{ "source_type": "knesset", "source_id": "plenum", "source_entry_id": "104108", "quality_score": 0.8762, "per_segment_quality_scores": [ { "start": 82.0, "end": 82.0, "probability": 0.0 }, { "start": 82.0, "end": 82.0, "probability": 0.0 }, { "start": 82.0, "end": 82.0, "probability": 0.0 }, { "start": 82.0, "end": 82.0, "probability": 0.0 }, { "start": 82.3, "end": 83.36, "probability": 0.1397 }, { "start": 83.88, "end": 88.34, "probability": 0.7278 }, { "start": 88.76, "end": 89.34, "probability": 0.7737 }, { "start": 90.2, "end": 92.26, "probability": 0.8421 }, { "start": 92.88, "end": 94.18, "probability": 0.8487 }, { "start": 95.0, "end": 95.8, "probability": 0.6869 }, { "start": 95.84, "end": 99.3, "probability": 0.9171 }, { "start": 99.88, "end": 100.76, "probability": 0.6997 }, { "start": 101.7, "end": 103.66, "probability": 0.8251 }, { "start": 104.48, "end": 106.42, "probability": 0.2862 }, { "start": 106.98, "end": 111.28, "probability": 0.9953 }, { "start": 111.48, "end": 116.02, "probability": 0.9973 }, { "start": 116.86, "end": 119.16, "probability": 0.2024 }, { "start": 119.68, "end": 122.08, "probability": 0.1351 }, { "start": 122.62, "end": 127.18, "probability": 0.9541 }, { "start": 127.88, "end": 129.5, "probability": 0.9987 }, { "start": 130.38, "end": 134.06, "probability": 0.8429 }, { "start": 134.68, "end": 135.76, "probability": 0.9368 }, { "start": 138.78, "end": 141.26, "probability": 0.2321 }, { "start": 142.0, "end": 143.99, "probability": 0.67 }, { "start": 144.96, "end": 145.86, "probability": 0.5434 }, { "start": 146.44, "end": 146.76, "probability": 0.8272 }, { "start": 147.42, "end": 149.74, "probability": 0.3151 }, { "start": 150.54, "end": 150.78, "probability": 0.5731 }, { "start": 151.32, "end": 152.3, "probability": 0.8284 }, { "start": 152.86, "end": 153.66, "probability": 0.9028 }, { "start": 154.45, "end": 157.24, "probability": 0.8298 }, { "start": 159.22, "end": 163.06, "probability": 0.2556 }, { "start": 163.32, "end": 165.18, "probability": 0.0138 }, { "start": 171.84, "end": 173.02, "probability": 0.023 }, { "start": 174.2, "end": 176.42, "probability": 0.2004 }, { "start": 177.18, "end": 179.19, "probability": 0.2789 }, { "start": 180.68, "end": 182.26, "probability": 0.0261 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.0, "end": 237.0, "probability": 0.0 }, { "start": 237.12, "end": 237.68, "probability": 0.0369 }, { "start": 238.28, "end": 239.3, "probability": 0.5734 }, { "start": 241.14, "end": 245.46, "probability": 0.8243 }, { "start": 245.88, "end": 248.1, "probability": 0.8071 }, { "start": 268.02, "end": 269.6, "probability": 0.6461 }, { "start": 271.06, "end": 272.28, "probability": 0.7876 }, { "start": 273.9, "end": 277.77, "probability": 0.991 }, { "start": 278.04, "end": 278.94, "probability": 0.4719 }, { "start": 279.24, "end": 279.76, "probability": 0.661 }, { "start": 280.3, "end": 281.21, "probability": 0.9961 }, { "start": 281.84, "end": 282.9, "probability": 0.9686 }, { "start": 283.68, "end": 287.7, "probability": 0.9626 }, { "start": 288.42, "end": 290.46, "probability": 0.6875 }, { "start": 291.72, "end": 293.38, "probability": 0.9757 }, { "start": 294.72, "end": 295.72, "probability": 0.6548 }, { "start": 297.12, "end": 298.1, "probability": 0.7853 }, { "start": 298.92, "end": 300.28, "probability": 0.947 }, { "start": 300.44, "end": 304.36, "probability": 0.978 }, { "start": 305.7, "end": 306.12, "probability": 0.9492 }, { "start": 306.84, "end": 310.58, "probability": 0.9885 }, { "start": 311.28, "end": 312.52, "probability": 0.709 }, { "start": 313.06, "end": 315.68, "probability": 0.9617 }, { "start": 315.76, "end": 317.6, "probability": 0.7964 }, { "start": 318.4, "end": 321.6, "probability": 0.9238 }, { "start": 322.36, "end": 322.82, "probability": 0.8581 }, { "start": 323.54, "end": 324.44, "probability": 0.9248 }, { "start": 324.58, "end": 327.98, "probability": 0.993 }, { "start": 328.9, "end": 329.46, "probability": 0.7875 }, { "start": 330.46, "end": 331.24, "probability": 0.6654 }, { "start": 331.8, "end": 333.64, "probability": 0.9911 }, { "start": 334.26, "end": 336.14, "probability": 0.9889 }, { "start": 336.56, "end": 338.83, "probability": 0.9701 }, { "start": 339.6, "end": 340.34, "probability": 0.6632 }, { "start": 340.92, "end": 342.38, "probability": 0.8852 }, { "start": 343.16, "end": 346.16, "probability": 0.9966 }, { "start": 346.4, "end": 349.76, "probability": 0.8672 }, { "start": 350.46, "end": 352.17, "probability": 0.7854 }, { "start": 353.9, "end": 356.96, "probability": 0.9964 }, { "start": 358.02, "end": 359.54, "probability": 0.9814 }, { "start": 360.4, "end": 362.64, "probability": 0.6734 }, { "start": 364.38, "end": 365.1, "probability": 0.8796 }, { "start": 366.04, "end": 367.68, "probability": 0.9373 }, { "start": 368.1, "end": 369.26, "probability": 0.8968 }, { "start": 370.36, "end": 371.6, "probability": 0.9026 }, { "start": 372.44, "end": 374.76, "probability": 0.9965 }, { "start": 375.88, "end": 379.02, "probability": 0.9402 }, { "start": 380.98, "end": 382.7, "probability": 0.6579 }, { "start": 383.34, "end": 386.02, "probability": 0.9911 }, { "start": 386.66, "end": 387.68, "probability": 0.4821 }, { "start": 387.72, "end": 389.94, "probability": 0.8995 }, { "start": 390.46, "end": 391.74, "probability": 0.9988 }, { "start": 392.42, "end": 393.06, "probability": 0.7947 }, { "start": 393.72, "end": 395.8, "probability": 0.9243 }, { "start": 396.7, "end": 396.96, "probability": 0.6971 }, { "start": 397.96, "end": 399.24, "probability": 0.8417 }, { "start": 399.9, "end": 400.38, "probability": 0.7834 }, { "start": 401.84, "end": 402.66, "probability": 0.9713 }, { "start": 403.52, "end": 405.8, "probability": 0.9767 }, { "start": 408.44, "end": 408.96, "probability": 0.7006 }, { "start": 410.52, "end": 411.12, "probability": 0.8446 }, { "start": 411.18, "end": 411.82, "probability": 0.9467 }, { "start": 411.96, "end": 412.22, "probability": 0.8364 }, { "start": 412.22, "end": 413.38, "probability": 0.7496 }, { "start": 414.42, "end": 418.68, "probability": 0.865 }, { "start": 420.28, "end": 425.06, "probability": 0.9901 }, { "start": 425.94, "end": 426.6, "probability": 0.7692 }, { "start": 427.32, "end": 428.6, "probability": 0.7921 }, { "start": 429.22, "end": 431.98, "probability": 0.5951 }, { "start": 432.94, "end": 437.28, "probability": 0.9932 }, { "start": 439.04, "end": 439.44, "probability": 0.4538 }, { "start": 440.36, "end": 441.02, "probability": 0.7521 }, { "start": 443.68, "end": 444.62, "probability": 0.7133 }, { "start": 445.78, "end": 447.62, "probability": 0.6006 }, { "start": 448.84, "end": 455.42, "probability": 0.9059 }, { "start": 456.56, "end": 457.16, "probability": 0.9561 }, { "start": 458.48, "end": 459.66, "probability": 0.9029 }, { "start": 460.22, "end": 460.96, "probability": 0.9431 }, { "start": 461.7, "end": 463.08, "probability": 0.9268 }, { "start": 464.4, "end": 466.1, "probability": 0.9915 }, { "start": 466.94, "end": 470.38, "probability": 0.9956 }, { "start": 471.34, "end": 473.64, "probability": 0.8572 }, { "start": 475.16, "end": 477.44, "probability": 0.9961 }, { "start": 479.42, "end": 480.78, "probability": 0.8675 }, { "start": 481.16, "end": 483.66, "probability": 0.9613 }, { "start": 484.88, "end": 487.54, "probability": 0.9655 }, { "start": 488.52, "end": 490.32, "probability": 0.9892 }, { "start": 490.98, "end": 493.26, "probability": 0.9315 }, { "start": 495.06, "end": 496.62, "probability": 0.9968 }, { "start": 498.2, "end": 501.0, "probability": 0.9829 }, { "start": 501.8, "end": 503.6, "probability": 0.2585 }, { "start": 504.72, "end": 506.08, "probability": 0.7401 }, { "start": 507.34, "end": 509.22, "probability": 0.9028 }, { "start": 509.98, "end": 511.74, "probability": 0.7445 }, { "start": 512.26, "end": 515.34, "probability": 0.9529 }, { "start": 515.88, "end": 517.52, "probability": 0.8899 }, { "start": 518.3, "end": 519.12, "probability": 0.765 }, { "start": 520.5, "end": 521.16, "probability": 0.7219 }, { "start": 521.2, "end": 522.38, "probability": 0.9458 }, { "start": 522.52, "end": 522.91, "probability": 0.933 }, { "start": 523.68, "end": 530.2, "probability": 0.9696 }, { "start": 530.84, "end": 532.28, "probability": 0.9415 }, { "start": 532.82, "end": 534.36, "probability": 0.7649 }, { "start": 535.14, "end": 536.8, "probability": 0.6035 }, { "start": 538.26, "end": 539.86, "probability": 0.7694 }, { "start": 540.66, "end": 541.46, "probability": 0.9268 }, { "start": 542.1, "end": 542.44, "probability": 0.853 }, { "start": 542.96, "end": 543.66, "probability": 0.8076 }, { "start": 545.48, "end": 547.1, "probability": 0.8735 }, { "start": 547.86, "end": 549.92, "probability": 0.9587 }, { "start": 549.94, "end": 550.63, "probability": 0.5414 }, { "start": 550.78, "end": 551.36, "probability": 0.9041 }, { "start": 551.87, "end": 552.78, "probability": 0.9546 }, { "start": 553.84, "end": 555.16, "probability": 0.8421 }, { "start": 555.74, "end": 556.96, "probability": 0.9458 }, { "start": 557.5, "end": 562.02, "probability": 0.9904 }, { "start": 563.86, "end": 564.56, "probability": 0.7809 }, { "start": 564.66, "end": 568.82, "probability": 0.9223 }, { "start": 569.64, "end": 571.42, "probability": 0.9449 }, { "start": 571.42, "end": 572.75, "probability": 0.8264 }, { "start": 573.4, "end": 575.74, "probability": 0.9749 }, { "start": 576.36, "end": 579.04, "probability": 0.9751 }, { "start": 579.1, "end": 579.82, "probability": 0.8388 }, { "start": 580.0, "end": 580.42, "probability": 0.6806 }, { "start": 581.18, "end": 582.26, "probability": 0.735 }, { "start": 583.14, "end": 585.28, "probability": 0.992 }, { "start": 586.02, "end": 586.72, "probability": 0.7994 }, { "start": 587.51, "end": 589.92, "probability": 0.9797 }, { "start": 591.98, "end": 593.14, "probability": 0.9183 }, { "start": 593.4, "end": 594.68, "probability": 0.5967 }, { "start": 595.34, "end": 601.2, "probability": 0.9336 }, { "start": 601.34, "end": 603.34, "probability": 0.8362 }, { "start": 604.44, "end": 605.78, "probability": 0.8726 }, { "start": 605.86, "end": 607.16, "probability": 0.9902 }, { "start": 607.88, "end": 608.6, "probability": 0.6822 }, { "start": 608.76, "end": 610.06, "probability": 0.637 }, { "start": 610.74, "end": 611.46, "probability": 0.903 }, { "start": 613.28, "end": 615.26, "probability": 0.9971 }, { "start": 616.92, "end": 617.48, "probability": 0.9833 }, { "start": 617.56, "end": 618.38, "probability": 0.7877 }, { "start": 618.84, "end": 619.74, "probability": 0.9692 }, { "start": 619.88, "end": 620.54, "probability": 0.9644 }, { "start": 620.68, "end": 621.18, "probability": 0.9262 }, { "start": 621.52, "end": 622.58, "probability": 0.7565 }, { "start": 623.06, "end": 624.78, "probability": 0.9843 }, { "start": 625.7, "end": 630.0, "probability": 0.9915 }, { "start": 632.16, "end": 635.9, "probability": 0.9656 }, { "start": 636.12, "end": 636.68, "probability": 0.4967 }, { "start": 638.26, "end": 641.46, "probability": 0.9988 }, { "start": 642.22, "end": 643.48, "probability": 0.9425 }, { "start": 644.4, "end": 646.46, "probability": 0.8442 }, { "start": 647.8, "end": 649.54, "probability": 0.9178 }, { "start": 649.64, "end": 650.7, "probability": 0.8461 }, { "start": 651.04, "end": 651.76, "probability": 0.7594 }, { "start": 651.84, "end": 653.8, "probability": 0.7432 }, { "start": 653.86, "end": 654.64, "probability": 0.5622 }, { "start": 656.6, "end": 656.98, "probability": 0.4746 }, { "start": 657.0, "end": 658.34, "probability": 0.9146 }, { "start": 658.42, "end": 659.92, "probability": 0.9582 }, { "start": 662.58, "end": 663.4, "probability": 0.9761 }, { "start": 664.98, "end": 668.22, "probability": 0.9126 }, { "start": 668.78, "end": 669.26, "probability": 0.7219 }, { "start": 671.14, "end": 674.62, "probability": 0.896 }, { "start": 675.32, "end": 675.8, "probability": 0.3939 }, { "start": 676.38, "end": 678.06, "probability": 0.3582 }, { "start": 679.2, "end": 679.8, "probability": 0.7935 }, { "start": 680.82, "end": 683.46, "probability": 0.8298 }, { "start": 685.72, "end": 686.32, "probability": 0.4712 }, { "start": 686.72, "end": 687.7, "probability": 0.985 }, { "start": 688.94, "end": 690.82, "probability": 0.9158 }, { "start": 691.56, "end": 694.7, "probability": 0.9956 }, { "start": 695.44, "end": 695.92, "probability": 0.8241 }, { "start": 696.04, "end": 697.88, "probability": 0.9117 }, { "start": 698.24, "end": 699.4, "probability": 0.9182 }, { "start": 699.76, "end": 701.32, "probability": 0.8541 }, { "start": 701.4, "end": 702.42, "probability": 0.5033 }, { "start": 702.52, "end": 703.58, "probability": 0.7974 }, { "start": 703.7, "end": 704.96, "probability": 0.9862 }, { "start": 705.6, "end": 706.62, "probability": 0.9561 }, { "start": 707.22, "end": 708.0, "probability": 0.891 }, { "start": 710.24, "end": 710.54, "probability": 0.6371 }, { "start": 711.2, "end": 713.82, "probability": 0.8471 }, { "start": 714.86, "end": 716.64, "probability": 0.9944 }, { "start": 717.2, "end": 718.84, "probability": 0.9768 }, { "start": 719.3, "end": 719.8, "probability": 0.9644 }, { "start": 720.7, "end": 721.12, "probability": 0.7525 }, { "start": 721.46, "end": 722.92, "probability": 0.9736 }, { "start": 723.28, "end": 725.04, "probability": 0.9946 }, { "start": 725.64, "end": 727.7, "probability": 0.9926 }, { "start": 728.16, "end": 730.68, "probability": 0.9985 }, { "start": 730.88, "end": 732.45, "probability": 0.95 }, { "start": 733.94, "end": 737.58, "probability": 0.8303 }, { "start": 737.76, "end": 738.9, "probability": 0.9473 }, { "start": 738.98, "end": 739.22, "probability": 0.3534 }, { "start": 739.26, "end": 739.72, "probability": 0.635 }, { "start": 740.66, "end": 741.46, "probability": 0.7429 }, { "start": 742.32, "end": 744.99, "probability": 0.9852 }, { "start": 745.16, "end": 746.32, "probability": 0.9868 }, { "start": 747.9, "end": 748.36, "probability": 0.4919 }, { "start": 748.64, "end": 751.06, "probability": 0.8192 }, { "start": 751.18, "end": 752.76, "probability": 0.6444 }, { "start": 752.88, "end": 753.25, "probability": 0.4235 }, { "start": 754.12, "end": 755.06, "probability": 0.861 }, { "start": 755.24, "end": 759.34, "probability": 0.9004 }, { "start": 759.46, "end": 759.92, "probability": 0.7456 }, { "start": 760.68, "end": 761.88, "probability": 0.5474 }, { "start": 762.46, "end": 767.14, "probability": 0.9518 }, { "start": 767.8, "end": 769.18, "probability": 0.6986 }, { "start": 770.2, "end": 771.38, "probability": 0.4276 }, { "start": 771.58, "end": 772.0, "probability": 0.3354 }, { "start": 772.04, "end": 773.54, "probability": 0.6596 }, { "start": 773.78, "end": 774.82, "probability": 0.7864 }, { "start": 775.36, "end": 776.6, "probability": 0.8541 }, { "start": 777.02, "end": 778.44, "probability": 0.9729 }, { "start": 778.54, "end": 779.16, "probability": 0.3535 }, { "start": 779.6, "end": 780.84, "probability": 0.5547 }, { "start": 781.56, "end": 782.38, "probability": 0.7932 }, { "start": 783.0, "end": 784.8, "probability": 0.9976 }, { "start": 786.34, "end": 789.32, "probability": 0.9702 }, { "start": 789.56, "end": 790.46, "probability": 0.8332 }, { "start": 790.74, "end": 792.6, "probability": 0.9476 }, { "start": 793.94, "end": 795.78, "probability": 0.7495 }, { "start": 797.14, "end": 798.42, "probability": 0.7781 }, { "start": 799.0, "end": 801.02, "probability": 0.9836 }, { "start": 802.34, "end": 804.14, "probability": 0.6937 }, { "start": 805.4, "end": 809.0, "probability": 0.9971 }, { "start": 809.42, "end": 812.5, "probability": 0.908 }, { "start": 813.6, "end": 818.42, "probability": 0.8867 }, { "start": 819.92, "end": 820.78, "probability": 0.9776 }, { "start": 822.74, "end": 824.16, "probability": 0.9443 }, { "start": 824.82, "end": 826.94, "probability": 0.8813 }, { "start": 828.54, "end": 829.38, "probability": 0.7616 }, { "start": 830.4, "end": 831.54, "probability": 0.9747 }, { "start": 832.28, "end": 833.42, "probability": 0.8044 }, { "start": 834.0, "end": 838.4, "probability": 0.7725 }, { "start": 839.02, "end": 839.02, "probability": 0.3997 }, { "start": 839.56, "end": 840.3, "probability": 0.9917 }, { "start": 840.6, "end": 843.46, "probability": 0.9312 }, { "start": 843.86, "end": 844.72, "probability": 0.8099 }, { "start": 845.88, "end": 846.88, "probability": 0.9543 }, { "start": 847.4, "end": 850.9, "probability": 0.9826 }, { "start": 852.1, "end": 853.14, "probability": 0.9081 }, { "start": 853.94, "end": 855.38, "probability": 0.9564 }, { "start": 856.32, "end": 857.4, "probability": 0.9912 }, { "start": 858.6, "end": 860.92, "probability": 0.9645 }, { "start": 861.28, "end": 863.68, "probability": 0.9703 }, { "start": 864.26, "end": 866.76, "probability": 0.9799 }, { "start": 867.76, "end": 870.64, "probability": 0.994 }, { "start": 871.44, "end": 872.46, "probability": 0.8745 }, { "start": 873.06, "end": 876.48, "probability": 0.9158 }, { "start": 877.1, "end": 880.52, "probability": 0.8131 }, { "start": 880.64, "end": 881.71, "probability": 0.3401 }, { "start": 882.78, "end": 884.44, "probability": 0.7494 }, { "start": 885.56, "end": 887.72, "probability": 0.9694 }, { "start": 887.84, "end": 889.3, "probability": 0.8689 }, { "start": 889.44, "end": 890.8, "probability": 0.8588 }, { "start": 891.76, "end": 892.58, "probability": 0.5152 }, { "start": 893.66, "end": 894.56, "probability": 0.9722 }, { "start": 895.48, "end": 896.84, "probability": 0.6502 }, { "start": 896.86, "end": 898.16, "probability": 0.7934 }, { "start": 898.76, "end": 900.85, "probability": 0.6426 }, { "start": 901.96, "end": 904.6, "probability": 0.9744 }, { "start": 904.6, "end": 908.2, "probability": 0.9836 }, { "start": 909.3, "end": 910.8, "probability": 0.7727 }, { "start": 911.16, "end": 911.4, "probability": 0.5087 }, { "start": 912.1, "end": 916.52, "probability": 0.6533 }, { "start": 925.92, "end": 925.92, "probability": 0.1634 }, { "start": 925.92, "end": 925.92, "probability": 0.1322 }, { "start": 925.92, "end": 925.94, "probability": 0.2619 }, { "start": 925.94, "end": 925.94, "probability": 0.0614 }, { "start": 925.94, "end": 925.94, "probability": 0.0296 }, { "start": 938.9, "end": 943.94, "probability": 0.5144 }, { "start": 959.06, "end": 965.0, "probability": 0.9913 }, { "start": 966.7, "end": 967.51, "probability": 0.7324 }, { "start": 968.7, "end": 970.36, "probability": 0.8773 }, { "start": 971.06, "end": 972.91, "probability": 0.9971 }, { "start": 974.86, "end": 975.74, "probability": 0.9412 }, { "start": 976.02, "end": 977.72, "probability": 0.2124 }, { "start": 977.72, "end": 979.14, "probability": 0.7119 }, { "start": 979.98, "end": 981.1, "probability": 0.9906 }, { "start": 982.38, "end": 982.58, "probability": 0.3671 }, { "start": 982.82, "end": 983.62, "probability": 0.9042 }, { "start": 984.24, "end": 985.16, "probability": 0.9993 }, { "start": 986.04, "end": 986.64, "probability": 0.9996 }, { "start": 987.82, "end": 990.92, "probability": 0.9792 }, { "start": 992.2, "end": 993.68, "probability": 0.999 }, { "start": 993.76, "end": 994.84, "probability": 0.8551 }, { "start": 994.92, "end": 995.84, "probability": 0.9543 }, { "start": 996.56, "end": 997.84, "probability": 0.9614 }, { "start": 999.02, "end": 999.64, "probability": 0.6847 }, { "start": 1000.54, "end": 1003.68, "probability": 0.9534 }, { "start": 1004.58, "end": 1004.58, "probability": 0.0766 }, { "start": 1004.58, "end": 1004.58, "probability": 0.4957 }, { "start": 1004.58, "end": 1006.06, "probability": 0.2768 }, { "start": 1007.12, "end": 1008.1, "probability": 0.8373 }, { "start": 1008.76, "end": 1012.0, "probability": 0.5796 }, { "start": 1023.34, "end": 1025.92, "probability": 0.7679 }, { "start": 1034.9, "end": 1042.46, "probability": 0.0124 }, { "start": 1052.56, "end": 1053.44, "probability": 0.0515 }, { "start": 1053.74, "end": 1054.68, "probability": 0.3958 }, { "start": 1054.84, "end": 1060.06, "probability": 0.06 }, { "start": 1060.36, "end": 1062.82, "probability": 0.0944 }, { "start": 1067.23, "end": 1068.02, "probability": 0.1171 }, { "start": 1068.02, "end": 1068.43, "probability": 0.0348 }, { "start": 1069.33, "end": 1071.32, "probability": 0.0187 }, { "start": 1100.0, "end": 1100.0, "probability": 0.0 }, { "start": 1100.0, "end": 1100.0, "probability": 0.0 }, { "start": 1100.0, "end": 1100.0, "probability": 0.0 }, { "start": 1100.0, "end": 1100.0, "probability": 0.0 }, { "start": 1100.0, "end": 1100.0, "probability": 0.0 }, { "start": 1100.0, "end": 1100.0, "probability": 0.0 }, { "start": 1100.0, "end": 1100.0, "probability": 0.0 }, { "start": 1100.0, "end": 1100.0, "probability": 0.0 }, { "start": 1100.0, "end": 1100.0, "probability": 0.0 }, { "start": 1100.0, "end": 1100.0, "probability": 0.0 }, { "start": 1100.0, "end": 1100.0, "probability": 0.0 }, { "start": 1100.0, "end": 1100.0, "probability": 0.0 }, { "start": 1100.0, "end": 1100.0, "probability": 0.0 }, { "start": 1100.0, "end": 1100.0, "probability": 0.0 }, { "start": 1100.0, "end": 1100.0, "probability": 0.0 }, { "start": 1100.0, "end": 1100.0, "probability": 0.0 }, { "start": 1100.0, "end": 1100.0, "probability": 0.0 }, { "start": 1100.0, "end": 1100.0, "probability": 0.0 }, { "start": 1100.0, "end": 1100.0, "probability": 0.0 }, { "start": 1100.0, "end": 1100.0, "probability": 0.0 }, { "start": 1100.0, "end": 1100.0, "probability": 0.0 }, { "start": 1100.0, "end": 1100.0, "probability": 0.0 }, { "start": 1100.0, "end": 1100.0, "probability": 0.0 }, { "start": 1100.0, "end": 1100.0, "probability": 0.0 }, { "start": 1100.0, "end": 1100.0, "probability": 0.0 }, { "start": 1100.0, "end": 1100.0, "probability": 0.0 }, { "start": 1100.0, "end": 1100.0, "probability": 0.0 }, { "start": 1100.08, "end": 1100.24, "probability": 0.2183 }, { "start": 1100.24, "end": 1100.24, "probability": 0.0208 }, { "start": 1100.24, "end": 1100.24, "probability": 0.0485 }, { "start": 1100.24, "end": 1102.56, "probability": 0.4585 }, { "start": 1103.06, "end": 1104.66, "probability": 0.791 }, { "start": 1105.12, "end": 1110.08, "probability": 0.8859 }, { "start": 1110.55, "end": 1113.86, "probability": 0.9747 }, { "start": 1113.94, "end": 1114.46, "probability": 0.7123 }, { "start": 1115.02, "end": 1115.52, "probability": 0.9036 }, { "start": 1116.86, "end": 1118.04, "probability": 0.787 }, { "start": 1119.0, "end": 1121.98, "probability": 0.9965 }, { "start": 1122.7, "end": 1123.0, "probability": 0.5949 }, { "start": 1123.12, "end": 1123.56, "probability": 0.7301 }, { "start": 1123.92, "end": 1128.44, "probability": 0.8579 }, { "start": 1128.96, "end": 1129.24, "probability": 0.8705 }, { "start": 1129.3, "end": 1130.65, "probability": 0.972 }, { "start": 1131.16, "end": 1134.64, "probability": 0.9954 }, { "start": 1135.62, "end": 1136.08, "probability": 0.4657 }, { "start": 1136.54, "end": 1138.42, "probability": 0.9692 }, { "start": 1138.44, "end": 1139.26, "probability": 0.9419 }, { "start": 1139.84, "end": 1142.24, "probability": 0.9785 }, { "start": 1142.34, "end": 1146.52, "probability": 0.9692 }, { "start": 1147.12, "end": 1149.3, "probability": 0.9472 }, { "start": 1149.9, "end": 1150.68, "probability": 0.8546 }, { "start": 1151.22, "end": 1153.74, "probability": 0.9671 }, { "start": 1154.22, "end": 1156.26, "probability": 0.9983 }, { "start": 1157.12, "end": 1158.52, "probability": 0.9293 }, { "start": 1158.72, "end": 1161.4, "probability": 0.9785 }, { "start": 1161.94, "end": 1163.2, "probability": 0.9213 }, { "start": 1163.56, "end": 1164.68, "probability": 0.7881 }, { "start": 1165.46, "end": 1166.5, "probability": 0.8279 }, { "start": 1166.68, "end": 1167.46, "probability": 0.6319 }, { "start": 1168.92, "end": 1171.96, "probability": 0.646 }, { "start": 1173.14, "end": 1174.02, "probability": 0.995 }, { "start": 1174.84, "end": 1181.02, "probability": 0.989 }, { "start": 1183.97, "end": 1185.04, "probability": 0.2252 }, { "start": 1185.04, "end": 1186.74, "probability": 0.8444 }, { "start": 1187.14, "end": 1187.82, "probability": 0.6799 }, { "start": 1188.91, "end": 1190.35, "probability": 0.986 }, { "start": 1190.97, "end": 1194.62, "probability": 0.8357 }, { "start": 1195.42, "end": 1198.14, "probability": 0.9937 }, { "start": 1198.28, "end": 1200.48, "probability": 0.9944 }, { "start": 1200.58, "end": 1201.84, "probability": 0.7749 }, { "start": 1202.88, "end": 1205.8, "probability": 0.8546 }, { "start": 1205.9, "end": 1210.2, "probability": 0.9368 }, { "start": 1211.52, "end": 1214.82, "probability": 0.9841 }, { "start": 1215.24, "end": 1215.95, "probability": 0.8695 }, { "start": 1216.8, "end": 1216.84, "probability": 0.8613 }, { "start": 1217.48, "end": 1222.02, "probability": 0.9503 }, { "start": 1222.96, "end": 1223.56, "probability": 0.7422 }, { "start": 1224.18, "end": 1225.34, "probability": 0.9987 }, { "start": 1225.76, "end": 1226.92, "probability": 0.9875 }, { "start": 1227.54, "end": 1228.06, "probability": 0.7917 }, { "start": 1228.68, "end": 1229.56, "probability": 0.9957 }, { "start": 1229.72, "end": 1230.2, "probability": 0.9346 }, { "start": 1230.36, "end": 1231.78, "probability": 0.9939 }, { "start": 1232.08, "end": 1233.5, "probability": 0.993 }, { "start": 1234.2, "end": 1236.2, "probability": 0.6904 }, { "start": 1237.1, "end": 1239.8, "probability": 0.8962 }, { "start": 1240.48, "end": 1241.16, "probability": 0.8035 }, { "start": 1242.18, "end": 1242.9, "probability": 0.6768 }, { "start": 1243.96, "end": 1246.4, "probability": 0.9834 }, { "start": 1247.38, "end": 1248.9, "probability": 0.9718 }, { "start": 1249.18, "end": 1251.16, "probability": 0.9937 }, { "start": 1251.6, "end": 1253.26, "probability": 0.9238 }, { "start": 1253.94, "end": 1254.63, "probability": 0.9268 }, { "start": 1254.92, "end": 1255.74, "probability": 0.8742 }, { "start": 1256.16, "end": 1257.86, "probability": 0.996 }, { "start": 1258.5, "end": 1261.26, "probability": 0.432 }, { "start": 1261.9, "end": 1263.32, "probability": 0.9983 }, { "start": 1263.42, "end": 1263.74, "probability": 0.9275 }, { "start": 1263.8, "end": 1264.22, "probability": 0.8101 }, { "start": 1264.22, "end": 1264.36, "probability": 0.6367 }, { "start": 1264.46, "end": 1266.22, "probability": 0.9688 }, { "start": 1266.42, "end": 1268.0, "probability": 0.9504 }, { "start": 1268.6, "end": 1272.02, "probability": 0.9857 }, { "start": 1272.38, "end": 1273.96, "probability": 0.97 }, { "start": 1274.48, "end": 1277.9, "probability": 0.9377 }, { "start": 1278.4, "end": 1280.72, "probability": 0.959 }, { "start": 1281.24, "end": 1283.78, "probability": 0.9937 }, { "start": 1284.1, "end": 1284.86, "probability": 0.784 }, { "start": 1285.58, "end": 1286.42, "probability": 0.9663 }, { "start": 1287.14, "end": 1291.1, "probability": 0.9989 }, { "start": 1291.6, "end": 1292.7, "probability": 0.6817 }, { "start": 1294.0, "end": 1294.63, "probability": 0.9924 }, { "start": 1295.7, "end": 1297.19, "probability": 0.9968 }, { "start": 1297.24, "end": 1298.08, "probability": 0.7882 }, { "start": 1298.14, "end": 1299.86, "probability": 0.8771 }, { "start": 1301.3, "end": 1303.86, "probability": 0.5023 }, { "start": 1304.02, "end": 1306.24, "probability": 0.9891 }, { "start": 1306.64, "end": 1309.14, "probability": 0.9896 }, { "start": 1309.8, "end": 1310.86, "probability": 0.6819 }, { "start": 1311.58, "end": 1312.08, "probability": 0.8275 }, { "start": 1312.72, "end": 1315.24, "probability": 0.9827 }, { "start": 1316.5, "end": 1317.9, "probability": 0.9945 }, { "start": 1318.02, "end": 1318.92, "probability": 0.7421 }, { "start": 1319.96, "end": 1321.32, "probability": 0.5048 }, { "start": 1321.82, "end": 1322.74, "probability": 0.7871 }, { "start": 1323.36, "end": 1323.92, "probability": 0.2362 }, { "start": 1323.92, "end": 1328.34, "probability": 0.2684 }, { "start": 1330.32, "end": 1330.98, "probability": 0.2835 }, { "start": 1330.98, "end": 1330.98, "probability": 0.0615 }, { "start": 1330.98, "end": 1332.32, "probability": 0.3915 }, { "start": 1332.82, "end": 1334.44, "probability": 0.8385 }, { "start": 1335.04, "end": 1337.2, "probability": 0.5041 }, { "start": 1337.28, "end": 1337.62, "probability": 0.6774 }, { "start": 1338.06, "end": 1339.71, "probability": 0.6665 }, { "start": 1339.94, "end": 1340.37, "probability": 0.217 }, { "start": 1340.72, "end": 1340.9, "probability": 0.8866 }, { "start": 1340.98, "end": 1341.24, "probability": 0.5907 }, { "start": 1341.26, "end": 1344.44, "probability": 0.8585 }, { "start": 1344.58, "end": 1345.44, "probability": 0.9264 }, { "start": 1345.98, "end": 1347.92, "probability": 0.9508 }, { "start": 1348.52, "end": 1350.28, "probability": 0.9678 }, { "start": 1350.66, "end": 1353.86, "probability": 0.9432 }, { "start": 1353.86, "end": 1357.26, "probability": 0.9758 }, { "start": 1357.86, "end": 1358.5, "probability": 0.6225 }, { "start": 1359.02, "end": 1360.28, "probability": 0.9049 }, { "start": 1360.36, "end": 1362.76, "probability": 0.5983 }, { "start": 1363.16, "end": 1365.94, "probability": 0.8973 }, { "start": 1366.14, "end": 1368.16, "probability": 0.7428 }, { "start": 1368.22, "end": 1369.4, "probability": 0.667 }, { "start": 1369.74, "end": 1371.99, "probability": 0.9961 }, { "start": 1372.58, "end": 1374.14, "probability": 0.9896 }, { "start": 1374.44, "end": 1377.1, "probability": 0.9391 }, { "start": 1377.84, "end": 1381.36, "probability": 0.9941 }, { "start": 1381.36, "end": 1383.68, "probability": 0.9955 }, { "start": 1384.38, "end": 1386.04, "probability": 0.9766 }, { "start": 1386.2, "end": 1388.26, "probability": 0.8356 }, { "start": 1388.82, "end": 1392.34, "probability": 0.9941 }, { "start": 1392.88, "end": 1393.54, "probability": 0.8478 }, { "start": 1393.64, "end": 1394.1, "probability": 0.8733 }, { "start": 1394.58, "end": 1396.38, "probability": 0.9562 }, { "start": 1396.54, "end": 1396.88, "probability": 0.6335 }, { "start": 1397.0, "end": 1397.76, "probability": 0.497 }, { "start": 1398.64, "end": 1400.1, "probability": 0.9928 }, { "start": 1400.62, "end": 1401.34, "probability": 0.941 }, { "start": 1402.0, "end": 1402.98, "probability": 0.9961 }, { "start": 1403.48, "end": 1405.06, "probability": 0.7983 }, { "start": 1405.86, "end": 1407.62, "probability": 0.9547 }, { "start": 1408.08, "end": 1409.58, "probability": 0.8883 }, { "start": 1410.46, "end": 1412.56, "probability": 0.8936 }, { "start": 1412.7, "end": 1414.29, "probability": 0.7006 }, { "start": 1415.32, "end": 1416.95, "probability": 0.9629 }, { "start": 1417.12, "end": 1417.94, "probability": 0.7822 }, { "start": 1418.48, "end": 1419.34, "probability": 0.6226 }, { "start": 1420.12, "end": 1422.22, "probability": 0.8986 }, { "start": 1422.56, "end": 1424.22, "probability": 0.9185 }, { "start": 1424.52, "end": 1425.88, "probability": 0.8492 }, { "start": 1427.1, "end": 1429.4, "probability": 0.9849 }, { "start": 1430.16, "end": 1431.22, "probability": 0.9847 }, { "start": 1431.38, "end": 1433.78, "probability": 0.9673 }, { "start": 1434.44, "end": 1437.38, "probability": 0.2916 }, { "start": 1437.38, "end": 1437.38, "probability": 0.0452 }, { "start": 1437.38, "end": 1439.28, "probability": 0.4833 }, { "start": 1440.46, "end": 1441.3, "probability": 0.7833 }, { "start": 1442.06, "end": 1443.58, "probability": 0.6673 }, { "start": 1443.68, "end": 1444.94, "probability": 0.989 }, { "start": 1444.94, "end": 1446.92, "probability": 0.8969 }, { "start": 1447.4, "end": 1447.92, "probability": 0.4187 }, { "start": 1449.02, "end": 1449.42, "probability": 0.0181 }, { "start": 1449.42, "end": 1450.5, "probability": 0.5563 }, { "start": 1450.7, "end": 1451.9, "probability": 0.9785 }, { "start": 1452.12, "end": 1453.6, "probability": 0.9533 }, { "start": 1454.64, "end": 1454.84, "probability": 0.782 }, { "start": 1454.86, "end": 1456.54, "probability": 0.9791 }, { "start": 1456.68, "end": 1460.78, "probability": 0.9842 }, { "start": 1460.88, "end": 1461.29, "probability": 0.887 }, { "start": 1461.38, "end": 1462.4, "probability": 0.999 }, { "start": 1463.64, "end": 1466.06, "probability": 0.6247 }, { "start": 1466.72, "end": 1467.69, "probability": 0.7794 }, { "start": 1468.14, "end": 1469.26, "probability": 0.4308 }, { "start": 1469.3, "end": 1470.42, "probability": 0.7607 }, { "start": 1470.84, "end": 1474.14, "probability": 0.9968 }, { "start": 1474.68, "end": 1475.6, "probability": 0.9432 }, { "start": 1476.36, "end": 1476.76, "probability": 