.67 }, { "start": 5846.02, "end": 5847.94, "probability": 0.9822 }, { "start": 5847.94, "end": 5851.78, "probability": 0.896 }, { "start": 5851.9, "end": 5853.06, "probability": 0.1522 }, { "start": 5853.26, "end": 5858.14, "probability": 0.8018 }, { "start": 5859.02, "end": 5860.36, "probability": 0.4736 }, { "start": 5860.4, "end": 5861.98, "probability": 0.2667 }, { "start": 5862.46, "end": 5865.64, "probability": 0.9519 }, { "start": 5866.32, "end": 5867.0, "probability": 0.6389 }, { "start": 5867.08, "end": 5869.18, "probability": 0.2573 }, { "start": 5869.42, "end": 5878.0, "probability": 0.5324 }, { "start": 5878.06, "end": 5879.3, "probability": 0.6932 }, { "start": 5879.6, "end": 5880.78, "probability": 0.7459 }, { "start": 5880.84, "end": 5881.66, "probability": 0.9119 }, { "start": 5882.44, "end": 5884.0, "probability": 0.6124 }, { "start": 5884.54, "end": 5886.2, "probability": 0.7578 }, { "start": 5887.04, "end": 5889.94, "probability": 0.7415 }, { "start": 5890.68, "end": 5896.38, "probability": 0.9348 }, { "start": 5896.68, "end": 5898.56, "probability": 0.672 }, { "start": 5899.98, "end": 5900.85, "probability": 0.9647 }, { "start": 5902.12, "end": 5902.94, "probability": 0.7845 }, { "start": 5904.22, "end": 5904.54, "probability": 0.4758 }, { "start": 5906.96, "end": 5908.56, "probability": 0.6689 }, { "start": 5909.44, "end": 5913.88, "probability": 0.9647 }, { "start": 5914.98, "end": 5915.98, "probability": 0.6532 }, { "start": 5916.14, "end": 5919.42, "probability": 0.7636 }, { "start": 5919.98, "end": 5922.16, "probability": 0.99 }, { "start": 5922.16, "end": 5925.67, "probability": 0.9645 }, { "start": 5928.02, "end": 5929.86, "probability": 0.8442 }, { "start": 5929.92, "end": 5931.87, "probability": 0.9787 }, { "start": 5932.22, "end": 5932.76, "probability": 0.408 }, { "start": 5932.86, "end": 5936.28, "probability": 0.9922 }, { "start": 5936.32, "end": 5937.02, "probability": 0.819 }, { "start": 5937.1, "end": 5938.32, "probability": 0.8249 }, { "start": 5938.4, "end": 5938.66, "probability": 0.3448 }, { "start": 5938.72, "end": 5940.25, "probability": 0.9248 }, { "start": 5941.34, "end": 5943.52, "probability": 0.3839 }, { "start": 5944.02, "end": 5945.31, "probability": 0.8766 }, { "start": 5946.1, "end": 5947.74, "probability": 0.9866 }, { "start": 5948.88, "end": 5950.4, "probability": 0.9533 }, { "start": 5951.3, "end": 5951.62, "probability": 0.3432 }, { "start": 5952.38, "end": 5954.72, "probability": 0.9627 }, { "start": 5954.88, "end": 5955.74, "probability": 0.9019 }, { "start": 5956.2, "end": 5961.34, "probability": 0.9714 }, { "start": 5962.02, "end": 5962.28, "probability": 0.6304 }, { "start": 5964.36, "end": 5966.92, "probability": 0.3901 }, { "start": 5967.04, "end": 5968.0, "probability": 0.3775 }, { "start": 5968.54, "end": 5969.52, "probability": 0.6686 }, { "start": 5970.26, "end": 5970.44, "probability": 0.261 }, { "start": 5970.58, "end": 5974.0, "probability": 0.7237 }, { "start": 5974.72, "end": 5976.76, "probability": 0.607 }, { "start": 5977.86, "end": 5979.68, "probability": 0.7726 }, { "start": 5980.92, "end": 5981.49, "probability": 0.9859 }, { "start": 5982.74, "end": 5984.22, "probability": 0.9695 }, { "start": 5984.62, "end": 5987.72, "probability": 0.9988 }, { "start": 5988.72, "end": 5989.58, "probability": 0.6798 }, { "start": 5990.22, "end": 5993.49, "probability": 0.8389 }, { "start": 5994.56, "end": 5996.88, "probability": 0.9565 }, { "start": 5997.42, "end": 5998.44, "probability": 0.986 }, { "start": 5999.38, "end": 6002.3, "probability": 0.9961 }, { "start": 6003.54, "end": 6004.16, "probability": 0.8538 }, { "start": 6004.26, "end": 6004.84, "probability": 0.5067 }, { "start": 6004.88, "end": 6007.22, "probability": 0.593 }, { "start": 6008.36, "end": 6008.92, "probability": 0.5037 }, { "start": 6008.96, "end": 6011.13, "probability": 0.9831 }, { "start": 6011.52, "end": 6012.44, "probability": 0.6205 }, { "start": 6013.12, "end": 6013.54, "probability": 0.9147 }, { "start": 6013.66, "end": 6016.56, "probability": 0.8131 }, { "start": 6017.7, "end": 6019.46, "probability": 0.9969 }, { "start": 6020.28, "end": 6021.1, "probability": 0.5811 }, { "start": 6021.26, "end": 6022.0, "probability": 0.1049 }, { "start": 6022.2, "end": 6022.82, "probability": 0.9197 }, { "start": 6023.46, "end": 6025.26, "probability": 0.9778 }, { "start": 6025.88, "end": 6027.96, "probability": 0.7373 }, { "start": 6028.22, "end": 6029.18, "probability": 0.988 }, { "start": 6030.24, "end": 6031.1, "probability": 0.6856 }, { "start": 6032.1, "end": 6034.98, "probability": 0.8345 }, { "start": 6035.0, "end": 6036.42, "probability": 0.9424 }, { "start": 6037.02, "end": 6041.68, "probability": 0.9817 }, { "start": 6042.02, "end": 6042.3, "probability": 0.8766 }, { "start": 6043.04, "end": 6043.34, "probability": 0.9722 }, { "start": 6044.02, "end": 6045.42, "probability": 0.9325 }, { "start": 6046.66, "end": 6047.86, "probability": 0.9359 }, { "start": 6047.96, "end": 6050.4, "probability": 0.9595 }, { "start": 6050.86, "end": 6051.6, "probability": 0.7679 }, { "start": 6053.16, "end": 6056.06, "probability": 0.9795 }, { "start": 6056.7, "end": 6057.8, "probability": 0.9088 }, { "start": 6058.52, "end": 6058.92, "probability": 0.7604 }, { "start": 6059.14, "end": 6060.86, "probability": 0.9896 }, { "start": 6060.92, "end": 6061.62, "probability": 0.9095 }, { "start": 6062.3, "end": 6063.09, "probability": 0.8076 }, { "start": 6064.54, "end": 6066.53, "probability": 0.6827 }, { "start": 6070.96, "end": 6071.3, "probability": 0.504 }, { "start": 6072.3, "end": 6075.02, "probability": 0.9841 }, { "start": 6075.98, "end": 6078.06, "probability": 0.6697 }, { "start": 6078.82, "end": 6080.98, "probability": 0.9419 }, { "start": 6081.72, "end": 6082.94, "probability": 0.843 }, { "start": 6083.26, "end": 6084.84, "probability": 0.8472 }, { "start": 6084.96, "end": 6085.68, "probability": 0.6054 }, { "start": 6086.4, "end": 6087.9, "probability": 0.8022 }, { "start": 6087.96, "end": 6090.28, "probability": 0.853 }, { "start": 6090.6, "end": 6092.24, "probability": 0.7178 }, { "start": 6092.5, "end": 6093.2, "probability": 0.8633 }, { "start": 6093.84, "end": 6098.36, "probability": 0.9458 }, { "start": 6099.18, "end": 6101.84, "probability": 0.969 }, { "start": 6102.18, "end": 6103.18, "probability": 0.798 }, { "start": 6103.68, "end": 6106.44, "probability": 0.993 }, { "start": 6106.5, "end": 6108.82, "probability": 0.9944 }, { "start": 6109.36, "end": 6109.98, "probability": 0.9902 }, { "start": 6110.58, "end": 6111.7, "probability": 0.9439 }, { "start": 6112.38, "end": 6112.68, "probability": 0.7003 }, { "start": 6112.9, "end": 6113.28, "probability": 0.5962 }, { "start": 6113.3, "end": 6113.94, "probability": 0.9856 }, { "start": 6114.34, "end": 6115.38, "probability": 0.6348 }, { "start": 6115.46, "end": 6116.78, "probability": 0.6602 }, { "start": 6117.4, "end": 6117.64, "probability": 0.918 }, { "start": 6118.34, "end": 6118.72, "probability": 0.8026 }, { "start": 6118.84, "end": 6119.51, "probability": 0.9453 }, { "start": 6120.42, "end": 6121.33, "probability": 0.9543 }, { "start": 6122.16, "end": 6123.4, "probability": 0.3341 }, { "start": 6123.52, "end": 6124.9, "probability": 0.7943 }, { "start": 6125.16, "end": 6127.11, "probability": 0.9121 }, { "start": 6127.76, "end": 6131.8, "probability": 0.988 }, { "start": 6132.32, "end": 6132.96, "probability": 0.9941 }, { "start": 6134.7, "end": 6138.14, "probability": 0.9146 }, { "start": 6138.62, "end": 6139.68, "probability": 0.5412 }, { "start": 6139.94, "end": 6141.52, "probability": 0.9753 }, { "start": 6142.04, "end": 6143.8, "probability": 0.9927 }, { "start": 6144.48, "end": 6146.68, "probability": 0.9242 }, { "start": 6158.08, "end": 6160.67, "probability": 0.8828 }, { "start": 6165.46, "end": 6167.16, "probability": 0.7889 }, { "start": 6168.7, "end": 6169.12, "probability": 0.9259 }, { "start": 6169.28, "end": 6173.7, "probability": 0.9085 }, { "start": 6174.36, "end": 6175.1, "probability": 0.9088 }, { "start": 6175.14, "end": 6176.98, "probability": 0.9468 }, { "start": 6178.02, "end": 6180.82, "probability": 0.9822 }, { "start": 6181.28, "end": 6183.92, "probability": 0.8732 }, { "start": 6185.56, "end": 6186.84, "probability": 0.8583 }, { "start": 6187.86, "end": 6191.12, "probability": 0.7423 }, { "start": 6191.5, "end": 6195.2, "probability": 0.9153 }, { "start": 6196.76, "end": 6196.76, "probability": 0.0023 }, { "start": 6196.76, "end": 6197.4, "probability": 0.7308 }, { "start": 6198.8, "end": 6200.66, "probability": 0.8356 }, { "start": 6200.78, "end": 6203.46, "probability": 0.8939 }, { "start": 6203.96, "end": 6204.98, "probability": 0.7983 }, { "start": 6205.48, "end": 6207.85, "probability": 0.9891 }, { "start": 6208.36, "end": 6210.1, "probability": 0.7713 }, { "start": 6211.06, "end": 6213.5, "probability": 0.095 }, { "start": 6215.06, "end": 6219.68, "probability": 0.241 }, { "start": 6219.78, "end": 6221.92, "probability": 0.9824 }, { "start": 6221.92, "end": 6223.17, "probability": 0.6792 }, { "start": 6223.4, "end": 6227.3, "probability": 0.982 }, { "start": 6227.92, "end": 6229.68, "probability": 0.942 }, { "start": 6231.28, "end": 6232.5, "probability": 0.9512 }, { "start": 6233.2, "end": 6234.94, "probability": 0.998 }, { "start": 6235.88, "end": 6237.62, "probability": 0.9714 }, { "start": 6237.94, "end": 6239.92, "probability": 0.6746 }, { "start": 6241.01, "end": 6242.88, "probability": 0.9915 }, { "start": 6246.96, "end": 6247.46, "probability": 0.181 }, { "start": 6247.46, "end": 6247.46, "probability": 0.2438 }, { "start": 6247.46, "end": 6247.58, "probability": 0.2042 }, { "start": 6247.7, "end": 6248.4, "probability": 0.2658 }, { "start": 6248.54, "end": 6249.44, "probability": 0.6604 }, { "start": 6249.5, "end": 6249.98, "probability": 0.7025 }, { "start": 6250.42, "end": 6251.68, "probability": 0.8195 }, { "start": 6251.94, "end": 6252.72, "probability": 0.099 }, { "start": 6253.88, "end": 6256.52, "probability": 0.7842 }, { "start": 6257.2, "end": 6260.58, "probability": 0.9995 }, { "start": 6261.5, "end": 6262.58, "probability": 0.978 }, { "start": 6263.9, "end": 6264.64, "probability": 0.689 }, { "start": 6264.74, "end": 6266.4, "probability": 0.6482 }, { "start": 6266.56, "end": 6267.43, "probability": 0.8251 }, { "start": 6269.0, "end": 6272.48, "probability": 0.9955 }, { "start": 6273.06, "end": 6275.54, "probability": 0.1161 }, { "start": 6276.72, "end": 6279.2, "probability": 0.9932 }, { "start": 6280.78, "end": 6281.86, "probability": 0.8681 }, { "start": 6282.02, "end": 6284.22, "probability": 0.8843 }, { "start": 6285.28, "end": 6288.36, "probability": 0.9827 }, { "start": 6288.48, "end": 6292.22, "probability": 0.9756 }, { "start": 6292.52, "end": 6293.02, "probability": 0.8383 }, { "start": 6293.48, "end": 6294.9, "probability": 0.8256 }, { "start": 6296.02, "end": 6298.86, "probability": 0.9771 }, { "start": 6300.4, "end": 6303.72, "probability": 0.9104 }, { "start": 6305.38, "end": 6306.86, "probability": 0.9788 }, { "start": 6307.0, "end": 6308.33, "probability": 0.6479 }, { "start": 6309.9, "end": 6312.0, "probability": 0.6982 }, { "start": 6312.06, "end": 6313.72, "probability": 0.8361 }, { "start": 6313.96, "end": 6315.1, "probability": 0.7184 }, { "start": 6315.38, "end": 6316.64, "probability": 0.948 }, { "start": 6318.44, "end": 6320.08, "probability": 0.8887 }, { "start": 6320.92, "end": 6321.4, "probability": 0.7008 }, { "start": 6321.82, "end": 6323.14, "probability": 0.9008 }, { "start": 6323.6, "end": 6327.64, "probability": 0.9023 }, { "start": 6328.48, "end": 6332.2, "probability": 0.6158 }, { "start": 6332.5, "end": 6333.92, "probability": 0.6862 }, { "start": 6334.76, "end": 6335.04, "probability": 0.3234 }, { "start": 6335.24, "end": 6335.8, "probability": 0.8669 }, { "start": 6336.06, "end": 6336.9, "probability": 0.7457 }, { "start": 6337.08, "end": 6338.62, "probability": 0.6531 }, { "start": 6338.78, "end": 6339.6, "probability": 0.9194 }, { "start": 6340.98, "end": 6343.24, "probability": 0.9233 }, { "start": 6343.62, "end": 6345.26, "probability": 0.9376 }, { "start": 6346.18, "end": 6348.34, "probability": 0.9236 }, { "start": 6349.6, "end": 6352.7, "probability": 0.8805 }, { "start": 6353.32, "end": 6355.26, "probability": 0.4799 }, { "start": 6356.14, "end": 6357.3, "probability": 0.9493 }, { "start": 6358.36, "end": 6361.54, "probability": 0.9448 }, { "start": 6362.82, "end": 6363.22, "probability": 0.9211 }, { "start": 6363.84, "end": 6364.36, "probability": 0.8327 }, { "start": 6364.54, "end": 6366.94, "probability": 0.8826 }, { "start": 6367.82, "end": 6370.62, "probability": 0.9752 }, { "start": 6372.28, "end": 6374.94, "probability": 0.7885 }, { "start": 6375.64, "end": 6377.32, "probability": 0.8477 }, { "start": 6378.1, "end": 6380.04, "probability": 0.9399 }, { "start": 6380.56, "end": 6381.78, "probability": 0.7164 }, { "start": 6382.6, "end": 6384.34, "probability": 0.9758 }, { "start": 6385.0, "end": 6387.82, "probability": 0.9296 }, { "start": 6389.62, "end": 6390.66, "probability": 0.8442 }, { "start": 6391.32, "end": 6394.72, "probability": 0.7712 }, { "start": 6395.08, "end": 6398.92, "probability": 0.9837 }, { "start": 6399.94, "end": 6402.94, "probability": 0.672 }, { "start": 6403.8, "end": 6406.5, "probability": 0.9478 }, { "start": 6406.62, "end": 6407.1, "probability": 0.6448 }, { "start": 6407.14, "end": 6407.72, "probability": 0.6876 }, { "start": 6407.74, "end": 6408.5, "probability": 0.9014 }, { "start": 6408.66, "end": 6410.24, "probability": 0.7823 }, { "start": 6412.14, "end": 6417.44, "probability": 0.9937 }, { "start": 6418.68, "end": 6422.2, "probability": 0.9741 }, { "start": 6422.94, "end": 6424.92, "probability": 0.733 }, { "start": 6425.82, "end": 6430.76, "probability": 0.9796 }, { "start": 6431.44, "end": 6431.44, "probability": 0.1373 }, { "start": 6431.44, "end": 6431.72, "probability": 0.3535 }, { "start": 6431.74, "end": 6433.36, "probability": 0.9312 }, { "start": 6433.56, "end": 6435.14, "probability": 0.9295 }, { "start": 6435.64, "end": 6437.52, "probability": 0.9505 }, { "start": 6438.12, "end": 6441.54, "probability": 0.9609 }, { "start": 6442.42, "end": 6447.78, "probability": 0.9174 }, { "start": 6448.06, "end": 6448.26, "probability": 0.2801 }, { "start": 6448.26, "end": 6450.06, "probability": 0.959 }, { "start": 6450.1, "end": 6452.64, "probability": 0.8236 }, { "start": 6453.18, "end": 6454.68, "probability": 0.5493 }, { "start": 6455.2, "end": 6456.22, "probability": 0.8971 }, { "start": 6464.02, "end": 6465.28, "probability": 0.8551 }, { "start": 6469.42, "end": 6470.24, "probability": 0.6132 }, { "start": 6470.82, "end": 6472.04, "probability": 0.7787 }, { "start": 6473.7, "end": 6474.06, "probability": 0.3971 }, { "start": 6475.82, "end": 6480.71, "probability": 0.9949 }, { "start": 6482.38, "end": 6487.56, "probability": 0.9961 }, { "start": 6487.72, "end": 6490.18, "probability": 0.9478 }, { "start": 6491.4, "end": 6492.19, "probability": 0.9858 }, { "start": 6493.6, "end": 6494.74, "probability": 0.9794 }, { "start": 6496.48, "end": 6498.96, "probability": 0.9712 }, { "start": 6499.62, "end": 6500.64, "probability": 0.952 }, { "start": 6501.6, "end": 6502.4, "probability": 0.9013 }, { "start": 6503.58, "end": 6504.72, "probability": 0.7911 }, { "start": 6505.8, "end": 6510.28, "probability": 0.9911 }, { "start": 6511.26, "end": 6512.79, "probability": 0.9876 }, { "start": 6514.5, "end": 6515.34, "probability": 0.7886 }, { "start": 6516.14, "end": 6521.12, "probability": 0.9888 }, { "start": 6522.98, "end": 6531.1, "probability": 0.9863 }, { "start": 6532.8, "end": 6534.58, "probability": 0.7826 }, { "start": 6535.32, "end": 6538.38, "probability": 0.9956 }, { "start": 6539.56, "end": 6541.76, "probability": 0.9905 }, { "start": 6542.28, "end": 6547.32, "probability": 0.995 }, { "start": 6548.08, "end": 6548.38, "probability": 0.9058 }, { "start": 6550.34, "end": 6551.2, "probability": 0.8034 }, { "start": 6554.57, "end": 6556.14, "probability": 0.9819 }, { "start": 6556.14, "end": 6556.74, "probability": 0.2266 }, { "start": 6557.68, "end": 6560.0, "probability": 0.8369 }, { "start": 6561.06, "end": 6564.02, "probability": 0.9543 }, { "start": 6565.3, "end": 6567.18, "probability": 0.972 }, { "start": 6568.04, "end": 6568.84, "probability": 0.9795 }, { "start": 6570.5, "end": 6572.16, "probability": 0.8442 }, { "start": 6574.2, "end": 6576.06, "probability": 0.9198 }, { "start": 6576.78, "end": 6578.68, "probability": 0.9624 }, { "start": 6578.92, "end": 6582.18, "probability": 0.9312 }, { "start": 6582.84, "end": 6584.1, "probability": 0.9305 }, { "start": 6584.7, "end": 6585.72, "probability": 0.9709 }, { "start": 6587.22, "end": 6591.4, "probability": 0.8147 }, { "start": 6592.44, "end": 6594.88, "probability": 0.9972 }, { "start": 6595.6, "end": 6597.72, "probability": 0.9125 }, { "start": 6598.12, "end": 6602.74, "probability": 0.9117 }, { "start": 6604.24, "end": 6605.32, "probability": 0.9889 }, { "start": 6606.08, "end": 6609.7, "probability": 0.9928 }, { "start": 6610.8, "end": 6612.1, "probability": 0.9717 }, { "start": 6614.42, "end": 6618.34, "probability": 0.9904 }, { "start": 6620.08, "end": 6625.06, "probability": 0.9946 }, { "start": 6626.1, "end": 6628.39, "probability": 0.9902 }, { "start": 6629.66, "end": 6629.66, "probability": 0.9067 }, { "start": 6630.26, "end": 6632.73, "probability": 0.9678 }, { "start": 6632.78, "end": 6635.86, "probability": 0.9868 }, { "start": 6637.3, "end": 6640.8, "probability": 0.8935 }, { "start": 6641.36, "end": 6643.2, "probability": 0.9877 }, { "start": 6643.76, "end": 6647.96, "probability": 0.9701 }, { "start": 6649.26, "end": 6652.0, "probability": 0.9476 }, { "start": 6653.08, "end": 6654.64, "probability": 0.9082 }, { "start": 6655.38, "end": 6657.16, "probability": 0.9941 }, { "start": 6658.06, "end": 6658.78, "probability": 0.8426 }, { "start": 6659.82, "end": 6660.3, "probability": 0.8721 }, { "start": 6660.92, "end": 6663.18, "probability": 0.9626 }, { "start": 6664.56, "end": 6667.01, "probability": 0.9502 }, { "start": 6667.88, "end": 6671.68, "probability": 0.9811 }, { "start": 6673.14, "end": 6673.86, "probability": 0.9122 }, { "start": 6674.42, "end": 6678.04, "probability": 0.8812 }, { "start": 6679.14, "end": 6682.26, "probability": 0.9872 }, { "start": 6682.74, "end": 6687.16, "probability": 0.919 }, { "start": 6687.4, "end": 6689.14, "probability": 0.9552 }, { "start": 6689.54, "end": 6689.92, "probability": 0.693 }, { "start": 6691.94, "end": 6693.62, "probability": 0.9772 }, { "start": 6695.18, "end": 6696.26, "probability": 0.9454 }, { "start": 6696.86, "end": 6698.6, "probability": 0.9624 }, { "start": 6699.28, "end": 6705.74, "probability": 0.978 }, { "start": 6706.64, "end": 6708.56, "probability": 0.7671 }, { "start": 6708.68, "end": 6710.48, "probability": 0.9504 }, { "start": 6711.3, "end": 6712.14, "probability": 0.8222 }, { "start": 6739.24, "end": 6740.0, "probability": 0.7348 }, { "start": 6741.9, "end": 6743.02, "probability": 0.8101 }, { "start": 6744.94, "end": 6745.94, "probability": 0.9795 }, { "start": 6747.1, "end": 6748.26, "probability": 0.9808 }, { "start": 6749.6, "end": 6750.3, "probability": 0.9647 }, { "start": 6751.6, "end": 6752.06, "probability": 0.6376 }, { "start": 6753.6, "end": 6755.28, "probability": 0.9532 }, { "start": 6757.0, "end": 6757.59, "probability": 0.6504 }, { "start": 6759.32, "end": 6759.56, "probability": 0.5106 }, { "start": 6759.66, "end": 6760.22, "probability": 0.7921 }, { "start": 6760.42, "end": 6761.14, "probability": 0.5338 }, { "start": 6761.64, "end": 6763.8, "probability": 0.5039 }, { "start": 6764.88, "end": 6766.02, "probability": 0.4673 }, { "start": 6768.04, "end": 6770.14, "probability": 0.8076 }, { "start": 6771.1, "end": 6771.34, "probability": 0.391 }, { "start": 6771.34, "end": 6771.46, "probability": 0.7537 }, { "start": 6771.46, "end": 6776.04, "probability": 0.7853 }, { "start": 6777.12, "end": 6778.62, "probability": 0.7436 }, { "start": 6779.12, "end": 6779.5, "probability": 0.7493 }, { "start": 6779.52, "end": 6780.56, "probability": 0.887 }, { "start": 6780.7, "end": 6782.08, "probability": 0.9974 }, { "start": 6782.52, "end": 6783.22, "probability": 0.9915 }, { "start": 6784.56, "end": 6785.0, "probability": 0.9767 }, { "start": 6786.46, "end": 6788.98, "probability": 0.9692 }, { "start": 6789.82, "end": 6791.5, "probability": 0.9965 }, { "start": 6792.42, "end": 6793.98, "probability": 0.8568 }, { "start": 6794.32, "end": 6794.56, "probability": 0.983 }, { "start": 6794.86, "end": 6795.92, "probability": 0.9761 }, { "start": 6796.7, "end": 6799.08, "probability": 0.8985 }, { "start": 6799.88, "end": 6803.8, "probability": 0.7485 }, { "start": 6804.52, "end": 6805.7, "probability": 0.7319 }, { "start": 6805.8, "end": 6807.62, "probability": 0.8168 }, { "start": 6807.76, "end": 6809.54, "probability": 0.5063 }, { "start": 6809.54, "end": 6810.16, "probability": 0.644 }, { "start": 6810.7, "end": 6813.64, "probability": 0.9403 }, { "start": 6815.06, "end": 6817.3, "probability": 0.1516 }, { "start": 6817.3, "end": 6817.3, "probability": 0.4124 }, { "start": 6817.3, "end": 6818.54, "probability": 0.2444 }, { "start": 6818.66, "end": 6819.06, "probability": 0.5569 }, { "start": 6819.6, "end": 6821.46, "probability": 0.8819 }, { "start": 6821.56, "end": 6821.84, "probability": 0.4279 }, { "start": 6824.92, "end": 6827.24, "probability": 0.0058 }, { "start": 6828.26, "end": 6828.76, "probability": 0.2043 }, { "start": 6828.76, "end": 6828.76, "probability": 0.069 }, { "start": 6828.76, "end": 6830.94, "probability": 0.1953 }, { "start": 6830.94, "end": 6835.72, "probability": 0.9695 }, { "start": 6836.3, "end": 6837.06, "probability": 0.7509 }, { "start": 6837.58, "end": 6839.64, "probability": 0.858 }, { "start": 6840.72, "end": 6841.9, "probability": 0.9518 }, { "start": 6843.5, "end": 6843.8, "probability": 0.6153 }, { "start": 6843.84, "end": 6845.54, "probability": 0.9668 }, { "start": 6845.64, "end": 6846.46, "probability": 0.9106 }, { "start": 6846.66, "end": 6847.7, "probability": 0.8837 }, { "start": 6848.32, "end": 6850.92, "probability": 0.9873 }, { "start": 6852.14, "end": 6853.14, "probability": 0.9816 }, { "start": 6853.84, "end": 6854.44, "probability": 0.877 }, { "start": 6855.0, "end": 6855.9, "probability": 0.9611 }, { "start": 6857.3, "end": 6858.28, "probability": 0.8132 }, { "start": 6858.84, "end": 6861.28, "probability": 0.6345 }, { "start": 6862.04, "end": 6863.54, "probability": 0.9823 }, { "start": 6864.2, "end": 6866.22, "probability": 0.9371 }, { "start": 6867.04, "end": 6867.54, "probability": 0.9146 }, { "start": 6868.76, "end": 6870.62, "probability": 0.9872 }, { "start": 6871.2, "end": 6871.7, "probability": 0.8648 }, { "start": 6872.3, "end": 6872.84, "probability": 0.9644 }, { "start": 6873.36, "end": 6874.0, "probability": 0.9258 }, { "start": 6876.92, "end": 6877.66, "probability": 0.0121 }, { "start": 6879.36, "end": 6881.78, "probability": 0.9834 }, { "start": 6881.8, "end": 6882.22, "probability": 0.601 }, { "start": 6882.22, "end": 6884.48, "probability": 0.9258 }, { "start": 6889.88, "end": 6892.3, "probability": 0.7724 }, { "start": 6892.84, "end": 6895.32, "probability": 0.984 }, { "start": 6895.54, "end": 6895.64, "probability": 0.2529 }, { "start": 6895.7, "end": 6896.94, "probability": 0.0115 }, { "start": 6897.52, "end": 6897.78, "probability": 0.7798 }, { "start": 6897.92, "end": 6898.82, "probability": 0.8303 }, { "start": 6898.84, "end": 6899.44, "probability": 0.9273 }, { "start": 6899.52, "end": 6900.6, "probability": 0.9668 }, { "start": 6902.32, "end": 6904.68, "probability": 0.995 }, { "start": 6905.26, "end": 6906.52, "probability": 0.9985 }, { "start": 6907.44, "end": 6911.9, "probability": 0.9456 }, { "start": 6913.2, "end": 6913.9, "probability": 0.844 }, { "start": 6914.7, "end": 6915.51, "probability": 0.8211 }, { "start": 6916.76, "end": 6920.94, "probability": 0.9889 }, { "start": 6921.48, "end": 6923.2, "probability": 0.999 }, { "start": 6924.62, "end": 6925.99, "probability": 0.9854 }, { "start": 6926.7, "end": 6928.62, "probability": 0.9908 }, { "start": 6929.38, "end": 6931.32, "probability": 0.7798 }, { "start": 6933.88, "end": 6935.58, "probability": 0.7347 }, { "start": 6936.24, "end": 6936.72, "probability": 0.9747 }, { "start": 6937.4, "end": 6937.62, "probability": 0.9932 }, { "start": 6938.7, "end": 6940.23, "probability": 0.8904 }, { "start": 6942.64, "end": 6946.34, "probability": 0.9537 }, { "start": 6946.94, "end": 6948.18, "probability": 0.8854 }, { "start": 6948.78, "end": 6951.1, "probability": 0.9978 }, { "start": 6951.74, "end": 6953.44, "probability": 0.9986 }, { "start": 6954.3, "end": 6955.92, "probability": 0.9331 }, { "start": 6957.16, "end": 6959.82, "probability": 0.924 }, { "start": 6961.08, "end": 6963.72, "probability": 0.8358 }, { "start": 6964.54, "end": 6967.9, "probability": 0.9786 }, { "start": 6969.06, "end": 6970.74, "probability": 0.9694 }, { "start": 6972.62, "end": 6975.54, "probability": 0.7142 }, { "start": 6976.2, "end": 6977.34, "probability": 0.7925 }, { "start": 6979.5, "end": 6981.78, "probability": 0.9511 }, { "start": 6982.5, "end": 6986.54, "probability": 0.9788 }, { "start": 6987.2, "end": 6990.16, "probability": 0.7961 }, { "start": 6990.78, "end": 6993.1, "probability": 0.9548 }, { "start": 6993.52, "end": 6995.62, "probability": 0.9922 }, { "start": 6995.62, "end": 6998.82, "probability": 0.9693 }, { "start": 6999.4, "end": 7002.64, "probability": 0.8342 }, { "start": 7003.34, "end": 7004.9, "probability": 0.9782 }, { "start": 7006.4, "end": 7008.12, "probability": 0.9929 }, { "start": 7008.98, "end": 7011.38, "probability": 0.9793 }, { "start": 7012.06, "end": 7013.5, "probability": 0.6927 }, { "start": 7013.58, "end": 7014.02, "probability": 0.8461 }, { "start": 7014.26, "end": 7020.0, "probability": 0.8643 }, { "start": 7020.04, "end": 7020.74, "probability": 0.7 }, { "start": 7021.06, "end": 7025.64, "probability": 0.9459 }, { "start": 7026.91, "end": 7029.76, "probability": 0.5097 }, { "start": 7029.92, "end": 7030.04, "probability": 0.4484 }, { "start": 7030.6, "end": 7031.68, "probability": 0.7418 }, { "start": 7031.82, "end": 7033.96, "probability": 0.187 }, { "start": 7034.72, "end": 7035.14, "probability": 0.6147 }, { "start": 7035.9, "end": 7037.4, "probability": 0.7417 }, { "start": 7037.6, "end": 7041.36, "probability": 0.717 }, { "start": 7042.0, "end": 7047.22, "probability": 0.9916 }, { "start": 7047.86, "end": 7048.38, "probability": 0.8382 }, { "start": 7048.48, "end": 7050.72, "probability": 0.7645 }, { "start": 7051.46, "end": 7054.32, "probability": 0.8167 }, { "start": 7054.5, "end": 7055.52, "probability": 0.9785 }, { "start": 7056.04, "end": 7058.44, "probability": 0.9858 }, { "start": 7058.82, "end": 7063.0, "probability": 0.9979 }, { "start": 7063.82, "end": 7064.32, "probability": 0.0195 }, { "start": 7064.32, "end": 7065.09, "probability": 0.7684 }, { "start": 7065.66, "end": 7067.36, "probability": 0.8045 }, { "start": 7067.46, "end": 7067.76, "probability": 0.5447 }, { "start": 7068.22, "end": 7069.44, "probability": 0.9209 }, { "start": 7070.02, "end": 7070.76, "probability": 0.4966 }, { "start": 7070.94, "end": 7071.44, "probability": 0.5065 }, { "start": 7071.54, "end": 7072.72, "probability": 0.6692 }, { "start": 7072.82, "end": 7073.72, "probability": 0.5069 }, { "start": 7073.82, "end": 7074.5, "probability": 0.917 }, { "start": 7074.54, "end": 7075.0, "probability": 0.6937 }, { "start": 7075.08, "end": 7075.44, "probability": 0.8707 }, { "start": 7075.48, "end": 7076.82, "probability": 0.9315 }, { "start": 7076.9, "end": 7078.9, "probability": 0.9377 }, { "start": 7078.9, "end": 7080.04, "probability": 0.8102 }, { "start": 7080.42, "end": 7087.26, "probability": 0.9244 }, { "start": 7087.36, "end": 7089.68, "probability": 0.8729 }, { "start": 7090.46, "end": 7091.76, "probability": 0.8863 }, { "start": 7092.68, "end": 7095.72, "probability": 0.7552 }, { "start": 7096.42, "end": 7097.12, "probability": 0.809 }, { "start": 7097.24, "end": 7102.24, "probability": 0.906 }, { "start": 7102.8, "end": 7103.96, "probability": 0.9631 }, { "start": 7105.98, "end": 7107.49, "probability": 0.9971 }, { "start": 7108.22, "end": 7111.84, "probability": 0.9992 }, { "start": 7112.5, "end": 7113.56, "probability": 0.9961 }, { "start": 7113.82, "end": 7114.92, "probability": 0.6765 }, { "start": 7115.32, "end": 7116.32, "probability": 0.9297 }, { "start": 7116.84, "end": 7119.24, "probability": 0.7634 }, { "start": 7120.88, "end": 7121.22, "probability": 0.9146 }, { "start": 7121.32, "end": 7122.5, "probability": 0.8728 }, { "start": 7123.0, "end": 7123.42, "probability": 0.7062 }, { "start": 7123.71, "end": 7127.67, "probability": 0.9565 }, { "start": 7128.04, "end": 7130.62, "probability": 0.8711 }, { "start": 7131.06, "end": 7132.3, "probability": 0.8283 }, { "start": 7132.34, "end": 7133.12, "probability": 0.5703 }, { "start": 7133.3, "end": 7136.16, "probability": 0.8337 }, { "start": 7137.8, "end": 7139.36, "probability": 0.9805 }, { "start": 7140.32, "end": 7141.34, "probability": 0.8452 }, { "start": 7143.16, "end": 7144.52, "probability": 0.9706 }, { "start": 7145.36, "end": 7148.86, "probability": 0.9958 }, { "start": 7149.94, "end": 7151.64, "probability": 0.6678 }, { "start": 7152.36, "end": 7155.32, "probability": 0.887 }, { "start": 7156.32, "end": 7156.98, "probability": 0.4945 }, { "start": 7158.34, "end": 7159.4, "probability": 0.9885 }, { "start": 7160.38, "end": 7161.8, "probability": 0.8782 }, { "start": 7162.5, "end": 7164.18, "probability": 0.7711 }, { "start": 7165.48, "end": 7165.94, "probability": 0.9734 }, { "start": 7168.38, "end": 7172.72, "probability": 0.9387 }, { "start": 7173.44, "end": 7176.4, "probability": 0.8196 }, { "start": 7177.1, "end": 7179.1, "probability": 0.9902 }, { "start": 7179.72, "end": 7183.62, "probability": 0.9607 }, { "start": 7184.18, "end": 7184.84, "probability": 0.7507 }, { "start": 7185.2, "end": 7186.14, "probability": 0.777 }, { "start": 7186.54, "end": 7188.52, "probability": 0.9083 }, { "start": 7188.96, "end": 7189.96, "probability": 0.9913 }, { "start": 7190.52, "end": 7191.94, "probability": 0.998 }, { "start": 7192.8, "end": 7195.84, "probability": 0.9803 }, { "start": 7195.96, "end": 7196.52, "probability": 0.5732 }, { "start": 7197.12, "end": 7198.02, "probability": 0.77 }, { "start": 7198.38, "end": 7199.06, "probability": 0.808 }, { "start": 7199.26, "end": 7200.4, "probability": 0.9868 }, { "start": 7200.92, "end": 7202.66, "probability": 0.9844 }, { "start": 7203.74, "end": 7205.89, "probability": 0.7182 }, { "start": 7208.14, "end": 7210.94, "probability": 0.7156 }, { "start": 7211.2, "end": 7215.32, "probability": 0.986 }, { "start": 7215.92, "end": 7218.89, "probability": 0.9464 }, { "start": 7219.86, "end": 7221.36, "probability": 0.5436 }, { "start": 7222.08, "end": 7223.52, "probability": 0.9477 }, { "start": 7223.82, "end": 7225.88, "probability": 0.5734 }, { "start": 7226.92, "end": 7227.8, "probability": 0.823 }, { "start": 7228.78, "end": 7229.94, "probability": 0.6624 }, { "start": 7231.88, "end": 7233.88, "probability": 0.8491 }, { "start": 7235.22, "end": 7236.88, "probability": 0.8534 }, { "start": 7237.78, "end": 7240.32, "probability": 0.9777 }, { "start": 7242.06, "end": 7243.17, "probability": 0.5741 }, { "start": 7244.34, "end": 7245.02, "probability": 0.5585 }, { "start": 7246.08, "end": 7246.68, "probability": 0.82 }, { "start": 7247.24, "end": 7250.98, "probability": 0.9775 }, { "start": 7251.56, "end": 7252.2, "probability": 0.9504 }, { "start": 7252.34, "end": 7253.22, "probability": 0.4288 }, { "start": 7253.3, "end": 7253.52, "probability": 0.6435 }, { "start": 7253.58, "end": 7257.14, "probability": 0.8777 }, { "start": 7257.94, "end": 7260.4, "probability": 0.6767 }, { "start": 7261.08, "end": 7263.78, "probability": 0.7416 }, { "start": 7264.48, "end": 7265.8, "probability": 0.9897 }, { "start": 7266.4, "end": 7268.94, "probability": 0.7779 }, { "start": 7268.94, "end": 7269.78, "probability": 0.3996 }, { "start": 7270.0, "end": 7270.14, "probability": 0.1034 }, { "start": 7270.14, "end": 7271.76, "probability": 0.9546 }, { "start": 7272.12, "end": 7274.72, "probability": 0.834 }, { "start": 7274.74, "end": 7275.74, "probability": 0.6577 }, { "start": 7276.12, "end": 7276.12, "probability": 0.1325 }, { "start": 7276.12, "end": 7276.5, "probability": 0.7946 }, { "start": 7279.96, "end": 7283.16, "probability": 0.6745 }, { "start": 7283.16, "end": 7284.3, "probability": 0.3881 }, { "start": 7285.78, "end": 7286.62, "probability": 0.7147 }, { "start": 7286.88, "end": 7287.96, "probability": 0.667 }, { "start": 7288.1, "end": 7289.39, "probability": 0.9695 }, { "start": 7289.66, "end": 7290.12, "probability": 0.7241 }, { "start": 7290.18, "end": 7290.48, "probability": 0.939 }, { "start": 7290.5, "end": 7290.92, "probability": 0.7606 }, { "start": 7291.02, "end": 7292.0, "probability": 0.9297 }, { "start": 7292.18, "end": 7293.81, "probability": 0.5453 }, { "start": 7294.22, "end": 7295.48, "probability": 0.593 }, { "start": 7297.12, "end": 7298.82, "probability": 0.8889 }, { "start": 7299.98, "end": 7304.0, "probability": 0.952 }, { "start": 7305.74, "end": 7306.68, "probability": 0.4353 }, { "start": 7308.32, "end": 7308.6, "probability": 0.4381 }, { "start": 7308.62, "end": 7309.62, "probability": 0.7147 }, { "start": 7310.18, "end": 7314.18, "probability": 0.8777 }, { "start": 7316.2, "end": 7318.9, "probability": 0.5636 }, { "start": 7319.68, "end": 7321.42, "probability": 0.9761 }, { "start": 7324.04, "end": 7324.88, "probability": 0.4448 }, { "start": 7326.5, "end": 7327.88, "probability": 0.7723 }, { "start": 7334.5, "end": 7337.08, "probability": 0.9238 }, { "start": 7337.7, "end": 7343.3, "probability": 0.8135 }, { "start": 7343.9, "end": 7347.54, "probability": 0.9955 }, { "start": 7348.06, "end": 7350.0, "probability": 0.6888 }, { "start": 7350.56, "end": 7354.68, "probability": 0.825 }, { "start": 7356.8, "end": 7358.12, "probability": 0.8351 }, { "start": 7358.28, "end": 7358.96, "probability": 0.9226 }, { "start": 7359.42, "end": 7361.08, "probability": 0.7023 }, { "start": 7361.12, "end": 7361.72, "probability": 0.4835 }, { "start": 7362.18, "end": 7363.14, "probability": 0.7876 }, { "start": 7365.66, "end": 7365.78, "probability": 0.0002 }, { "start": 7374.04, "end": 