{ "source_type": "knesset", "source_id": "plenum", "source_entry_id": "100181", "quality_score": 0.8154, "per_segment_quality_scores": [ { "start": 78.18, "end": 79.64, "probability": 0.8466 }, { "start": 80.94, "end": 81.74, "probability": 0.7869 }, { "start": 82.28, "end": 83.38, "probability": 0.7756 }, { "start": 83.5, "end": 84.74, "probability": 0.5308 }, { "start": 84.9, "end": 86.36, "probability": 0.8582 }, { "start": 86.44, "end": 87.24, "probability": 0.7454 }, { "start": 87.26, "end": 88.16, "probability": 0.6242 }, { "start": 88.82, "end": 91.68, "probability": 0.9455 }, { "start": 92.2, "end": 93.52, "probability": 0.759 }, { "start": 93.92, "end": 101.98, "probability": 0.8797 }, { "start": 101.98, "end": 107.02, "probability": 0.9993 }, { "start": 107.3, "end": 107.5, "probability": 0.7961 }, { "start": 108.88, "end": 110.64, "probability": 0.8737 }, { "start": 111.34, "end": 116.06, "probability": 0.7407 }, { "start": 116.8, "end": 119.38, "probability": 0.7049 }, { "start": 123.24, "end": 123.36, "probability": 0.0221 }, { "start": 123.36, "end": 125.4, "probability": 0.9001 }, { "start": 125.96, "end": 130.6, "probability": 0.7793 }, { "start": 131.28, "end": 131.72, "probability": 0.8906 }, { "start": 140.9, "end": 140.94, "probability": 0.3341 }, { "start": 140.94, "end": 141.65, "probability": 0.1021 }, { "start": 142.06, "end": 142.28, "probability": 0.0644 }, { "start": 142.28, "end": 142.3, "probability": 0.2111 }, { "start": 142.3, "end": 142.48, "probability": 0.1282 }, { "start": 156.18, "end": 157.04, "probability": 0.1865 }, { "start": 157.9, "end": 158.08, "probability": 0.0001 }, { "start": 161.64, "end": 164.04, "probability": 0.3772 }, { "start": 164.16, "end": 165.14, "probability": 0.4981 }, { "start": 166.16, "end": 170.12, "probability": 0.9906 }, { "start": 170.12, "end": 174.08, "probability": 0.9826 }, { "start": 174.08, "end": 179.56, "probability": 0.9655 }, { "start": 180.24, "end": 184.06, "probability": 0.9974 }, { "start": 184.98, "end": 187.92, "probability": 0.9663 }, { "start": 188.88, "end": 190.18, "probability": 0.8479 }, { "start": 190.24, "end": 194.28, "probability": 0.9874 }, { "start": 194.76, "end": 196.74, "probability": 0.3957 }, { "start": 196.74, "end": 197.5, "probability": 0.709 }, { "start": 197.88, "end": 200.44, "probability": 0.8674 }, { "start": 200.94, "end": 201.8, "probability": 0.9254 }, { "start": 202.44, "end": 203.08, "probability": 0.7615 }, { "start": 203.16, "end": 207.4, "probability": 0.9457 }, { "start": 207.4, "end": 210.44, "probability": 0.9861 }, { "start": 220.22, "end": 223.22, "probability": 0.9399 }, { "start": 224.86, "end": 230.68, "probability": 0.9339 }, { "start": 230.9, "end": 235.18, "probability": 0.9361 }, { "start": 236.14, "end": 237.28, "probability": 0.788 }, { "start": 237.5, "end": 240.78, "probability": 0.9938 }, { "start": 240.96, "end": 242.68, "probability": 0.8014 }, { "start": 242.78, "end": 245.3, "probability": 0.9699 }, { "start": 245.34, "end": 248.74, "probability": 0.938 }, { "start": 249.16, "end": 252.34, "probability": 0.8253 }, { "start": 252.85, "end": 253.82, "probability": 0.9928 }, { "start": 255.2, "end": 257.82, "probability": 0.991 }, { "start": 258.26, "end": 262.66, "probability": 0.9591 }, { "start": 263.18, "end": 265.66, "probability": 0.9963 }, { "start": 266.84, "end": 270.78, "probability": 0.8525 }, { "start": 270.78, "end": 274.32, "probability": 0.9847 }, { "start": 274.72, "end": 277.58, "probability": 0.9963 }, { "start": 278.34, "end": 280.28, "probability": 0.8144 }, { "start": 280.48, "end": 282.02, "probability": 0.9958 }, { "start": 282.2, "end": 286.36, "probability": 0.9466 }, { "start": 286.8, "end": 287.94, "probability": 0.9368 }, { "start": 288.5, "end": 291.73, "probability": 0.9795 }, { "start": 292.46, "end": 296.04, "probability": 0.8979 }, { "start": 296.2, "end": 299.72, "probability": 0.9807 }, { "start": 300.56, "end": 302.87, "probability": 0.7901 }, { "start": 303.12, "end": 304.16, "probability": 0.8951 }, { "start": 304.26, "end": 308.18, "probability": 0.9743 }, { "start": 309.1, "end": 311.22, "probability": 0.9983 }, { "start": 311.34, "end": 316.22, "probability": 0.991 }, { "start": 316.4, "end": 318.56, "probability": 0.9912 }, { "start": 318.7, "end": 319.9, "probability": 0.9364 }, { "start": 320.4, "end": 322.3, "probability": 0.9956 }, { "start": 322.94, "end": 323.48, "probability": 0.6604 }, { "start": 323.98, "end": 327.34, "probability": 0.9943 }, { "start": 327.5, "end": 328.72, "probability": 0.9473 }, { "start": 329.4, "end": 332.2, "probability": 0.9693 }, { "start": 332.22, "end": 333.3, "probability": 0.9875 }, { "start": 333.76, "end": 336.82, "probability": 0.9465 }, { "start": 336.82, "end": 341.54, "probability": 0.9998 }, { "start": 342.14, "end": 346.06, "probability": 0.9783 }, { "start": 347.08, "end": 349.7, "probability": 0.9907 }, { "start": 350.41, "end": 354.82, "probability": 0.99 }, { "start": 355.0, "end": 358.72, "probability": 0.9938 }, { "start": 359.64, "end": 361.56, "probability": 0.9875 }, { "start": 361.56, "end": 365.32, "probability": 0.9984 }, { "start": 365.98, "end": 367.5, "probability": 0.7484 }, { "start": 367.76, "end": 372.3, "probability": 0.9847 }, { "start": 372.3, "end": 376.52, "probability": 0.9901 }, { "start": 377.77, "end": 380.9, "probability": 0.7449 }, { "start": 380.96, "end": 385.5, "probability": 0.9937 }, { "start": 386.24, "end": 389.96, "probability": 0.9846 }, { "start": 390.44, "end": 392.82, "probability": 0.9478 }, { "start": 393.76, "end": 396.76, "probability": 0.9883 }, { "start": 397.24, "end": 400.56, "probability": 0.9696 }, { "start": 400.88, "end": 401.6, "probability": 0.9141 }, { "start": 401.74, "end": 402.7, "probability": 0.6801 }, { "start": 403.34, "end": 408.98, "probability": 0.9943 }, { "start": 409.12, "end": 411.18, "probability": 0.9781 }, { "start": 411.76, "end": 414.7, "probability": 0.9966 }, { "start": 416.36, "end": 416.62, "probability": 0.7791 }, { "start": 418.54, "end": 420.96, "probability": 0.7852 }, { "start": 431.32, "end": 431.86, "probability": 0.4762 }, { "start": 431.94, "end": 432.54, "probability": 0.8595 }, { "start": 432.62, "end": 433.63, "probability": 0.9785 }, { "start": 434.56, "end": 439.36, "probability": 0.9858 }, { "start": 439.38, "end": 443.62, "probability": 0.991 }, { "start": 443.62, "end": 447.0, "probability": 0.9948 }, { "start": 447.98, "end": 448.4, "probability": 0.4451 }, { "start": 448.58, "end": 450.44, "probability": 0.9962 }, { "start": 450.44, "end": 453.0, "probability": 0.9852 }, { "start": 453.56, "end": 455.4, "probability": 0.9634 }, { "start": 455.56, "end": 456.16, "probability": 0.9682 }, { "start": 456.24, "end": 460.48, "probability": 0.9816 }, { "start": 460.92, "end": 462.46, "probability": 0.9884 }, { "start": 463.22, "end": 466.22, "probability": 0.9965 }, { "start": 466.22, "end": 470.6, "probability": 0.9964 }, { "start": 470.7, "end": 471.58, "probability": 0.8016 }, { "start": 472.18, "end": 473.84, "probability": 0.92 }, { "start": 474.9, "end": 475.48, "probability": 0.8314 }, { "start": 475.76, "end": 476.68, "probability": 0.8147 }, { "start": 476.7, "end": 478.66, "probability": 0.5783 }, { "start": 479.08, "end": 483.14, "probability": 0.989 }, { "start": 483.9, "end": 487.9, "probability": 0.9912 }, { "start": 488.04, "end": 491.08, "probability": 0.9865 }, { "start": 491.18, "end": 493.42, "probability": 0.9844 }, { "start": 494.24, "end": 494.86, "probability": 0.7434 }, { "start": 495.26, "end": 496.46, "probability": 0.9993 }, { "start": 496.96, "end": 499.06, "probability": 0.9989 }, { "start": 499.64, "end": 500.28, "probability": 0.8336 }, { "start": 500.42, "end": 501.18, "probability": 0.4634 }, { "start": 501.28, "end": 503.12, "probability": 0.9941 }, { "start": 503.66, "end": 506.4, "probability": 0.9966 }, { "start": 506.92, "end": 509.94, "probability": 0.8841 }, { "start": 510.24, "end": 514.36, "probability": 0.9934 }, { "start": 514.8, "end": 514.98, "probability": 0.3193 }, { "start": 515.08, "end": 516.02, "probability": 0.7677 }, { "start": 516.06, "end": 516.88, "probability": 0.9608 }, { "start": 517.3, "end": 522.88, "probability": 0.9901 }, { "start": 522.94, "end": 524.04, "probability": 0.9581 }, { "start": 524.5, "end": 525.62, "probability": 0.9891 }, { "start": 525.68, "end": 526.34, "probability": 0.7262 }, { "start": 526.58, "end": 528.44, "probability": 0.5526 }, { "start": 529.3, "end": 533.62, "probability": 0.9463 }, { "start": 533.72, "end": 534.69, "probability": 0.9883 }, { "start": 535.62, "end": 536.78, "probability": 0.9099 }, { "start": 536.9, "end": 537.7, "probability": 0.471 }, { "start": 538.06, "end": 539.62, "probability": 0.9785 }, { "start": 539.66, "end": 540.32, "probability": 0.9685 }, { "start": 540.9, "end": 544.7, "probability": 0.9377 }, { "start": 544.86, "end": 546.52, "probability": 0.9946 }, { "start": 546.52, "end": 549.74, "probability": 0.9974 }, { "start": 550.18, "end": 553.06, "probability": 0.983 }, { "start": 553.64, "end": 554.44, "probability": 0.9808 }, { "start": 556.1, "end": 557.18, "probability": 0.6284 }, { "start": 557.34, "end": 558.16, "probability": 0.5154 }, { "start": 558.2, "end": 562.16, "probability": 0.7485 }, { "start": 562.2, "end": 563.92, "probability": 0.9554 }, { "start": 564.6, "end": 568.69, "probability": 0.9883 }, { "start": 569.68, "end": 572.98, "probability": 0.9718 }, { "start": 573.86, "end": 578.2, "probability": 0.9944 }, { "start": 578.82, "end": 581.7, "probability": 0.9976 }, { "start": 581.7, "end": 585.52, "probability": 0.9987 }, { "start": 586.0, "end": 591.02, "probability": 0.997 }, { "start": 591.56, "end": 592.84, "probability": 0.9778 }, { "start": 592.84, "end": 594.74, "probability": 0.7865 }, { "start": 595.32, "end": 597.42, "probability": 0.9944 }, { "start": 598.26, "end": 600.7, "probability": 0.9739 }, { "start": 601.58, "end": 601.86, "probability": 0.6914 }, { "start": 612.64, "end": 615.38, "probability": 0.9968 }, { "start": 615.76, "end": 620.3, "probability": 0.9884 }, { "start": 620.42, "end": 621.3, "probability": 0.4471 }, { "start": 621.3, "end": 623.7, "probability": 0.979 }, { "start": 625.14, "end": 626.58, "probability": 0.9511 }, { "start": 626.76, "end": 628.0, "probability": 0.939 }, { "start": 628.18, "end": 629.38, "probability": 0.8581 }, { "start": 630.26, "end": 633.2, "probability": 0.9865 }, { "start": 634.96, "end": 637.29, "probability": 0.9648 }, { "start": 637.77, "end": 639.63, "probability": 0.4989 }, { "start": 639.96, "end": 642.14, "probability": 0.6748 }, { "start": 642.16, "end": 645.48, "probability": 0.98 }, { "start": 645.6, "end": 646.12, "probability": 0.4273 }, { "start": 647.12, "end": 647.95, "probability": 0.604 }, { "start": 649.08, "end": 653.1, "probability": 0.9096 }, { "start": 653.48, "end": 654.13, "probability": 0.95 }, { "start": 654.84, "end": 658.06, "probability": 0.9759 }, { "start": 658.96, "end": 659.4, "probability": 0.8774 }, { "start": 660.5, "end": 661.09, "probability": 0.9135 }, { "start": 662.12, "end": 664.8, "probability": 0.9973 }, { "start": 665.18, "end": 667.86, "probability": 0.9492 }, { "start": 668.3, "end": 670.54, "probability": 0.9958 }, { "start": 670.66, "end": 670.74, "probability": 0.8955 }, { "start": 670.74, "end": 671.48, "probability": 0.8605 }, { "start": 988.0, "end": 988.0, "probability": 0.0 }, { "start": 988.0, "end": 988.0, "probability": 0.0 }, { "start": 988.0, "end": 988.0, "probability": 0.0 }, { "start": 990.9, "end": 991.18, "probability": 0.0531 }, { "start": 998.92, "end": 999.4, "probability": 0.1688 }, { "start": 1006.56, "end": 1007.6, "probability": 0.3574 }, { "start": 1012.86, "end": 1013.64, "probability": 0.2019 }, { "start": 1014.0, "end": 1014.58, "probability": 0.3459 }, { "start": 1015.26, "end": 1016.12, "probability": 0.6528 }, { "start": 1017.16, "end": 1019.04, "probability": 0.3859 }, { "start": 1021.66, "end": 1024.98, "probability": 0.9379 }, { "start": 1025.86, "end": 1028.5, "probability": 0.9743 }, { "start": 1029.4, "end": 1030.9, "probability": 0.6618 }, { "start": 1032.2, "end": 1035.04, "probability": 0.835 }, { "start": 1035.04, "end": 1038.9, "probability": 0.9978 }, { "start": 1039.48, "end": 1040.58, "probability": 0.7623 }, { "start": 1041.3, "end": 1046.2, "probability": 0.9731 }, { "start": 1047.06, "end": 1051.34, "probability": 0.7859 }, { "start": 1053.04, "end": 1053.96, "probability": 0.5589 }, { "start": 1055.58, "end": 1058.06, "probability": 0.9933 }, { "start": 1058.24, "end": 1061.82, "probability": 0.9158 }, { "start": 1062.5, "end": 1065.82, "probability": 0.9393 }, { "start": 1066.28, "end": 1068.84, "probability": 0.9983 }, { "start": 1069.72, "end": 1071.68, "probability": 0.7754 }, { "start": 1073.76, "end": 1076.48, "probability": 0.955 }, { "start": 1077.84, "end": 1078.86, "probability": 0.8782 }, { "start": 1079.94, "end": 1080.9, "probability": 0.9992 }, { "start": 1082.9, "end": 1084.0, "probability": 0.3728 }, { "start": 1084.7, "end": 1086.38, "probability": 0.9509 }, { "start": 1088.32, "end": 1091.74, "probability": 0.9744 }, { "start": 1093.1, "end": 1094.47, "probability": 0.6425 }, { "start": 1095.78, "end": 1096.62, "probability": 0.9154 }, { "start": 1097.52, "end": 1101.62, "probability": 0.9731 }, { "start": 1102.74, "end": 1103.79, "probability": 0.9438 }, { "start": 1105.28, "end": 1105.9, "probability": 0.7367 }, { "start": 1106.8, "end": 1107.46, "probability": 0.8958 }, { "start": 1108.08, "end": 1112.94, "probability": 0.7751 }, { "start": 1113.08, "end": 1113.52, "probability": 0.7401 }, { "start": 1113.6, "end": 1114.8, "probability": 0.9802 }, { "start": 1116.44, "end": 1116.76, "probability": 0.2554 }, { "start": 1118.72, "end": 1122.12, "probability": 0.9438 }, { "start": 1123.14, "end": 1125.07, "probability": 0.5349 }, { "start": 1126.2, "end": 1126.93, "probability": 0.9609 }, { "start": 1128.22, "end": 1131.1, "probability": 0.9517 }, { "start": 1132.72, "end": 1133.3, "probability": 0.5719 }, { "start": 1134.16, "end": 1134.98, "probability": 0.9778 }, { "start": 1135.66, "end": 1136.24, "probability": 0.9601 }, { "start": 1137.34, "end": 1138.76, "probability": 0.7694 }, { "start": 1139.78, "end": 1140.2, "probability": 0.972 }, { "start": 1140.34, "end": 1141.32, "probability": 0.7444 }, { "start": 1141.36, "end": 1149.44, "probability": 0.9662 }, { "start": 1149.82, "end": 1150.36, "probability": 0.7369 }, { "start": 1151.76, "end": 1152.82, "probability": 0.9931 }, { "start": 1154.56, "end": 1156.26, "probability": 0.8798 }, { "start": 1156.82, "end": 1161.52, "probability": 0.7482 }, { "start": 1162.98, "end": 1166.42, "probability": 0.995 }, { "start": 1167.84, "end": 1177.06, "probability": 0.9966 }, { "start": 1177.16, "end": 1178.26, "probability": 0.8032 }, { "start": 1178.4, "end": 1182.86, "probability": 0.9047 }, { "start": 1185.9, "end": 1186.44, "probability": 0.7465 }, { "start": 1187.52, "end": 1190.16, "probability": 0.7191 }, { "start": 1192.26, "end": 1192.88, "probability": 0.1007 }, { "start": 1193.06, "end": 1194.36, "probability": 0.9819 }, { "start": 1195.04, "end": 1195.66, "probability": 0.9266 }, { "start": 1195.74, "end": 1197.14, "probability": 0.9958 }, { "start": 1199.32, "end": 1201.54, "probability": 0.8243 }, { "start": 1202.12, "end": 1207.8, "probability": 0.9927 }, { "start": 1208.78, "end": 1212.56, "probability": 0.9884 }, { "start": 1212.56, "end": 1217.68, "probability": 0.9873 }, { "start": 1219.4, "end": 1222.98, "probability": 0.994 }, { "start": 1225.12, "end": 1228.24, "probability": 0.9535 }, { "start": 1229.18, "end": 1231.18, "probability": 0.9993 }, { "start": 1232.02, "end": 1236.54, "probability": 0.9993 }, { "start": 1237.06, "end": 1239.04, "probability": 0.9744 }, { "start": 1239.28, "end": 1241.66, "probability": 0.9893 }, { "start": 1241.74, "end": 1242.5, "probability": 0.9017 }, { "start": 1243.06, "end": 1243.88, "probability": 0.6346 }, { "start": 1245.1, "end": 1247.48, "probability": 0.8126 }, { "start": 1248.48, "end": 1249.7, "probability": 0.8557 }, { "start": 1252.26, "end": 1253.02, "probability": 0.844 }, { "start": 1254.84, "end": 1258.0, "probability": 0.8057 }, { "start": 1258.24, "end": 1262.94, "probability": 0.9866 }, { "start": 1263.68, "end": 1264.98, "probability": 0.9561 }, { "start": 1265.98, "end": 1267.02, "probability": 0.7572 }, { "start": 1267.74, "end": 1268.5, "probability": 0.7019 }, { "start": 1268.5, "end": 1274.52, "probability": 0.8805 }, { "start": 1274.66, "end": 1275.38, "probability": 0.9685 }, { "start": 1276.24, "end": 1277.62, "probability": 0.981 }, { "start": 1278.32, "end": 1280.18, "probability": 0.8508 }, { "start": 1280.74, "end": 1281.4, "probability": 0.4277 }, { "start": 1281.5, "end": 1283.9, "probability": 0.9886 }, { "start": 1284.36, "end": 1286.5, "probability": 0.9821 }, { "start": 1286.76, "end": 1290.08, "probability": 0.9946 }, { "start": 1290.38, "end": 1295.0, "probability": 0.5261 }, { "start": 1295.08, "end": 1298.26, "probability": 0.9485 }, { "start": 1300.56, "end": 1300.56, "probability": 0.0846 }, { "start": 1300.56, "end": 1301.86, "probability": 0.4574 }, { "start": 1302.32, "end": 1303.18, "probability": 0.539 }, { "start": 1303.18, "end": 1304.5, "probability": 0.2103 }, { "start": 1304.62, "end": 1308.12, "probability": 0.3941 }, { "start": 1308.28, "end": 1310.38, "probability": 0.95 }, { "start": 1312.9, "end": 1314.5, "probability": 0.66 }, { "start": 1315.56, "end": 1319.08, "probability": 0.9037 }, { "start": 1320.32, "end": 1321.9, "probability": 0.973 }, { "start": 1323.17, "end": 1325.36, "probability": 0.5065 }, { "start": 1325.7, "end": 1327.22, "probability": 0.9956 }, { "start": 1327.64, "end": 1328.9, "probability": 0.9771 }, { "start": 1329.88, "end": 1333.24, "probability": 0.9951 }, { "start": 1334.2, "end": 1335.68, "probability": 0.9989 }, { "start": 1336.96, "end": 1338.8, "probability": 0.6525 }, { "start": 1339.84, "end": 1341.84, "probability": 0.9954 }, { "start": 1343.4, "end": 1347.74, "probability": 0.9887 }, { "start": 1348.8, "end": 1349.7, "probability": 0.8701 }, { "start": 1350.5, "end": 1352.09, "probability": 0.7405 }, { "start": 1352.42, "end": 1356.04, "probability": 0.9963 }, { "start": 1356.98, "end": 1359.92, "probability": 0.9875 }, { "start": 1360.62, "end": 1363.42, "probability": 0.8406 }, { "start": 1363.56, "end": 1368.52, "probability": 0.964 }, { "start": 1370.46, "end": 1373.58, "probability": 0.9977 }, { "start": 1374.04, "end": 1377.24, "probability": 0.9938 }, { "start": 1377.3, "end": 1381.76, "probability": 0.9924 }, { "start": 1383.16, "end": 1383.6, "probability": 0.7913 }, { "start": 1384.18, "end": 1384.86, "probability": 0.7665 }, { "start": 1385.24, "end": 1387.6, "probability": 0.7475 }, { "start": 1388.98, "end": 1390.9, "probability": 0.1463 }, { "start": 1390.9, "end": 1390.9, "probability": 0.2719 }, { "start": 1390.9, "end": 1390.9, "probability": 0.1578 }, { "start": 1390.9, "end": 1393.64, "probability": 0.9158 }, { "start": 1394.08, "end": 1396.12, "probability": 0.9693 }, { "start": 1397.2, "end": 1398.54, "probability": 0.9891 }, { "start": 1401.72, "end": 1405.0, "probability": 0.6439 }, { "start": 1405.0, "end": 1409.18, "probability": 0.9016 }, { "start": 1409.18, "end": 1411.88, "probability": 0.9673 }, { "start": 1413.2, "end": 1418.14, "probability": 0.9708 }, { "start": 1418.42, "end": 1421.4, "probability": 0.9296 }, { "start": 1421.58, "end": 1423.08, "probability": 0.6684 }, { "start": 1423.84, "end": 1429.04, "probability": 0.978 }, { "start": 1429.88, "end": 1432.1, "probability": 0.9716 }, { "start": 1432.64, "end": 1436.0, "probability": 0.993 }, { "start": 1436.72, "end": 1437.92, "probability": 0.9985 }, { "start": 1438.42, "end": 1441.4, "probability": 0.901 }, { "start": 1441.92, "end": 1444.2, "probability": 0.9824 }, { "start": 1444.32, "end": 1446.64, "probability": 0.9497 }, { "start": 1448.02, "end": 1450.7, "probability": 0.7849 }, { "start": 1451.84, "end": 1452.54, "probability": 0.5631 }, { "start": 1452.8, "end": 1457.46, "probability": 0.9524 }, { "start": 1457.54, "end": 1460.24, "probability": 0.959 }, { "start": 1460.28, "end": 1461.74, "probability": 0.9208 }, { "start": 1462.38, "end": 1463.24, "probability": 0.9099 }, { "start": 1463.38, "end": 1466.52, "probability": 0.9819 }, { "start": 1466.72, "end": 1468.5, "probability": 0.9971 }, { "start": 1469.14, "end": 1470.62, "probability": 0.8483 }, { "start": 1471.86, "end": 1472.64, "probability": 0.7211 }, { "start": 1473.14, "end": 1475.3, "probability": 0.7858 }, { "start": 1476.98, "end": 1477.28, "probability": 0.9949 }, { "start": 1478.1, "end": 1479.4, "probability": 0.9686 }, { "start": 1481.3, "end": 1484.62, "probability": 0.9977 }, { "start": 1485.82, "end": 1487.58, "probability": 0.9133 }, { "start": 1488.82, "end": 1493.26, "probability": 0.7651 }, { "start": 1493.8, "end": 1497.38, "probability": 0.7718 }, { "start": 1498.06, "end": 1499.26, "probability": 0.3193 }, { "start": 1499.66, "end": 1501.24, "probability": 0.7719 }, { "start": 1502.2, "end": 1505.86, "probability": 0.9744 }, { "start": 1505.92, "end": 1512.6, "probability": 0.9826 }, { "start": 1513.14, "end": 1514.52, "probability": 0.8757 }, { "start": 1514.52, "end": 1519.74, "probability": 0.9144 }, { "start": 1520.12, "end": 1520.64, "probability": 0.6018 }, { "start": 1521.64, "end": 1527.48, "probability": 0.9822 }, { "start": 1528.26, "end": 1530.74, "probability": 0.9746 }, { "start": 1531.48, "end": 1534.0, "probability": 0.996 }, { "start": 1534.0, "end": 1537.08, "probability": 0.9954 }, { "start": 1537.34, "end": 1540.52, "probability": 0.9695 }, { "start": 1541.8, "end": 1544.86, "probability": 0.9834 }, { "start": 1544.98, "end": 1548.68, "probability": 0.0525 }, { "start": 1548.68, "end": 1550.2, "probability": 0.949 }, { "start": 1551.4, "end": 1551.84, "probability": 0.5362 }, { "start": 1551.9, "end": 1552.42, "probability": 0.6613 }, { "start": 1552.46, "end": 1554.31, "probability": 0.9435 }, { "start": 1555.32, "end": 1556.48, "probability": 0.892 }, { "start": 1556.54, "end": 1557.86, "probability": 0.7156 }, { "start": 1558.58, "end": 1559.12, "probability": 0.5281 }, { "start": 1559.14, "end": 1562.3, "probability": 0.5506 }, { "start": 1562.36, "end": 1564.32, "probability": 0.9512 }, { "start": 1567.44, "end": 1568.08, "probability": 0.6763 }, { "start": 1568.2, "end": 1569.38, "probability": 0.7531 }, { "start": 1570.39, "end": 1576.8, "probability": 0.9629 }, { "start": 1577.44, "end": 1579.9, "probability": 0.7663 }, { "start": 1580.56, "end": 1582.44, "probability": 0.9963 }, { "start": 1583.44, "end": 1587.3, "probability": 0.9819 }, { "start": 1588.76, "end": 1591.82, "probability": 0.9666 }, { "start": 1592.38, "end": 1595.12, "probability": 0.9956 }, { "start": 1595.82, "end": 1599.7, "probability": 0.9846 }, { "start": 1600.26, "end": 1600.82, "probability": 0.7653 }, { "start": 1600.94, "end": 1601.48, "probability": 0.92 }, { "start": 1601.64, "end": 1606.28, "probability": 0.9937 }, { "start": 1606.7, "end": 1607.62, "probability": 0.7346 }, { "start": 1608.62, "end": 1609.36, "probability": 0.7849 }, { "start": 1610.46, "end": 1611.96, "probability": 0.7876 }, { "start": 1613.16, "end": 1615.02, "probability": 0.9346 }, { "start": 1615.34, "end": 1619.38, "probability": 0.9762 }, { "start": 1619.82, "end": 1620.66, "probability": 0.9565 }, { "start": 1620.74, "end": 1622.96, "probability": 0.9839 }, { "start": 1623.04, "end": 1623.72, "probability": 0.8583 }, { "start": 1625.58, "end": 1628.37, "probability": 0.9798 }, { "start": 1629.14, "end": 1632.14, "probability": 0.9979 }, { "start": 1633.04, "end": 1633.62, "probability": 0.4998 }, { "start": 1635.08, "end": 1635.84, "probability": 0.998 }, { "start": 1636.82, "end": 1637.88, "probability": 0.9837 }, { "start": 1638.7, "end": 1640.88, "probability": 0.9089 }, { "start": 1641.82, "end": 1642.6, "probability": 0.9985 }, { "start": 1643.98, "end": 1647.96, "probability": 0.9989 }, { "start": 1648.06, "end": 1649.46, "probability": 0.6226 }, { "start": 1650.13, "end": 1652.44, "probability": 0.5416 }, { "start": 1652.44, "end": 1653.58, "probability": 0.2294 }, { "start": 1654.8, "end": 1657.68, "probability": 0.8693 }, { "start": 1658.72, "end": 1659.42, "probability": 0.9784 }, { "start": 1660.28, "end": 1662.36, "probability": 0.9956 }, { "start": 1663.24, "end": 1665.5, "probability": 0.9771 }, { "start": 1666.66, "end": 1669.84, "probability": 0.9066 }, { "start": 1669.9, "end": 1671.58, "probability": 0.7002 }, { "start": 1671.88, "end": 1672.6, "probability": 0.1513 }, { "start": 1672.7, "end": 1673.4, "probability": 0.8772 }, { "start": 1673.74, "end": 1678.32, "probability": 0.9717 }, { "start": 1678.32, "end": 1683.2, "probability": 0.9803 }, { "start": 1683.68, "end": 1686.52, "probability": 0.998 }, { "start": 1686.74, "end": 1689.14, "probability": 0.8214 }, { "start": 1689.58, "end": 1693.32, "probability": 0.9075 }, { "start": 1695.08, "end": 1697.52, "probability": 0.5083 }, { "start": 1697.82, "end": 1698.72, "probability": 0.8374 }, { "start": 1698.76, "end": 1699.2, "probability": 0.8604 }, { "start": 1699.68, "end": 1706.3, "probability": 0.9985 }, { "start": 1707.06, "end": 1709.38, "probability": 0.9767 }, { "start": 1710.46, "end": 1711.54, "probability": 0.5614 }, { "start": 1712.44, "end": 1713.68, "probability": 0.9311 }, { "start": 1714.28, "end": 1715.98, "probability": 0.97 }, { "start": 1716.96, "end": 1717.54, "probability": 0.824 }, { "start": 1718.52, "end": 1723.3, "probability": 0.8845 }, { "start": 1723.96, "end": 1724.92, "probability": 0.9112 }, { "start": 1725.04, "end": 1728.1, "probability": 0.9958 }, { "start": 1728.62, "end": 1729.84, "probability": 0.7323 }, { "start": 1729.92, "end": 1730.64, "probability": 0.8979 }, { "start": 1730.74, "end": 1730.96, "probability": 0.9545 }, { "start": 1731.02, "end": 1731.62, "probability": 0.9381 }, { "start": 1731.68, "end": 1733.28, "probability": 0.8421 }, { "start": 1733.36, "end": 1733.82, "probability": 0.9915 }, { "start": 1734.9, "end": 1735.32, "probability": 0.9034 }, { "start": 1736.16, "end": 1738.22, "probability": 0.7222 }, { "start": 1738.74, "end": 1739.6, "probability": 0.8224 }, { "start": 1739.66, "end": 1742.26, "probability": 0.9921 }, { "start": 1742.28, "end": 1743.34, "probability": 0.7871 }, { "start": 1743.88, "end": 1744.7, "probability": 0.7945 }, { "start": 1744.84, "end": 1745.72, "probability": 0.8403 }, { "start": 1747.8, "end": 1748.2, "probability": 0.8735 }, { "start": 1749.84, "end": 1750.28, "probability": 0.5063 }, { "start": 1750.46, "end": 1750.88, "probability": 0.6461 }, { "start": 1751.52, "end": 1754.4, "probability": 0.8495 }, { "start": 1755.32, "end": 1756.62, "probability": 0.3114 }, { "start": 1757.22, "end": 1757.46, "probability": 0.4419 }, { "start": 1757.8, "end": 1758.2, "probability": 0.9581 }, { "start": 1759.56, "end": 1760.18, "probability": 0.9822 }, { "start": 1761.88, "end": 1766.12, "probability": 0.8757 }, { "start": 1766.9, "end": 1767.26, "probability": 0.329 }, { "start": 1767.4, "end": 1771.4, "probability": 0.9382 }, { "start": 1772.48, "end": 1775.32, "probability": 0.8943 }, { "start": 1775.98, "end": 1776.66, "probability": 0.9543 }, { "start": 1777.38, "end": 1779.12, "probability": 0.8867 }, { "start": 1779.98, "end": 1782.2, "probability": 0.9874 }, { "start": 1783.04, "end": 1787.34, "probability": 0.9731 }, { "start": 1787.98, "end": 1790.4, "probability": 0.7874 }, { "start": 1792.16, "end": 1793.14, "probability": 0.7488 }, { "start": 1794.08, "end": 1796.74, "probability": 0.9808 }, { "start": 1797.54, "end": 1797.76, "probability": 0.7484 }, { "start": 1797.96, "end": 1801.66, "probability": 0.9534 }, { "start": 1802.24, "end": 1802.92, "probability": 0.9611 }, { "start": 1803.06, "end": 1805.54, "probability": 0.9639 }, { "start": 1806.04, "end": 1810.14, "probability": 0.963 }, { "start": 1810.62, "end": 1812.26, "probability": 0.9721 }, { "start": 1812.9, "end": 1813.94, "probability": 0.826 }, { "start": 1814.0, "end": 1815.12, "probability": 0.9757 }, { "start": 1815.46, "end": 1817.64, "probability": 0.962 }, { "start": 1818.14, "end": 1819.38, "probability": 0.9722 }, { "start": 1819.54, "end": 1820.92, "probability": 0.9753 }, { "start": 1821.38, "end": 1824.6, "probability": 0.9754 }, { "start": 1825.18, "end": 1826.8, "probability": 0.9971 }, { "start": 1827.6, "end": 1828.6, "probability": 0.8005 }, { "start": 1828.78, "end": 1831.26, "probability": 0.766 }, { "start": 1831.52, "end": 1832.86, "probability": 0.9142 }, { "start": 1834.24, "end": 1837.22, "probability": 0.9651 }, { "start": 1837.76, "end": 1840.68, "probability": 0.8888 }, { "start": 1841.58, "end": 1843.74, "probability": 0.8732 }, { "start": 1843.88, "end": 1845.42, "probability": 0.7852 }, { "start": 1846.22, "end": 1849.64, "probability": 0.9952 }, { "start": 1850.34, "end": 1854.62, "probability": 0.9883 }, { "start": 1854.62, "end": 1856.88, "probability": 0.9985 }, { "start": 1857.62, "end": 1858.58, "probability": 0.769 }, { "start": 1860.11, "end": 1863.36, "probability": 0.9697 }, { "start": 1863.44, "end": 1864.0, "probability": 0.7964 }, { "start": 1865.44, "end": 1868.42, "probability": 0.9346 }, { "start": 1869.9, "end": 1870.2, "probability": 0.858 }, { "start": 1871.4, "end": 1872.4, "probability": 0.7501 }, { "start": 1873.1, "end": 1873.92, "probability": 0.9603 }, { "start": 1875.12, "end": 1877.44, "probability": 0.9912 }, { "start": 1877.44, "end": 1878.02, "probability": 0.628 }, { "start": 1878.24, "end": 1880.16, "probability": 0.9755 }, { "start": 1881.34, "end": 1883.14, "probability": 0.9777 }, { "start": 1883.34, "end": 1884.16, "probability": 0.9515 }, { "start": 1884.38, "end": 1886.56, "probability": 0.9863 }, { "start": 1887.28, "end": 1888.24, "probability": 0.6436 }, { "start": 1888.94, "end": 1891.72, "probability": 0.8652 }, { "start": 1893.0, "end": 1895.8, "probability": 0.9868 }, { "start": 1896.98, "end": 1899.4, "probability": 0.9795 }, { "start": 1899.56, "end": 1900.62, "probability": 0.8944 }, { "start": 1901.12, "end": 1901.44, "probability": 0.6752 }, { "start": 1901.64, "end": 1902.34, "probability": 0.9422 }, { "start": 1902.44, "end": 1903.02, "probability": 0.9316 }, { "start": 1903.6, "end": 1906.3, "probability": 0.9751 }, { "start": 1907.24, "end": 1909.34, "probability": 0.9438 }, { "start": 1910.32, "end": 1912.09, "probability": 0.9716 }, { "start": 1913.54, "end": 1914.28, "probability": 0.9726 }, { "start": 1915.56, "end": 1919.38, "probability": 0.7291 }, { "start": 1920.92, "end": 1923.94, "probability": 0.9832 }, { "start": 1925.62, "end": 1928.8, "probability": 0.9858 }, { "start": 1928.86, "end": 1929.84, "probability": 0.9897 }, { "start": 1930.24, "end": 1931.32, "probability": 0.9561 }, { "start": 1931.98, "end": 1933.52, "probability": 0.6721 }, { "start": 1935.46, "end": 1936.48, "probability": 0.9641 }, { "start": 1936.62, "end": 1937.68, "probability": 0.9344 }, { "start": 1938.1, "end": 1939.24, "probability": 0.9764 }, { "start": 1939.78, "end": 1941.7, "probability": 0.9712 }, { "start": 1942.3, "end": 1943.84, "probability": 0.9866 }, { "start": 1945.58, "end": 1951.53, "probability": 0.987 }, { "start": 1953.48, "end": 1954.42, "probability": 0.7357 }, { "start": 1955.46, "end": 1956.32, "probability": 0.8843 }, { "start": 1956.68, "end": 1960.36, "probability": 0.9797 }, { "start": 1961.28, "end": 1963.68, "probability": 0.994 }, { "start": 1964.86, "end": 1969.22, "probability": 0.9937 }, { "start": 1969.92, "end": 1969.92, "probability": 0.0102 }, { "start": 1970.92, "end": 1973.52, "probability": 0.9905 }, { "start": 1975.52, "end": 1976.54, "probability": 0.9739 }, { "start": 1976.7, "end": 1978.28, "probability": 0.5332 }, { "start": 1978.42, "end": 1980.04, "probability": 0.9827 }, { "start": 1980.06, "end": 1981.82, "probability": 0.9567 }, { "start": 1982.48, "end": 1987.6, "probability": 0.9688 }, { "start": 1988.1, "end": 1988.98, "probability": 0.8587 }, { "start": 1990.2, "end": 1990.56, "probability": 0.9883 }, { "start": 1991.92, "end": 1996.16, "probability": 0.9785 }, { "start": 1996.16, "end": 1996.44, "probability": 0.9454 }, { "start": 1997.32, "end": 1997.52, "probability": 0.6608 }, { "start": 1998.02, "end": 1998.34, "probability": 0.9398 }, { "start": 1998.7, "end": 1999.52, "probability": 0.9796 }, { "start": 1999.52, "end": 1999.82, "probability": 0.7863 }, { "start": 2000.62, "end": 2001.7, "probability": 0.8459 }, { "start": 2002.28, "end": 2002.86, "probability": 0.6567 }, { "start": 2003.1, "end": 2003.4, "probability": 0.9103 }, { "start": 2004.48, "end": 2005.5, "probability": 0.9949 }, { "start": 2009.48, "end": 2011.76, "probability": 0.9032 }, { "start": 2012.82, "end": 2014.68, "probability": 0.9417 }, { "start": 2015.32, "end": 2015.78, "probability": 0.2948 }, { "start": 2015.78, "end": 2015.82, "probability": 0.3255 }, { "start": 2015.82, "end": 2017.64, "probability": 0.8661 }, { "start": 2018.64, "end": 2019.34, "probability": 0.5008 }, { "start": 2020.32, "end": 2024.74, "probability": 0.973 }, { "start": 2025.12, "end": 2028.08, "probability": 0.6333 }, { "start": 2028.26, "end": 2028.68, "probability": 0.8942 }, { "start": 2029.74, "end": 2032.43, "probability": 0.9034 }, { "start": 2033.34, "end": 2034.22, "probability": 0.0434 }, { "start": 2035.08, "end": 2035.8, "probability": 0.4774 }, { "start": 2036.06, "end": 2037.56, "probability": 0.8935 }, { "start": 2039.5, "end": 2040.62, "probability": 0.7324 }, { "start": 2045.1, "end": 2049.5, "probability": 0.8758 }, { "start": 2050.02, "end": 2051.94, "probability": 0.7752 }, { "start": 2052.5, "end": 2055.7, "probability": 0.996 }, { "start": 2056.72, "end": 2059.32, "probability": 0.8743 }, { "start": 2059.92, "end": 2062.02, "probability": 0.9281 }, { "start": 2069.82, "end": 2075.36, "probability": 0.9456 }, { "start": 2075.6, "end": 2078.16, "probability": 0.4838 }, { "start": 2078.52, "end": 2078.92, "probability": 0.4947 }, { "start": 2081.02, "end": 2082.86, "probability": 0.948 }, { "start": 2083.68, "end": 2084.82, "probability": 0.9163 }, { "start": 2084.9, "end": 2087.74, "probability": 0.8822 }, { "start": 2087.98, "end": 2090.94, "probability": 0.9734 }, { "start": 2091.26, "end": 2093.08, "probability": 0.9983 }, { "start": 2094.34, "end": 2096.32, "probability": 0.7965 }, { "start": 2097.6, "end": 2101.84, "probability": 0.9374 }, { "start": 2101.84, "end": 2105.0, "probability": 0.9992 }, { "start": 2105.6, "end": 2106.88, "probability": 0.8557 }, { "start": 2107.92, "end": 2109.24, "probability": 0.9935 }, { "start": 2109.8, "end": 2112.36, "probability": 0.9991 }, { "start": 2112.9, "end": 2115.24, "probability": 0.8846 }, { "start": 2116.04, "end": 2116.78, "probability": 0.6344 }, { "start": 2117.36, "end": 2119.66, "probability": 0.9926 }, { "start": 2120.46, "end": 2121.4, "probability": 0.426 }, { "start": 2122.26, "end": 2123.36, "probability": 0.6881 }, { "start": 2123.94, "end": 2126.34, "probability": 0.9241 }, { "start": 2126.56, "end": 2128.52, "probability": 0.8995 }, { "start": 2128.62, "end": 2129.24, "probability": 0.9716 }, { "start": 2129.38, "end": 2130.0, "probability": 0.7294 }, { "start": 2131.0, "end": 2131.32, "probability": 0.9249 }, { "start": 2131.76, "end": 2132.46, "probability": 0.0098 }, { "start": 2134.76, "end": 2135.24, "probability": 0.1872 }, { "start": 2135.24, "end": 2135.24, "probability": 0.2743 }, { "start": 2135.24, "end": 2135.8, "probability": 0.14 }, { "start": 2136.14, "end": 2139.22, "probability": 0.7924 }, { "start": 2139.24, "end": 2139.56, "probability": 0.3676 }, { "start": 2140.36, "end": 2141.34, "probability": 0.7759 }, { "start": 2141.86, "end": 2143.42, "probability": 0.732 }, { "start": 2143.97, "end": 2145.6, "probability": 0.769 }, { "start": 2145.88, "end": 2146.6, "probability": 0.8354 }, { "start": 2146.72, "end": 2148.65, "probability": 0.9531 }, { "start": 2148.84, "end": 2152.14, "probability": 0.9978 }, { "start": 2152.86, "end": 2154.56, "probability": 0.9985 }, { "start": 2155.18, "end": 2158.46, "probability": 0.9918 }, { "start": 2158.46, "end": 2162.0, "probability": 0.9968 }, { "start": 2162.02, "end": 2162.56, "probability": 0.4813 }, { "start": 2163.24, "end": 2169.62, "probability": 0.9923 }, { "start": 2170.02, "end": 2171.86, "probability": 0.7742 }, { "start": 2172.04, "end": 2174.66, "probability": 0.9707 }, { "start": 2176.48, "end": 2177.14, "probability": 0.8426 }, { "start": 2177.78, "end": 2182.4, "probability": 0.9023 }, { "start": 2183.26, "end": 2186.9, "probability": 0.8964 }, { "start": 2189.52, "end": 2191.92, "probability": 0.899 }, { "start": 2192.28, "end": 2198.02, "probability": 0.9979 }, { "start": 2198.64, "end": 2201.66, "probability": 0.841 }, { "start": 2201.82, "end": 2203.74, "probability": 0.9725 }, { "start": 2203.86, "end": 2207.28, "probability": 0.9771 }, { "start": 2207.9, "end": 2208.38, "probability": 0.9221 }, { "start": 2209.3, "end": 2211.66, "probability": 0.0345 }, { "start": 2212.24, "end": 2213.44, "probability": 0.6888 }, { "start": 2213.54, "end": 2213.9, "probability": 0.2151 }, { "start": 2214.1, "end": 2214.36, "probability": 0.2877 }, { "start": 2214.89, "end": 2215.96, "probability": 0.4804 }, { "start": 2216.16, "end": 2217.22, "probability": 0.5416 }, { "start": 2217.38, "end": 2219.7, "probability": 0.8178 }, { "start": 2220.46, "end": 2223.68, "probability": 0.8154 }, { "start": 2224.0, "end": 2226.26, "probability": 0.9473 }, { "start": 2226.52, "end": 2227.72, "probability": 0.8909 }, { "start": 2228.94, "end": 2233.1, "probability": 0.993 }, { "start": 2233.92, "end": 2236.9, "probability": 0.9388 }, { "start": 2236.96, "end": 2237.38, "probability": 0.7937 }, { "start": 2237.68, "end": 2242.7, "probability": 0.9805 }, { "start": 2243.04, "end": 2243.52, "probability": 0.5048 }, { "start": 2244.54, "end": 2247.08, "probability": 0.9785 }, { "start": 2247.18, "end": 2248.08, "probability": 0.7148 }, { "start": 2248.26, "end": 2249.0, "probability": 0.6991 }, { "start": 2249.14, "end": 2250.26, "probability": 0.9357 }, { "start": 2250.68, "end": 2251.16, "probability": 0.9916 }, { "start": 2251.7, "end": 2252.8, "probability": 0.9935 }, { "start": 2253.34, "end": 2258.04, "probability": 0.9795 }, { "start": 2258.74, "end": 2262.94, "probability": 0.9874 }, { "start": 2263.02, "end": 2266.7, "probability": 0.9858 }, { "start": 2266.7, "end": 2271.66, "probability": 0.901 }, { "start": 2271.72, "end": 2272.42, "probability": 0.5139 }, { "start": 2272.52, "end": 2273.9, "probability": 0.0215 }, { "start": 2273.9, "end": 2275.92, "probability": 0.8635 }, { "start": 2276.18, "end": 2277.78, "probability": 0.3502 }, { "start": 2278.04, "end": 2278.29, "probability": 0.427 }, { "start": 2278.8, "end": 2279.8, "probability": 0.3515 }, { "start": 2280.2, "end": 2282.52, "probability": 0.8151 }, { "start": 2282.68, "end": 2285.35, "probability": 0.3439 }, { "start": 2285.94, "end": 2286.98, "probability": 0.7444 }, { "start": 2287.04, "end": 2289.8, "probability": 0.9965 }, { "start": 2289.88, "end": 2292.58, "probability": 0.9673 }, { "start": 2292.64, "end": 2294.82, "probability": 0.7776 }, { "start": 2294.82, "end": 2298.82, "probability": 0.9806 }, { "start": 2298.86, "end": 2299.62, "probability": 0.57 }, { "start": 2300.22, "end": 2303.44, "probability": 0.1881 }, { "start": 2303.86, "end": 2309.66, "probability": 0.9889 }, { "start": 2310.08, "end": 2310.38, "probability": 0.6553 }, { "start": 2310.56, "end": 2310.96, "probability": 0.8745 }, { "start": 2311.06, "end": 2313.52, "probability": 0.9644 }, { "start": 2316.48, "end": 2319.14, "probability": 0.9068 }, { "start": 2319.28, "end": 2323.96, "probability": 0.9866 }, { "start": 2323.96, "end": 2329.22, "probability": 0.9956 }, { "start": 2329.22, "end": 2332.66, "probability": 0.984 }, { "start": 2332.76, "end": 2334.58, "probability": 0.7154 }, { "start": 2335.6, "end": 2340.3, "probability": 0.9823 }, { "start": 2340.54, "end": 2341.24, "probability": 0.4219 }, { "start": 2341.34, "end": 2342.0, "probability": 0.4134 }, { "start": 2342.72, "end": 2345.48, "probability": 0.9984 }, { "start": 2346.22, "end": 2350.02, "probability": 0.8265 }, { "start": 2350.14, "end": 2350.72, "probability": 0.9377 }, { "start": 2350.82, "end": 2353.72, "probability": 0.945 }, { "start": 2354.72, "end": 2358.14, "probability": 0.988 }, { "start": 2358.26, "end": 2360.66, "probability": 0.9741 }, { "start": 2361.08, "end": 2362.72, "probability": 0.9811 }, { "start": 2364.56, "end": 2370.1, "probability": 0.9334 }, { "start": 2370.66, "end": 2372.14, "probability": 0.7715 }, { "start": 2372.4, "end": 2375.24, "probability": 0.951 }, { "start": 2375.74, "end": 2380.16, "probability": 0.9531 }, { "start": 2380.4, "end": 2382.3, "probability": 0.9711 }, { "start": 2383.44, "end": 2385.9, "probability": 0.9946 }, { "start": 2386.0, "end": 2386.8, "probability": 0.9548 }, { "start": 2386.88, "end": 2389.5, "probability": 0.8333 }, { "start": 2390.54, "end": 2398.4, "probability": 0.9799 }, { "start": 2398.54, "end": 2399.0, "probability": 0.4866 }, { "start": 2399.02, "end": 2403.52, "probability": 0.6636 }, { "start": 2404.14, "end": 2405.94, "probability": 0.9905 }, { "start": 2406.18, "end": 2410.06, "probability": 0.9902 }, { "start": 2410.62, "end": 2411.14, "probability": 0.7411 }, { "start": 2411.18, "end": 2411.52, "probability": 0.8323 }, { "start": 2411.64, "end": 2412.22, "probability": 0.978 }, { "start": 2412.66, "end": 2414.2, "probability": 0.8528 }, { "start": 2414.5, "end": 2415.94, "probability": 0.8928 }, { "start": 2417.68, "end": 2418.22, "probability": 0.8127 }, { "start": 2418.78, "end": 2422.08, "probability": 0.9811 }, { "start": 2422.78, "end": 2425.32, "probability": 0.8201 }, { "start": 2425.92, "end": 2426.68, "probability": 0.9746 }, { "start": 2426.8, "end": 2429.28, "probability": 0.9498 }, { "start": 2429.66, "end": 2431.52, "probability": 0.8849 }, { "start": 2431.82, "end": 2434.2, "probability": 0.998 }, { "start": 2434.88, "end": 2437.48, "probability": 0.9533 }, { "start": 2437.56, "end": 2441.5, "probability": 0.9425 }, { "start": 2441.88, "end": 2446.82, "probability": 0.9872 }, { "start": 2447.9, "end": 2449.94, "probability": 0.9713 }, { "start": 2451.38, "end": 2454.08, "probability": 0.8302 }, { "start": 2454.3, "end": 2456.1, "probability": 0.9927 }, { "start": 2456.44, "end": 2459.3, "probability": 0.9957 }, { "start": 2460.28, "end": 2460.58, "probability": 0.2735 }, { "start": 2460.58, "end": 2461.42, "probability": 0.9875 }, { "start": 2462.56, "end": 2465.9, "probability": 0.9844 }, { "start": 2466.0, "end": 2468.28, "probability": 0.9976 }, { "start": 2468.88, "end": 2471.08, "probability": 0.9517 }, { "start": 2471.78, "end": 2473.48, "probability": 0.9758 }, { "start": 2473.58, "end": 2475.0, "probability": 0.667 }, { "start": 2475.52, "end": 2478.76, "probability": 0.9825 }, { "start": 2479.58, "end": 2481.02, "probability": 0.6829 }, { "start": 2481.96, "end": 2487.04, "probability": 0.9565 }, { "start": 2487.24, "end": 2488.46, "probability": 0.8334 }, { "start": 2489.1, "end": 2492.24, "probability": 0.9977 }, { "start": 2492.78, "end": 2493.26, "probability": 0.7004 }, { "start": 2493.9, "end": 2498.52, "probability": 0.9945 }, { "start": 2498.58, "end": 2499.92, "probability": 0.9175 }, { "start": 2500.1, "end": 2504.24, "probability": 0.8601 }, { "start": 2504.42, "end": 2504.9, "probability": 0.8357 }, { "start": 2505.1, "end": 2509.32, "probability": 0.9619 }, { "start": 2509.46, "end": 2510.36, "probability": 0.9661 }, { "start": 2511.44, "end": 2513.36, "probability": 0.6172 }, { "start": 2513.54, "end": 2517.08, "probability": 0.9789 }, { "start": 2517.72, "end": 2521.34, "probability": 0.9404 }, { "start": 2521.52, "end": 2525.87, "probability": 0.9904 }, { "start": 2526.48, "end": 2531.5, "probability": 0.9985 }, { "start": 2532.06, "end": 2534.92, "probability": 0.8422 }, { "start": 2535.54, "end": 2536.82, "probability": 0.96 }, { "start": 2536.92, "end": 2538.08, "probability": 0.9727 }, { "start": 2538.26, "end": 2541.36, "probability": 0.7711 }, { "start": 2541.86, "end": 2544.04, "probability": 0.6673 }, { "start": 2544.04, "end": 2545.54, "probability": 0.6972 }, { "start": 2545.78, "end": 2548.86, "probability": 0.948 }, { "start": 2548.86, "end": 2551.46, "probability": 0.9741 }, { "start": 2552.02, "end": 2553.1, "probability": 0.8565 }, { "start": 2553.78, "end": 2556.48, "probability": 0.9771 }, { "start": 2556.8, "end": 2557.78, "probability": 0.9966 }, { "start": 2558.36, "end": 2562.96, "probability": 0.7577 }, { "start": 2563.54, "end": 2566.86, "probability": 0.9968 }, { "start": 2566.86, "end": 2569.9, "probability": 0.9893 }, { "start": 2569.96, "end": 2570.44, "probability": 0.4607 }, { "start": 2570.56, "end": 2571.18, "probability": 0.8075 }, { "start": 2571.24, "end": 2574.0, "probability": 0.9951 }, { "start": 2574.16, "end": 2574.8, "probability": 0.686 }, { "start": 2574.9, "end": 2575.54, "probability": 0.0146 }, { "start": 2575.68, "end": 2580.82, "probability": 0.9298 }, { "start": 2580.86, "end": 2581.7, "probability": 0.6521 }, { "start": 2581.96, "end": 2583.9, "probability": 0.991 }, { "start": 2584.06, "end": 2584.76, "probability": 0.4486 }, { "start": 2585.04, "end": 2585.76, "probability": 0.8973 }, { "start": 2585.86, "end": 2587.18, "probability": 0.9007 }, { "start": 2587.56, "end": 2589.14, "probability": 0.7768 }, { "start": 2589.22, "end": 2590.76, "probability": 0.8545 }, { "start": 2591.68, "end": 2592.3, "probability": 0.6076 }, { "start": 2592.98, "end": 2595.76, "probability": 0.6977 }, { "start": 2596.44, "end": 2597.06, "probability": 0.9763 }, { "start": 2597.52, "end": 2601.02, "probability": 0.9728 }, { "start": 2601.08, "end": 2601.48, "probability": 0.8474 }, { "start": 2601.58, "end": 2604.84, "probability": 0.7401 }, { "start": 2605.59, "end": 2609.64, "probability": 0.9226 }, { "start": 2610.4, "end": 2611.92, "probability": 0.7935 }, { "start": 2612.6, "end": 2612.88, "probability": 0.9195 }, { "start": 2613.34, "end": 2620.56, "probability": 0.9803 }, { "start": 2620.68, "end": 2621.92, "probability": 0.8457 }, { "start": 2622.0, "end": 2623.6, "probability": 0.8022 }, { "start": 2624.26, "end": 2628.08, "probability": 0.9834 }, { "start": 2628.34, "end": 2631.58, "probability": 0.9781 }, { "start": 2631.58, "end": 2635.22, "probability": 0.9909 }, { "start": 2635.48, "end": 2637.86, "probability": 0.9264 }, { "start": 2638.26, "end": 2640.94, "probability": 0.9667 }, { "start": 2641.22, "end": 2641.62, "probability": 0.8726 }, { "start": 2642.88, "end": 2648.12, "probability": 0.959 }, { "start": 2648.12, "end": 2652.92, "probability": 0.9956 }, { "start": 2653.04, "end": 2655.6, "probability": 0.7199 }, { "start": 2656.16, "end": 2659.2, "probability": 0.8823 }, { "start": 2659.2, "end": 2663.34, "probability": 0.9746 }, { "start": 2663.94, "end": 2664.66, "probability": 0.758 }, { "start": 2664.8, "end": 2666.95, "probability": 0.9634 }, { "start": 2667.66, "end": 2668.5, "probability": 0.4245 }, { "start": 2668.74, "end": 2668.88, "probability": 0.0113 }, { "start": 2669.5, "end": 2669.52, "probability": 0.269 }, { "start": 2670.08, "end": 2670.94, "probability": 0.5277 }, { "start": 2671.12, "end": 2671.94, "probability": 0.8462 }, { "start": 2672.02, "end": 2674.58, "probability": 0.4661 }, { "start": 2677.02, "end": 2677.9, "probability": 0.0585 }, { "start": 2678.22, "end": 2679.2, "probability": 0.2602 }, { "start": 2679.38, "end": 2681.34, "probability": 0.2122 }, { "start": 2681.8, "end": 2684.12, "probability": 0.964 }, { "start": 2684.68, "end": 2685.16, "probability": 0.386 }, { "start": 2685.24, "end": 2688.58, "probability": 0.9356 }, { "start": 2688.9, "end": 2690.42, "probability": 0.717 }, { "start": 2690.72, "end": 2692.36, "probability": 0.7744 }, { "start": 2692.7, "end": 2693.28, "probability": 0.6663 }, { "start": 2693.52, "end": 2700.06, "probability": 0.9797 }, { "start": 2700.38, "end": 2702.14, "probability": 0.9067 }, { "start": 2702.56, "end": 2703.12, "probability": 0.876 }, { "start": 2703.32, "end": 2705.96, "probability": 0.9942 }, { "start": 2706.34, "end": 2707.08, "probability": 0.5941 }, { "start": 2707.78, "end": 2708.64, "probability": 0.8615 }, { "start": 2709.18, "end": 2714.8, "probability": 0.9753 }, { "start": 2715.5, "end": 2716.64, "probability": 0.7611 }, { "start": 2716.84, "end": 2718.48, "probability": 0.9922 }, { "start": 2719.06, "end": 2719.9, "probability": 0.9884 }, { "start": 2720.72, "end": 2721.86, "probability": 0.8133 }, { "start": 2721.94, "end": 2722.28, "probability": 0.4807 }, { "start": 2722.42, "end": 2725.42, "probability": 0.9225 }, { "start": 2726.14, "end": 2729.49, "probability": 0.5628 }, { "start": 2731.28, "end": 2732.06, "probability": 0.0344 }, { "start": 2732.9, "end": 2733.16, "probability": 0.2667 }, { "start": 2733.38, "end": 2734.41, "probability": 0.016 }, { "start": 2734.78, "end": 2736.04, "probability": 0.9803 }, { "start": 2736.04, "end": 2737.42, "probability": 0.9775 }, { "start": 2738.25, "end": 2740.26, "probability": 0.2951 }, { "start": 2740.94, "end": 2744.3, "probability": 0.7684 }, { "start": 2744.48, "end": 2746.02, "probability": 0.7361 }, { "start": 2746.96, "end": 2749.82, "probability": 0.9841 }, { "start": 2750.32, "end": 2751.52, "probability": 0.1752 }, { "start": 2751.52, "end": 2752.04, "probability": 0.1144 }, { "start": 2752.32, "end": 2754.76, "probability": 0.8176 }, { "start": 2754.82, "end": 2760.08, "probability": 0.9276 }, { "start": 2760.92, "end": 2763.64, "probability": 0.9474 }, { "start": 2764.8, "end": 2765.53, "probability": 0.5191 }, { "start": 2765.72, "end": 2765.96, "probability": 0.4204 }, { "start": 2766.16, "end": 2768.26, "probability": 0.7075 }, { "start": 2768.78, "end": 2771.79, "probability": 0.9614 }, { "start": 2772.32, "end": 2774.18, "probability": 0.0479 }, { "start": 2775.78, "end": 2776.6, "probability": 0.0005 }, { "start": 2777.48, "end": 2777.88, "probability": 0.401 }, { "start": 2777.88, "end": 2777.88, "probability": 0.6892 }, { "start": 2777.88, "end": 2781.7, "probability": 0.9459 }, { "start": 2782.02, "end": 2782.72, "probability": 0.6328 }, { "start": 2782.86, "end": 2783.38, "probability": 0.9575 }, { "start": 2783.44, "end": 2784.28, "probability": 0.8332 }, { "start": 2784.92, "end": 2787.08, "probability": 0.5635 }, { "start": 2788.4, "end": 2789.28, "probability": 0.9258 }, { "start": 2789.58, "end": 2793.08, "probability": 0.9395 }, { "start": 2793.26, "end": 2796.7, "probability": 0.9801 }, { "start": 2796.7, "end": 2799.64, "probability": 0.9883 }, { "start": 2799.72, "end": 2804.42, "probability": 0.807 }, { "start": 2805.18, "end": 2808.82, "probability": 0.9727 }, { "start": 2808.82, "end": 2811.64, "probability": 0.9971 }, { "start": 2812.18, "end": 2814.7, "probability": 0.8478 }, { "start": 2814.88, "end": 2815.24, "probability": 0.534 }, { "start": 2815.86, "end": 2816.92, "probability": 0.7402 }, { "start": 2816.98, "end": 2818.7, "probability": 0.9436 }, { "start": 2818.76, "end": 2819.52, "probability": 0.9421 }, { "start": 2819.62, "end": 2820.44, "probability": 0.9678 }, { "start": 2820.54, "end": 2822.5, "probability": 0.8003 }, { "start": 2823.06, "end": 2823.88, "probability": 0.7848 }, { "start": 2825.41, "end": 2826.98, "probability": 0.054 }, { "start": 2827.62, "end": 2831.96, "probability": 0.9989 }, { "start": 2832.66, "end": 2835.78, "probability": 0.981 }, { "start": 2835.94, "end": 2838.8, "probability": 0.752 }, { "start": 2839.08, "end": 2842.58, "probability": 0.998 }, { "start": 2843.36, "end": 2845.94, "probability": 0.99 }, { "start": 2846.7, "end": 2848.16, "probability": 0.8976 }, { "start": 2848.98, "end": 2849.8, "probability": 0.3565 }, { "start": 2850.93, "end": 2853.46, "probability": 0.675 }, { "start": 2853.72, "end": 2854.14, "probability": 0.9209 }, { "start": 2860.6, "end": 2861.64, "probability": 0.9653 }, { "start": 2861.72, "end": 2862.34, "probability": 0.8649 }, { "start": 2862.42, "end": 2863.78, "probability": 0.9791 }, { "start": 2863.86, "end": 2864.97, "probability": 0.981 }, { "start": 2865.98, "end": 2867.1, "probability": 0.9912 }, { "start": 2867.76, "end": 2873.14, "probability": 0.9888 }, { "start": 2873.6, "end": 2877.84, "probability": 0.999 }, { "start": 2877.84, "end": 2882.76, "probability": 0.9202 }, { "start": 2883.16, "end": 2886.74, "probability": 0.9815 }, { "start": 2887.16, "end": 2888.26, "probability": 0.9709 }, { "start": 2888.94, "end": 2891.42, "probability": 0.9802 }, { "start": 2891.86, "end": 2892.64, "probability": 0.9615 }, { "start": 2893.08, "end": 2894.37, "probability": 0.9841 }, { "start": 2894.5, "end": 2896.57, "probability": 0.9076 }, { "start": 2898.34, "end": 2899.46, "probability": 0.8597 }, { "start": 2899.6, "end": 2902.44, "probability": 0.9929 }, { "start": 2902.94, "end": 2904.92, "probability": 0.9215 }, { "start": 2906.98, "end": 2909.3, "probability": 0.9242 }, { "start": 2909.42, "end": 2909.5, "probability": 0.9103 }, { "start": 2909.5, "end": 2913.48, "probability": 0.743 }, { "start": 2913.94, "end": 2916.16, "probability": 0.9829 }, { "start": 2916.28, "end": 2918.48, "probability": 0.8397 }, { "start": 2918.48, "end": 2918.55, "probability": 0.2645 }, { "start": 2918.98, "end": 2919.86, "probability": 0.9883 }, { "start": 2919.94, "end": 2920.5, "probability": 0.8433 }, { "start": 2922.0, "end": 2926.36, "probability": 0.8975 }, { "start": 2926.36, "end": 2931.46, "probability": 0.8914 }, { "start": 2932.12, "end": 2934.78, "probability": 0.9076 }, { "start": 2934.78, "end": 2939.16, "probability": 0.9067 }, { "start": 2939.58, "end": 2940.66, "probability": 0.7498 }, { "start": 2941.28, "end": 2943.1, "probability": 0.9438 }, { "start": 2943.44, "end": 2943.68, "probability": 0.3827 }, { "start": 2943.88, "end": 2945.44, "probability": 0.8092 }, { "start": 2946.0, "end": 2947.78, "probability": 0.9956 }, { "start": 2948.38, "end": 2954.0, "probability": 0.8852 }, { "start": 2954.38, "end": 2955.38, "probability": 0.9419 }, { "start": 2955.84, "end": 2956.84, "probability": 0.9544 }, { "start": 2957.6, "end": 2961.44, "probability": 0.9944 }, { "start": 2962.08, "end": 2964.68, "probability": 0.7421 }, { "start": 2965.18, "end": 2965.9, "probability": 0.8101 }, { "start": 2966.0, "end": 2966.92, "probability": 0.6197 }, { "start": 2967.04, "end": 2967.46, "probability": 0.8288 }, { "start": 2968.64, "end": 2971.28, "probability": 0.9767 }, { "start": 2971.8, "end": 2972.96, "probability": 0.7779 }, { "start": 2973.64, "end": 2976.74, "probability": 0.9747 }, { "start": 2977.22, "end": 2979.34, "probability": 0.8289 }, { "start": 2979.72, "end": 2982.88, "probability": 0.9622 }, { "start": 2983.02, "end": 2983.4, "probability": 0.6662 }, { "start": 2983.9, "end": 2985.01, "probability": 0.9556 }, { "start": 2985.7, "end": 2986.52, "probability": 0.9901 }, { "start": 2986.62, "end": 2986.86, "probability": 0.8049 }, { "start": 2986.9, "end": 2990.32, "probability": 0.998 }, { "start": 2990.82, "end": 2991.94, "probability": 0.9233 }, { "start": 2992.64, "end": 2993.6, "probability": 0.9245 }, { "start": 2993.78, "end": 2997.2, "probability": 0.9926 }, { "start": 2997.66, "end": 2997.94, "probability": 0.6214 }, { "start": 2997.98, "end": 2999.32, "probability": 0.9805 }, { "start": 2999.48, "end": 2999.74, "probability": 0.8144 }, { "start": 2999.84, "end": 3002.92, "probability": 0.8921 }, { "start": 3003.83, "end": 3008.0, "probability": 0.8079 }, { "start": 3008.2, "end": 3009.33, "probability": 0.988 }, { "start": 3010.18, "end": 3011.03, "probability": 0.9968 }, { "start": 3012.02, "end": 3012.9, "probability": 0.96 }, { "start": 3014.27, "end": 3014.9, "probability": 0.0872 }, { "start": 3014.9, "end": 3015.86, "probability": 0.7451 }, { "start": 3015.94, "end": 3017.72, "probability": 0.7048 }, { "start": 3017.86, "end": 3019.14, "probability": 0.7601 }, { "start": 3019.22, "end": 3020.06, "probability": 0.6851 }, { "start": 3020.24, "end": 3021.22, "probability": 0.7905 }, { "start": 3021.7, "end": 3024.16, "probability": 0.8511 }, { "start": 3024.64, "end": 3025.7, "probability": 0.9785 }, { "start": 3026.28, "end": 3027.18, "probability": 0.9771 }, { "start": 3027.3, "end": 3030.32, "probability": 0.8469 }, { "start": 3030.4, "end": 3030.4, "probability": 0.4575 }, { "start": 3030.44, "end": 3031.96, "probability": 0.8658 }, { "start": 3032.24, "end": 3033.7, "probability": 0.592 }, { "start": 3033.88, "end": 3034.34, "probability": 0.6654 }, { "start": 3034.42, "end": 3037.48, "probability": 0.7211 }, { "start": 3037.58, "end": 3040.46, "probability": 0.9864 }, { "start": 3040.94, "end": 3042.96, "probability": 0.7229 }, { "start": 3043.48, "end": 3044.16, "probability": 0.9799 }, { "start": 3044.24, "end": 3045.85, "probability": 0.8604 }, { "start": 3046.34, "end": 3050.0, "probability": 0.9664 }, { "start": 3050.44, "end": 3051.3, "probability": 0.9215 }, { "start": 3051.34, "end": 3056.02, "probability": 0.9821 }, { "start": 3056.16, "end": 3059.52, "probability": 0.9755 }, { "start": 3060.12, "end": 3060.98, "probability": 0.7434 }, { "start": 3061.36, "end": 3064.52, "probability": 0.8124 }, { "start": 3064.9, "end": 3068.24, "probability": 0.8682 }, { "start": 3068.28, "end": 3070.15, "probability": 0.9958 }, { "start": 3070.6, "end": 3071.52, "probability": 0.8501 }, { "start": 3071.96, "end": 3072.98, "probability": 0.8736 }, { "start": 3073.54, "end": 3077.14, "probability": 0.6849 }, { "start": 3077.38, "end": 3077.8, "probability": 0.3526 }, { "start": 3077.88, "end": 3079.26, "probability": 0.5548 }, { "start": 3079.28, "end": 3079.3, "probability": 0.5475 }, { "start": 3079.32, "end": 3081.96, "probability": 0.7288 }, { "start": 3081.98, "end": 3082.56, "probability": 0.5174 }, { "start": 3082.66, "end": 3082.66, "probability": 0.5488 }, { "start": 3082.86, "end": 3084.36, "probability": 0.959 }, { "start": 3084.54, "end": 3085.2, "probability": 0.776 }, { "start": 3085.82, "end": 3088.36, "probability": 0.6111 }, { "start": 3089.76, "end": 3091.46, "probability": 0.8451 }, { "start": 3091.6, "end": 3091.68, "probability": 0.8042 }, { "start": 3091.76, "end": 3093.03, "probability": 0.9848 }, { "start": 3093.18, "end": 3094.31, "probability": 0.7617 }, { "start": 3094.7, "end": 3097.38, "probability": 0.8867 }, { "start": 3097.62, "end": 3101.5, "probability": 0.925 }, { "start": 3103.0, "end": 3105.14, "probability": 0.985 }, { "start": 3105.22, "end": 3108.48, "probability": 0.961 }, { "start": 3109.7, "end": 3113.7, "probability": 0.8365 }, { "start": 3114.24, "end": 3114.92, "probability": 0.7439 }, { "start": 3115.48, "end": 3116.9, "probability": 0.8208 }, { "start": 3116.96, "end": 3120.54, "probability": 0.9532 }, { "start": 3120.54, "end": 3121.1, "probability": 0.008 }, { "start": 3121.3, "end": 3124.6, "probability": 0.9192 }, { "start": 3124.9, "end": 3125.0, "probability": 0.076 }, { "start": 3125.0, "end": 3126.68, "probability": 0.1597 }, { "start": 3128.4, "end": 3133.68, "probability": 0.2118 }, { "start": 3133.96, "end": 3134.8, "probability": 0.1147 }, { "start": 3134.8, "end": 3136.54, "probability": 0.0473 }, { "start": 3136.54, "end": 3136.68, "probability": 0.0832 }, { "start": 3137.56, "end": 3138.92, "probability": 0.0845 }, { "start": 3142.36, "end": 3143.96, "probability": 0.2873 }, { "start": 3144.48, "end": 3145.5, "probability": 0.1018 }, { "start": 3152.08, "end": 3152.7, "probability": 0.0894 }, { "start": 3153.22, "end": 3155.26, "probability": 0.1827 }, { "start": 3155.26, "end": 3155.72, "probability": 0.1024 }, { "start": 3155.72, "end": 3156.98, "probability": 0.0789 }, { "start": 3156.98, "end": 3159.58, "probability": 0.0501 }, { "start": 3161.78, "end": 3163.32, "probability": 0.008 }, { "start": 3163.36, "end": 3164.22, "probability": 0.0693 }, { "start": 3164.22, "end": 3164.22, "probability": 0.0847 }, { "start": 3164.22, "end": 3164.68, "probability": 0.0127 }, { "start": 3164.68, "end": 3164.68, "probability": 0.0343 }, { "start": 3164.68, "end": 3164.68, "probability": 0.0529 }, { "start": 3164.68, "end": 3164.98, "probability": 0.0869 }, { "start": 3165.2, "end": 3166.86, "probability": 0.1228 }, { "start": 3166.86, "end": 3166.86, "probability": 0.0483 }, { "start": 3166.86, "end": 3167.76, "probability": 0.344 }, { "start": 3167.94, "end": 3168.94, "probability": 0.4551 }, { "start": 3169.06, "end": 3169.52, "probability": 0.2786 }, { "start": 3169.72, "end": 3171.26, "probability": 0.2355 }, { "start": 3172.74, "end": 3174.42, "probability": 0.4096 }, { "start": 3176.2, "end": 3176.86, "probability": 0.0623 }, { "start": 3176.86, "end": 3176.86, "probability": 0.1896 }, { "start": 3176.86, "end": 3176.86, "probability": 0.0897 }, { "start": 3176.86, "end": 3176.86, "probability": 0.286 }, { "start": 3176.86, "end": 3178.44, "probability": 0.2109 }, { "start": 3178.66, "end": 3182.8, "probability": 0.1955 }, { "start": 3285.0, "end": 3285.0, "probability": 0.0 }, { "start": 3285.0, "end": 3285.0, "probability": 0.0 }, { "start": 3285.0, "end": 3285.0, "probability": 0.0 }, { "start": 3285.0, "end": 3285.0, "probability": 0.0 }, { "start": 3285.0, "end": 3285.0, "probability": 0.0 }, { "start": 3285.0, "end": 3285.0, "probability": 0.0 }, { "start": 3285.0, "end": 3285.0, "probability": 0.0 }, { "start": 3285.0, "end": 3285.0, "probability": 0.0 }, { "start": 3285.0, "end": 3285.0, "probability": 0.0 }, { "start": 3285.0, "end": 3285.0, "probability": 0.0 }, { "start": 3285.0, "end": 3285.0, "probability": 0.0 }, { "start": 3285.0, "end": 3285.0, "probability": 0.0 }, { "start": 3285.0, "end": 3285.0, "probability": 0.0 }, { "start": 3285.0, "end": 3285.0, "probability": 0.0 }, { "start": 3285.0, "end": 3285.0, "probability": 0.0 }, { "start": 3285.0, "end": 3285.0, "probability": 0.0 }, { "start": 3285.0, "end": 3285.0, "probability": 0.0 }, { "start": 3285.0, "end": 3285.0, "probability": 0.0 }, { "start": 3285.0, "end": 3285.0, "probability": 0.0 }, { "start": 3285.0, "end": 3285.0, "probability": 0.0 }, { "start": 3285.0, "end": 3285.0, "probability": 0.0 }, { "start": 3285.0, "end": 3285.0, "probability": 0.0 }, { "start": 3285.0, "end": 3285.0, "probability": 0.0 }, { "start": 3285.0, "end": 3285.0, "probability": 0.0 }, { "start": 3285.0, "end": 3285.0, "probability": 0.0 }, { "start": 3285.0, "end": 3285.0, "probability": 0.0 }, { "start": 3285.0, "end": 3285.0, "probability": 0.0 }, { "start": 3285.0, "end": 3285.0, "probability": 0.0 }, { "start": 3285.0, "end": 3285.0, "probability": 0.0 }, { "start": 3285.0, "end": 3285.0, "probability": 0.0 }, { "start": 3285.0, "end": 3285.0, "probability": 0.0 }, { "start": 3285.0, "end": 3285.0, "probability": 0.0 }, { "start": 3285.0, "end": 3285.0, "probability": 0.0 }, { "start": 3285.0, "end": 3285.0, "probability": 0.0 }, { "start": 3285.0, "end": 3285.0, "probability": 0.0 }, { "start": 3285.0, "end": 3285.0, "probability": 0.0 }, { "start": 3285.0, "end": 3285.0, "probability": 0.0 }, { "start": 3285.0, "end": 3285.0, "probability": 0.0 }, { "start": 3285.0, "end": 3285.0, "probability": 0.0 }, { "start": 3285.0, "end": 3285.0, "probability": 0.0 }, { "start": 3285.0, "end": 3285.0, "probability": 0.0 }, { "start": 3285.0, "end": 3285.0, "probability": 0.0 }, { "start": 3285.0, "end": 3285.0, "probability": 0.0 }, { "start": 3285.0, "end": 3285.0, "probability": 0.0 }, { "start": 3285.0, "end": 3285.0, "probability": 0.0 }, { "start": 3285.0, "end": 3285.0, "probability": 0.0 }, { "start": 3285.0, "end": 3285.0, "probability": 0.0 }, { "start": 3285.0, "end": 3285.0, "probability": 0.0 }, { "start": 3285.0, "end": 3285.0, "probability": 0.0 }, { "start": 3285.0, "end": 3285.0, "probability": 0.0 }, { "start": 3285.0, "end": 3285.0, "probability": 0.0 }, { "start": 3285.0, "end": 3285.0, "probability": 0.0 }, { "start": 3285.0, "end": 3285.0, "probability": 0.0 }, { "start": 3285.0, "end": 3285.0, "probability": 0.0 }, { "start": 3285.24, "end": 3285.56, "probability": 0.1527 }, { "start": 3285.56, "end": 3285.56, "probability": 0.2398 }, { "start": 3285.56, "end": 3285.56, "probability": 0.0491 }, { "start": 3285.56, "end": 3286.0, "probability": 0.2211 }, { "start": 3287.94, "end": 3288.56, "probability": 0.3703 }, { "start": 3288.56, "end": 3288.7, "probability": 0.1705 }, { "start": 3288.98, "end": 3289.3, "probability": 0.709 }, { "start": 3289.32, "end": 3291.72, "probability": 0.909 }, { "start": 3291.8, "end": 3294.06, "probability": 0.9897 }, { "start": 3294.44, "end": 3298.82, "probability": 0.9437 }, { "start": 3299.04, "end": 3301.28, "probability": 0.9968 }, { "start": 3301.82, "end": 3301.82, "probability": 0.0477 }, { "start": 3301.82, "end": 3303.22, "probability": 0.98 }, { "start": 3303.74, "end": 3305.56, "probability": 0.9597 }, { "start": 3305.76, "end": 3308.0, "probability": 0.9193 }, { "start": 3308.18, "end": 3308.28, "probability": 0.1357 }, { "start": 3308.28, "end": 3310.72, "probability": 0.9131 }, { "start": 3310.78, "end": 3312.14, "probability": 0.8502 }, { "start": 3312.22, "end": 3317.14, "probability": 0.9264 }, { "start": 3317.2, "end": 3317.68, "probability": 0.3012 }, { "start": 3317.76, "end": 3317.76, "probability": 0.1022 }, { "start": 3317.76, "end": 3317.76, "probability": 0.3195 }, { "start": 3317.76, "end": 3319.5, "probability": 0.2785 }, { "start": 3319.94, "end": 3321.26, "probability": 0.97 }, { "start": 3321.38, "end": 3322.02, "probability": 0.4206 }, { "start": 3322.36, "end": 3322.88, "probability": 0.6747 }, { "start": 3322.94, "end": 3324.54, "probability": 0.7908 }, { "start": 3324.64, "end": 3326.14, "probability": 0.8376 }, { "start": 3326.54, "end": 3327.09, "probability": 0.9373 }, { "start": 3327.72, "end": 3328.26, "probability": 0.9606 }, { "start": 3331.87, "end": 3334.96, "probability": 0.5725 }, { "start": 3335.2, "end": 3335.9, "probability": 0.6361 }, { "start": 3337.42, "end": 3340.26, "probability": 0.9983 }, { "start": 3342.0, "end": 3350.72, "probability": 0.9382 }, { "start": 3351.64, "end": 3353.58, "probability": 0.9985 }, { "start": 3354.64, "end": 3357.58, "probability": 0.9834 }, { "start": 3358.6, "end": 3360.1, "probability": 0.7011 }, { "start": 3361.14, "end": 3362.9, "probability": 0.9721 }, { "start": 3363.66, "end": 3367.72, "probability": 0.8686 }, { "start": 3367.82, "end": 3368.06, "probability": 0.7898 }, { "start": 3369.16, "end": 3370.54, "probability": 0.9336 }, { "start": 3370.74, "end": 3372.52, "probability": 0.887 }, { "start": 3381.5, "end": 3383.38, "probability": 0.7634 }, { "start": 3384.68, "end": 3386.46, "probability": 0.9925 }, { "start": 3387.08, "end": 3392.56, "probability": 0.9957 }, { "start": 3393.48, "end": 3395.88, "probability": 0.8188 }, { "start": 3397.24, "end": 3397.92, "probability": 0.9802 }, { "start": 3404.22, "end": 3406.04, "probability": 0.7713 }, { "start": 3406.06, "end": 3410.94, "probability": 0.9682 }, { "start": 3411.66, "end": 3412.44, "probability": 0.6301 }, { "start": 3413.22, "end": 3414.94, "probability": 0.8885 }, { "start": 3415.72, "end": 3418.06, "probability": 0.9429 }, { "start": 3418.7, "end": 3422.74, "probability": 0.9959 }, { "start": 3423.3, "end": 3425.68, "probability": 0.9677 }, { "start": 3426.98, "end": 3427.64, "probability": 0.7103 }, { "start": 3429.98, "end": 3433.28, "probability": 0.9934 }, { "start": 3433.58, "end": 3439.38, "probability": 0.9707 }, { "start": 3440.2, "end": 3441.92, "probability": 0.3973 }, { "start": 3442.66, "end": 3444.58, "probability": 0.132 }, { "start": 3445.4, "end": 3446.56, "probability": 0.2195 }, { "start": 3447.6, "end": 3448.74, "probability": 0.5106 }, { "start": 3448.92, "end": 3450.76, "probability": 0.7871 }, { "start": 3450.84, "end": 3451.22, "probability": 0.0651 }, { "start": 3453.92, "end": 3454.64, "probability": 0.0163 }, { "start": 3454.82, "end": 3454.82, "probability": 0.0892 }, { "start": 3454.82, "end": 3456.5, "probability": 0.3497 }, { "start": 3457.16, "end": 3459.64, "probability": 0.9458 }, { "start": 3459.92, "end": 3461.1, "probability": 0.9858 }, { "start": 3461.6, "end": 3464.14, "probability": 0.9752 }, { "start": 3464.3, "end": 3465.1, "probability": 0.0216 }, { "start": 3465.78, "end": 3465.98, "probability": 0.1091 }, { "start": 3465.98, "end": 3465.98, "probability": 0.2225 }, { "start": 3465.98, "end": 3467.26, "probability": 0.2934 }, { "start": 3467.44, "end": 3467.44, "probability": 0.0225 }, { "start": 3467.44, "end": 3468.86, "probability": 0.1513 }, { "start": 3469.02, "end": 3469.6, "probability": 0.6318 }, { "start": 3469.78, "end": 3471.7, "probability": 0.2538 }, { "start": 3472.2, "end": 3473.64, "probability": 0.0248 }, { "start": 3473.98, "end": 3478.34, "probability": 0.2711 }, { "start": 3478.84, "end": 3478.84, "probability": 0.0952 }, { "start": 3478.92, "end": 3481.88, "probability": 0.5069 }, { "start": 3481.94, "end": 3484.67, "probability": 0.2012 }, { "start": 3485.16, "end": 3487.04, "probability": 0.2649 }, { "start": 3487.1, "end": 3487.1, "probability": 0.2224 }, { "start": 3487.1, "end": 3489.12, "probability": 0.5007 }, { "start": 3489.38, "end": 3491.38, "probability": 0.407 }, { "start": 3493.98, "end": 3495.98, "probability": 0.2738 }, { "start": 3496.08, "end": 3496.88, "probability": 0.5243 }, { "start": 3497.02, "end": 3498.62, "probability": 0.815 }, { "start": 