0.6903 }, { "start": 1476.9, "end": 1477.7, "probability": 0.8441 }, { "start": 1477.78, "end": 1481.06, "probability": 0.9903 }, { "start": 1481.26, "end": 1481.76, "probability": 0.7994 }, { "start": 1482.64, "end": 1483.24, "probability": 0.7719 }, { "start": 1483.64, "end": 1487.0, "probability": 0.7337 }, { "start": 1487.56, "end": 1492.56, "probability": 0.9924 }, { "start": 1493.08, "end": 1494.04, "probability": 0.9214 }, { "start": 1495.76, "end": 1498.24, "probability": 0.7476 }, { "start": 1498.64, "end": 1500.86, "probability": 0.9558 }, { "start": 1501.18, "end": 1502.08, "probability": 0.891 }, { "start": 1502.64, "end": 1503.42, "probability": 0.9795 }, { "start": 1503.98, "end": 1504.78, "probability": 0.8304 }, { "start": 1505.32, "end": 1506.58, "probability": 0.9298 }, { "start": 1507.42, "end": 1508.7, "probability": 0.927 }, { "start": 1508.88, "end": 1510.22, "probability": 0.7767 }, { "start": 1510.24, "end": 1512.14, "probability": 0.9851 }, { "start": 1512.24, "end": 1512.5, "probability": 0.7734 }, { "start": 1513.04, "end": 1513.56, "probability": 0.9615 }, { "start": 1515.28, "end": 1518.18, "probability": 0.8804 }, { "start": 1518.76, "end": 1520.36, "probability": 0.9312 }, { "start": 1520.8, "end": 1524.2, "probability": 0.9897 }, { "start": 1524.54, "end": 1527.34, "probability": 0.9976 }, { "start": 1527.94, "end": 1529.22, "probability": 0.9605 }, { "start": 1529.74, "end": 1530.44, "probability": 0.729 }, { "start": 1530.56, "end": 1530.98, "probability": 0.0085 }, { "start": 1531.54, "end": 1534.01, "probability": 0.9521 }, { "start": 1534.4, "end": 1535.48, "probability": 0.9874 }, { "start": 1536.4, "end": 1540.68, "probability": 0.9196 }, { "start": 1541.38, "end": 1542.8, "probability": 0.9632 }, { "start": 1542.92, "end": 1545.9, "probability": 0.9596 }, { "start": 1546.04, "end": 1547.8, "probability": 0.9951 }, { "start": 1548.2, "end": 1548.99, "probability": 0.9311 }, { "start": 1549.64, "end": 1553.13, "probability": 0.9689 }, { "start": 1554.73, "end": 1558.42, "probability": 0.9789 }, { "start": 1558.88, "end": 1559.6, "probability": 0.9683 }, { "start": 1559.68, "end": 1560.2, "probability": 0.937 }, { "start": 1560.28, "end": 1560.62, "probability": 0.7683 }, { "start": 1565.56, "end": 1568.02, "probability": 0.7047 }, { "start": 1569.43, "end": 1571.14, "probability": 0.7818 }, { "start": 1571.86, "end": 1572.78, "probability": 0.9814 }, { "start": 1573.06, "end": 1574.7, "probability": 0.9329 }, { "start": 1575.04, "end": 1576.32, "probability": 0.9792 }, { "start": 1576.54, "end": 1577.16, "probability": 0.9414 }, { "start": 1579.06, "end": 1580.19, "probability": 0.9814 }, { "start": 1581.34, "end": 1582.86, "probability": 0.9848 }, { "start": 1584.7, "end": 1585.36, "probability": 0.4294 }, { "start": 1586.26, "end": 1586.82, "probability": 0.6965 }, { "start": 1586.9, "end": 1587.64, "probability": 0.9478 }, { "start": 1587.96, "end": 1589.34, "probability": 0.9283 }, { "start": 1589.36, "end": 1590.4, "probability": 0.8813 }, { "start": 1590.42, "end": 1592.82, "probability": 0.9802 }, { "start": 1592.82, "end": 1594.84, "probability": 0.9945 }, { "start": 1595.78, "end": 1596.66, "probability": 0.8966 }, { "start": 1597.22, "end": 1599.94, "probability": 0.9395 }, { "start": 1599.98, "end": 1601.86, "probability": 0.882 }, { "start": 1602.64, "end": 1603.98, "probability": 0.9606 }, { "start": 1605.0, "end": 1609.92, "probability": 0.9878 }, { "start": 1610.54, "end": 1611.28, "probability": 0.664 }, { "start": 1612.02, "end": 1614.1, "probability": 0.9789 }, { "start": 1614.18, "end": 1614.4, "probability": 0.5133 }, { "start": 1614.88, "end": 1618.28, "probability": 0.9834 }, { "start": 1619.24, "end": 1619.9, "probability": 0.7147 }, { "start": 1620.44, "end": 1620.78, "probability": 0.9037 }, { "start": 1621.38, "end": 1623.3, "probability": 0.8705 }, { "start": 1623.8, "end": 1624.66, "probability": 0.9976 }, { "start": 1624.76, "end": 1628.02, "probability": 0.9856 }, { "start": 1628.16, "end": 1629.0, "probability": 0.5164 }, { "start": 1629.68, "end": 1633.48, "probability": 0.9963 }, { "start": 1634.08, "end": 1637.3, "probability": 0.9968 }, { "start": 1637.66, "end": 1640.38, "probability": 0.9993 }, { "start": 1641.48, "end": 1642.8, "probability": 0.9995 }, { "start": 1643.34, "end": 1645.84, "probability": 0.5326 }, { "start": 1645.94, "end": 1649.6, "probability": 0.9536 }, { "start": 1649.6, "end": 1650.9, "probability": 0.6618 }, { "start": 1652.39, "end": 1654.4, "probability": 0.9574 }, { "start": 1655.87, "end": 1658.4, "probability": 0.8943 }, { "start": 1659.36, "end": 1661.46, "probability": 0.6421 }, { "start": 1661.84, "end": 1662.54, "probability": 0.9692 }, { "start": 1662.7, "end": 1664.48, "probability": 0.9792 }, { "start": 1664.94, "end": 1665.18, "probability": 0.8652 }, { "start": 1665.72, "end": 1668.02, "probability": 0.9333 }, { "start": 1668.96, "end": 1671.82, "probability": 0.6649 }, { "start": 1672.5, "end": 1673.64, "probability": 0.9854 }, { "start": 1673.78, "end": 1676.82, "probability": 0.9784 }, { "start": 1677.3, "end": 1677.58, "probability": 0.4003 }, { "start": 1677.94, "end": 1678.82, "probability": 0.8351 }, { "start": 1679.38, "end": 1679.76, "probability": 0.6095 }, { "start": 1680.2, "end": 1680.9, "probability": 0.8345 }, { "start": 1681.24, "end": 1682.98, "probability": 0.9853 }, { "start": 1683.7, "end": 1684.96, "probability": 0.6605 }, { "start": 1685.06, "end": 1686.04, "probability": 0.5265 }, { "start": 1686.8, "end": 1690.52, "probability": 0.7723 }, { "start": 1690.92, "end": 1693.18, "probability": 0.9763 }, { "start": 1693.68, "end": 1694.56, "probability": 0.9841 }, { "start": 1695.22, "end": 1700.36, "probability": 0.9869 }, { "start": 1703.12, "end": 1704.44, "probability": 0.8088 }, { "start": 1704.48, "end": 1704.48, "probability": 0.8385 }, { "start": 1704.5, "end": 1704.88, "probability": 0.4808 }, { "start": 1704.98, "end": 1706.04, "probability": 0.9795 }, { "start": 1706.68, "end": 1707.6, "probability": 0.9578 }, { "start": 1707.62, "end": 1710.22, "probability": 0.3591 }, { "start": 1710.42, "end": 1711.3, "probability": 0.1875 }, { "start": 1711.32, "end": 1712.58, "probability": 0.2693 }, { "start": 1712.88, "end": 1713.12, "probability": 0.3699 }, { "start": 1713.36, "end": 1714.08, "probability": 0.6697 }, { "start": 1714.12, "end": 1714.72, "probability": 0.894 }, { "start": 1714.8, "end": 1715.6, "probability": 0.9908 }, { "start": 1716.3, "end": 1717.39, "probability": 0.194 }, { "start": 1719.47, "end": 1720.42, "probability": 0.3287 }, { "start": 1720.74, "end": 1721.1, "probability": 0.0088 }, { "start": 1721.54, "end": 1722.48, "probability": 0.4187 }, { "start": 1722.54, "end": 1723.38, "probability": 0.772 }, { "start": 1723.8, "end": 1725.92, "probability": 0.5731 }, { "start": 1726.2, "end": 1726.2, "probability": 0.2766 }, { "start": 1726.34, "end": 1726.8, "probability": 0.3475 }, { "start": 1728.84, "end": 1728.84, "probability": 0.3582 }, { "start": 1728.84, "end": 1729.58, "probability": 0.0948 }, { "start": 1730.0, "end": 1730.52, "probability": 0.4561 }, { "start": 1730.52, "end": 1730.64, "probability": 0.5107 }, { "start": 1730.64, "end": 1732.82, "probability": 0.3906 }, { "start": 1732.88, "end": 1734.06, "probability": 0.5418 }, { "start": 1734.72, "end": 1737.6, "probability": 0.1842 }, { "start": 1738.16, "end": 1739.5, "probability": 0.1635 }, { "start": 1739.62, "end": 1739.62, "probability": 0.3048 }, { "start": 1739.62, "end": 1743.74, "probability": 0.8461 }, { "start": 1744.74, "end": 1747.94, "probability": 0.9872 }, { "start": 1748.68, "end": 1750.9, "probability": 0.7564 }, { "start": 1751.42, "end": 1751.52, "probability": 0.2916 }, { "start": 1751.84, "end": 1754.98, "probability": 0.586 }, { "start": 1756.91, "end": 1758.15, "probability": 0.4977 }, { "start": 1758.42, "end": 1758.42, "probability": 0.1462 }, { "start": 1758.48, "end": 1759.2, "probability": 0.4693 }, { "start": 1759.22, "end": 1761.92, "probability": 0.9234 }, { "start": 1762.2, "end": 1763.7, "probability": 0.2358 }, { "start": 1763.82, "end": 1763.89, "probability": 0.3345 }, { "start": 1764.12, "end": 1765.22, "probability": 0.9071 }, { "start": 1766.08, "end": 1767.23, "probability": 0.635 }, { "start": 1768.43, "end": 1769.47, "probability": 0.8784 }, { "start": 1769.7, "end": 1771.82, "probability": 0.8211 }, { "start": 1773.92, "end": 1774.22, "probability": 0.026 }, { "start": 1774.22, "end": 1774.36, "probability": 0.1051 }, { "start": 1774.36, "end": 1774.72, "probability": 0.1651 }, { "start": 1776.48, "end": 1777.44, "probability": 0.8076 }, { "start": 1778.0, "end": 1778.58, "probability": 0.7657 }, { "start": 1778.58, "end": 1780.0, "probability": 0.939 }, { "start": 1780.86, "end": 1781.23, "probability": 0.3841 }, { "start": 1781.92, "end": 1782.26, "probability": 0.2298 }, { "start": 1782.26, "end": 1782.8, "probability": 0.2671 }, { "start": 1782.8, "end": 1784.42, "probability": 0.9165 }, { "start": 1784.56, "end": 1785.06, "probability": 0.4956 }, { "start": 1785.88, "end": 1787.42, "probability": 0.927 }, { "start": 1787.48, "end": 1788.1, "probability": 0.751 }, { "start": 1788.2, "end": 1789.56, "probability": 0.9221 }, { "start": 1789.72, "end": 1791.16, "probability": 0.8652 }, { "start": 1791.54, "end": 1792.3, "probability": 0.7606 }, { "start": 1792.36, "end": 1792.74, "probability": 0.9137 }, { "start": 1792.96, "end": 1794.86, "probability": 0.9628 }, { "start": 1796.0, "end": 1798.6, "probability": 0.9839 }, { "start": 1799.28, "end": 1802.36, "probability": 0.9997 }, { "start": 1803.28, "end": 1805.14, "probability": 1.0 }, { "start": 1805.82, "end": 1807.92, "probability": 0.8314 }, { "start": 1808.14, "end": 1808.54, "probability": 0.7237 }, { "start": 1810.38, "end": 1812.98, "probability": 0.6456 }, { "start": 1813.74, "end": 1815.44, "probability": 0.9886 }, { "start": 1819.56, "end": 1826.32, "probability": 0.776 }, { "start": 1835.46, "end": 1837.07, "probability": 0.4503 }, { "start": 1838.1, "end": 1839.42, "probability": 0.7668 }, { "start": 1840.12, "end": 1840.86, "probability": 0.9137 }, { "start": 1840.94, "end": 1842.3, "probability": 0.7474 }, { "start": 1842.42, "end": 1843.08, "probability": 0.4925 }, { "start": 1843.2, "end": 1847.44, "probability": 0.888 }, { "start": 1847.8, "end": 1848.34, "probability": 0.9123 }, { "start": 1849.06, "end": 1852.86, "probability": 0.9792 }, { "start": 1853.12, "end": 1856.38, "probability": 0.679 }, { "start": 1857.1, "end": 1858.2, "probability": 0.7381 }, { "start": 1858.28, "end": 1859.42, "probability": 0.8665 }, { "start": 1859.66, "end": 1861.26, "probability": 0.9937 }, { "start": 1861.42, "end": 1862.56, "probability": 0.9912 }, { "start": 1862.68, "end": 1863.36, "probability": 0.9366 }, { "start": 1864.22, "end": 1869.0, "probability": 0.991 }, { "start": 1869.04, "end": 1869.6, "probability": 0.3993 }, { "start": 1870.14, "end": 1871.4, "probability": 0.9489 }, { "start": 1872.03, "end": 1876.94, "probability": 0.9641 }, { "start": 1877.6, "end": 1879.58, "probability": 0.9655 }, { "start": 1880.62, "end": 1884.14, "probability": 0.7084 }, { "start": 1885.0, "end": 1890.14, "probability": 0.9606 }, { "start": 1890.24, "end": 1894.96, "probability": 0.646 }, { "start": 1895.08, "end": 1896.11, "probability": 0.6858 }, { "start": 1896.38, "end": 1898.5, "probability": 0.9795 }, { "start": 1898.56, "end": 1899.82, "probability": 0.6651 }, { "start": 1900.5, "end": 1901.74, "probability": 0.9902 }, { "start": 1902.42, "end": 1903.03, "probability": 0.8389 }, { "start": 1903.28, "end": 1904.06, "probability": 0.9618 }, { "start": 1904.8, "end": 1905.46, "probability": 0.8417 }, { "start": 1905.52, "end": 1907.52, "probability": 0.5902 }, { "start": 1907.56, "end": 1910.9, "probability": 0.8311 }, { "start": 1911.14, "end": 1912.28, "probability": 0.577 }, { "start": 1912.28, "end": 1912.56, "probability": 0.2244 }, { "start": 1912.78, "end": 1916.48, "probability": 0.7847 }, { "start": 1917.26, "end": 1920.1, "probability": 0.9527 }, { "start": 1920.76, "end": 1921.3, "probability": 0.5443 }, { "start": 1921.4, "end": 1923.09, "probability": 0.7439 }, { "start": 1923.34, "end": 1925.5, "probability": 0.9832 }, { "start": 1926.24, "end": 1927.08, "probability": 0.6804 }, { "start": 1927.28, "end": 1930.18, "probability": 0.7799 }, { "start": 1930.4, "end": 1932.88, "probability": 0.9398 }, { "start": 1933.68, "end": 1936.86, "probability": 0.3911 }, { "start": 1936.94, "end": 1938.2, "probability": 0.737 }, { "start": 1938.38, "end": 1940.16, "probability": 0.9768 }, { "start": 1940.32, "end": 1942.34, "probability": 0.4436 }, { "start": 1943.04, "end": 1944.32, "probability": 0.426 }, { "start": 1944.66, "end": 1945.6, "probability": 0.7483 }, { "start": 1945.64, "end": 1946.24, "probability": 0.8232 }, { "start": 1946.36, "end": 1947.2, "probability": 0.881 }, { "start": 1947.58, "end": 1949.44, "probability": 0.6902 }, { "start": 1950.4, "end": 1952.66, "probability": 0.8763 }, { "start": 1953.14, "end": 1953.87, "probability": 0.7202 }, { "start": 1954.6, "end": 1957.0, "probability": 0.7303 }, { "start": 1957.24, "end": 1958.08, "probability": 0.6478 }, { "start": 1958.52, "end": 1959.99, "probability": 0.908 }, { "start": 1960.4, "end": 1960.88, "probability": 0.3436 }, { "start": 1961.28, "end": 1961.72, "probability": 0.8989 }, { "start": 1961.94, "end": 1965.32, "probability": 0.9328 }, { "start": 1965.32, "end": 1966.14, "probability": 0.6549 }, { "start": 1966.24, "end": 1968.72, "probability": 0.7542 }, { "start": 1968.76, "end": 1971.64, "probability": 0.9673 }, { "start": 1972.4, "end": 1974.84, "probability": 0.578 }, { "start": 1975.1, "end": 1976.84, "probability": 0.6218 }, { "start": 1977.34, "end": 1980.2, "probability": 0.6559 }, { "start": 1980.3, "end": 1981.52, "probability": 0.9397 }, { "start": 1981.88, "end": 1983.06, "probability": 0.8607 }, { "start": 1983.48, "end": 1984.46, "probability": 0.96 }, { "start": 1984.6, "end": 1986.48, "probability": 0.8282 }, { "start": 1986.52, "end": 1989.2, "probability": 0.84 }, { "start": 1989.7, "end": 1991.16, "probability": 0.5561 }, { "start": 1991.48, "end": 1992.4, "probability": 0.9529 }, { "start": 1992.86, "end": 1996.06, "probability": 0.9679 }, { "start": 1996.66, "end": 1998.38, "probability": 0.9253 }, { "start": 1998.46, "end": 1999.22, "probability": 0.9244 }, { "start": 1999.4, "end": 2003.58, "probability": 0.984 }, { "start": 2004.04, "end": 2005.4, "probability": 0.5003 }, { "start": 2005.58, "end": 2008.46, "probability": 0.6559 }, { "start": 2009.04, "end": 2010.94, "probability": 0.7122 }, { "start": 2011.02, "end": 2014.72, "probability": 0.5667 }, { "start": 2014.8, "end": 2016.82, "probability": 0.8071 }, { "start": 2017.4, "end": 2018.76, "probability": 0.6708 }, { "start": 2018.92, "end": 2020.64, "probability": 0.8914 }, { "start": 2020.72, "end": 2022.04, "probability": 0.4964 }, { "start": 2022.14, "end": 2022.62, "probability": 0.3376 }, { "start": 2022.92, "end": 2025.72, "probability": 0.6662 }, { "start": 2025.84, "end": 2029.74, "probability": 0.8573 }, { "start": 2029.86, "end": 2030.9, "probability": 0.9897 }, { "start": 2031.18, "end": 2034.0, "probability": 0.9539 }, { "start": 2034.44, "end": 2035.62, "probability": 0.652 }, { "start": 2035.96, "end": 2037.08, "probability": 0.729 }, { "start": 2037.34, "end": 2040.98, "probability": 0.9072 }, { "start": 2041.4, "end": 2043.66, "probability": 0.9707 }, { "start": 2043.72, "end": 2045.0, "probability": 0.4738 }, { "start": 2045.04, "end": 2045.4, "probability": 0.6626 }, { "start": 2046.1, "end": 2047.54, "probability": 0.9153 }, { "start": 2047.58, "end": 2050.54, "probability": 0.9764 }, { "start": 2050.84, "end": 2052.64, "probability": 0.6887 }, { "start": 2052.68, "end": 2053.58, "probability": 0.755 }, { "start": 2053.7, "end": 2054.14, "probability": 0.2057 }, { "start": 2054.8, "end": 2056.1, "probability": 0.6685 }, { "start": 2056.9, "end": 2058.44, "probability": 0.5182 }, { "start": 2058.52, "end": 2059.69, "probability": 0.5086 }, { "start": 2059.78, "end": 2062.06, "probability": 0.9642 }, { "start": 2062.16, "end": 2063.8, "probability": 0.8525 }, { "start": 2063.88, "end": 2064.38, "probability": 0.3598 }, { "start": 2064.72, "end": 2066.76, "probability": 0.8018 }, { "start": 2067.7, "end": 2068.3, "probability": 0.9517 }, { "start": 2068.4, "end": 2069.5, "probability": 0.493 }, { "start": 2069.68, "end": 2071.44, "probability": 0.9698 }, { "start": 2071.52, "end": 2072.27, "probability": 0.9717 }, { "start": 2072.5, "end": 2073.75, "probability": 0.842 }, { "start": 2074.2, "end": 2076.72, "probability": 0.4155 }, { "start": 2076.84, "end": 2077.28, "probability": 0.4092 }, { "start": 2077.66, "end": 2078.1, "probability": 0.6832 }, { "start": 2078.1, "end": 2078.88, "probability": 0.7705 }, { "start": 2079.36, "end": 2080.22, "probability": 0.9482 }, { "start": 2080.64, "end": 2081.36, "probability": 0.7767 }, { "start": 2081.4, "end": 2082.42, "probability": 0.8882 }, { "start": 2082.44, "end": 2084.62, "probability": 0.9651 }, { "start": 2085.3, "end": 2086.7, "probability": 0.9927 }, { "start": 2086.82, "end": 2088.8, "probability": 0.8957 }, { "start": 2088.94, "end": 2091.74, "probability": 0.9746 }, { "start": 2092.12, "end": 2092.86, "probability": 0.7141 }, { "start": 2093.04, "end": 2095.26, "probability": 0.946 }, { "start": 2095.66, "end": 2097.34, "probability": 0.7466 }, { "start": 2097.56, "end": 2099.06, "probability": 0.6336 }, { "start": 2099.18, "end": 2103.74, "probability": 0.9006 }, { "start": 2104.1, "end": 2104.74, "probability": 0.7269 }, { "start": 2104.9, "end": 2105.86, "probability": 0.8464 }, { "start": 2106.28, "end": 2109.7, "probability": 0.9926 }, { "start": 2109.7, "end": 2112.74, "probability": 0.9649 }, { "start": 2113.0, "end": 2113.74, "probability": 0.9927 }, { "start": 2114.52, "end": 2115.72, "probability": 0.8646 }, { "start": 2116.38, "end": 2117.48, "probability": 0.9083 }, { "start": 2117.54, "end": 2118.06, "probability": 0.6531 }, { "start": 2118.4, "end": 2119.14, "probability": 0.5123 }, { "start": 2119.44, "end": 2123.32, "probability": 0.967 }, { "start": 2123.42, "end": 2124.22, "probability": 0.9042 }, { "start": 2124.26, "end": 2125.42, "probability": 0.9136 }, { "start": 2125.92, "end": 2129.18, "probability": 0.8508 }, { "start": 2129.32, "end": 2130.18, "probability": 0.94 }, { "start": 2130.28, "end": 2133.26, "probability": 0.9739 }, { "start": 2133.36, "end": 2136.32, "probability": 0.9927 }, { "start": 2136.82, "end": 2138.54, "probability": 0.9573 }, { "start": 2138.62, "end": 2140.73, "probability": 0.9324 }, { "start": 2140.98, "end": 2142.64, "probability": 0.7977 }, { "start": 2142.7, "end": 2143.66, "probability": 0.8935 }, { "start": 2144.1, "end": 2144.68, "probability": 0.6853 }, { "start": 2144.84, "end": 2149.04, "probability": 0.6401 }, { "start": 2149.38, "end": 2149.74, "probability": 0.181 }, { "start": 2150.14, "end": 2151.24, "probability": 0.9138 }, { "start": 2151.58, "end": 2152.44, "probability": 0.5197 }, { "start": 2152.48, "end": 2155.28, "probability": 0.9861 }, { "start": 2155.38, "end": 2156.66, "probability": 0.7034 }, { "start": 2156.76, "end": 2158.8, "probability": 0.9425 }, { "start": 2159.12, "end": 2160.04, "probability": 0.5756 }, { "start": 2160.36, "end": 2161.09, "probability": 0.537 }, { "start": 2161.3, "end": 2163.22, "probability": 0.7101 }, { "start": 2163.22, "end": 2164.72, "probability": 0.7474 }, { "start": 2165.02, "end": 2166.26, "probability": 0.9761 }, { "start": 2166.36, "end": 2168.02, "probability": 0.9332 }, { "start": 2168.18, "end": 2169.84, "probability": 0.8679 }, { "start": 2170.81, "end": 2175.0, "probability": 0.7394 }, { "start": 2175.58, "end": 2176.74, "probability": 0.8013 }, { "start": 2177.18, "end": 2180.98, "probability": 0.9796 }, { "start": 2181.34, "end": 2181.7, "probability": 0.1544 }, { "start": 2181.78, "end": 2183.46, "probability": 0.9946 }, { "start": 2183.86, "end": 2186.74, "probability": 0.9504 }, { "start": 2187.3, "end": 2190.68, "probability": 0.9827 }, { "start": 2190.82, "end": 2191.76, "probability": 0.7172 }, { "start": 2192.08, "end": 2192.44, "probability": 0.8825 }, { "start": 2192.76, "end": 2194.02, "probability": 0.9401 }, { "start": 2194.46, "end": 2195.64, "probability": 0.957 }, { "start": 2196.12, "end": 2199.86, "probability": 0.6775 }, { "start": 2200.2, "end": 2201.9, "probability": 0.9912 }, { "start": 2202.3, "end": 2203.62, "probability": 0.646 }, { "start": 2204.98, "end": 2206.18, "probability": 0.9302 }, { "start": 2206.46, "end": 2210.06, "probability": 0.989 }, { "start": 2210.44, "end": 2212.3, "probability": 0.7561 }, { "start": 2212.38, "end": 2213.88, "probability": 0.8701 }, { "start": 2213.88, "end": 2216.9, "probability": 0.8316 }, { "start": 2217.16, "end": 2218.4, "probability": 0.9779 }, { "start": 2218.46, "end": 2218.86, "probability": 0.8189 }, { "start": 2219.24, "end": 2222.04, "probability": 0.8131 }, { "start": 2222.08, "end": 2223.21, "probability": 0.9897 }, { "start": 2223.38, "end": 2225.0, "probability": 0.8184 }, { "start": 2225.48, "end": 2227.58, "probability": 0.9863 }, { "start": 2227.84, "end": 2229.0, "probability": 0.9834 }, { "start": 2229.12, "end": 2229.91, "probability": 0.8824 }, { "start": 2230.46, "end": 2232.06, "probability": 0.9341 }, { "start": 2232.32, "end": 2233.74, "probability": 0.9688 }, { "start": 2233.88, "end": 2235.6, "probability": 0.6726 }, { "start": 2235.76, "end": 2237.62, "probability": 0.9137 }, { "start": 2238.3, "end": 2240.32, "probability": 0.8555 }, { "start": 2240.86, "end": 2241.9, "probability": 0.618 }, { "start": 2242.02, "end": 2242.72, "probability": 0.1154 }, { "start": 2242.98, "end": 2243.8, "probability": 0.8491 }, { "start": 2243.92, "end": 2245.57, "probability": 0.9565 }, { "start": 2246.28, "end": 2247.6, "probability": 0.8172 }, { "start": 2247.82, "end": 2248.66, "probability": 0.9211 }, { "start": 2248.92, "end": 2251.18, "probability": 0.8948 }, { "start": 2251.52, "end": 2252.26, "probability": 0.8029 }, { "start": 2252.36, "end": 2253.54, "probability": 0.9973 }, { "start": 2254.18, "end": 2255.7, "probability": 0.9956 }, { "start": 2255.8, "end": 2256.96, "probability": 0.9377 }, { "start": 2257.24, "end": 2258.58, "probability": 0.9893 }, { "start": 2259.16, "end": 2261.62, "probability": 0.9961 }, { "start": 2262.06, "end": 2262.78, "probability": 0.6717 }, { "start": 2263.5, "end": 2267.2, "probability": 0.6003 }, { "start": 2267.72, "end": 2268.86, "probability": 0.96 }, { "start": 2269.4, "end": 2270.32, "probability": 0.9639 }, { "start": 2270.68, "end": 2271.22, "probability": 0.8763 }, { "start": 2271.32, "end": 2271.8, "probability": 0.8284 }, { "start": 2271.96, "end": 2272.36, "probability": 0.2143 }, { "start": 2272.36, "end": 2272.74, "probability": 0.613 }, { "start": 2273.12, "end": 2273.86, "probability": 0.8628 }, { "start": 2274.24, "end": 2275.07, "probability": 0.9343 }, { "start": 2275.4, "end": 2275.9, "probability": 0.7793 }, { "start": 2276.76, "end": 2278.06, "probability": 0.8594 }, { "start": 2278.2, "end": 2278.99, "probability": 0.9839 }, { "start": 2279.82, "end": 2282.28, "probability": 0.535 }, { "start": 2282.4, "end": 2286.44, "probability": 0.9917 }, { "start": 2286.44, "end": 2288.77, "probability": 0.7617 }, { "start": 2289.14, "end": 2290.15, "probability": 0.7453 }, { "start": 2290.3, "end": 2290.32, "probability": 0.0129 }, { "start": 2292.04, "end": 2292.38, "probability": 0.1628 }, { "start": 2292.38, "end": 2294.88, "probability": 0.6509 }, { "start": 2295.2, "end": 2295.74, "probability": 0.8635 }, { "start": 2295.86, "end": 2299.46, "probability": 0.7347 }, { "start": 2299.78, "end": 2301.18, "probability": 0.7905 }, { "start": 2301.18, "end": 2302.93, "probability": 0.6543 }, { "start": 2303.77, "end": 2308.94, "probability": 0.7784 }, { "start": 2309.3, "end": 2310.3, "probability": 0.7345 }, { "start": 2310.38, "end": 2311.42, "probability": 0.7922 }, { "start": 2311.94, "end": 2314.1, "probability": 0.7386 }, { "start": 2314.56, "end": 2316.0, "probability": 0.8563 }, { "start": 2316.26, "end": 2316.74, "probability": 0.2876 }, { "start": 2317.24, "end": 2318.36, "probability": 0.6081 }, { "start": 2318.42, "end": 2318.96, "probability": 0.5977 }, { "start": 2319.1, "end": 2319.68, "probability": 0.5991 }, { "start": 2319.68, "end": 2323.04, "probability": 0.5582 }, { "start": 2323.08, "end": 2323.52, "probability": 0.164 }, { "start": 2323.58, "end": 2324.74, "probability": 0.8115 }, { "start": 2324.76, "end": 2325.4, "probability": 0.3131 }, { "start": 2325.42, "end": 2327.64, "probability": 0.9121 }, { "start": 2327.96, "end": 2331.22, "probability": 0.4131 }, { "start": 2331.34, "end": 2337.46, "probability": 0.8772 }, { "start": 2337.48, "end": 2338.38, "probability": 0.9937 }, { "start": 2338.82, "end": 2339.62, "probability": 0.8609 }, { "start": 2340.19, "end": 2341.68, "probability": 0.8825 }, { "start": 2341.82, "end": 2342.46, "probability": 0.9951 }, { "start": 2342.54, "end": 2344.6, "probability": 0.5364 }, { "start": 2345.0, "end": 2345.58, "probability": 0.9668 }, { "start": 2346.2, "end": 2346.2, "probability": 0.1803 }, { "start": 2346.2, "end": 2347.01, "probability": 0.5137 }, { "start": 2347.18, "end": 2348.38, "probability": 0.2576 }, { "start": 2348.52, "end": 2349.96, "probability": 0.9312 }, { "start": 2349.96, "end": 2350.59, "probability": 0.6523 }, { "start": 2351.0, "end": 2353.92, "probability": 0.6326 }, { "start": 2354.16, "end": 2354.94, "probability": 0.6719 }, { "start": 2355.08, "end": 2355.12, "probability": 0.1896 }, { "start": 2355.12, "end": 2355.47, "probability": 0.0085 }, { "start": 2356.16, "end": 2356.6, "probability": 0.0133 }, { "start": 2356.6, "end": 2356.6, "probability": 0.0411 }, { "start": 2357.02, "end": 2357.58, "probability": 0.481 }, { "start": 2358.16, "end": 2358.76, "probability": 0.5235 }, { "start": 2358.94, "end": 2360.22, "probability": 0.6838 }, { "start": 2360.22, "end": 2365.42, "probability": 0.8604 }, { "start": 2365.64, "end": 2366.98, "probability": 0.2703 }, { "start": 2367.36, "end": 2368.2, "probability": 0.1383 }, { "start": 2368.66, "end": 2370.66, "probability": 0.9697 }, { "start": 2370.72, "end": 2375.02, "probability": 0.8207 }, { "start": 2375.02, "end": 2379.9, "probability": 0.8796 }, { "start": 2380.2, "end": 2381.54, "probability": 0.7927 }, { "start": 2382.14, "end": 2384.54, "probability": 0.3888 }, { "start": 2384.68, "end": 2385.16, "probability": 0.7622 }, { "start": 2385.94, "end": 2386.42, "probability": 0.9149 }, { "start": 2386.7, "end": 2389.4, "probability": 0.8382 }, { "start": 2389.6, "end": 2390.5, "probability": 0.4971 }, { "start": 2391.3, "end": 2393.36, "probability": 0.6221 }, { "start": 2394.34, "end": 2395.6, "probability": 0.9252 }, { "start": 2395.88, "end": 2396.26, "probability": 0.6813 }, { "start": 2396.74, "end": 2397.38, "probability": 0.7894 }, { "start": 2397.48, "end": 2399.3, "probability": 0.8467 }, { "start": 2399.38, "end": 2400.26, "probability": 0.9121 }, { "start": 2400.48, "end": 2402.7, "probability": 0.6933 }, { "start": 2402.76, "end": 2407.02, "probability": 0.8408 }, { "start": 2407.3, "end": 2408.06, "probability": 0.0928 }, { "start": 2408.42, "end": 2410.4, "probability": 0.2674 }, { "start": 2410.6, "end": 2412.62, "probability": 0.8922 }, { "start": 2412.92, "end": 2414.46, "probability": 0.9707 }, { "start": 2414.84, "end": 2415.52, "probability": 0.9373 }, { "start": 2416.44, "end": 2417.92, "probability": 0.9055 }, { "start": 2418.22, "end": 2421.64, "probability": 0.9266 }, { "start": 2421.96, "end": 2423.48, "probability": 0.5691 }, { "start": 2424.19, "end": 2426.26, "probability": 0.498 }, { "start": 2426.28, "end": 2429.52, "probability": 0.9814 }, { "start": 2430.06, "end": 2430.82, "probability": 0.8168 }, { "start": 2430.88, "end": 2432.11, "probability": 0.5195 }, { "start": 2432.66, "end": 2435.88, "probability": 0.9198 }, { "start": 2435.88, "end": 2436.7, "probability": 0.4536 }, { "start": 2436.9, "end": 2439.46, "probability": 0.668 }, { "start": 2439.52, "end": 2440.6, "probability": 0.1787 }, { "start": 2440.6, "end": 2444.02, "probability": 0.9651 }, { "start": 2444.38, "end": 2445.14, "probability": 0.9398 }, { "start": 2445.3, "end": 2446.1, "probability": 0.8688 }, { "start": 2446.38, "end": 2447.32, "probability": 0.969 }, { "start": 2447.7, "end": 2448.4, "probability": 0.4265 }, { "start": 2448.48, "end": 2449.4, "probability": 0.5906 }, { "start": 2449.44, "end": 2450.71, "probability": 0.826 }, { "start": 2451.4, "end": 2453.18, "probability": 0.8418 }, { "start": 2453.28, "end": 2454.0, "probability": 0.855 }, { "start": 2454.38, "end": 2459.46, "probability": 0.9111 }, { "start": 2459.54, "end": 2462.08, "probability": 0.8582 }, { "start": 2462.2, "end": 2464.02, "probability": 0.9017 }, { "start": 2466.07, "end": 2467.22, "probability": 0.4857 }, { "start": 2467.22, "end": 2471.16, "probability": 0.9849 }, { "start": 2471.7, "end": 2473.46, "probability": 0.9855 }, { "start": 2473.78, "end": 2474.46, "probability": 0.7495 }, { "start": 2474.54, "end": 2476.24, "probability": 0.6006 }, { "start": 2476.72, "end": 2480.44, "probability": 0.8968 }, { "start": 2481.06, "end": 2484.16, "probability": 0.751 }, { "start": 2484.6, "end": 2485.68, "probability": 0.1949 }, { "start": 2485.76, "end": 2488.92, "probability": 0.7279 }, { "start": 2488.92, "end": 2489.54, "probability": 0.819 }, { "start": 2489.84, "end": 2492.9, "probability": 0.7847 }, { "start": 2493.32, "end": 2494.1, "probability": 0.7097 }, { "start": 2494.2, "end": 2497.52, "probability": 0.8392 }, { "start": 2498.0, "end": 2502.02, "probability": 0.6149 }, { "start": 2502.22, "end": 2504.74, "probability": 0.2814 }, { "start": 2504.74, "end": 2508.54, "probability": 0.9501 }, { "start": 2508.6, "end": 2512.0, "probability": 0.5522 }, { "start": 2512.5, "end": 2514.46, "probability": 0.8079 }, { "start": 2514.7, "end": 2516.28, "probability": 0.919 }, { "start": 2516.7, "end": 2517.38, "probability": 0.2499 }, { "start": 2517.38, "end": 2517.38, "probability": 0.2842 }, { "start": 2517.38, "end": 2519.5, "probability": 0.922 }, { "start": 2519.88, "end": 2520.47, "probability": 0.6682 }, { "start": 2520.72, "end": 2522.89, "probability": 0.6887 }, { "start": 2523.16, "end": 2524.6, "probability": 0.9929 }, { "start": 2524.72, "end": 2524.72, "probability": 0.5952 }, { "start": 2524.76, "end": 2527.28, "probability": 0.8772 }, { "start": 2527.48, "end": 2527.64, "probability": 0.4796 }, { "start": 2527.64, "end": 2530.14, "probability": 0.8313 }, { "start": 2530.42, "end": 2532.12, "probability": 0.5481 }, { "start": 2532.78, "end": 2534.44, "probability": 0.6042 }, { "start": 2543.4, "end": 2545.72, "probability": 0.8032 }, { "start": 2548.14, "end": 2548.14, "probability": 0.0356 }, { "start": 2548.14, "end": 2548.46, "probability": 0.8496 }, { "start": 2557.98, "end": 2560.3, "probability": 0.7386 }, { "start": 2561.5, "end": 2562.42, "probability": 0.616 }, { "start": 2563.72, "end": 2565.44, "probability": 0.9448 }, { "start": 2567.0, "end": 2567.72, "probability": 0.8408 }, { "start": 2567.78, "end": 2569.92, "probability": 0.8552 }, { "start": 2570.02, "end": 2570.8, "probability": 0.7409 }, { "start": 2571.7, "end": 2572.98, "probability": 0.9304 }, { "start": 2573.98, "end": 2575.48, "probability": 0.7167 }, { "start": 2576.54, "end": 2579.56, "probability": 0.6829 }, { "start": 2580.3, "end": 2582.2, "probability": 0.8926 }, { "start": 2582.82, "end": 2583.93, "probability": 0.9939 }, { "start": 2584.66, "end": 2586.66, "probability": 0.9669 }, { "start": 2588.81, "end": 2590.8, "probability": 0.2015 }, { "start": 2591.24, "end": 2593.7, "probability": 0.1255 }, { "start": 2593.88, "end": 2594.43, "probability": 0.3721 }, { "start": 2595.0, "end": 2595.88, "probability": 0.3873 }, { "start": 2596.54, "end": 2600.04, "probability": 0.8106 }, { "start": 2600.4, "end": 2601.3, "probability": 0.731 }, { "start": 2602.74, "end": 2605.02, "probability": 0.4317 }, { "start": 2605.12, "end": 2605.4, "probability": 0.6129 }, { "start": 2605.42, "end": 2607.36, "probability": 