7374.16, "probability": 0.03 }, { "start": 7374.16, "end": 7375.98, "probability": 0.9893 }, { "start": 7377.22, "end": 7380.26, "probability": 0.9025 }, { "start": 7380.74, "end": 7383.42, "probability": 0.9943 }, { "start": 7384.04, "end": 7387.1, "probability": 0.9832 }, { "start": 7387.34, "end": 7387.94, "probability": 0.8637 }, { "start": 7388.72, "end": 7391.06, "probability": 0.5739 }, { "start": 7392.04, "end": 7392.4, "probability": 0.1177 }, { "start": 7392.4, "end": 7392.4, "probability": 0.0 }, { "start": 7392.98, "end": 7396.46, "probability": 0.5582 }, { "start": 7397.16, "end": 7403.72, "probability": 0.9346 }, { "start": 7404.1, "end": 7405.38, "probability": 0.7755 }, { "start": 7408.36, "end": 7410.7, "probability": 0.7949 }, { "start": 7411.76, "end": 7412.52, "probability": 0.9269 }, { "start": 7413.32, "end": 7416.45, "probability": 0.9883 }, { "start": 7416.8, "end": 7418.82, "probability": 0.4701 }, { "start": 7419.4, "end": 7424.76, "probability": 0.8723 }, { "start": 7424.94, "end": 7426.46, "probability": 0.7183 }, { "start": 7427.06, "end": 7428.14, "probability": 0.9642 }, { "start": 7428.78, "end": 7430.4, "probability": 0.7102 }, { "start": 7430.94, "end": 7433.7, "probability": 0.7048 }, { "start": 7434.52, "end": 7435.74, "probability": 0.8806 }, { "start": 7435.8, "end": 7436.28, "probability": 0.3035 }, { "start": 7436.5, "end": 7436.82, "probability": 0.6209 }, { "start": 7436.92, "end": 7437.52, "probability": 0.8228 }, { "start": 7437.9, "end": 7438.6, "probability": 0.5099 }, { "start": 7439.12, "end": 7439.16, "probability": 0.0059 }, { "start": 7454.64, "end": 7454.82, "probability": 0.0161 }, { "start": 7454.82, "end": 7456.06, "probability": 0.3655 }, { "start": 7456.78, "end": 7459.4, "probability": 0.6863 }, { "start": 7459.54, "end": 7462.72, "probability": 0.8756 }, { "start": 7464.54, "end": 7465.4, "probability": 0.8303 }, { "start": 7466.32, "end": 7468.06, "probability": 0.7688 }, { "start": 7468.8, "end": 7473.7, "probability": 0.9854 }, { "start": 7475.08, "end": 7477.36, "probability": 0.6643 }, { "start": 7478.1, "end": 7480.54, "probability": 0.424 }, { "start": 7481.3, "end": 7482.28, "probability": 0.711 }, { "start": 7483.82, "end": 7486.08, "probability": 0.9431 }, { "start": 7486.46, "end": 7489.4, "probability": 0.9356 }, { "start": 7498.7, "end": 7499.72, "probability": 0.321 }, { "start": 7501.84, "end": 7504.12, "probability": 0.8369 }, { "start": 7505.48, "end": 7509.94, "probability": 0.8328 }, { "start": 7509.94, "end": 7512.06, "probability": 0.9796 }, { "start": 7514.04, "end": 7514.96, "probability": 0.7532 }, { "start": 7515.52, "end": 7517.18, "probability": 0.9143 }, { "start": 7517.92, "end": 7520.3, "probability": 0.9616 }, { "start": 7520.4, "end": 7522.38, "probability": 0.8024 }, { "start": 7523.08, "end": 7523.62, "probability": 0.9131 }, { "start": 7524.96, "end": 7526.24, "probability": 0.7929 }, { "start": 7526.48, "end": 7527.54, "probability": 0.8547 }, { "start": 7527.7, "end": 7529.86, "probability": 0.9387 }, { "start": 7530.64, "end": 7533.12, "probability": 0.9395 }, { "start": 7533.9, "end": 7537.14, "probability": 0.7549 }, { "start": 7538.1, "end": 7541.96, "probability": 0.8582 }, { "start": 7542.7, "end": 7543.56, "probability": 0.1505 }, { "start": 7543.68, "end": 7544.66, "probability": 0.8916 }, { "start": 7544.76, "end": 7545.16, "probability": 0.8163 }, { "start": 7545.66, "end": 7549.58, "probability": 0.9804 }, { "start": 7550.48, "end": 7552.28, "probability": 0.9949 }, { "start": 7553.24, "end": 7555.5, "probability": 0.7925 }, { "start": 7557.16, "end": 7558.84, "probability": 0.6452 }, { "start": 7559.96, "end": 7560.72, "probability": 0.279 }, { "start": 7561.96, "end": 7563.32, "probability": 0.7411 }, { "start": 7563.84, "end": 7566.08, "probability": 0.6168 }, { "start": 7568.38, "end": 7574.88, "probability": 0.6974 }, { "start": 7574.98, "end": 7578.74, "probability": 0.9924 }, { "start": 7579.32, "end": 7579.5, "probability": 0.9994 }, { "start": 7580.24, "end": 7581.74, "probability": 0.9118 }, { "start": 7582.52, "end": 7583.86, "probability": 0.6528 }, { "start": 7597.12, "end": 7599.52, "probability": 0.8535 }, { "start": 7600.44, "end": 7600.89, "probability": 0.7306 }, { "start": 7601.18, "end": 7602.34, "probability": 0.9168 }, { "start": 7603.06, "end": 7605.54, "probability": 0.955 }, { "start": 7605.96, "end": 7606.66, "probability": 0.9805 }, { "start": 7610.2, "end": 7612.38, "probability": 0.9972 }, { "start": 7612.8, "end": 7613.68, "probability": 0.8137 }, { "start": 7614.18, "end": 7617.26, "probability": 0.9858 }, { "start": 7618.72, "end": 7621.34, "probability": 0.7934 }, { "start": 7622.18, "end": 7623.5, "probability": 0.184 }, { "start": 7624.02, "end": 7626.46, "probability": 0.7381 }, { "start": 7626.62, "end": 7629.94, "probability": 0.9458 }, { "start": 7629.94, "end": 7633.56, "probability": 0.9846 }, { "start": 7634.1, "end": 7637.38, "probability": 0.9472 }, { "start": 7637.82, "end": 7641.0, "probability": 0.9889 }, { "start": 7641.6, "end": 7644.2, "probability": 0.9569 }, { "start": 7644.52, "end": 7646.58, "probability": 0.964 }, { "start": 7647.04, "end": 7648.96, "probability": 0.984 }, { "start": 7649.94, "end": 7653.22, "probability": 0.9832 }, { "start": 7653.4, "end": 7656.82, "probability": 0.9761 }, { "start": 7657.38, "end": 7661.7, "probability": 0.939 }, { "start": 7662.28, "end": 7662.9, "probability": 0.8229 }, { "start": 7663.54, "end": 7665.78, "probability": 0.9971 }, { "start": 7666.2, "end": 7668.74, "probability": 0.9865 }, { "start": 7669.54, "end": 7673.08, "probability": 0.9492 }, { "start": 7673.6, "end": 7675.5, "probability": 0.7558 }, { "start": 7676.4, "end": 7680.54, "probability": 0.9792 }, { "start": 7681.18, "end": 7684.34, "probability": 0.9953 }, { "start": 7684.34, "end": 7688.24, "probability": 0.9825 }, { "start": 7689.48, "end": 7692.72, "probability": 0.9822 }, { "start": 7693.28, "end": 7694.1, "probability": 0.6141 }, { "start": 7694.18, "end": 7694.98, "probability": 0.6658 }, { "start": 7695.1, "end": 7696.04, "probability": 0.721 }, { "start": 7696.18, "end": 7699.56, "probability": 0.9208 }, { "start": 7699.56, "end": 7703.12, "probability": 0.9965 }, { "start": 7703.5, "end": 7706.54, "probability": 0.9631 }, { "start": 7707.26, "end": 7710.36, "probability": 0.9925 }, { "start": 7710.68, "end": 7712.96, "probability": 0.9534 }, { "start": 7713.74, "end": 7714.24, "probability": 0.7076 }, { "start": 7714.84, "end": 7717.62, "probability": 0.9792 }, { "start": 7718.42, "end": 7719.72, "probability": 0.6619 }, { "start": 7722.0, "end": 7725.38, "probability": 0.9986 }, { "start": 7727.54, "end": 7730.0, "probability": 0.9943 }, { "start": 7730.56, "end": 7734.46, "probability": 0.7302 }, { "start": 7737.12, "end": 7741.42, "probability": 0.7985 }, { "start": 7741.6, "end": 7742.76, "probability": 0.3107 }, { "start": 7743.54, "end": 7745.6, "probability": 0.7289 }, { "start": 7745.6, "end": 7746.2, "probability": 0.3631 }, { "start": 7746.76, "end": 7747.38, "probability": 0.5484 }, { "start": 7747.46, "end": 7747.98, "probability": 0.7521 }, { "start": 7748.06, "end": 7748.6, "probability": 0.5055 }, { "start": 7760.16, "end": 7760.68, "probability": 0.0017 }, { "start": 7760.68, "end": 7762.68, "probability": 0.7041 }, { "start": 7763.32, "end": 7765.88, "probability": 0.9757 }, { "start": 7765.88, "end": 7767.88, "probability": 0.6791 }, { "start": 7767.88, "end": 7768.98, "probability": 0.9321 }, { "start": 7770.2, "end": 7770.96, "probability": 0.6469 }, { "start": 7771.9, "end": 7774.38, "probability": 0.8169 }, { "start": 7775.02, "end": 7777.72, "probability": 0.5436 }, { "start": 7778.3, "end": 7778.94, "probability": 0.8154 }, { "start": 7780.18, "end": 7781.28, "probability": 0.5323 }, { "start": 7781.32, "end": 7781.96, "probability": 0.3363 }, { "start": 7782.06, "end": 7782.58, "probability": 0.6714 }, { "start": 7782.62, "end": 7783.1, "probability": 0.726 }, { "start": 7785.62, "end": 7788.18, "probability": 0.5877 }, { "start": 7797.94, "end": 7798.58, "probability": 0.1576 }, { "start": 7798.58, "end": 7800.54, "probability": 0.3912 }, { "start": 7801.18, "end": 7806.36, "probability": 0.6045 }, { "start": 7806.86, "end": 7808.42, "probability": 0.6 }, { "start": 7809.6, "end": 7812.12, "probability": 0.7746 }, { "start": 7812.8, "end": 7813.54, "probability": 0.7512 }, { "start": 7814.16, "end": 7815.96, "probability": 1.0 }, { "start": 7816.76, "end": 7820.82, "probability": 0.981 }, { "start": 7822.37, "end": 7826.42, "probability": 0.8324 }, { "start": 7827.02, "end": 7827.5, "probability": 0.6106 }, { "start": 7828.04, "end": 7828.6, "probability": 0.5775 }, { "start": 7829.44, "end": 7831.46, "probability": 0.7698 }, { "start": 7832.24, "end": 7833.78, "probability": 0.4255 }, { "start": 7835.32, "end": 7836.76, "probability": 0.8184 }, { "start": 7837.45, "end": 7840.5, "probability": 0.8085 }, { "start": 7841.12, "end": 7841.64, "probability": 0.1201 }, { "start": 7842.32, "end": 7848.0, "probability": 0.9478 }, { "start": 7848.24, "end": 7849.64, "probability": 0.4887 }, { "start": 7849.78, "end": 7852.18, "probability": 0.96 }, { "start": 7853.26, "end": 7855.86, "probability": 0.9411 }, { "start": 7855.96, "end": 7857.98, "probability": 0.6195 }, { "start": 7858.84, "end": 7863.54, "probability": 0.7499 }, { "start": 7864.18, "end": 7865.36, "probability": 0.579 }, { "start": 7866.26, "end": 7866.52, "probability": 0.358 }, { "start": 7866.6, "end": 7866.76, "probability": 0.8421 }, { "start": 7866.88, "end": 7869.78, "probability": 0.968 }, { "start": 7869.98, "end": 7871.38, "probability": 0.9946 }, { "start": 7872.04, "end": 7874.0, "probability": 0.981 }, { "start": 7875.4, "end": 7876.35, "probability": 0.2251 }, { "start": 7877.25, "end": 7882.0, "probability": 0.9882 }, { "start": 7885.24, "end": 7888.12, "probability": 0.9508 }, { "start": 7888.12, "end": 7892.08, "probability": 0.9321 }, { "start": 7892.12, "end": 7893.34, "probability": 0.8459 }, { "start": 7893.8, "end": 7895.92, "probability": 0.953 }, { "start": 7896.44, "end": 7898.38, "probability": 0.9094 }, { "start": 7898.88, "end": 7901.58, "probability": 0.9224 }, { "start": 7902.12, "end": 7904.5, "probability": 0.9636 }, { "start": 7905.94, "end": 7911.96, "probability": 0.8877 }, { "start": 7912.32, "end": 7914.94, "probability": 0.8169 }, { "start": 7915.58, "end": 7917.76, "probability": 0.8921 }, { "start": 7918.44, "end": 7918.8, "probability": 0.8427 }, { "start": 7919.54, "end": 7922.46, "probability": 0.8209 }, { "start": 7923.38, "end": 7926.32, "probability": 0.9962 }, { "start": 7927.16, "end": 7932.12, "probability": 0.9986 }, { "start": 7932.2, "end": 7933.52, "probability": 0.9167 }, { "start": 7933.64, "end": 7936.36, "probability": 0.8844 }, { "start": 7937.0, "end": 7937.58, "probability": 0.8665 }, { "start": 7937.72, "end": 7940.38, "probability": 0.9591 }, { "start": 7940.51, "end": 7943.68, "probability": 0.7622 }, { "start": 7944.08, "end": 7947.1, "probability": 0.9281 }, { "start": 7948.12, "end": 7949.02, "probability": 0.859 }, { "start": 7949.96, "end": 7952.64, "probability": 0.9963 }, { "start": 7953.54, "end": 7954.36, "probability": 0.7725 }, { "start": 7954.88, "end": 7955.26, "probability": 0.8883 }, { "start": 7956.6, "end": 7959.26, "probability": 0.9824 }, { "start": 7959.35, "end": 7961.9, "probability": 0.9948 }, { "start": 7963.02, "end": 7963.58, "probability": 0.8038 }, { "start": 7964.08, "end": 7966.22, "probability": 0.9908 }, { "start": 7966.22, "end": 7969.18, "probability": 0.996 }, { "start": 7969.78, "end": 7974.62, "probability": 0.9867 }, { "start": 7975.78, "end": 7976.24, "probability": 0.6305 }, { "start": 7976.32, "end": 7977.86, "probability": 0.9885 }, { "start": 7978.36, "end": 7978.64, "probability": 0.3851 }, { "start": 7978.72, "end": 7979.38, "probability": 0.8954 }, { "start": 7980.34, "end": 7984.66, "probability": 0.9396 }, { "start": 7985.26, "end": 7987.76, "probability": 0.9927 }, { "start": 7987.76, "end": 7990.9, "probability": 0.9092 }, { "start": 7991.04, "end": 7991.82, "probability": 0.3763 }, { "start": 7992.26, "end": 7994.96, "probability": 0.9905 }, { "start": 7995.76, "end": 7996.98, "probability": 0.9868 }, { "start": 7997.52, "end": 7999.02, "probability": 0.9951 }, { "start": 8000.08, "end": 8002.58, "probability": 0.9649 }, { "start": 8003.62, "end": 8004.76, "probability": 0.7377 }, { "start": 8004.82, "end": 8007.16, "probability": 0.8842 }, { "start": 8007.16, "end": 8010.06, "probability": 0.8954 }, { "start": 8010.64, "end": 8016.32, "probability": 0.8398 }, { "start": 8016.5, "end": 8016.98, "probability": 0.637 }, { "start": 8017.34, "end": 8017.64, "probability": 0.3916 }, { "start": 8017.64, "end": 8018.72, "probability": 0.8772 }, { "start": 8019.38, "end": 8020.65, "probability": 0.8678 }, { "start": 8021.56, "end": 8025.06, "probability": 0.9506 }, { "start": 8025.54, "end": 8026.06, "probability": 0.7912 }, { "start": 8026.18, "end": 8026.9, "probability": 0.7345 }, { "start": 8027.12, "end": 8027.88, "probability": 0.8406 }, { "start": 8027.98, "end": 8028.46, "probability": 0.5813 }, { "start": 8028.5, "end": 8028.78, "probability": 0.9116 }, { "start": 8029.28, "end": 8029.56, "probability": 0.6887 }, { "start": 8029.58, "end": 8030.38, "probability": 0.9153 }, { "start": 8030.5, "end": 8030.92, "probability": 0.8532 }, { "start": 8031.4, "end": 8032.68, "probability": 0.9932 }, { "start": 8032.96, "end": 8033.72, "probability": 0.7701 }, { "start": 8034.1, "end": 8035.34, "probability": 0.9933 }, { "start": 8035.92, "end": 8038.08, "probability": 0.7311 }, { "start": 8038.08, "end": 8038.36, "probability": 0.5752 }, { "start": 8038.64, "end": 8041.1, "probability": 0.7913 }, { "start": 8042.02, "end": 8043.46, "probability": 0.8736 }, { "start": 8049.16, "end": 8050.1, "probability": 0.7895 }, { "start": 8050.4, "end": 8055.0, "probability": 0.8419 }, { "start": 8055.6, "end": 8056.08, "probability": 0.0972 }, { "start": 8056.66, "end": 8057.24, "probability": 0.0163 }, { "start": 8057.84, "end": 8059.6, "probability": 0.3686 }, { "start": 8060.22, "end": 8060.42, "probability": 0.9498 }, { "start": 8061.2, "end": 8062.66, "probability": 0.8544 }, { "start": 8063.3, "end": 8065.06, "probability": 0.7903 }, { "start": 8065.76, "end": 8067.16, "probability": 0.5271 }, { "start": 8067.22, "end": 8067.78, "probability": 0.6144 }, { "start": 8067.78, "end": 8068.22, "probability": 0.732 }, { "start": 8068.3, "end": 8069.04, "probability": 0.665 }, { "start": 8081.8, "end": 8082.36, "probability": 0.0037 }, { "start": 8082.36, "end": 8084.19, "probability": 0.5725 }, { "start": 8084.88, "end": 8087.3, "probability": 0.9952 }, { "start": 8087.7, "end": 8090.26, "probability": 0.6641 }, { "start": 8091.11, "end": 8093.5, "probability": 0.5981 }, { "start": 8094.04, "end": 8094.78, "probability": 0.8559 }, { "start": 8095.04, "end": 8099.18, "probability": 0.487 }, { "start": 8099.58, "end": 8101.84, "probability": 0.8907 }, { "start": 8102.14, "end": 8102.6, "probability": 0.4354 }, { "start": 8102.64, "end": 8103.12, "probability": 0.6525 }, { "start": 8103.22, "end": 8103.68, "probability": 0.8808 }, { "start": 8105.64, "end": 8106.9, "probability": 0.0986 }, { "start": 8116.54, "end": 8117.02, "probability": 0.1543 }, { "start": 8117.02, "end": 8117.02, "probability": 0.4238 }, { "start": 8117.02, "end": 8117.02, "probability": 0.144 }, { "start": 8117.02, "end": 8119.08, "probability": 0.7623 }, { "start": 8119.72, "end": 8123.34, "probability": 0.6973 }, { "start": 8123.88, "end": 8125.01, "probability": 0.0105 }, { "start": 8125.52, "end": 8126.72, "probability": 0.3956 }, { "start": 8127.18, "end": 8130.82, "probability": 0.8633 }, { "start": 8131.36, "end": 8133.81, "probability": 0.7521 }, { "start": 8134.28, "end": 8134.76, "probability": 0.7331 }, { "start": 8135.46, "end": 8136.46, "probability": 0.9474 }, { "start": 8153.04, "end": 8154.0, "probability": 0.6109 }, { "start": 8154.92, "end": 8155.94, "probability": 0.8338 }, { "start": 8160.07, "end": 8164.32, "probability": 0.9917 }, { "start": 8165.96, "end": 8166.54, "probability": 0.9177 }, { "start": 8167.44, "end": 8168.04, "probability": 0.9219 }, { "start": 8169.82, "end": 8171.34, "probability": 0.6064 }, { "start": 8171.94, "end": 8172.3, "probability": 0.8522 }, { "start": 8173.08, "end": 8173.8, "probability": 0.2856 }, { "start": 8174.74, "end": 8176.2, "probability": 0.6258 }, { "start": 8177.12, "end": 8178.7, "probability": 0.8743 }, { "start": 8180.44, "end": 8183.02, "probability": 0.9461 }, { "start": 8184.1, "end": 8185.38, "probability": 0.7825 }, { "start": 8186.5, "end": 8188.28, "probability": 0.8984 }, { "start": 8189.3, "end": 8192.5, "probability": 0.9847 }, { "start": 8192.58, "end": 8194.9, "probability": 0.9684 }, { "start": 8197.46, "end": 8199.84, "probability": 0.9088 }, { "start": 8200.7, "end": 8204.6, "probability": 0.6912 }, { "start": 8205.56, "end": 8206.38, "probability": 0.6665 }, { "start": 8206.38, "end": 8207.66, "probability": 0.5202 }, { "start": 8207.82, "end": 8209.2, "probability": 0.5203 }, { "start": 8209.32, "end": 8209.98, "probability": 0.6782 }, { "start": 8210.28, "end": 8210.9, "probability": 0.7861 }, { "start": 8210.96, "end": 8212.62, "probability": 0.9951 }, { "start": 8212.92, "end": 8214.88, "probability": 0.7732 }, { "start": 8214.96, "end": 8214.96, "probability": 0.2687 }, { "start": 8214.96, "end": 8216.46, "probability": 0.9941 }, { "start": 8216.72, "end": 8219.7, "probability": 0.6348 }, { "start": 8219.9, "end": 8220.56, "probability": 0.7246 }, { "start": 8220.74, "end": 8221.7, "probability": 0.6326 }, { "start": 8222.0, "end": 8223.02, "probability": 0.2887 }, { "start": 8223.16, "end": 8224.34, "probability": 0.1075 }, { "start": 8225.82, "end": 8227.98, "probability": 0.9976 }, { "start": 8229.24, "end": 8230.66, "probability": 0.9087 }, { "start": 8232.84, "end": 8233.7, "probability": 0.7725 }, { "start": 8234.24, "end": 8235.0, "probability": 0.728 }, { "start": 8236.46, "end": 8237.16, "probability": 0.8149 }, { "start": 8238.48, "end": 8239.62, "probability": 0.9001 }, { "start": 8240.44, "end": 8241.14, "probability": 0.3664 }, { "start": 8241.3, "end": 8244.52, "probability": 0.8229 }, { "start": 8245.44, "end": 8246.7, "probability": 0.9563 }, { "start": 8247.78, "end": 8248.52, "probability": 0.4591 }, { "start": 8248.68, "end": 8249.54, "probability": 0.8213 }, { "start": 8249.74, "end": 8250.26, "probability": 0.9656 }, { "start": 8250.38, "end": 8251.97, "probability": 0.6899 }, { "start": 8252.8, "end": 8254.04, "probability": 0.9302 }, { "start": 8255.44, "end": 8256.2, "probability": 0.9756 }, { "start": 8256.78, "end": 8258.28, "probability": 0.969 }, { "start": 8258.48, "end": 8263.68, "probability": 0.8752 }, { "start": 8264.68, "end": 8265.06, "probability": 0.9074 }, { "start": 8267.98, "end": 8269.7, "probability": 0.6988 }, { "start": 8270.1, "end": 8271.74, "probability": 0.9093 }, { "start": 8271.82, "end": 8275.1, "probability": 0.9614 }, { "start": 8275.32, "end": 8276.0, "probability": 0.8812 }, { "start": 8276.38, "end": 8281.26, "probability": 0.8252 }, { "start": 8281.52, "end": 8282.25, "probability": 0.8975 }, { "start": 8282.92, "end": 8283.16, "probability": 0.5194 }, { "start": 8283.22, "end": 8288.42, "probability": 0.8329 }, { "start": 8289.08, "end": 8289.18, "probability": 0.1895 }, { "start": 8290.06, "end": 8292.34, "probability": 0.5671 }, { "start": 8292.34, "end": 8294.64, "probability": 0.8091 }, { "start": 8302.42, "end": 8305.38, "probability": 0.877 }, { "start": 8306.18, "end": 8307.3, "probability": 0.8204 }, { "start": 8309.08, "end": 8309.74, "probability": 0.8623 }, { "start": 8310.84, "end": 8311.3, "probability": 0.8458 }, { "start": 8312.7, "end": 8316.03, "probability": 0.1501 }, { "start": 8322.15, "end": 8323.78, "probability": 0.0197 }, { "start": 8337.06, "end": 8339.58, "probability": 0.173 }, { "start": 8341.26, "end": 8343.18, "probability": 0.9043 }, { "start": 8343.18, "end": 8345.04, "probability": 0.9321 }, { "start": 8346.72, "end": 8349.82, "probability": 0.9648 }, { "start": 8349.88, "end": 8352.9, "probability": 0.9834 }, { "start": 8353.32, "end": 8355.6, "probability": 0.9966 }, { "start": 8356.52, "end": 8357.46, "probability": 0.9163 }, { "start": 8357.62, "end": 8359.65, "probability": 0.9625 }, { "start": 8359.92, "end": 8361.17, "probability": 0.8189 }, { "start": 8363.28, "end": 8363.38, "probability": 0.0051 }, { "start": 8363.38, "end": 8364.02, "probability": 0.8164 }, { "start": 8365.64, "end": 8368.92, "probability": 0.9752 }, { "start": 8369.06, "end": 8369.92, "probability": 0.9163 }, { "start": 8370.62, "end": 8372.2, "probability": 0.7375 }, { "start": 8372.3, "end": 8374.22, "probability": 0.832 }, { "start": 8376.22, "end": 8376.34, "probability": 0.3969 }, { "start": 8376.44, "end": 8379.86, "probability": 0.8713 }, { "start": 8380.82, "end": 8381.68, "probability": 0.4343 }, { "start": 8381.78, "end": 8383.78, "probability": 0.9081 }, { "start": 8384.44, "end": 8387.12, "probability": 0.9568 }, { "start": 8387.74, "end": 8388.9, "probability": 0.7752 }, { "start": 8390.0, "end": 8393.24, "probability": 0.9346 }, { "start": 8393.3, "end": 8397.22, "probability": 0.9717 }, { "start": 8397.95, "end": 8399.08, "probability": 0.0215 }, { "start": 8400.46, "end": 8400.46, "probability": 0.1509 }, { "start": 8400.46, "end": 8400.85, "probability": 0.7959 }, { "start": 8402.38, "end": 8405.58, "probability": 0.8156 }, { "start": 8405.94, "end": 8406.2, "probability": 0.5734 }, { "start": 8407.38, "end": 8408.66, "probability": 0.8709 }, { "start": 8409.38, "end": 8409.6, "probability": 0.0899 }, { "start": 8411.16, "end": 8411.24, "probability": 0.3969 }, { "start": 8411.42, "end": 8412.54, "probability": 0.9271 }, { "start": 8413.16, "end": 8414.34, "probability": 0.9558 }, { "start": 8417.28, "end": 8417.65, "probability": 0.7446 }, { "start": 8417.8, "end": 8418.16, "probability": 0.8685 }, { "start": 8418.28, "end": 8418.64, "probability": 0.2643 }, { "start": 8418.74, "end": 8421.14, "probability": 0.5907 }, { "start": 8421.38, "end": 8422.9, "probability": 0.2058 }, { "start": 8422.96, "end": 8424.1, "probability": 0.7266 }, { "start": 8425.64, "end": 8427.46, "probability": 0.7938 }, { "start": 8427.46, "end": 8429.96, "probability": 0.6531 }, { "start": 8430.18, "end": 8432.5, "probability": 0.7811 }, { "start": 8433.36, "end": 8434.98, "probability": 0.9507 }, { "start": 8435.5, "end": 8439.14, "probability": 0.8242 }, { "start": 8439.14, "end": 8445.08, "probability": 0.9067 }, { "start": 8446.18, "end": 8449.04, "probability": 0.6103 }, { "start": 8449.04, "end": 8450.58, "probability": 0.7926 }, { "start": 8451.72, "end": 8453.46, "probability": 0.7844 }, { "start": 8454.5, "end": 8455.16, "probability": 0.5117 }, { "start": 8455.2, "end": 8456.88, "probability": 0.7822 }, { "start": 8456.88, "end": 8457.52, "probability": 0.3942 }, { "start": 8461.08, "end": 8462.8, "probability": 0.3704 }, { "start": 8463.46, "end": 8464.63, "probability": 0.4449 }, { "start": 8465.86, "end": 8468.03, "probability": 0.8613 }, { "start": 8468.22, "end": 8469.78, "probability": 0.7933 }, { "start": 8469.94, "end": 8470.9, "probability": 0.3892 }, { "start": 8472.06, "end": 8473.98, "probability": 0.8188 }, { "start": 8474.5, "end": 8475.34, "probability": 0.1923 }, { "start": 8475.34, "end": 8475.98, "probability": 0.2221 }, { "start": 8475.98, "end": 8476.84, "probability": 0.3011 }, { "start": 8476.96, "end": 8477.48, "probability": 0.4082 }, { "start": 8477.56, "end": 8478.32, "probability": 0.6921 }, { "start": 8479.0, "end": 8481.6, "probability": 0.8756 }, { "start": 8482.1, "end": 8483.78, "probability": 0.9966 }, { "start": 8484.04, "end": 8484.7, "probability": 0.3067 }, { "start": 8485.44, "end": 8486.42, "probability": 0.1023 }, { "start": 8486.7, "end": 8487.32, "probability": 0.6765 }, { "start": 8488.92, "end": 8489.74, "probability": 0.7655 }, { "start": 8492.3, "end": 8493.18, "probability": 0.6513 }, { "start": 8493.82, "end": 8495.14, "probability": 0.969 }, { "start": 8498.32, "end": 8499.22, "probability": 0.3625 }, { "start": 8499.68, "end": 8500.88, "probability": 0.8224 }, { "start": 8501.82, "end": 8502.98, "probability": 0.8546 }, { "start": 8503.58, "end": 8506.48, "probability": 0.9982 }, { "start": 8507.06, "end": 8509.54, "probability": 0.9637 }, { "start": 8510.24, "end": 8513.42, "probability": 0.995 }, { "start": 8513.98, "end": 8515.08, "probability": 0.9885 }, { "start": 8515.98, "end": 8518.38, "probability": 0.9575 }, { "start": 8518.5, "end": 8521.3, "probability": 0.7218 }, { "start": 8521.54, "end": 8522.92, "probability": 0.835 }, { "start": 8525.32, "end": 8525.9, "probability": 0.0219 }, { "start": 8525.9, "end": 8526.64, "probability": 0.279 }, { "start": 8526.98, "end": 8527.34, "probability": 0.6468 }, { "start": 8527.36, "end": 8528.66, "probability": 0.5559 }, { "start": 8528.92, "end": 8529.64, "probability": 0.2188 }, { "start": 8530.14, "end": 8532.94, "probability": 0.8333 }, { "start": 8533.4, "end": 8533.5, "probability": 0.3622 }, { "start": 8533.54, "end": 8534.38, "probability": 0.8662 }, { "start": 8534.48, "end": 8535.08, "probability": 0.7819 }, { "start": 8535.5, "end": 8537.2, "probability": 0.988 }, { "start": 8537.72, "end": 8540.4, "probability": 0.9105 }, { "start": 8541.04, "end": 8542.68, "probability": 0.9972 }, { "start": 8543.28, "end": 8543.84, "probability": 0.7324 }, { "start": 8544.36, "end": 8545.34, "probability": 0.931 }, { "start": 8545.64, "end": 8550.04, "probability": 0.9161 }, { "start": 8550.18, "end": 8551.24, "probability": 0.938 }, { "start": 8551.48, "end": 8551.88, "probability": 0.886 }, { "start": 8552.08, "end": 8553.32, "probability": 0.9136 }, { "start": 8553.96, "end": 8553.96, "probability": 0.2177 }, { "start": 8553.96, "end": 8555.08, "probability": 0.7172 }, { "start": 8555.44, "end": 8556.26, "probability": 0.2101 }, { "start": 8556.26, "end": 8557.22, "probability": 0.3605 }, { "start": 8558.36, "end": 8558.92, "probability": 0.6063 }, { "start": 8559.3, "end": 8559.42, "probability": 0.5076 }, { "start": 8560.34, "end": 8560.34, "probability": 0.2608 }, { "start": 8560.34, "end": 8560.44, "probability": 0.264 }, { "start": 8560.82, "end": 8561.3, "probability": 0.4284 }, { "start": 8561.46, "end": 8561.92, "probability": 0.7902 }, { "start": 8562.46, "end": 8563.76, "probability": 0.7574 }, { "start": 8564.58, "end": 8569.4, "probability": 0.9925 }, { "start": 8569.48, "end": 8570.25, "probability": 0.8203 }, { "start": 8571.28, "end": 8572.76, "probability": 0.7619 }, { "start": 8573.9, "end": 8574.86, "probability": 0.4637 }, { "start": 8574.92, "end": 8575.4, "probability": 0.621 }, { "start": 8576.5, "end": 8579.8, "probability": 0.9919 }, { "start": 8580.0, "end": 8581.92, "probability": 0.8483 }, { "start": 8582.2, "end": 8584.5, "probability": 0.9392 }, { "start": 8584.78, "end": 8589.82, "probability": 0.993 }, { "start": 8589.82, "end": 8594.88, "probability": 0.8545 }, { "start": 8598.58, "end": 8601.48, "probability": 0.9175 }, { "start": 8601.48, "end": 8605.76, "probability": 0.9944 }, { "start": 8606.28, "end": 8608.43, "probability": 0.9971 }, { "start": 8608.74, "end": 8609.96, "probability": 0.9409 }, { "start": 8611.12, "end": 8613.8, "probability": 0.6627 }, { "start": 8613.8, "end": 8616.46, "probability": 0.9937 }, { "start": 8617.04, "end": 8619.16, "probability": 0.9722 }, { "start": 8619.32, "end": 8620.7, "probability": 0.9445 }, { "start": 8620.76, "end": 8621.92, "probability": 0.8963 }, { "start": 8622.44, "end": 8625.1, "probability": 0.9865 }, { "start": 8625.72, "end": 8629.94, "probability": 0.9977 }, { "start": 8630.88, "end": 8630.88, "probability": 0.3412 }, { "start": 8630.88, "end": 8632.7, "probability": 0.9081 }, { "start": 8632.84, "end": 8633.68, "probability": 0.8337 }, { "start": 8634.08, "end": 8635.63, "probability": 0.8706 }, { "start": 8636.42, "end": 8640.68, "probability": 0.9419 }, { "start": 8640.78, "end": 8641.73, "probability": 0.979 }, { "start": 8642.36, "end": 8644.96, "probability": 0.8477 }, { "start": 8644.98, "end": 8646.82, "probability": 0.9539 }, { "start": 8647.78, "end": 8648.03, "probability": 0.3259 }, { "start": 8649.14, "end": 8649.5, "probability": 0.6092 }, { "start": 8659.3, "end": 8661.72, "probability": 0.8685 }, { "start": 8662.54, "end": 8666.32, "probability": 0.8064 }, { "start": 8667.08, "end": 8671.5, "probability": 0.8319 }, { "start": 8673.18, "end": 8673.18, "probability": 0.0101 }, { "start": 8673.18, "end": 8673.46, "probability": 0.9766 }, { "start": 8674.26, "end": 8676.42, "probability": 0.9951 }, { "start": 8676.8, "end": 8676.8, "probability": 0.438 }, { "start": 8676.86, "end": 8679.24, "probability": 0.6262 }, { "start": 8680.32, "end": 8681.7, "probability": 0.8133 }, { "start": 8682.16, "end": 8684.98, "probability": 0.821 }, { "start": 8685.06, "end": 8685.58, "probability": 0.7724 }, { "start": 8685.78, "end": 8687.72, "probability": 0.0228 }, { "start": 8688.24, "end": 8689.08, "probability": 0.8119 }, { "start": 8689.94, "end": 8690.4, "probability": 0.9041 }, { "start": 8692.14, "end": 8693.64, "probability": 0.9932 }, { "start": 8694.28, "end": 8696.97, "probability": 0.7779 }, { "start": 8698.36, "end": 8700.34, "probability": 0.8766 }, { "start": 8700.98, "end": 8702.76, "probability": 0.9047 }, { "start": 8703.82, "end": 8707.26, "probability": 0.9815 }, { "start": 8707.38, "end": 8711.32, "probability": 0.6687 }, { "start": 8712.4, "end": 8714.1, "probability": 0.5142 }, { "start": 8714.28, "end": 8714.42, "probability": 0.1076 }, { "start": 8714.42, "end": 8717.26, "probability": 0.9395 }, { "start": 8717.92, "end": 8718.84, "probability": 0.6964 }, { "start": 8719.5, "end": 8725.16, "probability": 0.8563 }, { "start": 8726.02, "end": 8728.48, "probability": 0.7769 }, { "start": 8730.75, "end": 8732.08, "probability": 0.1517 }, { "start": 8732.32, "end": 8735.14, "probability": 0.7235 }, { "start": 8736.1, "end": 8739.7, "probability": 0.9879 }, { "start": 8740.96, "end": 8745.56, "probability": 0.9439 }, { "start": 8746.56, "end": 8750.24, "probability": 0.9877 }, { "start": 8750.98, "end": 8754.01, "probability": 0.9936 }, { "start": 8754.74, "end": 8757.34, "probability": 0.9737 }, { "start": 8758.08, "end": 8760.03, "probability": 0.995 }, { "start": 8760.52, "end": 8762.4, "probability": 0.9932 }, { "start": 8763.36, "end": 8766.67, "probability": 0.9363 }, { "start": 8767.5, "end": 8772.7, "probability": 0.9787 }, { "start": 8773.66, "end": 8774.72, "probability": 0.9771 }, { "start": 8775.26, "end": 8777.76, "probability": 0.7809 }, { "start": 8777.88, "end": 8778.06, "probability": 0.5369 }, { "start": 8778.16, "end": 8779.28, "probability": 0.8665 }, { "start": 8780.04, "end": 8780.68, "probability": 0.726 }, { "start": 8780.78, "end": 8783.12, "probability": 0.918 }, { "start": 8785.72, "end": 8788.36, "probability": 0.7637 }, { "start": 8792.96, "end": 8793.48, "probability": 0.0921 }, { "start": 8793.54, "end": 8794.06, "probability": 0.1644 }, { "start": 8794.26, "end": 8795.32, "probability": 0.9159 }, { "start": 8795.62, "end": 8797.72, "probability": 0.6992 }, { "start": 8798.68, "end": 8800.78, "probability": 0.8304 }, { "start": 8800.9, "end": 8803.62, "probability": 0.8748 }, { "start": 8804.62, "end": 8811.3, "probability": 0.9661 }, { "start": 8812.76, "end": 8814.95, "probability": 0.7572 }, { "start": 8815.6, "end": 8817.04, "probability": 0.6849 }, { "start": 8817.52, "end": 8818.24, "probability": 0.9891 }, { "start": 8821.12, "end": 8823.18, "probability": 0.987 }, { "start": 8823.3, "end": 8825.98, "probability": 0.7952 }, { "start": 8826.68, "end": 8827.6, "probability": 0.6366 }, { "start": 8829.18, "end": 8832.38, "probability": 0.98 }, { "start": 8833.28, "end": 8838.52, "probability": 0.9326 }, { "start": 8840.28, "end": 8842.36, "probability": 0.6623 }, { "start": 8844.22, "end": 8845.56, "probability": 0.9228 }, { "start": 8845.92, "end": 8847.7, "probability": 0.7794 }, { "start": 8847.84, "end": 8848.28, "probability": 0.6564 }, { "start": 8848.36, "end": 8849.86, "probability": 0.9966 }, { "start": 8850.3, "end": 8853.34, "probability": 0.6604 }, { "start": 8854.24, "end": 8856.38, "probability": 0.9461 }, { "start": 8856.48, "end": 8857.1, "probability": 0.805 }, { "start": 8857.76, "end": 8859.08, "probability": 0.6452 }, { "start": 8859.5, "end": 8860.42, "probability": 0.7757 }, { "start": 8860.5, "end": 8861.66, "probability": 0.7133 }, { "start": 8862.78, "end": 8866.07, "probability": 0.6718 }, { "start": 8866.54, "end": 8869.54, "probability": 0.9012 }, { "start": 8870.04, "end": 8871.7, "probability": 0.4913 }, { "start": 8872.82, "end": 8874.96, "probability": 0.8119 }, { "start": 8875.64, "end": 8876.68, "probability": 0.9856 }, { "start": 8877.33, "end": 8880.0, "probability": 0.9521 }, { "start": 8880.08, "end": 8883.06, "probability": 0.9418 }, { "start": 8883.6, "end": 8885.54, "probability": 0.9724 }, { "start": 8887.32, "end": 8889.06, "probability": 0.8534 }, { "start": 8889.62, "end": 8890.62, "probability": 0.5534 }, { "start": 8891.2, "end": 8891.86, "probability": 0.4968 }, { "start": 8892.54, "end": 8893.18, "probability": 0.9141 }, { "start": 8894.42, "end": 8896.09, "probability": 0.9414 }, { "start": 8896.5, "end": 8897.78, "probability": 0.9174 }, { "start": 8898.76, "end": 8899.82, "probability": 0.8287 }, { "start": 8899.88, "end": 8900.56, "probability": 0.9412 }, { "start": 8900.6, "end": 8901.32, "probability": 0.6486 }, { "start": 8901.4, "end": 8902.82, "probability": 0.6489 }, { "start": 8903.54, "end": 8905.63, "probability": 0.6808 }, { "start": 8906.54, "end": 8908.42, "probability": 0.7514 }, { "start": 8908.5, "end": 8909.38, "probability": 0.7743 }, { "start": 8909.58, "end": 8910.2, "probability": 0.5022 }, { "start": 8910.26, "end": 8911.24, "probability": 0.9286 }, { "start": 8912.58, "end": 8915.45, "probability": 0.9527 }, { "start": 8916.38, "end": 8918.84, "probability": 0.9756 }, { "start": 8919.54, "end": 8921.16, "probability": 0.978 }, { "start": 8921.2, "end": 8922.06, "probability": 0.6368 }, { "start": 8922.5, "end": 8924.8, "probability": 0.9989 }, { "start": 8924.88, "end": 8928.1, "probability": 0.8843 }, { "start": 8928.76, "end": 8932.24, "probability": 0.998 }, { "start": 8932.24, "end": 