3499.02, "end": 3502.56, "probability": 0.9366 }, { "start": 3503.04, "end": 3506.46, "probability": 0.9985 }, { "start": 3507.22, "end": 3508.54, "probability": 0.8911 }, { "start": 3508.7, "end": 3511.46, "probability": 0.9209 }, { "start": 3512.0, "end": 3515.1, "probability": 0.9962 }, { "start": 3516.1, "end": 3516.26, "probability": 0.0313 }, { "start": 3516.26, "end": 3519.78, "probability": 0.9352 }, { "start": 3519.78, "end": 3523.42, "probability": 0.9775 }, { "start": 3523.62, "end": 3529.08, "probability": 0.9919 }, { "start": 3529.2, "end": 3531.02, "probability": 0.9805 }, { "start": 3531.16, "end": 3532.78, "probability": 0.9923 }, { "start": 3533.28, "end": 3534.94, "probability": 0.9961 }, { "start": 3535.86, "end": 3538.64, "probability": 0.9923 }, { "start": 3538.72, "end": 3540.1, "probability": 0.7006 }, { "start": 3540.42, "end": 3543.62, "probability": 0.9957 }, { "start": 3544.18, "end": 3547.42, "probability": 0.9751 }, { "start": 3547.42, "end": 3552.04, "probability": 0.9768 }, { "start": 3552.18, "end": 3555.3, "probability": 0.9873 }, { "start": 3555.44, "end": 3557.48, "probability": 0.7469 }, { "start": 3557.52, "end": 3559.32, "probability": 0.9086 }, { "start": 3559.5, "end": 3562.58, "probability": 0.9678 }, { "start": 3562.74, "end": 3568.14, "probability": 0.9968 }, { "start": 3568.56, "end": 3569.74, "probability": 0.9247 }, { "start": 3569.92, "end": 3570.72, "probability": 0.7808 }, { "start": 3570.88, "end": 3574.14, "probability": 0.9028 }, { "start": 3574.14, "end": 3577.62, "probability": 0.9947 }, { "start": 3578.24, "end": 3582.8, "probability": 0.9969 }, { "start": 3582.8, "end": 3587.5, "probability": 0.9977 }, { "start": 3587.8, "end": 3591.48, "probability": 0.8753 }, { "start": 3591.72, "end": 3594.36, "probability": 0.9959 }, { "start": 3594.42, "end": 3596.58, "probability": 0.5441 }, { "start": 3596.7, "end": 3598.26, "probability": 0.8104 }, { "start": 3598.86, "end": 3601.48, "probability": 0.8785 }, { "start": 3602.62, "end": 3606.0, "probability": 0.9872 }, { "start": 3606.34, "end": 3609.9, "probability": 0.9146 }, { "start": 3610.74, "end": 3613.8, "probability": 0.8945 }, { "start": 3614.18, "end": 3617.08, "probability": 0.991 }, { "start": 3617.08, "end": 3620.04, "probability": 0.9917 }, { "start": 3620.34, "end": 3621.44, "probability": 0.23 }, { "start": 3621.78, "end": 3625.08, "probability": 0.8481 }, { "start": 3625.12, "end": 3626.64, "probability": 0.6189 }, { "start": 3626.7, "end": 3631.16, "probability": 0.9894 }, { "start": 3631.24, "end": 3633.72, "probability": 0.8911 }, { "start": 3633.86, "end": 3635.0, "probability": 0.6677 }, { "start": 3635.58, "end": 3636.64, "probability": 0.9612 }, { "start": 3637.37, "end": 3640.28, "probability": 0.8923 }, { "start": 3640.46, "end": 3642.94, "probability": 0.9927 }, { "start": 3642.94, "end": 3645.76, "probability": 0.9814 }, { "start": 3645.88, "end": 3649.5, "probability": 0.9456 }, { "start": 3649.5, "end": 3652.68, "probability": 0.966 }, { "start": 3653.08, "end": 3657.48, "probability": 0.962 }, { "start": 3657.92, "end": 3659.64, "probability": 0.9934 }, { "start": 3660.62, "end": 3663.5, "probability": 0.9773 }, { "start": 3663.5, "end": 3666.46, "probability": 0.9968 }, { "start": 3666.86, "end": 3671.94, "probability": 0.7398 }, { "start": 3672.4, "end": 3676.86, "probability": 0.9369 }, { "start": 3677.44, "end": 3678.02, "probability": 0.9481 }, { "start": 3678.18, "end": 3678.52, "probability": 0.4915 }, { "start": 3678.58, "end": 3681.3, "probability": 0.9916 }, { "start": 3681.62, "end": 3684.86, "probability": 0.9982 }, { "start": 3685.04, "end": 3689.56, "probability": 0.9858 }, { "start": 3689.56, "end": 3694.0, "probability": 0.9261 }, { "start": 3694.3, "end": 3697.76, "probability": 0.9825 }, { "start": 3698.6, "end": 3699.76, "probability": 0.981 }, { "start": 3701.04, "end": 3702.21, "probability": 0.9888 }, { "start": 3703.04, "end": 3706.18, "probability": 0.8248 }, { "start": 3706.3, "end": 3707.06, "probability": 0.6908 }, { "start": 3707.24, "end": 3709.0, "probability": 0.9216 }, { "start": 3710.16, "end": 3714.94, "probability": 0.8487 }, { "start": 3715.6, "end": 3716.92, "probability": 0.9868 }, { "start": 3717.12, "end": 3718.7, "probability": 0.9746 }, { "start": 3719.26, "end": 3722.94, "probability": 0.9863 }, { "start": 3723.04, "end": 3724.88, "probability": 0.9594 }, { "start": 3725.32, "end": 3727.46, "probability": 0.9782 }, { "start": 3727.54, "end": 3731.1, "probability": 0.9897 }, { "start": 3731.3, "end": 3734.1, "probability": 0.941 }, { "start": 3734.1, "end": 3738.61, "probability": 0.8425 }, { "start": 3739.94, "end": 3743.12, "probability": 0.1548 }, { "start": 3745.52, "end": 3746.12, "probability": 0.0401 }, { "start": 3746.16, "end": 3746.32, "probability": 0.3811 }, { "start": 3746.32, "end": 3746.32, "probability": 0.4548 }, { "start": 3746.32, "end": 3746.32, "probability": 0.1855 }, { "start": 3746.32, "end": 3746.77, "probability": 0.5357 }, { "start": 3748.86, "end": 3750.46, "probability": 0.1703 }, { "start": 3751.92, "end": 3752.48, "probability": 0.0163 }, { "start": 3753.14, "end": 3754.18, "probability": 0.1452 }, { "start": 3756.22, "end": 3757.08, "probability": 0.1982 }, { "start": 3757.24, "end": 3759.12, "probability": 0.4387 }, { "start": 3759.12, "end": 3759.96, "probability": 0.9233 }, { "start": 3760.16, "end": 3761.48, "probability": 0.9795 }, { "start": 3761.62, "end": 3762.82, "probability": 0.5888 }, { "start": 3763.0, "end": 3763.04, "probability": 0.0445 }, { "start": 3763.04, "end": 3763.04, "probability": 0.0101 }, { "start": 3763.06, "end": 3763.06, "probability": 0.6071 }, { "start": 3763.26, "end": 3764.48, "probability": 0.735 }, { "start": 3764.78, "end": 3767.92, "probability": 0.8006 }, { "start": 3768.66, "end": 3770.82, "probability": 0.4236 }, { "start": 3770.82, "end": 3771.74, "probability": 0.1243 }, { "start": 3772.02, "end": 3775.76, "probability": 0.7764 }, { "start": 3776.3, "end": 3777.0, "probability": 0.0061 }, { "start": 3777.0, "end": 3778.0, "probability": 0.1174 }, { "start": 3779.08, "end": 3782.44, "probability": 0.6781 }, { "start": 3782.66, "end": 3786.32, "probability": 0.9965 }, { "start": 3786.4, "end": 3788.08, "probability": 0.9977 }, { "start": 3788.54, "end": 3791.64, "probability": 0.9985 }, { "start": 3791.68, "end": 3792.92, "probability": 0.9995 }, { "start": 3792.98, "end": 3795.0, "probability": 0.9885 }, { "start": 3795.7, "end": 3800.52, "probability": 0.7325 }, { "start": 3800.6, "end": 3801.56, "probability": 0.8035 }, { "start": 3801.86, "end": 3802.16, "probability": 0.7433 }, { "start": 3802.8, "end": 3803.86, "probability": 0.4034 }, { "start": 3806.86, "end": 3810.92, "probability": 0.1325 }, { "start": 3811.56, "end": 3815.62, "probability": 0.8051 }, { "start": 3816.38, "end": 3821.52, "probability": 0.991 }, { "start": 3822.48, "end": 3824.2, "probability": 0.7807 }, { "start": 3824.26, "end": 3826.34, "probability": 0.95 }, { "start": 3826.4, "end": 3827.78, "probability": 0.9088 }, { "start": 3827.86, "end": 3829.72, "probability": 0.8574 }, { "start": 3829.88, "end": 3831.44, "probability": 0.9473 }, { "start": 3831.94, "end": 3832.78, "probability": 0.7708 }, { "start": 3833.46, "end": 3836.76, "probability": 0.9893 }, { "start": 3836.84, "end": 3837.78, "probability": 0.657 }, { "start": 3837.92, "end": 3841.12, "probability": 0.9163 }, { "start": 3841.28, "end": 3842.24, "probability": 0.982 }, { "start": 3842.64, "end": 3845.4, "probability": 0.6841 }, { "start": 3846.08, "end": 3847.9, "probability": 0.4839 }, { "start": 3847.98, "end": 3848.61, "probability": 0.9007 }, { "start": 3848.86, "end": 3849.38, "probability": 0.6856 }, { "start": 3849.48, "end": 3850.2, "probability": 0.8682 }, { "start": 3850.32, "end": 3853.74, "probability": 0.8112 }, { "start": 3854.56, "end": 3855.06, "probability": 0.9238 }, { "start": 3855.34, "end": 3859.64, "probability": 0.9302 }, { "start": 3859.64, "end": 3864.08, "probability": 0.9727 }, { "start": 3864.58, "end": 3868.42, "probability": 0.9972 }, { "start": 3868.42, "end": 3873.04, "probability": 0.9979 }, { "start": 3873.4, "end": 3876.34, "probability": 0.9956 }, { "start": 3876.42, "end": 3878.97, "probability": 0.9905 }, { "start": 3879.96, "end": 3880.96, "probability": 0.6871 }, { "start": 3881.28, "end": 3882.72, "probability": 0.7319 }, { "start": 3883.32, "end": 3885.92, "probability": 0.9904 }, { "start": 3886.04, "end": 3887.1, "probability": 0.835 }, { "start": 3887.26, "end": 3887.38, "probability": 0.2572 }, { "start": 3887.44, "end": 3887.72, "probability": 0.8969 }, { "start": 3887.84, "end": 3892.14, "probability": 0.7662 }, { "start": 3892.26, "end": 3892.8, "probability": 0.9573 }, { "start": 3893.52, "end": 3896.34, "probability": 0.98 }, { "start": 3896.44, "end": 3896.6, "probability": 0.5904 }, { "start": 3898.12, "end": 3901.42, "probability": 0.6501 }, { "start": 3904.52, "end": 3905.44, "probability": 0.7114 }, { "start": 3906.06, "end": 3907.58, "probability": 0.5146 }, { "start": 3908.9, "end": 3912.88, "probability": 0.5972 }, { "start": 3915.52, "end": 3919.26, "probability": 0.9867 }, { "start": 3919.52, "end": 3920.19, "probability": 0.7304 }, { "start": 3921.32, "end": 3922.16, "probability": 0.9902 }, { "start": 3922.7, "end": 3924.5, "probability": 0.6141 }, { "start": 3924.66, "end": 3926.9, "probability": 0.737 }, { "start": 3928.48, "end": 3931.0, "probability": 0.9043 }, { "start": 3931.94, "end": 3935.32, "probability": 0.7712 }, { "start": 3936.98, "end": 3938.3, "probability": 0.8462 }, { "start": 3940.98, "end": 3941.9, "probability": 0.7703 }, { "start": 3961.56, "end": 3963.24, "probability": 0.5756 }, { "start": 3964.06, "end": 3966.12, "probability": 0.8566 }, { "start": 3967.36, "end": 3969.7, "probability": 0.9952 }, { "start": 3970.6, "end": 3971.96, "probability": 0.9614 }, { "start": 3973.26, "end": 3973.9, "probability": 0.9832 }, { "start": 3975.06, "end": 3976.56, "probability": 0.8877 }, { "start": 3976.72, "end": 3977.32, "probability": 0.9822 }, { "start": 3979.16, "end": 3980.42, "probability": 0.9983 }, { "start": 3980.54, "end": 3984.76, "probability": 0.9922 }, { "start": 3985.38, "end": 3987.34, "probability": 0.9958 }, { "start": 3987.56, "end": 3989.94, "probability": 0.815 }, { "start": 3992.22, "end": 3993.06, "probability": 0.9874 }, { "start": 3993.96, "end": 3996.02, "probability": 0.7699 }, { "start": 3996.98, "end": 3999.62, "probability": 0.9839 }, { "start": 4000.42, "end": 4001.62, "probability": 0.7628 }, { "start": 4002.84, "end": 4005.78, "probability": 0.9344 }, { "start": 4006.88, "end": 4008.58, "probability": 0.9922 }, { "start": 4008.6, "end": 4009.34, "probability": 0.9868 }, { "start": 4009.68, "end": 4011.74, "probability": 0.8888 }, { "start": 4012.34, "end": 4013.34, "probability": 0.67 }, { "start": 4013.98, "end": 4014.96, "probability": 0.9429 }, { "start": 4015.98, "end": 4017.64, "probability": 0.9655 }, { "start": 4018.28, "end": 4019.9, "probability": 0.9785 }, { "start": 4021.48, "end": 4024.16, "probability": 0.9893 }, { "start": 4024.32, "end": 4027.4, "probability": 0.9849 }, { "start": 4027.84, "end": 4030.74, "probability": 0.9878 }, { "start": 4031.3, "end": 4034.04, "probability": 0.9966 }, { "start": 4034.04, "end": 4037.12, "probability": 0.9974 }, { "start": 4038.7, "end": 4042.44, "probability": 0.9728 }, { "start": 4043.16, "end": 4047.26, "probability": 0.9919 }, { "start": 4047.26, "end": 4052.32, "probability": 0.9997 }, { "start": 4053.64, "end": 4057.34, "probability": 0.9928 }, { "start": 4057.34, "end": 4060.38, "probability": 0.9985 }, { "start": 4060.94, "end": 4064.42, "probability": 0.9662 }, { "start": 4064.42, "end": 4067.08, "probability": 0.999 }, { "start": 4069.02, "end": 4073.54, "probability": 0.995 }, { "start": 4073.54, "end": 4079.25, "probability": 0.9962 }, { "start": 4080.06, "end": 4082.86, "probability": 0.9844 }, { "start": 4083.6, "end": 4089.64, "probability": 0.9964 }, { "start": 4091.18, "end": 4096.98, "probability": 0.9836 }, { "start": 4097.06, "end": 4099.1, "probability": 0.8311 }, { "start": 4100.12, "end": 4102.28, "probability": 0.9183 }, { "start": 4103.72, "end": 4103.98, "probability": 0.8724 }, { "start": 4104.0, "end": 4105.04, "probability": 0.988 }, { "start": 4105.28, "end": 4109.36, "probability": 0.9952 }, { "start": 4111.42, "end": 4116.6, "probability": 0.9819 }, { "start": 4118.36, "end": 4121.26, "probability": 0.956 }, { "start": 4122.24, "end": 4125.52, "probability": 0.9849 }, { "start": 4126.52, "end": 4128.08, "probability": 0.9836 }, { "start": 4128.58, "end": 4133.98, "probability": 0.9805 }, { "start": 4134.7, "end": 4135.76, "probability": 0.979 }, { "start": 4135.82, "end": 4138.7, "probability": 0.9678 }, { "start": 4139.92, "end": 4141.46, "probability": 0.9986 }, { "start": 4143.42, "end": 4145.36, "probability": 0.999 }, { "start": 4146.32, "end": 4146.76, "probability": 0.9264 }, { "start": 4147.3, "end": 4148.38, "probability": 0.7319 }, { "start": 4149.1, "end": 4149.63, "probability": 0.8557 }, { "start": 4152.32, "end": 4153.64, "probability": 0.9407 }, { "start": 4154.72, "end": 4156.08, "probability": 0.9891 }, { "start": 4157.26, "end": 4159.84, "probability": 0.8535 }, { "start": 4161.02, "end": 4163.72, "probability": 0.9925 }, { "start": 4164.64, "end": 4167.86, "probability": 0.9907 }, { "start": 4168.56, "end": 4170.12, "probability": 0.8625 }, { "start": 4172.26, "end": 4175.36, "probability": 0.8853 }, { "start": 4175.36, "end": 4178.3, "probability": 0.99 }, { "start": 4181.42, "end": 4183.44, "probability": 0.894 }, { "start": 4185.32, "end": 4189.96, "probability": 0.4309 }, { "start": 4192.3, "end": 4195.22, "probability": 0.981 }, { "start": 4196.52, "end": 4197.16, "probability": 0.6543 }, { "start": 4201.72, "end": 4204.18, "probability": 0.788 }, { "start": 4213.28, "end": 4214.64, "probability": 0.8067 }, { "start": 4214.76, "end": 4215.38, "probability": 0.7412 }, { "start": 4215.5, "end": 4218.44, "probability": 0.8564 }, { "start": 4218.98, "end": 4219.42, "probability": 0.9016 }, { "start": 4220.22, "end": 4221.76, "probability": 0.9148 }, { "start": 4222.28, "end": 4225.86, "probability": 0.9702 }, { "start": 4226.34, "end": 4229.58, "probability": 0.995 }, { "start": 4230.24, "end": 4233.06, "probability": 0.9973 }, { "start": 4233.74, "end": 4234.22, "probability": 0.8082 }, { "start": 4234.66, "end": 4237.52, "probability": 0.8197 }, { "start": 4238.76, "end": 4239.22, "probability": 0.7557 }, { "start": 4239.86, "end": 4241.5, "probability": 0.8854 }, { "start": 4256.74, "end": 4257.64, "probability": 0.7094 }, { "start": 4259.7, "end": 4261.2, "probability": 0.8976 }, { "start": 4262.54, "end": 4264.7, "probability": 0.7652 }, { "start": 4265.42, "end": 4270.86, "probability": 0.9301 }, { "start": 4274.74, "end": 4278.12, "probability": 0.9969 }, { "start": 4278.14, "end": 4282.22, "probability": 0.9985 }, { "start": 4282.22, "end": 4286.46, "probability": 0.9979 }, { "start": 4287.44, "end": 4291.68, "probability": 0.6675 }, { "start": 4292.66, "end": 4296.2, "probability": 0.995 }, { "start": 4297.24, "end": 4299.72, "probability": 0.9956 }, { "start": 4301.16, "end": 4304.1, "probability": 0.8845 }, { "start": 4304.28, "end": 4307.42, "probability": 0.9991 }, { "start": 4307.42, "end": 4310.8, "probability": 0.9975 }, { "start": 4312.42, "end": 4312.56, "probability": 0.3138 }, { "start": 4312.72, "end": 4313.56, "probability": 0.7351 }, { "start": 4313.7, "end": 4316.92, "probability": 0.9948 }, { "start": 4317.46, "end": 4319.44, "probability": 0.6311 }, { "start": 4319.44, "end": 4321.91, "probability": 0.9977 }, { "start": 4322.68, "end": 4325.5, "probability": 0.4195 }, { "start": 4325.5, "end": 4326.68, "probability": 0.7337 }, { "start": 4327.44, "end": 4330.54, "probability": 0.8692 }, { "start": 4330.6, "end": 4334.06, "probability": 0.9988 }, { "start": 4334.94, "end": 4339.22, "probability": 0.8007 }, { "start": 4340.26, "end": 4343.52, "probability": 0.9958 }, { "start": 4343.72, "end": 4347.2, "probability": 0.7641 }, { "start": 4347.44, "end": 4351.36, "probability": 0.8358 }, { "start": 4351.46, "end": 4354.44, "probability": 0.9908 }, { "start": 4354.44, "end": 4359.94, "probability": 0.9739 }, { "start": 4360.64, "end": 4361.86, "probability": 0.8013 }, { "start": 4362.58, "end": 4366.58, "probability": 0.9969 }, { "start": 4366.58, "end": 4369.42, "probability": 0.9953 }, { "start": 4370.02, "end": 4372.12, "probability": 0.9894 }, { "start": 4372.12, "end": 4376.08, "probability": 0.9967 }, { "start": 4377.14, "end": 4379.72, "probability": 0.9939 }, { "start": 4379.72, "end": 4382.44, "probability": 0.9906 }, { "start": 4383.56, "end": 4386.4, "probability": 0.9739 }, { "start": 4387.46, "end": 4390.86, "probability": 0.9563 }, { "start": 4391.04, "end": 4394.74, "probability": 0.9989 }, { "start": 4395.4, "end": 4397.56, "probability": 0.869 }, { "start": 4397.74, "end": 4399.84, "probability": 0.9564 }, { "start": 4400.48, "end": 4402.62, "probability": 0.7823 }, { "start": 4403.26, "end": 4406.72, "probability": 0.9448 }, { "start": 4406.72, "end": 4410.6, "probability": 0.9829 }, { "start": 4411.9, "end": 4415.44, "probability": 0.9932 }, { "start": 4416.0, "end": 4419.16, "probability": 0.9885 }, { "start": 4419.16, "end": 4423.98, "probability": 0.9515 }, { "start": 4425.06, "end": 4427.7, "probability": 0.9375 }, { "start": 4428.08, "end": 4431.1, "probability": 0.9852 }, { "start": 4431.1, "end": 4436.44, "probability": 0.9714 }, { "start": 4437.36, "end": 4440.84, "probability": 0.9953 }, { "start": 4441.42, "end": 4442.62, "probability": 0.9944 }, { "start": 4444.56, "end": 4449.1, "probability": 0.9331 }, { "start": 4449.1, "end": 4452.36, "probability": 0.9977 }, { "start": 4452.56, "end": 4454.1, "probability": 0.7658 }, { "start": 4454.58, "end": 4456.68, "probability": 0.9924 }, { "start": 4459.18, "end": 4460.62, "probability": 0.7768 }, { "start": 4461.3, "end": 4462.1, "probability": 0.2304 }, { "start": 4462.26, "end": 4462.6, "probability": 0.565 }, { "start": 4464.12, "end": 4464.32, "probability": 0.6547 }, { "start": 4464.6, "end": 4465.78, "probability": 0.4928 }, { "start": 4466.28, "end": 4468.04, "probability": 0.7723 }, { "start": 4468.96, "end": 4472.06, "probability": 0.8416 }, { "start": 4473.04, "end": 4474.02, "probability": 0.937 }, { "start": 4474.22, "end": 4475.58, "probability": 0.9069 }, { "start": 4475.68, "end": 4478.1, "probability": 0.5775 }, { "start": 4478.14, "end": 4480.58, "probability": 0.4015 }, { "start": 4481.44, "end": 4481.92, "probability": 0.7233 }, { "start": 4482.28, "end": 4483.22, "probability": 0.6678 }, { "start": 4483.24, "end": 4483.58, "probability": 0.5554 }, { "start": 4492.61, "end": 4495.3, "probability": 0.0896 }, { "start": 4495.36, "end": 4497.58, "probability": 0.0334 }, { "start": 4503.48, "end": 4503.48, "probability": 0.0295 }, { "start": 4504.8, "end": 4504.96, "probability": 0.5237 }, { "start": 4504.96, "end": 4508.12, "probability": 0.7226 }, { "start": 4512.36, "end": 4514.94, "probability": 0.6046 }, { "start": 4515.12, "end": 4516.98, "probability": 0.9891 }, { "start": 4516.98, "end": 4519.06, "probability": 0.6608 }, { "start": 4519.6, "end": 4523.28, "probability": 0.9658 }, { "start": 4523.46, "end": 4524.16, "probability": 0.734 }, { "start": 4524.82, "end": 4526.08, "probability": 0.9344 }, { "start": 4526.2, "end": 4527.36, "probability": 0.7973 }, { "start": 4527.44, "end": 4530.48, "probability": 0.8876 }, { "start": 4531.52, "end": 4533.38, "probability": 0.9136 }, { "start": 4533.46, "end": 4534.54, "probability": 0.5861 }, { "start": 4536.22, "end": 4538.98, "probability": 0.8408 }, { "start": 4543.54, "end": 4544.8, "probability": 0.6539 }, { "start": 4562.94, "end": 4563.7, "probability": 0.6355 }, { "start": 4569.16, "end": 4571.9, "probability": 0.5173 }, { "start": 4572.36, "end": 4572.68, "probability": 0.7336 }, { "start": 4572.98, "end": 4574.3, "probability": 0.5632 }, { "start": 4574.72, "end": 4575.32, "probability": 0.8974 }, { "start": 4575.96, "end": 4578.18, "probability": 0.6958 }, { "start": 4578.18, "end": 4579.1, "probability": 0.8349 }, { "start": 4580.4, "end": 4581.38, "probability": 0.8198 }, { "start": 4581.56, "end": 4584.84, "probability": 0.7664 }, { "start": 4585.36, "end": 4586.55, "probability": 0.9873 }, { "start": 4587.12, "end": 4590.94, "probability": 0.9945 }, { "start": 4591.42, "end": 4596.62, "probability": 0.9806 }, { "start": 4597.04, "end": 4600.06, "probability": 0.8694 }, { "start": 4600.08, "end": 4602.4, "probability": 0.6602 }, { "start": 4603.46, "end": 4608.52, "probability": 0.9521 }, { "start": 4608.72, "end": 4609.16, "probability": 0.6203 }, { "start": 4609.24, "end": 4610.72, "probability": 0.932 }, { "start": 4611.54, "end": 4616.5, "probability": 0.9741 }, { "start": 4617.48, "end": 4624.88, "probability": 0.9469 }, { "start": 4625.82, "end": 4632.78, "probability": 0.9807 }, { "start": 4632.78, "end": 4637.72, "probability": 0.9092 }, { "start": 4637.8, "end": 4638.88, "probability": 0.9966 }, { "start": 4639.04, "end": 4639.98, "probability": 0.6991 }, { "start": 4640.62, "end": 4643.0, "probability": 0.9723 }, { "start": 4644.22, "end": 4648.26, "probability": 0.88 }, { "start": 4649.2, "end": 4653.94, "probability": 0.9471 }, { "start": 4654.72, "end": 4655.26, "probability": 0.5629 }, { "start": 4655.34, "end": 4661.28, "probability": 0.9859 }, { "start": 4662.22, "end": 4669.78, "probability": 0.9824 }, { "start": 4669.87, "end": 4674.1, "probability": 0.9951 }, { "start": 4675.28, "end": 4682.52, "probability": 0.9963 }, { "start": 4683.44, "end": 4685.2, "probability": 0.9972 }, { "start": 4686.16, "end": 4690.56, "probability": 0.9965 }, { "start": 4691.06, "end": 4694.96, "probability": 0.9987 }, { "start": 4695.58, "end": 4696.92, "probability": 0.5436 }, { "start": 4697.38, "end": 4700.62, "probability": 0.9951 }, { "start": 4701.18, "end": 4703.16, "probability": 0.9856 }, { "start": 4703.56, "end": 4708.04, "probability": 0.9985 }, { "start": 4708.38, "end": 4714.38, "probability": 0.9992 }, { "start": 4714.96, "end": 4717.22, "probability": 0.9956 }, { "start": 4717.3, "end": 4720.74, "probability": 0.9839 }, { "start": 4721.4, "end": 4724.88, "probability": 0.9918 }, { "start": 4725.62, "end": 4727.42, "probability": 0.9679 }, { "start": 4727.82, "end": 4729.16, "probability": 0.9161 }, { "start": 4729.38, "end": 4736.04, "probability": 0.9131 }, { "start": 4737.08, "end": 4746.2, "probability": 0.9967 }, { "start": 4746.54, "end": 4749.78, "probability": 0.9923 }, { "start": 4750.42, "end": 4752.98, "probability": 0.8231 }, { "start": 4753.22, "end": 4754.58, "probability": 0.9148 }, { "start": 4754.62, "end": 4757.74, "probability": 0.9815 }, { "start": 4758.14, "end": 4759.96, "probability": 0.9904 }, { "start": 4760.24, "end": 4762.21, "probability": 0.9771 }, { "start": 4762.76, "end": 4763.76, "probability": 0.7179 }, { "start": 4764.18, "end": 4765.02, "probability": 0.8644 }, { "start": 4766.5, "end": 4771.36, "probability": 0.9785 }, { "start": 4771.48, "end": 4773.51, "probability": 0.6495 }, { "start": 4774.12, "end": 4774.82, "probability": 0.6785 }, { "start": 4774.94, "end": 4774.96, "probability": 0.4618 }, { "start": 4774.96, "end": 4775.56, "probability": 0.4511 }, { "start": 4775.66, "end": 4777.72, "probability": 0.8134 }, { "start": 4780.4, "end": 4781.98, "probability": 0.8978 }, { "start": 4784.03, "end": 4786.58, "probability": 0.7729 }, { "start": 4787.4, "end": 4789.12, "probability": 0.8456 }, { "start": 4790.56, "end": 4793.66, "probability": 0.9578 }, { "start": 4793.66, "end": 4795.08, "probability": 0.9588 }, { "start": 4795.7, "end": 4795.86, "probability": 0.6602 }, { "start": 4796.3, "end": 4796.9, "probability": 0.6653 }, { "start": 4796.98, "end": 4797.56, "probability": 0.6838 }, { "start": 4797.94, "end": 4800.34, "probability": 0.9684 }, { "start": 4801.18, "end": 4803.15, "probability": 0.9983 }, { "start": 4803.94, "end": 4805.1, "probability": 0.8322 }, { "start": 4805.78, "end": 4806.43, "probability": 0.9653 }, { "start": 4806.86, "end": 4807.32, "probability": 0.8869 }, { "start": 4807.64, "end": 4809.36, "probability": 0.9721 }, { "start": 4809.7, "end": 4811.86, "probability": 0.9988 }, { "start": 4812.2, "end": 4813.9, "probability": 0.695 }, { "start": 4814.52, "end": 4816.74, "probability": 0.663 }, { "start": 4816.94, "end": 4819.5, "probability": 0.9453 }, { "start": 4819.66, "end": 4822.47, "probability": 0.9907 }, { "start": 4822.6, "end": 4823.54, "probability": 0.7462 }, { "start": 4823.7, "end": 4824.0, "probability": 0.9543 }, { "start": 4824.18, "end": 4824.6, "probability": 0.9089 }, { "start": 4824.66, "end": 4824.92, "probability": 0.4751 }, { "start": 4825.02, "end": 4825.78, "probability": 0.8578 }, { "start": 4826.14, "end": 4827.94, "probability": 0.9914 }, { "start": 4828.4, "end": 4830.56, "probability": 0.6988 }, { "start": 4830.98, "end": 4832.46, "probability": 0.7419 }, { "start": 4832.9, "end": 4835.3, "probability": 0.9922 }, { "start": 4835.34, "end": 4835.84, "probability": 0.5642 }, { "start": 4835.88, "end": 4836.66, "probability": 0.7777 }, { "start": 4836.92, "end": 4839.42, "probability": 0.781 }, { "start": 4839.42, "end": 4841.94, "probability": 0.9781 }, { "start": 4842.46, "end": 4843.52, "probability": 0.9331 }, { "start": 4843.84, "end": 4846.64, "probability": 0.6758 }, { "start": 4847.22, "end": 4848.24, "probability": 0.965 }, { "start": 4848.52, "end": 4849.24, "probability": 0.9881 }, { "start": 4849.34, "end": 4850.22, "probability": 0.9348 }, { "start": 4850.6, "end": 4854.48, "probability": 0.916 }, { "start": 4854.82, "end": 4859.16, "probability": 0.998 }, { "start": 4859.36, "end": 4861.49, "probability": 0.9987 }, { "start": 4862.04, "end": 4864.9, "probability": 0.9293 }, { "start": 4865.14, "end": 4865.84, "probability": 0.8174 }, { "start": 4866.68, "end": 4867.52, "probability": 0.9805 }, { "start": 4867.62, "end": 4871.78, "probability": 0.9806 }, { "start": 4872.62, "end": 4874.5, "probability": 0.9575 }, { "start": 4875.04, "end": 4878.92, "probability": 0.9788 }, { "start": 4879.02, "end": 4879.98, "probability": 0.6841 }, { "start": 4880.42, "end": 4881.54, "probability": 0.9496 }, { "start": 4881.72, "end": 4882.81, "probability": 0.9778 }, { "start": 4883.34, "end": 4885.04, "probability": 0.9857 }, { "start": 4885.26, "end": 4888.08, "probability": 0.9947 }, { "start": 4888.7, "end": 4890.06, "probability": 0.9979 }, { "start": 4890.66, "end": 4893.12, "probability": 0.9062 }, { "start": 4893.3, "end": 4896.16, "probability": 0.8069 }, { "start": 4896.52, "end": 4897.5, "probability": 0.9927 }, { "start": 4898.02, "end": 4899.02, "probability": 0.7838 }, { "start": 4899.56, "end": 4902.96, "probability": 0.9253 }, { "start": 4903.3, "end": 4905.64, "probability": 0.9816 }, { "start": 4905.72, "end": 4908.74, "probability": 0.9416 }, { "start": 4909.44, "end": 4910.98, "probability": 0.9215 }, { "start": 4911.28, "end": 4914.24, "probability": 0.8789 }, { "start": 4915.58, "end": 4919.24, "probability": 0.9985 }, { "start": 4920.34, "end": 4923.16, "probability": 0.8895 }, { "start": 4923.82, "end": 4930.98, "probability": 0.9669 }, { "start": 4931.54, "end": 4933.5, "probability": 0.9966 }, { "start": 4933.58, "end": 4934.48, "probability": 0.7075 }, { "start": 4934.66, "end": 4935.4, "probability": 0.7158 }, { "start": 4935.54, "end": 4936.14, "probability": 0.7229 }, { "start": 4936.82, "end": 4937.4, "probability": 0.9324 }, { "start": 4938.12, "end": 4941.14, "probability": 0.9897 }, { "start": 4941.18, "end": 4942.64, "probability": 0.9822 }, { "start": 4943.34, "end": 4945.26, "probability": 0.9875 }, { "start": 4945.74, "end": 4948.48, "probability": 0.8642 }, { "start": 4949.02, "end": 4950.58, "probability": 0.7795 }, { "start": 4951.18, "end": 4954.12, "probability": 0.9202 }, { "start": 4954.42, "end": 4956.8, "probability": 0.9778 }, { "start": 4958.22, "end": 4962.78, "probability": 0.9887 }, { "start": 4962.78, "end": 4966.14, "probability": 0.9979 }, { "start": 4966.56, "end": 4970.92, "probability": 0.9608 }, { "start": 4971.46, "end": 4977.84, "probability": 0.9966 }, { "start": 4978.56, "end": 4981.74, "probability": 0.9757 }, { "start": 4982.1, "end": 4985.82, "probability": 0.6628 }, { "start": 4985.88, "end": 4986.42, "probability": 0.8245 }, { "start": 4986.52, "end": 4987.36, "probability": 0.7761 }, { "start": 4987.8, "end": 4990.4, "probability": 0.9952 }, { "start": 4991.0, "end": 4993.34, "probability": 0.9329 }, { "start": 4993.74, "end": 4995.58, "probability": 0.9604 }, { "start": 4995.88, "end": 4996.48, "probability": 0.9576 }, { "start": 4996.8, "end": 4999.92, "probability": 0.9868 }, { "start": 5000.32, "end": 5002.32, "probability": 0.9888 }, { "start": 5002.84, "end": 5006.38, "probability": 0.9958 }, { "start": 5006.76, "end": 5008.94, "probability": 0.9722 }, { "start": 5009.3, "end": 5010.04, "probability": 0.5083 }, { "start": 5010.32, "end": 5014.48, "probability": 0.9449 }, { "start": 5014.86, "end": 5016.62, "probability": 0.892 }, { "start": 5017.08, "end": 5022.02, "probability": 0.9731 }, { "start": 5022.02, "end": 5027.58, "probability": 0.9937 }, { "start": 5028.28, "end": 5033.74, "probability": 0.9946 }, { "start": 5034.38, "end": 5037.54, "probability": 0.9983 }, { "start": 5037.54, "end": 5041.22, "probability": 0.9837 }, { "start": 5041.78, "end": 5043.5, "probability": 0.9993 }, { "start": 5044.32, "end": 5045.12, "probability": 0.8188 }, { "start": 5045.34, "end": 5046.02, "probability": 0.8702 }, { "start": 5046.72, "end": 5049.62, "probability": 0.9707 }, { "start": 5049.78, "end": 5052.16, "probability": 0.8149 }, { "start": 5052.32, "end": 5052.64, "probability": 0.8822 }, { "start": 5053.08, "end": 5055.0, "probability": 0.9961 }, { "start": 5055.2, "end": 5057.02, "probability": 0.9817 }, { "start": 5057.06, "end": 5060.51, "probability": 0.9885 }, { "start": 5063.86, "end": 5066.2, "probability": 0.7483 }, { "start": 5066.32, "end": 5068.24, "probability": 0.8886 }, { "start": 5069.06, "end": 5069.86, "probability": 0.8243 }, { "start": 5070.28, "end": 5070.96, "probability": 0.8956 }, { "start": 5071.12, "end": 5071.88, "probability": 0.8556 }, { "start": 5072.28, "end": 5074.76, "probability": 0.9786 }, { "start": 5075.0, "end": 5076.02, "probability": 0.9628 }, { "start": 5076.18, "end": 5076.76, "probability": 0.8939 }, { "start": 5076.94, "end": 5080.54, "probability": 0.9926 }, { "start": 5080.54, "end": 5084.96, "probability": 0.9988 }, { "start": 5085.26, "end": 5085.74, "probability": 0.6768 }, { "start": 5087.68, "end": 5090.3, "probability": 0.8393 }, { "start": 5091.1, "end": 5094.84, "probability": 0.9144 }, { "start": 5095.02, "end": 5095.6, "probability": 0.8434 }, { "start": 5096.6, "end": 5097.6, "probability": 0.9469 }, { "start": 5097.98, "end": 5098.3, "probability": 0.4183 }, { "start": 5099.84, "end": 5101.02, "probability": 0.8084 }, { "start": 5101.26, "end": 5102.84, "probability": 0.2633 }, { "start": 5123.4, "end": 5125.76, "probability": 0.6623 }, { "start": 5126.62, "end": 5128.4, "probability": 0.968 }, { "start": 5128.48, "end": 5129.4, "probability": 0.6267 }, { "start": 5129.52, "end": 5131.64, "probability": 0.7681 }, { "start": 5132.08, "end": 5134.44, "probability": 0.8794 }, { "start": 5134.96, "end": 5137.64, "probability": 0.998 }, { "start": 5138.2, "end": 5139.52, "probability": 0.7188 }, { "start": 5140.22, "end": 5143.34, "probability": 0.9932 }, { "start": 5143.34, "end": 5147.46, "probability": 0.9855 }, { "start": 5147.86, "end": 5152.02, "probability": 0.9946 }, { "start": 5152.74, "end": 5156.02, "probability": 0.995 }, { "start": 5156.54, "end": 5157.92, "probability": 0.8892 }, { "start": 5158.4, "end": 5162.68, "probability": 0.965 }, { "start": 5162.68, "end": 5166.16, "probability": 0.9907 }, { "start": 5166.92, "end": 5169.16, "probability": 0.9927 }, { "start": 5169.16, "end": 5172.5, "probability": 0.999 }, { "start": 5173.02, "end": 5176.02, "probability": 0.8969 }, { "start": 5176.58, "end": 5177.94, "probability": 0.8937 }, { "start": 5178.54, "end": 5183.76, "probability": 0.9751 }, { "start": 5184.42, "end": 5186.26, "probability": 0.8095 }, { "start": 5186.34, "end": 5186.78, "probability": 0.8376 }, { "start": 5187.9, "end": 5190.02, "probability": 0.8696 }, { "start": 5190.36, "end": 5190.9, "probability": 0.866 }, { "start": 5191.92, "end": 5194.84, "probability": 0.6464 }, { "start": 5195.98, "end": 5199.18, "probability": 0.4164 }, { "start": 5199.78, "end": 5199.88, "probability": 0.2831 }, { "start": 5216.18, "end": 5218.98, "probability": 0.6559 }, { "start": 5220.92, "end": 5221.5, "probability": 0.839 }, { "start": 5222.48, "end": 5224.42, "probability": 0.993 }, { "start": 5227.42, "end": 5230.22, "probability": 0.9949 }, { "start": 5232.88, "end": 5233.8, "probability": 0.6825 }, { "start": 5234.52, "end": 5238.2, "probability": 0.9902 }, { "start": 5238.2, "end": 5243.0, "probability": 0.8842 }, { "start": 5244.04, "end": 5245.24, "probability": 0.9395 }, { "start": 5245.98, "end": 5249.8, "probability": 0.9712 }, { "start": 5250.18, "end": 5253.2, "probability": 0.9878 }, { "start": 5253.2, "end": 5257.36, "probability": 0.988 }, { "start": 5257.46, "end": 5258.3, "probability": 0.9912 }, { "start": 5258.68, "end": 5260.86, "probability": 0.9985 }, { "start": 5261.54, "end": 5263.36, "probability": 0.9893 }, { "start": 5264.42, "end": 5267.4, "probability": 0.9983 }, { "start": 5268.04, "end": 5271.12, "probability": 0.952 }, { "start": 5272.16, "end": 5275.24, "probability": 0.9863 }, { "start": 5275.24, "end": 5278.14, "probability": 0.9992 }, { "start": 5279.02, "end": 5282.74, "probability": 0.9926 }, { "start": 5283.48, "end": 5287.0, "probability": 0.9921 }, { "start": 5287.78, "end": 5287.9, "probability": 0.4915 }, { "start": 5288.06, "end": 5288.4, "probability": 0.8904 }, { "start": 5288.5, "end": 5289.82, "probability": 0.8427 }, { "start": 5290.16, "end": 5292.82, "probability": 0.9643 }, { "start": 5293.68, "end": 5297.12, "probability": 0.9425 }, { "start": 5297.56, "end": 5300.82, "probability": 0.9988 }, { "start": 5300.82, "end": 5304.32, "probability": 0.998 }, { "start": 5305.44, "end": 5307.88, "probability": 0.9839 }, { "start": 5308.02, "end": 5308.5, "probability": 0.5286 }, { "start": 5308.74, "end": 5311.38, "probability": 0.9189 }, { "start": 5311.98, "end": 5316.3, "probability": 0.9868 }, { "start": 5316.92, "end": 5318.22, "probability": 0.8006 }, { "start": 5319.32, "end": 5322.78, "probability": 0.9914 }, { "start": 5322.84, "end": 5325.12, "probability": 0.94 }, { "start": 5325.7, "end": 5328.02, "probability": 0.9981 }, { "start": 5328.02, "end": 5331.5, "probability": 0.9956 }, { "start": 5332.32, "end": 5332.92, "probability": 0.7658 }, { "start": 5333.06, "end": 5333.36, "probability": 0.8676 }, { "start": 5333.46, "end": 5336.84, "probability": 0.9601 }, { "start": 5337.38, "end": 5339.98, "probability": 0.9869 }, { "start": 5340.08, "end": 5344.5, "probability": 0.8371 }, { "start": 5344.5, "end": 5347.28, "probability": 0.9974 }, { "start": 5347.88, "end": 5350.76, "probability": 0.969 }, { "start": 5351.8, "end": 5353.56, "probability": 0.7031 }, { "start": 5354.16, "end": 5355.46, "probability": 0.6487 }, { "start": 5355.64, "end": 5358.36, "probability": 0.9623 }, { "start": 5358.96, "end": 5361.32, "probability": 0.7857 }, { "start": 5361.32, "end": 5363.72, "probability": 0.9958 }, { "start": 5364.2, "end": 5364.88, "probability": 0.7703 }, { "start": 5364.94, "end": 5366.06, "probability": 0.7344 }, { "start": 5366.98, "end": 5371.22, "probability": 0.9976 }, { "start": 5372.3, "end": 5377.42, "probability": 0.9736 }, { "start": 5378.16, "end": 5381.18, "probability": 0.9971 }, { "start": 5382.1, "end": 5384.12, "probability": 0.9449 }, { "start": 5387.02, "end": 5390.78, "probability": 0.7798 }, { "start": 5391.2, "end": 5396.16, "probability": 0.811 }, { "start": 5396.84, "end": 5397.26, "probability": 0.9271 }, { "start": 5398.16, "end": 5399.38, "probability": 0.7191 }, { "start": 5400.58, "end": 5402.82, "probability": 0.8563 }, { "start": 5402.84, "end": 5403.18, "probability": 0.4432 }, { "start": 5405.46, "end": 5406.66, "probability": 0.1357 }, { "start": 5407.58, "end": 5407.96, "probability": 0.3279 }, { "start": 5410.32, "end": 5410.8, "probability": 0.5155 }, { "start": 5419.52, "end": 5421.74, "probability": 0.6061 }, { "start": 5423.0, "end": 5431.24, "probability": 0.8196 }, { "start": 5432.74, "end": 5437.08, "probability": 0.849 }, { "start": 5438.34, "end": 5440.78, "probability": 0.9839 }, { "start": 5441.02, "end": 5447.66, "probability": 0.9953 }, { "start": 5447.66, "end": 5456.34, "probability": 0.9929 }, { "start": 5456.84, "end": 5458.44, "probability": 0.8997 }, { "start": 5458.52, "end": 5461.94, "probability": 0.9993 }, { "start": 5462.22, "end": 5464.08, "probability": 0.9743 }, { "start": 5464.66, "end": 5467.42, "probability": 0.9406 }, { "start": 5468.44, "end": 5473.0, "probability": 0.9076 }, { "start": 5474.02, "end": 5478.04, "probability": 0.9933 }, { "start": 5478.7, "end": 5483.14, "probability": 0.9965 }, { "start": 5484.02, "end": 5486.58, "probability": 0.9888 }, { "start": 5486.66, "end": 5487.64, "probability": 0.6988 }, { "start": 5487.64, "end": 5489.46, "probability": 0.998 }, { "start": 5490.18, "end": 5492.97, "probability": 0.769 }, { "start": 5494.88, "end": 5497.43, "probability": 0.5082 }, { "start": 5498.9, "end": 5501.34, "probability": 0.7633 }, { "start": 5501.34, "end": 5502.9, "probability": 0.0335 }, { "start": 5503.02, "end": 5505.82, "probability": 0.5221 }, { "start": 5505.9, "end": 5507.7, "probability": 0.9528 }, { "start": 5507.76, "end": 5512.22, "probability": 0.9856 }, { "start": 5512.46, "end": 5513.2, "probability": 0.8875 }, { "start": 5513.9, "end": 5515.3, "probability": 0.6886 }, { "start": 5515.8, "end": 5518.12, "probability": 0.9882 }, { "start": 5518.48, "end": 5521.56, "probability": 0.9957 }, { "start": 5522.08, "end": 5524.16, "probability": 0.9917 }, { "start": 5524.34, "end": 5525.98, "probability": 0.992 }, { "start": 5526.48, "end": 5530.88, "probability": 0.9841 }, { "start": 5531.5, "end": 5533.56, "probability": 0.9926 }, { "start": 5534.26, "end": 5535.0, "probability": 0.9484 }, { "start": 5535.5, "end": 5539.16, "probability": 0.9917 }, { "start": 5539.16, "end": 5542.6, "probability": 0.9979 }, { "start": 5542.76, "end": 5543.2, "probability": 0.7157 }, { "start": 5543.26, "end": 5545.06, "probability": 0.9721 }, { "start": 5545.74, "end": 5547.2, "probability": 0.9956 }, { "start": 5547.32, "end": 5550.18, "probability": 0.9668 }, { "start": 5550.84, "end": 5556.18, "probability": 0.9785 }, { "start": 5556.36, "end": 5557.56, "probability": 0.8513 }, { "start": 5558.42, "end": 5558.96, "probability": 0.9139 }, { "start": 5560.38, "end": 5562.96, "probability": 0.5642 }, { "start": 5563.79, "end": 5565.68, "probability": 0.52 }, { "start": 5566.08, "end": 5570.0, "probability": 0.2734 }, { "start": 5570.1, "end": 5571.62, "probability": 0.9967 }, { "start": 5572.2, "end": 5573.02, "probability": 0.8473 }, { "start": 5575.44, "end": 5578.2, "probability": 0.207 }, { "start": 5578.36, "end": 5581.7, "probability": 0.8682 }, { "start": 5581.82, "end": 5583.2, "probability": 0.4453 }, { "start": 5583.48, "end": 5585.18, "probability": 0.7755 }, { "start": 5585.86, "end": 5587.56, "probability": 0.5158 }, { "start": 5588.42, "end": 5589.94, "probability": 0.2525 }, { "start": 5595.56, "end": 5596.02, "probability": 0.0012 }, { "start": 5597.46, "end": 5599.92, "probability": 0.0757 }, { "start": 5599.92, "end": 5601.96, "probability": 0.0456 }, { "start": 5603.64, "end": 5603.72, "probability": 0.0305 }, { "start": 5605.6, "end": 5606.26, "probability": 0.5845 }, { "start": 5606.26, "end": 5610.98, "probability": 0.2072 }, { "start": 5610.98, "end": 5617.24, "probability": 0.9835 }, { "start": 5617.38, "end": 5617.92, "probability": 0.8783 }, { "start": 5618.18, "end": 5621.84, "probability": 0.714 }, { "start": 5622.02, "end": 5624.26, "probability": 0.8576 }, { "start": 5624.92, "end": 5625.76, "probability": 0.5125 }, { "start": 5627.2, "end": 5628.7, "probability": 0.2872 }, { "start": 5629.52, "end": 5632.92, "probability": 0.1252 }, { "start": 5634.66, "end": 5636.64, "probability": 0.0051 }, { "start": 5637.64, "end": 5638.42, "probability": 0.0115 }, { "start": 5640.8, "end": 5645.06, "probability": 0.0245 }, { "start": 5646.06, "end": 5646.52, "probability": 0.4618 }, { "start": 5646.52, "end": 5650.3, "probability": 0.6862 }, { "start": 5650.98, "end": 5654.18, "probability": 0.8691 }, { "start": 5654.18, "end": 5658.9, "probability": 0.987 }, { "start": 5659.06, "end": 5660.32, "probability": 0.6694 }, { "start": 5660.66, "end": 5662.2, "probability": 0.2998 }, { "start": 5663.64, "end": 5665.9, "probability": 0.9683 }, { "start": 5666.32, "end": 5667.86, "probability": 0.9291 }, { "start": 5668.48, "end": 5671.8, "probability": 0.9813 }, { "start": 5672.0, "end": 5674.46, "probability": 0.4181 }, { "start": 5674.5, "end": 5675.46, "probability": 0.9398 }, { "start": 5675.58, "end": 5677.32, "probability": 0.66 }, { "start": 5677.84, "end": 5680.26, "probability": 0.7292 }, { "start": 5680.98, "end": 5685.65, "probability": 0.9862 }, { "start": 5686.88, "end": 5687.94, "probability": 0.8553 }, { "start": 5690.58, "end": 5690.98, "probability": 0.1064 }, { "start": 5690.98, "end": 5694.1, "probability": 0.7912 }, { "start": 5695.74, "end": 5697.44, "probability": 0.9093 }, { "start": 5699.49, "end": 5702.88, "probability": 0.4844 }, { "start": 5703.28, "end": 5705.6, "probability": 0.9486 }, { "start": 5707.36, "end": 5708.46, "probability": 0.8554 }, { "start": 5709.32, "end": 5711.48, "probability": 0.5247 }, { "start": 5711.88, "end": 5714.26, "probability": 0.9844 }, { "start": 5715.86, "end": 5718.76, "probability": 0.7915 }, { "start": 5718.78, "end": 5719.98, "probability": 0.8909 }, { "start": 5720.7, "end": 5725.69, "probability": 0.998 }, { "start": 5725.86, "end": 5726.42, "probability": 0.9068 }, { "start": 5726.52, "end": 5727.28, "probability": 0.9838 }, { "start": 5728.68, "end": 5730.12, "probability": 0.9631 }, { "start": 5730.28, "end": 5732.44, "probability": 0.9242 }, { "start": 5733.82, "end": 5736.06, "probability": 0.9448 }, { "start": 5736.76, "end": 5737.46, "probability": 0.9121 }, { "start": 5738.16, "end": 5740.32, "probability": 0.9977 }, { "start": 5741.8, "end": 5742.78, "probability": 0.9163 }, { "start": 5743.6, "end": 5746.3, "probability": 0.9383 }, { "start": 5747.0, "end": 5748.82, "probability": 0.8978 }, { "start": 5749.48, "end": 5751.9, "probability": 0.9416 }, { "start": 5752.7, "end": 5756.22, "probability": 0.9504 }, { "start": 5757.36, "end": 5759.86, "probability": 0.953 }, { "start": 5760.18, "end": 5761.08, "probability": 0.3437 }, { "start": 5761.74, "end": 5762.14, "probability": 0.8426 }, { "start": 5762.54, "end": 5768.9, "probability": 0.8297 }, { "start": 5769.8, "end": 5774.92, "probability": 0.9046 }, { "start": 5775.9, "end": 5779.2, "probability": 0.859 }, { "start": 5779.62, "end": 5781.12, "probability": 0.8509 }, { "start": 5782.3, "end": 5782.98, "probability": 0.8137 }, { "start": 5783.22, "end": 5785.42, "probability": 0.7552 }, { "start": 5785.86, "end": 5786.64, "probability": 0.6549 }, { "start": 5787.34, "end": 5789.48, "probability": 0.9437 }, { "start": 5789.66, "end": 5794.72, "probability": 0.489 }, { "start": 5795.54, "end": 5796.8, "probability": 0.7219 }, { "start": 5799.14, "end": 5800.92, "probability": 0.8149 }, { "start": 5801.74, "end": 5807.4, "probability": 0.6245 }, { "start": 5809.02, "end": 5810.48, "probability": 0.5405 }, { "start": 5811.5, "end": 5812.28, "probability": 0.7188 }, { "start": 5812.66, "end": 5815.0, "probability": 0.8225 }, { "start": 5818.46, "end": 5824.06, "probability": 0.9958 }, { "start": 5824.38, "end": 5826.48, "probability": 0.8584 }, { "start": 5827.12, "end": 5830.7, "probability": 0.5462 }, { "start": 5831.4, "end": 5834.94, "probability": 0.9961 }, { "start": 5835.04, "end": 5836.3, "probability": 0.9899 }, { "start": 5837.62, "end": 5838.66, "probability": 0.8376 }, { "start": 5838.76, "end": 5839.06, "probability": 0.8901 }, { "start": 5839.14, "end": 5841.1, "probability": 0.8864 }, { "start": 5841.62, "end": 5842.24, "probability": 0.8765 }, { "start": 5842.5, "end": 5843.18, "probability": 0.8911 }, { "start": 5843.66, "end": 5845.44, "probability": 0.9701 }, { "start": 5847.64, "end": 5849.66, "probability": 0.9886 }, { "start": 5850.92, "end": 5856.44, "probability": 0.7614 }, { "start": 5856.84, "end": 5857.84, "probability": 0.7874 }, { "start": 5858.72, "end": 5860.9, "probability": 0.978 }, { "start": 5861.5, "end": 5863.28, "probability": 0.9725 }, { "start": 5863.34, "end": 5865.4, "probability": 0.8159 }, { "start": 5865.74, "end": 5867.44, "probability": 0.9956 }, { "start": 5867.54, "end": 5869.03, "probability": 0.9841 }, { "start": 5870.66, "end": 5873.58, "probability": 0.8828 }, { "start": 5874.5, "end": 5875.78, "probability": 0.8785 }, { "start": 5876.1, "end": 5879.3, "probability": 0.8219 }, { "start": 5879.9, "end": 5880.34, "probability": 0.385 }, { "start": 5880.6, "end": 5881.44, "probability": 0.9654 }, { "start": 5882.66, "end": 5883.78, "probability": 0.3632 }, { "start": 5884.2, "end": 5885.08, "probability": 0.6351 }, { "start": 5885.18, "end": 5886.0, "probability": 0.8469 }, { "start": 5886.06, "end": 5887.84, "probability": 0.9904 }, { "start": 5887.84, "end": 5890.92, "probability": 0.959 }, { "start": 5891.1, "end": 5892.27, "probability": 0.7948 }, { "start": 5893.08, "end": 5894.76, "probability": 0.9608 }, { "start": 5895.56, "end": 5897.7, "probability": 0.6574 }, { "start": 5899.64, "end": 5902.2, "probability": 0.9592 }, { "start": 5902.7, "end": 5906.16, "probability": 0.9832 }, { "start": 5906.44, "end": 5908.5, "probability": 0.5355 }, { "start": 5908.74, "end": 5910.66, "probability": 0.8807 }, { "start": 5911.16, "end": 5911.88, "probability": 0.897 }, { "start": 5911.98, "end": 5913.46, "probability": 0.389 }, { "start": 5913.94, "end": 5915.62, "probability": 0.6728 }, { "start": 5916.62, "end": 5920.88, "probability": 0.8962 }, { "start": 5921.22, "end": 5921.96, "probability": 0.7982 }, { "start": 5922.36, "end": 5923.72, "probability": 0.981 }, { "start": 5924.58, "end": 5926.28, "probability": 0.9807 }, { "start": 5926.86, "end": 5928.86, "probability": 0.8195 }, { "start": 5930.26, "end": 5932.94, "probability": 0.9844 }, { "start": 5934.14, "end": 5936.18, "probability": 0.8444 }, { "start": 5936.96, "end": 5937.68, "probability": 0.8657 }, { "start": 5938.16, "end": 5938.86, "probability": 0.989 }, { "start": 5939.2, "end": 5940.36, "probability": 0.8398 }, { "start": 5940.88, "end": 5941.6, "probability": 0.8153 }, { "start": 5942.06, "end": 5943.38, "probability": 0.6278 }, { "start": 5943.98, "end": 5944.46, "probability": 0.7839 }, { "start": 5945.2, "end": 5949.5, "probability": 0.9763 }, { "start": 5950.12, "end": 5952.82, "probability": 0.9601 }, { "start": 5953.32, "end": 5957.18, "probability": 0.6592 }, { "start": 5957.24, "end": 5957.9, "probability": 0.7192 }, { "start": 5958.5, "end": 5959.78, "probability": 0.7397 }, { "start": 5960.36, "end": 5961.38, "probability": 0.8373 }, { "start": 5961.72, "end": 5964.76, "probability": 0.424 }, { "start": 5964.98, "end": 5967.0, "probability": 0.342 }, { "start": 5967.98, "end": 5969.26, "probability": 0.8074 }, { "start": 5970.44, "end": 5971.92, "probability": 0.9688 }, { "start": 5972.84, "end": 5973.88, "probability": 0.7778 }, { "start": 5974.46, "end": 5974.7, "probability": 0.9865 }, { "start": 5975.22, "end": 5975.74, "probability": 0.6528 }, { "start": 5975.86, "end": 5976.54, "probability": 0.9817 }, { "start": 5976.68, "end": 5979.99, "probability": 0.6228 }, { "start": 5981.16, "end": 5982.74, "probability": 0.472 }, { "start": 5983.68, "end": 5987.1, "probability": 0.5664 }, { "start": 5988.8, "end": 5991.44, "probability": 0.9727 }, { "start": 5991.56, "end": 5996.74, "probability": 0.9883 }, { "start": 5996.74, "end": 5997.04, "probability": 0.1685 }, { "start": 5997.28, "end": 5999.76, "probability": 0.7414 }, { "start": 6000.92, "end": 6005.22, "probability": 0.8667 }, { "start": 6005.86, "end": 6008.14, "probability": 0.9918 }, { "start": 6008.94, "end": 6010.94, "probability": 0.852 }, { "start": 6011.72, "end": 6013.1, "probability": 0.8835 }, { "start": 6013.78, "end": 6016.18, "probability": 0.7978 }, { "start": 6019.75, "end": 6022.94, "probability": 0.0649 }, { "start": 6024.66, "end": 6024.98, "probability": 0.0852 }, { "start": 6025.48, "end": 6030.36, "probability": 0.8572 }, { "start": 6031.18, "end": 6034.0, "probability": 0.6339 }, { "start": 6034.22, "end": 6036.82, "probability": 0.892 }, { "start": 6036.98, "end": 6039.16, "probability": 0.9756 }, { "start": 6040.84, "end": 6046.06, "probability": 0.9779 }, { "start": 6046.78, "end": 6049.36, "probability": 0.902 }, { "start": 6049.98, "end": 6053.64, "probability": 0.9768 }, { "start": 6053.74, "end": 6055.24, "probability": 0.9234 }, { "start": 6056.24, "end": 6059.58, "probability": 0.9593 }, { "start": 6060.16, "end": 6065.06, "probability": 0.8693 }, { "start": 6065.96, "end": 6068.96, "probability": 0.9038 }, { "start": 6069.64, "end": 6071.94, "probability": 0.9854 }, { "start": 6072.22, "end": 6075.2, "probability": 0.7165 }, { "start": 6075.84, "end": 6075.84, "probability": 0.1041 }, { "start": 6075.84, "end": 6078.3, "probability": 0.8518 }, { "start": 6078.3, "end": 6081.24, "probability": 0.9897 }, { "start": 6082.08, "end": 6083.4, "probability": 0.8958 }, { "start": 6084.94, "end": 6085.46, "probability": 0.4828 }, { "start": 6085.58, "end": 6085.92, "probability": 0.8246 }, { "start": 6086.04, "end": 6090.12, "probability": 0.7466 }, { "start": 6090.66, "end": 6091.84, "probability": 0.4044 }, { "start": 6093.32, "end": 6096.9, "probability": 0.9872 }, { "start": 6097.42, "end": 6099.56, "probability": 0.7318 }, { "start": 6100.24, "end": 6103.66, "probability": 0.9858 }, { "start": 6103.66, "end": 6106.86, "probability": 0.9307 }, { "start": 6107.48, "end": 6108.18, "probability": 0.9985 }, { "start": 6108.76, "end": 6109.56, "probability": 0.6885 }, { "start": 6110.2, "end": 6112.36, "probability": 0.9587 }, { "start": 6113.24, "end": 6114.7, "probability": 0.7368 }, { "start": 6115.62, "end": 6118.34, "probability": 0.9956 }, { "start": 6119.02, "end": 6123.6, "probability": 0.9961 }, { "start": 6124.34, "end": 6126.04, "probability": 0.9476 }, { "start": 6127.08, "end": 6129.62, "probability": 0.8408 }, { "start": 6130.28, "end": 6132.56, "probability": 0.7947 }, { "start": 6133.16, "end": 6136.94, "probability": 0.8353 }, { "start": 6137.38, "end": 6141.8, "probability": 0.9539 }, { "start": 6142.26, "end": 6142.54, "probability": 0.4374 }, { "start": 6142.64, "end": 6143.64, "probability": 0.6236 }, { "start": 6144.02, "end": 6148.78, "probability": 0.9703 }, { "start": 6149.34, "end": 6152.7, "probability": 0.912 }, { "start": 6153.8, "end": 6158.68, "probability": 0.958 }, { "start": 6158.76, "end": 6159.2, "probability": 0.6708 }, { "start": 6160.42, "end": 6162.72, "probability": 0.7282 }, { "start": 6163.0, "end": 6166.98, "probability": 0.9883 }, { "start": 6168.08, "end": 6172.96, "probability": 0.9751 }, { "start": 6174.1, "end": 6176.96, "probability": 0.9885 }, { "start": 6177.14, "end": 6179.92, "probability": 0.6696 }, { "start": 6180.5, "end": 6182.18, "probability": 0.7376 }, { "start": 6182.88, "end": 6187.12, "probability": 0.9701 }, { "start": 6187.12, "end": 6193.9, "probability": 0.9618 }, { "start": 6194.2, "end": 6199.08, "probability": 0.6149 }, { "start": 6200.34, "end": 6203.02, "probability": 0.7623 }, { "start": 6204.46, "end": 6207.78, "probability": 0.9871 }, { "start": 6216.8, "end": 6218.02, "probability": 0.7606 }, { "start": 6218.12, "end": 6218.96, "probability": 0.7951 }, { "start": 6219.02, "end": 6220.26, "probability": 0.8848 }, { "start": 6220.42, "end": 6224.18, "probability": 0.9624 }, { "start": 6224.34, "end": 6229.62, "probability": 0.9638 }, { "start": 6230.08, "end": 6232.52, "probability": 0.8569 }, { "start": 6232.9, "end": 6235.86, "probability": 0.7182 }, { "start": 6236.48, "end": 6240.46, "probability": 0.9901 }, { "start": 6240.46, "end": 6244.74, "probability": 0.9974 }, { "start": 6244.94, "end": 6246.2, "probability": 0.757 }, { "start": 6246.8, "end": 6249.16, "probability": 0.9956 }, { "start": 6249.98, "end": 6251.54, "probability": 0.9946 }, { "start": 6251.92, "end": 6252.48, "probability": 0.8346 }, { "start": 6252.58, "end": 6254.8, "probability": 0.9971 }, { "start": 6254.8, "end": 6258.44, "probability": 0.9947 }, { "start": 6258.66, "end": 6260.82, "probability": 0.8002 }, { "start": 6261.42, "end": 6265.22, "probability": 0.9861 }, { "start": 6265.28, "end": 6267.52, "probability": 0.986 }, { "start": 6267.88, "end": 6270.54, "probability": 0.9953 }, { "start": 6270.88, "end": 6273.3, "probability": 0.9856 }, { "start": 6273.88, "end": 6274.18, "probability": 0.1312 }, { "start": 6274.24, "end": 6275.26, "probability": 0.0898 }, { "start": 6276.04, "end": 6276.1, "probability": 0.0581 }, { "start": 6276.78, "end": 6278.04, "probability": 0.4142 }, { "start": 6278.46, "end": 6283.34, "probability": 0.9285 }, { "start": 6283.46, "end": 6283.98, "probability": 0.414 }, { "start": 6284.38, "end": 6284.4, "probability": 0.4004 }, { "start": 6284.4, "end": 6287.84, "probability": 0.8008 }, { "start": 6288.68, "end": 6292.22, "probability": 0.7534 }, { "start": 6293.66, "end": 6297.22, "probability": 0.9754 }, { "start": 6297.76, "end": 6302.74, "probability": 0.9678 }, { "start": 6302.74, "end": 6307.46, "probability": 0.9929 }, { "start": 6308.71, "end": 6309.16, "probability": 0.1897 }, { "start": 6309.16, "end": 6311.3, "probability": 0.9941 }, { "start": 6311.3, "end": 6315.02, "probability": 0.9969 }, { "start": 6315.48, "end": 6319.0, "probability": 0.9723 }, { "start": 6319.42, "end": 6320.21, "probability": 0.8381 }, { "start": 6320.72, "end": 6324.46, "probability": 0.9968 }, { "start": 6324.5, "end": 6328.7, "probability": 0.9529 }, { "start": 6329.1, "end": 6334.56, "probability": 0.8775 }, { "start": 6334.56, "end": 6337.3, "probability": 0.9688 }, { "start": 6338.24, "end": 6340.7, "probability": 0.914 }, { "start": 6341.12, "end": 6343.48, "probability": 0.9945 }, { "start": 6343.86, "end": 6345.68, "probability": 0.9309 }, { "start": 6346.24, "end": 6348.34, "probability": 0.9602 }, { "start": 6348.48, "end": 6348.96, "probability": 0.5568 }, { "start": 6348.98, "end": 6351.0, "probability": 0.8787 }, { "start": 6351.14, "end": 6351.46, "probability": 0.8627 }, { "start": 6353.4, "end": 6355.74, "probability": 0.4874 }, { "start": 6355.86, "end": 6359.78, "probability": 0.9202 }, { "start": 6379.38, "end": 6380.42, "probability": 0.821 }, { "start": 6380.84, "end": 6381.58, "probability": 0.0864 }, { "start": 6382.12, "end": 6383.76, "probability": 0.0298 }, { "start": 6384.78, "end": 6386.98, "probability": 0.4821 }, { "start": 6390.82, "end": 6392.6, "probability": 0.6792 }, { "start": 6392.6, "end": 6393.82, "probability": 0.9772 }, { "start": 6395.05, "end": 6397.02, "probability": 0.5633 }, { "start": 6397.18, "end": 6401.0, "probability": 0.6901 }, { "start": 6401.96, "end": 6403.84, "probability": 0.9117 }, { "start": 6404.9, "end": 6410.64, "probability": 0.9326 }, { "start": 6411.4, "end": 6414.0, "probability": 0.6333 }, { "start": 6415.26, "end": 6416.02, "probability": 0.7426 }, { "start": 6417.1, "end": 6417.6, "probability": 0.7959 }, { "start": 6418.0, "end": 6422.24, "probability": 0.8267 }, { "start": 6422.44, "end": 6423.06, "probability": 0.8828 }, { "start": 6423.1, "end": 6424.04, "probability": 0.7279 }, { "start": 6424.6, "end": 6425.64, "probability": 0.927 }, { "start": 6426.5, "end": 6427.72, "probability": 0.9795 }, { "start": 6428.36, "end": 6429.84, "probability": 0.9834 }, { "start": 6430.8, "end": 6432.98, "probability": 0.7355 }, { "start": 6433.36, "end": 6435.16, "probability": 0.7857 }, { "start": 6436.1, "end": 6440.26, "probability": 0.3846 }, { "start": 6440.9, "end": 6441.92, "probability": 0.4379 }, { "start": 6442.6, "end": 6443.94, "probability": 0.6328 }, { "start": 6444.6, "end": 6448.3, "probability": 0.4832 }, { "start": 6448.86, "end": 6451.06, "probability": 0.6178 }, { "start": 6451.82, "end": 6452.92, "probability": 0.6947 }, { "start": 6453.9, "end": 6454.72, "probability": 0.9067 }, { "start": 6456.24, "end": 6459.58, "probability": 0.0315 }, { "start": 6459.84, "end": 6463.6, "probability": 0.5745 }, { "start": 6464.22, "end": 6464.56, "probability": 0.2005 }, { "start": 6465.54, "end": 6466.12, "probability": 0.5407 }, { "start": 6466.4, "end": 6467.26, "probability": 0.437 }, { "start": 6467.4, "end": 6471.38, "probability": 0.8838 }, { "start": 6471.52, "end": 6472.04, "probability": 0.4414 }, { "start": 6472.12, "end": 6472.44, "probability": 0.6575 }, { "start": 6473.28, "end": 6473.48, "probability": 0.4946 }, { "start": 6474.3, "end": 6475.52, "probability": 0.9487 }, { "start": 6475.54, "end": 6479.98, "probability": 0.5567 }, { "start": 6480.08, "end": 6480.44, "probability": 0.5698 }, { "start": 6481.0, "end": 6482.66, "probability": 0.8409 }, { "start": 6483.12, "end": 6484.78, "probability": 0.3962 }, { "start": 6485.72, "end": 6488.52, "probability": 0.9434 }, { "start": 6488.52, "end": 6488.64, "probability": 0.4304 }, { "start": 6489.3, "end": 6490.18, "probability": 0.6347 }, { "start": 6491.12, "end": 6493.72, "probability": 0.7727 }, { "start": 6494.42, "end": 6499.18, "probability": 0.8476 }, { "start": 6499.18, "end": 6499.52, "probability": 0.0751 }, { "start": 6499.58, "end": 6500.1, "probability": 0.2968 }, { "start": 6500.24, "end": 6500.78, "probability": 0.3573 }, { "start": 6501.36, "end": 6502.92, "probability": 0.9301 }, { "start": 6504.08, "end": 6506.44, "probability": 0.7661 }, { "start": 6506.54, "end": 6508.36, "probability": 0.5782 }, { "start": 6509.16, "end": 6511.6, "probability": 0.5926 }, { "start": 6511.7, "end": 6514.98, "probability": 0.8095 }, { "start": 6514.98, "end": 6515.54, "probability": 0.6503 }, { "start": 6515.62, "end": 6516.9, "probability": 0.5243 }, { "start": 6516.96, "end": 6517.3, "probability": 0.5594 }, { "start": 6517.4, "end": 6517.6, "probability": 0.3724 }, { "start": 6517.6, "end": 6520.08, "probability": 0.7243 }, { "start": 6520.6, "end": 6524.6, "probability": 0.4876 }, { "start": 6525.94, "end": 6526.62, "probability": 0.433 }, { "start": 6527.38, "end": 6529.9, "probability": 0.7195 }, { "start": 6532.57, "end": 6535.32, "probability": 0.8777 }, { "start": 6535.72, "end": 6537.66, "probability": 0.9888 }, { "start": 6537.92, "end": 6538.24, "probability": 0.4872 }, { "start": 6538.34, "end": 6539.82, "probability": 0.6379 }, { "start": 6539.82, "end": 6541.32, "probability": 0.8535 }, { "start": 6541.42, "end": 6543.18, "probability": 0.5765 }, { "start": 6544.18, "end": 6544.26, "probability": 0.466 }, { "start": 6544.26, "end": 6544.68, "probability": 0.5157 }, { "start": 6544.8, "end": 6547.34, "probability": 0.5208 }, { "start": 6547.6, "end": 6549.06, "probability": 0.7615 }, { "start": 6549.52, "end": 6550.94, "probability": 0.8282 }, { "start": 6551.34, "end": 6552.78, "probability": 0.6773 }, { "start": 6553.74, "end": 6556.0, "probability": 0.5726 }, { "start": 6559.49, "end": 6562.4, "probability": 0.5 }, { "start": 6562.4, "end": 6563.78, "probability": 0.7212 }, { "start": 6564.52, "end": 6566.78, "probability": 0.758 }, { "start": 6567.22, "end": 6568.48, "probability": 0.946 }, { "start": 6568.92, "end": 6574.16, "probability": 0.85 }, { "start": 6575.76, "end": 6576.78, "probability": 0.9368 }, { "start": 6578.24, "end": 6578.6, "probability": 0.9507 }, { "start": 6579.46, "end": 6580.44, "probability": 0.5677 }, { "start": 6580.54, "end": 6583.08, "probability": 0.976 }, { "start": 6583.22, "end": 6583.62, "probability": 0.8654 }, { "start": 6584.14, "end": 6584.48, "probability": 0.5587 }, { "start": 6584.48, "end": 6585.12, "probability": 0.8515 }, { "start": 6585.3, "end": 6588.12, "probability": 0.9061 }, { "start": 6588.12, "end": 6588.64, "probability": 0.3938 }, { "start": 6589.64, "end": 6593.24, "probability": 0.573 }, { "start": 6594.08, "end": 6595.14, "probability": 0.7328 }, { "start": 6595.18, "end": 6597.38, "probability": 0.6773 }, { "start": 6598.1, "end": 6599.34, "probability": 0.5501 }, { "start": 6599.6, "end": 6600.34, "probability": 0.6506 }, { "start": 6601.44, "end": 6602.12, "probability": 0.2688 }, { "start": 6602.32, "end": 6605.18, "probability": 0.7987 }, { "start": 6606.16, "end": 6609.78, "probability": 0.9923 }, { "start": 6611.64, "end": 6616.38, "probability": 0.8515 }, { "start": 6616.46, "end": 6617.36, "probability": 0.5713 }, { "start": 6617.48, "end": 6618.2, "probability": 0.7734 }, { "start": 6619.54, "end": 6620.08, "probability": 0.5548 }, { "start": 6620.82, "end": 6624.1, "probability": 0.5626 }, { "start": 6624.82, "end": 6625.52, "probability": 0.8276 }, { "start": 6625.98, "end": 6626.34, "probability": 0.7666 }, { "start": 6626.46, "end": 6627.08, "probability": 0.4691 }, { "start": 6627.14, "end": 6628.16, "probability": 0.7269 }, { "start": 6628.18, "end": 6629.46, "probability": 0.9792 }, { "start": 6629.96, "end": 6633.44, "probability": 0.984 }, { "start": 6633.9, "end": 6634.56, "probability": 0.9557 }, { "start": 6635.32, "end": 6637.6, "probability": 0.5873 }, { "start": 6637.68, "end": 6638.44, "probability": 0.9177 }, { "start": 6638.74, "end": 6642.78, "probability": 0.986 }, { "start": 6642.8, "end": 6644.4, "probability": 0.8171 }, { "start": 6645.16, "end": 6649.04, "probability": 0.5955 }, { "start": 6651.48, "end": 6653.34, "probability": 0.2146 }, { "start": 6654.12, "end": 6654.94, "probability": 0.0396 }, { "start": 6656.14, "end": 6657.0, "probability": 0.019 }, { "start": 6658.32, "end": 6658.52, "probability": 0.677 }, { "start": 6660.74, "end": 6660.74, "probability": 0.1273 }, { "start": 6663.4, "end": 6665.62, "probability": 0.0982 }, { "start": 6671.27, "end": 6672.38, "probability": 0.0911 }, { "start": 6672.38, "end": 6674.42, "probability": 0.554 }, { "start": 6675.47, "end": 6679.48, "probability": 0.9587 }, { "start": 6679.86, "end": 6680.63, "probability": 0.4931 }, { "start": 6681.32, "end": 6681.86, "probability": 0.9154 }, { "start": 6683.24, "end": 6684.2, "probability": 0.5404 }, { "start": 6685.68, "end": 6689.74, "probability": 0.5499 }, { "start": 6689.74, "end": 6690.02, "probability": 0.5128 }, { "start": 6690.44, "end": 6691.04, "probability": 0.6386 }, { "start": 6691.6, "end": 6692.97, "probability": 0.8921 }, { "start": 6696.9, "end": 6700.36, "probability": 0.6332 }, { "start": 6703.84, "end": 6705.72, "probability": 0.969 }, { "start": 6706.3, "end": 6707.12, "probability": 0.2837 }, { "start": 6708.18, "end": 6713.96, "probability": 0.9425 }, { "start": 6714.08, "end": 6717.56, "probability": 0.9408 }, { "start": 6717.8, "end": 6718.82, "probability": 0.8995 }, { "start": 6719.86, "end": 6722.74, "probability": 0.9927 }, { "start": 6722.92, "end": 6723.16, "probability": 0.3722 }, { "start": 6724.02, "end": 6724.18, "probability": 0.6583 }, { "start": 6725.22, "end": 6726.84, "probability": 0.0421 }, { "start": 6727.64, "end": 6727.8, "probability": 0.421 }, { "start": 6727.88, "end": 6729.3, "probability": 0.8264 }, { "start": 6729.88, "end": 6730.68, "probability": 0.7378 }, { "start": 6732.04, "end": 6733.9, "probability": 0.1631 }, { "start": 6734.39, "end": 6739.45, "probability": 0.1592 }, { "start": 6740.42, "end": 6740.77, "probability": 0.1139 }, { "start": 6741.54, "end": 6742.28, "probability": 0.3215 }, { "start": 6747.24, "end": 6748.3, "probability": 0.7164 }, { "start": 6748.4, "end": 6750.8, "probability": 0.7666 }, { "start": 6750.86, "end": 6754.32, "probability": 0.9468 }, { "start": 6756.48, "end": 6756.94, "probability": 0.2454 }, { "start": 6757.96, "end": 6758.56, "probability": 0.0527 }, { "start": 6759.02, "end": 6761.22, "probability": 0.6306 }, { "start": 6761.72, "end": 6763.62, "probability": 0.2797 }, { "start": 6765.4, "end": 6767.2, "probability": 0.7306 }, { "start": 6767.32, "end": 6770.3, "probability": 0.869 }, { "start": 6770.3, "end": 6772.76, "probability": 0.4697 }, { "start": 6772.98, "end": 6774.31, "probability": 0.5535 }, { "start": 6774.78, "end": 6776.04, "probability": 0.8369 }, { "start": 6776.06, "end": 6779.5, "probability": 0.9297 }, { "start": 6780.02, "end": 6783.5, "probability": 0.6911 }, { "start": 6783.84, "end": 6784.34, "probability": 0.1254 }, { "start": 6784.34, "end": 6788.24, "probability": 0.2428 }, { "start": 6788.36, "end": 6789.56, "probability": 0.4414 }, { "start": 6789.72, "end": 6790.49, "probability": 0.2709 }, { "start": 6790.82, "end": 6791.3, "probability": 0.3746 }, { "start": 6791.5, "end": 6792.52, "probability": 0.2581 }, { "start": 6792.78, "end": 6793.6, "probability": 0.3072 }, { "start": 6794.02, "end": 6796.44, "probability": 0.5666 }, { "start": 6796.56, "end": 6797.46, "probability": 0.6495 }, { "start": 6797.46, "end": 6798.98, "probability": 0.2554 }, { "start": 6799.06, "end": 6801.04, "probability": 0.5634 }, { "start": 6801.42, "end": 6802.12, "probability": 0.1758 }, { "start": 6802.18, "end": 6803.19, "probability": 0.7499 }, { "start": 6803.42, "end": 6809.0, "probability": 0.9796 }, { "start": 6809.82, "end": 6812.4, "probability": 0.9234 }, { "start": 6812.48, "end": 6814.92, "probability": 0.8944 }, { "start": 6815.0, "end": 6816.18, "probability": 0.297 }, { "start": 6816.58, "end": 6818.36, "probability": 0.9259 }, { "start": 6819.1, "end": 6819.72, "probability": 0.9688 }, { "start": 6819.78, "end": 6822.62, "probability": 0.6923 }, { "start": 6822.82, "end": 6824.0, "probability": 0.7672 }, { "start": 6825.0, "end": 6827.04, "probability": 0.1693 }, { "start": 6827.36, "end": 6828.3, "probability": 0.9111 }, { "start": 6828.34, "end": 6829.66, "probability": 0.7107 }, { "start": 6829.96, "end": 6831.0, "probability": 0.4335 }, { "start": 6831.58, "end": 6833.99, "probability": 0.6357 }, { "start": 6834.76, "end": 6836.98, "probability": 0.8303 }, { "start": 6837.64, "end": 6838.38, "probability": 0.5579 }, { "start": 6838.58, "end": 6839.5, "probability": 0.8285 }, { "start": 6839.62, "end": 6840.96, "probability": 0.7441 }, { "start": 6841.02, "end": 6846.08, "probability": 0.9386 }, { "start": 6846.08, "end": 6849.38, "probability": 0.9989 }, { "start": 6850.06, "end": 6851.88, "probability": 0.9651 }, { "start": 6851.94, "end": 6853.66, "probability": 0.8916 }, { "start": 6853.66, "end": 6856.83, "probability": 0.0401 }, { "start": 6857.14, "end": 6857.14, "probability": 0.597 }, { "start": 6857.14, "end": 6858.42, "probability": 0.5762 }, { "start": 6858.7, "end": 6861.38, "probability": 0.9077 }, { "start": 6862.8, "end": 6867.22, "probability": 0.823 }, { "start": 6867.32, "end": 6868.52, "probability": 0.5488 }, { "start": 6868.68, "end": 6870.84, "probability": 0.5869 }, { "start": 6870.96, "end": 6872.96, "probability": 0.8934 }, { "start": 6872.96, "end": 6875.96, "probability": 0.8119 }, { "start": 6876.26, "end": 6877.86, "probability": 0.9684 }, { "start": 6878.18, "end": 6880.16, "probability": 0.9689 }, { "start": 6880.54, "end": 6881.42, "probability": 0.8872 }, { "start": 6881.44, "end": 6881.74, "probability": 0.1578 }, { "start": 6882.1, "end": 6882.82, "probability": 0.0845 }, { "start": 6882.94, "end": 6886.32, "probability": 0.7239 }, { "start": 6886.44, "end": 6887.6, "probability": 0.9703 }, { "start": 6887.64, "end": 6888.72, "probability": 0.8389 }, { "start": 6888.76, "end": 6889.5, "probability": 0.7485 }, { "start": 6890.46, "end": 6892.24, "probability": 0.9246 }, { "start": 6892.3, "end": 6892.66, "probability": 0.625 }, { "start": 6892.7, "end": 6898.32, "probability": 0.8759 }, { "start": 6898.86, "end": 6900.78, "probability": 0.986 }, { "start": 6902.23, "end": 6907.48, "probability": 0.9448 }, { "start": 6907.62, "end": 6909.28, "probability": 0.7528 }, { "start": 6910.18, "end": 6911.16, "probability": 0.9451 }, { "start": 6911.48, "end": 6913.22, "probability": 0.9907 }, { "start": 6913.8, "end": 6914.12, "probability": 0.6935 }, { "start": 6914.14, "end": 6915.0, "probability": 0.9579 }, { "start": 6915.04, "end": 6916.32, "probability": 0.9573 }, { "start": 6917.0, "end": 6918.28, "probability": 0.958 }, { "start": 6919.2, "end": 6922.98, "probability": 0.9626 }, { "start": 6923.76, "end": 6924.74, "probability": 0.9629 }, { "start": 6925.64, "end": 6926.66, "probability": 0.9886 }, { "start": 6927.4, "end": 6932.3, "probability": 0.9934 }, { "start": 6932.84, "end": 6937.92, "probability": 0.9216 }, { "start": 6939.1, "end": 6941.68, "probability": 0.9624 }, { "start": 6942.3, "end": 6944.54, "probability": 0.998 }, { "start": 6945.1, "end": 6945.9, "probability": 0.7888 }, { "start": 6947.02, "end": 6949.18, "probability": 0.9972 }, { "start": 6949.76, "end": 6955.28, "probability": 0.8955 }, { "start": 6955.8, "end": 6957.4, "probability": 0.9594 }, { "start": 6958.08, "end": 6960.92, "probability": 0.9862 }, { "start": 6962.06, "end": 6962.28, "probability": 0.4716 }, { "start": 6962.48, "end": 6963.04, "probability": 0.8801 }, { "start": 6963.52, "end": 6964.76, "probability": 0.9253 }, { "start": 6964.98, "end": 6966.76, "probability": 0.8908 }, { "start": 6967.42, "end": 6971.96, "probability": 0.7287 }, { "start": 6972.48, "end": 6973.64, "probability": 0.8307 }, { "start": 6974.44, "end": 6975.4, "probability": 0.9022 }, { "start": 6975.58, "end": 6981.1, "probability": 0.9582 }, { "start": 6982.08, "end": 6983.04, "probability": 0.9963 }, { "start": 6983.64, "end": 6986.62, "probability": 0.9917 }, { "start": 6987.92, "end": 6989.92, "probability": 0.9934 }, { "start": 6990.02, "end": 6991.48, "probability": 0.9393 }, { "start": 6991.62, "end": 6996.7, "probability": 0.9958 }, { "start": 6996.7, "end": 7001.32, "probability": 0.9775 }, { "start": 7001.96, "end": 7003.14, "probability": 0.9901 }, { "start": 7003.64, "end": 7006.48, "probability": 0.6991 }, { "start": 7007.54, "end": 7008.62, "probability": 0.9544 }, { "start": 7008.78, "end": 7014.4, "probability": 0.9896 }, { "start": 7014.4, "end": 7021.46, "probability": 0.9927 }, { "start": 7021.68, "end": 7023.24, "probability": 0.7491 }, { "start": 7024.62, "end": 7026.02, "probability": 0.7893 }, { "start": 7026.46, "end": 7027.28, "probability": 0.7119 }, { "start": 7028.02, "end": 7030.98, "probability": 0.9558 }, { "start": 7031.3, "end": 7031.5, "probability": 0.755 }, { "start": 7031.56, "end": 7032.48, "probability": 0.9223 }, { "start": 7032.84, "end": 7034.36, "probability": 0.9621 }, { "start": 7035.1, "end": 7041.74, "probability": 0.9847 }, { "start": 7042.24, "end": 7044.16, "probability": 0.9951 }, { "start": 7044.2, "end": 7045.1, "probability": 0.8868 }, { "start": 7045.66, "end": 7047.4, "probability": 0.9617 }, { "start": 7047.86, "end": 7053.64, "probability": 0.0648 }, { "start": 7055.0, "end": 7058.52, "probability": 0.6572 }, { "start": 7058.76, "end": 7058.76, "probability": 0.2133 }, { "start": 7059.64, "end": 7060.6, "probability": 0.3687 }, { "start": 7065.11, "end": 7068.82, "probability": 0.9115 }, { "start": 7069.08, "end": 7069.58, "probability": 0.4503 }, { "start": 7069.58, "end": 7069.9, "probability": 0.7942 }, { "start": 7070.5, "end": 7071.68, "probability": 0.864 }, { "start": 7071.8, "end": 7077.56, "probability": 0.9506 }, { "start": 7078.04, "end": 7079.5, "probability": 0.9858 }, { "start": 7079.52, "end": 7080.06, "probability": 0.5814 }, { "start": 7081.22, "end": 7085.04, "probability": 0.9768 }, { "start": 7085.12, "end": 7087.15, "probability": 0.999 }, { "start": 7087.76, "end": 7088.67, "probability": 0.902 }, { "start": 7089.38, "end": 7090.94, "probability": 0.9523 }, { "start": 7091.36, "end": 7095.34, "probability": 0.9893 }, { "start": 7095.74, "end": 7096.9, "probability": 0.8662 }, { "start": 7097.64, "end": 7100.66, "probability": 0.9941 }, { "start": 7100.74, "end": 7101.92, "probability": 0.9967 }, { "start": 7102.7, "end": 7105.3, "probability": 0.9968 }, { "start": 7105.3, "end": 7108.12, "probability": 0.9824 }, { "start": 7108.84, "end": 7110.58, "probability": 0.8351 }, { "start": 7111.48, "end": 7113.79, "probability": 0.9417 }, { "start": 7114.18, "end": 7115.88, "probability": 0.5021 }, { "start": 7115.88, "end": 7118.06, "probability": 0.8782 }, { "start": 7118.22, "end": 7120.18, "probability": 0.3631 }, { "start": 7120.2, "end": 7121.28, "probability": 0.7238 }, { "start": 7121.28, "end": 7123.46, "probability": 0.5457 }, { "start": 7123.8, "end": 7125.38, "probability": 0.9216 }, { "start": 7125.68, "end": 7127.2, "probability": 0.0304 }, { "start": 7129.12, "end": 7130.62, "probability": 0.4476 }, { "start": 7130.62, "end": 7130.92, "probability": 0.1855 }, { "start": 7131.52, "end": 7132.22, "probability": 0.3347 }, { "start": 7132.62, "end": 7133.86, "probability": 0.9177 }, { "start": 7133.94, "end": 7134.8, "probability": 0.9673 }, { "start": 7134.92, "end": 7136.96, "probability": 0.799 }, { "start": 7137.44, "end": 7140.52, "probability": 0.9625 }, { "start": 7140.52, "end": 7142.62, "probability": 0.9985 }, { "start": 7143.24, "end": 7144.54, "probability": 0.9731 }, { "start": 7147.16, "end": 7149.81, "probability": 0.1481 }, { "start": 7149.82, "end": 7153.36, "probability": 0.1771 }, { "start": 7154.14, "end": 7154.72, "probability": 0.2434 }, { "start": 7155.34, "end": 7159.75, "probability": 0.2756 }, { "start": 7168.5, "end": 7170.14, "probability": 0.7437 }, { "start": 7170.14, "end": 7170.14, "probability": 0.0258 }, { "start": 7170.14, "end": 7170.14, "probability": 0.0506 }, { "start": 7170.14, "end": 7170.14, "probability": 0.201 }, { "start": 7170.14, "end": 7171.38, "probability": 0.263 }, { "start": 7171.7, "end": 7172.84, "probability": 0.2017 }, { "start": 7175.26, "end": 7176.38, "probability": 0.0211 }, { "start": 7176.38, "end": 7176.38, "probability": 0.0656 }, { "start": 7176.38, "end": 7178.0, "probability": 0.5208 }, { "start": 7178.1, "end": 7179.6, "probability": 0.5594 }, { "start": 7179.64, "end": 7179.64, "probability": 0.2699 }, { "start": 7179.64, "end": 7180.13, "probability": 0.1374 }, { "start": 7180.6, "end": 7182.82, "probability": 0.5767 }, { "start": 7182.92, "end": 7184.44, "probability": 0.7009 }, { "start": 7184.56, "end": 7186.28, "probability": 0.92 }, { "start": 7186.58, "end": 7190.48, "probability": 0.5661 }, { "start": 7190.48, "end": 7191.26, "probability": 0.6242 }, { "start": 7191.28, "end": 7193.96, "probability": 0.7214 }, { "start": 7194.06, "end": 7195.34, "probability": 0.889 }, { "start": 7195.6, "end": 7196.6, "probability": 0.875 }, { "start": 7196.66, "end": 7197.44, "probability": 0.8043 }, { "start": 7197.72, "end": 7198.62, "probability": 0.7783 }, { "start": 7198.86, "end": 7198.88, "probability": 0.1047 }, { "start": 7198.88, "end": 7200.58, "probability": 0.7489 }, { "start": 7200.8, "end": 7200.86, "probability": 0.1798 }, { "start": 7200.86, "end": 7202.38, "probability": 0.9488 }, { "start": 7203.0, "end": 7204.94, "probability": 0.9331 }, { "start": 7205.18, "end": 7205.68, "probability": 0.3153 }, { "start": 7206.26, "end": 7207.34, "probability": 0.853 }, { "start": 7207.64, "end": 7209.6, "probability": 0.5522 }, { "start": 7209.64, "end": 7213.32, "probability": 0.9861 }, { "start": 7213.32, "end": 7214.16, "probability": 0.1431 }, { "start": 7214.34, "end": 7216.68, "probability": 0.6939 }, { "start": 7216.86, "end": 7217.9, "probability": 0.9891 }, { "start": 7218.44, "end": 7221.26, "probability": 0.989 }, { "start": 7221.68, "end": 7225.4, "probability": 0.9963 }, { "start": 7226.42, "end": 7229.58, "probability": 0.9957 }, { "start": 7230.04, "end": 7231.14, "probability": 0.8061 }, { "start": 7231.9, "end": 7232.9, "probability": 0.977 }, { "start": 7232.98, "end": 7233.88, "probability": 0.9958 }, { "start": 7234.82, "end": 7236.42, "probability": 0.9723 }, { "start": 7237.42, "end": 7239.46, "probability": 0.9563 }, { "start": 7240.12, "end": 7244.6, "probability": 0.9888 }, { "start": 7244.6, "end": 7250.22, "probability": 0.9764 }, { "start": 7250.62, "end": 7253.0, "probability": 0.9859 }, { "start": 7253.64, "end": 7254.12, "probability": 0.7237 }, { "start": 7254.58, "end": 7257.56, "probability": 0.9902 }, { "start": 7257.72, "end": 7258.04, "probability": 0.7961 }, { "start": 7258.14, "end": 7260.36, "probability": 0.8609 }, { "start": 7260.96, "end": 7262.04, "probability": 0.8913 }, { "start": 7262.08, "end": 7266.58, "probability": 0.9065 }, { "start": 7267.08, "end": 7271.06, "probability": 0.9948 }, { "start": 7271.84, "end": 7273.11, "probability": 0.9841 }, { "start": 7273.8, "end": 7275.31, "probability": 0.9505 }, { "start": 7276.16, "end": 7279.04, "probability": 0.9998 }, { "start": 7280.24, "end": 7282.52, "probability": 0.7639 }, { "start": 7283.38, "end": 7285.48, "probability": 0.9984 }, { "start": 7285.48, "end": 7289.1, "probability": 0.8775 }, { "start": 7289.98, "end": 7292.04, "probability": 0.9966 }, { "start": 7293.08, "end": 7298.18, "probability": 0.9991 }, { "start": 7299.22, "end": 7300.06, "probability": 0.7525 }, { "start": 7300.9, "end": 7303.79, "probability": 0.8888 }, { "start": 7304.88, "end": 7306.96, "probability": 0.9771 }, { "start": 7307.08, "end": 7312.2, "probability": 0.647 }, { "start": 7313.34, "end": 7316.28, "probability": 0.9702 }, { "start": 7317.08, "end": 7319.54, "probability": 0.9945 }, { "start": 7320.1, "end": 7322.44, "probability": 0.9649 }, { "start": 7322.44, "end": 7325.34, "probability": 0.9645 }, { "start": 7326.54, "end": 7328.54, "probability": 0.9983 }, { "start": 7328.54, "end": 7331.28, "probability": 0.9997 }, { "start": 7332.28, "end": 7334.75, "probability": 0.799 }, { "start": 7337.12, "end": 7338.48, "probability": 0.9421 }, { "start": 7339.4, "end": 7340.9, "probability": 0.9934 }, { "start": 7342.82, "end": 7346.7, "probability": 0.9868 }, { "start": 7347.92, "end": 7351.16, "probability": 0.9934 }, { "start": 7351.86, "end": 7354.68, "probability": 0.9966 }, { "start": 7355.48, "end": 7357.06, "probability": 0.9933 }, { "start": 7357.64, "end": 7364.06, "probability": 0.9958 }, { "start": 7364.92, "end": 7367.06, "probability": 0.8414 }, { "start": 7367.98, "end": 7368.62, "probability": 0.9128 }, { "start": 7369.24, "end": 7373.86, "probability": 0.9977 }, { "start": 7374.46, "end": 7378.88, "probability": 0.9978 }, { "start": 7379.54, "end": 7380.8, "probability": 0.9995 }, { "start": 7381.76, "end": 7384.96, "probability": 0.9563 }, { "start": 7385.86, "end": 7389.32, "probability": 0.8925 }, { "start": 7389.76, "end": 7392.32, "probability": 0.9955 }, { "start": 7392.94, "end": 7394.5, "probability": 0.8139 }, { "start": 7395.5, "end": 7398.92, "probability": 0.5489 }, { "start": 7399.88, "end": 7402.44, "probability": 0.926 }, { "start": 7402.52, "end": 7405.52, "probability": 0.9954 }, { "start": 7406.22, "end": 7407.54, "probability": 0.8352 }, { "start": 7408.18, "end": 7410.76, "probability": 0.9663 }, { "start": 7411.2, "end": 7413.04, "probability": 0.9783 }, { "start": 7413.76, "end": 7416.41, "probability": 0.396 }, { "start": 7416.72, "end": 7418.97, "probability": 0.9139 }, { "start": 7419.82, "end": 7420.83, "probability": 0.9003 }, { "start": 7421.0, "end": 7424.18, "probability": 0.8599 }, { "start": 7424.18, "end": 7427.2, "probability": 0.9935 }, { "start": 7427.56, "end": 7427.8, "probability": 0.6864 }, { "start": 7427.82, "end": 7429.02, "probability": 0.5766 }, { "start": 7429.42, "end": 7433.02, "probability": 0.995 }, { "start": 7433.38, "end": 7434.8, "probability": 0.9918 }, { "start": 7434.96, "end": 7435.14, "probability": 0.0513 }, { "start": 7435.14, "end": 7435.4, "probability": 0.3333 }, { "start": 7435.68, "end": 7436.72, "probability": 0.9141 }, { "start": 7437.3, "end": 7437.58, "probability": 0.1162 }, { "start": 7438.4, "end": 7441.18, "probability": 0.4025 }, { "start": 7442.42, "end": 7449.22, "probability": 0.8965 }, { "start": 7449.64, "end": 7452.92, "probability": 0.9376 }, { "start": 7452.98, "end": 7454.06, "probability": 0.3024 }, { "start": 7454.18, "end": 7454.34, "probability": 0.4522 }, { "start": 7454.46, "end": 7457.52, "probability": 0.8416 }, { "start": 7457.64, "end": 7458.69, "probability": 0.5438 }, { "start": 7459.78, "end": 7459.92, "probability": 0.0858 }, { "start": 7459.92, "end": 7460.0, "probability": 0.2443 }, { "start": 7460.2, "end": 7461.02, "probability": 0.9215 }, { "start": 7461.08, "end": 7462.78, "probability": 0.6565 }, { "start": 7463.28, "end": 7466.12, "probability": 0.9663 }, { "start": 7466.8, "end": 7469.86, "probability": 0.9937 }, { "start": 7470.5, "end": 7471.44, "probability": 0.845 }, { "start": 7472.2, "end": 7475.72, "probability": 0.7788 }, { "start": 7476.26, "end": 7477.78, "probability": 0.9696 }, { "start": 7478.44, "end": 7480.46, "probability": 0.9878 }, { "start": 7481.14, "end": 7486.92, "probability": 0.9928 }, { "start": 7487.6, "end": 7489.8, "probability": 0.9201 }, { "start": 7490.16, "end": 7493.2, "probability": 0.9635 }, { "start": 7493.94, "end": 7495.96, "probability": 0.9948 }, { "start": 7496.54, "end": 7501.58, "probability": 0.9857 }, { "start": 7502.02, "end": 7502.64, "probability": 0.8737 }, { "start": 7503.1, "end": 7505.92, "probability": 0.5447 }, { "start": 7505.96, "end": 7508.78, "probability": 0.7238 }, { "start": 7509.22, "end": 7510.3, "probability": 0.9858 }, { "start": 7510.98, "end": 7516.66, "probability": 0.3841 }, { "start": 7516.66, "end": 7517.72, "probability": 0.9644 }, { "start": 7519.76, "end": 7522.06, "probability": 0.5397 }, { "start": 7523.12, "end": 7523.32, "probability": 0.8051 }, { "start": 7532.98, "end": 7534.56, "probability": 0.8708 }, { "start": 7536.32, "end": 7537.74, "probability": 0.749 }, { "start": 7537.88, "end": 7539.02, "probability": 0.9219 }, { "start": 7539.08, "end": 7540.44, "probability": 0.991 }, { "start": 7540.48, "end": 7542.82, "probability": 0.9585 }, { "start": 7543.78, "end": 7549.0, "probability": 0.9673 }, { "start": 7549.0, "end": 7553.62, "probability": 0.9944 }, { "start": 7554.36, "end": 7555.68, "probability": 0.5835 }, { "start": 7556.42, "end": 7560.62, "probability": 0.9971 }, { "start": 7560.62, "end": 7565.42, "probability": 0.9996 }, { "start": 7565.88, "end": 7566.64, "probability": 0.6292 }, { "start": 7567.0, "end": 7567.86, "probability": 0.8144 }, { "start": 7568.42, "end": 7572.34, "probability": 0.9771 }, { "start": 7573.1, "end": 7574.78, "probability": 0.9783 }, { "start": 7575.9, "end": 7579.5, "probability": 0.9779 }, { "start": 7579.5, "end": 7584.34, "probability": 0.9876 }, { "start": 7584.34, "end": 7588.6, "probability": 0.9982 }, { "start": 7589.1, "end": 7591.34, "probability": 0.9906 }, { "start": 7592.18, "end": 7594.8, "probability": 0.8967 }, { "start": 7595.68, "end": 7599.5, "probability": 0.9778 }, { "start": 7599.72, "end": 7603.2, "probability": 0.9815 }, { "start": 7603.66, "end": 7607.38, "probability": 0.9851 }, { "start": 7607.38, "end": 7611.2, "probability": 0.9963 }, { "start": 7612.04, "end": 7616.08, "probability": 0.9735 }, { "start": 7616.62, "end": 7620.58, "probability": 0.9998 }, { "start": 7621.12, "end": 7626.62, "probability": 0.9966 }, { "start": 7626.62, "end": 7632.9, "probability": 0.9972 }, { "start": 7632.98, "end": 7638.26, "probability": 0.998 }, { "start": 7638.26, "end": 7644.66, "probability": 0.9993 }, { "start": 7645.46, "end": 7649.92, "probability": 0.9891 }, { "start": 7650.36, "end": 7650.62, "probability": 0.7596 }, { "start": 7651.54, "end": 7654.06, "probability": 0.4011 }, { "start": 7655.94, "end": 7656.96, "probability": 0.5613 }, { "start": 7659.24, "end": 7661.42, "probability": 0.5396 }, { "start": 7661.42, "end": 7661.92, "probability": 0.421 }, { "start": 7662.42, "end": 7662.42, "probability": 0.7207 }, { "start": 7662.46, "end": 7663.86, "probability": 0.5924 }, { "start": 7664.48, "end": 7668.87, "probability": 0.9928 }, { "start": 7668.94, "end": 7673.46, "probability": 0.9489 }, { "start": 7674.6, "end": 7676.12, "probability": 0.5777 }, { "start": 7676.22, "end": 7676.76, "probability": 0.6353 }, { "start": 7677.14, "end": 7678.42, "probability": 0.3787 }, { "start": 7689.08, "end": 7694.46, "probability": 0.0887 }, { "start": 7694.6, "end": 7695.88, "probability": 0.0294 }, { "start": 7695.88, "end": 7695.88, "probability": 0.0309 }, { "start": 7695.88, "end": 7695.88, "probability": 0.1836 }, { "start": 7695.88, "end": 7699.82, "probability": 0.6909 }, { "start": 7700.32, "end": 7702.76, "probability": 0.9637 }, { "start": 7703.76, "end": 7706.28, "probability": 0.855 }, { "start": 7706.8, "end": 7709.08, "probability": 0.9705 }, { "start": 7709.38, "end": 7714.74, "probability": 0.9258 }, { "start": 7715.08, "end": 7717.62, "probability": 0.5575 }, { "start": 7718.82, "end": 7720.7, "probability": 0.9037 }, { "start": 7722.84, "end": 7727.22, "probability": 0.8997 }, { "start": 7728.36, "end": 7730.0, "probability": 0.8097 }, { "start": 7730.62, "end": 7730.92, "probability": 0.5789 }, { "start": 7731.04, "end": 7732.3, "probability": 0.7787 }, { "start": 7732.38, "end": 7734.24, "probability": 0.9313 }, { "start": 7735.82, "end": 7737.14, "probability": 0.7433 }, { "start": 7738.22, "end": 7741.62, "probability": 0.7923 }, { "start": 7742.64, "end": 7744.14, "probability": 0.0174 }, { "start": 7744.8, "end": 7745.38, "probability": 0.8957 }, { "start": 7745.96, "end": 7746.9, "probability": 0.9778 }, { "start": 7748.14, "end": 7748.18, "probability": 0.2024 }, { "start": 7748.18, "end": 7748.8, "probability": 0.9161 }, { "start": 7749.46, "end": 7754.48, "probability": 0.6836 }, { "start": 7755.86, "end": 7759.2, "probability": 0.817 }, { "start": 7759.6, "end": 7761.12, "probability": 0.5458 }, { "start": 7763.73, "end": 7766.46, "probability": 0.9336 }, { "start": 7769.18, "end": 7771.06, "probability": 0.872 }, { "start": 7772.9, "end": 7775.36, "probability": 0.7542 }, { "start": 7776.16, "end": 7777.2, "probability": 0.8177 }, { "start": 7782.2, "end": 7783.24, "probability": 0.3674 }, { "start": 7783.4, "end": 7784.58, "probability": 0.6561 }, { "start": 7785.36, "end": 7788.7, "probability": 0.7423 }, { "start": 7788.7, "end": 7792.96, "probability": 0.9239 }, { "start": 7793.36, "end": 7796.86, "probability": 0.9729 }, { "start": 7797.56, "end": 7801.6, "probability": 0.9796 }, { "start": 7803.02, "end": 7804.76, "probability": 0.9937 }, { "start": 7805.38, "end": 7806.24, "probability": 0.9833 }, { "start": 7815.94, "end": 7816.6, "probability": 0.4893 }, { "start": 7822.34, "end": 7823.28, "probability": 0.7135 }, { "start": 7826.82, "end": 7828.28, "probability": 0.811 }, { "start": 7829.38, "end": 7829.38, "probability": 0.4123 }, { "start": 7829.42, "end": 7830.26, "probability": 0.907 }, { "start": 7830.5, "end": 7831.4, "probability": 0.8112 }, { "start": 7831.42, "end": 7831.42, "probability": 0.5883 }, { "start": 7831.46, "end": 7832.58, "probability": 0.9043 }, { "start": 7833.4, "end": 7834.86, "probability": 0.8505 }, { "start": 7835.82, "end": 7836.76, "probability": 0.9382 }, { "start": 7837.7, "end": 7838.98, "probability": 0.8837 }, { "start": 7839.86, "end": 7840.86, "probability": 0.9321 }, { "start": 7841.84, "end": 7842.6, "probability": 0.7207 }, { "start": 7843.56, "end": 7844.78, "probability": 0.875 }, { "start": 7855.48, "end": 7857.0, "probability": 0.7395 }, { "start": 7857.1, "end": 7857.76, "probability": 0.7358 }, { "start": 7858.82, "end": 7859.76, "probability": 0.61 }, { "start": 7860.6, "end": 7864.14, "probability": 0.8606 }, { "start": 7866.6, "end": 7869.26, "probability": 0.9344 }, { "start": 7871.02, "end": 7871.69, "probability": 0.8584 }, { "start": 7871.82, "end": 7872.1, "probability": 0.8671 }, { "start": 7872.56, "end": 7873.16, "probability": 0.5771 }, { "start": 7873.16, "end": 7873.84, "probability": 0.5894 }, { "start": 7874.22, "end": 7875.8, "probability": 0.6704 }, { "start": 7876.62, "end": 7876.9, "probability": 0.5039 }, { "start": 7879.22, "end": 7881.18, "probability": 0.905 }, { "start": 7882.52, "end": 7885.44, "probability": 0.8802 }, { "start": 7887.82, "end": 7894.46, "probability": 0.9964 }, { "start": 7896.2, "end": 7900.08, "probability": 0.9866 }, { "start": 7900.88, "end": 7902.24, "probability": 0.7502 }, { "start": 7902.62, "end": 7906.32, "probability": 0.8522 }, { "start": 7908.78, "end": 7909.96, "probability": 0.9651 }, { "start": 7911.28, "end": 7913.58, "probability": 0.984 }, { "start": 7915.1, "end": 7921.8, "probability": 0.999 }, { "start": 7923.36, "end": 7926.82, "probability": 0.9993 }, { "start": 7927.72, "end": 7931.96, "probability": 0.8786 }, { "start": 7933.3, "end": 7935.04, "probability": 0.9992 }, { "start": 7936.06, "end": 7939.34, "probability": 0.8767 }, { "start": 7940.32, "end": 7942.04, "probability": 0.9674 }, { "start": 7943.58, "end": 7944.0, "probability": 0.7918 }, { "start": 7944.74, "end": 7948.76, "probability": 0.9989 }, { "start": 7949.42, "end": 7951.28, "probability": 0.9717 }, { "start": 7951.6, "end": 7951.86, "probability": 0.3811 }, { "start": 7951.92, "end": 7952.78, "probability": 0.9042 }, { "start": 7953.24, "end": 7955.08, "probability": 0.8293 }, { "start": 7956.14, "end": 7957.38, "probability": 0.9935 }, { "start": 7958.1, "end": 7959.48, "probability": 0.9316 }, { "start": 7960.78, "end": 7964.12, "probability": 0.9983 }, { "start": 7966.62, "end": 7967.5, "probability": 0.9273 }, { "start": 7967.56, "end": 7971.74, "probability": 0.993 }, { "start": 7971.82, "end": 7973.86, "probability": 0.9917 }, { "start": 7974.66, "end": 7977.1, "probability": 0.762 }, { "start": 7977.5, "end": 7978.52, "probability": 0.7079 }, { "start": 7978.56, "end": 7979.37, "probability": 0.8992 }, { "start": 7979.66, "end": 7982.15, "probability": 0.9941 }, { "start": 7983.62, "end": 7985.0, "probability": 0.6663 }, { "start": 7985.98, "end": 7988.06, "probability": 0.7559 }, { "start": 7988.8, "end": 7989.8, "probability": 0.5406 }, { "start": 7990.5, "end": 7991.18, "probability": 0.7364 }, { "start": 7992.02, "end": 7993.84, "probability": 0.9487 }, { "start": 7994.78, "end": 7996.44, "probability": 0.9877 }, { "start": 7998.0, "end": 7999.44, "probability": 0.0574 }, { "start": 8000.18, "end": 8002.62, "probability": 0.5477 }, { "start": 8003.54, "end": 8004.7, "probability": 0.9479 }, { "start": 8005.32, "end": 8006.74, "probability": 0.9361 }, { "start": 8008.78, "end": 8011.7, "probability": 0.9968 }, { "start": 8011.7, "end": 8015.78, "probability": 0.9863 }, { "start": 8016.2, "end": 8016.97, "probability": 0.856 }, { "start": 8019.38, "end": 8020.58, "probability": 0.8247 }, { "start": 8021.44, "end": 8028.46, "probability": 0.9986 }, { "start": 8030.82, "end": 8032.74, "probability": 0.8765 }, { "start": 8033.74, "end": 8036.54, "probability": 0.9519 }, { "start": 8037.28, "end": 8042.34, "probability": 0.9864 }, { "start": 8044.77, "end": 8047.16, "probability": 0.4674 }, { "start": 8047.16, "end": 8048.98, "probability": 0.4348 }, { "start": 8049.14, "end": 8051.66, "probability": 0.9836 }, { "start": 8052.38, "end": 8054.14, "probability": 0.913 }, { "start": 8055.9, "end": 8058.5, "probability": 0.991 }, { "start": 8059.72, "end": 8060.44, "probability": 0.8439 }, { "start": 8061.7, "end": 8064.54, "probability": 0.9897 }, { "start": 8064.54, "end": 8067.08, "probability": 0.9996 }, { "start": 8067.2, "end": 8067.98, "probability": 0.7861 }, { "start": 8069.72, "end": 8070.64, "probability": 0.338 }, { "start": 8070.76, "end": 8071.74, "probability": 0.9794 }, { "start": 8071.9, "end": 8078.92, "probability": 0.825 }, { "start": 8078.92, "end": 8084.44, "probability": 0.9844 }, { "start": 8085.72, "end": 8088.5, "probability": 0.9497 }, { "start": 8088.8, "end": 8090.98, "probability": 0.9312 }, { "start": 8091.1, "end": 8091.84, "probability": 0.5426 }, { "start": 8093.06, "end": 8094.06, "probability": 0.6812 }, { "start": 8095.02, "end": 8097.72, "probability": 0.8741 }, { "start": 8098.34, "end": 8099.08, "probability": 0.1349 }, { "start": 8101.18, "end": 8104.04, "probability": 0.0382 }, { "start": 8104.56, "end": 8107.5, "probability": 0.6776 }, { "start": 8108.04, "end": 8109.39, "probability": 0.7531 }, { "start": 8109.82, "end": 8111.35, "probability": 0.5234 }, { "start": 8111.72, "end": 8113.36, "probability": 0.6833 }, { "start": 8114.78, "end": 8115.3, "probability": 0.7715 }, { "start": 8115.86, "end": 8118.74, "probability": 0.7371 }, { "start": 8120.28, "end": 8121.16, "probability": 0.8304 }, { "start": 8121.68, "end": 8122.38, "probability": 0.9007 }, { "start": 8122.96, "end": 8124.54, "probability": 0.9017 }, { "start": 8125.7, "end": 8126.34, "probability": 0.7226 }, { "start": 8126.34, "end": 8127.31, "probability": 0.986 }, { "start": 8127.9, "end": 8128.72, "probability": 0.9553 }, { "start": 8128.82, "end": 8129.58, "probability": 0.757 }, { "start": 8130.76, "end": 8132.54, "probability": 0.7982 }, { "start": 8133.24, "end": 8134.36, "probability": 0.8945 }, { "start": 8135.78, "end": 8136.2, "probability": 0.7669 }, { "start": 8137.78, "end": 8138.62, "probability": 0.6732 }, { "start": 8138.7, "end": 8140.36, "probability": 0.9491 }, { "start": 8140.6, "end": 8145.4, "probability": 0.9738 }, { "start": 8145.4, "end": 8149.94, "probability": 0.9987 }, { "start": 8150.08, "end": 8150.48, "probability": 0.5029 }, { "start": 8150.6, "end": 8151.18, "probability": 0.7041 }, { "start": 8152.42, "end": 8155.18, "probability": 0.9973 }, { "start": 8155.18, "end": 8160.18, "probability": 0.9832 }, { "start": 8161.28, "end": 8162.72, "probability": 0.9987 }, { "start": 8164.0, "end": 8165.72, "probability": 0.8921 }, { "start": 8165.86, "end": 8169.5, "probability": 0.9959 }, { "start": 8169.56, "end": 8169.76, "probability": 0.8867 }, { "start": 8169.92, "end": 8171.86, "probability": 0.8513 }, { "start": 8171.9, "end": 8173.26, "probability": 0.8188 }, { "start": 8173.3, "end": 8173.92, "probability": 0.8361 }, { "start": 8174.28, "end": 8174.98, "probability": 0.7294 }, { "start": 8175.36, "end": 8176.36, "probability": 0.9758 }, { "start": 8176.42, "end": 8177.22, "probability": 0.9289 }, { "start": 8179.04, "end": 8179.54, "probability": 0.9391 }, { "start": 8179.6, "end": 8180.34, "probability": 0.8624 }, { "start": 8180.62, "end": 8181.34, "probability": 0.9369 }, { "start": 8181.48, "end": 8182.16, "probability": 0.8215 }, { "start": 8182.42, "end": 8188.58, "probability": 0.9968 }, { "start": 8188.74, "end": 8190.34, "probability": 0.9761 }, { "start": 8191.18, "end": 8193.0, "probability": 0.8479 }, { "start": 8193.38, "end": 8193.96, "probability": 0.9602 }, { "start": 8194.02, "end": 8197.24, "probability": 0.9817 }, { "start": 8197.84, "end": 8201.28, "probability": 0.8879 }, { "start": 8202.06, "end": 8207.52, "probability": 0.5776 }, { "start": 8208.36, "end": 8208.6, "probability": 0.3708 }, { "start": 8208.6, "end": 8209.76, "probability": 0.6826 }, { "start": 8209.94, "end": 8214.86, "probability": 0.998 }, { "start": 8215.64, "end": 8218.02, "probability": 0.9818 }, { "start": 8218.18, "end": 8218.32, "probability": 0.6896 }, { "start": 8219.46, "end": 8223.02, "probability": 0.998 }, { "start": 8223.02, "end": 8225.66, "probability": 0.9877 }, { "start": 8225.74, "end": 8226.16, "probability": 0.9275 }, { "start": 8226.22, "end": 8226.32, "probability": 0.2217 }, { "start": 8226.34, "end": 8228.18, "probability": 0.613 }, { "start": 8229.16, "end": 8229.16, "probability": 0.0609 }, { "start": 8229.16, "end": 8232.52, "probability": 0.9568 }, { "start": 8232.74, "end": 8235.08, "probability": 0.9922 }, { "start": 8235.08, "end": 8238.76, "probability": 0.9969 }, { "start": 8240.06, "end": 8243.18, "probability": 0.9993 }, { "start": 8244.28, "end": 8246.6, "probability": 0.891 }, { "start": 8247.68, "end": 8254.58, "probability": 0.994 }, { "start": 8255.7, "end": 8260.28, "probability": 0.9885 }, { "start": 8260.44, "end": 8261.74, "probability": 0.9848 }, { "start": 8262.56, "end": 8264.08, "probability": 0.9902 }, { "start": 8266.08, "end": 8270.38, "probability": 0.9954 }, { "start": 8270.82, "end": 8277.86, "probability": 0.9878 }, { "start": 8278.4, "end": 8280.6, "probability": 0.9987 }, { "start": 8280.6, "end": 8285.36, "probability": 0.9967 }, { "start": 8287.08, "end": 8290.38, "probability": 0.914 }, { "start": 8291.12, "end": 8292.44, "probability": 0.985 }, { "start": 8293.24, "end": 8294.4, "probability": 0.7486 }, { "start": 8294.58, "end": 8295.32, "probability": 0.8112 }, { "start": 8295.4, "end": 8296.49, "probability": 0.9376 }, { "start": 8296.66, "end": 8296.9, "probability": 0.8862 }, { "start": 8297.0, "end": 8297.58, "probability": 0.6029 }, { "start": 8297.64, "end": 8301.04, "probability": 0.8379 }, { "start": 8301.84, "end": 8303.26, "probability": 0.9972 }, { "start": 8303.34, "end": 8304.96, "probability": 0.8821 }, { "start": 8305.78, "end": 8306.92, "probability": 0.9274 }, { "start": 8310.82, "end": 8311.42, "probability": 0.4353 }, { "start": 8312.24, "end": 8316.6, "probability": 0.9948 }, { "start": 8317.18, "end": 8318.34, "probability": 0.9972 }, { "start": 8318.38, "end": 8318.74, "probability": 0.8129 }, { "start": 8318.76, "end": 8321.94, "probability": 0.9825 }, { "start": 8322.08, "end": 8323.1, "probability": 0.8652 }, { "start": 8324.62, "end": 8328.0, "probability": 0.9809 }, { "start": 8328.14, "end": 8329.25, "probability": 0.9997 }, { "start": 8330.42, "end": 8332.54, "probability": 0.6348 }, { "start": 8332.64, "end": 8335.28, "probability": 0.9459 }, { "start": 8336.16, "end": 8338.0, "probability": 0.7251 }, { "start": 8338.84, "end": 8340.56, "probability": 0.9668 }, { "start": 8340.58, "end": 8342.84, "probability": 0.991 }, { "start": 8343.68, "end": 8347.88, "probability": 0.9963 }, { "start": 8347.88, "end": 8350.74, "probability": 0.9926 }, { "start": 8351.52, "end": 8355.08, "probability": 0.9977 }, { "start": 8355.22, "end": 8355.46, "probability": 0.4171 }, { "start": 8355.56, "end": 8356.49, "probability": 0.8527 }, { "start": 8356.74, "end": 8359.29, "probability": 0.9746 }, { "start": 8360.38, "end": 8362.72, "probability": 0.9989 }, { "start": 8362.98, "end": 8365.64, "probability": 0.9377 }, { "start": 8368.06, "end": 8372.98, "probability": 0.9766 }, { "start": 8374.62, "end": 8375.98, "probability": 0.9884 }, { "start": 8376.2, "end": 8378.88, "probability": 0.8652 }, { "start": 8380.06, "end": 8382.46, "probability": 0.985 }, { "start": 8382.86, "end": 8386.52, "probability": 0.9926 }, { "start": 8387.46, "end": 8392.16, "probability": 0.9102 }, { "start": 8392.62, "end": 8396.38, "probability": 0.9998 }, { "start": 8397.16, "end": 8398.9, "probability": 0.9996 }, { "start": 8399.6, "end": 8400.72, "probability": 0.7847 }, { "start": 8401.8, "end": 8403.6, "probability": 0.9933 }, { "start": 8405.22, "end": 8407.84, "probability": 0.9519 }, { "start": 8407.9, "end": 8408.1, "probability": 0.6819 }, { "start": 8408.16, "end": 8409.6, "probability": 0.8393 }, { "start": 8409.68, "end": 8410.22, "probability": 0.7796 }, { "start": 8410.32, "end": 8411.0, "probability": 0.6758 }, { "start": 8412.12, "end": 8413.0, "probability": 0.8105 }, { "start": 8413.1, "end": 8416.82, "probability": 0.9861 }, { "start": 8417.44, "end": 8419.2, "probability": 0.9878 }, { "start": 8419.3, "end": 8421.02, "probability": 0.9307 }, { "start": 8421.6, "end": 8422.44, "probability": 0.9363 }, { "start": 8423.28, "end": 8426.6, "probability": 0.9944 }, { "start": 8426.6, "end": 8430.14, "probability": 0.994 }, { "start": 8431.24, "end": 8437.26, "probability": 0.9985 }, { "start": 8438.3, "end": 8440.68, "probability": 0.9513 }, { "start": 8440.76, "end": 8444.63, "probability": 0.972 }, { "start": 8446.08, "end": 8450.3, "probability": 0.998 }, { "start": 8450.3, "end": 8456.02, "probability": 0.999 }, { "start": 8456.12, "end": 8457.36, "probability": 0.49 }, { "start": 8459.06, "end": 8461.54, "probability": 0.8083 }, { "start": 8464.79, "end": 8465.3, "probability": 0.3105 }, { "start": 8465.3, "end": 8467.0, "probability": 0.8997 }, { "start": 8468.02, "end": 8471.26, "probability": 0.9986 }, { "start": 8471.38, "end": 8474.58, "probability": 0.9704 }, { "start": 8475.4, "end": 8479.82, "probability": 0.9909 }, { "start": 8480.0, "end": 8480.96, "probability": 0.3964 }, { "start": 8480.98, "end": 8484.16, "probability": 0.9846 }, { "start": 8484.16, "end": 8487.04, "probability": 0.9973 }, { "start": 8487.08, "end": 8489.86, "probability": 0.8281 }, { "start": 8490.46, "end": 8493.36, "probability": 0.9907 }, { "start": 8494.34, "end": 8496.2, "probability": 0.518 }, { "start": 8496.44, "end": 8499.46, "probability": 0.396 }, { "start": 8501.14, "end": 8505.46, "probability": 0.9218 }, { "start": 8505.66, "end": 8507.38, "probability": 0.6318 }, { "start": 8507.44, "end": 8509.67, "probability": 0.8704 }, { "start": 8510.64, "end": 8511.77, "probability": 0.9655 }, { "start": 8511.88, "end": 8512.18, "probability": 0.2506 }, { "start": 8512.36, "end": 8515.24, "probability": 0.6025 }, { "start": 8515.24, "end": 8516.52, "probability": 0.5038 }, { "start": 8517.44, "end": 8521.08, "probability": 0.6841 }, { "start": 8521.78, "end": 8524.06, "probability": 0.8286 }, { "start": 8524.06, "end": 8526.42, "probability": 0.9299 }, { "start": 8526.5, "end": 8527.38, "probability": 0.9273 }, { "start": 8528.38, "end": 8528.64, "probability": 0.0403 }, { "start": 8528.72, "end": 8530.49, "probability": 0.7938 }, { "start": 8531.42, "end": 8532.38, "probability": 0.969 }, { "start": 8532.56, "end": 8534.26, "probability": 0.9334 }, { "start": 8535.04, "end": 8536.08, "probability": 0.6948 }, { "start": 8536.14, "end": 8538.36, "probability": 0.5237 }, { "start": 8538.88, "end": 8542.34, "probability": 0.992 }, { "start": 8542.34, "end": 8544.86, "probability": 0.929 }, { "start": 8544.98, "end": 8545.86, "probability": 0.8354 }, { "start": 8545.96, "end": 8546.72, "probability": 0.8851 }, { "start": 8546.82, "end": 8547.5, "probability": 0.9726 }, { "start": 8547.58, "end": 8548.2, "probability": 0.6615 }, { "start": 8548.92, "end": 8553.08, "probability": 0.9973 }, { "start": 8553.32, "end": 8554.3, "probability": 0.6909 }, { "start": 8554.36, "end": 8555.22, "probability": 0.9849 }, { "start": 8555.28, "end": 8556.1, "probability": 0.648 }, { "start": 8556.38, "end": 8557.54, "probability": 0.8814 }, { "start": 8557.6, "end": 8557.9, "probability": 0.6073 }, { "start": 8558.66, "end": 8560.18, "probability": 0.9736 }, { "start": 8560.66, "end": 8562.86, "probability": 0.7794 }, { "start": 8563.42, "end": 8565.36, "probability": 0.9941 }, { "start": 8566.85, "end": 8567.58, "probability": 0.8945 }, { "start": 8568.62, "end": 8572.14, "probability": 0.9907 }, { "start": 8572.44, "end": 8573.56, "probability": 0.7281 }, { "start": 8573.64, "end": 8574.22, "probability": 0.792 }, { "start": 8574.34, "end": 8575.02, "probability": 0.92 }, { "start": 8575.1, "end": 8576.26, "probability": 0.973 }, { "start": 8576.74, "end": 8578.18, "probability": 0.9837 }, { "start": 8578.26, "end": 8578.8, "probability": 0.7146 }, { "start": 8578.86, "end": 8580.96, "probability": 0.9157 }, { "start": 8581.04, "end": 8582.62, "probability": 0.9661 }, { "start": 8583.16, "end": 8583.52, "probability": 0.8176 }, { "start": 8583.52, "end": 8584.12, "probability": 0.4339 }, { "start": 8584.16, "end": 8584.68, "probability": 0.8295 }, { "start": 8584.82, "end": 8585.3, "probability": 0.7091 }, { "start": 8585.38, "end": 8585.76, "probability": 0.8859 }, { "start": 8585.82, "end": 8588.1, "probability": 0.8891 }, { "start": 8588.52, "end": 8589.5, "probability": 0.9484 }, { "start": 8590.98, "end": 8591.92, "probability": 0.8478 }, { "start": 8592.4, "end": 8593.1, "probability": 0.7951 }, { "start": 8593.16, "end": 8595.88, "probability": 0.9873 }, { "start": 8595.94, "end": 8596.32, "probability": 0.8239 }, { "start": 8597.54, "end": 8599.9, "probability": 0.9886 }, { "start": 8600.3, "end": 8601.32, "probability": 0.957 }, { "start": 8602.2, "end": 8604.04, "probability": 0.9762 }, { "start": 8604.12, "end": 8605.07, "probability": 0.9907 }, { "start": 8605.3, "end": 8605.56, "probability": 0.8337 }, { "start": 8605.6, "end": 8607.6, "probability": 0.9276 }, { "start": 8607.7, "end": 8612.38, "probability": 0.9785 }, { "start": 8612.54, "end": 8613.3, "probability": 0.9291 }, { "start": 8613.36, "end": 8614.08, "probability": 0.9055 }, { "start": 8614.38, "end": 8615.06, "probability": 0.8813 }, { "start": 8615.52, "end": 8617.02, "probability": 0.9822 }, { "start": 8617.12, "end": 8617.92, "probability": 0.8862 }, { "start": 8618.8, "end": 8619.6, "probability": 0.7576 }, { "start": 8619.8, "end": 8620.34, "probability": 0.7202 }, { "start": 8620.38, "end": 8622.08, "probability": 0.9952 }, { "start": 8622.08, "end": 8623.78, "probability": 0.8863 }, { "start": 8623.96, "end": 8624.7, "probability": 0.5029 }, { "start": 8624.8, "end": 8625.12, "probability": 0.2777 }, { "start": 8625.26, "end": 8626.34, "probability": 0.6499 }, { "start": 8626.38, "end": 8627.62, "probability": 0.8677 }, { "start": 8628.17, "end": 8629.56, "probability": 0.3588 }, { "start": 8629.72, "end": 8633.5, "probability": 0.0261 }, { "start": 8634.52, "end": 8636.18, "probability": 0.9429 }, { "start": 8636.44, "end": 8638.8, "probability": 0.9954 }, { "start": 8638.8, "end": 8639.42, "probability": 0.7408 }, { "start": 8639.7, "end": 8641.21, "probability": 0.7285 }, { "start": 8642.57, "end": 8645.7, "probability": 0.3589 }, { "start": 8646.46, "end": 8647.36, "probability": 0.8454 }, { "start": 8648.42, "end": 8649.34, "probability": 0.723 }, { "start": 8651.5, "end": 8652.06, "probability": 0.9251 }, { "start": 8662.18, "end": 8662.36, "probability": 0.041 }, { "start": 8662.36, "end": 8663.7, "probability": 0.4728 }, { "start": 8664.76, "end": 8667.0, "probability": 0.7325 }, { "start": 8668.66, "end": 8671.56, "probability": 0.7928 }, { "start": 8671.56, "end": 8674.4, "probability": 0.9221 }, { "start": 8674.5, "end": 8677.12, "probability": 0.9785 }, { "start": 8677.68, "end": 8678.98, "probability": 0.3765 }, { "start": 8679.5, "end": 8682.66, "probability": 0.9018 }, { "start": 8683.46, "end": 8687.16, "probability": 0.9961 }, { "start": 8687.96, "end": 8692.98, "probability": 0.9961 }, { "start": 8693.66, "end": 8698.78, "probability": 0.9807 }, { "start": 8698.9, "end": 8699.46, "probability": 0.4533 }, { "start": 8699.62, "end": 8704.18, "probability": 0.979 }, { "start": 8704.18, "end": 8708.42, "probability": 0.9985 }, { "start": 8708.42, "end": 8711.06, "probability": 1.0 }, { "start": 8711.14, "end": 8714.16, "probability": 0.9867 }, { "start": 8714.86, "end": 8718.04, "probability": 0.9971 }, { "start": 8718.04, "end": 8721.7, "probability": 0.9819 }, { "start": 8722.22, "end": 8723.16, "probability": 0.7469 }, { "start": 8723.62, "end": 8726.94, "probability": 0.9985 }, { "start": 8727.46, "end": 8734.12, "probability": 0.9851 }, { "start": 8734.92, "end": 8735.74, "probability": 0.7824 }, { "start": 8736.36, "end": 8738.32, "probability": 0.9004 }, { "start": 8738.44, "end": 8741.22, "probability": 0.6895 }, { "start": 8741.28, "end": 8746.08, "probability": 0.9427 }, { "start": 8746.28, "end": 8747.0, "probability": 0.8547 }, { "start": 8747.1, "end": 8747.58, "probability": 0.782 }, { "start": 8747.72, "end": 8747.9, "probability": 0.5481 }, { "start": 8748.08, "end": 8753.62, "probability": 0.9763 }, { "start": 8753.62, "end": 8758.46, "probability": 0.9941 }, { "start": 8759.02, "end": 8763.6, "probability": 0.9972 }, { "start": 8764.1, "end": 8767.06, "probability": 0.8789 }, { "start": 8767.78, "end": 8770.22, "probability": 0.9968 }, { "start": 8770.32, "end": 8772.7, "probability": 0.9132 }, { "start": 8773.16, "end": 8774.74, "probability": 0.7006 }, { "start": 8774.9, "end": 8776.12, "probability": 0.9512 }, { "start": 8776.54, "end": 8781.3, "probability": 0.9875 }, { "start": 8781.68, "end": 8783.62, "probability": 0.9651 }, { "start": 8783.72, "end": 8784.2, "probability": 0.794 }, { "start": 8784.26, "end": 8785.98, "probability": 0.9223 }, { "start": 8786.1, "end": 8787.88, "probability": 0.5247 }, { "start": 8788.5, "end": 8790.04, "probability": 0.9845 }, { "start": 8790.48, "end": 8790.64, "probability": 0.7825 }, { "start": 8791.53, "end": 8795.54, "probability": 0.4823 }, { "start": 8795.62, "end": 8796.48, "probability": 0.9443 }, { "start": 8796.68, "end": 8797.36, "probability": 0.7047 }, { "start": 8805.92, "end": 8806.38, "probability": 0.4958 }, { "start": 8806.56, "end": 8808.44, "probability": 0.5978 }, { "start": 8808.56, "end": 8809.24, "probability": 0.9774 }, { "start": 8811.1, "end": 8811.86, "probability": 0.5429 }, { "start": 8813.02, "end": 8815.0, "probability": 0.998 }, { "start": 8816.3, "end": 8819.6, "probability": 0.991 }, { "start": 8819.6, "end": 8821.24, "probability": 0.9682 }, { "start": 8821.32, "end": 8821.94, "probability": 0.8434 }, { "start": 8823.02, "end": 8825.69, "probability": 0.8928 }, { "start": 8826.62, "end": 8828.12, "probability": 0.6454 }, { "start": 8828.32, "end": 8831.52, "probability": 0.9148 }, { "start": 8831.6, "end": 8832.84, "probability": 0.9939 }, { "start": 8833.16, "end": 8834.22, "probability": 0.9985 }, { "start": 8834.3, "end": 8836.22, "probability": 0.9758 }, { "start": 8837.94, "end": 8838.5, "probability": 0.9413 }, { "start": 8838.62, "end": 8842.72, "probability": 0.9954 }, { "start": 8843.68, "end": 8845.6, "probability": 0.9912 }, { "start": 8845.66, "end": 8846.2, "probability": 0.6922 }, { "start": 8846.26, "end": 8848.26, "probability": 0.9876 }, { "start": 8848.86, "end": 8851.42, "probability": 0.7968 }, { "start": 8852.22, "end": 8853.7, "probability": 0.9948 }, { "start": 8854.32, "end": 8855.3, "probability": 0.9011 }, { "start": 8855.81, "end": 8860.2, "probability": 0.6657 }, { "start": 8860.98, "end": 8863.24, "probability": 0.9189 }, { "start": 8863.36, "end": 8863.44, "probability": 0.1383 }, { "start": 8863.54, "end": 8863.7, "probability": 0.3726 }, { "start": 8863.84, "end": 8864.96, "probability": 0.8693 }, { "start": 8865.98, "end": 8867.06, "probability": 0.9941 }, { "start": 8868.54, "end": 8873.52, "probability": 0.9982 }, { "start": 8873.62, "end": 8873.88, "probability": 0.4373 }, { "start": 8873.94, "end": 8877.12, "probability": 0.9032 }, { "start": 8877.66, "end": 8880.28, "probability": 0.9564 }, { "start": 8880.36, "end": 8881.33, "probability": 0.9004 }, { "start": 8882.58, "end": 8883.68, "probability": 0.9214 }, { "start": 8883.76, "end": 8884.4, "probability": 0.5981 }, { "start": 8884.54, "end": 8885.22, "probability": 0.6682 }, { "start": 8885.34, "end": 8886.4, "probability": 0.8789 }, { "start": 8886.5, "end": 8887.37, "probability": 0.9883 }, { "start": 8888.1, "end": 8888.69, "probability": 0.8538 }, { "start": 8888.82, "end": 8889.89, "probability": 0.9727 }, { "start": 8890.06, "end": 8891.23, "probability": 0.98 }, { "start": 8892.92, "end": 8895.2, "probability": 0.8711 }, { "start": 8895.8, "end": 8897.14, "probability": 0.9209 }, { "start": 8897.26, "end": 8899.52, "probability": 0.9774 }, { "start": 8899.62, "end": 8901.1, "probability": 0.8299 }, { "start": 8901.24, "end": 8901.82, "probability": 0.8085 }, { "start": 8902.24, "end": 8904.52, "probability": 0.9991 }, { "start": 8904.52, "end": 8907.38, "probability": 0.9702 }, { "start": 8907.44, "end": 8908.52, "probability": 0.9971 }, { "start": 8909.18, "end": 8910.24, "probability": 0.9516 }, { "start": 8910.44, "end": 8911.76, "probability": 0.414 }, { "start": 8911.92, "end": 8912.18, "probability": 0.4723 }, { "start": 8912.18, "end": 8913.4, "probability": 0.6807 }, { "start": 8913.4, "end": 8914.06, "probability": 0.7745 }, { "start": 8914.16, "end": 8914.92, "probability": 0.6938 }, { "start": 8915.32, "end": 8915.42, "probability": 0.6782 }, { "start": 8915.42, "end": 8915.94, "probability": 0.4824 }, { "start": 8916.02, "end": 8918.0, "probability": 0.8743 }, { "start": 8918.74, "end": 8920.96, "probability": 0.7305 }, { "start": 8922.22, "end": 8925.08, "probability": 0.5085 }, { "start": 8925.16, "end": 8925.78, "probability": 0.5885 }, { "start": 8928.31, "end": 8930.34, "probability": 0.6387 }, { "start": 8931.2, "end": 8932.92, "probability": 0.54 }, { "start": 8933.56, "end": 8935.46, "probability": 0.8115 }, { "start": 8936.12, "end": 8936.12, "probability": 0.26 }, { "start": 8936.2, "end": 8936.7, "probability": 0.183 }, { "start": 8936.7, "end": 8936.7, "probability": 0.494 }, { "start": 8937.1, "end": 8939.48, "probability": 0.6084 }, { "start": 8939.94, "end": 8940.6, "probability": 0.2641 }, { "start": 8940.66, "end": 8941.18, "probability": 0.6271 }, { "start": 8941.64, "end": 8941.76, "probability": 0.572 }, { "start": 8941.82, "end": 8942.42, "probability": 0.6144 }, { "start": 8942.48, "end": 8943.77, "probability": 0.7714 }, { "start": 8943.92, "end": 8945.86, "probability": 0.4839 }, { "start": 8946.24, "end": 8948.28, "probability": 0.8996 }, { "start": 8948.98, "end": 8951.18, "probability": 0.7586 }, { "start": 8951.92, "end": 8956.1, "probability": 0.6637 }, { "start": 8956.5, "end": 8957.74, "probability": 0.598 }, { "start": 8958.36, "end": 8958.88, "probability": 0.7033 }, { "start": 8959.54, "end": 8959.89, "probability": 0.5221 }, { "start": 8960.48, "end": 8961.06, "probability": 0.7052 }, { "start": 8961.14, "end": 8961.14, "probability": 0.6118 }, { "start": 8961.52, "end": 8962.64, "probability": 0.5748 }, { "start": 8962.64, "end": 8963.18, "probability": 0.6478 }, { "start": 8963.3, "end": 8965.08, "probability": 0.9021 }, { "start": 8965.18, "end": 8965.96, "probability": 0.0786 }, { "start": 8965.96, "end": 8965.96, "probability": 0.0057 }, { "start": 8965.96, "end": 8965.96, "probability": 0.3069 }, { "start": 8965.96, "end": 8967.46, "probability": 0.7589 }, { "start": 8967.96, "end": 8968.0, "probability": 0.475 }, { "start": 8968.0, "end": 8971.32, "probability": 0.7089 }, { "start": 8971.32, "end": 8971.34, "probability": 0.4322 }, { "start": 8971.34, "end": 8972.04, "probability": 0.4566 }, { "start": 8972.76, "end": 8973.16, "probability": 0.091 }, { "start": 8973.16, "end": 8973.28, "probability": 0.6405 }, { "start": 8973.28, "end": 8973.46, "probability": 0.4164 }, { "start": 8973.6, "end": 8974.11, "probability": 0.5184 }, { "start": 8975.54, "end": 8975.54, "probability": 0.1036 }, { "start": 8975.54, "end": 8975.76, "probability": 0.0224 }, { "start": 8975.88, "end": 8976.8, "probability": 0.7653 }, { "start": 8976.86, "end": 8977.6, "probability": 0.8406 }, { "start": 8977.76, "end": 8979.52, "probability": 0.9451 }, { "start": 8979.72, "end": 8980.38, "probability": 0.7301 }, { "start": 8980.66, "end": 8981.65, "probability": 0.759 }, { "start": 8982.44, "end": 8984.4, "probability": 0.9725 }, { "start": 8984.48, "end": 8986.0, "probability": 0.9335 }, { "start": 8986.04, "end": 8986.7, "probability": 0.9255 }, { "start": 8986.78, "end": 8988.02, "probability": 0.9103 }, { "start": 8988.1, "end": 8991.04, "probability": 0.9264 }, { "start": 8991.16, "end": 8991.48, "probability": 0.5209 }, { "start": 8992.24, "end": 8994.1, "probability": 0.9118 }, { "start": 8994.22, "end": 8997.22, "probability": 0.9918 }, { "start": 8997.42, "end": 8999.46, "probability": 0.3816 }, { "start": 8999.54, "end": 8999.7, "probability": 0.6908 }, { "start": 8999.72, "end": 9002.56, "probability": 0.9964 }, { "start": 9002.96, "end": 9004.04, "probability": 0.9668 }, { "start": 9004.1, "end": 9006.64, "probability": 0.998 }, { "start": 9006.64, "end": 9010.44, "probability": 0.9983 }, { "start": 9010.52, "end": 9010.92, "probability": 0.8886 }, { "start": 9011.0, "end": 9011.46, "probability": 0.8101 }, { "start": 9012.06, "end": 9013.44, "probability": 0.6964 }, { "start": 9013.86, "end": 9015.38, "probability": 0.8418 }, { "start": 9015.46, "end": 9016.5, "probability": 0.9105 }, { "start": 9017.98, "end": 9020.28, "probability": 0.9906 }, { "start": 9020.28, "end": 9024.84, "probability": 0.7599 }, { "start": 9025.4, "end": 9028.16, "probability": 0.8926 }, { "start": 9028.36, "end": 9029.1, "probability": 0.5731 }, { "start": 9029.4, "end": 9030.34, "probability": 0.7505 }, { "start": 9030.96, "end": 9033.8, "probability": 0.4873 }, { "start": 9033.94, "end": 9034.52, "probability": 0.8604 }, { "start": 9034.62, "end": 9037.16, "probability": 0.3396 }, { "start": 9038.16, "end": 9039.36, "probability": 0.6678 }, { "start": 9039.36, "end": 9043.0, "probability": 0.8069 }, { "start": 9043.32, "end": 9047.2, "probability": 0.7999 }, { "start": 9047.2, "end": 9048.2, "probability": 0.9746 }, { "start": 9049.18, "end": 9050.18, "probability": 0.6771 }, { "start": 9050.8, "end": 9051.08, "probability": 0.9478 }, { "start": 9051.72, "end": 9052.86, "probability": 0.7889 }, { "start": 9053.76, "end": 9054.52, "probability": 0.9124 }, { "start": 9055.38, "end": 9062.16, "probability": 0.9611 }, { "start": 9062.98, "end": 9065.18, "probability": 0.9853 }, { "start": 9066.1, "end": 9068.14, "probability": 0.9949 }, { "start": 9069.11, "end": 9071.82, "probability": 0.9949 }, { "start": 9072.8, "end": 9075.1, "probability": 0.9152 }, { "start": 9076.22, "end": 9076.52, "probability": 0.7025 }, { "start": 9077.2, "end": 9078.48, "probability": 0.7081 }, { "start": 9079.32, "end": 9080.88, "probability": 0.8826 }, { "start": 9082.1, "end": 9082.54, "probability": 0.9862 }, { "start": 9083.14, "end": 9083.92, "probability": 0.8964 }, { "start": 9086.52, "end": 9088.32, "probability": 0.7418 }, { "start": 9090.94, "end": 9092.0, "probability": 0.3589 }, { "start": 9092.88, "end": 9093.6, "probability": 0.8071 }, { "start": 9094.4, "end": 9095.58, "probability": 0.7151 }, { "start": 9096.8, "end": 9097.22, "probability": 0.7634 }, { "start": 9098.24, "end": 9099.2, "probability": 0.8278 }, { "start": 9100.14, "end": 9100.62, "probability": 0.9551 }, { "start": 9101.5, "end": 9102.4, "probability": 0.8958 }, { "start": 9103.72, "end": 9104.24, "probability": 0.8784 }, { "start": 9104.78, "end": 9105.48, "probability": 0.9501 }, { "start": 9106.32, "end": 9108.84, "probability": 0.983 }, { "start": 9109.44, "end": 9115.3, "probability": 0.9638 }, { "start": 9116.88, "end": 9120.4, "probability": 0.7945 }, { "start": 9121.32, "end": 9121.68, "probability": 0.8963 }, { "start": 9122.34, "end": 9129.14, "probability": 0.9247 }, { "start": 9130.24, "end": 9132.38, "probability": 0.9437 }, { "start": 9133.2, "end": 9135.7, "probability": 0.9875 }, { "start": 9136.64, "end": 9136.94, "probability": 0.9108 }, { "start": 9137.56, "end": 9138.7, "probability": 0.9445 }, { "start": 9140.12, "end": 9142.52, "probability": 0.8879 }, { "start": 9144.1, "end": 9145.12, "probability": 0.9946 }, { "start": 9146.0, "end": 9147.54, "probability": 0.4805 }, { "start": 9151.28, "end": 9151.8, "probability": 0.7307 }, { "start": 9152.84, "end": 9153.88, "probability": 0.836 }, { "start": 9155.38, "end": 9156.12, "probability": 0.7926 }, { "start": 9157.04, "end": 9157.96, "probability": 0.8196 }, { "start": 9161.52, "end": 9166.04, "probability": 0.6246 }, { "start": 9166.62, "end": 9167.08, "probability": 0.9383 }, { "start": 9167.76, "end": 9170.28, "probability": 0.9309 }, { "start": 9171.06, "end": 9172.52, "probability": 0.7625 }, { "start": 9173.14, "end": 9176.28, "probability": 0.9327 }, { "start": 9178.16, "end": 9178.4, "probability": 0.535 }, { "start": 9179.34, "end": 9180.26, "probability": 0.6351 }, { "start": 9181.38, "end": 9181.74, "probability": 0.8825 }, { "start": 9182.52, "end": 9183.52, "probability": 0.6361 }, { "start": 9184.76, "end": 9186.84, "probability": 0.6331 }, { "start": 9187.8, "end": 9188.34, "probability": 0.9528 }, { "start": 9189.36, "end": 9192.86, "probability": 0.9111 }, { "start": 9194.64, "end": 9198.68, "probability": 0.3407 }, { "start": 9199.76, "end": 9202.3, "probability": 0.4378 }, { "start": 9209.92, "end": 9212.9, "probability": 0.3318 }, { "start": 9213.82, "end": 9214.46, "probability": 0.8062 }, { "start": 9215.7, "end": 9222.7, "probability": 0.6861 }, { "start": 9223.78, "end": 9226.3, "probability": 0.7441 }, { "start": 9227.06, "end": 9230.1, "probability": 0.9904 }, { "start": 9231.2, "end": 9231.62, "probability": 0.985 }, { "start": 9232.4, "end": 9233.34, "probability": 0.9265 }, { "start": 9234.6, "end": 9235.02, "probability": 0.9766 }, { "start": 9236.86, "end": 9238.28, "probability": 0.571 }, { "start": 9240.62, "end": 9244.62, "probability": 0.6393 }, { "start": 9248.68, "end": 9251.54, "probability": 0.4989 }, { "start": 9252.1, "end": 9254.76, "probability": 0.8581 }, { "start": 9259.36, "end": 9260.28, "probability": 0.6661 }, { "start": 9261.26, "end": 9262.1, "probability": 0.8199 }, { "start": 9263.78, "end": 9264.22, "probability": 0.9325 }, { "start": 9265.58, "end": 9266.44, "probability": 0.8507 }, { "start": 9268.98, "end": 9274.12, "probability": 0.9443 }, { "start": 9275.9, "end": 9276.14, "probability": 0.5015 }, { "start": 9278.24, "end": 9279.22, "probability": 0.6742 }, { "start": 9284.26, "end": 9287.24, "probability": 0.754 }, { "start": 9288.38, "end": 9288.72, "probability": 0.9139 }, { "start": 9291.72, "end": 9292.88, "probability": 0.3893 }, { "start": 9293.62, "end": 9293.92, "probability": 0.9681 }, { "start": 9294.68, "end": 9295.52, "probability": 0.7746 }, { "start": 9296.8, "end": 9297.56, "probability": 0.9491 }, { "start": 9298.2, "end": 9299.44, "probability": 0.8865 }, { "start": 9300.76, "end": 9305.44, "probability": 0.9127 }, { "start": 9306.64, "end": 9313.8, "probability": 0.9436 }, { "start": 9314.52, "end": 9316.58, "probability": 0.9868 }, { "start": 9317.46, "end": 9320.7, "probability": 0.6646 }, { "start": 9321.52, "end": 9325.44, "probability": 0.8527 }, { "start": 9326.18, "end": 9326.62, "probability": 0.9896 }, { "start": 9327.18, "end": 9328.44, "probability": 0.9329 }, { "start": 9329.98, "end": 9331.98, "probability": 0.8442 }, { "start": 9335.3, "end": 9336.1, "probability": 0.9671 }, { "start": 9336.74, "end": 9337.96, "probability": 0.8967 }, { "start": 9338.84, "end": 9339.32, "probability": 0.9876 }, { "start": 9340.5, "end": 9341.6, "probability": 0.756 }, { "start": 9343.16, "end": 9345.82, "probability": 0.9593 }, { "start": 9347.58, "end": 9356.36, "probability": 0.7211 }, { "start": 9357.84, "end": 9360.8, "probability": 0.8267 }, { "start": 9364.18, "end": 9371.36, "probability": 0.6021 }, { "start": 9372.28, "end": 9372.52, "probability": 0.7045 }, { "start": 9373.8, "end": 9375.08, "probability": 0.7927 }, { "start": 9375.86, "end": 9376.22, "probability": 0.6954 }, { "start": 9376.94, "end": 9378.42, "probability": 0.888 }, { "start": 9381.04, "end": 9382.94, "probability": 0.4465 }, { "start": 9386.2, "end": 9387.2, "probability": 0.5489 }, { "start": 9389.1, "end": 9391.32, "probability": 0.883 }, { "start": 9392.84, "end": 9393.88, "probability": 0.6112 }, { "start": 9397.88, "end": 9400.46, "probability": 0.8639 }, { "start": 9402.18, "end": 9402.96, "probability": 0.8809 }, { "start": 9403.92, "end": 9404.98, "probability": 0.7928 }, { "start": 9406.39, "end": 9408.2, "probability": 0.9233 }, { "start": 9410.67, "end": 9414.0, "probability": 0.4223 }, { "start": 9416.54, "end": 9418.32, "probability": 0.3537 }, { "start": 9421.18, "end": 9421.66, "probability": 0.0033 }, { "start": 9423.62, "end": 9427.32, "probability": 0.0647 }, { "start": 9429.44, "end": 9432.56, "probability": 0.0585 }, { "start": 9433.94, "end": 9437.38, "probability": 0.368 }, { "start": 9439.28, "end": 9444.12, "probability": 0.2348 }, { "start": 9446.36, "end": 9447.28, "probability": 0.0832 }, { "start": 9448.92, "end": 9449.38, "probability": 0.7437 }, { "start": 9450.7, "end": 9454.24, "probability": 0.0648 }, { "start": 9590.0, "end": 9590.0, "probability": 0.0 }, { "start": 9590.0, "end": 9590.0, "probability": 0.0 }, { "start": 9590.0, "end": 9590.0, "probability": 0.0 }, { "start": 9590.0, "end": 9590.0, "probability": 0.0 }, { "start": 9590.0, "end": 9590.0, "probability": 0.0 }, { "start": 9590.0, "end": 9590.0, "probability": 0.0 }, { "start": 9590.0, "end": 9590.0, "probability": 0.0 }, { "start": 9590.0, "end": 9590.0, "probability": 0.0 }, { "start": 9590.0, "end": 9590.0, "probability": 0.0 }, { "start": 9590.0, "end": 9590.0, "probability": 0.0 }, { "start": 9590.0, "end": 9590.0, "probability": 0.0 }, { "start": 9590.0, "end": 9590.0, "probability": 0.0 }, { "start": 9590.0, "end": 9590.0, "probability": 0.0 }, { "start": 9590.0, "end": 9590.0, "probability": 0.0 }, { "start": 9590.0, "end": 9590.0, "probability": 0.0 }, { "start": 9590.0, "end": 9590.0, "probability": 0.0 }, { "start": 9590.0, "end": 9590.0, "probability": 0.0 }, { "start": 9590.0, "end": 9590.0, "probability": 0.0 }, { "start": 9590.0, "end": 9590.0, "probability": 0.0 }, { "start": 9590.0, "end": 9590.0, "probability": 0.0 }, { "start": 9590.0, "end": 9590.0, "probability": 0.0 }, { "start": 9595.66, "end": 9597.88, "probability": 0.6801 }, { "start": 9598.84, "end": 9599.12, "probability": 0.0177 }, { "start": 9600.24, "end": 9602.44, "probability": 0.4161 }, { "start": 9604.04, "end": 9605.62, "probability": 0.9429 }, { "start": 9606.62, "end": 9607.78, "probability": 0.644 }, { "start": 9608.54, "end": 9612.3, "probability": 0.9409 }, { "start": 9612.96, "end": 9613.76, "probability": 0.8759 }, { "start": 9614.42, "end": 9615.48, "probability": 0.9564 }, { "start": 9619.62, "end": 9620.66, "probability": 0.6709 }, { "start": 9624.06, "end": 9625.18, "probability": 0.4273 }, { "start": 9625.9, "end": 9630.1, "probability": 0.7631 }, { "start": 9630.76, "end": 9632.4, "probability": 0.9211 }, { "start": 9634.08, "end": 9634.86, "probability": 0.9491 }, { "start": 9635.88, "end": 9636.88, "probability": 0.9109 }, { "start": 9640.86, "end": 9642.64, "probability": 0.5212 }, { "start": 9644.68, "end": 9645.5, "probability": 0.6925 }, { "start": 9646.42, "end": 9646.64, "probability": 0.5008 }, { "start": 9650.18, "end": 9650.96, "probability": 0.5015 }, { "start": 9651.76, "end": 9652.5, "probability": 0.9243 }, { "start": 9653.4, "end": 9654.18, "probability": 0.7039 }, { "start": 9655.38, "end": 9657.84, "probability": 0.972 }, { "start": 9659.38, "end": 9660.4, "probability": 0.9906 }, { "start": 9661.24, "end": 9662.78, "probability": 0.8583 }, { "start": 9664.9, "end": 9665.36, "probability": 0.9046 }, { "start": 9669.4, "end": 9669.68, "probability": 0.6739 }, { "start": 9672.2, "end": 9673.3, "probability": 0.2312 }, { "start": 9676.0, "end": 9676.26, "probability": 0.6764 }, { "start": 9680.08, "end": 9681.06, "probability": 0.5787 }, { "start": 9685.38, "end": 9686.92, "probability": 0.7197 }, { "start": 9687.8, "end": 9689.12, "probability": 0.8464 }, { "start": 9690.98, "end": 9691.9, "probability": 0.9655 }, { "start": 9692.78, "end": 9693.86, "probability": 0.6659 }, { "start": 9695.02, "end": 9697.28, "probability": 0.8994 }, { "start": 9698.32, "end": 9699.1, "probability": 0.9875 }, { "start": 9699.76, "end": 9700.8, "probability": 0.9559 }, { "start": 9701.94, "end": 9704.52, "probability": 0.9 }, { "start": 9705.0, "end": 9710.1, "probability": 0.7722 }, { "start": 9710.88, "end": 9711.84, "probability": 0.3118 }, { "start": 9711.84, "end": 9714.54, "probability": 0.4565 }, { "start": 9714.88, "end": 9716.02, "probability": 0.4139 }, { "start": 9716.36, "end": 9716.86, "probability": 0.0131 }, { "start": 9718.54, "end": 9725.44, "probability": 0.0664 }, { "start": 9726.74, "end": 9728.4, "probability": 0.1674 }, { "start": 9749.74, "end": 9750.8, "probability": 0.073 }, { "start": 9771.66, "end": 9774.42, "probability": 0.0124 }, { "start": 9774.82, "end": 9775.5, "probability": 0.0208 }, { "start": 9775.56, "end": 9775.76, "probability": 0.0696 }, { "start": 9775.76, "end": 9776.9, "probability": 0.0348 }, { "start": 9777.04, "end": 9777.34, "probability": 0.0049 }, { "start": 9912.0, "end": 9912.0, "probability": 0.0 }, { "start": 9912.0, "end": 9912.0, "probability": 0.0 }, { "start": 9912.0, "end": 9912.0, "probability": 0.0 }, { "start": 9912.0, "end": 9912.0, "probability": 0.0 }, { "start": 9912.0, "end": 9912.0, "probability": 0.0 }, { "start": 9912.0, "end": 9912.0, "probability": 0.0 }, { "start": 9912.0, "end": 9912.0, "probability": 0.0 }, { "start": 9912.0, "end": 9912.0, "probability": 0.0 }, { "start": 9912.0, "end": 9912.0, "probability": 0.0 }, { "start": 9912.0, "end": 9912.0, "probability": 0.0 }, { "start": 9912.0, "end": 9912.0, "probability": 0.0 }, { "start": 9912.0, "end": 9912.0, "probability": 0.0 }, { "start": 9912.0, "end": 9912.0, "probability": 0.0 }, { "start": 9912.0, "end": 9912.0, "probability": 0.0 }, { "start": 9912.0, "end": 9912.0, "probability": 0.0 }, { "start": 9912.22, "end": 9912.3, "probability": 0.0289 }, { "start": 9912.3, "end": 9912.3, "probability": 0.0464 }, { "start": 9912.3, "end": 9916.38, "probability": 0.9294 }, { "start": 9917.92, "end": 9921.18, "probability": 0.9747 }, { "start": 9921.96, "end": 9923.5, "probability": 0.7421 }, { "start": 9924.08, "end": 9925.2, "probability": 0.7328 }, { "start": 9926.9, "end": 9927.7, "probability": 0.8648 }, { "start": 9928.24, "end": 9934.09, "probability": 0.9341 }, { "start": 9935.68, "end": 9936.3, "probability": 0.8409 }, { "start": 9937.0, "end": 9941.08, "probability": 0.9966 }, { "start": 9942.1, "end": 9943.98, "probability": 0.8214 }, { "start": 9944.84, "end": 9951.56, "probability": 0.9976 }, { "start": 9951.56, "end": 9957.96, "probability": 0.9985 }, { "start": 9958.88, "end": 9959.62, "probability": 0.9974 }, { "start": 9960.22, "end": 9960.63, "probability": 0.9268 }, { "start": 9962.4, "end": 9966.28, "probability": 0.9748 }, { "start": 9967.2, "end": 9969.44, "probability": 0.9308 }, { "start": 9970.32, "end": 9972.08, "probability": 0.8619 }, { "start": 9973.6, "end": 9977.98, "probability": 0.9956 }, { "start": 9979.88, "end": 9983.82, "probability": 0.8587 }, { "start": 9984.86, "end": 9986.7, "probability": 0.9292 }, { "start": 9987.4, "end": 9989.44, "probability": 0.9976 }, { "start": 9990.22, "end": 9996.58, "probability": 0.9949 }, { "start": 9997.6, "end": 9998.98, "probability": 0.9892 }, { "start": 10000.08, "end": 10000.96, "probability": 0.8954 }, { "start": 10002.4, "end": 10003.2, "probability": 0.5638 }, { "start": 10003.8, "end": 10004.64, "probability": 0.8534 }, { "start": 10005.32, "end": 10009.16, "probability": 0.9963 }, { "start": 10010.48, "end": 10011.24, "probability": 0.8232 }, { "start": 10012.46, "end": 10016.78, "probability": 0.998 }, { "start": 10016.82, "end": 10021.18, "probability": 0.9869 }, { "start": 10023.24, "end": 10024.62, "probability": 0.8267 }, { "start": 10025.14, "end": 10026.5, "probability": 0.9575 }, { "start": 10027.12, "end": 10029.4, "probability": 0.9716 }, { "start": 10030.34, "end": 10036.14, "probability": 0.9932 }, { "start": 10037.22, "end": 10039.72, "probability": 0.9967 }, { "start": 10040.34, "end": 10040.79, "probability": 0.193 }, { "start": 10041.44, "end": 10043.24, "probability": 0.4793 }, { "start": 10043.9, "end": 10045.08, "probability": 0.8945 }, { "start": 10045.16, "end": 10047.62, "probability": 0.8841 }, { "start": 10048.08, "end": 10052.08, "probability": 0.9883 }, { "start": 10052.2, "end": 10052.38, "probability": 0.7771 }, { "start": 10053.06, "end": 10053.78, "probability": 0.9271 }, { "start": 10055.86, "end": 10059.42, "probability": 0.0333 }, { "start": 10061.28, "end": 10063.6, "probability": 0.0658 }, { "start": 10063.76, "end": 10066.92, "probability": 0.9976 }, { "start": 10067.44, "end": 10068.52, "probability": 0.688 }, { "start": 10069.26, "end": 10070.0, "probability": 0.255 }, { "start": 10070.06, "end": 10075.44, "probability": 0.7408 }, { "start": 10075.58, "end": 10076.36, "probability": 0.1449 }, { "start": 10076.42, "end": 10077.92, "probability": 0.1145 }, { "start": 10078.06, "end": 10081.34, "probability": 0.9921 }, { "start": 10081.7, "end": 10086.12, "probability": 0.9938 }, { "start": 10086.42, "end": 10086.42, "probability": 0.4164 }, { "start": 10086.42, "end": 10088.7, "probability": 0.3896 }, { "start": 10088.82, "end": 10091.4, "probability": 0.2229 }, { "start": 10091.46, "end": 10094.2, "probability": 0.8646 }, { "start": 10094.36, "end": 10098.1, "probability": 0.9138 }, { "start": 10098.48, "end": 10098.48, "probability": 0.2564 }, { "start": 10098.66, "end": 10103.8, "probability": 0.9264 }, { "start": 10104.9, "end": 10105.82, "probability": 0.0582 }, { "start": 10105.82, "end": 10106.66, "probability": 0.7384 }, { "start": 10106.84, "end": 10109.06, "probability": 0.9076 }, { "start": 10109.42, "end": 10112.36, "probability": 0.9908 }, { "start": 10112.86, "end": 10112.86, "probability": 0.2132 }, { "start": 10112.92, "end": 10117.6, "probability": 0.9893 }, { "start": 10118.06, "end": 10121.32, "probability": 0.9668 }, { "start": 10122.24, "end": 10123.92, "probability": 0.8166 }, { "start": 10124.68, "end": 10126.2, "probability": 0.972 }, { "start": 10127.0, "end": 10128.54, "probability": 0.9747 }, { "start": 10129.14, "end": 10130.78, "probability": 0.991 }, { "start": 10132.64, "end": 10133.58, "probability": 0.9795 }, { "start": 10134.4, "end": 10135.94, "probability": 0.998 }, { "start": 10136.46, "end": 10141.64, "probability": 0.9457 }, { "start": 10142.88, "end": 10144.1, "probability": 0.6795 }, { "start": 10145.84, "end": 10146.72, "probability": 0.6987 }, { "start": 10147.86, "end": 10151.24, "probability": 0.8564 }, { "start": 10151.88, "end": 10152.82, "probability": 0.8032 }, { "start": 10152.82, "end": 10154.1, "probability": 0.578 }, { "start": 10154.42, "end": 10156.82, "probability": 0.7626 }, { "start": 10157.84, "end": 10158.62, "probability": 0.4004 }, { "start": 10159.4, "end": 10162.68, "probability": 0.6283 }, { "start": 10163.22, "end": 10164.3, "probability": 0.8051 }, { "start": 10165.24, "end": 10166.89, "probability": 0.9863 }, { "start": 10167.02, "end": 10167.66, "probability": 0.8679 }, { "start": 10167.72, "end": 10168.38, "probability": 0.8586 }, { "start": 10168.8, "end": 10169.34, "probability": 0.6837 }, { "start": 10170.14, "end": 10172.66, "probability": 0.926 }, { "start": 10173.2, "end": 10176.68, "probability": 0.9667 }, { "start": 10177.3, "end": 10179.33, "probability": 0.3195 }, { "start": 10179.52, "end": 10180.22, "probability": 0.5855 }, { "start": 10181.42, "end": 10186.36, "probability": 0.9966 }, { "start": 10186.38, "end": 10192.02, "probability": 0.9993 }, { "start": 10192.86, "end": 10193.8, "probability": 0.9985 }, { "start": 10194.32, "end": 10196.06, "probability": 0.9562 }, { "start": 10196.68, "end": 10198.6, "probability": 0.9944 }, { "start": 10199.3, "end": 10201.86, "probability": 0.9974 }, { "start": 10202.02, "end": 10202.72, "probability": 0.9268 }, { "start": 10203.52, "end": 10204.72, "probability": 0.7067 }, { "start": 10205.4, "end": 10206.04, "probability": 0.5411 }, { "start": 10206.76, "end": 10207.86, "probability": 0.9513 }, { "start": 10208.46, "end": 10209.7, "probability": 0.9331 }, { "start": 10210.54, "end": 10212.86, "probability": 0.8805 }, { "start": 10214.0, "end": 10219.1, "probability": 0.96 }, { "start": 10219.8, "end": 10223.62, "probability": 0.9981 }, { "start": 10224.94, "end": 10225.12, "probability": 0.8813 }, { "start": 10225.92, "end": 10226.3, "probability": 0.9683 }, { "start": 10227.0, "end": 10228.52, "probability": 0.9941 }, { "start": 10229.2, "end": 10231.42, "probability": 0.9727 }, { "start": 10232.12, "end": 10234.44, "probability": 0.9912 }, { "start": 10235.34, "end": 10238.68, "probability": 0.9682 }, { "start": 10241.14, "end": 10242.82, "probability": 0.8453 }, { "start": 10243.76, "end": 10244.51, "probability": 0.8623 }, { "start": 10245.36, "end": 10249.82, "probability": 0.9927 }, { "start": 10250.38, "end": 10251.7, "probability": 0.9753 }, { "start": 10252.44, "end": 10255.72, "probability": 0.8313 }, { "start": 10255.76, "end": 10256.6, "probability": 0.8627 }, { "start": 10256.72, "end": 10258.32, "probability": 0.7458 }, { "start": 10259.08, "end": 10263.14, "probability": 0.3452 }, { "start": 10263.14, "end": 10264.33, "probability": 0.524 }, { "start": 10264.86, "end": 10266.42, "probability": 0.9924 }, { "start": 10266.8, "end": 10268.07, "probability": 0.072 }, { "start": 10268.28, "end": 10268.74, "probability": 0.6601 }, { "start": 10269.26, "end": 10272.14, "probability": 0.906 }, { "start": 10272.8, "end": 10273.82, "probability": 0.8282 }, { "start": 10274.58, "end": 10276.3, "probability": 0.9866 }, { "start": 10276.98, "end": 10282.36, "probability": 0.9967 }, { "start": 10283.28, "end": 10284.48, "probability": 0.9589 }, { "start": 10285.42, "end": 10287.54, "probability": 0.9702 }, { "start": 10289.5, "end": 10295.52, "probability": 0.9922 }, { "start": 10296.06, "end": 10298.22, "probability": 0.9981 }, { "start": 10298.72, "end": 10301.66, "probability": 0.9436 }, { "start": 10304.22, "end": 10307.14, "probability": 0.8964 }, { "start": 10308.0, "end": 10310.34, "probability": 0.9465 }, { "start": 10311.14, "end": 10314.38, "probability": 0.9939 }, { "start": 10315.34, "end": 10317.86, "probability": 0.9329 }, { "start": 10318.4, "end": 10319.98, "probability": 0.8081 }, { "start": 10320.7, "end": 10323.54, "probability": 0.9138 }, { "start": 10324.72, "end": 10325.68, "probability": 0.6988 }, { "start": 10326.3, "end": 10328.98, "probability": 0.988 }, { "start": 10329.74, "end": 10330.97, "probability": 0.9928 }, { "start": 10331.76, "end": 10332.42, "probability": 0.8052 }, { "start": 10333.34, "end": 10337.32, "probability": 0.9724 }, { "start": 10337.84, "end": 10339.12, "probability": 0.666 }, { "start": 10339.66, "end": 10342.44, "probability": 0.9952 }, { "start": 10343.12, "end": 10347.12, "probability": 0.9504 }, { "start": 10348.06, "end": 10352.54, "probability": 0.9937 }, { "start": 10353.12, "end": 10360.64, "probability": 0.9941 }, { "start": 10364.04, "end": 10365.56, "probability": 0.7159 }, { "start": 10366.8, "end": 10367.32, "probability": 0.8787 }, { "start": 10368.36, "end": 10374.82, "probability": 0.9938 }, { "start": 10375.64, "end": 10378.92, "probability": 0.9992 }, { "start": 10378.92, "end": 10384.78, "probability": 0.9857 }, { "start": 10385.02, "end": 10385.62, "probability": 0.7221 }, { "start": 10386.78, "end": 10390.4, "probability": 0.9913 }, { "start": 10391.42, "end": 10393.96, "probability": 0.6552 }, { "start": 10394.96, "end": 10398.34, "probability": 0.9989 }, { "start": 10399.12, "end": 10400.56, "probability": 0.9568 }, { "start": 10400.9, "end": 10404.68, "probability": 0.989 }, { "start": 10405.84, "end": 10407.96, "probability": 0.9968 }, { "start": 10408.64, "end": 