{ "source_type": "knesset", "source_id": "plenum", "source_entry_id": "101860", "quality_score": 0.9497, "per_segment_quality_scores": [ { "start": 122.0, "end": 122.0, "probability": 0.0 }, { "start": 122.0, "end": 122.0, "probability": 0.0 }, { "start": 122.0, "end": 122.0, "probability": 0.0 }, { "start": 122.0, "end": 122.0, "probability": 0.0 }, { "start": 122.36, "end": 124.72, "probability": 0.8415 }, { "start": 126.28, "end": 127.2, "probability": 0.9609 }, { "start": 127.62, "end": 129.48, "probability": 0.8594 }, { "start": 129.86, "end": 130.2, "probability": 0.5901 }, { "start": 130.28, "end": 130.9, "probability": 0.7644 }, { "start": 131.04, "end": 134.8, "probability": 0.9874 }, { "start": 135.44, "end": 137.74, "probability": 0.9832 }, { "start": 138.08, "end": 138.96, "probability": 0.4784 }, { "start": 140.4, "end": 142.36, "probability": 0.7928 }, { "start": 143.0, "end": 147.9, "probability": 0.5196 }, { "start": 148.28, "end": 152.54, "probability": 0.9749 }, { "start": 153.04, "end": 156.58, "probability": 0.8259 }, { "start": 156.62, "end": 161.22, "probability": 0.8618 }, { "start": 161.6, "end": 163.7, "probability": 0.6617 }, { "start": 164.22, "end": 169.68, "probability": 0.6618 }, { "start": 169.88, "end": 171.6, "probability": 0.9762 }, { "start": 171.66, "end": 176.02, "probability": 0.9915 }, { "start": 176.18, "end": 180.42, "probability": 0.984 }, { "start": 180.56, "end": 182.64, "probability": 0.8391 }, { "start": 182.72, "end": 182.98, "probability": 0.8813 }, { "start": 183.98, "end": 184.34, "probability": 0.4601 }, { "start": 184.5, "end": 185.02, "probability": 0.6307 }, { "start": 185.4, "end": 187.42, "probability": 0.8385 }, { "start": 200.68, "end": 202.84, "probability": 0.6807 }, { "start": 203.6, "end": 205.42, "probability": 0.9349 }, { "start": 207.38, "end": 209.48, "probability": 0.6813 }, { "start": 210.22, "end": 213.22, "probability": 0.8676 }, { "start": 213.78, "end": 214.74, "probability": 0.8361 }, { "start": 214.84, "end": 219.09, "probability": 0.9799 }, { "start": 219.64, "end": 219.82, "probability": 0.2132 }, { "start": 220.86, "end": 222.12, "probability": 0.0532 }, { "start": 222.42, "end": 225.64, "probability": 0.4578 }, { "start": 225.98, "end": 229.64, "probability": 0.6649 }, { "start": 229.88, "end": 231.76, "probability": 0.8717 }, { "start": 232.0, "end": 235.12, "probability": 0.6631 }, { "start": 235.7, "end": 239.14, "probability": 0.981 }, { "start": 239.5, "end": 241.2, "probability": 0.9684 }, { "start": 241.62, "end": 243.14, "probability": 0.943 }, { "start": 243.34, "end": 244.94, "probability": 0.8397 }, { "start": 245.62, "end": 250.68, "probability": 0.9977 }, { "start": 251.16, "end": 254.26, "probability": 0.9746 }, { "start": 254.34, "end": 254.98, "probability": 0.9481 }, { "start": 255.12, "end": 255.98, "probability": 0.6806 }, { "start": 256.34, "end": 258.42, "probability": 0.9902 }, { "start": 258.82, "end": 261.3, "probability": 0.9438 }, { "start": 261.94, "end": 268.54, "probability": 0.9696 }, { "start": 269.06, "end": 271.46, "probability": 0.9041 }, { "start": 272.1, "end": 277.06, "probability": 0.9924 }, { "start": 277.58, "end": 280.62, "probability": 0.9938 }, { "start": 281.3, "end": 282.06, "probability": 0.6669 }, { "start": 282.62, "end": 283.1, "probability": 0.7588 }, { "start": 284.02, "end": 286.02, "probability": 0.9902 }, { "start": 286.54, "end": 288.58, "probability": 0.9539 }, { "start": 289.12, "end": 291.28, "probability": 0.9721 }, { "start": 291.62, "end": 296.38, "probability": 0.9241 }, { "start": 296.72, "end": 299.34, "probability": 0.8169 }, { "start": 299.88, "end": 302.54, "probability": 0.7287 }, { "start": 303.5, "end": 305.76, "probability": 0.8904 }, { "start": 306.1, "end": 307.83, "probability": 0.9941 }, { "start": 308.76, "end": 309.34, "probability": 0.765 }, { "start": 309.44, "end": 311.14, "probability": 0.9844 }, { "start": 311.84, "end": 315.12, "probability": 0.8831 }, { "start": 315.58, "end": 317.06, "probability": 0.6299 }, { "start": 317.72, "end": 320.08, "probability": 0.9933 }, { "start": 320.16, "end": 320.64, "probability": 0.89 }, { "start": 320.94, "end": 321.64, "probability": 0.7646 }, { "start": 321.76, "end": 324.08, "probability": 0.8386 }, { "start": 324.44, "end": 326.18, "probability": 0.9701 }, { "start": 330.14, "end": 331.48, "probability": 0.9332 }, { "start": 331.98, "end": 332.86, "probability": 0.8774 }, { "start": 333.68, "end": 334.9, "probability": 0.9417 }, { "start": 354.34, "end": 354.94, "probability": 0.3998 }, { "start": 357.66, "end": 360.98, "probability": 0.602 }, { "start": 361.92, "end": 366.48, "probability": 0.9937 }, { "start": 367.32, "end": 370.58, "probability": 0.9985 }, { "start": 371.22, "end": 375.16, "probability": 0.9954 }, { "start": 376.1, "end": 379.34, "probability": 0.9118 }, { "start": 379.84, "end": 381.68, "probability": 0.959 }, { "start": 382.38, "end": 384.61, "probability": 0.9973 }, { "start": 385.3, "end": 386.18, "probability": 0.9214 }, { "start": 386.38, "end": 391.56, "probability": 0.9931 }, { "start": 392.18, "end": 395.8, "probability": 0.9033 }, { "start": 396.7, "end": 399.48, "probability": 0.9597 }, { "start": 400.22, "end": 402.06, "probability": 0.928 }, { "start": 402.78, "end": 404.54, "probability": 0.9783 }, { "start": 405.26, "end": 408.5, "probability": 0.9916 }, { "start": 408.5, "end": 411.38, "probability": 0.7718 }, { "start": 412.0, "end": 414.06, "probability": 0.9229 }, { "start": 415.32, "end": 417.67, "probability": 0.9817 }, { "start": 417.7, "end": 421.32, "probability": 0.9692 }, { "start": 421.86, "end": 424.74, "probability": 0.9992 }, { "start": 424.74, "end": 428.18, "probability": 0.8517 }, { "start": 428.88, "end": 431.78, "probability": 0.9787 }, { "start": 431.78, "end": 435.94, "probability": 0.9956 }, { "start": 436.54, "end": 439.3, "probability": 0.9895 }, { "start": 439.8, "end": 444.0, "probability": 0.9973 }, { "start": 444.58, "end": 447.5, "probability": 0.9861 }, { "start": 447.92, "end": 448.42, "probability": 0.9865 }, { "start": 448.84, "end": 450.3, "probability": 0.9805 }, { "start": 450.92, "end": 452.42, "probability": 0.9595 }, { "start": 453.04, "end": 453.8, "probability": 0.9348 }, { "start": 454.6, "end": 454.88, "probability": 0.4347 }, { "start": 455.2, "end": 457.14, "probability": 0.8556 }, { "start": 457.26, "end": 458.76, "probability": 0.9552 }, { "start": 467.9, "end": 469.24, "probability": 0.7153 }, { "start": 469.62, "end": 470.74, "probability": 0.7006 }, { "start": 471.3, "end": 473.08, "probability": 0.9458 }, { "start": 473.58, "end": 475.8, "probability": 0.7128 }, { "start": 476.36, "end": 479.26, "probability": 0.9826 }, { "start": 479.34, "end": 481.46, "probability": 0.9832 }, { "start": 481.94, "end": 486.9, "probability": 0.9928 }, { "start": 487.62, "end": 491.18, "probability": 0.9634 }, { "start": 491.68, "end": 492.58, "probability": 0.4999 }, { "start": 493.02, "end": 496.46, "probability": 0.99 }, { "start": 497.02, "end": 502.36, "probability": 0.9977 }, { "start": 502.4, "end": 508.88, "probability": 0.9985 }, { "start": 509.48, "end": 512.76, "probability": 0.9054 }, { "start": 513.28, "end": 514.12, "probability": 0.5912 }, { "start": 514.16, "end": 517.94, "probability": 0.9941 }, { "start": 517.94, "end": 521.08, "probability": 0.9824 }, { "start": 521.54, "end": 524.66, "probability": 0.8335 }, { "start": 526.58, "end": 528.68, "probability": 0.6792 }, { "start": 529.08, "end": 533.36, "probability": 0.9768 }, { "start": 533.98, "end": 535.06, "probability": 0.8993 }, { "start": 535.82, "end": 539.26, "probability": 0.982 }, { "start": 539.78, "end": 544.2, "probability": 0.8712 }, { "start": 544.52, "end": 547.58, "probability": 0.984 }, { "start": 548.08, "end": 549.98, "probability": 0.9867 }, { "start": 550.48, "end": 554.24, "probability": 0.9856 }, { "start": 554.94, "end": 556.54, "probability": 0.5062 }, { "start": 556.68, "end": 561.1, "probability": 0.9906 }, { "start": 561.48, "end": 562.48, "probability": 0.9712 }, { "start": 562.76, "end": 563.92, "probability": 0.7315 }, { "start": 566.12, "end": 566.84, "probability": 0.833 }, { "start": 568.22, "end": 569.5, "probability": 0.9707 }, { "start": 570.26, "end": 570.92, "probability": 0.7524 }, { "start": 580.0, "end": 581.9, "probability": 0.626 }, { "start": 583.6, "end": 587.04, "probability": 0.8724 }, { "start": 587.2, "end": 587.86, "probability": 0.4801 }, { "start": 588.24, "end": 589.84, "probability": 0.9979 }, { "start": 591.0, "end": 595.22, "probability": 0.8236 }, { "start": 595.53, "end": 597.78, "probability": 0.951 }, { "start": 597.9, "end": 601.74, "probability": 0.9537 }, { "start": 603.16, "end": 604.14, "probability": 0.57 }, { "start": 604.32, "end": 605.92, "probability": 0.416 }, { "start": 605.98, "end": 606.8, "probability": 0.9578 }, { "start": 606.94, "end": 607.94, "probability": 0.7082 }, { "start": 608.26, "end": 610.32, "probability": 0.4615 }, { "start": 610.86, "end": 612.24, "probability": 0.8691 }, { "start": 613.34, "end": 614.86, "probability": 0.9871 }, { "start": 614.98, "end": 618.02, "probability": 0.9536 }, { "start": 618.1, "end": 618.78, "probability": 0.6658 }, { "start": 619.26, "end": 621.88, "probability": 0.9238 }, { "start": 621.94, "end": 623.7, "probability": 0.9883 }, { "start": 624.32, "end": 627.66, "probability": 0.967 }, { "start": 627.94, "end": 629.7, "probability": 0.7122 }, { "start": 629.78, "end": 631.56, "probability": 0.6963 }, { "start": 632.36, "end": 632.38, "probability": 0.3147 }, { "start": 632.9, "end": 633.6, "probability": 0.6859 }, { "start": 633.76, "end": 635.22, "probability": 0.9883 }, { "start": 635.6, "end": 636.08, "probability": 0.7669 }, { "start": 636.18, "end": 636.46, "probability": 0.8547 }, { "start": 636.64, "end": 638.62, "probability": 0.6934 }, { "start": 639.42, "end": 640.5, "probability": 0.9515 }, { "start": 641.54, "end": 644.12, "probability": 0.972 }, { "start": 644.28, "end": 645.05, "probability": 0.7838 }, { "start": 645.36, "end": 647.26, "probability": 0.7763 }, { "start": 647.4, "end": 648.38, "probability": 0.4183 }, { "start": 648.58, "end": 649.76, "probability": 0.7358 }, { "start": 650.68, "end": 652.3, "probability": 0.9805 }, { "start": 652.82, "end": 654.34, "probability": 0.7559 }, { "start": 654.84, "end": 656.66, "probability": 0.932 }, { "start": 657.34, "end": 660.08, "probability": 0.9869 }, { "start": 660.52, "end": 661.38, "probability": 0.9873 }, { "start": 661.66, "end": 663.48, "probability": 0.8778 }, { "start": 664.5, "end": 667.96, "probability": 0.9788 }, { "start": 668.8, "end": 671.18, "probability": 0.7532 }, { "start": 671.26, "end": 673.68, "probability": 0.9709 }, { "start": 674.2, "end": 676.66, "probability": 0.9291 }, { "start": 676.82, "end": 677.62, "probability": 0.9176 }, { "start": 677.76, "end": 678.18, "probability": 0.7278 }, { "start": 678.94, "end": 680.98, "probability": 0.7792 }, { "start": 681.9, "end": 688.14, "probability": 0.9582 }, { "start": 688.82, "end": 689.64, "probability": 0.8513 }, { "start": 690.36, "end": 693.64, "probability": 0.9799 }, { "start": 695.1, "end": 695.42, "probability": 0.6015 }, { "start": 697.66, "end": 699.54, "probability": 0.7991 }, { "start": 704.34, "end": 706.34, "probability": 0.7677 }, { "start": 707.47, "end": 709.22, "probability": 0.9442 }, { "start": 709.72, "end": 711.02, "probability": 0.9784 }, { "start": 711.62, "end": 712.78, "probability": 0.991 }, { "start": 714.36, "end": 717.96, "probability": 0.8459 }, { "start": 718.02, "end": 719.0, "probability": 0.9963 }, { "start": 719.62, "end": 720.68, "probability": 0.2521 }, { "start": 720.84, "end": 722.72, "probability": 0.9917 }, { "start": 723.5, "end": 724.2, "probability": 0.781 }, { "start": 724.92, "end": 725.92, "probability": 0.9344 }, { "start": 727.1, "end": 729.9, "probability": 0.978 }, { "start": 730.12, "end": 732.74, "probability": 0.9561 }, { "start": 734.28, "end": 737.2, "probability": 0.5232 }, { "start": 737.76, "end": 738.98, "probability": 0.7085 }, { "start": 739.7, "end": 740.24, "probability": 0.1141 }, { "start": 740.24, "end": 743.12, "probability": 0.932 }, { "start": 743.44, "end": 747.78, "probability": 0.9744 }, { "start": 748.64, "end": 749.8, "probability": 0.5928 }, { "start": 749.84, "end": 750.9, "probability": 0.7651 }, { "start": 751.12, "end": 753.28, "probability": 0.7295 }, { "start": 753.36, "end": 754.42, "probability": 0.9123 }, { "start": 755.14, "end": 755.9, "probability": 0.9243 }, { "start": 756.4, "end": 760.98, "probability": 0.97 }, { "start": 761.86, "end": 763.11, "probability": 0.718 }, { "start": 764.0, "end": 765.56, "probability": 0.94 }, { "start": 765.7, "end": 768.52, "probability": 0.9884 }, { "start": 768.6, "end": 769.32, "probability": 0.9823 }, { "start": 769.38, "end": 769.98, "probability": 0.9925 }, { "start": 770.04, "end": 770.64, "probability": 0.8466 }, { "start": 771.24, "end": 772.52, "probability": 0.9899 }, { "start": 773.04, "end": 773.96, "probability": 0.7467 }, { "start": 774.32, "end": 778.7, "probability": 0.9277 }, { "start": 778.78, "end": 780.02, "probability": 0.8994 }, { "start": 780.82, "end": 782.34, "probability": 0.6887 }, { "start": 782.88, "end": 784.32, "probability": 0.799 }, { "start": 784.48, "end": 787.6, "probability": 0.9776 }, { "start": 787.94, "end": 789.92, "probability": 0.9944 }, { "start": 790.6, "end": 790.88, "probability": 0.6215 }, { "start": 791.78, "end": 792.36, "probability": 0.5476 }, { "start": 792.4, "end": 794.72, "probability": 0.8754 }, { "start": 797.38, "end": 800.36, "probability": 0.9139 }, { "start": 802.66, "end": 805.2, "probability": 0.0931 }, { "start": 807.06, "end": 807.84, "probability": 0.1504 }, { "start": 809.24, "end": 809.24, "probability": 0.0057 }, { "start": 809.24, "end": 809.24, "probability": 0.1003 }, { "start": 809.24, "end": 809.24, "probability": 0.0335 }, { "start": 809.24, "end": 809.24, "probability": 0.1255 }, { "start": 809.24, "end": 812.12, "probability": 0.4156 }, { "start": 812.26, "end": 815.6, "probability": 0.4633 }, { "start": 816.82, "end": 816.82, "probability": 0.0541 }, { "start": 816.82, "end": 817.18, "probability": 0.7683 }, { "start": 817.36, "end": 820.26, "probability": 0.3326 }, { "start": 821.0, "end": 823.78, "probability": 0.1586 }, { "start": 823.84, "end": 824.48, "probability": 0.5138 }, { "start": 824.62, "end": 826.56, "probability": 0.4568 }, { "start": 826.66, "end": 829.76, "probability": 0.8972 }, { "start": 830.64, "end": 831.8, "probability": 0.9438 }, { "start": 831.92, "end": 833.0, "probability": 0.8987 }, { "start": 833.34, "end": 833.86, "probability": 0.7479 }, { "start": 833.86, "end": 834.52, "probability": 0.943 }, { "start": 834.58, "end": 838.72, "probability": 0.9724 }, { "start": 839.62, "end": 840.12, "probability": 0.8044 }, { "start": 840.18, "end": 841.3, "probability": 0.6917 }, { "start": 841.36, "end": 844.54, "probability": 0.9356 }, { "start": 844.8, "end": 846.18, "probability": 0.708 }, { "start": 846.76, "end": 848.62, "probability": 0.9753 }, { "start": 849.42, "end": 849.8, "probability": 0.3989 }, { "start": 849.92, "end": 851.16, "probability": 0.6642 }, { "start": 851.5, "end": 855.94, "probability": 0.9157 }, { "start": 856.88, "end": 857.6, "probability": 0.9438 }, { "start": 857.76, "end": 859.06, "probability": 0.6408 }, { "start": 859.5, "end": 860.81, "probability": 0.8133 }, { "start": 861.1, "end": 862.0, "probability": 0.7263 }, { "start": 862.1, "end": 862.92, "probability": 0.6727 }, { "start": 863.42, "end": 866.64, "probability": 0.9849 }, { "start": 867.1, "end": 868.06, "probability": 0.9712 }, { "start": 868.86, "end": 869.4, "probability": 0.7979 }, { "start": 869.4, "end": 872.19, "probability": 0.9112 }, { "start": 872.8, "end": 874.36, "probability": 0.98 }, { "start": 875.14, "end": 875.64, "probability": 0.5391 }, { "start": 875.76, "end": 876.56, "probability": 0.5178 }, { "start": 877.04, "end": 878.14, "probability": 0.7397 }, { "start": 878.24, "end": 878.94, "probability": 0.9209 }, { "start": 879.76, "end": 881.08, "probability": 0.8338 }, { "start": 881.28, "end": 882.58, "probability": 0.9754 }, { "start": 883.44, "end": 883.8, "probability": 0.9591 }, { "start": 884.22, "end": 885.48, "probability": 0.9947 }, { "start": 885.82, "end": 886.9, "probability": 0.9874 }, { "start": 886.92, "end": 887.69, "probability": 0.9932 }, { "start": 888.04, "end": 890.42, "probability": 0.7914 }, { "start": 891.24, "end": 893.68, "probability": 0.9857 }, { "start": 894.3, "end": 894.66, "probability": 0.7514 }, { "start": 899.26, "end": 902.62, "probability": 0.7778 }, { "start": 903.22, "end": 904.54, "probability": 0.9137 }, { "start": 906.78, "end": 907.6, "probability": 0.7776 }, { "start": 907.98, "end": 908.68, "probability": 0.9025 }, { "start": 909.16, "end": 909.72, "probability": 0.6631 }, { "start": 913.01, "end": 917.18, "probability": 0.726 }, { "start": 917.86, "end": 922.94, "probability": 0.6794 }, { "start": 923.7, "end": 925.44, "probability": 0.5428 }, { "start": 927.08, "end": 928.18, "probability": 0.064 }, { "start": 957.82, "end": 957.82, "probability": 0.3889 }, { "start": 957.82, "end": 957.82, "probability": 0.4129 }, { "start": 957.82, "end": 957.82, "probability": 0.1659 }, { "start": 957.82, "end": 957.82, "probability": 0.4343 }, { "start": 957.82, "end": 957.82, "probability": 0.4547 }, { "start": 957.82, "end": 957.82, "probability": 0.191 }, { "start": 957.82, "end": 957.82, "probability": 0.5511 }, { "start": 957.82, "end": 957.82, "probability": 0.4889 }, { "start": 957.82, "end": 957.82, "probability": 0.0937 }, { "start": 957.82, "end": 957.82, "probability": 0.1057 }, { "start": 957.82, "end": 961.22, "probability": 0.5244 }, { "start": 962.38, "end": 962.96, "probability": 0.201 }, { "start": 963.02, "end": 964.55, "probability": 0.9641 }, { "start": 965.46, "end": 967.82, "probability": 0.9937 }, { "start": 968.42, "end": 969.02, "probability": 0.8232 }, { "start": 969.74, "end": 973.56, "probability": 0.8685 }, { "start": 973.84, "end": 975.62, "probability": 0.828 }, { "start": 976.36, "end": 979.08, "probability": 0.9827 }, { "start": 979.32, "end": 983.7, "probability": 0.7809 }, { "start": 983.72, "end": 989.22, "probability": 0.9566 }, { "start": 990.33, "end": 994.94, "probability": 0.9407 }, { "start": 995.74, "end": 1001.1, "probability": 0.9591 }, { "start": 1001.98, "end": 1003.12, "probability": 0.6978 }, { "start": 1003.36, "end": 1004.88, "probability": 0.8637 }, { "start": 1005.03, "end": 1005.96, "probability": 0.8782 }, { "start": 1006.16, "end": 1011.06, "probability": 0.8203 }, { "start": 1011.6, "end": 1012.16, "probability": 0.5798 }, { "start": 1012.42, "end": 1015.74, "probability": 0.7017 }, { "start": 1015.96, "end": 1018.44, "probability": 0.7078 }, { "start": 1019.18, "end": 1020.72, "probability": 0.6614 }, { "start": 1021.28, "end": 1024.32, "probability": 0.8812 }, { "start": 1024.86, "end": 1027.42, "probability": 0.774 }, { "start": 1028.46, "end": 1033.84, "probability": 0.0989 }, { "start": 1033.84, "end": 1036.48, "probability": 0.9639 }, { "start": 1036.94, "end": 1041.78, "probability": 0.9911 }, { "start": 1041.9, "end": 1045.82, "probability": 0.9271 }, { "start": 1047.14, "end": 1054.62, "probability": 0.9956 }, { "start": 1054.86, "end": 1055.34, "probability": 0.3754 }, { "start": 1055.5, "end": 1060.78, "probability": 0.9243 }, { "start": 1061.28, "end": 1065.72, "probability": 0.9697 }, { "start": 1065.72, "end": 1071.1, "probability": 0.9821 }, { "start": 1072.1, "end": 1072.76, "probability": 0.5976 }, { "start": 1072.82, "end": 1077.64, "probability": 0.9596 }, { "start": 1077.82, "end": 1079.56, "probability": 0.9603 }, { "start": 1080.1, "end": 1082.24, "probability": 0.9868 }, { "start": 1082.42, "end": 1086.08, "probability": 0.9416 }, { "start": 1086.68, "end": 1090.5, "probability": 0.4742 }, { "start": 1090.5, "end": 1096.26, "probability": 0.7201 }, { "start": 1096.38, "end": 1098.96, "probability": 0.9085 }, { "start": 1099.66, "end": 1105.6, "probability": 0.9817 }, { "start": 1105.98, "end": 1110.5, "probability": 0.8228 }, { "start": 1111.5, "end": 1117.72, "probability": 0.9602 }, { "start": 1117.9, "end": 1121.72, "probability": 0.8797 }, { "start": 1124.26, "end": 1129.48, "probability": 0.8682 }, { "start": 1131.24, "end": 1137.62, "probability": 0.9972 }, { "start": 1138.24, "end": 1139.92, "probability": 0.8593 }, { "start": 1140.2, "end": 1141.08, "probability": 0.5627 }, { "start": 1141.56, "end": 1147.82, "probability": 0.9777 }, { "start": 1148.68, "end": 1150.14, "probability": 0.9074 }, { "start": 1150.58, "end": 1157.38, "probability": 0.9521 }, { "start": 1157.66, "end": 1164.06, "probability": 0.9059 }, { "start": 1164.52, "end": 1169.32, "probability": 0.9895 }, { "start": 1170.18, "end": 1174.0, "probability": 0.7511 }, { "start": 1174.7, "end": 1176.46, "probability": 0.6435 }, { "start": 1176.72, "end": 1179.12, "probability": 0.9747 }, { "start": 1179.92, "end": 1187.9, "probability": 0.9592 }, { "start": 1188.48, "end": 1192.2, "probability": 0.7486 }, { "start": 1192.82, "end": 1197.6, "probability": 0.8965 }, { "start": 1198.08, "end": 1202.2, "probability": 0.9387 }, { "start": 1202.72, "end": 1206.14, "probability": 0.7683 }, { "start": 1206.3, "end": 1207.32, "probability": 0.6213 }, { "start": 1208.02, "end": 1210.6, "probability": 0.967 }, { "start": 1210.74, "end": 1216.44, "probability": 0.8888 }, { "start": 1216.88, "end": 1218.66, "probability": 0.9806 }, { "start": 1219.64, "end": 1226.62, "probability": 0.9765 }, { "start": 1227.1, "end": 1229.09, "probability": 0.5436 }, { "start": 1231.5, "end": 1236.12, "probability": 0.94 }, { "start": 1236.24, "end": 1241.36, "probability": 0.9701 }, { "start": 1241.94, "end": 1243.3, "probability": 0.8856 }, { "start": 1243.7, "end": 1249.54, "probability": 0.9919 }, { "start": 1249.7, "end": 1253.28, "probability": 0.9758 }, { "start": 1253.84, "end": 1261.86, "probability": 0.9856 }, { "start": 1262.48, "end": 1262.48, "probability": 0.0698 }, { "start": 1262.48, "end": 1267.4, "probability": 0.8182 }, { "start": 1267.68, "end": 1271.44, "probability": 0.9878 }, { "start": 1271.8, "end": 1274.34, "probability": 0.9967 }, { "start": 1274.86, "end": 1279.48, "probability": 0.875 }, { "start": 1280.0, "end": 1283.12, "probability": 0.965 }, { "start": 1283.3, "end": 1283.74, "probability": 0.746 }, { "start": 1284.36, "end": 1284.98, "probability": 0.7748 }, { "start": 1285.18, "end": 1286.42, "probability": 0.9617 }, { "start": 1286.6, "end": 1287.7, "probability": 0.8708 }, { "start": 1289.34, "end": 1290.18, "probability": 0.796 }, { "start": 1291.08, "end": 1299.64, "probability": 0.6975 }, { "start": 1299.68, "end": 1300.2, "probability": 0.6401 }, { "start": 1300.42, "end": 1301.34, "probability": 0.9277 }, { "start": 1301.72, "end": 1303.5, "probability": 0.9072 }, { "start": 1304.22, "end": 1306.86, "probability": 0.9724 }, { "start": 1307.4, "end": 1309.62, "probability": 0.934 }, { "start": 1310.14, "end": 1311.3, "probability": 0.9736 }, { "start": 1312.26, "end": 1312.82, "probability": 0.0855 }, { "start": 1314.7, "end": 1316.0, "probability": 0.6502 }, { "start": 1316.68, "end": 1317.72, "probability": 0.7354 }, { "start": 1318.3, "end": 1319.76, "probability": 0.8242 }, { "start": 1320.22, "end": 1321.86, "probability": 0.076 }, { "start": 1322.42, "end": 1322.78, "probability": 0.2677 }, { "start": 1337.0, "end": 1337.1, "probability": 0.2804 }, { "start": 1339.0, "end": 1341.78, "probability": 0.529 }, { "start": 1343.46, "end": 1344.0, "probability": 0.559 }, { "start": 1344.56, "end": 1345.22, "probability": 0.9951 }, { "start": 1345.78, "end": 1346.64, "probability": 0.7727 }, { "start": 1347.94, "end": 1348.58, "probability": 0.8569 }, { "start": 1349.76, "end": 1351.72, "probability": 0.7662 }, { "start": 1352.24, "end": 1355.1, "probability": 0.8248 }, { "start": 1355.1, "end": 1356.5, "probability": 0.9369 }, { "start": 1357.98, "end": 1361.5, "probability": 0.499 }, { "start": 1361.68, "end": 1364.75, "probability": 0.9313 }, { "start": 1365.7, "end": 1366.92, "probability": 0.9932 }, { "start": 1367.64, "end": 1369.92, "probability": 0.8893 }, { "start": 1370.12, "end": 1371.62, "probability": 0.7421 }, { "start": 1371.92, "end": 1373.14, "probability": 0.8428 }, { "start": 1373.62, "end": 1376.22, "probability": 0.738 }, { "start": 1376.56, "end": 1379.22, "probability": 0.9849 }, { "start": 1379.8, "end": 1380.42, "probability": 0.5239 }, { "start": 1380.44, "end": 1381.04, "probability": 0.9272 }, { "start": 1381.56, "end": 1382.32, "probability": 0.9517 }, { "start": 1382.6, "end": 1383.32, "probability": 0.8622 }, { "start": 1383.74, "end": 1384.26, "probability": 0.7586 }, { "start": 1384.7, "end": 1385.48, "probability": 0.5077 }, { "start": 1386.76, "end": 1387.0, "probability": 0.4907 }, { "start": 1387.0, "end": 1390.62, "probability": 0.9819 }, { "start": 1390.62, "end": 1396.48, "probability": 0.878 }, { "start": 1396.7, "end": 1398.2, "probability": 0.9591 }, { "start": 1398.32, "end": 1399.32, "probability": 0.662 }, { "start": 1400.1, "end": 1402.98, "probability": 0.8663 }, { "start": 1403.76, "end": 1404.88, "probability": 0.9264 }, { "start": 1405.04, "end": 1407.22, "probability": 0.8008 }, { "start": 1407.96, "end": 1413.54, "probability": 0.7875 }, { "start": 1414.08, "end": 1416.04, "probability": 0.5251 }, { "start": 1416.32, "end": 1418.34, "probability": 0.9773 }, { "start": 1419.32, "end": 1425.9, "probability": 0.9922 }, { "start": 1426.74, "end": 1427.76, "probability": 0.8193 }, { "start": 1430.64, "end": 1432.44, "probability": 0.7701 }, { "start": 1433.88, "end": 1434.7, "probability": 0.8872 }, { "start": 1435.5, "end": 1439.46, "probability": 0.9752 }, { "start": 1439.58, "end": 1440.48, "probability": 0.5856 }, { "start": 1440.5, "end": 1441.63, "probability": 0.9571 }, { "start": 1442.38, "end": 1444.74, "probability": 0.8096 }, { "start": 1445.96, "end": 1447.04, "probability": 0.5425 }, { "start": 1447.54, "end": 1452.36, "probability": 0.9101 }, { "start": 1453.0, "end": 1455.02, "probability": 0.9326 }, { "start": 1455.08, "end": 1458.23, "probability": 0.7996 }, { "start": 1459.58, "end": 1462.86, "probability": 0.974 }, { "start": 1464.48, "end": 1465.28, "probability": 0.9674 }, { "start": 1465.72, "end": 1466.94, "probability": 0.8881 }, { "start": 1467.02, "end": 1468.78, "probability": 0.8127 }, { "start": 1469.0, "end": 1470.1, "probability": 0.9765 }, { "start": 1471.06, "end": 1473.08, "probability": 0.9167 }, { "start": 1473.38, "end": 1474.86, "probability": 0.9911 }, { "start": 1475.16, "end": 1476.98, "probability": 0.9942 }, { "start": 1477.56, "end": 1478.38, "probability": 0.963 }, { "start": 1478.44, "end": 1479.08, "probability": 0.9709 }, { "start": 1479.18, "end": 1479.74, "probability": 0.9296 }, { "start": 1480.1, "end": 1481.0, "probability": 0.999 }, { "start": 1481.72, "end": 1482.34, "probability": 0.9924 }, { "start": 1484.04, "end": 1484.36, "probability": 0.818 }, { "start": 1485.06, "end": 1485.26, "probability": 0.5844 }, { "start": 1486.22, "end": 1487.51, "probability": 0.7348 }, { "start": 1488.16, "end": 1488.82, "probability": 0.9552 }, { "start": 1489.26, "end": 1489.94, "probability": 0.9713 }, { "start": 1490.16, "end": 1491.08, "probability": 0.9629 }, { "start": 1491.2, "end": 1491.54, "probability": 0.7672 }, { "start": 1491.76, "end": 1492.04, "probability": 0.6705 }, { "start": 1492.18, "end": 1492.56, "probability": 0.4647 }, { "start": 1492.9, "end": 1493.84, "probability": 0.9901 }, { "start": 1494.32, "end": 1496.2, "probability": 0.685 }, { "start": 1496.44, "end": 1497.9, "probability": 0.9897 }, { "start": 1500.39, "end": 1502.41, "probability": 0.6517 }, { "start": 1502.84, "end": 1503.74, "probability": 0.6685 }, { "start": 1504.64, "end": 1506.64, "probability": 0.8584 }, { "start": 1506.74, "end": 1507.32, "probability": 0.8686 }, { "start": 1507.38, "end": 1508.86, "probability": 0.9468 }, { "start": 1510.46, "end": 1510.64, "probability": 0.2853 }, { "start": 1510.72, "end": 1512.02, "probability": 0.9904 }, { "start": 1512.14, "end": 1516.75, "probability": 0.7621 }, { "start": 1517.94, "end": 1519.5, "probability": 0.9937 }, { "start": 1519.72, "end": 1521.04, "probability": 0.7699 }, { "start": 1521.42, "end": 1522.84, "probability": 0.8599 }, { "start": 1524.36, "end": 1525.54, "probability": 0.9331 }, { "start": 1526.32, "end": 1527.18, "probability": 0.9345 }, { "start": 1528.3, "end": 1529.32, "probability": 0.4284 }, { "start": 1529.84, "end": 1532.42, "probability": 0.9808 }, { "start": 1532.54, "end": 1533.36, "probability": 0.9009 }, { "start": 1533.78, "end": 1534.9, "probability": 0.9983 }, { "start": 1535.68, "end": 1536.44, "probability": 0.4662 }, { "start": 1536.52, "end": 1537.02, "probability": 0.4837 }, { "start": 1537.1, "end": 1538.4, "probability": 0.8552 }, { "start": 1539.02, "end": 1541.9, "probability": 0.7624 }, { "start": 1543.16, "end": 1547.3, "probability": 0.9409 }, { "start": 1548.18, "end": 1551.9, "probability": 0.9716 }, { "start": 1553.02, "end": 1553.36, "probability": 0.8975 }, { "start": 1554.4, "end": 1556.4, "probability": 0.8451 }, { "start": 1556.5, "end": 1557.85, "probability": 0.8831 }, { "start": 1559.28, "end": 1563.52, "probability": 0.8687 }, { "start": 1564.68, "end": 1570.3, "probability": 0.9693 }, { "start": 1572.06, "end": 1574.18, "probability": 0.9231 }, { "start": 1574.76, "end": 1578.18, "probability": 0.9372 }, { "start": 1579.1, "end": 1580.76, "probability": 0.9661 }, { "start": 1581.28, "end": 1582.36, "probability": 0.9937 }, { "start": 1583.76, "end": 1586.34, "probability": 0.8101 }, { "start": 1586.78, "end": 1589.96, "probability": 0.9651 }, { "start": 1590.06, "end": 1591.16, "probability": 0.9362 }, { "start": 1592.02, "end": 1593.68, "probability": 0.7315 }, { "start": 1593.76, "end": 1594.6, "probability": 0.9391 }, { "start": 1595.84, "end": 1597.68, "probability": 0.9316 }, { "start": 1597.84, "end": 1600.26, "probability": 0.9897 }, { "start": 1601.36, "end": 1603.66, "probability": 0.9678 }, { "start": 1604.48, "end": 1605.84, "probability": 0.8821 }, { "start": 1607.16, "end": 1608.1, "probability": 0.4741 }, { "start": 1608.2, "end": 1613.26, "probability": 0.9756 }, { "start": 1613.48, "end": 1614.26, "probability": 0.5499 }, { "start": 1615.62, "end": 1620.02, "probability": 0.9972 }, { "start": 1621.18, "end": 1624.52, "probability": 0.9548 }, { "start": 1625.46, "end": 1626.32, "probability": 0.7805 }, { "start": 1626.4, "end": 1626.98, "probability": 0.949 }, { "start": 1627.04, "end": 1630.74, "probability": 0.9847 }, { "start": 1631.82, "end": 1632.54, "probability": 0.6814 }, { "start": 1633.16, "end": 1634.04, "probability": 0.9263 }, { "start": 1634.42, "end": 1636.52, "probability": 0.9815 }, { "start": 1636.66, "end": 1637.12, "probability": 0.7513 }, { "start": 1637.46, "end": 1638.58, "probability": 0.9811 }, { "start": 1638.68, "end": 1639.54, "probability": 0.9507 }, { "start": 1640.46, "end": 1641.62, "probability": 0.7392 }, { "start": 1641.76, "end": 1641.94, "probability": 0.4436 }, { "start": 1642.1, "end": 1642.52, "probability": 0.4575 }, { "start": 1642.52, "end": 1643.82, "probability": 0.9204 }, { "start": 1644.38, "end": 1646.0, "probability": 0.9784 }, { "start": 1647.62, "end": 1648.12, "probability": 0.8856 }, { "start": 1649.08, "end": 1651.74, "probability": 0.9893 }, { "start": 1651.98, "end": 1652.82, "probability": 0.8564 }, { "start": 1654.03, "end": 1655.36, "probability": 0.972 }, { "start": 1656.06, "end": 1657.0, "probability": 0.8294 }, { "start": 1658.04, "end": 1661.5, "probability": 0.9717 }, { "start": 1661.98, "end": 1663.08, "probability": 0.9017 }, { "start": 1663.22, "end": 1664.14, "probability": 0.9767 }, { "start": 1664.76, "end": 1665.44, "probability": 0.8415 }, { "start": 1665.74, "end": 1668.14, "probability": 0.991 }, { "start": 1669.18, "end": 1673.36, "probability": 0.984 }, { "start": 1673.36, "end": 1677.14, "probability": 0.9956 }, { "start": 1677.7, "end": 1678.72, "probability": 0.9773 }, { "start": 1679.4, "end": 1681.0, "probability": 0.949 }, { "start": 1681.28, "end": 1683.42, "probability": 0.812 }, { "start": 1683.8, "end": 1685.74, "probability": 0.5595 }, { "start": 1685.9, "end": 1686.1, "probability": 0.7918 }, { "start": 1687.32, "end": 1688.26, "probability": 0.642 }, { "start": 1691.34, "end": 1695.08, "probability": 0.9265 }, { "start": 1703.06, "end": 1703.22, "probability": 0.618 }, { "start": 1703.22, "end": 1704.06, "probability": 0.5267 }, { "start": 1704.12, "end": 1706.82, "probability": 0.9068 }, { "start": 1707.06, "end": 1708.2, "probability": 0.9421 }, { "start": 1708.8, "end": 1712.1, "probability": 0.987 }, { "start": 1712.28, "end": 1712.5, "probability": 0.8392 }, { "start": 1721.3, "end": 1721.3, "probability": 0.2707 }, { "start": 1721.3, "end": 1721.54, "probability": 0.0901 }, { "start": 1721.64, "end": 1721.71, "probability": 0.0629 }, { "start": 1722.32, "end": 1722.44, "probability": 0.0715 }, { "start": 1722.44, "end": 1722.44, "probability": 0.0719 }, { "start": 1722.44, "end": 1722.44, "probability": 0.0533 }, { "start": 1722.44, "end": 1722.62, "probability": 0.0124 }, { "start": 1722.62, "end": 1722.62, "probability": 0.0285 }, { "start": 1742.26, "end": 1742.78, "probability": 0.2404 }, { "start": 1743.6, "end": 1745.76, "probability": 0.3831 }, { "start": 1746.76, "end": 1750.12, "probability": 0.6547 }, { "start": 1750.9, "end": 1751.37, "probability": 0.5327 }, { "start": 1753.12, "end": 1753.58, "probability": 0.541 }, { "start": 1753.66, "end": 1755.01, "probability": 0.9902 }, { "start": 1755.48, "end": 1761.58, "probability": 0.9708 }, { "start": 1761.66, "end": 1763.98, "probability": 0.6353 }, { "start": 1765.12, "end": 1766.79, "probability": 0.9917 }, { "start": 1768.74, "end": 1770.28, "probability": 0.8278 }, { "start": 1770.36, "end": 1775.44, "probability": 0.855 }, { "start": 1775.54, "end": 1780.06, "probability": 0.9726 }, { "start": 1780.08, "end": 1782.68, "probability": 0.8298 }, { "start": 1783.44, "end": 1788.16, "probability": 0.9902 }, { "start": 1789.1, "end": 1794.18, "probability": 0.7065 }, { "start": 1794.26, "end": 1797.42, "probability": 0.9104 }, { "start": 1798.1, "end": 1799.2, "probability": 0.3873 }, { "start": 1799.58, "end": 1802.4, "probability": 0.8214 }, { "start": 1802.99, "end": 1805.44, "probability": 0.5477 }, { "start": 1805.68, "end": 1806.66, "probability": 0.8174 }, { "start": 1809.54, "end": 1812.18, "probability": 0.6849 }, { "start": 1812.76, "end": 1815.92, "probability": 0.9025 }, { "start": 1815.94, "end": 1816.4, "probability": 0.9042 }, { "start": 1817.48, "end": 1821.38, "probability": 0.7613 }, { "start": 1821.4, "end": 1822.42, "probability": 