0.9709 }, { "start": 2607.8, "end": 2609.47, "probability": 0.7536 }, { "start": 2609.7, "end": 2610.44, "probability": 0.6328 }, { "start": 2611.18, "end": 2613.19, "probability": 0.9878 }, { "start": 2613.94, "end": 2615.92, "probability": 0.6989 }, { "start": 2616.22, "end": 2617.4, "probability": 0.5654 }, { "start": 2617.56, "end": 2618.56, "probability": 0.7028 }, { "start": 2618.58, "end": 2621.92, "probability": 0.7633 }, { "start": 2622.6, "end": 2623.92, "probability": 0.7787 }, { "start": 2624.82, "end": 2626.4, "probability": 0.9946 }, { "start": 2627.3, "end": 2629.18, "probability": 0.7634 }, { "start": 2629.34, "end": 2629.98, "probability": 0.6163 }, { "start": 2630.34, "end": 2631.58, "probability": 0.8931 }, { "start": 2631.68, "end": 2633.2, "probability": 0.7831 }, { "start": 2633.2, "end": 2635.62, "probability": 0.9274 }, { "start": 2636.36, "end": 2636.66, "probability": 0.285 }, { "start": 2636.74, "end": 2639.16, "probability": 0.9215 }, { "start": 2639.86, "end": 2640.77, "probability": 0.4048 }, { "start": 2641.16, "end": 2644.18, "probability": 0.9375 }, { "start": 2644.86, "end": 2646.2, "probability": 0.9612 }, { "start": 2647.22, "end": 2647.76, "probability": 0.093 }, { "start": 2647.76, "end": 2651.53, "probability": 0.4403 }, { "start": 2651.74, "end": 2653.08, "probability": 0.6301 }, { "start": 2653.08, "end": 2653.4, "probability": 0.4919 }, { "start": 2653.5, "end": 2656.4, "probability": 0.9634 }, { "start": 2656.58, "end": 2659.04, "probability": 0.9649 }, { "start": 2659.26, "end": 2659.98, "probability": 0.8367 }, { "start": 2661.64, "end": 2664.24, "probability": 0.5218 }, { "start": 2664.29, "end": 2664.5, "probability": 0.3096 }, { "start": 2664.5, "end": 2667.06, "probability": 0.4977 }, { "start": 2667.26, "end": 2668.58, "probability": 0.3777 }, { "start": 2668.82, "end": 2671.28, "probability": 0.837 }, { "start": 2672.04, "end": 2672.64, "probability": 0.338 }, { "start": 2673.1, "end": 2673.7, "probability": 0.0047 }, { "start": 2673.7, "end": 2674.0, "probability": 0.3878 }, { "start": 2674.24, "end": 2677.0, "probability": 0.7222 }, { "start": 2677.42, "end": 2678.24, "probability": 0.801 }, { "start": 2679.32, "end": 2680.84, "probability": 0.7087 }, { "start": 2680.92, "end": 2681.78, "probability": 0.7422 }, { "start": 2681.84, "end": 2682.74, "probability": 0.7351 }, { "start": 2682.78, "end": 2683.94, "probability": 0.2847 }, { "start": 2683.98, "end": 2684.32, "probability": 0.6749 }, { "start": 2684.78, "end": 2684.88, "probability": 0.1023 }, { "start": 2684.96, "end": 2685.72, "probability": 0.6667 }, { "start": 2685.84, "end": 2687.7, "probability": 0.9932 }, { "start": 2688.64, "end": 2689.5, "probability": 0.6643 }, { "start": 2690.86, "end": 2691.42, "probability": 0.5137 }, { "start": 2691.6, "end": 2697.76, "probability": 0.9961 }, { "start": 2698.56, "end": 2699.2, "probability": 0.9687 }, { "start": 2699.72, "end": 2700.46, "probability": 0.9479 }, { "start": 2701.18, "end": 2702.16, "probability": 0.9451 }, { "start": 2702.64, "end": 2706.48, "probability": 0.9907 }, { "start": 2706.84, "end": 2710.72, "probability": 0.9524 }, { "start": 2711.3, "end": 2711.44, "probability": 0.0289 }, { "start": 2711.44, "end": 2714.28, "probability": 0.9561 }, { "start": 2714.54, "end": 2714.7, "probability": 0.0365 }, { "start": 2715.04, "end": 2715.54, "probability": 0.129 }, { "start": 2715.54, "end": 2715.75, "probability": 0.113 }, { "start": 2715.76, "end": 2718.62, "probability": 0.8307 }, { "start": 2718.98, "end": 2719.16, "probability": 0.1616 }, { "start": 2719.16, "end": 2719.8, "probability": 0.4992 }, { "start": 2720.32, "end": 2723.82, "probability": 0.9456 }, { "start": 2724.2, "end": 2728.42, "probability": 0.62 }, { "start": 2728.6, "end": 2729.34, "probability": 0.6356 }, { "start": 2729.46, "end": 2732.56, "probability": 0.8757 }, { "start": 2733.18, "end": 2737.32, "probability": 0.8068 }, { "start": 2737.9, "end": 2739.14, "probability": 0.9508 }, { "start": 2739.28, "end": 2744.22, "probability": 0.2397 }, { "start": 2744.22, "end": 2745.02, "probability": 0.9987 }, { "start": 2745.22, "end": 2748.28, "probability": 0.5316 }, { "start": 2748.66, "end": 2752.0, "probability": 0.9984 }, { "start": 2754.28, "end": 2757.42, "probability": 0.9506 }, { "start": 2757.98, "end": 2760.08, "probability": 0.6562 }, { "start": 2760.28, "end": 2764.8, "probability": 0.7646 }, { "start": 2765.5, "end": 2766.74, "probability": 0.3192 }, { "start": 2766.84, "end": 2768.92, "probability": 0.7475 }, { "start": 2769.38, "end": 2770.92, "probability": 0.4688 }, { "start": 2771.02, "end": 2772.48, "probability": 0.9768 }, { "start": 2772.74, "end": 2775.54, "probability": 0.9399 }, { "start": 2775.54, "end": 2781.12, "probability": 0.9922 }, { "start": 2781.3, "end": 2783.58, "probability": 0.8597 }, { "start": 2783.82, "end": 2786.2, "probability": 0.8558 }, { "start": 2786.84, "end": 2790.02, "probability": 0.9932 }, { "start": 2790.28, "end": 2793.54, "probability": 0.9923 }, { "start": 2793.54, "end": 2797.48, "probability": 0.84 }, { "start": 2798.22, "end": 2801.14, "probability": 0.8647 }, { "start": 2803.3, "end": 2807.44, "probability": 0.9446 }, { "start": 2807.44, "end": 2810.64, "probability": 0.8841 }, { "start": 2811.18, "end": 2812.68, "probability": 0.6374 }, { "start": 2813.12, "end": 2815.94, "probability": 0.916 }, { "start": 2815.94, "end": 2819.04, "probability": 0.975 }, { "start": 2819.56, "end": 2819.72, "probability": 0.0988 }, { "start": 2820.56, "end": 2821.34, "probability": 0.9866 }, { "start": 2821.86, "end": 2824.14, "probability": 0.9952 }, { "start": 2825.2, "end": 2825.56, "probability": 0.8616 }, { "start": 2826.2, "end": 2829.74, "probability": 0.8849 }, { "start": 2830.32, "end": 2830.68, "probability": 0.7121 }, { "start": 2830.76, "end": 2833.98, "probability": 0.9069 }, { "start": 2834.4, "end": 2836.98, "probability": 0.9014 }, { "start": 2837.54, "end": 2837.94, "probability": 0.711 }, { "start": 2853.12, "end": 2854.5, "probability": 0.8473 }, { "start": 2854.78, "end": 2856.8, "probability": 0.7919 }, { "start": 2857.78, "end": 2862.44, "probability": 0.9632 }, { "start": 2862.44, "end": 2866.94, "probability": 0.9954 }, { "start": 2867.6, "end": 2870.16, "probability": 0.9429 }, { "start": 2870.26, "end": 2875.8, "probability": 0.8794 }, { "start": 2876.2, "end": 2878.44, "probability": 0.981 }, { "start": 2879.54, "end": 2883.76, "probability": 0.8672 }, { "start": 2884.34, "end": 2885.78, "probability": 0.8053 }, { "start": 2886.54, "end": 2887.66, "probability": 0.7829 }, { "start": 2888.06, "end": 2893.58, "probability": 0.9709 }, { "start": 2893.58, "end": 2898.48, "probability": 0.9978 }, { "start": 2899.34, "end": 2903.68, "probability": 0.9961 }, { "start": 2904.24, "end": 2907.9, "probability": 0.8722 }, { "start": 2907.9, "end": 2911.5, "probability": 0.9963 }, { "start": 2912.06, "end": 2916.56, "probability": 0.7664 }, { "start": 2917.38, "end": 2922.26, "probability": 0.9963 }, { "start": 2922.8, "end": 2928.74, "probability": 0.9973 }, { "start": 2929.86, "end": 2935.36, "probability": 0.9888 }, { "start": 2935.72, "end": 2936.58, "probability": 0.8643 }, { "start": 2937.58, "end": 2939.38, "probability": 0.9985 }, { "start": 2939.94, "end": 2940.26, "probability": 0.8264 }, { "start": 2940.92, "end": 2941.46, "probability": 0.6992 }, { "start": 2942.56, "end": 2944.84, "probability": 0.821 }, { "start": 2945.72, "end": 2949.8, "probability": 0.9919 }, { "start": 2950.48, "end": 2953.84, "probability": 0.9923 }, { "start": 2953.84, "end": 2958.3, "probability": 0.9911 }, { "start": 2969.7, "end": 2970.08, "probability": 0.0517 }, { "start": 2970.08, "end": 2970.08, "probability": 0.0376 }, { "start": 2970.08, "end": 2970.24, "probability": 0.0401 }, { "start": 2970.24, "end": 2974.4, "probability": 0.9307 }, { "start": 2974.4, "end": 2979.82, "probability": 0.9124 }, { "start": 2980.78, "end": 2984.74, "probability": 0.9854 }, { "start": 2984.74, "end": 2988.98, "probability": 0.9934 }, { "start": 2989.52, "end": 2990.88, "probability": 0.9544 }, { "start": 2991.9, "end": 2994.5, "probability": 0.7841 }, { "start": 2995.48, "end": 2996.14, "probability": 0.8481 }, { "start": 2996.24, "end": 2997.08, "probability": 0.7947 }, { "start": 2997.56, "end": 3001.58, "probability": 0.9258 }, { "start": 3001.58, "end": 3005.6, "probability": 0.9951 }, { "start": 3005.98, "end": 3010.3, "probability": 0.9983 }, { "start": 3010.72, "end": 3014.46, "probability": 0.9894 }, { "start": 3015.02, "end": 3020.5, "probability": 0.9904 }, { "start": 3020.86, "end": 3022.78, "probability": 0.8733 }, { "start": 3023.26, "end": 3025.32, "probability": 0.9915 }, { "start": 3025.66, "end": 3027.35, "probability": 0.9396 }, { "start": 3028.16, "end": 3029.26, "probability": 0.9531 }, { "start": 3029.72, "end": 3032.3, "probability": 0.9091 }, { "start": 3033.04, "end": 3033.3, "probability": 0.7558 }, { "start": 3034.74, "end": 3037.5, "probability": 0.8472 }, { "start": 3038.46, "end": 3040.14, "probability": 0.9034 }, { "start": 3056.82, "end": 3057.26, "probability": 0.4031 }, { "start": 3057.26, "end": 3057.4, "probability": 0.3262 }, { "start": 3057.54, "end": 3058.18, "probability": 0.6846 }, { "start": 3058.74, "end": 3059.14, "probability": 0.6669 }, { "start": 3060.02, "end": 3061.1, "probability": 0.6798 }, { "start": 3062.78, "end": 3067.28, "probability": 0.9987 }, { "start": 3068.1, "end": 3073.58, "probability": 0.937 }, { "start": 3074.28, "end": 3077.14, "probability": 0.9044 }, { "start": 3077.88, "end": 3082.76, "probability": 0.9656 }, { "start": 3083.48, "end": 3085.8, "probability": 0.9332 }, { "start": 3086.36, "end": 3091.14, "probability": 0.9954 }, { "start": 3091.88, "end": 3094.82, "probability": 0.9963 }, { "start": 3095.36, "end": 3098.3, "probability": 0.7931 }, { "start": 3098.86, "end": 3101.5, "probability": 0.9383 }, { "start": 3102.26, "end": 3102.9, "probability": 0.7929 }, { "start": 3102.96, "end": 3107.94, "probability": 0.9844 }, { "start": 3108.64, "end": 3109.77, "probability": 0.9644 }, { "start": 3110.4, "end": 3111.4, "probability": 0.7467 }, { "start": 3111.48, "end": 3113.48, "probability": 0.9247 }, { "start": 3113.74, "end": 3114.98, "probability": 0.8251 }, { "start": 3115.42, "end": 3120.58, "probability": 0.9873 }, { "start": 3121.32, "end": 3122.52, "probability": 0.9978 }, { "start": 3123.36, "end": 3124.92, "probability": 0.7009 }, { "start": 3125.2, "end": 3127.8, "probability": 0.7536 }, { "start": 3128.38, "end": 3133.56, "probability": 0.9278 }, { "start": 3134.02, "end": 3135.54, "probability": 0.811 }, { "start": 3135.62, "end": 3135.96, "probability": 0.5127 }, { "start": 3136.46, "end": 3137.58, "probability": 0.8585 }, { "start": 3138.24, "end": 3144.44, "probability": 0.991 }, { "start": 3144.96, "end": 3145.44, "probability": 0.9023 }, { "start": 3145.56, "end": 3146.26, "probability": 0.4907 }, { "start": 3146.64, "end": 3152.32, "probability": 0.9926 }, { "start": 3152.76, "end": 3154.74, "probability": 0.7406 }, { "start": 3155.2, "end": 3156.06, "probability": 0.959 }, { "start": 3156.08, "end": 3157.1, "probability": 0.7347 }, { "start": 3157.42, "end": 3158.4, "probability": 0.9875 }, { "start": 3158.48, "end": 3159.18, "probability": 0.9222 }, { "start": 3159.52, "end": 3160.8, "probability": 0.9856 }, { "start": 3161.34, "end": 3163.34, "probability": 0.9768 }, { "start": 3163.98, "end": 3164.98, "probability": 0.7899 }, { "start": 3165.48, "end": 3168.66, "probability": 0.9649 }, { "start": 3168.92, "end": 3170.68, "probability": 0.9976 }, { "start": 3171.02, "end": 3172.15, "probability": 0.9062 }, { "start": 3172.54, "end": 3175.68, "probability": 0.9962 }, { "start": 3177.0, "end": 3177.84, "probability": 0.8598 }, { "start": 3178.86, "end": 3184.52, "probability": 0.6695 }, { "start": 3185.22, "end": 3190.24, "probability": 0.796 }, { "start": 3190.76, "end": 3193.08, "probability": 0.9473 }, { "start": 3193.76, "end": 3194.52, "probability": 0.6949 }, { "start": 3194.6, "end": 3195.0, "probability": 0.923 }, { "start": 3195.06, "end": 3196.4, "probability": 0.626 }, { "start": 3196.5, "end": 3199.02, "probability": 0.9028 }, { "start": 3199.64, "end": 3201.16, "probability": 0.9708 }, { "start": 3201.64, "end": 3204.46, "probability": 0.917 }, { "start": 3205.26, "end": 3206.04, "probability": 0.8402 }, { "start": 3206.86, "end": 3209.36, "probability": 0.8674 }, { "start": 3210.32, "end": 3212.8, "probability": 0.7778 }, { "start": 3213.66, "end": 3214.14, "probability": 0.989 }, { "start": 3214.26, "end": 3218.14, "probability": 0.9784 }, { "start": 3218.22, "end": 3219.4, "probability": 0.8508 }, { "start": 3219.96, "end": 3221.44, "probability": 0.9969 }, { "start": 3222.02, "end": 3224.84, "probability": 0.1296 }, { "start": 3224.84, "end": 3225.7, "probability": 0.7197 }, { "start": 3226.34, "end": 3227.0, "probability": 0.5958 }, { "start": 3227.02, "end": 3227.95, "probability": 0.9159 }, { "start": 3228.14, "end": 3231.92, "probability": 0.8169 }, { "start": 3232.02, "end": 3233.04, "probability": 0.779 }, { "start": 3233.34, "end": 3233.44, "probability": 0.2676 }, { "start": 3233.48, "end": 3237.58, "probability": 0.9845 }, { "start": 3238.2, "end": 3239.2, "probability": 0.9122 }, { "start": 3239.58, "end": 3242.46, "probability": 0.9755 }, { "start": 3242.88, "end": 3243.69, "probability": 0.9333 }, { "start": 3244.2, "end": 3246.98, "probability": 0.647 }, { "start": 3246.98, "end": 3247.5, "probability": 0.9409 }, { "start": 3247.9, "end": 3248.54, "probability": 0.9167 }, { "start": 3248.86, "end": 3251.19, "probability": 0.6343 }, { "start": 3251.78, "end": 3253.08, "probability": 0.778 }, { "start": 3253.42, "end": 3256.62, "probability": 0.9268 }, { "start": 3256.68, "end": 3259.18, "probability": 0.9727 }, { "start": 3259.52, "end": 3260.9, "probability": 0.9562 }, { "start": 3260.9, "end": 3261.1, "probability": 0.8467 }, { "start": 3261.54, "end": 3263.22, "probability": 0.7812 }, { "start": 3263.22, "end": 3266.08, "probability": 0.9534 }, { "start": 3266.08, "end": 3266.08, "probability": 0.5044 }, { "start": 3266.08, "end": 3266.94, "probability": 0.9309 }, { "start": 3267.28, "end": 3268.92, "probability": 0.6687 }, { "start": 3269.3, "end": 3270.66, "probability": 0.5787 }, { "start": 3271.02, "end": 3272.32, "probability": 0.6054 }, { "start": 3272.46, "end": 3273.6, "probability": 0.8379 }, { "start": 3273.7, "end": 3274.18, "probability": 0.7164 }, { "start": 3274.18, "end": 3274.66, "probability": 0.9918 }, { "start": 3275.36, "end": 3277.92, "probability": 0.8235 }, { "start": 3278.24, "end": 3279.34, "probability": 0.9693 }, { "start": 3279.62, "end": 3280.34, "probability": 0.9712 }, { "start": 3280.4, "end": 3280.66, "probability": 0.861 }, { "start": 3281.34, "end": 3282.86, "probability": 0.9463 }, { "start": 3283.78, "end": 3286.16, "probability": 0.9695 }, { "start": 3292.7, "end": 3293.9, "probability": 0.6716 }, { "start": 3295.14, "end": 3297.6, "probability": 0.3066 }, { "start": 3297.8, "end": 3299.9, "probability": 0.0563 }, { "start": 3321.02, "end": 3321.68, "probability": 0.281 }, { "start": 3323.24, "end": 3325.5, "probability": 0.7229 }, { "start": 3325.88, "end": 3326.38, "probability": 0.7072 }, { "start": 3326.38, "end": 3327.12, "probability": 0.6404 }, { "start": 3327.12, "end": 3328.44, "probability": 0.6304 }, { "start": 3330.2, "end": 3334.22, "probability": 0.8923 }, { "start": 3335.5, "end": 3338.56, "probability": 0.8931 }, { "start": 3339.58, "end": 3343.3, "probability": 0.9952 }, { "start": 3343.72, "end": 3344.28, "probability": 0.7819 }, { "start": 3344.32, "end": 3344.7, "probability": 0.6824 }, { "start": 3347.06, "end": 3348.3, "probability": 0.8311 }, { "start": 3349.78, "end": 3354.98, "probability": 0.8794 }, { "start": 3355.2, "end": 3356.26, "probability": 0.9709 }, { "start": 3357.52, "end": 3358.0, "probability": 0.5086 }, { "start": 3359.7, "end": 3363.12, "probability": 0.583 }, { "start": 3365.42, "end": 3366.12, "probability": 0.273 }, { "start": 3366.76, "end": 3367.08, "probability": 0.1182 }, { "start": 3368.58, "end": 3369.6, "probability": 0.8771 }, { "start": 3372.36, "end": 3373.64, "probability": 0.1405 }, { "start": 3373.72, "end": 3375.32, "probability": 0.6176 }, { "start": 3375.94, "end": 3376.4, "probability": 0.1205 }, { "start": 3378.04, "end": 3379.82, "probability": 0.8404 }, { "start": 3380.44, "end": 3382.5, "probability": 0.9205 }, { "start": 3383.36, "end": 3385.68, "probability": 0.9927 }, { "start": 3387.88, "end": 3390.02, "probability": 0.9301 }, { "start": 3390.94, "end": 3392.08, "probability": 0.9621 }, { "start": 3392.98, "end": 3395.22, "probability": 0.9976 }, { "start": 3395.8, "end": 3397.98, "probability": 0.9708 }, { "start": 3399.12, "end": 3403.54, "probability": 0.9917 }, { "start": 3404.4, "end": 3407.94, "probability": 0.9935 }, { "start": 3408.82, "end": 3411.96, "probability": 0.821 }, { "start": 3413.22, "end": 3414.1, "probability": 0.9888 }, { "start": 3415.22, "end": 3420.76, "probability": 0.9087 }, { "start": 3421.98, "end": 3426.08, "probability": 0.9717 }, { "start": 3427.9, "end": 3428.38, "probability": 0.6981 }, { "start": 3429.44, "end": 3431.82, "probability": 0.9934 }, { "start": 3432.68, "end": 3434.3, "probability": 0.6255 }, { "start": 3436.62, "end": 3437.96, "probability": 0.9111 }, { "start": 3438.76, "end": 3440.38, "probability": 0.9788 }, { "start": 3441.44, "end": 3446.7, "probability": 0.985 }, { "start": 3446.98, "end": 3448.78, "probability": 0.2907 }, { "start": 3449.48, "end": 3450.92, "probability": 0.75 }, { "start": 3451.34, "end": 3452.8, "probability": 0.94 }, { "start": 3453.26, "end": 3454.84, "probability": 0.9743 }, { "start": 3455.86, "end": 3459.74, "probability": 0.9794 }, { "start": 3460.7, "end": 3465.44, "probability": 0.8555 }, { "start": 3466.12, "end": 3467.54, "probability": 0.5684 }, { "start": 3468.68, "end": 3470.46, "probability": 0.9956 }, { "start": 3471.04, "end": 3472.88, "probability": 0.9263 }, { "start": 3473.48, "end": 3474.98, "probability": 0.9667 }, { "start": 3475.5, "end": 3482.68, "probability": 0.9217 }, { "start": 3483.26, "end": 3483.92, "probability": 0.9922 }, { "start": 3484.06, "end": 3485.5, "probability": 0.9961 }, { "start": 3485.58, "end": 3485.78, "probability": 0.3684 }, { "start": 3485.82, "end": 3486.34, "probability": 0.8145 }, { "start": 3486.82, "end": 3488.48, "probability": 0.7732 }, { "start": 3490.38, "end": 3490.72, "probability": 0.6792 }, { "start": 3491.1, "end": 3491.56, "probability": 0.4425 }, { "start": 3493.22, "end": 3495.18, "probability": 0.9534 }, { "start": 3497.42, "end": 3498.14, "probability": 0.6638 }, { "start": 3498.32, "end": 3504.82, "probability": 0.936 }, { "start": 3504.9, "end": 3506.28, "probability": 0.7341 }, { "start": 3506.42, "end": 3506.52, "probability": 0.1987 }, { "start": 3507.44, "end": 3507.76, "probability": 0.8677 }, { "start": 3507.8, "end": 3508.54, "probability": 0.6721 }, { "start": 3510.5, "end": 3512.22, "probability": 0.9713 }, { "start": 3513.34, "end": 3514.2, "probability": 0.9526 }, { "start": 3515.24, "end": 3520.12, "probability": 0.9787 }, { "start": 3521.54, "end": 3523.22, "probability": 0.9946 }, { "start": 3523.86, "end": 3525.4, "probability": 0.9786 }, { "start": 3525.54, "end": 3527.18, "probability": 0.9313 }, { "start": 3527.52, "end": 3528.28, "probability": 0.3416 }, { "start": 3528.5, "end": 3531.02, "probability": 0.4268 }, { "start": 3532.02, "end": 3533.18, "probability": 0.9182 }, { "start": 3533.38, "end": 3534.26, "probability": 0.9045 }, { "start": 3534.34, "end": 3537.5, "probability": 0.9969 }, { "start": 3538.14, "end": 3539.92, "probability": 0.8484 }, { "start": 3540.72, "end": 3541.97, "probability": 0.6871 }, { "start": 3542.36, "end": 3544.3, "probability": 0.9278 }, { "start": 3544.46, "end": 3547.72, "probability": 0.9859 }, { "start": 3548.02, "end": 3550.86, "probability": 0.9736 }, { "start": 3551.4, "end": 3551.84, "probability": 0.4519 }, { "start": 3552.38, "end": 3556.66, "probability": 0.8076 }, { "start": 3556.84, "end": 3557.62, "probability": 0.7518 }, { "start": 3557.72, "end": 3558.44, "probability": 0.7479 }, { "start": 3558.56, "end": 3559.78, "probability": 0.9563 }, { "start": 3560.58, "end": 3561.3, "probability": 0.663 }, { "start": 3561.4, "end": 3561.96, "probability": 0.4014 }, { "start": 3563.3, "end": 3565.12, "probability": 0.7264 }, { "start": 3565.48, "end": 3568.8, "probability": 0.7196 }, { "start": 3568.86, "end": 3569.56, "probability": 0.8525 }, { "start": 3569.58, "end": 3570.46, "probability": 0.9631 }, { "start": 3570.82, "end": 3571.34, "probability": 0.5084 }, { "start": 3571.4, "end": 3572.36, "probability": 0.3706 }, { "start": 3573.06, "end": 3575.1, "probability": 0.984 }, { "start": 3575.14, "end": 3579.94, "probability": 0.9639 }, { "start": 3580.76, "end": 3587.82, "probability": 0.9928 }, { "start": 3588.48, "end": 3589.87, "probability": 0.7876 }, { "start": 3590.22, "end": 3595.5, "probability": 0.1583 }, { "start": 3596.4, "end": 3597.31, "probability": 0.2059 }, { "start": 3597.38, "end": 3598.48, "probability": 0.2999 }, { "start": 3598.84, "end": 3598.84, "probability": 0.0966 }, { "start": 3599.02, "end": 3599.02, "probability": 0.0681 }, { "start": 3599.94, "end": 3600.96, "probability": 0.1474 }, { "start": 3601.62, "end": 3605.24, "probability": 0.0403 }, { "start": 3605.82, "end": 3605.92, "probability": 0.2341 }, { "start": 3606.54, "end": 3606.95, "probability": 0.0761 }, { "start": 3607.48, "end": 3609.22, "probability": 0.0873 }, { "start": 3609.74, "end": 3612.82, "probability": 0.3907 }, { "start": 3617.08, "end": 3617.38, "probability": 0.0969 }, { "start": 3617.38, "end": 3618.3, "probability": 0.3543 }, { "start": 3618.44, "end": 3618.44, "probability": 0.0313 }, { "start": 3618.78, "end": 3619.66, "probability": 0.1671 }, { "start": 3620.76, "end": 3621.12, "probability": 0.0696 }, { "start": 3621.12, "end": 3621.68, "probability": 0.3306 }, { "start": 3621.68, "end": 3622.66, "probability": 0.0747 }, { "start": 3624.9, "end": 3625.8, "probability": 0.0686 }, { "start": 3626.16, "end": 3626.76, "probability": 0.0784 }, { "start": 3626.78, "end": 3629.12, "probability": 0.2225 }, { "start": 3629.88, "end": 3630.0, "probability": 0.1139 }, { "start": 3630.0, "end": 3632.34, "probability": 0.0595 }, { "start": 3632.48, "end": 3633.12, "probability": 0.1037 }, { "start": 3634.86, "end": 3639.22, "probability": 0.0116 }, { "start": 3639.22, "end": 3639.52, "probability": 0.0251 }, { "start": 3639.52, "end": 3639.52, "probability": 0.2365 }, { "start": 3640.34, "end": 3661.0, "probability": 0.0 }, { "start": 3661.0, "end": 3661.0, "probability": 0.0 }, { "start": 3661.0, "end": 3661.0, "probability": 0.0 }, { "start": 3661.0, "end": 3661.0, "probability": 0.0 }, { "start": 3661.0, "end": 3661.0, "probability": 0.0 }, { "start": 3661.0, "end": 3661.0, "probability": 0.0 }, { "start": 3661.0, "end": 3661.0, "probability": 0.0 }, { "start": 3661.0, "end": 3661.0, "probability": 0.0 }, { "start": 3661.0, "end": 3661.0, "probability": 0.0 }, { "start": 3661.0, "end": 3661.0, "probability": 0.0 }, { "start": 3661.0, "end": 3661.0, "probability": 0.0 }, { "start": 3661.0, "end": 3661.0, "probability": 0.0 }, { "start": 3661.0, "end": 3661.0, "probability": 0.0 }, { "start": 3661.0, "end": 3661.0, "probability": 0.0 }, { "start": 3661.0, "end": 3661.0, "probability": 0.0 }, { "start": 3661.0, "end": 3661.0, "probability": 0.0 }, { "start": 3661.0, "end": 3661.0, "probability": 0.0 }, { "start": 3661.0, "end": 3661.0, "probability": 0.0 }, { "start": 3661.0, "end": 3661.0, "probability": 0.0 }, { "start": 3661.0, "end": 3661.0, "probability": 0.0 }, { "start": 3661.0, "end": 3661.0, "probability": 0.0 }, { "start": 3670.74, "end": 3670.84, "probability": 0.0873 }, { "start": 3670.84, "end": 3672.18, "probability": 0.7124 }, { "start": 3677.68, "end": 3678.64, "probability": 0.7263 }, { "start": 3678.8, "end": 3679.64, "probability": 0.6229 }, { "start": 3679.76, "end": 3680.96, "probability": 0.7689 }, { "start": 3681.34, "end": 3681.82, "probability": 0.6831 }, { "start": 3682.64, "end": 3684.94, "probability": 0.9691 }, { "start": 3684.98, "end": 3687.14, "probability": 0.9642 }, { "start": 3687.74, "end": 3688.5, "probability": 0.9396 }, { "start": 3689.3, "end": 3689.38, "probability": 0.0049 }, { "start": 3690.02, "end": 3690.02, "probability": 0.0145 }, { "start": 3690.02, "end": 3690.02, "probability": 0.0599 }, { "start": 3690.02, "end": 3690.51, "probability": 0.5838 }, { "start": 3690.86, "end": 3692.08, "probability": 0.839 }, { "start": 3692.2, "end": 3693.82, "probability": 0.9884 }, { "start": 3693.84, "end": 3694.47, "probability": 0.8883 }, { "start": 3695.48, "end": 3697.86, "probability": 0.9562 }, { "start": 3698.88, "end": 3701.96, "probability": 0.8168 }, { "start": 3702.38, "end": 3705.48, "probability": 0.6885 }, { "start": 3705.88, "end": 3705.88, "probability": 0.0954 }, { "start": 3705.88, "end": 3706.73, "probability": 0.5371 }, { "start": 3707.0, "end": 3708.29, "probability": 0.7761 }, { "start": 3708.56, "end": 3709.48, "probability": 0.2917 }, { "start": 3709.66, "end": 3714.26, "probability": 0.9463 }, { "start": 3714.52, "end": 3716.78, "probability": 0.3763 }, { "start": 3718.42, "end": 3718.62, "probability": 0.0123 }, { "start": 3718.62, "end": 3719.3, "probability": 0.0212 }, { "start": 3719.66, "end": 3720.96, "probability": 0.7056 }, { "start": 3721.06, "end": 3723.24, "probability": 0.6352 }, { "start": 3723.42, "end": 3726.31, "probability": 0.6377 }, { "start": 3729.86, "end": 3733.92, "probability": 0.0681 }, { "start": 3733.92, "end": 3735.52, "probability": 0.0799 }, { "start": 3735.56, "end": 3736.9, "probability": 0.1191 }, { "start": 3736.98, "end": 3736.98, "probability": 0.0584 }, { "start": 3736.98, "end": 3737.82, "probability": 0.0634 }, { "start": 3738.64, "end": 3738.82, "probability": 0.1446 }, { "start": 3743.14, "end": 3746.82, "probability": 0.2173 }, { "start": 3751.52, "end": 3752.78, "probability": 0.7057 }, { "start": 3754.2, "end": 3755.22, "probability": 0.8132 }, { "start": 3757.2, "end": 3757.34, "probability": 0.1646 }, { "start": 3757.34, "end": 3761.88, "probability": 0.0606 }, { "start": 3762.84, "end": 3763.06, "probability": 0.1009 }, { "start": 3763.06, "end": 3764.36, "probability": 0.0854 }, { "start": 3787.0, "end": 3787.0, "probability": 0.0 }, { "start": 3787.0, "end": 3787.0, "probability": 0.0 }, { "start": 3787.0, "end": 3787.0, "probability": 0.0 }, { "start": 3787.0, "end": 3787.0, "probability": 0.0 }, { "start": 3787.0, "end": 3787.0, "probability": 0.0 }, { "start": 3787.0, "end": 3787.0, "probability": 0.0 }, { "start": 3787.0, "end": 3787.0, "probability": 0.0 }, { "start": 3787.0, "end": 3787.0, "probability": 0.0 }, { "start": 3787.0, "end": 3787.0, "probability": 0.0 }, { "start": 3787.0, "end": 3787.0, "probability": 0.0 }, { "start": 3787.0, "end": 3787.0, "probability": 0.0 }, { "start": 3787.74, "end": 3787.74, "probability": 0.0319 }, { "start": 3787.74, "end": 3787.74, "probability": 0.1002 }, { "start": 3787.74, "end": 3788.22, "probability": 0.2597 }, { "start": 3788.22, "end": 3790.98, "probability": 0.7622 }, { "start": 3791.28, "end": 3795.43, "probability": 0.7869 }, { "start": 3796.66, "end": 3803.26, "probability": 0.9932 }, { "start": 3803.26, "end": 3804.1, "probability": 0.9258 }, { "start": 3804.18, "end": 3804.46, "probability": 0.8907 }, { "start": 3804.54, "end": 3809.1, "probability": 0.9767 }, { "start": 3809.5, "end": 3810.84, "probability": 0.9846 }, { "start": 3811.4, "end": 3813.56, "probability": 0.4981 }, { "start": 3814.04, "end": 3814.68, "probability": 0.9572 }, { "start": 3815.2, "end": 3817.18, "probability": 0.9831 }, { "start": 3817.64, "end": 3820.36, "probability": 0.9951 }, { "start": 3820.78, "end": 3825.44, "probability": 0.9939 }, { "start": 3825.56, "end": 3829.28, "probability": 0.6176 }, { "start": 3829.64, "end": 3829.68, "probability": 0.0314 }, { "start": 3829.68, "end": 3833.22, "probability": 0.9929 }, { "start": 3833.74, "end": 3838.12, "probability": 0.7988 }, { "start": 3838.16, "end": 3839.04, "probability": 0.6815 }, { "start": 3839.38, "end": 3840.26, "probability": 0.8886 }, { "start": 3840.34, "end": 3842.22, "probability": 0.9349 }, { "start": 3842.56, "end": 3847.22, "probability": 0.8974 }, { "start": 3847.76, "end": 3848.26, "probability": 0.9591 }, { "start": 3848.38, "end": 3850.22, "probability": 0.9861 }, { "start": 3850.52, "end": 3853.08, "probability": 0.9932 }, { "start": 3853.34, "end": 3856.22, "probability": 0.6632 }, { "start": 3856.5, "end": 3856.5, "probability": 0.3671 }, { "start": 3856.5, "end": 3861.44, "probability": 0.9863 }, { "start": 3861.6, "end": 3861.9, "probability": 0.8607 }, { "start": 3862.18, "end": 3864.86, "probability": 0.9806 }, { "start": 3865.2, "end": 3866.03, "probability": 0.9861 }, { "start": 3866.38, "end": 3869.86, "probability": 0.9774 }, { "start": 3870.18, "end": 3872.74, "probability": 0.9275 }, { "start": 3873.04, "end": 3873.2, "probability": 0.0257 }, { "start": 3873.2, "end": 3873.2, "probability": 0.0828 }, { "start": 3873.2, "end": 3875.08, "probability": 0.3364 }, { "start": 3875.08, "end": 3876.36, "probability": 0.6148 }, { "start": 3878.12, "end": 3883.42, "probability": 0.1159 }, { "start": 3883.66, "end": 3884.74, "probability": 0.2477 }, { "start": 3891.62, "end": 3895.02, "probability": 0.521 }, { "start": 3895.72, "end": 3897.94, "probability": 0.1541 }, { "start": 3898.08, "end": 3903.0, "probability": 0.5483 }, { "start": 3903.0, "end": 3906.22, "probability": 0.0726 }, { "start": 3908.72, "end": 3909.4, "probability": 0.4971 }, { "start": 3909.9, "end": 3910.08, "probability": 0.0699 }, { "start": 3910.36, "end": 3910.43, "probability": 0.4321 }, { "start": 3910.64, "end": 3913.43, "probability": 0.054 }, { "start": 3916.74, "end": 3917.64, "probability": 0.5775 }, { "start": 3917.64, "end": 3921.24, "probability": 0.5138 }, { "start": 3924.14, "end": 3924.74, "probability": 0.2045 }, { "start": 3926.68, "end": 3928.24, "probability": 0.306 }, { "start": 3928.5, "end": 3929.16, "probability": 0.3186 }, { "start": 3929.79, "end": 3931.0, "probability": 0.1752 }, { "start": 3931.22, "end": 3931.22, "probability": 0.3095 }, { "start": 3932.56, "end": 3935.66, "probability": 0.3458 }, { "start": 3937.32, "end": 3938.42, "probability": 0.0947 }, { "start": 3942.06, "end": 3944.8, "probability": 0.1439 }, { "start": 3946.8, "end": 3947.48, "probability": 0.1311 }, { "start": 3947.68, "end": 3947.68, "probability": 0.1274 }, { "start": 3947.84, "end": 3947.84, "probability": 0.0015 }, { "start": 3947.88, "end": 3949.44, "probability": 0.1642 }, { "start": 3949.56, "end": 3950.24, "probability": 0.0334 }, { "start": 3951.73, "end": 3952.16, "probability": 0.1837 }, { "start": 3952.42, "end": 3952.42, "probability": 0.2344 }, { "start": 3953.1, "end": 3953.88, "probability": 0.1014 }, { "start": 3953.88, "end": 3954.98, "probability": 0.5135 }, { "start": 3955.0, "end": 3955.0, "probability": 0.0 }, { "start": 3955.0, "end": 3955.0, "probability": 0.0 }, { "start": 3955.0, "end": 3955.0, "probability": 0.0 }, { "start": 3955.0, "end": 3955.0, "probability": 0.0 }, { "start": 3955.0, "end": 3955.0, "probability": 0.0 }, { "start": 3955.0, "end": 3955.0, "probability": 0.0 }, { "start": 3955.0, "end": 3955.0, "probability": 0.0 }, { "start": 3955.0, "end": 3955.0, "probability": 0.0 }, { "start": 3955.16, "end": 3955.42, "probability": 0.0274 }, { "start": 3955.52, "end": 3956.28, "probability": 0.6679 }, { "start": 3956.38, "end": 3958.42, "probability": 0.9755 }, { "start": 3958.52, "end": 3958.96, "probability": 0.9724 }, { "start": 3959.08, "end": 3959.64, "probability": 0.9844 }, { "start": 3959.7, "end": 3960.54, "probability": 0.9294 }, { "start": 3963.56, "end": 3966.5, "probability": 0.9979 }, { "start": 3967.18, "end": 3967.98, "probability": 0.8363 }, { "start": 3968.72, "end": 3970.98, "probability": 0.9961 }, { "start": 3972.26, "end": 3972.34, "probability": 0.7302 }, { "start": 3972.4, "end": 3977.06, "probability": 0.9984 }, { "start": 3977.06, "end": 3979.96, "probability": 