10410.62, "probability": 0.9327 }, { "start": 10411.36, "end": 10413.88, "probability": 0.9787 }, { "start": 10414.7, "end": 10418.53, "probability": 0.8295 }, { "start": 10419.28, "end": 10422.02, "probability": 0.9681 }, { "start": 10423.46, "end": 10424.92, "probability": 0.9813 }, { "start": 10425.6, "end": 10427.16, "probability": 0.997 }, { "start": 10428.8, "end": 10432.86, "probability": 0.9577 }, { "start": 10433.7, "end": 10437.86, "probability": 0.8921 }, { "start": 10437.86, "end": 10441.7, "probability": 0.9913 }, { "start": 10442.58, "end": 10444.08, "probability": 0.9592 }, { "start": 10444.74, "end": 10447.06, "probability": 0.8885 }, { "start": 10447.72, "end": 10450.28, "probability": 0.9978 }, { "start": 10451.0, "end": 10455.96, "probability": 0.9976 }, { "start": 10457.12, "end": 10460.62, "probability": 0.9172 }, { "start": 10461.14, "end": 10464.1, "probability": 0.9854 }, { "start": 10465.26, "end": 10470.52, "probability": 0.6338 }, { "start": 10471.1, "end": 10472.72, "probability": 0.7687 }, { "start": 10473.12, "end": 10476.96, "probability": 0.9935 }, { "start": 10477.98, "end": 10478.68, "probability": 0.6158 }, { "start": 10478.74, "end": 10482.18, "probability": 0.9556 }, { "start": 10482.57, "end": 10487.22, "probability": 0.8722 }, { "start": 10487.62, "end": 10490.26, "probability": 0.9689 }, { "start": 10490.5, "end": 10490.74, "probability": 0.7251 }, { "start": 10490.88, "end": 10492.32, "probability": 0.7523 }, { "start": 10492.66, "end": 10493.54, "probability": 0.8383 }, { "start": 10493.9, "end": 10494.64, "probability": 0.8067 }, { "start": 10494.76, "end": 10497.46, "probability": 0.9769 }, { "start": 10497.92, "end": 10501.46, "probability": 0.9722 }, { "start": 10501.84, "end": 10504.56, "probability": 0.9779 }, { "start": 10505.44, "end": 10506.0, "probability": 0.6032 }, { "start": 10506.62, "end": 10509.1, "probability": 0.8472 }, { "start": 10510.32, "end": 10515.74, "probability": 0.9337 }, { "start": 10519.24, "end": 10519.42, "probability": 0.3456 }, { "start": 10520.2, "end": 10520.98, "probability": 0.0559 }, { "start": 10558.82, "end": 10561.5, "probability": 0.715 }, { "start": 10562.2, "end": 10563.16, "probability": 0.8984 }, { "start": 10564.12, "end": 10565.9, "probability": 0.8784 }, { "start": 10566.18, "end": 10566.34, "probability": 0.074 }, { "start": 10566.34, "end": 10566.34, "probability": 0.0918 }, { "start": 10566.34, "end": 10566.34, "probability": 0.0206 }, { "start": 10574.86, "end": 10577.04, "probability": 0.9745 }, { "start": 10577.74, "end": 10581.0, "probability": 0.9974 }, { "start": 10581.0, "end": 10584.22, "probability": 0.9916 }, { "start": 10585.78, "end": 10586.4, "probability": 0.6097 }, { "start": 10587.2, "end": 10588.74, "probability": 0.994 }, { "start": 10588.8, "end": 10590.1, "probability": 0.922 }, { "start": 10590.2, "end": 10593.34, "probability": 0.9323 }, { "start": 10594.54, "end": 10595.58, "probability": 0.7586 }, { "start": 10596.78, "end": 10597.48, "probability": 0.8754 }, { "start": 10598.54, "end": 10599.28, "probability": 0.9607 }, { "start": 10600.64, "end": 10606.08, "probability": 0.991 }, { "start": 10606.84, "end": 10609.08, "probability": 0.8871 }, { "start": 10609.98, "end": 10612.24, "probability": 0.9977 }, { "start": 10613.1, "end": 10614.06, "probability": 0.9144 }, { "start": 10615.24, "end": 10617.66, "probability": 0.9763 }, { "start": 10618.98, "end": 10619.98, "probability": 0.9321 }, { "start": 10621.96, "end": 10625.22, "probability": 0.9976 }, { "start": 10625.22, "end": 10628.48, "probability": 0.9907 }, { "start": 10629.28, "end": 10630.38, "probability": 0.8829 }, { "start": 10630.62, "end": 10631.12, "probability": 0.6663 }, { "start": 10632.26, "end": 10638.36, "probability": 0.987 }, { "start": 10639.2, "end": 10639.5, "probability": 0.9727 }, { "start": 10640.32, "end": 10641.1, "probability": 0.9768 }, { "start": 10641.74, "end": 10642.32, "probability": 0.8124 }, { "start": 10643.02, "end": 10646.02, "probability": 0.9741 }, { "start": 10647.56, "end": 10651.64, "probability": 0.9921 }, { "start": 10652.28, "end": 10654.96, "probability": 0.9716 }, { "start": 10656.08, "end": 10659.68, "probability": 0.9895 }, { "start": 10660.42, "end": 10663.42, "probability": 0.9979 }, { "start": 10663.42, "end": 10665.68, "probability": 0.9962 }, { "start": 10667.98, "end": 10673.26, "probability": 0.9721 }, { "start": 10673.76, "end": 10676.66, "probability": 0.8625 }, { "start": 10677.4, "end": 10681.14, "probability": 0.9888 }, { "start": 10681.76, "end": 10683.68, "probability": 0.982 }, { "start": 10684.6, "end": 10690.9, "probability": 0.9569 }, { "start": 10691.58, "end": 10697.54, "probability": 0.969 }, { "start": 10698.36, "end": 10701.1, "probability": 0.8256 }, { "start": 10701.28, "end": 10704.46, "probability": 0.9929 }, { "start": 10705.42, "end": 10709.74, "probability": 0.8851 }, { "start": 10710.14, "end": 10714.34, "probability": 0.9956 }, { "start": 10714.34, "end": 10719.22, "probability": 0.9948 }, { "start": 10720.62, "end": 10722.72, "probability": 0.5592 }, { "start": 10723.24, "end": 10723.44, "probability": 0.7357 }, { "start": 10724.4, "end": 10725.04, "probability": 0.9501 }, { "start": 10725.92, "end": 10726.64, "probability": 0.7431 }, { "start": 10727.3, "end": 10728.94, "probability": 0.951 }, { "start": 10729.74, "end": 10731.72, "probability": 0.9626 }, { "start": 10732.38, "end": 10735.24, "probability": 0.9941 }, { "start": 10735.72, "end": 10738.02, "probability": 0.9761 }, { "start": 10739.04, "end": 10739.58, "probability": 0.8521 }, { "start": 10740.18, "end": 10742.92, "probability": 0.9547 }, { "start": 10743.42, "end": 10744.48, "probability": 0.9097 }, { "start": 10745.02, "end": 10747.76, "probability": 0.9891 }, { "start": 10748.34, "end": 10750.46, "probability": 0.9766 }, { "start": 10750.6, "end": 10752.94, "probability": 0.8897 }, { "start": 10753.62, "end": 10755.86, "probability": 0.9016 }, { "start": 10756.78, "end": 10759.65, "probability": 0.848 }, { "start": 10760.64, "end": 10763.12, "probability": 0.7115 }, { "start": 10763.8, "end": 10766.7, "probability": 0.9891 }, { "start": 10767.42, "end": 10769.72, "probability": 0.8965 }, { "start": 10770.42, "end": 10775.04, "probability": 0.9847 }, { "start": 10775.56, "end": 10781.58, "probability": 0.8934 }, { "start": 10785.5, "end": 10786.5, "probability": 0.2387 }, { "start": 10790.38, "end": 10792.88, "probability": 0.6595 }, { "start": 10793.52, "end": 10795.7, "probability": 0.9961 }, { "start": 10796.84, "end": 10799.38, "probability": 0.9845 }, { "start": 10800.38, "end": 10801.06, "probability": 0.8958 }, { "start": 10802.22, "end": 10805.24, "probability": 0.953 }, { "start": 10805.92, "end": 10808.76, "probability": 0.6867 }, { "start": 10809.32, "end": 10816.45, "probability": 0.7627 }, { "start": 10817.1, "end": 10818.38, "probability": 0.9862 }, { "start": 10818.92, "end": 10824.1, "probability": 0.993 }, { "start": 10825.0, "end": 10826.52, "probability": 0.9426 }, { "start": 10827.16, "end": 10830.5, "probability": 0.9774 }, { "start": 10831.2, "end": 10831.66, "probability": 0.4344 }, { "start": 10831.78, "end": 10832.22, "probability": 0.7113 }, { "start": 10832.24, "end": 10832.76, "probability": 0.6777 }, { "start": 10832.82, "end": 10834.02, "probability": 0.7547 }, { "start": 10834.4, "end": 10839.92, "probability": 0.9355 }, { "start": 10840.02, "end": 10840.62, "probability": 0.7657 }, { "start": 10840.66, "end": 10842.63, "probability": 0.5316 }, { "start": 10843.88, "end": 10844.48, "probability": 0.6175 }, { "start": 10844.66, "end": 10847.22, "probability": 0.9141 }, { "start": 10847.94, "end": 10849.3, "probability": 0.7124 }, { "start": 10849.36, "end": 10850.58, "probability": 0.8691 }, { "start": 10851.54, "end": 10853.26, "probability": 0.8396 }, { "start": 10854.98, "end": 10860.4, "probability": 0.9699 }, { "start": 10860.9, "end": 10863.34, "probability": 0.9979 }, { "start": 10864.3, "end": 10869.15, "probability": 0.8367 }, { "start": 10869.94, "end": 10873.4, "probability": 0.782 }, { "start": 10874.06, "end": 10876.48, "probability": 0.9486 }, { "start": 10877.26, "end": 10880.68, "probability": 0.9868 }, { "start": 10881.8, "end": 10889.16, "probability": 0.9943 }, { "start": 10889.32, "end": 10890.78, "probability": 0.8398 }, { "start": 10891.7, "end": 10893.25, "probability": 0.9849 }, { "start": 10893.7, "end": 10894.62, "probability": 0.4697 }, { "start": 10895.1, "end": 10898.36, "probability": 0.9849 }, { "start": 10898.72, "end": 10902.98, "probability": 0.9707 }, { "start": 10903.68, "end": 10906.9, "probability": 0.9911 }, { "start": 10907.4, "end": 10908.18, "probability": 0.6133 }, { "start": 10908.54, "end": 10910.14, "probability": 0.7065 }, { "start": 10910.2, "end": 10915.18, "probability": 0.9419 }, { "start": 10916.14, "end": 10916.94, "probability": 0.8396 }, { "start": 10917.5, "end": 10920.92, "probability": 0.8979 }, { "start": 10921.7, "end": 10927.32, "probability": 0.9336 }, { "start": 10927.82, "end": 10932.54, "probability": 0.984 }, { "start": 10932.62, "end": 10939.58, "probability": 0.9934 }, { "start": 10940.86, "end": 10943.42, "probability": 0.0877 }, { "start": 10943.9, "end": 10944.32, "probability": 0.1404 }, { "start": 10944.92, "end": 10946.16, "probability": 0.1295 }, { "start": 10947.14, "end": 10948.5, "probability": 0.1617 }, { "start": 10949.4, "end": 10949.5, "probability": 0.0817 }, { "start": 10949.5, "end": 10949.64, "probability": 0.0705 }, { "start": 10949.76, "end": 10951.02, "probability": 0.6427 }, { "start": 10951.1, "end": 10951.37, "probability": 0.9377 }, { "start": 10951.68, "end": 10956.46, "probability": 0.9587 }, { "start": 10957.54, "end": 10958.32, "probability": 0.2971 }, { "start": 10958.96, "end": 10959.64, "probability": 0.9717 }, { "start": 10960.06, "end": 10963.76, "probability": 0.9486 }, { "start": 10963.86, "end": 10964.0, "probability": 0.359 }, { "start": 10964.04, "end": 10964.85, "probability": 0.8576 }, { "start": 10965.42, "end": 10969.02, "probability": 0.9979 }, { "start": 10969.54, "end": 10974.94, "probability": 0.9673 }, { "start": 10975.04, "end": 10979.06, "probability": 0.951 }, { "start": 10979.12, "end": 10982.64, "probability": 0.6389 }, { "start": 10983.46, "end": 10984.28, "probability": 0.7423 }, { "start": 10984.36, "end": 10990.18, "probability": 0.9479 }, { "start": 10990.98, "end": 10992.22, "probability": 0.7735 }, { "start": 10992.54, "end": 10997.58, "probability": 0.9895 }, { "start": 10997.8, "end": 10998.78, "probability": 0.7443 }, { "start": 10999.4, "end": 11000.5, "probability": 0.8574 }, { "start": 11000.88, "end": 11001.24, "probability": 0.6484 }, { "start": 11001.38, "end": 11002.48, "probability": 0.9165 }, { "start": 11002.88, "end": 11003.98, "probability": 0.935 }, { "start": 11004.44, "end": 11005.42, "probability": 0.8986 }, { "start": 11006.34, "end": 11009.58, "probability": 0.8833 }, { "start": 11010.4, "end": 11010.82, "probability": 0.9387 }, { "start": 11011.42, "end": 11012.26, "probability": 0.7351 }, { "start": 11012.88, "end": 11015.26, "probability": 0.7529 }, { "start": 11015.96, "end": 11017.2, "probability": 0.9671 }, { "start": 11017.94, "end": 11018.86, "probability": 0.9664 }, { "start": 11019.6, "end": 11022.06, "probability": 0.9025 }, { "start": 11022.18, "end": 11028.62, "probability": 0.902 }, { "start": 11029.6, "end": 11032.32, "probability": 0.9342 }, { "start": 11033.02, "end": 11036.32, "probability": 0.9909 }, { "start": 11038.68, "end": 11039.98, "probability": 0.9751 }, { "start": 11041.08, "end": 11043.1, "probability": 0.7131 }, { "start": 11043.18, "end": 11044.4, "probability": 0.7789 }, { "start": 11045.3, "end": 11048.74, "probability": 0.0516 }, { "start": 11048.76, "end": 11049.14, "probability": 0.8542 }, { "start": 11049.28, "end": 11050.78, "probability": 0.7417 }, { "start": 11052.9, "end": 11054.28, "probability": 0.45 }, { "start": 11054.32, "end": 11057.8, "probability": 0.7176 }, { "start": 11058.02, "end": 11059.06, "probability": 0.6688 }, { "start": 11059.5, "end": 11060.92, "probability": 0.8437 }, { "start": 11060.98, "end": 11061.86, "probability": 0.5596 }, { "start": 11061.98, "end": 11064.54, "probability": 0.7968 }, { "start": 11064.92, "end": 11065.2, "probability": 0.9476 }, { "start": 11065.28, "end": 11071.02, "probability": 0.9722 }, { "start": 11071.46, "end": 11078.38, "probability": 0.9524 }, { "start": 11078.42, "end": 11080.78, "probability": 0.7582 }, { "start": 11080.82, "end": 11081.64, "probability": 0.6654 }, { "start": 11082.08, "end": 11084.16, "probability": 0.9429 }, { "start": 11084.82, "end": 11086.22, "probability": 0.8878 }, { "start": 11086.28, "end": 11086.5, "probability": 0.7555 }, { "start": 11087.08, "end": 11088.54, "probability": 0.9823 }, { "start": 11091.14, "end": 11091.76, "probability": 0.5011 }, { "start": 11091.94, "end": 11094.08, "probability": 0.6126 }, { "start": 11109.35, "end": 11110.34, "probability": 0.799 }, { "start": 11111.06, "end": 11112.34, "probability": 0.7658 }, { "start": 11114.08, "end": 11115.16, "probability": 0.912 }, { "start": 11115.86, "end": 11116.78, "probability": 0.9571 }, { "start": 11117.8, "end": 11123.82, "probability": 0.9984 }, { "start": 11124.46, "end": 11125.74, "probability": 0.8603 }, { "start": 11126.5, "end": 11128.76, "probability": 0.9639 }, { "start": 11128.82, "end": 11130.81, "probability": 0.9961 }, { "start": 11131.42, "end": 11132.64, "probability": 0.8336 }, { "start": 11132.82, "end": 11133.98, "probability": 0.9929 }, { "start": 11134.72, "end": 11138.57, "probability": 0.6884 }, { "start": 11139.14, "end": 11143.06, "probability": 0.9513 }, { "start": 11143.48, "end": 11146.6, "probability": 0.9988 }, { "start": 11147.5, "end": 11149.18, "probability": 0.7856 }, { "start": 11149.72, "end": 11154.0, "probability": 0.9803 }, { "start": 11155.2, "end": 11160.66, "probability": 0.9978 }, { "start": 11161.38, "end": 11162.82, "probability": 0.9147 }, { "start": 11163.4, "end": 11166.24, "probability": 0.9956 }, { "start": 11167.62, "end": 11171.06, "probability": 0.9206 }, { "start": 11171.62, "end": 11173.66, "probability": 0.9937 }, { "start": 11174.04, "end": 11178.36, "probability": 0.9955 }, { "start": 11178.6, "end": 11181.46, "probability": 0.9985 }, { "start": 11182.08, "end": 11182.94, "probability": 0.8883 }, { "start": 11183.88, "end": 11186.06, "probability": 0.7796 }, { "start": 11186.36, "end": 11187.46, "probability": 0.7781 }, { "start": 11187.86, "end": 11193.08, "probability": 0.9968 }, { "start": 11194.66, "end": 11196.22, "probability": 0.9991 }, { "start": 11198.12, "end": 11202.94, "probability": 0.9897 }, { "start": 11203.18, "end": 11206.32, "probability": 0.9995 }, { "start": 11206.94, "end": 11209.6, "probability": 0.9932 }, { "start": 11209.94, "end": 11211.42, "probability": 0.8564 }, { "start": 11211.8, "end": 11213.42, "probability": 0.9239 }, { "start": 11213.94, "end": 11214.78, "probability": 0.6481 }, { "start": 11215.28, "end": 11217.04, "probability": 0.9804 }, { "start": 11217.82, "end": 11220.54, "probability": 0.9802 }, { "start": 11221.06, "end": 11222.12, "probability": 0.9535 }, { "start": 11222.6, "end": 11225.64, "probability": 0.9301 }, { "start": 11226.34, "end": 11228.52, "probability": 0.9661 }, { "start": 11229.4, "end": 11230.26, "probability": 0.853 }, { "start": 11231.0, "end": 11232.9, "probability": 0.9806 }, { "start": 11233.74, "end": 11235.78, "probability": 0.8256 }, { "start": 11235.92, "end": 11236.9, "probability": 0.6714 }, { "start": 11238.02, "end": 11241.96, "probability": 0.9983 }, { "start": 11242.38, "end": 11244.48, "probability": 0.998 }, { "start": 11245.26, "end": 11246.4, "probability": 0.9878 }, { "start": 11246.54, "end": 11247.32, "probability": 0.8753 }, { "start": 11247.4, "end": 11248.42, "probability": 0.819 }, { "start": 11249.04, "end": 11252.9, "probability": 0.9827 }, { "start": 11253.72, "end": 11253.92, "probability": 0.0026 }, { "start": 11253.92, "end": 11253.92, "probability": 0.0539 }, { "start": 11253.92, "end": 11254.2, "probability": 0.5218 }, { "start": 11255.34, "end": 11256.62, "probability": 0.7585 }, { "start": 11257.36, "end": 11258.16, "probability": 0.8096 }, { "start": 11258.32, "end": 11258.9, "probability": 0.7962 }, { "start": 11258.96, "end": 11260.84, "probability": 0.8023 }, { "start": 11261.22, "end": 11266.34, "probability": 0.9953 }, { "start": 11266.94, "end": 11267.28, "probability": 0.0118 }, { "start": 11267.28, "end": 11267.28, "probability": 0.0617 }, { "start": 11267.28, "end": 11271.52, "probability": 0.869 }, { "start": 11271.68, "end": 11273.44, "probability": 0.2252 }, { "start": 11274.04, "end": 11276.36, "probability": 0.8671 }, { "start": 11276.9, "end": 11278.36, "probability": 0.8707 }, { "start": 11278.94, "end": 11282.16, "probability": 0.8232 }, { "start": 11282.7, "end": 11286.3, "probability": 0.9971 }, { "start": 11286.82, "end": 11289.14, "probability": 0.9935 }, { "start": 11289.82, "end": 11293.84, "probability": 0.9922 }, { "start": 11294.28, "end": 11297.36, "probability": 0.939 }, { "start": 11297.86, "end": 11299.0, "probability": 0.6665 }, { "start": 11299.3, "end": 11300.86, "probability": 0.9453 }, { "start": 11301.3, "end": 11303.74, "probability": 0.9982 }, { "start": 11304.42, "end": 11306.3, "probability": 0.9207 }, { "start": 11306.36, "end": 11307.52, "probability": 0.497 }, { "start": 11307.66, "end": 11311.4, "probability": 0.7475 }, { "start": 11311.8, "end": 11314.44, "probability": 0.9191 }, { "start": 11315.04, "end": 11315.8, "probability": 0.5095 }, { "start": 11315.92, "end": 11316.68, "probability": 0.6414 }, { "start": 11316.74, "end": 11317.46, "probability": 0.6193 }, { "start": 11317.94, "end": 11318.68, "probability": 0.685 }, { "start": 11320.92, "end": 11321.82, "probability": 0.3332 }, { "start": 11325.96, "end": 11327.6, "probability": 0.1903 }, { "start": 11331.64, "end": 11333.26, "probability": 0.0426 }, { "start": 11333.74, "end": 11335.28, "probability": 0.1217 }, { "start": 11335.28, "end": 11335.28, "probability": 0.3037 }, { "start": 11335.28, "end": 11338.28, "probability": 0.5481 }, { "start": 11338.46, "end": 11341.3, "probability": 0.9803 }, { "start": 11342.1, "end": 11343.68, "probability": 0.8234 }, { "start": 11343.72, "end": 11345.7, "probability": 0.9735 }, { "start": 11345.7, "end": 11349.18, "probability": 0.909 }, { "start": 11349.94, "end": 11350.4, "probability": 0.5702 }, { "start": 11350.5, "end": 11351.76, "probability": 0.6646 }, { "start": 11352.44, "end": 11354.03, "probability": 0.9927 }, { "start": 11355.82, "end": 11357.38, "probability": 0.786 }, { "start": 11357.84, "end": 11360.0, "probability": 0.9379 }, { "start": 11360.16, "end": 11361.28, "probability": 0.7867 }, { "start": 11363.66, "end": 11364.74, "probability": 0.671 }, { "start": 11368.6, "end": 11369.28, "probability": 0.4415 }, { "start": 11389.34, "end": 11389.66, "probability": 0.6808 }, { "start": 11389.66, "end": 11390.36, "probability": 0.2304 }, { "start": 11390.5, "end": 11391.52, "probability": 0.3826 }, { "start": 11391.62, "end": 11393.62, "probability": 0.773 }, { "start": 11398.22, "end": 11399.9, "probability": 0.6866 }, { "start": 11400.32, "end": 11401.32, "probability": 0.927 }, { "start": 11402.02, "end": 11403.9, "probability": 0.9377 }, { "start": 11404.72, "end": 11405.14, "probability": 0.7657 }, { "start": 11405.76, "end": 11406.9, "probability": 0.5355 }, { "start": 11407.4, "end": 11410.06, "probability": 0.6603 }, { "start": 11411.0, "end": 11412.92, "probability": 0.9725 }, { "start": 11413.54, "end": 11418.16, "probability": 0.7798 }, { "start": 11418.7, "end": 11419.5, "probability": 0.2386 }, { "start": 11420.36, "end": 11426.0, "probability": 0.9864 }, { "start": 11427.32, "end": 11431.04, "probability": 0.9945 }, { "start": 11431.86, "end": 11432.72, "probability": 0.9375 }, { "start": 11433.34, "end": 11438.8, "probability": 0.9822 }, { "start": 11441.24, "end": 11442.56, "probability": 0.5235 }, { "start": 11442.64, "end": 11443.66, "probability": 0.5972 }, { "start": 11443.66, "end": 11448.66, "probability": 0.9131 }, { "start": 11450.68, "end": 11455.58, "probability": 0.9526 }, { "start": 11456.26, "end": 11457.7, "probability": 0.0318 }, { "start": 11458.34, "end": 11459.32, "probability": 0.7188 }, { "start": 11459.64, "end": 11460.46, "probability": 0.6831 }, { "start": 11460.52, "end": 11461.36, "probability": 0.7504 }, { "start": 11461.36, "end": 11462.26, "probability": 0.2985 }, { "start": 11462.4, "end": 11463.46, "probability": 0.7763 }, { "start": 11463.72, "end": 11467.8, "probability": 0.7856 }, { "start": 11467.96, "end": 11469.78, "probability": 0.6593 }, { "start": 11471.24, "end": 11472.28, "probability": 0.6394 }, { "start": 11472.8, "end": 11473.48, "probability": 0.1847 }, { "start": 11473.92, "end": 11475.48, "probability": 0.0168 }, { "start": 11475.58, "end": 11476.09, "probability": 0.4545 }, { "start": 11476.78, "end": 11480.94, "probability": 0.281 }, { "start": 11481.38, "end": 11482.9, "probability": 0.0379 }, { "start": 11483.36, "end": 11485.84, "probability": 0.0807 }, { "start": 11485.84, "end": 11486.2, "probability": 0.2353 }, { "start": 11486.34, "end": 11486.76, "probability": 0.1045 }, { "start": 11486.78, "end": 11487.76, "probability": 0.4685 }, { "start": 11488.58, "end": 11489.96, "probability": 0.0461 }, { "start": 11490.32, "end": 11492.36, "probability": 0.3206 }, { "start": 11492.73, "end": 11494.04, "probability": 0.5543 }, { "start": 11584.0, "end": 11584.0, "probability": 0.0 }, { "start": 11584.0, "end": 11584.0, "probability": 0.0 }, { "start": 11584.0, "end": 11584.0, "probability": 0.0 }, { "start": 11584.0, "end": 11584.0, "probability": 0.0 }, { "start": 11584.0, "end": 11584.0, "probability": 0.0 }, { "start": 11584.0, "end": 11584.0, "probability": 0.0 }, { "start": 11584.0, "end": 11584.0, "probability": 0.0 }, { "start": 11584.0, "end": 11584.0, "probability": 0.0 }, { "start": 11584.0, "end": 11584.0, "probability": 0.0 }, { "start": 11584.0, "end": 11584.0, "probability": 0.0 }, { "start": 11584.0, "end": 11584.0, "probability": 0.0 }, { "start": 11584.0, "end": 11584.0, "probability": 0.0 }, { "start": 11584.0, "end": 11584.0, "probability": 0.0 }, { "start": 11584.0, "end": 11584.0, "probability": 0.0 }, { "start": 11584.0, "end": 11584.0, "probability": 0.0 }, { "start": 11584.0, "end": 11584.0, "probability": 0.0 }, { "start": 11584.0, "end": 11584.0, "probability": 0.0 }, { "start": 11584.0, "end": 11584.0, "probability": 0.0 }, { "start": 11584.0, "end": 11584.0, "probability": 0.0 }, { "start": 11584.0, "end": 11584.0, "probability": 0.0 }, { "start": 11584.0, "end": 11584.0, "probability": 0.0 }, { "start": 11584.0, "end": 11584.0, "probability": 0.0 }, { "start": 11584.0, "end": 11584.0, "probability": 0.0 }, { "start": 11584.0, "end": 11584.0, "probability": 0.0 }, { "start": 11584.0, "end": 11584.0, "probability": 0.0 }, { "start": 11584.0, "end": 11584.0, "probability": 0.0 }, { "start": 11584.0, "end": 11584.0, "probability": 0.0 }, { "start": 11584.0, "end": 11584.0, "probability": 0.0 }, { "start": 11584.0, "end": 11584.0, "probability": 0.0 }, { "start": 11584.0, "end": 11584.0, "probability": 0.0 }, { "start": 11584.0, "end": 11584.0, "probability": 0.0 }, { "start": 11584.0, "end": 11584.0, "probability": 0.0 }, { "start": 11584.0, "end": 11584.0, "probability": 0.0 }, { "start": 11584.0, "end": 11584.0, "probability": 0.0 }, { "start": 11584.0, "end": 11584.0, "probability": 0.0 }, { "start": 11584.0, "end": 11584.0, "probability": 0.0 }, { "start": 11584.0, "end": 11584.0, "probability": 0.0 }, { "start": 11584.0, "end": 11584.0, "probability": 0.0 }, { "start": 11584.0, "end": 11584.0, "probability": 0.0 }, { "start": 11584.0, "end": 11584.0, "probability": 0.0 }, { "start": 11584.0, "end": 11584.0, "probability": 0.0 }, { "start": 11584.0, "end": 11584.0, "probability": 0.0 }, { "start": 11584.0, "end": 11584.0, "probability": 0.0 }, { "start": 11584.0, "end": 11584.0, "probability": 0.0 }, { "start": 11584.0, "end": 11584.0, "probability": 0.0 }, { "start": 11584.0, "end": 11584.0, "probability": 0.0 }, { "start": 11584.0, "end": 11584.0, "probability": 0.0 }, { "start": 11584.0, "end": 11584.0, "probability": 0.0 }, { "start": 11584.0, "end": 11584.0, "probability": 0.0 }, { "start": 11584.0, "end": 11584.0, "probability": 0.0 }, { "start": 11584.14, "end": 11584.26, "probability": 0.0342 }, { "start": 11584.26, "end": 11584.64, "probability": 0.0271 }, { "start": 11585.86, "end": 11587.72, "probability": 0.2109 }, { "start": 11588.28, "end": 11588.9, "probability": 0.2789 }, { "start": 11588.98, "end": 11594.08, "probability": 0.7742 }, { "start": 11594.74, "end": 11598.68, "probability": 0.9875 }, { "start": 11598.68, "end": 11605.02, "probability": 0.9859 }, { "start": 11605.64, "end": 11608.32, "probability": 0.5513 }, { "start": 11609.13, "end": 11611.22, "probability": 0.9804 }, { "start": 11612.24, "end": 11620.36, "probability": 0.823 }, { "start": 11620.76, "end": 11624.28, "probability": 0.7525 }, { "start": 11624.7, "end": 11625.38, "probability": 0.7608 }, { "start": 11625.56, "end": 11626.12, "probability": 0.3298 }, { "start": 11626.58, "end": 11627.24, "probability": 0.4688 }, { "start": 11627.32, "end": 11629.42, "probability": 0.9336 }, { "start": 11629.82, "end": 11632.24, "probability": 0.9677 }, { "start": 11634.16, "end": 11636.54, "probability": 0.908 }, { "start": 11636.72, "end": 11641.7, "probability": 0.9615 }, { "start": 11641.78, "end": 11642.24, "probability": 0.6989 }, { "start": 11648.2, "end": 11650.22, "probability": 0.0631 }, { "start": 11650.66, "end": 11656.4, "probability": 0.0519 }, { "start": 11658.88, "end": 11659.64, "probability": 0.1591 }, { "start": 11660.66, "end": 11660.74, "probability": 0.0475 }, { "start": 11660.74, "end": 11660.74, "probability": 0.0476 }, { "start": 11660.74, "end": 11661.26, "probability": 0.6221 }, { "start": 11662.85, "end": 11665.58, "probability": 0.197 }, { "start": 11666.64, "end": 11667.08, "probability": 0.4162 }, { "start": 11667.3, "end": 11667.88, "probability": 0.4075 }, { "start": 11668.22, "end": 11670.12, "probability": 0.2584 }, { "start": 11685.58, "end": 11686.7, "probability": 0.4106 }, { "start": 11687.1, "end": 11688.28, "probability": 0.3436 }, { "start": 11689.12, "end": 11690.68, "probability": 0.7604 }, { "start": 11691.34, "end": 11692.12, "probability": 0.7685 }, { "start": 11693.14, "end": 11697.22, "probability": 0.8204 }, { "start": 11699.34, "end": 11708.26, "probability": 0.9526 }, { "start": 11708.26, "end": 11716.08, "probability": 0.9928 }, { "start": 11716.22, "end": 11718.68, "probability": 0.7054 }, { "start": 11720.38, "end": 11722.98, "probability": 0.8181 }, { "start": 11723.4, "end": 11724.42, "probability": 0.965 }, { "start": 11724.46, "end": 11729.54, "probability": 0.9435 }, { "start": 11730.62, "end": 11735.1, "probability": 0.9893 }, { "start": 11735.68, "end": 11740.34, "probability": 0.956 }, { "start": 11742.1, "end": 11745.18, "probability": 0.9988 }, { "start": 11746.08, "end": 11747.94, "probability": 0.7784 }, { "start": 11748.5, "end": 11752.7, "probability": 0.9246 }, { "start": 11753.26, "end": 11754.74, "probability": 0.8829 }, { "start": 11754.76, "end": 11755.68, "probability": 0.7927 }, { "start": 11755.98, "end": 11761.02, "probability": 0.9849 }, { "start": 11761.02, "end": 11766.72, "probability": 0.9963 }, { "start": 11767.28, "end": 11769.84, "probability": 0.899 }, { "start": 11770.66, "end": 11771.4, "probability": 0.9366 }, { "start": 11771.5, "end": 11778.16, "probability": 0.9501 }, { "start": 11779.54, "end": 11782.12, "probability": 0.9814 }, { "start": 11783.18, "end": 11784.62, "probability": 0.9678 }, { "start": 11785.14, "end": 11786.6, "probability": 0.9857 }, { "start": 11788.26, "end": 11792.64, "probability": 0.9836 }, { "start": 11793.34, "end": 11794.12, "probability": 0.9881 }, { "start": 11795.3, "end": 11796.32, "probability": 0.8971 }, { "start": 11797.84, "end": 11799.24, "probability": 0.7659 }, { "start": 11799.74, "end": 11801.46, "probability": 0.8652 }, { "start": 11801.46, "end": 11805.34, "probability": 0.9772 }, { "start": 11806.28, "end": 11809.4, "probability": 0.9746 }, { "start": 11809.9, "end": 11814.86, "probability": 0.9891 }, { "start": 11815.16, "end": 11820.38, "probability": 0.9937 }, { "start": 11821.16, "end": 11823.96, "probability": 0.9985 }, { "start": 11824.6, "end": 11825.36, "probability": 0.9661 }, { "start": 11825.96, "end": 11828.56, "probability": 0.9112 }, { "start": 11829.62, "end": 11832.28, "probability": 0.9771 }, { "start": 11832.34, "end": 11833.46, "probability": 0.9221 }, { "start": 11833.6, "end": 11834.37, "probability": 0.9927 }, { "start": 11835.27, "end": 11841.5, "probability": 0.9812 }, { "start": 11842.3, "end": 11851.8, "probability": 0.9978 }, { "start": 11852.32, "end": 11852.58, "probability": 0.8042 }, { "start": 11852.6, "end": 11858.72, "probability": 0.9901 }, { "start": 11859.7, "end": 11865.28, "probability": 0.9794 }, { "start": 11867.02, "end": 11868.22, "probability": 0.7233 }, { "start": 11869.08, "end": 11870.38, "probability": 0.7583 }, { "start": 11870.68, "end": 11875.78, "probability": 0.9977 }, { "start": 11876.0, "end": 11879.68, "probability": 0.9919 }, { "start": 11880.22, "end": 11886.76, "probability": 0.9941 }, { "start": 11887.26, "end": 11891.58, "probability": 0.961 }, { "start": 11892.14, "end": 11899.32, "probability": 0.9668 }, { "start": 11899.64, "end": 11902.14, "probability": 0.8003 }, { "start": 11902.74, "end": 11905.06, "probability": 0.8703 }, { "start": 11905.12, "end": 11906.14, "probability": 0.9854 }, { "start": 11906.22, "end": 11906.9, "probability": 0.88 }, { "start": 11907.16, "end": 11913.9, "probability": 0.9754 }, { "start": 11915.5, "end": 11917.36, "probability": 0.9308 }, { "start": 11918.02, "end": 11924.64, "probability": 0.8987 }, { "start": 11924.64, "end": 11931.4, "probability": 0.9978 }, { "start": 11932.56, "end": 11933.34, "probability": 0.7265 }, { "start": 11935.22, "end": 11942.88, "probability": 0.9952 }, { "start": 11943.08, "end": 11944.41, "probability": 0.7472 }, { "start": 11946.0, "end": 11955.44, "probability": 0.9441 }, { "start": 11955.5, "end": 11955.96, "probability": 0.8491 }, { "start": 11956.0, "end": 11956.91, "probability": 0.8353 }, { "start": 11957.5, "end": 11960.18, "probability": 0.9345 }, { "start": 11961.98, "end": 11964.66, "probability": 0.9827 }, { "start": 11965.28, "end": 11969.24, "probability": 0.9688 }, { "start": 11969.56, "end": 11970.34, "probability": 0.9604 }, { "start": 11971.16, "end": 11975.3, "probability": 0.9966 }, { "start": 11975.3, "end": 11979.98, "probability": 0.9994 }, { "start": 11980.62, "end": 11982.92, "probability": 0.8971 }, { "start": 11983.44, "end": 11987.0, "probability": 0.9808 }, { "start": 11988.08, "end": 11991.6, "probability": 0.9593 }, { "start": 11992.24, "end": 11993.3, "probability": 0.8926 }, { "start": 11994.24, "end": 11998.98, "probability": 0.993 }, { "start": 11998.98, "end": 12004.22, "probability": 0.9754 }, { "start": 12004.36, "end": 12006.87, "probability": 0.9829 }, { "start": 12007.95, "end": 12009.03, "probability": 0.6061 }, { "start": 12009.19, "end": 12010.57, "probability": 0.9868 }, { "start": 12010.65, "end": 12016.75, "probability": 0.993 }, { "start": 12017.69, "end": 12022.25, "probability": 0.8988 }, { "start": 12022.93, "end": 12025.55, "probability": 0.9554 }, { "start": 12025.77, "end": 12029.93, "probability": 0.9521 }, { "start": 12031.85, "end": 12034.53, "probability": 0.9257 }, { "start": 12034.59, "end": 12035.01, "probability": 0.9108 }, { "start": 12035.07, "end": 12036.19, "probability": 0.8513 }, { "start": 12036.89, "end": 12037.91, "probability": 0.977 }, { "start": 12037.91, "end": 12040.51, "probability": 0.9435 }, { "start": 12040.91, "end": 12041.71, "probability": 0.9178 }, { "start": 12041.93, "end": 12042.85, "probability": 0.8878 }, { "start": 12042.87, "end": 12046.49, "probability": 0.9923 }, { "start": 12046.79, "end": 12047.23, "probability": 0.653 }, { "start": 12047.39, "end": 12052.17, "probability": 0.9778 }, { "start": 12052.51, "end": 12053.67, "probability": 0.7469 }, { "start": 12053.77, "end": 12055.31, "probability": 0.9011 }, { "start": 12055.61, "end": 12055.81, "probability": 0.1443 }, { "start": 12055.85, "end": 12056.35, "probability": 0.4874 }, { "start": 12065.37, "end": 12066.83, "probability": 0.2588 }, { "start": 12068.27, "end": 12069.27, "probability": 0.0636 }, { "start": 12069.61, "end": 12070.11, "probability": 0.3406 }, { "start": 12070.11, "end": 12070.93, "probability": 0.0275 }, { "start": 12071.05, "end": 12071.13, "probability": 0.0276 }, { "start": 12071.13, "end": 12071.13, "probability": 0.0511 }, { "start": 12071.13, "end": 12071.17, "probability": 0.0796 }, { "start": 12071.41, "end": 12072.09, "probability": 0.0358 }, { "start": 12072.09, "end": 12072.09, "probability": 0.0494 }, { "start": 12089.21, "end": 12093.31, "probability": 0.5605 }, { "start": 12094.29, "end": 12094.91, "probability": 0.7612 }, { "start": 12095.57, "end": 12099.09, "probability": 0.8941 }, { "start": 12099.81, "end": 12100.15, "probability": 0.0588 }, { "start": 12100.15, "end": 12100.15, "probability": 0.0903 }, { "start": 12100.15, "end": 12101.17, "probability": 0.6663 }, { "start": 12101.61, "end": 12102.59, "probability": 0.8792 }, { "start": 12102.87, "end": 12102.93, "probability": 0.5777 }, { "start": 12103.71, "end": 12104.59, "probability": 0.1415 }, { "start": 12105.59, "end": 12105.59, "probability": 0.2132 }, { "start": 12105.59, "end": 12106.35, "probability": 0.205 }, { "start": 12106.49, "end": 12106.79, "probability": 0.1486 }, { "start": 12107.01, "end": 12107.33, "probability": 0.1483 }, { "start": 12107.35, "end": 12107.57, "probability": 0.0902 }, { "start": 12107.57, "end": 12108.29, "probability": 0.4048 }, { "start": 12108.61, "end": 12109.81, "probability": 0.7689 }, { "start": 12110.39, "end": 12111.89, "probability": 0.7111 }, { "start": 12112.07, "end": 12113.33, "probability": 0.6287 }, { "start": 12113.65, "end": 12113.65, "probability": 0.1428 }, { "start": 12113.65, "end": 12116.41, "probability": 0.1839 }, { "start": 12116.41, "end": 12118.33, "probability": 0.156 }, { "start": 12118.51, "end": 12118.65, "probability": 0.4444 }, { "start": 12119.07, "end": 12120.37, "probability": 0.0808 }, { "start": 12121.55, "end": 12122.51, "probability": 0.102 }, { "start": 12122.85, "end": 12123.75, "probability": 0.0696 }, { "start": 12125.37, "end": 12125.91, "probability": 0.4969 }, { "start": 12126.05, "end": 12127.83, "probability": 0.3526 }, { "start": 12128.53, "end": 12129.73, "probability": 0.0189 }, { "start": 12129.81, "end": 12131.03, "probability": 0.6373 }, { "start": 12131.67, "end": 12133.67, "probability": 0.9385 }, { "start": 12134.39, "end": 12135.53, "probability": 0.5709 }, { "start": 12135.71, "end": 12136.33, "probability": 0.0946 }, { "start": 12136.47, "end": 12141.29, "probability": 0.9227 }, { "start": 12141.43, "end": 12142.45, "probability": 0.8171 }, { "start": 12143.27, "end": 12143.59, "probability": 0.6749 }, { "start": 12144.09, "end": 12144.89, "probability": 0.8369 }, { "start": 12144.93, "end": 12145.61, "probability": 0.7338 }, { "start": 12145.71, "end": 12146.39, "probability": 0.8235 }, { "start": 12146.51, "end": 12147.01, "probability": 0.668 }, { "start": 12147.63, "end": 12149.85, "probability": 0.7749 }, { "start": 12151.61, "end": 12153.65, "probability": 0.6988 }, { "start": 12154.33, "end": 12156.05, "probability": 0.9332 }, { "start": 12156.38, "end": 12156.85, "probability": 0.3106 }, { "start": 12156.85, "end": 12157.81, "probability": 0.7353 }, { "start": 12158.41, "end": 12159.71, "probability": 0.7304 }, { "start": 12160.03, "end": 12161.87, "probability": 0.9051 }, { "start": 12162.05, "end": 12162.19, "probability": 0.2144 }, { "start": 12163.59, "end": 12163.71, "probability": 0.1769 }, { "start": 12163.71, "end": 12164.27, "probability": 0.5764 }, { "start": 12164.99, "end": 12165.79, "probability": 0.4949 }, { "start": 12166.31, "end": 12171.57, "probability": 0.4313 }, { "start": 12171.57, "end": 12172.29, "probability": 0.8454 }, { "start": 12172.45, "end": 12172.71, "probability": 0.433 }, { "start": 12172.73, "end": 12172.91, "probability": 0.1943 }, { "start": 12172.97, "end": 12174.63, "probability": 0.0397 }, { "start": 12174.63, "end": 12178.61, "probability": 0.1693 }, { "start": 12178.61, "end": 12178.81, "probability": 0.0599 }, { "start": 12178.81, "end": 12178.81, "probability": 0.1941 }, { "start": 12178.81, "end": 12179.17, "probability": 0.0879 }, { "start": 12179.89, "end": 12181.16, "probability": 0.1231 }, { "start": 12181.39, "end": 12181.39, "probability": 0.1097 }, { "start": 12181.39, "end": 12181.39, "probability": 0.3823 }, { "start": 12181.39, "end": 12181.77, "probability": 0.6691 }, { "start": 12181.77, "end": 12184.05, "probability": 0.6099 }, { "start": 12184.63, "end": 12188.59, "probability": 0.7356 }, { "start": 12189.13, "end": 12193.41, "probability": 0.9711 }, { "start": 12194.05, "end": 12194.11, "probability": 0.1407 }, { "start": 12194.43, "end": 12194.77, "probability": 0.099 }, { "start": 12195.61, "end": 12195.93, "probability": 0.4031 }, { "start": 12195.93, "end": 12196.71, "probability": 0.4511 }, { "start": 12198.33, "end": 12199.87, "probability": 0.3353 }, { "start": 12200.39, "end": 12201.45, "probability": 0.1571 }, { "start": 12201.83, "end": 12203.31, "probability": 0.1236 }, { "start": 12203.51, "end": 12204.91, "probability": 0.294 }, { "start": 12205.25, "end": 12207.67, "probability": 0.183 }, { "start": 12208.53, "end": 12211.45, "probability": 0.0816 }, { "start": 12213.75, "end": 12219.03, "probability": 0.0137 }, { "start": 12219.85, "end": 12222.17, "probability": 0.0119 }, { "start": 12222.17, "end": 12224.71, "probability": 0.0099 }, { "start": 12225.13, "end": 12225.59, "probability": 0.0078 }, { "start": 12225.59, "end": 12226.49, "probability": 0.255 }, { "start": 12230.49, "end": 12231.83, "probability": 0.0847 }, { "start": 12232.47, "end": 12234.35, "probability": 0.0738 }, { "start": 12234.69, "end": 12237.05, "probability": 0.1995 }, { "start": 12237.27, "end": 12238.05, "probability": 0.202 }, { "start": 12256.0, "end": 12256.0, "probability": 0.0 }, { "start": 12256.0, "end": 12256.0, "probability": 0.0 }, { "start": 12256.0, "end": 12256.0, "probability": 0.0 }, { "start": 12256.0, "end": 12256.0, "probability": 0.0 }, { "start": 12256.0, "end": 12256.0, "probability": 0.0 }, { "start": 12256.0, "end": 12256.0, "probability": 0.0 }, { "start": 12256.0, "end": 12256.0, "probability": 0.0 }, { "start": 12256.0, "end": 12256.0, "probability": 0.0 }, { "start": 12256.0, "end": 12256.0, "probability": 0.0 }, { "start": 12256.0, "end": 12256.0, "probability": 0.0 }, { "start": 12256.0, "end": 12256.0, "probability": 0.0 }, { "start": 12256.0, "end": 12256.0, "probability": 0.0 }, { "start": 12256.0, "end": 12256.58, "probability": 0.0072 }, { "start": 12256.58, "end": 12256.72, "probability": 0.0458 }, { "start": 12256.82, "end": 12257.1, "probability": 0.7222 }, { "start": 12257.1, "end": 12257.2, "probability": 0.2988 }, { "start": 12257.62, "end": 12257.62, "probability": 0.0883 }, { "start": 12257.62, "end": 12258.26, "probability": 0.3717 }, { "start": 12258.32, "end": 12259.18, "probability": 0.4207 }, { "start": 12259.52, "end": 12262.76, "probability": 0.9429 }, { "start": 12272.64, "end": 12276.96, "probability": 0.0913 }, { "start": 12379.0, "end": 12379.0, "probability": 0.0 }, { "start": 12379.0, "end": 12379.0, "probability": 0.0 }, { "start": 12379.0, "end": 12379.0, "probability": 0.0 }, { "start": 12379.0, "end": 12379.0, "probability": 0.0 }, { "start": 12379.0, "end": 12379.0, "probability": 0.0 }, { "start": 12379.0, "end": 12379.0, "probability": 0.0 }, { "start": 12379.0, "end": 12379.0, "probability": 0.0 }, { "start": 12379.0, "end": 12379.0, "probability": 0.0 }, { "start": 12379.0, "end": 12379.0, "probability": 0.0 }, { "start": 12379.0, "end": 12379.0, "probability": 0.0 }, { "start": 12379.0, "end": 12379.0, "probability": 0.0 }, { "start": 12379.0, "end": 12379.0, "probability": 0.0 }, { "start": 12379.0, "end": 12379.0, "probability": 0.0 }, { "start": 12379.0, "end": 12379.0, "probability": 0.0 }, { "start": 12379.0, "end": 12379.0, "probability": 0.0 }, { "start": 12379.0, "end": 12379.0, "probability": 0.0 }, { "start": 12379.0, "end": 12379.0, "probability": 0.0 }, { "start": 12379.0, "end": 12379.0, "probability": 0.0 }, { "start": 12379.0, "end": 12379.0, "probability": 0.0 }, { "start": 12379.0, "end": 12379.0, "probability": 0.0 }, { "start": 12379.0, "end": 12379.0, "probability": 0.0 }, { "start": 12379.0, "end": 12379.0, "probability": 0.0 }, { "start": 12379.0, "end": 12379.0, "probability": 0.0 }, { "start": 12379.16, "end": 12379.28, "probability": 0.0719 }, { "start": 12379.28, "end": 12379.66, "probability": 0.012 }, { "start": 12380.4, "end": 12384.01, "probability": 0.9873 }, { "start": 12384.54, "end": 12392.45, "probability": 0.9959 }, { "start": 12393.2, "end": 12393.66, "probability": 0.4075 }, { "start": 12393.66, "end": 12395.3, "probability": 0.9571 }, { "start": 12395.38, "end": 12398.62, "probability": 0.984 }, { "start": 12398.7, "end": 12401.78, "probability": 0.979 }, { "start": 12402.2, "end": 12402.72, "probability": 0.6063 }, { "start": 12402.76, "end": 12409.76, "probability": 0.9501 }, { "start": 12410.5, "end": 12413.03, "probability": 0.9219 }, { "start": 12414.46, "end": 12417.62, "probability": 0.9217 }, { "start": 12417.62, "end": 12419.58, "probability": 0.9106 }, { "start": 12420.64, "end": 12424.36, "probability": 0.9971 }, { "start": 12425.6, "end": 12429.68, "probability": 0.9719 }, { "start": 12429.88, "end": 12431.42, "probability": 0.9038 }, { "start": 12432.28, "end": 12433.14, "probability": 0.801 }, { "start": 12433.28, "end": 12437.36, "probability": 0.991 }, { "start": 12437.62, "end": 12441.12, "probability": 0.9857 }, { "start": 12441.9, "end": 12446.4, "probability": 0.868 }, { "start": 12447.04, "end": 12448.92, "probability": 0.9937 }, { "start": 12450.24, "end": 12453.14, "probability": 0.8594 }, { "start": 12453.26, "end": 12457.4, "probability": 0.9956 }, { "start": 12457.64, "end": 12462.62, "probability": 0.9824 }, { "start": 12463.44, "end": 12465.45, "probability": 0.8683 }, { "start": 12466.48, "end": 12467.38, "probability": 0.9095 }, { "start": 12468.0, "end": 12470.6, "probability": 0.9921 }, { "start": 12471.2, "end": 12473.76, "probability": 0.9808 }, { "start": 12474.22, "end": 12475.02, "probability": 0.5946 }, { "start": 12475.26, "end": 12481.68, "probability": 0.9305 }, { "start": 12482.36, "end": 12483.42, "probability": 0.9559 }, { "start": 12484.04, "end": 12485.28, "probability": 0.9243 }, { "start": 12485.9, "end": 12488.96, "probability": 0.9594 }, { "start": 12489.3, "end": 12491.4, "probability": 0.9596 }, { "start": 12493.4, "end": 12495.06, "probability": 0.9933 }, { "start": 12495.22, "end": 12496.64, "probability": 0.9118 }, { "start": 12497.12, "end": 12498.4, "probability": 0.9301 }, { "start": 12498.74, "end": 12499.9, "probability": 0.745 }, { "start": 12500.1, "end": 12501.36, "probability": 0.6967 }, { "start": 12502.16, "end": 12505.1, "probability": 0.9849 }, { "start": 12505.24, "end": 12509.02, "probability": 0.8141 }, { "start": 12509.74, "end": 12511.78, "probability": 0.9482 }, { "start": 12511.94, "end": 12515.12, "probability": 0.9083 }, { "start": 12515.64, "end": 12516.5, "probability": 0.6531 }, { "start": 12518.52, "end": 12521.48, "probability": 0.9172 }, { "start": 12522.28, "end": 12525.52, "probability": 0.9452 }, { "start": 12525.58, "end": 12527.88, "probability": 0.9907 }, { "start": 12528.62, "end": 12531.21, "probability": 0.9946 }, { "start": 12531.92, "end": 12532.78, "probability": 0.9695 }, { "start": 12533.1, "end": 12533.96, "probability": 0.9263 }, { "start": 12534.7, "end": 12538.08, "probability": 0.9931 }, { "start": 12538.08, "end": 12541.08, "probability": 0.9759 }, { "start": 12541.8, "end": 12543.62, "probability": 0.6853 }, { "start": 12543.8, "end": 12551.52, "probability": 0.9939 }, { "start": 12552.16, "end": 12554.07, "probability": 0.7553 }, { "start": 12555.14, "end": 12559.32, "probability": 0.9009 }, { "start": 12559.74, "end": 12561.2, "probability": 0.8328 }, { "start": 12562.2, "end": 12563.3, "probability": 0.749 }, { "start": 12564.62, "end": 12567.54, "probability": 0.4608 }, { "start": 12569.02, "end": 12573.82, "probability": 0.9395 }, { "start": 12573.82, "end": 12577.08, "probability": 0.9976 }, { "start": 12577.8, "end": 12581.92, "probability": 0.9071 }, { "start": 12582.92, "end": 12583.76, "probability": 0.7232 }, { "start": 12583.96, "end": 12585.7, "probability": 0.8227 }, { "start": 12585.86, "end": 12588.74, "probability": 0.9792 }, { "start": 12589.82, "end": 12593.88, "probability": 0.9675 }, { "start": 12594.76, "end": 12597.34, "probability": 0.9922 }, { "start": 12597.42, "end": 12598.48, "probability": 0.8501 }, { "start": 12598.6, "end": 12599.4, "probability": 0.5001 }, { "start": 12599.94, "end": 12603.16, "probability": 0.9871 }, { "start": 12603.16, "end": 12608.2, "probability": 0.9694 }, { "start": 12608.6, "end": 12612.0, "probability": 0.9795 }, { "start": 12613.06, "end": 12613.34, "probability": 0.4353 }, { "start": 12613.46, "end": 12616.14, "probability": 0.9961 }, { "start": 12617.1, "end": 12619.17, "probability": 0.9664 }, { "start": 12619.82, "end": 12620.74, "probability": 0.8551 }, { "start": 12621.02, "end": 12622.02, "probability": 0.9535 }, { "start": 12622.7, "end": 12625.82, "probability": 0.9865 }, { "start": 12626.06, "end": 12627.69, "probability": 0.7227 }, { "start": 12627.96, "end": 12629.06, "probability": 0.6958 }, { "start": 12629.52, "end": 12631.92, "probability": 0.9946 }, { "start": 12633.28, "end": 12637.64, "probability": 0.9873 }, { "start": 12638.64, "end": 12639.14, "probability": 0.9691 }, { "start": 12639.96, "end": 12640.04, "probability": 0.793 }, { "start": 12640.12, "end": 12641.8, "probability": 0.9048 }, { "start": 12641.94, "end": 12647.48, "probability": 0.992 }, { "start": 12648.22, "end": 12649.35, "probability": 0.9884 }, { "start": 12649.56, "end": 12650.44, "probability": 0.9847 }, { "start": 12651.24, "end": 12653.52, "probability": 0.9591 }, { "start": 12654.34, "end": 12655.58, "probability": 0.9078 }, { "start": 12655.8, "end": 12656.86, "probability": 0.8301 }, { "start": 12657.28, "end": 12658.36, "probability": 0.2004 }, { "start": 12659.96, "end": 12664.0, "probability": 0.8564 }, { "start": 12664.16, "end": 12665.3, "probability": 0.9526 }, { "start": 12666.56, "end": 12668.5, "probability": 0.5044 }, { "start": 12668.9, "end": 12671.36, "probability": 0.7589 }, { "start": 12671.46, "end": 12672.48, "probability": 0.6882 }, { "start": 12673.38, "end": 12675.24, "probability": 0.9199 }, { "start": 12676.04, "end": 12678.15, "probability": 0.7542 }, { "start": 12679.18, "end": 12681.76, "probability": 0.7086 }, { "start": 12682.06, "end": 12686.02, "probability": 0.7204 }, { "start": 12686.06, "end": 12687.34, "probability": 0.1413 }, { "start": 12687.38, "end": 12690.6, "probability": 0.3716 }, { "start": 12690.68, "end": 12693.54, "probability": 0.2737 }, { "start": 12693.54, "end": 12695.1, "probability": 0.7823 }, { "start": 12695.22, "end": 12699.46, "probability": 0.9971 }, { "start": 12699.58, "end": 12702.04, "probability": 0.9253 }, { "start": 12702.28, "end": 12704.46, "probability": 0.1879 }, { "start": 12705.96, "end": 12706.56, "probability": 0.324 }, { "start": 12707.12, "end": 12708.66, "probability": 0.0889 }, { "start": 12711.72, "end": 12713.1, "probability": 0.012 }, { "start": 12714.11, "end": 12718.46, "probability": 0.1459 }, { "start": 12718.68, "end": 12723.72, "probability": 0.9165 }, { "start": 12724.34, "end": 12725.2, "probability": 0.6764 }, { "start": 12725.3, "end": 12731.48, "probability": 0.6498 }, { "start": 12731.74, "end": 12735.16, "probability": 0.665 }, { "start": 12735.48, "end": 12739.2, "probability": 0.8681 }, { "start": 12740.0, "end": 12741.47, "probability": 0.5301 }, { "start": 12742.24, "end": 12744.74, "probability": 0.532 }, { "start": 12745.42, "end": 12748.68, "probability": 0.9956 }, { "start": 12749.06, "end": 12752.76, "probability": 0.8901 }, { "start": 12753.74, "end": 12756.7, "probability": 0.9489 }, { "start": 12759.66, "end": 12759.74, "probability": 0.0459 }, { "start": 12759.74, "end": 12761.48, "probability": 0.5901 }, { "start": 12761.5, "end": 12761.86, "probability": 0.4791 }, { "start": 12761.86, "end": 12762.42, "probability": 0.6718 }, { "start": 12763.72, "end": 12763.96, "probability": 0.3954 }, { "start": 12763.96, "end": 12764.44, "probability": 0.0769 }, { "start": 12765.18, "end": 12765.46, "probability": 0.1896 }, { "start": 12765.92, "end": 12766.18, "probability": 0.2494 }, { "start": 12767.62, "end": 12768.9, "probability": 0.2174 }, { "start": 12769.04, "end": 12770.82, "probability": 0.4064 }, { "start": 12770.92, "end": 12775.88, "probability": 0.8384 }, { "start": 12777.89, "end": 12782.64, "probability": 0.742 }, { "start": 12783.2, "end": 12784.88, "probability": 0.9494 }, { "start": 12785.36, "end": 12787.13, "probability": 0.9951 }, { "start": 12787.7, "end": 12790.78, "probability": 0.9824 }, { "start": 12790.86, "end": 12792.5, "probability": 0.9856 }, { "start": 12793.48, "end": 12794.98, "probability": 0.987 }, { "start": 12795.9, "end": 12797.84, "probability": 0.9961 }, { "start": 12798.42, "end": 12800.38, "probability": 0.9784 }, { "start": 12800.56, "end": 12804.34, "probability": 0.9859 }, { "start": 12804.42, "end": 12806.82, "probability": 0.9491 }, { "start": 12807.3, "end": 12808.0, "probability": 0.378 }, { "start": 12808.9, "end": 12812.06, "probability": 0.8823 }, { "start": 12812.68, "end": 12813.48, "probability": 0.9775 }, { "start": 12814.02, "end": 12817.48, "probability": 0.9681 }, { "start": 12818.08, "end": 12820.56, "probability": 0.9971 }, { "start": 12820.6, "end": 12824.5, "probability": 0.9924 }, { "start": 12824.64, "end": 12826.4, "probability": 0.388 }, { "start": 12826.84, "end": 12829.94, "probability": 0.8044 }, { "start": 12830.72, "end": 12833.86, "probability": 0.9844 }, { "start": 12834.06, "end": 12837.14, "probability": 0.9069 }, { "start": 12837.24, "end": 12838.9, "probability": 0.9818 }, { "start": 12839.38, "end": 12840.98, "probability": 0.991 }, { "start": 12841.18, "end": 12846.62, "probability": 0.9901 }, { "start": 12847.64, "end": 12848.72, "probability": 0.8354 }, { "start": 12848.82, "end": 12850.82, "probability": 0.9307 }, { "start": 12852.04, "end": 12854.32, "probability": 0.9158 }, { "start": 12855.06, "end": 12856.96, "probability": 0.9897 }, { "start": 12857.06, "end": 12857.54, "probability": 0.8287 }, { "start": 12857.92, "end": 12858.42, "probability": 0.9688 }, { "start": 12858.58, "end": 12860.2, "probability": 0.9155 }, { "start": 12860.3, "end": 12861.9, "probability": 0.4539 }, { "start": 12861.96, "end": 12862.34, "probability": 0.7332 }, { "start": 12862.88, "end": 12864.66, "probability": 0.1759 }, { "start": 12864.72, "end": 12865.48, "probability": 0.589 }, { "start": 12866.34, "end": 12870.42, "probability": 0.5326 }, { "start": 12871.14, "end": 12877.26, "probability": 0.989 }, { "start": 12878.06, "end": 12880.04, "probability": 0.9048 }, { "start": 12880.98, "end": 12886.42, "probability": 0.993 }, { "start": 12886.8, "end": 12887.8, "probability": 0.1359 }, { "start": 12888.54, "end": 12890.86, "probability": 0.823 }, { "start": 12891.64, "end": 12895.62, "probability": 0.9875 }, { "start": 12896.26, "end": 12898.28, "probability": 0.9758 }, { "start": 12898.36, "end": 12900.38, "probability": 0.9887 }, { "start": 12900.44, "end": 12901.84, "probability": 0.6852 }, { "start": 12902.54, "end": 12905.08, "probability": 0.9725 }, { "start": 12905.74, "end": 12907.75, "probability": 0.9829 }, { "start": 12909.46, "end": 12914.52, "probability": 0.9851 }, { "start": 12914.64, "end": 12915.52, "probability": 0.5767 }, { "start": 12916.7, "end": 12921.52, "probability": 0.979 }, { "start": 12922.18, "end": 12925.46, "probability": 0.8311 }, { "start": 12926.9, "end": 12928.12, "probability": 0.8823 }, { "start": 12929.04, "end": 12930.94, "probability": 0.3868 }, { "start": 12930.94, "end": 12932.92, "probability": 0.3287 }, { "start": 12933.66, "end": 12936.44, "probability": 0.1632 }, { "start": 12940.54, "end": 12941.26, "probability": 0.1532 }, { "start": 12941.82, "end": 12941.94, "probability": 0.3345 }, { "start": 12942.22, "end": 12942.5, "probability": 0.1756 }, { "start": 12942.82, "end": 12946.28, "probability": 0.4395 }, { "start": 12946.48, "end": 12947.0, "probability": 0.4311 }, { "start": 12947.7, "end": 12948.48, "probability": 0.9738 }, { "start": 12949.94, "end": 12952.1, "probability": 0.7383 }, { "start": 12953.48, "end": 12958.32, "probability": 0.9019 }, { "start": 12958.32, "end": 12963.28, "probability": 0.9526 }, { "start": 12963.44, "end": 12965.58, "probability": 0.978 }, { "start": 12965.66, "end": 12967.22, "probability": 0.536 }, { "start": 12967.58, "end": 12967.58, "probability": 0.3888 }, { "start": 12967.7, "end": 12971.88, "probability": 0.9537 }, { "start": 12971.96, "end": 12972.59, "probability": 0.9747 }, { "start": 12972.76, "end": 12973.28, "probability": 0.957 }, { "start": 12973.4, "end": 12976.02, "probability": 0.9706 }, { "start": 12977.02, "end": 12977.74, "probability": 0.4541 }, { "start": 12977.8, "end": 12980.5, "probability": 0.9944 }, { "start": 12980.66, "end": 12982.99, "probability": 0.9976 }, { "start": 12983.79, "end": 12984.83, "probability": 0.9993 }, { "start": 12985.37, "end": 12987.93, "probability": 0.9805 }, { "start": 12988.89, "end": 12989.15, "probability": 0.3755 }, { "start": 12989.17, "end": 12991.63, "probability": 0.9985 }, { "start": 12991.65, "end": 12993.45, "probability": 0.9983 }, { "start": 12993.99, "end": 12995.03, "probability": 0.7764 }, { "start": 12995.27, "end": 12998.61, "probability": 0.8431 }, { "start": 12998.73, "end": 13003.11, "probability": 0.6937 }, { "start": 13003.49, "end": 13005.47, "probability": 0.9268 }, { "start": 13006.09, "end": 13007.03, "probability": 0.8557 }, { "start": 13007.89, "end": 13009.01, "probability": 0.9368 }, { "start": 13010.17, "end": 13010.93, "probability": 0.8141 }, { "start": 13018.73, "end": 13020.51, "probability": 0.8817 }, { "start": 13023.56, "end": 13025.83, "probability": 0.5709 }, { "start": 13027.91, "end": 13028.77, "probability": 0.7307 }, { "start": 13029.45, "end": 13031.39, "probability": 0.2434 }, { "start": 13032.67, "end": 13032.67, "probability": 0.2578 }, { "start": 13032.67, "end": 13032.77, "probability": 0.5261 }, { "start": 13032.85, "end": 13033.77, "probability": 0.8608 }, { "start": 13034.13, "end": 13035.29, "probability": 0.5648 }, { "start": 13035.29, "end": 13036.41, "probability": 0.7902 }, { "start": 13036.63, "end": 13041.35, "probability": 0.2976 }, { "start": 13041.35, "end": 13041.47, "probability": 0.1436 }, { "start": 13041.53, "end": 13042.65, "probability": 0.7444 }, { "start": 13042.77, "end": 13044.22, "probability": 0.9072 }, { "start": 13045.17, "end": 13046.05, "probability": 0.3753 }, { "start": 13046.85, "end": 13048.01, "probability": 0.6397 }, { "start": 13049.27, "end": 13052.49, "probability": 0.9318 }, { "start": 13053.75, "end": 13055.41, "probability": 0.6226 }, { "start": 13055.79, "end": 13058.19, "probability": 0.7393 }, { "start": 13058.95, "end": 13059.77, "probability": 0.8833 }, { "start": 13062.73, "end": 13065.73, "probability": 0.9468 }, { "start": 13066.93, "end": 13069.27, "probability": 0.8579 }, { "start": 13069.87, "end": 13071.09, "probability": 0.0469 }, { "start": 13071.15, "end": 13071.57, "probability": 0.0479 }, { "start": 13071.79, "end": 13071.89, "probability": 0.493 }, { "start": 13072.01, "end": 13073.15, "probability": 0.0753 }, { "start": 13073.37, "end": 13074.43, "probability": 0.3242 }, { "start": 13074.53, "end": 13076.15, "probability": 0.3115 }, { "start": 13076.25, "end": 13078.05, "probability": 0.6785 }, { "start": 13078.17, "end": 13078.99, "probability": 0.2428 }, { "start": 13079.61, "end": 13081.79, "probability": 0.183 }, { "start": 13081.95, "end": 13082.44, "probability": 0.6211 }, { "start": 13082.89, "end": 13083.45, "probability": 0.7246 }, { "start": 13084.07, "end": 13084.56, "probability": 0.0307 }, { "start": 13087.61, "end": 13088.41, "probability": 0.023 }, { "start": 13090.41, "end": 13094.91, "probability": 0.0587 }, { "start": 13094.91, "end": 13097.03, "probability": 0.0614 }, { "start": 13097.17, "end": 13097.73, "probability": 0.0682 }, { "start": 13102.17, "end": 13102.71, "probability": 0.2231 }, { "start": 13102.71, "end": 13104.19, "probability": 0.1624 }, { "start": 13104.19, "end": 13104.89, "probability": 0.2636 }, { "start": 13105.13, "end": 13107.09, "probability": 0.0475 }, { "start": 13107.09, "end": 13107.15, "probability": 0.065 }, { "start": 13107.15, "end": 13107.79, "probability": 0.6444 }, { "start": 13107.85, "end": 13109.97, "probability": 0.312 }, { "start": 13110.0, "end": 13110.0, "probability": 0.0 }, { "start": 13110.0, "end": 13110.0, "probability": 0.0 }, { "start": 13110.0, "end": 13110.0, "probability": 0.0 }, { "start": 13110.0, "end": 13110.0, "probability": 0.0 }, { "start": 13112.25, "end": 13113.58, "probability": 0.1745 }, { "start": 13113.78, "end": 13113.92, "probability": 0.0287 }, { "start": 13115.78, "end": 13118.42, "probability": 0.3826 }, { "start": 13118.62, "end": 13119.98, "probability": 0.1789 }, { "start": 13120.4, "end": 13120.68, "probability": 0.2245 }, { "start": 13121.3, "end": 13122.8, "probability": 0.1292 }, { "start": 13123.08, "end": 13124.88, "probability": 0.0755 }, { "start": 13230.0, "end": 13230.0, "probability": 0.0 }, { "start": 13230.0, "end": 13230.0, "probability": 0.0 }, { "start": 13230.0, "end": 13230.0, "probability": 0.0 }, { "start": 13230.0, "end": 13230.0, "probability": 0.0 }, { "start": 13230.0, "end": 13230.0, "probability": 0.0 }, { "start": 13230.0, "end": 13230.0, "probability": 0.0 }, { "start": 13230.0, "end": 13230.0, "probability": 0.0 }, { "start": 13230.0, "end": 13230.0, "probability": 0.0 }, { "start": 13230.0, "end": 13230.0, "probability": 0.0 }, { "start": 13230.0, "end": 13230.0, "probability": 0.0 }, { "start": 13230.0, "end": 13230.0, "probability": 0.0 }, { "start": 13230.0, "end": 13230.0, "probability": 0.0 }, { "start": 13230.0, "end": 13230.0, "probability": 0.0 }, { "start": 13230.0, "end": 13230.0, "probability": 0.0 }, { "start": 13230.0, "end": 13230.0, "probability": 0.0 }, { "start": 13230.0, "end": 13230.0, "probability": 0.0 }, { "start": 13230.0, "end": 13230.0, "probability": 0.0 }, { "start": 13230.0, "end": 13230.0, "probability": 0.0 }, { "start": 13230.0, "end": 13230.0, "probability": 0.0 }, { "start": 13230.0, "end": 13230.0, "probability": 0.0 }, { "start": 13230.0, "end": 13230.0, "probability": 0.0 }, { "start": 13230.0, "end": 13230.0, "probability": 0.0 }, { "start": 13230.0, "end": 13230.0, "probability": 0.0 }, { "start": 13230.0, "end": 13230.0, "probability": 0.0 }, { "start": 13230.0, "end": 13230.0, "probability": 0.0 }, { "start": 13230.0, "end": 13230.0, "probability": 0.0 }, { "start": 13230.0, "end": 13230.0, "probability": 0.0 }, { "start": 13230.0, "end": 13230.0, "probability": 0.0 }, { "start": 13230.0, "end": 13230.0, "probability": 0.0 }, { "start": 13230.0, "end": 13230.0, "probability": 0.0 }, { "start": 13230.0, "end": 13230.0, "probability": 0.0 }, { "start": 13230.0, "end": 13230.0, "probability": 0.0 }, { "start": 13230.0, "end": 13230.0, "probability": 0.0 }, { "start": 13230.0, "end": 13230.0, "probability": 0.0 }, { "start": 13230.0, "end": 13230.0, "probability": 0.0 }, { "start": 13230.0, "end": 13230.0, "probability": 0.0 }, { "start": 13230.0, "end": 13230.0, "probability": 0.0 }, { "start": 13230.0, "end": 13230.0, "probability": 0.0 }, { "start": 13230.0, "end": 13230.0, "probability": 0.0 }, { "start": 13230.0, "end": 13230.0, "probability": 0.0 }, { "start": 13230.0, "end": 13230.0, "probability": 0.0 }, { "start": 13230.0, "end": 13230.0, "probability": 0.0 }, { "start": 13230.0, "end": 13230.0, "probability": 0.0 }, { "start": 13230.0, "end": 13230.0, "probability": 0.0 }, { "start": 13230.0, "end": 13230.0, "probability": 0.0 }, { "start": 13230.0, "end": 13230.0, "probability": 0.0 }, { "start": 13230.0, "end": 13230.0, "probability": 0.0 }, { "start": 13230.0, "end": 13230.0, "probability": 0.0 }, { "start": 13230.0, "end": 13230.0, "probability": 0.0 }, { "start": 13230.0, "end": 13230.0, "probability": 0.0 }, { "start": 13230.0, "end": 13230.0, "probability": 0.0 }, { "start": 13230.0, "end": 13230.0, "probability": 0.0 }, { "start": 13230.2, "end": 13232.08, "probability": 0.609 }, { "start": 13235.06, "end": 13237.66, "probability": 0.76 }, { "start": 13238.06, "end": 13239.18, "probability": 0.5202 }, { "start": 13240.04, "end": 13240.72, "probability": 0.0455 }, { "start": 13240.8, "end": 13240.88, "probability": 0.0804 }, { "start": 13240.88, "end": 13242.93, "probability": 0.8766 }, { "start": 13243.65, "end": 13246.18, "probability": 0.8428 }, { "start": 13249.07, "end": 13253.13, "probability": 0.9342 }, { "start": 13253.99, "end": 13259.79, "probability": 0.9777 }, { "start": 13261.31, "end": 13261.51, "probability": 0.454 }, { "start": 13267.03, "end": 13267.71, "probability": 0.09 }, { "start": 13267.71, "end": 13267.71, "probability": 0.1702 }, { "start": 13267.71, "end": 13269.02, "probability": 0.0912 }, { "start": 13269.59, "end": 13273.21, "probability": 0.331 }, { "start": 13273.35, "end": 13274.23, "probability": 0.6349 }, { "start": 13274.91, "end": 13275.79, "probability": 0.8617 }, { "start": 13275.81, "end": 13278.61, "probability": 0.2177 }, { "start": 13278.61, "end": 13280.85, "probability": 0.5361 }, { "start": 13280.99, "end": 13282.51, "probability": 0.0322 }, { "start": 13282.51, "end": 13282.73, "probability": 0.0893 }, { "start": 13282.73, "end": 13283.13, "probability": 0.3858 }, { "start": 13283.57, "end": 13285.27, "probability": 0.2202 }, { "start": 13285.45, "end": 13286.21, "probability": 0.6488 }, { "start": 13286.21, "end": 13290.67, "probability": 0.5841 }, { "start": 13290.71, "end": 13292.07, "probability": 0.8099 }, { "start": 13292.47, "end": 13297.41, "probability": 0.7213 }, { "start": 13298.05, "end": 13299.87, "probability": 0.416 }, { "start": 13300.23, "end": 13300.51, "probability": 0.1678 }, { "start": 13300.63, "end": 13303.42, "probability": 0.6304 }, { "start": 13303.83, "end": 13305.45, "probability": 0.484 }, { "start": 13305.55, "end": 13306.39, "probability": 0.5179 }, { "start": 13306.39, "end": 13308.57, "probability": 0.8259 }, { "start": 13308.61, "end": 13310.11, "probability": 0.2355 }, { "start": 13310.17, "end": 13310.49, "probability": 0.437 }, { "start": 13310.93, "end": 13312.51, "probability": 0.6227 }, { "start": 13312.55, "end": 13314.07, "probability": 0.5388 }, { "start": 13314.09, "end": 13315.11, "probability": 0.7417 }, { "start": 13315.57, "end": 13316.63, "probability": 0.0345 }, { "start": 13317.09, "end": 13320.39, "probability": 0.5327 }, { "start": 13320.39, "end": 13321.27, "probability": 0.5732 }, { "start": 13332.49, "end": 13332.65, "probability": 0.0408 }, { "start": 13333.35, "end": 13333.65, "probability": 0.192 }, { "start": 13333.87, "end": 13337.81, "probability": 0.0297 }, { "start": 13338.03, "end": 13339.61, "probability": 0.1163 }, { "start": 13339.61, "end": 13340.87, "probability": 0.0662 }, { "start": 13340.87, "end": 13341.41, "probability": 0.2463 }, { "start": 13342.29, "end": 13342.71, "probability": 0.0872 }, { "start": 13344.41, "end": 13346.05, "probability": 0.1872 }, { "start": 13346.21, "end": 13348.21, "probability": 0.085 }, { "start": 13348.23, "end": 13348.93, "probability": 0.0273 }, { "start": 13350.69, "end": 13351.27, "probability": 0.1317 }, { "start": 13353.23, "end": 13354.13, "probability": 0.1644 }, { "start": 13354.13, "end": 13356.39, "probability": 0.0691 }, { "start": 13359.59, "end": 13359.75, "probability": 0.0095 }, { "start": 13368.45, "end": 13368.89, "probability": 0.0884 }, { "start": 13368.89, "end": 13370.19, "probability": 0.041 }, { "start": 13371.79, "end": 13374.39, "probability": 0.2857 }, { "start": 13377.61, "end": 13377.61, "probability": 0.2084 }, { "start": 13379.09, "end": 13379.79, "probability": 0.0304 }, { "start": 13379.79, "end": 13381.46, "probability": 0.0911 }, { "start": 13383.15, "end": 13383.97, "probability": 0.0396 }, { "start": 13384.0, "end": 13384.0, "probability": 0.0 }, { "start": 13384.0, "end": 13384.0, "probability": 0.0 }, { "start": 13384.0, "end": 13384.0, "probability": 0.0 }, { "start": 13384.0, "end": 13384.0, "probability": 0.0 }, { "start": 13384.0, "end": 13384.0, "probability": 0.0 }, { "start": 13384.0, "end": 13384.0, "probability": 0.0 }, { "start": 13384.0, "end": 13384.0, "probability": 0.0 }, { "start": 13384.0, "end": 13384.0, "probability": 0.0 }, { "start": 13384.0, "end": 13384.0, "probability": 0.0 }, { "start": 13384.0, "end": 13384.0, "probability": 0.0 }, { "start": 13384.16, "end": 13384.16, "probability": 0.0303 }, { "start": 13384.16, "end": 13387.36, "probability": 0.9541 }, { "start": 13388.18, "end": 13390.26, "probability": 0.9446 }, { "start": 13391.16, "end": 13393.3, "probability": 0.9753 }, { "start": 13393.74, "end": 13394.84, "probability": 0.99 }, { "start": 13395.32, "end": 13398.94, "probability": 0.917 }, { "start": 13399.62, "end": 13401.76, "probability": 0.9585 }, { "start": 13402.34, "end": 13403.86, "probability": 0.9836 }, { "start": 13404.48, "end": 13405.9, "probability": 0.8259 }, { "start": 13406.46, "end": 13408.76, "probability": 0.7382 }, { "start": 13414.46, "end": 13421.38, "probability": 0.8535 }, { "start": 13422.6, "end": 13425.02, "probability": 0.9557 }, { "start": 13426.28, "end": 13429.42, "probability": 0.9199 }, { "start": 13429.42, "end": 13435.71, "probability": 0.966 }, { "start": 13435.82, "end": 13441.12, "probability": 0.9822 }, { "start": 13443.52, "end": 13446.12, "probability": 0.5963 }, { "start": 13446.54, "end": 13446.64, "probability": 0.2778 }, { "start": 13447.18, "end": 13450.86, "probability": 0.811 }, { "start": 13451.6, "end": 13453.64, "probability": 0.9926 }, { "start": 13454.22, "end": 13455.26, "probability": 0.5927 }, { "start": 13456.3, "end": 13457.96, "probability": 0.7799 }, { "start": 13458.78, "end": 13459.7, "probability": 0.8558 }, { "start": 13460.66, "end": 13461.26, "probability": 0.815 }, { "start": 13462.08, "end": 13462.38, "probability": 0.9363 }, { "start": 13463.3, "end": 13464.66, "probability": 0.7144 }, { "start": 13464.76, "end": 13465.24, "probability": 0.6164 }, { "start": 13465.54, "end": 13466.8, "probability": 0.8386 }, { "start": 13467.88, "end": 13469.06, "probability": 0.9993 }, { "start": 13470.06, "end": 13474.24, "probability": 0.9769 }, { "start": 13474.28, "end": 13477.04, "probability": 0.9946 }, { "start": 13477.04, "end": 13478.96, "probability": 0.9924 }, { "start": 13480.64, "end": 13482.41, "probability": 0.9849 }, { "start": 13483.22, "end": 13488.84, "probability": 0.9622 }, { "start": 13489.88, "end": 13493.94, "probability": 0.8623 }, { "start": 13493.94, "end": 13498.46, "probability": 0.9354 }, { "start": 13499.46, "end": 13501.86, "probability": 0.6679 }, { "start": 13502.42, "end": 13505.08, "probability": 0.9535 }, { "start": 13505.68, "end": 13510.46, "probability": 0.7369 }, { "start": 13511.06, "end": 13511.62, "probability": 0.3245 }, { "start": 13513.12, "end": 13516.94, "probability": 0.8816 }, { "start": 13517.5, "end": 13520.13, "probability": 0.9041 }, { "start": 13522.32, "end": 13523.64, "probability": 0.8955 }, { "start": 13524.16, "end": 13526.5, "probability": 0.9647 }, { "start": 13526.96, "end": 13529.3, "probability": 0.6489 }, { "start": 13530.28, "end": 13532.92, "probability": 0.7379 }, { "start": 13533.66, "end": 13536.24, "probability": 0.3551 }, { "start": 13537.14, "end": 13538.09, "probability": 0.5962 }, { "start": 13539.38, "end": 13541.76, "probability": 0.9612 }, { "start": 13542.24, "end": 13546.44, "probability": 0.9573 }, { "start": 13546.58, "end": 13547.88, "probability": 0.9636 }, { "start": 13548.12, "end": 13549.14, "probability": 0.7498 }, { "start": 13549.22, "end": 13549.96, "probability": 0.6321 }, { "start": 13550.32, "end": 13552.41, "probability": 0.9582 }, { "start": 13552.88, "end": 13555.58, "probability": 0.9565 }, { "start": 13556.5, "end": 13560.06, "probability": 0.9946 }, { "start": 13560.46, "end": 13566.08, "probability": 0.8927 }, { "start": 13566.76, "end": 13568.9, "probability": 0.9795 }, { "start": 13569.04, "end": 13570.04, "probability": 0.9798 }, { "start": 13570.54, "end": 13571.1, "probability": 0.7616 }, { "start": 13571.24, "end": 13571.94, "probability": 0.7008 }, { "start": 13572.5, "end": 13574.59, "probability": 0.9204 }, { "start": 13575.08, "end": 13576.86, "probability": 0.9978 }, { "start": 13577.52, "end": 13580.04, "probability": 0.9974 }, { "start": 13580.1, "end": 13585.06, "probability": 0.9579 }, { "start": 13585.62, "end": 13587.8, "probability": 0.998 }, { "start": 