8936.96, "probability": 0.9667 }, { "start": 8937.48, "end": 8938.64, "probability": 0.8802 }, { "start": 8939.78, "end": 8944.44, "probability": 0.9969 }, { "start": 8944.9, "end": 8948.16, "probability": 0.998 }, { "start": 8948.64, "end": 8949.4, "probability": 0.9858 }, { "start": 8949.54, "end": 8951.62, "probability": 0.9673 }, { "start": 8951.68, "end": 8953.96, "probability": 0.9821 }, { "start": 8954.02, "end": 8954.34, "probability": 0.737 }, { "start": 8954.7, "end": 8956.06, "probability": 0.7249 }, { "start": 8956.86, "end": 8957.74, "probability": 0.6828 }, { "start": 8958.4, "end": 8959.96, "probability": 0.9069 }, { "start": 8960.08, "end": 8960.8, "probability": 0.4138 }, { "start": 8961.02, "end": 8962.22, "probability": 0.958 }, { "start": 8967.34, "end": 8968.61, "probability": 0.8837 }, { "start": 8972.38, "end": 8973.8, "probability": 0.5624 }, { "start": 8974.0, "end": 8974.0, "probability": 0.5703 }, { "start": 8974.0, "end": 8975.12, "probability": 0.7501 }, { "start": 8975.22, "end": 8975.92, "probability": 0.664 }, { "start": 8977.44, "end": 8980.02, "probability": 0.8867 }, { "start": 8980.44, "end": 8984.48, "probability": 0.9753 }, { "start": 8985.76, "end": 8991.1, "probability": 0.9845 }, { "start": 8992.16, "end": 8993.44, "probability": 0.9091 }, { "start": 8993.72, "end": 8995.52, "probability": 0.9165 }, { "start": 8995.56, "end": 8997.66, "probability": 0.8997 }, { "start": 8998.68, "end": 9001.19, "probability": 0.849 }, { "start": 9002.0, "end": 9003.32, "probability": 0.9495 }, { "start": 9004.3, "end": 9005.2, "probability": 0.6879 }, { "start": 9005.24, "end": 9005.74, "probability": 0.8825 }, { "start": 9006.02, "end": 9007.16, "probability": 0.7423 }, { "start": 9007.58, "end": 9008.66, "probability": 0.941 }, { "start": 9009.42, "end": 9009.98, "probability": 0.8105 }, { "start": 9010.18, "end": 9012.38, "probability": 0.993 }, { "start": 9012.54, "end": 9015.52, "probability": 0.9947 }, { "start": 9016.06, "end": 9017.12, "probability": 0.9771 }, { "start": 9017.38, "end": 9019.9, "probability": 0.9874 }, { "start": 9019.96, "end": 9024.94, "probability": 0.9646 }, { "start": 9026.12, "end": 9027.02, "probability": 0.9853 }, { "start": 9027.92, "end": 9032.04, "probability": 0.9927 }, { "start": 9032.6, "end": 9036.64, "probability": 0.9924 }, { "start": 9037.1, "end": 9039.9, "probability": 0.9877 }, { "start": 9040.5, "end": 9045.84, "probability": 0.8073 }, { "start": 9046.18, "end": 9048.14, "probability": 0.8736 }, { "start": 9048.52, "end": 9050.98, "probability": 0.9952 }, { "start": 9051.38, "end": 9052.8, "probability": 0.9987 }, { "start": 9053.4, "end": 9054.94, "probability": 0.9889 }, { "start": 9055.5, "end": 9059.6, "probability": 0.9891 }, { "start": 9061.18, "end": 9064.78, "probability": 0.973 }, { "start": 9065.36, "end": 9068.88, "probability": 0.9884 }, { "start": 9069.92, "end": 9071.08, "probability": 0.9199 }, { "start": 9071.68, "end": 9075.1, "probability": 0.994 }, { "start": 9076.26, "end": 9078.58, "probability": 0.9985 }, { "start": 9078.58, "end": 9081.82, "probability": 0.993 }, { "start": 9082.38, "end": 9083.74, "probability": 0.849 }, { "start": 9084.52, "end": 9088.94, "probability": 0.9973 }, { "start": 9089.56, "end": 9092.72, "probability": 0.9976 }, { "start": 9092.72, "end": 9095.48, "probability": 0.9359 }, { "start": 9095.96, "end": 9097.06, "probability": 0.987 }, { "start": 9097.28, "end": 9100.68, "probability": 0.9858 }, { "start": 9101.26, "end": 9101.96, "probability": 0.7097 }, { "start": 9102.1, "end": 9104.78, "probability": 0.9738 }, { "start": 9106.42, "end": 9108.34, "probability": 0.9943 }, { "start": 9108.7, "end": 9112.12, "probability": 0.9868 }, { "start": 9112.58, "end": 9113.8, "probability": 0.8831 }, { "start": 9114.36, "end": 9116.9, "probability": 0.9604 }, { "start": 9116.9, "end": 9120.3, "probability": 0.9971 }, { "start": 9120.72, "end": 9122.64, "probability": 0.8158 }, { "start": 9123.18, "end": 9124.88, "probability": 0.9553 }, { "start": 9125.0, "end": 9125.38, "probability": 0.7816 }, { "start": 9125.38, "end": 9126.34, "probability": 0.5239 }, { "start": 9126.64, "end": 9127.92, "probability": 0.9651 }, { "start": 9129.16, "end": 9131.36, "probability": 0.6538 }, { "start": 9136.14, "end": 9136.7, "probability": 0.5792 }, { "start": 9136.82, "end": 9137.5, "probability": 0.6732 }, { "start": 9137.86, "end": 9138.68, "probability": 0.8871 }, { "start": 9141.86, "end": 9143.99, "probability": 0.8532 }, { "start": 9144.84, "end": 9145.24, "probability": 0.8951 }, { "start": 9146.2, "end": 9147.14, "probability": 0.9038 }, { "start": 9147.84, "end": 9152.76, "probability": 0.995 }, { "start": 9153.52, "end": 9155.14, "probability": 0.7474 }, { "start": 9155.66, "end": 9159.84, "probability": 0.8868 }, { "start": 9160.54, "end": 9165.02, "probability": 0.9893 }, { "start": 9165.44, "end": 9167.34, "probability": 0.6814 }, { "start": 9167.62, "end": 9168.68, "probability": 0.9797 }, { "start": 9169.06, "end": 9171.32, "probability": 0.9932 }, { "start": 9171.94, "end": 9172.8, "probability": 0.5814 }, { "start": 9173.14, "end": 9174.56, "probability": 0.7831 }, { "start": 9174.64, "end": 9175.8, "probability": 0.8789 }, { "start": 9175.8, "end": 9178.16, "probability": 0.7182 }, { "start": 9178.24, "end": 9179.26, "probability": 0.9588 }, { "start": 9179.76, "end": 9180.88, "probability": 0.9264 }, { "start": 9181.2, "end": 9182.54, "probability": 0.4752 }, { "start": 9183.16, "end": 9185.84, "probability": 0.5049 }, { "start": 9186.3, "end": 9188.26, "probability": 0.7063 }, { "start": 9188.66, "end": 9190.18, "probability": 0.8655 }, { "start": 9190.54, "end": 9191.48, "probability": 0.6097 }, { "start": 9191.66, "end": 9194.2, "probability": 0.9265 }, { "start": 9195.04, "end": 9197.48, "probability": 0.3368 }, { "start": 9198.12, "end": 9198.48, "probability": 0.4897 }, { "start": 9201.98, "end": 9202.3, "probability": 0.0466 }, { "start": 9202.3, "end": 9203.62, "probability": 0.4452 }, { "start": 9208.72, "end": 9211.12, "probability": 0.999 }, { "start": 9211.22, "end": 9213.72, "probability": 0.9666 }, { "start": 9214.28, "end": 9217.2, "probability": 0.9902 }, { "start": 9217.88, "end": 9220.92, "probability": 0.9209 }, { "start": 9221.54, "end": 9225.4, "probability": 0.9011 }, { "start": 9226.2, "end": 9228.28, "probability": 0.235 }, { "start": 9228.82, "end": 9231.4, "probability": 0.9976 }, { "start": 9232.46, "end": 9232.95, "probability": 0.0932 }, { "start": 9233.22, "end": 9233.59, "probability": 0.1344 }, { "start": 9236.04, "end": 9236.08, "probability": 0.006 }, { "start": 9244.48, "end": 9244.72, "probability": 0.0002 }, { "start": 9245.48, "end": 9246.44, "probability": 0.144 }, { "start": 9246.44, "end": 9246.44, "probability": 0.205 }, { "start": 9246.44, "end": 9248.74, "probability": 0.9712 }, { "start": 9249.62, "end": 9250.56, "probability": 0.4737 }, { "start": 9251.73, "end": 9253.72, "probability": 0.8731 }, { "start": 9255.06, "end": 9259.26, "probability": 0.6039 }, { "start": 9259.36, "end": 9262.36, "probability": 0.8809 }, { "start": 9263.32, "end": 9264.86, "probability": 0.592 }, { "start": 9265.48, "end": 9268.14, "probability": 0.7466 }, { "start": 9268.46, "end": 9269.82, "probability": 0.8077 }, { "start": 9269.98, "end": 9274.24, "probability": 0.9583 }, { "start": 9274.78, "end": 9276.12, "probability": 0.6525 }, { "start": 9277.38, "end": 9277.5, "probability": 0.1766 }, { "start": 9277.5, "end": 9278.55, "probability": 0.2926 }, { "start": 9278.9, "end": 9281.66, "probability": 0.9847 }, { "start": 9282.12, "end": 9284.46, "probability": 0.5367 }, { "start": 9284.86, "end": 9287.04, "probability": 0.9681 }, { "start": 9287.6, "end": 9288.88, "probability": 0.1962 }, { "start": 9290.16, "end": 9293.74, "probability": 0.6686 }, { "start": 9294.2, "end": 9294.2, "probability": 0.7012 }, { "start": 9294.2, "end": 9294.54, "probability": 0.0295 }, { "start": 9294.54, "end": 9294.54, "probability": 0.5453 }, { "start": 9294.54, "end": 9294.72, "probability": 0.2189 }, { "start": 9295.32, "end": 9299.36, "probability": 0.9543 }, { "start": 9300.45, "end": 9301.36, "probability": 0.1097 }, { "start": 9301.36, "end": 9301.54, "probability": 0.1785 }, { "start": 9301.82, "end": 9302.16, "probability": 0.8116 }, { "start": 9305.9, "end": 9308.34, "probability": 0.7504 }, { "start": 9309.14, "end": 9311.23, "probability": 0.8677 }, { "start": 9311.7, "end": 9318.34, "probability": 0.6266 }, { "start": 9319.96, "end": 9321.74, "probability": 0.6728 }, { "start": 9322.0, "end": 9325.0, "probability": 0.46 }, { "start": 9328.48, "end": 9332.96, "probability": 0.6071 }, { "start": 9337.36, "end": 9342.96, "probability": 0.5742 }, { "start": 9343.42, "end": 9347.38, "probability": 0.9385 }, { "start": 9347.48, "end": 9349.12, "probability": 0.8375 }, { "start": 9349.42, "end": 9351.0, "probability": 0.8232 }, { "start": 9352.42, "end": 9353.12, "probability": 0.8283 }, { "start": 9357.38, "end": 9358.7, "probability": 0.9731 }, { "start": 9372.1, "end": 9374.43, "probability": 0.7404 }, { "start": 9375.42, "end": 9376.5, "probability": 0.4914 }, { "start": 9377.02, "end": 9377.12, "probability": 0.3918 }, { "start": 9377.62, "end": 9377.66, "probability": 0.0012 }, { "start": 9378.86, "end": 9379.08, "probability": 0.4194 }, { "start": 9381.26, "end": 9381.74, "probability": 0.2044 }, { "start": 9382.4, "end": 9382.4, "probability": 0.0248 }, { "start": 9382.54, "end": 9382.58, "probability": 0.0819 }, { "start": 9382.58, "end": 9387.1, "probability": 0.1654 }, { "start": 9388.24, "end": 9389.96, "probability": 0.6182 }, { "start": 9391.97, "end": 9395.18, "probability": 0.8708 }, { "start": 9395.9, "end": 9396.81, "probability": 0.96 }, { "start": 9397.02, "end": 9399.4, "probability": 0.9836 }, { "start": 9400.96, "end": 9401.56, "probability": 0.8487 }, { "start": 9402.9, "end": 9404.42, "probability": 0.9106 }, { "start": 9406.44, "end": 9408.96, "probability": 0.8508 }, { "start": 9409.86, "end": 9412.1, "probability": 0.9962 }, { "start": 9412.82, "end": 9415.55, "probability": 0.9983 }, { "start": 9416.46, "end": 9417.08, "probability": 0.7161 }, { "start": 9417.84, "end": 9418.74, "probability": 0.759 }, { "start": 9418.86, "end": 9421.06, "probability": 0.991 }, { "start": 9422.06, "end": 9424.22, "probability": 0.9841 }, { "start": 9425.42, "end": 9426.17, "probability": 0.7986 }, { "start": 9427.2, "end": 9430.2, "probability": 0.9023 }, { "start": 9431.32, "end": 9432.1, "probability": 0.9106 }, { "start": 9432.8, "end": 9434.34, "probability": 0.4832 }, { "start": 9434.84, "end": 9439.2, "probability": 0.9 }, { "start": 9439.7, "end": 9440.22, "probability": 0.7618 }, { "start": 9440.74, "end": 9443.04, "probability": 0.3696 }, { "start": 9445.22, "end": 9445.36, "probability": 0.1411 }, { "start": 9445.36, "end": 9447.64, "probability": 0.6535 }, { "start": 9448.04, "end": 9449.94, "probability": 0.808 }, { "start": 9450.38, "end": 9451.48, "probability": 0.9222 }, { "start": 9452.72, "end": 9452.9, "probability": 0.4584 }, { "start": 9452.92, "end": 9461.48, "probability": 0.9712 }, { "start": 9462.76, "end": 9469.98, "probability": 0.6605 }, { "start": 9471.44, "end": 9471.95, "probability": 0.7032 }, { "start": 9473.4, "end": 9477.8, "probability": 0.9822 }, { "start": 9477.8, "end": 9483.7, "probability": 0.9982 }, { "start": 9484.85, "end": 9487.92, "probability": 0.8487 }, { "start": 9488.1, "end": 9491.14, "probability": 0.9833 }, { "start": 9492.16, "end": 9492.36, "probability": 0.7132 }, { "start": 9492.74, "end": 9494.46, "probability": 0.8481 }, { "start": 9495.54, "end": 9497.86, "probability": 0.9944 }, { "start": 9498.78, "end": 9503.16, "probability": 0.9604 }, { "start": 9504.36, "end": 9505.64, "probability": 0.9622 }, { "start": 9506.22, "end": 9507.34, "probability": 0.699 }, { "start": 9507.42, "end": 9508.34, "probability": 0.9004 }, { "start": 9508.74, "end": 9514.56, "probability": 0.9908 }, { "start": 9515.34, "end": 9515.56, "probability": 0.3429 }, { "start": 9515.68, "end": 9520.14, "probability": 0.8652 }, { "start": 9520.22, "end": 9522.04, "probability": 0.968 }, { "start": 9522.38, "end": 9525.73, "probability": 0.9869 }, { "start": 9526.66, "end": 9530.38, "probability": 0.7139 }, { "start": 9530.44, "end": 9531.92, "probability": 0.9539 }, { "start": 9532.4, "end": 9534.28, "probability": 0.9825 }, { "start": 9534.6, "end": 9536.44, "probability": 0.6671 }, { "start": 9536.94, "end": 9539.04, "probability": 0.9349 }, { "start": 9540.12, "end": 9542.04, "probability": 0.9827 }, { "start": 9546.48, "end": 9547.12, "probability": 0.5446 }, { "start": 9547.52, "end": 9548.48, "probability": 0.9055 }, { "start": 9550.44, "end": 9550.96, "probability": 0.7438 }, { "start": 9551.14, "end": 9554.64, "probability": 0.9864 }, { "start": 9555.74, "end": 9556.74, "probability": 0.9127 }, { "start": 9556.84, "end": 9557.5, "probability": 0.7588 }, { "start": 9557.66, "end": 9558.89, "probability": 0.9622 }, { "start": 9559.66, "end": 9562.24, "probability": 0.9561 }, { "start": 9563.2, "end": 9563.42, "probability": 0.7834 }, { "start": 9563.54, "end": 9564.4, "probability": 0.8594 }, { "start": 9564.68, "end": 9566.22, "probability": 0.938 }, { "start": 9566.3, "end": 9566.56, "probability": 0.467 }, { "start": 9566.74, "end": 9566.84, "probability": 0.5165 }, { "start": 9567.98, "end": 9569.36, "probability": 0.726 }, { "start": 9570.48, "end": 9571.76, "probability": 0.742 }, { "start": 9572.78, "end": 9573.62, "probability": 0.8142 }, { "start": 9573.74, "end": 9573.98, "probability": 0.8538 }, { "start": 9574.08, "end": 9576.9, "probability": 0.9382 }, { "start": 9576.9, "end": 9577.58, "probability": 0.4922 }, { "start": 9577.7, "end": 9578.06, "probability": 0.6322 }, { "start": 9578.12, "end": 9578.56, "probability": 0.8429 }, { "start": 9578.62, "end": 9580.74, "probability": 0.9888 }, { "start": 9581.02, "end": 9584.08, "probability": 0.955 }, { "start": 9584.5, "end": 9585.74, "probability": 0.9141 }, { "start": 9585.88, "end": 9587.26, "probability": 0.2913 }, { "start": 9587.64, "end": 9589.66, "probability": 0.7126 }, { "start": 9589.76, "end": 9590.58, "probability": 0.6284 }, { "start": 9590.66, "end": 9591.56, "probability": 0.7439 }, { "start": 9591.66, "end": 9592.46, "probability": 0.6386 }, { "start": 9592.94, "end": 9594.36, "probability": 0.876 }, { "start": 9594.44, "end": 9595.22, "probability": 0.5347 }, { "start": 9595.24, "end": 9595.74, "probability": 0.7217 }, { "start": 9595.86, "end": 9598.08, "probability": 0.8934 }, { "start": 9598.14, "end": 9598.86, "probability": 0.8653 }, { "start": 9599.26, "end": 9600.02, "probability": 0.5001 }, { "start": 9600.04, "end": 9601.36, "probability": 0.7188 }, { "start": 9602.08, "end": 9603.24, "probability": 0.8054 }, { "start": 9603.34, "end": 9603.44, "probability": 0.828 }, { "start": 9604.18, "end": 9606.97, "probability": 0.8937 }, { "start": 9608.5, "end": 9609.14, "probability": 0.0421 }, { "start": 9609.16, "end": 9610.16, "probability": 0.5974 }, { "start": 9610.54, "end": 9611.62, "probability": 0.7303 }, { "start": 9611.72, "end": 9613.04, "probability": 0.8352 }, { "start": 9613.36, "end": 9614.22, "probability": 0.8959 }, { "start": 9614.42, "end": 9615.73, "probability": 0.8005 }, { "start": 9616.1, "end": 9617.3, "probability": 0.5324 }, { "start": 9618.4, "end": 9620.36, "probability": 0.7899 }, { "start": 9620.62, "end": 9623.78, "probability": 0.8022 }, { "start": 9624.68, "end": 9627.34, "probability": 0.8565 }, { "start": 9627.56, "end": 9628.86, "probability": 0.9536 }, { "start": 9629.12, "end": 9630.7, "probability": 0.6644 }, { "start": 9630.78, "end": 9631.76, "probability": 0.8878 }, { "start": 9632.46, "end": 9635.17, "probability": 0.9227 }, { "start": 9635.76, "end": 9638.18, "probability": 0.8258 }, { "start": 9638.84, "end": 9641.36, "probability": 0.8977 }, { "start": 9641.78, "end": 9643.84, "probability": 0.7758 }, { "start": 9643.92, "end": 9644.83, "probability": 0.7244 }, { "start": 9645.34, "end": 9646.23, "probability": 0.8017 }, { "start": 9647.0, "end": 9647.78, "probability": 0.988 }, { "start": 9647.86, "end": 9649.22, "probability": 0.9094 }, { "start": 9649.9, "end": 9652.06, "probability": 0.8359 }, { "start": 9652.24, "end": 9653.32, "probability": 0.7972 }, { "start": 9653.4, "end": 9654.26, "probability": 0.652 }, { "start": 9654.62, "end": 9656.2, "probability": 0.8741 }, { "start": 9656.62, "end": 9658.98, "probability": 0.8673 }, { "start": 9659.48, "end": 9660.72, "probability": 0.9885 }, { "start": 9661.48, "end": 9664.21, "probability": 0.8485 }, { "start": 9664.64, "end": 9667.08, "probability": 0.7666 }, { "start": 9667.56, "end": 9667.86, "probability": 0.7279 }, { "start": 9667.88, "end": 9668.72, "probability": 0.7719 }, { "start": 9669.42, "end": 9670.84, "probability": 0.6634 }, { "start": 9672.56, "end": 9675.66, "probability": 0.9918 }, { "start": 9676.04, "end": 9677.68, "probability": 0.9018 }, { "start": 9678.12, "end": 9680.58, "probability": 0.8278 }, { "start": 9680.96, "end": 9681.8, "probability": 0.7491 }, { "start": 9682.06, "end": 9683.62, "probability": 0.9526 }, { "start": 9683.94, "end": 9686.1, "probability": 0.9905 }, { "start": 9686.1, "end": 9690.48, "probability": 0.9716 }, { "start": 9690.76, "end": 9691.88, "probability": 0.9706 }, { "start": 9692.22, "end": 9693.76, "probability": 0.5263 }, { "start": 9693.9, "end": 9694.4, "probability": 0.4377 }, { "start": 9695.28, "end": 9696.1, "probability": 0.9684 }, { "start": 9696.88, "end": 9699.19, "probability": 0.8643 }, { "start": 9700.42, "end": 9702.16, "probability": 0.8224 }, { "start": 9703.68, "end": 9704.74, "probability": 0.902 }, { "start": 9706.0, "end": 9707.22, "probability": 0.8027 }, { "start": 9707.4, "end": 9709.92, "probability": 0.5188 }, { "start": 9710.12, "end": 9713.32, "probability": 0.9003 }, { "start": 9714.52, "end": 9715.92, "probability": 0.8668 }, { "start": 9716.54, "end": 9717.5, "probability": 0.5604 }, { "start": 9717.62, "end": 9720.68, "probability": 0.9873 }, { "start": 9720.86, "end": 9722.76, "probability": 0.9688 }, { "start": 9723.32, "end": 9724.37, "probability": 0.7655 }, { "start": 9725.02, "end": 9727.36, "probability": 0.8379 }, { "start": 9728.1, "end": 9729.08, "probability": 0.7798 }, { "start": 9730.18, "end": 9733.7, "probability": 0.9058 }, { "start": 9734.08, "end": 9734.48, "probability": 0.4001 }, { "start": 9734.54, "end": 9734.7, "probability": 0.7462 }, { "start": 9734.8, "end": 9735.48, "probability": 0.5687 }, { "start": 9735.72, "end": 9736.14, "probability": 0.8281 }, { "start": 9736.66, "end": 9737.44, "probability": 0.8527 }, { "start": 9737.94, "end": 9739.7, "probability": 0.7568 }, { "start": 9739.98, "end": 9741.28, "probability": 0.2214 }, { "start": 9741.38, "end": 9742.14, "probability": 0.9424 }, { "start": 9742.44, "end": 9742.94, "probability": 0.7496 }, { "start": 9743.08, "end": 9743.34, "probability": 0.6813 }, { "start": 9744.0, "end": 9744.86, "probability": 0.3689 }, { "start": 9745.2, "end": 9745.84, "probability": 0.5565 }, { "start": 9745.96, "end": 9746.37, "probability": 0.7592 }, { "start": 9746.62, "end": 9747.52, "probability": 0.8151 }, { "start": 9747.6, "end": 9748.46, "probability": 0.761 }, { "start": 9748.94, "end": 9749.88, "probability": 0.6151 }, { "start": 9750.32, "end": 9751.72, "probability": 0.807 }, { "start": 9752.14, "end": 9753.0, "probability": 0.8557 }, { "start": 9753.12, "end": 9753.42, "probability": 0.543 }, { "start": 9753.46, "end": 9754.24, "probability": 0.6171 }, { "start": 9754.42, "end": 9755.68, "probability": 0.8824 }, { "start": 9755.88, "end": 9756.08, "probability": 0.4697 }, { "start": 9756.66, "end": 9757.42, "probability": 0.8615 }, { "start": 9757.94, "end": 9759.24, "probability": 0.5386 }, { "start": 9759.5, "end": 9759.92, "probability": 0.8967 }, { "start": 9760.04, "end": 9760.76, "probability": 0.4418 }, { "start": 9762.08, "end": 9763.3, "probability": 0.4779 }, { "start": 9763.38, "end": 9766.14, "probability": 0.7683 }, { "start": 9766.62, "end": 9768.36, "probability": 0.915 }, { "start": 9769.0, "end": 9769.82, "probability": 0.9558 }, { "start": 9769.94, "end": 9772.88, "probability": 0.1852 }, { "start": 9772.88, "end": 9772.88, "probability": 0.077 }, { "start": 9772.88, "end": 9773.87, "probability": 0.3509 }, { "start": 9774.46, "end": 9775.54, "probability": 0.9055 }, { "start": 9775.76, "end": 9777.54, "probability": 0.9617 }, { "start": 9778.0, "end": 9780.48, "probability": 0.9626 }, { "start": 9781.02, "end": 9781.68, "probability": 0.4129 }, { "start": 9782.32, "end": 9784.52, "probability": 0.864 }, { "start": 9787.54, "end": 9789.22, "probability": 0.8034 }, { "start": 9789.72, "end": 9792.14, "probability": 0.9805 }, { "start": 9792.82, "end": 9793.98, "probability": 0.9564 }, { "start": 9794.46, "end": 9796.82, "probability": 0.8312 }, { "start": 9798.92, "end": 9800.8, "probability": 0.9301 }, { "start": 9801.16, "end": 9802.06, "probability": 0.4954 }, { "start": 9802.28, "end": 9805.08, "probability": 0.9849 }, { "start": 9810.16, "end": 9810.94, "probability": 0.0031 }, { "start": 9817.3, "end": 9817.48, "probability": 0.3738 }, { "start": 9828.64, "end": 9830.72, "probability": 0.7382 }, { "start": 9830.86, "end": 9831.3, "probability": 0.8325 }, { "start": 9832.26, "end": 9833.18, "probability": 0.856 }, { "start": 9844.24, "end": 9845.18, "probability": 0.7088 }, { "start": 9846.38, "end": 9850.28, "probability": 0.8694 }, { "start": 9851.9, "end": 9855.74, "probability": 0.8169 }, { "start": 9855.74, "end": 9856.24, "probability": 0.6408 }, { "start": 9856.34, "end": 9859.96, "probability": 0.9236 }, { "start": 9861.42, "end": 9862.76, "probability": 0.9434 }, { "start": 9864.5, "end": 9865.08, "probability": 0.721 }, { "start": 9865.24, "end": 9869.15, "probability": 0.9951 }, { "start": 9870.54, "end": 9872.98, "probability": 0.9419 }, { "start": 9874.12, "end": 9876.06, "probability": 0.9976 }, { "start": 9876.62, "end": 9879.06, "probability": 0.3657 }, { "start": 9879.58, "end": 9881.46, "probability": 0.9541 }, { "start": 9881.96, "end": 9882.78, "probability": 0.9431 }, { "start": 9882.92, "end": 9884.41, "probability": 0.8075 }, { "start": 9884.62, "end": 9885.72, "probability": 0.3394 }, { "start": 9886.08, "end": 9887.5, "probability": 0.9063 }, { "start": 9888.12, "end": 9889.98, "probability": 0.993 }, { "start": 9890.5, "end": 9892.74, "probability": 0.9922 }, { "start": 9892.86, "end": 9896.32, "probability": 0.9962 }, { "start": 9896.42, "end": 9897.68, "probability": 0.6382 }, { "start": 9898.68, "end": 9899.9, "probability": 0.9619 }, { "start": 9900.72, "end": 9903.14, "probability": 0.9973 }, { "start": 9903.14, "end": 9906.76, "probability": 0.9846 }, { "start": 9907.32, "end": 9907.32, "probability": 0.0302 }, { "start": 9907.32, "end": 9909.18, "probability": 0.9758 }, { "start": 9909.58, "end": 9911.78, "probability": 0.9199 }, { "start": 9912.28, "end": 9915.68, "probability": 0.9065 }, { "start": 9916.26, "end": 9917.84, "probability": 0.9932 }, { "start": 9918.34, "end": 9921.38, "probability": 0.9773 }, { "start": 9922.3, "end": 9924.8, "probability": 0.6523 }, { "start": 9925.26, "end": 9926.08, "probability": 0.9929 }, { "start": 9926.76, "end": 9930.2, "probability": 0.9043 }, { "start": 9931.2, "end": 9933.28, "probability": 0.9989 }, { "start": 9933.56, "end": 9934.04, "probability": 0.1422 }, { "start": 9934.22, "end": 9935.52, "probability": 0.6199 }, { "start": 9935.52, "end": 9938.6, "probability": 0.977 }, { "start": 9940.1, "end": 9943.5, "probability": 0.3197 }, { "start": 9944.6, "end": 9945.1, "probability": 0.0285 }, { "start": 9945.1, "end": 9945.82, "probability": 0.3434 }, { "start": 9945.98, "end": 9948.2, "probability": 0.9122 }, { "start": 9948.94, "end": 9949.04, "probability": 0.0321 }, { "start": 9949.04, "end": 9954.96, "probability": 0.9725 }, { "start": 9956.04, "end": 9958.28, "probability": 0.6307 }, { "start": 9958.84, "end": 9958.84, "probability": 0.0456 }, { "start": 9958.84, "end": 9962.52, "probability": 0.6299 }, { "start": 9963.2, "end": 9964.92, "probability": 0.9827 }, { "start": 9965.9, "end": 9967.16, "probability": 0.8704 }, { "start": 9967.7, "end": 9969.6, "probability": 0.7221 }, { "start": 9969.6, "end": 9972.6, "probability": 0.8586 }, { "start": 9978.86, "end": 9980.7, "probability": 0.8101 }, { "start": 9988.1, "end": 9990.04, "probability": 0.6468 }, { "start": 9991.9, "end": 9995.34, "probability": 0.9686 }, { "start": 9996.76, "end": 9998.42, "probability": 0.9739 }, { "start": 9999.36, "end": 10000.24, "probability": 0.998 }, { "start": 10001.0, "end": 10004.34, "probability": 0.9913 }, { "start": 10006.04, "end": 10006.34, "probability": 0.7112 }, { "start": 10007.38, "end": 10009.42, "probability": 0.7117 }, { "start": 10010.42, "end": 10016.42, "probability": 0.6831 }, { "start": 10017.92, "end": 10018.52, "probability": 0.5638 }, { "start": 10019.04, "end": 10022.18, "probability": 0.9108 }, { "start": 10023.22, "end": 10025.38, "probability": 0.9738 }, { "start": 10026.46, "end": 10028.08, "probability": 0.9974 }, { "start": 10028.9, "end": 10030.84, "probability": 0.9751 }, { "start": 10031.06, "end": 10033.76, "probability": 0.741 }, { "start": 10035.04, "end": 10035.38, "probability": 0.5081 }, { "start": 10036.44, "end": 10041.44, "probability": 0.9875 }, { "start": 10041.58, "end": 10042.08, "probability": 0.7342 }, { "start": 10043.22, "end": 10044.3, "probability": 0.922 }, { "start": 10045.24, "end": 10047.6, "probability": 0.8707 }, { "start": 10048.98, "end": 10049.92, "probability": 0.9092 }, { "start": 10051.5, "end": 10051.66, "probability": 0.5529 }, { "start": 10054.12, "end": 10055.52, "probability": 0.8537 }, { "start": 10056.72, "end": 10058.0, "probability": 0.7296 }, { "start": 10058.14, "end": 10058.7, "probability": 0.7445 }, { "start": 10059.56, "end": 10060.12, "probability": 0.8001 }, { "start": 10061.54, "end": 10065.4, "probability": 0.9891 }, { "start": 10065.44, "end": 10066.59, "probability": 0.8023 }, { "start": 10067.6, "end": 10069.9, "probability": 0.9897 }, { "start": 10071.5, "end": 10074.1, "probability": 0.5771 }, { "start": 10080.26, "end": 10084.56, "probability": 0.7404 }, { "start": 10084.66, "end": 10085.44, "probability": 0.6628 }, { "start": 10086.08, "end": 10088.42, "probability": 0.6045 }, { "start": 10089.38, "end": 10091.12, "probability": 0.8582 }, { "start": 10092.7, "end": 10093.6, "probability": 0.9528 }, { "start": 10096.38, "end": 10098.5, "probability": 0.9006 }, { "start": 10100.42, "end": 10106.18, "probability": 0.9556 }, { "start": 10107.5, "end": 10108.56, "probability": 0.9961 }, { "start": 10109.26, "end": 10111.32, "probability": 0.9271 }, { "start": 10112.54, "end": 10113.32, "probability": 0.7318 }, { "start": 10114.52, "end": 10119.3, "probability": 0.957 }, { "start": 10120.12, "end": 10121.62, "probability": 0.9095 }, { "start": 10122.54, "end": 10125.92, "probability": 0.8615 }, { "start": 10126.8, "end": 10130.12, "probability": 0.9143 }, { "start": 10130.92, "end": 10132.16, "probability": 0.9474 }, { "start": 10132.88, "end": 10135.4, "probability": 0.9938 }, { "start": 10138.8, "end": 10139.2, "probability": 0.4631 }, { "start": 10141.54, "end": 10144.18, "probability": 0.9609 }, { "start": 10145.62, "end": 10145.96, "probability": 0.9374 }, { "start": 10146.94, "end": 10147.86, "probability": 0.8612 }, { "start": 10148.6, "end": 10152.54, "probability": 0.944 }, { "start": 10153.44, "end": 10154.07, "probability": 0.9836 }, { "start": 10155.2, "end": 10157.46, "probability": 0.9957 }, { "start": 10158.52, "end": 10158.9, "probability": 0.3654 }, { "start": 10159.02, "end": 10161.81, "probability": 0.722 }, { "start": 10164.16, "end": 10166.58, "probability": 0.6699 }, { "start": 10176.68, "end": 10176.68, "probability": 0.0183 }, { "start": 10176.68, "end": 10178.48, "probability": 0.7883 }, { "start": 10179.58, "end": 10182.9, "probability": 0.8755 }, { "start": 10184.8, "end": 10184.96, "probability": 0.05 }, { "start": 10188.7, "end": 10189.3, "probability": 0.2468 }, { "start": 10189.32, "end": 10191.32, "probability": 0.0334 }, { "start": 10191.52, "end": 10191.52, "probability": 0.0929 }, { "start": 10191.54, "end": 10193.2, "probability": 0.6368 }, { "start": 10194.5, "end": 10197.12, "probability": 0.9768 }, { "start": 10198.02, "end": 10199.1, "probability": 0.899 }, { "start": 10200.56, "end": 10202.14, "probability": 0.883 }, { "start": 10203.06, "end": 10207.6, "probability": 0.9977 }, { "start": 10208.26, "end": 10211.66, "probability": 0.9877 }, { "start": 10213.3, "end": 10214.04, "probability": 0.0912 }, { "start": 10214.28, "end": 10215.82, "probability": 0.4873 }, { "start": 10216.36, "end": 10216.36, "probability": 0.1424 }, { "start": 10216.36, "end": 10218.24, "probability": 0.7264 }, { "start": 10218.4, "end": 10219.74, "probability": 0.9054 }, { "start": 10220.52, "end": 10220.8, "probability": 0.1009 }, { "start": 10220.8, "end": 10221.58, "probability": 0.5117 }, { "start": 10221.6, "end": 10224.5, "probability": 0.7375 }, { "start": 10225.14, "end": 10226.16, "probability": 0.9644 }, { "start": 10226.26, "end": 10226.99, "probability": 0.3305 }, { "start": 10228.19, "end": 10229.21, "probability": 0.7577 }, { "start": 10229.58, "end": 10230.76, "probability": 0.0477 }, { "start": 10231.68, "end": 10235.46, "probability": 0.6708 }, { "start": 10236.68, "end": 10240.78, "probability": 0.9171 }, { "start": 10240.94, "end": 10245.18, "probability": 0.8512 }, { "start": 10245.98, "end": 10247.1, "probability": 0.3417 }, { "start": 10248.22, "end": 10250.14, "probability": 0.8539 }, { "start": 10250.72, "end": 10251.68, "probability": 0.9471 }, { "start": 10252.74, "end": 10255.62, "probability": 0.9111 }, { "start": 10256.7, "end": 10258.76, "probability": 0.6709 }, { "start": 10259.48, "end": 10260.58, "probability": 0.6304 }, { "start": 10260.98, "end": 10262.3, "probability": 0.8806 }, { "start": 10262.56, "end": 10263.51, "probability": 0.9983 }, { "start": 10265.14, "end": 10265.52, "probability": 0.6436 }, { "start": 10265.92, "end": 10266.88, "probability": 0.9721 }, { "start": 10267.16, "end": 10268.52, "probability": 0.7925 }, { "start": 10269.04, "end": 10271.82, "probability": 0.9978 }, { "start": 10276.14, "end": 10277.83, "probability": 0.8831 }, { "start": 10278.44, "end": 10279.06, "probability": 0.4351 }, { "start": 10279.14, "end": 10279.62, "probability": 0.6796 }, { "start": 10279.76, "end": 10281.52, "probability": 0.707 }, { "start": 10281.58, "end": 10283.38, "probability": 0.9922 }, { "start": 10283.82, "end": 10284.32, "probability": 0.3409 }, { "start": 10284.62, "end": 10285.56, "probability": 0.963 }, { "start": 10285.98, "end": 10287.1, "probability": 0.9284 }, { "start": 10287.26, "end": 10288.3, "probability": 0.876 }, { "start": 10288.46, "end": 10289.28, "probability": 0.703 }, { "start": 10289.66, "end": 10291.42, "probability": 0.957 }, { "start": 10291.6, "end": 10294.24, "probability": 0.9387 }, { "start": 10294.8, "end": 10295.61, "probability": 0.9458 }, { "start": 10296.36, "end": 10297.66, "probability": 0.7533 }, { "start": 10300.58, "end": 10303.84, "probability": 0.0403 }, { "start": 10304.22, "end": 10305.14, "probability": 0.0655 }, { "start": 10305.14, "end": 10310.62, "probability": 0.1328 }, { "start": 10311.38, "end": 10311.66, "probability": 0.1507 }, { "start": 10311.76, "end": 10312.2, "probability": 0.0424 }, { "start": 10313.08, "end": 10315.08, "probability": 0.0043 }, { "start": 10315.72, "end": 10316.16, "probability": 0.0904 }, { "start": 10316.18, "end": 10317.48, "probability": 0.3252 }, { "start": 10318.1, "end": 10320.38, "probability": 0.8389 }, { "start": 10320.64, "end": 10321.26, "probability": 0.519 }, { "start": 10322.48, "end": 10322.89, "probability": 0.8033 }, { "start": 10325.33, "end": 10328.08, "probability": 0.2532 }, { "start": 10328.08, "end": 10331.06, "probability": 0.5129 }, { "start": 10331.16, "end": 10333.92, "probability": 0.7904 }, { "start": 10334.74, "end": 10335.68, "probability": 0.1276 }, { "start": 10336.2, "end": 10336.71, "probability": 0.8872 }, { "start": 10337.42, "end": 10338.0, "probability": 0.4644 }, { "start": 10338.58, "end": 10339.38, "probability": 0.8223 }, { "start": 10339.56, "end": 10340.7, "probability": 0.9521 }, { "start": 10341.3, "end": 10345.18, "probability": 0.52 }, { "start": 10345.74, "end": 10347.02, "probability": 0.647 }, { "start": 10347.46, "end": 10349.04, "probability": 0.9209 }, { "start": 10351.48, "end": 10352.68, "probability": 0.6577 }, { "start": 10352.82, "end": 10352.92, "probability": 0.0728 }, { "start": 10352.92, "end": 10353.38, "probability": 0.4796 }, { "start": 10353.5, "end": 10355.86, "probability": 0.7402 }, { "start": 10355.94, "end": 10356.26, "probability": 0.5619 }, { "start": 10356.28, "end": 10358.28, "probability": 0.0357 }, { "start": 10358.3, "end": 10359.18, "probability": 0.0701 }, { "start": 10359.24, "end": 10362.4, "probability": 0.1775 }, { "start": 10363.58, "end": 10363.68, "probability": 0.1367 }, { "start": 10363.68, "end": 10363.68, "probability": 0.04 }, { "start": 10363.68, "end": 10365.5, "probability": 0.5699 }, { "start": 10366.6, "end": 10371.08, "probability": 0.1639 }, { "start": 10376.64, "end": 10379.8, "probability": 0.026 }, { "start": 10405.0, "end": 10405.0, "probability": 0.0 }, { "start": 10405.0, "end": 10405.0, "probability": 0.0 }, { "start": 10405.0, "end": 10405.0, "probability": 0.0 }, { "start": 10405.0, "end": 10405.0, "probability": 0.0 }, { "start": 10405.0, "end": 10405.0, "probability": 0.0 }, { "start": 10405.0, "end": 10405.0, "probability": 0.0 }, { "start": 10405.0, "end": 10405.0, "probability": 0.0 }, { "start": 10405.0, "end": 10405.0, "probability": 0.0 }, { "start": 10405.0, "end": 10405.0, "probability": 0.0 }, { "start": 10405.0, "end": 10405.0, "probability": 0.0 }, { "start": 10405.0, "end": 10405.0, "probability": 0.0 }, { "start": 10405.0, "end": 10405.0, "probability": 0.0 }, { "start": 10405.0, "end": 10405.0, "probability": 0.0 }, { "start": 10405.0, "end": 10405.0, "probability": 0.0 }, { "start": 10405.0, "end": 10405.0, "probability": 0.0 }, { "start": 10405.0, "end": 10405.0, "probability": 0.0 }, { "start": 10418.05, "end": 10420.39, "probability": 0.0417 }, { "start": 10420.78, "end": 10421.36, "probability": 0.03 }, { "start": 10422.96, "end": 10423.22, "probability": 