0.8635 }, { "start": 1823.02, "end": 1827.74, "probability": 0.8195 }, { "start": 1828.8, "end": 1829.5, "probability": 0.9105 }, { "start": 1829.96, "end": 1831.48, "probability": 0.8518 }, { "start": 1831.56, "end": 1833.42, "probability": 0.9885 }, { "start": 1835.52, "end": 1837.38, "probability": 0.8812 }, { "start": 1837.66, "end": 1838.73, "probability": 0.9265 }, { "start": 1839.28, "end": 1839.66, "probability": 0.6843 }, { "start": 1840.02, "end": 1840.56, "probability": 0.8218 }, { "start": 1840.62, "end": 1842.24, "probability": 0.6867 }, { "start": 1842.36, "end": 1845.14, "probability": 0.9717 }, { "start": 1845.14, "end": 1847.36, "probability": 0.8254 }, { "start": 1848.28, "end": 1853.4, "probability": 0.9817 }, { "start": 1854.38, "end": 1856.02, "probability": 0.9867 }, { "start": 1856.24, "end": 1857.62, "probability": 0.6611 }, { "start": 1857.88, "end": 1859.48, "probability": 0.9118 }, { "start": 1860.18, "end": 1861.86, "probability": 0.9858 }, { "start": 1862.96, "end": 1867.32, "probability": 0.9723 }, { "start": 1868.1, "end": 1869.26, "probability": 0.5362 }, { "start": 1869.66, "end": 1871.12, "probability": 0.8914 }, { "start": 1871.3, "end": 1873.76, "probability": 0.9919 }, { "start": 1874.5, "end": 1877.33, "probability": 0.9381 }, { "start": 1877.62, "end": 1878.22, "probability": 0.9652 }, { "start": 1878.54, "end": 1879.08, "probability": 0.9785 }, { "start": 1879.5, "end": 1880.02, "probability": 0.9857 }, { "start": 1880.38, "end": 1880.92, "probability": 0.7295 }, { "start": 1881.88, "end": 1882.88, "probability": 0.98 }, { "start": 1884.42, "end": 1886.75, "probability": 0.8553 }, { "start": 1887.7, "end": 1888.76, "probability": 0.6164 }, { "start": 1888.78, "end": 1890.64, "probability": 0.9781 }, { "start": 1892.04, "end": 1895.84, "probability": 0.9633 }, { "start": 1896.22, "end": 1898.56, "probability": 0.9773 }, { "start": 1899.94, "end": 1901.46, "probability": 0.73 }, { "start": 1903.54, "end": 1906.4, "probability": 0.9431 }, { "start": 1906.58, "end": 1908.16, "probability": 0.087 }, { "start": 1909.42, "end": 1912.21, "probability": 0.9248 }, { "start": 1913.64, "end": 1916.1, "probability": 0.9874 }, { "start": 1916.9, "end": 1917.82, "probability": 0.9926 }, { "start": 1920.84, "end": 1921.66, "probability": 0.1569 }, { "start": 1922.68, "end": 1923.14, "probability": 0.3824 }, { "start": 1924.2, "end": 1925.5, "probability": 0.9768 }, { "start": 1925.76, "end": 1927.3, "probability": 0.9653 }, { "start": 1929.16, "end": 1932.9, "probability": 0.826 }, { "start": 1933.38, "end": 1934.34, "probability": 0.9783 }, { "start": 1934.46, "end": 1935.46, "probability": 0.5108 }, { "start": 1935.66, "end": 1935.98, "probability": 0.5931 }, { "start": 1936.4, "end": 1938.06, "probability": 0.9079 }, { "start": 1939.14, "end": 1939.88, "probability": 0.7045 }, { "start": 1940.48, "end": 1941.28, "probability": 0.6011 }, { "start": 1942.18, "end": 1944.72, "probability": 0.9482 }, { "start": 1945.48, "end": 1947.32, "probability": 0.9862 }, { "start": 1948.46, "end": 1949.98, "probability": 0.8591 }, { "start": 1950.6, "end": 1953.5, "probability": 0.9784 }, { "start": 1954.48, "end": 1957.14, "probability": 0.8036 }, { "start": 1957.52, "end": 1958.84, "probability": 0.9687 }, { "start": 1959.92, "end": 1960.78, "probability": 0.7524 }, { "start": 1960.84, "end": 1965.9, "probability": 0.9647 }, { "start": 1966.74, "end": 1970.46, "probability": 0.9375 }, { "start": 1971.0, "end": 1972.06, "probability": 0.9618 }, { "start": 1972.42, "end": 1973.78, "probability": 0.9178 }, { "start": 1973.98, "end": 1974.68, "probability": 0.654 }, { "start": 1975.1, "end": 1976.54, "probability": 0.7255 }, { "start": 1977.32, "end": 1982.74, "probability": 0.7809 }, { "start": 1983.28, "end": 1986.78, "probability": 0.9438 }, { "start": 1986.84, "end": 1990.08, "probability": 0.9514 }, { "start": 1991.2, "end": 1994.18, "probability": 0.96 }, { "start": 1994.94, "end": 1997.54, "probability": 0.939 }, { "start": 1997.9, "end": 1999.46, "probability": 0.9037 }, { "start": 1999.84, "end": 2000.6, "probability": 0.6072 }, { "start": 2000.72, "end": 2001.14, "probability": 0.9026 }, { "start": 2002.08, "end": 2006.72, "probability": 0.9297 }, { "start": 2006.74, "end": 2008.68, "probability": 0.4036 }, { "start": 2009.56, "end": 2013.66, "probability": 0.901 }, { "start": 2013.9, "end": 2015.94, "probability": 0.7368 }, { "start": 2016.1, "end": 2017.4, "probability": 0.6668 }, { "start": 2017.48, "end": 2017.72, "probability": 0.5375 }, { "start": 2017.72, "end": 2018.82, "probability": 0.9685 }, { "start": 2019.16, "end": 2021.72, "probability": 0.9902 }, { "start": 2021.84, "end": 2022.0, "probability": 0.0017 }, { "start": 2024.5, "end": 2028.9, "probability": 0.9725 }, { "start": 2029.08, "end": 2031.52, "probability": 0.6509 }, { "start": 2033.81, "end": 2036.3, "probability": 0.9817 }, { "start": 2037.76, "end": 2042.68, "probability": 0.9946 }, { "start": 2043.56, "end": 2044.72, "probability": 0.9985 }, { "start": 2044.9, "end": 2046.34, "probability": 0.9979 }, { "start": 2046.48, "end": 2047.4, "probability": 0.9873 }, { "start": 2047.5, "end": 2050.04, "probability": 0.8273 }, { "start": 2050.28, "end": 2052.32, "probability": 0.9477 }, { "start": 2052.8, "end": 2055.4, "probability": 0.9596 }, { "start": 2055.94, "end": 2059.2, "probability": 0.9868 }, { "start": 2060.1, "end": 2062.08, "probability": 0.713 }, { "start": 2062.64, "end": 2065.06, "probability": 0.8988 }, { "start": 2065.78, "end": 2069.52, "probability": 0.9824 }, { "start": 2069.92, "end": 2072.12, "probability": 0.9929 }, { "start": 2072.16, "end": 2075.3, "probability": 0.948 }, { "start": 2076.18, "end": 2077.04, "probability": 0.9506 }, { "start": 2078.38, "end": 2080.06, "probability": 0.8719 }, { "start": 2080.14, "end": 2081.18, "probability": 0.6156 }, { "start": 2081.8, "end": 2085.98, "probability": 0.7543 }, { "start": 2086.04, "end": 2087.22, "probability": 0.7834 }, { "start": 2088.89, "end": 2090.04, "probability": 0.2909 }, { "start": 2090.76, "end": 2094.36, "probability": 0.9536 }, { "start": 2094.44, "end": 2098.0, "probability": 0.9729 }, { "start": 2098.34, "end": 2099.58, "probability": 0.9343 }, { "start": 2099.96, "end": 2102.28, "probability": 0.9908 }, { "start": 2102.46, "end": 2107.22, "probability": 0.9302 }, { "start": 2107.72, "end": 2108.52, "probability": 0.7435 }, { "start": 2108.88, "end": 2109.9, "probability": 0.7158 }, { "start": 2110.28, "end": 2113.12, "probability": 0.8372 }, { "start": 2113.18, "end": 2114.26, "probability": 0.6608 }, { "start": 2115.42, "end": 2116.67, "probability": 0.5075 }, { "start": 2118.58, "end": 2118.6, "probability": 0.1085 }, { "start": 2118.6, "end": 2119.38, "probability": 0.4273 }, { "start": 2119.38, "end": 2121.98, "probability": 0.6047 }, { "start": 2121.98, "end": 2122.8, "probability": 0.2047 }, { "start": 2123.26, "end": 2128.04, "probability": 0.6841 }, { "start": 2128.04, "end": 2128.67, "probability": 0.897 }, { "start": 2130.37, "end": 2132.62, "probability": 0.7526 }, { "start": 2133.14, "end": 2136.2, "probability": 0.9788 }, { "start": 2136.62, "end": 2138.46, "probability": 0.98 }, { "start": 2139.02, "end": 2141.76, "probability": 0.9506 }, { "start": 2142.54, "end": 2144.0, "probability": 0.9679 }, { "start": 2144.84, "end": 2148.48, "probability": 0.9976 }, { "start": 2148.86, "end": 2149.86, "probability": 0.8715 }, { "start": 2149.96, "end": 2151.32, "probability": 0.8233 }, { "start": 2151.7, "end": 2152.92, "probability": 0.8025 }, { "start": 2153.0, "end": 2156.5, "probability": 0.9802 }, { "start": 2156.88, "end": 2157.72, "probability": 0.8316 }, { "start": 2157.9, "end": 2159.18, "probability": 0.7936 }, { "start": 2159.56, "end": 2162.4, "probability": 0.9975 }, { "start": 2162.84, "end": 2167.44, "probability": 0.9899 }, { "start": 2168.54, "end": 2169.32, "probability": 0.9822 }, { "start": 2169.87, "end": 2173.62, "probability": 0.9978 }, { "start": 2174.08, "end": 2177.08, "probability": 0.9948 }, { "start": 2177.46, "end": 2178.22, "probability": 0.7121 }, { "start": 2178.78, "end": 2179.9, "probability": 0.8739 }, { "start": 2179.98, "end": 2182.0, "probability": 0.98 }, { "start": 2182.34, "end": 2183.26, "probability": 0.9263 }, { "start": 2183.74, "end": 2184.38, "probability": 0.8613 }, { "start": 2184.48, "end": 2187.92, "probability": 0.9911 }, { "start": 2188.62, "end": 2192.12, "probability": 0.9703 }, { "start": 2192.28, "end": 2192.72, "probability": 0.7818 }, { "start": 2193.86, "end": 2194.56, "probability": 0.7428 }, { "start": 2195.22, "end": 2196.96, "probability": 0.9695 }, { "start": 2216.14, "end": 2217.38, "probability": 0.6449 }, { "start": 2217.94, "end": 2219.66, "probability": 0.7552 }, { "start": 2220.96, "end": 2224.16, "probability": 0.9828 }, { "start": 2225.08, "end": 2228.88, "probability": 0.981 }, { "start": 2229.58, "end": 2231.76, "probability": 0.9925 }, { "start": 2232.28, "end": 2234.64, "probability": 0.9548 }, { "start": 2235.7, "end": 2239.72, "probability": 0.9852 }, { "start": 2240.4, "end": 2244.54, "probability": 0.8523 }, { "start": 2245.78, "end": 2246.9, "probability": 0.468 }, { "start": 2247.4, "end": 2250.32, "probability": 0.9984 }, { "start": 2251.4, "end": 2252.3, "probability": 0.9883 }, { "start": 2252.4, "end": 2253.72, "probability": 0.5721 }, { "start": 2254.22, "end": 2256.54, "probability": 0.8203 }, { "start": 2257.1, "end": 2260.0, "probability": 0.8758 }, { "start": 2260.14, "end": 2260.82, "probability": 0.8744 }, { "start": 2261.26, "end": 2265.04, "probability": 0.9761 }, { "start": 2265.68, "end": 2268.64, "probability": 0.9504 }, { "start": 2269.88, "end": 2272.68, "probability": 0.8088 }, { "start": 2273.32, "end": 2275.16, "probability": 0.9048 }, { "start": 2275.92, "end": 2278.8, "probability": 0.9771 }, { "start": 2279.16, "end": 2280.9, "probability": 0.9854 }, { "start": 2281.76, "end": 2284.96, "probability": 0.9314 }, { "start": 2285.96, "end": 2287.2, "probability": 0.4806 }, { "start": 2287.32, "end": 2287.32, "probability": 0.6993 }, { "start": 2287.32, "end": 2289.2, "probability": 0.915 }, { "start": 2289.88, "end": 2290.54, "probability": 0.6293 }, { "start": 2291.6, "end": 2293.74, "probability": 0.983 }, { "start": 2294.42, "end": 2295.36, "probability": 0.9944 }, { "start": 2295.4, "end": 2296.94, "probability": 0.7724 }, { "start": 2297.18, "end": 2298.36, "probability": 0.8042 }, { "start": 2299.08, "end": 2301.42, "probability": 0.9672 }, { "start": 2302.38, "end": 2307.6, "probability": 0.9526 }, { "start": 2308.78, "end": 2309.32, "probability": 0.5265 }, { "start": 2309.92, "end": 2312.88, "probability": 0.9723 }, { "start": 2313.4, "end": 2315.7, "probability": 0.9241 }, { "start": 2316.66, "end": 2317.22, "probability": 0.7123 }, { "start": 2317.78, "end": 2319.54, "probability": 0.9933 }, { "start": 2320.48, "end": 2322.28, "probability": 0.9966 }, { "start": 2322.42, "end": 2327.48, "probability": 0.9545 }, { "start": 2327.92, "end": 2329.32, "probability": 0.6468 }, { "start": 2330.08, "end": 2330.82, "probability": 0.9179 }, { "start": 2331.66, "end": 2332.7, "probability": 0.7419 }, { "start": 2332.94, "end": 2335.12, "probability": 0.861 }, { "start": 2335.6, "end": 2337.98, "probability": 0.9934 }, { "start": 2339.54, "end": 2342.12, "probability": 0.9519 }, { "start": 2342.56, "end": 2345.56, "probability": 0.9736 }, { "start": 2346.54, "end": 2350.74, "probability": 0.9663 }, { "start": 2351.72, "end": 2355.52, "probability": 0.9855 }, { "start": 2357.02, "end": 2358.82, "probability": 0.981 }, { "start": 2359.18, "end": 2359.9, "probability": 0.636 }, { "start": 2359.98, "end": 2362.88, "probability": 0.9875 }, { "start": 2364.02, "end": 2367.06, "probability": 0.9871 }, { "start": 2368.34, "end": 2374.44, "probability": 0.9875 }, { "start": 2374.84, "end": 2376.02, "probability": 0.8385 }, { "start": 2376.48, "end": 2378.16, "probability": 0.9824 }, { "start": 2379.18, "end": 2379.7, "probability": 0.6579 }, { "start": 2380.36, "end": 2383.58, "probability": 0.6909 }, { "start": 2384.8, "end": 2388.24, "probability": 0.7031 }, { "start": 2388.58, "end": 2391.78, "probability": 0.834 }, { "start": 2392.08, "end": 2393.74, "probability": 0.9845 }, { "start": 2394.78, "end": 2397.48, "probability": 0.9863 }, { "start": 2398.5, "end": 2399.56, "probability": 0.5067 }, { "start": 2400.32, "end": 2403.18, "probability": 0.978 }, { "start": 2405.04, "end": 2407.94, "probability": 0.908 }, { "start": 2408.64, "end": 2411.86, "probability": 0.7579 }, { "start": 2412.58, "end": 2414.28, "probability": 0.9599 }, { "start": 2415.3, "end": 2417.72, "probability": 0.9565 }, { "start": 2418.34, "end": 2422.58, "probability": 0.8325 }, { "start": 2423.18, "end": 2429.52, "probability": 0.8879 }, { "start": 2430.54, "end": 2433.02, "probability": 0.9279 }, { "start": 2434.64, "end": 2436.4, "probability": 0.957 }, { "start": 2437.24, "end": 2439.78, "probability": 0.8385 }, { "start": 2440.74, "end": 2441.64, "probability": 0.6983 }, { "start": 2442.7, "end": 2443.02, "probability": 0.5232 }, { "start": 2443.18, "end": 2446.18, "probability": 0.9404 }, { "start": 2446.88, "end": 2449.76, "probability": 0.8599 }, { "start": 2450.58, "end": 2451.62, "probability": 0.8346 }, { "start": 2452.64, "end": 2456.98, "probability": 0.9567 }, { "start": 2457.04, "end": 2458.4, "probability": 0.6849 }, { "start": 2458.4, "end": 2461.31, "probability": 0.9565 }, { "start": 2461.54, "end": 2462.8, "probability": 0.9705 }, { "start": 2462.86, "end": 2466.18, "probability": 0.7325 }, { "start": 2466.24, "end": 2469.3, "probability": 0.9471 }, { "start": 2469.86, "end": 2472.06, "probability": 0.9456 }, { "start": 2472.2, "end": 2472.9, "probability": 0.7439 }, { "start": 2473.82, "end": 2474.3, "probability": 0.5851 }, { "start": 2474.32, "end": 2475.42, "probability": 0.8679 }, { "start": 2475.52, "end": 2478.02, "probability": 0.9535 }, { "start": 2478.02, "end": 2481.1, "probability": 0.8984 }, { "start": 2481.68, "end": 2486.4, "probability": 0.9719 }, { "start": 2486.92, "end": 2490.8, "probability": 0.9869 }, { "start": 2491.18, "end": 2491.48, "probability": 0.8107 }, { "start": 2492.18, "end": 2492.94, "probability": 0.6231 }, { "start": 2494.5, "end": 2496.94, "probability": 0.7922 }, { "start": 2497.06, "end": 2497.22, "probability": 0.0692 }, { "start": 2497.22, "end": 2497.96, "probability": 0.2855 }, { "start": 2498.18, "end": 2499.34, "probability": 0.4794 }, { "start": 2499.5, "end": 2503.32, "probability": 0.7232 }, { "start": 2503.46, "end": 2505.08, "probability": 0.6631 }, { "start": 2505.56, "end": 2506.08, "probability": 0.5366 }, { "start": 2507.28, "end": 2509.9, "probability": 0.5528 }, { "start": 2510.02, "end": 2510.44, "probability": 0.6022 }, { "start": 2510.7, "end": 2511.0, "probability": 0.3325 }, { "start": 2511.32, "end": 2514.0, "probability": 0.8543 }, { "start": 2514.9, "end": 2519.7, "probability": 0.6399 }, { "start": 2547.8, "end": 2548.77, "probability": 0.9386 }, { "start": 2549.24, "end": 2550.66, "probability": 0.9813 }, { "start": 2550.94, "end": 2551.6, "probability": 0.6593 }, { "start": 2553.22, "end": 2555.9, "probability": 0.9808 }, { "start": 2557.68, "end": 2560.28, "probability": 0.9987 }, { "start": 2561.12, "end": 2563.24, "probability": 0.9902 }, { "start": 2564.78, "end": 2568.98, "probability": 0.9954 }, { "start": 2569.48, "end": 2571.28, "probability": 0.9807 }, { "start": 2571.92, "end": 2575.72, "probability": 0.9295 }, { "start": 2576.54, "end": 2578.12, "probability": 0.9446 }, { "start": 2579.94, "end": 2581.94, "probability": 0.998 }, { "start": 2582.96, "end": 2584.46, "probability": 0.9869 }, { "start": 2585.08, "end": 2587.58, "probability": 0.9986 }, { "start": 2587.66, "end": 2588.84, "probability": 0.7751 }, { "start": 2590.0, "end": 2590.69, "probability": 0.9057 }, { "start": 2591.54, "end": 2594.34, "probability": 0.9775 }, { "start": 2596.1, "end": 2600.46, "probability": 0.9624 }, { "start": 2601.66, "end": 2602.32, "probability": 0.714 }, { "start": 2603.96, "end": 2604.88, "probability": 0.0445 }, { "start": 2605.82, "end": 2608.08, "probability": 0.7598 }, { "start": 2608.82, "end": 2609.04, "probability": 0.6838 }, { "start": 2610.02, "end": 2612.14, "probability": 0.7876 }, { "start": 2612.84, "end": 2613.96, "probability": 0.9163 }, { "start": 2614.46, "end": 2615.9, "probability": 0.9724 }, { "start": 2619.42, "end": 2623.08, "probability": 0.5004 }, { "start": 2624.18, "end": 2625.43, "probability": 0.8204 }, { "start": 2626.26, "end": 2627.1, "probability": 0.8697 }, { "start": 2627.64, "end": 2630.14, "probability": 0.9698 }, { "start": 2631.14, "end": 2633.4, "probability": 0.892 }, { "start": 2635.1, "end": 2636.1, "probability": 0.6576 }, { "start": 2636.86, "end": 2637.78, "probability": 0.766 }, { "start": 2639.08, "end": 2640.14, "probability": 0.9609 }, { "start": 2640.58, "end": 2643.74, "probability": 0.9717 }, { "start": 2644.68, "end": 2647.3, "probability": 0.9961 }, { "start": 2648.84, "end": 2650.14, "probability": 0.8011 }, { "start": 2650.9, "end": 2651.8, "probability": 0.8295 }, { "start": 2653.41, "end": 2655.26, "probability": 0.7861 }, { "start": 2659.86, "end": 2660.38, "probability": 0.5142 }, { "start": 2660.38, "end": 2660.38, "probability": 0.1324 }, { "start": 2660.38, "end": 2660.38, "probability": 0.7894 }, { "start": 2660.38, "end": 2660.38, "probability": 0.0678 }, { "start": 2660.8, "end": 2663.92, "probability": 0.9194 }, { "start": 2665.14, "end": 2667.86, "probability": 0.9814 }, { "start": 2668.12, "end": 2670.28, "probability": 0.9678 }, { "start": 2670.48, "end": 2671.42, "probability": 0.9744 }, { "start": 2672.72, "end": 2674.62, "probability": 0.6944 }, { "start": 2675.46, "end": 2677.66, "probability": 0.8528 }, { "start": 2678.36, "end": 2680.72, "probability": 0.9585 }, { "start": 2681.26, "end": 2683.26, "probability": 0.9891 }, { "start": 2685.4, "end": 2687.42, "probability": 0.9585 }, { "start": 2688.04, "end": 2688.68, "probability": 0.2128 }, { "start": 2689.74, "end": 2692.26, "probability": 0.9762 }, { "start": 2693.72, "end": 2694.18, "probability": 0.66 }, { "start": 2695.04, "end": 2695.28, "probability": 0.794 }, { "start": 2696.14, "end": 2697.61, "probability": 0.5411 }, { "start": 2699.18, "end": 2699.61, "probability": 0.5444 }, { "start": 2699.94, "end": 2702.38, "probability": 0.9876 }, { "start": 2702.92, "end": 2705.08, "probability": 0.98 }, { "start": 2706.56, "end": 2706.98, "probability": 0.7429 }, { "start": 2707.54, "end": 2711.06, "probability": 0.895 }, { "start": 2711.7, "end": 2713.54, "probability": 0.9344 }, { "start": 2714.24, "end": 2715.4, "probability": 0.9504 }, { "start": 2716.66, "end": 2720.54, "probability": 0.5616 }, { "start": 2721.54, "end": 2724.68, "probability": 0.8604 }, { "start": 2726.04, "end": 2730.28, "probability": 0.8634 }, { "start": 2731.3, "end": 2733.34, "probability": 0.9731 }, { "start": 2733.8, "end": 2736.02, "probability": 0.9881 }, { "start": 2737.66, "end": 2742.52, "probability": 0.8872 }, { "start": 2743.06, "end": 2748.04, "probability": 0.9912 }, { "start": 2748.76, "end": 2752.04, "probability": 0.9912 }, { "start": 2752.74, "end": 2756.2, "probability": 0.5846 }, { "start": 2756.34, "end": 2757.12, "probability": 0.7373 }, { "start": 2757.52, "end": 2758.02, "probability": 0.7679 }, { "start": 2758.74, "end": 2760.5, "probability": 0.6649 }, { "start": 2761.2, "end": 2762.78, "probability": 0.9807 }, { "start": 2763.88, "end": 2766.48, "probability": 0.7976 }, { "start": 2767.62, "end": 2770.96, "probability": 0.9745 }, { "start": 2772.96, "end": 2777.78, "probability": 0.7931 }, { "start": 2778.36, "end": 2780.46, "probability": 0.9734 }, { "start": 2781.88, "end": 2782.62, "probability": 0.6715 }, { "start": 2783.46, "end": 2784.3, "probability": 0.7698 }, { "start": 2784.8, "end": 2787.38, "probability": 0.9942 }, { "start": 2787.88, "end": 2789.1, "probability": 0.8557 }, { "start": 2790.58, "end": 2793.38, "probability": 0.7395 }, { "start": 2794.68, "end": 2795.4, "probability": 0.9524 }, { "start": 2796.02, "end": 2797.82, "probability": 0.4082 }, { "start": 2798.4, "end": 2801.44, "probability": 0.9951 }, { "start": 2802.56, "end": 2803.62, "probability": 0.926 }, { "start": 2805.08, "end": 2806.76, "probability": 0.7999 }, { "start": 2807.7, "end": 2809.79, "probability": 0.948 }, { "start": 2810.58, "end": 2812.72, "probability": 0.8145 }, { "start": 2814.48, "end": 2816.34, "probability": 0.7937 }, { "start": 2817.06, "end": 2819.08, "probability": 0.6894 }, { "start": 2819.82, "end": 2823.18, "probability": 0.9325 }, { "start": 2823.9, "end": 2825.64, "probability": 0.9472 }, { "start": 2826.22, "end": 2829.3, "probability": 0.7388 }, { "start": 2831.16, "end": 2832.08, "probability": 0.4562 }, { "start": 2832.2, "end": 2833.2, "probability": 0.6493 }, { "start": 2833.2, "end": 2838.92, "probability": 0.9806 }, { "start": 2839.86, "end": 2840.56, "probability": 0.6077 }, { "start": 2841.1, "end": 2841.4, "probability": 0.653 }, { "start": 2842.0, "end": 2845.69, "probability": 0.9146 }, { "start": 2847.38, "end": 2850.84, "probability": 0.9807 }, { "start": 2852.74, "end": 2853.06, "probability": 0.5908 }, { "start": 2854.32, "end": 2855.34, "probability": 0.8933 }, { "start": 2856.08, "end": 2857.38, "probability": 0.9888 }, { "start": 2857.96, "end": 2858.76, "probability": 0.8654 }, { "start": 2860.56, "end": 2863.9, "probability": 0.9878 }, { "start": 2864.82, "end": 2866.66, "probability": 0.9927 }, { "start": 2866.84, "end": 2869.94, "probability": 0.8662 }, { "start": 2870.74, "end": 2871.74, "probability": 0.9946 }, { "start": 2872.94, "end": 2874.12, "probability": 0.9047 }, { "start": 2875.7, "end": 2878.02, "probability": 0.9412 }, { "start": 2878.4, "end": 2880.26, "probability": 0.9941 }, { "start": 2880.94, "end": 2883.28, "probability": 0.9856 }, { "start": 2884.12, "end": 2885.6, "probability": 0.9872 }, { "start": 2886.14, "end": 2886.46, "probability": 0.9469 }, { "start": 2887.74, "end": 2888.56, "probability": 0.9456 }, { "start": 2890.12, "end": 2891.76, "probability": 0.8696 }, { "start": 2892.16, "end": 2894.17, "probability": 0.9589 }, { "start": 2894.98, "end": 2897.76, "probability": 0.9739 }, { "start": 2898.28, "end": 2901.38, "probability": 0.9919 }, { "start": 2901.82, "end": 2902.84, "probability": 0.886 }, { "start": 2903.34, "end": 2904.34, "probability": 0.9683 }, { "start": 2905.26, "end": 2905.9, "probability": 0.2517 }, { "start": 2906.08, "end": 2906.44, "probability": 0.72 }, { "start": 2906.48, "end": 2906.94, "probability": 0.8289 }, { "start": 2907.14, "end": 2908.75, "probability": 0.9919 }, { "start": 2908.92, "end": 2910.34, "probability": 0.8424 }, { "start": 2910.5, "end": 2911.58, "probability": 0.4918 }, { "start": 2911.66, "end": 2913.24, "probability": 0.8239 }, { "start": 2913.66, "end": 2915.74, "probability": 0.1022 }, { "start": 2915.92, "end": 2916.0, "probability": 0.0424 }, { "start": 2916.0, "end": 2916.6, "probability": 0.2589 }, { "start": 2916.7, "end": 2920.0, "probability": 0.7795 }, { "start": 2920.1, "end": 2920.58, "probability": 0.0021 }, { "start": 2920.7, "end": 2922.32, "probability": 0.9575 }, { "start": 2922.5, "end": 2924.06, "probability": 0.0292 }, { "start": 2924.16, "end": 2925.72, "probability": 0.0184 }, { "start": 2926.26, "end": 2926.26, "probability": 0.3014 }, { "start": 2926.26, "end": 2926.72, "probability": 0.5001 }, { "start": 2926.84, "end": 2928.54, "probability": 0.7264 }, { "start": 2928.86, "end": 2931.56, "probability": 0.5911 }, { "start": 2932.62, "end": 2933.2, "probability": 0.7637 }, { "start": 2933.48, "end": 2933.88, "probability": 0.769 }, { "start": 2934.76, "end": 2939.02, "probability": 0.9086 }, { "start": 2939.72, "end": 2941.72, "probability": 0.9992 }, { "start": 2942.3, "end": 2945.3, "probability": 0.9935 }, { "start": 2946.12, "end": 2949.38, "probability": 0.9974 }, { "start": 2950.88, "end": 2953.82, "probability": 0.9689 }, { "start": 2954.04, "end": 2955.42, "probability": 0.999 }, { "start": 2955.62, "end": 2956.76, "probability": 0.9961 }, { "start": 2957.62, "end": 2960.58, "probability": 0.9951 }, { "start": 2960.84, "end": 2963.08, "probability": 0.9108 }, { "start": 2963.62, "end": 2965.5, "probability": 0.9857 }, { "start": 2966.02, "end": 2967.22, "probability": 0.9276 }, { "start": 2967.56, "end": 2969.4, "probability": 0.9172 }, { "start": 2970.12, "end": 2973.68, "probability": 0.9932 }, { "start": 2974.32, "end": 2977.66, "probability": 0.9852 }, { "start": 2978.3, "end": 2984.44, "probability": 0.9889 }, { "start": 2985.06, "end": 2987.58, "probability": 0.9923 }, { "start": 2987.58, "end": 2990.29, "probability": 0.9939 }, { "start": 2991.68, "end": 2995.36, "probability": 0.9749 }, { "start": 2995.48, "end": 2996.26, "probability": 0.9557 }, { "start": 2998.2, "end": 3000.74, "probability": 0.9878 }, { "start": 3000.98, "end": 3002.98, "probability": 0.9675 }, { "start": 3003.5, "end": 3006.06, "probability": 0.9981 }, { "start": 3006.58, "end": 3008.04, "probability": 0.693 }, { "start": 3008.36, "end": 3010.7, "probability": 0.9507 }, { "start": 3011.16, "end": 3013.34, "probability": 0.9158 }, { "start": 3014.22, "end": 3015.24, "probability": 0.707 }, { "start": 3015.9, "end": 3017.1, "probability": 0.8543 }, { "start": 3017.64, "end": 3021.12, "probability": 0.9956 }, { "start": 3021.94, "end": 3025.04, "probability": 0.9603 }, { "start": 3025.1, "end": 3026.88, "probability": 0.9362 }, { "start": 3027.96, "end": 3031.22, "probability": 0.9462 }, { "start": 3031.68, "end": 3035.34, "probability": 0.9717 }, { "start": 3035.92, "end": 3037.0, "probability": 0.9972 }, { "start": 3037.74, "end": 3038.94, "probability": 0.6661 }, { "start": 3039.44, "end": 3044.1, "probability": 0.9982 }, { "start": 3044.1, "end": 3046.72, "probability": 0.8236 }, { "start": 3047.12, "end": 3048.9, "probability": 0.7848 }, { "start": 3049.2, "end": 3049.72, "probability": 0.9072 }, { "start": 3049.88, "end": 3051.26, "probability": 0.647 }, { "start": 3051.54, "end": 3054.5, "probability": 0.9602 }, { "start": 3055.06, "end": 3055.86, "probability": 0.9088 }, { "start": 3056.4, "end": 3057.68, "probability": 0.9929 }, { "start": 3058.66, "end": 3060.79, "probability": 0.9812 }, { "start": 3061.62, "end": 3064.58, "probability": 0.9989 }, { "start": 3065.22, "end": 3067.0, "probability": 0.998 }, { "start": 3067.36, "end": 3067.96, "probability": 0.9647 }, { "start": 3068.2, "end": 3069.6, "probability": 0.9731 }, { "start": 3069.98, "end": 3071.3, "probability": 0.7597 }, { "start": 3071.86, "end": 3076.2, "probability": 0.9958 }, { "start": 3076.78, "end": 3077.38, "probability": 0.7946 }, { "start": 3077.94, "end": 3078.66, "probability": 0.9818 }, { "start": 3079.68, "end": 3081.98, "probability": 0.8656 }, { "start": 3082.7, "end": 3083.48, "probability": 0.7508 }, { "start": 3085.04, "end": 3087.3, "probability": 0.7757 }, { "start": 3088.1, "end": 3092.62, "probability": 0.9946 }, { "start": 3092.88, "end": 3099.88, "probability": 0.9775 }, { "start": 3099.88, "end": 3106.08, "probability": 0.9756 }, { "start": 3107.1, "end": 3108.74, "probability": 0.9879 }, { "start": 3109.44, "end": 3114.08, "probability": 0.9921 }, { "start": 3114.08, "end": 3119.58, "probability": 0.9904 }, { "start": 3119.58, "end": 3124.62, "probability": 0.9366 }, { "start": 3127.48, "end": 3128.8, "probability": 0.1746 }, { "start": 3129.14, "end": 3129.46, "probability": 0.9146 }, { "start": 3131.64, "end": 3132.06, "probability": 0.307 }, { "start": 3132.36, "end": 3133.02, "probability": 0.8038 }, { "start": 3133.42, "end": 3137.14, "probability": 0.8826 }, { "start": 3137.86, "end": 3139.04, "probability": 0.9614 }, { "start": 3139.14, "end": 3141.88, "probability": 0.8882 }, { "start": 3141.92, "end": 3142.88, "probability": 0.8778 }, { "start": 3143.5, "end": 3145.0, "probability": 0.9723 }, { "start": 3145.54, "end": 3149.34, "probability": 0.9573 }, { "start": 3150.14, "end": 3154.56, "probability": 0.9797 }, { "start": 3155.24, "end": 3158.42, "probability": 0.9927 }, { "start": 3159.28, "end": 3159.36, "probability": 0.2819 }, { "start": 3159.36, "end": 3159.36, "probability": 0.1413 }, { "start": 3159.36, "end": 3159.96, "probability": 0.6882 }, { "start": 3160.3, "end": 3161.04, "probability": 0.4956 }, { "start": 3161.2, "end": 3163.36, "probability": 0.7267 }, { "start": 3165.76, "end": 3167.3, "probability": 0.8947 }, { "start": 3173.6, "end": 3174.62, "probability": 0.6615 }, { "start": 3177.62, "end": 3179.04, "probability": 0.9041 }, { "start": 3179.84, "end": 3180.7, "probability": 0.6637 }, { "start": 3182.12, "end": 3186.94, "probability": 0.9926 }, { "start": 3188.02, "end": 3190.18, "probability": 0.9962 }, { "start": 3191.54, "end": 3194.92, "probability": 0.8487 }, { "start": 3195.6, "end": 3195.68, "probability": 0.0319 }, { "start": 3195.68, "end": 3198.82, "probability": 0.9575 }, { "start": 3200.06, "end": 3201.42, "probability": 0.9961 }, { "start": 3202.6, "end": 3205.76, "probability": 0.9944 }, { "start": 3207.34, "end": 3208.48, "probability": 0.7642 }, { "start": 3208.9, "end": 3209.7, "probability": 0.9033 }, { "start": 3210.12, "end": 3212.1, "probability": 0.9866 }, { "start": 3212.46, "end": 3214.42, "probability": 0.9874 }, { "start": 3215.0, "end": 3220.78, "probability": 0.9461 }, { "start": 3221.34, "end": 3226.22, "probability": 0.9649 }, { "start": 3227.06, "end": 3230.12, "probability": 0.9966 }, { "start": 3230.4, "end": 3234.06, "probability": 0.9997 }, { "start": 3234.74, "end": 3235.68, "probability": 0.9976 }, { "start": 3236.22, "end": 3240.16, "probability": 0.9908 }, { "start": 3240.98, "end": 3245.14, "probability": 0.9741 }, { "start": 3246.1, "end": 3246.28, "probability": 0.4212 }, { "start": 3246.56, "end": 3246.86, "probability": 0.6362 }, { "start": 3247.16, "end": 3247.32, "probability": 0.1409 }, { "start": 3247.68, "end": 3247.84, "probability": 0.2441 }, { "start": 3248.28, "end": 3248.68, "probability": 0.7403 }, { "start": 3249.48, "end": 3252.26, "probability": 0.9173 }, { "start": 3253.1, "end": 3256.82, "probability": 0.9987 }, { "start": 3256.84, "end": 3262.12, "probability": 0.9289 }, { "start": 3262.7, "end": 3265.36, "probability": 0.9811 }, { "start": 3265.96, "end": 3268.46, "probability": 0.9272 }, { "start": 3269.12, "end": 3271.94, "probability": 0.9902 }, { "start": 3272.22, "end": 3274.92, "probability": 0.9982 }, { "start": 3275.74, "end": 3279.8, "probability": 0.9897 }, { "start": 3280.54, "end": 3281.49, "probability": 0.686 }, { "start": 3282.92, "end": 3286.62, "probability": 0.8322 }, { "start": 3286.82, "end": 3290.02, "probability": 0.9207 }, { "start": 3291.32, "end": 3295.16, "probability": 0.9802 }, { "start": 3296.0, "end": 3300.17, "probability": 0.9863 }, { "start": 3301.0, "end": 3302.96, "probability": 0.9988 }, { "start": 3303.66, "end": 3306.34, "probability": 0.9941 }, { "start": 3307.22, "end": 3308.8, "probability": 0.9962 }, { "start": 3309.46, "end": 3312.24, "probability": 0.9943 }, { "start": 3313.52, "end": 3316.5, "probability": 0.9375 }, { "start": 3317.74, "end": 3318.46, "probability": 0.3604 }, { "start": 3319.04, "end": 3322.54, "probability": 0.9467 }, { "start": 3324.72, "end": 3329.36, "probability": 0.674 }, { "start": 3330.0, "end": 3332.66, "probability": 0.9515 }, { "start": 3333.32, "end": 3335.74, "probability": 0.9799 }, { "start": 3336.12, "end": 3338.1, "probability": 0.9305 }, { "start": 3338.86, "end": 3342.48, "probability": 0.7891 }, { "start": 3343.16, "end": 3346.88, "probability": 0.986 }, { "start": 3347.78, "end": 3351.16, "probability": 0.9912 }, { "start": 3351.28, "end": 3352.93, "probability": 0.8502 }, { "start": 3354.3, "end": 3357.12, "probability": 0.954 }, { "start": 3358.24, "end": 3361.18, "probability": 0.9976 }, { "start": 3361.72, "end": 3363.9, "probability": 0.9954 }, { "start": 3365.16, "end": 3371.08, "probability": 0.9954 }, { "start": 3371.68, "end": 3374.26, "probability": 0.7585 }, { "start": 3374.96, "end": 3376.06, "probability": 0.724 }, { "start": 3376.26, "end": 3376.86, "probability": 0.7806 }, { "start": 3377.0, "end": 3379.88, "probability": 0.9662 }, { "start": 3380.28, "end": 3382.46, "probability": 0.7874 }, { "start": 3383.22, "end": 3384.52, "probability": 0.8509 }, { "start": 3384.74, "end": 3389.98, "probability": 0.9747 }, { "start": 3391.3, "end": 3395.1, "probability": 0.9122 }, { "start": 3396.36, "end": 3397.45, "probability": 0.9831 }, { "start": 3399.25, "end": 3401.02, "probability": 0.6644 }, { "start": 3401.86, "end": 3403.28, "probability": 0.9956 }, { "start": 3404.64, "end": 3406.55, "probability": 0.9753 }, { "start": 3407.84, "end": 3408.41, "probability": 0.9897 }, { "start": 3409.82, "end": 3412.5, "probability": 0.9203 }, { "start": 3413.24, "end": 3414.98, "probability": 0.9827 }, { "start": 3415.96, "end": 3416.42, "probability": 0.9385 }, { "start": 3417.34, "end": 3422.4, "probability": 0.7544 }, { "start": 3423.24, "end": 3428.26, "probability": 0.7169 }, { "start": 3428.32, "end": 3430.58, "probability": 0.8525 }, { "start": 3431.37, "end": 3439.12, "probability": 0.9812 }, { "start": 3440.02, "end": 3446.06, "probability": 0.946 }, { "start": 3446.7, "end": 3447.0, "probability": 0.438 }, { "start": 3447.46, "end": 3453.34, "probability": 0.977 }, { "start": 3454.54, "end": 3458.0, "probability": 0.9899 }, { "start": 3458.0, "end": 3460.14, "probability": 0.9963 }, { "start": 3460.88, "end": 3461.56, "probability": 0.7647 }, { "start": 3462.36, "end": 3466.42, "probability": 0.9508 }, { "start": 3467.2, "end": 3469.16, "probability": 0.8416 }, { "start": 3470.08, "end": 3472.36, "probability": 0.9467 }, { "start": 3472.68, "end": 3473.46, "probability": 0.824 }, { "start": 3473.96, "end": 3475.98, "probability": 0.9342 }, { "start": 3476.32, "end": 3481.06, "probability": 0.9878 }, { "start": 3481.14, "end": 3485.0, "probability": 0.9989 }, { "start": 3485.6, "end": 3485.86, "probability": 0.7274 }, { "start": 3486.52, "end": 3487.02, "probability": 0.6883 }, { "start": 3487.02, "end": 3488.68, "probability": 0.8625 }, { "start": 3489.96, "end": 3491.42, "probability": 0.9297 }, { "start": 3526.04, "end": 3529.02, "probability": 0.5893 }, { "start": 3529.86, "end": 3535.98, "probability": 0.7643 }, { "start": 3536.82, "end": 3540.76, "probability": 0.9595 }, { "start": 3541.36, "end": 3543.08, "probability": 0.9967 }, { "start": 3543.92, "end": 3546.88, "probability": 0.7296 }, { "start": 3547.14, "end": 3549.62, "probability": 0.5117 }, { "start": 3549.88, "end": 3551.12, "probability": 0.9864 }, { "start": 3551.3, "end": 3552.46, "probability": 0.9183 }, { "start": 3553.38, "end": 3556.96, "probability": 0.9434 }, { "start": 3557.86, "end": 3560.96, "probability": 0.9725 }, { "start": 3561.58, "end": 3563.88, "probability": 0.8427 }, { "start": 3564.5, "end": 3566.86, "probability": 0.8268 }, { "start": 3567.66, "end": 3569.68, "probability": 0.7057 }, { "start": 3570.6, "end": 3573.52, "probability": 0.9878 }, { "start": 3573.76, "end": 3577.98, "probability": 0.9585 }, { "start": 3578.64, "end": 3580.8, "probability": 0.99 }, { "start": 3581.62, "end": 3584.02, "probability": 0.9956 }, { "start": 3584.1, "end": 3587.5, "probability": 0.6713 }, { "start": 3587.76, "end": 3589.68, "probability": 0.8267 }, { "start": 3589.78, "end": 3593.4, "probability": 0.988 }, { "start": 3593.6, "end": 3594.58, "probability": 0.8561 }, { "start": 3594.66, "end": 3596.82, "probability": 0.8373 }, { "start": 3597.62, "end": 3602.08, "probability": 0.9763 }, { "start": 3602.2, "end": 3603.34, "probability": 0.8497 }, { "start": 3603.74, "end": 3605.46, "probability": 0.813 }, { "start": 3606.08, "end": 3613.28, "probability": 0.9627 }, { "start": 3613.76, "end": 3616.22, "probability": 0.9937 }, { "start": 3616.22, "end": 3619.46, "probability": 0.999 }, { "start": 3619.6, "end": 3620.16, "probability": 0.6388 }, { "start": 3620.46, "end": 3621.84, "probability": 0.8642 }, { "start": 3622.42, "end": 3623.48, "probability": 0.917 }, { "start": 3623.72, "end": 3626.92, "probability": 0.979 }, { "start": 3627.08, "end": 3628.2, "probability": 0.8474 }, { "start": 3628.2, "end": 3631.04, "probability": 0.9771 }, { "start": 3631.26, "end": 3632.88, "probability": 0.9722 }, { "start": 3634.04, "end": 3636.5, "probability": 0.9517 }, { "start": 3637.16, "end": 3641.38, "probability": 0.725 }, { "start": 3642.02, "end": 3646.02, "probability": 0.8938 }, { "start": 3646.38, "end": 3648.34, "probability": 0.526 }, { "start": 3649.0, "end": 3650.5, "probability": 0.5008 }, { "start": 3650.68, "end": 3652.0, "probability": 0.7675 }, { "start": 3652.08, "end": 3653.28, "probability": 0.7407 }, { "start": 3653.68, "end": 3655.86, "probability": 0.6669 }, { "start": 3656.54, "end": 3662.34, "probability": 0.7624 }, { "start": 3662.78, "end": 3664.64, "probability": 0.9932 }, { "start": 3665.6, "end": 3668.98, "probability": 0.9836 }, { "start": 3669.5, "end": 3669.87, "probability": 0.075 }, { "start": 3671.12, "end": 3674.58, "probability": 0.9004 }, { "start": 3675.24, "end": 3678.18, "probability": 0.9792 }, { "start": 3679.08, "end": 3679.76, "probability": 0.9353 }, { "start": 3680.58, "end": 3681.1, "probability": 0.9556 }, { "start": 3682.46, "end": 3686.64, "probability": 0.9977 }, { "start": 3687.48, "end": 3692.7, "probability": 0.9985 }, { "start": 3693.12, "end": 3696.1, "probability": 0.9917 }, { "start": 3696.38, "end": 3698.12, "probability": 0.9971 }, { "start": 3698.66, "end": 3700.1, "probability": 0.9532 }, { "start": 3700.84, "end": 3703.94, "probability": 0.8679 }, { "start": 3704.48, "end": 3710.04, "probability": 0.9756 }, { "start": 3710.48, "end": 3713.49, "probability": 0.9883 }, { "start": 3713.86, "end": 3717.86, "probability": 0.9976 }, { "start": 3718.46, "end": 3719.94, "probability": 0.7135 }, { "start": 3720.0, "end": 3723.7, "probability": 0.9883 }, { "start": 3724.22, "end": 3726.96, "probability": 0.9961 }, { "start": 3726.96, "end": 3729.74, "probability": 0.9985 }, { "start": 3730.08, "end": 3733.96, "probability": 0.9939 }, { "start": 3733.96, "end": 3738.14, "probability": 0.8858 }, { "start": 3738.66, "end": 3740.94, "probability": 0.9905 }, { "start": 3741.24, "end": 3744.0, "probability": 0.9983 }, { "start": 3744.0, "end": 3747.76, "probability": 0.6914 }, { "start": 3748.5, "end": 3750.94, "probability": 0.9628 }, { "start": 3751.08, "end": 3751.88, "probability": 0.7232 }, { "start": 3752.32, "end": 3757.78, "probability": 0.9854 }, { "start": 3758.16, "end": 3759.43, "probability": 0.9971 }, { "start": 3760.64, "end": 3761.1, "probability": 0.7845 }, { "start": 3761.7, "end": 3762.86, "probability": 0.7128 }, { "start": 3764.12, "end": 3767.34, "probability": 0.989 }, { "start": 3769.95, "end": 3770.32, "probability": 0.0321 }, { "start": 3770.32, "end": 3771.2, "probability": 0.6475 }, { "start": 3771.76, "end": 3772.92, "probability": 0.6665 }, { "start": 3774.22, "end": 3776.3, "probability": 0.9713 }, { "start": 3777.44, "end": 3783.66, "probability": 0.8438 }, { "start": 3783.74, "end": 3784.46, "probability": 0.7035 }, { "start": 3785.1, "end": 3788.82, "probability": 0.6894 }, { "start": 3789.56, "end": 3790.52, "probability": 0.6722 }, { "start": 3790.56, "end": 3791.32, "probability": 0.6984 }, { "start": 3791.8, "end": 3792.7, "probability": 0.8628 }, { "start": 3793.1, "end": 3798.6, "probability": 0.9727 }, { "start": 3799.1, "end": 3800.94, "probability": 0.8704 }, { "start": 3801.4, "end": 3802.9, "probability": 0.8842 }, { "start": 3803.48, "end": 3804.98, "probability": 0.9933 }, { "start": 3805.12, "end": 3807.3, "probability": 0.9961 }, { "start": 3807.44, "end": 3808.3, "probability": 0.8802 }, { "start": 3808.38, "end": 3809.2, "probability": 0.9785 }, { "start": 3809.7, "end": 3810.84, "probability": 0.8907 }, { "start": 3811.38, "end": 3815.08, "probability": 0.9569 }, { "start": 3815.87, "end": 3819.2, "probability": 0.9775 }, { "start": 3819.28, "end": 3819.6, "probability": 0.8478 }, { "start": 3819.64, "end": 3821.08, "probability": 0.9841 }, { "start": 3821.74, "end": 3822.42, "probability": 0.9839 }, { "start": 3823.2, "end": 3825.16, "probability": 0.9316 }, { "start": 3825.34, "end": 3826.12, "probability": 0.9935 }, { "start": 3826.22, "end": 3830.18, "probability": 0.9501 }, { "start": 3830.76, "end": 3833.72, "probability": 0.999 }, { "start": 3834.48, "end": 3839.22, "probability": 0.9839 }, { "start": 3839.74, "end": 3842.9, "probability": 0.9668 }, { "start": 3843.5, "end": 3847.68, "probability": 0.833 }, { "start": 3848.26, "end": 3850.28, "probability": 0.8074 }, { "start": 3851.06, "end": 3855.24, "probability": 0.9028 }, { "start": 3855.94, "end": 3856.76, "probability": 0.4856 }, { "start": 3856.98, "end": 3862.0, "probability": 0.974 }, { "start": 3862.0, "end": 3866.46, "probability": 0.9775 }, { "start": 3866.78, "end": 3867.2, "probability": 0.8422 }, { "start": 3869.28, "end": 3870.02, "probability": 0.7109 }, { "start": 3870.5, "end": 3871.62, "probability": 0.965 }, { "start": 3872.76, "end": 3873.6, "probability": 0.4992 }, { "start": 3874.16, "end": 3875.62, "probability": 0.7072 }, { "start": 3875.94, "end": 3876.34, "probability": 0.7943 }, { "start": 3892.48, "end": 3894.7, "probability": 0.7074 }, { "start": 3895.86, "end": 3901.08, "probability": 0.9421 }, { "start": 3902.24, "end": 3902.94, "probability": 0.8861 }, { "start": 3903.58, "end": 3905.26, "probability": 0.9835 }, { "start": 3905.9, "end": 3909.18, "probability": 0.9814 }, { "start": 3910.16, "end": 3911.72, "probability": 0.8871 }, { "start": 3912.72, "end": 3915.44, "probability": 0.985 }, { "start": 3916.1, "end": 3917.6, "probability": 0.9914 }, { "start": 3918.52, "end": 3919.76, "probability": 0.977 }, { "start": 3920.76, "end": 3921.02, "probability": 0.9571 }, { "start": 3921.64, "end": 3923.78, "probability": 0.998 }, { "start": 3924.6, "end": 3925.48, "probability": 0.7785 }, { "start": 3926.34, "end": 3926.7, "probability": 0.7929 }, { "start": 3928.48, "end": 3931.06, "probability": 0.8226 }, { "start": 3931.56, "end": 3933.22, "probability": 0.9849 }, { "start": 3933.9, "end": 3934.04, "probability": 0.458 }, { "start": 3934.94, "end": 3938.82, "probability": 0.9902 }, { "start": 3939.64, "end": 3942.88, "probability": 0.8866 }, { "start": 3943.56, "end": 3945.64, "probability": 0.9407 }, { "start": 3946.24, "end": 3947.52, "probability": 0.9386 }, { "start": 3948.12, "end": 3949.34, "probability": 0.9191 }, { "start": 3950.58, "end": 3953.78, "probability": 0.9808 }, { "start": 3954.7, "end": 3956.36, "probability": 0.9476 }, { "start": 3957.44, "end": 3961.53, "probability": 0.96 }, { "start": 3961.94, "end": 3962.4, "probability": 0.8775 }, { "start": 3962.58, "end": 3963.02, "probability": 0.9351 }, { "start": 3964.56, "end": 3966.5, "probability": 0.9785 }, { "start": 3967.04, "end": 3969.4, "probability": 0.9312 }, { "start": 3969.94, "end": 3970.84, "probability": 0.8007 }, { "start": 3972.3, "end": 3976.52, "probability": 0.9539 }, { "start": 3977.48, "end": 3977.98, "probability": 0.812 }, { "start": 3978.5, "end": 3978.8, "probability": 0.7719 }, { "start": 3979.9, "end": 3980.44, "probability": 0.7281 }, { "start": 3981.94, "end": 3983.65, "probability": 0.5825 }, { "start": 3984.76, "end": 3985.06, "probability": 0.9194 }, { "start": 3985.6, "end": 3986.12, "probability": 0.815 }, { "start": 3987.0, "end": 3988.97, "probability": 0.8028 }, { "start": 3989.8, "end": 3992.6, "probability": 0.7353 }, { "start": 3994.06, "end": 3996.24, "probability": 0.9307 }, { "start": 3997.36, "end": 3998.92, "probability": 0.9767 }, { "start": 3999.7, "end": 4000.72, "probability": 0.8856 }, { "start": 4001.42, "end": 4002.26, "probability": 0.9878 }, { "start": 4003.06, "end": 4004.0, "probability": 0.9604 }, { "start": 4004.78, "end": 4006.12, "probability": 0.9894 }, { "start": 4006.84, "end": 4007.76, "probability": 0.958 }, { "start": 4008.62, "end": 4010.02, "probability": 0.9884 }, { "start": 4011.04, "end": 4012.04, "probability": 0.9767 }, { "start": 4012.56, "end": 4013.18, "probability": 0.9005 }, { "start": 4013.98, "end": 4015.76, "probability": 0.907 }, { "start": 4016.48, "end": 4022.38, "probability": 0.8469 }, { "start": 4023.38, "end": 4025.44, "probability": 0.9656 }, { "start": 4025.54, "end": 4027.54, "probability": 0.9171 }, { "start": 4028.08, "end": 4030.74, "probability": 0.8685 }, { "start": 4031.44, "end": 4033.26, "probability": 0.9777 }, { "start": 4033.26, "end": 4033.98, "probability": 0.9316 }, { "start": 4034.14, "end": 4035.48, "probability": 0.8749 }, { "start": 4036.0, "end": 4036.58, "probability": 0.9805 }, { "start": 4037.54, "end": 4037.88, "probability": 0.731 }, { "start": 4038.4, "end": 4038.96, "probability": 0.9553 }, { "start": 4039.44, "end": 4040.04, "probability": 0.9036 }, { "start": 4040.4, "end": 4041.22, "probability": 0.7877 }, { "start": 4041.34, "end": 4042.22, "probability": 0.9838 }, { "start": 4042.28, "end": 4043.06, "probability": 0.6427 }, { "start": 4043.56, "end": 4044.94, "probability": 0.8253 }, { "start": 4045.2, "end": 4048.08, "probability": 0.9255 }, { "start": 4048.78, "end": 4049.24, "probability": 0.9312 }, { "start": 4050.48, "end": 4051.88, "probability": 0.9718 }, { "start": 4052.36, "end": 4054.34, "probability": 0.9973 }, { "start": 4055.04, "end": 4056.52, "probability": 0.7285 }, { "start": 4058.24, "end": 4063.42, "probability": 0.9868 }, { "start": 4063.76, "end": 4067.5, "probability": 0.9576 }, { "start": 4068.66, "end": 4069.0, "probability": 0.5745 }, { "start": 4071.54, "end": 4075.44, "probability": 0.9971 }, { "start": 4076.1, "end": 4076.48, "probability": 0.9871 }, { "start": 4077.22, "end": 4078.42, "probability": 0.9951 }, { "start": 4078.52, "end": 4080.48, "probability": 0.9594 }, { "start": 4081.16, "end": 4082.44, "probability": 0.9526 }, { "start": 4083.52, "end": 4087.26, "probability": 0.9951 }, { "start": 4087.58, "end": 4088.54, "probability": 0.9731 }, { "start": 4088.62, "end": 4089.74, "probability": 0.9246 }, { "start": 4090.82, "end": 4091.96, "probability": 0.9324 }, { "start": 4092.52, "end": 4092.84, "probability": 0.9573 }, { "start": 4093.64, "end": 4095.08, "probability": 0.9911 }, { "start": 4095.48, "end": 4099.32, "probability": 0.9639 }, { "start": 4100.46, "end": 4101.06, "probability": 0.5463 }, { "start": 4101.62, "end": 4102.6, "probability": 0.9945 }, { "start": 4102.6, "end": 4105.76, "probability": 0.7992 }, { "start": 4106.16, "end": 4107.02, "probability": 0.9302 }, { "start": 4107.42, "end": 4109.28, "probability": 0.7976 }, { "start": 4110.22, "end": 4111.14, "probability": 0.7645 }, { "start": 4111.2, "end": 4113.52, "probability": 0.9941 }, { "start": 4113.7, "end": 4114.36, "probability": 0.8099 }, { "start": 4114.92, "end": 4116.9, "probability": 0.8381 }, { "start": 4117.56, "end": 4120.72, "probability": 0.9645 }, { "start": 4122.1, "end": 4124.16, "probability": 0.8818 }, { "start": 4124.26, "end": 4125.1, "probability": 0.9302 }, { "start": 4125.66, "end": 4126.55, "probability": 0.9206 }, { "start": 4127.6, "end": 4129.68, "probability": 0.9299 }, { "start": 4131.02, "end": 4131.92, "probability": 0.9864 }, { "start": 4132.02, "end": 4132.76, "probability": 0.9241 }, { "start": 4133.14, "end": 4134.04, "probability": 0.9886 }, { "start": 4134.14, "end": 4138.22, "probability": 0.9307 }, { "start": 4139.14, "end": 4140.08, "probability": 0.9556 }, { "start": 4140.2, "end": 4141.36, "probability": 0.9927 }, { "start": 4142.16, "end": 4142.26, "probability": 0.7795 }, { "start": 4142.38, "end": 4144.02, "probability": 0.9209 }, { "start": 4144.12, "end": 4144.68, "probability": 0.9257 }, { "start": 4144.74, "end": 4144.9, "probability": 0.641 }, { "start": 4144.96, "end": 4146.0, "probability": 0.9778 }, { "start": 4146.98, "end": 4148.48, "probability": 0.9498 }, { "start": 4149.16, "end": 4154.77, "probability": 0.9655 }, { "start": 4156.7, "end": 4157.36, "probability": 0.9211 }, { "start": 4158.1, "end": 4158.66, "probability": 0.8119 }, { "start": 4158.78, "end": 4159.75, "probability": 0.6074 }, { "start": 4160.26, "end": 4163.96, "probability": 0.9867 }, { "start": 4164.94, "end": 4166.36, "probability": 0.9934 }, { "start": 4167.02, "end": 4167.66, "probability": 0.9448 }, { "start": 4167.92, "end": 4168.45, "probability": 0.9824 }, { "start": 4168.82, "end": 4171.24, "probability": 0.9937 }, { "start": 4172.46, "end": 4172.56, "probability": 0.3833 }, { "start": 4173.48, "end": 4174.08, "probability": 0.989 }, { "start": 4174.14, "end": 4174.96, "probability": 0.6165 }, { "start": 4175.04, "end": 4178.82, "probability": 0.9746 }, { "start": 4178.94, "end": 4179.51, "probability": 0.7448 }, { "start": 4180.28, "end": 4185.06, "probability": 0.9387 }, { "start": 4186.2, "end": 4187.92, "probability": 0.9814 }, { "start": 4188.64, "end": 4189.64, "probability": 0.7856 }, { "start": 4190.44, "end": 4191.9, "probability": 0.8999 }, { "start": 4192.82, "end": 4193.64, "probability": 0.8604 }, { "start": 4194.46, "end": 4194.94, "probability": 0.8466 }, { "start": 4196.54, "end": 4197.14, "probability": 0.4982 }, { "start": 4197.8, "end": 4201.62, "probability": 0.9554 }, { "start": 4202.38, "end": 4205.86, "probability": 0.9875 }, { "start": 4206.6, "end": 4208.24, "probability": 0.9435 }, { "start": 4209.04, "end": 4209.56, "probability": 0.8007 }, { "start": 4210.98, "end": 4211.82, "probability": 0.9191 }, { "start": 4212.38, "end": 4214.86, "probability": 0.5752 }, { "start": 4215.5, "end": 4216.62, "probability": 0.8572 }, { "start": 4217.12, "end": 4217.62, "probability": 0.8666 }, { "start": 4218.6, "end": 4219.62, "probability": 0.9553 }, { "start": 4219.9, "end": 4220.62, "probability": 0.9426 }, { "start": 4220.72, "end": 4221.54, "probability": 0.9395 }, { "start": 4222.14, "end": 4225.38, "probability": 0.8325 }, { "start": 4225.8, "end": 4226.46, "probability": 0.8981 }, { "start": 4226.48, "end": 4227.42, "probability": 0.9062 }, { "start": 4227.48, "end": 4228.02, "probability": 0.7506 }, { "start": 4228.42, "end": 4229.94, "probability": 0.9248 }, { "start": 4230.26, "end": 4231.24, "probability": 0.9502 }, { "start": 4231.66, "end": 4232.62, "probability": 0.8811 }, { "start": 4233.1, "end": 4233.76, "probability": 0.8691 }, { "start": 4234.4, "end": 4235.18, "probability": 0.9832 }, { "start": 4235.92, "end": 4239.3, "probability": 0.9961 }, { "start": 4240.7, "end": 4241.84, "probability": 0.6863 }, { "start": 4241.96, "end": 4243.2, "probability": 0.5782 }, { "start": 4243.26, "end": 4247.25, "probability": 0.8325 }, { "start": 4247.48, "end": 4248.4, "probability": 0.9844 }, { "start": 4248.98, "end": 4251.16, "probability": 0.7612 }, { "start": 4252.44, "end": 4254.46, "probability": 0.8691 }, { "start": 4254.9, "end": 4257.72, "probability": 0.9924 }, { "start": 4257.8, "end": 4261.84, "probability": 0.9577 }, { "start": 4262.2, "end": 4264.76, "probability": 0.949 }, { "start": 4264.94, "end": 4265.66, "probability": 0.9594 }, { "start": 4266.02, "end": 4267.12, "probability": 0.9987 }, { "start": 4267.18, "end": 4267.68, "probability": 0.4793 }, { "start": 4267.7, "end": 4270.82, "probability": 0.9272 }, { "start": 4271.02, "end": 4271.46, "probability": 0.6807 }, { "start": 4271.6, "end": 4272.66, "probability": 0.8886 }, { "start": 4273.46, "end": 4277.66, "probability": 0.9795 }, { "start": 4278.14, "end": 4280.12, "probability": 0.7228 }, { "start": 4280.62, "end": 4284.96, "probability": 0.8645 }, { "start": 4285.28, "end": 4285.78, "probability": 0.9473 }, { "start": 4286.34, "end": 4287.26, "probability": 0.5454 }, { "start": 4287.96, "end": 4291.1, "probability": 0.9955 }, { "start": 4291.58, "end": 4293.24, "probability": 0.9717 }, { "start": 4293.8, "end": 4294.92, "probability": 0.5674 }, { "start": 4295.04, "end": 4296.04, "probability": 0.9926 }, { "start": 4296.58, "end": 4299.3, "probability": 0.9927 }, { "start": 4299.82, "end": 4300.56, "probability": 0.8687 }, { "start": 4301.0, "end": 4304.14, "probability": 0.8192 }, { "start": 4304.4, "end": 4307.04, "probability": 0.9962 }, { "start": 4307.8, "end": 4308.68, "probability": 0.7398 }, { "start": 4308.96, "end": 4309.8, "probability": 0.9445 }, { "start": 4310.12, "end": 4314.54, "probability": 0.9792 }, { "start": 4314.98, "end": 4315.2, "probability": 0.8702 }, { "start": 4316.32, "end": 4317.38, "probability": 0.5269 }, { "start": 4317.48, "end": 4320.98, "probability": 0.8262 }, { "start": 4321.38, "end": 4324.4, "probability": 0.8856 }, { "start": 4325.18, "end": 4330.1, "probability": 0.9673 }, { "start": 4330.92, "end": 4333.12, "probability": 0.7095 }, { "start": 4334.12, "end": 4334.42, "probability": 0.8143 }, { "start": 4337.12, "end": 4338.96, "probability": 0.9055 }, { "start": 4362.56, "end": 4364.4, "probability": 0.6421 }, { "start": 4365.96, "end": 4369.68, "probability": 0.9854 }, { "start": 4369.7, "end": 4370.38, "probability": 0.6865 }, { "start": 4370.86, "end": 4373.66, "probability": 0.9836 }, { "start": 4375.0, "end": 4378.54, "probability": 0.8464 }, { "start": 4379.68, "end": 4382.88, "probability": 0.4438 }, { "start": 4383.1, "end": 4385.32, "probability": 0.9453 }, { "start": 4385.74, "end": 4389.48, "probability": 0.9917 }, { "start": 4390.22, "end": 4392.38, "probability": 0.687 }, { "start": 4393.8, "end": 4395.76, "probability": 0.8165 }, { "start": 4396.24, "end": 4397.22, "probability": 0.9047 }, { "start": 4397.34, "end": 4402.5, "probability": 0.9967 }, { "start": 4403.68, "end": 4406.42, "probability": 0.9896 }, { "start": 4407.56, "end": 4407.94, "probability": 0.5276 }, { "start": 4408.02, "end": 4408.86, "probability": 0.9203 }, { "start": 4408.94, "end": 4410.36, "probability": 0.9734 }, { "start": 4410.58, "end": 4411.04, "probability": 0.9384 }, { "start": 4411.22, "end": 4411.58, "probability": 0.9468 }, { "start": 4411.66, "end": 4412.16, "probability": 0.9246 }, { "start": 4412.3, "end": 4413.68, "probability": 0.9768 }, { "start": 4413.78, "end": 4414.92, "probability": 0.7379 }, { "start": 4415.84, "end": 4416.84, "probability": 0.83 }, { "start": 4419.04, "end": 4422.02, "probability": 0.0528 }, { "start": 4422.14, "end": 4422.74, "probability": 0.0506 }, { "start": 4422.74, "end": 4423.24, "probability": 0.1651 }, { "start": 4423.72, "end": 4423.76, "probability": 0.0311 }, { "start": 4424.38, "end": 4426.02, "probability": 0.2145 }, { "start": 4428.48, "end": 4432.48, "probability": 0.2267 }, { "start": 4434.2, "end": 4436.56, "probability": 0.8592 }, { "start": 4438.82, "end": 4443.04, "probability": 0.751 }, { "start": 4443.98, "end": 4446.1, "probability": 0.9323 }, { "start": 4447.04, "end": 4448.42, "probability": 0.9551 }, { "start": 4449.82, "end": 4453.92, "probability": 0.7629 }, { "start": 4456.54, "end": 4457.54, "probability": 0.8185 }, { "start": 4458.04, "end": 4458.84, "probability": 0.85 }, { "start": 4458.9, "end": 4461.12, "probability": 0.9932 }, { "start": 4462.6, "end": 4465.02, "probability": 0.8384 }, { "start": 4465.6, "end": 4468.42, "probability": 0.8601 }, { "start": 4469.92, "end": 4473.42, "probability": 0.8584 }, { "start": 4474.42, "end": 4477.14, "probability": 0.9565 }, { "start": 4478.4, "end": 4480.52, "probability": 0.2676 }, { "start": 4482.02, "end": 4483.86, "probability": 0.7955 }, { "start": 4484.68, "end": 4489.14, "probability": 0.9141 }, { "start": 4489.22, "end": 4489.84, "probability": 0.9336 }, { "start": 4489.9, "end": 4490.54, "probability": 0.873 }, { "start": 4490.6, "end": 4491.48, "probability": 0.9905 }, { "start": 4492.96, "end": 4493.9, "probability": 0.9528 }, { "start": 4495.22, "end": 4499.64, "probability": 0.9867 }, { "start": 4501.84, "end": 4506.62, "probability": 0.8834 }, { "start": 4507.76, "end": 4509.32, "probability": 0.9909 }, { "start": 4513.26, "end": 4515.01, "probability": 0.8174 }, { "start": 4516.2, "end": 4517.48, "probability": 0.9954 }, { "start": 4517.54, "end": 4519.09, "probability": 0.9875 }, { "start": 4519.28, "end": 4519.7, "probability": 0.5677 }, { "start": 4520.52, "end": 4520.52, "probability": 0.0058 }, { "start": 4521.68, "end": 4524.66, "probability": 0.6322 }, { "start": 4525.5, "end": 4527.48, "probability": 0.9825 }, { "start": 4529.14, "end": 4531.88, "probability": 0.9526 }, { "start": 4533.56, "end": 4536.38, "probability": 0.9878 }, { "start": 4537.5, "end": 4539.98, "probability": 0.9256 }, { "start": 4541.42, "end": 4542.28, "probability": 0.718 }, { "start": 4543.64, "end": 4545.0, "probability": 0.9994 }, { "start": 4545.9, "end": 4549.38, "probability": 0.9829 }, { "start": 4550.02, "end": 4550.79, "probability": 0.9802 }, { "start": 4551.98, "end": 4552.6, "probability": 0.905 }, { "start": 4553.06, "end": 4554.7, "probability": 0.9971 }, { "start": 4555.92, "end": 4556.5, "probability": 0.9912 }, { "start": 4558.34, "end": 4560.16, "probability": 0.9435 }, { "start": 4560.28, "end": 4564.38, "probability": 0.9172 }, { "start": 4565.84, "end": 4566.34, "probability": 0.7739 }, { "start": 4569.18, "end": 4569.68, "probability": 0.9495 }, { "start": 4570.98, "end": 4571.56, "probability": 0.9575 }, { "start": 4572.26, "end": 4572.88, "probability": 0.8696 }, { "start": 4573.94, "end": 4575.84, "probability": 0.9663 }, { "start": 4576.72, "end": 4579.54, "probability": 0.9548 }, { "start": 4580.5, "end": 4581.72, "probability": 0.755 }, { "start": 4583.22, "end": 4584.8, "probability": 0.9394 }, { "start": 4586.04, "end": 4588.24, "probability": 0.8594 }, { "start": 4590.06, "end": 4591.74, "probability": 0.8165 }, { "start": 4593.34, "end": 4599.06, "probability": 0.9634 }, { "start": 4599.06, "end": 4605.32, "probability": 0.9566 }, { "start": 4606.46, "end": 4607.28, "probability": 0.6199 }, { "start": 4608.78, "end": 4609.34, "probability": 0.7633 }, { "start": 4610.6, "end": 4611.52, "probability": 0.9572 }, { "start": 4612.36, "end": 4613.58, "probability": 0.9932 }, { "start": 4614.24, "end": 4615.86, "probability": 0.9409 }, { "start": 4617.18, "end": 4618.82, "probability": 0.9902 }, { "start": 4619.76, "end": 4620.86, "probability": 0.9993 }, { "start": 4621.6, "end": 4622.86, "probability": 0.9794 }, { "start": 4624.28, "end": 4625.42, "probability": 0.7493 }, { "start": 4626.78, "end": 4627.92, "probability": 0.8684 }, { "start": 4628.58, "end": 4631.1, "probability": 0.9978 }, { "start": 4632.1, "end": 4633.88, "probability": 0.9808 }, { "start": 4634.9, "end": 4636.26, "probability": 0.9984 }, { "start": 4637.18, "end": 4639.42, "probability": 0.9321 }, { "start": 4639.46, "end": 4643.2, "probability": 0.9961 }, { "start": 4644.22, "end": 4647.2, "probability": 0.9902 }, { "start": 4648.66, "end": 4655.08, "probability": 0.9946 }, { "start": 4655.76, "end": 4656.76, "probability": 0.9897 }, { "start": 4657.58, "end": 4660.0, "probability": 0.9982 }, { "start": 4660.54, "end": 4661.3, "probability": 0.9242 }, { "start": 4661.82, "end": 4662.96, "probability": 0.9951 }, { "start": 4665.2, "end": 4665.42, "probability": 0.752 }, { "start": 4666.2, "end": 4666.8, "probability": 0.6478 }, { "start": 4667.14, "end": 4668.58, "probability": 0.6107 }, { "start": 4668.64, "end": 4669.41, "probability": 0.5695 }, { "start": 4669.86, "end": 4672.66, "probability": 0.9182 }, { "start": 4672.74, "end": 4673.76, "probability": 0.9885 }, { "start": 4678.44, "end": 4681.66, "probability": 0.7626 }, { "start": 4683.3, "end": 4683.48, "probability": 0.6181 }, { "start": 4684.02, "end": 4684.78, "probability": 0.848 }, { "start": 4685.54, "end": 4686.06, "probability": 0.8238 }, { "start": 4712.52, "end": 4713.05, "probability": 0.6569 }, { "start": 4713.32, "end": 4713.42, "probability": 0.4291 }, { "start": 4713.86, "end": 4714.62, "probability": 0.9182 }, { "start": 4715.66, "end": 4717.72, "probability": 0.9663 }, { "start": 4718.24, "end": 4718.78, "probability": 0.9955 }, { "start": 4720.34, "end": 4720.48, "probability": 0.8523 }, { "start": 4727.6, "end": 4727.7, "probability": 0.4986 }, { "start": 4728.3, "end": 4728.84, "probability": 0.481 }, { "start": 4729.76, "end": 4732.08, "probability": 0.7043 }, { "start": 4732.9, "end": 4735.2, "probability": 0.9117 }, { "start": 4735.8, "end": 4735.9, "probability": 0.4915 }, { "start": 4736.58, "end": 4740.52, "probability": 0.9648 }, { "start": 4741.52, "end": 4741.74, "probability": 0.5929 }, { "start": 4742.3, "end": 4745.04, "probability": 0.9982 }, { "start": 4745.68, "end": 4747.1, "probability": 0.9743 }, { "start": 4747.82, "end": 4748.56, "probability": 0.8716 }, { "start": 4749.58, "end": 4752.1, "probability": 0.9489 }, { "start": 4753.26, "end": 4754.86, "probability": 0.9305 }, { "start": 4755.66, "end": 4757.58, "probability": 0.9771 }, { "start": 4757.66, "end": 4762.12, "probability": 0.932 }, { "start": 4763.88, "end": 4764.26, "probability": 0.8695 }, { "start": 4765.84, "end": 4768.82, "probability": 0.9818 }, { "start": 4769.56, "end": 4770.88, "probability": 0.9387 }, { "start": 4771.72, "end": 4772.26, "probability": 0.6067 }, { "start": 4773.14, "end": 4775.29, "probability": 0.9873 }, { "start": 4775.76, "end": 4778.08, "probability": 0.9969 }, { "start": 4778.42, "end": 4779.16, "probability": 0.9233 }, { "start": 4780.66, "end": 4782.06, "probability": 0.72 }, { "start": 4782.62, "end": 4783.32, "probability": 0.8993 }, { "start": 4784.5, "end": 4784.84, "probability": 0.8706 }, { "start": 4784.92, "end": 4785.42, "probability": 0.7885 }, { "start": 4785.56, "end": 4786.44, "probability": 0.9736 }, { "start": 4786.6, "end": 4788.04, "probability": 0.9835 }, { "start": 4788.82, "end": 4790.3, "probability": 0.9484 }, { "start": 4791.06, "end": 4792.16, "probability": 0.9966 }, { "start": 4792.74, "end": 4795.13, "probability": 0.9943 }, { "start": 4796.02, "end": 4796.72, "probability": 0.7402 }, { "start": 4797.6, "end": 4800.44, "probability": 0.8935 }, { "start": 4801.12, "end": 4803.0, "probability": 0.9867 }, { "start": 4804.1, "end": 4805.82, "probability": 0.9788 }, { "start": 4807.08, "end": 4808.96, "probability": 0.9636 }, { "start": 4810.04, "end": 4811.64, "probability": 0.9944 }, { "start": 4812.64, "end": 4814.76, "probability": 0.9209 }, { "start": 4815.48, "end": 4815.8, "probability": 0.5184 }, { "start": 4815.94, "end": 4821.16, "probability": 0.9944 }, { "start": 4822.2, "end": 4822.8, "probability": 0.6907 }, { "start": 4823.2, "end": 4823.34, "probability": 0.6732 }, { "start": 4823.46, "end": 4823.82, "probability": 0.9275 }, { "start": 4823.86, "end": 4826.22, "probability": 0.962 }, { "start": 4826.98, "end": 4833.9, "probability": 0.9845 }, { "start": 4834.94, "end": 4837.68, "probability": 0.9988 }, { "start": 4839.34, "end": 4840.14, "probability": 0.6364 }, { "start": 4841.12, "end": 4842.54, "probability": 0.9982 }, { "start": 4843.26, "end": 4847.12, "probability": 0.9694 }, { "start": 4848.02, "end": 4848.68, "probability": 0.8163 }, { "start": 4849.46, "end": 4851.22, "probability": 0.8266 }, { "start": 4852.08, "end": 4853.6, "probability": 0.9731 }, { "start": 4856.44, "end": 4861.98, "probability": 0.9776 }, { "start": 4862.72, "end": 4867.62, "probability": 0.744 }, { "start": 4869.2, "end": 4871.6, "probability": 0.8992 }, { "start": 4872.18, "end": 4877.6, "probability": 0.979 }, { "start": 4878.14, "end": 4879.68, "probability": 0.9831 }, { "start": 4880.22, "end": 4884.9, "probability": 0.9436 }, { "start": 4886.42, "end": 4886.52, "probability": 0.4339 }, { "start": 4887.22, "end": 4889.8, "probability": 0.8855 }, { "start": 4889.8, "end": 4892.82, "probability": 0.9956 }, { "start": 4893.56, "end": 4894.72, "probability": 0.9649 }, { "start": 4895.32, "end": 4899.04, "probability": 0.9345 }, { "start": 4900.4, "end": 4903.2, "probability": 0.9986 }, { "start": 4903.4, "end": 4903.6, "probability": 0.7228 }, { "start": 4903.68, "end": 4904.22, "probability": 0.7608 }, { "start": 4904.62, "end": 4910.38, "probability": 0.9979 }, { "start": 4911.02, "end": 4914.5, "probability": 0.9582 }, { "start": 4915.62, "end": 4918.24, "probability": 0.8313 }, { "start": 4919.0, "end": 4919.58, "probability": 0.8917 }, { "start": 4920.36, "end": 4923.28, "probability": 0.9941 }, { "start": 4923.86, "end": 4925.28, "probability": 0.8339 }, { "start": 4925.92, "end": 4927.38, "probability": 0.9854 }, { "start": 4927.9, "end": 4928.74, "probability": 0.8975 }, { "start": 4929.96, "end": 4932.86, "probability": 0.9897 }, { "start": 4933.94, "end": 4934.94, "probability": 0.7773 }, { "start": 4935.38, "end": 4939.94, "probability": 0.9663 }, { "start": 4940.88, "end": 4941.98, "probability": 0.5183 }, { "start": 4942.16, "end": 4942.78, "probability": 0.4814 }, { "start": 4942.84, "end": 4945.42, "probability": 0.971 }, { "start": 4946.22, "end": 4948.46, "probability": 0.9214 }, { "start": 4949.0, "end": 4951.42, "probability": 0.9928 }, { "start": 4951.76, "end": 4955.22, "probability": 0.7037 }, { "start": 4955.28, "end": 4957.2, "probability": 0.6444 }, { "start": 4958.22, "end": 4960.72, "probability": 0.838 }, { "start": 4961.34, "end": 4962.32, "probability": 0.8489 }, { "start": 4962.58, "end": 4964.64, "probability": 0.9772 }, { "start": 4965.4, "end": 4969.06, "probability": 0.9953 }, { "start": 4970.76, "end": 4973.48, "probability": 0.9955 }, { "start": 4974.16, "end": 4975.8, "probability": 0.9681 }, { "start": 4976.72, "end": 4980.92, "probability": 0.9611 }, { "start": 4981.12, "end": 4981.74, "probability": 0.9202 }, { "start": 4982.78, "end": 4985.26, "probability": 0.9467 }, { "start": 4985.76, "end": 4987.84, "probability": 0.5549 }, { "start": 4988.8, "end": 4991.42, "probability": 0.9833 }, { "start": 4992.32, "end": 4993.82, "probability": 0.7676 }, { "start": 4994.16, "end": 4995.18, "probability": 0.9071 }, { "start": 4995.66, "end": 4997.48, "probability": 0.9506 }, { "start": 4998.06, "end": 4999.5, "probability": 0.8837 }, { "start": 5000.22, "end": 5001.66, "probability": 0.9514 }, { "start": 5002.46, "end": 5003.64, "probability": 0.8509 }, { "start": 5004.3, "end": 5006.8, "probability": 0.9895 }, { "start": 5007.06, "end": 5010.3, "probability": 0.9797 }, { "start": 5010.4, "end": 5011.8, "probability": 0.9917 }, { "start": 5012.06, "end": 5013.5, "probability": 0.8281 }, { "start": 5014.32, "end": 5017.32, "probability": 0.9199 }, { "start": 5018.82, "end": 5020.94, "probability": 0.9612 }, { "start": 5021.82, "end": 5023.66, "probability": 0.9851 }, { "start": 5024.84, "end": 5026.22, "probability": 0.9808 }, { "start": 5026.32, "end": 5026.86, "probability": 0.9494 }, { "start": 5026.98, "end": 5027.56, "probability": 0.9791 }, { "start": 5028.04, "end": 5029.0, "probability": 0.7559 }, { "start": 5029.62, "end": 5031.62, "probability": 0.8818 }, { "start": 5033.12, "end": 5034.8, "probability": 0.9424 }, { "start": 5035.48, "end": 5037.5, "probability": 0.8986 }, { "start": 5038.02, "end": 5038.54, "probability": 0.988 }, { "start": 5041.46, "end": 5042.78, "probability": 0.9807 }, { "start": 5043.64, "end": 5048.42, "probability": 0.987 }, { "start": 5050.02, "end": 5051.96, "probability": 0.9983 }, { "start": 5052.7, "end": 5053.37, "probability": 0.9828 }, { "start": 5054.02, "end": 5056.78, "probability": 0.9729 }, { "start": 5057.48, "end": 5057.82, "probability": 0.7755 }, { "start": 5058.82, "end": 5061.58, "probability": 0.8475 }, { "start": 5062.08, "end": 5064.3, "probability": 0.9955 }, { "start": 5065.8, "end": 5066.28, "probability": 0.6154 }, { "start": 5081.1, "end": 5082.82, "probability": 0.7455 }, { "start": 5084.94, "end": 5088.44, "probability": 0.9974 }, { "start": 5089.42, "end": 5092.83, "probability": 0.9765 }, { "start": 5093.5, "end": 5094.64, "probability": 0.8768 }, { "start": 5095.22, "end": 5095.94, "probability": 0.8163 }, { "start": 5097.16, "end": 5101.46, "probability": 0.9844 }, { "start": 5102.1, "end": 5103.24, "probability": 0.9559 }, { "start": 5104.36, "end": 5105.12, "probability": 0.7518 }, { "start": 5107.26, "end": 5110.62, "probability": 0.9888 }, { "start": 5111.56, "end": 5116.0, "probability": 0.9951 }, { "start": 5118.02, "end": 5119.74, "probability": 0.8579 }, { "start": 5120.36, "end": 5122.98, "probability": 0.9988 }, { "start": 5123.9, "end": 5126.94, "probability": 0.9447 }, { "start": 5127.7, "end": 5129.42, "probability": 0.9544 }, { "start": 5135.44, "end": 5137.96, "probability": 0.6348 }, { "start": 5138.52, "end": 5141.14, "probability": 0.9844 }, { "start": 5142.06, "end": 5143.78, "probability": 0.9022 }, { "start": 5144.48, "end": 5145.24, "probability": 0.3417 }, { "start": 5146.4, "end": 5148.94, "probability": 0.6642 }, { "start": 5149.74, "end": 5149.78, "probability": 0.0332 }, { "start": 5149.78, "end": 5154.04, "probability": 0.9285 }, { "start": 5154.14, "end": 5156.6, "probability": 0.9665 }, { "start": 5158.88, "end": 5162.62, "probability": 0.9059 }, { "start": 5163.66, "end": 5166.76, "probability": 0.968 }, { "start": 5168.0, "end": 5168.76, "probability": 0.9158 }, { "start": 5169.56, "end": 5172.96, "probability": 0.9883 }, { "start": 5172.96, "end": 5177.34, "probability": 0.9404 }, { "start": 5178.54, "end": 5181.64, "probability": 0.6909 }, { "start": 5182.22, "end": 5185.34, "probability": 0.9208 }, { "start": 5187.16, "end": 5189.74, "probability": 0.9094 }, { "start": 5190.4, "end": 5193.56, "probability": 0.9914 }, { "start": 5193.6, "end": 5197.12, "probability": 0.9915 }, { "start": 5197.86, "end": 5202.6, "probability": 0.9814 }, { "start": 5203.42, "end": 5207.96, "probability": 0.8412 }, { "start": 5209.28, "end": 5215.24, "probability": 0.9977 }, { "start": 5215.24, "end": 5221.4, "probability": 0.9525 }, { "start": 5222.5, "end": 5225.7, "probability": 0.8659 }, { "start": 5226.28, "end": 5231.8, "probability": 0.9993 }, { "start": 5231.8, "end": 5240.08, "probability": 0.9941 }, { "start": 