13588.44, "end": 13589.68, "probability": 0.9846 }, { "start": 13589.84, "end": 13590.96, "probability": 0.833 }, { "start": 13591.46, "end": 13597.02, "probability": 0.9793 }, { "start": 13597.14, "end": 13598.6, "probability": 0.9213 }, { "start": 13599.36, "end": 13602.38, "probability": 0.9409 }, { "start": 13602.82, "end": 13605.96, "probability": 0.9933 }, { "start": 13605.96, "end": 13609.36, "probability": 0.9989 }, { "start": 13609.78, "end": 13611.06, "probability": 0.8792 }, { "start": 13613.78, "end": 13616.06, "probability": 0.8839 }, { "start": 13616.6, "end": 13617.98, "probability": 0.855 }, { "start": 13618.52, "end": 13620.04, "probability": 0.6248 }, { "start": 13620.56, "end": 13622.74, "probability": 0.7742 }, { "start": 13623.24, "end": 13625.56, "probability": 0.9719 }, { "start": 13626.0, "end": 13628.26, "probability": 0.9661 }, { "start": 13628.46, "end": 13628.94, "probability": 0.8898 }, { "start": 13629.58, "end": 13631.92, "probability": 0.6735 }, { "start": 13632.7, "end": 13635.59, "probability": 0.9788 }, { "start": 13642.32, "end": 13643.94, "probability": 0.0992 }, { "start": 13644.98, "end": 13646.37, "probability": 0.1801 }, { "start": 13647.46, "end": 13648.52, "probability": 0.0975 }, { "start": 13660.0, "end": 13662.26, "probability": 0.8622 }, { "start": 13662.3, "end": 13663.62, "probability": 0.8217 }, { "start": 13664.48, "end": 13665.4, "probability": 0.8952 }, { "start": 13667.04, "end": 13673.92, "probability": 0.9954 }, { "start": 13674.24, "end": 13675.01, "probability": 0.7539 }, { "start": 13675.72, "end": 13676.68, "probability": 0.9261 }, { "start": 13676.78, "end": 13679.99, "probability": 0.9971 }, { "start": 13680.12, "end": 13681.74, "probability": 0.9739 }, { "start": 13682.3, "end": 13688.74, "probability": 0.8047 }, { "start": 13688.74, "end": 13694.9, "probability": 0.2682 }, { "start": 13694.9, "end": 13699.94, "probability": 0.9952 }, { "start": 13703.78, "end": 13704.52, "probability": 0.6699 }, { "start": 13705.44, "end": 13706.12, "probability": 0.4653 }, { "start": 13707.9, "end": 13711.2, "probability": 0.9941 }, { "start": 13711.84, "end": 13713.16, "probability": 0.8271 }, { "start": 13715.08, "end": 13716.1, "probability": 0.9462 }, { "start": 13717.04, "end": 13717.56, "probability": 0.9698 }, { "start": 13720.04, "end": 13722.68, "probability": 0.8719 }, { "start": 13722.92, "end": 13724.72, "probability": 0.7163 }, { "start": 13726.71, "end": 13727.78, "probability": 0.1554 }, { "start": 13727.78, "end": 13731.42, "probability": 0.9786 }, { "start": 13731.42, "end": 13734.14, "probability": 0.9867 }, { "start": 13735.42, "end": 13736.86, "probability": 0.7632 }, { "start": 13738.14, "end": 13739.52, "probability": 0.9917 }, { "start": 13740.56, "end": 13744.26, "probability": 0.9688 }, { "start": 13744.9, "end": 13747.62, "probability": 0.8284 }, { "start": 13748.64, "end": 13752.2, "probability": 0.9766 }, { "start": 13752.6, "end": 13753.74, "probability": 0.2064 }, { "start": 13753.8, "end": 13756.7, "probability": 0.7181 }, { "start": 13757.36, "end": 13758.7, "probability": 0.7642 }, { "start": 13758.78, "end": 13760.04, "probability": 0.9854 }, { "start": 13760.98, "end": 13765.6, "probability": 0.9858 }, { "start": 13765.6, "end": 13768.76, "probability": 0.9984 }, { "start": 13768.8, "end": 13769.48, "probability": 0.1705 }, { "start": 13769.86, "end": 13771.34, "probability": 0.9058 }, { "start": 13771.98, "end": 13776.02, "probability": 0.2336 }, { "start": 13776.08, "end": 13779.58, "probability": 0.8877 }, { "start": 13780.38, "end": 13787.76, "probability": 0.9958 }, { "start": 13787.76, "end": 13793.28, "probability": 0.999 }, { "start": 13793.8, "end": 13795.0, "probability": 0.6765 }, { "start": 13796.54, "end": 13799.72, "probability": 0.9475 }, { "start": 13799.96, "end": 13805.94, "probability": 0.9919 }, { "start": 13806.82, "end": 13807.54, "probability": 0.8935 }, { "start": 13807.64, "end": 13808.86, "probability": 0.9576 }, { "start": 13809.58, "end": 13813.9, "probability": 0.998 }, { "start": 13814.74, "end": 13816.04, "probability": 0.7941 }, { "start": 13816.34, "end": 13819.68, "probability": 0.9969 }, { "start": 13820.1, "end": 13822.1, "probability": 0.8085 }, { "start": 13822.6, "end": 13823.46, "probability": 0.6328 }, { "start": 13824.12, "end": 13825.42, "probability": 0.9229 }, { "start": 13825.76, "end": 13827.26, "probability": 0.1333 }, { "start": 13827.94, "end": 13831.7, "probability": 0.0863 }, { "start": 13832.46, "end": 13834.4, "probability": 0.4783 }, { "start": 13834.92, "end": 13836.92, "probability": 0.2017 }, { "start": 13837.2, "end": 13838.22, "probability": 0.0241 }, { "start": 13838.74, "end": 13842.52, "probability": 0.244 }, { "start": 13842.62, "end": 13843.38, "probability": 0.1636 }, { "start": 13843.38, "end": 13846.12, "probability": 0.627 }, { "start": 13847.14, "end": 13847.98, "probability": 0.584 }, { "start": 13849.48, "end": 13850.74, "probability": 0.5796 }, { "start": 13851.14, "end": 13852.66, "probability": 0.3127 }, { "start": 13852.82, "end": 13856.82, "probability": 0.9577 }, { "start": 13857.32, "end": 13859.8, "probability": 0.7708 }, { "start": 13860.0, "end": 13861.46, "probability": 0.8818 }, { "start": 13861.74, "end": 13863.1, "probability": 0.9046 }, { "start": 13863.2, "end": 13864.42, "probability": 0.7386 }, { "start": 13864.66, "end": 13865.92, "probability": 0.7111 }, { "start": 13866.46, "end": 13869.72, "probability": 0.8721 }, { "start": 13869.8, "end": 13873.96, "probability": 0.5795 }, { "start": 13874.18, "end": 13875.8, "probability": 0.7659 }, { "start": 13876.8, "end": 13878.32, "probability": 0.8128 }, { "start": 13878.46, "end": 13879.06, "probability": 0.1582 }, { "start": 13879.3, "end": 13880.72, "probability": 0.6868 }, { "start": 13881.34, "end": 13882.76, "probability": 0.3785 }, { "start": 13882.94, "end": 13884.26, "probability": 0.2227 }, { "start": 13885.04, "end": 13886.18, "probability": 0.5371 }, { "start": 13886.28, "end": 13888.58, "probability": 0.4988 }, { "start": 13889.72, "end": 13891.02, "probability": 0.7937 }, { "start": 13891.57, "end": 13892.92, "probability": 0.7542 }, { "start": 13896.48, "end": 13897.06, "probability": 0.171 }, { "start": 13897.72, "end": 13897.82, "probability": 0.0716 }, { "start": 13897.82, "end": 13899.6, "probability": 0.3562 }, { "start": 13899.72, "end": 13901.12, "probability": 0.9226 }, { "start": 13901.8, "end": 13903.94, "probability": 0.9942 }, { "start": 13904.7, "end": 13909.6, "probability": 0.8855 }, { "start": 13909.72, "end": 13911.06, "probability": 0.5011 }, { "start": 13915.08, "end": 13916.02, "probability": 0.7358 }, { "start": 13916.06, "end": 13918.42, "probability": 0.6893 }, { "start": 13918.82, "end": 13919.88, "probability": 0.0472 }, { "start": 13919.88, "end": 13920.16, "probability": 0.2332 }, { "start": 13920.16, "end": 13924.18, "probability": 0.6296 }, { "start": 13924.18, "end": 13927.0, "probability": 0.8674 }, { "start": 13927.26, "end": 13929.28, "probability": 0.4106 }, { "start": 13929.9, "end": 13931.33, "probability": 0.2337 }, { "start": 13932.68, "end": 13932.97, "probability": 0.1522 }, { "start": 13934.14, "end": 13935.1, "probability": 0.1252 }, { "start": 13935.34, "end": 13936.8, "probability": 0.353 }, { "start": 13937.24, "end": 13938.97, "probability": 0.075 }, { "start": 13939.66, "end": 13943.24, "probability": 0.3284 }, { "start": 13944.52, "end": 13947.86, "probability": 0.1438 }, { "start": 13948.08, "end": 13948.18, "probability": 0.074 }, { "start": 13948.6, "end": 13950.74, "probability": 0.3018 }, { "start": 13950.74, "end": 13952.34, "probability": 0.8977 }, { "start": 13952.44, "end": 13954.82, "probability": 0.9026 }, { "start": 13954.9, "end": 13956.18, "probability": 0.8914 }, { "start": 13957.04, "end": 13958.02, "probability": 0.9863 }, { "start": 13958.14, "end": 13961.58, "probability": 0.9972 }, { "start": 13962.24, "end": 13965.32, "probability": 0.9983 }, { "start": 13966.16, "end": 13967.06, "probability": 0.7878 }, { "start": 13967.7, "end": 13967.74, "probability": 0.1359 }, { "start": 13967.74, "end": 13970.54, "probability": 0.9705 }, { "start": 13971.28, "end": 13976.78, "probability": 0.9654 }, { "start": 13977.16, "end": 13978.89, "probability": 0.9569 }, { "start": 13979.72, "end": 13980.18, "probability": 0.9586 }, { "start": 13981.0, "end": 13982.5, "probability": 0.853 }, { "start": 13982.64, "end": 13986.5, "probability": 0.894 }, { "start": 13986.58, "end": 13988.96, "probability": 0.5855 }, { "start": 13989.04, "end": 13991.57, "probability": 0.8696 }, { "start": 13991.96, "end": 13993.72, "probability": 0.8513 }, { "start": 13994.52, "end": 13995.72, "probability": 0.856 }, { "start": 13996.3, "end": 13997.76, "probability": 0.9062 }, { "start": 13997.76, "end": 13998.8, "probability": 0.7116 }, { "start": 14001.0, "end": 14001.48, "probability": 0.2725 }, { "start": 14003.88, "end": 14006.02, "probability": 0.9341 }, { "start": 14006.88, "end": 14008.76, "probability": 0.9225 }, { "start": 14009.96, "end": 14011.12, "probability": 0.2566 }, { "start": 14013.34, "end": 14017.48, "probability": 0.4321 }, { "start": 14018.16, "end": 14018.44, "probability": 0.0373 }, { "start": 14019.8, "end": 14022.12, "probability": 0.8635 }, { "start": 14023.06, "end": 14024.3, "probability": 0.4058 }, { "start": 14025.84, "end": 14026.24, "probability": 0.5351 }, { "start": 14027.1, "end": 14028.28, "probability": 0.402 }, { "start": 14029.02, "end": 14029.32, "probability": 0.9602 }, { "start": 14030.24, "end": 14031.6, "probability": 0.7257 }, { "start": 14032.16, "end": 14032.46, "probability": 0.8567 }, { "start": 14033.72, "end": 14034.6, "probability": 0.5846 }, { "start": 14036.18, "end": 14036.62, "probability": 0.8556 }, { "start": 14040.42, "end": 14043.94, "probability": 0.5731 }, { "start": 14046.92, "end": 14047.22, "probability": 0.5381 }, { "start": 14050.36, "end": 14051.7, "probability": 0.5428 }, { "start": 14052.88, "end": 14055.14, "probability": 0.8945 }, { "start": 14055.9, "end": 14056.5, "probability": 0.9692 }, { "start": 14057.4, "end": 14058.1, "probability": 0.8246 }, { "start": 14061.04, "end": 14063.46, "probability": 0.8676 }, { "start": 14065.94, "end": 14066.98, "probability": 0.928 }, { "start": 14071.1, "end": 14072.22, "probability": 0.5268 }, { "start": 14073.48, "end": 14075.9, "probability": 0.9334 }, { "start": 14077.22, "end": 14077.56, "probability": 0.9697 }, { "start": 14078.18, "end": 14079.6, "probability": 0.9061 }, { "start": 14080.44, "end": 14082.78, "probability": 0.9702 }, { "start": 14083.56, "end": 14086.5, "probability": 0.6208 }, { "start": 14088.08, "end": 14090.16, "probability": 0.6593 }, { "start": 14090.78, "end": 14092.96, "probability": 0.8598 }, { "start": 14096.04, "end": 14098.5, "probability": 0.2928 }, { "start": 14099.36, "end": 14101.64, "probability": 0.6737 }, { "start": 14103.22, "end": 14104.22, "probability": 0.7267 }, { "start": 14106.01, "end": 14108.8, "probability": 0.8971 }, { "start": 14109.82, "end": 14113.02, "probability": 0.5852 }, { "start": 14113.84, "end": 14116.54, "probability": 0.047 }, { "start": 14116.54, "end": 14117.1, "probability": 0.0125 }, { "start": 14117.1, "end": 14117.28, "probability": 0.4571 }, { "start": 14117.28, "end": 14120.16, "probability": 0.2529 }, { "start": 14120.8, "end": 14121.34, "probability": 0.025 }, { "start": 14121.78, "end": 14125.32, "probability": 0.0324 }, { "start": 14125.32, "end": 14130.32, "probability": 0.3784 }, { "start": 14130.38, "end": 14131.1, "probability": 0.46 }, { "start": 14131.9, "end": 14133.68, "probability": 0.1374 }, { "start": 14133.74, "end": 14134.65, "probability": 0.1035 }, { "start": 14134.7, "end": 14136.84, "probability": 0.1025 }, { "start": 14138.24, "end": 14144.56, "probability": 0.096 }, { "start": 14144.56, "end": 14145.6, "probability": 0.0447 }, { "start": 14145.6, "end": 14145.84, "probability": 0.044 }, { "start": 14145.84, "end": 14146.56, "probability": 0.0632 }, { "start": 14149.66, "end": 14155.69, "probability": 0.0292 }, { "start": 14158.07, "end": 14160.24, "probability": 0.0656 }, { "start": 14160.24, "end": 14162.7, "probability": 0.1375 }, { "start": 14162.7, "end": 14163.31, "probability": 0.0106 }, { "start": 14164.09, "end": 14167.58, "probability": 0.1129 }, { "start": 14169.76, "end": 14174.2, "probability": 0.1035 }, { "start": 14649.0, "end": 14649.0, "probability": 0.0 }, { "start": 14649.0, "end": 14649.0, "probability": 0.0 }, { "start": 14649.0, "end": 14649.0, "probability": 0.0 }, { "start": 14649.0, "end": 14649.0, "probability": 0.0 }, { "start": 14649.0, "end": 14649.0, "probability": 0.0 }, { "start": 14649.0, "end": 14649.0, "probability": 0.0 }, { "start": 14649.0, "end": 14649.0, "probability": 0.0 }, { "start": 14649.0, "end": 14649.0, "probability": 0.0 }, { "start": 14649.0, "end": 14649.0, "probability": 0.0 }, { "start": 14649.0, "end": 14649.0, "probability": 0.0 }, { "start": 14649.0, "end": 14649.0, "probability": 0.0 }, { "start": 14649.0, "end": 14649.0, "probability": 0.0 }, { "start": 14649.0, "end": 14649.0, "probability": 0.0 }, { "start": 14649.0, "end": 14649.0, "probability": 0.0 }, { "start": 14649.0, "end": 14649.0, "probability": 0.0 }, { "start": 14649.0, "end": 14649.0, "probability": 0.0 }, { "start": 14649.0, "end": 14649.0, "probability": 0.0 }, { "start": 14649.0, "end": 14649.0, "probability": 0.0 }, { "start": 14649.0, "end": 14649.0, "probability": 0.0 }, { "start": 14649.0, "end": 14649.0, "probability": 0.0 }, { "start": 14649.0, "end": 14649.0, "probability": 0.0 }, { "start": 14649.0, "end": 14649.0, "probability": 0.0 }, { "start": 14649.0, "end": 14649.0, "probability": 0.0 }, { "start": 14649.0, "end": 14649.0, "probability": 0.0 }, { "start": 14649.0, "end": 14649.0, "probability": 0.0 }, { "start": 14649.0, "end": 14649.0, "probability": 0.0 }, { "start": 14649.0, "end": 14649.0, "probability": 0.0 }, { "start": 14649.0, "end": 14649.0, "probability": 0.0 }, { "start": 14649.0, "end": 14649.0, "probability": 0.0 }, { "start": 14649.0, "end": 14649.0, "probability": 0.0 }, { "start": 14649.0, "end": 14649.0, "probability": 0.0 }, { "start": 14649.0, "end": 14649.0, "probability": 0.0 }, { "start": 14649.0, "end": 14649.0, "probability": 0.0 }, { "start": 14649.0, "end": 14649.0, "probability": 0.0 }, { "start": 14649.0, "end": 14649.0, "probability": 0.0 }, { "start": 14649.0, "end": 14649.0, "probability": 0.0 }, { "start": 14649.0, "end": 14649.0, "probability": 0.0 }, { "start": 14649.0, "end": 14649.0, "probability": 0.0 }, { "start": 14649.0, "end": 14649.0, "probability": 0.0 }, { "start": 14649.0, "end": 14649.0, "probability": 0.0 }, { "start": 14649.0, "end": 14649.0, "probability": 0.0 }, { "start": 14649.0, "end": 14649.0, "probability": 0.0 }, { "start": 14649.0, "end": 14649.0, "probability": 0.0 }, { "start": 14649.0, "end": 14649.0, "probability": 0.0 }, { "start": 14649.0, "end": 14649.0, "probability": 0.0 }, { "start": 14649.0, "end": 14649.0, "probability": 0.0 }, { "start": 14649.0, "end": 14649.0, "probability": 0.0 }, { "start": 14649.0, "end": 14649.0, "probability": 0.0 }, { "start": 14649.0, "end": 14649.0, "probability": 0.0 }, { "start": 14649.0, "end": 14649.0, "probability": 0.0 }, { "start": 14649.0, "end": 14649.0, "probability": 0.0 }, { "start": 14649.0, "end": 14649.0, "probability": 0.0 }, { "start": 14649.0, "end": 14649.0, "probability": 0.0 }, { "start": 14649.0, "end": 14649.0, "probability": 0.0 }, { "start": 14649.0, "end": 14649.0, "probability": 0.0 }, { "start": 14649.0, "end": 14649.0, "probability": 0.0 }, { "start": 14649.0, "end": 14649.0, "probability": 0.0 }, { "start": 14649.0, "end": 14649.0, "probability": 0.0 }, { "start": 14649.0, "end": 14649.0, "probability": 0.0 }, { "start": 14649.0, "end": 14649.0, "probability": 0.0 }, { "start": 14649.0, "end": 14649.0, "probability": 0.0 }, { "start": 14649.0, "end": 14649.0, "probability": 0.0 }, { "start": 14649.28, "end": 14649.7, "probability": 0.0665 }, { "start": 14650.26, "end": 14652.92, "probability": 0.6046 }, { "start": 14653.64, "end": 14654.62, "probability": 0.7228 }, { "start": 14655.36, "end": 14656.3, "probability": 0.7602 }, { "start": 14656.96, "end": 14658.24, "probability": 0.8413 }, { "start": 14658.24, "end": 14660.32, "probability": 0.6095 }, { "start": 14660.88, "end": 14661.4, "probability": 0.0146 }, { "start": 14661.96, "end": 14662.94, "probability": 0.6445 }, { "start": 14664.74, "end": 14665.58, "probability": 0.9673 }, { "start": 14666.54, "end": 14667.88, "probability": 0.5222 }, { "start": 14668.86, "end": 14669.4, "probability": 0.7123 }, { "start": 14670.78, "end": 14671.9, "probability": 0.8034 }, { "start": 14672.84, "end": 14673.36, "probability": 0.98 }, { "start": 14674.1, "end": 14674.98, "probability": 0.8819 }, { "start": 14675.78, "end": 14677.92, "probability": 0.9408 }, { "start": 14679.22, "end": 14681.3, "probability": 0.7946 }, { "start": 14682.44, "end": 14684.46, "probability": 0.9735 }, { "start": 14685.7, "end": 14686.46, "probability": 0.9851 }, { "start": 14687.02, "end": 14687.78, "probability": 0.7457 }, { "start": 14688.84, "end": 14689.56, "probability": 0.7837 }, { "start": 14690.12, "end": 14690.74, "probability": 0.6299 }, { "start": 14692.46, "end": 14694.7, "probability": 0.9524 }, { "start": 14695.78, "end": 14696.24, "probability": 0.9587 }, { "start": 14697.5, "end": 14698.32, "probability": 0.8214 }, { "start": 14701.86, "end": 14703.5, "probability": 0.9246 }, { "start": 14704.54, "end": 14705.64, "probability": 0.9613 }, { "start": 14706.76, "end": 14709.22, "probability": 0.6637 }, { "start": 14710.16, "end": 14711.06, "probability": 0.9825 }, { "start": 14712.34, "end": 14714.2, "probability": 0.8473 }, { "start": 14715.18, "end": 14716.88, "probability": 0.3936 }, { "start": 14719.2, "end": 14719.86, "probability": 0.5811 }, { "start": 14720.74, "end": 14721.54, "probability": 0.955 }, { "start": 14721.7, "end": 14725.72, "probability": 0.5272 }, { "start": 14726.92, "end": 14727.86, "probability": 0.8241 }, { "start": 14729.44, "end": 14731.4, "probability": 0.6767 }, { "start": 14732.42, "end": 14733.52, "probability": 0.6269 }, { "start": 14734.22, "end": 14736.06, "probability": 0.9697 }, { "start": 14737.28, "end": 14738.02, "probability": 0.9407 }, { "start": 14739.12, "end": 14740.12, "probability": 0.9606 }, { "start": 14741.32, "end": 14742.02, "probability": 0.986 }, { "start": 14742.64, "end": 14743.7, "probability": 0.6596 }, { "start": 14744.66, "end": 14745.52, "probability": 0.9939 }, { "start": 14746.76, "end": 14750.0, "probability": 0.985 }, { "start": 14750.84, "end": 14752.2, "probability": 0.8262 }, { "start": 14753.24, "end": 14753.96, "probability": 0.9942 }, { "start": 14754.54, "end": 14756.16, "probability": 0.9452 }, { "start": 14757.44, "end": 14758.34, "probability": 0.7689 }, { "start": 14758.88, "end": 14759.6, "probability": 0.6261 }, { "start": 14761.24, "end": 14763.3, "probability": 0.9216 }, { "start": 14766.22, "end": 14767.22, "probability": 0.6173 }, { "start": 14768.76, "end": 14770.62, "probability": 0.8283 }, { "start": 14772.4, "end": 14773.58, "probability": 0.7719 }, { "start": 14775.02, "end": 14776.08, "probability": 0.993 }, { "start": 14776.78, "end": 14777.72, "probability": 0.9541 }, { "start": 14778.78, "end": 14779.58, "probability": 0.9932 }, { "start": 14780.24, "end": 14781.54, "probability": 0.7914 }, { "start": 14782.78, "end": 14785.24, "probability": 0.9837 }, { "start": 14786.16, "end": 14788.14, "probability": 0.9526 }, { "start": 14789.06, "end": 14789.98, "probability": 0.7696 }, { "start": 14791.3, "end": 14792.48, "probability": 0.6095 }, { "start": 14793.38, "end": 14799.28, "probability": 0.6967 }, { "start": 14801.36, "end": 14801.72, "probability": 0.6148 }, { "start": 14802.4, "end": 14803.62, "probability": 0.4199 }, { "start": 14803.7, "end": 14805.16, "probability": 0.8412 }, { "start": 14809.18, "end": 14810.08, "probability": 0.6367 }, { "start": 14810.7, "end": 14813.52, "probability": 0.0752 }, { "start": 14814.37, "end": 14819.6, "probability": 0.1179 }, { "start": 14819.76, "end": 14820.02, "probability": 0.1396 }, { "start": 14828.52, "end": 14831.32, "probability": 0.0075 }, { "start": 14832.38, "end": 14834.26, "probability": 0.0058 }, { "start": 14834.26, "end": 14834.92, "probability": 0.0135 }, { "start": 14936.3, "end": 14938.36, "probability": 0.1117 }, { "start": 14940.34, "end": 14940.64, "probability": 0.0178 }, { "start": 14944.44, "end": 14946.6, "probability": 0.0973 }, { "start": 14948.32, "end": 14949.7, "probability": 0.0361 }, { "start": 14952.52, "end": 14958.0, "probability": 0.0531 }, { "start": 15057.0, "end": 15057.0, "probability": 0.0 }, { "start": 15057.0, "end": 15057.0, "probability": 0.0 }, { "start": 15057.0, "end": 15057.0, "probability": 0.0 }, { "start": 15057.0, "end": 15057.0, "probability": 0.0 }, { "start": 15057.0, "end": 15057.0, "probability": 0.0 }, { "start": 15057.0, "end": 15057.0, "probability": 0.0 }, { "start": 15057.0, "end": 15057.0, "probability": 0.0 }, { "start": 15057.0, "end": 15057.0, "probability": 0.0 }, { "start": 15057.0, "end": 15057.0, "probability": 0.0 }, { "start": 15057.0, "end": 15057.0, "probability": 0.0 }, { "start": 15057.0, "end": 15057.0, "probability": 0.0 }, { "start": 15057.0, "end": 15057.0, "probability": 0.0 }, { "start": 15057.0, "end": 15057.0, "probability": 0.0 }, { "start": 15057.0, "end": 15057.0, "probability": 0.0 }, { "start": 15057.0, "end": 15057.0, "probability": 0.0 }, { "start": 15057.0, "end": 15057.0, "probability": 0.0 }, { "start": 15057.0, "end": 15057.0, "probability": 0.0 }, { "start": 15057.0, "end": 15057.0, "probability": 0.0 }, { "start": 15057.0, "end": 15057.0, "probability": 0.0 }, { "start": 15057.0, "end": 15057.0, "probability": 0.0 }, { "start": 15057.0, "end": 15057.0, "probability": 0.0 }, { "start": 15057.0, "end": 15057.0, "probability": 0.0 }, { "start": 15057.0, "end": 15057.0, "probability": 0.0 }, { "start": 15057.0, "end": 15057.0, "probability": 0.0 }, { "start": 15057.0, "end": 15057.0, "probability": 0.0 }, { "start": 15057.0, "end": 15057.0, "probability": 0.0 }, { "start": 15057.0, "end": 15057.0, "probability": 0.0 }, { "start": 15057.0, "end": 15057.0, "probability": 0.0 }, { "start": 15057.0, "end": 15057.0, "probability": 0.0 }, { "start": 15057.0, "end": 15057.0, "probability": 0.0 }, { "start": 15057.0, "end": 15057.0, "probability": 0.0 }, { "start": 15057.0, "end": 15057.0, "probability": 0.0 }, { "start": 15057.0, "end": 15057.0, "probability": 0.0 }, { "start": 15057.32, "end": 15057.32, "probability": 0.0693 }, { "start": 15057.32, "end": 15057.76, "probability": 0.0541 }, { "start": 15058.26, "end": 15062.84, "probability": 0.9437 }, { "start": 15063.4, "end": 15066.28, "probability": 0.9878 }, { "start": 15066.84, "end": 15068.36, "probability": 0.9753 }, { "start": 15069.14, "end": 15071.96, "probability": 0.9909 }, { "start": 15072.34, "end": 15074.04, "probability": 0.9971 }, { "start": 15074.5, "end": 15076.48, "probability": 0.8251 }, { "start": 15076.48, "end": 15080.08, "probability": 0.9948 }, { "start": 15081.06, "end": 15085.28, "probability": 0.9754 }, { "start": 15086.1, "end": 15087.68, "probability": 0.9933 }, { "start": 15088.38, "end": 15089.14, "probability": 0.6702 }, { "start": 15089.76, "end": 15092.06, "probability": 0.9906 }, { "start": 15093.12, "end": 15095.22, "probability": 0.9934 }, { "start": 15096.3, "end": 15098.14, "probability": 0.874 }, { "start": 15098.78, "end": 15100.5, "probability": 0.9956 }, { "start": 15101.2, "end": 15103.14, "probability": 0.98 }, { "start": 15103.54, "end": 15105.1, "probability": 0.9839 }, { "start": 15105.98, "end": 15108.25, "probability": 0.9357 }, { "start": 15108.84, "end": 15111.98, "probability": 0.9907 }, { "start": 15112.42, "end": 15115.82, "probability": 0.9956 }, { "start": 15116.32, "end": 15119.44, "probability": 0.9971 }, { "start": 15119.84, "end": 15122.78, "probability": 0.9695 }, { "start": 15123.3, "end": 15124.04, "probability": 0.5751 }, { "start": 15124.42, "end": 15125.96, "probability": 0.9901 }, { "start": 15126.32, "end": 15131.38, "probability": 0.9908 }, { "start": 15132.62, "end": 15135.5, "probability": 0.9978 }, { "start": 15135.56, "end": 15140.24, "probability": 0.9955 }, { "start": 15140.24, "end": 15145.1, "probability": 0.9955 }, { "start": 15146.04, "end": 15146.54, "probability": 0.5208 }, { "start": 15146.64, "end": 15147.7, "probability": 0.9291 }, { "start": 15148.14, "end": 15150.34, "probability": 0.9863 }, { "start": 15150.34, "end": 15153.54, "probability": 0.9808 }, { "start": 15154.16, "end": 15155.24, "probability": 0.9634 }, { "start": 15156.44, "end": 15158.1, "probability": 0.9421 }, { "start": 15158.3, "end": 15161.7, "probability": 0.9428 }, { "start": 15162.2, "end": 15164.58, "probability": 0.9988 }, { "start": 15165.4, "end": 15167.16, "probability": 0.8298 }, { "start": 15167.74, "end": 15173.02, "probability": 0.9598 }, { "start": 15173.64, "end": 15176.9, "probability": 0.8989 }, { "start": 15176.9, "end": 15180.06, "probability": 0.9823 }, { "start": 15180.66, "end": 15182.58, "probability": 0.834 }, { "start": 15182.66, "end": 15183.1, "probability": 0.8667 }, { "start": 15183.18, "end": 15184.98, "probability": 0.9831 }, { "start": 15185.48, "end": 15187.48, "probability": 0.9949 }, { "start": 15188.08, "end": 15190.54, "probability": 0.9797 }, { "start": 15191.0, "end": 15192.48, "probability": 0.9338 }, { "start": 15193.18, "end": 15195.0, "probability": 0.9902 }, { "start": 15195.56, "end": 15197.18, "probability": 0.9901 }, { "start": 15197.86, "end": 15200.16, "probability": 0.9214 }, { "start": 15200.66, "end": 15202.12, "probability": 0.981 }, { "start": 15202.54, "end": 15203.69, "probability": 0.9582 }, { "start": 15204.12, "end": 15205.82, "probability": 0.9054 }, { "start": 15206.58, "end": 15210.66, "probability": 0.995 }, { "start": 15211.3, "end": 15213.62, "probability": 0.971 }, { "start": 15214.14, "end": 15216.86, "probability": 0.9673 }, { "start": 15216.9, "end": 15219.46, "probability": 0.9562 }, { "start": 15219.8, "end": 15221.1, "probability": 0.995 }, { "start": 15221.2, "end": 15221.92, "probability": 0.7299 }, { "start": 15222.7, "end": 15225.94, "probability": 0.9789 }, { "start": 15226.58, "end": 15227.66, "probability": 0.8196 }, { "start": 15227.8, "end": 15230.36, "probability": 0.9873 }, { "start": 15231.04, "end": 15234.34, "probability": 0.9351 }, { "start": 15234.34, "end": 15237.36, "probability": 0.9944 }, { "start": 15238.22, "end": 15240.86, "probability": 0.835 }, { "start": 15243.18, "end": 15244.22, "probability": 0.8655 }, { "start": 15244.56, "end": 15247.46, "probability": 0.9679 }, { "start": 15247.86, "end": 15248.66, "probability": 0.6288 }, { "start": 15249.64, "end": 15253.84, "probability": 0.9397 }, { "start": 15254.48, "end": 15256.82, "probability": 0.8014 }, { "start": 15256.86, "end": 15258.02, "probability": 0.9695 }, { "start": 15258.66, "end": 15260.98, "probability": 0.9813 }, { "start": 15261.42, "end": 15262.9, "probability": 0.495 }, { "start": 15263.66, "end": 15267.2, "probability": 0.9912 }, { "start": 15267.86, "end": 15270.82, "probability": 0.9967 }, { "start": 15271.32, "end": 15271.82, "probability": 0.9741 }, { "start": 15272.12, "end": 15272.6, "probability": 0.992 }, { "start": 15273.04, "end": 15273.4, "probability": 0.9968 }, { "start": 15273.48, "end": 15274.9, "probability": 0.8852 }, { "start": 15275.66, "end": 15276.8, "probability": 0.4929 }, { "start": 15277.44, "end": 15278.42, "probability": 0.3107 }, { "start": 15278.96, "end": 15281.02, "probability": 0.9855 }, { "start": 15281.02, "end": 15284.24, "probability": 0.9934 }, { "start": 15285.2, "end": 15287.52, "probability": 0.9642 }, { "start": 15288.06, "end": 15289.24, "probability": 0.9196 }, { "start": 15289.84, "end": 15293.2, "probability": 0.995 }, { "start": 15294.06, "end": 15295.48, "probability": 0.8877 }, { "start": 15296.0, "end": 15297.16, "probability": 0.8439 }, { "start": 15297.78, "end": 15300.8, "probability": 0.9729 }, { "start": 15300.8, "end": 15304.04, "probability": 0.9987 }, { "start": 15304.6, "end": 15307.04, "probability": 0.9902 }, { "start": 15307.1, "end": 15309.82, "probability": 0.9994 }, { "start": 15309.98, "end": 15313.68, "probability": 0.9933 }, { "start": 15314.76, "end": 15315.98, "probability": 0.9404 }, { "start": 15316.12, "end": 15320.16, "probability": 0.9352 }, { "start": 15320.82, "end": 15322.82, "probability": 0.9333 }, { "start": 15323.44, "end": 15325.78, "probability": 0.998 }, { "start": 15326.5, "end": 15329.3, "probability": 0.9038 }, { "start": 15330.24, "end": 15332.98, "probability": 0.9949 }, { "start": 15334.08, "end": 15337.66, "probability": 0.9891 }, { "start": 15338.0, "end": 15341.08, "probability": 0.9692 }, { "start": 15341.66, "end": 15345.54, "probability": 0.9883 }, { "start": 15346.24, "end": 15349.1, "probability": 0.9866 }, { "start": 15349.88, "end": 15352.2, "probability": 0.964 }, { "start": 15352.66, "end": 15353.92, "probability": 0.8235 }, { "start": 15354.36, "end": 15357.1, "probability": 0.9832 }, { "start": 15357.1, "end": 15360.9, "probability": 0.971 }, { "start": 15361.84, "end": 15365.42, "probability": 0.9484 }, { "start": 15365.42, "end": 15368.1, "probability": 0.9996 }, { "start": 15369.1, "end": 15369.54, "probability": 0.3896 }, { "start": 15369.62, "end": 15373.9, "probability": 0.9924 }, { "start": 15374.14, "end": 15376.24, "probability": 0.9167 }, { "start": 15376.84, "end": 15378.74, "probability": 0.7599 }, { "start": 15378.74, "end": 15381.44, "probability": 0.687 }, { "start": 15381.86, "end": 15382.82, "probability": 0.7517 }, { "start": 15383.78, "end": 15385.22, "probability": 0.979 }, { "start": 15385.58, "end": 15387.64, "probability": 0.8621 }, { "start": 15387.72, "end": 15388.42, "probability": 0.8461 }, { "start": 15389.28, "end": 15391.01, "probability": 0.9616 }, { "start": 15391.62, "end": 15392.76, "probability": 0.9209 }, { "start": 15393.36, "end": 15397.14, "probability": 0.9942 }, { "start": 15397.14, "end": 15401.18, "probability": 0.9933 }, { "start": 15402.0, "end": 15405.06, "probability": 0.9415 }, { "start": 15406.42, "end": 15407.52, "probability": 0.9955 }, { "start": 15408.36, "end": 15410.46, "probability": 0.9831 }, { "start": 15410.88, "end": 15413.24, "probability": 0.9897 }, { "start": 15413.86, "end": 15418.18, "probability": 0.9883 }, { "start": 15419.08, "end": 15424.56, "probability": 0.9722 }, { "start": 15424.58, "end": 15425.16, "probability": 0.8093 }, { "start": 15425.2, "end": 15429.2, "probability": 0.9945 }, { "start": 15429.76, "end": 15434.0, "probability": 0.9982 }, { "start": 15434.1, "end": 15436.38, "probability": 0.9926 }, { "start": 15436.94, "end": 15439.46, "probability": 0.9152 }, { "start": 15439.52, "end": 15443.02, "probability": 0.9679 }, { "start": 15443.44, "end": 15447.64, "probability": 0.9717 }, { "start": 15447.64, "end": 15449.92, "probability": 0.9886 }, { "start": 15450.56, "end": 15454.08, "probability": 0.9946 }, { "start": 15454.08, "end": 15456.6, "probability": 0.9984 }, { "start": 15457.14, "end": 15457.72, "probability": 0.6193 }, { "start": 15457.78, "end": 15458.86, "probability": 0.9845 }, { "start": 15458.86, "end": 15459.44, "probability": 0.7559 }, { "start": 15459.52, "end": 15460.26, "probability": 0.7314 }, { "start": 15460.42, "end": 15460.76, "probability": 0.833 }, { "start": 15461.2, "end": 15462.12, "probability": 0.9661 }, { "start": 15462.96, "end": 15464.62, "probability": 0.9663 }, { "start": 15465.16, "end": 15466.84, "probability": 0.9661 }, { "start": 15467.5, "end": 15470.78, "probability": 0.9251 }, { "start": 15471.38, "end": 15474.86, "probability": 0.9935 }, { "start": 15474.98, "end": 15475.78, "probability": 0.9006 }, { "start": 15476.6, "end": 15477.36, "probability": 0.8904 }, { "start": 15478.1, "end": 15480.8, "probability": 0.905 }, { "start": 15481.7, "end": 15483.06, "probability": 0.7312 }, { "start": 15483.18, "end": 15485.09, "probability": 0.975 }, { "start": 15485.9, "end": 15487.48, "probability": 0.9791 }, { "start": 15488.06, "end": 15489.62, "probability": 0.9312 }, { "start": 15490.12, "end": 15495.18, "probability": 0.836 }, { "start": 15495.7, "end": 15496.84, "probability": 0.8336 }, { "start": 15497.54, "end": 15499.94, "probability": 0.991 }, { "start": 15500.86, "end": 15507.54, "probability": 0.9775 }, { "start": 15508.1, "end": 15509.68, "probability": 0.8843 }, { "start": 15510.12, "end": 15512.64, "probability": 0.9846 }, { "start": 15513.08, "end": 15516.36, "probability": 0.9554 }, { "start": 15516.84, "end": 15518.3, "probability": 0.9613 }, { "start": 15518.5, "end": 15523.06, "probability": 0.984 }, { "start": 15523.62, "end": 15525.58, "probability": 0.9922 }, { "start": 15526.1, "end": 15529.26, "probability": 0.948 }, { "start": 15529.34, "end": 15535.92, "probability": 0.9948 }, { "start": 15536.0, "end": 15536.5, "probability": 0.7833 }, { "start": 15537.72, "end": 15541.4, "probability": 0.8659 }, { "start": 15542.14, "end": 15543.76, "probability": 0.767 }, { "start": 15545.08, "end": 15545.32, "probability": 0.5158 }, { "start": 15546.18, "end": 15549.58, "probability": 0.9141 }, { "start": 15549.64, "end": 15550.06, "probability": 0.5671 }, { "start": 15569.84, "end": 15570.68, "probability": 0.4786 }, { "start": 15570.68, "end": 15573.14, "probability": 0.8185 }, { "start": 15577.7, "end": 15581.78, "probability": 0.874 }, { "start": 15583.8, "end": 15586.2, "probability": 0.9661 }, { "start": 15586.54, "end": 15589.34, "probability": 0.9465 }, { "start": 15589.9, "end": 15593.92, "probability": 0.9563 }, { "start": 15594.46, "end": 15596.04, "probability": 0.9935 }, { "start": 15596.9, "end": 15599.38, "probability": 0.7898 }, { "start": 15600.26, "end": 15603.72, "probability": 0.9959 }, { "start": 15603.72, "end": 15607.56, "probability": 0.9958 }, { "start": 15608.12, "end": 15610.84, "probability": 0.8838 }, { "start": 15611.8, "end": 15614.92, "probability": 0.9473 }, { "start": 15615.8, "end": 15620.74, "probability": 0.9902 }, { "start": 15621.66, "end": 15627.42, "probability": 0.9965 }, { "start": 15630.36, "end": 15634.08, "probability": 0.9839 }, { "start": 15635.56, "end": 15640.78, "probability": 0.9977 }, { "start": 15641.64, "end": 15642.1, "probability": 0.3772 }, { "start": 15643.28, "end": 15644.82, "probability": 0.9973 }, { "start": 15645.74, "end": 15648.72, "probability": 0.9946 }, { "start": 15650.64, "end": 15651.54, "probability": 0.8043 }, { "start": 15651.78, "end": 15657.36, "probability": 0.9857 }, { "start": 15659.32, "end": 15661.7, "probability": 0.9744 }, { "start": 15664.52, "end": 15666.48, "probability": 0.9977 }, { "start": 15667.42, "end": 15672.62, "probability": 0.9265 }, { "start": 15675.42, "end": 15679.4, "probability": 0.9991 }, { "start": 15679.86, "end": 15685.5, "probability": 0.9991 }, { "start": 15686.22, "end": 15689.46, "probability": 0.9832 }, { "start": 15692.22, "end": 15696.12, "probability": 0.9359 }, { "start": 15697.04, "end": 15701.07, "probability": 0.9819 }, { "start": 15702.3, "end": 15708.4, "probability": 0.9808 }, { "start": 15709.76, "end": 15712.84, "probability": 0.8618 }, { "start": 15713.64, "end": 15714.86, "probability": 0.9927 }, { "start": 15716.04, "end": 15721.04, "probability": 0.9302 }, { "start": 15722.02, "end": 15728.56, "probability": 0.9558 }, { "start": 15731.0, "end": 15733.62, "probability": 0.966 }, { "start": 15734.82, "end": 15739.96, "probability": 0.9913 }, { "start": 15742.04, "end": 15743.18, "probability": 0.9977 }, { "start": 15744.68, "end": 15745.96, "probability": 0.9973 }, { "start": 15747.2, "end": 15751.38, "probability": 0.9888 }, { "start": 15753.12, "end": 15754.4, "probability": 0.9637 }, { "start": 15756.54, "end": 15761.1, "probability": 0.9655 }, { "start": 15762.46, "end": 15763.46, "probability": 0.386 }, { "start": 15764.28, "end": 15765.72, "probability": 0.9974 }, { "start": 15767.28, "end": 15771.9, "probability": 0.9909 }, { "start": 15772.72, "end": 15779.22, "probability": 0.9973 }, { "start": 15781.2, "end": 15784.86, "probability": 0.9847 }, { "start": 15787.12, "end": 15787.66, "probability": 0.9749 }, { "start": 15788.94, "end": 15790.42, "probability": 0.9465 }, { "start": 15791.56, "end": 15795.38, "probability": 0.9812 }, { "start": 15800.38, "end": 15801.12, "probability": 0.3454 }, { "start": 15801.18, "end": 15804.34, "probability": 0.7468 }, { "start": 15805.02, "end": 15808.9, "probability": 0.991 }, { "start": 15810.14, "end": 15813.1, "probability": 0.7601 }, { "start": 15813.78, "end": 15816.04, "probability": 0.7775 }, { "start": 15819.18, "end": 15821.8, "probability": 0.9886 }, { "start": 15823.14, "end": 15823.62, "probability": 0.8879 }, { "start": 15824.28, "end": 15827.98, "probability": 0.9129 }, { "start": 15828.62, "end": 15828.98, "probability": 0.8597 }, { "start": 15830.48, "end": 15832.18, "probability": 0.999 }, { "start": 15832.56, "end": 15835.52, "probability": 0.9849 }, { "start": 15835.84, "end": 15837.36, "probability": 0.9826 }, { "start": 15838.82, "end": 15842.52, "probability": 0.892 }, { "start": 15842.72, "end": 15844.55, "probability": 0.8237 }, { "start": 15846.02, "end": 15848.62, "probability": 0.9817 }, { "start": 15850.88, "end": 15852.44, "probability": 0.9907 }, { "start": 15853.02, "end": 15853.62, "probability": 0.8937 }, { "start": 15854.0, "end": 15860.12, "probability": 0.9628 }, { "start": 15860.16, "end": 15861.4, "probability": 0.8145 }, { "start": 15862.6, "end": 15864.78, "probability": 0.9907 }, { "start": 15866.38, "end": 15869.26, "probability": 0.9905 }, { "start": 15869.42, "end": 15873.46, "probability": 0.9664 }, { "start": 15877.58, "end": 15879.46, "probability": 0.8708 }, { "start": 15880.24, "end": 15882.0, "probability": 0.8841 }, { "start": 15882.02, "end": 15882.36, "probability": 0.7664 }, { "start": 15882.46, "end": 15882.8, "probability": 0.9042 }, { "start": 15883.22, "end": 15884.62, "probability": 0.9824 }, { "start": 15885.38, "end": 15886.44, "probability": 0.6524 }, { "start": 15892.72, "end": 15896.1, "probability": 0.9794 }, { "start": 15897.38, "end": 15900.5, "probability": 0.9899 }, { "start": 15901.92, "end": 15905.46, "probability": 0.9963 }, { "start": 15906.5, "end": 15907.8, "probability": 0.614 }, { "start": 15908.24, "end": 15909.44, "probability": 0.8032 }, { "start": 15909.9, "end": 15911.4, "probability": 0.9236 }, { "start": 15912.44, "end": 15914.14, "probability": 0.5766 }, { "start": 15914.68, "end": 15915.62, "probability": 0.8631 }, { "start": 15918.18, "end": 15920.22, "probability": 0.9028 }, { "start": 15920.66, "end": 15924.56, "probability": 0.9331 }, { "start": 15925.72, "end": 15927.7, "probability": 0.9971 }, { "start": 15929.74, "end": 15932.4, "probability": 0.6478 }, { "start": 15932.5, "end": 15934.34, "probability": 0.7479 }, { "start": 15935.84, "end": 15939.42, "probability": 0.6591 }, { "start": 15943.36, "end": 15944.38, "probability": 0.8467 }, { "start": 15944.62, "end": 15945.26, "probability": 0.772 }, { "start": 15946.34, "end": 15948.71, "probability": 0.7433 }, { "start": 15949.98, "end": 15950.14, "probability": 0.5875 }, { "start": 15950.2, "end": 15953.88, "probability": 0.9946 }, { "start": 15953.96, "end": 15955.32, "probability": 0.9506 }, { "start": 15956.06, "end": 15958.1, "probability": 0.9928 }, { "start": 15960.18, "end": 15961.4, "probability": 0.7253 }, { "start": 15962.6, "end": 15963.4, "probability": 0.9929 }, { "start": 15964.38, "end": 15967.42, "probability": 0.7759 }, { "start": 15968.82, "end": 15970.64, "probability": 0.9883 }, { "start": 15970.92, "end": 15973.08, "probability": 0.7739 }, { "start": 15976.12, "end": 15978.94, "probability": 0.9948 }, { "start": 15981.44, "end": 15983.7, "probability": 0.581 }, { "start": 15984.18, "end": 15984.2, "probability": 0.1998 }, { "start": 15984.2, "end": 15984.7, "probability": 0.7449 }, { "start": 15985.06, "end": 15988.42, "probability": 0.6848 }, { "start": 15990.62, "end": 15992.24, "probability": 0.953 }, { "start": 15993.4, "end": 15994.18, "probability": 0.9971 }, { "start": 15994.3, "end": 15998.3, "probability": 0.9695 }, { "start": 16000.74, "end": 16002.5, "probability": 0.887 }, { "start": 16003.0, "end": 16004.64, "probability": 0.8265 }, { "start": 16009.36, "end": 16010.42, "probability": 0.7454 }, { "start": 16011.42, "end": 16012.96, "probability": 0.7252 }, { "start": 16014.66, "end": 16015.66, "probability": 0.9154 }, { "start": 16016.86, "end": 16020.86, "probability": 0.989 }, { "start": 16021.42, "end": 16024.16, "probability": 0.988 }, { "start": 16024.68, "end": 16029.68, "probability": 0.986 }, { "start": 16030.18, "end": 16031.42, "probability": 0.9492 }, { "start": 16031.84, "end": 16032.78, "probability": 0.7404 }, { "start": 16032.82, "end": 16036.5, "probability": 0.9143 }, { "start": 16039.78, "end": 16041.06, "probability": 0.3755 }, { "start": 16041.62, "end": 16041.96, "probability": 0.8682 }, { "start": 16042.32, "end": 16049.8, "probability": 0.837 }, { "start": 16049.88, "end": 16050.75, "probability": 0.9764 }, { "start": 16051.34, "end": 16053.32, "probability": 0.727 }, { "start": 16054.04, "end": 16055.47, "probability": 0.9209 }, { "start": 16056.16, "end": 16056.4, "probability": 0.8921 }, { "start": 16056.48, "end": 16059.24, "probability": 0.9229 }, { "start": 16059.32, "end": 16061.18, "probability": 0.5809 }, { "start": 16064.06, "end": 16065.86, "probability": 0.9583 }, { "start": 16066.04, "end": 16067.24, "probability": 0.993 }, { "start": 16067.36, "end": 16067.74, "probability": 0.8756 }, { "start": 16072.02, "end": 16075.22, "probability": 0.7637 }, { "start": 16076.1, "end": 16077.14, "probability": 0.7059 }, { "start": 16077.18, "end": 16082.68, "probability": 0.8994 }, { "start": 16083.28, "end": 16084.4, "probability": 0.897 }, { "start": 16085.06, "end": 16086.9, "probability": 0.8545 }, { "start": 16087.88, "end": 16090.84, "probability": 0.9869 }, { "start": 16092.22, "end": 16095.46, "probability": 0.8524 }, { "start": 16096.16, "end": 16097.76, "probability": 0.7804 }, { "start": 16098.88, "end": 16101.3, "probability": 0.8524 }, { "start": 16102.2, "end": 16105.06, "probability": 0.9858 }, { "start": 16105.88, "end": 16109.6, "probability": 0.8966 }, { "start": 16110.26, "end": 16111.2, "probability": 0.5593 }, { "start": 16112.24, "end": 16114.02, "probability": 0.9648 }, { "start": 16114.74, "end": 16115.24, "probability": 0.6607 }, { "start": 16115.78, "end": 16116.84, "probability": 0.9976 }, { "start": 16118.04, "end": 16120.66, "probability": 0.8369 }, { "start": 16121.02, "end": 16123.98, "probability": 0.9811 }, { "start": 16124.24, "end": 16125.68, "probability": 0.8332 }, { "start": 16126.16, "end": 16127.16, "probability": 0.9429 }, { "start": 16127.24, "end": 16128.06, "probability": 0.9683 }, { "start": 16128.9, "end": 16131.72, "probability": 0.9963 }, { "start": 16132.82, "end": 16133.84, "probability": 0.9958 }, { "start": 16135.26, "end": 16138.08, "probability": 0.9718 }, { "start": 16138.26, "end": 16139.76, "probability": 0.7998 }, { "start": 16140.5, "end": 16140.72, "probability": 0.2596 }, { "start": 16141.92, "end": 16143.54, "probability": 0.672 }, { "start": 16144.68, "end": 16148.28, "probability": 0.9444 }, { "start": 16149.02, "end": 16150.5, "probability": 0.9979 }, { "start": 16150.6, "end": 16151.93, "probability": 0.9761 }, { "start": 16152.88, "end": 16153.74, "probability": 0.7517 }, { "start": 16154.38, "end": 16156.28, "probability": 0.9691 }, { "start": 16157.4, "end": 16158.36, "probability": 0.9764 }, { "start": 16160.68, "end": 16165.2, "probability": 0.9943 }, { "start": 16166.28, "end": 16169.66, "probability": 0.9902 }, { "start": 16171.3, "end": 16174.84, "probability": 0.981 }, { "start": 16175.52, "end": 16176.54, "probability": 0.8851 }, { "start": 16176.72, "end": 16178.02, "probability": 0.9686 }, { "start": 16178.22, "end": 16181.94, "probability": 0.9861 }, { "start": 16183.24, "end": 16184.38, "probability": 0.8823 }, { "start": 16186.0, "end": 16186.76, "probability": 0.7728 }, { "start": 16188.16, "end": 16189.72, "probability": 0.9693 }, { "start": 16190.1, "end": 16191.2, "probability": 0.8997 }, { "start": 16191.24, "end": 16192.82, "probability": 0.7626 }, { "start": 16193.94, "end": 16196.58, "probability": 0.9224 }, { "start": 16197.38, "end": 16198.6, "probability": 0.9932 }, { "start": 16200.32, "end": 16207.2, "probability": 0.9932 }, { "start": 16209.62, "end": 16210.28, "probability": 0.8532 }, { "start": 16211.52, "end": 16212.86, "probability": 0.988 }, { "start": 16214.04, "end": 16215.24, "probability": 0.9785 }, { "start": 16215.88, "end": 16219.14, "probability": 0.9926 }, { "start": 16222.66, "end": 16223.88, "probability": 0.6501 }, { "start": 16224.54, "end": 16228.0, "probability": 0.8608 }, { "start": 16229.92, "end": 16230.7, "probability": 0.823 }, { "start": 16232.62, "end": 16233.86, "probability": 0.5142 }, { "start": 16234.8, "end": 16236.16, "probability": 0.8423 }, { "start": 16236.32, "end": 16237.16, "probability": 0.9907 }, { "start": 16245.16, "end": 16251.22, "probability": 0.9707 }, { "start": 16252.76, "end": 16256.47, "probability": 0.992 }, { "start": 16257.64, "end": 16258.82, "probability": 0.8479 }, { "start": 16259.38, "end": 16260.04, "probability": 0.6811 }, { "start": 16260.8, "end": 16261.42, "probability": 0.5416 }, { "start": 16261.54, "end": 16263.96, "probability": 0.9967 }, { "start": 16263.96, "end": 16266.84, "probability": 0.9984 }, { "start": 16268.46, "end": 16269.44, "probability": 0.9828 }, { "start": 16270.0, "end": 16271.18, "probability": 0.8708 }, { "start": 16272.16, "end": 16277.06, "probability": 0.9756 }, { "start": 16278.35, "end": 16278.88, "probability": 0.5052 }, { "start": 16281.32, "end": 16283.06, "probability": 0.9824 }, { "start": 16284.64, "end": 16285.5, "probability": 0.2368 }, { "start": 16285.82, "end": 16285.92, "probability": 0.6729 }, { "start": 16286.22, "end": 16287.17, "probability": 0.8158 }, { "start": 16288.54, "end": 16289.08, "probability": 0.7926 }, { "start": 16300.36, "end": 16302.24, "probability": 0.7852 }, { "start": 16302.88, "end": 16306.44, "probability": 0.7346 }, { "start": 16307.72, "end": 16309.04, "probability": 0.5333 }, { "start": 16310.2, "end": 16311.02, "probability": 0.6613 }, { "start": 16312.6, "end": 16313.1, "probability": 0.6955 }, { "start": 16313.34, "end": 16314.04, "probability": 0.3585 }, { "start": 16314.08, "end": 16316.48, "probability": 0.9952 }, { "start": 16316.62, "end": 16317.6, "probability": 0.9512 }, { "start": 16317.78, "end": 16319.6, "probability": 0.9538 }, { "start": 16320.8, "end": 16322.62, "probability": 0.77 }, { "start": 16323.22, "end": 16324.48, "probability": 0.7003 }, { "start": 16325.02, "end": 16326.82, "probability": 0.9117 }, { "start": 16327.28, "end": 16327.74, "probability": 0.9816 }, { "start": 16329.18, "end": 16332.86, "probability": 0.9987 }, { "start": 16333.84, "end": 16335.88, "probability": 0.938 }, { "start": 16336.84, "end": 16340.14, "probability": 0.9723 }, { "start": 16341.64, "end": 16342.92, "probability": 0.6246 }, { "start": 16343.5, "end": 16346.2, "probability": 0.974 }, { "start": 16347.86, "end": 16349.06, "probability": 0.9854 }, { "start": 16349.9, "end": 16350.98, "probability": 0.9795 }, { "start": 16351.8, "end": 16353.42, "probability": 0.8857 }, { "start": 16354.98, "end": 16357.24, "probability": 0.825 }, { "start": 16357.56, "end": 16360.04, "probability": 0.8655 }, { "start": 16360.82, "end": 16365.72, "probability": 0.9478 }, { "start": 16367.08, "end": 16369.5, "probability": 0.5468 }, { "start": 16369.66, "end": 16370.32, "probability": 0.5321 }, { "start": 16370.36, "end": 16371.3, "probability": 0.9338 }, { "start": 16371.98, "end": 16372.98, "probability": 0.8806 }, { "start": 16373.7, "end": 16374.62, "probability": 0.8838 }, { "start": 16375.2, "end": 16379.62, "probability": 0.6611 }, { "start": 16398.04, "end": 16398.92, "probability": 0.4894 }, { "start": 16399.32, "end": 16400.48, "probability": 0.6047 }, { "start": 16400.98, "end": 16406.7, "probability": 0.0176 }, { "start": 16407.02, "end": 16408.4, "probability": 0.062 }, { "start": 16408.4, "end": 16408.4, "probability": 0.0437 }, { "start": 16408.4, "end": 16408.52, "probability": 0.0689 }, { "start": 16419.18, "end": 16420.7, "probability": 0.1866 }, { "start": 16428.12, "end": 16429.91, "probability": 0.6708 }, { "start": 16433.52, "end": 16436.5, "probability": 0.6226 }, { "start": 16437.88, "end": 16440.36, "probability": 0.5597 }, { "start": 16442.44, "end": 16443.52, "probability": 0.8119 }, { "start": 16445.88, "end": 16446.42, "probability": 0.863 }, { "start": 16448.76, "end": 16450.54, "probability": 0.2925 }, { "start": 16456.1, "end": 16457.72, "probability": 0.4493 }, { "start": 16458.62, "end": 16459.38, "probability": 0.7693 }, { "start": 16460.5, "end": 16464.04, "probability": 0.9936 }, { "start": 16465.3, "end": 16467.14, "probability": 0.9825 }, { "start": 16467.22, "end": 16467.92, "probability": 0.7063 }, { "start": 16468.08, "end": 16472.18, "probability": 0.6534 }, { "start": 16473.42, "end": 16475.1, "probability": 0.9926 }, { "start": 16477.04, "end": 16479.92, "probability": 0.8208 }, { "start": 16481.1, "end": 16482.42, "probability": 0.7967 }, { "start": 16483.46, "end": 16484.44, "probability": 0.7334 }, { "start": 16484.82, "end": 16492.4, "probability": 0.9794 }, { "start": 16492.88, "end": 16494.6, "probability": 0.8775 }, { "start": 16494.66, "end": 16495.62, "probability": 0.8133 }, { "start": 16496.02, "end": 16499.22, "probability": 0.9869 }, { "start": 16502.13, "end": 16505.98, "probability": 0.6849 }, { "start": 16506.56, "end": 16508.74, "probability": 0.9595 }, { "start": 16508.86, "end": 16512.56, "probability": 0.8677 }, { "start": 16513.3, "end": 16518.76, "probability": 0.9877 }, { "start": 16518.96, "end": 16520.78, "probability": 0.7712 }, { "start": 16520.94, "end": 16523.26, "probability": 0.9799 }, { "start": 16523.62, "end": 16525.0, "probability": 0.8011 }, { "start": 16525.92, "end": 16527.48, "probability": 0.9573 }, { "start": 16527.7, "end": 16528.3, "probability": 0.8501 }, { "start": 16528.3, "end": 16528.94, "probability": 0.6924 }, { "start": 16529.71, "end": 16534.9, "probability": 0.9282 }, { "start": 16535.4, "end": 16537.94, "probability": 0.9854 }, { "start": 16538.82, "end": 16540.88, "probability": 0.9924 }, { "start": 16543.38, "end": 16547.32, "probability": 0.6775 }, { "start": 16548.2, "end": 16549.18, "probability": 0.709 }, { "start": 16549.24, "end": 16551.16, "probability": 0.8761 }, { "start": 16551.16, "end": 16552.2, "probability": 0.8564 }, { "start": 16552.62, "end": 16553.72, "probability": 0.9565 }, { "start": 16554.5, "end": 16556.38, "probability": 0.7056 }, { "start": 16557.2, "end": 16558.12, "probability": 0.8896 }, { "start": 16559.88, "end": 16565.64, "probability": 0.4971 }, { "start": 16566.98, "end": 16568.36, "probability": 0.5197 }, { "start": 16569.22, "end": 16569.4, "probability": 0.3464 }, { "start": 16570.7, "end": 16572.66, "probability": 0.9976 }, { "start": 16574.02, "end": 16574.76, "probability": 0.6145 }, { "start": 16575.02, "end": 16580.72, "probability": 0.8769 }, { "start": 16581.38, "end": 16582.92, "probability": 0.9774 }, { "start": 16583.32, "end": 16584.36, "probability": 0.1952 }, { "start": 16584.6, "end": 16586.67, "probability": 0.9692 }, { "start": 16587.48, "end": 16588.06, "probability": 0.4323 }, { "start": 16588.5, "end": 16592.82, "probability": 0.9646 }, { "start": 16593.22, "end": 16596.76, "probability": 0.515 }, { "start": 16597.18, "end": 16598.42, "probability": 0.9736 }, { "start": 16599.04, "end": 16599.44, "probability": 0.7109 }, { "start": 16600.86, "end": 16602.74, "probability": 0.6588 }, { "start": 16603.24, "end": 16605.92, "probability": 0.7482 }, { "start": 16606.46, "end": 16608.0, "probability": 0.9789 }, { "start": 16609.96, "end": 16611.76, "probability": 0.8009 }, { "start": 16613.66, "end": 16614.26, "probability": 0.0155 }, { "start": 16615.42, "end": 16615.78, "probability": 0.6721 }, { "start": 16617.16, "end": 16618.16, "probability": 0.6503 }, { "start": 16621.08, "end": 16622.44, "probability": 0.7109 }, { "start": 16622.98, "end": 16623.88, "probability": 0.4552 }, { "start": 16624.8, "end": 16625.14, "probability": 0.7881 }, { "start": 16626.16, "end": 16627.04, "probability": 0.8274 }, { "start": 16628.0, "end": 16629.98, "probability": 0.9475 }, { "start": 16630.94, "end": 16633.34, "probability": 0.916 }, { "start": 16634.24, "end": 16634.84, "probability": 0.9912 }, { "start": 16635.86, "end": 16636.82, "probability": 0.9424 }, { "start": 16637.46, "end": 16639.66, "probability": 0.9702 }, { "start": 16640.36, "end": 16643.6, "probability": 0.9773 }, { "start": 16644.52, "end": 16645.36, "probability": 0.6496 }, { "start": 16646.12, "end": 16646.52, "probability": 0.5539 }, { "start": 16647.66, "end": 16648.6, "probability": 0.8574 }, { "start": 16649.2, "end": 16649.74, "probability": 0.6273 }, { "start": 16650.54, "end": 16651.68, "probability": 0.5769 }, { "start": 16653.34, "end": 16653.8, "probability": 0.9246 }, { "start": 16655.46, "end": 16656.32, "probability": 0.8698 }, { "start": 16657.9, "end": 16658.24, "probability": 0.9792 }, { "start": 16659.16, "end": 16659.9, "probability": 0.8877 }, { "start": 16660.94, "end": 16661.34, "probability": 0.9539 }, { "start": 16661.92, "end": 16662.58, "probability": 0.935 }, { "start": 16663.62, "end": 16664.04, "probability": 0.5018 }, { "start": 16664.92, "end": 16665.84, "probability": 0.6477 }, { "start": 16668.18, "end": 16669.68, "probability": 0.7599 }, { "start": 16670.66, "end": 16672.44, "probability": 0.8964 }, { "start": 16673.18, "end": 16674.92, "probability": 0.974 }, { "start": 16675.54, "end": 16675.86, "probability": 0.6779 }, { "start": 16676.48, "end": 16677.18, "probability": 0.6094 }, { "start": 16678.28, "end": 16679.12, "probability": 0.635 }, { "start": 16679.62, "end": 16681.88, "probability": 0.3232 }, { "start": 16682.22, "end": 16683.12, "probability": 0.6284 }, { "start": 16683.12, "end": 16684.38, "probability": 0.6153 }, { "start": 16684.56, "end": 16685.58, "probability": 0.7584 }, { "start": 16685.7, "end": 16686.16, "probability": 0.9558 }, { "start": 16686.54, "end": 16687.24, "probability": 0.7554 }, { "start": 16687.42, "end": 16688.24, "probability": 0.7329 }, { "start": 16688.42, "end": 16694.46, "probability": 0.0194 }, { "start": 16700.36, "end": 16704.38, "probability": 0.0981 }, { "start": 16705.64, "end": 16708.18, "probability": 0.427 }, { "start": 16709.91, "end": 16712.0, "probability": 0.2178 }, { "start": 16712.04, "end": 16714.24, "probability": 0.2385 }, { "start": 16715.54, "end": 16717.38, "probability": 0.4271 }, { "start": 16720.03, "end": 16721.12, "probability": 0.1278 }, { "start": 16721.7, "end": 16722.38, "probability": 0.064 }, { "start": 16723.06, "end": 16724.0, "probability": 0.2684 }, { "start": 16725.06, "end": 16725.68, "probability": 0.1278 }, { "start": 16725.68, "end": 16726.44, "probability": 0.3093 }, { "start": 16730.24, "end": 16733.18, "probability": 0.0332 }, { "start": 16734.82, "end": 16736.0, "probability": 0.0502 }, { "start": 16780.0, "end": 16780.0, "probability": 0.0 }, { "start": 16780.0, "end": 16780.0, "probability": 0.0 }, { "start": 16780.0, "end": 16780.0, "probability": 0.0 }, { "start": 16780.0, "end": 16780.0, "probability": 0.0 }, { "start": 16780.0, "end": 16780.0, "probability": 0.0 }, { "start": 16780.0, "end": 16780.0, "probability": 0.0 }, { "start": 16780.0, "end": 16780.0, "probability": 0.0 }, { "start": 16780.0, "end": 16780.0, "probability": 0.0 }, { "start": 16780.0, "end": 16780.0, "probability": 0.0 }, { "start": 16780.0, "end": 16780.0, "probability": 0.0 }, { "start": 16780.0, "end": 16780.0, "probability": 0.0 }, { "start": 16780.0, "end": 16780.0, "probability": 0.0 }, { "start": 16780.0, "end": 16780.0, "probability": 0.0 }, { "start": 16780.0, "end": 16780.0, "probability": 0.0 }, { "start": 16780.0, "end": 16780.0, "probability": 0.0 }, { "start": 16780.0, "end": 16780.0, "probability": 0.0 }, { "start": 16780.0, "end": 16780.0, "probability": 0.0 }, { "start": 16780.0, "end": 16780.0, "probability": 0.0 }, { "start": 16780.0, "end": 16780.0, "probability": 0.0 }, { "start": 16780.0, "end": 16780.0, "probability": 0.0 }, { "start": 16780.0, "end": 16780.0, "probability": 0.0 }, { "start": 16780.0, "end": 16780.0, "probability": 0.0 }, { "start": 16780.0, "end": 16780.0, "probability": 0.0 }, { "start": 16780.0, "end": 16780.0, "probability": 0.0 }, { "start": 16780.0, "end": 16780.0, "probability": 0.0 }, { "start": 16780.0, "end": 16780.0, "probability": 0.0 }, { "start": 16780.0, "end": 16780.0, "probability": 0.0 }, { "start": 16780.0, "end": 16780.0, "probability": 0.0 }, { "start": 16780.0, "end": 16780.0, "probability": 0.0 }, { "start": 16780.0, "end": 16780.0, "probability": 0.0 }, { "start": 16780.0, "end": 16780.0, "probability": 0.0 }, { "start": 16780.96, "end": 16782.32, "probability": 0.1087 }, { "start": 16783.02, "end": 16784.94, "probability": 0.1501 }, { "start": 16785.92, "end": 16789.02, "probability": 0.2698 }, { "start": 16792.77, "end": 16798.42, "probability": 0.4716 }, { "start": 16799.08, "end": 16801.2, "probability": 0.1408 }, { "start": 16801.3, "end": 16802.36, "probability": 0.4351 }, { "start": 16803.72, "end": 16804.14, "probability": 0.4085 }, { "start": 16804.38, "end": 16806.18, "probability": 0.3627 }, { "start": 16806.36, "end": 16807.32, "probability": 0.5908 }, { "start": 16810.32, "end": 16811.28, "probability": 0.5695 }, { "start": 16812.92, "end": 16815.28, "probability": 0.13 }, { "start": 16816.29, "end": 16818.42, "probability": 0.4792 }, { "start": 16819.2, "end": 16819.52, "probability": 0.4239 }, { "start": 16902.0, "end": 16902.0, "probability": 0.0 }, { "start": 16902.0, "end": 16902.0, "probability": 0.0 }, { "start": 16902.0, "end": 16902.0, "probability": 0.0 }, { "start": 16902.0, "end": 16902.0, "probability": 0.0 }, { "start": 16902.0, "end": 16902.0, "probability": 0.0 }, { "start": 16902.0, "end": 16902.0, "probability": 0.0 }, { "start": 16902.0, "end": 16902.0, "probability": 0.0 }, { "start": 16902.0, "end": 16902.0, "probability": 0.0 }, { "start": 16902.0, "end": 16902.0, "probability": 0.0 }, { "start": 16902.0, "end": 16902.0, "probability": 0.0 }, { "start": 16902.0, "end": 16902.0, "probability": 0.0 }, { "start": 16902.0, "end": 16902.0, "probability": 0.0 }, { "start": 16902.0, "end": 16902.0, "probability": 0.0 }, { "start": 16902.0, "end": 16902.0, "probability": 0.0 }, { "start": 16902.0, "end": 16902.0, "probability": 0.0 }, { "start": 16902.0, "end": 16902.0, "probability": 0.0 }, { "start": 16902.0, "end": 16902.0, "probability": 0.0 }, { "start": 16902.0, "end": 16902.0, "probability": 0.0 }, { "start": 16902.0, "end": 16902.0, "probability": 0.0 }, { "start": 16902.0, "end": 16902.0, "probability": 0.0 }, { "start": 16902.0, "end": 16902.0, "probability": 0.0 }, { "start": 16902.0, "end": 16902.0, "probability": 0.0 }, { "start": 16902.0, "end": 16902.0, "probability": 0.0 }, { "start": 16902.0, "end": 16902.0, "probability": 0.0 }, { "start": 16902.0, "end": 16902.0, "probability": 0.0 }, { "start": 16902.0, "end": 16902.0, "probability": 0.0 }, { "start": 16902.89, "end": 16906.04, "probability": 0.2006 }, { "start": 16907.04, "end": 16907.04, "probability": 0.2521 }, { "start": 16907.24, "end": 16908.82, "probability": 0.3377 }, { "start": 16913.38, "end": 16914.72, "probability": 0.3864 }, { "start": 16915.68, "end": 16916.24, "probability": 0.3043 }, { "start": 16916.48, "end": 16918.46, "probability": 0.2868 }, { "start": 16918.85, "end": 16921.41, "probability": 0.1529 }, { "start": 16922.08, "end": 16923.38, "probability": 0.1 }, { "start": 16924.06, "end": 16924.96, "probability": 0.308 }, { "start": 16925.64, "end": 16926.68, "probability": 0.4427 }, { "start": 16927.88, "end": 16928.12, "probability": 0.0291 }, { "start": 17214.0, "end": 17214.0, "probability": 0.0 }, { "start": 17214.0, "end": 17214.0, "probability": 0.0 }, { "start": 17214.0, "end": 17214.0, "probability": 0.0 }, { "start": 17214.0, "end": 17214.0, "probability": 0.0 }, { "start": 17214.0, "end": 17214.0, "probability": 0.0 }, { "start": 17214.0, "end": 17214.0, "probability": 0.0 }, { "start": 17214.0, "end": 17214.0, "probability": 0.0 }, { "start": 17214.0, "end": 17214.0, "probability": 0.0 }, { "start": 17214.0, "end": 17214.0, "probability": 0.0 }, { "start": 17214.0, "end": 17214.0, "probability": 0.0 }, { "start": 17214.0, "end": 17214.0, "probability": 0.0 }, { "start": 17214.0, "end": 17214.0, "probability": 0.0 }, { "start": 17214.0, "end": 17214.0, "probability": 0.0 }, { "start": 17214.0, "end": 17214.0, "probability": 0.0 }, { "start": 17214.0, "end": 17214.0, "probability": 0.0 }, { "start": 17214.0, "end": 17214.0, "probability": 0.0 }, { "start": 17214.0, "end": 17214.0, "probability": 0.0 }, { "start": 17214.0, "end": 17214.0, "probability": 0.0 }, { "start": 17214.0, "end": 17214.0, "probability": 0.0 }, { "start": 17214.0, "end": 17214.0, "probability": 0.0 }, { "start": 17214.0, "end": 17214.0, "probability": 0.0 }, { "start": 17214.0, "end": 17214.0, "probability": 0.0 }, { "start": 17214.0, "end": 17214.0, "probability": 0.0 }, { "start": 17214.0, "end": 17214.0, "probability": 0.0 }, { "start": 17214.0, "end": 17214.0, "probability": 0.0 }, { "start": 17214.0, "end": 17214.0, "probability": 0.0 }, { "start": 17214.0, "end": 17214.0, "probability": 0.0 }, { "start": 17214.0, "end": 17214.0, "probability": 0.0 }, { "start": 17214.0, "end": 17214.0, "probability": 0.0 }, { "start": 17214.0, "end": 17214.0, "probability": 0.0 }, { "start": 17214.0, "end": 17214.0, "probability": 0.0 }, { "start": 17214.0, "end": 17214.0, "probability": 0.0 }, { "start": 17214.0, "end": 17214.0, "probability": 0.0 }, { "start": 17214.0, "end": 17214.0, "probability": 0.0 }, { "start": 17214.0, "end": 17214.0, "probability": 0.0 }, { "start": 17214.0, "end": 17214.0, "probability": 0.0 }, { "start": 17214.0, "end": 17214.0, "probability": 0.0 }, { "start": 17214.0, "end": 17214.0, "probability": 0.0 }, { "start": 17214.0, "end": 17214.0, "probability": 0.0 }, { "start": 17214.0, "end": 17214.0, "probability": 0.0 }, { "start": 17214.0, "end": 17214.0, "probability": 0.0 }, { "start": 17214.0, "end": 17214.0, "probability": 0.0 }, { "start": 17214.0, "end": 17214.0, "probability": 0.0 }, { "start": 17214.0, "end": 17214.0, "probability": 0.0 }, { "start": 17214.0, "end": 17214.0, "probability": 0.0 }, { "start": 17214.0, "end": 17214.0, "probability": 0.0 }, { "start": 17214.0, "end": 17214.0, "probability": 0.0 }, { "start": 17214.0, "end": 17214.0, "probability": 0.0 }, { "start": 17214.0, "end": 17214.0, "probability": 0.0 }, { "start": 17214.0, "end": 17214.0, "probability": 0.0 }, { "start": 17214.0, "end": 17214.0, "probability": 0.0 }, { "start": 17214.0, "end": 17214.0, "probability": 0.0 }, { "start": 17214.0, "end": 17214.0, "probability": 0.0 }, { "start": 17214.0, "end": 17214.0, "probability": 0.0 }, { "start": 17214.0, "end": 17214.0, "probability": 0.0 }, { "start": 17214.0, "end": 17214.0, "probability": 0.0 }, { "start": 17214.0, "end": 17214.0, "probability": 0.0 }, { "start": 17214.0, "end": 17214.0, "probability": 0.0 }, { "start": 17214.0, "end": 17214.0, "probability": 0.0 }, { "start": 17214.0, "end": 17214.0, "probability": 0.0 }, { "start": 17214.0, "end": 17214.0, "probability": 0.0 }, { "start": 17214.0, "end": 17214.0, "probability": 0.0 }, { "start": 17214.0, "end": 17214.0, "probability": 0.0 }, { "start": 17214.0, "end": 17214.0, "probability": 0.0 }, { "start": 17215.02, "end": 17216.7, "probability": 0.1223 }, { "start": 17216.7, "end": 17217.72, "probability": 0.0201 }, { "start": 17217.78, "end": 17218.7, "probability": 0.4686 }, { "start": 17218.8, "end": 17218.86, "probability": 0.3831 }, { "start": 17218.96, "end": 17219.88, "probability": 0.3007 }, { "start": 17220.94, "end": 17222.82, "probability": 0.2611 }, { "start": 17227.36, "end": 17228.2, "probability": 0.4596 }, { "start": 17230.3, "end": 17230.92, "probability": 0.0106 }, { "start": 17231.2, "end": 17233.4, "probability": 0.2293 }, { "start": 17234.88, "end": 17234.88, "probability": 0.5969 }, { "start": 17235.08, "end": 17235.66, "probability": 0.0162 }, { "start": 17236.78, "end": 17236.78, "probability": 0.0908 }, { "start": 17236.78, "end": 17237.84, "probability": 0.0164 }, { "start": 17237.84, "end": 17237.84, "probability": 0.3926 }, { "start": 17237.84, "end": 17239.88, "probability": 0.5357 }, { "start": 18028.0, "end": 18028.0, "probability": 0.0 }, { "start": 18028.0, "end": 18028.0, "probability": 0.0 }, { "start": 18028.0, "end": 18028.0, "probability": 0.0 }, { "start": 18028.0, "end": 18028.0, "probability": 0.0 }, { "start": 18028.0, "end": 18028.0, "probability": 0.0 }, { "start": 18028.0, "end": 18028.0, "probability": 0.0 }, { "start": 18028.0, "end": 18028.0, "probability": 0.0 }, { "start": 18028.0, "end": 18028.0, "probability": 0.0 }, { "start": 18028.0, "end": 18028.0, "probability": 0.0 }, { "start": 18028.0, "end": 18028.0, "probability": 0.0 }, { "start": 18028.0, "end": 18028.0, "probability": 0.0 }, { "start": 18028.0, "end": 18028.0, "probability": 0.0 }, { "start": 18028.0, "end": 18028.0, "probability": 0.0 }, { "start": 18028.0, "end": 18028.0, "probability": 0.0 }, { "start": 18028.0, "end": 18028.0, "probability": 0.0 }, { "start": 18028.0, "end": 18028.0, "probability": 0.0 }, { "start": 18028.0, "end": 18028.0, "probability": 0.0 }, { "start": 18028.0, "end": 18028.0, "probability": 0.0 }, { "start": 18028.0, "end": 18028.0, "probability": 0.0 }, { "start": 18028.0, "end": 18028.0, "probability": 0.0 }, { "start": 18028.0, "end": 18028.0, "probability": 0.0 }, { "start": 18028.0, "end": 18028.0, "probability": 0.0 }, { "start": 18028.0, "end": 18028.0, "probability": 0.0 }, { "start": 18028.0, "end": 18028.0, "probability": 0.0 }, { "start": 18028.0, "end": 18028.0, "probability": 0.0 }, { "start": 18028.0, "end": 18028.0, "probability": 0.0 }, { "start": 18028.0, "end": 18028.0, "probability": 0.0 }, { "start": 18028.0, "end": 18028.0, "probability": 0.0 }, { "start": 18028.0, "end": 18028.0, "probability": 0.0 }, { "start": 18028.0, "end": 18028.0, "probability": 0.0 }, { "start": 18028.0, "end": 18028.0, "probability": 0.0 }, { "start": 18028.0, "end": 18028.0, "probability": 0.0 }, { "start": 18028.0, "end": 18028.0, "probability": 0.0 }, { "start": 18028.0, "end": 18028.0, "probability": 0.0 }, { "start": 18028.0, "end": 18028.0, "probability": 0.0 }, { "start": 18028.0, "end": 18028.0, "probability": 0.0 }, { "start": 18028.0, "end": 18028.0, "probability": 0.0 }, { "start": 18028.0, "end": 18028.0, "probability": 0.0 }, { "start": 18028.0, "end": 18028.0, "probability": 0.0 }, { "start": 18028.0, "end": 18028.0, "probability": 0.0 }, { "start": 18028.0, "end": 18028.0, "probability": 0.0 }, { "start": 18028.0, "end": 18028.0, "probability": 0.0 }, { "start": 18028.0, "end": 18028.0, "probability": 0.0 }, { "start": 18028.0, "end": 18028.0, "probability": 0.0 }, { "start": 18028.0, "end": 18028.0, "probability": 0.0 }, { "start": 18028.0, "end": 18028.0, "probability": 0.0 }, { "start": 18028.0, "end": 18028.0, "probability": 0.0 }, { "start": 18028.0, "end": 18028.0, "probability": 0.0 }, { "start": 18028.0, "end": 18028.0, "probability": 0.0 }, { "start": 18028.0, "end": 18028.0, "probability": 0.0 }, { "start": 18028.0, "end": 18028.0, "probability": 0.0 }, { "start": 18067.04, "end": 18069.46, "probability": 0.3036 }, { "start": 18070.48, "end": 18071.52, "probability": 0.0728 }, { "start": 18072.18, "end": 18074.68, "probability": 0.1082 }, { "start": 18075.5, "end": 18077.0, "probability": 0.2898 }, { "start": 18099.74, "end": 18100.32, "probability": 0.0953 }, { "start": 18105.34, "end": 18107.8, "probability": 0.2442 }, { "start": 18109.1, "end": 18109.7, "probability": 0.2133 }, { "start": 18110.0, "end": 18113.16, "probability": 0.0453 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.0, "end": 18156.0, "probability": 0.0 }, { "start": 18156.14, "end": 18157.5, "probability": 0.1196 }, { "start": 18157.5, "end": 18158.18, "probability": 0.1247 }, { "start": 18158.18, "end": 18159.5, "probability": 0.0959 }, { "start": 18161.02, "end": 18162.32, "probability": 0.0111 }, { "start": 18163.66, "end": 18166.48, "probability": 0.0249 }, { "start": 18168.24, "end": 18170.32, "probability": 0.0363 }, { "start": 18170.84, "end": 18173.42, "probability": 0.2844 }, { "start": 18174.78, "end": 18174.96, "probability": 0.079 }, { "start": 18277.0, "end": 18277.0, "probability": 0.0 }, { "start": 18277.0, "end": 18277.0, "probability": 0.0 }, { "start": 18277.0, "end": 18277.0, "probability": 0.0 }, { "start": 18277.0, "end": 18277.0, "probability": 0.0 }, { "start": 18277.0, "end": 18277.0, "probability": 0.0 }, { "start": 18277.0, "end": 18277.0, "probability": 0.0 }, { "start": 18277.0, "end": 18277.0, "probability": 0.0 }, { "start": 18277.0, "end": 18277.0, "probability": 0.0 }, { "start": 18277.0, "end": 18277.0, "probability": 0.0 }, { "start": 18277.0, "end": 18277.0, "probability": 0.0 }, { "start": 