0.9976 }, { "start": 3980.06, "end": 3981.48, "probability": 0.9557 }, { "start": 3981.6, "end": 3982.24, "probability": 0.7872 }, { "start": 3982.82, "end": 3984.6, "probability": 0.916 }, { "start": 3985.36, "end": 3986.14, "probability": 0.9913 }, { "start": 3987.52, "end": 3991.66, "probability": 0.9867 }, { "start": 3992.92, "end": 3994.68, "probability": 0.9971 }, { "start": 3996.14, "end": 3999.7, "probability": 0.998 }, { "start": 3999.98, "end": 4000.92, "probability": 0.8441 }, { "start": 4002.34, "end": 4002.54, "probability": 0.9492 }, { "start": 4002.72, "end": 4002.76, "probability": 0.276 }, { "start": 4002.76, "end": 4005.8, "probability": 0.9175 }, { "start": 4007.5, "end": 4013.24, "probability": 0.9871 }, { "start": 4013.54, "end": 4014.94, "probability": 0.9313 }, { "start": 4016.02, "end": 4019.38, "probability": 0.9939 }, { "start": 4019.44, "end": 4020.65, "probability": 0.9991 }, { "start": 4020.8, "end": 4021.38, "probability": 0.8828 }, { "start": 4023.14, "end": 4023.24, "probability": 0.4535 }, { "start": 4023.32, "end": 4025.42, "probability": 0.7673 }, { "start": 4025.48, "end": 4030.64, "probability": 0.7808 }, { "start": 4030.72, "end": 4031.38, "probability": 0.8297 }, { "start": 4033.26, "end": 4035.48, "probability": 0.9956 }, { "start": 4035.58, "end": 4036.0, "probability": 0.8897 }, { "start": 4036.06, "end": 4036.28, "probability": 0.5241 }, { "start": 4036.32, "end": 4039.6, "probability": 0.9868 }, { "start": 4040.62, "end": 4042.94, "probability": 0.9769 }, { "start": 4043.46, "end": 4043.68, "probability": 0.7852 }, { "start": 4043.72, "end": 4044.44, "probability": 0.8633 }, { "start": 4044.7, "end": 4045.88, "probability": 0.9778 }, { "start": 4046.0, "end": 4047.84, "probability": 0.9637 }, { "start": 4050.18, "end": 4052.21, "probability": 0.9968 }, { "start": 4052.58, "end": 4053.84, "probability": 0.9443 }, { "start": 4053.86, "end": 4054.31, "probability": 0.5355 }, { "start": 4054.8, "end": 4055.08, "probability": 0.9126 }, { "start": 4055.2, "end": 4055.65, "probability": 0.9616 }, { "start": 4056.1, "end": 4059.14, "probability": 0.9927 }, { "start": 4061.2, "end": 4062.52, "probability": 0.8915 }, { "start": 4062.92, "end": 4065.3, "probability": 0.9969 }, { "start": 4065.66, "end": 4066.94, "probability": 0.9757 }, { "start": 4067.1, "end": 4068.74, "probability": 0.9229 }, { "start": 4070.4, "end": 4073.26, "probability": 0.9702 }, { "start": 4074.6, "end": 4076.87, "probability": 0.9514 }, { "start": 4077.68, "end": 4081.24, "probability": 0.9378 }, { "start": 4081.88, "end": 4083.4, "probability": 0.9738 }, { "start": 4084.84, "end": 4085.12, "probability": 0.0518 }, { "start": 4085.3, "end": 4087.48, "probability": 0.9128 }, { "start": 4088.14, "end": 4090.82, "probability": 0.8564 }, { "start": 4093.44, "end": 4095.71, "probability": 0.5354 }, { "start": 4097.84, "end": 4098.72, "probability": 0.7125 }, { "start": 4099.64, "end": 4100.78, "probability": 0.7236 }, { "start": 4100.96, "end": 4101.82, "probability": 0.9711 }, { "start": 4101.88, "end": 4102.76, "probability": 0.9779 }, { "start": 4102.86, "end": 4104.58, "probability": 0.9597 }, { "start": 4104.94, "end": 4106.54, "probability": 0.6786 }, { "start": 4107.38, "end": 4108.5, "probability": 0.9369 }, { "start": 4108.62, "end": 4108.82, "probability": 0.7188 }, { "start": 4109.18, "end": 4109.58, "probability": 0.4685 }, { "start": 4109.64, "end": 4110.66, "probability": 0.9262 }, { "start": 4110.78, "end": 4112.26, "probability": 0.9966 }, { "start": 4112.86, "end": 4114.52, "probability": 0.6684 }, { "start": 4114.94, "end": 4115.12, "probability": 0.1794 }, { "start": 4115.12, "end": 4117.54, "probability": 0.9576 }, { "start": 4117.6, "end": 4118.47, "probability": 0.9924 }, { "start": 4119.78, "end": 4120.74, "probability": 0.8207 }, { "start": 4120.76, "end": 4121.7, "probability": 0.7654 }, { "start": 4121.94, "end": 4122.28, "probability": 0.8821 }, { "start": 4122.36, "end": 4122.92, "probability": 0.7515 }, { "start": 4123.06, "end": 4123.42, "probability": 0.9019 }, { "start": 4123.48, "end": 4124.14, "probability": 0.5036 }, { "start": 4124.82, "end": 4125.86, "probability": 0.9424 }, { "start": 4125.86, "end": 4126.56, "probability": 0.6001 }, { "start": 4126.66, "end": 4127.76, "probability": 0.9163 }, { "start": 4130.36, "end": 4130.56, "probability": 0.0174 }, { "start": 4130.56, "end": 4130.76, "probability": 0.2751 }, { "start": 4130.88, "end": 4132.31, "probability": 0.3634 }, { "start": 4132.78, "end": 4132.8, "probability": 0.0852 }, { "start": 4132.8, "end": 4133.94, "probability": 0.7017 }, { "start": 4134.86, "end": 4137.01, "probability": 0.9291 }, { "start": 4137.12, "end": 4138.94, "probability": 0.9961 }, { "start": 4139.06, "end": 4140.42, "probability": 0.9956 }, { "start": 4140.54, "end": 4141.12, "probability": 0.7967 }, { "start": 4141.28, "end": 4144.58, "probability": 0.9807 }, { "start": 4144.86, "end": 4146.12, "probability": 0.9946 }, { "start": 4147.02, "end": 4149.84, "probability": 0.9841 }, { "start": 4150.1, "end": 4152.94, "probability": 0.8339 }, { "start": 4153.6, "end": 4154.62, "probability": 0.9024 }, { "start": 4154.76, "end": 4157.3, "probability": 0.9811 }, { "start": 4157.38, "end": 4159.78, "probability": 0.9576 }, { "start": 4160.12, "end": 4161.14, "probability": 0.9784 }, { "start": 4161.26, "end": 4161.36, "probability": 0.8464 }, { "start": 4161.48, "end": 4162.52, "probability": 0.9636 }, { "start": 4162.76, "end": 4163.5, "probability": 0.8101 }, { "start": 4163.72, "end": 4163.76, "probability": 0.2894 }, { "start": 4163.76, "end": 4166.32, "probability": 0.9888 }, { "start": 4166.36, "end": 4167.78, "probability": 0.9458 }, { "start": 4167.82, "end": 4169.16, "probability": 0.8087 }, { "start": 4169.74, "end": 4171.96, "probability": 0.9942 }, { "start": 4171.98, "end": 4172.78, "probability": 0.9385 }, { "start": 4172.86, "end": 4173.06, "probability": 0.8447 }, { "start": 4173.08, "end": 4173.54, "probability": 0.6713 }, { "start": 4173.58, "end": 4174.42, "probability": 0.9341 }, { "start": 4174.56, "end": 4174.74, "probability": 0.6783 }, { "start": 4174.82, "end": 4176.91, "probability": 0.907 }, { "start": 4177.5, "end": 4180.6, "probability": 0.9791 }, { "start": 4180.6, "end": 4181.9, "probability": 0.7375 }, { "start": 4182.0, "end": 4182.6, "probability": 0.8436 }, { "start": 4182.6, "end": 4183.64, "probability": 0.4025 }, { "start": 4183.64, "end": 4185.84, "probability": 0.866 }, { "start": 4185.95, "end": 4186.08, "probability": 0.2549 }, { "start": 4186.08, "end": 4186.78, "probability": 0.6328 }, { "start": 4187.16, "end": 4189.58, "probability": 0.9738 }, { "start": 4189.68, "end": 4190.06, "probability": 0.815 }, { "start": 4190.12, "end": 4190.34, "probability": 0.8583 }, { "start": 4190.44, "end": 4191.36, "probability": 0.7681 }, { "start": 4191.4, "end": 4191.52, "probability": 0.5462 }, { "start": 4191.7, "end": 4193.56, "probability": 0.968 }, { "start": 4193.88, "end": 4194.14, "probability": 0.6046 }, { "start": 4194.14, "end": 4195.42, "probability": 0.5709 }, { "start": 4195.64, "end": 4195.86, "probability": 0.7486 }, { "start": 4196.6, "end": 4198.6, "probability": 0.4246 }, { "start": 4207.54, "end": 4210.3, "probability": 0.5848 }, { "start": 4210.84, "end": 4211.58, "probability": 0.743 }, { "start": 4211.96, "end": 4213.5, "probability": 0.21 }, { "start": 4213.5, "end": 4213.9, "probability": 0.8765 }, { "start": 4214.02, "end": 4214.06, "probability": 0.8423 }, { "start": 4214.12, "end": 4214.24, "probability": 0.1531 }, { "start": 4214.4, "end": 4214.68, "probability": 0.8165 }, { "start": 4215.1, "end": 4215.66, "probability": 0.5801 }, { "start": 4215.76, "end": 4216.18, "probability": 0.8398 }, { "start": 4217.18, "end": 4217.42, "probability": 0.3728 }, { "start": 4217.5, "end": 4220.3, "probability": 0.6998 }, { "start": 4221.96, "end": 4226.48, "probability": 0.945 }, { "start": 4227.76, "end": 4231.54, "probability": 0.9935 }, { "start": 4233.24, "end": 4234.0, "probability": 0.968 }, { "start": 4234.78, "end": 4236.82, "probability": 0.9453 }, { "start": 4237.36, "end": 4239.9, "probability": 0.6659 }, { "start": 4240.02, "end": 4240.82, "probability": 0.2388 }, { "start": 4241.46, "end": 4242.1, "probability": 0.357 }, { "start": 4242.18, "end": 4243.42, "probability": 0.9885 }, { "start": 4243.44, "end": 4243.79, "probability": 0.5396 }, { "start": 4244.16, "end": 4245.2, "probability": 0.8407 }, { "start": 4245.32, "end": 4245.46, "probability": 0.4446 }, { "start": 4245.62, "end": 4246.53, "probability": 0.8212 }, { "start": 4248.68, "end": 4251.2, "probability": 0.0836 }, { "start": 4251.54, "end": 4252.11, "probability": 0.1303 }, { "start": 4253.16, "end": 4253.16, "probability": 0.2468 }, { "start": 4253.16, "end": 4254.3, "probability": 0.9122 }, { "start": 4254.96, "end": 4258.66, "probability": 0.7537 }, { "start": 4259.74, "end": 4263.18, "probability": 0.9769 }, { "start": 4263.86, "end": 4265.06, "probability": 0.9399 }, { "start": 4265.6, "end": 4265.8, "probability": 0.6769 }, { "start": 4267.28, "end": 4267.8, "probability": 0.3538 }, { "start": 4268.84, "end": 4273.8, "probability": 0.7896 }, { "start": 4274.42, "end": 4276.9, "probability": 0.9364 }, { "start": 4277.22, "end": 4282.06, "probability": 0.7123 }, { "start": 4283.0, "end": 4285.2, "probability": 0.5392 }, { "start": 4285.22, "end": 4288.28, "probability": 0.8749 }, { "start": 4288.68, "end": 4289.6, "probability": 0.6943 }, { "start": 4289.72, "end": 4295.04, "probability": 0.9951 }, { "start": 4295.82, "end": 4296.55, "probability": 0.8501 }, { "start": 4297.14, "end": 4298.0, "probability": 0.8864 }, { "start": 4298.92, "end": 4299.84, "probability": 0.8025 }, { "start": 4299.98, "end": 4300.36, "probability": 0.4793 }, { "start": 4300.5, "end": 4304.88, "probability": 0.9961 }, { "start": 4305.28, "end": 4308.02, "probability": 0.0474 }, { "start": 4308.16, "end": 4308.16, "probability": 0.0133 }, { "start": 4308.16, "end": 4308.16, "probability": 0.1972 }, { "start": 4308.16, "end": 4308.44, "probability": 0.2138 }, { "start": 4308.8, "end": 4311.26, "probability": 0.2915 }, { "start": 4311.26, "end": 4311.56, "probability": 0.0257 }, { "start": 4313.24, "end": 4315.08, "probability": 0.6997 }, { "start": 4315.88, "end": 4316.92, "probability": 0.4735 }, { "start": 4317.2, "end": 4318.04, "probability": 0.4751 }, { "start": 4318.04, "end": 4319.48, "probability": 0.2807 }, { "start": 4320.27, "end": 4322.38, "probability": 0.2173 }, { "start": 4322.38, "end": 4322.75, "probability": 0.7341 }, { "start": 4324.23, "end": 4325.74, "probability": 0.4686 }, { "start": 4325.76, "end": 4326.66, "probability": 0.7466 }, { "start": 4326.82, "end": 4328.02, "probability": 0.6483 }, { "start": 4328.02, "end": 4328.28, "probability": 0.04 }, { "start": 4328.72, "end": 4330.12, "probability": 0.1683 }, { "start": 4330.22, "end": 4330.3, "probability": 0.0151 }, { "start": 4330.3, "end": 4330.3, "probability": 0.0733 }, { "start": 4330.3, "end": 4330.3, "probability": 0.0896 }, { "start": 4330.3, "end": 4330.3, "probability": 0.0453 }, { "start": 4330.34, "end": 4330.68, "probability": 0.6179 }, { "start": 4330.78, "end": 4332.25, "probability": 0.8074 }, { "start": 4332.74, "end": 4333.42, "probability": 0.7872 }, { "start": 4333.7, "end": 4333.98, "probability": 0.7722 }, { "start": 4334.22, "end": 4339.14, "probability": 0.9797 }, { "start": 4339.78, "end": 4342.74, "probability": 0.9917 }, { "start": 4342.8, "end": 4343.42, "probability": 0.0202 }, { "start": 4343.46, "end": 4346.72, "probability": 0.8949 }, { "start": 4347.56, "end": 4349.88, "probability": 0.9325 }, { "start": 4350.26, "end": 4351.64, "probability": 0.5068 }, { "start": 4351.68, "end": 4353.26, "probability": 0.662 }, { "start": 4354.81, "end": 4356.66, "probability": 0.1702 }, { "start": 4357.32, "end": 4358.5, "probability": 0.186 }, { "start": 4358.6, "end": 4359.16, "probability": 0.6519 }, { "start": 4359.64, "end": 4359.9, "probability": 0.4298 }, { "start": 4359.9, "end": 4360.88, "probability": 0.5899 }, { "start": 4361.14, "end": 4363.16, "probability": 0.6152 }, { "start": 4363.2, "end": 4363.74, "probability": 0.1328 }, { "start": 4363.74, "end": 4363.74, "probability": 0.3029 }, { "start": 4363.74, "end": 4363.74, "probability": 0.508 }, { "start": 4363.74, "end": 4364.48, "probability": 0.1901 }, { "start": 4365.78, "end": 4366.64, "probability": 0.4657 }, { "start": 4367.3, "end": 4368.42, "probability": 0.8212 }, { "start": 4368.52, "end": 4368.78, "probability": 0.2975 }, { "start": 4368.86, "end": 4368.98, "probability": 0.4665 }, { "start": 4368.98, "end": 4369.47, "probability": 0.9286 }, { "start": 4370.98, "end": 4372.96, "probability": 0.1198 }, { "start": 4373.04, "end": 4373.18, "probability": 0.3333 }, { "start": 4373.3, "end": 4377.16, "probability": 0.9336 }, { "start": 4377.26, "end": 4378.08, "probability": 0.9298 }, { "start": 4378.22, "end": 4379.02, "probability": 0.6641 }, { "start": 4379.12, "end": 4379.84, "probability": 0.7575 }, { "start": 4380.52, "end": 4384.08, "probability": 0.4064 }, { "start": 4384.74, "end": 4386.32, "probability": 0.4661 }, { "start": 4386.46, "end": 4387.39, "probability": 0.4078 }, { "start": 4387.94, "end": 4389.68, "probability": 0.9301 }, { "start": 4390.04, "end": 4392.0, "probability": 0.8691 }, { "start": 4392.4, "end": 4393.17, "probability": 0.1356 }, { "start": 4394.0, "end": 4394.16, "probability": 0.0004 }, { "start": 4395.86, "end": 4395.88, "probability": 0.1716 }, { "start": 4395.88, "end": 4397.22, "probability": 0.1648 }, { "start": 4397.46, "end": 4398.18, "probability": 0.1661 }, { "start": 4398.28, "end": 4400.16, "probability": 0.6702 }, { "start": 4401.32, "end": 4401.44, "probability": 0.0017 }, { "start": 4401.44, "end": 4401.44, "probability": 0.2974 }, { "start": 4401.44, "end": 4401.44, "probability": 0.1251 }, { "start": 4401.44, "end": 4401.44, "probability": 0.4727 }, { "start": 4401.44, "end": 4403.21, "probability": 0.2641 }, { "start": 4406.18, "end": 4408.44, "probability": 0.9028 }, { "start": 4408.44, "end": 4409.92, "probability": 0.5896 }, { "start": 4410.0, "end": 4414.82, "probability": 0.986 }, { "start": 4415.2, "end": 4415.87, "probability": 0.9053 }, { "start": 4416.56, "end": 4417.26, "probability": 0.9585 }, { "start": 4417.88, "end": 4420.68, "probability": 0.849 }, { "start": 4421.0, "end": 4421.72, "probability": 0.9717 }, { "start": 4421.9, "end": 4422.53, "probability": 0.8364 }, { "start": 4423.24, "end": 4425.0, "probability": 0.7105 }, { "start": 4426.02, "end": 4427.98, "probability": 0.8402 }, { "start": 4428.06, "end": 4429.1, "probability": 0.964 }, { "start": 4429.88, "end": 4431.88, "probability": 0.8397 }, { "start": 4432.44, "end": 4433.88, "probability": 0.7473 }, { "start": 4434.64, "end": 4437.02, "probability": 0.3592 }, { "start": 4437.68, "end": 4440.77, "probability": 0.4683 }, { "start": 4441.2, "end": 4441.78, "probability": 0.7737 }, { "start": 4442.14, "end": 4443.5, "probability": 0.7069 }, { "start": 4444.18, "end": 4445.92, "probability": 0.9702 }, { "start": 4446.58, "end": 4450.08, "probability": 0.9946 }, { "start": 4450.08, "end": 4453.44, "probability": 0.8666 }, { "start": 4454.22, "end": 4457.48, "probability": 0.806 }, { "start": 4458.29, "end": 4461.04, "probability": 0.0431 }, { "start": 4461.04, "end": 4461.6, "probability": 0.0369 }, { "start": 4461.84, "end": 4467.62, "probability": 0.0368 }, { "start": 4468.32, "end": 4471.4, "probability": 0.1783 }, { "start": 4506.62, "end": 4506.72, "probability": 0.4232 }, { "start": 4510.84, "end": 4516.47, "probability": 0.9688 }, { "start": 4517.46, "end": 4517.78, "probability": 0.8984 }, { "start": 4519.08, "end": 4519.72, "probability": 0.6218 }, { "start": 4519.86, "end": 4523.37, "probability": 0.9786 }, { "start": 4524.7, "end": 4525.28, "probability": 0.7983 }, { "start": 4526.68, "end": 4528.0, "probability": 0.6705 }, { "start": 4528.78, "end": 4529.79, "probability": 0.9741 }, { "start": 4530.58, "end": 4536.62, "probability": 0.965 }, { "start": 4537.24, "end": 4541.86, "probability": 0.8797 }, { "start": 4542.28, "end": 4545.64, "probability": 0.9497 }, { "start": 4546.66, "end": 4549.14, "probability": 0.6005 }, { "start": 4549.36, "end": 4550.84, "probability": 0.8402 }, { "start": 4551.84, "end": 4556.32, "probability": 0.9838 }, { "start": 4556.74, "end": 4559.08, "probability": 0.9224 }, { "start": 4559.62, "end": 4559.86, "probability": 0.9681 }, { "start": 4560.84, "end": 4563.52, "probability": 0.6812 }, { "start": 4563.58, "end": 4566.66, "probability": 0.8973 }, { "start": 4567.7, "end": 4573.06, "probability": 0.9512 }, { "start": 4573.48, "end": 4577.59, "probability": 0.9794 }, { "start": 4579.12, "end": 4580.06, "probability": 0.9253 }, { "start": 4581.76, "end": 4585.98, "probability": 0.8553 }, { "start": 4586.04, "end": 4589.44, "probability": 0.5366 }, { "start": 4598.62, "end": 4599.36, "probability": 0.7503 }, { "start": 4600.64, "end": 4603.12, "probability": 0.8428 }, { "start": 4603.94, "end": 4605.98, "probability": 0.7888 }, { "start": 4608.94, "end": 4609.34, "probability": 0.7385 }, { "start": 4611.82, "end": 4613.56, "probability": 0.7705 }, { "start": 4614.56, "end": 4615.42, "probability": 0.8213 }, { "start": 4617.64, "end": 4618.76, "probability": 0.8993 }, { "start": 4619.56, "end": 4620.26, "probability": 0.9725 }, { "start": 4621.12, "end": 4622.09, "probability": 0.8556 }, { "start": 4626.56, "end": 4627.92, "probability": 0.9956 }, { "start": 4629.24, "end": 4629.66, "probability": 0.9173 }, { "start": 4631.14, "end": 4631.72, "probability": 0.5568 }, { "start": 4632.42, "end": 4634.42, "probability": 0.9971 }, { "start": 4637.44, "end": 4638.28, "probability": 0.8529 }, { "start": 4640.02, "end": 4641.56, "probability": 0.7642 }, { "start": 4643.68, "end": 4644.3, "probability": 0.9199 }, { "start": 4646.04, "end": 4648.54, "probability": 0.8108 }, { "start": 4652.18, "end": 4654.08, "probability": 0.9811 }, { "start": 4658.56, "end": 4660.9, "probability": 0.808 }, { "start": 4662.54, "end": 4663.68, "probability": 0.9924 }, { "start": 4664.56, "end": 4667.3, "probability": 0.9976 }, { "start": 4668.02, "end": 4669.16, "probability": 0.9347 }, { "start": 4670.98, "end": 4671.84, "probability": 0.8324 }, { "start": 4672.38, "end": 4673.16, "probability": 0.9052 }, { "start": 4674.96, "end": 4678.08, "probability": 0.6428 }, { "start": 4679.64, "end": 4682.58, "probability": 0.9943 }, { "start": 4683.36, "end": 4685.22, "probability": 0.8733 }, { "start": 4685.98, "end": 4690.22, "probability": 0.9404 }, { "start": 4690.66, "end": 4691.84, "probability": 0.9862 }, { "start": 4691.92, "end": 4692.74, "probability": 0.983 }, { "start": 4692.82, "end": 4693.76, "probability": 0.975 }, { "start": 4693.8, "end": 4695.04, "probability": 0.9648 }, { "start": 4696.32, "end": 4697.6, "probability": 0.9825 }, { "start": 4698.14, "end": 4698.36, "probability": 0.1993 }, { "start": 4698.36, "end": 4700.42, "probability": 0.6354 }, { "start": 4700.9, "end": 4702.04, "probability": 0.732 }, { "start": 4702.12, "end": 4703.18, "probability": 0.6132 }, { "start": 4704.78, "end": 4707.34, "probability": 0.9906 }, { "start": 4707.54, "end": 4709.64, "probability": 0.8319 }, { "start": 4710.18, "end": 4711.08, "probability": 0.9426 }, { "start": 4712.08, "end": 4713.52, "probability": 0.98 }, { "start": 4713.9, "end": 4715.4, "probability": 0.9028 }, { "start": 4715.58, "end": 4716.2, "probability": 0.5186 }, { "start": 4716.48, "end": 4718.86, "probability": 0.9775 }, { "start": 4719.54, "end": 4722.96, "probability": 0.9088 }, { "start": 4725.38, "end": 4728.04, "probability": 0.952 }, { "start": 4728.14, "end": 4731.06, "probability": 0.9905 }, { "start": 4731.94, "end": 4732.98, "probability": 0.7322 }, { "start": 4733.06, "end": 4738.1, "probability": 0.8785 }, { "start": 4738.32, "end": 4739.2, "probability": 0.781 }, { "start": 4739.92, "end": 4744.66, "probability": 0.9874 }, { "start": 4745.68, "end": 4748.28, "probability": 0.8818 }, { "start": 4749.64, "end": 4753.52, "probability": 0.9102 }, { "start": 4754.68, "end": 4756.22, "probability": 0.9575 }, { "start": 4757.86, "end": 4759.22, "probability": 0.9688 }, { "start": 4759.32, "end": 4761.06, "probability": 0.684 }, { "start": 4763.02, "end": 4764.68, "probability": 0.9206 }, { "start": 4766.76, "end": 4767.88, "probability": 0.9667 }, { "start": 4768.86, "end": 4770.02, "probability": 0.9971 }, { "start": 4770.2, "end": 4772.88, "probability": 0.9971 }, { "start": 4772.98, "end": 4773.94, "probability": 0.9927 }, { "start": 4775.66, "end": 4777.55, "probability": 0.9241 }, { "start": 4778.86, "end": 4783.24, "probability": 0.8381 }, { "start": 4785.62, "end": 4787.14, "probability": 0.9925 }, { "start": 4787.52, "end": 4789.74, "probability": 0.9863 }, { "start": 4789.98, "end": 4794.1, "probability": 0.9666 }, { "start": 4794.46, "end": 4795.1, "probability": 0.4107 }, { "start": 4795.22, "end": 4796.31, "probability": 0.8008 }, { "start": 4798.54, "end": 4801.92, "probability": 0.9755 }, { "start": 4802.12, "end": 4804.08, "probability": 0.8661 }, { "start": 4807.34, "end": 4811.92, "probability": 0.9609 }, { "start": 4812.7, "end": 4814.52, "probability": 0.9125 }, { "start": 4814.98, "end": 4816.24, "probability": 0.7224 }, { "start": 4816.6, "end": 4817.3, "probability": 0.6336 }, { "start": 4818.28, "end": 4818.9, "probability": 0.8413 }, { "start": 4819.42, "end": 4823.46, "probability": 0.8298 }, { "start": 4823.9, "end": 4825.04, "probability": 0.9741 }, { "start": 4825.1, "end": 4826.44, "probability": 0.9136 }, { "start": 4826.62, "end": 4831.94, "probability": 0.9602 }, { "start": 4832.4, "end": 4834.98, "probability": 0.9425 }, { "start": 4835.58, "end": 4836.36, "probability": 0.5249 }, { "start": 4837.04, "end": 4838.24, "probability": 0.9697 }, { "start": 4838.84, "end": 4839.22, "probability": 0.9178 }, { "start": 4839.38, "end": 4840.32, "probability": 0.9323 }, { "start": 4840.44, "end": 4841.48, "probability": 0.972 }, { "start": 4842.36, "end": 4844.04, "probability": 0.9893 }, { "start": 4844.66, "end": 4846.06, "probability": 0.9725 }, { "start": 4846.22, "end": 4847.52, "probability": 0.8689 }, { "start": 4848.18, "end": 4850.42, "probability": 0.9624 }, { "start": 4850.54, "end": 4852.0, "probability": 0.9731 }, { "start": 4852.06, "end": 4853.92, "probability": 0.9234 }, { "start": 4854.48, "end": 4856.4, "probability": 0.7852 }, { "start": 4856.92, "end": 4858.42, "probability": 0.7813 }, { "start": 4858.7, "end": 4863.54, "probability": 0.8867 }, { "start": 4863.7, "end": 4865.64, "probability": 0.9792 }, { "start": 4865.98, "end": 4866.86, "probability": 0.8935 }, { "start": 4867.1, "end": 4867.96, "probability": 0.9728 }, { "start": 4868.98, "end": 4869.76, "probability": 0.797 }, { "start": 4870.74, "end": 4871.86, "probability": 0.7234 }, { "start": 4871.94, "end": 4875.72, "probability": 0.859 }, { "start": 4876.28, "end": 4879.62, "probability": 0.9911 }, { "start": 4879.82, "end": 4884.04, "probability": 0.9312 }, { "start": 4886.67, "end": 4890.46, "probability": 0.9611 }, { "start": 4890.76, "end": 4892.06, "probability": 0.7771 }, { "start": 4892.32, "end": 4893.72, "probability": 0.9756 }, { "start": 4894.76, "end": 4896.9, "probability": 0.9314 }, { "start": 4897.8, "end": 4899.8, "probability": 0.8606 }, { "start": 4901.0, "end": 4903.02, "probability": 0.8362 }, { "start": 4904.38, "end": 4906.46, "probability": 0.8664 }, { "start": 4906.98, "end": 4909.44, "probability": 0.9633 }, { "start": 4910.47, "end": 4912.3, "probability": 0.981 }, { "start": 4912.5, "end": 4913.76, "probability": 0.9733 }, { "start": 4913.84, "end": 4915.22, "probability": 0.8376 }, { "start": 4915.78, "end": 4917.0, "probability": 0.4782 }, { "start": 4917.06, "end": 4920.82, "probability": 0.8137 }, { "start": 4920.98, "end": 4922.12, "probability": 0.9857 }, { "start": 4922.94, "end": 4924.72, "probability": 0.7503 }, { "start": 4924.78, "end": 4926.72, "probability": 0.6289 }, { "start": 4927.02, "end": 4928.22, "probability": 0.8557 }, { "start": 4928.8, "end": 4929.42, "probability": 0.0943 }, { "start": 4930.08, "end": 4931.16, "probability": 0.14 }, { "start": 4931.98, "end": 4932.48, "probability": 0.3058 }, { "start": 4933.12, "end": 4938.52, "probability": 0.7544 }, { "start": 4939.38, "end": 4939.9, "probability": 0.8005 }, { "start": 4941.19, "end": 4943.38, "probability": 0.6626 }, { "start": 4946.48, "end": 4947.0, "probability": 0.7013 }, { "start": 4948.84, "end": 4949.78, "probability": 0.9639 }, { "start": 4950.54, "end": 4951.96, "probability": 0.9545 }, { "start": 4952.1, "end": 4954.26, "probability": 0.6927 }, { "start": 4954.56, "end": 4956.12, "probability": 0.9525 }, { "start": 4957.36, "end": 4961.48, "probability": 0.9028 }, { "start": 4962.36, "end": 4964.3, "probability": 0.9082 }, { "start": 4964.38, "end": 4964.9, "probability": 0.7525 }, { "start": 4965.3, "end": 4968.04, "probability": 0.7861 }, { "start": 4968.18, "end": 4969.38, "probability": 0.9196 }, { "start": 4969.5, "end": 4970.38, "probability": 0.8923 }, { "start": 4970.64, "end": 4971.52, "probability": 0.9927 }, { "start": 4971.6, "end": 4972.38, "probability": 0.7669 }, { "start": 4972.96, "end": 4977.22, "probability": 0.9798 }, { "start": 4977.22, "end": 4980.1, "probability": 0.9849 }, { "start": 4980.62, "end": 4985.1, "probability": 0.7169 }, { "start": 4985.1, "end": 4989.0, "probability": 0.7296 }, { "start": 4989.64, "end": 4994.52, "probability": 0.7601 }, { "start": 4995.02, "end": 4996.06, "probability": 0.7344 }, { "start": 4996.2, "end": 4998.42, "probability": 0.8595 }, { "start": 4998.48, "end": 5000.9, "probability": 0.9634 }, { "start": 5001.52, "end": 5002.4, "probability": 0.5468 }, { "start": 5002.86, "end": 5003.88, "probability": 0.8372 }, { "start": 5004.26, "end": 5005.56, "probability": 0.9448 }, { "start": 5006.26, "end": 5009.16, "probability": 0.7125 }, { "start": 5009.68, "end": 5011.32, "probability": 0.7844 }, { "start": 5012.34, "end": 5013.36, "probability": 0.88 }, { "start": 5013.78, "end": 5016.96, "probability": 0.9232 }, { "start": 5017.16, "end": 5017.77, "probability": 0.975 }, { "start": 5018.5, "end": 5018.64, "probability": 0.4264 }, { "start": 5018.76, "end": 5019.28, "probability": 0.83 }, { "start": 5020.02, "end": 5021.48, "probability": 0.9613 }, { "start": 5022.42, "end": 5022.64, "probability": 0.8014 }, { "start": 5023.52, "end": 5026.24, "probability": 0.4932 }, { "start": 5045.92, "end": 5047.54, "probability": 0.7576 }, { "start": 5048.96, "end": 5050.14, "probability": 0.9113 }, { "start": 5051.64, "end": 5053.54, "probability": 0.7289 }, { "start": 5054.24, "end": 5056.02, "probability": 0.9886 }, { "start": 5057.68, "end": 5063.6, "probability": 0.9829 }, { "start": 5063.6, "end": 5069.5, "probability": 0.987 }, { "start": 5070.62, "end": 5074.3, "probability": 0.9988 }, { "start": 5074.86, "end": 5079.96, "probability": 0.9983 }, { "start": 5081.12, "end": 5082.48, "probability": 0.9803 }, { "start": 5083.44, "end": 5085.98, "probability": 0.9956 }, { "start": 5086.9, "end": 5088.96, "probability": 0.9264 }, { "start": 5088.96, "end": 5093.74, "probability": 0.9985 }, { "start": 5094.68, "end": 5100.64, "probability": 0.6375 }, { "start": 5101.18, "end": 5103.82, "probability": 0.7921 }, { "start": 5104.92, "end": 5108.1, "probability": 0.7734 }, { "start": 5108.2, "end": 5111.7, "probability": 0.8711 }, { "start": 5112.06, "end": 5114.04, "probability": 0.8515 }, { "start": 5114.16, "end": 5116.36, "probability": 0.6168 }, { "start": 5117.22, "end": 5120.14, "probability": 0.9896 }, { "start": 5120.22, "end": 5120.74, "probability": 0.561 }, { "start": 5122.38, "end": 5125.68, "probability": 0.9712 }, { "start": 5126.66, "end": 5129.5, "probability": 0.96 }, { "start": 5130.34, "end": 5133.48, "probability": 0.9455 }, { "start": 5134.72, "end": 5136.78, "probability": 0.9878 }, { "start": 5137.5, "end": 5139.8, "probability": 0.9766 }, { "start": 5140.76, "end": 5142.93, "probability": 0.9937 }, { "start": 5144.3, "end": 5148.44, "probability": 0.9456 }, { "start": 5149.0, "end": 5150.5, "probability": 0.844 }, { "start": 5151.42, "end": 5153.16, "probability": 0.9675 }, { "start": 5154.62, "end": 5159.16, "probability": 0.993 }, { "start": 5160.14, "end": 5161.94, "probability": 0.979 }, { "start": 5162.02, "end": 5163.5, "probability": 0.7776 }, { "start": 5163.72, "end": 5164.32, "probability": 0.6474 }, { "start": 5165.22, "end": 5165.86, "probability": 0.8485 }, { "start": 5166.7, "end": 5169.94, "probability": 0.9827 }, { "start": 5170.04, "end": 5170.48, "probability": 0.9142 }, { "start": 5172.0, "end": 5174.36, "probability": 0.9751 }, { "start": 5174.9, "end": 5175.54, "probability": 0.6653 }, { "start": 5176.46, "end": 5178.96, "probability": 0.9709 }, { "start": 5180.04, "end": 5183.12, "probability": 0.73 }, { "start": 5183.78, "end": 5185.92, "probability": 0.5749 }, { "start": 5186.74, "end": 5188.76, "probability": 0.8652 }, { "start": 5189.44, "end": 5190.9, "probability": 0.9241 }, { "start": 5191.24, "end": 5194.02, "probability": 0.9964 }, { "start": 5195.1, "end": 5198.22, "probability": 0.9904 }, { "start": 5199.52, "end": 5202.13, "probability": 0.8703 }, { "start": 5203.34, "end": 5210.24, "probability": 0.9718 }, { "start": 5211.4, "end": 5213.16, "probability": 0.7798 }, { "start": 5213.6, "end": 5214.84, "probability": 0.8793 }, { "start": 5215.42, "end": 5217.38, "probability": 0.7862 }, { "start": 5218.74, "end": 5222.98, "probability": 0.7838 }, { "start": 5224.28, "end": 5229.0, "probability": 0.9007 }, { "start": 5229.16, "end": 5229.64, "probability": 0.9012 }, { "start": 5229.74, "end": 5230.32, "probability": 0.98 }, { "start": 5230.58, "end": 5231.34, "probability": 0.6818 }, { "start": 5232.26, "end": 5232.72, "probability": 0.7576 }, { "start": 5233.3, "end": 5237.06, "probability": 0.9632 }, { "start": 5237.74, "end": 5239.49, "probability": 0.9849 }, { "start": 5240.2, "end": 5241.81, "probability": 0.9326 }, { "start": 5243.02, "end": 5244.18, "probability": 0.7719 }, { "start": 5245.56, "end": 5247.93, "probability": 0.9969 }, { "start": 5248.56, "end": 5250.42, "probability": 0.998 }, { "start": 5251.4, "end": 5252.72, "probability": 0.7225 }, { "start": 5252.88, "end": 5254.06, "probability": 0.7197 }, { "start": 5254.48, "end": 5256.58, "probability": 0.9566 }, { "start": 5256.58, "end": 5258.88, "probability": 0.9509 }, { "start": 5259.44, "end": 5259.7, "probability": 0.7683 }, { "start": 5261.0, "end": 5261.38, "probability": 0.8341 }, { "start": 5262.32, "end": 5264.92, "probability": 0.9364 }, { "start": 5265.06, "end": 5266.98, "probability": 0.9518 }, { "start": 5267.48, "end": 5269.8, "probability": 0.9913 }, { "start": 5271.26, "end": 5273.5, "probability": 0.8863 }, { "start": 5274.68, "end": 5279.68, "probability": 0.9018 }, { "start": 5279.82, "end": 5281.52, "probability": 0.7652 }, { "start": 5281.98, "end": 5284.38, "probability": 0.8199 }, { "start": 5285.7, "end": 5289.22, "probability": 0.7569 }, { "start": 5290.84, "end": 5293.52, "probability": 0.9137 }, { "start": 5294.42, "end": 5295.16, "probability": 0.5187 }, { "start": 5295.24, "end": 5298.26, "probability": 0.7422 }, { "start": 5298.98, "end": 5300.08, "probability": 0.9316 }, { "start": 5300.54, "end": 5303.32, "probability": 0.9675 }, { "start": 5303.96, "end": 5305.84, "probability": 0.992 }, { "start": 5306.5, "end": 5307.18, "probability": 0.8615 }, { "start": 5307.86, "end": 5310.38, "probability": 0.995 }, { "start": 5311.02, "end": 5312.42, "probability": 0.9861 }, { "start": 5313.04, "end": 5315.0, "probability": 0.9283 }, { "start": 5315.74, "end": 5319.22, "probability": 0.9731 }, { "start": 5319.82, "end": 5321.5, "probability": 0.7376 }, { "start": 5322.22, "end": 5328.32, "probability": 0.844 }, { "start": 5328.96, "end": 5330.26, "probability": 0.7194 }, { "start": 5331.26, "end": 5334.7, "probability": 0.7731 }, { "start": 5335.5, "end": 5340.52, "probability": 0.9574 }, { "start": 5340.64, "end": 5344.9, "probability": 0.9506 }, { "start": 5345.68, "end": 5348.24, "probability": 0.9939 }, { "start": 5348.24, "end": 