0.0467 }, { "start": 10423.9, "end": 10431.08, "probability": 0.7367 }, { "start": 10431.58, "end": 10432.64, "probability": 0.2466 }, { "start": 10529.0, "end": 10529.0, "probability": 0.0 }, { "start": 10529.0, "end": 10529.0, "probability": 0.0 }, { "start": 10529.0, "end": 10529.0, "probability": 0.0 }, { "start": 10529.0, "end": 10529.0, "probability": 0.0 }, { "start": 10529.0, "end": 10529.0, "probability": 0.0 }, { "start": 10529.0, "end": 10529.0, "probability": 0.0 }, { "start": 10529.0, "end": 10529.0, "probability": 0.0 }, { "start": 10529.0, "end": 10529.0, "probability": 0.0 }, { "start": 10529.0, "end": 10529.0, "probability": 0.0 }, { "start": 10529.0, "end": 10529.0, "probability": 0.0 }, { "start": 10529.0, "end": 10529.0, "probability": 0.0 }, { "start": 10529.0, "end": 10529.0, "probability": 0.0 }, { "start": 10529.0, "end": 10529.0, "probability": 0.0 }, { "start": 10529.0, "end": 10529.0, "probability": 0.0 }, { "start": 10529.0, "end": 10529.0, "probability": 0.0 }, { "start": 10529.0, "end": 10529.0, "probability": 0.0 }, { "start": 10529.0, "end": 10529.0, "probability": 0.0 }, { "start": 10529.0, "end": 10529.0, "probability": 0.0 }, { "start": 10529.0, "end": 10529.0, "probability": 0.0 }, { "start": 10529.0, "end": 10529.0, "probability": 0.0 }, { "start": 10529.0, "end": 10529.0, "probability": 0.0 }, { "start": 10529.0, "end": 10529.0, "probability": 0.0 }, { "start": 10529.0, "end": 10529.0, "probability": 0.0 }, { "start": 10529.78, "end": 10529.78, "probability": 0.0384 }, { "start": 10529.78, "end": 10529.78, "probability": 0.0653 }, { "start": 10529.78, "end": 10535.44, "probability": 0.9769 }, { "start": 10535.44, "end": 10540.7, "probability": 0.99 }, { "start": 10542.2, "end": 10546.46, "probability": 0.9989 }, { "start": 10547.3, "end": 10548.5, "probability": 0.9338 }, { "start": 10549.1, "end": 10549.72, "probability": 0.6071 }, { "start": 10549.8, "end": 10554.34, "probability": 0.9899 }, { "start": 10555.04, "end": 10555.46, "probability": 0.5221 }, { "start": 10555.82, "end": 10559.98, "probability": 0.9902 }, { "start": 10560.8, "end": 10566.62, "probability": 0.992 }, { "start": 10567.72, "end": 10570.86, "probability": 0.9819 }, { "start": 10571.66, "end": 10574.06, "probability": 0.9978 }, { "start": 10574.06, "end": 10577.14, "probability": 0.9899 }, { "start": 10577.72, "end": 10578.96, "probability": 0.8474 }, { "start": 10579.54, "end": 10584.66, "probability": 0.993 }, { "start": 10585.18, "end": 10586.12, "probability": 0.863 }, { "start": 10587.54, "end": 10593.86, "probability": 0.9973 }, { "start": 10594.42, "end": 10596.96, "probability": 0.999 }, { "start": 10596.96, "end": 10600.44, "probability": 0.9749 }, { "start": 10601.36, "end": 10606.86, "probability": 0.9972 }, { "start": 10606.86, "end": 10610.66, "probability": 0.9955 }, { "start": 10611.78, "end": 10612.5, "probability": 0.7455 }, { "start": 10613.14, "end": 10617.08, "probability": 0.9976 }, { "start": 10617.72, "end": 10621.22, "probability": 0.9858 }, { "start": 10621.6, "end": 10622.94, "probability": 0.8599 }, { "start": 10624.2, "end": 10627.34, "probability": 0.9927 }, { "start": 10628.22, "end": 10628.68, "probability": 0.579 }, { "start": 10628.84, "end": 10631.62, "probability": 0.991 }, { "start": 10631.64, "end": 10634.1, "probability": 0.6328 }, { "start": 10634.82, "end": 10638.41, "probability": 0.865 }, { "start": 10639.36, "end": 10641.16, "probability": 0.7588 }, { "start": 10641.52, "end": 10643.78, "probability": 0.8577 }, { "start": 10644.6, "end": 10646.64, "probability": 0.7784 }, { "start": 10646.82, "end": 10648.61, "probability": 0.5784 }, { "start": 10651.4, "end": 10652.86, "probability": 0.7204 }, { "start": 10654.72, "end": 10656.62, "probability": 0.8799 }, { "start": 10657.94, "end": 10658.98, "probability": 0.8702 }, { "start": 10659.28, "end": 10662.08, "probability": 0.0294 }, { "start": 10662.76, "end": 10663.08, "probability": 0.0377 }, { "start": 10663.08, "end": 10665.0, "probability": 0.9125 }, { "start": 10669.86, "end": 10671.54, "probability": 0.4917 }, { "start": 10672.82, "end": 10677.52, "probability": 0.6919 }, { "start": 10678.38, "end": 10680.68, "probability": 0.9902 }, { "start": 10681.56, "end": 10686.12, "probability": 0.9935 }, { "start": 10687.08, "end": 10689.88, "probability": 0.9842 }, { "start": 10689.98, "end": 10690.54, "probability": 0.7541 }, { "start": 10691.22, "end": 10695.98, "probability": 0.9122 }, { "start": 10697.36, "end": 10700.1, "probability": 0.9565 }, { "start": 10700.9, "end": 10704.2, "probability": 0.9846 }, { "start": 10704.5, "end": 10705.88, "probability": 0.6777 }, { "start": 10706.14, "end": 10708.72, "probability": 0.9963 }, { "start": 10708.88, "end": 10710.87, "probability": 0.9321 }, { "start": 10714.34, "end": 10717.08, "probability": 0.9885 }, { "start": 10718.32, "end": 10718.81, "probability": 0.9917 }, { "start": 10722.18, "end": 10723.46, "probability": 0.7192 }, { "start": 10725.98, "end": 10726.92, "probability": 0.9765 }, { "start": 10729.66, "end": 10731.22, "probability": 0.9031 }, { "start": 10732.16, "end": 10733.5, "probability": 0.9115 }, { "start": 10736.14, "end": 10737.12, "probability": 0.6138 }, { "start": 10739.7, "end": 10742.36, "probability": 0.9722 }, { "start": 10743.18, "end": 10748.14, "probability": 0.9319 }, { "start": 10748.34, "end": 10753.04, "probability": 0.9979 }, { "start": 10753.62, "end": 10756.1, "probability": 0.9794 }, { "start": 10756.26, "end": 10757.18, "probability": 0.894 }, { "start": 10757.22, "end": 10758.16, "probability": 0.8352 }, { "start": 10758.78, "end": 10760.76, "probability": 0.9906 }, { "start": 10762.48, "end": 10765.08, "probability": 0.9642 }, { "start": 10765.5, "end": 10769.34, "probability": 0.9961 }, { "start": 10770.0, "end": 10771.68, "probability": 0.9979 }, { "start": 10771.72, "end": 10773.5, "probability": 0.9893 }, { "start": 10774.48, "end": 10777.34, "probability": 0.9864 }, { "start": 10777.9, "end": 10780.62, "probability": 0.9466 }, { "start": 10781.16, "end": 10786.06, "probability": 0.8982 }, { "start": 10786.06, "end": 10789.46, "probability": 0.9043 }, { "start": 10790.16, "end": 10796.04, "probability": 0.9794 }, { "start": 10796.54, "end": 10803.18, "probability": 0.9967 }, { "start": 10803.6, "end": 10803.6, "probability": 0.0274 }, { "start": 10803.6, "end": 10805.16, "probability": 0.7193 }, { "start": 10805.96, "end": 10809.26, "probability": 0.9965 }, { "start": 10809.98, "end": 10811.32, "probability": 0.8513 }, { "start": 10811.96, "end": 10814.84, "probability": 0.9841 }, { "start": 10815.4, "end": 10818.54, "probability": 0.9862 }, { "start": 10818.54, "end": 10824.64, "probability": 0.9954 }, { "start": 10825.22, "end": 10829.24, "probability": 0.9959 }, { "start": 10830.04, "end": 10832.48, "probability": 0.6078 }, { "start": 10832.52, "end": 10835.66, "probability": 0.9393 }, { "start": 10836.26, "end": 10841.18, "probability": 0.9601 }, { "start": 10841.72, "end": 10842.48, "probability": 0.9443 }, { "start": 10843.0, "end": 10844.94, "probability": 0.8817 }, { "start": 10845.58, "end": 10846.86, "probability": 0.8179 }, { "start": 10847.02, "end": 10850.24, "probability": 0.972 }, { "start": 10850.76, "end": 10852.56, "probability": 0.8252 }, { "start": 10853.7, "end": 10858.94, "probability": 0.9929 }, { "start": 10859.08, "end": 10864.74, "probability": 0.8234 }, { "start": 10865.16, "end": 10866.78, "probability": 0.9866 }, { "start": 10868.3, "end": 10869.64, "probability": 0.7432 }, { "start": 10869.78, "end": 10870.18, "probability": 0.522 }, { "start": 10870.2, "end": 10873.3, "probability": 0.9822 }, { "start": 10873.42, "end": 10874.52, "probability": 0.884 }, { "start": 10874.58, "end": 10875.68, "probability": 0.9902 }, { "start": 10875.84, "end": 10876.4, "probability": 0.7167 }, { "start": 10876.8, "end": 10878.26, "probability": 0.1698 }, { "start": 10878.64, "end": 10882.0, "probability": 0.7106 }, { "start": 10882.44, "end": 10884.1, "probability": 0.8768 }, { "start": 10884.48, "end": 10885.82, "probability": 0.6545 }, { "start": 10886.4, "end": 10888.08, "probability": 0.5258 }, { "start": 10891.18, "end": 10892.16, "probability": 0.9922 }, { "start": 10892.46, "end": 10896.98, "probability": 0.9648 }, { "start": 10897.48, "end": 10898.4, "probability": 0.672 }, { "start": 10899.36, "end": 10901.1, "probability": 0.5837 }, { "start": 10902.14, "end": 10904.08, "probability": 0.9573 }, { "start": 10905.32, "end": 10906.4, "probability": 0.9268 }, { "start": 10907.0, "end": 10910.54, "probability": 0.8551 }, { "start": 10911.38, "end": 10912.16, "probability": 0.497 }, { "start": 10912.2, "end": 10918.32, "probability": 0.9425 }, { "start": 10919.0, "end": 10919.84, "probability": 0.7484 }, { "start": 10920.04, "end": 10922.68, "probability": 0.8808 }, { "start": 10923.42, "end": 10924.46, "probability": 0.6225 }, { "start": 10925.16, "end": 10926.8, "probability": 0.8328 }, { "start": 10927.64, "end": 10929.58, "probability": 0.739 }, { "start": 10930.12, "end": 10933.45, "probability": 0.9099 }, { "start": 10933.96, "end": 10935.56, "probability": 0.8426 }, { "start": 10936.2, "end": 10937.3, "probability": 0.9188 }, { "start": 10937.7, "end": 10943.16, "probability": 0.9792 }, { "start": 10943.54, "end": 10948.18, "probability": 0.9902 }, { "start": 10948.5, "end": 10949.26, "probability": 0.3122 }, { "start": 10949.52, "end": 10949.86, "probability": 0.4438 }, { "start": 10950.28, "end": 10954.8, "probability": 0.8459 }, { "start": 10955.16, "end": 10955.66, "probability": 0.716 }, { "start": 10955.84, "end": 10956.64, "probability": 0.7837 }, { "start": 10957.0, "end": 10958.04, "probability": 0.6467 }, { "start": 10958.24, "end": 10961.16, "probability": 0.6778 }, { "start": 10961.16, "end": 10964.66, "probability": 0.9794 }, { "start": 10965.24, "end": 10966.09, "probability": 0.96 }, { "start": 10967.0, "end": 10971.16, "probability": 0.9669 }, { "start": 10971.22, "end": 10973.36, "probability": 0.917 }, { "start": 10974.02, "end": 10975.1, "probability": 0.9666 }, { "start": 10976.64, "end": 10977.24, "probability": 0.2253 }, { "start": 10977.24, "end": 10979.6, "probability": 0.4131 }, { "start": 10980.16, "end": 10981.36, "probability": 0.5268 }, { "start": 10981.74, "end": 10985.2, "probability": 0.91 }, { "start": 10985.78, "end": 10988.68, "probability": 0.9398 }, { "start": 10988.8, "end": 10989.82, "probability": 0.9424 }, { "start": 10990.0, "end": 10993.28, "probability": 0.8859 }, { "start": 10993.58, "end": 10995.62, "probability": 0.8353 }, { "start": 10996.1, "end": 10996.62, "probability": 0.8201 }, { "start": 10996.72, "end": 11002.26, "probability": 0.7422 }, { "start": 11002.3, "end": 11005.24, "probability": 0.9527 }, { "start": 11005.6, "end": 11006.12, "probability": 0.6189 }, { "start": 11006.22, "end": 11011.06, "probability": 0.9123 }, { "start": 11011.76, "end": 11013.5, "probability": 0.4649 }, { "start": 11013.6, "end": 11016.04, "probability": 0.7902 }, { "start": 11016.44, "end": 11017.9, "probability": 0.9775 }, { "start": 11018.44, "end": 11018.52, "probability": 0.4163 }, { "start": 11018.66, "end": 11018.76, "probability": 0.1229 }, { "start": 11018.78, "end": 11023.58, "probability": 0.9447 }, { "start": 11023.72, "end": 11024.49, "probability": 0.3861 }, { "start": 11025.12, "end": 11025.9, "probability": 0.7707 }, { "start": 11026.06, "end": 11027.18, "probability": 0.3429 }, { "start": 11027.62, "end": 11029.22, "probability": 0.8978 }, { "start": 11029.38, "end": 11031.82, "probability": 0.9922 }, { "start": 11032.32, "end": 11036.12, "probability": 0.984 }, { "start": 11036.46, "end": 11038.02, "probability": 0.9271 }, { "start": 11038.86, "end": 11040.48, "probability": 0.5331 }, { "start": 11041.2, "end": 11043.12, "probability": 0.7444 }, { "start": 11043.48, "end": 11044.02, "probability": 0.8015 }, { "start": 11044.4, "end": 11044.98, "probability": 0.5698 }, { "start": 11044.98, "end": 11046.22, "probability": 0.7422 }, { "start": 11048.5, "end": 11049.42, "probability": 0.8619 }, { "start": 11049.78, "end": 11052.02, "probability": 0.9489 }, { "start": 11052.5, "end": 11054.38, "probability": 0.9678 }, { "start": 11054.52, "end": 11055.68, "probability": 0.7881 }, { "start": 11057.54, "end": 11060.18, "probability": 0.7056 }, { "start": 11060.18, "end": 11060.7, "probability": 0.3388 }, { "start": 11061.74, "end": 11062.56, "probability": 0.6934 }, { "start": 11063.06, "end": 11064.1, "probability": 0.7007 }, { "start": 11064.36, "end": 11065.42, "probability": 0.578 }, { "start": 11065.56, "end": 11066.2, "probability": 0.3182 }, { "start": 11066.2, "end": 11067.59, "probability": 0.7064 }, { "start": 11067.66, "end": 11069.66, "probability": 0.7721 }, { "start": 11069.74, "end": 11070.94, "probability": 0.2896 }, { "start": 11071.02, "end": 11073.22, "probability": 0.8697 }, { "start": 11073.36, "end": 11073.74, "probability": 0.6321 }, { "start": 11073.92, "end": 11074.9, "probability": 0.8673 }, { "start": 11074.98, "end": 11075.86, "probability": 0.834 }, { "start": 11076.9, "end": 11077.42, "probability": 0.8288 }, { "start": 11077.48, "end": 11081.42, "probability": 0.9672 }, { "start": 11081.48, "end": 11083.0, "probability": 0.7125 }, { "start": 11083.52, "end": 11084.38, "probability": 0.775 }, { "start": 11084.46, "end": 11084.9, "probability": 0.0832 }, { "start": 11085.48, "end": 11086.26, "probability": 0.8117 }, { "start": 11086.36, "end": 11087.36, "probability": 0.2171 }, { "start": 11087.36, "end": 11091.92, "probability": 0.1989 }, { "start": 11091.92, "end": 11092.06, "probability": 0.0193 }, { "start": 11093.3, "end": 11096.38, "probability": 0.5893 }, { "start": 11097.08, "end": 11101.08, "probability": 0.968 }, { "start": 11101.3, "end": 11102.36, "probability": 0.8655 }, { "start": 11104.14, "end": 11105.59, "probability": 0.9072 }, { "start": 11106.62, "end": 11108.76, "probability": 0.9089 }, { "start": 11109.76, "end": 11112.88, "probability": 0.7218 }, { "start": 11113.14, "end": 11113.44, "probability": 0.5198 }, { "start": 11114.2, "end": 11117.66, "probability": 0.7003 }, { "start": 11118.78, "end": 11120.26, "probability": 0.6841 }, { "start": 11121.12, "end": 11122.08, "probability": 0.8132 }, { "start": 11122.88, "end": 11123.64, "probability": 0.6235 }, { "start": 11123.92, "end": 11124.86, "probability": 0.0414 }, { "start": 11125.36, "end": 11125.94, "probability": 0.6478 }, { "start": 11127.38, "end": 11129.9, "probability": 0.4719 }, { "start": 11130.54, "end": 11132.74, "probability": 0.8669 }, { "start": 11132.76, "end": 11132.92, "probability": 0.2156 }, { "start": 11133.16, "end": 11133.46, "probability": 0.7679 }, { "start": 11133.58, "end": 11134.62, "probability": 0.9654 }, { "start": 11137.42, "end": 11139.54, "probability": 0.0547 }, { "start": 11143.36, "end": 11144.52, "probability": 0.0289 }, { "start": 11144.52, "end": 11144.52, "probability": 0.5364 }, { "start": 11144.52, "end": 11144.98, "probability": 0.1936 }, { "start": 11145.02, "end": 11145.54, "probability": 0.2852 }, { "start": 11146.65, "end": 11147.84, "probability": 0.9712 }, { "start": 11148.42, "end": 11150.46, "probability": 0.9181 }, { "start": 11151.1, "end": 11152.88, "probability": 0.7899 }, { "start": 11153.6, "end": 11154.44, "probability": 0.4521 }, { "start": 11154.66, "end": 11155.26, "probability": 0.8152 }, { "start": 11155.38, "end": 11156.5, "probability": 0.5272 }, { "start": 11157.1, "end": 11157.86, "probability": 0.9375 }, { "start": 11158.12, "end": 11162.55, "probability": 0.9595 }, { "start": 11162.9, "end": 11163.88, "probability": 0.9904 }, { "start": 11164.6, "end": 11165.28, "probability": 0.8219 }, { "start": 11166.14, "end": 11167.64, "probability": 0.9982 }, { "start": 11168.36, "end": 11170.3, "probability": 0.982 }, { "start": 11171.5, "end": 11173.02, "probability": 0.5181 }, { "start": 11173.58, "end": 11175.6, "probability": 0.9201 }, { "start": 11176.49, "end": 11178.38, "probability": 0.6942 }, { "start": 11179.08, "end": 11179.76, "probability": 0.9639 }, { "start": 11181.12, "end": 11182.8, "probability": 0.8023 }, { "start": 11183.76, "end": 11185.04, "probability": 0.9569 }, { "start": 11185.96, "end": 11187.54, "probability": 0.7078 }, { "start": 11188.74, "end": 11191.26, "probability": 0.9861 }, { "start": 11191.32, "end": 11192.4, "probability": 0.9762 }, { "start": 11192.58, "end": 11192.68, "probability": 0.5842 }, { "start": 11192.86, "end": 11194.53, "probability": 0.7602 }, { "start": 11195.52, "end": 11201.79, "probability": 0.9714 }, { "start": 11202.94, "end": 11204.24, "probability": 0.8299 }, { "start": 11204.8, "end": 11206.84, "probability": 0.7734 }, { "start": 11207.86, "end": 11209.64, "probability": 0.9957 }, { "start": 11210.26, "end": 11212.78, "probability": 0.8021 }, { "start": 11213.32, "end": 11215.34, "probability": 0.7735 }, { "start": 11216.6, "end": 11217.48, "probability": 0.9544 }, { "start": 11218.14, "end": 11219.52, "probability": 0.9436 }, { "start": 11219.7, "end": 11220.6, "probability": 0.8418 }, { "start": 11221.22, "end": 11223.92, "probability": 0.9482 }, { "start": 11224.42, "end": 11225.7, "probability": 0.5094 }, { "start": 11225.98, "end": 11226.7, "probability": 0.7821 }, { "start": 11226.84, "end": 11227.5, "probability": 0.6906 }, { "start": 11228.52, "end": 11230.65, "probability": 0.087 }, { "start": 11231.24, "end": 11231.46, "probability": 0.4926 }, { "start": 11231.56, "end": 11232.84, "probability": 0.9564 }, { "start": 11233.0, "end": 11234.26, "probability": 0.3857 }, { "start": 11235.14, "end": 11236.4, "probability": 0.7497 }, { "start": 11237.86, "end": 11239.8, "probability": 0.9572 }, { "start": 11241.48, "end": 11242.68, "probability": 0.9212 }, { "start": 11242.8, "end": 11243.18, "probability": 0.5715 }, { "start": 11243.24, "end": 11244.54, "probability": 0.6928 }, { "start": 11245.6, "end": 11246.51, "probability": 0.2251 }, { "start": 11247.58, "end": 11248.22, "probability": 0.3287 }, { "start": 11249.88, "end": 11251.78, "probability": 0.455 }, { "start": 11252.8, "end": 11255.82, "probability": 0.9907 }, { "start": 11257.97, "end": 11260.85, "probability": 0.9913 }, { "start": 11261.86, "end": 11265.16, "probability": 0.9632 }, { "start": 11265.9, "end": 11268.48, "probability": 0.9922 }, { "start": 11269.26, "end": 11271.2, "probability": 0.7872 }, { "start": 11271.92, "end": 11275.38, "probability": 0.9801 }, { "start": 11275.7, "end": 11276.3, "probability": 0.6205 }, { "start": 11276.5, "end": 11277.3, "probability": 0.7371 }, { "start": 11278.62, "end": 11280.74, "probability": 0.9564 }, { "start": 11281.32, "end": 11283.3, "probability": 0.9873 }, { "start": 11283.84, "end": 11286.89, "probability": 0.9514 }, { "start": 11287.64, "end": 11289.4, "probability": 0.1613 }, { "start": 11289.4, "end": 11292.78, "probability": 0.956 }, { "start": 11293.12, "end": 11295.38, "probability": 0.393 }, { "start": 11296.02, "end": 11296.38, "probability": 0.2598 }, { "start": 11296.42, "end": 11297.08, "probability": 0.5364 }, { "start": 11297.2, "end": 11298.04, "probability": 0.5861 }, { "start": 11298.2, "end": 11300.79, "probability": 0.9843 }, { "start": 11301.56, "end": 11301.8, "probability": 0.8098 }, { "start": 11301.94, "end": 11304.3, "probability": 0.9927 }, { "start": 11305.52, "end": 11308.68, "probability": 0.9048 }, { "start": 11308.72, "end": 11310.3, "probability": 0.99 }, { "start": 11311.14, "end": 11313.78, "probability": 0.9747 }, { "start": 11314.56, "end": 11315.52, "probability": 0.9679 }, { "start": 11316.62, "end": 11318.2, "probability": 0.8328 }, { "start": 11319.04, "end": 11321.16, "probability": 0.8367 }, { "start": 11321.68, "end": 11323.76, "probability": 0.9785 }, { "start": 11324.38, "end": 11325.9, "probability": 0.8387 }, { "start": 11326.14, "end": 11327.99, "probability": 0.8585 }, { "start": 11328.44, "end": 11330.66, "probability": 0.9242 }, { "start": 11330.68, "end": 11331.92, "probability": 0.9272 }, { "start": 11332.46, "end": 11335.14, "probability": 0.9707 }, { "start": 11335.78, "end": 11336.68, "probability": 0.5229 }, { "start": 11337.24, "end": 11340.06, "probability": 0.8682 }, { "start": 11340.62, "end": 11343.52, "probability": 0.9751 }, { "start": 11344.1, "end": 11348.52, "probability": 0.9778 }, { "start": 11349.02, "end": 11351.18, "probability": 0.9169 }, { "start": 11351.72, "end": 11353.92, "probability": 0.9776 }, { "start": 11354.65, "end": 11356.7, "probability": 0.8834 }, { "start": 11357.78, "end": 11361.52, "probability": 0.9056 }, { "start": 11362.02, "end": 11362.76, "probability": 0.7852 }, { "start": 11362.92, "end": 11363.28, "probability": 0.869 }, { "start": 11363.44, "end": 11367.34, "probability": 0.9846 }, { "start": 11367.56, "end": 11369.02, "probability": 0.9976 }, { "start": 11369.56, "end": 11372.96, "probability": 0.9804 }, { "start": 11373.08, "end": 11374.54, "probability": 0.998 }, { "start": 11374.94, "end": 11375.32, "probability": 0.8217 }, { "start": 11375.78, "end": 11377.48, "probability": 0.7561 }, { "start": 11378.14, "end": 11380.04, "probability": 0.7418 }, { "start": 11380.78, "end": 11381.44, "probability": 0.7798 }, { "start": 11382.14, "end": 11383.34, "probability": 0.9692 }, { "start": 11383.92, "end": 11387.22, "probability": 0.6003 }, { "start": 11388.9, "end": 11390.68, "probability": 0.597 }, { "start": 11391.98, "end": 11392.54, "probability": 0.3745 }, { "start": 11392.54, "end": 11392.54, "probability": 0.7647 }, { "start": 11392.58, "end": 11393.2, "probability": 0.7272 }, { "start": 11393.88, "end": 11395.12, "probability": 0.7436 }, { "start": 11396.7, "end": 11399.8, "probability": 0.9081 }, { "start": 11400.32, "end": 11400.62, "probability": 0.2004 }, { "start": 11401.32, "end": 11405.88, "probability": 0.4244 }, { "start": 11405.94, "end": 11406.58, "probability": 0.1315 }, { "start": 11407.16, "end": 11407.82, "probability": 0.3813 }, { "start": 11407.82, "end": 11408.5, "probability": 0.4146 }, { "start": 11408.5, "end": 11409.22, "probability": 0.305 }, { "start": 11409.6, "end": 11411.88, "probability": 0.3386 }, { "start": 11424.4, "end": 11429.98, "probability": 0.24 }, { "start": 11430.52, "end": 11430.66, "probability": 0.0026 }, { "start": 11430.84, "end": 11432.06, "probability": 0.2297 }, { "start": 11432.5, "end": 11437.36, "probability": 0.7845 }, { "start": 11437.48, "end": 11439.44, "probability": 0.7698 }, { "start": 11440.96, "end": 11441.3, "probability": 0.5165 }, { "start": 11441.48, "end": 11444.3, "probability": 0.6901 }, { "start": 11445.56, "end": 11449.08, "probability": 0.0964 }, { "start": 11450.24, "end": 11453.76, "probability": 0.1041 }, { "start": 11456.83, "end": 11458.58, "probability": 0.1269 }, { "start": 11460.38, "end": 11463.34, "probability": 0.2946 }, { "start": 11463.42, "end": 11466.3, "probability": 0.0747 }, { "start": 11467.52, "end": 11469.12, "probability": 0.0137 }, { "start": 11471.94, "end": 11472.6, "probability": 0.0258 }, { "start": 11473.72, "end": 11474.06, "probability": 0.1639 }, { "start": 11474.06, "end": 11474.06, "probability": 0.0432 }, { "start": 11474.06, "end": 11474.06, "probability": 0.1236 }, { "start": 11474.06, "end": 11474.06, "probability": 0.1772 }, { "start": 11474.06, "end": 11476.18, "probability": 0.6311 }, { "start": 11477.7, "end": 11477.78, "probability": 0.0015 }, { "start": 11479.44, "end": 11482.04, "probability": 0.862 }, { "start": 11482.32, "end": 11486.7, "probability": 0.9971 }, { "start": 11487.88, "end": 11493.12, "probability": 0.9956 }, { "start": 11493.92, "end": 11496.86, "probability": 0.9758 }, { "start": 11498.0, "end": 11502.04, "probability": 0.9924 }, { "start": 11503.22, "end": 11508.46, "probability": 0.9775 }, { "start": 11509.64, "end": 11511.78, "probability": 0.8962 }, { "start": 11512.3, "end": 11516.84, "probability": 0.903 }, { "start": 11516.84, "end": 11521.46, "probability": 0.9838 }, { "start": 11522.52, "end": 11525.82, "probability": 0.9973 }, { "start": 11526.44, "end": 11528.02, "probability": 0.9817 }, { "start": 11528.54, "end": 11532.6, "probability": 0.9798 }, { "start": 11532.6, "end": 11536.28, "probability": 0.9982 }, { "start": 11536.9, "end": 11539.84, "probability": 0.9732 }, { "start": 11541.0, "end": 11541.66, "probability": 0.8393 }, { "start": 11542.82, "end": 11547.5, "probability": 0.9982 }, { "start": 11548.1, "end": 11552.24, "probability": 0.9871 }, { "start": 11553.26, "end": 11555.94, "probability": 0.9646 }, { "start": 11556.06, "end": 11556.62, "probability": 0.8835 }, { "start": 11556.7, "end": 11559.52, "probability": 0.9928 }, { "start": 11559.72, "end": 11562.38, "probability": 0.6702 }, { "start": 11562.78, "end": 11563.84, "probability": 0.9691 }, { "start": 11564.42, "end": 11566.26, "probability": 0.5401 }, { "start": 11566.7, "end": 11570.5, "probability": 0.9828 }, { "start": 11571.4, "end": 11577.42, "probability": 0.9428 }, { "start": 11577.48, "end": 11581.5, "probability": 0.9932 }, { "start": 11581.64, "end": 11583.16, "probability": 0.9813 }, { "start": 11583.68, "end": 11587.14, "probability": 0.9839 }, { "start": 11588.16, "end": 11588.72, "probability": 0.7194 }, { "start": 11588.74, "end": 11592.22, "probability": 0.9817 }, { "start": 11593.06, "end": 11598.64, "probability": 0.9982 }, { "start": 11599.32, "end": 11600.9, "probability": 0.9983 }, { "start": 11601.2, "end": 11603.28, "probability": 0.9012 }, { "start": 11604.08, "end": 11606.34, "probability": 0.9698 }, { "start": 11606.86, "end": 11609.2, "probability": 0.9323 }, { "start": 11609.84, "end": 11610.2, "probability": 0.9186 }, { "start": 11610.38, "end": 11612.8, "probability": 0.9883 }, { "start": 11612.92, "end": 11614.62, "probability": 0.9886 }, { "start": 11615.2, "end": 11616.58, "probability": 0.8906 }, { "start": 11616.64, "end": 11617.41, "probability": 0.6779 }, { "start": 11617.74, "end": 11617.84, "probability": 0.4936 }, { "start": 11618.04, "end": 11622.4, "probability": 0.853 }, { "start": 11624.96, "end": 11626.1, "probability": 0.0573 }, { "start": 11626.26, "end": 11628.24, "probability": 0.9616 }, { "start": 11629.2, "end": 11629.8, "probability": 0.6764 }, { "start": 11630.06, "end": 11634.02, "probability": 0.956 }, { "start": 11634.24, "end": 11635.98, "probability": 0.704 }, { "start": 11636.0, "end": 11636.7, "probability": 0.7296 }, { "start": 11637.34, "end": 11638.54, "probability": 0.9437 }, { "start": 11638.64, "end": 11641.76, "probability": 0.9896 }, { "start": 11641.76, "end": 11644.56, "probability": 0.9787 }, { "start": 11645.46, "end": 11649.9, "probability": 0.9705 }, { "start": 11649.9, "end": 11652.72, "probability": 0.9974 }, { "start": 11653.48, "end": 11656.76, "probability": 0.9927 }, { "start": 11657.38, "end": 11659.5, "probability": 0.9989 }, { "start": 11660.52, "end": 11661.7, "probability": 0.9027 }, { "start": 11661.88, "end": 11664.16, "probability": 0.9463 }, { "start": 11664.16, "end": 11666.9, "probability": 0.9743 }, { "start": 11667.66, "end": 11668.0, "probability": 0.6268 }, { "start": 11668.14, "end": 11670.46, "probability": 0.9719 }, { "start": 11670.62, "end": 11674.2, "probability": 0.9865 }, { "start": 11674.98, "end": 11677.56, "probability": 0.9878 }, { "start": 11677.7, "end": 11681.36, "probability": 0.962 }, { "start": 11682.12, "end": 11685.76, "probability": 0.9893 }, { "start": 11686.34, "end": 11690.22, "probability": 0.9787 }, { "start": 11690.92, "end": 11693.22, "probability": 0.9935 }, { "start": 11693.22, "end": 11696.31, "probability": 0.9731 }, { "start": 11697.3, "end": 11700.46, "probability": 0.9778 }, { "start": 11701.06, "end": 11704.9, "probability": 0.949 }, { "start": 11705.42, "end": 11710.48, "probability": 0.9443 }, { "start": 11711.18, "end": 11713.92, "probability": 0.9987 }, { "start": 11713.92, "end": 11716.74, "probability": 0.9794 }, { "start": 11717.82, "end": 11719.86, "probability": 0.991 }, { "start": 11719.86, "end": 11723.42, "probability": 0.9984 }, { "start": 11724.04, "end": 11727.38, "probability": 0.9984 }, { "start": 11727.38, "end": 11730.1, "probability": 0.993 }, { "start": 11731.02, "end": 11734.26, "probability": 0.9932 }, { "start": 11735.1, "end": 11737.12, "probability": 0.4728 }, { "start": 11737.54, "end": 11738.6, "probability": 0.7393 }, { "start": 11739.32, "end": 11741.18, "probability": 0.6158 }, { "start": 11741.6, "end": 11742.72, "probability": 0.6686 }, { "start": 11743.56, "end": 11744.1, "probability": 0.6938 }, { "start": 11744.3, "end": 11746.28, "probability": 0.9184 }, { "start": 11746.58, "end": 11751.34, "probability": 0.9911 }, { "start": 11751.54, "end": 11752.0, "probability": 0.4776 }, { "start": 11752.12, "end": 11752.8, "probability": 0.7189 }, { "start": 11753.36, "end": 11756.96, "probability": 0.8756 }, { "start": 11757.36, "end": 11758.58, "probability": 0.5522 }, { "start": 11759.22, "end": 11760.36, "probability": 0.9688 }, { "start": 11762.1, "end": 11765.46, "probability": 0.975 }, { "start": 11765.9, "end": 11766.9, "probability": 0.8906 }, { "start": 11767.06, "end": 11768.08, "probability": 0.7033 }, { "start": 11771.92, "end": 11777.06, "probability": 0.981 }, { "start": 11777.74, "end": 11778.6, "probability": 0.8055 }, { "start": 11778.98, "end": 11780.52, "probability": 0.4398 }, { "start": 11781.3, "end": 11784.2, "probability": 0.9976 }, { "start": 11785.08, "end": 11786.34, "probability": 0.9976 }, { "start": 11787.94, "end": 11788.18, "probability": 0.347 }, { "start": 11788.18, "end": 11789.94, "probability": 0.9277 }, { "start": 11790.1, "end": 11791.84, "probability": 0.9787 }, { "start": 11792.1, "end": 11793.48, "probability": 0.9854 }, { "start": 11793.9, "end": 11794.8, "probability": 0.6596 }, { "start": 11794.84, "end": 11796.88, "probability": 0.7371 }, { "start": 11796.9, "end": 11797.58, "probability": 0.7209 }, { "start": 11799.18, "end": 11799.38, "probability": 0.4388 }, { "start": 11800.86, "end": 11801.58, "probability": 0.8276 }, { "start": 11802.74, "end": 11804.37, "probability": 0.9144 }, { "start": 11805.84, "end": 11807.27, "probability": 0.9878 }, { "start": 11808.0, "end": 11809.04, "probability": 0.6082 }, { "start": 11809.56, "end": 11810.9, "probability": 0.9888 }, { "start": 11812.32, "end": 11814.3, "probability": 0.9536 }, { "start": 11814.76, "end": 11817.48, "probability": 0.4515 }, { "start": 11819.32, "end": 11819.32, "probability": 0.038 }, { "start": 11819.32, "end": 11819.9, "probability": 0.4106 }, { "start": 11820.02, "end": 11823.6, "probability": 0.9375 }, { "start": 11824.86, "end": 11824.86, "probability": 0.168 }, { "start": 11824.88, "end": 11828.4, "probability": 0.9019 }, { "start": 11828.48, "end": 11830.3, "probability": 0.8029 }, { "start": 11831.66, "end": 11835.9, "probability": 0.9718 }, { "start": 11836.04, "end": 11836.66, "probability": 0.9824 }, { "start": 11836.98, "end": 11837.96, "probability": 0.0445 }, { "start": 11838.36, "end": 11838.52, "probability": 0.0051 }, { "start": 11838.52, "end": 11840.52, "probability": 0.6647 }, { "start": 11841.02, "end": 11842.45, "probability": 0.8931 }, { "start": 11843.68, "end": 11844.28, "probability": 0.6908 }, { "start": 11844.82, "end": 11845.92, "probability": 0.9797 }, { "start": 11846.52, "end": 11849.24, "probability": 0.9224 }, { "start": 11851.28, "end": 11851.84, "probability": 0.0173 }, { "start": 11852.01, "end": 11853.18, "probability": 0.6274 }, { "start": 11853.26, "end": 11854.96, "probability": 0.9665 }, { "start": 11855.92, "end": 11858.64, "probability": 0.9457 }, { "start": 11860.92, "end": 11862.26, "probability": 0.9453 }, { "start": 11864.1, "end": 11865.52, "probability": 0.8022 }, { "start": 11865.58, "end": 11866.49, "probability": 0.5 }, { "start": 11867.5, "end": 11870.6, "probability": 0.9934 }, { "start": 11871.38, "end": 11873.16, "probability": 0.9751 }, { "start": 11873.92, "end": 11875.9, "probability": 0.5862 }, { "start": 11875.9, "end": 11877.0, "probability": 0.6215 }, { "start": 11877.64, "end": 11883.86, "probability": 0.5939 }, { "start": 11883.86, "end": 11884.57, "probability": 0.4197 }, { "start": 11885.22, "end": 11885.22, "probability": 0.0509 }, { "start": 11885.22, "end": 11885.22, "probability": 0.624 }, { "start": 11885.22, "end": 11888.54, "probability": 0.7628 }, { "start": 11888.7, "end": 11890.72, "probability": 0.1589 }, { "start": 11890.92, "end": 11892.02, "probability": 0.7334 }, { "start": 11892.61, "end": 11893.24, "probability": 0.1177 }, { "start": 11893.24, "end": 11895.01, "probability": 0.9854 }, { "start": 11895.98, "end": 11899.06, "probability": 0.5531 }, { "start": 11899.06, "end": 11899.78, "probability": 0.567 }, { "start": 11900.14, "end": 11902.9, "probability": 0.9823 }, { "start": 11903.52, "end": 11908.14, "probability": 0.9951 }, { "start": 11908.7, "end": 11912.72, "probability": 0.9628 }, { "start": 11913.2, "end": 11916.38, "probability": 0.9953 }, { "start": 11916.88, "end": 11918.34, "probability": 0.7422 }, { "start": 11918.76, "end": 11920.08, "probability": 0.9816 }, { "start": 11920.66, "end": 11922.32, "probability": 0.7217 }, { "start": 11923.16, "end": 11923.78, "probability": 0.4864 }, { "start": 11924.48, "end": 11927.44, "probability": 0.9089 }, { "start": 11928.1, "end": 11932.58, "probability": 0.879 }, { "start": 11933.08, "end": 11935.1, "probability": 0.9974 }, { "start": 11935.56, "end": 11936.06, "probability": 0.6077 }, { "start": 11936.46, "end": 11938.61, "probability": 0.9487 }, { "start": 11938.78, "end": 11944.06, "probability": 0.9944 }, { "start": 11944.8, "end": 11947.9, "probability": 0.9341 }, { "start": 11948.62, "end": 11952.58, "probability": 0.9945 }, { "start": 11953.12, "end": 11955.14, "probability": 0.9974 }, { "start": 11955.48, "end": 11956.64, "probability": 0.6643 }, { "start": 11957.36, "end": 11958.8, "probability": 0.8303 }, { "start": 11958.82, "end": 11958.92, "probability": 0.0952 }, { "start": 11959.72, "end": 11960.2, "probability": 0.7175 }, { "start": 11960.26, "end": 11961.14, "probability": 0.8656 }, { "start": 11961.8, "end": 11964.72, "probability": 0.7479 }, { "start": 11965.2, "end": 11966.94, "probability": 0.3463 }, { "start": 11967.02, "end": 11967.52, "probability": 0.5506 }, { "start": 11967.58, "end": 11967.9, "probability": 0.265 }, { "start": 11968.0, "end": 11968.38, "probability": 0.554 }, { "start": 11968.38, "end": 11968.86, "probability": 0.6741 }, { "start": 11969.18, "end": 11969.96, "probability": 0.652 }, { "start": 11970.08, "end": 