18277.0, "end": 18277.0, "probability": 0.0 }, { "start": 18277.0, "end": 18277.0, "probability": 0.0 }, { "start": 18277.0, "end": 18277.0, "probability": 0.0 }, { "start": 18277.0, "end": 18277.0, "probability": 0.0 }, { "start": 18277.0, "end": 18277.0, "probability": 0.0 }, { "start": 18277.0, "end": 18277.0, "probability": 0.0 }, { "start": 18277.0, "end": 18277.0, "probability": 0.0 }, { "start": 18277.0, "end": 18277.0, "probability": 0.0 }, { "start": 18277.0, "end": 18277.0, "probability": 0.0 }, { "start": 18277.0, "end": 18277.0, "probability": 0.0 }, { "start": 18277.0, "end": 18277.0, "probability": 0.0 }, { "start": 18277.0, "end": 18277.0, "probability": 0.0 }, { "start": 18277.0, "end": 18277.0, "probability": 0.0 }, { "start": 18277.0, "end": 18277.0, "probability": 0.0 }, { "start": 18277.0, "end": 18277.0, "probability": 0.0 }, { "start": 18277.0, "end": 18277.0, "probability": 0.0 }, { "start": 18277.0, "end": 18277.0, "probability": 0.0 }, { "start": 18277.0, "end": 18277.0, "probability": 0.0 }, { "start": 18277.0, "end": 18277.0, "probability": 0.0 }, { "start": 18277.0, "end": 18277.0, "probability": 0.0 }, { "start": 18277.0, "end": 18277.0, "probability": 0.0 }, { "start": 18277.0, "end": 18277.0, "probability": 0.0 }, { "start": 18277.0, "end": 18277.0, "probability": 0.0 }, { "start": 18277.0, "end": 18277.0, "probability": 0.0 }, { "start": 18277.0, "end": 18277.0, "probability": 0.0 }, { "start": 18277.0, "end": 18277.0, "probability": 0.0 }, { "start": 18277.0, "end": 18277.0, "probability": 0.0 }, { "start": 18277.0, "end": 18277.0, "probability": 0.0 }, { "start": 18277.0, "end": 18277.0, "probability": 0.0 }, { "start": 18277.0, "end": 18277.0, "probability": 0.0 }, { "start": 18277.0, "end": 18277.0, "probability": 0.0 }, { "start": 18277.0, "end": 18277.0, "probability": 0.0 }, { "start": 18277.0, "end": 18277.0, "probability": 0.0 }, { "start": 18277.0, "end": 18277.0, "probability": 0.0 }, { "start": 18277.0, "end": 18277.0, "probability": 0.0 }, { "start": 18277.0, "end": 18277.0, "probability": 0.0 }, { "start": 18277.0, "end": 18277.0, "probability": 0.0 }, { "start": 18277.54, "end": 18277.64, "probability": 0.0733 }, { "start": 18277.64, "end": 18277.64, "probability": 0.01 }, { "start": 18277.64, "end": 18277.64, "probability": 0.133 }, { "start": 18277.64, "end": 18277.64, "probability": 0.0094 }, { "start": 18277.64, "end": 18278.78, "probability": 0.1234 }, { "start": 18279.99, "end": 18285.06, "probability": 0.9338 }, { "start": 18285.18, "end": 18290.06, "probability": 0.9725 }, { "start": 18291.18, "end": 18291.42, "probability": 0.7133 }, { "start": 18291.78, "end": 18292.54, "probability": 0.7858 }, { "start": 18292.66, "end": 18294.2, "probability": 0.998 }, { "start": 18294.92, "end": 18296.64, "probability": 0.9155 }, { "start": 18297.7, "end": 18299.36, "probability": 0.974 }, { "start": 18299.9, "end": 18302.24, "probability": 0.9692 }, { "start": 18302.66, "end": 18303.32, "probability": 0.4253 }, { "start": 18303.4, "end": 18305.76, "probability": 0.6865 }, { "start": 18306.24, "end": 18306.92, "probability": 0.9718 }, { "start": 18307.08, "end": 18310.68, "probability": 0.8743 }, { "start": 18311.0, "end": 18315.26, "probability": 0.9972 }, { "start": 18315.44, "end": 18318.4, "probability": 0.8729 }, { "start": 18318.72, "end": 18319.88, "probability": 0.946 }, { "start": 18320.16, "end": 18324.26, "probability": 0.9455 }, { "start": 18324.64, "end": 18327.0, "probability": 0.8835 }, { "start": 18327.16, "end": 18328.54, "probability": 0.9878 }, { "start": 18328.74, "end": 18329.98, "probability": 0.9917 }, { "start": 18330.34, "end": 18332.8, "probability": 0.9915 }, { "start": 18333.28, "end": 18333.86, "probability": 0.645 }, { "start": 18334.02, "end": 18337.32, "probability": 0.9736 }, { "start": 18337.32, "end": 18341.54, "probability": 0.9967 }, { "start": 18341.68, "end": 18346.46, "probability": 0.999 }, { "start": 18346.9, "end": 18347.3, "probability": 0.7181 }, { "start": 18347.82, "end": 18349.54, "probability": 0.9939 }, { "start": 18349.8, "end": 18351.36, "probability": 0.908 }, { "start": 18351.68, "end": 18356.88, "probability": 0.9946 }, { "start": 18357.38, "end": 18359.78, "probability": 0.9897 }, { "start": 18360.1, "end": 18363.24, "probability": 0.9971 }, { "start": 18363.62, "end": 18365.4, "probability": 0.9897 }, { "start": 18365.68, "end": 18366.52, "probability": 0.4499 }, { "start": 18366.72, "end": 18369.24, "probability": 0.9915 }, { "start": 18369.38, "end": 18370.81, "probability": 0.9983 }, { "start": 18371.34, "end": 18373.48, "probability": 0.9437 }, { "start": 18373.92, "end": 18376.18, "probability": 0.9356 }, { "start": 18376.7, "end": 18377.86, "probability": 0.7075 }, { "start": 18377.94, "end": 18378.08, "probability": 0.5393 }, { "start": 18378.18, "end": 18380.04, "probability": 0.9854 }, { "start": 18380.36, "end": 18382.4, "probability": 0.9848 }, { "start": 18382.4, "end": 18383.94, "probability": 0.9933 }, { "start": 18384.08, "end": 18387.42, "probability": 0.9521 }, { "start": 18387.42, "end": 18390.16, "probability": 0.9753 }, { "start": 18390.9, "end": 18393.38, "probability": 0.9717 }, { "start": 18393.82, "end": 18393.82, "probability": 0.3805 }, { "start": 18393.82, "end": 18395.84, "probability": 0.6805 }, { "start": 18396.62, "end": 18399.42, "probability": 0.8866 }, { "start": 18400.02, "end": 18400.9, "probability": 0.559 }, { "start": 18417.74, "end": 18418.62, "probability": 0.449 }, { "start": 18418.98, "end": 18420.68, "probability": 0.799 }, { "start": 18421.26, "end": 18425.6, "probability": 0.736 }, { "start": 18426.46, "end": 18428.94, "probability": 0.7977 }, { "start": 18437.98, "end": 18441.8, "probability": 0.9932 }, { "start": 18442.96, "end": 18445.6, "probability": 0.9593 }, { "start": 18448.51, "end": 18454.62, "probability": 0.987 }, { "start": 18456.22, "end": 18457.04, "probability": 0.1485 }, { "start": 18457.82, "end": 18462.16, "probability": 0.995 }, { "start": 18462.78, "end": 18465.22, "probability": 0.9839 }, { "start": 18465.4, "end": 18469.96, "probability": 0.998 }, { "start": 18470.66, "end": 18470.82, "probability": 0.0409 }, { "start": 18471.28, "end": 18472.32, "probability": 0.6385 }, { "start": 18472.48, "end": 18474.12, "probability": 0.1639 }, { "start": 18474.58, "end": 18480.02, "probability": 0.7977 }, { "start": 18480.2, "end": 18482.26, "probability": 0.9989 }, { "start": 18482.46, "end": 18482.96, "probability": 0.879 }, { "start": 18484.1, "end": 18485.04, "probability": 0.0614 }, { "start": 18486.58, "end": 18489.7, "probability": 0.1396 }, { "start": 18490.74, "end": 18492.5, "probability": 0.501 }, { "start": 18492.5, "end": 18492.5, "probability": 0.1416 }, { "start": 18492.5, "end": 18494.46, "probability": 0.3413 }, { "start": 18494.94, "end": 18500.2, "probability": 0.9702 }, { "start": 18500.38, "end": 18502.12, "probability": 0.5031 }, { "start": 18502.33, "end": 18502.52, "probability": 0.17 }, { "start": 18502.52, "end": 18504.0, "probability": 0.4887 }, { "start": 18504.38, "end": 18505.12, "probability": 0.6165 }, { "start": 18505.32, "end": 18507.04, "probability": 0.0916 }, { "start": 18507.04, "end": 18508.12, "probability": 0.0908 }, { "start": 18510.58, "end": 18511.94, "probability": 0.1919 }, { "start": 18512.04, "end": 18512.52, "probability": 0.7134 }, { "start": 18512.68, "end": 18519.2, "probability": 0.896 }, { "start": 18520.1, "end": 18520.28, "probability": 0.0487 }, { "start": 18520.28, "end": 18524.86, "probability": 0.8888 }, { "start": 18525.38, "end": 18528.56, "probability": 0.9315 }, { "start": 18529.84, "end": 18531.64, "probability": 0.7859 }, { "start": 18532.62, "end": 18536.14, "probability": 0.9166 }, { "start": 18536.94, "end": 18538.1, "probability": 0.91 }, { "start": 18538.36, "end": 18540.96, "probability": 0.9858 }, { "start": 18541.54, "end": 18545.68, "probability": 0.2382 }, { "start": 18551.22, "end": 18551.74, "probability": 0.0646 }, { "start": 18552.84, "end": 18556.24, "probability": 0.4745 }, { "start": 18556.98, "end": 18558.08, "probability": 0.0026 }, { "start": 18558.08, "end": 18558.1, "probability": 0.1237 }, { "start": 18558.1, "end": 18559.25, "probability": 0.1694 }, { "start": 18560.66, "end": 18562.0, "probability": 0.2637 }, { "start": 18563.9, "end": 18566.98, "probability": 0.0157 }, { "start": 18567.06, "end": 18570.11, "probability": 0.0773 }, { "start": 18580.64, "end": 18583.22, "probability": 0.0182 }, { "start": 18583.76, "end": 18584.0, "probability": 0.1895 }, { "start": 18584.0, "end": 18588.4, "probability": 0.0337 }, { "start": 18589.61, "end": 18589.82, "probability": 0.0805 }, { "start": 18590.0, "end": 18590.0, "probability": 0.0 }, { "start": 18590.0, "end": 18590.0, "probability": 0.0 }, { "start": 18590.0, "end": 18590.0, "probability": 0.0 }, { "start": 18590.0, "end": 18590.0, "probability": 0.0 }, { "start": 18590.0, "end": 18590.0, "probability": 0.0 }, { "start": 18590.0, "end": 18590.0, "probability": 0.0 }, { "start": 18590.0, "end": 18590.0, "probability": 0.0 }, { "start": 18590.0, "end": 18590.0, "probability": 0.0 }, { "start": 18590.0, "end": 18590.0, "probability": 0.0 }, { "start": 18590.18, "end": 18591.02, "probability": 0.0865 }, { "start": 18591.02, "end": 18591.02, "probability": 0.0845 }, { "start": 18591.02, "end": 18591.02, "probability": 0.2081 }, { "start": 18591.02, "end": 18591.02, "probability": 0.1721 }, { "start": 18591.02, "end": 18591.02, "probability": 0.0438 }, { "start": 18591.02, "end": 18591.02, "probability": 0.3187 }, { "start": 18591.02, "end": 18593.8, "probability": 0.9247 }, { "start": 18594.48, "end": 18597.9, "probability": 0.9896 }, { "start": 18598.6, "end": 18600.48, "probability": 0.6186 }, { "start": 18600.64, "end": 18602.06, "probability": 0.9189 }, { "start": 18602.5, "end": 18606.8, "probability": 0.9458 }, { "start": 18607.1, "end": 18611.06, "probability": 0.9924 }, { "start": 18611.72, "end": 18613.18, "probability": 0.9965 }, { "start": 18614.1, "end": 18619.02, "probability": 0.8422 }, { "start": 18619.28, "end": 18621.18, "probability": 0.957 }, { "start": 18622.54, "end": 18626.1, "probability": 0.9761 }, { "start": 18627.26, "end": 18631.04, "probability": 0.8982 }, { "start": 18632.14, "end": 18632.3, "probability": 0.0312 }, { "start": 18632.3, "end": 18633.96, "probability": 0.7974 }, { "start": 18634.64, "end": 18639.32, "probability": 0.9629 }, { "start": 18639.34, "end": 18642.56, "probability": 0.9818 }, { "start": 18643.66, "end": 18644.36, "probability": 0.7325 }, { "start": 18644.7, "end": 18647.1, "probability": 0.9895 }, { "start": 18648.1, "end": 18650.2, "probability": 0.9147 }, { "start": 18650.76, "end": 18652.6, "probability": 0.9174 }, { "start": 18652.72, "end": 18653.62, "probability": 0.818 }, { "start": 18654.06, "end": 18658.3, "probability": 0.9954 }, { "start": 18659.2, "end": 18661.18, "probability": 0.7638 }, { "start": 18662.72, "end": 18665.78, "probability": 0.5577 }, { "start": 18665.78, "end": 18667.11, "probability": 0.3919 }, { "start": 18667.3, "end": 18671.86, "probability": 0.9894 }, { "start": 18671.86, "end": 18676.76, "probability": 0.9985 }, { "start": 18677.52, "end": 18678.18, "probability": 0.3474 }, { "start": 18678.26, "end": 18679.82, "probability": 0.8644 }, { "start": 18679.94, "end": 18685.04, "probability": 0.66 }, { "start": 18685.46, "end": 18688.64, "probability": 0.1391 }, { "start": 18688.74, "end": 18692.36, "probability": 0.9602 }, { "start": 18693.9, "end": 18696.02, "probability": 0.9989 }, { "start": 18696.1, "end": 18697.82, "probability": 0.9992 }, { "start": 18698.34, "end": 18700.62, "probability": 0.9911 }, { "start": 18701.72, "end": 18704.6, "probability": 0.9898 }, { "start": 18705.22, "end": 18708.42, "probability": 0.969 }, { "start": 18709.56, "end": 18710.0, "probability": 0.7878 }, { "start": 18710.42, "end": 18713.28, "probability": 0.8051 }, { "start": 18714.18, "end": 18714.82, "probability": 0.7311 }, { "start": 18716.14, "end": 18720.36, "probability": 0.8711 }, { "start": 18720.66, "end": 18723.38, "probability": 0.4429 }, { "start": 18723.54, "end": 18726.9, "probability": 0.5117 }, { "start": 18728.12, "end": 18730.96, "probability": 0.8374 }, { "start": 18731.54, "end": 18734.86, "probability": 0.4887 }, { "start": 18734.86, "end": 18737.36, "probability": 0.1257 }, { "start": 18739.92, "end": 18741.9, "probability": 0.1055 }, { "start": 18743.7, "end": 18745.06, "probability": 0.0766 }, { "start": 18745.42, "end": 18745.62, "probability": 0.178 }, { "start": 18745.62, "end": 18746.8, "probability": 0.0407 }, { "start": 18747.08, "end": 18747.08, "probability": 0.2446 }, { "start": 18747.08, "end": 18749.88, "probability": 0.1225 }, { "start": 18750.04, "end": 18750.97, "probability": 0.0365 }, { "start": 18751.34, "end": 18753.51, "probability": 0.0207 }, { "start": 18754.7, "end": 18755.52, "probability": 0.3705 }, { "start": 18757.12, "end": 18759.52, "probability": 0.1511 }, { "start": 18759.52, "end": 18760.18, "probability": 0.2171 }, { "start": 18760.26, "end": 18760.48, "probability": 0.1195 }, { "start": 18760.48, "end": 18761.34, "probability": 0.0931 }, { "start": 18761.48, "end": 18761.94, "probability": 0.2308 }, { "start": 18761.94, "end": 18763.54, "probability": 0.0659 }, { "start": 18763.86, "end": 18767.76, "probability": 0.154 }, { "start": 18768.84, "end": 18771.78, "probability": 0.2271 }, { "start": 18771.98, "end": 18772.76, "probability": 0.1321 }, { "start": 18772.82, "end": 18774.34, "probability": 0.0511 }, { "start": 18774.36, "end": 18775.54, "probability": 0.0992 }, { "start": 18776.07, "end": 18776.88, "probability": 0.1598 }, { "start": 18776.88, "end": 18776.88, "probability": 0.4672 }, { "start": 18776.88, "end": 18776.98, "probability": 0.0477 }, { "start": 18777.0, "end": 18777.0, "probability": 0.0 }, { "start": 18777.0, "end": 18777.0, "probability": 0.0 }, { "start": 18777.0, "end": 18777.0, "probability": 0.0 }, { "start": 18777.0, "end": 18777.0, "probability": 0.0 }, { "start": 18777.0, "end": 18777.0, "probability": 0.0 }, { "start": 18777.0, "end": 18777.0, "probability": 0.0 }, { "start": 18777.0, "end": 18777.0, "probability": 0.0 }, { "start": 18777.0, "end": 18777.0, "probability": 0.0 }, { "start": 18777.0, "end": 18777.0, "probability": 0.0 }, { "start": 18777.44, "end": 18779.06, "probability": 0.2487 }, { "start": 18779.38, "end": 18781.58, "probability": 0.3449 }, { "start": 18781.94, "end": 18782.52, "probability": 0.811 }, { "start": 18782.74, "end": 18783.34, "probability": 0.5076 }, { "start": 18783.56, "end": 18784.42, "probability": 0.5386 }, { "start": 18784.5, "end": 18787.52, "probability": 0.716 }, { "start": 18787.58, "end": 18788.08, "probability": 0.084 }, { "start": 18788.26, "end": 18788.84, "probability": 0.3735 }, { "start": 18789.1, "end": 18792.76, "probability": 0.5447 }, { "start": 18793.18, "end": 18795.7, "probability": 0.2143 }, { "start": 18898.0, "end": 18898.0, "probability": 0.0 }, { "start": 18898.0, "end": 18898.0, "probability": 0.0 }, { "start": 18898.0, "end": 18898.0, "probability": 0.0 }, { "start": 18898.0, "end": 18898.0, "probability": 0.0 }, { "start": 18898.0, "end": 18898.0, "probability": 0.0 }, { "start": 18898.0, "end": 18898.0, "probability": 0.0 }, { "start": 18898.0, "end": 18898.0, "probability": 0.0 }, { "start": 18898.0, "end": 18898.0, "probability": 0.0 }, { "start": 18898.0, "end": 18898.0, "probability": 0.0 }, { "start": 18898.0, "end": 18898.0, "probability": 0.0 }, { "start": 18898.0, "end": 18898.0, "probability": 0.0 }, { "start": 18898.0, "end": 18898.0, "probability": 0.0 }, { "start": 18898.0, "end": 18898.0, "probability": 0.0 }, { "start": 18898.0, "end": 18898.0, "probability": 0.0 }, { "start": 18898.0, "end": 18898.0, "probability": 0.0 }, { "start": 18898.0, "end": 18898.0, "probability": 0.0 }, { "start": 18898.0, "end": 18898.0, "probability": 0.0 }, { "start": 18898.0, "end": 18898.0, "probability": 0.0 }, { "start": 18898.0, "end": 18898.0, "probability": 0.0 }, { "start": 18898.0, "end": 18898.0, "probability": 0.0 }, { "start": 18898.0, "end": 18898.0, "probability": 0.0 }, { "start": 18898.0, "end": 18898.0, "probability": 0.0 }, { "start": 18898.0, "end": 18898.0, "probability": 0.0 }, { "start": 18898.0, "end": 18898.0, "probability": 0.0 }, { "start": 18898.0, "end": 18898.0, "probability": 0.0 }, { "start": 18898.0, "end": 18898.0, "probability": 0.0 }, { "start": 18898.0, "end": 18898.0, "probability": 0.0 }, { "start": 18898.0, "end": 18898.0, "probability": 0.0 }, { "start": 18898.0, "end": 18898.0, "probability": 0.0 }, { "start": 18898.0, "end": 18898.0, "probability": 0.0 }, { "start": 18898.0, "end": 18898.0, "probability": 0.0 }, { "start": 18898.0, "end": 18898.0, "probability": 0.0 }, { "start": 18898.0, "end": 18898.0, "probability": 0.0 }, { "start": 18898.0, "end": 18898.0, "probability": 0.0 }, { "start": 18898.0, "end": 18898.0, "probability": 0.0 }, { "start": 18898.0, "end": 18898.0, "probability": 0.0 }, { "start": 18898.0, "end": 18898.0, "probability": 0.0 }, { "start": 18898.0, "end": 18898.0, "probability": 0.0 }, { "start": 18898.0, "end": 18898.0, "probability": 0.0 }, { "start": 18898.0, "end": 18898.0, "probability": 0.0 }, { "start": 18898.0, "end": 18898.0, "probability": 0.0 }, { "start": 18898.0, "end": 18898.0, "probability": 0.0 }, { "start": 18898.0, "end": 18898.0, "probability": 0.0 }, { "start": 18898.0, "end": 18898.0, "probability": 0.0 }, { "start": 18898.0, "end": 18898.0, "probability": 0.0 }, { "start": 18898.0, "end": 18898.0, "probability": 0.0 }, { "start": 18898.0, "end": 18898.0, "probability": 0.0 }, { "start": 18898.0, "end": 18898.0, "probability": 0.0 }, { "start": 18898.0, "end": 18898.0, "probability": 0.0 }, { "start": 18898.2, "end": 18898.48, "probability": 0.1513 }, { "start": 18898.48, "end": 18901.98, "probability": 0.7878 }, { "start": 18902.0, "end": 18904.04, "probability": 0.6768 }, { "start": 18904.38, "end": 18906.22, "probability": 0.9702 }, { "start": 18906.44, "end": 18906.7, "probability": 0.2241 }, { "start": 18906.7, "end": 18912.28, "probability": 0.8669 }, { "start": 18912.6, "end": 18915.1, "probability": 0.9993 }, { "start": 18915.94, "end": 18917.3, "probability": 0.9985 }, { "start": 18918.02, "end": 18919.3, "probability": 0.8796 }, { "start": 18919.7, "end": 18921.28, "probability": 0.9365 }, { "start": 18921.66, "end": 18928.26, "probability": 0.9971 }, { "start": 18928.7, "end": 18933.6, "probability": 0.2171 }, { "start": 18934.26, "end": 18934.64, "probability": 0.054 }, { "start": 18938.42, "end": 18939.06, "probability": 0.157 }, { "start": 18939.06, "end": 18939.06, "probability": 0.0337 }, { "start": 18939.06, "end": 18939.06, "probability": 0.0709 }, { "start": 18939.06, "end": 18939.06, "probability": 0.0492 }, { "start": 18939.06, "end": 18941.68, "probability": 0.2575 }, { "start": 18942.04, "end": 18946.68, "probability": 0.5703 }, { "start": 18946.94, "end": 18949.28, "probability": 0.9476 }, { "start": 18949.82, "end": 18950.78, "probability": 0.7311 }, { "start": 18951.3, "end": 18953.88, "probability": 0.9971 }, { "start": 18954.22, "end": 18955.86, "probability": 0.999 }, { "start": 18956.2, "end": 18957.0, "probability": 0.9457 }, { "start": 18957.22, "end": 18957.46, "probability": 0.9622 }, { "start": 18957.52, "end": 18959.06, "probability": 0.9706 }, { "start": 18959.46, "end": 18962.08, "probability": 0.9956 }, { "start": 18962.62, "end": 18965.28, "probability": 0.8961 }, { "start": 18965.58, "end": 18966.26, "probability": 0.7319 }, { "start": 18966.66, "end": 18967.78, "probability": 0.6958 }, { "start": 18967.84, "end": 18969.86, "probability": 0.963 }, { "start": 18970.2, "end": 18975.14, "probability": 0.9877 }, { "start": 18975.54, "end": 18979.72, "probability": 0.9966 }, { "start": 18980.06, "end": 18983.72, "probability": 0.9782 }, { "start": 18984.16, "end": 18989.28, "probability": 0.9795 }, { "start": 18989.28, "end": 18992.19, "probability": 0.9578 }, { "start": 18992.66, "end": 18993.16, "probability": 0.1051 }, { "start": 18993.16, "end": 18993.51, "probability": 0.2368 }, { "start": 18993.92, "end": 18993.92, "probability": 0.0333 }, { "start": 18993.92, "end": 18993.92, "probability": 0.2108 }, { "start": 18993.92, "end": 18993.92, "probability": 0.0565 }, { "start": 18993.92, "end": 18993.92, "probability": 0.367 }, { "start": 18994.58, "end": 18994.96, "probability": 0.1542 }, { "start": 18999.16, "end": 19000.38, "probability": 0.5463 }, { "start": 19000.5, "end": 19001.8, "probability": 0.6371 }, { "start": 19002.68, "end": 19004.06, "probability": 0.501 }, { "start": 19004.06, "end": 19005.3, "probability": 0.0828 }, { "start": 19005.98, "end": 19006.28, "probability": 0.04 }, { "start": 19006.34, "end": 19006.97, "probability": 0.3872 }, { "start": 19007.72, "end": 19009.16, "probability": 0.0587 }, { "start": 19015.72, "end": 19016.96, "probability": 0.6647 }, { "start": 19017.2, "end": 19020.89, "probability": 0.7754 }, { "start": 19021.3, "end": 19022.5, "probability": 0.2124 }, { "start": 19023.46, "end": 19025.64, "probability": 0.8833 }, { "start": 19025.86, "end": 19028.0, "probability": 0.9716 }, { "start": 19028.24, "end": 19028.88, "probability": 0.719 }, { "start": 19029.1, "end": 19033.86, "probability": 0.999 }, { "start": 19034.18, "end": 19034.66, "probability": 0.5145 }, { "start": 19034.92, "end": 19035.82, "probability": 0.8971 }, { "start": 19036.18, "end": 19036.84, "probability": 0.8498 }, { "start": 19037.52, "end": 19042.98, "probability": 0.9736 }, { "start": 19043.4, "end": 19043.68, "probability": 0.7922 }, { "start": 19043.86, "end": 19045.56, "probability": 0.506 }, { "start": 19046.68, "end": 19049.6, "probability": 0.3935 }, { "start": 19049.7, "end": 19050.2, "probability": 0.6112 }, { "start": 19050.8, "end": 19055.1, "probability": 0.2552 }, { "start": 19060.9, "end": 19061.58, "probability": 0.4228 }, { "start": 19066.26, "end": 19066.52, "probability": 0.5214 }, { "start": 19067.04, "end": 19067.18, "probability": 0.7159 }, { "start": 19072.98, "end": 19076.44, "probability": 0.5243 }, { "start": 19077.12, "end": 19078.04, "probability": 0.9021 }, { "start": 19078.56, "end": 19081.16, "probability": 0.9955 }, { "start": 19081.2, "end": 19083.66, "probability": 0.8873 }, { "start": 19083.72, "end": 19084.22, "probability": 0.9886 }, { "start": 19084.3, "end": 19084.92, "probability": 0.9421 }, { "start": 19085.26, "end": 19085.74, "probability": 0.8125 }, { "start": 19086.14, "end": 19086.66, "probability": 0.607 }, { "start": 19087.64, "end": 19089.74, "probability": 0.9985 }, { "start": 19090.12, "end": 19092.52, "probability": 0.928 }, { "start": 19092.84, "end": 19093.94, "probability": 0.9854 }, { "start": 19094.0, "end": 19095.04, "probability": 0.9606 }, { "start": 19095.1, "end": 19096.06, "probability": 0.9493 }, { "start": 19096.18, "end": 19097.06, "probability": 0.8528 }, { "start": 19097.1, "end": 19097.52, "probability": 0.3415 }, { "start": 19097.72, "end": 19098.64, "probability": 0.3413 }, { "start": 19098.7, "end": 19099.98, "probability": 0.8818 }, { "start": 19100.34, "end": 19102.64, "probability": 0.996 }, { "start": 19102.64, "end": 19107.06, "probability": 0.9709 }, { "start": 19107.58, "end": 19109.0, "probability": 0.7915 }, { "start": 19109.14, "end": 19109.8, "probability": 0.8534 }, { "start": 19109.94, "end": 19113.8, "probability": 0.9803 }, { "start": 19113.9, "end": 19115.32, "probability": 0.9913 }, { "start": 19115.44, "end": 19116.93, "probability": 0.9056 }, { "start": 19117.08, "end": 19120.34, "probability": 0.9966 }, { "start": 19120.88, "end": 19123.62, "probability": 0.944 }, { "start": 19123.7, "end": 19127.26, "probability": 0.984 }, { "start": 19127.68, "end": 19128.82, "probability": 0.7632 }, { "start": 19129.18, "end": 19130.85, "probability": 0.7902 }, { "start": 19131.34, "end": 19133.7, "probability": 0.8842 }, { "start": 19136.88, "end": 19137.8, "probability": 0.6972 }, { "start": 19138.46, "end": 19140.76, "probability": 0.8648 }, { "start": 19141.24, "end": 19145.18, "probability": 0.9974 }, { "start": 19145.66, "end": 19146.1, "probability": 0.6917 }, { "start": 19146.24, "end": 19150.42, "probability": 0.9964 }, { "start": 19150.42, "end": 19153.02, "probability": 0.9988 }, { "start": 19154.08, "end": 19156.86, "probability": 0.9875 }, { "start": 19157.32, "end": 19161.4, "probability": 0.991 }, { "start": 19161.88, "end": 19161.88, "probability": 0.3465 }, { "start": 19162.1, "end": 19162.42, "probability": 0.7366 }, { "start": 19162.58, "end": 19165.64, "probability": 0.9938 }, { "start": 19165.94, "end": 19167.19, "probability": 0.6358 }, { "start": 19167.84, "end": 19170.14, "probability": 0.95 }, { "start": 19170.52, "end": 19172.59, "probability": 0.9722 }, { "start": 19173.14, "end": 19175.98, "probability": 0.9931 }, { "start": 19176.24, "end": 19179.24, "probability": 0.8695 }, { "start": 19179.28, "end": 19182.24, "probability": 0.998 }, { "start": 19182.48, "end": 19184.02, "probability": 0.9546 }, { "start": 19184.12, "end": 19184.78, "probability": 0.9442 }, { "start": 19184.86, "end": 19185.32, "probability": 0.8145 }, { "start": 19185.52, "end": 19186.48, "probability": 0.8542 }, { "start": 19186.76, "end": 19189.54, "probability": 0.9805 }, { "start": 19189.7, "end": 19190.14, "probability": 0.6139 }, { "start": 19190.16, "end": 19190.9, "probability": 0.859 }, { "start": 19191.02, "end": 19194.2, "probability": 0.984 }, { "start": 19194.58, "end": 19198.66, "probability": 0.9773 }, { "start": 19199.26, "end": 19200.64, "probability": 0.8789 }, { "start": 19200.98, "end": 19204.46, "probability": 0.9978 }, { "start": 19204.46, "end": 19207.12, "probability": 0.9995 }, { "start": 19207.34, "end": 19209.54, "probability": 0.9825 }, { "start": 19209.62, "end": 19210.8, "probability": 0.987 }, { "start": 19211.16, "end": 19212.05, "probability": 0.9775 }, { "start": 19212.22, "end": 19213.14, "probability": 0.9604 }, { "start": 19214.48, "end": 19219.94, "probability": 0.9958 }, { "start": 19220.28, "end": 19221.58, "probability": 0.9896 }, { "start": 19221.94, "end": 19223.06, "probability": 0.9688 }, { "start": 19223.5, "end": 19226.74, "probability": 0.9979 }, { "start": 19226.74, "end": 19229.74, "probability": 0.9954 }, { "start": 19230.24, "end": 19232.72, "probability": 0.9757 }, { "start": 19233.12, "end": 19234.2, "probability": 0.9106 }, { "start": 19234.54, "end": 19237.46, "probability": 0.9722 }, { "start": 19237.46, "end": 19241.56, "probability": 0.9907 }, { "start": 19241.94, "end": 19242.43, "probability": 0.8442 }, { "start": 19242.98, "end": 19244.06, "probability": 0.9641 }, { "start": 19244.34, "end": 19245.56, "probability": 0.7079 }, { "start": 19245.62, "end": 19248.96, "probability": 0.9126 }, { "start": 19249.5, "end": 19250.92, "probability": 0.9446 }, { "start": 19251.02, "end": 19251.64, "probability": 0.9045 }, { "start": 19251.66, "end": 19252.72, "probability": 0.9372 }, { "start": 19253.02, "end": 19254.22, "probability": 0.9434 }, { "start": 19254.64, "end": 19254.96, "probability": 0.4842 }, { "start": 19255.0, "end": 19256.14, "probability": 0.2012 }, { "start": 19256.32, "end": 19256.44, "probability": 0.1199 }, { "start": 19256.78, "end": 19257.5, "probability": 0.8373 }, { "start": 19257.58, "end": 19258.4, "probability": 0.6632 }, { "start": 19258.7, "end": 19260.1, "probability": 0.7991 }, { "start": 19260.14, "end": 19260.24, "probability": 0.3424 }, { "start": 19260.38, "end": 19262.28, "probability": 0.973 }, { "start": 19262.64, "end": 19262.9, "probability": 0.7646 }, { "start": 19263.38, "end": 19263.8, "probability": 0.2687 }, { "start": 19263.8, "end": 19265.58, "probability": 0.9413 }, { "start": 19267.42, "end": 19269.9, "probability": 0.757 }, { "start": 19270.02, "end": 19272.08, "probability": 0.7785 }, { "start": 19272.26, "end": 19273.54, "probability": 0.1494 }, { "start": 19274.14, "end": 19275.66, "probability": 0.938 }, { "start": 19275.86, "end": 19276.4, "probability": 0.5558 }, { "start": 19278.86, "end": 19281.72, "probability": 0.0944 }, { "start": 19281.72, "end": 19283.38, "probability": 0.2164 }, { "start": 19285.19, "end": 19291.24, "probability": 0.0197 }, { "start": 19292.38, "end": 19294.48, "probability": 0.082 }, { "start": 19295.14, "end": 19297.32, "probability": 0.3247 }, { "start": 19298.14, "end": 19298.38, "probability": 0.2889 }, { "start": 19298.38, "end": 19304.34, "probability": 0.0726 }, { "start": 19304.66, "end": 19305.86, "probability": 0.0909 }, { "start": 19305.86, "end": 19308.0, "probability": 0.1428 }, { "start": 19309.35, "end": 19310.12, "probability": 0.1873 }, { "start": 19310.12, "end": 19311.72, "probability": 0.2639 }, { "start": 19311.98, "end": 19311.98, "probability": 0.0958 }, { "start": 19311.98, "end": 19312.62, "probability": 0.0732 }, { "start": 19312.82, "end": 19316.78, "probability": 0.0213 }, { "start": 19351.0, "end": 19351.0, "probability": 0.0 }, { "start": 19351.0, "end": 19351.0, "probability": 0.0 }, { "start": 19351.0, "end": 19351.0, "probability": 0.0 }, { "start": 19351.0, "end": 19351.0, "probability": 0.0 }, { "start": 19351.0, "end": 19351.0, "probability": 0.0 }, { "start": 19351.0, "end": 19351.0, "probability": 0.0 }, { "start": 19351.0, "end": 19351.0, "probability": 0.0 }, { "start": 19351.0, "end": 19351.0, "probability": 0.0 }, { "start": 19351.0, "end": 19351.0, "probability": 0.0 }, { "start": 19351.0, "end": 19351.0, "probability": 0.0 }, { "start": 19351.0, "end": 19351.0, "probability": 0.0 }, { "start": 19351.0, "end": 19351.0, "probability": 0.0 }, { "start": 19351.0, "end": 19351.0, "probability": 0.0 }, { "start": 19351.0, "end": 19351.0, "probability": 0.0 }, { "start": 19351.0, "end": 19351.0, "probability": 0.0 }, { "start": 19351.0, "end": 19351.0, "probability": 0.0 }, { "start": 19351.0, "end": 19351.0, "probability": 0.0 }, { "start": 19351.0, "end": 19351.0, "probability": 0.0 }, { "start": 19351.0, "end": 19351.0, "probability": 0.0 }, { "start": 19351.0, "end": 19351.0, "probability": 0.0 }, { "start": 19351.0, "end": 19351.0, "probability": 0.0 }, { "start": 19351.0, "end": 19351.0, "probability": 0.0 }, { "start": 19351.0, "end": 19351.0, "probability": 0.0 }, { "start": 19351.0, "end": 19351.0, "probability": 0.0 }, { "start": 19351.0, "end": 19351.0, "probability": 0.0 }, { "start": 19351.0, "end": 19351.0, "probability": 0.0 }, { "start": 19351.0, "end": 19351.0, "probability": 0.0 }, { "start": 19351.0, "end": 19351.0, "probability": 0.0 }, { "start": 19351.0, "end": 19351.0, "probability": 0.0 }, { "start": 19351.0, "end": 19351.0, "probability": 0.0 }, { "start": 19351.0, "end": 19351.0, "probability": 0.0 }, { "start": 19351.0, "end": 19351.0, "probability": 0.0 }, { "start": 19351.0, "end": 19351.0, "probability": 0.0 }, { "start": 19351.0, "end": 19351.0, "probability": 0.0 }, { "start": 19351.0, "end": 19351.0, "probability": 0.0 }, { "start": 19351.0, "end": 19351.0, "probability": 0.0 }, { "start": 19351.0, "end": 19351.0, "probability": 0.0 }, { "start": 19351.0, "end": 19351.0, "probability": 0.0 }, { "start": 19351.0, "end": 19351.0, "probability": 0.0 }, { "start": 19351.0, "end": 19351.0, "probability": 0.0 }, { "start": 19351.0, "end": 19351.0, "probability": 0.0 }, { "start": 19351.0, "end": 19351.0, "probability": 0.0 }, { "start": 19351.0, "end": 19351.0, "probability": 0.0 }, { "start": 19351.0, "end": 19351.0, "probability": 0.0 }, { "start": 19351.0, "end": 19351.0, "probability": 0.0 }, { "start": 19351.0, "end": 19351.0, "probability": 0.0 }, { "start": 19351.0, "end": 19351.0, "probability": 0.0 }, { "start": 19351.0, "end": 19351.0, "probability": 0.0 }, { "start": 19351.0, "end": 19351.0, "probability": 0.0 }, { "start": 19351.0, "end": 19351.0, "probability": 0.0 }, { "start": 19351.0, "end": 19351.0, "probability": 0.0 }, { "start": 19352.16, "end": 19354.54, "probability": 0.0183 }, { "start": 19355.4, "end": 19359.28, "probability": 0.6817 }, { "start": 19359.5, "end": 19361.4, "probability": 0.2941 }, { "start": 19361.7, "end": 19363.18, "probability": 0.9759 }, { "start": 19363.74, "end": 19364.44, "probability": 0.6428 }, { "start": 19364.44, "end": 19366.18, "probability": 0.743 }, { "start": 19366.98, "end": 19368.16, "probability": 0.9775 }, { "start": 19368.26, "end": 19369.76, "probability": 0.8597 }, { "start": 19370.06, "end": 19370.96, "probability": 0.8149 }, { "start": 19371.5, "end": 19372.76, "probability": 0.9333 }, { "start": 19374.08, "end": 19377.68, "probability": 0.9379 }, { "start": 19378.64, "end": 19381.3, "probability": 0.9731 }, { "start": 19381.8, "end": 19384.04, "probability": 0.9266 }, { "start": 19384.56, "end": 19388.06, "probability": 0.8417 }, { "start": 19388.06, "end": 19391.34, "probability": 0.9963 }, { "start": 19392.28, "end": 19397.24, "probability": 0.9865 }, { "start": 19398.3, "end": 19400.22, "probability": 0.9033 }, { "start": 19400.8, "end": 19405.84, "probability": 0.9572 }, { "start": 19406.86, "end": 19410.14, "probability": 0.9448 }, { "start": 19410.14, "end": 19413.62, "probability": 0.9515 }, { "start": 19414.2, "end": 19420.84, "probability": 0.9897 }, { "start": 19420.84, "end": 19426.68, "probability": 0.9984 }, { "start": 19427.82, "end": 19431.73, "probability": 0.5831 }, { "start": 19432.62, "end": 19436.08, "probability": 0.8207 }, { "start": 19436.86, "end": 19442.86, "probability": 0.9868 }, { "start": 19444.02, "end": 19446.08, "probability": 0.9945 }, { "start": 19446.8, "end": 19449.18, "probability": 0.9919 }, { "start": 19450.06, "end": 19455.16, "probability": 0.9746 }, { "start": 19455.16, "end": 19460.06, "probability": 0.994 }, { "start": 19461.16, "end": 19462.22, "probability": 0.9635 }, { "start": 19463.1, "end": 19464.6, "probability": 0.852 }, { "start": 19465.34, "end": 19467.6, "probability": 0.9952 }, { "start": 19468.14, "end": 19470.64, "probability": 0.9993 }, { "start": 19471.3, "end": 19473.24, "probability": 0.9971 }, { "start": 19473.86, "end": 19475.34, "probability": 0.9951 }, { "start": 19476.04, "end": 19477.14, "probability": 0.9988 }, { "start": 19477.82, "end": 19479.8, "probability": 0.9995 }, { "start": 19480.44, "end": 19481.56, "probability": 0.9792 }, { "start": 19482.12, "end": 19483.22, "probability": 0.7798 }, { "start": 19483.74, "end": 19485.78, "probability": 0.7924 }, { "start": 19486.6, "end": 19488.42, "probability": 0.8092 }, { "start": 19488.96, "end": 19488.96, "probability": 0.0645 }, { "start": 19488.96, "end": 19488.96, "probability": 0.1985 }, { "start": 19488.96, "end": 19491.16, "probability": 0.8882 }, { "start": 19492.46, "end": 19494.24, "probability": 0.0834 }, { "start": 19494.36, "end": 19496.72, "probability": 0.6192 }, { "start": 19497.98, "end": 19498.64, "probability": 0.023 }, { "start": 19499.32, "end": 19500.78, "probability": 0.0426 }, { "start": 19501.8, "end": 19503.24, "probability": 0.2083 }, { "start": 19503.24, "end": 19503.72, "probability": 0.2641 }, { "start": 19503.82, "end": 19503.82, "probability": 0.1654 }, { "start": 19503.98, "end": 19505.06, "probability": 0.0414 }, { "start": 19506.02, "end": 19506.42, "probability": 0.0824 }, { "start": 19506.42, "end": 19506.6, "probability": 0.0995 }, { "start": 19506.6, "end": 19507.8, "probability": 0.0579 }, { "start": 19508.02, "end": 19508.52, "probability": 0.8936 }, { "start": 19508.66, "end": 19510.34, "probability": 0.9534 }, { "start": 19510.88, "end": 19512.94, "probability": 0.9954 }, { "start": 19513.74, "end": 19516.1, "probability": 0.9336 }, { "start": 19516.72, "end": 19520.14, "probability": 0.9989 }, { "start": 19520.66, "end": 19523.52, "probability": 0.9308 }, { "start": 19524.24, "end": 19528.72, "probability": 0.894 }, { "start": 19529.62, "end": 19530.44, "probability": 0.6873 }, { "start": 19530.48, "end": 19531.38, "probability": 0.6829 }, { "start": 19531.6, "end": 19533.46, "probability": 0.861 }, { "start": 19534.16, "end": 19534.6, "probability": 0.9821 }, { "start": 19535.48, "end": 19539.74, "probability": 0.8872 }, { "start": 19540.5, "end": 19543.96, "probability": 0.9983 }, { "start": 19544.96, "end": 19547.06, "probability": 0.9034 }, { "start": 19547.76, "end": 19551.4, "probability": 0.9877 }, { "start": 19551.4, "end": 19554.02, "probability": 0.999 }, { "start": 19555.06, "end": 19557.04, "probability": 0.9635 }, { "start": 19558.0, "end": 19559.06, "probability": 0.9973 }, { "start": 19559.84, "end": 19561.92, "probability": 0.9747 }, { "start": 19562.58, "end": 19568.06, "probability": 0.9806 }, { "start": 19569.12, "end": 19572.41, "probability": 0.7172 }, { "start": 19573.4, "end": 19577.56, "probability": 0.9703 }, { "start": 19577.56, "end": 19584.34, "probability": 0.9812 }, { "start": 19585.1, "end": 19587.78, "probability": 0.9658 }, { "start": 19589.2, "end": 19592.96, "probability": 0.8216 }, { "start": 19593.72, "end": 19595.32, "probability": 0.896 }, { "start": 19596.4, "end": 19598.08, "probability": 0.9867 }, { "start": 19599.51, "end": 19600.76, "probability": 0.7697 }, { "start": 19601.38, "end": 19601.78, "probability": 0.4575 }, { "start": 19602.04, "end": 19603.8, "probability": 0.6904 }, { "start": 19604.34, "end": 19607.22, "probability": 0.9246 }, { "start": 19607.88, "end": 19610.39, "probability": 0.211 }, { "start": 19611.42, "end": 19611.42, "probability": 0.026 }, { "start": 19611.46, "end": 19612.37, "probability": 0.3257 }, { "start": 19613.02, "end": 19613.86, "probability": 0.4731 }, { "start": 19614.2, "end": 19616.08, "probability": 0.8777 }, { "start": 19618.78, "end": 19619.76, "probability": 0.7353 }, { "start": 19620.34, "end": 19620.48, "probability": 0.0658 }, { "start": 19620.48, "end": 19620.58, "probability": 0.0332 }, { "start": 19620.58, "end": 19620.58, "probability": 0.0596 }, { "start": 19620.58, "end": 19621.4, "probability": 0.5887 }, { "start": 19621.82, "end": 19621.82, "probability": 0.1855 }, { "start": 19621.82, "end": 19621.82, "probability": 0.2969 }, { "start": 19621.82, "end": 19622.66, "probability": 0.5853 }, { "start": 19622.96, "end": 19625.48, "probability": 0.9884 }, { "start": 19625.92, "end": 19627.2, "probability": 0.5482 }, { "start": 19627.32, "end": 19628.8, "probability": 0.9222 }, { "start": 19629.38, "end": 19630.02, "probability": 0.4966 }, { "start": 19630.14, "end": 19631.42, "probability": 0.7137 }, { "start": 19631.98, "end": 19635.94, "probability": 0.9261 }, { "start": 19636.42, "end": 19639.32, "probability": 0.949 }, { "start": 19639.68, "end": 19642.06, "probability": 0.9158 }, { "start": 19642.06, "end": 19643.44, "probability": 0.9746 }, { "start": 19643.86, "end": 19644.14, "probability": 0.0928 }, { "start": 19644.14, "end": 19644.14, "probability": 0.1732 }, { "start": 19644.14, "end": 19646.92, "probability": 0.8602 }, { "start": 19646.98, "end": 19648.5, "probability": 0.7718 }, { "start": 19649.69, "end": 19650.56, "probability": 0.3121 }, { "start": 19650.56, "end": 19650.56, "probability": 0.2134 }, { "start": 19650.56, "end": 19651.46, "probability": 0.6325 }, { "start": 19652.14, "end": 19653.19, "probability": 0.3353 }, { "start": 19656.42, "end": 19658.3, "probability": 0.0536 }, { "start": 19658.3, "end": 19661.18, "probability": 0.138 }, { "start": 19661.36, "end": 19662.2, "probability": 0.1864 }, { "start": 19663.36, "end": 19664.86, "probability": 0.1447 }, { "start": 19668.5, "end": 19670.48, "probability": 0.0275 }, { "start": 19671.02, "end": 19672.06, "probability": 0.0525 }, { "start": 19672.38, "end": 19673.12, "probability": 0.0326 }, { "start": 19673.2, "end": 19674.44, "probability": 0.0996 }, { "start": 19674.76, "end": 19675.6, "probability": 0.3955 }, { "start": 19676.18, "end": 19676.88, "probability": 0.1763 }, { "start": 19677.82, "end": 19680.96, "probability": 0.6138 }, { "start": 19681.5, "end": 19685.92, "probability": 0.0084 }, { "start": 19686.7, "end": 19689.18, "probability": 0.1349 }, { "start": 19723.0, "end": 19723.0, "probability": 0.0 }, { "start": 19723.0, "end": 19723.0, "probability": 0.0 }, { "start": 19723.0, "end": 19723.0, "probability": 0.0 }, { "start": 19723.0, "end": 19723.0, "probability": 0.0 }, { "start": 19723.0, "end": 19723.0, "probability": 0.0 }, { "start": 19723.0, "end": 19723.0, "probability": 0.0 }, { "start": 19723.0, "end": 19723.0, "probability": 0.0 }, { "start": 19723.0, "end": 19723.0, "probability": 0.0 }, { "start": 19723.0, "end": 19723.0, "probability": 0.0 }, { "start": 19723.0, "end": 19723.0, "probability": 0.0 }, { "start": 19723.0, "end": 19723.0, "probability": 0.0 }, { "start": 19723.0, "end": 19723.0, "probability": 0.0 }, { "start": 19723.0, "end": 19723.0, "probability": 0.0 }, { "start": 19723.0, "end": 19723.0, "probability": 0.0 }, { "start": 19723.0, "end": 19723.0, "probability": 0.0 }, { "start": 19723.0, "end": 19723.0, "probability": 0.0 }, { "start": 19723.0, "end": 19723.0, "probability": 0.0 }, { "start": 19723.0, "end": 19723.0, "probability": 0.0 }, { "start": 19723.0, "end": 19723.0, "probability": 0.0 }, { "start": 19723.0, "end": 19723.0, "probability": 0.0 }, { "start": 19723.22, "end": 19724.16, "probability": 0.1785 }, { "start": 19725.1, "end": 19728.82, "probability": 0.9973 }, { "start": 19729.3, "end": 19731.6, "probability": 0.9663 }, { "start": 19731.98, "end": 19737.46, "probability": 0.9809 }, { "start": 19737.98, "end": 19743.1, "probability": 0.9912 }, { "start": 19744.2, "end": 19745.52, "probability": 0.8135 }, { "start": 19745.8, "end": 19750.66, "probability": 0.9587 }, { "start": 19751.36, "end": 19753.76, "probability": 0.9881 }, { "start": 19754.8, "end": 19755.64, "probability": 0.723 }, { "start": 19756.46, "end": 19758.24, "probability": 0.8244 }, { "start": 19758.28, "end": 19759.76, "probability": 0.7977 }, { "start": 19760.26, "end": 19762.86, "probability": 0.987 }, { "start": 19763.68, "end": 19765.96, "probability": 0.9979 }, { "start": 19766.64, "end": 19771.88, "probability": 0.8345 }, { "start": 19772.18, "end": 19773.04, "probability": 0.9628 }, { "start": 19773.56, "end": 19775.68, "probability": 0.9723 }, { "start": 19776.56, "end": 19777.97, "probability": 0.9731 }, { "start": 19779.64, "end": 19784.1, "probability": 0.8993 }, { "start": 19784.72, "end": 19785.68, "probability": 0.7192 }, { "start": 19787.38, "end": 19787.78, "probability": 0.7154 }, { "start": 19789.1, "end": 19789.98, "probability": 0.6729 }, { "start": 19790.66, "end": 19791.46, "probability": 0.7347 }, { "start": 19792.2, "end": 19793.54, "probability": 0.7766 }, { "start": 19794.88, "end": 19796.26, "probability": 0.9739 }, { "start": 19797.0, "end": 19798.76, "probability": 0.871 }, { "start": 19799.44, "end": 19800.52, "probability": 0.9098 }, { "start": 19801.08, "end": 19804.86, "probability": 0.9843 }, { "start": 19805.2, "end": 19807.92, "probability": 0.9316 }, { "start": 19808.64, "end": 19810.0, "probability": 0.1379 }, { "start": 19810.0, "end": 19810.16, "probability": 0.6411 }, { "start": 19810.16, "end": 19813.18, "probability": 0.3633 }, { "start": 19813.18, "end": 19813.34, "probability": 0.3374 }, { "start": 19813.58, "end": 19814.84, "probability": 0.8628 }, { "start": 19815.84, "end": 19816.46, "probability": 0.8516 }, { "start": 19816.46, "end": 19817.36, "probability": 0.6946 }, { "start": 19817.88, "end": 19821.12, "probability": 0.9418 }, { "start": 19821.5, "end": 19823.72, "probability": 0.9449 }, { "start": 19824.3, "end": 19825.38, "probability": 0.9938 }, { "start": 19826.0, "end": 19828.82, "probability": 0.8456 }, { "start": 19829.46, "end": 19833.46, "probability": 0.9199 }, { "start": 19833.78, "end": 19834.6, "probability": 0.8836 }, { "start": 19835.08, "end": 19835.96, "probability": 0.884 }, { "start": 19836.54, "end": 19837.68, "probability": 0.9098 }, { "start": 19838.24, "end": 19841.1, "probability": 0.9658 }, { "start": 19841.5, "end": 19844.54, "probability": 0.998 }, { "start": 19844.54, "end": 19850.1, "probability": 0.9788 }, { "start": 19850.32, "end": 19851.48, "probability": 0.5785 }, { "start": 19851.6, "end": 19852.92, "probability": 0.6604 }, { "start": 19852.98, "end": 19854.28, "probability": 0.9667 }, { "start": 19854.42, "end": 19855.18, "probability": 0.9021 }, { "start": 19855.7, "end": 19860.08, "probability": 0.6878 }, { "start": 19860.14, "end": 19860.44, "probability": 0.9641 }, { "start": 19875.44, "end": 19879.0, "probability": 0.6699 }, { "start": 19879.66, "end": 19879.94, "probability": 0.3017 }, { "start": 19880.34, "end": 19884.62, "probability": 0.389 }, { "start": 19885.96, "end": 19889.12, "probability": 0.7378 }, { "start": 19890.52, "end": 19891.56, "probability": 0.37 }, { "start": 19892.42, "end": 19893.86, "probability": 0.9937 }, { "start": 19894.76, "end": 19895.22, "probability": 0.6146 }, { "start": 19896.54, "end": 19896.74, "probability": 0.551 }, { "start": 19896.82, "end": 19901.36, "probability": 0.9591 }, { "start": 19902.34, "end": 19905.6, "probability": 0.9829 }, { "start": 19905.84, "end": 19909.14, "probability": 0.9872 }, { "start": 19909.14, "end": 19913.02, "probability": 0.989 }, { "start": 19913.2, "end": 19913.92, "probability": 0.525 }, { "start": 19913.96, "end": 19914.8, "probability": 0.2608 }, { "start": 19914.98, "end": 19916.06, "probability": 0.5301 }, { "start": 19917.04, "end": 19917.54, "probability": 0.6465 }, { "start": 19918.06, "end": 19920.02, "probability": 0.9406 }, { "start": 19921.34, "end": 19921.72, "probability": 0.724 }, { "start": 19922.44, "end": 19922.78, "probability": 0.8737 }, { "start": 19923.96, "end": 19925.48, "probability": 0.936 }, { "start": 19927.14, "end": 19929.76, "probability": 0.6755 }, { "start": 19930.36, "end": 19931.84, "probability": 0.945 }, { "start": 19931.9, "end": 19934.3, "probability": 0.9891 }, { "start": 19934.78, "end": 19938.54, "probability": 0.9942 }, { "start": 19938.66, "end": 19939.6, "probability": 0.9902 }, { "start": 19940.5, "end": 19940.5, "probability": 0.5242 }, { "start": 19940.5, "end": 19941.1, "probability": 0.5459 }, { "start": 19941.36, "end": 19945.04, "probability": 0.9626 }, { "start": 19945.1, "end": 19947.8, "probability": 0.9976 }, { "start": 19947.8, "end": 19949.72, "probability": 0.9806 }, { "start": 19949.86, "end": 19954.4, "probability": 0.935 }, { "start": 19954.52, "end": 19955.34, "probability": 0.9683 }, { "start": 19955.42, "end": 19957.26, "probability": 0.9787 }, { "start": 19958.92, "end": 19963.76, "probability": 0.9946 }, { "start": 19963.76, "end": 19969.26, "probability": 0.9776 }, { "start": 19969.66, "end": 19970.2, "probability": 0.6496 }, { "start": 19970.8, "end": 19971.32, "probability": 0.7162 }, { "start": 19972.0, "end": 19973.02, "probability": 0.9032 }, { "start": 19973.14, "end": 19974.08, "probability": 0.9722 }, { "start": 19974.16, "end": 19974.58, "probability": 0.6733 }, { "start": 19974.6, "end": 19976.08, "probability": 0.9303 }, { "start": 19976.1, "end": 19976.98, "probability": 0.7584 }, { "start": 19977.04, "end": 19983.72, "probability": 0.9705 }, { "start": 19983.94, "end": 19984.72, "probability": 0.8477 }, { "start": 19986.26, "end": 19987.08, "probability": 0.3689 }, { "start": 19987.12, "end": 19987.82, "probability": 0.5638 }, { "start": 19987.84, "end": 19988.88, "probability": 0.5037 }, { "start": 19989.04, "end": 19990.16, "probability": 0.4035 }, { "start": 19990.4, "end": 19990.54, "probability": 0.0453 }, { "start": 19990.54, "end": 19991.9, "probability": 0.6976 }, { "start": 19992.08, "end": 19994.02, "probability": 0.4586 }, { "start": 19994.34, "end": 19995.56, "probability": 0.402 }, { "start": 19995.8, "end": 19996.32, "probability": 0.0122 }, { "start": 19996.68, "end": 19997.6, "probability": 0.4606 }, { "start": 19997.74, "end": 19998.54, "probability": 0.6703 }, { "start": 19998.56, "end": 20000.08, "probability": 0.1855 }, { "start": 20000.46, "end": 20003.46, "probability": 0.7801 }, { "start": 20003.68, "end": 20004.3, "probability": 0.4055 }, { "start": 20004.68, "end": 20007.46, "probability": 0.2603 }, { "start": 20008.26, "end": 20009.4, "probability": 0.1038 }, { "start": 20009.52, "end": 20009.92, "probability": 0.0533 }, { "start": 20010.26, "end": 20010.46, "probability": 0.1159 }, { "start": 20010.46, "end": 20011.07, "probability": 0.1571 }, { "start": 20011.52, "end": 20012.22, "probability": 0.089 }, { "start": 20013.04, "end": 20013.84, "probability": 0.0447 }, { "start": 20014.58, "end": 20018.72, "probability": 0.0423 }, { "start": 20021.34, "end": 20025.0, "probability": 0.6125 }, { "start": 20025.68, "end": 20030.28, "probability": 0.6019 }, { "start": 20030.92, "end": 20031.38, "probability": 0.0475 }, { "start": 20031.68, "end": 20032.02, "probability": 0.3908 }, { "start": 20033.94, "end": 20034.34, "probability": 0.0251 }, { "start": 20034.34, "end": 20035.88, "probability": 0.0899 }, { "start": 20035.88, "end": 20036.66, "probability": 0.0432 }, { "start": 20036.84, "end": 20037.76, "probability": 0.0584 }, { "start": 20039.82, "end": 20043.78, "probability": 0.0189 }, { "start": 20044.38, "end": 20050.5, "probability": 0.1013 }, { "start": 20050.56, "end": 20050.58, "probability": 0.1208 }, { "start": 20050.64, "end": 20051.83, "probability": 0.0464 }, { "start": 20054.58, "end": 20055.19, "probability": 0.0689 }, { "start": 20091.0, "end": 20091.0, "probability": 0.0 }, { "start": 20091.0, "end": 20091.0, "probability": 0.0 }, { "start": 20091.0, "end": 20091.0, "probability": 0.0 }, { "start": 20091.0, "end": 20091.0, "probability": 0.0 }, { "start": 20091.0, "end": 20091.0, "probability": 0.0 }, { "start": 20091.0, "end": 20091.0, "probability": 0.0 }, { "start": 20091.0, "end": 20091.0, "probability": 0.0 }, { "start": 20091.0, "end": 20091.0, "probability": 0.0 }, { "start": 20091.0, "end": 20091.0, "probability": 0.0 }, { "start": 20091.0, "end": 20091.0, "probability": 0.0 }, { "start": 20091.0, "end": 20091.0, "probability": 0.0 }, { "start": 20091.0, "end": 20091.0, "probability": 0.0 }, { "start": 20091.0, "end": 20091.0, "probability": 0.0 }, { "start": 20091.0, "end": 20091.0, "probability": 0.0 }, { "start": 20091.0, "end": 20091.0, "probability": 0.0 }, { "start": 20091.0, "end": 20091.0, "probability": 0.0 }, { "start": 20091.0, "end": 20091.0, "probability": 0.0 }, { "start": 20091.0, "end": 20091.0, "probability": 0.0 }, { "start": 20091.0, "end": 20091.0, "probability": 0.0 }, { "start": 20091.0, "end": 20091.0, "probability": 0.0 }, { "start": 20091.0, "end": 20091.0, "probability": 0.0 }, { "start": 20091.0, "end": 20091.0, "probability": 0.0 }, { "start": 20091.0, "end": 20091.0, "probability": 0.0 }, { "start": 20091.0, "end": 20091.0, "probability": 0.0 }, { "start": 20091.0, "end": 20091.0, "probability": 0.0 }, { "start": 20091.0, "end": 20091.0, "probability": 0.0 }, { "start": 20091.0, "end": 20091.0, "probability": 0.0 }, { "start": 20091.0, "end": 20091.0, "probability": 0.0 }, { "start": 20091.0, "end": 20091.0, "probability": 0.0 }, { "start": 20091.0, "end": 20091.0, "probability": 0.0 }, { "start": 20091.0, "end": 20091.0, "probability": 0.0 }, { "start": 20091.0, "end": 20091.0, "probability": 0.0 }, { "start": 20091.0, "end": 20091.0, "probability": 0.0 }, { "start": 20091.0, "end": 20091.0, "probability": 0.0 }, { "start": 20091.0, "end": 20091.0, "probability": 0.0 }, { "start": 20091.0, "end": 20091.0, "probability": 0.0 }, { "start": 20091.0, "end": 20091.0, "probability": 0.0 }, { "start": 20091.0, "end": 20091.0, "probability": 0.0 }, { "start": 20091.0, "end": 20091.0, "probability": 0.0 }, { "start": 20091.0, "end": 20091.0, "probability": 0.0 }, { "start": 20091.0, "end": 20091.0, "probability": 0.0 }, { "start": 20091.0, "end": 20091.0, "probability": 0.0 }, { "start": 20091.0, "end": 20091.0, "probability": 0.0 }, { "start": 20091.0, "end": 20091.0, "probability": 0.0 }, { "start": 20091.0, "end": 20091.0, "probability": 0.0 }, { "start": 20091.0, "end": 20091.0, "probability": 0.0 }, { "start": 20091.0, "end": 20091.0, "probability": 0.0 }, { "start": 20091.0, "end": 20091.0, "probability": 0.0 }, { "start": 20091.0, "end": 20091.0, "probability": 0.0 }, { "start": 20091.2, "end": 20093.56, "probability": 0.3904 }, { "start": 20093.68, "end": 20094.8, "probability": 0.8074 }, { "start": 20094.9, "end": 20101.0, "probability": 0.9911 }, { "start": 20101.06, "end": 20101.46, "probability": 0.8321 }, { "start": 20101.46, "end": 20101.9, "probability": 0.3601 }, { "start": 20101.96, "end": 20102.12, "probability": 0.0065 }, { "start": 20102.12, "end": 20102.98, "probability": 0.4309 }, { "start": 20103.2, "end": 20103.6, "probability": 0.4013 }, { "start": 20103.6, "end": 20103.76, "probability": 0.1493 }, { "start": 20105.7, "end": 20106.36, "probability": 0.0213 }, { "start": 20106.36, "end": 20107.12, "probability": 0.0103 }, { "start": 20107.42, "end": 20108.34, "probability": 0.2845 }, { "start": 20108.84, "end": 20112.72, "probability": 0.3162 }, { "start": 20113.62, "end": 20113.96, "probability": 0.0585 }, { "start": 20113.96, "end": 20117.66, "probability": 0.0631 }, { "start": 20122.42, "end": 20125.06, "probability": 0.1859 }, { "start": 20125.52, "end": 20126.08, "probability": 0.0856 }, { "start": 20214.0, "end": 20214.0, "probability": 0.0 }, { "start": 20214.0, "end": 20214.0, "probability": 0.0 }, { "start": 20214.0, "end": 20214.0, "probability": 0.0 }, { "start": 20214.0, "end": 20214.0, "probability": 0.0 }, { "start": 20214.0, "end": 20214.0, "probability": 0.0 }, { "start": 20214.0, "end": 20214.0, "probability": 0.0 }, { "start": 20214.0, "end": 20214.0, "probability": 0.0 }, { "start": 20214.0, "end": 20214.0, "probability": 0.0 }, { "start": 20214.0, "end": 20214.0, "probability": 0.0 }, { "start": 20214.0, "end": 20214.0, "probability": 0.0 }, { "start": 20214.0, "end": 20214.0, "probability": 0.0 }, { "start": 20214.0, "end": 20214.0, "probability": 0.0 }, { "start": 20214.0, "end": 20214.0, "probability": 0.0 }, { "start": 20214.0, "end": 20214.0, "probability": 0.0 }, { "start": 20214.0, "end": 20214.0, "probability": 0.0 }, { "start": 20214.0, "end": 20214.0, "probability": 0.0 }, { "start": 20214.0, "end": 20214.0, "probability": 0.0 }, { "start": 20214.0, "end": 20214.0, "probability": 0.0 }, { "start": 20214.0, "end": 20214.0, "probability": 0.0 }, { "start": 20214.0, "end": 20214.0, "probability": 0.0 }, { "start": 20214.0, "end": 20214.0, "probability": 0.0 }, { "start": 20214.0, "end": 20214.0, "probability": 0.0 }, { "start": 20214.0, "end": 20214.0, "probability": 0.0 }, { "start": 20214.0, "end": 20214.0, "probability": 0.0 }, { "start": 20214.0, "end": 20214.0, "probability": 0.0 }, { "start": 20214.0, "end": 20214.0, "probability": 0.0 }, { "start": 20214.0, "end": 20214.0, "probability": 0.0 }, { "start": 20214.0, "end": 20214.0, "probability": 0.0 }, { "start": 20214.0, "end": 20214.0, "probability": 0.0 }, { "start": 20214.0, "end": 20214.0, "probability": 0.0 }, { "start": 20214.0, "end": 20214.0, "probability": 0.0 }, { "start": 20214.0, "end": 20214.0, "probability": 0.0 }, { "start": 20214.0, "end": 20214.0, "probability": 0.0 }, { "start": 20214.0, "end": 20214.0, "probability": 0.0 }, { "start": 20214.0, "end": 20214.0, "probability": 0.0 }, { "start": 20214.0, "end": 20214.0, "probability": 0.0 }, { "start": 20214.0, "end": 20214.0, "probability": 0.0 }, { "start": 20214.0, "end": 20214.0, "probability": 0.0 }, { "start": 20214.0, "end": 20214.0, "probability": 0.0 }, { "start": 20214.0, "end": 20214.0, "probability": 0.0 }, { "start": 20214.0, "end": 20214.0, "probability": 0.0 }, { "start": 20214.0, "end": 20214.0, "probability": 0.0 }, { "start": 20214.0, "end": 20214.0, "probability": 0.0 }, { "start": 20214.0, "end": 20214.0, "probability": 0.0 }, { "start": 20214.0, "end": 20214.0, "probability": 0.0 }, { "start": 20214.0, "end": 20214.0, "probability": 0.0 }, { "start": 20214.0, "end": 20214.0, "probability": 0.0 }, { "start": 20214.0, "end": 20214.0, "probability": 0.0 }, { "start": 20214.0, "end": 20214.0, "probability": 0.0 }, { "start": 20214.0, "end": 20214.0, "probability": 0.0 }, { "start": 20214.0, "end": 20214.0, "probability": 0.0 }, { "start": 20214.0, "end": 20214.0, "probability": 0.0 }, { "start": 20214.0, "end": 20214.0, "probability": 0.0 }, { "start": 20214.0, "end": 20214.0, "probability": 0.0 }, { "start": 20214.0, "end": 20214.0, "probability": 0.0 }, { "start": 20214.0, "end": 20214.0, "probability": 0.0 }, { "start": 20214.0, "end": 20214.0, "probability": 0.0 }, { "start": 20214.0, "end": 20214.0, "probability": 0.0 }, { "start": 20214.0, "end": 20214.0, "probability": 0.0 }, { "start": 20214.0, "end": 20214.0, "probability": 0.0 }, { "start": 20214.0, "end": 20214.0, "probability": 0.0 }, { "start": 20214.0, "end": 20214.0, "probability": 0.0 }, { "start": 20214.0, "end": 20214.0, "probability": 0.0 }, { "start": 20214.0, "end": 20214.0, "probability": 0.0 }, { "start": 20214.26, "end": 20214.74, "probability": 0.0131 }, { "start": 20214.74, "end": 20215.26, "probability": 0.3134 }, { "start": 20215.28, "end": 20218.56, "probability": 0.6853 }, { "start": 20218.64, "end": 20221.02, "probability": 0.3291 }, { "start": 20221.66, "end": 20223.28, "probability": 0.5791 }, { "start": 20223.32, "end": 20225.16, "probability": 0.8071 }, { "start": 20225.26, "end": 20230.06, "probability": 0.9877 }, { "start": 20230.14, "end": 20232.14, "probability": 0.8674 }, { "start": 20232.24, "end": 20234.55, "probability": 0.861 }, { "start": 20234.84, "end": 20234.94, "probability": 0.4759 }, { "start": 20235.6, "end": 20235.92, "probability": 0.0783 }, { "start": 20235.92, "end": 20236.4, "probability": 0.2297 }, { "start": 20236.72, "end": 20238.12, "probability": 0.2596 }, { "start": 20238.22, "end": 20240.4, "probability": 0.7614 }, { "start": 20240.6, "end": 20241.68, "probability": 0.6998 }, { "start": 20241.76, "end": 20243.6, "probability": 0.1349 }, { "start": 20243.64, "end": 20248.02, "probability": 0.6529 }, { "start": 20248.08, "end": 20249.88, "probability": 0.8645 }, { "start": 20250.24, "end": 20251.36, "probability": 0.6413 }, { "start": 20251.74, "end": 20255.0, "probability": 0.9429 }, { "start": 20255.16, "end": 20255.79, "probability": 0.8604 }, { "start": 20256.04, "end": 20257.87, "probability": 0.0556 }, { "start": 20258.1, "end": 20258.2, "probability": 0.0387 }, { "start": 20261.1, "end": 20261.48, "probability": 0.045 }, { "start": 20261.48, "end": 20261.48, "probability": 0.019 }, { "start": 20261.48, "end": 20262.96, "probability": 0.2779 }, { "start": 20262.96, "end": 20265.38, "probability": 0.6503 }, { "start": 20265.82, "end": 20267.24, "probability": 0.5009 }, { "start": 20268.92, "end": 20269.38, "probability": 0.923 }, { "start": 20270.36, "end": 20270.36, "probability": 0.3879 }, { "start": 20270.36, "end": 20270.36, "probability": 0.083 }, { "start": 20270.36, "end": 20270.36, "probability": 0.353 }, { "start": 20270.36, "end": 20272.2, "probability": 0.9915 }, { "start": 20272.54, "end": 20277.8, "probability": 0.9521 }, { "start": 20280.82, "end": 20280.82, "probability": 0.0405 }, { "start": 20280.82, "end": 20280.82, "probability": 0.0285 }, { "start": 20280.84, "end": 20282.7, "probability": 0.593 }, { "start": 20282.72, "end": 20282.72, "probability": 0.1559 }, { "start": 20282.8, "end": 20282.84, "probability": 0.0066 }, { "start": 20282.84, "end": 20282.84, "probability": 0.3665 }, { "start": 20282.84, "end": 20282.84, "probability": 0.0677 }, { "start": 20283.12, "end": 20283.24, "probability": 0.1683 }, { "start": 20283.34, "end": 20284.7, "probability": 0.8779 }, { "start": 20285.06, "end": 20286.94, "probability": 0.8476 }, { "start": 20287.04, "end": 20287.24, "probability": 0.4795 }, { "start": 20287.3, "end": 20288.68, "probability": 0.7683 }, { "start": 20288.78, "end": 20290.36, "probability": 0.121 }, { "start": 20290.5, "end": 20290.7, "probability": 0.0256 }, { "start": 20290.7, "end": 20291.62, "probability": 0.3529 }, { "start": 20291.62, "end": 20291.62, "probability": 0.5138 }, { "start": 20291.62, "end": 20292.58, "probability": 0.5188 }, { "start": 20293.68, "end": 20294.2, "probability": 0.5785 }, { "start": 20294.5, "end": 20294.7, "probability": 0.218 }, { "start": 20294.84, "end": 20294.84, "probability": 0.5223 }, { "start": 20295.2, "end": 20295.26, "probability": 0.6034 }, { "start": 20295.26, "end": 20295.98, "probability": 0.6789 }, { "start": 20296.4, "end": 20297.94, "probability": 0.0483 }, { "start": 20297.94, "end": 20303.02, "probability": 0.1094 }, { "start": 20303.5, "end": 20305.08, "probability": 0.2431 }, { "start": 20306.36, "end": 20307.69, "probability": 0.2863 }, { "start": 20308.5, "end": 20308.58, "probability": 0.164 }, { "start": 20308.78, "end": 20309.3, "probability": 0.0973 }, { "start": 20309.63, "end": 20310.33, "probability": 0.0796 }, { "start": 20311.24, "end": 20314.68, "probability": 0.0113 }, { "start": 20314.88, "end": 20316.5, "probability": 0.0021 }, { "start": 20316.5, "end": 20321.14, "probability": 0.0624 }, { "start": 20321.54, "end": 20322.6, "probability": 0.242 }, { "start": 20322.68, "end": 20326.38, "probability": 0.0614 }, { "start": 20326.8, "end": 20327.92, "probability": 0.181 }, { "start": 20329.42, "end": 20330.98, "probability": 0.4645 }, { "start": 20352.0, "end": 20352.0, "probability": 0.0 }, { "start": 20352.0, "end": 20352.0, "probability": 0.0 }, { "start": 20352.0, "end": 20352.0, "probability": 0.0 }, { "start": 20352.0, "end": 20352.0, "probability": 0.0 }, { "start": 20352.0, "end": 20352.0, "probability": 0.0 }, { "start": 20352.0, "end": 20352.0, "probability": 0.0 }, { "start": 20352.0, "end": 20352.0, "probability": 0.0 }, { "start": 20352.0, "end": 20352.0, "probability": 0.0 }, { "start": 20352.0, "end": 20352.0, "probability": 0.0 }, { "start": 20352.0, "end": 20352.0, "probability": 0.0 }, { "start": 20352.0, "end": 20352.0, "probability": 0.0 }, { "start": 20352.0, "end": 20352.0, "probability": 0.0 }, { "start": 20352.0, "end": 20352.0, "probability": 0.0 }, { "start": 20352.0, "end": 20352.0, "probability": 0.0 }, { "start": 20352.0, "end": 20352.0, "probability": 0.0 }, { "start": 20352.0, "end": 20352.0, "probability": 0.0 }, { "start": 20352.0, "end": 20352.0, "probability": 0.0 }, { "start": 20352.0, "end": 20352.0, "probability": 0.0 }, { "start": 20352.0, "end": 20352.0, "probability": 0.0 }, { "start": 20352.0, "end": 20352.0, "probability": 0.0 }, { "start": 20352.0, "end": 20352.0, "probability": 0.0 }, { "start": 20352.0, "end": 20352.0, "probability": 0.0 }, { "start": 20352.0, "end": 20352.0, "probability": 0.0 }, { "start": 20352.0, "end": 20352.0, "probability": 0.0 }, { "start": 20352.0, "end": 20352.0, "probability": 0.0 }, { "start": 20352.0, "end": 20352.0, "probability": 0.0 }, { "start": 20352.0, "end": 20352.0, "probability": 0.0 }, { "start": 20352.56, "end": 20354.14, "probability": 0.2048 }, { "start": 20354.14, "end": 20355.22, "probability": 0.8376 }, { "start": 20355.38, "end": 20357.38, "probability": 0.882 }, { "start": 20357.9, "end": 20361.5, "probability": 0.7953 }, { "start": 20361.6, "end": 20366.76, "probability": 0.7798 }, { "start": 20367.04, "end": 20367.66, "probability": 0.1562 }, { "start": 20367.9, "end": 20369.58, "probability": 0.4589 }, { "start": 20370.56, "end": 20371.62, "probability": 0.2799 }, { "start": 20372.17, "end": 20372.92, "probability": 0.2015 }, { "start": 20372.92, "end": 20374.58, "probability": 0.2848 }, { "start": 20374.86, "end": 20378.92, "probability": 0.9771 }, { "start": 20378.92, "end": 20381.94, "probability": 0.999 }, { "start": 20382.2, "end": 20384.76, "probability": 0.8158 }, { "start": 20385.02, "end": 20388.42, "probability": 0.8905 }, { "start": 20388.58, "end": 20389.22, "probability": 0.5681 }, { "start": 20389.4, "end": 20391.52, "probability": 0.4678 }, { "start": 20391.68, "end": 20392.76, "probability": 0.8568 }, { "start": 20402.28, "end": 20402.28, "probability": 0.0684 }, { "start": 20402.28, "end": 20403.18, "probability": 0.0168 }, { "start": 20404.22, "end": 20404.68, "probability": 0.0671 }, { "start": 20405.86, "end": 20405.86, "probability": 0.1049 }, { "start": 20407.06, "end": 20411.02, "probability": 0.7601 }, { "start": 20411.24, "end": 20412.36, "probability": 0.4836 }, { "start": 20413.02, "end": 20416.34, "probability": 0.9653 }, { "start": 20416.42, "end": 20417.44, "probability": 0.9971 }, { "start": 20417.5, "end": 20418.42, "probability": 0.8997 }, { "start": 20419.06, "end": 20419.22, "probability": 0.635 }, { "start": 20419.82, "end": 20421.16, "probability": 0.8818 }, { "start": 20421.42, "end": 20425.5, "probability": 0.9566 }, { "start": 20425.62, "end": 20429.86, "probability": 0.8055 }, { "start": 20430.08, "end": 20431.42, "probability": 0.9459 }, { "start": 20431.74, "end": 20433.86, "probability": 0.9172 }, { "start": 20434.2, "end": 20436.28, "probability": 0.9937 }, { "start": 20436.54, "end": 20437.78, "probability": 0.933 }, { "start": 20437.84, "end": 20438.94, "probability": 0.0096 }, { "start": 20439.88, "end": 20439.88, "probability": 0.1218 }, { "start": 20439.88, "end": 20441.14, "probability": 0.3677 }, { "start": 20441.88, "end": 20442.86, "probability": 0.6136 }, { "start": 20443.4, "end": 20445.74, "probability": 0.9049 }, { "start": 20446.28, "end": 20449.4, "probability": 0.9907 }, { "start": 20449.54, "end": 20452.9, "probability": 0.4688 }, { "start": 20453.44, "end": 20456.0, "probability": 0.3098 }, { "start": 20456.44, "end": 20456.48, "probability": 0.0638 }, { "start": 20456.48, "end": 20458.52, "probability": 0.2367 }, { "start": 20460.12, "end": 20462.32, "probability": 0.8455 }, { "start": 20462.58, "end": 20465.43, "probability": 0.0239 }, { "start": 20466.49, "end": 20466.84, "probability": 0.1287 }, { "start": 20466.84, "end": 20468.62, "probability": 0.7542 }, { "start": 20469.04, "end": 20471.2, "probability": 0.9217 }, { "start": 20471.82, "end": 20475.4, "probability": 0.9276 }, { "start": 20476.16, "end": 20477.6, "probability": 0.0389 }, { "start": 20477.78, "end": 20479.8, "probability": 0.6392 }, { "start": 20479.84, "end": 20482.44, "probability": 0.5874 }, { "start": 20483.16, "end": 20485.46, "probability": 0.2873 }, { "start": 20485.46, "end": 20485.5, "probability": 0.3248 }, { "start": 20485.54, "end": 20485.61, "probability": 0.0325 }, { "start": 20485.64, "end": 20486.08, "probability": 0.6505 }, { "start": 20486.34, "end": 20488.08, "probability": 0.8539 }, { "start": 20489.12, "end": 20491.46, "probability": 0.9885 }, { "start": 20491.94, "end": 20492.92, "probability": 0.8655 }, { "start": 20492.92, "end": 20493.66, "probability": 0.3567 }, { "start": 20493.68, "end": 20495.02, "probability": 0.2537 }, { "start": 20495.02, "end": 20497.18, "probability": 0.8212 }, { "start": 20497.66, "end": 20501.2, "probability": 0.8926 }, { "start": 20501.52, "end": 20505.92, "probability": 0.9633 }, { "start": 20505.92, "end": 20505.94, "probability": 0.5806 }, { "start": 20505.94, "end": 20506.04, "probability": 0.0477 }, { "start": 20507.14, "end": 20507.24, "probability": 0.0019 }, { "start": 20507.24, "end": 20511.76, "probability": 0.6488 }, { "start": 20512.56, "end": 20514.42, "probability": 0.2516 }, { "start": 20514.48, "end": 20518.44, "probability": 0.8082 }, { "start": 20518.88, "end": 20521.82, "probability": 0.5604 }, { "start": 20522.0, "end": 20523.4, "probability": 0.8259 }, { "start": 20523.76, "end": 20524.3, "probability": 0.2441 }, { "start": 20524.3, "end": 20528.64, "probability": 0.9955 }, { "start": 20528.64, "end": 20534.18, "probability": 0.9963 }, { "start": 20534.74, "end": 20537.88, "probability": 0.9424 }, { "start": 20538.0, "end": 20539.1, "probability": 0.9764 }, { "start": 20539.24, "end": 20540.56, "probability": 0.9799 }, { "start": 20540.76, "end": 20542.58, "probability": 0.981 }, { "start": 20542.94, "end": 20544.68, "probability": 0.9951 }, { "start": 20545.26, "end": 20547.1, "probability": 0.9298 }, { "start": 20547.62, "end": 20549.62, "probability": 0.994 }, { "start": 20549.9, "end": 20551.06, "probability": 0.6265 }, { "start": 20551.48, "end": 20553.44, "probability": 0.4928 }, { "start": 20553.46, "end": 20555.8, "probability": 0.4582 }, { "start": 20555.8, "end": 20557.12, "probability": 0.5712 }, { "start": 20557.12, "end": 20558.33, "probability": 0.3372 }, { "start": 20558.8, "end": 20558.92, "probability": 0.3111 }, { "start": 20559.02, "end": 20561.12, "probability": 0.7899 }, { "start": 20561.48, "end": 20563.81, "probability": 0.0796 }, { "start": 20564.09, "end": 20565.39, "probability": 0.0941 }, { "start": 20567.2, "end": 20572.42, "probability": 0.7255 }, { "start": 20574.92, "end": 20575.5, "probability": 0.0196 }, { "start": 20575.9, "end": 20579.54, "probability": 0.1885 }, { "start": 20579.54, "end": 20583.66, "probability": 0.2718 }, { "start": 20583.9, "end": 20585.08, "probability": 0.2777 }, { "start": 20585.36, "end": 20585.8, "probability": 0.4376 }, { "start": 20587.49, "end": 20589.1, "probability": 0.1988 }, { "start": 20589.44, "end": 20592.32, "probability": 0.347 }, { "start": 20593.26, "end": 20594.22, "probability": 0.1446 }, { "start": 20595.5, "end": 20596.14, "probability": 0.0064 }, { "start": 20596.76, "end": 20601.54, "probability": 0.1378 }, { "start": 20601.54, "end": 20601.94, "probability": 0.2757 }, { "start": 20602.06, "end": 20602.68, "probability": 0.1495 }, { "start": 20603.62, "end": 20605.04, "probability": 0.0229 }, { "start": 20606.9, "end": 20607.16, "probability": 0.0613 }, { "start": 