5351.34, "probability": 0.9877 }, { "start": 5351.42, "end": 5352.04, "probability": 0.5932 }, { "start": 5352.12, "end": 5356.06, "probability": 0.5697 }, { "start": 5356.12, "end": 5357.72, "probability": 0.5454 }, { "start": 5358.26, "end": 5362.1, "probability": 0.9914 }, { "start": 5362.66, "end": 5366.52, "probability": 0.7527 }, { "start": 5366.7, "end": 5367.16, "probability": 0.8837 }, { "start": 5367.96, "end": 5370.98, "probability": 0.8022 }, { "start": 5371.46, "end": 5372.08, "probability": 0.6586 }, { "start": 5372.66, "end": 5374.2, "probability": 0.7178 }, { "start": 5374.26, "end": 5376.66, "probability": 0.9221 }, { "start": 5376.98, "end": 5381.22, "probability": 0.4162 }, { "start": 5381.38, "end": 5385.88, "probability": 0.8447 }, { "start": 5386.04, "end": 5386.72, "probability": 0.8683 }, { "start": 5386.88, "end": 5388.5, "probability": 0.9575 }, { "start": 5389.08, "end": 5393.58, "probability": 0.8586 }, { "start": 5393.58, "end": 5395.72, "probability": 0.9029 }, { "start": 5396.28, "end": 5398.32, "probability": 0.911 }, { "start": 5398.7, "end": 5400.56, "probability": 0.9529 }, { "start": 5401.28, "end": 5405.0, "probability": 0.96 }, { "start": 5405.62, "end": 5409.34, "probability": 0.8381 }, { "start": 5410.1, "end": 5411.66, "probability": 0.4094 }, { "start": 5413.24, "end": 5415.09, "probability": 0.8408 }, { "start": 5416.44, "end": 5420.32, "probability": 0.9193 }, { "start": 5421.44, "end": 5422.38, "probability": 0.8823 }, { "start": 5423.58, "end": 5426.6, "probability": 0.976 }, { "start": 5427.32, "end": 5428.64, "probability": 0.4572 }, { "start": 5428.72, "end": 5429.64, "probability": 0.8857 }, { "start": 5430.26, "end": 5432.26, "probability": 0.6327 }, { "start": 5432.96, "end": 5434.6, "probability": 0.9945 }, { "start": 5434.78, "end": 5435.04, "probability": 0.8009 }, { "start": 5435.9, "end": 5439.74, "probability": 0.7656 }, { "start": 5440.16, "end": 5442.1, "probability": 0.9775 }, { "start": 5443.96, "end": 5444.56, "probability": 0.9325 }, { "start": 5446.12, "end": 5449.3, "probability": 0.8835 }, { "start": 5449.94, "end": 5452.34, "probability": 0.9687 }, { "start": 5453.04, "end": 5454.28, "probability": 0.6948 }, { "start": 5454.9, "end": 5455.54, "probability": 0.8277 }, { "start": 5456.54, "end": 5458.14, "probability": 0.7262 }, { "start": 5458.3, "end": 5459.56, "probability": 0.7217 }, { "start": 5459.56, "end": 5460.26, "probability": 0.6974 }, { "start": 5460.84, "end": 5464.04, "probability": 0.9971 }, { "start": 5464.04, "end": 5467.02, "probability": 0.9941 }, { "start": 5467.84, "end": 5468.3, "probability": 0.6734 }, { "start": 5468.98, "end": 5473.1, "probability": 0.9675 }, { "start": 5473.66, "end": 5476.38, "probability": 0.8825 }, { "start": 5477.04, "end": 5479.52, "probability": 0.6793 }, { "start": 5481.36, "end": 5483.42, "probability": 0.8451 }, { "start": 5483.44, "end": 5485.78, "probability": 0.9403 }, { "start": 5497.5, "end": 5497.82, "probability": 0.1913 }, { "start": 5514.0, "end": 5515.36, "probability": 0.7722 }, { "start": 5516.52, "end": 5517.22, "probability": 0.5605 }, { "start": 5519.08, "end": 5522.04, "probability": 0.9969 }, { "start": 5522.88, "end": 5523.94, "probability": 0.5481 }, { "start": 5525.42, "end": 5525.42, "probability": 0.8691 }, { "start": 5526.3, "end": 5530.74, "probability": 0.9894 }, { "start": 5531.46, "end": 5532.66, "probability": 0.7983 }, { "start": 5534.14, "end": 5535.22, "probability": 0.8439 }, { "start": 5535.82, "end": 5537.9, "probability": 0.6989 }, { "start": 5538.52, "end": 5538.94, "probability": 0.6853 }, { "start": 5539.74, "end": 5541.73, "probability": 0.793 }, { "start": 5543.2, "end": 5545.54, "probability": 0.986 }, { "start": 5547.21, "end": 5550.52, "probability": 0.9888 }, { "start": 5552.72, "end": 5553.74, "probability": 0.5259 }, { "start": 5553.8, "end": 5554.56, "probability": 0.8702 }, { "start": 5554.72, "end": 5556.64, "probability": 0.8245 }, { "start": 5556.72, "end": 5557.78, "probability": 0.9181 }, { "start": 5558.36, "end": 5559.14, "probability": 0.6466 }, { "start": 5559.7, "end": 5561.4, "probability": 0.9932 }, { "start": 5562.08, "end": 5563.52, "probability": 0.9489 }, { "start": 5565.42, "end": 5571.12, "probability": 0.9926 }, { "start": 5572.16, "end": 5572.64, "probability": 0.7049 }, { "start": 5573.24, "end": 5574.32, "probability": 0.8842 }, { "start": 5575.24, "end": 5577.8, "probability": 0.8163 }, { "start": 5578.42, "end": 5579.34, "probability": 0.9391 }, { "start": 5579.92, "end": 5581.38, "probability": 0.9434 }, { "start": 5581.96, "end": 5582.87, "probability": 0.8719 }, { "start": 5583.48, "end": 5584.6, "probability": 0.6419 }, { "start": 5585.24, "end": 5588.0, "probability": 0.6104 }, { "start": 5588.56, "end": 5589.62, "probability": 0.687 }, { "start": 5590.38, "end": 5591.08, "probability": 0.9058 }, { "start": 5591.7, "end": 5594.1, "probability": 0.8631 }, { "start": 5594.1, "end": 5596.64, "probability": 0.9971 }, { "start": 5597.5, "end": 5603.6, "probability": 0.9805 }, { "start": 5604.68, "end": 5605.26, "probability": 0.4906 }, { "start": 5606.28, "end": 5607.99, "probability": 0.9681 }, { "start": 5609.84, "end": 5613.32, "probability": 0.9902 }, { "start": 5613.82, "end": 5615.9, "probability": 0.9216 }, { "start": 5616.5, "end": 5618.81, "probability": 0.8896 }, { "start": 5618.88, "end": 5621.92, "probability": 0.9371 }, { "start": 5622.56, "end": 5626.1, "probability": 0.871 }, { "start": 5626.66, "end": 5629.12, "probability": 0.9987 }, { "start": 5630.2, "end": 5633.96, "probability": 0.9736 }, { "start": 5634.54, "end": 5635.24, "probability": 0.8633 }, { "start": 5636.46, "end": 5638.38, "probability": 0.9715 }, { "start": 5638.64, "end": 5644.42, "probability": 0.9335 }, { "start": 5645.04, "end": 5647.4, "probability": 0.9548 }, { "start": 5648.1, "end": 5649.66, "probability": 0.8643 }, { "start": 5650.72, "end": 5653.78, "probability": 0.9595 }, { "start": 5653.96, "end": 5656.74, "probability": 0.9763 }, { "start": 5657.42, "end": 5661.28, "probability": 0.98 }, { "start": 5661.96, "end": 5665.58, "probability": 0.7945 }, { "start": 5666.22, "end": 5667.14, "probability": 0.5347 }, { "start": 5667.66, "end": 5669.28, "probability": 0.9435 }, { "start": 5669.7, "end": 5672.02, "probability": 0.7383 }, { "start": 5673.08, "end": 5674.98, "probability": 0.8555 }, { "start": 5675.54, "end": 5676.8, "probability": 0.8439 }, { "start": 5676.88, "end": 5678.12, "probability": 0.9644 }, { "start": 5678.28, "end": 5680.56, "probability": 0.9844 }, { "start": 5681.06, "end": 5682.88, "probability": 0.994 }, { "start": 5683.44, "end": 5685.06, "probability": 0.9613 }, { "start": 5685.56, "end": 5691.26, "probability": 0.9875 }, { "start": 5691.82, "end": 5692.66, "probability": 0.6294 }, { "start": 5693.46, "end": 5694.04, "probability": 0.8583 }, { "start": 5695.34, "end": 5696.86, "probability": 0.9414 }, { "start": 5697.48, "end": 5699.56, "probability": 0.9341 }, { "start": 5707.92, "end": 5708.2, "probability": 0.4916 }, { "start": 5708.96, "end": 5709.16, "probability": 0.159 }, { "start": 5709.16, "end": 5709.16, "probability": 0.179 }, { "start": 5709.16, "end": 5709.16, "probability": 0.2468 }, { "start": 5709.16, "end": 5709.28, "probability": 0.0327 }, { "start": 5734.8, "end": 5736.86, "probability": 0.5947 }, { "start": 5737.46, "end": 5738.27, "probability": 0.6328 }, { "start": 5739.34, "end": 5741.0, "probability": 0.9421 }, { "start": 5741.1, "end": 5741.7, "probability": 0.5894 }, { "start": 5741.78, "end": 5743.66, "probability": 0.7681 }, { "start": 5744.56, "end": 5747.48, "probability": 0.7171 }, { "start": 5748.62, "end": 5751.26, "probability": 0.9685 }, { "start": 5752.42, "end": 5753.4, "probability": 0.9829 }, { "start": 5754.2, "end": 5756.08, "probability": 0.7665 }, { "start": 5756.88, "end": 5759.0, "probability": 0.9843 }, { "start": 5760.36, "end": 5763.52, "probability": 0.7168 }, { "start": 5764.1, "end": 5767.96, "probability": 0.8993 }, { "start": 5768.17, "end": 5770.84, "probability": 0.9932 }, { "start": 5772.9, "end": 5777.3, "probability": 0.9823 }, { "start": 5778.1, "end": 5778.54, "probability": 0.8664 }, { "start": 5779.16, "end": 5782.38, "probability": 0.9974 }, { "start": 5783.42, "end": 5786.7, "probability": 0.9791 }, { "start": 5786.7, "end": 5789.04, "probability": 0.9989 }, { "start": 5790.2, "end": 5792.78, "probability": 0.9252 }, { "start": 5793.52, "end": 5796.56, "probability": 0.9935 }, { "start": 5797.22, "end": 5798.76, "probability": 0.9928 }, { "start": 5800.12, "end": 5801.36, "probability": 0.9946 }, { "start": 5802.7, "end": 5804.2, "probability": 0.6227 }, { "start": 5804.22, "end": 5805.42, "probability": 0.6621 }, { "start": 5806.69, "end": 5812.18, "probability": 0.9941 }, { "start": 5812.9, "end": 5814.32, "probability": 0.8476 }, { "start": 5815.58, "end": 5818.84, "probability": 0.9923 }, { "start": 5819.62, "end": 5822.6, "probability": 0.989 }, { "start": 5823.56, "end": 5826.52, "probability": 0.9219 }, { "start": 5826.6, "end": 5828.76, "probability": 0.9744 }, { "start": 5829.88, "end": 5832.84, "probability": 0.9897 }, { "start": 5832.84, "end": 5834.9, "probability": 0.9297 }, { "start": 5836.0, "end": 5839.74, "probability": 0.8621 }, { "start": 5839.74, "end": 5842.32, "probability": 0.9932 }, { "start": 5843.74, "end": 5848.72, "probability": 0.9706 }, { "start": 5849.36, "end": 5851.14, "probability": 0.9102 }, { "start": 5852.94, "end": 5854.54, "probability": 0.8652 }, { "start": 5855.26, "end": 5856.0, "probability": 0.9373 }, { "start": 5856.66, "end": 5860.96, "probability": 0.9714 }, { "start": 5861.66, "end": 5863.32, "probability": 0.9961 }, { "start": 5864.48, "end": 5865.18, "probability": 0.7892 }, { "start": 5865.86, "end": 5869.52, "probability": 0.9979 }, { "start": 5870.22, "end": 5875.1, "probability": 0.9927 }, { "start": 5875.76, "end": 5880.14, "probability": 0.9689 }, { "start": 5880.88, "end": 5883.78, "probability": 0.9766 }, { "start": 5884.94, "end": 5888.82, "probability": 0.9908 }, { "start": 5889.72, "end": 5892.94, "probability": 0.9878 }, { "start": 5892.94, "end": 5896.36, "probability": 0.9934 }, { "start": 5896.86, "end": 5897.38, "probability": 0.9159 }, { "start": 5899.24, "end": 5900.84, "probability": 0.5583 }, { "start": 5902.66, "end": 5903.32, "probability": 0.8324 }, { "start": 5904.64, "end": 5905.92, "probability": 0.6835 }, { "start": 5907.06, "end": 5907.87, "probability": 0.6619 }, { "start": 5909.24, "end": 5913.88, "probability": 0.6362 }, { "start": 5919.0, "end": 5921.24, "probability": 0.8523 }, { "start": 5923.06, "end": 5923.8, "probability": 0.6522 }, { "start": 5924.4, "end": 5926.18, "probability": 0.7371 }, { "start": 5927.0, "end": 5927.8, "probability": 0.6067 }, { "start": 5929.38, "end": 5929.96, "probability": 0.7737 }, { "start": 5930.5, "end": 5930.94, "probability": 0.577 }, { "start": 5931.16, "end": 5931.5, "probability": 0.5784 }, { "start": 5931.98, "end": 5932.36, "probability": 0.8332 }, { "start": 5951.56, "end": 5951.88, "probability": 0.0781 }, { "start": 5951.88, "end": 5954.86, "probability": 0.4572 }, { "start": 5955.02, "end": 5957.36, "probability": 0.9629 }, { "start": 5958.18, "end": 5964.98, "probability": 0.9771 }, { "start": 5965.94, "end": 5966.6, "probability": 0.514 }, { "start": 5966.9, "end": 5967.42, "probability": 0.5144 }, { "start": 5967.9, "end": 5968.32, "probability": 0.7182 }, { "start": 5986.28, "end": 5986.28, "probability": 0.0178 }, { "start": 5986.28, "end": 5988.28, "probability": 0.3313 }, { "start": 5988.74, "end": 5990.64, "probability": 0.9692 }, { "start": 5992.94, "end": 5995.56, "probability": 0.7466 }, { "start": 5996.38, "end": 6001.3, "probability": 0.9842 }, { "start": 6001.96, "end": 6006.4, "probability": 0.7326 }, { "start": 6007.48, "end": 6010.28, "probability": 0.9771 }, { "start": 6010.86, "end": 6013.32, "probability": 0.7683 }, { "start": 6014.06, "end": 6014.6, "probability": 0.9469 }, { "start": 6015.96, "end": 6016.62, "probability": 0.5887 }, { "start": 6019.9, "end": 6021.88, "probability": 0.7963 }, { "start": 6022.7, "end": 6025.74, "probability": 0.9887 }, { "start": 6025.74, "end": 6028.84, "probability": 0.9968 }, { "start": 6029.72, "end": 6030.32, "probability": 0.6571 }, { "start": 6030.44, "end": 6034.32, "probability": 0.8039 }, { "start": 6034.5, "end": 6035.4, "probability": 0.9577 }, { "start": 6036.06, "end": 6039.31, "probability": 0.6388 }, { "start": 6040.76, "end": 6043.36, "probability": 0.8304 }, { "start": 6045.44, "end": 6048.02, "probability": 0.969 }, { "start": 6048.5, "end": 6049.92, "probability": 0.9858 }, { "start": 6050.06, "end": 6051.08, "probability": 0.7323 }, { "start": 6051.46, "end": 6053.96, "probability": 0.2365 }, { "start": 6054.54, "end": 6058.2, "probability": 0.9498 }, { "start": 6059.72, "end": 6062.7, "probability": 0.9003 }, { "start": 6062.7, "end": 6065.32, "probability": 0.9884 }, { "start": 6065.48, "end": 6067.08, "probability": 0.954 }, { "start": 6067.72, "end": 6068.88, "probability": 0.6775 }, { "start": 6070.06, "end": 6072.22, "probability": 0.0617 }, { "start": 6072.8, "end": 6075.4, "probability": 0.9297 }, { "start": 6076.82, "end": 6079.02, "probability": 0.9871 }, { "start": 6079.14, "end": 6081.67, "probability": 0.9072 }, { "start": 6081.9, "end": 6083.64, "probability": 0.9827 }, { "start": 6083.74, "end": 6085.8, "probability": 0.3088 }, { "start": 6086.74, "end": 6089.68, "probability": 0.793 }, { "start": 6090.2, "end": 6091.26, "probability": 0.6282 }, { "start": 6091.92, "end": 6093.62, "probability": 0.9456 }, { "start": 6093.74, "end": 6096.46, "probability": 0.9429 }, { "start": 6096.46, "end": 6098.28, "probability": 0.894 }, { "start": 6098.58, "end": 6099.7, "probability": 0.4802 }, { "start": 6102.39, "end": 6106.16, "probability": 0.7954 }, { "start": 6107.45, "end": 6110.6, "probability": 0.7987 }, { "start": 6110.7, "end": 6113.96, "probability": 0.8641 }, { "start": 6114.12, "end": 6115.54, "probability": 0.5644 }, { "start": 6116.24, "end": 6117.72, "probability": 0.2895 }, { "start": 6118.55, "end": 6122.02, "probability": 0.7753 }, { "start": 6122.44, "end": 6122.72, "probability": 0.8419 }, { "start": 6123.42, "end": 6126.42, "probability": 0.9431 }, { "start": 6127.0, "end": 6128.28, "probability": 0.9742 }, { "start": 6128.84, "end": 6129.16, "probability": 0.8943 }, { "start": 6129.88, "end": 6131.06, "probability": 0.9073 }, { "start": 6131.14, "end": 6132.44, "probability": 0.725 }, { "start": 6132.5, "end": 6134.04, "probability": 0.9102 }, { "start": 6134.34, "end": 6136.62, "probability": 0.9162 }, { "start": 6137.26, "end": 6139.9, "probability": 0.7449 }, { "start": 6140.46, "end": 6142.06, "probability": 0.599 }, { "start": 6142.74, "end": 6145.88, "probability": 0.6971 }, { "start": 6147.0, "end": 6147.1, "probability": 0.5177 }, { "start": 6147.78, "end": 6152.74, "probability": 0.9972 }, { "start": 6153.48, "end": 6155.42, "probability": 0.3025 }, { "start": 6156.14, "end": 6157.12, "probability": 0.9713 }, { "start": 6157.2, "end": 6157.56, "probability": 0.8574 }, { "start": 6157.76, "end": 6159.0, "probability": 0.925 }, { "start": 6159.96, "end": 6160.42, "probability": 0.7325 }, { "start": 6160.48, "end": 6161.98, "probability": 0.9316 }, { "start": 6162.02, "end": 6166.74, "probability": 0.6113 }, { "start": 6166.94, "end": 6168.94, "probability": 0.7509 }, { "start": 6169.48, "end": 6174.72, "probability": 0.8855 }, { "start": 6174.82, "end": 6175.24, "probability": 0.4952 }, { "start": 6195.6, "end": 6196.08, "probability": 0.4213 }, { "start": 6196.48, "end": 6197.24, "probability": 0.6184 }, { "start": 6198.08, "end": 6200.46, "probability": 0.7699 }, { "start": 6202.52, "end": 6208.36, "probability": 0.9402 }, { "start": 6208.92, "end": 6210.14, "probability": 0.7505 }, { "start": 6210.78, "end": 6214.36, "probability": 0.7933 }, { "start": 6215.94, "end": 6215.98, "probability": 0.188 }, { "start": 6216.92, "end": 6217.51, "probability": 0.9699 }, { "start": 6218.04, "end": 6221.0, "probability": 0.9902 }, { "start": 6221.12, "end": 6225.38, "probability": 0.9546 }, { "start": 6225.4, "end": 6226.5, "probability": 0.9631 }, { "start": 6226.98, "end": 6230.98, "probability": 0.9809 }, { "start": 6232.82, "end": 6235.28, "probability": 0.7988 }, { "start": 6236.22, "end": 6237.12, "probability": 0.6664 }, { "start": 6237.3, "end": 6238.34, "probability": 0.9511 }, { "start": 6238.88, "end": 6244.24, "probability": 0.9915 }, { "start": 6245.08, "end": 6246.04, "probability": 0.9756 }, { "start": 6246.74, "end": 6250.64, "probability": 0.9839 }, { "start": 6250.64, "end": 6254.76, "probability": 0.9849 }, { "start": 6255.04, "end": 6261.21, "probability": 0.9406 }, { "start": 6262.82, "end": 6265.84, "probability": 0.8807 }, { "start": 6265.84, "end": 6271.38, "probability": 0.9937 }, { "start": 6272.18, "end": 6274.1, "probability": 0.8684 }, { "start": 6274.2, "end": 6278.02, "probability": 0.6911 }, { "start": 6278.3, "end": 6281.38, "probability": 0.9053 }, { "start": 6282.22, "end": 6284.06, "probability": 0.9775 }, { "start": 6285.3, "end": 6289.2, "probability": 0.946 }, { "start": 6289.38, "end": 6290.24, "probability": 0.4792 }, { "start": 6290.34, "end": 6293.94, "probability": 0.9558 }, { "start": 6294.42, "end": 6295.7, "probability": 0.9779 }, { "start": 6296.26, "end": 6298.4, "probability": 0.9709 }, { "start": 6299.14, "end": 6302.79, "probability": 0.8589 }, { "start": 6303.24, "end": 6304.19, "probability": 0.7527 }, { "start": 6305.02, "end": 6308.56, "probability": 0.9792 }, { "start": 6309.1, "end": 6312.48, "probability": 0.9972 }, { "start": 6313.22, "end": 6314.66, "probability": 0.695 }, { "start": 6316.08, "end": 6319.0, "probability": 0.9946 }, { "start": 6319.28, "end": 6322.92, "probability": 0.986 }, { "start": 6322.92, "end": 6326.16, "probability": 0.9897 }, { "start": 6326.7, "end": 6330.52, "probability": 0.9972 }, { "start": 6331.3, "end": 6332.1, "probability": 0.7891 }, { "start": 6332.32, "end": 6332.64, "probability": 0.7197 }, { "start": 6333.1, "end": 6335.88, "probability": 0.9627 }, { "start": 6335.88, "end": 6339.4, "probability": 0.9829 }, { "start": 6339.78, "end": 6342.54, "probability": 0.7575 }, { "start": 6342.9, "end": 6343.64, "probability": 0.9191 }, { "start": 6344.1, "end": 6344.68, "probability": 0.7235 }, { "start": 6345.46, "end": 6347.3, "probability": 0.7633 }, { "start": 6348.28, "end": 6350.22, "probability": 0.9454 }, { "start": 6350.34, "end": 6353.3, "probability": 0.8331 }, { "start": 6353.9, "end": 6356.0, "probability": 0.9287 }, { "start": 6356.52, "end": 6361.76, "probability": 0.9867 }, { "start": 6362.2, "end": 6364.6, "probability": 0.9925 }, { "start": 6364.6, "end": 6368.26, "probability": 0.9824 }, { "start": 6368.86, "end": 6371.42, "probability": 0.7861 }, { "start": 6371.42, "end": 6375.24, "probability": 0.939 }, { "start": 6376.12, "end": 6377.98, "probability": 0.7222 }, { "start": 6378.1, "end": 6384.08, "probability": 0.8795 }, { "start": 6384.58, "end": 6385.42, "probability": 0.6968 }, { "start": 6385.52, "end": 6386.7, "probability": 0.9875 }, { "start": 6387.22, "end": 6388.4, "probability": 0.8953 }, { "start": 6388.76, "end": 6392.58, "probability": 0.9937 }, { "start": 6393.52, "end": 6396.68, "probability": 0.8265 }, { "start": 6397.26, "end": 6400.52, "probability": 0.9905 }, { "start": 6400.52, "end": 6404.5, "probability": 0.9927 }, { "start": 6405.2, "end": 6407.16, "probability": 0.8943 }, { "start": 6407.4, "end": 6409.02, "probability": 0.9963 }, { "start": 6410.2, "end": 6414.72, "probability": 0.7621 }, { "start": 6414.86, "end": 6419.0, "probability": 0.9939 }, { "start": 6421.06, "end": 6422.2, "probability": 0.9355 }, { "start": 6422.76, "end": 6424.32, "probability": 0.9686 }, { "start": 6424.48, "end": 6428.2, "probability": 0.9559 }, { "start": 6428.2, "end": 6432.56, "probability": 0.9943 }, { "start": 6433.7, "end": 6435.16, "probability": 0.9782 }, { "start": 6435.52, "end": 6440.82, "probability": 0.8527 }, { "start": 6441.32, "end": 6443.88, "probability": 0.9596 }, { "start": 6444.46, "end": 6445.32, "probability": 0.971 }, { "start": 6446.34, "end": 6450.6, "probability": 0.9864 }, { "start": 6451.14, "end": 6454.5, "probability": 0.9943 }, { "start": 6455.72, "end": 6457.98, "probability": 0.9773 }, { "start": 6458.74, "end": 6464.54, "probability": 0.9834 }, { "start": 6465.36, "end": 6468.12, "probability": 0.9646 }, { "start": 6468.12, "end": 6472.18, "probability": 0.8044 }, { "start": 6472.9, "end": 6477.06, "probability": 0.9971 }, { "start": 6477.6, "end": 6485.1, "probability": 0.995 }, { "start": 6485.72, "end": 6487.44, "probability": 0.7696 }, { "start": 6487.84, "end": 6492.62, "probability": 0.987 }, { "start": 6493.14, "end": 6495.62, "probability": 0.9757 }, { "start": 6497.12, "end": 6498.18, "probability": 0.9616 }, { "start": 6499.28, "end": 6501.24, "probability": 0.9915 }, { "start": 6502.84, "end": 6508.12, "probability": 0.9579 }, { "start": 6508.66, "end": 6511.42, "probability": 0.6973 }, { "start": 6512.2, "end": 6512.9, "probability": 0.8606 }, { "start": 6513.68, "end": 6515.48, "probability": 0.5958 }, { "start": 6516.52, "end": 6517.54, "probability": 0.9403 }, { "start": 6517.68, "end": 6519.06, "probability": 0.9739 }, { "start": 6519.16, "end": 6522.58, "probability": 0.9948 }, { "start": 6522.58, "end": 6526.18, "probability": 0.983 }, { "start": 6526.86, "end": 6530.34, "probability": 0.9961 }, { "start": 6530.82, "end": 6532.42, "probability": 0.6401 }, { "start": 6532.6, "end": 6533.12, "probability": 0.9487 }, { "start": 6533.22, "end": 6533.66, "probability": 0.8804 }, { "start": 6534.26, "end": 6534.6, "probability": 0.9058 }, { "start": 6534.72, "end": 6535.28, "probability": 0.9867 }, { "start": 6535.44, "end": 6537.62, "probability": 0.9725 }, { "start": 6538.16, "end": 6539.15, "probability": 0.8503 }, { "start": 6539.28, "end": 6541.94, "probability": 0.9965 }, { "start": 6542.46, "end": 6543.62, "probability": 0.9538 }, { "start": 6543.68, "end": 6547.02, "probability": 0.9456 }, { "start": 6547.82, "end": 6549.52, "probability": 0.9007 }, { "start": 6549.8, "end": 6553.06, "probability": 0.9302 }, { "start": 6553.36, "end": 6555.64, "probability": 0.9304 }, { "start": 6556.58, "end": 6557.94, "probability": 0.9578 }, { "start": 6558.88, "end": 6560.22, "probability": 0.9963 }, { "start": 6560.58, "end": 6562.08, "probability": 0.8469 }, { "start": 6562.38, "end": 6565.0, "probability": 0.8628 }, { "start": 6565.48, "end": 6566.68, "probability": 0.7448 }, { "start": 6566.78, "end": 6567.88, "probability": 0.9246 }, { "start": 6568.62, "end": 6570.3, "probability": 0.8722 }, { "start": 6570.42, "end": 6572.68, "probability": 0.9965 }, { "start": 6573.22, "end": 6576.44, "probability": 0.9966 }, { "start": 6576.59, "end": 6579.82, "probability": 0.9974 }, { "start": 6580.06, "end": 6584.06, "probability": 0.9944 }, { "start": 6584.48, "end": 6584.84, "probability": 0.472 }, { "start": 6584.92, "end": 6588.56, "probability": 0.9904 }, { "start": 6589.04, "end": 6590.96, "probability": 0.9913 }, { "start": 6591.06, "end": 6593.22, "probability": 0.9878 }, { "start": 6593.76, "end": 6595.2, "probability": 0.788 }, { "start": 6596.32, "end": 6599.26, "probability": 0.997 }, { "start": 6599.48, "end": 6600.76, "probability": 0.4755 }, { "start": 6600.92, "end": 6601.38, "probability": 0.8605 }, { "start": 6601.48, "end": 6601.74, "probability": 0.976 }, { "start": 6601.8, "end": 6604.46, "probability": 0.9813 }, { "start": 6605.1, "end": 6605.6, "probability": 0.8115 }, { "start": 6606.16, "end": 6610.52, "probability": 0.8546 }, { "start": 6611.44, "end": 6613.76, "probability": 0.9159 }, { "start": 6615.3, "end": 6617.96, "probability": 0.8237 }, { "start": 6618.9, "end": 6620.49, "probability": 0.5125 }, { "start": 6621.84, "end": 6623.54, "probability": 0.5054 }, { "start": 6624.46, "end": 6627.26, "probability": 0.8703 }, { "start": 6628.04, "end": 6631.0, "probability": 0.6918 }, { "start": 6631.54, "end": 6633.56, "probability": 0.6634 }, { "start": 6634.16, "end": 6635.74, "probability": 0.9485 }, { "start": 6636.86, "end": 6637.48, "probability": 0.6144 }, { "start": 6637.94, "end": 6639.97, "probability": 0.5805 }, { "start": 6640.84, "end": 6643.9, "probability": 0.9551 }, { "start": 6644.44, "end": 6645.7, "probability": 0.8131 }, { "start": 6646.14, "end": 6646.86, "probability": 0.7457 }, { "start": 6646.86, "end": 6647.42, "probability": 0.9404 }, { "start": 6647.68, "end": 6647.9, "probability": 0.8434 }, { "start": 6649.18, "end": 6650.14, "probability": 0.8586 }, { "start": 6651.0, "end": 6651.52, "probability": 0.0001 }, { "start": 6666.1, "end": 6666.28, "probability": 0.0931 }, { "start": 6666.28, "end": 6669.16, "probability": 0.5864 }, { "start": 6669.56, "end": 6670.5, "probability": 0.8882 }, { "start": 6671.22, "end": 6672.62, "probability": 0.9492 }, { "start": 6673.06, "end": 6675.84, "probability": 0.875 }, { "start": 6675.88, "end": 6676.42, "probability": 0.5764 }, { "start": 6676.52, "end": 6677.08, "probability": 0.7273 }, { "start": 6677.38, "end": 6677.64, "probability": 0.9774 }, { "start": 6699.6, "end": 6702.82, "probability": 0.4835 }, { "start": 6703.34, "end": 6704.58, "probability": 0.1174 }, { "start": 6705.16, "end": 6705.26, "probability": 0.1951 }, { "start": 6705.72, "end": 6710.02, "probability": 0.0488 }, { "start": 6711.92, "end": 6713.92, "probability": 0.0614 }, { "start": 6715.32, "end": 6719.48, "probability": 0.043 }, { "start": 6720.14, "end": 6721.66, "probability": 0.0189 }, { "start": 6737.18, "end": 6738.78, "probability": 0.0033 }, { "start": 6738.78, "end": 6738.85, "probability": 0.0542 }, { "start": 6741.46, "end": 6741.96, "probability": 0.1392 }, { "start": 6741.96, "end": 6742.14, "probability": 0.3644 }, { "start": 6742.42, "end": 6742.92, "probability": 0.1209 }, { "start": 6742.98, "end": 6743.2, "probability": 0.233 }, { "start": 6745.98, "end": 6749.68, "probability": 0.109 }, { "start": 6750.34, "end": 6751.62, "probability": 0.078 }, { "start": 6755.22, "end": 6755.72, "probability": 0.0616 }, { "start": 6756.0, "end": 6756.0, "probability": 0.0 }, { "start": 6756.0, "end": 6756.0, "probability": 0.0 }, { "start": 6756.0, "end": 6756.0, "probability": 0.0 }, { "start": 6756.0, "end": 6756.0, "probability": 0.0 }, { "start": 6756.0, "end": 6756.0, "probability": 0.0 }, { "start": 6756.0, "end": 6756.0, "probability": 0.0 }, { "start": 6756.0, "end": 6756.0, "probability": 0.0 }, { "start": 6756.0, "end": 6756.0, "probability": 0.0 }, { "start": 6756.0, "end": 6756.0, "probability": 0.0 }, { "start": 6756.0, "end": 6756.0, "probability": 0.0 }, { "start": 6756.0, "end": 6756.0, "probability": 0.0 }, { "start": 6756.0, "end": 6756.0, "probability": 0.0 }, { "start": 6756.0, "end": 6756.0, "probability": 0.0 }, { "start": 6756.1, "end": 6756.62, "probability": 0.2913 }, { "start": 6765.42, "end": 6768.26, "probability": 0.7859 }, { "start": 6769.1, "end": 6771.7, "probability": 0.9958 }, { "start": 6771.7, "end": 6774.66, "probability": 0.9968 }, { "start": 6775.4, "end": 6776.56, "probability": 0.1436 }, { "start": 6776.86, "end": 6782.16, "probability": 0.9886 }, { "start": 6782.24, "end": 6784.96, "probability": 0.9999 }, { "start": 6785.72, "end": 6790.74, "probability": 0.9976 }, { "start": 6791.26, "end": 6796.6, "probability": 0.9965 }, { "start": 6797.4, "end": 6801.28, "probability": 0.9932 }, { "start": 6801.28, "end": 6805.5, "probability": 0.9925 }, { "start": 6805.96, "end": 6809.62, "probability": 0.999 }, { "start": 6809.62, "end": 6812.84, "probability": 0.9977 }, { "start": 6813.0, "end": 6813.48, "probability": 0.9551 }, { "start": 6814.26, "end": 6819.88, "probability": 0.994 }, { "start": 6820.5, "end": 6827.38, "probability": 0.9787 }, { "start": 6827.92, "end": 6832.0, "probability": 0.9984 }, { "start": 6832.0, "end": 6836.74, "probability": 0.9974 }, { "start": 6837.3, "end": 6840.84, "probability": 0.9431 }, { "start": 6840.84, "end": 6844.3, "probability": 0.9979 }, { "start": 6845.28, "end": 6850.6, "probability": 0.9929 }, { "start": 6850.76, "end": 6854.32, "probability": 0.9968 }, { "start": 6854.8, "end": 6860.22, "probability": 0.998 }, { "start": 6860.22, "end": 6867.52, "probability": 0.8601 }, { "start": 6868.08, "end": 6873.24, "probability": 0.944 }, { "start": 6873.48, "end": 6875.02, "probability": 0.951 }, { "start": 6875.58, "end": 6878.76, "probability": 0.9941 }, { "start": 6879.24, "end": 6884.15, "probability": 0.999 }, { "start": 6884.22, "end": 6888.88, "probability": 0.9994 }, { "start": 6889.58, "end": 6893.26, "probability": 0.9995 }, { "start": 6893.26, "end": 6898.26, "probability": 0.9996 }, { "start": 6899.26, "end": 6904.38, "probability": 0.9821 }, { "start": 6904.88, "end": 6908.38, "probability": 0.9931 }, { "start": 6908.38, "end": 6911.94, "probability": 0.9291 }, { "start": 6912.42, "end": 6914.08, "probability": 0.5448 }, { "start": 6915.02, "end": 6919.0, "probability": 0.9971 }, { "start": 6919.0, "end": 6924.68, "probability": 0.9976 }, { "start": 6924.68, "end": 6928.98, "probability": 0.9976 }, { "start": 6929.68, "end": 6934.84, "probability": 0.9265 }, { "start": 6934.84, "end": 6939.84, "probability": 0.9988 }, { "start": 6941.2, "end": 6943.82, "probability": 0.9577 }, { "start": 6944.24, "end": 6945.62, "probability": 0.9329 }, { "start": 6946.02, "end": 6952.04, "probability": 0.9923 }, { "start": 6952.2, "end": 6955.0, "probability": 0.8904 }, { "start": 6955.56, "end": 6958.74, "probability": 0.9938 }, { "start": 6958.74, "end": 6962.3, "probability": 0.9971 }, { "start": 6962.5, "end": 6964.26, "probability": 0.944 }, { "start": 6964.86, "end": 6971.48, "probability": 0.996 }, { "start": 6972.4, "end": 6973.48, "probability": 0.7307 }, { "start": 6973.7, "end": 6978.38, "probability": 0.991 }, { "start": 6978.98, "end": 6984.5, "probability": 0.9861 }, { "start": 6984.5, "end": 6990.48, "probability": 0.9941 }, { "start": 6991.42, "end": 6992.02, "probability": 0.6641 }, { "start": 6992.1, "end": 6993.28, "probability": 0.9049 }, { "start": 6993.7, "end": 6998.78, "probability": 0.9984 }, { "start": 6998.78, "end": 7002.6, "probability": 0.9986 }, { "start": 7003.54, "end": 7010.08, "probability": 0.9953 }, { "start": 7010.6, "end": 7012.74, "probability": 0.9995 }, { "start": 7013.92, "end": 7018.86, "probability": 0.9951 }, { "start": 7018.86, "end": 7024.48, "probability": 0.9994 }, { "start": 7024.48, "end": 7030.18, "probability": 0.9969 }, { "start": 7031.58, "end": 7035.46, "probability": 0.999 }, { "start": 7035.46, "end": 7039.98, "probability": 0.9998 }, { "start": 7039.98, "end": 7045.14, "probability": 0.9995 }, { "start": 7045.96, "end": 7047.72, "probability": 0.787 }, { "start": 7047.88, "end": 7050.5, "probability": 0.9923 }, { "start": 7051.14, "end": 7054.7, "probability": 0.9889 }, { "start": 7055.34, "end": 7060.24, "probability": 0.9933 }, { "start": 7061.04, "end": 7061.4, "probability": 0.4384 }, { "start": 7061.5, "end": 7066.68, "probability": 0.9969 }, { "start": 7066.68, "end": 7073.14, "probability": 0.9967 }, { "start": 7073.7, "end": 7075.94, "probability": 0.9882 }, { "start": 7077.18, "end": 7079.26, "probability": 0.7501 }, { "start": 7079.8, "end": 7083.86, "probability": 0.999 }, { "start": 7084.52, "end": 7088.72, "probability": 0.9948 }, { "start": 7089.42, "end": 7094.84, "probability": 0.9396 }, { "start": 7096.06, "end": 7099.9, "probability": 0.9966 }, { "start": 7099.95, "end": 7105.24, "probability": 0.9342 }, { "start": 7106.14, "end": 7108.28, "probability": 0.9815 }, { "start": 7109.42, "end": 7114.3, "probability": 0.9953 }, { "start": 7114.32, "end": 7117.3, "probability": 0.9965 }, { "start": 7118.14, "end": 7119.12, "probability": 0.7722 }, { "start": 7120.22, "end": 7124.92, "probability": 0.9851 }, { "start": 7125.6, "end": 7128.82, "probability": 0.9776 }, { "start": 7129.56, "end": 7132.32, "probability": 0.9895 }, { "start": 7133.2, "end": 7136.86, "probability": 0.9944 }, { "start": 7137.4, "end": 7139.36, "probability": 0.9849 }, { "start": 7139.88, "end": 7144.24, "probability": 0.9489 }, { "start": 7144.66, "end": 7148.6, "probability": 0.9987 }, { "start": 7149.5, "end": 7152.78, "probability": 0.9749 }, { "start": 7152.78, "end": 7156.46, "probability": 0.9759 }, { "start": 7156.96, "end": 7161.0, "probability": 0.9878 }, { "start": 7161.92, "end": 7164.74, "probability": 0.988 }, { "start": 7165.82, "end": 7166.68, "probability": 0.8232 }, { "start": 7167.24, "end": 7169.86, "probability": 0.9653 }, { "start": 7170.7, "end": 7173.76, "probability": 0.9603 }, { "start": 7174.62, "end": 7181.48, "probability": 0.9919 }, { "start": 7182.64, "end": 7185.58, "probability": 0.9626 }, { "start": 7186.26, "end": 7187.14, "probability": 0.7088 }, { "start": 7187.24, "end": 7188.32, "probability": 0.7514 }, { "start": 7188.46, "end": 7190.12, "probability": 0.9587 }, { "start": 7190.66, "end": 7192.62, "probability": 0.968 }, { "start": 7193.1, "end": 7195.56, "probability": 0.9669 }, { "start": 7196.2, "end": 7197.08, "probability": 0.7821 }, { "start": 7197.12, "end": 7199.6, "probability": 0.9912 }, { "start": 7200.1, "end": 7205.14, "probability": 0.9912 }, { "start": 7205.98, "end": 7207.36, "probability": 0.8553 }, { "start": 7208.22, "end": 7210.14, "probability": 0.9917 }, { "start": 7210.68, "end": 7212.46, "probability": 0.9868 }, { "start": 7213.48, "end": 7215.78, "probability": 0.9793 }, { "start": 7216.46, "end": 7218.72, "probability": 0.9762 }, { "start": 7219.4, "end": 7222.38, "probability": 0.9922 }, { "start": 7222.98, "end": 7225.44, "probability": 0.924 }, { "start": 7225.98, "end": 7229.7, "probability": 0.9966 }, { "start": 7229.76, "end": 7233.38, "probability": 0.9912 }, { "start": 7234.48, "end": 7238.5, "probability": 0.9663 }, { "start": 7239.16, "end": 7245.58, "probability": 0.9812 }, { "start": 7245.6, "end": 7250.96, "probability": 0.9935 }, { "start": 7251.7, "end": 7256.04, "probability": 0.9845 }, { "start": 7256.04, "end": 7260.16, "probability": 0.9961 }, { "start": 7260.3, "end": 7260.8, "probability": 0.7964 }, { "start": 7260.88, "end": 7262.12, "probability": 0.6686 }, { "start": 7262.68, "end": 7264.02, "probability": 0.9834 }, { "start": 7264.78, "end": 7268.24, "probability": 0.9233 }, { "start": 7268.36, "end": 7269.22, "probability": 0.9303 }, { "start": 7269.32, "end": 7271.04, "probability": 0.8664 }, { "start": 7271.38, "end": 7274.34, "probability": 0.9883 }, { "start": 7274.98, "end": 7276.94, "probability": 0.9554 }, { "start": 7277.64, "end": 7280.26, "probability": 0.9009 }, { "start": 7280.9, "end": 7287.0, "probability": 0.9429 }, { "start": 7287.9, "end": 7288.84, "probability": 0.0396 }, { "start": 7288.84, "end": 7292.1, "probability": 0.6345 }, { "start": 7292.7, "end": 7299.12, "probability": 0.991 }, { "start": 7299.86, "end": 7300.36, "probability": 0.3076 }, { "start": 7301.12, "end": 7301.12, "probability": 0.0446 }, { "start": 7301.12, "end": 7301.12, "probability": 0.0349 }, { "start": 7301.12, "end": 7301.12, "probability": 0.2675 }, { "start": 7301.12, "end": 7301.12, "probability": 0.3308 }, { "start": 7301.12, "end": 7302.84, "probability": 0.1212 }, { "start": 7302.84, "end": 7306.88, "probability": 0.86 }, { "start": 7307.4, "end": 7312.6, "probability": 0.9301 }, { "start": 7313.52, "end": 7314.26, "probability": 0.0514 }, { "start": 7314.26, "end": 7314.26, "probability": 0.455 }, { "start": 7314.26, "end": 7314.26, "probability": 0.1611 }, { "start": 7314.26, "end": 7314.26, "probability": 0.0219 }, { "start": 7314.26, "end": 7320.88, "probability": 0.9019 }, { "start": 7321.1, "end": 7321.1, "probability": 0.0019 }, { "start": 7321.1, "end": 7321.52, "probability": 0.1629 }, { "start": 7321.8, "end": 7326.24, "probability": 0.9667 }, { "start": 7326.7, "end": 7330.26, "probability": 0.9539 }, { "start": 7331.06, "end": 7332.82, "probability": 0.9392 }, { "start": 7333.48, "end": 7336.78, "probability": 0.9832 }, { "start": 7337.48, "end": 7339.28, "probability": 0.8269 }, { "start": 7339.82, "end": 7341.62, "probability": 0.9326 }, { "start": 7342.34, "end": 7342.36, "probability": 0.0226 }, { "start": 7342.36, "end": 7342.38, "probability": 0.0843 }, { "start": 7342.38, "end": 7343.54, "probability": 0.6777 }, { "start": 7344.16, "end": 7351.8, "probability": 0.9989 }, { "start": 7351.8, "end": 7357.84, "probability": 0.999 }, { "start": 7358.4, "end": 7358.42, "probability": 0.1641 }, { "start": 7358.42, "end": 7358.42, "probability": 0.0393 }, { "start": 7358.42, "end": 7361.4, "probability": 0.989 }, { "start": 7362.16, "end": 7362.16, "probability": 0.1 }, { "start": 7362.16, "end": 7366.6, "probability": 0.9966 }, { "start": 7366.6, "end": 7370.42, "probability": 0.9984 }, { "start": 7370.98, "end": 7377.34, "probability": 0.9985 }, { "start": 7378.14, "end": 7383.28, "probability": 0.9961 }, { "start": 7383.46, "end": 7385.02, "probability": 0.8085 }, { "start": 7385.58, "end": 7393.4, "probability": 0.9947 }, { "start": 7394.04, "end": 7395.22, "probability": 0.7948 }, { "start": 7395.74, "end": 7396.72, "probability": 0.3199 }, { "start": 7397.18, "end": 7399.3, "probability": 0.7595 }, { "start": 7399.8, "end": 7400.92, "probability": 0.7536 }, { "start": 7401.4, "end": 7407.56, "probability": 0.8885 }, { "start": 7408.02, "end": 7409.2, "probability": 0.7669 }, { "start": 7409.46, "end": 7410.26, "probability": 0.7853 }, { "start": 7410.56, "end": 7413.52, "probability": 0.9875 }, { "start": 7413.58, "end": 7414.9, "probability": 0.4119 }, { "start": 7415.4, "end": 7420.8, "probability": 0.9945 }, { "start": 7421.22, "end": 7423.88, "probability": 0.9493 }, { "start": 7424.04, "end": 7429.28, "probability": 0.9951 }, { "start": 7429.96, "end": 7431.3, "probability": 0.7573 }, { "start": 7432.7, "end": 7434.0, "probability": 0.0134 }, { "start": 7434.0, "end": 7434.94, "probability": 0.4717 }, { "start": 7435.36, "end": 7436.22, "probability": 0.1292 }, { "start": 7436.88, "end": 7436.94, "probability": 0.1165 }, { "start": 7436.94, "end": 7438.14, "probability": 0.5108 }, { "start": 7439.42, "end": 7441.06, "probability": 0.5049 }, { "start": 7441.78, "end": 7441.9, "probability": 0.3908 }, { "start": 7441.9, "end": 7443.72, "probability": 0.6403 }, { "start": 7444.1, "end": 7447.24, "probability": 0.9208 }, { "start": 7447.28, "end": 7447.82, "probability": 0.3928 }, { "start": 7447.92, "end": 7448.72, "probability": 0.8859 }, { "start": 7450.27, "end": 7453.29, "probability": 0.9243 }, { "start": 7477.26, "end": 7478.06, "probability": 0.575 }, { "start": 7478.1, "end": 7478.66, "probability": 0.6024 }, { "start": 7478.82, "end": 7480.8, "probability": 0.9125 }, { "start": 7480.86, "end": 7482.2, "probability": 0.7416 }, { "start": 7482.76, "end": 7486.62, "probability": 0.9484 }, { "start": 7487.72, "end": 7491.44, "probability": 0.8065 }, { "start": 7491.54, "end": 7492.52, "probability": 0.5555 }, { "start": 7492.66, "end": 7493.1, "probability": 0.4636 }, { "start": 7494.68, "end": 7498.9, "probability": 0.9706 }, { "start": 7500.4, "end": 7502.84, "probability": 0.0205 }, { "start": 7505.62, "end": 7505.7, "probability": 0.0846 }, { "start": 7505.7, "end": 7505.7, "probability": 0.2143 }, { "start": 7505.7, "end": 7505.7, "probability": 0.365 }, { "start": 7505.7, "end": 7506.78, "probability": 0.6805 }, { "start": 7507.5, "end": 7510.31, "probability": 0.7093 }, { "start": 7511.06, "end": 7512.18, "probability": 0.9568 }, { "start": 7512.22, "end": 7513.14, "probability": 0.6234 }, { "start": 7513.36, "end": 7515.8, "probability": 0.9453 }, { "start": 7519.0, "end": 7519.64, "probability": 0.0202 }, { "start": 7519.64, "end": 7520.32, "probability": 0.0372 }, { "start": 7521.94, "end": 7523.48, "probability": 0.8825 }, { "start": 7523.66, "end": 7526.64, "probability": 0.7352 }, { "start": 7527.14, "end": 7531.64, "probability": 0.965 }, { "start": 7532.32, "end": 7534.96, "probability": 0.9743 }, { "start": 7535.58, "end": 7538.94, "probability": 0.7812 }, { "start": 7539.0, "end": 7539.68, "probability": 0.8217 }, { "start": 7540.16, "end": 7541.68, "probability": 0.7573 }, { "start": 7541.76, "end": 7543.8, "probability": 0.783 }, { "start": 7544.48, "end": 7545.96, "probability": 0.9126 }, { "start": 7546.06, "end": 7546.7, "probability": 0.9047 }, { "start": 7546.78, "end": 7548.84, "probability": 0.8857 }, { "start": 7549.34, "end": 7553.3, "probability": 0.9972 }, { "start": 7553.42, "end": 7554.38, "probability": 0.991 }, { "start": 7555.08, "end": 7558.28, "probability": 0.9487 }, { "start": 7558.82, "end": 7560.74, "probability": 0.7496 }, { "start": 7561.88, "end": 7562.98, "probability": 0.9551 }, { "start": 7563.62, "end": 7566.57, "probability": 0.9969 }, { "start": 7568.2, "end": 7571.02, "probability": 0.9777 }, { "start": 7571.7, "end": 7574.8, "probability": 0.9948 }, { "start": 7576.4, "end": 7577.14, "probability": 0.9806 }, { "start": 7578.44, "end": 7580.48, "probability": 0.9919 }, { "start": 7581.58, "end": 7584.34, "probability": 0.9045 }, { "start": 7585.64, "end": 7586.44, "probability": 0.9288 }, { "start": 7587.16, "end": 7588.48, "probability": 0.9154 }, { "start": 7589.1, "end": 7592.22, "probability": 0.4977 }, { "start": 7592.4, "end": 7594.18, "probability": 0.7598 }, { "start": 7595.12, "end": 7596.62, "probability": 0.778 }, { "start": 7597.74, "end": 7600.18, "probability": 0.8339 }, { "start": 7600.32, "end": 7601.92, "probability": 0.9078 }, { "start": 7602.4, "end": 7605.0, "probability": 0.9595 }, { "start": 7606.16, "end": 7607.8, "probability": 0.5403 }, { "start": 7607.98, "end": 7610.14, "probability": 0.6885 }, { "start": 7610.8, "end": 7612.78, "probability": 0.8257 }, { "start": 7612.9, "end": 7614.9, "probability": 0.8348 }, { "start": 7615.38, "end": 7616.3, "probability": 0.8047 }, { "start": 7616.64, "end": 7617.32, "probability": 0.8859 }, { "start": 7617.36, "end": 7619.82, "probability": 0.9976 }, { "start": 7620.46, "end": 7623.68, "probability": 0.8298 }, { "start": 7623.86, "end": 7625.42, "probability": 0.7795 }, { "start": 7625.72, "end": 7629.58, "probability": 0.8887 }, { "start": 7630.06, "end": 7635.16, "probability": 0.7952 }, { "start": 7635.98, "end": 7638.12, "probability": 0.5179 }, { "start": 7639.04, "end": 7640.64, "probability": 0.9918 }, { "start": 7642.32, "end": 7643.48, "probability": 0.9781 }, { "start": 7644.47, "end": 7646.82, "probability": 0.8955 }, { "start": 7647.8, "end": 7648.38, "probability": 0.8816 }, { "start": 7649.0, "end": 7652.16, "probability": 0.9698 }, { "start": 7652.22, "end": 7652.6, "probability": 0.6656 }, { "start": 7653.84, "end": 7657.98, "probability": 0.9452 }, { "start": 7658.6, "end": 7660.42, "probability": 0.7304 }, { "start": 7660.6, "end": 7666.32, "probability": 0.9854 }, { "start": 7667.4, "end": 7669.28, "probability": 0.7616 }, { "start": 7670.32, "end": 7672.26, "probability": 0.4206 }, { "start": 7672.82, "end": 7674.0, "probability": 0.5553 }, { "start": 7674.2, "end": 7675.4, "probability": 0.8738 }, { "start": 7675.84, "end": 7678.79, "probability": 0.9413 }, { "start": 7679.16, "end": 7680.18, "probability": 0.5168 }, { "start": 7680.4, "end": 7681.72, "probability": 0.8997 }, { "start": 7682.6, "end": 7683.32, "probability": 0.9711 }, { "start": 7683.48, "end": 7685.43, "probability": 0.9867 }, { "start": 7686.54, "end": 7688.44, "probability": 0.9128 }, { "start": 7688.62, "end": 7689.29, "probability": 0.9888 }, { "start": 7690.74, "end": 7691.64, "probability": 0.5264 }, { "start": 7692.48, "end": 7694.22, "probability": 0.924 }, { "start": 7694.84, "end": 7697.4, "probability": 0.8209 }, { "start": 7697.78, "end": 7698.95, "probability": 0.971 }, { "start": 7699.74, "end": 7702.86, "probability": 0.8911 }, { "start": 7703.86, "end": 7704.38, "probability": 0.8948 }, { "start": 7706.2, "end": 7707.0, "probability": 0.9702 }, { "start": 7707.1, "end": 7707.54, "probability": 0.0132 }, { "start": 7708.26, "end": 7708.74, "probability": 0.65 }, { "start": 7708.86, "end": 7710.44, "probability": 0.7236 }, { "start": 7710.68, "end": 7712.93, "probability": 0.9629 }, { "start": 7713.42, "end": 7715.46, "probability": 0.6664 }, { "start": 7715.82, "end": 7718.06, "probability": 0.9053 }, { "start": 7718.52, "end": 7719.44, "probability": 0.8543 }, { "start": 7719.58, "end": 7721.9, "probability": 0.9631 }, { "start": 7722.42, "end": 7722.48, "probability": 0.1001 }, { "start": 7722.48, "end": 7723.22, "probability": 0.5438 }, { "start": 7723.46, "end": 7724.86, "probability": 0.8807 }, { "start": 7725.38, "end": 7727.96, "probability": 0.9771 }, { "start": 7728.7, "end": 7732.61, "probability": 0.7455 }, { "start": 7733.26, "end": 7737.0, "probability": 0.9506 }, { "start": 7737.28, "end": 7739.26, "probability": 0.864 }, { "start": 7739.34, "end": 7741.1, "probability": 0.8962 }, { "start": 7741.68, "end": 7747.44, "probability": 0.9553 }, { "start": 7748.02, "end": 7752.54, "probability": 0.9381 }, { "start": 7753.22, "end": 7755.72, "probability": 0.9835 }, { "start": 7755.88, "end": 7757.28, "probability": 0.8844 }, { "start": 7757.7, "end": 7760.94, "probability": 0.9945 }, { "start": 7760.94, "end": 7766.12, "probability": 0.9815 }, { "start": 7767.0, "end": 7767.7, "probability": 0.9819 }, { "start": 7768.58, "end": 7773.74, "probability": 0.9248 }, { "start": 7774.26, "end": 7775.58, "probability": 0.9937 }, { "start": 7775.68, "end": 7776.46, "probability": 0.9868 }, { "start": 7776.7, "end": 7779.46, "probability": 0.9718 }, { "start": 7779.86, "end": 7781.94, "probability": 0.9413 }, { "start": 7782.6, "end": 7786.92, "probability": 0.9729 }, { "start": 7789.76, "end": 7789.76, "probability": 0.0301 }, { "start": 7789.76, "end": 7791.54, "probability": 0.6787 }, { "start": 7792.06, "end": 7794.3, "probability": 0.7766 }, { "start": 7794.76, "end": 7795.72, "probability": 0.4944 }, { "start": 7796.94, "end": 7797.76, "probability": 0.8972 }, { "start": 7816.2, "end": 7818.22, "probability": 0.6792 }, { "start": 7819.76, "end": 7821.62, "probability": 0.8176 }, { "start": 7823.18, "end": 7827.26, "probability": 0.9009 }, { "start": 7828.58, "end": 7831.32, "probability": 0.9033 }, { "start": 7832.08, "end": 7834.14, "probability": 0.9984 }, { "start": 7834.84, "end": 7836.44, "probability": 0.9681 }, { "start": 7837.66, "end": 7839.46, "probability": 0.9959 }, { "start": 7839.98, "end": 7844.58, "probability": 0.999 }, { "start": 7845.02, "end": 7846.49, "probability": 0.9819 }, { "start": 7847.16, "end": 7853.8, "probability": 0.9219 }, { "start": 7855.3, "end": 7856.14, "probability": 0.6205 }, { "start": 7856.14, "end": 7859.66, "probability": 0.9957 }, { "start": 7860.8, "end": 7863.18, "probability": 0.99 }, { "start": 7863.8, "end": 7865.78, "probability": 0.9618 }, { "start": 7866.78, "end": 7868.98, "probability": 0.9346 }, { "start": 7869.3, "end": 7870.24, "probability": 0.8718 }, { "start": 7870.34, "end": 7871.2, "probability": 0.8816 }, { "start": 7871.66, "end": 7872.48, "probability": 0.724 }, { "start": 7872.56, "end": 7873.68, "probability": 0.7586 }, { "start": 7873.98, "end": 7875.16, "probability": 0.9609 }, { "start": 7875.2, "end": 7875.98, "probability": 0.7517 }, { "start": 7877.28, "end": 7879.8, "probability": 0.9386 }, { "start": 7880.64, "end": 7883.08, "probability": 0.9839 }, { "start": 7883.62, "end": 7885.54, "probability": 0.9673 }, { "start": 7887.0, "end": 7888.44, "probability": 0.7173 }, { "start": 7889.0, "end": 7889.38, "probability": 0.8657 }, { "start": 7890.48, "end": 7893.4, "probability": 0.9844 }, { "start": 7894.12, "end": 7895.5, "probability": 0.9851 }, { "start": 7896.38, "end": 7900.56, "probability": 0.9909 }, { "start": 7900.9, "end": 7904.66, "probability": 0.5576 }, { "start": 7905.24, "end": 7906.18, "probability": 0.544 }, { "start": 7907.1, "end": 7907.96, "probability": 0.6456 }, { "start": 7908.82, "end": 7910.74, "probability": 0.9902 }, { "start": 7911.32, "end": 7911.62, "probability": 0.9003 }, { "start": 7912.02, "end": 7915.4, "probability": 0.9417 }, { "start": 7916.32, "end": 7918.92, "probability": 0.7572 }, { "start": 7919.42, "end": 7921.16, "probability": 0.8278 }, { "start": 7921.78, "end": 7924.9, "probability": 0.7542 }, { "start": 7925.54, "end": 7928.74, "probability": 0.911 }, { "start": 7929.74, "end": 7931.52, "probability": 0.6493 }, { "start": 7931.88, "end": 7933.92, "probability": 0.0741 }, { "start": 7933.92, "end": 7937.86, "probability": 0.9535 }, { "start": 7938.88, "end": 7940.78, "probability": 0.97 }, { "start": 7941.2, "end": 7943.59, "probability": 0.9892 }, { "start": 7944.72, "end": 7945.26, "probability": 0.9332 }, { "start": 7946.36, "end": 7947.74, "probability": 0.6672 }, { "start": 7948.32, "end": 7949.68, "probability": 0.691 }, { "start": 7949.8, "end": 7950.76, "probability": 0.8159 }, { "start": 7951.18, "end": 7953.54, "probability": 0.895 }, { "start": 7954.56, "end": 7955.43, "probability": 0.9763 }, { "start": 7956.62, "end": 7957.42, "probability": 0.7972 }, { "start": 7959.16, "end": 7961.06, "probability": 0.9836 }, { "start": 7961.92, "end": 7962.88, "probability": 0.8885 }, { "start": 7963.88, "end": 7965.5, "probability": 0.8757 }, { "start": 7967.18, "end": 7968.56, "probability": 0.9948 }, { "start": 7969.28, "end": 7971.68, "probability": 0.9985 }, { "start": 7972.34, "end": 7973.38, "probability": 0.7802 }, { "start": 7974.66, "end": 7977.66, "probability": 0.9137 }, { "start": 7978.6, "end": 7981.14, "probability": 0.9472 }, { "start": 7981.66, "end": 7983.5, "probability": 0.9812 }, { "start": 7983.82, "end": 7984.0, "probability": 0.5776 }, { "start": 7984.2, "end": 7986.41, "probability": 0.9934 }, { "start": 7986.74, "end": 7988.04, "probability": 0.6729 }, { "start": 7988.14, "end": 7990.92, "probability": 0.9043 }, { "start": 7991.32, "end": 7991.68, "probability": 0.7637 }, { "start": 7992.02, "end": 7993.56, "probability": 0.9786 }, { "start": 7993.84, "end": 7994.64, "probability": 0.798 }, { "start": 7995.04, "end": 7995.7, "probability": 0.6736 }, { "start": 7996.2, "end": 7997.86, "probability": 0.9241 }, { "start": 7998.24, "end": 8000.0, "probability": 0.6793 }, { "start": 8000.38, "end": 8001.16, "probability": 0.8782 }, { "start": 8001.98, "end": 8003.36, "probability": 0.8853 }, { "start": 8004.2, "end": 8005.04, "probability": 0.9055 }, { "start": 8005.12, "end": 8005.86, "probability": 0.9632 }, { "start": 8006.22, "end": 8007.16, "probability": 0.9272 }, { "start": 8007.88, "end": 8010.72, "probability": 0.9233 }, { "start": 8011.7, "end": 8013.4, "probability": 0.908 }, { "start": 8014.16, "end": 8017.96, "probability": 0.9604 }, { "start": 8019.76, "end": 8020.42, "probability": 0.6455 }, { "start": 8020.48, "end": 8020.72, "probability": 0.8549 }, { "start": 8022.0, "end": 8022.88, "probability": 0.7223 }, { "start": 8023.54, "end": 8023.82, "probability": 0.8733 }, { "start": 8025.3, "end": 8025.72, "probability": 0.9224 }, { "start": 8026.24, "end": 8028.35, "probability": 0.9907 }, { "start": 8028.98, "end": 8032.14, "probability": 0.9639 }, { "start": 8032.22, "end": 8033.6, "probability": 0.9249 }, { "start": 8033.7, "end": 8034.98, "probability": 0.9974 }, { "start": 8035.38, "end": 8035.94, "probability": 0.4911 }, { "start": 8036.0, "end": 8037.22, "probability": 0.9078 }, { "start": 8037.94, "end": 8041.34, "probability": 0.8657 }, { "start": 8041.96, "end": 8044.4, "probability": 0.8975 }, { "start": 8046.52, "end": 8047.26, "probability": 0.7458 }, { "start": 8047.4, "end": 8052.17, "probability": 0.8705 }, { "start": 8052.6, "end": 8053.6, "probability": 0.941 }, { "start": 8053.8, "end": 8054.76, "probability": 0.7822 }, { "start": 8055.56, "end": 8059.06, "probability": 0.6826 }, { "start": 8059.86, "end": 8060.72, "probability": 0.7634 }, { "start": 8060.8, "end": 8062.28, "probability": 0.9559 }, { "start": 8062.88, "end": 8064.58, "probability": 0.8491 }, { "start": 8065.96, "end": 8066.62, "probability": 0.9263 }, { "start": 8067.32, "end": 8069.92, "probability": 0.968 }, { "start": 8070.54, "end": 8071.6, "probability": 0.9265 }, { "start": 8071.76, "end": 8072.02, "probability": 0.7055 }, { "start": 8072.44, "end": 8074.38, "probability": 0.9858 }, { "start": 8074.72, "end": 8076.44, "probability": 0.9144 }, { "start": 8077.26, "end": 8078.34, "probability": 0.8872 }, { "start": 8078.8, "end": 8081.86, "probability": 0.9834 }, { "start": 8082.38, "end": 8085.64, "probability": 0.9522 }, { "start": 8085.82, "end": 8087.06, "probability": 0.8884 }, { "start": 8087.5, "end": 8088.2, "probability": 0.6753 }, { "start": 8088.64, "end": 8089.36, "probability": 0.9807 }, { "start": 8089.62, "end": 8090.12, "probability": 0.9293 }, { "start": 8090.44, "end": 8091.14, "probability": 0.8132 }, { "start": 8091.42, "end": 8091.56, "probability": 0.7106 }, { "start": 8092.58, "end": 8093.84, "probability": 0.9724 }, { "start": 8094.42, "end": 8095.3, "probability": 0.9154 }, { "start": 8095.72, "end": 8098.24, "probability": 0.7252 }, { "start": 8099.08, "end": 8100.02, "probability": 0.849 }, { "start": 8100.6, "end": 8101.76, "probability": 0.9903 }, { "start": 8102.42, "end": 8103.86, "probability": 0.9753 }, { "start": 8104.44, "end": 8105.38, "probability": 0.9058 }, { "start": 8105.96, "end": 8107.46, "probability": 0.9863 }, { "start": 8107.88, "end": 8109.26, "probability": 0.9912 }, { "start": 8109.62, "end": 8111.8, "probability": 0.962 }, { "start": 8113.02, "end": 8113.6, "probability": 0.0872 }, { "start": 8114.4, "end": 8116.64, "probability": 0.9987 }, { "start": 8117.8, "end": 8118.88, "probability": 0.7697 }, { "start": 8119.56, "end": 8121.24, "probability": 0.9766 }, { "start": 8121.8, "end": 8123.48, "probability": 0.9054 }, { "start": 8124.2, "end": 8124.86, "probability": 0.832 }, { "start": 8125.68, "end": 8126.84, "probability": 0.4878 }, { "start": 8127.48, "end": 8128.34, "probability": 0.3042 }, { "start": 8128.54, "end": 8130.3, "probability": 0.4066 }, { "start": 8130.3, "end": 8130.96, "probability": 0.2906 }, { "start": 8131.67, "end": 8137.36, "probability": 0.9116 }, { "start": 8137.42, "end": 8139.74, "probability": 0.9941 }, { "start": 8140.52, "end": 8141.28, "probability": 0.5752 }, { "start": 8142.14, "end": 8143.06, "probability": 0.477 }, { "start": 8144.68, "end": 8145.24, "probability": 0.1715 }, { "start": 8145.24, "end": 8146.54, "probability": 0.8952 }, { "start": 8146.56, "end": 8147.92, "probability": 0.936 }, { "start": 8148.26, "end": 8150.66, "probability": 0.6484 }, { "start": 8150.72, "end": 8152.78, "probability": 0.9122 }, { "start": 8153.02, "end": 8153.96, "probability": 0.9854 }, { "start": 8154.56, "end": 8156.04, "probability": 0.8915 }, { "start": 8156.52, "end": 8157.94, "probability": 0.9589 }, { "start": 8158.28, "end": 8159.16, "probability": 0.9881 }, { "start": 8159.52, "end": 8160.44, "probability": 0.9061 }, { "start": 8160.74, "end": 8161.5, "probability": 0.9605 }, { "start": 8161.76, "end": 8162.66, "probability": 0.9827 }, { "start": 8162.94, "end": 8163.74, "probability": 0.9836 }, { "start": 8163.98, "end": 8165.32, "probability": 0.8217 }, { "start": 8165.74, "end": 8166.28, "probability": 0.8571 }, { "start": 8166.58, "end": 8167.2, "probability": 0.8458 }, { "start": 8167.7, "end": 8169.22, "probability": 0.7734 }, { "start": 8170.2, "end": 8170.6, "probability": 0.0006 }, { "start": 8170.6, "end": 8170.6, "probability": 0.0237 }, { "start": 8170.6, "end": 8171.16, "probability": 0.4931 }, { "start": 8172.32, "end": 8172.98, "probability": 0.473 }, { "start": 8173.72, "end": 8176.36, "probability": 0.9477 }, { "start": 8178.6, "end": 8178.72, "probability": 0.0916 }, { "start": 8178.72, "end": 8180.92, "probability": 0.7393 }, { "start": 8180.94, "end": 8182.96, "probability": 0.8304 }, { "start": 8192.6, "end": 8194.32, "probability": 0.0 }, { "start": 8207.08, "end": 8207.26, "probability": 0.0079 }, { "start": 8207.26, "end": 8207.5, "probability": 0.137 }, { "start": 8207.7, "end": 8208.86, "probability": 0.9683 }, { "start": 8210.88, "end": 8212.37, "probability": 0.9329 }, { "start": 8212.94, "end": 8213.88, "probability": 0.7669 }, { "start": 8215.02, "end": 8215.98, "probability": 0.7958 }, { "start": 8217.0, "end": 8217.18, "probability": 0.7108 }, { "start": 8217.24, "end": 8219.72, "probability": 0.9915 }, { "start": 8219.72, "end": 8220.24, "probability": 0.4137 }, { "start": 8220.58, "end": 8221.1, "probability": 0.3961 }, { "start": 8221.12, "end": 8221.94, "probability": 0.701 }, { "start": 8222.42, "end": 8226.18, "probability": 0.8081 }, { "start": 8226.3, "end": 8229.22, "probability": 0.9632 }, { "start": 8229.4, "end": 8229.95, "probability": 0.4744 }, { "start": 8230.12, "end": 8230.58, "probability": 0.8028 }, { "start": 8231.54, "end": 8232.12, "probability": 0.6253 }, { "start": 8232.12, "end": 8232.56, "probability": 0.8461 }, { "start": 8234.36, "end": 8235.06, "probability": 0.649 }, { "start": 8235.12, "end": 8238.64, "probability": 0.9712 }, { "start": 8238.64, "end": 8241.84, "probability": 0.9435 }, { "start": 8243.68, "end": 8247.28, "probability": 0.8894 }, { "start": 8248.22, "end": 8249.68, "probability": 0.9904 }, { "start": 8250.26, "end": 8254.38, "probability": 0.9785 }, { "start": 8254.9, "end": 8255.86, "probability": 0.9969 }, { "start": 8256.48, "end": 8258.12, "probability": 0.9246 }, { "start": 8258.72, "end": 8261.18, "probability": 0.8358 }, { "start": 8263.18, "end": 8265.58, "probability": 0.8117 }, { "start": 8267.2, "end": 8267.56, "probability": 0.6287 }, { "start": 8268.5, "end": 8268.58, "probability": 0.0469 }, { "start": 8268.58, "end": 8269.44, "probability": 0.8483 }, { "start": 8270.08, "end": 8270.62, "probability": 0.3387 }, { "start": 8270.96, "end": 8270.96, "probability": 0.2616 }, { "start": 8270.96, "end": 8273.21, "probability": 0.7537 }, { "start": 8274.3, "end": 8276.56, "probability": 0.7869 }, { "start": 8277.58, "end": 8280.14, "probability": 0.8941 }, { "start": 8280.24, "end": 8282.18, "probability": 0.8055 }, { "start": 8282.58, "end": 8285.86, "probability": 0.9578 }, { "start": 8285.86, "end": 8285.92, "probability": 0.0155 }, { "start": 8285.92, "end": 8286.02, "probability": 0.3649 }, { "start": 8286.16, "end": 8288.6, "probability": 0.8387 }, { "start": 8288.94, "end": 8290.64, "probability": 0.7938 }, { "start": 8290.74, "end": 8291.34, "probability": 0.6341 }, { "start": 8291.54, "end": 8292.01, "probability": 0.9731 }, { "start": 8293.34, "end": 8295.1, "probability": 0.953 }, { "start": 8296.43, "end": 8297.58, "probability": 0.9863 }, { "start": 8298.12, "end": 8299.98, "probability": 0.5107 }, { "start": 8300.12, "end": 8301.84, "probability": 0.1239 }, { "start": 8302.02, "end": 8303.62, "probability": 0.51 }, { "start": 8303.68, "end": 8305.42, "probability": 0.5024 }, { "start": 8305.96, "end": 8306.96, "probability": 0.9181 }, { "start": 8308.38, "end": 8309.32, "probability": 0.9521 }, { "start": 8309.96, "end": 8310.86, "probability": 0.9678 }, { "start": 8311.54, "end": 8312.3, "probability": 0.0423 }, { "start": 8312.3, "end": 8312.66, "probability": 0.2663 }, { "start": 8314.44, "end": 8314.96, "probability": 0.881 }, { "start": 8315.48, "end": 8317.8, "probability": 0.8598 }, { "start": 8318.32, "end": 8321.42, "probability": 0.9915 }, { "start": 8323.18, "end": 8323.92, "probability": 0.8653 }, { "start": 8324.58, "end": 8328.52, "probability": 0.9797 }, { "start": 8329.08, "end": 8330.5, "probability": 0.6984 }, { "start": 8330.86, "end": 8331.94, "probability": 0.8025 }, { "start": 8332.04, "end": 8333.2, "probability": 0.7531 }, { "start": 8333.94, "end": 8334.22, "probability": 0.3896 }, { "start": 8334.72, "end": 8341.46, "probability": 0.9457 }, { "start": 8341.88, "end": 8342.64, "probability": 0.6163 }, { "start": 8344.42, "end": 8345.16, "probability": 0.0771 }, { "start": 8345.38, "end": 8345.56, "probability": 0.4067 }, { "start": 8345.64, "end": 8346.28, "probability": 0.7971 }, { "start": 8346.42, "end": 8347.58, "probability": 0.9819 }, { "start": 8348.44, "end": 8351.64, "probability": 0.9038 }, { "start": 8352.66, "end": 8356.44, "probability": 0.9948 }, { "start": 8358.24, "end": 8361.62, "probability": 0.9213 }, { "start": 8362.44, "end": 8366.9, "probability": 0.9941 }, { "start": 8368.08, "end": 8370.68, "probability": 0.9977 }, { "start": 8371.44, "end": 8376.08, "probability": 0.9937 }, { "start": 8376.72, "end": 8378.48, "probability": 0.9165 }, { "start": 8379.1, "end": 8381.78, "probability": 0.9971 }, { "start": 8382.56, "end": 8383.96, "probability": 0.9547 }, { "start": 8384.4, "end": 8387.76, "probability": 0.987 }, { "start": 8388.46, "end": 8391.6, "probability": 0.8786 }, { "start": 8393.06, "end": 8398.06, "probability": 0.9778 }, { "start": 8399.02, "end": 8402.1, "probability": 0.9655 }, { "start": 8404.42, "end": 8405.18, "probability": 0.7543 }, { "start": 8406.7, "end": 8406.7, "probability": 0.1301 }, { "start": 8406.7, "end": 8408.78, "probability": 0.9561 }, { "start": 8409.1, "end": 8409.44, "probability": 0.6602 }, { "start": 8410.98, "end": 8411.78, "probability": 0.0156 }, { "start": 8411.78, "end": 8412.82, "probability": 0.3989 }, { "start": 8413.54, "end": 8415.24, "probability": 0.7059 }, { "start": 8415.8, "end": 8416.64, "probability": 0.9688 }, { "start": 8416.72, "end": 8417.21, "probability": 0.2655 }, { "start": 8418.28, "end": 8419.16, "probability": 0.9388 }, { "start": 8419.74, "end": 8421.86, "probability": 0.9131 }, { "start": 8422.64, "end": 8424.48, "probability": 0.9724 }, { "start": 8425.42, "end": 8428.84, "probability": 0.8568 }, { "start": 8429.84, "end": 8431.96, "probability": 0.9793 }, { "start": 8432.5, "end": 8437.3, "probability": 0.9575 }, { "start": 8438.02, "end": 8441.24, "probability": 0.981 }, { "start": 8442.18, "end": 8442.54, "probability": 0.9745 }, { "start": 8443.2, "end": 8446.96, "probability": 0.9971 }, { "start": 8447.14, "end": 8450.88, "probability": 0.9309 }, { "start": 8452.46, "end": 8454.42, "probability": 0.9529 }, { "start": 8456.0, "end": 8457.34, "probability": 0.9668 }, { "start": 8457.54, "end": 8458.52, "probability": 0.9677 }, { "start": 8458.96, "end": 8461.04, "probability": 0.8147 }, { "start": 8462.3, "end": 8465.14, "probability": 0.9875 }, { "start": 8465.18, "end": 8470.9, "probability": 0.9817 }, { "start": 8471.4, "end": 8474.26, "probability": 0.9889 }, { "start": 8474.88, "end": 8477.0, "probability": 0.9971 }, { "start": 8477.06, "end": 8479.68, "probability": 0.9964 }, { "start": 8480.86, "end": 8482.72, "probability": 0.9517 }, { "start": 8483.24, "end": 8484.52, "probability": 0.8625 }, { "start": 8485.04, "end": 8487.58, "probability": 0.9787 }, { "start": 8488.52, "end": 8490.56, "probability": 0.9536 }, { "start": 8491.12, "end": 8493.16, "probability": 0.9973 }, { "start": 8493.64, "end": 8496.24, "probability": 0.9628 }, { "start": 8496.7, "end": 8497.58, "probability": 0.7322 }, { "start": 8498.08, "end": 8499.24, "probability": 0.6734 }, { "start": 8499.5, "end": 8501.04, "probability": 0.9895 }, { "start": 8501.38, "end": 8504.3, "probability": 0.9684 }, { "start": 8504.88, "end": 8508.24, "probability": 0.5904 }, { "start": 8508.38, "end": 8508.68, "probability": 0.6908 }, { "start": 8508.8, "end": 8510.14, "probability": 0.9959 }, { "start": 8510.18, "end": 8510.84, "probability": 0.5039 }, { "start": 8511.22, "end": 8514.0, "probability": 0.9897 }, { "start": 8514.62, "end": 8515.54, "probability": 0.79 }, { "start": 8515.96, "end": 8518.92, "probability": 0.9395 }, { "start": 8519.06, "end": 8520.58, "probability": 0.9764 }, { "start": 8521.0, "end": 8522.6, "probability": 0.9238 }, { "start": 8524.22, "end": 8525.9, "probability": 0.8745 }, { "start": 8527.42, "end": 8530.58, "probability": 0.9555 }, { "start": 8531.12, "end": 8532.86, "probability": 0.9876 }, { "start": 8533.0, "end": 8534.54, "probability": 0.9976 }, { "start": 8535.18, "end": 8539.82, "probability": 0.9963 }, { "start": 8540.62, "end": 8543.04, "probability": 0.9976 }, { "start": 8543.6, "end": 8545.66, "probability": 0.9531 }, { "start": 8546.24, "end": 8547.54, "probability": 0.9589 }, { "start": 8547.9, "end": 8552.72, "probability": 0.8994 }, { "start": 8552.72, "end": 8556.12, "probability": 0.7871 }, { "start": 8556.96, "end": 8558.96, "probability": 0.9976 }, { "start": 8559.36, "end": 8563.26, "probability": 0.9693 }, { "start": 8563.84, "end": 8567.42, "probability": 0.9294 }, { "start": 8567.8, "end": 