11970.66, "probability": 0.7065 }, { "start": 11978.76, "end": 11980.32, "probability": 0.0161 }, { "start": 11980.32, "end": 11980.32, "probability": 0.0176 }, { "start": 11980.32, "end": 11980.96, "probability": 0.0765 }, { "start": 11980.96, "end": 11980.96, "probability": 0.0658 }, { "start": 11980.96, "end": 11981.04, "probability": 0.0918 }, { "start": 11991.62, "end": 11993.7, "probability": 0.8593 }, { "start": 11994.34, "end": 12000.5, "probability": 0.4624 }, { "start": 12002.2, "end": 12003.52, "probability": 0.0223 }, { "start": 12003.52, "end": 12005.62, "probability": 0.7301 }, { "start": 12006.2, "end": 12006.82, "probability": 0.7654 }, { "start": 12007.52, "end": 12009.74, "probability": 0.7221 }, { "start": 12010.12, "end": 12012.34, "probability": 0.5528 }, { "start": 12013.46, "end": 12016.18, "probability": 0.7746 }, { "start": 12016.88, "end": 12019.82, "probability": 0.6108 }, { "start": 12020.12, "end": 12022.0, "probability": 0.975 }, { "start": 12022.52, "end": 12024.4, "probability": 0.7446 }, { "start": 12040.4, "end": 12042.76, "probability": 0.7443 }, { "start": 12043.6, "end": 12048.36, "probability": 0.9983 }, { "start": 12048.36, "end": 12051.88, "probability": 0.9961 }, { "start": 12052.32, "end": 12054.12, "probability": 0.9873 }, { "start": 12055.81, "end": 12057.07, "probability": 0.5671 }, { "start": 12058.26, "end": 12061.18, "probability": 0.9941 }, { "start": 12062.04, "end": 12065.76, "probability": 0.9898 }, { "start": 12065.76, "end": 12069.66, "probability": 0.9934 }, { "start": 12070.26, "end": 12072.7, "probability": 0.998 }, { "start": 12072.96, "end": 12074.56, "probability": 0.9916 }, { "start": 12075.12, "end": 12076.94, "probability": 0.9814 }, { "start": 12078.24, "end": 12081.12, "probability": 0.9707 }, { "start": 12081.12, "end": 12088.22, "probability": 0.87 }, { "start": 12089.9, "end": 12092.5, "probability": 0.996 }, { "start": 12092.5, "end": 12096.1, "probability": 0.9976 }, { "start": 12096.84, "end": 12102.38, "probability": 0.9933 }, { "start": 12103.26, "end": 12106.8, "probability": 0.999 }, { "start": 12107.44, "end": 12107.96, "probability": 0.4211 }, { "start": 12108.1, "end": 12111.42, "probability": 0.9927 }, { "start": 12113.44, "end": 12115.48, "probability": 0.9807 }, { "start": 12115.7, "end": 12121.14, "probability": 0.9709 }, { "start": 12121.7, "end": 12125.14, "probability": 0.9876 }, { "start": 12126.18, "end": 12129.44, "probability": 0.9216 }, { "start": 12129.64, "end": 12131.42, "probability": 0.9912 }, { "start": 12132.34, "end": 12132.74, "probability": 0.8581 }, { "start": 12133.3, "end": 12137.64, "probability": 0.9812 }, { "start": 12137.64, "end": 12142.18, "probability": 0.9965 }, { "start": 12142.48, "end": 12142.66, "probability": 0.6629 }, { "start": 12143.36, "end": 12146.3, "probability": 0.9972 }, { "start": 12146.56, "end": 12149.54, "probability": 0.9896 }, { "start": 12149.54, "end": 12152.16, "probability": 0.9895 }, { "start": 12153.7, "end": 12157.2, "probability": 0.991 }, { "start": 12157.92, "end": 12159.54, "probability": 0.9988 }, { "start": 12160.88, "end": 12164.44, "probability": 0.9971 }, { "start": 12165.0, "end": 12166.06, "probability": 0.9949 }, { "start": 12167.46, "end": 12171.3, "probability": 0.991 }, { "start": 12172.78, "end": 12179.24, "probability": 0.9982 }, { "start": 12179.78, "end": 12186.2, "probability": 0.8552 }, { "start": 12186.26, "end": 12190.9, "probability": 0.9811 }, { "start": 12191.5, "end": 12194.74, "probability": 0.9689 }, { "start": 12194.74, "end": 12197.9, "probability": 0.9912 }, { "start": 12198.56, "end": 12201.1, "probability": 0.9676 }, { "start": 12201.1, "end": 12203.7, "probability": 0.9885 }, { "start": 12205.18, "end": 12208.94, "probability": 0.9957 }, { "start": 12209.06, "end": 12212.5, "probability": 0.9995 }, { "start": 12213.26, "end": 12216.84, "probability": 0.9739 }, { "start": 12217.66, "end": 12223.12, "probability": 0.9294 }, { "start": 12223.62, "end": 12230.42, "probability": 0.984 }, { "start": 12230.84, "end": 12234.94, "probability": 0.9409 }, { "start": 12235.4, "end": 12238.5, "probability": 0.9731 }, { "start": 12238.96, "end": 12241.4, "probability": 0.9953 }, { "start": 12242.94, "end": 12246.6, "probability": 0.9899 }, { "start": 12246.6, "end": 12249.88, "probability": 0.9994 }, { "start": 12251.5, "end": 12254.7, "probability": 0.9614 }, { "start": 12255.2, "end": 12258.36, "probability": 0.9838 }, { "start": 12258.82, "end": 12259.94, "probability": 0.8998 }, { "start": 12260.76, "end": 12265.54, "probability": 0.9264 }, { "start": 12266.86, "end": 12271.08, "probability": 0.9782 }, { "start": 12272.38, "end": 12275.28, "probability": 0.9976 }, { "start": 12275.7, "end": 12279.22, "probability": 0.9899 }, { "start": 12279.54, "end": 12281.48, "probability": 0.8533 }, { "start": 12282.18, "end": 12282.94, "probability": 0.6071 }, { "start": 12283.02, "end": 12286.0, "probability": 0.9761 }, { "start": 12286.02, "end": 12287.68, "probability": 0.6401 }, { "start": 12288.46, "end": 12288.64, "probability": 0.8288 }, { "start": 12289.2, "end": 12290.28, "probability": 0.7001 }, { "start": 12290.9, "end": 12291.48, "probability": 0.5199 }, { "start": 12292.04, "end": 12293.7, "probability": 0.8523 }, { "start": 12294.22, "end": 12294.42, "probability": 0.0013 }, { "start": 12295.04, "end": 12295.76, "probability": 0.1997 }, { "start": 12296.48, "end": 12296.64, "probability": 0.1855 }, { "start": 12296.66, "end": 12297.72, "probability": 0.0693 }, { "start": 12297.88, "end": 12300.52, "probability": 0.8002 }, { "start": 12300.58, "end": 12302.88, "probability": 0.3692 }, { "start": 12303.9, "end": 12303.9, "probability": 0.2084 }, { "start": 12303.9, "end": 12304.96, "probability": 0.4614 }, { "start": 12308.18, "end": 12308.7, "probability": 0.0277 }, { "start": 12308.7, "end": 12308.7, "probability": 0.0802 }, { "start": 12308.7, "end": 12309.18, "probability": 0.4806 }, { "start": 12309.24, "end": 12312.58, "probability": 0.0918 }, { "start": 12313.32, "end": 12314.42, "probability": 0.8455 }, { "start": 12314.94, "end": 12315.5, "probability": 0.082 }, { "start": 12316.24, "end": 12316.24, "probability": 0.0111 }, { "start": 12316.34, "end": 12317.38, "probability": 0.8463 }, { "start": 12317.86, "end": 12319.1, "probability": 0.9187 }, { "start": 12320.56, "end": 12323.16, "probability": 0.9561 }, { "start": 12324.02, "end": 12327.72, "probability": 0.759 }, { "start": 12328.21, "end": 12331.04, "probability": 0.6576 }, { "start": 12332.08, "end": 12333.86, "probability": 0.5934 }, { "start": 12334.42, "end": 12336.32, "probability": 0.858 }, { "start": 12337.4, "end": 12337.6, "probability": 0.8718 }, { "start": 12338.68, "end": 12339.72, "probability": 0.8474 }, { "start": 12340.36, "end": 12343.99, "probability": 0.9902 }, { "start": 12344.62, "end": 12348.56, "probability": 0.9169 }, { "start": 12348.86, "end": 12350.04, "probability": 0.6791 }, { "start": 12350.92, "end": 12352.04, "probability": 0.741 }, { "start": 12352.86, "end": 12356.44, "probability": 0.9965 }, { "start": 12356.96, "end": 12357.92, "probability": 0.6734 }, { "start": 12358.24, "end": 12359.46, "probability": 0.6816 }, { "start": 12359.74, "end": 12360.96, "probability": 0.7755 }, { "start": 12361.26, "end": 12361.4, "probability": 0.6904 }, { "start": 12361.6, "end": 12363.06, "probability": 0.9828 }, { "start": 12363.66, "end": 12364.34, "probability": 0.9273 }, { "start": 12365.22, "end": 12365.66, "probability": 0.4376 }, { "start": 12365.76, "end": 12366.88, "probability": 0.8306 }, { "start": 12367.04, "end": 12368.34, "probability": 0.3535 }, { "start": 12368.9, "end": 12369.36, "probability": 0.1036 }, { "start": 12369.36, "end": 12369.54, "probability": 0.4869 }, { "start": 12369.58, "end": 12370.29, "probability": 0.6804 }, { "start": 12370.86, "end": 12372.3, "probability": 0.6547 }, { "start": 12373.2, "end": 12374.44, "probability": 0.0979 }, { "start": 12374.44, "end": 12376.09, "probability": 0.7856 }, { "start": 12377.2, "end": 12382.58, "probability": 0.9607 }, { "start": 12382.82, "end": 12386.98, "probability": 0.9329 }, { "start": 12387.98, "end": 12389.62, "probability": 0.8404 }, { "start": 12390.3, "end": 12394.28, "probability": 0.9019 }, { "start": 12395.1, "end": 12396.4, "probability": 0.7757 }, { "start": 12397.0, "end": 12397.36, "probability": 0.3578 }, { "start": 12397.46, "end": 12402.78, "probability": 0.7847 }, { "start": 12403.34, "end": 12404.45, "probability": 0.6767 }, { "start": 12404.9, "end": 12407.4, "probability": 0.8887 }, { "start": 12407.94, "end": 12409.36, "probability": 0.7938 }, { "start": 12409.96, "end": 12412.96, "probability": 0.8239 }, { "start": 12413.54, "end": 12414.52, "probability": 0.929 }, { "start": 12415.26, "end": 12416.24, "probability": 0.8413 }, { "start": 12416.82, "end": 12419.22, "probability": 0.9761 }, { "start": 12420.08, "end": 12421.24, "probability": 0.9177 }, { "start": 12421.8, "end": 12423.3, "probability": 0.9635 }, { "start": 12423.7, "end": 12425.52, "probability": 0.6738 }, { "start": 12425.64, "end": 12426.62, "probability": 0.8422 }, { "start": 12427.9, "end": 12432.22, "probability": 0.9805 }, { "start": 12432.74, "end": 12434.82, "probability": 0.8995 }, { "start": 12435.36, "end": 12436.1, "probability": 0.9061 }, { "start": 12436.68, "end": 12440.02, "probability": 0.9569 }, { "start": 12441.12, "end": 12443.32, "probability": 0.73 }, { "start": 12443.98, "end": 12445.14, "probability": 0.5782 }, { "start": 12445.86, "end": 12450.5, "probability": 0.854 }, { "start": 12450.6, "end": 12451.84, "probability": 0.9905 }, { "start": 12452.26, "end": 12452.84, "probability": 0.2383 }, { "start": 12452.86, "end": 12455.44, "probability": 0.8918 }, { "start": 12455.88, "end": 12457.96, "probability": 0.8851 }, { "start": 12458.48, "end": 12463.26, "probability": 0.8246 }, { "start": 12470.46, "end": 12470.56, "probability": 0.0113 }, { "start": 12470.56, "end": 12470.56, "probability": 0.1161 }, { "start": 12470.56, "end": 12470.56, "probability": 0.1384 }, { "start": 12470.56, "end": 12470.7, "probability": 0.2389 }, { "start": 12470.7, "end": 12470.7, "probability": 0.036 }, { "start": 12470.7, "end": 12471.43, "probability": 0.7297 }, { "start": 12471.76, "end": 12472.28, "probability": 0.7139 }, { "start": 12472.96, "end": 12473.52, "probability": 0.9359 }, { "start": 12476.22, "end": 12479.78, "probability": 0.6588 }, { "start": 12479.98, "end": 12480.72, "probability": 0.735 }, { "start": 12481.66, "end": 12481.88, "probability": 0.3732 }, { "start": 12481.88, "end": 12482.18, "probability": 0.4652 }, { "start": 12482.3, "end": 12484.46, "probability": 0.8933 }, { "start": 12485.1, "end": 12486.66, "probability": 0.7498 }, { "start": 12487.98, "end": 12491.09, "probability": 0.6685 }, { "start": 12491.44, "end": 12492.86, "probability": 0.3976 }, { "start": 12493.36, "end": 12493.42, "probability": 0.4639 }, { "start": 12493.42, "end": 12494.04, "probability": 0.5881 }, { "start": 12494.04, "end": 12494.6, "probability": 0.3896 }, { "start": 12494.6, "end": 12495.16, "probability": 0.5717 }, { "start": 12495.16, "end": 12495.64, "probability": 0.5502 }, { "start": 12496.82, "end": 12497.58, "probability": 0.5506 }, { "start": 12511.76, "end": 12518.4, "probability": 0.2891 }, { "start": 12519.1, "end": 12524.44, "probability": 0.0656 }, { "start": 12525.38, "end": 12526.64, "probability": 0.5003 }, { "start": 12529.12, "end": 12530.14, "probability": 0.0813 }, { "start": 12531.94, "end": 12537.16, "probability": 0.0223 }, { "start": 12540.79, "end": 12545.66, "probability": 0.3155 }, { "start": 12549.51, "end": 12551.02, "probability": 0.0272 }, { "start": 12551.02, "end": 12551.02, "probability": 0.1355 }, { "start": 12551.1, "end": 12552.86, "probability": 0.0603 }, { "start": 12553.72, "end": 12554.3, "probability": 0.0033 }, { "start": 12555.06, "end": 12556.88, "probability": 0.4962 }, { "start": 12558.12, "end": 12559.52, "probability": 0.0814 }, { "start": 12561.88, "end": 12562.4, "probability": 0.0726 }, { "start": 12564.34, "end": 12564.88, "probability": 0.1305 }, { "start": 12565.04, "end": 12565.7, "probability": 0.1556 }, { "start": 12572.0, "end": 12572.0, "probability": 0.0 }, { "start": 12572.0, "end": 12572.0, "probability": 0.0 }, { "start": 12572.0, "end": 12572.0, "probability": 0.0 }, { "start": 12572.0, "end": 12572.0, "probability": 0.0 }, { "start": 12572.0, "end": 12572.0, "probability": 0.0 }, { "start": 12587.71, "end": 12589.04, "probability": 0.0942 }, { "start": 12589.86, "end": 12592.16, "probability": 0.1088 }, { "start": 12592.16, "end": 12592.16, "probability": 0.0401 }, { "start": 12592.16, "end": 12593.3, "probability": 0.0074 }, { "start": 12596.14, "end": 12599.04, "probability": 0.0568 }, { "start": 12614.2, "end": 12615.08, "probability": 0.12 }, { "start": 12615.24, "end": 12615.94, "probability": 0.2659 }, { "start": 12616.38, "end": 12618.5, "probability": 0.049 }, { "start": 12622.16, "end": 12622.98, "probability": 0.063 }, { "start": 12624.72, "end": 12628.28, "probability": 0.1418 }, { "start": 12628.58, "end": 12629.1, "probability": 0.1264 }, { "start": 12629.2, "end": 12629.46, "probability": 0.2423 }, { "start": 12630.0, "end": 12631.86, "probability": 0.1892 }, { "start": 12702.0, "end": 12702.0, "probability": 0.0 }, { "start": 12702.0, "end": 12702.0, "probability": 0.0 }, { "start": 12702.0, "end": 12702.0, "probability": 0.0 }, { "start": 12702.0, "end": 12702.0, "probability": 0.0 }, { "start": 12702.0, "end": 12702.0, "probability": 0.0 }, { "start": 12702.0, "end": 12702.0, "probability": 0.0 }, { "start": 12702.0, "end": 12702.0, "probability": 0.0 }, { "start": 12702.0, "end": 12702.0, "probability": 0.0 }, { "start": 12702.0, "end": 12702.0, "probability": 0.0 }, { "start": 12702.0, "end": 12702.0, "probability": 0.0 }, { "start": 12702.0, "end": 12702.0, "probability": 0.0 }, { "start": 12702.0, "end": 12702.0, "probability": 0.0 }, { "start": 12702.0, "end": 12702.0, "probability": 0.0 }, { "start": 12702.0, "end": 12702.0, "probability": 0.0 }, { "start": 12702.0, "end": 12702.0, "probability": 0.0 }, { "start": 12702.0, "end": 12702.0, "probability": 0.0 }, { "start": 12702.0, "end": 12702.0, "probability": 0.0 }, { "start": 12702.0, "end": 12702.0, "probability": 0.0 }, { "start": 12702.0, "end": 12702.0, "probability": 0.0 }, { "start": 12702.0, "end": 12702.0, "probability": 0.0 }, { "start": 12702.0, "end": 12702.0, "probability": 0.0 }, { "start": 12702.0, "end": 12702.0, "probability": 0.0 }, { "start": 12702.0, "end": 12702.0, "probability": 0.0 }, { "start": 12702.0, "end": 12702.0, "probability": 0.0 }, { "start": 12702.0, "end": 12702.0, "probability": 0.0 }, { "start": 12702.0, "end": 12702.0, "probability": 0.0 }, { "start": 12702.0, "end": 12702.0, "probability": 0.0 }, { "start": 12702.0, "end": 12702.0, "probability": 0.0 }, { "start": 12702.0, "end": 12702.0, "probability": 0.0 }, { "start": 12702.0, "end": 12702.0, "probability": 0.0 }, { "start": 12702.0, "end": 12702.0, "probability": 0.0 }, { "start": 12702.0, "end": 12702.0, "probability": 0.0 }, { "start": 12702.42, "end": 12703.76, "probability": 0.1283 }, { "start": 12703.76, "end": 12707.76, "probability": 0.2715 }, { "start": 12707.88, "end": 12707.88, "probability": 0.062 }, { "start": 12707.88, "end": 12709.1, "probability": 0.16 }, { "start": 12710.12, "end": 12715.42, "probability": 0.029 }, { "start": 12716.08, "end": 12716.46, "probability": 0.1474 }, { "start": 12719.14, "end": 12722.02, "probability": 0.7144 }, { "start": 12722.96, "end": 12725.76, "probability": 0.0834 }, { "start": 12828.0, "end": 12828.0, "probability": 0.0 }, { "start": 12828.0, "end": 12828.0, "probability": 0.0 }, { "start": 12828.0, "end": 12828.0, "probability": 0.0 }, { "start": 12828.0, "end": 12828.0, "probability": 0.0 }, { "start": 12828.0, "end": 12828.0, "probability": 0.0 }, { "start": 12828.0, "end": 12828.0, "probability": 0.0 }, { "start": 12828.0, "end": 12828.0, "probability": 0.0 }, { "start": 12828.0, "end": 12828.0, "probability": 0.0 }, { "start": 12828.0, "end": 12828.0, "probability": 0.0 }, { "start": 12828.0, "end": 12828.0, "probability": 0.0 }, { "start": 12828.0, "end": 12828.0, "probability": 0.0 }, { "start": 12828.0, "end": 12828.0, "probability": 0.0 }, { "start": 12828.0, "end": 12828.0, "probability": 0.0 }, { "start": 12828.0, "end": 12828.0, "probability": 0.0 }, { "start": 12828.0, "end": 12828.0, "probability": 0.0 }, { "start": 12828.0, "end": 12828.0, "probability": 0.0 }, { "start": 12828.0, "end": 12828.0, "probability": 0.0 }, { "start": 12828.0, "end": 12828.0, "probability": 0.0 }, { "start": 12828.0, "end": 12828.0, "probability": 0.0 }, { "start": 12828.0, "end": 12828.0, "probability": 0.0 }, { "start": 12828.0, "end": 12828.0, "probability": 0.0 }, { "start": 12828.0, "end": 12828.0, "probability": 0.0 }, { "start": 12828.0, "end": 12828.0, "probability": 0.0 }, { "start": 12828.0, "end": 12828.0, "probability": 0.0 }, { "start": 12828.0, "end": 12828.0, "probability": 0.0 }, { "start": 12828.0, "end": 12828.0, "probability": 0.0 }, { "start": 12828.0, "end": 12828.0, "probability": 0.0 }, { "start": 12828.0, "end": 12828.0, "probability": 0.0 }, { "start": 12828.0, "end": 12828.0, "probability": 0.0 }, { "start": 12828.0, "end": 12828.0, "probability": 0.0 }, { "start": 12828.0, "end": 12828.0, "probability": 0.0 }, { "start": 12828.0, "end": 12828.0, "probability": 0.0 }, { "start": 12828.0, "end": 12828.0, "probability": 0.0 }, { "start": 12828.0, "end": 12828.0, "probability": 0.0 }, { "start": 12828.0, "end": 12828.0, "probability": 0.0 }, { "start": 12828.0, "end": 12828.0, "probability": 0.0 }, { "start": 12828.0, "end": 12828.0, "probability": 0.0 }, { "start": 12828.54, "end": 12833.08, "probability": 0.0503 }, { "start": 12833.08, "end": 12833.55, "probability": 0.0211 }, { "start": 12834.26, "end": 12837.1, "probability": 0.1619 }, { "start": 12844.0, "end": 12847.56, "probability": 0.0986 }, { "start": 12957.0, "end": 12957.0, "probability": 0.0 }, { "start": 12957.0, "end": 12957.0, "probability": 0.0 }, { "start": 12957.0, "end": 12957.0, "probability": 0.0 }, { "start": 12957.0, "end": 12957.0, "probability": 0.0 }, { "start": 12957.0, "end": 12957.0, "probability": 0.0 }, { "start": 12957.0, "end": 12957.0, "probability": 0.0 }, { "start": 12957.0, "end": 12957.0, "probability": 0.0 }, { "start": 12957.0, "end": 12957.0, "probability": 0.0 }, { "start": 12957.0, "end": 12957.0, "probability": 0.0 }, { "start": 12957.0, "end": 12957.0, "probability": 0.0 }, { "start": 12957.0, "end": 12957.0, "probability": 0.0 }, { "start": 12957.0, "end": 12957.0, "probability": 0.0 }, { "start": 12957.0, "end": 12957.0, "probability": 0.0 }, { "start": 12957.0, "end": 12957.0, "probability": 0.0 }, { "start": 12957.0, "end": 12957.0, "probability": 0.0 }, { "start": 12957.0, "end": 12957.0, "probability": 0.0 }, { "start": 12957.0, "end": 12957.0, "probability": 0.0 }, { "start": 12957.0, "end": 12957.0, "probability": 0.0 }, { "start": 12957.0, "end": 12957.0, "probability": 0.0 }, { "start": 12957.0, "end": 12957.0, "probability": 0.0 }, { "start": 12957.0, "end": 12957.0, "probability": 0.0 }, { "start": 12957.0, "end": 12957.0, "probability": 0.0 }, { "start": 12957.0, "end": 12957.0, "probability": 0.0 }, { "start": 12957.0, "end": 12957.0, "probability": 0.0 }, { "start": 12957.0, "end": 12957.0, "probability": 0.0 }, { "start": 12957.0, "end": 12957.0, "probability": 0.0 }, { "start": 12957.0, "end": 12957.0, "probability": 0.0 }, { "start": 12957.0, "end": 12957.0, "probability": 0.0 }, { "start": 12957.0, "end": 12957.0, "probability": 0.0 }, { "start": 12957.0, "end": 12957.0, "probability": 0.0 }, { "start": 12957.0, "end": 12957.0, "probability": 0.0 }, { "start": 12957.0, "end": 12957.0, "probability": 0.0 }, { "start": 12957.0, "end": 12957.0, "probability": 0.0 }, { "start": 12957.0, "end": 12957.0, "probability": 0.0 }, { "start": 12957.0, "end": 12957.0, "probability": 0.0 }, { "start": 12957.0, "end": 12957.0, "probability": 0.0 }, { "start": 12957.0, "end": 12957.0, "probability": 0.0 }, { "start": 12957.0, "end": 12957.0, "probability": 0.0 }, { "start": 12957.0, "end": 12957.0, "probability": 0.0 }, { "start": 12957.0, "end": 12957.0, "probability": 0.0 }, { "start": 12957.0, "end": 12957.0, "probability": 0.0 }, { "start": 12957.0, "end": 12957.0, "probability": 0.0 }, { "start": 12957.0, "end": 12957.0, "probability": 0.0 }, { "start": 12957.0, "end": 12957.0, "probability": 0.0 }, { "start": 12957.0, "end": 12957.0, "probability": 0.0 }, { "start": 12957.0, "end": 12957.0, "probability": 0.0 }, { "start": 12957.0, "end": 12957.0, "probability": 0.0 }, { "start": 12957.26, "end": 12957.34, "probability": 0.1567 }, { "start": 12957.34, "end": 12957.34, "probability": 0.4222 }, { "start": 12957.34, "end": 12957.34, "probability": 0.0954 }, { "start": 12957.34, "end": 12957.34, "probability": 0.1908 }, { "start": 12957.34, "end": 12957.64, "probability": 0.3664 }, { "start": 12959.98, "end": 12961.34, "probability": 0.4708 }, { "start": 12961.34, "end": 12964.16, "probability": 0.7001 }, { "start": 12971.8, "end": 12972.22, "probability": 0.4953 }, { "start": 12974.62, "end": 12977.2, "probability": 0.5955 }, { "start": 12977.84, "end": 12981.84, "probability": 0.8662 }, { "start": 12981.91, "end": 12985.28, "probability": 0.8628 }, { "start": 12986.3, "end": 12991.84, "probability": 0.6633 }, { "start": 12992.38, "end": 12997.5, "probability": 0.8225 }, { "start": 12997.92, "end": 12999.1, "probability": 0.5419 }, { "start": 12999.22, "end": 12999.74, "probability": 0.6582 }, { "start": 13000.2, "end": 13000.7, "probability": 0.4783 }, { "start": 13000.72, "end": 13001.26, "probability": 0.3368 }, { "start": 13015.88, "end": 13016.32, "probability": 0.0528 }, { "start": 13016.32, "end": 13017.92, "probability": 0.4191 }, { "start": 13019.0, "end": 13020.04, "probability": 0.7327 }, { "start": 13020.9, "end": 13022.76, "probability": 0.8437 }, { "start": 13023.2, "end": 13027.12, "probability": 0.8221 }, { "start": 13027.46, "end": 13028.26, "probability": 0.863 }, { "start": 13028.4, "end": 13028.82, "probability": 0.8671 }, { "start": 13029.66, "end": 13030.18, "probability": 0.7084 }, { "start": 13030.8, "end": 13033.1, "probability": 0.9645 }, { "start": 13033.1, "end": 13036.26, "probability": 0.9901 }, { "start": 13036.62, "end": 13037.6, "probability": 0.1079 }, { "start": 13038.52, "end": 13042.98, "probability": 0.015 }, { "start": 13046.62, "end": 13047.44, "probability": 0.0002 }, { "start": 13051.48, "end": 13052.8, "probability": 0.0101 }, { "start": 13052.88, "end": 13054.35, "probability": 0.0119 }, { "start": 13057.32, "end": 13058.04, "probability": 0.0365 }, { "start": 13063.32, "end": 13063.86, "probability": 0.0358 }, { "start": 13070.04, "end": 13076.14, "probability": 0.2886 }, { "start": 13076.76, "end": 13078.0, "probability": 0.0124 }, { "start": 13079.24, "end": 13079.54, "probability": 0.0157 }, { "start": 13079.54, "end": 13080.18, "probability": 0.0242 }, { "start": 13080.18, "end": 13081.05, "probability": 0.0438 }, { "start": 13083.0, "end": 13083.0, "probability": 0.0 }, { "start": 13083.0, "end": 13083.0, "probability": 0.0 }, { "start": 13083.0, "end": 13083.0, "probability": 0.0 }, { "start": 13083.0, "end": 13083.0, "probability": 0.0 }, { "start": 13083.0, "end": 13083.0, "probability": 0.0 }, { "start": 13083.0, "end": 13083.0, "probability": 0.0 }, { "start": 13083.0, "end": 13083.0, "probability": 0.0 }, { "start": 13083.0, "end": 13083.0, "probability": 0.0 }, { "start": 13083.0, "end": 13083.0, "probability": 0.0 }, { "start": 13083.0, "end": 13083.0, "probability": 0.0 }, { "start": 13083.16, "end": 13083.52, "probability": 0.3927 }, { "start": 13083.52, "end": 13083.52, "probability": 0.1091 }, { "start": 13083.52, "end": 13083.52, "probability": 0.0985 }, { "start": 13083.52, "end": 13085.28, "probability": 0.6129 }, { "start": 13086.42, "end": 13088.22, "probability": 0.7071 }, { "start": 13088.76, "end": 13090.28, "probability": 0.9771 }, { "start": 13091.62, "end": 13094.04, "probability": 0.8865 }, { "start": 13094.22, "end": 13095.62, "probability": 0.9813 }, { "start": 13096.26, "end": 13099.04, "probability": 0.9577 }, { "start": 13100.36, "end": 13102.12, "probability": 0.7549 }, { "start": 13103.44, "end": 13104.4, "probability": 0.7603 }, { "start": 13105.84, "end": 13109.2, "probability": 0.8062 }, { "start": 13109.4, "end": 13111.0, "probability": 0.9338 }, { "start": 13111.22, "end": 13113.68, "probability": 0.925 }, { "start": 13114.84, "end": 13116.58, "probability": 0.9252 }, { "start": 13117.66, "end": 13119.16, "probability": 0.81 }, { "start": 13121.93, "end": 13126.72, "probability": 0.933 }, { "start": 13128.28, "end": 13131.04, "probability": 0.8743 }, { "start": 13132.74, "end": 13138.46, "probability": 0.9321 }, { "start": 13139.56, "end": 13140.2, "probability": 0.9471 }, { "start": 13141.66, "end": 13142.3, "probability": 0.7751 }, { "start": 13144.16, "end": 13146.18, "probability": 0.9874 }, { "start": 13148.64, "end": 13149.76, "probability": 0.7449 }, { "start": 13150.5, "end": 13153.98, "probability": 0.9873 }, { "start": 13155.54, "end": 13157.94, "probability": 0.9563 }, { "start": 13159.34, "end": 13163.48, "probability": 0.9171 }, { "start": 13166.38, "end": 13168.34, "probability": 0.9863 }, { "start": 13169.34, "end": 13172.74, "probability": 0.965 }, { "start": 13173.66, "end": 13174.84, "probability": 0.9894 }, { "start": 13176.08, "end": 13180.08, "probability": 0.898 }, { "start": 13182.04, "end": 13185.0, "probability": 0.9881 }, { "start": 13185.9, "end": 13190.1, "probability": 0.9824 }, { "start": 13191.46, "end": 13193.56, "probability": 0.9975 }, { "start": 13195.72, "end": 13199.34, "probability": 0.8477 }, { "start": 13199.92, "end": 13201.86, "probability": 0.9907 }, { "start": 13202.86, "end": 13208.98, "probability": 0.9329 }, { "start": 13209.98, "end": 13216.52, "probability": 0.9616 }, { "start": 13218.4, "end": 13221.62, "probability": 0.991 }, { "start": 13222.3, "end": 13223.24, "probability": 0.8802 }, { "start": 13223.98, "end": 13228.42, "probability": 0.9948 }, { "start": 13228.8, "end": 13230.02, "probability": 0.9985 }, { "start": 13233.64, "end": 13236.88, "probability": 0.9993 }, { "start": 13238.02, "end": 13242.24, "probability": 0.9981 }, { "start": 13242.5, "end": 13243.2, "probability": 0.803 }, { "start": 13244.32, "end": 13246.18, "probability": 0.9923 }, { "start": 13246.48, "end": 13247.5, "probability": 0.9751 }, { "start": 13249.1, "end": 13251.08, "probability": 0.9174 }, { "start": 13251.28, "end": 13253.14, "probability": 0.8584 }, { "start": 13253.86, "end": 13255.82, "probability": 0.9437 }, { "start": 13256.72, "end": 13258.32, "probability": 0.9659 }, { "start": 13259.22, "end": 13261.02, "probability": 0.9293 }, { "start": 13263.38, "end": 13264.92, "probability": 0.9989 }, { "start": 13265.6, "end": 13266.56, "probability": 0.9604 }, { "start": 13268.7, "end": 13271.5, "probability": 0.9906 }, { "start": 13272.16, "end": 13272.94, "probability": 0.4397 }, { "start": 13273.08, "end": 13277.56, "probability": 0.9866 }, { "start": 13277.76, "end": 13279.08, "probability": 0.8767 }, { "start": 13279.46, "end": 13280.6, "probability": 0.9775 }, { "start": 13283.24, "end": 13287.02, "probability": 0.8656 }, { "start": 13287.08, "end": 13288.91, "probability": 0.7605 }, { "start": 13289.92, "end": 13291.26, "probability": 0.9427 }, { "start": 13292.54, "end": 13295.2, "probability": 0.9359 }, { "start": 13296.6, "end": 13298.1, "probability": 0.9868 }, { "start": 13300.52, "end": 13306.68, "probability": 0.9988 }, { "start": 13306.68, "end": 13311.36, "probability": 0.9753 }, { "start": 13311.68, "end": 13313.35, "probability": 0.9929 }, { "start": 13314.4, "end": 13318.64, "probability": 0.8513 }, { "start": 13319.16, "end": 13320.44, "probability": 0.6776 }, { "start": 13321.9, "end": 13325.08, "probability": 0.9904 }, { "start": 13325.16, "end": 13329.72, "probability": 0.6532 }, { "start": 13329.88, "end": 13331.85, "probability": 0.7386 }, { "start": 13332.98, "end": 13333.38, "probability": 0.4914 }, { "start": 13334.58, "end": 13335.5, "probability": 0.4862 }, { "start": 13337.22, "end": 13341.54, "probability": 0.9908 }, { "start": 13341.88, "end": 13343.18, "probability": 0.9966 }, { "start": 13345.36, "end": 13348.06, "probability": 0.995 }, { "start": 13348.86, "end": 13349.58, "probability": 0.9855 }, { "start": 13351.28, "end": 13351.44, "probability": 0.9035 }, { "start": 13352.96, "end": 13355.1, "probability": 0.9772 }, { "start": 13355.84, "end": 13358.82, "probability": 0.9877 }, { "start": 13360.98, "end": 13361.98, "probability": 0.888 }, { "start": 13363.18, "end": 13363.94, "probability": 0.9819 }, { "start": 13365.54, "end": 13368.02, "probability": 0.9834 }, { "start": 13369.36, "end": 13372.22, "probability": 0.9333 }, { "start": 13372.84, "end": 13376.68, "probability": 0.9747 }, { "start": 13377.52, "end": 13378.76, "probability": 0.8991 }, { "start": 13380.18, "end": 13382.16, "probability": 0.9849 }, { "start": 13382.98, "end": 13385.24, "probability": 0.9799 }, { "start": 13386.56, "end": 13389.34, "probability": 0.9824 }, { "start": 13389.54, "end": 13390.76, "probability": 0.9854 }, { "start": 13391.6, "end": 13393.56, "probability": 0.9888 }, { "start": 13394.66, "end": 13398.26, "probability": 0.9963 }, { "start": 13399.74, "end": 13401.12, "probability": 0.9205 }, { "start": 13401.22, "end": 13401.86, "probability": 0.6027 }, { "start": 13401.9, "end": 13404.42, "probability": 0.8084 }, { "start": 13405.56, "end": 13406.42, "probability": 0.7588 }, { "start": 13407.1, "end": 13409.02, "probability": 0.9741 }, { "start": 13409.16, "end": 13412.0, "probability": 0.988 }, { "start": 13413.6, "end": 13414.92, "probability": 0.9995 }, { "start": 13415.88, "end": 13416.4, "probability": 0.9819 }, { "start": 13416.72, "end": 13416.82, "probability": 0.7642 }, { "start": 13418.66, "end": 13420.32, "probability": 0.7778 }, { "start": 13421.26, "end": 13424.58, "probability": 0.7644 }, { "start": 13429.42, "end": 13429.84, "probability": 0.4325 }, { "start": 13429.84, "end": 13430.42, "probability": 0.1644 }, { "start": 13431.36, "end": 13433.02, "probability": 0.8395 }, { "start": 13434.56, "end": 13435.94, "probability": 0.7672 }, { "start": 13436.7, "end": 13438.86, "probability": 0.7841 }, { "start": 13440.7, "end": 13441.36, "probability": 0.0772 }, { "start": 13448.22, "end": 13448.82, "probability": 0.0152 }, { "start": 13449.48, "end": 13449.6, "probability": 0.3648 }, { "start": 13449.6, "end": 13449.7, "probability": 0.2018 }, { "start": 13452.16, "end": 13452.24, "probability": 0.0869 }, { "start": 13452.28, "end": 13455.04, "probability": 0.6979 }, { "start": 13455.72, "end": 13456.94, "probability": 0.0583 }, { "start": 13457.14, "end": 13457.44, "probability": 0.3018 }, { "start": 13458.02, "end": 13459.18, "probability": 0.3324 }, { "start": 13460.42, "end": 13460.5, "probability": 0.4341 }, { "start": 13460.5, "end": 13460.66, "probability": 0.002 }, { "start": 13466.44, "end": 13467.24, "probability": 0.3028 }, { "start": 13468.6, "end": 13469.76, "probability": 0.0925 }, { "start": 13469.76, "end": 13469.88, "probability": 0.3965 }, { "start": 13470.04, "end": 13470.98, "probability": 0.8139 }, { "start": 13471.04, "end": 13471.76, "probability": 0.7534 }, { "start": 13472.0, "end": 13472.92, "probability": 0.8225 }, { "start": 13490.98, "end": 13492.32, "probability": 0.6724 }, { "start": 13497.3, "end": 13497.9, "probability": 0.7247 }, { "start": 13497.94, "end": 13498.64, "probability": 0.7035 }, { "start": 13498.7, "end": 13499.2, "probability": 0.9467 }, { "start": 13499.44, "end": 13500.46, "probability": 0.6434 }, { "start": 13501.4, "end": 13503.8, "probability": 0.2575 }, { "start": 13503.8, "end": 13504.58, "probability": 0.0661 }, { "start": 13504.58, "end": 13505.26, "probability": 0.2478 }, { "start": 13505.36, "end": 13506.34, "probability": 0.808 }, { "start": 13506.98, "end": 13508.12, "probability": 0.9203 }, { "start": 13508.92, "end": 13510.88, "probability": 0.8901 }, { "start": 13510.88, "end": 13513.58, "probability": 0.8556 }, { "start": 13514.22, "end": 13516.54, "probability": 0.9245 }, { "start": 13517.52, "end": 13519.86, "probability": 0.7883 }, { "start": 13519.86, "end": 13523.88, "probability": 0.7827 }, { "start": 13524.6, "end": 13530.3, "probability": 0.8289 }, { "start": 13531.14, "end": 13534.92, "probability": 0.5706 }, { "start": 13535.02, "end": 13537.96, "probability": 0.7197 }, { "start": 13538.08, "end": 13540.96, "probability": 0.6299 }, { "start": 13540.96, "end": 13543.58, "probability": 0.9631 }, { "start": 13544.42, "end": 13545.22, "probability": 0.8853 }, { "start": 13545.3, "end": 13548.5, "probability": 0.9448 }, { "start": 13549.22, "end": 13550.84, "probability": 0.6287 }, { "start": 13550.96, "end": 13552.36, "probability": 0.9369 }, { "start": 13553.66, "end": 13557.62, "probability": 0.9692 }, { "start": 13558.42, "end": 13560.74, "probability": 0.7793 }, { "start": 13560.84, "end": 13563.0, "probability": 0.7116 }, { "start": 13563.08, "end": 13566.5, "probability": 0.8796 }, { "start": 13567.12, "end": 13569.68, "probability": 0.8485 }, { "start": 13570.46, "end": 13575.68, "probability": 0.9717 }, { "start": 13575.94, "end": 13579.1, "probability": 0.9426 }, { "start": 13579.1, "end": 13582.34, "probability": 0.9868 }, { "start": 13582.76, "end": 13583.73, "probability": 0.8778 }, { "start": 13584.6, "end": 13587.16, "probability": 0.7289 }, { "start": 13587.32, "end": 13593.95, "probability": 0.9395 }, { "start": 13595.12, "end": 13596.88, "probability": 0.9192 }, { "start": 13596.88, "end": 13599.0, "probability": 0.4851 }, { "start": 13600.04, "end": 13600.56, "probability": 0.0564 }, { "start": 13600.66, "end": 13603.2, "probability": 0.4069 }, { "start": 13603.92, "end": 13605.0, "probability": 0.5533 }, { "start": 13605.28, "end": 13608.64, "probability": 0.4765 }, { "start": 13608.72, "end": 13609.18, "probability": 0.7674 }, { "start": 13610.34, "end": 13610.4, "probability": 0.3086 }, { "start": 13610.46, "end": 13612.88, "probability": 0.3299 }, { "start": 13613.4, "end": 13616.46, "probability": 0.6041 }, { "start": 13616.88, "end": 13617.64, "probability": 0.6818 }, { "start": 13618.12, "end": 13623.81, "probability": 