20607.22, "end": 20607.22, "probability": 0.1696 }, { "start": 20607.22, "end": 20607.93, "probability": 0.0619 }, { "start": 20608.8, "end": 20611.54, "probability": 0.0845 }, { "start": 20663.0, "end": 20663.0, "probability": 0.0 }, { "start": 20663.0, "end": 20663.0, "probability": 0.0 }, { "start": 20663.0, "end": 20663.0, "probability": 0.0 }, { "start": 20663.0, "end": 20663.0, "probability": 0.0 }, { "start": 20663.0, "end": 20663.0, "probability": 0.0 }, { "start": 20663.0, "end": 20663.0, "probability": 0.0 }, { "start": 20663.0, "end": 20663.0, "probability": 0.0 }, { "start": 20663.0, "end": 20663.0, "probability": 0.0 }, { "start": 20663.0, "end": 20663.0, "probability": 0.0 }, { "start": 20663.0, "end": 20663.0, "probability": 0.0 }, { "start": 20663.0, "end": 20663.0, "probability": 0.0 }, { "start": 20663.0, "end": 20663.0, "probability": 0.0 }, { "start": 20663.0, "end": 20663.0, "probability": 0.0 }, { "start": 20663.0, "end": 20663.0, "probability": 0.0 }, { "start": 20663.0, "end": 20663.0, "probability": 0.0 }, { "start": 20663.0, "end": 20663.0, "probability": 0.0 }, { "start": 20663.0, "end": 20663.0, "probability": 0.0 }, { "start": 20663.0, "end": 20663.0, "probability": 0.0 }, { "start": 20663.14, "end": 20663.5, "probability": 0.2404 }, { "start": 20663.5, "end": 20663.85, "probability": 0.5967 }, { "start": 20665.0, "end": 20667.12, "probability": 0.0424 }, { "start": 20667.82, "end": 20671.68, "probability": 0.2796 }, { "start": 20676.11, "end": 20679.4, "probability": 0.6881 }, { "start": 20679.4, "end": 20680.3, "probability": 0.8188 }, { "start": 20680.76, "end": 20682.52, "probability": 0.8079 }, { "start": 20682.64, "end": 20683.32, "probability": 0.4835 }, { "start": 20683.88, "end": 20685.08, "probability": 0.2493 }, { "start": 20685.58, "end": 20686.18, "probability": 0.6111 }, { "start": 20686.9, "end": 20687.58, "probability": 0.9556 }, { "start": 20687.82, "end": 20688.6, "probability": 0.5738 }, { "start": 20689.42, "end": 20690.24, "probability": 0.4781 }, { "start": 20691.12, "end": 20692.6, "probability": 0.5859 }, { "start": 20692.8, "end": 20694.52, "probability": 0.0317 }, { "start": 20701.1, "end": 20702.1, "probability": 0.0293 }, { "start": 20705.46, "end": 20713.66, "probability": 0.3387 }, { "start": 20714.34, "end": 20716.1, "probability": 0.2611 }, { "start": 20716.56, "end": 20717.94, "probability": 0.56 }, { "start": 20718.82, "end": 20722.06, "probability": 0.0805 }, { "start": 20722.06, "end": 20722.06, "probability": 0.1812 }, { "start": 20722.34, "end": 20722.84, "probability": 0.1989 }, { "start": 20722.86, "end": 20723.26, "probability": 0.0512 }, { "start": 20723.26, "end": 20723.33, "probability": 0.0614 }, { "start": 20785.0, "end": 20785.0, "probability": 0.0 }, { "start": 20785.0, "end": 20785.0, "probability": 0.0 }, { "start": 20785.0, "end": 20785.0, "probability": 0.0 }, { "start": 20785.0, "end": 20785.0, "probability": 0.0 }, { "start": 20785.0, "end": 20785.0, "probability": 0.0 }, { "start": 20785.0, "end": 20785.0, "probability": 0.0 }, { "start": 20785.0, "end": 20785.0, "probability": 0.0 }, { "start": 20785.0, "end": 20785.0, "probability": 0.0 }, { "start": 20785.0, "end": 20785.0, "probability": 0.0 }, { "start": 20785.0, "end": 20785.0, "probability": 0.0 }, { "start": 20785.0, "end": 20785.0, "probability": 0.0 }, { "start": 20785.0, "end": 20785.0, "probability": 0.0 }, { "start": 20785.0, "end": 20785.0, "probability": 0.0 }, { "start": 20785.0, "end": 20785.0, "probability": 0.0 }, { "start": 20785.0, "end": 20785.0, "probability": 0.0 }, { "start": 20785.0, "end": 20785.0, "probability": 0.0 }, { "start": 20785.0, "end": 20785.0, "probability": 0.0 }, { "start": 20785.0, "end": 20785.0, "probability": 0.0 }, { "start": 20785.0, "end": 20785.0, "probability": 0.0 }, { "start": 20785.0, "end": 20785.0, "probability": 0.0 }, { "start": 20785.0, "end": 20785.0, "probability": 0.0 }, { "start": 20785.0, "end": 20785.0, "probability": 0.0 }, { "start": 20785.22, "end": 20792.26, "probability": 0.6096 }, { "start": 20792.34, "end": 20792.72, "probability": 0.3274 }, { "start": 20792.78, "end": 20793.16, "probability": 0.0362 }, { "start": 20793.26, "end": 20795.02, "probability": 0.7367 }, { "start": 20795.24, "end": 20796.14, "probability": 0.6957 }, { "start": 20798.98, "end": 20801.0, "probability": 0.6577 }, { "start": 20801.06, "end": 20801.52, "probability": 0.4227 }, { "start": 20802.04, "end": 20803.1, "probability": 0.9692 }, { "start": 20909.0, "end": 20909.0, "probability": 0.0 }, { "start": 20909.0, "end": 20909.0, "probability": 0.0 }, { "start": 20909.0, "end": 20909.0, "probability": 0.0 }, { "start": 20909.0, "end": 20909.0, "probability": 0.0 }, { "start": 20909.0, "end": 20909.0, "probability": 0.0 }, { "start": 20909.0, "end": 20909.0, "probability": 0.0 }, { "start": 20909.0, "end": 20909.0, "probability": 0.0 }, { "start": 20909.0, "end": 20909.0, "probability": 0.0 }, { "start": 20909.0, "end": 20909.0, "probability": 0.0 }, { "start": 20909.0, "end": 20909.0, "probability": 0.0 }, { "start": 20909.0, "end": 20909.0, "probability": 0.0 }, { "start": 20909.0, "end": 20909.0, "probability": 0.0 }, { "start": 20909.0, "end": 20909.0, "probability": 0.0 }, { "start": 20909.0, "end": 20909.0, "probability": 0.0 }, { "start": 20909.0, "end": 20909.0, "probability": 0.0 }, { "start": 20909.0, "end": 20909.0, "probability": 0.0 }, { "start": 20909.0, "end": 20909.0, "probability": 0.0 }, { "start": 20909.0, "end": 20909.0, "probability": 0.0 }, { "start": 20909.0, "end": 20909.0, "probability": 0.0 }, { "start": 20909.0, "end": 20909.0, "probability": 0.0 }, { "start": 20909.0, "end": 20909.0, "probability": 0.0 }, { "start": 20909.0, "end": 20909.0, "probability": 0.0 }, { "start": 20909.0, "end": 20909.0, "probability": 0.0 }, { "start": 20909.0, "end": 20909.0, "probability": 0.0 }, { "start": 20909.0, "end": 20909.0, "probability": 0.0 }, { "start": 20909.0, "end": 20909.0, "probability": 0.0 }, { "start": 20909.0, "end": 20909.0, "probability": 0.0 }, { "start": 20909.0, "end": 20909.0, "probability": 0.0 }, { "start": 20909.0, "end": 20909.0, "probability": 0.0 }, { "start": 20909.0, "end": 20909.0, "probability": 0.0 }, { "start": 20909.0, "end": 20909.0, "probability": 0.0 }, { "start": 20909.0, "end": 20909.0, "probability": 0.0 }, { "start": 20909.0, "end": 20909.0, "probability": 0.0 }, { "start": 20909.0, "end": 20909.0, "probability": 0.0 }, { "start": 20909.0, "end": 20909.0, "probability": 0.0 }, { "start": 20909.0, "end": 20909.0, "probability": 0.0 }, { "start": 20909.0, "end": 20909.0, "probability": 0.0 }, { "start": 20909.0, "end": 20909.0, "probability": 0.0 }, { "start": 20909.0, "end": 20909.0, "probability": 0.0 }, { "start": 20909.0, "end": 20909.0, "probability": 0.0 }, { "start": 20909.0, "end": 20909.0, "probability": 0.0 }, { "start": 20909.0, "end": 20909.0, "probability": 0.0 }, { "start": 20909.0, "end": 20909.0, "probability": 0.0 }, { "start": 20909.0, "end": 20909.0, "probability": 0.0 }, { "start": 20909.0, "end": 20909.0, "probability": 0.0 }, { "start": 20911.74, "end": 20912.92, "probability": 0.4407 }, { "start": 20913.0, "end": 20913.44, "probability": 0.4996 }, { "start": 20913.74, "end": 20916.32, "probability": 0.407 }, { "start": 20916.5, "end": 20916.5, "probability": 0.5827 }, { "start": 20916.52, "end": 20917.74, "probability": 0.2757 }, { "start": 20919.32, "end": 20920.9, "probability": 0.1794 }, { "start": 20921.0, "end": 20921.32, "probability": 0.5897 }, { "start": 20921.5, "end": 20921.92, "probability": 0.7241 }, { "start": 20922.04, "end": 20922.96, "probability": 0.9293 }, { "start": 20923.8, "end": 20924.28, "probability": 0.8709 }, { "start": 20924.44, "end": 20925.36, "probability": 0.5372 }, { "start": 20925.56, "end": 20927.34, "probability": 0.0743 }, { "start": 20927.34, "end": 20927.76, "probability": 0.3367 }, { "start": 20929.4, "end": 20930.12, "probability": 0.569 }, { "start": 20930.96, "end": 20931.46, "probability": 0.4721 }, { "start": 20931.46, "end": 20932.1, "probability": 0.2487 }, { "start": 20933.44, "end": 20936.14, "probability": 0.2198 }, { "start": 20936.7, "end": 20939.05, "probability": 0.4169 }, { "start": 20941.12, "end": 20942.93, "probability": 0.264 }, { "start": 20943.2, "end": 20943.32, "probability": 0.3535 }, { "start": 21032.0, "end": 21032.0, "probability": 0.0 }, { "start": 21032.0, "end": 21032.0, "probability": 0.0 }, { "start": 21032.0, "end": 21032.0, "probability": 0.0 }, { "start": 21032.0, "end": 21032.0, "probability": 0.0 }, { "start": 21032.0, "end": 21032.0, "probability": 0.0 }, { "start": 21032.0, "end": 21032.0, "probability": 0.0 }, { "start": 21032.0, "end": 21032.0, "probability": 0.0 }, { "start": 21032.0, "end": 21032.0, "probability": 0.0 }, { "start": 21032.0, "end": 21032.0, "probability": 0.0 }, { "start": 21032.0, "end": 21032.0, "probability": 0.0 }, { "start": 21032.0, "end": 21032.0, "probability": 0.0 }, { "start": 21032.0, "end": 21032.0, "probability": 0.0 }, { "start": 21032.0, "end": 21032.0, "probability": 0.0 }, { "start": 21032.0, "end": 21032.0, "probability": 0.0 }, { "start": 21032.0, "end": 21032.0, "probability": 0.0 }, { "start": 21032.0, "end": 21032.0, "probability": 0.0 }, { "start": 21032.0, "end": 21032.0, "probability": 0.0 }, { "start": 21032.0, "end": 21032.0, "probability": 0.0 }, { "start": 21032.0, "end": 21032.0, "probability": 0.0 }, { "start": 21032.0, "end": 21032.0, "probability": 0.0 }, { "start": 21032.0, "end": 21032.0, "probability": 0.0 }, { "start": 21032.0, "end": 21032.0, "probability": 0.0 }, { "start": 21032.0, "end": 21032.0, "probability": 0.0 }, { "start": 21032.0, "end": 21032.0, "probability": 0.0 }, { "start": 21032.0, "end": 21032.0, "probability": 0.0 }, { "start": 21032.0, "end": 21032.0, "probability": 0.0 }, { "start": 21032.0, "end": 21032.0, "probability": 0.0 }, { "start": 21032.0, "end": 21032.0, "probability": 0.0 }, { "start": 21032.0, "end": 21032.0, "probability": 0.0 }, { "start": 21032.0, "end": 21032.0, "probability": 0.0 }, { "start": 21032.0, "end": 21032.0, "probability": 0.0 }, { "start": 21032.0, "end": 21032.0, "probability": 0.0 }, { "start": 21032.06, "end": 21032.2, "probability": 0.0014 }, { "start": 21032.98, "end": 21036.04, "probability": 0.0611 }, { "start": 21036.18, "end": 21036.18, "probability": 0.0837 }, { "start": 21036.92, "end": 21040.54, "probability": 0.0842 }, { "start": 21040.54, "end": 21044.28, "probability": 0.0707 }, { "start": 21045.46, "end": 21046.36, "probability": 0.1072 }, { "start": 21050.34, "end": 21051.06, "probability": 0.367 }, { "start": 21054.58, "end": 21056.06, "probability": 0.0139 }, { "start": 21056.96, "end": 21056.96, "probability": 0.1024 }, { "start": 21056.96, "end": 21058.58, "probability": 0.3762 }, { "start": 21058.82, "end": 21061.86, "probability": 0.3992 }, { "start": 21199.0, "end": 21199.0, "probability": 0.0 }, { "start": 21199.0, "end": 21199.0, "probability": 0.0 }, { "start": 21199.0, "end": 21199.0, "probability": 0.0 }, { "start": 21199.0, "end": 21199.0, "probability": 0.0 }, { "start": 21199.0, "end": 21199.0, "probability": 0.0 }, { "start": 21199.0, "end": 21199.0, "probability": 0.0 }, { "start": 21199.0, "end": 21199.0, "probability": 0.0 }, { "start": 21199.0, "end": 21199.0, "probability": 0.0 }, { "start": 21199.0, "end": 21199.0, "probability": 0.0 }, { "start": 21199.0, "end": 21199.0, "probability": 0.0 }, { "start": 21199.0, "end": 21199.0, "probability": 0.0 }, { "start": 21199.0, "end": 21199.0, "probability": 0.0 }, { "start": 21199.0, "end": 21199.0, "probability": 0.0 }, { "start": 21199.0, "end": 21199.0, "probability": 0.0 }, { "start": 21199.0, "end": 21199.0, "probability": 0.0 }, { "start": 21199.0, "end": 21199.0, "probability": 0.0 }, { "start": 21199.0, "end": 21199.0, "probability": 0.0 }, { "start": 21199.0, "end": 21199.0, "probability": 0.0 }, { "start": 21199.0, "end": 21199.0, "probability": 0.0 }, { "start": 21199.0, "end": 21199.0, "probability": 0.0 }, { "start": 21199.0, "end": 21199.0, "probability": 0.0 }, { "start": 21199.0, "end": 21199.0, "probability": 0.0 }, { "start": 21199.0, "end": 21199.0, "probability": 0.0 }, { "start": 21199.0, "end": 21199.0, "probability": 0.0 }, { "start": 21199.0, "end": 21199.0, "probability": 0.0 }, { "start": 21199.0, "end": 21199.0, "probability": 0.0 }, { "start": 21199.0, "end": 21199.0, "probability": 0.0 }, { "start": 21199.0, "end": 21199.0, "probability": 0.0 }, { "start": 21199.0, "end": 21199.0, "probability": 0.0 }, { "start": 21199.0, "end": 21199.0, "probability": 0.0 }, { "start": 21199.0, "end": 21199.0, "probability": 0.0 }, { "start": 21199.0, "end": 21199.0, "probability": 0.0 }, { "start": 21199.0, "end": 21199.0, "probability": 0.0 }, { "start": 21199.0, "end": 21199.0, "probability": 0.0 }, { "start": 21199.0, "end": 21199.0, "probability": 0.0 }, { "start": 21199.0, "end": 21199.0, "probability": 0.0 }, { "start": 21199.0, "end": 21199.0, "probability": 0.0 }, { "start": 21199.0, "end": 21199.0, "probability": 0.0 }, { "start": 21199.0, "end": 21199.0, "probability": 0.0 }, { "start": 21199.0, "end": 21199.0, "probability": 0.0 }, { "start": 21199.0, "end": 21199.0, "probability": 0.0 }, { "start": 21199.0, "end": 21199.0, "probability": 0.0 }, { "start": 21199.0, "end": 21199.0, "probability": 0.0 }, { "start": 21199.08, "end": 21200.28, "probability": 0.2372 }, { "start": 21201.38, "end": 21203.54, "probability": 0.4929 }, { "start": 21204.26, "end": 21204.34, "probability": 0.0308 }, { "start": 21206.17, "end": 21209.92, "probability": 0.3443 }, { "start": 21210.68, "end": 21211.16, "probability": 0.9401 }, { "start": 21212.62, "end": 21212.84, "probability": 0.3865 }, { "start": 21324.0, "end": 21324.0, "probability": 0.0 }, { "start": 21324.0, "end": 21324.0, "probability": 0.0 }, { "start": 21324.0, "end": 21324.0, "probability": 0.0 }, { "start": 21324.0, "end": 21324.0, "probability": 0.0 }, { "start": 21324.0, "end": 21324.0, "probability": 0.0 }, { "start": 21324.0, "end": 21324.0, "probability": 0.0 }, { "start": 21324.0, "end": 21324.0, "probability": 0.0 }, { "start": 21324.0, "end": 21324.0, "probability": 0.0 }, { "start": 21324.0, "end": 21324.0, "probability": 0.0 }, { "start": 21324.0, "end": 21324.0, "probability": 0.0 }, { "start": 21324.0, "end": 21324.0, "probability": 0.0 }, { "start": 21324.0, "end": 21324.0, "probability": 0.0 }, { "start": 21324.0, "end": 21324.0, "probability": 0.0 }, { "start": 21324.0, "end": 21324.0, "probability": 0.0 }, { "start": 21324.0, "end": 21324.0, "probability": 0.0 }, { "start": 21324.0, "end": 21324.0, "probability": 0.0 }, { "start": 21324.0, "end": 21324.0, "probability": 0.0 }, { "start": 21324.0, "end": 21324.0, "probability": 0.0 }, { "start": 21324.0, "end": 21324.0, "probability": 0.0 }, { "start": 21324.0, "end": 21324.0, "probability": 0.0 }, { "start": 21324.0, "end": 21324.0, "probability": 0.0 }, { "start": 21324.0, "end": 21324.0, "probability": 0.0 }, { "start": 21324.0, "end": 21324.0, "probability": 0.0 }, { "start": 21324.0, "end": 21324.0, "probability": 0.0 }, { "start": 21324.0, "end": 21324.0, "probability": 0.0 }, { "start": 21324.0, "end": 21324.0, "probability": 0.0 }, { "start": 21324.0, "end": 21324.0, "probability": 0.0 }, { "start": 21324.0, "end": 21324.0, "probability": 0.0 }, { "start": 21324.34, "end": 21326.44, "probability": 0.2155 }, { "start": 21326.57, "end": 21327.12, "probability": 0.5936 }, { "start": 21327.18, "end": 21327.94, "probability": 0.605 }, { "start": 21328.46, "end": 21329.62, "probability": 0.1563 }, { "start": 21330.18, "end": 21332.54, "probability": 0.1143 }, { "start": 21332.88, "end": 21334.12, "probability": 0.5217 }, { "start": 21335.77, "end": 21338.62, "probability": 0.749 }, { "start": 21464.0, "end": 21464.0, "probability": 0.0 }, { "start": 21464.0, "end": 21464.0, "probability": 0.0 }, { "start": 21464.0, "end": 21464.0, "probability": 0.0 }, { "start": 21464.0, "end": 21464.0, "probability": 0.0 }, { "start": 21464.0, "end": 21464.0, "probability": 0.0 }, { "start": 21464.0, "end": 21464.0, "probability": 0.0 }, { "start": 21464.0, "end": 21464.0, "probability": 0.0 }, { "start": 21464.0, "end": 21464.0, "probability": 0.0 }, { "start": 21464.0, "end": 21464.0, "probability": 0.0 }, { "start": 21464.0, "end": 21464.0, "probability": 0.0 }, { "start": 21464.0, "end": 21464.0, "probability": 0.0 }, { "start": 21464.0, "end": 21464.0, "probability": 0.0 }, { "start": 21464.0, "end": 21464.0, "probability": 0.0 }, { "start": 21464.0, "end": 21464.0, "probability": 0.0 }, { "start": 21464.0, "end": 21464.0, "probability": 0.0 }, { "start": 21464.0, "end": 21464.0, "probability": 0.0 }, { "start": 21464.0, "end": 21464.0, "probability": 0.0 }, { "start": 21464.0, "end": 21464.0, "probability": 0.0 }, { "start": 21464.0, "end": 21464.0, "probability": 0.0 }, { "start": 21464.0, "end": 21464.0, "probability": 0.0 }, { "start": 21464.0, "end": 21464.0, "probability": 0.0 }, { "start": 21464.0, "end": 21464.0, "probability": 0.0 }, { "start": 21464.0, "end": 21464.0, "probability": 0.0 }, { "start": 21464.0, "end": 21464.0, "probability": 0.0 }, { "start": 21464.0, "end": 21464.0, "probability": 0.0 }, { "start": 21464.0, "end": 21464.0, "probability": 0.0 }, { "start": 21464.0, "end": 21464.0, "probability": 0.0 }, { "start": 21464.0, "end": 21464.0, "probability": 0.0 }, { "start": 21464.0, "end": 21464.0, "probability": 0.0 }, { "start": 21464.0, "end": 21464.0, "probability": 0.0 }, { "start": 21464.0, "end": 21464.0, "probability": 0.0 }, { "start": 21464.0, "end": 21464.0, "probability": 0.0 }, { "start": 21464.0, "end": 21464.0, "probability": 0.0 }, { "start": 21464.0, "end": 21464.0, "probability": 0.0 }, { "start": 21464.0, "end": 21464.0, "probability": 0.0 }, { "start": 21464.0, "end": 21464.0, "probability": 0.0 }, { "start": 21464.0, "end": 21464.0, "probability": 0.0 }, { "start": 21464.0, "end": 21464.0, "probability": 0.0 }, { "start": 21464.0, "end": 21464.0, "probability": 0.0 }, { "start": 21464.0, "end": 21464.0, "probability": 0.0 }, { "start": 21464.0, "end": 21464.0, "probability": 0.0 }, { "start": 21464.0, "end": 21464.0, "probability": 0.0 }, { "start": 21464.0, "end": 21464.0, "probability": 0.0 }, { "start": 21464.0, "end": 21464.0, "probability": 0.0 }, { "start": 21464.0, "end": 21464.0, "probability": 0.0 }, { "start": 21464.0, "end": 21464.0, "probability": 0.0 }, { "start": 21464.0, "end": 21464.0, "probability": 0.0 }, { "start": 21464.0, "end": 21464.0, "probability": 0.0 }, { "start": 21464.0, "end": 21464.0, "probability": 0.0 }, { "start": 21464.0, "end": 21464.0, "probability": 0.0 }, { "start": 21464.0, "end": 21464.0, "probability": 0.0 }, { "start": 21464.0, "end": 21464.0, "probability": 0.0 }, { "start": 21464.0, "end": 21464.0, "probability": 0.0 }, { "start": 21464.0, "end": 21464.0, "probability": 0.0 }, { "start": 21464.0, "end": 21464.0, "probability": 0.0 }, { "start": 21464.0, "end": 21464.0, "probability": 0.0 }, { "start": 21464.0, "end": 21464.0, "probability": 0.0 }, { "start": 21464.0, "end": 21464.0, "probability": 0.0 }, { "start": 21465.4, "end": 21470.9, "probability": 0.1415 }, { "start": 21470.9, "end": 21471.04, "probability": 0.3725 }, { "start": 21471.04, "end": 21473.24, "probability": 0.0495 }, { "start": 21474.94, "end": 21476.86, "probability": 0.0501 }, { "start": 21477.28, "end": 21479.16, "probability": 0.8297 }, { "start": 21479.62, "end": 21482.02, "probability": 0.1554 }, { "start": 21482.02, "end": 21482.02, "probability": 0.0693 }, { "start": 21482.02, "end": 21482.4, "probability": 0.3527 }, { "start": 21482.62, "end": 21483.42, "probability": 0.2099 }, { "start": 21486.88, "end": 21486.88, "probability": 0.2376 }, { "start": 21486.88, "end": 21487.36, "probability": 0.4028 }, { "start": 21601.0, "end": 21601.0, "probability": 0.0 }, { "start": 21601.0, "end": 21601.0, "probability": 0.0 }, { "start": 21601.0, "end": 21601.0, "probability": 0.0 }, { "start": 21601.0, "end": 21601.0, "probability": 0.0 }, { "start": 21601.0, "end": 21601.0, "probability": 0.0 }, { "start": 21601.0, "end": 21601.0, "probability": 0.0 }, { "start": 21601.0, "end": 21601.0, "probability": 0.0 }, { "start": 21601.0, "end": 21601.0, "probability": 0.0 }, { "start": 21601.0, "end": 21601.0, "probability": 0.0 }, { "start": 21601.0, "end": 21601.0, "probability": 0.0 }, { "start": 21601.0, "end": 21601.0, "probability": 0.0 }, { "start": 21601.0, "end": 21601.0, "probability": 0.0 }, { "start": 21601.0, "end": 21601.0, "probability": 0.0 }, { "start": 21601.0, "end": 21601.0, "probability": 0.0 }, { "start": 21601.0, "end": 21601.0, "probability": 0.0 }, { "start": 21601.0, "end": 21601.0, "probability": 0.0 }, { "start": 21601.0, "end": 21601.0, "probability": 0.0 }, { "start": 21601.0, "end": 21601.0, "probability": 0.0 }, { "start": 21601.0, "end": 21601.0, "probability": 0.0 }, { "start": 21601.0, "end": 21601.0, "probability": 0.0 }, { "start": 21601.0, "end": 21601.0, "probability": 0.0 }, { "start": 21601.0, "end": 21601.0, "probability": 0.0 }, { "start": 21601.0, "end": 21601.0, "probability": 0.0 }, { "start": 21601.0, "end": 21601.0, "probability": 0.0 }, { "start": 21601.0, "end": 21601.0, "probability": 0.0 }, { "start": 21601.0, "end": 21601.0, "probability": 0.0 }, { "start": 21601.0, "end": 21601.0, "probability": 0.0 }, { "start": 21601.0, "end": 21601.0, "probability": 0.0 }, { "start": 21601.0, "end": 21601.0, "probability": 0.0 }, { "start": 21601.0, "end": 21601.0, "probability": 0.0 }, { "start": 21601.0, "end": 21601.0, "probability": 0.0 }, { "start": 21601.0, "end": 21601.0, "probability": 0.0 }, { "start": 21601.0, "end": 21601.0, "probability": 0.0 }, { "start": 21601.0, "end": 21601.0, "probability": 0.0 }, { "start": 21601.0, "end": 21601.0, "probability": 0.0 }, { "start": 21601.0, "end": 21601.0, "probability": 0.0 }, { "start": 21602.36, "end": 21603.18, "probability": 0.2572 }, { "start": 21603.18, "end": 21603.18, "probability": 0.239 }, { "start": 21603.18, "end": 21603.18, "probability": 0.2711 }, { "start": 21603.18, "end": 21603.75, "probability": 0.7296 }, { "start": 21605.06, "end": 21606.86, "probability": 0.7894 }, { "start": 21607.18, "end": 21612.18, "probability": 0.9217 }, { "start": 21612.64, "end": 21613.84, "probability": 0.4528 }, { "start": 21613.9, "end": 21614.8, "probability": 0.9785 }, { "start": 21615.54, "end": 21616.16, "probability": 0.4406 }, { "start": 21620.92, "end": 21621.34, "probability": 0.0014 }, { "start": 21634.46, "end": 21635.58, "probability": 0.0099 }, { "start": 21648.81, "end": 21649.44, "probability": 0.1097 }, { "start": 21653.64, "end": 21654.7, "probability": 0.0376 }, { "start": 21662.34, "end": 21666.46, "probability": 0.0316 }, { "start": 21667.66, "end": 21668.86, "probability": 0.169 }, { "start": 21668.86, "end": 21669.1, "probability": 0.019 }, { "start": 21674.03, "end": 21675.88, "probability": 0.0678 }, { "start": 21676.02, "end": 21676.04, "probability": 0.0901 }, { "start": 21725.0, "end": 21725.0, "probability": 0.0 }, { "start": 21725.0, "end": 21725.0, "probability": 0.0 }, { "start": 21725.0, "end": 21725.0, "probability": 0.0 }, { "start": 21725.0, "end": 21725.0, "probability": 0.0 }, { "start": 21725.18, "end": 21725.48, "probability": 0.1405 }, { "start": 21725.62, "end": 21725.88, "probability": 0.0574 }, { "start": 21725.88, "end": 21727.08, "probability": 0.7352 }, { "start": 21727.22, "end": 21728.4, "probability": 0.0864 }, { "start": 21728.64, "end": 21729.54, "probability": 0.9953 }, { "start": 21730.26, "end": 21730.88, "probability": 0.7575 }, { "start": 21731.4, "end": 21733.74, "probability": 0.9867 }, { "start": 21743.08, "end": 21744.84, "probability": 0.8117 }, { "start": 21745.54, "end": 21746.98, "probability": 0.7255 }, { "start": 21756.7, "end": 21758.96, "probability": 0.9827 }, { "start": 21758.96, "end": 21761.4, "probability": 0.9985 }, { "start": 21762.38, "end": 21764.56, "probability": 0.9994 }, { "start": 21765.3, "end": 21768.9, "probability": 0.9988 }, { "start": 21769.8, "end": 21771.86, "probability": 0.9669 }, { "start": 21772.46, "end": 21773.52, "probability": 0.7996 }, { "start": 21773.98, "end": 21777.0, "probability": 0.9734 }, { "start": 21777.78, "end": 21781.86, "probability": 0.9709 }, { "start": 21782.6, "end": 21784.24, "probability": 0.9753 }, { "start": 21784.84, "end": 21787.3, "probability": 0.9905 }, { "start": 21787.98, "end": 21790.6, "probability": 0.9878 }, { "start": 21791.22, "end": 21795.66, "probability": 0.9938 }, { "start": 21796.44, "end": 21796.88, "probability": 0.3474 }, { "start": 21796.92, "end": 21798.06, "probability": 0.9127 }, { "start": 21798.38, "end": 21798.92, "probability": 0.9505 }, { "start": 21799.26, "end": 21802.04, "probability": 0.9971 }, { "start": 21802.04, "end": 21804.82, "probability": 0.9997 }, { "start": 21805.9, "end": 21810.74, "probability": 0.9536 }, { "start": 21810.94, "end": 21812.34, "probability": 0.9823 }, { "start": 21812.88, "end": 21813.82, "probability": 0.7575 }, { "start": 21814.32, "end": 21817.3, "probability": 0.9666 }, { "start": 21817.74, "end": 21821.22, "probability": 0.9836 }, { "start": 21821.22, "end": 21825.1, "probability": 0.9849 }, { "start": 21825.72, "end": 21831.32, "probability": 0.9831 }, { "start": 21832.7, "end": 21835.3, "probability": 0.914 }, { "start": 21837.04, "end": 21840.88, "probability": 0.9424 }, { "start": 21842.08, "end": 21843.32, "probability": 0.9761 }, { "start": 21844.7, "end": 21847.8, "probability": 0.9969 }, { "start": 21848.3, "end": 21848.9, "probability": 0.9976 }, { "start": 21849.44, "end": 21852.62, "probability": 0.9774 }, { "start": 21852.62, "end": 21856.98, "probability": 0.9978 }, { "start": 21859.01, "end": 21861.77, "probability": 0.9915 }, { "start": 21863.0, "end": 21868.22, "probability": 0.9858 }, { "start": 21868.52, "end": 21871.8, "probability": 0.9654 }, { "start": 21871.8, "end": 21876.04, "probability": 0.9843 }, { "start": 21876.62, "end": 21881.42, "probability": 0.9829 }, { "start": 21881.72, "end": 21882.86, "probability": 0.7296 }, { "start": 21883.52, "end": 21883.9, "probability": 0.4772 }, { "start": 21883.9, "end": 21884.42, "probability": 0.9249 }, { "start": 21886.24, "end": 21889.74, "probability": 0.7013 }, { "start": 21890.22, "end": 21892.47, "probability": 0.9427 }, { "start": 21893.26, "end": 21899.34, "probability": 0.9033 }, { "start": 21900.08, "end": 21901.24, "probability": 0.9355 }, { "start": 21901.62, "end": 21902.78, "probability": 0.9492 }, { "start": 21902.9, "end": 21904.38, "probability": 0.8765 }, { "start": 21905.08, "end": 21905.68, "probability": 0.8805 }, { "start": 21905.74, "end": 21906.38, "probability": 0.8355 }, { "start": 21906.52, "end": 21909.38, "probability": 0.7703 }, { "start": 21910.12, "end": 21917.32, "probability": 0.9714 }, { "start": 21917.64, "end": 21918.66, "probability": 0.9889 }, { "start": 21918.84, "end": 21919.94, "probability": 0.9321 }, { "start": 21921.06, "end": 21923.34, "probability": 0.9408 }, { "start": 21923.88, "end": 21924.62, "probability": 0.6959 }, { "start": 21925.4, "end": 21929.46, "probability": 0.979 }, { "start": 21929.68, "end": 21931.34, "probability": 0.9854 }, { "start": 21931.42, "end": 21931.86, "probability": 0.6142 }, { "start": 21932.1, "end": 21932.5, "probability": 0.8272 }, { "start": 21932.84, "end": 21936.28, "probability": 0.9917 }, { "start": 21936.82, "end": 21938.16, "probability": 0.9374 }, { "start": 21938.76, "end": 21940.98, "probability": 0.9375 }, { "start": 21941.18, "end": 21943.14, "probability": 0.9674 }, { "start": 21943.84, "end": 21945.32, "probability": 0.9963 }, { "start": 21945.4, "end": 21951.38, "probability": 0.9754 }, { "start": 21951.92, "end": 21957.12, "probability": 0.9826 }, { "start": 21957.64, "end": 21959.7, "probability": 0.9798 }, { "start": 21960.14, "end": 21960.91, "probability": 0.9863 }, { "start": 21961.02, "end": 21961.7, "probability": 0.5728 }, { "start": 21962.26, "end": 21964.86, "probability": 0.8281 }, { "start": 21965.24, "end": 21967.22, "probability": 0.9603 }, { "start": 21967.28, "end": 21968.28, "probability": 0.6804 }, { "start": 21968.36, "end": 21970.14, "probability": 0.8127 }, { "start": 21970.22, "end": 21971.08, "probability": 0.8762 }, { "start": 21971.86, "end": 21974.96, "probability": 0.9921 }, { "start": 21975.5, "end": 21976.12, "probability": 0.9847 }, { "start": 21979.4, "end": 21982.66, "probability": 0.9666 }, { "start": 21984.44, "end": 21987.26, "probability": 0.9984 }, { "start": 21987.26, "end": 21990.74, "probability": 0.9945 }, { "start": 21991.22, "end": 21993.84, "probability": 0.9917 }, { "start": 21994.42, "end": 21995.5, "probability": 0.5035 }, { "start": 21995.64, "end": 21999.3, "probability": 0.9759 }, { "start": 22000.58, "end": 22004.26, "probability": 0.9926 }, { "start": 22004.8, "end": 22005.22, "probability": 0.8187 }, { "start": 22006.06, "end": 22009.52, "probability": 0.9753 }, { "start": 22010.3, "end": 22015.86, "probability": 0.998 }, { "start": 22016.68, "end": 22020.88, "probability": 0.9961 }, { "start": 22021.44, "end": 22022.04, "probability": 0.6105 }, { "start": 22022.26, "end": 22025.46, "probability": 0.9899 }, { "start": 22025.66, "end": 22026.49, "probability": 0.9593 }, { "start": 22026.72, "end": 22030.26, "probability": 0.9912 }, { "start": 22030.82, "end": 22034.5, "probability": 0.9966 }, { "start": 22034.9, "end": 22038.36, "probability": 0.9985 }, { "start": 22038.48, "end": 22038.9, "probability": 0.0795 }, { "start": 22039.48, "end": 22040.62, "probability": 0.9736 }, { "start": 22040.98, "end": 22042.2, "probability": 0.9927 }, { "start": 22042.7, "end": 22044.76, "probability": 0.6265 }, { "start": 22044.88, "end": 22046.12, "probability": 0.838 }, { "start": 22046.22, "end": 22049.0, "probability": 0.9238 }, { "start": 22049.62, "end": 22050.43, "probability": 0.967 }, { "start": 22051.18, "end": 22059.14, "probability": 0.9741 }, { "start": 22059.48, "end": 22060.96, "probability": 0.8368 }, { "start": 22061.58, "end": 22062.48, "probability": 0.9058 }, { "start": 22062.52, "end": 22069.64, "probability": 0.9839 }, { "start": 22069.96, "end": 22073.22, "probability": 0.9975 }, { "start": 22074.48, "end": 22079.42, "probability": 0.9284 }, { "start": 22080.04, "end": 22080.82, "probability": 0.9648 }, { "start": 22080.9, "end": 22083.34, "probability": 0.9958 }, { "start": 22084.26, "end": 22088.36, "probability": 0.9083 }, { "start": 22088.88, "end": 22090.8, "probability": 0.9907 }, { "start": 22090.96, "end": 22098.54, "probability": 0.9668 }, { "start": 22098.64, "end": 22102.15, "probability": 0.9653 }, { "start": 22103.4, "end": 22106.22, "probability": 0.8833 }, { "start": 22107.0, "end": 22110.92, "probability": 0.9811 }, { "start": 22111.34, "end": 22118.47, "probability": 0.9877 }, { "start": 22119.86, "end": 22124.64, "probability": 0.9934 }, { "start": 22124.98, "end": 22126.32, "probability": 0.9825 }, { "start": 22126.96, "end": 22131.42, "probability": 0.9897 }, { "start": 22132.84, "end": 22134.04, "probability": 0.3605 }, { "start": 22134.16, "end": 22136.87, "probability": 0.9718 }, { "start": 22137.38, "end": 22140.02, "probability": 0.9943 }, { "start": 22140.4, "end": 22145.0, "probability": 0.8328 }, { "start": 22145.42, "end": 22146.36, "probability": 0.9729 }, { "start": 22146.68, "end": 22147.52, "probability": 0.9623 }, { "start": 22147.68, "end": 22149.12, "probability": 0.7587 }, { "start": 22149.68, "end": 22150.7, "probability": 0.85 }, { "start": 22151.16, "end": 22152.42, "probability": 0.9723 }, { "start": 22152.62, "end": 22155.88, "probability": 0.9743 }, { "start": 22157.02, "end": 22158.74, "probability": 0.9668 }, { "start": 22159.06, "end": 22161.7, "probability": 0.9976 }, { "start": 22162.24, "end": 22163.34, "probability": 0.6212 }, { "start": 22163.64, "end": 22165.42, "probability": 0.9043 }, { "start": 22165.5, "end": 22165.78, "probability": 0.7678 }, { "start": 22165.88, "end": 22167.76, "probability": 0.9973 }, { "start": 22168.68, "end": 22170.72, "probability": 0.8461 }, { "start": 22170.9, "end": 22171.94, "probability": 0.7553 }, { "start": 22172.08, "end": 22173.98, "probability": 0.9502 }, { "start": 22173.98, "end": 22176.88, "probability": 0.9963 }, { "start": 22177.26, "end": 22178.04, "probability": 0.7055 }, { "start": 22178.2, "end": 22179.54, "probability": 0.8375 }, { "start": 22180.06, "end": 22184.52, "probability": 0.9772 }, { "start": 22184.98, "end": 22186.39, "probability": 0.9972 }, { "start": 22186.96, "end": 22189.36, "probability": 0.8594 }, { "start": 22189.46, "end": 22190.12, "probability": 0.7753 }, { "start": 22190.38, "end": 22191.48, "probability": 0.7322 }, { "start": 22192.34, "end": 22194.68, "probability": 0.8123 }, { "start": 22194.8, "end": 22200.56, "probability": 0.8477 }, { "start": 22202.1, "end": 22205.46, "probability": 0.9915 }, { "start": 22205.46, "end": 22209.04, "probability": 0.9286 }, { "start": 22209.7, "end": 22212.76, "probability": 0.993 }, { "start": 22213.34, "end": 22217.76, "probability": 0.9993 }, { "start": 22218.78, "end": 22219.64, "probability": 0.7285 }, { "start": 22219.96, "end": 22223.38, "probability": 0.8974 }, { "start": 22224.48, "end": 22225.18, "probability": 0.756 }, { "start": 22225.74, "end": 22228.84, "probability": 0.9854 }, { "start": 22228.9, "end": 22230.56, "probability": 0.9388 }, { "start": 22232.86, "end": 22234.96, "probability": 0.8553 }, { "start": 22235.8, "end": 22240.62, "probability": 0.9663 }, { "start": 22241.12, "end": 22247.84, "probability": 0.6035 }, { "start": 22247.86, "end": 22249.3, "probability": 0.9961 }, { "start": 22250.12, "end": 22250.88, "probability": 0.6574 }, { "start": 22250.9, "end": 22255.46, "probability": 0.9756 }, { "start": 22255.84, "end": 22258.58, "probability": 0.9983 }, { "start": 22259.16, "end": 22263.52, "probability": 0.7998 }, { "start": 22264.46, "end": 22265.84, "probability": 0.9557 }, { "start": 22266.56, "end": 22267.84, "probability": 0.9956 }, { "start": 22269.32, "end": 22269.86, "probability": 0.7202 }, { "start": 22270.74, "end": 22271.9, "probability": 0.8199 }, { "start": 22274.46, "end": 22277.42, "probability": 0.7583 }, { "start": 22277.7, "end": 22278.64, "probability": 0.8017 }, { "start": 22279.24, "end": 22282.17, "probability": 0.9961 }, { "start": 22282.48, "end": 22283.58, "probability": 0.7393 }, { "start": 22283.6, "end": 22286.64, "probability": 0.9265 }, { "start": 22286.68, "end": 22287.21, "probability": 0.7366 }, { "start": 22288.04, "end": 22289.96, "probability": 0.9619 }, { "start": 22290.6, "end": 22292.26, "probability": 0.9108 }, { "start": 22292.5, "end": 22294.44, "probability": 0.725 }, { "start": 22294.58, "end": 22295.97, "probability": 0.9824 }, { "start": 22296.14, "end": 22297.66, "probability": 0.8267 }, { "start": 22298.24, "end": 22299.58, "probability": 0.9884 }, { "start": 22300.02, "end": 22301.98, "probability": 0.9945 }, { "start": 22302.36, "end": 22304.72, "probability": 0.9862 }, { "start": 22305.04, "end": 22307.68, "probability": 0.9668 }, { "start": 22308.06, "end": 22311.2, "probability": 0.9774 }, { "start": 22311.48, "end": 22312.32, "probability": 0.947 }, { "start": 22312.64, "end": 22313.6, "probability": 0.8839 }, { "start": 22314.08, "end": 22316.08, "probability": 0.854 }, { "start": 22316.5, "end": 22319.84, "probability": 0.9942 }, { "start": 22320.28, "end": 22320.66, "probability": 0.4947 }, { "start": 22320.66, "end": 22322.7, "probability": 0.8495 }, { "start": 22322.78, "end": 22323.84, "probability": 0.8719 }, { "start": 22324.24, "end": 22324.82, "probability": 0.5631 }, { "start": 22325.14, "end": 22327.26, "probability": 0.7573 }, { "start": 22327.9, "end": 22328.54, "probability": 0.5967 }, { "start": 22329.46, "end": 22330.52, "probability": 0.9976 }, { "start": 22331.16, "end": 22334.42, "probability": 0.9538 }, { "start": 22334.78, "end": 22335.8, "probability": 0.9143 }, { "start": 22336.18, "end": 22338.3, "probability": 0.9691 }, { "start": 22338.58, "end": 22341.76, "probability": 0.9259 }, { "start": 22342.28, "end": 22346.56, "probability": 0.8901 }, { "start": 22346.86, "end": 22349.72, "probability": 0.8 }, { "start": 22350.34, "end": 22352.98, "probability": 0.8661 }, { "start": 22353.38, "end": 22355.08, "probability": 0.9948 }, { "start": 22356.04, "end": 22360.18, "probability": 0.9888 }, { "start": 22360.96, "end": 22365.08, "probability": 0.8035 }, { "start": 22365.48, "end": 22368.88, "probability": 0.9653 }, { "start": 22368.96, "end": 22371.22, "probability": 0.8643 }, { "start": 22371.66, "end": 22373.04, "probability": 0.9888 }, { "start": 22373.5, "end": 22374.28, "probability": 0.5573 }, { "start": 22374.36, "end": 22377.68, "probability": 0.9143 }, { "start": 22378.1, "end": 22380.14, "probability": 0.9293 }, { "start": 22380.48, "end": 22381.6, "probability": 0.9043 }, { "start": 22381.84, "end": 22382.0, "probability": 0.2936 }, { "start": 22382.12, "end": 22384.74, "probability": 0.1845 }, { "start": 22384.78, "end": 22385.82, "probability": 0.5289 }, { "start": 22386.24, "end": 22388.02, "probability": 0.4863 }, { "start": 22388.08, "end": 22390.64, "probability": 0.9961 }, { "start": 22391.08, "end": 22392.84, "probability": 0.9769 }, { "start": 22393.22, "end": 22394.74, "probability": 0.7262 }, { "start": 22394.9, "end": 22395.9, "probability": 0.536 }, { "start": 22396.12, "end": 22397.46, "probability": 0.6611 }, { "start": 22397.88, "end": 22398.74, "probability": 0.5682 }, { "start": 22398.9, "end": 22399.26, "probability": 0.6886 }, { "start": 22400.36, "end": 22402.78, "probability": 0.8724 }, { "start": 22402.78, "end": 22405.64, "probability": 0.9854 }, { "start": 22406.08, "end": 22408.24, "probability": 0.9879 }, { "start": 22408.24, "end": 22412.26, "probability": 0.9828 }, { "start": 22412.88, "end": 22418.52, "probability": 0.9446 }, { "start": 22418.98, "end": 22419.22, "probability": 0.7209 }, { "start": 22419.22, "end": 22419.32, "probability": 0.693 }, { "start": 22419.6, "end": 22422.0, "probability": 0.868 }, { "start": 22422.72, "end": 22423.62, "probability": 0.7053 }, { "start": 22424.42, "end": 22424.88, "probability": 0.2707 }, { "start": 22425.92, "end": 22428.56, "probability": 0.8516 }, { "start": 22429.02, "end": 22430.98, "probability": 0.9903 }, { "start": 22436.74, "end": 22437.98, "probability": 0.4772 }, { "start": 22439.72, "end": 22445.22, "probability": 0.9714 }, { "start": 22445.84, "end": 22448.82, "probability": 0.9939 }, { "start": 22448.88, "end": 22448.9, "probability": 0.0393 }, { "start": 22448.9, "end": 22449.47, "probability": 0.9979 }, { "start": 22450.56, "end": 22451.08, "probability": 0.768 }, { "start": 22452.78, "end": 22453.54, "probability": 0.7336 }, { "start": 22462.68, "end": 22462.9, "probability": 0.5108 }, { "start": 22464.62, "end": 22465.82, "probability": 0.8957 }, { "start": 22468.3, "end": 22469.9, "probability": 0.9875 }, { "start": 22470.58, "end": 22476.36, "probability": 0.4498 }, { "start": 22476.6, "end": 22476.76, "probability": 0.8804 }, { "start": 22479.0, "end": 22479.38, "probability": 0.8417 }, { "start": 22486.06, "end": 22493.3, "probability": 0.9738 }, { "start": 22493.94, "end": 22495.6, "probability": 0.9976 }, { "start": 22496.64, "end": 22498.0, "probability": 0.9927 }, { "start": 22501.38, "end": 22504.18, "probability": 0.9988 }, { "start": 22506.3, "end": 22508.02, "probability": 0.9266 }, { "start": 22508.84, "end": 22512.94, "probability": 0.9858 }, { "start": 22513.7, "end": 22516.86, "probability": 0.9881 }, { "start": 22517.66, "end": 22520.2, "probability": 0.8079 }, { "start": 22520.78, "end": 22522.32, "probability": 0.9917 }, { "start": 22523.22, "end": 22525.4, "probability": 0.9895 }, { "start": 22525.52, "end": 22526.1, "probability": 0.8699 }, { "start": 22527.76, "end": 22535.49, "probability": 0.9764 }, { "start": 22535.98, "end": 22536.5, "probability": 0.6959 }, { "start": 22536.66, "end": 22537.1, "probability": 0.2524 }, { "start": 22537.28, "end": 22537.97, "probability": 0.6798 }, { "start": 22538.64, "end": 22541.7, "probability": 0.9866 }, { "start": 22542.5, "end": 22543.44, "probability": 0.9489 }, { "start": 22543.92, "end": 22544.72, "probability": 0.8466 }, { "start": 22544.88, "end": 22546.64, "probability": 0.9967 }, { "start": 22547.46, "end": 22548.6, "probability": 0.8905 }, { "start": 22549.74, "end": 22555.44, "probability": 0.97 }, { "start": 22556.74, "end": 22557.66, "probability": 0.9798 }, { "start": 22558.54, "end": 22560.64, "probability": 0.7424 }, { "start": 22561.98, "end": 22567.14, "probability": 0.9685 }, { "start": 22569.7, "end": 22572.52, "probability": 0.9835 }, { "start": 22572.96, "end": 22576.18, "probability": 0.9492 }, { "start": 22577.0, "end": 22577.8, "probability": 0.6299 }, { "start": 22581.48, "end": 22582.42, "probability": 0.8787 }, { "start": 22584.36, "end": 22585.94, "probability": 0.7776 }, { "start": 22587.54, "end": 22588.16, "probability": 0.9447 }, { "start": 22588.36, "end": 22589.08, "probability": 0.976 }, { "start": 22589.12, "end": 22589.96, "probability": 0.9904 }, { "start": 22590.04, "end": 22590.76, "probability": 0.9828 }, { "start": 22590.88, "end": 22591.42, "probability": 0.9932 }, { "start": 22595.74, "end": 22597.26, "probability": 0.782 }, { "start": 22597.8, "end": 22598.9, "probability": 0.9985 }, { "start": 22602.68, "end": 22608.92, "probability": 0.9518 }, { "start": 22609.82, "end": 22610.96, "probability": 0.9995 }, { "start": 22611.96, "end": 22612.44, "probability": 0.9825 }, { "start": 22613.6, "end": 22614.52, "probability": 0.9993 }, { "start": 22615.1, "end": 22616.5, "probability": 0.9966 }, { "start": 22616.76, "end": 22617.32, "probability": 0.2987 }, { "start": 22617.44, "end": 22618.1, "probability": 0.7146 }, { "start": 22618.42, "end": 22619.2, "probability": 0.7677 }, { "start": 22620.4, "end": 22621.54, "probability": 0.9368 }, { "start": 22622.4, "end": 22624.76, "probability": 0.9672 }, { "start": 22625.8, "end": 22628.92, "probability": 0.9633 }, { "start": 22631.88, "end": 22634.36, "probability": 0.8737 }, { "start": 22636.32, "end": 22637.34, "probability": 0.6392 }, { "start": 22637.52, "end": 22638.38, "probability": 0.6622 }, { "start": 22638.38, "end": 22640.44, "probability": 0.4625 }, { "start": 22641.6, "end": 22644.32, "probability": 0.9606 }, { "start": 22644.98, "end": 22645.92, "probability": 0.8731 }, { "start": 22646.54, "end": 22647.58, "probability": 0.9934 }, { "start": 22647.7, "end": 22649.06, "probability": 0.9647 }, { "start": 22649.22, "end": 22649.52, "probability": 0.5137 }, { "start": 22650.02, "end": 22650.39, "probability": 0.9824 }, { "start": 22658.92, "end": 22661.4, "probability": 0.9524 }, { "start": 22661.62, "end": 22664.46, "probability": 0.9658 }, { "start": 22665.56, "end": 22666.14, "probability": 0.7769 }, { "start": 22667.12, "end": 22669.84, "probability": 0.978 }, { "start": 22670.04, "end": 22670.04, "probability": 0.0634 }, { "start": 22670.04, "end": 22672.74, "probability": 0.8972 }, { "start": 22673.92, "end": 22674.4, "probability": 0.0359 }, { "start": 22675.73, "end": 22677.44, "probability": 0.0143 }, { "start": 22678.02, "end": 22678.88, "probability": 0.0467 }, { "start": 22680.24, "end": 22680.72, "probability": 0.1009 }, { "start": 22681.0, "end": 22681.74, "probability": 0.1629 }, { "start": 22682.52, "end": 22684.0, "probability": 0.261 }, { "start": 22685.8, "end": 22687.42, "probability": 0.1467 }, { "start": 22689.24, "end": 22693.08, "probability": 0.9677 }, { "start": 22693.68, "end": 22696.82, "probability": 0.9082 }, { "start": 22697.5, "end": 22700.62, "probability": 0.9749 }, { "start": 22701.78, "end": 22705.32, "probability": 0.9809 }, { "start": 22705.62, "end": 22706.58, "probability": 0.7435 }, { "start": 22707.12, "end": 22708.26, "probability": 0.8721 }, { "start": 22710.02, "end": 22711.5, "probability": 0.7299 }, { "start": 22714.58, "end": 22718.52, "probability": 0.9641 }, { "start": 22719.58, "end": 22721.66, "probability": 0.8153 }, { "start": 22722.3, "end": 22726.8, "probability": 0.751 }, { "start": 22727.98, "end": 22728.61, "probability": 0.543 }, { "start": 22729.16, "end": 22729.74, "probability": 0.8167 }, { "start": 22729.88, "end": 22730.32, "probability": 0.7939 }, { "start": 22730.76, "end": 22731.18, "probability": 0.641 }, { "start": 22731.72, "end": 22733.4, "probability": 0.7103 }, { "start": 22734.3, "end": 22739.1, "probability": 0.8399 }, { "start": 22739.78, "end": 22741.72, "probability": 0.9332 }, { "start": 22742.28, "end": 22745.06, "probability": 0.9109 }, { "start": 22745.4, "end": 22745.9, "probability": 0.8974 }, { "start": 22747.0, "end": 22748.24, "probability": 0.8906 }, { "start": 22749.12, "end": 22751.76, "probability": 0.9188 }, { "start": 22753.38, "end": 22758.26, "probability": 0.9893 }, { "start": 22759.68, "end": 22760.36, "probability": 0.7594 }, { "start": 22761.72, "end": 22765.08, "probability": 0.8374 }, { "start": 22766.6, "end": 22767.96, "probability": 0.9855 }, { "start": 22768.74, "end": 22769.8, "probability": 0.749 }, { "start": 22770.66, "end": 22771.5, "probability": 0.8167 }, { "start": 22772.34, "end": 22775.16, "probability": 0.96 }, { "start": 22776.42, "end": 22779.35, "probability": 0.936 }, { "start": 22781.14, "end": 22781.56, "probability": 0.8372 }, { "start": 22785.42, "end": 22786.44, "probability": 0.5424 }, { "start": 22787.08, "end": 22792.42, "probability": 0.8759 }, { "start": 22792.58, "end": 22793.02, "probability": 0.8088 }, { "start": 22794.26, "end": 22795.18, "probability": 0.9354 }, { "start": 22796.48, "end": 22797.76, "probability": 0.7639 }, { "start": 22798.68, "end": 22799.84, "probability": 0.9242 }, { "start": 22801.54, "end": 22803.68, "probability": 0.9983 }, { "start": 22804.8, "end": 22806.46, "probability": 0.98 }, { "start": 22807.84, "end": 22812.3, "probability": 0.9959 }, { "start": 22812.46, "end": 22814.12, "probability": 0.9934 }, { "start": 22814.88, "end": 22815.3, "probability": 0.5739 }, { "start": 22815.3, "end": 22817.4, "probability": 0.6778 }, { "start": 22817.48, "end": 22821.16, "probability": 0.9327 }, { "start": 22821.34, "end": 22822.21, "probability": 0.8884 }, { "start": 22822.8, "end": 22823.64, "probability": 0.8367 }, { "start": 22824.94, "end": 22826.1, "probability": 0.8087 }, { "start": 22826.4, "end": 22826.93, "probability": 0.7668 }, { "start": 22831.44, "end": 22834.04, "probability": 0.9941 }, { "start": 22835.58, "end": 22836.8, "probability": 0.9275 }, { "start": 22837.8, "end": 22838.26, "probability": 0.0725 }, { "start": 22839.16, "end": 22842.82, "probability": 0.0458 }, { "start": 22845.12, "end": 22845.22, "probability": 0.0008 }, { "start": 22846.96, "end": 22847.18, "probability": 0.0352 }, { "start": 22850.44, "end": 22851.38, "probability": 0.6608 }, { "start": 22853.0, "end": 22854.84, "probability": 0.0772 }, { "start": 22856.64, "end": 22857.61, "probability": 0.2588 }, { "start": 22861.67, "end": 22862.02, "probability": 0.1079 }, { "start": 22862.02, "end": 22862.3, "probability": 0.4326 }, { "start": 22863.28, "end": 22867.72, "probability": 0.6479 }, { "start": 22868.92, "end": 22874.46, "probability": 0.9893 }, { "start": 22875.38, "end": 22876.68, "probability": 0.0786 }, { "start": 22878.04, "end": 22879.72, "probability": 0.6649 }, { "start": 22880.48, "end": 22880.58, "probability": 0.9163 }, { "start": 22881.18, "end": 22884.82, "probability": 0.9918 }, { "start": 22884.98, "end": 22885.36, "probability": 0.8451 }, { "start": 22885.82, "end": 22888.42, "probability": 0.756 }, { "start": 22889.0, "end": 22890.16, "probability": 0.9873 }, { "start": 22891.66, "end": 22893.9, "probability": 0.9882 }, { "start": 22894.82, "end": 22896.58, "probability": 0.9202 }, { "start": 22897.6, "end": 22899.4, "probability": 0.9891 }, { "start": 22900.72, "end": 22901.24, "probability": 0.9751 }, { "start": 22904.6, "end": 22905.84, "probability": 0.8267 }, { "start": 22906.44, "end": 22906.96, "probability": 0.4676 }, { "start": 22907.58, "end": 22907.94, "probability": 0.1412 }, { "start": 22908.12, "end": 22909.6, "probability": 0.6817 }, { "start": 22911.26, "end": 22912.76, "probability": 0.8774 }, { "start": 22915.76, "end": 22917.5, "probability": 0.7262 }, { "start": 22917.82, "end": 22918.24, "probability": 0.9683 }, { "start": 22922.44, "end": 22922.92, "probability": 0.9398 }, { "start": 22924.22, "end": 22926.72, "probability": 0.8519 }, { "start": 22927.88, "end": 22929.32, "probability": 0.9941 }, { "start": 22929.46, "end": 22932.98, "probability": 0.8872 }, { "start": 22932.98, "end": 22935.4, "probability": 0.9296 }, { "start": 22936.84, "end": 22940.06, "probability": 0.7458 }, { "start": 22942.86, "end": 22944.13, "probability": 0.9985 }, { "start": 22947.06, "end": 22948.28, "probability": 0.988 }, { "start": 22948.96, "end": 22955.98, "probability": 0.8403 }, { "start": 22960.08, "end": 22961.08, "probability": 0.9189 }, { "start": 22962.9, "end": 22966.14, "probability": 0.9637 }, { "start": 22971.22, "end": 22973.02, "probability": 0.7564 }, { "start": 22975.71, "end": 22980.42, "probability": 0.9801 }, { "start": 22982.36, "end": 22986.98, "probability": 0.6885 }, { "start": 22988.46, "end": 22988.98, "probability": 0.7123 }, { "start": 22990.04, "end": 22990.5, "probability": 0.7054 }, { "start": 22990.98, "end": 22991.6, "probability": 0.5714 }, { "start": 22991.78, "end": 22992.94, "probability": 0.8554 }, { "start": 22995.48, "end": 22999.34, "probability": 0.989 }, { "start": 23000.76, "end": 23002.98, "probability": 0.8357 }, { "start": 23004.58, "end": 23005.26, "probability": 0.95 }, { "start": 23006.7, "end": 23007.14, "probability": 0.9578 }, { "start": 23007.7, "end": 23008.5, "probability": 0.5682 }, { "start": 23011.92, "end": 23013.1, "probability": 0.9971 }, { "start": 23014.54, "end": 23019.2, "probability": 0.9324 }, { "start": 23019.26, "end": 23019.32, "probability": 0.7454 }, { "start": 23019.42, "end": 23020.86, "probability": 0.973 }, { "start": 23020.94, "end": 23021.54, "probability": 0.3897 }, { "start": 23021.54, "end": 23022.1, "probability": 0.4608 }, { "start": 23022.86, "end": 23026.8, "probability": 0.5823 }, { "start": 23030.9, "end": 23033.48, "probability": 0.6661 }, { "start": 23035.1, "end": 23035.2, "probability": 0.0269 }, { "start": 23036.52, "end": 23039.2, "probability": 0.209 }, { "start": 23041.4, "end": 23044.27, "probability": 0.493 }, { "start": 23045.36, "end": 23046.06, "probability": 0.092 }, { "start": 23048.22, "end": 23048.78, "probability": 0.4583 }, { "start": 23049.8, "end": 23049.8, "probability": 0.031 }, { "start": 23049.8, "end": 23051.73, "probability": 0.7063 }, { "start": 23052.44, "end": 23055.51, "probability": 0.9052 }, { "start": 23055.75, "end": 23056.31, "probability": 0.6633 }, { "start": 23056.53, "end": 23057.97, "probability": 0.838 }, { "start": 23058.95, "end": 23060.71, "probability": 0.9706 }, { "start": 23061.81, "end": 23062.11, "probability": 0.6665 }, { "start": 23063.15, "end": 23064.43, "probability": 0.322 }, { "start": 23066.12, "end": 23071.09, "probability": 0.9727 }, { "start": 23071.47, "end": 23073.27, "probability": 0.9916 }, { "start": 23073.73, "end": 23074.18, "probability": 0.5696 }, { "start": 23075.25, "end": 23076.8, "probability": 0.5484 }, { "start": 23077.31, "end": 23078.33, "probability": 0.6042 }, { "start": 23079.11, "end": 23080.33, "probability": 0.6209 }, { "start": 23080.33, "end": 23082.11, "probability": 0.3844 }, { "start": 23082.31, "end": 23082.41, "probability": 0.9016 }, { "start": 23083.01, "end": 23083.77, "probability": 0.7246 }, { "start": 23084.95, "end": 23090.87, "probability": 0.0431 }, { "start": 23092.05, "end": 23096.83, "probability": 0.12 }, { "start": 23096.83, "end": 23098.13, "probability": 0.1189 }, { "start": 23098.45, "end": 23103.21, "probability": 0.0568 }, { "start": 23103.85, "end": 23109.73, "probability": 0.268 }, { "start": 23187.0, "end": 23187.0, "probability": 0.0 }, { "start": 23187.0, "end": 23187.0, "probability": 0.0 }, { "start": 23187.0, "end": 23187.0, "probability": 0.0 }, { "start": 23187.0, "end": 23187.0, "probability": 0.0 }, { "start": 23187.0, "end": 23187.0, "probability": 0.0 }, { "start": 23187.0, "end": 23187.0, "probability": 0.0 }, { "start": 23187.0, "end": 23187.0, "probability": 0.0 }, { "start": 23187.0, "end": 23187.0, "probability": 0.0 }, { "start": 23187.0, "end": 23187.0, "probability": 0.0 }, { "start": 23187.0, "end": 23187.0, "probability": 0.0 }, { "start": 23187.0, "end": 23187.0, "probability": 0.0 }, { "start": 23187.0, "end": 23187.0, "probability": 0.0 }, { "start": 23187.0, "end": 23187.0, "probability": 0.0 }, { "start": 23187.0, "end": 23187.0, "probability": 0.0 }, { "start": 23187.0, "end": 23187.0, "probability": 0.0 }, { "start": 23187.0, "end": 23187.0, "probability": 0.0 }, { "start": 23187.0, "end": 23187.0, "probability": 0.0 }, { "start": 23187.0, "end": 23187.0, "probability": 0.0 }, { "start": 23187.0, "end": 23187.0, "probability": 0.0 }, { "start": 23187.0, "end": 23187.0, "probability": 0.0 }, { "start": 23187.0, "end": 23187.0, "probability": 0.0 }, { "start": 23187.0, "end": 23187.0, "probability": 0.0 }, { "start": 23187.0, "end": 23187.0, "probability": 0.0 }, { "start": 23187.0, "end": 23187.0, "probability": 0.0 }, { "start": 23187.0, "end": 23187.0, "probability": 0.0 }, { "start": 23187.0, "end": 23187.0, "probability": 0.0 }, { "start": 23187.0, "end": 23187.0, "probability": 0.0 }, { "start": 23187.0, "end": 23187.0, "probability": 0.0 }, { "start": 23187.0, "end": 23187.0, "probability": 0.0 }, { "start": 23187.0, "end": 23187.0, "probability": 0.0 }, { "start": 23187.0, "end": 23187.0, "probability": 0.0 }, { "start": 23187.0, "end": 23187.0, "probability": 0.0 }, { "start": 23187.0, "end": 23187.0, "probability": 0.0 }, { "start": 23187.0, "end": 23187.0, "probability": 0.0 }, { "start": 23187.0, "end": 23187.0, "probability": 0.0 }, { "start": 23187.0, "end": 23187.0, "probability": 0.0 }, { "start": 23187.0, "end": 23187.0, "probability": 0.0 }, { "start": 23187.0, "end": 23187.0, "probability": 0.0 }, { "start": 23187.29, "end": 23188.12, "probability": 0.0418 }, { "start": 23188.54, "end": 23188.96, "probability": 0.0323 }, { "start": 23188.96, "end": 23188.96, "probability": 0.2332 }, { "start": 23188.96, "end": 23188.96, "probability": 0.0191 }, { "start": 23192.06, "end": 23193.16, "probability": 0.5002 }, { "start": 23194.14, "end": 23197.92, "probability": 0.0338 }, { "start": 23199.12, "end": 23200.82, "probability": 0.5468 }, { "start": 23201.34, "end": 23206.48, "probability": 0.2287 }, { "start": 23207.98, "end": 23211.85, "probability": 0.0922 }, { "start": 23212.28, "end": 23214.24, "probability": 0.1523 }, { "start": 23215.0, "end": 23219.4, "probability": 0.0773 }, { "start": 23319.0, "end": 23319.0, "probability": 0.0 }, { "start": 23319.0, "end": 23319.0, "probability": 0.0 }, { "start": 23319.0, "end": 23319.0, "probability": 0.0 }, { "start": 23319.0, "end": 23319.0, "probability": 0.0 }, { "start": 23319.0, "end": 23319.0, "probability": 0.0 }, { "start": 23319.0, "end": 23319.0, "probability": 0.0 }, { "start": 23319.0, "end": 23319.0, "probability": 0.0 }, { "start": 23319.0, "end": 23319.0, "probability": 0.0 }, { "start": 23319.0, "end": 23319.0, "probability": 0.0 }, { "start": 23319.0, "end": 23319.0, "probability": 0.0 }, { "start": 23319.0, "end": 23319.0, "probability": 0.0 }, { "start": 23319.0, "end": 23319.0, "probability": 0.0 }, { "start": 23319.0, "end": 23319.0, "probability": 0.0 }, { "start": 23319.0, "end": 23319.0, "probability": 0.0 }, { "start": 23319.0, "end": 23319.0, "probability": 0.0 }, { "start": 23319.0, "end": 23319.0, "probability": 0.0 }, { "start": 23319.0, "end": 23319.0, "probability": 0.0 }, { "start": 23319.0, "end": 23319.0, "probability": 0.0 }, { "start": 23319.0, "end": 23319.0, "probability": 0.0 }, { "start": 23319.0, "end": 23319.0, "probability": 0.0 }, { "start": 23319.0, "end": 23319.0, "probability": 0.0 }, { "start": 23319.0, "end": 23319.0, "probability": 0.0 }, { "start": 23319.0, "end": 23319.0, "probability": 0.0 }, { "start": 23319.0, "end": 23319.0, "probability": 0.0 }, { "start": 23319.0, "end": 23319.0, "probability": 0.0 }, { "start": 23319.0, "end": 23319.0, "probability": 0.0 }, { "start": 23319.0, "end": 23319.0, "probability": 0.0 }, { "start": 23319.0, "end": 23319.0, "probability": 0.0 }, { "start": 23319.0, "end": 23319.0, "probability": 0.0 }, { "start": 23319.0, "end": 23319.0, "probability": 0.0 }, { "start": 23319.0, "end": 23319.0, "probability": 0.0 }, { "start": 23319.0, "end": 23319.0, "probability": 0.0 }, { "start": 23319.0, "end": 23319.0, "probability": 0.0 }, { "start": 23319.0, "end": 23319.0, "probability": 0.0 }, { "start": 23324.54, "end": 23328.44, "probability": 0.9933 }, { "start": 23328.68, "end": 23333.6, "probability": 0.9907 }, { "start": 23333.76, "end": 23334.22, "probability": 0.8468 }, { "start": 23334.88, "end": 23337.3, "probability": 0.9475 }, { "start": 23338.06, "end": 23339.86, "probability": 0.9648 }, { "start": 23340.2, "end": 23342.0, "probability": 0.9596 }, { "start": 23342.02, "end": 23345.38, "probability": 0.9978 }, { "start": 23345.38, "end": 23351.24, "probability": 0.9993 }, { "start": 23351.68, "end": 23353.76, "probability": 0.9934 }, { "start": 23353.8, "end": 23358.78, "probability": 0.9249 }, { "start": 23359.18, "end": 23363.82, "probability": 0.9966 }, { "start": 23364.76, "end": 23368.56, "probability": 0.8768 }, { "start": 23370.1, "end": 23375.26, "probability": 0.9515 }, { "start": 23375.26, "end": 23380.22, "probability": 0.9183 }, { "start": 23380.34, "end": 23380.96, "probability": 0.9767 }, { "start": 23381.68, "end": 23385.54, "probability": 0.9081 }, { "start": 23385.54, "end": 23388.96, "probability": 0.9761 }, { "start": 23389.12, "end": 23391.26, "probability": 0.9073 }, { "start": 23391.32, "end": 23395.2, "probability": 0.9937 }, { "start": 23395.72, "end": 23398.68, "probability": 0.9924 }, { "start": 23399.14, "end": 23401.84, "probability": 0.9333 }, { "start": 23402.32, "end": 23406.02, "probability": 0.9609 }, { "start": 23406.06, "end": 23410.25, "probability": 0.9697 }, { "start": 23412.46, "end": 23415.1, "probability": 0.9914 }, { "start": 23415.1, "end": 23418.12, "probability": 0.9871 }, { "start": 23418.76, "end": 23420.8, "probability": 0.885 }, { "start": 23421.18, "end": 23425.68, "probability": 0.9805 }, { "start": 23425.9, "end": 23428.62, "probability": 0.9902 }, { "start": 23429.3, "end": 23432.84, "probability": 0.9072 }, { "start": 23433.24, "end": 23436.7, "probability": 0.9945 }, { "start": 23437.8, "end": 23438.94, "probability": 0.7975 }, { "start": 23439.14, "end": 23441.36, "probability": 0.9977 }, { "start": 23441.36, "end": 23445.26, "probability": 0.9633 }, { "start": 23445.74, "end": 23448.12, "probability": 0.9985 }, { "start": 23448.12, "end": 23451.1, "probability": 0.9775 }, { "start": 23451.96, "end": 23454.8, "probability": 0.9738 }, { "start": 23454.86, "end": 23456.86, "probability": 0.9954 }, { "start": 23457.02, "end": 23459.24, "probability": 0.9766 }, { "start": 23460.22, "end": 23462.22, "probability": 0.988 }, { "start": 23462.42, "end": 23465.74, "probability": 0.8125 }, { "start": 23465.74, "end": 23470.02, "probability": 0.9399 }, { "start": 23471.2, "end": 23473.06, "probability": 0.0559 }, { "start": 23475.02, "end": 23476.6, "probability": 0.0615 }, { "start": 23476.6, "end": 23477.1, "probability": 0.0369 }, { "start": 23479.84, "end": 23480.22, "probability": 0.1031 }, { "start": 23480.24, "end": 23480.24, "probability": 0.0376 }, { "start": 23480.24, "end": 23480.24, "probability": 0.137 }, { "start": 23480.24, "end": 23480.24, "probability": 0.0305 }, { "start": 23480.24, "end": 23484.16, "probability": 0.657 }, { "start": 23484.72, "end": 23486.44, "probability": 0.9954 }, { "start": 23486.5, "end": 23489.46, "probability": 0.9731 }, { "start": 23489.46, "end": 23492.68, "probability": 0.9962 }, { "start": 23492.94, "end": 23499.38, "probability": 0.9966 }, { "start": 23500.0, "end": 23501.52, "probability": 0.97 }, { "start": 23502.14, "end": 23504.06, "probability": 0.9964 }, { "start": 23504.06, "end": 23507.72, "probability": 0.9963 }, { "start": 23508.14, "end": 23510.38, "probability": 0.9973 }, { "start": 23510.5, "end": 23512.26, "probability": 0.8885 }, { "start": 23513.0, "end": 23514.08, "probability": 0.9863 }, { "start": 23514.2, "end": 23518.92, "probability": 0.9729 }, { "start": 23519.02, "end": 23522.94, "probability": 0.9409 }, { "start": 23523.5, "end": 23527.04, "probability": 0.9046 }, { "start": 23527.56, "end": 23530.8, "probability": 0.8767 }, { "start": 23532.42, "end": 23533.92, "probability": 0.4953 }, { "start": 23534.18, "end": 23534.18, "probability": 0.14 }, { "start": 23534.18, "end": 23537.02, "probability": 0.8851 }, { "start": 23537.82, "end": 23538.9, "probability": 0.5812 }, { "start": 23538.96, "end": 23540.42, "probability": 0.4921 }, { "start": 23541.02, "end": 23546.08, "probability": 0.7421 }, { "start": 23546.2, "end": 23547.54, "probability": 0.895 }, { "start": 23548.18, "end": 23551.92, "probability": 0.9653 }, { "start": 23551.96, "end": 23553.96, "probability": 0.3267 }, { "start": 23554.18, "end": 23554.28, "probability": 0.3476 }, { "start": 23554.28, "end": 23554.3, "probability": 0.0682 }, { "start": 23554.3, "end": 23556.48, "probability": 0.3972 }, { "start": 23556.48, "end": 23557.68, "probability": 0.5909 }, { "start": 23557.68, "end": 23560.73, "probability": 0.8598 }, { "start": 23561.36, "end": 23567.62, "probability": 0.9966 }, { "start": 23567.82, "end": 23568.34, "probability": 0.6217 }, { "start": 23568.48, "end": 23569.48, "probability": 0.7854 }, { "start": 23569.52, "end": 23572.48, "probability": 0.9785 }, { "start": 23572.84, "end": 23574.84, "probability": 0.8429 }, { "start": 23578.64, "end": 23579.06, "probability": 0.8807 }, { "start": 23579.24, "end": 23579.8, "probability": 0.467 }, { "start": 23580.26, "end": 23581.28, "probability": 0.9508 }, { "start": 23581.32, "end": 23582.68, "probability": 0.9599 }, { "start": 23582.78, "end": 23583.6, "probability": 0.8796 }, { "start": 23583.66, "end": 23585.74, "probability": 0.7554 }, { "start": 23586.56, "end": 23588.82, "probability": 0.8178 }, { "start": 23589.38, "end": 23591.08, "probability": 0.8577 }, { "start": 23591.14, "end": 23593.72, "probability": 0.9937 }, { "start": 23594.06, "end": 23595.9, "probability": 0.75 }, { "start": 23595.94, "end": 23597.08, "probability": 0.8149 }, { "start": 23597.54, "end": 23600.2, "probability": 0.9886 }, { "start": 23600.2, "end": 23603.2, "probability": 0.9958 }, { "start": 23603.56, "end": 23606.32, "probability": 0.9382 }, { "start": 23606.74, "end": 23610.34, "probability": 0.9919 }, { "start": 23610.46, "end": 23613.74, "probability": 0.9985 }, { "start": 23613.88, "end": 23617.78, "probability": 0.9602 }, { "start": 23618.36, "end": 23622.36, "probability": 0.9982 }, { "start": 23623.48, "end": 23624.44, "probability": 0.8555 }, { "start": 23624.56, "end": 23625.8, "probability": 0.861 }, { "start": 23625.94, "end": 23627.96, "probability": 0.9748 }, { "start": 23628.82, "end": 23630.56, "probability": 0.7913 }, { "start": 23630.66, "end": 23633.7, "probability": 0.9716 }, { "start": 23633.86, "end": 23634.14, "probability": 0.8328 }, { "start": 23634.2, "end": 23636.98, "probability": 0.9891 }, { "start": 23637.42, "end": 23642.58, "probability": 0.9902 }, { "start": 23643.04, "end": 23645.62, "probability": 0.9948 }, { "start": 23646.08, "end": 23648.3, "probability": 0.9039 }, { "start": 23649.04, "end": 23651.4, "probability": 0.9106 }, { "start": 23651.62, "end": 23653.44, "probability": 0.8016 }, { "start": 23653.56, "end": 23654.48, "probability": 0.7887 }, { "start": 23654.86, "end": 23657.16, "probability": 0.9575 }, { "start": 23657.52, "end": 23659.98, "probability": 0.9754 }, { "start": 23660.9, "end": 23664.26, "probability": 0.9907 }, { "start": 23664.66, "end": 23669.4, "probability": 0.8507 }, { "start": 23670.14, "end": 23671.24, "probability": 0.8053 }, { "start": 23671.58, "end": 23676.72, "probability": 0.9275 }, { "start": 23677.14, "end": 23679.53, "probability": 0.7753 }, { "start": 23680.06, "end": 23683.24, "probability": 0.9143 }, { "start": 23683.36, "end": 23685.54, "probability": 0.9568 }, { "start": 23686.04, "end": 23691.08, "probability": 0.9639 }, { "start": 23691.08, "end": 23694.58, "probability": 0.9965 }, { "start": 23695.08, "end": 23696.8, "probability": 0.7712 }, { "start": 23697.1, "end": 23697.86, "probability": 0.8762 }, { "start": 23697.94, "end": 23698.46, "probability": 0.7911 }, { "start": 23698.48, "end": 23698.9, "probability": 0.9019 }, { "start": 23698.96, "end": 23700.18, "probability": 0.9902 }, { "start": 23700.24, "end": 23700.64, "probability": 0.6005 }, { "start": 23700.74, "end": 23702.38, "probability": 0.7795 }, { "start": 23702.68, "end": 23703.14, "probability": 0.651 }, { "start": 23703.14, "end": 23705.1, "probability": 0.9521 }, { "start": 23705.1, "end": 23708.44, "probability": 0.9994 }, { "start": 23708.6, "end": 23709.24, "probability": 0.9009 }, { "start": 23709.38, "end": 23713.86, "probability": 0.957 }, { "start": 23714.88, "end": 23717.56, "probability": 0.5348 }, { "start": 23718.48, "end": 23720.24, "probability": 0.33 }, { "start": 23720.86, "end": 23723.32, "probability": 0.5114 }, { "start": 23723.44, "end": 23724.16, "probability": 0.7255 }, { "start": 23732.8, "end": 23734.4, "probability": 0.4755 }, { "start": 23734.82, "end": 23735.16, "probability": 0.7687 }, { "start": 23735.2, "end": 23736.9, "probability": 0.9286 }, { "start": 23736.98, "end": 23737.58, "probability": 0.3267 }, { "start": 23737.88, "end": 23740.72, "probability": 0.9723 }, { "start": 23740.74, "end": 23742.26, "probability": 0.9171 }, { "start": 23743.02, "end": 23744.6, "probability": 0.9093 }, { "start": 23745.04, "end": 23752.5, "probability": 0.9985 }, { "start": 23752.5, "end": 23758.08, "probability": 0.9989 }, { "start": 23758.44, "end": 23759.42, "probability": 0.6241 }, { "start": 23759.66, "end": 23765.52, "probability": 0.9921 }, { "start": 23765.56, "end": 23766.46, "probability": 0.7192 }, { "start": 23766.56, "end": 23768.0, "probability": 0.9987 }, { "start": 23768.44, "end": 23769.34, "probability": 0.9015 }, { "start": 23769.64, "end": 23775.5, "probability": 0.9976 }, { "start": 23775.94, "end": 23778.6, "probability": 0.9858 }, { "start": 23779.04, "end": 23783.02, "probability": 0.9956 }, { "start": 23783.02, "end": 23787.12, "probability": 0.9982 }, { "start": 23787.6, "end": 23788.74, "probability": 0.8491 }, { "start": 23788.98, "end": 23789.56, "probability": 0.9161 }, { "start": 23789.7, "end": 23790.28, "probability": 0.8754 }, { "start": 23790.4, "end": 23792.52, "probability": 0.8061 }, { "start": 23793.04, "end": 23794.4, "probability": 0.753 }, { "start": 23794.54, "end": 23796.48, "probability": 0.924 }, { "start": 23796.52, "end": 23800.5, "probability": 0.9751 }, { "start": 23801.08, "end": 23805.14, "probability": 0.9709 }, { "start": 23805.58, "end": 23809.04, "probability": 0.9946 }, { "start": 23809.1, "end": 23812.08, "probability": 0.9984 }, { "start": 23812.08, "end": 23817.32, "probability": 0.9895 }, { "start": 23817.84, "end": 23822.26, "probability": 0.9712 }, { "start": 23822.5, "end": 23826.0, "probability": 0.9486 }, { "start": 23826.44, "end": 23829.22, "probability": 0.9918 }, { "start": 23829.62, "end": 23830.22, "probability": 0.7057 }, { "start": 23830.36, "end": 23831.64, "probability": 0.5669 }, { "start": 23831.82, "end": 23832.62, "probability": 0.8345 }, { "start": 23833.22, "end": 23837.72, "probability": 0.9025 }, { "start": 23838.38, "end": 23839.62, "probability": 0.9871 }, { "start": 23839.62, "end": 23841.34, "probability": 0.9717 }, { "start": 23842.14, "end": 23844.1, "probability": 0.9613 }, { "start": 23844.82, "end": 23845.7, "probability": 0.2063 }, { "start": 23849.32, "end": 23849.64, "probability": 0.7272 }, { "start": 23850.86, "end": 23851.84, "probability": 0.7814 }, { "start": 23852.52, "end": 23853.54, "probability": 0.9253 }, { "start": 23854.88, "end": 23855.74, "probability": 0.6416 }, { "start": 23859.2, "end": 23861.34, "probability": 0.9421 }, { "start": 23862.0, "end": 23863.76, "probability": 0.9644 }, { "start": 23864.86, "end": 23868.58, "probability": 0.8984 }, { "start": 23869.6, "end": 23869.8, "probability": 0.9785 }, { "start": 23870.96, "end": 23871.78, "probability": 0.9331 }, { "start": 23874.8, "end": 23877.76, "probability": 0.5006 }, { "start": 23878.52, "end": 23878.84, "probability": 0.7805 }, { "start": 23880.66, "end": 23884.52, "probability": 0.9587 }, { "start": 23885.8, "end": 23888.36, "probability": 0.9797 }, { "start": 23889.04, "end": 23891.98, "probability": 0.9858 }, { "start": 23893.4, "end": 23895.76, "probability": 0.9628 }, { "start": 23896.64, "end": 23900.84, "probability": 0.9728 }, { "start": 23901.76, "end": 23901.88, "probability": 0.9784 }, { "start": 23903.44, "end": 23904.7, "probability": 0.6228 }, { "start": 23905.5, "end": 23905.78, "probability": 0.78 }, { "start": 23907.2, "end": 23908.26, "probability": 0.9264 }, { "start": 23909.62, "end": 23914.04, "probability": 0.532 }, { "start": 23914.82, "end": 23915.72, "probability": 