5242.26, "end": 5244.0, "probability": 0.6992 }, { "start": 5244.12, "end": 5244.78, "probability": 0.588 }, { "start": 5245.0, "end": 5248.24, "probability": 0.9797 }, { "start": 5248.7, "end": 5251.94, "probability": 0.9443 }, { "start": 5252.3, "end": 5254.0, "probability": 0.8225 }, { "start": 5255.22, "end": 5258.48, "probability": 0.9571 }, { "start": 5258.96, "end": 5260.78, "probability": 0.9721 }, { "start": 5261.68, "end": 5262.88, "probability": 0.8364 }, { "start": 5263.58, "end": 5266.92, "probability": 0.9336 }, { "start": 5269.0, "end": 5273.8, "probability": 0.9929 }, { "start": 5274.84, "end": 5277.98, "probability": 0.8314 }, { "start": 5278.92, "end": 5281.5, "probability": 0.9795 }, { "start": 5282.14, "end": 5285.96, "probability": 0.9669 }, { "start": 5287.1, "end": 5290.66, "probability": 0.9637 }, { "start": 5291.1, "end": 5294.26, "probability": 0.9875 }, { "start": 5295.24, "end": 5301.48, "probability": 0.9816 }, { "start": 5302.48, "end": 5305.38, "probability": 0.9875 }, { "start": 5307.54, "end": 5310.3, "probability": 0.8511 }, { "start": 5310.94, "end": 5314.92, "probability": 0.9954 }, { "start": 5315.8, "end": 5316.38, "probability": 0.8572 }, { "start": 5316.46, "end": 5317.28, "probability": 0.8137 }, { "start": 5317.92, "end": 5320.84, "probability": 0.9231 }, { "start": 5321.34, "end": 5321.88, "probability": 0.5586 }, { "start": 5323.3, "end": 5326.96, "probability": 0.8948 }, { "start": 5327.12, "end": 5328.76, "probability": 0.8433 }, { "start": 5331.1, "end": 5333.62, "probability": 0.9234 }, { "start": 5334.38, "end": 5336.28, "probability": 0.9404 }, { "start": 5336.8, "end": 5338.16, "probability": 0.8414 }, { "start": 5338.74, "end": 5345.0, "probability": 0.99 }, { "start": 5345.82, "end": 5346.48, "probability": 0.4239 }, { "start": 5346.54, "end": 5347.66, "probability": 0.9361 }, { "start": 5347.94, "end": 5349.58, "probability": 0.9507 }, { "start": 5350.52, "end": 5353.42, "probability": 0.9851 }, { "start": 5354.0, "end": 5355.82, "probability": 0.9795 }, { "start": 5357.62, "end": 5360.24, "probability": 0.847 }, { "start": 5360.82, "end": 5362.1, "probability": 0.897 }, { "start": 5363.22, "end": 5364.68, "probability": 0.8757 }, { "start": 5365.52, "end": 5369.34, "probability": 0.9857 }, { "start": 5370.24, "end": 5373.06, "probability": 0.822 }, { "start": 5373.38, "end": 5375.0, "probability": 0.9551 }, { "start": 5375.62, "end": 5377.02, "probability": 0.8563 }, { "start": 5378.24, "end": 5380.22, "probability": 0.9097 }, { "start": 5380.98, "end": 5383.2, "probability": 0.9565 }, { "start": 5383.84, "end": 5385.4, "probability": 0.9578 }, { "start": 5386.58, "end": 5387.58, "probability": 0.9496 }, { "start": 5388.2, "end": 5392.24, "probability": 0.7487 }, { "start": 5392.24, "end": 5396.36, "probability": 0.9961 }, { "start": 5397.28, "end": 5399.72, "probability": 0.7698 }, { "start": 5400.18, "end": 5403.62, "probability": 0.9893 }, { "start": 5405.24, "end": 5409.64, "probability": 0.9941 }, { "start": 5410.42, "end": 5410.96, "probability": 0.9929 }, { "start": 5411.96, "end": 5415.46, "probability": 0.9979 }, { "start": 5415.46, "end": 5419.84, "probability": 0.9869 }, { "start": 5421.16, "end": 5424.04, "probability": 0.9857 }, { "start": 5424.6, "end": 5428.34, "probability": 0.9935 }, { "start": 5429.66, "end": 5432.98, "probability": 0.9952 }, { "start": 5434.04, "end": 5436.88, "probability": 0.9956 }, { "start": 5437.26, "end": 5441.14, "probability": 0.9696 }, { "start": 5442.84, "end": 5445.74, "probability": 0.9859 }, { "start": 5446.28, "end": 5448.42, "probability": 0.9731 }, { "start": 5449.08, "end": 5452.44, "probability": 0.9847 }, { "start": 5452.96, "end": 5454.02, "probability": 0.9683 }, { "start": 5455.56, "end": 5460.38, "probability": 0.9053 }, { "start": 5462.22, "end": 5466.5, "probability": 0.9944 }, { "start": 5467.08, "end": 5471.62, "probability": 0.9967 }, { "start": 5472.56, "end": 5473.02, "probability": 0.5744 }, { "start": 5474.48, "end": 5478.72, "probability": 0.9836 }, { "start": 5479.8, "end": 5483.8, "probability": 0.9914 }, { "start": 5484.8, "end": 5489.32, "probability": 0.9976 }, { "start": 5490.4, "end": 5493.48, "probability": 0.9824 }, { "start": 5493.94, "end": 5499.34, "probability": 0.9899 }, { "start": 5501.82, "end": 5504.52, "probability": 0.9939 }, { "start": 5504.52, "end": 5507.14, "probability": 0.9906 }, { "start": 5508.7, "end": 5510.7, "probability": 0.7427 }, { "start": 5511.42, "end": 5512.34, "probability": 0.9734 }, { "start": 5512.96, "end": 5514.3, "probability": 0.9615 }, { "start": 5514.82, "end": 5516.78, "probability": 0.9821 }, { "start": 5516.86, "end": 5517.36, "probability": 0.9116 }, { "start": 5517.38, "end": 5518.24, "probability": 0.9051 }, { "start": 5518.34, "end": 5520.54, "probability": 0.9916 }, { "start": 5521.2, "end": 5521.98, "probability": 0.967 }, { "start": 5522.92, "end": 5523.72, "probability": 0.7122 }, { "start": 5524.76, "end": 5525.3, "probability": 0.4209 }, { "start": 5525.68, "end": 5529.54, "probability": 0.9976 }, { "start": 5530.22, "end": 5533.8, "probability": 0.9899 }, { "start": 5534.76, "end": 5535.5, "probability": 0.5307 }, { "start": 5536.04, "end": 5537.26, "probability": 0.8611 }, { "start": 5538.06, "end": 5541.74, "probability": 0.9929 }, { "start": 5542.76, "end": 5544.52, "probability": 0.947 }, { "start": 5545.0, "end": 5549.44, "probability": 0.9728 }, { "start": 5550.24, "end": 5552.26, "probability": 0.9845 }, { "start": 5553.18, "end": 5554.82, "probability": 0.9972 }, { "start": 5555.46, "end": 5557.26, "probability": 0.9778 }, { "start": 5557.8, "end": 5559.5, "probability": 0.5392 }, { "start": 5560.1, "end": 5562.98, "probability": 0.9784 }, { "start": 5563.58, "end": 5566.5, "probability": 0.998 }, { "start": 5567.02, "end": 5570.42, "probability": 0.9923 }, { "start": 5571.24, "end": 5574.02, "probability": 0.9803 }, { "start": 5574.82, "end": 5577.74, "probability": 0.9844 }, { "start": 5578.92, "end": 5582.64, "probability": 0.9634 }, { "start": 5583.0, "end": 5584.3, "probability": 0.9622 }, { "start": 5584.86, "end": 5587.2, "probability": 0.9991 }, { "start": 5587.82, "end": 5590.4, "probability": 0.9874 }, { "start": 5591.2, "end": 5593.22, "probability": 0.8688 }, { "start": 5593.8, "end": 5598.28, "probability": 0.981 }, { "start": 5600.28, "end": 5601.28, "probability": 0.8587 }, { "start": 5601.56, "end": 5604.8, "probability": 0.9773 }, { "start": 5604.82, "end": 5605.26, "probability": 0.5735 }, { "start": 5605.28, "end": 5606.46, "probability": 0.929 }, { "start": 5606.64, "end": 5607.84, "probability": 0.9424 }, { "start": 5608.28, "end": 5609.1, "probability": 0.8292 }, { "start": 5609.82, "end": 5613.14, "probability": 0.9885 }, { "start": 5613.14, "end": 5617.36, "probability": 0.9918 }, { "start": 5617.96, "end": 5621.48, "probability": 0.9825 }, { "start": 5622.08, "end": 5625.74, "probability": 0.8121 }, { "start": 5626.3, "end": 5627.42, "probability": 0.6345 }, { "start": 5628.7, "end": 5635.55, "probability": 0.8642 }, { "start": 5636.16, "end": 5638.08, "probability": 0.9595 }, { "start": 5638.5, "end": 5640.64, "probability": 0.9613 }, { "start": 5641.16, "end": 5644.7, "probability": 0.9796 }, { "start": 5646.54, "end": 5648.22, "probability": 0.5045 }, { "start": 5648.44, "end": 5649.88, "probability": 0.9593 }, { "start": 5649.98, "end": 5652.92, "probability": 0.9901 }, { "start": 5653.98, "end": 5654.6, "probability": 0.5672 }, { "start": 5655.2, "end": 5659.26, "probability": 0.9624 }, { "start": 5659.8, "end": 5665.28, "probability": 0.9997 }, { "start": 5665.9, "end": 5668.18, "probability": 0.9942 }, { "start": 5669.66, "end": 5672.8, "probability": 0.9969 }, { "start": 5672.8, "end": 5675.58, "probability": 0.9792 }, { "start": 5676.06, "end": 5676.54, "probability": 0.4594 }, { "start": 5676.58, "end": 5680.64, "probability": 0.9788 }, { "start": 5680.92, "end": 5682.7, "probability": 0.6596 }, { "start": 5683.46, "end": 5684.68, "probability": 0.9971 }, { "start": 5685.3, "end": 5688.06, "probability": 0.9653 }, { "start": 5688.06, "end": 5692.18, "probability": 0.6567 }, { "start": 5692.86, "end": 5695.84, "probability": 0.9658 }, { "start": 5696.44, "end": 5697.92, "probability": 0.5887 }, { "start": 5698.4, "end": 5701.8, "probability": 0.9754 }, { "start": 5702.92, "end": 5707.86, "probability": 0.9798 }, { "start": 5708.7, "end": 5710.62, "probability": 0.998 }, { "start": 5713.07, "end": 5716.34, "probability": 0.7565 }, { "start": 5717.36, "end": 5720.1, "probability": 0.9988 }, { "start": 5720.24, "end": 5723.84, "probability": 0.9877 }, { "start": 5724.82, "end": 5730.0, "probability": 0.9874 }, { "start": 5730.82, "end": 5733.68, "probability": 0.9863 }, { "start": 5734.18, "end": 5740.9, "probability": 0.8538 }, { "start": 5741.64, "end": 5744.76, "probability": 0.998 }, { "start": 5744.76, "end": 5748.62, "probability": 0.9852 }, { "start": 5750.26, "end": 5754.28, "probability": 0.9857 }, { "start": 5755.08, "end": 5755.96, "probability": 0.7493 }, { "start": 5756.62, "end": 5757.46, "probability": 0.7444 }, { "start": 5757.98, "end": 5758.76, "probability": 0.7486 }, { "start": 5759.5, "end": 5760.18, "probability": 0.9172 }, { "start": 5760.76, "end": 5761.26, "probability": 0.7494 }, { "start": 5763.6, "end": 5764.1, "probability": 0.8395 }, { "start": 5764.72, "end": 5765.78, "probability": 0.821 }, { "start": 5766.6, "end": 5771.34, "probability": 0.9767 }, { "start": 5773.16, "end": 5775.54, "probability": 0.9974 }, { "start": 5776.2, "end": 5777.0, "probability": 0.9336 }, { "start": 5778.06, "end": 5778.26, "probability": 0.5474 }, { "start": 5779.02, "end": 5779.22, "probability": 0.1049 }, { "start": 5779.22, "end": 5781.1, "probability": 0.5191 }, { "start": 5781.56, "end": 5781.88, "probability": 0.8214 }, { "start": 5783.2, "end": 5785.14, "probability": 0.8845 }, { "start": 5785.66, "end": 5786.72, "probability": 0.5491 }, { "start": 5787.3, "end": 5788.84, "probability": 0.8984 }, { "start": 5789.5, "end": 5794.1, "probability": 0.6146 }, { "start": 5794.56, "end": 5796.26, "probability": 0.3174 }, { "start": 5796.8, "end": 5798.1, "probability": 0.9717 }, { "start": 5798.5, "end": 5798.7, "probability": 0.7653 }, { "start": 5799.36, "end": 5799.94, "probability": 0.781 }, { "start": 5800.52, "end": 5801.95, "probability": 0.9973 }, { "start": 5802.22, "end": 5804.42, "probability": 0.9548 }, { "start": 5805.56, "end": 5805.66, "probability": 0.0039 }, { "start": 5807.64, "end": 5807.64, "probability": 0.0622 }, { "start": 5807.64, "end": 5807.64, "probability": 0.2371 }, { "start": 5807.64, "end": 5807.64, "probability": 0.1735 }, { "start": 5807.64, "end": 5807.64, "probability": 0.3583 }, { "start": 5807.64, "end": 5807.64, "probability": 0.3825 }, { "start": 5807.64, "end": 5807.64, "probability": 0.2662 }, { "start": 5807.64, "end": 5807.64, "probability": 0.4264 }, { "start": 5807.64, "end": 5807.64, "probability": 0.2789 }, { "start": 5807.64, "end": 5807.64, "probability": 0.0613 }, { "start": 5807.64, "end": 5809.6, "probability": 0.5855 }, { "start": 5810.42, "end": 5817.2, "probability": 0.9785 }, { "start": 5817.76, "end": 5818.32, "probability": 0.2905 }, { "start": 5820.22, "end": 5825.14, "probability": 0.8989 }, { "start": 5825.72, "end": 5827.34, "probability": 0.9713 }, { "start": 5828.68, "end": 5831.6, "probability": 0.9186 }, { "start": 5832.52, "end": 5834.74, "probability": 0.9751 }, { "start": 5835.75, "end": 5838.36, "probability": 0.9927 }, { "start": 5839.32, "end": 5841.01, "probability": 0.963 }, { "start": 5842.12, "end": 5845.54, "probability": 0.6256 }, { "start": 5846.38, "end": 5851.76, "probability": 0.9837 }, { "start": 5852.65, "end": 5854.88, "probability": 0.8159 }, { "start": 5855.68, "end": 5862.76, "probability": 0.9393 }, { "start": 5863.24, "end": 5865.18, "probability": 0.9994 }, { "start": 5865.84, "end": 5867.26, "probability": 0.9164 }, { "start": 5869.04, "end": 5869.68, "probability": 0.9701 }, { "start": 5870.52, "end": 5872.26, "probability": 0.9569 }, { "start": 5873.39, "end": 5874.46, "probability": 0.6782 }, { "start": 5875.02, "end": 5875.96, "probability": 0.9563 }, { "start": 5883.66, "end": 5889.04, "probability": 0.9333 }, { "start": 5889.68, "end": 5891.33, "probability": 0.5746 }, { "start": 5892.6, "end": 5897.7, "probability": 0.9572 }, { "start": 5897.92, "end": 5899.24, "probability": 0.5889 }, { "start": 5905.64, "end": 5907.55, "probability": 0.974 }, { "start": 5908.16, "end": 5908.86, "probability": 0.6309 }, { "start": 5909.56, "end": 5910.86, "probability": 0.9882 }, { "start": 5911.7, "end": 5912.16, "probability": 0.0279 }, { "start": 5919.16, "end": 5919.16, "probability": 0.0284 }, { "start": 5919.16, "end": 5919.18, "probability": 0.1211 }, { "start": 5919.18, "end": 5919.18, "probability": 0.0412 }, { "start": 5919.18, "end": 5919.22, "probability": 0.2677 }, { "start": 5919.24, "end": 5919.24, "probability": 0.0027 }, { "start": 5930.46, "end": 5931.66, "probability": 0.4195 }, { "start": 5932.1, "end": 5933.68, "probability": 0.7329 }, { "start": 5934.18, "end": 5936.38, "probability": 0.8146 }, { "start": 5937.58, "end": 5938.5, "probability": 0.4991 }, { "start": 5939.72, "end": 5941.98, "probability": 0.8507 }, { "start": 5942.96, "end": 5945.4, "probability": 0.9121 }, { "start": 5945.4, "end": 5947.36, "probability": 0.9202 }, { "start": 5948.66, "end": 5951.28, "probability": 0.998 }, { "start": 5951.68, "end": 5955.16, "probability": 0.99 }, { "start": 5956.46, "end": 5959.96, "probability": 0.9969 }, { "start": 5959.96, "end": 5963.6, "probability": 0.9841 }, { "start": 5964.26, "end": 5967.1, "probability": 0.9992 }, { "start": 5967.68, "end": 5969.66, "probability": 0.9992 }, { "start": 5971.82, "end": 5976.6, "probability": 0.9574 }, { "start": 5977.98, "end": 5979.82, "probability": 0.6622 }, { "start": 5980.48, "end": 5982.84, "probability": 0.9865 }, { "start": 5983.36, "end": 5985.32, "probability": 0.7472 }, { "start": 5986.18, "end": 5988.88, "probability": 0.9094 }, { "start": 5989.5, "end": 5992.4, "probability": 0.9783 }, { "start": 5992.4, "end": 5994.74, "probability": 0.9784 }, { "start": 6001.62, "end": 6003.4, "probability": 0.945 }, { "start": 6004.18, "end": 6006.0, "probability": 0.9814 }, { "start": 6006.76, "end": 6009.6, "probability": 0.9758 }, { "start": 6010.06, "end": 6016.3, "probability": 0.9561 }, { "start": 6017.54, "end": 6021.46, "probability": 0.9859 }, { "start": 6021.88, "end": 6025.22, "probability": 0.9751 }, { "start": 6027.4, "end": 6030.48, "probability": 0.8657 }, { "start": 6030.48, "end": 6034.28, "probability": 0.944 }, { "start": 6035.58, "end": 6037.78, "probability": 0.9558 }, { "start": 6040.22, "end": 6041.94, "probability": 0.8525 }, { "start": 6042.74, "end": 6044.7, "probability": 0.9513 }, { "start": 6045.48, "end": 6048.7, "probability": 0.9985 }, { "start": 6049.78, "end": 6051.9, "probability": 0.9527 }, { "start": 6052.18, "end": 6054.32, "probability": 0.518 }, { "start": 6055.58, "end": 6056.98, "probability": 0.7889 }, { "start": 6057.96, "end": 6058.78, "probability": 0.7449 }, { "start": 6059.3, "end": 6063.08, "probability": 0.9753 }, { "start": 6064.74, "end": 6066.66, "probability": 0.7147 }, { "start": 6067.68, "end": 6069.68, "probability": 0.935 }, { "start": 6070.34, "end": 6074.52, "probability": 0.9595 }, { "start": 6075.12, "end": 6076.18, "probability": 0.7782 }, { "start": 6076.84, "end": 6077.56, "probability": 0.9919 }, { "start": 6078.4, "end": 6079.42, "probability": 0.895 }, { "start": 6080.06, "end": 6081.68, "probability": 0.9943 }, { "start": 6083.5, "end": 6084.38, "probability": 0.652 }, { "start": 6084.94, "end": 6085.78, "probability": 0.9604 }, { "start": 6086.34, "end": 6087.68, "probability": 0.958 }, { "start": 6088.26, "end": 6089.28, "probability": 0.7594 }, { "start": 6090.18, "end": 6091.3, "probability": 0.9266 }, { "start": 6092.66, "end": 6093.6, "probability": 0.998 }, { "start": 6098.14, "end": 6103.22, "probability": 0.9939 }, { "start": 6103.96, "end": 6108.56, "probability": 0.9859 }, { "start": 6109.26, "end": 6115.08, "probability": 0.9974 }, { "start": 6116.64, "end": 6118.11, "probability": 0.8349 }, { "start": 6119.64, "end": 6124.88, "probability": 0.9978 }, { "start": 6125.78, "end": 6127.36, "probability": 0.9877 }, { "start": 6128.66, "end": 6129.5, "probability": 0.9003 }, { "start": 6130.28, "end": 6134.6, "probability": 0.9965 }, { "start": 6135.62, "end": 6139.8, "probability": 0.9924 }, { "start": 6140.46, "end": 6141.52, "probability": 0.8482 }, { "start": 6142.06, "end": 6144.86, "probability": 0.8438 }, { "start": 6145.68, "end": 6148.86, "probability": 0.9968 }, { "start": 6149.88, "end": 6153.2, "probability": 0.991 }, { "start": 6153.84, "end": 6154.82, "probability": 0.9618 }, { "start": 6156.16, "end": 6159.94, "probability": 0.9572 }, { "start": 6161.32, "end": 6166.9, "probability": 0.9776 }, { "start": 6168.6, "end": 6171.84, "probability": 0.7538 }, { "start": 6172.46, "end": 6172.74, "probability": 0.7524 }, { "start": 6173.4, "end": 6173.84, "probability": 0.7792 }, { "start": 6174.06, "end": 6179.1, "probability": 0.9651 }, { "start": 6180.48, "end": 6181.62, "probability": 0.9483 }, { "start": 6182.06, "end": 6185.56, "probability": 0.9129 }, { "start": 6186.16, "end": 6187.98, "probability": 0.9854 }, { "start": 6189.48, "end": 6194.66, "probability": 0.9984 }, { "start": 6195.32, "end": 6199.92, "probability": 0.9099 }, { "start": 6200.44, "end": 6204.22, "probability": 0.9808 }, { "start": 6204.82, "end": 6207.64, "probability": 0.4611 }, { "start": 6207.88, "end": 6208.26, "probability": 0.764 }, { "start": 6210.5, "end": 6211.06, "probability": 0.7233 }, { "start": 6212.06, "end": 6213.96, "probability": 0.6706 }, { "start": 6215.12, "end": 6216.72, "probability": 0.5236 }, { "start": 6218.34, "end": 6221.6, "probability": 0.7817 }, { "start": 6222.14, "end": 6223.4, "probability": 0.7692 }, { "start": 6223.9, "end": 6224.5, "probability": 0.6459 }, { "start": 6228.4, "end": 6230.84, "probability": 0.8308 }, { "start": 6232.4, "end": 6234.6, "probability": 0.0186 }, { "start": 6254.4, "end": 6255.08, "probability": 0.087 }, { "start": 6259.26, "end": 6261.18, "probability": 0.7402 }, { "start": 6261.56, "end": 6264.0, "probability": 0.7312 }, { "start": 6264.74, "end": 6265.0, "probability": 0.8746 }, { "start": 6265.58, "end": 6266.64, "probability": 0.8282 }, { "start": 6268.8, "end": 6269.54, "probability": 0.787 }, { "start": 6270.1, "end": 6272.58, "probability": 0.6422 }, { "start": 6275.7, "end": 6281.6, "probability": 0.867 }, { "start": 6283.64, "end": 6284.52, "probability": 0.694 }, { "start": 6286.88, "end": 6288.4, "probability": 0.8179 }, { "start": 6289.58, "end": 6290.0, "probability": 0.9494 }, { "start": 6291.6, "end": 6293.4, "probability": 0.9893 }, { "start": 6294.72, "end": 6295.64, "probability": 0.8511 }, { "start": 6297.74, "end": 6298.94, "probability": 0.9844 }, { "start": 6300.4, "end": 6301.2, "probability": 0.9338 }, { "start": 6302.56, "end": 6307.44, "probability": 0.9932 }, { "start": 6308.4, "end": 6313.4, "probability": 0.9434 }, { "start": 6315.32, "end": 6317.14, "probability": 0.9951 }, { "start": 6318.2, "end": 6319.33, "probability": 0.9011 }, { "start": 6321.14, "end": 6323.36, "probability": 0.9783 }, { "start": 6324.42, "end": 6326.36, "probability": 0.9961 }, { "start": 6327.38, "end": 6328.74, "probability": 0.9868 }, { "start": 6329.74, "end": 6330.92, "probability": 0.9199 }, { "start": 6332.6, "end": 6337.34, "probability": 0.999 }, { "start": 6338.76, "end": 6339.5, "probability": 0.6891 }, { "start": 6340.1, "end": 6341.04, "probability": 0.9614 }, { "start": 6341.92, "end": 6343.96, "probability": 0.9993 }, { "start": 6344.86, "end": 6347.0, "probability": 0.9976 }, { "start": 6349.82, "end": 6350.52, "probability": 0.8186 }, { "start": 6350.7, "end": 6353.1, "probability": 0.9785 }, { "start": 6354.86, "end": 6356.77, "probability": 0.9868 }, { "start": 6357.94, "end": 6358.74, "probability": 0.8493 }, { "start": 6360.2, "end": 6361.28, "probability": 0.7559 }, { "start": 6363.0, "end": 6363.88, "probability": 0.8815 }, { "start": 6366.68, "end": 6366.68, "probability": 0.9141 }, { "start": 6370.62, "end": 6371.24, "probability": 0.9935 }, { "start": 6373.08, "end": 6374.3, "probability": 0.5519 }, { "start": 6375.22, "end": 6376.74, "probability": 0.9978 }, { "start": 6379.24, "end": 6380.2, "probability": 0.7434 }, { "start": 6381.6, "end": 6384.74, "probability": 0.9942 }, { "start": 6386.54, "end": 6391.34, "probability": 0.9905 }, { "start": 6395.18, "end": 6396.92, "probability": 0.9547 }, { "start": 6398.84, "end": 6402.72, "probability": 0.9858 }, { "start": 6405.26, "end": 6406.44, "probability": 0.5136 }, { "start": 6407.62, "end": 6410.46, "probability": 0.9935 }, { "start": 6412.26, "end": 6416.16, "probability": 0.9968 }, { "start": 6416.96, "end": 6417.9, "probability": 0.8607 }, { "start": 6418.6, "end": 6421.82, "probability": 0.9886 }, { "start": 6423.94, "end": 6424.88, "probability": 0.9916 }, { "start": 6425.82, "end": 6428.18, "probability": 0.9987 }, { "start": 6431.4, "end": 6433.34, "probability": 0.9995 }, { "start": 6434.44, "end": 6437.76, "probability": 0.993 }, { "start": 6444.32, "end": 6448.02, "probability": 0.9636 }, { "start": 6449.16, "end": 6452.06, "probability": 0.986 }, { "start": 6453.52, "end": 6455.3, "probability": 0.967 }, { "start": 6458.23, "end": 6465.12, "probability": 0.9973 }, { "start": 6466.88, "end": 6469.98, "probability": 0.9993 }, { "start": 6471.54, "end": 6474.2, "probability": 0.8995 }, { "start": 6476.04, "end": 6479.1, "probability": 0.8972 }, { "start": 6480.78, "end": 6481.32, "probability": 0.4973 }, { "start": 6483.46, "end": 6486.68, "probability": 0.7476 }, { "start": 6487.34, "end": 6492.16, "probability": 0.9784 }, { "start": 6493.26, "end": 6498.58, "probability": 0.9683 }, { "start": 6499.64, "end": 6500.52, "probability": 0.7913 }, { "start": 6502.22, "end": 6509.16, "probability": 0.8102 }, { "start": 6510.0, "end": 6512.62, "probability": 0.8594 }, { "start": 6514.16, "end": 6519.26, "probability": 0.9736 }, { "start": 6520.22, "end": 6521.52, "probability": 0.9494 }, { "start": 6522.06, "end": 6525.32, "probability": 0.9712 }, { "start": 6525.38, "end": 6527.06, "probability": 0.6816 }, { "start": 6528.14, "end": 6531.16, "probability": 0.994 }, { "start": 6531.9, "end": 6533.84, "probability": 0.5506 }, { "start": 6535.28, "end": 6537.38, "probability": 0.9978 }, { "start": 6538.34, "end": 6542.78, "probability": 0.726 }, { "start": 6543.76, "end": 6544.62, "probability": 0.9492 }, { "start": 6545.48, "end": 6546.2, "probability": 0.7607 }, { "start": 6547.6, "end": 6549.08, "probability": 0.9907 }, { "start": 6549.3, "end": 6552.24, "probability": 0.9295 }, { "start": 6552.34, "end": 6553.62, "probability": 0.6646 }, { "start": 6554.14, "end": 6555.5, "probability": 0.863 }, { "start": 6556.42, "end": 6558.78, "probability": 0.7142 }, { "start": 6559.21, "end": 6560.79, "probability": 0.5506 }, { "start": 6561.12, "end": 6562.32, "probability": 0.6006 }, { "start": 6563.38, "end": 6568.47, "probability": 0.6614 }, { "start": 6569.62, "end": 6571.64, "probability": 0.0915 }, { "start": 6571.64, "end": 6572.54, "probability": 0.9155 }, { "start": 6573.6, "end": 6574.84, "probability": 0.7747 }, { "start": 6575.74, "end": 6578.16, "probability": 0.8767 }, { "start": 6578.72, "end": 6582.2, "probability": 0.8147 }, { "start": 6583.8, "end": 6588.44, "probability": 0.7144 }, { "start": 6589.92, "end": 6593.78, "probability": 0.9779 }, { "start": 6594.46, "end": 6599.84, "probability": 0.8034 }, { "start": 6600.78, "end": 6603.88, "probability": 0.9975 }, { "start": 6605.06, "end": 6606.59, "probability": 0.9748 }, { "start": 6606.88, "end": 6609.88, "probability": 0.7643 }, { "start": 6610.54, "end": 6612.72, "probability": 0.8966 }, { "start": 6613.52, "end": 6616.32, "probability": 0.9969 }, { "start": 6616.84, "end": 6617.4, "probability": 0.9382 }, { "start": 6618.62, "end": 6620.66, "probability": 0.9773 }, { "start": 6620.82, "end": 6621.6, "probability": 0.969 }, { "start": 6621.66, "end": 6623.3, "probability": 0.6972 }, { "start": 6623.92, "end": 6624.92, "probability": 0.8478 }, { "start": 6625.44, "end": 6626.36, "probability": 0.8657 }, { "start": 6627.8, "end": 6629.79, "probability": 0.9286 }, { "start": 6630.06, "end": 6630.81, "probability": 0.9619 }, { "start": 6631.12, "end": 6633.02, "probability": 0.8731 }, { "start": 6633.64, "end": 6634.44, "probability": 0.6901 }, { "start": 6635.02, "end": 6638.68, "probability": 0.7392 }, { "start": 6639.34, "end": 6640.04, "probability": 0.9723 }, { "start": 6640.56, "end": 6641.34, "probability": 0.9946 }, { "start": 6641.82, "end": 6642.66, "probability": 0.8011 }, { "start": 6643.68, "end": 6647.92, "probability": 0.984 }, { "start": 6648.58, "end": 6650.44, "probability": 0.8022 }, { "start": 6650.5, "end": 6654.73, "probability": 0.979 }, { "start": 6654.9, "end": 6659.72, "probability": 0.9725 }, { "start": 6659.9, "end": 6661.5, "probability": 0.8296 }, { "start": 6661.9, "end": 6664.74, "probability": 0.745 }, { "start": 6665.56, "end": 6666.26, "probability": 0.721 }, { "start": 6667.52, "end": 6667.84, "probability": 0.5176 }, { "start": 6667.84, "end": 6667.84, "probability": 0.0146 }, { "start": 6667.84, "end": 6669.04, "probability": 0.2745 }, { "start": 6669.16, "end": 6669.96, "probability": 0.8448 }, { "start": 6670.06, "end": 6671.0, "probability": 0.8927 }, { "start": 6671.2, "end": 6671.56, "probability": 0.856 }, { "start": 6672.0, "end": 6672.74, "probability": 0.7117 }, { "start": 6673.7, "end": 6674.5, "probability": 0.2794 }, { "start": 6676.91, "end": 6677.78, "probability": 0.0608 }, { "start": 6677.78, "end": 6677.78, "probability": 0.5193 }, { "start": 6677.78, "end": 6678.34, "probability": 0.7417 }, { "start": 6678.34, "end": 6678.34, "probability": 0.0565 }, { "start": 6678.34, "end": 6679.12, "probability": 0.9587 }, { "start": 6679.26, "end": 6679.84, "probability": 0.0222 }, { "start": 6680.02, "end": 6680.46, "probability": 0.4365 }, { "start": 6680.54, "end": 6681.48, "probability": 0.9952 }, { "start": 6682.02, "end": 6684.68, "probability": 0.9858 }, { "start": 6684.8, "end": 6685.32, "probability": 0.4736 }, { "start": 6685.5, "end": 6686.8, "probability": 0.9817 }, { "start": 6686.92, "end": 6688.42, "probability": 0.916 }, { "start": 6688.46, "end": 6689.25, "probability": 0.5205 }, { "start": 6690.04, "end": 6690.56, "probability": 0.5515 }, { "start": 6691.28, "end": 6692.64, "probability": 0.9845 }, { "start": 6693.2, "end": 6694.72, "probability": 0.7163 }, { "start": 6695.4, "end": 6696.98, "probability": 0.9888 }, { "start": 6697.44, "end": 6697.92, "probability": 0.4835 }, { "start": 6698.32, "end": 6699.66, "probability": 0.7807 }, { "start": 6699.8, "end": 6702.66, "probability": 0.9615 }, { "start": 6704.32, "end": 6706.54, "probability": 0.7158 }, { "start": 6706.96, "end": 6708.48, "probability": 0.8199 }, { "start": 6708.78, "end": 6711.02, "probability": 0.772 }, { "start": 6711.12, "end": 6714.12, "probability": 0.6641 }, { "start": 6714.38, "end": 6716.4, "probability": 0.1236 }, { "start": 6726.34, "end": 6727.52, "probability": 0.1614 }, { "start": 6727.52, "end": 6727.88, "probability": 0.0465 }, { "start": 6727.88, "end": 6727.88, "probability": 0.0329 }, { "start": 6727.88, "end": 6730.13, "probability": 0.6113 }, { "start": 6735.66, "end": 6737.2, "probability": 0.5888 }, { "start": 6737.52, "end": 6738.26, "probability": 0.541 }, { "start": 6738.4, "end": 6739.66, "probability": 0.9734 }, { "start": 6740.1, "end": 6742.63, "probability": 0.9945 }, { "start": 6743.22, "end": 6746.2, "probability": 0.9949 }, { "start": 6746.84, "end": 6752.72, "probability": 0.9561 }, { "start": 6753.2, "end": 6758.1, "probability": 0.9991 }, { "start": 6758.82, "end": 6761.26, "probability": 0.7289 }, { "start": 6762.0, "end": 6765.44, "probability": 0.998 }, { "start": 6766.04, "end": 6769.52, "probability": 0.9983 }, { "start": 6770.46, "end": 6772.5, "probability": 0.9993 }, { "start": 6773.06, "end": 6773.58, "probability": 0.8681 }, { "start": 6774.86, "end": 6776.46, "probability": 0.9926 }, { "start": 6777.64, "end": 6780.15, "probability": 0.9932 }, { "start": 6780.98, "end": 6782.14, "probability": 0.9756 }, { "start": 6782.32, "end": 6787.14, "probability": 0.9928 }, { "start": 6787.9, "end": 6789.98, "probability": 0.9888 }, { "start": 6790.8, "end": 6791.48, "probability": 0.7608 }, { "start": 6791.6, "end": 6793.65, "probability": 0.868 }, { "start": 6793.78, "end": 6796.2, "probability": 0.945 }, { "start": 6796.96, "end": 6797.94, "probability": 0.9357 }, { "start": 6798.6, "end": 6801.82, "probability": 0.9812 }, { "start": 6802.66, "end": 6805.22, "probability": 0.8145 }, { "start": 6805.86, "end": 6807.16, "probability": 0.9486 }, { "start": 6808.02, "end": 6811.36, "probability": 0.9987 }, { "start": 6812.84, "end": 6815.22, "probability": 0.7179 }, { "start": 6816.12, "end": 6818.44, "probability": 0.9625 }, { "start": 6819.1, "end": 6820.6, "probability": 0.8824 }, { "start": 6821.16, "end": 6822.08, "probability": 0.958 }, { "start": 6822.88, "end": 6825.08, "probability": 0.9932 }, { "start": 6825.84, "end": 6826.18, "probability": 0.9312 }, { "start": 6827.28, "end": 6829.2, "probability": 0.9953 }, { "start": 6830.58, "end": 6831.32, "probability": 0.9924 }, { "start": 6832.54, "end": 6833.36, "probability": 0.9628 }, { "start": 6834.08, "end": 6836.8, "probability": 0.8837 }, { "start": 6836.9, "end": 6838.78, "probability": 0.9966 }, { "start": 6840.92, "end": 6843.88, "probability": 0.9612 }, { "start": 6844.72, "end": 6845.64, "probability": 0.8307 }, { "start": 6845.9, "end": 6849.64, "probability": 0.9954 }, { "start": 6850.8, "end": 6852.6, "probability": 0.9849 }, { "start": 6852.78, "end": 6857.8, "probability": 0.9979 }, { "start": 6858.48, "end": 6859.78, "probability": 0.9952 }, { "start": 6861.04, "end": 6863.88, "probability": 0.9207 }, { "start": 6864.12, "end": 6866.28, "probability": 0.9982 }, { "start": 6866.8, "end": 6868.2, "probability": 0.6174 }, { "start": 6869.7, "end": 6870.34, "probability": 0.9753 }, { "start": 6871.12, "end": 6871.94, "probability": 0.9527 }, { "start": 6873.02, "end": 6877.0, "probability": 0.9745 }, { "start": 6877.22, "end": 6878.9, "probability": 0.9521 }, { "start": 6879.62, "end": 6884.28, "probability": 0.9884 }, { "start": 6884.98, "end": 6886.86, "probability": 0.6855 }, { "start": 6887.76, "end": 6890.7, "probability": 0.9944 }, { "start": 6891.46, "end": 6893.44, "probability": 0.9229 }, { "start": 6893.94, "end": 6898.0, "probability": 0.9964 }, { "start": 6898.82, "end": 6903.66, "probability": 0.93 }, { "start": 6903.66, "end": 6908.76, "probability": 0.9996 }, { "start": 6909.7, "end": 6911.54, "probability": 0.9934 }, { "start": 6912.42, "end": 6914.6, "probability": 0.9966 }, { "start": 6915.34, "end": 6916.38, "probability": 0.9937 }, { "start": 6918.34, "end": 6919.26, "probability": 0.897 }, { "start": 6919.68, "end": 6924.24, "probability": 0.9933 }, { "start": 6924.88, "end": 6931.34, "probability": 0.9968 }, { "start": 6932.04, "end": 6936.26, "probability": 0.998 }, { "start": 6937.0, "end": 6942.82, "probability": 0.999 }, { "start": 6943.56, "end": 6946.52, "probability": 0.7645 }, { "start": 6946.66, "end": 6948.42, "probability": 0.9285 }, { "start": 6949.04, "end": 6950.08, "probability": 0.9165 }, { "start": 6950.68, "end": 6954.78, "probability": 0.9897 }, { "start": 6954.88, "end": 6956.6, "probability": 0.9764 }, { "start": 6957.4, "end": 6961.62, "probability": 0.9798 }, { "start": 6962.22, "end": 6965.38, "probability": 0.9729 }, { "start": 6965.4, "end": 6967.7, "probability": 0.8299 }, { "start": 6968.26, "end": 6974.02, "probability": 0.9899 }, { "start": 6974.16, "end": 6974.58, "probability": 0.445 }, { "start": 6974.68, "end": 6975.72, "probability": 0.7354 }, { "start": 6976.3, "end": 6978.86, "probability": 0.9684 }, { "start": 6979.56, "end": 6983.32, "probability": 0.9003 }, { "start": 6984.0, "end": 6984.6, "probability": 0.9211 }, { "start": 6985.34, "end": 6989.8, "probability": 0.9858 }, { "start": 6989.8, "end": 6993.18, "probability": 0.9956 }, { "start": 6993.84, "end": 6995.8, "probability": 0.8904 }, { "start": 6996.58, "end": 6999.84, "probability": 0.9888 }, { "start": 7000.36, "end": 7001.02, "probability": 0.8546 }, { "start": 7001.54, "end": 7006.46, "probability": 0.9992 }, { "start": 7007.24, "end": 7008.88, "probability": 0.9594 }, { "start": 7009.74, "end": 7011.94, "probability": 0.9945 }, { "start": 7012.62, "end": 7013.52, "probability": 0.8779 }, { "start": 7014.64, "end": 7016.2, "probability": 0.9829 }, { "start": 7017.3, "end": 7018.12, "probability": 0.9704 }, { "start": 7018.74, "end": 7022.12, "probability": 0.807 }, { "start": 7022.69, "end": 7023.2, "probability": 0.7991 }, { "start": 7024.84, "end": 7026.46, "probability": 0.9939 }, { "start": 7026.66, "end": 7027.14, "probability": 0.9634 }, { "start": 7028.0, "end": 7030.38, "probability": 0.7418 }, { "start": 7030.62, "end": 7031.8, "probability": 0.8889 }, { "start": 7032.5, "end": 7033.8, "probability": 0.9357 }, { "start": 7034.24, "end": 7035.52, "probability": 0.806 }, { "start": 7035.72, "end": 7037.64, "probability": 0.9359 }, { "start": 7064.5, "end": 7065.0, "probability": 0.3796 }, { "start": 7065.0, "end": 7066.57, "probability": 0.7303 }, { "start": 7066.82, "end": 7067.3, "probability": 0.6918 }, { "start": 7075.52, "end": 7077.82, "probability": 0.8122 }, { "start": 7080.46, "end": 7081.75, "probability": 0.8152 }, { "start": 7081.96, "end": 7084.42, "probability": 0.959 }, { "start": 7085.74, "end": 7092.84, "probability": 0.995 }, { "start": 7093.04, "end": 7095.94, "probability": 0.7185 }, { "start": 7096.48, "end": 7098.94, "probability": 0.9974 }, { "start": 7100.16, "end": 7102.72, "probability": 0.8704 }, { "start": 7104.7, "end": 7106.52, "probability": 0.995 }, { "start": 7107.04, "end": 7107.6, "probability": 0.7661 }, { "start": 7108.08, "end": 7108.6, "probability": 0.854 }, { "start": 7109.22, "end": 7110.81, "probability": 0.9922 }, { "start": 7111.56, "end": 7112.8, "probability": 0.7104 }, { "start": 7115.7, "end": 7119.5, "probability": 0.9844 }, { "start": 7120.84, "end": 7125.12, "probability": 0.9893 }, { "start": 7126.28, "end": 7130.82, "probability": 0.988 }, { "start": 7131.82, "end": 7132.86, "probability": 0.8748 }, { "start": 7133.32, "end": 7137.9, "probability": 0.9766 }, { "start": 7139.08, "end": 7143.66, "probability": 0.9878 }, { "start": 7143.7, "end": 7145.74, "probability": 0.9985 }, { "start": 7146.06, "end": 7146.69, "probability": 0.9876 }, { "start": 7147.66, "end": 7151.96, "probability": 0.9976 }, { "start": 7153.04, "end": 7157.96, "probability": 0.9641 }, { "start": 7157.96, "end": 7159.92, "probability": 0.7994 }, { "start": 7160.54, "end": 7163.1, "probability": 0.996 }, { "start": 7163.7, "end": 7164.2, "probability": 0.9739 }, { "start": 7165.6, "end": 7168.04, "probability": 0.9379 }, { "start": 7168.34, "end": 7172.86, "probability": 0.9712 }, { "start": 7173.6, "end": 7175.82, "probability": 0.9963 }, { "start": 7176.6, "end": 7181.08, "probability": 0.9822 }, { "start": 7181.7, "end": 7182.76, "probability": 0.9055 }, { "start": 7182.84, "end": 7185.31, "probability": 0.9977 }, { "start": 7185.8, "end": 7192.0, "probability": 0.9963 }, { "start": 7196.52, "end": 7197.12, "probability": 0.7323 }, { "start": 7197.26, "end": 7203.2, "probability": 0.9956 }, { "start": 7203.34, "end": 7203.44, "probability": 0.4965 }, { "start": 7203.44, "end": 7204.6, "probability": 0.9951 }, { "start": 7205.14, "end": 7207.46, "probability": 0.8883 }, { "start": 7208.02, "end": 7211.18, "probability": 0.9629 }, { "start": 7211.88, "end": 7214.7, "probability": 0.9888 }, { "start": 7215.72, "end": 7216.42, "probability": 0.772 }, { "start": 7216.92, "end": 7218.1, "probability": 0.9718 }, { "start": 7219.72, "end": 7221.86, "probability": 0.9988 }, { "start": 7221.96, "end": 7223.76, "probability": 0.8975 }, { "start": 7224.22, "end": 7226.02, "probability": 0.9974 }, { "start": 7226.78, "end": 7230.16, "probability": 0.9674 }, { "start": 7231.12, "end": 7234.44, "probability": 0.9938 }, { "start": 7235.34, "end": 7236.28, "probability": 0.9439 }, { "start": 7236.52, "end": 7238.66, "probability": 0.8648 }, { "start": 7238.66, "end": 7241.46, "probability": 0.9963 }, { "start": 7241.5, "end": 7241.74, "probability": 0.3928 }, { "start": 7243.04, "end": 7244.64, "probability": 0.9445 }, { "start": 7245.5, "end": 7247.46, "probability": 0.9608 }, { "start": 7247.92, "end": 7251.16, "probability": 0.998 }, { "start": 7252.4, "end": 7256.74, "probability": 0.991 }, { "start": 7257.34, "end": 7258.13, "probability": 0.9459 }, { "start": 7258.56, "end": 7259.2, "probability": 0.9801 }, { "start": 7259.52, "end": 7260.52, "probability": 0.9961 }, { "start": 7261.3, "end": 7262.98, "probability": 0.7972 }, { "start": 7263.12, "end": 7264.5, "probability": 0.984 }, { "start": 7265.06, "end": 7269.82, "probability": 0.9626 }, { "start": 7272.68, "end": 7274.6, "probability": 0.8575 }, { "start": 7275.48, "end": 7278.18, "probability": 0.9746 }, { "start": 7278.26, "end": 7282.88, "probability": 0.9749 }, { "start": 7284.28, "end": 7287.24, "probability": 0.9974 }, { "start": 7287.4, "end": 7288.86, "probability": 0.8479 }, { "start": 7289.4, "end": 7291.4, "probability": 0.9902 }, { "start": 7291.86, "end": 7295.52, "probability": 0.994 }, { "start": 7295.52, "end": 7298.0, "probability": 0.9939 }, { "start": 7298.02, "end": 7301.54, "probability": 0.9983 }, { "start": 7302.26, "end": 7306.41, "probability": 0.9953 }, { "start": 7307.89, "end": 7312.68, "probability": 0.6815 }, { "start": 7313.42, "end": 7313.64, "probability": 0.6275 }, { "start": 7315.62, "end": 7316.42, "probability": 0.8607 }, { "start": 7316.98, "end": 7320.99, "probability": 0.9932 }, { "start": 7322.08, "end": 7323.82, "probability": 0.6763 }, { "start": 7324.8, "end": 7327.7, "probability": 0.9991 }, { "start": 7328.22, "end": 7331.66, "probability": 0.9263 }, { "start": 7332.94, "end": 7333.68, "probability": 0.5486 }, { "start": 7334.26, "end": 7335.98, "probability": 0.568 }, { "start": 7337.06, "end": 7337.36, "probability": 0.6841 }, { "start": 7337.36, "end": 7339.54, "probability": 0.9985 }, { "start": 7339.66, "end": 7342.44, "probability": 0.9267 }, { "start": 7342.56, "end": 7343.82, "probability": 0.9321 }, { "start": 7344.56, "end": 7345.4, "probability": 0.685 }, { "start": 7346.8, "end": 7347.32, "probability": 0.2192 }, { "start": 7347.5, "end": 7348.48, "probability": 0.9915 }, { "start": 7349.02, "end": 7349.98, "probability": 0.9671 }, { "start": 7351.24, "end": 7354.34, "probability": 0.6538 }, { "start": 7354.5, "end": 7355.52, "probability": 0.6134 }, { "start": 7356.08, "end": 7357.32, "probability": 0.9692 }, { "start": 7358.08, "end": 7360.48, "probability": 0.9766 }, { "start": 7361.52, "end": 7362.58, "probability": 0.8647 }, { "start": 7363.32, "end": 7367.82, "probability": 0.9915 }, { "start": 7370.54, "end": 7373.0, "probability": 0.8552 }, { "start": 7373.0, "end": 7374.54, "probability": 0.376 }, { "start": 7374.7, "end": 7377.62, "probability": 0.3466 }, { "start": 7377.72, "end": 7378.08, "probability": 0.744 }, { "start": 7379.26, "end": 7380.66, "probability": 0.0728 }, { "start": 7389.66, "end": 7390.06, "probability": 0.6024 }, { "start": 7390.48, "end": 7390.48, "probability": 0.1524 }, { "start": 7390.48, "end": 7390.48, "probability": 0.0352 }, { "start": 7390.48, "end": 7390.48, "probability": 0.1876 }, { "start": 7390.48, "end": 7390.48, "probability": 0.0325 }, { "start": 7390.48, "end": 7392.72, "probability": 0.3669 }, { "start": 7394.14, "end": 7397.52, "probability": 0.99 }, { "start": 7398.46, "end": 7398.86, "probability": 0.8071 }, { "start": 7400.08, "end": 7402.46, "probability": 0.7382 }, { "start": 7402.86, "end": 7403.98, "probability": 0.8394 }, { "start": 7404.66, "end": 7406.93, "probability": 0.9888 }, { "start": 7407.36, "end": 7408.14, "probability": 0.9409 }, { "start": 7408.64, "end": 7410.81, "probability": 0.8689 }, { "start": 7411.14, "end": 7413.68, "probability": 0.9758 }, { "start": 7414.9, "end": 7419.08, "probability": 0.9103 }, { "start": 7419.64, "end": 7421.58, "probability": 0.9604 }, { "start": 7422.56, "end": 7423.4, "probability": 0.9106 }, { "start": 7423.6, "end": 7427.22, "probability": 0.984 }, { "start": 7428.14, "end": 7430.04, "probability": 0.9051 }, { "start": 7430.9, "end": 7435.16, "probability": 0.9991 }, { "start": 7435.9, "end": 7438.96, "probability": 0.9841 }, { "start": 7438.96, "end": 7442.54, "probability": 0.9987 }, { "start": 7442.6, "end": 7445.3, "probability": 0.9973 }, { "start": 7445.72, "end": 7445.96, "probability": 0.7385 }, { "start": 7447.02, "end": 7449.62, "probability": 0.7398 }, { "start": 7450.04, "end": 7452.1, "probability": 0.9259 }, { "start": 7452.8, "end": 7454.0, "probability": 0.6741 }, { "start": 7454.92, "end": 7455.26, "probability": 0.4655 }, { "start": 7456.16, "end": 7457.5, "probability": 0.8883 }, { "start": 7457.84, "end": 7458.96, "probability": 0.6974 }, { "start": 7472.3, "end": 7472.88, "probability": 0.7153 }, { "start": 7473.2, "end": 7474.7, "probability": 0.6808 }, { "start": 7474.92, "end": 7476.74, "probability": 0.9078 }, { "start": 7477.02, "end": 7477.56, "probability": 0.9292 }, { "start": 7477.74, "end": 7479.02, "probability": 0.8672 }, { "start": 7479.8, "end": 7480.8, "probability": 0.894 }, { "start": 7481.14, "end": 7481.34, "probability": 0.5298 }, { "start": 7482.42, "end": 7483.02, "probability": 0.9274 }, { "start": 7483.72, "end": 7485.9, "probability": 0.7309 }, { "start": 7486.9, "end": 7488.14, "probability": 0.6927 }, { "start": 7489.62, "end": 7492.38, "probability": 0.9536 }, { "start": 7492.6, "end": 7493.42, "probability": 0.8872 }, { "start": 7493.6, "end": 7495.32, "probability": 0.9956 }, { "start": 7495.5, "end": 7496.52, "probability": 0.887 }, { "start": 7497.82, "end": 7502.1, "probability": 0.9932 }, { "start": 7502.22, "end": 7503.84, "probability": 0.9114 }, { "start": 7504.68, "end": 7508.8, "probability": 0.9856 }, { "start": 7510.18, "end": 7515.58, "probability": 0.9972 }, { "start": 7516.88, "end": 7518.86, "probability": 0.98 }, { "start": 7520.26, "end": 7524.56, "probability": 0.9984 }, { "start": 7524.56, "end": 7529.14, "probability": 0.923 }, { "start": 7529.72, "end": 7533.12, "probability": 0.9983 }, { "start": 7533.7, "end": 7537.2, "probability": 0.9932 }, { "start": 7538.74, "end": 7539.14, "probability": 0.8334 }, { "start": 7540.36, "end": 7542.74, "probability": 0.9979 }, { "start": 7543.26, "end": 7544.62, "probability": 0.9991 }, { "start": 7545.42, "end": 7547.22, "probability": 0.999 }, { "start": 7548.68, "end": 7550.58, "probability": 0.8233 }, { "start": 7551.74, "end": 7552.96, "probability": 0.9431 }, { "start": 7553.68, "end": 7556.6, "probability": 0.9668 }, { "start": 7557.26, "end": 7560.3, "probability": 0.8985 }, { "start": 7561.64, "end": 7562.78, "probability": 0.999 }, { "start": 7563.32, "end": 7564.12, "probability": 0.8544 }, { "start": 7565.36, "end": 7567.7, "probability": 0.9484 }, { "start": 7568.46, "end": 7568.78, "probability": 0.4487 }, { "start": 7569.42, "end": 7570.2, "probability": 0.828 }, { "start": 7570.94, "end": 7571.68, "probability": 0.9233 }, { "start": 7573.94, "end": 7576.14, "probability": 0.9277 }, { "start": 7576.82, "end": 7577.48, "probability": 0.9884 }, { "start": 7578.74, "end": 7585.04, "probability": 0.9132 }, { "start": 7585.72, "end": 7585.93, "probability": 0.9888 }, { "start": 7587.28, "end": 7588.64, "probability": 0.9876 }, { "start": 7589.56, "end": 7592.62, "probability": 0.9506 }, { "start": 7593.3, "end": 7599.2, "probability": 0.9991 }, { "start": 7600.22, "end": 7602.72, "probability": 0.9959 }, { "start": 7603.86, "end": 7604.2, "probability": 0.6362 }, { "start": 7605.0, "end": 7606.89, "probability": 0.9778 }, { "start": 7609.16, "end": 7610.9, "probability": 0.9982 }, { "start": 7611.66, "end": 7612.42, "probability": 0.8206 }, { "start": 7613.14, "end": 7617.98, "probability": 0.9943 }, { "start": 7618.54, "end": 7620.22, "probability": 0.9312 }, { "start": 7620.74, "end": 7622.14, "probability": 0.4952 }, { "start": 7623.02, "end": 7625.08, "probability": 0.9431 }, { "start": 7625.5, "end": 7627.68, "probability": 0.6492 }, { "start": 7629.48, "end": 7634.88, "probability": 0.9917 }, { "start": 7636.3, "end": 7637.54, "probability": 0.9834 }, { "start": 7638.16, "end": 7639.7, "probability": 0.9905 }, { "start": 7641.2, "end": 7645.46, "probability": 0.797 }, { "start": 7645.46, "end": 7648.86, "probability": 0.9912 }, { "start": 7649.72, "end": 7652.96, "probability": 0.9629 }, { "start": 7653.72, "end": 7657.62, "probability": 0.9991 }, { "start": 7658.24, "end": 7659.16, "probability": 0.9709 }, { "start": 7660.1, "end": 7662.22, "probability": 0.9412 }, { "start": 7663.2, "end": 7666.58, "probability": 0.9826 }, { "start": 7667.28, "end": 7671.06, "probability": 0.9888 }, { "start": 7671.64, "end": 7677.94, "probability": 0.968 }, { "start": 7679.22, "end": 7679.44, "probability": 0.5147 }, { "start": 7680.12, "end": 7681.36, "probability": 0.9974 }, { "start": 7681.88, "end": 7686.06, "probability": 0.9907 }, { "start": 7686.98, "end": 7688.64, "probability": 0.878 }, { "start": 7689.28, "end": 7693.68, "probability": 0.9929 }, { "start": 7694.34, "end": 7695.68, "probability": 0.8364 }, { "start": 7697.2, "end": 7698.12, "probability": 0.7519 }, { "start": 7698.96, "end": 7701.48, "probability": 0.7493 }, { "start": 7702.16, "end": 7703.48, "probability": 0.9635 }, { "start": 7704.32, "end": 7711.08, "probability": 0.9969 }, { "start": 7712.22, "end": 7713.73, "probability": 0.6856 }, { "start": 7715.2, "end": 7717.64, "probability": 0.7932 }, { "start": 7718.38, "end": 7720.16, "probability": 0.9674 }, { "start": 7720.7, "end": 7725.24, "probability": 0.989 }, { "start": 7725.8, "end": 7729.66, "probability": 0.9932 }, { "start": 7730.5, "end": 7730.84, "probability": 0.7697 }, { "start": 7731.54, "end": 7732.9, "probability": 0.8236 }, { "start": 7735.68, "end": 7735.74, "probability": 0.109 }, { "start": 7735.74, "end": 7738.56, "probability": 0.8909 }, { "start": 7739.26, "end": 7740.68, "probability": 0.8188 }, { "start": 7761.54, "end": 7764.76, "probability": 0.5331 }, { "start": 7765.36, "end": 7766.32, "probability": 0.4917 }, { "start": 7766.62, "end": 7770.34, "probability": 0.5902 }, { "start": 7770.42, "end": 7771.04, "probability": 0.6891 }, { "start": 7771.12, "end": 7771.12, "probability": 0.3845 }, { "start": 7771.12, "end": 7773.93, "probability": 0.9429 }, { "start": 7776.01, "end": 7778.8, "probability": 0.5369 }, { "start": 7780.62, "end": 7783.82, "probability": 0.7888 }, { "start": 7785.34, "end": 7786.52, "probability": 0.9484 }, { "start": 7787.62, "end": 7791.64, "probability": 0.7698 }, { "start": 7793.7, "end": 7798.92, "probability": 0.9973 }, { "start": 7800.0, "end": 7800.52, "probability": 0.5262 }, { "start": 7801.3, "end": 7803.48, "probability": 0.9926 }, { "start": 7803.58, "end": 7805.2, "probability": 0.8625 }, { "start": 7806.4, "end": 7806.9, "probability": 0.2793 }, { "start": 7807.2, "end": 7812.5, "probability": 0.7546 }, { "start": 7813.44, "end": 7815.43, "probability": 0.7146 }, { "start": 7816.36, "end": 7818.36, "probability": 0.9785 }, { "start": 7819.02, "end": 7819.9, "probability": 0.9463 }, { "start": 7821.48, "end": 7823.12, "probability": 0.6813 }, { "start": 7824.34, "end": 7825.32, "probability": 0.8177 }, { "start": 7825.34, "end": 7826.47, "probability": 0.458 }, { "start": 7827.38, "end": 7832.58, "probability": 0.7263 }, { "start": 7834.1, "end": 7838.28, "probability": 0.7882 }, { "start": 7838.88, "end": 7842.22, "probability": 0.9827 }, { "start": 7844.28, "end": 7847.06, "probability": 0.9705 }, { "start": 7848.4, "end": 7849.94, "probability": 0.8315 }, { "start": 7850.12, "end": 7851.72, "probability": 0.9264 }, { "start": 7853.88, "end": 7854.7, "probability": 0.8879 }, { "start": 7856.34, "end": 7862.88, "probability": 0.6009 }, { "start": 7863.05, "end": 7864.33, "probability": 0.9766 }, { "start": 7865.73, "end": 7867.09, "probability": 0.8232 }, { "start": 7870.41, "end": 7871.13, "probability": 0.613 }, { "start": 7872.44, "end": 7873.4, "probability": 0.9771 }, { "start": 7876.91, "end": 7881.37, "probability": 0.7944 }, { "start": 7883.9, "end": 7886.81, "probability": 0.3626 }, { "start": 7891.95, "end": 7895.99, "probability": 0.9492 }, { "start": 7897.01, "end": 7898.29, "probability": 0.9521 }, { "start": 7901.85, "end": 7904.01, "probability": 0.7698 }, { "start": 7904.01, "end": 7907.59, "probability": 0.8219 }, { "start": 7908.17, "end": 7910.01, "probability": 0.8525 }, { "start": 7910.85, "end": 7915.35, "probability": 0.9957 }, { "start": 7916.03, "end": 7917.07, "probability": 0.9253 }, { "start": 7918.51, "end": 7922.37, "probability": 0.9978 }, { "start": 7923.03, "end": 7924.21, "probability": 0.9982 }, { "start": 7926.43, "end": 7928.31, "probability": 0.8499 }, { "start": 7928.95, "end": 7930.11, "probability": 0.9712 }, { "start": 7930.35, "end": 7934.31, "probability": 0.8755 }, { "start": 7934.63, "end": 7936.29, "probability": 0.9543 }, { "start": 7937.23, "end": 7938.13, "probability": 0.9871 }, { "start": 7939.09, "end": 7940.25, "probability": 0.7463 }, { "start": 7941.81, "end": 7943.89, "probability": 0.9116 }, { "start": 7944.41, "end": 7945.99, "probability": 0.9318 }, { "start": 7947.23, "end": 7948.25, "probability": 0.867 }, { "start": 7949.13, "end": 7949.85, "probability": 0.9834 }, { "start": 7950.81, "end": 7951.99, "probability": 0.6418 }, { "start": 7952.19, "end": 7952.89, "probability": 0.6831 }, { "start": 7953.11, "end": 7957.45, "probability": 0.9523 }, { "start": 7957.57, "end": 7958.29, "probability": 0.8679 }, { "start": 7959.73, "end": 7961.77, "probability": 0.7485 }, { "start": 7963.31, "end": 7965.75, "probability": 0.789 }, { "start": 7966.53, "end": 7968.57, "probability": 0.9741 }, { "start": 7969.07, "end": 7969.99, "probability": 0.6837 }, { "start": 7970.09, "end": 7971.01, "probability": 0.6219 }, { "start": 7971.07, "end": 7972.09, "probability": 0.502 }, { "start": 7972.19, "end": 7976.31, "probability": 0.9484 }, { "start": 7976.43, "end": 7977.97, "probability": 0.8777 }, { "start": 7978.09, "end": 7979.17, "probability": 0.7822 }, { "start": 7982.39, "end": 7985.77, "probability": 0.6147 }, { "start": 7986.81, "end": 7993.37, "probability": 0.6548 }, { "start": 7995.35, "end": 7996.69, "probability": 0.9662 }, { "start": 7996.93, "end": 7997.87, "probability": 0.7394 }, { "start": 7998.13, "end": 8000.19, "probability": 0.9907 }, { "start": 8000.45, "end": 8003.35, "probability": 0.9501 }, { "start": 8004.33, "end": 8006.17, "probability": 0.7061 }, { "start": 8006.69, "end": 8009.87, "probability": 0.7489 }, { "start": 8010.51, "end": 8012.35, "probability": 0.9714 }, { "start": 8013.23, "end": 8014.25, "probability": 0.6734 }, { "start": 8014.95, "end": 8016.23, "probability": 0.9497 }, { "start": 8020.18, "end": 8021.42, "probability": 0.8067 }, { "start": 8021.78, "end": 8023.8, "probability": 0.9198 }, { "start": 8023.92, "end": 8027.04, "probability": 0.9968 }, { "start": 8027.3, "end": 8029.12, "probability": 0.7474 }, { "start": 8029.74, "end": 8030.14, "probability": 0.5082 }, { "start": 8030.76, "end": 8034.96, "probability": 0.8369 }, { "start": 8035.72, "end": 8037.48, "probability": 0.8957 }, { "start": 8037.79, "end": 8040.34, "probability": 0.9883 }, { "start": 8041.8, "end": 8041.8, "probability": 0.6523 }, { "start": 8042.44, "end": 8046.06, "probability": 0.9861 }, { "start": 8047.15, "end": 8051.24, "probability": 0.6662 }, { "start": 8052.28, "end": 8054.92, "probability": 0.871 }, { "start": 8056.38, "end": 8060.66, "probability": 0.6962 }, { "start": 8063.14, "end": 8066.32, "probability": 0.6677 }, { "start": 8066.44, "end": 8070.32, "probability": 0.997 }, { "start": 8071.72, "end": 8073.32, "probability": 0.9679 }, { "start": 8073.6, "end": 8074.23, "probability": 0.4425 }, { "start": 8075.14, "end": 8076.72, "probability": 0.8566 }, { "start": 8076.9, "end": 8083.78, "probability": 0.8176 }, { "start": 8084.38, "end": 8085.02, "probability": 0.5957 }, { "start": 8085.1, "end": 8085.66, "probability": 0.9575 }, { "start": 8085.66, "end": 8086.9, "probability": 0.9448 }, { "start": 8086.94, "end": 8088.4, "probability": 0.7012 }, { "start": 8088.94, "end": 8089.26, "probability": 0.7889 }, { "start": 8090.16, "end": 8092.7, "probability": 0.9048 }, { "start": 8092.94, "end": 8095.12, "probability": 0.9951 }, { "start": 8095.62, "end": 8099.04, "probability": 0.9556 }, { "start": 8099.66, "end": 8101.24, "probability": 0.743 }, { "start": 8102.18, "end": 8103.32, "probability": 0.7915 }, { "start": 8103.98, "end": 8106.9, "probability": 0.9688 }, { "start": 8107.44, "end": 8107.98, "probability": 0.4984 }, { "start": 8108.58, "end": 8109.5, "probability": 0.7945 }, { "start": 8109.86, "end": 8111.84, "probability": 0.9862 }, { "start": 8112.78, "end": 8114.64, "probability": 0.971 }, { "start": 8116.32, "end": 8117.26, "probability": 0.5203 }, { "start": 8132.58, "end": 8138.68, "probability": 0.5411 }, { "start": 8139.84, "end": 8142.08, "probability": 0.8061 }, { "start": 8142.68, "end": 8143.54, "probability": 0.6205 }, { "start": 8144.54, "end": 8149.9, "probability": 0.9927 }, { "start": 8150.98, "end": 8153.26, "probability": 0.7616 }, { "start": 8154.08, "end": 8155.88, "probability": 0.933 }, { "start": 8161.9, "end": 8164.84, "probability": 0.4409 }, { "start": 8165.58, "end": 8166.3, "probability": 0.6965 }, { "start": 8167.52, "end": 8167.84, "probability": 0.5522 }, { "start": 8168.28, "end": 8175.1, "probability": 0.9101 }, { "start": 8175.76, "end": 8176.76, "probability": 0.7419 }, { "start": 8177.7, "end": 8179.38, "probability": 0.7144 }, { "start": 8180.26, "end": 8182.1, "probability": 0.9977 }, { "start": 8183.34, "end": 8187.64, "probability": 0.9898 }, { "start": 8188.38, "end": 8191.1, "probability": 0.9971 }, { "start": 8193.06, "end": 8196.64, "probability": 0.957 }, { "start": 8197.36, "end": 8198.64, "probability": 0.9057 }, { "start": 8199.3, "end": 8200.86, "probability": 0.9785 }, { "start": 8201.44, "end": 8207.06, "probability": 0.998 }, { "start": 8208.08, "end": 8210.84, "probability": 0.782 }, { "start": 8211.98, "end": 8212.74, "probability": 0.5796 }, { "start": 8213.18, "end": 8219.7, "probability": 0.9668 }, { "start": 8220.48, "end": 8220.92, "probability": 0.6138 }, { "start": 8222.06, "end": 8227.34, "probability": 0.9331 }, { "start": 8227.34, "end": 8231.02, "probability": 0.9969 }, { "start": 8231.56, "end": 8232.44, "probability": 0.5802 }, { "start": 8233.34, "end": 8237.06, "probability": 0.8965 }, { "start": 8237.9, "end": 8244.2, "probability": 0.9932 }, { "start": 8245.32, "end": 8248.94, "probability": 0.9443 }, { "start": 8250.46, "end": 8251.98, "probability": 0.8949 }, { "start": 8252.8, "end": 8256.18, "probability": 0.936 }, { "start": 8256.7, "end": 8257.18, "probability": 0.822 }, { "start": 8258.52, "end": 8261.34, "probability": 0.8247 }, { "start": 8261.34, "end": 8264.68, "probability": 0.9966 }, { "start": 8266.16, "end": 8266.64, "probability": 0.8173 }, { "start": 8267.46, "end": 8269.74, "probability": 0.7878 }, { "start": 8270.34, "end": 8272.88, "probability": 0.9386 }, { "start": 8274.86, "end": 8281.3, "probability": 0.7984 }, { "start": 8282.52, "end": 8286.68, "probability": 0.8507 }, { "start": 8286.8, "end": 8288.96, "probability": 0.9924 }, { "start": 8289.48, "end": 8290.16, "probability": 0.7576 }, { "start": 8291.1, "end": 8291.84, "probability": 0.663 }, { "start": 8292.98, "end": 8293.78, "probability": 0.9119 }, { "start": 8294.74, "end": 8295.9, "probability": 0.6981 }, { "start": 8296.5, "end": 8297.44, "probability": 0.888 }, { "start": 8298.74, "end": 8300.18, "probability": 0.9558 }, { "start": 8300.82, "end": 8305.44, "probability": 0.999 }, { "start": 8306.34, "end": 8307.38, "probability": 0.9475 }, { "start": 8307.9, "end": 8309.44, "probability": 0.8821 }, { "start": 8310.2, "end": 8312.62, "probability": 0.6178 }, { "start": 8313.26, "end": 8314.32, "probability": 0.5668 }, { "start": 8315.14, "end": 8318.84, "probability": 0.9656 }, { "start": 8319.42, "end": 8319.88, "probability": 0.6059 }, { "start": 8322.26, "end": 8328.12, "probability": 0.9285 }, { "start": 8328.48, "end": 8331.06, "probability": 0.7021 }, { "start": 8331.42, "end": 8332.18, "probability": 0.6296 }, { "start": 8332.52, "end": 8334.32, "probability": 0.9982 }, { "start": 8334.84, "end": 8336.22, "probability": 0.9551 }, { "start": 8336.9, "end": 8337.76, "probability": 0.6116 }, { "start": 8338.52, "end": 8340.8, "probability": 0.9853 }, { "start": 8341.62, "end": 8344.2, "probability": 0.936 }, { "start": 8344.58, "end": 8345.0, "probability": 0.9512 }, { "start": 8345.72, "end": 8346.96, "probability": 0.8803 }, { "start": 8347.2, "end": 8351.12, "probability": 0.9958 }, { "start": 8351.62, "end": 8353.46, "probability": 0.6505 }, { "start": 8354.3, "end": 8357.34, "probability": 0.8329 }, { "start": 8357.34, "end": 8358.16, "probability": 0.9126 }, { "start": 8358.18, "end": 8360.48, "probability": 0.8838 }, { "start": 8360.6, "end": 8361.64, "probability": 0.9702 }, { "start": 8362.0, "end": 8362.92, "probability": 0.9956 }, { "start": 8363.3, "end": 8363.58, "probability": 0.9432 }, { "start": 8364.06, "end": 8364.4, "probability": 0.6975 }, { "start": 8364.74, "end": 8365.94, "probability": 0.9759 }, { "start": 8366.98, "end": 8371.04, "probability": 0.9708 }, { "start": 8372.06, "end": 8374.54, "probability": 0.9139 }, { "start": 8375.02, "end": 8375.36, "probability": 0.6645 }, { "start": 8377.0, "end": 8378.34, "probability": 0.977 }, { "start": 8378.66, "end": 8378.86, "probability": 0.8522 }, { "start": 8379.24, "end": 8380.7, "probability": 0.9316 }, { "start": 8381.12, "end": 8382.12, "probability": 0.7819 }, { "start": 8383.14, "end": 8384.53, "probability": 0.9875 }, { "start": 8386.06, "end": 8386.48, "probability": 0.787 }, { "start": 8387.38, "end": 8388.2, "probability": 0.9209 }, { "start": 8388.96, "end": 8390.08, "probability": 0.9902 }, { "start": 8390.84, "end": 8391.96, "probability": 0.9828 }, { "start": 8392.1, "end": 8393.38, "probability": 0.882 }, { "start": 8395.32, "end": 8395.85, "probability": 0.822 }, { "start": 8396.56, "end": 8400.4, "probability": 0.904 }, { "start": 8400.4, "end": 8402.54, "probability": 0.9927 }, { "start": 8403.16, "end": 8403.72, "probability": 0.6031 }, { "start": 8403.86, "end": 8405.12, "probability": 0.8342 }, { "start": 8405.5, "end": 8405.8, "probability": 0.3487 }, { "start": 8405.9, "end": 8409.96, "probability": 0.9948 }, { "start": 8410.72, "end": 8411.46, "probability": 0.7564 }, { "start": 8412.06, "end": 8413.0, "probability": 0.4444 }, { "start": 8413.64, "end": 8414.5, "probability": 0.7737 }, { "start": 8415.26, "end": 8416.48, "probability": 0.9681 }, { "start": 8416.94, "end": 8417.8, "probability": 0.8029 }, { "start": 8418.14, "end": 8418.98, "probability": 0.9271 }, { "start": 8419.3, "end": 8420.88, "probability": 0.985 }, { "start": 8421.34, "end": 8425.16, "probability": 0.9912 }, { "start": 8425.7, "end": 8427.9, "probability": 0.9489 }, { "start": 8428.46, "end": 8429.72, "probability": 0.8225 }, { "start": 8429.8, "end": 8431.8, "probability": 0.6741 }, { "start": 8432.12, "end": 8432.54, "probability": 0.9133 }, { "start": 8433.18, "end": 8434.24, "probability": 0.7372 }, { "start": 8434.36, "end": 8436.46, "probability": 0.9035 }, { "start": 8437.12, "end": 8438.86, "probability": 0.7219 }, { "start": 8439.38, "end": 8439.94, "probability": 0.4262 }, { "start": 8439.96, "end": 8440.56, "probability": 0.5851 }, { "start": 8457.12, "end": 8457.62, "probability": 0.3258 }, { "start": 8458.76, "end": 8459.9, "probability": 0.0725 }, { "start": 8462.1, "end": 8463.58, "probability": 0.1505 }, { "start": 8475.42, "end": 8476.44, "probability": 0.5753 }, { "start": 8477.18, "end": 8478.86, "probability": 0.9717 }, { "start": 8480.76, "end": 8485.16, "probability": 0.9255 }, { "start": 8486.32, "end": 8489.8, "probability": 0.9937 }, { "start": 8489.8, "end": 8493.32, "probability": 0.9895 }, { "start": 8493.74, "end": 8494.78, "probability": 0.9117 }, { "start": 8495.76, "end": 8502.12, "probability": 0.9636 }, { "start": 8502.92, "end": 8503.36, "probability": 0.515 }, { "start": 8503.96, "end": 8505.26, "probability": 0.97 }, { "start": 8505.84, "end": 8511.84, "probability": 0.9971 }, { "start": 8512.42, "end": 8513.62, "probability": 0.9491 }, { "start": 8514.4, "end": 8519.16, "probability": 0.9962 }, { "start": 8519.88, "end": 8521.82, "probability": 0.981 }, { "start": 8522.68, "end": 8525.14, "probability": 0.7155 }, { "start": 8525.94, "end": 8528.14, "probability": 0.9637 }, { "start": 8528.78, "end": 8532.26, "probability": 0.9606 }, { "start": 8533.42, "end": 8539.14, "probability": 0.9873 }, { "start": 8540.2, "end": 8543.0, "probability": 0.8723 }, { "start": 8544.16, "end": 8547.96, "probability": 0.969 }, { "start": 8548.98, "end": 8551.86, "probability": 0.98 }, { "start": 8552.58, "end": 8554.14, "probability": 0.9577 }, { "start": 8555.14, "end": 8560.52, "probability": 0.9884 }, { "start": 8561.28, "end": 8563.66, "probability": 0.9808 }, { "start": 8564.46, "end": 8566.26, "probability": 0.9971 }, { "start": 8566.8, "end": 8568.26, "probability": 0.8453 }, { "start": 8568.96, "end": 8571.44, "probability": 0.9281 }, { "start": 8572.24, "end": 8574.56, "probability": 0.9958 }, { "start": 8575.72, "end": 8577.72, "probability": 0.946 }, { "start": 8577.94, "end": 8582.52, "probability": 0.9951 }, { "start": 8582.7, "end": 8583.7, "probability": 0.7254 }, { "start": 8584.84, "end": 8587.56, "probability": 0.9645 }, { "start": 8588.14, "end": 8593.02, "probability": 0.9137 }, { "start": 8594.5, "end": 8597.84, "probability": 0.8365 }, { "start": 8597.84, "end": 8602.26, "probability": 0.9263 }, { "start": 8603.18, "end": 8605.02, "probability": 0.9425 }, { "start": 8605.76, "end": 8607.74, "probability": 0.9502 }, { "start": 8608.48, "end": 8611.76, "probability": 0.9251 }, { "start": 8612.94, "end": 8617.86, "probability": 0.9961 }, { "start": 8618.42, "end": 8624.9, "probability": 0.9771 }, { "start": 8625.68, "end": 8629.16, "probability": 0.9982 }, { "start": 8629.58, "end": 8634.3, "probability": 0.9965 }, { "start": 8634.92, "end": 8636.64, "probability": 0.9161 }, { "start": 8637.78, "end": 8641.02, "probability": 0.9462 }, { "start": 8641.22, "end": 8644.6, "probability": 0.9733 }, { "start": 8645.58, "end": 8649.42, "probability": 0.9985 }, { "start": 8650.04, "end": 8655.42, "probability": 0.985 }, { "start": 8656.08, "end": 8658.38, "probability": 0.9215 }, { "start": 8659.3, "end": 8663.08, "probability": 0.9564 }, { "start": 8663.74, "end": 8668.24, "probability": 0.9595 }, { "start": 8668.24, "end": 8672.6, "probability": 0.8803 }, { "start": 8673.28, "end": 8675.82, "probability": 0.9585 }, { "start": 8676.7, "end": 8683.06, "probability": 0.9774 }, { "start": 8683.6, "end": 8686.56, "probability": 0.9966 }, { "start": 8686.82, "end": 8691.3, "probability": 0.9988 }, { "start": 8692.32, "end": 8694.72, "probability": 0.9986 }, { "start": 8695.24, "end": 8697.42, "probability": 0.9979 }, { "start": 8698.46, "end": 8702.68, "probability": 0.9807 }, { "start": 8702.68, "end": 8707.92, "probability": 0.9898 }, { "start": 8708.68, "end": 8712.42, "probability": 0.9979 }, { "start": 8713.0, "end": 8715.12, "probability": 0.9819 }, { "start": 8715.66, "end": 8717.42, "probability": 0.9859 }, { "start": 8718.52, "end": 8720.64, "probability": 0.6304 }, { "start": 8720.66, "end": 8725.22, "probability": 0.9825 }, { "start": 8725.22, "end": 8728.4, "probability": 0.9899 }, { "start": 8728.92, "end": 8732.68, "probability": 0.9733 }, { "start": 8732.76, "end": 8736.04, "probability": 0.7991 }, { "start": 8736.72, "end": 8738.42, "probability": 0.864 }, { "start": 8739.3, "end": 8740.56, "probability": 0.8885 }, { "start": 8742.14, "end": 8743.28, "probability": 0.9449 }, { "start": 8743.96, "end": 8749.06, "probability": 0.9636 }, { "start": 8749.84, "end": 8752.3, "probability": 0.9702 }, { "start": 8753.1, "end": 8758.84, "probability": 0.9451 }, { "start": 8759.76, "end": 8761.66, "probability": 0.9862 }, { "start": 8762.18, "end": 8764.24, "probability": 0.9821 }, { "start": 8765.14, "end": 8769.76, "probability": 0.9889 }, { "start": 8770.8, "end": 8775.0, "probability": 0.9794 }, { "start": 8775.46, "end": 8779.98, "probability": 0.9829 }, { "start": 8780.18, "end": 8781.24, "probability": 0.7645 }, { "start": 8782.26, "end": 8784.1, "probability": 0.9433 }, { "start": 8784.98, "end": 8790.5, "probability": 0.998 }, { "start": 8791.12, "end": 8794.68, "probability": 0.8677 }, { "start": 8794.82, "end": 8797.04, "probability": 0.9856 }, { "start": 8797.76, "end": 8801.92, "probability": 0.9321 }, { "start": 8802.6, "end": 8804.01, "probability": 0.8709 }, { "start": 8804.68, "end": 8809.56, "probability": 0.937 }, { "start": 8810.28, "end": 8812.72, "probability": 0.9958 }, { "start": 8813.68, "end": 8814.74, "probability": 0.9619 }, { "start": 8815.22, "end": 8819.06, "probability": 0.7731 }, { "start": 8819.74, "end": 8821.9, "probability": 0.6741 }, { "start": 8822.72, "end": 8824.02, "probability": 0.8997 }, { "start": 8824.78, "end": 8830.0, "probability": 0.9801 }, { "start": 8830.8, "end": 8833.54, "probability": 0.9907 }, { "start": 8835.14, "end": 8838.04, "probability": 0.9927 }, { "start": 8838.92, "end": 8841.74, "probability": 0.9984 }, { "start": 8842.57, "end": 8845.08, "probability": 0.9228 }, { "start": 8845.22, "end": 8845.92, "probability": 0.7227 }, { "start": 8846.1, "end": 8848.12, "probability": 0.5733 }, { "start": 8848.74, "end": 8849.58, "probability": 0.9761 }, { "start": 8850.14, "end": 8851.06, "probability": 0.2624 }, { "start": 8852.0, "end": 8852.6, "probability": 0.4533 }, { "start": 8853.0, "end": 8854.58, "probability": 0.3405 }, { "start": 8855.16, "end": 8857.04, "probability": 0.4474 }, { "start": 8860.28, "end": 8862.86, "probability": 0.1478 }, { "start": 8884.82, "end": 8888.3, "probability": 0.9193 }, { "start": 8888.64, "end": 8891.06, "probability": 0.9185 }, { "start": 8891.38, "end": 8892.62, "probability": 0.4417 }, { "start": 8892.72, "end": 8893.68, "probability": 0.8994 }, { "start": 8895.9, "end": 8897.96, "probability": 0.7332 }, { "start": 8898.68, "end": 8903.68, "probability": 0.9106 }, { "start": 8905.1, "end": 8908.46, "probability": 0.8679 }, { "start": 8910.46, "end": 8911.7, "probability": 0.5254 }, { "start": 8912.04, "end": 8913.58, "probability": 0.9531 }, { "start": 8914.04, "end": 8916.54, "probability": 0.6459 }, { "start": 8916.72, "end": 8918.54, "probability": 0.9731 }, { "start": 8919.5, "end": 8920.22, "probability": 0.9057 }, { "start": 8920.8, "end": 8921.46, "probability": 0.973 }, { "start": 8923.16, "end": 8924.18, "probability": 0.9889 }, { "start": 8924.54, "end": 8926.7, "probability": 0.9668 }, { "start": 8927.54, "end": 8928.86, "probability": 0.8413 }, { "start": 8930.48, "end": 8937.56, "probability": 0.9962 }, { "start": 8937.56, "end": 8944.1, "probability": 0.8097 }, { "start": 8944.42, "end": 8947.18, "probability": 0.819 }, { "start": 8948.32, "end": 8948.78, "probability": 0.9692 }, { "start": 8952.18, "end": 8956.26, "probability": 0.9659 }, { "start": 8957.4, "end": 8958.38, "probability": 0.9532 }, { "start": 8959.58, "end": 8963.44, "probability": 0.9202 }, { "start": 8964.52, "end": 8968.4, "probability": 0.9932 }, { "start": 8969.36, "end": 8969.9, "probability": 0.9433 }, { "start": 8971.24, "end": 8972.84, "probability": 0.9545 }, { "start": 8972.9, "end": 8976.49, "probability": 0.9816 }, { "start": 8977.66, "end": 8983.82, "probability": 0.9292 }, { "start": 8985.56, "end": 8987.62, "probability": 0.9833 }, { "start": 8988.44, "end": 8995.6, "probability": 0.9946 }, { "start": 8996.6, "end": 9000.2, "probability": 0.9057 }, { "start": 9001.94, "end": 9005.78, "probability": 0.9335 }, { "start": 9006.02, "end": 9008.44, "probability": 0.9961 }, { "start": 9009.94, "end": 9011.9, "probability": 0.9023 }, { "start": 9012.04, "end": 9014.1, "probability": 0.9902 }, { "start": 9014.42, "end": 9019.92, "probability": 0.9624 }, { "start": 9021.26, "end": 9026.58, "probability": 0.9894 }, { "start": 9027.94, "end": 9032.26, "probability": 0.7553 }, { "start": 9033.14, "end": 9035.68, "probability": 0.9585 }, { "start": 9036.84, "end": 9038.08, "probability": 0.8011 }, { "start": 9038.2, "end": 9038.64, "probability": 0.9309 }, { "start": 9039.34, "end": 9041.4, "probability": 0.9912 }, { "start": 9041.9, "end": 9043.64, "probability": 0.816 }, { "start": 9045.18, "end": 9051.56, "probability": 0.6299 }, { "start": 9053.02, "end": 9055.76, "probability": 0.9854 }, { "start": 9055.92, "end": 9058.9, "probability": 0.9367 }, { "start": 9059.18, "end": 9063.0, "probability": 0.968 }, { "start": 9063.06, "end": 9065.1, "probability": 0.6652 }, { "start": 9065.18, "end": 9066.24, "probability": 0.8997 }, { "start": 9066.9, "end": 9069.04, "probability": 0.9758 }, { "start": 9069.54, "end": 9073.74, "probability": 0.9535 }, { "start": 9073.74, "end": 9076.88, "probability": 0.9915 }, { "start": 9077.12, "end": 9086.76, "probability": 0.989 }, { "start": 9087.82, "end": 9088.84, "probability": 0.9707 }, { "start": 9090.0, "end": 9092.44, "probability": 0.7792 }, { "start": 9092.44, "end": 9092.56, "probability": 0.287 }, { "start": 