0.8436 }, { "start": 13624.8, "end": 13632.9, "probability": 0.8581 }, { "start": 13632.9, "end": 13637.02, "probability": 0.9486 }, { "start": 13637.74, "end": 13638.28, "probability": 0.5216 }, { "start": 13639.59, "end": 13646.68, "probability": 0.9918 }, { "start": 13646.82, "end": 13650.13, "probability": 0.7523 }, { "start": 13651.0, "end": 13652.26, "probability": 0.684 }, { "start": 13652.58, "end": 13654.6, "probability": 0.6881 }, { "start": 13655.44, "end": 13658.28, "probability": 0.9061 }, { "start": 13659.58, "end": 13660.9, "probability": 0.9468 }, { "start": 13660.92, "end": 13663.62, "probability": 0.9819 }, { "start": 13663.66, "end": 13666.46, "probability": 0.9951 }, { "start": 13667.4, "end": 13670.24, "probability": 0.8694 }, { "start": 13670.72, "end": 13671.22, "probability": 0.3998 }, { "start": 13671.58, "end": 13672.52, "probability": 0.8831 }, { "start": 13675.97, "end": 13678.68, "probability": 0.8133 }, { "start": 13679.52, "end": 13682.18, "probability": 0.8193 }, { "start": 13682.76, "end": 13685.34, "probability": 0.9296 }, { "start": 13685.54, "end": 13686.85, "probability": 0.9985 }, { "start": 13687.95, "end": 13691.29, "probability": 0.84 }, { "start": 13692.46, "end": 13694.55, "probability": 0.8325 }, { "start": 13695.57, "end": 13699.31, "probability": 0.9824 }, { "start": 13701.03, "end": 13704.23, "probability": 0.9756 }, { "start": 13704.33, "end": 13705.19, "probability": 0.5952 }, { "start": 13705.47, "end": 13705.99, "probability": 0.8664 }, { "start": 13706.17, "end": 13707.43, "probability": 0.7111 }, { "start": 13707.81, "end": 13708.52, "probability": 0.7603 }, { "start": 13708.93, "end": 13713.29, "probability": 0.8588 }, { "start": 13713.71, "end": 13716.35, "probability": 0.2531 }, { "start": 13716.82, "end": 13722.77, "probability": 0.0974 }, { "start": 13722.77, "end": 13722.77, "probability": 0.3388 }, { "start": 13722.79, "end": 13724.57, "probability": 0.99 }, { "start": 13724.77, "end": 13726.14, "probability": 0.7168 }, { "start": 13726.73, "end": 13727.93, "probability": 0.769 }, { "start": 13728.49, "end": 13729.17, "probability": 0.7171 }, { "start": 13729.25, "end": 13731.43, "probability": 0.8799 }, { "start": 13733.19, "end": 13734.93, "probability": 0.1003 }, { "start": 13737.13, "end": 13738.49, "probability": 0.8545 }, { "start": 13741.01, "end": 13742.97, "probability": 0.7173 }, { "start": 13743.45, "end": 13743.91, "probability": 0.2872 }, { "start": 13744.65, "end": 13746.89, "probability": 0.0166 }, { "start": 13747.03, "end": 13748.37, "probability": 0.0091 }, { "start": 13749.25, "end": 13752.01, "probability": 0.0023 }, { "start": 13764.19, "end": 13764.43, "probability": 0.0373 }, { "start": 13764.43, "end": 13764.61, "probability": 0.5139 }, { "start": 13765.19, "end": 13767.75, "probability": 0.4754 }, { "start": 13768.41, "end": 13768.89, "probability": 0.6157 }, { "start": 13769.13, "end": 13771.51, "probability": 0.8428 }, { "start": 13771.85, "end": 13772.73, "probability": 0.6688 }, { "start": 13772.91, "end": 13775.65, "probability": 0.8512 }, { "start": 13776.19, "end": 13778.73, "probability": 0.7032 }, { "start": 13779.47, "end": 13779.57, "probability": 0.0682 }, { "start": 13779.75, "end": 13783.19, "probability": 0.5314 }, { "start": 13783.41, "end": 13786.47, "probability": 0.7876 }, { "start": 13786.61, "end": 13787.47, "probability": 0.8944 }, { "start": 13787.91, "end": 13788.85, "probability": 0.8802 }, { "start": 13788.97, "end": 13790.99, "probability": 0.8635 }, { "start": 13791.97, "end": 13796.05, "probability": 0.9287 }, { "start": 13796.67, "end": 13798.03, "probability": 0.0397 }, { "start": 13798.97, "end": 13800.03, "probability": 0.7294 }, { "start": 13802.45, "end": 13805.37, "probability": 0.5506 }, { "start": 13807.07, "end": 13812.82, "probability": 0.8597 }, { "start": 13813.49, "end": 13816.05, "probability": 0.0713 }, { "start": 13817.73, "end": 13819.95, "probability": 0.784 }, { "start": 13821.07, "end": 13824.31, "probability": 0.604 }, { "start": 13824.83, "end": 13828.89, "probability": 0.5787 }, { "start": 13829.41, "end": 13830.77, "probability": 0.5247 }, { "start": 13831.45, "end": 13832.41, "probability": 0.9772 }, { "start": 13833.87, "end": 13834.15, "probability": 0.017 }, { "start": 13834.15, "end": 13835.83, "probability": 0.0137 }, { "start": 13835.83, "end": 13835.89, "probability": 0.0407 }, { "start": 13835.89, "end": 13836.67, "probability": 0.0172 }, { "start": 13836.67, "end": 13836.67, "probability": 0.3303 }, { "start": 13836.79, "end": 13836.97, "probability": 0.0539 }, { "start": 13837.0, "end": 13837.0, "probability": 0.0 }, { "start": 13837.0, "end": 13837.0, "probability": 0.0 }, { "start": 13837.0, "end": 13837.0, "probability": 0.0 }, { "start": 13837.0, "end": 13837.0, "probability": 0.0 }, { "start": 13837.0, "end": 13837.0, "probability": 0.0 }, { "start": 13837.0, "end": 13837.0, "probability": 0.0 }, { "start": 13853.36, "end": 13854.8, "probability": 0.5272 }, { "start": 13855.66, "end": 13857.58, "probability": 0.5637 }, { "start": 13857.68, "end": 13860.68, "probability": 0.9008 }, { "start": 13860.76, "end": 13861.48, "probability": 0.667 }, { "start": 13861.56, "end": 13861.78, "probability": 0.8706 }, { "start": 13863.84, "end": 13866.44, "probability": 0.8986 }, { "start": 13867.42, "end": 13871.52, "probability": 0.9367 }, { "start": 13872.28, "end": 13872.48, "probability": 0.6013 }, { "start": 13874.32, "end": 13877.06, "probability": 0.9944 }, { "start": 13877.68, "end": 13884.28, "probability": 0.5162 }, { "start": 13885.24, "end": 13886.35, "probability": 0.9577 }, { "start": 13888.46, "end": 13890.6, "probability": 0.9596 }, { "start": 13890.92, "end": 13893.48, "probability": 0.9937 }, { "start": 13894.06, "end": 13895.34, "probability": 0.7646 }, { "start": 13896.08, "end": 13896.38, "probability": 0.2261 }, { "start": 13896.58, "end": 13897.44, "probability": 0.8177 }, { "start": 13897.58, "end": 13900.58, "probability": 0.9315 }, { "start": 13902.49, "end": 13904.26, "probability": 0.9484 }, { "start": 13905.06, "end": 13907.02, "probability": 0.1092 }, { "start": 13908.72, "end": 13909.68, "probability": 0.0293 }, { "start": 13910.4, "end": 13911.0, "probability": 0.7558 }, { "start": 13911.14, "end": 13915.45, "probability": 0.9702 }, { "start": 13916.9, "end": 13921.12, "probability": 0.6871 }, { "start": 13922.14, "end": 13923.4, "probability": 0.9988 }, { "start": 13924.0, "end": 13925.38, "probability": 0.9548 }, { "start": 13925.46, "end": 13927.78, "probability": 0.9988 }, { "start": 13929.02, "end": 13932.06, "probability": 0.9188 }, { "start": 13932.98, "end": 13936.2, "probability": 0.8719 }, { "start": 13937.44, "end": 13940.44, "probability": 0.9477 }, { "start": 13942.82, "end": 13945.0, "probability": 0.8449 }, { "start": 13946.46, "end": 13949.18, "probability": 0.9669 }, { "start": 13949.8, "end": 13951.12, "probability": 0.9931 }, { "start": 13951.7, "end": 13953.29, "probability": 0.9626 }, { "start": 13953.7, "end": 13955.24, "probability": 0.9414 }, { "start": 13956.84, "end": 13958.02, "probability": 0.6702 }, { "start": 13958.62, "end": 13961.52, "probability": 0.871 }, { "start": 13962.58, "end": 13963.78, "probability": 0.9842 }, { "start": 13963.84, "end": 13965.04, "probability": 0.832 }, { "start": 13965.92, "end": 13965.92, "probability": 0.15 }, { "start": 13965.92, "end": 13966.18, "probability": 0.6231 }, { "start": 13967.12, "end": 13968.43, "probability": 0.9662 }, { "start": 13969.3, "end": 13972.44, "probability": 0.9068 }, { "start": 13972.76, "end": 13976.22, "probability": 0.8972 }, { "start": 13976.96, "end": 13978.74, "probability": 0.9927 }, { "start": 13979.98, "end": 13980.33, "probability": 0.4812 }, { "start": 13980.92, "end": 13981.24, "probability": 0.9071 }, { "start": 13982.42, "end": 13984.52, "probability": 0.9911 }, { "start": 13985.42, "end": 13986.2, "probability": 0.6433 }, { "start": 13986.22, "end": 13988.98, "probability": 0.9973 }, { "start": 13990.24, "end": 13991.02, "probability": 0.6662 }, { "start": 13992.44, "end": 13993.48, "probability": 0.7622 }, { "start": 13994.34, "end": 13995.7, "probability": 0.9841 }, { "start": 13996.52, "end": 13996.82, "probability": 0.9754 }, { "start": 13996.94, "end": 13999.56, "probability": 0.5483 }, { "start": 14004.8, "end": 14009.0, "probability": 0.978 }, { "start": 14009.14, "end": 14009.6, "probability": 0.7084 }, { "start": 14010.16, "end": 14014.98, "probability": 0.7891 }, { "start": 14015.56, "end": 14017.96, "probability": 0.9927 }, { "start": 14019.66, "end": 14020.9, "probability": 0.9858 }, { "start": 14021.5, "end": 14023.06, "probability": 0.9905 }, { "start": 14023.42, "end": 14024.06, "probability": 0.6682 }, { "start": 14024.2, "end": 14025.76, "probability": 0.7263 }, { "start": 14026.72, "end": 14029.58, "probability": 0.934 }, { "start": 14029.76, "end": 14030.25, "probability": 0.5986 }, { "start": 14032.52, "end": 14036.04, "probability": 0.005 }, { "start": 14037.8, "end": 14038.0, "probability": 0.0392 }, { "start": 14038.0, "end": 14038.0, "probability": 0.0219 }, { "start": 14038.0, "end": 14038.0, "probability": 0.4217 }, { "start": 14038.0, "end": 14038.7, "probability": 0.0917 }, { "start": 14039.56, "end": 14039.84, "probability": 0.663 }, { "start": 14041.06, "end": 14041.66, "probability": 0.6982 }, { "start": 14041.8, "end": 14042.1, "probability": 0.9551 }, { "start": 14042.66, "end": 14043.5, "probability": 0.9375 }, { "start": 14044.2, "end": 14048.64, "probability": 0.9839 }, { "start": 14049.06, "end": 14050.18, "probability": 0.7651 }, { "start": 14050.28, "end": 14051.26, "probability": 0.9454 }, { "start": 14052.14, "end": 14052.7, "probability": 0.674 }, { "start": 14053.32, "end": 14054.36, "probability": 0.9794 }, { "start": 14055.22, "end": 14057.54, "probability": 0.9736 }, { "start": 14058.88, "end": 14061.84, "probability": 0.9976 }, { "start": 14062.58, "end": 14065.08, "probability": 0.7632 }, { "start": 14065.34, "end": 14065.46, "probability": 0.8102 }, { "start": 14067.22, "end": 14069.08, "probability": 0.9581 }, { "start": 14069.3, "end": 14073.22, "probability": 0.8018 }, { "start": 14073.88, "end": 14077.08, "probability": 0.8271 }, { "start": 14078.36, "end": 14079.84, "probability": 0.9525 }, { "start": 14080.2, "end": 14081.64, "probability": 0.9146 }, { "start": 14081.9, "end": 14082.7, "probability": 0.9744 }, { "start": 14083.94, "end": 14085.26, "probability": 0.9866 }, { "start": 14085.78, "end": 14089.08, "probability": 0.7835 }, { "start": 14090.38, "end": 14091.66, "probability": 0.9098 }, { "start": 14092.08, "end": 14098.7, "probability": 0.9517 }, { "start": 14099.1, "end": 14101.44, "probability": 0.9854 }, { "start": 14101.54, "end": 14102.12, "probability": 0.7802 }, { "start": 14103.88, "end": 14104.18, "probability": 0.4838 }, { "start": 14104.46, "end": 14106.1, "probability": 0.9968 }, { "start": 14106.16, "end": 14106.96, "probability": 0.967 }, { "start": 14107.1, "end": 14107.28, "probability": 0.8999 }, { "start": 14108.14, "end": 14109.36, "probability": 0.7835 }, { "start": 14110.18, "end": 14111.18, "probability": 0.9502 }, { "start": 14111.52, "end": 14112.94, "probability": 0.9057 }, { "start": 14112.98, "end": 14114.52, "probability": 0.9874 }, { "start": 14115.16, "end": 14116.56, "probability": 0.9519 }, { "start": 14118.12, "end": 14120.12, "probability": 0.925 }, { "start": 14121.46, "end": 14123.9, "probability": 0.8865 }, { "start": 14123.92, "end": 14126.64, "probability": 0.9899 }, { "start": 14126.78, "end": 14127.6, "probability": 0.8192 }, { "start": 14128.62, "end": 14131.02, "probability": 0.9946 }, { "start": 14131.38, "end": 14132.76, "probability": 0.9646 }, { "start": 14133.68, "end": 14135.34, "probability": 0.7265 }, { "start": 14135.34, "end": 14137.46, "probability": 0.9778 }, { "start": 14137.62, "end": 14139.4, "probability": 0.8098 }, { "start": 14139.52, "end": 14139.96, "probability": 0.9319 }, { "start": 14141.12, "end": 14143.26, "probability": 0.527 }, { "start": 14143.84, "end": 14145.74, "probability": 0.8467 }, { "start": 14146.84, "end": 14147.16, "probability": 0.6192 }, { "start": 14147.34, "end": 14147.48, "probability": 0.9969 }, { "start": 14149.26, "end": 14153.16, "probability": 0.9434 }, { "start": 14154.34, "end": 14157.4, "probability": 0.6945 }, { "start": 14158.14, "end": 14162.12, "probability": 0.7511 }, { "start": 14162.7, "end": 14164.96, "probability": 0.8766 }, { "start": 14165.88, "end": 14167.32, "probability": 0.8774 }, { "start": 14167.58, "end": 14170.04, "probability": 0.9952 }, { "start": 14170.7, "end": 14172.48, "probability": 0.984 }, { "start": 14172.62, "end": 14173.66, "probability": 0.9694 }, { "start": 14174.2, "end": 14177.5, "probability": 0.8231 }, { "start": 14177.72, "end": 14177.79, "probability": 0.4321 }, { "start": 14179.08, "end": 14179.6, "probability": 0.5981 }, { "start": 14179.92, "end": 14180.12, "probability": 0.9039 }, { "start": 14180.84, "end": 14182.44, "probability": 0.8572 }, { "start": 14182.78, "end": 14186.32, "probability": 0.8662 }, { "start": 14187.96, "end": 14189.98, "probability": 0.8711 }, { "start": 14191.28, "end": 14192.44, "probability": 0.7788 }, { "start": 14194.16, "end": 14195.58, "probability": 0.9717 }, { "start": 14197.44, "end": 14199.54, "probability": 0.9526 }, { "start": 14200.9, "end": 14204.17, "probability": 0.9983 }, { "start": 14204.62, "end": 14205.12, "probability": 0.4513 }, { "start": 14205.88, "end": 14208.48, "probability": 0.8274 }, { "start": 14209.94, "end": 14210.86, "probability": 0.862 }, { "start": 14211.42, "end": 14212.02, "probability": 0.6747 }, { "start": 14213.76, "end": 14214.9, "probability": 0.6498 }, { "start": 14214.9, "end": 14215.4, "probability": 0.8361 }, { "start": 14216.22, "end": 14218.64, "probability": 0.9932 }, { "start": 14220.44, "end": 14221.71, "probability": 0.9932 }, { "start": 14222.56, "end": 14224.84, "probability": 0.8749 }, { "start": 14225.64, "end": 14226.3, "probability": 0.6711 }, { "start": 14228.72, "end": 14230.48, "probability": 0.9319 }, { "start": 14231.54, "end": 14232.74, "probability": 0.9869 }, { "start": 14233.0, "end": 14235.28, "probability": 0.8051 }, { "start": 14236.02, "end": 14238.2, "probability": 0.9642 }, { "start": 14238.28, "end": 14238.51, "probability": 0.9058 }, { "start": 14239.29, "end": 14240.29, "probability": 0.7977 }, { "start": 14241.32, "end": 14242.26, "probability": 0.6066 }, { "start": 14243.26, "end": 14244.16, "probability": 0.7457 }, { "start": 14244.64, "end": 14245.52, "probability": 0.9883 }, { "start": 14246.0, "end": 14246.84, "probability": 0.8404 }, { "start": 14246.92, "end": 14249.3, "probability": 0.9827 }, { "start": 14249.96, "end": 14252.04, "probability": 0.9943 }, { "start": 14252.6, "end": 14253.02, "probability": 0.9529 }, { "start": 14253.12, "end": 14255.2, "probability": 0.9917 }, { "start": 14257.08, "end": 14259.26, "probability": 0.8517 }, { "start": 14259.4, "end": 14260.22, "probability": 0.9536 }, { "start": 14260.26, "end": 14261.98, "probability": 0.8769 }, { "start": 14263.88, "end": 14266.12, "probability": 0.9251 }, { "start": 14266.72, "end": 14269.22, "probability": 0.9937 }, { "start": 14270.4, "end": 14274.04, "probability": 0.8437 }, { "start": 14274.12, "end": 14275.02, "probability": 0.5399 }, { "start": 14275.7, "end": 14278.44, "probability": 0.9771 }, { "start": 14278.96, "end": 14280.74, "probability": 0.8388 }, { "start": 14280.96, "end": 14282.36, "probability": 0.8315 }, { "start": 14283.08, "end": 14283.6, "probability": 0.8663 }, { "start": 14284.24, "end": 14285.71, "probability": 0.6363 }, { "start": 14286.22, "end": 14286.98, "probability": 0.821 }, { "start": 14287.06, "end": 14288.24, "probability": 0.9576 }, { "start": 14288.52, "end": 14289.52, "probability": 0.7765 }, { "start": 14289.92, "end": 14290.02, "probability": 0.7205 }, { "start": 14291.22, "end": 14292.7, "probability": 0.8782 }, { "start": 14293.38, "end": 14295.42, "probability": 0.9409 }, { "start": 14296.56, "end": 14299.3, "probability": 0.933 }, { "start": 14300.6, "end": 14302.78, "probability": 0.9824 }, { "start": 14303.78, "end": 14305.7, "probability": 0.9604 }, { "start": 14307.14, "end": 14310.42, "probability": 0.9875 }, { "start": 14310.94, "end": 14312.24, "probability": 0.9835 }, { "start": 14313.16, "end": 14315.66, "probability": 0.9838 }, { "start": 14316.8, "end": 14317.41, "probability": 0.967 }, { "start": 14318.3, "end": 14320.52, "probability": 0.9986 }, { "start": 14321.6, "end": 14323.92, "probability": 0.9591 }, { "start": 14324.9, "end": 14326.09, "probability": 0.9982 }, { "start": 14326.96, "end": 14327.72, "probability": 0.6842 }, { "start": 14327.82, "end": 14329.08, "probability": 0.75 }, { "start": 14329.3, "end": 14331.29, "probability": 0.9645 }, { "start": 14332.28, "end": 14332.78, "probability": 0.8585 }, { "start": 14333.32, "end": 14334.96, "probability": 0.9965 }, { "start": 14335.84, "end": 14338.38, "probability": 0.9983 }, { "start": 14339.24, "end": 14341.12, "probability": 0.9324 }, { "start": 14341.66, "end": 14343.29, "probability": 0.9693 }, { "start": 14343.88, "end": 14346.26, "probability": 0.8967 }, { "start": 14347.02, "end": 14348.4, "probability": 0.7968 }, { "start": 14348.96, "end": 14352.46, "probability": 0.974 }, { "start": 14353.2, "end": 14353.48, "probability": 0.9547 }, { "start": 14354.08, "end": 14356.9, "probability": 0.9268 }, { "start": 14357.78, "end": 14358.52, "probability": 0.6911 }, { "start": 14358.62, "end": 14358.72, "probability": 0.2603 }, { "start": 14358.98, "end": 14360.56, "probability": 0.1752 }, { "start": 14360.75, "end": 14360.82, "probability": 0.6833 }, { "start": 14360.82, "end": 14361.28, "probability": 0.3249 }, { "start": 14361.86, "end": 14363.92, "probability": 0.534 }, { "start": 14366.34, "end": 14370.9, "probability": 0.9214 }, { "start": 14371.48, "end": 14373.9, "probability": 0.98 }, { "start": 14382.68, "end": 14382.68, "probability": 0.416 }, { "start": 14382.68, "end": 14382.68, "probability": 0.029 }, { "start": 14382.68, "end": 14382.68, "probability": 0.0648 }, { "start": 14382.68, "end": 14382.68, "probability": 0.0349 }, { "start": 14404.48, "end": 14404.92, "probability": 0.383 }, { "start": 14405.48, "end": 14407.71, "probability": 0.5217 }, { "start": 14408.6, "end": 14409.44, "probability": 0.75 }, { "start": 14410.38, "end": 14412.4, "probability": 0.8576 }, { "start": 14413.26, "end": 14414.98, "probability": 0.7654 }, { "start": 14416.28, "end": 14421.8, "probability": 0.9214 }, { "start": 14424.06, "end": 14425.42, "probability": 0.4901 }, { "start": 14426.66, "end": 14430.32, "probability": 0.8211 }, { "start": 14431.14, "end": 14432.88, "probability": 0.8511 }, { "start": 14433.62, "end": 14435.5, "probability": 0.9741 }, { "start": 14436.68, "end": 14438.72, "probability": 0.9744 }, { "start": 14438.88, "end": 14439.12, "probability": 0.7054 }, { "start": 14440.02, "end": 14441.96, "probability": 0.8631 }, { "start": 14442.94, "end": 14447.34, "probability": 0.991 }, { "start": 14448.24, "end": 14451.38, "probability": 0.9002 }, { "start": 14452.66, "end": 14453.3, "probability": 0.5824 }, { "start": 14453.9, "end": 14454.42, "probability": 0.6812 }, { "start": 14455.12, "end": 14456.42, "probability": 0.8416 }, { "start": 14457.38, "end": 14465.24, "probability": 0.8075 }, { "start": 14465.96, "end": 14468.6, "probability": 0.9612 }, { "start": 14468.78, "end": 14469.36, "probability": 0.3505 }, { "start": 14469.38, "end": 14470.34, "probability": 0.6888 }, { "start": 14470.48, "end": 14471.06, "probability": 0.5917 }, { "start": 14472.36, "end": 14474.32, "probability": 0.6045 }, { "start": 14475.4, "end": 14478.34, "probability": 0.8204 }, { "start": 14481.78, "end": 14482.38, "probability": 0.8463 }, { "start": 14484.24, "end": 14485.48, "probability": 0.8159 }, { "start": 14485.66, "end": 14486.08, "probability": 0.1017 }, { "start": 14486.44, "end": 14486.44, "probability": 0.0818 }, { "start": 14487.4, "end": 14488.14, "probability": 0.5484 }, { "start": 14489.1, "end": 14490.02, "probability": 0.997 }, { "start": 14490.74, "end": 14493.04, "probability": 0.9872 }, { "start": 14493.88, "end": 14495.7, "probability": 0.9185 }, { "start": 14496.4, "end": 14499.34, "probability": 0.714 }, { "start": 14500.38, "end": 14504.58, "probability": 0.9283 }, { "start": 14504.58, "end": 14507.9, "probability": 0.9341 }, { "start": 14509.18, "end": 14510.48, "probability": 0.8404 }, { "start": 14511.42, "end": 14514.5, "probability": 0.9129 }, { "start": 14515.38, "end": 14518.76, "probability": 0.9869 }, { "start": 14519.52, "end": 14522.28, "probability": 0.9932 }, { "start": 14523.26, "end": 14525.94, "probability": 0.9938 }, { "start": 14526.72, "end": 14530.22, "probability": 0.9727 }, { "start": 14531.3, "end": 14532.78, "probability": 0.7465 }, { "start": 14533.18, "end": 14536.62, "probability": 0.9858 }, { "start": 14537.46, "end": 14538.76, "probability": 0.9878 }, { "start": 14539.28, "end": 14541.78, "probability": 0.6704 }, { "start": 14542.42, "end": 14543.92, "probability": 0.8149 }, { "start": 14544.66, "end": 14547.74, "probability": 0.9397 }, { "start": 14547.92, "end": 14548.2, "probability": 0.7768 }, { "start": 14549.16, "end": 14550.82, "probability": 0.8655 }, { "start": 14552.7, "end": 14556.22, "probability": 0.8522 }, { "start": 14557.98, "end": 14559.3, "probability": 0.1532 }, { "start": 14561.02, "end": 14561.02, "probability": 0.2919 }, { "start": 14561.02, "end": 14561.44, "probability": 0.0988 }, { "start": 14561.44, "end": 14562.15, "probability": 0.2043 }, { "start": 14564.38, "end": 14568.72, "probability": 0.6161 }, { "start": 14570.56, "end": 14571.58, "probability": 0.7933 }, { "start": 14571.6, "end": 14574.48, "probability": 0.6129 }, { "start": 14575.5, "end": 14577.26, "probability": 0.9258 }, { "start": 14577.8, "end": 14579.08, "probability": 0.8058 }, { "start": 14579.86, "end": 14581.12, "probability": 0.9767 }, { "start": 14582.38, "end": 14584.04, "probability": 0.7056 }, { "start": 14584.98, "end": 14587.2, "probability": 0.9967 }, { "start": 14587.44, "end": 14588.54, "probability": 0.9377 }, { "start": 14589.5, "end": 14590.94, "probability": 0.9918 }, { "start": 14592.14, "end": 14594.08, "probability": 0.7219 }, { "start": 14595.48, "end": 14598.02, "probability": 0.9399 }, { "start": 14599.24, "end": 14601.76, "probability": 0.9946 }, { "start": 14603.22, "end": 14604.88, "probability": 0.9969 }, { "start": 14605.28, "end": 14608.82, "probability": 0.9625 }, { "start": 14610.06, "end": 14615.14, "probability": 0.9618 }, { "start": 14616.06, "end": 14616.94, "probability": 0.993 }, { "start": 14617.06, "end": 14618.08, "probability": 0.9896 }, { "start": 14618.34, "end": 14619.18, "probability": 0.9621 }, { "start": 14619.82, "end": 14620.7, "probability": 0.9866 }, { "start": 14621.3, "end": 14622.42, "probability": 0.958 }, { "start": 14622.94, "end": 14625.24, "probability": 0.995 }, { "start": 14626.26, "end": 14628.94, "probability": 0.9959 }, { "start": 14629.96, "end": 14632.66, "probability": 0.9893 }, { "start": 14633.1, "end": 14633.74, "probability": 0.7345 }, { "start": 14633.84, "end": 14635.66, "probability": 0.8529 }, { "start": 14636.24, "end": 14637.14, "probability": 0.9478 }, { "start": 14638.5, "end": 14641.6, "probability": 0.9495 }, { "start": 14642.04, "end": 14642.56, "probability": 0.6095 }, { "start": 14643.26, "end": 14646.51, "probability": 0.9707 }, { "start": 14647.82, "end": 14652.0, "probability": 0.7881 }, { "start": 14652.52, "end": 14654.74, "probability": 0.9327 }, { "start": 14655.28, "end": 14656.88, "probability": 0.9874 }, { "start": 14657.12, "end": 14660.24, "probability": 0.9354 }, { "start": 14661.04, "end": 14662.74, "probability": 0.6607 }, { "start": 14663.62, "end": 14664.5, "probability": 0.9419 }, { "start": 14664.64, "end": 14667.08, "probability": 0.7422 }, { "start": 14667.32, "end": 14667.86, "probability": 0.9057 }, { "start": 14668.4, "end": 14670.86, "probability": 0.8831 }, { "start": 14671.34, "end": 14671.97, "probability": 0.8724 }, { "start": 14672.66, "end": 14673.82, "probability": 0.9802 }, { "start": 14674.34, "end": 14675.46, "probability": 0.9883 }, { "start": 14676.32, "end": 14677.18, "probability": 0.8728 }, { "start": 14677.74, "end": 14682.68, "probability": 0.9831 }, { "start": 14682.96, "end": 14683.68, "probability": 0.7351 }, { "start": 14684.16, "end": 14688.46, "probability": 0.9777 }, { "start": 14689.26, "end": 14691.82, "probability": 0.9824 }, { "start": 14691.92, "end": 14694.11, "probability": 0.9803 }, { "start": 14694.74, "end": 14697.13, "probability": 0.9895 }, { "start": 14697.86, "end": 14698.5, "probability": 0.9626 }, { "start": 14698.64, "end": 14702.08, "probability": 0.998 }, { "start": 14702.08, "end": 14704.82, "probability": 0.9654 }, { "start": 14704.94, "end": 14706.74, "probability": 0.9421 }, { "start": 14706.8, "end": 14707.56, "probability": 0.9822 }, { "start": 14708.88, "end": 14711.42, "probability": 0.9966 }, { "start": 14711.88, "end": 14712.92, "probability": 0.9604 }, { "start": 14713.34, "end": 14717.74, "probability": 0.9648 }, { "start": 14717.86, "end": 14722.06, "probability": 0.985 }, { "start": 14722.66, "end": 14724.94, "probability": 0.9485 }, { "start": 14724.98, "end": 14725.4, "probability": 0.6856 }, { "start": 14727.46, "end": 14729.4, "probability": 0.7099 }, { "start": 14730.0, "end": 14732.96, "probability": 0.8237 }, { "start": 14734.48, "end": 14737.68, "probability": 0.9868 }, { "start": 14738.04, "end": 14738.42, "probability": 0.0451 }, { "start": 14739.1, "end": 14741.22, "probability": 0.4896 }, { "start": 14741.92, "end": 14743.12, "probability": 0.4835 }, { "start": 14743.36, "end": 14744.44, "probability": 0.0998 }, { "start": 14746.26, "end": 14747.12, "probability": 0.1115 }, { "start": 14747.4, "end": 14748.48, "probability": 0.5084 }, { "start": 14749.14, "end": 14750.22, "probability": 0.5325 }, { "start": 14780.12, "end": 14781.22, "probability": 0.649 }, { "start": 14787.6, "end": 14787.8, "probability": 0.3472 }, { "start": 14863.0, "end": 14863.0, "probability": 0.0 }, { "start": 14863.0, "end": 14863.0, "probability": 0.0 }, { "start": 14863.0, "end": 14863.0, "probability": 0.0 }, { "start": 14863.0, "end": 14863.0, "probability": 0.0 }, { "start": 14863.0, "end": 14863.0, "probability": 0.0 }, { "start": 14863.0, "end": 14863.0, "probability": 0.0 }, { "start": 14863.0, "end": 14863.0, "probability": 0.0 }, { "start": 14863.0, "end": 14863.0, "probability": 0.0 }, { "start": 14863.0, "end": 14863.0, "probability": 0.0 }, { "start": 14863.0, "end": 14863.0, "probability": 0.0 }, { "start": 14863.0, "end": 14863.0, "probability": 0.0 }, { "start": 14863.0, "end": 14863.0, "probability": 0.0 }, { "start": 14863.0, "end": 14863.0, "probability": 0.0 }, { "start": 14863.0, "end": 14863.0, "probability": 0.0 }, { "start": 14863.0, "end": 14863.0, "probability": 0.0 }, { "start": 14863.0, "end": 14863.0, "probability": 0.0 }, { "start": 14863.0, "end": 14863.0, "probability": 0.0 }, { "start": 14863.0, "end": 14863.0, "probability": 0.0 }, { "start": 14863.0, "end": 14863.0, "probability": 0.0 }, { "start": 14863.0, "end": 14863.0, "probability": 0.0 }, { "start": 14863.0, "end": 14863.0, "probability": 0.0 }, { "start": 14863.0, "end": 14863.0, "probability": 0.0 }, { "start": 14863.0, "end": 14863.0, "probability": 0.0 }, { "start": 14863.0, "end": 14863.0, "probability": 0.0 }, { "start": 14863.0, "end": 14863.0, "probability": 0.0 }, { "start": 14863.0, "end": 14863.0, "probability": 0.0 }, { "start": 14863.0, "end": 14863.0, "probability": 0.0 }, { "start": 14863.0, "end": 14863.0, "probability": 0.0 }, { "start": 14863.0, "end": 14863.0, "probability": 0.0 }, { "start": 14863.0, "end": 14863.0, "probability": 0.0 }, { "start": 14863.14, "end": 14863.38, "probability": 0.0196 }, { "start": 14865.3, "end": 14867.34, "probability": 0.6619 }, { "start": 14868.16, "end": 14869.12, "probability": 0.5547 }, { "start": 14869.18, "end": 14872.4, "probability": 0.9067 }, { "start": 14873.36, "end": 14876.14, "probability": 0.6762 }, { "start": 14877.26, "end": 14879.06, "probability": 0.3333 }, { "start": 14879.66, "end": 14880.58, "probability": 0.8231 }, { "start": 14880.7, "end": 14882.37, "probability": 0.99 }, { "start": 14882.58, "end": 14883.54, "probability": 0.701 }, { "start": 14883.54, "end": 14883.9, "probability": 0.8187 }, { "start": 14884.22, "end": 14886.44, "probability": 0.5405 }, { "start": 14886.48, "end": 14886.52, "probability": 0.5682 }, { "start": 14886.66, "end": 14886.74, "probability": 0.8584 }, { "start": 14886.74, "end": 14887.3, "probability": 0.4267 }, { "start": 14887.3, "end": 14889.0, "probability": 0.6313 }, { "start": 14889.28, "end": 14889.38, "probability": 0.2977 }, { "start": 14889.56, "end": 14890.5, "probability": 0.9356 }, { "start": 14891.4, "end": 14892.12, "probability": 0.8277 }, { "start": 14892.12, "end": 14892.7, "probability": 0.7881 }, { "start": 14893.24, "end": 14893.92, "probability": 0.3735 }, { "start": 14894.04, "end": 14895.92, "probability": 0.9168 }, { "start": 14896.02, "end": 14898.08, "probability": 0.8885 }, { "start": 14898.46, "end": 14900.16, "probability": 0.9875 }, { "start": 14900.58, "end": 14902.48, "probability": 0.1188 }, { "start": 14903.0, "end": 14903.7, "probability": 0.5744 }, { "start": 14908.84, "end": 14908.84, "probability": 0.292 }, { "start": 14909.02, "end": 14910.58, "probability": 0.7165 }, { "start": 14911.32, "end": 14914.98, "probability": 0.6274 }, { "start": 14915.54, "end": 14916.94, "probability": 0.965 }, { "start": 14917.12, "end": 14917.68, "probability": 0.4517 }, { "start": 14918.24, "end": 14921.92, "probability": 0.9192 }, { "start": 14923.1, "end": 14924.8, "probability": 0.9105 }, { "start": 14924.92, "end": 14925.62, "probability": 0.9535 }, { "start": 14927.34, "end": 14928.7, "probability": 0.9591 }, { "start": 14929.7, "end": 14931.66, "probability": 0.8545 }, { "start": 14931.7, "end": 14933.16, "probability": 0.9961 }, { "start": 14933.62, "end": 14937.5, "probability": 0.9961 }, { "start": 14937.58, "end": 14938.16, "probability": 0.5498 }, { "start": 14939.32, "end": 14942.02, "probability": 0.9416 }, { "start": 14942.54, "end": 14944.64, "probability": 0.9854 }, { "start": 14945.5, "end": 14946.56, "probability": 0.9193 }, { "start": 14946.8, "end": 14947.67, "probability": 0.9314 }, { "start": 14947.8, "end": 14948.56, "probability": 0.979 }, { "start": 14949.56, "end": 14950.22, "probability": 0.9966 }, { "start": 14950.82, "end": 14952.22, "probability": 0.9914 }, { "start": 14953.26, "end": 14955.1, "probability": 0.8752 }, { "start": 14955.38, "end": 14957.58, "probability": 0.9888 }, { "start": 14958.06, "end": 14960.06, "probability": 0.9919 }, { "start": 14960.8, "end": 14961.35, "probability": 0.5803 }, { "start": 14962.26, "end": 14963.88, "probability": 0.9644 }, { "start": 14964.42, "end": 14966.02, "probability": 0.9082 }, { "start": 14966.56, "end": 14969.74, "probability": 0.8545 }, { "start": 14970.22, "end": 14971.84, "probability": 0.0145 }, { "start": 14972.38, "end": 14972.76, "probability": 0.9807 }, { "start": 14973.9, "end": 14974.44, "probability": 0.1578 }, { "start": 14975.08, "end": 14975.24, "probability": 0.4763 }, { "start": 14976.18, "end": 14976.4, "probability": 0.5128 }, { "start": 14976.54, "end": 14977.88, "probability": 0.9768 }, { "start": 14978.26, "end": 14978.88, "probability": 0.9535 }, { "start": 14979.02, "end": 14979.8, "probability": 0.5984 }, { "start": 14979.8, "end": 14981.18, "probability": 0.8366 }, { "start": 14982.4, "end": 14983.5, "probability": 0.9458 }, { "start": 14983.52, "end": 14987.98, "probability": 0.9585 }, { "start": 14988.64, "end": 14990.28, "probability": 0.4414 }, { "start": 14990.8, "end": 14991.1, "probability": 0.8243 }, { "start": 14991.28, "end": 14993.28, "probability": 0.3547 }, { "start": 14993.28, "end": 14993.46, "probability": 0.1146 }, { "start": 14993.66, "end": 14995.18, "probability": 0.8281 }, { "start": 14996.08, "end": 15000.44, "probability": 0.9775 }, { "start": 15001.38, "end": 15002.2, "probability": 0.7088 }, { "start": 15002.9, "end": 15004.64, "probability": 0.9895 }, { "start": 15005.56, "end": 15006.54, "probability": 0.7931 }, { "start": 15006.96, "end": 15007.98, "probability": 0.117 }, { "start": 15008.18, "end": 15008.44, "probability": 0.755 }, { "start": 15008.78, "end": 15008.9, "probability": 0.2712 }, { "start": 15009.16, "end": 15012.89, "probability": 0.817 }, { "start": 15013.14, "end": 15013.4, "probability": 0.2876 }, { "start": 15014.06, "end": 15016.34, "probability": 0.8004 }, { "start": 15016.78, "end": 15021.0, "probability": 0.866 }, { "start": 15023.18, "end": 15029.3, "probability": 0.9199 }, { "start": 15029.82, "end": 15030.02, "probability": 0.7421 }, { "start": 15030.98, "end": 15031.16, "probability": 0.9541 }, { "start": 15031.96, "end": 15033.18, "probability": 0.9978 }, { "start": 15034.04, "end": 15038.02, "probability": 0.7271 }, { "start": 15038.6, "end": 15066.9, "probability": 0.282 }, { "start": 15066.9, "end": 15066.9, "probability": 0.033 }, { "start": 15066.9, "end": 15066.9, "probability": 0.0738 }, { "start": 15066.9, "end": 15066.9, "probability": 0.1344 }, { "start": 15066.9, "end": 15067.1, "probability": 0.231 }, { "start": 15067.76, "end": 15069.56, "probability": 0.2604 }, { "start": 15070.46, "end": 15071.24, "probability": 0.2712 }, { "start": 15072.06, "end": 15073.18, "probability": 0.4795 }, { "start": 15075.64, "end": 15077.98, "probability": 0.9881 }, { "start": 15078.52, "end": 15080.12, "probability": 0.8735 }, { "start": 15080.52, "end": 15082.7, "probability": 0.853 }, { "start": 15088.48, "end": 15090.3, "probability": 0.1652 }, { "start": 15090.94, "end": 15091.58, "probability": 0.8311 }, { "start": 15092.38, "end": 15092.74, "probability": 0.7368 }, { "start": 15093.46, "end": 15095.0, "probability": 0.0703 }, { "start": 15095.82, "end": 15099.6, "probability": 0.7046 }, { "start": 15106.98, "end": 15112.16, "probability": 0.3974 }, { "start": 15112.68, "end": 15112.98, "probability": 0.9181 }, { "start": 15113.6, "end": 15113.78, "probability": 0.9495 }, { "start": 15114.5, "end": 15115.42, "probability": 0.8395 }, { "start": 15116.1, "end": 15116.4, "probability": 0.3065 }, { "start": 15116.4, "end": 15118.34, "probability": 0.7808 }, { "start": 15119.1, "end": 15122.9, "probability": 0.7754 }, { "start": 15122.92, "end": 15126.84, "probability": 0.7249 }, { "start": 15127.04, "end": 15127.88, "probability": 0.9138 }, { "start": 15131.18, "end": 15132.14, "probability": 0.7363 }, { "start": 15141.36, "end": 15142.04, "probability": 0.5558 }, { "start": 15142.94, "end": 15143.72, "probability": 0.6331 }, { "start": 15153.9, "end": 15154.98, "probability": 0.5606 }, { "start": 15155.16, "end": 15155.16, "probability": 0.4016 }, { "start": 15155.2, "end": 15155.76, "probability": 0.6655 }, { "start": 15155.92, "end": 15156.82, "probability": 0.6389 }, { "start": 15157.7, "end": 15160.22, "probability": 0.9917 }, { "start": 15160.22, "end": 15164.22, "probability": 0.7335 }, { "start": 15164.9, "end": 15166.72, "probability": 0.4148 }, { "start": 15167.26, "end": 15171.0, "probability": 0.9434 }, { "start": 15171.0, "end": 15175.56, "probability": 0.9965 }, { "start": 15176.1, "end": 15181.96, "probability": 0.9866 }, { "start": 15183.36, "end": 15185.22, "probability": 0.6922 }, { "start": 15185.32, "end": 15189.07, "probability": 0.9941 }, { "start": 15189.76, "end": 15191.7, "probability": 0.9951 }, { "start": 15192.18, "end": 15193.98, "probability": 0.8618 }, { "start": 15194.48, "end": 15196.82, "probability": 0.9727 }, { "start": 15196.98, "end": 15198.0, "probability": 0.7248 }, { "start": 15198.22, "end": 15199.38, "probability": 0.5541 }, { "start": 15200.12, "end": 15205.06, "probability": 0.9761 }, { "start": 15205.56, "end": 15206.24, "probability": 0.8143 }, { "start": 15206.32, "end": 15206.68, "probability": 0.9623 }, { "start": 15206.74, "end": 15209.96, "probability": 0.9661 }, { "start": 15210.56, "end": 15216.26, "probability": 0.9698 }, { "start": 15217.24, "end": 15221.96, "probability": 0.9827 }, { "start": 15222.02, "end": 15223.54, "probability": 0.82 }, { "start": 15225.34, "end": 15230.22, "probability": 0.9941 }, { "start": 15230.82, "end": 15231.62, "probability": 0.8747 }, { "start": 15232.4, "end": 15236.76, "probability": 0.9971 }, { "start": 15237.56, "end": 15240.44, "probability": 0.946 }, { "start": 15241.48, "end": 15242.78, "probability": 0.9554 }, { "start": 15243.74, "end": 15246.64, "probability": 0.9771 }, { "start": 15247.3, "end": 15248.26, "probability": 0.8839 }, { "start": 15249.0, "end": 15250.54, "probability": 0.9962 }, { "start": 15251.1, "end": 15254.18, "probability": 0.9971 }, { "start": 15255.58, "end": 15259.8, "probability": 0.9251 }, { "start": 15261.18, "end": 15266.12, "probability": 0.9951 }, { "start": 15266.26, "end": 15271.84, "probability": 0.9882 }, { "start": 15272.9, "end": 15276.26, "probability": 0.9072 }, { "start": 15277.1, "end": 15280.58, "probability": 0.9892 }, { "start": 15280.66, "end": 15284.66, "probability": 0.9928 }, { "start": 15284.66, "end": 15288.02, "probability": 0.9989 }, { "start": 15289.34, "end": 15291.78, "probability": 0.9407 }, { "start": 15292.44, "end": 15293.42, "probability": 0.475 }, { "start": 15293.62, "end": 15294.22, "probability": 0.7751 }, { "start": 15294.42, "end": 15298.02, "probability": 0.9409 }, { "start": 15299.39, "end": 15304.24, "probability": 0.998 }, { "start": 15304.72, "end": 15306.68, "probability": 0.3796 }, { "start": 15306.86, "end": 15307.84, "probability": 0.9192 }, { "start": 15308.32, "end": 15310.48, "probability": 0.9727 }, { "start": 15311.32, "end": 15314.42, "probability": 0.9765 }, { "start": 15315.46, "end": 15317.76, "probability": 0.9393 }, { "start": 15318.58, "end": 15323.4, "probability": 0.9908 }, { "start": 15323.4, "end": 15326.76, "probability": 0.9978 }, { "start": 15327.24, "end": 15330.18, "probability": 0.9255 }, { "start": 15331.06, "end": 15332.94, "probability": 0.9772 }, { "start": 15333.16, "end": 15337.04, "probability": 0.9673 }, { "start": 15337.6, "end": 15339.92, "probability": 0.5268 }, { "start": 15340.42, "end": 15345.67, "probability": 0.9875 }, { "start": 15345.92, "end": 15349.44, "probability": 0.9983 }, { "start": 15349.5, "end": 15354.4, "probability": 0.997 }, { "start": 15354.4, "end": 15357.72, "probability": 0.9993 }, { "start": 15358.58, "end": 15361.5, "probability": 0.54 }, { "start": 15362.2, "end": 15364.04, "probability": 0.998 }, { "start": 15364.58, "end": 15369.28, "probability": 0.9451 }, { "start": 15370.12, "end": 15371.02, "probability": 0.9097 }, { "start": 15371.12, "end": 15371.76, "probability": 0.8089 }, { "start": 15371.82, "end": 15375.14, "probability": 0.9089 }, { "start": 15375.54, "end": 15378.5, "probability": 0.9899 }, { "start": 15379.02, "end": 15384.68, "probability": 0.7493 }, { "start": 15385.66, "end": 15388.08, "probability": 0.8079 }, { "start": 15388.94, "end": 15392.8, "probability": 0.9977 }, { "start": 15393.58, "end": 15394.66, "probability": 0.8381 }, { "start": 15394.78, "end": 15397.42, "probability": 0.9053 }, { "start": 15397.5, "end": 15403.34, "probability": 0.996 }, { "start": 15404.04, "end": 15408.58, "probability": 0.999 }, { "start": 15409.5, "end": 15410.62, "probability": 0.9403 }, { "start": 15411.06, "end": 15415.3, "probability": 0.9658 }, { "start": 15416.54, "end": 15418.48, "probability": 0.9762 }, { "start": 15419.44, "end": 15421.66, "probability": 0.9986 }, { "start": 15421.78, "end": 15424.9, "probability": 0.9881 }, { "start": 15426.22, "end": 15429.72, "probability": 0.9909 }, { "start": 15429.94, "end": 15436.62, "probability": 0.9955 }, { "start": 15437.48, "end": 15438.5, "probability": 0.7056 }, { "start": 15439.04, "end": 15440.72, "probability": 0.9023 }, { "start": 15441.82, "end": 15443.82, "probability": 0.9868 }, { "start": 15443.96, "end": 15447.72, "probability": 0.994 }, { "start": 15448.3, "end": 15450.42, "probability": 0.9987 }, { "start": 15451.92, "end": 15457.3, "probability": 0.9966 }, { "start": 15458.0, "end": 15461.04, "probability": 0.9882 }, { "start": 15461.64, "end": 15463.98, "probability": 0.9695 }, { "start": 15464.62, "end": 15470.54, "probability": 0.9014 }, { "start": 15471.06, "end": 15472.68, "probability": 0.9124 }, { "start": 15473.26, "end": 15475.6, "probability": 0.9729 }, { "start": 15475.9, "end": 15478.68, "probability": 0.7189 }, { "start": 15478.92, "end": 15481.16, "probability": 0.9143 }, { "start": 15482.08, "end": 15486.16, "probability": 0.8143 }, { "start": 15486.18, "end": 15487.86, "probability": 0.7792 }, { "start": 15489.1, "end": 15491.74, "probability": 0.9284 }, { "start": 15491.82, "end": 15492.44, "probability": 0.8469 }, { "start": 15492.96, "end": 15495.96, "probability": 0.9901 }, { "start": 15495.96, "end": 15500.2, "probability": 0.839 }, { "start": 15501.34, "end": 15502.88, "probability": 0.9142 }, { "start": 15503.06, "end": 15508.98, "probability": 0.9802 }, { "start": 15509.6, "end": 15515.06, "probability": 0.9956 }, { "start": 15515.68, "end": 15519.58, "probability": 0.9951 }, { "start": 15519.58, "end": 15523.0, "probability": 0.9858 }, { "start": 15523.2, "end": 15523.44, "probability": 0.7297 }, { "start": 15524.78, "end": 15527.26, "probability": 0.8673 }, { "start": 15527.96, "end": 15530.24, "probability": 0.9858 }, { "start": 15530.92, "end": 15531.74, "probability": 0.8152 }, { "start": 15533.84, "end": 15536.38, "probability": 0.6725 }, { "start": 15538.38, "end": 15539.44, "probability": 0.7019 }, { "start": 15540.12, "end": 15541.46, "probability": 0.7776 }, { "start": 15543.86, "end": 15546.48, "probability": 0.9478 }, { "start": 15552.1, "end": 15554.56, "probability": 0.6894 }, { "start": 15555.2, "end": 15556.38, "probability": 0.8779 }, { "start": 15559.1, "end": 15563.42, "probability": 0.1971 }, { "start": 15564.0, "end": 15564.24, "probability": 0.0705 }, { "start": 15565.02, "end": 15565.65, "probability": 0.3135 }, { "start": 15566.56, "end": 15567.44, "probability": 0.8401 }, { "start": 15567.68, "end": 15568.64, "probability": 0.9405 }, { "start": 15568.74, "end": 15570.86, "probability": 0.7825 }, { "start": 15570.94, "end": 15573.88, "probability": 0.9646 }, { "start": 15575.66, "end": 15576.74, "probability": 0.7568 }, { "start": 15577.06, "end": 15578.74, "probability": 0.6924 }, { "start": 15579.14, "end": 15581.54, "probability": 0.9812 }, { "start": 15581.68, "end": 15582.96, "probability": 0.8929 }, { "start": 15584.18, "end": 15588.02, "probability": 0.9914 }, { "start": 15588.02, "end": 15592.04, "probability": 0.99 }, { "start": 15593.38, "end": 15594.01, "probability": 0.3058 }, { "start": 15594.66, "end": 15596.08, "probability": 0.9752 }, { "start": 15597.28, "end": 15597.82, "probability": 0.9672 }, { "start": 15598.0, "end": 15602.38, "probability": 0.9977 }, { "start": 15603.24, "end": 15604.18, "probability": 0.8478 }, { "start": 15604.28, "end": 15608.22, "probability": 0.9809 }, { "start": 15608.22, "end": 15610.76, "probability": 0.9827 }, { "start": 15610.9, "end": 15613.72, "probability": 0.9857 }, { "start": 15614.62, "end": 15615.66, "probability": 0.7307 }, { "start": 15615.84, "end": 15621.0, "probability": 0.9918 }, { "start": 15622.14, "end": 15623.82, "probability": 0.9976 }, { "start": 15624.86, "end": 15625.89, "probability": 0.8637 }, { "start": 15626.98, "end": 15630.62, "probability": 0.9826 }, { "start": 15631.26, "end": 15635.1, "probability": 0.9941 }, { "start": 15635.74, "end": 15638.16, "probability": 0.9922 }, { "start": 15639.2, "end": 15640.22, "probability": 0.7477 }, { "start": 15640.34, "end": 15641.38, "probability": 0.7294 }, { "start": 15641.66, "end": 15642.98, "probability": 0.9988 }, { "start": 15643.6, "end": 15645.34, "probability": 0.8646 }, { "start": 15647.28, "end": 15652.36, "probability": 0.9211 }, { "start": 15653.5, "end": 15655.78, "probability": 0.9622 }, { "start": 15657.1, "end": 15658.48, "probability": 0.5533 }, { "start": 15658.92, "end": 15660.26, "probability": 0.7041 }, { "start": 15660.34, "end": 15661.26, "probability": 0.8758 }, { "start": 15661.72, "end": 15663.22, "probability": 0.9037 }, { "start": 15664.42, "end": 15667.44, "probability": 0.9707 }, { "start": 15667.74, "end": 15669.12, "probability": 0.9983 }, { "start": 15670.04, "end": 15670.58, "probability": 0.9425 }, { "start": 15671.16, "end": 15674.15, "probability": 0.9974 }, { "start": 15675.4, "end": 15675.54, "probability": 0.7371 }, { "start": 15675.7, "end": 15676.62, "probability": 0.9355 }, { "start": 15676.72, "end": 15681.68, "probability": 0.991 }, { "start": 15681.74, "end": 15682.9, "probability": 0.9907 }, { "start": 15684.22, "end": 15685.18, "probability": 0.7085 }, { "start": 15685.92, "end": 15688.02, "probability": 0.9959 }, { "start": 15688.82, "end": 15691.96, "probability": 0.7138 }, { "start": 15692.7, "end": 15693.56, "probability": 0.8392 }, { "start": 15694.28, "end": 15698.2, "probability": 0.9915 }, { "start": 15699.1, "end": 15705.62, "probability": 0.9935 }, { "start": 15706.26, "end": 15707.66, "probability": 0.8665 }, { "start": 15709.04, "end": 15711.64, "probability": 0.987 }, { "start": 15712.46, "end": 15714.08, "probability": 0.9785 }, { "start": 15714.2, "end": 15715.4, "probability": 0.9258 }, { "start": 15715.58, "end": 15716.36, "probability": 0.935 }, { "start": 15717.9, "end": 15724.26, "probability": 0.9575 }, { "start": 15724.62, "end": 15725.64, "probability": 0.9406 }, { "start": 15726.54, "end": 15728.74, "probability": 0.9648 }, { "start": 15729.76, "end": 15734.1, "probability": 0.9689 }, { "start": 15735.2, "end": 15736.18, "probability": 0.8047 }, { "start": 15736.5, "end": 15739.06, "probability": 0.9261 }, { "start": 15739.24, "end": 15740.52, "probability": 0.8153 }, { "start": 15741.3, "end": 15743.16, "probability": 0.9907 }, { "start": 15743.76, "end": 15747.34, "probability": 0.995 }, { "start": 15747.7, "end": 15751.18, "probability": 0.9559 }, { "start": 15751.32, "end": 15752.38, "probability": 0.8081 }, { "start": 15752.64, "end": 15753.8, "probability": 0.613 }, { "start": 15754.3, "end": 15759.3, "probability": 0.9982 }, { "start": 15760.5, "end": 15764.02, "probability": 0.9991 }, { "start": 15765.42, "end": 15766.96, "probability": 0.9709 }, { "start": 15768.3, "end": 15769.62, "probability": 0.9323 }, { "start": 15770.22, "end": 15771.1, "probability": 0.8419 }, { "start": 15771.94, "end": 15774.6, "probability": 0.8842 }, { "start": 15776.04, "end": 15778.33, "probability": 0.998 }, { "start": 15778.94, "end": 15780.74, "probability": 0.9944 }, { "start": 15782.24, "end": 15783.8, "probability": 0.8086 }, { "start": 15786.68, "end": 15788.04, "probability": 0.8544 }, { "start": 15788.26, "end": 15791.16, "probability": 0.9962 }, { "start": 15791.16, "end": 15794.08, "probability": 0.9951 }, { "start": 15795.18, "end": 15798.14, "probability": 0.7502 }, { "start": 15798.34, "end": 15798.8, "probability": 0.8981 }, { "start": 15798.9, "end": 15799.52, "probability": 0.7668 }, { "start": 15800.89, "end": 15802.46, "probability": 0.9855 }, { "start": 15803.82, "end": 15805.24, "probability": 0.9914 }, { "start": 15806.12, "end": 15807.44, "probability": 0.9971 }, { "start": 15807.56, "end": 15809.26, "probability": 0.9949 }, { "start": 15810.02, "end": 15811.04, "probability": 0.9287 }, { "start": 15811.66, "end": 15812.9, "probability": 0.6871 }, { "start": 15813.82, "end": 15814.7, "probability": 0.745 }, { "start": 15815.7, "end": 15816.54, "probability": 0.8878 }, { "start": 15817.08, "end": 15817.94, "probability": 0.9344 }, { "start": 15818.64, "end": 15819.34, "probability": 0.9614 }, { "start": 15820.02, "end": 15822.84, "probability": 0.9942 }, { "start": 15823.08, "end": 15824.52, "probability": 0.9544 }, { "start": 15824.58, "end": 15827.82, "probability": 0.8932 }, { "start": 15828.92, "end": 15831.96, "probability": 0.9661 }, { "start": 15832.44, "end": 15833.98, "probability": 0.9424 }, { "start": 15834.5, "end": 15834.92, "probability": 0.6888 }, { "start": 15835.06, "end": 15836.24, "probability": 0.8545 }, { "start": 15836.28, "end": 15838.62, "probability": 0.8321 }, { "start": 15839.4, "end": 15839.5, "probability": 0.6617 }, { "start": 15840.4, "end": 15841.32, "probability": 0.2225 }, { "start": 15841.32, "end": 15841.98, "probability": 0.2527 }, { "start": 15842.64, "end": 15845.74, "probability": 0.9647 }, { "start": 15846.84, "end": 15849.84, "probability": 0.9771 }, { "start": 15851.34, "end": 15853.46, "probability": 0.9943 }, { "start": 15854.76, "end": 15857.08, "probability": 0.9582 }, { "start": 15857.62, "end": 15859.92, "probability": 0.9973 }, { "start": 15860.6, "end": 15862.94, "probability": 0.9761 }, { "start": 15863.66, "end": 15867.78, "probability": 0.988 }, { "start": 15868.16, "end": 15868.16, "probability": 0.3326 }, { "start": 15868.16, "end": 15870.14, "probability": 0.9832 }, { "start": 15870.76, "end": 15874.44, "probability": 0.9044 }, { "start": 15874.88, "end": 15875.14, "probability": 0.8234 }, { "start": 15875.46, "end": 15877.96, "probability": 0.7698 }, { "start": 15879.26, "end": 15882.44, "probability": 0.936 }, { "start": 15886.02, "end": 15888.7, "probability": 0.9541 }, { "start": 15889.36, "end": 15892.06, "probability": 0.8768 }, { "start": 15902.32, "end": 15903.94, "probability": 0.6299 }, { "start": 15904.56, "end": 15908.78, "probability": 0.9229 }, { "start": 15909.66, "end": 15912.0, "probability": 0.8058 }, { "start": 15912.96, "end": 15916.16, "probability": 0.9858 }, { "start": 15917.16, "end": 15922.84, "probability": 0.9908 }, { "start": 15923.28, "end": 15925.22, "probability": 0.9961 }, { "start": 15926.38, "end": 15927.5, "probability": 0.9813 }, { "start": 15929.12, "end": 15929.92, "probability": 0.9722 }, { "start": 15930.62, "end": 15932.54, "probability": 0.9937 }, { "start": 15932.6, "end": 15935.7, "probability": 0.9207 }, { "start": 15936.78, "end": 15938.18, "probability": 0.9371 }, { "start": 15938.9, "end": 15940.18, "probability": 0.8595 }, { "start": 15940.44, "end": 15941.78, "probability": 0.9643 }, { "start": 15941.82, "end": 15942.34, "probability": 0.5319 }, { "start": 15942.56, "end": 15943.72, "probability": 0.9459 }, { "start": 15944.3, "end": 15945.07, "probability": 0.813 }, { "start": 15946.6, "end": 15947.64, "probability": 0.9132 }, { "start": 15948.26, "end": 15949.48, "probability": 0.7385 }, { "start": 15949.48, "end": 15952.24, "probability": 0.9531 }, { "start": 15953.02, "end": 15955.42, "probability": 0.9149 }, { "start": 15956.74, "end": 15959.72, "probability": 0.9832 }, { "start": 15960.26, "end": 15961.54, "probability": 0.7661 }, { "start": 15962.74, "end": 15964.34, "probability": 0.922 }, { "start": 15964.84, "end": 15966.28, "probability": 0.8508 }, { "start": 15966.36, "end": 15967.76, "probability": 0.9385 }, { "start": 15968.64, "end": 15970.24, "probability": 0.7706 }, { "start": 15970.78, "end": 15972.82, "probability": 0.9171 }, { "start": 15974.34, "end": 15976.0, "probability": 0.9794 }, { "start": 15976.2, "end": 15979.72, "probability": 0.9574 }, { "start": 15981.88, "end": 15983.94, "probability": 0.9928 }, { "start": 15984.72, "end": 15985.42, "probability": 0.9191 }, { "start": 15986.32, "end": 15987.42, "probability": 0.9366 }, { "start": 15988.54, "end": 15990.88, "probability": 0.9722 }, { "start": 15991.68, "end": 15994.1, "probability": 0.1887 }, { "start": 15994.26, "end": 15994.56, "probability": 0.494 }, { "start": 15994.62, "end": 15995.0, "probability": 0.8132 }, { "start": 15995.64, "end": 15997.84, "probability": 0.9551 }, { "start": 15997.96, "end": 15999.02, "probability": 0.9116 }, { "start": 15999.22, "end": 15999.5, "probability": 0.7701 }, { "start": 15999.54, "end": 16000.18, "probability": 0.8958 }, { "start": 16000.2, "end": 16002.82, "probability": 0.7712 }, { "start": 16003.38, "end": 16004.54, "probability": 0.5538 }, { "start": 16005.28, "end": 16008.62, "probability": 0.839 }, { "start": 16008.98, "end": 16009.08, "probability": 0.7185 }, { "start": 16009.82, "end": 16011.94, "probability": 0.9908 }, { "start": 16012.06, "end": 16013.68, "probability": 0.7312 }, { "start": 16013.88, "end": 16015.46, "probability": 0.0436 }, { "start": 16015.62, "end": 16018.24, "probability": 0.8189 }, { "start": 16019.1, "end": 16020.84, "probability": 0.8612 }, { "start": 16021.14, "end": 16023.18, "probability": 0.0966 }, { "start": 16023.46, "end": 16023.56, "probability": 0.0599 }, { "start": 16023.56, "end": 16023.66, "probability": 0.2738 }, { "start": 16024.22, "end": 16026.46, "probability": 0.6152 }, { "start": 16026.58, "end": 16029.06, "probability": 0.5855 }, { "start": 16030.0, "end": 16032.8, "probability": 0.9949 }, { "start": 16032.86, "end": 16036.68, "probability": 0.8823 }, { "start": 16037.42, "end": 16039.56, "probability": 0.9886 }, { "start": 16039.6, "end": 16039.96, "probability": 0.8767 }, { "start": 16040.04, "end": 16041.0, "probability": 0.8472 }, { "start": 16041.1, "end": 16041.2, "probability": 0.8169 }, { "start": 16042.24, "end": 16044.54, "probability": 0.9832 }, { "start": 16045.26, "end": 16050.46, "probability": 0.9877 }, { "start": 16052.98, "end": 16053.5, "probability": 0.0391 }, { "start": 16054.14, "end": 16054.4, "probability": 0.1544 }, { "start": 16054.4, "end": 16054.94, "probability": 0.1779 }, { "start": 16054.94, "end": 16055.22, "probability": 0.7673 }, { "start": 16056.8, "end": 16058.72, "probability": 0.8879 }, { "start": 16059.62, "end": 16060.98, "probability": 0.9018 }, { "start": 16061.04, "end": 16063.26, "probability": 0.984 }, { "start": 16063.86, "end": 16065.38, "probability": 0.9138 }, { "start": 16065.72, "end": 16068.42, "probability": 0.9599 }, { "start": 16068.54, "end": 16069.12, "probability": 0.793 }, { "start": 16069.68, "end": 16072.52, "probability": 0.9767 }, { "start": 16073.3, "end": 16078.38, "probability": 0.9821 }, { "start": 16079.58, "end": 16080.88, "probability": 0.9971 }, { "start": 16081.5, "end": 16083.1, "probability": 0.8586 }, { "start": 16083.66, "end": 16083.88, "probability": 0.9847 }, { "start": 16084.5, "end": 16085.62, "probability": 0.7762 }, { "start": 16086.26, "end": 16087.58, "probability": 0.1638 }, { "start": 16088.14, "end": 16089.98, "probability": 0.8519 }, { "start": 16090.42, "end": 16090.78, "probability": 0.0758 }, { "start": 16090.78, "end": 16090.78, "probability": 0.0172 }, { "start": 16090.78, "end": 16092.85, "probability": 0.9519 }, { "start": 16094.14, "end": 16095.88, "probability": 0.8938 }, { "start": 16096.72, "end": 16097.04, "probability": 0.1598 }, { "start": 16097.56, "end": 16099.36, "probability": 0.5501 }, { "start": 16100.26, "end": 16100.26, "probability": 0.1996 }, { "start": 16100.26, "end": 16101.58, "probability": 0.9528 }, { "start": 16102.12, "end": 16102.5, "probability": 0.6625 }, { "start": 16103.1, "end": 16104.44, "probability": 0.8935 }, { "start": 16105.22, "end": 16107.46, "probability": 0.9971 }, { "start": 16107.84, "end": 16108.16, "probability": 0.3596 }, { "start": 16110.26, "end": 16110.36, "probability": 0.011 }, { "start": 16110.36, "end": 16111.44, "probability": 0.9299 }, { "start": 16111.52, "end": 16112.68, "probability": 0.9883 }, { "start": 16112.78, "end": 16113.32, "probability": 0.1897 }, { "start": 16114.04, "end": 16114.14, "probability": 0.8228 }, { "start": 16114.7, "end": 16117.78, "probability": 0.8712 }, { "start": 16119.96, "end": 16125.8, "probability": 0.5733 }, { "start": 16132.06, "end": 16132.06, "probability": 0.0716 }, { "start": 16132.06, "end": 16132.06, "probability": 0.2315 }, { "start": 16132.06, "end": 16132.16, "probability": 0.4774 }, { "start": 16134.4, "end": 16134.94, "probability": 0.7796 }, { "start": 16136.7, "end": 16140.2, "probability": 0.7609 }, { "start": 16140.28, "end": 16141.22, "probability": 0.707 }, { "start": 16142.56, "end": 16144.62, "probability": 0.9911 }, { "start": 16144.92, "end": 16146.46, "probability": 0.8808 }, { "start": 16146.9, "end": 16148.06, "probability": 0.969 }, { "start": 16149.2, "end": 16149.38, "probability": 0.9327 }, { "start": 16149.44, "end": 16152.02, "probability": 0.9943 }, { "start": 16152.16, "end": 16152.95, "probability": 0.9827 }, { "start": 16153.86, "end": 16157.44, "probability": 0.6936 }, { "start": 16157.56, "end": 16157.96, "probability": 0.9517 }, { "start": 16159.82, "end": 16161.74, "probability": 0.9434 }, { "start": 16162.8, "end": 16165.54, "probability": 0.9647 }, { "start": 16166.98, "end": 16167.8, "probability": 0.5913 }, { "start": 16169.06, "end": 16171.06, "probability": 0.9474 }, { "start": 16171.82, "end": 16174.14, "probability": 0.9669 }, { "start": 16175.7, "end": 16176.18, "probability": 0.3761 }, { "start": 16176.74, "end": 16178.0, "probability": 0.6542 }, { "start": 16179.08, "end": 16180.2, "probability": 0.7503 }, { "start": 16181.14, "end": 16182.9, "probability": 0.8661 }, { "start": 16183.83, "end": 16184.54, "probability": 0.9827 }, { "start": 16186.42, "end": 16187.32, "probability": 0.9771 }, { "start": 16187.66, "end": 16189.4, "probability": 0.988 }, { "start": 16190.34, "end": 16192.98, "probability": 0.6472 }, { "start": 16193.66, "end": 16196.16, "probability": 0.8163 }, { "start": 16196.64, "end": 16197.78, "probability": 0.8567 }, { "start": 16198.5, "end": 16200.92, "probability": 0.7687 }, { "start": 16202.82, "end": 16205.96, "probability": 0.9412 }, { "start": 16207.16, "end": 16208.8, "probability": 0.7125 }, { "start": 16209.9, "end": 16212.42, "probability": 0.7033 }, { "start": 16213.04, "end": 16213.77, "probability": 0.7021 }, { "start": 16214.16, "end": 16219.22, "probability": 0.9985 }, { "start": 16220.06, "end": 16221.06, "probability": 0.7988 }, { "start": 16222.12, "end": 16224.48, "probability": 0.9705 }, { "start": 16225.66, "end": 16229.18, "probability": 0.9937 }, { "start": 16229.32, "end": 16229.64, "probability": 0.8371 }, { "start": 16230.42, "end": 16231.36, "probability": 0.6872 }, { "start": 16231.88, "end": 16235.0, "probability": 0.9048 }, { "start": 16235.54, "end": 16237.43, "probability": 0.778 }, { "start": 16238.02, "end": 16239.1, "probability": 0.974 }, { "start": 16240.0, "end": 16241.62, "probability": 0.8198 }, { "start": 16242.28, "end": 16242.92, "probability": 0.7458 }, { "start": 16243.12, "end": 16243.78, "probability": 0.904 }, { "start": 16245.38, "end": 16248.34, "probability": 0.9143 }, { "start": 16248.86, "end": 16249.32, "probability": 0.8204 }, { "start": 16249.88, "end": 16254.34, "probability": 0.9576 }, { "start": 16254.94, "end": 16258.02, "probability": 0.9375 }, { "start": 16258.92, "end": 16262.32, "probability": 0.9966 }, { "start": 16263.92, "end": 16264.8, "probability": 0.8571 }, { "start": 16265.66, "end": 16266.98, "probability": 0.7616 }, { "start": 16267.08, "end": 16268.69, "probability": 0.8014 }, { "start": 16268.76, "end": 16269.86, "probability": 0.9199 }, { "start": 16271.24, "end": 16272.3, "probability": 0.5231 }, { "start": 16272.94, "end": 16274.62, "probability": 0.9653 }, { "start": 16275.38, "end": 16276.1, "probability": 0.5011 }, { "start": 16276.22, "end": 16277.18, "probability": 0.9765 }, { "start": 16278.3, "end": 16279.38, "probability": 0.9518 }, { "start": 16281.12, "end": 16284.14, "probability": 0.959 }, { "start": 16285.46, "end": 16286.06, "probability": 0.9902 }, { "start": 16286.78, "end": 16288.34, "probability": 0.9889 }, { "start": 16289.58, "end": 16290.7, "probability": 0.9233 }, { "start": 16290.7, "end": 16291.62, "probability": 0.677 }, { "start": 16291.78, "end": 16293.62, "probability": 0.9778 }, { "start": 16294.7, "end": 16295.75, "probability": 0.9941 }, { "start": 16296.7, "end": 16297.92, "probability": 0.9778 }, { "start": 16298.02, "end": 16300.04, "probability": 0.9508 }, { "start": 16301.1, "end": 16303.08, "probability": 0.9702 }, { "start": 16303.88, "end": 16305.04, "probability": 0.9728 }, { "start": 16305.68, "end": 16309.64, "probability": 0.9454 }, { "start": 16309.74, "end": 16310.6, "probability": 0.8831 }, { "start": 16312.68, "end": 16315.78, "probability": 0.9141 }, { "start": 16316.66, "end": 16317.24, "probability": 0.9717 }, { "start": 16318.16, "end": 16321.7, "probability": 0.8286 }, { "start": 16322.46, "end": 16323.46, "probability": 0.8214 }, { "start": 16325.48, "end": 16326.76, "probability": 0.8222 }, { "start": 16327.94, "end": 16330.42, "probability": 0.8901 }, { "start": 16331.06, "end": 16333.08, "probability": 0.7937 }, { "start": 16334.04, "end": 16336.46, "probability": 0.9636 }, { "start": 16337.5, "end": 16340.78, "probability": 0.8853 }, { "start": 16341.58, "end": 16342.82, "probability": 0.8286 }, { "start": 16343.84, "end": 16347.32, "probability": 0.9927 }, { "start": 16348.42, "end": 16349.88, "probability": 0.849 }, { "start": 16349.98, "end": 16352.38, "probability": 0.8704 }, { "start": 16353.76, "end": 16355.58, "probability": 0.9224 }, { "start": 16356.66, "end": 16357.64, "probability": 0.7652 }, { "start": 16358.16, "end": 16358.88, "probability": 0.6987 }, { "start": 16359.92, "end": 16360.6, "probability": 0.7025 }, { "start": 16361.42, "end": 16363.74, "probability": 0.9679 }, { "start": 16366.74, "end": 16369.58, "probability": 0.9018 }, { "start": 16370.38, "end": 16371.86, "probability": 0.9352 }, { "start": 16372.66, "end": 16373.62, "probability": 0.9413 }, { "start": 16374.2, "end": 16375.16, "probability": 0.8507 }, { "start": 16375.92, "end": 16376.66, "probability": 0.9084 }, { "start": 16377.7, "end": 16379.44, "probability": 0.7782 }, { "start": 16380.74, "end": 16384.86, "probability": 0.8707 }, { "start": 16385.32, "end": 16386.02, "probability": 0.4321 }, { "start": 16386.24, "end": 16386.88, "probability": 0.9507 }, { "start": 16387.6, "end": 16389.46, "probability": 0.9316 }, { "start": 16390.74, "end": 16391.36, "probability": 0.9424 }, { "start": 16392.24, "end": 16393.04, "probability": 0.8733 }, { "start": 16394.81, "end": 16397.94, "probability": 0.9941 }, { "start": 16398.6, "end": 16398.7, "probability": 0.3311 }, { "start": 16399.38, "end": 16401.04, "probability": 0.9312 }, { "start": 16401.68, "end": 16403.23, "probability": 0.9735 }, { "start": 16404.88, "end": 16406.28, "probability": 0.8128 }, { "start": 16407.22, "end": 16409.22, "probability": 0.8755 }, { "start": 16409.82, "end": 16411.68, "probability": 0.9546 }, { "start": 16413.16, "end": 16413.76, "probability": 0.9205 }, { "start": 16414.38, "end": 16416.08, "probability": 0.9742 }, { "start": 16423.34, "end": 16424.02, "probability": 0.7015 }, { "start": 16424.08, "end": 16424.72, "probability": 0.7249 }, { "start": 16425.1, "end": 16431.23, "probability": 0.9738 }, { "start": 16431.42, "end": 16436.64, "probability": 0.9927 }, { "start": 16437.1, "end": 16437.8, "probability": 0.9803 }, { "start": 16439.12, "end": 16442.72, "probability": 0.9901 }, { "start": 16444.32, "end": 16447.52, "probability": 0.98 }, { "start": 16448.08, "end": 16452.2, "probability": 0.991 }, { "start": 16452.36, "end": 16453.46, "probability": 0.8602 }, { "start": 16454.02, "end": 16458.8, "probability": 0.9859 }, { "start": 16459.36, "end": 16461.54, "probability": 0.6581 }, { "start": 16462.04, "end": 16462.88, "probability": 0.7409 }, { "start": 16463.14, "end": 16464.04, "probability": 0.5559 }, { "start": 16464.22, "end": 16465.76, "probability": 0.6545 }, { "start": 16466.72, "end": 16467.28, "probability": 0.3064 }, { "start": 16467.42, "end": 16469.88, "probability": 0.9621 }, { "start": 16470.32, "end": 16472.72, "probability": 0.9629 }, { "start": 16473.22, "end": 16475.86, "probability": 0.9967 }, { "start": 16476.44, "end": 16479.0, "probability": 0.8075 }, { "start": 16479.5, "end": 16481.5, "probability": 0.9803 }, { "start": 16481.68, "end": 16483.26, "probability": 0.8823 }, { "start": 16483.7, "end": 16485.88, "probability": 0.8397 }, { "start": 16486.02, "end": 16487.18, "probability": 0.9715 }, { "start": 16487.52, "end": 16488.89, "probability": 0.7529 }, { "start": 16489.54, "end": 16490.38, "probability": 0.7485 }, { "start": 16490.58, "end": 16494.12, "probability": 0.866 }, { "start": 16494.12, "end": 16496.94, "probability": 0.9971 }, { "start": 16497.56, "end": 16499.02, "probability": 0.9711 }, { "start": 16499.8, "end": 16502.16, "probability": 0.8766 }, { "start": 16502.68, "end": 16502.92, "probability": 0.9501 }, { "start": 16503.62, "end": 16505.2, "probability": 0.9899 }, { "start": 16505.2, "end": 16509.16, "probability": 0.9814 }, { "start": 16510.18, "end": 16512.9, "probability": 0.9829 }, { "start": 16512.9, "end": 16515.76, "probability": 0.6674 }, { "start": 16515.84, "end": 16519.26, "probability": 0.9872 }, { "start": 16519.72, "end": 16522.06, "probability": 0.9855 }, { "start": 16522.06, "end": 16524.14, "probability": 0.8084 }, { "start": 16525.14, "end": 16527.72, "probability": 0.9576 }, { "start": 16528.12, "end": 16530.42, "probability": 0.8953 }, { "start": 16530.86, "end": 16532.72, "probability": 0.9346 }, { "start": 16533.02, "end": 16535.14, "probability": 0.8492 }, { "start": 16535.6, "end": 16537.84, "probability": 0.9822 }, { "start": 16538.12, "end": 16540.16, "probability": 0.9956 }, { "start": 16540.32, "end": 16543.3, "probability": 0.9919 }, { "start": 16544.0, "end": 16545.5, "probability": 0.9769 }, { "start": 16545.56, "end": 16545.96, "probability": 0.873 }, { "start": 16546.96, "end": 16548.48, "probability": 0.7778 }, { "start": 16549.04, "end": 16551.52, "probability": 0.9824 }, { "start": 16564.32, "end": 16564.42, "probability": 0.7079 }, { "start": 16565.22, "end": 16565.22, "probability": 0.6008 }, { "start": 16565.32, "end": 16566.0, "probability": 0.6058 }, { "start": 16566.32, "end": 16568.8, "probability": 0.8557 }, { "start": 16569.24, "end": 16572.96, "probability": 0.9971 }, { "start": 16573.78, "end": 16574.82, "probability": 0.7455 }, { "start": 16575.7, "end": 16576.46, "probability": 0.7446 }, { "start": 16577.34, "end": 16579.22, "probability": 0.9883 }, { "start": 16579.5, "end": 16582.74, "probability": 0.9319 }, { "start": 16583.58, "end": 16586.58, "probability": 0.9604 }, { "start": 16589.79, "end": 16591.88, "probability": 0.9784 }, { "start": 16592.26, "end": 16594.68, "probability": 0.9907 }, { "start": 16595.18, "end": 16597.26, "probability": 0.9946 }, { "start": 16597.96, "end": 16599.3, "probability": 0.9324 }, { "start": 16599.9, "end": 16601.1, "probability": 0.9964 }, { "start": 16601.68, "end": 16601.9, "probability": 0.9685 }, { "start": 16602.42, "end": 16603.82, "probability": 0.9778 }, { "start": 16604.1, "end": 16608.82, "probability": 0.9917 }, { "start": 16609.0, "end": 16612.52, "probability": 0.995 }, { "start": 16613.1, "end": 16615.08, "probability": 0.9396 }, { "start": 16615.12, "end": 16616.26, "probability": 0.887 }, { "start": 16616.74, "end": 16618.54, "probability": 0.9609 }, { "start": 16619.02, "end": 16622.3, "probability": 0.9949 }, { "start": 16622.66, "end": 16625.02, "probability": 0.9927 }, { "start": 16625.72, "end": 16626.78, "probability": 0.9393 }, { "start": 16627.4, "end": 16630.64, "probability": 0.9839 }, { "start": 16630.64, "end": 16633.86, "probability": 0.9945 }, { "start": 16634.26, "end": 16637.32, "probability": 0.9866 }, { "start": 16637.84, "end": 16639.06, "probability": 0.7531 }, { "start": 16639.68, "end": 16640.34, "probability": 0.7082 }, { "start": 16640.46, "end": 16643.88, "probability": 0.9881 }, { "start": 16644.4, "end": 16644.52, "probability": 0.0248 }, { "start": 16648.99, "end": 16651.26, "probability": 0.6501 }, { "start": 16651.34, "end": 16655.94, "probability": 0.9751 }, { "start": 16656.22, "end": 16659.96, "probability": 0.9768 }, { "start": 16660.16, "end": 16661.28, "probability": 0.883 }, { "start": 16661.7, "end": 16663.88, "probability": 0.8349 }, { "start": 16664.14, "end": 16665.4, "probability": 0.9434 }, { "start": 16666.0, "end": 16672.48, "probability": 0.9811 }, { "start": 16672.96, "end": 16674.72, "probability": 0.5656 }, { "start": 16674.8, "end": 16676.06, "probability": 0.9391 }, { "start": 16677.04, "end": 16680.74, "probability": 0.986 }, { "start": 16680.9, "end": 16682.82, "probability": 0.9858 }, { "start": 16683.26, "end": 16686.08, "probability": 0.9857 }, { "start": 16686.14, "end": 16689.92, "probability": 0.9746 }, { "start": 16689.98, "end": 16692.66, "probability": 0.9979 }, { "start": 16692.84, "end": 16694.44, "probability": 0.9976 }, { "start": 16694.76, "end": 16695.17, "probability": 0.8779 }, { "start": 16695.38, "end": 16696.22, "probability": 0.9927 }, { "start": 16696.58, "end": 16699.14, "probability": 0.9702 }, { "start": 16700.32, "end": 16703.46, "probability": 0.9805 }, { "start": 16704.16, "end": 16706.86, "probability": 0.8569 }, { "start": 