8569.3, "probability": 0.8729 }, { "start": 8569.74, "end": 8573.46, "probability": 0.9536 }, { "start": 8573.76, "end": 8577.32, "probability": 0.9119 }, { "start": 8577.9, "end": 8579.32, "probability": 0.9067 }, { "start": 8579.7, "end": 8581.26, "probability": 0.9923 }, { "start": 8581.68, "end": 8586.74, "probability": 0.9853 }, { "start": 8590.22, "end": 8593.02, "probability": 0.98 }, { "start": 8594.16, "end": 8594.48, "probability": 0.8591 }, { "start": 8595.1, "end": 8596.04, "probability": 0.9658 }, { "start": 8596.72, "end": 8597.76, "probability": 0.8117 }, { "start": 8598.44, "end": 8605.9, "probability": 0.9888 }, { "start": 8607.18, "end": 8607.96, "probability": 0.9424 }, { "start": 8608.64, "end": 8610.39, "probability": 0.9612 }, { "start": 8611.18, "end": 8612.34, "probability": 0.7708 }, { "start": 8612.46, "end": 8613.64, "probability": 0.5482 }, { "start": 8613.92, "end": 8616.18, "probability": 0.8107 }, { "start": 8616.64, "end": 8617.74, "probability": 0.7344 }, { "start": 8617.74, "end": 8618.82, "probability": 0.975 }, { "start": 8619.12, "end": 8620.7, "probability": 0.9873 }, { "start": 8621.16, "end": 8624.5, "probability": 0.9961 }, { "start": 8624.5, "end": 8626.47, "probability": 0.9956 }, { "start": 8627.14, "end": 8630.78, "probability": 0.9934 }, { "start": 8630.78, "end": 8634.76, "probability": 0.9961 }, { "start": 8634.84, "end": 8638.52, "probability": 0.9824 }, { "start": 8638.52, "end": 8642.5, "probability": 0.9734 }, { "start": 8642.62, "end": 8643.28, "probability": 0.8845 }, { "start": 8644.04, "end": 8648.36, "probability": 0.5 }, { "start": 8648.82, "end": 8652.24, "probability": 0.9633 }, { "start": 8652.86, "end": 8654.2, "probability": 0.9917 }, { "start": 8654.5, "end": 8656.92, "probability": 0.9955 }, { "start": 8657.22, "end": 8658.16, "probability": 0.6045 }, { "start": 8658.22, "end": 8658.72, "probability": 0.3927 }, { "start": 8659.56, "end": 8661.78, "probability": 0.9917 }, { "start": 8662.38, "end": 8662.62, "probability": 0.8605 }, { "start": 8662.68, "end": 8665.42, "probability": 0.9763 }, { "start": 8665.66, "end": 8666.12, "probability": 0.5404 }, { "start": 8666.9, "end": 8668.52, "probability": 0.8889 }, { "start": 8668.74, "end": 8670.56, "probability": 0.6769 }, { "start": 8670.56, "end": 8670.56, "probability": 0.2791 }, { "start": 8670.56, "end": 8674.68, "probability": 0.9647 }, { "start": 8674.68, "end": 8676.9, "probability": 0.9955 }, { "start": 8677.12, "end": 8677.2, "probability": 0.3782 }, { "start": 8677.2, "end": 8679.12, "probability": 0.7047 }, { "start": 8679.52, "end": 8684.33, "probability": 0.9646 }, { "start": 8684.64, "end": 8685.86, "probability": 0.8852 }, { "start": 8685.92, "end": 8686.42, "probability": 0.8781 }, { "start": 8686.46, "end": 8687.08, "probability": 0.8245 }, { "start": 8687.56, "end": 8690.08, "probability": 0.9873 }, { "start": 8690.74, "end": 8690.74, "probability": 0.0261 }, { "start": 8690.74, "end": 8690.74, "probability": 0.0389 }, { "start": 8690.74, "end": 8692.96, "probability": 0.6453 }, { "start": 8693.78, "end": 8694.46, "probability": 0.3135 }, { "start": 8694.46, "end": 8696.26, "probability": 0.8237 }, { "start": 8696.6, "end": 8697.36, "probability": 0.0857 }, { "start": 8697.66, "end": 8698.82, "probability": 0.9722 }, { "start": 8699.68, "end": 8699.86, "probability": 0.521 }, { "start": 8699.86, "end": 8701.6, "probability": 0.5052 }, { "start": 8702.99, "end": 8705.26, "probability": 0.7391 }, { "start": 8705.26, "end": 8705.38, "probability": 0.1997 }, { "start": 8706.3, "end": 8708.74, "probability": 0.5558 }, { "start": 8709.96, "end": 8713.14, "probability": 0.2473 }, { "start": 8714.34, "end": 8715.32, "probability": 0.9702 }, { "start": 8715.44, "end": 8716.08, "probability": 0.6221 }, { "start": 8716.14, "end": 8717.06, "probability": 0.9976 }, { "start": 8717.7, "end": 8718.58, "probability": 0.8567 }, { "start": 8719.34, "end": 8722.72, "probability": 0.6297 }, { "start": 8724.5, "end": 8727.54, "probability": 0.8086 }, { "start": 8727.54, "end": 8729.3, "probability": 0.5386 }, { "start": 8729.3, "end": 8730.4, "probability": 0.9208 }, { "start": 8730.86, "end": 8731.94, "probability": 0.7965 }, { "start": 8734.08, "end": 8735.5, "probability": 0.804 }, { "start": 8735.72, "end": 8738.38, "probability": 0.9766 }, { "start": 8738.46, "end": 8739.3, "probability": 0.7841 }, { "start": 8739.8, "end": 8741.5, "probability": 0.8435 }, { "start": 8742.04, "end": 8743.12, "probability": 0.969 }, { "start": 8743.48, "end": 8745.8, "probability": 0.9985 }, { "start": 8746.22, "end": 8747.8, "probability": 0.863 }, { "start": 8748.16, "end": 8750.8, "probability": 0.7627 }, { "start": 8751.18, "end": 8754.1, "probability": 0.8694 }, { "start": 8754.14, "end": 8757.14, "probability": 0.9917 }, { "start": 8757.6, "end": 8761.1, "probability": 0.915 }, { "start": 8761.14, "end": 8765.14, "probability": 0.9713 }, { "start": 8765.48, "end": 8769.82, "probability": 0.9756 }, { "start": 8769.92, "end": 8773.22, "probability": 0.9827 }, { "start": 8773.58, "end": 8777.52, "probability": 0.9941 }, { "start": 8777.62, "end": 8779.6, "probability": 0.9963 }, { "start": 8779.7, "end": 8780.04, "probability": 0.7015 }, { "start": 8780.5, "end": 8782.96, "probability": 0.6472 }, { "start": 8783.56, "end": 8784.38, "probability": 0.9372 }, { "start": 8784.64, "end": 8786.28, "probability": 0.719 }, { "start": 8786.68, "end": 8790.68, "probability": 0.8906 }, { "start": 8791.06, "end": 8793.38, "probability": 0.9543 }, { "start": 8793.66, "end": 8794.76, "probability": 0.6729 }, { "start": 8794.9, "end": 8796.74, "probability": 0.9716 }, { "start": 8797.2, "end": 8798.42, "probability": 0.7948 }, { "start": 8798.86, "end": 8801.0, "probability": 0.8828 }, { "start": 8801.22, "end": 8805.14, "probability": 0.9966 }, { "start": 8805.48, "end": 8806.8, "probability": 0.9317 }, { "start": 8806.88, "end": 8807.66, "probability": 0.8482 }, { "start": 8808.88, "end": 8809.9, "probability": 0.5811 }, { "start": 8810.88, "end": 8813.6, "probability": 0.9336 }, { "start": 8815.25, "end": 8817.1, "probability": 0.9697 }, { "start": 8824.5, "end": 8825.62, "probability": 0.119 }, { "start": 8825.62, "end": 8825.62, "probability": 0.185 }, { "start": 8825.62, "end": 8825.62, "probability": 0.0547 }, { "start": 8841.86, "end": 8844.58, "probability": 0.994 }, { "start": 8848.11, "end": 8850.86, "probability": 0.8589 }, { "start": 8850.86, "end": 8853.1, "probability": 0.7951 }, { "start": 8853.16, "end": 8854.52, "probability": 0.9377 }, { "start": 8855.46, "end": 8858.5, "probability": 0.8878 }, { "start": 8860.79, "end": 8861.76, "probability": 0.3859 }, { "start": 8861.76, "end": 8865.14, "probability": 0.9824 }, { "start": 8865.14, "end": 8869.74, "probability": 0.9961 }, { "start": 8871.34, "end": 8872.06, "probability": 0.7287 }, { "start": 8872.22, "end": 8872.56, "probability": 0.8149 }, { "start": 8872.62, "end": 8877.14, "probability": 0.9954 }, { "start": 8878.16, "end": 8881.0, "probability": 0.9478 }, { "start": 8881.18, "end": 8881.5, "probability": 0.9292 }, { "start": 8881.68, "end": 8882.04, "probability": 0.9419 }, { "start": 8882.26, "end": 8882.66, "probability": 0.9839 }, { "start": 8882.72, "end": 8883.4, "probability": 0.9713 }, { "start": 8884.88, "end": 8887.88, "probability": 0.8476 }, { "start": 8887.94, "end": 8888.68, "probability": 0.9808 }, { "start": 8888.72, "end": 8889.95, "probability": 0.4835 }, { "start": 8890.44, "end": 8894.88, "probability": 0.9722 }, { "start": 8895.64, "end": 8897.28, "probability": 0.9647 }, { "start": 8898.18, "end": 8900.98, "probability": 0.9976 }, { "start": 8901.66, "end": 8904.76, "probability": 0.9547 }, { "start": 8905.54, "end": 8907.0, "probability": 0.8296 }, { "start": 8907.22, "end": 8910.51, "probability": 0.9922 }, { "start": 8911.12, "end": 8913.78, "probability": 0.7505 }, { "start": 8914.34, "end": 8915.12, "probability": 0.8514 }, { "start": 8915.88, "end": 8918.32, "probability": 0.9952 }, { "start": 8919.18, "end": 8921.46, "probability": 0.9956 }, { "start": 8922.6, "end": 8923.74, "probability": 0.0269 }, { "start": 8924.64, "end": 8927.34, "probability": 0.7441 }, { "start": 8928.78, "end": 8931.14, "probability": 0.9406 }, { "start": 8931.22, "end": 8933.88, "probability": 0.9445 }, { "start": 8933.94, "end": 8934.9, "probability": 0.9743 }, { "start": 8934.94, "end": 8937.14, "probability": 0.9698 }, { "start": 8938.08, "end": 8938.34, "probability": 0.99 }, { "start": 8939.1, "end": 8942.48, "probability": 0.548 }, { "start": 8943.24, "end": 8945.48, "probability": 0.9745 }, { "start": 8947.28, "end": 8948.08, "probability": 0.7734 }, { "start": 8948.86, "end": 8950.68, "probability": 0.8906 }, { "start": 8952.3, "end": 8953.16, "probability": 0.7492 }, { "start": 8955.74, "end": 8956.62, "probability": 0.5308 }, { "start": 8958.28, "end": 8960.24, "probability": 0.8125 }, { "start": 8961.8, "end": 8965.88, "probability": 0.9521 }, { "start": 8967.18, "end": 8972.0, "probability": 0.8988 }, { "start": 8972.84, "end": 8975.48, "probability": 0.6904 }, { "start": 8975.62, "end": 8976.59, "probability": 0.9783 }, { "start": 8977.16, "end": 8978.16, "probability": 0.8989 }, { "start": 8978.76, "end": 8982.76, "probability": 0.7869 }, { "start": 8983.58, "end": 8988.14, "probability": 0.9844 }, { "start": 8989.14, "end": 8990.38, "probability": 0.9359 }, { "start": 8990.7, "end": 8992.78, "probability": 0.9515 }, { "start": 8993.2, "end": 8994.86, "probability": 0.9863 }, { "start": 8994.92, "end": 8996.6, "probability": 0.8953 }, { "start": 8997.32, "end": 8999.8, "probability": 0.9863 }, { "start": 9000.26, "end": 9001.75, "probability": 0.8714 }, { "start": 9002.44, "end": 9004.08, "probability": 0.9784 }, { "start": 9004.48, "end": 9005.66, "probability": 0.917 }, { "start": 9006.4, "end": 9007.18, "probability": 0.9551 }, { "start": 9008.06, "end": 9009.48, "probability": 0.9779 }, { "start": 9010.12, "end": 9011.4, "probability": 0.8621 }, { "start": 9012.1, "end": 9014.64, "probability": 0.9583 }, { "start": 9015.92, "end": 9016.88, "probability": 0.8675 }, { "start": 9017.42, "end": 9019.2, "probability": 0.8079 }, { "start": 9020.02, "end": 9022.02, "probability": 0.9934 }, { "start": 9022.54, "end": 9027.38, "probability": 0.9907 }, { "start": 9028.56, "end": 9032.18, "probability": 0.9985 }, { "start": 9032.62, "end": 9035.16, "probability": 0.9884 }, { "start": 9036.68, "end": 9036.98, "probability": 0.7438 }, { "start": 9037.68, "end": 9038.24, "probability": 0.9824 }, { "start": 9038.4, "end": 9039.38, "probability": 0.9945 }, { "start": 9040.58, "end": 9045.7, "probability": 0.813 }, { "start": 9046.38, "end": 9048.32, "probability": 0.997 }, { "start": 9049.24, "end": 9052.0, "probability": 0.9879 }, { "start": 9052.78, "end": 9055.98, "probability": 0.9977 }, { "start": 9056.42, "end": 9057.8, "probability": 0.9392 }, { "start": 9058.44, "end": 9061.18, "probability": 0.9075 }, { "start": 9062.96, "end": 9064.98, "probability": 0.9899 }, { "start": 9065.72, "end": 9067.88, "probability": 0.9922 }, { "start": 9068.62, "end": 9069.62, "probability": 0.7439 }, { "start": 9070.02, "end": 9074.44, "probability": 0.9502 }, { "start": 9074.56, "end": 9075.1, "probability": 0.4929 }, { "start": 9075.14, "end": 9076.94, "probability": 0.9658 }, { "start": 9077.94, "end": 9079.12, "probability": 0.8555 }, { "start": 9079.92, "end": 9082.44, "probability": 0.8348 }, { "start": 9083.28, "end": 9083.54, "probability": 0.2537 }, { "start": 9083.58, "end": 9084.32, "probability": 0.2782 }, { "start": 9084.56, "end": 9085.42, "probability": 0.3501 }, { "start": 9086.08, "end": 9086.72, "probability": 0.7511 }, { "start": 9086.86, "end": 9088.7, "probability": 0.7993 }, { "start": 9088.86, "end": 9089.66, "probability": 0.1268 }, { "start": 9089.8, "end": 9091.74, "probability": 0.9951 }, { "start": 9092.24, "end": 9095.02, "probability": 0.7282 }, { "start": 9095.4, "end": 9095.46, "probability": 0.067 }, { "start": 9095.46, "end": 9098.74, "probability": 0.9897 }, { "start": 9099.36, "end": 9099.96, "probability": 0.9004 }, { "start": 9100.06, "end": 9101.0, "probability": 0.9787 }, { "start": 9101.1, "end": 9103.14, "probability": 0.9805 }, { "start": 9103.34, "end": 9105.58, "probability": 0.9945 }, { "start": 9105.7, "end": 9108.48, "probability": 0.9902 }, { "start": 9109.0, "end": 9110.78, "probability": 0.9906 }, { "start": 9110.9, "end": 9112.06, "probability": 0.955 }, { "start": 9112.78, "end": 9116.6, "probability": 0.9887 }, { "start": 9117.72, "end": 9121.08, "probability": 0.9932 }, { "start": 9121.72, "end": 9123.02, "probability": 0.9737 }, { "start": 9123.38, "end": 9123.98, "probability": 0.9427 }, { "start": 9124.26, "end": 9125.12, "probability": 0.9774 }, { "start": 9125.36, "end": 9126.34, "probability": 0.9585 }, { "start": 9126.68, "end": 9129.04, "probability": 0.9482 }, { "start": 9129.72, "end": 9132.16, "probability": 0.9995 }, { "start": 9132.16, "end": 9134.18, "probability": 0.9749 }, { "start": 9135.26, "end": 9136.28, "probability": 0.992 }, { "start": 9137.36, "end": 9138.2, "probability": 0.9521 }, { "start": 9138.36, "end": 9141.74, "probability": 0.9885 }, { "start": 9142.8, "end": 9148.72, "probability": 0.9807 }, { "start": 9148.76, "end": 9149.14, "probability": 0.0086 }, { "start": 9149.8, "end": 9150.32, "probability": 0.8191 }, { "start": 9150.32, "end": 9155.28, "probability": 0.976 }, { "start": 9155.82, "end": 9158.72, "probability": 0.952 }, { "start": 9158.8, "end": 9159.54, "probability": 0.7531 }, { "start": 9159.64, "end": 9160.12, "probability": 0.5404 }, { "start": 9160.14, "end": 9162.34, "probability": 0.9872 }, { "start": 9162.4, "end": 9162.84, "probability": 0.7552 }, { "start": 9163.94, "end": 9164.18, "probability": 0.3485 }, { "start": 9164.28, "end": 9167.4, "probability": 0.8365 }, { "start": 9167.8, "end": 9168.51, "probability": 0.3542 }, { "start": 9169.12, "end": 9171.12, "probability": 0.5854 }, { "start": 9171.24, "end": 9172.56, "probability": 0.6275 }, { "start": 9172.66, "end": 9172.76, "probability": 0.1597 }, { "start": 9172.78, "end": 9176.62, "probability": 0.9235 }, { "start": 9176.84, "end": 9177.34, "probability": 0.2271 }, { "start": 9177.46, "end": 9178.38, "probability": 0.9798 }, { "start": 9178.46, "end": 9181.07, "probability": 0.7458 }, { "start": 9182.02, "end": 9186.14, "probability": 0.917 }, { "start": 9186.9, "end": 9189.48, "probability": 0.5407 }, { "start": 9189.9, "end": 9192.3, "probability": 0.9574 }, { "start": 9192.8, "end": 9193.17, "probability": 0.0803 }, { "start": 9193.48, "end": 9193.68, "probability": 0.9144 }, { "start": 9193.68, "end": 9193.88, "probability": 0.1927 }, { "start": 9194.16, "end": 9195.2, "probability": 0.7711 }, { "start": 9195.22, "end": 9196.84, "probability": 0.4534 }, { "start": 9197.5, "end": 9197.6, "probability": 0.009 }, { "start": 9197.72, "end": 9198.38, "probability": 0.9384 }, { "start": 9199.06, "end": 9199.98, "probability": 0.7239 }, { "start": 9200.36, "end": 9203.56, "probability": 0.9874 }, { "start": 9204.18, "end": 9206.34, "probability": 0.9977 }, { "start": 9206.46, "end": 9207.9, "probability": 0.7201 }, { "start": 9208.42, "end": 9210.78, "probability": 0.9806 }, { "start": 9211.22, "end": 9213.6, "probability": 0.7034 }, { "start": 9214.84, "end": 9215.6, "probability": 0.5428 }, { "start": 9216.3, "end": 9218.82, "probability": 0.9342 }, { "start": 9219.04, "end": 9220.06, "probability": 0.4998 }, { "start": 9220.18, "end": 9221.38, "probability": 0.9397 }, { "start": 9221.54, "end": 9222.69, "probability": 0.8694 }, { "start": 9223.12, "end": 9225.22, "probability": 0.9969 }, { "start": 9225.52, "end": 9226.73, "probability": 0.9062 }, { "start": 9228.56, "end": 9229.16, "probability": 0.1006 }, { "start": 9229.16, "end": 9229.23, "probability": 0.1131 }, { "start": 9229.64, "end": 9230.56, "probability": 0.4795 }, { "start": 9231.72, "end": 9233.82, "probability": 0.67 }, { "start": 9234.16, "end": 9235.74, "probability": 0.9258 }, { "start": 9235.82, "end": 9238.86, "probability": 0.9963 }, { "start": 9239.0, "end": 9239.24, "probability": 0.5214 }, { "start": 9239.5, "end": 9239.74, "probability": 0.6445 }, { "start": 9239.78, "end": 9243.48, "probability": 0.9845 }, { "start": 9244.16, "end": 9244.76, "probability": 0.9846 }, { "start": 9244.86, "end": 9252.26, "probability": 0.9857 }, { "start": 9252.94, "end": 9256.02, "probability": 0.9781 }, { "start": 9256.18, "end": 9256.7, "probability": 0.7795 }, { "start": 9257.38, "end": 9257.66, "probability": 0.7832 }, { "start": 9257.76, "end": 9258.18, "probability": 0.9217 }, { "start": 9258.2, "end": 9262.18, "probability": 0.9443 }, { "start": 9262.8, "end": 9265.3, "probability": 0.9527 }, { "start": 9265.78, "end": 9267.6, "probability": 0.9187 }, { "start": 9267.8, "end": 9269.0, "probability": 0.9971 }, { "start": 9269.58, "end": 9273.16, "probability": 0.9958 }, { "start": 9273.16, "end": 9276.64, "probability": 0.9985 }, { "start": 9277.16, "end": 9279.36, "probability": 0.996 }, { "start": 9280.61, "end": 9285.16, "probability": 0.973 }, { "start": 9285.32, "end": 9288.16, "probability": 0.9129 }, { "start": 9288.7, "end": 9289.82, "probability": 0.911 }, { "start": 9290.42, "end": 9292.8, "probability": 0.9319 }, { "start": 9292.92, "end": 9293.38, "probability": 0.8109 }, { "start": 9294.5, "end": 9295.11, "probability": 0.9307 }, { "start": 9295.76, "end": 9299.44, "probability": 0.8483 }, { "start": 9300.1, "end": 9301.08, "probability": 0.9712 }, { "start": 9301.78, "end": 9308.98, "probability": 0.9936 }, { "start": 9309.14, "end": 9309.32, "probability": 0.8169 }, { "start": 9309.44, "end": 9309.64, "probability": 0.8747 }, { "start": 9309.7, "end": 9310.04, "probability": 0.9528 }, { "start": 9310.08, "end": 9310.54, "probability": 0.7661 }, { "start": 9311.08, "end": 9311.54, "probability": 0.9922 }, { "start": 9312.2, "end": 9315.1, "probability": 0.9978 }, { "start": 9316.2, "end": 9316.2, "probability": 0.069 }, { "start": 9316.2, "end": 9317.68, "probability": 0.9858 }, { "start": 9319.04, "end": 9320.02, "probability": 0.7103 }, { "start": 9320.54, "end": 9323.36, "probability": 0.9768 }, { "start": 9323.52, "end": 9324.76, "probability": 0.9305 }, { "start": 9324.82, "end": 9327.54, "probability": 0.9971 }, { "start": 9328.32, "end": 9329.98, "probability": 0.9942 }, { "start": 9330.02, "end": 9330.92, "probability": 0.6274 }, { "start": 9331.14, "end": 9331.5, "probability": 0.6565 }, { "start": 9332.0, "end": 9332.96, "probability": 0.9949 }, { "start": 9334.3, "end": 9340.54, "probability": 0.993 }, { "start": 9340.54, "end": 9346.54, "probability": 0.9367 }, { "start": 9346.64, "end": 9350.58, "probability": 0.9916 }, { "start": 9351.26, "end": 9354.48, "probability": 0.9968 }, { "start": 9354.88, "end": 9357.2, "probability": 0.9994 }, { "start": 9358.0, "end": 9359.72, "probability": 0.7479 }, { "start": 9360.46, "end": 9362.54, "probability": 0.9873 }, { "start": 9364.4, "end": 9365.24, "probability": 0.4964 }, { "start": 9366.06, "end": 9368.39, "probability": 0.9661 }, { "start": 9368.66, "end": 9372.02, "probability": 0.9114 }, { "start": 9372.54, "end": 9374.8, "probability": 0.9839 }, { "start": 9375.34, "end": 9377.2, "probability": 0.3099 }, { "start": 9377.4, "end": 9379.0, "probability": 0.9782 }, { "start": 9379.12, "end": 9379.54, "probability": 0.9565 }, { "start": 9380.12, "end": 9381.23, "probability": 0.9844 }, { "start": 9381.6, "end": 9383.44, "probability": 0.8612 }, { "start": 9384.34, "end": 9386.54, "probability": 0.0743 }, { "start": 9386.56, "end": 9388.44, "probability": 0.9088 }, { "start": 9390.0, "end": 9392.56, "probability": 0.7812 }, { "start": 9393.42, "end": 9395.16, "probability": 0.9534 }, { "start": 9395.78, "end": 9398.52, "probability": 0.9057 }, { "start": 9399.28, "end": 9399.77, "probability": 0.7554 }, { "start": 9400.12, "end": 9401.53, "probability": 0.9753 }, { "start": 9403.24, "end": 9408.04, "probability": 0.9106 }, { "start": 9408.24, "end": 9411.68, "probability": 0.9849 }, { "start": 9412.0, "end": 9413.78, "probability": 0.7257 }, { "start": 9414.58, "end": 9415.5, "probability": 0.8856 }, { "start": 9415.8, "end": 9417.7, "probability": 0.9882 }, { "start": 9417.74, "end": 9419.07, "probability": 0.9648 }, { "start": 9419.98, "end": 9421.02, "probability": 0.754 }, { "start": 9421.82, "end": 9422.62, "probability": 0.6923 }, { "start": 9423.72, "end": 9427.88, "probability": 0.9849 }, { "start": 9435.9, "end": 9436.22, "probability": 0.1514 }, { "start": 9436.26, "end": 9436.8, "probability": 0.1565 }, { "start": 9436.8, "end": 9437.1, "probability": 0.1322 }, { "start": 9437.1, "end": 9437.12, "probability": 0.1229 }, { "start": 9461.66, "end": 9463.68, "probability": 0.6673 }, { "start": 9465.78, "end": 9469.82, "probability": 0.6559 }, { "start": 9470.08, "end": 9473.58, "probability": 0.969 }, { "start": 9474.54, "end": 9475.88, "probability": 0.8702 }, { "start": 9475.98, "end": 9477.36, "probability": 0.5915 }, { "start": 9477.4, "end": 9480.14, "probability": 0.6549 }, { "start": 9480.34, "end": 9481.58, "probability": 0.9212 }, { "start": 9481.96, "end": 9482.8, "probability": 0.8375 }, { "start": 9483.66, "end": 9486.94, "probability": 0.3005 }, { "start": 9488.52, "end": 9489.46, "probability": 0.8453 }, { "start": 9489.54, "end": 9490.92, "probability": 0.91 }, { "start": 9491.36, "end": 9494.04, "probability": 0.8091 }, { "start": 9494.82, "end": 9495.76, "probability": 0.8431 }, { "start": 9495.98, "end": 9496.56, "probability": 0.4458 }, { "start": 9497.66, "end": 9500.52, "probability": 0.7404 }, { "start": 9501.36, "end": 9502.0, "probability": 0.8021 }, { "start": 9502.2, "end": 9504.94, "probability": 0.6901 }, { "start": 9505.18, "end": 9505.48, "probability": 0.7156 }, { "start": 9505.6, "end": 9506.16, "probability": 0.6987 }, { "start": 9506.94, "end": 9507.28, "probability": 0.5873 }, { "start": 9507.56, "end": 9508.62, "probability": 0.7816 }, { "start": 9509.74, "end": 9510.42, "probability": 0.9867 }, { "start": 9510.6, "end": 9511.74, "probability": 0.6456 }, { "start": 9511.86, "end": 9515.26, "probability": 0.8347 }, { "start": 9515.26, "end": 9519.9, "probability": 0.9888 }, { "start": 9520.38, "end": 9520.8, "probability": 0.5935 }, { "start": 9521.52, "end": 9523.34, "probability": 0.8806 }, { "start": 9523.76, "end": 9524.7, "probability": 0.8273 }, { "start": 9524.96, "end": 9526.91, "probability": 0.8089 }, { "start": 9527.46, "end": 9528.66, "probability": 0.992 }, { "start": 9528.88, "end": 9529.54, "probability": 0.8784 }, { "start": 9532.06, "end": 9534.46, "probability": 0.9434 }, { "start": 9534.58, "end": 9535.52, "probability": 0.6748 }, { "start": 9536.46, "end": 9541.64, "probability": 0.9548 }, { "start": 9542.14, "end": 9546.12, "probability": 0.6988 }, { "start": 9547.72, "end": 9550.7, "probability": 0.7347 }, { "start": 9551.82, "end": 9553.16, "probability": 0.8135 }, { "start": 9553.5, "end": 9556.82, "probability": 0.8316 }, { "start": 9557.98, "end": 9562.4, "probability": 0.8794 }, { "start": 9562.52, "end": 9563.26, "probability": 0.8293 }, { "start": 9565.1, "end": 9567.76, "probability": 0.5909 }, { "start": 9568.68, "end": 9569.25, "probability": 0.7454 }, { "start": 9569.32, "end": 9570.42, "probability": 0.6678 }, { "start": 9570.56, "end": 9571.6, "probability": 0.9596 }, { "start": 9572.56, "end": 9574.62, "probability": 0.7775 }, { "start": 9576.22, "end": 9577.14, "probability": 0.993 }, { "start": 9577.82, "end": 9579.38, "probability": 0.8792 }, { "start": 9580.78, "end": 9581.4, "probability": 0.7617 }, { "start": 9582.08, "end": 9582.62, "probability": 0.4354 }, { "start": 9584.02, "end": 9585.02, "probability": 0.9657 }, { "start": 9587.1, "end": 9590.82, "probability": 0.9754 }, { "start": 9591.92, "end": 9593.08, "probability": 0.9083 }, { "start": 9593.2, "end": 9595.7, "probability": 0.8506 }, { "start": 9595.76, "end": 9597.16, "probability": 0.9347 }, { "start": 9597.62, "end": 9599.18, "probability": 0.9529 }, { "start": 9600.38, "end": 9601.86, "probability": 0.9939 }, { "start": 9603.04, "end": 9606.38, "probability": 0.7218 }, { "start": 9607.2, "end": 9609.08, "probability": 0.8924 }, { "start": 9609.84, "end": 9612.65, "probability": 0.9943 }, { "start": 9613.54, "end": 9614.88, "probability": 0.9326 }, { "start": 9615.0, "end": 9620.98, "probability": 0.9337 }, { "start": 9622.96, "end": 9623.84, "probability": 0.9985 }, { "start": 9625.86, "end": 9633.28, "probability": 0.988 }, { "start": 9634.36, "end": 9636.44, "probability": 0.9435 }, { "start": 9637.18, "end": 9640.0, "probability": 0.7456 }, { "start": 9641.3, "end": 9644.22, "probability": 0.7577 }, { "start": 9646.12, "end": 9648.46, "probability": 0.8621 }, { "start": 9649.22, "end": 9649.74, "probability": 0.7244 }, { "start": 9651.54, "end": 9658.62, "probability": 0.9855 }, { "start": 9660.54, "end": 9661.48, "probability": 0.4938 }, { "start": 9662.52, "end": 9665.04, "probability": 0.9204 }, { "start": 9666.48, "end": 9673.2, "probability": 0.992 }, { "start": 9674.04, "end": 9679.3, "probability": 0.9951 }, { "start": 9680.36, "end": 9681.52, "probability": 0.7368 }, { "start": 9682.4, "end": 9684.02, "probability": 0.1616 }, { "start": 9684.26, "end": 9684.72, "probability": 0.6592 }, { "start": 9687.82, "end": 9688.54, "probability": 0.5674 }, { "start": 9688.78, "end": 9692.12, "probability": 0.7567 }, { "start": 9692.3, "end": 9693.26, "probability": 0.6893 }, { "start": 9693.34, "end": 9694.22, "probability": 0.853 }, { "start": 9694.3, "end": 9696.0, "probability": 0.7333 }, { "start": 9696.1, "end": 9697.44, "probability": 0.9148 }, { "start": 9698.02, "end": 9699.9, "probability": 0.9846 }, { "start": 9701.14, "end": 9702.06, "probability": 0.3438 }, { "start": 9703.56, "end": 9707.48, "probability": 0.9621 }, { "start": 9707.68, "end": 9710.58, "probability": 0.9569 }, { "start": 9711.5, "end": 9713.7, "probability": 0.8931 }, { "start": 9714.62, "end": 9717.14, "probability": 0.7989 }, { "start": 9717.66, "end": 9720.7, "probability": 0.9285 }, { "start": 9721.28, "end": 9722.02, "probability": 0.457 }, { "start": 9722.04, "end": 9726.04, "probability": 0.688 }, { "start": 9726.12, "end": 9727.34, "probability": 0.9585 }, { "start": 9728.38, "end": 9729.92, "probability": 0.8048 }, { "start": 9730.04, "end": 9730.74, "probability": 0.8242 }, { "start": 9731.82, "end": 9735.28, "probability": 0.9827 }, { "start": 9736.06, "end": 9736.42, "probability": 0.7497 }, { "start": 9736.58, "end": 9738.36, "probability": 0.778 }, { "start": 9738.36, "end": 9739.48, "probability": 0.5057 }, { "start": 9740.08, "end": 9745.54, "probability": 0.9489 }, { "start": 9746.62, "end": 9748.0, "probability": 0.8562 }, { "start": 9748.24, "end": 9750.22, "probability": 0.8523 }, { "start": 9751.28, "end": 9752.3, "probability": 0.9966 }, { "start": 9752.78, "end": 9757.31, "probability": 0.979 }, { "start": 9758.02, "end": 9759.4, "probability": 0.9409 }, { "start": 9760.86, "end": 9762.86, "probability": 0.9685 }, { "start": 9762.94, "end": 9763.71, "probability": 0.9725 }, { "start": 9764.36, "end": 9768.94, "probability": 0.9941 }, { "start": 9768.94, "end": 9774.94, "probability": 0.9092 }, { "start": 9775.7, "end": 9777.04, "probability": 0.7378 }, { "start": 9777.18, "end": 9783.18, "probability": 0.9378 }, { "start": 9783.32, "end": 9784.46, "probability": 0.9047 }, { "start": 9784.56, "end": 9785.22, "probability": 0.8366 }, { "start": 9785.36, "end": 9786.98, "probability": 0.8577 }, { "start": 9787.22, "end": 9787.74, "probability": 0.9971 }, { "start": 9788.34, "end": 9794.74, "probability": 0.975 }, { "start": 9796.66, "end": 9799.28, "probability": 0.5971 }, { "start": 9799.54, "end": 9801.56, "probability": 0.9728 }, { "start": 9801.6, "end": 9803.06, "probability": 0.9077 }, { "start": 9803.74, "end": 9804.28, "probability": 0.974 }, { "start": 9806.08, "end": 9807.22, "probability": 0.9912 }, { "start": 9808.88, "end": 9809.42, "probability": 0.8404 }, { "start": 9812.04, "end": 9813.14, "probability": 0.9846 }, { "start": 9814.76, "end": 9816.58, "probability": 0.7516 }, { "start": 9818.7, "end": 9821.02, "probability": 0.9695 }, { "start": 9821.62, "end": 9825.04, "probability": 0.998 }, { "start": 9826.92, "end": 9830.78, "probability": 0.6738 }, { "start": 9831.9, "end": 9832.74, "probability": 0.9341 }, { "start": 9833.46, "end": 9836.24, "probability": 0.9461 }, { "start": 9837.3, "end": 9840.76, "probability": 0.8085 }, { "start": 9841.54, "end": 9846.76, "probability": 0.9799 }, { "start": 9847.2, "end": 9847.56, "probability": 0.9217 }, { "start": 9848.38, "end": 9852.14, "probability": 0.9849 }, { "start": 9852.98, "end": 9856.24, "probability": 0.5492 }, { "start": 9856.44, "end": 9856.9, "probability": 0.6416 }, { "start": 9857.78, "end": 9859.34, "probability": 0.8854 }, { "start": 9860.92, "end": 9866.06, "probability": 0.9008 }, { "start": 9867.12, "end": 9868.86, "probability": 0.8277 }, { "start": 9869.26, "end": 9872.32, "probability": 0.8919 }, { "start": 9872.51, "end": 9876.02, "probability": 0.992 }, { "start": 9877.12, "end": 9877.68, "probability": 0.6761 }, { "start": 9877.88, "end": 9878.78, "probability": 0.8071 }, { "start": 9878.98, "end": 9882.04, "probability": 0.7938 }, { "start": 9883.6, "end": 9887.6, "probability": 0.7164 }, { "start": 9889.24, "end": 9891.92, "probability": 0.5772 }, { "start": 9895.42, "end": 9896.98, "probability": 0.6231 }, { "start": 9897.08, "end": 9898.58, "probability": 0.8684 }, { "start": 9899.46, "end": 9903.3, "probability": 0.9517 }, { "start": 9904.88, "end": 9905.46, "probability": 0.7793 }, { "start": 9907.14, "end": 9911.04, "probability": 0.952 }, { "start": 9911.18, "end": 9914.12, "probability": 0.8217 }, { "start": 9915.64, "end": 9918.22, "probability": 0.7105 }, { "start": 9918.86, "end": 9920.84, "probability": 0.933 }, { "start": 9921.46, "end": 9926.16, "probability": 0.9095 }, { "start": 9926.78, "end": 9927.44, "probability": 0.8954 }, { "start": 9928.4, "end": 9931.06, "probability": 0.8084 }, { "start": 9931.92, "end": 9935.72, "probability": 0.8988 }, { "start": 9935.86, "end": 9936.04, "probability": 0.4693 }, { "start": 9936.14, "end": 9936.38, "probability": 0.6973 }, { "start": 9936.96, "end": 9939.0, "probability": 0.8547 }, { "start": 9939.9, "end": 9940.9, "probability": 0.9756 }, { "start": 9942.44, "end": 9944.6, "probability": 0.998 }, { "start": 9945.7, "end": 9946.66, "probability": 0.8013 }, { "start": 9947.4, "end": 9949.8, "probability": 0.8053 }, { "start": 9950.58, "end": 9951.37, "probability": 0.8525 }, { "start": 9951.6, "end": 9954.2, "probability": 0.6898 }, { "start": 9954.8, "end": 9958.9, "probability": 0.9907 }, { "start": 9959.84, "end": 9964.9, "probability": 0.979 }, { "start": 9965.02, "end": 9965.8, "probability": 0.5849 }, { "start": 9966.66, "end": 9967.58, "probability": 0.8972 }, { "start": 9968.94, "end": 9972.64, "probability": 0.9495 }, { "start": 9972.64, "end": 9976.14, "probability": 0.9829 }, { "start": 9978.54, "end": 9982.04, "probability": 0.9804 }, { "start": 9982.24, "end": 9984.36, "probability": 0.9572 }, { "start": 9984.4, "end": 9986.0, "probability": 0.6945 }, { "start": 9986.14, "end": 9988.95, "probability": 0.8949 }, { "start": 9989.94, "end": 9992.34, "probability": 0.6646 }, { "start": 9992.38, "end": 9993.52, "probability": 0.7834 }, { "start": 9994.42, "end": 9996.86, "probability": 0.981 }, { "start": 9997.0, "end": 9998.78, "probability": 0.9593 }, { "start": 9999.64, "end": 10001.26, "probability": 0.9571 }, { "start": 10001.42, "end": 10008.7, "probability": 0.9881 }, { "start": 10010.4, "end": 10012.4, "probability": 0.7778 }, { "start": 10014.08, "end": 10017.16, "probability": 0.9926 }, { "start": 10018.22, "end": 10019.78, "probability": 0.976 }, { "start": 10020.86, "end": 10021.98, "probability": 0.4972 }, { "start": 10023.02, "end": 10026.58, "probability": 0.7547 }, { "start": 10028.28, "end": 10028.7, "probability": 0.4929 }, { "start": 10028.74, "end": 10031.96, "probability": 0.8706 }, { "start": 10032.14, "end": 10034.94, "probability": 0.9663 }, { "start": 10036.14, "end": 10039.16, "probability": 0.8859 }, { "start": 