9092.72, "end": 9093.94, "probability": 0.9323 }, { "start": 9094.08, "end": 9095.66, "probability": 0.8271 }, { "start": 9097.36, "end": 9100.42, "probability": 0.8514 }, { "start": 9101.1, "end": 9104.96, "probability": 0.9872 }, { "start": 9104.96, "end": 9110.86, "probability": 0.9715 }, { "start": 9113.4, "end": 9116.36, "probability": 0.9697 }, { "start": 9116.36, "end": 9119.82, "probability": 0.9983 }, { "start": 9120.02, "end": 9124.44, "probability": 0.9814 }, { "start": 9124.44, "end": 9129.5, "probability": 0.9854 }, { "start": 9129.6, "end": 9134.52, "probability": 0.9462 }, { "start": 9135.74, "end": 9137.54, "probability": 0.5225 }, { "start": 9137.64, "end": 9143.76, "probability": 0.6635 }, { "start": 9144.28, "end": 9146.5, "probability": 0.9449 }, { "start": 9147.2, "end": 9151.66, "probability": 0.9298 }, { "start": 9152.92, "end": 9153.66, "probability": 0.2937 }, { "start": 9153.8, "end": 9160.3, "probability": 0.9717 }, { "start": 9160.44, "end": 9161.3, "probability": 0.7489 }, { "start": 9161.8, "end": 9163.58, "probability": 0.9535 }, { "start": 9164.12, "end": 9166.36, "probability": 0.9514 }, { "start": 9167.12, "end": 9171.22, "probability": 0.978 }, { "start": 9171.4, "end": 9173.5, "probability": 0.6562 }, { "start": 9174.02, "end": 9174.42, "probability": 0.9282 }, { "start": 9174.96, "end": 9179.4, "probability": 0.9983 }, { "start": 9181.04, "end": 9183.0, "probability": 0.8905 }, { "start": 9183.92, "end": 9190.36, "probability": 0.7117 }, { "start": 9190.5, "end": 9191.86, "probability": 0.7576 }, { "start": 9192.54, "end": 9197.52, "probability": 0.9893 }, { "start": 9198.52, "end": 9201.82, "probability": 0.998 }, { "start": 9203.18, "end": 9204.18, "probability": 0.8949 }, { "start": 9204.7, "end": 9205.38, "probability": 0.8252 }, { "start": 9206.4, "end": 9207.34, "probability": 0.5534 }, { "start": 9207.72, "end": 9208.96, "probability": 0.9331 }, { "start": 9209.1, "end": 9211.52, "probability": 0.9459 }, { "start": 9212.24, "end": 9216.72, "probability": 0.9722 }, { "start": 9217.58, "end": 9221.4, "probability": 0.9637 }, { "start": 9221.4, "end": 9225.24, "probability": 0.8119 }, { "start": 9225.53, "end": 9229.18, "probability": 0.8667 }, { "start": 9229.48, "end": 9229.72, "probability": 0.7289 }, { "start": 9230.14, "end": 9232.52, "probability": 0.5752 }, { "start": 9232.9, "end": 9235.58, "probability": 0.9301 }, { "start": 9236.72, "end": 9237.2, "probability": 0.6255 }, { "start": 9273.7, "end": 9275.0, "probability": 0.0263 }, { "start": 9275.0, "end": 9277.66, "probability": 0.5625 }, { "start": 9278.46, "end": 9284.62, "probability": 0.9216 }, { "start": 9286.68, "end": 9290.44, "probability": 0.9869 }, { "start": 9290.98, "end": 9292.03, "probability": 0.999 }, { "start": 9292.62, "end": 9295.26, "probability": 0.8813 }, { "start": 9296.04, "end": 9300.46, "probability": 0.9792 }, { "start": 9302.1, "end": 9305.0, "probability": 0.9857 }, { "start": 9305.62, "end": 9309.48, "probability": 0.9963 }, { "start": 9309.48, "end": 9313.66, "probability": 0.8755 }, { "start": 9314.6, "end": 9318.7, "probability": 0.9935 }, { "start": 9318.72, "end": 9323.98, "probability": 0.999 }, { "start": 9325.38, "end": 9327.38, "probability": 0.9985 }, { "start": 9327.96, "end": 9329.6, "probability": 0.9774 }, { "start": 9330.56, "end": 9332.84, "probability": 0.9873 }, { "start": 9333.64, "end": 9334.92, "probability": 0.96 }, { "start": 9335.98, "end": 9338.74, "probability": 0.9961 }, { "start": 9338.74, "end": 9341.14, "probability": 0.999 }, { "start": 9341.8, "end": 9346.22, "probability": 0.9994 }, { "start": 9348.34, "end": 9351.8, "probability": 0.9691 }, { "start": 9352.5, "end": 9356.4, "probability": 0.9946 }, { "start": 9356.96, "end": 9359.0, "probability": 0.9849 }, { "start": 9359.86, "end": 9360.54, "probability": 0.4118 }, { "start": 9362.6, "end": 9366.38, "probability": 0.9609 }, { "start": 9366.84, "end": 9368.66, "probability": 0.9975 }, { "start": 9369.26, "end": 9371.62, "probability": 0.7885 }, { "start": 9372.98, "end": 9377.18, "probability": 0.9744 }, { "start": 9377.62, "end": 9379.74, "probability": 0.9722 }, { "start": 9380.54, "end": 9384.84, "probability": 0.9985 }, { "start": 9387.12, "end": 9388.1, "probability": 0.5795 }, { "start": 9388.88, "end": 9392.7, "probability": 0.9683 }, { "start": 9393.54, "end": 9394.12, "probability": 0.6143 }, { "start": 9394.36, "end": 9395.56, "probability": 0.7926 }, { "start": 9395.58, "end": 9401.48, "probability": 0.9933 }, { "start": 9403.02, "end": 9407.72, "probability": 0.9886 }, { "start": 9408.6, "end": 9411.26, "probability": 0.9986 }, { "start": 9411.26, "end": 9413.5, "probability": 0.9228 }, { "start": 9414.14, "end": 9415.88, "probability": 0.9631 }, { "start": 9417.1, "end": 9423.46, "probability": 0.9725 }, { "start": 9423.46, "end": 9426.8, "probability": 0.9954 }, { "start": 9427.32, "end": 9432.1, "probability": 0.9959 }, { "start": 9432.72, "end": 9437.18, "probability": 0.9066 }, { "start": 9438.02, "end": 9439.68, "probability": 0.8825 }, { "start": 9440.12, "end": 9442.94, "probability": 0.9941 }, { "start": 9443.48, "end": 9444.4, "probability": 0.883 }, { "start": 9444.88, "end": 9450.22, "probability": 0.957 }, { "start": 9450.84, "end": 9454.88, "probability": 0.9956 }, { "start": 9456.56, "end": 9460.96, "probability": 0.9871 }, { "start": 9461.74, "end": 9464.26, "probability": 0.9415 }, { "start": 9466.22, "end": 9468.5, "probability": 0.9832 }, { "start": 9468.98, "end": 9471.56, "probability": 0.9973 }, { "start": 9473.24, "end": 9478.36, "probability": 0.998 }, { "start": 9479.08, "end": 9483.54, "probability": 0.9993 }, { "start": 9484.04, "end": 9487.0, "probability": 0.9866 }, { "start": 9487.64, "end": 9491.36, "probability": 0.9987 }, { "start": 9492.1, "end": 9494.68, "probability": 0.8252 }, { "start": 9495.96, "end": 9500.3, "probability": 0.9854 }, { "start": 9500.96, "end": 9503.72, "probability": 0.8729 }, { "start": 9504.24, "end": 9508.44, "probability": 0.9984 }, { "start": 9509.3, "end": 9512.68, "probability": 0.9874 }, { "start": 9512.68, "end": 9515.34, "probability": 0.9996 }, { "start": 9515.94, "end": 9520.02, "probability": 0.996 }, { "start": 9521.2, "end": 9524.2, "probability": 0.9987 }, { "start": 9524.8, "end": 9526.68, "probability": 0.9856 }, { "start": 9528.18, "end": 9532.08, "probability": 0.9924 }, { "start": 9532.08, "end": 9536.74, "probability": 0.8878 }, { "start": 9537.32, "end": 9542.18, "probability": 0.9941 }, { "start": 9543.36, "end": 9545.28, "probability": 0.9458 }, { "start": 9545.82, "end": 9551.42, "probability": 0.9917 }, { "start": 9551.42, "end": 9556.74, "probability": 0.9995 }, { "start": 9557.34, "end": 9561.78, "probability": 0.9531 }, { "start": 9562.0, "end": 9562.7, "probability": 0.8144 }, { "start": 9564.0, "end": 9567.74, "probability": 0.9902 }, { "start": 9568.46, "end": 9569.0, "probability": 0.8789 }, { "start": 9570.22, "end": 9573.06, "probability": 0.9988 }, { "start": 9573.68, "end": 9575.82, "probability": 0.9854 }, { "start": 9576.34, "end": 9577.56, "probability": 0.8269 }, { "start": 9578.14, "end": 9580.54, "probability": 0.9706 }, { "start": 9581.88, "end": 9586.08, "probability": 0.9906 }, { "start": 9586.6, "end": 9588.55, "probability": 0.7242 }, { "start": 9589.34, "end": 9591.4, "probability": 0.9057 }, { "start": 9592.14, "end": 9594.24, "probability": 0.9646 }, { "start": 9594.78, "end": 9595.52, "probability": 0.7352 }, { "start": 9595.72, "end": 9596.83, "probability": 0.9793 }, { "start": 9597.34, "end": 9599.84, "probability": 0.9956 }, { "start": 9599.84, "end": 9604.14, "probability": 0.9975 }, { "start": 9604.66, "end": 9605.7, "probability": 0.8668 }, { "start": 9606.6, "end": 9609.86, "probability": 0.9971 }, { "start": 9610.72, "end": 9613.02, "probability": 0.9985 }, { "start": 9613.02, "end": 9615.58, "probability": 0.9966 }, { "start": 9616.08, "end": 9616.66, "probability": 0.5442 }, { "start": 9616.76, "end": 9617.49, "probability": 0.9272 }, { "start": 9618.32, "end": 9621.92, "probability": 0.9707 }, { "start": 9623.2, "end": 9626.24, "probability": 0.9882 }, { "start": 9626.92, "end": 9628.58, "probability": 0.8616 }, { "start": 9629.62, "end": 9631.76, "probability": 0.9896 }, { "start": 9632.34, "end": 9635.24, "probability": 0.9317 }, { "start": 9636.6, "end": 9640.46, "probability": 0.9955 }, { "start": 9640.46, "end": 9642.96, "probability": 0.999 }, { "start": 9643.52, "end": 9646.0, "probability": 0.9067 }, { "start": 9646.62, "end": 9648.16, "probability": 0.9375 }, { "start": 9649.0, "end": 9650.8, "probability": 0.9946 }, { "start": 9651.32, "end": 9652.04, "probability": 0.7798 }, { "start": 9652.28, "end": 9654.76, "probability": 0.8222 }, { "start": 9654.82, "end": 9664.9, "probability": 0.9716 }, { "start": 9668.02, "end": 9669.23, "probability": 0.8428 }, { "start": 9669.38, "end": 9670.16, "probability": 0.8562 }, { "start": 9670.36, "end": 9671.78, "probability": 0.9508 }, { "start": 9671.9, "end": 9674.1, "probability": 0.9707 }, { "start": 9674.48, "end": 9677.76, "probability": 0.9602 }, { "start": 9677.9, "end": 9679.07, "probability": 0.1827 }, { "start": 9681.94, "end": 9682.38, "probability": 0.8135 }, { "start": 9683.6, "end": 9685.82, "probability": 0.7061 }, { "start": 9686.64, "end": 9690.02, "probability": 0.9525 }, { "start": 9691.54, "end": 9695.66, "probability": 0.0077 }, { "start": 9698.88, "end": 9699.06, "probability": 0.0638 }, { "start": 9699.06, "end": 9699.06, "probability": 0.3534 }, { "start": 9699.06, "end": 9699.06, "probability": 0.3641 }, { "start": 9699.06, "end": 9699.06, "probability": 0.415 }, { "start": 9699.06, "end": 9699.06, "probability": 0.4492 }, { "start": 9699.06, "end": 9699.06, "probability": 0.4503 }, { "start": 9699.06, "end": 9699.06, "probability": 0.4919 }, { "start": 9699.06, "end": 9699.06, "probability": 0.197 }, { "start": 9699.06, "end": 9699.06, "probability": 0.0502 }, { "start": 9709.68, "end": 9709.82, "probability": 0.0196 }, { "start": 9709.82, "end": 9711.49, "probability": 0.8075 }, { "start": 9716.2, "end": 9716.96, "probability": 0.58 }, { "start": 9717.52, "end": 9719.3, "probability": 0.6722 }, { "start": 9722.06, "end": 9723.18, "probability": 0.9775 }, { "start": 9723.96, "end": 9724.84, "probability": 0.9055 }, { "start": 9726.2, "end": 9727.6, "probability": 0.9838 }, { "start": 9728.18, "end": 9729.16, "probability": 0.9912 }, { "start": 9730.08, "end": 9730.76, "probability": 0.8378 }, { "start": 9731.62, "end": 9732.6, "probability": 0.9697 }, { "start": 9734.4, "end": 9736.82, "probability": 0.9941 }, { "start": 9737.42, "end": 9740.7, "probability": 0.9241 }, { "start": 9741.66, "end": 9743.06, "probability": 0.9905 }, { "start": 9744.26, "end": 9745.5, "probability": 0.9182 }, { "start": 9746.4, "end": 9748.1, "probability": 0.9404 }, { "start": 9750.02, "end": 9752.96, "probability": 0.984 }, { "start": 9754.2, "end": 9756.68, "probability": 0.9987 }, { "start": 9758.04, "end": 9760.28, "probability": 0.9965 }, { "start": 9761.7, "end": 9767.22, "probability": 0.9713 }, { "start": 9770.1, "end": 9771.86, "probability": 0.9805 }, { "start": 9772.94, "end": 9773.98, "probability": 0.9552 }, { "start": 9775.62, "end": 9776.18, "probability": 0.4749 }, { "start": 9776.3, "end": 9778.08, "probability": 0.9897 }, { "start": 9778.38, "end": 9779.66, "probability": 0.9417 }, { "start": 9780.9, "end": 9782.86, "probability": 0.8955 }, { "start": 9784.56, "end": 9788.0, "probability": 0.9727 }, { "start": 9789.16, "end": 9791.24, "probability": 0.883 }, { "start": 9792.04, "end": 9793.06, "probability": 0.9642 }, { "start": 9793.14, "end": 9793.84, "probability": 0.9741 }, { "start": 9794.3, "end": 9795.0, "probability": 0.9617 }, { "start": 9795.1, "end": 9795.7, "probability": 0.979 }, { "start": 9795.76, "end": 9796.56, "probability": 0.8909 }, { "start": 9797.58, "end": 9799.06, "probability": 0.7232 }, { "start": 9800.84, "end": 9803.2, "probability": 0.9941 }, { "start": 9805.58, "end": 9807.96, "probability": 0.8894 }, { "start": 9809.76, "end": 9810.82, "probability": 0.9642 }, { "start": 9810.9, "end": 9812.48, "probability": 0.996 }, { "start": 9812.9, "end": 9813.84, "probability": 0.9388 }, { "start": 9814.28, "end": 9815.16, "probability": 0.6387 }, { "start": 9817.56, "end": 9820.9, "probability": 0.9856 }, { "start": 9821.06, "end": 9821.44, "probability": 0.5834 }, { "start": 9822.12, "end": 9824.04, "probability": 0.8674 }, { "start": 9824.56, "end": 9825.68, "probability": 0.9937 }, { "start": 9827.04, "end": 9828.5, "probability": 0.9951 }, { "start": 9828.98, "end": 9831.54, "probability": 0.9979 }, { "start": 9832.64, "end": 9834.4, "probability": 0.9984 }, { "start": 9835.44, "end": 9837.26, "probability": 0.7181 }, { "start": 9838.46, "end": 9840.46, "probability": 0.7266 }, { "start": 9841.0, "end": 9842.96, "probability": 0.9836 }, { "start": 9844.48, "end": 9848.6, "probability": 0.9763 }, { "start": 9849.0, "end": 9851.54, "probability": 0.9534 }, { "start": 9852.0, "end": 9853.16, "probability": 0.5176 }, { "start": 9853.24, "end": 9854.92, "probability": 0.9256 }, { "start": 9855.44, "end": 9856.4, "probability": 0.9473 }, { "start": 9857.36, "end": 9860.44, "probability": 0.8257 }, { "start": 9861.08, "end": 9863.62, "probability": 0.9026 }, { "start": 9864.98, "end": 9866.14, "probability": 0.9798 }, { "start": 9867.48, "end": 9868.32, "probability": 0.6548 }, { "start": 9868.4, "end": 9869.2, "probability": 0.8316 }, { "start": 9869.26, "end": 9869.66, "probability": 0.4123 }, { "start": 9869.7, "end": 9870.5, "probability": 0.9617 }, { "start": 9871.06, "end": 9873.6, "probability": 0.9753 }, { "start": 9875.26, "end": 9876.46, "probability": 0.8558 }, { "start": 9877.98, "end": 9880.04, "probability": 0.9399 }, { "start": 9881.6, "end": 9883.05, "probability": 0.8844 }, { "start": 9884.58, "end": 9887.74, "probability": 0.9252 }, { "start": 9889.98, "end": 9891.14, "probability": 0.6672 }, { "start": 9893.12, "end": 9896.32, "probability": 0.9595 }, { "start": 9897.52, "end": 9901.32, "probability": 0.9608 }, { "start": 9902.38, "end": 9905.56, "probability": 0.9694 }, { "start": 9905.74, "end": 9906.7, "probability": 0.5988 }, { "start": 9907.72, "end": 9910.12, "probability": 0.8962 }, { "start": 9912.6, "end": 9917.66, "probability": 0.8495 }, { "start": 9918.32, "end": 9920.44, "probability": 0.981 }, { "start": 9921.02, "end": 9922.38, "probability": 0.9744 }, { "start": 9923.0, "end": 9924.53, "probability": 0.9961 }, { "start": 9925.0, "end": 9926.14, "probability": 0.8676 }, { "start": 9927.32, "end": 9931.12, "probability": 0.9896 }, { "start": 9932.4, "end": 9934.24, "probability": 0.9575 }, { "start": 9935.88, "end": 9936.54, "probability": 0.9259 }, { "start": 9937.26, "end": 9943.2, "probability": 0.8254 }, { "start": 9943.9, "end": 9948.1, "probability": 0.979 }, { "start": 9949.42, "end": 9951.83, "probability": 0.8486 }, { "start": 9953.26, "end": 9956.82, "probability": 0.929 }, { "start": 9958.16, "end": 9961.66, "probability": 0.6241 }, { "start": 9962.42, "end": 9963.14, "probability": 0.939 }, { "start": 9964.24, "end": 9967.42, "probability": 0.99 }, { "start": 9967.42, "end": 9970.26, "probability": 0.9982 }, { "start": 9972.14, "end": 9975.08, "probability": 0.9058 }, { "start": 9977.72, "end": 9979.42, "probability": 0.9193 }, { "start": 9981.06, "end": 9981.42, "probability": 0.7569 }, { "start": 9982.28, "end": 9985.98, "probability": 0.9734 }, { "start": 9986.84, "end": 9990.48, "probability": 0.9898 }, { "start": 9991.88, "end": 9994.06, "probability": 0.8358 }, { "start": 9995.66, "end": 9999.6, "probability": 0.966 }, { "start": 10000.58, "end": 10001.92, "probability": 0.9734 }, { "start": 10002.92, "end": 10006.12, "probability": 0.8598 }, { "start": 10006.84, "end": 10008.98, "probability": 0.9095 }, { "start": 10013.24, "end": 10016.7, "probability": 0.9964 }, { "start": 10017.58, "end": 10018.84, "probability": 0.8234 }, { "start": 10019.44, "end": 10025.08, "probability": 0.9941 }, { "start": 10025.56, "end": 10026.24, "probability": 0.9197 }, { "start": 10027.72, "end": 10030.9, "probability": 0.9849 }, { "start": 10030.98, "end": 10034.18, "probability": 0.9632 }, { "start": 10035.02, "end": 10036.22, "probability": 0.9374 }, { "start": 10036.34, "end": 10039.86, "probability": 0.9812 }, { "start": 10040.94, "end": 10043.1, "probability": 0.9971 }, { "start": 10044.24, "end": 10045.4, "probability": 0.9895 }, { "start": 10046.18, "end": 10048.52, "probability": 0.9989 }, { "start": 10048.52, "end": 10052.04, "probability": 0.9927 }, { "start": 10052.72, "end": 10053.61, "probability": 0.9231 }, { "start": 10054.44, "end": 10059.18, "probability": 0.9824 }, { "start": 10059.68, "end": 10061.3, "probability": 0.9764 }, { "start": 10061.7, "end": 10063.8, "probability": 0.9984 }, { "start": 10065.44, "end": 10069.52, "probability": 0.999 }, { "start": 10070.3, "end": 10074.72, "probability": 0.9923 }, { "start": 10074.72, "end": 10079.02, "probability": 0.9967 }, { "start": 10079.76, "end": 10082.01, "probability": 0.9971 }, { "start": 10083.22, "end": 10086.36, "probability": 0.9805 }, { "start": 10087.2, "end": 10089.58, "probability": 0.8833 }, { "start": 10090.22, "end": 10093.2, "probability": 0.9893 }, { "start": 10094.0, "end": 10094.96, "probability": 0.9246 }, { "start": 10095.46, "end": 10098.2, "probability": 0.9649 }, { "start": 10098.36, "end": 10099.1, "probability": 0.5017 }, { "start": 10099.12, "end": 10101.28, "probability": 0.9806 }, { "start": 10102.36, "end": 10104.54, "probability": 0.9419 }, { "start": 10105.38, "end": 10108.78, "probability": 0.9893 }, { "start": 10109.44, "end": 10111.84, "probability": 0.9819 }, { "start": 10112.96, "end": 10114.54, "probability": 0.9929 }, { "start": 10115.06, "end": 10120.78, "probability": 0.9968 }, { "start": 10121.3, "end": 10123.6, "probability": 0.9566 }, { "start": 10124.16, "end": 10125.26, "probability": 0.8593 }, { "start": 10126.16, "end": 10130.14, "probability": 0.9991 }, { "start": 10130.14, "end": 10133.84, "probability": 0.9987 }, { "start": 10134.46, "end": 10135.06, "probability": 0.5817 }, { "start": 10135.48, "end": 10136.1, "probability": 0.9117 }, { "start": 10136.32, "end": 10141.44, "probability": 0.9949 }, { "start": 10141.8, "end": 10144.54, "probability": 0.993 }, { "start": 10144.84, "end": 10147.42, "probability": 0.5968 }, { "start": 10147.54, "end": 10151.44, "probability": 0.9525 }, { "start": 10152.28, "end": 10153.74, "probability": 0.9849 }, { "start": 10153.98, "end": 10154.32, "probability": 0.7836 }, { "start": 10154.46, "end": 10155.14, "probability": 0.6749 }, { "start": 10178.46, "end": 10179.82, "probability": 0.7695 }, { "start": 10180.78, "end": 10182.58, "probability": 0.7997 }, { "start": 10182.96, "end": 10184.33, "probability": 0.769 }, { "start": 10185.34, "end": 10189.9, "probability": 0.7886 }, { "start": 10190.44, "end": 10193.28, "probability": 0.7917 }, { "start": 10194.02, "end": 10201.76, "probability": 0.6893 }, { "start": 10203.8, "end": 10205.76, "probability": 0.916 }, { "start": 10207.84, "end": 10214.16, "probability": 0.9896 }, { "start": 10214.74, "end": 10217.32, "probability": 0.9783 }, { "start": 10218.12, "end": 10220.72, "probability": 0.8622 }, { "start": 10221.86, "end": 10222.7, "probability": 0.8311 }, { "start": 10223.58, "end": 10224.48, "probability": 0.9779 }, { "start": 10225.02, "end": 10229.74, "probability": 0.9927 }, { "start": 10229.74, "end": 10235.5, "probability": 0.9766 }, { "start": 10236.08, "end": 10238.76, "probability": 0.8434 }, { "start": 10239.52, "end": 10240.1, "probability": 0.9856 }, { "start": 10241.66, "end": 10242.88, "probability": 0.9254 }, { "start": 10243.04, "end": 10246.82, "probability": 0.9832 }, { "start": 10247.02, "end": 10248.58, "probability": 0.6909 }, { "start": 10248.84, "end": 10249.54, "probability": 0.8809 }, { "start": 10249.74, "end": 10252.76, "probability": 0.8252 }, { "start": 10254.06, "end": 10255.36, "probability": 0.7712 }, { "start": 10257.6, "end": 10260.78, "probability": 0.8903 }, { "start": 10261.42, "end": 10269.42, "probability": 0.9562 }, { "start": 10270.06, "end": 10271.26, "probability": 0.9932 }, { "start": 10272.2, "end": 10276.76, "probability": 0.9003 }, { "start": 10277.14, "end": 10278.12, "probability": 0.6863 }, { "start": 10278.54, "end": 10279.4, "probability": 0.9131 }, { "start": 10282.39, "end": 10287.72, "probability": 0.9399 }, { "start": 10289.04, "end": 10290.0, "probability": 0.8404 }, { "start": 10290.84, "end": 10294.34, "probability": 0.9598 }, { "start": 10294.66, "end": 10297.88, "probability": 0.9856 }, { "start": 10298.2, "end": 10298.9, "probability": 0.9083 }, { "start": 10299.08, "end": 10303.46, "probability": 0.9964 }, { "start": 10305.56, "end": 10307.92, "probability": 0.8913 }, { "start": 10308.6, "end": 10309.8, "probability": 0.5698 }, { "start": 10309.92, "end": 10314.34, "probability": 0.9945 }, { "start": 10315.72, "end": 10316.28, "probability": 0.8708 }, { "start": 10316.86, "end": 10317.52, "probability": 0.9681 }, { "start": 10317.7, "end": 10320.08, "probability": 0.9595 }, { "start": 10320.32, "end": 10321.84, "probability": 0.7435 }, { "start": 10322.06, "end": 10322.82, "probability": 0.8537 }, { "start": 10322.88, "end": 10323.44, "probability": 0.8514 }, { "start": 10324.58, "end": 10325.48, "probability": 0.9634 }, { "start": 10326.64, "end": 10328.56, "probability": 0.959 }, { "start": 10329.48, "end": 10330.2, "probability": 0.8936 }, { "start": 10331.12, "end": 10332.74, "probability": 0.866 }, { "start": 10333.56, "end": 10334.04, "probability": 0.6178 }, { "start": 10335.36, "end": 10336.02, "probability": 0.9626 }, { "start": 10336.94, "end": 10337.76, "probability": 0.8158 }, { "start": 10337.82, "end": 10341.66, "probability": 0.9949 }, { "start": 10342.16, "end": 10343.95, "probability": 0.9195 }, { "start": 10344.62, "end": 10347.4, "probability": 0.9937 }, { "start": 10347.68, "end": 10349.62, "probability": 0.9933 }, { "start": 10350.36, "end": 10353.62, "probability": 0.9344 }, { "start": 10354.26, "end": 10357.84, "probability": 0.9837 }, { "start": 10358.56, "end": 10361.24, "probability": 0.9673 }, { "start": 10361.44, "end": 10362.38, "probability": 0.9983 }, { "start": 10362.82, "end": 10364.58, "probability": 0.7751 }, { "start": 10365.1, "end": 10366.16, "probability": 0.8996 }, { "start": 10366.8, "end": 10370.04, "probability": 0.9924 }, { "start": 10370.86, "end": 10374.02, "probability": 0.967 }, { "start": 10374.64, "end": 10375.84, "probability": 0.9305 }, { "start": 10376.98, "end": 10381.86, "probability": 0.9651 }, { "start": 10382.04, "end": 10382.54, "probability": 0.4571 }, { "start": 10383.36, "end": 10384.9, "probability": 0.7948 }, { "start": 10385.56, "end": 10387.22, "probability": 0.9745 }, { "start": 10387.6, "end": 10388.44, "probability": 0.8154 }, { "start": 10388.74, "end": 10390.58, "probability": 0.9957 }, { "start": 10391.14, "end": 10396.64, "probability": 0.981 }, { "start": 10397.56, "end": 10398.44, "probability": 0.8886 }, { "start": 10399.38, "end": 10404.0, "probability": 0.779 }, { "start": 10404.0, "end": 10407.46, "probability": 0.9949 }, { "start": 10408.2, "end": 10410.82, "probability": 0.7708 }, { "start": 10410.84, "end": 10411.38, "probability": 0.7206 }, { "start": 10412.16, "end": 10413.48, "probability": 0.7784 }, { "start": 10414.62, "end": 10417.8, "probability": 0.9982 }, { "start": 10418.4, "end": 10421.36, "probability": 0.9989 }, { "start": 10421.5, "end": 10424.24, "probability": 0.9974 }, { "start": 10424.32, "end": 10424.4, "probability": 0.5431 }, { "start": 10424.56, "end": 10426.42, "probability": 0.7416 }, { "start": 10426.72, "end": 10432.66, "probability": 0.8819 }, { "start": 10433.36, "end": 10436.82, "probability": 0.9961 }, { "start": 10437.06, "end": 10438.06, "probability": 0.4476 }, { "start": 10438.94, "end": 10440.26, "probability": 0.9042 }, { "start": 10440.42, "end": 10446.32, "probability": 0.9482 }, { "start": 10447.34, "end": 10450.64, "probability": 0.9896 }, { "start": 10450.64, "end": 10454.1, "probability": 0.9828 }, { "start": 10454.92, "end": 10456.66, "probability": 0.9573 }, { "start": 10457.2, "end": 10460.56, "probability": 0.9746 }, { "start": 10461.0, "end": 10462.3, "probability": 0.6859 }, { "start": 10463.26, "end": 10465.36, "probability": 0.8228 }, { "start": 10466.32, "end": 10470.4, "probability": 0.9823 }, { "start": 10470.46, "end": 10473.76, "probability": 0.9982 }, { "start": 10474.64, "end": 10478.32, "probability": 0.9764 }, { "start": 10478.6, "end": 10480.34, "probability": 0.9587 }, { "start": 10481.26, "end": 10486.74, "probability": 0.9766 }, { "start": 10487.6, "end": 10491.34, "probability": 0.9961 }, { "start": 10491.96, "end": 10494.18, "probability": 0.9927 }, { "start": 10495.98, "end": 10499.98, "probability": 0.999 }, { "start": 10500.14, "end": 10502.6, "probability": 0.9925 }, { "start": 10502.92, "end": 10503.78, "probability": 0.9414 }, { "start": 10503.94, "end": 10504.71, "probability": 0.5154 }, { "start": 10505.14, "end": 10505.9, "probability": 0.8341 }, { "start": 10505.98, "end": 10506.48, "probability": 0.526 }, { "start": 10507.22, "end": 10510.6, "probability": 0.9854 }, { "start": 10512.68, "end": 10515.04, "probability": 0.3185 }, { "start": 10516.04, "end": 10518.8, "probability": 0.9369 }, { "start": 10519.68, "end": 10525.72, "probability": 0.9956 }, { "start": 10525.94, "end": 10526.14, "probability": 0.6662 }, { "start": 10527.14, "end": 10529.84, "probability": 0.8438 }, { "start": 10530.34, "end": 10533.86, "probability": 0.779 }, { "start": 10534.34, "end": 10539.56, "probability": 0.9955 }, { "start": 10539.86, "end": 10540.5, "probability": 0.6025 }, { "start": 10541.17, "end": 10543.49, "probability": 0.5443 }, { "start": 10544.54, "end": 10545.44, "probability": 0.8877 }, { "start": 10546.34, "end": 10550.52, "probability": 0.9709 }, { "start": 10551.04, "end": 10558.6, "probability": 0.9847 }, { "start": 10559.1, "end": 10559.2, "probability": 0.643 }, { "start": 10559.22, "end": 10560.74, "probability": 0.672 }, { "start": 10560.94, "end": 10563.24, "probability": 0.9644 }, { "start": 10563.26, "end": 10565.54, "probability": 0.9889 }, { "start": 10567.0, "end": 10567.22, "probability": 0.0649 }, { "start": 10567.22, "end": 10568.24, "probability": 0.6093 }, { "start": 10568.48, "end": 10571.99, "probability": 0.9689 }, { "start": 10573.1, "end": 10576.28, "probability": 0.6717 }, { "start": 10576.4, "end": 10577.25, "probability": 0.7776 }, { "start": 10584.44, "end": 10584.44, "probability": 0.5741 }, { "start": 10584.44, "end": 10586.62, "probability": 0.6973 }, { "start": 10586.76, "end": 10587.08, "probability": 0.4139 }, { "start": 10597.5, "end": 10598.61, "probability": 0.7406 }, { "start": 10599.52, "end": 10599.62, "probability": 0.8268 }, { "start": 10601.94, "end": 10602.34, "probability": 0.8801 }, { "start": 10604.46, "end": 10605.58, "probability": 0.7773 }, { "start": 10608.09, "end": 10610.74, "probability": 0.8992 }, { "start": 10611.56, "end": 10612.46, "probability": 0.9496 }, { "start": 10613.9, "end": 10616.42, "probability": 0.8055 }, { "start": 10618.34, "end": 10620.66, "probability": 0.9639 }, { "start": 10621.14, "end": 10624.94, "probability": 0.9919 }, { "start": 10626.2, "end": 10629.54, "probability": 0.9642 }, { "start": 10630.6, "end": 10633.2, "probability": 0.9915 }, { "start": 10633.46, "end": 10633.9, "probability": 0.7102 }, { "start": 10634.56, "end": 10635.5, "probability": 0.9626 }, { "start": 10636.48, "end": 10638.0, "probability": 0.9567 }, { "start": 10638.62, "end": 10641.76, "probability": 0.9926 }, { "start": 10642.32, "end": 10644.3, "probability": 0.9236 }, { "start": 10644.98, "end": 10645.4, "probability": 0.8117 }, { "start": 10646.22, "end": 10647.5, "probability": 0.8443 }, { "start": 10648.78, "end": 10651.62, "probability": 0.9373 }, { "start": 10652.14, "end": 10654.0, "probability": 0.6283 }, { "start": 10655.22, "end": 10658.94, "probability": 0.9749 }, { "start": 10659.78, "end": 10661.14, "probability": 0.9861 }, { "start": 10661.92, "end": 10665.96, "probability": 0.9958 }, { "start": 10666.96, "end": 10668.24, "probability": 0.6694 }, { "start": 10668.8, "end": 10671.44, "probability": 0.9741 }, { "start": 10672.34, "end": 10674.74, "probability": 0.9236 }, { "start": 10675.36, "end": 10677.42, "probability": 0.9961 }, { "start": 10678.62, "end": 10682.94, "probability": 0.9875 }, { "start": 10683.7, "end": 10684.32, "probability": 0.865 }, { "start": 10685.08, "end": 10685.78, "probability": 0.9502 }, { "start": 10686.34, "end": 10687.52, "probability": 0.9908 }, { "start": 10688.04, "end": 10692.54, "probability": 0.99 }, { "start": 10693.76, "end": 10695.84, "probability": 0.9495 }, { "start": 10696.66, "end": 10699.3, "probability": 0.9391 }, { "start": 10699.9, "end": 10701.68, "probability": 0.9844 }, { "start": 10702.34, "end": 10703.36, "probability": 0.9459 }, { "start": 10703.88, "end": 10706.7, "probability": 0.9396 }, { "start": 10707.56, "end": 10708.68, "probability": 0.993 }, { "start": 10710.02, "end": 10713.9, "probability": 0.9974 }, { "start": 10714.78, "end": 10717.38, "probability": 0.9695 }, { "start": 10718.26, "end": 10721.0, "probability": 0.9849 }, { "start": 10721.68, "end": 10725.4, "probability": 0.9739 }, { "start": 10726.2, "end": 10727.78, "probability": 0.9822 }, { "start": 10728.32, "end": 10731.6, "probability": 0.9775 }, { "start": 10731.6, "end": 10733.02, "probability": 0.4496 }, { "start": 10733.76, "end": 10734.18, "probability": 0.4796 }, { "start": 10736.04, "end": 10737.44, "probability": 0.9496 }, { "start": 10738.36, "end": 10739.05, "probability": 0.6848 }, { "start": 10742.88, "end": 10744.1, "probability": 0.8003 }, { "start": 10744.64, "end": 10745.42, "probability": 0.7136 }, { "start": 10755.8, "end": 10756.02, "probability": 0.6558 }, { "start": 10756.1, "end": 10756.38, "probability": 0.865 }, { "start": 10756.48, "end": 10759.3, "probability": 0.9653 }, { "start": 10759.74, "end": 10760.82, "probability": 0.9909 }, { "start": 10760.9, "end": 10761.32, "probability": 0.7401 }, { "start": 10762.0, "end": 10764.22, "probability": 0.7478 }, { "start": 10764.78, "end": 10765.2, "probability": 0.3742 }, { "start": 10765.98, "end": 10767.26, "probability": 0.6047 }, { "start": 10767.8, "end": 10769.06, "probability": 0.5016 }, { "start": 10769.18, "end": 10771.5, "probability": 0.9878 }, { "start": 10771.5, "end": 10774.88, "probability": 0.9839 }, { "start": 10775.92, "end": 10777.46, "probability": 0.9089 }, { "start": 10778.24, "end": 10781.14, "probability": 0.9658 }, { "start": 10782.58, "end": 10784.88, "probability": 0.8211 }, { "start": 10785.38, "end": 10787.56, "probability": 0.9546 }, { "start": 10788.82, "end": 10793.28, "probability": 0.8838 }, { "start": 10793.58, "end": 10794.56, "probability": 0.9594 }, { "start": 10795.66, "end": 10797.22, "probability": 0.9896 }, { "start": 10797.38, "end": 10798.08, "probability": 0.6439 }, { "start": 10798.36, "end": 10798.72, "probability": 0.5335 }, { "start": 10798.82, "end": 10799.5, "probability": 0.7847 }, { "start": 10800.32, "end": 10802.6, "probability": 0.7982 }, { "start": 10803.52, "end": 10805.86, "probability": 0.9771 }, { "start": 10807.14, "end": 10807.38, "probability": 0.7821 }, { "start": 10807.62, "end": 10808.14, "probability": 0.824 }, { "start": 10808.2, "end": 10809.24, "probability": 0.9067 }, { "start": 10809.7, "end": 10810.72, "probability": 0.9838 }, { "start": 10812.12, "end": 10814.16, "probability": 0.9941 }, { "start": 10814.58, "end": 10815.7, "probability": 0.7859 }, { "start": 10815.96, "end": 10819.34, "probability": 0.9941 }, { "start": 10820.0, "end": 10821.62, "probability": 0.934 }, { "start": 10822.46, "end": 10823.68, "probability": 0.9717 }, { "start": 10824.9, "end": 10825.96, "probability": 0.9936 }, { "start": 10827.1, "end": 10828.04, "probability": 0.6682 }, { "start": 10828.62, "end": 10830.0, "probability": 0.9816 }, { "start": 10830.52, "end": 10831.56, "probability": 0.9539 }, { "start": 10833.1, "end": 10837.42, "probability": 0.9946 }, { "start": 10838.76, "end": 10841.34, "probability": 0.9974 }, { "start": 10841.88, "end": 10844.96, "probability": 0.9571 }, { "start": 10845.94, "end": 10847.0, "probability": 0.7933 }, { "start": 10847.46, "end": 10850.56, "probability": 0.9109 }, { "start": 10851.28, "end": 10856.0, "probability": 0.9946 }, { "start": 10856.68, "end": 10859.4, "probability": 0.9538 }, { "start": 10860.9, "end": 10863.88, "probability": 0.6844 }, { "start": 10864.56, "end": 10867.32, "probability": 0.9613 }, { "start": 10867.92, "end": 10869.54, "probability": 0.8729 }, { "start": 10870.12, "end": 10872.2, "probability": 0.9053 }, { "start": 10872.56, "end": 10872.96, "probability": 0.7868 }, { "start": 10873.6, "end": 10876.88, "probability": 0.9834 }, { "start": 10877.46, "end": 10880.41, "probability": 0.8716 }, { "start": 10881.96, "end": 10883.04, "probability": 0.8897 }, { "start": 10884.12, "end": 10887.22, "probability": 0.9868 }, { "start": 10888.32, "end": 10890.44, "probability": 0.9948 }, { "start": 10891.12, "end": 10893.57, "probability": 0.9985 }, { "start": 10894.92, "end": 10897.66, "probability": 0.9294 }, { "start": 10898.0, "end": 10898.72, "probability": 0.7069 }, { "start": 10899.66, "end": 10903.92, "probability": 0.9185 }, { "start": 10904.86, "end": 10907.58, "probability": 0.9977 }, { "start": 10909.1, "end": 10910.82, "probability": 0.9377 }, { "start": 10911.52, "end": 10913.24, "probability": 0.9628 }, { "start": 10913.32, "end": 10917.38, "probability": 0.992 }, { "start": 10917.72, "end": 10919.44, "probability": 0.9327 }, { "start": 10920.46, "end": 10921.56, "probability": 0.8898 }, { "start": 10922.3, "end": 10923.78, "probability": 0.9897 }, { "start": 10925.02, "end": 10926.84, "probability": 0.9933 }, { "start": 10927.56, "end": 10928.22, "probability": 0.5296 }, { "start": 10928.64, "end": 10929.46, "probability": 0.7916 }, { "start": 10930.04, "end": 10932.46, "probability": 0.9277 }, { "start": 10932.58, "end": 10934.6, "probability": 0.9833 }, { "start": 10935.24, "end": 10939.04, "probability": 0.9861 }, { "start": 10939.54, "end": 10941.24, "probability": 0.991 }, { "start": 10941.72, "end": 10943.4, "probability": 0.9233 }, { "start": 10944.26, "end": 10945.72, "probability": 0.9971 }, { "start": 10945.78, "end": 10950.4, "probability": 0.9912 }, { "start": 10951.04, "end": 10952.94, "probability": 0.9807 }, { "start": 10953.8, "end": 10954.67, "probability": 0.9912 }, { "start": 10955.26, "end": 10957.84, "probability": 0.9661 }, { "start": 10957.84, "end": 10961.5, "probability": 0.965 }, { "start": 10961.86, "end": 10962.32, "probability": 0.7675 }, { "start": 10964.84, "end": 10967.74, "probability": 0.9073 }, { "start": 10967.9, "end": 