16707.18, "end": 16712.36, "probability": 0.9825 }, { "start": 16712.96, "end": 16713.44, "probability": 0.7852 }, { "start": 16713.84, "end": 16716.3, "probability": 0.9399 }, { "start": 16716.36, "end": 16716.72, "probability": 0.7729 }, { "start": 16716.8, "end": 16717.08, "probability": 0.5344 }, { "start": 16717.66, "end": 16719.34, "probability": 0.9619 }, { "start": 16719.5, "end": 16721.84, "probability": 0.926 }, { "start": 16722.98, "end": 16727.44, "probability": 0.9985 }, { "start": 16727.86, "end": 16728.26, "probability": 0.9507 }, { "start": 16728.4, "end": 16733.4, "probability": 0.9944 }, { "start": 16733.92, "end": 16735.54, "probability": 0.9967 }, { "start": 16736.24, "end": 16737.1, "probability": 0.672 }, { "start": 16737.86, "end": 16740.24, "probability": 0.9733 }, { "start": 16740.3, "end": 16742.46, "probability": 0.9082 }, { "start": 16742.86, "end": 16744.96, "probability": 0.8378 }, { "start": 16745.82, "end": 16747.16, "probability": 0.8448 }, { "start": 16747.44, "end": 16748.66, "probability": 0.9858 }, { "start": 16748.76, "end": 16749.34, "probability": 0.9946 }, { "start": 16749.6, "end": 16750.13, "probability": 0.9424 }, { "start": 16751.0, "end": 16751.9, "probability": 0.8005 }, { "start": 16752.16, "end": 16753.84, "probability": 0.9922 }, { "start": 16754.26, "end": 16756.1, "probability": 0.943 }, { "start": 16756.16, "end": 16756.74, "probability": 0.9572 }, { "start": 16756.86, "end": 16757.6, "probability": 0.7881 }, { "start": 16757.9, "end": 16758.66, "probability": 0.9689 }, { "start": 16758.74, "end": 16760.36, "probability": 0.9976 }, { "start": 16761.94, "end": 16762.68, "probability": 0.8705 }, { "start": 16762.94, "end": 16765.74, "probability": 0.9883 }, { "start": 16766.4, "end": 16769.64, "probability": 0.9633 }, { "start": 16770.2, "end": 16772.12, "probability": 0.9912 }, { "start": 16772.62, "end": 16776.52, "probability": 0.9968 }, { "start": 16777.08, "end": 16778.62, "probability": 0.9988 }, { "start": 16778.72, "end": 16779.88, "probability": 0.8723 }, { "start": 16780.36, "end": 16781.76, "probability": 0.998 }, { "start": 16782.08, "end": 16783.8, "probability": 0.9993 }, { "start": 16784.16, "end": 16786.9, "probability": 0.9919 }, { "start": 16787.06, "end": 16787.52, "probability": 0.7901 }, { "start": 16789.96, "end": 16791.92, "probability": 0.4903 }, { "start": 16792.6, "end": 16793.66, "probability": 0.2934 }, { "start": 16793.78, "end": 16797.62, "probability": 0.9935 }, { "start": 16798.58, "end": 16800.04, "probability": 0.9287 }, { "start": 16801.68, "end": 16804.1, "probability": 0.7515 }, { "start": 16804.88, "end": 16805.9, "probability": 0.6665 }, { "start": 16809.74, "end": 16812.38, "probability": 0.9692 }, { "start": 16813.0, "end": 16814.3, "probability": 0.866 }, { "start": 16814.46, "end": 16815.44, "probability": 0.966 }, { "start": 16817.02, "end": 16818.36, "probability": 0.7691 }, { "start": 16819.06, "end": 16820.38, "probability": 0.9526 }, { "start": 16820.8, "end": 16825.02, "probability": 0.8865 }, { "start": 16825.5, "end": 16826.6, "probability": 0.9557 }, { "start": 16827.66, "end": 16828.16, "probability": 0.193 }, { "start": 16828.68, "end": 16830.46, "probability": 0.0799 }, { "start": 16830.6, "end": 16832.58, "probability": 0.6644 }, { "start": 16833.46, "end": 16836.28, "probability": 0.826 }, { "start": 16836.98, "end": 16839.28, "probability": 0.6899 }, { "start": 16839.3, "end": 16839.9, "probability": 0.6485 }, { "start": 16840.52, "end": 16840.52, "probability": 0.1639 }, { "start": 16840.52, "end": 16840.52, "probability": 0.0876 }, { "start": 16840.52, "end": 16840.52, "probability": 0.2553 }, { "start": 16840.52, "end": 16841.4, "probability": 0.7367 }, { "start": 16841.98, "end": 16845.04, "probability": 0.8309 }, { "start": 16845.78, "end": 16849.14, "probability": 0.9451 }, { "start": 16850.26, "end": 16852.74, "probability": 0.9941 }, { "start": 16853.52, "end": 16855.14, "probability": 0.8833 }, { "start": 16855.82, "end": 16856.6, "probability": 0.8899 }, { "start": 16857.44, "end": 16858.62, "probability": 0.9503 }, { "start": 16858.68, "end": 16860.44, "probability": 0.9967 }, { "start": 16860.84, "end": 16867.44, "probability": 0.9836 }, { "start": 16868.38, "end": 16869.98, "probability": 0.9457 }, { "start": 16870.94, "end": 16874.01, "probability": 0.9791 }, { "start": 16874.66, "end": 16876.22, "probability": 0.9951 }, { "start": 16877.28, "end": 16879.98, "probability": 0.9932 }, { "start": 16879.98, "end": 16882.7, "probability": 0.9922 }, { "start": 16883.78, "end": 16885.2, "probability": 0.8078 }, { "start": 16886.22, "end": 16886.5, "probability": 0.9735 }, { "start": 16887.1, "end": 16888.28, "probability": 0.7611 }, { "start": 16888.72, "end": 16891.4, "probability": 0.7528 }, { "start": 16892.52, "end": 16893.02, "probability": 0.9012 }, { "start": 16893.88, "end": 16894.94, "probability": 0.9808 }, { "start": 16895.84, "end": 16903.02, "probability": 0.9902 }, { "start": 16904.12, "end": 16907.04, "probability": 0.945 }, { "start": 16907.38, "end": 16909.18, "probability": 0.8403 }, { "start": 16909.84, "end": 16915.24, "probability": 0.991 }, { "start": 16915.24, "end": 16920.32, "probability": 0.9949 }, { "start": 16920.56, "end": 16921.12, "probability": 0.932 }, { "start": 16921.28, "end": 16922.02, "probability": 0.9866 }, { "start": 16922.26, "end": 16922.94, "probability": 0.7941 }, { "start": 16923.44, "end": 16924.08, "probability": 0.6485 }, { "start": 16925.1, "end": 16927.74, "probability": 0.9932 }, { "start": 16928.06, "end": 16932.06, "probability": 0.9163 }, { "start": 16932.3, "end": 16934.24, "probability": 0.9985 }, { "start": 16934.7, "end": 16936.56, "probability": 0.9935 }, { "start": 16938.6, "end": 16940.68, "probability": 0.9954 }, { "start": 16941.12, "end": 16941.69, "probability": 0.4823 }, { "start": 16942.42, "end": 16948.24, "probability": 0.965 }, { "start": 16948.56, "end": 16952.46, "probability": 0.9626 }, { "start": 16953.12, "end": 16954.08, "probability": 0.9138 }, { "start": 16954.92, "end": 16956.02, "probability": 0.8518 }, { "start": 16956.42, "end": 16957.76, "probability": 0.9949 }, { "start": 16959.42, "end": 16961.66, "probability": 0.9741 }, { "start": 16962.3, "end": 16965.1, "probability": 0.8704 }, { "start": 16965.78, "end": 16968.16, "probability": 0.9449 }, { "start": 16968.98, "end": 16972.05, "probability": 0.9957 }, { "start": 16972.8, "end": 16973.34, "probability": 0.9666 }, { "start": 16974.08, "end": 16975.58, "probability": 0.947 }, { "start": 16975.98, "end": 16979.76, "probability": 0.9451 }, { "start": 16979.77, "end": 16983.9, "probability": 0.9674 }, { "start": 16984.32, "end": 16986.64, "probability": 0.9964 }, { "start": 16987.28, "end": 16991.04, "probability": 0.909 }, { "start": 16991.4, "end": 16994.56, "probability": 0.8904 }, { "start": 16995.1, "end": 16995.8, "probability": 0.6854 }, { "start": 16996.04, "end": 16998.32, "probability": 0.9739 }, { "start": 16998.72, "end": 16999.48, "probability": 0.643 }, { "start": 16999.6, "end": 16999.86, "probability": 0.5399 }, { "start": 16999.86, "end": 17001.34, "probability": 0.8188 }, { "start": 17001.72, "end": 17002.18, "probability": 0.6609 }, { "start": 17002.46, "end": 17004.12, "probability": 0.8661 }, { "start": 17004.18, "end": 17004.76, "probability": 0.754 }, { "start": 17005.86, "end": 17006.64, "probability": 0.6078 }, { "start": 17006.8, "end": 17008.36, "probability": 0.9628 }, { "start": 17008.92, "end": 17009.16, "probability": 0.9993 }, { "start": 17010.4, "end": 17010.96, "probability": 0.7942 }, { "start": 17011.54, "end": 17012.44, "probability": 0.7903 }, { "start": 17012.72, "end": 17013.9, "probability": 0.7227 }, { "start": 17014.78, "end": 17015.68, "probability": 0.9508 }, { "start": 17017.58, "end": 17019.54, "probability": 0.7552 }, { "start": 17020.56, "end": 17022.26, "probability": 0.5743 }, { "start": 17022.42, "end": 17024.94, "probability": 0.9394 }, { "start": 17025.0, "end": 17025.38, "probability": 0.496 }, { "start": 17025.52, "end": 17026.22, "probability": 0.3366 }, { "start": 17027.62, "end": 17030.54, "probability": 0.9937 }, { "start": 17030.54, "end": 17033.6, "probability": 0.9995 }, { "start": 17033.7, "end": 17034.6, "probability": 0.6289 }, { "start": 17036.48, "end": 17037.88, "probability": 0.9199 }, { "start": 17038.02, "end": 17040.11, "probability": 0.6421 }, { "start": 17040.16, "end": 17042.08, "probability": 0.6977 }, { "start": 17043.06, "end": 17043.7, "probability": 0.875 }, { "start": 17044.16, "end": 17046.1, "probability": 0.9927 }, { "start": 17046.38, "end": 17047.62, "probability": 0.9969 }, { "start": 17047.8, "end": 17048.2, "probability": 0.8481 }, { "start": 17049.82, "end": 17052.36, "probability": 0.9282 }, { "start": 17052.44, "end": 17053.1, "probability": 0.8443 }, { "start": 17054.38, "end": 17056.45, "probability": 0.9842 }, { "start": 17057.14, "end": 17062.42, "probability": 0.9972 }, { "start": 17062.42, "end": 17066.94, "probability": 0.9783 }, { "start": 17067.56, "end": 17070.84, "probability": 0.9927 }, { "start": 17072.38, "end": 17073.42, "probability": 0.7433 }, { "start": 17074.86, "end": 17078.76, "probability": 0.9991 }, { "start": 17079.02, "end": 17079.74, "probability": 0.8367 }, { "start": 17079.8, "end": 17081.99, "probability": 0.9787 }, { "start": 17082.38, "end": 17083.44, "probability": 0.9684 }, { "start": 17083.96, "end": 17088.44, "probability": 0.9812 }, { "start": 17089.4, "end": 17091.86, "probability": 0.5441 }, { "start": 17092.56, "end": 17094.94, "probability": 0.7249 }, { "start": 17095.36, "end": 17098.76, "probability": 0.9258 }, { "start": 17099.0, "end": 17102.2, "probability": 0.9741 }, { "start": 17102.24, "end": 17104.52, "probability": 0.6007 }, { "start": 17106.0, "end": 17107.34, "probability": 0.9956 }, { "start": 17108.1, "end": 17109.86, "probability": 0.6727 }, { "start": 17110.02, "end": 17114.02, "probability": 0.9805 }, { "start": 17114.68, "end": 17115.94, "probability": 0.9749 }, { "start": 17116.26, "end": 17117.46, "probability": 0.61 }, { "start": 17119.38, "end": 17121.96, "probability": 0.9926 }, { "start": 17122.76, "end": 17127.06, "probability": 0.8711 }, { "start": 17127.1, "end": 17128.04, "probability": 0.6919 }, { "start": 17128.54, "end": 17130.79, "probability": 0.998 }, { "start": 17131.34, "end": 17131.64, "probability": 0.913 }, { "start": 17132.28, "end": 17135.24, "probability": 0.6698 }, { "start": 17135.24, "end": 17137.5, "probability": 0.9927 }, { "start": 17138.06, "end": 17139.12, "probability": 0.9869 }, { "start": 17139.96, "end": 17142.7, "probability": 0.7608 }, { "start": 17143.26, "end": 17145.44, "probability": 0.8131 }, { "start": 17146.08, "end": 17147.02, "probability": 0.9722 }, { "start": 17147.6, "end": 17149.15, "probability": 0.872 }, { "start": 17149.48, "end": 17153.08, "probability": 0.9644 }, { "start": 17153.8, "end": 17155.72, "probability": 0.9629 }, { "start": 17156.5, "end": 17157.32, "probability": 0.7577 }, { "start": 17157.56, "end": 17158.4, "probability": 0.9512 }, { "start": 17158.44, "end": 17159.04, "probability": 0.6006 }, { "start": 17159.52, "end": 17160.16, "probability": 0.6158 }, { "start": 17161.12, "end": 17164.3, "probability": 0.9883 }, { "start": 17165.72, "end": 17166.08, "probability": 0.0176 }, { "start": 17166.08, "end": 17167.16, "probability": 0.7493 }, { "start": 17167.38, "end": 17168.48, "probability": 0.8834 }, { "start": 17169.08, "end": 17171.46, "probability": 0.7923 }, { "start": 17172.28, "end": 17173.04, "probability": 0.9431 }, { "start": 17173.28, "end": 17179.3, "probability": 0.986 }, { "start": 17179.4, "end": 17181.96, "probability": 0.9526 }, { "start": 17182.68, "end": 17183.78, "probability": 0.8507 }, { "start": 17183.9, "end": 17186.76, "probability": 0.9121 }, { "start": 17187.52, "end": 17189.3, "probability": 0.8682 }, { "start": 17189.34, "end": 17192.06, "probability": 0.8678 }, { "start": 17193.12, "end": 17196.62, "probability": 0.9291 }, { "start": 17197.1, "end": 17198.8, "probability": 0.9276 }, { "start": 17199.18, "end": 17200.27, "probability": 0.6679 }, { "start": 17200.86, "end": 17203.68, "probability": 0.6692 }, { "start": 17204.36, "end": 17205.3, "probability": 0.4906 }, { "start": 17205.44, "end": 17206.3, "probability": 0.5325 }, { "start": 17206.66, "end": 17209.46, "probability": 0.9832 }, { "start": 17209.74, "end": 17211.78, "probability": 0.996 }, { "start": 17212.16, "end": 17214.77, "probability": 0.9921 }, { "start": 17215.76, "end": 17217.16, "probability": 0.9962 }, { "start": 17217.6, "end": 17219.18, "probability": 0.8491 }, { "start": 17219.58, "end": 17220.62, "probability": 0.7933 }, { "start": 17222.06, "end": 17223.4, "probability": 0.8472 }, { "start": 17225.02, "end": 17227.64, "probability": 0.9961 }, { "start": 17228.3, "end": 17229.14, "probability": 0.0973 }, { "start": 17229.5, "end": 17229.56, "probability": 0.2064 }, { "start": 17229.6, "end": 17230.18, "probability": 0.8864 }, { "start": 17231.28, "end": 17231.68, "probability": 0.5192 }, { "start": 17233.79, "end": 17234.14, "probability": 0.1428 }, { "start": 17234.44, "end": 17234.44, "probability": 0.1761 }, { "start": 17234.6, "end": 17235.52, "probability": 0.4521 }, { "start": 17236.84, "end": 17238.34, "probability": 0.7292 }, { "start": 17239.7, "end": 17242.62, "probability": 0.5505 }, { "start": 17244.58, "end": 17244.86, "probability": 0.3266 }, { "start": 17247.14, "end": 17248.72, "probability": 0.007 }, { "start": 17272.68, "end": 17274.36, "probability": 0.0039 }, { "start": 17274.92, "end": 17275.58, "probability": 0.0683 }, { "start": 17275.7, "end": 17276.42, "probability": 0.1208 }, { "start": 17276.94, "end": 17277.04, "probability": 0.0972 }, { "start": 17277.22, "end": 17277.58, "probability": 0.0484 }, { "start": 17278.68, "end": 17282.84, "probability": 0.3729 }, { "start": 17283.38, "end": 17284.04, "probability": 0.0522 }, { "start": 17285.86, "end": 17287.16, "probability": 0.0186 }, { "start": 17288.0, "end": 17291.44, "probability": 0.6865 }, { "start": 17291.5, "end": 17291.5, "probability": 0.0141 }, { "start": 17291.5, "end": 17291.76, "probability": 0.1169 }, { "start": 17291.82, "end": 17292.82, "probability": 0.1359 }, { "start": 17293.49, "end": 17301.48, "probability": 0.0197 }, { "start": 17301.48, "end": 17303.2, "probability": 0.0206 }, { "start": 17304.4, "end": 17305.9, "probability": 0.0329 }, { "start": 17305.9, "end": 17306.0, "probability": 0.0176 }, { "start": 17306.0, "end": 17307.25, "probability": 0.0704 }, { "start": 17307.34, "end": 17307.72, "probability": 0.2004 }, { "start": 17307.72, "end": 17307.98, "probability": 0.0421 }, { "start": 17308.0, "end": 17308.0, "probability": 0.0 }, { "start": 17308.0, "end": 17308.0, "probability": 0.0 }, { "start": 17308.0, "end": 17308.0, "probability": 0.0 }, { "start": 17313.68, "end": 17314.86, "probability": 0.5139 }, { "start": 17314.98, "end": 17314.98, "probability": 0.4548 }, { "start": 17314.98, "end": 17315.44, "probability": 0.7057 }, { "start": 17315.54, "end": 17316.78, "probability": 0.918 }, { "start": 17317.02, "end": 17319.72, "probability": 0.9847 }, { "start": 17320.8, "end": 17322.54, "probability": 0.9863 }, { "start": 17322.98, "end": 17324.75, "probability": 0.3028 }, { "start": 17325.74, "end": 17327.16, "probability": 0.001 }, { "start": 17327.84, "end": 17329.82, "probability": 0.9312 }, { "start": 17329.82, "end": 17330.38, "probability": 0.7992 }, { "start": 17330.6, "end": 17331.48, "probability": 0.7121 }, { "start": 17331.66, "end": 17333.9, "probability": 0.9149 }, { "start": 17334.0, "end": 17335.96, "probability": 0.4427 }, { "start": 17336.12, "end": 17337.58, "probability": 0.4471 }, { "start": 17338.3, "end": 17340.64, "probability": 0.7 }, { "start": 17342.6, "end": 17343.92, "probability": 0.5271 }, { "start": 17344.44, "end": 17347.16, "probability": 0.8986 }, { "start": 17347.32, "end": 17350.26, "probability": 0.9933 }, { "start": 17350.38, "end": 17355.64, "probability": 0.9876 }, { "start": 17356.22, "end": 17358.46, "probability": 0.9976 }, { "start": 17358.98, "end": 17360.9, "probability": 0.9954 }, { "start": 17361.5, "end": 17361.88, "probability": 0.8478 }, { "start": 17361.94, "end": 17366.5, "probability": 0.9885 }, { "start": 17366.5, "end": 17370.0, "probability": 0.9971 }, { "start": 17370.34, "end": 17373.96, "probability": 0.9979 }, { "start": 17374.12, "end": 17376.42, "probability": 0.8734 }, { "start": 17376.52, "end": 17376.82, "probability": 0.6862 }, { "start": 17377.3, "end": 17381.14, "probability": 0.778 }, { "start": 17381.42, "end": 17385.34, "probability": 0.9905 }, { "start": 17410.82, "end": 17412.34, "probability": 0.1818 }, { "start": 17412.62, "end": 17412.98, "probability": 0.051 }, { "start": 17413.69, "end": 17414.37, "probability": 0.0856 }, { "start": 17426.4, "end": 17428.64, "probability": 0.1036 }, { "start": 17430.06, "end": 17430.5, "probability": 0.0531 }, { "start": 17431.16, "end": 17432.07, "probability": 0.02 }, { "start": 17436.16, "end": 17441.2, "probability": 0.4463 }, { "start": 17447.54, "end": 17448.78, "probability": 0.0393 }, { "start": 17453.4, "end": 17454.62, "probability": 0.7185 }, { "start": 17455.42, "end": 17457.5, "probability": 0.0733 }, { "start": 17458.32, "end": 17460.5, "probability": 0.4393 }, { "start": 17465.8, "end": 17467.24, "probability": 0.6793 }, { "start": 17467.84, "end": 17468.4, "probability": 0.0374 }, { "start": 17469.18, "end": 17471.02, "probability": 0.2415 }, { "start": 17471.6, "end": 17473.78, "probability": 0.5532 }, { "start": 17474.58, "end": 17474.78, "probability": 0.8209 }, { "start": 17476.26, "end": 17476.76, "probability": 0.0455 }, { "start": 17481.62, "end": 17482.24, "probability": 0.7716 }, { "start": 17483.0, "end": 17485.16, "probability": 0.0666 }, { "start": 17496.58, "end": 17501.26, "probability": 0.0777 }, { "start": 17611.0, "end": 17611.0, "probability": 0.0 }, { "start": 17611.0, "end": 17611.0, "probability": 0.0 }, { "start": 17611.0, "end": 17611.0, "probability": 0.0 }, { "start": 17611.0, "end": 17611.0, "probability": 0.0 }, { "start": 17611.0, "end": 17611.0, "probability": 0.0 }, { "start": 17611.0, "end": 17611.0, "probability": 0.0 }, { "start": 17611.0, "end": 17611.0, "probability": 0.0 }, { "start": 17611.0, "end": 17611.0, "probability": 0.0 }, { "start": 17611.0, "end": 17611.0, "probability": 0.0 }, { "start": 17611.0, "end": 17611.0, "probability": 0.0 }, { "start": 17611.0, "end": 17611.0, "probability": 0.0 }, { "start": 17611.0, "end": 17611.0, "probability": 0.0 }, { "start": 17611.0, "end": 17611.0, "probability": 0.0 }, { "start": 17611.0, "end": 17611.0, "probability": 0.0 }, { "start": 17611.0, "end": 17611.0, "probability": 0.0 }, { "start": 17611.0, "end": 17611.0, "probability": 0.0 }, { "start": 17611.0, "end": 17611.0, "probability": 0.0 }, { "start": 17611.0, "end": 17611.0, "probability": 0.0 }, { "start": 17611.0, "end": 17611.0, "probability": 0.0 }, { "start": 17611.0, "end": 17611.0, "probability": 0.0 }, { "start": 17611.0, "end": 17611.0, "probability": 0.0 }, { "start": 17611.0, "end": 17611.0, "probability": 0.0 }, { "start": 17611.0, "end": 17611.0, "probability": 0.0 }, { "start": 17611.0, "end": 17611.0, "probability": 0.0 }, { "start": 17611.0, "end": 17611.0, "probability": 0.0 }, { "start": 17611.0, "end": 17611.0, "probability": 0.0 }, { "start": 17611.0, "end": 17611.0, "probability": 0.0 }, { "start": 17611.0, "end": 17611.0, "probability": 0.0 }, { "start": 17611.0, "end": 17611.0, "probability": 0.0 }, { "start": 17611.0, "end": 17611.0, "probability": 0.0 }, { "start": 17611.0, "end": 17611.0, "probability": 0.0 }, { "start": 17611.0, "end": 17611.0, "probability": 0.0 }, { "start": 17611.0, "end": 17611.0, "probability": 0.0 }, { "start": 17611.0, "end": 17611.0, "probability": 0.0 }, { "start": 17611.0, "end": 17611.0, "probability": 0.0 }, { "start": 17611.0, "end": 17611.0, "probability": 0.0 }, { "start": 17611.0, "end": 17611.0, "probability": 0.0 }, { "start": 17611.0, "end": 17611.0, "probability": 0.0 }, { "start": 17611.0, "end": 17611.0, "probability": 0.0 }, { "start": 17611.0, "end": 17611.0, "probability": 0.0 }, { "start": 17611.0, "end": 17611.0, "probability": 0.0 }, { "start": 17611.0, "end": 17611.0, "probability": 0.0 }, { "start": 17611.0, "end": 17611.0, "probability": 0.0 }, { "start": 17611.0, "end": 17611.0, "probability": 0.0 }, { "start": 17611.0, "end": 17611.0, "probability": 0.0 }, { "start": 17611.0, "end": 17611.0, "probability": 0.0 }, { "start": 17611.12, "end": 17611.48, "probability": 0.3973 }, { "start": 17611.48, "end": 17611.48, "probability": 0.1373 }, { "start": 17611.48, "end": 17611.48, "probability": 0.0499 }, { "start": 17611.48, "end": 17611.96, "probability": 0.1115 }, { "start": 17612.3, "end": 17613.36, "probability": 0.7084 }, { "start": 17613.44, "end": 17616.02, "probability": 0.4389 }, { "start": 17616.34, "end": 17616.96, "probability": 0.7667 }, { "start": 17619.4, "end": 17620.72, "probability": 0.9802 }, { "start": 17623.14, "end": 17627.04, "probability": 0.8228 }, { "start": 17627.2, "end": 17631.06, "probability": 0.8934 }, { "start": 17631.52, "end": 17636.62, "probability": 0.9204 }, { "start": 17637.24, "end": 17639.52, "probability": 0.9845 }, { "start": 17639.92, "end": 17643.52, "probability": 0.9793 }, { "start": 17644.14, "end": 17648.56, "probability": 0.8915 }, { "start": 17648.96, "end": 17651.22, "probability": 0.8934 }, { "start": 17651.4, "end": 17651.94, "probability": 0.7671 }, { "start": 17652.34, "end": 17653.32, "probability": 0.9867 }, { "start": 17653.56, "end": 17654.18, "probability": 0.7653 }, { "start": 17654.76, "end": 17655.76, "probability": 0.8149 }, { "start": 17656.1, "end": 17659.02, "probability": 0.8904 }, { "start": 17659.72, "end": 17663.42, "probability": 0.9614 }, { "start": 17663.86, "end": 17666.8, "probability": 0.9665 }, { "start": 17667.16, "end": 17671.58, "probability": 0.9818 }, { "start": 17671.58, "end": 17675.4, "probability": 0.9881 }, { "start": 17675.7, "end": 17676.08, "probability": 0.6496 }, { "start": 17676.72, "end": 17680.38, "probability": 0.7659 }, { "start": 17680.58, "end": 17683.4, "probability": 0.9624 }, { "start": 17684.68, "end": 17685.06, "probability": 0.6345 }, { "start": 17685.22, "end": 17688.42, "probability": 0.9672 }, { "start": 17688.42, "end": 17691.64, "probability": 0.9661 }, { "start": 17692.16, "end": 17693.38, "probability": 0.6222 }, { "start": 17693.48, "end": 17693.76, "probability": 0.5758 }, { "start": 17694.18, "end": 17697.0, "probability": 0.8184 }, { "start": 17697.32, "end": 17700.03, "probability": 0.7783 }, { "start": 17700.9, "end": 17701.36, "probability": 0.6752 }, { "start": 17701.66, "end": 17703.12, "probability": 0.9447 }, { "start": 17703.26, "end": 17706.54, "probability": 0.9556 }, { "start": 17707.44, "end": 17710.78, "probability": 0.7532 }, { "start": 17711.14, "end": 17713.56, "probability": 0.9106 }, { "start": 17714.16, "end": 17716.1, "probability": 0.6752 }, { "start": 17716.8, "end": 17717.58, "probability": 0.9644 }, { "start": 17718.12, "end": 17723.76, "probability": 0.9141 }, { "start": 17724.4, "end": 17726.58, "probability": 0.8708 }, { "start": 17726.62, "end": 17729.4, "probability": 0.9546 }, { "start": 17730.76, "end": 17732.42, "probability": 0.5513 }, { "start": 17732.54, "end": 17735.34, "probability": 0.9859 }, { "start": 17735.84, "end": 17741.12, "probability": 0.9622 }, { "start": 17741.82, "end": 17743.66, "probability": 0.967 }, { "start": 17744.28, "end": 17745.22, "probability": 0.0603 }, { "start": 17745.92, "end": 17751.96, "probability": 0.5527 }, { "start": 17753.86, "end": 17755.54, "probability": 0.764 }, { "start": 17760.5, "end": 17761.6, "probability": 0.1206 }, { "start": 17761.6, "end": 17761.6, "probability": 0.0325 }, { "start": 17776.2, "end": 17777.24, "probability": 0.2056 }, { "start": 17777.82, "end": 17779.44, "probability": 0.8899 }, { "start": 17779.6, "end": 17782.24, "probability": 0.9955 }, { "start": 17782.34, "end": 17785.94, "probability": 0.9019 }, { "start": 17786.9, "end": 17786.94, "probability": 0.2115 }, { "start": 17786.94, "end": 17788.46, "probability": 0.9978 }, { "start": 17795.22, "end": 17795.78, "probability": 0.0108 }, { "start": 17807.96, "end": 17809.08, "probability": 0.1159 }, { "start": 17809.08, "end": 17811.62, "probability": 0.5476 }, { "start": 17814.36, "end": 17816.24, "probability": 0.9027 }, { "start": 17817.34, "end": 17817.88, "probability": 0.0964 }, { "start": 17818.48, "end": 17820.0, "probability": 0.904 }, { "start": 17821.76, "end": 17825.64, "probability": 0.9417 }, { "start": 17827.12, "end": 17829.74, "probability": 0.6338 }, { "start": 17830.38, "end": 17831.18, "probability": 0.9034 }, { "start": 17832.2, "end": 17833.88, "probability": 0.9833 }, { "start": 17835.0, "end": 17836.68, "probability": 0.7139 }, { "start": 17837.82, "end": 17838.78, "probability": 0.6032 }, { "start": 17839.12, "end": 17841.88, "probability": 0.9666 }, { "start": 17842.84, "end": 17844.48, "probability": 0.9096 }, { "start": 17844.86, "end": 17845.45, "probability": 0.5781 }, { "start": 17845.6, "end": 17848.8, "probability": 0.9023 }, { "start": 17849.86, "end": 17851.61, "probability": 0.7438 }, { "start": 17852.3, "end": 17854.82, "probability": 0.936 }, { "start": 17855.22, "end": 17855.74, "probability": 0.4678 }, { "start": 17856.26, "end": 17861.32, "probability": 0.9344 }, { "start": 17861.54, "end": 17865.06, "probability": 0.6864 }, { "start": 17865.54, "end": 17866.24, "probability": 0.8261 }, { "start": 17866.58, "end": 17867.46, "probability": 0.8597 }, { "start": 17868.6, "end": 17869.8, "probability": 0.6432 }, { "start": 17870.58, "end": 17872.0, "probability": 0.9806 }, { "start": 17872.86, "end": 17873.74, "probability": 0.8022 }, { "start": 17873.96, "end": 17874.7, "probability": 0.8953 }, { "start": 17875.34, "end": 17876.92, "probability": 0.6686 }, { "start": 17877.06, "end": 17883.0, "probability": 0.9156 }, { "start": 17884.26, "end": 17886.9, "probability": 0.861 }, { "start": 17889.92, "end": 17890.66, "probability": 0.4747 }, { "start": 17891.5, "end": 17893.48, "probability": 0.7106 }, { "start": 17894.32, "end": 17899.54, "probability": 0.5187 }, { "start": 17900.04, "end": 17902.6, "probability": 0.973 }, { "start": 17903.14, "end": 17905.14, "probability": 0.8422 }, { "start": 17906.02, "end": 17907.22, "probability": 0.5632 }, { "start": 17907.66, "end": 17908.84, "probability": 0.8594 }, { "start": 17921.72, "end": 17922.76, "probability": 0.6069 }, { "start": 17923.88, "end": 17925.94, "probability": 0.8046 }, { "start": 17926.52, "end": 17927.96, "probability": 0.5835 }, { "start": 17928.66, "end": 17931.48, "probability": 0.9934 }, { "start": 17932.4, "end": 17936.18, "probability": 0.9362 }, { "start": 17936.86, "end": 17941.4, "probability": 0.8916 }, { "start": 17942.34, "end": 17945.08, "probability": 0.9454 }, { "start": 17945.8, "end": 17947.56, "probability": 0.854 }, { "start": 17947.64, "end": 17948.44, "probability": 0.8076 }, { "start": 17948.94, "end": 17952.36, "probability": 0.8689 }, { "start": 17952.74, "end": 17953.48, "probability": 0.7534 }, { "start": 17954.18, "end": 17956.56, "probability": 0.9692 }, { "start": 17957.38, "end": 17959.24, "probability": 0.9813 }, { "start": 17959.24, "end": 17961.46, "probability": 0.9078 }, { "start": 17962.8, "end": 17963.26, "probability": 0.6956 }, { "start": 17963.32, "end": 17963.64, "probability": 0.8706 }, { "start": 17963.78, "end": 17965.96, "probability": 0.7145 }, { "start": 17966.62, "end": 17967.6, "probability": 0.9556 }, { "start": 17968.34, "end": 17969.24, "probability": 0.6759 }, { "start": 17969.34, "end": 17969.86, "probability": 0.7643 }, { "start": 17969.94, "end": 17972.36, "probability": 0.9301 }, { "start": 17972.9, "end": 17975.84, "probability": 0.7168 }, { "start": 17976.58, "end": 17979.68, "probability": 0.867 }, { "start": 17980.22, "end": 17985.24, "probability": 0.991 }, { "start": 17986.3, "end": 17989.06, "probability": 0.7042 }, { "start": 17989.68, "end": 17991.8, "probability": 0.9535 }, { "start": 17991.9, "end": 17994.0, "probability": 0.9109 }, { "start": 17994.84, "end": 17996.66, "probability": 0.8909 }, { "start": 17997.2, "end": 17999.8, "probability": 0.9733 }, { "start": 17999.88, "end": 18001.26, "probability": 0.7311 }, { "start": 18001.86, "end": 18003.7, "probability": 0.9091 }, { "start": 18004.06, "end": 18007.18, "probability": 0.6571 }, { "start": 18007.94, "end": 18010.58, "probability": 0.8049 }, { "start": 18011.1, "end": 18011.5, "probability": 0.5181 }, { "start": 18012.0, "end": 18016.74, "probability": 0.8662 }, { "start": 18017.32, "end": 18019.59, "probability": 0.9102 }, { "start": 18019.92, "end": 18021.8, "probability": 0.9588 }, { "start": 18022.4, "end": 18026.18, "probability": 0.9527 }, { "start": 18026.72, "end": 18027.1, "probability": 0.5208 }, { "start": 18027.78, "end": 18031.72, "probability": 0.8062 }, { "start": 18033.54, "end": 18037.16, "probability": 0.9558 }, { "start": 18037.96, "end": 18039.12, "probability": 0.6532 }, { "start": 18039.66, "end": 18040.34, "probability": 0.9604 }, { "start": 18040.86, "end": 18043.52, "probability": 0.9843 }, { "start": 18044.1, "end": 18046.7, "probability": 0.8857 }, { "start": 18046.7, "end": 18049.9, "probability": 0.8173 }, { "start": 18051.5, "end": 18053.24, "probability": 0.6385 }, { "start": 18053.3, "end": 18057.56, "probability": 0.989 }, { "start": 18057.56, "end": 18061.4, "probability": 0.8557 }, { "start": 18061.82, "end": 18064.66, "probability": 0.969 }, { "start": 18065.42, "end": 18065.92, "probability": 0.6746 }, { "start": 18066.12, "end": 18066.6, "probability": 0.6487 }, { "start": 18066.72, "end": 18067.96, "probability": 0.9668 }, { "start": 18068.52, "end": 18069.04, "probability": 0.8469 }, { "start": 18069.96, "end": 18072.82, "probability": 0.9779 }, { "start": 18073.34, "end": 18075.54, "probability": 0.8647 }, { "start": 18075.92, "end": 18076.5, "probability": 0.551 }, { "start": 18077.2, "end": 18079.84, "probability": 0.8325 }, { "start": 18080.62, "end": 18082.2, "probability": 0.9445 }, { "start": 18082.76, "end": 18084.21, "probability": 0.9237 }, { "start": 18086.82, "end": 18090.52, "probability": 0.9621 }, { "start": 18091.14, "end": 18091.62, "probability": 0.4815 }, { "start": 18091.72, "end": 18095.18, "probability": 0.7106 }, { "start": 18095.28, "end": 18099.82, "probability": 0.3852 }, { "start": 18109.04, "end": 18109.96, "probability": 0.0082 }, { "start": 18121.38, "end": 18121.58, "probability": 0.0376 }, { "start": 18121.58, "end": 18125.96, "probability": 0.3434 }, { "start": 18126.16, "end": 18127.08, "probability": 0.6111 }, { "start": 18128.4, "end": 18130.0, "probability": 0.9753 }, { "start": 18130.88, "end": 18135.98, "probability": 0.924 }, { "start": 18136.64, "end": 18137.28, "probability": 0.5357 }, { "start": 18158.28, "end": 18158.28, "probability": 0.0337 }, { "start": 18158.28, "end": 18158.28, "probability": 0.0227 }, { "start": 18158.28, "end": 18158.28, "probability": 0.1538 }, { "start": 18158.28, "end": 18158.58, "probability": 0.0609 }, { "start": 18159.22, "end": 18160.68, "probability": 0.3762 }, { "start": 18160.84, "end": 18163.02, "probability": 0.8122 }, { "start": 18163.64, "end": 18164.68, "probability": 0.9687 }, { "start": 18165.28, "end": 18167.2, "probability": 0.9979 }, { "start": 18167.88, "end": 18169.14, "probability": 0.882 }, { "start": 18169.94, "end": 18174.84, "probability": 0.9207 }, { "start": 18175.2, "end": 18178.52, "probability": 0.999 }, { "start": 18179.3, "end": 18180.5, "probability": 0.8226 }, { "start": 18180.98, "end": 18185.68, "probability": 0.996 }, { "start": 18187.08, "end": 18188.92, "probability": 0.7697 }, { "start": 18189.52, "end": 18190.18, "probability": 0.6652 }, { "start": 18190.2, "end": 18191.1, "probability": 0.8929 }, { "start": 18191.63, "end": 18193.94, "probability": 0.9418 }, { "start": 18194.48, "end": 18198.1, "probability": 0.9717 }, { "start": 18199.18, "end": 18199.18, "probability": 0.2846 }, { "start": 18199.18, "end": 18201.78, "probability": 0.9238 }, { "start": 18201.96, "end": 18204.12, "probability": 0.9561 }, { "start": 18204.6, "end": 18206.65, "probability": 0.8882 }, { "start": 18208.25, "end": 18211.68, "probability": 0.9092 }, { "start": 18212.38, "end": 18214.48, "probability": 0.9009 }, { "start": 18214.94, "end": 18216.34, "probability": 0.3629 }, { "start": 18216.44, "end": 18220.6, "probability": 0.8602 }, { "start": 18221.18, "end": 18223.36, "probability": 0.7426 }, { "start": 18223.88, "end": 18225.66, "probability": 0.7915 }, { "start": 18226.18, "end": 18227.36, "probability": 0.5405 }, { "start": 18227.5, "end": 18230.44, "probability": 0.8711 }, { "start": 18230.76, "end": 18231.71, "probability": 0.8481 }, { "start": 18232.6, "end": 18232.88, "probability": 0.7448 }, { "start": 18233.42, "end": 18234.42, "probability": 0.942 }, { "start": 18234.64, "end": 18235.7, "probability": 0.7841 }, { "start": 18236.1, "end": 18238.52, "probability": 0.9963 }, { "start": 18238.62, "end": 18240.12, "probability": 0.8817 }, { "start": 18240.16, "end": 18240.78, "probability": 0.5011 }, { "start": 18241.36, "end": 18244.72, "probability": 0.9975 }, { "start": 18244.72, "end": 18249.18, "probability": 0.9886 }, { "start": 18249.34, "end": 18249.96, "probability": 0.6631 }, { "start": 18250.46, "end": 18250.92, "probability": 0.4896 }, { "start": 18251.04, "end": 18252.92, "probability": 0.8425 }, { "start": 18253.56, "end": 18256.0, "probability": 0.8953 }, { "start": 18256.24, "end": 18259.08, "probability": 0.9683 }, { "start": 18260.3, "end": 18263.02, "probability": 0.9739 }, { "start": 18263.72, "end": 18264.72, "probability": 0.8372 }, { "start": 18265.5, "end": 18266.5, "probability": 0.4951 }, { "start": 18267.94, "end": 18269.18, "probability": 0.9845 }, { "start": 18269.84, "end": 18270.58, "probability": 0.9238 }, { "start": 18271.42, "end": 18274.66, "probability": 0.5383 }, { "start": 18275.42, "end": 18278.78, "probability": 0.6609 }, { "start": 18279.42, "end": 18283.01, "probability": 0.7351 } ], "segments_count": 6660, "words_count": 32499, "avg_words_per_segment": 4.8797, "avg_segment_duration": 1.8405, "avg_words_per_minute": 105.3636, "plenum_id": "10387", "duration": 18506.77, "title": null, "plenum_date": "2010-11-29" }