0.4981 }, { "start": 23916.82, "end": 23917.7, "probability": 0.6963 }, { "start": 23918.46, "end": 23918.96, "probability": 0.915 }, { "start": 23920.1, "end": 23920.88, "probability": 0.9419 }, { "start": 23924.2, "end": 23924.66, "probability": 0.9211 }, { "start": 23925.22, "end": 23925.96, "probability": 0.9612 }, { "start": 23930.76, "end": 23935.12, "probability": 0.7924 }, { "start": 23935.64, "end": 23936.58, "probability": 0.8613 }, { "start": 23939.86, "end": 23940.62, "probability": 0.7334 }, { "start": 23942.6, "end": 23943.76, "probability": 0.8176 }, { "start": 23945.76, "end": 23946.2, "probability": 0.9699 }, { "start": 23946.96, "end": 23948.28, "probability": 0.7532 }, { "start": 23949.18, "end": 23949.56, "probability": 0.9146 }, { "start": 23951.7, "end": 23952.44, "probability": 0.9734 }, { "start": 23953.2, "end": 23955.88, "probability": 0.935 }, { "start": 23957.18, "end": 23959.88, "probability": 0.4077 }, { "start": 23960.52, "end": 23961.34, "probability": 0.694 }, { "start": 23965.5, "end": 23965.84, "probability": 0.5108 }, { "start": 23967.66, "end": 23968.48, "probability": 0.813 }, { "start": 23969.12, "end": 23969.38, "probability": 0.6859 }, { "start": 23970.8, "end": 23971.84, "probability": 0.6119 }, { "start": 23972.88, "end": 23976.42, "probability": 0.854 }, { "start": 23977.64, "end": 23978.8, "probability": 0.4516 }, { "start": 23980.78, "end": 23986.24, "probability": 0.8977 }, { "start": 23987.26, "end": 23990.28, "probability": 0.608 }, { "start": 23990.9, "end": 23991.26, "probability": 0.9329 }, { "start": 23992.34, "end": 23993.36, "probability": 0.9172 }, { "start": 23993.96, "end": 23999.7, "probability": 0.8367 }, { "start": 24000.54, "end": 24003.08, "probability": 0.9629 }, { "start": 24004.04, "end": 24006.52, "probability": 0.9401 }, { "start": 24007.86, "end": 24010.42, "probability": 0.5031 }, { "start": 24012.58, "end": 24013.94, "probability": 0.3367 }, { "start": 24021.08, "end": 24021.86, "probability": 0.2771 }, { "start": 24023.08, "end": 24025.26, "probability": 0.4541 }, { "start": 24028.12, "end": 24028.5, "probability": 0.7491 }, { "start": 24030.48, "end": 24032.6, "probability": 0.5407 }, { "start": 24033.14, "end": 24035.28, "probability": 0.5721 }, { "start": 24037.48, "end": 24040.88, "probability": 0.2311 }, { "start": 24042.16, "end": 24043.76, "probability": 0.2235 }, { "start": 24044.73, "end": 24045.03, "probability": 0.1285 }, { "start": 24046.52, "end": 24047.9, "probability": 0.3067 }, { "start": 24048.86, "end": 24049.28, "probability": 0.1667 }, { "start": 24049.28, "end": 24052.9, "probability": 0.0495 }, { "start": 24053.62, "end": 24055.07, "probability": 0.0976 }, { "start": 24056.84, "end": 24059.36, "probability": 0.3443 }, { "start": 24063.4, "end": 24064.14, "probability": 0.0181 }, { "start": 24064.85, "end": 24066.04, "probability": 0.0956 }, { "start": 24068.54, "end": 24069.16, "probability": 0.0146 }, { "start": 24069.98, "end": 24071.1, "probability": 0.0098 }, { "start": 24079.9, "end": 24080.78, "probability": 0.0019 }, { "start": 24081.08, "end": 24082.4, "probability": 0.08 }, { "start": 24082.4, "end": 24082.42, "probability": 0.0574 }, { "start": 24082.42, "end": 24082.77, "probability": 0.1871 }, { "start": 24085.97, "end": 24086.88, "probability": 0.5054 }, { "start": 24086.96, "end": 24089.02, "probability": 0.0154 }, { "start": 24089.08, "end": 24089.88, "probability": 0.1131 }, { "start": 24160.0, "end": 24160.0, "probability": 0.0 }, { "start": 24160.0, "end": 24160.0, "probability": 0.0 }, { "start": 24160.0, "end": 24160.0, "probability": 0.0 }, { "start": 24160.0, "end": 24160.0, "probability": 0.0 }, { "start": 24160.0, "end": 24160.0, "probability": 0.0 }, { "start": 24160.0, "end": 24160.0, "probability": 0.0 }, { "start": 24161.04, "end": 24161.34, "probability": 0.6821 }, { "start": 24162.76, "end": 24165.34, "probability": 0.714 }, { "start": 24167.46, "end": 24167.94, "probability": 0.8542 }, { "start": 24169.82, "end": 24170.56, "probability": 0.7223 }, { "start": 24171.32, "end": 24172.78, "probability": 0.7421 }, { "start": 24173.48, "end": 24174.46, "probability": 0.5819 }, { "start": 24176.09, "end": 24178.03, "probability": 0.1902 }, { "start": 24197.64, "end": 24198.62, "probability": 0.0171 }, { "start": 24200.84, "end": 24203.62, "probability": 0.8452 }, { "start": 24205.36, "end": 24206.2, "probability": 0.8373 }, { "start": 24212.12, "end": 24213.3, "probability": 0.7251 }, { "start": 24217.5, "end": 24220.04, "probability": 0.6259 }, { "start": 24222.24, "end": 24223.04, "probability": 0.5396 }, { "start": 24223.86, "end": 24224.66, "probability": 0.777 }, { "start": 24225.4, "end": 24229.22, "probability": 0.8246 }, { "start": 24231.24, "end": 24237.58, "probability": 0.884 }, { "start": 24238.7, "end": 24243.26, "probability": 0.0452 }, { "start": 24246.64, "end": 24251.3, "probability": 0.1304 }, { "start": 24252.42, "end": 24255.82, "probability": 0.0866 }, { "start": 24261.42, "end": 24262.72, "probability": 0.2708 }, { "start": 24262.8, "end": 24263.7, "probability": 0.1749 }, { "start": 24263.7, "end": 24266.62, "probability": 0.4164 }, { "start": 24267.96, "end": 24270.68, "probability": 0.2255 }, { "start": 24296.08, "end": 24298.42, "probability": 0.6362 }, { "start": 24298.42, "end": 24302.72, "probability": 0.6598 }, { "start": 24306.75, "end": 24308.88, "probability": 0.2361 }, { "start": 24309.26, "end": 24312.22, "probability": 0.6652 }, { "start": 24313.74, "end": 24318.02, "probability": 0.5907 }, { "start": 24319.14, "end": 24319.38, "probability": 0.9065 }, { "start": 24319.96, "end": 24321.34, "probability": 0.7677 }, { "start": 24323.6, "end": 24327.36, "probability": 0.4183 }, { "start": 24329.66, "end": 24333.66, "probability": 0.7559 }, { "start": 24334.7, "end": 24337.2, "probability": 0.7874 }, { "start": 24338.54, "end": 24338.64, "probability": 0.0457 }, { "start": 24352.18, "end": 24356.68, "probability": 0.358 }, { "start": 24358.66, "end": 24360.94, "probability": 0.1209 }, { "start": 24361.74, "end": 24365.02, "probability": 0.4251 }, { "start": 24366.8, "end": 24370.5, "probability": 0.8699 }, { "start": 24375.06, "end": 24377.68, "probability": 0.8162 }, { "start": 24378.86, "end": 24381.04, "probability": 0.5679 }, { "start": 24381.82, "end": 24384.14, "probability": 0.5416 }, { "start": 24384.76, "end": 24386.7, "probability": 0.7371 }, { "start": 24391.28, "end": 24396.12, "probability": 0.6322 }, { "start": 24407.32, "end": 24409.94, "probability": 0.7309 }, { "start": 24411.8, "end": 24412.12, "probability": 0.6415 }, { "start": 24413.46, "end": 24414.84, "probability": 0.7359 }, { "start": 24417.68, "end": 24420.2, "probability": 0.5633 }, { "start": 24420.9, "end": 24423.28, "probability": 0.8316 }, { "start": 24424.2, "end": 24426.0, "probability": 0.6654 }, { "start": 24445.26, "end": 24446.62, "probability": 0.2191 }, { "start": 24447.94, "end": 24449.68, "probability": 0.3775 }, { "start": 24450.56, "end": 24450.82, "probability": 0.89 }, { "start": 24453.08, "end": 24454.3, "probability": 0.8437 }, { "start": 24455.04, "end": 24456.64, "probability": 0.84 }, { "start": 24459.06, "end": 24461.86, "probability": 0.8755 }, { "start": 24462.56, "end": 24465.08, "probability": 0.7144 }, { "start": 24466.88, "end": 24468.84, "probability": 0.8003 }, { "start": 24469.46, "end": 24469.96, "probability": 0.9613 }, { "start": 24471.6, "end": 24472.62, "probability": 0.7587 }, { "start": 24474.64, "end": 24475.54, "probability": 0.967 }, { "start": 24476.3, "end": 24477.18, "probability": 0.8302 }, { "start": 24483.7, "end": 24487.48, "probability": 0.567 }, { "start": 24488.62, "end": 24491.24, "probability": 0.7686 }, { "start": 24491.78, "end": 24494.94, "probability": 0.7671 }, { "start": 24495.6, "end": 24496.54, "probability": 0.9059 }, { "start": 24497.34, "end": 24497.8, "probability": 0.99 }, { "start": 24498.4, "end": 24500.7, "probability": 0.7011 }, { "start": 24502.04, "end": 24504.08, "probability": 0.7109 }, { "start": 24504.88, "end": 24505.94, "probability": 0.9912 }, { "start": 24506.58, "end": 24507.26, "probability": 0.7252 }, { "start": 24507.88, "end": 24508.22, "probability": 0.6821 }, { "start": 24509.02, "end": 24510.85, "probability": 0.6187 }, { "start": 24512.06, "end": 24515.94, "probability": 0.8104 }, { "start": 24516.08, "end": 24517.04, "probability": 0.8926 }, { "start": 24518.08, "end": 24519.02, "probability": 0.4342 }, { "start": 24521.06, "end": 24521.62, "probability": 0.9754 }, { "start": 24522.38, "end": 24523.34, "probability": 0.7294 }, { "start": 24524.02, "end": 24527.22, "probability": 0.9409 }, { "start": 24527.86, "end": 24528.52, "probability": 0.9774 }, { "start": 24529.22, "end": 24530.26, "probability": 0.5711 }, { "start": 24531.96, "end": 24532.72, "probability": 0.9399 }, { "start": 24533.58, "end": 24534.38, "probability": 0.9877 }, { "start": 24535.86, "end": 24538.34, "probability": 0.9285 }, { "start": 24540.06, "end": 24542.66, "probability": 0.9649 }, { "start": 24544.08, "end": 24545.0, "probability": 0.9759 }, { "start": 24546.12, "end": 24547.24, "probability": 0.5507 }, { "start": 24550.68, "end": 24551.06, "probability": 0.6844 }, { "start": 24553.7, "end": 24554.84, "probability": 0.2057 }, { "start": 24555.68, "end": 24557.76, "probability": 0.8147 }, { "start": 24559.15, "end": 24562.18, "probability": 0.7232 }, { "start": 24563.4, "end": 24567.48, "probability": 0.8324 }, { "start": 24568.34, "end": 24569.26, "probability": 0.853 }, { "start": 24571.96, "end": 24573.42, "probability": 0.9587 }, { "start": 24575.46, "end": 24577.36, "probability": 0.9438 }, { "start": 24578.68, "end": 24579.64, "probability": 0.9324 }, { "start": 24583.12, "end": 24585.14, "probability": 0.4808 }, { "start": 24585.72, "end": 24587.84, "probability": 0.8945 }, { "start": 24589.18, "end": 24591.6, "probability": 0.8662 }, { "start": 24592.98, "end": 24593.92, "probability": 0.7476 }, { "start": 24594.86, "end": 24595.76, "probability": 0.9604 }, { "start": 24597.46, "end": 24600.24, "probability": 0.8246 }, { "start": 24601.54, "end": 24602.62, "probability": 0.5771 }, { "start": 24604.56, "end": 24608.66, "probability": 0.2491 }, { "start": 24621.48, "end": 24624.0, "probability": 0.693 }, { "start": 24625.42, "end": 24626.9, "probability": 0.5359 }, { "start": 24627.96, "end": 24628.26, "probability": 0.8408 }, { "start": 24631.44, "end": 24636.62, "probability": 0.7342 }, { "start": 24638.72, "end": 24641.82, "probability": 0.9353 }, { "start": 24644.2, "end": 24646.98, "probability": 0.4433 }, { "start": 24651.82, "end": 24652.28, "probability": 0.684 }, { "start": 24654.46, "end": 24655.42, "probability": 0.5324 }, { "start": 24656.32, "end": 24661.66, "probability": 0.8598 }, { "start": 24662.2, "end": 24664.04, "probability": 0.7876 }, { "start": 24664.94, "end": 24668.04, "probability": 0.5299 }, { "start": 24668.04, "end": 24669.04, "probability": 0.1133 }, { "start": 24669.52, "end": 24671.21, "probability": 0.0477 }, { "start": 24673.7, "end": 24673.7, "probability": 0.0315 }, { "start": 24673.7, "end": 24673.7, "probability": 0.4218 }, { "start": 24673.7, "end": 24673.7, "probability": 0.0216 }, { "start": 24673.7, "end": 24674.58, "probability": 0.1208 }, { "start": 24675.18, "end": 24677.96, "probability": 0.4024 }, { "start": 24678.0, "end": 24680.44, "probability": 0.8888 }, { "start": 24681.12, "end": 24683.68, "probability": 0.2212 }, { "start": 24685.6, "end": 24687.1, "probability": 0.6196 }, { "start": 24687.8, "end": 24688.6, "probability": 0.593 }, { "start": 24691.05, "end": 24693.32, "probability": 0.539 }, { "start": 24695.3, "end": 24696.68, "probability": 0.6884 }, { "start": 24696.76, "end": 24697.08, "probability": 0.8927 }, { "start": 24698.86, "end": 24703.4, "probability": 0.1096 }, { "start": 24784.0, "end": 24784.0, "probability": 0.0 }, { "start": 24784.0, "end": 24784.0, "probability": 0.0 }, { "start": 24784.0, "end": 24784.0, "probability": 0.0 }, { "start": 24804.4, "end": 24807.02, "probability": 0.8641 }, { "start": 24807.78, "end": 24808.54, "probability": 0.5114 }, { "start": 24809.72, "end": 24817.18, "probability": 0.9384 }, { "start": 24818.14, "end": 24821.0, "probability": 0.959 }, { "start": 24821.54, "end": 24828.94, "probability": 0.6757 }, { "start": 24828.94, "end": 24829.06, "probability": 0.0201 }, { "start": 24831.44, "end": 24831.66, "probability": 0.1817 }, { "start": 24833.98, "end": 24839.28, "probability": 0.6857 }, { "start": 24839.38, "end": 24841.36, "probability": 0.6895 }, { "start": 24842.0, "end": 24845.86, "probability": 0.2686 }, { "start": 24847.8, "end": 24849.58, "probability": 0.6842 }, { "start": 24850.3, "end": 24853.3, "probability": 0.5138 }, { "start": 24855.46, "end": 24858.8, "probability": 0.646 }, { "start": 24859.62, "end": 24859.78, "probability": 0.1717 }, { "start": 24860.3, "end": 24864.18, "probability": 0.388 }, { "start": 24864.18, "end": 24868.06, "probability": 0.7394 }, { "start": 24868.14, "end": 24869.92, "probability": 0.4402 }, { "start": 24870.08, "end": 24873.18, "probability": 0.0394 }, { "start": 24873.18, "end": 24873.18, "probability": 0.0052 }, { "start": 24876.4, "end": 24876.4, "probability": 0.0886 }, { "start": 24876.4, "end": 24877.86, "probability": 0.4422 }, { "start": 24885.34, "end": 24887.04, "probability": 0.4486 }, { "start": 24887.04, "end": 24889.6, "probability": 0.5811 }, { "start": 24889.68, "end": 24890.18, "probability": 0.3996 }, { "start": 24898.16, "end": 24903.54, "probability": 0.0761 }, { "start": 24903.54, "end": 24905.54, "probability": 0.4516 }, { "start": 24919.16, "end": 24920.88, "probability": 0.1434 }, { "start": 24923.16, "end": 24924.96, "probability": 0.7632 }, { "start": 24925.92, "end": 24927.65, "probability": 0.9011 }, { "start": 24929.48, "end": 24932.88, "probability": 0.9963 }, { "start": 24932.88, "end": 24936.26, "probability": 0.9982 }, { "start": 24936.92, "end": 24946.3, "probability": 0.9093 }, { "start": 24946.44, "end": 24946.66, "probability": 0.4358 }, { "start": 24947.86, "end": 24953.66, "probability": 0.9825 }, { "start": 24954.22, "end": 24959.46, "probability": 0.9983 }, { "start": 24959.52, "end": 24962.2, "probability": 0.999 }, { "start": 24962.3, "end": 24965.9, "probability": 0.9782 }, { "start": 24966.34, "end": 24968.04, "probability": 0.9324 }, { "start": 24969.2, "end": 24972.74, "probability": 0.9937 }, { "start": 24972.74, "end": 24977.92, "probability": 0.9897 }, { "start": 24978.18, "end": 24980.72, "probability": 0.8176 }, { "start": 24982.5, "end": 24986.66, "probability": 0.9474 }, { "start": 24986.66, "end": 24989.7, "probability": 0.9996 }, { "start": 24989.74, "end": 24990.26, "probability": 0.3833 }, { "start": 24990.38, "end": 24991.08, "probability": 0.9825 }, { "start": 24991.18, "end": 24992.34, "probability": 0.7188 }, { "start": 24992.38, "end": 24994.48, "probability": 0.9731 }, { "start": 24995.76, "end": 24998.9, "probability": 0.8697 }, { "start": 24999.04, "end": 25002.98, "probability": 0.874 }, { "start": 25003.18, "end": 25006.82, "probability": 0.4194 }, { "start": 25007.12, "end": 25008.42, "probability": 0.4383 }, { "start": 25009.14, "end": 25014.88, "probability": 0.7249 }, { "start": 25015.32, "end": 25017.72, "probability": 0.9897 }, { "start": 25017.82, "end": 25018.1, "probability": 0.6061 }, { "start": 25018.1, "end": 25018.38, "probability": 0.6853 }, { "start": 25018.44, "end": 25020.56, "probability": 0.537 }, { "start": 25021.62, "end": 25024.94, "probability": 0.8132 }, { "start": 25025.92, "end": 25029.0, "probability": 0.8029 }, { "start": 25029.32, "end": 25032.46, "probability": 0.9642 }, { "start": 25033.12, "end": 25034.82, "probability": 0.8303 }, { "start": 25035.24, "end": 25041.38, "probability": 0.7966 }, { "start": 25041.42, "end": 25042.74, "probability": 0.5347 }, { "start": 25043.04, "end": 25044.14, "probability": 0.8372 }, { "start": 25044.26, "end": 25045.5, "probability": 0.5829 }, { "start": 25045.9, "end": 25049.04, "probability": 0.979 }, { "start": 25049.5, "end": 25051.78, "probability": 0.7499 }, { "start": 25051.84, "end": 25053.94, "probability": 0.9243 }, { "start": 25054.62, "end": 25057.52, "probability": 0.8613 }, { "start": 25057.52, "end": 25059.88, "probability": 0.8234 }, { "start": 25060.06, "end": 25062.56, "probability": 0.7715 }, { "start": 25062.78, "end": 25064.92, "probability": 0.5195 }, { "start": 25064.96, "end": 25065.86, "probability": 0.4449 }, { "start": 25066.3, "end": 25069.02, "probability": 0.8646 }, { "start": 25069.1, "end": 25069.92, "probability": 0.9827 }, { "start": 25070.08, "end": 25072.06, "probability": 0.8331 }, { "start": 25072.18, "end": 25073.71, "probability": 0.9678 }, { "start": 25074.46, "end": 25076.04, "probability": 0.4269 }, { "start": 25076.18, "end": 25077.9, "probability": 0.8739 }, { "start": 25078.02, "end": 25079.58, "probability": 0.7898 }, { "start": 25079.96, "end": 25082.46, "probability": 0.7409 }, { "start": 25082.64, "end": 25084.78, "probability": 0.6163 }, { "start": 25084.96, "end": 25087.48, "probability": 0.7656 }, { "start": 25088.18, "end": 25090.08, "probability": 0.9609 }, { "start": 25090.08, "end": 25092.04, "probability": 0.8169 }, { "start": 25092.12, "end": 25095.12, "probability": 0.8367 }, { "start": 25095.94, "end": 25097.32, "probability": 0.9451 }, { "start": 25097.42, "end": 25097.92, "probability": 0.6666 }, { "start": 25098.14, "end": 25102.48, "probability": 0.8728 }, { "start": 25102.48, "end": 25102.9, "probability": 0.1356 }, { "start": 25102.94, "end": 25107.7, "probability": 0.9842 }, { "start": 25107.74, "end": 25109.0, "probability": 0.7399 }, { "start": 25109.22, "end": 25110.32, "probability": 0.5091 }, { "start": 25110.32, "end": 25110.74, "probability": 0.4264 }, { "start": 25110.88, "end": 25114.06, "probability": 0.6787 }, { "start": 25114.72, "end": 25117.74, "probability": 0.9719 }, { "start": 25117.74, "end": 25122.08, "probability": 0.8996 }, { "start": 25122.24, "end": 25123.32, "probability": 0.9858 }, { "start": 25123.42, "end": 25125.52, "probability": 0.8937 }, { "start": 25125.58, "end": 25126.88, "probability": 0.9917 }, { "start": 25127.26, "end": 25129.82, "probability": 0.4247 }, { "start": 25129.96, "end": 25129.96, "probability": 0.6813 }, { "start": 25130.1, "end": 25131.4, "probability": 0.9824 }, { "start": 25132.04, "end": 25135.24, "probability": 0.6753 }, { "start": 25135.32, "end": 25138.44, "probability": 0.9576 }, { "start": 25138.52, "end": 25139.2, "probability": 0.655 }, { "start": 25140.8, "end": 25143.84, "probability": 0.9722 }, { "start": 25143.84, "end": 25146.36, "probability": 0.9907 }, { "start": 25146.56, "end": 25149.94, "probability": 0.7742 }, { "start": 25150.64, "end": 25150.98, "probability": 0.4278 }, { "start": 25151.5, "end": 25155.02, "probability": 0.9389 }, { "start": 25155.08, "end": 25158.18, "probability": 0.6711 }, { "start": 25158.58, "end": 25161.8, "probability": 0.9678 }, { "start": 25162.1, "end": 25165.06, "probability": 0.5282 }, { "start": 25165.08, "end": 25166.24, "probability": 0.805 }, { "start": 25166.42, "end": 25167.68, "probability": 0.7683 }, { "start": 25167.98, "end": 25168.72, "probability": 0.8103 }, { "start": 25168.74, "end": 25169.74, "probability": 0.9105 }, { "start": 25170.14, "end": 25170.6, "probability": 0.8353 }, { "start": 25172.0, "end": 25173.62, "probability": 0.9619 }, { "start": 25174.76, "end": 25177.64, "probability": 0.8265 }, { "start": 25179.32, "end": 25180.14, "probability": 0.7547 }, { "start": 25180.44, "end": 25180.6, "probability": 0.2139 }, { "start": 25181.5, "end": 25182.98, "probability": 0.9309 }, { "start": 25184.12, "end": 25184.6, "probability": 0.7674 }, { "start": 25191.76, "end": 25191.9, "probability": 0.0063 }, { "start": 25200.02, "end": 25200.26, "probability": 0.234 }, { "start": 25200.26, "end": 25202.08, "probability": 0.6721 }, { "start": 25204.08, "end": 25204.84, "probability": 0.74 }, { "start": 25206.92, "end": 25214.76, "probability": 0.9327 }, { "start": 25216.02, "end": 25216.74, "probability": 0.9897 }, { "start": 25217.28, "end": 25218.43, "probability": 0.7664 }, { "start": 25219.08, "end": 25220.87, "probability": 0.941 }, { "start": 25221.96, "end": 25222.84, "probability": 0.8495 }, { "start": 25223.58, "end": 25225.1, "probability": 0.9914 }, { "start": 25226.18, "end": 25227.7, "probability": 0.9845 }, { "start": 25228.62, "end": 25233.02, "probability": 0.9683 }, { "start": 25233.84, "end": 25234.9, "probability": 0.7283 }, { "start": 25237.52, "end": 25238.14, "probability": 0.8573 }, { "start": 25238.96, "end": 25240.72, "probability": 0.9206 }, { "start": 25241.24, "end": 25242.34, "probability": 0.9856 }, { "start": 25243.9, "end": 25246.04, "probability": 0.9499 }, { "start": 25246.66, "end": 25248.92, "probability": 0.7382 }, { "start": 25249.46, "end": 25250.62, "probability": 0.7235 }, { "start": 25251.6, "end": 25254.58, "probability": 0.9952 }, { "start": 25256.6, "end": 25257.44, "probability": 0.5378 }, { "start": 25258.2, "end": 25261.64, "probability": 0.835 }, { "start": 25263.08, "end": 25265.58, "probability": 0.9821 }, { "start": 25266.34, "end": 25268.82, "probability": 0.9968 }, { "start": 25269.37, "end": 25272.4, "probability": 0.7537 }, { "start": 25274.04, "end": 25276.28, "probability": 0.9044 }, { "start": 25277.38, "end": 25278.46, "probability": 0.7876 }, { "start": 25278.76, "end": 25280.95, "probability": 0.9586 }, { "start": 25281.32, "end": 25283.02, "probability": 0.9953 }, { "start": 25283.86, "end": 25288.0, "probability": 0.832 }, { "start": 25288.02, "end": 25290.84, "probability": 0.6201 }, { "start": 25291.82, "end": 25293.26, "probability": 0.7342 }, { "start": 25293.76, "end": 25297.56, "probability": 0.9224 }, { "start": 25298.28, "end": 25300.44, "probability": 0.9032 }, { "start": 25301.4, "end": 25303.96, "probability": 0.9712 }, { "start": 25304.4, "end": 25306.66, "probability": 0.6806 }, { "start": 25307.2, "end": 25313.84, "probability": 0.9431 }, { "start": 25314.08, "end": 25315.46, "probability": 0.599 }, { "start": 25315.88, "end": 25316.98, "probability": 0.7998 }, { "start": 25317.58, "end": 25320.36, "probability": 0.9768 }, { "start": 25321.54, "end": 25326.48, "probability": 0.976 }, { "start": 25327.22, "end": 25328.26, "probability": 0.7448 }, { "start": 25329.46, "end": 25335.22, "probability": 0.9797 }, { "start": 25336.46, "end": 25339.72, "probability": 0.7596 }, { "start": 25340.14, "end": 25342.66, "probability": 0.9452 }, { "start": 25342.88, "end": 25345.9, "probability": 0.9718 }, { "start": 25345.9, "end": 25349.2, "probability": 0.9948 }, { "start": 25350.84, "end": 25354.3, "probability": 0.8273 }, { "start": 25354.3, "end": 25356.78, "probability": 0.9816 }, { "start": 25357.0, "end": 25358.5, "probability": 0.9449 }, { "start": 25359.18, "end": 25362.66, "probability": 0.896 }, { "start": 25363.28, "end": 25369.52, "probability": 0.9954 }, { "start": 25370.52, "end": 25374.18, "probability": 0.9517 }, { "start": 25374.92, "end": 25375.98, "probability": 0.9827 }, { "start": 25376.68, "end": 25378.46, "probability": 0.5962 }, { "start": 25379.04, "end": 25382.7, "probability": 0.9972 }, { "start": 25383.62, "end": 25385.36, "probability": 0.9091 }, { "start": 25386.04, "end": 25387.08, "probability": 0.9832 }, { "start": 25387.68, "end": 25390.02, "probability": 0.9789 }, { "start": 25390.54, "end": 25391.28, "probability": 0.8409 }, { "start": 25391.7, "end": 25395.18, "probability": 0.9099 }, { "start": 25395.18, "end": 25399.58, "probability": 0.9655 }, { "start": 25400.08, "end": 25403.4, "probability": 0.8138 }, { "start": 25404.32, "end": 25406.3, "probability": 0.7018 }, { "start": 25408.54, "end": 25412.16, "probability": 0.9765 }, { "start": 25412.28, "end": 25414.52, "probability": 0.9988 }, { "start": 25415.32, "end": 25417.02, "probability": 0.9971 }, { "start": 25417.68, "end": 25420.76, "probability": 0.9485 }, { "start": 25420.82, "end": 25424.46, "probability": 0.9854 }, { "start": 25425.28, "end": 25425.94, "probability": 0.5237 }, { "start": 25426.5, "end": 25428.74, "probability": 0.8237 }, { "start": 25428.84, "end": 25431.26, "probability": 0.9897 }, { "start": 25431.44, "end": 25432.66, "probability": 0.9868 }, { "start": 25433.46, "end": 25435.96, "probability": 0.616 }, { "start": 25436.94, "end": 25439.87, "probability": 0.8584 }, { "start": 25440.64, "end": 25442.34, "probability": 0.7424 }, { "start": 25442.74, "end": 25447.2, "probability": 0.8834 }, { "start": 25447.56, "end": 25449.32, "probability": 0.9791 }, { "start": 25449.92, "end": 25454.65, "probability": 0.7186 }, { "start": 25455.08, "end": 25456.9, "probability": 0.9642 }, { "start": 25457.42, "end": 25459.14, "probability": 0.9407 }, { "start": 25459.7, "end": 25463.5, "probability": 0.9231 }, { "start": 25463.58, "end": 25465.46, "probability": 0.8472 }, { "start": 25465.52, "end": 25466.4, "probability": 0.6295 }, { "start": 25466.68, "end": 25468.13, "probability": 0.618 }, { "start": 25468.9, "end": 25470.06, "probability": 0.8237 }, { "start": 25471.12, "end": 25472.22, "probability": 0.9287 }, { "start": 25472.52, "end": 25474.48, "probability": 0.7723 }, { "start": 25475.38, "end": 25477.18, "probability": 0.6392 }, { "start": 25478.6, "end": 25479.6, "probability": 0.898 }, { "start": 25479.92, "end": 25480.86, "probability": 0.8237 }, { "start": 25480.98, "end": 25482.26, "probability": 0.6869 }, { "start": 25482.4, "end": 25484.9, "probability": 0.7746 }, { "start": 25485.14, "end": 25485.4, "probability": 0.7981 }, { "start": 25493.66, "end": 25494.76, "probability": 0.5016 }, { "start": 25499.7, "end": 25501.3, "probability": 0.5293 }, { "start": 25505.3, "end": 25510.3, "probability": 0.5796 }, { "start": 25510.78, "end": 25512.7, "probability": 0.8135 }, { "start": 25512.78, "end": 25513.4, "probability": 0.8269 }, { "start": 25514.3, "end": 25514.9, "probability": 0.4509 }, { "start": 25515.42, "end": 25519.36, "probability": 0.75 }, { "start": 25520.04, "end": 25520.92, "probability": 0.8293 }, { "start": 25521.7, "end": 25525.3, "probability": 0.549 }, { "start": 25525.78, "end": 25525.84, "probability": 0.0058 }, { "start": 25525.84, "end": 25527.38, "probability": 0.8637 }, { "start": 25529.4, "end": 25529.78, "probability": 0.6887 }, { "start": 25535.82, "end": 25537.48, "probability": 0.2856 }, { "start": 25539.46, "end": 25541.44, "probability": 0.3612 }, { "start": 25550.56, "end": 25552.28, "probability": 0.651 }, { "start": 25555.44, "end": 25558.98, "probability": 0.7041 }, { "start": 25560.08, "end": 25561.18, "probability": 0.9038 }, { "start": 25562.34, "end": 25563.04, "probability": 0.5921 }, { "start": 25563.36, "end": 25565.88, "probability": 0.8121 }, { "start": 25566.36, "end": 25569.58, "probability": 0.9961 }, { "start": 25570.68, "end": 25571.82, "probability": 0.915 }, { "start": 25572.92, "end": 25573.62, "probability": 0.5896 }, { "start": 25574.14, "end": 25574.94, "probability": 0.6772 }, { "start": 25575.4, "end": 25576.18, "probability": 0.6896 }, { "start": 25576.58, "end": 25581.96, "probability": 0.9803 }, { "start": 25582.66, "end": 25584.08, "probability": 0.9758 }, { "start": 25585.26, "end": 25592.7, "probability": 0.984 }, { "start": 25594.84, "end": 25596.96, "probability": 0.7658 }, { "start": 25598.14, "end": 25598.94, "probability": 0.8519 }, { "start": 25600.72, "end": 25604.72, "probability": 0.9903 }, { "start": 25605.38, "end": 25607.06, "probability": 0.7675 }, { "start": 25608.42, "end": 25609.92, "probability": 0.8825 }, { "start": 25611.04, "end": 25611.68, "probability": 0.8672 }, { "start": 25612.72, "end": 25613.52, "probability": 0.9797 }, { "start": 25613.78, "end": 25616.3, "probability": 0.9688 }, { "start": 25616.9, "end": 25620.4, "probability": 0.9692 }, { "start": 25620.81, "end": 25625.24, "probability": 0.8197 }, { "start": 25625.4, "end": 25625.92, "probability": 0.5164 }, { "start": 25628.2, "end": 25633.94, "probability": 0.9338 }, { "start": 25634.28, "end": 25635.74, "probability": 0.6839 }, { "start": 25636.26, "end": 25640.46, "probability": 0.8264 }, { "start": 25641.04, "end": 25641.68, "probability": 0.9125 }, { "start": 25642.4, "end": 25643.08, "probability": 0.7201 }, { "start": 25644.74, "end": 25650.3, "probability": 0.9596 }, { "start": 25651.2, "end": 25652.9, "probability": 0.9414 }, { "start": 25653.76, "end": 25655.42, "probability": 0.9801 }, { "start": 25656.32, "end": 25657.22, "probability": 0.8247 }, { "start": 25658.12, "end": 25661.24, "probability": 0.8003 }, { "start": 25661.82, "end": 25662.66, "probability": 0.8003 }, { "start": 25663.84, "end": 25668.28, "probability": 0.8766 }, { "start": 25669.1, "end": 25670.42, "probability": 0.8247 }, { "start": 25671.74, "end": 25673.06, "probability": 0.739 }, { "start": 25674.82, "end": 25676.26, "probability": 0.9114 }, { "start": 25676.96, "end": 25678.74, "probability": 0.6174 }, { "start": 25679.66, "end": 25683.74, "probability": 0.9939 }, { "start": 25684.4, "end": 25688.88, "probability": 0.9938 }, { "start": 25689.48, "end": 25690.9, "probability": 0.9867 }, { "start": 25691.92, "end": 25696.8, "probability": 0.9985 }, { "start": 25698.3, "end": 25699.1, "probability": 0.5187 }, { "start": 25699.66, "end": 25700.52, "probability": 0.7302 }, { "start": 25701.36, "end": 25701.94, "probability": 0.8068 }, { "start": 25702.46, "end": 25703.74, "probability": 0.9629 }, { "start": 25704.62, "end": 25707.54, "probability": 0.9578 }, { "start": 25708.82, "end": 25709.84, "probability": 0.8123 }, { "start": 25710.74, "end": 25711.54, "probability": 0.8253 }, { "start": 25712.68, "end": 25713.64, "probability": 0.7016 }, { "start": 25714.96, "end": 25716.2, "probability": 0.4878 }, { "start": 25717.32, "end": 25718.98, "probability": 0.8935 }, { "start": 25720.02, "end": 25720.32, "probability": 0.9517 }, { "start": 25721.36, "end": 25722.4, "probability": 0.9331 }, { "start": 25723.36, "end": 25724.76, "probability": 0.5667 }, { "start": 25726.18, "end": 25728.76, "probability": 0.8772 }, { "start": 25729.48, "end": 25730.0, "probability": 0.9334 }, { "start": 25730.0, "end": 25731.24, "probability": 0.9276 }, { "start": 25731.42, "end": 25733.26, "probability": 0.916 }, { "start": 25733.84, "end": 25734.44, "probability": 0.7329 }, { "start": 25735.8, "end": 25735.9, "probability": 0.8749 }, { "start": 25736.48, "end": 25738.24, "probability": 0.9147 }, { "start": 25738.92, "end": 25739.78, "probability": 0.862 }, { "start": 25740.58, "end": 25740.96, "probability": 0.8608 }, { "start": 25741.14, "end": 25745.18, "probability": 0.7252 }, { "start": 25745.78, "end": 25747.08, "probability": 0.9686 }, { "start": 25747.78, "end": 25752.43, "probability": 0.9883 }, { "start": 25752.52, "end": 25756.12, "probability": 0.9935 }, { "start": 25757.28, "end": 25759.98, "probability": 0.8242 }, { "start": 25760.66, "end": 25761.98, "probability": 0.4823 }, { "start": 25762.6, "end": 25763.5, "probability": 0.6538 }, { "start": 25764.96, "end": 25769.64, "probability": 0.7937 }, { "start": 25770.72, "end": 25771.64, "probability": 0.9165 }, { "start": 25772.16, "end": 25773.48, "probability": 0.7614 }, { "start": 25773.64, "end": 25774.48, "probability": 0.3768 }, { "start": 25774.9, "end": 25777.7, "probability": 0.4943 }, { "start": 25777.76, "end": 25778.4, "probability": 0.8012 }, { "start": 25778.48, "end": 25778.9, "probability": 0.7806 }, { "start": 25779.06, "end": 25781.9, "probability": 0.9789 }, { "start": 25782.82, "end": 25783.1, "probability": 0.7998 }, { "start": 25783.14, "end": 25783.74, "probability": 0.9831 }, { "start": 25784.02, "end": 25786.72, "probability": 0.866 }, { "start": 25787.32, "end": 25787.54, "probability": 0.3072 }, { "start": 25787.8, "end": 25792.44, "probability": 0.879 }, { "start": 25792.84, "end": 25796.38, "probability": 0.9758 }, { "start": 25796.86, "end": 25797.1, "probability": 0.3938 }, { "start": 25797.12, "end": 25798.34, "probability": 0.5152 }, { "start": 25799.8, "end": 25803.58, "probability": 0.9592 }, { "start": 25803.6, "end": 25808.42, "probability": 0.9407 }, { "start": 25809.24, "end": 25810.24, "probability": 0.7655 }, { "start": 25810.72, "end": 25813.1, "probability": 0.8582 }, { "start": 25813.38, "end": 25813.38, "probability": 0.2829 }, { "start": 25813.38, "end": 25814.52, "probability": 0.8137 }, { "start": 25814.64, "end": 25815.06, "probability": 0.8637 }, { "start": 25815.38, "end": 25816.06, "probability": 0.7357 }, { "start": 25816.1, "end": 25821.26, "probability": 0.9902 }, { "start": 25821.98, "end": 25821.98, "probability": 0.6022 }, { "start": 25822.3, "end": 25824.84, "probability": 0.5383 }, { "start": 25825.02, "end": 25825.58, "probability": 0.4694 }, { "start": 25825.92, "end": 25826.2, "probability": 0.7021 }, { "start": 25838.7, "end": 25838.94, "probability": 0.3171 }, { "start": 25838.96, "end": 25840.38, "probability": 0.601 }, { "start": 25842.66, "end": 25846.3, "probability": 0.9785 }, { "start": 25847.02, "end": 25848.24, "probability": 0.9983 }, { "start": 25849.6, "end": 25853.62, "probability": 0.6581 }, { "start": 25853.7, "end": 25853.9, "probability": 0.4954 }, { "start": 25854.08, "end": 25855.9, "probability": 0.7203 }, { "start": 25856.12, "end": 25857.14, "probability": 0.9803 }, { "start": 25857.76, "end": 25861.65, "probability": 0.9927 }, { "start": 25862.48, "end": 25865.92, "probability": 0.9971 }, { "start": 25866.84, "end": 25868.58, "probability": 0.9342 }, { "start": 25868.7, "end": 25870.12, "probability": 0.7471 }, { "start": 25870.7, "end": 25873.33, "probability": 0.9526 }, { "start": 25873.5, "end": 25874.56, "probability": 0.9924 }, { "start": 25875.22, "end": 25876.32, "probability": 0.9851 }, { "start": 25877.0, "end": 25878.82, "probability": 0.7169 }, { "start": 25880.28, "end": 25881.44, "probability": 0.9128 }, { "start": 25882.66, "end": 25884.16, "probability": 0.989 }, { "start": 25884.42, "end": 25889.04, "probability": 0.8353 }, { "start": 25889.04, "end": 25889.56, "probability": 0.5183 }, { "start": 25891.06, "end": 25891.8, "probability": 0.4352 }, { "start": 25892.5, "end": 25893.32, "probability": 0.9318 }, { "start": 25894.38, "end": 25895.98, "probability": 0.7821 }, { "start": 25896.14, "end": 25897.82, "probability": 0.7356 }, { "start": 25898.64, "end": 25900.74, "probability": 0.4869 }, { "start": 25900.98, "end": 25902.12, "probability": 0.9875 }, { "start": 25902.78, "end": 25903.7, "probability": 0.6476 }, { "start": 25904.64, "end": 25905.94, "probability": 0.1975 }, { "start": 25906.58, "end": 25908.2, "probability": 0.8276 }, { "start": 25908.96, "end": 25910.9, "probability": 0.8828 }, { "start": 25910.96, "end": 25912.18, "probability": 0.9729 }, { "start": 25914.1, "end": 25917.0, "probability": 0.9834 }, { "start": 25918.48, "end": 25922.16, "probability": 0.9517 }, { "start": 25923.4, "end": 25926.66, "probability": 0.99 }, { "start": 25927.48, "end": 25929.0, "probability": 0.8343 }, { "start": 25930.76, "end": 25932.06, "probability": 0.8889 }, { "start": 25932.6, "end": 25933.58, "probability": 0.9895 }, { "start": 25934.4, "end": 25940.96, "probability": 0.9961 }, { "start": 25941.68, "end": 25944.55, "probability": 0.9922 }, { "start": 25946.36, "end": 25950.84, "probability": 0.8623 }, { "start": 25950.94, "end": 25952.92, "probability": 0.9972 }, { "start": 25954.98, "end": 25960.8, "probability": 0.9085 }, { "start": 25961.5, "end": 25962.46, "probability": 0.9488 }, { "start": 25962.68, "end": 25963.5, "probability": 0.8719 }, { "start": 25963.72, "end": 25968.9, "probability": 0.9554 }, { "start": 25969.46, "end": 25972.64, "probability": 0.998 }, { "start": 25972.64, "end": 25975.08, "probability": 0.991 }, { "start": 25975.86, "end": 25977.04, "probability": 0.9976 }, { "start": 25977.62, "end": 25981.58, "probability": 0.9888 }, { "start": 25982.38, "end": 25984.1, "probability": 0.7279 }, { "start": 25984.22, "end": 25984.78, "probability": 0.5192 }, { "start": 25984.8, "end": 25987.22, "probability": 0.8315 }, { "start": 25988.22, "end": 25992.08, "probability": 0.9919 }, { "start": 25993.08, "end": 25993.58, "probability": 0.9588 }, { "start": 25994.88, "end": 25998.92, "probability": 0.8858 }, { "start": 25999.54, "end": 26000.27, "probability": 0.5821 }, { "start": 26000.54, "end": 26002.14, "probability": 0.5626 }, { "start": 26002.24, "end": 26003.91, "probability": 0.4937 }, { "start": 26004.8, "end": 26006.16, "probability": 0.9432 }, { "start": 26006.7, "end": 26008.44, "probability": 0.9827 }, { "start": 26008.48, "end": 26009.8, "probability": 0.97 }, { "start": 26010.6, "end": 26015.96, "probability": 0.7965 }, { "start": 26020.46, "end": 26021.02, "probability": 0.1868 }, { "start": 26021.94, "end": 26023.84, "probability": 0.509 }, { "start": 26024.04, "end": 26024.22, "probability": 0.5864 }, { "start": 26024.38, "end": 26024.72, "probability": 0.4627 }, { "start": 26024.72, "end": 26028.9, "probability": 0.5122 }, { "start": 26028.96, "end": 26031.99, "probability": 0.8513 }, { "start": 26032.74, "end": 26037.44, "probability": 0.9928 }, { "start": 26038.02, "end": 26039.38, "probability": 0.1347 }, { "start": 26039.66, "end": 26044.08, "probability": 0.8193 }, { "start": 26044.42, "end": 26046.28, "probability": 0.4993 }, { "start": 26046.68, "end": 26047.76, "probability": 0.9375 }, { "start": 26047.76, "end": 26048.62, "probability": 0.4495 }, { "start": 26049.66, "end": 26051.84, "probability": 0.8365 }, { "start": 26052.02, "end": 26053.4, "probability": 0.9077 }, { "start": 26053.5, "end": 26054.54, "probability": 0.9821 }, { "start": 26055.44, "end": 26057.24, "probability": 0.0001 }, { "start": 26058.06, "end": 26062.36, "probability": 0.818 }, { "start": 26062.8, "end": 26066.76, "probability": 0.8167 }, { "start": 26067.32, "end": 26070.32, "probability": 0.8203 }, { "start": 26071.96, "end": 26073.74, "probability": 0.8916 }, { "start": 26074.26, "end": 26078.28, "probability": 0.9651 }, { "start": 26078.4, "end": 26082.42, "probability": 0.9302 }, { "start": 26083.3, "end": 26084.58, "probability": 0.9346 }, { "start": 26084.58, "end": 26085.5, "probability": 0.7206 }, { "start": 26085.8, "end": 26087.56, "probability": 0.6465 }, { "start": 26088.6, "end": 26093.98, "probability": 0.9357 }, { "start": 26094.68, "end": 26096.74, "probability": 0.9849 }, { "start": 26097.04, "end": 26100.14, "probability": 0.3387 }, { "start": 26100.86, "end": 26103.06, "probability": 0.7495 }, { "start": 26103.84, "end": 26110.1, "probability": 0.9728 }, { "start": 26110.52, "end": 26114.44, "probability": 0.9873 }, { "start": 26114.96, "end": 26117.18, "probability": 0.9086 }, { "start": 26117.26, "end": 26121.72, "probability": 0.8935 }, { "start": 26122.12, "end": 26124.38, "probability": 0.9835 }, { "start": 26125.14, "end": 26127.26, "probability": 0.9753 }, { "start": 26127.52, "end": 26127.88, "probability": 0.7643 }, { "start": 26127.88, "end": 26128.1, "probability": 0.5969 }, { "start": 26128.12, "end": 26128.72, "probability": 0.8115 }, { "start": 26129.42, "end": 26130.42, "probability": 0.7832 }, { "start": 26130.48, "end": 26131.54, "probability": 0.987 }, { "start": 26132.93, "end": 26133.96, "probability": 0.6375 }, { "start": 26134.14, "end": 26135.94, "probability": 0.546 }, { "start": 26136.36, "end": 26137.56, "probability": 0.7658 }, { "start": 26137.58, "end": 26138.58, "probability": 0.7057 }, { "start": 26138.66, "end": 26142.04, "probability": 0.935 }, { "start": 26142.08, "end": 26142.42, "probability": 0.8245 }, { "start": 26163.64, "end": 26167.4, "probability": 0.9762 }, { "start": 26167.74, "end": 26168.34, "probability": 0.8734 }, { "start": 26168.42, "end": 26168.92, "probability": 0.6323 }, { "start": 26169.52, "end": 26173.46, "probability": 0.9822 }, { "start": 26175.58, "end": 26175.7, "probability": 0.2728 }, { "start": 26175.7, "end": 26176.88, "probability": 0.8141 }, { "start": 26177.02, "end": 26177.19, "probability": 0.0233 }, { "start": 26178.6, "end": 26181.58, "probability": 0.9652 }, { "start": 26181.66, "end": 26183.3, "probability": 0.89 }, { "start": 26183.82, "end": 26183.88, "probability": 0.2497 }, { "start": 26184.26, "end": 26186.24, "probability": 0.8058 }, { "start": 26187.02, "end": 26192.96, "probability": 0.9797 }, { "start": 26193.66, "end": 26193.76, "probability": 0.0001 }, { "start": 26194.94, "end": 26196.38, "probability": 0.8402 }, { "start": 26203.0, "end": 26203.14, "probability": 0.4161 }, { "start": 26207.42, "end": 26208.1, "probability": 0.2227 }, { "start": 26209.42, "end": 26210.22, "probability": 0.6799 }, { "start": 26210.76, "end": 26212.66, "probability": 0.1132 }, { "start": 26212.9, "end": 26213.04, "probability": 0.0347 }, { "start": 26215.52, "end": 26216.4, "probability": 0.0663 }, { "start": 26262.58, "end": 26265.32, "probability": 0.364 }, { "start": 26265.78, "end": 26267.14, "probability": 0.0292 }, { "start": 26267.9, "end": 26271.12, "probability": 0.0131 }, { "start": 26271.98, "end": 26273.02, "probability": 0.2215 }, { "start": 26274.48, "end": 26277.16, "probability": 0.0575 }, { "start": 26277.16, "end": 26279.92, "probability": 0.1231 }, { "start": 26279.92, "end": 26280.22, "probability": 0.2744 }, { "start": 26403.0, "end": 26403.0, "probability": 0.0 }, { "start": 26403.0, "end": 26403.0, "probability": 0.0 }, { "start": 26403.0, "end": 26403.0, "probability": 0.0 }, { "start": 26403.0, "end": 26403.0, "probability": 0.0 }, { "start": 26403.0, "end": 26403.0, "probability": 0.0 }, { "start": 26403.0, "end": 26403.0, "probability": 0.0 }, { "start": 26403.0, "end": 26403.0, "probability": 0.0 }, { "start": 26403.0, "end": 26403.0, "probability": 0.0 }, { "start": 26403.0, "end": 26403.0, "probability": 0.0 }, { "start": 26403.0, "end": 26403.0, "probability": 0.0 }, { "start": 26403.0, "end": 26403.0, "probability": 0.0 }, { "start": 26403.0, "end": 26403.0, "probability": 0.0 }, { "start": 26403.0, "end": 26403.0, "probability": 0.0 }, { "start": 26403.0, "end": 26403.0, "probability": 0.0 }, { "start": 26403.0, "end": 26403.0, "probability": 0.0 }, { "start": 26403.0, "end": 26403.0, "probability": 0.0 }, { "start": 26403.0, "end": 26403.0, "probability": 0.0 }, { "start": 26403.0, "end": 26403.0, "probability": 0.0 }, { "start": 26403.0, "end": 26403.0, "probability": 0.0 }, { "start": 26403.0, "end": 26403.0, "probability": 0.0 }, { "start": 26403.0, "end": 26403.0, "probability": 0.0 }, { "start": 26403.0, "end": 26403.0, "probability": 0.0 }, { "start": 26403.0, "end": 26403.0, "probability": 0.0 }, { "start": 26403.0, "end": 26403.0, "probability": 0.0 }, { "start": 26403.0, "end": 26403.0, "probability": 0.0 }, { "start": 26403.0, "end": 26403.0, "probability": 0.0 }, { "start": 26403.0, "end": 26403.0, "probability": 0.0 }, { "start": 26403.0, "end": 26403.0, "probability": 0.0 }, { "start": 26403.0, "end": 26403.0, "probability": 0.0 }, { "start": 26403.0, "end": 26403.0, "probability": 0.0 }, { "start": 26403.0, "end": 26403.0, "probability": 0.0 }, { "start": 26403.0, "end": 26403.0, "probability": 0.0 }, { "start": 26403.0, "end": 26403.0, "probability": 0.0 }, { "start": 26403.0, "end": 26403.0, "probability": 0.0 }, { "start": 26403.0, "end": 26403.0, "probability": 0.0 }, { "start": 26403.0, "end": 26403.0, "probability": 0.0 }, { "start": 26403.0, "end": 26403.0, "probability": 0.0 }, { "start": 26403.0, "end": 26403.0, "probability": 0.0 }, { "start": 26403.0, "end": 26403.0, "probability": 0.0 }, { "start": 26403.0, "end": 26403.0, "probability": 0.0 }, { "start": 26403.0, "end": 26403.0, "probability": 0.0 }, { "start": 26403.0, "end": 26403.0, "probability": 0.0 }, { "start": 26403.0, "end": 26403.0, "probability": 0.0 }, { "start": 26403.0, "end": 26403.0, "probability": 0.0 }, { "start": 26403.0, "end": 26403.0, "probability": 0.0 }, { "start": 26403.0, "end": 26403.0, "probability": 0.0 }, { "start": 26424.68, "end": 26429.11, "probability": 0.0375 }, { "start": 26431.11, "end": 26434.2, "probability": 0.0973 }, { "start": 26435.36, "end": 26435.72, "probability": 0.0531 }, { "start": 26524.0, "end": 26524.0, "probability": 0.0 }, { "start": 26524.0, "end": 26524.0, "probability": 0.0 }, { "start": 26524.0, "end": 26524.0, "probability": 0.0 }, { "start": 26524.0, "end": 26524.0, "probability": 0.0 }, { "start": 26524.0, "end": 26524.0, "probability": 0.0 }, { "start": 26524.0, "end": 26524.0, "probability": 0.0 }, { "start": 26524.0, "end": 26524.0, "probability": 0.0 }, { "start": 26524.0, "end": 26524.0, "probability": 0.0 }, { "start": 26524.0, "end": 26524.0, "probability": 0.0 }, { "start": 26524.0, "end": 26524.0, "probability": 0.0 }, { "start": 26524.0, "end": 26524.0, "probability": 0.0 }, { "start": 26524.0, "end": 26524.0, "probability": 0.0 }, { "start": 26524.0, "end": 26524.0, "probability": 0.0 }, { "start": 26524.0, "end": 26524.0, "probability": 0.0 }, { "start": 26524.0, "end": 26524.0, "probability": 0.0 }, { "start": 26524.0, "end": 26524.0, "probability": 0.0 }, { "start": 26524.0, "end": 26524.0, "probability": 0.0 }, { "start": 26524.0, "end": 26524.0, "probability": 0.0 }, { "start": 26524.0, "end": 26524.0, "probability": 0.0 }, { "start": 26524.0, "end": 26524.0, "probability": 0.0 }, { "start": 26524.0, "end": 26524.0, "probability": 0.0 }, { "start": 26524.0, "end": 26524.0, "probability": 0.0 }, { "start": 26524.0, "end": 26524.0, "probability": 0.0 }, { "start": 26524.0, "end": 26524.0, "probability": 0.0 }, { "start": 26524.0, "end": 26524.0, "probability": 0.0 }, { "start": 26524.36, "end": 26524.58, "probability": 0.3309 }, { "start": 26524.58, "end": 26525.3, "probability": 0.4931 }, { "start": 26525.48, "end": 26526.5, "probability": 0.4263 }, { "start": 26526.7, "end": 26528.04, "probability": 0.6836 }, { "start": 26528.64, "end": 26528.86, "probability": 0.8497 }, { "start": 26528.88, "end": 26535.52, "probability": 0.9817 }, { "start": 26536.1, "end": 26536.62, "probability": 0.8146 }, { "start": 26537.58, "end": 26538.28, "probability": 0.6278 }, { "start": 26539.04, "end": 26543.68, "probability": 0.9789 }, { "start": 26543.68, "end": 26549.1, "probability": 0.9977 }, { "start": 26549.72, "end": 26553.88, "probability": 0.9636 }, { "start": 26554.72, "end": 26559.08, "probability": 0.9908 }, { "start": 26559.08, "end": 26563.64, "probability": 0.9982 }, { "start": 26563.64, "end": 26568.42, "probability": 0.9985 }, { "start": 26568.42, "end": 26572.8, "probability": 0.9988 }, { "start": 26573.96, "end": 26576.04, "probability": 0.9839 }, { "start": 26576.54, "end": 26579.64, "probability": 0.9472 }, { "start": 26580.38, "end": 26583.4, "probability": 0.9525 }, { "start": 26583.94, "end": 26585.52, "probability": 0.9994 }, { "start": 26586.46, "end": 26588.72, "probability": 0.9062 }, { "start": 26589.34, "end": 26592.94, "probability": 0.9635 }, { "start": 26593.52, "end": 26596.2, "probability": 0.9397 }, { "start": 26596.72, "end": 26597.36, "probability": 0.6447 }, { "start": 26598.04, "end": 26602.74, "probability": 0.9953 }, { "start": 26603.72, "end": 26606.8, "probability": 0.8699 }, { "start": 26606.8, "end": 26611.7, "probability": 0.8613 }, { "start": 26612.18, "end": 26614.02, "probability": 0.9905 }, { "start": 26615.06, "end": 26618.87, "probability": 0.8933 }, { "start": 26619.6, "end": 26622.8, "probability": 0.9971 }, { "start": 26623.44, "end": 26627.62, "probability": 0.9714 }, { "start": 26627.7, "end": 26628.02, "probability": 0.928 }, { "start": 26628.88, "end": 26630.38, "probability": 0.9131 }, { "start": 26631.98, "end": 26636.48, "probability": 0.9773 }, { "start": 26637.18, "end": 26639.48, "probability": 0.9935 }, { "start": 26640.12, "end": 26642.24, "probability": 0.915 }, { "start": 26643.14, "end": 26645.28, "probability": 0.9905 }, { "start": 26645.28, "end": 26648.4, "probability": 0.9525 }, { "start": 26649.02, "end": 26650.3, "probability": 0.7561 }, { "start": 26650.86, "end": 26653.8, "probability": 0.9979 }, { "start": 26653.8, "end": 26658.42, "probability": 0.8743 }, { "start": 26658.52, "end": 26661.24, "probability": 0.938 }, { "start": 26661.86, "end": 26664.94, "probability": 0.8115 }, { "start": 26665.36, "end": 26666.04, "probability": 0.7431 }, { "start": 26666.38, "end": 26667.08, "probability": 0.9561 }, { "start": 26667.46, "end": 26667.96, "probability": 0.6816 }, { "start": 26668.34, "end": 26669.32, "probability": 0.8455 }, { "start": 26670.1, "end": 26674.24, "probability": 0.8116 }, { "start": 26675.5, "end": 26676.4, "probability": 0.8769 }, { "start": 26676.92, "end": 26680.06, "probability": 0.962 }, { "start": 26681.68, "end": 26684.32, "probability": 0.9861 }, { "start": 26685.36, "end": 26685.84, "probability": 0.8464 }, { "start": 26686.86, "end": 26689.26, "probability": 0.9922 }, { "start": 26689.26, "end": 26692.04, "probability": 0.9917 }, { "start": 26692.62, "end": 26693.56, "probability": 0.8382 }, { "start": 26694.4, "end": 26696.5, "probability": 0.9675 }, { "start": 26697.02, "end": 26698.42, "probability": 0.8803 }, { "start": 26698.58, "end": 26699.28, "probability": 0.7479 }, { "start": 26699.64, "end": 26703.12, "probability": 0.8678 }, { "start": 26703.7, "end": 26705.6, "probability": 0.9904 }, { "start": 26706.16, "end": 26708.52, "probability": 0.9875 }, { "start": 26709.08, "end": 26712.14, "probability": 0.9885 }, { "start": 26712.94, "end": 26714.26, "probability": 0.9552 }, { "start": 26714.38, "end": 26716.52, "probability": 0.9511 }, { "start": 26717.32, "end": 26718.98, "probability": 0.9024 }, { "start": 26719.34, "end": 26721.34, "probability": 0.9919 }, { "start": 26721.72, "end": 26724.14, "probability": 0.9766 }, { "start": 26724.14, "end": 26726.66, "probability": 0.974 }, { "start": 26727.3, "end": 26729.68, "probability": 0.8108 }, { "start": 26730.32, "end": 26733.28, "probability": 0.9104 }, { "start": 26733.76, "end": 26734.82, "probability": 0.9597 }, { "start": 26735.56, "end": 26737.4, "probability": 0.9257 }, { "start": 26737.46, "end": 26739.96, "probability": 0.9894 }, { "start": 26740.44, "end": 26741.94, "probability": 0.9468 }, { "start": 26742.92, "end": 26743.82, "probability": 0.6323 }, { "start": 26744.38, "end": 26747.05, "probability": 0.947 }, { "start": 26747.64, "end": 26752.44, "probability": 0.9829 }, { "start": 26752.52, "end": 26753.3, "probability": 0.9275 }, { "start": 26753.78, "end": 26756.64, "probability": 0.9696 }, { "start": 26757.62, "end": 26759.0, "probability": 0.6118 }, { "start": 26759.42, "end": 26760.96, "probability": 0.9666 }, { "start": 26761.66, "end": 26764.0, "probability": 0.9426 }, { "start": 26764.42, "end": 26768.48, "probability": 0.9987 }, { "start": 26768.48, "end": 26771.68, "probability": 0.9731 }, { "start": 26772.68, "end": 26775.04, "probability": 0.753 }, { "start": 26775.56, "end": 26777.04, "probability": 0.7925 }, { "start": 26778.99, "end": 26781.58, "probability": 0.9016 }, { "start": 26782.32, "end": 26786.0, "probability": 0.9941 }, { "start": 26786.48, "end": 26788.72, "probability": 0.99 }, { "start": 26789.18, "end": 26791.38, "probability": 0.965 }, { "start": 26791.88, "end": 26792.16, "probability": 0.8626 }, { "start": 26792.74, "end": 26793.96, "probability": 0.9505 }, { "start": 26794.04, "end": 26797.04, "probability": 0.994 }, { "start": 26797.52, "end": 26800.12, "probability": 0.9697 }, { "start": 26800.12, "end": 26802.26, "probability": 0.999 }, { "start": 26802.42, "end": 26802.84, "probability": 0.5564 }, { "start": 26803.5, "end": 26805.92, "probability": 0.9536 }, { "start": 26806.46, "end": 26808.32, "probability": 0.9917 }, { "start": 26808.76, "end": 26809.94, "probability": 0.9841 }, { "start": 26810.56, "end": 26812.64, "probability": 0.957 }, { "start": 26813.14, "end": 26817.44, "probability": 0.9834 }, { "start": 26818.0, "end": 26818.88, "probability": 0.8232 }, { "start": 26818.98, "end": 26819.8, "probability": 0.7223 }, { "start": 26820.22, "end": 26821.28, "probability": 0.9764 }, { "start": 26821.78, "end": 26822.68, "probability": 0.97 }, { "start": 26823.02, "end": 26825.98, "probability": 0.986 }, { "start": 26826.5, "end": 26826.56, "probability": 0.047 }, { "start": 26826.66, "end": 26827.74, "probability": 0.9763 }, { "start": 26828.0, "end": 26829.24, "probability": 0.9692 }, { "start": 26829.64, "end": 26832.48, "probability": 0.8553 }, { "start": 26833.02, "end": 26833.9, "probability": 0.8788 }, { "start": 26834.64, "end": 26836.4, "probability": 0.7134 }, { "start": 26837.1, "end": 26839.4, "probability": 0.9487 }, { "start": 26839.4, "end": 26842.48, "probability": 0.9783 }, { "start": 26842.94, "end": 26846.56, "probability": 0.9956 }, { "start": 26846.92, "end": 26850.48, "probability": 0.9734 }, { "start": 26851.06, "end": 26851.24, "probability": 0.4158 }, { "start": 26851.4, "end": 26854.36, "probability": 0.8738 }, { "start": 26854.36, "end": 26857.18, "probability": 0.861 }, { "start": 26857.54, "end": 26858.36, "probability": 0.9187 }, { "start": 26858.78, "end": 26860.02, "probability": 0.7839 }, { "start": 26860.46, "end": 26862.22, "probability": 0.9871 }, { "start": 26862.26, "end": 26863.08, "probability": 0.9174 }, { "start": 26863.18, "end": 26863.8, "probability": 0.4036 }, { "start": 26864.34, "end": 26864.68, "probability": 0.9227 }, { "start": 26865.4, "end": 26866.0, "probability": 0.7812 }, { "start": 26866.46, "end": 26870.02, "probability": 0.9876 }, { "start": 26870.5, "end": 26873.14, "probability": 0.9872 }, { "start": 26873.62, "end": 26875.46, "probability": 0.6054 }, { "start": 26875.52, "end": 26876.44, "probability": 0.873 }, { "start": 26877.4, "end": 26880.44, "probability": 0.6686 }, { "start": 26881.32, "end": 26885.82, "probability": 0.9948 }, { "start": 26886.58, "end": 26886.7, "probability": 0.7866 }, { "start": 26887.06, "end": 26888.22, "probability": 0.9319 }, { "start": 26888.72, "end": 26889.9, "probability": 0.7456 }, { "start": 26890.0, "end": 26891.26, "probability": 0.9945 }, { "start": 26891.76, "end": 26893.8, "probability": 0.9859 }, { "start": 26894.24, "end": 26895.96, "probability": 0.6592 }, { "start": 26896.36, "end": 26898.8, "probability": 0.989 }, { "start": 26898.8, "end": 26901.42, "probability": 0.6618 }, { "start": 26902.16, "end": 26903.88, "probability": 0.9945 }, { "start": 26904.42, "end": 26904.54, "probability": 0.1307 }, { "start": 26904.66, "end": 26907.62, "probability": 0.9795 }, { "start": 26907.71, "end": 26910.45, "probability": 0.5101 }, { "start": 26910.94, "end": 26911.32, "probability": 0.8117 }, { "start": 26911.9, "end": 26913.1, "probability": 0.9574 }, { "start": 26913.68, "end": 26915.38, "probability": 0.9302 }, { "start": 26915.52, "end": 26916.98, "probability": 0.8931 }, { "start": 26917.34, "end": 26918.8, "probability": 0.7502 }, { "start": 26919.26, "end": 26920.18, "probability": 0.8166 }, { "start": 26920.78, "end": 26925.06, "probability": 0.8865 }, { "start": 26925.6, "end": 26926.1, "probability": 0.6279 }, { "start": 26926.76, "end": 26927.66, "probability": 0.8307 }, { "start": 26927.76, "end": 26931.36, "probability": 0.9951 }, { "start": 26931.46, "end": 26931.76, "probability": 0.58 }, { "start": 26932.34, "end": 26932.42, "probability": 0.9958 }, { "start": 26933.06, "end": 26936.48, "probability": 0.8962 }, { "start": 26937.02, "end": 26939.1, "probability": 0.9935 }, { "start": 26939.58, "end": 26940.28, "probability": 0.7324 }, { "start": 26940.38, "end": 26941.66, "probability": 0.9697 }, { "start": 26941.8, "end": 26942.6, "probability": 0.8647 }, { "start": 26943.06, "end": 26945.0, "probability": 0.9206 }, { "start": 26945.62, "end": 26948.7, "probability": 0.9782 }, { "start": 26949.2, "end": 26950.1, "probability": 0.8735 }, { "start": 26950.7, "end": 26953.88, "probability": 0.6997 }, { "start": 26954.42, "end": 26956.44, "probability": 0.7282 }, { "start": 26956.44, "end": 26959.58, "probability": 0.9717 }, { "start": 26959.92, "end": 26961.5, "probability": 0.6071 }, { "start": 26961.5, "end": 26964.42, "probability": 0.897 }, { "start": 26965.8, "end": 26967.16, "probability": 0.7987 }, { "start": 26967.64, "end": 26971.8, "probability": 0.0629 }, { "start": 26972.52, "end": 26973.76, "probability": 0.8687 }, { "start": 26973.94, "end": 26974.54, "probability": 0.7251 }, { "start": 26975.0, "end": 26976.36, "probability": 0.9445 }, { "start": 26977.16, "end": 26977.72, "probability": 0.6531 }, { "start": 26978.18, "end": 26980.98, "probability": 0.5086 }, { "start": 26981.24, "end": 26981.76, "probability": 0.5298 }, { "start": 26982.4, "end": 26982.6, "probability": 0.5745 }, { "start": 26995.76, "end": 26998.2, "probability": 0.3262 }, { "start": 26998.22, "end": 26999.84, "probability": 0.6441 }, { "start": 26999.98, "end": 27001.5, "probability": 0.6802 }, { "start": 27002.54, "end": 27009.02, "probability": 0.9713 }, { "start": 27010.44, "end": 27013.64, "probability": 0.9965 }, { "start": 27013.92, "end": 27014.78, "probability": 0.7676 }, { "start": 27014.94, "end": 27018.64, "probability": 0.9491 }, { "start": 27018.64, "end": 27022.62, "probability": 0.9933 }, { "start": 27022.7, "end": 27027.92, "probability": 0.9961 }, { "start": 27028.62, "end": 27031.38, "probability": 0.8124 }, { "start": 27031.42, "end": 27032.68, "probability": 0.993 }, { "start": 27033.36, "end": 27034.94, "probability": 0.9736 }, { "start": 27035.1, "end": 27035.86, "probability": 0.9561 }, { "start": 27036.44, "end": 27037.56, "probability": 0.9785 }, { "start": 27037.72, "end": 27039.2, "probability": 0.9247 }, { "start": 27039.24, "end": 27041.62, "probability": 0.9932 }, { "start": 27042.36, "end": 27045.16, "probability": 0.9877 }, { "start": 27045.38, "end": 27048.14, "probability": 0.9826 }, { "start": 27048.68, "end": 27050.0, "probability": 0.8848 }, { "start": 27050.12, "end": 27051.58, "probability": 0.8966 }, { "start": 27052.06, "end": 27053.76, "probability": 0.9843 }, { "start": 27054.78, "end": 27054.78, "probability": 0.1399 }, { "start": 27054.78, "end": 27055.32, "probability": 0.2205 }, { "start": 27055.54, "end": 27058.46, "probability": 0.9747 }, { "start": 27059.04, "end": 27060.9, "probability": 0.9629 }, { "start": 27060.96, "end": 27064.24, "probability": 0.9897 }, { "start": 27064.84, "end": 27068.82, "probability": 0.9754 }, { "start": 27069.78, "end": 27075.1, "probability": 0.9933 }, { "start": 27075.26, "end": 27075.68, "probability": 0.7747 }, { "start": 27076.38, "end": 27079.04, "probability": 0.1299 }, { "start": 27080.92, "end": 27082.46, "probability": 0.8911 }, { "start": 27082.86, "end": 27083.9, "probability": 0.4684 }, { "start": 27084.68, "end": 27085.7, "probability": 0.8299 }, { "start": 27086.42, "end": 27087.6, "probability": 0.7975 }, { "start": 27089.26, "end": 27089.26, "probability": 0.1907 }, { "start": 27089.36, "end": 27090.28, "probability": 0.7381 }, { "start": 27092.58, "end": 27096.82, "probability": 0.3252 }, { "start": 27097.52, "end": 27099.36, "probability": 0.8852 }, { "start": 27102.8, "end": 27103.74, "probability": 0.8471 }, { "start": 27104.4, "end": 27105.46, "probability": 0.434 }, { "start": 27105.46, "end": 27105.72, "probability": 0.8163 }, { "start": 27105.88, "end": 27109.34, "probability": 0.8664 }, { "start": 27109.38, "end": 27109.84, "probability": 0.0048 }, { "start": 27111.33, "end": 27112.54, "probability": 0.7284 }, { "start": 27112.84, "end": 27113.38, "probability": 0.2842 }, { "start": 27113.44, "end": 27115.44, "probability": 0.8984 }, { "start": 27115.58, "end": 27117.56, "probability": 0.9963 }, { "start": 27117.6, "end": 27119.96, "probability": 0.9858 }, { "start": 27120.8, "end": 27125.34, "probability": 0.221 }, { "start": 27127.57, "end": 27133.78, "probability": 0.7325 }, { "start": 27134.62, "end": 27136.16, "probability": 0.8459 }, { "start": 27136.86, "end": 27137.94, "probability": 0.6641 }, { "start": 27138.0, "end": 27138.88, "probability": 0.8397 }, { "start": 27139.0, "end": 27140.72, "probability": 0.9941 }, { "start": 27140.86, "end": 27141.88, "probability": 0.7518 }, { "start": 27142.98, "end": 27149.3, "probability": 0.971 }, { "start": 27149.84, "end": 27154.82, "probability": 0.9979 }, { "start": 27154.98, "end": 27155.46, "probability": 0.8494 }, { "start": 27155.6, "end": 27156.46, "probability": 0.91 }, { "start": 27156.9, "end": 27159.56, "probability": 0.9473 }, { "start": 27159.64, "end": 27162.48, "probability": 0.9947 }, { "start": 27162.64, "end": 27163.34, "probability": 0.8419 }, { "start": 27163.46, "end": 27164.3, "probability": 0.9502 }, { "start": 27164.54, "end": 27168.38, "probability": 0.9851 }, { "start": 27168.86, "end": 27169.96, "probability": 0.9937 }, { "start": 27170.6, "end": 27175.44, "probability": 0.9501 }, { "start": 27176.04, "end": 27176.86, "probability": 0.501 }, { "start": 27177.5, "end": 27178.86, "probability": 0.7404 }, { "start": 27179.94, "end": 27180.56, "probability": 0.2007 }, { "start": 27180.56, "end": 27181.76, "probability": 0.2141 }, { "start": 27181.92, "end": 27183.7, "probability": 0.3432 }, { "start": 27184.26, "end": 27186.06, "probability": 0.8523 }, { "start": 27186.5, "end": 27189.56, "probability": 0.9785 }, { "start": 27189.8, "end": 27190.24, "probability": 0.5859 }, { "start": 27191.36, "end": 27195.52, "probability": 0.6082 }, { "start": 27200.42, "end": 27204.1, "probability": 0.65 }, { "start": 27204.82, "end": 27205.52, "probability": 0.5693 }, { "start": 27205.7, "end": 27208.7, "probability": 0.9242 }, { "start": 27208.8, "end": 27209.54, "probability": 0.9559 }, { "start": 27210.22, "end": 27212.88, "probability": 0.8944 }, { "start": 27213.48, "end": 27217.92, "probability": 0.9889 }, { "start": 27219.53, "end": 27220.15, "probability": 0.0581 }, { "start": 27221.26, "end": 27222.82, "probability": 0.6407 }, { "start": 27224.36, "end": 27226.0, "probability": 0.9419 }, { "start": 27226.52, "end": 27231.18, "probability": 0.9834 }, { "start": 27231.32, "end": 27232.46, "probability": 0.9976 }, { "start": 27233.06, "end": 27233.92, "probability": 0.9956 }, { "start": 27234.44, "end": 27234.64, "probability": 0.8807 }, { "start": 27235.66, "end": 27236.54, "probability": 0.7063 }, { "start": 27237.2, "end": 27239.34, "probability": 0.8766 }, { "start": 27239.52, "end": 27240.46, "probability": 0.9154 }, { "start": 27240.92, "end": 27241.74, "probability": 0.9728 }, { "start": 27242.28, "end": 27246.56, "probability": 0.9724 }, { "start": 27246.74, "end": 27249.72, "probability": 0.9703 }, { "start": 27249.96, "end": 27251.92, "probability": 0.8701 }, { "start": 27252.52, "end": 27254.56, "probability": 0.8026 }, { "start": 27254.8, "end": 27255.34, "probability": 0.8255 }, { "start": 27255.42, "end": 27256.25, "probability": 0.7386 }, { "start": 27256.54, "end": 27257.94, "probability": 0.9341 }, { "start": 27258.24, "end": 27259.56, "probability": 0.9754 }, { "start": 27259.84, "end": 27260.58, "probability": 0.9012 }, { "start": 27261.1, "end": 27261.94, "probability": 0.9648 }, { "start": 27262.06, "end": 27266.8, "probability": 0.9839 }, { "start": 27267.24, "end": 27269.4, "probability": 0.9992 }, { "start": 27269.5, "end": 27271.96, "probability": 0.8719 }, { "start": 27272.18, "end": 27275.6, "probability": 0.9834 }, { "start": 27275.86, "end": 27276.9, "probability": 0.7097 }, { "start": 27278.24, "end": 27278.78, "probability": 0.4304 }, { "start": 27279.38, "end": 27280.62, "probability": 0.9355 }, { "start": 27288.46, "end": 27292.48, "probability": 0.9517 }, { "start": 27292.68, "end": 27293.94, "probability": 0.9756 }, { "start": 27294.58, "end": 27295.58, "probability": 0.9822 }, { "start": 27297.02, "end": 27299.98, "probability": 0.8041 }, { "start": 27300.84, "end": 27301.96, "probability": 0.5711 }, { "start": 27302.08, "end": 27302.84, "probability": 0.7964 }, { "start": 27303.06, "end": 27306.46, "probability": 0.9926 }, { "start": 27306.6, "end": 27306.88, "probability": 0.4834 }, { "start": 27306.98, "end": 27307.68, "probability": 0.9204 }, { "start": 27307.78, "end": 27309.8, "probability": 0.9977 }, { "start": 27310.02, "end": 27311.24, "probability": 0.9987 }, { "start": 27311.62, "end": 27315.38, "probability": 0.8099 }, { "start": 27315.54, "end": 27316.22, "probability": 0.7212 }, { "start": 27316.76, "end": 27317.38, "probability": 0.8105 }, { "start": 27317.56, "end": 27321.42, "probability": 0.999 }, { "start": 27321.64, "end": 27323.54, "probability": 0.8817 }, { "start": 27324.4, "end": 27325.61, "probability": 0.949 }, { "start": 27326.22, "end": 27327.6, "probability": 0.8454 }, { "start": 27327.72, "end": 27329.0, "probability": 0.6304 }, { "start": 27329.36, "end": 27332.04, "probability": 0.1705 }, { "start": 27332.28, "end": 27334.14, "probability": 0.1687 }, { "start": 27335.68, "end": 27335.92, "probability": 0.3076 }, { "start": 27337.36, "end": 27338.42, "probability": 0.7266 }, { "start": 27338.42, "end": 27338.42, "probability": 0.1533 }, { "start": 27338.42, "end": 27338.48, "probability": 0.2624 }, { "start": 27338.7, "end": 27343.2, "probability": 0.7046 }, { "start": 27345.58, "end": 27349.96, "probability": 0.9177 }, { "start": 27350.44, "end": 27353.78, "probability": 0.1173 }, { "start": 27354.66, "end": 27354.66, "probability": 0.0607 }, { "start": 27354.66, "end": 27354.74, "probability": 0.0573 }, { "start": 27354.86, "end": 27359.44, "probability": 0.9829 }, { "start": 27359.62, "end": 27361.98, "probability": 0.9819 }, { "start": 27362.06, "end": 27362.96, "probability": 0.6189 }, { "start": 27363.08, "end": 27363.4, "probability": 0.5195 }, { "start": 27364.14, "end": 27368.44, "probability": 0.1095 }, { "start": 27368.44, "end": 27369.96, "probability": 0.4363 }, { "start": 27370.22, "end": 27373.78, "probability": 0.6995 }, { "start": 27373.82, "end": 27375.8, "probability": 0.9741 }, { "start": 27375.82, "end": 27380.3, "probability": 0.8925 }, { "start": 27380.3, "end": 27384.56, "probability": 0.9434 }, { "start": 27384.56, "end": 27389.58, "probability": 0.9982 }, { "start": 27389.58, "end": 27394.22, "probability": 0.967 }, { "start": 27394.26, "end": 27398.68, "probability": 0.9983 }, { "start": 27399.06, "end": 27403.5, "probability": 0.856 }, { "start": 27403.96, "end": 27407.96, "probability": 0.9971 }, { "start": 27407.96, "end": 27411.76, "probability": 0.9961 }, { "start": 27412.52, "end": 27414.1, "probability": 0.9429 }, { "start": 27414.16, "end": 27416.76, "probability": 0.9948 }, { "start": 27417.36, "end": 27418.78, "probability": 0.9675 }, { "start": 27419.34, "end": 27421.68, "probability": 0.8051 }, { "start": 27421.68, "end": 27424.16, "probability": 0.9962 }, { "start": 27424.22, "end": 27426.62, "probability": 0.9889 }, { "start": 27427.36, "end": 27429.84, "probability": 0.9447 }, { "start": 27429.96, "end": 27430.4, "probability": 0.7475 }, { "start": 27430.71, "end": 27431.32, "probability": 0.9833 }, { "start": 27431.96, "end": 27436.8, "probability": 0.393 }, { "start": 27436.94, "end": 27439.08, "probability": 0.8953 }, { "start": 27439.6, "end": 27441.58, "probability": 0.5656 }, { "start": 27442.02, "end": 27442.86, "probability": 0.6214 }, { "start": 27442.98, "end": 27443.22, "probability": 0.0014 }, { "start": 27443.22, "end": 27443.68, "probability": 0.5967 }, { "start": 27443.88, "end": 27444.12, "probability": 0.1305 }, { "start": 27444.56, "end": 27446.02, "probability": 0.6839 }, { "start": 27446.28, "end": 27446.8, "probability": 0.174 }, { "start": 27446.8, "end": 27446.96, "probability": 0.2226 }, { "start": 27446.96, "end": 27448.04, "probability": 0.8552 }, { "start": 27448.94, "end": 27449.6, "probability": 0.3483 }, { "start": 27449.64, "end": 27451.52, "probability": 0.4439 }, { "start": 27451.88, "end": 27460.14, "probability": 0.5268 }, { "start": 27460.88, "end": 27461.44, "probability": 0.3456 }, { "start": 27461.64, "end": 27461.72, "probability": 0.468 }, { "start": 27461.92, "end": 27462.98, "probability": 0.2674 }, { "start": 27464.0, "end": 27467.14, "probability": 0.18 }, { "start": 27467.9, "end": 27469.76, "probability": 0.7681 }, { "start": 27470.26, "end": 27472.11, "probability": 0.5835 }, { "start": 27474.52, "end": 27474.52, "probability": 0.1538 }, { "start": 27474.52, "end": 27475.44, "probability": 0.408 }, { "start": 27478.48, "end": 27481.8, "probability": 0.6255 }, { "start": 27481.88, "end": 27482.6, "probability": 0.6657 }, { "start": 27482.9, "end": 27484.82, "probability": 0.6486 }, { "start": 27485.42, "end": 27486.46, "probability": 0.7288 }, { "start": 27486.5, "end": 27486.9, "probability": 0.5008 }, { "start": 27486.94, "end": 27488.12, "probability": 0.9415 }, { "start": 27488.34, "end": 27488.92, "probability": 0.7845 }, { "start": 27494.5, "end": 27494.7, "probability": 0.1164 }, { "start": 27507.44, "end": 27507.6, "probability": 0.1931 }, { "start": 27507.6, "end": 27508.52, "probability": 0.4302 }, { "start": 27508.54, "end": 27509.62, "probability": 0.2344 }, { "start": 27509.74, "end": 27511.46, "probability": 0.8408 }, { "start": 27512.04, "end": 27513.62, "probability": 0.4632 }, { "start": 27513.76, "end": 27517.46, "probability": 0.806 }, { "start": 27518.66, "end": 27520.48, "probability": 0.5932 }, { "start": 27521.08, "end": 27522.82, "probability": 0.9805 }, { "start": 27523.42, "end": 27529.9, "probability": 0.6545 } ], "segments_count": 9305, "words_count": 43763, "avg_words_per_segment": 4.7032, "avg_segment_duration": 1.7492, "avg_words_per_minute": 95.3677, "plenum_id": "100181", "duration": 27533.22, "title": null, "plenum_date": "2021-10-20" }