10969.8, "probability": 0.6323 }, { "start": 11011.22, "end": 11011.22, "probability": 0.142 }, { "start": 11011.22, "end": 11013.18, "probability": 0.7315 }, { "start": 11014.06, "end": 11019.46, "probability": 0.9377 }, { "start": 11019.46, "end": 11022.7, "probability": 0.959 }, { "start": 11023.36, "end": 11024.33, "probability": 0.7032 }, { "start": 11024.5, "end": 11025.78, "probability": 0.8699 }, { "start": 11025.86, "end": 11029.88, "probability": 0.9901 }, { "start": 11030.48, "end": 11034.3, "probability": 0.8979 }, { "start": 11035.24, "end": 11036.74, "probability": 0.8269 }, { "start": 11037.53, "end": 11041.73, "probability": 0.9651 }, { "start": 11042.32, "end": 11045.26, "probability": 0.9832 }, { "start": 11045.34, "end": 11047.22, "probability": 0.996 }, { "start": 11047.98, "end": 11049.04, "probability": 0.7463 }, { "start": 11049.06, "end": 11050.06, "probability": 0.8549 }, { "start": 11050.14, "end": 11050.74, "probability": 0.7207 }, { "start": 11051.2, "end": 11055.56, "probability": 0.9543 }, { "start": 11055.66, "end": 11058.12, "probability": 0.9172 }, { "start": 11058.66, "end": 11059.22, "probability": 0.7492 }, { "start": 11059.26, "end": 11060.68, "probability": 0.8682 }, { "start": 11060.7, "end": 11065.46, "probability": 0.967 }, { "start": 11065.98, "end": 11066.9, "probability": 0.882 }, { "start": 11067.58, "end": 11068.66, "probability": 0.5019 }, { "start": 11069.22, "end": 11071.66, "probability": 0.6802 }, { "start": 11072.3, "end": 11073.34, "probability": 0.9153 }, { "start": 11074.06, "end": 11076.86, "probability": 0.9606 }, { "start": 11078.34, "end": 11079.48, "probability": 0.8888 }, { "start": 11080.18, "end": 11081.82, "probability": 0.9705 }, { "start": 11082.56, "end": 11086.1, "probability": 0.9617 }, { "start": 11087.32, "end": 11089.08, "probability": 0.979 }, { "start": 11089.86, "end": 11092.2, "probability": 0.9032 }, { "start": 11092.84, "end": 11095.52, "probability": 0.9692 }, { "start": 11096.0, "end": 11099.76, "probability": 0.925 }, { "start": 11100.32, "end": 11101.06, "probability": 0.4771 }, { "start": 11101.78, "end": 11104.48, "probability": 0.9769 }, { "start": 11105.14, "end": 11106.76, "probability": 0.6211 }, { "start": 11107.34, "end": 11109.72, "probability": 0.9215 }, { "start": 11110.1, "end": 11111.1, "probability": 0.9146 }, { "start": 11111.34, "end": 11111.99, "probability": 0.8667 }, { "start": 11112.2, "end": 11113.9, "probability": 0.965 }, { "start": 11114.2, "end": 11119.58, "probability": 0.9774 }, { "start": 11120.5, "end": 11123.26, "probability": 0.8348 }, { "start": 11123.82, "end": 11124.46, "probability": 0.7591 }, { "start": 11125.2, "end": 11126.74, "probability": 0.9955 }, { "start": 11127.28, "end": 11128.54, "probability": 0.8501 }, { "start": 11129.28, "end": 11130.82, "probability": 0.7568 }, { "start": 11131.34, "end": 11137.26, "probability": 0.8441 }, { "start": 11137.84, "end": 11142.34, "probability": 0.618 }, { "start": 11142.82, "end": 11143.42, "probability": 0.7421 }, { "start": 11143.54, "end": 11148.34, "probability": 0.9014 }, { "start": 11148.7, "end": 11149.28, "probability": 0.9056 }, { "start": 11149.94, "end": 11153.98, "probability": 0.9971 }, { "start": 11154.5, "end": 11156.38, "probability": 0.4847 }, { "start": 11156.5, "end": 11162.28, "probability": 0.8696 }, { "start": 11162.34, "end": 11164.12, "probability": 0.9619 }, { "start": 11164.26, "end": 11165.06, "probability": 0.7115 }, { "start": 11166.02, "end": 11174.64, "probability": 0.9437 }, { "start": 11175.2, "end": 11177.58, "probability": 0.9635 }, { "start": 11178.22, "end": 11180.16, "probability": 0.8545 }, { "start": 11180.84, "end": 11183.22, "probability": 0.6593 }, { "start": 11183.7, "end": 11185.88, "probability": 0.9919 }, { "start": 11186.64, "end": 11186.86, "probability": 0.0255 }, { "start": 11186.86, "end": 11188.26, "probability": 0.8965 }, { "start": 11188.76, "end": 11191.14, "probability": 0.5485 }, { "start": 11191.22, "end": 11193.21, "probability": 0.7241 }, { "start": 11194.22, "end": 11197.04, "probability": 0.9956 }, { "start": 11197.74, "end": 11199.2, "probability": 0.8809 }, { "start": 11199.74, "end": 11202.18, "probability": 0.7133 }, { "start": 11203.34, "end": 11205.62, "probability": 0.8424 }, { "start": 11206.54, "end": 11209.08, "probability": 0.9209 }, { "start": 11209.12, "end": 11209.8, "probability": 0.9283 }, { "start": 11209.82, "end": 11212.82, "probability": 0.9001 }, { "start": 11213.36, "end": 11214.82, "probability": 0.9631 }, { "start": 11215.58, "end": 11216.98, "probability": 0.9833 }, { "start": 11217.12, "end": 11217.9, "probability": 0.8007 }, { "start": 11218.06, "end": 11218.94, "probability": 0.9564 }, { "start": 11219.02, "end": 11220.48, "probability": 0.9431 }, { "start": 11221.08, "end": 11224.5, "probability": 0.9396 }, { "start": 11224.96, "end": 11230.24, "probability": 0.9866 }, { "start": 11230.76, "end": 11230.98, "probability": 0.4494 }, { "start": 11230.98, "end": 11232.86, "probability": 0.6753 }, { "start": 11233.06, "end": 11233.5, "probability": 0.6616 }, { "start": 11233.96, "end": 11235.68, "probability": 0.8652 }, { "start": 11236.46, "end": 11239.12, "probability": 0.8326 }, { "start": 11239.36, "end": 11240.12, "probability": 0.7067 }, { "start": 11240.54, "end": 11241.54, "probability": 0.9038 }, { "start": 11241.78, "end": 11243.8, "probability": 0.9135 }, { "start": 11244.38, "end": 11245.85, "probability": 0.9684 }, { "start": 11247.18, "end": 11247.7, "probability": 0.9834 }, { "start": 11248.6, "end": 11250.7, "probability": 0.9918 }, { "start": 11251.16, "end": 11254.12, "probability": 0.9413 }, { "start": 11254.62, "end": 11255.18, "probability": 0.8062 }, { "start": 11255.24, "end": 11257.2, "probability": 0.9816 }, { "start": 11257.78, "end": 11259.66, "probability": 0.9839 }, { "start": 11260.28, "end": 11261.04, "probability": 0.9758 }, { "start": 11261.18, "end": 11263.62, "probability": 0.7734 }, { "start": 11263.62, "end": 11264.48, "probability": 0.9841 }, { "start": 11264.78, "end": 11269.16, "probability": 0.9935 }, { "start": 11269.68, "end": 11270.6, "probability": 0.9867 }, { "start": 11271.62, "end": 11274.3, "probability": 0.983 }, { "start": 11275.04, "end": 11276.86, "probability": 0.9572 }, { "start": 11277.16, "end": 11278.02, "probability": 0.9808 }, { "start": 11278.08, "end": 11279.24, "probability": 0.9575 }, { "start": 11279.38, "end": 11280.22, "probability": 0.7055 }, { "start": 11281.14, "end": 11283.24, "probability": 0.8568 }, { "start": 11283.7, "end": 11287.7, "probability": 0.9873 }, { "start": 11288.48, "end": 11290.54, "probability": 0.9808 }, { "start": 11291.06, "end": 11292.86, "probability": 0.582 }, { "start": 11293.52, "end": 11296.88, "probability": 0.9779 }, { "start": 11297.42, "end": 11300.68, "probability": 0.7194 }, { "start": 11301.72, "end": 11303.16, "probability": 0.8748 }, { "start": 11303.36, "end": 11304.7, "probability": 0.8454 }, { "start": 11304.96, "end": 11306.5, "probability": 0.9731 }, { "start": 11306.8, "end": 11308.12, "probability": 0.9272 }, { "start": 11308.58, "end": 11309.7, "probability": 0.9858 }, { "start": 11309.76, "end": 11314.68, "probability": 0.9991 }, { "start": 11315.66, "end": 11317.76, "probability": 0.8715 }, { "start": 11317.92, "end": 11319.76, "probability": 0.8882 }, { "start": 11320.18, "end": 11321.24, "probability": 0.736 }, { "start": 11321.32, "end": 11322.1, "probability": 0.7941 }, { "start": 11322.54, "end": 11323.42, "probability": 0.8119 }, { "start": 11323.9, "end": 11328.16, "probability": 0.7063 }, { "start": 11328.46, "end": 11329.58, "probability": 0.5211 }, { "start": 11330.12, "end": 11332.3, "probability": 0.9502 }, { "start": 11332.42, "end": 11335.96, "probability": 0.6209 }, { "start": 11336.85, "end": 11341.16, "probability": 0.9322 }, { "start": 11341.54, "end": 11345.5, "probability": 0.491 }, { "start": 11345.82, "end": 11350.28, "probability": 0.9925 }, { "start": 11350.36, "end": 11350.9, "probability": 0.8022 }, { "start": 11351.08, "end": 11352.68, "probability": 0.9814 }, { "start": 11353.82, "end": 11354.4, "probability": 0.6485 }, { "start": 11354.58, "end": 11355.5, "probability": 0.5536 }, { "start": 11362.06, "end": 11362.18, "probability": 0.4607 }, { "start": 11372.12, "end": 11374.0, "probability": 0.8463 }, { "start": 11377.3, "end": 11378.3, "probability": 0.6069 }, { "start": 11378.64, "end": 11379.44, "probability": 0.7298 }, { "start": 11380.28, "end": 11381.22, "probability": 0.895 }, { "start": 11382.0, "end": 11383.66, "probability": 0.7798 }, { "start": 11385.48, "end": 11388.98, "probability": 0.9464 }, { "start": 11389.9, "end": 11395.12, "probability": 0.9837 }, { "start": 11397.28, "end": 11400.78, "probability": 0.967 }, { "start": 11406.0, "end": 11409.94, "probability": 0.91 }, { "start": 11410.78, "end": 11415.1, "probability": 0.9876 }, { "start": 11415.18, "end": 11419.06, "probability": 0.9979 }, { "start": 11421.95, "end": 11424.68, "probability": 0.9933 }, { "start": 11425.2, "end": 11429.4, "probability": 0.9888 }, { "start": 11430.44, "end": 11431.5, "probability": 0.8979 }, { "start": 11431.9, "end": 11433.0, "probability": 0.9934 }, { "start": 11433.42, "end": 11438.9, "probability": 0.9976 }, { "start": 11440.22, "end": 11441.46, "probability": 0.8611 }, { "start": 11443.16, "end": 11444.1, "probability": 0.819 }, { "start": 11445.0, "end": 11446.24, "probability": 0.8031 }, { "start": 11446.72, "end": 11450.2, "probability": 0.9689 }, { "start": 11450.76, "end": 11453.6, "probability": 0.9658 }, { "start": 11454.94, "end": 11455.52, "probability": 0.9899 }, { "start": 11456.04, "end": 11457.14, "probability": 0.9601 }, { "start": 11460.66, "end": 11461.62, "probability": 0.9141 }, { "start": 11462.5, "end": 11463.56, "probability": 0.5898 }, { "start": 11464.58, "end": 11467.34, "probability": 0.989 }, { "start": 11468.0, "end": 11471.84, "probability": 0.9972 }, { "start": 11471.84, "end": 11476.46, "probability": 0.9569 }, { "start": 11477.28, "end": 11481.3, "probability": 0.9803 }, { "start": 11481.3, "end": 11485.24, "probability": 0.9705 }, { "start": 11488.68, "end": 11492.98, "probability": 0.9925 }, { "start": 11493.92, "end": 11499.32, "probability": 0.9978 }, { "start": 11501.5, "end": 11506.64, "probability": 0.9874 }, { "start": 11508.8, "end": 11509.68, "probability": 0.7264 }, { "start": 11510.86, "end": 11511.28, "probability": 0.7205 }, { "start": 11513.52, "end": 11514.36, "probability": 0.9802 }, { "start": 11514.82, "end": 11516.08, "probability": 0.9717 }, { "start": 11516.24, "end": 11519.96, "probability": 0.9413 }, { "start": 11519.96, "end": 11523.2, "probability": 0.9561 }, { "start": 11526.74, "end": 11530.56, "probability": 0.8449 }, { "start": 11530.56, "end": 11533.5, "probability": 0.9736 }, { "start": 11534.88, "end": 11538.54, "probability": 0.9964 }, { "start": 11539.18, "end": 11544.52, "probability": 0.9768 }, { "start": 11544.52, "end": 11549.82, "probability": 0.9957 }, { "start": 11550.44, "end": 11552.2, "probability": 0.8472 }, { "start": 11554.74, "end": 11559.28, "probability": 0.9718 }, { "start": 11559.28, "end": 11563.6, "probability": 0.8595 }, { "start": 11564.36, "end": 11567.34, "probability": 0.9609 }, { "start": 11567.9, "end": 11568.84, "probability": 0.8566 }, { "start": 11569.82, "end": 11573.4, "probability": 0.9832 }, { "start": 11574.24, "end": 11575.08, "probability": 0.848 }, { "start": 11575.44, "end": 11578.24, "probability": 0.7436 }, { "start": 11578.3, "end": 11579.76, "probability": 0.9832 }, { "start": 11581.54, "end": 11585.2, "probability": 0.9442 }, { "start": 11585.66, "end": 11588.34, "probability": 0.9928 }, { "start": 11590.0, "end": 11594.98, "probability": 0.9854 }, { "start": 11595.98, "end": 11596.62, "probability": 0.6736 }, { "start": 11597.8, "end": 11602.0, "probability": 0.9752 }, { "start": 11602.56, "end": 11605.52, "probability": 0.9747 }, { "start": 11606.32, "end": 11609.22, "probability": 0.7159 }, { "start": 11610.56, "end": 11613.22, "probability": 0.731 }, { "start": 11613.96, "end": 11616.78, "probability": 0.7411 }, { "start": 11616.88, "end": 11617.18, "probability": 0.7007 }, { "start": 11618.12, "end": 11620.06, "probability": 0.6042 }, { "start": 11620.12, "end": 11624.7, "probability": 0.9796 }, { "start": 11625.2, "end": 11625.82, "probability": 0.7644 }, { "start": 11654.5, "end": 11656.72, "probability": 0.9261 }, { "start": 11657.6, "end": 11662.96, "probability": 0.9933 }, { "start": 11662.96, "end": 11668.12, "probability": 0.9439 }, { "start": 11668.48, "end": 11669.1, "probability": 0.8022 }, { "start": 11669.68, "end": 11671.96, "probability": 0.9867 }, { "start": 11672.94, "end": 11676.84, "probability": 0.9762 }, { "start": 11677.5, "end": 11678.8, "probability": 0.9202 }, { "start": 11679.36, "end": 11682.5, "probability": 0.9868 }, { "start": 11683.06, "end": 11688.98, "probability": 0.9816 }, { "start": 11690.8, "end": 11691.66, "probability": 0.9907 }, { "start": 11691.86, "end": 11693.46, "probability": 0.9958 }, { "start": 11693.64, "end": 11694.28, "probability": 0.5953 }, { "start": 11694.92, "end": 11698.4, "probability": 0.9824 }, { "start": 11698.96, "end": 11703.32, "probability": 0.9854 }, { "start": 11704.42, "end": 11705.64, "probability": 0.9834 }, { "start": 11706.28, "end": 11709.42, "probability": 0.9819 }, { "start": 11710.54, "end": 11714.6, "probability": 0.9683 }, { "start": 11714.7, "end": 11716.96, "probability": 0.8428 }, { "start": 11717.42, "end": 11718.48, "probability": 0.9883 }, { "start": 11718.86, "end": 11722.26, "probability": 0.9263 }, { "start": 11722.84, "end": 11726.12, "probability": 0.9927 }, { "start": 11726.78, "end": 11728.7, "probability": 0.9388 }, { "start": 11729.26, "end": 11732.66, "probability": 0.9714 }, { "start": 11734.18, "end": 11736.24, "probability": 0.9928 }, { "start": 11736.78, "end": 11739.16, "probability": 0.9585 }, { "start": 11739.76, "end": 11741.04, "probability": 0.8291 }, { "start": 11741.7, "end": 11743.18, "probability": 0.5229 }, { "start": 11744.16, "end": 11747.9, "probability": 0.9954 }, { "start": 11748.46, "end": 11752.8, "probability": 0.9967 }, { "start": 11753.48, "end": 11753.88, "probability": 0.7344 }, { "start": 11754.66, "end": 11755.56, "probability": 0.7832 }, { "start": 11755.64, "end": 11757.94, "probability": 0.8488 }, { "start": 11758.06, "end": 11759.4, "probability": 0.9832 }, { "start": 11760.14, "end": 11762.92, "probability": 0.9842 }, { "start": 11762.92, "end": 11766.12, "probability": 0.9956 }, { "start": 11767.2, "end": 11770.5, "probability": 0.7471 }, { "start": 11770.56, "end": 11771.82, "probability": 0.9181 }, { "start": 11772.2, "end": 11774.6, "probability": 0.9926 }, { "start": 11775.04, "end": 11778.04, "probability": 0.9457 }, { "start": 11778.54, "end": 11780.68, "probability": 0.9764 }, { "start": 11781.32, "end": 11782.92, "probability": 0.9788 }, { "start": 11783.5, "end": 11786.96, "probability": 0.9822 }, { "start": 11786.96, "end": 11789.86, "probability": 0.9539 }, { "start": 11790.32, "end": 11793.56, "probability": 0.9984 }, { "start": 11794.54, "end": 11797.9, "probability": 0.9961 }, { "start": 11798.2, "end": 11802.06, "probability": 0.9937 }, { "start": 11803.22, "end": 11807.58, "probability": 0.9873 }, { "start": 11807.58, "end": 11810.68, "probability": 0.9927 }, { "start": 11811.06, "end": 11813.14, "probability": 0.9927 }, { "start": 11813.56, "end": 11816.52, "probability": 0.875 }, { "start": 11817.16, "end": 11819.84, "probability": 0.9912 }, { "start": 11820.12, "end": 11823.24, "probability": 0.9922 }, { "start": 11823.78, "end": 11824.32, "probability": 0.8083 }, { "start": 11825.16, "end": 11827.44, "probability": 0.969 }, { "start": 11827.86, "end": 11829.0, "probability": 0.7973 }, { "start": 11829.44, "end": 11832.74, "probability": 0.9948 }, { "start": 11833.3, "end": 11834.08, "probability": 0.8612 }, { "start": 11834.42, "end": 11840.52, "probability": 0.9664 }, { "start": 11841.06, "end": 11844.02, "probability": 0.9642 }, { "start": 11844.54, "end": 11845.06, "probability": 0.5483 }, { "start": 11845.38, "end": 11846.48, "probability": 0.9765 }, { "start": 11846.56, "end": 11849.58, "probability": 0.943 }, { "start": 11850.06, "end": 11851.28, "probability": 0.933 }, { "start": 11852.48, "end": 11853.8, "probability": 0.9927 }, { "start": 11854.16, "end": 11856.14, "probability": 0.781 }, { "start": 11856.62, "end": 11858.8, "probability": 0.965 }, { "start": 11859.18, "end": 11860.3, "probability": 0.8562 }, { "start": 11860.66, "end": 11867.04, "probability": 0.9684 }, { "start": 11867.8, "end": 11869.26, "probability": 0.9927 }, { "start": 11869.3, "end": 11873.24, "probability": 0.9993 }, { "start": 11873.7, "end": 11875.98, "probability": 0.9977 }, { "start": 11876.78, "end": 11878.62, "probability": 0.9826 }, { "start": 11879.22, "end": 11880.0, "probability": 0.9719 }, { "start": 11880.12, "end": 11880.74, "probability": 0.7907 }, { "start": 11886.1, "end": 11887.58, "probability": 0.833 }, { "start": 11888.98, "end": 11892.5, "probability": 0.7255 }, { "start": 11894.02, "end": 11895.28, "probability": 0.9561 }, { "start": 11896.1, "end": 11896.98, "probability": 0.8788 }, { "start": 11898.18, "end": 11900.0, "probability": 0.9678 }, { "start": 11900.86, "end": 11901.78, "probability": 0.9011 }, { "start": 11902.1, "end": 11904.7, "probability": 0.9632 }, { "start": 11905.2, "end": 11907.68, "probability": 0.9362 }, { "start": 11908.28, "end": 11909.88, "probability": 0.7492 }, { "start": 11910.44, "end": 11910.94, "probability": 0.3628 }, { "start": 11912.72, "end": 11915.1, "probability": 0.7543 }, { "start": 11915.2, "end": 11917.66, "probability": 0.779 }, { "start": 11917.72, "end": 11918.74, "probability": 0.781 }, { "start": 11922.48, "end": 11924.08, "probability": 0.9248 }, { "start": 11924.6, "end": 11927.18, "probability": 0.892 }, { "start": 11928.04, "end": 11931.58, "probability": 0.8589 }, { "start": 11932.26, "end": 11935.36, "probability": 0.8356 }, { "start": 11936.58, "end": 11941.56, "probability": 0.9942 }, { "start": 11941.56, "end": 11946.68, "probability": 0.6533 }, { "start": 11947.24, "end": 11949.1, "probability": 0.8722 }, { "start": 11949.88, "end": 11951.78, "probability": 0.9956 }, { "start": 11952.4, "end": 11956.6, "probability": 0.8804 }, { "start": 11957.32, "end": 11961.14, "probability": 0.9933 }, { "start": 11961.66, "end": 11965.26, "probability": 0.9619 }, { "start": 11965.94, "end": 11967.72, "probability": 0.4492 }, { "start": 11967.96, "end": 11972.12, "probability": 0.9787 }, { "start": 11972.2, "end": 11977.06, "probability": 0.9832 }, { "start": 11977.42, "end": 11978.94, "probability": 0.4771 }, { "start": 11979.14, "end": 11982.82, "probability": 0.9959 }, { "start": 11983.08, "end": 11986.84, "probability": 0.9541 }, { "start": 11987.52, "end": 11988.56, "probability": 0.8698 }, { "start": 11989.92, "end": 11991.38, "probability": 0.6934 }, { "start": 11991.98, "end": 11999.78, "probability": 0.9843 }, { "start": 12000.46, "end": 12004.42, "probability": 0.9828 }, { "start": 12005.06, "end": 12007.68, "probability": 0.9897 }, { "start": 12008.3, "end": 12009.02, "probability": 0.6118 }, { "start": 12009.72, "end": 12012.54, "probability": 0.7008 }, { "start": 12013.3, "end": 12013.68, "probability": 0.1719 }, { "start": 12014.62, "end": 12021.14, "probability": 0.0198 }, { "start": 12022.28, "end": 12024.26, "probability": 0.9459 }, { "start": 12026.22, "end": 12028.64, "probability": 0.0287 }, { "start": 12046.7, "end": 12047.8, "probability": 0.0684 }, { "start": 12047.8, "end": 12047.8, "probability": 0.1782 }, { "start": 12047.8, "end": 12047.8, "probability": 0.0375 }, { "start": 12047.8, "end": 12049.19, "probability": 0.1663 }, { "start": 12049.36, "end": 12053.34, "probability": 0.8428 }, { "start": 12054.02, "end": 12056.1, "probability": 0.9569 }, { "start": 12056.24, "end": 12057.7, "probability": 0.6784 }, { "start": 12057.78, "end": 12059.38, "probability": 0.3297 }, { "start": 12059.54, "end": 12062.38, "probability": 0.2582 }, { "start": 12062.58, "end": 12063.6, "probability": 0.9038 }, { "start": 12063.66, "end": 12065.74, "probability": 0.6725 }, { "start": 12065.76, "end": 12066.66, "probability": 0.6304 }, { "start": 12068.6, "end": 12070.44, "probability": 0.6882 }, { "start": 12071.8, "end": 12077.2, "probability": 0.9616 }, { "start": 12078.1, "end": 12080.14, "probability": 0.8657 }, { "start": 12081.16, "end": 12084.94, "probability": 0.9756 }, { "start": 12085.98, "end": 12090.0, "probability": 0.994 }, { "start": 12090.58, "end": 12091.3, "probability": 0.9846 }, { "start": 12091.88, "end": 12092.88, "probability": 0.8431 }, { "start": 12093.58, "end": 12096.56, "probability": 0.929 }, { "start": 12097.22, "end": 12100.56, "probability": 0.9976 }, { "start": 12102.66, "end": 12104.64, "probability": 0.9723 }, { "start": 12105.38, "end": 12105.38, "probability": 0.4058 }, { "start": 12105.48, "end": 12110.18, "probability": 0.9928 }, { "start": 12112.1, "end": 12115.36, "probability": 0.9774 }, { "start": 12115.36, "end": 12118.8, "probability": 0.996 }, { "start": 12121.02, "end": 12121.32, "probability": 0.0592 }, { "start": 12122.23, "end": 12126.12, "probability": 0.0865 }, { "start": 12127.02, "end": 12129.26, "probability": 0.6325 }, { "start": 12135.88, "end": 12139.6, "probability": 0.998 }, { "start": 12139.6, "end": 12143.3, "probability": 0.9974 }, { "start": 12143.96, "end": 12146.42, "probability": 0.9989 }, { "start": 12146.42, "end": 12150.68, "probability": 0.9824 }, { "start": 12151.44, "end": 12153.46, "probability": 0.9943 }, { "start": 12153.62, "end": 12156.32, "probability": 0.9943 }, { "start": 12157.04, "end": 12159.3, "probability": 0.9255 }, { "start": 12159.3, "end": 12161.78, "probability": 0.992 }, { "start": 12162.44, "end": 12163.35, "probability": 0.9989 }, { "start": 12164.3, "end": 12166.7, "probability": 0.9967 }, { "start": 12166.98, "end": 12169.06, "probability": 0.9963 }, { "start": 12169.8, "end": 12172.58, "probability": 0.7996 }, { "start": 12172.58, "end": 12175.66, "probability": 0.9961 }, { "start": 12175.72, "end": 12176.12, "probability": 0.5999 }, { "start": 12176.24, "end": 12176.58, "probability": 0.9063 }, { "start": 12176.68, "end": 12181.08, "probability": 0.9826 }, { "start": 12182.92, "end": 12184.52, "probability": 0.9766 }, { "start": 12185.0, "end": 12189.28, "probability": 0.9514 }, { "start": 12189.36, "end": 12190.86, "probability": 0.7091 }, { "start": 12191.7, "end": 12193.52, "probability": 0.7888 }, { "start": 12193.56, "end": 12195.22, "probability": 0.9258 }, { "start": 12195.98, "end": 12199.02, "probability": 0.9922 }, { "start": 12199.64, "end": 12200.58, "probability": 0.999 }, { "start": 12201.2, "end": 12205.08, "probability": 0.9689 }, { "start": 12206.16, "end": 12209.78, "probability": 0.9989 }, { "start": 12209.78, "end": 12213.68, "probability": 0.9947 }, { "start": 12214.72, "end": 12215.82, "probability": 0.7207 }, { "start": 12216.78, "end": 12219.76, "probability": 0.501 }, { "start": 12221.1, "end": 12226.8, "probability": 0.9819 }, { "start": 12226.8, "end": 12234.34, "probability": 0.978 }, { "start": 12236.53, "end": 12239.68, "probability": 0.9989 }, { "start": 12240.3, "end": 12241.06, "probability": 0.9392 }, { "start": 12242.22, "end": 12247.12, "probability": 0.9684 }, { "start": 12247.12, "end": 12249.9, "probability": 0.9521 }, { "start": 12250.5, "end": 12258.18, "probability": 0.991 }, { "start": 12258.92, "end": 12261.38, "probability": 0.9849 }, { "start": 12262.2, "end": 12267.32, "probability": 0.9924 }, { "start": 12269.14, "end": 12272.22, "probability": 0.991 }, { "start": 12272.96, "end": 12275.0, "probability": 0.9966 }, { "start": 12275.6, "end": 12278.7, "probability": 0.9861 }, { "start": 12278.7, "end": 12282.42, "probability": 0.754 }, { "start": 12283.98, "end": 12287.68, "probability": 0.9892 }, { "start": 12288.96, "end": 12289.08, "probability": 0.7301 }, { "start": 12289.52, "end": 12290.98, "probability": 0.7324 }, { "start": 12291.54, "end": 12294.2, "probability": 0.8096 }, { "start": 12295.98, "end": 12301.66, "probability": 0.994 }, { "start": 12301.84, "end": 12303.42, "probability": 0.825 }, { "start": 12304.0, "end": 12309.46, "probability": 0.9014 }, { "start": 12309.88, "end": 12311.44, "probability": 0.897 }, { "start": 12312.7, "end": 12313.8, "probability": 0.6768 }, { "start": 12313.94, "end": 12318.28, "probability": 0.7416 }, { "start": 12318.48, "end": 12318.92, "probability": 0.5435 }, { "start": 12319.64, "end": 12320.24, "probability": 0.4212 }, { "start": 12321.86, "end": 12322.94, "probability": 0.8661 }, { "start": 12323.5, "end": 12324.08, "probability": 0.8527 }, { "start": 12324.68, "end": 12325.64, "probability": 0.7363 }, { "start": 12325.86, "end": 12326.36, "probability": 0.8569 }, { "start": 12326.62, "end": 12327.5, "probability": 0.9167 }, { "start": 12327.76, "end": 12328.3, "probability": 0.911 }, { "start": 12328.48, "end": 12329.48, "probability": 0.9633 }, { "start": 12330.08, "end": 12330.52, "probability": 0.4803 }, { "start": 12330.9, "end": 12331.8, "probability": 0.8868 }, { "start": 12353.7, "end": 12355.64, "probability": 0.7795 }, { "start": 12355.64, "end": 12356.62, "probability": 0.8014 }, { "start": 12357.62, "end": 12358.44, "probability": 0.7416 }, { "start": 12360.36, "end": 12363.56, "probability": 0.9377 }, { "start": 12363.66, "end": 12365.28, "probability": 0.9858 }, { "start": 12366.74, "end": 12369.66, "probability": 0.9255 }, { "start": 12369.88, "end": 12373.34, "probability": 0.9771 }, { "start": 12373.5, "end": 12373.82, "probability": 0.7515 }, { "start": 12374.68, "end": 12379.64, "probability": 0.9385 }, { "start": 12380.18, "end": 12383.7, "probability": 0.9785 }, { "start": 12384.62, "end": 12390.08, "probability": 0.9961 }, { "start": 12390.72, "end": 12392.71, "probability": 0.9104 }, { "start": 12393.4, "end": 12398.16, "probability": 0.9884 }, { "start": 12399.46, "end": 12402.3, "probability": 0.9762 }, { "start": 12403.2, "end": 12409.02, "probability": 0.8626 }, { "start": 12410.36, "end": 12412.96, "probability": 0.9307 }, { "start": 12413.02, "end": 12416.02, "probability": 0.8856 }, { "start": 12416.74, "end": 12417.34, "probability": 0.9414 }, { "start": 12419.16, "end": 12424.12, "probability": 0.9903 }, { "start": 12425.18, "end": 12426.1, "probability": 0.8838 }, { "start": 12426.92, "end": 12429.0, "probability": 0.8796 }, { "start": 12429.82, "end": 12430.64, "probability": 0.7105 }, { "start": 12430.66, "end": 12431.5, "probability": 0.8003 }, { "start": 12431.58, "end": 12436.58, "probability": 0.9553 }, { "start": 12437.2, "end": 12441.3, "probability": 0.844 }, { "start": 12441.36, "end": 12442.5, "probability": 0.8556 }, { "start": 12443.96, "end": 12448.14, "probability": 0.7884 }, { "start": 12448.28, "end": 12449.22, "probability": 0.9983 }, { "start": 12449.88, "end": 12453.5, "probability": 0.9006 }, { "start": 12454.38, "end": 12455.22, "probability": 0.7269 }, { "start": 12455.54, "end": 12459.38, "probability": 0.8556 }, { "start": 12459.44, "end": 12459.96, "probability": 0.2859 }, { "start": 12460.0, "end": 12461.54, "probability": 0.6688 }, { "start": 12463.56, "end": 12465.66, "probability": 0.9946 }, { "start": 12467.02, "end": 12468.74, "probability": 0.9272 }, { "start": 12470.0, "end": 12470.84, "probability": 0.5772 }, { "start": 12472.02, "end": 12475.76, "probability": 0.9723 }, { "start": 12475.86, "end": 12479.86, "probability": 0.6356 }, { "start": 12480.42, "end": 12482.34, "probability": 0.7635 }, { "start": 12483.12, "end": 12483.88, "probability": 0.9703 }, { "start": 12484.66, "end": 12485.16, "probability": 0.9873 }, { "start": 12486.3, "end": 12487.5, "probability": 0.9959 }, { "start": 12488.2, "end": 12490.8, "probability": 0.7515 }, { "start": 12491.5, "end": 12494.68, "probability": 0.9453 }, { "start": 12494.98, "end": 12495.7, "probability": 0.6003 }, { "start": 12496.76, "end": 12497.6, "probability": 0.9774 }, { "start": 12497.66, "end": 12499.46, "probability": 0.9769 }, { "start": 12499.8, "end": 12500.74, "probability": 0.9523 }, { "start": 12501.2, "end": 12502.6, "probability": 0.9625 }, { "start": 12503.51, "end": 12507.04, "probability": 0.9486 }, { "start": 12507.22, "end": 12507.96, "probability": 0.6864 }, { "start": 12509.62, "end": 12510.86, "probability": 0.7494 }, { "start": 12511.58, "end": 12512.74, "probability": 0.9697 }, { "start": 12513.86, "end": 12515.02, "probability": 0.9753 }, { "start": 12516.04, "end": 12517.42, "probability": 0.6543 }, { "start": 12517.56, "end": 12519.62, "probability": 0.8005 }, { "start": 12520.32, "end": 12521.74, "probability": 0.661 }, { "start": 12522.04, "end": 12523.34, "probability": 0.9186 }, { "start": 12523.7, "end": 12525.42, "probability": 0.8382 }, { "start": 12526.1, "end": 12526.98, "probability": 0.9937 }, { "start": 12527.64, "end": 12528.18, "probability": 0.757 }, { "start": 12528.8, "end": 12529.44, "probability": 0.8487 }, { "start": 12530.36, "end": 12531.88, "probability": 0.8856 }, { "start": 12532.0, "end": 12534.8, "probability": 0.9856 }, { "start": 12536.12, "end": 12538.5, "probability": 0.992 }, { "start": 12539.18, "end": 12540.7, "probability": 0.9586 }, { "start": 12541.78, "end": 12542.55, "probability": 0.8164 }, { "start": 12543.04, "end": 12546.72, "probability": 0.9448 }, { "start": 12547.54, "end": 12551.06, "probability": 0.9519 }, { "start": 12551.54, "end": 12552.16, "probability": 0.8322 }, { "start": 12552.56, "end": 12553.02, "probability": 0.7688 }, { "start": 12555.8, "end": 12557.32, "probability": 0.6755 }, { "start": 12558.7, "end": 12560.3, "probability": 0.7357 }, { "start": 12561.1, "end": 12561.48, "probability": 0.6094 }, { "start": 12564.7, "end": 12566.42, "probability": 0.5287 }, { "start": 12567.38, "end": 12568.12, "probability": 0.7701 }, { "start": 12569.34, "end": 12570.72, "probability": 0.9193 }, { "start": 12571.86, "end": 12575.56, "probability": 0.8518 }, { "start": 12576.42, "end": 12577.42, "probability": 0.5556 }, { "start": 12577.48, "end": 12578.12, "probability": 0.5398 }, { "start": 12578.26, "end": 12579.04, "probability": 0.8446 }, { "start": 12579.12, "end": 12579.54, "probability": 0.7828 }, { "start": 12580.2, "end": 12581.4, "probability": 0.9622 }, { "start": 12582.48, "end": 12584.32, "probability": 0.6649 }, { "start": 12586.08, "end": 12587.01, "probability": 0.9337 }, { "start": 12587.42, "end": 12587.82, "probability": 0.4886 }, { "start": 12588.04, "end": 12588.72, "probability": 0.5203 }, { "start": 12589.12, "end": 12589.88, "probability": 0.8412 }, { "start": 12590.62, "end": 12592.14, "probability": 0.7938 }, { "start": 12592.74, "end": 12594.02, "probability": 0.9681 }, { "start": 12594.62, "end": 12595.38, "probability": 0.9707 }, { "start": 12596.68, "end": 12600.78, "probability": 0.9469 }, { "start": 12601.84, "end": 12602.72, "probability": 0.3594 }, { "start": 12602.92, "end": 12603.62, "probability": 0.5661 }, { "start": 12603.8, "end": 12604.18, "probability": 0.3132 }, { "start": 12604.18, "end": 12604.18, "probability": 0.581 }, { "start": 12604.18, "end": 12604.46, "probability": 0.7119 }, { "start": 12604.74, "end": 12606.22, "probability": 0.8786 }, { "start": 12606.24, "end": 12608.32, "probability": 0.7372 }, { "start": 12609.9, "end": 12611.16, "probability": 0.8329 }, { "start": 12635.54, "end": 12635.64, "probability": 0.0182 }, { "start": 12635.64, "end": 12635.64, "probability": 0.2359 }, { "start": 12635.64, "end": 12638.02, "probability": 0.7504 }, { "start": 12638.85, "end": 12641.54, "probability": 0.9873 }, { "start": 12641.54, "end": 12649.34, "probability": 0.96 }, { "start": 12649.56, "end": 12651.76, "probability": 0.9926 }, { "start": 12652.8, "end": 12654.44, "probability": 0.5845 }, { "start": 12654.52, "end": 12657.92, "probability": 0.9917 }, { "start": 12657.98, "end": 12660.68, "probability": 0.9906 }, { "start": 12661.7, "end": 12663.1, "probability": 0.9621 }, { "start": 12663.88, "end": 12664.22, "probability": 0.7444 }, { "start": 12664.48, "end": 12665.34, "probability": 0.9988 }, { "start": 12667.22, "end": 12668.44, "probability": 0.7609 }, { "start": 12668.54, "end": 12669.55, "probability": 0.8843 }, { "start": 12670.82, "end": 12672.34, "probability": 0.9971 }, { "start": 12672.44, "end": 12674.58, "probability": 0.9234 }, { "start": 12675.12, "end": 12677.36, "probability": 0.9572 }, { "start": 12677.46, "end": 12679.3, "probability": 0.8346 }, { "start": 12680.26, "end": 12683.92, "probability": 0.9744 }, { "start": 12684.02, "end": 12684.94, "probability": 0.5803 }, { "start": 12685.86, "end": 12690.38, "probability": 0.9886 }, { "start": 12690.48, "end": 12691.42, "probability": 0.9927 }, { "start": 12692.34, "end": 12694.52, "probability": 0.9325 }, { "start": 12695.46, "end": 12697.58, "probability": 0.989 }, { "start": 12698.84, "end": 12702.14, "probability": 0.3506 }, { "start": 12703.56, "end": 12707.92, "probability": 0.9318 }, { "start": 12708.0, "end": 12709.18, "probability": 0.9601 }, { "start": 12709.38, "end": 12709.9, "probability": 0.6885 }, { "start": 12710.16, "end": 12710.94, "probability": 0.7899 }, { "start": 12711.76, "end": 12713.04, "probability": 0.6832 }, { "start": 12713.1, "end": 12715.3, "probability": 0.7149 }, { "start": 12715.34, "end": 12715.92, "probability": 0.7355 }, { "start": 12716.42, "end": 12717.96, "probability": 0.9876 }, { "start": 12718.78, "end": 12720.96, "probability": 0.8758 }, { "start": 12721.72, "end": 12725.24, "probability": 0.65 }, { "start": 12725.9, "end": 12729.18, "probability": 0.8792 }, { "start": 12729.3, "end": 12731.42, "probability": 0.9858 }, { "start": 12731.42, "end": 12736.24, "probability": 0.9683 }, { "start": 12736.66, "end": 12738.02, "probability": 0.8007 }, { "start": 12738.66, "end": 12741.96, "probability": 0.8867 }, { "start": 12743.16, "end": 12747.2, "probability": 0.9711 }, { "start": 12747.68, "end": 12749.34, "probability": 0.6352 }, { "start": 12749.64, "end": 12750.54, "probability": 0.8055 }, { "start": 12751.76, "end": 12757.14, "probability": 0.8823 }, { "start": 12757.72, "end": 12761.74, "probability": 0.981 }, { "start": 12762.8, "end": 12767.54, "probability": 0.9125 }, { "start": 12768.32, "end": 12770.26, "probability": 0.9802 }, { "start": 12770.82, "end": 12776.7, "probability": 0.9888 }, { "start": 12777.32, "end": 12780.58, "probability": 0.9913 }, { "start": 12780.78, "end": 12781.76, "probability": 0.8267 }, { "start": 12782.34, "end": 12783.74, "probability": 0.9738 }, { "start": 12784.22, "end": 12788.6, "probability": 0.9512 }, { "start": 12789.74, "end": 12791.14, "probability": 0.7696 }, { "start": 12791.44, "end": 12793.36, "probability": 0.9945 }, { "start": 12793.96, "end": 12794.88, "probability": 0.9548 }, { "start": 12795.62, "end": 