10039.72, "end": 10042.96, "probability": 0.6677 }, { "start": 10044.02, "end": 10047.06, "probability": 0.8601 }, { "start": 10048.0, "end": 10050.38, "probability": 0.9966 }, { "start": 10051.5, "end": 10052.78, "probability": 0.9268 }, { "start": 10052.82, "end": 10054.16, "probability": 0.9553 }, { "start": 10054.36, "end": 10058.58, "probability": 0.6719 }, { "start": 10059.56, "end": 10064.74, "probability": 0.9915 }, { "start": 10065.6, "end": 10066.88, "probability": 0.9507 }, { "start": 10067.42, "end": 10068.9, "probability": 0.8927 }, { "start": 10069.04, "end": 10072.0, "probability": 0.7304 }, { "start": 10072.44, "end": 10077.34, "probability": 0.8545 }, { "start": 10077.72, "end": 10082.58, "probability": 0.9218 }, { "start": 10082.84, "end": 10083.48, "probability": 0.6941 }, { "start": 10084.2, "end": 10084.54, "probability": 0.6949 }, { "start": 10085.64, "end": 10087.46, "probability": 0.8978 }, { "start": 10109.62, "end": 10110.28, "probability": 0.3737 }, { "start": 10110.58, "end": 10110.82, "probability": 0.1879 }, { "start": 10111.02, "end": 10111.4, "probability": 0.1921 }, { "start": 10111.48, "end": 10112.44, "probability": 0.0386 }, { "start": 10112.48, "end": 10112.8, "probability": 0.5814 }, { "start": 10112.8, "end": 10112.8, "probability": 0.231 }, { "start": 10112.8, "end": 10112.8, "probability": 0.1672 }, { "start": 10134.74, "end": 10136.8, "probability": 0.3645 }, { "start": 10141.26, "end": 10148.16, "probability": 0.9975 }, { "start": 10148.16, "end": 10154.04, "probability": 0.9993 }, { "start": 10155.3, "end": 10158.34, "probability": 0.9976 }, { "start": 10159.04, "end": 10161.22, "probability": 0.7463 }, { "start": 10161.96, "end": 10164.36, "probability": 0.9949 }, { "start": 10165.08, "end": 10170.34, "probability": 0.997 }, { "start": 10171.72, "end": 10172.58, "probability": 0.8856 }, { "start": 10173.18, "end": 10174.24, "probability": 0.725 }, { "start": 10175.06, "end": 10177.4, "probability": 0.9781 }, { "start": 10178.98, "end": 10180.78, "probability": 0.9403 }, { "start": 10181.4, "end": 10184.1, "probability": 0.9078 }, { "start": 10184.84, "end": 10186.82, "probability": 0.979 }, { "start": 10187.66, "end": 10190.68, "probability": 0.9543 }, { "start": 10191.28, "end": 10194.2, "probability": 0.9699 }, { "start": 10194.72, "end": 10197.4, "probability": 0.9985 }, { "start": 10198.38, "end": 10198.9, "probability": 0.8771 }, { "start": 10199.36, "end": 10205.34, "probability": 0.9927 }, { "start": 10205.34, "end": 10210.12, "probability": 0.9647 }, { "start": 10210.76, "end": 10211.26, "probability": 0.9762 }, { "start": 10212.12, "end": 10216.52, "probability": 0.9944 }, { "start": 10217.46, "end": 10221.84, "probability": 0.9948 }, { "start": 10221.84, "end": 10227.02, "probability": 0.9963 }, { "start": 10228.44, "end": 10229.68, "probability": 0.947 }, { "start": 10230.92, "end": 10232.38, "probability": 0.9965 }, { "start": 10233.34, "end": 10234.86, "probability": 0.6797 }, { "start": 10236.1, "end": 10238.56, "probability": 0.8206 }, { "start": 10239.02, "end": 10242.08, "probability": 0.9838 }, { "start": 10242.74, "end": 10243.36, "probability": 0.7563 }, { "start": 10243.42, "end": 10243.94, "probability": 0.9109 }, { "start": 10243.96, "end": 10247.86, "probability": 0.985 }, { "start": 10248.64, "end": 10251.9, "probability": 0.999 }, { "start": 10251.9, "end": 10257.66, "probability": 0.9401 }, { "start": 10259.14, "end": 10262.41, "probability": 0.7601 }, { "start": 10263.48, "end": 10266.22, "probability": 0.9984 }, { "start": 10267.08, "end": 10270.58, "probability": 0.9282 }, { "start": 10271.38, "end": 10272.3, "probability": 0.4948 }, { "start": 10273.0, "end": 10276.94, "probability": 0.9233 }, { "start": 10277.74, "end": 10278.84, "probability": 0.9344 }, { "start": 10279.56, "end": 10282.74, "probability": 0.9702 }, { "start": 10284.7, "end": 10286.46, "probability": 0.9974 }, { "start": 10286.54, "end": 10290.8, "probability": 0.9758 }, { "start": 10291.08, "end": 10293.66, "probability": 0.9973 }, { "start": 10294.36, "end": 10296.58, "probability": 0.7046 }, { "start": 10297.4, "end": 10301.32, "probability": 0.9912 }, { "start": 10302.08, "end": 10304.06, "probability": 0.998 }, { "start": 10304.06, "end": 10308.52, "probability": 0.7371 }, { "start": 10309.44, "end": 10315.26, "probability": 0.99 }, { "start": 10315.44, "end": 10316.24, "probability": 0.5839 }, { "start": 10316.82, "end": 10318.68, "probability": 0.9762 }, { "start": 10318.76, "end": 10320.86, "probability": 0.7833 }, { "start": 10321.42, "end": 10323.08, "probability": 0.7322 }, { "start": 10323.82, "end": 10327.56, "probability": 0.989 }, { "start": 10328.12, "end": 10332.26, "probability": 0.9972 }, { "start": 10333.18, "end": 10337.24, "probability": 0.9761 }, { "start": 10337.94, "end": 10339.2, "probability": 0.5353 }, { "start": 10339.4, "end": 10340.72, "probability": 0.7409 }, { "start": 10340.88, "end": 10342.48, "probability": 0.9825 }, { "start": 10342.98, "end": 10344.76, "probability": 0.792 }, { "start": 10345.42, "end": 10349.14, "probability": 0.9942 }, { "start": 10349.19, "end": 10353.26, "probability": 0.999 }, { "start": 10353.26, "end": 10357.78, "probability": 0.9964 }, { "start": 10358.46, "end": 10360.8, "probability": 0.9849 }, { "start": 10360.8, "end": 10364.82, "probability": 0.9956 }, { "start": 10365.56, "end": 10368.12, "probability": 0.9412 }, { "start": 10368.12, "end": 10372.16, "probability": 0.8713 }, { "start": 10372.26, "end": 10375.5, "probability": 0.9772 }, { "start": 10375.5, "end": 10379.42, "probability": 0.9819 }, { "start": 10380.14, "end": 10381.84, "probability": 0.7565 }, { "start": 10382.48, "end": 10386.74, "probability": 0.9932 }, { "start": 10387.58, "end": 10388.74, "probability": 0.6559 }, { "start": 10389.54, "end": 10392.1, "probability": 0.998 }, { "start": 10392.62, "end": 10397.08, "probability": 0.9954 }, { "start": 10397.76, "end": 10398.44, "probability": 0.8018 }, { "start": 10398.98, "end": 10402.26, "probability": 0.9918 }, { "start": 10403.44, "end": 10405.48, "probability": 0.981 }, { "start": 10406.64, "end": 10410.0, "probability": 0.996 }, { "start": 10410.76, "end": 10414.78, "probability": 0.9918 }, { "start": 10415.32, "end": 10417.86, "probability": 0.8763 }, { "start": 10418.38, "end": 10420.72, "probability": 0.9929 }, { "start": 10421.74, "end": 10425.56, "probability": 0.9958 }, { "start": 10425.56, "end": 10429.86, "probability": 0.9983 }, { "start": 10430.42, "end": 10434.02, "probability": 0.9975 }, { "start": 10434.6, "end": 10438.38, "probability": 0.9969 }, { "start": 10438.38, "end": 10443.76, "probability": 0.9962 }, { "start": 10445.24, "end": 10447.56, "probability": 0.9585 }, { "start": 10447.64, "end": 10451.5, "probability": 0.9533 }, { "start": 10452.1, "end": 10453.8, "probability": 0.7123 }, { "start": 10454.62, "end": 10459.6, "probability": 0.9922 }, { "start": 10460.44, "end": 10464.6, "probability": 0.9927 }, { "start": 10465.18, "end": 10470.0, "probability": 0.9152 }, { "start": 10470.74, "end": 10473.44, "probability": 0.9954 }, { "start": 10474.58, "end": 10475.38, "probability": 0.7347 }, { "start": 10476.06, "end": 10480.44, "probability": 0.9868 }, { "start": 10480.5, "end": 10481.32, "probability": 0.5665 }, { "start": 10481.96, "end": 10486.38, "probability": 0.9668 }, { "start": 10487.18, "end": 10489.96, "probability": 0.9062 }, { "start": 10490.56, "end": 10494.7, "probability": 0.9937 }, { "start": 10498.46, "end": 10498.88, "probability": 0.9726 }, { "start": 10498.88, "end": 10502.42, "probability": 0.745 }, { "start": 10504.02, "end": 10506.9, "probability": 0.993 }, { "start": 10507.38, "end": 10512.42, "probability": 0.9948 }, { "start": 10513.06, "end": 10515.94, "probability": 0.9783 }, { "start": 10516.46, "end": 10520.04, "probability": 0.9791 }, { "start": 10520.58, "end": 10522.22, "probability": 0.9863 }, { "start": 10522.38, "end": 10525.72, "probability": 0.9702 }, { "start": 10526.58, "end": 10527.3, "probability": 0.949 }, { "start": 10527.94, "end": 10530.66, "probability": 0.9926 }, { "start": 10531.5, "end": 10534.02, "probability": 0.9974 }, { "start": 10534.6, "end": 10536.1, "probability": 0.9956 }, { "start": 10536.64, "end": 10537.98, "probability": 0.9961 }, { "start": 10538.64, "end": 10541.42, "probability": 0.9663 }, { "start": 10542.02, "end": 10547.1, "probability": 0.9924 }, { "start": 10548.3, "end": 10551.34, "probability": 0.9926 }, { "start": 10552.06, "end": 10557.18, "probability": 0.9965 }, { "start": 10558.02, "end": 10561.0, "probability": 0.9553 }, { "start": 10561.96, "end": 10564.84, "probability": 0.9876 }, { "start": 10565.52, "end": 10568.76, "probability": 0.9995 }, { "start": 10569.24, "end": 10575.36, "probability": 0.9984 }, { "start": 10576.74, "end": 10577.64, "probability": 0.7077 }, { "start": 10578.32, "end": 10578.96, "probability": 0.8257 }, { "start": 10579.62, "end": 10583.48, "probability": 0.9958 }, { "start": 10584.98, "end": 10588.1, "probability": 0.9752 }, { "start": 10588.78, "end": 10594.62, "probability": 0.9928 }, { "start": 10595.48, "end": 10597.12, "probability": 0.9425 }, { "start": 10597.86, "end": 10600.0, "probability": 0.9961 }, { "start": 10600.74, "end": 10607.26, "probability": 0.9871 }, { "start": 10607.26, "end": 10613.56, "probability": 0.9982 }, { "start": 10614.32, "end": 10617.5, "probability": 0.9983 }, { "start": 10618.14, "end": 10619.32, "probability": 0.9898 }, { "start": 10620.04, "end": 10621.04, "probability": 0.8834 }, { "start": 10621.84, "end": 10623.46, "probability": 0.343 }, { "start": 10624.2, "end": 10624.78, "probability": 0.8619 }, { "start": 10625.42, "end": 10627.4, "probability": 0.9722 }, { "start": 10628.42, "end": 10629.5, "probability": 0.926 }, { "start": 10630.38, "end": 10633.8, "probability": 0.9493 }, { "start": 10635.58, "end": 10639.56, "probability": 0.999 }, { "start": 10639.56, "end": 10644.9, "probability": 0.9971 }, { "start": 10645.66, "end": 10651.68, "probability": 0.9979 }, { "start": 10652.62, "end": 10654.9, "probability": 0.738 }, { "start": 10656.04, "end": 10658.46, "probability": 0.9849 }, { "start": 10659.38, "end": 10661.73, "probability": 0.9891 }, { "start": 10662.28, "end": 10665.16, "probability": 0.9928 }, { "start": 10666.02, "end": 10669.12, "probability": 0.9209 }, { "start": 10670.06, "end": 10675.46, "probability": 0.9868 }, { "start": 10676.38, "end": 10681.4, "probability": 0.9759 }, { "start": 10682.78, "end": 10685.08, "probability": 0.988 }, { "start": 10685.8, "end": 10689.3, "probability": 0.9646 }, { "start": 10689.84, "end": 10692.56, "probability": 0.9901 }, { "start": 10693.34, "end": 10697.26, "probability": 0.7386 }, { "start": 10697.42, "end": 10699.12, "probability": 0.8114 }, { "start": 10704.92, "end": 10705.64, "probability": 0.5614 }, { "start": 10706.02, "end": 10708.2, "probability": 0.8899 }, { "start": 10708.7, "end": 10709.98, "probability": 0.8951 }, { "start": 10710.84, "end": 10712.44, "probability": 0.7543 }, { "start": 10712.72, "end": 10715.22, "probability": 0.9694 }, { "start": 10716.6, "end": 10717.68, "probability": 0.0207 }, { "start": 10737.38, "end": 10737.96, "probability": 0.5918 }, { "start": 10739.12, "end": 10739.52, "probability": 0.9707 }, { "start": 10742.24, "end": 10743.52, "probability": 0.9519 }, { "start": 10744.16, "end": 10744.7, "probability": 0.8575 }, { "start": 10745.52, "end": 10747.3, "probability": 0.9512 }, { "start": 10748.68, "end": 10749.6, "probability": 0.7842 }, { "start": 10750.08, "end": 10753.46, "probability": 0.8458 }, { "start": 10758.32, "end": 10761.66, "probability": 0.8967 }, { "start": 10764.08, "end": 10764.62, "probability": 0.5779 }, { "start": 10765.36, "end": 10765.74, "probability": 0.713 }, { "start": 10768.1, "end": 10770.06, "probability": 0.8923 }, { "start": 10774.28, "end": 10778.32, "probability": 0.842 }, { "start": 10783.38, "end": 10787.52, "probability": 0.5784 }, { "start": 10788.22, "end": 10790.88, "probability": 0.984 }, { "start": 10791.5, "end": 10792.2, "probability": 0.9173 }, { "start": 10793.34, "end": 10794.82, "probability": 0.9209 }, { "start": 10798.28, "end": 10800.8, "probability": 0.9841 }, { "start": 10803.02, "end": 10803.74, "probability": 0.7457 }, { "start": 10805.08, "end": 10805.8, "probability": 0.7718 }, { "start": 10807.76, "end": 10809.64, "probability": 0.9014 }, { "start": 10810.72, "end": 10814.58, "probability": 0.773 }, { "start": 10816.26, "end": 10817.26, "probability": 0.9543 }, { "start": 10818.94, "end": 10819.8, "probability": 0.986 }, { "start": 10821.92, "end": 10822.42, "probability": 0.9196 }, { "start": 10823.28, "end": 10824.3, "probability": 0.6001 }, { "start": 10826.44, "end": 10832.32, "probability": 0.8596 }, { "start": 10833.72, "end": 10835.06, "probability": 0.5485 }, { "start": 10836.16, "end": 10837.84, "probability": 0.8599 }, { "start": 10839.68, "end": 10843.26, "probability": 0.9443 }, { "start": 10843.88, "end": 10844.82, "probability": 0.9985 }, { "start": 10846.9, "end": 10848.76, "probability": 0.9867 }, { "start": 10849.36, "end": 10851.63, "probability": 0.7989 }, { "start": 10852.34, "end": 10853.64, "probability": 0.0105 }, { "start": 10856.98, "end": 10859.48, "probability": 0.4114 }, { "start": 10861.74, "end": 10863.36, "probability": 0.3244 }, { "start": 10867.19, "end": 10869.0, "probability": 0.2767 }, { "start": 10871.97, "end": 10873.87, "probability": 0.7873 }, { "start": 10874.78, "end": 10875.8, "probability": 0.8844 }, { "start": 10877.17, "end": 10878.51, "probability": 0.9941 }, { "start": 10881.15, "end": 10881.17, "probability": 0.7461 }, { "start": 10881.8, "end": 10883.43, "probability": 0.9074 }, { "start": 10886.75, "end": 10891.69, "probability": 0.974 }, { "start": 10892.23, "end": 10894.03, "probability": 0.8646 }, { "start": 10899.43, "end": 10901.67, "probability": 0.9458 }, { "start": 10902.19, "end": 10902.69, "probability": 0.5095 }, { "start": 10904.45, "end": 10904.71, "probability": 0.9655 }, { "start": 10904.77, "end": 10908.29, "probability": 0.957 }, { "start": 10908.47, "end": 10911.05, "probability": 0.9115 }, { "start": 10911.19, "end": 10911.93, "probability": 0.9783 }, { "start": 10912.03, "end": 10912.23, "probability": 0.7959 }, { "start": 10913.09, "end": 10913.51, "probability": 0.9801 }, { "start": 10914.43, "end": 10917.48, "probability": 0.8853 }, { "start": 10919.09, "end": 10921.77, "probability": 0.9187 }, { "start": 10922.93, "end": 10924.71, "probability": 0.8364 }, { "start": 10924.81, "end": 10927.73, "probability": 0.9376 }, { "start": 10928.65, "end": 10932.59, "probability": 0.9951 }, { "start": 10935.29, "end": 10937.79, "probability": 0.7222 }, { "start": 10940.55, "end": 10942.57, "probability": 0.7257 }, { "start": 10943.01, "end": 10944.53, "probability": 0.6886 }, { "start": 10944.63, "end": 10946.03, "probability": 0.7021 }, { "start": 10948.01, "end": 10950.79, "probability": 0.9497 }, { "start": 10952.03, "end": 10953.65, "probability": 0.7686 }, { "start": 10954.39, "end": 10956.67, "probability": 0.907 }, { "start": 10958.99, "end": 10959.61, "probability": 0.8046 }, { "start": 10960.21, "end": 10962.47, "probability": 0.9966 }, { "start": 10964.63, "end": 10967.83, "probability": 0.83 }, { "start": 10968.83, "end": 10969.79, "probability": 0.9092 }, { "start": 10972.85, "end": 10974.49, "probability": 0.788 }, { "start": 10975.13, "end": 10977.51, "probability": 0.9917 }, { "start": 10981.09, "end": 10983.29, "probability": 0.9854 }, { "start": 10983.57, "end": 10984.73, "probability": 0.8728 }, { "start": 10985.55, "end": 10988.93, "probability": 0.9229 }, { "start": 10991.43, "end": 10993.67, "probability": 0.5213 }, { "start": 10994.69, "end": 10996.71, "probability": 0.9958 }, { "start": 10997.33, "end": 11004.09, "probability": 0.7513 }, { "start": 11004.09, "end": 11008.17, "probability": 0.9758 }, { "start": 11008.97, "end": 11011.43, "probability": 0.9522 }, { "start": 11013.29, "end": 11014.11, "probability": 0.3202 }, { "start": 11015.11, "end": 11016.27, "probability": 0.6675 }, { "start": 11017.07, "end": 11020.47, "probability": 0.967 }, { "start": 11021.03, "end": 11022.03, "probability": 0.9466 }, { "start": 11022.69, "end": 11024.51, "probability": 0.9284 }, { "start": 11025.05, "end": 11025.95, "probability": 0.9593 }, { "start": 11026.41, "end": 11026.61, "probability": 0.8669 }, { "start": 11028.47, "end": 11029.47, "probability": 0.8394 }, { "start": 11030.61, "end": 11033.29, "probability": 0.906 }, { "start": 11033.95, "end": 11035.8, "probability": 0.6683 }, { "start": 11036.85, "end": 11037.77, "probability": 0.738 }, { "start": 11039.37, "end": 11040.53, "probability": 0.8156 }, { "start": 11040.99, "end": 11042.11, "probability": 0.6685 }, { "start": 11042.19, "end": 11043.77, "probability": 0.7201 }, { "start": 11058.83, "end": 11060.21, "probability": 0.7012 }, { "start": 11060.87, "end": 11063.03, "probability": 0.8042 }, { "start": 11064.25, "end": 11070.21, "probability": 0.852 }, { "start": 11071.27, "end": 11072.39, "probability": 0.8854 }, { "start": 11072.85, "end": 11073.65, "probability": 0.8265 }, { "start": 11074.05, "end": 11075.93, "probability": 0.9274 }, { "start": 11077.17, "end": 11081.57, "probability": 0.9601 }, { "start": 11082.71, "end": 11085.29, "probability": 0.5542 }, { "start": 11085.93, "end": 11087.51, "probability": 0.9849 }, { "start": 11088.85, "end": 11089.17, "probability": 0.009 }, { "start": 11091.67, "end": 11095.99, "probability": 0.7691 }, { "start": 11097.15, "end": 11100.37, "probability": 0.9907 }, { "start": 11101.35, "end": 11105.91, "probability": 0.9729 }, { "start": 11107.01, "end": 11111.13, "probability": 0.991 }, { "start": 11111.95, "end": 11113.97, "probability": 0.8391 }, { "start": 11115.27, "end": 11118.97, "probability": 0.9006 }, { "start": 11119.21, "end": 11123.37, "probability": 0.7449 }, { "start": 11123.47, "end": 11125.95, "probability": 0.9975 }, { "start": 11126.91, "end": 11129.51, "probability": 0.8326 }, { "start": 11129.79, "end": 11138.71, "probability": 0.9886 }, { "start": 11139.65, "end": 11141.53, "probability": 0.9773 }, { "start": 11143.01, "end": 11144.86, "probability": 0.9691 }, { "start": 11145.67, "end": 11147.43, "probability": 0.925 }, { "start": 11148.63, "end": 11152.27, "probability": 0.987 }, { "start": 11153.59, "end": 11157.67, "probability": 0.9932 }, { "start": 11159.05, "end": 11165.41, "probability": 0.8348 }, { "start": 11166.37, "end": 11167.45, "probability": 0.7812 }, { "start": 11169.13, "end": 11173.95, "probability": 0.9958 }, { "start": 11174.29, "end": 11174.85, "probability": 0.532 }, { "start": 11175.83, "end": 11180.35, "probability": 0.87 }, { "start": 11182.59, "end": 11192.55, "probability": 0.9496 }, { "start": 11192.73, "end": 11198.99, "probability": 0.9637 }, { "start": 11199.57, "end": 11204.11, "probability": 0.8805 }, { "start": 11204.81, "end": 11207.37, "probability": 0.9932 }, { "start": 11208.25, "end": 11213.03, "probability": 0.6656 }, { "start": 11214.03, "end": 11215.67, "probability": 0.6642 }, { "start": 11216.23, "end": 11219.15, "probability": 0.8598 }, { "start": 11220.21, "end": 11221.31, "probability": 0.9725 }, { "start": 11222.17, "end": 11223.61, "probability": 0.8653 }, { "start": 11224.39, "end": 11227.63, "probability": 0.6478 }, { "start": 11228.49, "end": 11234.71, "probability": 0.9766 }, { "start": 11235.93, "end": 11236.49, "probability": 0.9144 }, { "start": 11237.29, "end": 11240.35, "probability": 0.9824 }, { "start": 11241.53, "end": 11243.83, "probability": 0.0986 }, { "start": 11245.75, "end": 11251.73, "probability": 0.8845 }, { "start": 11252.79, "end": 11253.93, "probability": 0.9677 }, { "start": 11254.67, "end": 11259.07, "probability": 0.9502 }, { "start": 11259.07, "end": 11264.71, "probability": 0.9858 }, { "start": 11265.83, "end": 11272.83, "probability": 0.8367 }, { "start": 11274.43, "end": 11277.77, "probability": 0.9319 }, { "start": 11278.01, "end": 11285.99, "probability": 0.9443 }, { "start": 11286.85, "end": 11290.03, "probability": 0.9949 }, { "start": 11290.44, "end": 11295.31, "probability": 0.8905 }, { "start": 11295.45, "end": 11295.45, "probability": 0.1219 }, { "start": 11296.09, "end": 11300.65, "probability": 0.9658 }, { "start": 11301.45, "end": 11305.51, "probability": 0.9652 }, { "start": 11306.89, "end": 11308.25, "probability": 0.9016 }, { "start": 11310.77, "end": 11313.53, "probability": 0.9542 }, { "start": 11314.07, "end": 11317.07, "probability": 0.9873 }, { "start": 11318.03, "end": 11323.77, "probability": 0.9897 }, { "start": 11324.69, "end": 11326.55, "probability": 0.9662 }, { "start": 11327.21, "end": 11328.07, "probability": 0.9641 }, { "start": 11328.23, "end": 11332.65, "probability": 0.7765 }, { "start": 11333.77, "end": 11337.39, "probability": 0.8846 }, { "start": 11338.17, "end": 11340.81, "probability": 0.9341 }, { "start": 11340.99, "end": 11342.35, "probability": 0.9931 }, { "start": 11343.07, "end": 11348.75, "probability": 0.8643 }, { "start": 11349.53, "end": 11350.67, "probability": 0.9717 }, { "start": 11351.25, "end": 11352.05, "probability": 0.6473 }, { "start": 11352.99, "end": 11357.77, "probability": 0.9494 }, { "start": 11358.13, "end": 11360.29, "probability": 0.9941 }, { "start": 11360.29, "end": 11366.21, "probability": 0.5729 }, { "start": 11366.69, "end": 11368.24, "probability": 0.8122 }, { "start": 11369.47, "end": 11370.95, "probability": 0.9706 }, { "start": 11371.69, "end": 11372.71, "probability": 0.8457 }, { "start": 11377.07, "end": 11378.33, "probability": 0.6044 }, { "start": 11378.51, "end": 11382.21, "probability": 0.7165 }, { "start": 11382.45, "end": 11383.11, "probability": 0.6635 }, { "start": 11383.17, "end": 11384.21, "probability": 0.8062 }, { "start": 11384.69, "end": 11385.59, "probability": 0.5318 }, { "start": 11385.75, "end": 11386.49, "probability": 0.4667 }, { "start": 11386.85, "end": 11388.59, "probability": 0.9651 }, { "start": 11389.35, "end": 11390.45, "probability": 0.8772 }, { "start": 11391.31, "end": 11394.21, "probability": 0.9923 }, { "start": 11394.87, "end": 11395.39, "probability": 0.6992 }, { "start": 11395.47, "end": 11398.65, "probability": 0.9972 }, { "start": 11399.51, "end": 11402.21, "probability": 0.8857 }, { "start": 11402.33, "end": 11403.26, "probability": 0.7724 }, { "start": 11403.49, "end": 11404.01, "probability": 0.7575 }, { "start": 11404.19, "end": 11404.81, "probability": 0.7082 }, { "start": 11404.89, "end": 11405.41, "probability": 0.8096 }, { "start": 11406.29, "end": 11406.91, "probability": 0.7109 }, { "start": 11407.61, "end": 11412.39, "probability": 0.988 }, { "start": 11413.13, "end": 11415.69, "probability": 0.9925 }, { "start": 11415.79, "end": 11417.21, "probability": 0.984 }, { "start": 11417.69, "end": 11421.09, "probability": 0.8253 }, { "start": 11421.53, "end": 11423.07, "probability": 0.9932 }, { "start": 11423.15, "end": 11423.49, "probability": 0.9893 }, { "start": 11424.07, "end": 11425.31, "probability": 0.6434 }, { "start": 11425.45, "end": 11427.23, "probability": 0.9513 }, { "start": 11428.47, "end": 11429.87, "probability": 0.9946 }, { "start": 11430.77, "end": 11434.49, "probability": 0.979 }, { "start": 11434.97, "end": 11441.05, "probability": 0.9802 }, { "start": 11441.19, "end": 11444.55, "probability": 0.4592 }, { "start": 11444.59, "end": 11444.77, "probability": 0.429 }, { "start": 11444.99, "end": 11449.55, "probability": 0.9019 }, { "start": 11450.17, "end": 11451.01, "probability": 0.4835 }, { "start": 11451.85, "end": 11455.01, "probability": 0.9963 }, { "start": 11455.53, "end": 11456.65, "probability": 0.666 }, { "start": 11457.23, "end": 11458.57, "probability": 0.8613 }, { "start": 11459.05, "end": 11459.69, "probability": 0.8761 }, { "start": 11459.79, "end": 11460.17, "probability": 0.5165 }, { "start": 11460.35, "end": 11461.25, "probability": 0.7989 }, { "start": 11461.47, "end": 11461.93, "probability": 0.1826 }, { "start": 11462.61, "end": 11465.65, "probability": 0.9393 }, { "start": 11466.19, "end": 11468.33, "probability": 0.7524 }, { "start": 11468.33, "end": 11469.03, "probability": 0.939 }, { "start": 11469.47, "end": 11472.45, "probability": 0.9551 }, { "start": 11472.83, "end": 11474.19, "probability": 0.9808 }, { "start": 11474.71, "end": 11476.95, "probability": 0.5002 }, { "start": 11476.99, "end": 11480.71, "probability": 0.8282 }, { "start": 11480.83, "end": 11481.05, "probability": 0.7136 }, { "start": 11482.37, "end": 11483.13, "probability": 0.6753 }, { "start": 11485.05, "end": 11486.95, "probability": 0.3376 }, { "start": 11487.37, "end": 11488.33, "probability": 0.6338 }, { "start": 11488.33, "end": 11489.11, "probability": 0.8689 }, { "start": 11489.25, "end": 11491.73, "probability": 0.1523 }, { "start": 11491.73, "end": 11492.75, "probability": 0.9736 }, { "start": 11493.85, "end": 11495.31, "probability": 0.7369 }, { "start": 11495.89, "end": 11499.13, "probability": 0.9653 }, { "start": 11499.31, "end": 11501.67, "probability": 0.978 }, { "start": 11502.89, "end": 11509.03, "probability": 0.8604 }, { "start": 11509.17, "end": 11509.99, "probability": 0.8102 }, { "start": 11521.53, "end": 11522.39, "probability": 0.5225 }, { "start": 11522.43, "end": 11523.25, "probability": 0.8494 }, { "start": 11523.33, "end": 11525.31, "probability": 0.8715 }, { "start": 11526.53, "end": 11528.61, "probability": 0.9447 }, { "start": 11529.65, "end": 11531.91, "probability": 0.9932 }, { "start": 11532.51, "end": 11534.79, "probability": 0.9955 }, { "start": 11535.85, "end": 11540.13, "probability": 0.999 }, { "start": 11541.05, "end": 11542.75, "probability": 0.8439 }, { "start": 11543.61, "end": 11544.09, "probability": 0.7659 }, { "start": 11544.53, "end": 11551.89, "probability": 0.9958 }, { "start": 11552.49, "end": 11555.79, "probability": 0.7961 }, { "start": 11556.69, "end": 11558.97, "probability": 0.9155 }, { "start": 11559.35, "end": 11560.09, "probability": 0.711 }, { "start": 11560.91, "end": 11565.03, "probability": 0.992 }, { "start": 11565.07, "end": 11566.21, "probability": 0.9165 }, { "start": 11566.67, "end": 11571.19, "probability": 0.9954 }, { "start": 11571.71, "end": 11574.01, "probability": 0.9959 }, { "start": 11574.31, "end": 11575.65, "probability": 0.4426 }, { "start": 11577.69, "end": 11580.51, "probability": 0.9858 }, { "start": 11581.19, "end": 11581.81, "probability": 0.9869 }, { "start": 11582.79, "end": 11587.95, "probability": 0.9471 }, { "start": 11587.95, "end": 11593.87, "probability": 0.9977 }, { "start": 11594.41, "end": 11595.93, "probability": 0.7568 }, { "start": 11596.81, "end": 11596.81, "probability": 0.3528 }, { "start": 11598.05, "end": 11601.25, "probability": 0.6218 }, { "start": 11602.11, "end": 11604.65, "probability": 0.991 }, { "start": 11605.69, "end": 11607.29, "probability": 0.9246 }, { "start": 11608.09, "end": 11614.01, "probability": 0.9755 }, { "start": 11614.07, "end": 11614.73, "probability": 0.3323 }, { "start": 11615.07, "end": 11615.61, "probability": 0.814 }, { "start": 11616.21, "end": 11619.48, "probability": 0.9835 }, { "start": 11620.01, "end": 11621.03, "probability": 0.8735 }, { "start": 11621.69, "end": 11624.69, "probability": 0.8102 }, { "start": 11625.53, "end": 11628.41, "probability": 0.9766 }, { "start": 11628.41, "end": 11630.39, "probability": 0.992 }, { "start": 11631.01, "end": 11632.33, "probability": 0.9317 }, { "start": 11633.29, "end": 11638.25, "probability": 0.9996 }, { "start": 11638.75, "end": 11641.17, "probability": 0.9989 }, { "start": 11641.55, "end": 11642.77, "probability": 0.9628 }, { "start": 11643.49, "end": 11646.37, "probability": 0.9974 }, { "start": 11646.59, "end": 11647.07, "probability": 0.7775 }, { "start": 11647.35, "end": 11648.39, "probability": 0.9112 }, { "start": 11649.03, "end": 11652.75, "probability": 0.8965 }, { "start": 11653.27, "end": 11655.09, "probability": 0.9357 }, { "start": 11655.65, "end": 11657.57, "probability": 0.9403 }, { "start": 11659.47, "end": 11661.53, "probability": 0.7258 }, { "start": 11662.39, "end": 11665.21, "probability": 0.991 }, { "start": 11665.79, "end": 11669.55, "probability": 0.9644 }, { "start": 11671.77, "end": 11673.65, "probability": 0.7646 }, { "start": 11674.47, "end": 11678.95, "probability": 0.9756 }, { "start": 11679.29, "end": 11682.03, "probability": 0.9331 }, { "start": 11684.18, "end": 11689.45, "probability": 0.9949 }, { "start": 11689.97, "end": 11690.81, "probability": 0.965 }, { "start": 11691.01, "end": 11696.53, "probability": 0.9969 }, { "start": 11697.37, "end": 11701.55, "probability": 0.5987 }, { "start": 11702.27, "end": 11706.61, "probability": 0.9992 }, { "start": 11706.61, "end": 11710.61, "probability": 0.9778 }, { "start": 11711.37, "end": 11718.21, "probability": 0.9948 }, { "start": 11719.05, "end": 11720.13, "probability": 0.9048 }, { "start": 11720.35, "end": 11721.09, "probability": 0.7097 }, { "start": 11721.71, "end": 11726.71, "probability": 0.9769 }, { "start": 11726.71, "end": 11731.11, "probability": 0.9996 }, { "start": 11731.67, "end": 11733.61, "probability": 0.999 }, { "start": 11733.71, "end": 11736.83, "probability": 0.8264 }, { "start": 11736.93, "end": 11740.37, "probability": 0.9666 }, { "start": 11743.13, "end": 11744.01, "probability": 0.6345 }, { "start": 11744.91, "end": 11747.12, "probability": 0.9587 }, { "start": 11747.35, "end": 11748.11, "probability": 0.8119 }, { "start": 11748.25, "end": 11749.23, "probability": 0.942 }, { "start": 11749.87, "end": 11755.27, "probability": 0.9368 }, { "start": 11757.29, "end": 11757.39, "probability": 0.0296 }, { "start": 11763.89, "end": 11763.99, "probability": 0.2729 }, { "start": 11765.23, "end": 11765.33, "probability": 0.3754 }, { "start": 11765.33, "end": 11767.47, "probability": 0.3101 }, { "start": 11769.11, "end": 11770.31, "probability": 0.3237 }, { "start": 11770.47, "end": 11772.13, "probability": 0.4858 }, { "start": 11773.21, "end": 11775.25, "probability": 0.5392 }, { "start": 11775.45, "end": 11780.83, "probability": 0.6352 }, { "start": 11780.87, "end": 11782.81, "probability": 0.3497 }, { "start": 11783.25, "end": 11784.71, "probability": 0.74 }, { "start": 11784.73, "end": 11788.01, "probability": 0.9156 }, { "start": 11788.81, "end": 11790.39, "probability": 0.674 }, { "start": 11791.77, "end": 11792.45, "probability": 0.5129 }, { "start": 11815.97, "end": 11817.07, "probability": 0.0014 }, { "start": 11817.07, "end": 11820.81, "probability": 0.4673 }, { "start": 11821.41, "end": 11821.59, "probability": 0.7427 }, { "start": 11826.33, "end": 11826.67, "probability": 0.6003 }, { "start": 11827.29, "end": 11828.85, "probability": 0.7018 }, { "start": 11829.23, "end": 11830.02, "probability": 0.6415 }, { "start": 11830.45, "end": 11834.37, "probability": 0.9398 }, { "start": 11835.13, "end": 11838.65, "probability": 0.813 }, { "start": 11839.01, "end": 11839.77, "probability": 0.5864 }, { "start": 11840.37, "end": 11841.37, "probability": 0.5865 }, { "start": 11841.83, "end": 11842.23, "probability": 0.7269 }, { "start": 11844.91, "end": 11845.41, "probability": 0.0132 }, { "start": 11849.07, "end": 11850.19, "probability": 0.0443 }, { "start": 11858.45, "end": 11858.95, "probability": 0.0003 }, { "start": 11859.83, "end": 11859.83, "probability": 0.0002 }, { "start": 11868.73, "end": 11868.85, "probability": 0.1209 }, { "start": 11868.85, "end": 11869.37, "probability": 0.2814 }, { "start": 11869.71, "end": 11873.97, "probability": 0.5555 }, { "start": 11874.15, "end": 11876.69, "probability": 0.8843 }, { "start": 11878.09, "end": 11879.17, "probability": 0.8104 }, { "start": 11880.87, "end": 11884.23, "probability": 0.6293 }, { "start": 11884.29, "end": 11886.51, "probability": 0.9599 }, { "start": 11886.65, "end": 11887.55, "probability": 0.5803 }, { "start": 11887.91, "end": 11890.03, "probability": 0.5858 }, { "start": 11890.11, "end": 11893.33, "probability": 0.5504 }, { "start": 11894.01, "end": 11895.21, "probability": 0.1623 } ], "segments_count": 4619, "words_count": 22612, "avg_words_per_segment": 4.8954, "avg_segment_duration": 1.8158, "avg_words_per_minute": 113.9975, "plenum_id": "104108", "duration": 11901.31, "title": null, "plenum_date": "2022-01-10" }