12796.0, "probability": 0.4668 }, { "start": 12797.56, "end": 12799.0, "probability": 0.9941 }, { "start": 12799.06, "end": 12800.52, "probability": 0.985 }, { "start": 12801.02, "end": 12803.4, "probability": 0.9695 }, { "start": 12803.78, "end": 12807.6, "probability": 0.9042 }, { "start": 12808.28, "end": 12810.12, "probability": 0.953 }, { "start": 12811.0, "end": 12813.76, "probability": 0.7739 }, { "start": 12814.58, "end": 12815.86, "probability": 0.8842 }, { "start": 12816.88, "end": 12818.94, "probability": 0.9204 }, { "start": 12819.12, "end": 12821.2, "probability": 0.9933 }, { "start": 12821.76, "end": 12822.6, "probability": 0.8997 }, { "start": 12822.66, "end": 12823.22, "probability": 0.8229 }, { "start": 12823.34, "end": 12823.98, "probability": 0.9632 }, { "start": 12824.02, "end": 12824.84, "probability": 0.8308 }, { "start": 12825.3, "end": 12827.46, "probability": 0.9697 }, { "start": 12828.18, "end": 12830.62, "probability": 0.9978 }, { "start": 12830.62, "end": 12834.74, "probability": 0.9531 }, { "start": 12835.32, "end": 12838.1, "probability": 0.9952 }, { "start": 12838.68, "end": 12840.5, "probability": 0.9952 }, { "start": 12841.54, "end": 12843.38, "probability": 0.9767 }, { "start": 12843.7, "end": 12845.74, "probability": 0.8818 }, { "start": 12846.14, "end": 12847.64, "probability": 0.9822 }, { "start": 12848.04, "end": 12850.66, "probability": 0.9146 }, { "start": 12851.26, "end": 12853.52, "probability": 0.7284 }, { "start": 12853.72, "end": 12858.44, "probability": 0.9838 }, { "start": 12858.52, "end": 12859.18, "probability": 0.9586 }, { "start": 12860.08, "end": 12860.4, "probability": 0.3266 }, { "start": 12860.4, "end": 12860.56, "probability": 0.6173 }, { "start": 12860.92, "end": 12862.88, "probability": 0.9019 }, { "start": 12864.12, "end": 12865.86, "probability": 0.9408 }, { "start": 12866.56, "end": 12867.08, "probability": 0.3051 }, { "start": 12867.4, "end": 12868.78, "probability": 0.9514 }, { "start": 12868.9, "end": 12871.66, "probability": 0.8639 }, { "start": 12871.8, "end": 12872.24, "probability": 0.4317 }, { "start": 12872.24, "end": 12872.24, "probability": 0.1517 }, { "start": 12872.24, "end": 12872.8, "probability": 0.7757 }, { "start": 12873.4, "end": 12873.78, "probability": 0.6537 }, { "start": 12874.26, "end": 12875.1, "probability": 0.8585 }, { "start": 12875.28, "end": 12875.6, "probability": 0.8 }, { "start": 12875.86, "end": 12876.72, "probability": 0.8814 }, { "start": 12877.28, "end": 12877.72, "probability": 0.5316 }, { "start": 12877.96, "end": 12878.92, "probability": 0.58 }, { "start": 12879.64, "end": 12881.8, "probability": 0.5617 }, { "start": 12898.3, "end": 12899.33, "probability": 0.7842 }, { "start": 12899.94, "end": 12901.24, "probability": 0.7994 }, { "start": 12901.68, "end": 12902.56, "probability": 0.8174 }, { "start": 12903.44, "end": 12905.44, "probability": 0.9218 }, { "start": 12906.52, "end": 12907.9, "probability": 0.7742 }, { "start": 12909.52, "end": 12915.26, "probability": 0.9489 }, { "start": 12916.4, "end": 12919.56, "probability": 0.9674 }, { "start": 12920.38, "end": 12923.72, "probability": 0.9873 }, { "start": 12924.62, "end": 12929.48, "probability": 0.9138 }, { "start": 12930.56, "end": 12933.3, "probability": 0.715 }, { "start": 12933.94, "end": 12940.08, "probability": 0.8615 }, { "start": 12940.54, "end": 12942.8, "probability": 0.9741 }, { "start": 12942.92, "end": 12943.48, "probability": 0.699 }, { "start": 12944.64, "end": 12945.96, "probability": 0.7383 }, { "start": 12946.18, "end": 12948.12, "probability": 0.9347 }, { "start": 12948.16, "end": 12949.33, "probability": 0.764 }, { "start": 12949.56, "end": 12951.01, "probability": 0.8174 }, { "start": 12951.66, "end": 12952.2, "probability": 0.8283 }, { "start": 12952.36, "end": 12954.56, "probability": 0.9526 }, { "start": 12954.68, "end": 12955.7, "probability": 0.8813 }, { "start": 12956.52, "end": 12957.7, "probability": 0.9647 }, { "start": 12957.8, "end": 12962.42, "probability": 0.9421 }, { "start": 12962.42, "end": 12968.24, "probability": 0.9961 }, { "start": 12968.42, "end": 12971.5, "probability": 0.8975 }, { "start": 12972.3, "end": 12973.22, "probability": 0.8319 }, { "start": 12974.08, "end": 12976.94, "probability": 0.9883 }, { "start": 12977.06, "end": 12979.19, "probability": 0.9309 }, { "start": 12979.94, "end": 12981.38, "probability": 0.9266 }, { "start": 12981.48, "end": 12983.38, "probability": 0.9538 }, { "start": 12983.5, "end": 12984.6, "probability": 0.9956 }, { "start": 12985.58, "end": 12987.08, "probability": 0.9958 }, { "start": 12987.16, "end": 12989.34, "probability": 0.9711 }, { "start": 12989.46, "end": 12991.38, "probability": 0.9511 }, { "start": 12991.78, "end": 12993.8, "probability": 0.9802 }, { "start": 12995.04, "end": 12996.61, "probability": 0.9492 }, { "start": 12996.82, "end": 12999.82, "probability": 0.9935 }, { "start": 13000.36, "end": 13003.44, "probability": 0.9329 }, { "start": 13003.54, "end": 13007.82, "probability": 0.9009 }, { "start": 13008.5, "end": 13013.32, "probability": 0.9871 }, { "start": 13013.32, "end": 13017.87, "probability": 0.9987 }, { "start": 13019.71, "end": 13023.04, "probability": 0.9872 }, { "start": 13023.18, "end": 13024.24, "probability": 0.8334 }, { "start": 13025.32, "end": 13026.43, "probability": 0.9937 }, { "start": 13026.58, "end": 13029.5, "probability": 0.987 }, { "start": 13029.96, "end": 13031.4, "probability": 0.9963 }, { "start": 13031.4, "end": 13033.42, "probability": 0.9917 }, { "start": 13033.96, "end": 13036.1, "probability": 0.8515 }, { "start": 13036.1, "end": 13039.28, "probability": 0.7415 }, { "start": 13039.52, "end": 13041.2, "probability": 0.958 }, { "start": 13041.72, "end": 13044.95, "probability": 0.8095 }, { "start": 13045.74, "end": 13047.58, "probability": 0.9397 }, { "start": 13047.68, "end": 13051.34, "probability": 0.9816 }, { "start": 13051.46, "end": 13052.4, "probability": 0.9847 }, { "start": 13052.5, "end": 13054.0, "probability": 0.9802 }, { "start": 13054.34, "end": 13056.0, "probability": 0.9972 }, { "start": 13056.42, "end": 13060.06, "probability": 0.8273 }, { "start": 13060.3, "end": 13061.24, "probability": 0.9376 }, { "start": 13061.32, "end": 13062.24, "probability": 0.6648 }, { "start": 13062.86, "end": 13064.96, "probability": 0.9981 }, { "start": 13065.04, "end": 13068.82, "probability": 0.7615 }, { "start": 13068.92, "end": 13069.56, "probability": 0.6799 }, { "start": 13069.88, "end": 13070.32, "probability": 0.7777 }, { "start": 13070.88, "end": 13071.52, "probability": 0.6413 }, { "start": 13071.58, "end": 13073.1, "probability": 0.8763 }, { "start": 13073.97, "end": 13077.4, "probability": 0.959 }, { "start": 13077.46, "end": 13079.24, "probability": 0.9409 }, { "start": 13080.38, "end": 13083.06, "probability": 0.993 }, { "start": 13083.12, "end": 13084.44, "probability": 0.8171 }, { "start": 13084.56, "end": 13086.96, "probability": 0.9956 }, { "start": 13088.24, "end": 13088.84, "probability": 0.28 }, { "start": 13088.84, "end": 13091.26, "probability": 0.6994 }, { "start": 13091.3, "end": 13093.56, "probability": 0.9604 }, { "start": 13094.38, "end": 13099.12, "probability": 0.9775 }, { "start": 13099.84, "end": 13100.72, "probability": 0.6827 }, { "start": 13101.38, "end": 13102.4, "probability": 0.822 }, { "start": 13103.02, "end": 13106.28, "probability": 0.9641 }, { "start": 13106.38, "end": 13106.6, "probability": 0.8584 }, { "start": 13106.68, "end": 13110.52, "probability": 0.936 }, { "start": 13111.47, "end": 13115.1, "probability": 0.9993 }, { "start": 13115.34, "end": 13116.9, "probability": 0.9974 }, { "start": 13117.34, "end": 13121.16, "probability": 0.8888 }, { "start": 13121.58, "end": 13123.2, "probability": 0.9941 }, { "start": 13123.86, "end": 13124.46, "probability": 0.8966 }, { "start": 13124.5, "end": 13125.78, "probability": 0.7803 }, { "start": 13125.94, "end": 13126.8, "probability": 0.5463 }, { "start": 13127.12, "end": 13128.34, "probability": 0.8038 }, { "start": 13128.78, "end": 13131.72, "probability": 0.8335 }, { "start": 13132.14, "end": 13135.94, "probability": 0.8326 }, { "start": 13136.38, "end": 13137.88, "probability": 0.9106 }, { "start": 13138.02, "end": 13138.4, "probability": 0.7287 }, { "start": 13138.42, "end": 13138.64, "probability": 0.6578 }, { "start": 13138.7, "end": 13140.98, "probability": 0.8071 }, { "start": 13141.5, "end": 13142.5, "probability": 0.9215 }, { "start": 13143.48, "end": 13146.24, "probability": 0.621 }, { "start": 13146.28, "end": 13147.26, "probability": 0.9463 }, { "start": 13147.76, "end": 13151.86, "probability": 0.9346 }, { "start": 13151.96, "end": 13154.04, "probability": 0.9893 }, { "start": 13154.12, "end": 13155.18, "probability": 0.7863 }, { "start": 13155.94, "end": 13156.62, "probability": 0.9282 }, { "start": 13156.78, "end": 13159.6, "probability": 0.7296 }, { "start": 13159.66, "end": 13162.22, "probability": 0.7438 }, { "start": 13162.64, "end": 13164.12, "probability": 0.6865 }, { "start": 13164.34, "end": 13164.62, "probability": 0.6866 }, { "start": 13164.82, "end": 13165.82, "probability": 0.8764 }, { "start": 13165.92, "end": 13168.28, "probability": 0.7636 }, { "start": 13168.66, "end": 13168.66, "probability": 0.4855 }, { "start": 13168.82, "end": 13169.53, "probability": 0.6541 }, { "start": 13170.06, "end": 13171.56, "probability": 0.9023 }, { "start": 13171.96, "end": 13174.34, "probability": 0.9772 }, { "start": 13174.38, "end": 13175.3, "probability": 0.8748 }, { "start": 13175.34, "end": 13175.86, "probability": 0.4353 }, { "start": 13175.94, "end": 13176.34, "probability": 0.4694 }, { "start": 13176.8, "end": 13179.8, "probability": 0.9179 }, { "start": 13180.42, "end": 13182.48, "probability": 0.614 }, { "start": 13183.0, "end": 13184.46, "probability": 0.8434 }, { "start": 13184.86, "end": 13186.22, "probability": 0.9932 }, { "start": 13186.38, "end": 13187.56, "probability": 0.965 }, { "start": 13188.14, "end": 13189.82, "probability": 0.9435 }, { "start": 13190.02, "end": 13190.26, "probability": 0.8433 }, { "start": 13190.36, "end": 13190.9, "probability": 0.53 }, { "start": 13196.54, "end": 13198.38, "probability": 0.7282 }, { "start": 13198.64, "end": 13199.44, "probability": 0.6478 }, { "start": 13200.06, "end": 13200.48, "probability": 0.3511 }, { "start": 13200.7, "end": 13201.72, "probability": 0.8097 }, { "start": 13201.82, "end": 13202.38, "probability": 0.5001 }, { "start": 13202.48, "end": 13203.28, "probability": 0.8069 }, { "start": 13203.56, "end": 13203.96, "probability": 0.4924 }, { "start": 13204.48, "end": 13206.51, "probability": 0.7859 }, { "start": 13216.98, "end": 13219.26, "probability": 0.3851 }, { "start": 13220.02, "end": 13222.18, "probability": 0.6463 }, { "start": 13222.7, "end": 13224.18, "probability": 0.6644 }, { "start": 13224.7, "end": 13225.56, "probability": 0.938 }, { "start": 13225.64, "end": 13226.24, "probability": 0.8143 }, { "start": 13226.32, "end": 13227.5, "probability": 0.9667 }, { "start": 13227.98, "end": 13228.94, "probability": 0.6716 }, { "start": 13229.46, "end": 13230.22, "probability": 0.6589 }, { "start": 13230.38, "end": 13231.14, "probability": 0.3269 }, { "start": 13231.2, "end": 13231.68, "probability": 0.0864 }, { "start": 13231.72, "end": 13231.8, "probability": 0.3589 }, { "start": 13232.14, "end": 13232.8, "probability": 0.1887 }, { "start": 13233.6, "end": 13233.72, "probability": 0.0736 }, { "start": 13236.46, "end": 13237.14, "probability": 0.0353 }, { "start": 13237.58, "end": 13239.17, "probability": 0.1902 }, { "start": 13240.84, "end": 13240.84, "probability": 0.1558 }, { "start": 13240.88, "end": 13241.42, "probability": 0.3051 }, { "start": 13241.42, "end": 13241.42, "probability": 0.148 }, { "start": 13241.42, "end": 13242.68, "probability": 0.2388 }, { "start": 13242.78, "end": 13243.94, "probability": 0.0928 }, { "start": 13243.94, "end": 13244.64, "probability": 0.213 }, { "start": 13245.4, "end": 13247.36, "probability": 0.2559 }, { "start": 13248.46, "end": 13248.84, "probability": 0.5605 }, { "start": 13265.18, "end": 13267.02, "probability": 0.0393 }, { "start": 13269.63, "end": 13271.14, "probability": 0.0455 }, { "start": 13272.18, "end": 13274.22, "probability": 0.0475 }, { "start": 13274.44, "end": 13274.7, "probability": 0.1344 }, { "start": 13275.64, "end": 13276.91, "probability": 0.0825 }, { "start": 13277.68, "end": 13279.06, "probability": 0.0254 }, { "start": 13352.0, "end": 13352.0, "probability": 0.0 }, { "start": 13352.0, "end": 13352.0, "probability": 0.0 }, { "start": 13352.0, "end": 13352.0, "probability": 0.0 }, { "start": 13352.0, "end": 13352.0, "probability": 0.0 }, { "start": 13352.0, "end": 13352.0, "probability": 0.0 }, { "start": 13352.0, "end": 13352.0, "probability": 0.0 }, { "start": 13352.0, "end": 13352.0, "probability": 0.0 }, { "start": 13352.0, "end": 13352.0, "probability": 0.0 }, { "start": 13352.0, "end": 13352.0, "probability": 0.0 }, { "start": 13352.0, "end": 13352.0, "probability": 0.0 }, { "start": 13352.0, "end": 13352.0, "probability": 0.0 }, { "start": 13352.0, "end": 13352.0, "probability": 0.0 }, { "start": 13352.0, "end": 13352.0, "probability": 0.0 }, { "start": 13352.0, "end": 13352.0, "probability": 0.0 }, { "start": 13352.0, "end": 13352.0, "probability": 0.0 }, { "start": 13352.0, "end": 13352.0, "probability": 0.0 }, { "start": 13352.0, "end": 13352.0, "probability": 0.0 }, { "start": 13352.0, "end": 13352.0, "probability": 0.0 }, { "start": 13352.0, "end": 13352.0, "probability": 0.0 }, { "start": 13352.0, "end": 13352.0, "probability": 0.0 }, { "start": 13352.0, "end": 13352.0, "probability": 0.0 }, { "start": 13352.0, "end": 13352.0, "probability": 0.0 }, { "start": 13352.0, "end": 13352.0, "probability": 0.0 }, { "start": 13352.0, "end": 13352.0, "probability": 0.0 }, { "start": 13352.0, "end": 13352.0, "probability": 0.0 }, { "start": 13352.0, "end": 13352.0, "probability": 0.0 }, { "start": 13352.0, "end": 13352.0, "probability": 0.0 }, { "start": 13352.0, "end": 13352.0, "probability": 0.0 }, { "start": 13352.0, "end": 13352.0, "probability": 0.0 }, { "start": 13352.0, "end": 13352.0, "probability": 0.0 }, { "start": 13352.0, "end": 13352.0, "probability": 0.0 }, { "start": 13352.0, "end": 13352.0, "probability": 0.0 }, { "start": 13352.0, "end": 13352.0, "probability": 0.0 }, { "start": 13352.0, "end": 13352.0, "probability": 0.0 }, { "start": 13352.0, "end": 13352.0, "probability": 0.0 }, { "start": 13352.0, "end": 13352.0, "probability": 0.0 }, { "start": 13352.46, "end": 13353.28, "probability": 0.8927 }, { "start": 13353.82, "end": 13357.76, "probability": 0.8499 }, { "start": 13357.76, "end": 13361.76, "probability": 0.9757 }, { "start": 13362.66, "end": 13365.18, "probability": 0.9907 }, { "start": 13365.18, "end": 13368.04, "probability": 0.9961 }, { "start": 13368.5, "end": 13370.12, "probability": 0.8445 }, { "start": 13370.58, "end": 13372.18, "probability": 0.9255 }, { "start": 13373.34, "end": 13375.94, "probability": 0.9848 }, { "start": 13376.06, "end": 13380.2, "probability": 0.9932 }, { "start": 13380.74, "end": 13385.18, "probability": 0.9891 }, { "start": 13386.04, "end": 13389.42, "probability": 0.8442 }, { "start": 13390.02, "end": 13396.94, "probability": 0.9774 }, { "start": 13398.26, "end": 13400.48, "probability": 0.9209 }, { "start": 13400.92, "end": 13404.36, "probability": 0.9886 }, { "start": 13405.02, "end": 13408.54, "probability": 0.8176 }, { "start": 13409.08, "end": 13410.86, "probability": 0.9941 }, { "start": 13411.64, "end": 13415.86, "probability": 0.9847 }, { "start": 13416.9, "end": 13422.3, "probability": 0.9504 }, { "start": 13423.66, "end": 13425.9, "probability": 0.7427 }, { "start": 13427.48, "end": 13429.84, "probability": 0.9959 }, { "start": 13430.44, "end": 13434.8, "probability": 0.986 }, { "start": 13437.26, "end": 13440.46, "probability": 0.7497 }, { "start": 13440.46, "end": 13443.3, "probability": 0.9967 }, { "start": 13443.8, "end": 13448.58, "probability": 0.9892 }, { "start": 13449.36, "end": 13452.46, "probability": 0.9554 }, { "start": 13453.18, "end": 13454.38, "probability": 0.8955 }, { "start": 13454.44, "end": 13455.04, "probability": 0.7398 }, { "start": 13455.38, "end": 13457.3, "probability": 0.6579 }, { "start": 13457.46, "end": 13463.32, "probability": 0.9904 }, { "start": 13464.72, "end": 13469.27, "probability": 0.8988 }, { "start": 13470.06, "end": 13470.13, "probability": 0.4996 }, { "start": 13470.66, "end": 13474.56, "probability": 0.9927 }, { "start": 13475.28, "end": 13476.18, "probability": 0.8989 }, { "start": 13476.68, "end": 13478.82, "probability": 0.9798 }, { "start": 13479.3, "end": 13483.78, "probability": 0.9775 }, { "start": 13484.26, "end": 13484.58, "probability": 0.7735 }, { "start": 13485.92, "end": 13491.42, "probability": 0.9886 }, { "start": 13492.0, "end": 13493.34, "probability": 0.7037 }, { "start": 13493.86, "end": 13495.24, "probability": 0.9411 }, { "start": 13495.98, "end": 13502.56, "probability": 0.9425 }, { "start": 13503.38, "end": 13506.56, "probability": 0.9951 }, { "start": 13507.2, "end": 13508.86, "probability": 0.9743 }, { "start": 13509.3, "end": 13513.36, "probability": 0.9281 }, { "start": 13513.8, "end": 13517.08, "probability": 0.9824 }, { "start": 13517.48, "end": 13521.44, "probability": 0.9762 }, { "start": 13522.76, "end": 13523.26, "probability": 0.376 }, { "start": 13523.7, "end": 13524.3, "probability": 0.8789 }, { "start": 13527.24, "end": 13528.4, "probability": 0.761 }, { "start": 13528.74, "end": 13532.6, "probability": 0.8936 }, { "start": 13532.94, "end": 13536.1, "probability": 0.9966 }, { "start": 13536.1, "end": 13539.3, "probability": 0.9241 }, { "start": 13539.44, "end": 13540.88, "probability": 0.9985 }, { "start": 13542.1, "end": 13543.84, "probability": 0.8789 }, { "start": 13544.76, "end": 13545.62, "probability": 0.2841 }, { "start": 13546.48, "end": 13549.62, "probability": 0.9924 }, { "start": 13550.52, "end": 13553.98, "probability": 0.9261 }, { "start": 13555.22, "end": 13558.76, "probability": 0.8233 }, { "start": 13558.92, "end": 13561.24, "probability": 0.9471 }, { "start": 13561.74, "end": 13565.78, "probability": 0.9812 }, { "start": 13565.78, "end": 13568.36, "probability": 0.9973 }, { "start": 13569.72, "end": 13574.98, "probability": 0.9844 }, { "start": 13575.46, "end": 13580.4, "probability": 0.9878 }, { "start": 13581.14, "end": 13586.08, "probability": 0.8307 }, { "start": 13586.44, "end": 13587.1, "probability": 0.5374 }, { "start": 13587.24, "end": 13588.53, "probability": 0.7074 }, { "start": 13589.16, "end": 13592.64, "probability": 0.9347 }, { "start": 13593.2, "end": 13595.88, "probability": 0.8278 }, { "start": 13596.42, "end": 13598.8, "probability": 0.9186 }, { "start": 13598.94, "end": 13599.2, "probability": 0.6277 }, { "start": 13599.82, "end": 13601.04, "probability": 0.626 }, { "start": 13601.78, "end": 13605.32, "probability": 0.9757 }, { "start": 13605.88, "end": 13606.54, "probability": 0.7347 }, { "start": 13607.4, "end": 13608.11, "probability": 0.9556 }, { "start": 13609.5, "end": 13610.62, "probability": 0.9209 }, { "start": 13611.34, "end": 13611.94, "probability": 0.9805 }, { "start": 13612.7, "end": 13619.46, "probability": 0.9687 }, { "start": 13620.82, "end": 13624.74, "probability": 0.9848 }, { "start": 13625.42, "end": 13626.64, "probability": 0.9956 }, { "start": 13627.6, "end": 13632.72, "probability": 0.9955 }, { "start": 13632.72, "end": 13639.0, "probability": 0.9937 }, { "start": 13639.68, "end": 13642.02, "probability": 0.9998 }, { "start": 13642.9, "end": 13643.54, "probability": 0.9639 }, { "start": 13643.58, "end": 13646.38, "probability": 0.957 }, { "start": 13646.92, "end": 13648.92, "probability": 0.9492 }, { "start": 13649.52, "end": 13655.12, "probability": 0.9814 }, { "start": 13656.08, "end": 13656.78, "probability": 0.8738 }, { "start": 13657.32, "end": 13659.28, "probability": 0.3603 }, { "start": 13659.4, "end": 13660.4, "probability": 0.4227 }, { "start": 13660.44, "end": 13661.8, "probability": 0.9165 }, { "start": 13662.16, "end": 13662.98, "probability": 0.9774 }, { "start": 13667.02, "end": 13668.58, "probability": 0.7702 }, { "start": 13668.66, "end": 13674.16, "probability": 0.9819 }, { "start": 13674.28, "end": 13676.68, "probability": 0.9841 }, { "start": 13676.74, "end": 13677.55, "probability": 0.8748 }, { "start": 13678.76, "end": 13681.22, "probability": 0.7498 }, { "start": 13682.5, "end": 13687.9, "probability": 0.8977 }, { "start": 13688.04, "end": 13689.5, "probability": 0.6737 }, { "start": 13690.52, "end": 13693.64, "probability": 0.9863 }, { "start": 13700.29, "end": 13704.86, "probability": 0.9131 }, { "start": 13705.48, "end": 13708.7, "probability": 0.9126 }, { "start": 13710.28, "end": 13713.42, "probability": 0.9751 }, { "start": 13714.32, "end": 13717.96, "probability": 0.9429 }, { "start": 13718.92, "end": 13720.09, "probability": 0.8408 }, { "start": 13720.78, "end": 13725.0, "probability": 0.9653 }, { "start": 13725.94, "end": 13728.02, "probability": 0.9623 }, { "start": 13728.26, "end": 13733.38, "probability": 0.9814 }, { "start": 13733.38, "end": 13737.44, "probability": 0.9986 }, { "start": 13738.18, "end": 13741.74, "probability": 0.9886 }, { "start": 13742.5, "end": 13746.46, "probability": 0.901 }, { "start": 13747.96, "end": 13751.4, "probability": 0.9444 }, { "start": 13752.72, "end": 13753.04, "probability": 0.626 }, { "start": 13753.18, "end": 13757.82, "probability": 0.7358 }, { "start": 13757.98, "end": 13758.64, "probability": 0.699 }, { "start": 13759.62, "end": 13763.38, "probability": 0.8934 }, { "start": 13763.38, "end": 13767.92, "probability": 0.9583 }, { "start": 13768.48, "end": 13770.42, "probability": 0.7255 }, { "start": 13771.22, "end": 13772.6, "probability": 0.8787 }, { "start": 13773.42, "end": 13776.78, "probability": 0.9962 }, { "start": 13776.78, "end": 13780.64, "probability": 0.9892 }, { "start": 13781.06, "end": 13783.28, "probability": 0.9601 }, { "start": 13783.42, "end": 13791.58, "probability": 0.8978 }, { "start": 13792.32, "end": 13793.3, "probability": 0.601 }, { "start": 13796.84, "end": 13798.56, "probability": 0.7966 }, { "start": 13799.72, "end": 13802.72, "probability": 0.9937 }, { "start": 13802.82, "end": 13805.24, "probability": 0.9888 }, { "start": 13806.24, "end": 13811.44, "probability": 0.8418 }, { "start": 13811.48, "end": 13813.32, "probability": 0.9634 }, { "start": 13814.26, "end": 13817.62, "probability": 0.79 }, { "start": 13818.16, "end": 13819.12, "probability": 0.7377 }, { "start": 13819.12, "end": 13822.66, "probability": 0.526 }, { "start": 13822.9, "end": 13825.38, "probability": 0.5205 }, { "start": 13825.96, "end": 13829.74, "probability": 0.9246 }, { "start": 13830.46, "end": 13835.44, "probability": 0.9793 }, { "start": 13835.44, "end": 13840.78, "probability": 0.9374 }, { "start": 13841.38, "end": 13844.6, "probability": 0.8452 }, { "start": 13844.74, "end": 13846.64, "probability": 0.8944 }, { "start": 13847.36, "end": 13848.62, "probability": 0.9671 }, { "start": 13848.78, "end": 13853.84, "probability": 0.796 }, { "start": 13854.5, "end": 13854.94, "probability": 0.716 }, { "start": 13855.98, "end": 13856.92, "probability": 0.8143 }, { "start": 13857.54, "end": 13859.52, "probability": 0.7593 }, { "start": 13859.9, "end": 13861.26, "probability": 0.9038 }, { "start": 13861.66, "end": 13863.04, "probability": 0.5919 }, { "start": 13863.1, "end": 13863.56, "probability": 0.446 }, { "start": 13864.24, "end": 13865.68, "probability": 0.8958 }, { "start": 13873.6, "end": 13874.84, "probability": 0.5978 }, { "start": 13875.54, "end": 13877.3, "probability": 0.8381 }, { "start": 13878.04, "end": 13882.88, "probability": 0.9288 }, { "start": 13883.4, "end": 13886.29, "probability": 0.9868 }, { "start": 13886.62, "end": 13887.54, "probability": 0.9304 }, { "start": 13888.52, "end": 13892.48, "probability": 0.9898 }, { "start": 13893.74, "end": 13897.7, "probability": 0.9561 }, { "start": 13898.32, "end": 13900.12, "probability": 0.9134 }, { "start": 13900.84, "end": 13903.4, "probability": 0.986 }, { "start": 13904.26, "end": 13907.8, "probability": 0.9938 }, { "start": 13908.76, "end": 13909.06, "probability": 0.7284 }, { "start": 13909.52, "end": 13910.54, "probability": 0.5375 }, { "start": 13910.54, "end": 13914.74, "probability": 0.9349 }, { "start": 13914.74, "end": 13916.82, "probability": 0.9712 }, { "start": 13917.32, "end": 13919.14, "probability": 0.9921 }, { "start": 13919.9, "end": 13924.48, "probability": 0.9825 }, { "start": 13925.94, "end": 13932.2, "probability": 0.946 }, { "start": 13932.6, "end": 13935.54, "probability": 0.9154 }, { "start": 13936.38, "end": 13937.06, "probability": 0.7351 }, { "start": 13937.12, "end": 13940.4, "probability": 0.9946 }, { "start": 13940.98, "end": 13941.68, "probability": 0.9846 }, { "start": 13942.22, "end": 13943.5, "probability": 0.8823 }, { "start": 13944.1, "end": 13948.2, "probability": 0.9741 }, { "start": 13949.0, "end": 13953.56, "probability": 0.771 }, { "start": 13954.56, "end": 13956.58, "probability": 0.9525 }, { "start": 13956.68, "end": 13958.04, "probability": 0.9718 }, { "start": 13958.84, "end": 13959.54, "probability": 0.9906 }, { "start": 13960.14, "end": 13962.12, "probability": 0.9546 }, { "start": 13962.66, "end": 13965.32, "probability": 0.9518 }, { "start": 13965.6, "end": 13966.86, "probability": 0.841 }, { "start": 13967.38, "end": 13969.5, "probability": 0.9668 }, { "start": 13972.16, "end": 13974.48, "probability": 0.5012 }, { "start": 13974.74, "end": 13976.82, "probability": 0.8032 }, { "start": 13976.84, "end": 13979.34, "probability": 0.8875 }, { "start": 13980.02, "end": 13982.08, "probability": 0.9944 }, { "start": 13982.78, "end": 13983.06, "probability": 0.7568 }, { "start": 13983.88, "end": 13985.02, "probability": 0.7879 }, { "start": 13985.68, "end": 13987.44, "probability": 0.9584 }, { "start": 13988.38, "end": 13991.06, "probability": 0.9907 }, { "start": 13991.24, "end": 13992.45, "probability": 0.8254 }, { "start": 13993.9, "end": 13997.26, "probability": 0.9616 }, { "start": 13999.48, "end": 14000.96, "probability": 0.6861 }, { "start": 14001.26, "end": 14003.28, "probability": 0.4158 }, { "start": 14003.54, "end": 14004.62, "probability": 0.7065 }, { "start": 14005.36, "end": 14007.74, "probability": 0.8555 }, { "start": 14008.6, "end": 14010.3, "probability": 0.6207 }, { "start": 14011.08, "end": 14014.38, "probability": 0.9496 }, { "start": 14014.38, "end": 14017.8, "probability": 0.9737 }, { "start": 14018.28, "end": 14019.8, "probability": 0.9929 }, { "start": 14019.94, "end": 14024.3, "probability": 0.9907 }, { "start": 14024.72, "end": 14028.12, "probability": 0.9939 }, { "start": 14028.54, "end": 14031.86, "probability": 0.9839 }, { "start": 14032.38, "end": 14032.62, "probability": 0.8777 }, { "start": 14033.76, "end": 14035.8, "probability": 0.6652 }, { "start": 14035.9, "end": 14041.72, "probability": 0.9854 }, { "start": 14042.2, "end": 14047.44, "probability": 0.989 }, { "start": 14048.42, "end": 14051.7, "probability": 0.827 }, { "start": 14052.76, "end": 14057.3, "probability": 0.9878 }, { "start": 14058.38, "end": 14061.98, "probability": 0.9863 }, { "start": 14061.98, "end": 14064.9, "probability": 0.9983 }, { "start": 14065.62, "end": 14067.54, "probability": 0.7363 }, { "start": 14068.22, "end": 14070.66, "probability": 0.8166 }, { "start": 14071.3, "end": 14072.84, "probability": 0.9942 }, { "start": 14073.52, "end": 14074.24, "probability": 0.9864 }, { "start": 14077.6, "end": 14078.16, "probability": 0.4922 }, { "start": 14078.22, "end": 14079.72, "probability": 0.9437 }, { "start": 14079.82, "end": 14085.18, "probability": 0.9934 }, { "start": 14085.74, "end": 14085.84, "probability": 0.3462 }, { "start": 14085.92, "end": 14088.28, "probability": 0.9717 }, { "start": 14089.4, "end": 14089.96, "probability": 0.8158 }, { "start": 14090.04, "end": 14090.62, "probability": 0.2542 }, { "start": 14090.94, "end": 14091.66, "probability": 0.6807 }, { "start": 14091.66, "end": 14095.1, "probability": 0.7417 }, { "start": 14095.98, "end": 14096.56, "probability": 0.8849 }, { "start": 14097.98, "end": 14100.88, "probability": 0.8703 }, { "start": 14107.8, "end": 14109.28, "probability": 0.6776 }, { "start": 14110.32, "end": 14111.96, "probability": 0.9027 }, { "start": 14112.04, "end": 14113.88, "probability": 0.7433 }, { "start": 14114.04, "end": 14114.66, "probability": 0.9982 }, { "start": 14114.8, "end": 14116.84, "probability": 0.6341 }, { "start": 14116.9, "end": 14117.52, "probability": 0.9107 }, { "start": 14117.58, "end": 14121.64, "probability": 0.8885 }, { "start": 14121.8, "end": 14122.76, "probability": 0.782 }, { "start": 14123.64, "end": 14126.92, "probability": 0.9842 }, { "start": 14127.08, "end": 14131.84, "probability": 0.9124 }, { "start": 14132.04, "end": 14132.94, "probability": 0.6969 }, { "start": 14133.1, "end": 14133.98, "probability": 0.9921 }, { "start": 14135.08, "end": 14138.8, "probability": 0.8293 }, { "start": 14138.82, "end": 14139.71, "probability": 0.5046 }, { "start": 14141.06, "end": 14142.48, "probability": 0.246 }, { "start": 14142.62, "end": 14143.5, "probability": 0.8296 }, { "start": 14143.98, "end": 14144.76, "probability": 0.7455 }, { "start": 14145.0, "end": 14145.36, "probability": 0.6178 }, { "start": 14145.46, "end": 14145.46, "probability": 0.6011 }, { "start": 14145.48, "end": 14145.58, "probability": 0.0792 }, { "start": 14145.58, "end": 14145.69, "probability": 0.4862 }, { "start": 14145.86, "end": 14146.7, "probability": 0.5877 }, { "start": 14146.86, "end": 14147.26, "probability": 0.5152 }, { "start": 14147.28, "end": 14147.82, "probability": 0.7544 }, { "start": 14149.92, "end": 14150.8, "probability": 0.2017 }, { "start": 14150.8, "end": 14150.94, "probability": 0.0983 }, { "start": 14151.46, "end": 14152.06, "probability": 0.1157 }, { "start": 14152.36, "end": 14152.52, "probability": 0.5828 }, { "start": 14152.62, "end": 14153.26, "probability": 0.3671 }, { "start": 14153.3, "end": 14154.21, "probability": 0.8939 }, { "start": 14154.26, "end": 14156.92, "probability": 0.7141 }, { "start": 14157.38, "end": 14158.9, "probability": 0.8892 }, { "start": 14159.6, "end": 14162.6, "probability": 0.6624 }, { "start": 14163.8, "end": 14168.7, "probability": 0.9722 }, { "start": 14169.52, "end": 14173.76, "probability": 0.9797 }, { "start": 14174.26, "end": 14177.72, "probability": 0.896 }, { "start": 14178.3, "end": 14179.9, "probability": 0.8683 }, { "start": 14180.52, "end": 14182.82, "probability": 0.9617 }, { "start": 14183.36, "end": 14186.46, "probability": 0.9523 }, { "start": 14187.1, "end": 14189.34, "probability": 0.9478 }, { "start": 14190.24, "end": 14193.98, "probability": 0.9181 }, { "start": 14195.32, "end": 14198.3, "probability": 0.5419 }, { "start": 14199.32, "end": 14199.32, "probability": 0.0252 }, { "start": 14199.32, "end": 14203.92, "probability": 0.938 }, { "start": 14204.84, "end": 14205.56, "probability": 0.854 }, { "start": 14206.3, "end": 14207.26, "probability": 0.7591 }, { "start": 14207.38, "end": 14209.68, "probability": 0.9944 }, { "start": 14211.46, "end": 14212.23, "probability": 0.798 }, { "start": 14214.02, "end": 14214.76, "probability": 0.7617 }, { "start": 14214.84, "end": 14216.84, "probability": 0.5102 }, { "start": 14217.08, "end": 14224.5, "probability": 0.9344 }, { "start": 14224.56, "end": 14225.56, "probability": 0.5889 }, { "start": 14225.62, "end": 14226.92, "probability": 0.6817 }, { "start": 14227.64, "end": 14231.14, "probability": 0.8062 }, { "start": 14231.72, "end": 14232.12, "probability": 0.9641 }, { "start": 14232.82, "end": 14233.84, "probability": 0.8863 }, { "start": 14234.38, "end": 14235.32, "probability": 0.3872 }, { "start": 14235.94, "end": 14238.48, "probability": 0.9742 }, { "start": 14239.0, "end": 14241.42, "probability": 0.7646 }, { "start": 14242.92, "end": 14247.12, "probability": 0.96 }, { "start": 14247.28, "end": 14247.6, "probability": 0.8762 }, { "start": 14247.66, "end": 14249.18, "probability": 0.9362 }, { "start": 14249.94, "end": 14251.32, "probability": 0.9221 }, { "start": 14251.94, "end": 14254.62, "probability": 0.9734 }, { "start": 14255.04, "end": 14256.5, "probability": 0.8923 }, { "start": 14256.74, "end": 14259.5, "probability": 0.9456 }, { "start": 14259.84, "end": 14260.82, "probability": 0.7163 }, { "start": 14261.54, "end": 14264.66, "probability": 0.7494 }, { "start": 14265.38, "end": 14267.02, "probability": 0.7715 }, { "start": 14267.34, "end": 14268.4, "probability": 0.9607 }, { "start": 14268.66, "end": 14270.66, "probability": 0.96 }, { "start": 14270.84, "end": 14277.24, "probability": 0.891 }, { "start": 14277.36, "end": 14278.18, "probability": 0.4763 }, { "start": 14278.32, "end": 14278.62, "probability": 0.48 }, { "start": 14278.98, "end": 14279.18, "probability": 0.7409 }, { "start": 14279.88, "end": 14281.38, "probability": 0.5247 }, { "start": 14281.52, "end": 14282.69, "probability": 0.6485 }, { "start": 14283.04, "end": 14283.98, "probability": 0.7494 }, { "start": 14285.08, "end": 14289.62, "probability": 0.845 }, { "start": 14289.66, "end": 14292.08, "probability": 0.9991 }, { "start": 14292.6, "end": 14295.26, "probability": 0.9445 }, { "start": 14295.96, "end": 14296.92, "probability": 0.7762 }, { "start": 14297.68, "end": 14299.12, "probability": 0.6901 }, { "start": 14299.14, "end": 14299.6, "probability": 0.5709 }, { "start": 14299.78, "end": 14300.18, "probability": 0.5926 }, { "start": 14300.18, "end": 14303.08, "probability": 0.9605 }, { "start": 14303.64, "end": 14306.98, "probability": 0.8242 }, { "start": 14308.26, "end": 14309.22, "probability": 0.9773 }, { "start": 14309.66, "end": 14310.3, "probability": 0.0698 }, { "start": 14310.72, "end": 14314.86, "probability": 0.5435 }, { "start": 14314.86, "end": 14319.04, "probability": 0.8661 }, { "start": 14319.74, "end": 14322.62, "probability": 0.9548 }, { "start": 14322.74, "end": 14322.94, "probability": 0.0087 }, { "start": 14323.02, "end": 14325.64, "probability": 0.4856 }, { "start": 14326.14, "end": 14330.86, "probability": 0.9279 }, { "start": 14331.38, "end": 14335.28, "probability": 0.7979 }, { "start": 14335.94, "end": 14337.22, "probability": 0.7344 }, { "start": 14337.34, "end": 14338.02, "probability": 0.6801 }, { "start": 14338.38, "end": 14339.89, "probability": 0.3116 }, { "start": 14340.58, "end": 14342.16, "probability": 0.6028 }, { "start": 14342.98, "end": 14348.54, "probability": 0.7774 }, { "start": 14348.98, "end": 14349.18, "probability": 0.9164 }, { "start": 14349.86, "end": 14349.96, "probability": 0.2083 } ], "segments_count": 4587, "words_count": 23452, "avg_words_per_segment": 5.1127, "avg_segment_duration": 2.1987, "avg_words_per_minute": 97.1543, "plenum_id": "101860", "duration": 14483.36, "title": null, "plenum_date": "2021-11-23" }